
UNICOS® Tape Subsystem User’s
Guide

SG–2051 9.3

Copyright © 1988, 1997 Cray Research, Inc. All Rights Reserved. This manual or parts thereof may not be reproduced in any
form unless permitted by contract or by written permission of Cray Research, Inc.

Portions of this product may still be in development. The existence of those portions still in development is not a commitment of
actual release or support by Cray Research, Inc. Cray Research, Inc. assumes no liability for any damages resulting from attempts
to use any functionality or documentation not officially released and supported. If it is released, the final form and the time of
official release and start of support is at the discretion of Cray Research, Inc.

Autotasking, CF77, CRAY, Cray Ada, CraySoft, CRAY Y-MP, CRAY-1, CRInform, CRI/TurboKiva, HSX, LibSci, MPP Apprentice,
SSD, SUPERCLUSTER, UNICOS, and X-MP EA are federally registered trademarks and Because no workstation is an island, CCI,
CCMT, CF90, CFT, CFT2, CFT77, ConCurrent Maintenance Tools, COS, Cray Animation Theater, CRAY APP, CRAY C90,
CRAY C90D, Cray C++ Compiling System, CrayDoc, CRAY EL, CRAY J90, CRAY J90se, CrayLink, Cray NQS,
Cray/REELlibrarian, CRAY S-MP, CRAY SSD-T90, CRAY T90, CRAY T3D, CRAY T3E, CrayTutor, CRAY X-MP, CRAY XMS,
CRAY-2, CSIM, CVT, Delivering the power . . ., DGauss, Docview, EMDS, GigaRing, HEXAR, IOS,
ND Series Network Disk Array, Network Queuing Environment, Network Queuing Tools, OLNET, RQS, SEGLDR, SMARTE,
SUPERLINK, System Maintenance and Remote Testing Environment, Trusted UNICOS, UNICOS MAX, and UNICOS/mk are
trademarks of Cray Research, Inc.

DynaWeb is a trademark of Electronic Book Technologies, Inc. EMASS and ER90 are trademarks of EMASS, Inc. EXABYTE is a
trademark of EXABYTE Corporation. IBM is a trademark of International Business Machines Corporation. Silicon Graphics and
the Silicon Graphics logo are registered trademarks of Silicon Graphics, Inc. STK and WolfCreek are trademarks of Storage
Technology Corporation. ULTRIX, VAX, and VMS are trademarks of Digital Equipment Corporation. E-Systems is a trademark of
E-Systems, Inc. UNIX is a registered trademark in the United States and other countries, licensed exclusively through X/Open
Company Limited. X/Open is a registered trademark X/Open Company Ltd.

The UNICOS operating system is derived from UNIX® System V. The UNICOS operating system is also based in part on the
Fourth Berkeley Software Distribution (BSD) under license from The Regents of the University of California.

New Features

UNICOS ® Tape Subsystem User’s Guide SG–2051 9.3

This update of the UNICOS Tape Subsystem User’s Guide supports the UNICOS 9.3 release. It documents
the following:

• Scalable I/O

• New MTIOCATTR ioctl (2) flags

• MTIOCTOP ioctl (2) code, MTMSG

• New error code, ETQRY(90122)

• New and revised system messages

• Man page updates

Tapelist I/O is not supported.

Record of Revision

Version Description

June 1988.
Original Printing.

9.3 August 1997.
Online documentation to support the UNICOS 9.3 release running on Cray
Research computer systems.

SG–2051 9.3 i

Contents

Page

Preface xi

Related Publications . xi

Ordering Cray Research publications xii

Conventions . xii

Reader comments . xiii

Introduction [1] 1

Terminology . 1

Hardware . 3

Cray Research systems . 3

Tape devices and loaders . 3

Tape interfaces . 3

Tape subsystem features . 4

Tape subsystem architecture . 4

Tape label support . 6

Tape positioning . 6

Front-end servicing . 7

User end-of-volume processing 7

Multifile volume allocation . 7

Concatenated tape files . 7

Tape performance . 7

System buffering . 8

Kernel interface . 9

Tape multilevel security . 9

SG–2051 9.3 iii

UNICOS® Tape Subsystem User’s Guide

Page

Tape Formats [2] 11

IBM compatible tape format . 11

Nonlabeled tapes . 11

Two tape mark tapes . 11

Single tape mark tapes . 12

Labeled tapes . 13

IBM compatible tape format summary 14

Tape label fields . 16

VOL1 label . 17

HDR1, EOV1, and EOF1 labels 19

HDR2, EOV2, and EOF2 labels 21

ER90 volumes . 24

Tape Subsystem Tutorial [3] 27

Getting started . 27

Obtaining tape status . 30

Tape status commands . 30

Tape log file . 32

Messages to operator . 33

Using standard UNICOS commands 34

Using the cp (1) command . 34

Using the dd(1) command . 35

Using the tar (1) command . 35

Procedure 1: Example 1 . 35

Procedure 2: Example 2 . 36

Using the cpio (1) command . 37

Using the tpmnt (1) command to read concatenated tape files 37

Using the tpmnt (1) command to read or write multifile tapes 38

iv SG–2051 9.3

Contents

Page

Example 1 . 39

Example 2 . 39

Mounting ER90 volumes . 40

Using MLS . 40

Writing Fortran Applications Using Tapes [4] 43

IBM compatible tape processing . 43

Reading and writing to tape . 43

Reading and writing tape marks 45

Positioning a tape by blocks . 46

Positioning a tape by using the SETTP library call 48

Example 1 . 48

Example 2 . 51

Reading and writing tapes containing foreign data 52

Converting foreign data explicitly 52

Example 1 . 54

Example 2 . 56

Example 3 . 57

Converting foreign data implicitly 58

Using the bad data recovery routines 60

Example 1 . 60

Example 2 . 62

Example 3 . 64

Using end-of-volume processing requests 66

Example 1 . 68

Example 2 . 71

Example 3 . 73

ER90 tape processing . 76

SG–2051 9.3 v

UNICOS® Tape Subsystem User’s Guide

Page

Using pure data mode . 77

Using COS blocking mode . 80

Writing C Applications Using Tapes [5] 83

C flexible file I/O library routines 83

System call I/O . 91

Cray Research systems . 91

Transparent I/O . 93

Transparent buffered I/O . 93

Transparent unbuffered I/O 94

Tape information requests . 98

Tape information table . 98

Tape daemon requests . 101

ioctl requests . 109

ER90 TPC_EXTSTSrequest . 109

ER90 read of the buffer log using TPC_RDLOG 115

IBM compatible read of the buffer log using TPC_RDLOG 117

Tape positioning requests . 118

End-of-volume requests . 118

Tape control requests . 118

ER90 set data block size request 118

ER90 synchronize request . 119

Using the Character-Special Tape Interface [6] 123

Using character-special tapes . 123

Writing C applications . 124

Opening files . 124

Closing files . 124

vi SG–2051 9.3

Contents

Page

Using I/O . 124

Using ioctl (2) requests . 125

MTIOCACKERRcall . 126

MTIOCATTRcall . 126

MTIOCGETcall . 127

MTIOCTOPcall . 129

Hardware error codes . 146

Appendix A Interpreting System Messages 149

Appendix B Tape Daemon Return Values 205

Tape daemon return values . 205

Return values for tape positioning 211

Appendix C Man Pages 213

Index 215

Figures
Figure 1. Tape subsystem architecture 5

Figure 2. Communication between the user, tape driver, and tape daemon 6

Figure 3. Nonlabeled, two tape mark formats 12

Figure 4. Nonlabeled, single tape mark formats 13

Figure 5. Labeled tape formats . 14

Figure 6. Single-volume file . 15

Figure 7. Multifile, single-volume tape 15

Figure 8. Multivolume, single-file tape 15

Figure 9. Multifile, multivolume tape 16

Figure 10. VOL1 label . 18

Figure 11. HDR1/EOV1/EOF1 labels 21

SG–2051 9.3 vii

UNICOS® Tape Subsystem User’s Guide

Page

Figure 12. HDR2/EOV2/EOF2 labels 24

Figure 13. Creating a tape . 28

Figure 14. Reading an existing tape file 28

Figure 15. Adding a new file to an existing tape 29

Figure 16. NQS tape job . 29

Figure 17. tprst (1) status display 30

Figure 18. tpstat (1) status display 31

Figure 19. tplist (1) display . 32

Figure 20. tape.msg . 33

Figure 21. Writing an unlabeled tape 44

Figure 22. Reading an unlabeled tape 45

Figure 23. Reading and writing tape marks 46

Figure 24. Positioning by blocks 48

Figure 25. SETTP(3) positioning, example 1 50

Figure 26. SETTP(3) positioning, example 2 52

Figure 27. Converting data to an IBM format 55

Figure 28. Reading an unknown number of records 57

Figure 29. Reading mixed data types 58

Figure 30. Converting foreign data 60

Figure 31. Using the SKIPBAD(3) routine 61

Figure 32. Using the ACPTBAD(3) routine 63

Figure 33. Using the ISHELL (3) routine 65

Figure 34. Using Fortran library routines for EOV processing 69

Figure 35. Using EOV processing when writing a file 72

Figure 36. Using EOV processing when reading a multivolume file 75

Figure 37. Using pure data mode 79

Figure 38. Using COS blocking mode 81

viii SG–2051 9.3

Contents

Page

Figure 39. C library routine usage 85

Figure 40. Executing cexam.c . 86

Figure 41. Executing cexam2.c 87

Figure 42. Using C library routines for EOV processing 88

Figure 43. Reading from an IBM compatible device (unbuffered I/O) 95

Figure 44. Reading from an ER90 device (unbuffered blocked I/O) 96

Figure 45. Reading from an ER90 device (unbuffered byte stream I/O) 96

Figure 46. Writing to an IBM compatible device (unbuffered I/O) 97

Figure 47. Writing to an ER90 device (unbuffered byte stream I/O) 98

Figure 48. Tape information table header 99

Figure 49. Using the tape information table 100

Figure 50. Using the TR_INFO request 103

Figure 51. TR_INFO information 107

Figure 52. ctl_extsts structure 110

Figure 53. Using the ER90 TPC_EXTSTSrequest (tape path) 112

Figure 54. Using the ER90 TPC_EXTSTSrequest (pseudo device) 114

Figure 55. ctl_rdlog structure 115

Figure 56. Using the ER90 TPC_RDLOGrequest 116

Figure 57. Using the TPC_RDLOGrequest (IBM compatible) 117

Figure 58. Setting data block size 119

Figure 59. dmn_commstructure (synchronizing request) 120

Figure 60. Synchronizing your program with a tape 121

Figure 61. Block identifiers . 132

Tables
Table 1. VOL1 label values . 17

Table 2. HDR1/EOV1/EOF1 labels 19

Table 3. HDR2/EOV2/EOF2 labels 22

SG–2051 9.3 ix

UNICOS® Tape Subsystem User’s Guide

Page

Table 4. Tape daemon return values 205

Table 5. Tape positioning return values 211

x SG–2051 9.3

Preface

This manual documents the UNICOS 9.3 release of the tape subsystem, the tape
daemon-assisted interface (also called the Tape Management Facility). In
addition, the manual contains a chapter that describes how to use the
character-specified tape interface.

Other chapters provides tape subsystem information on using tape formats,
performing basic tape procedures, and writing Fortran and C tape applications.

Warning: Because of changes to available software, hardware, and system
configurations since the UNICOS 8.0.2 system evaluation, the term “Trusted
UNICOS” no longer implies an evaluated product. Any use of the term
“Trusted UNICOS” in UNICOS 9.3 documentation refers to the currently
available system configuration that closely resembles that of the evaluated
Trusted UNICOS 8.0.2 system. Cray Research continues to offer a variety of
specific MLS system configurations, including configurations that support
functionality required by trusted systems.

Related Publications

The following administration manuals are available:

• General UNICOS System Administration, publication SG–2301

• UNICOS Tape Subsystem Administrator’s Guide, publication SG–2307

• UNICOS/mk Tape Subsystem Administration, publication SG–2607

The following documents contain additional information that may be helpful:

• UNICOS User Commands Reference Manual, publication SR–2011

• UNICOS System Libraries Reference Manual, publication SR–2080

• UNICOS Multilevel Security (MLS) Feature User’s Guide, publication SG–2111

• Application Programmer’s Library Reference Manual, publication SR–2165

• Application Programmer’s I/O Guide, publication SG–2168

SG–2051 9.3 xi

UNICOS® Tape Subsystem User’s Guide

Ordering Cray Research publications

The User Publications Catalog, publication CP–0099, describes the availability and
content of all Cray Research hardware and software documents that are
available to customers. Cray Research customers who subscribe to the Cray
Inform (CRInform) program can access this information on the CRInform
system.

To order a document, either call the Distribution Center in Mendota Heights,
Minnesota, at +1–612–683–5907, or send a facsimile of your request to fax
number +1–612–452–0141. Cray Research employees may send electronic mail
to orderdsk (UNIX system users).

Customers who subscribe to the CRInform program can order software release
packages electronically by using the Order Cray Software option.

Customers outside of the United States and Canada should contact their local
service organization for ordering and documentation information.

Conventions

The following conventions are used throughout this document:

Convention Meaning

command This fixed-space font denotes literal items such as
commands, files, routines, path names, signals,
messages, and programming language structures.

manpage(x) Man page section identifiers appear in
parentheses after man page names. The following
list describes the identifiers:

1 User commands

1B User commands ported from BSD

2 System calls

3 Library routines, macros, and
opdefs

4 Devices (special files)

4P Protocols

5 File formats

7 Miscellaneous topics

xii SG–2051 9.3

Preface

7D DWB-related information

8 Administrator commands

Some internal routines (for example, the ddcnt ()
routine) do not have man pages associated with
them.

variable Italic typeface denotes variable entries and words
or concepts being defined.

user input This bold, fixed-space font denotes literal items
that the user enters in interactive sessions.
Output is shown in nonbold, fixed-space font.

[] Brackets enclose optional portions of a command
or directive line.

... Ellipses indicate that a preceding element can be
repeated.

The default shell in the UNICOS and UNICOS/mk operating systems, referred
to in Cray Research documentation as the standard shell, is a version of the Korn
shell that conforms to the following standards:

• Institute of Electrical and Electronics Engineers (IEEE) Portable Operating
System Interface (POSIX) Standard 1003.2–1992

• X/Open Portability Guide, Issue 4 (XPG4)

The UNICOS and UNICOS/mk operating systems also support the optional use
of the C shell.

Reader comments

If you have comments about the technical accuracy, content, or organization of
this document, please tell us. You can contact us in any of the following ways:

• Send us electronic mail at the following address:

publications@cray.com

• Contact your customer service representative and ask that an SPR or PV be
filed. If filing an SPR, use PUBLICATIONS for the group name, PUBSfor the
command, and NO-LICENSE for the release name.

• Call our Software Publications Group in Eagan, Minnesota, through the
Customer Service Call Center, using either of the following numbers:

SG–2051 9.3 xiii

UNICOS® Tape Subsystem User’s Guide

1–800–950–2729 (toll free from the United States and Canada)

+1–612–683–5600

• Send a facsimile of your comments to the attention of “Software Publications
Group” in Eagan, Minnesota, at fax number +1–612–683–5599.

We value your comments and will respond to them promptly.

xiv SG–2051 9.3

Introduction [1]

This user’s guide describes the characteristics and capabilities of the tape
subsystem, which is also called the Tape Management Facility. It explains the
ways in which you may work with the tape subsystem, and provides many
examples of commonly used commands. The guide also describes the use of
the character-special tape interface.

This publication is organized as follows:

Chapter Description

1 Introduces the terminology associated with the
tape subsystem, specifies the Cray Research
computer systems on which the tape subsystem
runs, documents tape interfaces, and describes
the tape subsystem’s features.

2 Describes the structure of tape formats.

3 Describes the commands that access tapes by
using the tape subsystem, as well as tape status
and information commands.

4 Describes the use of the tape subsystem from
Fortran programs.

5 Describes the use of the tape subsystem from C
programs.

6 Describes the use of the character-special tape
interface.

Appendix A Describes system messages.

Appendix B Describes tape daemon return values.

Appendix C Contains the user man pages associated with the
tape subsystem.

1.1 Terminology

This section describes terminology used throughout this manual and briefly
describes the Cray Research systems that run the tape subsystem. It also
describes the features of the tape subsystem.

SG–2051 9.3 1

UNICOS® Tape Subsystem User’s Guide

The following terms are associated with the tape subsystem and are used
throughout this manual:

Term Definition

block size The block size specifies the size (in bytes) of a
data block on a tape.

device group Each tape device belongs to a device group. The
device group name is the generic device name in
the configuration file. Also referred to as a
resource.

device name Each tape device is identified by a device name,
which is defined by a device name entry in the
tape configuration file.

device type Each device has a device type, which is specified
by a number. The different tape devices available
on Cray Research systems.

file identifier The file identifier is the name of the file recorded
in the HDR1label of a labeled tape. If specified in
lowercase, it is converted to uppercase, per ANSI
standard.

job ID The job ID is the process identification number
unique to the shell or batch job currently in use.

label type The label type may be one of the following:
nonlabeled, IBM standard, ANSI standard, or
single tape mark format.

path name Each tape file is defined by a path name. You can
specify the path name of the tape file by using the
tpmnt (1) command. The system creates an entry
in the directory specified by the path name. The
tape device assigned to the tape file may change
during volume switching. While a tape device is
assigned to a tape file, you may not remove the
path name of that tape file; the path name is
removed when the tape device is released.

record length The record length specifies the maximum length
of a logical record (in bytes).

volume ID The volume identifier is a character string that
consists of 1 to 6 alphanumeric characters

2 SG–2051 9.3

Introduction [1]

identifying a tape. The volume ID may also be
referred to as the volume serial number (VSN) or
the internal VSN.

external VSN The external VSN is the human readable label
applied to the tape’s container.

format ID A format identifier (ID) is the unique identifier
for ER90 devices that is recorded on a tape
during the volume format. It is a character string
that consists of 1 to 6 alphanumeric characters. It
is recommended that this label be the same as the
volume ID. If you do not specify a format ID, the
volume identifier is recorded on the tape as the
format ID.

1.2 Hardware

This section describes the hardware of the tape subsystem. It includes a brief
discussion of Cray Research systems, tape devices, and loaders.

1.2.1 Cray Research systems

The tape subsystem runs on Cray Research systems that have either the I/O
subsystem Model E (IOS-E) or GigaRing support.

1.2.2 Tape devices and loaders

A wide range of tape devices and autoloaders are available on Cray Research
systems. For more information on these, see your Cray Research sales
representative.

1.3 Tape interfaces

There are two methods for accessing tapes:

• Tape daemon-assisted interface, commonly referred to as the tape subsystem

• Character-special tape interface

The tape daemon-assisted interface, which is called the tape subsystem in this
manual, uses a kernel device driver and the tape daemon. It is the standard

SG–2051 9.3 3

UNICOS® Tape Subsystem User’s Guide

method of accessing tape devices. This interface supports many functions
including tape resource management, device management, volume mounts and
dismounts through operator communication or autoloader requests, label
processing, volume switching, and error recovery.

Note: Chapter’s 2, 3, 4, and 5, and appendixes A and B describe the tape
daemon-assisted interface. Only Chapter 6 describes the character-special
tape interface.

The character-special tape interface to the UNICOS tape subsystem is similar to
the traditional UNIX process of accessing tape devices. It gives you
unstructured access to the tape devices so that you can use standard UNIX
commands and ioctl (2) requests to manage your tapes.

1.4 Tape subsystem features

This section briefly highlights the following features of the tape subsystem:

• Tape subsystem architecture

• Tape label support

• Tape positioning

• Front-end servicing

• User end-of-volume (EOV) processing

• Multifile volume allocation

• Concatenated tape files

This section does not include features of the character-special tape interface. For
information on this interface, see Chapter 6, page 123.

1.4.1 Tape subsystem architecture

The basic elements of the tape subsystem are the tape daemon and the tape
device driver. The tape daemon is started by the system operator or the system
administrator, or it is started automatically as part of the system startup. The
tape daemon has super-user privileges. Therefore, it can communicate directly
with the tape device driver to process your requests. You can execute a
tape-related command, which builds a request and sends it to the tape daemon,
by way of a tape daemon request pipe. Figure 1 shows the architecture of the
tape subsystem.

4 SG–2051 9.3

Introduction [1]

Tape
drive

Tape device
driver

System calls or
Fortran library routines

Signals

ioctl
functions

User

Request pipe

Reply pipe
Tape

daemon

a10135

Figure 1. Tape subsystem architecture

The tape device driver signals the tape daemon if any of the following
conditions occur:

• You issue an open (2) request to the tape path name.

• You issue a close (2) request to the tape path name.

• You issue the first I/O request to the tape path name.

• An I/O error occurs.

• A tape mark is read.

• An end-of-tape is detected during a write (2) operation.

• An end-of-file is detected, requiring tape mark processing.

SG–2051 9.3 5

UNICOS® Tape Subsystem User’s Guide

If any of these conditions occur, your job is suspended until the tape daemon
finishes processing. At this point, the tape daemon requests that the tape device
driver either issue you an error message or allow you to continue. Figure 2
illustrates this process.

a10136

User

Issues the following to
the tape driver:

• open request
• close request
• First I/O request

Tape driver

Notifies the daemon
of the following:

• User’s open request
• User’s close request
• The first I/O request
• I/O errors
• End-of-tape
• Write tape mark

Tape daemon

• Processes requests
Requests that the
tape driver issue an
error message to
the user or allow
the user to continue

•

Figure 2. Communication between the user, tape driver, and tape daemon

1.4.2 Tape label support

The tape subsystem supports ANSI standard labels, IBM standard labels, single
tape mark format tapes, or no labels. Single tape mark format tapes do not have
labels and are terminated by a single tape mark at the end-of-volume, whereas
a normal nonlabeled tape is terminated by two tape marks at the end-of-volume.
Also, bypass-label processing is available to privileged users with proper user
database (UDB) permission. Bypass-label processing lets privileged users read or
write tape labels as regular files.

1.4.3 Tape positioning

Tape positioning lets you move to the beginning of a tape block. Tape
movement may be forward or backward; however, tape positioning directives
cannot be used to circumvent normal tape label processing or label checking
unless you have tape-manager permission or bypass label permission and use
an absolute track address positioning request (TR_PABS). You can position the
tape file relative to a tape mark, tape block, or volume; or you can position the
tape file to an absolute track address.

6 SG–2051 9.3

Introduction [1]

1.4.4 Front-end servicing

While processing tape labels, the tape subsystem requests permission and
volume serial numbers from a specific front-end system. Front-end servicing is
optional.

1.4.5 User end-of-volume processing

User end-of-volume (EOV) processing lets you gain control at the end of a tape
volume. For EOV processing or positioning to a tape block, it is necessary to
know that the file being processed is a tape file.

You may request to be notified when end-of-volume is reached. In addition,
you can request special user EOV processing, which includes the reading,
writing, and positioning of the volume before and after a volume switch. After
special processing has completed, you must request that the tape subsystem
resume normal processing.

1.4.6 Multifile volume allocation

Multifile volume allocation lets you process a multifile volume tape without the
need for the system to unload and load tapes between files.

1.4.7 Concatenated tape files

The concatenated tape file feature lets you read multiple tape files as though
they were one tape file. An end-of-volume status is returned for all
concatenated files read, until the last file and its end-of-file is encountered.

1.5 Tape performance

This section briefly describes how to improve the performance of the tape
subsystem. The tape transfer rate and system CPU time impact tape
performance. The tape transfer rate is largely determined by the tape block size,
but can be affected by other parameters such as buffer size and system buffer
size.

System CPU time is largely a function of the number of system calls used for
tape I/O; the primary determinant of system CPU time is the library buffer size.

You can improve tape performance by adjusting system buffering and kernel
interfaces.

SG–2051 9.3 7

UNICOS® Tape Subsystem User’s Guide

1.5.1 System buffering

System buffering is used to buffer user data when necessary. Buffering of tape
data in the system buffer is optional and can be disabled with the -U option on
the tpmnt (1) command. The defaults set by the system administrator are an
important factor in the tape subsystem performance. For Fortran I/O, this
means that data is transferred directly between the library buffer and the tape
device. For C programmers using system calls directly for tape I/O, this option
also imposes certain restrictions. See Section 5.2.

There are two advantages to using the -U option of the tpmnt command:

• Because the system buffer is not used, the limit on the maximum tape block
size imposed by the value of the system parameter TAPE_MAX_PER_DEVis
removed. With the -U option, tape blocks are limited in size only by the size
of the user’s buffer, the device limit, and for blocked I/O, the -b option of
the tpmnt command.

• In some cases, performance is enhanced because the tape data is only copied
twice, rather than three times on each transfer (once between the user’s data
area and the library, next between the library buffer and the system buffer,
and then between the system buffer and the tape device).

In practice, the -U option is advantageous only with very large buffers or large
tape blocks. For this discussion, large buffers are those over four times the
maximum block size (MBS) of the tape, where the MBS is at least 128 Kbytes.
In other cases, tape processing with the -U option is more expensive in system
CPU time and slightly slower in terms of the tape data rate.

System buffering is an important factor in tape subsystem performance. The
default is system buffering of all tape data. The tpmnt -U command disables
system buffering for blocked I/O. If the MBS (as specified by the tpmnt -b
command) is less than half the size of TAPE_MAX_PER_DEV, the kernel driver
divides this buffer into two equal parts and performs asynchronous read-ahead
and write-behind operations (double buffering). If the MBS is larger than half
the size of TAPE_MAX_PER_DEV, the system buffer is used as a single buffer
and tape performance will suffer. Tape blocks larger than TAPE_MAX_PER_DEV
will result in an error. For byte stream I/O, the ER90 driver divides the buffer
into two equal parts and performs asynchronous read ahead and write behind
operations (double buffering). The TAPE_MAX_PER_DEVis configurable by the
system administrator. See the UNICOS Tape Subsystem Administrator’s Guide,
publication SG–2307, for details.

8 SG–2051 9.3

Introduction [1]

1.5.2 Kernel interface

The kernel interface to tape I/O is through the standard read (2) and write (2)
system calls. It is called transparent I/O.

Flexible file I/O (FFIO) library routines provide another way to perform tape
I/O. Fortran I/O is based on FFIO, and the C library contains FFIO routines.
See Chapter 4, page 43, for further information. Also see the Application
Programmer’s I/O Guide, publication SG–2168, for more information on FFIO.

1.6 Tape multilevel security

When discussing the UNICOS tape subsystem as used on a UNICOS multilevel
security (MLS) system in this manual, it is assumed that you have read and
understood the following information:

• UNICOS Multilevel Security (MLS) Feature User’s Guide, publication SG–2111

• General UNICOS System Administration, publication SG–2301 MLS chapter of
publication SG-2301

Warning: If your site is running a Trusted UNICOS system, you must
thoroughly understand the information and follow all procedures discussed in
the documents listed previously and noted throughout the rest of this manual
to properly use the UNICOS tape subsystem on a Trusted UNICOS system.

UNICOS systems with the UNICOS MLS feature require a user’s security label
to be equal to the tape security label to write to that tape. The user’s security
label must dominate the tape security label to read to that tape.

All files on a tape must be at the same security label.

All tape activity can be audited. The tape security administrator can tune the
tape subsystem to control what can be audited.

SG–2051 9.3 9

Tape Formats [2]

The tape subsystem supports the IBM compatible tape format and ER90 (D2
cassettes) tape format. This chapter describes and illustrates these formats and
the label fields if applicable.

2.1 IBM compatible tape format

This section briefly describes and illustrates the IBM tape format. Tape format
is determined by the presence or absence of labels and the number of files on a
tape volume or number of volumes for a tape file.

System labels and tape marks are accessible to a user process without privileges
only through the use of the tpmnt (1) command.

In the following figures, the character b represents the beginning of the tape
and the character * represents a tape mark (HDR2, EOV2, and EOF2 labels are
optional for input). The UNICOS operating system always creates these labels
for labeled tapes; other systems may not.

2.1.1 Nonlabeled tapes

Nonlabeled tapes are of two formats, determined by the number of tape marks
that indicate end-of-volume.

2.1.1.1 Two tape mark tapes

Nonlabeled tapes with two tape marks, implemented by the -l nl option of
the tpmnt (1) command, may consist of a single-volume file; a multivolume file;
or multifile, multivolume file formats. Figure 3 illustrates these formats. For
tapes with multiple files, a single tape mark separates files on the same volume.
End-of-volume is reached when two consecutive tape marks are encountered
and there is another tape to read.

SG–2051 9.3 11

UNICOS® Tape Subsystem User’s Guide

Single-volume file tape:

b File * *

Multifile, single-volume tape:

b File 1 * File 2 * * * *www Last File

Multivolume, single-file tape:

b

b

* *

* *

Section 1 of file

Section 2 of file

Multifile, multivolume tape:

b

b

b

File 1 * Section 1 of file 2 * *

* *

* *

Section 2 of file 2

Last section of file 2 * File 3
a10137

Figure 3. Nonlabeled, two tape mark formats

2.1.1.2 Single tape mark tapes

For nonlabeled, single tape mark format, implemented by the -l st option of
the tpmnt (1) command, a single tape mark indicates end-of-volume. When
using one tape mark tape as an input tape, the system reads only to the first
tape mark encountered.

When using a single tape mark tape as an output tape, the system terminates
the tape with three tape marks, allowing it to be read as a nonlabeled tape later
on. Note that because the system processes only the data blocks and the first
tape mark, you cannot have multifiles on a single tape mark tape. That is, you
cannot use the -l st option with the -q option of the tpmnt command.

Figure 4 illustrates nonlabeled, single tape mark formats.

12 SG–2051 9.3

Tape Formats [2]

Single-volume file tape:

b File *

Multivolume, single-file tape:

b

b

*

*

Section 1 of file

Section 2 of file

a10138

Figure 4. Nonlabeled, single tape mark formats

2.1.2 Labeled tapes

Labeled tapes are implemented by the -l al (ANSI standard labels) and the
-l sl (IBM standard labels) options of the tpmnt (1) command. ANSI
standard labels and IBM standard labels are similar, with the exception that in
IBM standard labels the character fields are represented by EBCDIC characters
while in ANSI standard labels the character fields use ASCII characters.

Labeled tapes have the following labels for the UNICOS tape subsystem (see
"Tape label fields for ANSI standard and IBM standard labels," page Section 2.2,
page 16, for a description of these labels):

• Volume header label (VOL1)

• First file header (HDR1)

• First end-of-volume (EOV1)

• First end-of-file (EOF1)

• Second file header (HDR2)

• Second end-of-volume (EOV2)

• Second end-of-file (EOF2)

Figure 5 illustrates labeled tape formats.

SG–2051 9.3 13

UNICOS® Tape Subsystem User’s Guide

b HDR1 HDR2

b HDR1 HDR2

b VOL1 HDR1 HDR2 * Section 1 of file * EOV1 EOV2 * *

VOL2 * Mid-section of file EOV1 EOV2 * **

VOL3 * Last section of file EOF1 EOF2 * **

b VOL1 HDR1 HDR2 * File * EOF1 EOF2 * *

Single-volume file tape:

* File 2 * EOF1 EOF2 * *

b VOL1 HDR1 HDR2 * File 1 * EOF1 EOF2 * HDR1 HDR2
Multifile, single-volume tape:

Multivolume, single-file tape:

b VOL1 HDR1 HDR2 * Section 2 of file 2 * EOV1 EOV2 * *

Multifile, multivolume tape:

b VOL1 HDR1 HDR2 * File 1 * EOF1 EOF2 * HDR1 HDR2

* Section 1 of file 2 * EOV1 EOV2 * *

b VOL1 HDR1 HDR2 * Last section of file 2 * EOF1 EOF2 *

HDR1 HDR2 * Section 1 of file 3 * EOV1 EOV2 * *

b VOL1 HDR1 HDR2 * Last section of file 3 * EOF1 EOF2 *

HDR1 HDR2 * * EOF1 EOF2 * *File 4
a10139

Figure 5. Labeled tape formats

2.1.3 IBM compatible tape format summary

The formats described previously are illustrated in Figure 6 through Figure 9
grouped by number of files and number of volumes. Figure 6 shows a
single-volume file; Figure 7 shows a multifile, single-volume tape; Figure 8
shows a multivolume, single-file tape; and Figure 9 shows a multifile,
multivolume tape. For each format type, the figures show both labeled (ANSI
or IBM) and nonlabeled tapes.

14 SG–2051 9.3

Tape Formats [2]

b File **

b VOL1 HDR1 HDR2 * File * EOF1 EOF2 * *

Nonlabeled:

Labeled:

b File *

Single tape mark:

a10140

Figure 6. Single-volume file

b File 1 * File 2 * * Last File * *

* File 2 * EOF1 EOF2 * *

b VOL1 HDR1 HDR2 * File 1 * EOF1 EOF2 * HDR1 HDR2

Nonlabeled:

Labeled:

www

Single tape mark: (not applicable) a10141

Figure 7. Multifile, single-volume tape

b HDR1 HDR2

b HDR1 HDR2

Section 1 of fileb * *

Section 2 of fileb * *

b VOL1 HDR1 HDR2 * Section 1 of file * EOV1 EOV2 * *

Section 1 of fileb *

Section 2 of fileb *

VOL2 * Mid-section of file EOV1 EOV2 * **

VOL3 * Last section of file EOF1 EOF2 * **

Nonlabeled:

Labeled:

Single tape mark:

a10142

Figure 8. Multivolume, single-file tape

SG–2051 9.3 15

UNICOS® Tape Subsystem User’s Guide

b VOL1 HDR1 HDR2 * Section 2 of file 2 * EOV1 EOV2 * *

b File 1 * Section 1 of file 2 * *

b Section 2 of file 2 * *

b Last section of file 2 * File 3 * *

Nonlabeled:

Labeled:

b VOL1 HDR1 HDR2 * File 1 * EOF1 EOF2 * HDR1 HDR2

* Section 1 of file 2 * EOV1 EOV2 * *

b VOL1 HDR1 HDR2 * Last section of file 2 * EOF1 EOF2 *

HDR1 HDR2 * Section 1 of file 3 * EOV1 EOV2 * *

b VOL1 HDR1 HDR2 * Last section of file 3 * EOF1 EOF2 *

HDR1 HDR2 * * EOF1 EOF2 * *File 4

Single tape mark: (not applicable) a10143

Figure 9. Multifile, multivolume tape

2.2 Tape label fields

This section describes the various tape label fields for ANSI standard and IBM
standard labels. Specifically, it describes the fields in which label types are
supported. These are checked by the system when reading or writing a tape
and those that are filled in with parameter values when you use the tpmnt (1)
command to create a labeled tape. The following tape labels are described for
the tape subsystem:

• Volume header label (VOL1)

• First file header (HDR1)

• First end-of-volume (EOV1)

• First end-of-file (EOF1)

• Second file header (HDR2)

16 SG–2051 9.3

Tape Formats [2]

• Second end-of-volume (EOV2)

• Second end-of-file (EOF2)

In IBM standard-label character fields, the characters are represented by
EBCDIC characters. ANSI standard labels use ASCII characters.

2.2.1 VOL1 label

The VOL1 label is the first block on a labeled tape. Table 1 describes the fields
for an ANSI standard label. Figure 10 shows the format of the VOL1 label.

Table 1. VOL1 label values

Field
Starting
byte

Length in
bytes Contents Description

label id 1 4 VOL1 VOL1 label; required system-supplied character
string.

volume id 5 6 vi Volume identifier of the tape; it is specified with
the -v option or contained in the file specified
with the -V option of the tpmnt (1) command. It
is checked on all labeled tapes and contains up
to 6 alphanumeric characters.

owner id 38 14 owner_id User ID of the tape owner.

standard
level

80 1 label
standard
version

ANSI standard version number for label and
data formats. For Cray Research systems, the
version number is 4.

The fields of the ANSI standard VOL1 label are the same as the IBM standard
VOL1 label, with the following exceptions:

• The owner id field of the IBM standard VOL1 label starts at byte 42 and
has a length of 10 bytes.

• The standard level field is not used in the IBM standard VOL1 label.

SG–2051 9.3 17

UNICOS® Tape Subsystem User’s Guide

~~

a10144

label
id

volume id

reserved

owner id

reserved

standard
level

Starting byte

ANSI
standard

IBM
standard

Length
in bytes Field

1

4

1

4
5 5

4

6

10 10
11 11

28

37
38

51

52

79
80 80

52
51

42
41

32

10

14

27

1

~~~~~~

~~~~~~~~

Figure 10. VOL1 label

18 SG–2051 9.3

Tape Formats [2]

2.2.2 HDR1, EOV1, and EOF1 labels

The HDR1 label is located before each file or section of a file on a tape volume.
If a file is not completed on a tape volume and extends to the following tape
volume, the data in the file is followed by an EOV1 label. If a file or file section
is completed on a tape volume, the data in the file is followed by an EOF1 label.

The fields of the HDR1, EOV1, and EOF1 labels are the same in both the ANSI
standard label format and the IBM standard label format. Table 2 describes the
specified fields. Figure 11, page 21, shows the format of the
HDR1/EOV1/EOF1 labels.

Table 2. HDR1/EOV1/EOF1 labels

Field
Starting
byte

Length
in bytes Contents Description

label id 1 4 HDR1
EOV1
EOF1

Label type; required system-supplied character string.

file id 5 17 file_id File identifier; 1 through 17 alphanumeric character
field specified by the -f option of the tpmnt (1)
command. If the -f option is not specified, the file
identifier is taken from the path name of the -p or
-P option of tpmnt . The level of checking on file
id is installation specified.

sequence 28 4 number Order of this volume in a multivolume set; it is
specified by a decimal number (1 through 9999) on
the -O option of tpmnt .

file
sequence

32 4 number File order within a multifile tape; it is specified by a
decimal number (1 through 9999) on the -q option of
tpmnt . The system uses the specified value to
position the tape volume to the proper file.

creation
date

42 6 cyyddd Creation date (pseudo-Julian format) of a new tape; c
= century (blank = 19, 0 = 20, 1 = 21...), yy = year
(00-99), and ddd = day (001-366).

