
Cray Research, Inc. Proprietary

UNICOS Internals
Technical Reference

TR-ITR 8.0 K Volume I

Date November 1995
Revision K
ReleaseS.O

This document is intended for instructional purposes. It
should not be used in lieu of other Cray Research, Inc.
publications.

This document may describe a hardware or software product
that has not been officially released. Existence of any such
description is not a commitment of the actual release or
support by Cray Research, Inc.

Software Training Cray Research, Inc.

CRAY RESEARCH PROPRIETARY
Dissemination of this documentation to non-CR! personnel requires approval from the
appropriate vice president and a nondisclosure agreement. Export of technical information in
this category may require a Letter of Assurance.

Restricted Rights Legend

Use, duplication, or disclosure by the Government is subject to restrictions as set forth in the
subparagraph [(c) (1) (ii)] of the rights in Technical Data and Computer Software clause at
52.227-7013. (October 1988)

Cray Research, Inc.
655 Lone Oak Drive
Eagan, MN 55121

Cray Research, Inc. Unpublished Private Information - All Rights Reserved.

Autotasking, CF77, CRAY, Cray Ada, CRAY Y-MP, CRAY-1, HSX, SSD, UniChem, UNICOS,
and X-MP EA are federally registered trademarks and CCI, CF90, CFT, CFT2, CFT77, COS,
CRAY C90, CRAY C90D, Cray C++ Compiling System, CrayDoc, CRAY EL, CRAY J90,
Cray NQS, CraylREELlibrarian, CraySoft, CRAY T90, CRAY TaD, CRAY X-MP, CRAY XMS,
CRAY-2, CRInform, CRIJ7UrboKiva, CSIM, CVT, Delivering the power ... , DGauss, Docview,
EMDS, HEXAR, lOS, LibSci, Luminary, MPP Apprentice, ND Series Network Disk Array,
Network Queuing Environment, Network Queuing Tools, OLNET, RQS, SEGLDR, SMARTE,
SUPERCLUSTER, SUPERLINK, '!rusted UNICOS, and UNICOS MAX are trademarks of
Cray Research, Inc.

DECnet is a trademark of Digital Equipment Corporation. HYPERchannel and NSC are
·trademarks of Network Systems Corporation. Kerberos is a trademark of Massachusetts
Instititute of Technology. LANlord is a trademark of Computer Network Technology
Corporation. NFS, ONC, Sun, and Sun Workstation are trademarks and RPC is a product of
Sun Microsystems, Inc. UltraNet is a trademark of Ultra Network Technologies, Inc. UNIX is
a registered trademark in the United States and other countries, licensed exclusively through
XlOpen Company, Ltd. X Window System is a trademark of X Consortium, Inc.

The UNICOS operating system is derived from the UNIX System Laboratories, Inc. UNIX V
operating system. The UNICOS operating system is also based in part on the Fourth Berkeley
Software Distribution (BSD) under license from The Regents of the University of California.

Requests for copies of Cray Research, Inc. publications should be sent to the following address:

Cray Research, Inc.
Distribution Center
2360 Pilot Knob Road
Mendota Heights, MN 55120
USA

Order desk (612) 683-5907
Fax number (612) 452-0141

(J

()

Record of Revision
-) This dOcument is designed for use in Training and supports the software release version

identified below. Some of the information and related examples may not be consistent with the
software release version currently running at your site.

Version Description

G 1992-1993, UNICOS 7.0

H 1993, Enhancements and modifications relating to 7.0 kernel changes

I December 1993, Enhancements and modifications relating to 7.017.C changes

J December 1994, UNICOS 8.0

K November 1995, UNICOS 8.0, revisions and addition of disk drivers

TR-ITR 8.0 K Cray Research, Inc. Proprietary

Record of Revision UNICOS Internals Technical Reference

This page is blank intentionally.

ii Cray Research, Inc. Proprietary TR-ITR 8.0 K

)

Contents

Preface ... ill

Conventions . ill

Man page references .. iv
Ordering publications ... v
Reader comments v

Software Overview [1]
Objectives
Overview .. .
Recommended reading
Recommended outside reading .. .
lJNIX bibliography
System functional overview

Session from a real terminal .. .
Session from a pseudo terminal .. .
Interactive session from a Cray station
Batch access from a Cray station .. .

Kernel organization overview
System memory organization .. .
Source code organization .. .

System-wide files
lJNIX time-sharing system u ts / (kernel source code)

Object code organization .. .
Kernel logical organization .. .
Kernel structures for process control

1-1
1-1
1-2
1-3
1-4
1-4
1-6
1-6
1-8

1-10
1-12
1-14
1-14
1-16
1-16
1-17
1-20
1-22
1-26

Hardware Overview [2] ... 2-1
Objectives
Hardware Identification by serial number .. .
CRAY Y-MP System with lOS model D
CRAY Y-MP System with lOS model E
lOS model E

I/O overview
General packet format .. .
Packet types
Disk request packet .. .
Simple disk read
Write behind
No write behind .. .

CRAYY-MP EL differences summary .. .
CRAYY-MP system control

Registers in each CPU .. .
Shared resources

CRAY Y-MP C90 system control
Registers in each CPU .. .
Status registers .. .
Shared resources

TR-ITR 8.0 K Cray Research, Inc. Proprietary

2-1
2-2
2-4
2-6
2-8
2-8

2-10
2-10
2-12
2-12
2-14
2-14
2-16
2-19
2-20
2-30
2-32
2-32
2-34
2-34

III

Contents UNIGOS Internals Technical Reference

CRAY X-MP system control
Registers in each CPU .. .
Shared resources

Interrupt processing summary .. .
Exchange (XP information)

Exchange package crash display .. .
XP mode and status bit breakdown .. .

2-35
2-35
2-35
2-36
2-40
2-40
2-40

Memory addressing modes. 2-42
CRAY-1 and CRAYX-MP without EMA................. 2-42
CRAY X-MP in compatibility modes 2-44
CRAY X-MP EMA instruction formats. 2-47
CRAY Y-MP compatibility (24-bit) mode ... 2-49
CRAYY-MP EAM (32-bit) mode .. 2-51
CRAY Y-MP EAM instruction formats 2-53

Summary of hardware types / binary restrictions .. 2-55
CRAYY-MP C90 in native mode.. 2-57
CRAY Y-MP C90 in compatibility mode . 2-57
CRAY X-MP in compatibility mode .. 2-57

Hardware system controlfoldouts .. 2-59
CRAY Y-MP system control. 2-61
CRAY Y-MP C90 system control .. 2-62
CRAY X-MP system control .. 2-63

System Initialization [3] 3-1
3-1
3-2
3-3
3-3
3-3
3-4
3-5
3-5
3-6
3-7
3-8

iv

Objectives
Overview .. .
Kernel compile options

Kernel code optimization .. .
Global register assignment .. .
Global intrinsic functions
Vector use restrictions .. .
Kernel mode intrinsic functions .. .
Kernel mode intrinsic functions for CRAY Y-MP C90 systems
Assembler table macros

lJNICOS linked lists
lJNICOS kernel bit maps
lJNICOS stacks .. .

Stable stack feature summary
Stack pool management

stackinitO
expandstackO
contractstackO .. .

Stack management
allocstackO .. .
freestackO

Stack format
Context switching .. .

CPU and process management .. .
Basic principles .. .
Kernel register save areas .. .

3-10
3-12
3-13
3-14
3-14
3-14
3-14
3-15
3-15
3-15
3-16
3-18
3-18
3-18
3-18

Cray Research, Inc. Proprietary TR-ITR 8.0 K

UNICOS Internals Technical Reference

Context switch sample .. .
sleepO and wakeupO

Kernel main loop overview .. .
Kernel multithreading

Overview .. .
Lock mechanics .. .
UNICOS multithread lock logic - general .. .
SEMLOCK macro .. .
SEMLOCK illustration
MEMLOCK macro .. .
MEMLOCK illustration
.ATOMIC lock macros
ATOMIC_ADD illustration .. .
R_MEMLOCK and W_MEMLOCK lock macros
R_MEMLOCK and W_MEMLOCK illustration .. .
Atomic sleep
Logic without atomic sleep .. .
Logic with atomic sleep
Ownership macros
Lock hierarchy
Lock statistics
Lock debugging .. .

Kernel register uses .. .
Kernel CPU register usage
Kernel cluster (1) register usage
Kernel cluster (1) semaphore register usage .. .

Bootstrapping the mainframe
Booting methods
Bootstrapping the mainframe with the full kernel
Kernel structures at deadstart -.................... .
Kernel structures at deadstart
Bootstrapping the mainframe with a compressed kernel

lJNICOS kernel startup .. .
Startup overview
mfstart /mfinit logic
csl processing
Startup file / table relocation .. .
umainO logic
sysprocO routine .. .

Summary .. .
Creating system processes
sysprocO example
Creating system processes

Central memory sizes .. .

Kern.el Mainline [4]
Objectives
Kernel mainline overview and mainline detail diagram
Mainline outer loop .. .

TR-ITR 8.0 K Cray Research, Inc. Proprietary

Contents

3-20
3-22
3-24
3-26
3-26
3-28
3-29
3-30
3-31
3-32
3-33
3-34
3-35
3-36
3-39
3-40
3-41
3-41
3-42
3-42
3-43
3-43
3-44
3-44
3-44
3-45
3-47
3-47
3-48
3-50
3-51
3-52
3-55
3-55
3-56
3-58
3-62
3-67
3-73
3-73
3-73
3-74
3-76
3-82

4-1
4-1
4-2
4-8

v

Contents UNICOS Internals Technical Reference

Kernel entry
Initial saves and updates
immtrap - Trapping monitor mode interrupts

rpescrub and immrpe .. .
Interrupt handler selection .. .
Idle processes .. .

Idle process selection .. .
Idle process - idle CPU .. .

. Idle process - down CPU
giveupO and idler .. .

Process selection
Signals .. .

Signal detection .. .
issigO - Kernel's test for a processable signal
Catching a signal
Signal data structures .. .
Library routines words .. .
Kernel signal processing overview .. .
Library signal processing overview

Kernel exit .. .
Mainline inner loop - Interrupt handlers

usrnex - User normal exit (system call) .. .
System entry table .. .

usrioi - I/O interrupt .. .
LOWSP channels
User error interrupts

usrfpi - User floating-point interrupt
usrore - User operand range error .. .
usrpre - User program range interrupt .. .
usrbpi - User breakpoint interrupt (C90 only)
usreex - User error exit .. .
usrdli - User deadlock interrupt .. .

usrdli logic ... ,
usrpci - User programmable clock interrupt
usrmei - User memory error interrupt
usrmcu - User maintenance control unit
usrrtm - User real-time interrupt
usripi - User interprocessor interrupt
usrrpe - User register parity errors
usrmii - User monitor mode instruction interrupt

Process Management Subsystem [5]
Objectives
Process management tables

Regular process - System mode .. .
Regular process - User mode .. .
Shared text process - User mode
Multitasked group - System/user mode

Proc tables chains .. .
allproc .. .

4-8
4-8

4-14
4-16
4-18
4-22
4-22
4-23
4-24
4-26
4-28
4-30
4-30
4-32
4-34
4-37
4-40
4-42
4-45
4-47
4-51
4-51
4-53
4-60
4-62
4-64
4-64
4-64
4-64
4-64
4-64
4-66
4-68
4-70
4-72
4-76
4-76
4-78
4-80
4-82

5-1
5-1
5-2
5-2
5-4
5-6
5-8

5-10
5-10

vi Cray Research, Inc. Proprietary TR-ITR 8.0 K

UNICOS Internals Technical Reference

availproc .. .
allmtask
idlerntask .. .
pidhash .. .
runq .. .
hsque (sleep queues)
swapq
p_children
pc_sibling
p_mlink .. .
sess .. .
pgrp .. .

Life cycle of a proc table entry
Shell command execution
Process creation

fu:rkltfork
dofork logic
newproc logic .. .
fork data structures .. .
tfork data structures .. .

User program initiation (exece)
User commands and shell exece request

Kernel sets up for the request handler
Request handler finds the a . ou t file
exece

Store arguments and environment in kernel's exec area
Load a nonshared executable file's text
Load a (split text/data) executable file .. .
Move caller's arguments and environment to the new program
Finish kernel handler and return to new user program
Entry to user startup code ($START) .. .
Entry to and exit from user's main

vforkO logic summary
Process control .. .

Process priorities
sleep
wakeup .. .
swtch
gets tack
resume .. .
clongjrnp
sleep examples .. .

Process termination .. .
wait logic
exi t processing .. .

exit calls .. .

)
exit logic .. .
The exit of a younger sibling

checkpoint/restart
Summary .. .

TR-ITR 8.0 K Cray Research, Inc. Proprietary

Contents

5-10
5-10
5-10
5-11
5-11
5-12
5-12
5-12
5-12
5-13
5-13
5-13
5-14
5-14
5-16
5-16
5-16
5-18
5-20
5-22
5-24
5-24
5-26
5-28
5-28
5-30
5-32
5-34
5-36
5-38
5-40
5-42
5-44
5-48
5-48
5-50
5-51
5-52
5-54
5-55
5-56
5-58
5-64
5-64
5-66
5-66
5-66
5-74
5-76
5-76

vii

Contents UNICOS Internals Technical Reference

viii

Additional materials .. .
Structures
Checkpoint file format .. .
Buffer management .. .
Buffer management logic flow
Checkpoint logic flow
Restart logic flow

CPU management
callout/callarr tables

callout table organization
callarr table organization
Adding callout table entries .. .
Processing callout table entries .. .
Cancelling callout table entries .. .
Interlock mechanisms
Accessing the callout table via crash(8) .. .

Managing timed events
Hardware programmable clock

User profiling .. .
Setting up the clock
At the PCI interrupt .. .
Resetting the clock .. .

Real-time scheduling
Becoming a real-time process .. .
Declaring real-time compute needs
At programmable clock interrupts (when user requested CPU_RTFRAME) ...•......•.

Alarm clock events
alarm(2) system call
ioctl(2) system call against /dev/cpu/any

CPU scheduling .. .
The clockO function
CPU scheduling clock intervals .. .
The minor cycle or "tick" (1/60 sec.)
The major cycle (1 sec.) .. .
The share cycle (4 sec.)

Fair-share scheduler components .. .
User fair share specifications .. .
Login time
Kernel's role .. .
shrdaernon .. .
Tuning
Monitoring
Testing/debugging .. .

Fair-share group concept .. .
clockO routine's role in CPU scheduling
Nice charge and decay rate tables .. .
Process scheduling (UNIX versus UNICOS) .. .

Process scheduling on UNIX systems
Process scheduling on UNICOS systems .. .

5-76
5-76
5-77
5-77
5-77
5-78
5-80
5-82
5-82
5-82
5-82
5-82
5-82
5-82
5-84
5-84
5-86
5-86
5-88
5-88
5-88
5-88
5-90
5-90
5-90
5-92
5-94
5-94
5-94
5-96
5-96
5-98
5-98
5-98
5-98

5-100
5-100
5-100
5-100
5-100
5-100
5-100
5-100
5-102
5-104
5-106
5-108
5-108
5-108

Cray Research, Inc. Proprietary TR-ITR 8.0 K

)

UNICOS Internals Technical Reference

Fair-share logic
clockO / shareO fair-share logic (minor cycle) ,
clockO / shareO fair-share logic (major cycle)
clockO / shareO fair-share logic (share cycle)

Fair-share graphs .. .
Share off - varying nice
Share on - varying number per user .. .
Share on - varying nice .. .
Share on - varying shares
Share on - sleep/wakeup .. .
Share on - general .. .

Fair-share scheduling parameters - shconsts
lnodes and 1 imi ts system call .. .
Monitoring the fair-share scheduler .. .

shrates
shrinfo
shrmon .. .
shrstats .. .
shrusage .. .
shrview

User's fair-share information .. .
Memory management .. .

Introduction
Memory mapping .. .
Memory block management
Swap device
Swap space allocation
sched category .. .
Shared text .. .
Overview .. ,
Multiplexed scheduler .. .
Swap-in queue
Swap priority principles .. .
Swap priority factors
Swap priority calculation
schedv_initO .. .
Guaranteed residency time .. .
nschedv(8) .. .
Significant variables and functions .. .
schedO logic overview .. .

Resource limits .. .
CPUlimits ... ,
Memory limits
Process limits .. .
Secondary data segment limits .. .
Core limit
File system block limits

J File system quotas
Cooperative parallel interface - Overview .. .

Structures

TR-ITR 8.0 K Cray Research, Inc. Proprietary

Contents

5-110
5-110
5-112
5-114
5-116
5-116
5-118
5-120
5-122
5-124
5-126
5-128
5-130
5-132
5-132
5-134
5-136
5-138
5-140
5-142
5-144
5-146
5-146
5-148
5-150
5-152
5-154
5-155
5-156
5-158
5-159
5-160
5-161
5-162
5-164
5-165
5-166
5-167
5-170
5-181
5-197
5-197
5-199
5-200
5-201
5-202
5-203
5-204
5-207
5-208

ix

Contents UNICOS Internals Technical Reference

Logic components .. .
System components .. .

resumeO
clockO .. .
ureschO
threadO
Idle CPUs .. .
System call 212

User and library components .. .
Program startup .. .
Data structures
User task scheduling - Logic flow
User task scheduling - Data structures
Library scheduler's context ready masks .. .

UNICOS I/O Overview [6]
Objectives
Device types

Block devices .. .
Character devices .. .

Device configuration
Configuration and parameter files
Device special inode sample list .. .

File types
Raw and buffered I/O .. .
Block I/O methods

Logical device cache (ldcache) .. .
Sample buffered read using SSD ldcache .. .
Sample raw write using BMR ldcache (lOS model B, C, and D only)

Synchronous and asynchronous I/O .. .
Synchronous I/O
Write integrity
Asynchronous I/O .. .
listio .. .
Internal processing

I/O layers
Overview .. .
User process
File system and file
Device drivers .. .
lOS and interrupt handlers

Vnode VOP operations table .. .
File system macros

8.0 versus 7.0 .. .
8.0 file system routines
8.0 vnode VOP routines .. .
VnodeNfs Operations Tables - UNICOS 8.0 comparison chart

vop operations
vfs operations

5-210
5-215
5-215
5-218
5-220
5-220
5-222
5-224
5-226
5-226
5-228
5-230
5-234
5-236

6-1
6-1
6-2
6-2
6-2
6-4
6-4
6-5
6-6
6-8

6-10
6-10
6-10
6-10
6-12
6-12
6-12
6-13
6-13
6-13
6-14
6-14
6-16
6-18
6-20
6-22
6-24
6-25
6-25
6-27
6-27
6-29
6-29
6-30

x Cray Research, Inc. Proprietary TR-ITR 8.0 K

)

UNICOS Internals Technical Reference

Secondary vnode operations table UNICOS 8.0 DFS
vn operations .. .

DFS 8.0 Vnode VOPX routines .. .
Vnode VOPX operations table
Virtual file system switch table .. .

Condensed virtual file system switch table definitions u ts / c 1 / c f / devsw . c
Virtual file system switch table definition with CRINFS & DCE

Block device switch table
(bdevsw) controls access to I/O drivers for block device types ,

Block device switch table
Block device driver definitions (edited) uts/cl/cf/devsw. c '" ,

Character device switch table
Character device driver definitions (edited) uts/cl/cf/devsw. c

Contents

6-31
6-31
6-32
6-34
6-36
6-36
6-36
6-38
6-38
6-39
6-40
6-42
6-44

File System Management [7] ... 7-1
Objectives ... ,
File system .. .

User view .. .
Internal view .. .
Internal in-core structural view .. .
Path names .. .

Logical disks .. .
Definition

Logical disk configuration - Model B/CID .. .
Configuration via the startup parameter file

Startup par am file .. .
pscan() .. .
IOS-Param

Physical device and slice configuration
Special slice names

Logical device definitions
System device definitions
Configuration tables .. .

Logical disk addressing
Logical disks

Reconfiguration via mknod(8) .. .
Logical disk configuration - Model E

Configuration via the startup parameter file .. .
Param file sections
Reconfiguration via mknod(8)

NC1 file system - Layout
Partitions .. .
Partition format .. .

Superblocks .. .
Dynamic blocks
Block allocation bit map

Inode regions and inode number
Inode regions .. .

TR-ITR 8.0 K Cray Research, Inc. Proprietary

7-1
7-2
7-2
7-4
7-6

7-20
7-22
7-22
7-22
7-22
7-22
7-22
7-22
7-24
7-24
7-28
7-30
7-32
7-32
7-34
7-36
7-38
7-38
7-38
7-40
7-44
7-44
7-46
7-48
7-50
7-52
7-54
7-54

xi

Contents UNICOS Internals Technical Reference

xii

Inode number .. .
Partition data blocks .. .
Partition control fields .. .

NC1 file system - Example
Device specifics .. .
File system specifics .. .
Example - Octal dump .. .

NC1 file system - inode description .. .
Partition layout .. .
File block addressing

Directory description
File format .. .
Hierarchy

NC1 file system - Example
File system specifics .. .
Octal dump ... ,

File system functions
Introduction
Path name processing .. .

lookup overview
Path name structure .. .
Path name operations
lookup logic flow , ,
lookupname logic flow .. .
traverseO logic flow
lookuppnO logic flow .. .
Directory name lookup cache .. .
ncache structure
DNLC - Structures and routines
dnlc_lookupO logic flow
Directory operations .. .
Directory functions

Create a directory entry
Remove a directory entry .. .

More lookup logic flow
lookuppnO logic flow
ncllookupO logic flow .. .
VFS and VOP macros

Inode access (tables) .. .
ncliget/ncliput .. .

Mount
Mount of root file system
moun t(2) system call .. .
Mount onto root file system .. .
Traversing into a mounted file system .. .
Traversing out of a mounted file system .. .

Hard and soft links
Multilevel symbolic links .. .

/proc file system .. .
Introduction

7-54
7-56
7-58
7-60
7-60
7-62
7-64
7-74
7-74
7-76
7-78
7-78
7-80
7-82
7-82
7-91

7-113
7-113
7-114
7-114
7-116
7-118
7-120
7-121
7-122
7-126
7-128
7-129
7-130
7-132
7-134
7-137
7-137
7-138
7-139
7-141
7-144
7-145
7-148
7-150
7-152
7-152
7-154
7-156
7-158
7-160
7-162
7-165
7-166
7-166

Cray Research, Inc. Proprietary TR-ITR 8.0 K

UNIGOS Internals Technical Reference

Process file regions
Configuration .. .
mount(2) system call
open(2) system call
ioctl(2) debugging features .. .
lseek(2) system call
read(2) system call

Network file system .. .
Overview .. .
UNICOS as nfs client
lJNICOS as nfs server .. .

NC1-related routine locations

File Management [8] .. .
Objectives
open(2) system call .. .

System file table flags .. .
Vnode and inode table types, modes, and flags

File security
open(2) security .. .
File access (nclaccessO)

I/O table summary

) File locks .. .
File lock structures
Lock settings
Checking file locks
Lock conflict resolution

Allocation and block mapping
File system allocation and partitions
File creation/allocation .. .

Inode allocation .. .
Inode allocation - open ()
Initial allocations
Ongoing allocation

Allocation option RR1STDIR

Allocation option RRALLDIR

Allocation option RRFILE•..

ncliallocO logic .. .
ncliassignO .. .
ncladdinodesO

Block mapping
Description
Block mapping examples .. .

File data allocation
nclallocO .. .
writeO callingnclallocO .. .
First write (extension) to file
Subsequent writes (extensions) to file .. .)
Summary - Primary partitions only .. .

TR-ITR 8.0 K Cray Research, Inc. Proprietary

Contents

7-167
7-168
7-169
7-170
7-172
7-173
7-174
7-176
7-176
7-176
7-178
7-180

8-1
8-1
8-2
8-7
8-8

8-13
8-13
8-15
8-22
8-24
8-24
8-26
8-28
8-29
8-32
8-32
8-32
8-33
8-33
8-33
8-33
8-35
8-36
8-37
8-38
8-40
8-41
8-42
8-42
8-44
8-46
8-46
8-47
8-48
8-49
8-50

xiii

Contents UNICOS Internals Technical Reference

xiv

Examples .. .
Summary - Primary and secondary partitions
Examples .. .
Logic .. .

Read and write .. .
Read overview

Interrupt handler (md) layer .. .
umain
sdsreq .. .

System call (os) layer
readO
rdwrO
readaO .. .
rdwra{) .. .
listioO
ssread{)
ssrd .. .
sorecei ve{)

File system (fs) layer
nclreadO
nclpread{) .. .

Physical (raw) (os bio) layer .. ,
nclrawio ()
physio () .. .
aphysio () .. .

Buffered (os bio) layer .. .
breadO .. .
aread{) .. .
getblkO

Write overview .. .
Interrupt handler (md) layer .. .

umain
System call (os) layer ,

write{) .. .
rdwr{)
writeaO
rdwraO .. .
listioO
sswrite{}
sswr ... ,
sosend .. .

File system (fs) layer
nclwriteO .. .
nclpwriteO

Buffered I/O write functions
bdwrite ()
bawriteO
bwriteO
awriteO

8-51
8-52
8-53
8-54
8-57
8-57
8-57
8-57
8-57
8-57
8-57
8-57
8-58
8-58
8-58
8-58
8-58
8-58
8-59
8-59
8-60
8-60
8-60
8-60
8-60
8-61
8-61
8-61
8-62
8-63
8-63
8-63
8-63
8-63
8-63
8-63
8-63
8-63
8-63
8-63
8-64
8-64
8-64
8-65
8-65
8-65
8-65
8-65
8-66

Cray Research, Inc. Proprietary TR-ITR 8.0 K

)

UNICOS Internals Technical Reference

Read write logic .. .
nclread
nclwrite .. .

Raw (physical or direct YO - physical buffers
Definition
Usage
Buffer assignment .. .
Physical buffers .. .
Raw YO logic .. .

Physical read
Physical write .. .

System buffers
Definition
Buffer layout
Allocation at startup .. .
Management
Example
Device queues .. .
System buffer logic

readO logic .. .
wr i teO logic
getblkO function .. .
getbuffO function

) freebuffO function .. .
breadO function .. .
bdwriteO macro
bawri teO macro
bwr i teO function .. .

Buffer flags .. .
Asynchronous YO .. .

Async YO buffers
Initiation ,
Completion .. .
reada(2) and wri tea(2) system calls .. .
areadO function
aiodoneO function
ascompleteO function
uioreplyO function .. .

List I/O ..•...................................
listio(2) system call summary
listio(2) with LC_START •........•••.....•.••.•..••••......•.•..•....•.....•.....

listioO function .. .
Pipe file

Creation
Allocation
Pipe data flow .. .
Writing to pipe
Pipe write examples .. .

Write to empty pipe
Small write to full pipe .. .

TR-ITR 8.0 K Cray Research, Inc. Proprietary

Contents

8-67
8-68
8-70
8-72
8-72
8-72
8-72
8-73
8-74
8-74
8-76
8-78
8-78
8-78
8-78
8-80
8-82
8-82
8-84
8-84
8-85
8-86
8-88
8-88
8-90
8-92
8-92
8-94
8-96

8-102
8-102
8-104
8-106
8-108
8-112
8-116
8-118
8-120
8-122
8-122
8-124
8-126
8-128
8-128
8-130
8-130
8-132
8-134
8-134
8-134

xv

Contents UNICOS Internals Technical Reference

Large write to full pipe .. .
Write to empty pipe, reader sleeping .. .

Pipe read examples
Read from pipe
Read from empty pipe
Read from nearly empty pipe .. .

Read pipe delay processing .. .
Write pipe delay processing
Pipe file: Usage by shells .. .

File management foldouts .. .
open(2) system call
read system call logic overview .. .
wri te system call logic overview .. .

VO Management Subsystem [9] .. .
Objectives
Introduction .. .
Block device driver summary .. .
Disk drivers - Definition .. .

Physical drivers .. .
Logical drivers

Driver and disks relationships
/ dev directory .. .
Disk and "special" inode relationships .. .
Specialldesc files .. .
Logical type inodes
Inodes in /dev/dsk .. .

Logical disk creation - dd devices .. .
Examples .. .
Single-slice logical disk .. .
Multislice logical disk - all dd's .. .
Two-slice logical disk .. .

. Logical disk creation - Mixed drivers
Single-slice stripe group

Logical disk creation - Multislice stripe group
Logical disk creation - Mirrored logical device
Logical disk creation - Mirrored stripe group
Disk drivers - Configuration tables .. .

slice-prof
slice tables (lddslice, sddslice, mddslice, pddslice, ssddslice, rddslice)
sdd_tab
mdd_tab
pdd_tab .. .
ssdd_tab
hdd_tab .. .
pdd_prof
hdd_prof
pdd_tab .. .

Block device drivers - Driver overview
Logical disk drivers

8-135
8-135
8-136
8-138
8-138
8-139
8-140
8-142
8-144
8-155
8-157
8-158
8-159

9-1
9~1

9.6
9-6
9-6
9-6
9-7
9-8
9-8
9-8
9-9
9-9
9-9

9-10
9-10
9-10
9-12
9-14
9-16
9-16
9-18
9-20
9-22
9-24
9-24
9-24
9-25
9-25
9-25
9-26
9-26
9-26
9-26
9-29
9-32
9-32

xvi Cray Research, Inc. Proprietary TR-ITR 8.0 K

J

UNICOS Internals Technical Reference

Physical disk drivers .. .
Character device drivers .. .

Interrupt handlers
Device control

Iddopen/pddopen
Physical disk IJO example .. .
Block device specifications .. .
Disk space .. .

pddraw - special low-level disk IJO .. .
pddraw - pddraw () logic flow .. .

rec"""prof () structure .. .
Basic raw sequence micro instructions #definePASSOOO /* pass * /
Raw sequence micro sub-instructions
Raw sequence micro immediate-instructions
Error recovery / raw request codes
Raw sequencer pseudo register definitions

Disk queue sort .. .
RIPPI device driver .. .

HIPPI fundamentals
Iddopen / hddopen

HIPPI IJO example
Striped device driver

Iddopen / sddopen .. .

) Striped IJO example .. .
Mirrored device driver .. .

Iddopen / mddopen .. .
Mirrored IJO example

SSD driver .. .
Iddopen() .. .
Iddopen / ssddopen
SSD related structures .. .

RAM device driver
Iddopen / rddopen .. .

Channel drivers
lOS packet driver - packet tables .. .
lOS packet driver - packet retransmission .. .

Definition .. .
Mainframe retransmission .. .
lOS retransmission
Packet interrupt handler table

VHISP driver - VHISP driver's place in disk management
VHISP driver - data structures .. .
VHISP driver - high level

ssddstart .. .
VHISP driver -low level .. .

vhispio
ssdchk .. .

Secondary data segments - SDS data structures .. .
SDS logic .. .)
SDS usage and space management .. .

TR-ITR 8.0 K Cray Research, Inc. Proprietary

Contents

9-33
9-35
9-36
9-40
9-42
9-46
9-69
9-71
9-72
9-72
9-78
9-79
9-80
9-81
9-82
9-83
9-84
9-93
9-93
9-96
9-98

9-118
9-118
9-122
9-164
9-164
9-168
9-190
9-190
9-192
9-194
9-196
9-196
9-201
9-201
9-204
9-204
9-204
9-204
9-205
9-207
9-208
9-210
9-210
9-212
9-212
9-212
9-214
9-214
9-214

xvii

Contents UNICOS Internals Technical Reference

Logical device caching .. .
Idcache buffers

Definition and usage .. .
Buffer layout
Idch_io () .. .
Idch_iofini () .. .

ldcache I/O structures .. .
ldcache examples
Recent ldcache options .. .
Idcache internal processing hierarchy .. .

Character devices .. .
Introduction - character device driver summary
Generic character device .. .
Terminal device driver - tty/pty tables

tp_tty and pt_tty .. .
Terminal device driver - character buffers .. .
Terminal device driver - character queues - clists (tty)

ttyqueues
Data movement (tty devices using T packets) 0

Relationship of a user's file descriptor to the terminal buffers
pty queues 0 •• 0 •••• 0 •••••••••••••••••••••••• 0 • 0 ••••••••••

Data movement (pty devices using N packets) . 0 0 0 •••••••••••••••• 0 •••••••••••••••

Terminal device driver - c lis t processing 0 •• 0 0 •••• 0 ••••••••••••••••••••••••••••••••

Use of the cblock clist 0 •••••••••••••••••••••••••••••••••••

Terminal device driver - pseudo terminals .. .
Terminal device driver - session controlling tty 0 •

Establishing an interactive session ... 0 ••

Terminal special character processing 0 •••••••••••• 0 ••••••••••••••••

/ dey / tty access to the terminal 0 ••••••••• 0 ••••••••••••••••••••••••••••••• 0

Exit processing
Terminal device driver - pty - user read of 0 ••••••••••••••••••••••••••••••••••••

Terminal device driver - pty - user write to 0 •• 0 ••••••••••••••••••••••••••••••••••

Sockets
Socket read .. .
Socket interrupt .. .
Socket write
Socket structures

Mbuf management
Mbufheaders and mbuf data area 0 ••••••••••

Mbuf queues and queue pointers
Mbuf initialization 0 ••••••••• 0 ••• 0 •••••••••••••• 0 •••••••••••••••••••••••••••••••••

Mbuf allocation 0 ••••••••••••••••••••••••••••••••

Mbuf structure initialization 0 ••••••••••••••••••••••••••••••••••

Mbufallocation logic Lm_gets) 0.0 •••• 0 •••• 0 0 •••••••••••••••••• 0 ••••••••••••

Compute number of mbuf data segments needed 0 ••••••••••••••••••••••••••

Search mbuf queues for preallocated space 0 •••• 0 ••••••••

Search mbuf free chains 0 •••••• 0 •••••••••••••••••••••

If mbuf space found .. .
If sufficient contiguous mbuf space not found 0 •••••••••••••••••••••••• 0

9-221
9-222
9-222
9-222
9-224
9-226
9-228
9-230
9-236
9-237
9-239
9-240
9-248
9-250
9-250
9-252
9-254
9-254
9-254
9-254
9-256
9-256
9-258
9-258
9-260
9-261
9-261
9-261
9-261
9-261
9-263
9-265
9-268
9-268
9-269
9-270
9-271
9-272
9-272
9-276
9-280
9-280
9-280
9-283
9-283
9-283
9-283
9-283
9-284

xviii Cray Research, Inc. Proprietary TR-ITR 8.0 K

)

)

)

UNICOS Internals Technical Reference

Mbuf deallocation logic LnLfree)
Compute number ofmbuf data segments being released
If queue size match, put on mbuf queue .. .
If not queue size match, put on mbuf free chains
Wakeup any thread waiting for mbuf space

BMX tape driver - tape components
BMX tape driver - tape daemon tables
BMX tape driver - tape special files
BMX tape driver - tape files .. .
BMX tape driver - sample tape session .. .
BMX tape driver - avrproc
BMX tape driver - user overview .. .

Definitions
Setup

BMX tape driver - system cache buffer allocation
BMX tape driver - programming considerations .. .
BMX tape driver - transparent buffered
BMX tape driver - transparent unbuffered
BMX tape driver - tape list I/O (single list)
BMX tape driver - tape list I/O (multiple list) .. .
BMX tape driver - packet summary

Command list entries
BMX tape driver - bmxread/brnxwri te :

Dump Analysis [10]
Objectives .. , , "
Dump analysis component description

System dump core file creation .. .
Configuration for a system dump .. .

Dump device configuration .. .
param file sample sections
Mainframe dump controlling parameters

Initializing the dump device
Dump device size
UNICOS panic

Panic buffer .. .
UNICOS panic logic
Panic calls
Panic routine
Assert

Dumping the UNICOS system
dumpsys•...............•..................•..•.......•.........

(x) dumpsys•...•....•.•........•••..•••...•••.•.....••....••..

(x) dumpsys••..

mfboot .. .
mfsysdmp•.....•..

mfsysdmp•..

System dump core file creation .. .
Model D lOS differences .. .

Dump device configuration .. .

TR-ITR 8.0 K Cray Research, Inc. Proprietary

Contents

9-286
9-286
9-286
9-286
9-286
9-288
9-290
9-291
9-292
9-293
9-298
9-300
9-300
9-301
9-302
9-303
9-304
9-306
9-308
9-310
9-312
9-312
9-314

10-1
10-1
10-2
10-4
10-6
10-6
10-7
10-8

10-10
10-12
10-14
10-14
10-16
10-18
10-20
10-22
10-24
10-24
10-24
10-24
10-24
10-26
10-26
10-28
10-30
10-30

xix

Contents UNICOS Internals Technical Reference

Dump device initialization
Dumping the lJNICOS system
System dump core file creation

Using crash(8) .. .
crash(8) man page
crash(8) help output
crash command / source cross-reference
Low memory tables and pointers

Exchange packages
Fixed location communication area
lOWInemtbl .. .
Panic buffer and kernel trace table
Selected tables and pointers

ucomm structure debugging aids
us_ascii location and dumping .. .
crash command .. .

Table/structure relationships .. .
ModelE lOS
Model B/CID lOS
proc .. .
od
kfp .. .

trace
ut

CPU / process context summary
Getting started on a system dump
Kernel trace messages .. .

CAL trace entries
C language trace entries .. .
Compiling selected kernel modules for debugging purposes

UNICOS 9.0 Differences [A]
UNICOS kernel changes to support CRAY T90 hardware

System control hardware differences
System name .. .
System numbers, mainframe type, and subtypes
Expanded exchange package .. .
Enlarged address registers .. .
Revised sizes and maximums .. .
Native "Triton" mode versus compatibility C90 mode
Bit matrix multiply
Kernel usage of the logical address translation (LAT) registers
User usage of the logical address translation (LAT) registers
Displaying shared memory with / etc/ crash
Configuration of shared memory
Configuration of IPC semaphores and IPC messages
User usage of the scalar cache
Cache incoherency example
Kernel usage of the scalar cache
New pending I/O interrupt detection mechanism

10-30
10-30
10-30
10-32
10-33
10-45
10-48
10-53
10-53
10-53
10-54
10-56
10-56
10-62
10-62
10-64
10-64
10-66
10-68
10-70
10-74
10-77
10-78
10-80
10-82
10-84
10-92
10-92
10-94

10-135

A-I
A-2
A-2
A-4
A-4
A-5
A-6
A-6
A-7
A-7
A-8
A-9

A-10
A-ll
A-ll
A-13
A-13
A-14
A-14

xx Cray Research, Inc. Proprietary TR-ITR 8.0 K

)

)

UNICOS Internals Technical Reference

Multiple exit address registers .. .
IEEECPUs .. .
Holding of clusters
Register parity error and memory error handling
New VHISP done flag
New LSOP parity error flag
Programmable interrupt (PINT) channel

Pthreads model .. .
Change in terminology .. .

System call changes for Pthreads .. .
Change in getpid(2)
Old getpid(2) compatibility .. .
Change in exi t(2)
Old exi t(2) compatibility
Change in getppid(2) .. .
Old getppid(2) compatibility
Change in wai tpid(2) .. .
Old wai t(2) compatibility
Change in kill(2)
Old kill(2) compatibility .. ,
Change in killm(2) .. .
Old ki llm(2) compatibility .. .
Change in alarm(2) .. .
Old alarm(2) compatibility .. .
Asynchronous signals in general
Library system calls: lib/libc/sys .. .

User-level fair share
The clock () function .. .

Excess user errors controlled ... , ,.
Ill-formed I/O split into physical and buffered chunks

Example of a split I/O request
Performance improvement examples
Performance degradation example

Dynamic allocation ofthe NPBUF parameter added
Implications of NPBUF .. .

cs im utility no longer supported .. .
New character device drivers
CRAYT3D phase II I/O (backdoor) .. .
CRAY T3D system activity monitoring
Dynamic allocation of file descriptors .. .

Initial file descriptors
Additional file descriptors
Logical fd limit .. .
Other uses of kmem
Configuration of kmem .. .

Maximum number of current primary partitions .. .
Example 1: default to 4 primaries; all current
Example 2: specify 5 primaries; all current
Example 3: specify all 9 slices as primaries; all current
Effect on pre-9.0 file systems .. .

TR-ITR 8.0 K Cray Research, Inc. Proprietary

Contents

A-16
A-16
A-16
A-17
A-17
A-17
A-17
A-18
A-18
A-18
A-18
A-18
A-18
A-18
A-20
A-20
A-20
A-20
A-22
A-22
A-22
A-22
A-22
A-22
A-23
A-25
A-27
A-30
A-32
A-34
A-36
A-38
A-40
A-41
A-41
A-42
A-42
A-44
A-45
A-46
A-46
A-46
A-47
A-47
A-47
A-50
A-51
A-51
A-52
A-53

xxi

Contents UNICOS Internals Technical Reference

New crash directives for UNICOS 9.0 (and 8.3) .. .
SFS processes for 9.0 .. .
Move ofXPs to xpa

CRAY T90 Hardware Configuration [B]
T932 support system and mainframe components

The operator workstation (OWS-T)
The maintenance workstation (MWS-E) .. .
The support system VME chassis .. .
The maintenance channel
The boundary scan channel
The support channel .. .

The CRAY T90 mainframe configuration
Kernel support oflogical partitioning .. .

Logical machine "machine environment" file .. .
Dynamic reconfiguration .. .
Support ofUNICOS under UNICOS

Startup differences
Boot with RAM root .. .
Role of the OWS .. .
Preserving previous system state .. .
CSL extension

Memory degrading and partitioning
Memory degrading example
Memory degrading special case ., .. .
Memory grouping .. .
Partitioning by I/O grouping and memory groups
Partitioning by memory degrading

T916 support system and mainframe components
T916 component summary .. .
T916 memory layout .. .
T916 memory configuration

T94 support system and mainframe components .,
T94 component summary
T94 memory layout
T94 memory configuration .. .

A-54
A-63
A-63

B-1
B-2
B-2
B-2
B-4
B-4
B-4
B-5
B-6
B-9
B-9
B-9

. B-10
B-ll
B-ll
B-ll
B-12
B-12
B-13
B-15
B-16
B-17
B-19
B-20
B-22
B-23
B-24
B-25
B-26
B-27
B-28
B-29

xxii Cray Research, Inc. Proprietary TR-ITR 8.0 K

)

J

-)

Preface

This training document provides reference material for UNICOS Kernel Internals
and UNICOS Dump Analysis classes.

Software Education Catalog

The Software Education Catalog is now available online on the World Wide Web
(WWW). 'Ib access the online catalog, use the following URL:

http://www.cray.com/PUBLIC/CUSTSERV/SW-ED/

To obtain a hardcopy version of this catalog (TR-CUSTCAT), contact your
Training Registrar, call the Distribution Center at 1-612-683-5907, or send a
facsimile of your request to fax number 1-612-452-0141. Cray Research
employees may send electronic mail to orderdsk (UNIX system users).

Conventions

TR-ITR 8.0 (K)

The following typographic conventions are used throughout this training
document:

Convention

corrunand

manpage(x)

Meaning

This fixed-space font denotes literal items such as commands,
files, routines, path names, signals, messages, and
programming language structures.

Man page section identifiers appear in parentheses after man
page names. The following list describes the identifiers:

1 User commands

IB User commands ported from BSD
2 Stsrem calls

3 Library routines, macros, and opdefs

4 Devices (special files)
4P Protocols
5 File formats

7 Miscellaneous topics
7D DWB-related information

8 Administrator commands

Cray Research Proprietary, Inc. xxiii

Preface

xxiv

Convention

routineO

variable

user input

UNICOS Internals Technical Reference

Meaning

Routine names followed by an empty set of parentheses
designate a library or kernel routine; for example, ddcntl ().
Kernel routines do not have man pages associated with them.

Italic typeface denotes variable entries and words or concepts
being defined.

This bold fixed-space font denotes literal items that the user
enters in interactive sessions. Output is shown is nonbold,
fixed-space font.

abbreviation Underlining indicates the shortest possible abbreviation for a
command.

[]

<KEY>

Brackets enclose optional portions of a command line.

Ellipses indicate that a preceding command-line element can be
repeated.

This convention indicates a key on the keyboard.

On man pages, this convention indicates a key on the keyboard.

The following icon conventions are used throughout this training document:

~
ll.J-J

Note icon. A note highlights items of particular interest and
essential operating or maintenance procedures, conditions, and
statements.

Book icon. This highlights sources of other information that may
be beneficial to students.

Caution icon. A caution highlights actions that could cause
extreme inconvenience to users, destroy data, or produce
unpredictable results.

Warning icon. A warning highlights actions that could harm
people or could damage equipment or system software.

Cray Research Proprietary, Inc. TR-ITR 8.0 (K)

UNICOS Internals Technical Reference Preface

TR-ITR 8.0 (K)

The following machine naming conventions may be used throughout this manual:

Thrm

Cray PVP systems

Cray MPP systems

All Cray Research
systems

SPARC systems

Definition

All configurations of Cray parallel vector processing
(PVP) systems, including the following:

CRAY C90 series (CRAY C916, CRAY C92A, CRAY C94,
CRAY C94A, and CRAY C98 systems)

CRAY C90D series (CRAY C92AD, CRAY C94D, and
CRAY C98D systems)

CRAY EL series (CRAYY-MP EL, CRAY EL92,
CRAY EL94, and CRAY EL98 systems)

CRAY J90 series (CRAY J916 and CRAY J932 systems)

CRAY T90 series (CRAY T94, CRAY T916, and
CRAY T932 systems)

CRAYY-MP E series (CRAYY-MP 2E, CRAYY-MP 4E,
CRAYY-MP 8E, and CRAYY-MP 81 systems)

CRAYY-MP M90 series (CRAYY-MP M92,
CRAYY-MP M94, and CRAYY-MP M98 systems)

All configurations of Cray massively parallel processing
(MPP) systems, including the CRAY T3D series
(CRAY T3D MC, CRAY T3D MCA, and CRAY T3D SC
systems)

All configurations of Cray PVP and Cray MPP systems
that support this release

All SPARC platforms that run the Solaris operating
system version 2.3 or later

The default shell in the UNICOS 9.0 release, referred to in Cray Research
documentation as the standard shell, is a version of the Korn shell that conforms
to the following standards:

• Institute of Electrical and Electronics Engineers (IEEE) Portable Operating
System Interface (POSIX) Standard 1003.2-1992

• XlOpen Company Standard XPG4

In this training document, Gray Research, Gray, and GRI refer to Cray Research,
Inc. and/or its products.

Cray Research Proprietary, Inc. xxv

Preface UNICOS Internals Technical Reference

Man page sections

xxvi

Entries in this manual are based on a common format. The following list shows
the order of sections in an entry and describes each section. Most entries contain
only a subset of these sections.

Section heading

NAME

SYNOPSIS

Description

Specifies the name of the entry and briefly states its
function.

Presents the syntax of the entry.

IMPLEMENTATION

STANDARDS

DESCRIPTION

NOTES

CAUTIONS

WARNINGS

Identifies the Cray Research systems to which the entry
applies.

Provides information about the portability of a utility or
routine.

Discusses the entry in detail.

Presents items of particular importance.

Describes actions that can destroy data or produce
undesired results.

Describes actions that can harm people, equipment, or
system software.

E~ONMENTVARurnLES

RETURN
VALUES

EXIT STATUS

MESSAGES

Describes predefined shell variables that determine some
characteristics of the shell or that affect the behavior of
some programs, commands, or utilities.

Describes possible return values that indicate a library or
system call executed successfully, or identifies the error
condition under which it failed.

Describes possible exit status values that indicate
whether the command or utility executed successfully.

Describes informational, diagnostic, and error messages
that may appear. Self-explanatory messages are not
listed.

FORTRAN EXTENSIONS

BUGS

EXAMPLES

Describes how to call a system call from Fortran. Applies
only to system calls.

Indicates known bugs and deficiencies.

Shows examples of usage.

Cray Research Proprietary, Inc. TR-ITR 8.0 (10

.~

)

)

UNICOS Internals Technical Reference Preface

Section heading

FILES

SEE ALSO

Description

Lists files that are either part of the entry or are related
to it.

Lists entries and publications that contain related
information.

Online information
1.1

TR-ITR 8.0 (K)

• CrayDoc online documentation reader, which lets you see the text and graphics
of a manual online. The CrayDoc reader is available on workstations. 'lb start
the CrayDoc reader at your workstation, use the cdoc(l) command.

• Docview text-viewer system, which lets you see the text of a manual online.
The Docview system is available on the Cray Research mainframe. To start
the Docview system, use the docview(l) command.

• Man pages, which describe a particular element of the UNICOS operating
system or a compatible product. 1b see a detailed description of a particular
command or routine, use the man(1) command.

• UNICOS message system, which provides explanations of error messages. To
see an explanation of a message, use the explain(l) command.

• Cray Research online glossary, which explains the terms used in a manual. 'lb
get a definition, use the define(l) command.

• xhelp help facility. This online help system is available within tools such as
the Program Browser (xbrowse) and the MPP Apprentice tool.

For detailed information on these topics, see the User's Guide to Online
Information, publication SG-2143.

Cray Research Proprietary, Inc. xxvii

Preface UNICOS Internals Technical Reference

Reader comments

xxviii

If you have comments about the technical accuracy, content, or organization of this
training document, please tell us. You can contact us in any of the following ways:

• Send us electronic mail from a UNICOS or UNIX system, using the following
UUCP address:

uunet!cray!TR-ITR

• Send us electronic mail from any system connected to Internet, using the
following Internet addresses:

TR- ITR@timbuk. cray. com (comments on this manual)

• Call our Software Education Services department in Eagan, Minnesota,
through the Technical Support Center, using eithel' of the following numbers:

1-800-950-2729 (toll free from the United States and Canada)

1-612-683-5600

• Send a facsimile of your comments to the attention of "Software Education
Services" in Eagan, Minnesota, at fax number 1-612-683-5599.

• Use the postage-paid Reader's Comment Form at the back of this training
document.

We value your comments and will respond to them promptly.

Cray Research Proprietary, Inc. TR-ITR 8.0 (K)

)

)

)

Contents

Software Overview [1] 1-1
Objectives .. "
Overview ..•..................................
Recommended reading
Recommended outside reading .. .
lJNIX bibliography
System functional overview

Session from a real terminal .. .
Session from a pseudo terminal .. .
Interactive session from a Cray station
Batch access from a Cray station .. .

Kernel organization overview ."" .. " .. .
System memory organization .. .
Source code organization .. .

System-wide files
UNIX time-sharing system uts/ (kernel source code)

Object code organization .. .
Kernel logical organization .. .
Kernel structures for process control

1-1
1-2
1-3
1-4
1-4
1-6
1-6
1-8

1-10
1-12
1-14
1-14
1-16
1-16
1-17
1-20
1-22
1-26

)

Software Overview [1]

Objectives

TR-ITR 8.0 K

Mter completing this section you should be able to:

• Reference a list of sources about UNIX and UNICOS

• Describe the kernel's functional role in the entire
UNICOS scheme

Summarize the components in an interactive sessions

Summarize the components in processing a batch job

• Describe these aspects of the kernel:

Placement in memory

Source code tree

Object modules

Logical components block diagram

Cray Research, Inc. Proprietary 1-1

Software Overview 1-2 UNICOS Internals Technical Reference

Overview

1-2

The "System Initialization" chapter provides a general overview of the
kernel.
Lists of UNI COS manuals related to studying the kernel and general
reference material is provided.
Diagrams present an overview ofUNICOS and show the relations of the
major software systems to the UNICOS kernel.
The UNICOS source tree is resented with detail on the major directories
and files used to build the UNICOS kernel.
The organization of the primary components of the kernel with their
relationships to the rest ofUNICOS is presented in diagram form.
Sample memory maps are provided to show the key clements in the
UNI COS system, their position in memory, and relative sizes in memory.

Cray Research, Inc. Proprietary TR-ITR 8.0 K

UNICOS Internals Technical Reference Software Overview 1-3

Recommended reading

The following infonnation supplements material in this section:

TR-ITR 8.0 K

Manual title

UNICOS

Index for Cray Y-MP, EA, X-MP, and Cray-l Computer
Systems
UNICOS Commands Reference Manual
UNICOS System Calls Reference Manual
UNICOS System Calls
TCP /IP and OSI Network User Guide
Administration I Internals

UNICOS System Administration
UNICOS Administrator Commands Reference Manual
UNICOS Source Manager (USM) User's Guide
UNICOS Kernel Structures

Loaders / Libraries / Languages

CAL Assembler version 2 Reference Manual
Segment Loader (SEGLDR) and ld Reference Manual
Cray Standard C Reference Manual
Volume 6: UNICOS Internal Library Reference Manual
Other

UNICOS File Formats and Special Files Reference
Manual
UNICOS Support Tools Guide
UNICOS Tape Subsystem User's Guide
UNICOS NFS Internal Reference Manual
SUPERLINK UNICOS Reference Manual

CRAY Hardware

CRAY X-MP /1 System Programmer Hardware
Reference Manual
CRAY X-MP /2 System Programmer Hardware
Reference Manual
CRAY X-MP / 4 System Programmer Hardware
Reference Manual
CRAYY-MP System Programmer Reference Manual
CRAY Y-MP C90 System Programmer Reference Manual

Cray Research, Inc. Proprietary

Publication
number

SR-20498.0

SR-20118.0
S0-20128.0
TR-USC8.0
S0-20098.0

S0-21138.0
SR-20228.0
SG-20978.0
TR-UKS 8.0

SR-20032.0
SR-00668.0
SR-20744.0
SM-20838.0

SR-20148.0

S0-20168.0
S0-20518.0
SM-20658.0
SI-01858.0

CSM-01l1000

CSM-OllOOOO

CSM-01l2000

CSM-0400-0AO
CSM-0500-000

1-3

Software Overview 1-4 UNICOS Internals Technical Reference

Recommended outside reading
The following information supplements material in this section:

User-level UNIX:
Sobell, Mark G. A Practical Guide to UNIX System V (see bibliography)

Operating system design:
'11.1~!~~M~~€, -The Design of the UNIX Operating System (see bibliography)

Leffler, Samuel J. ret al.l The Design & Implementation of 4.3 BSD UNIX (see
bibliography)
Comer, Douglas. Operating System Design: The XINU Approach (see
bibliography)

Tanenbaum, Andrew S. Operating Systems Design and Implementation.
Prentice-Hall, 1987.

IEEE Computer Society Portable Operating System Interface for Computer
Environments (POSIX), Institute of Electrical and Electronic Engineers, Inc. 1988.

Fair-share scheduler:
Kay, J. and Lauder, P. A Fair Share Scheduler Communications of the ACM
January 1988

UNIX Bibliography

1-4

Anderson, Gail and Paul Anderson. The UNIX C Shell Field Guide.
Prentice-Hall, Inc., 1986.

Arthur, Lowell Jay. UNIX Shell Programming. WIley, 1986.
AT&T Bell Laboratories Technical Journal. UNIX System. October, 1984.

Bach, Maurice J. The Design of the UNIX Operating System. Prentice-Hall,
Inc., 1986.

Bell System Technical Journal. UNIX Time-Sharing System. July/August,
1978. Vol. 57, No.2.

Bourne, S. R. The UNIX System. Addison-Wesley, 1983.
Comer, D. Operating System Design: The XINU Approach. Prentice-Hall.

Derman, Bonnie ed. Applied C. Strawberry Software, Inc., Van Norstrand
Reinhold Co., N.Y., 1986.
Feuer, A R. The C Puzzle Book. Prentice-Hall, 1982.

Forley, E. UNIX For Super-users. Addison-Wesley, 1985.
Groff and Weinberg. Understanding UNIX: A Conceptual Guide. Que Corp.,
1983.
Harbison and Steele. C: A Reference Manual. Prentice-Hall, 1984.

Kernighan, Brian W. and Rob Pike. The UNIX Programming Environment.
Prentice-Hall, Inc.,1984.

Cray Research, Inc. Proprietary TR-ITR 8.0 K

-

J

)

)

UNIGOS Internals Technical Reference Software Overview 1-5

TR-ITR 8.0 K

Kernighan, Brian W. and Dennis M. Ritchie. The C Programming Language.
Prentice-Hall, 1978.
Kochan, Stephen G. Programming in C. Hayden Book Company, 1983.
Lefiler, Samuel J. ret al.] The Design & Implementation of 4.3 BSD UNIX.
Addison-Wesley, 1989.
Mcgilton, H. and Rachel Morgan. Introducing The UNIX System.
McGraw-Hill, 1983.
Plum, T. C Programming Guidelines. Plum-Hall.
Plum, T. Learning To Program In C. Plum-Hall.
Prata, Stephen. Advanced UNIX. - A Programmer's Guide. Howard W. Sains
& Co., Inc.,1985.
Rochkind , Marc J. Advanced Unix Programming. Prentice-Hall, Inc., 1985.
Schildt, Herbert. C: The Complete Reference. Osborne McGraw-Hill, 1987.

. ! A Practical Guide to UNIX System V. The
. enJaml ummings Publishing Company. 1985.

UNIX Time-Sharing System: UNIX. Programmer's Manual Seventh Edition.
Volume 2. Holt, rt and Winston.
Waite, Mitchell and Prata, Stephen and Martin, Donald. C Primer Plus. The
Waite Group, Howard W. Sarns & Co., 1987.
Wood, Patrick H. and Stephen G. Kochan. UNIX Shell Programming. Hayden
Book Company, 1985.
Wood, Patrick H. and Stephen G. Kochan. UNIX System Administration.
Hayden Book Company, 1985.
Wood, Patrick H. and Stephen G. Kochan. UNIX System Security. Hayden
Book Company, 1985.

Cray Research, Inc. Proprietary 1-5

Software Overview 1-6

System functional overview

Session from a real terminal

UNICOS Internals Technical Reference

Real terminals are few in number in UNICOS. They are windows on the Operator
Work Station (OWS) on systems with an lOS Model E or on systems with an lOS
Model B, C, or D (without an OWS), the operator's consoles attached directly to the
Master I/O Processor (MIOP).
UNICOS monitors its real terminals in the classical UNIX way: by keeping a getty
process active for each terminal. The ini t daemon forks a get ty process for each
terminal at system initialization time, as directed by / etc / ini t tab file.
The ge t ty process opens a real terminal character device, thus establishing the
pathway into the kernel. It displays a login prompt and then sleeps on a read from
that terminal.
The session begins when a user enters his uid at the terminal. The lOS terminal
driver reads characters from the terminal and packages them for the mainframe
kernel.
All data and control information between the lOS driver and the kernel's driver are
exchanged via packets transferred on the low-speed channel.
The kernel terminal driver delivers the input to the get ty process, completing its
read and awakening the get ty process.

