
Cray Research, Inc.

Remote Procedure Call (RPC)
Reference Manual

SR–2089 9.0

__

Copyright 1989, 1995 Cray Research, Inc. All Rights Reserved. Portions of the TCP/IP
documentation Copyright 1986 The Wollongong Group, Inc. All Rights Reserved. Portions
of the TCP/IP documentation are based on functionality developed by the University of
California, Berkeley, and others. This manual or parts thereof may not be reproduced in any
form unless permitted by contract or by written permission of Cray Research, Inc.
__

Portions of this product may still be in development. The existence of those portions still in
development is not a commitment of actual release or support by Cray Research, Inc. Cray
Research, Inc. assumes no liability for any damages resulting from attempts to use any
functionality or documentation not officially released and supported. If it is released, the final
form and the time of official release and start of support is at the discretion of Cray Research,
Inc.
__

Autotasking, CF77, CRAY, Cray Ada, CraySoft, CRAY Y-MP, CRAY-1, HSX, MPP Apprentice,
SSD, SUPERSERVER, UniChem, UNICOS, and X-MP EA are federally registered trademarks
and Because no workstation is an island, CCI, CCMT, CF90, CFT, CFT2, CFT77,
ConCurrent Maintenance Tools, COS, Cray Animation Theater, CRAY APP, CRAY C90,
CRAY C90D, Cray C++ Compiling System, CrayDoc, CRAY EL, CRAY J90, Cray NQS,
Cray/REELlibrarian, CRAY S-MP, CRAY SUPERSERVER 6400, CRAY T90, CRAY T3D,
CrayTutor, CRAY X-MP, CRAY XMS, CRAY-2, CRInform, CRI/TurboKiva, CS6400, CSIM,
CVT, Delivering the power . . ., DGauss, Docview, EMDS, HEXAR, IOS, LibSci,
ND Series Network Disk Array, Network Queuing Environment, Network Queuing Tools,
OLNET, RQS, SEGLDR, SMARTE, SUPERCLUSTER, SUPERLINK,
System Maintenance and Remote Testing Environment, Trusted UNICOS, and UNICOS MAX
are trademarks of Cray Research, Inc.
__

NFS, Sun, Sun Microsystems, and SunLink are trademarks of Sun Microsystems, Inc.
Pyramid is a trademark of Pyramid Technology Corporation. UNIX is a registered trademark
in the United States and other countries, licensed exclusively through X/Open Company
Limited.
__

The UNICOS operating system is derived from UNIX System V. The UNICOS operating
system is also based in part on the Fourth Berkeley Software Distribution (BSD) under license
from The Regents of the University of California.
__

Requests for copies of Cray Research, Inc. publications should be sent to the following address:

Cray Research, Inc. Order desk +1–612–683–5907
Distribution Center Fax number +1–612–452–0141
2360 Pilot Knob Road
Mendota Heights, MN 55120
USA
__

New Features

Remote Procedure Call (RPC) Reference Manual SR–2089 9.0

This version of the Remote Procedure Call (RPC) Reference Manual supports the UNICOS 9.0
release. The following changes have been made:

• Kerberos authentication flavor is documented in Section 3 and in Appendix E.

• The UNICOS multilevel security system notes have been modified.

Record of Revision

iCray Research, Inc.SR–2089 9.0

The date of printing or software version number is indicated in the footer. Changes in rewrites
are noted by revision bars along the margin of the page.

Version Description

January 1989 – Original printing. This manual contains remote
procedure call (RPC) information to support CRAY Y-MP,
CRAY X-MP EA, CRAY X-MP, and CRAY-2 systems running the Cray
operating system UNICOS release 5.0.

6.0 November 1990. This documentation supports the UNICOS 6.0 release.
In addition to minor technical and organizational changes,
documentation for the Data Encryption Standard (DES) type of RPC
authentication has been added.

8.0 December 1993. This documentation supports the UNICOS 8.0 release
running on all Cray Research systems. In addition to minor technical
and organizational changes, documentation for the RPC service library
routines was added.

8.1 April 1994. Updated only online to include editorial changes.

8.2 October 1994. Updated only online. This documentation supports the
UNICOS 8.2 release running on all Cray Research systems.
Documentation for Kerberos authentication was added.

8.3 November 1994. Updated only online. This documentation supports
the UNICOS 8.3 release running on all Cray Research systems. One
reference to a manual was added.

9.0 April 1995. This documentation supports the UNICOS 9.0 release
running on all Cray Research systems. This version marks with change
bars all technical changes made since the last printing at the UNICOS
8.0 release.

In this version, change bars indicate all technical changes made since
the document was last printed for the UNICOS 8.0 release.

Record of Revision Manual Title

ii Cray Research, Inc. Pub number and revision

Preface

iiiCray Research, Inc.SR–2089 9.0

This publication documents the Cray Research, Inc. (CRI)
implementation of Sun Microsystems’ remote procedure call
(RPC) facility for all Cray Research systems. Using the External
Data Representation (XDR) data definition language, RPC
provides the means for communicating across diverse network
environments. These procedures are a standard part of the
UNICOS operating system. This RPC facility can interface with
any network file system (NFS) implementation.

Readers of this manual should be familiar with the C
programming language and with the administration of User
Datagram Protocol/Internet Protocol (UDP/IP) and Transmission
Control Protocol/Internet Protocol (TCP/IP) networks in a
Berkeley UNIX environment.

Note: The Trusted UNICOS system is a configuration of the
UNICOS MLS system that supports processing at multiple
security labels and system administration using only
non-super user administrative roles. The Trusted UNICOS
system consists of the subset of UNICOS software that offers
these capabilities. The Trusted UNICOS name does not imply
maintenance of the UNICOS 8.0.2 security evaluation.

For the UNICOS 10.0 release, the functionality of the Trusted
UNICOS system will be retained, but the CONFIG_TRUSTED
option, which enforces conformance to the strict B1
configuration, will no longer be available. All references to
the Trusted UNICOS system will be removed from the
UNICOS 10.0 documentation. See the UNICOS 9.0 Release
Overview, RO–5000 9.0, for more information.

Preface Remote Procedure Call (RPC) Reference Manual

iv Cray Research, Inc. SR–2089 9.0

The following documents contain additional information that
may be helpful:

• UNICOS User Commands Reference Manual, publication
SR–2011

• UNICOS Networking Facilities Administrator’s Guide,
publication SG–2304

• UNICOS Administrator Commands Reference Manual,
publication SR–2022

• ONC+ Technology for the UNICOS Operating System,
publication SG–2169

The User Publications Catalog, publication CP–0099, describes
the availability and content of all Cray Research hardware and
software manuals that are available to customers.

To order a manual, either call the Distribution Center in
Mendota Heights, Minnesota, at +1–612–683–5907 or send a
facsimile of your request to fax number +1–612–452–0141. Cray
Research employees may send electronic mail to orderdsk
(UNIX system users).

Related
publications

Remote Procedure Call (RPC) Reference Manual Preface

vCray Research, Inc.SR–2089 9.0

The following conventions are used throughout this manual:

Convention Meaning

command This fixed-space font denotes literal
items such as commands, files, routines,
path names, signals, messages, and
programming language structures.

manpage(x) Man page section identifiers appear in
parentheses after man page names. The
following list describes the identifiers:

1 User commands

1B User commands ported from BSD

2 System calls

3 Library routines, macros, and
opdefs

4 Devices (special files)

4P Protocols

5 File formats

7 Miscellaneous topics

7D DWB-related information

8 Administrator commands

routine () Routine names followed by an empty set
of parentheses designate a library or
kernel routine; for example, ddcntl ().
Kernel routines do not have man pages
associated with them.

variable Italic typeface denotes variable entries
and words or concepts being defined.

user input This bold fixed-space font denotes literal
items that the user enters in interactive
sessions. Output is shown in nonbold,
fixed-space font.

[] Brackets enclose optional portions of a
command line.

... Ellipses indicate that a preceding
command-line element can be repeated.

Conventions

Preface Remote Procedure Call (RPC) Reference Manual

vi Cray Research, Inc. SR–2089 9.0

Convention Meaning

KEY This convention indicates a key on the
keyboard.

<KEY> On man pages, this convention indicates
a key on the keyboard.

The following machine naming conventions may be used
throughout this manual:

Term Definition

Cray PVP systems All configurations of Cray parallel
vector processing (PVP) systems, including
the following:

CRAY C90 series (CRAY C916,
CRAY C92A, CRAY C94, CRAY C94A,
and CRAY C98 systems)

CRAY C90D series (CRAY C92AD,
CRAY C94D, and CRAY C98D systems)

CRAY EL series (CRAY Y-MP EL,
CRAY EL92, CRAY EL94, and CRAY EL98
systems)

CRAY J90 series (CRAY J916 and
CRAY J932 systems)

CRAY T90 series (CRAY T94, CRAY T916,
and CRAY T932 systems)

CRAY Y-MP E series (CRAY Y-MP 2E,
CRAY Y-MP 4E, CRAY Y-MP 8E, and
CRAY Y-MP 8I systems)

CRAY Y-MP M90 series (CRAY Y-MP M92,
CRAY Y-MP M94, and CRAY Y-MP M98
systems)

Cray MPP systems All configurations of Cray massively
parallel processing (MPP) systems,
including the CRAY T3D series
(CRAY T3D MC, CRAY T3D MCA, and
CRAY T3D SC systems)

Remote Procedure Call (RPC) Reference Manual Preface

viiCray Research, Inc.SR–2089 9.0

Term Definition

All Cray Research
systems

All configurations of Cray PVP and
Cray MPP systems that support this
release

SPARC systems All SPARC platforms that run the Solaris
operating system version 2.3 or later

The default shell in the UNICOS 9.0 release, referred to in Cray
Research documentation as the standard shell, is a version of
the Korn shell that conforms to the following standards:

• Institute of Electrical and Electronics Engineers (IEEE)
Portable Operating System Interface (POSIX) Standard
1003.2–1992

• X/Open Company Standard XPG4

The UNICOS 9.0 operating system also supports the optional
use of the C shell.

The POSIX standard uses utilities to refer to executable
programs that Cray Research documentation usually refers to as
commands. Both terms appear in this document.

In this publication, Cray Research, Cray, and CRI refer to Cray
Research, Inc. and/or its products.

The following types of online information products are available
to Cray Research customers:

• CrayDoc online documentation reader, which lets you see the
text and graphics of a manual online. The CrayDoc reader is
available on workstations. To start the CrayDoc reader at
your workstation, use the cdoc (1) command.

• Docview text-viewer system, which lets you see the text of a
manual online. The Docview system is available on the Cray
Research mainframe. To start the Docview system, use the
docview (1) command.

• Man pages, which describe a particular element of the
UNICOS operating system or a compatible product. To see a
detailed description of a particular command or routine, use
the man(1) command.

Online
information

Preface Remote Procedure Call (RPC) Reference Manual

viii Cray Research, Inc. SR–2089 9.0

• UNICOS message system, which provides explanations of
error messages. To see an explanation of a message, use the
explain (1) command.

• Cray Research online glossary, which explains the terms used
in a manual. To get a definition, use the define (1) command.

• xhelp help facility. This online help system is available
within tools such as the Program Browser (xbrowse) and the
MPP Apprentice tool.

For detailed information on these topics, see the User’s Guide to
Online Information, publication SG–2143.

If you have comments about the technical accuracy, content, or
organization of this manual, please tell us. You can contact us in
any of the following ways:

• Send us electronic mail from a UNICOS or UNIX system,
using the following UUCP address:

uunet!cray!publications

• Send us electronic mail from any system connected to Internet,
using the following Internet addresses:

pubs2089@timbuk.cray.com (comments on this
manual)

publications@timbuk.cray.com (general comments)

• Contact your Cray Research representative and ask that a
Software Problem Report (SPR) be filed. Use PUBLICATIONS
for the group name, PUBS for the command, and NO-LICENSE
for the release name.

• Call our Software Publications Group in Eagan, Minnesota,
through the Technical Support Center, using either of the
following numbers:

1–800–950–2729 (toll free from the United States and
Canada)

+1–612–683–5600

Reader comments

Remote Procedure Call (RPC) Reference Manual Preface

ixCray Research, Inc.SR–2089 9.0

• Send a facsimile of your comments to the attention of
“Software Publications Group” in Eagan, Minnesota, at fax
number +1–612–683–5599.

• Use the postage-paid Reader’s Comment Form at the back of
the printed manual.

We value your comments and will respond to them promptly.

Preface Remote Procedure Call (RPC) Reference Manual

x Cray Research, Inc. SR–2089 9.0

Contents

xiCray Research, Inc.SR–2089 9.0

Page Page

Preface iii

Related publications iv

Conventions v

Online information vii

Reader comments viii

Overview [1] 1

RPC and XDR 2

Identifying remote procedures 3

Remote program number 3

Remote program version number 6

Remote procedure number 8

Registering with the portmapper 8

Transports and semantics 8

Error messages 9

Remote Procedure Call (RPC)
Programming [2] 11

Registering the routine on the server 12

Client call and server reply process 14

RPC layers 16

Highest RPC layer 17

Intermediate RPC layer 18

Registering in the intermediate layer 19

Calling and replying in the intermediate
layer 20

Using XDR routines 21

XDR memory allocation 24

Lowest RPC layer 26

Registering in the lowest layer 26

Calling in the lowest layer 30

Select processing 33

TCP processing 34

Callback processing 39

Other uses of the RPC protocol 44

Batching 45

Broadcast RPC 50

Authentication [3] 53

Setting up authentication 54

Null authentication requirements 54

UNICOS authentication requirements 55

DES authentication requirements 55

Kerberos authentication requirements 56

Client authentication 56

Server authentication 57

Record-marking standard 61

RPC Message Protocol [4] 63

Call and reply 63

Message structure 64

Synopsis of RPC and XDR
Routines [A] 67

rpcgen Programming Guide [B] 97

External Data Representation
Standard: Protocol
Specification [C] 121

Contents Remote Procedure Call (RPC) Reference Manual

xii SR–2089 9.0Cray Research, Inc.

Page

Remote Procedure Calls:
Protocol Specification [D] 141

Authentication Routines [E] 165

UNICOS authentication 165

DES authentication 166

Kerberos authentication 171

Service Library Routines [F] 177

intro_svc(3R) 179

getrpcport(3R) 180

havedisk(3R) 181

publickey(3R) 182

rnusers(3R) 183

rstat(3R) 185

rwall(3R) 186

yppasswd(3R) 187

Index 189

Figure

Figure 1. RPC paradigm 2

Tables

Table 1. Remote program number assignments 3

Table 2. Registered program list 4

Table 3. RPC service library routines 18

Overview [1]

1Cray Research, Inc.SR–2089 9.0

Note: The RPC feature is included in the trusted computing
base (TCB) of the Trusted UNICOS system. The operator
functions, procedures, and duties outlined in the following
subsections are required to maintain a Trusted UNICOS
system. No special security administrator or operator
functions are necessary for the management of RPC on a
Trusted UNICOS system.

Remote procedure calls (RPCs) provide a way for you do the
following:

• Distribute program segments across computers in a network

• Communicate with more than one machine on a given network
while executing a program

• Communicate with other programs that run on the same
machine

The typical configuration for environments that use RPCs
consists of workstations connected to a computer through a
network. The workstations are used for application interface
and high-resolution displays; the computationally intense part of
the code runs on the computer.

A program must be registered so that other programs on the
network can find it. (See an example of registering in subsection
2.1, page 12.) RPCs use a client/server paradigm in which the
client first sends data to a server running in a machine on a
network. The server receives the data packet, processes it as
required, and returns a result to the client. The server does not
have to return any information to the client. In C language
context, the server can be a function of type void . The same is
true for the client; it can call a server without passing data to it.
Figure 1 demonstrates the typical RPC paradigm.

Overview [1] Remote Procedure Call (RPC) Reference Manual

2 Cray Research, Inc. SR–2089 9.0

The machines on a given network can run in different operating
system environments. Programs that use RPC are shielded from
the calling conventions of these various operating systems by the
use of data translation routines known as External Data
Representation (XDR) routines. XDR is a protocol that allows
programmers to specify arbitrary data structures that are
independent of a specific machine. These routines ensure that
data of any type can be passed successfully between machines
with potentially different word sizes or other architectural
differences.

XDR routines act as filters for the data moving back and forth,
ensuring that the data is translated into a form that the
receiving machine can interpret correctly. Translating data from
the sending machine into XDR format is called serializing.
When the receiving machine interprets the serialized data, the
process is called deserializing. The XDR routines do the
serializing and deserializing for each communication between
server and client.

Client program executes.
RPC is made; communications
path is established. Data packet is
passed to server process on
remote machine.

Client sends parameters to
servers.

Server executes a specified routine with
data from the client.

Server returns to client
with results. Client
continues execution.

Figure 1. RPC paradigm

The C library (libc.a) contains predefined XDR routines for
passing most data types. If only one request value is being
passed to the server and one result value is being returned, XDR
routines from the library can be used. However, when a
structure is being passed, the programmer must construct an
XDR routine that maps the structure members to predefined
XDR routines by member type. The rpcgen utility can
automate the writing of structure XDR conversion routines. See
appendix B, page 97, for information on rpcgen . Of course, if

RPC and XDR
1.1

Remote Procedure Call (RPC) Reference Manual Overview [1]

3Cray Research, Inc.SR–2089 9.0

the data going to and from the client and server is the same in
type (for example, the client passes a structure of two integers to
the server, and the server passes a structure of two integers back
to the client), they can share the same user-developed XDR
routine.

RPC and XDR, based on RFC 1057 and RFC 1014, respectively,
have been placed in the public domain; they serve as a standard
for network application development.

An RPC message has three unsigned fields: the remote program
number, the remote program version number, and the remote
procedure number. These fields uniquely identify the procedure
to be called.

The user’s remote program number is a unique number in the
range 0x20000000 to 0x3fffffff. Numbers outside of this range
are reserved for other uses (see Table 1 for assigned ranges).

Table 1. Remote program number assignments

Program number Assignment

0x0 – 0x1fffffff Sun

0x20000000 – 0x3fffffff User

0x40000000 – 0x5fffffff Transient

0x60000000 – 0x7fffffff Reserved

0x80000000 – 0x9fffffff Reserved

0xa0000000 – 0xbfffffff Reserved

0xc0000000 – 0xdfffffff Reserved

0xe0000000 – 0xffffffff Reserved

Sun Microsystems administers the first group of numbers, which
should be identical for all RPC users. If a user develops an
application that is of general interest, that application can be
given an assigned number in the first range. The second group

Identifying remote
procedures
1.2

Remote program
number
1.2.1

Overview [1] Remote Procedure Call (RPC) Reference Manual

4 Cray Research, Inc. SR–2089 9.0

of numbers is reserved for specific customer applications and
will not, in general, be the same across machines. This range is
intended primarily for debugging new programs. The third
group is reserved for programs that generate program numbers
dynamically. The final groups are reserved for future use and
should not be used by any user-developed programs.

To register a protocol specification, send a request by electronic
mail to rpc@sun.com , or write to the following:

RPC Administrator
Sun Microsystems
2550 Garcia Avenue
Mountain View, CA 94043

Please include a compilable rpcgen . x file that describes your
protocol. In return, you will be given a unique program number.

You can find the RPC program numbers and protocol
specifications of standard RPC services in the include files in the
/usr/include/rpcsvc directory. These services, however,
constitute only a small subset of those that have already been
registered. Table 2 contains the most recent list of registered
programs, as of the time of this printing. An asterisk denotes
programs that are provided in the UNICOS 9.0 software release.