SG–2051 9.3 19

UNICOS® Tape Subsystem User’s Guide

Field
Starting
byte

Length
in bytes Contents Description

expiration
date

48 6 cyyddd Expiration date (pseudo-Julian format) at which time
a tape may be scratched or overwritten. Normally, it
is specified in the cyyddd format by using the -x
option of tpmnt . Otherwise, you can specify the
number of days on the -t option by using tpmnt (1).
The specified number is added to the creation
date , thus creating the expiration date .

block
count

55 6 number Number of data blocks in the preceding file section
or file on the current tape volume for EOV1 and
EOF1 labels. The block count in the HDR1 label
contains a value of 000000.
In EOV and EOF labels for standard labels (sl), if
the block count is greater than 999,999, the block
count field will represent the block count as mod
1,000,000. The overflow (block count / 1000000)
will be stored in bytes 76 through 80. This is the
extended block count field.
For ANSI standard labels (al), if the block count is
greater than 999,999, the block count field will
represent the block count as mod 1,000,000.

extended
block
count

76 5 number For standard labels (sl), if the block count is greater
than 999,999, the block count field will represent
the block count as mod 1,000,000. The extended
block count field will contain the overflow (block
count / 1000000).

20 SG–2051 9.3

Tape Formats [2]

~~

Starting byte
Length
in bytes Field

label id

file id

reserved

sequence

file sequence

reserved

creation date

expiration date

reserved

block count

reserved

extended block count

a10145

1

4
5

21
22

27
28

31
32

35
36

41
42

47
48

53
54
55

60
61

75
76

80
6

14

6

1

6

6

6

4

4

6

17

4

~~ ~~

Figure 11. HDR1/EOV1/EOF1 labels

2.2.3 HDR2, EOV2, and EOF2 labels

An HDR2 label immediately follows an HDR1 label, and it is followed by a
tape mark. An EOV2 label immediately follows an EOV1 label, and it is

SG–2051 9.3 21

UNICOS® Tape Subsystem User’s Guide

followed by two tape marks. An EOF2 label immediately follows an EOF1
label, and if more files follow this file, it is followed by one tape mark. If the
EOF2 label is the last file on the tape volume, it is followed by two tape marks.

ANSI standard does not specify a format for these labels, except for the first 4
bytes. IBM standard labels use the HDR2, EOV2, and EOF2 labels to store
additional information concerning the file they bracket. The UNICOS operating
system automatically writes these labels when you use the -l sl or -l al
options of tpmnt (1). These labels follow the IBM standard format. Table 3
describes the specified fields. Figure 12 shows the format of the
HDR2/EOV2/EOF2 labels.

Table 3. HDR2/EOV2/EOF2 labels

Field
Starting
byte

Length
in
bytes Contents Description

label id 1 4 HDR1
EOV1
EOF1

Label type; required
system-supplied character string.

record
format

5 1 format Record format; 1-character filed
specified by the -F option of
tpmnt (1).

block
length

6 5 number Maximum block length, in bytes,
for the associated file; specified by
a decimal number (1 through
99999) on the --b option of
tpmnt . If the block length is
greater than 100000, the block
length field will represent the
block length as mod 100000.

record
length

11 5 number Record length, in bytes; specified
by the --L option of tpmnt .

density 16 1 number Tape density; specified by the -d
option of tpmnt . The UNICOS
operating system supports 1600
bpi (this field contains the value 3)
and 6250 bpi (this field contains
the value 4).

22 SG–2051 9.3

Tape Formats [2]

Field
Starting
byte

Length
in
bytes Contents Description

security
level

55 3 number Security level.

compartments 59 17 numbers Security compartments.

SG–2051 9.3 23

UNICOS® Tape Subsystem User’s Guide

~~

Starting byte
Length
in bytes Field

label id

record format

reserved

block length

record length

reserved

compartments

density

reserved

security level

a10146

1

4
5

16
17

15

54
55
57
58
59

74

75

80

10
11

6

3

4

1

17

38

1

5

5

1

4

~~ ~~

Figure 12. HDR2/EOV2/EOF2 labels

2.3 ER90 volumes

The ER90 supports D2 cassettes with 19-mm tapes in three cassette sizes: 25
Gbyte, 75 Gbyte, and 165 Gbyte.

24 SG–2051 9.3

Tape Formats [2]

You must format a volume before it can be used. To format a volume, you must
create single or multiple partitions on the cassette, record a volume identifier,
and, if requested, create system zones. A volume can be preformatted, or it can
be formatted during write operations.

Partitions are logical volumes within a physical volume. A partition can span
the length of the tape, or multiple partitions can be created. The tape subsystem
treats partitions as individual volumes; they are accessed individually, and tape
operations to one partition do not affect other partitions on the volume.
Multiple partitions cannot be created during write operations.

The ER90 device records a format identifier (ID) as part of a volume format
operation. The format identifier is an alphanumeric string consisting of up to 6
ASCII characters that uniquely identifies the cassette after tapes are mounted.
The format identifier is recorded throughout the volume after each system zone
and at the beginning-of-tape (BOT) and end-of-tape (EOT) markers.

You can format a volume with or without system zones. System zones are
data-free areas on the tape that can be used to load and unload the cassette.
With system zones, a cassette does not have to be positioned at the BOT or the
EOT to be unloaded.

If a volume is formatted to have the default number of system zones, a tape
unload takes approximately 16 seconds for small cassettes, 21 seconds for
medium cassettes, and 24 seconds for large cassettes. Volumes that are
formatted without system zones can take up to 185 seconds to be unloaded.
The disadvantage of formatting with system zones is that if a tape is created
during write operations, the ER90 device must suspend I/O operations to
create the system zone. It takes approximately 18 seconds to create a system
zone for small cassettes, 31.3 seconds for medium cassettes, and 55.8 seconds
for large cassettes. It takes 3.2 seconds to skip over a system zone and continue
writing for small cassettes, 3.6 seconds for medium cassettes, and 5.3 seconds
for large cassettes.

By default, the tape daemon formats a blank tape as a single partition volume
with system zones. The format ID specified on the tape mount is recorded on
the volume, which is formatted during write operations.

The tape administrator can use the tpformat (8) command to preformat ER90
volumes. This command reserves an ER90 device, mounts the volume, issues
the format request to the ER90 device, and then, after the format is completed,
releases the reserved resource.

SG–2051 9.3 25

Tape Subsystem Tutorial [3]

This chapter describes the following tape subsystem procedures:

• Reserving, mounting, reading, writing, and releasing a tape

• Obtaining tape status and information

• Using the tape subsystem with standard UNICOS commands

• Mounting ER90 volumes

• Using MLS considerations

To see an online description of a particular command or routine, use the man(1)
command.

3.1 Getting started

To use the tape subsystem, you follow four basic steps:

1. Reserve tape resources by using the rsv (1) command.

2. Request a tape mount for a tape file by using the tpmnt (1) command.

3. Process the tape file information by using whatever commands or programs
you need to accomplish what you want to do.

4. Release the tape resources reserved by using the rls (1) command.

The identifier of the tape resource is site configurable by the system
administrator in the tape configuration file. You can use the tpstat (1)
command to display available tape resources. The resource name is displayed
in the dgn column.

This following tape naming conventions are used in this manual:

Name Description

TAPE Half-inch round tape

CART 3480 type cartridge (square tape)

QIC Quarter-inch cartridge tape

EXB Helical scan recording on 8mm cartridge tape

SG–2051 9.3 27

UNICOS® Tape Subsystem User’s Guide

DAT Helical scan recording on 4mm cartridge tape

SILO 3480 tape located on a SILO/400 robotic loader

WOLF 3480 tape located on a WolfCreek robotic loader

3490 3490 type

3490E 3490E type

ER90 ER90 (D-2 format) helical scan tape device

Figure 13 shows a simple example that requests a tape to be mounted. This
tape has an IBM standard label with a volume serial number (VSN) of 000001
and a file name of tf . The contents of the disk file named data is copied to
tf . After the tape file is created, the tape is unloaded and the allocated tape
drive is released.

$ rsv CART

$ tpmnt -l sl -v 000001 -P tf -n -g CART
$ cp data tf

$ rls -a

Figure 13. Creating a tape

Figure 14 shows an example that will mount the previous tape, indicating that it
is an old tape, and read the data from the tape into a disk file named old.data .

$ rsv CART

$ tpmnt -l sl -v 000001 -P tf -o -g CART

$ cp tf old.data

$ rls -a

Figure 14. Reading an existing tape file

Figure 15 shows an example that will add a new tape file (file sequence 2) to
the tape 000001 and will copy the disk file named new.data into the new
tape file.

28 SG–2051 9.3

Tape Subsystem Tutorial [3]

$ rsv CART

$ tpmnt -l sl -v 000001 -q 2 -P tf -n -g CART
$ cp new.data tf

$ rls -a

Figure 15. Adding a new file to an existing tape

The following example shows how to submit a job through a Network Queuing
System (NQS). Before submitting the job, you need to know how the NQS maps
the limit specification on the qsub (1) command to the available tape device
groups. To display the available device groups in limit-enforced order, issue the
tprst (1) command The following example shows a listing of available device
groups:

dev grp w rsvd used available

CART 0 0 2

TAPE 0 0 0

In this example, there are two NQS associations. Resource group a corresponds
to the CARTdevice group and resource group b corresponds to the TAPEdevice
group. To submit a job using the TAPE resource group, you must specify the
qsub option, -lUb 1 .

Figure 16 shows an example of an NQS job that requests a specific tape (SCRSL)
on to which a file named data will be copied.

$ cat > example.sh <$ cat > example.sh <EOF

rsv TAPE

tpmnt -l sl -v SCRSL -g TAPE -P tf -n

cp data tf

rls -a

EOF
$ qsub -lUb 1 example.sh

Figure 16. NQS tape job

SG–2051 9.3 29

UNICOS® Tape Subsystem User’s Guide

3.2 Obtaining tape status

You can use the commands and files described in this section for obtaining tape
status and for sending messages to the operator.

3.2.1 Tape status commands

To check the status of your tape reservations, use the tprst (1) command. For
example, enter the tprst (1) command to display the reserved-tape status
device group name, number of reserved devices, number of used devices, and
number of devices available for use as shown in Figure 17. In this example, no
CART, TAPE, or SILO devices have been used or reserved, but one TAPEdevice
is available for reservation:

$ tprst
dev grp w rsvd used available

CART 0 0 0

TAPE 0 0 1

SILO 0 0 0

Figure 17. tprst (1) status display

Note: The information display in the dev grp column is determined by the
system administrator in the tape configuration file. See "Getting started,"
page Section 3.1, page 27.

To check on the status of the tape subsystem, use the tpstat (1) command as
shown in Figure 18. To display the user ID, device group name, device name,
device identifier, device type, status of the device, job ID of the user, and
volume identifier of the mounted tape, enter tpstat (1).

In this example, two CARTdevices, cart120 and cart121 , and one TAPE
device, tape201 , are idle and available for use. One CARTdevice, cart122 , is
assigned to user jas , job ID 170 , with a volume identifier of ISCSL . It is on
tape block 101 . All other devices are down and unavailable.

30 SG–2051 9.3

Tape Subsystem Tutorial [3]

tpstat

userid jobid dgn a stat dvn bx i rl ivsn evsn blks NQSid

CART + idle cart120 04 0

CART + idle cart121 02 0

jas 170 CART + assn+cart122 03 0 is ISCSL ISCSL 101

CART + down cart123 05 0

TAPE + down tape200 10 0
TAPE + idle tape201 11 0

CART - down 300 14 0

Figure 18. tpstat (1) status display

For ER90 devices, you can specify the -l option on the tpstat command to
display the format identifier. This option will also display a larger block count
field.

If the administrator has given you bypass label permission, you can issue a
tplist (1) command to display the contents of a tape volume. When using
tplist , you do not have to issue separate rsv (1), tpmnt (1), or rls (1)
command. For example, to display the contents of a cartridge tape with a
volume ID of 000599 and a path name of x , enter the tplist (1)(1) command
as illustrated in Figure 19.

SG–2051 9.3 31

UNICOS® Tape Subsystem User’s Guide

tplist -v 000599 -g CART x

EBCDIC Labels
VOL1:volser:000599 owner: wek

HDR1:file_id:x file_section:0001 file_sequence:0001

creation date: 93148 expiration date: 93148

HDR2:max_blocksize 32768

Recsize=80 Number=3

Total Records=3, Size=240
*****TAPEMARK*****

Recsize=4096 Number=10

Total Records=10, Size=40960

*****TAPEMARK*****

EOF1: Blockcount:000010
Recsize=80 Number=2

Total Records=2, Size=160

*****TAPEMARK*****

*****TAPEMARK*****

3 file(s)

Figure 19. tplist (1) display

A message is sent to the operator to mount the cartridge. After the cartridge
has been mounted, tplist (1) reads the cartridge and sends the output to your
screen.

3.2.2 Tape log file

When you issue a rsv (1) command, a log file called tape.msg is created in
your current working directory. This log file keeps track of messages the tape
subsystem issues concerning your tape job. All informative and error messages
are appended to this file. Figure 20 shows an example of a tape message log
file.

32 SG–2051 9.3

Tape Subsystem Tutorial [3]

Jun 14 14:00:53 0000362.1113 TM000 - tape resource reserved for you

Jun 14 14:01:04 0000373.4520 TM122 - mount tape ABCDEF(sl) ring-in, on a TAPE device
for bob 23, () or reply cancel / device name

Jun 14 14:02:25 0000454.6664 TM048 - /tmp/jtmp.000452a/tapefile : assigned to tape203

Jun 14 14:03:26 0000515.0516 TM049 - /tmp/jtmp.000452a/tapefile : ABCDEF(sl) : open :

blocks = 0

Jun 14 14:03:28 0000516.9823 TM049 - /tmp/jtmp.000452a/tapefile : ABCDEF(sl) : bov :

write : blocks = 0
Jun 14 14:03:28 0000517.0389 TM049 - /tmp/jtmp.000452a/tapefile : ABCDEF(sl) : bof :

write : blocks = 0

Jun 14 14:03:29 0000518.3960 TM049 - /tmp/jtmp.000452a/tapefile : ABCDEF(sl) : eot :

write : blocks = 12

Jun 14 14:03:29 0000518.6526 TM049 - /tmp/jtmp.000452a/tapefile : ABCDEF(sl) : close :
blocks = 12

Jun 14 14:03:36 0000524.7945 TM050 - tape203 : released

Jun 14 14:03:36 0000524.8156 TM029 - all tape resources released

Figure 20. tape.msg

3.2.3 Messages to operator

The msgi (1) and msgr (1) commands let you send messages to the operator. For
example, the following command line sends an informative message to the
operator:

1. Reserve tape resources by using the rsv (1) command.

2. Request a tape mount for a tape file by using the tpmnt (1) command.

3. Process the tape file information by using whatever commands or programs
you need to accomplish what you want to do.

4. Release the tape resources reserved by using the rls (1) command.

msgi Please check device tape00

To send an interactive message to the operator, use msgr (1). The following is
an example of a message you might send to the operator. The operator may
then send a reply back to you.

msgr "Is tape ABC on the system?"

SG–2051 9.3 33

UNICOS® Tape Subsystem User’s Guide

3.3 Using standard UNICOS commands

This section describes some of the ways in which you may work with the tape
subsystem by using standard UNICOS commands.

Before you can issue requests to the tape subsystem for tape file processing, you
must reserve the required number of tape drives for each device type needed.
After you have reserved the tape drives, you may specify the tape volume in
which the files to be processed are located.

After you have the volumes mounted, you can begin processing the tape files.
When processing is complete, release the reserved tape drives.

3.3.1 Using the cp (1) command

The following example illustrates the process of copying a file from disk to tape
using the cp (1) command:

1. Reserve a tape by using the rsv (1) command. In this example, the device
group name is CARTand the number of devices requested is 1:

rsv CART 1

2. Request a tape mount by using the tpmnt (1) command. In this example,
the tape has standard labels, a volume identifier of ISCSL , and a path name
of /tmp/tapefile . During processing of the tpmnt (1) command, the tape
subsystem creates a character-special file, /tmp/tapefile . Do not remove,
rename, or move this file:

tpmnt -v ISCSL -l sl -p /tmp/tapefile -g CART -b 32768 -n -r in

3. Copy file myfile by using the cp (1) command-line syntax, as follows:

cp myfile /tmp/tapefile

The cp (1) command copies bytes of data from the disk file to the tape file.
It does not format any data, but blocks it into tape records of size 32768
bytes for IBM compatibles devices.

4. Release the reserved tape. The code in this example releases all resources.
The tape device is allocated to you until you issue the rls (1) command
with the -a , -d , or -p option or until you log out. When you issue the

34 SG–2051 9.3

Tape Subsystem Tutorial [3]

rls (1) command or log out, the tape subsystem deletes the associated file,
/tmp/tapefile .

rls -a

3.3.2 Using the dd(1) command

The following example uses the dd(1) command to copy a disk file to tape,
converting it from ASCII to EBCDIC:

1. Reserve a tape:

rsv TAPE 1

2. Request a tape mount by using the tpmnt (1) command. In this example,
the tape has an IBM standard label, the volume ID is SCRSL, it is a new file,
and a write ring is specified to be on the reel:

tpmnt -b 4096 -l sl -v SCRSL -p /tmp/tapefile -n -r in -g TAPE

3. Use the dd command to copy file mydisk to tape, specifying a block size of
4096 bytes, with a conversion from ASCII to EBCDIC for IBM compatible
devices:

dd if=mydisk of=/tmp/tapefile bs=4096 conv=ebcdic

4. You can also use the dd command to read the tape file back into file
newfile , and convert back to ASCII:

dd if=/tmp/tapefile of=newfile bs=4096 conv=ascii

5. Release the tape resources:

rls -a

3.3.3 Using the tar (1) command

The examples in this section show you how to read or write to tape by using
the tar (1) command.

Procedure 1: Example 1

The following is an example of using the tar (1) command to read or write to
tape. You must use the -f option of the tar (1) command and specify the
device path name you used in the tpmnt (1) command.

SG–2051 9.3 35

UNICOS® Tape Subsystem User’s Guide

1. Reserve a tape using the default values of the rsv (1) command:

rsv TAPE 1

2. Request a tape mount by using the tpmnt (1) command:

tpmnt -l sl -p /tmp/tapefile -v SCRSL -n -r in -g TAPE

3. Copy the subtree to tape, starting at the current working directory:

tar -cvfb /tmp/tapefile 8 *

4. Change to a new directory:

cd /tmp/newdir

5. To read the tape back in, copy the tar subtree back from tape to your
current working directory:

tar -xvfb /tmp/tapefile 8

6. Release the reserved tape:

rls -a

Procedure 2: Example 2

The following example shows you how to read a tape that was created as
shown in example 1 or on another UNIX system. In this example, the contents
of the tape are read into your current working directory.

1. Reserve a tape:

rsv TAPE 1

2. Request a tape mount by using the tpmnt (1) command:

tpmnt -l sl -p /tmp/tapefile -v SCRSL -g TAPE -o

3. Read the tape, using the tar (1) command:

tar -xvf /tmp/tapefile

4. Release the reserved tape:

rls -a

36 SG–2051 9.3

Tape Subsystem Tutorial [3]

3.3.4 Using the cpio (1) command

The following is an example of using the cpio (1) command to read and write
to a tape. In this example, data is written to tape, then the cpio (1) command is
used to read the data from tape:

1. Reserve a tape with a device group name of CART:

rsv CART 1

2. Request a tape mount using the tpmnt (1) command:

tpmnt -l sl -v ISCSL -p /tmp/tapefile -g CART -n -r in

3. Copy the subtree to tape, starting with the current working directory:

find . -print | cpio -Bcov > /tmp/tapefile

4. Change to a new directory:

cd /tmp/newdir

5. To read the tape back in, copy the cpio (1) subtree into your current
working directory:

cpio -civd < /tmp/tapefile

6. Release the reserved resources:

rls -a

3.3.5 Using the tpmnt (1) command to read concatenated tape files

The -c option of the tpmnt (1) command allows you to read multiple tape files
as though they were one tape file, with the following exceptions:

• Record size for all files to be concatenated in a job must be the same.

• Variable-length record size is not supported; it causes unpredictable results.

If front-end servicing is enabled and a tape management catalog is used, tape
messages are sent to the front end.

The following example shows you how to concatenate three tape files that have
the record size and block size in the label:

1. Reserve a tape by using the rsv (1) command, as follows:

rsv TAPE 1

SG–2051 9.3 37

UNICOS® Tape Subsystem User’s Guide

2. Request a tape mount by using the tpmnt (1) command. The first
occurrence of tpmnt (1) establishes tape file target (1), to which you
concatenate your tape files. If a front-end catalog does not exist, as in this
example, you must specify the volume identifier by using the -v option. If
a front-end catalog does exist, it is not necessary to specify the volume
identifier. The second and third occurrences of tpmnt (1), using the -f
option, specify the tape files that you want concatenated to tape file
target (1), specified with the -c option.

tpmnt -p target -l sl -o -v t03600 -g TAPE
tpmnt -c target -l sl -o -v t03700 -f myfile.1 -g TAPE

tpmnt -c target -l sl -o -v t03800 -f myfile.2 -g TAPE

The tape file read contains the contents of tape files target, myfile.1 , and
myfile.2 .

3. Copy the three tape files to disk by using the cp (1) command:

cp target diskfile

4. Release the tape unit, as follows:

rls -a

3.3.6 Using the tpmnt (1) command to read or write multifile tapes

Multifile volume allocation lets you process a multifile volume tape without the
need for the system to unload and load tapes between files. If you use the
tpmnt (1) command to specify that the volume identifier for the
multiple-volume tape is to be first in the list of volume identifiers, the tape
daemon requests that the operator mount the multifile volume tape the first
time it is requested. If you request that the same volume identifier be mounted
again, no mount message is sent to the operator. However, if you do not specify
the same volume identifier, the request is processed for separate volumes.

When using multifile volume allocation, you can use only one file on a tape at a
time; that is, you must open a specified file, process the file, and then close it
before you can open another file on the same multifile tape volume. You must
also reserve a device for each multifile volume tape requested (for example, if
the tape files reside on several volumes, you can have files on different volumes
opened at the same time; however, you must have reserved enough devices to
hold all of the volumes). The following examples show you how to use
multifile volume allocation.

38 SG–2051 9.3

Tape Subsystem Tutorial [3]

3.3.6.1 Example 1

The following example shows you how to use multifile volume allocation to
read three files from the same tape without having the operator mount the tape
three times:

1. Reserve a tape:

rsv TAPE 1

2. Request a tape mount using the tpmnt (1) command. In this example, the
tape has an ANSI standard label, the volume identifier is SCRAL, and the
path names are one , two , and three , with file sequence numbers of the
files to be processed as 1, 2, and 3:

tpmnt -l al -v SCRAL -p one -q 1 -r in -g TAPE

tpmnt -l al -v SCRAL -p two -q 2 -r in -g TAPE

tpmnt -l al -v SCRAL -p three -q 3 -r in -g TAPE

3. Read the accessed tape files into disk files:

cat one > firstfile
cat two > scndfile

cat three > thrdfile

4. Release the reserved tape:

rls -a

3.3.6.2 Example 2

The following example shows you how to use a multifile tape to write three
files to the same tape:

1. Reserve a tape:

rsv TAPE 1

2. Request a tape mount using the tpmnt (1) command. In this example, the
tape has an ANSI standard label, the volume identifier is SCRAL, and the
path names are one , two , and three , with file sequence numbers of the
files to be processed as 1, 2, and 3. The -u option is used so that the tape
will not be unloaded when the process terminates. This is useful when a
tape is used repeatedly, and it minimizes operator time spent mounting
tapes:

tpmnt -u -l al -v SCRAL -p one -q 1 -n -g TAPE

tpmnt -u -l al -v SCRAL -p two -q 2 -n -g TAPE

SG–2051 9.3 39

UNICOS® Tape Subsystem User’s Guide

tpmnt -u -l al -v SCRAL -p three -q 3 -n -g TAPE

3. Write the disk files to the specified tape files:

cat file1 > one

cat file2 > two
cat file3 > three

4. Release the reserved tape:

rls -a

3.4 Mounting ER90 volumes

This section describes how to mount volumes on an ER90 device. Use the
tpmnt (1) command to mount a volume. If you use the -v option, you can
specify three identifiers and a partition number to uniquely identify the
requested volume.

After the system determines that the correct physical volume is mounted, it
positions the tape at the requested partition. For labeled tapes, the VOL1 label
is read from the tape. The identifier in the label is compared to the requested
internal ID to verify that the tape was positioned to the correct logical volume.

You can bypass format ID verification by specifying the tpmnt (1) -I option.
Only users with bypass label or tape manager permission may use this option.

Normal mount processing positions the tape to the beginning of a partition. To
request that the volume remain at its load position, specify the -z option (this
is useful if processing should begin near the load position). The device requires
that the logical position be established before issuing any tape movement
requests; therefore, you must issue a position request to an absolute track
address immediately after opening the tape file when -z is specified. Only users
with bypass label or tape manager permission may use this option. Because
label processing is bypassed, the specified label type must be a bypass label.

3.5 Using MLS

Special considerations should be taken when using the tape subsystem on a
UNICOS multilevel security (MLS) system. This is especially true for authorized
users who are allowed access to data that their active label does not dominate.

The mandatory access control (MAC) label associated with a tape is set to the
active MAC label of the process writing to the tape.

40 SG–2051 9.3

Tape Subsystem Tutorial [3]

Care should be taken when writing data to tape that will later be used to restore
security attributes. The MAC label on the tape should sufficiently protect the
tape so that only security administrators can access the tape. The label must
prevent nonadministrative users from modifying the contents of the tape.

Tape headers contain a protection flag that indicates there are additional
protections on the tape. On the UNICOS operating system, this flag implies the
existence of a MAC label.

On UNICOS MLS systems before UNICOS release 8.0, a MAC label is not
written to the tape when the user’s MAC label is level 0 with no compartments.
Any other MAC label forces the protection flag to be set and the MAC label is
written on the tape. Tapes without the protection flag set are assumed to be at
level 0 with no compartments. UNICOS systems that do not have security
enabled do not set the protection flag; hence, tapes can be moved between
secure and nonsecure systems.

UNICOS 8.0 MLS requires the ability to always set the protection flag and write
the MAC label on the tape. Tapes without the protection flag set cannot be
accessed.

The allow_unprotected parameter of the OPTIONSstatement was added for
compatibility considerations. When the option is set to YES, the previous
behavior (before UNICOS 8.0) is enforced. When it is set to NO(required for
Trusted UNICOS), the protection flag is always set and only tapes with the
protection flag set can be accessed.

Tape device groups have associated MAC label ranges. To read a tape, the
MAC label on the tape must be within the MAC label range of the device group
. To write to a tape, the user’s active MAC label must be within the MAC label
range of the device group.

If you encounter any of the following, contact your system administrator for
help in resolving the issue.

• The user fails the required MAC dominate or equal restrictions when
reading or writing a tape.

• The allow_unprotected parameter of the OPTIONSstatement is not set to
YES, and consequently, the user cannot access tapes created on the following:

– A UNICOS system with security disabled

– A system before UNICOS 8.0 by users with the active MAC label of level
0 with no compartments

SG–2051 9.3 41

UNICOS® Tape Subsystem User’s Guide

– A UNICOS system with the allow_unprotected parameter of the
OPTIONSstatement set to YES by users with the active MAC label of
level 0 with no compartments

• The device group does not support the MAC label of the data being
accessed through the device. If MAC restrictions are not required on the
device, the MAC label ranges of the device group should be SYSLOWwith
no compartments to SYSHIGHwith all compartments.

• If the Data Migration Facility (DMF) is installed, all device groups used by
DMF must support the SYSHIGHMAC label.

• The tplabel (1) command clears the protection flag in the tape label.
Systems that have the allow_unprotected parameter of the OPTIONS
statement set to NOare not able to access the tape after the tape has been
relabeled.

42 SG–2051 9.3

Writing Fortran Applications Using Tapes [4]

This chapter describes how you can use the tape subsystem from Fortran
programs. You can use Fortran programs while working with the tape
subsystem and IBM compatible or ER90 devices.

For the examples in this chapter, it is assumed that you understand the
assign (1) command. For more information, see the assign (1) command in
the UNICOS User Commands Reference Manual, publication SR–2011.

4.1 IBM compatible tape processing

This section briefly describes how to use the tape subsystem from Fortran
programs using IBM compatible devices.

4.1.1 Reading and writing to tape

The following example illustrates the use of a Fortran program to read and
write to tape:

1. Reserve a tape by using the rsv (1) command. In this example, the tape has
a device group name of TAPEand the number of devices requested is 1:

rsv TAPE 1

2. Request a tape mount with the tpmnt (1) command. In this example, it is a
new, standard labeled tape with a volume identifier of SCRSL, a device
group name of TAPE, a density of 6250 , a write ring specified to be on the
reel, a block size of 32768 bytes, and the -P option overwriting the existing
path name of fort.20 with the newest version of fort.20 .

tpmnt -n -l sl -v SCRSL -g TAPE -d 6250 -r in -b 32768 -P fort.20

3. Use the assign (1) command to specify that file fort.20 is a tape.

assign -s tape f:fort.20

4. Compile and load the Fortran write program tapewr.f , directing the
binary output to executable file tapewr :

cf77 -o tapewr tapewr.f

SG–2051 9.3 43

UNICOS® Tape Subsystem User’s Guide

5. Execute tapewr , using the data from file input and appending the output
to tapewr.l :

tapewr < input >> tapewr.l

6. Compile, load, and execute the Fortran read program by repeating steps 4
and 5, using files taperd.f , taperd , and taperd.l :

cf77 -o taperd taperd.f
taperd >> taperd.l

7. Release the resources:

rls -a

Note the write(20) to unit 20 in tapewr and the read(20) from unit
20 in taperd reference steps 2 and 3, in which fort.20 is used in the tpmnt
and assign commands.

Figure 21 shows the Fortran write program, called tapewr . You must supply
the COMPUTEroutine:

PROGRAM TAPEWR

INTEGER IBUF(10)

REAL RNUM(5)

CHARACTER*21 CDATA

COMPLEX CNUM(3)
C

C Write 5 records. Each record contains a mix of data types.

C

DO 10 I=1,5

CALL COMPUTE(I,IBUF,RNUM,CDATA,CNUM) ! Compute

WRITE(20) IBUF,RNUM,CDATA,CNUM ! Write them out.
10 CONTINUE

END

Figure 21. Writing an unlabeled tape

Figure 22 shows the Fortran read program, called taperd . You must supply
the ANALYZEroutine:

44 SG–2051 9.3

Writing Fortran Applications Using Tapes [4]

PROGRAM TAPERD

INTEGER IBUF(10)
REAL RNUM(5)

CHARACTER*21 CDATA

COMPLEX CNUM(3)

C

C Read 5 records.

C
DO 10 I=1,5

READ(20) IBUF,RNUM,CDATA,CNUM ! Read and convert data.

CALL ANALYZE(I,IBUF,RNUM,CDATA,CNUM) ! analyze...

10 CONTINUE

END

Figure 22. Reading an unlabeled tape

4.1.2 Reading and writing tape marks

The following example illustrates the use of a Fortran program to read and
write tape marks:

1. Reserve a tape by using the rsv (1) command:

rsv TAPE 1

2. Compile and load Fortran program tapemk.f , directing the binary output
to executable file tapemk :

cf77 -o tapemk tapemk.f

3. Request a tape mount by using the tpmnt (1)command. In this example, the
tape has standard labels, a path name of fort.1 , and a volume identifier
of SCRSL; it uses the -T option to let you read or write tape marks:

tpmnt -P fort.1 -l sl -v SCRSL -T -g TAPE -n

4. Use the assign (1) command to specify that file fort.1 is a tape:

assign -s tape f:fort.1

5. Execute tapemk :

tapemk

SG–2051 9.3 45

UNICOS® Tape Subsystem User’s Guide

6. Release the resources:

rls -a

Figure 23 shows the Fortran program that reads and writes a tape mark, called
tapemk.

PROGRAM TAPEMK

INTEGER BLOCK(1000)

C

C Write 5 tape blocks, each followed by an end-of-file tape
C mark (EOF).

C

DO 10 I=1,5

WRITE(1) BLOCK ! Write out a tape block/record.

ENDFILE(1) ! Write an EOF.

10 CONTINUE

REWIND 1

C

C Read back the 5 tape blocks (records) and after each, read
C the end-of-file tape mark (EOF).

C

DO 20 I=1,5

READ(1) BLOCK ! Read in a tape block/record.

READ(1, END=20) TPMK ! Read the EOF.
PRINT *,’ Error - no EOF.’ ! If no EOF, then error.

STOP ’error’

20 CONTINUE

END

Figure 23. Reading and writing tape marks

4.1.3 Positioning a tape by blocks

The following example illustrates the use of a Fortran program to position a
tape by blocks:

1. Reserve a tape by using the rsv (1) command:

rsv TAPE 1

46 SG–2051 9.3

Writing Fortran Applications Using Tapes [4]

2. Compile and load Fortran program pos.f , directing the binary output to
the executable file pos :

cf77 -o pos pos.f

3. Request a tape mount with the tpmnt (1) command. In this example, the
tape has standard labels, a path name of fort.1 , and a volume identifier
of SCRSL:

tpmnt -p fort.1 -l sl -v SCRSL -g TAPE -n

4. Use the assign (1) command to specify that file fort.1 is a tape:

5. Execute pos :

assign -s tape f:fort.1

pos

6. Release the resources:

rls -a

Figure 24 shows the Fortran program that positions a tape by blocks, called pos .

SG–2051 9.3 47

UNICOS® Tape Subsystem User’s Guide

PROGRAM POS

INTEGER BLOCK(1000)
C

C Write 5 records to the tape. (records 1-5)

C

DO 10 I=1,5

WRITE(1) BLOCK

10 CONTINUE
C

C Backspace the tape over the fifth record to position the

C file after the fourth record on the tape.

C

BACKSPACE 1
C

C Rewrite record 5 with new data, and add records 6-9.

C

DO 20 I=1,5

WRITE(1) BLOCK
20 CONTINUE

END

Figure 24. Positioning by blocks

4.1.4 Positioning a tape by using the SETTP library call

The following examples illustrate the use of the SETTP(3) library call in the
positioning of a tape. For more information, see the Application Programmer’s
Library Reference Manual, publication SR–2165.

4.1.4.1 Example 1

The following example illustrates the positioning of a tape on a multivolume
file. The tpos program positions your tape to block number 50 on the second
volume of a multivolume file.

1. Reserve a tape by using the rsv (1) command. In this example, the tape has
a device group name of TAPEand the number of devices requested is 1:

rsv TAPE 1

2. Request a tape mount by using the tpmnt (1) command. In this example, the
tape is an old one with an IBM standard label, with three volume identifiers

48 SG–2051 9.3

Writing Fortran Applications Using Tapes [4]

of VSN1:VSN2:VSN3, a device group name of TAPE, a record format of
fixed length, a block size of 64000 bytes, and a path name of fort.1 :

tpmnt -o -l sl -v VSN1:VSN2:VSN3 -g TAPE -F F -b 64000 -p fort.1

3. Use the assign (1)) command to specify that file fort.1 is a tape.

assign -s tape f:fort.1

4. Compile and run the program shown in Figure 25:

SG–2051 9.3 49

UNICOS® Tape Subsystem User’s Guide

PROGRAM TPOS

IMPLICIT INTEGER (A - Z)
DIMENSION BUFF(4096)

RECLEN=4096

C

C IN THE SETTP CALL BELOW, THE FIELDS CORRESPOND TO THE FOLLOWING:

C FIELD 1: UNIT NUMBER.

C 2: BLOCK # REQUEST SIGN. ’1H ’ INDICATES THAT THE THIRD
C FIELD (50) IS AN ABSOLUTE BLOCK # RELATIVE TO THE

C BEGINNING OF THE VOLUME.

C 3: INTEGER BLOCK NUMBER

C 4: VOLUME # REQUEST SIGN. ’1H ’ INDICATES THAT THE FIFTH

C FIELD (2) IS AN ABSOLUTE VOLUME # RELATIVE TO THE
C BEGINNING OF THE VOLUME IDENTIFIER LIST SPECIFIED ON THE

C TPMNT COMMAND.

C 5: INTEGER VOLUME NUMBER.

C 6: NAME OF VOLUME IDENTIFIER TO BE MOUNTED.

C 0 INDICATES THAT THIS PARAMETER IS IGNORED.
C 7: SPECIFIES WHETHER THE TAPE SHOULD BE SYNCHRONIZED

C (0=NO).

C 8: INTEGER RETURN STATUS. ON EXIT, INDICATES WHETHER

C POSITIONING WAS SUCCESSFUL OR NOT. 0 = SUCCESS;

C NONZERO=ERROR OR WARNING.

C POSITION TO THE 50TH BLOCK OF VOLUME 2:
CALL SETTP(1,1H ,50,1H ,2,0,0,STAT)

C

IF (STAT .NE. 0) THEN

PRINT *,’SETTP ERROR: STAT = ’,STAT

CALL ABORT
ENDIF

C

C READ THE 50TH BLOCK ON VOLUME 2

C

READ(1) (BUFF(N),N=1,RECLEN)
C

C PROCESS THE DATA

C

END

Figure 25. SETTP(3) positioning, example 1

50 SG–2051 9.3

Writing Fortran Applications Using Tapes [4]

4.1.4.2 Example 2

The following example shows you how to position forward nine blocks relative
to the current position, and then read one block.

1. Reserve a tape by using the rsv (1) command. In this example, the tape has
a device group name of TAPEand the number of devices requested is 1:

rsv TAPE 1

2. Request a tape mount by using the tpmnt (1)command. In this example, the
tape is an old one with an IBM standard label, a volume identifier of
SCRNL, a device group name of TAPE, a record format of fixed length, a
block size of 64000 bytes, and a path name of fort.1 :

tpmnt -o -l sl -v SCRNL -g TAPE -F F -b 64000 -p fort.1

3. Use the assign (1) command to specify that file fort.1 is a tape.

assign -s tape f:fort.1

4. Compile and run the program shown in Figure 26:

SG–2051 9.3 51

UNICOS® Tape Subsystem User’s Guide

PROGRAM TPOS

IMPLICIT INTEGER (A - Z)
DIMENSION BUFF(8000)

RECLEN=8000

NBLKS=200

C

DO 500 I=1,NBLKS,10

C
C SKIP 9 BLOCKS

C

CALL SETTP(1,1H+,9,0,0,0,1,STAT)

IF (STAT .NE. 0) THEN

PRINT *,’SETTP ERROR: STAT = ’,STAT
CALL ABORT

ENDIF

C

C READ THE 10TH BLOCK

C
READ(1) (BUFF(N),N=1,RECLEN)

C

C PROCESS THE DATA

C

500 CONTINUE

END

Figure 26. SETTP(3) positioning, example 2

4.1.5 Reading and writing tapes containing foreign data

This section shows you how to convert foreign data to Cray Research data or
convert Cray Research data to foreign data. Currently, the Fortran libraries
support the translation and conversion of IBM, VAX/VMS, NOS/VE, IEEE, and
CDC foreign data types. The two methods of foreign data conversion are the
following:

• Explicit

• Implicit

4.1.5.1 Converting foreign data explicitly

This section shows you how to convert foreign data explicitly by using Fortran
library data conversion routines to read tapes written on foreign computer

52 SG–2051 9.3

Writing Fortran Applications Using Tapes [4]

systems. For a complete list of Cray Research Fortran library data conversion
routines, see the Application Programmer’s Library Reference Manual, publication
SR–2165.

