
Cray Research, Inc.

UNICOS X Window System
Reference Manual

SR–2101 8.0

__

Copyright 1990, 1993 Cray Research, Inc. All Rights Reserved. Portions of the TCP/IP
documentation Copyright 1986 The Wollongong Group, Inc. All Rights Reserved. Portions of
the TCP/IP documentation are based on functionality developed by the University of California,
Berkeley, and others. This manual or parts thereof may not be reproduced in any form unless
permitted by contract or by written permission of Cray Research, Inc.
__

Portions of this product may still be in development. The existence of those portions still in
development is not a commitment of actual release or support by Cray Research, Inc. Cray
Research, Inc. assumes no liability for any damages resulting from attempts to use any
functionality or documentation not officially released and supported. If it is released, the final
form and the time of official release and start of support is at the discretion of Cray Research,
Inc.
__

Autotasking, CF77, CRAY, Cray Ada, CRAY Y-MP, CRAY-1, HSX, MPGS, SSD, SUPERSERVER,
UniChem, UNICOS, and X-MP EA are federally registered trademarks and CCI, CFT, CFT2,
CFT77, COS, CRAY APP, CRAY C90, Cray C++ Compiling System, CRAY EL, Cray NQS,
CRAY S-MP, CRAY T3D, CRAY X-MP, CRAY XMS, CRAY-2, Cray/REELlibrarian, CRInform,
CRI/TurboKiva, CSIM, CVT, Delivering the power . . ., Docview, EMDS, IOS, MPP Apprentice,
Network Queuing Environment, Network Queuing Tools, OLNET, RQS, SEGLDR, SMARTE,
SUPERCLUSTER, SUPERLINK, Trusted UNICOS, and UNICOS MAX are trademarks of Cray
Research, Inc.
__

Apollo is a trademark of Apollo Computer, Inc., a subsidiary of Hewlett-Packard Company.
Apple and Macintosh are trademarks of Apple Computer, Inc. DEC, DECnet, RT, and VT100 are
trademarks of Digital Equipment Corporation. HP is a product of Hewlett-Packard Company.
IBM is a trademark of International Business Machines Corporation. Motif and OSF/Motif are
trademarks of Open Software Foundation. Sony is a trademark of Sony Corporation. Sun,
Sun-3, and Sun Workstation are trademarks of Sun Microsystems, Inc. Tektronix is a
trademark of Tektronix Corporation. UNIX is a trademark of UNIX System Laboratories, Inc.
X Window System is a trademark of Massachusetts Institute of Technology.
__

The UNICOS operating system is derived from the UNIX System Laboratories, Inc. UNIX
System V operating system. UNICOS is also based in part on the Fourth Berkeley Software
Distribution (BSD) under license from The Regents of the University of California.
__

Requests for copies of Cray Research, Inc. publications should be sent to the following address:

Cray Research, Inc. Order desk (612) 683–5907
Distribution Center Fax number (612) 452–0141
2360 Pilot Knob Road
Mendota Heights, MN 55120
USA
__

New Features

UNICOS X Window System Reference Manual SR–2101 8.0

The supported X Window system for UNICOS 8.0 is X11 Release 5; all references to X11R4 are
removed. X11R5 features that Cray Research does not support include the following:

• X Window System server
• xinit and xmh clients
• Demo directories
• Example directories
• Shared memory extensions (xshm)
• Font server
• MIT PEX sample implementation
• XDM on UNICOS systems running MLS

Record of Revision

iCray Research, Inc.SR–2101 8.0

The date of printing or software version number is indicated in the footer. Changes in rewrites
are noted by revision bars along the margin of the page.

Version Description

6.0 November 1990. Original printing. This manual contains X Window
System information for CRAY Y-MP, CRAY X-MP EA, CRAY X-MP, and
CRAY-2 systems running the 6.0 release of the UNICOS operating
system.

7.0 September 1992. Reprint with revision to support the UNICOS 7.0
release.

7.0 This restock incorporates the corrected pages from the UNICOS 7.0
Publications Errata, publication ER–2124 7.0, which reflect the grave
accent printing problem.

8.0 November 1993. Rewrite to support the UNICOS 8.0 release.

Preface

iiiCray Research, Inc.SR–2101 8.0

This publication documents the X Window System running on all
Cray Research, Inc. systems with UNICOS release 8.0.

The UNICOS X Window System Reference Manual provides
programming information on X Window System features that
are specific to Cray Research, Inc. (CRI) applications. Readers
should have a working knowledge of the X Window System, and
either the UNICOS or UNIX operating system.

The following CRI manuals provide information about the
UNICOS operating system:

• CVT 2.0 Release Notice and System Installation Bulletin,
publication R0–5070 2.0

• UNICOS Visual Interfaces User’s Guide, publication SG–3094

• UNICOS User Commands Reference Manual, publication
SR–2011

• UNICOS Administrator Commands Reference Manual,
publication SR–2022

• X Window System Resources Ready Reference, publication
SQ–2123

The following manuals provide information about the X Window
System (the list includes ordering information):

• X Window System – C Library and Protocol Reference, by
Robert W. Scheifler, James Gettys, and Ron Newman. Digital
Press, Digital Equipment Corporation, 12 Crosby Drive,
Bedford, MA 01730, order no. EY–6737E–DP.

Related
publications

Preface UNICOS X Window System Reference Manual

iv Cray Research, Inc. SR–2101 8.0

• X Window System – C Library and Protocol Reference, by
Robert W. Scheifler, James Gettys, and Ron Newman and
documentation for X11R3 (together as one package). MIT
Software Center, Technology Licensing Office, Room E32–300,
77 Massachusetts Avenue, Cambridge, MA 02139,
1–617–258–8330.

• Xlib Programming Manual for Version 11 and Xlib Reference
Manual for Version 11 (two-volume set), by Adrian Nye.
O’Reilly and Associates, Inc., 1988, 981 Chestnut Street,
Newton, MA 02164, 1–800–338–NUTS, email address,
uunet!ora!nuts .

• X Window System in a Nutshell, edited by Daniel Gilly and
Tim O’Reilly. O’Reilly and Associates, Inc., 981 Chestnut
Street, Newton, MA 02164, 1–800–338–NUTS, email address,
uunet!ora!nuts .

• X Window System User’s Guide for Version 11 (Volume 3), by
Tim O’Reilly, Valerie Quercia, and Linda Lamb. O’Reilly and
Associates, Inc., 1988, 981 Chestnut Street, Newton, MA
02164, 1–800–338–NUTS, email address, uunet!ora!nuts .

• X Toolkit Intrinsics Programming Manual (Volume 4), by
Adrian Nye and Tim O’Reilly. O’Reilly and Associates, Inc.,
1990, 981 Chestnut Street, Newton, MA 02164,
1–800–338–NUTS, email address, uunet!ora!nuts .

• X Toolkit Intrinsics Reference Manual (Volume 5), edited by
Tim O’Reilly, introduction by Mark Langley. O’Reilly and
Associates, Inc., 1990, 981 Chestnut Street, Newton, MA
02164, 1–800–338–NUTS, email address, uunet!ora!nuts .

• Introduction to the X Window System, by Oliver Jones.
Prentice Hall Inc., P.O. Box 105361, Atlanta, GA 30348,
1–201–767–5937.

PrefaceUNICOS X Window System Reference Manual

vCray Research, Inc.SR–2101 8.0

The following conventions are used throughout this manual:

Convention Meaning

Courier This font denotes literal items such as
commands, files, routines, path names,
signals, messages, and programming
language structures.

italic This typeface denotes variable entries
and words or concepts being defined.

bold Courier This font denotes literal items that the
user enters in screen drawings of
interactive sessions. Output is shown in
nonbold Courier font.

[] Brackets enclose optional portions of a
command line.

... Ellipses indicate that a preceding
command-line parameter can be
repeated.

KEY Indicates a key on the keyboard.

The following machine naming conventions are used throughout
this manual:

Term Definition

CRAY Y-MP systems All configurations of CRAY Y-MP systems
supported by UNICOS 8.0, including the
M90 series (M92, M94, M98); C90 series
(C916, C92A, C94, C94A, and C98);
E series (2E, 4E, 8E, and 8I); EL series
(including CRAY Y-MP EL, CRAY EL92,
CRAY EL98, and FAST-J).

CRAY X-MP systems All configurations of CRAY X-MP systems
supported by UNICOS 8.0. This includes
CRAY X-MP, CRAY X-MP EA, and X-MP
EMA systems.

CRAY-2 systems All configurations of CRAY-2 systems
supported by UNICOS 8.0.

Conventions

Preface UNICOS X Window System Reference Manual

vi Cray Research, Inc. SR–2101 8.0

Term Definition

Cray MPP systems All configurations of the CRAY T3D
series, supported by UNICOS 8.0,
including CRAY T3D MC, CRAY T3D MCA,
and CRAY T3D SC.

All Cray Research
systems

All configurations supported by
UNICOS 8.0.

It is the objective of Cray Research to become compliant with
IEEE Std 1003.1–1990 (POSIX.1) and IEEE Std 1003.2–1992
(POSIX.2). This manual reflects those ongoing efforts.

POSIX.2 uses utility to refer to executable programs that Cray
Research documentation usually refers to as commands. Both
terms appear in this document.

In this publication, Cray Research, CRI, and Cray refer to Cray
Research, Inc. and/or its products.

Throughout this document, reference is made to the online man
pages available under UNICOS through the man command. A
man page is a discussion of a particular element of the UNICOS
operating system or a compatible product.

Each man page includes a general description of one or more
commands, routines, system calls, or other topics, and provides
details of their usage (command syntax, routine parameters,
system call arguments, and so on). If more than one topic
appears on a page, the entry in the printed manual is
alphabetized under its primary name; online, secondary entry
names are linked to these primary names. For example, rc is a
secondary entry on the page with a primary entry name of brc .
To access rc online, you can type man rc . To access
information about brc online, you can type either man rc or
man brc ; both commands display the brc man page on your
terminal.

Section numbers appear in parentheses after man page names.
Man pages are referenced in text by entry name and section
number, as shown in the following example:

The –p and –s options to the dmput (1) command require
that the caller be super user.

Man page
references

PrefaceUNICOS X Window System Reference Manual

viiCray Research, Inc.SR–2101 8.0

The following lists the type of entry associated with each section
number:

Section Subject

1 User commands

1B User commands ported from BSD

2 System calls

3 Library routines, macros, and opdefs

4 Devices (special files)

4P Protocols

5 File formats

7 Miscellaneous topics

7D DWB-related information

8 Administrator commands

A routine name followed by an empty set of parentheses
designates a kernel routine; for example, ddcntl (). These
routines do not have man pages associated with them.

Printed man pages are published in Cray Research manuals.
The following manuals consist of collections of man pages that
describe the UNICOS operating system commands, system calls,
and file formats:

Publication Title

SR–2011 UNICOS User Commands Reference Manual

SR–2012 UNICOS System Calls Reference Manual

SR–2014 UNICOS File Formats and Special Files
Reference Manual

SR–2022 UNICOS Administrator Commands Reference
Manual

The UNICOS User Commands Ready Reference, publication
SQ–2056, accompanies the UNICOS User Commands Reference
Manual.

Preface UNICOS X Window System Reference Manual

viii Cray Research, Inc. SR–2101 8.0

The following manuals contain collections of man pages that
describe the UNICOS library routines:

Publication Title

SR–2079 UNICOS Fortran Library Reference Manual

SR–2080 UNICOS C Library Reference Manual

SR–2081 Scientific Libraries Reference Manual

SR–2138 Math Library Reference Manual

In some cases, man pages associated with a given product are
published in the documentation set for that product, rather than
in the UNICOS manuals listed here. For more information about
the availability and content of any Cray Research publication,
see the User Publications Catalog, publication CP–0099.

