
UNICOS® System Calls Reference
Manual

SR–2012 10.0

���������
	 ��������������
�������������
��� �"!$#%!$���'&(�)��* +,&-).0/1/2�"	 �3�,�4#5�"!�#6!�� 7"!$82-:92�,	 #,;<�
+)=���/2���2�����
�4#5� �,!$�'!���>:;<�
�0+,�?�)@�!A�'!B���'�?8�=�&!$8C	 +D�
+)�>E���1;F=�+,/1!$#%#���!$� ;G	 �4�4!$8H@?� &��+,�4����&�,���2@?�JIK�
	 �4�4!B+J��!$� ;G	 #%#%	 ��+L��>"���
�
�G�"!$#%!$���'&(�)�,* +,&-

M �?���4	1��+,#N��>"� �,	 #"���'��8O=�&��:;<�
�<#%�4	 / /P@�!A	 +L82!B7"!$/1����;<!�+,�4-:92�,!A!$QO	 #%�4!B+,&!���>"� �,��#%!����?���4	 �+,#R#%�4	 / /S	 +D82!B7"!$/ ���;<!B+���	 #"+������H&��;0;G	 � ;<!B+��T�?>��&�� =���/2�'!$/ !$��#%!A�?�U#4=������?���?@?�V�����
�G�"!�#6!����B&E�)�,* +,&-����
�
�V�"!$#%!$���'&E�:��* +,&-,��#%#4=�;<!$#�+��W/ 	 �
@�	 / 	1� �V>E�����
+)�D8��
;G���X!$#U�'!�#Y=�/ �4	 +,�W>4�'�;Z���4�4!�;0���4#�4�R=�#%![��+:�<> =�+�&��4	 �+,��/ 	 � �<�?�U82�?&E=�;<!�+,�4���4	 �+J+,�?����>1\�&	 ��/ / �D�'!$/1!$��#6!�8C�
+,8]#4=������?���4!�8�-�*E>,	1�T	 #5�'!$/ !$��#%!$8O��� �,!H\�+���/�>E���1;Z��+�8K� ��!A�4	 ;G![�?>�?>1\�&�	1��/2�'!$/1!$��#6!H�
+,8]#%�4���
�T�?>�#Y=������?����	1#N����� �,!A82	 #%&��B!$�4	 ��+^��>������
�G�,!$#%!$���'&E�)�,* +�&�-

.R=��4�?�4��#6_X	 +,�3�"��`?���
�����X.Ta?�����
���J.082�������
���"bP��>E� �����X.Ta^a"c4d M �,���X.Ta,c%�
�����"* +,>E���1;0�,���"*Ee�f$gXh�i'j�kl	 7"�
��m�b%n"�"o2	 @�bP&�	 �:d M�M .R�����'!B+,�4	1&�!B�bPbPp,��b%q M�r �,��oOq0b%9 r �)�)qRsK*E��tub%����+�8�n,c4d MCr .v���B![>E!$8�!�����/ / �V�'!��?	 #%�4!$�'!$8 �4����82!B;<����_X#U�
+,8]w2!$&��
=�#%!l+,�5IK�?��_X#6�4���4	 �+D	 #5�
+D	 #%/ �
+,8O�,����* �����dC9?�T��`?��x
����`9?�"��`39�y��,��`9�����������+,�2=����B!B+,�:dz��	 +,�4!B+���+�&�!�9S���?/ #4����tRb%�����
�
�{.R+,	 ;G���4	1��+K9���!$���4!$� �"���X."a . M�M �,���X."a|����x
����X.Ta}����x�p"�"�����
�G��~�~]����;W��	 / 	 +,�Jb%��#%�4!B;0�,���
�
��pR��&(�����)."a r oO�,���X."a �%��x
�����X.Ta^�%��x�#%!B�"���
�
��o2	 +,_3�,�����
�JsK�Rb%������
��e2� r2r o2/ 	 @��
����	 �
+:�"���X.Ta}b6cEd M �,���X.,a|bPbPp"cE9���x������X.TaD9���x
�����X.Ta^92��p"�����).TaD92� r �������
�?9P=��4��� �"���X.Ta^n"c4d M �,���X.Ta^n"dzb6����X.Ta"cEy�����bO* dC�,�2��9?��p5!�/ 	 7"!$�
	 +,��� �,!�����I]!$�l-)-X- ��p5�5�
=�#%#4�,p5�?&E7"	 !�IU� r dLpRb%�,�5	 �?���"	 +,���m r n".0�X��*EtRb%�sKp�bP!$��	 !�#�sK!$� IK�?��_Jp5	1#6_u.0�
���
����sK!$� IK�?��_{��=�!B=�	 +,� r +:7"	 �'�+);<!�+,� ��sK!$� I]���
_W��=�!B=�	 +��59S���?/ #4��tuo�s r 9?���,�Rb%��b r �5o2pR�X�"b%d].0��9 r �b%q M�r �"o2* sKkS�"b%�"#6�4!�;�dz��	 +,�4!B+���+�&�!���+�8K�,!B;<�?�4!�92!$#%�4	 +�� r +)7,	 �'��+:;<!B+�� ��92�1=�#%�4!$8[qRs]*4��tub6�:qRsK*E��tub5d].Rn,����+�8�qRs]*4��tubOeO;<_J���'!�4�
��8�!B;G����_?#N��>"���
�
�G�"!$#%!$���'&(�)��* +�&�-

r d].0bPb[�
+,8 r �,��xA���'!��4����82!B;<����_X#U�?> r dC.0bPb%��* +�&�-�mla M�r �"&(�,�
+)+�!$/2�
+,8As]bO�^���'![�4�
��8�!�;<����_X#U�?>PsK!$� IK�?��_Jb%��#%�4!B;<#l���?� ���?�����4	 �+,-�*E�"* n	 #U�H�4����82!B;G���
_0�
+,8VbP	 / 	1&��+G�5���
���,	 &#N	1#N���'!$�?	 #%�4!$�'!�8C�4�
��8�!�;<����_X#U�?>,bP	 /1	 &��+G�5���
���,	1&�#4�,* +,&�-�kl!$�1@�!$�'�?#5	 #5�A�4�
��8�!�;<����_���>"� �,!dz��#%#%��&E�:=�#%!$�4�4#l* +�#6�4	1� =��4![�?>?9S!$&E�:+,�?/ ���3�)-XsK`?b0	 #l�H�4�
��8�!�;<����_X#U�?>,b%=�+KdL	 &�'��#4��#%�4!B;G#Y�,* +�&�-2qRsK* n�	 #5�H�'!$�X	 #%�4!$�'!$8V�4����82!B;<���
_0	 +D� �,!qR+�	 �4!$8�bP�4���4!$#5�
+,8]��� �,!��U&��=�+��4��	 !$#4�,/ 	1&�!B+�#6!�8C!$QO&�/ =�#6	 7"!$/ �G� �,�'�=���Jn5e2t,��!B+^����;W����+:� o2	 ;<	 �4!�8�-�n5e�t���!B+G	 #5�H�'!��?	 #%�4!$�'!$8V�4�
��8�!B;G����_0�?>n5e2t,��!B+ ���;0���
+)�Do��482-)92�,!ln|82!B7"	 &!A	 #5�H�4����82!B;<���
_0��>X92�,!�t,��!B+ �5�'�=���-

92�,!�qRsK*E��tub{����!$�
���4	 +,�W#4��#%�4!B;Z	 #58�!$�
	 7"!$8C>4�'�;vqRs]* n���b%�"#6�4!�;���-$92�,!lqRsK*E��tub����!$�����4	 +,��#4��#%�4!B;�	 #5��/ #%�u@���#%!$8]	 +������
�"�+ � �,!`X��=��
� �<w2!$�
_?!$/ !B� bP��>E� IK���'![pR	 #%�4��	 @?=��4	 ��+L�4w2bPp5�)=�+�82!$��/ 	 &!B+,#%!�>E�'�;v92�,!A�"!$�?!�+,�4#5��>"� �,!UqR+,	 7"!$��#%	 � �V�?>�����/ 	1>4�?� +,	1��-

New Features

UNICOS ® System Calls Reference Manual SR–2012 10.0

�5�l���0�V�%���<�|���S�$�%�$�����?�(�(�W�H� ���� ��¡�¢��[£¤�?¡�¥��?�(¦l§0¨�©Sª¬«H��P��©2¨3®X�°¯U±5²�³'´'®?©Sµ
´'¶�·¬¸"«�¹SºS»S¼Sº2¦N´'·l®?¶,¨�¯U¶�¨�©Sµ
��]µ
�l�L½6¶,³'³'¶�¾L´'·l¿
µ6�:®X�l·l´'®?©S³5®?�l©S·l¿���C½6¶,¨Wµ6�l�^À<Á^Â%§WÃ<¸z¼S»lÄ »z¨3��³'�:©SP��Ä5Â6·Å©SÆ5Æ5´'µ
´'¶�·l¦NÇ�´'P®?��³'³'©S·l�:¶�±NKµ
��®?�l·l´'®?©S³'¦U��ÆN´'µ6¶,¨�´'©2³'¦l©S·lÆ
½6¶�¨�Ç�©Sµ
µ6´'·l¿|®?�l©S·l¿��:C�l©SÈ��D²����:·°Ç�©SÆ5� µ
�l¨3¶,±N¿��l¶,±Nµ�µ6�l� Ç�©2·l±N©S³3Ä
�5�l� ½%¶,³'³'¶,¾L´'·l¿¬Pª��µ
��ÇÉ®?©S³'³'C©2¨3�^·l�:¾ÅÊ

getash Ë º2Ì ÍC��µ
V©S·¬©S¨�¨�©2ª���:�P´'¶,·Î�l©S·lÆN³'�
newarraysess Ë ºSÌ ¸�µ6©S¨�µ
]©z·l��¾Ï©S¨�¨�©2ª���:�P´'¶,·
setash Ë º2Ì ¸���µ6C©S·¬©S¨�¨�©2ªÅP��PP´'¶�·}�l©S·lÆN³'�
statvfs Ë ºSÌ ÍC��µ
VÐN³'�GPª��µ
��ÇÑ´'·l½6¶�¨�Ç�©Sµ
´'¶�·
syssgi Ë º2Ì ÒN¨3¶�È�´'Æ5�:V©^Pª�Pµ
��ÇÉ´'·lµ
��¨�½%©2®X�Dµ
¶�¸�´'³'´'®X¶,·ÅÍC¨�©S¯N�l´'®?

¾L¶,¨�Ó�Pµ6©Sµ
´'¶�·l
�5�l� ½%¶,³'³'¶,¾L´'·l¿¬Pª��µ
��ÇÉ®?©S³'³'C�l©2È�� ²�����·°±N¯NÆ5©2µ6��Æ{Ê

acctctl Ë ºSÌ ¸�±N¯N¯N¶�¨�µ
Cµ6�l� P¶,®XÓ���µ[©S®?®X¶,±N·lµ6´'·l¿�½6��©Sµ
±N¨3��¦U¾L�l´'®?�
µ
¨�©S®?Ó�V·l�:µ6¾L¶,¨�Ó�±NP©S¿��D½6¨3¶,ÇÑµ
�l� ¯N��¨��¯U��®?µ6´'È��D¶�½
P¶�®?Ó���µ

limit Ë ºSÌ §W¶,·lµ
©S´'·l]©z·l��¾Ô³'´'Ç�´'µHÈ�©S³(±5� ¶�½
NO_CORE_FILES½6¶�¨�µ
�l�

L_CORË
3��P¶�±N¨3®?�Lµ
¶�Æ5´'P©S²�³'�^®?¶�¨3� ÐN³'�

®?¨3��©Sµ
´'¶�·
quotactl Ë ºSÌ ¸�±N¯N¯N¶�¨�µ
Cµ6�l� ¶,¯Nµ6´'¶,·l©S³u©2¿�¿�¨3��¿�©Sµ6� Õ�±N¶,µ6©^½%�:©Sµ6±N¨3��Ä

Record of Revision

Öl×2ØPÙ2Ú?Û"Ü ÝÞ×2Ù�ß2ØPÚ3à{á�Ú?Û"Ü
¼lÄ » â�©S¨3®?�°¼SãSã2ä

ÃG¨�´'¿�´'·l©S³RÒN¨�´'·lµ
´'·l¿uÄ5åV¶,®?±NÇ���·lµ6©2µ6´'¶,·}µ6¶}P±N¯N¯N¶,¨�µAµ
�l�LÀVÁLÂ6§WÃ<¸Þ¨3�:³'��©SP�L¼lÄ »L¨�±N·l·l´'·l¿�¶,·
§W¨�©Sª|®X¶,Ç�¯N±Nµ
��¨JPª��µ
��Ç�SÄ

¼lÄ ¼ æ6±N·l� ¼2ãSçSä
ÃG·�³'´'·l�GÆ5¶�®?±NÇ���·lµ
©Sµ
´'¶�·°¶,·l³'ª¬µ
¶�P±N¯N¯N¶,¨�µ�µ
�l� À<Á^Â%§WÃ<¸|¨3�:³'��©SP� ¼lÄ ¼z¨�±N·l·l´'·l¿¬¶,·}§0¨�©Sª
®?¶�Ç�¯N±Nµ
��¨JPª�Pµ6��Ç�SÄ

ºlÄ » ¸"�:¯Nµ6�:Ç�²���¨W¼Sã2çSä
åV¶�®?±NÇ���·lµ
©Sµ
´'¶�·}µ
¶�P±N¯N¯N¶,¨�µ[µ6�l� ÀVÁLÂ%§0ÃG¸�¨3��³'��©SP� ºlÄ »L¨�±N·l·l´'·l¿¬¶,·}§0¨�©2ª}®?¶�Ç�¯N±Nµ
��¨
Pª�Pµ6�:Ç�SÄ

èlÄ » æ6±N³'ª|¼SãSç2é
åV¶�®?±NÇ���·lµ
©Sµ
´'¶�·}µ
¶�P±N¯N¯N¶,¨�µ[µ6�l� ÀVÁLÂ%§0ÃG¸�¨3��³'��©SP� èlÄ »L¨�±N·l·l´'·l¿¬¶,·}§0¨�©2ª}®?¶�Ç�¯N±Nµ
��¨
Pª�Pµ6�:Ç�SÄ

êlÄ » æ6±N³'ª|¼SãSç2ç
åV¶�®?±NÇ���·lµ
©Sµ
´'¶�·}µ
¶�P±N¯N¯N¶,¨�µ[µ6�l� ÀVÁLÂ%§0ÃG¸�¨3��³'��©SP� êlÄ »L¨�±N·l·l´'·l¿¬¶,·}§0¨�©2ª}®?¶�Ç�¯N±Nµ
��¨
Pª�Pµ6�:Ç�SÄ

ëlÄ » æ6©S·l±N©S¨�ª|¼SãSç2ã
åV¶�®?±NÇ���·lµ
©Sµ
´'¶�·}µ
¶�P±N¯N¯N¶,¨�µ[µ6�l� ÀVÁLÂ%§0ÃG¸�¨3��³'��©SP� ëlÄ »L¨�±N·l·l´'·l¿¬¶,·}§0¨�©2ª}®?¶�Ç�¯N±Nµ
��¨
Pª�Pµ6�:Ç�SÄ

älÄ » ì��:²�¨�±N©S¨�ª�¼2ãSãS¼
åV¶�®?±NÇ���·lµ
©Sµ
´'¶�·}µ
¶�P±N¯N¯N¶,¨�µ[µ6�l� ÀVÁLÂ%§0ÃG¸�älÄ »z¨3�:³'��©SP� ¨�±N·l·l´'·l¿¬¶,·}©2³'³u§W¨�©Sª}«���P��©S¨3®?�
Pª�Pµ6�:Ç�SÄ

élÄ » ¸"�:¯Nµ6�:Ç�²���¨W¼Sã2ãSº
åV¶�®?±NÇ���·lµ
©Sµ
´'¶�·}µ
¶�P±N¯N¯N¶,¨�µ[µ6�l� ÀVÁLÂ%§0ÃG¸�élÄ »z¨3�:³'��©SP� ¨�±N·l·l´'·l¿¬¶,·}©2³'³u§W¨�©Sª}«���P��©S¨3®?�
Pª�Pµ6�:Ç�SÄ

çlÄ » æ6©S·l±N©S¨�ª|¼SãSã2ê
åV¶�®?±NÇ���·lµ
©Sµ
´'¶�·}µ
¶�P±N¯N¯N¶,¨�µ[µ6�l� ÀVÁLÂ%§0ÃG¸�çlÄ »z¨3�:³'��©SP� ¨�±N·l·l´'·l¿¬¶,·}©2³'³u§W¨�©Sª}«���P��©S¨3®?�
Pª�Pµ6�:Ç�SÄ

ãlÄ » í<±N¿�±NPµ[¼SãSãSë
åV¶�®?±NÇ���·lµ
©Sµ
´'¶�·}µ
¶�P±N¯N¯N¶,¨�µ[µ6�l� ÀVÁLÂ%§0ÃG¸�ãlÄ »z¨3�:³'��©SP� ¨�±N·l·l´'·l¿¬¶,·}©2³'³u§W¨�©Sª}«���P��©S¨3®?�
Pª�Pµ6�:Ç�SÄ

SR–2012 10.0 i

UNICOS® System Calls Reference Manual

ãlÄ è í<±N¿�±NPµ[¼SãSãSé
åV¶�®?±NÇ���·lµ
©Sµ
´'¶�·}µ
¶�P±N¯N¯N¶,¨�µ[µ6�l� ÀVÁLÂ%§0ÃG¸�ãlÄ èz¨3�:³'��©SP� ¨�±N·l·l´'·l¿¬¶,·}©2³'³u§W¨�©Sª}«���P��©S¨3®?�
Pª�Pµ6�:Ç�SÄ

¼S»lÄ » ÁL¶,È��:Ç�²���¨J¼SãSãSé
åV¶�®?±NÇ���·lµ
©Sµ
´'¶�·}µ
¶�P±N¯N¯N¶,¨�µ[µ6�l� ÀVÁLÂ%§0ÃG¸�¼S»lÄ »^¨3�:³'��©SP�L¨�±N·l·l´'·l¿¬¶,·}§W¨�©Sª}«���P��©S¨3®?�
Pª�Pµ6�:Ç�SÄN�5�l�^ÁL��¾îì��:©Sµ6±N¨3�:<¯N©S¿�� ¯N¨3¶,È�´'ÆN��VÆ5��µ
©S´'³'��Æ°´'·l½6¶�¨�Ç�©Sµ
´'¶�·Å©S²�¶�±Nµ�µ
�l� �ª�Pµ6�:Ç
®?©S³'³R®?�l©S·l¿���CÆ5¶,®?±NÇ���·lµ6�:Æ°´'·Åµ6�l´'VÇ�©S·l±N©S³3Ä

ii SR–2012 10.0

Preface

�5�l´'V¯N±N²�³'´'®X©2µ6´'¶,·}Æ5¶,®X±NÇ��:·lµ6]µ
�l�LÀVÁLÂ%§0ÃG¸z¼S»lÄ »z¨3�:³'��©SP� ¨�±N·l·l´'·l¿¬¶,·}§0¨�©2ª}«H�:��:©S¨3®?�
Pª��µ
��Ç�C©S·lÆÎ�±N¯N¯U³'��Ç���·lµ
]µ6�l� ´'·l½6¶,¨�Ç�©2µ6´'¶,·}®?¶,·lµ6©S´(·l��ÆF´'·�µ6�l� ¶,µ
�l��¨KÇ�©S·l±N©S³'�´'·Åµ
�l�
ÀVÁLÂ%§0ÃG¸�Æ5¶�®?±NÇ���·lµ
©Sµ
´'¶�·°P��µ�ÄRÂ6µ[Æ5��P®?¨�´'²��:Cµ
�l� À<Á^Â%§WÃ<¸|Pª�Pµ6��Çï®X©2³'³'�¦�¾L�l´'®X�
©S®?®?��PVµ
�l� P��¨�È�´'®?��V¯N¨3¶,È�´'ÆN��Æ�²�ª¬µ6�l� Pª�Pµ6��ÇïÓ���¨�·l��³3Ä
�5�l´'V´']©z¨3�:½6��¨3��·l®?�^Ç�©S·l±N©S³5½6¶�¨�À<Á^Â%§WÃ<¸z¯N¨3¶,¿�¨�©SÇ�Ç���¨�SÄu«H�:©SÆ5��¨�]P�l¶,±N³'ÆF�l©SÈ��D©
¾L¶,¨�Ó�´'·l¿¬Ó�·l¶�¾L³'�:Æ5¿��D¶�½[��´'µ6�l�:¨�µ6�l�^À<Á^Â%§WÃ<¸z¶�¨�µ
�l� À<Á^Â%ðñ¶�¯U��¨�©2µ6´'·l¿�Pª�Pµ6��Ç�Ä

Related publications
�5�l�^½%¶,³'³'¶,¾L´'·l¿¬Ç�©S·}¯N©2¿��^Ç�©S·l±N©S³']®X¶,·lµ
©S´'·}©SÆ5Æ5´'µ
´'¶,·l©S³u´'·l½6¶�¨�Ç�©Sµ
´'¶�·Åµ6�l©Sµ�Ç�©Sª|²��
�l��³(¯N½%±N³3Ä
òLó�ô6õSö ì�¶,¨�µ
�l� À<ÁLÂ6§WÃ<¸Þ¼2»lÄ »z¨3��³'��©SP��¦lÇ�©S·}¯N©S¿��L¨3�:½6��¨3��·l®?�^Ç�©S·l±N©S³']©S¨3�D·l¶�µ
¶,¨3Æ5��¨�©S²�³'�L´'·Å¯N¨�´'·lµ
��Æ�²�¶,¶�Ó�½6¶,¨�Ç�ÄRÂ%·lPµ6�:©SÆ5¦�µ
�l��ª}©S¨3�D©SÈ�©S´'³'©S²�³'�^©2]¯N¨�´'·lµ
©S²�³'�
ÒN¶,�µ
¸�®X¨�´'¯Nµ�ÐN³'��C¯N¨3¶�È�´'Æ5�:ÆF¶,·°µ
�l� �©2Ç��^åVª�·�©S÷Å��²|§0åø©S]µ
�l� ¨3��Pµ�¶,½�µ
�l�
P±N¯N¯N¶,¨�µ
´'·l¿}Æ5¶�®?±NÇ���·lµ
]½6¶�¨�µ
�l´']¨3��³'��©SP��ÄNÂ%·lÆN´'È�´'Æ5±N©2³[Ç�©2·Å¯U©S¿��:C©2¨3�^Pµ
´'³'³
©SÈ�©S´'³'©S²�³'�D¶�·l³'´'·l�D©S·lÆ�®?©S·}²��^©S®?®?��P��:ÆF²�ª¬±NP´'·l¿|µ
�l�

manË ¼SÌH®?¶,Ç�Ç�©S·lÆ{Ä
ù �0�V�6�H�V���0�$�� ���úX�V�<�?¡�ûS�J�H� �?�� ��¡�¢O�A£¤�X¡�¥��X�E¦U§0¨�©2ª�«���P��©S¨3®?�°¯N±N²�³'´'®?©Sµ6´'¶,·
¸�«H¹Sº2»S¼S¼

ù �0�V�6�H�V��ü�ý(�(�Wü�ú? ��V�X�6�W�?¡�ûÞ��þS��¢OýE�?�5ü�ý(�(�$�J��� �?�$ 3�$¡�¢��[£¤�?¡�¥��?�(¦l§W¨�©Sª}«���P��©S¨3®?�
¯N±N²�³'´'®?©Sµ6´'¶,·}¸�«H¹2ºS»S¼Sê

ù �0�V�6�H�V� ÿ ûS�Vý(¡�ý(���6 ��?�6ú? J�Hú?�<�V�?¡�ûS�J��� �?�$ 3�$¡�¢��[£¤�?¡�¥��?�(¦l§W¨�©Sª}«���P��©S¨3®?�
¯N±N²�³'´'®?©Sµ6´'¶,·}¸�«H¹2ºS»SºSº

ù �0�V�6�H�V�����S���6������ý��: $�X $ý(���W�H� �?�� ��¡�¢O�A£¤�X¡�¥��X�E¦U§0¨�©2ª}«H�:��:©S¨3®?�°¯N±N²�³'´'®X©2µ6´'¶,·
¸�«H¹Sº2»SçS»

�5�l�^½%¶,³'³'¶,¾L´'·l¿¬¨3�:©SÆ5ª�¨3��½6��¨3�:·l®?��<©2¨3�^©2È�©S´'³(©S²�³'�^´'·Å¯N¨�´'·lµ6��ÆÎ½6¶�¨�ÇÑ½6¨3¶,ÇÉµ
�l�
åV´'Pµ6¨�´'²�±Nµ6´'¶,·Î§W��·lµ
��¨:Ê
ù �0�V�6�H�V���0�$�� ���úX�V�<�?¡�ûS�J�H�$�Xû2�^��� �?�� ��¡�¢O�$¦5§0¨�©2ª�«���P��©S¨3®?�°¯N±N²�³'´'®?©Sµ6´'¶,·°¸��<¹Sº2»SëSä
ù �0�V�6�H�V�����S���6������ý��: $�X $ý(���W�H�$�Xû2�z�H� ���� ��¡�¢���¦l§0¨�©2ª}«H�:��:©S¨3®?�°¯N±N²�³'´'®X©2µ6´'¶,·}¸��<¹Sº2¼SêSé
ù �0�V�6�H�V�����S���6��� �H�?�(�E�J�����?ûS�z�H� �?�� ��¡�¢O��¦�§W¨�©Sª}«H�:��:©S¨3®?�°¯N±N²�³'´'®?©Sµ6´'¶,·}¸��G¹2ºSºS¼Së
ù �0�V�6�H�V� ÿ ûS�Vý(¡�ý(���6 ��?�6ú? J�Hú?�<�V�?¡�ûS�J�����?ûS�z��� �?�$ 3��¡�¢O�$¦l§W¨�©Sª}«���P��©S¨3®?�¬¯N±N²�³'´'®X©2µ6´'¶,·
¸��G¹2ºSêS¼Sè

SR–2012 10.0 iii

UNICOS® System Calls Reference Manual

�5�l�^½%¶,³'³'¶,¾L´'·l¿¬Ç�©S·l±N©2³'C©S¨3�D©S³'P¶�¨3��½6��¨3�:·l®?��Æ�¶�·°Ç�©S·}¯N©2¿���]´'·Îµ6�l´']ÆN¶�®?±NÇ���·lµ�Ê
ù�� �?þS�K��¥	�)���2���6��� �{���� �
 ��J¥�ýEûS��¦U§0¨�©Sª¬«H��P��©2¨3®X�°¯U±5²�³'´'®?©Sµ
´'¶�·¬¸"ÍC¹Sº2»SëS¼
ù ÿ þSþS�Eý(¢��X�6ý(ú?¡��5 ú��l ��?�<�V�� �
 ����ý��) ��? ��L��� �?�$ 3��¡�¢O�A£¤�?¡�¥��?�(¦l§W¨�©Sª}«���P��©S¨3®?�°¯N±N²�³'´'®?©Sµ6´'¶,·
¸�«H¹Sº2¼SäSë

ù �J��¡��� ��?���0�V�6�H�V�����S���6���¤ÿ ûS�<ýE¡�ýE���6 ��?�%ýEú?¡�¦l§W¨�©Sª}«H�:��:©S¨3®?�°¯N±N²�³'´'®?©Sµ6´'¶,·}¸�ÍC¹SºSèS»S¼
ù �0�V�6�H�V���<�$���JúX ��XýE¡��°ü��X¢�ý(�(ýE�6ý(���uÿ û2�<ý(¡�ý(�$�% $�X�6ú? �
 ���J¥�ýEûS��¦�§W¨�©Sª}«���P��©S¨3®?�
¯N±N²�³'´'®?©Sµ6´'¶,·}¸�ÍC¹SºSèS»2ê

Ordering Cray Research publications
�5�l�}�0���$ �5¥��)�(ý(¢��X�6ýEúX¡��J�H�?�6�?�(ú��l¦N§0¨�©Sª|«H�:��:©S¨3®?�°¯N±N²�³'´'®?©Sµ6´'¶,·°§WÒN¹S»S»Sã2ãS¦�Æ5��P®?¨�´'²��:Cµ
�l�
©SÈ�©S´'³'©S²�´'³'´'µ
ª}©S·lÆÎ®X¶,·lµ
��·lµ[¶�½�©S³'³N§W¨�©Sª}«���P��©S¨3®?�°�l©S¨3ÆN¾z©2¨3�L©S·lÆ�P¶,½%µ
¾L©S¨3�DÆN¶�®?±NÇ���·lµ

µ
�l©Sµ�©S¨3�D©SÈ�©S´'³'©S²�³'�^µ
¶�®?±NPµ6¶,Ç���¨�TÄR§0¨�©2ª�«���P��©S¨3®?�°®?±N�µ
¶,Ç���¨�V¾L�l¶|P±N²�P®X¨�´'²��^µ
¶�µ
�l�
§0¨�©Sª¬Â%·l½6¶�¨�Ç Ë §W«HÂ6·l½6¶�¨�Ç�Ì�¯U¨3¶�¿�¨�©2Ç ®?©S·Å©S®?®?��PVµ
�l´']´'·l½6¶�¨�Ç�©Sµ
´'¶�·Å¶�·¬µ6�l�^§W«�Â%·l½6¶�¨�Ç
Pª��µ
��Ç�Ä
�"¶�¶�¨3Æ5�:¨J©zÆN¶�®?±NÇ���·lµ
¦U�:´'µ6�l�:¨K®?©S³'³5µ6�l� åV´'Pµ6¨�´'²�±Nµ6´'¶,·Å§W�:·lµ6��¨K´'·Åâ���·lÆ5¶,µ6©��L�:´'¿��lµ
P¦
â�´'·l·l��P¶,µ6©S¦U©Sµ��N¼S¹Sä2¼SºS¹SäSç2èS¹SëSãS»Sé2¦U¶,¨�P��·lÆ�©^½6©S®?P´'Ç�´'³'�D¶,½�ª�¶�±N¨J¨3��Õ�±N��Pµ[µ
¶�½6©��
·l±NÇ�²���¨ �5¼S¹2äS¼SºS¹Sê2ëSºS¹S»S¼Sê2¼lÄR§W¨�©Sª�«���P��©S¨3®?�°��Ç|¯N³'¶�ª�����CÇ�©Sª�P��·lÆ���³'��®?µ
¨3¶�·l´'®GÇ�©2´'³
µ
¶

orderdsk Ë ÀVÁLÂ6ð Pª��µ
��ÇÉ±NP��¨�PÌOÄ
§0±5Pµ
¶�Ç��:¨�C¾L�l¶|P±N²��®?¨�´'²��^µ
¶�µ
�l�L§0«HÂ6·l½%¶,¨�Çï¯N¨3¶,¿�¨�©SÇÉ®X©2·Å¶�¨3ÆN��¨KP¶,½%µ
¾L©S¨3�L¨3��³'�:©SP�
¯N©2®XÓ�©S¿���V��³'�:®Xµ
¨3¶,·l´'®X©S³'³(ª�²�ª¬±N�´'·�¿}µ
�l�

Order Cray Software
¶�¯Uµ6´'¶,·�Ä

§0±5Pµ
¶�Ç��:¨�C¶,±Nµ6P´'Æ5�D¶,½�µ
�l�LÀV·l´'µ6�:Æ�¸"µ
©Sµ
��C©2·lÆ�§W©S·l©2Æ5©LP�l¶�±N³'ÆF®?¶,·lµ6©S®?µ[µ
�l��´'¨�³'¶,®?©S³
P��¨�È�´'®X�^¶,¨3¿�©S·l´"!S©Sµ
´'¶�·Å½6¶�¨�¶,¨3Æ5��¨�´'·l¿¬©S·lÆ�ÆN¶�®?±NÇ���·lµ
©Sµ6´'¶,·°´'·l½6¶,¨�Ç�©2µ6´'¶,·�Ä

Conventions
�5�l�^½%¶,³'³'¶,¾L´'·l¿¬®?¶,·lÈ��:·lµ6´'¶,·lV©2¨3�^±NP��Æ°µ
�l¨3¶�±N¿��l¶�±Nµ�µ
�l´']Æ5¶,®X±NÇ��:·lµOÊ
§ ¶ · È � · µ ´ ¶ · â � © · ´ · ¿
command

�5�l´']Ð#����Æ#$%P¯N©S®?�D½6¶,·lµ�Æ5�:·l¶�µ
��C³'´'µ
��¨�©S³u´'µ
��Ç�KP±5®?�Å©S
®?¶�Ç�Ç�©2·lÆ5P¦�Ð5³'�:�¦l¨3¶,±Nµ6´'·l��P¦U¯N©Sµ
�Å·l©SÇ��:�¦U�´'¿�·l©S³'P¦
Ç���PP©S¿���P¦l©S·lÆÎ¯N¨3¶�¿�¨�©SÇ�Ç�´'·l¿¬³'©S·l¿�±N©2¿��^Pµ
¨�±N®?µ
±5¨��SÄ

manpage Ë�% Ì â�©S·Å¯N©S¿��^��:®Xµ
´'¶,·Å´'Æ5��·lµ
´'Ð5�:¨�]©S¯N¯N�:©S¨J´'·
¯N©S¨3�:·lµ6�l��P�:V©S½6µ
��¨JÇ�©S·°¯N©S¿�� ·l©SÇ���SÄ5�5�l�D½6¶,³'³'¶�¾L´'·l¿
³'´'Pµ�ÆN��P®X¨�´'²���]µ6�l�^´'Æ5��·lµ
´'ÐN��¨�TÊ

iv SR–2012 10.0

Preface

¼ ÀV��:¨]®?¶�Ç�Ç�©S·lÆN
¼�& ÀV��:¨]®?¶�Ç�Ç�©S·lÆNC¯U¶�¨�µ6�:ÆÎ½6¨3¶�Ç'&5¸�å
º ¸�ª��µ
��ÇÑ®?©S³'³'
è (5´'²�¨�©S¨�ª¬¨3¶�±Nµ
´'·l��P¦UÇ�©S®?¨3¶�P¦U©2·lÆ

¶,¯NÆ5��½6
ê åV��È�´'®?�� Ë P¯N��®?´'©S³5ÐN³'��PÌêSÒ ÒN¨3¶,µ6¶,®?¶�³'
ë ì�´'³'�D½6¶�¨�Ç�©Sµ

é â�´'P®X�:³'³'©S·l��¶,±NVµ6¶,¯N´'®?
éSå åV÷)&#$%¨3�:³'©Sµ6�:ÆF´'·l½%¶,¨�Ç�©Sµ6´'¶,·
ç íVÆ5Ç�´'·l´'Pµ6¨�©Sµ
¶�¨K®?¶�Ç�Ç�©2·lÆ5
¸�¶�Ç��D´'·lµ
��¨�·l©2³u¨3¶,±Nµ6´'·l�: Ë ½6¶,¨K���T©SÇ�¯N³'�:¦Uµ
�l�
_assign_asgcmd_info Ë ÌH¨3¶,±Nµ6´'·l��Ì[Æ5¶�·l¶,µ[�l©SÈ��Ç�©S·}¯N©S¿���V©SP�¶,®?´'©Sµ6�:ÆÎ¾L´'µ6�}µ6�l��Ç�Ä

* �? �ýE�+�)�E� Â%µ
©S³'´'®<µ
ª�¯N�:½%©2®X� Æ5��·l¶,µ6�:CÈ�©S¨�´'©S²�³'�D��·lµ
¨�´'��]©2·lÆ�¾L¶�¨3Æ5
¶,¨�®?¶�·l®?��¯Nµ
K²���´'·l¿¬Æ5�:Ð5·l�:Æ{Ä

user input
�5�l´']²�¶�³'Æ5¦�Ð#���:Æ,$6�¯N©2®X� ½%¶,·lµ�ÆN��·l¶�µ
��]³'´'µ6��¨�©S³u´'µ
��Ç�
µ
�l©Sµ�µ6�l� ±NP��¨���·lµ
��¨�]´'·Å´'·lµ
��¨�©2®Xµ
´'È��DP��P�´'¶,·lSÄ
Ã<±Nµ6¯N±NµH´'KP�l¶,¾z·Å´'·Å·l¶,·l²�¶,³'Æ5¦lÐ#�T��Æ,$6P¯N©S®?�D½6¶�·lµ�Ä

-/. &5¨�©S®?Ó��:µ6C�:·l®X³'¶,P� ¶,¯Nµ6´'¶,·l©S³u¯U¶�¨�µ6´'¶,·lC¶,½�©z®?¶,Ç�Ç�©S·lÆ
¶,¨�Æ5´'¨3��®?µ
´'È��D³'´'·l��Ä

ÄYÄYÄ 05³'³'´'¯NP��K´'·lÆ5´'®?©Sµ
�Lµ6�l©Sµu©z¯N¨3��®?��Æ5´'·l¿���³'��Ç��:·lµ�®?©S·Å²��
¨3��¯N�:©Sµ6�:Æ{Ä

�5�l�^½%¶,³'³'¶,¾L´'·l¿¬Ç�©S®?�l´'·l�D·l©SÇ�´'·l¿¬®?¶,·lÈ��:·lµ6´'¶,·lKÇ�©Sª}²�� ±NP��Æ�µ6�l¨3¶,±N¿��l¶,±Nµ�µ
�l´'
Æ5¶,®?±NÇ���·lµOÊ
� � ¨ Ç å � Ð · ´ µ ´ ¶ ·
§0¨�©Sª¬Ò,1JÒÎPª�Pµ
��Ç� í<³'³5®?¶�·lÐN¿�±N¨�©Sµ
´'¶,·lV¶,½�§W¨�©Sª}¯U©S¨�©2³'³'��³NÈ��:®Xµ
¶�¨

¯N¨3¶,®?��P�´'·l¿ Ë Ò#1JÒNÌ�Pª��µ
��Ç�SÄ
§0¨�©Sª¬âFÒNÒÎPª�Pµ6��Ç� í<³'³5®?¶�·lÐN¿�±N¨�©Sµ
´'¶,·lV¶,½�µ
�l�L§0«Hí32ñ�5èSå P��¨�´'��SÄ5�5�l�

À<Á^Â%§WÃ<¸z¶�¯U��¨�©2µ6´'·l¿}Pª�Pµ
��ÇÉ´'C·l¶�µ[P±N¯N¯N¶,¨�µ
��Æ�¶,·
§W«�í42 �5è�0�Pª��µ
��Ç�SÄR§0«Hí32ñ�5è�0ÎPª�Pµ6�:Ç�C¨�±N·}µ
�l�
À<Á^Â%§WÃ<¸#5�Ç�Ó�¶�¯U��¨�©2µ6´'·l¿}Pª�Pµ
��Ç�Ä

SR–2012 10.0 v

UNICOS® System Calls Reference Manual

íV³'³A§W¨�©Sª|«H��P��©2¨3®X�
Pª��µ
��Ç�

í<³'³5®?¶�·lÐN¿�±N¨�©Sµ
´'¶,·lV¶,½�§W¨�©Sª}Ò#1JÒÎ©S·lÆ�§0¨�©Sª|â�ÒNÒ
Pª�Pµ
��Ç�Cµ
�l©Sµ��±N¯N¯U¶�¨�µ�µ
�l´']¨3��³'��©SP��Ä

�5�l�^Æ5��½6©S±N³'µ[P�l��³'³u´'·Åµ
�l� À<ÁLÂ6§WÃ<¸|©S·lÆ�ÀVÁLÂ6§WÃ<¸,5�Ç�Ó�¶,¯N��¨�©Sµ
´'·l¿ÅPª�Pµ6��Ç�P¦l¨3�:½6��¨�¨��Æ
µ
¶�´'·Å§0¨�©Sª|«H�:��:©S¨3®?�°Æ5¶,®X±NÇ��:·lµ6©Sµ
´'¶�·Å©S]µ6�l� �$�%�?¡�ûS�? �û^�76S�$�(�(¦�´'V©DÈ���¨�P´'¶,·Å¶�½[µ6�l�98J¶,¨�·
P�l��³'³uµ
�l©Sµ�®?¶�·l½6¶,¨�Ç�]µ
¶�µ
�l�^½%¶,³'³'¶,¾L´'·l¿¬Pµ6©2·lÆ5©S¨3Æ5SÊ
ù Â%·lPµ
´'µ6±Nµ
�D¶,½�05³'�:®Xµ
¨�´'®X©2³u©S·lÆ:0N³'��®?µ6¨3¶,·l´'®?;05·l¿�´'·l����¨� Ë Â�0,0,05ÌHÒ5¶,¨�µ6©S²�³'� ÃG¯U��¨�©Sµ6´'·l¿¸�ª�Pµ
��ÇïÂ%·lµ
��¨�½6©2®X� Ë ÒNÃ<¸�Â%ð�Ì[¸"µ
©S·lÆ5©2¨3Æv¼S»S»2èlÄ ºS¹S¼Sã2ãSº
ù ð<5"Ã<¯N��·}ÒN¶�¨�µ6©2²�´(³'´'µ6ª�ÍC±N´'Æ5��¦lÂ6P�±N�Dê Ë ð�Ò5ÍCê2Ì
�5�l� À<Á^Â%§WÃ<¸z©S·lÆÅÀ<ÁLÂ6§WÃ<¸,5�Ç�Ó�¶,¯N��¨�©Sµ
´'·l¿�Pª�Pµ
��Ç�K©2³'�¶ÞP±N¯N¯N¶,¨�µuµ6�l� ¶,¯Nµ
´'¶�·l©S³N±NP�
¶,½�µ6�l� § P�l��³'³3Ä
§0¨�©Sª¬À<ÁLÂ6§WÃ<¸=1N�:¨�P´'¶,·°¼S»lÄ »z´'K©S·°ð<5"Ã<¯N��·>&5©SP�^ãSë^²�¨�©S·lÆ5�:ÆF¯N¨3¶,Æ5±N®?µOÄ

Man page sections
�5�l�^��·lµ6¨�´'��K´'·Åµ6�l´']ÆN¶�®?±NÇ���·lµH©2¨3�^²�©SP�:Æ�¶,·}©z®?¶�Ç�Ç�¶,·Å½6¶�¨�Ç�©Sµ�ÄR�5�l� ½%¶,³'³'¶,¾L´'·l¿¬³'´'Pµ
P�l¶,¾zCµ6�l� ¶,¨3Æ5��¨�¶�½�P��®?µ
´'¶�·l�´'·Å©S·°��·lµ
¨�ª¬©S·lÆ�Æ5�:�®?¨�´'²���]��©S®?�ÅP��®?µ6´'¶,·�Ä5â�¶�Pµ���·lµ
¨�´'��
®?¶,·lµ6©S´'·°¶,·l³'ª¬©zP±5²�P��µA¶�½[µ6�l�:��DP��®?µ
´'¶�·lSÄ
¸ � ® µ ´ ¶ · � � © Æ ´ · ¿ å � ® ¨ ´ ¯ µ ´ ¶ ·
ÁLíVâ:0 ¸�¯N��®?´'ÐN��Vµ
�l� ·l©SÇ�� ¶,½�µ6�l� ��·lµ
¨�ª¬©S·lÆ�²�¨�´'��?5ª|Pµ6©Sµ
��

´'µ
C½6±N·l®?µ6´'¶,·�Ä
¸�2HÁ^ÃGÒN¸�Â%¸ ÒN¨3��P��·lµ
Cµ
�l�LPª�·lµ6©��L¶�½[µ6�l�^��·lµ
¨�ªTÄ
Â6âFÒ#(,05â:05Á^�,íW�5Â6ÃGÁ Â%ÆN��·lµ6´'ÐN��Kµ
�l�L§0¨�©Sª|«H�:��:©S¨3®?�°Pª�Pµ6�:Ç�Cµ6¶|¾L�l´'®?�Åµ
�l�

��·lµ
¨�ª�©S¯N¯N³'´'��SÄ
¸��,íVÁLåVí<«�å<¸ ÒN¨3¶�È�´'Æ5�:V´'·l½%¶,¨�Ç�©Sµ6´'¶,·¬©S²�¶�±Nµ�µ
�l�L¯U¶�¨�µ6©S²�´'³'´'µ
ª¬¶,½�©

±Nµ6´'³'´'µ
ª�¶,¨�¨3¶�±Nµ
´'·l��Ä
å;05¸�§W«�Â%ÒN�5Â%Ã<Á åV´'P®X±NPP��Cµ
�l� ��·lµ
¨�ª¬´'·ÅÆN��µ6©2´'³3Ä
ÁLÃ<�,05¸ ÒN¨3��P��·lµ
C´'µ
��Ç�C¶�½[¯N©S¨�µ6´'®?±N³'©S¨J´'Ç�¯N¶,¨�µ
©S·l®?��Ä
§0í<ÀV�RÂ6Ã<ÁL¸ åV��P®?¨�´'²��:C©S®?µ6´'¶,·lCµ
�l©Sµ�®?©S·ÅÆ5�:�µ
¨3¶,ª�Æ5©Sµ
©Þ¶�¨

¯N¨3¶,Æ5±N®?�^±N·lÆ5��P´'¨3��ÆF¨3��P±N³'µ
TÄ
÷Åí<«�ÁLÂ6ÁLÍC¸ åV��P®?¨�´'²��:C©S®?µ6´'¶,·lCµ
�l©Sµ�®?©S·Å�l©S¨�Ç ¯U��¶�¯U³'��¦

��Õ�±N´'¯UÇ���·lµ6¦U¶,¨�Pª��µ
��ÇÉP¶,½6µ6¾L©S¨3��Ä
05Á�1JÂ%«HÃ<ÁLâ:05ÁL�
1NíV«HÂ6í@&,(,05¸

åV��P®?¨�´'²��:C¯N¨3��Æ5��ÐN·l��Æ�P�l��³'³uÈ�©S¨�´'©S²�³'��Kµ
�l©Sµ
Æ5��µ
��¨�Ç�´'·l�^P¶,Ç�� ®?�l©S¨�©S®?µ6�:¨�´'Pµ
´'®X]¶�½�µ
�l� P�l��³'³u¶�¨0µ
�l©Sµ

vi SR–2012 10.0

Preface

©S½�½6�:®Xµ[µ6�l�^²����l©SÈ�´'¶,¨J¶�½[�¶,Ç��^¯N¨3¶,¿�¨�©SÇ�P¦U®?¶,Ç�Ç�©S·lÆ5P¦
¶,¨�±Nµ6´'³'´'µ
´'��SÄ

«�05�5À<«�ÁA1Ní;(5À;05¸ åV��P®?¨�´'²��:C¯N¶�PP´'²�³'� ¨3�:µ6±N¨�·ÎÈ�©S³'±N��Cµ6�l©Sµu´'·lÆ5´'®?©Sµ6�L©
³'´'²�¨�©S¨�ª¬¶�¨0Pª�Pµ
��ÇÑ®?©S³'³R���T��®?±Nµ6�:Æ�P±N®?®X�:�P½6±N³'³'ª?¦l¶,¨
´'Æ5��·lµ
´'ÐN��Vµ
�l� ��¨�¨3¶,¨K®?¶�·lÆN´'µ6´'¶,·°±N·lÆ5�:¨W¾L�l´'®?�Î´'µ
½6©S´'³'��Æ{Ä

05ð�Â%��¸��,í0�5À<¸ åV��P®?¨�´'²��:C¯N¶�PP´'²�³'� ����´'µ�Pµ6©Sµ
±NCÈ�©S³'±N��Cµ
�l©Sµ�´'·lÆ5´'®?©Sµ6�
¾L�l��µ
�l��¨Wµ6�l�^®?¶�Ç�Ç�©S·lÆ°¶�¨�±Nµ
´'³'´'µ6ª}���T��®?±Nµ6�:Æ
P±N®X®?��PP½6±N³'³'ª�Ä

â:05¸�¸"íVÍB05¸ åV��P®?¨�´'²��:C´'·l½%¶,¨�Ç�©Sµ6´'¶,·l©S³'¦lÆ5´'©2¿�·l¶,Pµ6´'®?¦l©S·lÆ���¨�¨3¶,¨
Ç���PP©S¿���Cµ
�l©Sµ�Ç�©Sª�©S¯U¯N��©S¨�ÄN¸���³'½�$6���T¯N³'©S·l©Sµ
¶�¨�ª
Ç���PP©S¿���C©S¨3�D·l¶,µ[³'´'�µ
��Æ{Ä

05«�«HÃ<«H¸ åV¶�®?±NÇ���·�µ6C�:¨�¨3¶,¨K®?¶,Æ5��SÄRíV¯N¯N³'´'��K¶,·l³'ª¬µ
¶�Pª�Pµ
��Ç
®?©S³'³'SÄ

ì�Ã<«R�5«HíVÁ
05ð��,05ÁL¸�Â%Ã<ÁL¸

åV��P®?¨�´'²��:C�l¶�¾Ôµ6¶|®X©2³'³R©zPª�Pµ6�:ÇÉ®?©S³'³R½6¨3¶,ÇÑì�¶�¨�µ6¨�©S·�Ä
í<¯U¯N³'´'��C¶�·l³'ª�µ6¶}Pª�Pµ6��Çï®X©2³'³'TÄ