Table 2. Registered program list

RPC number Program Description

100000* PMAPPROG Portmapper

100001* RSTATPROG Remote statistics

100002* RUSERSPROG Remote users

100003* NFSPROG NFS daemon

100004* YPPROG Network information service (NIS)

100005* MOUNTPROG mount daemon

100006 DBXPROG Remote dbx

100007* YPBINDPROG NIS binder

100008* WALLPROG Shutdown message

100009* YPPASSWDPROG NIS password server

100010 ETHERSTATPROG Ethernet statistics server

Remote Procedure Call (RPC) Reference Manual Overview [1]

5Cray Research, Inc.SR–2089 9.0

Table 2. Registered program list
(continued)

RPC number DescriptionProgram

100011 RQUOTAPROG Disk quota server

100012* SPRAYPROG Spray packets server

100013 IBM3270PROG 3270 mapper

100014 IBMRJEPROG RJE mapper

100015 SELNSVCPROG Selection service

100016 RDATABASEPROG Remote database access

100017 REXECPROG Remote execution server

100018 ALICEPROG Alice office automation

100019 SCHEDPROG Scheduling service

100020 LOCKPROG Local lock manager

100021 NETLOCKPROG Network lock manager

100022 X25PROG X.25 inr protocol

100023 STATMON1PROG Status monitor 1

100024 STATMON2PROG Status monitor 2

100025 SELNLIBPROG Selection library

100026 BOOTPARAMPROG Boot parameters service

100027 MAZEPROG Mazewars game

100028 YPUPDATEPROG NIS update server

100029* KEYSERVEPROG Key server for secure RPC

100030 SECURECMDPROG Secure login

100031 NETFWDIPROG NFS net forwarder initializing

100032 NETFWDTPROG NFS net forwarder transmission

100033 SUNLINKMAP_PROG SunLink MAP

100034 NETMONPROG Network monitor

100035 DBASEPROG Lightweight database

100036 PWDAUTHPROG Password authorization

100037 TFSPROG Translucent file service

100038 NSEPROG NSE server

100039 NSE_ACTIVATE_PRG NSE activate daemon

Overview [1] Remote Procedure Call (RPC) Reference Manual

6 Cray Research, Inc. SR–2089 9.0

Table 2. Registered program list
(continued)

RPC number DescriptionProgram

150001* PCNFSDPROG PC password authentication

200000 PYRAMIDLOCKINGPROG Pyramid-locking

200001 PYRAMIDSYS5 Pyramid-sys5

200002 CADDS_IMAGE CV cadds_image

300001 ADT_RFLOCKPROG ADT file locking

The version number is the release number for the RPC
procedure. By convention, the first version number of any
program PROG is PROGVERS_ORIG, and the most recent
version is PROGVERS. In the following example,
PROG=RUSERS. Suppose a new version of the user program
returns an unsigned short rather than a long value. If this
version is named RUSERSVERS_SHORT, a server that wants to
support the first version and this version would register twice,
as follows:

if (!svc_register(transp, RUSERSPROG, RUSERSVERS_ORIG,
 nuser, IPPROTO_TCP)) {
 fprintf(stderr, “can’t register RUSER service\n”);
exit(1);
}
if (!svc_register(transp, RUSERSPROG, RUSERSVERS_SHORT,
 nuser, IPPROTO_TCP)) {
 fprintf(stderr, “can’t register RUSER service\n”);
 exit(1);
}

Remote program
version number
1.2.2

Remote Procedure Call (RPC) Reference Manual Overview [1]

7Cray Research, Inc.SR–2089 9.0

The same C procedure can handle both versions, as follows:

nuser(rqstp, tranp)
struct svc_req *rqstp;
SVCXPRT *transp;
{
 unsigned long nusers;
 unsigned short nusers2;

 switch(rqstp–>rq_proc) {

 case NULLPROC:
 if (!svc_sendreply(transp, xdr_void, 0)) {
 fprintf(stderr, “can’t reply to RPC call\n”);
 }
 return;

 case RUSERSPROC_NUM:
 /*
 * Code here to compute the number of users
 * and put it in the variable ’nusers’
 */

 if (rqstp–>rq_vers == RUSERSVERS_ORIG) {
 if (!svc_sendreply(transp, xdr_u_long, &nusers) {
 fprintf(stderr,“can’t reply to RPC call\n”);
 }
 } else if (rqstp–>rq_vers == RUSERSVERS_SHORT) {
 nusers2 = (unsigned short) nusers;
 if (!svc_sendreply(transp, xdr_u_short, &nusers2) {
 fprintf(stderr,“can’t reply to RPC call\n”);
 }
 } else {
 /* send “bad version” error reply */
 svcerr_progvers(transp, RUSERSVERS_ORIG, RUSERSVERS_SHORT);
 }
 return;

 default:
 /* send “bad procedure” error reply */
 svcerr_noproc(transp);
 return;
 } /* end switch */
}

Overview [1] Remote Procedure Call (RPC) Reference Manual

8 Cray Research, Inc. SR–2089 9.0

The procedure number is the number of the routine being
referenced in the server; it identifies the procedure to be called.
Servers can register many RPC routines, which would typically
be numbered in order, 1, 2, 3, ... n. Procedure numbers are
documented in the specific program’s protocol specification. For
example, a file service’s protocol specification might state that its
procedure number 5 is read, and its procedure number 12 is
write.

RPC servers can register themselves with the portmapper. This
capability is useful if, for some reason, it becomes necessary to
restart the portmapper while the RPC servers continue. The –r
option of the portmap command specifies restart for standard
RPC servers. The –f option directs the portmapper to send a
SIGHUP signal to each of the process/UID pairs found in the file.
See portmap (8) for a list of the servers that can be restarted and
for examples of the -r and –f parameters.

The RPC protocol deals only with the specification and
interpretation of messages; it is independent of transport
protocols. Because of transport independence, the RPC protocol
does not attach specific semantics to the remote procedures or
their execution. Some semantics can be inferred from (but
should be explicitly specified by) the underlying transport
protocol.

For example, when UDP/IP is used, RPC message passing is
unreliable. Thus, if the client retransmits call messages after
short time-outs, it can only infer from no reply message that the
remote procedure was executed zero or more times (and from a
reply message, one or more times). On the other hand, when
TCP/IP is used, RPC message passing is reliable. No reply
message means that the remote procedure was executed at most
once; a reply message means that the remote procedure was
executed exactly once.

Remote procedure
number
1.2.3

Registering with the
portmapper
1.2.4

Transports and
semantics
1.3

Remote Procedure Call (RPC) Reference Manual Overview [1]

9Cray Research, Inc.SR–2089 9.0

The reply message to a request message contains enough
information to distinguish the following error conditions:

• The remote implementation of RPC is not compatible with
protocol version 2. The lowest and highest supported RPC
version numbers are returned.

• The remote program is unavailable on the remote system.

• The remote program does not support the requested version
number. The lowest and highest supported remote program
version numbers are returned.

• The requested procedure number does not exist (this is usually
a client-side protocol or programming error).

• The parameters to the remote procedure are invalid from the
server’s perspective. (Again, this is usually caused by a
difference in the protocol between client and server.)

• An authentication error occurred.

Error messages
1.4

Overview [1] Remote Procedure Call (RPC) Reference Manual

10 Cray Research, Inc. SR–2089 9.0

Remote Procedure Call (RPC)
Programming [2]

11Cray Research, Inc.SR–2089 9.0

This section describes various aspects of remote procedure call
(RPC) programming and provides examples of its use.

Although the examples illustrate the interface to the C
programming language only, RPCs can be made from any
language. Examples show RPC programming as it is used to
communicate between processes on various machines, but the
procedure is the same for communication between different
processes on the same machine.

Typically, using RPC consists of registering the routine that will
be accessed, making the request for the registered routine to
perform its function, and passing values between the registered
routine and the calling routine. The examples in this section
show how you can accomplish this. Following is an example of a
typical RPC procedure:

Example 1:

A server registers a program that will calculate the factorial of
an integer and will return the square root of the factorial. A
client program accepts as input an integer value and then makes
an RPC to the server, passing it the integer value. The server
performs the calculations and returns the answer. The return
type is double .

For more information on RPC programming, see appendix B,
page 97, appendix C, page 121, and appendix D, page 141.

Subsections 2.1, page 12, and 2.2, page 14, provide code for and
explanations of these processes.

Remote Procedure Call (RPC) Programming [2] Remote Procedure Call (RPC) Reference Manual

12 Cray Research, Inc. SR–2089 9.0

The server registers the routine that will be used to do the
computation and then exits into a service loop to wait for
requests. The server does not use any CPU resources while
waiting for requests.

Example 1A contains all of the code needed to perform the server
function. This code is entirely portable in the sense that it can
run on a Cray Research system or another system anywhere on
the network. In fact, any machine on the network that supports
RPCs (as well as sockets, UDP, TCP, and a C compiler) can run
this server.

Registering the
routine on the
server
2.1

Remote Procedure Call (RPC) Reference Manual Remote Procedure Call (RPC) Programming [2]

13Cray Research, Inc.SR–2089 9.0

Example 1A:

 1 /*
 2 * This is the server routine for example 1
 3 */
 4
 5 #include <stdio.h>
 6 #include <rpc/rpc.h>
 7
 8 #define PROGRAM 0x20000100
 9 #define VERSION 1
10 #define ROUTINE 1
11
12 extern double sqrt();
13 double *compute_result();
14
15 main()
16 {
17 if(registerrpc(PROGRAM,VERSION,ROUTINE,compute_result,
18 xdr_int, xdr_double) == –1)
19 {
20 perror(“registerrpc”);
21 exit(1);
22 }
23 svc_run();
24 fprintf(stderr,“svc_run() call failed\n”);
25 exit(1);
26 }
27
28 double *
29 compute_result(input)
30 int *input;
31 {
32 int count;
33 static double output;
34
35 output=1.0;
36 for(count= *input; count>1; count––)
37 output *= count;
38
39 output = sqrt(output);
40 return(&output);
41 }

Remote Procedure Call (RPC) Programming [2] Remote Procedure Call (RPC) Reference Manual

14 Cray Research, Inc. SR–2089 9.0

The following text explains the RPC portions of the server source
code in example 1A.

Line 6: If XDR routines are being used, the <rpc/rpc.h>
include file is always necessary. Two XDR routines are used in
line 18. (See a discussion of XDR routines in subsection 1.1,
page 2.)

Lines 8 through 10: Constants PROGRAM, VERSION, and
ROUTINE uniquely define the RPC being registered. (See a
discussion of these constants in subsection 1.2.2, page 6, and
subsection 1.2.3, page 8.) All three of the constants are
parameters in the registerrpc call made in line 17.

Line 17: This is the call that registers the RPC with the
portmapper process so that other programs on the network can
find it. The parameters are as follows: program number
(PROGRAM), version number (VERSION), routine number
(ROUTINE), name of routine associated with routine number
(compute_result), data translation routine for incoming value
(xdr_int), and data translation routine for return value
(xdr_double).

Line 23: This is the exit into the service loop. The server can, of
course, call other routines or do any required setup before calling
the svc_run routine. However, client requests cannot be
processed until svc_run is called.

Line 33: It is critical that the variable containing the returned
value be static; otherwise, it might disappear by the time
RPC/XDR sends it out in the response packet.

In example 1B, the client receives an input value and passes it to
the server by using an RPC. The server computes a result and
returns it to the client, where it is then printed out.

Client call and
server reply
process
2.2

Remote Procedure Call (RPC) Reference Manual Remote Procedure Call (RPC) Programming [2]

15Cray Research, Inc.SR–2089 9.0

 Example 1B:

 1 /*
 2 * This is the client routine for example 1
 3 */
 4
 5 #include <stdio.h>
 6 #include <rpc/rpc.h>
 7
 8 #define PROGRAM 0x20000100
 9 #define VERSION 1
10 #define ROUTINE 1
11
12 main(argc, argv)
13 int argc;
14 char **argv;
15 {
16 int input,
17 ret_val;
18 double result;
19 char input_buf[25];
20
21 printf(“Enter an Integer=>”);
22 fflush(stdout);
23 fgets(input_buf,25,stdin);
24 input = atoi(input_buf);
25 if((ret_val=callrpc(argv[1],PROGRAM,VERSION,ROUTINE,
26 xdr_int, &input, xdr_double, &result))
27 != 0)
28 {
29 clnt_perrno(ret_val);
30 exit(1);
31 }
32 printf(“Result = %E\n”,result);
33 }

Remote Procedure Call (RPC) Programming [2] Remote Procedure Call (RPC) Reference Manual

16 Cray Research, Inc. SR–2089 9.0

The following text explains the RPC portions of the client source
code in example 1B.

Line 25: This is the actual call to the server. The client routine
is given the host name on the command line. The parameters to
the callrpc routine are as follows:

• Network name of the host on which the server is running

• Program number (PROGRAM)

• Version number (VERSION)

• Routine number (ROUTINE)

• XDR translation routine for the variable being passed to the
server (xdr_int)

• Source address of the variable being passed to the server
(input)

• XDR translation routine for the variable being returned from
the server (xdr_double)

• Destination address of the result being returned from the
server (result)

Lines 29, 30: This is the RPC client error routine. You can
diagnose failure of certain RPC routines through the return
value of the failing routine. For example, if the client were
executed and the specified server host were not running, the
following error message would be returned:

RPC: Program not registered

The RPC interface is divided into three layers. The highest layer
is totally transparent to programmers. To illustrate, at this
level, a program can contain a call to routine rnusers (3), which
returns the number of users on a remote machine. You do not
have to be aware that an RPC interface is being used, because
you simply make the call in a program, just as you would call
malloc (3).

RPC layers
2.3

Remote Procedure Call (RPC) Reference Manual Remote Procedure Call (RPC) Programming [2]

17Cray Research, Inc.SR–2089 9.0

At the intermediate layer, routines registerrpc and callrpc
are used to make RPCs; registerrpc obtains a number that is
unique across the system, while callrpc executes an RPC. The
rnusers (3) call is implemented by the use of these two routines.
The intermediate-layer routines are designed for most common
applications.

The lowest layer is for more sophisticated applications, such as
altering the defaults of the routines. At this layer, you can
explicitly manipulate the sockets that transmit RPC messages.

Imagine you are writing a program to determine how many
users are logged on to a remote machine. You can do this by
calling routine rnusers (3), as shown in example 2.

Example 2:

#include <stdio.h>
main(argc, argv)
 int argc;
 char **argv;
{
 unsigned num;
 if (argc <2) {
 fprintf(stderr, “usage: rnusers hostname\n”);
 exit(1);
 }
 if ((num = rnusers(argv[1])) <0) {
 fprintf(stderr, “error: rnusers\n”);
 exit(–1);
 {
 printf(”%d users on %s\n”, num, argv[1]);
 exit(0);
}

RPC library routines such as rnusers (3) are in the RPC
services library, librpcsvc.a . Thus, you should use the
following command to compile the program in example 3 on
Cray Research systems:

% cc program.c –lrpcsvc

Highest RPC layer
2.3.1

Remote Procedure Call (RPC) Programming [2] Remote Procedure Call (RPC) Reference Manual

18 Cray Research, Inc. SR–2089 9.0

The rnusers routine and other RPC library routines are
documented in appendix F, page 177. Table 3 lists RPC service
library routines available to C programmers. These routines are
supported only on the client side. You can invoke the other RPC
services (ether , mount , rquota , and spray), which are not
available to C programmers as library routines, by using the
callrpc routine, as described in subsection 2.3.2.

Table 3. RPC service library routines

Routines Description

getpublickey Gets public key

getrpcport Gets RPC port number

getsecretkey Gets secret key

havedisk Determines whether remote machine
has a disk

rnusers Returns number of users on remote
machine

rstat Gets performance data from remote
kernel

rusers Returns information about users on
remote machine

rwall Writes to specified remote machines

yppasswd Updates user password in the NIS
database

Instead of calling routine rnusers as shown in example 3, you
can use functions registerrpc and callrpc to make the
rnusers call, as illustrated in examples 3 and 4. These
functions use the UDP transport mechanism, whose arguments
and results are constrained by the maximum length of UDP
packets. Consult the vendor documentation for exact length
restrictions.

Intermediate RPC layer
2.3.2

Remote Procedure Call (RPC) Reference Manual Remote Procedure Call (RPC) Programming [2]

19Cray Research, Inc.SR–2089 9.0

Usually, a server registers all RPCs it plans to handle and then
goes into an infinite loop, waiting to service requests. In the
main body of the server routine, you can register only one
procedure, as shown in example 3.

Example 3:

 1 #include <stdio.h>
 2 #include <rpcsvc/rusers.h>
 3 char *nuser();
 4 main()
 5 {
 6 registerrpc(RUSERSPROG, RUSERSVERS, RUSERSPROC_NUM,
 7 nuser, xdr_void, xdr_u_long);
 8 svc_run(); /* never returns */
 9 fprintf(stderr, “Error: svc_run returned!\n”);
10 exit(1);
11 }
12
13 char *
14 nuser(indata)
15 char *indata;
16 {
17 static int nusers;
18 /*
19 * code here to compute the number of users
20 * and place result in variable nusers
21 */
22 return((char *)&nusers);
23 }

The following text explains the RPC portion of the server source
code in example 3.

Lines 6 and 7: The registerrpc routine matches each RPC
procedure number with a C procedure. The first three
parameters, RUSERSPROG, RUSERSVERS, and RUSERSPROC_NUM,
are the program, version, and procedure numbers of the remote
procedure to be registered; nuser () is the name of the C
procedure implementing it; and xdr_void and xdr_u_long are,
respectively, the types of the input to and output from the
procedure.

Registering in the
intermediate layer
2.3.2.1

Remote Procedure Call (RPC) Programming [2] Remote Procedure Call (RPC) Reference Manual

20 Cray Research, Inc. SR–2089 9.0

Example 4 shows the client source code used in the intermediate
layer.

Example 4:

 1 #include <stdio.h>
 2 #include <rpcsvc/rusers.h>
 3 main(argc, argv)
 4 int argc;
 5 char **argv;
 6 {
 7 unsigned long nusers;
 8 if (argc < 2) {
 9 fprintf(stderr, “usage: nusers hostname\n”);
10 exit(–1);
11 }
12 if (callrpc(argv[1],
13 RUSERSPROG, RUSERSVERS, RUSERSPROC_NUM,
14 xdr_void, NULL, xdr_u_long, &nusers) != NULL) {
15 fprintf(stderr, “error: callrpc\n”);
16 exit(1);
17 }
18 printf(”%d users on %s\n”, nusers, argv[1]);
19 exit(0);
20 }

The following text explains the RPC portion of the client source
code in example 4.

Lines 12 through 16: The callrpc RPC library routine has
eight parameters. The first is the name of the remote machine
(argv[1]). The next three parameters are the program
(RUSERSPROG), version (RUSERSVERS), and procedure numbers
(RUSERSPROC_NUM).

Because you can represent data types differently on various
machines, callrpc requires both the type of the RPC argument
and a pointer to the argument itself (and, similarly, a type and
pointer for the result). Because the remote procedure requires
no argument, the input data type parameter of callrpc is
xdr_void . The first return parameter is xdr_u_long , which
indicates that the result is of type unsigned long . The second
return parameter is &nusers , which is a pointer to the
destination of the type long result.

Calling and replying in
the intermediate layer
2.3.2.2

Remote Procedure Call (RPC) Reference Manual Remote Procedure Call (RPC) Programming [2]

21Cray Research, Inc.SR–2089 9.0

Lines 10, 16, and 19: If it completes successfully, callrpc
returns a 0; otherwise, it returns a nonzero value. The exact
meaning of the return codes is found in file <rpc/clnt.h> , and
is in fact an enumeration cast into an integer (type defined as
clnt_stat).

If callrpc gets no answer after trying several times to deliver a
message, it returns with an error code. The delivery mechanism
is UDP. Methods for adjusting the number of retries or for using
a different protocol require you to use the lower layer of the RPC
library, discussed in subsection 2.3.3, page 26.

In example 3, the RPC passes one value of type unsigned
long . RPC handles arbitrary data structures, regardless of
different machines’ byte orders or structure layout conventions,
by converting them to a network standard called External Data
Representation (XDR) before sending them over the wire. The
process of converting from a particular machine representation
to XDR format is called serializing; the reverse process is called
deserializing. The type field parameters of callrpc and
registerrpc can specify a built-in procedure (such as
xdr_u_long in example 3) or a user-supplied one. XDR has the
following built-in type routines:

xdr_bool() xdr_u_char()
xdr_char() xdr_u_int()
xdr_enum() xdr_u_long()
xdr_int() xdr_u_short()
xdr_long() xdr_void()
xdr_short() xdr_wrapstring()

An XDR routine returns a nonzero value (TRUE in the context of
C) if it completes successfully; otherwise, it returns a 0.

In addition to the built-in type routines, the following
prefabricated building blocks also exist:

xdr_array() xdr_pointer() xdr_union()
xdr_bytes() xdr_reference() xdr_vector()
xdr_opaque() xdr_string()

Several of these routines are described in the following
paragraphs. All of them are described in appendix A, page 67.

Using XDR routines
2.3.2.3

Remote Procedure Call (RPC) Programming [2] Remote Procedure Call (RPC) Reference Manual

22 Cray Research, Inc. SR–2089 9.0

To send a variable-length array of integers, you could package
them as a structure, as follows:

struct varintarr {
 int *data;
 int arrlnth;
} arr;

You could then make the following RPC:

callrpc(hostname, PROGNUM, VERSNUM, PROCNUM,
 xdr_varintarr, &arr...);

The xdr_varintarr() routine is defined, as follows:

xdr_varintarr(xdrsp, arrp)
 XDR *xdrsp;
 struct varintarr *arrp;
{
 return (xdr_array(xdrsp, &arrp–>data, &arrp–>arrlnth, MAXLEN,
 sizeof(int), xdr_int));
}

The xdr_array routine takes as parameters the XDR handle
(xdrsp), a pointer to the array (&arrp–>data), a pointer to the
size of the array (&arrp–>arrlnth), the maximum allowable
array size (MAXLEN), the size of each array element
(sizeof(int)), and an XDR routine for handling each array
element (xdr_int).