The User Publications Catalog, publication CP–0099, lists all
Cray Research hardware and software manuals that are
available to customers.

To order a manual, either call the Distribution Center in
Mendota Heights, Minnesota, at (612) 683–5907 or send a
facsimile of your request to fax number (612) 452–0141. Cray
Research employees may choose to send electronic mail to
order.desk (UNIX system users) or order desk (HPDesk
users).

If you have comments about the technical accuracy, content, or
organization of this manual, please tell us. You can contact us in
any of the following ways:

• Send us electronic mail from a UNICOS or UNIX system, using
the following UUCP address:

uunet!cray!publications

Ordering
publications

Reader comments

PrefaceUNICOS X Window System Reference Manual

ixCray Research, Inc.SR–2101 8.0

• Send us electronic mail from any system connected to Internet,
using the following Internet addresses:

pubs2101@timbuk.cray.com (comments specific to this
manual)

publications@timbuk.cray.com (general comments)

• Contact your Cray Research representative and ask that a
Software Problem Report (SPR) be filed. Use PUBLICATIONS
for the group name, PUBS for the command, and NO-LICENSE
for the release name.

• Call our Software Information Services department in Eagan,
Minnesota, through the Technical Support Center, using either
of the following numbers:

(800) 950–2729 (toll free from the United States and
Canada)

(612) 683–5600

• Send a facsimile of your comments to the attention of
“Software Information Services” in Eagan, Minnesota, at fax
number (612) 683–5599.

• Use the postage-paid Reader’s Comment Form at the back of
this manual.

We value your comments and will respond to them promptly.

Contents

xiCray Research, Inc.SR–2101 8.0

Page Page

Preface iii

Related publications iii

Conventions v

Man page references vi

Ordering publications viii

Reader comments viii

Introduction [1] 1

Getting Started [2] 3

Accessing X on your workstation 3

Logging in to a Cray Research system from your
workstation 5

Setting environment variables 5

Running a client on the Cray Research
system 6

Writing Your Own Clients [3] 7

Compiling a client 7

Handling events 10

Using colors 11

Using fonts 14

Using images 15

Debugging tools 17

Fortran and X [4] 19

Cray Research Clients [5] 25

Complete xmandelf Source
Code [A] 27

xmandelf.c 27

mandel.c 35

julia.c 44

generate.f 49

makefile 51

Example xscope Output [B] 53

Example Files [C] 59

Example .login file 59

Example .cshrc file 60

Example .twmrc file 61

Example .Xresources file 63

Example .xinitrc file 65

Index 67

Figures

Figure 1. X11R5 libraries 8

Figure 2. Architecture of C and Fortran
client 20

Introduction [1]

1Cray Research, Inc.SR–2101 8.0

The X Window System is a portable, network-transparent
window system originally developed at the Massachusetts
Institute of Technology (MIT) and now an industry standard
under control of the X Consortium. The X Window System, also
known simply as X, allows separate applications (known as
clients) that run on one or more hosts to be displayed on the
same workstation screen in separate windows. The workstation
does this by running an X server. To run X, the workstation
must provide a bit-mapped display with a keyboard and pointing
device (such as a mouse). If clients will run on a Cray Research
system, TCP/IP access must be available between the
workstation and Cray Research systems.

Because X is portable, it can be used on a wide variety of
workstation hardware (for example, Sun, DEC, IBM, RT, Apollo,
HP, Sony, and Apple). An important byproduct of this portability
is a standardized method of writing graphics programs
independent of hardware or operating system constraints. The
low-level C language programming interface to X, called Xlib,
and the high-level interface, called Toolkit (Xt library) and the
Athena Widgets (Xaw library), are also standardized.

X achieves network transparency because it uses its own
protocol to communicate between the client and the display
server. Most Xlib functions generate some type of protocol
requests. The X protocol requires a reliable end-to-end byte
stream, which TCP/IP currently provides as the underlying
network protocol.

This manual describes aspects of version 11, release 5 (X11R5) of
the X Window System that are related specifically to Cray
Research applications. Servers with earlier versions of X11
might still work with Cray Research X clients, but it cannot be
guaranteed.

“Getting Started,” page 3, provides information that enables
users to get started using X on a Cray Research system. The
rest of the manual provides programming information. “Writing
Your Own Clients,” page 7, offers programming techniques to

Introduction [1] UNICOS X Window System Reference Manual

2 Cray Research, Inc. SR–2101 8.0

ensure efficient use of the system. “Fortran and X,” page 19,
describes the process for mixing Fortran and C functions in one
binary file. “Cray Research Clients,” page 25, provides a list of
the clients that were written to run on Cray Research systems.

Getting Started [2]

3Cray Research, Inc.SR–2101 8.0

This section is for new X Window System users; it describes the
following procedures:

• Accessing X on your workstation

• Logging in to a Cray Research system from your workstation

• Setting environment variables

• Running a client on the Cray Research system and displaying
the output on your X workstation

The general methods presented in this section apply to all
workstations. If you are following along at your workstation, the
prompt you see will be one that is unique to your workstation.
In the sample sessions that follow, the workstation is a Sun X11
server named mirror , and the prompt is mirror% . Similarly, in
the sample session, the name of the Cray Research system is
sn2003 .

To access X on your workstation, you must access the server by
adding a path to the X11 binary files in your .profile (for the
Bourne shell and Korn shell), .login (for the C shell), or
.cshrc file (for the C shell), as follows:

set path=($path /usr/bin/X11) (C shell)

PATH=$PATH:/usr/bin/X11 (Bourne shell,
export PATH Korn shell)

You can also do this from the command line.

Accessing X on
your workstation
2.1

Getting Started [2] UNICOS X Window System Reference Manual

4 Cray Research, Inc. SR–2101 8.0

Next, from your .profile , .login , or .cshrc file, or from the
command line (if you are not already in a window system), set
the DISPLAY environment variable to your server name, as
follows:

mirror% setenv DISPLAY mirror:0.0 (C shell)

mirror$ DISPLAY=mirror:0.0 (Bourne shell,
mirror$ export DISPLAY Korn shell)

To start your environment, create a .xinitrc file. The
following is a sample .xinitrc file that contains commands to
start some of the tools that you will be using. This sample shows
xclock , which displays time; xload , which displays the system
load average; xbiff , which is a mail notification program; and
xterm , which is a terminal emulator. It starts the twm (tab
window manager, formerly known as Tom’s window manager), as
an example, but other window managers such as mwm may be
substituted.

xhost + sn2003
#
note: The preceding item enables access for host sn2003
#
twm &
xclock –analog –geometry 64x64–0–0 &
xload –rv –geometry 150x64–64–0 &
xbiff –rv –geometry 64x64–214–0 &
xterm –geometry 80x60–0+0 –fn 8x13 &
#
note: the last item must not be run in background.
#
xterm –C –g 51x12+0+0

You can customize your X environment by changing your
standard dot files and adding some new dot files. “Example
Files,” page 59, contains examples of all of the files you will
need.

To bring up the X11 server, add the following entry in your
.login or .profile file:

xinit

UNICOS X Window System Reference Manual Getting Started [2]

5Cray Research, Inc.SR–2101 8.0

When you log in or execute this entry at the command line, you
should see a terminal window in the upper left corner of the
screen and additional windows, as specified in your .xinitrc
file (see the previous sample file).

In addition to using the xhost (1X) program, you can use X
authority files (xauth (1X)) to control access to your display.
With authority files, you must create a key, which clients must
use to access your display server.

If your workstation is not a UNIX workstation, see the X
documentation that is specific to your workstation for
instructions on starting your environment.

In the following sample session, you will be logging in to a Cray
Research system (sn2003) running UNICOS, to run the client
named xclock . You will be displaying the clock on your
workstation, mirror . To begin a remote login to the Cray
Research system, use either telnet (1B) or rlogin (1B) in an
xterm window, as follows:

mirror% telnet sn2003

mirror% rlogin sn2003

After you have provided a user ID and password, and standard
login messages have appeared, a Cray prompt similar to the
following appears:

sn2003%

Now that you are logged in to a Cray Research system, you must
set the environment variables by entering the commands shown
in this subsection. You can enter these commands at the
prompt, or put them into your .profile , .login , or .cshrc
file.

Logging in to a
Cray Research
system from your
workstation
2.2

Setting
environment
variables
2.3

Getting Started [2] UNICOS X Window System Reference Manual

6 Cray Research, Inc. SR–2101 8.0

The following commands put /usr/bin/X11 in your directory
search path:

sn2003% set path=($path /usr/bin/X11) (C shell)

sn2003$ PATH=$PATH:/usr/bin/X11 (Bourne shell,
sn2003$ export PATH Korn shell)

The following command sets the DISPLAY environment variable
to your server name (mirror):

sn2003% setenv DISPLAY mirror:0.0 (C shell)

sn2003$ DISPLAY=mirror:0.0 (Bourne shell,
sn2003$ export DISPLAY Korn shell)

The following command sets the terminal type environment
variable, TERM, to xterm :

sn2003% set term xterm (C shell)

sn2003$ TERM=xterm (Bourne shell,
sn2003$ export TERM Korn shell)

Now you are ready to run programs (known as clients) on the
Cray Research system. The following example illustrates the
use of a Cray Research system to produce graphics interactively
on a server workstation. Run the xclock client on the Cray
Research system, as follows:

sn2003% xclock &

A clock is displayed on your workstation. See xclock (1X) for
available options; for more details about xclock , see the
O’Reilly, volume 3, documentation, listed in the preface.

Running a client
on the Cray
Research system
2.4

Writing Your Own Clients [3]

7Cray Research, Inc.SR–2101 8.0

This section describes the unique features of X programming on
the Cray Research system, and it offers programming techniques
to make the most efficient use of the Cray Research system. See
the preface for a list of references that describe general X
programming techniques.

The following topics are presented in this section:

• “Compiling a client” shows how to write a client.

• “Handling events,” page 10, describes how to minimize
network traffic, thus maximizing efficiency.

• “Using colors,” page 11, discusses issues that pertain to color
graphics.

• “Using fonts,” page 14, describes techniques for efficient use of
fonts.

• “Using images,” page 15, discusses the use of client-side raster
images.

• “Debugging tools,” page 17, describes the use of the cdbx (1)
and xscope debugging tools.

When you build an X client on a Cray Research system, you
must load the correct X libraries with the user-written code to
create the executable binary file. The X11R5 libraries are as
follows:

libXext.a (Extension library)

libXaw.a (Athena widget library)

libXt.a (Intrinsics toolkit)

libX11.a (also known as Xlib)

libXmu.a (MIT utility library)

Compiling a client
3.1

Writing Your Own Clients [3]

7Cray Research, Inc.SR–2101 8.0

This section describes the unique features of X programming on
the Cray Research system, and it offers programming techniques
to make the most efficient use of the Cray Research system. See
the preface for a list of references that describe general X
programming techniques.

The following topics are presented in this section:

• “Compiling a client” shows how to write a client.

• “Handling events,” page 10, describes how to minimize
network traffic, thus maximizing efficiency.

• “Using colors,” page 11, discusses issues that pertain to color
graphics.

• “Using fonts,” page 14, describes techniques for efficient use of
fonts.

• “Using images,” page 15, discusses the use of client-side raster
images.