&5ÀVÍC¸ Â%·lÆN´'®X©2µ6��CÓ�·l¶�¾L·}²�±N¿�V©S·lÆ�ÆN��ÐN®X´'�:·l®X´'�:TÄ
05ð�í<â�Ò#(,05¸ ¸��l¶�¾LC���T©SÇ�¯N³'�:C¶,½�±NP©S¿���Ä
ì�ÂC(,05¸ (5´'Pµ6]ÐN³'��Vµ
�l©SµA©2¨3�^�:´'µ6�l�:¨K¯U©S¨�µH¶,½�µ
�l� ��·lµ
¨�ª�¶�¨�©2¨3�

¨3��³'©2µ6��Æ�µ6¶|´'µOÄ
¸�0,0�í;(5¸�Ã (5´'Pµ6]��·lµ
¨�´'�:]©S·lÆÎ¯N±N²�³'´'®X©2µ6´'¶,·l<µ
�l©SµA®?¶,·lµ6©S´'·°¨3�:³'©Sµ6�:Æ

´'·l½6¶�¨�Ç�©Sµ
´'¶�·�Ä

Reader comments
Â6½�ª�¶,±F�l©2È�� ®X¶,Ç�Ç���·lµ
]©2²�¶,±Nµ�µ6�l� µ
��®?�l·l´'®?©S³A©S®?®?±N¨�©2®XªP¦N®?¶�·lµ
��·lµ
¦�¶�¨J¶�¨3¿�©S·l´"!S©Sµ
´'¶,·°¶,½
µ
�l´'<ÆN¶�®?±NÇ���·lµ
¦U¯U³'��©SP�Dµ6�:³'³R±NSÄ#2l¶,±�®X©2·Å®?¶�·lµ
©S®?µ[±NV´'·Å©S·lª¬¶,½�µ
�l�L½6¶,³'³'¶�¾L´'·l¿�¾L©Sª�TÊ
ù ¸���·lÆ�±NK��³'��®?µ6¨¶�·l´'®GÇ�©S´'³5©Sµ[µ
�l�L½6¶,³'³'¶�¾L´'·l¿�©SÆ5Æ5¨3�:�SÊ

publications@cray.com

ù §W¶,·lµ
©S®XµAª�¶,±N¨�®?±NPµ6¶,Ç���¨J��:¨�È�´'®?�^¨3��¯N¨3�:��:·lµ6©Sµ
´'È��D©S·lÆ�©SPÓ�µ
�l©Sµ�©S·¬¸"ÒN«ñ¶,¨�Ò#1Z²��
ÐN³'��Æ{ÄNÂ%½HÐN³'´'·l¿�©S·°¸�ÒN«H¦l±N��

PUBLICATIONS
½6¶�¨0µ6�l�^¿�¨3¶,±N¯Î·l©SÇ���¦

PUBS
½6¶,¨Kµ
�l�

®?¶�Ç�Ç�©2·lÆ5¦U©2·lÆ
NO-LICENSE

½%¶,¨Wµ
�l�L¨3�:³'��©SP� ·l©SÇ���Ä
ù §W©2³'³R¶�±N¨J¸"¶,½6µ6¾L©S¨3� ÒN±N²�³'´'®?©Sµ6´'¶,·lVÍC¨3¶�±N¯�´'·D05©2¿�©S·l¦�â�´'·l·l��P¶�µ
©S¦�µ6�l¨3¶,±N¿��°µ
�l�
§W±NPµ
¶�Ç���¨J¸���¨�È�´'®?�D§W©S³'³R§0��·lµ
��¨
¦�±N�´'·�¿}�:´'µ6�l�:¨K¶,½�µ
�l� ½6¶�³'³'¶,¾L´'·l¿Å·l±NÇ�²���¨�SÊ

SR–2012 10.0 vii

UNICOS® System Calls Reference Manual

¼S¹Sç2»S»S¹SãSëS»2¹SºSéSºSã Ë µ
¶�³'³R½6¨3���D½6¨3¶�Ç µ6�l� ÀV·l´'µ6�:Æ�¸�µ6©Sµ
��]©S·lÆ�§W©S·l©SÆ5©2Ì
�N¼S¹SäS¼Sº2¹SäSçSèS¹Së2äS»S»

ù ¸���·lÆ°©D½6©S®?�´'Ç�´'³'� ¶,½Aª�¶,±N¨�®?¶�Ç�Ç��:·lµ6Jµ
¶�µ
�l�<©Sµ
µ6�:·lµ6´'¶,·Å¶,½3E2¸"¶,½6µ6¾L©S¨3� Ò5±N²�³'´'®?©Sµ
´'¶�·l
ÍC¨3¶,±N¯#FL´'·D0N©S¿�©2·l¦Nâ�´'·l·l��P¶�µ
©S¦�©Sµ�½6©��Þ·l±NÇ�²��:¨��5¼2¹SäS¼SºS¹2äSçSèS¹SëSë2ãSãlÄ

÷Å�^È�©S³'±N�Dª�¶,±N¨�®?¶�Ç�Ç��:·lµ6K©S·lÆ�¾L´'³'³u¨3�:�¯N¶,·lÆ�µ6¶|µ6�l��ÇÉ¯U¨3¶�Ç�¯Nµ
³'ª"Ä

viii SR–2012 10.0

CONTENTS

accept .. Accepts a connection on a socket ... 29
access .. Determines accessibility of a file ... 33
acct ... Enables or disables process accounting ... 37
acctctl .. Checks status of, enables, and disables process, daemon, and record

accounting .. 39
acctid .. Changes account ID of a process ... 42
adjtime .. Corrects the time to allow synchronization of the system clock 44
alarm ... Sets a process alarm clock .. 46
bind ... Binds a name to a socket .. 49
brk ... Changes data segment space allocation ... 53
bsdsignal (see signal) .. Changes action associated with a signal .. 470
bsdsigpause (see sigsuspend) Releases blocked signals and waits for interrupt ... 483
chacid .. Changes disk file account ID .. 56
chdir ... Changes working directory .. 58
chdiri .. Changes a directory by using the inode number .. 61
chkpnt .. Checkpoints a process, multitask group, or job ... 63
chmem ... Retrieves or modifies system physical memory availability 69
chmod ... Changes the mode of a file ... 71
chown ... Changes owner and group of a file ... 75
chroot .. Changes the root directory ... 79
close ... Closes a file descriptor ... 81
cmptext .. Compares the supplied character sequence with the privilege text of the

calling process .. 82
connect .. Initiates a connection on a socket ... 84
cpselect .. Selects which processors may run the process ... 88
creat ... Creates a new file or rewrites an existing one .. 90
cutimes .. Updates user execution time .. 94
dacct ... Enables or disables process and daemon accounting 97
devacct .. Controls device accounting .. 99
dmmode .. Sets and gets data migration retrieval mode .. 102
dmofrq .. Processes offline file requests ... 103
dup ... Duplicates an open file descriptor .. 107
exctl ... Exchanges control .. 109
exec ... Executes a file .. 111
execl (see exec) .. Executes a file .. 111
execle (see exec) .. Executes a file .. 111
execlp (see exec) .. Executes a file .. 111
execv (see exec) .. Executes a file .. 111
execve (see exec) .. Executes a file .. 111
execvp (see exec) .. Executes a file .. 111
_exit (see exit) .. Terminates process ... 118
exit ... Terminates process ... 118
fchmod (see chmod) .. Changes the mode of a file ... 71
fchown (see chown) .. Changes owner and group of a file ... 75
fcntl ... Controls open files .. 121
fgetpal .. Gets the privilege assignment list (PAL) and privilege sets of a file 130
fjoin (see join) .. Joins files .. 221
fork ... Creates a new process .. 131

SR−2012 10.0 ix

fpathconf (see pathconf) Determines value of file or directory limit ... 299
fsecstat (see secstat) .. Gets file security attributes ... 371
fsetpal .. Sets the privilege assignment list (PAL) and privilege sets of a file 136
fstat (see stat) .. Gets file status .. 503
fstatfs (see statfs) ... Gets file system information .. 509
fstatvfs (see statvfs) .. Gets file system information .. 514
fsync ... Synchronizes the in-core state of a file with that on disk 138
getash .. Gets an array session handle .. 140
getdents .. Reads and formats directory entries as file system independent 141
getdevn .. Gets device number or driver entry .. 143
getegid (see getuid) ... Gets real user, effective user, real group, or effective group IDs 197
geteuid (see getuid) ... Gets real user, effective user, real group, or effective group IDs 197
getfacl .. Gets access control list entries for file .. 144
getgid (see getuid) ... Gets real user, effective user, real group, or effective group IDs 197
getgroups ... Gets or sets group list ... 148
gethostid ... Gets or sets unique identifier of local host ... 151
gethostname .. Gets or sets name of local host ... 153
getinfo .. Gets specified user, job, or process signal information 155
getjtab .. Gets the job table entry associated with a process 158
getlim .. Obtains current resource limit information .. 160
_getlwpid (see getpid) .. Gets process, process group, or parent process IDs 176
_getlwppid (see getpid) Gets process, process group, or parent process IDs 176
getmount .. Returns information about the kernel mount table 163
getpal .. Gets the privilege assignment list (PAL) and privilege sets of a file 167
getpeername .. Gets name of connected peer ... 169
getpermit ... Gets or sets user permissions ... 172
getpgrp (see getpid) ... Gets process, process group, or parent process IDs 176
getpid .. Gets process, process group, or parent process IDs 176
getportbm (see setportbm) Sets or gets the kernel memory port bit map .. 420
getppid (see getpid) ... Gets process, process group, or parent process IDs 176
getppriv .. Gets the privilege state of the calling process .. 179
getsectab ... Gets security names and associated values .. 180
getsockname .. Gets socket name .. 182
getsockopt ... Gets or sets options on sockets ... 184
getsysv .. Gets security attributes ... 189
gettimeofday .. Gets or sets date and time ... 194
getuid .. Gets real user, effective user, real group, or effective group IDs 197
getusrv .. Gets security validation attributes of the process ... 199
_globalexit (see exit) .. Terminates process ... 118
globalexit (see exit) .. Terminates process ... 118
guestctl .. Controls and reports the status of major guest system functions 202
ialloc .. Allocates storage for a file .. 211
intro ... Introduces system calls and error numbers .. 1
ioctl ... Controls device ... 214
jacct ... Enables or disables job accounting .. 219
join ... Joins files .. 221
kill ... Sends a signal to a process or a group of processes 223
killm (see kill) .. Sends a signal to a process or a group of processes 223
lchown (see chown) .. Changes owner and group of a file ... 75
limit ... Sets resource limits .. 227
limits .. Returns or sets limits structure for fair-share scheduler 232

x SR−2012 10.0

link ... Creates a link to a file ... 235
listen .. Listens for connections on a socket ... 239
listio .. Initiates a list of I/O requests ... 243
_localexit (see exit) .. Terminates process ... 118
localexit (see exit) ... Terminates process ... 118
lsecstat (see secstat) .. Gets file security attributes ... 371
lseek ... Moves read/write file pointer ... 249
lsetattr .. Sets metadata for a file ... 252
lstat (see stat) .. Gets file status .. 503
_lwp_alarm (see alarm) .. Sets a process alarm clock .. 46
_lwp_exit (see exit) ... Terminates process ... 118
_lwp_kill (see kill) ... Sends a signal to a process or a group of processes 223
_lwp_killm (see kill) .. Sends a signal to a process or a group of processes 223
mkdir ... Makes a directory ... 254
mkfifo (see mknod) .. Makes a directory or a special or regular file ... 257
mknod ... Makes a directory or a special or regular file ... 257
mount ... Mounts a file system ... 262
msgctl .. Provides message control operations ... 265
msgget .. Accesses the message queue .. 269
msgrcv .. Reads a message from a message queue .. 271
msgsnd .. Sends a message to a message queue ... 274
mtimes .. Provides multitasking execution overlap profile .. 277
newarraysess .. Starts a new array session .. 279
_newexit (see exit) ... Terminates process ... 118
newexit (see exit) .. Terminates process ... 118
newgetpid (see getpid) .. Gets process, process group, or parent process IDs 176
newgetppid (see getpid) Gets process, process group, or parent process IDs 176
nice ... Changes priority of processes .. 281
nicem (see nice) .. Changes priority of processes .. 281
nsecctl .. Accesses or manipulates network security information 284
open ... Opens a file for reading or writing ... 287
openi ... Opens a file by using the inode number ... 297
pathconf .. Determines value of file or directory limit ... 299
pause ... Suspends process until signal ... 305
pipe ... Creates an interprocess channel ... 307
plock ... Locks process in memory ... 310
policy .. Returns or sets information on the CPU allocation policy 312
profil .. Generates an execution time profile ... 314
ptrace .. Traces processes ... 316
ptyrecon .. Manages pty reconnection .. 320
quotactl .. Manipulates file system quotas .. 322
read ... Reads from file ... 329
reada ... Performs asynchronous read from a file ... 333
readlink .. Reads value of a symbolic link .. 339
recall .. Waits for I/O completions .. 342
recalla .. Waits for I/O completion(s) ... 344
recalls (see recall) ... Waits for I/O completions .. 342
recv ... Receives a message from a socket ... 347
recvfrom (see recv) ... Receives a message from a socket ... 347
recvmsg (see recv) .. Receives a message from a socket ... 347
rename .. Changes the name of a file ... 352

SR−2012 10.0 xi

resch ... Reschedules a process .. 356
restart .. Restarts a process, multitask group, or job .. 357
resume (see suspend) ... Controls execution of processes ... 518
rmdir ... Removes a directory ... 363
rmfacl .. Removes an access control list from a file ... 366
sbreak (see brk) .. Changes data segment space allocation ... 53
sbrk (see brk) ... Changes data segment space allocation ... 53
schedv .. Sets memory scheduling parameters .. 368
secstat .. Gets file security attributes ... 371
select .. Examines synchronous I/O multiplexing ... 374
semctl .. Provides semaphore control operations ... 378
semget .. Provides access to semaphore identifiers ... 383
semop ... Provides general semaphore operations ... 386
send ... Sends a message from a socket .. 390
sendmsg (see send) .. Sends a message from a socket .. 390
sendto (see send) .. Sends a message from a socket .. 390
setash .. Sets an array session handle ... 393
setdevs .. Sets file security label and security flag attributes 395
setegid (see setregid) .. Sets real or effective group ID ... 423
seteuid (see setreuid) .. Sets real or effective user ID .. 426
setfacl .. Sets access control list for file .. 398
setfcmp .. Sets file compartments ... 402
setfflg .. Sets file security flags ... 405
setflvl .. Sets security level of a file ... 407
setgid (see setuid) ... Sets user or group IDs .. 438
setgroups (see getgroups) Gets or sets group list ... 148
sethostid (see gethostid) Gets or sets unique identifier of local host ... 151
sethostname (see gethostname) Gets or sets name of local host ... 153
setjob .. Sets job ID .. 409
setlim .. Sets user-controllable resource limits .. 411
setpal .. Sets the privilege assignment list (PAL) and privilege sets of a file 414
setpermit (see getpermit) Gets or sets user permissions ... 172
setpgid .. Sets process-group-ID for job control .. 416
setpgrp .. Sets process-group ID .. 418
setportbm ... Sets or gets the kernel memory port bit map .. 420
setppriv .. Sets the privilege state of the calling process ... 422
setregid .. Sets real or effective group ID ... 423
setreuid .. Sets real or effective user ID .. 426
setrgid (see setregid) .. Sets real or effective group ID ... 423
setruid (see setreuid) .. Sets real or effective user ID .. 426
setsid .. Creates session and sets process group ID ... 430
setsockopt (see getsockopt) Gets or sets options on sockets ... 184
setsysv .. Sets minimum and maximum level range, authorized compartments,

and security auditing options ... 431
settimeofday (see gettimeofday) Gets or sets date and time ... 194
setucat .. Sets active categories of a process ... 434
setucmp .. Sets active compartments of the process .. 436
setuid .. Sets user or group IDs .. 438
setulvl .. Sets the active security level of the process ... 442
setusrv .. Sets security validation attributes of the process ... 444
shmat ... Attaches shared memory segment .. 447

xii SR−2012 10.0

shmctl .. Provides shared memory control operations .. 450
shmdt ... Detaches shared memory segment ... 455
shmget .. Accesses shared memory identifier .. 457
shutdown .. Shuts down part of a full-duplex connection ... 460
sigaction ... Examines or changes action associated with a signal 462
sigblock (see sigprocmask) Examines and changes blocked signals .. 479
sigctl .. Provides generalized signal control ... 466
sighold (see sigprocmask) Examines and changes blocked signals .. 479
sigignore (see signal) .. Changes action associated with a signal .. 470
signal .. Changes action associated with a signal .. 470
sigpause (see sigsuspend) Releases blocked signals and waits for interrupt ... 483
sigpending ... Stores pending signals .. 477
sigprocmask .. Examines and changes blocked signals .. 479
sigrelse (see sigprocmask) Examines and changes blocked signals .. 479
sigset (see signal) ... Changes action associated with a signal .. 470
sigsetmask (see sigprocmask) Examines and changes blocked signals .. 479
sigsuspend ... Releases blocked signals and waits for interrupt ... 483
sigvec (see sigaction) .. Examines or changes action associated with a signal 462
slgentry .. Makes security log entry .. 486
socket .. Creates an endpoint for communication .. 488
socketpair ... Creates a pair of connected sockets ... 495
ssbreak .. Changes size of secondary data segment ... 497
ssread .. Reads or writes to secondary data segment .. 500
sswrite (see ssread) ... Reads or writes to secondary data segment .. 500
stat ... Gets file status .. 503
statfs .. Gets file system information .. 509
statvfs .. Gets file system information .. 514
stime ... Sets time ... 517
suspend .. Controls execution of processes ... 518
symlink .. Makes a symbolic link to a file .. 522
sync ... Flushes system buffers out of main memory ... 526
sysconf .. Retrieves system implementation information ... 528
sysfs ... Gets file system type information .. 533
syssgi .. Provides a system interface to Silicon Graphics workstations 536
tabinfo .. Returns information on and reads a system table ... 538
tabread (see tabinfo) .. Returns information on and reads a system table ... 538
target .. Retrieves or modifies machine characteristics ... 541
tcgetpgrp ... Gets or sets terminal process group ID of the foreground process group 543
tcsetpgrp (see tcgetpgrp) Gets or sets terminal process group ID of the foreground process group 543
_tfork .. Creates a multitasking process ... 545
thread .. Registers this process as a thread ... 546
_threadexit (see exit) .. Terminates process ... 118
time ... Gets time .. 548
times ... Gets process and child process times ... 550
trunc ... Truncates a file ... 552
ulimit .. Gets and sets user limits ... 555
umask ... Sets and gets file creation mask ... 558
umount .. Unmounts a file system .. 560
uname ... Gets name of current operating system .. 562
unlink .. Removes directory entry .. 564
unlink2 (see unlink) ... Removes directory entry .. 564

SR−2012 10.0 xiii

upanic .. Stops the system from a user process ... 569
ustat ... Gets file system statistics ... 571
utime ... Sets file access and modification times .. 573
vfork ... Creates a new process in a memory efficient way 577
wait ... Waits for a child process to stop or terminate .. 580
waitjob .. Gets information about a terminated child job ... 586
waitpid (see wait) .. Waits for a child process to stop or terminate .. 580
wracct .. Writes an accounting record to the kernel accounting file or to a

daemon accounting file .. 588
write ... Writes on a file ... 590
writea .. Performs asynchronous write on a file ... 596

xiv SR−2012 10.0

NAME

intro − Introduces system calls and error numbers

SYNOPSIS

#include <errno.h>

IMPLEMENTATION

All Cray Research systems

DESCRIPTION

This manual describes all UNICOS system calls. intro(2) contains sections on the following:
� Security privilege information
� Socket system calls
� Errors, including a listing of all error numbers

Security Privilege Information
If your UNICOS system is using the default privilege assignment lists (PALs), many of the UNICOS system
calls expect that the calling process has certain privileges effective in order for the system call to execute
correctly.

The man page for each affected UNICOS system call lists the privileges associated with the call. Also included
is a description of what tasks or functions the associated privileges allow the system call to perform. For a list
of the privileges and a general description of each privilege used on a UNICOS system, see the Security section
in General UNICOS System Administration, Cray Research publication SG−2301.

Socket System Calls
The transport-level protocols, tcp(4P) and udp(4P), along with the network level protocol ip(4P), are
described in the UNICOS File Formats and Special Files Reference Manual, Cray Research publication
SR−2014.

A socket is a general network interface that provides programs with a uniform view of network protocol suites.
The program relates to the sockets rather than the protocol; therefore, the program can use any network
protocol suite (such as TCP).

Certain semantics of the basic socket abstractions are protocol-specific. Each protocol is expected to support
the basic model for its particular socket type, but may, in addition, provide nonstandard facilities or extensions
to a mechanism. For example, a protocol supporting the SOCK_STREAM abstraction may allow more than 1
byte of out-of-band data to be transmitted per out-of-band message.

Sockets using the TCP protocol are either active or passive. Active sockets initiate connections to passive
sockets. By default, TCP sockets are created active; to create a passive socket, the listen(2) system call
must be used after binding the socket with the bind(2) system call. Only passive sockets may use the
accept(2) call to accept incoming connections. Only active sockets may use the connect(2) call to initiate
connections.

INTRO(2) INTRO(2)

SR−2012 10.0 1

The Internet family, inet(4P), provides protocol support for the SOCK_STREAM, SOCK_DGRAM, and
SOCK_RAW socket types. Transmission Control Protocol (TCP) supports the SOCK_STREAM abstraction,
while the User Datagram Protocol (UDP) supports the SOCK_DGRAM abstraction. A super user may achieve a
raw interface to the Internet Protocol (IP) and Internet Control Message Protocol (ICMP) by creating an
Internet socket of type SOCK_RAW.

A passive socket may underspecify its location to match incoming connection requests from networks. This
technique, termed wildcard addressing, allows one server to provide service to clients on multiple networks.
To create a socket that listens on all networks, the Internet address INADDR_ANY must be bound. The TCP
port may still be specified at this time; if the port is not specified, the system assigns one. When a connection
has been established, the socket’s address is fixed by the peer entity’s location. The address assigned to the
socket is the address associated with the network interface through which packets are being transmitted and
received. Usually, this address corresponds to the peer entity’s network. UDP supports the SOCK_DGRAM
abstraction for the Internet protocol family. UDP sockets are connectionless, and they are normally used with
the sendto (see send(2)) and recvfrom (see recv(2)) calls, although the connect(2) call may also be
used to fix the destination for future packets (in which case, recv(2) and send(2) or the read(2) or
write(2) system calls can be used).

A write to a raw socket must not include the IP header at the beginning of the data unless the IP_HDRINCL
socket option has been set (see setsockopt(2)). A read from a raw socket always returns the IP header.

Internet Control Message Protocol (ICMP) sockets are also available through raw sockets. Refer to icmp(4P).
The files are:

� TCP/IP library routines are in /lib/libc.a.
� TCP/IP include files are in the directory /usr/include.
� Symbolic names for errors are in /usr/include/errno.h.

INTRO(2) INTRO(2)

2 SR−2012 10.0

Errors
Most system calls have one or more error returns. An error condition is indicated by an otherwise impossible
returned value, which is almost always −1; the individual descriptions specify the details. An error number is
also made available in the errno external variable, which is not cleared on successful calls; therefore, it
should be tested only after an error has been indicated. Each system call description tries to list all possible
error numbers.

The following is a list of the error numbers and their names as defined in the errno.h header file. Tape users
may receive error codes that are not documented on the system call man pages. For the descriptions of the tape
daemon return values, see the Tape Subsystem User’s Guide, Cray Research publication SG−2051.

1 EPERM Not owner
Typically, this error indicates that you attempted to modify a file in a way not allowed except to its
owner or a super user. It is also returned when other users try to perform actions allowed only to super
users.

2 ENOENT No such file or directory
Either the specified file does not exist or one of the directories in a path name does not exist.

3 ESRCH No such process
No process can be found corresponding to the process that you specified.

4 EINTR Interrupted system call
An asynchronous signal (such as interrupt or quit), which you have elected to catch, occurred
during a system call. If execution is resumed after processing the signal, it appears that the interrupted
system call returned this error condition.

5 EIO I/O error
A physical I/O error has occurred. In some cases, this error may occur on a call following the one to
which it actually applies.

6 ENXIO No such device or address
During a read or write on a special file, a subdevice that does not exist or is beyond the limits of the
device was referenced.

7 E2BIG Arg list too long
Your argument list to a member of the exec(2) family is longer than NCARGS bytes.

8 ENOEXEC Exec format error
A request was made to execute a file that, although it has the appropriate permissions, does not start
with a valid magic number (see a.out(5)).

9 EBADF Bad file number
Either a file descriptor refers to no open file, or a read or write request is made to a file that is open
only for writing or reading, respectively.

10 ECHILD No child processes
A wait(2) system call was executed by a process that had no existing or unwaited-for child processes.

INTRO(2) INTRO(2)

SR−2012 10.0 3

11 EAGAIN Resource temporarily unavailable
The resource is unavailable now; later calls to the same routine may complete normally.

12 ENOMEM Not enough space
During an exec(2) or sbreak(2) system call, a program requested more space than the system could
supply. This is not a temporary condition; the maximum space specification is a system parameter.

13 EACCES Permission denied
You attempted to access a file in a way not allowed by the protection system.

14 EFAULT Bad address
The system encountered a hardware fault in attempting to use an argument of a system call.

15 ENOTBLK Block device required
A call specifies something other than a block device where a block device is required (for example, in
mount(2)).

16 EBUSY Device busy
You attempted to mount a device that was already mounted or to dismount a device on which there is
an active file (open file, current directory, mounted-on file, or active text segment). The device or
resource is currently unavailable.

This error also occurs if you try to enable accounting when it is already enabled or if you issue a
restart(2) attempt when another job or process in the system is using the jid or any pid associated
with the job (or process) to be restarted.

17 EEXIST File exists
A call specifies an existing file in an inappropriate context (for example, link).

18 EXDEV Cross-device link
You attempted a link to a file on another logical device.

19 ENODEV No such device
You attempted to apply an inappropriate system call to a device (for example, to read a write-only
device).

20 ENOTDIR Not a directory
A call specifies a nondirectory where a directory is required (for example, in a path prefix or as an
argument to chdir(2)).

21 EISDIR Is a directory
You attempted to write on a directory.

22 EINVAL Invalid argument
The call contains an argument that is not valid such as the dismounting of a nonmounted device, the
mention of an undefined signal in signal(2) or kill(2), or the reading or writing of a file for which
lseek(2) has generated a negative pointer. This error is also set by the math functions described in
the (3) entries.

23 ENFILE File table overflow
The system file table is full and temporarily cannot accept more open(2) calls.

INTRO(2) INTRO(2)

4 SR−2012 10.0

24 EMFILE Too many open files
No process can have more than NOFILE file descriptors open at a time.

25 ENOTTY Not a typewriter
You attempted to use an ioctl(2) request with a file that is not a character special file.

26 ETXTBSY Text file busy
Either you attempted to execute a pure-procedure program that is currently open for writing or reading,
or you attempted to open for writing a pure-procedure program that is being executed.

27 EFBIG File too large
The size of a file exceeds the maximum file size or the process size set by the ulimit(2) system call.

28 ENOSPC No space left on device
During a write(2) to an ordinary file, the free space left on the device was exhausted.

29 ESPIPE Illegal seek
You issued an lseek(2) to a pipe. This is not allowed.

30 EROFS Read-only file system
You attempted to modify a file or directory on a device mounted as read-only.

31 EMLINK Too many links
You attempted to make more than LINK_MAX links to a file.

32 EPIPE Broken pipe
A write was performed on a pipe for which no process exists to read the data. This condition normally
generates a signal; the error is returned if the signal is ignored.

33 EDOM Argument out of domain
The argument of a function in the math package (3) is out of the domain of the function.

34 ERANGE Result too large
The value of a function in the math package (3) cannot be represented within machine precision.

35 ENOMSG No message of desired type
This message is used by internal tools. If you receive this message, contact your system administrator.

36 EIDRM Identifier removed
This message is reserved for future use. If you receive this message, contact your system
administrator.

37 ECHRNG Channel number out of range
This message is reserved for future use. If you receive this message, contact your system
administrator.

38 EL2NSYNC Level 2 not synchronized
This message is reserved for future use. If you receive this message, contact your system
administrator.

INTRO(2) INTRO(2)

SR−2012 10.0 5

39 EL3HLT Level 3 halted
This message is reserved for future use. If you receive this message, contact your system
administrator.

40 EL3RST Level 3 reset
This message is reserved for future use. If you receive this message, contact your system
administrator.

41 ELNRNG Link number out of range
This message is reserved for future use. If you receive this message, contact your system
administrator.

42 EUNATCH Protocol driver not attached
This message is reserved for future use. If you receive this message, contact your system
administrator.

43 ENOCSI No CSI structure available
This message is reserved for future use. If you receive this message, contact your system
administrator.

44 EL2HLT Level 2 halted
This message is reserved for future use. If you receive this message, contact your system
administrator.

45 EDEADLK Deadlock situation detected/avoided
A deadlock situation was detected and avoided. This error pertains to file and record locking.

46 ENOLCK No record locks available
The setting or removing of record locks on a file cannot be accomplished, because no more record lock
entries are left in the system.

47 EINVFS Not allowed on this file system
An operation was performed on a file system type that does not support that operation.

50 EFILECH File changed
Either a file referenced by the restart file has been changed since the restart file was created, or a file
residing remotely on a network file system (NFS) has changed.

51 EFILERM File removed
Either a file needed for the checkpointing or restarting of a job or process has no links to it, or a file
residing remotely on a network file system (NFS) has been removed.

52 ERFLOCK Recovery of file lock would block
In restart(2), record locks owned by the processes to be restarted could not be recovered, because
record locks owned by currently existing processes have one or more of the target file regions already
locked.

53 ENOSDS Unable to recover SDS space
(Cray PVP systems) During an attempt to recover a job by using restart(2), the secondary data
segment (SDS) requirement of this job exceeded the current availability of SDS.

INTRO(2) INTRO(2)

6 SR−2012 10.0

54 EFILESH Fair-share scheduler controls file.
An unlinked regular file needed for the checkpointing of a job or process is in use by one or more
processes outside the set of processes to be checkpointed.

55 EMALFORMED Malformed process collection
The target set specified by a chkpnt(2) request does not represent a completely contained set. For
example, if a process is using a file that is currently opened by more than one process, and if all of the
processes that have the file opened are not within the specified process set, this error occurs.

56 EFOREIGNFS Foreign file system
An operation that is supported only on local file systems was attempted on a nonlocal (foreign) file
system.

60 EQUSR User file/inode quota limit reached
A program writing a file under your current user ID has reached a file or inode quota limit. For a
temporary solution, remove some of your files so that additional space is available or move the files to
a file system that has sufficient quota authorization. For a more permanent solution, contact your
system administrator and request additional space.

61 EQGRP Group file/inode quota limit reached
A program writing a file under your current group ID has reached a file or inode quota limit. For a
temporary solution, remove some of your files so that additional space is available or move the files to
a file system that has sufficient quota authorization. For a more permanent solution, contact your
system administrator and request additional space.

62 EQACT Account file/inode quota limit reached
A program writing a file under your current account ID has reached a file or inode quota limit. For a
temporary solution, remove some of your files so that additional space is available or move the files to
a file system that has sufficient quota authorization. For a more permanent solution, contact your
system administrator and request additional space.

66 EREMOTE Object is remote
No explanation is available for this message.

74 EMULTIHOP Multihop attempted
No explanation is available for this message.

75 ESHMA Process has shared memory segment attached
Process with attached shared memory segments (CRAY T90 series systems only) cannot be
checkpointed.

90 EPROCLIM Process limit exceeded
This message is returned when a user exceeds the fair-share scheduler process limit.

91 EMEMLIM Memory limit exceeded
This message is returned when a user exceeds the fair-share scheduler memory limit.

92 EDISKLIM Disk limit exceeded
Your job-based or process disk limit has been exceeded.

INTRO(2) INTRO(2)

SR−2012 10.0 7

93 ETOOMANYU Too many users
You exceeded the system compile-time definition of NUSERS, which defaults to 200.

94 ENAMETOOLONG Filename too long
Either the size of a path name string exceeds the maximum allowed, or a path name component
exceeds the maximum and automatic component truncation is not supported for the file system of the
file that the component names.

95 ENOSYS Function not implemented
An attempt was made to use a function that is not available in this implementation.

96 ENOTEMPTY Directory not empty
This error code is defined for compatibility with the POSIX 1003.1 standard, but it is not used.

97 ERENAMESELF Attempt to rename a link to itself
This error code is used internally in the rename(2) system call. It is never returned to a user program.

98 ELOOP Too many symbolic links
Too many symbolic links were encountered when a path name was translated.

UNICOS issues the following TCP/IP network, socket interface error codes:

128 EWOULDBLOCK Operation would block
An operation that would cause a process to block was attempted on an object in nonblocking mode (see
ioctl(2)).

129 EINPROGRESS Operation now in progress
An operation that takes a long time to complete (such as connect(2)) was attempted on a
nonblocking object (see ioctl(2)).

For example, if you issued a connect(2) system call on a nonblocking socket, you would normally
receive this error. Although the connection is not yet established, the application program does not
need to do anything special as the connection is being established asynchronously. (The connection is
usually established before you can issue another system call.) If, however, you issued a write(2) (or
similar) system call before the connection is actually established, the EWOULDBLOCK error would be
returned.

130 EALREADY Operation already in progress
An operation was attempted on a nonblocking object that already had an operation in progress. The
application has to wait until the nonblocking operation completes.

131 ENOTSOCK Socket operation on non-socket
Certain system calls (for example, getpeername(2)) operate only on sockets. Such an operation
was attempted on a nonsocket descriptor.

132 EDESTADDRREQ Destination address required
A required address was omitted from an operation on a socket. Supply the appropriate address.

133 EMSGSIZE Message too long
A message sent on a socket was larger than the internal message buffer. Shorten the message.

INTRO(2) INTRO(2)

8 SR−2012 10.0

134 EPROTOTYPE Protocol wrong type for socket
The protocol specified does not support the semantics of the socket type requested. For example, you
cannot use the DARPA Internet UDP protocol with type SOCK_STREAM. Check to be sure that the
operation attempted and the type of socket match.

135 ENOPROTOOPT Bad protocol option
A bad option was specified in a getsockopt or setsockopt system call (see getsockopt(2)).
Check the various arguments and correct as necessary.

136 EPROTONOSUPPORT Protocol not supported
Either the specified protocol has not been configured into the system, or no implementation for it
exists. Check the protocol argument on the system call.

137 ESOCKTNOSUPPORT Socket type not supported
Either support for the specified socket type has not been configured into the system, or no
implementation for it exists. Check the protocol argument on the system call.

138 EOPNOTSUPP Operation not supported on socket
For example, trying to use accept(2) to accept a connection on a datagram socket (type
SOCK_DGRAM) is not supported. Check the parameter on the socket(2) system call that created the
socket.

139 EPFNOSUPPORT Protocol family not supported
Either the specified protocol family has not been configured into the system, or no implementation for
it exists. Check the protocol argument on the system call.

140 EAFNOSUPPORT Address family not supported by protocol family
An address incompatible with the requested protocol was used (for example, you cannot always use
PUP Internet addresses with DARPA Internet protocols). For TCP/IP protocols, the address family is
AF_INET.

141 EADDRINUSE Address already in use
Normally, only one socket is allowed to be bound to a local address (Internet address and port
number). You sometimes receive this message when you are using the bind(2) system call to bind a
socket to a local address. Use the netstat(1B) command to find out whether the address is already
bound.

142 ENETUNREACH Network is unreachable
A socket operation was attempted on an unreachable network. Check the destination address. If it is
valid, the network is currently unavailable.

143 ENETRESET Network dropped connection on reset
The connected host crashed and rebooted. Restart your program.

144 ECONNABORTED Software caused connection abort
A connection abort was internal to the local host. Retry the command once. If that fails and the local
host is a Cray Research mainframe, see your system support staff.

INTRO(2) INTRO(2)

SR−2012 10.0 9

145 ECONNRESET Connection reset by peer
A connection was forcibly closed by a peer. This action normally results when the peer executes a
shutdown(2) system call.

146 ENOBUFS No buffer space available
An operation on a socket or pipe was not performed because the system lacked sufficient buffer space.
Retry the operation. Also use the netstat(1B) command to see whether you are running out of
memory. If you frequently run low on memory, ask your site analyst to configure the system with
more mbufs.

147 EISCONN Socket is already connected
Either a connect(2) request was made on an already connected socket, or a sendto or sendmsg
(see send(2)) request on a connected socket specified a destination other than the connected party.

148 ENOTCONN Socket is not connected
A request to send or receive data was disallowed because the socket is not connected. Issue a
connect(2) system call.

149 ESHUTDOWN Cannot send after socket shutdown
A request to send data was disallowed because the socket had already been shut down with a previous
shutdown(2) system call. All send(2), sendto(2), and write(2) system calls fail with this error
after a shutdown(2) system call has been issued.

150 ETOOMANYREFS No free TP references available
A connect(2) request or listen(2) request failed because no free TP (transport) reference blocks
are available. A timer is set whenever a reference block is freed; the reference may not be reused until
the timer expires to ensure connection uniqueness within the system. (The time-out period depends on
the communication protocol.)

This error may be caused by the maximum number of active connections allowed by the system or by
many connections being established and closed in quick succession. In either event, try later at an
appropriate time.

151 ETIMEDOUT Connection timed out
A connect(2) request failed because the connected party did not respond properly within a specified
period of time. (The time-out period depends on the communication protocol.) Make sure the remote
server process is running. If it is, try later at an appropriate time.

152 ECONNREFUSED Connection refused
The connection could not be made, because the target machine actively refused it. You are probably
trying to connect to a service that is inactive on the remote host. Make sure that the service is actually
running before retrying.

153 EHOSTDOWN Host is down
A socket operation failed because the destination host was down. First, recheck the address to be sure
it is correct. If it is, retry the operation later when the host is available.

INTRO(2) INTRO(2)

10 SR−2012 10.0

154 EHOSTUNREACH Host is unreachable
A socket operation was attempted on an unreachable host. First, recheck the address to be sure it is
correct. If it is, retry the operation later when the host is available.

155 EADDRNOTAVAIL Cannot assign requested address
This message normally results from an attempt to create a socket with an address not on the local
machine. Check the parameters, especially the part number, on the socket(2) system call.

156 ENETDOWN Network is down
A socket operation encountered a dead network. Retry the operation when the network is available.

UNICOS issues the following BMX-TSS driver interface error codes:

200 ETPDCNF Tape open rejected due to device configuration
The device is not configured. You tried to open a tape device, and the system is not configured for
tapes, or that particular device is not configured up. Contact your system administrator.

201 ETPDOPN Tape open rejected, already open to another
The device is already in use by another process. You tried to issue an open(2) or other request to a
tape device which is already assigned to another user. Use a different tape device, or contact your
system administrator.

202 ETPDABN Tape I/O request with abnormal status set
An I/O request completed abnormally due to a previous or current error. Check your tape.msg file
for more information on the error.

203 ETPDNRW No write ring on tape device
The device requires a write ring. This message is obsolete at UNICOS 7.0.

204 ETPDBDF Bad data returned on tape read
The read(2) function returned incorrect data from the tape. This probably means you have a bad
tape.

205 ETPDEOV Tape end of volume
This message is obsolete at UNICOS 7.0.

206 ETPDCLEAR Tape cleared by operator
The device has been cleared by the operator with a tpclr(8) command. Contact your system
administrator.

207 ETPDEOF End-of-file tape mark was read.
A user tape mark has been read indicating that end-of-file was reached. This is an informative
message, and no action is required.

208 ETPDNODEM Tape daemon is not active.
The tape daemon has gone down or not been started yet. Contact your system administrator.

209 ETPDBUFZ User buffer size is not valid.
You have specified a buffer size that is not valid for either tape list I/O or unbuffered data (using the -
U option on the tpmnt(1) command). The buffer size must be a multiple of 4096 bytes.

INTRO(2) INTRO(2)

SR−2012 10.0 11

� On input requests, the size must exceed the sum of each list entry rounded up to a multiple of 4096
bytes.

� On output requests, the size must exceed the sum of each list entry rounded up to a multiple of 4096
bytes.

Check the buffer size that you are using against what you specified on tpmnt.

210 ETPDRWE A read-after-write or write-after-read occurred.
Either a read has been requested after a write, or a write has been requested after a read. Both
sequences are illegal with tape. Check your program.

211 ETPDLIST Error in list
The tape list structure contains one of the following errors:

� You did not specify any entries for tape list I/O.
	 You specified an invalid state.

 The byte count is either 0, or it exceeds the maximum block length.

Correct the tape list structure, and then continue processing.

212 ETPDUERR User error, only close allowed
Your job can only issue a close(2) request due to a previous error. Check your program.

213 ETPDMBS Maximum tape block size exceeded
This message is obsolete at UNICOS 7.0.

214 ETPDLBK Large block tape error
The block requested is too large for a model E machine; either it is larger than the system maximum, or
it is larger than the maximum specified on the -b option of your tpmnt(1) command. Specify a
smaller size block.

215 ETPDACKERR Acknowledge error before continuing.
You received a previous error while using asynchronous I/O. If you are executing a Fortran program,
the Fortran libraries handle this function. Otherwise, you must acknowledge the error by issuing an
ioctl(2) system call for TPC_ACKERR before any other requests will be honored.

216 ETPDNOSYSBF No system buffers are available.
The tape subsystem was unable to obtain the memory needed for the tape subsystem I/O buffers.
Contact your system support staff.

217 ETPDSTOP The IOP is stopped.
An I/O request was terminated because the tape subsystem is being restarted. Reissue the request later.

218 ETPDMAXDEVUP Maximum tapes configured up will be exceeded
A request to configure a device up was terminated because the current number of devices configured
up is at the system limit. This limit is defined by the system parameter, TAPE_MAX_CONF_UP.
Contact your system support staff.

INTRO(2) INTRO(2)

12 SR−2012 10.0

219 ETPD_PK_BADLEN Packet length is not valid.
A request to send a packet to an IOP or channel contains a packet length that is not within the valid
range, 3 − EPAK_MAXLEN. Correct the packet length and reissue the request.

220 ETPD_PK_NOT_ALLOWED The packet request is not valid.
An ioctl(2) request to send a packet to an IOP or channel device is not valid for that device type.
Correct the IOP request packet or reissue the request to the correct device.

221 ETPD_PK_SEND Error sending packet
A request could not be sent to an IOP. Contact your system support staff.

222 ETPD_PK_TIMEDOUT The IOP request timed out.
The time-out period expired without receiving a response from the IOP. Contact your system support
staff.

223 ETPD_PK_CHAN_UP Channel is configured up
An attempt to open a channel device failed because the channel is configured up. Diagnostic requests
to a channel device can be issued only to a channel that has been configured down by the tape
subsystem.

Configure the channel down with the tpconfig(8) command and reissue the open request.

224 ETPD_PK_CHAN_OPENED The channel is already open.
An attempt to modify the configuration of a channel failed because the channel device is open for
diagnostic use. Wait until the channel device is closed and try again.

225 ETINVCTL The ioctl request is not valid.
The ioctl(2) request issued is not valid. Correct the request and reissue it.

226 ETPD_BAD_REQT The request issued to the IOP or device is not valid.
An IOP or device request was terminated either because the contents or the format of the request is
incorrect or because the sequence of requests is not valid. Contact your system support staff.

227 ETPD_BLANK_TAPE A blank tape was detected.
If this request was issued to an ER90 device, the tape operation was terminated because the command
cannot be issued to a device with a blank tape loaded.

If this request was issued to a block multiplexer device, the command was terminated because it cannot
execute when the tape is positioned before a blank portion of the tape.

228 ETPD_NOT_OPER The device is not operational.
A device request failed because of a hardware error. Additional information can be obtained from the
error log. Contact your system support staff.

229 ETPD_NOT_READY The device is not ready.
A device request failed because the device is not ready. Switch the device to the ready state and retry
the request.

230 ETPD_EOT End of tape detected
A device request could not complete because the end of tape was detected. This message is used
internally and is not returned to the user.

INTRO(2) INTRO(2)

SR−2012 10.0 13

231 ETPD_DATA_ERROR An unrecoverable data error occurred.
A read or write request failed because of a permanent read or permanent write error. Contact your
system support staff.

232 ETPD_MEDIA Media is not supported
The configuration of the cassette is not supported.

233 ETPD_EOR End of recording was detected
A request failed because the EOR was detected. The EOR is a recorded entity that indicates the end of
recording for a partition. Either reposition the tape before the data or record some data at the current
position and then reissue the request.

234 ETPD_LGPS Logical position has not been established
Your request failed because the logical position had not been established.

If file positioning was turned off using the -z option on the tpmnt(1) command, you received this
message because a request to position to an absolute track address immediately following the tape open
was omitted. Position the tape with a TPC_DMN_REQ ioctl request with a subrequest type of
TR_PABS and then reissue the request.

If you did not use the -z option on the tpmnt command, you received this message because a
problem has occurred within the tape subsystem. Contact your system support staff.

235 ETPD_EOM End of media was detected
The end of the media was detected. Correct the problem and retry. If you receive this message again,
contact your system support staff.

236 ETPD_SYSTEM A tape driver error occurred.
A tape driver software error occurred. Contact your system support staff.

237 ETPD_DEVICE A device error occurred.
The tape driver received a response that was not valid from the tape device. Contact your system
support staff.

238 ETPD_FORMAT This volume format is not supported.
Either an ER90 device was unable to format even one partition on a volume, or the format of the
volume is not supported. Contact your system support staff.

239 ETPD_FILETYPE The tape file type is not valid.
This error is returned to the tape daemon if the current file section is a byte stream file section, but the
tape daemon issued a blocked I/O request. This error is not returned to the user.

240 ETPD_NO_CASSETTE A cassette is not loaded.
You issued a request that requires a cassette to be loaded to a drive in which a cassette is not currently
loaded. Issue a tpmnt (1) command and then reissue the original request.

241 ETPD_TAPE_ADDR The specified tape address is not valid.
A request to position to an absolute track address failed because the address specified does not exist on
the currently mounted cassette. Correct the request and reissue it.

INTRO(2) INTRO(2)

14 SR−2012 10.0

242 ETPD_DEVDOWN The device must be configured up.
A request was issued to a downed device, but the request requires that the device be configured up.
Use the tpconfig(8) command to configure the device up and then reissue the request.

243 ETPD_NOT_BOF Must be at the beginning of file
A device request was terminated because the tape is not positioned at the beginning of a file section.

Position the tape with TPC_DMN_REQ positioning and then reissue the device request.

244 ETPD_TAPE_ERROR A tape error occurred.
A request failed because of a media problem. If an ER90 device was used, the ER90 was unable to
locate a byte or block due to a tape fault or to an incorrect tape format. Contact your system support
staff.

245 ETPD_DEV_HUNG Device is hung
A response was not received from a tape device. Contact your system support staff.

246 ETPD_MAX_IOREQT Exceeded I/O request size maximum
You issued an I/O request that exceeds the tape subsystem, IOP, or device limits. Correct the request
and then reissue it.

247 ETPD_ODD_BYTES Cannot issue an odd byte I/O request
An I/O request was terminated because the previous I/O request output or input an odd number of
bytes. An odd byte I/O request is only valid at the end of a file.

Check the requests and correct, as needed. Then reissue the corrected requests.

248 ETPD_BLKSIZ_DIFF Blocks must be the same size within a file.
An I/O request was terminated because the previous I/O request output or input a block of a size
shorter than the block size defined for the file section. All blocks within a file section must be the same
size, excluding the last block in the file section.

Check the requests and correct, as needed. Then reissue the corrected requests.

249 ETPD_POSACC_ERR Position cannot be accessed
A request was terminated because it attempted to access data at an odd-byte memory address.

Position the tape with TPC_DMN_REQ positioning and then reissue the device request.

UNICOS issues the following communications driver error codes:

250 ELATE I/O request timeout
A read(2), reada(2), write(2), writea(2), or listio(2) request to execute I/O on a
communications channel (NSC HYPERchannel, FEI-3, other low-speed device, or HSX) has resulted
in no I/O for a certain interval of time. This interval is determined by the type of channel and IOS
model.

251 ENSC NSC HYPERchannel error on write
No explanation is available for this message.

INTRO(2) INTRO(2)

SR−2012 10.0 15

UNICOS issues the following security violation error codes:

300 ESYSLV Security level violation
The specified security level falls outside the allowed security level range of the process, file system, or
UNICOS system. See your security administrator.

301 EREADV Security read violation
An attempt to gain read access to a file has failed because your active security level is less than the
file’s security level. Raise your active security level to be greater than or equal to the file’s security
level. If you are not authorized to raise your security level to an appropriate value, see your security
administrator.

302 EWRITV Security write violation
An attempt to gain write access to a file has failed because your active security label is not equal to the
file’s security label. Change your active security label to match the file’s security label. If you are not
authorized to change your security label to the appropriate value, see your security administrator.

303 EEXECV Execute security violation
An attempt to gain execute/search access to a file has failed because your active security level is less
than the file’s security level. Raise your active security level to be greater than or equal to the file’s
security level. If you are not authorized to raise your security level to an appropriate value, see your
security administrator.