.~

)

The getty command becomes the login command (by an exec eO system call) and-
validates the user. Then the login command becomes the user's login shell.)

1-6

User commands received by the shell result in forkO and execeO calls to execute
the user's binary codes.
The login shell exits the system when the user logs off. The init process, the
parent of the login shell, receives a death-of-child signal and is responsible for
recreating the get ty process by issuing another fork request.
The function of the kernel disk driver is shown here as well. It is entered on readO
system calls from the ini t daemon in this picture, as ini t reads its directives file.
The kernel disk diver communicates control information to the lOS disk driver via
the low-speed channel. Disk data is transferred using the high-speed channel.

Cray Research, Inc. Proprietary TR-ITR 8.0 K

UNICOS Internals Technical Reference Software Overview 1-7

Session from a Real Terminal

ows KERNEL

Driver

$ grep getty /etc/inittab

TR-ITR 8.0 K Cray Research, Inc. Proprietary 1-7

Software Overview 1-8 UNICOS Internals Technical Reference

Session from a pseudo terminal

1-8

Pseudo terminals are the usual interface between a user on a remote system and a
process running in UNICOS. In this case there is no getty process,just a daemon
(inetd) waiting for requests for service to arrive from a remote system.
The ine td daemon has several TCPIIP control socket files opened to the kernel.
Each control socket has a different port number, corresponding to a different service
(see the file /etc/services).

When a user executes telnet command on the remote system, that system sends a
message through the lOS network driver to the kernel network driver, which in turn
hands it off to TCP/IP routines in the kernel. The message asks for telnet service,
so TCP constructs a data socket file to the inetd daemon and returns control to
inetd.
The inetd daemon receives the data socket file descriptor from its telnet control
socket so it forks a telnet daemon (telnetd), closes its access to the data socket, and
goes back to its job oflistening to its control sockets. The child of the inetd daemon
becomes the telnetd command, and can communicate data tolfrom the remote user
via the socket.
This data must be filtered through standard kernel terminal processing logic, and
communicated with a login shell, so the telnet daemon opens a pseudo terminal file
pathway into the kernel. This is a character device driver in UNICOS. The
telnetd daemon forks a child which opens the master and then the slave side of the
pseudo terminal and then becomes the login/shell.
(In prior releases ofUNICOS the device number of this pseudo terminal (pty) was
communicated to the ini t daemon via a named pipe along with the request to fork a
login/ shell. Init forked the child process. The ini t child process opened the user side of the
pseudo terminal (by the number received from telnetd). Then the init child became the login
command. The r logind, uscpd and rshd still use this method.}

The login process communicates with the user via the pseudo terminal in exactly the
same manner as it would using a real terminal. When the login process has
validated the user, it becomes the login shell. The shell forks user commands as
requested.
When the shell exits, a death-of-child signal is returned to the inetd daemon
process. The telnetd process exits because it detects the closed slave side of the pty.

Cray Research, Inc. Proprietary TR-ITR 8.0 K

)

)

)

)

UNICOS Internals Technical Reference Software Overview 1-9

Session from a Pseudo Terminal

KERNEL

lOS

F.E.

Network I--~...,
Driver

$ grep telnet /etc/services
$ls -1 /dev/pty I pg

TR-ITR 8.0 K Cray Research, Inc. Proprietary

user
code

USERS

1-9

Software Overview 1-10 UNICOS Internals Technical Reference

Interactive session from a Cray station
A remote user may log into UNICOS through most Cray front-end station software.
UNICOS must be running the UNICOS station call processor daemon (uscpd).

The station communicates with the uscpd daemon using a Cray Research
proprietary station protocol, and thus TCPIIP is not involved. The uscpd daemon
opens a character device pathway between itself and each of the stations.
On receipt of a station's request to establish an interactive session, the uscpd
daemon peforms the following:

Opens the master side of a pseudo terminal.
Then writes a request to the init daemon (on the named pipe) to create a login
shell for the slave side of this particular pseudo terminal. (This is the same
method used by the rlogind command, and used by telnetdcommand
prior to release 7.0)

The init process calls fork to create a child process.
The ini t child process performs the following:

- Opens the slave side of the pseudo terminal.
- Becomes the login command.

All terminal input and output is funneled through the uscpd daemon.

1-10

The uscpd daemon unpackages input from the station and writes it to the
pseudo terminal as raw character strings.
The uscpd daemon packages the user output it receives from the pseudo
terminal and communicates it to the station using the proprietary station
protocol.

Cray Research, Inc. Proprietary TR-ITR 8.0 K

)

)

UNICOS Internals Technical Reference Software Overview 1-11

Interactive Session from a Cray Station

F.E.

TR-ITR 8.0 K

Network
Driver

KERNEL USERS

init

, ,

I " I '
ylpe ,/

I "
II fDrk

r-----f " , , , , ,
18'L.-_-I ,

pty login
driver ~ __ ~ sh

Cray Research, Inc. Proprietary 1-11

Software Overview 1-12 UNICOS Internals Technical Reference

Batch access from a Cray station
A remote user using a Cray front-end station may submit a front-end resident script
for batch execution, and receive its output on the front-end. Batch execution requires
the network queuing subsystem (NQS) to be running under UNICOS.
The script is prepared on the front-end, including any desired directives for NQS
such as uid and resource requirements. A command to the Cray station causes the
script to be sent to the uscpd daemon using the proprietary Station Call protocol. A
header is also sent, describing where the output of the job is to be returned.
The uscpd daemon saves the job header and writes the job script to one of its own
directories using standard user-level 110. It then assigns the task of submitting the
script to NQS to its companion daemon uscpcmd.
When (and if) NQS is running, the uscpcmd daemon becomes the user (via
setgid(2)/setuid(2) requests) and forks a qsub command to submit the script file to
NQS.
NQS queues the script according to its own queuing scheme.
When NQS schedules the script for execution, it forks a shepherd process whose job
it is to report back to NQS when the ''job" is done.
The shepherd process forks a child process. The child process creates a "job" for
itself by making a system call request, makes the script its standard input file,
redirects standard out and standard error to a disk file, and then become the login
shell.
The shell executes the script, forking to execute user codes as directed.
On death of the login shell, a signal is returned to the shepherd process, which
notifies NQS of the job's completion. The script is deleted.
A signal is sent from NQS to uscpcmdm daemon, which notifies the uscpd daemon
that the job output should be sent back to its originating station.
The uscpd daemon sends the output file back to the station along with the header
telling the station where to store it. The uscpd daemon then deletes the job's output
file.

1-12 Cray Research, Inc. Proprietary TR-ITR 8.0 K

UNICOS Internals Technical Reference Software Overview 1-13

Batch Access from a Cray Station

lOS

Driver

TR-ITR 8.0 K

KERNEL

Network
Driver

Cray Research, Inc. Proprietary

USERS

1-13

Software Overview 1-14 UNICOS Internals Technical Reference

Kernel organization overview

The figure on the right shows the relative placement and memory usage of the major
parts of a large configuration system (sn1920; CRAY-YMP4I64).
Memory sizes are shown in octal blocks (a block is 512 words). (Notice that the boot
kernel itself may be a relatively small part of total system memory.)
Large portions of kernel memory are as follows: (with significant variability from one
configuration to another)

• Kernel tables: 4 CPUs, 600 procs, 300 sessions, 2200 inodes, 2200 files, 256
blocked logical devices

• Memory disk (This memory is allocated only if a memory-resident RAM disk is
configured.)

• Run time kernel code (This does not include some startup code whose space is
reused; full blown kernel includes NFS except for the ipi3 driver.) .)

• System bUfs/cache: 3000 blocks, 2048 hash lists .
• Idcache headers (6750 units ofldcache are possible on systems with an SSD,

BMR and lor central memory.)
• Central memory ldcache (A bit map and memory allocation are made only if the'

LDCHCORE bit is set.)

• TCPIIP buffers: 4000 1024-byte message buffers
• Relatively small allocations of kernel memory are as follows:

1-14

Disk configuration Typically, one entry per physical disk device
tables:

Dump memory descrip
tors:

Asynio's:
Exec arguments:

NFSrnodes:
Restart tables:
Sidedoor buffer:

2 words per possible process; used by sysdump

400 asynchronous I/O operation headers
Storage for 50000 bytes during exece(2) calls

256 NFS file-system specific inodes

4 entries; used for process restart

50-block buffer for SDS to SSD file-system trans
fers and where no backdoor exits

Cray Research, Inc. Proprietary TR-ITR RO K

UNICOS Internals Technical Reference Software Overview 1-15

/j
System Memory Organization

o blocks (octal)

kernel tables 2565 19.2%

/ \JI\ \ c:~ OS run-time kernel code 1214 8.9%
disk tables 422 3.8%

[ram disk] OP1) 6#4 0
memo descriptors 2

207 1.9%

o
cache; buffers 5670 41.2%

)

30
44
22
20

uldcachE~': headers
pfifNltL-o 1646 5.8%

f/1bAl~vO

107 .1%
4

22
11
31

175 1.7%

TCPbuffers 1750 13.7%

." 3.8 MWords sidedoor buffer 62
) 161568

TR-ITR 8.0 K Cray Research, Inc. Proprietary 1-15

Software Overview 1-16 UNICOS Internals Technical Reference

Source code organization

System-wide files

Nmakefile

cmd./

diag/

caper/

include/

mpp/

lib/

man/

net/

prod/

rev/

skl/

uts/

1-16

Make file that can execute the make file in any /usr / src subdirectory
Source for standard commands such as ls(l), ps(l), pwd(l), cat(l)
and soon

Source for on-line diagnostics

Generation tools

System-wide include (. h) files

MPP support code
Source for UNICOS libraries such as 1ibio(3), 1ibsci(3), 1ibc(3),
and so on

~~ pages source
SoUrce for user level network software including XII (x windows),
NFS, NQS, RCP, and USCP
UNICOS commands such as update(l), usm(l), seg1dr(1), scc(l),
pcc(l), and so on

Revision modifications
Scripts for system administration

Kernel source code

Cray Research, Inc. Proprietary TR-ITR 8.0 K

-)

)

...)

UNICOS Internals Technical Reference Software Overview 1-17

Source Code Organization
I

I I
usrl

srel

mpp! man! 1 prod! I
skl!

cmd! caper!

Nmakefile diag! include! lib! net! rev! utS!

UNIX Time-sharing system utsl (Kernel source code)

.USMI

Nmake-
file

cl/

TR-ITR 8.0 K

PLI

adminl

filelist

log

mods I

tmpl

cfl

UNICOS source maintenance directory
Directories of kernel source in update-compatible program
library format

Files srctree and version

List of pathnames and modifications under u ts / directory

Log of modifications applied

Actual USM modifications applied to the program lists (PLs)

Scratch directory for USM

Along with the compiled Nmakefile .mo and Nmakefile .ms
makes up cf. SN directory and copies cf/Nmakefile to it

Cray-l (CRAYY-MP and CRAYX-MP specific source code)

Configuration files (especially conf. SN. c: mainframe con
figuration file (by serial number) for disks, HMX/tapes, chan-
nels, and networks)

iol I/O drivers (except those common with Cray-2 systems)

001 Machine-dependent codes that includes all Cray assembly language
(CAL), machine-dependent and low-level I/O routines, mainframe ini
tialization routines, interrupt handlers, and low memory data

osl Operating system calls (includes sysent.c file) for system ac
counting, clock handling, process scheduling, memory alloca
tion, and high-level I/O

standi Stand alone kernel

Cray Research, Inc. Proprietary 1-17

Software Overview 1-18 UNICOS Internals Technical Reference

sys/ Cray-l specific .h files such as structure definitions, C macros, and

~-)

configuration information

c2/ Cray-2 specific source code

cf/ Contains the Nrnakefile to build the kernel (copied to
cf. SN/)

cf.SN/ Directory created by uts/Nmakefile to build a kernel for
this machine; contains unicos binary and map

cmd/ Source code for kernel configuration command

bconfig/ Source code for parameter file checker

cl/kcom- Source code for kernel compression utility
press

cl/mku- Source code for make utext.s command
text

fs/ File system algorithms

clnfs/ NFS file system - Cray to Cray only

c2/ Cray-2 file system

ncl/ New (current) Cray-l file system

nfs/ NFS file system - generic systems

-) proc/ /proc file system

sfs/ shared fIle system

include/ Header files

bbg/ Bus Based Gateway header files

crayif/ Hyperchannel structures

des/ Data encryption structures

krb/ Kerberos structures

mp/ mp.h

nett TCP networking structures

netinet/ TCP and UDP structures

netiso/ ISO structures

rpc/ Remote Procedure Call structures

rpcsvc/ RCP strucures

sys/ cl/c2 common structures (includes par am . h)

io/ Drivers common to Cray-lICray-2 (Ultra)

os/ System calls and other code common to Cray-l/Cray-2

tcp/ Kernel-level TCP source code

--)

1-18 Cray Research, Inc. Proprietary TR-ITR 8.0 K

~)

)

PLI

)
/

UNICOS Internals Technical Reference Software Overview 1-19

[ultra/]

eonf/

erayif/

kern/

nett

netinet/

net iso/

ioconf. c

if_hy. c (IP / network driver link)

Ultranet driver source (separate license)

uts/

el/ c2/ ef/ ef .SN/emd/

Nmakefile Nmak~file I include io/ ~~!/ tep/ ultra/ r (seperate license)
Co.,.'1)(\ p '5 tt~

i I I
beonfig/ el/ eeonfig/

. e2/ nfs/ sfs
io/ os standI elnfs

ef/ md/) I sys/ nel/ proe/

J. ~ I rl(:,tll4-

ft1
q ~\] boo~/mtl~

0') ',:,'n efM (J(I ..., ,'til
s'1~~

I I I
adrnin/ log tmp/

filelist mods/

I I I I I I I I I I
fs/

TR-ITR 8.0 K Cray Research, Inc. Proprietary

kern/ netinet
erayif/ nett

rpe/
rpesve

netiso/ sys/

rrr+n
fs/

1-19

Software Overview 1-20 UNICOS Internals Technical Reference

Objectcodeor.~~~a~n~iz~a~·uu __ ----________ --__ --,

()t U dated 8.0

The figure on the right shows the placement and relative size of the object modules
in a kernel binary configured for sn1920 (built on 6/92). It also illustrates which
source code was used to generate each part of the kernel.

Tables (lowmem.c) and common blocks:

This is a large configuration that include 600 procs and 2200 inodes. Each memory
resident, non-stack resident variable becomes a common block.

File system code:

NCl and proc code become lib/ fs. a in the kernel make procedure. NFS code is
farther down in memory.

YO drivers:

Most Cray block and character device drivers become lib/ io . a in the kernel make
procedure. Optional drivers are: hsx driver becomes lib/hsx. a (lOS Model D),
brnx is high speed tape, ipi3 is a customer ipi3 tape driver, and ultra is a illtranet
high-speedconimunications driver.

Machine-dependent code:

Machine-dependent code becomes lib/md. a in the kernel make procedure.
Operating system code:

c 1/ os and u ts / os modules become 1 ib / os . a in the kernel make procedure.
Security code:

If the system is non-secure, nslog, nslogext, and nsecure are included in
lib/nsec. a. If the system is secure, slog, slogext, and secure are included in
lib/sec.a.

TCPIIP code:

uts/tcp modules become lib/tcp. a in the kernel make procedure.
ISO code:

If ISO is configured, uts/tcp/netiso modules become lib/iso. a (else
lib/ isostub. a is made).

NFScode:

IfNFS is configured, fs/nfs modules become lib/nfs. a in the kernel make
procedure.

Startup code:

)

Codes used during startup are compiled into lib/last. a and linked to the end of .)
the kernel. The symbol pdurnmy marks the part of this area which is to be overlaid by
tables during startup. The symbol binend marks the end of the bootstrap kernel,
but is meaningless after startup.

1-20 Cray Research, Inc. Proprietary TR-ITR 8.0 K

UNICOS Internals Technical Reference Software Overview 1-21

Object Code Organization

lNot-U.Qdated 8.01
Tables (lowmem.c and all "common blocks") 68.2%

7 Pointers to Tables Gowmem.c)

~ ~
Configuration variables (lowmem.c)

~ ~

I ~)~
~

fs/ncl
fs/proc /) Sf~~'fN
~

1.2%
1.7% 3.9%

.4%

.6%

~l fl cllio 4.8%

p(We¢
cllio/hx* ()~,,\\~~v
cllio/ebmx*
cllio/ipi*

0%
2.6% 2.6%

0%

uts/ultra/* [or io/unet_stubs] Ofl6!Jrb 2.3%

~_<~.rt M cllmd
CAL (1.4% of kernel code)

\JOy~~ C
.4% 1%
.6%

S,\~'\<c.A ~ cllos
l .. \.s uts/os

5.9%

~C)J(rtt
io/[n] slog*
os/[n]sec* o p110rJfl-

.1%

~r' ~~D uts/tcp
[uts/tcp/*iso]

4.8%

.~ /V'nICOS.-
1 fs/nfs (/jfT ~i!V 4.9%

~ !0~0f cllmdlinit.c p1:.c-rn. ~ dYl £.
If ~JQ... cllmdlcsl* -- jVJlJDtY

\
cllmdlpdummy.c .
cllmdlbinend.s

t optional: machine, site, or configuration dependent (

.8%

)

TR-ITR 8.0 K Cray Research, Inc. Proprietary 1-21

Software Overview 1-22 UNICOS Internals Technical Reference

Kernel logical organization
The figure on the right shows major logical divisions ofUNICOS and the connections
between them. Note the layered organization of the source code relevant to this
block diagram.

User memory:

The init daemon, the idle processes, esdpulse, utility and other system daemon
processes are vital to the operation of the system, but reside outside of the kernel and
are executed in user (non-monitor) mode. The init and inetd daemons create
(fork) the daemons and all the login shells.
System calls are made from all processes by loading the so register with a call
number, Sl with a calling argument address, and executing the ex instruction.

I/O channels:

The 110 channels are an example of an external cause of an interrupt to a CPU. On
any interrupt to a CPU executing user code, an exchange takes place. The exchange
operation loads the CPU's P register with the address of the single entry point into
the kernel.

Entry to the md/ layer:

The CPU enters the module slave. s, which analyzes the reason for the interrupt
and jumps to one of the 15 handlers in the module master. s. Shown in brief detail
are PCI (programmable clock interrupt), NEX (normal exit), and 101 (110 interrupt).

System call layer:

There are 205 routines here that can be called through the sysent [] table. These
routines include generic UNIX calls (they accept standard UNIX arguments and
return standard UNIX values). In some cases, system calls are stand-alone processes;
in other cases, they interface with the process control subsystem; and in some cases,
they transfer data through the file-system management subsystem.

Process control subsystem:

These routines are not a separate layer, but provide miscellaneous service. One
major service, process scheduling, is entered regularly through the handling of the
PCI interrupt. Memory management is also frequently entered on a timed basis.
The memory manager is not entered directly but is represented by entry 0 in the
process table and is scheduled just like user process.

File system management layer:

Every file in UNICOS is represented by a device-independent vnode structure
whether it resides on disk or any other medium. The vnode provides a common
method of entry to file management. Vnode architecture has two jump tables
vnodeops and vfs_ops which are used for vnode operations and virtual file system
operations, respectively. UNICOS supports the UNICOS native file system (NC1 &
SFS), optional network file systems C 1NFS (optimised for Cray to Cray) and NFS,
Iproc file system, and optional Distributed File System (under DCE) DFS. The NC1
files can be either blocked or character type. The NFS routines use the RPCIUDPIIP
route to the network driver (a character device). The proc routines normally do not
use a driver; they read and write from process memory.

1-22 Cray Research, Inc. Proprietary TR-ITR 8.0 K

)

)

UNICOS Internals Technical Reference

daemon
P1\1l'.esses

lUfi.#.i:fmmfMU
userMlevel

,-=.aster.s

TR-ITR 8.0 K

Kernel Logical Organization

iille(O)
prr_'c [2]

idle(l)
prr;c [3J D l<1le(nl

»roc [11+2j
1-.._--8

1/0 related.

Cray Research, Inc. Proprietary

Software Overview 1-23

session
control
batch
resouree
llmits
and so on

101

1-23

Software Overview 1-24 UNICOS Internals Technical Reference

Buffer cache management:

The NCl file system is read and written through system buffers (unless the file is
opened for raw I/O). In any case, these routines must search the buffers for any
blocks they are accessing. The buffer management routines are in module
os Ibio . c, for historical reasons.

Blocked device drivers:

There are 12 block device drivers (lOS B/C/D and E versions). They include DDnn
disks, lOS expander disk, Buffer Memory, SSD, Ldcache, Striped and Central
Memory (RAM) devices.

Character device drivers:

There are over 50 character drivers (lOS B/C/D and E versions) allowing users access
to all kinds of real I/O devices and other system resources, all by means of character
special inodes.

110 interrupt handlers:

The interrupt handlers are the back ends of the drivers, entered on the 101 interrupt
at channel completion.

VlIISP channel driver:

These are the CAL routines called by the block drivers and interrupt handlers to
queue and dequeue requests. These routines actually provide the functioning the ~~)'
SSD channels. . . ~

Packet and LOWSP channel driver:

These are the routines called by the block drivers, character drivers, and interrupt
handlers to queue and dequeue requests for the lOS and actually provides the
functioning the low-speed channels.

1-24 Cray Research, Inc. Proprietary TR-ITR 8.0 K

UNICOS Internals Technical Reference Software Overview 1-25

This page used for alignment

TR-ITR B.O K Cray Research, Inc. Proprietary 1-25

Software Overview 1-26 UNICOS Internals Technical Reference

Kernel structures for process control
The figure on the right shows the major kernel structures used for controlling the
execution of a process in the system. In "Hardware" illustration,"CPU N" is an
abbreviated version of the CPU data and control registers. "Clusters" shows
hardware cluster "2-1" used by user processes. Hardware cluster "1" is always used
by CPU's executing the kernel.

Process working storage table, or PWS":

• Has one entry for each CPU on the system.

• Each PWS entry contains information about a specific CPU and is used to control it; much
of the control information is used for context switching.

• The PWS table must be assigned to locations 0 through 4095 (decimal) in kernel memory
because the table entry assigned to a CPU contains hardware exchange packages, and
hardware exchanges can only occur in locations 0 through 4095 (decimal) in low memory.

• Contains pointers that ''link" this CPU to its currently connected process.

Process table, or "proc table":

• Focal point of control for all processes in the system.

• Contains one entry for each process that could potentially exist in the system.

• A typical proc table is configured with approximately 400 entries.

• Because the proc table is always resident in memory, the information maintained in the
proc table entry for a particular process is always available to the kernel, even when the
process is swapped out of main memory.

Process common area, or "pcomm area":

• The process common area (pcorrun) is a substructure of a process's proc table entry. It
contains additional kernel process management fields.

• The kernel uses the pcorrun area to manage both multitasked and non-multitasked
processes.

• Members of a multitasking group (siblings) run in parallel and share a common memory
space, therefore, the kernel memory management fields reside only in the pcorrun area of
the proc table of the oldest (first) sibling.

• The pcorrun areas in the proc areas of the younger siblings are unused. A field in each
younger sibling pcorrun points to shared pcorrun area of the oldest sibling.

Kernel Stack Pool:

• The kernel assigns a stack area from this pool for each active process in the system.

• The dynamically allocated area is in upper memory (above user processes).

• A pointer in the process table locates the stack area for a given process.

1-26 Cray Research, Inc. Proprietary TR-ITR 8.0 K

)

--)

)

q0v~~ rh)~ b vJhqt /lJhl-j)/l~)11 cpu'1
Lq Iso IcYlo'tJ> ~s Jz9"i'.cSr- O~ ConwditJ

UNICOS Internals Technical Reference l Software Overview 1-27

4lb\c c. ~ rov,\,%, to ~ W~b J~ ~M~te..d

Kernel Structures for Process Control
Hardware

CPUN
P AO
mode iba Al
mode ila A2
xa flags A3

elba A4
dla AS

A6
A7

SO S7

CLN

BOO BOl - B77

TOO - T77

VM VL
VO,Vl V2 - V7

clusters
.---------~ ~---------.

SMO - SM37
SBO - SB7
STO - ST7

SMO - SM37
SBO - SB7
STO - ST7

1 2-n

Process "a" memory
image)

ucamm I eli sema SBs ST:

P AO %[J ~ Cl.. mode iba Ai
~

mode ila A2 !1J

'" xa flags A3 ; Tis
'" Q) :s dba A4 rn fl dla AS ::s V's

A6 .2l
A7
S7

BOO
B01 - B65
B66 B67
TOO - T77

Kernel

p
~ mode iba A1

lil ~:'~l!!: ~ :g dba A4
dla AS

A6
A7

SO S7

Process "b"memory
(swap image)

ucamm I eli sema SBs ST:

user

Il. p AO
>:: mode iba A1
~ mode ila A2
:g xa flags A3
::s dba A4

dla AS
A6
A7

SO S7

~--------------------------------~I~

BOO
B01 - B65
B66 B67
TOO - T77

The figure shows a simplified picture of two user memory images. The ucomm and user
areas in a memory image are part of a user's process but cannot be directly addressed by the
user. The ucomm and user areas are used by the kernel to manage the user's process and
are only accessible to the system.

TR-ITR 8.0 K Cray Research, Inc. Proprietary 1-27

Software Overview 1-28 UNICOS Internals Technical Reference

User area:

• Used in context switching to save and restore user information.

• Contains the kernel's register save areas.

User common area:

• Contains information relating to memory control and information common to multiple
processes in a multitasking group.

Combined and split text :

The simplified picture of user process A's memory image shows where user code (text)
and data are combined and loaded into one process image. User process B's
:memory image shows where the user code is split off from the data and loaded as a
separate element in the system. When a program is compiled and loaded, the user
can make a request to the loader (-n option to segldr) to split off the user code from
the data and share it with another process.
The figure shows the user addressable space for process B's memory image defined
by the instruction and data base and bound limits. In the case of a regular process,
the user process has read and write access to the entire user addressable area.
The figure also shows the user addressable space for split text. The data area
defined by the DBAIDLA is read/write addressable. The shared text segment defined
by the IBNILA is read addressable only. This prevents the shared text segment from
being written to and altered by one of the sharing processes.

Multi-tasked group:

Processes "ml" and "m2" illustrate a multi-tasked group of processes. Members of an
m.t. group are called "siblings" (not the usual parentI child).
Each member of the group has its ownproc table entry associated with a user area
and can be independently connected to different CPUs (at different or the same
time). Only the eldest sibling has the pcommdata, the younger sibling proc entries
point to the eldest sibling's. Note that each sibling's proc entry has an associated
user area, but only the shared eldest sibling's pcomm has a ucomm associated with it.
The swap image of the m.t. group contains one shared ucomm area, unique user
areas, and one shared addressable program image. Each·member of the group may
be individually connected to a CPU, and executing the user program and/or system
(kernel) code.

The illustration shows an m.t. group with combined text and data. A "slllit" text
memory image (not shown) is valid for an m.t. group as well, following tne same
format as shown on the previous page,

1-28 Cray Research, Inc. Proprietary TR-ITR 8.0 K

)

-~)

UNICOS Internals Technical Reference Software Overview 1-29

Kernel Structures for Process Control
Hardware

CPUN
P AO
mode iba Al
mode ila A2
xa flags A3

dba A4
dla AS

A6
A7

SO S7

eLN

BOO BOl - B77

TOO - T77

VM VL
VO,Vl V2 - V7

clusters
r-------~ r-------~

SMO - SM37
SBO - SB7
STO - ST7

1

SMO - SM37
SBO - SB7
STO - ST7

2-n

Process "m1" and "m2"
memory (swap image)

pws

n

p AO
~ mode iba Al
,.. mode ila A2
CD xa flags A3
gl dba A4

dla AS
A6
A7

SO - S7

Kernel m~'m'''1'\1

I eli· sema SBs ST:

The figure shows a simplified picture of a multi-tasked group of processes. Each member of
the group shares the same code (text) and data.

TR-ITR 8.0 K Cray Research, Inc. Proprietary 1-29

Software Overview 1-30 UNICOS Internals Technical Reference

This page used for alignment

1-30 Cray Research, Inc. Proprietary TR-ITR 8.0 K

)

)

Contents

Hardware Overview [2] ... 2-1
Objectives ... ,
Hardware Identification by serial number .. .
CRAY Y-MP System with lOS model D
CRAY Y-MP System with lOS model E
lOS model E

I/O overview
General packet format .. .
Packet types
Disk request packet .. .
Simple disk read
Write behind , , .. ,
No write behind ., .. .

CRAY Y-MP EL differences summary .. .
CRAY Y-MP system control

Registers in each CPU .. .
Shared resources

CRAY Y-MP C90 system control
Registers in each CPU .. .
Status registers .. .
Shared resources

CRAY X-MP system control
Registers in each CPU .. .
Shared resources

Interrupt processing summary .. .
Exchange (Xp information)

Exchange package crash display .. .
XP mode and status bit breakdown .. .

Memory addressing modes .. .
CRAY-1 and CRAY X-MP without EMA
CRAY X-MP in compatibility modes .. .
CRAY X-MP EMA instruction formats '
CRAY Y-MP compatibility (24-bit) mode .. .
CRAY Y-MP EAM (32-bit) mode
CRAY Y-MP EAM instruction formats .. .

Summary of hardware types I binary restrictions
CRAY Y-MP C90 in native mode
CRAY Y-MP C90 in compatibility mode
CRAY X-MP in compatibility mode

Hardware system control foldouts
CRAY Y-MP system control .. .
CRAY Y-MP C90 system control
CRAY X-MP system control

2-1
2-2
2-4
2-6
2-8
2-8

2-10
2-10
2-12
2-12
2~14

2-14
2-16
2-19
2-20
2-30
2-32
2-32
2-34
2-34
2-35
2-35
2-35
2-36
2-40
2-40
2-40
2-42
2-42
2-44
2-47
2-49
2-51
2-53
2-55
2-57
2-57
2-57
2-59
2-61
2-62
2-S3

)

)

Hardware Overview [2]

Objectives

TR-ITR 8.0 K

Mter completing this section you should be able to:

• Survey the hardware environment of the following
systems:

CRAYY-MP IIOS-D

CRAY-MP I IOS-E

CRAYY-MPEL

• Summarize the function of the lOS in relation to
UNICOS

• Survey the mainframe architecture of the CRAY X-MP
and CRAY Y-MP and define the role of each component
in relation to UNICOS

• Describe the interrupt exchange sequence and kernel
interrupt processing in general

• Document the exchange package format with sample
crash(8) output

• Provide a detailed description of the various
addressing modes on the CRAY X-MP and CRAY Y-MP
systems

Cray Research, Inc. Proprietary 2-1

Hardware Overview 2-2 UNICOS Internals Technical Reference

Hardware identification by serial number
-)

MFTYPE Series #ofCPUs MFSUBTYPE
CRAY1A CRAY-1 (A,B,S) sn1-sn57 CRAY1XX
CRAY1S CRAY-1M M1-M9 CRAY1XX
CRAY1M
CRAY_2 CRAY-2 Q1, Q2, sn2001 8

- sn2029, 2101
CRAYXMP CRAYX-MP 100 2 XMP1XX

200 2,4 XMP2XX
300 1 XMP3XX
400 1,2 XMP4XX
500 1 (14se) XMP5XX
600 XMP6XX
1100 2,4 (EA) YMP1XX
1200 1,2 (EA) YMP2XX
1300 1 (EAse) YMP3XX

CRAYYMP CRAYY-MP
1000 8 (max.) YMPOXX
1400 2 (max.) YMP4XX
1500 4 (max.) YMP5XX
1600 1,2 (2E) . YMP6XX
1700 81 (2-8) YMP7XX

-) 1800 8E (4-8) YMPOXX
1900 4E (2-4) YMP9XX
2400 M90 (4) YMP11XX

(DRAM)
2600 M90 (2) YMP12XX

(DRAM)
2800 M90 (8) YMP10XX

(DRAM)

MFTYPE Series #ofCPUs MFSUBTYPE
CRAYC90 CRAY Y-MP C90 4000 16 C900XX
CRAYXMS
CRAYEL CRAYY-MPEL 5100 1-4 XMP6XX

The following lOS models are identified by serial number:

MFTYPE Series
IOS-A sn3 - sn5, sn7 - sn9

IOS-B sn6, sn11- sn61, sn63 - sn89

IOS-C sn62, sn101- sn191

IOS-D sn401 - sn499

IOS-E sn701 - sn799

)
(If the lOS model is not stand-alone, it has no serial number of its own)/

2-2 Cray Research, Inc. Proprietary TR-ITR 8.0 K

UNICOS Internals Technical Reference Hardware Overview 2-3

This page used for alignment

)

TR-ITR 8.0 K Cray Research, Inc. Proprietary 2-3

Hardware Overview 2-4 UNICOS Internals Technical Reference

CRAY Y-MP system with lOS model D

Mainframe

The Y-MP has more low-speed channels, allowing connections to 8 lOP's

SSD

VHISP channel numbers to the SSD were changed from those of the X-MP (617) to
1/5.

lOS Model BIC

2-4

• Buffer Memory:
Same as models B and C. As with model C, each lOP has 2 HISPs (to buffer
memory and central memory) that can be linked together so that transfers
between buffer memory and central memory bypass lOP local memory (Memory
Bypass I/O instructions).

• Master YO Processor (MIOP):
The MIOP has the Master Clear and MCU interrupt capability to the mainframe,
but no longer need be "master" over the other lOPs. Accumulator channels still
exist but are not so important since UNICOS 5.0.
Each lOP can have its own low-speed pair and HISP to the mainframe.
With an Operator Work Station, operator control is 'by means of a windowed '\
large-screen color monitor. Operator interfaces with the lOP kernels also appear)
as windows on the same monitor. Remote operation is possible where the OWS is
connected to a network. The OWS provides a direct operator interface to the
mainframe kernel via special packet types passed through the lOS between the
OWS and UNICOS. Also, the OWS functions as a normal UNIX front-end,
allowing regular TCP/IP communication between operators and UNICOS.
Deadstart and maintenance storage is on the OWS and MWS. Deadstart of
the lOS is done via OWS software, which can send a hardware master clear
signal on a wire in its channel cable to the MIOP. Hardware errors are logged by
the MWS. TheMWS is cabled to the mainframe, SSD, or lOS for offline
diagnostics.
The MIOP still handles all network I/O, with the added efficiency of having its
own HISP to central memory.

• Buffer YO Processor (BIOP) and Disk YO Processor (DIOP):
Same as models B and C except one DMA port is reserved for a HISP to SSD
memory, so only 3 disk controllers are normally attached to each lOP.

• Auxiliary YO Processor (XIOP):
Basically the same as for models B and C. The XIOP is still preferred for driving
the backdoor channel to the SSD, though another lOP such as the DIOP could be
used. Up to 8 block multiplexor channels connected to IBM compatible tape
devices can be attached to each XIOP.

Cray Research, Inc. Proprietary TR-ITR 8.0 K

)

)

UNICOS Internals Technical Reference Hardware Overview 2-5

CRAY Y-MP System with lOS Model D

Front-end
Computer

Front-end
:Computer

Front-end
Computer

Channels

TR-ITR 8.0 K

~F~iiiI color graphics
monitor

kernel console DOD to for@

control D IT
lOP displays,

UNICOS console,
& Sys. V console

high speed graphics device I
another Cray _system I

UltraNet hub or NSC switch

(model CID only;
XIOP HISP to SSD required;
not to run concurrent with tape)

Cray Research, Inc. Proprietary

error
channels

toMIOP
50/51 or

mainframe
LOSP

+ toSSD
maintenance

port

+

2-5

Hardware Overview 2-6 UNICOS Internals Technical Reference

CRAYY-MP system with lOS model E

Mainframe

Same as above; configurable memory increased.

lOS Model E

See I/O Subsystem Model E aOS-EJ Support Guide, SD-2107, for more information.
• Buffer memory:

Buffer memory does not exist on the lOS-E. With no shared buffer memory and
no accumulator channels, each I/O Cluster (lOC) is independent of the others.
The lack of shared buffer memory requires all software to reside in the 64K-parcel
EIOP or MUXIOP local memory. Disk I/O error correction code has moved to the
mainframe driver.

• Operator control I deadstart:
The OWS and MWS for the 10S-E are Sun workstations. They run Cray
Research OWS-E and MWS-E software. Each workstation is connected to the
Service Workstation Interface (8WI) module. The SWI fans the connection out to
every lOP (MUXIOP and EIOP) of every cluster in the lOS. Either workstation
can master clear the entire lOS, one cluster, or one lOP. They can also transfer
data to/from any lOP and do diagnostic functions. The OWS operator interface
with UNICOS is through this channel, with zip making the OWS console a
terminal to UNICOS. TCPIIP is not supported without another channel to a CCA. ~\

2-6

• 110 cluster (IOC): -J
An IOS-E is a set of independent IOCs. Each I/O cluster is a MUXIOP connected
to 4 EIOPs. Clusters are only interconnected through their common connections
to work stations, mainframe, and SSD. EIOP software is written in the ELAN
language, rather than APML.

• MUXIOP:
The MUXIOP controls the packet (low-speed) channel pair, the HISP to central
memory and, if present, the backdoor HISP to the SSD.

• EIOP:
Each Type E lOP receives requests from its MUXIOP and drives its devices
through its 4 channel adapters. The 4 adapters must be of the same type (see
CCA, HCA, DCA, and TCA below) because of the EIOP's limited size (64K 16-bit
parcel) for software.

• Channel adapters I buffers:
Each channel adapter reads and writes from/to its own 64K 64-bit word circular
buffer. Each adapter can be connected to only 1 device. Two channels to the same
adapter is only possible with an fei-4. The following adapters are used to make
station connections:
Low-speed (6 or 12 M Bps) communications adapters (CCA-l)
High-speed (100 M Bps) channel communications adapters (HCA)
Disk channel adapters (DCA)

Tape channel adapters (TCA)

Cray Research, Inc. Proprietary TR-ITR 8.0 K

)
/

UNICOS Internals Technical Reference Hardware Overview 2-7

CRAY Y-MP System with lOS Model E

Front-end
Computer

Front-end
Computer

Front-end
Computer

Front-end
Computer

IFldisk
(DD60,61)
future IPI tape?

IBM 3420
STK 4720,4724

IBM 3480,3490
STK4480
STK 4400 silo

TR-ITR 8.0 K

10 Clusters 1 -
1 cluster per

1 LOSPIHISP per
cluster

Ethernet

Cray Research, Inc. Proprietary

tt1
to lOG or

mainframe
LOSP

l toSSD
maintenance

port ,
~Jiff etm /rll~"I't '"

pqclc/IJe -k ~~ L
256,512MW .

1,2GW /urfk~
W~Jf

2-7

Hardware Overview 2-8 UNICOS Internals Technical Reference

lOS model E: 110 overview

2-8

The diagram on the right shows channel use and lOS packet processing by
illustrating a sample UNICOS read directed to a Model E lOS cluster
1. An lOS packet of type "T' (shown on following pages) is created by the kernel

device driver and queued to be written to the lOS in the packet output queue.
For most packet types the packet contains kernel I/O request information only, no
data.

2. The packet is written to the appropriate lOS cluster (IOC). The packet is
delivered via the low-speed channel when the lOS executes a corresponding read
on the same channel. When the LOWSP packet transfer completes the
mainframe gets on output interrupt, the lOS gets an input interrupt.
a. The mainframe checks if any other packets are queued waiting transfer, if so

it initiates that packet's transfer to the lOS.

b. The mainframe is free to go about other work but should not use the buffer's
data until the I/O is complete.

c. The lOS proceeds to perform the request indicated by the packet.

3. The MUXIOP writes the packet to the EIOP which handles this device based on
packet header information (packet type).

4. The EIOP commands the channel adaptor (CA) for the corresponding device to
read the data intp buffer areas reserved within the EIOP.

5. The EIOP instructs the MUXIOP to deliver the data via the high-speed channel to
the central memory address provided in the original request packet.

6. The data is transferred into the waiting central memory buffer. Note: data may
be transferred to an SSD memory address using a backdoor high-speed channel
under the control of a IDS packet ((target memory" field

7. The MUXIOP informs the EIOP when the data transfer is complete.
8. The EIOP constructs a response packet type "t" and sends it to the MUXIOP

indicating the I/O operation is complete. Fields in the packet show the completion
status.

9. The MUXIOP writes the response packet to the mainframe via the low-speed
channel. The packet is delivered when the mainframe performs a read on the
corresponding channel. The packet is read into the packet input queue.

10. The receipt of the packet causes an input interrupt on the mainframe and an
output interrupt on the lOS.

a. The lOS proceeds to process other packet requests, this one is complete.
b. The mainframe selects a new packet input area and initiates the next read

(before the last one is processed as below).
c. The mainframe s~lects and executes the correct packet's input interrupt

handler.

d. The incoming packet usually indicates the completion of an earlier I/O request.
The error checking and final I/O processing is performed including informing
user process that the request is complete.

Cray Research, Inc. Proprietary TR-ITR 8.0 K

)

UNICOS Internals Technical Reference Hardware Overview 2-9

) lOS Model E: 110 Overview

lOS Channels and Packets

lOS

IOC Central Memory

device
CA

buffer

buffer

-) EIOP

EIOP

EIOP ~d.! /dffj' jI,e)ds

;11r~rtJ.s

it -/7Jy l~ek.)5

j

TR-ITR 8.0 K Cray Research, Inc. Proprietary 2-9

Hardware Overview 2-10 UNICOS Internals Technical Reference

General packet format
The figure on the right shows the generic lOS E packet type (Ep_t). Packet
definitions are found in the header file c 1/ sys / epack . h.

• Epacket: header of structure Epacket (see Ep_trailer for contents).
• Ep_type: packet type indicating the type of request the packet represents.

Packets sent to the lOS use letters A - Z.
Packets returned by the lOS use letters a - z (for example, request D -
response d).
Current packet types are shown below in Packet types.

• Ep_data: the packet body itself made up of a variable. number of words depending
on packet type. A sample disk packet is shown on following pages.

• Ep_trailer: the header information repeated again as a trailer for packet
validation.

Ep_magic: used to validate packet contents.
Ep_length: length of packet in words (includes header and trailer).
Ep_source: shows where packet originated - always 13 for the mainframe.
Ep_cluster: lOS cluster number EIOe.
Ep-proc: lOS process number EIOP, destination for packet.
Ep_flags: used to indicate processing options.
Ep_lpa th: driver dependent logical path for request - indicates device unit
number.
Ep_seq: packet sequence number - used to identify the packet in the packet
queues.
Ep_ackseq: packet acknowledge number indicates packets of this number and
lower have been sent and validated.

Packet types
Packet types defined in cl/io/epackin.c.

/* Packet source/destination ids for model E IOS */
#define EPKT_DSK I d I /* Disk response */
#define EPKT_HIPPI I h I /* High speed comm */
#define EPKT_IPI Iii /* IPI responses */
#define EPKT_LSP In I /* Low speed comm */
#define EPKT_OWS 10 1 /* Operator workstation */
#define EPKT_SYS I s I /* System services */
#define EPKT_BMX I t I /* Tapes */
#define EPKT_ZTY I z I /* Z terminals */

2-10 Cray Research, Inc. Proprietary TR-ITR 8.0 K

)

UNICOS Internals Technical Reference Hardware Overview 2-11

TR-ITR 8.0 K

lOS Model E: I/O Overview

E packet format

Ep_t (c1 / sys / epack.h)

Ep_trailer Epacket (c1 / sys / epack.h

Ep_magic (6) Magic number (octal 55)
Ep_length (10) Length in words
Ep_fill (3)Filler (unused)
Ep_source (4) Location of code which sent packet

EPAICSRC_MF (13)
EPAICSRC_OWS (14)

Ep_cluster (5)
Ep-I>roc (4)
Ep_flags (8)
Ep_lpath (8)
Ep_seq (8)
Ep_ackseq (8)

EPAICSRC_MWS (15)
IDS cluster number (EIOC)

lOS processor (EIOP)
Processing options
Logical path of code to process request

Packet sequence number to validate
Sequence num her of last valid packet

Cray Research, Inc. Proprietary 2-11

Hardware Overview 2-12 UNIGOS Internals Technical Reference

Disk request packet
A partial layout of a disk request packet is shown on the right. A full definition of all
fields is found in header file cl / sys / epackd. h.
• Ep_type: packet type "D" indicated a disk packet.
• drCLPak: disk request packet body (Note: not all fields shown)

- d_ioc: lOS cluster EIOC number
d_iop: lOS processor EIOP number
d_req: disk request code
d_res: disk response code
d_type:deTIcetype
d_uni t: deTIce unit number
d_channel number
d_index: index to deTIce table entry (Pdd_ tab)
d_bp: pointer to request buffer
d_cyl: disk cylinder number
d_head: disk head number
d_sector: disk sector number
d_cnt: request length in sectors
d_lssz: logical sector size
d_ tmt: target memory type (MF or SSD)
d_ tma: target memory address
d_blkno: absolute block number (deTIce relative)

Simple disk read
1. Mainframe creates a "D" packet with fields as shown above and queues a disk

request in its packet output queue. The packet waits its turn., and is written on
the low-speed channel to MUXIOP.

2. MUXOP receives the packet on the low-speed channel and routes it to the
indicated EIOP.

3. EIOP gives the request to its disk driver software which issues the appropriate
channel control functions to the DCA channel adapter to send data to the deTIce.

4. Channel adapter translates to control signals for the disk. The disk reads data.
Channel adapter assembles data into 64-bit words and writes it to its 110 buffer.

5. EIOP sends an X-packet to the MUXIOP to request a transfer to central memory.
6. MUXIOP functions the high speed channel to transfer the sector to central

memory. No interrupt occurs on mainframe for this channel.
7. MUXIOP sends a transfer response (x-packet) to the EIOP.
8. EIOP creates a response (d-packet) to the original D-packet and sends it to

MUXIOP.
9. MUXIOP writes the d-packet to mainframe. The interrupt caused by the packet

read completion causes mainframe to see 110 completion.

2-12 Cray Research, Inc. Proprietary TR-ITR 8.0 K

UNICOS Internals Technical Reference Hardware Overview 2-13

lOS Model E: 110 Overview

E disk request packet format

Ep_type'D' I
I d_ioc d_iop I 1"'\

I d_req d_resl d_typeld_unitld_chan I
I d_indexl d_bp I

d_cyl I d_head I d_sector I d_cnt dr<L.Pak (c1 / sys/ epackd.h)

I d_lssz

I d_tmt d_tma I
I d_blknol .J

Fields in relative position only

Disk Read Example

Central Memory

sector CA

buffer

buffer

TR-ITR 8.0 K Cray Research, Inc. Proprietary 2-13

Hardware Overview 2-14 UNICOS Internals Technical Reference

Write behind
The default type of write is called "write behind". As shown below, the lOS reports
the transfer is complete (returns packet) after obtaining data from central memory
into lOS memory. The actual disk transfer is performed after this packet is returned.
1. Mainframe queues a disk request as a D-packet in its packet output queue. The

packet waits its turn, and is written on the low speed channel to the MUXIOP
2. MUXOP receives the packet and routes it to the indicated EIOP.
3. EIOP sends an X-packet to the MUXIOP to request a transfer from central

memory.
4. MUXIOP functions the high speed channel to transfer the sector from central

memory to the I/O buffer. No interrupt occurs on the mainframe.
5. MUXIOP sends a transfer response (x-packet) to the EIOP.
6. EIOP creates a response (d-packet) to the original D-packet and sends it to

MUXIOP.
7. MUXIOP writes d-packet to mainframe. The interrupt caused by the packet read

completion causes mainframe to see I/O completion.
8. EIOP gives the request to its disk driver software. This software issues the

appropriate channel functions to the DCA channel adapter to send to the device.
9. Channel adapter translates to control signals for the disk. The disk writes data.
10. If a disk error occurs another "d" packet is returned. The kernel disk driver will . ~.)

log the error and begin a retry process. _~

No write behind
A file can be opened for set to "no write behind" with the O_SYNC option (flag). As
shown below the lOS sends the reply packet after the disk channel adapter has
reported the write is complete. For some disk models (e.g. dd40) the channel reports
the write is complete before the data is actually on the disk platter.
1. Mainframe queues a disk request as a D-packet in its packet output queue. The

packet waits its turn, and is written on the low speed channel to the MUXIOP.
2. MUXOP receives the packet and routes it to the indicated EIOP.
3. EIOP sends an X-packet to the MUXIOP to request a transfer from central

memory.
4. MUXIOP functions the high speed channel to transfer the sector from central

memory to the I/O buffer. No interrupt occurs on the mainframe.
5. MUXIOP sends a transfer response (x-packet) to the EIOP.
6. EIOP gives the request to its disk driver software. This software issues the

appropriate channel functions to the DCA channel adapter to send to the device.
7. Channel adapter translates to control signals for the disk. The disk writes data.
8. EIOP creates a response (d-packet) to the original D-packet and sends it to

MUXIOP.
9. MUXIOP writes d-packet to mainframe. The interrupt caused by the packet read)~'

completion causes mainframe to see I/O completion. _

2-14 Cray Research, Inc. Proprietary TR-ITR 8.0 K

UNICOS Internals Technical Reference Hardware Overview 2-15

) lOS Model E: 110 Overview

Write Behind Example
IOC

Central Memory

sector

sector
BUFFER

sector

"No" Write Behind Example

IOC Central Memory

sector

sector
BUFFER

sector

TR-ITR 8.0 K Cray Research, Inc. Proprietary 2-15

Hardware Overview 2-16 UNICOS Internals Technical Reference

Y-MP EL differences summary

i"NotlJpdated 8 J)
Most changes in kernel code are indicated by #ifdef preprocessor statements for
CRAYXMS or CRAYEL, or for MFSUBTYP ofYMPEL.

IDS

• EL systems can have from 1 to 16 lOS's (up to 4 per mainframe CPU, with lOS 0
being the master (MIOP)).

• EL lOS interface is very much like lOS Model B or C: one packet channel to each
lOS. However, that channel is both a packet and data channel.

• All packet interfaces are patterned after lOS Model B/CID except tape, which is
patterned after Model E. All packets are 6 words.

• Packet types are mostly the same as Model B/CID. Variants are:
D - UNIX-like tape driver
L - FDDI network driver
M - Ethernet driver
U - interface to a customer-written driver in the lOS (UNICOS device 45)
Y - provides address of variable-length E-packet for bmx tape

• EL lOS executes a third party real time operating system on its Heuricon
MC68030-based processor.

• Operator interface is a terminal controlled by the lOS operating system.
• UNICOS is booted from an lOS disk. (Stand-alone boot kernel works, but is not

released or supported.)
• The EL's lOS has an I/O Buffer Board (IOBB) strictly for lOS buffering. The

10BB is memory addressable from the lOP.
• Like the Model D, EL lOS can have a buffer memory for mainframe use. EL

buffer memory consists of 1 or more (commonly 1-4) BMR boards and a controller
board. Each BMR board is 16 megawords. This memory can be used as file
system space or ldcache, just as buffer memory on an lOS Model D. Note one
restriction: BMR cannot be used to ldcache a device residing on the same lOS.

Disk types

• Parameter file processing supports different disk types (DD3, DD4, DDAS2, RD-1
- see md/pscan. c).

• Disk slices are configured in blocks only, not cylinders.
• A-packets send a sector and track number of 1; real address is in the cylinder

number field.

Tapes

• Mainframe communicates in fixed-length Y-packets, which provide the address of
the variable length E-packets (patterned after Model E T-packets). The E-packets
are moved as data.

2-16 Cray Research, Inc. Proprietary TR-ITR 8.0 K

)
---"

)

UNICOS Internals Technical Reference Hardware Overview 2-17

CRAY Y-MP EL Hardware Summary

winchester SCSI disk

1-3DD-3
ESDI disks----'I'n;t;n

2-4 DR-l
removeable disks ----II'n",'+,.n

1-4 IPI -2 disks

Exabyte8mm
helical tape
cassettes

MC68030
lOP

ated8.0

CRAYY-MPEL
8 DD-3 disk array
(+1 parity, +1 spar::::e7'"; --1,.;:~~:,
hardware striped)

TD-2 9-track tape -----t
t--~~_I

18-track cartridge
(or silo) ----I

Ethernet cable

FDDI (fiber optic) ----4

HYPERchanel

HiPPI channel

IOS1

IOS2

IOS15

lOS Software Organization in an lOP
PROM for power-up

Operating System Kernel

---,---------------Packet Handler I Command Parser
I

packet interpreters / mainframe memory access

Disk Strategy·' Tape Strategy I User Defined lOS Commands
Strategy

Operating System Kernel
open, close, read, write, reada, writea, ioctl

ESDI
IOBB 9-Track Disk User Ethernet TTY Disk Tape Array Defined

Driver Driver Driver Driver Driver Driver Driver

TR-ITR 8.0 K Cray Research, Inc. Proprietary

1-4 CPU's
32-128MW

30ns clock

2-17

Hardware Overview 2-18 UNICOS Internals Technical Reference

Networking hardware

• Model D hyperchannel driver was cloned to make EthernetIFDDl driver
(character device 44; new driver types are in sys/netdev .h).

• New DECnet driver (character device 46; DECnet protocol only through Ethernet
currently).

• New NSC adapter type supported (N400 or A400; sysnetdev.h).

• A high speed HiPPl adapter will be supported later.

SSD

• Y-MP EL has no Solid-state Storage Device. Logical device caching can be done in
buffer memory and central memory.

Mainframe hardware differences

• Bank conflicts during periods of heavy exchange activity caused memory
problems; the pwsD was moved up to start exchange packages at 0nn20
boundaries so all exchange packages don't start in the same bank.

• The EL exchange package (XP) has a little different format.
• EL channels are numbered 0-71 (octal 107), but every other group of8 is not

hardware-useable.
• There is a slight difference in syndrome bit analysis in memory error correction.
• Only low 7 bits of the Cl register are meaningful (others must be masked oft).
• Master clear sets an XP flag that must be cleared at deadstart.
• At deadstart, monitor mode wait for channel completion during I1J packet

handshaking must be longer.
• No hardware performance monitors exist on the EL. (HPM is defined as 0 in

sys /rnachd . yrnp . h for EL).

Mainframe software-only differences

• For the Y-MP EL there is a traditional UNIX tape driver (besides the UNICOS
bmx and bmxdemon drivers). It is character device 43. This driver allows raw
access to the tapes. That is, no label processing is done for the user.

• EL lOS can raise an MCU interrupt (for example, the hardware is there). But its
software doesn't use it.

Binary release only

• Current (12192) ELS release is number 2.2. It is based on UNICOS 6.l.
• Only conf. SN. c, lowrnern. c and config. h files are released as source.
• Machine serial number is compiled into conf . SN. c and addressed as an extern

from the rest of the kernel.
• All kernels are built for 128 MW memories; actual memory size is specified in the

startup parameter file.

2-18 Cray Research, Inc. Proprietary TR-ITR 8.0 K

)

)

C~idOD\ ~G~ f)"Jblhi},~
UNICOS Internals Technical Reference Hardware Overview 2-19

Y-MP system control
This module reviews the basic architecture of the CRAYY-MP mainframe and relates
these hardware features to the UNICOS system. Detail on differences for the CRAY
C90 series, CRAY X-MP systems, and CRAY EL series follow. The following material
references the foldout diagram ''Y-MP System Control" at the end of this section. See
the CRAY Y-MP System Programmer Reference Manual, publication CSM-0400-0AO,
for additional information.
The diagram of the CRAYY-MP mainframe is divided into three major sections as
follows:

CPUn

• Each mainframe cpu (O-n) has this unique set.
• Shaded area highlights Exchange Package Information (described in a separate

section).

Other shared resources

.• Accessible by any CPU in system.

• Number of channels and clusters based on specific machine configuration.

Memory

• Common resource shared by all CPUs.
• Diagram shows major register save areas within kernel and user memory .

y M ~ .~ ~~ \ ~oJ ~ - b I

~. ~_~.- '3 \

. (c.,\(l~ ~J(.S ~)'l\~ f n ft",,~)
1 . \ -, vJ-- q9'~ ~\~\~'

~: ~~~ o~ ~O\~>,

v~() \)1\\~~<;' \='0 l~<Ni ~/.b 1,-

~ . y/'" '?J'-\

"\- ['tS \)\ 9~~'(\~~ ~o\~tJ ~-0

~.~S

TR-ITR 8.0 K Cray Research, Inc. Proprietary 2-19

Hardware Overview 2-20 UNICOS Internals Technical Reference

Registers in each CPU

In the diagram the number under each box represents register size (in bits).
• Program. registers

2-20

AO-A 7 Address registers
Eight 32-bit register used primarily for address reference. Used by
applications and kernel extensively.
BOO-B7 Intermediate address registers
Sixty-four 32-bit registers for processing address register data. Used by
applications and kernel extensively.
S0-S7 Scalar registers
Eight 64-bit scalar registers for integer and floating arithmetic. Used by
applications and kernel extensively.
TOO-T77 Intermediate scalar registers
Sixty-four 64-bit scalar vector registers for processing scalar data. Used by
applications and kernel extensively.
VO-V7 Vector registers
Eight vectors each with sixty-four 64-bit floating point elements. Used by
applications extensively but sparingly by the UNICOS kernel.
VM Vector mask
Use by vector merge and test instructions to allow operations to be performed
on individual vector elements.
V Vector length.
Specifies the length of vector (number of elements) for all vector operations.
Used by applications but not generally by the kernel.
VNU Vector not used bit
Cleared when vectors are changed during a user interval. Ifit is stilll when
the kernel is entered, the kernel should not have to resave the user vectors.
UNICOS kernel does not use VNU, because the kernel does not save all user
vectors on every entry from a user process. Therefore at the time the kernel
disconnects a process, VNU does not indicate whether vectors have not been
used since the last full save, or merely during the last user interval.

Cray Research, Inc. Proprietary TR-ITR 8.0 K

)

)

UNICOS Internals Technical Reference Hardware Overview 2-21

• Hardware performance monitor registers
- HPM Hardware performance monitor

There are 4 sets of these registers, only 1 of which is "selected" for update by
the hardware. (See the GRAY Y-MP System Programmer Reference Manual,
publication CSM-0400-0AO for more information). This is necessary to
accurately account for wait-semaphore time. These counters advance only
when the CPU is not in monitor mode and can be selected (lcleared) and read
only in monitor mode. By default group 1 (hold issue conditions) is selected.
See the HPM(4D) man page in UN/COS File Formats and Special Files
Reference Manual, publication SR-2014, for information about the user
interface to these registers.