• “Debugging tools,” page 17, describes the use of the cdbx (1)
and xscope debugging tools.

When you build an X client on a Cray Research system, you
must load the correct X libraries with the user-written code to
create the executable binary file. The X11R5 libraries are as
follows:

libXext.a (Extension library)

libXaw.a (Athena widget library)

libXt.a (Intrinsics toolkit)

libX11.a (also known as Xlib)

libXmu.a (MIT utility library)

Compiling a client
3.1

Writing Your Own Clients [3] UNICOS X Window System Reference Manual

8 Cray Research, Inc. SR–2101 8.0

libXau.a (sample authorization protocol for X)

libXdmcp.a (X display manager control protocol library)

libXi.a (xinput extension library)

liboldX.a (X10 compatibility library)

Figure 1 shows the relationship of the Xlib, toolkit, widget, and
extension libraries to each other.

Toolkit
(libXt.a)

Application (client)

Extension
(libXext.a)

Widget
(libXaw.a)

Xlib
(libX11.a)

Server

Figure 1. X11R5 libraries

You can use these same libraries when building a client on a
workstation.

UNICOS X Window System Reference Manual Writing Your Own Clients [3]

9Cray Research, Inc.SR–2101 8.0

For a simple X client, you can use the following makefile:

Set CFLAGS = –g for use with debugger
CFLAGS = –g –DSYSV –DUSG
xclient: xclient.c
cc $(CFLAGS) –o $@ xclient.c \n
 –lXaw –lXt –lXmu –lX11 –lXext

Notice that SYSV and USG are defined. This is always a good
practice when you are compiling applications that use X on the
Cray system. If you are using an Imakefile, the define process is
performed automatically. The imake (1) command takes an
architecture-independent segment of a makefile and adds the
architecture-dependent items to it. This provides an easy way to
write a portable program.

If the resulting binary file is used with the debugger cdbx (1),
you must use the –g option to cdbx to run the compile and load
steps.

You can use the imake (1X) or xmkmf(1X) command to generate
makefiles from templates known as Imakefiles. The following
example shows a simple Imakefile:

DEPLIBS = $(DEPXLIB)
LOCAL_LIBRARIES = $(XLIB)
SimpleProgramTarget (test)

You can use either of the following commands to create a
makefile from an Imakefile:

xmkmf

imake –DUseInstalled –DCURDIR=

Imakefiles released by Cray Research with UNICOS 8.0 have
been upgraded to work with the Standard C preprocessor,
usually located in /lib/cpp . Imakefiles obtained from other
locations may still use the old format for comments and
concatenation and therefore require the portable C preprocessor
(pcpp). This preprocessor is located in /lib/pcpp on the
UNICOS 8.0 operating system.

Writing Your Own Clients [3] UNICOS X Window System Reference Manual

10 Cray Research, Inc. SR–2101 8.0

To designate a preprocessor other than the default (/lib/cpp)
for either imake or xmkmf, set the IMAKECPP environment
variable as follows:

setenv IMAKECPP /lib/pcpp (C shell)

IMAKECPP=/lib/pcpp; (Bourne shell,
export IMAKECPP Korn shell)

The display server generates a packet of information for each
occurrence of a user action, such as a keystroke, button press,
mouse motion, window exposure, and so on, and each occurrence
of interaction among programs. Each packet of information,
called an event, is put into a protocol packet that consists of 32
bytes and is sent to each client that has requested that specific
type of event. Each X protocol packet is also put into a TCP/IP
packet, thus increasing the total number of bytes transferred. A
client can request a specific type of event to track device input,
another type of event to get mouse input, and so on. A client
responds to events to control the user interface and to control
communication among various clients. The processing that
occurs when events are being controlled is known as event
handling.

Keyboard input can generate a lot of network traffic. Each
keystroke generates events KeyPress and KeyRelease , which
typically cause a client to tell the server which character to
display. The typing speed of individual users limits the network
traffic, which is well below the network bandwidth. However,
too many users typing into X clients on a Cray Research system
can stress the communication resources.

Mouse motion is more stressful on network and CPU resources
than keyboard input. Dragging the mouse across a window can
generate numerous MotionNotify events. The server bundles
together several MotionNotify events in one transmission to
the client. The receiving client can compress MotionNotify
events to appear as one event; however, because resources are
wasted in generating, transmitting, and discarding them, a
client should request MotionNotify events only when
necessary. Alternatively, you can choose the

Handling events
3.2

UNICOS X Window System Reference Manual Writing Your Own Clients [3]

11Cray Research, Inc.SR–2101 8.0

PointerMotionHints option, in which the server does the
compression for you. Motion events are generated only under
special circumstances, reducing the amount of data sent across
the network.

The Xlib library provides the XSelectInput call, a mechanism
that enables a client to choose the events it wants to see. One of
the parameters of XSelectInput specifies the events that the
server should generate for this client. Proper use of
XSelectInput is the key to reducing unnecessary traffic
between client and server. The following example shows the use
of XSelectInput , in which keyboard input does not generate
events, but mouse button activity does:

XSelectInput(display, window,
 ButtonPressMask | ButtonReleaseMask);

The following example shows a method for compressing mouse
motion events in the client:

XEvent report;
while (XCheckTypedEvent(display, MotionNotify, &report));

XCheckTypedEvent reads the next MotionNotify event from
the queue into the XEvent structure called report . If the event
was a MotionNotify event, XCheckTypedEvent returns TRUE.
The while loop discards all but the last MotionNotify event.
This can be a great traffic reduction if the client has elected to
see MotionNotify events.

The visual impact of color allows you to convey a lot of
information in a clear, concise manner. A color image can
capture the large volume of numbers that a Cray Research
system can generate and display it clearly. In the X Window
System, colors can be used easily. However, if a client will be
communicating with more than one server, you must take great
care to ensure portability. The techniques described in this
subsection can also greatly decrease the amount of network
traffic that a client will generate when color is used.

Every X server has information about its particular color
characteristics in a visual structure that you can obtain by using
the DefaultVisual macro instruction or the XGetVisualInfo
or XMatchVisualInfo functions. Several visual types are
available; the most common are StaticGray (the typical visual

Using colors
3.3

Writing Your Own Clients [3] UNICOS X Window System Reference Manual

12 Cray Research, Inc. SR–2101 8.0

for monochrome workstations) and PseudoColor (a common
color visual in low-performance and medium-performance color
workstations). Advanced color workstations may use other
visuals, such as TrueColor or DirectColor .

To determine which visual is available for a client, you can use
code similar to the following:

int my_visual;
Visual *visual;
visual = DefaultVisual(display, screen);
switch (visual–>class) {

case StaticGray:
my_visual = StaticGray;
printf(”This is a StaticGray device\n”);
break;

case PseudoColor:
my_visual = PseudoColor;
printf(”This is a PseudoColor device\n”);
break;

case TrueColor:
my_visual = TrueColor;
printf(”This is a TrueColor device\n”);
break;

case DirectColor:
my_visual = DirectColor;
printf(”This is a DirectColor device\n”);
break;

default:
printf(”ERROR in Visual. Call programmer\n”);
exit(1);
break;

}

To use colors in a client application, you can use the default
colormap, or you can define a colormap, allocate one or more
colors, and assign each color to a graphics context, which is then
used for any drawing. Usually, you can use the server’s default
colormap (which is preferable), although for some applications,
you might have to define a separate colormap; you should base
your decision on whether the number of colors available in the
default colormap is suffient for your application. A workstation
with an 8-bit-per-pixel PseudoColor display is limited to 256

UNICOS X Window System Reference Manual Writing Your Own Clients [3]

13Cray Research, Inc.SR–2101 8.0

colors per colormap; a window manager might have allocated
colors, other clients might have allocated colors, running
xstdcmap might allocate colors, leaving a client with few colors
to allocate.

You can either define colors by specific red, green, and blue
intensities, or use any of several hundred predefined named
colors. If you need only a few separate colors, it is much easier
to use named colors to write a portable client program, although
these colors may look somewhat different on various servers.
The predefined named colors are defined in a dbm-format color
name database on the server. It defaults to
/usr/lib/x11/rgb . To display the color database, use the
showrgb client or you may cat the database source file
/usr/lib/x11/rgb.txt . The following example shows a color
allocation and setting of a graphics context:

Colormap my_map;
XColor my_color;
GC my_gc;

my_gc = XCreateGC(display, my_window, 0, 0);
if(my_visual == PseudoColor) {

my_map = DefaultColormap(display, screen);
XParseColor(display, my_map, ”Red”, &my_color);
XAllocColor(display, my_map, &my_color);
XSetForeground(display, my_gc, my_color.pixel);
}

else { /* use black if not PseudoColor device */
XSetForeground(display, my_gc, BlackPixel(display,screen));
}

If the graphics application uses only the X Window System
functions for line drawing, polygon drawing and filling, and text
drawing, the use of color graphics does not greatly increase
network usage. A simple drawing instruction that is sent from
the client to the server is the same number of bytes, whether
there is 1 bit per pixel, 8 bits per pixel, or 24 bits per pixel on the
server screen. Thus, you can quickly draw on a window or a
pixmap (a drawable mechanism that resides in the server
memory) on either a black-and-white (monochrome) or a color
workstation.

Writing Your Own Clients [3] UNICOS X Window System Reference Manual

14 Cray Research, Inc. SR–2101 8.0

The additional overhead for allocating colors should be incurred
only once during the client initialization. However, if you
generate graphics on the client by using an XImage structure
that resides in the client memory (see “Using images,” page 15),
and then copy this image to the server, the network traffic is
increased as the number of bit planes per pixel increases.
Therefore, to minimize network traffic, an XImage structure
should be avoided unless complex pixel-by-pixel manipulations
are necessary.

Fonts are server resources that specify the style and size of
print. Each server stores its own fonts. A remote client must be
able to adapt to the fonts available on any given server. For
example, because standard fonts and font names differ among X
Window system versions, you must write clients to accommodate
each potential server. A server can have both standard and
nonstandard fonts installed. To be truly portable, however, a
client should not depend on nonstandard fonts. To obtain a
listing of the fonts available on a given server, use the xlsfonts
command.

A client can use XLoadQueryFont to check the existence of a
font before it tries to use that font. If you use XLoadFont with
an unknown font name, an X protocol error occurs, but if you use
XLoadQueryFont with an unknown font name, it does not. The
following example uses XLoadQueryFont :

Display *d;
XFontStruct *theFont;

d = XOpenDisplay(argv[1]);

theFont = XLoadQueryFont(d,”bad_font_name”);
if (theFont == 0) {

printf(”font name = %s, return = %d\n”, ”bad_font_name”,
theFont);
}

Using fonts
3.4

UNICOS X Window System Reference Manual Writing Your Own Clients [3]

15Cray Research, Inc.SR–2101 8.0

When using XListFonts in a remote client, you should be
careful when using wildcard characters in a font name to match
any font with a specific character string in it. For example, the
string *–times–medium–r–normal––* matches the following
font names:

–adobe–times–medium–r–normal––10–100–75–75–p–54–iso8859–1
–adobe–times–medium–r–normal––12–120–75–75–p–64–iso8859–1
–adobe–times–medium–r–normal––14–140–75–75–p–74–iso8859–1
–adobe–times–medium–r–normal––18–180–75–75–p–94–iso8859–1
–adobe–times–medium–r–normal––24–240–75–75–p–124–iso8859–1
–adobe–times–medium–r–normal––8–80–75–75–p–44–iso8859–1

However, the string *–times–medium–r–normal––18–*
matches only the following font name:

–adobe–times–medium–r–normal––18–180–75–75–p–94–iso8859–1

If a client uses XListFonts to find all of the
–times–medium–r–normal–– fonts, and then examines each
font by using XLoadQueryFont , a lot of traffic is generated on
the network, because XLoadQueryFont returns information on
every character in the font. Clients can experience several
seconds delay by using XListFonts and XLoadQueryFont
inefficiently.