304 ECOMPV Security compartment violation
An attempt to gain access to a file has failed because your active security compartments do not include
all of the file’s compartments. For write access, change your active compartments to equal the file’s
compartments. For read or execute/search access, change your active compartments to include the
file’s compartments. If you are not authorized to change your active compartments to an appropriate
value, see your security administrator.

305 EMANDV Security mandatory access violation
Your active security label does not permit access to a file. For write access, change your active
security label to match the file’s security label. For read or execute/search access, change your active
security label to include the file’s security label. If you are not authorized to change your security label
to an appropriate value, see your security administrator.

306 EOWNV Security owner violation
You are not authorized to access this file. You must be the file’s owner or an appropriate administrator
to perform the requested file operation. See your security administrator.

307 ELEVELV Security level range violation
The specified security level falls outside the allowed security level range of the process or file system.
See your security administrator.

308 ESECADM Unauthorized user
You are not authorized to make this request.

INTRO(2) INTRO(2)

16 SR−2012 10.0

309 EFLNEQ Security mount violation
An attempt to allocate space on a file system has failed because your active security level falls outside
the allowed security level range of the file system. Change your active security level to be within the
bounds of the file system. If you are not authorized to change your active security level to an
appropriate value, see your security administrator.

310 ENOTEQ Security buffer violation
This error code is unused.

311 EPERMIT Security permission violation
You do not possess the appropriate authorization(s) to perform the requested function. See your
security administrator.

312 EACLV Access list violation
This error code is unused.

313 ENOACL No acl list
This error code is unused.

314 ESLBUSY Security log in use
A request to open security log device /dev/slog for reading was refused because the device has
already been opened for reading by another process. This prohibits two versions of the security log
daemon (slogdemon) from operating simultaneously. The slogdemon should be the only process
allowed to request an open on /dev/slog. See your security administrator.

315 ESLNXIO Security log mode violation
A request to open security log device /dev/slog was refused because it attempted the open with
write permission. The security log daemon (slogdemon) should be the only process to request an
open on /dev/slog, and then only for reading. See your security administrator.

316 ESLFAULT Security log read violation
During the transfer of data from the security log device /dev/slog to the disk-resident security log
file, a call to a copy out routine returned an error indicating a problem in the memory addressing of the
read buffer. See your security administrator.

317 ESLNOLOG Security log configured SLGOFF
This error code is unused.

318 EINTCLSV Security class violation
The requested integrity class falls outside the allowed integrity class range of the process, or the
UNICOS system. See your security administrator. The use of integrity class values is no longer
supported.

319 EINTCATV Security category violation
The requested category is not included in the allowed categories of the process, or the UNICOS
system. See your security administrator.

320 ENONAL No network authorization list (NAL)
This error code in unused.

INTRO(2) INTRO(2)

SR−2012 10.0 17

321 EMNTCMP Security mount compartment violation
This error code is unused.

322 EFIFOV Security FIFO violation
This error code is unused.

323 EAPPNDV Security append violation
This error code is unused.

324 ETFMCATV Security multicategory violation
This error code is unused.

325 ECOVERT Covert channel condition
A file has been created in a wildcard directory by a user who does not own that directory. This is an
informative message; you are not required to take corrective action.

326 ERCLSFY Security label reclassify violation
This error code is unused.

327 EPRLABEL Security label printing disabled
This error code is unused.

328 ENONSECURE Security is not enabled
This error code is unused.

329 ESECFLGV Security flag violation
A request to set file security flags has failed because the requested flags are not allowed. Specify only
security flags that are available on the UNICOS system. See your security administrator.

330 EHOSTNAL Host not authorized in NAL
Access to or from an unauthorized host or workstation was attempted. The host is not authorized in the
network authorization list (NAL). See your security administrator.

331 ESLVLNAL Security level outside host’s range
A security level was detected outside of the security level range authorized for the host in the network
authorization list (NAL). The kernel detected this condition when processing the Internet Protocol (IP)
security option associated with a datagram. See your security administrator.

332 ESCMPNAL Security compartment outside host’s range
A security compartment was detected outside of the security compartment range authorized for the
host in the network authorization list (NAL). The kernel detected this condition when processing the
Internet Protocol (IP) security option associated with a datagram. See your security administrator.

333 EMODENAL Illegal transmission for host (NAL)
An illegal mode (send or receive) of transfer was attempted by a host or workstation. See your
security administrator.

334 ESLVNIF Security level outside network I/F
A security level was detected outside of the security level range authorized for the UNICOS network
interface (I/F). The kernel detected this condition when processing the Internet Protocol (IP) security
option associated with a datagram. See your security administrator.

INTRO(2) INTRO(2)

18 SR−2012 10.0

335 ESCMPNIF Compartment level outside network I/F
A security compartment was detected outside of the security compartment range authorized for the
host in the UNICOS network interface (I/F). The kernel detected this condition when processing the
Internet Protocol (IP) security option associated with a datagram. See your security administrator.

336 ESOCKLVL Security level change of SLS tried
An illegal attempt was made to change the security level of a single-level socket (SLS) connection.
Except for a privilege granted by your security administrator (for example, the network file system
(NFS)), all socket connections are created as SLS. See your security administrator.

337 ESOCKCMP Compartment change of SLS attempted
An illegal attempt was made to change the security compartment of a single-level socket (SLS)
connection. Except for a privilege granted by your security administrator (for example, the network
file system (NFS)), all socket connections are created as SLS. See your security administrator.

338 ENFSAUTH Invalid NFS authentication credential
The proper authentication credentials were not passed to the network file system (NFS). Check your
authentication credentials, or see your security administrator.

339 ESLVLNRT Security level violation network route
A security level was detected outside of the security level range authorized for the network route
selected, or a route with the correct sensitivity label could not be found. The kernel detected this
condition when selecting routes. See your security administrator.

340 ESCMPNRT Compartments violation for network route
A security compartment was detected outside of the security compartment authorized for the network
route selected, or a route with the correct sensitivity label could not be found. The kernel detected this
condition when selecting routes. See your security administrator.

341 EBADIPSO Bad IP security option
An illegal IP security option was detected by the kernel. The kernel performs integrity and security
checks against each IP security option received. See your security administrator.

342 ENOIPSO IP security option missing
An IP security option did not accompany an incoming datagram. The kernel detects this condition by
using IP security option information defined in the network authorization list (NAL) for each
host/workstation. See your security administrator.

343 ESLVLMAP Security level mapping error
A translation error was detected when mapping the security level (between UNICOS form and network
form). When necessary, the kernel translates (using the network authorization list (NAL)) the
UNICOS security label to the network security label (for outgoing datagrams), and translates the
network security label to the UNICOS security label (for incoming datagrams). See your security
administrator.

INTRO(2) INTRO(2)

SR−2012 10.0 19

344 ESCMPMAP Compartment mapping error
A translation error was detected when mapping the security compartment (between UNICOS form and
network form). When necessary, the kernel translates (using the network authorization list (NAL)) the
UNICOS security label to the network security label (for outgoing datagrams), and translates the
network security label to the UNICOS security label (for incoming datagrams). See your security
administrator.

345 EAUTHFLG Authority flag violation
An authority protection violation was detected for either an incoming or outgoing datagram with a
Basic Security option. See RFC 1108.

346 EIPSOMAP No map for security option
No translation table was available to translate the security label for a given host connection. The
kernel could access the mapping table identified in the network authorization list (NAL) for the host.
See your security administrator.

UNICOS issues the following data migration facility error codes:

350 EDMRNOLF Not offline file; dmofrq system call
The file is not an offline file.

An invalid parameter was specified in the dmofrq(2) system call.

352 EDMRWFT Incorrect file type; dmofrq system call
An incorrect file type was specified with the m or M option of the dmofrq(2) system call.

353 EDMRNSD Device does not match; dmofrq system call
The device is incorrect.

354 EMASS Error occurred in FILESERV storage management system.
A FILESERV error occurred. Contact your system support staff.

355 EDMOFF Data management system is off
The data management system is not configured.

357 EOFFLIN File offline, no automatic retrieval
The file is offline and automatic retrieval is not selected. Select automatic retrieval by setting dmmode
to 1. (See sh(1) and csh(1).)

358 EOFLNDD File offline, daemon not available
The file is offline and the daemon is not available.

360 EOFLNNR File offline, currently not retrievable
The file is offline and temporarily cannot be retrieved. You may need to see your system administrator
for help.

361 EOFLRIN File offline, retrieval interrupted
Retrieval was in process and the user interrupted the process. (The retrieval might continue.)

362 EOFSPACE File offline, not enough space to retrieve it
The file is offline and there is not enough space in the file system to retrieve it.

INTRO(2) INTRO(2)

20 SR−2012 10.0

363 EOFQUOTA File offline, retrieval would exceed disk space quota
The file is offline, and retrieval is not allowed, because this would exceed the user file quota, the group
file quota, or the account file quota.

365 EDMTRSTD Function reserved for trusted subject only
The caller issued a dmofrq(2) migrate/unmigrate subfunction request, but is not a trusted subject.
The data migration daemon is the sole user of this type of request; no user process should ever receive
this error.

367 EDMOFRQ Invalid or inconsistent dmofrq system call parameters
The caller issued a dmofrq(2) system call, but one or more of the parameters are illegal or
inconsistent for the requested subfunction. This call is used solely by components of the data
migration facility; no user process should ever receive this error.

368 EDMNBLK Nonblocking recall; data recall from offline media
is pending

An open system call (with the O_NONBLOCK flag set) failed on a migrated file in which the data is
being recalled from an offline media. This indicates that the file is being recalled asynchronously.

371 ENOIDMAP Named ID map not found
A reference to an ID map in the kernel failed because the specified map was not found.

372 EMAPINUSE Named ID map is in use (reference count nonzero)
An attempt to remove an ID map from the kernel failed because an ID mapping domain is still
referencing it.

373 EMAPTYPE Unknown ID map type
An attempt to add or delete a map in the kernel failed because the ID map type is not UID or GID.

374 EDUPMAPNAME Duplicate ID map name
An attempt to add an ID map to the kernel failed because there is already an ID map with the same
name in the kernel.

375 EGIDMAPSIZE Bad group ID map size
An attempt to add a GID map to the kernel failed because the size of the GID map is not a multiple of
the size of a GID map entry.

376 EBADDOMAIN ID mapping domain address does not make sense
An attempt to add or delete an ID mapping domain in the kernel failed because the Internet addresses
specified for the mapping domain do not make sense. Either the upper address of the range is
numerically less than the lower address, or the address mask is NULL.

377 ENODOMAIN ID mapping domain not found
An attempt to delete an ID mapping domain from the kernel failed because it was not found.

378 EBADADDR ID mapping domain overlap error
An attempt to add an ID mapping domain to the kernel failed because the specified domain overlaps
with an existing domain.

INTRO(2) INTRO(2)

SR−2012 10.0 21

379 ENOUMAPENTRY User ID map entry not found
An attempt to delete a user’s entry from an ID map failed because the entry was not found.

380 EREMOTEUID Remote hash not found for user ID map entry, ID mapping
disabled

An attempt to delete a user’s entry from an ID map failed because after the local UID hash pointer was
found and removed, the remote UID hash pointer was not found. The hash table for this map is
corrupted.

381 EUIDTYPE Unknown user ID map entry type
An attempt to add or delete an entry in a user ID map failed because the type of the entry (which
indicates the number of groups in the groups list for this entry) was not valid.

382 EDUPUMAPENTRY Duplicate user ID map entry
An attempt to add an entry to a user ID map failed because the entry is already in the ID map.

383 ESAMEIDMAP This ID mapping domain is unnecessary
No explanation is available for this message.

384 EMAPTHRUIDMAP A special ID map is already defined
No explanation is available for this message.

385 EMAPTHRUUID Special ID map entry (luid != ruid)
No explanation is available for this message.

386 ENOKRBADDR No Kerberos validated address found
No explanation is available for this message.

387 EDUPKRBADDR Duplicated Kerberos validated address found
No explanation is available for this message.

388 EKRBADDRINUSE Kerberos address reference count nonzero
No explanation is available for this message.

393 EIDMADDR Address not found in ID mapping domains
An NFS request failed because the address of the server is not in the ID mapping domains and ID
mapping is enabled.

394 ESTALE Stale NFS file handle
An NFS request failed because the information the client has for the remote file system is no longer
valid. The NFS file system must be remounted.

395 ERPCCDRES Cannot decode RPC results
An NFS request failed because the RPC results cannot be decoded.

396 ERPCCDARGS Cannot decode RPC arguments
An NFS request failed because the RPC arguments cannot be decoded.

397 ERPCCANTSEND Unable to send RPC request
The RPC request could not be sent.

INTRO(2) INTRO(2)

22 SR−2012 10.0

398 ERPCAUTH RPC authentication error
An NFS request failed because an NFS authentication error occurred.

400 EPKI_NO_PACKETS No packets are available.
The packet driver does not have any response packets on its packet queue. Retry later.

401 EPKI_PACKET_LOST A packet was discarded.
The packet driver discarded a packet received from an IOP. Either the packet interface had not been
enabled or there was not an available packet entry on the packet queue when a packet was received.

402 EPKI_TRUNCATED A packet was truncated.
This message is obsolete at UNICOS 8.0.

403 EPKI_TOO_LARGE The packet size exceeds the user buffer size.
The next packet on the packet driver queue is larger than the amount of memory allocated for the
packet in the receive request (pki_nbytes).

Allocate a larger block of memory for the packet and reissue the request.

404 EPKI_ASYNCH_LIM Asynchronous response limit exceeded
You have issued a request to enable asynchronous responses that attempts to enable more
asynchronous responses than allowed by the system limit.

This limit is defined, when the packet driver is started, in the packet driver configuration file, with
parameter MAX_ASYNC. If this limit is not specified in the configuration file, the asynchronous
response limit defaults to 5.

The value may be changed after the packet driver has been started with the ipi3_option(8) or
hpi3_option(8) command.

405 EPKI_INVAL_CODE The request code is not valid.
The request packet specified was not valid. Contact your system support staff.

406 EPKI_NOT_ENABLED The packet interface has not been enabled.
The packet interface must be enabled before attempting to register a signal (PKI_SIGNO), send a
packet (PKI_SEND), or receive a packet (PKI_RECEIVE).

The packet interface is enabled with the following:

ioctl, PKI_ENABLE

407 EPKI_REQ_LIM Maximum IOP request limit exceeded
The number of packets sent by the user, but not yet received, is at the packet driver limit.

� For IOP devices, the request limit is always 1.
� For IPI-3 devices, this limit is defined when the packet driver is started, in the packet driver

configuration file, with parameters MAX_STK_COUNT and MAX_NON_CMDLST. If the limit is not
specified in the configuration file, the request limit defaults to 10. This value may be changed after
the packet driver has been started with command ipi3_option(8) or hpi3_option(8).

INTRO(2) INTRO(2)

SR−2012 10.0 23

408 EPKI_BAD_RESYNC The resynchronization code is not valid.
The packet specified in the PKI_SEND request contains a resynchronization code that does not match
the resynchronization code of the last command list response received from the IOP.

Correct the PKI_SEND request and reissue it.

409 EPKI_NO_START The IOP driver has not been started.
A packet cannot be sent to an IOP because the IOP driver has not been started.

Start the IOP driver with the ipi3_start(8) or hpi3_start(8) command and then reissue the
send request.

410 EPKI_CF_TYPE A configuration type specified is not valid.
A configuration type statement specified in the packet driver configuration file is not valid.

Valid configuration type statements begin with the - character and are followed by one of the
following strings: IOPS, CHANNELS, SLAVES, DEVICES, or OPTIONS.

411 EPKI_PARM_ERR The configuration definition specified is not valid.
An error was found in the packet driver configuration file.

412 EPKI_DEV_LIM Exceeded device limits
The requests exceeded the maximum number of IOP devices allowed. The maximum number is
limited to MAX_IOPS. Contact your system support staff.

413 EPKI_IOS_ERR An IOS error occurred on an IPI-3 request.
An IOP request did not complete successfully. Contact your system support staff.

414 EPKI_REQT_TYPE The request is not valid for the device type.
The packet specified in a send request (PKI_SEND) is not valid for the device it was issued to.
Correct the PKI_SEND request and then reissue it.

415 EPKI_IOCTL_REQT The ioctl request is not valid for the device type.
The ioctl(2) request is not valid for the device it was issued to. Correct the request and then reissue
it.

416 EPKI_IOP_SEND Unable to send the request to the IOP
The packet driver was unable to send a packet to an IOP. Contact your system support staff.

417 EPKI_ACTIVE_IOP An IOP is active.
The request could not be processed because an IOP device is open. Wait for all IOP devices to be
closed and then reissue the request.

418 EPKI_DEVS_ACTIVE Device(s) on IOP are active
The IOP driver could not be stopped because a device is open.

Wait for the device to be closed and then reissue the request.

419 EPKI_NOT_CONF The driver has not been configured into the system.
IPI-3 packet driver support has not been built into the current system. Contact your system support
staff.

INTRO(2) INTRO(2)

24 SR−2012 10.0

420 EPKI_SYS_ERROR Packet driver error
An IPI-3 packet driver software error has occurred. Contact your system support staff.

421 EPKI_NO_DEVICE Requested device not found
The device specified in the ioctl(2) request was not defined in the current configuration. Correct the
device specified and then reissue the request.

422 EPKI_PROC_LIM The process limit per IOP device has been exceeded.
The open request was rejected because the number of processes with an IOP device open is at the
packet driver limit.

When the packet driver is started, this limit is defined in the packet driver configuration file using the
MAX_IOP_PROC parameter. If the limit is not specified in the configuration file, the IOP device
process limit will default to 10.

Wait for a process to close an IOP device and then retry the open request.

The value may be changed after the packet driver has been started with command ipi3_option(8)
or hpi3_option(8).

423 EPKI_ALREADY_ENBL The packet interface has already been enabled.
The packet interface has already been enabled. This is an informative message, and no action is
required.

424 EPKI_DEV_CLEAR Device has been cleared
An ioctl(2) request was issued to a device that is in the process of being cleared or has been cleared.
After a device has been cleared, no further ioctl(2) requests will be accepted until the device has
been closed and reopened.

Close the device, reopen it, and then reissue the request.

425 EPKI_CHAN_DOWN Channel(s) to the device are down
The packet driver was unable to successfully complete a device clear request because the channel to
the device is not in the correct state. Contact your system support staff.

426 EPKI_HALTIO_ERR Halt I/O request failed
The packet driver was unable to complete a device clear request because it could not terminate the
outstanding IOP activity. Contact your system support staff.

427 EPKI_SELRST_ERR Selective reset request failed
The packet driver was unable to complete a device clear request because it could not successfully reset
the device. Contact your system support staff.

428 EPKI_SETATTR_ERR Set attribute request failed
After a device was cleared, the packet driver was unable to reset the burst size for the device. Contact
your system support staff.

INTRO(2) INTRO(2)

SR−2012 10.0 25

429 EPKI_RESPBUF_LOST The contents of response buffer was lost.
Because the size of a packet exceeded the IOP maximum packet length, the IOP copied the command
portion of the packet into a response buffer allocated by the packet driver.

The contents of this response buffer were lost.

This is an informative message, and no action is required.

430 EPKI_CMDLIST_LIM The command list limit per IPI-3 has been exceeded.
The number of command list requests sent by the user, but not yet received, is at the packet driver
limit. This limit is defined when the packet driver is started, in the packet driver configuration file with
parameter, MAX_STK_COUNT.

If the limit is not specified in the configuration file, the limit defaults to 5. This value may be changed
after the packet driver has been started with the ipi3_option(8) or hpi3_option(8) command.

431 EPKI_DRIVER_DOWN The packet driver is down.
A packet driver device could not be opened because the packet driver has not been started. Wait until
the packet driver has been started and then try again.

432 EPKI_PEND_SHUTDOWN The packet driver shutdown is pending.
A packet driver device could not be opened because a shutdown of the packet driver is pending. Wait
until the packet driver has been restarted and then try again.

433 EPKI_DRIVER_UP The packet driver is up.
The packet driver is up. This is an informative message, and no action is required.

434 EPKI_PEND_STARTUP The packet driver startup is pending.
A request to start the packet driver was terminated because another start-up request is pending. This is
an informative message, and no action is required.

435 EPKI_DRIVER_ACTIVE The packet driver is active.
A packet driver shutdown request failed because the packet driver is active. Wait until the packet
driver is inactive and then try again.

436 EPKI_STOP_DRIVER The request to stop the IOP driver failed.
The packet driver could not successfully complete a shutdown request because it was unable to stop an
IOP driver. Further information can be obtained from the pki_errno, pki_response, and
pki_extsts fields in the shutdown response. Contact your system support staff.

437 EPKI_IOP_NOT_CONF The IOP is not configured.
An ioctl(2) request was issued to an IOP that is not configured, or an open(2) request was issued to
a device configured on an IOP that has been shut down. Reconfigure the IOP by using the
ipi3_start(8) command and reissue the request.

438 EPKI_IOP_SHUTDOWN The IOP has been shut down.
A request was terminated because the IOP processing the request has been shut down. Reconfigure the
IOP by using the ipi3_start(8) command and reissue the request.

INTRO(2) INTRO(2)

26 SR−2012 10.0

439 EPKI_ALREADY_CONFIG A single IOP could not be restarted because it
is still configured.

A configuration request was terminated because the hardware to be defined is already configured.

500 EFSEMANA (SFS) Fast lock not available
A request to assign a fast lock to a shared file failed because no more hardware semaphores were
available.

501 EFSNOGROW (SFS) File has allocation restrictions
A request to change the allocation of a shared file failed because the file was previously set to a state
where no allocation changes are allowed.

502 EFSNOTEXCL (SFS) File is not exclusive
A nonblocking request to exclusively open a shared file failed because the file is already in an open
state by some other process.

503 EFSEXCLWR (SFS) File is write protected
A nonblocking request to obtain a read lock on a shared file failed because the file is currently write
locked by some other process.

504 EFSESDOWN (SFS) External semaphore device unavailable
An attempt to utilize the shared file system has failed because the external semaphore device is
unavailable.

540 ENOTWELLFORMED I/O request not well formed
An I/O request that is not wellformed has been issued against a file that was opened with the
O_WELLFORMED option. An I/O request is considered wellformed only if the file offset is exactly on
a sector boundary, the I/O request length is exactly a whole number of sectors, and the I/O buffer
address in common memory is on a word boundary.

546 EFSBAD (Panicless File System) File system corrupted
The panicless file system consistency checking code has detected an error in a file system super block
or dynamic block. The file system has been marked in error, and must be repaired with /etc/fsck.

547 EDBAD (Panicless File System) Directory corrupted
The panicless file system consistency checking code has detected an error in a directory entry. The
entry has been marked in error, and must be repaired with /etc/fsck.

549 EIBAD (Panicless File System) File Inode Corrupted
The panicless file system consistency checking code has detected an error in a file inode table entry.
The file has been marked in error, and must be repaired with /etc/fsck.

INTRO(2) INTRO(2)

SR−2012 10.0 27

SEE ALSO

intro(3C) in the UNICOS System Libraries Reference Manual, Cray Research publication SR−2080

UNICOS File Formats and Special Files Reference Manual, Cray Research publication SR−2014

Scientific Libraries Reference Manual, Cray Research publication SR−2081

Intrinsic Procedures Reference Manual, Cray Research publication SR−2138

UNICOS Macros and Opdefs Reference Manual, Cray Research publication SR−2403

INTRO(2) INTRO(2)

28 SR−2012 10.0

NAME

accept − Accepts a connection on a socket

SYNOPSIS

#include <sys/types.h>
#include <sys/socket.h>

int accept (int s, struct sockaddr *addr, int *addrlen);

IMPLEMENTATION

All Cray Research systems

DESCRIPTION

The accept system call accepts a connection on a socket. It accepts the following arguments:

s Specifies the descriptor for a socket. The socket was created by using socket(2), bound to an
address with bind(2), and is listening for connections after a listen(2) request. The accept
call extracts the first connection on the queue of pending connections, creates a new socket with the
same properties as s, and allocates a new file descriptor for the socket. If no pending connections
exist on the queue, and the socket is not marked as nonblocking, accept blocks the caller until a
connection exists. If the socket is marked nonblocking, and no pending connections exist on the
queue, accept returns an error as described in the RETURN VALUES subsection that follows.
The accepted socket cannot be used to accept more connections. The original s socket remains
open and listens for other connections.

addr Specifies the address of a sockaddr structure. When a request arrives, the accept system call
fills this sockaddr structure with the address of the client that placed the request. The domain in
which the communication is occurring determines the exact format of the addr argument.

addrlen Specifies the address of an integer. The accept system call fills this integer with the length of the
address that was placed in the sockaddr structure pointed to by addr. Initially, it must contain
the amount of space to which addr points; on return, it contains the actual number of bytes in the
address that is returned.

The accept call sets up send and receive socket buffers (sockbufs) using the sockbuf space limit of the
listening s socket. The accept call fails and returns an ELIMIT error if this call would cause the user’s
per-session sockbuf space limit to be exceeded. The original s socket remains open and continues to listen.

This call is used with connection-based socket types; it is currently used with SOCK_STREAM.

To determine whether a connection is ready to be accepted, instead of issuing the accept system call, you can
issue the select(2) system call and set the bit for the socket file descriptor in the read mask (readfds).

ACCEPT(2) ACCEPT(2)

SR−2012 10.0 29

For protocols that require an explicit confirmation, the accept call merely dequeues the next connection
request; it does not imply confirmation. Confirmation can be implied by a standard read or write operation on
the new file descriptor; rejection can be implied by closing the new socket.

You can obtain user connection request information without confirming the connection by issuing a
recvmsg(2) call with a msg_iovlen value of 0 and a nonzero msg_control value, or by issuing a
getsockopt(2) call. Similarly, you can provide information about user connection rejection by issuing a
sendmsg(2) call and providing only the control information, or by issuing a setsockopt(2) call.

NOTES

If addrlen is less than the size of the address of the connecting entity (that is, less than the size of a struct
sockaddr), the accept call truncates its result to fit into the available space.

If the SOCKET_MAC configuration option is enabled, the active security label of the process must be greater
than or equal to the security label of the socket. The SOCKET_MAC configuration option is part of the TCP/IP
configurable feature variables list in uts/cf/Nmakefile. For more information, see the connect(2) man
page.

A process with the effective privilege shown is granted the following ability:

Privilege Description

PRIV_MAC_READ The process is allowed to override the security level and compartment restrictions
when the SOCKET_MAC configuration option is enabled.

RETURN VALUES

If accept completes successfully, it returns a nonnegative integer that is a descriptor for the accepted socket;
otherwise, a value of −1 is returned, and errno is set to indicate the error.

ERRORS

The accept call fails if one of the following error conditions occurs:

Error Code Description

EACCES If the SOCKET_MAC configuration option is enabled, the process does not meet the
security level and compartment requirements and does not have the appropriate
privilege.

EBADF Descriptor is invalid.

EFAULT Argument addr or argument addrlen is not in the user address space in which it can be
written.

EINVAL Socket is not bound or socket is not listening.

ELIMIT The user’s socket buffer space limit is exceeded.

ENOTSOCK Descriptor is not a socket.

ACCEPT(2) ACCEPT(2)

30 SR−2012 10.0

EWOULDBLOCK Socket is marked nonblocking, and no connections are present to be accepted.

EXAMPLES

This server program shows how to use the accept system call in context with other TCP/IP calls. (Some
system calls in this example are not supported on Cray MPP systems.) The program simply creates a TCP/IP
socket, waits for a client process from some host to attempt a connection, accepts the connection, and forks a
child process to provide the service to the client.

The original (parent) server loops back to look for additional connection attempts while the temporary (child)
server reads a string of data sent by the client process.

/* Server side of client-server socket example. For client side,
see socket(2).
Syntax: server portnumber & */

#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <stdio.h>
#include <netdb.h>

main(int argc, char *argv[])
{

int s, ns;
struct sockaddr_in src; /* source socket address */
int len=sizeof(src);
char buf[256];

/* create port */
src.sin_family = AF_INET;
src.sin_port = atoi(argv[1]);
src.sin_addr.s_addr = 0;

if ((s = socket(AF_INET, SOCK_STREAM, 0)) < 0) {
perror("server, unable to open socket");
exit(1);

}

while (bind(s, (struct sockaddr *) &src, sizeof(src)) < 0) {
printf("Server waiting on bind...\n");
sleep(1);

}

listen(s, 5);

ACCEPT(2) ACCEPT(2)

SR−2012 10.0 31

while (1) {
ns = accept(s, (struct sockaddr *) &src, &len);
if (ns < 0) {

perror("server, accept failed");
exit(1);

}

if (fork() == 0) {
/* in child server */
close(s); /* child will use socket ns, parent uses s */
read(ns, &buf, sizeof(buf));
printf("Server read: %s\n", buf);
close(ns);
exit(0);

}
close(ns); /* close socket used by child */

}
}

FILES

/etc/config/spnet.conf Contains the network access list

/usr/adm/sl/slogfile Receives security log records

/usr/include/sys/socket.h Contains definitions related to sockets, types, address families, and
options

/usr/include/sys/types.h Contains types required by ANSI X3J11

SEE ALSO

bind(2), connect(2), getsockopt(2), listen(2), select(2), sendmsg(2), setsockopt(2),
socket(2)

UNICOS File Formats and Special Files Reference Manual, Cray Research publication SR−2014

UNICOS Networking Facilities Administrator’s Guide, Cray Research publication SG−2304

ACCEPT(2) ACCEPT(2)

32 SR−2012 10.0

NAME

access − Determines accessibility of a file

SYNOPSIS

#include <unistd.h>

int access (const char *path, int amode);

IMPLEMENTATION

All Cray Research systems

STANDARDS

POSIX, XPG4

DESCRIPTION

The access system call determines the accessibility of the path name pointed to by the path argument. It
checks for the file access permissions indicated by amode, using the real user ID in place of the effective user
ID and the real group ID in place of the effective group ID.

It accepts the following arguments:

path Points to a file path name.

amode Identifies the bit pattern to check against the file’s bit pattern denoting access permission.
Construct the bit pattern in amode, as follows:

00 or F_OK Check existence of file

01 or X_OK Execute (search)

02 or W_OK Write

04 or R_OK Read

020 or G_OK Check for set-gid bit

040 or U_OK Check for set-uid bit

0400 or EUID_OK Test using the effective IDs rather than the real IDs

The owner of a file has permission checked with respect to the owner read, write, and execute mode bits;
members of the file’s group other than the owner have permissions checked with respect to the group mode bits;
and all others have permissions checked with respect to the other mode bits.

ACCESS(2) ACCESS(2)

SR−2012 10.0 33

NOTES

If the file has an access control list, users that are not the file owner have permissions checked with respect to
the access control list. Users who are not affected by entries in the access control list have permissions checked
with respect to the other mode bits.

Permission to the file is also based on a comparison between the active security label of the process and the
security label of the file. These comparisons are summarized as follows:

 For read, execute, or search permission, the active security label of the process must dominate the security
label of the file.

� For write permission, the active security label of the process must equal the security label of the file.

If the file is a labeled device, the active security label of the process must fall within the security label range of
the device.

Only appropriately authorized users are granted permission to files that are in the OFF state or that are
multilevel.

The process must be granted search permission to every component of the path prefix via the permission bits
and access control list.

The process must be granted search permission to every component of the path prefix via the security label.

If FSETID_RESTRICT is enabled, only a process with appropriate privileges can be granted write permission
to set-user-ID or set-group-ID files.

A process with the effective privileges shown are granted the following abilities:

Privilege Description

PRIV_DAC_OVERRIDE The process is granted search permission to every component of the path prefix
via the permission bits and access control list.

PRIV_DAC_OVERRIDE The process is granted read, execute, search, or write permission to the file via
the permission bits and access control list.

PRIV_FSETID If FSETID_RESTRICT is enabled, the process is granted write permission to
the set-user-ID or set-group-ID file.

PRIV_MAC_READ The process is granted search permission to every component of the path prefix
via the security label.

PRIV_MAC_READ The process is granted read, execute, or search permission to the file via the
security label.

PRIV_MAC_WRITE The process is granted write permission to the file via the security label.

If the PRIV_SU configuration option is enabled, the super user is granted search permission to every
component of the path prefix and is granted read, execute, search, or write permission to the file. The super
user or a process with the suidgid permission can override the restriction introduced by the
FSETID_RESTRICT system configuration option.

ACCESS(2) ACCESS(2)

34 SR−2012 10.0

RETURN VALUES

If access completes successfully, a value of 0 is returned; otherwise, a value of −1 is returned, and errno is
set to indicate the error.

ERRORS

The access system call fails if one of the following error conditions occurs:

Error Code Description

EACCES Permission bits of the file mode do not permit the requested access.

EACCES Search permission is denied on a component of the path prefix.

EACCES The file is in the OFF state and the calling process does not have appropriate
privileges.

EACCES The file is a multilevel file and the calling process does not have appropriate privileges.

EACCES The security label of the file does not allow the requested access.

EACCES If the FSETID_RESTRICT and PRIV_SU configuration options are enabled, the
process does not have appropriate privilege to gain write permission to the set-user-ID
or set-group-ID file.

EFAULT The path argument points outside the allocated process address space.

EMANDV The security label range of a device does not allow the requested access.

ENAMETOOLONG The path argument is longer than PATH_MAX characters.

ENOENT The specified file does not exist.

ENOENT Read, write, or execute (search) permission is requested for a null path name.

ENOTDIR A component of the path prefix is not a directory.

EROFS Write access is requested for a file on a read-only file system.

ETXTBSY Text file is busy.

Mandatory access violations are recorded in the security log for these conditions:

Error Code Description

EACCES The user’s security label does not allow access to the file.

EINTCATV The user’s active category does not match the file’s category.

EMANDV The caller is attempting to open an existing, labeled device but does not have an active
security label that falls within the authorized security label range of the device.

ACCESS(2) ACCESS(2)

SR−2012 10.0 35

FORTRAN EXTENSIONS

The access system call can be called from Fortran as a function (on all systems except Cray MPP systems
and CRAY T90 series systems):

CHARACTER*n path
INTEGER amode, ACCESS, I
I = ACCESS (path, amode)

path may also be an integer variable. In this case, the data must be packed 8 characters per word and
terminated with a null (0) byte. The PXFACCESS(3F) subroutine provides similar functionality and is available
on all Cray Research systems.

EXAMPLES

This example illustrates how to use the access system call to check on the existence of a file before issuing an
open(2) call. The access request verifies that file datafile exists before an attempt is made to open it.

int fd;

if (access("datafile", F_OK)) {
fprintf(stderr, "File datafile does not exist.\n");

}
else {

fd = open("datafile", O_RDONLY);
}

FILES

/usr/include/unistd.h Contains C prototype for the access system call

SEE ALSO

chmod(2), stat(2)

PXFACCESS(3F) in the Application Programmer’s Library Reference Manual, Cray Research publication
SR−2165

ACCESS(2) ACCESS(2)

36 SR−2012 10.0

NAME

acct − Enables or disables process accounting

SYNOPSIS

#include <unistd.h>

int acct (char *path);

IMPLEMENTATION

All Cray Research systems

DESCRIPTION

The acct system call enables or disables the system process accounting routine. If the routine is enabled, an
accounting record is written to an accounting file for each process that terminates. An exit(2) call or a signal
can cause termination. Only a process with appropriate privilege can use this system call.

The acct system call accepts the following argument:

path Points to a path name that specifies the accounting file. The accounting file format is given in
acct(5).

If path is nonzero and no errors occur during the system call, the accounting routine is enabled. If
path is 0 and no errors occur during the system call, it is disabled.

If the accounting routine is already enabled and path differs from the accounting file currently in
use, the accounting file will be switched to path without the loss of any accounting information.

NOTES

A process with the effective privilege shown is granted the following ability:

Privilege Description

PRIV_ACCT The process is allowed to use this system call.

If the PRIV_SU configuration option is enabled, the super user or a process with the PERMBITS_ACCT
permbit is allowed to use this system call.

RETURN VALUES

If acct completes successfully, a value of 0 is returned; otherwise, a value of −1 is returned, and errno is set
to indicate the error.

ACCT(2) ACCT(2)

SR−2012 10.0 37

ERRORS

The acct system call fails if one of the following error conditions occurs:

Error Code Description

EACCES A component of the path prefix denies search permission.

EACCES The file specified by path is not a regular file.

EACCES Write permission is denied for the specified accounting file.

EFAULT The path argument points to an illegal address.

EISDIR The specified file is a directory.

ENOENT One or more components of the accounting file path name do not exist.

ENOTDIR A component of the path prefix is not a directory.

EPERM The process does not have appropriate privilege to use this system call.

EROFS The specified file resides on a read-only file system.

FILES

/usr/include/unistd.h Contains C prototype for the acct system call

SEE ALSO

exit(2)

acct(5) in the UNICOS File Formats and Special Files Reference Manual, Cray Research publication
SR−2014

ACCT(2) ACCT(2)

38 SR−2012 10.0

NAME

acctctl − Checks status of, enables, and disables process, daemon, and record accounting

SYNOPSIS

#include <sys/types.h>
#include <sys/accthdr.h>
#include <sys/acct.h>

int acctctl (int fnc, void *act);

IMPLEMENTATION

All Cray Research systems

DESCRIPTION

The acctctl system call checks the status of, enables, and disables process, daemon, and record accounting.
It accepts the following arguments:

fnc Identifies a function to be performed as follows:

Function Description

AC_DMDAUTHORIZED Returns an indication of whether the executing user is authorized to
enable/disable accounting.

AC_DMDSTART Enables the indicated accounting method.

AC_DMDSTOP Disables the indicated accounting method.

AC_DMDCHECK Checks the current state of a specific accounting method.

AC_DMDSTAT Checks the current state of all accounting methods.

act Points to either an actctl, actstat, or actstat structure, depending on the function (i.e. fnc) to
be performed.

This parameter is ignored for the AC_DMDAUTHORIZED function.

Enabling an accounting method requires an actctl structure which defines the daemon/record accounting
identifier to be enabled (actctl.ac_stat.ac_id), the name of the file to write accounting data to
(actctl.ac_path), and an optional parameter, which is defined by the accounting method being enabled
(actctl.ac_stat.ac_param).

Disabling an accounting method requires an actctl structure which defines the daemon/record accounting
identifier to be disabled (actctl.ac_stat.ac_id).

Checking the state of an accounting method requires an actstt structure which defines the daemon/record
accounting identifier being checked (actstt.ac_id). On a successful return, the accounting method’s
current state (i.e. ACS_ON, or ACS_OFF) and optional parameter’s value (actstt.ac_stt and
actstt.ac_param, respectively) are set.

ACCTCTL(2) ACCTCTL(2)

SR−2012 10.0 39

Checking the state of all accounting methods requires an actstt structure which defines the number of
accounting status entries available (ac_stat.ac_sttnum). On a successful return, each available entry is
filled in with the current state of an accounting method up to the number of accounting methods defined in the
kernel. An accounting method’s status entry can be accessed by using its defined identifier as the index into the
ac_stat[] array returned.

NOTES

Only a process with appropriate privilege can use this system call to enable and/or disable accounting.
However, no special privilege is required to check/status accounting states.

When enabling accounting, if the type of accounting specified is already enabled, the accounting file being used
for data collection will be closed and switched to the file specified without losing any accounting information.

To be granted search permission to a component of the path prefix, the active security label of the process must
be greater than or equal to the security label of the component.

To be granted write permission to the file, the active security label of the process must equal the security label
of the file.

A process with the effective privileges shown is granted the following abilities:

Privilege Description

PRIV_ACCT The process is allowed to use this system call to enable/disable accounting.

PRIV_DAC_OVERRIDE The process is granted search permission to every component of the path prefix
through the permission bits and access control list.

PRIV_DAC_OVERRIDE The process is granted write permission to the file through the permission bits
and access control list.

PRIV_MAC_READ The calling process is granted search permission to every component of the path
prefix through the security label.

PRIV_MAC_WRITE The process is granted write permission to the file through the security label.

If the PRIV_SU configuration option is enabled, the super user is granted search permission to every
component of the path prefix and is granted write permission to the file. The super user is allowed to use this
system call to enable/disable accounting.

RETURN VALUES

If acctctl completes successfully, a value of 0 is returned and the structure pointed to by act is filled in as
indicated above. If acctctl completes unsuccessfully, a value of −1 is returned, the structure pointed to be
act is not modified and errno is set to indicate the error.

For the AC_DMDAUTHORIZED function, a value of 0 is returned if the executing user is authorized to
enable/disable accounting. A value of −1 is returned and errno is set to EPERM, if the executing user is not
authorized to enable/disable accounting.

ACCTCTL(2) ACCTCTL(2)

40 SR−2012 10.0

ERRORS

The acctctl system call fails if one of the following error conditions occurs:

Error Code Description

EACCES Search permission is denied on a component of the path prefix.

EACCES The process is not granted write permission to the file.

EACCES The file specified by path is not an ordinary file.

EFAULT The act argument points to an illegal address.

EINVAL An invalid argument was specified.

EISDIR The file specified is a directory.

ENOENT A component of the path prefix or the file does not exist.

EPERM The process does not have appropriate privilege to use this system call.

EROFS The specified file resides on a read-only file system.

FILES

/usr/include/acct/dacct.h Defines daemon accounting files

/usr/include/sys/acct.h Defines the actctl, actstt, and ac_stat structures

/usr/include/sys/accthdr.h Defines daemon/record identifiers

SEE ALSO

acct(2), dacct(2)

acct(5) in the UNICOS File Formats and Special Files Reference Manual, Cray Research publication
SR−2014

acct(8), csaswitch(8) in the UNICOS Administrator Commands Reference Manual, Cray Research
publication SR−2022

ACCTCTL(2) ACCTCTL(2)

SR−2012 10.0 41

NAME

acctid − Changes account ID of a process

SYNOPSIS

#include <unistd.h>

int acctid (int pid, int acid);

IMPLEMENTATION

All Cray Research systems

DESCRIPTION

The acctid system call changes the account ID of the specified process. Only a process with appropriate
privilege can set the account ID.

The acctid system call accepts the following arguments:

pid Specifies the pid of the target process. A pid of 0 means the current process.

acid Specifies the value of the new account ID. The value must be either nonnegative or −1. An acid of −1
means no change.

For more information about changing the account ID of a user, see newacct(1).

NOTES

The active security label of the calling process must be greater than or equal to the active security label of the
specified process.

To set the account ID of a process, the active security label of the calling process must be equal to the active
security label of the specified process.

A process with the effective privileges shown is granted the following abilities:

Privilege Description

PRIV_ACCT The calling process is allowed to set the account ID.

PRIV_MAC_READ The calling process is allowed to override the restriction that its active security label
must be greater than or equal to the security label of the specified process.

PRIV_MAC_WRITE The calling process is allowed to override the security label restriction when setting the
account ID of a process.

PRIV_POWNER The calling process is considered the owner of the specified process.

If the PRIV_SU configuration option is enabled, the super user is considered the owner of the specified process
and is allowed to set the account ID. The super user is allowed to override all security label restrictions.

ACCTID(2) ACCTID(2)

42 SR−2012 10.0

RETURN VALUES

If acctid completes successfully, it returns the previous account ID of the specified process; otherwise, a
value of −1 is returned, and errno is set to indicate the error.

ERRORS

The acctid system call fails if one of the following error conditions occurs:

Error Code Description

EINVAL One of the arguments contains an invalid value.

EPERM The calling process does not have appropriate privilege to set the account ID.

EPERM The calling process does not have appropriate privilege to use this system call.

ESRCH The specified process could not be found.

ESRCH The caller does not own the specified process and does not have appropriate privilege.

ESRCH The calling process does not meet the security label requirements and does not have
appropriate privilege.

FILES

/usr/include/unistd.h Contains C prototype for the acctid system call

SEE ALSO

newacct(1) in the UNICOS User Commands Reference Manual, Cray Research publication SR−2011

ACCTID(2) ACCTID(2)

SR−2012 10.0 43

NAME

adjtime − Corrects the time to allow synchronization of the system clock

SYNOPSIS

#include <sys/time.h>

int adjtime (struct timeval *delta, struct timeval *olddelta);

IMPLEMENTATION

All Cray Research systems

DESCRIPTION

The adjtime system call adjusts the system’s notion of the current time, as returned by gettimeofday(2).
It advances or retards it by the amount of time specified in the struct timeval (defined in header file
sys/time.h) pointed to by delta.

The adjtime system call accepts the following arguments:

delta Points to a timeval structure.

olddelta Points to a structure that contains, upon return, the time still to be corrected from the earlier call.
If olddelta is a null pointer, the corresponding information is not returned.

The adjustment is effected by speeding up (if that amount of time is positive) or slowing down (if that amount
of time is negative) the system clock by some small percentage, generally a fraction of 1%. Thus, the time is
always a monotonically increasing function. A time correction from an earlier call to adjtime may not be
finished when adjtime is called again.

This call is used in time servers that synchronize the clocks of computers in a local area network. Such time
servers slow down the clocks of some machines and speed up the clocks of others to bring them to the notion of
network time.

Only a process with appropriate privilege can use this system call.

The adjustment value is silently rounded to the resolution of the system clock.

NOTES

A process with the effective privilege shown is granted the following ability:

Privilege Description

PRIV_TIME The process is allowed to use this system call.

If the PRIV_SU configuration option is enabled, the super user is allowed to use this system call.

ADJTIME(2) ADJTIME(2)

44 SR−2012 10.0

RETURN VALUES

If adjtime completes successfully, a value of 0 is returned; otherwise, a value of −1 is returned, and errno
is set to indicate the error.

ERRORS

The adjtime system call fails if one of the following error conditions occurs:

Error Code Description

EFAULT olddelta points to a region of the process’ allocated address space that is not writable.

EPERM The process does not have appropriate privilege to use this system call.

SEE ALSO

gettimeofday(2)

date(1) in the UNICOS User Commands Reference Manual, Cray Research publication SR−2011

ADJTIME(2) ADJTIME(2)

SR−2012 10.0 45

NAME

alarm, _lwp_alarm − Sets a process alarm clock

SYNOPSIS

#include <unistd.h>

unsigned int alarm (unsigned int sec);

unsigned int _lwp_alarm (unsigned int sec);

IMPLEMENTATION

All Cray Research systems

STANDARDS

POSIX, XPG4

DESCRIPTION

The alarm system call instructs the alarm clock of the calling process to send the SIGALRM signal to the
calling process after a specified number of real-time seconds has elapsed; see signal(2).

Alarm requests are not stacked; successive calls reset the alarm clock of the calling process.

The alarm and _lwp_alarm system calls accept the following argument:

sec Specifies the number of real-time seconds. To cancel a previous alarm request, set sec to 0.

On Cray MPP systems, the alarm system call sets an alarm only for the processing element (PE) on which it is
called. It has no effect on any other PE of the application.

The _lwp_alarm system call ensures that the alarm signal is sent to the specific member of the multitasking
group that called _lwp_alarm. In contrast, alarm results in an alarm signal being sent to an arbitrary
thread.

NOTES

The _lwp_alarm system call provides compatibility with the behavior of alarm previous to UNICOS 9.0. It
is a transitional tool since it may disappear in a future release of the UNICOS operating system. This
compatibility issue affects only multitasked applications.

RETURN VALUES

The alarm system call returns the amount of time previously remaining in the alarm clock of the calling
process.

ALARM(2) ALARM(2)

46 SR−2012 10.0

FORTRAN EXTENSIONS

The alarm system call can be called from Fortran as a function:

INTEGER sec, ALARM, I
I = ALARM (sec)

Alternatively, alarm can be called from Fortran as a subroutine. In this case, the return value of the system
call is unavailable.

INTEGER sec
CALL ALARM (sec)

The Fortran program must not specify both the subroutine call and the function reference to alarm from the
same procedure.

EXAMPLES

This example shows how to use the alarm request to notify the invoking process when a specific amount of
time has expired. After the specified time (10 seconds), the SIGALRM signal is sent to the process, interrupting
the process.

Using the signal(2) system call, the program requests that the function handlr be entered when the
SIGALRM signal is received; otherwise, the process will usually terminate upon the receipt of the signal. After
the function handlr executes, control is returned to the point of interruption.

#include <signal.h>
#include <unistd.h>

main()
{

void handlr(int signo);

signal(SIGALRM, handlr);
alarm(10);

/* After executing 10 seconds, SIGALRM signal interrupts program. */
/* Execution resumes here after processing SIGALRM signal. */

}

void handlr(int signo)
{

signal(signo, handlr);
/* Process SIGALRM signal here and then return. */

}

ALARM(2) ALARM(2)

SR−2012 10.0 47

FILES

/usr/include/unistd.h Contains C prototype for the alarm system call

SEE ALSO

pause(2), sigctl(2), signal(2), sigset(2)

ALARM(2) ALARM(2)

48 SR−2012 10.0

NAME

bind − Binds a name to a socket

SYNOPSIS

#include <sys/types.h>
#include <sys/socket.h>

int bind (int s, struct sockaddr *name, int namelen);

IMPLEMENTATION

All Cray Research systems

DESCRIPTION

The bind system call assigns a name to an unnamed socket. It accepts the following arguments:

s Specifies the descriptor of the socket to be bound.

name Points to the address of the sockaddr structure that contains the local address to which the socket
should be bound.

namelen Specifies length of the address, pointed to by name. The length is measured in bytes.