• Programmable clock
II Interrupt Interval register
Loaded with a given number of hardware clock periods by means of a PCI
instruction. When the ICD counts down to 0 this II value is reloaded by the
hardware into the ICD. This technique is used by the clocking CPU and user
CPU profiling.
ICD Interrupt count down register
Loaded at the same time as the II register via the PCI instruction. ICD is
decremented by the hardware each clock period, and when zero, sets the flags
register's PCI bit (this does not cause a CPU exchange in monitor mode).
In general one CPU in the system has its programmable clock enabled to force
at least one CPU to interrupt into the kernel each 1160 second (minor clock
cycle) for process scheduling. Any CPU can have its programmable clock set
for specific times event processing such as user profiling and alarm signals.

• Control registers
- P Program counter register

Rightmost 2 bits address the 16 bit parcel of the word. On an exchange, P
contains IBA-relative parcel address of the next instruction. On a return jump
(R) instruction this value is stored in this CPU's BOO register. (Compilers
restrict P to 2G parcels.)

- IBAIILA Instruction base address I Instruction limit address
These registers can only be loaded via an exchange. The kernel sets them to
the bounds of a process's instruction (or "text") memory. P + IBA = absolute
parcel address of the instruction to decode. Ajump instruction loading P with
a value such that P + IBA >= ILA results in setting the Program Range Error
(PRE) flag, and an exchange.
Six trailing zeroes are assumed by hardware, forcing instruction areas to begin
on 0100 word boundaries. UNICOS allocates user instruction memory on an
exact multiple of this value.
CAUTION: the size ofIBAlILA determines the number of bits compared; any
"garbage" to the left of that size is not considered during the compare with
ILA; for example, use of a trashed B-register.

- DBAIDLA Data base address I Data limit address
These registers can only be loaded via an exchange. The kernel sets them to
the bounds of a process's data memory. Load or store instruction operands +

TR-ITR 8.0 K Cray Research, Inc. Proprietary 2-21

Hardware Overview 2-22 UNICOS Internals Technical Reference

DBA = absolute word address of data to load or store.
A load or store operation in which the sum of the instruction operands + DBA
>= DLA results in setting the Operand Range Error (ORE) flag, and an
exchange (unless mode bit lOR is 0).
Six trailing zeroes are assumed by hardware, forcing data areas to begin on
0100 word boundaries. UNICOS allocates user memory on an exact multiple
of this value

CAUTION: The size ofDBAlDLA determines the number of bits
compared; any "garbage" to the left of that size is not considered during the
compare to DLA; for example, use of a trashed A-register .•

- WS Waiting on semaphore bit.
WS indicates the CPU was holding issue on a test-and-set (SMjk 1,TS)
instruction at the time of the exchange. WS is not used by UNICOS outside of'
displaying it for a read from /proc.

• Mode register

2-22

Mode bits are mostly used by user processes. A user can select them through an
ioctl(2) request to / dev / cpu (see UN/COS File Formats and Special Files
Reference Manual, publication SR-2014, for more information).

All but PS, FPS and SEl are selectable (but MM is available only to superuser). .)'
Many can be read as a "status register" (see below). _

AVL Additional vector logical (also ESVL: Enable Second Vector Logical). (Not
every system has a second vector logical unit.)
If set, hardware chooses the second vector logical functional unit first. This
speeds logical processing but may slow down code heavy in floating point
multiplies due to sharing of logic paths with the floating point multiply unit.
PS Program state
Not used by UNICOS (except to display it in a read from a /proc file). PS
means nothing to the hardware.
FP Floating point error status
Indicates to the user (via read of the status register) that a floating point error
has occurred (regardless of IFP). It's reset by hardware only when floating
point interrupts are enabled or disabled (EFIIDFI instructions). The kernel
could reset it via the XP, but does not. FPS is not used by the kernel.
BDM Bi-directional memory
If set, multiple word read and write operations (Y, T, B block load/stores) can
occur concurrently. This can result in indeterminate results when read/write
areas overlap (for example, a load may begin before a store completes). Can be
toggled by hardware instructions (EBMlDBM) and by ioctl(2) calls.

lOR Interrupt-on operand range error

If set, load/store instructions where memory reference+ DBA >= DLA set the . ~)'
ORE flag and cause an exchange. lOR can be toggled by hardware_
instructions (ERIIDRI) and by ioctl(2). With ORE interrupts disabled,
operand range errors result in a read of 0 or no-op write.

Cray Research, Inc. Proprietary TR-ITR 8.0 K

)

)

)

UNICOS Internals Technical Reference Hardware Overview 2-23

IFP Interrupt-on floating point error
If set, floating point errors set the FPE flag and cause an exchange. IFP can
be toggled by hardware instructions (EFIIDFI) and by ioctl(2) calls. With
floating point interrupts disabled, errors can be detected by reading the status
register.
IUM Interrupt-on uncorrectable memory error
If set, multiple-bit memory errors fill in the Memory error information register
and set the MEl flag, causing an interrupt. IUM must be set to get RPE
interrupts.
ICM Interrupt-on correctable memory error
If set, single-bit memory errors fill in the Memory error information registers
and set the MEl flag, causing an interrupt. Set for user processes except for
special handling during memory error flooding. Not set for kernel except
during memory error correcting.

Note: Single-bit error reads from memory yield correct results in the
target register regardless of the ICM bit. Disabling MEl interrupt does not
disable secded hardware .•

- EAM Enhanced addressing mode
If set, CPU addresses in native Y-MP 32-bit mode, otherwise CPU uses 24-bit
X-MP compatibility mode. (See the section "Memory addressing modes" in tills
chapter for details.)
SEI CPU selected for external interrupts
If set and given all other CPU states equal, an I/O channel interrupt is
directed to tills CPU. Used only on C90 and a Y-MP with asymmetric CPU's.
See the IOI flag description below for details on CPU selection by I/O channel
interrupts.
IMM Interrupt in monitor mode
If IMM and MM are set, all interrupt types are enabled except IPI, PCI, MCU
and lOr. UNICOS kernel runs in this mode (but with ICM disabled). In
normal operation all kernel interrupts result in exchange with pw_xpux
usually causing a panic.
MM Monitor mode
If set, the CPU is not interruptible by the 4 interrupt types mentioned above
(see IMM), and can execute privileged instructions Goad the XA, function
channels, clear I/O interrupts, load the real time clock, send an interprocessor
interrupt, etc.). When not in MM mode, the Y-MP CPU will no-op such
instructions. UNICOS allows a superuser to set MM via ioctl(2) to
/dev/cpu.

TR-ITR B.O K eray Research, Inc. Proprietary 2-23

Hardware Overview 2-24 UNICOS Internals Technical Reference

• Flagbits
Flag bits are set by the hardware when an interrupting event occurs, unless the
interrupt type has been disabled via a mode bit (above).
When a flag bit is set, the CPU exchanges its active exchange package (XP) with
the contents of the memory resident XP image pointed to by XA.
The kernel must clear every flag before exchanging it back into the hardware
registers, otherwise the same interrupt reoccurs. A more detailed description of
the interrupt and what the UNICOS kernel does in reaction to each of these flags
is detailed in Chapter 4, "Kernel Mainline".
No exchange occurs if a CPU is in pure monitor mode (MM=l but IMM=O); no flag
is set.
In interruptible monitor mode (IMM), for example, when executing the UNICOS
kernel, the setting of any flag except IPI, PCI, MCU of 101 causes an exchange
(with the XP image referenced by XA).

RPE Register parity error
This flag is set when a parity error is detected in V, B, T, ST and SB registers
and instruction buffers. RPECHIP status register is also filled in. IUM mode
bit must be set to get RPE interrupts.
IPI Interprocessor interrupt (also known as ICP "Internal central processor"
This flag is raised by execution of a MM-privileged SIPI instruction. CPUs in

)

monitor mode are not interruptible for IPls, though the IPI flag is not set .)
immediately, the interrupt remains pending until the CPU goes to user mode. __

2-24

DL DeadLock interrupt
Deadlock is recognized by the hardware when all CPUs with the same cluster
number are holding issue on test-and-set (SMjk 1,TS) instructions. They do
not have to be testing the same semaphore. All such CPUs receive a DLI.
This can happen frequently when a multitasking group of processes is not
fully connected.
PCI Programmable clock interrupt
Set when a CPU's ICD register counts down to O. PCI will not interrupt
monitor mode, but remains pending until the CPU returns to user mode.
MCU Maintenance control unit
MCU is set by a hardware signal from the lOS. lOS software can send such a
signal whenever it has a timeout on a central memory transfer and wants the
mainframe to reduce any memory contention that may be causing the timeout.
Y-MP hardware fans out the MCU interrupt to all CPUs. MCU interrupt will
not interrupt monitor mode, but the interrupt remains pending until the CPU
returns to user mode.
FPE Floating point error
Any floating point instruction raises this flag when it detects an overflow or
underflow condition (unless the IFP mode bit is 0).
ORE Operand range error
Some data load/store instruction's memory address + DBA >= DLA. This
interrupt is disabled if lOR mode bit is O.

Cray Research, Inc. Proprietary TR-ITR 8.0 K

iINIcos Internals Technical Reference Hardware Overview 2-25

CAUTION: The size ofDBAlDLA determines the number of bits compared;
any "garbage" to the left of that size (from a trashed A register, for example) is
not considered during the compare with DLA.
PRE Program range error
Some jump instruction's memory address + IBA >= lLA.
This interrupt is disabled if IFP mode bit is O.

CAUTION: The size oflBAlILA determines the number of bits compared;
any "garbage" to the left of that size (from a trashed B register, for
example) is not considered during the compare with lLA .•

MEl Memory error interrupt.
All reads of data memory or an instruction buffer or a read of memory by an
I/O channel (LOSP,HISP,VHISP) are monitored by single-error correction!
double-error detection (SECDED) hardware. Each 64-bit word has an 8-bit
check byte stored with it.
If a single-bit error is detected, it is corrected for delivery to the register or
channel. If the ICM mode bit is on, the MEl bit is set, the Memory Error
information registers are filled and an exchange occurs. If a double-bit (or
detectable multiple bit) error is detected, no correction is done. If the IUM
mode bit is on, the MEl bit is set, the memory error information registers are
filled and an exchange occurs.
In either case, memory error information is sent through the error channel to
the error logger or MWS (during the next exchange sequence).
Memory error interrupts can occur in pure monitor mode (if ICMlIUM
enabled).

- 101 I/O Interrupt
When a LOSP (6MB) or VHISP (1000MB) channel transfer completes it directs
an I/O interrupt to the CPU of its choice.
That choice is made according to the following priority:

1. A CPU in monitor mode. The interrupt remains pending until cleared
by that CPU or it enters user mode. A CPU in monitor mode can detect
pending I/O interrupts by reading the CA register.

2. A CPU with the SEI mode bit set (this mode bit is not used in UNICOS.
3. A CPU holding issue on a Test and Set instruction.
4. The CPU which last issued a clear interrupt(CI,Aj) for that channel.

EEl Error Exit Interrupt
Execution of the 00 opcode (either deliberately through the ERR assembler
mnemonic, or accidentally through a jump into data). The kernel CAL panic
macro uses this instruction to force an interrupt to the panic routine.
NEI Normal Exit Interrupt
Execution of the EX (004) opcode. In user code, this is a system call. The
kernel uses the EX instruction in a few instances to do very special processing.
It is also used by he kernel C Language panic macro uses this instruction to
force an interrupt to the panic routine.

TR-ITR 8.0 K Cray Research, Inc. Proprietary 2-25

Hardware Overview 2-26 UNICOS Internals Technical Reference

• Status register
Instruction 073 iOl (Si SRO) transmits the "status register" to the left-most bits
of register S i.

The status register is an aggregate of several mode register bits (PS FPS, IFP,
lOR, BDM) plus 5 other fields:

CL Clustered
Set to indicate that the CPU's cluster number is nonzero and therefore that
the process may load/store from/to cluster registers.
If 0, cluster number is zero and cluster reads deliver 0 and cluster writes
no-op. The CL bit is not stored in the memory-resident exchange package.
UME Uncorrectable memory error
Set when the error occurs, but is reset on an exchange or whenever the SRO is
read (any 073).

CME Correctable memory error
This bit is set when the error occurs, but is reset on an exchange or whenever
the SRO is read (any 073).
PN Processor number
Always 0 if the CPU is not in monitor mode. Since all CPUs are equal, it
should not be important to users which CPU is currently executing their code.
A UNICOS process such as a a diagnostic is able to make an ioctl(2) calIon
/ dev / cpu to request to be scheduled only on a particular CPU(s).
CLN Cluster Number
Si SRO always delivers 0 for cluster number if the CPU is not in monitor
mode.
Since all clusters are equal and assigned to processes by the kernel, it should
not be important to users which cluster they are addressing. It should only be
necessary to know that a cluster is assigned, which can be known through the
CL bit. -
A UNICOS process such as a diagnostic is able to make an ioctl(2) call on
/ dev / cpu to restrict itself to a particular cluster number(s).

• Memory error information

2-26

These registers are filled in by the hardware on an MEl interrupt.
E Read Error Type
These 2 bits flag the error as correctable / uncorrectable.
S Syndrome
These 8 bits are the result of the exclusive-OR of the word's generated check
byte and the original check byte.
RReadMode
On an X -MP, these 2 bits indicate type of memory reference (I/O, Scalar,
VectorlBtr, instruction fetch/exchange). On a Y-MP, they must be used in
conjunction with Port.
P Port (Y-MP only)

Cray Research, Inc. Proprietary TR-ITR 8.0 K

)

UNICOS Internals Technical Reference Hardware Overview 2-27

These 3 bits represent memory port in use (A, B, D), and combined with Read
Mode indicate what type of operation was being performed. There are 10 valid
combinations (see the GRAY Y-MP System Programmer Reference Manual,
publication CSM-0400-0AO, for more information).
CSIB Chip Select / Bank
These bits (number varies by machine type) identify the memory chip and
bank where the error was detected. Exact word address is not given. To locate
and rewrite the word, the kernel must scan the chip for the error.
RPECHIP
These 6 bits are filled in by hardware on an RPE interrupt. They contain chip
function and chip number.

TR-ITR 8.0 K Cray Research, Inc. Proprietary 2-27

Hardware Overview 2-28 . UNICOS Internals Technical Reference

• Exchange address and exchange package information
XA Exchange address register

2-28

Contains memory address of the XP image to be exchanged by the hardware with
the active XP registers in the event of an interrupt.
Four zeros are appended to the 8 bit value aligning the area on an octal multiple
of 20. The effective 12 bit size of the XA restricts the address to be within the first
4096 words of memory.
XA can only be changed when in monitor mode.
The figure on the right illustrates the exchange process.

The XA points to the area in memory used by the exchange.
Memory-resident XP images are 020 words in length
The contents of the CPU's registers shown in the shaded area are
"packaged up" and stored in the XP area while simultaneously the previous
contents of the XP area is loaded into the corresponding CPU registers.
The flags register in the XP in memory reflects the reason for the interrupt.
Memory error information is stored for memory error interrupts.
The CPU (immediately) begins executing under the environment of the new
register values. Note significantly the following:
~ The CPU switches to any new modes.
~ The base and limit addresses change to bound the new program area.
~ The new p address value provides the "next" instruction (based on IBA)

to execute. (The exchange is effectively a branch).
In UNICOS, XA points at the CPU's own cpu entry in the PWS table -
usually pw_xpus while in user mode, or pw_xpux while in system mode.

Cray Research, Inc. Proprietary TR-ITR 8.0 K

)

UNICOS Internals Technical Reference

, V7 ,
00 VO

77
64
VM
64

TR-ITR 8.0 K

Exchange Illustration

CPUn

,

~
,

0
1

7
46

T77

TOO

64

PROG~ABLECLOCK

II I !CD I
32

Cray Research, Inc. Proprietary

Hardware Overview 2-29

Central Memory

2-29

Hardware Overview 2-30

Shared resources

• Real time clock register
RTC Real time clock register

UNI90S Internals Technical Reference

RTC increments each hardware clock period. It can be set only in monitor mode.
UNICOS kernel sets it to 0 at startup (it will not wrap for 14000 years with a 6ns
clock). A system time is maintained in a memory address, in seconds since 1990.

• Channels and channel registers
CI Channel Interrupt register
Instruction Ai CI returns the number of the lowest numbered channel with a
pending I/O interrupt. This number and pending interrupt are cleared with the
hardware-privileged CI, Ai instruction. A 0 is returned if there are no pending
interrupts.
LOSP channels 6MB channel pairs
Used for packets to/from the lOS. Even numbers are input, odd numbers are
output. 8 pairs, 020-037 (Y-MP) Loading CA or CL registers are privileged
operations.

- CL Channel limit register
Loaded with buffer end address + 1.

- C Channel address register
When loaded with a buffer starting address the channel begins operation.)~"

- C Channel Error -

2-30

Parity error flag for input channel, unexpected Resume signal for output
channels. Not checked on the mainframe end by UNICOS.

HISP channels (not shown in diagram)
Up to four 100/200MB channels used for data to/from an lOS model D. There is
one HISP per IOC (IO cluster) on a Model E lOS. Under complete control of the
lOS; no interrupts to the mainframe CPUs.
VHISP channels 1000MB channels used for data to/from SSD(s)
Bi -directional channels
Channels 1 and 5 (+ 11 and 15 with second SSD) (Y-MP)
Loading a CA or CL registers is a privileged operation.

- CA Channel Address register
First loaded with the SSD memory address (64-word block address)
Second loaded with central memory buffer starting address

- BL Block Length register
Loaded with direction (high order bits) and number of 64 word SSD blocks.
When loaded using CL command transfer begins.

- CE Channel Error
Parity error flag for input channel, unexpected Resume signal for output
channels. Readable at any time. See the GRAY Y-MP System Programmer
Reference Manual, publication CSM-0400-0AO, for more information.

Cray Research, Inc. Proprietary TR-ITR 8.0 K

)

-)

UNICOS Internals Technical Reference Hardware Overview 2-31

• Cluster registers
Cluster registers can pass data among CPUs quickly. They are used to coordinate
kernel multithreaded operation_and user multitasking processing.
Systems are shipped with NCPU+l (number of CPUs plus one) clusters. A CPU
cluster number CLN of zero references no cluster. Cluster number 1 is reserved
for the UNICOS kernel. Clusters 2-n are assigned to user processes (even if not
multitasked).
Each cluster consists of a set of 32 semaphore, 8 shared T, and 8 shared B
registers as follows:

TR-ITR 8.0 K

SMO-37 Semaphore registers
These 32 bits can be separately set/reset by any CPU "assigned to the
cluster" (for example, with CLN = this cluster's number).
They provide a hardware interlock via the "SMjk 1,TS" instruction where
only 1 CPU can set the semaphore, other CPUs assigned to the same
cluster testing the same semaphore, will hold issue on the test-and-set.
When all CPUs in the same cluster are holding on a test-and-set (any
semaphore) each CPU in the cluster receives a Deadlock interrupt (DLI)
causing an exchange.
STO-7 Shared T registers
Used to pass 64-bit scalar values from CPU to CPU quickly.
SBO-7 Shared B registers
Used to pass 32-bit integer (address) values from CPU to CPU quickly.

Cray Research, Inc. Proprietary 2-31

Hardware Overview 2-32 UNIGOS Internals Technical Reference

Y-MP C90 system control
The following information references the foldout diagram ''Y-MP C90 System
Control" diagram at the end of this section.
Significant differences with "Y-MP System Control" are noted below by each major
section.
Several registers are larger (in bits) that in the Y-MP. The sizes are shown on the
diagram but not generally noted in the detailed discussion.

Registers in each CPU

• Program registers
VO-V7 Vector registers
Each of the eight vector registers contains 128 elements.
VMl Vector mask
A second vector mask is provided to cover the additional 64 vector elements.
BMM Bit matrix multiply
Bit matrix multiply unit can be loaded via a vector· register.
Hardware performance monitor registers.
HPM Hardware performance monitor counters are extended to 48 bits (from
46). There is only one 32 element group. All are rwuring at the same time.

• Status registers New class of registers
VNU Vector not used
Bit is now reloaded from the memory copy of the exchange package. (Still not
used since nearly every user exchange involves vector register usage).
FPS Floating point status
Shows floating point error. Was a Mode register on Y-MP.
WS Waiting on semaphore
Included in Status registers. Still only referenced by /proc.

PS Program status
Was a Mode register on Y-MP.

• Mode registers

2-32

There are two sets of mode bits on the C90. The interrupt mode bits of the Y-MP
have been expanded and placed in a separate category.

C90 Y-MPC90 mode must be set to recognize new C90 instructions (native
mode).
If 0, executes in Y-MP instructions (compatibility mode).
ESL Enable second vector logical
Was AVL mode register on Y-MP.
BDM Bidirectional memory
Same as Y-MP.

Cray Research, Inc. Proprietary TR-ITR 8.0 K

J

UNICOS Internals Technical Reference Hardware Overview 2-33

- MM Monitor mode
Same as Y-MP.

• Interrupt mode and interrupt flag registers
Each mode corresponds to an interrupt type and interrupt flag (16 of them).
On a Y-MP only interrupts lOR, IFP, IUM, and ICM were "maskable". In addition
a CPU in Monitor Mode (MM) was interruptible only if IMM was set (MM=l and
IMM=l)
On a C90 the function of the IMM bit has been replaced by the CPU Enable
Interrupt Mode ElM flag (not shown).

The ElM is set on exchanges to non-monitor mode (user) and cleared on
exchanges to monitor mode (kernel).
While in MM the instruction EMI sets the ElM bit (enabled) and DMI clears
the bit (disable). Interrupt Modes FNX, FEX, and IPR are not affected by this
bit (they are always enabled).
Interrupts PCI, ICP, RTI, MCU, MEC, BPI, ORE, FPE, MEU, and RPE are
held pending if ElM if clear.
If ElM is set, interrupts, or held interrupts corresponding to set interrupt
modes, are allowed; held interrupts,. except PCI and ICP, are cleared on any
exchange.
The UNICOS kernel executes the EMI command immediately upon entry to
the kernel (exchange user->kernel). Mode Registers lOR, IFP, IUM, IRP, IPR,
FNX, and FEX are set on the exchange-in providing for the same interrupt
processing in the kernel as for a Y-MP. (See "Kernel Mainline - immtrap" for
detail on kernel interrupt processing.)
The following registers are changed or new on the C90:
.;. IBPIBPI (Enable) breakpoint interrupt

A write reference to an address within the breakpoint range (BP
instruction). '

.;. IRTIRTI (Enable) real time interrupt
The hardware for this is not (yet) available. UNICOS runs with this
disabled .

.;. IIPIICP (Enable) internal CPU interrupt
Renamed IPI interrupt ofY-MP .

.;. IMIIMll (Enable) monitor mode interrupt
Interrupt cause by attempt to execute a privileged instruction in
non-monitor mode (user). The Y-MP treated such cases as a no-op. For the
C90 UNICOS runs with this mode disabled .

.;. IDlJDLI (Enable) deadlock interrupt
ON a C90 a CPU entering monitor mode remembers its user mode cluster.
Other CPU's holding issue on test-and-set instructions in that cluster will
not get a deadlock interrupt .

.;. IUM/MEU and ICMlMEC (Enable) uncorrectable and correctable memory
errors interrupts

TR-ITR 8.0 K Cray Research, Inc. ProprietarY 2-33

Hardware Overview 2-34 UNICOS Internals Technical Reference

Are separate flags on C90, was only MEl "Memory Error" on Y-MP.
Memory correction is Single-byte correction/double-byte detection
(SBCDBD). A "byte" is 4 bits. A hardware word is 80 bits (not 72), giving
the 16 check bits.

£ 8EI (Enable) System I/O Interrupts (not shown)
I/O interrupts on all CPU are disabled after the first until re-enabled by
setting this flag with the ESI command. (See Section 4, Kernel Mainline -
"usrioi" the I/O interrupt handler, for more information.)

Status registers

The single status register on the Y-MP is replaced by 8 registers on the C90.
SRO General- refer to the "C90 System Programmer Reference Manual" for
detail.
SRI Undefined.
SR2 RPM counters 00-17.
SR3 RPM counters 20-37.
SR4 Memory error type data.
8R5 Memory error syndrome data.
SR6 Memory error address data.
SR7 RPE status data.

Shared resources

• Cluster registers
Extended to 17 clusters for 16 CPUs.

• Channels and channel registers

2-34

Both low-speed and VHISP channels are numbered differently than on a Y-MP.
The CE (Channel error, or Channel status words) are all enlarged to 32 bits.

Cray Research, Inc. Proprietary TR-ITR B.O K

~)

)

UNICOS Internals Technical Reference Hardware Overview 2-35

X-MP system control
The following information references the "X-MP System Control" foldout.
Significant differences to ''Y-MP System Control" are noted below by each major
section.
Several registers are smaller (in bits) that in the CRAY Y-MP. The sizes are shown
on the diagram but not generally noted in the detailed discussion.

Registers in each CPU

• Mode Registers
AVL, PS, and EAM are "Modes" on the CRAY X-MP. WS is a mode.
These registers are different than equivalent registers on a CRAY Y-MP:

EMA Extended memory addressing
When set provides full X-MP 24 bit addressing (native mode). When not set
provides 22 bit addressing (compatibility mode).
AVL Additional vector logical
Not a "Mode Register" but just a separate CPU status flag.

- WS Waiting on semaphore
A Mode register on the CRAY X-MP.

• Flags register registers
Interrupt and interrupt flag RPE is not present on the X-MP.

• Memory error information
RPECHIP is not present on the CRAY X-MP.

• Status registers
Elements UME and CME are not in the status register.

Shared resources

• Cluster registers
3 clusters for 1 and 2 CPU system, 5 clusters for 4 CPU systems ..

• Channels and channel registers
Both low-speed and VHISP channels are numbered differently than on a CRAY
Y-MP.

TR-ITR 8.0 K Cray Research, Inc. Proprietary 2-35

Hardware Overview 2-36 UNICOS Internals Technical Reference

Interrupt processing summary
The figure on the right shows major hardware register components in relation to the
memory areas they are saved to and restored from during the interrupt handling
process.
The "cycle" is started with the CPU connected to a user process (executing the user
program in non-monitor mode MM=O). The CPU's XA wo.uld be pointing to this
CPU's PWS cpu entry field pw_xpus (xp user). Refer to the letter key for the \J ~(
following. ~ \ ~
• Exchange in ~Q

x When any interrupt occurs the CPU performs an exchange
sequence, saving the exchange package data at the XA address
pw_xpus while simultaneously loading the XP data into the CPU.

Note that the A and S registers are saved by the action.

The XA is then set to point to this CPU's pw_xpux (UNIX exchange package).
• Kernel entry '[.-t \t \{Ju\('~

b

t

v

The B registers are saved in the user field u_saveb. ~ ~

The T registers are saved in the user field u_savet. 0,j '\ ~ '\
If the interrupt is not a normal exchange (NEX - or system call) \v:J. CO ~
the VMs and VO (only) are saved in the user u_savevm,
u_savevml, and u_savev fields.

Vectors Vl-7 are saved by the kernel for non-NEX interrupts only
if used by the kernel routine.. ~

• Kernel exchange , ~~~
While the CPU is executing kernel code the XA is pointing to this CPU's pw_xpux I.,"t:-.'"
area. A CPU in the kernel is operating with IMM on (X-MP/y-MP) or ElM set ~ .
(C90) so exchanges CAN take place.

i

2-36

If an interrupt occurs the CPU performs an exchange sequence,
saving the exchange package data at the XA address pw_xpux
while simultaneously loading the XP data into the CPU.

The pw_xpux p address is set to the a<!.dres; if immtra~,.
Executing immtrap normally results in a s ~ em panic all
interrupts enabled in kernel (monitor) mode are catastropbic
events.

Cray Research, Inc. Proprietary TR-ITR 8.0 K

UNICOS Internals Technical Reference

STO

CRAY X-MPIY-MP/C-90

Hardware Overview 2-37

BOO-B77
TOO-T77

counters
BOO-B67 by

u_savebmm BMM save area

user addressable space

TR-ITR 8.0 K Cray Research, Inc. Proprietary 2-37

C :'\0-J\ \

Hardware Overview 2-38

~~~~~" . 

UNICOS Internals Technical Reference 

• Process switch 
During the processing of an interru t the kern 
current rocess and resume co 

For the process being disconnected the following information is saved 
(see the figure on the right): 

v 
h 

m 

c 

d 

Any vectors not yet saved are saved in u_savev. 

The HPM data is saved in u_hpm. 

BMM data is saved in u_savebmm. 

If this is the last member of a multitasked group save the cluster 
information in ucomm uc_sm, uc_sb, and uc_st fields. 

The kernel's active B and Tregisters are saved in users u_save. 

Select the resumed process's user/ucomm area - resume this process: 
\,~ -

\~ '" r The XP in pw_xpus is saved in the old user's u_xp field. Restore ~,~ (-
\J"v'V {S ~ the XP data in u_xp for the resumed process. 

S~.J-~-,\'<:..fr<'" h The HPM data is loaded from u_hpm. 

-(~c., -\-'" c If this is the first member of a multitasked group select a cluster 
'-~~ ~ f) and load the cluster information from uc_sm, uc_sb, and uc_st 
'\ ~,,~ ~ fields. -;..'!..,; 
'v"",a-... 

~~ 

~~~~ 
\Y~ ':w~'1

~\
~,

d The kernel's saved Band T registers are reloaded from u_save.

• Kernel exit

b

t

v

The B registers are loaded from user field u_saveb.

The T registers are loaded from user field u_savet.

If the interrupt is not a normal exchange (NEX - or system call)
VMs and VO-7 are loaded from u_savevm, u_savevml, and
u_savev fields. IfNEX set VM, VO-7 registers are cleared to
zeros

• Exchange out
Just before returning to the user, the XA is loaded with the address of this CPU's
pw _xpus, now containing the interrupted or newly resumed process's exchange
package information.

The kernel executes an EX instruction causing an NEX interrupt.
The CPU exchange package (user) data is loaded into the CPU
while the kernel's XP data is saved in pw_xpus. The A and S
registers are restored for the user here.

2-38 Cray Research, Inc. Proprietary TR-ITR 8.0 K

)
... ../'

UNICOS Internals Technical Reference

)

)

)

TR-ITR 8.0 K

Hardware Overview 2-39

CRAY X·MPIY·:MP/C·90

"

BOO-B77
TOO-T77

counters
u_save BOO-B67 by "n+,'m""
u_savebmm BMM save area

user addressable space

Cray Research, Inc. Proprietary 2-39

Hardware Overview 2-40 UNICOS Internals Technical Reference

Exchange (XP information)

Exchange package crash display

The facing page shows sample exchange package contents using the crash(8) xp
display output.
Sample Cray Y-MP C90 and Cray Y-MP displays from crash(8) release 7.0 show the
full breakdown of all XP fields including each "Interrupt" Mode, Flag, Status, and
"Modes" bits.
The third CRAY X-MP sample is from a release 5.0 crash. This version older version
shows the mode "m" and flags "f' as 2 octal fields each, leaving the user to interpret
the bits individually.
A breakdown of the mode and flags bits for the CRAY Y-MP and CRAY X-MP follows.
Refer to the "System Control" information earlier on in this chapter for the meaning
of the abbreviations.

XP mode and status bit breakdown

YMP mode bits
nnnn

xp.m

A~T T B6MT T nJMT T S11T J
PS lOR ICM IMM

FPS IFP EAM MM

XMP mode bits
nn nn

YMP flag bits
nnnn

xp·f

RhJ;ll TJ
PCl I

MCU
FPE

n

xp.fO

JIT
DLI

ORE
PRE

MEl

XMP flag bits
nnn

lOl
EEl

NEl

lor
EEl

NEl

2-40 Cray Research, Inc. Proprietary TR-ITR 8.0 K

)

")
_/

UNICOS Internals Technical Reference

CRAY Y-MP C90 XP
Exchange package at address 03036002 for cpu 0 - cray C90

p Oa aO 00000000000 Interrupt
iba 03056000 a1 00000000000 Modes Flags
ila 03076000 a2 00000000000 00410 00000
xa 0660 a3 00000000000 irp=O rpe=O
dba 03056000 a4 00000000000 ium=O meu=O
dla 03076000 a5 00000000000 ifp=O fpe=O
vl 0 a6 00000000000 ior=O ore=O

a7 00000000000 ipr=O pre=O
fex=O eex=O

sO 0000000000000000000000 ibp=O bpi =0
sl 0000000000000000000023 icm=l mec=O
s2 0000000000000000000000 imc=l mcu=O
s3 0000000000000000000000 irt=O rti=O
s4 0000000000000000000000 iip=O icp=O
s5 0000000000000000000000 iio=O ioi=O
s6 0000000000000000000000 ipc=l pci=O
s7 0000000000000000000000 idl=O dl =0

imi=O mii=O
cluster 11 vnu 0 fnx=O nex=O

CRAYY-MPXP
Exchange package at address 03473002 for cpu 0 - cray Y/MP

p Oa aO 00000000000
iba 03513000 a1 00000000000
ila 03533000 a2 00000000000
xa 0660 a3 00000000000
dba 03513000 a4 00000000000
dla 03533000 as 00000000000
vl 0 a6 00000000000

a7 00000000000

sO 0000000000000000000000
sl 0000000000000000000013
s2 0000000000000000000000
s3 0000000000000000000000
s4 0000000000000000000000
s5 0000000000000000000000
s6 0000000000000000000000
s7 0000000000000000000000

cluster 5 vnu 0

Error type = None
Error csy 0
Error csb = 0

Syndrome = 0
Port = 0
Read mode = 0

Modes Flags
0020 o 0000

esl=O ws =0
ps =0
fps=O icp=O
bdm=O dl =0
ior=O pci=O
ifp=O mcu=O
ium=O fpe=O
icm=l ore=O
eam=O pre=O
sei=O me =0
imm=O ioi=O
mm =0 eex=O

nex=O

CRAYX-MPXP

P 30233c cpu 2 aO 00047450
ib 3110400 i1 3177000 a1 00041617
m 4 36 vnu 0 a2 00047445
xa 660 vI 3 a3 00000014
f 0 0 ps 0 cin 2 a4 00041612
db 3110400 dl 3177000 a5 00047454
e 0 rm 0 syn 0 a6 00047446
------------- and so on ---------------

'Status
00

vnu=O
fps=O
ws =0
ps =0

Modes
00

c90=0
esl=O
bdm=O
mm =0

TR-ITR 8.0 K Cray Research, Inc. Proprietary

Hardware Overview 2-41

2-41

Hardware Overview 2-42 UNICOS Internals Technical Reference

Memory addressing modes

CRAY-I and CRAY X-MP without EMA

All CRAY-1s and those CRAY X-MPs with up to 4MW of memory (through serial 122,
217 and 308) had no need for EMA hardware.
Their maximum memory size of 017777777 words could be addressed by these 22-bit
addresses:
• Word address in the P register,

• IBAlILA and DBAlDLA,
• Word address in all jump, load, and store instructions.
• All negative values could be held as simple 2's complements of 4MW.
CRAY-l binaries may not be executed on the:

X-MP ill compatibility mode: UNICOS will not allow a CRAY-1 binary to be
executed on anything but a CRAY-I.

X-MP in EMA mode:

Y-MP:

The EMA hardware would treat any expressions
over 2MW in the load/store instructions as nega
tive.

In compatibility mode - the EAM hardware treats
any expressions over 2MW in the load/store
instructions as negative, as above. In native EAM
mode - the EAM hardware misinterprets load/store
instructions as 3-parcels.

A CRAY-l may not execute a binary targeted for the:

X-MP in EMA mode or Y-MP
in compatibility mode

Y-MP in EAM mode:

EMA-compatible code produces wild jumps. The
EMA 24-bit A-load instruction looks like a condi
tional jump instruction to a CRAY-I. (See EMA
Instruction Formats, below).

Also yields unpredictable results. The EAM 3-par
cel register load and store instructions are misinter
preted as 2-parcelload and store instructions. (See
EAM Instruction Formats, below).

Maximum address is 017777777 (4MW)

• Jumps
Jumps contain 24-bit parcel address expressions (or use 24 bits of a B register).
The 22-bit word address portion limits the value to 4MW.
CAL flags any expression over 4MW or under -2MW as truncated; negative
expressions are simply 4MW complements.

)

For example: -1MW = 3MW, -2MW = 2MW -4MW = 0, and.-5MW = -1MW.)'
A CAL expression of 5MW would be truncated to 1MW. ',_

2-42 Cray Research, Inc. Proprietary TR-ITR 8.0 K

UNICOS Internals Technical Reference Hardware Overview 2-43

• rnA
The IBA is a 22-bit word address. The effective address addition (exp + IBA) is
done in 22-bit hardware, limiting the result to 4MW.

4MW

-1MW +3MW

1J2MWIBA
oiI""",-__

3MW = 14000000

1MW = 04000000
1's comp = 13777777
-1MW = 14000000

Note that the effect of a 3MW jump or a -1MW jump are the same, for example,
their values as 22 bits are identical.

• Register loads and stores
Loads and stores contain 22-bit word addresses, and use just 22 hits of register
Ah.
The Ah register can address anywhere in 4MW and the immediate expression can
do the same.

• DBA
The DBA is a 22-bit word address.
The effective address addition (exp + Ah + DBA) is done in 22-bit hardware, limiting
the result to 4MW in the same way as for jumps (above).

• Address loads
Address-loading instructions contain 22-bit word address expressions.

A pre-EMA machine will not recognize the new 24-bit address-loading instruction
(Oli) but will execute it as a conditional jump (the Ai register signifying the
condition) with unpredictable results.

TR-ITR 8.0 K Cray Research, Inc. Proprietary 2-43

Hardware Overview 2-44 UNICOS Internals Technical Reference

CRAY X-MP in compatibility modes
CRAY X-MP CPU with EMA hardware is in Cray-1 "compatibility mode" when their
exchange package EMA bit is O.
CRAY X-MPs starting with serial numbers 123, 218, and 309 have EMA hardware.
Their maximum memory size of 16MW (077777777) words cannot be addressed by
the 22-bit word address in the P register, the 22-bit word address in all jump
instructions, or the 22-bit word address in non-EMA load, and store instructions.
Advantages of running in compatibility mode:
The only advantage of this mode is to allow CAL programs written with load/store
expressions; > 2MW, to be recompiled without change and run on an EMA machine.
Disadvantages of running in compatibility mode:
• The program can only address 4MW of memory
• UNICOS must keep the program from spanning any 4MW memory boundary.
CRAY X-MP compatibility mode binaries may not be executed on the:

CRAY-1: Though physically okay, UNICOS does not permit
it.

X-MP in EMA mode:

Y-MP in either mode:

It's load/store address expressions over 2MW would
be interpreted as negative

If an EAM machine is in compatibility mode it
would act just like an EMA machine described
above. If an EAM machine is in EAM mode it
would misinterpret the binary's load/store instruc
tions.

An CRAY X-MP in compatibility mode may not execute a binary targeted for
the:

X-MP in EMA mode:

Y-MP in EAM mode:

Hardware recognizes the binary's EMA 24-bit A
load instruction, but all memory references "wrap"
at 4MW boundaries.

Also yields unpredictable results. The EAM 3-par
cel register load and store instructions are misin
terpreted as 2-parcelload and store instructions.
(See EAM Instruction Formats, below).

An X-MP is in Cray-1 "compatibility mode" if the exchange package EMA bit is o.
With EMA, hardware supports memory sizes up to 16MW (077777777 - the
maximum value of 24 bits) .
• Jumps

2-44

Jumps contain 24-bit parcel address expressions, limiting code size to 4MW as in
pre-EMA machines.

Cray Research, Inc. Proprietary TR-ITR 8.0 K

.~

)

UNICOS Internals Technical Reference Hardware Overview 2-45

• rnA
The IBA is a 24-bit word address, capable of addressing to 16MW.
The effective address addition (exp + IBA) is done in 22-bit hardware, truncating
any carry.
The left 2 bits of the IBA don't participate in the add, but are copied into the
24-bit result. The net effect of this is illustrated below:

8~ -------------
....... 0100 -+-1100

7MW - -, - 1MW::! 04000000 3MW ~ 14000000

6MWIBA- __ 1_::~¥..W + IBA (6MW) ==J100~~0000 + IBA (6MW) =:30000000
()Ill 000 ,

5MW
7~VV =l34000000

0011100 5MW =i 04000000
0.10100

I'
lost carry

+3MW
4MW ---~------

Note that all jumps behave as if the program is running in a 4MW machine; the
program cannot address across a 4MW boundary. (UNICOS is responsible for
guaranteeing that any task with an exchange package in compatibility mode does not
cross a 4MW boundary.)

• Register loads and stores
The hardware treats the 22-bit expressions and 22 bits of register Ah the same as
for jumps. Register Ah and the expression can range from +4MVV to -4MW.

• DBA
The DBA is a 24-bit word address but only 22 bits participate in the add. The
result is the same as for jump instructions; the program data must be within a
4MW section of memory, not crossing a 4MW boundary.

• Address loads
Either 22 or 24-bit expressions can be loaded into Ah - it makes no difference, as
only 22 bits are used by the hardware.
Hardware can tell the difference between the new 01i 24-bit A-load and the
0110-017 jump instructions, so either A-load is okay.

An X-~P is in 24-bit "extended" mode if the exchange package EMA bit is 1. In
extended mode a program can address the full 16MW potential memory size.

• Jumps
Jumps contain 24-bit parcel address expressions, limiting program size to 4MW
as in every combination of hardware and mode.

• rnA

TR-ITR 8.0 K Cray Research, Inc. Proprietary 2-45

Hardware Overview 2-46 UNICOS Internals Technical Reference

The lBA is a 24-bit word address, capable of addressing to 16MW.

The effective address addition (exp + lBA) is done in 24-bit hardware. The 22 bits
in the instruction are zero filled to 24 bits before the add to the lBA.

The result is illustrated below: (assume the lBA is 7MW)
Note that all jumps can cross 4MW boundaries but are limited to +4MW from the
lBA. This limits all EMA mode executable codes to 4MW

• Register loads and stores
The hardware uses 24 bits of Ah, and sign extends the 22-bit expressions to 24
bits for the add. This is done to allow the expression to be negative.
The Ah register can address any address in memory.

The expression provides an offset of +2MW to -2MW. Any expression over 21 bits
(2MW) is handled as if negative.

Note: The loaders prohibit any code with a relocatable expression over
2MW in a load or store from running in EMA mode. (Relocated expressions
are always positive.) A programmer may code an absolute expression over
2MW in a load or store and the loaders will allow the code to run in EMA
mode; it is the programmer's responsibility to realize that expressions over
2MW is interpreted by the EMA hardware as negative .•

• DBA
The DBA is a 24-bit word address, all 24 bits of which participate in the add. The
result is that exp + Ah + DBA can address 16MW words of memory.

• Address loads

2-46

A 24-bit address is needed in the Ah to address all 16MW. Opcodes 020-040
create zero-filled 24-bit fields from the 22 bits in Ai or Si, so they are okay in
extended mode for addressing up to 4MW.

The 24-bit A-load instruction (opcode Oli) must be used for addressing beyond
4MW from the DBA.

Cray Research, Inc. Proprietary TR-ITR 8.0 K

)

)

UNICOS Internals Technical Reference Hardware Overview 2-47
-~

) CRAY X-MP EMA instruction formats
In the table are the bit formats of the instructions affected by EMA.
• New instruction:

All but the last one (containing the 24-bit expression) are identical on a CRAY-l or
any CRAY X-MP.
The 24-bit A-load instruction was added to EMA machines so that 16 MW
addresses could be coded into instructions.
An X-MP with EMA hardware recognizes the new instruction in either EMA or
compatibility mode. However, a machine without EMA hardware will not test the
8th bit in such an instruction and thus misinterprets it as a jump.

• Expansion of 22-bit expressions:
The 22-bit expressions in the jump instructions are zero-filled by the hardware
before the add to the longer IBA in an EMA machine.
But in order to preserve the ability to code negative offsets in load/store
instructions, the 22-bit expressions in the load and stores are sign-filled before
the add to the longer DBA in an EMA machine. Hence the caution about
expressions longer than 21 bits.

TR-ITR B.O K Cray Research, Inc. Proprietary 2-47

Instruction Formats (relevant to EMA)

J
R
JAZ
JAN
JAP
JAM
JSZ
JSN
JSP
JSM

Ai exp,Ah
exp,Ah Ai
Si exp,Ah
exp,Ah Si

Ai exp
Si exp

Ai exp
(implemented via
LONGALD opdef)

g(4) h(3) i(3) j(3) k(3)

00 6 I
I

00 7 I
I

01 0 I
I

01 1 I 22-bit word I

01 2 "'1111- - - ------ -------
I

01 3 I
I

01 4 Q
01 5 I

I

01 6
I
I

01 7
I
I
I
I

10 22-bit 11
12 Ah AilSi IInl!- - - - - -------
13

02 0 AilSi 22-bit 04 .IIII!- - - - - -------

01 Ai 1 24-bit
t"lIlI- - - ------ -------

Testing the hardware for EMA
Sl 0

m(16)

I
I
I

I •

I 2-blt
: parce
I

- - - - -1111 1 IIJlI~ ~1I11'"

word

-----------11111 •• ·

word
-----------1111 .. •·

word
- - - - - - - - - - -UIII'"

so 1 JSN NOEMA
VWD 7/0'015,l/l,D'24/P.NOEMA -or-
Sl -1 A5 NOEMA*4

NOEMA = *
W@MCEMA,A2 Sl

*if EMA hardware present, Sl = -1, else Sl = 0

2-48 Cray Research, Inc. Proprietary TR-ITR 8.0 K

.)

j

UNICOS Internals Technical Reference Hardware Overview 2-49

CRAY Y-MP compatibility (24-bit) mode
EAM is enhanced addressing mode. The Y-MP (or X-MP EA) has 32-bit address
registers.
CRAY Y-MP CPUs are in X-MP "compatibility mode" when their exchange package
EAM bit is O. The CRAY Y-MP EAM mode is completely compatible with a CRAY
X-MP in its 24-bit addressing EMA mode and may be referred to as either "X mode"
or "24-bit mode".
Why use compatibility mode?
The only advantage of this mode is to enable a Y-MP system to execute a CRAYX-MP
EMA system binary. (There is a very slight saving of memory space because of
2-parcel instead of 3-parcelload and store instructions).
Disadvantages:
24-bit addresses can only address 16MW of memory. UNICOS must keep it from
spanning any 16MW memory boundary. The binary cannot address beyond its
own 16MW partition of memory (see the description On the facing page).
CRAY Y-MP compatibility mode binaries may not be executed on the
following:

CRAY-1:
X-MP in compatibility mode:

Would interpret long A-load instructions as jumps
Would recognize the long A-loads, but the binary's
memory references would "wrap" at 4MW bound-
aries.

Y-MP in EAM mode: Would misinterpret the binary's 2-parcelloadlstore
instructions

A CRAY Y-MP in compatibility mode may not execute a binary for the
following:

CRAY-1: UNICOS does not allow it, and it may not work
anyway. EAM hardware would treat expressions
over 2MW in load/store instructions as negative

X-MP in compatibility mode: Same reason as above.

Y-MP in EAM mode: Would yield unpredictable results. EAM 3-parcel
register load and store instructions would be inter-
preted as 2-parcelload and store instructions. (See
EAM Instruction formats, below).

A CRAY Y-MP (or CRAY X-MP EA) CPU is in X-MP "compatibility mode"
when its RAM bit is O •

• Jumps
Jump instructions contain 24-bit parcel address expressions, limiting code size to
4MW as in all combinations of hardware and mode. The P register is still 24 bits.

TR-ITR 8.0 K Cray Research, Inc. Proprietary 2-49

Hardware Overview 2-50 UNICOS Internals Technical Reference

• ThemA
The IBA is a 26-bit word address, capable of addressing to 64Mw. The effective
address addition (22-bit word expression + IBA) is done in 22-bit hardware. Any
carries are truncated. The left 4 bits of the IBA don't participate in the add, but
are copied into the 26-bit result.
The net effect of this is shown below (assume the IBA is 30MW):

CRAYY.MP, EAM = 0

32MW ? s: Jump to lMW
31MW I - ~-, ~1MW

Jumpto3MW

30MW IBA: 1MW = 04000000
29MW ~-+3MW + IBA (30MW) = 1VOOOOOOO

3MW = '14000000
+ IBA (30MW) = 170000000

01 111
28MW - - - - 31MW = 174000000 29MW = 164000000 , ,

All jumps behave as if the program is running in a 16MW machine. That is, the
program cannot address across a 16MW boundary. An attempt to do so causes a
wrap within a 4MW region. (UNICOS guarantees that a program in
compatibility mode does not cross a 16MW boundary.)

• Register loads and stores
Hardware executes a 24-bit expression load into an A register just like an X-MP
in extended mode.
Other loads and stores are also interpreted identical to an X-MP in extended).
mode. That is, sign extending the 22-bit expression to 24 bits for the add. This ~ ..
allows the expression to be negative.
Register Ah plus the expression can range from +16MW to -16MW.
The 22-bit expression, when sign filled to 26, provides an offset of -2MW to
+2MW. Any expression over 21 bits (2MW) is effectively negative.

Note: The loaders prohibits any code with a relocatable expression over
2MW in a load or store from running in "X" mode. (Relocated expressions
are always positive.) A programmer may code an absolute expression over
2MW in a load or store and the loaders will still allow the code to run in "X"
mode; it is the programmer's responsibility to realize that any expression
over 2MW is interpreted by the hardware as negative. •

• DBA
The DBA is a 26-bit word address but only 24 bits participate in the add. The left
2 bits are merely copied into the result.
The effect is that the program data must be within a 16MW section of memory,
not crossing a 16MW boundary. UNICOS ensures thi,s for an "X" mode program.

• Address Loads
Registers can be loaded with addresses up to 16MW in the same way as on an
XMP in extended mode. The EA hardware recognizes the long (24-bit) A register j'
load instruction. .

2-50 Cray Research, Inc. Proprietary TR-ITR 8.0 K

)

)

-)

UNICOS Internals Technical Reference Hardware Overview 2-51

CRAY Y-MP EAM (32-hit) mode
CRAY Y-MP CPUs are in "EAM mode" when their exchange package EAM bit is l.
In EAM mode, program code size is still limited to 4Mw, but data size can range up
to (theoretical) 4GW because of the 32-bit registers. Running in EMA mode is
preferable for this reason.
This "native" Y-MP mode is also known as ''Y'', "EAM", or "32-bit" mode.
Disadvantages:
• Programs from a CRAY X-MP must be recompiled or modified/reassembled since

hardware will not recognize the 2-parcelload/store instructions or the EMA 24-bit
A-load instruction ..

• Program binary sizes grow very slightly due to the 3-parcel instructions.
CRAY Y-MP EAM mode binaries may not be executed on the following:

CRAY-1 or CRAYX-MP: No CRAY machine prior to a CRAYY-MP (or CRAY
Y-MP EA) recognizes the 3-parcelload/store
instructions.

A CRAY Y-MP in EAM mode may not execute a binary for the following:

CRAY-1 or CRAYX-MP: Its 2-parcelload/store instructions would be misin
terpreted.

X-MP: Same reason as above, plus the misinterpretation
of any 24-bit A-load instructions

A CRAYY-MP (or CRAYX-MP EA) is in "enhanced" mode if the exchange package bit
EAMis 1.

• Jumps
Jump instructions still contain 24-bit parcel address expressions, limiting
program size to 4MW.
The P register is still 24 bits.

TR-ITR 8.0 K Cray Research, Inc. Proprietary 2-51

Hardware Overview 2-52 UNICOS Internals Technical Reference

• rnA
The IBA is a 26 to 32-bit word address, capable of addressing a theoretical 4GW
of memory. The effective address addition (exp + IBA) is done in 26 to 32-bit
hardware. The 22 bits in the instruction are zero-filled to the size of the IBA
before the add to the IBA.
The result is illustrated below: (assume the IBA is 13MW):

J 1MW

04000000 1MW

CRAY Y-MP, EAM = 1

J 3MW

14000000 3MW

J 4MW-1

17777777 4MW-1
+ 064000000 13MW (IBA)

070000000 14MW
+ 064000000 13MW (IDA)

100000000 16MW
+ 064000000 13MW (IDA)

103777777 17MW-1

All jumps can cross 16MW boundaries but are limited to +4MW from the IBA.
This limits all executable codes to 4MW.

• Register loads and stores
The hardware recognizes opcodes 020, 021, 040, 041, 10h, 11h, 12h and 13h
(register loads and stores) to be new 3 parcel instructions containing 32-bit
expressions.

• DBA
The DBA is a 26 to 32-bit word address. All bits participate in the add. The
result is that exp + Ah + DBA can address any word up to a 4GW theoretical)-
maximum. Any upper bits of the 32-bit expression and Ah register which do not
exist in the DBA are considered O.

• Address loads

2-52

A 26 to 32-bit address is needed in the Ah to address all of memory. Opcodes
020-040 will be interpreted as 3-parcel instructions, containing 32-bit
expressions.
The 24-bit A load instruction (opcode 01i) which was new to the CRAYX-MP
with EMA is of no use to the CRAY Y-MP in extended mode and is not allowed
(result is undefined).

Cray Research, Inc. Proprietary TR-ITR 8.0 K

-)

)

UNICOS Internals Technical Reference Hardware Overview 2-53

CRAY Y-MP EAM instruction formats
In the table are the bit formats of the instructions affected by EAM.
New Instructions:
For the CRAY Y-MP in native (EAM) mode the A and S register load/store
instructions have all been enlarged to 3 parcels in order to contain 32-bit
expressions.
If a cpu is running in CRAY X-MP compatible mode (EAM=O) however, these opcodes
are interpreted identically to a CRAY X-MP with EMA.
The 24-bit A-load instruction is unneeded, and undefined, for a CRAY Y-MP in EAM
mode.
Compatibility mode expansion of 22-bit expressions:
A CRAY Y-MP in compatibility mode behaves exactly like a CRAY X-MP in EMA
mode. The 22-bit expressions in jump instructions are zero-filled by hardware for the
add to the longer IBA.
The 22-bit expressions in load and stores are sign-filled for the add to the longer
DBA. Thus the caution about expressions longer than 21 bits also applies to the
CRAY Y-MP in compatibility mode.

TR-ITR 8.0 K Cray Research, Inc. Proprietary 2-53

Hardware Overview 2-54 UNICOS Internals Technical Reference

Powers ofH Significant Maximums
-.

Megawords
07777777 = 2,097,151 04000000 = 1MW 74000000 = 15MW

1 = 1
(21 bit EMA relocatable 10000000 = 2MW 100000000 = 16MW

10 = 8
expression) 14000000 = 3MW 120000000 = 20MW

100 = 64
17777777 = 4,194,303 20000000 = 4MW 170000000 = 30MW

1000 = 512
(22 bit word address) 24000000 = 5MW 240000000 = 40MW

10000 = 4,096 30000000 = 6MW 310000000 = 50MW
100000 = 32,768

77777777 = 16,777,215 34000000 = 7MW 360000000 = 60MW
1000000 = 262,144

(24 bit word address) 40000000 = 8MW 400000000 = 64MW
10000000 = 2,097,152 44000000 = 9MW 1000000000 = 128MW

100000000 = 16,777,216
377777777 = 67,108,863 50000000 = 10MW 2000000000 = 256MW

1000000000 = 134,217,728
(26 bit word address) 54000000 = 11MW 4000000000 = 512MW

10000000000 = 1,073,741,824
60000000 = 12MW 10000000000 = 1GW

100000000000 = 8,589,934,592
37777777777 = 4,294,967,295 64000000 = 13MW 20000000000 = 2GW
(32 bit word address) 70000000 = 14MW 40000000000 = 4GW

Instruction Formats (relevant to EAM modes)

J
R
JAZ
JAN
JAP
JAM
JSZ
JSN
JSP
JSM

Ai exp,Ah
exp,Ah Ai
si exp,Ah
exp,Ah si

Ai exp
Si exp

Ai exp

Ai exp,Ah
exp,Ah Ai
Si exp,Ah
exp,Ah Si

Ai
Si

2-54

exp
exp

g(4) h(3) i(3) j(3) k(3) m(16)

00 6 , , , ,
00 7 , , , ,
01 0 , , 2-bit ,

: parCE 01 1
,

22-bit word
~ , ,

01 2 :'''II!- - -- ------ ------. - - - - - ~", I'''II~ .jill"

01 3 d ,
01 4

, ,
01 5

, , ,
01 6 , ,
01 7 , ,
10 (X mode formatsl
11 22-bit word

12 Ah Ai/Si ·"11----- ------- - - - - - - - - - -II""

13

02 OIl Ai/Si 22-bit word
04 ·"11----- ------- - - - - - - - - - ~1I11.

01 Ai
I 24-bit word

l"III!- - -- ------ ------- - - - - - - - - - ~II'"

g(4) h(3) i(3) j(3) k(3) m(16) n(16)

10
(Y mode formats)

-
""1111- - - - - - - - - • --------111"· 11

Ah Ai/Si 0 0
32-bi word

12
13

02 "'",I~ - - - - - - - - - --------lInr·
OIl Ai/si 0 0 32-bi1 word

04

Cray Research, Inc. Proprietary TR-ITR 8.0 K

-"

)

)

)

UNICOS Internals Technical Reference Hardware Overview 2-55

Summary of hardware types I binary restrictions
Hardware mode flags in the CRAYX-MP and CRAYY-MP exchange packages are
similarly named, but are not identical. Summarized, they are as follows:

X-MPEMA

Y-MPEAM

CRAY-l mode X-MP mode
(22-bit) (24-bit)

Y-MPmode
(32-bit)

When binaries are linked, segldr flags their "primary machine type" in the file
header: ,

32 1 7 8 16
o :::;J!~ 0 I ~t I ~] l=:~~r

h d fl . \ h· " . b

A PMT xxxxx
A_PMT_UNDF
A_PMT_INC
A_PMT_CRAY1
A_PMT_XMP_NOEMA
A_PMT_XMP_ANY
A_PMT_XMP_EMA
A_PMT_CRAY2
A_PMT_YMP
A_PMT_C90

s are text ag prImary mac lne type magic num er

pmt

0
1
2
3
4
5
6
7
8

A_PMT_xxxxx AMAGICn

Description
Undefined (old form; magic number only)
Incremental load code fragment
CRAY-1S
CRAY X-MP, 22-bit mode
CRAY X-MP, mode indifferent (no exp >21 bits)
CRAY X-MP, 24-bit mode
CRAY-2
CRAYY-MP
CRAYY-MP C90

Prior to 6.0, binaries were classified by magic number (AMAGICn) only:

AMAGICn ID Description
A_MAGIC 1 0407 CRAY X-MP, mixed text/data
A_MAGIC2 0410 CRAY X-MP shared text
A_MAGIC3 0411 CRAYY-MP 32-bit, mixed text/data
A_MAGIC4 0412 CRAY Y-MP 32-bit, shared text

X-MP mode Y-MP mode

Share~hl~~~ I !~~ I !~~ I
On the facing page are summaries of which binary types can execute on which
hardware and mode.