An image is a client-resident representation of a screen area, not
necessarily a window. Images differ from pixmaps or windows in
that the image is created and stored on the client side; pixmaps
and windows use server resources. The image, really a raster
image, is a pixel representation in memory. You must take care
when using images because various workstations interpret
pixels differently, especially on color displays. (Even the
definitions of black pixel and white pixel vary from
manufacturer to manufacturer.) Some workstations use bit and
byte ordering that is different from that used on other
workstations. This further complicates matters.

Fortunately, Xlib provides all of the mechanisms necessary to
convert images from client format to server format, so that an
image can be sent to the server and displayed properly.

Using images
3.5

Writing Your Own Clients [3] UNICOS X Window System Reference Manual

16 Cray Research, Inc. SR–2101 8.0

To overcome the problem of which pixel value represents black
and which pixel value represents white, Xlib provides the
BlackPixel and WhitePixel macros. In the following
example, XCreatePixmapFromBitmapData requires values for
the foreground and background pixel values. Using the
BlackPixel and WhitePixel macros, you can ensure that the
image will be correct, regardless of the server.

Display *dp;
Window winp;
Pixmap pixmapp;

dp = XtDisplay(toplevel);
winp = DefaultRootWindow(dp);
pixmapp = XCreatePixmapFromBitmapData(dp, winp, mandelbrot_bits,

mandelbrot_width, mandelbrot_height,
BlackPixel(dp, DefaultScreen(dp)),
WhitePixel(dp, DefaultScreen(dp)), depth);

Overcoming the problem of byte and bit ordering requires that
you modify the XImage structure, which is returned from the
XCreateImage function call. The byte_order and
bitmap_bit_order fields each contain a value that indicates
most-significant bit first (MSBFirst) or least-significant bit first
(LSBFirst) ordering. These refer to how programmers chose to
represent the image in memory, not to the bit and byte ordering
of the client or server hardware. Therefore, an image can be
LSBFirst in the client and MSBFirst in the hardware.

UNICOS X Window System Reference Manual Writing Your Own Clients [3]

17Cray Research, Inc.SR–2101 8.0

You must know the contents of the XImage structure because the
default values for byte_order and bitmap_bit_order are
those of the server hardware, and the program must set these
values to correspond to the actual byte order and bit order of the
image. This can be done immediately after the XCreateImage
call, as follows:

static XImage *xip = NULL;
Display *draw_d;
Visual *draw_v;
static char *dp = NULL;

dp=malloc (width * height);
xip = XCreateImage(draw_d, draw_v,

depth, ZPixmap, 0, dp, width,
height, bitmap_pad, byte_per_line);

xip–>byte_order = MSBFirst;
xip–>bitmap_bit_order = MSBFirst;

One of the best tools available for debugging application
programs on a Cray Research system is the cdbx (1) program. It
has an X Window System interface, which displays the text
being debugged, and it has command buttons for common
operations such as run , stop at , step , next , and so on. If the
DISPLAY environment variable is set to your display server, or
the –display option is found on the cdbx command line, the X
interface is enabled automatically. See cdbx (1) for details of its
use.

Note

Reaching a breakpoint in cdbx during a server grab (a time
when only the X program can use the server) hangs your display
server. This happens only when cdbx and the X client are
connected to the same server.

Debugging tools
3.6

Writing Your Own Clients [3] UNICOS X Window System Reference Manual

18 Cray Research, Inc. SR–2101 8.0

Another powerful tool for debugging X applications is xscope .
This tool, which is in the public domain, traces all traffic
between client and server. To the client, xscope appears as a
separate display server because it uses a unique display number,
then passes the protocol to the proper display.

A typical way of using xscope is to start it on your workstation
with no parameters. This defaults to display 1 of the
workstation. You must then set the DISPLAY environment
variable to display 1 of the workstation and start the client.

The xscope tool intercepts each packet and displays it in an
easy-to-read format. The following example shows this process.
You can find an example of xscope output in “Example xscope
Output,” page 53.

Workstation Cray system

xscope –

– setenv DISPLAY mirror:1

– xclient

Protocol is traced here –

xclient displays here –

Sometimes it is difficult to determine the protocol request that
actually caused a problem, because the client requests are
buffered up; that is, several requests can be sent in the same
transmission. To force Xlib to send requests in synchronous
mode (as soon as they are built), you can issue the
XSynchronize call from the xclient program. Using
XSynchronize can make the xscope output easier to read, but
this technique should be used only for debugging; unbuffered
traffic increases network congestion. The following example
shows the use of XSynchronize :

Display *display;
display = XOpenDisplay(argv[1]);
XSynchronize(display, 1); /* force synchronous mode */

X toolkit clients can use the –sync command-line option to force
synchronous mode, without editing or recompiling source code.

Fortran and X [4]

19Cray Research, Inc.SR–2101 8.0

Although you cannot call Xlib functions directly from Fortran,
you can mix Fortran functions and C functions in one binary file.
Using the techniques described in this section, you can use
Fortran for computation, and write Fortran-callable C functions
that use Xlib to handle the graphics. Similar interfaces can be
used for other languages, such as Pascal and Ada.

The following differences between Fortran and C must be
considered:

• A Fortran restriction requires that the subroutine or function
name be in uppercase letters when Fortran subroutines are
called from C, and vice versa.

• The Fortran calling sequence is call-by-address, and the C
calling sequence is call-by-value. Therefore, any parameters
that are passed from C to Fortran or from Fortran to C must
be pointers.

• Fortran and C handle character strings differently.

Figure 2, page 20, shows the architecture of a client that uses
both Fortran and C. It consists of a main program that
interfaces with functions and subroutines.

Fortran and X [4] UNICOS X Window System Reference Manual

20 Cray Research, Inc. SR–2101 8.0

Xlib D

C function C

Fortran subroutine B

C main program A

Figure 2. Architecture of C and Fortran client

The main program, represented by box A, performs tasks such as
initialization, opening the display, creating windows, creating
command buttons, and so on. If the main program is written
using only Xlib, it contains its own event-handling loop; if it uses
the Intrinsics toolkit, it contains a call to XtMainLoop . You can
call the Fortran subroutine represented by box B from the main
program’s event loop if Xlib is being used; it can be called by a
callback procedure (a routine called when a button is pressed) if
the Intrinsics toolkit is being used. To do graphic output, the
Fortran subroutine calls a C function (box C) to generate the
appropriate Xlib calls. Xlib (box D) generates the protocol
requests.

To illustrate these techniques, the remainder of this section
contains examples of code. You can find complete listings of the
main program (mandelf) in “Complete xmandelf Source Code,”
page 27.

UNICOS X Window System Reference Manual Fortran and X [4]

21Cray Research, Inc.SR–2101 8.0

The following example shows C calling Fortran and Fortran
calling C. The main program uses the Intrinsics toolkit (Xt),
and declares a callback table (a set of callback procedures).

void mandel ();
XtCallbackRec mandel_callbacks[] = {

{ mandel, NULL },
{ NULL, NULL },

},

The main program also provides packaging for the rest of the
code by performing toolkit initialization, creating widgets such
as command buttons, and invoking Xt ’s main loop, as follows:

main(argc,argv)
{

Widget toplevel, mandelbutton;
Arg argies[10];
toplevel = XtInitialize(”Anyname”, ”Anyname”, NULL, 0, &argc, argv);
 –
 –
 –
XtSetArg(argies[i], XtNcallback, (XtArgVal) mandel_callbacks); i++;
mandelbutton = XtCreateManagedWidget(”mandel”, commandWidgetClass,

form, argies, i);
 –
 –
 –
XtRealizeWidget(toplevel);
XtMainLoop();

}

The callback table referred to in the previous example is a set of
C language routines that will be called when a certain command
button named mandel is pressed. The following routine, also
called mandel , handles the callback and sets up to call the
Fortran subroutine GENERATE, which does the actual
calculations.

This mandel routine might be in the same file as the main
routine.

Fortran and X [4] UNICOS X Window System Reference Manual

22 Cray Research, Inc. SR–2101 8.0

Note

Because Fortran is a call-by-address process, all of the
parameters on the GENERATE subroutine call are addresses.

mandel(w, closure, call_data)
Widget w;
caddr_t closure;
caddr_t call_data;

{
 –
 –
 –

GENERATE(&wheight,&y0,&incry,&wwidth,&x0,&incrx,&iter);
}

The following example is an excerpt from the Fortran subroutine
named GENERATE, which the mandel function called. When it
completes its calculations, it calls a C function (called FPUTI) to
build the Xlib graphics requests.

subroutine GENERATE(wheight,y0,incry,wwidth,x0,incrx,iter)
–
–
–

call FPUTI(ixlo,iylo,index)

UNICOS X Window System Reference Manual Fortran and X [4]

23Cray Research, Inc.SR–2101 8.0

The following code is the C function FPUTI , which must convert
parameters from the form that Fortran produces to the form that
the call to Xlib requires (in this case, the XPutImage call):

FPUTI(pix,piy,index)
int *pix,*piy;
int index[64*64];
{

–
–
–
XPutImage(draw_d,draw_win,draw_gc,xip,0,0,*pix,*piy,VSIZE,VSIZE);

}

UNICOS X Window System Reference Manual Fortran and X [4]

23Cray Research, Inc.SR–2101 8.0

The following code is the C function FPUTI , which must convert
parameters from the form that Fortran produces to the form that
the call to Xlib requires (in this case, the XPutImage call):

FPUTI(pix,piy,index)
int *pix,*piy;
int index[64*64];
{

–
–
–
XPutImage(draw_d,draw_win,draw_gc,xip,0,0,*pix,*piy,VSIZE,VSIZE);

}

Cray Research Clients [5]

25Cray Research, Inc.SR–2101 8.0

Client programs that Cray Research, Inc. has developed are
documented in the UNICOS Visual Interfaces User’s Guide,
publication SG–3094, UNICOS CDBX Symbolic Debugger
Reference Manual, publication SR–2091, UNICOS User
Commands Reference Manual, publication SR–2011, and the
UNICOS Administrator Commands Reference Manual,
publication SR–2022. Brief summaries of all of these client
programs are documented in the X Window System Resources
Ready Reference, publication SQ–2123. The following list
contains these client programs, each with the publication
number of the manual in which it is found.

Program Manual

atexpert (1) SR–2011

cdbx (1) SR–2091

flowview (1) SR–2011

multimeter (1) SR–2011

netperf (8) SR–2022

perfview (1) SR–2011

profview (1) SR–2011

stategraph (1) SR–2011

timeline (1) SR–2011

xbrowse (1) SG–3094

xfm (1) SR–2011

xproc (1) SR–2011

As Cray Research continues to develop client programs,
additional programs will be added to this list.

Complete xmandelf Source Code [A]

27Cray Research, Inc.SR–2101 8.0

The xmandelf program is a Mandelbrot set generator that uses
Fortran and the X Window System.

The following xmandelf.c program is the main xmandelf
program. It creates the window and all of the buttons for the
Mandelbrot process.