If the size of the array is known in advance, you can use
xdr_vector , which serializes fixed-length arrays.

To send out an array of SIZE integers, you could use the
following routine:

int int_array[SIZE];
xdr_intarr(xdrsp, intarr)
 XDR *xdrsp;
 int intarr[];
{
 return (xdr_vector(xdrsp,intarr,SIZE,sizeof(int),xdr_int));
}

Remote Procedure Call (RPC) Reference Manual Remote Procedure Call (RPC) Programming [2]

23Cray Research, Inc.SR–2089 9.0

XDR always converts quantities to 4-byte multiples when
serializing. Thus, if either of the previous examples involved
characters instead of integers, each character would occupy 32
bits. That is the reason for the XDR routine xdr_bytes , which
is like xdr_array , except that it packs characters. The
xdr_bytes routine has four parameters, which are similar to
the first four parameters of xdr_array . For null-terminated
strings, there is also the xdr_string routine, which is the same
as xdr_bytes without the length parameter. On serializing,
xdr_string() gets the string length from strlen() ; on
deserializing, it creates a null-terminated string.

The following code shows a user-defined type routine in which
you send the structure

typedef struct simple {
 int a;
 short b;
} simple;

and call callrpc , as follows:

callrpc(hostname, PROGNUM, VERSNUM, PROCNUM,
 xdr_simple, &simple ...);

Write xdr_simple() , as follows:

#include <rpc/rpc.h>
xdr_simple(xdrsp, simplep)
 XDR *xdrsp;
 struct simple *simplep;
{
 if (!xdr_int(xdrsp, &simplep–>a))
 return (0);
 if (!xdr_short(xdrsp, &simplep–>b))
 return (0);
 return (1);
}

Example 5 calls the previously written xdr_simple() , as well
as the built-in functions xdr_string and xdr_reference , to
dereference pointers.

Remote Procedure Call (RPC) Programming [2] Remote Procedure Call (RPC) Reference Manual

24 Cray Research, Inc. SR–2089 9.0

Example 5:

typedef struct finalexample {
 char *string;
 struct simple *simplep;
} finalexample;

xdr_finalexample(xdrsp, finalp)
 XDR *xdrsp;
 struct finalexample *finalp;
{
 if (!xdr_string(xdrsp, &finalp–>string, MAXSTRLEN))
 return (0);
 if (!xdr_reference(xdrsp, &finalp–>simplep,
 sizeof(struct simple), xdr_simple))
 return (0);
 return (1);
}

By using xdr_reference instead of merely calling
xdr_simple() , you yield the burden of allocating and freeing
storage for the referenced structure to the RPC library. If
xdr_simple() were used, you would be forced to provide code
for these memory management functions.

Besides performing input and output operations, XDR routines
also perform memory allocation. This is why the second
parameter of xdr_array is a pointer to an array, rather than
the array itself. If the second parameter is NULL, xdr_array
allocates space for the array and returns a pointer to it, putting
the size of the array in the third parameter. As an example,
consider the following XDR routine, xdr_chararr1() , which
deals with a fixed array of bytes with length SIZE .

xdr_chararr1(xdrsp, chararr)
 XDR *xdrsp;
 char chararr[];
{
 char *p;
 int len;

XDR memory allocation
2.3.2.4

Remote Procedure Call (RPC) Reference Manual Remote Procedure Call (RPC) Programming [2]

25Cray Research, Inc.SR–2089 9.0

 p = chararr;
 len = SIZE;
 return (xdr_bytes(xdrsp, &p, &len, SIZE));
}

It might be called from a server, as follows:

char chararr[SIZE];
svc_getargs(transp, xdr_chararr1, chararr);

In this case, chararr has already allocated space. If you want
XDR to do the allocation, you must rewrite this routine in the
following way:

xdr_chararr2(xdrsp, chararrp)
 XDR *xdrsp;
 char **chararrp;
{
 int len;
 len = SIZE;
 return (xdr_bytes(xdrsp, charrarrp, &len, SIZE));
}

Then the RPC might look like this:

char *arrptr;
arrptr = NULL;
svc_getargs(transp, xdr_chararr2, &arrptr);
/*
* use the result here
*/
svc_freeargs(transp, xdr_chararr2, &arrptr);

After the character array has been used, you can free it by using
svc_freeargs . In the xdr_finalexample() routine shown in
example 5, imagine that finalp–>string was NULL in the
following call:

svc_getargs(transp, xdr_finalexample, &finalp);

The svc_getargs call is described in the following subsection.
To free the array allocated to hold finalp–>string , you could
issue the following call:

svc_freeargs(xdrsp, xdr_finalexample, &finalp);

If finalp–>string is NULL, this call frees nothing. The same is
true for finalp–>simplep .

Remote Procedure Call (RPC) Programming [2] Remote Procedure Call (RPC) Reference Manual

26 Cray Research, Inc. SR–2089 9.0

To summarize, each XDR routine is responsible for serializing,
deserializing, and allocating memory. When an XDR routine is
called from callrpc , the serializer is used; when the routine is
called from svc_getargs , the deserializer is used; when it is
called from svc_freeargs , the memory deallocator is used.

In the high and intermediate layers, RPC handles many details
automatically for you. This subsection explains how you can
change the defaults of routines by using the lowest layer of the
RPC library. It is assumed that you are familiar with sockets
and the system calls for dealing with them. If you are not, see
socket (2).

You can use the lowest layer of RPC under various conditions.
First, you might need to use TCP. The higher and intermediate
layers use UDP, which might restrict RPCs to 8 Kbytes of data.
Using TCP permits calls to send long streams of data (for an
example, see subsection 2.3.3.4, page 34). Second, you might
want to allocate and free memory while serializing or
deserializing with XDR routines. No call at the higher or
intermediate level exists to let you free memory explicitly (for
more explanation, see subsection 2.3.2.4, page 24). Third, you
might need to perform authentication on either the client or
server side by supplying credentials or verifying them (see the
explanation in section 3, page 53).

The server for the nusers program shown in example 6 uses a
lower layer of the RPC package but performs the same function
as the server in example 3, which uses registerrpc .

Lowest RPC layer
2.3.3

Registering in the lowest
layer
2.3.3.1

Remote Procedure Call (RPC) Reference Manual Remote Procedure Call (RPC) Programming [2]

27Cray Research, Inc.SR–2089 9.0

 Example 6:

 1 #include <stdio.h>
 2 #include <rpc/rpc.h>
 3 #include <rpcsvc/rusers.h>
 4 main()
 5 {
 6 SVCXPRT *transp;
 7 int nuser();
 8 transp=svcudp_create(RPC_ANYSOCK);
 9 if (transp == NULL){
10 fprintf(stderr, “can’t create an RPC server\n”);
11 exit(1);
12 }
13 pmap_unset(RUSERSPROG, RUSERSVERS);
14 if (!svc_register(transp, RUSERSPROG, RUSERSVERS,
15 nuser, IPPROTO_UDP)) {
16 fprintf(stderr, “can’t register RUSER service\n”);
17 exit(1);
18 }
19 svc_run(); /* never returns */
20 fprintf(stderr, “should never reach this point\n”);
21 }
22 nuser(rqstp, tranp)
23 struct svc_req *rqstp;
24 SVCXPRT *transp;
25 {
26 unsigned long nusers;
27 switch (rqstp–>rq_proc) {
28 case NULLPROC:
29 if (!svc_sendreply(transp, xdr_void, 0)) {
30 fprintf(stderr, “can’t reply to RPC call\n”);
31 return;
32 }
33 return;
34 case RUSERSPROC_NUM:
35 /*
36 * code here to compute the number of users
37 * and put in variable nusers
38 */
39 if (!svc_sendreply(transp, xdr_u_long, &nusers) {
40 fprintf(stderr, “can’t reply to RPC call\n”);
41 return;
42 }
43 return;
44 default:
45 svcerr_noproc(transp);
46 return;
47 } }

Remote Procedure Call (RPC) Programming [2] Remote Procedure Call (RPC) Reference Manual

28 Cray Research, Inc. SR–2089 9.0

The following text explains the RPC portions of the server source
code in example 6.

Lines 6 through 11: First, the server gets a transport handle,
which is used for sending out and replying to RPC messages.
This example uses svcudp_create to get a UDP handle. If you
require a reliable protocol, call svctcp_create instead. If the
argument to svcudp_create is RPC_ANYSOCK (as in the
example), the RPC library creates a socket on which to send out
RPCs; otherwise, svcudp_create expects its argument to be a
valid socket number. If you specify your own socket, it can be
bound or unbound. If it is bound to a port, the port numbers of
svcudp_create and clntudp_create (the low-level client
routines) must match.

When you specify RPC_ANYSOCK for a socket or give an unbound
socket, the system determines port numbers in the following
way:

1. When a server starts up, it advertises to a portmapper
daemon on its local machine.

2. The server-side portmap daemon picks a port number for the
RPC procedure if the socket specified as a parameter to
svcudp_create is not already bound.

3. On the client side, when the clntudp_create call is made
with an unbound socket, the system queries the portmapper
on the machine to which the call is being made, and it gets
the appropriate port number.

4. If the portmapper is not running on the server side, or has no
port that corresponds to the RPC, the RPC fails.

You can make RPCs to the portmapper yourself. The
appropriate procedure numbers are in include file
<rpc/pmap_prot.h> .

Lines 13 through 17: After creating a service transport handle,
(SVCXPRT), the next step is to call pmap_unset so that, if the
nusers server crashed earlier, any previous trace of it is erased
before restarting. More precisely, pmap_unset erases the entry
for RUSERSPROG from the portmapper’s tables.

Remote Procedure Call (RPC) Reference Manual Remote Procedure Call (RPC) Programming [2]

29Cray Research, Inc.SR–2089 9.0

Finally, the program number for nusers is associated with the
nuser routine. The final argument to svc_register is usually
the protocol being used, which, in this case, is IPPROTO_UDP.
Notice that, unlike registerrpc , no XDR routines are involved
in this registration process. Also, registration is done on the
program, rather than procedure, level.

Lines 28 through 46: The nuser routine must call and dispatch
the appropriate XDR routines, based on the procedure number.

The nuser routine handles three conditions. First, procedure
NULLPROC (currently 0) returns without arguments. You can use
this as a simple test for detecting whether a remote program is
running. Second, nuser checks for valid procedure numbers.
Third, svcerr_noproc , which is the default, is called to handle
the error.

The user service routine serializes the results and returns them
to the RPC caller through svc_sendreply . The first parameter
of the service routine is the SVCXPRT handle, the second is the
XDR routine, and the third is a pointer to the data to be
returned.

Not illustrated in example 6 is how a server handles an RPC
program that passes data. In example 7, a procedure,
RUSERSPROC_BOOL, is added. This procedure has an argument,
nusers , and returns TRUE or FALSE if the number of users
logged on equals the number specified by nusers . The relevant
routine is svc_getargs , which takes an SVCXPRT handle, the
XDR routine, and a pointer to the destination for the return
values.

Remote Procedure Call (RPC) Programming [2] Remote Procedure Call (RPC) Reference Manual

30 Cray Research, Inc. SR–2089 9.0

Example 7:

case RUSERSPROC_BOOL: {
 int bool;
 unsigned nuserquery;
 if (!svc_getargs(transp, xdr_u_int, &nuserquery) {
 svcerr_decode(transp);
 return;
 }
 /*
 * code to set nusers = number of users
 */
 if (nuserquery == nusers)
 bool = TRUE;
 else
 bool = FALSE;
 if (!svc_sendreply(transp, xdr_bool, &bool){
 fprintf(stderr, “can’t reply to RPC call\n”);
 exit(1);
 }
 return;
}

When you use callrpc , you have no control over the RPC
delivery mechanism or the socket used to transport the data. To
illustrate the layer of RPC that lets you adjust these parameters,
consider example 8, which contains code to call the nusers
service.

Example 8:

Calling in the lowest layer
2.3.3.2

Remote Procedure Call (RPC) Reference Manual Remote Procedure Call (RPC) Programming [2]

31Cray Research, Inc.SR–2089 9.0

 1 #include <stdio.h>
 2 #include <rpc/rpc.h>
 3 #include <rpcsvc/rusers.h>
 4 #include <sys/socket.h>
 5 #include <sys/time.h>
 6 #include <netdb.h>
 7 main(argc, argv)
 8 int argc;
 9 char **argv;
10 {
11 struct hostent *hp;
12 struct timeval pertry_timeout, total_timeout;
13 struct sockaddr_in server_addr;
14 int addrlen, sock = RPC_ANYSOCK;
15 register CLIENT *client;
16 enum clnt_stat clnt_stat;
17 unsigned long nusers;
18 if (argc < 2) {
19 fprintf(stderr, “usage: nusers hostname\n”);
20 exit(–1);
21 }
22 if ((hp = gethostbyname(argv[1])) == NULL) {
23 fprintf(stderr, “can’t get addr for %s\n”,argv[1]);
24 exit(–1);
25 }
26 pertry_timeout.tv_sec = 3;
27 pertry_timeout.tv_usec = 0;
28 addrlen = sizeof(struct sockaddr_in);
29 bzero ((char*) &server_addr, sizeof (server_addr));
30 bcopy(hp–>h_addr, (caddr_t)&server_addr.sin_addr,
31 hp–>h_length);
32 server_addr.sin_family = AF_INET;
33 server_addr.sin_port = 0;
34 if ((client = clntudp_create(&server_addr, RUSERSPROG,
35 RUSERSVERS, pertry_timeout, &sock)) == NULL) {
36 clnt_pcreateerror(“clntudp_create”);
37 exit(–1);
38 }
39 total_timeout.tv_sec = 20;
40 total_timeout.tv_usec = 0;
41 clnt_stat = clnt_call(client, RUSERSPROC_NUM, xdr_void,
42 0, xdr_u_long, &nusers, total_timeout);
43 if (clnt_stat != RPC_SUCCESS) {
44 clnt_perror(client, “rpc”);
45 exit(–1);
46 }
47 clnt_destroy(client);
48 close(sock);
49 exit(0)
50 }

Remote Procedure Call (RPC) Programming [2] Remote Procedure Call (RPC) Reference Manual

32 Cray Research, Inc. SR–2089 9.0

The following text explains the RPC portions of the client source
code in example 8.

Lines 34 through 37: The client pointer is encoded with the
transport mechanism. The callrpc routine uses UDP; thus, it
calls clntudp_create to get a client pointer. The
clntudp_create parameters are the server address, the
program number, the version number, a time-out value (between
tries), and a pointer to a socket. The final clnt_call argument
(line 41) is the total time to wait for a response. Thus, the
number of tries is the clnt_call time-out divided by the
clntudp_create time-out.

To get TCP/IP and to make a stream connection, the call to
clntudp_create is replaced with the following call to
clnttcp_create :

clnttcp_create(&server_addr, prognum, versnum, &socket,
 inputsize, outputsize);

There is no time-out argument; instead, you must specify the
receive (inputsize) and send (outputsize) buffer sizes. When
the clnttcp_create call is made, a TCP connection is
established. All RPCs using that client handle use this
connection. (On the server side of an RPC using TCP,
svcudp_create is replaced by svctcp_create .)

Lines 41 through 42: The low-level version of callrpc is
clnt_call . The clnt_call parameters are a client pointer
(rather than a host name), the procedure number, the XDR
routine for serializing the argument, a pointer to the argument,
the XDR routine for deserializing the return value, a pointer to
the destination for the return value, and the number of seconds
to wait for a reply.

Line 47: The clnt_destroy call deallocates any space
associated with the client handle, but it closes the socket
associated with the client handle only if the RPC library opened
it. If a user opened the socket, it stays open because, if multiple
client handles are using the same socket, you can close one
handle without destroying the socket that other handles are
using.

Remote Procedure Call (RPC) Reference Manual Remote Procedure Call (RPC) Programming [2]

33Cray Research, Inc.SR–2089 9.0

The clnt_create interface greatly simplifies the method for
accessing the low-level RPC features. Like clnttcp_create
and clntudp_create , clnt_create returns a pointer to a
client structure. However, clnt_create removes much of the
work associated with the other two calls by allowing you to pass
in the host name and protocol type as parameters of type
character pointer (char*).

The syntax of the clnt_create call is as follows:

struct CLIENT *cp;

char *hostname; /* hostname string */
unsigned int prog; /* the program number */
unsigned int vers; /* the version number */
char *protocol; /* currently “udp” or “tcp” */

cp = clnt_create(hostname, prog, vers, protocol);

Using this interface, lines 22 through 35 of example 8 could be
replaced by the following line:

if ((client = clnt_create(argv[1], RUSERSPROG, RUSERSVERS,“udp”)) == NULL)
{

If a TCP delivery mechanism were preferred, string tcp would
replace string udp in this call.

If clnt_create fails, it returns the value NULL; the error can be
identified with a call to clnt_pcreateerror . clnt_create
can fail for the following reasons:

RPC_HOSTUNKNOWN; /* host not known by the system */
RPC_SYSTEMERR; /* host not in Internet Address Family */
RPC_UNKNOWNPROTO; /* unknown protocol...not “udp” or “tcp” */

Suppose a routine is processing RPC requests while performing
another activity. If the other activity involves periodically
updating a data structure, the process can set an alarm signal
before calling svc_run . But if the other activity involves
waiting on a file descriptor, the svc_run call will not work.
Example 9 shows the code for svc_run .

Select processing
2.3.3.3

Remote Procedure Call (RPC) Programming [2] Remote Procedure Call (RPC) Reference Manual

34 Cray Research, Inc. SR–2089 9.0

 Example 9:

void
svc_run()
{
 fd_set readfds;
 extern int errno;
 for (;;) {
 readfds = svc_fdset;
 switch (select(32, &readfds, NULL, NULL, NULL)) {
 case –1:
 if (errno == EINTR)
 continue;
 perror(“select”);
 return;
 case 0:
 break;
 default:
 svc_getreqset(&readfds);
 }
 }
}

You can bypass svc_run and call svc_getreq (or
svc_getreqset) yourself. To do so, you must know only the file
descriptors of the sockets associated with the programs for which
you are waiting. Thus, you can have your own select (2), which
waits on both the RPC socket and your own descriptors.

Note: svc_fdset is a global bit mask of all file descriptors
that RPC is using for services. It can change any time an
RPC library routine is called. Descriptors are constantly
being opened and closed (for example, for TCP connections).

In example 10, the initiator of the snd() RPC takes its standard
input and sends it to server rcv() , which prints it on standard
output. The RPC uses TCP. This example also illustrates an
XDR procedure that behaves differently on serialization than on
deserialization.