TR-ITR 8.0 K Cray Research, Inc. Proprietary 2-55

Hardware Overview 2-56 UNICOS Internals Technical Reference

binary
meant
for:

CRAY·l
(orX-MP
w/oEMA)

CRAYX·MP
EMA=O

CRAYX·MP
EMA-l

CRAYY-MP
EAM=O

CRAYY·MP
EAM=1

binary
flagged
A_PMT_xxx

CRAY·l -

XMP
NOEMA

_XMP_ANY

_XMP_EMA

_YMP

2-56

HARDWARE COMPATmILITY

executed on:
CRAY·l
(orX-MP CRAYX·MP CRAYX·MP CRAYY-MP CRAYY·MP
w/oEMA) EMA=O EMA=1 EAM=O EAM=1

expressions expressions load/store
OK OK over2MW over2MW instructions

treated negative treated negative misinterpreted

expressions expressions load/store
OK OK over2MW over2MW instructions

treated negative treated negative misinterpreted

Long A loads lOata references load/store/long A
executed as wrapat4MW OK OK load instructions
jumps boundaries misinterpreted

Long A loads Data references load/storeJlong A
executed as wrapat4MW OK OK load instructions
jumps boundaries misinterpreted

3-parcel 3-parcel 3-parcel 3-parcel
instructions instructions instructions instructions OK
misinterpreted misinterpreted misinterpreted misinterpreted

CRAY·l

(407)
OK

Not allowed

Not allowed

Not allowed

Not allowed

SOFTWARE RESTRICTIONS

executed on:

X·MP X·MP X·MP Y·MP
(noEMA) EMA=O EMA=1 EAM=O

Not allowed Not allowed Not allowed Not allowed

OK
OK within4MW Not allowed Not allowed

partition

OK
OK Not allowed OK within16MW

(407,41~t-
partition

r- (407,410~
OK

Not allowed Not allowed OK within16MW
partition

Not allowed Not allowed Not allowed Not allowed

Cray Research, Inc. Proprietary

Y·MP
EAM=1

Not allowed

Not allowed

Not allowed

Not allowed

(411,412)
OK

TR-ITR 8.0 K

)

-J

UNICOS Internals Technical Reference Hardware Overview 2-57

CRAY Y-MP C90 in native mode
The CRAY Y-MP C90 has new instructions such as EMI, ESI, breakpoint, VM1
register, semaphore test and branch, B read-and-increment, and 3-parcel jump
instructions with 32-bit addresses (allowing code up to 1 gigaword).

CRAY Y-MP C90 in compatibility mode
If the CRAY Y-MP C90 mode bit in the exchange package is set, the C90 CPU is
executing in Y-MP compatibility mode.
None of the new C90 instructions are recognized (note especially the 3-parceljump
instruction (with 32-bit address).
A 24-bit Y-MP jump address is zero-filled to 32 bits and the add to the IBA is done in
32-bit hardware. There are therefore no ''boundaries'', for example, no wrapping to
the beginning of a partition. The CRAY Y-MP binary may be executed anywhere in
memory.
But block memory transfers work a little differently on a CRAY Y-MP C90 in
compatibility mode than on a CRAY Y-MP. Certain memory strides cause
bi-directional memory results different than the compilers plan for on a CRAY Y-MP.
Therefore, currently (8/92) Y-MP binaries must be run with BDM (hi-directional
memory) mode off.

CRAY X-MP in compatibility mode
CRAY X-MP CPUs with EMA hardware are in "EMA mode" when their exchange
package EMA bit is 1.
With Extended Memory Addressing hardware, program code size is still limited to
4MW, but data size can range up to 16MW. Running a X-MP in EMA mode is

.. preferable for this reason.
This "native" X-MP mode behaves the same as the Y-MPs X-MP "compatibility"
mode.
Disadvantage: The only restriction in this mode is lhat load/store 22-bit address
expressions not exceed 2MW, because of the sign-extending done for data reference
instructions.

CRAY X-MP EMA mode binaries may not be executed on the following:

CRAY-1: It would misinterpret long A-load instructions as
Jumps.

X-MP in compatibility mode: It would recognize the long A-load instructions, but
the binary's memory references would "wrap" at
4MW boundaries.

Y-MP in EAM mode: It would misinterpret the binary's 2-parcelload/
store instructions.

-
TR-ITR 8.0 K Cray Research, Inc. Proprietary 2-57

Hardware Overview 2-58 UNICOS Internals Technical Reference

A CRAY X-MP in EMA mode may not execute a binary targeted for the
following:

2-58

CRAY-l or CRAY X-MP in
compatibility mode:
Y-MP in EAM mode:

Any expressions over 2MW would be misinter
preted as negative.
Also yields unpredictable results. The EAM 3-parcel
register load and store instructions would be
misinterpreted as 2-parcelload and store
instructions. (See EAM Instruction Formats, below).

Cray Research, Inc. Proprietary TR-ITR 8.0 K

)

)

UNICOS Internals Technical Reference Hardware Overview 2-59

Hardware system control foldouts
This section contains the following hardware system control foldout diagrams:

CRAY Y-MP System Control

CRAY Y-MP C90 System Control

CRAY X-MP System Control

Interrupt Mode/Flag Summary (y-MP C90)

TR-ITR 8.0 K Cray Research, Inc. Proprietary 2-59

Hardware Overview 2-60 UNIGGS Internals Technical Reference

This page used for alignment

2-60 Cray Research, Inc. Proprietary TR-ITR 8.0 K

)

)

)

UNICOS Internals Technical Reference

_IIQM,M

V7

VO

64

VM
64

TR-ITR 8.0 K

, ,

:1
[

CRAYY·MP

T77 .],

TOO [. ,.......--~

64 32

PROGRAMMABLE CLOCK

II I I ICD
82 82

II - interrupt interval
!CD - interrupt countdown

Cray Research, Inc. Proprietary

Hardware Overview 2-61

OTHER SHARED RESOURCES

RTC

1 32 32
[VERymGH SPEED CHANNEL[S]]

1, 5, [11, 15]

II:~II BL~~
32 32

CLUSTERm

MEMORY

(Kernel) PWS
CPUO

pw_xpux (kernel XP)

CPUn

pw _xpux (kernel XP)

(User)

ucomm uc_sm semaphores
uc_sb shared B's
uc_st shared Ts

user structure
u_xp exchange package
u_saveb BOO-B77
u_savet TOO-T77
u_savevm VM"
u_savev VO (V0-7 at dis-

connect time)
u_savebmmBMM save area

2-61

Hardware Overview 2-62 UNICOS Internals Technical Reference

CRAY Y-MP C90

r-:;~§§§§~,~"~a~!~r.'II~~Rll-1~~~~~~~~~~ m¥UP!;Ff:~1HD!.J;lesmlJ;DJ*"

....
____ -,..:: ____ w Performance Monitors

1

100 (STATUS REGISTERS 2 and 3) RTC ~

2-62

_ 177 VO-7 RPM ""37 JPI LOW ~ CHANNELS (04~7)
64 48

VMl

STATUS REGISTERS 4,5,6

I memory elTOr type I
I memory elTOr syndrome I
I memory elTor chip addrest

I BMM - bit matrix multipl~
64x64

T00-77 @ I BOO-77@

64 32
PROG~LECLOCK

CL - clustered
PMBY - PM's busy

PN - processor (4 bits)
CLN - cluster (5 bits)

STATUS REGISTER 7

I RPE SRRE CHIPI
CHIP - register type

Cray Research, Inc. Proprietary

32 32 32
[VERYIDGH SPEED CHANNEL[S]]

3,7,13,17,23,27,33,37

r3D1 1

CAS @=II =-CL~3~@
32 32 32

, SMa r-------'1 ~
CLUSTERm

, , . , , .
f sfo[,'" t--J.----+-I '---:orI'~

16 CPU'S: 17 clusters

• •
(Kernel) PWS

cpuo

pw_xpux (kernel XP

CPUn

-------------pw_xpux (kernel XP)

--- ------- - -". pw_xpus (user XP)

-afs~j------------------

ucomm uc_sm semaphores
uc_sb shared B's
uc_st shared Ts

user structure
u_xp exchange package
u_saveb BOO-B77
u_savet ~O-T77

u_savevm VlIl
u_savev VO (V0-7 at dis-

connect time)
u_savebmmBMM" save area

TR-ITR 8.0 K

)

-)

)

UNICOS Internals Technical Reference Hardware Overview 2-63

--------------------~CCRAYX-MP)~-------------------

V7 ,
~oo--------~¥~o---------1'

64

VM
64

, ,

PERFORMANCE MONITORS

T77

TOO

64 24
PROGRAMMABLE CLOCK

II ICD

32 32
II - interrupt interval
ICD - interrupt countdown

~

TR-ITR 8.0 K Cray Research, Inc. Proprietary

OTHER SHARED RESOURCES

I RTC I ~
64 5

LOW SPEED CHANNELS

~'1 CAl7 ',1 CLl7 '1
CEIO ,'1 CAIO 1, CLIO 1,

1 24 24
[VERYIDGH SPEED CHANNEL[S)) m,'] CA7 ,]~
CE6 ,", CA6 , CL6,

24 24 24
CLUSTERl

/JS¥SL) ST7 ,], '1 SB7 ,

fSMO['" ([. I SBOl' STO

1 64 24
1,2 CPU'S: 3 clusters
4 CPU'S: 5 clusters

(Kernel) r""":':'=~p'-'W"'-S=--_,
CPUO

pw ~pux (kernel XP)

CPUn

---------- .. -pw_xpux (kernel XP)

(User)

ucomm uc_sm sema,phores
uc_sb shared B's
uc_st shared Ts

user structure
U_XP exchange package
u_saveb BOO-B77
u_savet TOO-T77
u_savevm VM"
u_savev va (V0-7 at dis-

connect time)
u_savebmm BMM save area

2-63

Hardware Overview 2-64 UNICOS Internals Technical.Reference

Interrupt ModelFlag Summary (Y-:MP C90)

INT Flag (it happened) / Interrupt Mode (we care)

Register Memory Floating Operand Program Error exit Break Correct-
parity error point range range point able

RPEI uncorrect error error error EEII interrupt memory
mp able FPEI ORE I PRE I FEX BPI I MECI

MEUI IFP lOR IPR IBP ICM
IUM

CPU in INT "?" "?" "?" Software INT INT "?"
User usrrpe if masked if masked if masked says usreex usrbpi if masked

(mm=O) ignore ignore ignore maskable, ignore
else else else but else
INT INT INT hardware INT

usrmei usrfpi usrore forces usrmei
INT

usrpre

CPU in INT Software INT Software Software INT INT Masked
Kernel irnrnrpe: says irnmfpe: says says irnmeex: irnmbpi: (ignored)

(mm=l) panic maskable, panic maskable, maskable, panic panic (if causes
(unless but but but INT

scrubbing hardware hardware hardware inunmei:
) forces forces forces panic)

INT !NT INT
immmei: irnmore: irnmpre:
panic panic panic

Maint- Real time Inter- I/O Program- Deadlock Monitor Normal
enance clock processor interrupt mabIe interrupt mode exchange
control interrupt interrupt clocklNT interrupt

unit RTII ICPI 1011 DL(I) I NEXI
mT lIP 110 PCII IDL MIll FNX

MCUI IPC IMI
IMC ..

CPU in INT INT INT INT INT INT !NT INT
User usrmcu usrrtm usripi usrioi usrpci usrdli panic usrnex

(mm=O) (same as system
usrmcu) call

CPU in Pending INT Pending Pending Pending !NT (if causes t Kernel (if causes irnrnrtm: (if causes (if causes (if causes immdli: INT !NT
(mm=l) INT panic INT INT INT panic immmii: immnex: immmcu: irnmipi: immioi: irnmpci: panic) panic panic) panic) panic) panic)

I

t Depends on XA: XA=pw_xpux tirnrnnex:panic, XA=pw_xpus tuser progam
XA=other t idle loops, rpe scrub, diagnostic, memory error test, etc.

2-64 Cray Research, Inc. Proprietary TR-ITR 8.0 K

)

)

UNICOS Internals Technical Reference

-IIRg·N

, , V7 , ,
~OO-------=V~O--------~

77
64

VM

64

TR-ITR 8.0 K

CRAYY-MP

;7 t:1 i-J-_""",,,

64 32

PROGRAMMABLE CLOCK

II I L-I ----,.ICD----I
32 32

n - interrupt interval
!CD - interrupt countdown

Cray Research, Inc. Proprietary

Hardware Overview 2-61

OTHER SHARED RESOURCES

RTC
64

LOW SPEED CHANNELS

1 32 32
[VERY mGH SPEED CHANNEL[S]]

1, 5, [11, 15]

II :~II BL~U;~
32 32

CLUSTERm

MEMORY

(Kernel) PWS
CPUO

pw _xpux (kernel XP)

CPUn

-------------pw....xpux (kernel XP)

(User)

ucomm. uc_sm semaphores
uc_sb shared B's
uc_st shared Ts

user structure
u_xp exchange package
u_saveb BOO-B77
u_savet TOO-T77
u_savevm VM"
u_savev VO (V0-7 at dis-

connect time)
u_savebmmBMM save area

2-61

)

Hardware Overview 2-62

6'rl.. f{' _-----_.
.... -------.... -111(CRAYY-:MPC90

2-62

IHAIIjI

00

177
4

VM1
VM

STATUS REGISTERS 4,5,6

I memory error type I
I memory error syndrome I
I memory error chip addrest

Hardware Performance
(STATUS REGISTERS 2 and 3)

HPM0-037,
48

I BMM - bit matrix multipl~
64x64

T00-77 @ I BOO-77@

64 32
PROGRAMMABLE CLOCK

CL - clustered
PMBY -PM's busy

PN - processor (4 bits)
CLN - cluster (5 bits)

STATUS REGISTER 7

I RPE SRRE CHIPI
CHIP - register type

Cray Research, Inc. Proprietary

UNICOS Internals Technical Reference

• •
(Kernel) PWS

CPUO

pw_xpux (kernel XP

CPUn

(U;~j------------------

ucomm uc_sm semaphores
uc_sb shared B's
uc_st shared Ts

user structure
u_xp exchange package
u_saveb BOO-B77
u_savet TOO-T77
u_savevm VM"
u_savev VO (V0-7 at dis-

connect time)
u_savebmmB~savearea

TR-ITR 8.0 K

UNICOS Internals Technical Reference

(CRAYX-MP)

ItJa·'
PERFORMANCE MONITORS , V7 , , ,

mJ1 00 VO
0

1

, 7
77 , 46

64

VM
64 T77

TOO

64 24
PROGRAMMABLE CLOCK

II IOD

32 32
IT - interrupt interval
ICD - interrupt countdown

)

TR-ITR 8.0 K Cray Research, Inc. Proprietary

Hardware Overview 2-63

I RTC I O!J
64 5

LOW SPEED CHANNELS

~'1 CA17 , ,1 CLl7 '1
CE10 '"I CAlO l, CLlO l,

1 24 24
[VERy IDGH SPEED CHANNEL[S]] m'l CA7'1~
CE6 'l CA6 , CL6,

24 24 24
CLUSTER 1

/JSl\faLl ST7 , 1 '1 SB7 ,

rs~o[,"([~ I SBO l' STO

1 64 24
1,2 CPU'S: 3 clusters
4 CPU'S: 5 clusters

(Kernel) r-==~P"":W~S=--_--,
CPUO

pw_xpux (kernel XP)

CPUn

p~_ip'"u; - (;~r XP)

(User)

ucomm uc_sm semaphores
uc_sb shared B's
uc_st shared T's

user structure
u_xp exchange package
u_saveb BOO-B77
u_savet TOO-T77
u_savevm VM"
u_savev VO (V0-7 at dis-

connect time)
u_savebmm BMM save area

2-63

)

-)

Hardware Overview 2-64 UNICOS Internals TechnicalReference

Interrupt ModelFlag Summary (Y-:MP e90)

INT Flag (it happened) / Interrupt Mode (we care)

Register Memory Floating Operand Program Error exit Break Correct-
parity error point range range point able
RPEI uncorrect error error error EEII interrupt memory
IRP able FPEI ORE I PRE I FEX BPI I MECI

MEUI IFP lOR IPR IBP ICM
IUM

CPU in INT "?" "?" "?" Software INT INT "?"
User usrrpe if masked if masked if masked says usreex usrbpi if masked

(mm=O) ignore ignore ignore maskable, ignore
else else else but else
INT INT INT hardware INT

usrmei usrfpi usrore forces usrmei
INT

usrpre

CPU in INT Software INT Software Software INT INT Masked
Kernel immrpe: says irnmfpe: says says irnmeex: immbpi: (ignored)

(mm=1) panic maskable, panic maskable, maskable, panic panic (if causes
(unless but but but INT

scrubbing hardware hardware hardware immmei:
) forces forces forces panic)

INT INT INT
inmunei: irnmore: irnmpre:
panic panic panic

Maint- Real time Inter- 110 Program- Deadlock Monitor Normal
enance clock processor interrupt mabIe interrupt mode exchange
control interrupt interrupt clocklNT interrupt

unit RTII ICPI lOll DL(I) I NEXI
IRT lIP 110 PCII IDL Mill FNX

MCUI IPC IMI
IMe

CPU in INT INT INT INT INT INT INT INT
User usrmcu usrrtm usripi usrioi usrpci usrdli panic usrnex

(mm=O) (same as (5,JtltJliN~ system
usrmcu) ~'t) call

CPU in Pending INT Pending Pending Pending INT (if causes t Kernel (if causes immrtm: (if causes (if causes (if causes irnmdli: INT INT (mm=1) INT panic INT INT INT panic immmii: immnex: inmuncu: irnmipi: irnmioi: irnmpci: panic) panic panic) panic) panic) panic)
I

t Depends on XA:
t ;();"Ir, ~ fI.w jI,,-,kltJr;rf S),plol /l.e(l(r '" .;~Y'I XA=pw _xpux J unmnex: panJ.c, XA=pw _xpus Juser progam

XA=other J idle loops, rpe scrub, diagnostic, memory error test, etc.

2-64 Cray Research, Inc. Proprietary TR-ITR 8.0 K

Contents
)

System Initialization [3] .. 3-1
Objectives ... , 3-1
Overview. 3-2
Kernel compile options .. 3-3

Kernel code optimization . 3-3
Global register assignment . 3-3
Global intrinsic functions .. 3-4
Vector use restrictions ... 3-5
Kernel mode intrinsic functions. 3-5
Kernel mode intrinsic functions for CRAY Y-MP C90 systems 3-6
Assembler table macros . 3-7

lJNICOS linked lists ... ,.,', .. ,',............. 3-8
lJNICOS kernel bit maps .. 3-10
UNICOS stacks. 3-12

Stable stack feature summary.. 3-13
Stack pool management. 3-14

stackinitO .. 3-14
expandstackO . 3-14
contractstackO .. .

Stack management
allocstack() , .. ,)
freestackO

Stack form.at
Context switching .. .

CPU and process management .. .
Basic principles .. .
Kernel register save areas .. .
Context switch sample .. .

__ ---_-_s~~epO and wakeupO

3-14
3-15
3-15
3-15
3-16
3-18
3-18
3-18
3-18
3-20
3-22
3-24
3-26
3-26
3-28
3-29
3-30
3-31
3-32
3-33
3-34
3-35
3-36
3-39
3-40
3-41
3-41
3-42

Kernel main loop overview .. .
Kernel multithreading

Overview .. .
Lock mechanics .. .
UNICOS multithread lock logic - general .. .
SEMLOCK macro .. .
SEMLOCK illustration
MEMLOCK macro .. .
MEMLOCK illustration
A'l'OMIC lock macros
ATOMIC_ADD illustration ., .. .
R_MEMLOCK and W_MEMLOCK lock macros
R_MEMLOCK and W_MEMLOCK illustration .. .
Atomic sleep
Logic without atomic sleep .. .
Logic with atomic sleep)
Ownership macros

Contents

Lock hierarchy
Lock statistics
Lock debugging .. .

Kernel register uses .. .
Kernel CPU register usage .. .
Kernel cluster (1) register usage

<---_---_--!fernel cluster (1) semaphore register usage .. .
Bootstrapping the mainframe
~ Booting methods
~ :s Bootstrapping the mainframe with the full kernel
~ Kernel structures at deadstart

Kernel structures at deadstart
Bootstrapping the mainframe with a compressed kernel

lJNICOS kernel startup .. .
Startup overview
mfstart Imfinit logic
csl processing
Startup file I table relocation .. .
umainO logic
sysprocO routine .. .

Summary .. .
Creating system processes
sysprocO example
Creating system processes

Central memory sizes .. .

3-42
3-43
3-43
3-44
3-44
3-44
3-45
3-47
3-47
3-48
3-50
3-51
3-52
3-55
3-55
3-56
3-58
3-02
3-67
3-73
3-73
3-73
3-74
3-76
3-82

)

)
- -~/

)

')
j

System Initialization [3]

Objectives

TR-ITR 8.0 K

After completing this section you should be able to:

• Describe kernel software features:

- Compile options
Linked lists

- Bitmaps
- Context switching
- Mainline logic
- Multithreading locks

• Describe the kernel deadstart procedure

• Trace the logic flow of the kernel from deadstart
through init(8) in single user mode

• Diagram contents of memory during the various stages
of startup

Cray Research, Inc. Proprietary 3-1

System Initialization 3-2 UNICOS Internals Technical Reference

Overview

3-2

The "System Initialization" chapter describes how the UNICOS kernel is
started from a "down" system.
The first section of the chapter provides detail on several kernel software
features providing background needed to understand kernel source code
and logic.
The middle sections of the chapter describes the operational procedure
relating to dead starting the Cray mainframe, including special aspects of
the files that are used to start the machine.
The third sections uses pseudo code / flow diagrams and memory layout
diagrams to describe UNICOS startup processing.

Cray Research, Inc. Proprietary TR-ITR 8.0 K

UNICOS Internals Technical Reference System Initialization 3-3

Kernel compile options
This subsection describes special software coding practices used in the UNICOS kernel
source code that are extensions to the typical C language programming environment.
A unique C language compiler option and several assembler language programming
facilities and conventions are used to support the UNICOS kernel. These software
coding practices provide increased functionality within the kernel without sacrificing
processing speed. They are created by compiling the UNICOS kernel. A general
understanding of these unique coding practices provides a framework for
understanding some of the essential functional characteristics of the kernel and the
ability to study the logic of the kernel on a source code level.
The C compiler option - h kernel provides the following functional characteristics
of the kernel:
• Supports a special set of intrinsic functions to allow the kernel access to hardware

facilities beyond those accessible in the standard compiler

• Provides global register support
• Inhibits the compiler from generating vector code
The following subsections provide a detailed explanation of the -h kernel
compiler option and h,ow it affectsthe <;l~sign gfthe kernel. if:"];lst';jjj:6Lhkerne~lt
~nvbkedC;};:ti'tmifsici1Unctldns;is;j,pl:(jjVit1'~a'~'iit··tlte;"eiYa~}G)t1;thiSisubs.e:~PiQ)ili.

Assembler language coding conventions and table macros provide the following
functional characteristics of the kernel:
• Allow for the referencing of C language structure members with assembler

commands
• Provide a convenient method to access C language defined structure members

with GET and PUT macros.

Kernel code optimization

The -h kernel command line option to the compiler provides additional
optimization within kernel code. Separate returns are generated when the -h
kernel option has been specified. Without the -h kernel option specified, all
returns within a function jump to a compiler generated label within the function and
this is where the return is actually done. When the -h kernel option is specified,
each return within the function actually does the return and does not jump to the
compiler-generated label.

Global register assignment

The UNIX kernel and UNICOS kernel make extensive use of global pointers. The term
global in C language means that the data item is defined outside of the scope of a
function block, has an external attribute, and therefore can be referenced by other
functions linked in the same program without defining that value in each function
itself.
However, it should be emphasized that "global" here 'does not imply accessible
outside of the kernel or accessible outside a given process space. User-level processes
do not have direct access to any global pointers that are in the domain of the kernel.

TR-ITR 8.0 K Cray Research, Inc. Proprietary 3-3

System Initialization 3-4 UNICOS Internals Technical Reference

All of the values and tables defined in the file /usr/sre/uts/el/md/lowmem.e
have this global attribute. Of particular importance to the kernel are four pointers
normally defined in low memory (lowmem) I which are pointers to (contain the
address of) the current connected process' proe table area (up pointer), peomm area
(upe pointer), user area (u pointer), and ueomm area (ue pointer). Thousands of
lines of kernel code reference fields within these four structures using syntax such
as:

up->p-pflag

or

Global intrinsic functions

The concept of current process and the coding method described above conflict with
the concept of the multithreaded kernel where there is a unique current process per
CPU (up to 16 on the CRAYY-:MP C90). A single global pointer in low memory
(lowmem) cannot support the multithreaded functionality of the kernel.
Global register intrinsic functions provide a way for a CPU-specific register to be
used whenever a source statement references the memory management fields
described above. CPU-specific work registers are normally selected from the set of
B01-B55 and T01-T55 work registers. The global register intrinsic functions ensure
that each CPU is referencing its own process area.)
Global means only within the context of the kernel. The contents of these registers

3-4

are not accessible to users. The kernel's contents in these registers are saved and
replaced by the user's contents before the user is given access to these registers.
While executing in user mode, a user process only has access to private data. The
use of global register intrinsic functions provide no system integrity or security
problems because they only provide convenient access to features that would
otherwise require CAL programming. User mode use of these intrinsic functions does
NOT provide the same semantics as kernel mode use.
The use of the B01-B55 and T01-T55 work registers by the kernel global register
intrinsic functions causes some conflict with the normal assignment of these
registers by the C compiler. To resolve this conflict, a special compile option must be
used when building the kernel. This option requests that the compiler avoid using
the selected registers for its normal work register pool. This command line option,
-h kernel, is not documented for the field and is intended for internal Cray
Research, Inc. use only.
A special syntax is recognized by the ANSI C front end to indicate that a variable
must live in a fixed (global) B or T register. The variable type is limited to simple
one-word data types equivalent to those allowed with the register attribute. The
declaration looks like the following:

extern int GVAL = _T(37)i

or

extern int *PVAL = _B(25)i

Cray Research, Inc. Proprietary TR-ITR 8.0 K

)

)

UNICOS Internals Technical Reference System Initialization 3-5

There is also a small restriction on the use of the B and T work registers. Registers
must be assigned for global in the range of 1 through 55 decimal, 67 octal.
Source lines in the file /usr/src/uts/cl/sys/systm.h define the global variables
and equate them to the work registers. The following external variable (extern)
declarations define the registers assigned to pointers within major kernel structures
for the current connected process as follows: the user area pointer (u) as CPU
register B064 (octal), the ucomm area pointer (uc) as CPU register B063, the proc
table pointer (up) as CPU register B062, and the pcomm area pointer (upc) as CPU
register BO 61.

extern struct user *u

extern struct ucomm *uc

extern struct proc *up

=_B(064) i

=_B(063)i

=_B(062) i

extern struct pcomm *upc =_B(061)i

In addition to these major global process pointers, a small number of B and T
registers are assigned to variables to provide fast access to their corresponding data.
The semaphore checking routines make use of most of these assigned registers.
In summary, a variable reference up->p....,pflag in any function can be interpreted as
_B (062) ->p....,pflag. Each CPU in the kernel thus has a unique reference to its own
currently connected process (proc) table entries.

Vector use restrictions

As part of the kernel mode flag -h kernel machine code from the c compiler does
not reference vector registers. Reference is avoided for the sake of kernel thread
efficiency, since the time needed to save and reload vectors to preserve user data
during interrupt processing usually exceeds any gains from other possible uses of
vectors in kernel logic.

Vector registers are used in specific CAL routines such as memory to memory copies,
but in general, it is up to the routine's author to preserve and restore the user's
vector contents in these cases.

Kernel mode intrinsic functions

A number of special purpose intrinsic functions are available on the CRAYY-MP
family of computer systems. These functions are not documented for normal users on
the system. Some of these intrinsic functions generate hardware privileged
instructions such as providing the functioning of an I/O channel. The system must be
executing in kernel mode to execute many of these intrinsic functions. Some
examples of these intrinsic functions are as follows:

unction

void_clrCI (n)

void _CCI ()

TR-ITR 8.0 K

escnptIon

The _clrCI function clears the channel interrupt
flag and channel error flag on channel n. No value is
returned.

The _CCI function clears the programmable clock
interrupt. No value is returned.

Cray Research, Inc. Proprietary 3-5

System Initialization 3-6 UNICOS Internals Technical Reference

1~'unctIon

void _DCI ()

JJescnptIon

The _CIPI function clears the interprocessor
interrupt. No value is returned.

The _ECI function enables the programmable clock
interrupt. No value is returned.

The _DCI function disables the programmable clock
interrupt. No value is returned.

Kernel mode intrinsic functions for Cray Y-MP C90 c011l:puter systems

3-6

The following examples of intrinsic functions are available only on CRAYY-MP C90
computer systems and only in kernel mode. These intrinsic functions are not
documented for users.

I }I'unctlon

void _DI (n)

void _DMI (

void _EI(n)

void _EMI

void _ESI

DescnptIon

The _DI function disables channel interrupts for
channel n. No value is returned.

The _DMI function disables monitor mode interrupts.
No value is returned.

The _EI function enables channel interrupts for
channel n. No value is returned.

The _EMI function enables monitor mode interrupts.
No value is returned.

The _ESI function enables system JJO interrupts.
No value is returned.

Cray Research, Inc. Proprietary TR-ITR 8.0 K

)

')
/

)

)

UNICOS Internals Technical Reference System Initialization 3-7

Assembler table macros

The assembler table creation macro TABLE is a standard UNICOS facility supplied
and documented with the library routines. The source code for the macro TABLE
resides in /usr/src/lib/asdef/table. s. The table consists ofa header, body,
and end statement. The body of the macro definition consists ofFIELD macros.
These FIELD macros provide for naming a particular field within a particular kernel
table, indicate the field's bit starting position within a word, and the number of bits
in the field. This field information is translated to a standard naming system using
prefixes added to the field name supplied by a programmer. The three basic prefixes
are:

Prefix

W@

N@

S@

Description

Word offset from the base of the table

Bit offset in the word

Size of the fields in bits

In general, kernel tables are not defined exclusively for assembler use but are
defined by C language structure definitions in the standard header (. h) files. The
assembler table macros define references to C structure fields so that the fields can
only be accessed by the $GET and $PUT macros in a standard and convenient manner.
Only table fields that are referenced by assembler code are defined in this way. A
family of GET and PUT macros extract and insert bit field values when the field is
referenced. The source code for the kernel macros is in the /usr/src/lib/asdef
directory. The table references are defined in c f . SN / u text. h, which is created by
the mkutext (cmd/cl/mkutext/mkutext.c) command compiled and executed
during the kernel make process. To locate the C structure field references by the
assembler W@reference examine either the utext.h ofmkutext files.

TR-ITR 8.0 K Cray Research, Inc. Proprietary 3-7

System Initialization 3-8 UNICOS Internals Technical Reference

UNICOS linked lists
The UNICOS kernel makes extensive use of single and double linked lists.
• Single linked lists use a single address pointer to point to succeeding data items.
• Double linked lists link an item to its preceding and succeeding list item. These

lists are used when the list is very dynamic, that is items are frequently added
and removed from the middle of the list.

• UNICOS uses lists to form:
collections of "in-use" or "free" item's, (possibly table items).
queues of items indicating the items status.
queues of items indicating relationships (e.g. priorities or chronology).
"hash queues" to speed up table search time.

• Process table list examples (on right).

Type List Description Sample

singly availproc List of "free" process table entries p_next points to succeeding elements -
linked - ones not assigned to a user's pro- NULL temtinated
list cess. Members added and re- 2 entries (pid=O) on list

moved from the front only.

doubly allproc List of process table entries as- p_next points to succeeding elements,
linked signed to user processes. Members p_prev points back - allproc is head and
list added and removed anywhere in tail of the list

list. pids 1213, 4902, 4544, etc. on list

queue p_childrenl Singly linked list of process's cur- p_children points to youngest child pro-
pc_sibling rent child processes. cess, siblings (children of same parent) are

linked via the pc_sibling NULL termi-
natedlist
pid 4544 bas 3 children, ids 1072, 9504,
and 5318
pid 9504 has child 7037

sorted swapq Doubly linked list of process (not shown)
queue (pcomm) entries in descending or- pc_swqf and pc_swqb form doubly

der by swap in priority linked list ofpcomm proc table en-
tries

hash pidhash Hash lists for locating a process by The sample shows the proc table
queue(s) its process id (pid). hashed across 8 hash headers

A hash header table is used to pidhash. The remainder when the

create smaller lists of processes to pid is divided by the number of
save search time. Each time a new headers is used as an index to locate
process is created and a new pid is the hash list.
computed, its pid is hashed as Note, by using a power of 2 hash
shown, and the item linked to the header table size, the remainder can
corresponding hash queue. When be computed with a simple "and"
searching for a particular pid in binary operation, as shown.
the future the target pid is hashed,
and only the short hash list is
scanned.

3-8 Cray Research, Inc. Proprietary TR-ITR 8.0 K

)

)

)

UNICOS Internals Technical Reference

struct *proc availproc

struct *pr9c·' aIlpr~~~

TR-ITR B.O K

p-pid= 0
p_next p-prev
p-pidhash
P3hildren pc_sibling

System Initialization 3-9

..-F-:::-----I [0]
[1]

t------I [2]

~:--__ -I [3]
[4]

~~;:::::::::;;:±--i~~~~~==3 [5] [6] 'ihl~
~~-----1 [7] P

.1., ! l
F~ jf.f" 'j ~, 11~

f Ii> " JJJ' .
J1V\~ I'lPlII1-/l ",q

pid && 07 (pid I 8 remainder) 29 ~,,"'t
1213 && 07 = 5 c.Jhl~~\ .. '"
4902 && 07 = 6 Jt. *1
4544 && 07 = 0 " JJ-vt
1072 && 07 = 0
9504 && 07 = 0
7037 &&07 =5
5318 && 07 = 6
9710 && 07 = 6
9560 &&07 =0

rt"~)'I\to-- \:::t(fOvJ

~ liifl!.l!(ifLfillt{;;'itfJ~Wii!llilti)~:Jli!Y1i~j;

p-pid=O
p_next p-prev
p-pidhash
p_children pc_sibling

p_pid=9560
p_next
p-pidhash~.e
p_children pc_sibling

Cray Research, Inc. Proprietary

struct proc {
intp-pid

}

struct proc * p_next
struct proc * p-prev
struct proc * p -pidhash
struct pcomm {

struct pcomm * p_children
struct pcomm * pc_sibling
struct pcomm *pc_swqf
struct pcomm * pc_swqb

} p"'pcomm

3-9

System Initialization 3-10 UNICOS Internals Technical Reference

UNICOS kernel hit maps
The kernel makes extensive use of bit maps to manage resources. Central (user) memory,
swap space, fIle system space, and system buffers are examples of resources managed by bit
maps.
The diagram on the right references eoremap , the pool of central memory where user
processes are maintained, showing the three major data areas involved in map management.

• The resource itself (starting at end of kernel, lastaddr in diagram).
• Structure map to manage the area (eoremap) .

• The bit map itself (eorebi ts).

The "pool" itself can consist of arbitrary sized units, words, blocks, clicks, etc. There is one
bit in the bit map for each unit. The position of the bit in the map corresponds to the
position of the unit in the pool. The map routines assume a bit of "0" indicates a free unit
and a bit of"1" is allocated. Structure map fields consist of:

Field Description Example
brnp_narne ASCll name of map CUH.J!:MAP

bmp_id Validation number BITMAPID = 05252525
brnp_base "Address" of base of pool 0400 (click address)

usually in the same unit as the,pool itself
bmp_begin Address of bit map itself 0210020
brnp_next Allocate next units starting from this J)Osition 6
brnp_total Size of entire pool (also n~ber of bits in bit map) 60000
bmp_avail Number of remaining units-("O" bits) 12400
brnp_want Nop.-zero indicates another process is waiting for 0

this resource
bmp_first Option to bound allocation search to this range 0/0
/ bmp_Iast

';-.

brnp_nabbh Indicates base of this area already entirely allo- 0
cated

The kernel malloeO and mfreeO functions (el/os/malloe. e) are similar to user library
routines provided to allocate heap space. The kernel malloe () function calls the assembler
routine mapgetO (el /md/bi tmap. s) to allocate the resource. Options arguments and
options when calling mapget () include:

Field Usage
map The bit map accessed
num Number of units requested
flag Request options ("or'd" together)

M_ANY Allocate from anywhere in map
M_HLD Allocate from bmp_next only
M_NOWR Do not wrap around at end of map
M_BEST Return best effort if "num" can't be met
M_NEXT Return next available set (after bmp_next)
M_EXACT Return available block from closest fit
M BOUND Start search at bmp. fIrst

3-10 Cray Research, Inc. Proprietary TR-ITR 8.0 K

)

)

)

)

UNICOS Internals Technical Reference System Initialization 3-11

mapge to returns the position of the first allocated unit if successful, or -Ion failure. Other map
functions include: mapsetO - set allocated bits on, mapretO - return units to the map, and mapsyncO
- report free unit in the map.

user memory \

J
tirJJ

base of pool
lastaddr·

struct map
coremap

(cl/sys/map.h)
r;;;;~;-;;;-;-:n;;'l bmp_name; 1* Name of map */

~...."..-..::::.::.::::::.:::.:~ bmp_id; 1* Bitmap identifier = BITMAPID */
bmp_base; 1* Base */

.---~~
.....--F~~~~~ bmp_begin;l* Beginning address of map body */

t::::-;;..--1==-------!~ bmp_next; 1* Current bit index */
bmp_total; 1* Total number of bits in map */
bmp_avail; 1* Number of bits currently available */

TR-ITR 8.0 K

.--.....;;=~ bmp_want; /* Map wait indicator */

.-----=-1
bmp_first; 1* First bit of bounded region */

.----~

.-___ -=-1 bmp_Iast; 1* Last bit of bounded region */

'----_--::..I
bmp_nabbh; 1* No available bits before here (all */

1* bits preceeding this offset are */
1* guaranteed to be allocated) */

.LV\J.LVU.LJl.LV,LVvllOOllllOOOOOllOO •.

scopes of bit map searches
~ total -----..

Cray Research, Inc. Proprietary 3-11

System Initialization 3-12 UNICOS Internals Technical Reference

UNICOS stacks
Stacks are an integral part of C Language. UNICOS kernel stack
processing characteristics:
• The kernel is compiled with the same C compiler that user

applications use (perhaps an "older" version called a "generation
compiler").

• The kernel logic uses stacks to save registers when calling and
returning from kernel functions and to allocate function local variable
data.

• The stack management routines used by the kernel are the same as
those generated for user applications.

• Each process in UNICOS (including multitasked group members) has
its own kernel stack. This stack is used to control function call logic
and allocate local variables for the process as the kernel performs
work on behalf of the process during interrupt processing.

• Special versions of stack processing functions, setjmpO and
longjmpO, along with a number of other kernel specific functions,
process kernel stacks as described later in this section.

----",

)

• Previous to UNICOS release 8.0 kernel stacks were located in a fixed \
size area in the process's user u_stack area within the process's)
replaceable and swappable memory image.

On the "good" side, stack data was swapped out and released with
the process memory.
On the ''bad'' side, data allocated on the stack had to be relocated
when a process moved in memory (or was swapped out and in).
This became a particularly big problem with the introduction of
vnodes in 8.0 which placed many data items on the stack.

• Starting with UNICOS 8.0 stacks are assigned in a stable stack
area. This stack pool area in high memory is reserved during startup.
Each new process created is allocated an individual stack area from
within this stack pool.

3-12

On the "good" side, stacks do not move once created, data placed on
the sta?k does not need to be relocated when the process itself
moves ill memory.
On the ''bad'' side, stack space does not swap with the process, so
stacks potentially take more memory than earlier release versions. ~

~ 01l\c\L. ~ \\ij

Cray Research, Inc. Proprietary

lj ~D I~;\, ~'> b'~ ~
~ ,"1J-. ttJ

~0I,f\ Vu

TR-ITR 8.0 K

)

UNICOS Internals Technical Reference System Initialization 3-13

Stable stack feature summary

• An initial stack pool is allocated in high memory during startup. This
can grow (down in memory) to an upper limit sizedefmed in the
system.

• New processes created by forkO allocate a stack area for the kernel to
use from this stack pool.

• When a CPU switches between processes (context switch), functions
setjrnpO and longjrnpO save stack pointers for the "old" process and
load stack pointers for the "new" process. The stack stays untouched
in this stable memory area while the process is disconnected from the
CPU .

• An option exists where the switch action can give up (deallocate) its
stack when it is disconnected and reallocate it (as empty) when it is
reconnected.

This is done in a few high frequency system call functions which
follow this logic:
umainO

sys_call_funO {
do initial housekeeping work
request some system resource (e.g .. table entry)
if resource not available

another

request multiplexed stack
set possible multiplexed stack function
s 1 eep(resource)

swtchO disconnect CPU from process (setjmpO and longjmpO to

Normally the function would be resumed when reconnected at
sleepO and continue on from there.
The "multiplex" indicates that the stack for this process can be
given up (deleted) while the process sleeps (and is disconnected).
The kernel will resume the process at sys_call_fun () when it is
reconnected to the CPU after it is awakened.
The caller can request a specific function to execute before entering
sys_call_fun () whose role would be to clean up any "loose ends"
caused by this logic.

Detail on the stack area, the stack layout, and stack processing
routines follows.

TR-ITR 8.0 K Cray Research, Inc. Proprietary 3-13

System Initialization 3-14 UNIGOS Internals Technical Reference

1fSt~~1i~~f!~~iik~#fi~t
The diagram on the right shows the kernel stack pool area in high
memory. The following functions manage this stack pool area.

,~~'~~~~~~!I~
• cl/md/machdep.c
• Allocates initial stack pool at the end of user memory (coremap)
• Initial allocation (MAXcpus+20) * NMPS each

NMPS is 1380 words rounded up to MEMKLICK - the size of each usable
stack area

• Initializes pool bitmap area
- map management area called poolmap
- Bitmap poolbi ts area big enough to grow pool to NPROC+NCpu*2

• poolbase is address last word of pool
• poolfirst is address of first word of pool within coremap (pool

grows "downward" in memory, towards memory location 0)
• poollen is current pool length (in NMPS units)
• stack_II imi t is first work of stack - absolute address
• usrmem (in clicks) decreased by pool len * NMPS .)
• downmem increased by poollen * NMPS

l-~a.rjd~~t#~~~l'r
• cl/md/machdep.c
• Increases stack pool size by SEXPAND (NCPU * 2) units (each NMPS)

allocated from coremap (note - stack expands downward in memory).
• Called each minor clock cycle (1160 second) when the number of free

stacks drops below Ncpu*2 (see allocstack).
• If stack pool expansion fails because "that" area of memory in use, the

swapper may be requested to shuffle processes (downward) in memory
to create the space (detail in: "sched" topic).

• poolfirst, stack_Ilimit, usrmem, and downmem adjusted to
reflect new allocation.

• Calling process may sleep while waiting for expansion

,~'&~~~iie"m~~~~l
• cl/md/machdep.c
• If less than a second since last contract, returns without effect.
• Releases SEXPAND (NCPU * 2) stack units - putting back in coremap

and removing from pOD lmap.
• poolfirst, stack_Ilimit, usrmem, and downmem adjusted to)'

reflect new allocation.

3-14 Cray Research, Inc. Proprietary TR-ITR 8.0 K

)

UNICOS Internals Technical Reference

stack_llimit.~--t~t-;.;-;~~-..--::.-.... U
poolfirst

downmem
................. :',.:::.,'::' :::.

Stack management

I'
I

System Initialization 3-15

coremap
map
bmp_base

1111111110
0000010000

Functions allocstackO and freestackO allocate and free stack areas
within the stack pooL A stack is allocated when a new process is created
by forkO or reallocated when a process is reconnected after giving up its
stack for sleeping. A stack is freed when the process exits (leaves the
system) or as an option when it gives up its stack during sleep.

allocstackO

• cl/md/machdep.c
• If the number of available stacks in the pool drops below SEXPAND

(NCPU*2) set request expands tack () be executed at the next minor
cycle.

• Allocate a stack area from stack pooL Map works from poolbase
(high address) downward.

• If no stack space is available, the function sleeps or return with status
(1) based on caller's option.

• Sets callers stack reference to newly allocated stack address (actual
memory address)

freestackO

• cl/md/machdep.c

• Frees one stack unit to stack pooL
) • Clears calling processes reference to a stack (-1).

TR-ITR 8.0 K Cray Research, Inc. Proprietary 3-15

System Initialization 3-16 UNICOS Internals Technical Reference

Stack format

The stack diagram on the facing page is built by a code sequence like:

•

•
•

umain()
{ i = X(a, b); /* umain calls X */ }

X(i, j) ~~,\c,... ~~\ ~\"'\~
{ Y (q, r); /* X calls Y */ }

Y(g, h)
{ /* stack shown in this context */ }

The stack is shown as allocated in the stack pool area and addressed by the proc p_stack
pointer. # ~ ;;:;;.t c.\C... lllbt ~ t'
The "top" (low address) frame is the highest logical function. I :r~"l S 1~
Frame format: LL
- The frame is created when a function is entered. The kernel's B and T registers are

saved for the caller so they can be restored upon return.
B077-B02 are stored into the stack frame flrst. B077 points to the mst word of the
traceback block (name length fleld), ASCII name of the function preceeds the tnb.

- The compiler generated traceback block structure of tnb
/usr / incl ude / cray / tnb . h provides the stack processing routines the information
needed to create the stack for the called function.

word bits field name
0 0-31 zero (0)

32-47 tnbl (len traceback block)
47-63 namel (len of name - char)

1 0-63 entrypt (function entry point)
2 0 base (level flag)

1-7 lang (language type)
8-19 argsize (max size arglist)
20-31 NULL
32-63 tvars (size of temp variable storage)

3 0-31 scons (size static constant storage)
32-63 svars (size static variable storage)

4 0-49 NULL
50-56 ntreg (number T-regs)
57-73 nbreg (number B-regs)

5 0-63 lan2"d (lan~a~e dependent info)

The number of additional B's and T's is dependent upon how many are needed to
preserve register-resident variables. Most register-resident variables are kept in A
and S registers, but "overflow" into the B's and T's, or need to be preserved in B's or
T's across a subroutine call.

- The format of the argument list header differs between an X-MP and Y-MP. See the
arlst.h header with the tetc/crash source for the Y-MP format.

-l

)

The remainder of the frame is occupied by argument lists (built here for the call to
other functions) and memory-resident variables. The compiler will try to make local
variables register-resident, but structures and simple variables whose address is used
(e.g. ptr = &variable) are allocated in memory.

• The active BOl, B02, B066, B067, and B077 are shown in the context of executing ,,)
function YO. ,,'

3-16 Cray Research, Inc. Proprietary TR-ITR 8.0 K

)

UNICOS Internals Technical Reference

traceback
blocks
umaln

5 .
umamU entry pt.
etc. \~JJt~ '~

~k(,,;t41

(warning: the kernetJ-7
base frame is
but its length is taken
from "c%a%l%l")

compare lusrlsrclcmdlc1lcrashl
and I usr I include I cray I arlst.h

f,tIt~tt\
"""'""~ _...........& CAl"''' r .S

"activation ~:.::ord" as (q _tA
created by y Us
entry sequence

reserved space for args. when YO
calls any function (enough for
number of any call)

TR-ITR 8.0 K

System Initialization 3-17

process's stack
(normally in stack pool
KSTACKSIZE

1377 address of traceback blockr :n (l\lltJ
BOO return address p 4~lr\~ bY IN t

BOl address of caller's argument (0)
B02 address of previous stack frame (0)
other saved B's

umainO's (memory resident) local variables

B77 add.ress of traceback blo:~ .. "\ ~(~~
BOO ret"t.rn address (to umamU))
EOl ad.d.ress of cr:JIer's argument list
B02 address of pre'lions stack. frame }....J,~.~l
other saved E's

address of traceback block
BOO retu.rn address (~o XO)
BOl adill-ess of caller's argument list ~~I---J.
B02 address of previous stack fl-a.-rne
other saved D's

YO's (memory resident) local variahles ""~
... -----------.... 1... .. '1 -i~I.I1le~::
... _KS_T_~_C_KS_I_Z_E_{_13_8_0_w_o_rds_i_n_8_.0_~ ,'Ui-. ~\I'I~

ihJ tJ r s tq cfc-

Cray Research, Inc. Proprietary 3-17

System Initialization 3-18 UNICOS Internals Technical Reference

Context switching

CPU and process management

• There are usually many more user processes in the system than there are CPUs
tQ~ervice them.

• The (~PUs switch betw'een processes on a demand and priority basis.
• Switching must always be done when the CPU is executing the process "on

behalf' of the user in the kernel.
• . A context switch occurs when a CPU in the kernel disconnects from one process

" and connects to another.
~.

Basic principles

The basic steps to perform when doing a context switch are:
• Disconnect "old" process.

Save all "user" register data in user save areas: XP With As Ss, Bs, Ts, Vs,
CLs.
Save kernel work registers (Bs and Ts) in a kernel save area (also in user
area).
Save the kernel stack for the process

~ Note: In UNICOS the stack is already "in memory", so all that needs
saving are the stack B register pointers, which?I'e saved as noted above) .•

. ' C-:;w ~~ ~ Select a new process to connect to (based on a priority scheme).

• Connect to the new process.
Restore kernel work registers (Bs and Ts) from the kernel save area.
Restore the kernel stack for the "new" process (note - actually part of next
item).
Restore all "user" register data from user save areas: XP with As Ss, Bs, Ts,
Vs, CLs.

User register data is processed in the kernel mainline routine and discussed in the
"Kernel Mainline" chapter. The following discussion relates to kernel register and
stack processing during a context switch.

Kernel register save areas

The diagram on the facing page shows three different register save areas provided in
a process's user area in the u_save array. Kernel defines are used to reference each

)

)

as described below. n o",'\9v1

• U_RSAV: used by function swtchO to switch CPUs between processes as the, hIL p~~J~C\lv
normal part of CPU scheduling. -j.; of S ~ 1 i-I t r<-b"W'{P

'. U_QSAV: used for interruptable system call signal processing.~JSr~:f i'N. (lfrl~' r;'/ft9-f

• U_SSAV: used when a CPU is disconnected for memory management reasons.
Kernel register and kernel stack saving and restoring by setjmpO and longjmpO)
are shown on the following pages. \\0---

tlW ~l&\ ~rO G~llv)~'<U~vt"\v~ E:.,o.., fj~~
• ¢; t ,.J~'"

3-18 Cray Research, Inc. Proprietary ~~ \6 ~TR-ITR 8.0 K

)

)

UNICOS Internals Technical Reference System Initialization 3-19

r ---up
• • •
""1111

.. -

•
LlIlII

. proc structure

p_stat

-- u I
uco~structure

. US

f
8tructure

[U_RSAV] BOO BO 1 B02 B66 B67 TOO TO 1 T03 , T67 [0]
u ave [U_QSAV] BOO BO ~02 B{56 B67 TOO TO 1 T03 , T67 [1]

[U_SSAV] BOO a.e'1 B02 B66'567 TOO TO 1 T03 T67 [2]
/ '" I ~ ~"

~,rnel stack ~l

'" frame 0 I~BOO B01 B02 (T's) (automatics) ar~ent list
'" (always umain)

frame 1 IYrrrr:.a.OO BOlB02 (T's) (automatics) argum~ list -.. "11 I--mml --,
frame 2 B77 BOO B01 "n02 (T's) (automatics) argument list

,.11 --Imm
unused

.... 1--1mB

TR-ITR 8.0 K Cray Research, Inc. Proprietary 3-19

System Initialization 3-20 UNICOS Internals Technical Reference

Context switch sample

The diagram on the right illustrates how setjmpO and longjmpO are
used in context switching to save register and stack contents. This
example makes the following assumptions:
• Processing starts with process "a" connected and calling swtchO

called by qswtchO (part of normal CPU scheduling). Note "a's" stack.
• Process ''b'' is disconnected (in the manner that is shown for "a") by a

read calling sleepO calling swtchO (note its stack).
The context switch takes place in the following way:
1. Process "a", in swtchO, calls setjmpO. SetjmpO is implemented as a

CAL routine, no new stack frame is created when it is entered.
2. SetjmpO saves the kernel Band T registers (0-67) into the specified

("a's") user save area. Register 81 (the function return value register)
is set to zero (0).

3. SetjmpO returns to caller, the if statement. The return value of zero
from setjmpO causes logic to take the "false" path.

4. SwtchO selects a new process to run from the run queue - we'll
assume it's ''b'' - and sets its global pointers to reference "b's" proc and
user areas (thus its stack and stack save area)")

5. SwtchO calls longjmpO. LongjmpO is also a CAL routine, entering it
creates no new stack frame. Longj mpO loads "b's" Band T registers
from the specified save area. Note that the CPU's BOO gets set to the
value BOO at the time "b" was disconnected in the past. The return
value register 81 is set to 1.

6. When longjmpO "returns" it jumps to the instruction after the call to
setjmpO - in the if statement. The "true path" of code in swtchO
resumes the "new" process by performing any "housekeeping" action
required to get it started again (for example, relocate its BNLA regs).

7. When swtchO returns it is now connected to "b". The CPU returns to
sleepO which returns to breadO, and eventually exchanges back to
"b's" user program.

At some future time the disconnected process "a" will be selected by
swtchO to be reconnected. "A" will be resumed in the same fashion as
was shown for ''b'' in the example.

3-20 Cray Research, Inc. Proprietary TR-ITR 8.0 K

)

UNICOS Internals Technical Reference

Process a

,
\

• ,
\

,
, , ,

, , ,
,

" , ,

, ,

System Initialization 3-21

user structure
.;.1 u_save[U_RSAV]

I BOO .. BQ..2;. B66 B67 TOO-T67 1
$ c-...........

.... ~:-

, '~,
, . '
" ; ~ , " kernel stack, " " ..