#include <X11/Xlib.h>
#include <X11/Intrinsic.h>
#include <X11/StringDefs.h>
#include <X11/Xaw/Cardinals.h>
#include <X11/Xaw/Label.h>
#include <X11/Xaw/Command.h>
#include <X11/Xaw/Logo.h>
#include <X11/Xaw/Paned.h>
#include <X11/Xaw/Box.h>
#include <X11/cursorfont.h>
#include <stdio.h>
#include <sys/utsname.h>
#include <unistd.h>

Widget drawform;
Widget detaillabel, mflopslabel, ncpulabel; /* in widget ibox */
Widget xlabel, ylabel; /* in widget bbox */
Cursor crosshair_xcr;
int depth;
int iter;

 (continued)

xmandelf.c
A.1

Complete xmandelf Source Code [A] UNICOS X Window System Reference Manual

28 Cray Research, Inc. SR–2101 8.0

int maxcpus = 8;
int ncpus = 4;

char ncputext[12];
void mandel();

void clear_callback(w, closure, call_data)
Widget w;
XtPointer closure;
XtPointer call_data;

{
Display *draw_d;
Window draw_win;

draw_d = XtDisplay(drawform);
draw_win = XtWindow(drawform);

XClearWindow(draw_d, draw_win);
}
void quit_callback(w, closure, call_data)

Widget w;
XtPointer closure;
XtPointer call_data;

{
exit(0);

}
void ncpu_callback(w, closure, call_data)

Widget w;
XtPointer closure;
XtPointer call_data;

{
Arg arg;

ncpus++;
if (ncpus > maxcpus) ncpus = 1;

 (continued)

UNICOS X Window System Reference Manual Complete xmandelf Source Code [A]

29Cray Research, Inc.SR–2101 8.0

sprintf(ncputext, ”%d cpus”, ncpus);
arg.name = XtNlabel; arg.value = (XtArgVal) ncputext;
XtSetValues(ncpulabel, &arg, 1);

}

XtCallbackRec clear_callbacks[] = {
{ clear_callback, NULL },
{ NULL, NULL },

};

void julia();
XtCallbackRec julia_callbacks[] = {

{ julia, NULL },
{ NULL, NULL },

};
void zoom();
XtCallbackRec zoom_callbacks[] = {

{ zoom, NULL },
{ NULL, NULL },

};
void mooz();
XtCallbackRec mooz_callbacks[] = {

{ mooz, NULL },
{ NULL, NULL },

};
void redo();
XtCallbackRec redo_callbacks[] = {

{ redo, NULL },
{ NULL, NULL },

};
void resetmandel();
XtCallbackRec mandel_callbacks[] = {

{ resetmandel, NULL },
{ NULL, NULL },

};

 (continued)

Complete xmandelf Source Code [A] UNICOS X Window System Reference Manual

30 Cray Research, Inc. SR–2101 8.0

XtCallbackRec quit_callbacks[] = {
{ quit_callback, NULL },
{ NULL, NULL },

};

void detail();
XtCallbackRec detail_callbacks[] = {

{ detail, NULL },
{ NULL, NULL },

};

void reset();
XtCallbackRec reset_callbacks[] = {

{ reset, NULL },
{ NULL, NULL },

};
void ncpu_callback();
XtCallbackRec ncpu_callbacks[] = {

{ ncpu_callback, NULL },
{ NULL, NULL },

};

main(argc,argv)
int argc;
char **argv;
{

Widget toplevel, pane;
Widget box, ibox, bbox; /* in widget pane */
Widget hostlabel; /* in widget box */
Widget juliabutton, quitbutton, mandelbutton; /* in widget box */

 (continued)

UNICOS X Window System Reference Manual Complete xmandelf Source Code [A]

31Cray Research, Inc.SR–2101 8.0

Widget moozbutton, zoombutton, redobutton, clearbutton;/*in box */
Widget detailbutton, resetbutton, ncpubutton; /* in widget ibox */

Display *dp;
int i;
char siter[20];

Arg argies[10];
struct utsname U;

toplevel = XtInitialize(”Anyname”,”Xmandelf”,NULL,0,&argc,argv);
dp = XtDisplay(toplevel);

depth = DisplayPlanes(dp,DefaultScreen(dp));

pane = XtCreateManagedWidget(”pane”, panedWidgetClass, toplevel,
NULL, ZERO);

box = XtCreateManagedWidget(”box”, boxWidgetClass, pane, NULL,
 ZERO);

ibox = XtCreateManagedWidget(”ibox”, boxWidgetClass, pane, NULL,
ZERO);

uname (&U);
i = 0;

XtSetArg(argies[i], XtNborderWidth, (XtArgVal) 0); i++;
hostlabel = XtCreateManagedWidget(U.nodename, labelWidgetClass,

box, argies, i);

i = 0;
XtSetArg(argies[i], XtNcallback, (XtArgVal) mandel_callbacks); i++;

mandelbutton = XtCreateManagedWidget(”mandel”, commandWidgetClass,
box, argies, i);

 (continued)

Complete xmandelf Source Code [A] UNICOS X Window System Reference Manual

32 Cray Research, Inc. SR–2101 8.0

i = 0;
XtSetArg(argies[i], XtNcallback, (XtArgVal) zoom_callbacks); i++;

zoombutton = XtCreateManagedWidget(”mandelzoom”, commandWidget-
Class,

box, argies, i);

i = 0;
XtSetArg(argies[i], XtNcallback, (XtArgVal) mooz_callbacks); i++;

moozbutton = XtCreateManagedWidget(”unzoom”, commandWidgetClass,
box, argies, i);

i = 0;
XtSetArg(argies[i], XtNcallback, (XtArgVal) redo_callbacks); i++;

redobutton = XtCreateManagedWidget(”redo”, commandWidgetClass,
box, argies, i);

i = 0;
XtSetArg(argies[i], XtNcallback, (XtArgVal) julia_callbacks); i++;

juliabutton = XtCreateManagedWidget(”julia”, commandWidgetClass,
box, argies, i);

i = 0;
XtSetArg(argies[i], XtNcallback, (XtArgVal) clear_callbacks); i++;

clearbutton = XtCreateManagedWidget(”clear”, commandWidgetClass,
box, argies, i);

i = 0;
XtSetArg(argies[i], XtNcallback, (XtArgVal) quit_callbacks); i++;

quitbutton = XtCreateManagedWidget(”quit”, commandWidgetClass,
box, argies, i);

i = 0;
XtSetArg(argies[i], XtNborderWidth, (XtArgVal) 0); i++;

mflopslabel = XtCreateManagedWidget(” 0 megaflops”,
labelWidgetClass, ibox, argies, i);

 (continued)

UNICOS X Window System Reference Manual Complete xmandelf Source Code [A]

33Cray Research, Inc.SR–2101 8.0

i = 0;
if (depth > 1) iter = 256; else iter = 64;
sprintf(siter, ”%d iterations”, iter);

XtSetArg(argies[i], XtNborderWidth, (XtArgVal) 0); i++;
detaillabel = XtCreateManagedWidget(siter, labelWidgetClass,

ibox, argies, i);

i = 0;
ncpus = maxcpus = sysconf(_SC_CRAY_NCPU);
sprintf(ncputext, ”%d cpus”, maxcpus);

XtSetArg(argies[i], XtNborderWidth, (XtArgVal) 0); i++;
ncpulabel = XtCreateManagedWidget(ncputext, labelWidgetClass,

ibox, argies, i);

i = 0;
XtSetArg(argies[i], XtNcallback, (XtArgVal) detail_callbacks); i++;

detailbutton = XtCreateManagedWidget(”increase iterations”,
commandWidgetClass,ibox, argies, i);

i = 0;
XtSetArg(argies[i], XtNcallback, (XtArgVal) reset_callbacks); i++;

resetbutton = XtCreateManagedWidget(”reset iterations”,
commandWidgetClass, ibox, argies, i);

i = 0;
XtSetArg(argies[i], XtNcallback, (XtArgVal) ncpu_callbacks); i++;

ncpubutton = XtCreateManagedWidget(”cpus”, commandWidgetClass,
ibox, argies, i);

i = 0;
XtSetArg(argies[i], XtNheight, (XtArgVal) 512); i++;
XtSetArg(argies[i], XtNwidth, (XtArgVal) 512); i++;
XtSetArg(argies[i], XtNbackground, (XtArgVal)

BlackPixel(dp, DefaultScreen(dp))); i++;

 (continued)

Complete xmandelf Source Code [A] UNICOS X Window System Reference Manual

34 Cray Research, Inc. SR–2101 8.0

drawform = XtCreateManagedWidget(”DrawForm”, logoWidgetClass, pane,
argies, i);

bbox = XtCreateManagedWidget(”box”, boxWidgetClass, pane, NULL,
ZERO);

i = 0;
XtSetArg(argies[i], XtNwidth, (XtArgVal) 512); i++;
XtSetArg(argies[i], XtNresize, (XtArgVal) False); i++;

XtSetArg(argies[i], XtNborderWidth, (XtArgVal) 0); i++;
xlabel = XtCreateManagedWidget(””, labelWidgetClass,

bbox, argies, i);

i = 0;
XtSetArg(argies[i], XtNwidth, (XtArgVal) 512); i++;
XtSetArg(argies[i], XtNresize, (XtArgVal) False); i++;

XtSetArg(argies[i], XtNborderWidth, (XtArgVal) 0); i++;
ylabel = XtCreateManagedWidget(””, labelWidgetClass,

bbox, argies, i);

i = 0;
XtSetArg(argies[i], XtNcallback, (XtArgVal) reset_callbacks);

i++;
resetbutton = XtCreateManagedWidget(”reset iterations”,

commandWidgetClass,
ibox, argies, i);

XtRealizeWidget(toplevel);
crosshair_xcr = XCreateFontCursor(dp, XC_crosshair);

XDefineCursor(dp, XtWindow(drawform), crosshair_xcr);

XtMainLoop();
}

UNICOS X Window System Reference Manual Complete xmandelf Source Code [A]

35Cray Research, Inc.SR–2101 8.0

The following mandel.c routines handle all actions that result
from the pushing of buttons. One routine calls the Fortran
mandelbrot routine.