TCP processing
2.3.3.4

Remote Procedure Call (RPC) Reference Manual Remote Procedure Call (RPC) Programming [2]

35Cray Research, Inc.SR–2089 9.0

Example 10:

/*
 * The xdr routine:
 * on decode, read from the network, write to the file
 * on encode, read from the file, write to the network
 *
 * Returns 1 if successful
 * Returns 0 if an xdr failure occurs
 * Exits if a fread or fwrite fails.
 */

#include <stdio.h>
#include <rpc/rpc.h>

xdr_rcp(xdrs, fp)
XDR *xdrs;
FILE *fp;
{

 unsigned long size;
 char buf[BUFSIZ];
 char *p;

 if (xdrs–>x_op == XDR_FREE) {
 return(1);
 }

 while (1) {
 if (xdrs–>x_op == XDR_ENCODE) {
 if ((size = fread(buf, sizeof(char), BUFSIZ, fp) == 0)
 && ferror(fp)) {
 fprintf(stderr, “can’t fread”\n”);
 exit(1);
 }

 (continued)

Remote Procedure Call (RPC) Programming [2] Remote Procedure Call (RPC) Reference Manual

36 Cray Research, Inc. SR–2089 9.0

 }

 p = buf;

 /* On ENCODE, this operation is a “write to network”
 * On DECODE, this operation is a “read from network”
 */

 if (!xdr_bytes(xdrs, &p, &size, BUFSIZ)) {
 return(0); /* an XDR failure */
 }

 if (size == 0) { /* Normal exit */
 return(1);
 }

 if (xdrs–>x_op == XDR_DECODE) {
 if (fwrite(buf, sizeof(char), size, fp) != size) {
 fprintf(stderr, “fwrite error\n”);
 exit(1);
 }
 }
 } /* end while */
}

/*
* The sender routines
 */

#include <stdio.h>
#include <netdb.h>
#include <rpc/rpc.h>
#include <sys/socket.h>
#include <sys/time.h>

int callrpctcp();

main(argc, argv)
int argc;
char **argv;
{
 int err;

 if (argc < 2) {
 fprintf(stderr, “usage: %s servername\n”,argv[0]);
 exit(1);

 (continued)

Remote Procedure Call (RPC) Reference Manual Remote Procedure Call (RPC) Programming [2]

37Cray Research, Inc.SR–2089 9.0

 }

 if ((err = callrpctcp(argv[1], RCPPROG, RCPPROC_FP, RCPVERS,
 xdr_rcp, stdin, xdr_void, 0) != 0)) {
 clnt_perrno(err);
 fprintf(stderr, “can’t make the RPC call\n”);
 exit(1);
 }
}

callrpctcp(host, prognum, procnum, versnum, inproc, in, outproc, out)
char *host;
int prognum;
int procnum;
int versnum;
xdr_proc_t inproc;
char *in;
xdr_proc_t outproc;
char *out;
{
 struct sockaddr_in server_addr;
 int sock = RPC_ANYSOCK;
 enum clnt_stat client_stat;
 struct hostent *hp;
 register CLIENT *client;
 struct timeval total_timeout;

 if ((hp = gethostbyname(host)) == NULL) {
 fprintf(stderr, “can’t get address for ’%s’\n”,host);
 exit(1);
 }

 bzero((char*)&server_addr, sizeof(server_addr));
 bcopy(hp–>h_addr, (caddr_t)&server_addr.sin_addr, hp–>h_length);
 server_addr.sin_family = AF_INET;
 server_addr.sin_port = 0;

 if ((client = clnttcp_create(&server_addr, prognum, versnum,
 &sock, BUFSIZ, BUFSIZ)) == NULL) {

 perror(“rpctcp_create”);
 exit(1);
 }

 total_timeout.tv_sec = 20;
 total_timeout.tv_usec = 0;

 (continued)

Remote Procedure Call (RPC) Programming [2] Remote Procedure Call (RPC) Reference Manual

38 Cray Research, Inc. SR–2089 9.0

 client_stat = clnt_call(client, procnum, inproc, in,
 outproc, out, total_timeout);
 clnt_destroy(client);
 return((int)client_stat);
}

/*
 * The receiving routines
 */

#include <stdio.h>
#include <rpc/rpc.h>

main()
{
 register SVCXPRT *transp;

 if ((transp = svctcp_create(RPC_ANYSOCK, BUFSIZ, BUFSIZ)) == NULL) {
 fprintf(stderr, “svctcp_create: error\n”);
 exit(1);
 }

 pmap_unset(RCPPROG, RCPPROC); /* remove any old entry */

 if (!svc_register(transp, RCPPROG, RCPVERS,
 rcp_service, IPPROTO_TCP)) {

 fprintf(stderr, “svc_register: error\n”);
 exit(1);
 }
 svc_run(); /* should never return */
 fprintf(stderr, “svc_run should not return, but it did!\n”);
}

rcp_service(rqstp, transp)
register struct svc_req *rqstp;
register SVCXPRT *transp;
{
 switch (rqstp–>rq_proc) {

 case NULLPROC:
 if (!svc_sendreply(transp, xdr_void, 0)) {
 fprintf(stderr, “err: rcp NULL service\n”);
 }
 return; (continued)

Remote Procedure Call (RPC) Reference Manual Remote Procedure Call (RPC) Programming [2]

39Cray Research, Inc.SR–2089 9.0

 case RCPPROC_FP:
 if (!svc_getargs(transp, xdr_rcp, stdout)) {
 svcerr_decode(transp);
 return;
 }
 if (!svc_sendreply(transp, xdr_void, 0)) {
 fprintf(stderr, “can’t send reply\n”);
 }
 return;

 default:
 svcerr_noproc(transp);
 return;

 } /* end switch */
}

Occasionally, it is useful to have a server become a client and
make an RPC back to the process that is its client. This is called
callback processing. An example of its use is remote debugging,
in which the client is a window system program and the server is
a debugger running on the remote machine. Usually, the user
clicks a mouse button at the debugging window, which brings up
a debugger command and then makes an RPC to the server
(where the debugger is actually running), telling it to execute

Callback
processing
2.4

Remote Procedure Call (RPC) Programming [2] Remote Procedure Call (RPC) Reference Manual

40 Cray Research, Inc. SR–2089 9.0

that command. However, when the debugger hits a breakpoint,
the roles are reversed, and the debugger must make an RPC to
the window program, informing the user that it has reached a
breakpoint.

To do callback processing, you need a program number on which
to make the RPC. Because this will be a dynamically generated
program number, it should be in the transient range,
0x40000000 to 0x5fffffff. In example 11, the gettransient
routine returns a valid program number in the transient range
and registers it with the portmapper. It talks only to the
portmapper that is running on the same machine as the
gettransient routine itself. The call to pmap_set is a test and
set operation; that is, it indivisibly tests whether a program
number has already been registered, and, if it has not, reserves
it. This prevents more than one process from reserving the same
program number. On return, the sockp argument contains a
socket that can be used as the argument to an svcudp_create
or svctcp_create call.

Remote Procedure Call (RPC) Reference Manual Remote Procedure Call (RPC) Programming [2]

41Cray Research, Inc.SR–2089 9.0

Example 11:

#include <stdio.h>
#include <rpc/rpc.h>
#include <sys/socket.h>
gettransient(proto, vers, sockp)
 int proto, vers, *sockp;
{
 static int prognum = 0x40000000;
 int s, len, socktype;
 struct sockaddr_in addr;
 switch(proto) {
 case IPPROTO_UDP:
 socktype = SOCK_DGRAM;
 break;
 case IPPROTO_TCP:
 socktype = SOCK_STREAM;
 break;
 default:
 fprintf(stderr, “unknown protocol type\n”);
 return 0;
 }
 if (*sockp == RPC_ANYSOCK) {
 if ((s = socket(AF_INET, socktype, 0)) <0) {
 perror(“socket”);
 return (0);
 }
 *sockp = s;
 }
 else
 s = *sockp;
 bzero ((char*) &addr, sizeof (addr));
 addr.sin_addr.s_addr = 0;
 addr.sin_family = AF_INET;
 addr.sin_port = 0;
 len = sizeof(addr);
 /*
 * may be already bound, so don’t check for error
 */
 bind(s, &addr, len);
 if (getsockname(s, &addr, &len)< 0) {
 perror(“getsockname”);
 return (0);
 }
 while (!pmap_set(prognum++, vers, proto, addr.sin_port))
 continue;
 return (prognum–1);
)

Remote Procedure Call (RPC) Programming [2] Remote Procedure Call (RPC) Reference Manual

42 Cray Research, Inc. SR–2089 9.0

The two programs in example 12 illustrate how to use the
gettransient routine. The client makes an RPC to the server,
passing it a transient program number. The client then waits to
receive a callback from the server at that program number. The
server registers the program EXAMPLEPROG, so that it can
receive the RPC informing it of the callback program number.
Then at some random time (on receiving an ALRM signal in this
example), it sends a callback RPC, using the program number it
received earlier.

Example 12:

/*
 * client
 */
#include <stdio.h>
#include <rpc/rpc.h>
int callback();
char hostname[256];
main(argc, argv)
 int argc;
 char **argv;
{
 int x, ans, s;
 SVCXPRT *xprt;
 gethostname(hostname, sizeof(hostname));
 s = RPC_ANYSOCK;
 x = gettransient(IPPROTO_UDP, 1, &s);
 fprintf(stderr, “client gets prognum %d\n”, x);
 if ((xprt = svcudp_create(s)) == NULL) {
 fprintf(stderr, “rpc_server: svcudp_create\n”);
 exit(1);
 }
 /* protocol is 0 – gettransient() does registering
 */
 (void)svc_register(xprt, x, 1, callback, 0);
 ans = callrpc(hostname, EXAMPLEPROG, EXAMPLEVERS,
 EXAMPLEPROC_CALLBACK, xdr_int, &x, xdr_void, 0);
 if (ans != RPC_SUCCESS) {
 fprintf(stderr, “call: ”);
 clnt_perrno(ans);
 fprintf(stderr, ”\n”);
 exit(1)
 (continued)

Remote Procedure Call (RPC) Reference Manual Remote Procedure Call (RPC) Programming [2]

43Cray Research, Inc.SR–2089 9.0

 }
 svc_run();
 fprintf(stderr, “Error: svc_run shouldn’t return\n”);
}
callback(rqstp, transp)
 register struct svc_req *rqstp;
 register SVCXPRT *transp;
{
 switch (rqstp–>rq_proc) }
 case 0:
 if (!svc_sendreply(transp, xdr_void, 0)) {
 fprintf(stderr, “err: rusersd\n”);
 exit(1);
 }
 exit(0);
 case 1:
 if (!svc_getargs(transp, xdr_void, 0)) {
 svcerr_decode(transp);
 exit(1);
 }
 fprintf(stderr, “client got callback\n”);
 if (!svc_sendreply(transp, xdr_void, 0)) {
 fprintf(stderr, “err: rusersd”);
 exit(1);
 }
 }
}
/*
 * server
 */
#include <stdio.h>
#include <rpc/rpc.h>
#include <sys/signal.h>
char *getnewprog();
char hostname[256];
int docallback();
int pnum; /* program number for callback routine */
main(argc, argv)
int argc
 char **argv;
{

 (continued)

Remote Procedure Call (RPC) Programming [2] Remote Procedure Call (RPC) Reference Manual

44 Cray Research, Inc. SR–2089 9.0

 gethostname(hostname, sizeof(hostname));
 registerrpc(EXAMPLEPROG, EXAMPLEVERS,
 EXAMPLEPROC_CALLBACK, getnewprog, xdr_int, xdr_void);
 fprintf(stderr, “server going into svc_run\n”);
 signal(SIGALRM, docallback);
 alarm(10);
 svc_run();
 fprintf(stderr, “Error: svc_run shouldn’t return\n”);
}
char *
getnewprog(pnump)
 char *pnump;
{
 pnum = *(int *)pnump;
 return NULL;
}
docallback()
{
 int ans;
 ans = callrpc(hostname, pnum, 1, 1, xdr_void, 0,
 xdr_void, 0);
 if (ans != 0) {
 fprintf(stderr, “server:\n”);
 clnt_perrno(ans);
 fprintf(stderr, ”\n”);
 }
}

The RPC protocol is intended for use in calling remote
procedures: each call message is matched with a response
message. However, the protocol itself is a message-passing
protocol with which protocols other than RPC can be
implemented. For example, you can use the RPC message
protocol for batching (or pipelining) and broadcast RPC.

Other uses of the
RPC protocol
2.5

Remote Procedure Call (RPC) Reference Manual Remote Procedure Call (RPC) Programming [2]

45Cray Research, Inc.SR–2089 9.0

The RPC architecture is designed so that clients send a call
message and wait for servers to reply that the call succeeded.
This implies that clients do not compute while servers are
processing a call. This is inefficient if the client does not want or
need an acknowledgment for every message sent. In such cases,
clients can use RPC batch facilities to continue computing while
waiting for a response.

Batching allows a client to send an arbitrarily large sequence of
call messages to a server; reliable byte stream protocols (such as
TCP/IP) are used for transport. In the case of batching, the
client never waits for a reply from the server, and the server
does not send replies to batch requests. A nonbatched RPC
command usually terminates a sequence of batch calls to flush
the pipeline (with positive acknowledgment).

Because the server does not respond to every call, the client can
generate new calls in parallel with the server’s execution of
previous calls. Furthermore, the TCP/IP implementation can
buffer up many call messages and can send them to the server in
one write (2) system call. This overlapped execution greatly
decreases the interprocess communication overhead of the client
and server processes and the total elapsed time required for a
series of calls.

Assume that a string-rendering service (such as a window
system) has two similar calls: one renders a string and returns
void results; the other renders a string and remains silent. The
service (using the TCP/IP transport) might look like example 13.

Batching
2.5.1

Remote Procedure Call (RPC) Programming [2] Remote Procedure Call (RPC) Reference Manual

46 Cray Research, Inc. SR–2089 9.0

Example 13:

/*
 * This is the file window.h
 */

#define WINDOWPROG (0x20100003) /* PROGNUM within the USER range */
#define WINDOWVERS (1)

/* Windowing Procedures */

#define RENDERSTRING (1)
#define RENDERSTRING_BATCHED (2)

/* end of “window.h” */

/*
 * This is the file window_svc.c
 */

#include <stdio.h>
#include <rpc/rpc.h>
#include “window.h”

void windowdispatch();

main()
{
 SVCXPRT *transp;

 transp = svctcp_create(RPC_ANYSOCK, 0, 0);
 if (transp == NULL) {
 fprintf(stderr, “can’t create the RPC server\n”);
 exit(1);
 }

 /* remove any old mapping that may be left over */

 pmap_unset(WINDOWPROG, WINDOWVERS);

 if (!svc_register(transp, WINDOWPROG, WINDOWVERS,
 windowdispatch, IPPROTO_TCP)) {
 (continued)

Remote Procedure Call (RPC) Reference Manual Remote Procedure Call (RPC) Programming [2]

47Cray Research, Inc.SR–2089 9.0

 fprintf(stderr, “can’t register WINDOW service\n”);
 exit(1);
 }

 svc_run(); /* never returns */

 fprintf(stderr, “svc_run should never return, but it did!\n”);

}

void
windowdispatch(rqstp, transp)
struct svc_req *rqstp;
SVCXPRT *transp;
{
 char *s = NULL;

 switch (rqstp–>rq_proc) {

 case NULLPROC:
 if (!svc_sendreply(transp, xdr_void, 0)) {
 fprintf(stderr, “can’t reply to NULL RPC call\n”);
 }
 return;

 case RENDERSTRING:
 if (!svc_getargs(transp, xdr_wrapstring, &s)) {
 fprintf(stderr, “can’t decode RENDERSTRING args\n”);

 /* tell the caller they made an error */

 svcerr_decode(transp);
 break;
 }

 /* Code here to actually render the string... */

 /* Now send reply to the caller...*/

 (continued)

Remote Procedure Call (RPC) Programming [2] Remote Procedure Call (RPC) Reference Manual

48 Cray Research, Inc. SR–2089 9.0

 if (!svc_sendreply(transp, xdr_void, 0)) {
 fprintf(stderr, “can’t reply to RPC call\n”);
 return;
 }
 break;

 case RENDERSTRING_BATCHED:

 if (!svc_getargs(transp, xdr_wrapstring, &s)) {
 fprintf(stderr, “can’t decode BATCHED args\n”);

 /* since batched, silent in face of protocol errs */

 break;
 }

 /* Code here to actually render the string... */

 /* Since batched, send NO reply to the caller...*/

 break;

 default:
 svcerr_noproc(transp);
 return;

 } /* end switch */

 /* Free the string allocated when the arguments were decoded... */

 svc_freeargs(transp, xdr_wrapstring, &s);

}

The service could have one procedure that takes the string and a
Boolean to indicate whether the procedure should respond.

For a client to take advantage of batching, the client must
perform RPCs on a TCP-based transport, and the actual calls
must have the following attributes:

• The XDR routine result must be 0 (NULL).

• The time-out of the RPC must be 0.

Remote Procedure Call (RPC) Reference Manual Remote Procedure Call (RPC) Programming [2]

49Cray Research, Inc.SR–2089 9.0

Example 14 shows a client that uses batching to render a series
of strings; the batching is flushed when the client gets a null
string.

Example 14:

#include <stdio.h>
#include <rpc/rpc.h>
#include “window.h”
#include <sys/time.h>

main(argc, argv)
int argc;
char **argv;
{
 struct timeval total_timeout;
 register CLIENT *client;
 enum clnt_stat client_stat;
 char buf[1000];
 char *s = buf;

 client = clnt_create(argv[1], WINDOWPROG, WINDOWVERS, “tcp”);
 if (client == NULL) {
 fprintf(stderr, “clnt_create [%s] failed\n”,argv[1]);
 exit(1);
 }

 total_timeout.tv_sec = 0;
 total_timeout.tv_usec = 0;

 /* Somewhat dangerous...the scanf() could overflow the buffer */

 while (scanf(”%s”, s) != EOF) {
 client_stat = clnt_call(client, RENDERSTRING_BATCHED,
 xdr_wrapstring, &s, NULL, NULL, total_timeout);
 if (client_stat != RPC_SUCCESS) {
 clnt_perror(client, “batched rpc”);
 exit(–1);
 }
 } /* end while */
 /* Now flush the pipeline */

 total_timeout.tv_sec = 20;

 (continued)

Remote Procedure Call (RPC) Programming [2] Remote Procedure Call (RPC) Reference Manual

50 Cray Research, Inc. SR–2089 9.0

 client_stat = clnt_call(client, NULLPROC,
 xdr_void, NULL, xdr_void, NULL, total_timeout);

 if (client_stat != RPC_SUCCESS) {
 clnt_perror(client, “rpc”);
 exit(–1);

 }
 /* all done...now clean up */

 clnt_destroy(client);
}

Because the server sends no message, the clients cannot be
notified of any failures that occur. Therefore, clients must
handle errors on their own.

Example 14 was completed to render all 2000 lines in the
/etc/termcap file. The rendering service did nothing but
delete the lines. The example was run (by Sun Microsystems) in
the following configurations with the following results:

Configuration Results

Machine to itself, regular RPC 50 seconds

Machine to itself, batched RPC 16 seconds

Machine to another, regular RPC 52 seconds

Machine to another, batched RPC 10 seconds

Running fscanf (see scanf (3)) on file /etc/termcap requires
only 6 seconds. These timings show the advantage of protocols
that allow for overlapped execution, although these protocols are
often difficult to design.

In broadcast protocols based on RPC, the client sends a
broadcast packet to the network and waits for numerous replies.
Broadcast RPC uses unreliable, packet-based protocols (such as
UDP/IP) for transport. Servers that support broadcast protocols
respond only when the request is processed successfully, and
they are silent when errors occur.

Broadcast RPC
2.5.2

Remote Procedure Call (RPC) Reference Manual Remote Procedure Call (RPC) Programming [2]

51Cray Research, Inc.SR–2089 9.0

The portmapper is a daemon that converts RPC program
numbers into DARPA protocol port numbers (see portmap (8)).
You cannot do broadcast RPC without the portmapper, portmap ,
in conjunction with standard RPC protocols. The following are
the main differences between broadcast RPC and normal RPC:

• Normal RPC expects one answer; broadcast RPC expects many
answers (one or more answers from each responding machine).

• Only packet-oriented (connectionless) transport protocols such
as UDP/IP can support broadcast RPC.

• The implementation of broadcast RPC treats all unsuccessful
responses as garbage by filtering them out. Thus, if a version
mismatch exists between the broadcaster and a remote
service, the user of broadcast RPC never knows.

• All broadcast messages are sent to the portmap port. Thus,
only services that register themselves with their portmapper
are accessible through the broadcast RPC mechanism.

• Broadcast request sizes are limited to the maximum
transmission unit (mtu) of the local network.

The following is a synopsis of broadcast RPC:

#include <rpc/pmap_clnt.h>
enum clnt_stat clnt_stat;
clnt_stat =
clnt_broadcast(prog, vers, proc, xargs, argsp, xresults,
 resultsp, eachresult)
u_long prog; /* program number */
u_long vers; /* version number */
u_long proc; /* procedure number */
xdrproc_t xargs; /* xdr routine for args */
caddr_t argsp; /* pointer to args */
xdrproc_t xresults; /* xdr routine for results */
caddr_t resultsp; /* pointer to results */
bool_t (*eachresult)(); /* call with each result obtained*/

The eachresult() routine is called each time a valid result is
obtained. It returns the following Boolean, which indicates
whether the client wants more responses:

bool_t done;
done = eachresult(resultsp, raddr)
caddr_t resultsp;
struct sockaddr_in *raddr; /* addr of responding machine */

Remote Procedure Call (RPC) Programming [2] Remote Procedure Call (RPC) Reference Manual

52 Cray Research, Inc. SR–2089 9.0

If done is TRUE, broadcasting stops, and clnt_broadcast
returns successfully; otherwise, the routine waits for another
response. The request is rebroadcast after a few seconds of
waiting. If no responses return, the routine returns with
RPC_TIMEDOUT. To interpret clnt_stat errors, feed the error
code to clnt_perrno .

Authentication [3]

53Cray Research, Inc.SR–2089 9.0

The RPC protocol includes a slot for authentication parameters
on every call. The type of authentication used by the server and
client determines the contents of the authentication parameters.
A server can support the following types of authentication at
once:

• AUTH_DES passes encrypted time-stamp information, allowing
the client and server to perform mutual verification and
authentication.

• AUTH_KERB passes encrypted Kerberos service ticket
information, allowing the client and server to perform mutual
verification and authentication.

• AUTH_NULL passes no authentication information (this is
called null authentication and is the default).

• AUTH_SHORT is a shorthand form of passing UNICOS style
credentials.

• AUTH_UNIX passes the UNICOS user ID, group ID, and group
lists with each call.

Authentication types are fully described in appendix E, page
165.

The RPC package on the server authenticates every RPC, and,
similarly, the RPC client package generates and sends
authentication parameters. The authentication subsystem of
the RPC package is open-ended; that is, numerous types of
authentication are easy to support. This section covers
UNICOS, Data Encryption Standard (DES), and Kerberos
authentication.