When a socket is created by using socket(2), it is assigned a descriptor s and exists in a name space (address
family), but it has no name assigned. The bind call requests that the name name be assigned to the socket.

The rules used in name binding vary among communication domains.

NOTES

The active security label of the process must equal the security label of the socket.

A process with the effective privilege shown is granted the following ability:

Privilege Description

PRIV_MAC_WRITE The process is allowed to override the security label restrictions.

If the PRIV_SU configuration option is enabled, the super user is allowed to override security label restrictions.

RETURN VALUES

If bind completes successfully, a value of 0 is returned; otherwise, a value of −1 is returned, and errno is set
to indicate the error.

BIND(2) BIND(2)

SR−2012 10.0 49

ERRORS

The bind system call fails if one of the following error conditions occurs:

Error Code Description

EACCES The process does not meet the security label requirements, and does not have
appropriate privilege.

EADDRINUSE Specified address is already in use.

EADDRNOTAVAIL Specified address is not available from the local machine.

EBADF Descriptor s is not valid.

EFAULT Argument name is not in a valid part of the user address space.

EINVAL Socket is already bound to an address or namelen is not the size of a valid address for
the specified address family.

ENOTSOCK Descriptor s is not a socket.

See open(2) for file system-related errors.

EXAMPLES

This server program shows how to use the bind system call in context with other TCP/IP calls. (Some system
calls in this example are not supported on Cray MPP systems.) The program simply creates a TCP/IP socket,
waits for a client process from some host to attempt a connection, accepts the connection, and forks a child
process to provide the requested service to the client.

The original (parent) server loops back to look for additional connection attempts while the temporary (child)
server reads a string of data that the client process sends.

BIND(2) BIND(2)

50 SR−2012 10.0

/* Server side of client-server socket example. For client side,
see socket(2).
Syntax: server portnumber & */

#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <stdio.h>
#include <netdb.h>

main(int argc, char *argv[])
{

int s, ns;
struct sockaddr_in src; /* source socket address */
int len=sizeof(src);
char buf[256];

/* create port */
src.sin_family = AF_INET;
src.sin_port = atoi(argv[1]);
src.sin_addr.s_addr = 0;

if ((s = socket(AF_INET, SOCK_STREAM, 0)) < 0) {
perror("server, unable to open socket");
exit(1);

}

while (bind(s, (struct sockaddr *) &src, sizeof(src)) < 0) {
printf("Server waiting on bind...\n");
sleep(1);

}

BIND(2) BIND(2)

SR−2012 10.0 51

listen(s, 5);

while (1) {
ns = accept(s, (struct sockaddr *) &src, &len);
if (ns < 0) {

perror("server, accept failed");
exit(1);

}

if (fork() == 0) {
/* in child server */
close(s); /* child will use socket ns, parent uses s */
read(ns, &buf, sizeof(buf));
printf("Server read: %s\n", buf);
close(ns);
exit(0);

}
close(ns); /* close socket used by child */

}
}

FILES

/usr/include/sys/socket.h Header file for sockets

/usr/include/sys/types.h Header file for types

SEE ALSO

connect(2), getsockname(2), listen(2), open(2), socket(2), unlink(2)

inet(4P), intro(4) in the UNICOS File Formats and Special Files Reference Manual, Cray Research
publication SR−2014

BIND(2) BIND(2)

52 SR−2012 10.0

NAME

brk, sbrk, sbreak − Changes data segment space allocation

SYNOPSIS

#include <unistd.h>

int brk (char *endds);

char *sbrk (int incr);

long *sbreak (int incr);

IMPLEMENTATION

All Cray Research systems

DESCRIPTION

The brk, sbrk, and sbreak system calls dynamically change the amount of space allocated for the data
segment of the calling process; see exec(2). The change is made by resetting the break value of the process
and allocating the appropriate space. The break value is the address of the first location beyond the end of the
data segment. The amount of allocated space increases as the break value increases. The newly allocated space
is initialized to 0.

The brk, sbrk, and sbreak system calls accept the following arguments:

endds Specifies break value to be set (brk only). To specify the return value of the ulimit(2) system
call as the value for endds, you must convert the number returned by ulimit(2) to a character
pointer, as follows:

brk(((char *)0) + ulimit(3,0));

incr Specifies the number of bytes (sbrk) or words (sbreak) to add to the break value. To decrease
the allocated space, specify incr as a negative number.

CAUTIONS

The use of the brk, sbrk, or sbreak system call directly interferes with the processing of library routine
malloc(3C), which the calling sequence uses to implement run-time stack space.

RETURN VALUES

If brk completes successfully, a value of 0 is returned; sbreak and sbrk return the old break value.
Otherwise, a value of −1 is returned, and errno is set to indicate the error.

BRK(2) BRK(2)

SR−2012 10.0 53

ERRORS

The brk, sbrk, or sbreak system call fails without making any change in the allocated space if one of the
following error condition occurs:

Error Code Description

ENOMEM More space is specified in the argument than is allowed by a system-imposed
maximum (see limit(2) and ulimit(2)).

EMEMLIM More memory space was requested than is allowed for the processes attached to this
lnode. The maximum value is set by the -c option of the shradmin(8) command.
This error appears only on systems running the fair-share scheduler.

FORTRAN EXTENSIONS

The brk system call can be called from Fortran as a function:

INTEGER endds, BRK, I
I = BRK (endds)

Alternatively, brk can be called from Fortran as a subroutine. In this case, the return value of the system call
is unavailable.

INTEGER endds
CALL BRK (endds)

The Fortran program must not specify both the subroutine call and the function reference to brk from the same
procedure.

The sbrk system call can be called from Fortran as a function:

INTEGER incr, SBRK, I
I = SBRK (incr)

The sbreak system call can be called from Fortran as a function:

INTEGER incr, SBREAK, I
I = SBREAK (incr)

EXAMPLES

The following examples illustrate how to use the brk, sbrk, and sbreak system calls to expand and
decrease the size of the calling process. The first three examples, involving the same expansion task, highlight
differences in these calls.

Example 1: This brk request expands the size of the calling process by 1000 octal words (8 bytes per word).

BRK(2) BRK(2)

54 SR−2012 10.0

A sbrk request first determines the current break value for the process from which the new break value is
calculated. Then, brk expands the calling process size.

char *brkp;
int rtrn;

brkp = sbrk(0); /* return current break value for process. */
rtrn = brk(brkp + (8 * 01000));

Example 2: The sbrk request expands the size of the calling process by 1000 octal words (8 bytes per word).
The return value placed in ptr points to the beginning of the newly allocated block of 1000 octal words.

char *ptr;

ptr = sbrk(8 * 01000);

Example 3: The sbreak request expands the size of the calling process by 1000 octal words (8 bytes per
word). The return value placed in ptr points to the beginning of the newly allocated block of 1000 octal
words.

long *ptr;

ptr = sbreak(01000);

Example 4: This sbreak request decreases the size of the calling process by 2000 octal words (8 bytes per
word):

long *ptr;

ptr = sbreak(-02000);

Example 5: The following brk system call increases the size of the calling process to the maximum allowed
for the user’s process:

brk(((char *)0) + ulimit(3,0));

FILES

/usr/include/unistd.h Contains C prototype for the brk, sbrk, and sbreak system calls

SEE ALSO

exec(2), limit(2), ulimit(2)

malloc(3C) in the UNICOS System Libraries Reference Manual, Cray Research publication SR−2080

shradmin(8) in the UNICOS Administrator Commands Reference Manual, Cray Research publication
SR−2022

BRK(2) BRK(2)

SR−2012 10.0 55

NAME

chacid − Changes disk file account ID

SYNOPSIS

#include <unistd.h>

int chacid (char *path, int acid);

IMPLEMENTATION

All Cray Research systems

DESCRIPTION

The chacid system call changes the account ID associated with a disk file. (The file can be the original file or
a symbolic link.) The chacid system call accepts the following arguments:

path Specifies the path name of the file to be changed.

acid Specifies the account ID or −1. If acid is −1, the current account ID is returned, and no change is
made.

All users may call chacid with an acid of −1; however, only a process with appropriate privilege may call
chacid with an account ID other than −1.

NOTES

The active security label of the calling process must be greater than or equal to the active security label of the
file.

To set the account ID of a file, the active security label of the calling process must equal the active security
label of the file.

To be granted search permission to a component of the path prefix, the active security label of the process must
be greater than or equal to the security label of the component.

A process with the effective privileges shown is granted the following abilities:

Privilege Description

PRIV_ACCT The calling process is allowed to set the account ID of the file.

PRIV_DAC_OVERRIDE The process is granted search permission to a component of the path via the
permission bits and access control list.

PRIV_MAC_READ The calling process is allowed to override the restriction that its active security
label must be greater than or equal to the security label of the file.

PRIV_MAC_READ The process is granted search permission to a component of the path via the
security label.

CHACID(2) CHACID(2)

56 SR−2012 10.0

PRIV_MAC_WRITE The calling process is allowed to override the security label restriction when
setting a file’s account ID.

If the PRIV_SU configuration option is enabled, the super user is granted search permission to every
component of the path prefix. The super user is allowed to set the account ID of a file. If the PRIV_SU
configuration option is enabled, the super user is allowed to override security label restrictions.

RETURN VALUES

If chacid completes successfully, it returns the previous account ID associated with the file; otherwise, a
value of −1 is returned, and errno is set to indicate the error. If the acid argument is −1, the return value is the
current account ID associated with the file.

ERRORS

The chacid system call fails if one of the following error conditions occurs:

Error Code Description

EACCES A component of the path prefix denies search permission.

EINVAL The file is not on a local file system.

EINVAL The calling process does not meet security label requirements and does not have
appropriate privilege.

EINVAL The acid argument contains an invalid value.

EPERM The calling process does not have appropriate privilege to set the file account ID.

EQACT A file or inode quota limit was reached for the current account ID.

FILES

/usr/include/unistd.h Contains C prototype for the chacid system call

SEE ALSO

acctid(2)

chacid(1), newacct(1) in the UNICOS User Commands Reference Manual, Cray Research publication
SR−2011

CHACID(2) CHACID(2)

SR−2012 10.0 57

NAME

chdir − Changes working directory

SYNOPSIS

#include <unistd.h>

int chdir (const char *path);

IMPLEMENTATION

All Cray Research systems

STANDARDS

POSIX, XPG4

DESCRIPTION

The chdir system call causes a specified directory to become the current working directory; that is, the
starting point for path searches for path names not beginning with /. The chdir system call accepts the
following argument:

path Points to the directory path name.

NOTES

To be granted search permission to a component of the path name, the active security label of the process must
be greater than or equal to the security label of the component.

A process with the effective privileges shown is granted the following abilities:

Privilege Description

PRIV_DAC_OVERRIDE The process is granted search permission to a component of the path via the
permission bits and access control list.

PRIV_MAC_READ The process is granted search permission to a component of the path via the
security label.

If the PRIV_SU configuration option is enabled, the super user is granted search permission to every
component of the path name.

RETURN VALUES

If chdir completes successfully, a value of 0 is returned; otherwise, a value of −1 is returned, and errno is
set to indicate the error.

CHDIR(2) CHDIR(2)

58 SR−2012 10.0

ERRORS

The chdir system call fails and the current working directory remains unchanged if one of the following error
conditions occurs:

Error Code Description

EACCES Search permission is denied for any component of the path name.

EFAULT The path argument points outside the allocated process address space.

ENOENT The specified directory does not exist.

ENOTDIR A component of the path name is not a directory.

FORTRAN EXTENSIONS

The chdir system call can be called from Fortran as a function (on all systems except Cray MPP systems and
CRAY T90 series systems):

CHARACTER*n path
INTEGER CHDIR, I
I = CHDIR (path)

Alternatively, chdir can be called from Fortran as a subroutine (on all systems except Cray MPP systems and
CRAY T90 series systems). In this case, the return value of the system call is unavailable.

CHARACTER*n path
CALL CHDIR (path)

The Fortran program cannot specify both the subroutine call and the function reference to chdir from the
same procedure. path may also be an integer variable. In this case, the data must be packed 8 characters per
word and terminated with a null (0) byte. The PXFCHDIR(3F) subroutine provides similar functionality and is
available on all Cray Research systems.

EXAMPLES

The following chdir request changes the current working directory in the invoking process environment to the
parent directory of the current working directory:

if (chdir("..")) {
fprintf(stderr, "The directory change was unsuccessful.\n");
exit(1);

}

CHDIR(2) CHDIR(2)

SR−2012 10.0 59

FILES

/usr/include/unistd.h Contains C prototype for the chdir system call

SEE ALSO

chroot(2)

PXFCHDIR(3F) in the Application Programmer’s Library Reference Manual, Cray Research publication
SR−2165

CHDIR(2) CHDIR(2)

60 SR−2012 10.0

NAME

chdiri − Changes a directory by using the inode number

SYNOPSIS

int chdiri (long dev, long ino, long gen);

IMPLEMENTATION

Cray PVP systems

DESCRIPTION

The chdiri system call provides the user with a pathless change-directory operation on native UNICOS file
systems. It locates a directory by using the inode number, and then it causes this directory to become the
current directory.

The chdiri system call accepts the following arguments:

dev Specifies the device number. This number is built by the makedev macro that is defined outside of
the kernel.

ino Specifies an inode number for the directory as reported by the ls −i command.

gen Specifies the generation number of the inode.

This provides a unique identification for a specific file. The generation number changes when an
inode is reused. To print inode generation values, use the fck(1) command with the i and l options.

NOTES

Only a process with appropriate privilege can use this system call.

If the PRIV_SU configuration option is enabled, the super user is allowed to use this system call.

A process with the PRIV_MAC_READ and PRIV_DAC_OVERRIDE effective privileges is allowed to use this
system call. See the effective privilege discussion in the NOTES section of the chdir(2) man page for
additional privilege requirements. The chdir(2) search access discussions do not apply to this system call.

RETURN VALUES

If chdiri completes successfully, a value of 0 is returned; otherwise, a value of −1 is returned, and errno is
set to indicate the error.

ERRORS

The chdiri system call fails and the current working directory remains unchanged if one of the error
conditions listed on the chdir(2) man page occurs.

CHDIRI(2) CHDIRI(2)

SR−2012 10.0 61

FILES

/usr/include/sys/sysmacros.h Contains a description of the makedev macro

SEE ALSO

chdir(2)

fck(1), ls(1) in the UNICOS User Commands Reference Manual, Cray Research publication SR−2011

General UNICOS System Administration, Cray Research publication SG−2301

CHDIRI(2) CHDIRI(2)

62 SR−2012 10.0

NAME

chkpnt − Checkpoints a process, multitask group, or job

SYNOPSIS

#include <sys/category.h>
#include <sys/restart.h>

int chkpnt (int category, int id, char *path, long flags);

IMPLEMENTATION

Cray PVP systems

DESCRIPTION

The chkpnt system call creates a file containing all the information needed to restore the target processes
identified by category and id to their saved execution state by the restart(2) system call. The file created is
referred to as a restart file.

The chkpnt system call accepts the following arguments:

category Specifies C_PROC for a process or C_SESS for a job (or interactive session).

id Specifies the pid or jid corresponding to category. id = 0 assumes current process or current job,
respectively.

path Specifies the path name of the restart file to be created.

flags Identifies optional actions.

The flags present in this field are OR’ed together to define the optional action to be performed by
chkpnt. Currently, the only defined flag value is CHKPNT_KILL, which causes the target
processes to die after the recovery image is complete.

By default, the restart file is protected from user modification and can be read only by the owner (file mode
0400) unless one of the following conditions is true:

� One of the processes in the chkpnt collection has an effective user ID (UID) different from the effective
UID of the process performing chkpnt.

� One of the processes in the chkpnt collection has a security label that is different from the security label of
the process performing chkpnt.

� One of the processes in the chkpnt collection has one of the following flags set:

− PC_NOCORE (The process does not have read access to its executable image.)

− PC_SECCORE (The process is permitted to use privilege and the SECURE_MAC configuration option is
enabled.)

� One of the processes in the chkpnt collection is a setuid application.

CHKPNT(2) CHKPNT(2)

SR−2012 10.0 63

The restart file is recognized by the system as a restart file because the type field of the restart file inode
identifies the file as a regular file and the S_IRESTART (restart file attribute) bit is also set (see
/usr/include/sys/stat.h).

Whenever any process is selected to be included in a restart file, all of its multitask group sibling processes are
also included, because the meaningful recovery of any process requires that all of its multitask group siblings
also be restored on recovery.

Processes with open pipes can be checkpointed and restarted if their pipe connections do not go outside the job
or multitask group being checkpointed. To checkpoint a process with open pipes, all of its pipe connections
must terminate with processes that are also to be included in the restart file.

Processes with open files that reside on network file system (NFS) file systems can be checkpointed and
restarted. To restart a process with open NFS files, the NFS file systems on which the files reside have to be
mounted unless the NFS file systems are managed by the automounter. In this case, the automounter will try to
remount the file systems automatically.

Processes with open files that reside on Distributed File System (DFS) file systems can be checkpointed and
restarted. The following conditions must exist in order for a user to restart a process with an open DFS file.

� The DFS client must be running on the local host.
� The DFS server must be running on the host where the file resides.

Access to DFS files is controlled by the user’s Distributed Computing Environment (DCE) credentials as
opposed to user identification (UID) and group identification (GID). DFS credentials consist of Kerberos
tickets stored in a special file. When a process is checkpointed, a reference to these credentials is stored in the
restart file. The credentials must still be present and valid when restart(2) is performed. If the credentials
are no longer present or have expired, accesses to DFS files that are performed after the restart(2) system
call will appear to be from the UID −2.

If the chkpnt system call writes the restart file into a directory that is being accessed via DFS, that directory
must reside on a Cray Research DFS server. DFS servers of other manufacturers do not support the restart file
type; if chkpnt tries to write a restart file into one of these directories, the call fails without returning an error.

Processes with unlinked files can be checkpointed and restarted if the total size of all unlinked files in use by the
target process set is within the size limit established by the system administrator. See the
MAX_UNLINKED_BYTES system variable in the /usr/src/uts/c1/cf/config.h file to see the site
local definition.

With SSD solid-state storage devices, processes that are using secondary data segments (SDS) can be
checkpointed and restarted if sufficient disk space is available to contain an image of the process SDS area
within the restart file. An ENOSDS error may occur at restart time if the SDS area available at that time is less
than what was in use at checkpoint time. The ENOSDS error means that restart(2) must be retried at a later
time when sufficient SDS space is available.

CHKPNT(2) CHKPNT(2)

64 SR−2012 10.0

Processes using online tape files cannot be checkpointed or restarted.

NOTES

The following restrictions apply to processes and jobs (including interactive sessions) that are to be
checkpointed:

� Only a process with appropriate privilege may checkpoint or restart another user’s job or process.
� The active security label of the job of the calling process must dominate the security label of the job or

process being checkpointed, unless the caller has appropriate privilege.
� Processes with open pipes may be checkpointed and restarted successfully if the following two conditions

are met:

− All openings of the pipe file must be contained within the process collection being checkpointed.

− All I/O operations on the pipe must be atomic with respect to the chkpnt system call. This condition is
a limit on the size of an I/O operation: either PIPE_BUF bytes, or (v_maxpipe * 4096) bytes.
PIPE_BUF is found in the sys/param.h file. v_maxpipe is a member of the var structure in the
sys/var.h file.

� All files that a process was using when it was checkpointed must be present when the process is restarted.
These files include all open files, any shared-text executables that the process was using such as shells, and
the present working directory. In the restart file, each of these files is identified by its inode number and the
minor number of the file system. If either changes, the restart(2) system call fails, and the call returns an
EFILERM error. For example, if a file system is restored by /etc/restore, any process that was using
files on that file system and that was checkpointed before the restore, will fail to restart. After the restore,
each file on the file system has a different inode number than it did when the process was checkpointed.

� Processes using online tapes cannot be checkpointed or restarted.
� Processes using shared memory segments (CRAY T90 series systems only) cannot be checkpointed or

restarted.

A process with the effective privilege shown is granted the following abilities:

Privilege Description

PRIV_DAC_OVERRIDE The process is granted search permission to every component of the path prefix
via the permission bits and access control list.

PRIV_DAC_OVERRIDE The process is granted write permission to the directory containing the new
restart file via the permission bits and access control list.

PRIV_MAC_READ The process is granted search permission to every component of the path prefix
via the security label.

PRIV_MAC_WRITE The active security label of the calling process is considered equal to the active
security label of every process being checkpointed.

CHKPNT(2) CHKPNT(2)

SR−2012 10.0 65

PRIV_MAC_WRITE The process is granted write permission to the directory containing the new
restart file via the security label.

PRIV_POWNER The calling process is considered the owner of every process being
checkpointed.

If the PRIV_SU configuration option is enabled, the super user is considered the owner of every process being
checkpointed. The super user is granted all access necessary to create the new restart file.

RETURN VALUES

If chkpnt completes successfully, a value of 0 is returned; otherwise, a value of −1 is returned, and errno is
set to indicate the error.

ERRORS

The chkpnt system call fails if one of the following error conditions occurs:

Error Code Description

EACCES Search permission is denied on a component of the restart file path prefix.

EACCES The directory in which the restart file is to be created does not permit writing.

EAGAIN One of the processes being checkpointed was never in a state that allowed
checkpointing during the last 120 seconds. The chkpnt system call may be
attempted again.

EEXIST A file by the name of path already exists.

EEXIST An open NFS file descriptor that is unlinked cannot be saved in the restart file.

EFAULT The path argument points outside the allocated process address space.

EFBIG To complete the checkpoint operation, the restart file would have to be larger than the
file size limit of the calling process or the maximum file size.

EFILERM One or more of the target processes has one or more unlinked files open, and the sum
of the sizes of all unlinked files open by the target processes exceeds the
site-configured, unlinked file, contents recovery limit.

EFILESH One or more of the target processes has an open, unlinked regular file that is also open
by one or more processes outside the target process set.

EFOREIGNFS An operation that is supported only on local file systems was attempted on a nonlocal
(foreign) file system.

EINVAL An invalid argument was passed to the system call.

EINVAL The caller has specified that a restart file of an entire job be created, and one or more
of the processes in the job is in a process group whose process group leader is outside
the job.

ENFILE The system inode table is full.

CHKPNT(2) CHKPNT(2)

66 SR−2012 10.0

ENOENT A component of the restart file path prefix does not exist.

ENOENT The restart file path name is null.

ENOSPC Insufficient file space is available to create the restart file.

ENOTBLK An unrecoverable resource is associated with the target process set.

ENOTDIR A component of the restart file path prefix is not a directory.

ENOTTY One or more of the processes has an unrecoverable character device open.

ENOTTY The caller has specified that a restart file of an entire job be created, and two or more
processes in the job have different controlling ttys.

EPERM The caller was not running as root and specified a pid for which the caller’s real or
effective uid differed from the real or effective user ID of the target process.

EPERM The caller did not have appropriate privilege and specified category as C_SESS.

EPERM The active security label of the caller did not dominate that of the job or process being
checkpointed.

EPIPE One or more of the target processes has an open pipe that goes outside the target
process set.

EQACT A file or inode quota limit was reached for the current account ID.

EQGRP A file or inode quota limit was reached for the current user ID.

EQUSR A file or inode quota limit was reached for the current group ID.

EROFS The category argument is C_PROC and no process exists with the requested process
ID.

ESHMA The process has a shared memory segment or segments attached (CRAY T90 series
systems only), and cannot be checkpointed.

ESOCKTNOSUPPORT Either support for the specified socket type has not been configured into the system, or
no implementation for it exists. Check the protocol argument on the system call.

ESRCH The specified restart file would reside on a read-only file system.

EXDEV The specified restart file would reside on a foreign file system (for example, a remote
file accessed with NFS).

EXDEV One or more of the target processes has a file open on a foreign file system (for
example, a remote file accessed with NFS).

EXDEV One or more of the target processes has another process open through the /proc file
system and that process is not included in the target process set. A file or inode quota
limit was reached for the current group ID.

CHKPNT(2) CHKPNT(2)

SR−2012 10.0 67

EXAMPLES

The following examples illustrate different uses of the chkpnt system call.

Example 1: The chkpnt system call produces a checkpoint file (named chkpnt.pid) of the invoking
process in the current working directory:

char filename[256], pid_char[8];
int pid;

pid = getpid(); /* get pid of current process */
sprintf(pid_char, "%d", pid);/* convert pid to char format */
strcpy(filename, "chkpnt."); /* create filename for chkpnt with */
strcat(filename, pid_char); /* format chkpnt.pid */

if (chkpnt(C_PROC, pid, filename, 0) != 0) {
perror("chkpnt failed");

}

Example 2: The chkpnt system call produces a checkpoint file (named chkpnt.jid) of the job containing
the invoking process in the current working directory. After the checkpoint file is created, the job is
immediately terminated.

char filename[256], jid_char[8];
struct jtab jdata;
int jid;

jid = getjtab(&jdata); /* get jid of current job */
sprintf(jid_char, "%d", jid);/* convert jid to char format */
strcpy(filename, "chkpnt."); /* create filename for chkpnt with */
strcat(filename, jid_char); /* format chkpnt.jid */

if (chkpnt(C_SESS, jid, filename, CHKPNT_KILL) != 0) {
perror("chkpnt failed");

}

SEE ALSO

chmod(2), chown(2), creat(2), getpid(2), mknod(2), open(2), pipe(2), restart(2), setuid(2)

chkpnt_util(1), chkptint(1) in the UNICOS User Commands Reference Manual, Cray Research
publication SR−2011

CHKPNT(2) CHKPNT(2)

68 SR−2012 10.0

NAME

chmem − Retrieves or modifies system physical memory availability

SYNOPSIS

#include <unistd.h>
#include <sys/map.h>

int chmem (long request, long *result);

IMPLEMENTATION

Cray PVP systems

DESCRIPTION

The chmem system call provides a mechanism for determining the physical memory available to the host
system and, for appropriately privileged processes, the capability to modify how much physical memory is
available.

The chmem system call has the following arguments:

request Specifies the amount (in words) by which the system’s notion of physical memory will be changed.
All requests are rounded up to the nearest 512-word size. To retrieve the current notion of system
physical memory, specify 0 as the value of request.

result Specifies an address.

The chmem system call returns the system’s current notion of physical memory after the requested
change has been considered, at the address specified by result. If result is null, no data is returned.

NOTES

A process with the effective privilege shown is granted the following ability:

Privilege Description

PRIV_RESOURCE The process is allowed to modify system physical memory availability.

If the PRIV_SU configuration option is enabled, the super user or a process with the PERMBITS_SYSPARAM
permbit is allowed to modify system physical memory availability.

RETURN VALUES

If chmem completes successfully, a value of 0 is returned; otherwise, a value of −1 is returned, and errno is
set to indicate the error.

CHMEM(2) CHMEM(2)

SR−2012 10.0 69

ERRORS

The chmem system call fails if one of the following error conditions occurs:

Error Code Description

EAGAIN An attempt to reduce the system’s notion of physical memory could not be satisfied,
probably because an unmovable process was locked into the portion of physical
memory being taken down. Retry the procedure later.

EINVAL The result address supplied was invalid.

ENOSPC An attempt to increase the system’s notion of physical memory would expand beyond
the compile-time configured maximum amount of memory.

ENXIO When the call was manipulating a bit map of memory, an error occurred. The chmem
interface was disabled, returning −1 to all subsequent requests.

EPERM A nonzero request was made by a process without appropriate privilege.

FILES

/usr/include/sys/types.h Contains types required by ANSI X3J11

/usr/include/unistd.h Contains C prototype for the chmem system call

CHMEM(2) CHMEM(2)

70 SR−2012 10.0

NAME

chmod, fchmod − Changes the mode of a file

SYNOPSIS

#include <sys/types.h>
#include <sys/stat.h>

int chmod (const char *path, mode_t mode);

int fchmod (int fildes, mode_t mode);

IMPLEMENTATION

All Cray Research systems

STANDARDS

POSIX, XPG4 (applies only to chmod)

DESCRIPTION

The chmod and fchmod system calls set the access permission portion of the specified file’s mode as specified
by the following arguments:

path Points to a file path name.

mode Specifies the bit pattern denoting the file’s access permission. (See the header file, sys/stat.h,
for a description of these bits.)

fildes Specifies the file descriptor.

To set the mode of a file, the process must be the file owner or have appropriate privilege. To set the mode of a
restart file, the process must have appropriate privilege.

If the process is not a member of the file’s owning group and the process does not have appropriate privilege,
then the file S_ISGID mode bit (set group ID on execution) is cleared.

If the S_ISGID bit (set group ID on execution) is set and the S_IXGRP bit (execute or search by group) is not
set, mandatory file or record locking will exist on a regular file. This can affect subsequent calls to creat(2),
listio(2), open(2), read(2), reada(2), trunc(2), write(2), and writea(2) on this file.

If the S_ISVTX (sticky) bit is set on a directory, only the directory owner or a process with appropriate
privilege can delete or rename files in that directory.

NOTES

To be granted search permission to a component of the path prefix, the active security label of the process must
be greater than or equal to the security label of the component.

CHMOD(2) CHMOD(2)

SR−2012 10.0 71

The process must be granted write permission to the file via the security label. That is, the active security label
of the process must equal the security label of the file.

If the FSETID_RESTRICT system configuration option is enabled, only a process with appropriate privilege
can set the set-user-ID or set-group-ID mode bits. If a process does not have appropriate privilege, the
set-user-ID and set-group-ID mode bits are cleared.

A process with the effective privileges shown is granted the following abilities:

Privilege Description

PRIV_DAC_OVERRIDE The process is granted search permission to every component of the path prefix
via the permission bits and access control list.

PRIV_FOWNER The process is considered the file owner.

PRIV_FSETID If the FSETID_RESTRICT system configuration option is enabled, the process
is allowed to set the set-user-ID mode bits.

PRIV_MAC_READ The process is granted search permission to every component of the path prefix
via the security label.

PRIV_MAC_WRITE The calling process is granted write permission to the file via the security label.

PRIV_RESTART The process is allowed to set the mode of a restart file.

If the PRIV_SU configuration option is enabled, the super user is granted search permission to every
component of the path prefix. The super user is allowed to set the mode of a restart file. The super user is
considered the file owner.

If the PRIV_SU configuration option is enabled, the super user is allowed to set the set-user-ID and set-user-ID
mode bits and is granted write permission to the file via the security label.

RETURN VALUES

If chmod or fchmod completes successfully, a value of 0 is returned; otherwise, a value of −1 is returned, and
errno is set to indicate the error.

ERRORS

The chmod or fchmod system call fails and the file mode remains unchanged if one of the following error
conditions occurs:

Error Code Description

EACCES Search permission is denied on a component of the path prefix.

EFAULT The path argument points outside the allocated process address space.

ENOENT The specified file does not exist.

ENOTDIR A component of the path prefix is not a directory.

EROFS The specified file resides on a read-only file system.

CHMOD(2) CHMOD(2)

72 SR−2012 10.0

EMANDV User’s compartments and level are not equal to that of the file.

EMANDV The calling process does not have MAC write access to the file to which the file
descriptor refers.

EMANDV The process is not granted write permission to the file via the security label.

EPERM The process is not the file owner and does not have appropriate privilege.

EPERM The file is a restart file, and the process does not have appropriate privilege.

EPERMIT User does not have permission to set or change the mode of a file to setuid or setgid.

EPERMIT If the FSETID_RESTRICT system configuration is enabled, the process does not
have appropriate privilege to set the set-user-ID or set-group-ID mode bits.

FORTRAN EXTENSIONS

The chmod system call can be called from Fortran as a function (on all systems except Cray MPP systems and
CRAY T90 series systems):

CHARACTER*n path
INTEGER CHMOD, mode, I
I = CHMOD (path, mode)

Alternatively, chmod can be called from Fortran as a subroutine (on all systems except Cray MPP systems and
CRAY T90 series systems). In this case, the return value of the system call is unavailable.

CHARACTER*n path
INTEGER mode
CALL CHMOD (path, mode)

The Fortran program cannot specify both the subroutine call and the function reference to chmod from the
same procedure. path may also be an integer variable. In this case, the data must be packed 8 characters per
word and terminated with a null (0) byte. The PXFCHMOD(3F) subroutine provides similar functionality and is
available on all Cray Research systems.

EXAMPLES

The following examples illustrate different uses of the chmod system call.

Example 1: The chmod system call grants read/write permission to the owner of file1 and only read
permission to all other users:

if (chmod("file1", 0644) == -1) {
perror("chmod failed");

}

CHMOD(2) CHMOD(2)

SR−2012 10.0 73

Example 2: Setting a file’s setgid bit (02000) and clearing the group execute permission bit enables mandatory
file locking for the file. This chmod call establishes mandatory file locking for the datafile file in addition
to granting the other file access permissions.

if (chmod("datafile", 02644) == -1) {
perror("chmod setting mandatory locking failed");

}

SEE ALSO

chkpnt(2), chown(2), creat(2), fcntl(2), listio(2), mknod(2), open(2), read(2), reada(2),
stat(2), trunc(2), write(2), writea(2)

PXFCHMOD(3F) in the Application Programmer’s Library Reference Manual, Cray Research publication
SR−2165

CHMOD(2) CHMOD(2)

74 SR−2012 10.0

NAME

chown, lchown, fchown − Changes owner and group of a file

SYNOPSIS

#include <sys/types.h>
#include <unistd.h>

int chown (const char *path, uid_t owner, gid_t group);

int lchown (const char *path, uid_t owner, gid_t group);

int fchown (int fildes, uid_t owner, gid_t group);

IMPLEMENTATION

All Cray Research systems

STANDARDS

POSIX, XPG4

DESCRIPTION

The chown, lchown, and fchown system calls assign a new owner and group to a file. These system calls
accept the following arguments:

path Points to a file path name.

owner Specifies the numeric value of the new owner ID.

group Specifies the numeric value of the new group ID.

fildes Specifies the file descriptor.

If the POSIX_CHOWN_RESTRICTED option is enabled, only a process with appropriate privilege may change
file ownership.

If the process does not have appropriate privilege, then the file S_ISUID (set-user-ID) and S_ISGID
(set-group-ID) mode bits are cleared.

If path is a symbolic link, chown will change the owner and group of the file referenced by the symbolic link.
lchown will change the owner and group of the symbolic link itself.

If owner or group is specified as −1, the corresponding ID of the file is not changed.

Only the owner of a file or a process with appropriate privilege may change file ownership.

Only a process with appropriate privilege can change the owner of a restart file.

CHOWN(2) CHOWN(2)

SR−2012 10.0 75

NOTES

To be granted search permission to a component of the path prefix, the active security label of the process must
be greater than or equal to the security label of the component.

The process must be granted write permission to the file via the security level and compartments. That is, the
active security label of the process must equal the security label of the file.

If the FSETID_RESTRICT configuration option is enabled, only a process with appropriate privilege is
allowed to change the owner of set-user-ID or set-group-ID files.

A process with the effective privileges shown is granted the following abilities:

Privilege Description

PRIV_CHOWN If the POSIX_CHOWN_RESTRICTED option is enabled, the process is allowed
to change file ownership.

PRIV_DAC_OVERRIDE The process is granted search permission to every component of the path prefix
via the permission bits and access control list.

PRIV_FOWNER The process is considered the file owner.

PRIV_FSETID The process is allowed to change the owner of a set-user-ID or set-groups-ID
file.

PRIV_FSETID The process is allowed to preserve the set-user-ID or set-groups-ID mode bits.

PRIV_MAC_READ The process is granted search permission to every component of the path prefix
via the security label.

PRIV_MAC_WRITE The calling process is granted write permission to the file via the security label.

PRIV_RESTART The process is allowed to set the mode of a restart file.

If the PRIV_SU configuration option is enabled, the super user is granted search permission to every
component of the path prefix. The super user is considered the file owner and is allowed to change the owner of
a restart file. The super user is allowed to preserve the set-user-ID and set-groups-ID mode bits. If the
POSIX_CHOWN_RESTRICTED option is enabled, the super user or a process with the PERMBITS_CHOWN
permbit is allowed to change file ownership.

If the PRIV_SU configuration option is enabled, the super user is granted write permission to the file via the
security label. If the PRIV_SU and FSETID_RESTRICTED configuration options are enabled, the super user
is allowed to change the owner of a set-user-ID and set-groups-ID file.

RETURN VALUES

When chown, lchown, or fchown completes successfully, a value of 0 is returned; otherwise, a value of −1
is returned, and errno is set to indicate the error.

CHOWN(2) CHOWN(2)

76 SR−2012 10.0

ERRORS

The chown, lchown, or fchown system call fails and the owner and group of the specified file remains
unchanged if one of the following error conditions occurs:

Error Code Description

EACCES Search permission is denied on a component of the path prefix.

EFAULT The path argument points outside the allocated address space of the process.

EMANDV User’s security label is not equal to that of the file.

EMANDV The calling process does not have MAC write access to the file to which the file
descriptor refers.

EMANDV The process is not granted write permission to the file via the security label.

ENOENT The specified file does not exist.

ENOTDIR A component of the path prefix is not a directory.

EPERM The process is not a file owner and does not have appropriate privilege.

EPERM The file is a restart file and the process does not have appropriate privilege.

EPERMIT User is a trusted user, but does not have suidgid permission.

EPERMIT If the FSETID_RESTRICT configuration option is enabled, the process does not have
appropriate privilege to change the owner of a set-user-ID and set-group-ID file.

EQGRP A file or inode quota limit was reached for the new group ID.

EQUSR A file or inode quota limit was reached for the new user ID.

EROFS The specified file resides on a read-only file system.

FORTRAN EXTENSIONS

The chown system call can be called from Fortran as a function (on all systems except Cray MPP systems and
CRAY T90 series systems):

CHARACTER*n path
INTEGER CHOWN owner, group, I
I = CHOWN (path, owner, group)

Alternatively, chown can be called from Fortran as a subroutine (on all systems except Cray MPP systems and
CRAY T90 series systems). In this case, the return value of the system call is unavailable.

CHARACTER*n path
INTEGER owner, group
CALL CHOWN (path, owner, group)

CHOWN(2) CHOWN(2)

SR−2012 10.0 77

The Fortran program cannot specify both the subroutine call and the function reference to chown from the
same procedure. path may also be an integer variable. In this case, the data must be packed 8 characters per
word and terminated with a null (0) byte. The PXFCHOWN(3F) subroutine provides similar functionality and is
available on all Cray Research systems.

EXAMPLES

This example shows how the chown request changes ownership on a file (chown is a restricted operation for
most users).

The getpwnam (see getpwent(3C)) library routine first locates the user and group IDs for user joe from
the /etc/passwd file. chown changes the ownership of file myfile to user joe.

#include <pwd.h>
#include <unistd.h>

main()
{

struct passwd *pwptr;

pwptr = getpwnam("joe");
if (chown("myfile", pwptr->pw_uid, pwptr->pw_gid) == -1) {

perror("chown failed");
}

}

FILES

/usr/include/sys/types.h Contains types required by ANSI X3J11

/usr/include/unistd.h Contains C prototype for the chown, fchown, and lchown
system calls

SEE ALSO

chkpnt(2), chmod(2)

getpwnam(3C) in the UNICOS System Libraries Reference Manual, Cray Research publication SR−2080

PXFCHOWN(3F) in the Application Programmer’s Library Reference Manual, Cray Research publication
SR−2165

CHOWN(2) CHOWN(2)

78 SR−2012 10.0

NAME

chroot − Changes the root directory

SYNOPSIS

#include <unistd.h>

int chroot (const char *path);

IMPLEMENTATION

All Cray Research systems

STANDARDS

XPG4

DESCRIPTION

The chroot system call causes the specified directory to become the root directory; that is, the starting point
for searches for path names beginning with a slash (/). It accepts the following argument:

path Points to a directory path name. The chroot system call does not affect your working directory.

The process must have appropriate privilege to use this system call. For more information on permission bits
(permbits), see General UNICOS System Administration, Cray Research publication SG−2301.

The .. entry in the root directory is interpreted to mean the root directory itself. Thus, you cannot use .. to
access files outside the subtree rooted at the root directory.

NOTES

To be granted search permission to a component of the path, the active security label of the process must be
greater than or equal to the security label of the component.

A process with the effective privileges shown is granted the following abilities:

Privilege Description

PRIV_ADMIN The process is allowed to use this system call.

PRIV_DAC_OVERRIDE The process is granted search permission to a component of the path via the
permission bits and access control list.

PRIV_MAC_READ The process is granted search permission to a component of the path via the
security label.

If the PRIV_SU configuration option is enabled, the super user or a process with the PERMBITS_CHROOT
permbit is allowed to use this system call. The super user is granted search permission to every component of
the path.

CHROOT(2) CHROOT(2)

SR−2012 10.0 79

RETURN VALUES

When chroot completes successfully, a value of 0 is returned; otherwise, a value of −1 is returned, and
errno is set to indicate the error.

ERRORS

The chroot system call fails and the root directory remains unchanged if one of the following error conditions
occurs:

Error Code Description

EACCES The process is denied search permission to a component of the specified path.

EFAULT The path argument points outside the allocated address space of the process.

ENOENT The specified directory does not exist.

ENOTDIR Any component of the path name is not a directory.

EPERM The process does not have appropriate privilege to use this system call.

FILES

/usr/include/unistd.h Contains C prototype for the chroot system call

SEE ALSO

chdir(2)

udbgen(8) in the UNICOS Administrator Commands Reference Manual, Cray Research publication SR−2022

General UNICOS System Administration, Cray Research publication SG−2301

CHROOT(2) CHROOT(2)

80 SR−2012 10.0

NAME

close − Closes a file descriptor

SYNOPSIS

#include <unistd.h>

int close (int fildes);

IMPLEMENTATION

All Cray Research systems

STANDARDS

POSIX, XPG4

DESCRIPTION

The close system call closes the specified file descriptor. It accepts the following argument:

fildes Specifies a file descriptor. It is obtained from an accept(2), creat(2), dup(2), fcntl(2),
open(2), pipe(2), socket(2), or socketpair(2) system call.

RETURN VALUES

If close completes successfully, a value of 0 is returned; otherwise, a value of −1 is returned, and errno is
set to indicate the error.

ERRORS

The close system call fails if one of the following error condition occurs:

Error Code Description

EBADF The fildes argument is not a valid open file descriptor.

EINTR The close system call was interrupted.

FILES

/usr/include/unistd.h Contains C prototype for the close system call

SEE ALSO

accept(2), creat(2), dup(2), exec(2), fcntl(2), open(2), pipe(2), shutdown(2), socket(2),
socketpair(2)

CLOSE(2) CLOSE(2)

SR−2012 10.0 81

NAME

cmptext − Compares the supplied character sequence with the privilege text of the calling process

SYNOPSIS

#include <sys/priv.h>
#include <sys/tfm.h>

int cmptext (long *seq, long flags);

IMPLEMENTATION

All Cray Research systems

DESCRIPTION

The cmptext system call compares the supplied character sequence with the privilege text of the calling
process.

The cmptext system call accepts the following arguments:

seq Specifies the character sequence. The character sequence is a long integer but can be passed as a
character sequence enclosed by single quotation marks (for example,
cmptext(’charseq’,...).

flags Specifies a bit mask that can contain any combination of the ROOT_EFFECTIVE and
ROOT_REAL flags. The flags are defined as follows:

Flag Description

ROOT_EFFECTIVE Indicates that any process whose effective user ID is 0 automatically has
the supplied privilege text when PRIV_SU is enabled.

ROOT_REAL Indicates that any process whose real user ID is 0 automatically has the
supplied privilege text when PRIV_SU is enabled.

A flags value that includes neither ROOT_EFFECTIVE or ROOT_REAL indicates that user ID 0 does not
automatically have the specified privilege text. A seq value of 0 causes cmptext to return successfully if the
calling process has null privilege text.

RETURN VALUES

A return value of 0 indicates that the privilege text of the calling process is identical to the supplied character
sequence, or that the caller meets the user ID 0 requirements as specified previously.

A positive return value indicates that the supplied character sequence does not match the privilege text of the
process and does not meet the user ID 0 requirements specified previously.

CMPTEXT(2) CMPTEXT(2)

82 SR−2012 10.0

A return value of −1 indicates that an error has occurred, and an error code is stored in errno.

ERRORS

The cmptext system call fails if the following error condition occurs:

Error Code Description

EINVAL A value supplied for seq or flags was not valid.

CMPTEXT(2) CMPTEXT(2)

SR−2012 10.0 83

NAME

connect − Initiates a connection on a socket

SYNOPSIS

#include <sys/types.h>
#include <sys/socket.h>

int connect (int s, struct sockaddr *name, int namelen);

IMPLEMENTATION

All Cray Research systems

DESCRIPTION

The connect system call initiates a connection on a socket. It accepts the following arguments:

s Specifies the descriptor of the socket to connect. When the socket is of the SOCK_RAW or
SOCK_DGRAM type, the connect system call permanently specifies the peer to which datagrams
are sent. If the socket is of the SOCK_STREAM type, this call tries to connect to another socket.

name Points to a sockaddr structure that contains the destination address of the socket to which the s
socket is to be connected. This destination address is in the address domain of the socket.

namelen Specifies the length of the destination address. The length is measured in bytes.

Each address domain uniquely interprets the name argument. Generally, stream sockets can successfully
connect only once; datagram sockets can use the connect call multiple times to change association.
Datagram connections can dissolve an association by connecting to an invalid address such as a null address.

NOTES

If namelen is less than the size of the address of the connecting entity (that is, less than the size of a struct
sockaddr), the accept(2) system call truncates its result to fit into the available space.

The connect system call is subjected to additional security rules. The two sockets being connected each have
security attributes that are inherited from their associated processes. These attributes must be equal if the
SOCKET_MAC option is enabled. In addition, the network and remote host have security-attribute ranges,
which are specified in the network access list (NAL) portion of the spnet.conf configuration file and
administered by using the spnet(8) command.

If the SOCKET_MAC configuration option is not enabled, the security attributes of the socket are not required to
be equal, but the security range of the process, which is specified in the UDB for the user, must include the
minimum label for the remote host as specified in the NAL. SOCKET_MAC is part of TCP/IP configurable
feature variables list in uts/cf/Nmakefile.

CONNECT(2) CONNECT(2)

84 SR−2012 10.0

A process with the effective privilege shown is granted the following ability:

Privilege Description

PRIV_MAC_WRITE The process is allowed to override the security label restrictions when the
SOCKET_MAC option is enabled.

If the PRIV_SU configuration option is enabled, the super user is allowed to override security label restrictions
when the SOCKET_MAC option is enabled.

RETURN VALUES

If connect completes successfully, a value of 0 is returned; otherwise, a value of −1 is returned, and errno
is set to indicate the error.

ERRORS

The connect system call fails if one of the following error conditions occurs:

Error Code Description

EACCES If the SOCKET_MAC configuration option is enabled, the process does not meet the
security label requirements and does not have appropriate privilege.

EADDRINUSE Address is already in use.

EADDRNOTAVAIL Specified address is unavailable on this machine.

EAFNOSUPPORT Addresses in the specified address family cannot be used with this socket.

EBADF Descriptor s is invalid.

ECONNREFUSED Attempt to connect is forcefully rejected.

EFAULT Argument name specifies an area outside the process address space.

EISCONN Socket is already connected.

ENETUNREACH Network cannot be reached from this host.

ENOTSOCK Descriptor s is not a socket.

ETIMEDOUT Connection establishment timed out without establishing a connection.

EWOULDBLOCK Socket is nonblocking; the connection cannot be completed immediately. You can use
the select(2) call to select the socket while it is connecting by selecting it for
writing.

EXAMPLES

This client program shows how to use the connect system call in context with other TCP/IP calls. The
program creates a TCP/IP socket and then attempts to establish a connection between the newly created socket
and the socket within the server program on the designated server host. If a connection is successful, the client
process sends a string of data to the server process.

CONNECT(2) CONNECT(2)

SR−2012 10.0 85

/* Client side of client/server socket example. For server side,
see socket(2).
Syntax: client hostname portnumber */

#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <stdio.h>
#include <netdb.h>

/* in in.h is this socket structure
*
* Socket address, internet style.
*
* struct sockaddr_in {
* short sin_family;
* u_short sin_port;
* struct in_addr sin_addr;
* char sin_zero[8];
* };
*/

#define DATA "Test message from client to server."

main(int argc, char *argv[])
{

int s;
struct sockaddr_in dest; /* destination socket address */
struct hostent *hp; /* host structure pointer */

/* Converts host name into network address. */
hp = gethostbyname(argv[1]);

dest.sin_family = hp->h_addrtype; /* addr type (AF_INET) */
bcopy(hp->h_addr_list[0], &dest.sin_addr, hp->h_length);
dest.sin_port = atoi(argv[2]);

/* create port */

if ((s = socket(AF_INET, SOCK_STREAM, 0)) < 0) {
perror("client, cannot open socket");
exit(1);

}
if (connect (s, (struct sockaddr *) &dest, sizeof(dest)) < 0) {

CONNECT(2) CONNECT(2)

86 SR−2012 10.0

close(s);
perror("client, connect failed");
exit(1);

}
write(s, DATA, sizeof(DATA));

close(s);
exit(0);

}

FILES

/etc/config/spnet.conf Network access list file

/usr/adm/sl/slogfile Receives security log records

/usr/include/sys/socket.h Contains definitions related to sockets, types, address families, and
options

/usr/include/sys/types.h Contains types required by ANSI X3J11

SEE ALSO

accept(2), getsockname(2), select(2), socket(2)

UNICOS Networking Facilities Administrator’s Guide, Cray Research publication SG−2304

CONNECT(2) CONNECT(2)

SR−2012 10.0 87

NAME

cpselect − Selects which processors may run the process

SYNOPSIS

#include <unistd.h>

int cpselect (int pid, int mask);

IMPLEMENTATION

Cray PVP systems

DESCRIPTION

The cpselect system call specifies the physical processors that may execute a process as specified by the
following arguments: It accepts the following arguments:

pid Specifies the process ID of process to execute. A pid of 0 means the current process.

mask Specifies the bit mask indicating physical processors. Processor A or 0 is 01, processor B or 1 is
02, and so on. A mask of 0 signifies the use of any available CPU; a mask of −1 does not change
the select mask, but it returns the previous mask. The CPU mask is inherited by child processes.