#include <X11/Xlib.h>
#include <X11/Intrinsic.h>
#include <X11/StringDefs.h>
#include <stdio.h>
extern Widget detaillabel, drawform, mflopslabel;
extern Widget xlabel, ylabel;
struct zoomd {

struct zoomd *zp;
double lx, ux;
double ly, uy;

};
struct zoomd *zoomp = NULL, *zoompn;
char *malloc();
double GENERATE();

extern int depth;
extern long iter;
extern int ncpus;
long mwidth;
long bias = 1; /* bias into color table */
long wwidth = 0;
long wheight = 0;

Arg arg;
XImage *xip = NULL;
char *dp = NULL;
Window draw_win;
GC draw_gc;
Screen *draw_Screen;
Display *draw_d;
Visual *draw_v;

 (continued)

mandel.c
A.2

Complete xmandelf Source Code [A] UNICOS X Window System Reference Manual

36 Cray Research, Inc. SR–2101 8.0

#define MIN(a,b)((a) < (b) ? (a) : (b))
#define MAX(a,b)((a) < (b) ? (b) : (a))

void resetmandel(w, closure, call_data)
Widget w;
caddr_t closure;
caddr_t call_data;

{
if (zoomp) { /* reset to beginning by popping zps off stack */

while (zoompn = zoomp–>zp) {
free(zoomp);
zoomp = zoompn;

}
} else { /* This is first time */

zoomp = (struct zoomd *) malloc(sizeof (struct zoomd));
zoomp–>zp = NULL; /* NULL means last in stack – don’t pop */
zoomp–>lx = –2.25; zoomp–>ux = .75;
zoomp–>ly = –1.5; zoomp–>uy = 1.5;

}
setxylabels();
setiter();
mandel(w, closure, call_data);

}

mandel(w, closure, call_data)
Widget w;
caddr_t closure;
caddr_t call_data;

{
double wx, wy, oldwx, oldwy;
double x, y, x0, y0;
double incrx, incry;
double mflops;
long ix, iy;
long i;
long zero = 0;

 (continued)

UNICOS X Window System Reference Manual Complete xmandelf Source Code [A]

37Cray Research, Inc.SR–2101 8.0

draw_d = XtDisplay(drawform);
draw_win = XtWindow(drawform);
draw_Screen = XtScreen(drawform);
draw_gc = draw_Screen–>default_gc;
draw_v = draw_Screen–>root_visual;

if (dp == NULL) {
mwidth = (depth > 1)? 64: 8;
dp = malloc(mwidth*64);
if (dp == NULL) {printf(”malloc failed\n”); return; }
if (xip) XDestroyImage(xip);
xip = XCreateImage(draw_d, draw_v, depth, ZPixmap, 0, dp,

64, 64, 8, 0);
xip–>byte_order = MSBFirst;
xip–>bitmap_bit_order = MSBFirst;
xip–>bits_per_pixel = 8;

}
XtSetArg(arg, XtNwidth, &wwidth);
XtGetValues(drawform, &arg, 1);
XtSetArg(arg, XtNheight, &wheight);
XtGetValues(drawform, &arg, 1);

incrx = (zoomp–>ux – zoomp–>lx)/wwidth;
incry = (zoomp–>uy – zoomp–>ly)/wheight;

y0 = zoomp–>uy–incry;
x0 = zoomp–>lx+incrx;

if (closure == 0) XClearWindow(draw_d, draw_win);

mflops =
GENERATE(&wheight,&y0,&incry,&wwidth,&x0,&incrx,&iter,&ncpus);
setmflops(mflops);

}

 (continued)

Complete xmandelf Source Code [A] UNICOS X Window System Reference Manual

38 Cray Research, Inc. SR–2101 8.0

FPUTI(pix,piy,index)
int *pix,*piy;
int index[64*64];
{

int i,j;

#define VSIZE 64

if (depth == 1) {
int *idp = (int *) dp;
long shiftw;
for (i = 0; i < VSIZE; i++)

*(idp + i) = 0;
for (i = 0; i < VSIZE; i++, idp++) {

shiftw = 0x8000000000000000;
for (j = 0; j < VSIZE; j++) {

if ((index[i* VSIZE + j] & 7) != 0)
*idp |= shiftw;

shiftw >>= 1;
}

}
#if 0

} else if (depth == 4) {
for (i = 0; i < VSIZE; i+=2) {
 for (j = 0; j < VSIZE; j++) {
 dp[i * VSIZE + j/2] = (((index[i * VSIZE + j] & 0x0f) <<4)

| (index[i * VSIZE + j + 1] & 0x0f));
}

}
#endif

} else { /* depth == 8 */
for (i = 0; i < VSIZE; i++) {
for (j = 0; j < VSIZE; j++) {

 (continued)

UNICOS X Window System Reference Manual Complete xmandelf Source Code [A]

39Cray Research, Inc.SR–2101 8.0

dp[i * VSIZE + j] = index[i * VSIZE + j] + bias;
}

}
}

XPutImage(draw_d,draw_win,draw_gc,xip,0,0,*pix,*piy,VSIZE,VSIZE);
}

void zoom(w, closure, call_data)
Widget w;
caddr_t closure;
caddr_t call_data;

{
Window draw_win;
GC draw_gc;
Screen *draw_Screen;
Display *draw_d;
Window Root;
int S;

draw_d = XtDisplay(drawform);
if (zoomp == NULL) { XBell(draw_d, 0); return; }
draw_win = XtWindow(drawform);
draw_Screen = XtScreen(drawform);
draw_gc = draw_Screen–>default_gc;
S = DefaultScreen(draw_d);
Root = RootWindow(draw_d, S);

XSetForeground(draw_d, draw_gc, 0x55);
XSetSubwindowMode(draw_d, draw_gc, IncludeInferiors);
XSetFunction(draw_d, draw_gc, GXxor);

XSelectInput(draw_d, draw_win,
ButtonPressMask | ButtonReleaseMask | PointerMotionMask);

while (1) {

 (continued)

Complete xmandelf Source Code [A] UNICOS X Window System Reference Manual

40 Cray Research, Inc. SR–2101 8.0

static int rubberband = 1;
XEvent report;
XNextEvent(draw_d, &report);
switch(report.type) {

int winx0,winy0,winx1,winy1,width,height;
int x0, y0, x1, y1;
double tw, th;

case ButtonPress:
XGrabServer(draw_d);
x0 = winx0 = report.xbutton.x;
y0 = winy0 = report.xbutton.y;

rubberband = 0;
width = height = 0;
break;

case ButtonRelease:
winx1 = report.xbutton.x;
winy1 = report.xbutton.y;

XDrawRectangle(draw_d,draw_win, draw_gc, x0, y0, width, width);
if ((width = winx1 – winx0) < 0)

width = – width;
if ((height = winy1 – winy0) < 0)

height = – height;
if (width < height)

width = height;
x0 = (winx1 > winx0) ? winx0 : winx0 – width;
y0 = (winy1 > winy0) ? winy0 : winy0 – width;
x1 = x0 + width;
y1 = y0 + width;

XDrawRectangle(draw_d,draw_win, draw_gc, x0, y0, width, width);
rubberband = 1;

 (continued)

UNICOS X Window System Reference Manual Complete xmandelf Source Code [A]

41Cray Research, Inc.SR–2101 8.0

XSetFunction(draw_d, draw_gc, GXcopy);
XUngrabServer(draw_d);
XFlush(draw_d);
tw = zoomp–>ux – zoomp–>lx;
th = zoomp–>uy – zoomp–>ly;
zoompn = (struct zoomd *) malloc(sizeof (struct zoomd));
zoompn–>zp = zoomp; /* push onto stack */
zoompn–>ux = zoomp–>lx + ((double)x1/(double)wwidth) *tw;
zoompn–>lx = zoomp–>lx + ((double)x0/(double)wwidth) *tw;
zoompn–>ly = zoomp–>uy – ((double)y1/(double)wheight)*th;
zoompn–>uy = zoomp–>uy – ((double)y0/(double)wheight)*th;

zoomp = zoompn; /* zoomp is current pointer */
setxylabels();
mandel(w, closure, call_data);
return; /* call mandel with new width, height */

case MotionNotify:
if (rubberband) break;
while (XCheckTypedEvent(draw_d, MotionNotify, &report));

XDrawRectangle(draw_d,draw_win, draw_gc, x0, y0, width, width);
winx1 = report.xbutton.x;
winy1 = report.xbutton.y;
if ((width = winx1 – winx0) < 0)

width = – width;
if ((height = winy1 – winy0) < 0)

height = – height;

if (width < height)
width = height;

x0 = (winx1 > winx0) ? winx0 : winx0 – width;
y0 = (winy1 > winy0) ? winy0 : winy0 – width;

XDrawRectangle(draw_d,draw_win, draw_gc, x0, y0, width, width);

 (continued)

Complete xmandelf Source Code [A] UNICOS X Window System Reference Manual

42 Cray Research, Inc. SR–2101 8.0

break;
default:

break;
}

}
}

void mooz(w, closure, call_data)
Widget w;
caddr_t closure;
caddr_t call_data;

{
draw_d = XtDisplay(drawform);
if (zoomp == NULL) { XBell(draw_d, 0); return; }
if (zoomp–>zp == NULL) { XBell(draw_d, 0); return; }

if (zoompn = zoomp–>zp) { /* last on stack */
free(zoomp);
zoomp = zoompn;

}
setxylabels();
mandel(w, closure, call_data);

}
void redo(w, closure, call_data)

Widget w;
caddr_t closure;
caddr_t call_data;

{
draw_d = XtDisplay(drawform);
if (zoomp == NULL) { XBell(draw_d, 0); return; }
mandel(w, 1, call_data);

}

void detail(w, closure, call_data)
Widget w;

 (continued)

UNICOS X Window System Reference Manual Complete xmandelf Source Code [A]

43Cray Research, Inc.SR–2101 8.0

caddr_t closure;
caddr_t call_data;

{

if (depth > 1) iter += 256; else iter += 64;
setiter();

 /*mandel(w, 1, call_data);*/
}
void reset(w, closure, call_data)

Widget w;
caddr_t closure;
caddr_t call_data;

{
if (depth > 1) iter = 256; else iter = 64;
setiter();

}

setiter()
{

char siter[20];
sprintf(siter, ”%d iterations”, iter);
arg.name = XtNlabel; arg.value = (XtArgVal) siter;
XtSetValues(detaillabel, &arg, 1);

}

setmflops(r)
float r;
{

char string[20];
sprintf(string, ”%.1f megaflops”, r);
arg.name = XtNlabel; arg.value = (XtArgVal) string;
XtSetValues(mflopslabel, &arg, 1);

}
setxylabels()
{

 (continued)

Complete xmandelf Source Code [A] UNICOS X Window System Reference Manual

44 Cray Research, Inc. SR–2101 8.0

char xtext[80], ytext[80];
sprintf(xtext,”%15.10f < x < %15.10f”, zoomp–>lx, zoomp–>ux);
arg.name = XtNlabel; arg.value = (XtArgVal) xtext;
XtSetValues(xlabel, &arg, 1);
sprintf(ytext,”%15.10f < y < %15.10f”, zoomp–>ly, zoomp–>uy);
arg.name = XtNlabel; arg.value = (XtArgVal) ytext;
XtSetValues(ylabel, &arg, 1);

}

The following julia.c routines handle the julia button by
generating a julia set.