The following library conversion routines translate data in a foreign format into
Cray Research format:

Routine Description

IBM2CRAY(3) Converts IBM data to Cray format

IEG2CRAY(3) Converts IEEE or generic 32-bit data to Cray
format

NVE2CRAY(3) Converts NOS/VE data to Cray format

VAX2CRAY(3) Converts VAX data to Cray format

CDC2CRAY(3) Converts CDC 60-bit data to Cray format

The following library conversion routines translate data in Cray Research
format into a foreign format:

Routine Description

CRAY2IBM(3) Converts Cray data to IBM format

CRAY2IEG(3) Converts Cray format to IEEE or generic 32-bit
data

CRAY2NVE(3) Converts Cray data to NOS/VE format

CRAY2VAX(3) Converts Cray data to VAX format

CRAYCDC(3) Converts Cray data to CDC 60-bit format

With explicit conversion you must specify the type and size of all data
conversions before you can set up structures for the converted data; therefore,
you must know the type and size of the data originally written on a tape.

Note: Be careful when specifying foreign record translation with the -F
option on the assign (1) command. With most values of the -F options, you
can only read, write, backspace, and rewind your tape. With the -F
ibm.u,tape , -F ibm.vbs,tape , -F ibm.vb,tape , or -F ibm.v,tape
option you can also use the -d skipbad option to request that bad data be
automatically skipped. See the assign (1) man page for more details on the
-d option. When you use the -F bmx or -F tape option, and do not
specify any other FFIO layers, you can also use the Fortran tape positioning
routines, process bad data, and do end-of-volume processing.

SG–2051 9.3 53

UNICOS® Tape Subsystem User’s Guide

4.1.5.2 Example 1

This example illustrates the handling of data by using library conversion
routines:

1. Reserve a tape by using the rsv (1) command. In this example, the device
group name is CARTand the number of devices requested is 1:

rsv CART 1

2. Compile Fortran program ibmcvt.f :

cft77 ibmcvt.f

3. Load the ibmcvt.o file, directing the output to executable file ibmcvt :

segldr -o ibmcvt imbcvt.o

4. Request a tape mount by using the tpmnt (1) command. In this example,
the tape has an IBM standard label, a volume identifier of ISCSL , a device
group name of CART, a block size of 32768 bytes, and a path name of
fort.29 :

tpmnt -l sl -v ISCSL -g CART -b 32768 -p fort.29 -n

5. Use the assign (1) command to specify that file fort.1 is a tape. assign -s
tape f:fort.29

6. Execute ibmcvt :

ibmcvt

7. Release the reserved resource:

rls -a

Figure 27 shows the Fortran program, called ibmcvt.f :

54 SG–2051 9.3

Writing Fortran Applications Using Tapes [4]

PROGRAM IBMCVT

INTEGER CRAY2IBM,IBM2CRAY
C

C REALA and REALB are the arrays that hold the CRAY format numbers.

C IBMA and IBMB hold the converted IBM data. Note that they are half as

C large as the CRAY real numbers, because the IBM real format is only 32

C bits long. The type of the IBM array is not important, because no

C computations will be performed on them. Only the proper amount of
C space is important.

C

REAL REALA(10000)

REAL REALB(10000)

C
INTEGER IBMA(5000)

INTEGER IBMB(5000)

C

CALL GENERATE(REALA) ! REAL data is generated and converted to IBM format

C
C The data produced is converted to IBM internal format and placed in

C array IBMA. See the man pages for the CRAY2IBM(3) and IBM2CRAY(3)

C routines.

C

ISTAT = CRAY2IBM(2, ! data type, 2=REAL

+ 10000, ! number of items to convert
+ IBMA, ! ’foreign’ array

+ 0, ! bit offset in IBMB

+ REALA, ! CRAY data

+ 1) ! stride

IF (ISTAT.LT.0) STOP ’error 1’ ! Check for conversion error.
C

C Write the converted data to unit 29. No ’foreign’ assign options should

C be present on this unit, or the data will be converted twice!

C

WRITE(29) IBMA
REWIND 29

C

READ(29) IBMB ! Read the IBM format data back from the file.

SG–2051 9.3 55

UNICOS® Tape Subsystem User’s Guide

C

ISTAT = IBM2CRAY(2, ! data type, 2=REAL
+ 10000, ! number of items to convert

+ IBMB, ! ’foreign’ array

+ 0, ! bit offset in IBMB

+ REALB, ! CRAY data

+ 1) ! stride

IF (ISTAT.LT.0) STOP ’error 1’ ! Check for convert error.
C

CALL PROCESS(REALB)

END

Figure 27. Converting data to an IBM format

The data generated on Cray Research systems, converted to IBM format by the
data conversion routines, is altered to fit the storage capabilities of IBM
computer systems because the system storage limits of precision have been
exceeded. The following list describes the way data is handled when it exceeds
the limits of precision for IBM computer systems:

• Cray Research positive numbers (if they exceed IBM computer systems’
limits of precision) are assigned the largest positive values allowed for
integer or floating-point real numbers that can be expressed on IBM systems.

• Cray Research negative numbers with absolute values that exceed IBM
computer systems’ limits of precision are assigned the most negative value
that can be expressed on IBM systems.

• Cray Research positive and negative numbers approaching zero, which are
more precise than the smallest positive or negative fractional value that can
be expressed on IBM computer systems, are assigned a value of 0.

If the data is generated on IBM computer systems and read on Cray Research
systems, you do not need to be concerned with loss of precision in the
conversion process. This is true of any computer system that has both a smaller
exponent and a smaller mantissa size than that of Cray Research systems.

4.1.5.3 Example 2

The Fortran program fragment shown in Figure 28 illustrates how you might
read an unknown number of records that are all of the same length and contain
the same data type:

56 SG–2051 9.3

Writing Fortran Applications Using Tapes [4]

.

.

.

ICT = 0

10 CONTINUE

READ(29,ERR=20,END=30) (ARRAY(I),I=1,LENGTH)

ICT = ICT + 1

CALL IBM2CRAY(ITYPE,LENGTH,ARRAY,0,NARRAY,1)
CALL PROCESS(NARRAY)

GOTO 10

20 print *,’ Error in read on record ’,ICT+1

STOP ’error’

30 print *’ End of File encountered on record ’,ICT+1

.

. (continue program)

.

Figure 28. Reading an unknown number of records

4.1.5.4 Example 3

The partial Fortran program shown in Figure 29 reads data records consisting
of floating-point, integer, or character data (or any combination of these):

SG–2051 9.3 57

UNICOS® Tape Subsystem User’s Guide

C Read in IBM data records.

C
READ(29,END=20,ERR=15) (A(I),I=1,NUM)

READ(29,END=30,ERR=25) (B(I),I=1,CNT)

READ(29,END=40,ERR=35) (C(I),I=1,NUMBER)

READ(29,END=50,ERR=45) (D(I),I=1,COUNT)

C

C Now convert IBM data to Cray format. The fields of IBM2CRAY are:
C Field 1: Type code. Indicates format of IBM data.

C 2: Number of data items to convert.

C 3: IBM array from which you are converting.

C 4: Bit number to begin conversion.

C 5: Array to contain the converted data.
C

CALL IBM2CRAY(7,NUM,A,1,SPR) ! 7 indicates short integer

CALL IBM2CRAY(1,CNT,B,1,INT) ! 1 indicates long integer

CALL IBM2CRAY(2,NUMBER,C,1,DPR) ! 2 indicates short real

CALL IBM2CRAY(6,COUNT,D,1,CHR) ! 6 indicates char (EBCDIC)

Figure 29. Reading mixed data types

Note: To correctly convert the data to be read, you must know the data types
of the contents of the tape.

4.1.5.5 Converting foreign data implicitly

This section shows you how to translate the blocking structures and convert
foreign data implicitly to Cray Research data and vice versa by using the
assign (1) command. Currently, implicit conversion supports the translation
and conversion of IBM, VAX/VMS, CDC (60-bit), NOS/VE, ULTRIX, and IEEE
foreign data types.

The following example shows you how to read foreign data with Fortran
programs using the assign (1) command:

1. Reserve a tape by using the rsv (1) command. In this example, the device
group name is TAPE and the number of devices requested is 1:

rsv TAPE 1

58 SG–2051 9.3

Writing Fortran Applications Using Tapes [4]

2. Compile and load Fortran program impread.f , directing the output to the
executable file impread :

cf77 -o impread impread.f

3. Request a tape mount by using the tpmnt (1) command. In this example,
the tape has an IBM standard label, a volume identifier of SCRSL, a device
group name of TAPE, a block size of 32768 bytes, and a path name of
fort.29 :

tpmnt -l sl -v SCRSL -g TAPE -b 32768 -p fort.29

4. Request implicit data conversion. In this example, specify (by using the -F
option) that the blocking of the tape is in the IBM VBS format, specify (by
using the -N option) that the numeric data to be converted is IBM data, and
use the assign (1) command to specify that file fort.29 is a tape:

assign -F ibm.vbs,tape -N ibm f:fort.29

5. Execute impread :

impread

6. Release the reserved resource:

rls -a

Figure 30 shows the Fortran program, called impread.f :

SG–2051 9.3 59

UNICOS® Tape Subsystem User’s Guide

PROGRAM IMPREAD

INTEGER INT
REAL RL(4)

COMPLEX COM(3)

C

C THIS PROGRAM READS DATA IN FROM THE DATA FILE AND PRINTS IT.

C THE RECORD FORMAT OPTION (-F) AND DATA CONVERSION OPTIONS (-N)

C MUST BE SPECIFIED IN THE ASSIGN COMMAND.
C

C THE RUN-TIME LIBRARY WILL DEBLOCK THE FOREIGN RECORD(S) AND

C CONVERT THE DATA ITEMS AS REQUESTED IN THE ASSIGN COMMAND.

C

DO 10 I=1,10
READ(29) INT,RL,COM

PRINT *,’REC=’,INT

PRINT *,’ RL=’,RL

PRINT *,’COM=’,COM

10 CONTINUE
END

Figure 30. Converting foreign data

4.1.6 Using the bad data recovery routines

This section shows you how to use the bad data recovery routines, which allow
you to skip or accept bad data. These routines check the status of the I/O
function. If an error has occurred, these routines call a Fortran error-handling
routine. For more information on the Fortran error handling routines, see the
Application Programmer’s Library Reference Manual, publication SR–2165.

The Fortran error-handling routines available are as follows:

Routine Description

SKIPBAD(3) Skips bad data

ACPTBAD(3) Makes bad data available

4.1.6.1 Example 1

Figure 31 shows the following example, called skipbdxmp . This example
illustrates how to use the Fortran error-handling routine SKIPBAD, which skips
bad data on the read operation:

60 SG–2051 9.3

Writing Fortran Applications Using Tapes [4]

PROGRAM SKIPBDXMP

IMPLICIT INTEGER (A-Z)
PARAMETER (MAXSIZ=50000)

DIMENSION BUFFER(MAXSIZ),UDA(512)

NUMBLKS=1000000

NWORDS=4096

DO 5000 NBLK=1,NUMBLKS

CALL READ(99,BUFFER,NWORDS,STATUS)

IF(STATUS .EQ. 0) GO TO 5000

IF(STATUS .EQ. 4) THEN
PRINT*,’****PARITY ERROR ON READ AT RECORD’,NBLK

NPAR=NPAR+1

GO TO 2500

ENDIF

IF(STATUS .EQ. 2) THEN

PRINT*,’*****END OF FILE DETECTED,RECORDS=’,NBLK

STOP

ENDIF

IF (STATUS .NE. 0) THEN
PRINT*,’UNEXPECTED RETURN CODE FROM READ=’,STATUS

CALL ABORT

ENDIF

2500 CALL SKIPBAD (99,BLKS, TERMCND)
PRINT*,’SKIPBAD-BLOCKS SKIPPED’,BLKS

PRINT*,’STATUS EQUALS’,TERMCND

IF (TERMCND .EQ. 0) GO TO 5000

IF (TERMCND .EQ. 1) THEN
PRINT*,’****END OF FILE DETECTED, RECORDS READ=’,NBLK

PRINT*,’****NUMBER OF PARITY ERRORS=’,NPAR

STOP

ENDIF

SG–2051 9.3 61

UNICOS® Tape Subsystem User’s Guide

IF (TERMCND .LT. 0) THEN

PRINT*,’****NOT ON A RECORD BOUNDARY,ABORTING’
CALL ABORT

ENDIF

5000 CONTINUE

STOP

END

Figure 31. Using the SKIPBAD(3) routine

4.1.6.2 Example 2

Figure 32 shows you how to use the Fortran error-handling routine called
ACPTBAD(3), which accepts bad data on the read operation):

62 SG–2051 9.3

Writing Fortran Applications Using Tapes [4]

PROGRAM ACPTBAD

IMPLICIT INTEGER (a-z)

PARAMETER (NUMBLKS=10000)

PARAMETER (MAXSIZE=50000)

PARAMETER (RECLEN=4096)

DIMENSION BUFFER(MAXSIZE),UDA(MAXSIZE)

NPAR = 0

DO 5000 NBLK=1,NUMBLKS

NWORDS=RECLEN

CALL READ(1,BUFFER,NWORDS,STATUS)

IF (STATUS .EQ. 0) GO TO 5000
IF (STATUS .EQ. 4) THEN

PRINT *,’***PARITY ERROR ON READ AT RECORD ’,NBLK

NPAR = NPAR+1

GO TO 2500

ENDIF

IF ((STATUS .EQ . 2) .OR. (STATUS .EQ. 3))THEN

PRINT *,’END OF FILE/DATA DETECTED, RECORDS= ’,NBLK

STOP ’COMPLETE’

ENDIF

IF (STATUS .NE. 0)THEN

PRINT *,’UNEXPECTED RETURN CODE FROM READ = ’,STATUS,NBLK

CALL ABORT

ENDIF

SG–2051 9.3 63

UNICOS® Tape Subsystem User’s Guide

2500 CALL ACPTBAD(1,UDA,CNT,TERMCND,UBC,MAXSIZE)

C

C BUILD UP USER RECORD

C

IX = 0

DO 3500 I = (NWORDS+1),(NWORDS+CNT)

IX=IX+1
BUFFER(I)=UDA(IX)

3500 CONTINUE

IF (TERMCND .LT. 0)THEN
PRINT *, ’END OF RECORD NOT REACHED’

ENDIF

IF (TERMCND .EQ. 1)THEN

PRINT *,’**** END OF FILE DETECTED,RECORDS = ’,NBLK

PRINT *,’**** NUMBER OF PARITY ERRORS = ’,NPAR
ENDIF

5000 CONTINUE

END

Figure 32. Using the ACPTBAD(3) routine

4.1.6.3 Example 3

Figure 33 shows you how to reserve, mount, and release tapes from inside your
Fortran program, using the ISHELL (3) routine. If you use this routine, you
must make sure that the tape file is closed before the tape is released. Use the
Fortran CLOSEstatement to close a file.

64 SG–2051 9.3

Writing Fortran Applications Using Tapes [4]

PROGRAM TP1

DIMENSION IBUF(500)
INTEGER ISHELL

C RESERVE A CART DEVICE

ISTAT = ISHELL(’rsv CART 1’)

IF (ISTAT.NE.0) GOTO 100

C REQUEST MOUNT OF DESIRED CART

ISTAT = ISHELL(’tpmnt -l al -v ISCAL -p fort.10 -g CART -n’)

IF (ISTAT.NE.0) GOTO 200

C WRITE TO THE TAPE. YOU MUST HAVE PREVIOUSLY USED THE ASSIGN

C COMMAND TO IDENTIFY UNIT 10 AS A TAPE.

DO 10 I = 1,500
WRITE(10)IBUF

10 CONTINUE

C BEFORE RELEASING THE TAPE, THE FILE MUST BE CLOSED.

CLOSE(10)

C RELEASE THE TAPE, BUT KEEP THE CART RESOURCE.

ISTAT = ISHELL(’rls -k -p fort.10’)

IF (ISTAT.NE.0) GOTO 300

C REQUEST MOUNT OF ANOTHER TAPE

ISTAT =ISHELL(’tpmnt -l sl -v ISCSL -p fort.10 -g CART -n’)

IF (ISTAT.NE.0) GOTO 200

C WRITE TO TAPE

DO 20 I = 1,500

WRITE(10) IBUF

20

SG–2051 9.3 65

UNICOS® Tape Subsystem User’s Guide

C CLOSE THE FILE AND RELEASE ALL TAPE RESOURCES

CLOSE(10)

ISTAT = ISHELL(’rls -a’)

IF (ISTAT.NE.0) GOTO 300

STOP

100 PRINT *,’RSV FAILED’
STOP

200 PRINT *,’TPMNT FAILED’

ISTAT = ISHELL(’rls -a’)

STOP

300 PRINT *,’RLS FAILED’

PRINT *,’ISTAT = ’,ISTAT

STOP

END

Figure 33. Using the ISHELL (3) routine

To execute the preceding program, tp1 , type the following:

cf77 -o tp1 tp1.f

assign -s tape f:fort.10./tp1

4.1.7 Using end-of-volume processing requests

This section describes user end-of-volume (EOV) processing from a Fortran
program. For information about user EOV processing from a C program, see
Chapter 5, page 83.

Normally, volume switching is handled by the UNICOS tape subsystem and is
transparent to you. However, when user EOV processing is requested, you gain
control at the end-of-tape and your program may perform special processing.
For more information on the Fortran interface routines used in EOV processing,
see the Application Programmer’s Library Reference Manual, publication SR–2165.
The library interface routines for EOV processing from a Fortran program are as
follows:

66 SG–2051 9.3

Writing Fortran Applications Using Tapes [4]

Routine Description

SETSP(3) Enables or disables EOV processing

STARTSP(3) Starts special tape processing

ENDSP(3) Ends special tape processing

CHECKTP(3) Checks tape position

CLOSEV(3) Closes volume and mounts next volume specified in the volume
identifier list

When using EOV processing for online tape files on the tape subsystem, make
sure that data is flushed from the library and system buffers before calling
certain routines as discussed in the following. Failure to flush the buffers and
check for EOV can result in lost data at the end of the tape volume.

To instruct the system to perform EOV processing, call the SETSProutine with
the appropriate parameter set to ONafter a tape file is opened.

Check for EOV by calling the CHECKTPmacro. To test whether a tape is at
EOV, you must call CHECKTPafter each WRITE, ENDFILE, or READoperation.
In addition, for an output dataset, call CHECKTPafter each GETTPor GETPOS
call to see if EOV was encountered.

For output datasets, you should also ensure that the library and system have
flushed their buffers, and then test whether the tape is at EOV, before issuing
any of these statements:

CLOSE

REWIND

BACKSPACE

and before calling any of these routines:

SETTP(3)

SETPOS(3)

CLOSEV(3)

SETSP(3) (OFF)

To flush the buffers, call GETTP(3) with the SYNCHparameter set to ON. Then
call CHECKTP(3) to see if EOV was reached.

SG–2051 9.3 67

UNICOS® Tape Subsystem User’s Guide

4.1.7.1 Example 1

The following example shows you how to use EOV processing by using the
library interface routines:

1. Reserve a tape by using the rsv (1) command:

rsv CART 1

2. Compile and load Fortran program teov.f , directing the output to
executable file teov :

cf77 -o teov teov.f

3. Request a tape mount by using the tpmnt (1) command. In this example,
the tape has no label, a path name of fort.9 , and volume identifiers of x
and y :

tpmnt -l nl -P fort.9 -v x:y -g CART -n

4. Use the assign (1) command to specify that file fort.9 is a tape:

assign -s tape f:fort.9

5. Execute teov :

teov

6. Release the reserved resource:

rls -a

Figure 34 shows the Fortran program, called teov.f :

68 SG–2051 9.3

Writing Fortran Applications Using Tapes [4]

PROGRAM TEOV

IMPLICIT INTEGER(A-Z)
PARAMETER (BLKLEN = 512)

C MAXREC = total number of records to be written

PARAMETER (MAXREC = 10000)

DIMENSION BLK(BLKLEN)

INTEGER IPA(45)

C Set up for special EOV processing

CALL SETSP(9, 1, ISTAT)

IF (ISTAT .NE. 0) GOTO 20

C Write MAXREC records. Check for end-of-volume after each write.

C If end-of-volume is detected, call the subroutine EOVPROC

DO 10 I = 1, MAXREC

WRITE (9)BLK

CALL CHECKTP(9, ISTAT, ICBUF)
IF (ISTAT. EQ. 0) THEN

C At EOV

CALL EOVPROC()

ENDIF

10 CONTINUE

C We have written all of the records. Call GETTP with the
C sync parameter set to flush the library’s and system’s buffers.

CALL GETTP(9, 40, IPA, 1, IREPLY)

IF (IREPLY.NE. 0)GOTO 20

CALL CHECKTP(9, ISTAT, ICBUF)

IF (ISTAT. EQ. 0) THEN
C At EOV

CALL EOVPROC()

ENDIF

C Stop end-of-volume processing

CALL ENDSP (9, ISTAT)
IF (ISTAT .NE. 0)GOTO 20

C Close the file

CLOSE(9)

C STOP

20 PRINT *,’ERROR’

END

SG–2051 9.3 69

UNICOS® Tape Subsystem User’s Guide

SUBROUTINE EOVPROC()

DIMENSION TBLK(512)
DIMENSION HBLK(512)

C Start special processing at eov.

CALL STARTSP(9, ISTAT)

IF (ISTAT. NE. 0) GOTO 20

C Write a special block at the end of the tape

C and close the volume.

WRITE (9) TBLK

CALL CLOSEV(9, ISTAT)

IF (ISTAT. NE. 0) GOTO 20

C Write a special block at the beginning of the next tape.

WRITE (9) HBLK

C Stop special processing
CALL ENDSP (9, ISTAT)

IF (ISTAT. NE. 0) GOTO 20

RETURN

20 PRINT *,’ERROR’

STOP

END

Figure 34. Using Fortran library routines for EOV processing

70 SG–2051 9.3

Writing Fortran Applications Using Tapes [4]

4.1.7.2 Example 2

The following example illustrates EOV processing when writing a tape file. The
program writes until end-of-volume is reached. It then reads the last two blocks
on the first volume and the blocks buffered in the IOS, and writes these on the
second tape volume:

1. Reserve a tape by using the rsv (1) command:

rsv CART 1

2. Compile and load Fortran program teov2.f , directing the output to
executable file teov2 :

cf77 -o teov2 teov2.f

3. Request a tape mount by using the tpmnt (1) command. In this example,
the tape has no label, a path name of fort.9 , and volume identifiers of
VOL1 and VOL2:

tpmnt -l nl -v VOL1:VOL2 -p fort.9 -g CART -r in -n -T

4. Use the assign (1) command to specify that file fort.9 is a tape.

assign -s tape f:fort.9

5. Execute teov2 :

teov2

6. Release the reserved resources:

rls -a

Figure 35 shows the Fortran program, called teov2.f :

SG–2051 9.3 71

UNICOS® Tape Subsystem User’s Guide

PROGRAM TEOV2

c Example of EOV processing. Assumes that fort.9 is a tape file

IMPLICIT INTEGER(A-Z)

PARAMETER (BLKLEN = 512, PALEN = 30)

DIMENSION BLK(BLKLEN), PA(PALEN)

c Set up for special EOV processing.

CALL SETSP(9,1,ISTAT)

IF (ISTAT.NE.0) GOTO 100

c Fill the first volume. CHECKTP returns a status that indicates

c whether end-of-volume has been reached.

10 CONTINUE

WRITE(9)BLK
CALL CHECKTP(9,ISTAT,ICBUF)

IF (ISTAT.LT.0) GOTO 10

c Determine number of blocks buffered in the IOS.

C Note that we do not request synch here.

CALL GETTP(9, PALEN, PA, 0, ISTAT)

IF (ISTAT.NE.0) GOTO 100

c Start special processing

CALL STARTSP(9,ISTAT)
IF (ISTAT.NE.0) GOTO 100

c Backspace 2 blocks. Read these 2 blocks from tape + blocks from

c the IOS + blocks in the library buffer and store them in a

c temporary file (fort.10)

BACKSPACE(9)

BACKSPACE(9)

NBLK=PA(12)+2+PA(11) ! blocks in IOS + 2 from tape

! + blocks in library buffer

DO 20 I = 1,NBLK
READ(9)BLK

72 SG–2051 9.3

Writing Fortran Applications Using Tapes [4]

20 WRITE(10)BLK

c Backspace 2 blocks before closing the volume, because these
c 2 blocks will be rewritten on the second volume.

BACKSPACE(9)

BACKSPACE(9)

c The programmer wants to write a tape mark at EOV
ENDFILE(9)

c Close the volume and request mount of the next volume

CALL CLOSEV(9,ISTAT)
IF (ISTAT.NE.0) GOTO 100

CALL ENDSP(9,ISTAT) ! stop special processing

IF (ISTAT.NE.0) GOTO 100

c Disable special processing

CALL SETSP(9, 0, ISTAT)

IF (ISTAT.NE.0) GOTO 100

REWIND(10) ! rewind temporary file

c Write the blocks in fort.10 onto the second volume

DO 30 I = 1,NBLK

READ(10)BLK
30 WRITE(10)BLK

CLOSE(9) ! close the file

STOP

100 CALL ABORT()
END

Figure 35. Using EOV processing when writing a file

4.1.7.3 Example 3

The following example shows how to use EOV processing to detect the
end-of-volume when reading a multivolume file.

SG–2051 9.3 73

UNICOS® Tape Subsystem User’s Guide

1. Reserve a tape by using the rsv (1) command:

rsv

2. Compile and load the Fortran program eovr.f directing the output to
executable file eovr :

cf77 -o eovr eovr.f

3. Request a tape mount by using the tpmnt (1) command. In this example,
the file has a standard label, a path name of fort.10 , and volume
identifiers of x and y :

tpmnt -l sl -p fort.10 -v x:y

4. Use the rsv (1) command to specify that file fort.10 is a tape:

assign -s tape f:fort.10

5. Execute eovr :

eovr

6. Release the reserved resource:

rls -p fort.10

Figure 36 shows the Fortran program, called eovr.f :

74 SG–2051 9.3

Writing Fortran Applications Using Tapes [4]

PROGRAM EOVR

IMPLICIT INTEGER (A-Z)

PARAMETER (BLKLEN=4096)

DIMENSION BLK(BLKLEN)

CALL SETSP(10,1,ISTAT)
IF (ISTAT.NE.0) THEN

PRINT *,’BAD STATUS FROM SETSP ’,ISTAT

GOTO 100

ENDIF

c Read until we get to the end of a volume or the end of data

10 CONTINUE

IC = BLKLEN
CALL READ(10, BLK, IC, ISTAT)

IF ((ISTAT.EQ.2).OR.(ISTAT.EQ.3)) THEN

PRINT *,’END OF FILE/DATA’

GOTO 100

ELSEIF (ISTAT.NE.0) THEN

PRINT *,’UNEXPECTED STATUS FROM READ ’,ISTAT
GOTO 100

ENDIF

c Check for end of volume

CALL CHECKTP(10,REPLY,CB)

IF (REPLY .LT. 0) GOTO 10

IF (REPLY .GT. 0) THEN

PRINT *,’UNEXPECTED STATUS FROM CHECKTP ’,REPLY

GOTO 100
ENDIF

c At EOV. Start special processing, and call CLOSEV to mount the

c next tape

SG–2051 9.3 75

UNICOS® Tape Subsystem User’s Guide

CALL STARTSP(10,ISTAT)

IF (ISTAT.NE.0)THEN
PRINT *,’BAD STATUS FROM STARTSP ’,ISTAT

GOTO 100

ENDIF

CALL CLOSEV(10,ISTAT)

IF (ISTAT.NE.0)THEN

PRINT *,’BAD STATUS FROM CLOSEV ’,ISTAT
GOTO 100

ENDIF

CALL ENDSP(10,1,ISTAT)

IF (ISTAT.NE.0) THEN

PRINT *,’BAD STATUS FROM ENDSP ’,ISTAT
GOTO 100

ENDIF

GOTO 10

c Disable EOV processing
100 CALL SETSP(10,0,ISTAT)

CLOSE(10)

END

Figure 36. Using EOV processing when reading a multivolume file

4.2 ER90 tape processing

You can access ER90 devices through Fortran. Unformatted I/O is currently
supported. You can select either the byte-stream mode or block mode of the
device.

In byte-stream mode, two processing classes are available:

• Pure data mode

• COS blocking

To select the processing class, use the assign (1) command.

In block mode, select the FFIO tape layer by using the following command:

assign -F tape

With this processing class, each Fortran record corresponds to a block. Because
ER90 devices require that each block be the size specified by the -b option of

76 SG–2051 9.3

Writing Fortran Applications Using Tapes [4]

the tpmnt (1) command, all Fortran records must be the same size. An
exception to this rule is the last record written before a tape mark or the
end-of-file. This record may be smaller than the size specified by the -b option.
When you choose this processing class, EOV processing routines, user tape
marks, and the SETTP(3) routine are available.

4.2.1 Using pure data mode

In pure data mode, no record control words are written to the file. This
indicates that the user must know the size of the records being read. Reading,
writing, and rewinding are allowed in this mode.

Use the assign (1) command to select this mode, as follows:

assign -F er90 assign.object

Pure data mode does not support EOV processing, SETTP(3), SKIPF (3), and
multiple ENDFILES. GETTPis allowed, but the meaning of some fields that are
returned in the information array differs from that returned when using round
or cartridge tapes and the following assign (1) command:

assign -[F,s] [tape,bmx]

GETPOSand SETPOSare supported when using this processing class. The len
parameter for these routines must be at least 4. The values returned by GETPOS
in the pa array contain device specific information; it may be used in a
subsequent call to SETPOS. For ER90 files, the information returned does not
include the volume serial number (VSN) or partition information. Before using
SETPOS, verify that the correct VSN and partition is in position.

When using round or cartridge tapes, each Fortran record corresponds to a
physical tape block. When using the ER90 device in byte-stream mode, each
byte is considered a block. Therefore, the ipa(10) , ipa(11) , and ipa(12)
fields return byte counts.

When the file is assigned with -F er90 , each Fortran read or write results in
one or more system calls. The bufa layer may be used to provide
asynchronous buffering, potentially reducing the number of system calls and
improving performance. It may be combined with the er90 layer as follows:

assign -F bufa,er90 assign.object

The following example illustrates the use of pure data mode with the ER90
device.

SG–2051 9.3 77

UNICOS® Tape Subsystem User’s Guide

1. Reserve a device by using thersv (1) command:

rsv ER90

2. Compile the Fortran program tpwr1.f v, resulting in the relocatable file
ctpwr1.o :

cft77 tpwr1.f

3. By default, the ER90 flexible file I/O (FFIO) layer is disabled. It can be
enabled by the system administrator, or by specifying the ff_er90 loader
directives file.

Load the relocatable file tpwr1.o , directing the binary output to the
executable file tpwr1 using the following segldr (1) command:

segldr -o tpwr1 tpwr1.o -j ff_er90

4. Request a tape mount by using the tpmnt (1) command. In this example,
the tape has no label, a path name of fort.1 , and a volume identifier of
00011 :

tpmnt -p fort.1 -l nl -v 00011 -g ER90

5. Use the assign (1) command to specify that file fort.1 is an ER90 file
with asynchronous buffering:

assign -F bufa,er90 fort.1

6. Execute tpwr :

./tpwr1

7. Release the reserved resources:

rls -a

Figure 37 shows the Fortran program, called tpwr1.f :

78 SG–2051 9.3

Writing Fortran Applications Using Tapes [4]

program tpwr1

integer buf(2000)
integer ipa(4)

c write 100 records

do 10 i = 1,100

do 5 j = 1,2000

buf(j) = i

5 continue
write(1)buf

if (i.eq.50)then

call getpos(1, 4, ipa, istat)

if (istat.ne.0)then

print *,’bad stat ’, istat
stop ’error’

endif

10 endif

rewind(1)

c read the records and verify

do 20 i = 1,100

read(1) buff

do 15 j = 1,2000

if (buf(j).ne.i)then

print *,’bad data ’, buf(j),i
stop ’error’

endif

15 continue

20 continue

c now position back to the point where we did the getpos
call setpos(1, 4, ipa, istat)

if (istat.ne.0)then

print *,’bad stat ’,istat

stop ’error’

endif
read(1)buf

if (buf(1).ne.51)then

print *,’bad data after setpos ’, buf(1)

endif

end

Figure 37. Using pure data mode

SG–2051 9.3 79

UNICOS® Tape Subsystem User’s Guide

4.2.2 Using COS blocking mode

In COS blocking mode, users can read, write, rewind, and backspace.

Use the assign (1) command to select COS blocking for the ER90, as follows:

assign -F cos,er90 assign.object

The COS blocking mode does not support EOV processing, SKIPF , CLOSEV,
SETTP, and concatenated tape files. GETTPis allowed, but some of the fields
that are returned in the information array differ from those returned when
using round or cartridge tapes. The COS blocking layer buffers data, and it is
not included in the value returned by GETTPin ipa(11).

GETPOSand SETPOSare supported when using this processing class. The len
parameter for these routines must be 6 or higher. The values returned by
GETPOSin the pa array contain device specific information.

The following example illustrates the use of COS blocking mode with the ER90
device.

1. Reserve a device by using the rsv (1) command:

rsv ER90

2. Compile the Fortran program tpwr2.f , resulting in the relocatable file
tpwr2.o :

cft77 tpwr2.f

3. By default, the ER90 flexible file I/O (FFIO) layer is disabled. It can be
enabled by the system administrator, or by specifying the ff_er90 loader
directives file.

Load the relocatable file tpwr2.o , directing the binary output to the
executable file tpwr1 using the following segldr (1) command:

segldr -o tpwr2 tpwr2.o -j ff_er90

4. Request a tape mount by using the tpmnt (1) command. In this example,
the tape has no label, a path name of fort.1 , and a volume identifier of
00011 :

tpmnt -p fort.1 -l nl -v 00011 -g ER90

5. Use the assign (1) command to specify that file fort.1 is an ER90 file:

assign -F er90 fort.1

80 SG–2051 9.3

Writing Fortran Applications Using Tapes [4]

6. Execute tpwr :

./tpwr2

7. Release the reserved resources:

rls -a

Figure 38 shows the Fortran program tpwr2.f :

program tpwr2

real rbuf(2000)

c write 100 records

do 10 i = 1,100

do 5 j = 1,2000
rbuf(j)=i

5 continue

write(1) rbuf

10 continue

rewind(1)

c read the records and verify
do 20 i = 1,100

read(1) rbuf

do 15 j=1,2000

if (rbuf(j).ne.i)then

print *,’ bad data ’, rbuf(j),i
stop

endif

15 continue

20 continue

end

Figure 38. Using COS blocking mode

SG–2051 9.3 81

Writing C Applications Using Tapes [5]

This chapter describes the ways in which you may work with the tape
subsystem with C programs.

Before you can access the tape subsystem for file processing, you must reserve
the required number of tape drives for each device type needed. After you
have reserved the tape drives, you may specify the tape volume in which the
files to be processed are located.

After you have the volumes mounted and positioned, you can begin processing
the tape files. When processing is complete, release the reserved tape drives.

There are two levels of access to the tape subsystem. The recommended and
easiest to use is the C library level, using flexible file routines. The second level
is to use system calls, which requires much greater detail than the C library
level.

This chapter discusses accessing the tape subsystem with the following
approaches:

• C flexible file I/O library routines

• System call I/O

• Tape information requests

• Tape positioning requests

• End-of-volume requests

• Tape control requests

5.1 C flexible file I/O library routines

The flexible file I/O (FFIO) routines provide another way to perform tape I/O
with the ease of use of UNICOS system calls. The FFIO routines automatically
recognize tape devices and use the appropriate buffering.

The C library routines ffopen (3), ffread (3), ffwrite (3), ffseek (3),
ffbksp (3), ffclose (3), and ffweof (3) provide the capability to read and
write records to tape, rewind the tape and backspace records, and read and
write tape marks.

SG–2051 9.3 83

UNICOS® Tape Subsystem User’s Guide

For IBM compatible devices, the ffread (3) and ffwrite (3) routines provide
an interface that is sensitive to block boundaries and that returns information
on tape block boundaries on request. For ER90 devices, ffread (3) and
ffwrite (3) provide a way to perform I/O by using either the byte-stream
mode or block mode of the device. With the FFIO layer, a rewind operation can
be performed simply with a call to ffseek (3). Tape marks can be written with
ffweof (3) (ffweof (3) is not supported for ER90 devices in byte-stream mode),
and tape marks can be read with ffread (3). A call to ffwrite can write a
tape block of a designated number of bytes on a tape. A call to ffread (3) can
read up to one tape block from a tape. Explicit information about tape block
boundaries and the ability to read and write partial tape blocks is available
through the use of optional parameters on ffread (3) and ffwrite (3).

The ffpos (3) and fffcntl (3) routines provide the same complete set of
capabilities as available from Fortran including additional positioning, access to
information about the current tape, and end-of-volume processing. The ffpos
and fffcntl (3) routines are available on all systems. Some of the functionality
available with ffpos and fffcntl on IBM compatible devices are not
available on ER90 devices.

The FFIO tape layer may be used with either byte-stream mode or block mode
of the ER90 devices. When you use byte-stream mode, EOV processing, user
tape marks, and some positioning functionality are not available with the FFIO
tape layer. When you use block mode and the FFIO tape layer, each record
written must be the same size as specified on the -b option of the tpmnt (1)
command. An exception to this rule is the last record written before a tape
mark or the end-of-file.

Figure 39 shows a program, called cexam.c. This program demonstrates how
these routines can be used. For more information on the C library routines, see
the UNICOS System Libraries Reference Manual, publication SR–2080. For detailed
information about I/O, see the Application Programmer’s I/O Guide, publication
SG–2168.