Authentication of caller to service and vice versa are provided
through call and reply messages. The call message has two
authentication fields: credentials and verifier. The reply
message has one authentication field, the response verifier.

Authentication [3] Remote Procedure Call (RPC) Reference Manual

54 Cray Research, Inc. SR–2089 9.0

The RPC protocol specification uses the XDR language described
in appendix C, page 121. This protocol defines the
authentication structure to be the following opaque type:

enum auth_flavor {
 AUTH_NULL = 0,
 AUTH_UNIX = 1,
 AUTH_SHORT = 2,
 AUTH_DES = 3,
 AUTH_KERB = 4
 /* and more to be defined */
};

struct opaque_auth {
 union switch (enum auth_flavor) {
 default: string auth_body<00>;
 };
};

Any opaque_auth structure is an auth_flavor enumeration,
followed by a counted string whose bytes are opaque to the RPC
protocol implementation.

The interpretation and semantics of the data contained within
the authentication fields are specified by individual, independent
authentication protocol specifications.

If authentication parameters are rejected, the response message
contains information stating why they were rejected.

This subsection describes the requirements for null, UNICOS,
DES, and Kerberos authentication.

Often, calls must be made in which the client does not have to
verify the identity of the server, and the server does not have to
know the identity of the client. In this case, the auth_flavor
value (the discriminant of the opaque_auth ’s union) of the RPC
message’s credentials, verifier, and response verifier is
AUTH_NULL. The bytes of the auth_body string are undefined.
The string length should be 0. Null authentication is the
default; when it is used, the server accepts and performs all
service requests.

Setting up
authentication
3.1

Null authentication
requirements
3.1.1

Remote Procedure Call (RPC) Reference Manual Authentication [3]

55Cray Research, Inc.SR–2089 9.0

Sometimes a server might want to limit its services to a
restricted set of users. One way of doing this is by using
UNICOS authentication. When UNICOS authentication is used,
the auth_flavor discriminant of the opaque_auth structure
has the value AUTH_UNIX. The bytes of the auth_body can then
be interpreted as an authunix_parms structure, as defined in
appendix E, page 165. In addition to the user ID, other
information, including a time stamp, a machine name, the user’s
group ID, and a list of groups to which the user belongs, is sent
to the server. The server can use the data passed in the
authunix_parms structure any way it chooses; that is, it can
use any of the fields selectively to allow or disallow services.

Unfortunately, nothing prevents malicious users from writing
whatever data they choose into the authunix_parms structure
before it is sent to the server. Thus, it is very easy for a client to
deceive a server into believing it is servicing either a different
user or a user who has a different set of attributes.

DES authentication provides stricter security than does
UNICOS authentication, allowing a server to obtain a client
user’s identity with a very high degree of certainty. Moreover,
the client user can verify the identity of the server with whom it
is communicating. Although it is technologically possible to
deceive even DES authentication, to do so on a local subnet
requires a lot of computational resources.

DES authentication, which is sometimes called secure RPC,
requires that the keyserv (8) daemon be running on both server
and client machines. The administrator must have already
assigned each secure RPC user a public key/secret key pair in
the publickey database. DES users must then register
themselves by using the keyserv process, either automatically,
by logging in with login (1), or manually, with the keylogin (1)
command.

Note: Because the network information service (NIS)
manages the publickey database, NIS must be configured
and running on the Cray Research system for DES
authentication to work. Moreover, the Cray Research system
must be in the same NIS domain as any host with whom DES
authentication will be used.

UNICOS authentication
requirements
3.1.2

DES authentication
requirements
3.1.3

Authentication [3] Remote Procedure Call (RPC) Reference Manual

56 Cray Research, Inc. SR–2089 9.0

Kerberos authentication uses encrypted Kerberos service tickets
to provide more security than either UNICOS or DES
authentication. Kerberos authentication requires that the
Kerberos Enigma security package be installed on your system
and that the site have an ONC+ license. See the ONC+
Technology for the UNICOS Operating System, publication
SG–2169, for more information about ONC+. Users must obtain
a Kerberos service ticket by using the kinit (1) command prior
to using AUTH_KERB flavor RPC.

Servers using AUTH_KERB flavor RPC must register themselves
with the authentication software by using the svc_kerb_reg
library call. See the kerberos_rpc (3) man page for more
information.

Suppose a caller creates a new RPC client handle, as in the
following command:

CLIENT *clnt;
clnt = clntudp_create(address, prognum, versnum,
 wait, sockp)

By default, the type of authentication to use is set to NULL.
However, the RPC client can choose to use UNICOS, DES, or
Kerberos authentication by setting clnt–>cl_auth after
creating the RPC client handle.

For UNICOS authentication, the handle would be set as follows:

clnt–>cl_auth = authunix_create_default();

If an authentication failure occurs, you can use the following
command instead:

clnt–>cl_auth = authunix_create(host,uid,gid,len,aup_gids);

For DES authentication, the handle would be set as follows:

clnt–>cl_auth = authdes_create(servername,credlife,&server_addr,key);

For Kerberos authentication, the handle would be set as follows:

clnt–>cl_auth = authkerb_seccreate(server,instance,realm,window,timehost,
 status);

Kerberos
authentication
requirements
3.1.4

Client
authentication
3.2

Remote Procedure Call (RPC) Reference Manual Authentication [3]

57Cray Research, Inc.SR–2089 9.0

See appendix A, page 67, for descriptions of arguments for
authdes_create and authunix_create .

People who develop RPC services have a more difficult time
dealing with authentication issues than those implementing
client applications, because the RPC package passes the service
dispatch routine a request that has an arbitrary authentication
style associated with it. Consider the fields of a request handle
passed to a service dispatch routine:

/*
 * An RPC service request
 */
struct svc_req {
 u_long rq_prog; /* service program number */
 u_long rq_vers; /* service protocol vers_num */
 u_long rq_proc; /* desired procedure number */
 struct opaque_auth
 rq_cred; /* raw credentials from wire */
 caddr_t rq_clntcred; /* credentials (read only) */
};

The rq_cred field is mostly opaque, except for the style of
authentication credentials, as in the following:

 /*
 * Authentication information. Mostly opaque to the programmer.
 */
 struct opaque_auth {
 enum_t oa_flavor; /* style of credentials */
 caddr_t oa_base; /* address of more auth stuff */
 u_int oa_length; /* not to exceed MAX_AUTH_BYTES */
 };

The RPC package makes the following guarantee to the service
dispatch routine:

Server
authentication
3.3

Authentication [3] Remote Procedure Call (RPC) Reference Manual

58 Cray Research, Inc. SR–2089 9.0

• The request’s rq_cred field is well-formed. Thus, the service
implementer might inspect the request’s rq_cred.oa_flavor
field to determine which style of authentication the caller
used. If rq_cred.oa_flavor is AUTH_UNIX, the pointer
rq_clntcred could be cast to a pointer to an
authunix_parms structure. If rq_cred.oa_flavor is
AUTH_DES, the pointer rq_clntcred could be cast to a pointer
to an authdes_cred structure. If rq_cred.oa_flavor is
AUTH_KERB, the pointer rq_clntcred could be cast to a
pointer to an authkerb_clnt_cred structure. If the style is
not one of the styles that the RPC package supports, the
service implementer might also want to inspect the other
fields of rq_cred .

• The request’s rq_clntcred field is either NULL or points to a
well-formed structure that corresponds to a supported style of
authentication credentials. If rq_clntcred is NULL, the
service implementer might want to inspect the other (opaque)
fields of rq_cred in case the service knows about a new type
of authentication that the RPC package does not.

Remote Procedure Call (RPC) Reference Manual Authentication [3]

59Cray Research, Inc.SR–2089 9.0

You can extend the remote users service example so that it
computes results for all users except user ID 16, as follows:

nuser(rqstp, tranp)
 struct svc_req *rqstp;
 SVCXPRT *transp;
{
 struct authunix_parms *unix_cred;
 unsigned long nusers;
 struct authdes_cred *des_cred;
 struct authkerb_clnt_cred *authkerb_cred;
 int uid;
 int gid;
 int gidlen;
 int gidlist[10];
 /*
 * we don’t care about authentication for null proc
 */
 if (rqstp–>rq_proc == NULLPROC) {
 if (!svc_sendreply(transp, xdr_void, 0)) {
 fprintf(stderr, “can’t reply to RPC call\n”);
 exit(1);
 }
 return;
 }
 /*
 * now get the uid
 */
 switch (rqstp–>rq_cred.oa_flavor) {
 case AUTH_UNIX:
 unix_cred = (struct authunix_parms *)rqstp–>rq_clntcred;
 uid = unix_cred–>aup_uid;
 break;
 (continued)

Authentication [3] Remote Procedure Call (RPC) Reference Manual

60 Cray Research, Inc. SR–2089 9.0

case AUTH_DES:
 des_cred =
 (struct authdes_cred *) rqstp–>rq_clntcred;
 if (! netname2user(des_cred–>adc_fullname.name,
 &uid, &gid, &gidlen, gidlist))
 {
 fprintf(stderr, “unknown user: %s\n”,
 des_cred–>adc_fullname.name);
 svcerr_systemerr(transp);
 return;
 }
 break;
 case AUTH_KERB:
 authkerb_cred =
 (struct authkerb_clnt_cred *)rqstp–>rq_clntcred;
 if (!authkerb_getucred (rqstp, &uid, &gid, gidlen, gidlist)) {
 fprintf (stderr, “unknown user:%s\n”,
 authkerb_cred–>akc_fullname.pname);
 svcerr_systemerr(transp);
 return;
 }
 break;
 case AUTH_NULL:
 default:
 svcerr_weakauth(transp);
 return;
 }
 switch (rqstp–>rq_proc) {
 case RUSERSPROC_NUM:
 /*
 * Explicitly disallow user with UID 16
 */
 if (uid == 16) {
 svcerr_systemerr(transp);
 return;
 }
 /*
 * code here to compute the number of users
 * and put in variable nusers
 */
 if (!svc_sendreply(transp, xdr_u_long, &nusers) {
 fprintf(stderr, “can’t reply to RPC call\n”);
 exit(1);
 }
 return;
 default:
 svcerr_noproc(transp);
 return;
 }
}

Remote Procedure Call (RPC) Reference Manual Authentication [3]

61Cray Research, Inc.SR–2089 9.0

You should note the following points:

• It is customary not to check the authentication parameters
associated with NULLPROC (procedure number 0). This allows
any user to test for the presence of the server, simply by using
rpcinfo (8).

• If the authentication parameter’s type is not suitable for your
service, the server should call svcerr_weakauth . For
example, if the client sent credentials of type AUTH_UNIX or
AUTH_NULL, and the server required credentials of type
AUTH_DES, the server should call svcerr_weakauth .

• The service protocol itself should return the status for access
denied. In the case of the previous example, the protocol does
not have such a status; therefore, the service primitive
svcerr_systemerr is called instead.

The last point underscores the relationship between the RPC
authentication package and the services; RPC deals only with
authentication and not with access control for individual
services. Each service must implement its own access control
policy and reflect that policy as return statuses in its protocol.

When RPC messages are passed on top of a byte stream protocol
(such as TCP/IP), you should delimit one message from another
to detect and possibly recover from user protocol errors. This is
called record marking (RM). One RPC message fits into one RM
record.

A record is composed of one or more record fragments. A record
fragment consists of a 4-byte header, followed by 0 to 231–1 bytes
of fragment data. The bytes encode an unsigned binary number;
as with XDR integers, the byte order is from highest to lowest.
The number encodes two values: a Boolean that indicates
whether the fragment is the last fragment of the record (bit
value 1 implies that the fragment is the last fragment) and a
31-bit unsigned binary value that is the number of bytes in the
fragment’s data. The Boolean value is the high-order bit of the
header; the length is the 31 low-order bits.

Note: This record specification is not in XDR standard form.

Record-marking
standard
3.4

Authentication [3] Remote Procedure Call (RPC) Reference Manual

62 Cray Research, Inc. SR–2089 9.0

RPC Message Protocol [4]

63Cray Research, Inc.SR–2089 9.0

This section defines the RPC message protocol in the External
Data Representation (XDR) language.

The protocol begins with a call and reply, as follows:

enum msg type {
 CALL = 0,
 REPLY = 1
};

A reply to a call message indicates that the message was either
accepted or rejected, as follows:

enum reply_stat {
MSG_ACCEPTED = 0,
MSG_DENIED = 1
};

If the call message was accepted, the status of an attempt to call
a remote procedure is as follows:

enum accept_stat {
SUCCESS = 0, /* RPC executed successfully */
PROG_UNAVAIL = 1, /* remote hasn’t exported program */
PROG_MISMATCH= 2, /* remote can’t support version # */
PROC_UNAVAIL = 3, /* program can’t support procedure */
GARBAGE_ARGS = 4, /* procedure can’t decode params */
SYSTEM_ERR = 5 /* failure in RPC system */
}

The following list gives reasons for a call message rejection:

enum reject_stat {
RPC_MISMATCH = 0, /* RPC version number != 2 */
AUTH_ERROR = 1 /* Remote cannot authenticate caller */
};

Call and reply
4.1

RPC Message Protocol [4] Remote Procedure Call (RPC) Reference Manual

64 Cray Research, Inc. SR–2089 9.0

The following list gives reasons for authentication failure:

enum auth_stat {
AUTH_BADCRED = 1, /* Bad credentials (seal broken) */
AUTH_REJECTEDCRED=2, /* Client must begin new session */
AUTH_BADVERF = 3, /* Bad verifier (seal broken) */
AUTH_REJECTEDVERF=4, /* Verifier expired or replayed */
AUTH_TOOWEAK = 5, /* Rejected for security reasons */
AUTH_INVALIDRESP = 6, /* Rejected because of bad response verifier */
AUTH_FAILED = 7 /* Failed for other (unknown) reason */
};

All messages start with a transaction identifier, xid , followed by
a two-armed, discriminated union. The union’s discriminant is a
msg_type that switches to one of the two types of the message.
The xid of a REPLY message always matches that of the
initiating CALL message.

Note: The xid field is used only for clients that match reply
messages with call messages; the service side cannot treat
this ID as any type of sequence number.

Consider the following structure:

struct rpc_msg {
unsigned xid;
union switch (enum msg_type) {
 CALL: struct call_body;
 REPLY: struct reply_body;
} };

Message structure
4.2

Remote Procedure Call (RPC) Reference Manual RPC Message Protocol [4]

65Cray Research, Inc.SR–2089 9.0

The following structure shows the body of an RPC request call.
In version 2 of the RPC protocol specification, rpcvers must be
equal to 2. The prog , vers , and proc fields specify the remote
program, its version number, and the procedure to be called from
within the remote program, respectively. These fields are
followed by two authentication parameters: cred
(authentication credentials) and verf (authentication verifier).
The two authentication parameters are followed by the
parameters to the remote procedure, which are specified by the
specific program protocol.

struct call_body {
unsigned rpcvers; /* Must be equal to two (2) */
unsigned prog;
unsigned vers;
unsigned proc;
struct opaque_auth cred;
struct opaque_auth verf;
/* Procedure-specific parameters start here */
};

The following structure shows the body of a reply to an RPC
request. The call message was either accepted or rejected.

struct reply_body {
union switch (enum reply_stat) {
 MSG_ACCEPTED: struct accepted_reply;
 MSG_DENIED: struct rejected_reply;
}; };

The following structure shows a reply to an RPC request that
the server accepted. (An error might exist, however, even
though the request was accepted.) The first field is an
authentication verifier that the server generates to validate
itself to the caller. It is followed by a union whose discriminant
is an enumeration of accept_stat . The SUCCESS arm of the
union is protocol-specific. The PROG_UNAVAIL, PROC_UNAVAIL,
and GARBAGE_ARGS arms of the union are void. The
PROG_MISMATCH arm specifies the lowest and highest version
numbers of the remote program that the server supports.

struct accepted_reply {
struct opaque_auth verf;
union switch (enum accept_stat) {
 SUCCESS: struct {
 /*
 * Procedure-specific results start here
 */

RPC Message Protocol [4] Remote Procedure Call (RPC) Reference Manual

66 Cray Research, Inc. SR–2089 9.0

 };
 PROG_MISMATCH: struct {
 unsigned low;
 unsigned high;
 };
 default: struct {
 /*
 * void. Cases include PROG_UNAVAIL,
 * PROC_UNAVAIL, and GARBAGE_ARGS.
 */
 }; }; };

The following structure shows a reply to an RPC request that
the server rejected. A request can be rejected either because the
server is not running a compatible version of the RPC protocol
(RPC_MISMATCH) or the server refuses to authenticate the caller
(AUTH_ERROR). In the case of an RPC version mismatch, the
server returns the lowest and highest supported RPC version
numbers. In the case of refused authentication, failure status is
returned.

struct rejected_reply {
union switch (enum reject_stat) {
 RPC_MISMATCH: struct {
 unsigned low;
 unsigned high;
 };
 AUTH_ERROR: enum auth_stat;
}; };

Synopsis of RPC and XDR Routines [A]

67Cray Research, Inc.SR–2089 9.0

This appendix summarizes the entry points into the RPC and
XDR system.

This macro destroys the authentication information associated
with auth . Destruction usually involves deallocation of private
data structures. The use of auth is undefined after
auth_destroy is called.

auth_destroy Format:

void
auth_destroy(auth)
 AUTH *auth;

authdes_create This routine creates and returns an RPC authentication handle
that contains the following DES authentication information:

Format:

AUTH * authdes_create(netname, window, syncaddr, deskeyp)
 char *netname
 unsigned window;
 struct sockaddr_in *syncaddr;
 des_block *deskeyp;

The netname parameter is the network name of the server
process owner. If the server process is a root process, you can
derive the name by using the following declaration and call
(argument type is character pointer):

char netname [MAXNETNAMELEN];
host2netname(servername,rhostname,NULL);

rhostname is the host name of the machine on which the server
process (servername) is running.

NULL specifies that the local domain name will be used.

If a user runs the server process, you can derive the name by
using the following declaration and call:

char netname [MAXNETNAMELEN];
user2netname(servername,uid,NULL);

Synopsis of RPC/XDR Routines [A] Remote Procedure Call (RPC) Reference Manual

68 Cray Research, Inc. SR–2089 9.0

uid is the user ID of the user whose server name you are
requesting.

The window parameter is the lifetime (in seconds) for the
credential. You can use a credential only once within the
lifetime set by this parameter. The argument type is an
unsigned integer.

The syncaddr parameter is the network address of the host
with which the client must synchronize. Both client and server
must be using the same time. If you are sure that the client and
server are already synchronized (if, for example, both client and
server are running the Network Time Protocol (NTP)), you can
specify this argument as NULL. The argument type is pointer to
the sockaddr_in structure (sockaddr_in *).

The deskeyp parameter is the address of a DES encryption key
to use for encrypting time stamps and data. NULL indicates that
you should choose a random key. The ah_key field of the
authentication handle contains the encryption key. The
argument type is a pointer to the des_key structure
(des_key *).

authkerb_seccreate This client side routine returns an RPC authentication handle
that enables the use of the Kerberos authentication system. If
the authkerb_seccreate routine fails it returns NULL. For
more information see the kerberos_rpc (3) man page.

Format:

AUTH *
authunix_seccreate(service, srv_inst, realm
window, timehost, status)
 char *service ;
 char *srv_inst;
 char *realm
 u_int window;
 char *timehost;
 int status;

The service parameter is the Kerberos principal name of the
service to be used.

The srv_inst parameter is the instance of the service to be
called.

Remote Procedure Call (RPC) Reference Manual Synopsis of RPC/XDR Routines [A]

69Cray Research, Inc.SR–2089 9.0

The window parameter validates the client credential, with time
measured in seconds. The ntpd (8) daemon provides this
function on a Cray Research machine.

The timehost parameter is optional and does nothing.

The status parameter is also optional. If you specify status , it
is used to return a Kerberos error status code if an error occurs.

authnone_create This routine creates and returns an RPC authentication handle
that passes no usable authentication information with each
RCP.

Format:

AUTH *
authnone_create()

authunix_create This routine creates and returns an RPC authentication handle
that contains UNICOS authentication information.

Format:

AUTH *
authunix_create(host, uid, gid, len, aup_gids)
 char *host;
 int uid, gid, len, *aup_gids;

The host parameter is the name of the machine on which the
information was created. The uid parameter is the user’s ID.
The gid parameter is the user’s current group ID. The len and
aup_gids parameters are counted arrays of groups to which the
user belongs.

authunix_create_default This routine calls authunix_create with the default
parameters.

Format:

AUTH *
authunix_create_default()

callrpc This routine calls the remote procedure associated with the
program number (prognum), version number (versnum), and
procedure number (procnum) on the machine, host .