#include <X11/Xlib.h>
#include <X11/Intrinsic.h>
#include <X11/StringDefs.h>
#include <stdio.h>
extern Widget drawform;
struct zoomd {

struct zoomd *zp;
double lx, ux;
double ly, uy;

};
extern int depth;
extern struct zoomd *zoomp;
extern long iter;
XWindowAttributes draw_wattr;

void julia(w, closure, call_data)
Widget w;

 (continued)

julia.c
A.3

UNICOS X Window System Reference Manual Complete xmandelf Source Code [A]

45Cray Research, Inc.SR–2101 8.0

caddr_t closure;
caddr_t call_data;

{

double a,b;
double wx, wy, oldwx, oldwy;
double sx, x, y;
double incrx, incry;
long ix, iy;
static long width = 0;
static long mwidth = 0;
static long bias = 1;

Arg arg;
int wwidth, wheight;
static XImage *xip1 = NULL, *xip2 = NULL;
static char *dp1 = NULL, *dp2 = NULL;
char *malloc();
char ab[80];
Window draw_win;
static Window s_win = NULL;
GC draw_gc;
Screen *draw_Screen;
Display *draw_d;
Visual *draw_v;
Window Root;
int S; /* Screen */

draw_d = XtDisplay(drawform);
if (zoomp == NULL) { XBell(draw_d, 0); return;}
draw_win = XtWindow(drawform);
draw_Screen = XtScreen(drawform);
draw_gc = draw_Screen–>default_gc;
draw_v = draw_Screen–>root_visual;

 (continued)

Complete xmandelf Source Code [A] UNICOS X Window System Reference Manual

46 Cray Research, Inc. SR–2101 8.0

XtSetArg(arg, XtNwidth, &wwidth);
XtGetValues(drawform, &arg, 1);
XtSetArg(arg, XtNheight, &wheight);
XtGetValues(drawform, &arg, 1);

XSelectInput(draw_d,draw_win,ButtonPressMask|ButtonReleaseMask);
while (1) {

int winx, winy;
XEvent report;
XNextEvent(draw_d, &report);
if (report.type == ButtonRelease) {

/* if (report.xbutton.x <= 0 || report.xbutton.y <= 0) { */
/* make sure button release is in drawform window */

if (report.xbutton.window != draw_win ||
report.xbutton.x & 0x8000 ||
report.xbutton.y & 0x8000 ||
(report.xbutton.x == 0 && report.xbutton.y == 0) ||
report.xbutton.x > wwidth ||
report.xbutton.y > wheight) {

XBell(draw_d, 0);
continue;

}
a = ((double)report.xbutton.x/ (double)wwidth);
b = ((double)report.xbutton.y/ (double)wheight);
a = (a * (zoomp–>ux – zoomp–>lx)) + zoomp–>lx;
b = zoomp–>uy – (b * (zoomp–>uy – zoomp–>ly));
/*printf(”julia: a = %f, b = %f\n”, a, b);*/
break;

}
continue;

}
S = DefaultScreen(draw_d);
Root = RootWindow(draw_d, S);
if (s_win == NULL) {

 (continued)

UNICOS X Window System Reference Manual Complete xmandelf Source Code [A]

47Cray Research, Inc.SR–2101 8.0

s_win = XCreateSimpleWindow(draw_d,Root,0,0,256,256,1,1,0);
XSelectInput(draw_d, s_win, ExposureMask);
XMapWindow(draw_d, s_win);
XSync(draw_d, 0);
while (1) {

XEvent report;
XNextEvent(draw_d, &report);
if (report.type == Expose) break;

}
}
sprintf(ab, ”%f + %fi”, a,b);
XStoreName(draw_d, s_win, ab);
XClearWindow(draw_d, s_win);

XGetWindowAttributes(draw_d, s_win, &draw_wattr);
if (width != draw_wattr.width) {

width = draw_wattr.width;
mwidth = (depth > 1)? width: (1 + width/8);
/* XDestroyImage should free dp1 and dp2 as well */
if (xip1) {XDestroyImage(xip1); XDestroyImage(xip2); }
dp1 = malloc(mwidth);
dp2 = malloc(mwidth);
if (dp2 == NULL) {printf(”malloc failed\n”); return; }

xip1 = XCreateImage(draw_d, draw_v, depth, ZPixmap, 0, dp1,
width, 1, 8, mwidth);

xip2 = XCreateImage(draw_d, draw_v, depth, ZPixmap, 0, dp2,
width, 1, 8, mwidth);

xip1–>byte_order = xip2–>byte_order = MSBFirst;
xip1–>bitmap_bit_order = xip2–>bitmap_bit_order = MSBFirst;

}
sx = x = –1.5; y = –1.5;
incrx = –x/draw_wattr.width * 2;
incry = –y/draw_wattr.height * 2;

 (continued)

Complete xmandelf Source Code [A] UNICOS X Window System Reference Manual

48 Cray Research, Inc. SR–2101 8.0

for (iy = 0; iy < (1 + draw_wattr.height/2); iy++, y+= incry) {
long i;
x = sx;
for (ix = 0; ix < draw_wattr.width; ix++, x+= incrx) {

wx = x; wy = y;
for (i = 0; i < iter; i++) {

oldwx = wx;
wx = wx * wx – wy * wy + a;
wy = 2 * oldwx * wy + b;
if (wx * wx + wy * wy > 4) break;

}
if (depth > 1) { /* color */

*(dp1 + ix) = i + bias;
*(dp2 + width – ix – 1) = i + bias;

} else {
if (i == iter) { /* could also test if (i & 2) */

dp1[ix/8] |= 1 << (7 – ix&7);
dp2[(width – ix – 1)/8] |= 1 << (8 – (width – ix)&7);

}
}

}

XPutImage(draw_d, s_win, draw_gc, xip1, 0,0, 0, iy, width, 1);
if (iy != draw_wattr.height – iy)

XPutImage(draw_d,s_win,draw_gc,xip2,0,0,0, draw_wattr.height – iy,
width, 1);

if (depth == 1) for (i = 0 ; i < mwidth; i++) *(dp1 + i) = *(dp2 +
i) = 0;
}

}

UNICOS X Window System Reference Manual Complete xmandelf Source Code [A]

49Cray Research, Inc.SR–2101 8.0

The following generate.f routine is a multitasked Fortran
program that generates a Mandelbrot set.

function generate(wheight,y0,incry,wwidth,x0,incrx,iter,n)
parameter (incx=64,incy=64)
real x0,incrx,y0,incry
integer wwidth,wheight,index(0:incx–1,0:incy–1),flops
complex w0(0:incx–1,0:incy–1), w(0:incx–1,0:incy–1)

cmic$ numcpus n
flops = 0
t0 = timef()

cmic$ do all autoscope private(index,w0,w)
ccmic$ do all shared(wheight,y0,incry,wwidth,x0,incrx,
ccmic$1 iter,dp,drawd,drawwin,drawgc,xip,flops)
ccmic$1 private(ix,iy,x,y,i,ssum,ixlo,iylo,ixhi,iyhi,index,w,w0,
findex,
ccmic$1 indexsum)

do 500 iylo = 0,wheight–1,incy
iyhi = min0(incy,wheight–1+1–iylo)
do 500 ixlo = 0,wwidth–1,incx

ixhi = min0(incx,wwidth–1+1–ixlo)

do 100 iy=0,iyhi–1
y = y0–iylo*incry – iy*incry

cdir$ shortloop
do 100 ix=0,ixhi–1

x = x0+ixlo*incrx + ix*incrx
w0(ix,iy) = cmplx(x,y)
w(ix,iy) = w0(ix,iy)*w0(ix,iy) + w0(ix,iy)
index(ix,iy)=cvmgt(0,1,(real(w(ix,iy))*real(w(ix,iy))

+ + aimag(w(ix,iy))*aimag(w(ix,iy)).le.4.))
100 continue

 (continued)

generate.f
A.4

Complete xmandelf Source Code [A] UNICOS X Window System Reference Manual

50 Cray Research, Inc. SR–2101 8.0

do 300 i=1,iter–1
do 200 iy=0,iyhi–1

cdir$ shortloop
do 200 ix=0,ixhi–1

if (index(ix,iy) .eq. 0) then
w(ix,iy) = w(ix,iy)*w(ix,iy) + w0(ix,iy)

index(ix,iy)=cvmgt(0,i,(real(w(ix,iy))*real(w(ix,iy))
+ + aimag(w(ix,iy))*aimag(w(ix,iy)).le.4.))

end if
200 continue
300 continue

indexsum = 0
do 400 iy=0,iyhi–1

cdir$ shortloop
do 400 ix=0,ixhi–1

if (index(ix,iy).eq.0) index(ix,iy)=iter
indexsum = indexsum + index(ix,iy)

400 continue

cmic$ guard
flops = flops + 13*incx*incy + 11*indexsum
call FPUTI(ixlo,iylo,index)

cmic$ end guard

500 continue

telapse = timef() – t0
generate = 1.e–3*flops/telapse

c print 990, 1.e–3*flops/telapse
c 990 format(’ Mflops: ’,f7.2)

return
end

UNICOS X Window System Reference Manual Complete xmandelf Source Code [A]

51Cray Research, Inc.SR–2101 8.0

The following makefile program compiles the xmandelf
program.

F=cf77
CC=cc
CFLAGS = $(INCLUDES) –DUSG –DSYSV
FFLAGS = –ZP
SHELL=/bin/sh

xmandelf: xmandelf.o mandel.o julia.o generate.o
$(CF) $(FFLAGS) –o $@ xmandelf.o mandel.o julia.o generate.o \

–lXaw –lXt –lXmu –lX11 –lXext

generate.o: generate.f
$(CF) $(FFLAGS) –c generate.f

clean:
@–rm xmandelf *.o

install: xmandelf
if [! –d $$HOME/bin] ; \
then \

echo mkdir $$HOME/bin;\
mkdir $$HOME/bin;\

fi
cp xmandelf $$HOME/bin

makefile
A.5

Example xscope Output [B]

53Cray Research, Inc.SR–2101 8.0

The xscope program is a tool for debugging X Window System
applications. This appendix contains an example of xscope
output.

0.00: Client ––> 12 bytes
 byte-order: MSB first
 major-version: 000b
 minor-version: 0000
0.02: 224 bytes <–– X11 Server
 protocol-major-version: 000b
 protocol-minor-version: 0000
 release-number: 00000003
 resource-id-base: 00700000
 resource-id-mask: 000fffff
 motion-buffer-size: 00000000
 image-byte-order: MSB first
 bitmap-format-bit-order: MSB first
 bitmap-format-scanline-unit: 20
 bitmap-format-scanline-pad: 20
 min-keycode: 8 (^H)
 max-keycode: 129 (\201)
 vendor: ”MIT X
 Consortium”
 pixmap-formats: (2)
 roots: (2)
0.06: Client ––> 72 bytes
 REQUEST: CreateGC
 graphic-context-id: GXC 00700000
 drawable: DWB 0008006d
 value-mask: foreground | background
 value-list:
 foreground: 00000001
 background: 00000000

 (continued)

Example xscope Output [B] UNICOS X Window System Reference Manual

54 Cray Research, Inc. SR–2101 8.0

 REQUEST: CreateGC
 graphic-context-id: GXC 00700001
 drawable: DWB 00080070
 value-mask: foreground | background
 value-list:
 foreground: 00000001
 background: 00000000
 REQUEST: GetProperty
 delete: False
 window: WIN 0008006d
 property: <RESOURCE_MANAGER>
 type: <STRING>
 long-offset: 00000000
 0.08: 1512 bytes <–– X11 Server
 REPLY: GetProperty
 format: 08
 type: <STRING>
 bytes-after: 00000000
 0.18: Client ––> 28 bytes
 REQUEST: InternAtom
 only-if-exists: False
 name: ”WM_CONFIGURE_DENIED”
 0.18: 32 bytes <–– X11 Server
 REPLY: InternAtom
 atom: ATM 00000049
 0.20: Client ––> 16 bytes
 REQUEST: InternAtom
 only-if-exists: False
 name: ”WM_MOVED”

 0.20: 32 bytes <–– X11 Server
 REPLY: InternAtom
 atom: ATM 0000004c

 0.22: Client ––> 32 bytes
 REQUEST: OpenFont
 font-id: FNT 00700002
 name: ”fixed”
 REQUEST: QueryFont
 font: FTB 00700002

 (continued)

UNICOS X Window System Reference Manual Example xscope Output [B]

55Cray Research, Inc.SR–2101 8.0

 0.24: 1644 bytes <–– X11 Server
 REPLY: QueryFont
 min-bounds:
 max-bounds:
 min-char-or-byte2: 0000
 max-char-or-byte2: 007f
 default-char: 0000
 draw-direction: LeftToRight
 min-byte1: 00
 max-byte1: 00
 all-chars-exist: True
 font-ascent: 10
 font-descent: 3
 properties: (6)
 char-infos: (128)