84 SG–2051 9.3

Writing C Applications Using Tapes [5]

#include <fcntl.h>

#include <sys/types.h>
#include <foreign.h>

#include <errno.h>

main()

{

int ffd;

int i,j;
int buf[2000];

int ret;

ffd = ffopen("mytape", O_RDWR);

if (ffd<0){

printf("open failed, error = %d\n",errno)
exit(1);

}

/************** Write 10 records, a tape mark, and 10 more records to tape */

for (j = 0; j < 2; j++){
for (i = 0; i < 10; i++){

ret = ffwrite(ffd, buf, 800);

if (ret < 800){

printf("ffwrite returned %d\n",ret);

printf("error = %d\n",errno);

}
}

/************** Write a tapemark */

ret = ffweof(ffd);

if (ret < 0)
printf("ffweof failed, error = %d\n",errno);

}

/************** Rewind the tape */

ret = ffseek(ffd,0,0);

if (ret != 0)
printf("ffseek failed, error = %d\n",errno);

SG–2051 9.3 85

UNICOS® Tape Subsystem User’s Guide

/************** Read the tape until the first tape mark is reached. */

for (;;){
ret = ffread(ffd, buf, 16000);

if (ret < 0) {

printf("ffread failed, error = %d\n",errno);

break;

}

else if (ret == 0)
break;

/* Just read a tape mark */

else

printf("We read %d bytes\n",ret);

}

/************** Close the file */

ffclose(ffd);

}

Figure 39. C library routine usage

Figure 40 shows how to execute cexam.c :

cc cexam.c

rsv CART 1

tpmnt -v ISCSL -l sl -p mytape -g CART -r in -n -T

assign -F tape mytape
./a.out

rls -a

Figure 40. Executing cexam.c

The fffcntl (3) routine provides the capability to detect tape end-of-volume,
and to do special end-of-volume processing. An example of special
end-of-volume processing using the FFIO routines follows.

For more information about end-of-volume processing, see Section 4.1.7, page
66. As described in this section, you must check for EOV after each
ffwrite (3), ffweof (3), or ffread (3) when EOV processing is requested. For
output data sets, check for EOV after each fffcntl (3) using cmd FC_GETTP

86 SG–2051 9.3

Writing C Applications Using Tapes [5]

or cmd FP_GETPOS. For output data sets, you should also ensure that the
library and system have flushed their buffers, and then test whether the tape is
at EOV, before calling any of the following routines:

• ffseek

• ffpos (with cmd FP_SETPOS, FP_SETTP, FP_SKIPF , or FP_BSEEK)

• ffclose

• ffcntl (with cmd FP_CLOSEVor FP_SETSP(off))

To flush the buffers, call fffcntl using cmd FC_GETTPand with the structure
field ffc_synch set to 1.

To execute cexam2.c , shown in Figure 41, enter:

cc cexam2.c
rsv TAPE 1

tpmnt -v VOL1:VOL2 -g TAPE -p mytape -r in -n -T

./a.out

rls -a

Figure 41. Executing cexam2.c

The fffcntl (3) and ffpos (3) routines, shown in Figure 42, are on all systems.
EOV processing with fffcntl (3) is not available for ER90 devices.

SG–2051 9.3 87

UNICOS® Tape Subsystem User’s Guide

#include <fcntl.h>

#include <sys/types.h>
#include <sys/iosw.h>

#include <foreign.h>

#include <errno.h>

#define BUFSIZ 4000

#define ERREXIT(a, b) {printf("%s error = %d\n",a,b); exit(1); }

main()

{

int ffd, fftmp;

int i;
long bufcnt;

int buf[BUFSIZ];

int ret, eov = 0;

struct ffc_chktp_s checktp;

struct ffc_gettp_s gettp;
struct ffp_settp_s settp;

long pa[40];

struct ffsw stat;

ffd = ffopens("mytape",O_RDWR,0,0,&stat,"tape");

if (ffd < 0)
ERREXIT("open failed ",stat.sw_error);

/*

* Initiate special end-of-volume processing

*/

if (ffsetsp(ffd, &stat) < 0)
ERREXIT("ffsetsp failed ",errno);

/*

* Write until we reach EOV

*/

do {
if (ffwrite(ffd,buf,BUFSIZ) != BUFSIZ)

ERREXIT("ffwrite failed ",errno);

88 SG–2051 9.3

Writing C Applications Using Tapes [5]

/*

* We must check for EOV status after each write
*/

if (fffcntl(ffd, FC_CHECKTP, &checktp, &stat) < 0)

ERREXIT("CHECKTP failed ",stat.sw_error);

if (checktp.stat == 0)

eov = 1; /* Have reached eov */

} while(!eov);

/* Determine how many blocks are buffered */

gettp.ffc_glen = 40;

gettp.ffc_synch = 0;

gettp.ffc_pa = pa;
if (fffcntl(ffd, FC_GETTP, &gettp, &stat) < 0)

ERREXIT("GETTP failed ",stat.sw_error);

bufcnt = pa[10] + pa[11]; /* blocks in library buffer + system */

/*

* Start special end-of-volume processing
*/

if (fffcntl(ffd, FC_STARTSP, 0, &stat) < 0)

ERREXIT("STARTSP failed ",stat.sw_error);

/*

* We will write the last 2 blocks on this volume and the

* blocks that are buffered on the next volume.
* Position backward 2 blocks.

*/

settp.ffp_nbs_p = FP_TPOS_BACK;

settp.ffp_nb = 2;

settp.ffp_nvs_p = 0;
settp.ffp_nv = 0;

settp.ffp_vi = 0;

if (ffpos(ffd, FP_SETTP, &settp, 0, &stat) < 0)

ERREXIT("GETTP failed ",stat.sw_error);

/*
* Read 2 blocks from tape + buffered blocks and store them

* in a temporary file that is memory resident.

*/

if ((fftmp = ffopens("tmpfile",O_RDWR | O_CREAT,0,0,&stat,

"mr.scr.novfl")) < 0)

ERREXIT("Error opening temporary file ",
stat.sw_error);

SG–2051 9.3 89

UNICOS® Tape Subsystem User’s Guide

for (i = 0; i < bufcnt+2; i++) {

if (ffread(ffd,buf,BUFSIZ) != BUFSIZ)
ERREXIT("ffread failed ",errno);

if (ffwrite(fftmp,buf,BUFSIZ) != BUFSIZ)

ERREXIT("ffwrite failed ",errno);

}

/*

* Position back 2 blocks.
*/

settp.ffp_nbs_p = FP_TPOS_BACK;

settp.ffp_nb = 2;

settp.ffp_nvs_p = 0;

settp.ffp_nv = 0;
settp.ffp_vi = 0;

if (ffpos(ffd, FP_SETTP, &settp, 0, &stat) < 0)

ERREXIT("SETTP failed ",stat.sw_error);

for (i = 0; i < 2; i ++) { /* write 2 tape marks */
if (ffweof(ffd) < 0)

ERREXIT("ffweof failed ",errno);

}

/*

* Close this volume and mount the next one in volume identifier list

*/
if (fffcntl(ffd, FC_CLOSEV, 0, 0, &stat) < 0)

ERREXIT("Closev failed ",stat.sw_error);

/*

* End special processing.

*/
if (fffcntl(ffd, FC_ENDSP, 0, 0, &stat) < 0)

ERREXIT("Endsp failed ",stat.sw_error);

/*

* Disable special processing.

*/
if (fffcntl(ffd, FC_SETSP, 0, 0, &stat) < 0)

ERREXIT("Setsp failed ",stat.sw_error);

/*

* Write the data saved at eov. First rewind the temporary

* file.

*/

90 SG–2051 9.3

Writing C Applications Using Tapes [5]

if (ffseek(fftmp, 0, 0) < 0)

ERREXIT("Rewind of temporary file failed ",errno);
for (i = 0; i < bufcnt+2; i++) {

if (ffread(fftmp,buf,BUFSIZ) != BUFSIZ)

ERREXIT("Ffread failed ",errno);

if (ffwrite(ffd,buf,BUFSIZ) != BUFSIZ)

ERREXIT("Ffwrite failed ",errno);

}
/*

* Write 5 more blocks of data.

*/

for (i = 0; i < 5; i++) {

if (ffwrite(ffd,buf,BUFSIZ) != BUFSIZ)
ERREXIT("Ffwrite failed ",errno);

}

/*

* Close the tape file.
*/

ffclose(ffd);

}

Figure 42. Using C library routines for EOV processing

5.2 System call I/O

Tape I/O at the system call level requires you to work with many details. You
have a choice of synchronous or asynchronous I/O, and buffered or unbuffered
I/O. You need to be concerned with buffer addresses, block size, number of
bytes, and exception conditions. You need to know about specific hardware
requirements of different Cray Research systems.

5.2.1 Cray Research systems

This section briefly describes system call level I/O concerns, and then describes
in detail transparent I/O.

IBM compatible tape devices support blocked I/O. ER90 tape devices support
blocked I/O and byte stream I/O.

For synchronous read and write requests, you must specify the buffer address
and the number of bytes to read or write.

SG–2051 9.3 91

UNICOS® Tape Subsystem User’s Guide

The block size for read and write operations restriction is based on a field size
of 48 bits for IBM compatible devices. The CRAY J90 series have a maximum
block size of 128 Kbytes except for the Small Computer System Interface (SCSI)
I/O processor (IOP), which has maximum block size of 64 Kbytes minus 1 byte.

When a tape is read, the block size must be larger than or equal to the largest
block size on the tape. The block size is specified with the -b option on the
tpmnt (1) command or from the header label.

For ER90 devices, a blocked file section type consists of blocks of the size
specified by the tpmnt -b option. Blocks within the file section, excluding the
last block, must be the same length. The block size must be in the range of 80
through 1,199,832 bytes in 8-byte increments.

ER90 file sections within a tape can have different block lengths. You can
change the block length for a file section from the value specified with the
tpmnt (1) command by using the TPC_SDBSZ ioctl (2) request. The argument
to the ioctl request is the new block length, which cannot exceed the value
specified with the tpmnt -b option. The block length can be changed only
when the tape is positioned at the beginning of a file section.

You can use transparent I/O requests for reading and writing tape files. (On
CRAY J90 series, a 9-track round tape device can read gapless tapes.) When you
use transparent I/O, you do not need to be concerned with block size. Your
program treats the data as a stream of bytes. In addition, transparent I/O
allows you to specify either buffered or unbuffered I/O.

For ER90 devices, a byte stream file type is composed of blocks that are 1 byte in
length. The ER90 device cannot access data that begins at an odd-byte memory
address, therefore, byte stream data must be input and output to the device in
even increments.

When using asynchronous I/O for transparent I/O or multilist I/O, you must
acknowledge any exceptional conditions returned by the reada (2) and
writea (2) system calls. When an exceptional condition occurs, the tape driver
removes your I/O requests from the queue. When the driver receives
additional I/O requests, it cannot determine if the requests were issued before
or after an exceptional condition was returned; erroneous results may be
generated. For example, an error status is returned in the sw_error field of the
iosw structure for the reada (2) or writea (2) system call.

You may receive one of these exceptional conditions if you perform one of the
following actions:

• You use asynchronous multilist I/O while processing tape marks.

92 SG–2051 9.3

Writing C Applications Using Tapes [5]

You must send an acknowledgment after each user tape mark is read.

• You use asynchronous multilist I/O while processing user end-of-volume.

You must send an acknowledgment after receiving the ENOSPCstatus from
the reada (2) or writea (2) system calls.

If you receive one of these exceptional conditions, but are able to continue
processing, you must acknowledge receiving the condition by issuing a
TPC_ACKERR ioctl (2) call as shown in the following example:

ioctl(fd, TPC_ACKERR, 0);

The fd option specifies the file descriptor.

All I/O requests received by the driver in the time between returning the
exceptional condition and receiving the ioctl (2) acknowledgment are
terminated with the error code ETPDACKERR. After the tape driver receives the
acknowledgment, all I/O requests are processed normally.

5.2.2 Transparent I/O

If you are using transparent I/O, data is treated as a stream of bytes. To specify
transparent I/O, open the tape file and issue read (2) or write (2) requests. If
you issue a read (2) or write (2) request without specifying transparent I/O,
the I/O is transparent by default. Transparent I/O can be either buffered or
unbuffered.

5.2.2.1 Transparent buffered I/O

If transparent buffered I/O is requested, user data is temporarily stored in a
system buffer. Transparent buffered I/O is the default I/O request type (do not
include the -U option on the tpmnt (1) command).

To read a tape file with transparent buffered I/O, use the read (2) system call.
The tape driver reads data blocks into a system buffer before copying data into
a user buffer. The user may read any number of bytes. The tape driver copies
the same number of bytes from the system buffer to the user buffer.

The following example shows you how to read 100 bytes, followed by another
request to read the next 3 bytes from a tape file that has a maximum block size
of 10,000 bytes, using transparent buffered I/O. This example can be used on all
IOS systems.

SG–2051 9.3 93

UNICOS® Tape Subsystem User’s Guide

1. Specify the block size as 10,000 bytes in the tpmnt (1) command:

tpmnt -b 10000 -v SCRSL -f FILE

2. Specify the open (2) and read (2) statements in your C program:

filedes = open("file",O_RDONLY);
i = read(filedes, buf, 100); /* read 100 bytes */

i = read(filedes, buf, 3); /* read 3 bytes */

. . .

To write a tape file with transparent buffered I/O, use the write (2) system call.
The number of bytes requested to be written are copied into the system buffer.
For IBM compatible devices, when the number of bytes of data accumulated in
the system buffer is equal to the block size specified by the -b option of the
tpmnt (1) command, the block of data is written to tape. For ER90 devices,
when the buffer becomes full, the buffer is written to tape.

The following example shows you how to write a tape file that has a maximum
block size of 10,000 bytes, using transparent buffered I/O. This example can be
used on all IOS systems.

1. Specify the block size as 10,000 bytes in the tpmnt command:

tpmnt -b 10000 -f FILE -v SCRSL -n

2. Specify the write statement in your C program:

filedes = open("FILE", O_RDWR);

write(filedes, buf, 20000);/*write 20000 bytes*/

/* 2 blocks will be written to tape */

write(filedes, buf, 20); /* write 20 bytes */

5.2.2.2 Transparent unbuffered I/O

To request unbuffered I/O, specify the -U option on the tpmnt (1) command.
No system buffer will be used for user I/O. All I/O operations are done to and
from your I/O buffer.

For ER90 byte stream requests, the byte count must be specified in even
increments (excluding the last I/O) and be less than or equal to the device
request limit, CE_MAX_BLOCKS.

For ER90 blocked requests, the byte count for reads must be greater than the
maximum block size. In addition, each read transfers one block. For writes, the
byte count must be a multiple of the block size, excluding the last I/O request.

94 SG–2051 9.3

Writing C Applications Using Tapes [5]

To read a tape file with transparent unbuffered I/O, use the read (2) system
call. A read request transfers a tape block into your I/O buffer. For IBM
compatible devices and ER90 blocked I/O requests, the number of bytes
specified in the read request must be larger than or equal to the maximum
block size specified by the -b option on the tpmnt command, and it must be a
multiple of 4096 bytes. When a read completes with no error, a tape block is
transferred into your I/O buffer, and the specified number of bytes is returned.

Figure 43 shows you how to read a tape file to an IBM compatible device using
transparent unbuffered I/O:

1. Specify the block size as 10,000 bytes in the tpmnt command:

rsv
tpmnt -v 123456 -l sl -P x -b 10000 -U -g CART

2. Specify the read statement in your C program:

#include <fcntl.h>

main()

{
char buf[4096*3]; /* need 3 x 4096 bytes to hold 10000 bytes */

int fd;

int bytes;

fd = open("x", O_RDONLY);
bytes = read(fd, buf, 4096*3);

/* must request multiple of 4096 bytes */

}

Figure 43. Reading from an IBM compatible device (unbuffered I/O)

Figure 44 shows you how to read a tape file from an ER90 device using
transparent unbuffered blocked I/O:

1. Specify the block size as 10,000 bytes in the tpmnt (1) command:

rsv CART

tpmnt -v 123456 -l sl -P x -b 10000 -B -U -g CART

2. Specify the read statement in your C program:

SG–2051 9.3 95

UNICOS® Tape Subsystem User’s Guide

#include <fcntl.h>

main()
{

char buf[4096*3]; /* 3 x 4096 bytes needed to hole 10000 bytes */

int fd;

int bytes;

fd = open("x", O_RDONLY);
bytes = read(fd, buf, 4096*3);}

Figure 44. Reading from an ER90 device (unbuffered blocked I/O)

Note: If a tape is accessed as blocked I/O as in the previous example,
but is actually a byte stream file, 4096*3 bytes will be returned. An
error will not be returned on the I/O request, even though the actual file
type differs from the requested type.

Figure 45 shows you how to read a tape file from an ER90 device using
transparent unbuffered byte stream I/O:

1. No block size is to be specified in the tpmnt (1) command:

rsv ER90

tpmnt -v 123456 -l sl -P x -U -g ER90

2. Specify the read statement in your C program:

#include <fcntl.h>

main()

{

char buf[10000];
int fd;

int bytes;

fd = open("x", O_RDONLY);

bytes = read(fd, buf, 10000);}

Figure 45. Reading from an ER90 device (unbuffered byte stream I/O)

Note: If a tape is accessed as byte stream as in the previous example, but
is actually a blocked tape, an error will be returned on the I/O request as
the byte count is not a multiple of 4096 bytes.

96 SG–2051 9.3

Writing C Applications Using Tapes [5]

To write a tape file with transparent unbuffered I/O, use the write (2) system
call. For IBM compatible devices and ER90 blocked I/O, each write (2) request
results in a block written from your user buffer to tape. When the write (2)
returns with no error, the data in the user buffer is written to tape as a block.
For ER90, blocked I/O requests must match the size specified with the -b
option on the tpmnt command. Each ER90 byte stream request writes the
number of bytes requested.

Figure 46 shows you how to write a tape file to an IBM compatible device using
transparent unbuffered I/O:

1. Specify the block size as 10,000 bytes in the tpmnt (1) command:

rsv CART 1
tpmnt -v ISCSL -l sl -P x -b 10000 -U -n -g CART

2. Specify the write statement in your C program:

#include <fcntl.h>

main()

{
char buf[10000]; /* write buffer */

int fd;

int bytes;

fd = open("x", O_WRONLY);
bytes = write(fd, buf, 10000); /* 10000-byte block */

bytes = write(fd, buf, 500); /* 500-byte block */

}

Figure 46. Writing to an IBM compatible device (unbuffered I/O)

Figure 47 shows you how to write a tape file to an ER90 device using
transparent unbuffered byte stream I/O:

1. Specify the block size as 10,000 bytes in the tpmnt (1) command:

rsv ER90

tpmnt -v 123456 -l sl -P x -B -U -n -g ER90

2. Specify the write statement in your C program:

SG–2051 9.3 97

UNICOS® Tape Subsystem User’s Guide

#include <fcntl.h>

main()
{

char buf[10000]; /* write buffer */

int fd;

int bytes;

fd = open("x", O_WRONLY);
bytes = write(fd, buf, 10000); /* 10000-byte block */

}

Figure 47. Writing to an ER90 device (unbuffered byte stream I/O)

5.3 Tape information requests

A C program can obtain tape subsystem information using system calls or tape
daemon requests. This section discusses obtaining tape subsystem information
from the tape information table, a tape daemon request, and several ioctl (2)
requests.

5.3.1 Tape information table

The tape information table holds information about the tape system and is
available to tape users. It is initialized by the tape driver when the system is
started. When the tape daemon starts, it updates the table with information
from its startup file.

The tape information table is defined in the tapetab.h file and included in a
program by using the following preprocessor statement:

#include <sys/tapetab.h>

The tape information table is defined so that it is not necessary to recompile if
new fields are added to it in the future. It consists of a header with fixed length
fields, followed by a variable length section. Figure 48 shows the format of the
header:

98 SG–2051 9.3

Writing C Applications Using Tapes [5]

typedef struct tapetab_struct {

word tape_tabsize; /* size of table in bytes */
word tape_hdrsize; /* size of tapetab header in bytes */

word tape_maxsize; /* max size allocated to hold tapetab */

word tape_ios_model; /* model E ios */

word tape_flag; /* flags indicating various status */

word tape_dev_major; /* major device number of tape devices */

word tape_dev_driver; /* tape device driver name */
word tape_file_major; /* user tape files major device number */

word tape_file_driver; /* tape file driver name */

word tape_max_dev; /* maximum number of tape devices */

word tape_conf_up; /* maximum number of devices configured up */

word tape_max_per_dev; /* max bytes for buffers per device */
word tape_max_bufs; /* max buffers per device */

word tape_bmx_max_cmdlist; /* max cmds in a bmx cmdlist request */

} tapetab;

Figure 48. Tape information table header

New fixed length fields may be added at the end of the header section. Offsets
of variable fields are included in the fixed length fields.

Variable length fields follow the header with offsets defined in the header.
Offsets are measured in words from the beginning of the table. These fields
contain data, such as names. Fields of character strings must be null
terminated. Variable length fields always start on word boundaries.

There are two types of variable length fields: single-item fields and a list of
fields. Single-item fields, such as the daemon request pipe name, require a
word in the header to hold its offset. A list of fields consists of a variable length
list of offsets pointing to the corresponding field and requires two words in the
header to hold the number of items in the list and the offset of the list.

The example, shown in Figure 49, accesses the tape information table, extracting
the maximum number of tape drives:

SG–2051 9.3 99

UNICOS® Tape Subsystem User’s Guide

#include <sys/table.h>

#include <stdio.h>
#include <sys/types.h>

#include <sys/tapetab.h>

main()

{

word tabsize; /* size of table */
tapetab_struct *tblp; /* pointer to tape information table */

/*

* get the size of tapetab.

*/

if (tabread(TAPETAB, (char *)&tabsize, sizeof(word), 0)) {

perror("can’t read TAPETAB size");

exit(1);

}

tblp = (tapetab_struct *)calloc(tabsize, 1);

if (tabread(TAPETAB, (char *)tblp, tabsize)) {

perror("can’t read TAPETAB table");

exit(1);
}

printf("max buffer size = %d bytes\n", tblp->tape_max_per_dev);

}

Figure 49. Using the tape information table

The tabinfo (2) and tabread (2) (see tabinfo (2)) system calls let you read a
system table without reading /dev/kmem . The tabinfo (2) call describes table
characteristics: location, header length, number of entries, and size of entry.
Using the information returned by tabinfo , you can create a user buffer into
which tabread (2) will read all or part of a table.

100 SG–2051 9.3

Writing C Applications Using Tapes [5]

5.3.2 Tape daemon requests

The tape daemon request, called TR_INFO, lets you perform a tape status
inquiry from within a C program. You must perform the following steps to
send a tape daemon request and receive a reply.

1. Determine the request pipe name.

The request pipe is automatically created for you when you issue the
rsv (1) command. Also, it is automatically deleted when you release all of
your reservations by using the rls (1) command. The request pipe name
must be the absolute path name, not just the file name portion. The
directory of the request pipe is determined through the #define
USER_DIRdirective in file tapedef.h , which is set up at installation time
to be the environment variable. The default is your environment variable
$TMPDIR. For the file name portion, the #define U_REQPIPE directive in
file /usr/include/tapedef.h defines the first part of the file name,
which is appended by the job ID of your job. The default is TAPE_REQ_.

The #define MAXPATH directive in file tapedef.h defines the longest
path name minus one that the requests may use. If any path name is larger
than MAXPATH-1, you must have the value of MAXPATHincreased by your
system administrator.

2. Build a reply pipe by using the mknod(2) system call. Open a pipe with an
open (2) system call, keeping the pipe open until a reply returns.

You can either build a reply pipe for each request and delete it after a reply
has returned, or build a single reply pipe, using it for all of your requests.
Regardless of the option you use, it is important to keep the reply pipe
open until all replies have returned.

3. Place the reply pipe name in the request header. You must supply the
absolute path name of the reply pipe.

4. Write the request into the pipe.

Use the write (2) system call to write your request into the request pipe.

5. Read the reply header from the reply pipe.

For each request submitted, the tape daemon sends a reply. Depending on
the request you send, the reply may be just the reply header, or the reply
header along with its data. To determine whether data has been returned,
read the reply header from the reply pipe; if the size of the reply is larger
than the reply pipe header, read in the rest of the reply.

SG–2051 9.3 101

UNICOS® Tape Subsystem User’s Guide

You may use the echo field in the request and reply headers to help keep track
of requests. The system copies what you input to the echo field of the request
and reply headers.

Figure 50 shows a TR_INFO tape daemon request:

102 SG–2051 9.3

Writing C Applications Using Tapes [5]

#include <fcntl.h>

#include <stdio.h>
#include <tapedef.h>

#include <tapereq.h>

#include <sys/types.h>

#include <sys/stat.h>

#include <sys/jtab.h>

extern char *calloc();

extern char *getenv();

main()

{

char *dirptr;

char *req_pipe_name; /* request pipe file name */

char *rep_pipe_name; /* reply pipe file name */

struct jtab jobtab; /* structure for job table info */

struct stat status; /* structure to stat tape file */

int req_fd; /* request pipe file descriptor */

int rep_fd; /* reply pipe file descriptor */

int tape_fd; /* tape file file descriptor */

struct trinfo info_req; /* tape info structure */

struct trinfor info_rep; /* tape info reply structure */

struct rephdr *rh; /* reply header */

int c;

int size; /* total size of reply */

/*

* Check the status of the tape file (this assumes you have
* performed a tpmnt with -P or -p to a file "tapefile")

* and open the tape file

*/

c = stat("tapefile",&status);

if (c < 0) {

perror("Stat failed for tapefile");
exit(1);

}

SG–2051 9.3 103

UNICOS® Tape Subsystem User’s Guide

tape_fd = open("tapefile", O_RDWR);

if (tape_fd < 0) {

perror("Unable to open tapefile");

exit(1);

}

/*
* Make the named reply pipe and open it

* Use tempnam() to get a unique temporary file name

*/

rep_pipe_name = tempnam(NULL, NULL);
c = mknod(rep_pipe_name, 010700);

if (c < 0) {

perror("Unable to mknod reply pipe");

close(req_fd);

close(tape_fd);
exit(1);

}

rep_fd = open(rep_pipe_name, O_RDWR);

if (rep_fd < 0) {

perror("Unable to open reply pipe");
close(req_fd);

close(tape_fd);

exit(1);

}

/*
* Construct request pipe file name and open it

*/

dirptr = calloc(1, MAXPATH);

req_pipe_name = calloc(1, MAXPATH);

dirptr = getenv(USER_DIR);

c = getjtab(&jobtab);

sprintf(req_pipe_name, "%s/%s%d",dirptr, U_REQPIPE, jobtab.j_jid);

req_fd = open(req_pipe_name, O_WRONLY);

104 SG–2051 9.3

Writing C Applications Using Tapes [5]

if (req_fd < 0) {

perror("Unable to open request pipe");
close(tape_fd);

exit(1);

}

info_req.rh.size = sizeof(struct trinfo);

info_req.rh.code = TR_INFO;
info_req.rh.jid = jobtab.j_jid;

info_req.st_dev = status.st_dev;

info_req.st_ino = status.st_ino;

strcpy(&(info_req.rh.rpn),rep_pipe_name);

c = write(req_fd, &info_req, info_req.rh.size);

if (c < 0) {

perror("Unable to write to daemon’s request pipe");

close(req_fd);

close(rep_fd);
unlink(rep_pipe_name);

close(tape_fd);

exit(1);

}

close(req_fd);
req_fd = 0;

/*

* Now read the reply back from the tape daemon from

* the reply pipe

*/
rh = (struct rephdr *)calloc(1, sizeof(struct rephdr));

c = read(rep_fd, (char *)rh, sizeof(struct rephdr));

if (c < 0) {

perror("Read of reply pipe failed");
close(rep_fd);

unlink(rep_pipe_name);

close(tape_fd);

exit(1);

}

SG–2051 9.3 105

UNICOS® Tape Subsystem User’s Guide

size = rh->size;

c = read(rep_fd, &info_rep, size);

if (c < 0) {

perror("Read of trinfor failed");

close(rep_fd);

unlink(rep_pipe_name);

close(tape_fd);
exit(1);

}

/*

* Program can go on to print out selected fields of the tsdata
* structure returned, or use them for another purpose.

*/

printf("ts_fcn (last function) = %o\n", info_rep.tsdata.ts_fcn);

printf("ts_dst (device status) = %o\n", info_rep.tsdata.ts_dst);

/*

* Close remaining open files and clean up.

*/

close(rep_fd);
unlink(rep_pipe_name);

close(tape_fd);

exit(0);}

Figure 50. Using the TR_INFO request

Figure 51 shows the information that is returned from the #define TR_INFO
directive:

106 SG–2051 9.3

Writing C Applications Using Tapes [5]

struct tsdata {

/*
* Device status information

*/

int ts_ord; /* Device ordinal */

int ts_fcn; /* Last device function */

int ts_dst; /* Last device status */

int ts_dtr; /* Data transfer count */
int ts_bmblk; /* Buffer memory block count */

int ts_bmsec; /* Buffer memory sector count */

int ts_pbmcnt; /* Partial block bytes in buffer memory */

int ts_orsc; /* Outstanding sector count */

int ts_orbc; /* Outstanding block count */
int ts_bnum; /* Block number: Block number */

/* relative to tape mark */

int ts_utmnum; /* User Tape Mark number: */

/* This only includes */

/* tape marks embedded */
/* in the user’s data */

int ts_tmdir; /* Direction from tape mark */

/* 0 : after tape mark */

/* 1 : before tape mark */

/*

* Tape file information
*/

char ts_path[MAXPATH]; /* Path name */

char ts_dgn[16]; /* Device group name */

char ts_dvn[16]; /* Device name */
int ts_year; /* Today’s year */

int ts_day; /* Today’s day */

char ts_fid[48]; /* File id */

char ts_rf[8]; /* Record format */

int ts_den; /* Density: */
/* 1: 1600 bpi */

/* 2: 6250 bpi */

int ts_mbs; /* Max block size */

int ts_rl; /* Record length */

int ts_fst; /* File status: */

/* 1 : new */
/* 2 : old */

/* 3 : append */

SG–2051 9.3 107

UNICOS® Tape Subsystem User’s Guide

int ts_lb; /* Label type: */

/* 1 : no label */
/* 2 : ANSII label */

/* 3 : IBM label */

/* 4 : bypass label */

/* 5 : single tape mark label */

int ts_fsec; /* File section number */

int ts_fseq; /* File sequence number */
int ts_ffseq; /* Fseq of 1st file on tape */

int ts_ring; /* Write ring status:*/

/* 0 : ring out */

/* 1: ring in */

int ts_xyear; /* Expiration year */
int ts_xday; /* Expiration day */

int ts_first; /* First vsn of file */

char ts_v1[80]; /* Vol1 label */

char ts_h1[80]; /* Hdr1 label */

char ts_h2[80]; /* Hdr2 label */
int ts_numvsn; /* Number of vsn */

int ts_vsnoff; /* Offset to vsn list */

/* from beginning of */

/* struct tsdata */

int ts_cvsn; /* Current vsn index */

int ts_eov; /* User eov selected: */
/* 0 : eov processing off */

/* 1 : eov processing on */

int ts_eovproc; /* If user is currently in */

/* special user EOV processing,*/

/* field is set to 1. Otherwise*/
/* field is 0. ts_eov would be 1*/

int ts_urwtm; /* User read/write tape mark */

/* 0 : not requested */

/* 1 : requested by -T */

/* option of tpmnt command */
char ts_ba[8]; /* block attribute */

int ts_blank4; /* Unused */

int ts_blank5; /* Unused */

108 SG–2051 9.3

Writing C Applications Using Tapes [5]

/* Following the tsdata structure is the vsn list. It is

* of variable length. The tsdata.ts_numvsn field is the number
* of vsns in the list. The tsdata.ts_vsnoff field is the offset

* (in bytes) to the beginning of the vsn list from the beginning of

* the tsdata structure. The vsns are of the form char[8]. */

}

Figure 51. TR_INFO information

5.3.3 ioctl requests

The ioctl (2) system call requests of TPC_EXTSTSand TPC_RDLOG ioctl (2)
let you request information about the tape subsystem. The TPC_EXTSTS
request lets you obtain information on ER90 devices and the TPC_RDLOG
request can be used to obtain information on ER90 and IBM compatible devices.

5.3.3.1 ER90 TPC_EXTSTSrequest

To obtain the extended status of an ER90 device, use the TPC_EXTSTS ioctl
request. The extended status consists of the following responses to device
commands: report addressee status, attribute, operating mode, and report
position.

The report addressee status response gives the state of the ER90 device
(ready/not ready or online/offline), a description of the mounted volume, and
the ER90 detailed status.

The attribute response returns the operational characteristics of the ER90 device
(for example, the data block size, burst size, early end-of-media warning (EEW),
location, and so on).

The operating mode response describes those attributes that were temporarily
defined for the time the tape was positioned within the current partition.

The report position response contains the current absolute track address, the
remaining partition capacity, and other tape location information (for example,
at beginning-of-tape, past the EEW location, at a system zone, and so on).

Refer to the ER90 Interface Control Document provided by E-Systems, Inc., for a
complete description of the command responses.

The extended status is obtained by issuing an ioctl (2) system call with a
request code of TPC_EXTSTS, to either the tape path or to file TPDDEM_REQ.
The tape path is the path specified on the tpmnt (1) command. TPDDEM_REQis

SG–2051 9.3 109

UNICOS® Tape Subsystem User’s Guide

a pseudo device used to issue requests to a device without users having to have
the device assigned to them. If the request is issued to the pseudo device, the
device name must be specified in the request. (TPDDEM_REQis defined in the
tapedef.h file.)

The argument of the ioctl (2) call must be a pointer to structure ctl_extsts .
This structure is defined in Figure 52:

struct ctl_extsts {
int device;

char *rep_addr;

int len_rep_addr;

char *attributes;

int len_attributes;
char *oper_mode;

int len_oper_mode;

char *report_pos;

int len_report_pos;

}

Figure 52. ctl_extsts structure

Set rep_addr , attributes , oper_mode , and report_pos to pointers to
memory in which the response packets will be copied to receive responses to all
of the commands. Set to NULL the memory pointers of the response packets
that are not to receive only selected portions of the extended device status. Set
the amount of memory allocated for the command in the len_rep_addr ,
len_attributes , len_oper_mode , or len_report_pos for each command
requested. If the request is made to TPDDEM_REQ, device must be set to the
device name. The length of each response packet is returned in the variables
len_rep_addr , len_attributes , len_oper_mode , and len_report_pos .

The following restrictions apply to the ER90 TPC_EXTSTSrequest:

• The format or asynchronous I/O requests cannot be outstanding.

• Only the super user can issue this request through a pseudo device.

• The device must be configured up.

110 SG–2051 9.3

Writing C Applications Using Tapes [5]

Note: If the operating mode response is requested and a cassette is not
loaded, the cassette is blank, or the logical position has not been
established, an operating mode response will not be returned.

Issuing requests to a device through the pseudo device suspends the
current device activity until the extended status has been obtained.

Figure 53 shows how to obtain the extended status of an ER90 device by
issuing a TPC_EXTSTSrequest using the tape path:

SG–2051 9.3 111

UNICOS® Tape Subsystem User’s Guide

/* Get the extended device status.

*/
#include <stdio.h>

#include <sys/types.h>

#include <sys/fcntl.h>

#include <errno.h>

#include <sys/sysmacros.h>

#include <sys/tpdctl.h>
#include <sys/epack.h>

#include <sys/epacki.h>

main()

{

struct ctl_extsts ctl;
char rep_addr [MAX_IPI3_RESP_B];

char attributes [MAX_IPI3_RESP_B];

char oper_mode [MAX_IPI3_RESP_B];

char report_pos [MAX_IPI3_RESP_B];

extern int errno;
int fd;

int c;

/*

* Open the tape device path

*/

fd = open("tape_path", O_RDWR);
if (fd < 0) {

perror("Unable to open the device path");

exit(errno);

}

ctl.rep_addr = rep_addr;
ctl.len_rep_addr = MAX_IPI3_RESP_B;

ctl.attributes = attributes;

ctl.len_attributes = MAX_IPI3_RESP_B;

ctl.oper_mode = oper_mode;

ctl.len_oper_mode = MAX_IPI3_RESP_B;
ctl.report_pos = report_pos;

ctl.len_report_pos = MAX_IPI3_RESP_B;

/*

112 SG–2051 9.3

Writing C Applications Using Tapes [5]

* Issue the request for the extended device status.

*/
c = ioctl(fd, TPC_EXTSTS, &ctl);

if (c < 0) {

perror("ioctl TPC_EXTSTS");

exit(errno);

}

}

Figure 53. Using the ER90 TPC_EXTSTSrequest (tape path)

Figure 54 shows how to obtain the extended status on an ER90 device by
issuing a TPC_EXTSTSrequest using a pseudo device:

SG–2051 9.3 113

UNICOS® Tape Subsystem User’s Guide

/*

* Get the current position and remaining partition capacity of the
* mounted volume.

*/

#include <stdio.h>

#include <sys/types.h>

#include <sys/fcntl.h>

#include <errno.h>
#include <sys/sysmacros.h>

#include <sys/tpdctl.h>

#include <sys/epack.h>

#include <sys/epacki.h>

main()
{

struct ctl_extsts ctl;

char report_pos[MAX_IPI3_RESP_B];

extern int errno;

int fd;
int c;

/*

* Open the pseudo device

*/

ctl.device = 0;

strncpy((char *)&ctl.device, "devname",strlen("devname"));
fd = open(TPDDEM_REQ, O_RDWR);

if (fd < 0) {

perror("Unable to open the device path");

exit(errno);

}
bzero((char *)&ctl, sizeof(struct ctl_abspos));

ctl.len_report_pos = MAX_IPI3_RESP_B;

ctl.report_pos = report_pos;

/*

* Issue the request for the extended device status.
*/

c = ioctl(fd, TPC_EXTSTS, &ctl);

if (c < 0) {

perror("ioctl TPC_EXTSTS");

exit(errno);

}
}

Figure 54. Using the ER90 TPC_EXTSTSrequest (pseudo device)

114 SG–2051 9.3

Writing C Applications Using Tapes [5]

5.3.3.2 ER90 read of the buffer log using TPC_RDLOG

The ER90 error log can be obtained by issuing an ioctl (2) system call, with a
request code of TPC_RDLOG, to either the tape path or to file TPDDEM_REQ. The
tape path is the path specified on the tpmnt (1) command. TPDDEM_REQis a
pseudo device used to issue requests to a device without the users having to
have the device assigned to them. If the request is issued to the pseudo device,
the device name must be specified in the request. (TPDDEM_REQis defined in
the tapedef.h file.)