Synopsis of RPC/XDR Routines [A] Remote Procedure Call (RPC) Reference Manual

70 Cray Research, Inc. SR–2089 9.0

Format:

callrpc(host,prognum,versnum,procnum,inproc,in,outproc,out)
 char *host;
 u_long prognum, versnum, procnum;
 char *in, *out;
 xdrproc_t inproc, outproc;

The inproc parameter encodes the procedure’s parameters, and
the in parameter is the address of the procedure’s arguments.
The outproc parameter decodes the procedure’s results, and
the out parameter is the address of the destination location for
the results.

If it succeeds, this routine returns 0; if it fails, it returns the
value of enumeration clnt_stat , cast to an integer. The
clnt_perrno routine is handy for translating failure statuses
into messages.

Note: Calling remote procedures with this routine uses
UDP/IP as a transport; see clntudp_create , page 74, for
restrictions.

clnt_broadcast This routine is like callrpc , except that the call message is
broadcast to all locally connected broadcast nets. Each time it
receives a response, this routine calls eachresult() , which has
the following form:

eachresult(out, addr)
 char *out;
 struct sockaddr_in *addr;

The out parameter is the same as out passed to
clnt_broadcast , except that the remote procedure’s output is
decoded there; addr points to the address of the machine that
sent the results.

Format:

enum clnt_stat
clnt_broadcast(prognum, versnum, procnum, inproc, in, outproc, out,
eachresult)
 u_long prognum, versnum, procnum;
 char *in, *out;
 xdrproc_t inproc, outproc;
 resultproc_t eachresult;

Remote Procedure Call (RPC) Reference Manual Synopsis of RPC/XDR Routines [A]

71Cray Research, Inc.SR–2089 9.0

If eachresult() returns 0, clnt_broadcast waits for more
replies; otherwise, it returns with appropriate status.

clnt_call This macro calls the remote procedure procnum associated with
the client handle, clnt , which is obtained with an RPC client
creation routine such as clntudp_create .

Format:

enum clnt_stat
clnt_call(clnt, procnum, inproc, in, outproc, out, tout)
 CLIENT *clnt; long procnum;
 xdrproc_t inproc, outproc;
 char *in, *out;
 struct timeval tout;

clnt is the client handle, procnum is the procedure number,
inproc encodes the procedure’s parameters, in is the address of
the procedure’s arguments, outproc decodes the procedure’s
results, out is the address of the destination location for the
results, and tout is the time allowed for results to return.

clnt_create This routine returns a pointer to a CLIENT structure. It allows
users to pass the host name and protocol type as parameters of
type character pointer.

Format:

struct CLIENT *cp;

char *hostname;
unsigned int prog;
unsigned int vers;
char *protocol;
cp=clnt_create (hostname,prog,vers,protocol);

clnt_destroy This macro destroys the client’s RPC handle (clnt).
Destruction usually involves deallocation of private data
structures, including clnt itself. Use of clnt is undefined after
clnt_destroy is called. The user must close sockets associated
with clnt .

Format:

clnt_destroy(clnt)
 CLIENT *clnt;

Synopsis of RPC/XDR Routines [A] Remote Procedure Call (RPC) Reference Manual

72 Cray Research, Inc. SR–2089 9.0

clnt_freeres This macro frees any data allocated by the RPC and XDR
system when it decoded the results of an RPC.

Format:

clnt_freeres(clnt, outproc, out)
 CLIENT *clnt;
 xdrproc_t outproc;
 char *out;

clnt is the client handle, outproc is the XDR routine that
describes the results in simple primitives, and out is the
address of the results. If the results were successfully freed,
this routine returns 1; otherwise, it returns 0.

clnt_geterr This macro copies the error structure out of the client handle
(clnt) to the structure at address errp .

Format:

void
clnt_geterr(clnt, errp)
 CLIENT *clnt;
 struct rpc_err *errp;

clnt_pcreateerror This routine prints a message to standard error that indicates
why a client RPC handle could not be created. The message is
prepended with string s and a colon. This routine is used after
a clntraw_create , clnttcp_create , or clntudp_create
call.

Format:

void
clnt_pcreateerror(s)
 char *s;

clnt_perrno This routine prints a message to standard error that
corresponds to the condition indicated by stat . This routine is
used after callrpc .

Format:

void
clnt_perrno(stat)
 enum clnt_stat stat;

Remote Procedure Call (RPC) Reference Manual Synopsis of RPC/XDR Routines [A]

73Cray Research, Inc.SR–2089 9.0

clnt_perror This routine prints a message to standard error that indicates
the reason an RPC failed; clnt is the handle used to do the call.
The message is prepended with string s and a colon. This
routine is used after clnt_call .

clnt_perror(clnt, s)
 CLIENT *clnt;
 char *s;

clntraw_create This routine creates a trivial RPC client for the remote program
prognum , version versnum .

Format:

CLIENT *
clntraw_create(prognum, versnum)
 u_long prognum, versnum;

The transport used to pass messages to the service is actually a
buffer within the process address space; therefore, the
corresponding RPC server should reside in the same address
space (see svcraw_create , page 82), allowing simulation of
RPC and acquisition of RPC overheads, such as round-trip
times, without interference from the kernel. If the procedure
fails, this routine returns NULL.

clnttcp_create This routine creates an RPC client for the remote program
prognum , version versnum ; the client uses TCP/IP as a
transport.

Format:

CLIENT *
clnttcp_create(addr,prognum,versnum,sockp,sendsz,recvsz)
 struct sockaddr_in *addr;
 u_long prognum, versnum;
 int *sockp;
 u_int sendsz, recvsz;

Synopsis of RPC/XDR Routines [A] Remote Procedure Call (RPC) Reference Manual

74 Cray Research, Inc. SR–2089 9.0

The remote program is located at Internet address addr . If
addr–>sin_port is 0, the portmapper on the host at IP address
addr is set to the actual port on which the remote program is
listening (the remote portmap service is consulted for this
information). The sockp parameter is a socket; if it is
RPC_ANYSOCK, this routine opens a new socket and sets sockp .
Because the RPC that is based on TCP uses buffered I/O, you
can specify the size of the send and receive buffers by using the
sendsz and recvsz parameters, respectively; values of 0
indicate that suitable defaults will be chosen. If the procedure
fails, this routine returns NULL.

clntudp_create This routine creates an RPC client for the remote program
prognum , version versnum ; the client uses UDP/IP as a
transport.

Note: On systems that limit UDP datagrams to 8 Kbytes of
data, you cannot use this transport for procedures that accept
large arguments or return large results.

Format:

CLIENT *
clntudp_create(addr, prognum, versnum, wait, sockp)
 struct sockaddr_in *addr;
 u_long prognum, versnum;
 struct timeval wait;
 int *sockp;

The remote program is located at Internet address addr . If
addr–>sin_port is 0, the portmap on the host at IP address
addr is set to the actual port on which the remote program is
listening (the remote portmapper service is consulted for this
information). The sockp parameter is a socket; if it is
RPC_ANYSOCK, this routine opens a new socket and sets sockp .
The UDP transport resends the call message in intervals of
wait time until a response is received or the call times out.
clnt_call specifies the total time for the call to time out.

get_myaddress This routine puts the machine’s IP address into addr , without
consulting the library routines that deal with /etc/hosts . The
port number is always set to htons (PMAPPORT).

Format:

void
get_myaddress(addr)
 struct sockaddr_in *addr;

Remote Procedure Call (RPC) Reference Manual Synopsis of RPC/XDR Routines [A]

75Cray Research, Inc.SR–2089 9.0

pmap_getmaps This routine is a user interface to the portmap service. It
returns a list of the current RPC program-to-port mappings on
the host located at IP address addr . This routine can return
NULL. This routine is used when using the rpcinfo (8)
command with the –p option.

Format:

struct pmaplist *
pmap_getmaps(addr)
 struct sockaddr_in *addr;

pmap_getport This routine is a user interface to the portmap service. It
returns the port number of a waiting service that supports the
program at Internet address addr , with program number
prognum , version versnum , and the transport protocol
associated with protocol .

A return value of 0 means that the mapping does not exist or
that the RPC system failed to contact the remote portmap
service. In the latter case, the global variable rpc_createerr
contains the RPC status.

Format:

u_short
pmap_getport(addr, prognum, versnum, protocol)
 struct sockaddr_in *addr;
 u_long prognum, versnum, protocol;

pmap_rmtcall This routine is a user interface to the portmap service.

Format:

enum clnt_stat
pmap_rmtcall(addr, prognum, versnum, procnum, inproc, in, outproc, out,
tout, portp)
 u_long prognum, versnum, procnum;
 char *in, *out;
 xdrproc_t inproc, outproc;
 struct timeval tout;
 u_long *portp;

Synopsis of RPC/XDR Routines [A] Remote Procedure Call (RPC) Reference Manual

76 Cray Research, Inc. SR–2089 9.0

This routine instructs the portmapper on the host at IP address
*addr to make an RPC on your behalf to a procedure on that
host. If the procedure succeeds, the *portp parameter is
changed to the program’s port number. The definitions of other
parameters are discussed in descriptions of callrpc , page 69,
and clnt_call , page 71. You should use this procedure only in
conjunction with a ping (8) command. See also
clnt_broadcast , page 70.

pmap_set This routine is a user interface to the portmap service.

Format:

pmap_set(prognum, versnum, protocol, port)
 u_long prognum, versnum, protocol;
 u_short port;

It establishes a mapping between a program’s [prognum ,
versnum , protocol] and a port (port) on a machine’s portmap
service. The value of protocol is most likely IPPROTO_UDP or
IPPROTO_TCP. If the program succeeds, routine svc_register
automatically returns 1; otherwise, it returns 0.

This routine is a user interface to the portmap service.

Format:

pmap_unset(prognum, versnum)
 u_long prognum, versnum;

pmap_unset This routine destroys all mappings between
[prognum ,versnum ,*] and ports on the machine’s portmap
service. If the program succeeds, this routine automatically
returns 1; otherwise, it returns 0.

registerrpc This routine registers procedure procname with the RPC
service package.

Note: Remote procedures registered in this form are
accessed by using the UDP/IP transport; see
svcudp_create , page 83.

Format:

registerrpc(prognum,versnum,procnum,procname,inproc,outproc)
 u_long prognum, versnum, procnum;
 char *(*procname)();
 xdrproc_t inproc, outproc;

Remote Procedure Call (RPC) Reference Manual Synopsis of RPC/XDR Routines [A]

77Cray Research, Inc.SR–2089 9.0

If a request arrives for program prognum , version versnum , and
procedure procnum , procname is called with a pointer to its
parameters; procname should return a pointer to its static
results. inproc decodes the parameters; outproc encodes the
results. If the registration succeeds, this routine automatically
returns 0; otherwise, it returns –1.

rpc_createerr This routine is a global variable whose value is set by any RPC
client creation routine that does not succeed. Use the
clnt_pcreateerror routine to print the reason for the failure.

Format:

struct rpc_createerr rpc_createerr;

svc_destroy This macro destroys the RPC service transport handle, xprt .
Destruction usually involves deallocation of private data
structures, including xprt itself. Use of xprt is undefined after
this routine is called.

Format:

svc_destroy(xprt)
 SVCXPRT *xprt;

svc_freeargs This macro frees any data allocated by RPC and XDR when it
used svc_getargs to decode the arguments to a service
procedure. The parameters are those used on the svc_getargs
macro call. If the results were successfully freed, this routine
returns 1; otherwise, it returns 0.

Format:

svc_freeargs(xprt, inproc, in)
 SVCXPRT *xprt;
 xdrproc_t inproc;
 char *in;

svc_getargs This macro decodes the arguments of an RPC request associated
with the RPC service transport handle (xprt).

Format:

svc_getargs(xprt, inproc, in)
 SVCXPRT *xprt;
 xdrproc_t inproc;
 char *in;

Synopsis of RPC/XDR Routines [A] Remote Procedure Call (RPC) Reference Manual

78 Cray Research, Inc. SR–2089 9.0

inproc is the XDR routine used to decode the arguments, and
in is the address at which the arguments will be placed. If
decoding succeeds, this routine returns 1; otherwise, it returns
0.

svc_getcaller This routine is the approved way of getting the network address
of the caller of a procedure associated with the RPC service
transport handle (xprt)

Format:

struct sockaddr_in
svc_getcaller(xprt)
 SVCXPRT *xprt;

svc_getreq This routine is similar to svc_getreqset() , but it is limited to
64 descriptors.

This routine is similar to svc_getreqset() , but it is limited to
64 descriptors.

Format:

void
svc_getreq(rdfds)
 int rdfds;

rdfds is the read file descriptors bit mask.

svc_getreqset This routine is of interest only if a service implementer does not
call svc_run , but instead implements custom asynchronous
event processing. It is called when the select (2) system call
has determined that an RPC request has arrived on some RPC
sockets.

Format:

svc_getreqset(rdfdsetp)
 fd_set *rdfdsetp;

rdfdsetp is a pointer to the resultant read file descriptor bit
mask. The routine returns when all sockets associated with the
value of rdfdsetp have been serviced.

Remote Procedure Call (RPC) Reference Manual Synopsis of RPC/XDR Routines [A]

79Cray Research, Inc.SR–2089 9.0

The global variable svc_fdset , which is of type fd_set ,
reflects the RPC service side’s read file descriptor bit mask; it is
suitable as a parameter to the select (2) system call. This is of
interest only if a service implementer does not call svc_run , but
rather does his or her own asynchronous event processing. This
variable is read-only (do not pass its address to select (2)), yet
it can change after calls to svc_getreqset or any creation
routines. Its format is as follows:

fd_set svc_fdset;

svc_register This routine associates prognum and versnum with the service
dispatch procedure, dispatch() .

Format:

svc_register(xprt, prognum, versnum, dispatch, protocol)
 SVCXPRT *xprt;
 u_long prognum, versnum;
 void (*dispatch)();
 int protocol;

If protocol is 0, the service is not registered with the portmap
service. If protocol is a nonzero value, a mapping of
[prognum ,versnum ,protocol] to xprt–>xp_port is
established with the local portmap service (generally protocol is
0, IPPROTO_UDP, or IPPROTO_TCP). xprt is the RPC service
transport handle. The dispatch() procedure has the following
form:

dispatch(request, xprt)
 struct svc_req *request;
 SVCXPRT *xprt;

If dispatch() succeeds, the svc_register routine returns 1;
otherwise, it returns 0.

svc_run This routine never returns. It waits for RPC requests to arrive,
and it calls the appropriate service procedure through
svc_getreqset when one arrives. This procedure is usually
waiting for a select (2) system call to return.

Format:

svc_run()

svc_sendreply An RPC service’s dispatch routine calls this routine to send the
results of an RPC.

Synopsis of RPC/XDR Routines [A] Remote Procedure Call (RPC) Reference Manual

80 Cray Research, Inc. SR–2089 9.0

Format:

svc_sendreply(xprt, outproc, out)
 SVCXPRT *xprt;
 xdrproc_t outproc;
 char *out;

xprt is the caller’s associated transport handle, outproc is the
XDR routine that encodes the results, and out is the address of
the results. If the procedure succeeds, this routine returns 1;
otherwise, it returns 0.

svc_unregister This routine removes all mapping of [prognum ,versnum] to
dispatch routines, and all mapping of [prognum ,versnum ,*] to
port numbers.

Format:

void
svc_unregister(prognum, versnum)
 u_long prognum, versnum;

svcerr_auth A service dispatch routine that refuses to perform an RPC
because of an authentication error calls this routine.

Format:

void
svcerr_auth(xprt, why)
 SVCXPRT *xprt;
 enum auth_stat why;

xprt is the RPC service transport handle. why indicates the
reason the service dispatch routine is refusing to perform the
RPC.

svcerr_decode A service dispatch routine that cannot successfully decode its
parameters calls this routine.

Format:

void
svcerr_decode(xprt)
 SVCXPRT *xprt;

xprt is the RPC service transport handle. See also
svc_getargs , page 77.

Remote Procedure Call (RPC) Reference Manual Synopsis of RPC/XDR Routines [A]

81Cray Research, Inc.SR–2089 9.0

svcerr_noproc A service dispatch routine that does not implement the
procedure number the caller requests calls this routine.

Format:

void
svcerr_noproc(xprt)
 SVCXPRT *xprt;

xprt is the RPC service transport handle.

svcerr_noprog This routine is called when the specified program is not
registered with the RPC package.

Format:

void
svcerr_noprog(xprt)
 SVCXPRT *xprt;

xprt is the RPC service transport handle. Service
implementers usually do not need this routine.

svcerr_progvers This routine is called when the desired version of a program is
not registered with the RPC package.

Format:

void
svcerr_progvers(xprt)
 SVCXPRT *xprt;

xprt is the RPC service transport handle. Service
implementers usually do not need this routine.

svcerr_systemerr A service dispatch routine calls this routine when the service
dispatch routine detects a system error not covered by any
particular protocol. For example, if a service can no longer
allocate storage, it might call this routine.

Format:

void
svcerr_systemerr(xprt)
 SVCXPRT *xprt;

xprt is the RPC service transport handle.

Synopsis of RPC/XDR Routines [A] Remote Procedure Call (RPC) Reference Manual

82 Cray Research, Inc. SR–2089 9.0

svcerr_weakauth A service dispatch routine that refuses to perform an RPC
because of insufficient (but correct) authentication parameters
calls this routine.

Format:

void
svcerr_weakauth(xprt)
 SVCXPRT *xprt;

xprt is the RPC service transport handle. The routine calls
svcerr_auth(xprt ,AUTH_TOOWEAK).

svcraw_create This routine creates a trivial RPC service transport to which it
returns a pointer. The transport is really a buffer within the
process address space; therefore, the corresponding RPC client
should reside in the same address space (see
clntraw_create() , page 73.

Format:

SVCXPRT *
svcraw_create()

This routine allows simulation of RPC and acquisition of RPC
overheads (such as round-trip times), without any kernel
interference. If the procedure fails, this routine returns NULL.

svctcp_create This routine creates an RPC service transport based on TCP/IP,
to which it returns a pointer.

Format:

SVCXPRT *
svctcp_create(sock, send_buf_size, recv_buf_size)
 int sock;
 u_int send_buf_size, recv_buf_size;

The transport is associated with the socket sock ; sock can
be RPC_ANYSOCK, in which case a new socket is created. If
the socket is not bound to a local TCP port, this routine binds
it to an arbitrary port. Because an RPC that is based on
TCP/IP uses buffered I/O, you can specify the size of the send
(send_buf_size) and receive (recv_buf_size) buffers;
values of 0 indicate that suitable defaults will be chosen. On
completion, the xp_sock field of the created SVCXPRT
structure is the transport’s socket number, and the xp_port
field of the created SVCXPRT structure is the transport’s port
number. If the procedure fails, this routine returns NULL.

Remote Procedure Call (RPC) Reference Manual Synopsis of RPC/XDR Routines [A]

83Cray Research, Inc.SR–2089 9.0

svcudp_create This routine creates an RPC service transport based on UDP/IP,
to which it returns a pointer.

Note: On systems that can hold only up to 8 Kbytes of
encoded data, you cannot use this transport for procedures
that accept large arguments or return large results.

Format:

SVCXPRT *
svcudp_create(sock)
 int sock;

The transport is associated with the socket sock ; sock can be
RPC_ANYSOCK, in which case a new socket is created. If the
socket is not bound to a local UDP port, this routine binds it to
an arbitrary port. On completion, the xp_sock field of the
created SVCXPRT structure is the transport’s socket number, and
the xp_port field of the created SVCXPRT structure is the
transport’s port number. If the routine fails, it returns NULL.

xdr_accepted_reply This routine is used for describing RPC messages externally. It
is useful for users who want to generate messages in the RPC
style without using the RPC package.

Format:

xdr_accepted_reply(xdrs, ar)
 XDR *xdrs;
 struct accepted_reply *ar;

xdrs is the XDR stream, and ar points to the structure that
contains the reply structure.

xdr_array This routine is a filter primitive that translates between arrays
and their corresponding external representations.

Format:

xdr_array(xdrs, arrp, sizep, maxsize, elsize,
elproc)
 XDR *xdrs;
 char **arrp;
 u_int *sizep, maxsize, elsize;
 xdrproc_t elproc;

Synopsis of RPC/XDR Routines [A] Remote Procedure Call (RPC) Reference Manual

84 Cray Research, Inc. SR–2089 9.0

xdrs is the XDR stream. arrp is the address of the pointer to
the array. sizep is the address of the element count of the
array; this element count cannot exceed maxsize . The elsize
parameter is the size (in bytes) of each of the array’s elements,
and elproc is an XDR filter that translates between the C form
of the array elements and their external representation. If the
routine succeeds, it returns 1; otherwise, it returns 0.

xdr_authdes_cred This routine serializes/deserializes an authdes_cred structure.
The client side uses this procedure to serialize a credential
structure to be passed to the server. The server side uses this
procedure to deserialize an authdes_cred structure from a
client.