 0.28: Client ––> 44 bytes
 REQUEST: CreateGC
 graphic-context-id: GXC 00700003
 drawable: DWB 0008006d
 value-mask: foreground | background | font
 value-list:
 foreground: 00000001
 background: 00000000
 font: FNT 00700002
 REQUEST: NoOperation
 REQUEST: QueryBestSize
 class: Stipple
 drawable: DWB 0008006d
 width: 0020
 height: 0020
 0.30: 32 bytes <–– X11 Server
 REPLY: QueryBestSize
 width: 0020
 height: 0020
 0.34: Client ––> 512 bytes
 REQUEST: CreatePixmap
 depth: 01
 pixmap-id: PXM 00700004
 drawable: DWB 0008006d
 width: 0020
 height: 0020

 (continued)

Example xscope Output [B] UNICOS X Window System Reference Manual

56 Cray Research, Inc. SR–2101 8.0

............REQUEST: CreateGC
 graphic-context-id: GXC 00700005
 drawable: DWB 00700004
 value-mask: foreground | background
 value-list:
 foreground: 00000001
 background: 00000000
 REQUEST: PutImage
 format: Bitmap
 drawable: DWB 00700004
 gc: GXC 00700005
 width: 0020
 height: 0020
 dst-x: 0
 dst-y: 0
 left-pad: 00
 depth: 01
 data: aa aa aa aa 55 55 55 55 aa aa aa aa 55 55 55 55
 REQUEST: FreeGC
 gc: GXC 00700005
 REQUEST: CreateGC
 graphic-context-id: GXC 00700006
 drawable: DWB 0008006d
 value-mask: foreground | background | fill-style | tile | font
 value-list:
 foreground: 00000001
 background: 00000000
 fill-style: Tiled
 tile: PXM 00700004
 font: FNT 00700002
 REQUEST: NoOperation
 REQUEST: CreatePixmap
 depth: 01
 pixmap-id: PXM 00700007
 drawable: DWB 0008006d
 width: 0040
 height: 0040
 REQUEST: CreateGC
 graphic-context-id: GXC 00700008
 drawable: DWB 00700007
 value-mask: foreground | background

 (continued)

UNICOS X Window System Reference Manual Example xscope Output [B]

57Cray Research, Inc.SR–2101 8.0

 value-list:
 foreground: 00000001
 background: 00000000
 0.40: Client ––> 320 bytes
 REQUEST: PutImage
 format: Bitmap
 drawable: DWB 00700007
 gc: GXC 00700008
 width: 0040
 height: 0040
 dst-x: 0
 dst-y: 0
 left-pad: 00
 depth: 01
 data: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 REQUEST: FreeGC
 gc: GXC 00700008
 REQUEST: GetGeometry
 drawable: DWB 00700007

Example Files [C]

59Cray Research, Inc.SR–2101 8.0

This appendix contains examples of .login , .cshrc , .twmrc ,
.Xresources , and .xinitrc files. Note that the .login ,
.Xresources , and .xinitrc files should be located on the
front-end system, not the Cray Research system. These files
were tested on a Sun Workstation. Although efforts were made
to make them usable on other Sun servers and other platforms,
differences in environments might require modifications.

The following example shows a .login file:

umask 022
set ignoreeof
setenv host ‘hostname‘

set localpath=(/usr/ucb /usr/bin /bin /usr/local/bin ~/bin .)

if (‘tty‘ == ”/dev/console”) then
 setenv TERM ‘tset – Q – ’?vt100’‘
 switch ($TERM)
 case ”xterm”: # X Windowing System
 setenv DISPLAY ”${host}:0.0”
 set path=(/usr/bin/X11 $localpath)
 xinit
 kbd_mode –a
 case ”vt100”:
 set path=($localpath)
 default:
 exit
 breaksw
 endsw
 (continued)

Example .login
file
C.1

Example Files [C] UNICOS X Window System Reference Manual

60 Cray Research, Inc. SR–2101 8.0

else if (”$term” == ”dialup” || ”$term” == ”network” || \
 ”$term” == ”unknown”) then
 setenv TERM ‘tset – Q – ’?vt100’‘
 switch ($TERM)
 case ”vt100”:
 set path=($localpath)
 default:
 exit
 breaksw
 endsw
 endif
endif

The following example shows a .cshrc file:

(continued)

#
set filec
set history=32
set host=‘hostname‘
#
#display prompt in bold
#The sequence ^[is the escape character
#
set prompt=”^[[5m${host} ! % ^[[m”
#
alias lsf ”ls –CF”
alias lsl ”ls –lg”
if ($TERM == ”xterm || $TERM ==”xterms”) then
 #
 #alias to set title bar to a string
 #alias to set icon label to a string
 #the sequence ^G is a control–G
 #
 alias label ‘echo –n ”^[]2;\\!*^G”‘
 alias icon_label ‘echo –n ”^[]1;\\!*^G”‘

Example .cshrc
file
C.2

UNICOS X Window System Reference Manual Example Files [C]

61Cray Research, Inc.SR–2101 8.0

 #
 #set title bar and icon label to directory stack
 #
 alias cd ‘cd \\!*; label ${host}:’dirs’‘
 alias pushd ‘pushd \\!*; label ${host}:’dirs’‘
 alias popd ‘popd \\!*; label ${host}:’dirs’‘
 #
 #first time set up
 #
 label ${host}:’dirs’
 icon_label ${host}
 endif

The .twmrc file manipulates windows on a workstation. The
following example shows a .twmrc file:

NoTitleFocus
WarpCursor
BorderWidth 2
TitleFont ”–adobe–courier–bold–r–*––12–120–75–75–m–70–*–*”
MenuFont ”9x15”
IconFont ”9x15”
ResizeFont ”9x15”

#Button = KEYS : CONTEXT : FUNCTION
#–\|––\|––\|––\|––\|––\|––\|––\|––\|––\|––\|––\|––\|––\|––\|––\|––\|–
Button1 = : root : f.menu ”button1”
Button2 = : root : f.menu ”button2”
Button3 = : root : f.menu ”button3”
Button1 = m : root : f.menu ”button1”
Button2 = m : root : f.menu ”button2”
Button3 = m : root : f.menu ”button3”

(continued)

Example .twmrc
file
C.3

Example Files [C] UNICOS X Window System Reference Manual

62 Cray Research, Inc. SR–2101 8.0

Button1 = : icon : f.lower
Button2 = : icon : f.iconify
Button3 = : icon : f.move
Button1 = m : icon : f.lower
Button2 = m : icon : f.iconify
Button3 = m : icon : f.move
Button1 = m : window : f.lower
Button2 = m : window : f.iconify
Button3 = m : window : f.move
Button1 = m | s : window : f.lower
Button2 = m | s : window : f.resize
Button3 = m | s : window : f.raise
Button1 = m : title : f.menu ”button1”
Button2 = m : title : f.menu ”button2”
Button3 = m : title : f.menu ”button3”
Button1 = : title : f.raise
Button2 = : title : f.move
Button3 = : title : f.lower
”R2” = : icon : f.lower
”R5” = : icon : f.raise
”R2” = : window : f.lower
”R5” = : window : f.raise
NoTitle
{
 ”xclock”
 ”xping”
 ”xload”
 ”xcalc”
}

menu ”button1”
{
”Other Logins” f.title
”xterm” !”xterm –T xterm –geometry 80x34 &”
”sn218” !”xterm –T sn218 –geometry 80x34 ’#+755+1’ –e telnet sn218
&”
”sn1001” !”xterm –T sn1001 –geometry 80x34 ’#+845+1’ –e telnet
sn1001 &”
”sn2025” !”xterm –T sn2025 –geometry 80x34 ’#+1020+1’ –e telnet
sn2025 &”
}

(continued)

UNICOS X Window System Reference Manual Example Files [C]

63Cray Research, Inc.SR–2101 8.0

menu ”button2”
{
”Window Ops” f.title
”Refresh” f.refresh
”Focus on Root” f.unfocus
”Source .twmrc” f.twmrc
”twm Version” f.version
”(De)Iconify” f.iconify
”Move Window” f.move
”Resize Window” f.resize
”Raise Window” f.raise
”Lower Window” f.lower
”Focus on Window” f.focus
”Destroy Window” f.destroy
”Kill twm” f.quit
}

The .Xresources file contains client defaults which may be
used as input to xrdb as shown in the xinitrc example on page
65. The following example shows a .Xresources file with
definitions useful for csh and vi :

*VT100.translations: #override \n\
 <Key>L2:string(”history 30”) string(0x0d) \n\
 <Key>L3:string(”pushd”) string(0x0d) \n\
 <Key>L4:string(”popd”) string(0x0d) \n\
 <Key>L5:string(”dirs”) string(0x0d) \n\
 <Key>L6:string(”lsf”) string(0x0d) \n\
 <Key>L7:string(”pwd”) string(0x0d) \n\
 <Key>L8:string(”xrefresh”) string(0x0d) \n\
 <Key>L9:string(”clear”) string(0x0d) \n\
 <Key>L10:string(”!!”) string(0x0d) \n\
 <Key>F1:string(”:q”) string(0x0d) \n\
 <Key>F2:string(”:w”) string(0x0d) \n\
 <Key>F3:string(”ZZ”) \n\

(continued)

Example
.Xresources file
C.4

Example Files [C] UNICOS X Window System Reference Manual

64 Cray Research, Inc. SR–2101 8.0

 <Key>F4:string(”:!cc –c –g %”) string(0x0d) \n\
 <Key>F5:string(”!vi”) string(0x0d) \n\
 <Key>F6:string(”!make”) string(0x0d) \n\
 <Key>R7:string(0x15) \n\
 <Key>R9:string(0x04) \n\
 <Key>R13:string(0x02) \n\
 <Key>R15:string(0x06) \n\
 ~Meta Shift Ctrl <Btn2Down>:mode–menu() \n\
 ~Meta Shift Ctrl <Btn1Down>:mode–menu() \n\
 ~Meta ~Lock ~Ctrl <Btn1Down>:select–start() \n\
 ~Meta ~Lock ~Ctrl <Btn1Motion>:select–extend() \n\
 ~Ctrl ~Meta <Btn2Down>:ignore() \n\
 ~Meta <Btn2Up>:insert–selection(PRIMARY,CUT_BUFFER0) \n\
 ~Ctrl ~Meta <Btn3Down>:start–extend() \n\
 ~Meta <Btn3Motion>:select–extend() \n\
 ~Meta <BtnUp>:select–end(PRIMARY,CUT_BUFFER0) \n\
 <BtnDown>:bell(0)
xbiff.ReverseVideo: off
xtroff*geometry: –100+0
xtroff*scrollbar: off
xman*topBox.geometry 102x74+643+772
xterm.ReverseVideo: off
xterm*SaveLines: 330
xterm*TitleBar: on
xterm*font: –adobe–courier–medium–r–*––12–120–75–75–m–70–*–*
xterm*boldFont: –adobe–courier–bold–r–*––12–120–75–75–m–70–*–*

UNICOS X Window System Reference Manual Example Files [C]

65Cray Research, Inc.SR–2101 8.0

The .xinitrc file starts the X Window System environment.
The following example shows a .xinitrc file:

set host=‘hostname‘
xrdb –load .Xresources &
twm &
#
Set up for screen 1
#
xterm –geometry 80x34+0+0 –fg white –bg skyblue –display $host:0.1&
xterm –geometry 80x34–0+0 –fg white –bg maroon –display $host:0.1&
#
Set up for screen 0
#
xclock –geometry 0+0 &
xterm –geometry 80x60+0–0 –display $host:0.0&
xterm –geometry 80x55–0–0 –display $host:0.0&
#
Last item must not run in background
#
xterm –C –geometry 80x10–0+0

Example .xinitrc
file
C.5