The argument of the ioctl (2) call must be a pointer to structure ctl_rdlog .
This structure is defined in Figure 55:

struct ctl_rdlog {

int device;

char *device_log;

int length;
}

Figure 55. ctl_rdlog structure

The device_log field must be set to a pointer to the memory in which the
ER90 error log will be copied. length must be set to the amount of memory
allocated for the device log. If the request is made to TPDDEM_REQ, device
must be set to the device name. The length of the device log will be returned in
length .

The following restrictions apply to the TPC_RDLOGrequest:

• The format or asynchronous I/O requests cannot be outstanding.

• Only the super user can issue this request through a pseudo device.

• The device must be configured up.

Note: Issuing requests to a device through the pseudo device suspends
the current device activity until the extended status has been obtained.

Figure 56 shows how to read the ER90 error log by issuing a TPC_RDLOG
request:

SG–2051 9.3 115

UNICOS® Tape Subsystem User’s Guide

#include <stdio.h>

#include <sys/types.h>
#include <sys/fcntl.h>

#include <sys/sysmacros.h>

#include <sys/tpdctl.h>

#include <sys/epack.h>

#include <sys/epacki.h>

#include <sys/er90_cmdpkt.h>

main()

{

struct ctl_rdlog ctl;

char device_log[MAX_IPI3_RESP_B];
int fd;

int c;

/*

* Open the tape device path

*/
fd = open("tape_path", O_RDWR);

/*

* or ctl.device =0;

* strncpy((char *)&ctl.device, "devname", strlen("devname"));

* fd = open(TPDDEM_REQ, O_RDWR);

*/
if (fd < 0) {

perror("Unable to open the device path");

exit(1);

}

/*
* Issue the request for the ER90 Error Log.

*/

ctl.length = MAX_IPI3_RESP_B;

ctl.device_log = device_log;

c = ioctl(fd, TPC_RDLOG, &ctl);
if (c < 0) {

perror("ioctl TPC_RDLOG");

exit(1);

}

}

Figure 56. Using the ER90 TPC_RDLOGrequest

116 SG–2051 9.3

Writing C Applications Using Tapes [5]

5.3.3.3 IBM compatible read of the buffer log using TPC_RDLOG

Note: The TPC_RDLOGrequest returns zeros on SCSI devices. It does not
return an error code.

The IBM compatible buffer log can be obtained by issuing an ioctl (2) system
call using the TPC_RDLOGrequest, as shown in Figure 57:

int buflog[8] = { 0, 0, 0, 0, 0, 0, 0, 0 };

int i;

if (ioctl(fd, TPC_RDLOG, buflog) < 0) {

perror("Error reading buf log");

exit(1);

}

for (i = 0 ; i < 8 ; i++) {
printf("0x%16.16x\n", buflog[i]);

}

Figure 57. Using the TPC_RDLOGrequest (IBM compatible)

The TPC_RDLOGrequest may be made after any read, write, or position request.
It may be used to calculate compression ratio on the tape.

It is necessary to examine the sense information returned by the read buffer log
request to determine compression ratios and distance from the end of the tape at
any point while using the tape. The IBM Hardware Reference Manual, publication
GA32-0127, provides detailed information on sense bytes and their formats.

Format 30 of sense bytes 32 through 43, provide counts for bytes processed by
the channel and device. Channel counts reflect the number of bytes requested
for the I/O operation, while the device counts reflect the number of bytes
actually read or written by the device. The difference between the counts is the
compression ratio achieved for the I/O operation.

Format 30 of sense byte 31 gives information about the length of the tape. It is
possible to use this information in combination with the compression ratio
information to determine approximately how much tape is used or remaining.

SG–2051 9.3 117

UNICOS® Tape Subsystem User’s Guide

5.4 Tape positioning requests

C programmers use the ffpos (3) and ffseek (3) routines to implement tape
positioning. For more information on positioning, see Section 5.1, page 83.
Fortran programmers can position by using blocks and volumes as shown on
Section 4.1.3, page 46 and Section 4.1.4, page 48.

5.5 End-of-volume requests

For information about user EOV processing from a Fortran program, see Section
4.1.7, page 66. Usually, volume switching is handled by the tape subsystem and
is transparent to you. However, when user EOV processing is requested, you
gain control at the end-of-tape and your program may perform special
processing.

5.6 Tape control requests

You can use ioctl (2) system calls to control some characteristics of tapes. For
ER90 devices, you can control the data block size and synchronize your
program with the tape.

5.6.1 ER90 set data block size request

The data block size of a file section can be set by issuing an ioctl (2) system
call TPC_SDBSZrequest to a tape path. The tape path is the path specified on
the tpmnt (1) command.

The argument of the ioctl (2) call is the data block size. The data block size
must be in the range of 80 to 1,199,832 byes, and must be a multiple of eight.

The following restrictions apply to the TPC_SDBSZrequest:

• The tape mount, format, or asynchronous request cannot be outstanding.

• The tape must be positioned at the beginning of a file section.

• The data block size cannot exceed the maximum block size specified by the
-b option of the tpmnt (1) command.

Figure 58 shows how to set the data block size on an ER90 device:

118 SG–2051 9.3

Writing C Applications Using Tapes [5]

#include <sys/types.h>

#include <sys/fcntl.h>
#include <errno.h>

#include <sys/tpdctl.h>

main()

{

extern int errno;
int fd;

int c;

/*

* Open the tape device path

*/
fd = open("tape_path", O_RDWR);

if (fd < 0) {

perror("Unable to open the tape path");

exit(errno);

}
/*

* Issue the request to set the DataBlock size.

*/

c = ioctl(fd, TPC_SDBSZ, 32768);

if (c < 0) {

perror("TPC_SDBSZ error");
exit(errno);

}

}

Figure 58. Setting data block size

5.6.2 ER90 synchronize request

Synchronizing your program with the tape is accomplished by issuing an
ioctl (2) system call TPC_DMN_REQrequest to a tape path. The tape path is the
path specified on the tpmnt (1) command.

The argument of the ioctl (2) call must be a pointer to structure dmn_comm.
This structure is defined in Figure 59:

SG–2051 9.3 119

UNICOS® Tape Subsystem User’s Guide

struct dmn_comm {

int POS_REQ;
int POS_ABSADDR;

int POS_COUNT;

int POS_REP;

}

Figure 59. dmn_commstructure (synchronizing request)

There cannot be any outstanding asynchronous I/O requests for the
TPC_DMN_REQsynchronize request to complete.

Note: If the previous request was a write request, data in the driver’s buffer
will be flushed to the tape. A synchronize request is then issued to the
device, flushing the contents of the device’s buffer to the tape. If the data in
the system buffer is not a multiple of the data block size, a short block is
output to the tape.

If the previous request was a read request and data is in the driver’s buffer,
the driver will backspace over the read ahead blocks. If there is a partial
block in the buffer, the tape position is left after this block but the remainder
of the block is deleted from the buffer.

Figure 60 shows how to synchronize your program with a tape on an ER90
device:

120 SG–2051 9.3

Writing C Applications Using Tapes [5]

#include <sys/types.h>

#include <sys/fcntl.h>
#include <errno.h>

#include <tapereq>

#include <sys/tpdctl.h>

main()

{
struct dmn_comm pos;

extern int errno;

int fd;

int c;

/*
* Open the tape device path

*/

fd = open("tape_path", O_RDWR);

if (fd < 0) {

perror("Unable to open the tape path");
exit(errno);

}

pos.POS_REQ = TR_SYNC;

/*

* Issue the sync request

*/
c = ioctl(fd, TPC_DMN_REQ, &pos);

if (c < 0) {

perror("TPC_DMN_REQ error");

exit(errno);

}
/*

* Get the reply

*/

c = ioctl(fd, TPC_DMN_REP, &pos);

if (c < 0) {
perror("TPC_DMN_REP failed");

exit(errno);

SG–2051 9.3 121

UNICOS® Tape Subsystem User’s Guide

}

if (pos.POS_REP) {
printf("SYNC error = %d", pos.POS_REP);

exit(1);

}

}

Figure 60. Synchronizing your program with a tape

122 SG–2051 9.3

Using the Character-Special Tape
Interface [6]

The character-special tape interface provides unstructured access to the tape
hardware, similar to the traditional UNIX method of accessing tape devices.
This interface is useful in performing specific tasks:

• System administrators can use the interface for routine tape manipulations
such as copying. They can use standard UNIX commands and ioctl (2)
requests to manage their tapes. The first section briefly describes this usage.

• Programmers can use the interface to develop file management applications.
Section Section 6.2, page 124, on writing C applications, describes opening
and closing files, managing I/O, and using the ioctl (2) requests.

6.1 Using character-special tapes

Character-special tape files are created by executing the tpdaemon (8)
command. This command creates a file for each device defined in the tape
configuration file (/etc/config/text_tapeconfig). These files reside in the
/dev/tape directory.

Before terminating, the tpdaemon (8) command creates a detached process that
is used to assist the tape driver. If tape devices will be accessed using only the
character-special tape interface, this process may be terminated using the
tpdstop (8) command. The tape daemon may be restarted as long as all
character-special device files are closed.

The character-special tape interface and the tape daemon-assisted interface may
operate concurrently. Devices for both interfaces are defined in the same
configuration file and are defined identically; that is, the interface is not
identified in the configuration file.

The system identifies the type of interface being used when the device is
opened. The character-special tape interface is used if a device file residing in
the /dev/tape directory is opened. Once opened, the device cannot be
accessed by the tape daemon until it is closed.

If a device will be accessed by using the tape daemon-assisted interface, the
device must be configured up by using the tpconfig (8) command. A device is
not accessible to the character-special tape interface while configured up.

SG–2051 9.3 123

UNICOS® Tape Subsystem User’s Guide

6.2 Writing C applications

This section provides information programmers need to write C applications
using the character-special tape interface:

• Opening files

• Closing files

• Using I/O

• Using ioctl (2) requests

6.2.1 Opening files

A tape device file to be opened must reside in the /dev/tape directory, but it
cannot be a diagnostic device file. The device file cannot be available to the
tape daemon (that is, the device must be configured down or the tape daemon
must be down) and cannot be open already.

Open processing assigns the device to the host from which the open request
was issued. Opening an ER90 device file resets the device attributes to their
default values, excluding the burst size, which is set to a value appropriate for
the physical interface used. The first open of an ER90 device file, following a
tape daemon start-up, also clears the device log and executes a diagnostic check.

6.2.2 Closing files

If data is being output before a tape device file is closed, the tape is terminated
with two tape marks, and the tape is left-positioned between the tape marks.
The tape marks are not output if the last user request is a tape mark write
request.

If a rewind operation is requested with the MTIOCATTRioctl (2) system call,
the tape is rewound. If an unload operation is requested with the MTIOCATTR
ioctl (2) system call, the tape is unloaded.

6.2.3 Using I/O

The character-special tape interface supports only unbuffered, transparent input
and output (I/O).

124 SG–2051 9.3

Using the Character-Special Tape Interface [6]

ER90 devices support both byte stream and blocked file types. By default, byte
stream files are created. The size of the I/O request is limited, by the device, to
CE_MAX_BLOCKS.

ER90 blocked I/O can be performed by modifying the file type through the
MTIOCATTR ioctl (2) system call. Blocked read requests transfer one block;
write requests can transfer multiple blocks. For optimal performance, output
requests should be a multiple of the data block size.

Although the block multiplexer I/O requests can be any size and ER90 requests
are limited only by the device maximum, data is transferred to and from the IOP
in words. The user’s buffer must be a multiple of the Cray word size (64 bits).

If the I/O completes successfully, the number of bytes read or written is
returned. If a tape mark is read, a byte count of 0 is returned and the tape is
left-positioned after the tape mark.

If an error occurs on the I/O request, -1 is returned and errno is set to indicate
the error. The number of bytes that did not get read or written can be obtained
by using the MTIOCGETioctl (2) system call.

If the I/O request is unsuccessful, errno is set to one of the following:

Error code Description

EFAULT The buffer argument points outside the allocated
address space.

EINTR The system call was interrupted.

ENOSPC The end-of-tape (EOT) was detected.

ETPDACKERR An error has not been acknowledged.

ETPDBUFZ The byte count is less than the data block size.

ETPD_MAX_IOREQT The byte count exceeds the device limit.

If an error occurs on an asynchronous I/O request, all queued I/O requests are
terminated with ETPDACKERR. All subsequent I/O requests are also terminated
with ETPDACKERRuntil the error is acknowledged with the MTIOCACKERR
ioctl (2) system call.

6.2.4 Using ioctl (2) requests

The character-special tape interface supports four ioctl (2) requests:

SG–2051 9.3 125

UNICOS® Tape Subsystem User’s Guide

Request Description

MTIOCACKERR Acknowledges an asynchronous I/O error

MTIOCATTR Modifies the tape attributes

MTIOCGET Returns the tape status

MTIOCTOP Executes a tape operation

All ioctl requests require that there be no outstanding asynchronous I/O.

6.2.4.1 MTIOCACKERRcall

The MTIOCACKERRioctl (2) system call acknowledges an error condition. The
argument to ioctl is NULL.

After an error condition is detected, all queued I/O requests and I/O requests
received before an acknowledgment are terminated with ETPDACKERR. After
MTIOCACKERRis received, I/O requests are processed normally.

6.2.4.2 MTIOCATTRcall

The MTIOCATTR ioctl (2) system call modifies the attributes of the tape device
file. The argument to this call is a pointer to the mtattr structure:

struct mtattr {
uint mt_attribute;

uint mt_blksiz;

}

mt_attribute is a flag constructed from the following list. The flags specify
the attributes to modify. When the device is closed, the attributes are reset to
the default values.

Flag Description

MT_REPORT Reports the current attribute settings.

MT_BYTESTREAM Modifies the file type to byte stream. This flag is
only valid for ER90 device files. It is a default.

MT_BLOCKED Modifies the file type to blocked. The data block
size is specified in mt_blksiz . This flag is only
valid for ER90 device files.

MT_IGNORE_EOT Ignores the EOT status.

MT_OBSERVE_EOT Returns the EOT status. This is a default.

126 SG–2051 9.3

Using the Character-Special Tape Interface [6]

MT_CLOSE_UNLOAD Unloads the tape when the device file is closed.

MT_NO_CLOSE_UNLOAD Does not unload the tape when the device file is
closed. This is a default.

MT_CLOSE_REWIND Rewinds the tape when the device file is closed.

MT_NO_CLOSE_REWIND Does not rewind the tape when the device file is
closed. This is a default.

MT_READ_RAW Transfers all data regardless of data errors. This
flag is only valid for ER90 device files.

MT_READ_NORMAL Transfers only valid data. This flag is only valid
for ER90 device files. It is a default.

MT_COMPRESSION Enables device data compression.

MT_NO_COMPRESSION Disables device data compression.

If a blocked file is requested with the MT_BLOCKEDflag, mt_blksiz specifies
the size of the data blocks. For optimal performance, all blocks within the file
section should be of size mt_blksiz . mt_blksiz must be a multiple of 8
bytes and must be in the range 80 to 1,119,832 bytes.

Flags MT_BLOCKED, MT_BYTESTREAM, MT_READ_RAW, and MT_READ_NORMAL
are only valid for ER90 device files.

Flags MT_COMPRESSIONand MT_NO_COMPRESSIONare only valid for 3480 ,
3490 , and 3490E devices. If neither attribute MT_COMPRESSIONor
MT_NO_COMPRESSIONis specified, the devices default to the device default
compaction mode. Data compression will also return to the device default after
a tape unload.

6.2.4.3 MTIOCGETcall

The MTIOCGETioctl (2)) system call returns the device status. The argument to
this call is a pointer to the mtget structure:

struct mtget{

short mt_type;

int mt_dsreg;

caddr_t mt_erreg;
int mt_resid;

int mt_fileno;

int mt_blkno;

short mt_flags;

}

SG–2051 9.3 127

UNICOS® Tape Subsystem User’s Guide

mt_type specifies one of the following tape device types:

Device type Description

MT_3803 IBM 3803 type tape device

MT_3480 IBM 3480 cartridge device

MT_3490 IBM 3490 cartridge device

MT_3490E IBM 3490E cartridge device

MT_ER90 ER90 tape device

mt_dsreg contains the device status. It is one of the following flags:

Flag Description

MT_ONL The device is online.

MT_RDY The device is ready.

MT_WPT The cassette loaded in the device is write
protected.

MT_EOT An end-of-tape (EOT) status was received on last
device request (BMX); the tape is positioned past
the early-end-of-media warning (EEW). (This flag
is only for ER90 devices.)

mt_resid contains a residual count. If the last system call was an I/O request,
it is the number of bytes that did not get read or written. If the last system call
was an ioctl (2) system call performing a tape operation, it represents the
number of tape operations that did not complete. If a request is interrupted, the
accuracy of the residual count cannot be guaranteed.

mt_erreg is a pointer to a structure describing the response status of the last
user request issued to the device. For block multiplexer devices, it is a pointer
to the bmxerec structure, defined in bmxerec.h . For ER90 devices, it is a
pointer to the er90_erecord structure, defined in the er90_erec.h file. If
mt_erreg is NULL, the status is not returned.

mt_flags specifies one or more of the following response flags:

Flag Description

MT_VALID_FILENO Specifies that mt_fileno is valid

128 SG–2051 9.3

Using the Character-Special Tape Interface [6]

MT_VALID_BLKNO Specifies that mt_blkno is valid

If mt_flags is set to MT_VALID_FILENO, mt_fileno specifies the current file
number. If mt_flags is set to MT_VALID_BLKNO, mt_blkno specifies the
current block number. These fields are never valid for block multiplexer device
files. They are valid for ER90 device files only if the logical position has been
established.

6.2.4.4 MTIOCTOPcall

The MTIOCTOPioctl (2) system call performs a tape operation. The argument
to the MTIOCTOPioctl (2) system call is a pointer to the mtop structure:

struct mtop {

short mt_op;

int mt_count;

caddr_t mt_arg;

int mt_size;
}

mt_op specifies the type of tape operation to execute. Valid mt_op codes are:

SG–2051 9.3 129

UNICOS® Tape Subsystem User’s Guide

Operation code Description

MTWEOF Writes a tape mark

MTFSF Spaces file forward

MTBSF Spaces file backward

MTFSR Spaces record forward

MTBSR Spaces record backward

MTREW Rewinds tape

MTOFFL Unloads the tape volume

MTSYNC Synchronizes the user and the tape device

MTGABS Returns the absolute track address

MTPABS Positions to an absolute track address

MTGPOS Returns the current position

MTSEEK Positions to a specific tape area

MTEXTS Returns the extended status

MTFMT Formats a tape volume

MTGFMT Reports the cassette and volume format

MTRDLOG Reads the device log

MTCLRLOG Clears the device log

MTVERIFY Verifies recorded tape data

MTTRACE Verifies recorded tape data

MTMSG Displays a message on a tape device

mt_count specifies the number of tape operations to execute. This variable is
only valid for the MTWEOF, MTFSF, MTBSF, MTFSR, and MTBSRoperations. For
all other tape operations, the number of tape operations to execute defaults to 1.

mt_arg is a pointer to a buffer that provides information needed to complete
the tape operation, or it is a pointer to a buffer into which the response is
returned.

mt_size specifies the size of the buffer available for the response. The size of a
tape response is returned in mt_size .

If the ioctl request does not complete successfully, the number of tape
operations that did not complete can be obtained by using MTIOCGET.

130 SG–2051 9.3

Using the Character-Special Tape Interface [6]

6.2.4.4.1 MTWEOF

MTWEOFrecords tape marks at the current position. mt_count specifies the
number of tape marks to record.

6.2.4.4.2 MTFSFand MTBSF

MTFSFpositions forward by tape marks. The tape position is left on the EOT
side of the last tape mark positioned over. MTBSFpositions backward by tape
marks. The tape position is left on the BOT side of the last tape mark positioned
over. The number of tape marks to position is specified in mt_count .

6.2.4.4.3 MTFSRand MTBSR

MTFSRpositions forward by tape blocks or bytes. The tape position is left on
the EOT side of the last block or byte positioned over. MTBSRpositions
backward by tape blocks or bytes. The tape position is left on the BOT side of
the last tape block or byte positioned over. The number of blocks or bytes to
position is specified in mt_count .

6.2.4.4.4 MTREW

For block multiplexer devices, MTREWrewinds the tape to the beginning-of-tape
(BOT). For ER90 devices, MTREWpositions the tape to the beginning of the
current partition.

6.2.4.4.5 MTOFFL

MTOFFLejects the tape volume from the tape device. If this request is issued to
a 3480, 3490, or 3490E device, the device log is automatically cleared.

6.2.4.4.6 MTSYNC

MTSYNCsynchronizes the user with the tape device. All data in the device
buffer is flushed to tape.

6.2.4.4.7 MTRDLOGand MTCLRLOG

MTRDLOGreads the device log. mt_arg is a pointer to the buffer into which the
device log is read or copied. mt_size specifies the size of the buffer. The
buffer size must be at least 64 bytes for requests issued to block multiplexer

SG–2051 9.3 131

UNICOS® Tape Subsystem User’s Guide

device files and 808 bytes for requests to ER90 device files. The size of the ER90
device log is returned in mt_size . This operation leaves the ER90 device log
intact; it clears the block multiplexer device log.

MTCLRLOGclears the device log. This operation is only valid for ER90 device
files. The MTRDLOGrequest must be used to clear a block multiplexer device log.

6.2.4.4.8 MTGABSand MTPABS

MTGABSreturns the absolute track address. MTPABSpositions to an absolute
track address.

For block multiplexer device files, MTGABSreturns the absolute address in the
integer pointed to by mt_arg . MTPABSpositions to the absolute address in the
integer pointed to by mt_arg . mt_size must be at least 8 bytes for MTGABS
requests and 4 bytes for position requests.

The absolute address is comprised of two 4-byte block identifiers as shown in
Figure 61.

a10148

63 56 52 51 32

Physical
reference
number

Logical block position

31 24 20 19 0

Physical
reference
number

Logical block position

Figure 61. Block identifiers

Bits 32 through 63 identify the next block to be transferred between the host
and the device. Bits 0 through 31 identify the next block to be transferred
between the control unit buffer and the tape. The difference between the logical
block position portion (bits 0 through 19 and 32 through 51) of the block
identifiers is the amount of data in the device buffer. Only the first block ID
(bits 32 through 63) is used on the MTPABSrequest.

For ER90 devices, MTGABSreturns the absolute track address in the structure
pointed to by mt_arg . MTPABSpositions to the address in the structure
pointed to by mt_arg . The structure is defined as follows:

struct tpc_abspos {

uint tpc_valid_logdb : 1,
tpc_valid_absaddr : 1,

132 SG–2051 9.3

Using the Character-Special Tape Interface [6]

tpc_valid_partition : 1,

tpc_valid_filesec : 1,
tpc_valid_timecode : 1,

tpc_unused : 11,

tpc_logical_datablock : 48;

uint tpc_absolute_address : 32,

tpc_file_section : 32;

uint tpc_partition_number : 16,
tpc_time_code : 48;

}

tpc_valid_logdb is set to 1 if the tpc_logical_datablock variable is
valid. tpc_valid_absaddr is set to 1 if the tpc_absolute_address
variable is valid. tpc_valid_partition is set to 1 if the
tpc_partition_number variable is valid. tpc_valid_filesec is set to 1 if
the tpc_file_section variable is valid. tpc_valid_timecode is set to 1 if
the tpc_time_code variable is valid.

tpc_logical_datablock specifies the data block number of the next block to
be transferred between the host and the device. The block numbering begins
with 0 at the beginning of a file section.

Absolute addresses are recorded on the longitudinal track of a tape volume
when the volume is formatted. Each address corresponds to a physical block.
tpc_absolute_address is the address identifying the physical block of the
next data block to be transferred between the device buffer and the tape.

A file on an ER90 volume is a sequence of blocks terminated by a file mark.
tpc_file_section specifies the file section number of the current block. The
file section numbering begins with 1 at the beginning of a partition.

Partitions are logical volumes created on the tape when the tape is formatted.
tpc_partition_number specifies the current partition number. If the tape
has one partition spanning the length of the tape, the partition number will be
0. If the tape is multipartitioned, the partition numbers are offset by 0x100 and
range from 0x100 to 0x4FF.

tpc_time_code specifies the time code. This field does not apply to the files
created with the character-special tape interface, because this interface does not
output data with time codes.

SG–2051 9.3 133

UNICOS® Tape Subsystem User’s Guide

6.2.4.4.9 MTGPOS

MTGPOSreturns the current tape position for ER90 device files. The current
position is returned in the structure pointed to by mt_arg . The structure is
defined as follows:

struct tpc_er90_pos {

uint tpc_valid_logdb : 1,

tpc_valid_physblock : 1,

tpc_valid_absaddr : 1,
tpc_valid_index : 1,

tpc_valid_partition : 1,

tpc_valid_filesec : 1,

tpc_valid_phydb : 1,

tpc_valid_timecode : 1,
tpc_unused_0 : 8,

tpc_logical_datablock : 48;

uint tpc_physical_block : 32,

tpc_absolute_address : 32;

uint tpc_index : 16,

tpc_partition_number : 16,
tpc_file_section : 32;

uint tpc_physical_datablock : 48,

tpc_time_code_a : 16;

uint tpc_time_code_b : 32,

tpc_unused_1 : 32;
uint tpc_pos_bom : 1,

tpc_pos_emw : 1,

tpc_pos_rsvd_0 : 1,

tpc_pos_eew : 1,

tpc_pos_rsvd_1 : 4,

tpc_pos_bot : 1,
tpc_pos_eor : 1,

tpc_pos_eot : 1,

tpc_pos_sysz : 1,

tpc_pos_eom : 1,

tpc_pos_rsvd_2 : 3,
tpc_sysz_number : 8,

tpc_reserved_0 : 6,

tpc_valid_rem_part : 1,

tpc_valid_rem_dbframes : 1,

tpc_rem_partition : 32;
uint tpc_rem_doubleframes : 32,

tpc_reserved_1 : 32;

134 SG–2051 9.3

Using the Character-Special Tape Interface [6]

tpc_valid_logdb is set to 1 if the tpc_logical_datablock variable is
valid. tpc_valid_physblock is set to 1 if the tpc_physblock variable is
valid. tpc_valid_absaddr is set to 1 if the tpc_absolute_address
variable is valid. tpc_valid_index is set to 1 if the tpc_index variable is
valid. tpc_valid_partition is set to 1 if the tpc_partition_number
variable is valid. tpc_valid_filesec is set to 1 if the tpc_file_section
variable is valid. tpc_valid_phydb is set to 1 if the
tpc_physical_datablock variable is valid. tpc_valid_timecode is set to
1 if the tpc_time_code_a and tpc_time_code_b are valid.

tpc_logical_datablock specifies the data block number of the next block to
be transferred between the host and the device. The block numbering begins
with 0 at the beginning of a file section.

A physical block is the smallest unit in which data can be recorded on tape.
tpc_physical_block specifies the block number of the next physical block to
be transferred from the ER90 device buffer to tape.

tpc_physical_datablock specifies the data block number of the next block
to be transferred between the device buffer and the tape.

Absolute addresses are recorded on the longitudinal track of a tape volume
when the volume is formatted. Each address corresponds to a physical block.
tpc_absolute_address is the address identifying the physical block in
which the current physical data block is located.

tpc_index specifies the index. ER90 devices do not support an index;
tpc_index will not, therefore, contain a valid value for these devices.

Partitions are logical volumes created on the tape when the tape is formatted.
tpc_partition_number specifies the partition number of the current
position. If the tape has one partition spanning the length of the tape, the
partition number is 0. If the tape is multipartitioned, the partition numbers are
offset by 0x100 and range from 0x100 to 0x4FF.

A file section on an ER90 volume is a sequence of blocks terminated by a file
mark. tpc_file_section specifies the file section number of the current
block. The file section numbering begins with 1 at the beginning of a partition.

tpc_time_code_a and tpc_time_code_b specify the time code. The
character-special tape interface does not support time-stamping. These fields do
not contain valid values if they are created with the character-special tape
interface.

A beginning-of-media (BOM) zone is created at the beginning of each partition
when the tape is formatted. It consists of special physical blocks identifying the

SG–2051 9.3 135

UNICOS® Tape Subsystem User’s Guide

logical beginning of a partition. tpc_pos_bom is set to 1 if the logical position
is at the BOM. After a position to the BOM, a ER90 device is ready to process
the first block of the first file section of the current partition.

The end-of-media warning (EMW) is the tenth physical block from the end of
the partition. It provides a warning that the tape is positioned near the end of
the partition. tpc_pos_emw is set to 1, for write operations, if the tape is
positioned at or beyond the EMW of the current partition. It is set for read
operations if the logical position is at or beyond the EMW of the current
partition.

The early-end-of-media warning (EEW) is a tape location defined by the host. It
provides a warning when the end of the partition approaches. tpc_pos_eew is
set to 1, for write operations, if the tape is positioned at or beyond the EEW of
the current partition. It is set for read operations if the logical position is at or
beyond the EEW of the current partition.

The beginning-of-tape (BOT) is an area, located at the physical beginning of
tape, used for tape loads and unloads. tpc_pos_bot is set to 1 if the tape is
positioned at the BOT. There is no address associated with this area. The logical
data block number, physical data block number, file section number, partition
number, and absolute address fields are not valid when positioned at the BOT.

The end-of-recording (EOR) is recorded by the ER90 device after the last user
data of the partition. tpc_pos_eor is set to 1 if the tape is positioned at the
EOR.

The end-of-tape (EOT) is an area, located at the physical end of tape, used for
tape loads and unloads. tpc_pos_eot is set to 1 if the tape is positioned at the
EOT. There is no address associated with this area. The logical datablock
number, physical datablock number, file section number, partition number, and
absolute address fields are not valid when positioned at the EOT.

System zones are created on a tape volume when the volume is formatted. They
provide an area of tape, other than the BOT and EOT zones, for loading and
unloading a cassette. tpc_pos_sysz is set to 1 if the tape is positioned within
a system zone. The system zone number is specified in tpc_sysz_number .

The end-of-media (EOM) is the end of the recording for a partition.
tpc_pos_eom is set to 1 if the tape is positioned at the EOM of the current
partition.

tpc_valid_rem_part is set to 1 if the tpc_rem_partition variable is
valid. tpc_rem_partition specifies, in millions of bytes, the amount of data
that can be recorded between the current position and the EOM.

136 SG–2051 9.3

Using the Character-Special Tape Interface [6]

tpc_valid_rem_doubleframes is set to 1 if the tpc_rem_doubleframes
variable is valid. tpc_rem_doubleframes specifies the approximate number
of double-frames (physical blocks) between the current position and the EOT.

6.2.4.4.10 MTSEEK

MTSEEKpositions to a tape area specified in the tpc_er90_seek structure.
This request is only valid for ER90 device files. mt_arg is a pointer to this
structure. It is defined as follows:

struct tpc_er90_seek {
int tpc_pos_flag;

int tpc_sysz_number;

}

tpc_pos_flag is a flag specifying the tape entity or area to position to. It is
constructed from one of the following flags:

Flag Description

TPC_POS_EMW Positions to the EMW of the current partition

TPC_POS_BOM Positions to the BOM of the current position

TPC_LOAD Positions to a volume format information (VFI)
zone

TPC_POS_BOT Positions to the BOT

TPC_INIT_POS Positions the tape to the BOM and initializes the
volume

TPC_POS_SYSZONE Positions to the system zone specified in
tpc_sysz_number

TPC_POS_EOT Positions the tape to the EOT

TPC_POS_EOR Positions the tape to the EOR of the current
partition

TPC_PARK Positions the tape to the nearest system zone, in
the BOT direction, and unthreads the tape

The TPC_LOADrequest involves searching for and then reading the volume
format information (VFI). This information is recorded when the cassette is
formatted and consists of the format ID plus system zone and partition
information. The operation is performed automatically when a cassette is
loaded and should not have to be requested.

SG–2051 9.3 137

UNICOS® Tape Subsystem User’s Guide

The TPC_INIT_POS request positions to BOM and then initializes the tape so
that the tape is formatted during write operations. The tape is formatted with a
NULL format ID, system zones, and one partition spanning the length of the
tape. This request cannot be used on a cassette with an existing format that has
a nonzero format ID.

The TPC_PARKrequest is used to minimize head wear. It positions to a system
zone and then unthreads the tape from the helical scanner. Tape processing can
resume at the current position without losing any buffered data and without
issuing any additional requests.

For information on positioning with MTGPOS, see section Section 6.2.4.4.9, page
134.

6.2.4.4.11 MTEXTS

MTEXTSreturns the extended status of a device for ER90 and block multiplexer
device files.

For ER90 device files, it consists of the responses to commands: Report
Addressee Status, Attribute, Operating Mode, and Report Position.

The Report Addressee Status Response describes the state of the ER90 device
(ready/not ready or on-line/off-line), a description of the mounted volume, and
the ER90 detailed status. The Attribute Response returns the operational
characteristics of the ER90, for example, the data block size, burst size,
early-end-of-media warning (EEW) location, and so on. The Operating Mode
Response describes those attributes that have been defined only for as long as
the tape is positioned within the current partition. The Report Position
Response contains the current absolute track address, the remaining partition
capacity, and other tape location information.

mt_arg is a pointer to the ctl_extsts structure. This structure is defined as
follows:

struct ctl_extsts {

int device;

int len_rep_addr;
char *rep_addr;

int len_attributes;

char *attributes;

int len_oper_mode;

char *oper_mode;
int len_report_pos;

char *report_pos;

138 SG–2051 9.3

Using the Character-Special Tape Interface [6]

}

To receive responses to all commands, rep_addr , attributes , oper_mode ,
and report_pos must be set to pointers to the memory into which the
response packets are copied. To receive only select portions of the extended
device status, the memory pointers of the response packets that are not desired
must be set to NULL. For each command requested, the amount of memory
allocated for the command must be set in the len_rep_addr ,
len_attributes , len_oper_mode , or len_report_pos . The length of each
response packet is returned in these variables. Field device is not used for the
character-special tape interface.

If the operating mode response is requested and a cassette is not loaded, the
cassette is blank, or the logical position has not been established, an operating
mode response is not returned.

MTEXTSreturns the sense information of a device. This information contains
the device status, tape position, recoverable error counters, and other
information. mt_arg is a pointer to the buffer into which sense information is
read. mt_size specifies the size of the buffer receiving the sense information.
The buffer size must be at least 64 bytes.

6.2.4.4.12 MTFMT

MTFMTformats a cassette for ER90 device files. Formatting records a volume
identifier, creates partitions (logical volumes), and, if requested, creates system
zones. mt_arg is a pointer to a structure defining this format. The structure is
defined as follows:

struct tpc_format {

uint tpc_preformat : 1,
tpc_syszone : 1,

tpc_pack : 1,

tpc_extend : 1,

tpc_waste : 1,

tpc_verify_volume : 1,

tpc_unused_0 : 10,
tpc_fmtid : 48;

uint tpc_count_a : 16,

tpc_count_b : 16,

tpc_sysz_spacing : 32;

uint tpc_size_a : 32,
tpc_size_b : 32;

uint tpc_old_fmtid : 48,

SG–2051 9.3 139

UNICOS® Tape Subsystem User’s Guide

tpc_unused_1 : 16;

}

tpc_preformat specifies whether the tape should be preformatted. If set to 1,
the volume is preformatted with the information provided in the tpc_format
structure. If tpc_preformat is set to 0, the tape is formatted during write
operations. Multiple partitions cannot be requested if the tape is formatted
during write operations.

tpc_syszone specifies whether system zones are created on the tape. System
zones are data-free areas on the tape that can be used to load and unload the
cassette. If tpc_syszone is set to 1, the volume is formatted with system
zones. Otherwise, no system zones are created. If a volume is formatted
without system zones, the volume is positioned to the beginning-of-tape (BOT)
or the end-of-tape (EOT) when it is unloaded. It could take up to 185 seconds
to complete the unload. If the default system zone spacing is used, the unload
time can be reduced to approximately 16 seconds for small cassettes, 21 seconds
for medium cassettes, and 24 seconds for large cassettes.

tpc_pack is set to 1 to allow partitions to span system zones. This option
must be specified if a single partition is requested or if no system zones are
requested. tpc_pack , tpc_extend , and tpc_waste are mutually exclusive.

tpc_extend is set to 1 to request that the ER90 attempt to minimize the
amount of system zone discontinuities in a partition. If the ER90 device
determines that a partition should be created after a system zone, the previous
partition is extended to the system zone dividing the two partitions. This option
cannot be specified if a single partition is requested or if no system zones are
requested. tpc_pack , tpc_extend , and tpc_waste are mutually exclusive.

tpc_waste is set to 1 to request that the ER90 attempt to minimize the number
of system zone discontinuities within a partition. If the ER90 device determines
that a partition should be created after a system zone, the previous partition is
not extended to the system zone dividing the two partitions. Instead, the area
between the previous partition and the system zone is wasted. This option
cannot be specified if a single partition is requested or if no system zones are
requested. tpc_pack , tpc_extend , and tpc_waste are mutually exclusive.

tpc_verify_volume is used to request volume verification. If set to 1, the
value specified in tpc_old_fmtid is compared with the ID recorded on the
volume to be formatted. If the volume IDs do not match, the request is
terminated with the ETPD_BAD_REQTerror code.

140 SG–2051 9.3

Using the Character-Special Tape Interface [6]

tpc_fmtid specifies the identifier to be recorded on the tape during the
volume format. The format identifier must not be longer than 6 alphanumeric
characters.

tpc_count_a and tpc_count_b specify the number of A partitions and the
number of B partitions that should be formatted. The number of A partitions
specified must be in the range 1 through 255; the size is specified with size_a
field.

The A partitions are formatted on the volume until all partitions have been
created or the end of the tape is detected. If tape remains after formatting the A
partitions and no B partitions are requested, the tape is formatted with A
partitions until the EOT is detected.

The number of B partitions specified must be in the range 0 through 255. B
partitions are created following the last A partition. If one B partition is
requested with a size of 0, the volume is formatted with one B partition
spanning the remainder of the volume. If you specify more than one B
partition, the volume is formatted with B partitions until all partitions are
formatted or until the EOT is detected.

If the end of the volume is not detected after creating the B partitions,
formatting continues, beginning again with A partitions.

tpc_size_a and tpc_size_b specify the size of the partitions. The size of
the partition is specified in millions of bytes and must be in the range 0, 0xF0
through 0x1312D00 (240 through 20,000,000).

If the A partition size is 0, one partition is created spanning the length of the
volume. Any size specified for the B partition is then not valid. If the A
partition size is 0, one B partition is created spanning the length of the tape
remaining after the A partitions.

Nonstandard system zone spacing can be requested with field
tpc_sysz_spacing . tpc_sysz_spacing specifies the length, in double
frames, between system zones. The length specified must be in the range 0x842
through 0xFFFFFF. If this field is set to 0, the default system zone spacing is
used.