Format:

bool_t
xdr_authdes_cred(xdrs, cred)
 XDR *xdrs;
 struct authdes_cred *cred;

xdrs is the XDR stream. cred is the authdes_cred structure.

xdr_authdes_verf This routine serializes/deserializes an authdes_verf structure.
The client side uses it to deserialize a verification structure from
the server. The server may use the routine to serialize a
verification structure to be passed to the client.

Format:

bool_t
xdr_authdes_verf(xdrs, verf)
 register XDR *xdrs;
 register struct authdes_verf *verf;

xdrs is the XDR stream. verf points to a DES authentication
verifier.

xdr_authunix_parms This routine describes UNICOS credentials externally. It is
useful for users who want to generate these credentials without
using the RPC authentication package.

Format:

xdr_authunix_parms(xdrs, aupp)
 XDR *xdrs;
 struct authunix_parms *aupp;

Remote Procedure Call (RPC) Reference Manual Synopsis of RPC/XDR Routines [A]

85Cray Research, Inc.SR–2089 9.0

xdrs is the XDR stream, and aupp points to the structure that
contains the UNICOS authentication parameters.

xdr_bool This routine is a filter primitive that translates between
Booleans (C integers) specified by bp and their external
representations (xdrs). When encoding data, this filter
produces values of either 1 or 0. If the routine succeeds, it
returns 1; otherwise, it returns 0.

Format: xdr_bool(xdrs, bp)
 XDR *xdrs;
 bool_t *bp;

xdr_bytes This routine is a filter primitive that translates between counted
byte strings and their external representations (xdrs).

Format:

xdr_bytes(xdrs, sp, sizep, maxsize)
 XDR *xdrs;
 char **sp;
 u_int *sizep, maxsize;

xdrs is the XDR stream. sp is the address of the string pointer.
The length of the string is located at address sizep ; strings
cannot be longer than maxsize . If the routine succeeds, it
returns 1; otherwise, it returns 0.

xdr_callhdr This routine describes RPC headers associated with messages
externally. It is useful for users who want to generate message
headers in the RPC style without using the RPC package.

Format:

void
xdr_callhdr(xdrs, chdr)
 XDR *xdrs;
 struct rpc_msg *chdr;

xdrs is the XDR stream, and chdr points to the structure that
contains the call header data.

xdr_callmsg This routine describes RPC messages externally. It is useful for
users who want to generate messages in the RPC style without
using the RPC package.

Synopsis of RPC/XDR Routines [A] Remote Procedure Call (RPC) Reference Manual

86 Cray Research, Inc. SR–2089 9.0

Format:

xdr_callmsg(xdrs, cmsg)
 XDR *xdrs;
 struct rpc_msg *cmsg;

xdrs is the XDR stream, and cmsg points to the structure that
contains the call message data.

xdr_char This routine is a filter primitive that translates between C
characters (cp) and their external representations (xdrs). If the
routine succeeds, it returns 1; otherwise, it returns 0.

Format:

xdr_char(xdrs, cp)
 XDR *xdrs;
 char *cp;

This macro invokes the destroy routine associated with the XDR
stream xdrs . Destruction usually involves freeing private data
structures associated with the stream.

xdr_destroy Format:

void
xdr_destroy(xdrs)
 XDR *xdrs;

Using xdrs after xdr_destroy is invoked produces undefined
results.

xdr_double This routine is a filter primitive that translates between C
double-precision numbers (dp) and their external
representations (xdrs). If the routine succeeds, it returns 1;
otherwise, it returns 0.

Format:

xdr_double(xdrs, dp)
 XDR *xdrs;
 double *dp;

xdr_enum This routine is a filter primitive that translates between C
enumerations (actually integers) specified by ep and their
external representations (xdrs). If the routine succeeds, it
returns 1; otherwise, it returns 0.

Remote Procedure Call (RPC) Reference Manual Synopsis of RPC/XDR Routines [A]

87Cray Research, Inc.SR–2089 9.0

Format:

xdr_enum(xdrs, ep)
 XDR *xdrs;
 enum_t *ep;

xdr_float This routine is a filter primitive that translates between C
floating-point numbers (fp) and their external representations
(xdrs). If the routine succeeds, it returns 1; otherwise, it
returns 0.

Format:

xdr_float(xdrs, fp)
 XDR *xdrs;
 float *fp;

xdr_getpos This macro invokes the get-position routine associated with the
XDR stream xdrs .

Format:

u_int
xdr_getpos(xdrs)
 XDR *xdrs;

The routine returns an unsigned integer that indicates the
position of the XDR byte stream. A desirable feature of XDR
streams is that simple arithmetic works with this number,
although the XDR stream instances do not ensure this.

xdr_inline This macro invokes the inline routine associated with the XDR
stream xdrs .

Note: If the xdr_inline routine cannot allocate a
contiguous piece of a buffer, it might return NULL (0).
Therefore, the behavior can vary among stream instances;
the routine exists for the sake of efficiency.

Format:

inline_t*
xdr_inline(xdrs, len)
 XDR *xdrs;
 int_len;

Synopsis of RPC/XDR Routines [A] Remote Procedure Call (RPC) Reference Manual

88 Cray Research, Inc. SR–2089 9.0

The routine returns a pointer to a contiguous piece of the
stream’s buffer; len is the byte length of the desired buffer. The
pointer is cast to inline_t* , which is char* on Cray Research
systems. The address returned is cast to long *.

xdr_int This routine is a filter primitive that translates between C
integers (ip) and their external representations (xdrs). If the
routine succeeds, it returns 1; otherwise, it returns 0.

Format:

xdr_int(xdrs, ip)
 XDR *xdrs;
 int *ip;

xdr_long This routine is a filter primitive that translates between C long
integers (lp) and their external representations (xdrs). If the
routine succeeds, it returns 1; otherwise, it returns 0.

Format:

xdr_long(xdrs, lp)
 XDR *xdrs;
 long *lp;

xdr_opaque This routine is a filter primitive that translates between
fixed-size opaque data and its external representation (xdrs).

Format:

xdr_opaque(xdrs, cp, cnt)
 XDR *xdrs;
 char *cp;
 u_int cnt;

cp is the address of the opaque object; cnt is its size (in bytes).
If the routine succeeds, it returns 1; otherwise, it returns 0.

xdr_opaque_auth This routine describes RPC messages externally. It is useful for
users who want to generate messages in the RPC style without
using the RPC package.

Format:

xdr_opaque_auth(xdrs, ap)
 XDR *xdrs;
 struct opaque_auth *ap;

Remote Procedure Call (RPC) Reference Manual Synopsis of RPC/XDR Routines [A]

89Cray Research, Inc.SR–2089 9.0

xdrs is the XDR stream, and ap points to the opaque
authentication structure.

xdr_pmap This routine provides an external description of parameters to
various portmap procedures. It is useful for users who want to
generate these parameters without using the pmap interface.

Format:

xdr_pmap(xdrs, regs)
 XDR *xdrs;
 struct pmap *regs;

xdrs is the XDR stream, and regs points to the structure
that contains registration information.

xdr_pmaplist This routine describes a list of port mappings externally. It is
useful for users who want to generate these parameters without
using the pmap interface.

Format:

xdr_pmaplist(xdrs, rp)
 XDR *xdrs;
 struct pmaplist **rp;

xdrs is the XDR stream, and rp is a pointer to the array that
will store the portmap map entries.

xdr_pointer This routine translates a pointer to a possibly recursive data
structure. It differs from xdr_reference in that it can
serialize and deserialize trees correctly.

Format:

xdr_pointer(xdrs, objpp, obj_size, xdr_obj)
 XDR *xdrs;
 char **objpp;
 u_int obj_size;
 xdrproc_t xdr_obj;

xdrs is the XDR stream, objpp is the address of the pointer,
obj_size is the size of the structure to which objpp points,
and xdr_obj is a pointer to a structure for each data type that
is to be encoded or decoded.

xdr_reference This routine is a primitive that provides pointer-dereferencing
within structures.

Synopsis of RPC/XDR Routines [A] Remote Procedure Call (RPC) Reference Manual

90 Cray Research, Inc. SR–2089 9.0

Format:

xdr_reference(xdrs, pp, size, proc)
 XDR *xdrs;
 char **pp;
 u_int size;
 xdrproc_t proc;

pp is the address of the pointer, size is the size (in bytes) of the
structure to which *pp points, and proc is an XDR procedure
that filters the structure between its C form and its external
representation (xdrs). If the routine succeeds, it returns 1;
otherwise, it returns 0.

xdr_rejected_reply This routine describes RPC reject type messages externally. It
is useful for users who want to generate error messages in the
RPC style without using the RPC package.

Format:

xdr_rejected_reply(xdrs, rr)
 XDR *xdrs;
 struct rejected_reply *rr;

xdrs is the XDR stream, and rr points to the structure that
contains the rejected reply information.

xdr_replymsg This routine describes RPC accept type messages externally. It
is useful for users who want to generate messages in the RPC
style without using the RPC package.

Format:

xdr_replymsg(xdrs, rmsg)
 XDR *xdrs;
 struct_rpc_msg *rmsg;

xdrs is the XDR stream, and rmsg points to the structure that
contains the reply message information.

xdr_setpos This macro invokes the set position routine associated with the
XDR stream xdrs .

Note: It is difficult to reposition some types of XDR streams;
therefore, this routine might fail with one type of stream and
succeed with another.

Remote Procedure Call (RPC) Reference Manual Synopsis of RPC/XDR Routines [A]

91Cray Research, Inc.SR–2089 9.0

Format:

xdr_setpos(xdrs, pos)
 XDR *xdrs;
 u_int pos;

pos is a position value obtained from xdr_getpos . If the XDR
stream can be repositioned, this routine returns 1; otherwise, it
returns 0.

xdr_short This routine is a filter primitive that translates between C short
integers (sp) and their external representations (xdrs). If the
routine succeeds, it returns 1; otherwise, it returns 0.

Format:

xdr_short(xdrs, sp)
 XDR *xdrs;
 short *sp;

xdr_string This routine is a filter primitive that translates between C
strings and their corresponding external representations (xdrs).

Format:

xdr_string(xdrs, sp, maxsize)
 XDR *xdrs;
 char **sp;
 u_int maxsize;

Strings cannot be longer than maxsize . The sp parameter is
the address of the string’s pointer. If the routine succeeds, it
returns 1; otherwise, it returns 0.

xdr_u_char This routine is a filter primitive that translates between C
unsigned characters (cp) and their external representations
(xdrs). If the routine succeeds, it returns 1; otherwise, it
returns 0.

Format:

xdr_u_char(xdrs, cp)
 XDR *xdrs
 unsignedchar *cp;

xdr_u_int This routine is a filter primitive that translates between C
unsigned integers (up) and their external representations
(xdrs). If the routine succeeds, it returns 1; otherwise, it
returns 0.

Synopsis of RPC/XDR Routines [A] Remote Procedure Call (RPC) Reference Manual

92 Cray Research, Inc. SR–2089 9.0

Format:

xdr_u_int(xdrs, up)
 XDR *xdrs;
 unsigned *up;

xdr_u_long This routine is a filter primitive that translates between C
unsigned long integers (ulp) and their external representations
(xdrs). If the routine succeeds, it returns 1; otherwise, it
returns 0.

Format:

xdr_u_long(xdrs, ulp)
 XDR *xdrs;
 unsigned_long *ulp;

xdr_u_short This routine is a filter primitive that translates between C
unsigned short integers (usp) and their external representations
(xdrs). If the routine succeeds, it returns 1; otherwise, it
returns 0.

Format:

xdr_u_short(xdrs, usp)
 XDR *xdrs;
 unsigned_short *usp;

xdr_union This routine is a filter primitive that translates between a
discriminated C union and its corresponding external
representation (xdrs).

Format:

xdr_union(xdrs, dscmp, unp, choices, dfault)
 XDR *xdrs;
 int *dscmp;
 char *unp;
 struct xdr_discrim *choices;
 xdrproc_t dfault;

Remote Procedure Call (RPC) Reference Manual Synopsis of RPC/XDR Routines [A]

93Cray Research, Inc.SR–2089 9.0

The dscmp parameter is the address of the union’s discriminant,
and unp is the address of the union. If the routine succeeds, it
returns 1; otherwise, it returns 0. choices points to an array of
xdr_discrim structures. This array must be terminated with
an entry that contains a NULL procedure pointer. If the
discriminant does not match any entry specified in the choices
list, dfault points to the default xdr routine to use. See the
rpc/xdr.h file for further details.

xdr_vector This routine is a filter primitive that translates between vectors
and their corresponding external representations (xdrs).

Format:

bool_t
xdr_vector(xdrs, basep, nelem, elemsize,
xdr_elem)
 XDR *xdrs;
 char *basep;
 u_int nelem;
 u_int elemsize;
 xdrproc_t xdr_elem;

The basep parameter is a pointer to the vector. nelem is the
number of elements in the vector. elemsize is the size of each
element in the vector. xdr_elem is an XDR filter that
translates between the vector elements’ C form and their
external representation (xdrs). If the routine succeeds, it
returns 1; otherwise, it returns 0.

xdr_void This routine always returns 1.

Format:

xdr_void()

xdr_wrapstring This routine is a primitive that calls the xdr_string
(xdrs ,sp ,MAXUNSIGNED) routine; MAXUNSIGNED is the
maximum value of an unsigned 31-bit integer.
xdr_wrapstring translates null-terminated strings to or from
external representation.

Format:

bool_t
xdr_wrapstring(xdrs, cpp)
 XDR *xdrs;
 char **cpp;

Synopsis of RPC/XDR Routines [A] Remote Procedure Call (RPC) Reference Manual

94 Cray Research, Inc. SR–2089 9.0

xdrs is the XDR stream, and cpp is the address of the pointer
to the string.

xdrmem_create This routine initializes the XDR stream object to which xdrs
points.

Format:

void
xdrmem_create(xdrs, addr, size, op)
 XDR *xdrs;
 char *addr;
 u_int size;
 enum xdr_op op;

The stream’s data is written to or read from a chunk of memory
at location addr ; the memory length can consist of a maximum
of size bytes. The op parameter determines the direction of the
XDR stream (xdrs); the direction can be XDR_ENCODE,
XDR_DECODE, or XDR_FREE.

xdrrec_create This routine initializes the XDR stream object to which xdrs
points.

Note: This XDR stream implements an intermediate record
stream. Therefore, additional bytes in the stream provide
record boundary information.

Format:

void
xdrrec_create(xdrs, sendsize, recvsize, handle,
readit, writeit)
 XDR *xdrs;
 u_int sendsize, recvsize;
 char *handle;
 int (*readit)(), (*writeit)();

Remote Procedure Call (RPC) Reference Manual Synopsis of RPC/XDR Routines [A]

95Cray Research, Inc.SR–2089 9.0

The stream’s data is written to a buffer of size sendsize ; a
value of 0 indicates that the system should use a suitable
default. The stream’s data is read from a buffer of size
recvsize ; it too can be set to a suitable default by passing a 0
value. When a stream’s output buffer is full, writeit() is
called. Similarly, when a stream’s input buffer is empty,
readit() is called. The behavior of these two routines is
similar to that of the UNICOS read (2) and write (2) system
calls, except that handle is passed as the first parameter to the
UNICOS routines. The caller must set the XDR stream’s op
field.

xdrrec_endofrecord This routine can be invoked only on streams created by
xdrrec_create .

Format:

xdrrec_endofrecord(xdrs, sendnow)
 XDR *xdrs;
 int sendnow;

xdrs is the XDR stream. The data in the output buffer is
marked as a completed record; if sendnow is nonzero, the output
buffer is optionally written out. If the routine succeeds, it
returns 1; otherwise, it returns 0.

xdrrec_eof This routine can be invoked only on streams (xdrs) created by
xdrrec_create . This routine returns 1 if no more input is in
the buffer after the rest of the current record has been
consumed.

Format:

xdrrec_eof(xdrs)
 XDR *xdrs;
 int empty;

xdrrec_skiprecord This routine can be invoked only on streams (xdrs) created by
xdrrec_create . It tells the XDR implementation that the rest
of the current record in the stream’s input buffer should be
discarded. If the routine succeeds, it returns 1; otherwise, it
returns 0.

Format:

xdrrec_skiprecord(xdrs)
 XDR *xdrs;

Synopsis of RPC/XDR Routines [A] Remote Procedure Call (RPC) Reference Manual

96 Cray Research, Inc. SR–2089 9.0

xdrstdio_create This routine initializes the XDR stream object to which xdrs
points.

Note: The destroy routine associated with XDR streams
calls flush (by using fflush , see fclose (3)) on the file
stream, but never close (by using close (2)).

Format:

void
xdrstdio_create(xdrs, file, op)
 XDR *xdrs;
 FILE *file;
 enum xdr_op op;

The XDR stream data is written to or read from the stream file
specified by file . The op parameter determines the direction
of the XDR stream (XDR_ENCODE, XDR_DECODE, or XDR_FREE).

xprt_register After RPC service transport handles (xprt) are created, they
should be registered with the RPC service package. This
routine modifies the global variable svc_fdset . Service
implementers do not usually need this routine.

Format:

void
xprt_register(xprt)
 SVCXPRT *xprt;

xprt_unregister Before an RPC service transport handle (xprt) is destroyed, it
should be unregistered with the RPC service package. This
routine modifies the global variable svc_fdset . Service
implementers do not usually need this routine.

Format:

void
xprt_unregister(xprt)
 SVCXPRT *xprt;

External Data Representation Standard:
Protocol Specification [C]

121Cray Research, Inc.SR–2089 9.0

This appendix contains chapter 5 of the Sun Microsystems
Network Programming manual.

 [1] Manual Title

122 Cray Research, Inc. Pub number and revision

Remote Procedure Calls: Protocol
Specification [D]

141Cray Research, Inc.SR–2089 9.0

This appendix contains chapter 6 of the Sun Microsystems
Network Programming manual.

 [1] Manual Title

142 Cray Research, Inc. Pub number and revision

Authentication Routines [E]

165Cray Research, Inc.SR–2089 9.0

This appendix contains detailed information about the data that
is passed during UNICOS, Data Encryption Standard (DES),
and Kerberos authentication and validation.

The client of a remote procedure might want to identify itself as
it is identified on a UNICOS system. In this case, the value of
the credential’s discriminant of an RPC message is AUTH_UNIX.
The bytes of the credential’s string encode the following (XDR)
structure:

struct auth_unix {
 unsigned stamp;
 string machinename[255];
 unsigned uid;
 unsigned gid;
 unsigned gids[10];
};

The stamp value is an arbitrary ID that the caller machine can
generate. machinename is the name of the caller’s machine
(such as krypton). uid is the caller’s effective user ID. gid is
the caller’s effective group ID. gids is a counted array of groups
that contain the caller as a member. The verifier that
accompanies the credentials should be AUTH_NULL.

The value of the discriminate of the response verifier received in
the reply message from the server can be AUTH_NULL or
AUTH_SHORT. In the case of AUTH_SHORT, the bytes of the
response verifier’s string encode an auth_opaque structure.
This new auth_opaque structure can be passed to the server
instead of the original AUTH_UNIX credentials. The server keeps
a cache that maps shorthand auth_opaque structures (passed
back by way of an AUTH_SHORT-style response verifier) to the
original credentials of the caller. The caller can save network
bandwidth and server CPU cycles by using the new credentials.

UNICOS
authentication
E.1

Authentication Routines [E] Remote Procedure Call (RPC) Reference Manual

166 Cray Research, Inc. SR–2089 9.0

The server can flush the shorthand auth_opaque structure at
any time. If this happens, the RPC message is rejected because
of an authentication error. The reason for the failure is
AUTH_REJECTEDCRED. At this point, you might want to try the
original AUTH_UNIX credentials.

When you use DES authentication, the authentication and
validation data exchanged with each RPC call and reply become
markedly more complex. When a client chooses to use DES
authentication, it must make a call to authdes_create to build
a DES authentication structure. The DES authentication
structure has the following form:

typedef struct {
 struct opaque_auth ah_cred;
 struct opaque_auth ah_verf;
 union des_block ah_key;
 struct auth_ops {
 void (*ah_nextverf)();
 int (*ah_marshal)(); /* nextverf & serialize */
 int (*ah_validate)(); /* validate verifier */
 int (*ah_refresh)(); /* refresh credentials */
 void (*ah_destroy)(); /* destroy this structure
*/
 } *ah_ops;
 caddr_t ah_private;
} AUTH;

The first field in the AUTH structure is ah_cred . This is the
authentication handle credential field; it contains the
information the client will provide the server for authentication.
The second field in the AUTH structure is ah_verf . This is the
authentication handle verification field; it contains the
information the server will return to the client to prove its
identity. Both of these fields are of type opaque_auth . An
opaque_auth structure has the following form:

struct opaque_auth {
 enum_t oa_flavor; /* flavor of auth */
 caddr_t oa_base; /* address of more auth stuff */
 u_int oa_length; /* not to exceed MAX_AUTH_BYTES */
};

DES
authentication
E.2

Remote Procedure Call (RPC) Reference Manual Authentication Routines [E]

167Cray Research, Inc.SR–2089 9.0

The oa_flavor field specifies the type of authentication or
validation being done. It can take the value AUTH_NONE,
AUTH_UNIX, AUTH_SHORT, or AUTH_DES.