NOTES

The mask argument is silently limited to the available processors. If all processors chosen are unavailable, the
process is allowed to run on any processor.

The active security label of the calling process must be greater than or equal to the security label of the affected
process.

To set the processor execution mask of a process, the active security label of the calling process must equal the
security label of the affected process.

A process with the effective privileges shown is granted the following abilities:

Privilege Description

PRIV_MAC_READ The active security label of the calling process is considered greater than or equal to
the security label of the affected process.

PRIV_MAC_WRITE The active security label of the calling process is considered equal to the security label
of the affected process.

PRIV_POWNER The calling process is considered the owner of the affected process.

If the PRIV_SU configuration option is enabled, the super user is considered to be the owner of the affected
process. If the PRIV_SU configuration option is enabled, the super user is allowed to bypass security label
restrictions.

CPSELECT(2) CPSELECT(2)

88 SR−2012 10.0

RETURN VALUES

If cpselect completes successfully, it returns the previous mask value; otherwise, a value of −1 is returned,
and errno is set to indicate the error.

ERRORS

The cpselect system call fails if one of the following error conditions occurs:

Error Code Description

EINVAL The pid argument contains an invalid value.

EPERM The real or effective user ID of the calling process does not match the real or effective
user ID of the affected process, and the calling process does not have appropriate
privilege.

ESRCH No process can be found to match the pid.

FORTRAN EXTENSIONS

The cpselect system call can be called from Fortran as a function:

INTEGER pid, mask, CPSELECT, I
I = CPSELECT (pid, mask)

Alternatively, cpselect can be called from Fortran as a subroutine. In this case, the return value of the
system call is unavailable.

INTEGER pid, mask
CALL CPSELECT (pid, mask)

The Fortran program cannot specify both the subroutine call and the function reference to cpselect from the
same procedure.

FILES

/usr/include/unistd.h Contains C prototype for the cpselect system call

CPSELECT(2) CPSELECT(2)

SR−2012 10.0 89

NAME

creat − Creates a new file or rewrites an existing one

SYNOPSIS

#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>

int creat (const char *path, mode_t mode);

IMPLEMENTATION

All Cray Research systems

STANDARDS

POSIX, XPG4

DESCRIPTION

The creat system call creates a new ordinary file or prepares to rewrite an existing file. The call is equivalent
to an open(2) system call of the following form:

open (path, O_WRONLY | O_CREAT | O_TRUNC, mode)

For a description of the arguments used in this call, see the open(2) man page.

The creat system call accepts the following arguments:

path Points to a file to be created or an existing file to be rewritten.

mode Specifies the bit pattern denoting the file’s access permission. (See stat(2) for the description of
these bits.)

If the file exists, the length is truncated to 0 and the mode and owner are unchanged. Otherwise, the file’s
owner ID is set to the effective user ID of the process, and the group ID is set to the group ID of the directory in
which the file is created. The low-order 12 bits of the file mode are set to the value of mode modified as
follows: all bits set in the process’ file mode creation mask are cleared. See umask(2).

If creat completes successfully, the file descriptor is returned, and the file is opened for writing, even if the
mode does not permit writing. The file pointer is set to the beginning of the file. The file descriptor is set to
remain open across exec(2) system calls (see fcntl(2)). No process can have more than OPEN_MAX files
open simultaneously. You can create a new file with a mode that forbids writing.

CREAT(2) CREAT(2)

90 SR−2012 10.0

NOTES

The active security label of the calling process must fall within the security label range of the file system on
which the new file will reside.

If the FSETID_RESTRICT option is enabled, only a process with appropriate privilege can create set-user-ID
or set-group-ID files.

To be granted search permission to a component of the path prefix, the active security label of the process must
be greater than or equal to the security label of the component.

To be granted write permission to the parent directory, the active security label of the process must equal the
security label of the directory.

To be granted write permission to an existing file, the active security label of the process must equal the
security label of the file.

A process with the effective privilege shown is granted the following abilities:

Privilege Description

PRIV_DAC_OVERRIDE The process is granted search permission to every component of the path prefix
via the permission bits and access control list.

PRIV_DAC_OVERRIDE The process is granted write permission to the parent directory or to an existing
file via the permission bits and access control list.

PRIV_FSETID When the FSETID_RESTRICT option is enabled, the process is allowed to
create set-user-ID or set-group-ID files.

PRIV_MAC_READ The process is granted search permission to every component of the path prefix
via the security label.

PRIV_MAC_WRITE The process is granted write permission to the parent directory or to an existing
file via the security label.

If the PRIV_SU configuration option is enabled, the super user is granted search permission to every
component of the path prefix and is granted write permission to the parent directory and to an existing file.
When FSETID_RESTRICT is enabled, the super user is allowed to create set-user-ID and set-group-ID files.

RETURN VALUES

If creat completes successfully, a nonnegative integer, (the file descriptor) is returned; otherwise, a value of
−1 is returned, and errno is set to indicate the error.

ERRORS

The creat system call fails if one of the following error conditions occurs:

Error Code Description

EACCES The file exists and write permission is denied.

CREAT(2) CREAT(2)

SR−2012 10.0 91

EACCES The file does not exist, and the directory in which the file is to be created does not
permit writing.

EACCES Search permission is denied on a component of the path prefix.

EAGAIN The file exists, mandatory file and record locking is set, and outstanding record locks
exist on the file (see chmod(2)).

EFAULT The path argument points outside the allocated address space of the process.

EFLNEQ The active security label of the calling process does not fall within the range of the file
system on which the new or rewritten file will reside.

EISDIR The specified file is an existing directory.

EMFILE OPEN_MAX file descriptors are currently open.

ENFILE The system file table is full.

ENOENT A component of the path prefix does not exist.

ENOENT The path name is null.

ENOTDIR A component of the path prefix is not a directory.

EQACT A file or inode quota limit was reached for the current account ID.

EQGRP A file or inode quota limit was reached for the current group ID.

EQUSR A file or inode quota limit was reached for the current user ID.

EROFS The specified file resides or would reside on a read-only file system.

ETXTBSY The text file is busy.

EWRITV If the FSETID_RESTRICT option is enabled, the process does not have appropriate
privilege to create a set-user-ID or set-group-ID file.

FORTRAN EXTENSIONS

The creat system call can be called from Fortran as a function (on all systems except Cray MPP systems and
CRAY T90 series systems):

CHARACTER*n path
INTEGER mode, CREAT, I
I = CREAT (path, mode)

Alternatively, creat can be called from Fortran as a subroutine (on all systems except Cray MPP systems and
CRAY T90 series systems). In this case, the return value of the system call is unavailable.

CHARACTER*n path
INTEGER mode
CALL CREAT (path, mode)

CREAT(2) CREAT(2)

92 SR−2012 10.0

The Fortran program must not specify both the subroutine call and the function reference to creat from the
same procedure. path may also be an integer variable. In this case, the data must be packed 8 characters per
word and terminated with a null (0) byte. The PXFCREAT(3F) subroutine provides similar functionality and is
available on all Cray Research systems.

SEE ALSO

chmod(2), close(2), dup(2), exec(2), fcntl(2), lseek(2), open(2), read(2), stat(2), umask(2),
write(2)

PXFCREAT(3F) in the Application Programmer’s Library Reference Manual, Cray Research publication
SR−2165

CREAT(2) CREAT(2)

SR−2012 10.0 93

NAME

cutimes − Updates user execution time

SYNOPSIS

#include <sys/types.h>
#include <sys/utimes.h>

struct utms *cutimes (struct utms *mytimes);

IMPLEMENTATION

All Cray Research systems

DESCRIPTION

The cutimes system call lets users have a structure in user memory continually updated with user execution
time information. From this utms structure, users can determine how much execution time has accumulated in
an interval without calling the operating system.

The cutimes system call accepts the following argument:

mytimes Specifies the address of the structure to receive the data.

If the address is 0, the structure is no longer updated.

The utms structure contains the following members:

time_t utms_update; /* RT clock at start of this connect */
time_t utms_utime; /* Total user time during previous connects */

Since the utms structure is only updated at the time of connection to a process, the current user time
accumulated since the process began can be calculated as follows:

time = mytimes.utms_utime + (rtclock() - mytimes.utms_update);

This method will yield the desired results most of the time. But there is a small chance that the operating
system will change the utms values in the middle of the calculation. A guaranteed method is shown in the
EXAMPLES section and is also implemented in the cpused(3C) function.

Update of the utms structure stops if one of the following occurs:
� A memory contraction places the structure outside user memory.
� An exec(2) system call is executed.

NOTES

The times in the utms structure are figured from the time the process began execution, not from the invocation
of the cutimes call. Monitoring the utms structure at the user level is somewhat tricky because the user may
be interrupted when looking at the structure. The cpused(3C) routine monitors this structure.

CUTIMES(2) CUTIMES(2)

94 SR−2012 10.0

RETURN VALUES

If cutimes completes successfully, the address of the user structure is returned, with 0 meaning that the
feature is disabled. Otherwise, a value of −1 is returned, and errno is set to indicate the error.

ERRORS

The cutimes system call fails if the following error condition occurs:

Error Code Description

EFAULT The mytimes argument is out of the user’s memory space.

EXAMPLES

This example shows how to use the cutimes system call to compute the amount of user execution time for a
section of code within a user’s program. The amount of user time is computed in hardware clock ticks and
seconds.

#include <sys/types.h>
#include <sys/utimes.h>
#include <time.h>

main()
{

struct utms mytimes, sample;
time_t utime, rt, before, after;

cutimes(&mytimes); /* enable execution time
update feature */

do {
rt = rtclock();
sample = mytimes; /* sample mytimes before */

} while (rt < sample.utms_update);
before = sample.utms_utime + (rt - sample.utms_update);

/* Section of code here is where user execution time is to be measured. */

do {
rt = rtclock();
sample = mytimes; /* sample mytimes after */

} while (rt < sample.utms_update);
after = sample.utms_utime + (rt - sample.utms_update);

utime = after - before; /* compute user time -
measured in clock ticks */

CUTIMES(2) CUTIMES(2)

SR−2012 10.0 95

printf("\nCPU time used in user space = %f sec or %ld clock ticks\n",
(float)utime/(float)CLK_TCK, utime);

cutimes((struct utms *) 0); /* disable execution time
update feature */

}

SEE ALSO

exec(2)

cpused(3C) in the UNICOS System Libraries Reference Manual, Cray Research publication SR−2080

second(3F) in the Application Programmer’s Library Reference Manual, Cray Research publication SR−2165

CUTIMES(2) CUTIMES(2)

96 SR−2012 10.0

NAME

dacct − Enables or disables process and daemon accounting

SYNOPSIS

#include <sys/types.h>
#include <sys/accthdr.h>

int dacct (char *path, int did);

IMPLEMENTATION

All Cray Research systems

DESCRIPTION

The dacct system call enables or disables process and daemon accounting.

When process accounting is enabled, an accounting record is written to an accounting file for each process that
terminates. Process termination can be caused by an exit(2) call, a chkpnt(2) call, or receipt of a fatal
signal. When a job terminates, an end-of-job record is written.

Similarly, when daemon accounting is enabled, the daemons may write accounting records.

Accounting is disabled when path is a null pointer and no errors occur during the system call.

The dacct system call accepts the following arguments:

path Points to the path name of the accounting file, which is defined by acct(5). The daemon
accounting files are defined in /usr/include/acct/dacct.h.

did Identifies the type of accounting that is to be enabled or disabled. These daemon identifiers are
specified in /usr/include/sys/accthdr.h.

If the specified type of accounting is already enabled and path differs from the accounting file currently in use,
the accounting file will be switched to path without the loss of any accounting information.

Only a process with appropriate privilege can use this system call.

NOTES

To be granted search permission to a component of the path prefix, the active security label of the process must
be greater than or equal to the security label of the component.

To be granted write permission to the file, the active security label of the process must equal the security label
of the file.

A process with the effective privileges shown is granted the following abilities:

Privilege Description

PRIV_ACCT The process is allowed to use this system call.

DACCT(2) DACCT(2)

SR−2012 10.0 97

PRIV_DAC_OVERRIDE The process is granted search permission to every component of the path prefix
via the permission bits and access control list.

PRIV_DAC_OVERRIDE The process is granted write permission to the file via the permission bits and
access control list.

PRIV_MAC_READ The calling process is granted search permission to every component of the path
prefix via the security label.

PRIV_MAC_WRITE The process is granted write permission to the file via the security label.

If the PRIV_SU configuration option is enabled, the super user is granted search permission to every
component of the path prefix and is granted write permission to the file. The super user is allowed to use this
system call.

RETURN VALUES

If dacct completes successfully, a value of 0 is returned; otherwise, a value of −1 is returned, and errno is
set to indicate the error.

ERRORS

The dacct system call fails if one of the following error conditions occurs:

Error Code Description

EACCES Search permission is denied on a component of the path prefix.

EACCES The process is not granted write permission to the file.

EACCES The file specified by path is not an ordinary file.

EFAULT The path argument points to an illegal address.

EINVAL An argument that is not valid was passed to the system call.

EISDIR The path argument is a directory.

EPERM The process does not have appropriate privilege to use this system call.

EROFS The specified file resides on a read-only file system.

FILES

/usr/include/acct/dacct.h Defines daemon accounting files

/usr/include/sys/accthdr.h Specifies daemon identifiers

SEE ALSO

acct(2), chkpnt(2), exit(2)

acct(5) in the UNICOS File Formats and Special Files Reference Manual, Cray Research publication
SR−2014

DACCT(2) DACCT(2)

98 SR−2012 10.0

NAME

devacct − Controls device accounting

SYNOPSIS

#include <sys/types.h>
#include <sys/acct.h>

int devacct (char *device, int func, int type);

IMPLEMENTATION

All Cray Research systems

DESCRIPTION

Only a process with appropriate privilege can use this system call. The devacct system call accepts the
following arguments:

device Specifies the name of a block special device that is a local file system. This name is used only when
the ACCT_LABEL function is specified.

func This argument can be one of the following:

ACCT_ON Turns on accounting for requested type.

ACCT_OFF Turns off accounting for requested type.

ACCT_LABEL Labels the device with the label indicated by type. You can label only block special
devices.

type Specifies device type. For block special devices, valid values are 0 to (MAXBDEVNO − 1). For
character special devices, the values are 0 to (MAXCDEVNO − 1) OR’ed with ACCT_CHSP. For
performance accounting, type is ACCT_PERF OR’ed with PERF_01.

See the /etc/config/acct_config file for the block and character device types. ACCT_PERF
and PERF_01 are defined in /usr/include/sys/acct.h.

NOTES

To be granted search permission to a component of the path prefix, the active security label of the process must
be greater than or equal to the security label of the component.

The process must be granted write permission to the device file via the security label. That is, the active
security label of the process must equal the security label of the device file.

A process with the effective privileges shown is granted the following abilities:

Privilege Description

PRIV_ACCT The process is allowed to use this system call.

DEVACCT(2) DEVACCT(2)

SR−2012 10.0 99

PRIV_DAC_OVERRIDE The process is granted search permission to every component of the path prefix
via the permission bits and access control list.

PRIV_MAC_READ The calling process is granted search permission to every component of the path
prefix via the security label.

PRIV_WRITE The process is granted write permission to the device file via the security label.

If the PRIV_SU configuration option is enabled, the super user is granted search permission to every
component of the path prefix and is granted write permission to the file. The super user is allowed to use this
system call.

If the PRIV_SU configuration option is enabled, the super user is granted write permission to the device file via
the security label.

RETURN VALUES

The devacct system call returns the previous accounting type when called to label a device. It returns the
previous state, ACCT_ON or ACCT_OFF, when called to turn device accounting on or off. Otherwise, a value
of −1 is returned, and errno is set to indicate the error.

ERRORS

The devacct system call fails if one of the following error conditions occurs:

Error Code Description

EINVAL The type on the label request is bad.

EINVAL The device is not a block special on a label request.

EINVAL The device label is not legal for an on or off request.

EINVAL The func argument is not ACCT_ON, ACCT_OFF, or ACCT_LABEL.

ENODEV The device is not mounted on a label request.

EPERM The process does not have appropriate privilege to use this system call.

EPERM The process is not granted write permission to the file via the security label.

EXAMPLES

The following examples illustrate different uses of the devacct system call. (You also can obtain the
functionality in these examples by using the devacct(8) command.)

Example 1: This example shows how to label the block device /dev/dsk/root as a DD−40 device. The
numeric type for a DD−40 is 2 because a DD−40 disk drive is associated with the BLOCK_DEVICE2 variable
in /etc/config/acct_config.

devacct("/dev/dsk/root",ACCT_LABEL,2);

DEVACCT(2) DEVACCT(2)

100 SR−2012 10.0

Example 2: This example shows how to turn on DD−40 device accounting:

devacct(0,ACCT_ON,2);

Example 3: This example shows how to turn on performance accounting:

devacct(0,ACCT_ON,ACCT_PERF | PERF_01);

FILES

/etc/config/acct_config Accounting configuration file

/usr/include/sys/acct.h Defines daemon accounting files

/usr/include/sys/param.h Defines configuration files

SEE ALSO

devacct(8) in the UNICOS Administrator Commands Reference Manual, Cray Research publication
SR−2022

DEVACCT(2) DEVACCT(2)

SR−2012 10.0 101

NAME

dmmode − Sets and gets data migration retrieval mode

SYNOPSIS

#include <unistd.h>

int dmmode (int mode);

IMPLEMENTATION

All Cray Research systems

DESCRIPTION

The dmmode system call sets the data migration retrieval mode of the calling process. It accepts the following
argument:

mode Specifies the mode. dmmode set the data migration retrieval mode of the calling process and returns
the previous value of the mode. Only the low-order 9 bits of mode are used.

A nonzero data migration retrieval mode specifies that offline files are retrieved automatically as soon as they
are accessed (see open(2)). A value of 0 specifies that files must be explicitly recalled (see dmget(1)) before
they can be accessed successfully. In this mode, an access attempt on a migrated file results in the return of an
error code.

RETURN VALUES

The previous value of the data migration retrieval mode is returned.

FILES

/usr/include/unistd.h Contains C prototype for the dmmode system call

SEE ALSO

open(2)

dmget(1), dmlim(1), dmput(1) Online only

dmmctl(8) Online only

DMMODE(2) DMMODE(2)

102 SR−2012 10.0

NAME

dmofrq − Processes offline file requests

SYNOPSIS

#include <sys/dmofrq.h>

int dmofrq (void *fptr, int cmd, void *arg, struct dmo_hand *hand,
long *rcode);

IMPLEMENTATION

Cray PVP systems

DESCRIPTION

The data migration daemon uses the dmofrq system call to process requests related to offline files. Only an
appropriately privileged process is allowed to use this system call. You should not use dmofrq in your
programs; dmofrq is intended for use only by data migration packages, such as the Cray Data Migration
Facility (DMF).

The dmofrq system call accepts the following arguments:

fptr Selects the offline file. The fptr argument is either a character pointer to the path name or a word
pointer to a dm_dvino structure with the device and inode number of the offline file specified.

cmd Selects the type of request to be processed. cmd is specified as a character: a lowercase character
indicates that fptr is a path; an uppercase character indicates that fptr is a pointer to a dm_dvino
structure.

arg Points to an argument required by the command.

hand Specifies the handle for a file to be migrated or recalled.

rcode Specifies a word into which a return code is written by dmofrq. The valid return codes and their
meanings are defined in dmofrq.h.

The hand and rcode arguments are used only by the migrate and recall commands (a, A, b, B, e, E, f, F, g, G,
u, U, v, and V).

The valid forms of the cmd and arg arguments are as follows:

a or A Begins remigration of a dual-state file.

b or B Begins migration of a file.

c or C Changes the migration status of a file. The arg parameter is a pointer to a dm_file_change
structure. When the call is processed, if the file matches the before and gen fields, the migration
attributes are changed to the values in the after structure. hand and rcode should be NULL.

d or D Simulates the secstat(2) system call. arg is a pointer to a secstat stucture, and hand and
rcode should be NULL.

DMOFRQ(2) DMOFRQ(2)

SR−2012 10.0 103

e or E Begins remigration of a dual-state file, except that arg is a pointer to a dm_dvino structure.

f or F Begins migration of a file, except that the arg parameter is a pointer to a dm_dvino structure.

g or G Completes migration of a file. The file is changed to offline and the data blocks are swapped to the
destination file and released. arg is a pointer to a dm_dvino structure.

l or L Writes the file size (to which arg points) to the offline file inode. arg is a pointer to a long, and
hand and rcode should be NULL.

s or S Simulates the stat(2) system call for the indicated file. The status information is returned to the
area to which arg points. (The lowercase s command is obsolete; it will be removed in a future
release of UNICOS.) arg is a pointer to a stat structure, and hand and rcode should be NULL.

w or W Writes the file handle (to which arg points) to the offline file inode. arg is a pointer to a
dmo_hand structure, and hand and rcode should be NULL.

u or U Completes file recall and zeroes the inode’s handle. arg is the path of the file containing the disk
blocks.

v or V Completes file recall without zeroing the inode’s handle. The handle of the fptr file is not cleared;
instead, fptr becomes a dual-state file with a valid migration handle. arg is the path of the file
containing the disk blocks.

The dmofrq system call receives information from the following structures:

typedef struct dm_dvino {
dev_t dm_dev; /* device number */
ino_t dm_ino; /* inode number */

} dm_dvino_t;

typedef struct dmo_hand {
uint dmport:3; /* daemon number */
uint dmstate:5; /* file status */
uint dmunused1:24; /* unused */
uint machid:32; /* offline file machine id */
long ofilenm; /* offline file number */

} dmo_hand_t;

typedef struct file_dm_state {
long size; /* File size in bytes */
long dm_mid; /* offline file machine id */
long dm_key; /* offline file number */
long dm_state; /* migration state */
int dm_port; /* daemon number */

} file_dm_state_t;

typedef struct file_dm_change {
long gen; /* File generation number */

DMOFRQ(2) DMOFRQ(2)

104 SR−2012 10.0

file_dm_state_t before; /* current state of the file */
file_dm_state_t after; /* State of file after the change */

} file_dm_change_t;

The dm_dvino structure contains device and inode information, and the dmo_hand structure contains handle,
state, and port information.

NOTES

A process with the effective privileges shown is granted the following abilities:

Privilege Description

PRIV_ADMIN The process is allowed to use this system call.

PRIV_DAC_OVERRIDE The process is granted search permission to every component of the file path
prefix via the permission bits and access control list.

PRIV_MAC_READ The process is granted search permission to every component of the file path
prefix via the security label.

PRIV_MAC_READ The process is allowed to override the file security label protections when
performing a stat(2) or secstat(2) operation.

If the PRIV_SU configuration option is enabled, the super user is allowed to perform all dmofrq operations on
any file.

CAUTIONS

You should not use this system call in your programs. It is intended to be used by data migration packages such
as DMF only.

RETURN VALUES

If dmofrq completes successfully, a value of 0 is returned; otherwise, a value of −1 is returned, and errno is
set to indicate the error. If errno is set to EDMOFRQ, rcode will contain a detailed error return code. The
valid rcode return values and their meanings are defined in the sys/dmofrq.h file.

ERRORS

The dmofrq system call fails if one of the following error conditions occurs:

Error Code Description

EACCES Search permission is denied for a component of the path prefix.

EBUSY The file to be changed is in use.

EDMOFF The data migration system is not configured.

EDMOFRQ Inconsistent or invalid parameters or file attributes exist. See the value returned to
rcode for a detailed specification.

DMOFRQ(2) DMOFRQ(2)

SR−2012 10.0 105

EDMRBPAR An invalid cmd was specified.

EDMRNOLF The file indicated by fptr was not an offline S_IFOFL or a regular S_IFREG file.

EDMRNSD The fptr and cmd files were on different file systems.

EDMRWFT The file owning the data blocks was not a regular file.

EFAULT A pointer is not valid.

EINVAL The device and inode do not point to a valid inode.

ENOENT The specified file does not exist.

ENOTDIR A component of the path prefix is not a directory.

EPERM The process does not have appropriate privilege to use this system call.

FILES

/usr/include/sys/dmofrq.h Contains definitions related to data migration

SEE ALSO

dmmode(2) for information about setting and getting data migration retrieval mode
secstat(2) for information about getting file security attributes
stat(2) for information about getting file status

DMOFRQ(2) DMOFRQ(2)

106 SR−2012 10.0

NAME

dup − Duplicates an open file descriptor

SYNOPSIS

#include <unistd.h>

int dup (int fildes);

IMPLEMENTATION

All Cray Research systems

STANDARDS

POSIX, XPG4

DESCRIPTION

The dup system call duplicates an open file descriptor. It accepts the following argument:

fildes Specifies a file descriptor. It is obtained from a creat(2), dup, fcntl(2), open(2), or pipe(2)
system call.

The dup system call returns a new file descriptor having the following characteristics in common with the
original:

� Same open file (or pipe)
� Same file pointer (that is, both file descriptors share one file pointer)
� Same access mode (read, write, or read/write)

The new file descriptor is set to remain open across exec(2) system calls. See fcntl(2).

The file descriptor returned is the lowest one available.

RETURN VALUES

If dup completes successfully, a nonnegative integer (the file descriptor) is returned; otherwise, a value of −1 is
returned, and errno is set to indicate the error.

ERRORS

The dup system call fails if one of the following error conditions occurs:

Error Code Description

EBADF The fildes argument is not a valid open file descriptor.

EMFILE OPEN_MAX file descriptors are currently open.

DUP(2) DUP(2)

SR−2012 10.0 107

FORTRAN EXTENSIONS

The dup system call can be called from Fortran as a function:

INTEGER fildes, DUP, I
I = DUP (fildes)

Alternatively, dup can be called from Fortran as a subroutine. In this case, the return value of the system call
is unavailable.

INTEGER fildes
CALL DUP (fildes)

The Fortran program must not specify both the subroutine call and the function reference to dup from the same
procedure.

EXAMPLES

The following illustrates how the dup system call is used by a shell program to provide for the UNICOS
user-level redirection (>) feature.

The user enters the following command to the shell program:

$ command > newfile

To redirect the output of the command to the named file (newfile), the shell closes stdout (file descriptor =
1) and then uses dup to duplicate the file descriptor for newfile. The duplicate file descriptor reuses the file
descriptor previously used by stdout. The command then executes writing its data to the file having file
descriptor 1, which is the file newfile rather than the typical stdout device.

int fd, perms_mask;
char *fptr;

fd = creat(fptr, perms_mask); /* fptr points to requested
file name */

fclose(stdout);
dup(fd); /* duplicate file descriptor

replaces stdout */
close(fd);
/* stdout has now been redirected. */

FILES

/usr/include/unistd.h Contains C prototype for the dup system call

SEE ALSO

close(2), creat(2), exec(2), fcntl(2), open(2), pipe(2)

DUP(2) DUP(2)

108 SR−2012 10.0

NAME

exctl − Exchanges control

SYNOPSIS

#include <sys/vm.h>

int exctl (struct vmctxt *pctxt);

IMPLEMENTATION

Cray PVP systems

DESCRIPTION

The exctl system call allows a master process to exchange control to a subordinate task running in a virtual
machine environment. The subordinate task may be a test kernel, or it may be a user process running under the
control of the test kernel. The subordinate task must be fully contained within the address space of the master
process. The exctl system call accepts the following argument:

pctxt Points to the vmctxt structure.

A vmctxt structure (virtual machine context) includes the following members:

gxp_t vm_xp; /* Exchange package */
int vm_saveb[MAXBREGS]; /* B registers */
word vm_savet[MAXTREGS]; /* T registers */
word vm_savevm; /* Vector mask register */
word vm_savev[MAXVREGS][MAXVLEN]; /* Vector registers */
word vm_savevm1; /* Vector mask register 1 */
word vm_vsaved;
label_t vm_save[3]; /* for switching */
word ret_status; /* Subordinate task’s return status */
word vm_vmsav; /* pw_vmsav word (from PWS structure) */

The BA and LA values in the exchange package are modified by the system; therefore, these values must be
reset each time exctl is called. The BA and LA registers are relative to word 0 of the master process. The
value of the P register is relative to BA. When this system call is executed, the real kernel converts the given
BA and LA values into absolute addresses, loads the hardware registers with the values from the vmctxt
structure, and starts execution at the given P address. The exctl system call returns to the master process
when the subordinate task exits for any of the following reasons:

 Normal exchange interrupt
! Error exchange interrupt
" Program range error interrupt
Operand range error interrupt
$ Floating-point error interrupt

EXCTL(2) EXCTL(2)

SR−2012 10.0 109

% Programmable clock interrupt
& Register parity error

The master process should examine the saved status and the exchange package flags to determine why the
subordinate task exited. On return from the exctl system call, the vmctxt structure contains the contents of
the hardware registers as they were when the subordinate task exited.

NOTES

The Programmable Clock Interrupt has been mapped to the signal SIGALRM, sent by the alarm system call.
The intent is to allow the master process to use the alarm function to simulate a real-time clock.

RETURN VALUES

If exctl completes successfully, a value of 0 is returned; otherwise, a value of −1 is returned, and errno is
set to indicate the error.

ERRORS

The exctl system call fails if one of the following error conditions occurs:

Error Code Description

EACCES The monitor mode bit (XPM_MM) is set in the exchange package of the vmctxt
structure of the subordinate process.

EFAULT The context structure to which pctxt points is not fully contained in the master process
address space.

EFAULT The BA, LA, and P registers in the exchange package are not within the process
address space.

SEE ALSO

alarm(2)

EXCTL(2) EXCTL(2)

110 SR−2012 10.0

NAME

execl, execv, execle, execve, execlp, execvp − Executes a file

SYNOPSIS

#include <unistd.h>

int execl (const char *path, const char *arg0, const char *arg1,
..., const char *argn, 0);

int execv (const char *path, char *const argv[]);

int execle (const char *path, const char *arg0, const char *arg1,
..., const char *argn, 0, const char *envp[]);

int execve (const char *path, char *const argv[], char *const envp[]);

int execlp (const char *file, const char *arg0, const char *arg1,
..., const char *argn, 0);

int execvp (const char *file, char *const argv[]);

IMPLEMENTATION

Cray PVP systems

STANDARDS

POSIX, XPG4

DESCRIPTION

The exec system call in all its forms transforms the calling process into a new process, which is constructed
from an ordinary, executable file called the new process file. This file consists of a header and the program
images (see a.out(5)). There is no return from a successful exec because the calling process is overlaid by
the new process.

An interpreter file begins with a line of the form:

#! pathname [arg]

The pathname argument is the path of the interpreter, and arg is an optional argument. When an interpreter file
is executed, the system execs the specified interpreter. The pathname specified in the interpreter file is passed
on as arg0 to the interpreter. If arg is specified in the interpreter file, it is passed as arg1 to the interpreter. Any
setuid or setgid permissions bits that are set for the interpreter file are ignored. The remaining arguments to the
interpreter are arg0 through argn of the file that was originally executed.

EXEC(2) EXEC(2)

SR−2012 10.0 111

When a C program is executed, it is called as follows:

main (argc, argv, envp)
int argc;
char ∗∗argv, ∗∗envp;

The argument count is argc, and argv is an array of character pointers to the arguments themselves. As
indicated, argc is conventionally at least 1, and the first member of the array points to a string containing the
name of the file.

The arguments are as follows:

path Points to a path name that identifies the new process file.

arg0, arg1, ...,
Points to null-terminated character strings, which constitute the argument list available to the new
process. By convention, at least arg0 must be present, and it must point to a string that is the same
as path (or its last component).

argv Specifies an array of character pointers to null-terminated strings, which constitute the argument
list available to the new process. By convention, argv must have at least one member, and it must
point to a string that is the same as path (or its last component). The argv argument is terminated
by a null pointer.

envp Specifies an array of character pointers to null-terminated strings, which constitute the environment
for the new process. The envp argument is terminated by a null pointer. For execl and execv,
the C run-time start-up routine ($start) places a pointer to the calling process’s environment in
the global cell, as follows:

extern char ∗∗environ;

It passes the calling process’s environment to the new process.

file Points to the new process file. The path prefix for this file is obtained by a search of the directories
passed as the environment line:

PATH =

The environment is supplied by the shell (see ksh(1)).

File descriptors open in the calling process remain open in the new process, except for those whose
Close-on-exec flag are set; see fcntl(2). For file descriptors that remain open, the file pointer is unchanged.

Signals set to terminate the calling process are set to terminate the new process. Signals set to be ignored by the
calling process are set to be ignored by the new process. Signals set to be caught by the calling process are set
to terminate the new process; see signal(2).

For signals set by sigset(2), exec ensures that the new process has the same signal action for each signal
type whose action is SIG_DFL, SIG_IGN, or SIG_HOLD as the calling process. However, if the action is to
catch the signal, the action will be reset to SIG_DFL, and any pending signal for this type will be held.

EXEC(2) EXEC(2)

112 SR−2012 10.0

If the set-user-ID mode bit of the new process file is set (see chmod(2)), exec sets the effective user ID of the
new process to the owner ID of the new process file. Similarly, if the set-group-ID mode bit of the new process
file is set, the effective group ID of the new process is set to the group ID of the new process file. The real user
ID and real group ID of the new process remain the same as those of the calling process.

The shared memory segments attached to the calling process will be released and will not be attached to the
new process (see shmat(2)).

Any additional processes created by _tfork(2) or tfork(3C) calls are killed off and the resulting program
begins execution as a single process. One of the previous multitasked processes may linger on the kernel until
the new process exits to maintain the parent-child relationships. This bug condition will be fixed in the next
release.

Profiling is disabled for the new process; see profil(2). The new process also inherits the following
attributes from the calling process:

' Accounting information from times(2): utime, stime, cutime, and cstime
(Current working directory
) File mode creation mask (see umask(2))
* File size limit (see ulimit(2))
+ Nice value (see nice(2))
, Job ID
- Parent process ID
. Process group ID
/ Process ID
0 Root directory
1

semadj values (see semop(2))
2 Time left until an alarm clock signal (see alarm(2))
3 Trace flag (see ptrace(2) request 0)
4 tty group ID (see exit(2) and signal(2))
5 Record locks (see fcntl(2) and lockf(3C))
6 Security values: security label, security label range, active and authorized categories.

NOTES

The process must be granted search permission to every component of the path prefix via the permission bits
and access control list. The process must be granted search permission to every component of the path prefix
via the security label.

EXEC(2) EXEC(2)

SR−2012 10.0 113

The process must be granted execute permission to the file via the permission bits and access control list. The
process must be granted execute permission to the file via the security label.

A process with the effective privileges shown are granted the following abilities:

Privilege Description

PRIV_DAC_OVERRIDE The process is granted search permission to every component of the path prefix
via the permission bits and access control list.

PRIV_DAC_OVERRIDE The process is granted execute permission to the file via the permission bits and
access control list.

PRIV_MAC_READ The process is granted search permission to every component of the path prefix
via the security label.

PRIV_MAC_READ The process is granted execute permission to the file via the security label.

If the PRIV_SU configuration option is enabled, the super user is granted search permission to every
component of the path prefix and is granted execute permission to the file.

RETURN VALUES

If exec returns to the calling process, an error has occurred; a value of −1 is returned, and errno is set to
indicate the error.

ERRORS

The exec system call fails and returns to the calling process if one of the following error conditions occurs:

Error Code Description

EACCES The new process file is not a regular file.

EACCES The new process file mode denies execution permission.

EACCES Search permission is denied for a directory listed in the new process file’s path prefix.

EDMOFF The file is offline, and the data migration facility is not configured in the system.

EFAULT The new process file is not as long as indicated by the size values in its header.

EFAULT The path, argv, or envp argument points to an illegal address.

ENODEV (CRAY T90 systems only) The new process has requested or requires a CPU type that
is not currently available on the system. For example, an exec of a binary built on a
CRAY C90 system would result in this error if the CRAY T90 system contained only
IEEE CPUs.

ENOENT One or more components of the new process file’s path name do not exist.

ENOEXEC The exec is not an execlp or execvp, and the new process file has the appropriate
access permission but an invalid magic number in its header.

EXEC(2) EXEC(2)

114 SR−2012 10.0

ENOMEM The new process requires more memory than is allowed by the system-imposed
maximum MAXMEM.

ENOTDIR A component of the new process file’s path prefix is not a directory.

EOFFLIN The file is offline, and automatic file retrieval is disabled.

EOFLNDD The file is offline, and the data management daemon is not currently executing.

EOFLNNR The file is offline, and it is currently unretrievable.

E2BIG The number of bytes in the argument list of the new process is greater than the
system-imposed limit of ARG_MAX bytes.

EXAMPLES

The following examples show differences in the use of the various forms of exec: execl, execv, execle,
execve, execlp, and execvp. In each example, the call overlays the currently executing program with a
new program having full path name /tmp/newprog. The new program supplies two arguments having
values arg1 and arg2.

Example 1: The execl system call requires that the new program be specified by a full or relative path name.
The argument list passed to the new program is specified as a list of strings in the execl request.

The environment existing in the current program is preserved in the new program.

execl("/tmp/newprog", "newprog", "arg1", "arg2", 0);

Example 2: The execv system call requires that the new program be specified by a full or relative path name.
The argument list passed to the new program is specified as an array (vector) of pointers to strings in the
execv request.

The environment existing in the current program is preserved in the new program.

static char *arguments[] = {"newprog", "arg1", "arg2", 0};

execv("/tmp/newprog", arguments);

Example 3: The execle request requires that the new program be specified by a full or relative path name.
The argument list passed to the new program is specified as a list of strings in the execle request.

The environment existing in the current program is replaced by a new environment in the new program. This
environment is specified as an array (vector) of pointers to strings, where each string consists of an environment
variable equated to its value.

In this example, the new environment contains only two variables, ENV1 and ENV2. The execle request
completely replaces the existing environment in the current program with the new environment. Therefore, if
the current environment is to preserved with some additional environment variables added, a composite
environment must be formed.

EXEC(2) EXEC(2)

SR−2012 10.0 115

static char *newenv[] = {"ENV1=string1", "ENV2=string2", 0};

execle("/tmp/newprog", "newprog", "arg1", "arg2", 0, newenv);

Example 4: The execve system call requires that the new program be specified by a full or relative path
name. The argument list passed to the new program is specified as an array (vector) of pointers to strings in the
execve request.

The environment existing in the current program is replaced by a new environment in the new program. This
environment is specified as an array (vector) of pointers to strings, where each string consists of an environment
variable equated to its value.

In this example, the new environment contains only two variables, ENV1 and ENV2. The execve request
completely replaces the existing environment in the current program with the new environment. Therefore, if
the current environment is to preserved with some additional environment variables added, a composite
environment must be formed.

static char *arguments[] = {"newprog", "arg1", "arg2", 0};
static char *newenv[] = {"ENV1=string1", "ENV2=string2", 0};

execve("/tmp/newprog", arguments, newenv);

Example 5: The execlp request requires that the new program be specified by a file name rather than a full or
relative path name (as used in the previous examples). UNICOS looks for the specified file by searching the list
of directories included in the user’s PATH environment variable. As a result of this search, UNICOS could find
a program, which is not the intended one, having the requested name. This means the user assumes a greater
degree of risk when using the execlp request; it is especially dangerous if the calling program is a setuid
(set-user-ID) program.

The argument list passed to the new program is specified as a list of strings in the execlp request.

The environment existing in the current program is preserved in the new program.

execlp("newprog", "newprog", "arg1", "arg2", 0);

Example 6: The execvp system call requires that the new program be specified by a file name rather than a
full or relative path name (as used in previous exec examples). UNICOS looks for the specified file by
searching the list of directories included in the user’s PATH environment variable. UNICOS could find a
program, which is not the intended one, having the requested name. This means the user must assume a greater
degree of risk when using the execvp request; it is especially dangerous if the calling program is a setuid
(set-user-ID) program.

The argument list passed to the new program is specified as an array (vector) of pointers to strings in the
execvp request.

EXEC(2) EXEC(2)

116 SR−2012 10.0

The environment existing in the current program is preserved in the new program.

static char *arguments[] = {"newprog", "arg1", "arg2", 0};

execvp("newprog", arguments);

FILES

/usr/include/unistd.h Contains C prototype for the exec system call

SEE ALSO

alarm(2), chmod(2), exit(2), fcntl(2), fork(2), nice(2), profil(2), ptrace(2), semop(2),
shmat(2), signal(2), sigset(2), _tfork(2), times(2), ulimit(2), umask(2)

ksh(1) in the UNICOS User Commands Reference Manual, Cray Research publication SR−2011

lockf(3C), tfork(3C) in the UNICOS System Libraries Reference Manual, Cray Research publication
SR−2080

a.out(5) in the UNICOS File Formats and Special Files Reference Manual, Cray Research publication
SR−2014

EXEC(2) EXEC(2)

SR−2012 10.0 117

NAME

exit, _exit, newexit, _newexit, _lwp_exit, globalexit, _globalexit, localexit,
_localexit, _threadexit − Terminates process

SYNOPSIS

All Cray Research systems:
#include <stdlib.h>

void exit (int status);

#include <unistd.h>

void _exit (int status);

Cray PVP systems:
#include <stdlib.h>

void newexit (int status);

#include <unistd.h>

void _newexit (int status);

void _lwp_exit (int status);

Cray MPP systems:
#include <stdlib.h>

void globalexit (int status);

void localexit (int status);

#include <unistd.h>

void _globalexit (int status);

void _localexit (int status);

void _threadexit (int status);

IMPLEMENTATION

All Cray Research systems

STANDARDS

POSIX, XPG4 (applies only to exit)

EXIT(2) EXIT(2)

118 SR−2012 10.0

DESCRIPTION

The exit system call terminates the calling process. It accepts the following argument:

status Specifies the exit status of the process. It is returned to the process’s parent process.

The process termination has the following consequences:
7 All of the file descriptors open in the calling process are closed.
8 If the parent process of the calling process is executing a wait(2) system call, it is notified that the calling

process has terminated and the low-order 8 bits (that is, bits 0377) of status are made available to it; see
wait(2).

9 If the parent process of the calling process is not executing a wait(2) system call, the calling process is
transformed into a zombie process, which is a process that occupies only a slot in the process table; it has no
other space allocated in either the user or the kernel space.

: The parent process ID of all existing child processes and zombie processes of the calling process is set to 1.
This means that the initialization process (see intro(2)) inherits each of these processes.

; Each attached shared memory segment is detached and the value of shm_nattch in the data structure
associated with its shared memory identifier is decremented by 1.

< For each semaphore for which the calling process has set a semadj value (see semop(2)), that semadj
value is added to the semval for the specified semaphore.

= If the process has a process lock, an unlock is performed (see plock(2)).
> If the process ID, tty group ID, and process group ID of the calling process are equal, the SIGHUP signal is

sent to each process that has a process group ID equal to that of the calling process.
? If the calling process is the last process in a session to exit, then all nonpersistent IPC facilities created by

processes in the session will be removed as if an IPC_RMID had been performed on the facility (see
msgget(2), semget(2), and shmget(2)).

The C exit function may cause cleanup actions before the process exits. The _exit function circumvents all
cleanup.

On Cray MPP systems, three additional types of exit are available:

globalexit or _globalexit Forces all PEs into global exit processing, which cleans up all resources in
the PEs allocated by the application. The call also causes the Cray PVP
system’s process to exit.

globalexit also executes library clean up routines on the local PE
before calling _globalexit.

localexit or _localexit Terminates all threads on the local PE. The last PE to call _localexit
also initiates a _globalexit system call. _localexit does not
destroy the address space of the application on the calling PE.

localexit also executes library clean up routines on the local PE
before calling _localexit.

EXIT(2) EXIT(2)

SR−2012 10.0 119

_threadexit Terminates the calling thread, either the main user thread or a user
protocol thread. The last thread on the PE to call _threadexit also
initiates a _localexit system call.

The _exit system call is equivalent to _localexit, and exit is equivalent to localexit. exit does
library cleanup on the local PE and then calls _exit.

NOTES

See the NOTES section on the signal(2) man page.

In UNICOS 9.0, a new process model is introduced for multitasked applications. Instead of a multitasked
application being considered as multiple processes, an application will be treated as a single process that
includes multiple light-weight processes (LWPs). Calling exit or _exit from a multitasking program
terminates the entire multitasking group instead of just the calling LWP.

The old behavior for _exit will continue to be available through the _lwp_exit system call; this is not
recommended for general use. _lwp_exit is intended only for use by system software.

The _newexit and newexit system calls were provided to give early access to the new behavior of _exit
and exit in UNICOS 8.0. These will be removed in a subsequent UNICOS release.

FORTRAN EXTENSIONS

The exit system call can be called from Fortran as a subroutine:

CALL EXIT ([istat])

The newexit system call can be called from Fortran as a subroutine (on all systems except Cray MPP
systems):

CALL NEWEXIT ([istat])

The istat argument is optional integer exit status. If none is specified, the exit status is 0.

FILES

/usr/include/sys/stdlib.h Contains C prototypes for the exit, newexit, globalexit,
and localexit system calls

/usr/include/unistd.h Contains C prototypes for the _exit, _newexit, _lwp_exit,
_globalexit, _localexit, and _threadexit system calls

SEE ALSO

intro(2), msgget(2), plock(2), semget(2), semop(2), shmget(2), signal(2), wait(2)

t_exit(3C) in the UNICOS System Libraries Reference Manual, Cray Research publication SR−2080

EXIT(2) EXIT(2)

120 SR−2012 10.0

NAME

fcntl − Controls open files

SYNOPSIS

#include <fcntl.h>

int fcntl (int fildes, int cmd, int arg);

IMPLEMENTATION

All Cray Research systems

STANDARDS

POSIX, XPG4

DESCRIPTION

The fcntl system call provides control over open files as specified by the following arguments:

fildes Specifies an open file descriptor. It is obtained from a creat(2), dup(2), fcntl, open(2), or
pipe(2) system call.

cmd Specifies an action for fcntl to perform. The action can be one of the following:

F_DUPFD Returns a new file descriptor, as follows:

Lowest-numbered available file descriptor greater than or equal to arg.

Same open file (or pipe) as the original file.

Same file pointer as the original file (that is, both file descriptors share one file pointer).

Same access mode (read, write, or read/write).

Same file status flags (that is, both file descriptors share the same file status flags).

The Close-on-exec flag associated with the new file descriptor is set to remain open
across exec(2) system calls.

F_GETFD Gets the Close-on-exec flag associated with the fildes file descriptor. If the low-order
bit is 0, the file remains open across exec; otherwise, the file is Closed on execution of
exec.

F_SETFD Sets the Close-on-exec flag associated with fildes to the low-order bit of arg (0 or 1, as
stated previously).

F_GETFL Gets file status flags.

F_SETFL Sets file status flags to arg. Only the O_APPEND, O_NDELAY, O_NONBLOCK, O_RAW,
and O_T3D flags can be set; see open(2), read(2), and write(2).

FCNTL(2) FCNTL(2)

SR−2012 10.0 121

F_GETLK Gets the first lock, which blocks the lock description given by the variable of type
struct flock, pointed to by arg. The retrieved information overwrites the
information passed to fcntl in the flock structure. If no lock is found that would
prevent this lock from being created, the structure is passed back unchanged except for
the lock type, which will be set to F_UNLCK.

F_SETLK Sets or clears a file segment lock according to the variable of type struct flock
pointed to by arg. The cmd F_SETLK establishes read (F_RDLCK) and write
(F_WRLCK) locks and removes either type of lock (F_UNLCK). If a read or write lock
cannot be set, fcntl will return immediately with an error value of −1.

F_SETLKW This cmd is the same as F_SETLK, except that if a read or write lock is blocked by
other locks, the process will sleep until the segment is free to be locked.

F_SETSB Sets the sitebits field in the inode for fildes to the value specified in arg. The file
system type of the file referred to by fildes must be NC1FS.

F_SETALF Adds the allocation flag bits specified by the value of arg to any existing allocation flag
bits. Valid allocation flag bits are S_ALF_NOGROW and S_ALF_PARTR (see
stat.h).

F_CLRALF Removes the allocation flag bits specified by the value of arg to any existing allocation
flag bits. Valid allocation flag bits are S_ALF_NOGROW and S_ALF_PARTR (see the
stat.h file).

F_GETXT Gets address extent information from the inode for fildes. The calling process must be
the owner of the file or have appropriate privilege.