6.2.4.4.13 MTGFMT

MTGFMTreturns a description of the cassette and volume format of the currently
loaded tape for ER90 device files. The format is described in the tpc_fmtdesc
structure, which is copied into the buffer pointed to by mt_arg . The structure
is defined as follows:

SG–2051 9.3 141

UNICOS® Tape Subsystem User’s Guide

struct tpc_fmtdesc {

int tpc_fmtid;
uint tpc_cas_not_supported : 1,

tpc_cas_loaded : 1.

tpc_cas_size : 2,

tpc_tape_thickness : 2,

tpc_tape_coercivity : 2,

tpc_not_wrt_protected : 1,
tpc_not_pre_striped : 1,

tpc_volume_loaded : 1,

tpc_preformat : 1,

tpc_syszone : 1,

tpc_pack : 1,
tpc_extend : 1,

tpc_waste : 1,

tpc_partition_table : 1,

tpc_non_std_sysz_spc : 1,

tpc_physical_blktype : 1,
tpc_count_a : 16,

tpc_count_b : 16,

tpc_unused : 9;

uint tpc_size_a : 32,

tpc_size_b : 32;

uint tpc_sysz_spacing : 32,
tpc_sysz_size : 32;

uint tpc_last_part_number : 32,

tpc_last_part_size : 32;

}

tpc_fmtid specifies the identifier recorded on the tape during the volume
format.

tpc_cas_not_supported specifies whether the cassette configuration is
supported. The tape thickness, tape coercivity, the write protection mechanism,
and prestripe state are evaluated to determine if the cassette is supported. This
field is set to 1 if the cassette is not supported.

tpc_cas_loaded is set to 1 if the cassette is loaded. A cassette is loaded when
it is inserted into the ER90 device, the tape cassette hubs and servo capstan
hubs are interlocked, and the tape is positioned over the longitudinal heads. If
this bit is set to 0, all other fields in the response are invalid.

tpc_cas_size specifies one of the following for the cassette size:

142 SG–2051 9.3

Using the Character-Special Tape Interface [6]

Setting Description

0 Small cassette

1 Medium cassette

2 Large cassette

tpc_tape_thickness specifies one of the following for the tape thickness:

Setting Description

0 16 micrometer tape

1 13 micrometer tape

3 Cleaning cassette

tpc_tape_coercivity specifies one of the following for the tape coercivity:

Setting Description

0 850 oersted tape (D1)

1 1500 oersted tape (D2)

3 Cleaning cassette

tpc_not_wrt_protected is set to 1 if the tape is not write protected.

tpc_not_pre_striped is set to 1 if the tape has not been prestriped.
Prestriping prerecords the longitudinal servo track.

tpc_volume_loaded is set to 1 if the volume in the device has been loaded.
A volume reaches the loaded state after the volume format information has
been read. If this bit is set to 0, the remainder of the fields in structure
tpc_fmtdesc are invalid.

tpc_preformat is set to 1 if the volume has been preformatted.

tpc_syszone is set to 1 if the volume was formatted with system zones.

tpc_pack is set to 1 if the volume was formatted with the -z option of the
tpformat (8) command. tpc_extend specifies is set to 1 if the volume was
formatted with the -e option of the tpformat (8) command. tpc_waste
specifies is set to 1 if the volume was formatted with the -w option of the
tpformat (8) command.

tpc_partition_table is set to 1 if the partition table has been recorded on
the volume.

SG–2051 9.3 143

UNICOS® Tape Subsystem User’s Guide

tpc_non_std_sysz_spc is set to 1 if the volume was formatted with
nonstandard system zone spacing.

tpc_physical_blktype specifies one of the following physical block types.
A physical block is the smallest unit in which data can be recorded on tape.

Type Description

0 Type 0 physical blocks

1 Type 1 physical blocks

tpc_count_a specifies the number of A partitions formatted on the cassette.
tpc_count_b specifies the number of B partitions formatted on the cassette.

tpc_size_a specifies the size of the A partitions, in millions of bytes. A value
of 0, indicates that the partition spans the length of the tape. tpc_size_b
specifies the size of the B partitions, in millions of bytes. A value of 0 indicates
that the B partition spans the length of the tape remaining after the A partitions.

tpc_sysz_spacing specifies the distance between the system zones. The
distance is specified in double frames.

tpc_sysz_size specifies the size of the system zones, in double frames. The
size is fixed per cassette size. If no system zones have been formatted, the size
is 0.

tpc_last_part_number specifies the number of the last partition formatted
on the volume.

tpc_last_part_size specifies the size, in million of bytes, of the last
partition formatted on the volume. If the volume was not preformatted, this
field will be 0.

6.2.4.4.14 MTVERIFY

MTVERIFYverifies the integrity of the data recorded on tape for ER90 device
files. mt_arg is a pointer to a structure defining the extent to which the tape
should be verified and where the verification should begin. The structure is
defined as follows:

struct tpc_verify {

uint tpc_extent : 4,

tpc_position : 1,

tpc_unused_0 : 59;

uint tpc_valid_logdb : 1,

144 SG–2051 9.3

Using the Character-Special Tape Interface [6]

tpc_valid_absaddr : 1,

tpc_valid_partition : 1,
tpc_valid_filesec : 1,

tpc_valid_timecode : 1,

tpc_unused_1 : 11,

tpc_logical_datablock: 48;

uint tpc_absolute_address : 32,

tpc_file_section : 32;
uint tpc_partition_number : 16,

tpc_time_code : 48;

}

tpc_extent specifies the extent to which the tape should be verified. It is one
of the following flags:

Flag Description

TPC_VERIFY_FILESEC Verifies the integrity of the
data within the specified file
section

TPC_VERIFY_PARTITION Verifies the integrity of the
data within the specified
partition

File verification leaves the tape positioned after the last data block of the file
section. Partition verification leaves the tape positioned after the last data block
of the last file section of the partition.

tpc_position is set to 1 to request that the tape be positioned to the absolute
address specified before verifying the integrity of the recorded data.

For a description of the absolute address fields, see section Section 6.2.4.4.8,
page 132.

6.2.4.4.15 MTTRACE

MTTRACEreads the device trace for ER90 device files. mt_arg is a pointer to
the buffer into which the device trace is read. The trace information is always
2,399,680 bytes in length.

The ER90 data buffer is used to transfer the trace information. This request will,
therefore, destroy all user data in the device buffer.

SG–2051 9.3 145

UNICOS® Tape Subsystem User’s Guide

6.2.4.4.16 MTMSG

MTMSGdisplays a message on a tape device. mt_arg is a pointer to a buffer
containing the string to be displayed. mt_size specifies the length of the
message. For ER90 devices, the length of the message is limited to 8 characters.
For BMX devices, the length is limited to 16 characters.

For BMX devices, mt_count specifies the type of message display. This field
must be set to one of the following flags:

Flag Description

FMsgAcl Specifies that a load request be sent to an
automatic cartridge loader.

FMsgHigh Specifies that the characters in bytes 8 through 15
of the message buffer be displayed. By default,
the message in bytes 0 through 7 will be
displayed.

FMsgBlink Specifies that the message be displayed
intermittently. The message will be displayed for
2 seconds at intervals of 0.5 seconds.

FMsgAlt Specifies that the device alternate between
displaying the characters in bytes 0 through 7 and
the characters in bytes 8 through 15. Each
message will be displayed for 2 seconds at
intervals of 0.5 seconds.

FMsgUnload Specifies that the message in bytes 0 through 7 be
displayed until a cartridge is unloaded from the
tape device. If no cartridge is loaded, the
message will be displayed only briefly.

FMsgLoad Specifies that the message in bytes 0 through 7 be
displayed until the tape device is next loaded.

FMsgNone Specifies that no message be displayed.

FMsgHighUntilLoad Specifies that the message in bytes 8 through 15
be displayed until the device is next loaded.

6.3 Hardware error codes

When a request cannot complete because of an IOP or device-detected error,
one of the following error codes is returned.

146 SG–2051 9.3

Using the Character-Special Tape Interface [6]

Error code Description

ETPD_BAD_REQT The contents or format of a request are incorrect,
or the sequence of requests issued is incorrect.

ETPD_BLANK_TAPE The command was terminated because it cannot
be issued to a device with a blank tape loaded.

ETPD_BOT The beginning of tape or beginning of partition
was detected.

ETPD_DATA_ERROR An unrecoverable data error occurred.

ETPD_DEV_HUNG A response was not received from the tape device.

ETPD_DEVBUSY The device is busy.

ETPD_DEVICE A device error occurred.

ETPD_EOM The end of media was detected.

ETPD_EOR The end of recording was detected.

ETPD_FORMAT The volume format is not supported.

ETPD_HPCONN A HIPPI connection error occurred.

ETPD_HPDATA A HIPPI parity or checksum error occurred.

ETPD_HPREQ A HIPPI request error occurred.

ETPD_HPTRNS A HIPPI transmission error occurred.

ETPD_IOPERR An IOP error occurred.

ETPD_IPCONN An IPI connection error occurred.

ETPD_LGPS A logical position has not been established.

ETPD_MAX_IOREQT I/O request exceeded maximum size allowed.

ETPD_MEDIA The media is not supported.

ETPD_NO_CASSETTE The cassette is not loaded.

ETPD_NOT_BOF The tape is not positioned at the beginning-of-file.

EPTD_NOT_OPER A hardware error occurred.

ETPD_NOT_READY Device is not ready.

ETPD_POSACC_ERR The position cannot be accessed.

ETPD_SHPI A HIPPI controller error occurred.

ETPD_SYSTEM A tape driver error occurred.

ETPD_TAPE_ADDR An invalid tape address occurred.

SG–2051 9.3 147

UNICOS® Tape Subsystem User’s Guide

ETPD_TAPE_ERROR A problem with the tape media occurred.

148 SG–2051 9.3

Interpreting System Messages [A]

This appendix lists and describes the system messages, error or informative,
that you may encounter while you are working with the UNICOS tape
subsystem. These system messages are found in either the tape.msg file or
your standard output file. For system messages indicating that a tape daemon
error has occurred, contact your system administrator. For internal tape
subsystem problems (ITSP), contact your system support staff.

Each message description is followed by a label (USER, OPERATOR, or
USER/OPERATOR) signifying the recipient of the message.

TM000 - tape resource reserved for you

Tape resources have been reserved for you by means of the rsv (1) command. -
USER

TM001 - file name : request pipe open error : errno
The request pipe file name could not be opened; the error returned is errno. This
message may indicate that the tape daemon is not running. - USER

TM002 - incorrect value : string
The system does not recognize string as a correct parameter. - USER

TM003 - device group name : daemon does not have it

The tape daemon does not have devices belonging to device group name. This
indicates an error in the tape daemon. - USER

TM004 - device group name : resource count invalid : count
The number count of resource device group name is incorrect. This indicates an
error in the tape daemon. - USER

TM005 - too many devices : max = maximum number
The number of devices specified in the rls (1) or tpu (8) command exceeds the
maximum of maximum number allowed. - USER

TM006 - invalid request to tape daemon

An invalid request was made to the tape daemon. This indicates either an error
in the tape daemon or an invalid request issued from a C program. - USER

TM007 - not used

SG–2051 9.3 149

UNICOS® Tape Subsystem User’s Guide

TM008 - should volume vsn on device device switch from label type1
to label type2 for user user id? reply y/n

The operator must specify whether the tape named vsn on device may be
switched from label type1 to label type2 for user user id. The operator replies y
for yes or n for no. - USER/OPERATOR

TM009 - pipe name : unable to read requests : errno
The tape daemon tried to read from pipe pipe name and got an error return of
errno. This indicates an error in the tape daemon. - USER

TM010 - cannot initialize table : table name
The tape daemon is unable to initialize table table name. This indicates an error
in the tape daemon. - USER

TM011 - enter vsn for tape on device device name
You must specify the volume identifier of the volume on device device name. -
OPERATOR

TM012 - Unable to obtain memory for variable
The tape daemon or tape command could not acquire memory for the variable
variable. This indicates an error in the tape subsystem. When this message is
issued, the tape daemon will exit. The operator or administrator should collect
the trace files for examination by software product support. - OPERATOR

TM013 - tape vsn on device device name not expired; reply y/n
for user user id to write on tape

You must specify whether user user id may write on unexpired tape vsn. Reply
y for yes or n for no. - OPERATOR

TM014 - chown error

The tape daemon issued a chown (2) command, and an error was received. -
OPERATOR

TM015 - pipe name : unable to get reply

The tape daemon or a command is unable to read a reply from pipe pipe name.
This indicates an error in the tape daemon. - USER

TM016 - cannot create pathname
The tape daemon is unable to create pathname. Check to see whether you have
write permission to the directory or to path name pathname. - USER

150 SG–2051 9.3

Interpreting System Messages [A]

TM017 - string : value of option exceeds count character

The number of characters in string is larger than count and is the value of
option option. - USER

TM018 - duplicated option : option
The option option is duplicated on your command line. - USER

TM019 - no device available

No device is available for reservation (see tprst (1)). - USER

TM020 - not used

TM021 - Exceeded the maximum number of vsn’s allowed, maxvsn
The number of volume identifiers in the volume identifier list is greater than
maxvsn. Either use fewer volume identifiers or see your system administrator to
change maxvsn. - USER

TM022 - Options option1 and option2 are mutually exclusive

Options option1 and option2 are mutually exclusive. You may use only one of
them. - USER

TM023 - A path name must be specified

Specify the path name by using the -p or -P option on the tpmnt (1) command
line. - USER

TM024 - Unable to create [file|directory] file| directory (errno =
errno)

The tape subsystem was unable to create a file or directory; the error returned is
errno. Check to see whether you have the correct permissions for creating the
file or directory. -USER/OPERATOR

TM025 - release previous reservation before issuing reserve

You have issued a rsv (1) command, but you must release all previously
reserved resources by using the rls (1) command. - USER

TM026 - cannot communicate with tape daemon

A child of the tape daemon cannot communicate with the tape daemon. This
indicates an error in the tape daemon. - OPERATOR

TM027 - not used

SG–2051 9.3 151

UNICOS® Tape Subsystem User’s Guide

TM028 - pathname : vsn : mount canceled by operator

The operator canceled your mount request for file pathname and volume vsn. -
USER

TM029 - all tape resources released

The tape daemon has released all tape reservations. - USER

TM030 - not used

TM031 - pathname : cannot write with no ring

You requested the no-ring option on the tpmnt (1) command and issued a write
operation to the pathname file, but the volume mounted has no ring. - USER

TM032 - not used

TM033 - could not execute program for device

The tape daemon cannot execute a program for the device. This indicates an
error in the tape daemon. - OPERATOR

TM034 - pipe name : can’t read less than size of rephdr

The tape daemon cannot read a request which has a size less than that of the
reply header. This indicates an error in the tape daemon. - OPERATOR

TM035 - not used

TM036 - volume offset > number of vsn’s

The value specified on the offset option is larger than the number of volume
identifiers in the volume identifier list. - USER

TM037 - no such user

The tape daemon cannot find the user specified in the command. - OPERATOR

TM038 - pipe name : unable to send request

The tape subsystem is unable to send the request by using pipe name. This may
indicate that the tape daemon is not running. - USER/OPERATOR

TM039 - pathname : path name being used for another tape
file

Another tape file called pathname is being used by either you or another user. -
USER

152 SG–2051 9.3

Interpreting System Messages [A]

TM040 - pathname : please recreate entry before using

The tape daemon cannot read the pathname entry. Delete it and re-create the
entry before using it again. - USER

TM041 - can’t send action message; check message daemon

The tape daemon cannot communicate with the message daemon. - OPERATOR

TM042 - cannot find tdt with pid pid
The tape daemon cannot find a tape device table with a process ID of pid. This
indicates an error in the tape daemon. - OPERATOR

TM043 - value value of option is invalid

The value of value is invalid for the option option. - USER

TM044 - cannot open tape device

The tape daemon cannot open the tape device required by a command. -
USER/OPERATOR

TM045 - device : invalid device name

Device name device was specified in a command, but it is invalid. - OPERATOR

TM046 - mountor remount tape vsn (label type) ring option on device
device name for userid pid, (reason) or reply cancel / device name

The operator must mount the tape with volume identifier vsn, a label of
label-type, write ring in or out, on device device name, for user userid with process
ID of pid. An optional reason may be given. The operator may mount the tape
on the specified drive, reply with a different device name, or reply cancel . If
the operator replies cancel , the tape mount is canceled and the user cannot
continue with tape processing. This message is displayed when automatic
volume recognition (AVR) is turned off and is analogous to TM122. -
USER/OPERATOR

TM047 - pathname : device : function : code : errno = errno
An error occurred when the function executed with code for file pathname on
device name device. The error number is errno. - USER/OPERATOR

TM048 - pathname : assigned or reassigned to device name
File pathname is assigned or reassigned to device name. - USER/OPERATOR

TM049 - pathname : vsn(label type) : function : blocks = number

SG–2051 9.3 153

UNICOS® Tape Subsystem User’s Guide

number blocks were read or written to file pathname with vsn and label type. -
USER

TM050 - pathname : released

File pathname is released. - USER

TM051 - not used

TM052 - pathname : block count error : system = number1,
label = number2
A block count error was issued to the tape mounted on pathname. The tape
subsystem has number1 blocks, and the label on the tape has number2 blocks. -
USER

TM053 - function : unexpected signal received : signal =
signo
The function received an unexpected signal (signal number signo). This indicates
an error in the tape subsystem. - OPERATOR

TM054 - invalid device name

An invalid device name was specified on the tpmnt (1) command. - USER

TM055 - invalid device group name

An invalid device group name was specified on the rsv (1) or tpmnt (1)
command. - USER

TM056 - device group not reserved

Either the device group name on the tpmnt (1) command does not match the
device group name you used on the rsv (1) command or you have not issued
an rsv command. - USER

TM057 - pathname : file not mounted

The pathname used in the rls (1) command was not mounted with a tpmnt (1)
command. - USER

TM058 - command : interrupted by signal signo
The command (rsv (1) or tpmnt (1)) has been interrupted by signal signo. - USER

TM059 - pathname1 and pathname2 have the same device id.

Files pathname1 and pathname2 have the same device ID. This indicates a
configuration error. - OPERATOR

154 SG–2051 9.3

Interpreting System Messages [A]

TM060 - pathname : waiting for device dgn
Path name pathname is waiting for device group name dgn during tpmnt (1)
command processing. - USER

TM061 - pathname : can’t update directory

You cannot update the directory for pathname. This usually means that you do
not have write permission in the directory. - USER

TM062 - pathname : volume protected : vsn
Volume identifier vsn mounted on pathname is volume protected. See the system
administrator. - USER

TM063 - pathname : incorrect label type : vsn
Volume identifier vsn mounted on pathname has an incorrect label type. Check
your tape. - USER

TM064 - pathname : file not on volume : vsn
Volume identifier vsn mounted on pathname does not contain the specified file.
Check your tape. - USER

TM065 - pathname : file not expired : vsn
Volume identifier vsn mounted on pathname does not contain the specified file
in an expired state. - USER

TM066 - not used

TM067 - pathname : no vsn for file

There is no VSN list for file pathname. - USER

TM068 - not used

TM069 - invalid function from driver : function
An invalid function was received from the driver. This indicates an error in the
tape daemon. - OPERATOR

TM070 - device pathname IOP Status: status Function: iop function
File pathname has an error when performing an IOP function on device named
device. The function is iop function and the IOP status is status. - USER

TM071 - device pathname Invalid IOP Response: status flag
Function: iop function

SG–2051 9.3 155

UNICOS® Tape Subsystem User’s Guide

File pathname received an invalid response to an IOP or device request. The
function is iop function and the IOP status is status flag. - USER

TM072 - too many device types, max = max number
Too many device groups are specified in the configuration file. The maximum is
max number. - USER

TM073 - incomplete reply from tape daemon

The incomplete reply you received from the tape daemon indicates an error in
the tape daemon. - USER

TM074 - no response from tape daemon

The tape daemon has not responded. This indicates an error in the tape
daemon. - USER/OPERATOR

TM075 - not used

TM076 - pathname : invalid label structure : vsn
Volume vsn containing file pathname has an invalid label structure. - USER

TM077 - Cannot find tusr structure for jid %d
A valid user identification structure could not be found during job exit
processor. - OPERATOR

TM078 - tape daemon stopped

The tape daemon is stopped. Either a tpdstop (8) command has been issued or
an error has occurred. - OPERATOR

TM079 - Invalid %s

Validation failed for either a fit or tusr structure. - OPERATOR

TM080 - pathname : no matching fit : file id
The file with pathname and file id has no matching File Information table. This
indicates an error in the tape daemon. - USER

TM081 - pathname : bad file sequence number : fseq
The file indicated by file sequence number fseq is not on the tape. - USER

TM082 - not used

TM083 - invalid dolist function : code

156 SG–2051 9.3

Interpreting System Messages [A]

Function code code is invalid. This indicates an error in the tape daemon. -
OPERATOR

TM084 - tape system error

The tape system returned an error indicating an internal tape subsystem error. -
USER

TM085 - no volume serial number

You must specify a VSN. - USER

TM086 - tape daemon error code : error code
The tape daemon returned error error code. - USER

TM087 - incorrect range

The range of devices is incorrect in the tpconfig (8) or tplabel (8) command.
- OPERATOR

TM088 - pathname : file exists

You specified pathname on the tpmnt (1) command by using the -p option, and
pathname exists. The -p option of the tpmnt command does not delete file
pathname if it exists. You can either delete file pathname or use the -P option. -
USER

TM089 - pathname : is a directory

You specified pathname on the tpmnt (1) command by using the -p or -P
option; pathname is a directory. - USER

TM090 - environment variable USER_DIR not set up

Environment variable USER_DIRwas used by the rsv (1) command, but it is
not set up correctly. - USER

TM091 - pathname : pathname > number characters

The pathname specified is larger than the maximum of number characters
accepted by the tape subsystem. See the system administrator. - USER

TM092 - Unable to get the current working directory (errno =
number)
The tape subsystem cannot get your current working directory. The errno is
number. - USER

TM093 - can’t open user’s request pipe

SG–2051 9.3 157

UNICOS® Tape Subsystem User’s Guide

The tape subsystem cannot open your request pipe. Check permissions in the
directory and on the pipe file. - USER

TM094 - mount request postponed because of unfinished
request

The tpmnt (1) command was postponed to finish another request. - USER

TM095 - rsv failed, maximum tape user limit reached

The maximum number of tape users was exceeded. - USER

TM096 - not used

TM097 - the following tape users are deadlocked

The following users are deadlocked during device allocation. - USER

TM098 - pathname : possible deadlock, allocation delayed

pathname has a possible system deadlock, and allocation is delayed. - USER

TM099 - open failed, file not known to tape daemon

Path name was not known to the tape daemon when it processed the request
code sent by the user. - USER

TM100 - invalid pid for kill: pid = pid
Process identifier pid was not a valid process identifier when the tape daemon
tried to kill a process. - USER/OPERATOR

TM101 - device release pending

When the tape daemon was processing a release request, the device could not
be released immediately. It will be released as soon as possible. - USER

TM102 - waiting for previous release to complete

The tape daemon received your reserve request and is waiting for the release of
devices from a previous release request. The tape daemon delays the processing
of your reserve request until all pending releases are completed. - USER

TM103 - system requires ring out with blp

The tape daemon is installed with the option that ring out must be used
when label type blp is used. - USER

TM104 - operator replied : reply-string

158 SG–2051 9.3

Interpreting System Messages [A]

The operator replied reply-string to an operator message about your tape. -
USER

TM105 - program : not part of a job

The program is not part of a job. This indicates a system error. - USER

TM106 - program : can’t get job table : errno = errno
The tape subsystem cannot get the job table to program; errno is errno. This
indicates a system error. - USER

TM107 - user : not a super user

user is not a super user. This message is displayed when you attempt to bring
up the tape daemon. - OPERATOR

TM108 - program : job table full

The UNICOS system returned job table full status when you attempted to bring
up the tape daemon. - OPERATOR

TM109 - request exceeds job limit

You issued a rsv (1) command, exceeding your current job limit for tape
resources. - USER

TM110 - not used

TM111 - pathname : read/write tape mark not allowed

You attempted to read or write a tape mark to tape file pathname without using
the -T option of the tpmnt (1) command. - USER

TM112 - option1 option must have option2 option also

You must specify option2 along with option1 on the rls (1) command. - USER

TM113 - pathname : missing label : vsn
Your pathname tape file either does not have a valid label or is missing a label
for vsn. - USER

TM114 - invalid EOV select for pathname : number
number is not correct on a user end-of-volume (EOV) select (2) request for
pathname. Valid values for the TR_EOVrequest are EOV_ONand EOV_OFF. -
USER

TM115 - user EOV processing set to value for pathname

SG–2051 9.3 159

UNICOS® Tape Subsystem User’s Guide

This is an informational message sent to your tape.msg file. value can be set to
on or off for pathname during a TR_EOVrequest. - USER

TM116 - user EOV processing not selected for pathname
pathname has requested a function that is not available unless user EOV
processing is turned on. - USER

TM117 - active user EOV processing started for pathname
This is an informational message sent to your tape.msg file during a TR_BEOV
request, indicating that user EOV processing has begun for pathname. - USER

TM118 - active user EOV processing ended for pathname
This is an informational message sent to your tape.msg file during a TR_EEOV
request, indicating that user EOV processing has ended for pathname. - USER

TM119 - sync requested to flush buffers for pathname: blocks
= number
This is an informational message sent to your tape.msg file during a TR_SYNC
request, indicating that pathname has requested that the buffers be flushed. -
USER

TM120 - sync requested for pathname : not output tape

You have requested a TR_SYNCfor pathname, but you are not writing to the
tape. - USER

TM121 - not used

TM122 - mount tape vsn (label type) ring option on a dgn device for
userid jobid, NQSid (reason) or reply cancel / device name

The operator must mount the tape with volume identifier vsn, a label of label
type, write ring in or out, on a device of device group name dgn for user userid,
with job ID of jobid, and optional NQS ID of NQSid. An optional reason may be
given. This message is displayed on an AVR system and is analogous to
TM046. - USER/OPERATOR

TM123 - device name : device assigned

You tried to unload device name with the tpu (8) command, but the device is
already assigned. - OPERATOR

TM124 - AVR not active

You tried to use the tpu (8) command, but AVR is not active. - OPERATOR

160 SG–2051 9.3

Interpreting System Messages [A]

TM125 - device name : device down

You tried to unload device name with the tpu (8) command, but the device is
configured down. - OPERATOR

TM126 - tape subsystem busy, unable to set type option

You used the tpset (8) command to change a tape daemon option, but the tape
subsystem is busy. The options available for type are avr , front-end
servicing , Cray/REEL

librarian , tape operator id , and tracing . - OPERATOR

TM127 - not used

TM128 - pathname : opened file on volume

You have tried to issue a second open to pathname. - USER

TM129 - pathname : invalid position request : number
The number you specified for pathname is an invalid tape positioning request. -
USER

TM130 - pathname : cannot read a new file

You specified the -n option on tpmnt (1) and attempted to read from pathname.
Only writing is allowed for the first I/O to a new file. - USER

TM131 - message_type : error sending station message: reason
The tape subsystem received an error when it tried to send a station message to
a servicing front end. reason was received as the reason for the error. -
OPERATOR

TM132 - message_type: file id file id - access denied

The servicing front end denied access to the file ID file id. - USER

TM133 - message_type: mainframe is not secure

The servicing front end is not secure. - USER

TM134 - message_type: file id file id already exists in catalog

The servicing front end returned an error because file id was specified as a new
file and it already exists in the catalog. - USER

TM135 - message_type: file id file id not in catalog

SG–2051 9.3 161

UNICOS® Tape Subsystem User’s Guide

The servicing front end returned an error because file id was specified as an
existing file and it does not exist in the catalog. - USER

TM136 - not used

TM137 - message_type : file id file id - dataset update failed

The servicing front end returned an error because the catalog update failed. -
USER

TM138 - message_type : volume volume - access denied
optional-reason
The servicing front end denied access to volume volume. - USER

TM139 - message_type : volume volume not in volume catalog

The servicing front end returned an error because volume volume does not exist
in the volume catalog. - USER

TM140 - message_type : volume volume - volume update failed

The servicing front end returned an error because the volume catalog update
failed. - USER

TM141 - message_type : error building station message (ITSP)

An error occurred during an attempt to build a station message. Contact your
system support staff - USER/OPERATOR

TM142 - invalid station message type type (ITSP)

This is an invalid station message type. Contact your system support staff.-
USER/OPERATOR

TM143 - bad station message word count count, expected count
(ITSP)

The text of this station message is not of the size expected. Contact your system
support staff. - USER/OPERATOR

TM144 - error reading station message reply, errno = errno
(ITSP)

An error occurred while a station message reply was read from USCP. Contact
your system support staff. - USER/OPERATOR

TM145 - message_type : error operation string : errno = errno
An error occurred while the specified operation was being performed. - USER

162 SG–2051 9.3

Interpreting System Messages [A]

TM146 - message_type : error reading string : read count,
expected count
A read operation returned a count different from that expected. - USER

TM147 - invalid front-end id id
Front-end ID id is invalid. - USER

TM148 - error sending message to front-end

An error occurred during an attempt to send a station message. - USER

TM149 - request rejected by front-end

The servicing front end rejected your request. - USER

TM150 - bad station message reply, structure structure missing
(ITSP)

A required table is missing from a station message reply. Contact your system
support staff. - USER/OPERATOR

TM151 - message_type : front-end servicing is turned off

Front-end servicing is turned off. - USER

TM152 - path path not found

Path path does not exist, or it does not belong to you. - OPERATOR

TM153 - no path to device

This component cannot be configured up because there is no path to it. -
OPERATOR

TM154 - associated devices still up

This component cannot be configured down because it would leave another
component without a path to it. - OPERATOR

TM155 - message_type : timed out waiting for front-end reply

Timed out while waiting for a reply from the servicing front end. - USER

TM156 - message_type : front-end front-end id not accepting
station messages

The specified servicing front end does not accept type 3 station messages. -
USER

TM157 - message_type : file must be closed when cataloging

SG–2051 9.3 163

UNICOS® Tape Subsystem User’s Guide

The tpcatalog (1) command can be used only when the file is closed. - USER

TM158 - unable to send message for user job-id, nqs-id to front-end
target-id(reason), reply cancel or retry

message to server or front-end ID cannot be sent to user because reason. -
OPERATOR

TM159 - operator message aborted by UNICOS operator

The UNICOS operator canceled the message that could not be sent to the front
end. - USER

TM160 - user volume vsn closed during EOV processing

Volume identifier vsn was closed during user EOV processing. - USER

TM161 - Unable to open file filename (errno = errno)

The filename file, could not be opened; the error returned is errno. Check to see
if this file exists or whether you have the correct permissions for opening the
filename file. - USER/OPERATOR

TM162 - extra parameters at end of command : string
Extra characters (string) were specified in the tpmnt (1) command. - USER

TM163 - program name (pid process id): server server name: error text:
reply retry or cancel

program name encountered a problem communicating with server server
name on behalf of one or more requests. The problem is described in error
text . A reply of cancel aborts all requests that have encountered this problem.
A reply of retry requeues all requests that encountered this problem and
allocates more time for these requests to wait for the communication with
server server name . - OPERATOR

TM164 - Unable to read file filename (errno = errno)

An error occurred when attempting to read the filename file; the error returned
is errno. Check to see if this file exists or whether you have the correct
permissions for reading the filename file. - USER/OPERATOR

TM165 - pathname : you must use list i/o for this function

You requested a user EOV function, but tapelist I/O is not being used for
pathname. - USER

164 SG–2051 9.3

Interpreting System Messages [A]

TM166 - You must begin end-of-volume processing before
requesting another function

You reached end-of-tape during user EOV processing, but you requested an
invalid function (such as tape positioning) before starting special processing. -
USER

TM167 - tpmnt -b value text
The maximum block size specified with the -b option of the tpmnt (1)
command is zero or exceeds the maximum block size specified in the
configuration file. Modify the maximum block size specified with the -b option
of the tpmnt (1) command. - USER

TM168 - You must be at end of tape before requesting start
EOV for tape file file
A request to start user end-of-volume special processing was issued before the
end-of-tape status was detected. Modify the tape job to wait for the end-of-tape
status (ENDSPC) to be returned before beginning user end-of-volume
processing. - USER

TM169 - No tape devices defined in the CNT - tape daemon
terminating

No tape drives were defined in the tape configuration file. Modify the
configuration file and restart the tape daemon. - OPERATOR

TM170 - pathname : device status status : errno error : user
close required, no further I/O allowed

The user received an error on a tape request. No further requests will be
accepted except for a close request. Close and reopen the tape file. - USER

TM171 - ’-l st’ may not be used with -T or fseq > 1

Single tape mark format tapes are not allowed with the -T option or with a file
sequence number (-q option) greater than 1. - USER

TM172 - secure label violation

The label of the tape prevents the user from accessing the file. - USER

TM173 - bypass or unlabel permission required

You requested nonlabeled or bypass-label processing on the tpmnt (1) command,
but you do not have permission. See your system administrator. - USER

TM174 - filename : file already opened

SG–2051 9.3 165

UNICOS® Tape Subsystem User’s Guide

You requested the opening of a file that is already open. The open (2) request
has been terminated. - USER

TM175 - logical and physical device pointers error (ITSP)

The tape daemon reselects from one tape device to another by modifying data
structures that correspond to the tape devices. This message is issued when the
tape daemon is unable to modify the data structures because of a system error.
Contact your system support staff. - USER

TM176 through TM178 - not used

TM179 - Operator request aborted; loader in unattended mode

With the tape loader in unattended mode, operator requests are not valid; thus
the request was aborted. - OPERATOR

TM180 - unable to find out if tape daemon is active

An attempt to communicate with the tape daemon failed. Contact your system
support staff. - USER

TM181 - pathname : path not found to concatenate

The pathname specified in the -c option of the tpmnt (1) command does not
exist. - USER

TM182 - must not specify -p or -P with -c

The -p , -P , and -c options on the tpmnt (1) command are mutually exclusive.
You may enter only one of the three. - USER

TM183 - cannot concatenate new/append files

The -c option of the tpmnt (1) command was used to request that multiple tape
files be read as though they were one tape file. This feature can be specified
with either the -n or -a option. Correct the option specified and reissue the
tpmnt command. - USER

TM184 - only valid positioning is rewind with concatenation

The position request was terminated because the tape file is a concatenated file.
The only valid positioning request for concatenated files is the rewind request. -
USER

TM185 - rls was received and close was not issued for file
filename
The filename for this message is replaced by the path name.

166 SG–2051 9.3

Interpreting System Messages [A]

TM186 - not used

TM187 - Cannot position past the beginning of file file
A request to position backward by blocks was terminated because the
beginning of the file was detected. - USER

TM188 - Cannot position past the end of file file
A request to position forward by blocks was terminated because the end of the
file was detected. - USER

TM189 - Secure mount violation

The security label is outside the device group security label range. See your
security administrator. - USER

TM190 - **WARNING** device device_name (autoloader:
autoloader_name, server: server_name) is in state: state
During the initialization of the server_name server for the autoloader_name
autoloader, the device_name tape drive was reported by the server to be in the
state state. Either check the state of the tape drive with the server and alter its
state so that it can be used on the Cray Research system or do not attempt to
configured it up. - OPERATOR

TM191 - message_type : file has not been accessed yet

The tpcatalog (1) command can be used only after the file has been opened
and closed. - USER

TM192 - no servicing front-end id

The tpcatalog (1) command cannot be used if a servicing front end is not
being used. - USER

TM193 - message_type : operation permission denied by front-end

The servicing front end has not given permission to perform the specified
operation. - USER

TM194 - resending operator message...

The message is being sent again to the front-end operator. - USER

TM195 - Not operational

This tape device (drive) cannot be configured. - OPERATOR

TM196 - Not available

SG–2051 9.3 167

UNICOS® Tape Subsystem User’s Guide

This tape device (controller or channel) cannot be configured. - OPERATOR

TM197 - parameter error

The option specified on the tape command is invalid. The command has been
terminated. - USER

TM198 - AVR turned off because of -d option

If the -d option of tpdaemon (8) is specified, it causes AVR to be turned off. -
OPERATOR

TM199 - Tape daemon not available

The tape daemon is not responding to tape requests. Either the tape daemon is
not running or there is a tape daemon error. - USER

TM200 - supplementary logfile message from filename
This message issues a supplementary log file message from the front end. The
message corresponds to the front-end request. - USER

TM201 - Tape daemon not active

A tape daemon request could not complete because the tape daemon is not
active. - USER

TM202 - User end of volume processing has already been
selected, request ignored

A request to select user end-of-volume processing was ignored because user
end-of-volume processing has already been selected. - USER

TM203 - User end of volume processing is not enabled,
disable request ignored

A request to deselect user end-of-volume processing was ignored because user
end-of-volume processing is not currently selected. - USER

TM204 - A configuration request is pending, request ignored

A tpconfig (8) command cannot be completed because a previous
configuration command is still pending. - OPERATOR

TM205 - tpmnt -q file_seq_number required for file: file
An invalid file sequence number was specified. If the multifile volume
allocation was specified, unique files were not specified or the file specified
does not exist. - USER

168 SG–2051 9.3

Interpreting System Messages [A]

TM206 - Mount failure on drive device (reason)

A mount request failed on drive device because of reason. - USER

TM207 - Should short tape < vsn> on device be used? Reply y/n

No description available.

TM208 - A device name must be specified

The command requires that a device name be specified. Reissue the command
specifying a device name. - USER

TM209 - filename: can’t write to read-only file

You have attempted to write to a file that does not have write permission. The
write request has been aborted. - USER

TM210 - Invalid Media Loader specification.

Either an invalid communication path was specified when a loader was defined
in the configuration or parameter file, or an invalid loader was specified on a
tpscr (8) request. - USER

TM211 - Invalid loader type type.
An invalid loader type was specified when the loaders were defined. - USER

TM212 - Invalid communication path pathname.
An invalid communication path was specified when a loader was defined in the
configuration or parameter file. - USER

TM213 - Loader name cannot change ring status, user aborted.

A tape volume in the loader does not have the correct ring status. The loader is
unable to correct the ring status. The tape request has been aborted. - USER

TM214 - Loader Reselect (for name) Not Supported.