The oa_base field is a pointer to specific data being used for
authentication or validation. In the case of AUTH_DES, the
ah_cred.oa_base field is unused, but the ah_verf.oa_base
field points to an area that contains an encrypted time stamp
filled in by the server and checked by the client.

The oa_length field specifies the number of data bytes to which
the oa_base field points.

The third field of the AUTH structure is called ah_key , the
authentication handle key. This field contains a DES key used
for the duration of the AUTH structure. The ah_key field is of
type union des_block , which is specified as follows:

union des_block {
 struct {
#ifdef CRAY
 word64 both;
#else
 u_long high;
 u_long low;
#endif
 } key;
 char c[8];
};
typedef union des_block des_block;

The des_block is a union of 8 bytes, which constitute the DES
session key. This session key exists only for the duration of the
AUTH structure, which is no longer than the duration of the
CLIENT structure with which this AUTH structure is associated.
Typically, a new CLIENT structure is generated each time the
client-side application is executed. Thus, a new DES key is
generated each time the application is run. This DES session
key is never sent across the network in its plain form. Instead,
it is sent only after it has been encrypted as part of the
ah_private data, described below.

The des_block union contains a conditional compilation
statement. This is necessary because, on a Cray Research
system, a long value consists of 64 bits. On most other machines
that run secure RPC, a long value consists of only 32 bits. Thus,
to maintain consistency, the key portion of the union is declared

Authentication Routines [E] Remote Procedure Call (RPC) Reference Manual

168 Cray Research, Inc. SR–2089 9.0

a structure that contains one element of type word64 on the
Cray Research system. The word64 type is defined in the
<rpc/types.h> file, and it is merely a 64-bit entity that allows
the user to address the high or low 32 bits of it separately.

The ah_key field of the AUTH structure is currently used only
when performing DES authentication and validation. For other
types of authentication, its contents are undefined.

The next field in the AUTH structure is the ah_ops field, which is
a pointer to a structure that contains function pointers specific
to the authentication method. The functions pointed to are
enumerated in the AUTH structure and include functions to get
the next verifier, to marshal (generate) credentials, to validate
credentials, to refresh credentials, and to destroy credentials.

The last field in the AUTH structure is the ah_private field,
which is a generic pointer to data specific to the authentication
method. In the case of DES authentication, the ah_private
field points to a structure of type ad_private . Users should not
manipulate the data within this structure. The contents of the
structure are described as follows; this description is only for
informational purposes.

/*
 * This struct is pointed to by the ah_private field of an “AUTH *”
 * when doing DES authentication. */
struct ad_private {
 char *ad_fullname; /* client’s full name */
 u_int ad_fullnamelen; /* length of name, rounded up */
 char *ad_servername; /* server’s full name */
 u_int ad_servernamelen; /* length of name, rounded up */
 u_int ad_window; /* client specified window */
 bool_t ad_dosync; /* synchronize? */
 struct sockaddr ad_syncaddr; /* remote host to synch with */
 struct timeval ad_timediff; /* server’s time – client’s time
*/
 u_long ad_nickname; /* server’s nickname for client */
 struct authdes_cred ad_cred; /* storage for credential */
 struct authdes_verf ad_verf; /* storage for verifier */
 struct timeval ad_time-stamp; /* time-stamp sent */
 des_block ad_xkey; /* encrypted conversation key */
};

This structure constitutes the authentication data that actually
is sent across the network.

Remote Procedure Call (RPC) Reference Manual Authentication Routines [E]

169Cray Research, Inc.SR–2089 9.0

The first four fields of the structure are largely self-explanatory.
ad_fullname and ad_servername are strings that contain the
client’s name and the server’s name, respectively. The
ad_fullnamelen and ad_servernamelen fields are the
lengths of these client and server names, rounded up to a
multiple of 4 bytes.

The ad_window field is an unsigned integer that contains the
duration (in seconds) of the credentials. By having a small
duration during which the authentication credentials are valid,
the client protects itself from malicious users who might
intercept these credentials and attempt to retransmit them later.
If such a scheme were used, the server would detect that the
credentials had expired and would deny the request.

The ad_window field is taken directly from the second
parameter passed on the authdes_create call. For this reason,
you should pass a relatively small number, perhaps 60, as this
parameter.

The ad_dosync field is a flag that indicates whether the server
and client want to synchronize their concepts of local time.
Doing this ensures that the client and server agree on the end of
the effective lifetime of a credential. However, synchronizing
client and server is a nontrivial procedure and is not
recommended. Instead, clients and servers should run an
application such as ntpd (8), which implements the Network
Time Protocol. By running ntpd , users are assured that the
concept of current time on their local machine is essentially the
same, at least for DES authentication purposes, as the current
time on the server. If the third argument to the
authdes_create call is not NULL, the ad_dosync field is set to
TRUE.

The ad_syncaddr field is a pointer to the address of the host
with whom to synchronize. This value was passed in as the
third parameter of the authdes_create call. Again, you should
set this parameter to NULL.

The ad_timediff field is a timeval structure, which is defined
in the sys/time.h file. It contains the difference between
server time and client time, and it is used as part of the
synchronization mechanism.

The ad_nickname field is an unsigned long value that the
client and server use to speed up validation after initial
validation has completed. Essentially, the client specifies in the
ad_cred field (described below) whether a “full name” or a

Authentication Routines [E] Remote Procedure Call (RPC) Reference Manual

170 Cray Research, Inc. SR–2089 9.0

“nickname” is being used for the credentials. When a full name
is being used, the server must go through the calculations
necessary to produce information that allows the client to
validate confidently the server’s identity. After this is done, the
client can specify that, from then on, a nickname credential can
be used. This tells the server that there is no need to calculate
such complex validation information for the server for each and
every RPC request. It is a shorthand mechanism analogous to
the AUTH_SHORT mechanism used with UNICOS validation.

The next field in the ad_private structure is the ad_cred field.
This is an element of type struct authdes_cred , which is
described, as follows:

/*
 * A DES authentication credential
 */
struct authdes_cred {
 enum authdes_namekind adc_namekind;
 struct authdes_fullname adc_fullname;
 u_long adc_nickname;
};

The adc_namekind field takes either the value ADN_FULLNAME
or the value ADN_NICKNAME, depending on whether or not “real”
validation is being requested.

The adc_fullname field, which is an authdes_fullname
structure, looks like this:

/*
 * A fullname contains the network name of the client,
 * a conversation key and the window
 */
struct authdes_fullname {
 char *name; /* network name of client, up to MAXNETNAMELEN
*/
 des_block key; /* conversation key */
 u_long window; /* associated window */
};

The types of all fields that have this structure have already been
defined.

The last field in the authdes_cred field is adc_nickname ,
which is just an integer that the client uses to conveniently
identify the server.

Remote Procedure Call (RPC) Reference Manual Authentication Routines [E]

171Cray Research, Inc.SR–2089 9.0

The ad_verf field of the ad_private structure is of type
struct authdes_verf , which is described, as follows:

/*
 * A des authentication verifier
 */
struct authdes_verf {
 union {
 struct timeval adv_ctime; /* clear time */
 des_block adv_xtime; /* crypt time */
 } adv_time_u;
 u_long adv_int_u;
};

This is the structure that the server returns to the client to
prove its identity. The first field is a union of a timeval
structure and a des_block structure, both of which contain 8
bytes. It is convenient for the server to declare the structure this
way, because it must encrypt a time stamp and an integer as
part of the proof of identity it sends to the client. The
adv_int_u long field is the integer the server encrypts.

The ad_time-stamp field of the ad_private structure is
simply the time at which the client created the credential. The
server uses this to detect old credentials structures.

The last field of the ad_private structure is the ad_xkey field,
which is the encrypted conversation key generated by the client
and sent to the server. A pointer to the plain conversation key
may be passed as the fourth argument to the authdes_create
call. If this pointer is NULL, authdes_create generates and
encrypts a pseudo-random conversation key for the client.

When you use Kerberos authentication, the authentication and
validation data exchanged with each RPC call is similar to that
used in DES authentication. An RPC client using Kerberos
authentication must make a call to authkerb_seccreate to
build a Kerberos authentication structure. The Kerberos
authentication structure has the following form:

typedef struct_auth {
 struct opaque_auth ah_cred;
 struct opaque_auth ah_verf;
 union des_block ah_key;

Kerberos
authentication
E.3

Authentication Routines [E] Remote Procedure Call (RPC) Reference Manual

172 Cray Research, Inc. SR–2089 9.0

 struct auth_ops {
 void (*ah_nextverf)();
 int (*ah_marshal)(); /* nextverf & serialize */
 int (*ah_validate)(); /* validate verifier */
 int (*ah_refresh)(); /* refresh credentials */
 void (*ah_destroy)(); /* destroy this structure */
 } *ah_ops;
 caddr_t ah_private;
} AUTH;

The first field in the AUTH structure is ah_cred . This field
points to information the client sends the server to perform
authentication. The authentication data is stored in an
authkerb_cred structure.

The second field in the AUTH structure, also of struct
opaque_auth , is the ah_verf field. This field points to
information the client sends to the server for verification. The
verification data is stored in an authkerb_verf structure.
Both of these fields, ah_cred and ah_verf , are of type
opaque_auth .

An opaque_auth structure has the following form:

struct opaque_auth {
 enum_t oa_flavor; /* flavor of auth */
 caddr_t oa_base; /* address of more auth stuff */
 u_int oa_length; /* not to exceed MAX_AUTH_BYTES */
};

The oa_flavor field specifies the type of authentication or
validation being done. It can take the value AUTH_NONE,
AUTH_UNIX, AUTH_SHORT, AUTH_DES, or AUTH_KERB. For
Kerberos RPC, the oa.flavor field is set to AUTH_KERB.

The oa_base field is a pointer to specific data being used for
authentication or verification. The ah_cred.oa_base field
points to an authkerb_verf structure. The authkerb_cred
and authkerb_verf structures are described after the
_ak_private structure.

The oa_length field specifies the number of data bytes to which
the oa_base field points.

Remote Procedure Call (RPC) Reference Manual Authentication Routines [E]

173Cray Research, Inc.SR–2089 9.0

The third field of the AUTH structure is called ah_key , the
authentication handle key. This field contains a Kerberos
session key used for the duration of the AUTH structure. The
ah_key field is of type union des_block , which is specified as
follows:

union des_block {
 struct {
#ifdef CRAY
 word64 both;
#else
 u_long high;
 u_long low;
#endif
 } key;
 char c[8];
};
typedef union des_block des_block;

The des_block is a union of 8 bytes, which constitute the
Kerberos session key. This session key exists only for the
duration of the AUTH structure, which is no longer than the
duration of the CLIENT structure with which this AUTH structure
is associated. Typically, a new CLIENT structure is generated
each time the client-side application is executed. Thus, a new
Kerberos key is generated each time the application is run.

The des_block union contains a conditional compilation
statement. This is necessary because, on a Cray Research
system, a long consists of 64 bits. On most other machines that
run secure RPC, a long value consists of only 32 bits. Thus, to
maintain consistency, the key portion of the union is declared a
structure that contains one element of type word64 on the Cray
Research system. The word64 type is defined in the
<rpc/types.h> file, and it is merely a 64-bit entity that allows
the user to address the high or low 32 bits of it separately.

The ah_key field of the AUTH structure is used only when
performing Kerberos authentication and verification.

The next field in the AUTH structure is the ah_ops field, which is
a pointer to a structure that contains function pointers specific
to the authentication method. The functions pointed to are
enumerated in the AUTH structure and include functions to get
the next verifier, to marshal (generate) credentials, to validate
credentials, to refresh credentials, and to destroy credentials.

Authentication Routines [E] Remote Procedure Call (RPC) Reference Manual

174 Cray Research, Inc. SR–2089 9.0

The last field in the AUTH structure is the ah_private field,
which is a generic pointer to data specific to the authentication
method. In the case of Kerberos authentication, the
ah_private field points to a structure of type _ak_private .
Users should not manipulate the data within this structure. The
contents of the structure are described as follows; this
description is only for informational purposes.

/*
 * This struct is pointed to by the ah_private field of an “AUTH *”
 * when doing Kerberos authentication. */
struct _ak_private {
 char ak_service[ANAME_SZ]; /* service name */
 char ak_srv_inst[INST_SZ]; /* server instance */
 char ak_realm[REALM_SZ]; /* realm */
 u_int ak_window; /* client specified window */
 bool_t ak_dosync; /* synchronize? */
 char *ak_timehost; /* remote host to synch with */
 struct timeval ak_timediff; /* server’s time – client’s time */
 u_long ak_nickname; /* server’s nickname for client */
 struct timeval ak_time-stamp; /* time-stamp sent */
 struct authkerb_cred ak_cred; /* storage for credential */
 struct authkerb_verf ak_verf; /* storage for verifier */
 KTEXT_ST ak_ticket; /* Kerberos ticket */
};

This structure contains additional data sent to the RPC server.

The ak_service , ak_srv_inst , ak_realm , and ak_window
fields are set by the client side call authkerb_seccreate , and
are assigned from the service, instance, realm, and window
parameters. The ak_timehost field is always left blank. The
ak_nickname field is assigned when a reply is received from the
RPC server. The server returns the nickname. The nickname is
used to speed up validation after the initial validation has
completed.

The ak_window field is an unsigned integer that contains the
duration (in seconds) of the credentials. By having a small
duration during which the authentication credentials are valid,
the client protects itself from malicious users who might
intercept these credentials and attempt to retransmit them later.
If such a scheme were used, the server would detect that the
credentials had expired and would deny the request.

Remote Procedure Call (RPC) Reference Manual Authentication Routines [E]

175Cray Research, Inc.SR–2089 9.0

The ak_timediff field is a timeval structure, which is defined
in the sys/time.h file. It contains the difference between
server time and client time, and it is used as part of the
synchronization mechanism.

The ak_nickname field is an unsigned long that the client
and server use to speed up validation after initial validation has
completed. Essentially, the client specifies in the ad_cred field
(described below) whether a “full name” or a “nickname” is being
used for the credentials. When a full name is being used, the
server must go through the calculations necessary to produce
information that allows the client to validate confidently the
server’s identity. After this is done, the client can specify that,
from then on, a nickname credential can be used. This tells the
server that a less complex verification and authentication may
be used.

The next field in the _ak_private structure is the ak_cred
field. This is an element of type struct authkerb_cred ,
which is described, as follows:

struct authkerb_cred {
 enum authkerb_namekind akc_namekind;

 struct authkerb_fullname akc_fullname;
 u_long akc_nickname;
};

The authkerb_namekind field takes either the value
AKN_FULLNAME or the value AKN_NICKNAME, depending on
whether or not full validation is being requested. When an
AKN_FULLNAME value is used, an authkerb_fullname
structure is sent to the server.

The akn_fullname field, which is an authkerb_fullname
structure, looks like this:

struct authkerb_fullname {
 KTEXT_ST ticket;
 u_long window; /* associated window */
 };

The KTEXT_ST structure is a Kerberos ticket structure. The
u_long window parameter is the window for the ticket. See the
include file <krb/krb.h> for a description of the ticket.

Authentication Routines [E] Remote Procedure Call (RPC) Reference Manual

176 Cray Research, Inc. SR–2089 9.0

Kerberos RPC places restrictions on client and server clocks.
They must be synchronized within five minutes of each other.
Cray Research recommends that a site run the Network Time
Protocol (NTP) time protocol on the client and server to ensure
synchronization.

The AUTH_KERB authentication flavor uses Cipher Block
Chaining (CBC) mode encryption when sending a fullname
credential that includes the ticket and the window. Electronic
Code Book (ECB) encryption is used for nickname credentials.
The Kerberos session key is used for the initial input vector for
CBC encryption.

The ak_verf field of the _ak_private structure is of type
struct authkerb_verf , which is described, as follows:

struct authkerb_verf {
 union {
 struct timeval akv_ctime; /* clear time */
 des_block akv_xtime; /* crypt time */
 } akv_time_u;
 u_long akv_int_u;
};

This is the structure that the server returns to the client to
prove its identity. The first field is a union of a timeval
structure and a des_block structure, both of which contain 8
bytes. It is convenient for the server to declare the structure this
way, because it must encrypt a time stamp and an integer as
part of the proof of identity it sends to the client. The
akv_int_u long field is the integer the server encrypts.

The ak_time-stamp field of the _ak_private structure is
simply the time at which the client created the credential. The
server uses this to detect old credentials structures.

The server returns the nickname to the client by reusing the
authkerb_verf structure on the return call. The client stores
the nickname in its _ak_private structure.

Service Library Routines [F]

177Cray Research, Inc.SR–2089 9.0

This appendix contains man pages for the RPC service library
routines.

Section Title [1] Manual Title

178 Cray Research, Inc. Pub number and revision

Index

189Cray Research, Inc..SR–2089 9.0

A

Access control, 61
Array freeing, 25
Array processing.IN , 22
auth_destroy (3RPC), 67
AUTH_KERB authentication, 56
authdes_create (3RPC), 67
Authentication

AUTH_KERB flavor, 56
client, 56
DES, 55, 67
failure, 64
handle, 68, 69
information destroyed, 67
Kerberos, 56
null requirements, 54
of caller to service, 53
parameters, 53
server, 57
setting up, 54
UNICOS, 69
UNICOS requirements, 55

authkerb_secreate , 171
authnone_create (3RPC), 68, 69
authunix_create (3RPC), 69

B

Batching, 45
Broadcast nets, 70
Broadcast protocols, 50
Building blocks, prefabricated, 21

C

Call message, 63, 65
Callback processing, 39
callrpc (3RPC), 69
Client

authentication, 56

call and reply, 14
creating handle, 56
error routine, 16
service library routines, 18
source code, 20, 32

clnt_broadcast (3RPC), 70
clnt_call (3RPC), 71
credentials, 165

D

Data
deserialized, 2
serialized, 2
translation, 2

DES authentication, 55
Deserializing, 2, 21

E

Entry points to RPC/XDR, 67
Environments, operating system, 2
Error messages, 9
Error routine diagnosis, 16
Exit to service loop, 14
External Data Representation (XDR), 2, 21

H

Handle setting
DES, 56
Kerberos, 56
UNICOS, 56

I

Intermediate layer
calling and replying, 20
registering, 19

Index Remote Procedure Call (RPC) Reference Manual

Cray Research, Inc.190 SR–2089 9.0

K

Kerberos authentication, 56, 171
keyserv process, 55

L

Layer
highest, 17
intermediate, 18
lowest, 26

Layers of interface, 16
Low–level features, accessing, 33
Lowest layer

calling, 30
registering, 26

M

Memory allocation for XDR, 24
Message protocol, 63
Message structure, 3, 64

N

Network Programming manual, 121, 143
Null authentication, 54
nusers service call, 30

P

Pointer dereferencing, 23
Portmapper registering, 14
Prefabricated, building blocks, 21
Procedure number, 8
Programming examples, 11
Protocol

call and reply, 63
message, 63

Protocol specification registration, 4
Public key, 55

R

Record fragment, 61
Record marking, 61
Registered programs, 4
Remote procedure number, 8
Remote program number, 3
Reply to request, 65
Request

accepted, 65
rejected, 66

Request call, 65
Return codes, 21
Routine

client, 16
error, 16
gettransient , 42
service dispatch, 57
to process array, 22

Routines
built–in, 21
change defaults, 26
customer applications, 4
for debugging, 4
for memory allocation, 24
library, 2
predefined XDR, 2
service, 18
synopsis, 67
user–developed, 3
XDR, 2, 21

RPC layers, 16, 26
RPC message protocol, 63
RPC message structure, 3
RPC paradigm, 2
RPC protocol

for batching, 45
for broadcasting, 50

RPC request call, 65
RPC service library routines, 177
RPC services, 4
rpcgen utility, 2
rpcgen Programming Guide , 97

S

Secure RPC, 55
Select processing, 33

Remote Procedure Call (RPC) Reference Manual Index

191Cray Research, Inc..SR–2089 9.0

Semantics, 8
Serializing, 2, 21
Server

authentication, 57
function, 12
source code, 19, 28
testing for presence, 61

Service library routines, 18
Service loop exit, 14
Source code, client, 32
Status for access denied, 61
Storage allocating and freeing, 24

T

TCP processing, 34
Transports and semantics, 8

U

UNICOS authentication, 55, 165

V

Version number, 6

X

XDR memory allocation, 24
XDR routines, 2

Index Remote Procedure Call (RPC) Reference Manual

Cray Research, Inc.192 SR–2089 9.0