F_RSETLK
F_RSETLKW
F_RGETLK Used by the network lock daemon, lockd(8), to communicate with the NFS server

kernel to handle locks on NFS files. Specify these options at your own risk. A file lock
may be removed if you use them.

arg Specifies a value that varies in meaning according to the action specified by cmd.

This number indicates the file descriptor if cmd is F_DUPFD, the Close-on-exec flag if cmd is
F_SETFD, the File Status flag if cmd is F_SETFL, the address of a variable of type struct flock if
cmd is F_GETLK, F_SETLK, or F_SETLKW, the one word octal sitebits value if cmd is F_SETSB,
or address of a variable of type struct xt_report if cmd is F_GETXT.

A read lock prevents any process from placing a write lock on the protected area. More than one read lock may
exist for a given segment of a file at a given time. The file descriptor on which a read lock is being placed must
have been opened with read access.

A write lock prevents any process from placing a read lock or write lock on the protected area. Only one write
lock may exist for a given segment of a file at a given time. The file descriptor on which a write lock is being
placed must have been opened with write access.

FCNTL(2) FCNTL(2)

122 SR−2012 10.0

The flock structure describes the type (l_type), starting offset (l_whence), relative offset (l_start),
size (l_len), process ID (l_pid), and system ID (l_sysid) of the segment of the file to be affected. The
process ID and system ID fields are used only with the F_GETLK cmd to return the values for a blocking lock.
Locks may start and extend beyond the current end of a file but may not be negative relative to the beginning of
the file. A lock may be set to always extend to the end of file by setting l_len to 0. If such a lock also has
l_whence and l_start set to 0, the whole file will be locked. Changing or unlocking a segment from the
middle of a larger locked segment leaves two smaller segments for either end. Locking a segment that is
already locked by the calling process causes the old lock type to be removed and the new lock type to take
effect. All locks associated with a file for a given process are removed when a file descriptor for that file is
closed by that process or the process holding that file descriptor terminates. Locks are not inherited by a child
process in a fork(2) system call.

When mandatory file and record locking are active on a file (see chmod(2)), read, and write system calls
issued on the file are affected by the record locks in effect.

If cmd is F_GETLK, F_SETLK, or F_SETLKW and the file is located on a UNICOS shared file system (SFS),
cmd affects the entire file, and cannot be used to specify areas of the file. If locks are cleared with either
F_SETLK or F_SETLKW and F_UNLCK, an O_EXCL open lock is also cleared.

If cmd is F_SETSB, arg contains the single word sitebits value.

If cmd is F_GETXT, arg contains the address of the variable of type struct xt_report. The calling
process supplies the number of extents to return in the xtr_size field of the arg variable. Information
returned by fcntl includes the total number of extents (xtr_nextent) for the file, the number of indirect
blocks (xtr_nindirs), the number of data blocks (xtr_nblocks), the number of data blocks in primary
partitions (xtr_pblocks), the number of data blocks in secondary partitions (xtr_sblocks) of the file
system, the minimum (xtr_minblks) and the maximum (xtr_maxblks) data blocks in a single extent, and
the data extents (xtr_xtnt) for the file. The data extent fields contain the starting block and number of
contiguous blocks, each as a 32-bit field.

NOTES

In the future, the errno variable will be set to EAGAIN rather than EACCES when a section of a file is already
locked by another process; therefore, portable application programs should expect and test for either value.

If F_GETLK is specified, the process must be granted read permission to the file via the security label. That is,
the active security label of the process must be greater than or equal to the security label of the file.

If F_SETLK, F_SETLKW, F_SETSB, F_SETALF, or F_CLRALF is specified, the process must be granted
write permission to the file via the security label. That is, the active security label of the process must equal the
security label of the file.

A process with the effective privileges shown is granted the following abilities:

Privilege Description

PRIV_FOWNER The process is considered the owner of the file.

PRIV_MAC_READ The process is granted read permission to the file via the security label.

FCNTL(2) FCNTL(2)

SR−2012 10.0 123

PRIV_MAC_WRITE The process is granted write permission to the file via the security label.

If the PRIV_SU configuration option is enabled, the super user is granted read and write permission to the file
via the security label and is considered the owner of the file.

RETURN VALUES

If fcntl completes successfully, the value returned depends on the cmd argument. The value returned is as
follows:

F_DUPFD A new file descriptor

F_GETFD Value of flag (only the low-order bit is defined)

F_SETFD Value other than −1

F_GETFL Value of file flags

F_SETFL Value other than −1

F_GETLK Value other than −1

F_SETLK Value other than −1

F_SETLKW Value other than −1

F_SETSB Value other than −1

F_SETALF Value of the allocation flags for the file prior to request

F_CLRALF Value of the allocation flags for the file prior to request

F_GETXT Value other than −1

Otherwise, a value of −1 is returned, and errno is set to indicate the error.

ERRORS

The fcntl system call fails if one of the following error conditions occurs:

Error Code Description

EACCES The cmd argument is F_SETLK, the type of lock (l_type) is a read (F_RDLCK)
lock, and the segment of a file to be locked is already write locked by another process,
or the type is a write (F_WRLCK) lock, and the segment of a file to be locked is already
read or write locked by another process.

EBADF The fildes argument is not a valid open file descriptor.

EBADF The requested command is F_GETLK and the calling process does not have MAC read
access to the file which the file descriptor refers, or the command was F_SETLK,
F_SETLKW, F_SETALF, or F_CLRALF, and the calling process does not have MAC
write access to the file to which the file descriptor refers.

FCNTL(2) FCNTL(2)

124 SR−2012 10.0

EDEADLK The cmd argument is F_SETLKW, the lock is blocked by a lock from another process,
and it would cause a deadlock to put the calling process to sleep and wait for that lock
to become free.

EFAULT The cmd argument is F_SETLK, or F_GETXT and arg points outside the program
address space.

EINTR A signal was caught during the fcntl system call.

EINVAL The cmd argument is F_DUPFD, and arg is negative, greater than, or equal to the
maximum number of files per process (OPEN_MAX).

EINVAL The cmd argument is F_GETLK, F_SETLK, or SETLKW, and arg or the data to which
it points is not valid.

EINVAL The fildes argument refers to a file on a foreign file system (for example, NFS).

EINVAL The cmd is F_SETSB, and the fildes argument does not refer to a regular file (for
example, a directory).

EINVFS The fildes argument refers to a file on a file system that is not a NC1FS file system.

EMFILE The cmd argument is F_DUPFD, and NOFILE file descriptors are currently open.

ENOLCK The cmd argument is F_SETLK or F_SETLKW, the type of lock is a read or write
lock, and there is no space for additional record locks to be set (too many file segments
locked) because the system maximum has been exceeded.

EPERM The cmd argument is F_GETXT, and the calling process is not the owner of the file
and does not have appropriate privilege.

FORTRAN EXTENSIONS

The fcntl system call can be called from Fortran as a function:

INTEGER fildes, cmd, arg, FCNTL, I
I = FCNTL (fildes, cmd, arg)

Alternatively, fcntl can be called from Fortran as a subroutine. In this case, the return value of the system
call is unavailable.

INTEGER fildes, cmd, arg
CALL FCNTL (fildes, cmd, arg)

The Fortran program must not specify both the subroutine call and the function reference to fcntl from the
same procedure.

FCNTL(2) FCNTL(2)

SR−2012 10.0 125

EXAMPLES

The following examples illustrate different uses of the fcntl system call.

Example 1: The file datafile is opened for writing only, and the current offset into the file is set to the
beginning of the file since the O_APPEND flag was not specified on the open request.

Later in the program, it is desirable for all writes to append onto the end of the file. After first obtaining the
current file status flags using the F_GETFL command, the fcntl system call sets the O_APPEND option with
the F_SETFL command. All writes to datafile extend the file.

int fd, flags;

fd = open("datafile", O_WRONLY);

flags = fcntl(fd, F_GETFL, 0); /* get current file status flags */
fcntl(fd, F_SETFL, flags | O_APPEND);/* add append mode for the file */

Example 2: By default, any open file remains open in the new program when an exec system call overlays the
current program with a new program. (Some system calls in the example are not supported on Cray MPP
systems.)

The myfile file is open when the execl request is made. However, the fcntl system call with the
F_SETFD command sets the close-on-exec flag to value 1 before the execl request is issued.
Therefore, myfile is closed when the execl request is made, and it does not remain open in the new
program named newprog.

int fd;

fd = open("myfile", O_RDONLY);

fcntl(fd, F_SETFD, 1); /* file myfile should close on exec(2) */

execl("/tmp/newprog", "newprog", "arg1", "arg2", 0);

FCNTL(2) FCNTL(2)

126 SR−2012 10.0

Example 3: This example shows how fcntl safely updates a specific record of a file. The first fcntl
request sets a write lock on the tenth record of dbfile. This record is then read, modified in memory, and
rewritten back to the device. The second fcntl request unlocks the locked record.

Because fcntl uses F_SETLK, the request fails immediately if any other process has a lock set that blocks
setting this lock.

struct flock lock;
int fd, recsize;

fd = open("dbfile", O_RDWR);

lseek(fd, 9 * recsize, 0);/* seek to 10th record in the file */

lock.l_type = F_WRLCK; /* set write lock */
lock.l_whence = 1; /* starting offset = current location */
lock.l_start = 0; /* relative offset = current location */
lock.l_len = recsize; /* # of bytes to lock - one record */

if (fcntl(fd, F_SETLK, &lock) == -1) {
perror("record locking operation failed");
exit(1);

}

/* Code here is to update file record including read and write operations. */

lseek(fd, 9 * recsize, 0);/* seek again to 10th record in the file */

lock.l_type = F_UNLCK; /* set to unlock */
lock.l_whence = 1; /* starting offset = current location */
lock.l_start = 0; /* relative offset = current location */
lock.l_len = recsize; /* # of bytes to unlock - one record */

if (fcntl(fd, F_SETLK, &lock) == -1) {
perror("record unlocking operation failed");
exit(1);

}

Example 4: The following fcntl system call opens and write locks the entire file (named datafile). The
F_SETLKW command to the fcntl request causes the program to sleep if there is any other lock set on the file
that causes this lock to be blocked.

When a blocking lock is released, this lock proceeds.

FCNTL(2) FCNTL(2)

SR−2012 10.0 127

struct flock lock;
int fd;

fd = open("datafile", O_RDWR);

lock.l_type = F_WRLCK; /* set write lock */
lock.l_whence = 1; /* starting offset = current location */
lock.l_start = 0; /* relative offset = current location */
lock.l_len = 0; /* # of bytes to lock - to EOF */

if (fcntl(fd, F_SETLKW, &lock) == -1) {
perror("record locking operation failed");
exit(1);

}

Example 5: The fcntl request with F_SETLK command attempts to lock the entire file (named lockfile).
If this attempt fails, an additional fcntl request with command F_GETLK determines the process ID of the
process that currently holds a lock on the file.

int fd;
struct flock lock;

fd = open("lockfile", O_RDONLY);

lock.l_type = F_RDLCK; /* set read lock */
lock.l_whence = 1; /* starting offset = current location */
lock.l_start = 0; /* relative offset = current location */
lock.l_len = 0; /* # of bytes to lock -> to EOF */
lock.l_pid = 0; /* initialize pid for later */

if (fcntl(fd, F_SETLK, &lock) == -1) {
perror("file locking operation failed");
fcntl(fd, F_GETLK, &lock);/* who’s got it locked ? */
if (lock.l_pid != 0) {

printf("process having file ’lockfile’ locked = %d\n",
lock.l_pid);

}
lock.l_type = F_RDLCK; /* set read lock again since */

/* F_GETLK resets to F_UNLCK */
}

FCNTL(2) FCNTL(2)

128 SR−2012 10.0

FILES

/usr/include/fcntl.h Contains symbol definitions for the fcntl system call

/usr/include/sys/stat.h Contains definitions of S_ALF_NOGROW and S_ALF_PARTR

SEE ALSO

chmod(2), close(2), creat(2), dup(2), exec(2), fork(2), open(2), pipe(2), read(2), write(2)

fcntl(5) in the UNICOS File Formats and Special Files Reference Manual, Cray Research publication
SR−2014

lockd(8) in the UNICOS Administrator Commands Reference Manual, Cray Research publication SR−2022

UNICOS File Formats and Special Files Reference Manual, Cray Research publication SR−2014

FCNTL(2) FCNTL(2)

SR−2012 10.0 129

NAME

fgetpal − Gets the privilege assignment list (PAL) and privilege sets of a file

SYNOPSIS

#include <sys/types.h>
#include <sys/priv.h>

int fgetpal (int fdes, pal_t *buf, int bufsize);

IMPLEMENTATION

All Cray Research systems

DESCRIPTION

The fgetpal system call gets the privilege assignment list (PAL) and privilege sets of the file identified by a
file descriptor and returns the information in the buffer.

The fgetpal system call accepts the following arguments:

fdes Specifies file descriptor that identifies the file for which the PAL and privilege sets are retrieved.

buf Contains pointer to the return buffer.

bufsize Indicates the maximum size of the buffer in bytes.

The calling process must have MAC read access to the file or have PRIV_MAC_READ in its effective privilege
set.

RETURN VALUES

If fgetpal completes successfully, a value of 0 is returned; otherwise, a value of −1 is returned, and errno
is set to indicate the error.

ERRORS

The fgetpal system call fails if one of the following error conditions occurs:

Error Code Description

EACCES The caller is denied MAC read access to the file.

EBADF The supplied file descriptor is invalid.

EFAULT The buf argument points outside the address space of the process.

EINVAL The bufsize argument specifies an invalid value.

SEE ALSO

fsetpal(2), getpal(2), setpal(2)

FGETPAL(2) FGETPAL(2)

130 SR−2012 10.0

NAME

fork − Creates a new process

SYNOPSIS

#include <sys/types.h>
#include <unistd.h>

pid_t fork (void);

IMPLEMENTATION

Cray PVP systems

STANDARDS

POSIX, XPG4

DESCRIPTION

The fork system call creates a new process (child process), which is an exact copy of the calling process
(parent process). This means that the child process inherits the following attributes from the parent process:

@ Environment
A Close-on-exec flag (see exec(2))
B Signal handling settings
C Set-user-ID mode bit
D Set-group-ID mode bit
E Profiling on/off status
F nice value (see nice(2))
G Process group ID
H Job ID
I tty group ID (see exit(2) and signal(2))
J Trace flag (see ptrace(2) request 0)
K Current working directory
L Root directory
M File mode creation mask (see umask(2))
N File size limit (see ulimit(2))
O All attached shared memory segments (see shmat(2))

FORK(2) FORK(2)

SR−2012 10.0 131

The child process differs from the parent process in the following ways:
P The child process has a unique process ID.
Q The child process has a different parent process ID (that is, the process ID of the parent process).
R The child process has its own copy of the parent’s file descriptors. Each of the child’s file descriptors shares

a common file pointer with the corresponding file descriptor of the parent process.
S Process locks are not inherited by the child process (see plock(2)).
T The utime, stime, cutime, and cstime of the child process are set to 0. The time left until an alarm

clock signal is reset to 0.
U Record locks set by the parent process are not inherited by the child process (see fcntl(2) and

lockf(3C)).
V In a multitasking group, only the process that executed the fork system call is copied.
W Each attached shared memory segment is attached and the value of shm_nattch in the data structure

associated with the shared memory segment is incremented by 1.
X All semadj values are cleared (see semop(2))

NOTES

The child process inherits all active and authorized security attributes from the parent process. These attributes
include levels, compartments, categories, privileges, and privilege text.

RETURN VALUES

If fork completes successfully, it returns a value of 0 to the child process and returns the process ID of the
child process to the parent process; otherwise, a value of −1 is returned to the parent process, no child process is
created, and errno is set to indicate the error.

ERRORS

The fork system call fails and no child process is created if one of the following error conditions occurs:

Error Code Description

EAGAIN The system-imposed limit on the total number of processes under execution in the
whole system (NPROC) is exceeded.

EAGAIN The system-imposed limit on the total number of processes under execution by one
user (CHILD_MAX) is exceeded.

EBUSY This error also occurs if you try to enable accounting when it is already enabled or if
you issue a restart(2) attempt when another job or process in the system is using
the jid or any pid associated with the job (or process) to be restarted.

FORK(2) FORK(2)

132 SR−2012 10.0

EINTR An asynchronous signal (such as interrupt or quit), which you have elected to
catch, occurred during a fork system call. When execution resumed after processing
the signal, the interrupted system call returned this error condition.

EMEMLIM More memory space was requested than is allowed for the processes attached to this
lnode. The maximum value is set by the -c option of the shradmin(8) command.
This error appears only on systems running the fair-share scheduler.

ENOEXEC A request was made to execute a file that, although it has the appropriate permissions,
does not start with a valid magic number (see a.out(5)).

ENOMEM During an exec(2) or sbreak(2) system call, a program requested more space than
the system could supply. This is not a temporary condition; the maximum space
specification is a system parameter.

EPROCLIM More processes were requested than is allowed for this lnode. The maximum value is
set by the -p option of the shradmin(8) command. This error appears only on
systems running the fair-share scheduler.

FORTRAN EXTENSIONS

The fork system call can be called from Fortran as a function:

INTEGER FORK, I
I = FORK ()

EXAMPLES

The following examples illustrate different uses of the fork system call.

Example 1: The fork request generates a new process that executes the same program as the parent process.
The program executing in the parent process that issued the fork request is also executing in the child process
at the completion of the request. (Usually, in application programs, when a parent generates a child process, the
programmer intends for the child process to execute a different program than the one executing in the parent
process as illustrated in example 2.)

The return value from fork indicates whether execution is in the parent or child process.

FORK(2) FORK(2)

SR−2012 10.0 133

pid_t res;

if ((res = fork()) == -1) {
perror("fork failed");
exit(1);

}

if (res == 0) {
/* code here is executed in the child process */

}
else {

/* code here is executed in the parent process */
}

Example 2: In many cases, when a parent generates a child process, the programmer wants a different program
to execute in the child process rather than the same program as in the parent process. Therefore, when the child
process returns from fork, it immediately issues an exec(2) system call.

In this example, the newly created child process performs an execl(2) request to load a different program
(childprog) for execution. The parent and child processes then execute different programs in parallel.

pid_t res;

if ((res = fork()) == -1) {
perror("fork failed");
exit(1);

}

if (res == 0) { /* In child process? */
execl("childprog", "childprog", "arg1", "arg2", 0);
perror("exec for childprog failed");
_exit(1);

}

/* parent process continues execution here */

FILES

/usr/include/sys/types.h Contains types required by ANSI X3J11

/usr/include/unistd.h Contains C prototype for the fork system call

FORK(2) FORK(2)

134 SR−2012 10.0

SEE ALSO

brk(2), exec(2), execl(2), exit(2), fcntl(2), nice(2), plock(2), ptrace(2), restart(2),
sbreak(2), semop(2), shmat(2), signal(2), times(2), ulimit(2), umask(2), wait(2)

lockf(3C) in the UNICOS System Libraries Reference Manual, Cray Research publication SR−2080

a.out(5) in the UNICOS File Formats and Special Files Reference Manual, Cray Research publication
SR−2014

shradmin(8) in the UNICOS Administrator Commands Reference Manual, Cray Research publication
SR−2022

FORK(2) FORK(2)

SR−2012 10.0 135

NAME

fsetpal − Sets the privilege assignment list (PAL) and privilege sets of a file

SYNOPSIS

#include <sys/types.h>
#include <sys/priv.h>

int fsetpal (int fdes, pal_t *buf, int bufsize);

IMPLEMENTATION

All Cray Research systems

DESCRIPTION

The fsetpal system call sets the privilege assignment list (PAL) and privilege sets of the file identified by a
file descriptor using the information in the buffer.

The fsetpal system call accepts the following arguments:

fdes Specifies file descriptor that identifies the file for which the PAL and privilege sets are set.

buf Contains pointer that contains information.

bufsize Indicates the maximum size of the buffer in bytes.

The calling process must have PRIV_SETFPRIV in its effective privilege set, and must either be the file’s
owner or have PRIV_FOWNER in its effective privilege set. The calling process must have MAC write access
to the file or have PRIV_MAC_WRITE in effective privilege set. The calling process can change the state of
privileges in the file’s allowed, forced, or set-effective privilege sets only when those privileges are also in the
caller’s permitted privilege set.

If the PRIV_SU option is enabled, any process with effective user ID 0 meets all the requirements specified in
the previous paragraph.

RETURN VALUES

If fsetpal completes successfully, a value of 0 is returned; otherwise, a value of −1 is returned, and errno
is set to indicate the error.

ERRORS

The fsetpal system call fails if one of the following error conditions occurs:

Error Code Description

EBADF The supplied file descriptor is invalid.

EBADF The process is not granted MAC write permission to the file and does not have
appropriate privilege.

FSETPAL(2) FSETPAL(2)

136 SR−2012 10.0

EFAULT The buf argument points outside the address space of the process.

EINVAL The bufsize argument specifies an invalid value.

EINVAL The contents of the supplied PAL is invalid.

EPERM The process is not the file owner, and does not have appropriate privilege.

EROFS The affected file system is a read-only file system.

ESECADM The process does not have appropriate privilege to use this system call.

SEE ALSO

fgetpal(2), getpal(2), setpal(2)

FSETPAL(2) FSETPAL(2)

SR−2012 10.0 137

NAME

fsync − Synchronizes the in-core state of a file with that on disk

SYNOPSIS

#include <unistd.h>

int fsync (int fildes);

IMPLEMENTATION

All Cray Research systems

STANDARDS

POSIX, XPG4

DESCRIPTION

The fsync system call moves all modified data and attributes of a file descriptor to a permanent storage
device. It accepts the following argument:

fildes Specifies the file descriptor.

All in-core modified copies of buffers for the associated file have been written to a disk when the call returns.
Programs requiring that a file be in a known state should use this call.

In contrast, the sync(2) system call schedules disk I/O for all files (as if an fsync system call had been done
on all files), but returns before the I/O completes.

RETURN VALUES

When fsync completes successfully, a value of 0 is returned; otherwise, a value of −1 is returned, and errno
is set to indicate the error.

ERRORS

The fsync system call fails if one of the following error conditions occurs:

Error Code Description

EBADF The value of fildes is not a valid file descriptor.

EINVAL File descriptor fildes refers to a socket, not a file.

EIO An I/O error occurred during a read from or a write to the file system.

FSYNC(2) FSYNC(2)

138 SR−2012 10.0

EXAMPLES

The following example shows how to use the fsync system call to ensure that a device is updated before a file
is closed and a process exits. Because the O_RAW flag is not specified in the open(2) request, file datafile
is opened by use of the buffered I/O method. When write operations update datafile, these changes are
made in system cache buffers and the actual updates to the device are delayed.

Completion of the fsync request assures the user that these changes have reached the device(s) before
datafile is closed and the process exits.

#include <fcntl.h>

main()
}

int fd;

fd = open("datafile", O_RDWR);

/* updates to file "datafile" performed here */

if (fsync(fd) == -1) { /* insure that data arrives on device */
perror("fsync failed");
exit(1);

}

close(fd);
}

FILES

/usr/include/unistd.h Contains C prototype for the fsync system call

SEE ALSO

open(2), sync(2)

cron(8) in the UNICOS Administrator Commands Reference Manual, Cray Research publication SR−2022

FSYNC(2) FSYNC(2)

SR−2012 10.0 139

NAME

getash − Gets an array session handle

SYNOPSIS

#include <sys/types.h>
#include <unistd.h>

ash_t getash (void);

IMPLEMENTATION

IRIX and UNICOS systems

DESCRIPTION

The getash system call returns the array session handle for the array session that contains the calling process.

The handle for an array session is assigned when the array session is first created. This handle can be
overridden using the privileged setash(2) system call.

RETURN VALUES

The getash system call always returns the array session handle. There are no error conditions.

SEE ALSO

newarraysess(2), setash(2)

array_services(7), array_sessions(7)

GETASH(2) GETASH(2)

140 SR−2012 10.0

NAME

getdents − Reads and formats directory entries as file system independent

SYNOPSIS

#include <sys/dirent.h>

int getdents (int fildes, char *buf, unsigned nbyte);

IMPLEMENTATION

All Cray Research systems

DESCRIPTION

The getdents system call tries to read a specified number of bytes from a directory and to format them as file
system-independent directory entries in a buffer. Because the file system-independent directory entries vary in
length, usually the actual number of bytes returned is strictly less than the number of bytes specified.

The getdents system call accepts the following arguments:

fildes Specifies a file descriptor associated with a directory. It is obtained from an open(2) or dup(2)
system call.

buf Points to the buffer.

nbyte Specifies the number of bytes.

The file system-independent directory entry is specified by the dirent structure (see dirent(5)).

On devices capable of seeking, getdents starts at a position in the file given by the file pointer associated
with fildes. On return from getdents, the file pointer is incremented to point to the next directory entry.

This system call was developed to implement the readdir(3C) routine (for a description see
directory(3C)), and it should not be used for other purposes.

NOTES

The process must be granted read permission to the file via the security label. That is, the active security label
of the process must be greater than or equal to the security label of the file.

A process with the effective privilege shown is granted the following ability:

Privilege Description

PRIV_MAC_READ The process is granted read permission to the file via the security label.

If the PRIV_SU configuration option is enabled, the super user is granted read permission to the file via the
security label.

GETDENTS(2) GETDENTS(2)

SR−2012 10.0 141

RETURN VALUES

If getdents completes successfully, a nonnegative integer is returned, indicating the number of bytes actually
read. A value of 0 indicates that the end of the directory has been reached. If the system call fails, a −1 is
returned, and errno is set to indicate the error.

ERRORS

The getdents system call fails if one of the following conditions occurs:

Error Code Description

EBADF The fildes argument is not a valid file descriptor open for reading.

EBADF The active security label of the process is not greater than or equal to the security label
of the directory, and the process does not have appropriate privilege.

EFAULT The buf argument points outside the allocated address space.

EINVAL The nbyte argument is not large enough for one directory entry.

EIO An I/O error occurred while the file system was being accessed.

ENOENT The current file pointer for the directory is not located at a valid entry.

ENOTDIR The fildes argument is not a directory.

SEE ALSO

dup(2), open(2)

directory(3C), readdir(3C) in the UNICOS System Libraries Reference Manual, Cray Research
publication SR−2080

dirent(5) in the UNICOS File Formats and Special Files Reference Manual, Cray Research publication
SR−2014

GETDENTS(2) GETDENTS(2)

142 SR−2012 10.0

NAME

getdevn − Gets device number or driver entry

SYNOPSIS

int getdevn (unsigned long number, int bflag);

IMPLEMENTATION

All Cray Research systems

DESCRIPTION

The getdevn system call gets a device number or driver entry. It accepts the following arguments:

number Indicates major device number or driver name. If number is a major device number, getdevn
returns the driver name as a character constant; If number is larger than the largest major number,
getdevn assumes that it is a character constant and returns the major number for that device.

bflag Indicates device type. If bflag is specified (nonzero), the device is assumed to be a block device; if
it is 0, the device is a character device.

RETURN VALUES

When getdevn completes successfully, a nonnegative value is returned; otherwise, a value of −1 is returned,
and errno is set to indicate the error.

ERRORS

The getdevn system call fails if the following error condition occurs:

Error Code Description

EINVAL The arguments specify a device number that is undefined or a driver entry that is
undefined.

EXAMPLES

The following examples show how to use the getdevn system call.

Example 1: In this example, getdevn returns the major number of the block disk driver:

i = getdevn (’dev_dd’,1);

Example 2: In this example, getdevn returns the major number of the hi.c driver:

i = getdevn (’dev_hppi’,0);

GETDEVN(2) GETDEVN(2)

SR−2012 10.0 143

NAME

getfacl − Gets access control list entries for file

SYNOPSIS

#include <sys/types.h>
#include <sys/acl.h>

int getfacl (char *fname, struct acl *aclents, int count);

IMPLEMENTATION

All Cray Research systems

DESCRIPTION

The getfacl system call gets the access control list (ACL) entries of a file and stores them in an array.

The getfacl system call accepts the following arguments:

fname Specifies the file that contains ACL entries.

aclents Specifies the array.

count Indicates the maximum number of ACL entries that can be put in the array.

NOTES

Errors are recorded in the security log if discretionary access control logging is enabled.

The maximum number of ACL entries supported is defined by ACLSIZE in acl.h.

The process must be granted read permission to the file via the security label. That is, the active security label
of the process must be greater than or equal to the security label of the file.

To be granted search permission to a component of the path prefix, the active security label of the process must
be greater than or equal to the security label of the component.

A process with the effective privileges shown is granted the following abilities:

Privilege Description

PRIV_DAC_OVERRIDE The process is granted search permission to a component of the path prefix via
the permission bits and ACL.

PRIV_MAC_READ The process is granted search permission to a component of the path prefix via
the security label.

PRIV_MAC_READ The process is granted read permission to the file via the security label.

GETFACL(2) GETFACL(2)

144 SR−2012 10.0

If the PRIV_SU configuration option is enabled, the super user is granted search permission to every
component of the path prefix and is granted read permission to the file via the security label.

RETURN VALUES

If getfacl completes successfully, the number of entries in the file’s ACL is returned (depending on the
value of count, this may not necessarily be the number of entries returned in the array aclents); otherwise, a
value of −1 is returned, and errno is set to indicate the error.

ERRORS

The getfacl system call fails if one of following error conditions occurs:

Error Code Description

EACCES Process does not have mandatory read access to the file.

EFAULT The fname argument points outside the process address space.

EFAULT The aclents argument resides outside the process’ address space.

EINVAL The count argument is less than 0.

EMANDV The process is denied read permission to the file via the security label.

ENAMETOOLONG The supplied file name is too long.

ENOENT The specified file does not exist.

ENOTDIR A component of the path prefix is not a directory.

EXAMPLES

This example shows how to use the getfacl system call to retrieve ACL entries for a file. That is, the
getfacl request retrieves the ACL entries for file datafile. Then, these entries are displayed on stdout.

GETFACL(2) GETFACL(2)

SR−2012 10.0 145

#include <stdio.h>
#include <sys/types.h>
#include <sys/acl.h>
#include <pwd.h>

main(int argc, char *argv[])
{

struct acl buf[ACLSIZE];
struct passwd *pwptr;
int no, i;

if ((no = getfacl("datafile", buf, ACLSIZE)) == -1) {
perror("getfacl failed");
exit(1);

}

printf("Access control list for datafile contains ");
printf("the following users:\n\n");
printf("ID Logon ID Name");
printf(" Permissions\n\n");

for (i = 0; i < no; i++) {
pwptr = getpwuid(buf[i].ac_usid);
printf("%-5d %-10s %-25s %c%c%c\n",

buf[i].ac_usid, pwptr->pw_name, pwptr->pw_gecos,
buf[i].ac_mode & 04 ? ’r’ : ’ ’,
buf[i].ac_mode & 02 ? ’w’ : ’ ’,
buf[i].ac_mode & 01 ? ’x’ : ’ ’);

}
}

FILES

/usr/include/sys/acl.h Defines access control list structure

GETFACL(2) GETFACL(2)

146 SR−2012 10.0

SEE ALSO

rmfacl(2), secstat(2), setfacl(2)

spacl(1), spclr(1), spset(1) in the UNICOS User Commands Reference Manual, Cray Research
publication SR−2011

slog(4), acl(5), dirent(5) in the UNICOS File Formats and Special Files Reference Manual, Cray
Research publication SR−2014

General UNICOS System Administration, Cray Research publication SG−2301

GETFACL(2) GETFACL(2)

SR−2012 10.0 147

NAME

getgroups, setgroups − Gets or sets group list

SYNOPSIS

#include <sys/types.h>
#include <sys/param.h>
#include <unistd.h>

int getgroups (int ngroups, gid_t *gidset);

int setgroups (int ngroups, gid_t *gidset);

IMPLEMENTATION

All Cray Research systems

STANDARDS

POSIX, XPG4 (applies only to getgroups)

DESCRIPTION

The getgroups system call gets the current group list of the user process and stores it in the gidset array. It
accepts the following arguments:

ngroups Indicates the maximum number of entries that may be placed in gidset. No more than
NGROUPS_MAX, as defined in the sys/param.h file, are ever returned.

gidset Points to the array.

The setgroups system call sets the group list of the current user process according to the gidset array. The
ngroups argument indicates the number of entries in the array, and it must be no more than NGROUPS_MAX, as
defined in the sys/param.h file. Only a process with appropriate privilege can set its group list.

NOTES

A process with the effective privilege shown is granted the following ability:

Privilege Description

PRIV_SETGID The process is allowed to set its group list.

If the PRIV_SU configuration option is enabled, the super user or a process with the PERMBITS_ID permbit
is allowed to set its group list.

GETGROUPS(2) GETGROUPS(2)

148 SR−2012 10.0

RETURN VALUES

If getgroups completes successfully, getgroups returns the number of groups to which the user process
belongs; otherwise, a value of −1 is returned, and errno is set to indicate the error.

If setgroups completes successfully, a value of 0 is returned; otherwise, a value of −1 is returned, and
errno is set to indicate the error.

ERRORS

The getgroups or setgroups system call fails if one of the following error conditions occurs:

Error Code Description

EFAULT The gidset argument specifies an address that was not valid.

EINVAL The ngroups argument is smaller than the number of groups to which the user process
belongs.

EPERM The process does not have appropriate privilege to set its group list.

EXAMPLES

This example shows how to use the getgroups system call to retrieve the list of valid groups for the current
process. That is, the getgroups request retrieves the list for the current process. Then, the list is displayed
on stdout.

NGROUPS_MAX, defined in the sys/param.h file, specifies the maximum number of groups in which a user
can be a member.

gid_t group[NGROUPS_MAX];
int no, i;

if ((no = getgroups(NGROUPS_MAX, group)) == -1) {
perror("getgroups failed");
exit(1);

}

printf("The current user belongs to the following groups:\n\n");
for (i = 0; i < no; i++) {

printf("%d\n", group[i]);
}

FILES

/usr/include/sys/types.h Contains types required by ANSI X3J11

/usr/include/sys/param.h Defines configuration files

GETGROUPS(2) GETGROUPS(2)

SR−2012 10.0 149

/usr/include/unistd.h Contains C prototype for the getgroups and setgroups system
calls

SEE ALSO

initgroups(3C) in the UNICOS System Libraries Reference Manual, Cray Research publication SR−2080

GETGROUPS(2) GETGROUPS(2)

150 SR−2012 10.0

NAME

gethostid, sethostid − Gets or sets unique identifier of local host

SYNOPSIS

#include <unistd.h>

int gethostid (void);

int sethostid (int hostid);

IMPLEMENTATION

All Cray Research systems

DESCRIPTION

The gethostid system call returns the 32-bit identifier for the local host.

The sethostid system call establishes a 32-bit identifier, which is intended to be unique among identifiers of
all existing systems running UNIX or UNICOS software. This identifier is usually the DARPA Internet address
for the local host. Only a process with appropriate privilege can use this call; it is typically performed at boot
time.

The sethostid system call accepts the following argument:

hostid Specifies the host identifier.

Before sethostid is called, the default identifier value is 0.

NOTES

A process with the effective privilege shown is granted the following ability:

Privilege Description

PRIV_ADMIN The process is allowed to set the host ID.

If the PRIV_SU configuration option is enabled, the super user is allowed to set the host ID.

RETURN VALUES

The gethostid system call returns the host ID.

If sethostid completes successfully, 0 is returned; otherwise, a value of −1 is returned, and errno is set to
indicate the error.

GETHOSTID(2) GETHOSTID(2)

SR−2012 10.0 151

ERRORS

The sethostid system call fails if the following error condition occurs:

Error Code Description

EPERM The process does not have appropriate privilege to set the host ID.

FILES

/usr/include/unistd.h Contains C prototype for the gethostid and sethostid system
calls

SEE ALSO

gethostname(2)

hostid(1) in the UNICOS User Commands Reference Manual, Cray Research publication SR−2011

GETHOSTID(2) GETHOSTID(2)

152 SR−2012 10.0

NAME

gethostname, sethostname − Gets or sets name of local host

SYNOPSIS

#include <unistd.h>

int gethostname (char *name, int namelen);

int sethostname (char *name, int namelen);

IMPLEMENTATION

All Cray Research systems

DESCRIPTION

The gethostname system call returns the official host name for the local host, as previously set by
sethostname. The returned name is null-terminated, unless insufficient space is provided.

The sethostname system call sets the name of the host machine. This call is restricted to a process with
appropriate privilege and is normally used only when the network is initialized. Before sethostname is
called, the default host name is the null string.

The gethostname and sethostname system calls accept the following arguments:

name Points to the address of an array of bytes where the name is to be stored (gethostname) or is
stored (sethostname).

namelen Specifies the size of the name array. This length is measured in bytes.

NOTES

If namelen is less than the length of the host’s official name, the official name is truncated to fit.

A process with the effective privilege shown is granted the following ability:

Privilege Description

PRIV_ADMIN The process is allowed to set the host name.

If the PRIV_SU configuration option is enabled, the super user is allowed to set the host name.

RETURN VALUES

The gethostname system call returns the host name.

If sethostname completes successfully, a value of 0 is returned; otherwise, a value of −1 is returned, and
errno is set to indicate the error.

GETHOSTNAME(2) GETHOSTNAME(2)

SR−2012 10.0 153

ERRORS

The gethostname or sethostname system call fails if one of the following conditions occurs:

Error Code Description

EFAULT For the gethostname or sethostname system call, the name or namelen
argument gave an address that was not valid.

EPERM The process does not have appropriate privilege to set the host name.

BUGS

For the sethostname system call, host names are limited to MAXHOSTNAMELEN (defined in the
/usr/include/sys/param.h file).

EXAMPLES

The following example shows how to use the gethostname system call to retrieve the official host name for
the local host. This gethostname request finds the official name of the local host and places it in the array
hostname as a null-terminated character string.

#define HOSTNM_MAX 256

char hostname[HOSTNM_MAX];

if (gethostname(hostname, HOSTNM_MAX) == -1) {
perror("gethostname failed");
exit(1);

}
else {

/* official host name for local host now
resides in array hostname */

}

FILES

/usr/include/sys/param.h Defines configuration files

/usr/include/unistd.h Contains C prototype for the gethostname and sethostname
system calls

SEE ALSO

gethostid(2)

hostname(1) in the UNICOS User Commands Reference Manual, Cray Research publication SR−2011

GETHOSTNAME(2) GETHOSTNAME(2)

154 SR−2012 10.0

NAME

getinfo − Gets specified user, job, or process signal information

SYNOPSIS

#include <sys/getinfo.h>

int getinfo (int type, int id, char *arg, int size);

IMPLEMENTATION

All Cray Research systems

DESCRIPTION

The getinfo system call obtains detailed information from the kernel about why a SIGINFO signal occurred
for a process.

type Specifies the type of request. Currently, GI_SIGINFO is the only valid type.

If type = GI_SIGINFO, getinfo returns a mask. The id argument is ignored, the arg argument is
the address of a long integer that will receive the SIGINFO mask, and size is sizeof(long).
The SIGINFO mask is defined in sys/getinfo.h, and it consists of a bit for every possible
reason a SIGINFO signal could occur. The bits in the mask are, as follows:

RESERVED_0 (1<< 0) Reserved
RESERVED_1 (1<< 1) Reserved
SIGINFO_AFQL (1<< 2) Account file quota limit
SIGINFO_AFQW (1<< 3) Account file quota warning
SIGINFO_AIQL (1<< 4) Account inode quota limit
SIGINFO_AIQW (1<< 5) Account inode quota warning

RESERVED_6 (1<< 6) Reserved
RESERVED_7 (1<< 7) Reserved
SIGINFO_GFQL (1<< 8) Group file quota limit
SIGINFO_GFQW (1<< 9) Group file quota warning
SIGINFO_GIQL (1<<10) Group inode quota limit
SIGINFO_GIQW (1<<11) Group inode quota warning

RESERVED_12 (1<< 12) Reserved
RESERVED_13 (1<< 13) Reserved
SIGINFO_UFQL (1<<14) User file quota limit
SIGINFO_UFQW (1<<15) User file quota warning
SIGINFO_UIQL (1<<16) User inode quota limit
SIGINFO_UIQW (1<<17) User inode quota warning

SIGINFO_MIG (1<<27) A file is being migrated online

SIGINFO_PSLW (1<<40) Process soft limit warning

GETINFO(2) GETINFO(2)

SR−2012 10.0 155

SIGINFO_SSLW (1<<41) Session soft limit warning
SIGINFO_USLW (1<<42) User soft limit warning

id Specifies 0. 0 is the only valid value. If specified, the id argument is ignored; the request is always
performed for the calling process.

arg Points to an argument dependent on type.

size Specifies the size of arg in characters. This is intended to provide interface compatibility if future
enhancements are needed.

NOTES

The active security label of the process must be greater than or equal to the security label of every affected
process.

A process with the effective privileges shown is granted the following abilities:

Privilege Description

PRIV_MAC_READ The process is allowed to override security label restrictions.

PRIV_POWNER The process is considered the owner of every affected process.

If the PRIV_SU configuration option is enabled, the super user is considered the owner of every affected
process. If the PRIV_SU configuration option is enabled, the super user is allowed to override security label
restrictions.

RETURN VALUES

If getinfo completes successfully, a value of 0 is returned; otherwise, a value of −1 is returned, and errno
is set to indicate the error.

ERRORS

The getinfo system call fails if one of the following error conditions occurs:

Error Code Description

EFAULT The size argument is smaller than the size needed to return the data.

EFAULT The arg argument points outside the allocated address space.

EINVAL The type argument is an invalid request.

GETINFO(2) GETINFO(2)

156 SR−2012 10.0

EXAMPLES

UNICOS supports inode and file size quota enforcement. This example shows how to use the getinfo
system call to determine what type of quota is reached during the execution of a process.

#include <signal.h>

main()
{

void handler(int signo);

signal(SIGINFO, handler);

/* If, during execution of this process, an inode or file size
warning (or limit) level is reached, UNICOS will deliver a
SIGINFO signal to this process. By default, the signal is
ignored by the process. Since it was chosen to catch a SIGINFO
signal, if one of these quotas is reached, the process is
interrupted and the signal handling routine named "handler"
is executed. In "handler" the getinfo(2) request is made to
request more detailed information from the kernel as to why
the signal was sent (that is, what quota was exceeded). If
"handler" does not exit, then processing continues. */

}

void handler(int signo)
{

long reason;

printf("A signal of type %d (SIGINFO) was caught. ", signo);
printf("See following for reason.\n");
if (getinfo(GI_SIGINFO, 0, (char *) &reason, sizeof(long)) == -1) {

perror("getinfo failed");
exit(1);

}
printf("The SIGINFO mask = %o (see getinfo.h for reason)\n", reason);

}

SEE ALSO

quotactl(2), signal(2)

GETINFO(2) GETINFO(2)

SR−2012 10.0 157

NAME

getjtab − Gets the job table entry associated with a process

SYNOPSIS

#include <sys/types.h>
#include <sys/jtab.h>

int getjtab (struct jtab *buf);

IMPLEMENTATION

All Cray Research systems

DESCRIPTION

The getjtab system call gets a copy of the job entry associated with the current process. It accepts the
following arguments:

buf Points to the jtab structure. Information concerning the job is placed in this structure.

The jtab structure includes the following members (for a complete list, see
/usr/include/sys/jtab.h):

int j_jid; /* Job id of this entry */
int j_uid; /* Job owner user-id */
int j_ppid; /* Process-id of job parent */
int j_signal; /* Signal notification for job parent */
int j_nice; /* Nice value of job */
time_t j_cpulimit; /* Max #of cpu clocks allowed */
long j_cproclimit; /* Max #of concurrent processes allowed */
long j_memlimit; /* Memory size limit (clicks) */
long j_fsblklimit; /* Max # of file system blocks */

/* to consume */
long j_sdslimit; /* SDS limit in clicks rounded up */

/* to minimum allocation unit; */
/* CRAY Y-MP systems and */
/* Cray MPP systems */

time_t j_ucputime; /* Total user cpu time for the job */
time_t j_scputime; /* Total system cpu time for the job */
long j_nprocs; /* Total number of processes active */
long j_memuse; /* Memory size in use by job (clicks) */
long j_memhiwat; /* Maximum memory ever used */

/* by job (clicks) */
long j_fsblkused; /* # of file system blocks consumed */
long j_sdsuse; /* SDS in use; CRAY Y-MP systems */

/* and Cray MPP systems */
unsigned char j_tapelimit [J_NTAPES]; /* Tape group limits; enforced */

/* by tape daemon */

GETJTAB(2) GETJTAB(2)

158 SR−2012 10.0

RETURN VALUES

If getjtab completes successfully, the job ID is returned. A job ID of 0 indicates that the process is not part
of a job. Otherwise, a value of −1 is returned, and errno is set to indicate the error.

ERRORS

The getjtab system call fails if the buf argument points to an address that was not valid, EFAULT.

EXAMPLES

This getjtab example shows how a process can retrieve all of the information about a job associated with it:

#include <sys/types.h>
#include <sys/jtab.h>

main()
{

struct jtab jdata;
int jid;

if ((jid = getjtab(&jdata)) == 0) {
fprintf(stderr, "This process is not part of a job!\n");
exit(0);

}
else {

if (jid == -1) {
perror("getjtab failed");
exit(1);

}
}

/* information about the current job now available in jdata */
}

SEE ALSO

fork(2), intro(2), killm(2), limit(2), nicem(2), setjob(2), signal(2), suspend(2)

UNICOS File Formats and Special Files Reference Manual, Cray Research publication SR−2014

GETJTAB(2) GETJTAB(2)

SR−2012 10.0 159

NAME

getlim − Obtains current resource limit information

SYNOPSIS

#include <errno.h>
#include <sys/category.h>
#include <sys/resource.h>

int getlim (int id, struct resclim *rptr);

IMPLEMENTATION

All Cray Research systems

DESCRIPTION

The getlim system call gets resource limit information from the kernel based on the following arguments:

id Specifies the PID, SID, or UID corresponding to the resclim field resc_category. A 0 indicates
the current PID, SID, or UID.

rptr Points to the resclim structure. The resclim structure pointed to by rptr includes the following
members (for a complete list, see /usr/include/sys/resource.h):

struct resclim {
int resc_resource; /* One of: L_CPU */
int resc_category; /* One of: C_PROC, C_SESS, C_UID, C_SESSPROCS */
int resc_type; /* One of: L_T_ABSOLUTE, L_T_HARD, L_T_SOFT */
int resc_action; /* One of: L_A_TERMINATE, L_A_CHECKPOINT */
long resc_used; /* Current amount of resource used */
long resc_value[R_NLIMTYPES];/* Current resource limit value */

/* for each of: */
/* L_T_ABSOLUTE, L_T_HARD, L_T_SOFT */

};

The resclim structure fields resc_resource and resc_category must be set in order to return limit
values. The resc_resource field represents the resource to be queried. Currently, only CPU resources are
supported; therefore, the value of resc_resource must be L_CPU. The resc_category identifies
which category of resource to be queried. Acceptable values are: C_PROC, C_SESS, C_UID, and
C_SESSPROCS. A short description follows:

Value Description

C_PROC Returns process limits

C_SESS Returns session limits

C_UID Returns user limits

C_SESSPROCS Returns default process limits for the session

GETLIM(2) GETLIM(2)

160 SR−2012 10.0

The resclim field resc_category determines whether the id argument is a PID, SID, or UID. The
resc_category of C_SESSPROCS requires an SID.

If the call succeeds, getlim fills in the missing information in the resclim structure. This includes the
following fields:

Field Description

resc_action Returns a value of L_A_TERMINATE or L_A_CHECKPOINT. This value determines
whether when a hard limit is reached the process is checkpointed before termination.

resc_used Returns the amount of resource currently accumulated at the time of the call. For L_CPU,
this value is the amount of CPU clocks accumulated.

resc_value[R_NLIMTYPES]
Returns three values. The resc_value[L_T_ABSOLUTE] field is the absolute
resource limit. The resc_value[L_T_HARD] field is the hard resource limit and
resc_value[L_T_SOFT] is the soft resource limit. All CPU resource limits are
returned in clocks.

NOTES

The active security label of the process must be greater than or equal to the security label of every affected
process.

A process with the effective privileges shown is granted the following abilities:

Privilege Description

PRIV_MAC_READ The process is allowed to override security label restrictions.

PRIV_POWNER The process is considered the owner of every affected process.

If the PRIV_SU configuration option is enabled, the super user is considered the owner of every affected
process. The super user is allowed to override security label restrictions.

RETURN VALUES

If getlim completes successfully, a value of 0 is returned, and the resclim structure is filled in with
appropriate returned values. Otherwise, a value of −1 is returned, and errno is set to indicate the error.

ERRORS

The getlim system call fails and no information is updated in the resclim structure if one of the following
conditions occurs:

Error Code Description

EFAULT The address specified for rptr was not valid.

EINVAL One of the arguments contains a value that was not valid.

GETLIM(2) GETLIM(2)

SR−2012 10.0 161

EPERM The process does not own every affected process and does not have appropriate
privilege.

ESRCH No processes were found that matched the request.

ESRCH The active security label of the process is not greater than or equal to the security label
of every affected process, and the process does not have appropriate privilege.