The loader cannot remount a volume for reason name. The tape request has
been aborted. - USER

TM215 - Invalid Message Routing Code = code
A request was made to issue a message to an invalid destination. This is a
system error. - USER/OPERATOR

TM216 - unable to send operator message for user id jid, NQSid to
front-end, ’ feid’ (frontendid), (reason) reply cancel, retry, or
ignore

SG–2051 9.3 169

UNICOS® Tape Subsystem User’s Guide

The tape daemon was unable to send a message to the front end. The operator
should reply with cancel to abort the original request, retry to reissue the
original request, or ignore to ignore the error condition. Multiple messages
are generated when a tape is being mounted. If the operator specifies ignore, it
is assumed that the tape mount request will be satisfied as a result of one of the
other messages issued. - OPERATOR

TM217 - Scratch Volume Request denied.

A request was made to mount a scratch tape to a loader that does not support
the type of scratch tape specified in the request. The mount request has been
terminated. - USER

TM218 - Unable to action.

The tape daemon was unable to perform the function specified with action. The
request has been terminated. - USER

TM219 - Specified Media Loader is busy, request failed

A request to change the configuration of a loader cannot be completed if
devices allocated to the loader have been assigned. The request has been
terminated. - USER

TM220 - Device must be down to change Media Loader

The media loader for a device cannot be changed if the loader is not configured
down. The tpconfig (8) request has been terminated. Configure the loader
down, and reissue the loader change request. - USER

TM221 - Associated Media Loader is down

You attempted to change or configure up the media loader for a device, and the
loader is not configured down. The tpconfig (8) request has been terminated.
- USER

TM222 - Volume volno scratched.

A request to scratch volume volno succeeded. - USER

TM223 - Volume volno scratch request failed: reason reason.
A request to scratch a tape has failed. - USER

TM224 - Loader Unavailable.

A request was made to scratch a volume within the loader. This request
could not be completed because the loader has been configured down. - USER

170 SG–2051 9.3

Interpreting System Messages [A]

TM225 - Invalid State for Loader Type.

A request was made to configure a loader to a state that is invalid. The request
has been terminated. - USER

TM226 - vsn : Invalid vsn: vsn
An invalid volume was specified on the tpmnt (1) command. The volume
specification must be alphanumeric. - USER

TM227 - info : network request failed: request
The tape daemon was unable to issue a request to the front end. -
USER/OPERATOR

TM228 - path : waiting for vsn vsn
A request was made to mount volume vsn. However, this volume is currently
in use. The tape daemon will place the mount (8) request in a waiting state, and
reissue the request when the volume is free. - USER

TM229 - vsn request rejected by user exit

Your mount (8) request was terminated because of your site’s verification
specifications. Check to see that you have permission to mount this volume. -
USER

TM230 - action < vsn >? Reply y(yes)/n(no)/q(requeue).

Request that you import or export a volume. Reply y if you wish to import
or export, n to abort the job that requested the volume, or q to queue the
mount (8) request. - OPERATOR

TM231 - Reply y/n when import is complete.

You replied y to an import or export request. When you complete the
import or export , reply y to this message. - OPERATOR

TM232 - Eject vsn (vsn) from loader (loader) and change ring?
Reply y(yes) or n(no)

The operator must respond either y if the system is to eject the specified VSN
and change the state of the tape ring before returning the tape to the loader
domain or n if the operator does not want these actions to occur. - OPERATOR

TM233 - Volume volname Not Scratchable, enter retry / cancel

The mounted volume cannot be made into a scratch tape. Reply retry to
mount another scratch tape or cancel to cancel the tape mount request. -
OPERATOR

SG–2051 9.3 171

UNICOS® Tape Subsystem User’s Guide

TM234 - Embedded tape marks are not allowed on volume vsn
Embedded tape marks are not allowed on volume vsn. - USER

TM235 - Microcode file not found for channel channo, iop iop,
ios ios
No microcode file was specified in the configuration file for channel channo, iop
iop, ios ios. - OPERATOR

TM236 - not used

TM237 - Density not valid with this device group

A density was specified with the -d option of the tpmnt (1) command with a
device group that does not allow different densities. - USER

TM238 - is volume vsn on device dvn a valid scratch volume
for user uname jid? reply y/n

Is volume vsn on device dvn a valid scratch volume for user uname, jid? Reply
Y/N. - OPERATOR

TM239 - Device dvn does not exist

A device name, dvn, was specified on a tape daemon command that does not
exist. Correct the device name and reissue the command. - USER

TM240 - cannot find host entry for sd= socket-descriptor
The entry for socket-descriptor is set, indicating that it is expecting a reply from
another mainframe. No entry has been queued within the tcpnet() function
expecting such a reply. Check the network for proper functionality or contact
your system support group. - OPERATOR

TM241 - error from socket operation, sd= socket-descriptor, host= host,
rc= rc, errno= errno: error-description
The error error-description has occurred while trying to do operation on
socket-descriptor that is connected to host. Check the network or mainframe host
for proper functionality or contact your system support group. - OPERATOR

TM242 - host name host not found

An attempt to obtain the network host entry for mainframe host from the file
/etc/hosts or from the file /etc/host.bin has failed. Contact your system
support group to correct the network files or to correct the tape configuration
file. - OPERATOR

172 SG–2051 9.3

Interpreting System Messages [A]

TM243 - Invalid block size requested on tpmnt

The maximum block size specified with the -b option of the tpmnt (1)
command is 0 or exceeds the maximum specified in the configuration file.
Modify the maximum block size specified with the -b option of the tpmnt (1)
command. - USER

TM244 - The label write did not complete successfully

The tplabel (1) command did not complete successfully. Check the errno and
the tape.msg file to determine the cause of the failure. - USER

TM245 - not used

TM246 - Only bypass label is valid with option -z

A label type other than bypass label type was requested with the -z option.
Reissue the tpmnt (1) command with -l blp . - USER

TM247 - Option - option can only be specified for ER90 volumes

The option option was specified on a tape command that is not valid for devices
other than ER90 devices. Reissue the command without the option. - USER

TM248 - A format id can only be specified for ER90 volumes

A format identifier was specified on a command issued to a non-ER90 device.
Reissue the command without the format identifier or issue the command to an
ER90 device. - USER

TM249 - A partition number can only be specified for ER90
volumes

A partition number was specified on a command issued to a non-ER90 device.
Reissue the command without the partition number or issue the command to
an ER90 device. - USER

TM250 - The block size for an ER90 device must be in
increments of 8

The user specified a block size, using the -b option on the tpmnt (1) command,
which is not a multiple of eight. The tpmnt (1) command is terminated. Correct
the block size to a multiple of eight and reissue the command. - USER

TM251 - The block size for an ER90 device must be in the
range min-block-size to max-block-size
The user specified a block size, using the -b option on the tpmnt (1) command,
which is not within the valid range for an ER90 device. The block size must be

SG–2051 9.3 173

UNICOS® Tape Subsystem User’s Guide

greater than min-block-size but cannot exceed max-block-size. The tpmnt (1)
command is terminated. - USER

TM252 - Cannot specify a non-numeric value, value, for option
-option
The user specified a nonnumeric value for option -option. Reissue the command
specifying a numeric value for option -option. - USER/OPERATOR

TM253 - The parameter specified, ‘param’, cannot exceed n
characters

An invalid parameter, param, was specified. The parameter cannot exceed n
characters. Correct the parameter length and reissue the command. -
USER/OPERATOR

TM254 - Unable to complete the reqt request because of a
system error (errno= errno)

An unexpected system error occurred when processing request, reqt. Contact
your system support staff. - USER/OPERATOR

TM255 - Option option must be specified

A required option, option, has not been specified. Reissue the command
specifying this option. - USER/OPERATOR

TM256 - The system zone spacing must be zero if no system
zones were requested

The user specified options -z and -l on the tpformat (8) command. These
options are mutually exclusive. It is invalid to specify a length between system
zones using the -l option. Correct the options and reissue the tpformat (8)
command. - OPERATOR

TM257 - The number of [A| B] partitions specified,
num-of-partitions, must be in the range min-partitions to max-partitions
The user specified a partition count, using the -n option of the tpformat (8)
command, which is not in the range min-partition to max-partition. Correct the
partition count and reissue the tpformat (8) command. - OPERATOR

TM258 - If a single partition tape was requested (’A’ size
is zero), the ’A’ count must be 1

The user requested that a single partition tape be created by specifying zero on
the -s option of the tpformat (8) command. The number of partitions
specified, by using the -n option, must be one. Correct the option(s) and
reissue the command. - OPERATOR

174 SG–2051 9.3

Interpreting System Messages [A]

TM259 - If a single partition tape was requested (’A’ size
is zero), the ’B’ count and size must be 0

The user requested that a single partition tape be created by specifying zero on
the -s option of the tpformat (8) command. The number and size of the B
partitions requested, by using the -n and -s options, must be zero. Correct the
option(s) and reissue the command. - OPERATOR

TM260 - The size of partition [A| B], part-size, must be in the
range min-part-size to max-part-size
The user specified a partition size, using the -s option of the tpformat (8)
command, which is not within the valid range. Correct the size specified and
reissue the command. - OPERATOR

TM261 - A non-zero ’B’ partition size must be specified if
more than one ’B’ partition is requested

The user specified a value other than 1 for a B partition count when a B
partition size of 0 has been specified. Modify the B partition size to a non-zero
value or modify the B partition count to 1 and reissue the tpformat (8)
command. - OPERATOR

TM262 - The system zone spacing specified, spacing-length, must
be in the range min-length to max-length
The user specified an invalid system zone spacing value, using the -l option
on the tpformat (8) command. The length specified must be in the range
min-length to max-length. Correct the length specified and reissue the command.
- OPERATOR

TM263 - The syntax of the -opt option argument is incorrect

The syntax of the value specified with the -opt option is invalid. Correct the
syntax and reissue the command. - OPERATOR

TM264 - A partition size cannot be specified if the number
of partitions requested is zero

The user specified a partition count of zero, using the -n option of the
tpformat (8) command. Because no partitions were requested, it is invalid to
also specify a partition size with the -s option. Correct the options and reissue
the command. - OPERATOR

TM265 - Option -opt cannot be specified for single partition
volumes

SG–2051 9.3 175

UNICOS® Tape Subsystem User’s Guide

Option -opt cannot be specified if a single partition volume is requested on the
tpformat (8) command. Reissue the command without option -opt. -
OPERATOR

TM266 - The ’A’ partition size must be zero if the volume is
to be created during write operations

The user requested that the volume be formatted during write operations by
specifying the -q option on the tpformat (8) command. Multiple partition
tapes cannot be created during write operations. Reissue the tpformat (8)
command with an A partition size of zero or without specifying the -s option.
- OPERATOR

TM267 - The specified partition size, partition-size, exceeds the
tape length

The ER90 device was unable to format even one partition, of size partition-size,
on the volume. Specify a smaller partition size and reissue the command. -
OPERATOR

TM268 - Permission to format volume volume denied

Permission to format ER90 volumes has been denied. The tpformat (8)
command is terminated. Contact your system support staff to obtain
permission to format ER90 volumes. - OPERATOR

TM269 - A reqt request cannot be issued to an active device

The reqt request was rejected because the device is active. The command is
terminated. Notify your system support staff of the problem. - OPERATOR

TM270 - An invalid parameter was specified on the reqt
request

An invalid parameter was specified on the reqt request. The command is
terminated. Contact your system support staff for more information on the
parameter in error. - OPERATOR

TM271 - A volume format request is not valid for the
requested device type

A volume format request was issued to a device that does not support format
requests. Format requests are only valid for ER90 devices. Reissue the
tpformat (8) command to an ER90 device. - OPERATOR

TM272 - Unable to issue the reqt request because of an
existing device error

176 SG–2051 9.3

Interpreting System Messages [A]

Request reqt was rejected because an error occurred on the device on a previous
request and has not been acknowledged. Check your tape.msg file for an
error. If no error has occurred, contact your system support staff. - OPERATOR

TM273 - Unable to issue the reqt request because the device
has been cleared

The reqt request was rejected because it has been issued to a device that has
been cleared but not reset. The command is terminated. Reset the device by
configuring the device down and then up again. Reissue the request. -
USER/OPERATOR

TM274 - Unable to complete the reqt request (errno = errno)

An unexpected error, error errno, occurred when processing request, reqt.
Contact your system support staff. - USER/OPERATOR

TM275 - A sync must be issued before positioning when EOV
processing is selected

End-of-volume processing was selected, but not initiated. The user output data
to tape and then issued a position request. The tape daemon requires that a
synchronize request be issued on position requests issued to an output file if
the user has selected but not initiated user end-of-volume processing. The
position request is terminated. Modify the request sequence to issue a
synchronize request before positioning. - USER

TM276 - Cannot append to a blank tape

The user attempted to append to a tape that is blank. The write request is
terminated. Reissue the tpmnt (1) command without the -a option. - USER

TM277 - Cannot read a blank tape

The user issued a request to read a tape that is blank. The read request is
terminated. - USER

TM278 - Option -opt requires bypass label or tape manager
permission

The user specified an option, -opt, that requires bypass label or tape manager
permission. The command is terminated. Contact your system support staff for
permission to use the option. - USER

TM279 - The parameter number specified, param, must be in the
range min-valueto max-value

SG–2051 9.3 177

UNICOS® Tape Subsystem User’s Guide

The user specified a value for parameter that is invalid. The value must in the
the range min-value to max-value. Correct the number specified and reissue the
command. - OPERATOR

TM280 - Partition partition does not exist

The user requested a partition that does not exist. Check that the correct
partition numbers and volumes were specified on the tpmnt (1) command and
that the volumes have been formatted correctly. - USER

TM281 - A volume id must be specified with option -v

The user did not specify any VSN with option -v . Correct the -v parameter
and reissue the command. - USER

TM282 - An internal volume id must be specified

The user specified an external VSN or format ID without also specifying an
internal VSN (-v =EXTID or -v ==FMTID) . Correct the VSN specified and
reissue the command. - USER

TM283 - A partition number must be specified after the ’/’
delimiter

The user did not specify a partition number following the / delimiter on the -v
option of the tpmnt (1) command. Correct the volume list specified and reissue
the command. - USER

TM284 - Extraneous characters, string, following the partition

The user specified extraneous characters following the partition number.
Correct the volume list specified and reissue the command. - USER

TM285 - Cannot specify a non-numeric value parameter for a
partition number

The user specified a nonnumeric value, parameter, for a partition number.
Specify a numeric value for all partition numbers and reissue the command. -
USER

TM286 - A volume description cannot begin with the ’=’
delimiter

The user began the volume description with the = delimiter rather than with
the internal volume ID. Correct the volume description and reissue the
command. - USER

TM287 - The delim delimiter cannot be specified after the
format id

178 SG–2051 9.3

Interpreting System Messages [A]

The syntax of the volume description is incorrect. The user specified the delim
delimiter after the format ID. Correct the volume description and reissue the
request. - USER

TM288 - An external volume id must be specified after the
first ’=’ delimiter

The syntax of the volume description is incorrect. A VSN must follow the =
delimiter. Correct the volume description and reissue the request. - USER

TM289 - A format id must be specified after the second ’=’
delimiter

The syntax of the volume description is incorrect. Two = delimiters were
specified but were not followed by a format ID. Correct the syntax of the
volume description and reissue the request. - USER

TM290 - A partition number must follow the ’/’ delimiter

TM291 - The absolute track address contains a value that is
not within the valid range

The user specified an invalid absolute track address. Correct the address so that
each value comprising the address is within the valid range and reissue the
request. - USER

TM292 - Permission to position to the requested tape address
denied

The user does not have permission to position to the requested tape address.
The user must have tape manager privilege to position outside the current
partition or bypass label privilege to position outside the current file. Special
permission is not required to position within the current file. Contact your
system support staff for privilege required. - USER

TM293 - Unable to obtain the user permission bits for user
user
The tape daemon was unable to validate the user’s request by checking the
User Database (UDB). The request is terminated. Contact your system support
staff. - USER

TM294 - The reqt request has been interrupted

The reqt request has been interrupted. - USER

TM295 - The absolute track address specified is invalid

SG–2051 9.3 179

UNICOS® Tape Subsystem User’s Guide

The user specified an absolute track address that does not exist on the tape.
Correct the address specified or the volume specified on the tpmnt (1)
command and reissue the position request. - USER

TM296 - The cmd command requires bypass label or tape
manager permission

The user does not have permission to use the cmd command. The command is
terminated. Contact your system support staff for the privilege required to use
this command. - USER

TM297 - Unable to complete the reqt request within the device
timeout period specified in the configuration file

The reqt request did not complete within the time-out period specified in the
configuration file. Either the time-out value specified in the configuration is not
long enough to allow the request to complete or a problem with the device is
preventing the completion of the request. Check the device or contact your
administrator to change the configuration file. - USER/OPERATOR

TM298 - Cannot specify a negative value for the parameter
An invalid parameter, parameter, was specified. The parameter cannot be
negative. The command is terminated. Correct the parameter and reissue the
command. - USER/OPERATOR

TM299 - Unable to complete the cmd command (errno = errno)

An unexpected error occurred when processing command cmd. Contact your
system support staff. - USER/OPERATOR

TM300 - CRL vsn/vid string invalid on scratch request

You have used the -o option of the tpmnt (1) command to specify volume
identifier string. However, the volume specified by string has been cataloged to
be used as a scratch tape. Check to see that the VSN/volume identifier
specified is correct. - USER

TM301 - not used

TM302 - CRL number of vid’s exceeds maximum - maxvids
The number of VSN/volume identifiers in your list exceeds the maximum,
maxvids. Either specify fewer VSN/volume identifiers or ask your administrator
to change the number of VSN/volume identifiers allowed. - USER

TM303 - CRL invalid vid: vid

180 SG–2051 9.3

Interpreting System Messages [A]

The VSN/volume identifier vid contains illegal characters. The VSN/volume
identifier specification must be alphanumeric. - USER

TM304 - CRL string: Cray/REELlibrarian enabled

Front-end servicing options specified by string are invalid for a system with
Cray/REELlibrarian enabled. Disable these specifications in the tape
configuration file. - OPERATOR

TM305 - CRL invalid option -X: Cray/REELlibrarian disabled

The -X option was specified for a system which does not contain the
Cray/REELlibrarian product. Remove the -X option from the tpmnt (1)
command. - USER

TM306 - CRL volume set allocate error errno for volset
The error errno was issued by the Cray/REELlibrarian daemon when it
attempted to allocate a volume for the volume set volset. Contact the
Cray/REELlibrarian administrator for further information. - USER

TM307 - CRL ambiguous CRL filename: filename
The file name filename you specified does not identify a unique file. Correct the
file name on the tpmnt (1) command. - USER

TM308 - CRL Volume record error errno for VID = vid
The error errno was received from the Cray/REELlibrarian daemon when it
attempted to read the volume record for vid. Contact the Cray/REELlibrarian
administrator for further information. - USER

TM309 - CRL Volume record error errno for volset = volset
The error number errno was received from the Cray/REELlibrarian daemon
when it attempted to read the volume set record for volset. Contact your
Cray/REELlibrarian administrator for further information. - USER

TM310 - CRL parameter mismatch: (fit->) string1, (frec->) string2
A mismatch was encountered in the parameter parameter of the file record. The
value was specified as string1; the value retrieved from the file record is string2.
Contact the Cray/REELlibrarian administrator for further information. - USER

TM311 - CRL parameter mismatch: (fit->) string1, (frec->) string2
A mismatch was encountered in the parameter parameter of the file record. The
value was specified as string1; the value retrieved from the file record is string2.
Contact the Cray/REELlibrarian administrator for further information. - USER

SG–2051 9.3 181

UNICOS® Tape Subsystem User’s Guide

TM312 - CRL volume vid is not mountable from location location
A tape mount request was made for a volume that is classified as not
mountable. The volume is not accessible for use. - USER

TM313 - CRL type permission denied for name
You do not have permission to access the type (file or volume) identified by
name. Contact the Cray/REELlibrarian administrator for further information. -
USER

TM314 - CRL type password error for name
You did not specify the correct password to access the type (file or volume)
identified by name. Contact the Cray/REELlibrarian administrator for further
information. - USER

TM315 - CRL filename must be file sequence 1

You specified an invalid sequence number for the file filename. Correct the
sequence number specification on the tpmnt (1) command. - USER

TM316 - CRL Volume list failure errno for volset
The error errno was issued by the Cray/REELlibrarian daemon when it
attempted to read the volume set volume list for volset. Contact the
Cray/REELlibrarian administrator for further information. - USER

TM317 - CRL invalid type mode: mode
You specified an invalid access mode for the type (file or volume). The mode
should be three octal digits between 000 and 777. - USER

TM318 - CRL owner name too long - name
The owner name name exceeds the owner name length maximum specified in
the Volume Management Facility catalog. Contact the Cray/REELlibrarian
administrator for further information. - USER

TM319 - CRL invalid generation number - generation
You specified a generation number, generation, on a tpmnt (1) command file
specification that contains nonnumeric characters. Correct the specification and
reissue the tpmnt (1) command. - USER

TM320 - CRL invalid version number - version
You specified a version number, version, on a tpmnt (1) command file
specification that contains nonnumeric characters. Correct the specification and
reissue the tpmnt (1) command. - USER

182 SG–2051 9.3

Interpreting System Messages [A]

TM321 - CRL invalid section number - section
You specified a section number, section, on a tpmnt (1) command file
specification that contains nonnumeric characters. Correct the specification and
reissue the tpmnt (1) command. - USER

TM322 - CRL invalid FID character - char
You specified an invalid character, char, on a tpmnt (1) command file
specification. This character should be either g, G, v , V, s , or S. Correct the
specification and reissue the tpmnt (1) command. - USER

TM323 - file read error for volset vname, fseq fseq, fsect fsect
In a secure environment, the attempt to reread the file record for MAC
revocation failed. Contact the system administrator with the error output for
resolution. - USER

TM324 - CRL unable to get type name for id id
The type (user or group) name for ID id exceeds the user or group name
maximum allowed in the Cray/REELlibrarian catalog. Contact the
Cray/REELlibrarian administrator for further information. - USER

TM325 - CRL record format conversion error for format attribute
An error occurred trying to convert the fit record format (format) and block
attribute (attribute) to Cray/REELlibrarian format. Contact the
Cray/REELlibrarian administrator for further information. - USER

TM326 - CRL file record update error on filename
An error was encountered by the Cray/REELlibrarian daemon when it
attempted to update the file record for filename. Contact the
Cray/REELlibrarian administrator for more information. - USER

TM327 - CRL volume record update error on volset
An error was encountered by the Cray/REELlibrarian daemon when it
attempted to update the volume record for volset. Contact the
Cray/REELlibrarian administrator for more information. - USER

TM328 - CRL vid=vsn, do not specify both

You specified both the vsn and vid options on the tpmnt (1) command. On this
Cray Research computer system, the VSN is identical to the volume identifier.
Reissue the tpmnt (1) command with only one of the options specified. - USER

TM329 - CRL fit/vrec vsn mismatch: fitvsn, vrecvsn

SG–2051 9.3 183

UNICOS® Tape Subsystem User’s Guide

A mismatch was encountered between the mounted VSN/volume identifier
(fitvsn) and that returned in the volume record (vrecvsn). Contact the
Cray/REELlibrarian administrator for further information. - USER

TM330 - CRL request/vrec type mismatch: fitvsn, vrecvsn
A mismatch was encountered between the type (VSN/volume identifier)
specified by the user (fitvsn) and that returned in the volume record (vrecvsn).
Contact the Cray/REELlibrarian administrator for further information. - USER

TM331 - CRL vlock error errno for vid vid
The Cray/REELlibrarian daemon encountered error errno while attempting to
lock VSN/volume identifier vid. Contact the Cray/REELlibrarian administrator
for more information. - USER

TM332 - CRL lock operation type valid for vid vid
The type (lock or unlock) request was successful for the VSN/volume identifier
vid. This is an informational message. - USER

TM333 - CRL palloc error errno for nvol nvol, vsid = vsid
The error errno was encountered by the Cray/REELlibrarian daemon when it
attempted to allocate a new volume for the volume set that has a first
VSN/volume identifier of vsid. Contact the Cray/REELlibrarian administrator
for more information. - USER

TM334 - CRL file sequence mismatch: request = fitseq, frec =
frecseq
A mismatch was encountered by the Cray/REELlibrarian daemon in the file
sequence number between the fit (fitseq) and the file record (frecseq). Contact
the Cray/REELlibrarian administrator for more information. - USER

TM335 - CRL end of file record failed for vsid = vsid
The Cray/REELlibrarian daemon encountered an error while attempting to
write an end-of-file record for the volume set that has a first VSN/volume
identifier of vsid. Contact the Cray/REELlibrarian administrator for more
information. - USER

TM336 - CRL file section section record missing for filename
The Cray/REELlibrarian daemon could not retrieve file section section record
for the file filename. Contact the Cray/REELlibrarian administrator for more
information. - USER

TM337 - CRL file record not written for filename

184 SG–2051 9.3

Interpreting System Messages [A]

The file record for filename was not written to the catalog because of the errors
encountered during its processing. Contact the Cray/REELlibrarian
administrator for more information. - USER

TM338 - CRL created file section section record for filename
The Cray/REELlibrarian daemon created file section section record for file
filename. This is an informational message. - USER

TM339 - CRL flist call failed for volset volset
The Cray/REELlibrarian daemon could not retrieve the file list for volume set
volset. Contact the Cray/REELlibrarian administrator for more information. -
USER

TM340 - CRL sequence error: seq1 to seq2 on volset
The Cray/REELlibrarian daemon encountered missing sequence numbers for
the volume set volset. The missing sequence numbers are between seq1 and seq2.
Contact the Cray/REELlibrarian administrator for more information. - USER

TM341 - CRL section error: fseq sequence 1st section is section
on volset
The Cray/REELlibrarian daemon encountered file sequence sequence on volume
set volset, which has a first section of section rather than 1. Contact the
Cray/REELlibrarian administrator for further information. - USER

TM342 - CRL section error: sequence to section on volset
The Cray/REELlibrarian daemon encountered a missing file section record for
file sequence sequence on volume set volset at section section. Contact the
Cray/REELlibrarian administrator for further information. - USER

TM343 - CRL fseq sequence end-of-status, not last file on volset
The Cray/REELlibrarian daemon returned a file list, which contained an
end-of-list record that was not the last record in the list. Contact the
Cray/REELlibrarian administrator for further information. - USER

TM344 - CRL no EOT/EOL found for non-empty volset volset
The Cray/REELlibrarian daemon returned a file list, for volume set volset,
which did not contain an end-of-list record. Contact the Cray/REELlibrarian
administrator for further information. - USER

TM345 - CRL hdr1 type val1 found looking for type val2 in volset
volset

SG–2051 9.3 185

UNICOS® Tape Subsystem User’s Guide

A mismatch was encountered in type (sequence or section) between the
expected value (val1) and the value in the file record (val2) for volume set volset.
Contact the Cray/REELlibrarian administrator for more information. - USER

TM346 - CRL file seq gap seq1 to seq2 for volset volset
The Cray/REELlibrarian daemon encountered missing file sequence records for
volume set volset. The missing sequence numbers are between seq1 and seq2.
Contact the Cray/REELlibrarian administrator for more information. - USER.

TM347 - CRL addfrec for seq sequence failed for volset volset
The Cray/REELlibrarian daemon encountered an error while attempting to add
file sequence record sequence for volume set volset. Contact the
Cray/REELlibrarian administrator for more information. - USER

TM348 - CRL expdate conversion error for fseq sequence in
volset volset
An error occurred converting the expiration date for file sequence sequence in
volume set volset. Contact the Cray/REELlibrarian administrator for more
information. - USER

TM349 - CRL fid mismatch: hdr1 = fid1, frec = fid2
A file ID mismatch was encountered between the header1 label file ID (fid1) and
the file record file ID (fid2). Contact the Cray/REELlibrarian administrator for
more information. - USER

TM350 - CRL type mismatch: hdr1 = val1, frec = val2
A mismatch was encountered in the type (generation or version) field between
the header1 label (val1) and the file record (val2). Contact the
Cray/REELlibrarian administrator for more information. - USER

TM351 - CRL volset volset at EOL, file destruction possible,
no write

The Cray/REELlibrarian daemon does not have enough information about
volume set volset to allow your write request. Usually, this error occurs for
imported volume sets. The user should read the entire volume set to
end-of-data to allow the daemon to complete its file list, or, if the write
request is absolutely necessary, to completely disable file tracking for the
volume set. - USER

TM352 - CRL volset volset flags neither EOL or EOT

Volume set volset contains no end-of-list record. Contact the
Cray/REELlibrarian administrator for more information. - USER

186 SG–2051 9.3

Interpreting System Messages [A]

TM353 - CRL write would destroy unexpired files on volset
volset
The write operation you requested will destroy unexpired files that exist on
the volume set volset. - USER

TM354 - CRL scratch volset volset has unexpired file sequence
sequence
The scratch volume set volset contains an unexpired file at sequence number
sequence. Contact the Cray/REELlibrarian administrator for more information. -
USER

TM355 - CRL missing section section for fseq sequence on volset
volset
The Cray/REELlibrarian daemon has encountered missing file section record
section for file sequence sequence on volume set volset. Contact the
Cray/REELlibrarian administrator for more information. - USER

TM356 - CRL eot at fseq seq1 instead of fseq seq2 for volset
volset
The Cray/REELlibrarian daemon encountered the end-of-tape list at sequence
number seq1 instead of seq2 for volume set volset. Contact the
Cray/REELlibrarian administrator for more information. - USER

TM357 - CRL file sequence sequence section section error on
volset volset
While adding a new file record, the Cray/REELlibrarian daemon encountered
file section section for file sequence sequence, which was not the last sequence
number before the end-of-list record. Contact the Cray/REELlibrarian
administrator for more information. - USER

TM358 - CRL hdr1 missing for old file filename on volset volset
No header1 label was found for file filename accessed by the -o option of the
tpmnt (1) command for volume set volset. Contact the Cray/REELlibrarian
administrator for more information. - USER

TM359 - CRL file name syntax error for file id fid
The file ID specified on the tpmnt (1) command contained incorrect CRL file ID
syntax. Correct the parameter specification and reissue the command. - USER

TM360 - CRL volume record not found for -o file id filename

SG–2051 9.3 187

UNICOS® Tape Subsystem User’s Guide

The Cray/REELlibrarian daemon was unable to retrieve the volume record for
file ID filename, which should exist. Contact the Cray/REELlibrarian
administrator for more information. - USER

TM361 - CRL NOFID status in volset volset, fseq sequence is not
PSEUDO

The Cray/REELlibrarian daemon encountered a file record for file sequence
sequence in volume set volset, which had the NOFID status enabled, but did not
have the PSEUDOstatus enabled. This indicates that an unlabeled tape may
have been encountered. Contact the Cray/REELlibrarian administrator for more
information. - USER

TM362 - CRL file id filename not in catalog

The Cray/REELlibrarian daemon was unable to retrieve the file record for
filename from the catalog. Contact the Cray/REELlibrarian administrator for
more information. - USER

TM363 - CRL file id fid already exists in catalog

You attempted to access file fid with the -n option of the tpmnt (1) command,
but this file record already exists. - USER

TM364 - CRL end of file record (fseq = sequence) on volset
volset
The Cray/REELlibrarian daemon encountered an error while attempting to
read the end-of-list file record at file sequence sequence for volume set volset.
Contact the Cray/REELlibrarian administrator for more information. - USER

TM365 - CRL command failed for parameter, terrno = errno
The Cray/REELlibrarian command command failed for parameter parameter with
error number errno. Contact the Cray/REELlibrarian administrator for more
information. - USER

TM366 - CRL volume set name mismatch: vrec = vsname1, tpmnt
= vsname2
The user specified a volume set name with the -S tpmnt (1) option and a list of
VSNs (or volume identifiers) with the -v (-j) option that are members of a
different volume set. Correct either the -S or -v (-j) parameter and reissue the
command. - USER

TM367 - CRL can’t normalize volume set name vsname

188 SG–2051 9.3

Interpreting System Messages [A]

The user specified a volume set name with the-S tpmnt (1) option that CRL
cannot normalize due to syntactical errors. Correct the parameter and reissue
the command. - USER

TM368 - CRL and FES cannot both be enabled

You attempted to enable both Cray/REELlibrarian and front-end servicing by
using the tpset (8) command. - OPERATOR

TM369 - CRL Undefined or ambiguous vsn reference: vsn
The Cray/REELlibrarian daemon was unable to retrieve the volume record for
vsn. Either vsn does not exist, or more than one vsn volume exists. - USER

TM370 - CRL 1st VUX not sent for veronly of vid vid
The verify only volume update request made by the tape daemon did not
have the correct status set for vid vid. Contact the Cray/REELlibrarian
administrator for more information. - USER

TM371 - CRL does not have a unique scratch volume with vsn
vsn
While attempting to read the volume record for vsn to extend a volume set, the
Cray/REELlibrarian daemon encountered an error other than unknown vsn .
Because vsn is not a scratch volume, the mount request will be rejected, and the
mount message will be reissued. Contact the Cray/REELlibrarian administrator
for more information. - USER

TM372 - CRL file id mismatch: request = x, frec = X

TM373 - CRL CRL_NEW_VREC not set for vmf_dex recall

You specified a volume record to be read. No volume record was found, nor
was the volume record read flag set. Contact the Cray/REELlibrarian
administrator for more information. - USER

TM374 - CRL vmf_dex recall error

An error was encountered while attempting to access the volume record for a
scratch CRL submission. Contact the Cray/REELlibrarian administrator for
more information. - USER

TM375 - CRL using VID vid for ambiguous VSN vsn in mount msg

The vsn requested to be mounted is not unique in CRL. The volume ID (vid)
will be used in the operator mount message so the ambiguity is resolved. This
is informational. - USER

SG–2051 9.3 189

UNICOS® Tape Subsystem User’s Guide

TM376 - CRL VID vid has ambiguous vsn and is longer than 6
characters

The external VSN field is only 6 characters. In attempting to use the volume
identifier to resolve ambiguity, it was discovered that the vid is too long to use
as the external VSN. Contact the CRL administrator to resolve the VSN
ambiguity or specify an appropriate external VSN. - USER

TM377 - CRL permission denied for volset object name
The user does not have access permission to the requested object (file, volume,
or volume set).- USER

TM378 - CRL ambiguous filename creation request for filename
A new file creation request was made that could not be completed because the
file name already exists in the catalog. Change the file name specification and
reissue the command. - USER

TM397 - CRL no vsn list for -y Z bypass request

The user has requested to bypass CRL processing but failed to supply a list of
VSNs/volume identifiers to be checked for catalog existence. Add the -v
option to the tpmnt (1) request and reissue the command. - USER

TM398 - CRL found vsn vsn for -y Z request

The user has requested to bypass CRL processing but specified a VSN/volume
identifier that existed in the catalog, causing the request to fail. Re-specify the
VSN/volume identifier list and reissue the command. - USER

TM399 - Bypassing CRL processing for -y Z request

CRL processing is being bypassed as requested. This is informational. - USER

TM400 - program data-structure-1 V version-number-1 is incompatible
with system data-structure-2 V version-number-2, abort program
The program name has been created with data-structure-1 name version
version-number-1. This is incompatible with the data-structure-2 name version
version-number-2 that was used to build the tape daemon. Contact your system
support group to change either one of the components to create a matching set.
- OPERATOR

TM401 - structure name: text discrepency: expected: number;
received: number.
structure name is one of the following: chiolh or chiole . text is one of the
following: quantity or size . number is a decimal number. When the tape

190 SG–2051 9.3

Interpreting System Messages [A]

daemon starts a child process, it delivers a data structure to this process. The
data structure contains the number of data structures that will follow and the
size of each structure. This message indicates that there is a discrepancy either
between the number delivered and the number the child process has calculated
or between the delivered size and the calculated size of one or more data
structures. Contact your system support group to resolve the discrepancy. -
OPERATOR

TM402 - not used

TM403 - Unable to stop IOP iop, cluster cluster (errno = errno)

TM404 - Unable to start IOP iop, cluster cluster (errno = errno)

TM405 - Configuration Table Error: invalid value for
parameter = entry
Configuration file table error with parameter; entry entry is incorrect. -
OPERATOR

TM406 - Unable to add channel channel to IOP iop, cluster cluster
(errno = errno)

The tape subsystem was unable to complete the configuration of the tape
subsystem because it was unable to add channel channel to IOP iop, cluster
cluster; the error returned is errno. Contact your system support staff. -
OPERATOR

TM407 - Unable to add bank bank to IOP iop, cluster cluster
(errno = errno)

The tape subsystem was unable to complete the configuration of the tape
subsystem because it was unable to add bank bank to IOP iop, cluster cluster; the
error returned is errno. Contact your system support staff. - OPERATOR

TM408 - Unable to add slave slave to IOP iop, cluster cluster
(errno = errno)

The tape subsystem was unable to complete the configuration of the tape
subsystem because it was unable to add slave slave to IOP iop, cluster cluster;
the error returned is errno. Contact your system support staff. - OPERATOR

TM409 - Unable to add device device to IOP iop, cluster cluster
(errno = errno)

SG–2051 9.3 191

UNICOS® Tape Subsystem User’s Guide

The tape subsystem was unable to complete the configuration of the tape
subsystem because it was unable to add device device to IOP iop, cluster cluster;
the error returned is errno. Contact your system support staff. - OPERATOR

TM410 - User Exit Function : function : returned : return code
The user exit function function returned return code. This is a site-defined
message. - USER

TM411 - Unable to add channel pair value to IOP iop, cluster
cluster (errno = errno)

The tape subsystem was unable to complete the configuration of the tape
subsystem because it was unable to add channel pair value to IOP iop, cluster
cluster; the error returned is errno. Contact your system support staff. -
OPERATOR

TM412 - TM416 - not used

TM417 - file file, line line at "text", offset offset: Parameter
param is invalid for the IOP type

The parameter, param, is not valid for an IOP of the type being defined. Correct
the parameter and reissue the command. - OPERATOR

TM418 - file file, line line at " text", offset offset: Channel
pair channel1: channel2 has not been defined

The channel pair, channel1:channel2, has not been defined. Define the channel
pair and reissue the command. - OPERATOR

TM419 - file file, line line at " text", offset offset: The input
and output channels must be unique

The same value was specified for both the input channel and output channel
defined for a slave. Unique values must be specified. Correct the channel pair
values and reissue the command. - OPERATOR

TM420 - file file, line line at " text", offset offset: value must be
in the range of lowvalue to highvalue
A value was specified that is not in the range lowvalue to highvalue. Correct the
value and reissue the command. - OPERATOR

TM421 - vendor address needs to be specified for autoloader
tape drive: device name
Specify the autoloader address of the tape drive with the device name specified
by the vendor supplied software for that autoloader. For a Storagetek

192 SG–2051 9.3

Interpreting System Messages [A]

autoloader this address is in the format (acs,lsm,panel,drive), and for the EMASS
autoloader this address is a single number. Contact your system support group
to specify the correct autoloader address for drive name. - OPERATOR

TM422 - line line-number at " char-string", offset char-offset: vendor
address: value1 can not be < value2
A value is specified for value1 in the vendor address that is less than the
minimum boundary, value2, that can be specified for value1 in the vendor
address. Contact your system support group to change the value for value1 to a
number that is larger than value2. - OPERATOR

TM423 - line line-number at " char-string", offset char-offset: vendor
address: value1 can not be > value2
A value is specified for value1 in the vendor address that is greater than the
maximum boundary, value2, that can be specified for value1 in the vendor
address. Contact your system support group to change the value for value1 to a
number that is less than value2. - OPERATOR

TM424 - line line-number at " char-string", offset char-offset: STK
vendor address format: (acs,lsm,panel,drive)

The STK autoloader vendor address has not been specified correctly: more
values were encountered than the four making up the STK autoloader vendor
address. Contact your system support group to specify a correct STK
autoloader address. - OPERATOR

TM425 - file config-file-name, line line-number at " char-string",
offset char-offset: text
Correct the error, text, and run again - OPERATOR

TM426 - file config-file-name, line line-number at " char-string",
offset char-offset: too many items, max = number
More than number of items were specified. Reduce the number of items and
reissue the command - OPERATOR

TM427 - file config-file-name, line line-number at " char-string",
offset char-offset: invalid server name

The server name specified by char-string is invalid. Specify a correct server
name and reissue the command. - OPERATOR

TM428 - file config-file-name, line line-number at " char-string",
offset char-offset: ’ keyword-parameter =’ required in preceeding
statement

SG–2051 9.3 193

UNICOS® Tape Subsystem User’s Guide

The keyword-parameter is required in the preceding statement. Specify the
keyword parameter and reissue the command. - OPERATOR

TM429 - file config-file-name, line line-number at " char-string",
offset char-offset: name too long, max = number
The name char-string is too long. The maximum length is number. Reduce
length of name and reissue the command. - OPERATOR

TM430 - file config-file-name, line line-number at " char-string",
offset char-offset: already defined

The parameter char-string has already been defined. Remove this instance of the
parameter and reissue the command. - OPERATOR

TM431 - file config-file-name, line line-number at " char-string",
offset char-offset: must specify full pathname

The char-string is expected to be a full path name and it is not. Specify a full
path name and reissue the command. - OPERATOR

TM432 - file config-file-name, line line-number at " char-string",
offset char-offset: invalid device id, max = number
The device ID specified by char-string is greater than number. Specify a device
ID less than or equal to number. - OPERATOR

TM433 - file config-file-name, line line-number at " char-string",
offset char-offset: item not defined

The item specified by item has not been defined. Add the definition of item. -
OPERATOR

TM434 - file config-file-name, line line-number at " char-string",
offset char-offset: servicing frontend and cray reel librarian
are mutually exclusive

Servicing front end and Cray/REELlibrarian may not be active at the same
time. Select one or the other. - OPERATOR

TM435 - file config-file-name, line line-number at " char-string",
offset char-offset: incorrect length, expected length = number
The length of char-string is not number. Re-specify the char-string. - OPERATOR

TM436 - file config-file-name, line line-number at " char-string",
offset char-offset: incorrect message type

194 SG–2051 9.3

Interpreting System Messages [A]

Message type char-string is not correct. Specify correct message type. -
OPERATOR

TM437 - file config-file-name, line line-number at " char-string",
offset char-offset: cannot locate loader ’ loader’
The loader loader is not defined. Define loader before referencing it. -
OPERATOR

TM438 - binary config file " file" not created because of
previous error

The binary file file is not created because of previous error. Correct previous
error and reissue the command. - OPERATOR

TM439 - file config-file-name, line line-number at " char-string",
offset char-offset: controller on the wrong type of iop

The controller defined by char-string cannot be attached to the IOP being
processed. Check the configuration file and the hardware connection to make
sure that the hardware configuration is correct. - OPERATOR

TM440 - file config-file-name, line line-number at " char-string",
offset char-offset: unknown iop type

The IOP type specified is unknown to the tape system. - OPERATOR

TM441 - binary tape config record version mis_match. Use
correct version of tpconf to rebuild binary config file.