, ,
• ,

, uma~n
" \

swtchO , "
,

, ,
\ ,

enter connected prtOc &&a:" , ,
up points to Ua7s" jJroc 'area, ,
u points to &&a7s" user are{}'

, ,

, , J
,/ __ B02

4: --

qswtch BOO

swtch BOO ~

• ,
,
• n savp. &&a.~<:;" context '

., (setjptp(u_savfJU _RSA V])){ ---rL, .• . ~.
\ ~ ", p ~ ~ --......... ~etjmp(save-area) ~ mdl st]mp.s

~
\ resume newly connected proc save BOO - B67 in save-area
;>c\-v \. save TOO - T67 in save-area+64 \

" jump to (BOO)
\ d\' ~} else { . '~~ 'set 81=0 (false) - \\'~"\, '\\..~(n5 \,\,5

~ select proc &&b" from .;unq

)
\ (),\t"'~ up points to &&b~" pr(Jc area

~t\\ u points to&&b7s" user 'area
II ongjmp(u_save[U_RSAV])-"'h""'---III~\\longjDlp(save-area) mdl stjmp.s

)

}
, load BOO - B67 from save-area

load TOO - T67 from save-area+64
\" ~et 81=1 (true) - ~\~'\S "-'1~tn? ,'hlS f1 leave connected proc &&b" " ump to (BOO) ~ I j

swtch->sleep " " fJAD ~n'" n~ tI'
sleep -> bread ,..' \ .' \!)" \!Y ~ -I

etc. , '\ ~I) ';} ~ ~ A:<' \ .xAJ-t •
t&b" is resu~;.d after its sleep} , .. >, <\r. 6""~ i\ ?;~, ~~~'~ \''''

, "\Y'-6\\U~q ,I'\y' ~~~
~~~--------------~----~ ,user structure I' 

'll_save[U_RSAVT \~ proc structure 
.t~ "--? p_stack, , , o "\'~'Y' '------~ 

I BOO .. BQ,? .. B66 B67 TOO-T67I 

,~f 
c ... .. , 

"" 
'" 

'," kernel stack ... " 
uma~n 

? 

bread BOO 

sleep BOO 

swtch BOO 

TR-ITR 8.0 K Cray Research, Inc. Proprietary 

.. .. 
" .. 

", 
\ 

\ 
I 

" , 
, 

, " _ - B02 ,. --

3-21 



System Initialization 3-22 UNICOS Internals Technzcal Reference 

: sleepO and wakeupO 

Function sleepO is called when a process must wait for a system resource or system 
event. It voluntarily gives up its CPU while waiting. 
Function wakeupO is executed by a non-sleeping (runnable and connected) process 
when the resource becomes available or the event occurs. Wakeup makes the 
sleeping process runnable so it can (and will) be reconnected when normal CPU 
context switch action (swtch) occurs. 
Processes that are runnable are on the run queue rung. Sleeping processes are 
queued on a set of hash queues known generically as the "sleep queue." In general 
sleepO removes a process from the rung and links it to the sleep queue. wakeupO 
removes a process from the sleep queue and links it to the rung. The rung is sorted 
by process priority with 0 (best) in front. The sleep queues are managed generally as 
FIFO (oldest first) queues. 
The code segments on the facing page illustrate the most basic operation of 
sleep/wakeup. The logic follows these steps: 
1. Process "a" attempts to allocate a table entry from a free list. Assume the list is 

currently empty. • 
2. Process "a" indicates it "wants" an item on the free list 
3. Process "a?' calls sleepO to give up the CPU until an entry becomes available. 

Note the process calls sleepO'with 2 arguments: I 

• freelist: the address of a data item that represents the resource the ptocess 
"is sleeping on." . .) 

• sleep-pri: sleep priority (controls type of sleep). . . .~ 
4. Funtion sleepO: 

• removes the process from the rung and links it to a sleep hash queue. 
• 'calls swtchO which :, 

disconnects the process. 
- searches the rung for another process (''b''). 
- connects the CPU to the other process. 
At this point process "a" is NOT runnable and will not be selected for 

, reconnecti()n by swtchO until it becomes runnable (on the rung). 
5. Sometime in the future another process ("b") no longer needs its table item and 

links it to the freelist. Mer doing so it is "responsible" for testing if another 
process is "sleeping on" "that" resource. If so ... 

6. it calls wakeupO to make the sleeping process runnable. Wakeup is called with 
the address of the resource what the process would be sleeping on. The 
sleep-pri value control where "a" will be placed on the rung. 

7. Process "a" is runnable, but must wait until a CPU becomes available (e.g. 
another process call swtchO and "a" has the best priority (position on the rung) 

8. Eventually "a" gets selected by swtchO. The CPU doing this does not have to be 
the same one that was connected to "a" earlier. 

9. The "wanted" flag is cleared and the table item can be' allocated by "a". 
10. Process "a" continues processing in CPU "y". ) 

Other features related to sleepO and wakeupO are covered in detail in Chapter 5's / 
"Process Management Subsystem" section. 

3-22 Cray Research, Inc. Proprietary TR-ITR 8.0 K 



) 

UNICOS Internals Technical Reference System Initialization 3-23 

process "a" 
connected 
to CPU ''x'' 

while ( freelist == NULL) { __ 
wanted++; m-
sleep (freelist,sleep-pri); m 
} ------~ 

wanted-; m 
/* allocate entry m the freelist and continue */ 

1m 

process "a" 
resumes 
processing 
in CPU "y" 

process "a" 
sleeping, 
swtchO 
disconnects 
CPU and 
connects to 
another 
process ("h") 

. 
• /* finish processing entry and link to the free list */ 

II if (wanted) { 

TR-ITR 8.0 K 

m wakeup(freelist); 
I:.I} 

B 
process "a" 
now runnable, 
it waits for a 
CPU to select 
it and connect 
via swtchO 

Cray Research, Inc. Proprietary 3-23 



System Initialization 3-24 UNICOS Internals Technical Reference 

Kernel main loop overview 

The diagram on the right represents the entire system - both kernel and 
user processes. Kernel initialization is pictured near the left, from 
mfstartO through sched() for CPU 0, and starting at parkO for the 
other CPUs. It is only executed once, as each CPU heads for the 
"master" loop. 
The diagram illustrates the logical path a CPU takes when it enters an 
idle process, and the path CPU 0 takes to resum~ the initialization logic 
after each I/O interrupt. 
For a full, detailed diagram of the kernel's main loop see chapter 4. 
(The arrows pointing off to "anywhere" represent context switches to 
other processes. The arrows coming back from "anywhere" represent 
context switches back to a logic thread.) 
CPU s other than 0 will enter the context of their idle processes when 
they are created and spin wait there until kernel initialization is 
complete. 
The entire initialization thread from mfstartO through schedO is 
executed in the context ofprocess[O]. The schedO function becomes 
the only work performed in the context ofprocess[O] after initialization is ) 
complete. 

3-24 Cray Research, Inc. Proprietary TR-ITR 8.0 K 



~ \~~, r)\1.~\'~ \"Ytf~~ ~~\t'~\J J 
~ tt"'~, 

~ ~ ~ t-:3 

~ ~ 

~ interrupt flag C 
CI'J 00 
S (:) ........ 

~ 
~ 

~ 
EX I I ~ 

select best process ~ save present context ~ ~ longjmp to selected context 
~ CD ~. 

,'- .;.1;') .......... _:. ..... ..r / fI1I1l \'\"'" ..... ~ -,- • I--;~y_.&.~ .., ~ ..... 
::::s ~ CD ~ 

~ - ;:s 

3 
2 

f 1.1,2, ... ] L 
~ , signal p,!esent ... fataL signal Q) r i/o sl!l'Jps 

exit p:ocessing --
sJed ::::s ~ select best process 

.?" 

~ 
longjmp -'---+- 0 

1 signal processing 0 
I -C meml)rv I-

management. 
0 -
< 

~\, 11' ii~~r-~'->-~~· CD 
I 0. c1 ~ -,,-I.Z :'dQ)),10Jj , .., 
~~~'@7" < ~ " 11 II i 

f1I'~
i@l1lif~~f0 I~~>.q --

CD r:n

\t :e ~
C"t-

S
1-1
ij
Et.
~
t<I
I\)
Et.
c
ij

~I I~

System Initialization 3-26 UNICOS Internals Technical Reference

Kernel multithreading

Overview

The multithreaded UNICOS kernel uses hardware semaphores combined with a
comprehensive set of software macros to protect memory areas shared among CPUs
from being simultaneously updated.

• Most of kernel memory tables and work fields are in common memory and global
in nature, any CPU can reference and change these values.

• Two basic types of locks are provided to protect data from simultaneous update by
more than one CPU (see the figure on the right).

The,sEMLOGK macro provides course grained locking, for example locking the
whole proc-ess table during a process queue (linked list) update. The term
"semaphore lock" is used for this type.

Th'MEMLO<;:K macro provides fine grained locking, for example locking a single
process table entry while the kernel is updating its fields. The term "memory
lock" is used for this type.

• Atomic locks are memory lock variants used to protect a .. field during a single
8 operation, for example while adding to an individual process table count field.

• Macros R_MEMLOCK and W_MEMLOCK are memory lock variants used to provide
multiple reader I single writer memory locks.

Nmakefile utslc/1Nmakefile

The following lines of the kernel's Nmakefile file control kernel multi-threading:
#if productline(crayl)

MULTI_THREADING =
/* SEMDEBUG = 1
/* SEMLOCKRULE =
/* SEMTIMING
#endif

=

1
/* Uncomment to turn on SEMDEBUG */
1 /* Uncomment to compile SEMLOCKRULE */
1 /* Uncomment to compile SEMTIMING */

The MULTI_THREADING value "1" indicates that 8.0 multi-threading (as documented
in this section) should be built into the kernel. MULTI_THREADING = 0 indicates the
semaphore locks used prior to 8.0 are built into the kernel (called "single threading",
but actually not). Kernels built for single CPU systems have neither type of locks
active (ifdef'd out).

The three "SEM" values control collection of debugging and timing information.
These are described at the end of this material.

3-26

The option to build and run a kernel with 8.0 multi-threading "-off' is for
development purposes only, it has not been tested on produ~tion systems.
Adding debugging and timing to production systems is not recommended
for performance reasons (see description at the end of this material).

Cray Research, Inc. Proprietary TR-ITR 8.0 K

)

)

UNICOS Internals Technical Reference System Initialization 3-27

)

Kernel Locking Macros

proc table

MEMLOCK

SE:MLOCK

)

TR-ITR 8.0 K Cray Research, Inc. Proprietary 3-27

System Initialization 3-28 UNICOS Internals Technical Reference

Lock mechanics

• All CPUs executing kernel code reference hardware cluster 1 by UNICOS
convention. The hardware semaphores and shared registers in this cluster are
used to implement kernel multithreading locks.

• Hard locks - the test-and-set instruction TS

Logic
SMn 1,TS test and set SMn

while SMn != 0
(spin wait)

set SMn = 1
Do single threaded logic
SMn 0 clear SMh

CPU ''race conditions" are properly dealt with since the internal hardware
logic of TS guarantees that only one CPU can interrogate and change the value
in the semaphore at one time.

• Soft locks

3-28

Certain limitations of the test and set instruction demand that an additional
mechanism is used with the TS ''hard lock".

Test and set does not provide control over which CPU is released as the lock is
cleared by the "owning" CPU. (It is not a FIFO queue).
Soft lock code can provide performance statistics on locks.
Soft lock logic uses memory areas along with cluster 1 semaphores and shared
registers to provide the locking mechanism.

Cray Research, Inc. Proprietary TR-ITR 8.0 K

)

)

)

\
)

UNICOS Internals Technical Reference System Initialization 3-29

UNICOS multithread lock logic - general

• Testing and setting of lock (beginning of thread)
In the following, assume cluster 1 semaphore 26 (ISEMA) is used to guard lock
manipulation, and semaphore sema, shared T register 3 (SEMMASK;), and
semowner [sema] are used to protect "this" specific segment of code and the data it
accesses.

Note: Semaphore timing statistics gathering is site selectable .•

LOCK (sema)
TS ISEMA get general hard lock
if serna != 0 test specific hard lock

/ * wait for thread lock * /
wstart=RTC start serna wait timer
FIFO (end) -> CPU place CPU on FIFO queue this sern
SEMMASK I CPU_mask mark ST SEMMASK CfU bit
ISEMA 0 clea:t' general hard lock
while (SEMMASK CPU bit != 0)

spin wait (8*no_locked_CPUs) clocks
/ * CPU has resumed after lock cleared by another CPU (below) * /
FIFO(start) = 0 remove CPU from serna FIFO queue
wait+=RTC-wstartadd to CPU/sema wait time total
ISEMA 0 clear general hard lock

else
/ * claim thread lock * /
TS serna set specific hard lock
ISEMA Oclear general hard lock

sernowner[sema] I CPU_mask mark this CPU "owns H serna
tstart=RTC begin single thread timer

• Clearing Lock (at end of thread)

UNLOCK (sema)
time+=RTC-tstart end single thread timer
TS ISEMA set general hard lock
semowner[sema] & !CPU_mask clear owning CPU's bit
if FIFO ! = 0 CPU wai ting for this sem

/ * select and start "oldest" CPU * /
CPUn = FIFO select CPU at head of queue
SEMMASK & ! CPU mask clear ST SEMMASK bit CPUn
/ * selected CPU will drop out of spin

loop - it inherits locked semaphores * /
else

/* no CPUs r,qaiting - clear
semaphores and continue * /

serna 0 clear specific hard lock
ISEMA 0 clear general hard lock

/ * "this CPU continues on CPUn can proceed as lock owner */

TR-ITR 8.0 K Cray Research, Inc. Proprietary 3-29

System Initialization 3-30 UNICOS Internals Technical Reference

SEMLOCK macro

The SEMLOCK macro is used to test for and set a course-grained lock on a data area.
For example, it would be used to protect a linked list or queue while the list is being
updated. Since these locks may be held longer in time and are broader in nature
than MEMLOCK memory locks, they are used sparingly in the kernel.
• SEMLOCK macro include/sys/semmacros.h

#define SEMLOCK(sema, lid)

serna Semaphore number - used by this instance of the call
lid Lock id - unique number used as index to timing and lock

rule tables

• A full set of macros defined in include/sys/semmacros.h reference SEMLOCK
with proper serna and lid UNICOS kernel values. Example:
#define BUFTAB_LOCK() SEMLOCK(BUFLOCK, BUFLOCK_LID)

• The diagram on the right shows key memory areas and illustrates how they are
used in processing a lock on the system buffer header table.

sernlock Array indexed by semaphore number. CPU bit mask indi
cates the CPU number who currently owns the lock.

sernowner Array indexed by semaphore number. Shows CPU number
oflock owner and source file and line number where lock was
set. For debugging purposes.

sernlinkf Array indexed by semaphore number. CPU bit mask offirst .)'
(or only) CPU waiting for the lock. --

sernlinkl Array indexed by semaphore number. CPU bit mask of last
CPU in FIFO queue of CPU s waiting for the lock. -

cpul inkf Array indexed by CPU number. CPU bit mask acting as a
forward pointer (index) to next CPU in FIFO queue.

cpuhold Array indexed by CPU number. Source file name and line
number where corresponding CPU referenced (and is waiting
for) the lock. For debugging purposes.

cpumemhold Array indexed by CPU number. For SEMLOCK type locks, the
actual semaphore number the corresponding CPU is waiting
on.

• The example shows a possible lock set referencing semaphore 30 (BUFLOCK).

3-30

CPU 2 is the lock owner. The lock was set at line 255 in source module
cl/ os/bio. c.

CPU 4 is the first (oldest) CPU waiting for the lock. It's reference was line 125
in cl/os/pdd.c.

CPUs 3 and 5 are waiting for lock 30 at lines 263 and 255, respectively, in
cl/os/bio.c.

When CPU 2 executes macro SEMUNLOCK, CPU 4 will get the lock next,
followed in tum by CPUs 3 and 5. Should any other CPU request the same
lock, it will be queued following CPU 5.

Cray Research, Inc. Proprietary TR-ITR 8.0 K

)

)

)

)

UNICOS Internals Technical Reference System Initialization 3-31

SEMLOCK illustration

Note: The "sem" and "cpu" prefixed items are tables in lowmem. c .•

* Fields marked with * use a bit mask to indicate a set ofCPUs, the position of the 1
bit from left to right indicates the CPU number.

cl/md/lowmem.c

/ 30 =::::::.
semlock [sema] _~~--IOOL~-O-O-oo-o-o-o-o-oo-o-.-. -. "'1--*-

semowner [sema]

semlinkf [sema]

semlinkl [sema]

[3D}

I cpu !line! *file J
2255cl/os/bio.

[30}

I oooo~ooooooooo ...
[3D}

.' -'~---__ ~~-~r---------~~--~~~~--~~
cpulinkf [cpu] 00000000000000. . • *

.. __ " [3} , ..
cpuhold[cpU] ~~~~~~--~~~~~~---~~~~~~----r--

cpumemhold ;CPU] t 30 I 30 30
~[3~}-------------[~4~}--------~~[~5-}-----------L--

TR-ITR 8.0 K Cray Research, Inc. Proprietary 3-31

System Initialization 3-32 UNICOS Internals Technical Reference

MEMLOCK macro

The MEMLOCK macro is used to test for and set a fine grained lock on a data area such
as protecting the data in a single buffer header entry while the process is performing
a system call in the kernel.
• MEMLOCK macro include/sys/semmacros.h

#define MEMLOCK (serna I mern, lid)

serna Semaphore number used to protect manipulation of this
memory lock

mem The address of semlck structure (include/sys/types .h)
within the memory item being locked

lid Lock id - unique number used as index to timing and lock
rule tables

• A full set of macros defined in include/sys/semmacros.h reference MEMLOCK
with proper serna, mem, and lid UNICOS kernel values. Example:
#define BUF_LOCK(sernp) MEMLOCK(BUF_ENT, semp, BUF_ENT_LID)

• The diagram on the right shows key memory areas and illustrates how they are
used in processing a lock on a system buffer header.

sem_lock Semlck field within buffer table member. CPU bit mask indi
cates the CPU number who currently owns the lock.

sem_owner Sernlck field within buffer table member. Shows CPU num- . .)
ber of lock owner and source file and line number where lock __
was set. For debugging purposes.

sem_linkf Semlck field within buffer table member. CPU bit mask of
first (or only) CPU waiting for the lock (this table entry).

sem_linkl Semlck field within buffer table member. CPU bit mask of
last CPU in FIFO queue of CPUs waiting for the lock.

cpulinkf Array indexed by CPU number. CPU bit mask acting as a
forward pointer (index) to next CPU in FIFO queue.

cpuhold Array indexed by CPU number. Source file name and line
number where corresponding CPU referenced (and is waiting
for) the lock. For debugging purposes.

cpumemhold Array indexed by CPU number. For MEMLOCK type locks, the
address (table member) the corresponding CPU is waiting on.

• The example shows a possible lock set referencing buffer header pointed to by bp.

3-32

CPU 0 is the lock owner. The lock was set at line 35 in source module
cl/os/bio.c.

CPU 10 is the first (oldest) CPU waiting for the lock. It's reference was line
623 in cl/os/bio. c.

CPUs 9 and 8 are waiting "in line" for buffer bp at line 125 in cl/ io/pdd. c
and line 263 in cl/os/bio. c.

Field cpumemhold array items for CPUs 8, 9, and 10 all contain the address of
the sernlck area within the currently locked buffer.
When CPU 0 executes BUFUNLOCK at the end of the buffer entry update, CPU
10 will get the lock and the table entry, and so on forCPUs 9 and 8.

Cray Research, Inc. Proprietary TR-ITR 8.0 K

)

)

UNICOS Internals Technical Reference System Initialization 3-33

MEMLOCK illustration

Note: The variable bp points to a buffer table entry buf which contains the
structure semlck named b_sema. "sem" prefixed areas are within this
buffer's b_sema field (reference bp->b_sema. sem_lock). "cpu" prefixed
areas are tables in low memory .•

:f: Fields marked with :f: use a bit mask to indicate a set of CPUs, the position of the 1
bit from left to right indicates the CPU number.

bp struct buf[NBUF]

struct sem1ck
b_sema

lowmem.c

, ,
,. --'" .

cpulinkf [cpu]

,
cpuhold [cpu]

1000000000000 ..•
o

,. - - ... [81

, -'~'---.------------~--------------~--------------~-cpumemhOld[CPU]~l _______ &b_P_-_>b ___ s_em_a~I ______ &_b_P_->_b ___ s_em_a~ ______ &_bP_-_>_b __ s_em __ a~ __

[81 [9J [101

TR-ITR 8.0 K Cray Research, Inc. Proprietary 3-33

System Initialization 3-34 UNICOS Internals Technical Reference

ATOMIC lock macros

Atomic locks are used to protect a single data element for a single atomic operation,
such as incrementing a count. These macros use memory lock logic but share a
common set (table) of semlck data structures in low memory, using a hashing
scheme to select a specific semlck table item.
• The atomic lock macros use the SYS_LOCK macro to indirectly reference the

MEMLOCK macro to provide the lock control. SYS_LOCK is defined in
include/sys/semmacros.~
#define SYS_LOCK(semp, lid) MEMLOCK(SYS_ENT, semp, lid)

• A full set of macros defined in include/sys/semmacros.h reference SYS_LOCK
with proper semp and lid UNICOS kernel values for all common operations such
as add, subtract, etc. The definition of a sample atomic lock ATOMIC_ADD is
shown on the facing page.

• The atomic macros use macro ATOMIC_HASH to hash the user specified address,
providing an index into the atomic_locks table in lowmem. c, where the lock is
based.
Note that several different atomic locks referencing different memory areas could
all "share" this same lock - all CPUs would wait in turn across all of these locks.
Atomic locks are very short duration locks so this is not a significant problem.

• The diagram on the right shows key memory areas and illustrates how they are
used in processing an atomic add (increment) of the field syswai t . iowai t.

sem_lock Field within atomic_locks array. CPU bit mask indicates .).,
the CPU number who currently owns the lock.

sem_owner Field within atomic_locks array. Shows CPU number of
lock owner and source file and line number where lock was
set. For debugging purposes.

sem_linkf Field within atomic_locks array. CPU bit mask offirst (or
only) CPU waiting for the lock (this table entry). --

sem_linkl Field within atomic_locks array. CPU bit mask of last
CPU in FIFO queue of CPUs waiting for the lock. -

cpulinkf Array indexed by CPU number. CPU bit mask acting as a
forward pointer (index) to next CPU in FIFO queue.

cpuhold Array indexed by CPU number. Source file name and line
number where corresponding CPU referenced (and is waiting
for) the lock. For debugging purposes.

cpurnemhold Array indexed by CPU number. For MEMLOCK type locks, the
address (table member) the corresponding CPU is waiting on.

• The example shows a possible lock set for incrementing syswai t . iowai t.

3-34

CPU 14 is the lock owner. The lock was set at line 626 in source module
cl/os/bio. c.
CPUs 15 and 13 are waiting for the same atomic lock. The address in
cpurnemhold for these CPUs would be the address of the atomic_locks table
entry.

When the increment of the field is complete, macro SYS_UNLOCK releases the)
lock. CPU 15 will then get the lock, do its atomic operation, and proceed
clearing the lock for CPU 13. -~

Cray Research, Inc. Proprietary TR-ITR 8.0 K

)

UNICOS Internals Technical Reference System Initialization 3-35

ATOMIC_ADD illustration

The atomic_locks and "cpu" arrays are in lowmem. c. The detail of the
ATOMIC_ADD macro is shown in the inset.

* Fields marked with * use a bit mask to indicate a set ofCPUs, the position of the 1
bit from left to right indicates the CPU number.

lowmem.c

ATOMIC_ADD(&syswait.iowait,l);

#define ATOMIC_ADD(target, incr) \
{\

extern struct semlck atomic_locks[NATOMIC)i\
SYS_LOCK(&atomic_locks TOMIC_HASH(target»), ATOMIC_LID)i\
*target += incr'
SYS_UNLOC omic_locks[ATOMIC~HASH(target»), ATOMIC_LID)i\

I }

I

:#def· e ATOMIC_HASH(target) «int)target & (NATOMIC-l»

struct semlck atomic_Iocks[NATOMIC]

I 0000000000000~~0···1

sam_linkl

,--, , ,
cpulinkf [cpu] 00000000000000 ..

, ,
cpuhold [cpu]

,--, ,
cpumemhold'[cpu] , I - I

c -[131 , [141 u.s~ -
..c .(- -

&atomic_locks[ATOMIC_HASH(&syswait.iowaitl]

TR-ITR 8.0 K Cray Research, Inc. Proprietary 3-35

System Initialization 3-36 UNICOS Internals Technical Reference

R_MEMLOCK and W_MEMLOCK lock macros

The memory read lock macro (R_MEMLOCK) and memory write lock macro
(W_MEMLOCK) are variations of the MEMLOCK mechanism.
• A read lock allows any number of read accesses to the protected memory item, but

do not allow a write (change of value) to the item as long as any read lock is set.
• A write lock is an exclusive use lock. Only the owner of the lock can reference the

item. All other CPUs must wait for the lock whether reading or writing.
• Structure rwsemlck defined in include/sys/types.h contains two fields,

sem_rlock and sem_wlock instead of the single field sem_Iock, to provide for
the read and write locks.

• R MEMLOCK macro include/sys/semrnacros.h
#define R_MEMLOCK(sema, mem, lid)

sema Semaphore number - used by this instance of the call
mem The address of rwsemlck structure within the memory item

being locked for reading
lid Lock id - unique number used as index to timing and lock

rule tables

R_MEMLOCK functions like MEMLOCK except that the CPU spin waits for the
lock only if the item is locked for write (CPU flag(s) set in sem_wlock).

CPUs waiting for a read lock are queued on a FIFO queue of waiting CPUs.
Multiple CPUs can "own" a read lock on an item of data, sem_rlock shows a
CPU bit for each occurrence. The last CPU executing R_MEMLOCK for a given
data item shows as the lock owner in sem_Iock.

• W MEMLOCK macro include/sys/semrnacros.h

3-36

#define W_MEMLOCK(sema, mem, lid)

sema Semaphore number - used by this instance of the call
mem The address of rwsemlck structure within the memory item

being locked for writing
lid Lock id - unique number used as index to timing and lock

rule tables

W_MEMLOCK functions like MEMLOCK except that the CPU spin waits for the
lock if the item is locked for read or write (CPU flag(s) set in sem_rlock or
sem_wlock).

CPUs waiting for a write lock are queued on a FIFO queue of waiting CPUs.
Only a single CPU can "own" a write lock at one time. However sem_wlock
shows a CPU bit for each active or pending write lock. The first CPU
executing W_MEMLOCK for a given data item shows as the lock owner in
sem_Iock.

Cray Research, Inc. Proprietary TR-ITR 8.0 K

)

)

UNICOS Internals Technical Reference System Initialization 3-37

• R_MEMUNLOCK macro include/sys/sernmacros.h
#define R_MEMUNLOCK(sema, mem, lid)

sema Semaphore number - used by this instance of the call
mem The address of rwsemlck structure within the memory item

being locked for reading
lid Lock id - unique number used as index to timing and lock

rule tables

R_MEMUNLOCK clears the CPU's sem_rlock bit.
After clearing the last read lock the first CPU on the FIFO queue is allowed to
proceed with the lock.

• W_MEMUNLOCKmacro include/sys/sernmacros.h
#define R_MEMUNLOCK(sema, mem, lid)

sema Semaphore number - used by this instance of the call
mem The address of rwsemlck structure within the memory item

being locked for reading
lid Lock id - unique number used as index to timing and lock

rule tables
~

W_MEMUNLOCK clears the CPU's sem_wlock bit.
After clearing the write lock the first CPU on the FIFO queue is allowed to
proceed with the lock. Any additional CPUs waiting for read locks are allowed
to proceed until the last CPU is processed, or a CPU waiting for a write lock is
encountered.

• A full set of macros defined in include/ sys/ semmacros . h reference
R_MEMLOCK and W_MEMLOCK with proper sema and lid UNICOS kernel values.
Examples:
#define PROCTAB_READ_LOCK() R_MEMLOCK(PLOCK, &proctab_lock, PLOCK_LID)
#define PROCTAB_READ_UNLOCK().R_MEMUNLOCK(PLOCK,&proctab_lock,PLOCK_LID)

#define PROCTAB_WRITE_LOCK() W_MEMLOCK(PLOCK, &proctab_lock, PLOCK_LID)
#define PROCTAB_WRITE_UNLOCK() W_MEMUNLOCK(PLOCK, &proctab_lock, PLOCK_LID)

• Multiple read and write locks are illustrated by an example on the following
pages.

TR-ITR 8.0 K Cray Research, Inc. Proprietary 3-37

System Initialization 3-38 UNICOS Internals Technical Reference

• The example shows the contents of a process table proctab_lock situation after
the following series of read and write lock calls (without unlocks between). Only
the lock and link fields in the rwsemlck structure are shown in the diagram.

CPU
2
5
3
7
o
4
1

Macro Call
PROCTAB_READ_LOCKO
PRO CTAB_READ_LO CKO
PROCTAB_ WRITE_LOCKO
PROCTAB_READ_LOCKO
PRO CTAB_READ_LO CKO
PROCTAB_ WRITE_LOCKO
PROCTAB_READ_LOCKO

CPUs 2 and 5 both own a read lock on the process table. They can access (but
should NOT modify) its contents.
CPUs 3, 7, 0,4, and 1 are all waiting on the read lock(s). Note - CPUs 3 and 4
are shown as having the write lock, but they are spin waiting. The write lock
prevents CPUs 7 and ° from getting the read lock until the CPU 3 write lock is
processed.

- The source file and line number (not shown specifically) in the cpuhold array
would indicate where the kernel is waiting for locks for CPUs 0, 1,3,4, and 7.

.~

)

The cpumemhold array indicates the memory address of the rwsemlck data
item for CPUs waiting for the lock. It would be the address ofproctab_lock
in this example. ')
Mer both CPUs 2 and 5 unlock their read locks, CPU 3 will proceed with a ./

3-38

write lock.

When CPU 3 unlocks its write lock CPUs 7 and ° will both proceed with read
locks.
Mer both CPUs 7 and ° unlock their read locks CPU 4 will proceed with a
write lock.
When CPU 4 unlocks its write lock CPU 1 will proceed with a read lock.
Any other locks set for this same area proctab_lock while the above is in
progress will queue in turn after CPU 1's lock and be processed as described
above.

Cray Research, Inc. Proprietary TR-ITR 8.0 K

)
../

)

)

UNICOS Internals Technical Reference System Initialization 3-39

R_MEMLOCK and W_MEMLOCK illustration

Field proc tab_lock and the "cpu" arrays are in lowmem. c.

+ Fields marked with * use a bit mask to indicate a set of CPUs~ the position of the 1
bit from left to right indicates the CPU number.

lowmem.c

struct rwsemlck proctab_lock;

proctab_loc.

I sem_rlock 0010010000000 ••• I * 2 5

I I sem_wlock 00011000000000 •.. + 2~

sem_linkf l 00010000000000 •.. I + 3 .'-.
,

sem_linkl l 01000000000000 ••• ~

'" , --"'"

~
, A cpulinkf [cpu]

" 1 0000!000000000... I 000000!0000000. .. I 00000000000000. .. 1 0000000100000 ... 1+ I

[OJJ ~
[2J [3JJ

1 o~oooooooooooo. ~ 1 00000000000000. •• 1 00000000000000 ••. T ~ooooooooooooo. .. 1 +
[4J [5J [6J [7J

, --"'" , A ,
cpuhold [cpu]

I llin~ *file I Ilin~ *file I I Ilin~ *file I
[OJ [lJ [2J [3J

I Ilin~ *file I I I llin~ *file I
[4J [5J [6J

,
[7J

, --..... , A ,
cpumemhold [cpu]

I &proctab_lock J &proctab_lock I I &proctab_lock I
[OJ [lJ [2J [3J

I &proctab_lock I I I &proctab_lock I
[4J [5J [6J [7]

TR-ITR 8.0 K Cray Research, Inc. Proprietary 3-39

System Initialization 3-40 UNICOS Internals Technical Reference

Atomic sleep

The kernel sleepO function disconnects a CPU from a process, places that calling
process on a sleep queue, selects a different process to run, and connects the CPU to
that selected process. Since a process may sleep a very long time (get swapped out),
extreme care must be exercised to insure locks are not held across sleeps.
To avoid holding a lock across a sleep, the pattern logic would be:

MEMLOCK(sema,mem, lid)
/* process locked data mem */
MEMUNLOCK (sema, mem, lid)
sleep() /* CPU disconnects while waiting for some resource */
MEMLOCK(sema,mem, lid)
/* finish processing locked data mem */
MEMUNLOCK(sema,mem, lid)

Note: In the above that there is a window of CPU time between unlocking
the protected area and the actual placing of the process on the sleep queue.
Under certain conditions this can cause problems in the system. •

The buffer processing example on the upper right illustrates this problem.
Process "a", under lock, flags buffer as ''busy'' (1) while it is using it (2). Process
"b" also wants buffer and locks it (3), finds it busy, and sets the "wanted" flag.
While "b" is setting the flag "a" releases buffer (clear busy flag) but must wait on
lock held by"b". Process"b" unlocks buffer (5) and calls sleep to disconnect and
wait for buffer. Process "a" can then continue, locking the buffer and clearing the
busy flag. "A" finishes by testing if any process has set the wanted flag and calls
wakeup (6) to get any found started. If wakeup is completed in CPU 7 before
sleep in CPU 1 places ''b" on the sleep queue, the wakeup misses process "b"
which may get "stuck" in the sleep queue.

Logic in sleepO prevents the above from happening.

• Tvvo fields in the process table entry indicate that sleepO should clear a lock:
- p_slpsem Semaphore number to clear.
- p_slpmem Address of semlck area in locked memory item

• Atomic sleep logic:
MEMLOCK(sema,mem,lid)
/* process memory mem */
p_slpsmem=sema
p..;...slpmem=mem
sleep () /* sleep clears sema lock on mem before disconnecting CPU */
MEMLOCK(sema,mem,lid) /* get lock after wakeup */
/* finish processing memory mem */
MEMUNLOCK(sema,mem, lid)

The setting of p_s lpsem and p_slpmem causes sleepO to execute the
MEMUNLOCK (sema, mem, lid) code for the semaphore p_slpsmem.

)

The example on the lower right illustrates the use of atomic sleep to correct the race
condition problem. Process ''b'' requests that sleep unlock the buffer (3) causing "a"
to wait (4) until the buffer lock is released (5). By the time "a" gets the lock "b" is on)'
the sleep queue and will be awakened by "a" (6) so it can proceed. -

3-40 Cray Research, Inc. Proprietary TR-ITR 8.0 K

)
· UNICOS Internals Technical Reference

Logic without atomic sleep

time

/* gets buffer bp */ 1
lock bp a
set bp busy flag
unlock bp

/* process buffer data */ II ..
-. CPU 7 waits fpr lock

II

/* release buffer */
lock bp

clear busy flag ~ CPU 7 gets lock now

System Initialization 3-41

p;-pcbon
cpu'i

/* wants buffer bp
lock bp
if bp busy

set bp wanted
urllock bp

flag

*/

':I""""'''''''''''''''''~''-''''''''''''''''~ I race condition j
'1v.J'J""""""~""_"""""_""''''''~

if bp flagged wanted ~

wakeup (bp) - - - - - - - - - -_- - - - - - - - - - - - -)00 sleep (bp)
unlock bp a's wakeupO could scan /* link to sleep queue */

sleep queue before b's sleep()
places b on queue - /* process "stuck" in sleep * /

b could miss wakeup

) Logic with atomic sleep

/* gets buffer bp */

lock bp
set bp busy flag
unlock bp

/* process buffer data

/* release buffer */

time

1
a

*/

II
II

proc b on
CPO 1

/* wants buffer bp */
lock bp
if bp busy

lock bp -. CPU 7 waits for lock set bp wanted flag
request sleep lock

II
clear busy flag --.~ CPU 7 gets lock now
if bp flagged wanted

wakeup (bp)
unlock bp -----------11- -----------)00 / *

a's wakeup() finds b on
sleep queue and places
b back on runq -
b would be awakened

r"'n;;';ace~o;:;drfr;;n"'''''l
';'''''''''''''''''''''''''''''''''''''"''''''''''''.N''',.,JVV"",/'

sleep (bp)
/* link to sleep queue */
unlock bp

resumes processing -
marks bp busy, etc. /*

TR-ITR 8.0 K Cray Research, Inc. Proprietary 3-41

System Initialization 3-42 UNICOS Internals Technical Reference

Ownership macros

The following macros, defined in include/sys/semmacros.h, are available for the
purpose of checking lock status and ownership:
• ASSERT_LOCK - PANIC if memory not set for this CPU

#define ASSERT_LOCK(mem)
ASSERT(!multi_cpu I I (mem)->sem_lock==((1«63»>cpu»

• ASSERT_SEMLOCK - PANIC if semaphore lock not set for the CPU
#define ASSERT_SEMLOCK(serna) \

ASSERT (!multi_cpu II semlock[serna] == ((1«63»>cpu»

• OWN_SEMLOCK - TRUE if semaphore lock owned by this CPU
#define OWN_SEMLOCK(serna) (!multi_cpu I I semlock[serna] == ((1«63»>cpu»

• OWN_MEMLOCK - TRUE if memory lock owned by this CPU
#define OWN_MEMLOCK(mem) (!multi_cpu I I (mem)->sem_lock == ((1«63»>cpu»

• OWN_RWMEMLOCK - TRUE if read or wlite memory lock set
#define OWN_RWMEMLOCK(mem) \

(!multi_cpu I I (((mem)->sem_rlockl (mem)->sem_wlock) & ((1«63»>cpu»)

• OWN_MEMLOCK - TRUE if write memory lock owned by this CPU
#define OWN_WMEMLOCK(mem) \

(!multi_cpu II ((mem) ->sem_wlock & ((1«63) »cpu)))

• OWN MEMLOCK - TRUE if read memory lock owned by this CPU
#define OWN_RMEMLOCK (mem) \ "

(!multi_cpu II ((mem) ->sem_rlock & ((1«63) »cpu)))

Lock hierarchy

To avoid deadlocks there must be an explicit hierarchy among locks that will be held
concurrently.

• Each unique lock has a lock id assigned in inc 1 ude / sys / semmacros • h.

• A lock table ltab in cl/md/lowmem. c lists the locks in hierarchical order.
• A routine currently holding a lock can only set a lock lower than it's position in

this hierarchy.

• The SEMLOCKRULE define builds a kernel with rule checking in place. This is not
recommended for production systems due to CPU overhead. Lock rule violations
are displayable with the crash (8) leb directive.

• Under certain conditions hierarchy violations are acceptable, such as when a
locked data structure is destroyed or the lock is cleared in another process. The
LOCKRULE_CLEAR (lid) macro corrects lock rule information in these cases.

3-42 Cray Research, Inc. Proprietary TR-ITR 8.0 K

)

)

)

)

UNICOS Internals Technical Reference System Initialization 3-43

Lock statistics

Lock statistics are gathered in array lidstat [] to show for each lock id lid the
time spent waiting for the lock and the time a given lock is held.
Two site selectable options provide control over the collection of this data. Defining
the Nmakefile symbol SEMTIMING generates additional code in the kernel to
compute lock statistics, and the lowmem. c variable semtswi t controls execution of
this code.
The UNICOS kernel is released with SEMTIMING not set (commented out) and
semtswi t set to one (1).
• For each lock id's (lid) lidstat four statistics are computed:

holdtime Time in (RTC) clocks CPUs have held for this lid.

holdcount

locktime

lockcount

Computed by SEMWAIT_END and MEMWAIT_END macros if
semtswi t is non-zero.
Count of times any CPU has held for this lid.
Computed by SEMWAIT_END and MEMWAIT_END macros if
semtswi t is non-zero.
Time in (RTC) clocks CPUs have held this lid.
Computed by SEMLOCK_END, MEMLOCK_END,
R_MEMLOCK_END, and W_MEMLOCK_END macros if SEMTIMING
enabled and semtswi t is non-zero.
Count of times any CPU has held this lid.
Computed by SEMLOCK_END, MEMLOCK_END,
R_MEMLOCK_END, and W_MEMLOCK_END macros if SEMTIMING
enabled and semtswit is non-zero.

• Lock stastistics can be displayed with the crash (8) mts ta ts directive.
Information is displayed for each lock ide

Note: During processing the semtswi t value is loaded into global register
semtime CB(057)) .•

Lock debugging

Two crash (8) directives report information about kernel locks:
• mtlock displays the current state of a specific lock or all locks.
• mthold displays locks being held by by CPUs.

Additional UTRACE kernel trace line calls are provided for multi-threaded kernel
debugging.

• The crash (8) u t directive displays kernel trace lines.
• Kernel Nmakefile symbol SEMDEBUG enables these trace lines.
• Tracing these lines is not recommended in production kernels. The system is

released with SEMDEBUG not defined in the kernel Nmakefile.

TR-ITR 8.0 K Cray Research, Inc. Proprietary

System Initialization 3-44 UNICOS Internals Technical Reference

Kernel register uses - Kernel CPU register usage
I Reg(oct) Major B RegIster Usage (J SymbolIc VAL SymbolIc
BOOO Hardware return jump R saved p address

I B001 Current argument list pointer (stack)
I H002 Current stack frame pointer B.%STKCBT

B004 Jump switch pointer (interrupt handlerl B.SUHR

I B005 Pointer to current process (A2 in master.s)_ B.INDEX
I B006 System call (function) number (user SO) H.SYCALLN

B050 macro scratch register MACB2 B.MACB2
B051 macro scratch register MACB1 B.MACB1
B052 macro scratch register MACBO B.MACBO
B053 kemellock held usrioi klockd B.KLOCKD
B054 user XP address xpuser B.USERXP
B055 PWS entry address pws B.PWS
B056 non-zero if >1 CPU started multi_cpu B.MULTICPU
B057 semaphore timing switch semtime B.SEMTIME
B060 Used by Kernel flowtrace KFTP B.KFTP
B061 Pointer to current process pcornrn upc B.UPC
B062 Pointer to current process proc up B.UP
B063 Pointer to current process ucornrn uc B.UC
B064 Pointer to current process user u B.U
B065 CPU number "this" CPU cpu B.CPU
B066 Current 'Ibp of Stack Pointer B%STKCTP
B067 Stack Limit Pointer - B%STKATP

Kernel cluster (1) register usage
I Reg SB (Shared B) Register Usage C Symbolic ~AL ~ymbolic

- --
ISB07 Count of number of parked CPU inusripi I ST.PAKKCNT

Reg ST (Shared 1') Register Usage CSymbolic CAL Symbolic
STOO pseudo- (channel) nterrupt mask - usrioi ST.CHANF
STOI channel lockout mask - usrioi ST.CHANL
ST02 MEMLOCK macro wait mask ST.MEMMASK
ST03 SEMLOCK macro wait mask ST.SEMMASK ,
ST04 channel interrupt mask - real - usrioi ST.CHANR

ST06 I/O lockout flag ST.lOFLAG

)
ST07 IPI mask - CPUs marked to go to usripi ST.lPIMASK

3-44 Cray Research, Inc. Proprietary TR-ITR B.O K

UNICOS Internals Technical Reference System Initialization 3-45

) Kernel cluster (1) semaphore register usage'

Reg !SM (!Semaphore) RegIster Usage - U !Symbolic CAL Symbolic
MEMLOCKs

SM02 Process common table entry lock PCOMM_ENT
SM03 Vnodelock VNO_ENT
SM04 DNLC cache of pathnames -> vnodes DNLCLOCK
SM05 File table entry lock FILE_ENT
SM06 Butler structure lock BUF_ENT
SM07 Map structure lock MAP_ENT
SM08 Generic system table lock SYS_ENT
SM09 PCB element lock PCB_ENT
SMlO (NCl) lnode lock INO_ENT
SMll Mbufpool MBLOCK
SMl2 SSD semaphore SSDLOCK
SM13 Filesystem lock FSLOCK
SM14 Run queue and switch stufl RLOCK
SMl5 Global tables GLOCK
SMl6 Kernel profIle lock KPLOCK
SM17 Operating System lock bit OSLOCK
SMl8 I i/o register lock IOLOCK

) SMl9 Inode tables and routines NLOCK
SM20 Process tables and routines PLOCK
SM2l User tables and routines ULOCK
SM22 File tables and routines FLOCK
SM23 Sched tables and routines SLOCK
SM24 General shared register lock HOLDLOCK

~~;IVII ,()lJK.s

SM~5 .l{equest cpu park bIt IPAKK
SM26 isema hold lock ISEMA
SM27 Cluster register mask lock CGUARD
SM28 Panic lock PAN LOCK
SM29 History trace buffer lock TLOCK

.SM30 Butler cache lock BUFLOCK

Aliases for SYS_ENT(SM08)
SELECT_ENT
SOCK_ENT
SOCKCLENT
SOCKBUF _ENT
CHTAB_ENT
CCHTAB_ENT
NFSASYNCLENT
NFSCRED_ENT
SVDATA_ENT
NFSCKU_ENT
RNO ENT

TR-ITR 8.0 K Cray Research, Inc. Proprietary 3-45

System Initialization 3-46 UNICOS Internals Technical Reference

~\

)

This page used for alignment

)

)

Cray Research, Inc. Proprietary TR-ITR 8.0 K

)

)

UNICOS Internals Technical Reference System Initialization 3-47

Bootstrapping the mainframe

Booting methods

There are two different methods available for booting the UNICOS kernel into the
mainframe:

• Bootstrapping with the full kernel
• Bootstrapping with the compressed kernel

The compressed kernel option is the default method of booting the kernel into the
mainframe released with UNICOS B.O.
In the following description of bootstrapping the mainframe assume that the
operator work station (OWS) has already been started.
Executing the bootsys(B) command on the OWS performs the following:

• Starts the hbea t(B) daemon to monitor for lOP halts and hangs, the
errlogd(B) daemon to look for HISP errors, and the srndemon(B) daemon to
monitor the OWS-E system for the system maintenance and remote testing
environment (SMARTE)

• Runs lOP boot-time diagnostic tests (unless otherwise specified)
• Boots and configures each lOP
• Runs a set of mainframe diagnostic tests by executing the mf ini t(B) program
• Boots the mainframe by executing the rnfstart(B) program
• Executes the zip(B) command to provide you with the UNICOS console,

unless you specify the -w ("without zip") option
The following pages describe the processing performed by the rnfstart(8) command.
See the rnfstart(B) man page and the following man pages and Cray Research
publications for more information:

• configfile(5) for information about the co~guration file
• owseperrnfile(5) for information about the default OWS-E permission file
• bootsys(B) for information about booting using the values from the UNICOS

parameter file
• rcpud(8) for information about the remote CPU daemon
• ini t(8) for information about run levels in the UNICOS Administrator

Commands Reference Manual, publication SR-2022
• UNICOS System Administration, publication SG-2113, for information about

the UNICOS parameter file

TR-ITR 8.0 K Cray Research, Inc. Proprietary 3-47

System Initialization 3-48 UNIGOS Internals Technical Reference

Bootstrapping the mainframe with the full kernel

The Cray mainframe can be booted with a full kernel from the OWS. The full
UNICOS binary (unicos), a startup parameter file (param), and an option boot root
file system is provided as shown in the figure on the right.
The rnfstart(8) command -y, -p, and -f parameters specify the unicos kernel file
name, param file name and root file system name as shown. The boot root (or RAM
root) file is normally only used for initial installation of the kernel or disaster
recovery.
The OWS issues the command to the lOS cluster 0 to master clear the mainframe.
The hardware master clear signal stops all mainframe CPUs and sets their XA
registers to O. The OWS provides the kernel binary, and parameter file which the
lOS then writes into the mainframe's low memory.
The lOS is responsible for stripping off the loader header (exec structure) on the
binary and for storing some values in the kernel's initial exchange package Go cation
0) that could not be knoWn at compile time as follows:

A5: Number of the booting cluster (Model E)

A6: Number of the booting channel

S1: Length of the (optional) memory-resident root file ,system
S2

S4:
S7:

Length of the spare chip configuration file

Size of the kernel binary
Size of the kernel plus the startup parameter file

S6: Always 0 (Would be nonzero if csimlncsirn was executing the kernel)

S5: This register is left 0, indicating that this boot was done by the lOS and
therefore the kernel must perform the initial handshaking that the lOS ex
pects.

The lOS releases the master clear, causing an interrupt in CPU O. (The other CPUs
stay in the master-cleared state until they receive an interprocessor interrupt.)
CPU 0 begins executing at rnfstart in the kernel.

3-48 Cray Research, Inc. Proprietary TR-ITR 8.0 K

\
)

UNICOS Internals Technical Reference System Initialization 3-49

Booting the Mainframe with the Full Kernel

CRAY

mfstart -~ u pnicos . lOS

cluster 0 kernel

cpum/c
y~~~~--------~

TR-ITR 8.0 K Cray Research, Inc. Proprietary 3-49

System Initialization 3-50 UNICOS Internals Technical Reference

Kernel structures at deadstart

CPU 0 exchanges the kernel's initial xp (at address 0) into its registers and begins to
execute kernel code at the address compiled into the P register of that xp
("mfstart" - see c1/md/lowmem. c).

Central memory as CPUO enters the kernel is shown in the figure on the right:
S5 = 0 ifloaded from lOS
If a kernel ''wakes up" with a zero value in S5, it knows that it has been loaded from
the lOS (that is, not through a mainframe bootstrap of itself).
S6 = 0 if not loaded by csim

If the kernel "wakes up" with a zero value in S6, it knows that it is being executed
directly by real hardware, and that the execution of its code is not being done by a
Cray simulator (csim).

The value of86 is saved as a csim flag in location 0176.

Certain situations test this csim flag so that the code runs faster under csim as
follows:

• ddini to routine won't attempt flaw initialization,
• The T packet (real terminal- Model D) driver putcharO won't delay
• panicO won't attempt I/O to the lOS
• The semsleep macro will report the CPU idle waiting for a semaphore

3-50 Cray Research, Inc. Proprietary TR-ITR 8.0 K

)

)

UNICOS Internals Technical Reference

Kernel structures at deadstart

o xp I
I xp:p=mjstart ____ 4

unicos

param

chip config

rootfs

rl'
physmem

spare chip map

L f
1 S7

--1..1 S2 -r --
SI

l

TR-ITR 8.0 K Cray Research, Inc. Proprietary

System Initialization 3-51

3-51

System Initialization 3-52 UNICOS Internals Technical Reference

Bootstrapping the mainframe with a compressed kernel

Beginning with release 7.0, the kernel Nmakefile builds and executes a utility
named kcompress to compress the kernel. Source is in uts/cmd/cl/kcompress.
The figure on the right shows a diagram of a compressed boot kernel.
Compression of the kernel saves about 70% on the size of the deadstart binary. By
compressing the kernel binary, OWS disk space is saved and the boot time is
shortened because there is less I/O activity required to read the kernel binary.
The kcornpress utility writes a decompression routine into low memory, saves the
kernel initial exchange package in low memory (at location 045 hexadecimal) and
replaces it with an initial exchange package to execute the decompression routine.
The first 128 words of the kernel are not compressed. Only the kernel binary is
compressed, not the symbol table at the end of it (needed by /etc/crash utility).
At deadstart, CPUO exchanges to the decompression routine which moves the
parameter file and symbol table up, expands the kernel binary, copies the kernel
initial exchange package back down to 0 and jumps to the kernel's entry point
(mfstart (}).

The /unicos file is a copy of the decompressed kernel. Decompression is a function
of the mainframe and not the lOS, so this works equally well with lOS model B, C,
D, orE.
The DECOMPO routine maintains the register values provided by the lOS in the initial
exchange package. It also bumps up S4 and S 7 to reflect the size of the kernel and
parameter file after decompression.
DECOMPO moves the memory-resident root file system also.
The compression of the kernel is reflected in the exec structure attached to the
beginning of the binary. Use the size(l) command to show the text, data and bss of
a kernel binary as follows:

uncompressed kernel: 844021 + 0 + 0 = 844021 words
compressed kernel: 276251 + 0 + 567770 = 844021 words

The bss size represents the space saved by compression.

3-52 Cray Research, Inc. Proprietary TR-ITR 8.0 K

)

-)

UNICOS Internals Technical Reference System Initialization 3-53

Compressed Kernel Boot

0---- r-------r----;;:::=::;::;::==:;::::;;;;:::::::;::::::::::::=-==I

-------------------------- ----------------------- ------- 0200

compressed kernel

kernel symbol table
S4-~*---~-----------------------------------_;

parameter file
S·~~~--~~-----------------------------------~
S2~~------------~~~~~----------~

Sl [root filesystem]

)
/

"boot heap"

T

)

TR-ITR 8.0 K Cray Research, Inc. Proprietary 3-53

System Initialization 3-54 UNICOS Internals Technical Reference
.. ~

)

This page used for alignment

)

3-54 Cray Research, Inc. Proprietary TR-ITR 8.0 K

UNICOS Internals Technical Reference System Initialization 3-55

) UNICOS kernel startup

)

Startup overview

The following section describes kernel logic flow starting from CPU O's entry into the
kernel at mfstart through the initial entry of ini t (8) (j etc/ ini t) executing in
single user mode.

• Stack initialization
• Hardware initialization

CPU 0
- CPUs 1-n
- Clusters, etc.

• Startup parameter file processing

• Starting UNrCOS
System process creation

init

• idles
• esd-pulse

• utility
Mounting the root file system
Entering sched ()

Entering ini t (8)

TR-ITR 8.0 K Cray Research, Inc. Proprietary 3-55

System Initialization 3-56 UNICOS Internals Technical Reference

mfstart I mfinit logic

Key elements of kernel routines mfstart and mfinit follow. Memory contents are
shown in the diagrams on the right.
• Memory mapping address contained in the initial excliange package, and now in

A and S registers are saved in memory variables shown.
• Macro SETGBT loads kernel global registers as shown in the diagrams.
• Address ddtbase is set to the future base of the driver tables. (They will be

located there after they are built.
• The stack area for process 0 is initialized by

Aligning the zerostk address to a click boundary within process zero's ucomm
and user area reserved for it in low memory.
Setting stack control registers B002, B066, and B067.
This stack will support function calI/return logic in the c language routines to
follow.

• mfstartjumps to mfinit (no stack frame is created yet).
• After setting ''in init" flag ini t, routine:

pbini t sets initial ASCII names and pointer in the panic buffer.
- unini t sets initial ASCII names and pointer in the kernel trace buffer.
- machinfoinit initializes the machine info. table values to zero.

• The deadstarting CPU's XA is set to point to it's "unix'.' exchange package area in
its processor working storage table area. After this (unix XA is changed) any
interrupt would cause the CPU to go to immtrap causing a system panic.

• The CPU is switched into hardware cluster 1, the system cluster. Cluster 1 is
zeroed.

• Memory is physically scanned to determine highest address, saved in discmem.
Memory from sysmem+rfsleng thru discmem zeroed.

• IDS model B, C, and D only: miopini t reads data/time from MIOP, swaps I and J
initialization packets, and sets up miop table.

• If (C90) spare chip map (scfleng! =0) copy it to sparechip in low memory.
• Detail about csl () processing, startup file creation, and table relocation is shown

3-56

on the next 4 pages.
If IDS model E calls csl () to process par am file, configuration specification
language (CSL) directives in the startup parameter file are used to create
"driver tables" for the kernel.
If IDS model B, C, or D calls pscan () to process the startup parameter file
(detail not shown).
Memory copies of startup files are created and saved in high memory (written
to root after it is mounted).
The driver tables are relocated down (to ddtbase) reclaiming "user" memory.

Cray Research, Inc. Proprietary TR-ITR 8.0 K

)

)

UNICOS Internals Technical Reference

mfstart I mfinit logic

mfstart md/mjinits.s
owslink=A5 (boot cluster), owschan=A6 (boot channel)
rfsleng=Sl (length ofrootfs)
scfleng=S2 (chip config), sysmem=S4 (len. UNICOS binary)
bootload=S5, csim=S6, end=S7 (unicos+spare+param)
owsplvl=A 7 (bit 40-47: lOS protocol level)
irunlvl=A7(bit 48-55: init run level)

ETGBT (set global B and T registers macro)
B.PWS (055)=PWS (pws cpu entry "this cpu")
B.USERXP (056)=pw.xpus (user XP areafor this CPU)
B.CPU (065)=PN (CPU)
B.KFIP (060)=0 (kernel jlowtrace pointer)
B.SEMTIME (057)=semnnswit (semaphore timing),
B.TRACEM (065)=tracemask (semaphore trace)
B.MULTICPU(056)=multicpu (non-zero for multi-thread kernel)

ddtbase= &pdummy
(if !S5) clear low speed channels
C90: disable interrupts all channels
prepare the stack pointers for entry to C code:

align proc[O]'s "swap image" zerostk on a click boundary
B. %STKCTP(066)=pOstack (base of stack)
B. %STKCBP(067)=pOstack+KSTACKL (end of stack)
B. %STKATP(002)=0 (top of current stack)

XA=pw.xpux ("UNIX" exchange package for this CPU)
, (Jump to mfinit) , -.. •
mfinit cllmd/mjinit.c

ininit++
pbinit cllmdlmachinfo.c (initialize the panic buffer)
utinit cllsyslsysmacros.h (initialize the trace buffer)
iii3chinfoinit cllsyslsysmacros.h (setup machinfo table)

1nitialize XP at pw.xpux (would call immtrap)
XA=pw.xpux
CLN=l (switch to cluster 1 - system cluster)
clear CLN 1 registers
di scmem=("scanned for" end of memory)
clear sysmem+rfsleng thru discmem to zero
(lOS B/CID only): miopinit (init lOS lOP)
adjust physmem down to compensate for ilaldla truncation

sc;,.fleng 1= 0
t--~"c~opy "chip config" to sparechip (in lowmem)

lOSE ..
pscanO cslO (process parameter file)
create "files" at end of memory
relocate driver tables next to kernel

(.continued on next page) .1.
t

o

ddtbase=
pdummy

end

physmeni

B.PWS
(055)

TR-ITR 8.0 K Cray Research, Inc. Proprietary

System Initialization 3-57

..xP'p=mtstart

unicos

param

chip conti!?

rootfs

hdwe spare chip mal

Isparechip

- sysmem

_: .. scfleng
"

,
... "rfsleng , , ,

r - "'z~fO'Sac - - - - - - - ...
I, click'
ucomm

3-57

System Initialization 3-58 UNICOS Internals Technical Reference

csl processing

The cslO function builds system tables following the kernel area in memory from
the information in the ASCII parameter file as follows:

• z_ios-parp points to sysmem + scfleng
• z-parserO to processes parameter information storing it in a scratch memory

area (heap).

• relfac = cf data - ddtbase
Pointers to and within table created by cslO are relocated by relfac before
returning.

• cslO itself and functions it calls allocate and initialize the data/table items as
shown in the table below.

Function Description Data Item I Table Description
ASCII label: contents

csl_initIOSO lOS initialization miop miop: MUX lOP table
iostab iosdtbl: IDS device table
eiopack eiopkts: E packet table
epackend End of E packet table

csl_initrnfO Mainframe initialization cpquan Number of CPUs, must be <= con-
figured

mi_maxclus Number of clusters, must be <=
configured

physmem Size of main memory, must be <=
configured

halfmem Selected half of C90 memory
chant Initialize only (alloc in lowmem)

csl_initunicosO UNICOS initialization nbuf Number of system cache buffers
v.nbuf Number ofldcache headers
v_ldchcore LDCHCORE
LDDEVCT Maximum number ofldd devices

~

slice-prof
[ldd_major] ldd device slice table
ddrnaps ddmaps: disk device maps table
nldrnap Number ofldmap items
slice-prof
[mdd_major] mdd mirrored device slice table
mdd_tab mdd_tab: mirrored device table
hdd_tab hdd_tab: HIPPI disk device table
HDDEVCT Maximum number ofhdd devices
slice-prof
[hdd_major] hdd HIPPI disk device slice table
pdd_tab pdd_tab: physical (dd) device

table

3-58 Cray Research, Inc. Proprietary TR-ITR 8.0 K

)

~

)

UNICOS Internals Technical Reference System Initialization 3-59

Function Description Data Item I Table Description
ASCn label: contents

DDEVCT Maximum number ofhdd devices
slice...,prof
[rdd major] rdd ram device slice table
slice...,prof
[sdd major] sdd striped device slice table
sdd tab sdd tab: striped device table
slice...,prof
[ssdd major] ssdd SSD device slice table
v_tp_bufz Max. buffered (block) size for tape
v_tp_conf_up Maximum tapes configured up
v_tp_max_dev TAPE_MAO_DEV???

csl_initfsO File system initialization root_conf ldd configinfo (eslice/dd_tab)
for the root file system device

swap_conf ldd config info (esliceidd_tab) for
the swap file system device

swapunits swap dev size(blocks) / swp_wght
(swp wght = 16)

csl_initramO Ram disk initialization ramsize Ram disk size converted to words

csl_initSSDO SSD initialization ssd_count Number of SSD devices

vhspconf vhispcf: VHISP channel configu-

) ration table
ssdconf ssdconf: SSD configuration table
ssdd_tab ssddtab: SSD device table
SSDDMAX maximum SSD devices
sdsbits sdsbits: SDS bit map table

csl_inithiO HIPPI driver initial. himaxdevs Ohannel table size

himaxpaths Number of paths
nhippi Number HIPPI channels
hidev HIPPI device table

csl_initnpO LOWSP comm driver initial. np vars Initialize only

np devs n packet driver control table
csl_initmhO TOP only: Mbuf param v_tcp_nmbspace Space for mbufs; allocated in co-

initialization remap by mini to later in
urnainO

csl_initnfsO NFS only: NFS params v_nfs_num_rnodes Number ofrnodes

v_nfs_static_clients Num. of static client handles (nfs)
v_nfs_temp_clients Num. of temp. client handles (nfs)
v_cnfs_static_cli- Num. of static client handles
ents (cnfs)

)

TR-ITR 8.0 K Cray Research, Inc. Proprietary 3-59

Systein Initialization 3-60 UNICOS Internals Technical Reference

Function Description Data Item I Table Description
ASCII label: contents

v_cnfs_temp_cIients Number of temp. client handles
(cnfs)

v_nfs_Inaxdata Max. user data readlwritten
v_nfs_wcredmax Max. number of credential struc-

tures
v_nfs_maxdupreqs Max. duplicate request cache
v_nfs_duptimeout Duplicate replay timeout
v_nfs-printinter Time out error redisplay interval

csl_init_fddiO ELS only: EL FDDI nfddi Max. number of FDDI devices
driver initialization fddi_devs FDDI device table

csl_init_enO ELS only: EL Ethernet en_devs Ethernet device table
driver initialization

csl_initfdO Not ElS: FDDI driver nfddi Max. number ofFDDI devices
initialization fd_devs FDDI device table

cslO Control statement pro- cf_text Beginning of parameter file area
cessor in memory

cf_text_bl Length of parameter me area
cf_data Base of system table area
swapbits swapbits: swap device allocation

bitmap
mcachebits mcachebit: memory cache (systen

buffer) allocation bit map
)

nbuf, nhbuf Round up to next power of 2
cf data wI End of system table area

3-60 Cray Research, Inc. Proprietary TR-ITR 8.0 K

UNICOS Internals Technical Reference System Initialization 3-61

This page used for alignment

)
--_/

TR-ITR 8.0 K Cray Research, Inc. ProprietarY 3-61

System Initialization 3-62 UNICOS Internals Technical Reference

startup file I table relocation

The diagrams on the right illustrate how memory information is located and
relocated during startup processing.
• c s 1 () processing

cf_text points initially to the base of the parameter file (cf_text_wl is its
length.
z-parser processed parameter information in the boot heap.
Various "z_" functions (preceding page) build driver tables located at cf_data
(cf_data_wl is its length).