SEE ALSO

setlim(2)

nlimit(1) in the UNICOS User Commands Reference Manual, Cray Research publication SR−2011

nlimit(3C) in the UNICOS System Libraries Reference Manual, Cray Research publication SR−2080

GETLIM(2) GETLIM(2)

162 SR−2012 10.0

NAME

getmount − Returns information about the kernel mount table

SYNOPSIS

#include <sys/mount.h>

int getmount (struct mntentinfo *mountcopy, struct kmountinfo *mountinfo);

IMPLEMENTATION

Cray PVP systems

DESCRIPTION

The getmount system call returns general information about the kernel mount table (number of mounted file
systems, last time the kernel mount table has been changed, and so on) and information about each mounted file
system (file system name, mount point, type, and options). The getmount system call returns all or only part
of the information, depending on the value of the following arguments:

mountcopy Points to a set of mntentinfo structures that contains information about each file system.

mountinfo Points to the structure that contains the general information about the kernel mount table.

The mntentinfo structure is defined in the sys/mount.h include file, as follows:

struct mntentinfo {
char *fname; /* file system name */
char *dir; /* mount directory */
char *opts; /* mount options */
char *type; /* file system type */

};

The kmountinfo structure is defined in the sys/mount.h header file, as follows:

struct kmountinfo {
int nbent; /* number of mounted file systems */
long lastchge; /* last change in the mount table */
int needupdate; /* need to update memory space */
struct mount *rootenv; /* root in the current environment */
struct mountlength *len; /* length of the character arrays */

};

If you need only general information about the kernel mount table, you can call getmount with the following
arguments:

struct kmountinfo mountinfo;
getmount(NULL, &mountinfo);

GETMOUNT(2) GETMOUNT(2)

SR−2012 10.0 163

In this case, only nbent and lastchge are valid in the kmountinfo structure.

If you need information about each mounted file system, use the setmntent(3C) and getmntinfo(3C)
library routines. These routines use the getmount system call to access the kernel mount table. You should
avoid using getmount directly. However, if it becomes necessary to use it, you must perform the following
steps:

1. Allocate memory space for the set of mountlength structures len, declared as follows:

struct mntentinfo {
int fslen; /*file system length */
int dirlen; /* mount directory length */
int optlen; /* options length */

};

Ensure that enough space is available for each entry in the kernel mount table.

2. Call getmount to get the general information about the kernel mount table, as follows:

getmount(NULL, &mountinfo);

At this point, mountinfo should contain the number of mounted file systems and the space needed for the
file system name, the mount point, and the options of each mounted file system.

3. Allocate memory space for the set of mntentinfo structures mountcopy.

4. Call the getmount system call by using a pointer to the allocated memory:

getmount(mountcopy, &mountinfo);

The system call returns the requested information in the set of mntentinfo structures (mountcopy).

RETURN VALUES

If getmount completes successfully, 0 is returned; otherwise, −1 is returned, and errno is set to EFAULT to
indicate the error.

EXAMPLES

The following example illustrates use of the getmount system call. The program gets information about each
mounted file system from the kernel mount table and prints it.

GETMOUNT(2) GETMOUNT(2)

164 SR−2012 10.0

#include <sys/types.h>
#include <sys/fstyp.h>
#include <sys/mount.h>

#include <stdio.h>
#include <unistd.h>

main()
{
int i, nb, nmnt;
struct kmountinfo mountinfo= {0, 0, 0, NULL, NULL};
struct mntentinfo *mountcopy;

/* Allocate enough memory for the set of mountlength structures */
nmnt = sysconf(_SC_CRAY_NMOUNT);
mountinfo.len = (struct mountlength *)

malloc(nmnt*sizeof(struct mountlength));

/* get the general information about the kernel mount table */
getmount(NULL, &mountinfo);

/* allocate enough memory to get the information about each FS */
nb = mountinfo.nbent;

mountcopy = (struct mntentinfo *)malloc(nb*sizeof(struct mntentinfo));

for (i = 0; i < nb; i++) {
mountcopy[i].fname = (char *)malloc(mountinfo.len[i].fslen + 1);
mountcopy[i].dir = (char *)malloc(mountinfo.len[i].dirlen + 1);
mountcopy[i].opts = (char *)malloc(mountinfo.len[i].optlen + 1);
mountcopy[i].type = (char *)malloc(FSTYPSZ + 1);

}

/* get the information about each mounted file system */
getmount(mountcopy, &mountinfo);

/* print it */
for (i = 0; i < nb; i++) {

fprintf(stdout, "file system name: %s\n", mountcopy[i].fname);
fprintf(stdout, "mount point: %s\n", mountcopy[i].dir);
fprintf(stdout, "mount options: %s\n", mountcopy[i].opts);
fprintf(stdout, "file system type: %s\n", mountcopy[i].type);

}
}

GETMOUNT(2) GETMOUNT(2)

SR−2012 10.0 165

FILES

/usr/include/sys/mount.h Contains C prototype for the getmount system call

SEE ALSO

getmntinfo(3C), setmntent(3C) in the UNICOS System Libraries Reference Manual, Cray Research
publication SR−2080

mount(8) in the UNICOS Administrator Commands Reference Manual, Cray Research publication SR−2022

GETMOUNT(2) GETMOUNT(2)

166 SR−2012 10.0

NAME

getpal − Gets the privilege assignment list (PAL) and privilege sets of a file

SYNOPSIS

#include <sys/types.h>
#include <sys/priv.h>

int getpal (char *path, pal_t *buf, int bufsize);

IMPLEMENTATION

All Cray Research systems

DESCRIPTION

The getpal system call gets the privilege assignment list (PAL) and privilege sets of a file and returns the
information in a buffer.

The getpal system call accepts the following arguments:

path Points to the file for which the PAL and privilege sets are retrieved.

buf Specifies the return buffer.

bufsize Indicates the maximum size of the buffer in bytes.

The calling process must have MAC read access to the file or have PRIV_MAC_READ in its effective privilege
set.

RETURN VALUES

If getpal completes successfully, a value of 0 is returned; otherwise, a value of −1 is returned, and errno is
set to indicate the error.

ERRORS

The getpal system call fails if one of the following error conditions occurs:

Error Code Description

EACCES A component of the path prefix denies search permission.

EACCES The caller is denied MAC read access to the file.

EFAULT The buf or path argument points outside the address space of the process.

EINVAL The bufsize argument specifies an invalid value.

ENAMETOOLONG The supplied file name is too long.

ENOENT The specified file does not exist.

GETPAL(2) GETPAL(2)

SR−2012 10.0 167

SEE ALSO

fgetpal(2), fsetpal(2), setpal(2)

GETPAL(2) GETPAL(2)

168 SR−2012 10.0

NAME

getpeername − Gets name of connected peer

SYNOPSIS

#include <sys/types.h>
#include <sys/socket.h>

int getpeername (int s, struct sockaddr *name, int *namelen);

IMPLEMENTATION

All Cray Research systems

DESCRIPTION

The getpeername system call returns the name (name) of the peer connected to socket (s). You must
initialize the namelen argument to indicate the amount of space to which name points. On return, namelen
contains the actual number of bytes in the name returned. If the buffer that is provided is too small, the name is
truncated.

The getpeername system call accepts the following arguments:

s Identifies the socket for which the address is desired.

name Points to the address of a sockaddr structure that receives the address of the remote socket
connected to s.

namelen Points to an integer that receives the length of the address placed in name.

NOTES

If the SOCKET_MAC option is enabled, the active security label of the process must be greater than or equal to
the security label of the socket. Note that SOCKET_MAC is part of TCP/IP configurable feature variables list in
uts/cf/Nmakefile. For more information, see the connect(2) man page.

A process with the effective privilege shown is granted the following ability:

Privilege Description

PRIV_MAC_READ The process is allowed to override the security label restrictions when the
SOCKET_MAC option is enabled.

If the PRIV_SU configuration option is enabled, the super user is allowed to override security label restrictions
when the SOCKET_MAC option is enabled.

GETPEERNAME(2) GETPEERNAME(2)

SR−2012 10.0 169

If s is an Internet-domain socket, the sin_addr and sin_port fields of name identify only the socket at the
other end of the connection and not the remote process or remote user. Additional knowledge is required to
interpret those fields. For example, if the sin_addr designates another UNICOS system, a sin_port value
of less than 1024 indicates a connection with trusted software (for example, rlogin(1B)), which may include
additional identity information in its protocol data stream. If it is necessary to identify the actual user
associated with the socket, the communicating peers must agree in advance on a method, such as the sender
placing its sin_port value in a protected file accessed through NFS (or other means) by the receiver.

Because no sender name information can be obtained from a UNIX-domain socket, the other end of the
connection cannot be identified except to the extent that additional authentication techniques are used.
Although there are no identity-based access controls that restrict use of connect(2) or sendto(2) for a
UNIX-domain socket, such a socket can be created in a directory to which execute (search) access is restricted.
This limits the ability of other processes to connect to the socket. Alternatively, the listening process could
place a random value or secret password in a protected file and require that to be included in all messages it
accepts; this ensures that only users with access to that file can send valid messages. For both Internet-domain
and UNIX-domain, this authentication requires explicit action on the part of the receiver.

RETURN VALUES

If getpeername completes successfully, a value of 0 is returned; otherwise, −1 is returned, and errno is set
to indicate the error.

ERRORS

The getpeername system call fails if one of the following error conditions occurs:

Error Code Description

EACCES If the SOCKET_MAC option is enabled, the process does not meet the security label
requirements and does not have appropriate privilege.

EBADF Descriptor s is not valid.

EFAULT Argument name points to memory that is not in a valid part of the process address
space.

ENOBUFS Insufficient system resources were available to perform the operation.

ENOTCONN Socket is not connected.

ENOTSOCK Descriptor s is not a socket.

FILES

/usr/include/sys/socket.h Contains the header file for sockets

/usr/include/sys/types.h Contains the header file for types

GETPEERNAME(2) GETPEERNAME(2)

170 SR−2012 10.0

SEE ALSO

bind(2), connect(2), getsockname(2), sendto(2), socket(2)

rlogin(1B) in the UNICOS User Commands Reference Manual, Cray Research publication SR−2011

GETPEERNAME(2) GETPEERNAME(2)

SR−2012 10.0 171

NAME

getpermit, setpermit − Gets or sets user permissions

SYNOPSIS

#include <unistd.h>
#include <sys/perm.h>
#include <sys/category.h>

int getpermit (long *mask);

int setpermit (int cat, long *mask);

IMPLEMENTATION

All Cray Research systems

DESCRIPTION

The getpermit system call allows a user program to determine the current permissions associated with the
current process. The current permissions are returned in the word indicated by mask.

The setpermit system call allows a user program to set the permissions associated with the current process
or job. Child processes inherit permissions from their parents. Any process can reduce its active permissions,
but only an appropriately privileged process can increase the active permissions.

The getpermit and setpermit system calls accept the following arguments:

mask Specifies the word that contains the current permissions.

cat Determines whether the permissions go into effect for the current process (C_PROC) or the entire job
(C_JOB).

The following is a list of possible permissions from the user database (UDB) (in file
/usr/include/udb.h), descriptions, and possible permissions from the kernel (in file
/usr/include/sys/perm.h). The UDB permission bit must be used when comparing to the udb
structure, and kernel permissions must be used when using the system calls. For more complete descriptions of
the permbits, see libudb(3C).

UDB Permissions Description Kernel Permissions

PERMBITS_ACCT Accounting permission PERM_ACCT
PERMBITS_ACCTID Allows any account ID (newacct(1)) none
PERMBITS_ASKACID Query for active acid none
PERMBITS_BYPASSLABEL Bypasses label tape processing none
PERMBITS_CHOWN Allows chown(2), chgrp(1), chmod(2) PERM_CHOWN
PERMBITS_CHROOT Allows chroot(2) permission PERM_CHROOT
PERMBITS_DEDIC Dedicate CPU permission PERM_DEDIC

GETPERMIT(2) GETPERMIT(2)

172 SR−2012 10.0

UDB Permissions Description Kernel Permissions

PERMBITS_DEVMAINT Allows device diagnostic PERM_DIAG
PERMBITS_GROUPADM Group administrator none
PERMBITS_GUARD Driver DONUT guard mode PERM_GUARD
PERMBITS_GUEST Allows use of guest PERM_GUEST
PERMBITS_GUESTADM Guest administrator PERM_GUESTADM
PERMBITS_ID Allows ID changes PERM_ID
PERMBITS_IPCPERSIST Allows persistent IPC PERM_IPCPERSIST
PERMBITS_MKNOD Allows mknod(2) flag PERM_MKNOD
PERMBITS_MLSMNT Allows secure file system mount Unused. This permbit

is available to assign to
user accounts, but it no
longer grants special
abilities.

PERMBITS_MOUNT Allows mount(2) PERM_MOUNT
PERMBITS_NICE Allows nice(2) negative values PERM_NICE
PERMBITS_NOBATCH Disables batch logins none
PERMBITS_NOIACTIVE Disables interactive logins none
PERMBITS_PLOCK Allows plock(2) PERM_PLOCK
PERMBITS_REALTIME Allows real-time execution permission PERM_RTIME
PERMBITS_RESLIM Resource limits permission PERM_RESC
PERMBITS_RESTRICTED System login restricted (udbrstrict(8)) none
PERMBITS_SIGANY Sends signals to anyone PERM_SIG
PERMBITS_SUSPRES Suspends/resumes outside job allowed PERM_SUSPRES
PERMBITS_SYSPARAM Sets system parameters permission PERM_SYSP
PERMBITS_TAPEMANAGER Allows special tape requests PERM_TAPE
PERMBITS_WRUNLABEL R/W unlabeled tapes none
PERMBITS_YP Yellow pages flag none

NOTES

A process with the effective privilege shown is granted the following ability:

Privilege Description

PRIV_RESOURCE The process is allowed to increase its active permissions.

If the PRIV_SU configuration option is enabled, the super user or a process with the PERMBITS_RESLIM
permbit is allowed to increase its active permissions.

GETPERMIT(2) GETPERMIT(2)

SR−2012 10.0 173

RETURN VALUES

When getpermit or setpermit completes successfully, a value of 0 is returned; otherwise, a value of −1
is returned, and errno is set to indicate the error.

ERRORS

The getpermit or setpermit system call fails if one of the following error conditions occurs:

Error Code Description

EFAULT The mask argument points to memory that is not in a valid part of the process address space.

EPERM The process does not have appropriate privilege to increase its active permissions.

EXAMPLES

This example shows how to use the getpermit system call to retrieve user permissions. The getpermit
request retrieves the user permissions enabled for the current process and places them in the long integer named
mask.

A bit conversion table in header file udb.h simplifies the interpretation of these permissions, which are
represented as single bits in the return value placed in mask. In this example, the table is used to convert each
permission bit represented in mask to a meaningful character string for display.

/* These must be defined to use the udb conversion tables and
their definitions must precede the "#include <udb.h>" */

#define UDB_BIT_CONVERSION 1
#define UDB_BIT_TABLE 1

#include <sys/types.h>
#include <udb.h>
#include <unistd.h>

main()
{

long mask, permit, i;
int j;

if (getpermit(&mask) == -1) {
perror("getpermit failed");
exit(1);

}

if (mask == 0) {
printf("\nNo permits currently enabled for this process!\n\n");

}
else {

GETPERMIT(2) GETPERMIT(2)

174 SR−2012 10.0

printf("\nCurrent permits enabled for this process:\n");
for (i = 1L; i > 0; i <<= 1) {

if (permit = mask & i) {
for (j = 0; perm_def[j].pmask != 0; j++) {

if (perm_def[j].pmask == permit) {
printf(" %s\n", perm_def[j].pname);
break;

}
}

}
}

}
}

FILES

/usr/include/unistd.h Contains C prototype for the getpermit and setpermit system
calls

SEE ALSO

chmod(2), mknod(2), mount(2), nice(2), plock(2)

chgrp(1), login(1), newacct(1) in the UNICOS User Commands Reference Manual, Cray Research
publication SR−2011

libudb(3C) in the UNICOS System Libraries Reference Manual, Cray Research publication SR−2080

cpu(4), udb(5) in the UNICOS File Formats and Special Files Reference Manual, Cray Research publication
SR−2014

acct(8), csanqs(8), udbrstrict(8) in the UNICOS Administrator Commands Reference Manual, Cray
Research publication SR−2022

GETPERMIT(2) GETPERMIT(2)

SR−2012 10.0 175

NAME

getpid, getpgrp, getppid, _getlwpid, _getlwppid, newgetpid, newgetppid − Gets process,
process group, or parent process IDs

SYNOPSIS

All Cray Research systems:
#include <sys/types.h>
#include <unistd.h>

pid_t getpid (void);

pid_t getpgrp (void);

pid_t getppid (void);

Cray PVP systems:
#include <sys/types.h>
#include <sys/unistd.h>

pid_t _getlwpid (void);

pid_t _getlwppid (void);

pid_t newgetpid (void);

pid_t newgetppid (void);

IMPLEMENTATION

All Cray Research systems

STANDARDS

POSIX, XPG4 (applies only to getpid, getpgrp, getppid)

DESCRIPTION

The following system calls obtain the process IDs of the calling process:
Y The getpid and newgetpid system calls return the process ID.
Z The getpgrp system call returns the process group ID.
[The getppid and newgetppid system calls return the parent process ID.
\ The _getlwpid system call returns the light-weight process ID.
] The _getlwppid system call returns the light-weight process ID of the process that created the caller’s

process.

GETPID(2) GETPID(2)

176 SR−2012 10.0

NOTES

The process ID interfaces have changed in UNICOS 9.0 to support a new multitasking model. Whereas
previous UNICOS releases support multiple process IDs in a multitasking group, the new model supports a
single process ID. In this new model, what were previously called process IDs are called light-weight process
IDs.

The _getlwpid and _getlwppid system calls are not recommended for general use; they are provided for
use by system software.

The newgetpid and newgetppid system calls will be removed in a subsequent UNICOS release.

FORTRAN EXTENSIONS

The getpid system call can be called from Fortran as a function:

INTEGER GETPID, I
I = GETPID ()

The getpgrp system call can be called from Fortran as a function:

INTEGER GETPGRP, I
I = GETPGRP ()

The getppid system call can be called from Fortran as a function:

INTEGER GETPPID, I
I = GETPPID ()

The newgetpid system call can be called from Fortran as a function (on all systems except Cray MPP
systems):

INTEGER NEWGETPID, I
I = NEWGETPID ()

The newgetppid system call can be called from Fortran as a function (on all systems except Cray MPP
systems):

INTEGER NEWGETPPID, I
I = NEWGETPPID ()

FILES

/usr/include/sys/types.h Contains types required by ANSI X3J11

/usr/include/unistd.h Contains C prototype for the getpid, getpgrp, getppid,
_getlwpid, _getlwppid, newgetpid, and newgetppid
system calls

GETPID(2) GETPID(2)

SR−2012 10.0 177

SEE ALSO

exec(2), fork(2), intro(2), setpgrp(2), signal(2)

GETPID(2) GETPID(2)

178 SR−2012 10.0

NAME

getppriv − Gets the privilege state of the calling process

SYNOPSIS

#include <sys/types.h>
#include <sys/priv.h>

int getppriv (priv_proc_t *buf, int bufsize);

IMPLEMENTATION

All Cray Research systems

DESCRIPTION

The getppriv system call gets the privilege state of the calling process and places it in a buffer.

The getppriv system call accepts the following arguments:

buf Points to the return buffer.

bufsize Indicates the maximum size of the buffer in bytes.

RETURN VALUES

If getppriv completes successfully, a value of 0 is returned; otherwise, a value of −1 is returned, and errno
is set to indicate the error.

ERRORS

The getppriv system call fails if the following error condition occurs:

Error Code Description

EFAULT The buf argument points outside the address space of the process.

SEE ALSO

setppriv(2)

GETPPRIV(2) GETPPRIV(2)

SR−2012 10.0 179

NAME

getsectab − Gets security names and associated values

SYNOPSIS

#include <sys/sectab.h>

int getsectab (int type, struct sectab *buf);

IMPLEMENTATION

All Cray Research systems

DESCRIPTION

The getsectab system call returns security names and associated values.

The getsectab system call accepts the following arguments:

type Specifies the type of names and values to be returned. The following are valid values:

Value Description

0 Returns security compartment names and bit mask values.

1 Returns permission names and bit mask values.

2 Returns category names and bit mask values.

3 Returns security flags and bit mask values.

4 Returns security level names and numbers.

6 Returns privilege names and bit mask values.

buf Points to the sectab structure in which the values are returned. A list of names (maximum 64) and a
list of values (−1 terminated) are returned.

RETURN VALUES

If getsectab completes successfully, a value of 0 is returned; otherwise, a value of −1 is returned, and
errno is set to indicate the error.

ERRORS

The getsectab system call fails if one of the following error conditions occurs:

Error Code Description

EFAULT The buf argument points outside the process address space.

EINVAL The type argument is less than 0 or greater than 5.

GETSECTAB(2) GETSECTAB(2)

180 SR−2012 10.0

EXAMPLES

The following example shows how to use the getsectab system call to retrieve all of the security names and
their associated values. For each type of name to be retrieved, getsectab is called once. The names and
associated values are then displayed on stdout.

#include <sys/sectab.h>
#include <string.h>

main()
{

static char *names[] = {"Compartment", "Permission", "Integrity category",
"Flag", "Security level", "Integrity class",
"Privilege"};

struct sectab sectab;
int i, j;

for (i = MINTAB; i <= MAXTAB; i++) {
if (getsectab(i, §ab) == -1) {

perror("getsectab failed");
exit(1);

}

printf("%s names and values(octal):\n\n", names[i]);
for (j = 0; j < MAXNAMES; j++) {

if (strlen(sectab.tb_name[j]) == 0 | | sectab.tb_num[j] == -1) {
continue; /* ignore null table entries */

}
printf("%-25s %21o\n", sectab.tb_name[j], sectab.tb_num[j]);

}
printf("\n");

}
}

FILES

/usr/include/sys/sectab.h Defines structure in which to return security name and value
information

SEE ALSO

secbits(3C), secnames(3C), secnums(3C), secwords(3C) in the UNICOS System Libraries Reference
Manual, Cray Research publication SR−2080

sectab(5) in the UNICOS File Formats and Special Files Reference Manual, Cray Research publication
SR−2014

GETSECTAB(2) GETSECTAB(2)

SR−2012 10.0 181

NAME

getsockname − Gets socket name

SYNOPSIS

#include <sys/types.h>
#include <sys/socket.h>

int getsockname (int s, struct sockaddr *name, int *namelen);

IMPLEMENTATION

All Cray Research systems

DESCRIPTION

The getsockname system call returns the current name (name) of the specified socket (s). You must
initialize the namelen argument to indicate the amount of space to which name points. On return, namelen
contains the actual number of bytes in the name returned.

The getsockname system call accepts the following arguments:

s Identifies the socket.

name Points to the current name of the socket.

namelen Points to the size of the name array.

NOTES

If the SOCKET_MAC option is enabled, the active security label of the process must be greater than or equal to
the security label of the socket. Note that SOCKET_MAC is part of TCP/IP configurable feature variables list in
uts/cf/Nmakefile. For more information, see the connect(2) man page.

A process with the effective privilege shown is granted the following ability:

Privilege Description

PRIV_MAC_READ The process is allowed to override the security label restrictions when the
SOCKET_MAC option is enabled.

If the PRIV_SU configuration option is enabled, the super user is allowed to override security label restrictions
when the SOCKET_MAC option is enabled.

RETURN VALUES

If getsockname completes successfully, a value of 0 is returned; otherwise, a value of −1 is returned, and
errno is set to indicate the error.

GETSOCKNAME(2) GETSOCKNAME(2)

182 SR−2012 10.0

ERRORS

The getsockname system call fails if one of the following conditions occurs:

Error Code Description

EACCES If the SOCKET_MAC option is enabled, the process does not meet the security label
requirements and does not have appropriate privilege.

EBADF Descriptor s is not valid.

EFAULT Argument name or namelen points to memory that is not in a valid part of the process
address space.

ENOBUFS Insufficient system resources were available to perform the operation.

ENOTSOCK Descriptor s is not a socket.

FILES

/usr/include/sys/socket.h Contains the header file for sockets

/usr/include/sys/types.h Contains the header file for types

SEE ALSO

bind(2), socket(2)

GETSOCKNAME(2) GETSOCKNAME(2)

SR−2012 10.0 183

NAME

getsockopt, setsockopt − Gets or sets options on sockets

SYNOPSIS

#include <sys/types.h>
#include <sys/socket.h>

int getsockopt (int s, int level, int optname, char *optval, int *optlen);

int setsockopt (int s, int level, int optname, char *optval, int optlen);

IMPLEMENTATION

All Cray Research systems

DESCRIPTION

The getsockopt and setsockopt system calls manipulate options associated with a socket. Options can
exist at multiple protocol levels; they are always present at the uppermost (socket) level.

The getsockopt system call allows an application to request information about a socket. The setsockopt
system call allows an application to manipulate options associated with a socket.

The getsockopt(2) and setsockopt(2) accept the following arguments:

s Specifies the descriptor for the socket.

level Specifies the level at which the option resides. To manipulate options at the socket level, specify
level as SOL_SOCKET. To manipulate options at any other level, supply the protocol number of
the protocol that controls the option (for example, to indicate that an option is interpreted by the
Transmission Control Protocol (TCP) protocol, set level to the protocol number of TCP). For more
information, see the getprot(3C) man page.

optname Specifies the name of the option to examine or retrieve. For the list of available options, see the
Options subsection.

optval For getsockopt(2), identifies a buffer in which the current values for the requested options are
returned.

For setsockopt(2), identifies a buffer in which the new values for the specified options are
retrieved.

If no option value is supplied or returned, optval can be supplied as 0.

optlen For getsockopt(2), initially contains the size of the buffer to which optval points and is
modified on return to indicate the actual size of the value returned. It is a value-result argument.

For setsockopt(2), specifies the length of the new values residing in the buffer to which optval
points.

GETSOCKOPT(2) GETSOCKOPT(2)

184 SR−2012 10.0

The optname argument and any specified options are passed uninterpreted to the appropriate protocol module
for interpretation. The sys/socket.h include file contains definitions for socket-level options (see
socket(2)). Options at other protocol levels vary in format and name (see the UNICOS File Formats and
Special Files Reference Manual, Cray Research publication SR−2014).

Most socket-level options take an int type value for optval. For setsockopt, the value must be nonzero to
enable a Boolean option, or 0 if the option will be disabled. The SO_LINGER option uses a struct
linger value, defined in sys/socket.h, which specifies the desired state of the option and the linger
interval.

Options
The following options are recognized at the socket level. Except as noted, each may be examined with
getsockopt and set with setsockopt.

Option Description

SO_BROADCAST Toggles permission to transmit broadcast messages.

SO_DEBUG Toggles recording of debugging information. This option enables debugging in the
underlying protocol modules.

SO_REUSEADDR Toggles local address reuse. This option indicates that the rules used in validating
addresses supplied in a bind(2) system call should allow reuse of local addresses.

SO_REUSEPORT Allows multiple processes to completely duplicate bindings, if all processes set
SO_REUSEPORT before binding the port. Every process must specify this option,
including the first process to use the port. This option permits multiple instances of a
program to receive UDP/IP multicast or to broadcast datagrams for the bound port.

SO_OWNPORT Allows a process to bind to a port and prevent other applications from binding to the
same port. This option has been improved to provide better defined addresses.

SO_KEEPALIVE Toggles keep connections alive. This option enables the periodic transmission of
messages on a connected socket. If the connected party fails to respond to these
messages, the connection is considered broken, and processes using the socket are
notified through a SIGPIPE signal.

SO_DONTROUTE Toggles routing bypass for outgoing messages. This option indicates that outgoing
messages should bypass the standard routing facilities. Instead, messages are directed
to the appropriate network interface according to the network portion of the destination
address.

GETSOCKOPT(2) GETSOCKOPT(2)

SR−2012 10.0 185

SO_LINGER Lingers on close if data is present. This option controls the action taken when unsent
messages are queued on socket, and a close(2) system call is performed. If the
socket promises reliable delivery of data, and SO_LINGER is set, the system blocks
the process on the close attempt until it can transmit the data or until it decides it
cannot deliver the information (a time-out period, termed the linger interval, is
specified in the setsockopt call when SO_LINGER is requested). If SO_LINGER
is disabled, and a close(2) system call is issued, the system processes the close
operation in a manner that allows the process to continue as quickly as possible.

SO_SNDBUF Sets buffer size for output.

SO_RCVBUF Sets buffer size for input. SO_SNDBUF and SO_RCVBUF are options that can be used
to adjust the normal buffer sizes allocated for output and input buffers, respectively.
The buffer size may be increased for high-volume connections or may be decreased to
limit the possible backlog of incoming data. The system places limits on these values.
There is a system-wide maximum size for an individual socket buffer. The system
silently sets the socket buffer size to the system-wide limit if the request exceeds the
limit. This limit is configurable through the netvar(8) command. There is also a
per-session cumulative limit for all of the sockets used by a session. The
setsockopt call returns ELIMIT and leaves the current value unchanged if the new
size would exceed the session limit. This limit is configurable through the user’s udb
entry.

SO_TYPE Gets the type of the socket (get only). This option is used only with getsockopt. It
returns the type of the socket (for example, SOCK_STREAM); it is useful for servers
that inherit sockets on startup.

SO_ERROR Gets and clears error on the socket (get only). This option is used only with
getsockopt. It returns any pending error on the socket and clears the error status.
It can be used to check for asynchronous errors on connected datagram sockets (type
SOCK_DGRAM) or for other asynchronous errors. Values for SO_ERROR correspond
to values for errno.

SO_USELOOPBACK Bypasses hardware when possible.

SO_SNDLOWAT Sends low-water mark.

SO_RCVLOWAT Receives low-water mark.

SO_SNDTIMEO Sends time-out.

SO_RCVTIMEO Receives time-out.

SO_DOBINLINE Leaves received out-of-band data in line.

GETSOCKOPT(2) GETSOCKOPT(2)

186 SR−2012 10.0

NOTES

If the SOCKET_MAC option is enabled, to set options on a socket, the active security label of the process must
equal the security label of the socket. The SOCKET_MAC option is part of TCP/IP configurable feature
variables list in uts/cf/Nmakefile. For more information, see the connect(2) man page.

If the SOCKET_MAC option is enabled, to get options on a socket, the active security label of the process must
be greater than or equal to the security label of the socket.

A process with the effective privileges shown is granted the following abilities:

Privilege Description

PRIV_MAC_READ When the SOCKET_MAC option is enabled, the process is allowed to override the
security label restrictions when getting options of a socket.

PRIV_MAC_WRITE When the SOCKET_MAC option is enabled, the process is allowed to override the
security label restrictions when setting options on a socket.

If the PRIV_SU configuration option is enabled, the super user is allowed to override security label
requirements when the SOCKET_MAC option is enabled.

RETURN VALUES

If getsockopt or setsockopt completes successfully, a value of 0 is returned; otherwise, a value of −1 is
returned, and errno is set to indicate the error.

ERRORS

The getsockopt or setsockopt system call fails if one of the following error conditions occurs:

Error Code Description

EACCES If the SOCKET_MAC option is enabled, the process does not meet the security label
requirements and does not have the appropriate privilege.

EBADF The s descriptor is not valid.

EFAULT The options are not in a valid part of the process address space.

EINVAL The option or level specified is not valid.

ELIMIT The request would exceed the session’s limit.

ENOBUFS No buffer space is available.

ENOPROTOOPT The option is unknown; therefore, it has not been obtained (for getsockopt) or set
(for setsockopt).

ENOTSOCK The s descriptor is not a socket.

GETSOCKOPT(2) GETSOCKOPT(2)

SR−2012 10.0 187

FILES

/usr/include/sys/socket.h Contains the header file for sockets

/usr/include/sys/types.h Contains the header file for types

SEE ALSO

bind(2), close(2), socket(2)

getprot(3C) in the UNICOS System Libraries Reference Manual, Cray Research publication SR−2080

ip(4P), tcp(4P) in the UNICOS File Formats and Special Files Reference Manual, Cray Research publication
SR−2014

netvar(8) in the UNICOS Administrator Commands Reference Manual, Cray Research publication SR−2022

UNICOS File Formats and Special Files Reference Manual, Cray Research publication SR−2014

GETSOCKOPT(2) GETSOCKOPT(2)

188 SR−2012 10.0

NAME

getsysv − Gets security attributes

SYNOPSIS

#include <sys/types.h>
#include <sys/param.h>
#include <sys/sysv.h>

int getsysv (struct sysv *buf, int bufsize);

IMPLEMENTATION

All Cray Research systems

DESCRIPTION

The getsysv system call returns security attributes. Any process may issue a getsysv request.

The getsysv system call accepts the following arguments:

buf Points to a sysv structure in which information is returned.

bufsize Specifies the size of the sysv structure in bytes.

The sysv structure includes the following members:

GETSYSV(2) GETSYSV(2)

SR−2012 10.0 189

short sy_minlvl; /* minimum security level */
short sy_maxlvl; /* maximum security level */
long sy_valcmp; /* authorized compartments */
int sy_slgbufsize; /* size (in bytes) of /dev/slog */
char sy_secure_console[24]; /* secure console: administrator (not used) */
char sy_admin_console[24]; /* default console: administrator

(must be /dev/console) */
char sy_oper_console[24]; /* secure console: operator (not used) */
int sy_spare1; /* filler */
uint sy_dev_enforce : 1, /* Device labeling enforcement */
uint sy_spare2 : 22, /* filler */

sy_ranpass_flag : 1, /* machine passwords enabled if set */
sy_ranpass_min : 4, /* machine passwords minimum size */
sy_ranpass_max : 4, /* machine passwords maximum size */
sy_netw_options : 32; /* network security options */

int sy_overwrite_count; /* declassify disk overwrite count */
int sy_declassify_pattern; /* declassify disk write pattern */
int sy_sanitize_pattern; /* scrub disk write pattern */
int sy_maxlogs; /* max login attempts before disable */
int sy_logdelay; /* delay (seconds) between failed

login attempts */
int sy_disable_time; /* duration (seconds) for which a user

is disabled for exceeding maxlogs */
int sy_delay_mult : 1; /* multiply sy_logdelay by the

number of successive failed
login attempts to calculate
the delay time (in seconds) */

int sy_slg_state : 1; /* security log state on/off */
int sy_slg_discv : 1; /* log discretionary violations */
int sy_slg_mandv : 1; /* log mandatory violations */
int sy_slg_netwv : 1; /* log network violations */
int sy_slg_mkdirv : 1; /* log mkdir violations */
int sy_slg_rmdirv : 1; /* log rmdir violations */
int sy_slg_linkv : 1; /* log link violations */
int sy_slg_all_rm : 1; /* log all rm requests */
int sy_slg_removev : 1; /* log rm violations */
int sy_slg_all_nami : 1; /* log all nami requests */
int sy_slg_all_valid : 1; /* log all requests */
int sy_slg_all_netw : 1; /* log all network requests */
int sy_slg_physio_err: 1; /* log physical I/O errors */
int sy_slg_path_track: 1; /* track pathname of all entries */
int sy_sec_remote : 1; /* tcp/ip mand. access control */
int sy_sec_scrub : 1; /* scrub data blocks on delete */
int sy_nfs_export : 1; /* export secure fs via nfs */

GETSYSV(2) GETSYSV(2)

190 SR−2012 10.0

int sy_nfs_remote : 1; /* rw remote fs via nfs */
int sy_oldtfm : 1; /* old style tfm is possible (not used) */
int sy_stat_restrict : 1; /* restrict (sec)stat by level */
int sy_declsfy_disk : 1; /* enable declsfy disk action */
int sy_slg_sulog : 1; /* log all su(1) attempts */
int sy_console_msg : 1; /* send a message to the console when

/* MAXLOGS has been exceeded */
int sy_disable_acct : 1; /* disable account when MAXLOGS */

/* exceeded */
int sy_slg_filexfr : 1; /* log all file transfers */
int sy_slg_nfs : 1; /* log CNFS activity */
int sy_slg_config : 1; /* log UNICOS configuration changes */
int sy_slg_jstart : 1; /* log start of job */
int sy_slg_jend : 1; /* log end of job */
int sy_slg_netcf : 1; /* log network configuration changes */
int sy_slg_suid : 1; /* log suid requests */
int sy_slg_user : 1; /* log user name & password for failed

logins */
int sy_slg_nqscf : 1; /* log NQS database changes */
int sy_slg_nqs : 1; /* log NQS activity */
int sy_slg_trust : 1; /* log trusted process activity */
int sy_mac_command : 1; /* perform MAC checks in commands */
int sy_forced_socket : 1; /* ON: syslogd uses sockets only */
int sy_slg_priv : 1; /* log use of privilege */
int sy_audit_chng : 1; /* auditing criteria change flag */
int sy_slg_audit : 1; /* log auditing criteria change */
int sy_slg_chdir : 1; /* log chdir requests */
int sy_slg_crl : 1; /* log Cray REEL librarian activity */
int sy_slg_ipnet : 1; /* log IP layer activity */
int sy_slg_oper : 1; /* log operator actions */
int sy_slg_secsys : 1; /* log non_inode security syscalls */
int sy_slg_shutdown : 1; /* log system shutdown */
int sy_slg_startup : 1; /* log system startup */
int sy_slg_tape : 1; /* log tape activity */
int sy_slg_tchg : 1; /* log system time change */
int sy_slg_dac : 1; /* log DAC changes */
int sy_slg_privileged: 1; /* privileged to change auditing */
int sy_fsetid_restrict:1; /* restrict setuid/setgid file mgmt */
int sy_secure_pipe : 1; /* MAC restricted pipes? */
int sy_spare3 : 9; /* filler - use as needed */
int sy_slg_maxsize; /* maximum size of security log */
char sy_slg_dir[PATH_MAX1+1];/* path for active security log */
char sy_slg_file[PATH_MAX+1];/* filename for active log */
char sy_slg_fprefix[PATH_MAX+1];/* prefix for retired log */

GETSYSV(2) GETSYSV(2)

SR−2012 10.0 191

NOTES

The getsysv requests are not recorded in the security log.

If bufsize is greater than 0, but less than the defined size of a sysv structure, the user’s buffer is filled in with
the amount of data that fits and a successful status is returned.

RETURN VALUES

If getsysv completes successfully, a value of 0 is returned; otherwise, a value of −1 is returned, and errno
is set to indicate the error.

ERRORS

The getsysv system call fails if one of the following error conditions occurs:

Error Code Description

EFAULT The buf argument points outside the process address space.

EINVAL The bufsize argument is less than 0. If bufsize is greater than the size of the sysv
structure, bufsize is bounded silently by the actual size.

EXAMPLES

The following example shows how to use the getsysv system call to retrieve security attributes.

Special handling of the bit status fields in the sysv structure is included.

GETSYSV(2) GETSYSV(2)

192 SR−2012 10.0

#include <sys/types.h>
#include <sys/param.h>
#include <sys/sysv.h>

main()
{

struct sysv buf;
static char *answ[] = {"No", "Yes"};

if (getsysv(&buf, sizeof(buf)) == -1) {
perror("getsysv failed");
exit(1);

}

printf("System minimum security level = %d\n", buf.sy_minlvl);
printf("System maximum security level = %d\n", buf.sy_maxlvl);
printf("System authorized compartments= %o\n", buf.sy_valcmp);
printf("Security log size (/dev/dslog)= %d\n", buf.sy_slgbufsize);

/* The fields in the sysv structure starting with sy_delay_mult
are all bit status fields with a 0 value meaning NO (not
enabled) and a 1 meaning YES (is enabled). The following
statements print the status of some of these fields. */

printf("Log discretionary violations = %s\n", answ[buf.sy_slg_discv]);
printf("Log mandatory violations = %s\n", answ[buf.sy_slg_mandv]);
printf("Log network violations = %s\n", answ[buf.sy_slg_netwv]);
printf("Log mkdir violations = %s\n", answ[buf.sy_slg_mkdirv]);

}

FILES

/usr/include/sys/param.h Defines configuration files

/usr/include/sys/sysv.h Defines structure for system security values

/usr/include/sys/types.h Contains types required by ANSI X3J11

SEE ALSO

setsysv(2)

spset(1) in the UNICOS User Commands Reference Manual, Cray Research publication SR−2011

General UNICOS System Administration, Cray Research publication SG−2301

GETSYSV(2) GETSYSV(2)

SR−2012 10.0 193

NAME

gettimeofday, settimeofday − Gets or sets date and time

SYNOPSIS

#include <sys/time.h>

int gettimeofday (struct timeval *tp, struct timezone *tzp);

int settimeofday (struct timeval *tp, struct timezone *tzp);

IMPLEMENTATION

All Cray Research systems

DESCRIPTION

The gettimeofday system call gets the system’s notion of the current Greenwich time, to microsecond
accuracy. The settimeofday system call sets this time. The time is expressed in seconds and microseconds
since midnight (0 hour), January 1, 1970. The accuracy of the system clock is hardware dependent, using the
real-time clock.

The gettimeofday and settimeofday system calls accept the following arguments:

tp Points to the timeval structure.

tzp Points to the timezone structure.

The structures to which tp and tzp point are defined in the sys/time.h file, as follows:

struct timeval {
long tv_sec; /* seconds since Jan. 1, 1970 */
long tv_usec; /* and microseconds */

};

struct timezone {
int tz_minuteswest; /* of Greenwich */
int tz_dsttime; /* type of dst correction to apply */

};

The timezone structure indicates the local time zone (measured in minutes of time westward from
Greenwich) and a flag. A nonzero flag indicates that daylight saving time applies locally during the appropriate
part of the year.

If tzp is a zero pointer, the time zone information is not returned or set.

GETTIMEOFDAY(2) GETTIMEOFDAY(2)

194 SR−2012 10.0

An extended kernel timezone structure, kn_timezone, is defined in the sys/time.h file. The
gettimeofday and settimeofday system calls may be used to set and retrieve the contents of this
structure when tp points to a timeval structure that contains -1 in the tv_sec field and the flag value
TZ_MAGIC in the tv_usec field. The extended kernel timezone structure is copied to or from the location
pointed to by tzp. In this case, the value of the time is returned by gettimeofday, but is not modified by
settimeofday.

Only a process with appropriate privilege can set the time of day or time zones.

NOTES

A process with the effective privilege shown is granted the following ability:

Privilege Description

PRIV_TIME The process is allowed to set the time.

If the PRIV_SU configuration option is enabled, the super user or a process with the PERMBITS_SYSPARAM
permbit is allowed to set the time.

The tzp argument is compatible only with 4.3 BSD source code. Except in the special case of the extended
kernel timezone request described above, the time zone information is silently ignored on a settimeofday
request and always returns zeros on a gettimeofday request. Time zone information must always be
obtained with the ctime(3C) library routines that honor the TZ environment variable.

RETURN VALUES

If gettimeofday or settimeofday completes successfully, a value of 0 is returned; otherwise, a value of
−1 is returned, and errno is set to indicate the error.

ERRORS

The gettimeofday or settimeofday system call fails if one of the following error conditions occurs:

Error Code Description

EFAULT An argument address references memory that is not valid.

EINVAL The value specified in tv_usec is out-of-range. Valid values are greater or equal to
0 and less than 1 million.

EPERM The process does not have appropriate privilege to set the time.

EXAMPLES

The following example shows how to use the gettimeofday system call to obtain the time of day accurate
to the microsecond:

GETTIMEOFDAY(2) GETTIMEOFDAY(2)

SR−2012 10.0 195

#include <sys/time.h>

main()
{

struct timeval tp;
struct timezone tzp;

if (gettimeofday(&tp, &tzp) == -1) {
perror("gettimeofday failed");
exit(1);

}

/* The system time to microsecond accuracy is now available
in the timeval structure (tp). Field tp.tv_sec contains
the number of seconds since January 1, 1970, while
field tp.tv_usec contains the number of additional
microseconds. */

}

SEE ALSO

time(2)

date(1) in the UNICOS User Commands Reference Manual, Cray Research publication SR−2011

ctime(3C) in the UNICOS System Libraries Reference Manual, Cray Research publication SR−2080

GETTIMEOFDAY(2) GETTIMEOFDAY(2)

196 SR−2012 10.0

NAME

getuid, geteuid, getgid, getegid − Gets real user, effective user, real group, or effective group IDs

SYNOPSIS

#include <sys/types.h>
#include <unistd.h>

uid_t getuid (void);

uid_t geteuid (void);

gid_t getgid (void);

gid_t getegid (void);

IMPLEMENTATION

All Cray Research systems

STANDARDS

POSIX, XPG4 (applies only to getuid, geteuid, getgid)

DESCRIPTION

The following system calls obtain the user and group IDs of the calling process:
^ The getuid system call returns the real user ID.
_ The geteuid system call returns the effective user ID.
` The getgid system call returns the real group ID.
a The getegid system call returns the effective group ID.

FORTRAN EXTENSIONS

The getuid system call can be called from Fortran as a function:

INTEGER GETUID, I
I = GETUID ()

The geteuid system call can be called from Fortran as a function:

INTEGER GETEUID, I
I = GETEUID ()

The getgid system call can be called from Fortran as a function:

INTEGER GETGID, I
I = GETGID ()

GETUID(2) GETUID(2)

SR−2012 10.0 197

The getegid system call can be called from Fortran as a function:

INTEGER GETEGID, I
I = GETEGID ()

FILES

/usr/include/sys/types.h Contains types required by ANSI X3J11

/usr/include/unistd.h Contains C prototype for the getuid, geteuid, getgid, and
getegid system calls

SEE ALSO

intro(2), setuid(2)

GETUID(2) GETUID(2)

198 SR−2012 10.0

NAME

getusrv − Gets security validation attributes of the process

SYNOPSIS

#include <sys/types.h>
#include <sys/usrv.h>

int getusrv (struct usrv *buf);

IMPLEMENTATION

All Cray Research systems

DESCRIPTION

The getusrv system call obtains security validation information for the calling process. It accepts the
following argument:

buf Points to a usrv structure in which the information is returned.

A usrv structure includes the following members:

short sv_minlvl; /* minimum security level */
short sv_maxlvl; /* maximum security level */
long sv_valcmp; /* authorized compartments */
long sv_savcmp; /* TFM_EXEC command saved compartments (not used) */
long sv_actcmp; /* active compartments */
short sv_permit; /* permissions */
short sv_actlvl; /* active security level */
short sv_savlvl; /* TFM_EXEC saved security level (not used) */
short sv_intcls; /* active integrity class (not used) */
short sv_maxcls; /* maximum integrity class (not used) */
long sv_intcat; /* active categories */
long sv_valcat; /* authorized categories */
struct { /* saved integrity parameters over TFM_EXEC

(not used) */
int actcls :32; /* integrity class before TFM_EXEC

(not used) */
int actcat :32; /* active category before TFM_EXEC

(not used) */
} sv_savint;
int sv_audit_off :1; /* audit on/off flag */
int sv_audit_chng :1; /* audit change flag */

GETUSRV(2) GETUSRV(2)

SR−2012 10.0 199

NOTES

The getusrv requests are not recorded in the security log.

RETURN VALUES

If getusrv completes successfully, a value of 0 is returned; otherwise, a value of −1 is returned, and errno
is set to indicate the error.

ERRORS

The getusrv system call fails if the following error condition occurs:

Error Code Description

EFAULT The buf argument points outside the address space of the process.

EXAMPLES

The following example shows how to use the getusrv system call to retrieve the security attributes for the
calling process. This program only displays the user’s special permissions. A security administrator (secadm)
or a trusted process is allowed to see the usrtrap flag; this information is not displayed to nonprivileged
users.