The binary configuration file version does not match that of the tape demon.
Rebuild the binary configuration file using the tpconf (8)command and restart
tape demon. - OPERATOR

TM442 - Cannot configure a device of this type

The device specified in the tpconfig (8) command refers to a diagnostic device
that cannot be configured up or down. - OPERATOR

TM443 - maximum device exceeded, only number out of max
devices defined in " file" are configured

The number of devices defined in the configuration file, file, is greater than the
number, max, specified by the TAPE_MAX_DEVparameter in the boot parameter
file. Only the first number devices are configured in the tape system. Increase
the value of TAPE_MAX_DEVor decrease the number of devices defined or do
both. - OPERATOR

TM444 - can’t stat file filename, errno = errno

SG–2051 9.3 195

UNICOS® Tape Subsystem User’s Guide

TM445 - file config-file, line line-number at " text", offset off-set :
invalid channel address

Channel address text in the configuration file config-file, line line-number,
character offset, is invalid. Acceptable values are 030, 032, 034, and 036. - USER

TM446 - file config-file, line line-number at " text", offset off-set :
bank number already defined

Bank number text in the configuration file config-file, line line-number, character
offset, has already been specified or used. Specify a unique bank number. - USER

TM447 - file %s, line %d at "%s", offset %d : invalid bank
number"

TM448 - file config-file, option at line line-number ignored - this
option has been replaced by the permbit
"PERMBITS_BYPASSLABEL" in the udb.

The option at line line-number in the configuration file config-file is no longer
used in the tape daemon. It has been replaced by the permbit
PERMBITS_BYPASSLABELin the user database. - OPERATOR

TM449 - file config-file, line number at text, offset number: iscp
interface no longer supported

In the tape configuration file called config-file at line number is the following text
that describes the USCP option: text. number is the offset in the text.

This message informs the user that the USCP references in the configuration file
are not longer valid. - USER

TM450 - The string1 command is only valid for string2 devices

A command was issued to a device not supporting that command. Recheck
your command or device and reissue. - USER

TM451 - Density value is not valid for device type type
A density value value was specified with the -i option of the tpmnt (1)
command. A density cannot be specified for the device type type. - USER

TM452 - Release and reissue rsv for the correct device type.
See tape message file for correct device type

A request was issued that is not valid for the device type. Release the current
tape resource and reissue the rsv (1) command, specifying a device type that is
valid for the requests that are to be issued. - USER

196 SG–2051 9.3

Interpreting System Messages [A]

TM453 - The -D option is not valid for a device with avr

The -D option of the tpmnt (1) command was used to request that a volume be
mounted on an AVR device. It is not valid to specify an AVR device with the
-D option. - USER

TM454 - Asynchronous event " event" received on channel channel,
control unit control unit

TM455 - Channel channel configured down due to asynchronous
event " event"

TM456 - Control Unit control unit configured down due to
asynchronous event " event"

TM457 - Device device configured down due to " event" event

TM458 - WARNING. file config-file, device device-name: channel
octal-channel-number specified as DOWN: control unit
(octal-channel-number, decimal-controller-address) downed.

A conflict has been detected within tape configuration file config-file, such that
the status of the channel with channel number octal-channel-number for a
channel/control unit combination has been specified as DOWN, but the status of
the control unit with control unit address octal-channel-number,
decimal-controller-address has been specified as UP. This combination prompts the
software to configure octal-channel-number, decimal-controller-address as DOWN. -
OPERATOR

TM459 - WARNING. file config-file, device device-name: text DOWN:
device device-name downed.

A conflict has been detected within tape configuration file config-file, such that
the status of tape device with device name device-name has been specified as UP,
while the status of all channels that have been specified in the config-file and all
control units that have been specified in the config-file for this tape device
have a status of DOWN.

The status of these components being DOWNcould be the result of the software
having configured channels DOWNor that tape configuration file config-file has
these components specified with a status of DOWN. As a result, the software has
configured the tape device with device name device-name DOWN. The variable
text could read its channel is or all its channels are. The choice is dependent on
whether one channel or all channels for a tape drive have been configured
DOWN. - OPERATOR

SG–2051 9.3 197

UNICOS® Tape Subsystem User’s Guide

TM460 - file file, line line at " text", offset offset: invalid
address address, 0 xXX - valid range is low - high

TM461 - file file, line line : previous control unit has an
invalid protocol for corresponding channel adaptor or IOP
type

TM462 - file file, line line : previous device has an invalid
type for corresponding channel adaptor or IOP type

TM463 - file file, line line : previous channel adaptor and
IOP type combination are not valid

TM464 - Process process aborted with error error

TM465 - Device must be down to change Device Group Name.

The device cannot be reassigned a device group name unless it is in a down
state. The tpconfig (8) request has been terminated. Configure the device
down and reissue the command. - USER

TM466 - The tape daemon is active or the tape subsystem is
being configured

A tpdaemon (8) or tpinit (8) command did not complete because either the
tape daemon is already active or a previous tpinit (8) command is pending.
Wait for the tape subsystem configuration processing to complete or stop the
tape daemon with the tpdstop (8) command. - OPERATOR

TM467 - Unable to open the file, /dev/bmxdem, needed to
configure the tape subsystem (errno = errno)

A tpdaemon (8) or tpinit (8) command cannot open the file used to
communicate the tape subsystem configuration to the kernel and I/O
processors; the error returned is errno. Contact your system support staff. -
OPERATOR

TM468 - Unable to remove the old tape device files from
directory directory (errno = errno)

A tpdaemon (8) or tpinit (8) command cannot remove the old tape device files
found in the directory directory; the error returned is errno. Contact your system
support staff. - OPERATOR

TM469 - Unable to remove directory directory (errno = errno)

198 SG–2051 9.3

Interpreting System Messages [A]

The directory directory could not be removed; the error returned is errno. Check
to see whether you have the correct permissions for removing the directory
directory. - OPERATOR

TM470 - Unable to modify the permissions for
[file|directory] file| directory (errno = errno)

The permissions of a file or directory could not be modified; the error returned
is errno. Contact your system support staff. - OPERATOR

TM471 - Exceeded the maximum number of tape devices allowed

The number of tape device files defined in the tape configuration file exceeds
the limit specified in the boot parameter file with the TAPE_MAX_DEV
parameter. This parameter must specify a value that is the sum of all real tape
devices, the number of tape I/O processors (IOPs), and the total number of
channels. Either increase the value specified with the TAPE_MAX_DEV
parameter and reboot your system or remove IOP, channel, or device definitions
from your tape configuration file. - OPERATOR

TM472 - Unable to obtain the status of file file (errno =
errno)

The status of the file file could not be obtained; the error returned is errno.
Contact your system support staff. - OPERATOR

TM473 - File file has an invalid length of length
The length of the file file is not valid. Contact your system support staff. -
OPERATOR

TM474 - Cannot configure [control unit|slave] cu [up|down]
on channel channel, cluster cluster iop iop, because there is no
path to the [control unit|slave]

A request to modify the state of the control unit or slave, cu, configured on the
channel channel, the cluster cluster iop iop, failed because there is no path to the
control unit or slave. A path exists if the channel in which the control unit or
slave is attached is configured up. Configure channel channel up by using
command tpconfig (8) or specify the channel state as UP in the tape
configuration file before configuring the tape subsystem. - OPERATOR

TM475 - Unable to configure [control unit|slave] cu
[up|down] on channel channel cluster cluster iop iop (errno =
errno)

SG–2051 9.3 199

UNICOS® Tape Subsystem User’s Guide

A request to modify the state of the control unit or slave, cu, configured on the
channel channel, the cluster cluster iop iop failed; the error returned is errno.
Contact your system support staff. - OPERATOR

TM476 - A error-description error was detected on the request to
configure [control unit|slave] cu [up|down] on channel channel
cluster cluster iop iop
A error-description error was detected on the request to modify the state of the
control unit or slave, cu, configured on the channel channel, cluster cluster iop
iop. Contact your system support staff. - OPERATOR

TM477 - Cannot configure [control unit|slave] cu [up|down]
on channel channel, cluster cluster iop iop, because the [control
unit|slave] or path is error-description
A request to modify the state of the control unit or slave, cu, configured on the
channel channel, the cluster cluster iop iop failed because there is a hardware
problem, described by error-description, with the control unit or slave or with the
path to the control unit or slave. Contact your system support staff. -
OPERATOR

TM478 - Unable to configure channel channel [up|down] on
cluster cluster iop iop (errno = errno)

A request to modify the state of the channel channel, on the cluster cluster iop
iop failed; the error returned is errno. Contact your system support staff. -
OPERATOR

TM479 - Cannot configure channel channel [up|down] on cluster
cluster iop iop because the channel is error-description
A request to modify the state of the channel channel configured on cluster cluster
iop iop failed because there is a channel hardware problem described by
error-description. Contact your system support staff. - OPERATOR

TM480 - A error-description error was detected on the request to
configure [control unit|slave] cu [up|down] on channel channel
cluster cluster iop iop
A error-description error was detected on the request to modify the state of the
channel channel on cluster cluster iop iop. Contact your system support staff. -
OPERATOR

TM481 - Cannot configure channel channel down on cluster cluster
iop iop because devices attached to the channel are
configured up

200 SG–2051 9.3

Interpreting System Messages [A]

A request to configure the channel channel down on the cluster cluster iop iop
failed because a control unit or device attached to the channel is configured up.
Configure down all control units and devices that are attached to the channel
and retry the request. - OPERATOR

TM482 - An invalid cluster or iop number was specified in
the configuration file

Either the I/O processor (IOP) number specified in the tape configuration file is
not within the valid range for IOP numbers, 0 through 4, or the cluster number
specified is less than 0 or does not exist on the booted system. Correct the
cluster or IOP number specified and reissue your request. - OPERATOR

TM483 - The tape subsystem must be configured before
starting the tape daemon

The tpdaemon (8) command failed because the tape subsystem has not been
configured. Configure the tape subsystem by using the tpinit (8) command or
reissue the tpdaemon (8) command without the -b option. - OPERATOR

TM484 - Cannot reconfigure the tape subsystem when a tape
device is open

The tape subsystem could not be reconfigured because a tape device file is
open. Wait for the tape device file to be closed and then reissue the
configuration request. - OPERATOR

TM485 - Unable to read system [table|variable] table-or-variable
(errno = errno)

The system variable or table, table-or-variable, could not be read; the error
returned is errno. Contact your system support staff. - OPERATOR

TM486 - Unable to set the effective user ID of command to
root (errno = errno)

The effective user ID of the command command could not be set to root; the
error returned is errno. Contact your system support staff. - OPERATOR

TM487 - unable to set overcommit option: reason
Overcommitted mount requests cannot be enabled by the -O option on the
tpset (8) command because of one of the following reasons: avr not active
or manual or auto loaders in device group. The avr not active
message means automatic volume recognition (AVR) must be active in order for
you to enable overcommitted mount requests. The auto loaders in device
group message means you can only apply this option to device groups for

SG–2051 9.3 201

UNICOS® Tape Subsystem User’s Guide

which the tapes are loaded manually. If the tapes for some devices are loaded
manually and other by autoloaders, the option cannot be enabled. - OPERATOR

TM488 - overcommit active and device group cannot have an
autoloader

The tpconfig (8) command is not allowed to change the loader or the device
group name of a device because doing so will allow a device using an
autoloader to join a device group which has overcommitment turned on. -
OPERATOR

TM489 - waiting for overcommitted mount requests to complete

The tape subsystem has issued the maximum number of overcommitted mount
requests allowed. The system is queuing the tpmnt (1) command that you
entered until an operator reduces the number of overcommitted mount requests
by responding to some of them. - OPERATOR

TM490 - AVR cannot be turned off because overcommit is
active

AVR - OPERATOR

TM491 - file filename, line number at text, offset number: value
of overcommit_max must be greater than 0 and less than value
AVR - OPERATOR

TM492 - TM995 - not used

TM996 - Process %d has open tape device and can’t be killed

The tape subsystem is attempting to remove an active user and cannot kill the
process that opened the tape file. - OPERATOR

TM997 - Process %d exited , killing related pidsG with %s

The tape subsystem has detected the exit of the user process that owns the open
tape file. It is attempting to kill any related processes. - OPERATOR

TM998 - tape subsystem terminating, request denied

A request was terminated because the tape subsystem is in the shutdown
process. Reissue the request after the tape subsystem has been brought up. -
USER

TM999 - tape subsystem busy, tape daemon termination pending

202 SG–2051 9.3

Interpreting System Messages [A]

The tape subsystem is terminating and has found an active user; this delays the
termination.- OPERATOR

SG–2051 9.3 203

Tape Daemon Return Values [B]

This appendix lists the following return values for the UNICOS tape subsystem:

• Tape daemon return values

• Tape positioning return values

B.1 Tape daemon return values

Table 4 lists the tape daemon error and information return values for the tape
subsystem user commands and requests.

Table 4. Tape daemon return values

Error code
Error
number Description

ETBFN 90000 Block finished

ETDTR 90001 Data transferred

ETTMS 90002 Tape mark status

ETLBK 90003 Large block error

ETLSD 90004 Lost data

ETUDE 90005 Unrecoverable data error

ETNWR 90006 No write ring on tape

ETBOT 90007 Beginning-of-tape

ETEOT 90008 End-of-tape

ETNDY 90009 Not ready

ETRST 90010 Reset hit on tape device

ETNOP 90011 Not operational

ETNCP 90012 Not capable

ETWFE 90013 Write format error

ETBTP 90014 Blank tape detected

SG–2051 9.3 205

UNICOS® Tape Subsystem User’s Guide

Error code
Error
number Description

ETBRQ 90015 Bad request

ETUKN 90016 Unknown status

ETFSQ 90017 Bad file sequence number

ETLBL 90018 Bad label structure

ETILC 90019 Incorrect label conversion

ETNAS 90020 Device not assigned

ETINT 90021 Interrupt

ETXPD 90022 File not expired

ETSYS 90023 Tape system error

ETRSLT 90024 Reselect another device

ETRMT 90025 Remount tape

ETFID 90026 File not on tape

ETNDV 90027 No device allocated

ETNSU 90028 No such user

ETSRP 90029 Send reply error

ETSRQ 90030 Send request error

ETDCE 90031 Daemon communication error

ETTOE 90032 Tape open error

ETTOME 90033 Operator error message

ETCPE 90034 Create process error

ETEXE 90035 exec (2) error

ETNVS 90036 No volume identifier given

ETBRP 90037 Bad reply from tape daemon

ETPRM 90038 Parameter error on command

ETMRPP 90039 Make reply pipe error

ETORQ 90040 Open request pipe error

ETWRQ 90041 Write request error

206 SG–2051 9.3

Tape Daemon Return Values [B]

Error code
Error
number Description

ETGRP 90042 Get reply error

ETBFZ 90043 Buffer size error

ETRRP 90044 Read reply error

ETTMO 90045 Time out

ETGRQ 90046 Get request error

ETMRQP 90047 Make request pipe error

ETRRQ 90048 Read request error

ETUSR 90049 User error

ETOPN 90050 Open error

ETACC 90051 Cannot access file

ETDVR 90052 Bad device range

ETMKN 90053 Make node error

ETCHO 90054 chown error

ETRSV 90055 Already reserved resources

ETOMN 90056 File section greater than number of volumes

ETPIU 90057 Path name already in use

ETIDN 90058 Invalid device name

ETIDG 90059 Invalid device group name

ETNRS 90060 Device not reserved

ETBUSY 90061 Tape daemon working on previous request

ETWDV 90062 Waiting for device

ETMUSR 90063 Maximum users exceeded

ETPNF 90064 Path not found

ETDLK 90065 Possible deadlock

ETENS 90066 EOV processing not selected

ETRLSP 90067 Release is pending

ETEOF 90068 Reached end-of-file

SG–2051 9.3 207

UNICOS® Tape Subsystem User’s Guide

Error code
Error
number Description

ETIOA 90069 I/O still active

ETTMNA 90070 Tape mark not allowed

ETBOF 90071 Beginning-of-file status

ETOFF 90072 Bad offset

ETENA 90073 EOV not active

ETJLX 90074 Job limit exceeded

ETFESE 90075 Front-end servicing error

ETFESR 90076 Front-end servicing request rejected by front end

ETEINV 90077 Invalid value for EOV

ETESNW 90078 Sync requested to flush invalid output buffers

ETNFE 90079 Front-end servicing not turned on

ETNPD 90080 No path to configure element up

ETCCD 90081 Not all lower elements are configured down

ETUSCP 90082 Bad status from USCP

ETNPC 90083 No path to concatenate

ETOPAB 90084 Operator aborted mount

ETNMF 90085 No mainframe for front-end servicing

ETNTOP 90086 Not operational

ETNTAV 90087 Not available

ETNOLIST 90088 Not using list I/O

ETNSC 90089 Not a scratch tape

ETCCN 90090 Cannot concatenate a new or appended file

ETIOS 90091 Not the same IOS

ETEXIST 90092 Path name exists

ETNOEOT 90093 For user end-of-volume processing; beginning
EOV was requested, but user is not at end-of-tape

ETRPCF 90094 RPC failure

ETMVL 90095 Volume limit exceeded

208 SG–2051 9.3

Tape Daemon Return Values [B]

Error code
Error
number Description

ETALC 90096 Unable to allocate space

ETNRSV 90097 Unable to reserve resources

ETDASN 90098 Device is already assigned

ETMNF 90099 Microcode file specified in configuration file not
found

ETRDF 90100 Read error on tape file

ETIDEN 90101 Density not valid with non-round tape device
group

ETUERR 90102 User error. The tape file must be closed

ETLMER 90103 Load microcode error on an IOS-E

ETRMERR 90104 Read microcode error on an IOS-E

ETNOTALLOWED90105 Requested operation is not allowed

ETBLKSZ 90106 Invalid maximum block size requested on tpmnt

ETBLPRNG 90107 Invalid blp - ring option combination

ETMEDIA 90108 Media compatibility error

ETLOADF 90109 Load failure

ETRETRY 90110 Retry mount

ETSTAPE 90111 Short tape

ETPART 90112 A partition number is only valid for ER90
volumes

ETFMTID 90113 A format ID only valid for ER90 volumes

ETSYSZ 90114 Volume can only be left at mount position if it is
an ER90 volume

ETR90BSZ 90115 Invalid ER90 block size

ETR90BSZI 90116 ER90 block size is not increment of eight

ETFMTVAL 90117 Format ID validation is only valid for ER90
cassettes

ETUEX 90120 Error in user exit

ETIDT 90121 Invalid device type

SG–2051 9.3 209

UNICOS® Tape Subsystem User’s Guide

Error code
Error
number Description

ETQRY 90122 Not all VSNs in domain of active autoloader; see
tpquery (1)

ETIOPERR 90250 EIOP error

ETDEVBUSY 90251 Device is busy

ETIPCONN 90252 IPI connection failure

ETSHPI 90253 S-HIPPI controller failure

ETHPCONN 90254 HIPPI connection failure

ETHPTRNS 90255 HIPPI transmission failure

ETHPDATA 90256 HIPPI data validation error

ETHPREQ 90257 Invalid HIPPI request

ETNCRL 90300 CRL not enabled

ETVMFE 90301 CRL error

ETBFE 90302 FES selected, CRL enabled

ETILT 90400 Invalid loader index

ETLDR 90401 Loader availability error

ETSCPE 90402 Station Call Processor error

ETNDN 90403 Device not down

ETIST 90404 Invalid state for loader type

ETWVSN 90405 Waiting for volume identifier

ETNPM 90406 Volume identifier request rejected by userexit

ETNLP 90407 No stknet process for ldr

ETCSLD 90408 Cassette is loaded

ETVLLD 90409 Volume is loaded

ETTPERR 90410 Media problem

ETEOR 90411 End of recording detected

ETLGPS 90412 Logical position not established

ETEOM 90413 End of media detected

ETSYSTEM 90414 Driver error

210 SG–2051 9.3

Tape Daemon Return Values [B]

Error code
Error
number Description

ETDEVERR 90415 Device error

ETFORMAT 90416 Volume format not supported

ETFTYPE 90417 Invalid file type

ETNOCAS 90418 Cassette not loaded

ETTPADDR 90419 Invalid tape address

ETDEVHNG 90420 Device is hung

ETBLKDIF 90421 Blocks must be same size within a file for ER90
volumes

ETPOSACC 90422 Position cannot be accessed

ETNDG 90423 Device is not down for group reassignment

ETTERM 90499 Tape daemon terminating

B.2 Return values for tape positioning

Table 5 lists, in the pos_rc field, the tape daemon return values that relate to
tape positioning requests. Table 5 is a subset of Table 4, page 205.

Table 5. Tape positioning return values

Error code
Error
number Description

ETTMS 90002 Tape mark status

ETBOT 90007 Beginning-of-tape

ETLBL 90018 Bad label structure

ETNVS 90036 No volume identifier

ETEOF 90068 Hit EOF

ETTMNA 90070 Tape mark not allowed

ETBOF 90071 Beginning of file status

ETOFF 90072 Bad offset

SG–2051 9.3 211

Man Pages [C]

Detailed man-page descriptions of the following user commands and utilities
associated with the tape subsystem are available online. Use the man(1)
command to access the individual man pages.

• User commands

msgi (1)

msgr (1)

mt(1B)

rls (1)

rsv (1)

tpcatalog (1)

tpmnt (1)

tpquery (1)

tprst (1)

tpstat (1)

xtpldr (1)

SG–2051 9.3 213

Index

A

ACPTBAD routine, 60, 63
ANSI standard labels, 17
Architecture, 4
assign command

COS blocking mode, 80
foreign data conversion, 58
Fortran applications, 68
Fortran procedures, 47, 59, 68

tape marks, 45
processing class, 76
usage, 43

Autoloaders, 3

B

Bad data, 60
Basic tape procedures, 27
Block size definition, 2
Blocked file section definition, 92
Blocks

identifiers, 132
length, 22
read/write (maximum), 92
tape positioning, 46

Buffered I/O, 93
Bypass-label processing definition, 6
Byte stream file definition, 92

C

C applications
writing programs, 83, 124

C examples
ctl_extsts structure, 110
ctl_rdlog structure, 115
data block size, 118

dmn_comm structure, 120
ER90 devices, 95–97
executing cexam2.c, 87
flexible file I/O usage, 84
IBM compatible devices, 95, 97
library routine usage, 84
reading tape files, 95, 96
reading transparent buffered I/O, 93
sunchronizing your program with a tape, 120
tape information table header, 98
tape information table usage, 99
TPC_EXTSTS request, 111, 113
TPC_RDLOG request, 115, 117
TR_INFO request, 102, 106
writing a tape files, 97
writing tape files, 97
writing transparent buffered I/O, 94

Cassettes, 24
cd command, 36, 37
CDC data types, 52
CDC2CRAY routine, 53
cf77 command, 43, 45, 47, 54, 59, 71, 74, 78, 80
cf77command, 68
Character-special tape interface, 3, 123
CHECKTP routine, 66
CLOSE statement, 64
close(2) system call, 5
CLOSEV routine, 66
Closing files, 124
Closing tapes, 27
command, 78
Commands

assign
COS blocking mode, 80
Fortran applications, 80
Fortran procedures, 43, 47, 49, 51, 54, 59,

68, 71, 74
processing class, 76
tape marks, 45

SG–2051 9.3 215

UNICOS® Tape Subsystem User’s Guide

cd, 37
cf77, 43, 45, 47, 54, 59, 68, 71, 74, 78, 80
cp, 34, 38
cpio, 37
dd, 35
man command, 27
man pages, 213
msgi, 33, 213
msgr, 33, 213
mt, 213
qsub, 29
rls

basic procedure, 27, 33
contents display, 31
Fortran applications, 44, 46, 47, 54, 59, 68,

71, 74, 77, 78, 81
man page, 213
tutorial procedures, 35–40

rsv, 213
basic procedure, 27
contents display, 31
Fortran applications, 46, 48, 51, 54, 58, 68,

71, 74, 78, 80
tape log, 32
tutorial procedures, 34–37, 39

rsv(1)
Fortran applications, 43

rvs
Fortran applications, 45

segldr, 78
target, 38
tpcatalog, 213
tpformat, 27
tplist, 31, 213
tpmnt, 213

basic procedure, 27, 33
concatenated files, 37
contents display, 31
ER90 devices, 40
Fortran applications, 45, 47, 49, 51, 54
multifile tapes, 38
tape formats, 11
tutorial procedures, 34–38

tpmnt(1)

creating tapes, 17
Fortran applications, 43
man page, 213
system buffering, 8

tpquery(1), 213
tprst, 30
tprst(1), 213
tpstat, 27, 30

Communications, 6
Computer systems, 3, 91
Concatenated tape files

EOV status, 7
tpmnt command, 37

Copying files
disk files, 34, 35

COS blocking mode, 80
cp command, 34, 38
cpio command, 37
CRAY J90se series, 92
Cray Research systems, 3, 91
CRAY2CDC routine, 53
CRAY2IBM routine, 53
CRAY2IEG routine, 53
CRAY2NVE routine, 53
CRAY2VAX routine, 53
ctl_extsts structure, 110
ctl_rdlog structure, 115

D

Data conversion, 52
Data types, 52
dd command, 35
Default tape formats, 25
Definitions, 2, 6, 25, 92
Device group definition, 2
Device name definition, 2
Device type definition, 2
Devices, 3
Diagrams, 4, 11, 132
Directives

#define MAXPATH, 101

216 SG–2051 9.3

Index

#define TR_INFO, 106
#define U_REQPIPE, 101
#define USER_DIR, 101

dmn_comm structure, 119

E

End-of-tape detection, 5
End-of-volume processing, 66
ENDSP routine, 66
Environment variables, 101
EOF1 labels, 13, 16, 19
EOF2 labels, 13, 17, 21
EOV processing, 7, 86, 118
EOV1 labels, 13, 16, 19
EOV2 label, 17
EOV2 labels, 13, 21
ER90 devices, 24, 27, 40, 76, 91, 92
Error-handling routines, 60
Errors

hardware error codes, 146
I/O request codes, 125
messages, 149

Examples, 44
(See also C examples), 84
creating a tape, 28
new files, 29
NQS tape job, 29
reading tape files, 28
tape.msg listing, , 33
tplist status display, 32
tprst status display, 30
tpstat status display, 31

Explicit data conversion, 52
External ID definition, 3

F

ffbksp(3) routine, 83
ffclose(3) routine, 83
fffcntl(3) routine, 84, 86
ffopen(3) routine, 83

ffpos(3) routine, 84, 86
ffread(3) routine, 83
ffseek(3) routine, 83
ffweof(3) routine, 83
ffwrite(3) routine, 83
File identifier definition, 2
Files

(See character-special tape), 124
Flexible file I/O (FFIO), 9

C programs, 83
Foreign data conversion, 52
Format ID definition, 3
Format IDs, 25
Formats, 11
Fortran applications, 43
Fortran examples

ACPTBAD routine, 62
block positioning, 47
converting foreign data, 58
COS blocking mode, 80
EOV processing, 68
IBM format conversion, 54
ISHELL routine, 64
mixed data types, 57
reading a multivolume file, 73
reading tape marks, 46
SETTP positioning, 52
SETTPpositioning, 50
SKIPBAD routine, 60
unknown number of records, 56
unlabeled tapes, 44
using EOV processing when writing a tape

file, 71
using pure data mode, 77
writing tape marks, 46

Front-end
catalog, 38
servicing, 7

Front-end servicing, 37

SG–2051 9.3 217

UNICOS® Tape Subsystem User’s Guide

G

GETPOS routine, 77
GETTP routine, 68
GigaRing support, 3

H

Hardware, 3
Hardware error codes, 146
HDR1 labels, 13, 16, 19
HDR2 labels, 13, 16, 21

I

I/O
C applications, 91
flexible file I/O, 83
usage, 124

IBM compatible devices
processing, 43

IBM compatible tape devices, 91
IBM compatible tape format, 11
IBM data types, 52
IBM standard labels, 17
IBM2CRAY routine, 53
IEEE data types, 52
IEG2CRAY routine, 53
Implicit data conversion, 52, 58
ioctl system call

requests, 109, 123
TPC_DMN_REQ request, 119
TPC_EXTSTS request, 109
TPC_RDLOG request, 109, 117
TPC_SDBSZ request, 118

ioctl(2) system call
TPC_ACKERR request, 93
TPC_SDBSZ request, 92

ioctl) system call
TPC_RDLOG request, 115

IOS Model E (IOS-E), 3
ISHELL routine, 64

J

Job ID definition, 2

L

Label support, 6
Label type definition, 2
Label types, 17
Library routines, 83

EOV processing, 66
ffbksp(3), 83
ffclose(3), 83
fffcntl(3), 84, 86
ffopen(3), 83
ffpos(3), 84
ffseek(3, 83
ffweof(3), 83
ffwrite(3), 83

Loaders, 3
Log files, 32
Logical volumes, 25

M

MAC label, 40
man command, 27
Man pages, 213
Management applications, 123
Mandatory access control label, 40
Messages

error, 149
operator, 33
system, 149

mknod system call, 101
Mounting tapes, 27
msgi command, 33
msgicommand, 213
msgr command, 33, 213
mt command, 213
MTBSF operation code, 131, 130

218 SG–2051 9.3

Index

MTBSR operation code, 131, 130
MTCLRLOG operation code, 130, 131
MTEXTS operation code, 130, 138
MTFMT operation code, 130, 139
MTFSF operation code, 131, 130
MTFSR operation code, 131, 130
MTGABS operation code, 132, 130
MTGFMT operation code, 130, 141
MTGPOS operation code, 130, 134
MTIOCACKERR request, 126
MTIOCATTR request, 126
MTIOCGET request, 126, 127
MTIOCTOP request, 126, 129
MTMSG operation code, 130, 146
MTOFFL operation code, 131, 130
MTPABS operation code, 132, 130
MTRDLOG operation code, 130, 131
MTREW operation code, 131, 130
MTSEEK operation code, 130, 137
MTSYNC operation code, 131, 130
MTTRACE operation code, 130, 145
MTVERIFY operation code, 130, 144
MTWEOF operation code, 131, 130
Multifile tapes

multivolume, 14
single-volume, 14

Multifile volume allocation, 7, 38
Multilevel security

MLS considerations, 27
references, 9

Multiple tape files, 37

N

Nonlabeled tapes
definitions, 6
formats, 11

NOS/VE data types, 52
NVE2CRAY routine, 53

O

open(2) system call, 5
Opening files, 124
OPTIONS statement, 41
Owner ID field, 17

P

Partition definition, 25
Path name definition, 2
Performance, 7
Pipes, 5
Positioning, 6, 46
Pure data mode, 77

Q

qsub command, 29

R

read system call, 9
read(2) system call, 93, 95
Reading tape files, 37, 38, 43, 74
Reading tapes, 27, 37
Record length definition, 2
Recovery routines, 60
Releasing tapes, 27
Reserving tapes, 27
Return values

tape daemon, 205
tape positioning, 205, 211

rls command
man page, 213

rls command
basic procedure, 27, 33
contents display, 31
Fortran applications, 44, 46, 47, 54, 59, 68,

71, 74, 77, 78, 81

SG–2051 9.3 219

UNICOS® Tape Subsystem User’s Guide

tutorial procedures, 35–40
rsv command

basic procedure, 27
contents display, 31
Fortran applications, 45, 46, 48, 51, 54, 58,

68, 71, 74, 78, 80
Fortran procedures, 74
tutorial procedures, 34–37, 39

rsv(1) command
Fortran applications, 43

rsvcommand, 213
tape log, 33

S

Security, 27
segldr, 78
SETPOS routine, 77
SETPOS(3) routine, 67
SETSP routine, 66
SETTP routine, 48, 51, 77
Single tape mark format, 12
Single tape mark format definition, 6
SKIPBAD routine, 60
SKIPF routine, 77
Standard level field, 17
Standard UNICOS commands

(See UNICOS commands), 34
STARTSP routine, 66
Status

tape information, 27, 109
tplist command, 31
tprst command, 30
tpstat command, 30

System call I/0, 91
System calls, 93
System messages, 149
System zone definition, 25

T

table header, 98

Tape daemon return values, 205
Tape daemon-assisted interface, 3
Tape daemons

requests, 101
Tape devices, 92
Tape formats, 11
Tape information requests, 98
Tape information table, 98
Tape interfaces, 3, 123
Tape manipulations, 123
Tape marks, 11, 45
Tape performance, 7
Tape positioning

Fortran applications
block positioning, 46
SETTP routine, 48, 51

processing positioning, 40
return values, 205, 211

Tape subsystem features, 4
Tape usage

basic procedures, 27
creating a tape, 28
new files, 29
NQS tape job, 29
reading tape files, 28
tape status, 30
tutorial, 27

tape.msg file, 32
target command, 38
Terminology, 2
$TMPDIR environment variable, 101
TPC_ACKERR request, 93
TPC_DMN_REQ request, 119
TPC_EXTSTS request, 109, 111, 113
TPC_RDLOG request, 109, 115, 117
TPC_SDBSZ request, 92, 118
tpcatalogcommand, 213
tpdaemon command, 123
tpformat command, 27
tplist command, 31
tplistcommand, 213
tpmnt command

basic procedure, 27, 33

220 SG–2051 9.3

Index

contents display, 31
ER90 devices, 40
Fortran applications, 43, 45, 47, 49, 51, 54, 80
multifile tapes, 38
tape formats, 11
tutorial procedures, 34–38

tpmnt(1) command
creating tapes, 17
man page, 213
system buffering, 8

tpmnt) command
concatenated files, 37

tpmntcommand, 213
tpquery(1) command, 213
tprst command, 30
tprst(1) command, 213
tpstat command, 27, 30
TR_INFO request, 102, 106
Transparent I/O

buffered I/O, 93
unbuffered I/O, 94
usage, 92

Tutorial, 27

U

Unbuffered blocked requests, 94

Unbuffered byte streams, 94
Unbuffered I/O, 94
UNICOS commands, 27, 34
UNICOS tape subsystem features, 4
UNIX commands, 123
User commands, 213
User EOV processing, 7

V

VAX/VMS data types, 52
VAX2CRAY routine, 53
VOL1 labels, 13, 16, 17
Volume ID definition, 2
Volume ID field, 17
Volume serial number, 77
VSN, 77

W

write system call, 9
write(2) system call, 5, 93
Writing tape files, 43, 71
Writing tapes, 27, 37

SG–2051 9.3 221