• Items are saved in high memory while the rest of startup continues.
lunicos binary - used by system commands and crash(8).

3-62

~ An initial kernel stack area (plus 2000 words) is reserved just below
physmem.

~ A standard a.out header (s truc t exec inc 1 ude I sys I aou tda ta . h) is
builtatcf_unicos.

~ The kernel binary image (including symbol tables) is copied after the
header.

~ cf_unicos_wl is length of whole area.
lOS parameter file (/ IOS-param on lOS B/CID systems)
~ Copy param file contents to iospar (now relocated to high memory)
A ios-parw1 is its length.
lOS configuration file from pscan () (/CONFIGURATION on lOS B/CID
systems)
~ Copy configuration file contents to c f_ text (now relocated to high

memory)

~ cf_text_wl is its length.
lOS script from pscan () (/ etc I setdev on lOS model B, C, and D systems)

~ Copy script file contents to cf_script (now relocated to high memory)
~ cf_script_wl is its length.

Optional boot root file system.
~ If present (rfsleng! =0) and its image is overlapped by the "future"

relocated driver tables, copy it to cf_ramfs. "
~ cf_ramfs_wl is its length.
Driver tables (at cf_data) are copied down to ddtbase (or pdummy). Note
cslO or pscanO and their related "z_" functions and other startup file data is
reclaimed (overlaid) by this action. dd tmend is the end of the driver tables
(and the start of other system table information.

Cray Research, Inc. Proprietary TR-ITR 8.0 K

)

)

)

UNICOS Internals Technical Reference

startup file I table relocation

Before cslO

o

ddtbase=
pdummy

sysmew ____ _
scfle:og,

,
rfsleng'

, en<t ______ _

physmem~

unicos

chip config
param

rootfs

driver tables

z-parserO
tables
(boot heap)

spare chip map

MtercslO

--------+
_~Uext

I

re/ftlc
I

cf data :
~------ ----
•
~Cdata-wl , ,

o

ddtbase=
pdummy

ddtmend

cf ramfs - ---
cCsc~p!

cCte~t _
ios_P!l!: _

-

-
-
-
-

cCunj~Q.s -

,
physmem

TR-ITR 8.0 K Cray Research, Inc. Proprietary

System Initialization 3-63

unicos

driver tables

rootis
script
contil!
param

_~J(es: ______
unicos
stack area
(2000)

spare chip map

3-63

System Initialization 3-64 UNICOS Internals Technical Reference

mfinit()logic (continued)

• emiopini t initializes lOS Model E tables, gets date and time from lOS, and
initializes packet queuing tables.

• Initializes LOWSP and VHISP channels.
• icpu initializes CPUs I-n

Clears IPI interrupts.
Builds Xp for each new deadstarted CPU "n" (p.aaddr = park).

Sets OSLOCK (single thread kernel).
Initializes PWS for CPU O.
For each CPU "ncpu" 1 through n:
o Initializes CPU[ncpu[PWS area.
o Create new deadstarting XP (p=park).
o Sends IPI to CPU[ncpu]
o Spins until CPU "ncpu" write "INIT" in PWS
o Sets machine information table data.
CPU ncpu starting in park:
o Sets its global register to reference its idle process.
o Initializes its XA, clock, interrupt flags.
o Save "INIT" in PWS.
o ===========

Spin until OSLOCK cleared.

o Resets stack to base frame.
o Call mcpu to complete initialization.
o Jump to master (enter kernel mainline loop)

• Sets CPU 0 programmable clock for 1 second (from now) interrupt.
• Sets system date and time fields.
• Build error exchange package "trap" at location 0 (PANIC zeroXP).
• Trace going to gounix.

• Calls gounix:

Initializes stack (eliminates gounix frame).
- Calls umain:

o Finishes initialization (following pages for detail).

Note: gounix returns logically once for process 0 and once for each idle process
(reference from park above) .•

- Continued on following pages after return from umain.

3-64 Cray Research, Inc. Proprietary TR-ITR 8.0 K

)

)

)

)

)

UNICOS Internals Technical Reference System Initialization 3-65

mfinitOlogic (continued)

lOS E only: emiopinit c1/mdieinit.c
Send time and date request to the OWS.
eiosetup cl/mdieinit.c

initialize the free packet list
run through all the clustersllOPs and

initialize the appropriate channels
lOS B/CID only:

add packets to the packet free list
ssdinit c1/mdJinit.c initialize SSD channels
mppinit c1/io/mppstub.c (stub)
icpu c1/mdJicpu.c

set B "global" registers for "this" CPU
see diagram/or CPU 0 at the stan o/m/stan

XA = PW.XI)UX

CIP clear any IPI
PCI clear PC - disable this CPU's PC
save "INIT' in "its" PWS area (tell CPU 0 t
SEMTSQ (wait on OSLOCK)

==== spin wait

set stack pointers (B0661B067) to
CIPI cl/sys/asm.h clear IPI interrupts
clrsrs cl/mdiicpu.c clear status registers
IBIDB=O ILIDL=physmem temporary stack area $STACKP in c IImd/setstk.s
setperf cl/mdiperjmon.s initialize HPM regs
clear all cluster regs

mcpu cl/mdJicpu.c returns via longjmp later
set into system clustor (1)

SEMLOCK : set OSLOCK
initialize PWS area for CPUO - show CPU 0 started
for ncpu = 1 to cpquan

connect it to its idle (created by umain/idle[O])
setperf cl/mdJperjmon.s initialize HPM regs
SetMachineInfo c1/sys/machin/o.h build

default machinfo data initialize CPU[ncpu] PWS entry
create new XP in unixxp (p=park)
setxp cl/mdlicpu.c finish XP - copy it to 0
SIPI cl/sys/asm.h sent interrupt to CPU ncpu
spin wait until PW[ncpu] sets "init" or time out

if 'REQS' (fIrst start) longjmp to save area (idle)
ump master (on 2nd return?)

time out - mark CPU ncpu down
INIT - mark CPU ncpu up

SetMachineInfo cl/sys/machin/o.h
build default machinfo data

p_clock = HZ (l second)
rtcinit cl/mdimjinit.c

tz=time zone
timbuf=yr,mo,day,hr,mn,sec
RTC=CPs since 111190

.'. •

ftimeout os/callout.c set programmable clock to 1 sec future
lOS E only: utcsetdate: cl/io/utc.c utc driver date setup
PCI(HZ) Run PCI at 1 second in cpu-O
_CCI
CRAYC90) only: _ECI enable channel interupts
setxpOerror cl/mdimjinit.c Initialize error xp at 0 (to go to zerotrap)
clmask = 1 bits for "user" clusters 2-n
U1RACE 'GOU' trace "go unix!"
gounix cl/mdisetstk.s call to finish startup

Reset stack pointers B066 pOstack base, B067 top of stack, BOO2=O
track. "GOU" gounix

• umain cl/os/main.c (continued next page)

TR-ITR 8.0 K Cray Research, Inc. Proprietary 3-65

System Initialization 3-66 UNICOS Internals Technical Reference

umain()logic

The diagrams on the right illustrate memory initialization by umain.

• Flags ini t "initialization in progress".

• Initializes error log and panic buffers.

• Calls startup to:
Adjust memory pointers for table usage.

- Initialize user memory coremap, swapper, SDS, and BMR memory maps.
- Allocates and initializes user table entry point utab_ent for dump processing.

• Calls initsema to initialize thread control fields for proc[O].
• Initializes proc[O] share pri., limit node, proc, and pcomm fields:

proc[O] now logically connected to CPU o.
• Allocates initial kernel stack pool from user memory coremap and adjusts user

memory valuess downward. (See "Kernel Stack Management" for detail).

3-66 Cray Research, Inc. Proprietary TR-ITR 8.0 K

)

)

)

UNICOS Internals Technical Reference

umain()logic

umain cllos I main.c
init++
err_init ell io I errlog.c initialize errlor log (/dev/err)
panicinit ellos I panic.c initiialize panic buffer 0
startup ellmdlmachdep.c

copy "ram disk" down next to kernel
maxmem=physmem-(end+ramsize)
initialize memory bitmap

coremap area for user processes
downmem=maxmem,

downmsz=hardmem-downmem
adjust coremap for downmem
initialize swapper bit map swp_map
initialize SDS map sdsmap
initialize BMR map bmrmap
allocate (coremap) utab_ent for mfdump

up=&proc[O], upc=&(proc[O].pcomm)
initialiaze proc[O] data fields
link proc[O] to pid hash queue
initsema include_sys_semmacros.h

initialize pc_sema for proc[O]
MaxSharePri=l.O
setup lnode[O] (system) lnode[l] (idles)
connect this CPU to proc[O]
ucinit ell os I main.c

initialize proc[O] pcomm data areas
stackinit ell mdl machd.c

poollen=MAXCPUS+20 (MEMKLICKs)
allocate stack area poollen units

(at top of coremap - after downmem)
initialize poolmap:

NPROC+NCPU*2 units (max it can grow)
p lbase = high (click) address of stack area

poolfirst = low (click) address of stack area
p_stack (proc[O] stack) = pOstack
decrease maxmem by stack pool size
adjust downmem address down

by stack pool size
stack_llimit = low word

address of stack area
(return from stackinit -
umain continued next page)

.' . •

System Initialization 3-67

after startupO

reserved for
stack area

downmsz

? allocated out of coremap

after stackinitO

r

+-
ramsize

l

poolmap

" poolmap.
i'" bmp.total ,

I ? map covers
NPROC+NCPUS

/ *2 clicks

base of stack -

TR-ITR 8.0 K Cray Research, Inc. Proprietary 3--67

System Initialization 3-68 UNICOS Internals Technical Reference

umain()logic (continued)

• Initializes (possibly allocates) the following kernel memory areas and tables:

3-68

(Details of these tables can be found with corresponding topics in this manual).
Security log buffers (if secure flag on).
Memory block table used by swapper.
Callout table used by CPU management.
Virtual File System function entry table.
Character (terminal) buffer areas.
System buffer management:
o Buffer headers.
o Cache buffer blocks.
o Cache hash table headers.
o Async (uoi) headers.
o Exec map pool and hit map area.
o Ldcache headers and bitmap areas.
Quota table.
File table.
Restart table and buffers.
Communication tables.
Proc table entries (excluding proc[O] already in use).
File locking tables.

Cray Research, Inc. Proprietary TR-ITR 8.0 K

)

)

)

)

)

UNICOS Internals Technical Reference

umainOlogic (continued)
umain c1loslmain.c (continued)

secinit c1los/secure.c
setsecure_sys=l
slginit c1loslslogext.c

allocate security log pseudo device buffer and flags
If security logging is enabled, issue initial system startup record
if secure system, set proc[O] security fields

memblk_init clloslsched.c
link each proc table entry to a memblk entry
link each text table entry to a memblk entry

memblk_enq c1loslsched.c
initialize memblk entries

callinit os_callout.c
initialize callout table entries

vfsinit fs_ vfs.c
initialize virtual file system (vfs) init function entries

cinit c1liolclist.c
link all character buffer blocks (cblocks) on cfreelist

binit cllos/bio.c
allocate (coremap) cache buffer headers (buthd)
allocate (coremap) cache buffers (buffers)
allocate (coremap) cache hash buffer headers (hbuf)
initialize cache (MCACHE) allocation bit map
allocate (coremap) cache hash headers (hblks)
allocate (coremap) and clear uio table (uio_head)
lOS BICID: allocate (coremap) disk spare table (spare)
allocate (coremap) and clear exec hold argo area (execbase)
initialize exec bit map
decrease maxmem and usrmem by above amounts
schedv _adjust clloslsched.c (no function here)
link cache and physical buf header to free lists
link uio and aio entries to free lists
lOS BICID: link and initialize spare table entries
Idch_init c1lio/ldcache.c

allocate (coremap) ldch headers (ldchlist)
allocate (coremap) and initialize ldch bit map (ldch_corebits)

qinit clloslquota.c
initialize quota table and link on free list

finit cllos/jio.c
link file table entries to free list

restartinit clloslrestart.c
allocate (coremap) and initialize restart buffers (resinfo)

comminit c1liolcommsubr.c
calculate size of communications tables

forkinit cllos/jork.c
link proc table entries (proc[l] through proc[NPROCD to availproc
link proc[O] to allproc list

f1ckinit osJlock.c
link flox table entries to free list

J.. (continued next page)

TR-ITR 8.0 K Cray Research, Inc. Proprietary

System Initialization 3-69

3-69

System Initialization 3-70

umainOlogic (continued)

Partition memory for compatability mode.
Message buffers for telnet, etc.
System call stastics sysent table.
Semaphore lock rule table (if configured).

File system log buffers.
Sidedoor buffers (if SDS configured).

Tape daemon tables.
Data migration tables.

UNICOS Internals Technical Reference

Following the initialization of tables umain creates the system process as described
on the next set of pages. The logic of umain continues after an overview of this
activity.

3-70 Cray Research, Inc. Proprietary TR-ITR 8.0 K

)

)

)

UNICOS Internals Technical Reference

umain()logic (continued)

,
J. ,

allocinit cllos/mal/oc.c
partition memory for compatibility mode

minit tcplkernluipcmbuj.c
allocate (coremap) message buffer headers Lmhbase)
allocate (coremap) message buffers Lmdbase)

Netinit tcplkemlnecsubr.c
mbinit tcplkernluipc_mbuj.c initialize mbufs
configure tcplkernlnecsubr.c Attach all the ethemet interfaces
DneCattach tcp/kemlnecsubr.c

ifinit tcp_necij.c initialize network interface table
dOmaininit tcp_kem_uipc_domai.c initialize tcp domains
Ioattach tcplnet/iLloop.c loopback interface driver

sysentinit cl_os_sysent. c
initialize sysent table

iniCIockruIes clloslsubr. c
initialize kernel semaphore lock rule table

fsIginit cllio/fslog.c
allocate(coremap) the file system log pseudo device buffer (fslgp)

ifsdsunits
sideinit clliolsidedoor.c

allocate (coremap) sidedoor buffers (sidebuf)
pdinit cllioletpd.c
initialize pointers to tape daemon tables
allocate (coremap) tape table storage area (stortab)

miginit clliolmig.c
initialize queues for migration devices
(umain continued later in this section)

TR-ITR 8.0 K Cray Research, Inc. Proprietary

System Initialization 3-71

3-71

System Initialization 3-72 UNICOS Internals Technical Reference

This page used for alignment

)

)

3-72 Cray Research, Inc. Proprietary TR-ITR 8.0 K

UNICOS Internals Technical Reference System Initialization 3-73

sysprocO routine

Summary
Function umain () (proc[O]) creates the "other" system processes using sysproc () .
Function sysproc () is a form of fork/exec called by the kernel during startup to
create the following system processes (NCPU is number of configured CPUs):
• init - proc[l]
• idle(O thru NCPU); proc[2] thru proc[NCPU-l]
• esdpulse - proc NCPU]
• utility - proc[NCPU+l]

Creating system processes
The following pages illustrate how sysproc () creates these system processes. Note
that entering this logic, only CPU 0 is executing, the other CPUs are spinning on
OSLOCK in park. The two illustrations show:
• 'rhe logic of sysproc () .
• proc[O] creating the system processes using sysproc () ..

TR-ITR 8.0 K Cray Research, Inc. Proprietary 3-73

System Initialization 3-74 UNICOS Internals Technical Reference

sysproc() example
sysproc () is called with the name of the new process, flag "FORK_FORK", size of newly created process,
address of new process's program, and the index to the Inode to accumulate usage history.
The diagram on the right shows the basic logic of sysprocO. The diagram assumes the process
proc [p] has called sysprocO to create a new process of name name, code address codeaddr
and size memsize. The "parent" process image, with its stack, is shown on the lower right of the
facing page. In the case ofproc[O] making the call, the stack is in pOstack, otherwise it is in a
unique area in the stack pool.
1 sysproc () calls newproc () , the "body" of the kernel's fork function.
2 newproc () gets the first available proc table slot for the new process. The newly starting

system has only proc[O] used so far. Proc[1], proc[2] and so on, will be allocated in order. The
child gets a new process ID and the parent's proc data is copied to the child' proc slot.

3 The p~ent saves its V registers and clusters in its process image so they may be inherited by
the child (via the memory copy).

4 set jump () is called to save the current stack pointers in the parent's kernel register save
area. This, in effect, saves the parent's stack (in the context of doing newproc () called by
sysproc () called by umain ()). set jump () returns zero (0) to its caller.

5 The return value from set jump () is tested by newproc (). 1'he "false path" oflogic finishes
the parent's part of the fork.
• Allocates a stack from the stack pool for the new process.
• Allocates memory (coremap) for the new process (size of parent).
• Copies the parent image to the new area.
• Copies the parent stack to the child's area (its pointers are relocated when it is

connected).
• Places the child's proc table entry on the runq, it's a candidate to be connected by a CPU.
• Returns zero (0) indicating "parent". The parent's side of the fork is basically completed.)"

6 The newproc () return is tested by sysproc (). The "parents's" logic (0) finishes its fork
logic by marking the new process as loaded in memory, sets its priority.

7 The return of zero (0) indicates the parent returning from sysproc () .
8 The new child process was left on the runq. Eventually a process (for example, proc[O]) will

call swtch () to give its CPU to another process.
9 The new process is selected and "connected" to the CPU via a call1ongjrnp ().
10 longjmp ()

• Restores the new process's registers (copy of the parent's)
• Restores the pointers to the stack (the copy of the parent).
• Returns one (1) to the caller (actually the caller of set jump ()).

11 The "true" test indicates to newproc () that it is the child executing newproc () .
12 In newproc () the child adjusts the inherited XP values. newproc () returns one (1) as

child. The "fork" is basically completed.
13 The child executes the "exec" part of the logic.

• Assigns and fills out the caller specified Inode
• Copies the caller specified name to the proc table entry.
• Adjusts its memory (code/data) to caller specified memsize.
• Copy the caller specified binary code codeaddr to the child's program space.
• Adjusts the XP to the new (basellimit) values, etc.

14 The child's return of one (1) indicates to umain () this is the child's logic thread (will be
tested by caller).

3-74 Cray Research, Inc. Proprietary TR-ITR 8.0 K

)

)

UNICOS Internals Technical Reference System Initialization 3-75

sysproc(name,jorkJl,ags,memsize,codeaddr,lnodeindex)

II L..I ---- newproc lforkJl,ags,)
get a proc slot for child B compute a new pid for child
zero child's proc table fields
copy "parent" proc to "child"
link to proc management chains
(eg. availproc->allproc) II save the parent's V's and clusters

L setjrnp

any p~ocess calls II
I

swtch
. selects process from runq II
longjmp (saved stack) context

restores new process's regs
IInTI restores new process's stack
IiifIiid!I! return 1

I

II save parent's stack pointers ___ • _ - - - - oJ

return 0 ~ ~ _ - - - - - - - - -
~-~ ~ ~ - - - rerf4rn 1 ? IIIfnI

return O? I;' a ~ - ~ - ~ - - - a - - - - - - ~ - - - - - - - - - - - - - - - ... -

•

t allocate (stackpool) stack for child :
allocate memory (coremap) for child sureg

n copy parent (image) to child's build process's XP
iii copy parent stack to child's feturn 1

place child on the runq
return 0 •

I

I~"""""""'ien;n;i'f""--"-'-'-'-------'------' ~ _________________________ ~

return O? a,
mark child loaded in memory
set child's sharepri=MAXSHAREPRI
return 0 (as original thread I parent)

II
proc[p]

"parent"

ucomm

user

code/data
sysproc

.......

pOstack!
stackpool

umain
sysproc
newproc

•••••••••

assign and fill om lnode[lnodeindex]
copy name to child proc
adjust process to memsize
copy code(uidr (memsize) to chUd's memory
adjust XP to new memory address
return 1 (as new pro\.~ess i cpild)

proc[c]

... .1iiaa- "child" ... r:-.-'?-__ --r ...

ueorom

user

code/data
sysproc

stack.-pool

umain
sysproc
nevv'Proc

codeaddr

TR-ITR 8.0 K Cray Research, Inc. Proprietary 3-75

System Initialization 3-76 UNICOS Internals Technical Reference

sysprocO routine

Creating system processes
1 Proc[O] allocates enough memory to hold all the idles (just after utab_ent). sysproc () is

called to create the init process proc[I]. Recall that at the moment this process is simply a
copy of proc[O] queued on the rung.

2 umain () frees the memory held for idles and removes proc[l] from the rung (it can't run
until after the idles are created and root is mounted).

3 umain()
• Creates the fIrst idle process (proc[2]), leaving it on the rung.
• Flags the process as "IDLE", dedicates it to CPU 0, and connects it to CPU 0 (PWS

table).
• Enters a while loop, calling sleep () until all idles have started. Sleep () calls swtchO

which selects another process to run (only candidate proc[2] idle 0) and
• Executes longjmp to umain (), and continues in child logic path (a).

4 Idle 0 counts that another idle has started and awakens proc[O] (it will run when CPU 0
actually exchanges to the idle process).

5 Idle 0 creates the other idles.
• Enters a for loop

- Creates each other idle process with sysproc () and marks it as "IDLE"
- Dedicates it to the corresponding CPU,
- Connects it to the CPU (PWS table).

• After the last process is "forked", idle 0 (proc [2])
- Returns (in the context of umain ())
- Returns to gounix ()
- Clears OSLOCK (this allows one of the parked OPUs to leave park (».
- Jumps to master in the mainline loop (b). In the mainline the CPU would "try to"

exchange to the idle code but proc[O] is on the runq at a better priority. swtch ()
<> Disconnects idle 0 proc[2]
<> Selects proc[O] to execute.
<> Longjumps to proc[O] (in sleep) (c).

• The awakened proc[O] calls sleep again in the while loop since not all idles are started.
CPU 0 will disconnect from proc[O] and reconnect to proc[2] as idle.

6 Clearing OSLOCK frees one CPU (at a time) from park (). The CPU
• Sets OSLOCK for itself
• Longjumps to its corresponding idle (finish fork/exec in sysprocO) (d).
• Counts another idle started.
• Awakens proc[O], sends IPI to CPU O. (swtch to umain (d) & back until inidle>NCPU).
• The new idle return to caller gounix() clears OSLOCK,jumps to master (e), and

exchanges to the idle loop.
7 When the last idle awakens proc[O] drops out ofloop. umainO continues.
8 umain () creates process esdpulse used by the shared file system.
9 esd_heart_bea to is a function in the kernel executing as an infinite loop. It awakens on a

timed interval, polls the esd device, performs an sfs service, and calls sleep.
10 umainO creates process utility.
11 utility-procO is an infInite loop like the esdpulseO that performs a service function in

the kernel function and calls sleepO.
12 umainO prints the ''welcome to UNICOS" operator messages, mounts the root file system,

and puts proc[l] back on the rung. The last step ofumain is to call the swapper schedO,
another infinite loop function in the kernel. Sched () will find no processes to swap in so it
calls sleepO which calls swtchO, which now finds proc[l] on the rung. The last step shown
is the CPU calling longjmp to connect ini t proc[l] (ff g). More detail about this last item
(12) is on the following pages.

3-76 Cray Research, Inc. Proprietary TR-ITR 8.0 K

)

)
. ../

UNICOS Internals Technical Reference System Initialization 3-77

proc[O] "sched" ..
•

allocate (coremap) noidle * sizeidle
I

sysproc

initcode i •
free (remap) idle s;~;e- - i ---_.
remove proc[l] runq

I

return (gounix)
clear OSLOCK
J master

sysprocproc[2J "idlecode" ./
~ -- --®- ------ -: a

mark child idle as • - - - - '- - - - ..
an idle process idle ()

dedicated to CPU 0 .. - - - .-.~ ~ -. - •
connect it to CPU 0 lrudlC'"!"+

II ..
sleep(inidle)

s"'tch

wHkeup(inidle)

,
,. ... ~ f'il" '1= 1 NTCPUT , t .\.\. .. .s... .. • .J,.

~!.~p.:.~~~ @ p-cocp+n] ~:idlecode" ("--------------. , :. ,
r ____ e_ ... __ #I(

: idle 1,2 •... :
c.. __ ... _._ ... __ .,J

inidle++

deaiistarted CPUs
holding in p:irk

DarK
'r' ~ [1);;-'" o{-.r-7

, _ ... ·LI .• -.fl..
! ,

,
c. .. - "'f:

setOSLOCK
5. __ _

IHCpU

longjmp
@

@
10rn~~®

• mark child kUe as
an idle process
d(~dkated to CPU n

\vakeup(lnidle) return (gounix) I
UU .. c:p.r..ro. _ -- dear OSLOCK

J master

while(inidle<NCPU): connect it to CPU n

1.1
,

2,..-_ ... _..,.

return {gounix)
clear OSLOCK
J masrer®

~==~-------~~~~
"esdpulse"

~==~----~~----~
"utility"

®

••• ·qswtch • •
... swtch

.. ~longjmp

print operator messages
mount root (write out lunicos)
put proc[1] back on runq 1m

swapqempty
call sleepO

call swtch
find proc[l] <D
longjmp (proc[l])

• • • •• idle switches to proc[O]
proc[O] switches to idle

TR-ITR 8.0 K Cray Research. Inc. Proprietary

-@

3-77

System Initialization 3-78 UNICOS Internals Technical Reference

umain (continued)

After the system processes have been created (forked but not necessarily entered yet)
umain () continues startup action by doing the following:

• Sets proc[O] (future schedO) size to the area between its ucomrn and the first
idle.

• Performs "down CPU" action on any CPU configured down at startup. These
CPUs will be interrupted from the "normal" idle and enter a down CPU idle
(see topic in "Mainline Loop" chapter.

• Initializes directory name lookup cache with function dnlc_ini to.

• Initializes (opens device) and mounts the root file system
• rootdev specified in the startup parameter file
• Function vfs_mountrootO calls nclmountrootO.

• Writ.es the "file images" to disk (on root)
• (See topic in "File System Management" chapter)
• Functions ipi3_initO and hpi3_initO initialize IPI and Hippi device

drivers.
• On a secure system the administrator console (;dev/console) security level

and compartments are set.
(Continued on next page)

3-78 Cray Research, Inc. Proprietary TR-ITR 8.0 K

)
UNICOS Internals Technical Reference System Initialization 3-79

umain (continued)
proc[O] (sched) size = ucomm area to frrst idle

print "welcome on" messages

down any CPUs configured down in the param me
(flag it's PW sentry PW _DOWN and PW _STOP,
send IPI to downed CPU,
it will leave "normal" idle and enter a diagnostic idle loop)

dnlc_init jsldnlc.c
initialize directory name lookup cache table ncache dnlc.c

vfs_mountroot jslvfs.c mount the root file system (detail "File System Management")
IJiDBBfi:l jslnc1lnc1 vjsops.c

open root device:
I/O routines call sleep ()
CPU disconnects from proc[O] and connects to idle
the I/O interrupt awakens proc[O] and interrupts the

CPU out of idle, technically any CPU may pick up
from here (not just CPU 0)

the open initializes flaw information for the device
~ t'2~n~.~JSB.lI.~~ . ;Vf) rt:

i sw weight not a multiple oj the swap device Id.-!.
allocate RAM ldcache for the swap device

(well formed to largest disk I/O unit in device slice group)
if s conf.length ! = 0

open sds device
! mfiiJj!im~I<l<itf._ ..

IDS BICID: check for presence of backdoor channel
wakeup(rootdir) - (shouldn't do anything)
IDS BICID:

write / IOS-param from memory image of param me
write /CONFIGURATION from memory image of config me
write / etc/ setdev from memory image ofmknod script

write out /unicos me (if RAM root write only symbol table)
get vnode for "f'
set proc[O] uc_rdir = "f' vnode (root directory)
set proc[O] uc_cdir = "f'vnode (current directory)

ipi3jnit c1liolipi3.
initialize ipi3 driver counters, limit, and traces

hpi3_init clliolhpi3.c
initialize hpi3 driver counters, limit, and traces

if secure system
secure_init c1loslsecure.c

J---...I set administrator console security level and compartments
locate /dev/null device number for restart logic

TR-ITR 8.0 K Cray Research, Inc. Proprietary 3-79

System Initialization 3-80 UNICOS Internals Technical Reference

umainO (continued)
Function umainO finishes startup action by doing the following:

• Sets the name ofproc[O] to "sched" (the swapper)
• Partitions the swap device (by slice makeup) in swap_ini to.

• Sets initial swapping tuning (schedv) values with schedv_initO.

• Sets inini t to zero indicating initialization (nearly) complete.
• Initializes the "target machine" table in function targinit ().

• Sets kernel flow trace flag "on" if FLOWTRACE configured.
• Enters a time event into the callout table indicating that lsp_moni torO

should be executed every 2 seconds. This function checks LOWSP channel
time-outs and requests lOS packet retransmissions if detected.

• Puts proc[1] back on the runq. It can run now.
• If any CPUs were marked down send operator message with this information.
• Calls function schedO

The swapper logic is entered at this time. sched () is basically an infinite loop (in the
kernel) which checks on the memory situation, swapping processes out of memory and
back in under a priority scheme. The swapper spends (hopefully) most of its time
"sleeping", waiting for work to do. Each time it is awakened it performs its loop (swap
cycle, and return to sleep). The first call of sched () results in the following:

- Swapper finds the swap queue empty and calls sleepO.)
- sleepO calls swtchO which disconnects this CPU from proc[O]. -
- swtchO selects the best process to run (will be proc[1] now), restores its

context, and long jmps to it.
- The saved context of proc[1] sends the CPU to the "child" side logic in

newprocO called by sysprocO called by umainO.

• The "child" (return value from setjmp = 1) completes the creation of proc[1]
and returns (all the way back to gounix).

• Assembler routine gounix resets the stack to the base umain frame, sets the
single thread lock OSLOCK, and jumps to mas ter. The CPU is in the kernel
mainline loop.

• Logic in the mainline exchanges to the user process proc[1].
- The code for ini tcodeO consists only of an exec(2) system call, protocol:

o Address of the calling parameters (path name) in 81 (/etc/init)
o Number of function to perform (EXEC)
o Exchange to the kernel

- The ini tcode program exchanges immediately back to the kernel which
performs the exec(2).
o Adjusts the memory area to accommodate the "real" init binary.
o Reads the init(8) (/etc/init) binary into the code/data area.
o Exits the kernel - enters the user program at the a . ou t entry point.

UNICOS is now running, in ini t(8) in single user mode.
The kernel is fully functioning now, all other processing is "user" processing by ini t(8) __)'
and it's child processes.

3-80 Cray Research, me. Proprietary TR-ITR 8.0 K

)

)

UNICOS Internals Technical Reference

umain (continued)
~~;~." " ~""~~10;;.-<= ,'T7~·'-"""'-~·~,h'~"~~

s~Y€YQr:()j~~nam~fof.~s~fi~'
- 1:""~.\".,...:.- t :J ~~.

sysmem = memory from 0 through last system proc (uti 1 i ty)
usrmem = what's left (sysmem to stack pool, file images can be reused now)

L..;=-'-""':::=-:--
cl/io/swap.c

partition the swap device
c1/os/sched.c

L..;=----:~:--:-
set initial swapper tuning values

Ulll1lll.-V mark init done (well almost)
f n;nif os/target.c

machine values in target table
flow trace flag (if FLOWTRACE defined)

L....::;!:::::::'::::::;=' cl/io/epack. c

System Initialization 3-81

6
fi/n eI

1AfJ.Lt~
c..:..----

/ peES
~~~os/callout.c 

J;V 1'r 
on timer queue (2 sec.) to monitor LOWSP chan timeout 

connects to 1] (init) -Iongjmps to ... 

master exits kernel/ enters user process (initcode) 
sl="/etclinit" initcode set up exec system call 
sO=$EXEC 
EX 

init exchan es back to kernel to do exec system call 
execO cl/os/exec.c 

expand code/data area ofproc[l] to init's size 
load (read) /etclinit binary into memory area 
return to user at init's en int 

UNICOS is started - system executing ini t ( 8) in single user mode 
j jjjjj 

TR-ITR 8.0 K Cray Research, Inc. Proprietary 

'fs<ipll/&e--

~~ 
U 1;!,-1y --

GKf: 
()~rYLt~41. 

3-81 



System Initialization 3-82 UNICOS Internals Technical Reference 

Central memory sizes 
LMEMORY: value of MEMORY truncated to a ba/la boundary: sys/maehd.h 
physmem: Physical memory available; for example, addressable by the kernel. 
Compiled as LMEMORY. 

Reset with MEMORY = words startup parameter file directive. 
Adjusted down to iba/dba boudary. 
Changed by ehmem(2). 

ddtbase: Base of device table area (also pdummy). 
end: End of the kernel's non-mallocO'd space (a click boundary). 
rambase I ramsize: If used, the ram disk would start and end on click boundaries. 
Space is allocated only if the parameter file configures disk(s) of type DDRAM. 
utab_ent: Pointer to the first table the kernel malloe ( ) 'd during startup. 
hardmem: Memory which is or could be made available to malloeO (in eoremap). 
Adjusted by startupO to the physmem - (end + ramsize). 
Used to initialize eoremap (so that it can grow later). 
poolbase: Pointer (logical) base of kernel stack pool. 
Adjusted to nearest MEMKLICK. 

stack_llimit: Current (logical) top of the stack pool. 
Allocated out of eoremap. ) 
t Moves up and down as stack pool grows (down) or shrinks. . 
downmem I downmsz: Downed memory address I size (in clicks). 
Limit of usable memory for user processes. 
Same as staek_Ilimit but in clicks. 
maxmem: Theoretical area for processes. 
Initially physmem - end - ramsize - poolsize - malloeO'd tables. 
Note, several malloe'd kernel tables are not deducted from it so it is a bit too big. 
Used mainly in ~alculating accounting record memory integrals. 
sysmem: System memory (kernel plus system tables plus system processes). 
At deadstart, size of the binary. 
Set to the address of remaining eoremap memory just before entering ini t. 
Increases each time a process ploek(2)'s in memory and decreases when the lock is 
freed. 
Readable via syseonf(2). 

usrmem: Currently available user memory. 
The area between the dynamically changing sysmem and downrnem. 

3-82 Cray Research, Inc. Proprietary TR-ITR 8.0 K 

) 



) 

) 

UNICOS Internals Technical Reference System Initialization 3-83 

Central Memory Sizes 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~fu~e 

end
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~rnmb~e 

TR-ITR 8.0 K 

t stack_llimit & 
downmem 

boundary values 
change ~ stack 
pool expands or 

shrinks 

Cray Research, Inc. Proprietary 

downmemt 
(in clicks) 
downmsz 
(initially 0) 

3-83 



System Initialization 3-84 UJ:llICOS Internals Technical Reference 

This page used for alignment 

) 

3-84 Cray Research, Inc. Proprietary TR-ITR 8.0 K 







-) 

Contents 

Kern.el Mainline [4] ................................................................ 4-1 
Objectives ........................................................................... . 
Kernel mainline overview and mainline detail diagram .................................. . 
Mainline outer loop .................................................................. . 

Kernel entry ..................................................................... . 
Initial saves and updates ......................................................... . 
immtrap - Trapping monitor mode interrupts ....................................... . 

rpescrub and immrpe ........................................................ . 
Interrupt handler selection ........................................................ . 
Idle processes ........ -............................................................ . 

Idle process selection -.......................................................... . 
Idle process - idle CPU ........................................................ . 
Idle process - down CPU ....................................................... . 
gi veup() and idler ............................................................ . 

Process selection ................................................................. . 
Signals .......................................................................... . 

Signal detection .............................................................. . 
issig() - Kernel's test for a processable signal .................................. . 
Catching a signal ............................................................. . 
Signal data structures ........................................................ . 
Library routines words ........................................................ . 
Kernel signal processing overview .............................................. . 
Library signal processing overview ............................................. . 

Kernel exit ...................................................................... . 
Mainline inner loop - Interrupt handlers ............................................... . 

usrnex - User normal exit (system call) ............................................ . 
System entry table ............................................................ . 

usrioi - VO interrupt ............................................................ . 
LOWSP channels ............................................................. . 
User error interrupts ......................................................... . 

usrfpi - User floating-point interrupt ............................................. . 
usrore - User operand range error ................................................ . 
usrpre - User program range interrupt ............................................ . 
usrbpi - User breakpoint interrupt (C90 only) ...................................... . 
usreex - User error exit ................................... -....................... . 
usrdli - User deadlock interrupt .................................................. . 

usrdli logic ......................................... , ....................... . 
usrpci - User programmable clock interrupt ....................................... . 
usrmei - User memory error interrupt ............................................. . 
usrmcu - User maintenance control unit ........................................... . 
usrrtm - User real-time interrupt ................................................. . 
usripi - User interprocessor interrupt ............................................. . 
usrrpe - User register parity errors ............................................... . 
usrmii - User monitor mode instruction interrupt .................................. . 

4-1 
4-2 
4-8 
4-8 
4-8 

4-14 
4-16 
4-18 
4-22 
4-22 
4-23 
4-24 
4-26 
4-28 
4-30 
4-30 
4-32 
4-34 
4-37 
4-40 
4-42 
4-45 
4-47 
4-51 
4-51 
4-53 
4-60 
4-62 
4-64 
4-64 
4-64 
4-64 
4-64 
4-64 
4-66 
4-68 
4-70 
4-72 
4-76 
4-76 
4-78 
4-80 
4-82 



J 



) 

) 

Kernel Mainline [4] 

Objectives 

TR-ITR 8.0 K 

Mer completing this section you should be able to: 

• Describe the general processing flow of the kernel 
mainline loop 

• Define in detail the kernel's mainline logic loop 

• Define in detail the kernel's interrupt handlers 

Cray Research, Inc. Proprietary 4-1 



Kernel Mainline 4-2 UNICOS Internals Technical Reference 

Kernel mainline overview and mainline detail diagram 

4-2 

The diagram on the right shows an overview of the logic flow of the kernel's mainline. 
The term "Mainline" comes from the name of function umain in source file 
cll os/rnain. c. 

The two page diagram on the following pages is the same logic with more detail 
shown. 
The remaining portion of the chapter describes in detail the mainline loop, dividing 
the logic shown in these diagrams into "modules", following the outer loop first, then 
discussing each interrupt hander in the inner loop. 

Cray Research, Inc. Proprietary TR-ITR 8.0 K 

J 



\,,---...... / 
\,,--/ '~' 

t-3 
~ ~ 8 • master 
~ entry t interrupt flag 
00 housekeeping idle ~ 
(:) (save user pl'oces.c; ........ ~ 
~ register context) ~ 

~ 
~ 

select best process 
~ 

~ ~ save present context () 

longjmp to selected context CD ~ 
<:! 

L.. .., n' 
~ 

:l 
...... 

~ CD (1) - ;;1 
<:! 

0 [1 <)1 L s: 2 
"1 " , ... , ••• J signal p'resent 
~ 
~ 

... fataL signal Q) 
rn 

i/o sle'.'ps 't--I . --
(1) 

sJ~~l 
:l 

J 
eXl processmg 
select best process 

~ ~L 
longjmp r-
~ 0 

i 1 signal processing 0 
..... 11.leml.lrv - -C 
~ lll<\nt\ge:ui'en~ 

~ EX 
• 0 

exit < 
housekeeping CD 
(restore user .., 

register context) < --CD :s I~ 
9 
(1) ...... 
~ 
~. 
::s 
S-
(1) 

tl It 



Kernel Mainline 4-4 UNICOS Internals Technical Reference 

npdate uc and ~~~t""""""""jmhmas~,ne~i~"""""""""""""""""""""" ............ . 
pw_IIlImS-> 

pw_usert + (RfC-S4) : 
p_ctimo + (RfC-S4) 
~Jtsav=RfC 

P_VM - scali 212 

u_saveb[O) = BOO 
;ry-MPlC90 && RPE, IJIOSCl1lb 

EMI[lfC90) 

B.CPU(6S) 
=pn 

L-_---=====~ 
.... SEMTIME (B054). MUI:lICPU (BQ56), 
CPU(B065) KPl"P(B06O)iJI u_ ..... b. 
OSRI'(I'067) in tL&a'Vet 

lsdsreq 

vi'&;!' J::!-tJf:;~ reqzu:st. and 

XA = &pw _xpIlX (p=immttap) 
vhispio 
-sns-lIallSfer: 
(fonclion SSD cbannel(s). wait) 

,-
increment SSD and SDS 
accounting totals 

~CALLHOT 
",loa:! SEMTIME(B054~ MULTICPU (8056). CPU(B065) KFrP(B06O) fromo __ b. 

?SRT(T067) from u_savet 

Al=XP(_), A3=uc, AS=u 

- atmxchg 
restore Po SO, SI for user 
from threadsttocture 

'-----.. CALLHOTTER 

.----------------. • ml'slart , 
chaame~iDitializatioD 

mfinit 
L:csJ 

~-CODfigurati.oD 

IOSlSSD initia1izatjon 

pscan 
for7ifiii1e1 D 

~;-;"'~~nf~~ ~~ downward 

park 
getOSLOCK 

~ 

L icpu 

setOSLOCK 
start 0Iber cpo's at park 

r;!ouna -
reset stack 

build DrOCfOl 
, initialize tables and buffers 

, forlql[oc[l) .- - - - ., 

(longj"'l!/oidks '1 ~'=fil~S~.il I durii!g i/o sleeps) - L I 

sched I 

&~-P-(no-wonwdo) I 
I I 

-~ I 

reset stack disconnect proc[O] I 
clear OSLOCK longjmp to proc[ 1J _ ~ 

, I , 

~------.- .. ------~ 
to 

rtUlSIer 

"I 
.-------------------------------. 

EX 

I ·:;...l:':"~A -= · 
=:""- 'r8f

-"-::::::1. i'iiiiiieex rpescrub 
immmii II --r;anictst readlwrite re2isters 

Re f.ollowing pages for 
not macro immpci ~l 

PANteR "reFsledmessage" :::::::u 
lmiiiiPi 
unmdn 
-1-

PANICNE "master.s: unsupported IMM interrupt" 
I 

, PANICNE "master.s: xxx interrupt in UNICOS kernel" • . -.--.--~- .. -------.-.--.------. 
to 

mastu 

--usrpci 
~~ ~jnterrupt 

I-"ic=de:;:ad=-__ panic (lOS punt) 

abo syshalt 
UWS7il1ert:quest 
PARK other CPUs ~ 

addupc: 
bucJo:t[Pj++ 

set HOLDLOCK 

Clear HOIDLOCK 
I pcUo;:C2 

,'-----
clear HOLDLOCK ~ 

rtsched 
re.iiiiiie 
sCfug 

while calIout[O).c_1ime < RrC 

CI9Ck .. m<!alarm other UNIX 
• send SIGALRM callout table 

sche"8::u.ng to( spec:ifit["'Od) process) functions (e.g. 
c3lloo .c_arg sel t(» 

~~~n:ee=~:~C:llr 
~---------------1

usripi
trace'IPr
clear the interrupt

FW_cpuflg & CPUSETCK

test-and-set HOLDLOCK
SB7++
clear HOLDLOCK

tesHmd-set HOLDLOCK
SB7-
clear HOLDLOCK

4-4 Cray Research, Inc. Proprietary TR-ITR 8.0 K

-~

)

)

)

Kernel Mainline 4-4 UNICOS Internals Technical Reference

update DC and ~~~~t"""""""~jftiicasmnt€9.~""""""""""""""""""""""""
JlW Jl]lmS-> mtms

pw _usert + (RI'C-S4)
p_ctime + (RI'C-S4)
P"!'J!sav=RfC

scall212

u_saveb[O] = BOO

ifY-MPUC90&& RPE. rpesc:rub

EMI(ifC90)

B.CPU(6S)
=pn

save SEMTIME~=-:::-::(B0S4=::-)'-:-MUU1~~CPU~~(BOS6).~~=~'
CPU(IlO6S) KI'I1'(BOO:l)iD O_ b.
OSRT(1'067) in u_savet

L sdsreq

vf~th~-ti:~~tJ request. and

XA = &pw _xpIIx (p=immlrap)
vhispio
'SDS1!ansfer:
(function SSD cn''''''''I(S). spm wait)

,~

increment SSD and SDS
accounting totals

I.....-. CALLHOT

.. load SEM'IlME(B054). MULTICPlJ (BOS6).
CPU(IlO6S) KFTP(B06O)fromu_saveb.
OSRT(T067) from ,

A1=XP(uscr). A3=UC, AS=o

- atmxchg
restorep, so. SI faruser
from thread structure

~ CALLHOTTER

.----------------. II mf'start ,
d!.aDDC~initiaIizatiOD

mfinit
1::cs1

scan-configuration

IOSlsSD initialization

pscan
fof"MOQe/ D

:~~~~~~~dOWDward

park
getOSLOCK

~ , ,

L iCJlu
setOSLOCK
start oIher cpu's at park

r;'ounix -
reset stack

L.. umain

boildproc[Ol
initialize tables and buffers

, fod< Ptoc[lj ~- - - - ,
(longjme to idles ',- ~'~ fiI':'~S~.!l.
duiiiJg i/o sleeps) - L

sched
sleep(;;; work to do)

'- swtch

reset stack
clear OSLOCK

-r-
disconnect proc[O) ,
longjmptoproc[U _ J

I I • ,-- .. _. __ ._._. __ .-
to -

"I
.--------------------------------

EX

I
. ~ .

immmei [Hag]

disable paniCllUV \ • save error status ll. :;........ lw.b.er~(--
:::~:m 1 iiiiiiieeX rpescrub
immmii Il ~nictst readlwrite relZisters

seefpUowing pagesfor
not macro immpci ~~/

PANICR "requested message" :::::~D

iiiiiiUpi
unmdh
-1-

PANICNE "master.s: unsupported IMM inJemlpt"

, PANICNE "master.s: XXX inJemlpt in UNICOS kernel" ,

.-----.-~.-.----.-----.--- ... --.

--usrpc:i
~~ ~IinJerruPt

I-'io?"'tk=ad;=-_ ~ panic (lOS pont)
abeT syshalt

'UW'S"'iiJle~quest
PARK other CPUs ~

addupc
bocket[P]++

set HOLDLOCK I pdW;:Cz
Clear H()LDLOCK

,'----
clear HOLDLOCK timein

--r-

·)=7~
rtsched CI9Ck .. m~alarm other UNIX
real time send SIGALRM C2llout table
Pt"",,¥, ~ling to specified process functions (e.g.

sChednling (c3lloot[Oj.c_atg) sol I(»

~:~~e~:~~g~c:lb"e
~·····-·-···-··-1

usripi
trace '!PI'
clear !he interrupt

test-and-set HOLDLOCK
SB7++ -
clearHOLDLOCK ~

test-<md-set HOLDLOCK
SB7-
clear HOLDLOCK

4-4 Cray Research, Inc. Proprietary TR-ITR 8.0 K

UNICOS Internals Technical Reference Kernel Mainline 4-5

-~Q-~=: !Ii
e: e: n II !ST6&& i this cpu's bit
;;:I: ?;l p,. fC1>O 0 selinS17

andnolinST1) b ifB ~~ orS7lJ> 0) t"'

~t"' 'Il-1;l g
?;l0 c

""~ ~ Set 101 in SI :>l Set ICPin SI-

~

usrnex

<tlff;.~
OearSI7bit

mtasldoc:k cIlmd/mIlddqJ.c
:-spnrwzrt'J.UI. i"-_I~

r-
ifPFROZE caD 95_

, ,
~ . .. ·i~r~k~· : ./

~S~~handler.1 • ~ plD~le!i&:~I--:

_1 ~--' 800---' 1-:;---az1l is nol rtUJlli-4hreaded

mtasktmloc:k
~

mer SI = RYALl
user 52 = INAl2
user S? = U_CIt«

ifcner20~T70r.slhl.rPlDcess(u_01'a:J) SlCtPW3JStrs

1I5nIOS02
"'CiICWiIC lII:IIistic$(i/ScmACEj

updafep_sdime (1ISdJIg p_bsaim<' s/up _is"", "".lIud)
p_syseall=O
1heoDstu<:_ esyrcoII ++
procfs kI_cost += sbcoDsts.&C:_syscall (cost oflJsysremcall)

p.:pfozg4P_VM

pte""'" XPI1ags

TR-ITR 8.0 K

l!¥clo,;",!;ci

SetPClin SI
pcilock = I

p_brtproc /_ 0

I-B'UPHZl = Pw_userp I
B.UPC 61 ::P...PC anyxp sset ~:Hc ~}; p::="mm (bllszn1ij

B. I ~, T.1UCEM=tracemask

, --
B.SUBR (04) = lral'!lsr[flag]
SI = Iraposr(] lrace info I SlgnO

B.%STKCBP lozl = &u stack

R:~~(~$~=[lj

trapusr[J ~nJry:

, ',.,.m",.r.
G=DOIl2etO

"00
"'gi (ST.CHANF,sT.CHANL,ST.CHANR)
.. 01

0103 ~
sr.CHANR (S7) I sr.CIIANF (S21 """"J""'ding

... 1' = Z(ST.OIANRLST.CHANF)

I 1!;!eudo
bit ST.CHANR clearbi'ST.CIIANF

I
CIIANL++tr.oce
I"dwUoct[clwlllel]++

I SSD
~

_acct clearfrom&&d_actImsk others active

~OLOCK clear

[dulIlDcl (&cbaD <""y. 1)
m WSP (casromlor

P(neo)
~

VHlSP W!i
., IDtDroc(O iatam)

int<mlpl<dsystem
caD processing

r---'

WSP - m<mhi~ smp_reul_ TCPpseudo ""'pack!!!!!!!!!!: 1'- __ timeout

(Mod<~ (M'!!!!!.,D) T-r-
ssddlntr ~

~..tdD;:r

(l'SRIO)
.. 04

rdIOLOCK
1ISI'I
ST .CHANL-

~ST.CHANF traoc"lOM"
Cl!zO ---traoc"lOR"

.. 05 1ISI'I -,.-
OFLAG=O STl

ES 'I(C9O)
"06 ~

cle.<I0LOCK ',-- _________ J

usrfpi
usrore
usrpre
iiSrbjii (C90)
usreex
usrerex --.--

lrace ("FPI" I "OR!" I "PRE" I "BPI" I "EEX")
sysinfo.usrex[cpoj (debugging and stJZtistics)

I
!PI any' other cpu's (all mcnbers of the

~~se~~~t.rs) Itfrld~iflhf.'f,a
I f.atal ifmal- the fl.rst to au willS1GKlLL the

usrsig others)

L psignaJ

si8!"'i.;~.F.ocess
=~from usrmii -.-

~

PANIC:NE ("master.s: MIl interrupt fran userland")

Cray Research, Inc. Proprietary 4-5

)

)

UNICOS Internals Technical Reference

-!?!?-~ ~ ~~--. !1 ~-!"")",'!'""',.,.~~~~.,..-I· BB·.UPtJ6621~=_-PPW,;;.useq> j e: e: II II !ST6 && :t: this cpu's bit !rx:iI«k && ~
;-:t: ~.E!' (C/>Q 0 s"inS17 kI"C>r=tpci B.U 64 = Pw lisen anyxp .. "
:;?o 'tiv (and1WlinSTl) b BB·ue 63 = pw:ucomm (bUsmS
~b ~,>! arSTO>Q) 1"" • I
_ 1"" 'Ill ~ 0 ~, T.1RACEM=tracem3sk

~~ Iii ~ ~:>! Set IOIinSI ~~~t!t ~~~nISI
~ <JfJf ;/fh . ---

B.SUBR (04} = lraplIsr[fiag)
SI = lrapusrD lrace info' SlgllO

(/ongjmpC>1lsU<p
i1I1errupl<dbyasignol
raumeshe~)

BOO=otjlq>I---------------------". m 1:

~~~~~v1'e i ifu_error.O 
(BOO,BOI:B02,B066,B067,TOO) D_~ 

p_i1rtproc!.o 

Kernel Mainline 4-5 

Irapusr[J entry: 

I STJOFIAG· 
G =DOD2lCtO 

0100 
.,gisIets (ST.CHANF.sT.CHANL,ST.CHANR) 
0101 

0103 .. 
ST.CHANR (S/), ST.CHANF (S2) _P<'!<ii"l 

"""I' = Z(ST.CHANRISl".CHANF) 

I ~ 
b~ ST.CHANR clear bit ST.CHANF 

I 
ST.CIIANL++trace 
"10 I"dl .. joct[cb .... l]++ 

I SSD .. D_"'" cJearfromssd_actnmt. «Mrsaaive cJearcba 

c1e", 'IOLOCK 

- (&chan <""Y,I) 
ill 

LOSP (ClUttJmI<N 
(<V<n) VHMP~ mtaskloc:k c1lmd1m1Jchtlep.c 

r--i5plD"W3It' ... "" 1"-_1"-'-

if PFRDU call qsWld! 
p_bsctime =RTC 

LOSP - mnnhi'!!.-_-'et1l_ TCPp'-
~.!!!!!!!!!: lowIDt sotLdmeoUl 

D(Mode':~.l~!~P) T-Y-
sddlnlr ~ 

~(ModelD; :=r 
P_'l""aII=<aDt 
BOO = usroexOl 

'- inkrruprableaNI;./ 
2OS~~handlers) ~ p1f)~le!i''PI~ 

nsmexOl • - _. BOO- - - • 1-:;---etzJl is not lfUllzi-lhreackd 

mtaskUDIocl:. 
~ 

_SI=RYALI 
USC< S2 = RYA12 
us:crS?=u_eaor 
if~r20erro1'$thisprDct:SS(Il_en'OU) setpw_1lSe1'l 

usmex02 

: 

"TalCUIliC sta<Dtico (if SCTRACEj 
update p_saime (...u., p_b.sctinr. sleep lim< is "'" <OWIIed) 
p_IYscaII =0 
dlconsIs.5c_c:syscaD ++ 
proc's kU:ost += sbcollstS,&Lsysc:all (cost of tJ sysremCtJU) 

P.J>fliJg.tP_VM 

Pl" ..... XPfIags 

toDSrDeXOl (TSFSIO) 
010. 

&etIOLOCK 
nsri 
ST .CHANL-

~.sT.CHANF "",,,,"10M" 
a!=!) ---tra:c"'IOR" 

0105 nsri -.--
I'LAG=O ST10 

ESl (C9O) 
0106 ~ 

c)earIOLOCK 

',--, ________ J 
usrfpi 
usrore 
iiSi'jii'e 
USrlijii (C90) 
usreex 
usrerex 

lrace ("FPf' '"OR!" '"!'RE" '"BPI" '''EEX'') 
sysinfo.nsrex[cpuj (debugging and sttzJistics) 

I 
!PI3!IY. otber CPII'S (al1members a/1M 

}~~~~~t.rs) KZP.n';:1!if1h!s'f.a 
I fC1 wfimJiffi/j,':lIa 

usrsig othus) 

L psignal 
siS!"'l1he Wllbsi~'~ lrapusrfj- -- nsnnii 

~ 

~ 

PANICNE ("master .. : Mil inrernJpt frcm userland") 

TR-ITR 8.0 K Cray Research, Inc. Proprietary 4-5 



Kernel Mainline 4-6 

usrrtm 
usrmcu 
Ir.Ice 'MCU' or 'IrrI' 

L1x!iM 
set PARK 
!PI all O!her cpu's 

delay 10000 clocks 

I X:::rARK 
.mcuconnt++ 

Ir.Ice 'mcuiJJt' I mcocoont 

.--

usrdli 

ifp •• II_dIp d: .bsdwemll..sin« "_dbrt< ](XXXJ(clocks) acprog = 1 
u...~=P~D __ =p_dim: 

noprog (same TS) and "-,flau > 64 

lOog1elhreadthcgoap(_P_SINGLlNG) 
save ilscluster 

L_1'd 
t""cacbpanianycoaaea.dMTgrcap: 

place men:bers flagged fcrwakeup 
m1sleepiDgOD....:h(l) 

anyollru_........,~ OIIIolhcnmq m1 pccmptac:pu 
(not P_SlNGUNG,P JINGLED, P_DLK) --l 

anaI)'2I' goap tor InIC deadlock 
(lIOldeadloclocd if any: 

has u3SJent=O. 
DOt at a TS iDStructioa. 
tcstiog .. .-scltlllpil<>le) 

(doD" CODsider' any men:iler 
sleepiDg iD"0:h(2) or ailing) , 

.... nsrmei 
trace MEl 
sctPARK 

UNICOS Internals Technical Reference 

mexp=A1 (&userxp) 

L~ 
(C9CF. lOad....,. tegislers4,s,6 (error into) to me_ .... 

-mesus 
1PI (aDd '" pw_ ...... ) to aII_rc:pu's; wait40000clocks 

~oc: -=- mesa. (m:xp) 
bwld m:= (caor=ml) 
vali:lat.e coaedioa &yIIdromc I determiDC 1;ype oferror m:tec.c_c 

build~~p=c<Il<Ode,A2=adckd:baDk) 
L- melOIt(a>Or) 

p.Udclriatom:=/c:opyimoerrorde __ (caIICIOOS> 

~pmap , 
(T<tldw ,while(1) __ _ 

<n1i",bonk) xa=&c,""p _ - - lOadeacliwordd:baal:(A2)(lc<epiaS5j :x_=::___ ex 
:xa=&pws[cpu).pw-.xpux twtrror(t:t.mKm) 

possjbk ptWc here on error inkDM' from i/o. >mtwu:m«t (64) 

I III1C017'ectablem':'UlTtntprocess 
mom 0 relmlll ta!aI=c::_ 

IIJt'ft: th~cm:n ia S sec. disables IOd ia 
DScnp'S(cr S miD . 
.....-----I 

~ mumfatal 
clearPARK 

JzIa' 

r-T ~(~,SIGUME) 
~allbcproc::CG 

"" trace -RPExoCp;l' 
'I"P = AI ("1') 

L rpcrr 

l.~ 
build .. g..poriIy nasage e=.h &Iru<tm< (!p) fromlhc rpxp.o>xp, p_co,- pc_aid 

I bwalidrpeorwercla.mrorHPM -., 
t.t.I=1 tatal=O 

~errJ~(_""P) 
jtre~m:ssagciltoerr«ba!I'er(mIdasldnlurorbyemliumort) 

if a:n ~ bclDgged IpcIIIog++ 
" pw..rpmt>d<nJ(diDgnDSticr..ting) 

L rp<cm(cpu] <RPEMAX(2) 

1pCCDi[c:pu]++ L n>ed ..... __ 

L PW_DOWN aIretJdysd 

JIriDt 'too IiiIIiJ' R!'E&' w .... g 
trace '!pccID<pD !pOCiiI' 

1
101£ P!l?C!f! .. 

to<p:st'atiIityproc:ess tod .... Cl'U 
psigual(SIGKIIL)lJlloffmdi"lP.,....-------I 

-~cPu 
I almIdydownOf'MVUmmd D_emr-£NODEV 

rcmovctbisCPU!I"1)frompw_"""'(startedlDld:) 

If''~ElJ''~~:_CIoclciDgto''<<herCPU 
I pv...p 
--coqJ* 

L.. swtch 
~DOCtUUsCputothcidle~ 

___ (anallrucpu) 

1ciI1 III)' procs Ilia are dedicated todOWDCCl CPU 
oat: 

~~uyproc::esaesWaitiagforUlisCPUtogodowD 

~lUni(tataI) 

1_.J.,.I11""'IIJI'-_--l .. ~ !!!!3 
t-______ """"goaIIheCill1'CDtpcccSS(SlGRPE) 

4-6 Cray Research, Inc. Proprietary TR-ITR 8.0 K 

) 



) 

to 
mqS'ss 

Kernel Mainline 4-6 

usrrtm 
usrmcu 
tr3c:e 'MCU' or 'KIT 

L (O=YMP) 

mcu~~; =XMP) 

set PARK 
!PI all other cpu's 

delay 10000 clocks 

I x::!rARK 
mcucoDnt++ 

trace tmcuint' I mcucoont 

usrdli 

ifp •• "Jllpd: d:user intenalsinu u_dJut< }(XXJ()(clod:s) Dcprog= 1 
"_dip = P regi*<; "_dllII = p_dimc 

rwprog (=ru: TS) tmd u_dkru > 61 ... 
oiagle Iluea:lIhe group( .... P _SINGLING) 
save j[s cluster 

I. cklbnt 
foreach partially conDededMT grcop: 
p_ .,._tsDaggedf«wal=p 
an:! sle<piDg 00!eSCh(2) 

an:yothN rrrmrber f1I1fIU1bk omo the nmq aDd pcempt a cpu 
(not P_SlNGUNG,P _SINGLED. P J)IX) ---I 

lowcrp...,pri 
to lowest in group 
~iI2runq 

~O 

aaa1y2< group for .... dea:llock 
(DOl deadlocked jf any: 

has ,,-dleul=O, 
net at a TS iDStruction. 
Icstiag ......... """""'") 

(dou" consider any m:mtler 
sle<piDgi .. esch(2) «exiliag) 

I 

-

Mtmultit",hd ~ 
A" J"'gnaI (up. SIGDLK) 

p_sig 1= SIGDLK 
if/-

remove from thr_cODDD. 

r::= · L""" ~""'"" 
p_oig 1= SIGDLK 

"_dkDl--o if~:::". fromlhr_coDDD. 
~blD (all meni>ers) lhr_siblD 

l d1kreocb 
iOWcrp-!ri 
10 lowestjn groap 
re~iDnmq 

~-O 
~-

UNICOS Internals Technical Reference 

usrmei 
""",ME[ 

",PARK 
'""'P = AI (&user xp) 

L ........... 
(~statmreg:istcr&4.5.6(cm:riDfO) to~_sa:Ye 
~ ....... 

!PI (and sctpw_asers) to all otbcrcPl's; wait40000docb 

C::=-;;;:Ioe -=- mesa. (moxp) 
bwld m:rec (CIrOr'reccrd) 
valiclate COIrewoa syDdrom: I detcnDiDc type o!emr m:rec~_e 

b"ild~JdM.p=«I<COde. A2=ad<k~baJllt) 
L ...... {aaat) 

pat a::t1t iDlO merec I ccpy iDto emxdevice buffer (call ~ 
c90:cl1ip..,p . 

(mldthe while (1) __ 

Dttirebank) xa=&:cccxp __ - ...... rea::leachwordofbank(A2)(kttpinSS) 

~-=:----
.. = &pwo[cpu].pw _xpait lID.""" ( • ."tum) 

possjbk panic hereon error m.teme~Jrom i/o. >melDlCmat (64) 

I ~cuzblem~lDTetrlp1'OCU$ 
retum 0 rclarD 1 

f>lal= c:= mechk 

mor'Cth~cm:niDS8CC.disabksICMiD 
usenp's!« S min. 
.....----' 

r- rdUmfatal 
clearPARK 

par 

!-+T 
E!!!!!! (up. SIGUME) 

signal the procca 

~ 
........... 

trace 'RPEXDCpa' 
<pxp = Al (xp) 

L rpeIT 

T~ 
l>lildo:s..pority_=bsttudlln:(lp)fromlber:pxp-;>xp.p_comm,pc_uid 

I iIrIaJidtpt:orusucluskrorHPM .. , 
fatal=I fat.al=O 

~errJ~("''''rp) 
jttcg.par:itymessagciItoea«bu1fet(mJdasldnlerrorbymdatmDn) 

if""'" b. /oggtdrpcuJog++ 
., pH> _TPmtxk =- J (dilJgrtOStic testing) 

I rp<enJ[cpu] <RPEMAX (2) 

IpCCDl(cpu]++ 
L rpedowo_CJIIl 

I PW_DOWNalrwlysa 
pia "too many RPE5' warniDg 
""'" 'rpcdDcpu !pCCIIt' 

I IDLEproass • 
requcst .. tility_·tod:;.: .... =.=CPU:..:.. ___ -1 

psigaa1(SIGKlIL)kiBoJ1mdingproc= 

~~CPU 
I almJdydownorneverstanetI u_error--fNODEV 

....... Ihi1;CPU (bil)frompw_"""'(""'" mask) 

!i~: ~ru~~: passclockiDgto .. otberCPU 

I 81 .... p 
-idJerfcou]++ '--c:curus cpo to the idle pmc:css 

~ (anowrcpu) 
kill auy pcocs that arededic:a1e<1 todowDed CPU -~up my processes waitiDgforthis CPU to go down 

~1IIrD(!ataI) 
1-_ 'nll...._--I~.!!!3 

1-______ S1;;::;·gnaltbe Cmrtotpra:c'" (SIGRPE) 

rperrisbdng 
azJl<dj'1rJm 
irrrrrup< 
bectZll.SeoJa 
dUzgntJSlic. 
I"'_rptaotr.is 
sam 
ucd<d_icctl by 
aBPE_SET 

~~~r;, 
em>r.

4-6 Cray Research, Inc. Proprietary TR-ITR 8.0 K

to
mastr

UNICOS Internals Technical Reference

.. --------------------------------~----------------------.. slaveusr

TR-ITR 8.0 K

IDLE process ,
slaveidl

~~bysmem
xpP=icn.lloop
xa=pw_xpus
ex

~idJeloop
(mODit~op flags)

EM!

~
discoDDeCt old process
select new fran runq

~ct new (Iongjmp)

::jt;;;rrr pOC_SSPND, PC_FREE'IE, PC_SINGL
or

:~ff~i1foll) or

xa=pw xpux
pw-!cllet+= (Rf -pwJ\S3v)
p_swne += (RT - pWJtsav)

if BMM and "_brrrmsaved

!PRS'Ii P

5 Find any Slgoal in
(p sig) !haIlS not to
be 19iiOred, held or off

restore BMM unit from o_savebmm

NEX

EX
excha::'1f:J!O user

,

Cray Research, Inc_ Proprietary

Kernel Mainline 4-7

SIGKILL all MT
members

iflo~~& core file

lzexit
dea1IiiC3te
resources

L swtch ..

4-7

)

UNIGOS Internals Technical Reference

---------------------------------.;----------------------- sl~e~ IDLEproct:ss ,
xpbase=O.

~~~m 
xa;>W-"JlllS 
ex 

~idIeloop 
(monit~op flags) 

~ 
disconnect old process 
select new fromrunq 

~nnectnew(1ODgjmp) 

. 
B.%SI'KCBP5,W =&0 SlaCk 
U~~ffl;:;~[11 

fPRSIi 'i' 

,J 
Dkllu = 0 ("d In Idle) 
1RACE "!WI(" 

if BMM and "_b1llltUlZl'<d 

is 
FiDd~ S1goalin 
(p_sig) ihatlS not to 
li<i.giiOred, held or off 

restore BMM unit from o_savebmm 

NEX 

TR-ITR 8.0 K 

EX 
exc~1f:J~O user . 

Cray Research, Inc. Proprietary 

Kernel Mainline 4-7 

SIGKII.L all Mf 
memIler.; 

ift.~~'=fiIe 
lzexit 

dealIOCale 
resources 

L swtch 
Li= 

4-7 



Kernel Mainline 4-8 UNICOS Internals Technical Reference 

Mainline outer loop 
Kernel entry 

The diagram on the right shows the main points of interest in the logic flow of the 
"entry housekeeping". Pictured below are the data structures involved. 

Registers at entry 
A CPU leaves the kernel to cpul 
any user process, and reen
ters again, around line 460 
of/usr/src/uts/cl/md/ 
slave. s. The A and S reg
isters are identical on exit 
and reentry from/to the ker
nel because they are saved 
and restored by Lhe hard
ware exchange sequence. 
Just before the CPU ex
changes to user mode the A 
registers point to the con
nected process' main struc
tures 

1- -_~=':=::r:=-...!::::::iii====-
I 

A6 
A7 
Al 
I 

f 
I 
I 

~3~ ______ ~~~ ____ ~ 
Initial saves and updates 
XA needs to point to the er
ror-handling exchange pack
age pw_xpux while the CPU 
is in kernel mode in case of a 
hardware memory error (or 
other error). EMI is a C90 
instruction to enable the in
terrupts specified in the ker
nel's interrupt modes regis
ter (namely RPE, IUM, IFP, 
lOR, IPR). These would not 
otherwise cause interrupts 
to a C90 CPU in monitor 
mode. A non-C90 is in IMM 
mode without this instruc-
tion. See the section "imm-
trap'-' 

A5T--____ ~ 
I 
I 
I 
I 
I 

A4 

A Register Parity error (RPE) is dealt with specially. Function rpescrub is 
called to "scrub" the user's B, T, and V registers by saving and reloading 
them. (See the sections "immtrap" and "usrrpe" later in this chapter.) BOO 
is saved specially because it is used by hardware for any subroutine call. 

{--text continued after the next page-~ 

4-8 Cray Research, Inc. Proprietary TR-ITR 8.0 K 

J 



) 

UNICOS Internals Technical Reference Kernel Mainline 4-9 

Kernel Entry 

ifY-MPIIC90 && RPE, rpescrub 

EM! (it' e90) 
XA ~ ~pw _xpux (p=imIlAtrap) 

~e~sters at Entry j{/~~ /44/i-

.. f2~lJt"'f $ 

User 

EX 
• Registers at Exit 

TR-ITR 8.0 K 

cllmdlslave.s 

B01-B63 
tou saveb 

u_savev=VO 
cllmdlmaster.s 

TOO-T63 
to u_save'! masten. 

u nex=NE bit 
u:=vsaved=l 

u savevm= VMI 
- VM1 

MIII\ 
NE (normallhtt) 

save SEMTIME (B054), MULTICPU (B056), 
CPU(B065) KFTP(B060) in u_saveb, 
OSRT(T067) in u_savet 

L sdsreq c1 / md/ ssds.s 
V ~sp chans idle, valid request, and 
le h <ssd_sdsthresh 

L vhispio c1/md/ssds.s 
SDS transfer: 

B.CPU (65) 
=pn 

(flIDction SSD channel(s), spin wait) 
----l 
I 

increment SSD and SDS 
accounting totals ~;f-
L _ ~~r". , 

~ CALLHOT/ r..l'v \) \J''{,1 
'V"U.(l'-\ 

v 1. 
reload SEMTIME (B054), MULTICPU (B056~ ('to 
CPU(B065) KFTP(B060) from u_saveb, }YI' 
OSRT(T067) from u_savet" ~:'\l..I 

Al=XP(user), A3=uc, A5=u t.;t;,t;J ~~I\)J(\ 
I ~ 

atmxchgi:!1 / md/ atmxchg.s 
restore P, SO, Sl for user 
from thread structure 

~ 

Cray Research, Inc. Proprietary 4-9 



Kernel Mainline 4-10 UNIGOS Internals Technical Reference 

Initial saves and updates: (continued) 

Autotasking system call 212: "atrnxchg" stands for "auto-tasking mini-exchange". 
This call ($$MXCHG) restores a user's P, SO and S1 registers from its context to its 
exchange package, and sets the context pointer. The library routine wishes to load 
up the entire register context of an interrupted task, but cannot load all registers 
and then jump to some entry point without resorting to self-modifying code. And 
self-modifying code is impossible if the program is text that can be shared. So the 
library routine loads all registers except the P register and the two S registers 
needed to make the call, and the kernel restores the P, SO and S 1. This call also 
closes a ''window'' of time in dealing with the thread pointer to context when the 
hardware could interrupt a process after it marks its thread to save in the context 
but before the process finishes loading up the registers already in that context 
structure. (See the "Cooperative Parallel Interface" section in chapter 5 for more 
details.) 

Note: This work is accounted as user time. The kernel exits immediately 
at CALLHOTTER, doing no system time accollnting .• 

ucomm 

L...-_........... user .. .. .. .. .. .. .. .. .. .. 

context 

context 
SO 
S1 ___ w 

P 

"RTC" is the real-time clock. It is saved immediately in pw_rtsav for accounting 
purposes. The difference between the RTC "now" and at last exit from the kernel is 
",user time". This is added to the connected process' (p_ctime) and CPU's 
(pw_usert). 

Updating of the process' "mtms" is only valid for. a process that has made a 
multitasking mtimes(2) call. If not, these pointers point to a kernel "scratch" area. 

4-10 Cray Research, Inc. Proprietary TR-ITR 8.0 K . 

) 

) 

) 



) 

) 

· UNICOS Internals Technical Reference Kernel Mainline 4-11 

$SSRD/$SSWR: A special case occurs when a process makes an ssread(2} or 
sswri te (2) system call (a transfer bewteen a user buffer and SSD Secondary Data 
Segments - (see the discussion ofSDS in the I/O chapter). SSD VHISP channels are 
so fast that the save/restore of user register context is a relatively unreasonable 
amount of overhead. 
If the channeVs is/are not busy, the transfer parameters are valid, and the transfer 
size is below an SDS transfer limit (set in sdsreq), this driver is called to perform 
the fast transfer and jump to the CALLHOT exit back to user mode. This path is 
called the ''hot path". If the above test fails or there js an I/O error the system call is 
performed in the same manner as any others. 
Actual hotpath RTC clock times on: sys: sn4 8 0 9 node: wind reI: 8 . 0 . 2 
ver:mpr.l06 

(Note: The 12000 block case was above ssd_sdsthresh hot path limit of 
10000 blocks.). 

5000 ssreadO calls (10 times for 12000 case) 

Blocks transferred Best time Best (per block) Worst time Average time 

1 2614 2614 31703 2652 

10 4613 461 37677 4721 

50 14859 297 83964 15051 

100 27694 276 269812 28618 

12000 3118696 259 4656142 3136935 

5000 sswri teO calls 

Blocks transferred Best time Best (per block) 'Vorsttime Average time 

1 2614 2614 95123 2660 

10 4560 456 5282 4624 

50 14808 296 208366 15062 

100 27621 276 963642 30928 

12000 3117534 259 3151426 3124337 

Compare to 5000 getpidO calls: 

Release Best time Worst time Average time 

7.0.? 2866 194956 5060 

8.0.2 2643 111534 2812 

TR-ITR 8.0 K Cray Research, Inc. Proprietary 4-11 



Kernel Mainline 4-12 UNICOS Internals Technical Reference 

The more blocks transferred with a single I/O request, the better (as would be 
expected). Worst times and average times are not very significant as they can reflect 
times when the hot path or semaphore locks were busy, and therefore may vary 
greatly depending on the load of the system. 
Save ofB's, T's and V's: The B and Tregisters (0-63) are going to be used extensively 
by the kernel's C code, so they are preserved unconditionally. The kernel is compiled 
in non-vectorizing mode, however, so vector registers are only used by CAL routines. 
Only VO is normally used (by bwcopy, bzero), so it and the vector mask (VM) are 
saved. (VL, vector length, is saved in the xp during the exchange.) The VM is 128 
bits (VM!VM1) on a C90. 
u_ vsaved is a count of vectors saved. It can contain 1, 2 or 8. It is set to 1 here. 
If a CAL routine such bcopy or strlen uses V1 it first saves V1 and changes 
u_ vsaved to 2. No other vectors need be saved until the process is disconnected, at 
which time u_ vsaved is set to 8. 
Vectors are restored according to the u_savcd count at exit from the kernel. 

4-12 

Exception: Vector registers are not preserved across a system call. They 
are set to 0 on return to the user, which is much faster. No CRI compilers 
vectorize across a function call, so this is no problem from 
compiler-generated code. Anyone coding in CAL should be aware of this 
fact .• 

Cray Research, Inc. Proprietary TR-ITR 8.0 K 

') 



UNICOS Internals Technical Reference Kernel Mainline 4-13 

) 

This page used for alignment 

) 

) 

TR-ITR 8.0 K Cray Research, Inc. Proprietary 4-13 



Kernel Mainline 4-14 UNICOS Internals Technical Reference 

immtrap - Trapping monitor mode interrupts ---~\~\ '\ iI\~ '-' ~~ ) 
Exchange with 0: As a precaution against a hardware error causing an exchange with zero and subseq~predictable execution, 
location 0 is initialized with an exchange package whose p register will take such a CPU to the panicO call at zerotrap(). 

Panic: panicO (sysmacros .h) and PANIC (utext. s) are macros that cause a normal exit or error exit in the kernel. Therefore all 
system panics execute immnex or immeex. The macros generate "calling sequences" which panictst() can identify. The PANICNE 

macro used here jumps to the PANICR entry point (in md/panik. s) that hangs the machine. 

immtrap routines: The diagram shows what happens if the UNICOS kernel is interrupted while executing in monitor mode MM 
and the XA is set to pw_xpux (p=inuntrap). Recall that on entry to the kernel the hardware exchange address (XA) register is loaded 
with the address of the CPU's pw_xpux (unix) exchange package. Just before exchanging back to a user process the XA is reset to the 
pw_xpus (user) exchange package. 

CRAY Y-MP or X-MP: The UNICOS kernel executes with Monitor Mode (MM) and Interruptible Monitor Mode (IMM) mode bits 
set. 

CRAY Y-MP C90: The UNICOS kernel executes in Monitor Mode (MM); there is no IMM mode. The following interrupts are 
enabled in the C90 kernel: ORE, FPE, MEU,RPE, PRE, NEI, EEL (NEI (and EEIIPRE) interrupts are never maskable, NEI flag is 
masked off. An exchange with no flag is assumed to be an NEL) MEC and MEU are both handled by immmei. 

routine interrupt meaning action 
immmei Memory error Double bit error or single bit error caused interrupt Save status 

IUM/ICM (singles are disabled) - hardware error disable panic flush 
~",~~, '~" __ ~' .: ~ '.~~S, 

immfpi Floating point Kernel logic error -OR- hardware error P'_~~' 'ell ," ~< ,ili 

FPI 
immore Operand range error Kernel logic error -OR- hardware error i~~~~~~: 

ORE 
immpre Program range error Kernel logic error -OR- hardware error rf'~~R~!, .!1_~....::;:.,..~ ~':'~~ 

PRE 
immbpiA Breakpoint interrupt Write reference to breakpoint address .~ t8l~.»r' 

should not happen in MM - hardware error 
immrtmA Real time Unsupported hardware - p.Al&[@~~!Jmf .. ,- , ... , -....!.~1A! ~ki1& 

R1M interrupt indicates hardware problem 
immmiiA Monitor mode inter- Interrupt occured for executing a MM instruction - since kernel in~ tl~l~~' 

ruptMll MM this indicates a hardware problem 
" 

immnex Normal exchange Accidental" execution of an EX command (hardware or software IfbyCpanic 
NEX error) or EX as result of panic macro !~~~l 

immeex Error exchange "Accidental" execution of an EE command (hardware or software If by CAL panic 
EEX error) or EE as result of panic macro ~B_~g~:' 

immrpet Register parity error Kernel encounters parity error in CPU registers - hardware error If "scrubbing" read/write 
RPE registers else PANIC 

"RPE" 
immmcu Maint. control unit Should be held pending in MM - hardware error e~@B_' .. «.§ __ !.. -~~!!z.' ~-'---...:~.~"-~ 

interrupt 
immioi I/O interrupt Should be held pending in MM - hardware error ")~~' 
immipi Interprocessor inter- Should be held pending in MM - hardware error 

".
i1
alllii '-" ." ~{;,.~~*~,~ -~ --~: 

rupt 
immdli Deadlock interrupt All CPU in kernel cluster 1 holding on a TS command -logic ~1 ~DB[~lJ:@ 

-OR- hardware error 
!immpci Programmable clock Should be held pending in MM - hardware error <f~~~~§! r interrupt 

4-14 Cray Research, Inc. Proprietary TR-ITR 8.0 K 

) 



) 

UNICOS Internals Technical Reference Kernel Mainline 4-15 

immtrap CPUn 

o 

xp 

pws [n] 
Memory 

cllmdlmaster.s 
zerotrap 

PMnCNE 
"master.s: exchange __ ...L __ ..!t=====:!.. __ .L. __ 
to absolute zero 
encountered" 

immmei ----------.~ 

immtrapO cllmdlmaster.s 
I 

UTRACE "*IMM INT*" 

disable panic flush ~ ..... ...-
save error status F 

immfpi 
immore 
immpre 
immbpi * 
immrtm * 
immmii * 

lmmrpe 
lmmnex 
immeex 

L panictst cllmdlpaniktst.s 

RPMODE=-l (scrubbing) 
rpescrub cllmdlslave.s 
readlwrite registers 

not panic macro see following pages for detail 
.......... 

immpci ex 
PANICR "requested messageimmmcu 
cllmdlpanik.s immioi 

immipi 
immdli 

I 
PANICNE "master.s: unsupported IMM 

interrupt" 

PANICNE "master.s: XXX interrupt in UNICOS kernel" cllmdlpanik.s 
cllmdlpanik.s . . . . 

: . :·:(.·r Y4\4Ii(uot::X'-NoVEB):-:· .. 
. ' ··:>·*@9tHY~lVIP only : : :: 

):: . ~' .. ,', '.:: ::: ":' .' . '. " . 

TR-ITR 8.0 K Cray Research, Inc. Proprietary 4-15 



Kernel Mainline 4-16 UNICOS Internals Technical Reference 

rpescrub and immrpe 

Exchange with 0: As a precaution against a hardware error causing an exchange 
with zero and subsequent unpredictable execution, location 0 is initialized with an 
exchange package whose p register will take such a CPU to the panicO call at 
zerotrapO. 

rpescrub: The code to call rpescrub is generated on CRAY Y-MP and CRAY Y-MP 
C90 systems only. In the event of a register parity error from the "user" RPE 
exchange, this routine is called to "scrub" the hardware registers "attempting to" 
prevent additional RPE interrupts within the kernel as the kernel processes these 
register values for the user (for example, saves them).' 
The code sets flag RPMODE indicating that scrubbing is taking place. This flag 
protects the kernel from the normal panic action that would occur for an RPE within 
the kernel, as described in immrpe. The logic simply saves each register in memory 
and then loads the value back in the register. The parity of the value should be 
"fixed" by this action provided that the error is intermittent. A solid RPE will panic 
or hang the system in a very short time. Shared registers in the user's assigned 
cluster are scrubbed on C90 systems only. The RPEMODE flag is cleared when the 
scrubbing is complete. Also note for C90 systems the EMI instruction is executed 
after each register is scrubbed since any interrupt exchange would have implicitly 
turned this mode off. 
immrpe: CPU enter immrpe through immtrap for any register parity error interrupt 
exchanges. The interrupt could occur in 3 major contextual areas in the kernel as 
shown on the right and described below: 
1. During register scrubbing (RPMODE set) - immrpe checks if the cluster (user 

process) is in maintenance mode, a privileged function set in / dev / cpu for 
testing shared registers. In maintenance mode the error is ignored here, it will 
be processed by usrrpe later in the logic. In "normal" operation the error is 
logged by rperr. In any case the CPU is exchanged "back" to the instruction 
after the load/save that caused the error and processing continues. 

2. During register use by the kernel (with exceptions list.ed in number 3) -
panicflush is turned off and the system panics with the RPE message. 

3. During register use by the kernel but: 
RPE was in another CPU, in HPM, or there was an invalid RPE interrupt
the RPE bit is set in the user exchange package forcing the error to be 
processed by usrrpe. 
Within the routines that are processing "user" register data, not kernel data: 
slave. s, vsaveO, clsaveO, or master. s and T register reference. In these 
cases the kernel mimics the logic of rpescrUO'again here. The system is 
protected from panicking in this case. Also the RPE bit is set in the user 
exchange package forcing the error to be processed by usrrpe. 

In all cases except the kernel RPE panic, the CPU is exchanged "back" to the 
instruction after the load/save that caused the error and processing continues. 

4-16 Cray Research, Inc. Proprietary TR-ITR 8.0 K 

.) 

) 



) 
UNICOS Internals Technical Reference 

/' (:::)'(\\, 'R~sS'b~ ~,--\)~'{"'l.~ 
~escrubandi~e 

c1/md/slave.s 

Kernel Mainline 4-17 

c1/md/master.s 
~i----------------------------------~~~t~e~--------r--------------------' scrubdone 

I 

V~ : 

(Y-MP II e90) and note: e90 check parity of 
RPE shared registers, Y-MP does 

not 
rpescrub Cl/md/Slave.s 

RPMODE=-l scrubbing 

.~=~_--I~ badRPE chip 
number 

~\\\\t j0'\ 
\If ~~ ~t-' 

'i ' 'H"\' it't) E!-fl if': f y~ interrupt 

X~,\~::~~8 

PANIC "slave.s: 
read addr/mode 
delayRPE" 

cluster 
, , , 
, 

: pw _xpux.p points in: 
, • slave -or- vsave() and Verror -or-

hO\j\jV\ . .,' ',clsave and SR error -or- master and Tel 

\f ~~~' ex 

)&~ 
C~'~~ ~ 

reset EMI each 'h t-~: 
RPMODE=O not scrubbing ". h"'~ I 

interrupt 

interrupt • .;..~ .. -; ""'~ - -.- - - - - - - - - - - - - T _. 
,. ..'" - ___ 17.Ml dl>C()Irt(<l v~ "'"'S 

I .. H,lJ'II. \ T 
, i'!terrupt OIc1>'tJ. ~~\>~~ V<J.r Q6es '{P 

~ . 
~ ~ II· 

.. 

:=,~r;~!.:~~~~:..!.~~~~~ c1/md/master.s, • • • • • • • • • • • • ... 

• • , \-t' J' ~ ,. JlJ6tr 
-~~ ... t,·: \~~~M~~"PJ I)tjf : 
\J" ,r UTRACE ''KRPE'' 1 ( v 

~~\f~~'.a. f =: ,e90 ,';CEN(n>l) " =: 
\' ... , set CLN=user CLN(2-n) 

.,1 _ ... \ r • store/load SBs STs SMs • 
" ~ ~Il t9,g the RPE error 

~ , .. ~,b~ f)l i r~ ,,~:~:::C:::(1)! 

~
'\ ~~ QJ ~ f 11 ~., HPM or Invalid RPE Interrupt .." 2 

~ ':J(J: '~:i ~~ :"", pw_xpux.ppoints in: set RPE bit in pw_xpus (usetf 

~CI' "<.' : . rii 1 slave -or- vsave() and Verror -or- : 

"'J\.fjJI(!{(~\ r •••• :~ ~ panicfluSQ~ ~~ave and SR error.,~ i er 
and Terror : 

, v ri 'PANICNE ''niaster.s: RPE store/load: Bs Ts Vs • 
S ;?: interrupt in UNICOS kernel" Set RPE {Jag in pw _xpus (user) • 

• • 
• brunrp w • 
, -- clear XP RPE flag pw_xpux , 

• • S3='*IMM', S4='RPX*' •• 
• ex (return to point of interrupt) • 
~ ........................................• 

TR-ITR 8.0 K Cray Research, Inc. Proprietary 4-17 



Kernel Mainline 4-18 UNICOS Internals Technical Reference 

Interrupt handler selection 

The diagram on the right shows the logic of selecting the next interrupt to handle in 
the "inner loop". Pictured below are the data structures involved. 

Recall that pw_xpus con
tains the user exchange 
package saved when the 
interrupt occurred. The 
XP flags tell us why the 
CPU entered the kernel. 
Generally there is only one 
flag bit on in the user ex
change package set as the 
result of the hardware in
terrupt but there are 3 
"software interrupts" or 
"pseudo interrupts" 
checked here. This logic 
detects any possible "pend
ing" 101, PCI, and IPI in
terrupts. By detecting 
these here with software 
checks the CPU is saved 
from trying to exchange 
back to the user only to ex
change right back into the 
kernel to process the inter
rupt. Each test possibly 
sets the corresponding 
"real" interrupt flag in the 
memory XP (pw_xpus) re
sulting in the interrupt be
ing processed as if it were 
caused by a ''real'' hard
ware interrupt. 
The kernel forms the XP 
flags into a single word 
and then simply does a 
leading zero count· of the 
flag word to determine 
what is the leftmost flag, 
and uses that number as 
an index into the tra
pusr [] jump table. 

kernel 
registers 

Al---t-,.", 

B 

ucomm 

ICPUl 
I~I 

CL2 

+---I~~ -------------------------user 

user field 

CL3 

Each interrupt handler clears its corresponding XP flag bit and normally jumps to master 
when it completes its activity. The CPU loops through this logic until the last XP bit is 
cleared. 

4-18 Cray Research, Inc. Proprietary TR-ITR 8.0 K 

) 



'\ 
'~ \,-----/' ~j 

~ 
"""'" t:S 
S' 

~ c1 / md I master.s 
-master ~> ~ 

00 I· CDCD. -;. B.UP (62) = pw_userp 
~ '" ~ !ST6 && i I this cpu's bit I I !pcilock && 
~ • t>< ~ (CI > 0 ("") set in ST7 RTC > nextpci 

'1:1'0 (and not in ST.. 
(= I I:!l~ or STO > 0) 

~ ~ B.UPC (61) = p_pc 
Ci)::rl = B.U (64) = pw_useru 
~O B.UC (63) = pw_ucomm 

any xp fif!l1s set 
(bits Ln S1) ~ 

Q 
~ r 
III 
(l 
F" 

~ 
1 
::t 
~ 

~ 

t 
co 

~ 

=" v--\ Il) I~ 
S t"'I B.KFTP=O 
~ ~ T.TRACE M=tracemask 
""0 ~"d 

~ 

~ TJl t. Set lor in SlJ t. Set ICP in SlJ t. Set PCI in S 
~o 
I:!l~ 
~ 

~ e: 
(I) 

~ (else clear Clear ST7 hit pcilock = 1 
) IOIinXP) 

"i 
til 
(I) 

~ 
"-
\J\ 
j. 

~ 
1-

~ 
~ 

c
""'I? 

~ 
:::r
s 
-t 

s.. ..,. 
'" ~ 
~ 

:::r
oO 
(A 

~ 
::s 

\:-\ 
t> 
\-\ 

~ 

.~ 

trapusr[ ] entry: 
(mdllowmem.c) 

•••• - B.SUBR (04) = trapusr[flag] ;" 
•••• _ ••••• _ ••••• - S1 = trapusr[] trace info I sign~ 

- .. 
B.%STKCBP (02) = p stack 0 

/ usr I src I lib I asdef I asdef.s 
tlCurrent Base" 
((Current Top" 

tlAbsolute Top" 

B.%STKCTP (66) = frame[1] t:S 
B.%STKATP (67) = limit 

Y-MP C90 order 

usr.rpet us,:fpi usr.pre usr.bpid usrmcu us~ipi us~pci usrmiid 

usr~ex usrmei usrrtnt-d 
I . 

usr;nex usrmei usrore 
I . 

us~ioi us~dli 

(uncorrectable) (correctable) 

~ 
8 
\J:) 

~ 
~ 
~ 
~ 
1;)' 

~ 

~ 
~. 
~ ..... 

~ (I) 

~ 

~ 

~ g .... 

f-s-
CD 

t 
to 



Kernel Mainline 4-20 UNICOS Internals Technical Reference 

. 101: (CRAY X-MP/CRAY Y-MP) An 110 interrupt can occur at any time. If 
channel-completion actually caused the exchange in this CPU, the 101 bit is already 
set. But if a channel completes a transfer while this CPU is already in monitor 
mode, the channel will direct the interrupt to this CPU (refer to the 101 bit's 
description in the hardware chapter). The 110 interrupt remains pending for this 
CPU until it either returns to user mode or clears the pending interrupt via a 
machine instruction. 
101: (CRAY-MP C90) An 110 interrupt can occur only when the SIE hardware "gate" 
or "flag" is set, which is when all CPUs are in user mode, or when a CPU has entered 
the kernel, handled all pending 110 interrupts, and executes the ESI instruction 
shortly before going back to user mode. The kernel executes with 110 interrupts 
disabled. 

CI: The CPU should stay in the kernel and "poll" the CI (Channel Interrupt) 
register for any pending interrupt. Refer to the hardware section for more 
information. 
ST6: 110 interrupt lockout. Refer to the usrioi routine to see that the ST6 
register (in cluster 1) is nonzero when any CPU is already in the 110 interrupt 
handler. That CPU will handle all pending 110 interrupts. 

I STl: I Lockout channels I Count of CPU's in usrioi interrupt handler 

The left side of ST1 is a bit map of which (SSD) channels are currently being 
polled by a CPU. A CPU which functions one or more SSD channeVs and then 
spin-waits for the transfer's completion will set those channel's bits in STL A ) 
CPU entering the kernel should ignore those channel/so . 
STO: Bit map of pseudo channel interrupts. 
TCP/IP postpones full processing of a message until all real channels have 
been handled. It does this by flagging a bit in STO representing a channel 
number above the possible real channel numbers. Logic also supports pseudo 
LOWSP and VHISP channels for special purposes such as memory to memory 
(system to system) communication in a UNICOS guest environment. See the 
usrioi routine. 

HOLDLOCK: A hardware semaphore (SM30) used to protect against simultaneous 
update of ST7 or pcilock. 

ICP: The Internal Central Processor flag is also known as an "Interprocessor 
Interrupt" or "IPr' (it is referred to as "IPI" in the Hardware section). 

Any CPU in monitor mode can raise this interrupt in any other CPU by means of a 
machine instruction (SIP!). The exception to this rule, and therefore the reason for 
this software test, is that the SIPI instruction will not interrupt a CPU in monitor 
mode. (On a C90, the kernel runs without the IPI enabled.) The interrupt would 
remain pending until the CPU goes back to user mode. 

4-20 

ST7: A bit map of software IPI's. 
To notify a CPU that is already in monitor mode that it should execute the 
usripi interrupt handler, the "sending" CPU does a SIPI to the "target" CPU 
and sets the target's bit (counting from the left) in ST7. See the IPI macro in 
md/utext. s. 

Cray Research, Inc. Proprietary TR-ITR 8.0 K 

J 



) 

) 

UNICOS Internals Technical Reference Kernel Mainline 4-21 

PCI: A Programmable clock interrupt can occur at any time. If the programmable 
clock actually caused the exchange in this CPU, the PCI bit is already set. But ifits 
clock (ICD) counts down to 0 while this CPU is already in monitor mode, the 
interrupt remains pending until this CPU either returns to user mode or clears the 
pending interrupt via a machine instruction. (In a C90 the kernel runs without PCI 
enabled.) Normally only 1 CPU, "the clocking CPU", is running its programmable 
clock. 
See the Hardware chapter for more description of the programmable clock in each 
CPU. 

nextpci: The real time at which the next timed event should be performed is 
stored in nextpci. The clocking CPU can use this to detect the pending 
interrupt without going back to user mode. Or any other CPU can perform the 
scheduled service if the clocking CPU is "tied up" elsewhere in the kernel. 
pcilock: Keeps the pcintrptO routine single-threaded. It is nonzero when 
a CPU is currently performing the scheduled service. (See the usrpci 
int.errupt. handler.) 

Global pointers: B61, B62, B63, B64 and B65 are known as upc, up, uc, u and CPU 
throughout the kernel's C code. They point to the connected process's major 
structures, plus contain the CPU number. They are defined in sys/systm.h. 
T.TRACEM: T065: bit map controlling types of messages to place in kernel trace 
buffer. 
B.KFTP: B060 pointer to kernel flow trace buffer (debugging feature) 
Any flags set? At this point there could be 4 bits set in the register 81 copy of the 
XP flag bits: the one representing the original hardware event that brought the CPU 
out of user mode, plus the 3 pseudo-interrupts. Because of the leading zero count on 
S1 the CPU will jump to the handler for the interrupt type that is left-most in the 
flags register. 
Their relative positions in this register are represented on the flowchart by the order 
of the interrupt handlers, from left to right (shown both in the Y-MP and C90 orders). 
The interrupt handler does not clear its bit from the XP (it is already cleared). 
trapusr[]: This table is indexed by interrupt type and provides: 

1. The address of the interrupt handler to jump to. 
2. An ascii value for the handler to enter into the trace. 
3. The signal number to use if the interrupt handler signals the connected 

process. 
stack pointers: At this point the process has a stack pointed to by p_stack which is 
normally an area allocated in the kernel stack pool. We are about to jump into CAL 
routines. Most of them call C functions, thus requiring a stack. The stack is 
effectively cleared of all frames except one (umain). The code generated by SCC at 
the entry to each function assumes that registers B02, B66 and B67 are valid 
pointers to the current stack frame, the next available space on the stack and the end 
of the stack, respectively. (See detailed diagrams of the stack later in this chapter.) 
In effect, this CAL main loop executes in the context of umainO's stack frame. The C 
portions of the kernel push more frames onto the stack, and then pop them. When 
they return to the main loop and it then exits to user mode the stack will be empty 
(except for umainO). If the interrupt handler sleepO's, however, the CPU does a 
context switch to a different stack. .. 

TR-ITR 8.0 K Cray Research, Inc. Proprietary 4-21 



Kernel Mainline 4-22 UNICOS Internals Technical Reference 

Idle processes 

The diagram on the right shows those portions of the main loop relevant to the 
selection of a regular process versus the selection of an idle process and the function 
of the idle process. Processing relevant to "down CPU" is, shown on following pages. 
Pictured below are the data structures involved. 

Idle process selection: 
The testis (pc_flag I 
PC_IDLE). If the current 
process is the CPU's idle 
process, execute slaveidl 
else slaveusr goes 
through the testing for 
signals and restoration of 
user register context in 
preparation for exit to a 
user process (documented 
in following sections). 

slaveidl: If the CPU is 
marked down or stopped 
(using /dev/cpu ioctl(2) 
call) dOWIlCPU is executed. 
Down CPU logic is shown 
on the following pages. 
The pw_users flag 
indicates a context switch 
is in order (switching away 
from idle in this case). 
qswtch logic is described 
with slaveusr logic. 
If the CPU is neither 
marked down or switching 
from idle, the "normal" 
CPU idle code is executed. 

ucomm. 
user 

user field J * 

I cpu! I 
CL31 

---------~ I 

ilkthrl I idleloopO 
: cllmdlicode.s : 
I I ... -----------_.1 

cllmdlicode.s 
idlecode 

idleloop: An exchange package is prepared in the CPU's pw_xpus area to 
exchange to the idleloop code. The executable part of this idle process is the 
idleloop function in the kernel. All of user memory is addressable by this 

process. The CPU exchanges to this process without going through all the context 
save/restore of normal user processes. The CPU remains in this code until the 
following occurs: 1) an interrupt occurs, 2) a multithread monitor wakeup flag, 
tested every 010000 clocks, is detected. (multithreaded processing and ckthrd are 
described in "Process Management - Cooperative Parallel Interface"). 
Idle return to kernel: Idle connect and system time is computed for the idle 
process. Recall that each CPU has its own dedicated idle, timing is CPU specific. __ ) 
If the idle interrupted with NEX (monitor flag test) call ckthrd else loop to master _ 
to process interrupt. 

4-22 Cray Research, Inc. Proprietary TR-ITR 8.0 K 



) 

~) 

UNICOS Internals Technical Reference 

Idle process - idle CPU 
ellmd'lSUJVe.,· ellmdlmaster.s ellmdlmaster.< ell mdlslave.s ... _~ master .. _______________ ., ... ______ slaveus 

" any xp /lags set pc nag == PC_IDLE :,' 
(bits in 81) -1" __ ~----------J 

slaveidl mdlslave.s 

CPU 

xp 
xp lin:lit=:p.blysltneJm 

L- qswtch cl/os/swtch.c 
disconnect old process 
select new from runq 

xp 
xa=pw_xpus 
ex 

~onnect new (longjmp) 

ex 

TR-ITR 8.0 K 

~ 
(monitor wakeup flags) 
~ idleloop - c1 / mdlicode.s 
EMI 
xa=pw_xpux 
pw _idlet += (RT - pw _rtsav) 
p_stime += (RT - pw_rtsav) 

Y-MP or C90 and RPE 

save'RPE info 
TRACE "IPR" 

nex (idleloop has detected a wa up) 

L ckthrdcl / os / clock.c 

I 
for each partially-connected MT grou : 

place disconnected, 
wakeup-flagged members 
sleeping in resch(2) onto runq 

-.J 
I 

ilkthr = 0 (set in idle) 
TRACE"IWK" 

Cray Research, Inc. Proprietary 4-23 



, 
Kernel Mainline 4-24 UNICOS Internals Technical Reference 

Idle process - down CPU 

Down CPU selection: A CPU can be set "down" or "stopped" with an ioctl(2) 
system call to / dev / cpu (see UNICOS File and Formats and Special Files Reference 
Manual, publication SR-2014 8.0 for more information.). The CPU is marked 
PW_DOWN or PW_STOPPED in its pws entry. This flag forces swtch to select the idle 
process to be connected to the CPU. slaveidle calls downcpu when either flag is 
set. 
Down versus stopped: A CPU marked down is only allowed to execute the down 
CPU idle or a diagnostic (privileged) process. A CPU marked down and stopped 
executes the idle idlecode (pure idle, not thread test, and so on.). A down CPO can 
be given a diagnostic process (program) to execute (usmg' / dev / cpu control) and 
started. 
Diagnostic processing: The CPU exchanges and executes the diagnostic as if it 
were a "normal" user process but under strict control of the down CPU processing. 
CPU modes can be set by / dev / cpu driver. When the diagnostic completes usually 
an IPI issued by the diagnostic monitor process) the CPU returns to a down and 
stopped state. Additional diagnostics can be started. 
Up CPU logic: A down CPU can be "up"ed by operator action through the 
/ dev / cpu driver. The PC_DOWN and PC_STOPPED flags are cleared and the CPU 
executes upcpu. The pw_users flag is set to force the CPU through qswtch in order 
to select a process other than idle if one is qualified. 

4-24 

Note: Both the "idle CPU" idleloop and down CPU idlecode routines 
execute on behalf of the system processes proc[2], proc[3], and so on. 
Connect and system time is computed for the idleloop execution only. • 

Cray Research, Inc. Proprietary TR-ITR 8.0 K 

~) 

) 

J 



) 

) 

UNICOS Internals Technical Reference Kernel Mainline 4-25 

5\v\~~L~ 
Idle Process - Down CPU 

ex 

TR-ITR 8.0 K 

upcpu 
pw_~sers=l 

I 

cllmdlmaster.t!. cllmdlslave.s 

----------------,----~ 

pw_cpu!lg && (PW_DOWN I PW_STOP) 
c1 / md/ cpus.s downcpu ....... 1-----. 
pw_cpuflg 1= PW _DdWNED 
point pw _xpus to idle process' text 
p=o (idlecode) 

I 
chkflgs~ 

pw_lnit='INIT' pw_cpuflg I =PW_STOPPED 
SETGBTload 
global regs. pw_cpu/lg && PW_START 

pw_cpuflg =PW _STARTED 
I _____ ~ cpustart 

xa=diagnostic's pw _xpdg 
ex 

ex he EMI ot rs 

101, MEC, MEU, MCU, RT1 

xa=pw_xpus 
ex 
I • ex 

EM! 
xa=Pf_xpux 

gotipt 
clear PW _START 

I 

Cray Research, Inc. Proprietary 4-25 



Kernel Mainline 4-26 UNICOS Internals Technical Reference 

gi veupO and idler 

The kernel provides a mechanism to for a CPU to connect to its idle process. This is done in 
the following situations: 

• down_cpuO cll iol cpu. c : ioct1(2) to I dev I cpu, the CPU is forced to select 
slaveid1 and proceed to id1ecode. 

• profilO cl/os/sys4. c: force the process through swtchO and resumeO to reset the 
system "tick" rate to profile rate (1000 per sec default). 

• reschO os I thread. c: force a CPU through process selection in reschO, and possibly 
idle if no other processes qualify for the CPU. 

Function gi veupO c 1 / os / s 1p . c provides this capability. 
gi veup logic: The diagram on the right illustrates giveup and idler logic. Table idler [ ] 
has one entry per configured CPU. Setting a non-zero value in idler [cpu] forces swtchO to 
select only the idle process for that CPU. 
The diagram shows a CPU's path from a system call like profi1(2) or resch(2) that. calls 
giveupO. Logic proceeds from the system call through the master loop, and back again to the 
system call. 

1. giveupO is called to force a trip through swtchO. 
The CPU's idler entry is flagged. 
The CPU's pw_users is set to force a call to swtchO (at #4). 
The CPU is interrupted with an IPI to force it from "User Mode" to "System 
Mode" if necessary. ) 
The CPU calling g i veupO is the one forced to idle call swtchO. . .. 

2. Executing swtchO causes a 10ngjmpO to the idle context (3). 
The current process is disconnected, its context saved for later. 
The idle process for this CPU is selected to run next, forced by the non-zero value 
in idler [cpu]. 
The flag in idler [cpu] is cleared. 
resumeO longjmps to idle (the saved context for an earlier call to setjmpO in 
slaveid1). We don't want to execute the idle loop (necessarily), we just want to make 
a trip through resumeO to perform some scheduling action. 

3. The CPU proceeds to master. After any interrupts are processed (under the context 
of this idle) the CPU proceeds to slaveidl. 

4. Because pw_users is set, the CPU will call swtchO which: 
Saves the context of the idle with setjmpO. 
Selects the "system calling" process for reconnection (it wins over idle). 
Calls resumeO to resume our process. This call to resume is the reason 
gi veupO was call in the beginning. 

5. The longjmp sends the CPU back to the system call logic, just after its call to gi veupO. 
In the case of the ioct1(2) system call to down a CPU two actions may take place: 

6. If the CPU executing ioct10 is the same one being set down, the logic proceeds as above 
except at (4) slaveid1 "traps" the CPU and sends it to id1ecode (d). (See description of 
slaveidl.) 

7. If.th~ CPU executing ioct~O i~ ~fferent than th~ c:m~ being set down, the IPI in giveup('\ ) 
WIll mterrupt the CPU forCIng It Into the kernel (If It IS not already there). The CPU . 
executing ioct10 will NOT call swtchO but simply continue on. The "downed" CPU will -
be sent to slaveid1 and then proceed to id1ecode (d). 

4-26 Cray Research, Inc. Proprietary TR-ITR 8.0 K 



--) 

) 

) 

UNICOS Internals Technical Reference Kernel Mainline 4-27 

giveupO and idler 

,..-masier- lest lor mterrupEJ ~sl~a~v!eu~~., 
XP flags(s) set:' pcJ!,ag=PCIDLE 

TR-ITR 8.0 K 

~: down ~veidl_ 
trapus ~rr1users[cpu] 

, \& swtch 

I:nex e X '~!ljc:n;ect t> 
system call select 

• Lres~e 
"'ong)mp 

to m't7", .. ",,'dII 

I BOO 
I ~ 
i 

call handler: 
reschO or pro{ilO forced to idle context 

~ ~ giveup (cpu) 
~lx:-~ ....... . 

idler [cpu]++ 
IPlcpu 

I) set pw_users[cpu] 

II ~ 

dIsconnect 
.......... ""...-.-:- setjmp ~.:;:~1@W~}?A&jw#4 

select idle process 
(since idler[cpu] set) 

idler[cpu] = 0 

path while in context of the system-call process 
path while in context of the idle process 

Cray Research, Inc. Proprietary 4-27 



Kernel Mainline 4-28 UNICOS Internals Technical Reference 

Process selection 
At the right is the "upper right corn~;r:'of thekernel main loop diagram starting at the tag 

~Jb~:~:;:~d~~s~~~i;~~ih.E~:;;~=!~~!!::=~Gt~~tl~~~~~~~~~~~~~,~~~<tgca~ 
• In the SSD ssreadlsswrite "hot path" 
• The multitasking call 212 "very hot path" 
• Connected to an idle process - CPU executed slaveidl. 

There are 2 major considerations to check for before restoring the user hardware context 
and exchanging back to user mode: 

<i> Is the CPU connected to the right process? 
C2)' Is there a signal to act on for this process? 

The diagram on the right deals with the first question. Signal processing is dealt with in 
the next section. 
Reasons for a context switch: 
" pw_users: Should be read as "p w user switch", also known as offset "w@SWAPF" in assembler 

code, and "SWAPF" in C code; and is frequently set with the SCHEDCPU macro in C code. This 
flag word is set by any function wanting some CPU to check the rung for a possible context 
switch. For example, a CPU might move a sleeping process back to the rung, check the pws 
table to find the CPU executing at the worst priority (worse than the newly connected 
process), and flag that CPU's pw_users and send an interpro~essor interrupt to that CPU. 
(No hardware interrupt need be sent if the CPU has targeted itself.) Once the targeted CPU 
comes into the kernel it will always look at this flag, disconnect from its poor priority process 
and scan the rung for the better one. Other examples include the CPU scheduler lowering )' 
the priority of the connected process below another on the rung, or a connected process 
suspending itself. 

f, PC_SSPND: The current process has suspended itself with a suspend system call or has been 
suspended by the memory scheduler. (Suspended processes stay on the runq, but are not 
connected.) 
PC_FREEZE: The current process is frozen for a checkpoint or a debugger (using Iproc). A 
process is frozen by calling freezeO. 
PC_SINGL: The current multitasking group is to be disconnected except for a single process. 
This is done by calling singleO for operations like moving or expanding a multitasking 
group. For example, the memory scheduler calls singleO to disconnect an entire group for a 
swap. 

Context switch logic: 
1. The stack is initialized at the base umain frame. 
2. pw_users is cleared and gswtchO is called to disconnect the current process, select a 

new process to run from the sorted rung, and resumes the newly selected process. 
The newly selected process resumes execution - call old process is runnable on the 
rung waiting for a CPU but not connected. Note the stack shows gswtchO calling 
swtchO. 

3. The original process priority improves over time and eventually gets selected to be 
connected again by another process calling swtchO. 

4. The resumed original process checks for pending signals. If there are none the CPU 
loops back to mas ter to check for any possible pseudo interrupts, and eventually 
returns to slaveusr. The process would normally NOT proceed through gswtchO J 
immediately again would but continue through kernel exit and exchange to the user 
process. Note: It IS possible that the newly resumed process loses its CPU after 
reconnection, before it gets a chance to exchange to the user, but this should be rare. 

4-28 Cray Research, Inc. Proprietary TR-ITR 8.0 K 



) 
- -" 

UNICOS Internals Technical Reference 

Process Selection 

slaveus~ 
c1 Imdl slave.s 

pw_users or 
pcJlag II PC_SSPND, PC_FREEZE, PC_SINGL 
or 
signal pending (p _sig) or 
pJlag II P_PRSTOP 

B. %STKCBP (02) = p_stack 

Kernel Mainline 4-29 

B. %STKCTP (66) = frame[l] (current frame should be umainO - make sure of it) 
B.%STKATP (67) = limit 

proc[] 

pw_users or 
pcJlag II PC_SSPND, PC_FREEZE, PC_SINGL 

pw uder~ = 0 (time to check the runq) 
- - qswtchcl los I swtch.c 

piri=p v.pri P-f p_action=kstack_mpx_noaction 
.. ---- swtchc1 I osl swtch.c 

~. . ... 
/Uongjmp)_ 

V~t<J tj.1I,~s 
~tt r:L 
~1M ~t 

Swap swap clusters, connect new proc 
Set global pointers B.UP B.U B.UC B.UPC 

cluster 2 
I I 

p-pri=400 

user user 

swtch() + nnn nnn 

TR-ITR 8.0 K Cray Research, Inc. Proprietary 4-29 



Kernel Mainline 4-30 UNICOS Internals Technical Reference 

Signals 

Signal detection 
Here, at the point just before the exchange back to user mode, is where the kernel detects 
and acts on a signal. The implication of this is that a signal has an effect only upon a 
connected process. (As noted later in the Process Management section on sleepO, however, 
posting a signal in a process may make it connectable.) 
A process that is not runnable or made runnable by sending it a signal cannot be killed by 
that signal. 
• p_sig - Each bit is a signal. See /usr/src/uts/include/sys/signal.h. 

• P_PRSTOP - This proc flag is set by an ioctl(2) to /pro~ requesting a process to be 
stopped immediately. 

Set by an exece(2) when the process is to be stopped on exec (also a /proc 
ioctl(2)). 
Set by psigO when a process is to be stopped on receipt of specified signals 
(also a /proc ioctl(2)). 
Set when a multitasking group is to be brought down to a single process 
during an exec(2) (calls mtcollapseO). 
The P _PRSTOP flag forces psigO to be entered to do any necessary processing 
(listed below). 

• issigO - This functions tests for the presence of a processable signal and returns the 
number of the most "important" signal present and processable. issigO is explained') 
in detail on the next page. .' 

• psigO - This function performs the following: 
Performs the zexi to call for multitasking members which are to leave on 
exece(2). 
Stops multitasking siblings on a traced signal. 
Turns off any ignored signals which are not registered or held. 
Determines the most processable signal remaining ("n"). 
If signal "n" is registered, the following events happen: , 

<> Calls sendsigO to alter the user XP as shown in the diagram. 
Else 

<> If stopping (p_sigstop) signals are present stops the process (for 
example, remove from runq and swtchO) . 

<> Writes a core file if dump-causing (p_sigdmp) signals are present. 
<> SIGKILL's multitasking siblings. 
<> Calls zexi to. 

• zexitO - Function zexi to is the "funnel" through which all processes leave the system, 
whether normally via the exi t(2) call, or abnormally via a fatal signal. This function 
performs the following: 

Deallocates all the kernel resources associated with the exiting process (except 
its "zombie" proc table entry, in which it preserves the process id and exit status). 

Does a context switch off to some other process' stack. See the Process 
Management chapter on the subject of Process Termination for details. 

Cray Research, Inc. Proprietary TR-ITR 8.0 K 

) 



UNICOS Internals Technical Reference Kernel Mainline 4-31 

Signal Detection 
..-- master __ ...., _____ pw users * pcJzag II PC_SSPND, PC_FREEZE, 

interrupt 

e 
ex 

TR-ITR 8.0 K 

,...L.... PC SINGL 
trapusr signal pending (p _sig) 

IT\ p~g II P_PRSTOP 

pw_users 
interrupt handlers pcJlag II PC_SSPND, 

PC_FREEZE, PC_SINGL 
I 

pw_users = 0 
- qswtchoslswtch.c 
I Lswtch 

~ 

-'-~ I 

signal pending (p_sig) 
pflag II P_PRSTOP 

~ _____ ~ __ ~~ PRS~OP 

r 

. L issig cl los I sig.c 
Find any signal in 
(p_sig) that is not to 
be ignored, held or off 

sendable signal found 
orPRSTOP 
~i.. psig c1 los I sig.c 

PRSTQP 

send SIGSTOP to all MT members 
swtch: disconnect process 
clear SIGSTOP in p_sig 

I se:table signal found 
signal not registered 
to be cauJ;!ht '" 

save user XP at 
p_sigoff->sigarea 
P = handler (u_sigactO) 
A4 = signal number 
A5 = sigon/sigoff 
clear p_sig SIGKILL all MT 

U members 
ifp_sigdmp 
core:write core file 

c1 I os I exit.c 1 zexit 
deanocate 
resources 

c1 los I swtch.c L swtch a:;-
Cray Research, Inc. Proprietary 4-31 



Kernel Mainline 4-32 UNICOS Internals Technical Reference 

issig() - Kernel's test for a processable signal 

The function issigO returns the number of the "most processable" signal present in 
p_sig. It returns zero if there are no processable signals'. 
This function is called by cl/md/slave. s, as shown on the previous page. It is also 
called by sleepO to test whether a sleep was interrupted by a signal or should 
return because a signal is already present. 
• NEI check: As described earlier in this chapter, it is possible for a CPU to "see" 

several pending interrupts at once. The NEI flag may be present while executing 
some other interrupt type first. The interrupt flags in the xp are not cleared until 
the interrupt handler is about to be entered. So it is conceivable that a CPU 
might enter the kernel on a system call but call sleepO before usrnex is entered. 
No signal is to be returned to sleepO until usrnex has been entered. sleepO 
might do a longjmp using a bad context. See the details of sleepO in the 
"Process Management" section. 

• sigpend: The user sigarea structure contains the "sigpend" word which the 
kernel is supposed to maintain as a copy ofp_sig. 

• sigheld: The user sigarea structure contains the "sigpheld" word which the 
kernel is supposed to maintain as a copy ofp_sigheld. 

• SIGCLD: This is the death-of-child signal. If a process is ignoring SIGCLD or 
registers it with a null catching function, zombies are created but exist only until 
the parent makes a trip through the kernel and calls issigO. 

• Tracing I stopped I continue: These are all related to debugging done through -_)' 
the /proc interface. 

• Ignored: Ignored signal are removed from p_sig unless registered or held. 
• Hold: Held signals are not removed from p_sig. 
• Fatal signals: p_sigkil is a mask of fatal signals. p_sigdmp is a mask of fatal 

signals which also cause a core file to be written. See 
/usr/src/uts/include/sys/signal.h for #define's (SIG_KILDFL, 
SIG_DMPDFL, others) which define which signals default to which category. 

• fsigO: Finds the number of the most processable signal in p_sig. 
• SIGKILL: The KILL signal cannot be ignored or held. It is always returned first. 

Otherwise the leftmost signal in p_sig is returned (bit positions are counted from 
the right, from 1). 

• sigoff mode: Registered signals are not returned by C if the user is in sigoff 
mode. There are 2 ways to set sigoff mode: 

4-32 

1. Set the sigoff word in the user sigarea to-1 
2. Register any semaphore as a sigoff indicator with $SIGNAL (SCTL_SEMA), 

then set that semaphore 

Cray Research, Inc. Proprietary TR-ITR 8.0 K 



) 

UNICOS Internals Technical Reference Kernel Mainline 4-33 

issigO - Kernel's test for a processable signal 

issigO cl / s / sig.c 
current system call unprocessed (i.e. NEI still in xp) 
1------------I~retUTIl(O) 

post p_sig to user's p_sigpend word 
• get user p_hold word 

sig = up->p_sig 
if SIG-CONT clear SIGSTOP flag 
if SIGSTOP clear SIGCONT flag 

debugger 
debugger 

SIGCLD (not held) && SA OCHILDWAIT 
I-----------~ freeproc: free any zombie children 

remove SIGCLD from user's sigpend 
1-___________ clear SIGCLD from p_sig 

t-t_r_a_c~_·n=g-"(fc,-o_r_de_b-"ug=g.:...i_n=g) __ ~ retUTIl(l) 
clear all ignored/continue (p_sigign/p_sigcont) signals not registered/held 
(p_sigreg/p_hold) from p_sig and user's sigpend word remove most ignored signals 

no (other) signals in p sig I--------------...... r~ retUTIl(O) no processable signals 
signal in p_sigdmp or p_sigkil, and not in p_sigreg 
I-----------~- retUTIl(l) fatal signal present 
unregistered stop signal (p_sigstop) p,!.esent . . 
t--------------_~ clear from p_SIg and user's sigpend word 
'--______ fsig(up):l / os / sig.c p_stopsig = leading bit number 

p Sig&SI~G· L stop cl/os/sig.c 
return (SIGKILL don't return remove from runq 

. = . _ h ldheld signals ,p_stat=SSTOP Sig p_SIg p_ 0 wakeup parent 
save cluster (uc_~m=semaphores) signal SIGCLD to parent 

pc s~gsems & uc sm I wt h 1/ / t h 
- - L.- S C C S sw c .c 

sigs &= .... p_sigreg if sigoff, 

p_sigof[->sigoff< 0 don~t return 
regIstered 

sigs &= -p_sigreg signals 

c:::-.= 

retUTIl ( number of rightmost set bit in n) (rightmost is #1) 

return (processable signal number) 

TR-ITR 8.0 K Cray Research, Inc. Proprietary 4-33 



Kernel Mainline 4-34 UNICOS Internals Technical Reference 

Catching a signal 

At the right is an example of a C program catching a signal. The signal in the 
example is a SIGHUP, and the function which is to process the signal is "catchO". 
This example provides a functional overview of the following: 
• Interaction between user code and the signal libraries 

- Interaction between the signal libraries and the kernel 
- Signal library data structures 
- Kernel signal data structures 

1. The startup module ($START$) allocates the "sigstuff" structure (with the 
sigarea structure within it) and records it address in the stack_trailer structure 
at the end of the stack. It calls the library function _sigini to to register the 
signal processing area (sigarea structure) with the kernel. 

2. The kernel siginitO function saves the address of the area, then returns to user 
mode. 

3. The application program (mainO in this case) "registers" to catch the SIGHUP 
signal by calling the library sigctlO function. Other methods exist to either 
catch it or prevent it from killing this program. But sigctlO is one 
straight-forward way to handle the signal. 

Note: The sigctlO function records the catching function's address 
"locally", in the sigvec table. Its $SIGNAL system call passes to the kernel 
the signal number and the address of the library signal catching routine 
_handlrO .• 

4. The $SIGNAL system call is processed by the kernel function ssigO. The cpu 
then returns to user mode in mainO. 

5. In the example, some other process posts a SIGHUP in this process' p_sig. But 
the posting of the signal does not interrupt the signaled process. 

6. The signal will not be processed until a cpu enters the kernel while in the context 
of this process. Any interrupt to this cpu will cause it to exchange out of user 
mode and into the kernel. The application has no control over this. 

4--34 

(However, the application does have control over whether or not the kernel will 
enter _handlrO if a registered signal (the SIGHUP in this example) is present. 
This is the purpose of the sigoff word. If sigoff is negative, the process is in 
"sigofj mode and the kernel will not process registered signals.) 

Cray Research, Inc. Proprietary TR-ITR 8.0 K 

) 

) 



) 

) 

) 

UNICOS Internals Technical Reference 

save registers ill Slgarea 
create own stack. frame 

Kernel Mainline 4-35 

Just extt 
copy xp to p_sigoff'->xp 
A2=interrupted P register 
P=u_sigact[SIGHUP-l] 
A4=SIGHUP 
S2=p_hold 
sigoff'=-l 
clear SIGHUP from p_sig 

save xp, all registers, signal mask on 

TR-ITR 8.0 K 

sigoff = -1 (sigctl catches in sigo/f 

call handler (siguec[A4-1J) 

sigoff = -1 (sigofi) 
(10) 

Co"~"~,,,,,,,,,,,,,,,,,,,,,,,,, move xp, registers, signal mask to 
"'~ ~"'~r. restore stack 

Cray Research, Inc. Proprietary 

paddr 
signum 
sigmask 
sigvecD 

4-35 



Kernel Mainline 4-36 UNICOS Internals Technical Reference 

7. On the process' next trip through the kernel the presence of the SIGHUP bit in p_sig 
will be detected by the call to issigO. The issigO function returns SIGHUP (for 
example, "true") if the user is in sigon mode. The issigO function returns the 
rightmost signal in p_sig that is not being ignored, held nor is a registered signal 
deferred by the user's sigoffword. It also clears the ignored signals from p_sig unless 
they are registered or held. 
Because issigO returned "true" the psigO function again selects the rightmost signal 
in p_sig that is not being ignored, held nor is a registerea signal deferred by the user's 
sigoff word. If the signal is fatal, for example, not registered, the process is terminated 
here. In the example, the SIGHUP is registered in the u_sigact table, so the kernel will 
alter the user exchange package (p register)to enter user mode in the signal catching 
function _handlrO. 

But the key to reentering mainO at the interrupted point must first be preserved. The 
interrupted exchange package is saved in the "xp" field of the user's sigarea 
structure. Recall that the address of this area was registered by the siginitO call. 
The user exchange package (in the pws []) is modified so that the CPU will enter 
_handlrO and the SIGHUP will be available to _handlrO in register A4. The kernel 
also sets the process into sigoff mode so that another external interrupt will not cause 
_handlrO to be reentered while it is saving the present hardware context (of mainO) 
and modifying its stack. 

) 

8. The CPU next returns to user mode in _handlrO. This function saves the balance of 
the interrupted hardware context in the "sigarea" (the kernel has saved only the xp). 
Because there is only one sigarea per process it must be saved on the stack in order to 
allow a signal catching function to be interrupted by a hardware event which then") 
results in entry to another signal catcher. This "nesting" of signal processing is possible . / 
to any depth, limited only by the maximum size of the user's stack. 
The _handlrO function must do the "ticklish" work of allocating space on the user 
stack even though the present frame may be in a "half-pushed" or ''half-popped state". 
It may have to allocate more stack now and deallocate it later. This work must be done 
in a sigoff mode. 
The _handlrO function uses its local sigvec table, indexed by the signal number 
passed to it by the kernel, to enter the ca tchO function. 
In this example, catchO is to be entered in sigoff mode because it was registered by 
the sigctlO function. If the catching function is to be entered in sigon mode (for 
example, interruptible by a signal), the sign bit of sigvec [signal number-l] would 
be set. The signalO and sigactionO functions would set the bit and _handlrO 
would set sigon mode before calling the catching function. 

9. The catch ( ) function is a regular C function. There is nothing special about it. It 
pushes its frame onto the stack at entry and pops it ofi'when it returns. 

10. The catchO function returns to _handlrO, which goes back to sigoff mode while 
it restores the stack and most of the interrupted hardware environment. sigon 
mode must be restored (the process had to be in sigon mode originally to be catching 
a signal) but this cannot be done while in _handlrO because this restoration 
process must be entirely complete. So _handlrO makes a $SIGNAL system call to 
"return" to the interrupted point. 

11. The kernel ssigO function (SCTL_RET request) restores the balance of the 
interrupted hardware environment and sets the process back to sigon mode. 

12. The exit from the kernel is back to the interrupted point in mainO. 

4-36 Cray Research, Inc. Proprietary TR-ITR 8.0 K 



) 

UNICOS Internals Technical Reference Kernel Mainline 4-37 

Signal data structures 

p_sig A signal is a bit in this word. "Signaling" a process is done by the 
kernel function psignalO. The bits are numbered from 1, and from 
right to left. Their names are defined in /usr /src/uts/include/ 
sys / signal. h. 

p_sigoff Records the (user relative) address of the sigon/sigoffmode word. 
The word is usually the sigoff word in the user's sigarea struc
ture, and its address is "registered" by the sigini t(2) call. Caution: 
the kernel sendsigO function assumes that the exchange package 
save area immediately follows the user's sigon/sigoff word. 

p_hold Contains the "signal hold mask". The presence of a signal in this 
mask means that processing of this signal is deferred. The signal bit 
remains in p_sig even though it is no~ processed. 

p_stopsig Contains the integer value of the signal that "stopped" the process. 
This occurs when a process is to be stopped for debugging on any of a 
set of signals kept in p-prsigmask and pc-prsigmask 

p_sigpend Records the (user relative) address of the user's "signals pending" 
word. The word is usually the "sigpend" word in a sigarea struc
ture, and its address is "registered" by the siginit(2) call. The ker
nel keeps the indicated user word in sync with p_sig. 

p_sigign Ignored signals. The presence of a signal matching a bit in this mask 
means that issigO should (normally) clear it from p_sig (unless it 
is registered or held). 

p_sigkil Fatal signals. The presence of a signal matching a bit in this mask 
means that the process should (normally) exit (unless it is registered 
or held). 

p_sigdmp Fatal signals producing a core file. The presence of a signal matching 
a bit in this mask means that the process should (normally) write a 
core file and exit (unless the signal is registered or held). 

p_sigreg Registered signals. Any signal matching a bit in this mask has an ac
tion registered in u_sigact [] (either a handler or a flag 
(SA_xxxxx». 

p_sigstop Debugging stop signals. Any (unregistered) signal matching a bit in 
this mask should cause the process to enter a debugging "stop" state. 

p_sigcont Debugging continue signals. Any signal matching a bit in this mask 
should cause the process to awaken from the debugging "stop" state 

TR-ITR 8.0 K Cray Research, Inc. Proprietary 4-37 



Kernel Mainline 4-38 UNICOS Internals Technical Reference 

Signal Data Structures 

proc . I 
p_Slg . ...4 3 2 1 outstanding signals (bit, mask, from 1, right to left) 

,,-- 'P":'sigoff --- ---- --- ----- address of the user sigoffword 
",---- p_hold signals registered to be held 
· p-':siopslg --. ----------- signal that stopped this process 

_- p sigpend address of the user sigpend word 
:._--", - - --: -"'ti'i-";;':; - - - - - - - - - - - - - - - signals registered to be ignored ", P_SI6.L6.LL • al . ed . . 

p sigkil s~gn s register to ~aus~ te~matlOn 
- -:-- 'ad- ------ -""""" -" -" SIgnalS to cause termmatlOn With a core flle 
P_S~b mp registered signals with handlers 
p sigreg . al . t ed:6 t 
"n:-~'''"~tb"""-"""".--""""" SIgn S regis er or s op 
'p_ ~6 P signals registered for continuation 
R-:~I"~:~:r:~ _ "k" _ " " " __ " _ _ _ process tracing signal mask 
p-prsigmas siginfo flags 
p_siginfo 

pcomm pCJ)rslgmask multitasking process tracing signal mask 
.... ____ pc_-_s_ig .. s_e_m_s __ "" map of semaphores acting as sigoffindicators 

u~o~m uc_sigversion signalllbrary version uc_sm semaphores save area 

· · (e.g. 7000) I I (when semaphores are · · sigoff flags) · · · · 
uset u_sigact[] 

• · 1 (SIUHUP · · u_sigdfl (default actions) 2 (SIGINT) addresses of · · u_oldmask (signal mask to restore) · 3 " registered signal • . · u_sigarea (registered via siginit(2» handlers · . · 
. "" (usually _handlr) · . . · · · .... 

) 

uset"field X struct sigarea ...... ' ... , ... "- updated with contents ofp_sig at every issigO .... , sigpend 
Slgot!" -1 means registered signals are off 

xp xp from psigO to be reinstated via an SCTL_RET 

B's 
BandT registers are saved and restored by _handlr 

T's 

VM VM and V registers are saved by _handlr 
V's \ 

but restored by kernel during SCTL_RET 

VM1 (C90) '- user stack interrupted routine 

. ""-. h d handlr's frame szgarea 1,S pus e 
~ xp/registers saved onto the stack in 

sigoffmode so - .- and signal number 
additional signals ., 

can be sent catching routine's frame 

4-38 Cray Research, Inc. Proprietary TR-ITR 8.0 K 



) 

UNICOS Internals Technical Reference Kernel Mainline 4-39 

Signal data structures 

p-prsigmask Debugging trace signals. Any (unregistered) signal matching a bit 
in this mask should cause the process to enter a debugging "stop" 
state (set up by a /proc debugger). 

p_siginfo A bit mask of signals sent via calls to qsignalO (quota. c). It is 
retrievable via the getinfo(2) system call. 

pc-prsigmask Debugging trace signals. Any (unregistered) signal matching a bit 
in this mask should cause the multitasking process group to enter 
a debugging "stop" state (set up by a /proc debugger). 

pc_sigsems Hardware semaphores used as sigoffindicators. Ifnonzero, fsigO 
unloads the hardware semaphores. Any semaphore matching a bit 
in this mask means that the process is in sigoff mode. This is a 
complement to the sigoffword (see p_sigoff above), but designed 
for multitasking efficiency. 

uc_sm Semaphore register save area. The fsigO function unloads the 
hardware semaphores to this field (see pc_sigsems above). 

·u":,,sigarea 

TR-ITR 8.0 K 

Default action signals. Any signal matching a bit in this mask is 
to be handled in the default manner. Used by sigactionO to set 
p_sigign, p_sigdmp, p_sigkil, p_sigstop, p_sigcont. Reset 
by setregsO on exec. 

Saved copy of p_hold to preserve it during a sigsuspendO. Re
stored by psigO before entering a signal catcher. 

This word records the (user relative) address of the user's siga
rea. This area begins with the "sigpend" word, and its address 
is "registered" with a s ig ini t(2) call. 

This array of"sigaction" structures (signal. b) contains the ac
tion to take for each registered signal (see p_sigreg). Each struc
ture contains the following: 
sa_handler optional user entry point (usually _handlr (». 

If the sign bit is set, the handler is to be executed in sigon mode. 
sa_mask becomes p_hold during execution of the catcher. 

The previous p_hold is passed to the catcher in register S2. 
sa_flags SA_xxxxx; such as SA_WAKEUP, SA_CLEARPEND. 

These can be set by a user to request special handling by the ker
nel (see sigactionO in TR-USC). 

Cray Research, Inc. Proprietary 4-39 



Kernel Mainline 4-40 UNICOS Internals Technical Reference 

Library routines words 

.. ... 
' .. 

pcomm pc_sigsems 

outstanding signals (bit mask, from 1, right to left) 
address of the user sigoff word 
address of the user sigpend word 

map of semaphores acting as sigoff indicators 

ucomm 

user 

u_sigarea (registered via siginit(2)) 
\ 

user field \ 
: ...... struct sigarea' 

.. ..... :~ slgpend updated with contents ofp_sig at every issigO 
~~ - slgofI -1 means registered signals are off 

xp xp from psigO to be reinstated via an SCTL_RET 

B's 
B and T registers are saved and restored by _handlr 

T's 

VM VM and V registers are saved by _handlr 
V's but restored by kernel during SCTL_RET 

\ 
user stack VM1 (C90) \ 

. .\ ked 

interrupted routine 
_handlr's frame szgarea lS pus 

~ . onto the stack in ~ xp/registers saved 
sigof{ mode so and signal number 
additional signals 
can be sent catching routine's frame 

struct stack_trailer 
.. __ ...... - ....... -.... _--------- .... - siga include / cray / stk.h 

These library routine words are found in the user-addressable sigarea structure: 

sigpend Contents are equal to p_sig's. (See p_sigpend above). 

sigoff Indicates sigon mode (0) or sigoff mode (-1). (See p_sigoff above). 

4-40 Cray Research, Inc. Proprietary TR-ITR 8.0 K 

) 



UNICOS Internals Technical Reference Kernel Mainline 4-41 

This page used for alignme~t 

) 

TR-ITR 8.0 K Cray Research, Inc. Proprietary 4-41 



Kernel Mainline 4-42 UNICOS Internals Technical Reference 

Kernel signal processing overview 

The diagram on the right shows an overview of the kernel's main loop summarizing 
the system call handlers relating to signal processing and showing where signals are 
processed. 
The "box" on the left side of the diagram is a summary of which library routines 
make the system calls. 
The kernel call handlers (below) are coded in cl/os/sys4. c. CAL names for system 
calls are coded in /usr /src/lib/asdef/cl/cornsys. s. See also 
/usr/src/uts/include/signal.h. 

ssigO 

sigprocmaskO 

sigpendingO 

sigsuspendO 

sigactionO 

siginitO 

Handles the $SIGNAL call, with all of its SCTL_xxx varieties ofre
quests. 

Handles the $SIGPROCMASK call. 

Handles the $SIGPENDING call. 

Handles the $SIGSUSPEND call. 

Handles the $SIGACTION call. 

Handles the $SIGINIT call. 

Sources of signals: 

usrfpiO This is an example of a kernel function which posts a signal; in this case 
the floating point error interrupt handler. The process signals itselfby 
calling psignalO. Other interrupt handlers generate signals, too. 

killO This is an example of a kernel routine which posts a signal; in this case a 
system call. The process signals another process by calling psignalO. 

Acting on a signal: 

issigO (Detailed earlier) : Any process attempting to exit the kernel will check its 
p_sig field for the existence of a signal. If any are present, issigO is 
called to test if any are that can be processed. issigO generally returns 
the number of the lowest numbered signal that can be processed (but will 
return a "process tracing" signal, or SIGKILL first, if present). 

psigO If issigO returned a nonzero value psigO will "process" the signal. Fa
tal signals not found to be registered will cause the process to exit. If a 
handler was registered (typically _handlr ( ) ) the exchange package is 
saved in user space, and the user's exchange package is modified to enter 
that handler and inform it of the signal number and any signal hold mask 
that should be restored after executing that handler. 

4-42 Cray Research, Inc. Proprietary TR-ITR 8.0 K 

) 

J 



) 

) 
/' 

) 

UNICOS Internals Technical Reference 

Kernel Signal Processing Overview 

library system calls 
/usr/srcIlib/libc!sys[JclJ 

sigctl 
sigon 
_handlr 

SO=$SIGNAL 
EX 

sighold 
sigblock 
sigrelse 
sigsetmask 
sigset 
sigpause 
sigprocmask 

SO=$SIGPROCMASK 
EX 

sigpending 
SO=$SIGPENDING 

EX 

sigsuspend 
bsdsigpause 

SO=$SIGSUSPEND 
EX 

sigignore 
signal 
sigvec 
sigaction 
sigset 

SO=$SIGACTION 
EX 

siginit 
SO=$SIGINIT 

EX 

TR-ITR 8.0 K 

usrfPi usrnex 

T;ignal T 
po~ta ~ 
signal in /"~"'" 
p_Slg ./ ~ kill 

ssig T 
sw~( action) Lpsignal 

I 
case (SCTL_... siginit post a 

signal in 
case (SCTL_... p_sig 

sigaction 

sigsuspend 

sigpending 

Cray Research, Inc. Proprietary 

Kernel Mainline 4-43 

issig 
-r 

return most 
processable 
signal (if any) 

. ../c1/os/sig.c 

. ../cl/mdlmachdep.c 

signal found 

psig 
not registered 

sendsig 
i 

copy xp to user 
XP.p= _handlr 

.a4=sig 

.s2=p_hold or 
u_oldmask 

ex 

zexit 
--r

dealloc. 
rele 

proC( 
resoUl 

-.J 
(longjmp 
to another 
process) 

4--43 



Kernel Mainline 4-44 UNICOS Internals Technical Reference 

Library signal processing overview 

Summarized on the right are the library pathways to the 6 signal-related system 
calls. Source code for the signal library routines is in 
/usr/src/lib/libc/sys[/cl]. 

The purpose of the diagram is to show which system call is used by each library 
routine to accomplish its purpose. 
For a functional description of each routine refer to its man page and its description 
in the UNICOS System Calls course document (TR-USC). 
Five of these system calls were new at release 6.0 (162-165 were implemented to 
conform to POSIX standards): 

$SIGACTION (162) 

$SIGSUSPEND (163) 

$SIGPROCMASK (164) 

$SIGPENDING (165) 

$SIGINIT (166) 

Compatibity is maintained in the 7.0 kernel handler ssigO for the pre-6.0 signal 
libraries. The addresses of the "sigoff" and "sigpend" words may still be passed ,') 
with the $SIGNAL call even though they are registered by the $SIGINIT call. , 

) 

4--44 Cray Research, Inc. Proprietary TR-ITR 8.0 K 



) 

) 

) 

UNICOS Internals Technical Reference Kernel Mainline 4-45 

Library Signal Processing Overview 
signal(num, func signal.c 

sig,act,oact 
sighold<sig) sighold.c sigpause(sii sigpause.c 

SIGj3LOCK,mask,O SIGJJNBLOCK,mask,O 

sigsetmask.c 
r-----

sigvec(sig,act,oact sigvec.c 
sigblock(mas sigblock.c sigsetmask(mask) I 

sig,act,oact 
SIGJ3LOCK, mask,omask SIG_SETMASK, mask,omask 

sigignore(sig'sigignore.c 
. I sigrelse(sig) sigrelse.c sigset(num,fun sigset.c 

• I 
sIg,act,O 

SIG_UNBLOCK,mask,O 8IG_BLOCK,mas,omask"'- b ds" 1(' fun~J.· l 
sig act oac sIgna SIg, v,psrgna .c 

sigproemask how,set,ose" C1 / sigprocmsk.s '\. / 

sigaction(sig,act,oact) )sigaction.c 
_sigactibn(sig, act,oact) j;igaction. s bsdsigpause(mask) bsigpause.c 

I 
sigsuspend(sigmask) sigsuspend.s 

81 1 ., mask I 
81 = I ......... signal 

~lilSlj:ll.II~I~BIRl~;I~i, 
EX 

sigpending(set) ell sigpending.s 
Sl J ~I set I 
~:::$:~mlitR@':I:f.!lNJm\1:~lti$l:i 
EX 

siginit.s struct 
siginit(version,sigarea) sigarea 

M~tU~]:$SlG~~~ID. nd 
EX 

" sigoff.s 
slgon lib I asdef I sigoff.s 

sigoft = 0 (sigon) 
ifsigpend 
~~fS6j*i$SIGNinMtgS1t 

Si~ .., 8CTL ON! 

Sl =.sigoff's previous value 
return . 

szgoff.s 
sigoff lib I asdef I sigoff.s 

sig~ff = -1 (sigoff) 
Sl = sigoff's previous value 

I 
return 
sigaddset sigsetops.c 
slgdeIset 
slgnIIset 
slgemptyset 
slgIsmember 

modify/test local word 
return 

TR-ITR 8.0 K 

~l"~Im$,tRRQI::~lml:: ~~~~~~r 

sigctl(action, sig, func) sigctl.c 
sigvec[num] = func 
func = _handlr 
action,sig, func 

_sigct)(action, sig, func) _sigctl.s 
81=' .. 

@DC:Jllltl!I:.:f.4.JJlH 
EX 

_handlr ellhandlr.s 

action 
SIgnal 

function 

entered in sigoff nwde 
A2=interupted P, A4 = signal number, S2=signal mask, 
xp follows sigoff wora in sigarea 

I 
save registers in sigarea structure 
create own stack frame 
save sigarea and signal mask (and other) on stack 
if sign bit of sigvec[signal-1] , sigoff = 0 (sigon) 

I 
call handler (sigvec[signal-1]) 

I 
set sigoff(sigoff= -1) 
move sigarea and signal mask (and other) to sigarea are; 
restore old stack top 
restore registers (except SO, Sl, P, VL, VM, V's) 
Sl= 

:&I,"J$.;; .. sn .. :lmmi;::·.Ni;:::.II;;::: ::rn? ----... ~I ~~~ ~~ 

(kernel restores SO, Sl, P, VL, VM, V's) 

Cray Research, Inc. Proprietary 4-45 



Kernel Mainline 4-46 UNICOS Internals Technical Reference 

Kernel exit 

Exit from the kernel is the ''lower right comer" of the kernel main loop diagram. At 
this point the kernel need only restore the user's hardware context and do some 
miscellaneous accounting. 
Pictured on the facing page are the main points in the logic of flow of that "exit 
housekeeping" and the data structures involved. 
BMM: The Bit Matrix Multiply unit, if present in the hardware, works on a 64-word 
operand, loaded from a vector register. The kernel never uses the BMM unit, so we 
do not see the kernel save the BMM on entry to the kernel. But during a context 
switch or fork of a new process the functions bmmsaveO or bmmdmpO save the BMM 
unit in u_savebmm and set the u_bmmsaved flag (see cl/md/bmmsave. s). 

Vector registers: The Vector Length register is part of the exchange package, so it 
need not be considered separately. 
The Vector registers are not preserved across a system call. (The compilers do not 
vectorize across a function call, so it is safe to assume that the user is not depending 
on the contents of the V's after calling a library system call function.) The NEX flag 
from the xp is preserved in u_unex. If the process is retUrning to user mode from a 
system call its V's must be zeroed because a context switch may have occurred during 
the call, resulting in some other process having loaded sensitive information into the 
V's and itselfbeen disconnected. For the current process to have access to another 
process's V's would be a security hole. It is, however, much faster to zero out the V's 
than to save and restore them from memory. 
If this was not a system call, the kernel may have saved 1, 2 or 8 V registers. ReCall)~' 
that at entry, if not a system call, the kernel saves VM in u_savevm (and, if a C90) ~~ 
the last 64 bits (VM1) in u_savevml), VO in u_savev and sets u_vsaved to 1. Any 
assembler function which needs to use 2 V's will save V1 and change u_ vsaved to 2 
(no C function uses any vector - the kernel is compiled in non-vectorizing mode.) If a 
process is disconnected the balance of the V's are saved during the context switch 
and u_savev is set to 8. The effects of those saves are reversed here. 
Trace 'USR': The UNICOS memory-resident trace will show the tag 'USR' ~s the 
CPU exits to user mode. See the /etc/crash "utrace" directive. . 
Save ofu, uc, up: These pointers to the current user, ucomm and proc structures 
(respectively) are actually B registers (see sys tm. h). They are stored in A registers 
to preserve them for the process's next entry to the kernel. 
VM: The Virtual Machine feature allows UNICOS to run copies ofUNICOS as 
processes. Hardware XP flags are saved in pw_ vmsav for the virtual machine 
process. 
Restore B's and T's: The kernel entry sequence unconditionally saved the user's 
B's and T's in u_saveb and u_savet. 

4-46 

Note: "1-63" here is decimal, for example, all of them are restored. (BOO is 
restored below) .• 

Cray Research, mc. Proprietary TR-ITR 8.0 K 

J 



) 

UNICOS Internals Technical Reference 

Kernel Exit if BMM and u_bmmsaved 
I 

restore BMM unit from u_savebm 

NEX 

restore va I 
restore Vl or Vl-7 va; a 
rest~re VM!VMl Vl or Vl-7 = a 

I I 
Al = &pw_xp-qs 

• trace 'U8R' 
A2=up 
A3=uc 
A5=u 
if VM" restore XP 
flags 
restore Bl-63 
restore T0-63 

84= 
p_stime += (RTC - pw_rtsav) 
pw _unixt += (RTC - pw _rtsav) 
pw _rtsav = RTC 
85 = p_ctime. • (user) pw_utms->utms_update = RTC 

(user) pw_utms->utms_utime = p_ctime 
(from utimesO call) 
• p-pri = p_upri 

pw_cpri = p_upri 
• 

update uc and pw _mtms->mtms area 
(from mtimesO call) 

XA = Al (&pw _xpus) 
BOO = u_saveb[O] 

I 
EX 

exchange to user mode 

m 

TR-ITR 8.0 K Cray Research, Inc. Proprietary 

Kernel Mainline 4-47 

CPUn V's 
xp B's I RTCI )ija T's 

memory 

pwsLnJ pw_rtsav 

'f pw_unixt 
pw_mtms 

pw_xpus I pW_f1tms, 
pw ... usel1l 

# 
, 

I I , 
I 

, , 
I 

I 

p_stime - syS: tim~ 
p ctime - user tiIn2 
p~ri - cpu pporitt. 
p_upri - cpu~pri0I1ty 

(sav:ed) : 
, I 
I I 
I , 

pc_addr 
I I 
I I , ,. 

I I I 
I 

ucomm I I 

uc_mtmsaddr 
I 
I , 

user I I I I I 

U vsaved 
I I , 

(V save cqunt 
u_savevU: : • , 

I I I 
I , I 
I I , 

I I 
, 

, I I 
I , I 

I I I 
I I 

, , , I 
I I I 

I 

lu savev1nlu savev:rhll 
I u_save,b " I 

, ! , , 

r u_sav~t; I , , 

I u saleemm ! I , , , 
I I , 
: ~_utms~ddf 
ft'l I I user l~ d ': " I, 

r-y---- ... -i'---- .. ,m ms .. u ms I 

I .. I ._-----_ .. ------_. 

4-47 



Kernel Mainline 4-48 UNICOS Internals Technical Reference 

Kernel exit (continued) 

CALLHOT: The ssreadlsswri te call "hot path" did not use and V, B, or T registers 
- it is all coded in assembler, and there is no possible context switch. 80 the exit 
from that logic can skip all restoration of the above. 
system time: The real time from entry to the kernel (pw_rtsav) to this point is 
accumulated in the proc table (p_stime) and pws (pw_unixt) as system time. The 
real time at exit from the kernel is preserved in 82 for computation of user time at 
re-entry. 
pw_mtms I pw_utms: These fields are relevant only if the connected process has made 
the utimes(2) or mtimes(2) sytem call, registering user-addressable areas where the 
kernel is to post timing statistics. (If the system call has not been made, the pointers 
point to "throw-away" areas.) 
CPU scheduling priority: Field pJ)ri is the field used to order the rung. It is 
normally the process's scheduling priority calculated at some considerable expense 
by the fair share scheduler to a value between 60 and 999. But while a process 
sleeps it is assigned a "system" priority that affects how it will be awakened. Field 
p_upri simply preserves the user mode priority during a sleep, and that value is 
restored here. 
The priority of each connected process is recorded in its CPU's pws entry (pw_cpri) 
to facilitate selecting a CPU to interrupt and send through a check of the rung when 
the rung is reordered or processes are added to it. 

) 

CALLHOTTER: The autotasking libraries make system call number 212 (the -
"auto-tasking mini exchange") to have the kernel restore a few registers for them (see __ -) 
the "kernel entry" section). This work is handled as a special case and is such a short 
path through the kernel that it is not even accounted as system time, hence this exit 
after all accounting procedures. 
reloading the XA: Memory reads are complete at this point, so there should be no 
possibility of a memory error interrupt to the kernel. The eXchange Address register 
is pointed at the user exchange package (pw_xpus). 

reloading BOO: A hardware ''return jump" instruction would alter the BOO register. 
But no more function calls will be done now. The user's BOO value is restored 
(u_saveb [0] has been prefetched into an A register). 
exchange: The normal exit instruction ("ex") exchanges the contents of the CPU 
exchange package and pw_xpus. The kernel's A and 8 registers are thus preserved 
during the user interval in the "user exchange package". 
Now that the CPU is in user mode, the CPU begins to increment the hardware 
performance counters again. These counters are only incremented in user mode. 
They are only read and reset in monitor mode. 
In a C90, the exchange to user mode sets the Enable Interrupt Modes (ElM) flag, 
enabling all interrupts to this CPU which are flagged as enabled in the Mode register 
of this user XP. 

4-48 Cray Research, Inc. Proprietary TR-ITR 8.0 K 



UNICOS Internals Technical Reference Kernel Mainline 4-49 

) 

This page used for alignment 

) 

) 

TR-ITR 8.0 K Cray Research, Inc. Proprietary 4-49 



Kernel Mainline 4-50 

Mainline inner loop - Interrupt handlers 
usrnex - User normal exit (System call) 

UNICOS Internals Thcm:!eferenc< 

The NEX flag in the exchange package indicates a system call. The user calling sequence is: 

SO = system call number \, t\~l,\; ~'~ ~<\ ~~L 
S1 = address of an argument list [optional] ,,0 . (\ ~\ l 
EX ~\~~ ~ 

Typical return processing from a call: 

if SO 1= 0 (there is an error: u_error) Store SO in ermo 

(S1 and S2 are possible return values) 

For user system call examples, see /usr/src/lib/libc/sys/cl. For the names of kernel 
system call processors see /usr / src/uts/ cl/ os/ sysent. c (processor code is in 
/usr/src/uts/os and /usr/src/uts/cl/os). 
P _ VM: If the calling process is a Virtual Machine process, copy the XP to that process; do not 
execute the call here. 

) 

Validation of user's call: The sysent table contains the number of arguments expected in 
a given call. usrnexO does not know what the arguments represent, but does validate that 
the user's S1 register does point to a valid argument list, for example, the whole list lies 
within the process' addressable field. The argument list itself is copied to the proc table 
p_arg array for use by the call processor. The user's first argument is assumed to be a 
pointer to a path name, and is saved in u_dirp (u_dirp is user-relative; the user's dba must ) 
be added to it before use). The field u_ap is loaded with the address of p_arg [] at the time 
of process creation. , 
Interruptible system calls: The u_save[QSAV] stack context is prepared to return to 
stjmpl for an interrupted system call. See the "sleep" section in "Process Management" for 
detail on interruptible system call processing. 
Mutitask single threading: In the multithreaded kernel all system calls are considered 
multi-threaded by default. Protection is provided by SEMLOCKs and MEMLOCKs as 
described in "System Initialization". However, only system calls flagged as MT in the sysent 
table are multithreaded among multi tasked group members. Function mtasklock single 
threads on pc_mtask, setting p_mtask_locked in the lock "owning" process. The lock is 
cleared at usrnexO l. 
System call time: Current time before the start of each system call is stored in p_bsctime. 
If a context switch away from this process is done (by resumeO) during the call, the elapsed 
time is added to p_sctime (system call time) and p_bsctime is zeroed. On reconnection, 
resumeO saves the current time in pw_rtsav, which is used to update p_sctime instead of 
p_bsctime because p_bsctime is O. Therefore system call time does not count sleep time. 
Return values: Calls set RVALl and RVAL2 to reflect return values, including possible detail 
about error conditions. These are placed in the S1 and S2 areas in the user XP pw_xpus. The 
return error u_error is placed in user SO. 
System call statistics: SCTRACE is a preprocessor option causing usrnex to update sysent[] 
fields sy_ncalls, sy_tottime, sy_maxpath, and sy_minpath. SCTRACE is defined as 1 in 
the released Nmakefile. Use "sar -c" to display system calls per second over a period of 
time. (The sar command reads the sysent table using /dev/kmem.) Other system all 
statistics are displayed with "sar -t" and "sar -H". 
Cost of a system call: The number of system calls a user makes can be factored into his 
processes execution priority by the fair share scheduler. "kl_cost" is a field in the user's ) 
"lnode" and "shconsts. sc_call" is a dynamically tunable cost per system call (released as -
zero). 

4-50 Cray Research, Inc. Proprietary TR-ITR 8.0 K 



UNICOS Internals Technical Reference Kernel Mainline 4-51 

usrnex - User Normal Exit (System Call) 
master- test for interrupts ---...,..-~-~~----- At interrupt flag . } IA '+D 

ell mdl master.s .-_____ OW 5 5 -r V fI II 

usrnex trapusr[flag] /\J r I 

TR-ITR 8.0 K 

S3 = user so S4 = user 81 
trace "NEX up/user80 userSl" 

LI--_~p~p;.!,;fl:;:::a:oClg..::&=P~VM.:;::;.. __ . _____ --:~~ vmtrap ellos Ivm.c 
user §o, RVAL1, RVAL2, and u_error = 0 copy the XP to the VM process 
validate function number (in sysent table bounds) ~ to usrnex02 
get sysent[function] 

noar ments 
validate user arg list I). 
copy arg list to p_argD 0 "TIJ.J:./A.. Qre.tJv 
u_dirp = arg[O] /J'I-e. IV!. f{JC- I~ 
(u_ap == &p_argD already) _ qfTJ:5 aongjmp on sleep 

.. interrupted by a signal 
. call iS~mte7'7'uptable (36 of them. are) returnes here) 

• 1 ~u£5 ..... It. 
~~~~S~~i~:;~~~-;~~; ....................... . 
in u_save[U_Q8AV]
(BOO, B01, 2, BOGG, BOG7, TOO)

po

st mp2:
member of multitasked group AND
call is not multi·threaded (22 of them are)

L mtasklock cll md I machdep.c
sPI? WaIt for pc_mtask\

if P.r-P: 'R~O ZE call qswtch ~

p_intproc 1= 0

*p_intproc(p_intar!
int~rrupted syster
call processing

~-.r----'

1---_
p_bsctime = RTC

c p_syscall = call #
BOO = usrnexO 1

member of multitasked group AND ~
call is not multi·threaded) U"

L mtaskunlockcllmdlmachdep.cy \JY\ 0
clear pc_mtask ~

'-1--

user Sl = RVALl
user 82 = RVAL2
user SO = u error

I -
if over 20 errors this process (u_errcnt) set pw _users
usrnex02
calculate statistics (if SCTRACE)
update l>_sctime (useing p_bsctime; sleep time is not counted)
l>_syscall = 0
shconsts.sc3syscall ++
proc's kCcost += shconsts.sc_syscall (cost of a system call)

p-Pfiag & P_VM .
preserve XP flags

Cray Research, Inc. Proprietary 4-51

Kernel Mainline 4-52 UNICOS Internals Technical Reference

System entry table

Number: Description Name Args INTIMT FunctionO

O:indiri inop illegal 0 0 nosys

l:exit _exit 1 0 rexit

2:fork fork 0 INT fork

3:read read 3 INT read

4:write write 3 INT write

5:open open 5 0 open

6:close close 1 0 close

7:wait wait . , 0 INT wait

8:creat 2 0 .. ~~ ..
creat creat

9:link link 2 0 link

10:unlink unlink 1 0 unlink

11:exec exec 2 0 exec

12:chdir chdir 1 '0 chdir

13:time time 0 MT gtime

14:mknod mknod 11 0 mknod
)

15:chmod chmod 2 0 chmod

16:chown chown 3 0 chown

17:break ~ sbreak 2 0 sbreak
)

18:0LD stat pre 5.1 oldstat 2 0 oldstat

19:1seek lseek 3 0 seek
...

20:getpid getli>'id 0 MT getpid

21:mount mount 8 0 smount

22:umount -. umount 1 0 sumount

23:setuid setuid 1 0 setuid

24:getuid getuid 0 MT getuid

25:stime stime 1 0 stime

26:ptrace ptrace 4 0 ptrace

27:alarm alarm 1 MT alarm

28:0LD fstat pre 5.1 oldfstat 2 0 oldfstat

29 :pause pause 0 INT pause

30 :utime utime 2 0 utime

31:for DFS afs _syscall 6 0 afs _syscall
J

4-52 Cray Research, Inc. Proprietary TR-ITR 8.0 K

UNICOS Internals Technical Reference Kernel Mainline 4-53

Number: Description Name Args INTIMT FunctionO

32:was gtty x (gtty) 0 0 nosys

33:access access 2 0 saccess

34:nice nice 1 MT nice

35:getinfo getinfo 4 0 getinfo

36:sync sync 0 0 syssync

37:kill kill 2. 0 kill

38 :was switch x (switch) 0 0 nosys

39:setpgrp setpgrp 1 0 setpgrp

40:machine targeting target 2 0 target

41:dup dup 1 0 dup

42:pipe pipe 0 0 pipe

43:times times 1 MT times

44:prof profil 5 0 profil

45:proc lock plock 1 0 lock

46:setgid setgid 1 0 setgid

47:getgid getgid 0 MT getgid

48:sig sigctl 4 0 ssig

49:IPC msgsi inop x (ipc msg) 6 0 nosys

50:turn sacct off/on jobacct L 0 sessacct

51:turn acct off/on acct 1 0 sysacct

52:IPC ShMemi inop x (shmem) 4 0 nosys

53:IPC Semi inop x (sem) 5 0 nosys

54:ioctl ioctl 3 INT ioctl

55:oldlistio x (listio) 0 0 nosys

56:user panic upanic 1 0 upanic

57 :uname uname 1 MT uname

58:reserved for USG x (usg) 0 0 nosys

59:exece exece 3 0 exece

6O:umask umask 1 0 umask

61:chroot chroot 1 0 chroot

62:fcntl fcntl 3 0 fcntl

63:ulimit ulimit 2 MT ulimit

64:ustat ustat 2 0 ustat

65:lchown lchown 3 0 lchown

TR-ITR 8.0 K Cray Research, Inc. Proprietary 4-53

Kernel Mainline 4-54 UNICOS Internals Technical Reference

Number: Description Name Args INTIMT FunctionO

66:was logins x (logins) 0 0 nosys

67:was boot x (boot) 0 0 nosys

68:set the time of day settimeofday 2 0 settimeofday

69:get the time of day gettimeofday 2 MT gettimeofday

70:tfork tfork 0 0 tfork

71:reseh reseh 2 INTIMT reseh

72:Change Memory ehmem 2 0 ehmem

73:listio listio 3 INT listio

74: thread thread 1 0 thread

75:getpermits getpermit 2 0 getpermit

76:setpermit setpermit 3 0 setpermit

77:setfflg setfflg 2 0 setfflg

78:setdevs setdevs 2 '0 setdevs

79:was setuint x (79) 0 0 nosys

80:was getulvl x (80) 0 0 nosys

81:was setulv150 x (81) 2 0 nosys

82:getgroups getgroups 2 0 getgroups
)

83:setgroups setgroups 2 MT setgroups

84:was setsysl x (84) 0 0 nosys

85:setflvl setflvl 2 0 setflvl

86:setfemp setfemp 2 0 setfemp

87:setfael setfael 3 0 setfael

88:was setuemp50 x (88) 2 0 nosys

89:was setusrv50 x (89) 5 0 nosys

90:getusrv getusrv 1 MT getusrv

91:slgentry slgentry 2 0 slgentry

92:seestat sees tat 2 0 sees tat

93:was getsysl x (93) 0 0 nosys

94:was getfemp x (94) 0 0 nosys

95:getfael getfael 3 0 getfael

96:rmfael rmfael 1 0 rmfael

97:fseestat fseestat 2 0 fseestat

98:settfm settfm 1 0 settfm

99:getsysv getsysv 2 0 getsysv

4-54 Cray Research, Inc. Proprietary TR-ITR 8.0 K

UNICOS Internals Technical Reference Kernel Mainline 4-55

Number: Description Name Args INTIMT FunctionO

100:tabinfo tabinfo 2 0 tabinfo

101:tabread tabread 4 0 tabread

102:suspend suspend 2 INT suspend

103:resume resume 2 INT ususpend

104:reada reada 5 INT reada

105:writea writea 5 INT writea

106:trunc trunc 1 0 trunc

107:nicem nicem 3 0 nicem

108:accounting ID acctid 2 0 acctid

109:change SDS ssbreak 1 INT ssbreak

110:read from SDS ssread 3 0 ssread

111:write to SDS sswrite 3 0 sswrite

112:used to be usngl x (112) 0 0 nosys

113:used to be uendsngl x (113) 0 0 nosys

114:was idlep x (idlep) 0 0 nosys

) 115:cpu/memory limits limit 4 MT limit

116:file pre-allocation ialloc 5 0 iallocu

117:setsid setsid 0 0 setsid

118:setpgid setpgid 2 0 setpgid

119:cpu select cpselect 2" 0 cpselect

120:select select 5 INT select

121:category kill killm 3 0 killm

122:recall async i/o recalla 1 INT recalla

123:getjtab getjtab 1 MT getjtab

124:setjob set job 2 0 set job

125:mtimes mtimes 1 MT mtimes

126:checkpoint chkpnt 4 0 chkpnt

127:recovery restart 2 0 restart

128:utimes utimes 1 MT utimes

129:quotactl quotactl 3 0 quotactl

130:set schedular vars schedv 2 0 schedv

131:get system conf info sysconf 1 0 sysconf

) 132:get path config info pathconf 2 0 pathconf

133:get fd path info fpathconf 2 0 fpathconf

TR-ITR 8.0 K Cray Research, Inc. Proprietary 4-55

Kernel Mainline 4-56 UNICOS Internals Technical Reference

Number: Description Name Args INTIMT FunctionO

134:0LD limits pre 7.0 limits - 60 2 INT limits_60

135:waitjob wait job 1 0 wait job

136:rmdir rmdir 1 0 rmdir

137:mkdir mkdir 2 0 mkdir

138:getdents getdents 3 0 getdents

139:statfs statfs 4 0 statfs

140:fstatfs fstatfs 4 0 fstatfs

141:sysfs sysfs 3 0 sysfs

142:device accounting devacct 3 0 devacct

143:dmmode dmmode 1 MT dmmode

144:used to be olddmofrq x (144) 0 0 nosys

145:disk file account id chacid 3 0 chacid

146:setusrv setusrv 1 0 setusrv

147:stat 5.1 stat 2 0 stat

148:fstat 5.1 fstat 2 0 fstat

149:offline file req dmofrq 5 0 dmofrq

150:setsysv setsysv 2 0 setsysv
)

151:setfcls setfcls 2 0 setfcls

152:setfcat setfcat 2 0 setfcat

153:setucls setucls 1 0 setucls

154:setucat setucat 1 0 setucat

155:waitpid waitpid 3 INT waitpid

156:setucmp setucmp 1 0 setucmp

157:setulvl setulvl 1 0 setulvl

158:recalls recalls 2 0 recalls

159:rename rename 2 0 rename

160:enable/disable acct dacct 2 0 dacct

161:write acct record wracct 4 9 wracct

162:sigaction sigaction 3 0 sigaction

163:sigsuspend sigsuspend 1 INT sigsuspend

164:sigprocmask sigprocmask 3 0 sigprocmask

165:sigpending sigpending 1 0 sigpending

166:siginit siginit 2 0 siginit)
167:accept accept 3 INT accept

-~/

4-56 Cray Research, Inc. Proprietary TR-ITR 8.0 K

UNICOS Internals Technical Reference Kernel Mainline 4-57

Number: Description Name Args INTIMT FunctionO
168:bind bind 3 INT bind

169:connect connect 3 INT connect

170:gethostid gethostid 0 0 gethostid

171:gethostname gethostname 2 0 gethostname

172:getpeername getpeername 3 INT getpeername

173:getsockname getsockname 3 INT getsockname

174:getsockopt getsockopt 5 INT getsockopt

175:listen listen 2 INT listen

176:recv recv 4 INT recv

177:recvfrom recvfrom 6 INT recvfrom

178 : was o2recvmsg x (o2recvmsg) 0 0 nosys

179:send send 4 INT send

180:was osendmsg x (osendmsg) 0 0 nosys

181:sendto sendto 6 INT sendto

182:sethostid sethostid 1 0 sethostid

) 183:sethostname sethostname 2 0 sethostname

184:setregid setregid 2 0 setregid

185:setreuid setreuid 2 0 setreuid

186:setsockopt setsockopt 5 INT setsockopt

187:shutdown shutdown 2 INT shutdown

188:socket socket 3 INT socket

189:socketpair socketpair 4 INT socketpair
".

190:symlink symlink 2 0 symlink

191:readlink readlink 3 0 readlink

192:lstat lstat 2 0 lstat

193:sesscntl sesscntl 3 0 sesscntl

194 : reserved for eRI reserved194 0 0 nosys

195 : Res. for site use x (195) 0 0 nosys

196: Res. for site use x (196) 0 0 nosys

197 : Res. for site use x (197) 0 0 nosys

198: Res. for site use x (198) 0 0 nosys

199: Res. for site use x (199) 0 0 nosys

) 200:get device number getdevn 2 0 getdevn

201:recvmsg recvmsg 3 INT recvmsg

TR-ITR 8.0 K Cray Research, Inc. Proprietary 4-57

Kernel Mainline 4-58 UNICOS Internals Technical Reference

Number: Description Name Args INTIMT FunctionO
)

202:sendmsg sendmsg 3 INT sendmsg

203:lsecstat lsecstat 2 0 lsecstat

204:fsync fsync 1 0 fsync

205:fchmod fchmod 2 0 fchmod

206:fchown fchown 3 0 fchown

207:vfork vfork 0 0 vfork

208:exctl exctl 1 MT exctl

209:getlim getlim 2 MT getlim

2l0:setlim setlim 2 MT setlim

211 : share sched control limits 2 INT limits

212 : MXCHG - CAL syscall MXCHG 1 0 nosys

213:getsectab getsectab 2 0 getsectab

214 : adjust the time adjtime 2 0 adjtime

215: join files join 2 0 join

216: fjoin files fjoin 2 0 fjoin

217 : set port bitmap setportbm 1 0 ssetportbm

218 : get port bitmap getportbm 1 0 sgetportbm

219:tfork/thread/siginit tfork2 2 0 tfork2

220 : set file PAL setpal 3 0 setpal

221 : get file PAL getpal 3 0 getpal

222 : get proc privileges getppriv 2 0 getppriv

223 : compare priv text cmptext 2 0 cmptext

224 : set proc privileges setppriv 2 0 setppriv

225: set file PAL fsetpal 3 0 fsetpal

226: get file PAL fgetpal 3 0 fgetpal

227 : get mount info getmount 2 0 sgetmount

228 : pty reconnect ptyrecon 2 0 ptyrecon

229:getpid newgetpid 0 0 newgetpid

230:exit newexit 1 0 newexit

231:kill newkill 2 0 kill

232: category kill newkillm 3 0 killm

233: site user exit uesyscall 3 0 uesyscall

)

4-58 Cray Research, Inc. Proprietary TR-ITR 8.0 K

UNICOS Internals Technical Reference Kernel Mainline 4-59

This page used for alignment

)

TR-ITR 8.0 K Cray Research, Inc. Proprietary 4-59

Kernel Mainline 4-60 UNICOS Internals Technical Reference

usrioi - 110 interrupt

Hardware principles of I/O interrupts:
101: CRAY Y-MPIX-MP: An I/O interrupt can occur at any time. If channel completion
actually caused an exchange in a non-monitor mode CPU, the 101 bit is set in the
exchange package. But if a channel completes a transfer while a CPU is already in
monitor mode, the channel will direct the interrupt to this CPU (refer to the 101 bit's
description in the Hardware chapter). The I/O interrupt remains pending for this CPU
until it either returns to user mode or clears the pending interrupt via a machine
instruction. The effect is that a single CPU in the kernel can handle all pending I/O
interrupts.
101: CRAY Y-MP COO: An I/O interrupt can occur only when the SIE hardware "gate" or
"flag" is set, which is when all CPUs are in user mode, or when a CPU in monitor mode
executes the ESI instruction. In UNICOS this is done after handling all pending I/O
interrupts, shortly before going back to ioreenter. The kernel executes with I/O
interrupts disabled but will notice pending VO interrupts by reading the QI register.
Interrupts are not directed toward a CPU in monitor mode, as they were in machines
prior to the C90. CPUs in the UNICOS kernel do not have I/O interrupts enabled, so are
not preferred for the interrupt. The lowest numbered CPU in user mode will get the
interrupt. Such a CPU has both I/O interrupts enabled and the ElM flag set (it is set by
the exchange to user mode). But the user mode CPU will not get the interrupt until any
CPU in monitor mode executes the ESI instruction to set the SIE gate.
The effect is very similar to previous machines: a single CPU in the kernel can handle all
pending I/O interrupts. The difference in a C90 is that a second channel completion (after
the read of the CI yielded a zero, which resulted in the kernel doing an ESI) would cause
an interrupt to a user mode CPU. On a previous machine the interrupt would have been
directed to the monitor mode CPU, and remain pending until it exchanged to user mode.

UNICOS principles of handling If 0 interrupts
General:
Only one CPU is needed to handle all pending I/O interrupts. The interrupt handler is
single-threaded in the sense that only one CPU can execute it. Other CPUs noticing a
pending I/O interrupt (by reading the CI) should ignore it. Generally, STJOFLAG (ST6)
should keep all but 1 CPU out ofusrioi processing.
The summary below describes general processing of each channel type. Additional detail
on the drivers can be found in "I/O Management".
VHISP Channels:
VHISP channels are typically connected to SSD devices. These channels both read and
write data under the control of the mainframe CPU. The UNICOS kernel SSD driver
divides each I/O buffer into segments of equal sizes directing each configured and "up"
VHISP channel to perform the read or write for each same buffer segment. The I/O is not
considered complete until each channel completes and posts an interrupt. usrioi
accumulates interrupts on all active channels until the last one completes before it
considers the buffer transfer complete.
Channel lockout: The CPU may receive the interrupt from the channel before the actual
I/O is completed. The CPU will spin waiting for completion of a transfer on the VHISP(s).
While it waits, it sets the VHISP channel(s) into the ST.CHANL (STl) bit map so that
other CPU's will ignore VHISP interrupts.
When the last of the set ofVHISP channels posts its interrupt usrioi calls ssddintrO J
(lOS E) or ssdiointO (Model B/CID). These routines typically call wakeupO for the user .. ~
waiting on the transfer and post any async I/O status and signals.

4-60 Cray Research, Inc. Proprietary TR-ITR 8.0 K

UNICOS Internals Technical Reference Kernel Mainline 4-61

usrioi - I/O Interrupt

master
fST.IOFLAG &&(Cl>O (&& not
in ST.CHANL) II ST.CHANF

--set lOI flag

usrloiOO
get shared registers (ST.CHANF,ST.CHANL,ST.CHANR)

usrioiOl
.... Clf=O :;I

Ichannel in ST.C~
mark channel in ~~u~sn~·£.oi~O~3:""''''''''--------------------11
ST.CHANR test ST.CHANR (S7) I ST.CHANF (S2) none DendinG! ,.. I CE~tSSD I .. ----------+-.

wait until done channel # = Z(ST.CHANR I ST.CHANF)

1 th I pseudo channel
c~ e . ~

interrupts ave
CAICE

c1 I cfl chant.c

VHIS -
ssddintr

clear bit ST.CHANR clear bit ST.CHANF

I
ST.CHANL++trace
"IOI"chan_ioct[channel1++

I SSD ~,
cl~ chan_acct clear from ssd_actmask others active

I
clear IOLOCK

h' . LOSP (custom)or
m ~pp!.. smp]eal TCP pseudo

epackin wrtepack mhintr---. low.mt- soft timeou

ssdioin(Model D)
L

pacIrln(Model D) w:.:pac~ (Model D) J -j I ~ ~ - -
set IOLOCK (TSF$IO)

usrioi04
I

ST.CHANL-
ST.CHANR I ST.CHANF

I-~_-I~.----trace "lOM"------------'
Clf=O

1-----1~·----trace"lOR"------------J

usrioi05

ST.IOFLA.G = 0

ES~ (C90)

usrioi06 ~~~~~~~~~~~~~~~~~~~~~~~~1
I

clear IOLOCK

TR-ITR 8.0 K Cray Research, Inc. Proprietary 4-61

Kernel Mainline 4-62 UNICOS Internals Technical Reference

4-62

LOWSP Channels:
The typical use of lowspeed channels is packet I/O.
Interrupts on even numbered LOWSP channels represent packets sent by the
lOS, usually indicating the completion of a UNICOS I/O request.
Interrupts on odd numbered channels reflect that a packet has just been sent to
the lOS. The kernel checks if any other packets are queued to that channel and
calls wrtepackO (lOS E) or wrtpackO (IOS models B, C and D) to initiate the
writing of the next queued packet.
Memory Hippi: (Y-MP EL):
Y-MP EI channels 024 026 040 042 044 046 060 062 064 066 0100 0102 0104 0106
support the memory device I/O. These channels are processed as real.
smp_real:

The smp_real is a LOWSP channel connected to the semaphore device
supporting shared file systems (shared among multiple Cray Research systems).
This is a special purpose channel used only for this function.
Pseudo Channels:
TCP/IP uses ST.CHANF (STO) to indicate the completion of a transfer, either to
delay processing until all real channels are handled (as TCPIIP).
Logic overview: simplified logic ofusrioi, detail on following pages.
if another CPU already processing I/O interrupts leave to mainline.
while unprocessed I/O interrupts:

poll CI merging all interrupts into a bit map word (real channel interrupts)
merge real and pseudo interrupts
for each bit in the bit map

select lowest numbered channel (in bit map) for processing
call corresponding handler to process the interrupt
clear the interrupt (channel and bit)

Cray Research, Inc. Proprietary TR-ITR 8.0 K

-)