#include <sys/types.h>
#include <sys/secparm.h>
#include <sys/usrv.h>

main()
{

struct usrv buf;

if (getusrv(&buf) == -1) {
perror("getusrv failed");
exit(1);

}

/* Security attributes for the calling process now available in the
usrv structure named buf. */

printf("My permissions = %o or interpreted as follows:\n", buf.sv_permit);
if (PERMIT_SUIDGID & buf.sv_permit) printf (" set-UID or set-GID\n");
if (PERMIT_USRTRAP & buf.sv_permit) printf (" user trap mode set\n");

}

GETUSRV(2) GETUSRV(2)

200 SR−2012 10.0

FILES

/usr/include/sys/usrv.h Contains C prototype for the getusrv system call

SEE ALSO

setucat(2), setucmp(2), setulvl(2), setusrv(2)

setucat(1), setucmp(1), setulvl(1), spset(1) in the UNICOS User Commands Reference Manual,
Cray Research publication SR−2011

General UNICOS System Administration, Cray Research publication SG−2301

GETUSRV(2) GETUSRV(2)

SR−2012 10.0 201

NAME

guestctl − Controls and reports the status of major guest system functions

SYNOPSIS

#include <sys/guest.h>
#include <sys/guestctl.h>

int guestctl (struct gctl *gct);

IMPLEMENTATION

Cray PVP systems except CRAY J90 series and CRAY EL series

DESCRIPTION

The guestctl (guest control) system call interacts with a kernel to provide guest system status and to support
the following requests:

#define GCTL_LOCK 1 /* get lock */
#define GCTL_UNLOCK 2 /* release lock */
#define GCTL_START 3 /* start guest */
#define GCTL_STOP 4 /* stop guest */
#define GCTL_STAT 5 /* return status */
#define GCTL_CHANGE 6 /* change CPU allocation */
#define GCTL_RESID 7 /* reserve id and memory */
#define GCTL_LOAD 8 /* load guest kernel in memory */
#define GCTL_FREEZE 9 /* inhibit guest user CPU usage */
#define GCTL_THAW 10 /* permit guest user CPU usage */
#define GCTL_RELMEM 11 /* release guest memory */
#define GCTL_RUNLVL 12 /* set system run level (GUEST) */
#define GCTL_RESUME 13 /* resume execution after breakpoint */
#define GCTL_GLOAD 14 /* load data into guest memory */

GUESTCTL(2) GUESTCTL(2)

202 SR−2012 10.0

A gctl structure includes the following members:

int gs_id; /* kernel id */
char *gs_start; /* start of kernel in buffer */
int gs_ksize; /* size of kernel in bytes */
int gs_psize; /* size of param file in bytes */
int gs_mem; /* memory to assign/release */
int gs_ttyreq; /* number of ttys requested */
char gs_owner[GS_OWNRSZ]; /* ASCII name of owner */
int gs_req; /* guestctl request */
int gs_status; /* guestctl reply status */
int gs_maxguests; /* configured number of guests */
int gs_grtcnt; /* maximum # of grt entries */
int gs_trace; /* extended trace flag */
int gs_runlvl; /* system run level */
int gs_lockpid; /* pid of lock owner */
struct gdesc gs_gdesc; /* gdesc buffer */
uint gs_spres : 1, /* != 0 if sched params present */

unused : 31,
gs_cpuhog : 8, /* CPU hog threshold */
gs_schint : 8, /* CPU scheduling interval */
gs_winsiz : 8, /* CPU scheduling window size */
gs_minres : 8; /* minimum CPU residency time */

word *gs_gldaddr; /* guest memory load addr (words)*/
int gs_gldsize; /* load size in bytes */
long gs_spares[7]; /* unused */
struct gstt gstat[GS_maxguests+1]; /* guest status structure */

A gstt structure (embedded in the gct) includes the following members:

GUESTCTL(2) GUESTCTL(2)

SR−2012 10.0 203

char gs_name[GS_NAMESZ]; /* system name */
long gs_ttys; /* assigned ttys */
int gs_csim; /* nonzero if csim */
int gs_cpratio; /* CPU ratio */
word *gs_kba; /* kernel fwa */
word *gs_kla; /* kernel lwa */
int gs_memsize; /* memory size */
char gs_owner[GS_OWNRSZ]; /* ASCII name of owner */
word *gs_uba; /* user fwa */
word *gs_ula; /* user lwa */
int gs_stt; /* system status */
int gs_frozen; /* system frozen flag */
int gs_runlvl; /* system run level */
int gs_halt; /* halt host if guest panics */
char gs_panic[GS_PANICBUF]; /* panic buffer contents */
int gs_dedclus; /* use dedicated system cluster */
long gs_rval; /* pkt validation disable flags */
long gs_rovl; /* res. overlap disable flags */
long gs_pkthdl; /* packet handler flags */
int gs_memhole; /* associated memory hole */
int gs_pktvallev; /* IOS packet validation level */
uint gs_dedic : 1, /* dedicate requested CPUs */

gs_cpureq : 63; /* number of CPUs requested */
long gs_spares[3]; /* unused */

The status request (GCTL_STAT) will return information about the host and any active guest in the gstat
array of gstt structures. The first entry (0) is that of the host. Subsequent entries (0 through
GS_maxguests) are valid if the allocated memory (gs_memsize) is greater than 0. The current status of
each valid system entry is returned in gs_stt and can be printed using
gstatus[gct->gstat[id].gs_stt]. Status values include:

#define GSS_NONE 0 /* no status */
#define GSS_RSRV 1 /* reserving memory & id */
#define GSS_LOAD 2 /* loading kernel */
#define GSS_STRT 3 /* starting guest kernel */
#define GSS_EXEC 4 /* guest kernel is executing */
#define GSS_STOP 5 /* stopped normally */
#define GSS_PANC 6 /* stopped due to panic */
#define GSS_OBST 7 /* stopped but cpu not returned */
#define GSS_GLOAD 8 /* generic guest memory load */

GUESTCTL(2) GUESTCTL(2)

204 SR−2012 10.0

The lock/unlock (GCTL_LOCK/GCTL_UNLOCK) sequence should bracket all of the major guestctl
requests. This prevents other users from making conflicting changes to the guest control structures. If the lock
is already held (gs_status == EGS_LOCKED), the process id of the lock owner will be returned in
gs_lockpid.

A guest system start requires the following five guestctl requests:

1. Lock the guest control structure (GCTL_LOCK)

2. Reserve a guest id and guest memory (GCTL_RESID)*

Required Fields:

gs_mem (size in words of requested guest memory)
gs_ttyreq (number of desired OWS tty connections)

Optional Fields:

gs_owner (string representing the system owner)

Returned if successful:

gs_id > 0
gstat[gs_id].gs_memsize > 0 (may be less than requested)

3. Load the guest kernel and binary into memory (GCTL_LOAD)

Required Fields:

gs_id (id of guest returned from GCTL_RESID)
gs_start (local buffer containing kernel and param file)
gs_ksize (size of kernel in bytes)
gs_psize (size of parameter file in bytes)

4. Start the guest system (GCTL_START)

Required Fields:

gs_id (id of guest returned from GCTL_RESID)

Optional Fields:

gstat[gs_id].gs_halt (non-zero for halt on guest panic)
gs_trace (non-zero to enable additional kernel tracing)

5. Unlock the guest control structure (GCTL_UNLOCK)

*If a guest system has panicked or is stopped and the memory has not yet been released, the id and associated
memory may be reused.

GUESTCTL(2) GUESTCTL(2)

SR−2012 10.0 205

To stop a guest system:

1. Lock the guest control structure (GCTL_LOCK)

2. Stop the guest kernel (GCTL_STOP)

Required Fields:

gs_id (id of guest returned from GCTL_RESID)

3. Unlock the guest control structure (GCTL_UNLOCK)

To release guest system memory:

1. Lock the guest control structure (GCTL_LOCK)

2. Release the guest memory (GCTL_RELMEM)

Required Fields:

gs_id (id of guest returned from GCTL_RESID)

3. Unlock the guest control structure (GCTL_UNLOCK)

The guest change (GCTL_CHANGE) request can be made at any time to update the following information:

gs_trace
gstat[id].gs_halt
gstat[id].gs_owner
gs_cpuhog
gs_schint
gs_winsiz
gs_minres

A cooperating guest kernel responds to a guestctl freeze request (GCTL_FREEZE) by not scheduling user
processes. When a thaw is issued (GCTL_THAW), normal operation resumes.

1. Lock the guest control structure (GCTL_LOCK)

2. Issue the freeze of thaw request (GCTL_FREEZE or GCTL_THAW)

Required Fields:

gs_id (id of guest returned from GCTL_RESID)

3. Unlock the guest control structure (GCTL_UNLOCK)

The system run-level (GCTL_RUNLVL) is the only call that can be made from either a host or a guest. It is
called by init(8) to inform the host of the general system status (single- or multi-user mode).

Required Fields:

gs_runlvl (GSS_SINGLE_USER or GSS_MULTI_USER)

GUESTCTL(2) GUESTCTL(2)

206 SR−2012 10.0

NOTES

The following privileges are required:

Request Privilege Required

GCTL_LOCK PRIV_ADMIN

GCTL_UNLOCK PRIV_ADMIN

GCTL_START PRIV_ADMIN

GCTL_STOP PRIV_ADMIN

GCTL_STAT (any user)

GCTL_CHANGE PRIV_ADMIN

GCTL_RESID PRIV_ADMIN

GCTL_LOAD PRIV_ADMIN

GCTL_FREEZE PRIV_ADMIN

GCTL_THAW PRIV_ADMIN

GCTL_RELMEM PRIV_ADMIN

GCTL_RUNLVL PRIV_RESOURCE

GCTL_RESUME PRIV_ADMIN

GCTL_GLOAD PRIV_ADMIN

If the PRIV_SU configuration option is enabled, the super user or a user with the PERMBITS_GUEST permbit
is allowed to make any of the guestctl requests.

All users are allowed to make the guest status (GCTL_STAT) request.

CAUTIONS

To avoid the unintentional setting or clearing of fields, it is advisable to obtain a current guest status
(GCTL_STATUS) to use as input to the change request.

1. Lock the guest control structure (GCTL_LOCK)

2. Obtain a guest status (GCTL_STAT)

3. Edit fields of interest

4. Issue the change request (GCTL_CHANGE)

5. Unlock the guest control structure (GCTL_UNLOCK)

Although available through the standard UNICOS system call interface, the use of this system call for any
request except status (GCTL_STAT) is not supported. The system call interface may change without notice.
See the guest(1) man page for information on managing a guest system.

GUESTCTL(2) GUESTCTL(2)

SR−2012 10.0 207

RETURN VALUES

If guestctl completes successfully, a value of 0 is returned; otherwise, a value of −1 is returned, and errno
is set to indicate the error with a feature specific error. The error, which is returned in the gctl status word
(gs_status), is one of the following:

EGS_GSOK 0 /* no error */
EGS_SLOTRES 1 /* slot reserved error */
EGS_NOROOM1 2 /* insufficient memory */
EGS_GBOOT 3 /* gboot struct size difference */
EGS_GINFOLEN 4 /* ginfo struct size difference */
EGS_GINFONCPU 5 /* CPU config error */
EGS_GINFOCLUS 6 /* cluster config error */
EGS_NAMEINUSE 7 /* guest name already in use */
EGS_NOLOCK 8 /* guestctl lock not held */
EGS_LOCKED 9 /* guestctl locked already */
EGS_GINFOGSPEC 10 /* gspec struct size difference */
EGS_OVERLAP 11 /* memory overlap during load */
EGS_GADDRESS 12 /* g_address out of range */
EGS_GCLUSTER 13 /* g_cluster out of range */
EGS_GENTRY 14 /* g_entry out of range */
EGS_GGCOM 15 /* g_gcom out of range */
EGS_GERRORP 16 /* g_errorp out of range */
EGS_GGPI 17 /* g_gpi out of range */
EGS_GGSPEC 18 /* g_gspec out of range */
EGS_GNAME 19 /* g_name address range error */
EGS_GPANICBF 20 /* g_panicbf address range error */
EGS_GPARK 21 /* g_park address range error */
EGS_NOID 22 /* no available kernel id */
EGS_NORELACT 23 /* guest memory release error - active */
EGS_NORELCHM 24 /* guest memory release error - chm() */
EGS_MEMREQ 25 /* guest memory request error - chm() */
EGS_GCPIDLE 26 /* g_cpidle out of range */
EGS_GCPUSTATE 27 /* g_cpustate out of range */
EGS_GCPRMSK 28 /* g_cprmsk out of range */
EGS_GTRACEMASK 29 /* g_tracemask out of range */
EGS_GCLUSREQ 30 /* g_gclusreq out of range */
EGS_GCSSDREQ 31 /* g_gcssdreq out of range */
EGS_GCLSYS 32 /* g_clsys out of range */
EGS_GPSEMAS 33 /* g_psemas out of range */
EGS_GCLMASK 34 /* g_clmask out of range */
EGS_GCLSPREQ 35 /* g_gclspreq out of range */
EGS_BADNAME 36 /* guest name has non-printable chars */
EGS_HOSTID 37 /* operation not supported on host id */
EGS_GGBOOT 38 /* g_gboot out of range */

GUESTCTL(2) GUESTCTL(2)

208 SR−2012 10.0

EGS_GINFO 39 /* ginfo out of range */
EGS_GGSSDREQ 40 /* gssdreq struct size difference */
EGS_GCPDOWN 41 /* g_cpdown out of range */
EGS_GMX 42 /* g_gmx out of range */
EGS_GMXL 43 /* gmiop struct size difference */
EGS_GMXN 44 /* I/O cluster configuration error */
EGS_GPKTCONF 45 /* g_pktconf out of range */
EGS_GPKTCONFL 46 /* pktconfig struct size difference */
EGS_NOROOM2 47 /* insufficient memory */
EGS_NOROOM3 48 /* insufficient memory */
EGS_NOROOM4 49 /* insufficient memory */
EGS_GMEXP 50 /* g_gmexp out of range */
EGS_GDESC 51 /* gdesc struct size difference */
EGS_CONREQ 52 /* invalid number of ttys requested */
EGS_CONREQ1 53 /* insufficient ttys available */
EGS_WAITIO 54 /* guest I/O in progress */
EGS_CPU0DOWN 55 /* CPU 0 is down - must be up for boot */
EGS_NOPERM 56 /* invalid user permissions */
EGS_NOSUP 57 /* feature not supported on this H/W */
EGS_GRPXP 58 /* g_grpxp out of range */
EGS_GPDDEREC 59 /* g_pdderec out of range */
EGS_GPDDERECT 60 /* g_pdderect out of range */
EGS_GCXTAB 61 /* g_gcxtab out of range */
EGS_GCXSIZE 62 /* g_gcxsize out of range */
EGS_ADDMEM 63 /* slot not reserved for add memory req.*/
EGS_NOROOM5 64 /* insufficient memory */
EGS_NOCPUS 65 /* no CPUs can be assigned to guest */
EGS_GBOOTWAIT 66 /* g_bootwait out of range */
EGS_INVALREQ 67 /* invalid or unsupported guestctl() req*/
EGS_ACTLOAD 68 /* cannot load to active system */
EGS_NOROOM6 69 /* insufficient memory */

ERRORS

The following UNICOS system errors may map to one or more specific guestctl system call errors
(EGS_xxxxx).

Error Code Description

EACCES The request (gs_req) is not valid on a guest system.

EAGAIN A required resource is temporarily unavailable. See the guestctl error for more
information.

GUESTCTL(2) GUESTCTL(2)

SR−2012 10.0 209

EBUSY A release of guest memory cannot yet be performed due to the possibility of
outstanding I/O from the previously active guest. See the guestctl error for more
information.

EDEADLK The guestctl is currently held by another process.

EFAULT A copy of data to or from the user area failed. See the guestctl error for more
information.

EINVAL The request number (gs_req) may not be valid or the specified guest id (gs_id) is
greater than MAXGUESTS. See the guestctl error for more information.

ENOMEM Mainframe memory is not currently available to satisfy the GCTL_RESID request.
See the guestctl error for more information.

EPERM The caller does not have the PRIV_ADMIN privilege. The caller does not have the
PERMBITS_GUEST permbit.

FILES

/etc/udb Contains a list of valid users and lists their privileges and permissions

SEE ALSO

guest(1) in the UNICOS User Commands Reference Manual, Cray Research publication SR−2011

init(8) in the UNICOS Administrator Commands Reference Manual, Cray Research publication SR−2022

GUESTCTL(2) GUESTCTL(2)

210 SR−2012 10.0

NAME

ialloc − Allocates storage for a file

SYNOPSIS

#include <sys/types.h>
#include <sys/file.h>
#include <unistd.h>

long ialloc (int fildes, long nb, int flag, int part, long *avl);

IMPLEMENTATION

All Cray Research systems

DESCRIPTION

The ialloc system call provides the means to preallocate storage for a file with certain user-specified
constraints. These include mandatory contiguous storage and the partition of the file system in which to begin
the search. The new space is allocated at the end of the file.

The ialloc system call accepts the following arguments:

fildes Specifies a file descriptor. It is obtained from a creat(2), dup(2), fcntl(2), or open(2) system
call.

nb Specifies the number of bytes to allocate.

flag Controls allocation. The following are valid values for flag:

IA_CONT Allocates contiguous storage only; if unavailable, returns error.

IA_PART Allocates partition specified by part. If cbits was specified at file creation time (see
open(2)), allocates space on the partitions specified by that argument.

IA_BEST If all the blocks cannot be allocated as specified, allocates as much as possible.

IA_RAVL If allocation is successful, stores number of bytes actually allocated at avl. If
IA_CONT is set and allocation is unsuccessful, stores maximum number of bytes
that could have been allocated at avl.

part Specifies the partition in which allocation is attempted.

avl Points to where the number of bytes actually allocated is stored, if IA_RAVL is specified.

NOTES

The process must be granted write permission to the file via the security label. That is, the active security label
of the process must be equal the security label of the file.

IALLOC(2) IALLOC(2)

SR−2012 10.0 211

A process with the effective privilege shown is granted the following ability:

Privilege Description

PRIV_MAC_WRITE The process is granted write permission to the file via the security label.

If the PRIV_SU configuration option is enabled, the super user is granted write permission to the file via the
security label.

RETURN VALUES

If ialloc completes successfully, nb is returned; otherwise, a value of −1 is returned, and errno is set to
indicate the error.

ERRORS

The ialloc system call fails if one of the following error conditions occurs:

Error Code Description

EBADF The fildes argument is not a valid file descriptor open for writing, or fildes is not a
regular file in the native file system (NC1FS or SFS).

EBADF The security label of the process does not equal the security label of the file, and the
process does not have appropriate privilege.

EFAULT avl points outside the program address space.

EFBIG An attempt was made to allocate a file that exceeds the file size limit or the maximum
file size of the process. See ulimit(2).

EINVAL flag value not defined.

ENOSPC During the allocation, no free space was found in the file system.

EQACT A file or inode quota limit was reached for the current account ID.

EQGRP A file or inode quota limit was reached for the current group ID.

EQUSR A file or inode quota limit was reached for the current user ID.

FORTRAN EXTENSIONS

The ialloc system call can be called from Fortran as a function:

INTEGER fildes, nb, flag, part, avl, IALLOC, I
I = IALLOC (fildes, nb, flag, part, avl)

Alternatively, ialloc can be called from Fortran as a subroutine. In this case, the return value of the system
call is unavailable.

INTEGER fildes, nb, flag, part, avl
CALL IALLOC (fildes, nb, flag, part, avl)

IALLOC(2) IALLOC(2)

212 SR−2012 10.0

The Fortran program must not specify both the subroutine call and the function reference to ialloc from the
same procedure.

EXAMPLES

The following examples illustrate different uses of the ialloc system call.

Example 1: This ialloc request attempts to preallocate 10 data blocks (4096 bytes each) to the newly created
file test_file. If the requested amount of contiguous space is unavailable, the request fails.

#define BLK_SZ 4096

int fd;

fd = open("test_file", O_WRONLY | O_CREAT, 0644);

if (ialloc(fd, 10*BLK_SZ, IA_CONT, 0, (long *) 0) == -1) {
perror("ialloc failed to allocate 10 blocks contiguously");
exit(1);

}

Example 2: This ialloc request attempts to preallocate 100,000 bytes to the newly created file datafile
in the third partition of the file system in which the file resides. If insufficient space exists to allocate the file in
this partition, the allocation is attempted in other partitions of the file system. (File system partitions are
numbered 0 −n.) A contiguous allocation is not required since the IA_CONT flag is not specified.

int fd;

fd = open("datafile", O_WRONLY | O_CREAT, 0600);

if (ialloc(fd, 100000, IA_PART, 2, (long *) 0) == -1) {
perror("ialloc failed for file datafile");
exit(1);

}

FILES

/usr/include/unistd.h Contains C prototype for the ialloc system call

SEE ALSO

creat(2), dup(2), fcntl(2), open(2), ulimit(2)

IALLOC(2) IALLOC(2)

SR−2012 10.0 213

NAME

ioctl − Controls device

SYNOPSIS

#include <sys/ioctl.h>

int ioctl (int fildes, int request, int arg);

IMPLEMENTATION

All Cray Research systems

DESCRIPTION

The ioctl system call performs a variety of functions on character special files (devices). It accepts the
following arguments:

fildes Specifies a file descriptor of a special file. It is obtained from an accept(2), dup(2), fcntl(2),
open(2), socket(2), or socketpair(2) system call

request Specifies a command to be issued to the device driver.

arg Specifies an argument to the request command passed to the device driver.

The descriptions of various devices in the UNICOS File Formats and Special Files Reference Manual, Cray
Research publication SR−2014, discuss how ioctl applies to them.

NOTES

Only a process with appropriate privilege can control a restricted device.

To retrieve information about certain devices, the active security label of the process must be greater than or
equal to the security label of the device file.

To set information about certain devices, the active security label of the process must equal the security label of
the device file.

A process with the effective privileges shown is granted the following abilities:

Privilege Description

PRIV_IO The process is allowed to control a restricted device.

PRIV_MAC_READ The process is allowed to retrieve information about certain devices regardless of the
security label of the device file.

PRIV_MAC_WRITE The process is allowed to set information about certain devices regardless of the
security label of the device file.

IOCTL(2) IOCTL(2)

214 SR−2012 10.0

If the PRIV_SU configuration option is enabled, the super user is allowed to override the security label
restrictions.

If the PRIV_SU configuration option is enabled, the super user is allowed to control a restricted device.

RETURN VALUES

If ioctl completes successfully, it returns an integer value that depends on the device control function;
otherwise, a value of −1 is returned, and errno is set to indicate the error.

ERRORS

The ioctl system call fails if one of the following error conditions occurs:

Error Code Description

EBADF The fildes argument is not a valid open file descriptor.

EBADF The process does not meet security label requirements and does not have appropriate
privilege.

EINVAL The request or arg argument is not valid.

ENOTTY The fildes argument is not associated with a character special device.

EPERM The process does not have appropriate privilege to control a restricted device.

For information about specific devices, see the appropriate entry in section 4 in the UNICOS File Formats and
Special Files Reference Manual, Cray Research publication SR−2014.

FORTRAN EXTENSIONS

The ioctl system call can be called from Fortran as a function:

INTEGER fildes, request, arg, IOCTL, I
I = IOCTL (fildes, request, arg)

Alternatively, ioctl can be called from Fortran as a subroutine. In this case, the return value of the system
call is unavailable.

INTEGER fildes, request, arg
CALL IOCTL (fildes, request, arg)

The Fortran program must not specify both the subroutine call and the function reference to ioctl from the
same procedure.

IOCTL(2) IOCTL(2)

SR−2012 10.0 215

EXAMPLES

The following examples illustrate how to use the ioctl system call to control two (terminals and CPUs) of the
many character devices that ioctl can control.

Example 1: Terminals typically operate in line mode, meaning that a process reading data from the terminal
(like a shell program) does not receive any data until the user enters a line terminator (usually a CR character).

This program disables that characteristic such that after the user enters only 2 characters, the reading process
receives the 2 characters.

For additional information on this topic and other capabilities, refer to termio(4) in the UNICOS File Formats
and Special Files Reference Manual, Cray Research publication SR−2014.

#include <termio.h>

main()
{

struct termio termo, termn;

if (ioctl(1, TCGETA, &termo) == -1) {
perror("ioctl (TCGETA) failed getting terminal parameters");
exit(1);

}

termn = termo; /* copy old terminal parameters to new */
termn.c_lflag &= ˜ICANON; /* disable canonical terminal mode */
termn.c_cc[VMIN] = 2; /* characters sent after 2 typed */
termn.c_cc[VTIME] = 100; /* specify 10 second delay between keystrokes */

if (ioctl(1, TCSETA, &termn) == -1) {
perror("ioctl (TCSETA) failed setting new terminal parameters");
exit(1);

}

/* After the ioctl request changed the terminal parameters,
the user interface changed. The terminal is no longer in
line mode (canonical). After 2 keystrokes with or without
a CR character, the 2 characters are delivered to the reading
process. */

/* Before the program terminates, the terminal’s parameters are restored
to their original state. */

if (ioctl(1, TCSETA, &termo) == -1) {
perror("ioctl (TCSETA) failed resetting terminal parameters");
exit(1);

}
}

IOCTL(2) IOCTL(2)

216 SR−2012 10.0

Example 2: An ioctl system call can control a CPU in a variety of ways. This ioctl request causes the
CPU to interrupt the currently running program with a SIGALRM signal at regularly scheduled intervals
(measured in milliseconds). The program catches each signal at the defined intervals and continues.

For additional information on this topic and other capabilities, refer to cpu(4) in the UNICOS File Formats and
Special Files Reference Manual, Cray Research publication SR−2014.

#include <fcntl.h>
#include <sys/cpu.h>
#include <signal.h>
#include <time.h>

long before, after;

main()
{

int fd;
struct cpudev cpudev;
void catch(int signo);

(void) signal(SIGALRM, catch);

fd = open("/dev/cpu/any", O_RDONLY);

cpudev.word = 10000; /* set interval to 10 seconds (10,000 mill) */
if(ioctl(fd, CPU_SETTMR, &cpudev) == -1) {

perror("ioctl failed");
exit(1);

}

before = rtclock(); /* read the real time clock */

for(;;) { /* loop indefinitely waiting for SIGALRMs
every 10 sec */

} /* kill with <ctrl><C> */
}

void catch(int signo)
{

float time;

(void) signal(signo, catch);

after = rtclock(); /* read the real
time clock */

time = (float) (after - before) / (float) CLK_TCK; /* compute seconds */
printf("Caught signal #%d after %f seconds\n", signo, time);

}

IOCTL(2) IOCTL(2)

SR−2012 10.0 217

FILES

/usr/include/sys/ioctl.h Contains C prototype for the ioctl system call

SEE ALSO

accept(2), dup(2), fcntl(2), open(2), socket(2), socketpair(2)

cpu(4), termio(4) in the UNICOS File Formats and Special Files Reference Manual, Cray Research
publication SR−2014

IOCTL(2) IOCTL(2)

218 SR−2012 10.0

NAME

jacct − Enables or disables job accounting

SYNOPSIS

#include <unistd.h>

int jacct (char *path);

IMPLEMENTATION

All Cray Research systems

DESCRIPTION

The jacct system call enables or disables job accounting for the calling job (see setjob(2)). If job
accounting is enabled, an accounting record is written on a job accounting file for each of the job’s processes
that terminates. If daemon accounting is enabled, daemon accounting records are also written to this file. An
exit(2) call or a signal can cause termination. Any process member of a job may use the jacct call.

The jacct system call accepts the following argument:

path Points to a path name that contains the job accounting file. acct(5) and
/usr/include/acct/dacct.h describe the types of records found in this file.

Job accounting is enabled if path is nonzero and no errors occur during the system call. It is disabled
if path is 0 and no errors occur during the system call.

If job accounting is already enabled and path differs from the job accounting file currently in use, the
job accounting file will be switched to path without the loss of any accounting information.

NOTES

To be granted write permission to the file, the active security label of the process must equal the security label
of the file.

To be granted search permission to a component of the path prefix, the active security label of the process must
be greater than or equal to the security label of the component.

A process with the effective privileges shown is granted the following abilities:

Privilege Description

PRIV_DAC_OVERRIDE The process is granted search permission to a component of the path prefix via
the permission bits and access control list.

PRIV_MAC_READ The process is granted search permission to a component of the path prefix via
the security label.

PRIV_MAC_READ The process is granted read permission to the file via the security label.

JACCT(2) JACCT(2)

SR−2012 10.0 219

If the PRIV_SU configuration option is enabled, the super user is granted search permission to every
component of the path prefix and is granted read permission to the file via the security label.

RETURN VALUES

If jacct completes successfully, a value of 0 is returned; otherwise, a value of −1 is returned, and errno is
set to indicate the error.

ERRORS

The jacct system call fails if one of the following error conditions occurs:

Error Code Description

EACCES A component of the path prefix denies write permission.

EACCES The file specified by path is not an ordinary file.

EACCES The write permission is denied for the specified job accounting file.

EFAULT The path argument points to an illegal address.

EINVAL The calling process is not a member of a job.

EISDIR The specified file is a directory.

ENOENT One or more components of the job accounting file path name do not exist.

ENOTDIR A component of the path prefix is not a directory.

EROFS The specified file resides on a read-only file system.

FILES

/usr/include/unistd.h Contains C prototype for the jacct system call

SEE ALSO

acct(2), dacct(2), exit(2), setjob(2), signal(2)

acct(5) in the UNICOS File Formats and Special Files Reference Manual, Cray Research publication
SR−2014

JACCT(2) JACCT(2)

220 SR−2012 10.0

NAME

join, fjoin − Joins files

SYNOPSIS

#include <unistd.h>

int join (char *path1, char *path2);

int fjoin (int fildes1, int fildes2);

IMPLEMENTATION

All Cray Research systems

DESCRIPTION

The join system call concatenates the data blocks of one file to another. The join system call accepts the
following arguments:

path1 Points to the file to which you want to add data blocks.

path2 Points to the file from which you want to take data blocks away.

Data blocks are not copied from the file referenced by path2 to that referenced by path1; rather the address
descriptors in the inode for the second file are appended to the address descriptors in the inode for the first.

Any allocated, but unused data blocks at the end of the file identified by path1 are deallocated prior to the
addition of data blocks from address descriptors in the inode for the file identified by path2. The length of the
file identified by path2 is truncated to 0 by the system call.

The fjoin system call performs the same operation as join with the specified files. The fjoin system call
accepts the following arguments:

fildes1 Specifies the file descriptor of the file to which you want to add data blocks.

fildes2 Specifies the file descriptor of the file from which you want to take data blocks away.

RETURN VALUES

If join or fjoin completes successfully, 0 is returned; otherwise, a value of −1 is returned, and errno is set
to indicate the error.

ERRORS

The join system call fails if one of the following error conditions occurs:

Error Code Description

EACCES A component of the path1 or path2 prefix denies search permission.

EACCES Write permission is denied for the file specified by path1 or path2.

JOIN(2) JOIN(2)

SR−2012 10.0 221

EAGAIN Mandatory file and record locking is set, and there are outstanding record locks on one
of the files (see chmod(2)).

EFAULT The path1 or path2 argument points outside the allocated process address space.

EINVAL path1 and path2 identify the same file.

EINVAL Files reside on different file systems.

EINVAL path1 or path2 does not identify a regular file.

EINVAL The length of file identified by path1 is not an even multiple of 4096 bytes, not an even
multiple of the physical I/O unit size of the device on which the file system resides, nor
an even multiple of the file system allocation unit size of the partition on which the file
resides.

ENOENT The file identified by path1 or path2 does not exist.

ENOTDIR A component of the path1 or path2 prefix is not a directory.

The fjoin system call fails if one of the following error conditions occurs:

Error Code Description

EACCES Write permission is denied for the file specified by fildes1 or fildes2.

EAGAIN Mandatory file and record locking is set, and there are outstanding record locks on one
of the files (see chmod(2)).

EBADF The calling process does not have MAC read access to the file to which the file
descriptor refers.

EINVAL fildes1 and fildes2 identify the same file.

EINVAL Files reside on different file systems.

EINVAL fildes1 or fildes2 does not identify a regular file.

EINVAL The length of file identified by fildes1 is not an even multiple of 4096 bytes, not an
even multiple of the physical I/O unit size of the device on which the file system
resides, or an even multiple of the file system allocation unit size of the partition on
which the file resides.

FILES

/usr/include/unistd.h Contains C prototype for the join and fjoin system calls

SEE ALSO

chmod(2)

mkfs(8) in the UNICOS Administrator Commands Reference Manual, Cray Research publication SR−2022

JOIN(2) JOIN(2)

222 SR−2012 10.0

NAME

kill, killm, _lwp_kill, _lwp_killm − Sends a signal to a process or a group of processes

SYNOPSIS

All Cray Research systems:
#include <sys/types.h>
#include <signal.h>

int kill (pid_t pid, int sig);

#include <sys/category.h>
#include <signal.h>

int killm (int category, int id, int sig);

Cray PVP systems:
#include <sys/types.h>
#include <signal.h>

int _lwp_kill (pid_t pid, int sig);

#include <sys/category.h>
#include <signal.h>

int _lwp_killm (int category, int id, int sig);

IMPLEMENTATION

All Cray Research systems

STANDARDS

POSIX, XPG4 (applies only to kill)

DESCRIPTION

The kill system call sends a signal to a process or a group of processes. The kill and _lwp_kill system
calls accept the following arguments:

pid Specifies the process or group of processes to which the signal is to be sent.

sig Specifies the signal that is to be sent. Specify either 0 or one of the values for the sig argument for
the signal(2) system call. If sig is 0 (the null signal), error checking is performed, but no signal
is sent. You can use this to check the validity of pid.

The real or effective user ID of the sending process must match the real or effective user ID of the receiving
process, unless the sending process has appropriate privilege. The caller can send a SIGCONT signal to any
process within its session, regardless of the process owner.

KILL(2) KILL(2)

SR−2012 10.0 223

The processes with a process ID of 0 and a process ID of 1 are special processes (see intro(2)), and they are
referred to as proc0 and proc1, respectively, in the following conditions:

� If pid is greater than 0, sig is sent to the process that has a process ID equal to pid; pid can equal 1.
� If pid equals 0, sig is sent to all processes, excluding proc0 and proc1, whose process group ID is equal

to the process group ID of the sender.
� If pid equals −1 and the sending process has appropriate privilege, sig is sent to all processes excluding

proc0 and proc1.
� If pid equals −1 and the sending process does not have appropriate privilege, sig is sent to all processes,

excluding proc0 and proc1, whose real user ID is equal to the effective user ID of the sender.
� If pid is negative but not −1, sig is sent to all processes whose process group ID is equal to the absolute value

of pid.

The killm system call sends a signal to a process or a group of processes. The killm and _lwp_killm
system calls accept the following arguments:

category Specifies C_PROC, C_PGRP, C_ALL, C_UID, or C_JOB. A category of C_ALL is available only
when the sending process has the appropriate privilege.

id Specifies the pid, pgrp, jid, or uid corresponding to the category. An id of 0 means all processes in
the current category.

sig Identifies the signal to be sent. See signal(2) for sig values.

Currently the _lwp_kill and _lwp_killm interfaces are synonyms for kill and killm, respectively. In
a future release, this will change (see the NOTES section).

If the target of a kill or killm system call is an MPP application, each processing element (PE) in the
application receives the signal.

NOTES

For multitasked applications, the kill and killm system calls treat the entire multitasking group as the target
of a signal. More specifically, the system decides which member of the multitasking group receives the signal
and the pid argument is not considered significant in this choice (although it may introduce some bias in the
selection).

In contrast, the _lwp_kill and _lwp_killm system calls do consider the pid argument as an explicit
specifier of the receiver of a signal. However, use of these calls is discouraged since they may disappear in
future releases of the UNICOS operating system.

Signals are not allowed to cross security label boundaries unless the sending process has privilege to override
the system mandatory access control (MAC) policy. If an unprivileged process attempts to send a signal to
another process that has a different security label, an ESRCH error status is returned.

KILL(2) KILL(2)

224 SR−2012 10.0

The active security label of the process must equal the security label of every affected process.

A process with the effective privileges shown is granted the following abilities:

Privilege Description

PRIV_KILL The process is considered the owner of all affected processes.

PRIV_MAC_WRITE The active security label of the process is considered to equal the security label of all
affected processes.

If the PRIV_SU configuration option is enabled, the super user is considered the owner of all affected
processes. If the PRIV_SU configuration option is enabled, the super user overrides all security label
restrictions.

RETURN VALUES

If kill, killm, _lwp_killm, or _lwp_killm completes successfully, a value of 0 is returned; otherwise,
a value of −1 is returned, and errno is set to indicate the error.

ERRORS

The kill or killm system call fails and no signal is sent if one of the following error conditions occurs:

Error Code Description

EINVAL The sig argument is not a valid signal number.

EPERM The pid argument is 1 (proc1), and sig is either SIGKILL or SIGSTOP.

EPERM The process does not have appropriate privilege, and its real or effective user ID does
not match the real or effective user ID of the receiving process.

ESRCH The active security label of the process does not equal those of a receiving process,
and the process does not have appropriate privilege.

ESRCH No process can be found corresponding to that specified by pid.

FORTRAN EXTENSIONS

The kill system call can be called from Fortran as a function:

INTEGER pid, sig, KILL, I
I = KILL (pid, sig)

Alternatively, kill can be called from Fortran as a subroutine. In this case, the return value of the system call
is unavailable:

INTEGER pid, sig
CALL KILL (pid, sig)

KILL(2) KILL(2)

SR−2012 10.0 225

The Fortran program must not specify both the subroutine call and the function reference to kill from the
same procedure.

EXAMPLES

The following examples illustrate the use of the kill system call and killm, the Cray Research extension.
Each example entails sending a SIGUSR1 signal to the parent of the calling process:

Example 1: The kill request sends a SIGUSR1 signal to the parent process:

int ppid;

ppid = getppid();
if (kill(ppid, SIGUSR1) == -1) {

perror("kill failed sending SIGUSR1 to parent");
exit(1);

}

Example 2: The killm request sends a SIGUSR1 signal to the parent process:

int ppid;

ppid = getppid();
if (killm(C_PROC, ppid, SIGUSR1) == -1) {

perror("killm failed sending SIGUSR1 to parent");
exit(1);

}

SEE ALSO

getpid(2), intro(2), setpgrp(2), signal(2)

kill(1) in the UNICOS User Commands Reference Manual, Cray Research publication SR−2011

KILL(2) KILL(2)

226 SR−2012 10.0

NAME

limit − Sets resource limits

SYNOPSIS

#include <sys/category.h>
#include <sys/resource.h>

long limit (int category, int id, int resource, long newlimit);

IMPLEMENTATION

All Cray Research systems

DESCRIPTION

The limit system call establishes limits on resource usage or returns information on resource limits for a
process or job. It accepts the following arguments:

category Selects the resource category. The following are valid resource categories:

C_JOB Job limit.

C_JOBPROCS Process limit of all processes associated with job jid.

C_PROC Process limit.

id Specifies the pid or jid corresponding to the category. A pid of 0 means the current process, and a
jid of 0 means the current job.

resource Selects the resource. The following are valid resources:

L_CORE Maximum core file limit (clicks). A newlimit value less than the process size
will result in a truncated core file consisting of the user common structure and
the user area. A value of NO_CORE_FILES will disable the creation of core
files altogether. This limit is supported only for the C_PROC category.

L_CPROC Maximum number of processes that can exist concurrently within a job. This
limit is supported only for the C_JOB category.

L_CPU Maximum CPU time per category (clocks). If a process exceeds the process
limit, SIGCPULIM is sent. The parent shell recognizes the death of the
process and sends an error message to standard error. If the job limit is
exceeded, SIGCPULIM is sent to all processes in the job, which includes the
parent shell. Processes may register to catch this signal and continue, but
SIGKILL is sent a few seconds later. (See the CAUTIONS section.)

LIMIT(2) LIMIT(2)

SR−2012 10.0 227

L_FD Maximum number of open files that children of this process will have when
created. This limit is supported only for the C_PROC category. If the new
limit is less than the value of OPEN_MAX (64), the limit will be set to
OPEN_MAX and no error will be returned. The specified limit must be less than
that set by the L_FDM resource or the system-imposed open file maximum
value of K_OPEN_MAX.

L_FDM Maximum limit on the L_FD resource setting (the minimum limit is set by
OPEN_MAX). Changing the L_FDM resource does not affect the open file
maximum of any processes. Rather, it affects the open file maximum of any
future child processes by limiting the maximum L_FD resource specification.
This limit is supported only for the C_PROC category. If the new limit is less
than the specified process’ current open file maximum, limit will fail with an
EINVAL error status. If the new limit is greater than the system imposed
K_OPEN_MAX open file limit, limit will set the limit to K_OPEN_MAX.

L_FSBLK Maximum number of file system blocks (clicks) that can be used per category.
If a process tries to exceed established process or job limits, an EDISKLIM
error is returned.

L_MEM Maximum memory size per category (clicks). If a process tries to exceed
established process or job limits, the brk(2) or sbrk(2) system call fails and
returns the ENOMEM error.

L_MPPB (Deferred implementation) Maximum number of Cray MPP synchronization
barriers. This limit is supported only for the C_JOB category.

L_MPPE Maximum number of Cray MPP processing elements (PEs). If this limit is set
to 0, the Cray MPP systems cannot be used by the job. This limit is supported
only for the C_JOB category.

L_MPPT Maximum number of wall clock seconds that the job can have the Cray MPP
systems assigned to it. If this limit is set to 0, the Cray MPP systems cannot be
used by the job. This limit is supported for all categories.

L_SDS Maximum number of secondary data blocks per category. It is enforced by the
system on an ssbreak(2) call. Because the minimum allocation unit for
secondary data segments (SDS) may be greater than 1 block, the limit set may
be exceeded by a fraction of the minimum allocation unit.

L_SOCKBF Maximum total socket buffer (sockbuf) space per session. The per session
sockbuf space is the sum of the sockbuf space reserved by all of the sockets
used by the session. The limit is in clicks (4096 bytes per click). This limit is
enforced on the accept(2), setsockopt(2), and socket(2) calls.

L_TAPE Maximum number of tape devices from tape group 0 for the job. This is a
synonym for L_TAPE0 and will be removed in a future release. It is enforced
by the tape daemon. This limit is supported only for the C_JOB category.

LIMIT(2) LIMIT(2)

228 SR−2012 10.0

L_TAPEn Maximum number of tape devices from tape group n (which can be 0 through
7) for the job. It is enforced by the tape daemon. This limit is supported only
for the C_JOB category.

newlimit Specifies a new limit. newlimit is one of the following:

−1 Limit unchanged; current limit value is returned.

≥0 New limit value. For all limits except tape group limits, L_SDS, L_MPPB,
L_MPPE, and L_MPPT, a value of 0 means no limit.

−2 For L_CORE only. This special value disables the creation of core files.

Any process can make a limit more restrictive, but only a process with appropriate privilege can make a limit
less restrictive. Limits are inherited by child processes.

NOTES

The following mandatory access control (MAC) read and MAC write checks are performed based on the
category parameter:

Parameter Description of check

C_PROC Against the specified process

C_JOBPROCS Against each process in the job

C_JOB Against the job leader

That is, the active security label of the calling process must equal the security label of each process where
access is being verified.

To set process resource information, the active security label of the calling process must equal the security label
of every affected process.

A process with the effective privileges shown is granted the following abilities:

Privilege Description

PRIV_MAC_READ The calling process is allowed to override the restriction that its active security label
must be greater than or equal to the security label of every affected process.

PRIV_MAC_WRITE The calling process is allowed to set resource information regardless of the security
label of the target process.

PRIV_POWNER The process is considered the owner of every affected process.

PRIV_RESOURCE The calling process is allowed to increase the value of a limit.

If the PRIV_SU configuration option is enabled, the super user is considered the owner of every affected
process and is allowed to increase the value of a limit. If the PRIV_SU configuration option is enabled, the
super user is allowed to override security label restrictions.

LIMIT(2) LIMIT(2)

SR−2012 10.0 229

CAUTIONS

The CPU time limit does not apply when running as root.

RETURN VALUES

If limit completes successfully, the previous value of limit is returned for categories C_PROC and C_JOB,
and 0 is returned for C_JOBPROCS; otherwise, a value of −1 is returned, and errno is set to indicate the error.

ERRORS

The limit system call fails if one of the following error conditions occurs:

Error Code Description

EBADF The process does not meet security label requirements and does not have appropriate
privilege.

EINVAL One of the arguments contains an invalid value.

EPERM The user ID of the requesting process is not that of a super user, and its real or
effective user ID does not match the real or effective user ID of the affected processes.

EPERM An attempt was made to increase the value of a limit, and the user ID of the requesting
process is not that of a super user.

EPERM An attempt was made to change a limit on a recovered job, recovered process, or a
system process; this is not allowed.

ESRCH No process can be found that matches the category and id requests.

FORTRAN EXTENSIONS

The limit system call can be called from Fortran as a function:

INTEGER category, id, resource, newlimit, LIMIT, I
I = LIMIT (category, id, resource, newlimit)

Alternatively, limit can be called from Fortran as a subroutine. In this case, the return value of the system
call is unavailable.

INTEGER category, id, resource, newlimit
CALL LIMIT (category, id, resource, newlimit)

The Fortran program must not specify both the subroutine call and the function reference to limit from the
same procedure.

LIMIT(2) LIMIT(2)

230 SR−2012 10.0

EXAMPLES

The following example shows how to use the limit system call to return the current maximum CPU time and
memory size limits for the calling process. Neither limit request changes the CPU time or memory size limit
because of the argument value −1 specified.

#include <sys/category.h>
#include <sys/resource.h>

main()
{

long time, mem;

time = limit(C_PROC, 0, L_CPU, -1);
printf("The current CPU time limit is %ld clock ticks or %ld sec\n",

time, time/CLK_TCK); /* CLK_TCK defined in time.h> */

mem = limit(C_PROC, 0, L_MEM, -1);
printf("The current memory limit is %ld blocks, %ld words, or %.1f Mw\n",

mem, mem * 512, (mem * 512)/1048576.);
}

SEE ALSO

accept(2), brk(2), setsockopt(2), signal(2), socket(2), ssbreak(2), ulimit(2)

limit(1) in the UNICOS User Commands Reference Manual, Cray Research publication SR−2011

LIMIT(2) LIMIT(2)

SR−2012 10.0 231

NAME

limits − Returns or sets limits structure for fair-share scheduler

SYNOPSIS

#include <sys/types.h>
#include <sys/lnode.h>
#include <sys/param.h>
#include <sys/iosw.h>
#include <sys/signal.h>
#include <sys/dir.h>
#include <sys/perm.h>
#include <sys/retlim.h>
#include <sys/share.h>

int limits (struct lnode *address, int function);

IMPLEMENTATION

Cray PVP systems

DESCRIPTION

The limits system call manipulates a kernel limits structure according to the value of function. limits
accepts the following arguments:

address Points to an lnode or an array of lnodes except where indicated.

function Specifies a function. function may be one of the following:

L_MYLIM Gets user’s own limits structure. Returns the number of processes currently
attached to the node.

L_OTHLIM Gets limits associated with uid in lnode. The lnode to which address points
must contain the correct user ID. Returns the number of processes currently
attached to the node.

L_ALLLIM Returns the number of active lnodes, along with all active user limits structures.

L_SETLIM Connects to a new limits structure. Initializes a new limits structure with the
passed lnode, and attaches the calling process to it. All children of that process
inherit the new structure. Only a process with appropriate privilege can specify
this function.

L_NEWLIM Same as L_SETLIM, but attaches parent processes rather than calling processes.
Only a process with appropriate privilege can specify this function.

LIMITS(2) LIMITS(2)

232 SR−2012 10.0

L_DEADLIM Waits for dead limits belonging to a child process. The address should point to
a retlim structure, which is defined in the sys/retlim.h file. This
function performs a wait(2) system call, then returns a structure containing
both the limits and process zombie structures. The value returned is the number
of processes still attached to the lnode.

L_CHNGLIM Changes limits fields in existing limits. The lnode to which address points
must contain the correct user ID. Only a process with appropriate privilege can
specify this function.

NOTE: This function updates the CPU quota-used field. To synchronize the
information in active lnodes with the user database (UDB), execute the
shrsync(8) command with the -q option.

L_DEADGROUP Picks up a dead limits structure. This function searches for a dead limits
structure, removes it from the list of active limits, and returns lnode. Only a
process with appropriate privilege can specify this function.

L_MSGSON Enables system messages to a user.

L_MSGSOFF Disables system messages to a user; default is enabled.

L_MSGSSTAT Returns the status of system messages; if system messages are enabled, a
nonzero number is returned.

L_MYKN Gets a user’s own kern_lnode structure. The address should point to a
kern_lnode structure, which is defined in the sys/lnode.h file. Returns
the number of processes currently attached to the node.

L_OTHKN Gets the structure associated with uid. The address should point to a
kern_lnode structure, which is defined in the sys/lnode.h file. The
kern_lnode to which address points returns the number of processes
currently attached to the node.

L_ALLKN Returns the number of active lnodes, along with all active kernel structures. The
address should point to a kern_lnode structure, which is defined in the
sys/lnode.h file.

L_SETIDLE Sets limits fields for idle lnode, which is initialized at system boot time;
otherwise, it acts as L_SETLIM does. Only a process with appropriate privilege
can specify this function.

Any other function is illegal and returns an error of EINVAL. Unless otherwise specified, the call
returns the number of limits structures returned.

LIMITS(2) LIMITS(2)

SR−2012 10.0 233

NOTES

A process with the effective privilege shown is granted the following ability:

Privilege Description

PRIV_RESOURCE The process is allowed to specify the L_SETLIM, L_CHNGLIM, L_DEADGROUP, and
L_SETIDLE functions.

If the PRIV_SU configuratino option is enabled, the super user or a process with the PERMBITS_RESLIM
permbit is allowed to specify the L_SETLIM, L_CHNGLIM, L_DEADGROUP, and L_SETIDLE functions.

The L_GETCOSTS and L_SETCOSTS functions have been removed in the UNICOS 9.0 release. Their
functionality has been replaced by the GET_COSTS and SET_COSTS actions, respectively, of the policy(2)
system call.

RETURN VALUES

If limits completes successfully, a value of 0 is returned; otherwise, a value of −1 is returned, and errno is
set to indicate the error.

ERRORS

The limits system call fails if one of the following error conditions occurs:

Error Code Description

EINVAL An illegal argument was passed to the system call.

EPERM For functions L_SETLIM, L_CHNGLIM, L_DEADGROUP, and L_SETIDLE, this
error indicates that the process does not have appropriate privilege.

EPROCLIM The user already has the maximum number of processes active (valid for function
L_SETLIM).

ESRCH For functions L_DEADGROUP, L_OTHKN, L_OTHLIM, and L_CHNGLIM, this error
indicates that the desired limits structure does not exist. For function L_SETLIM,
this error indicates that this lnode’s group has not been set up.

ETOOMANYU No space is left in the kernel limits table (valid for function L_SETLIM).

SEE ALSO

policy(2), wait(2)

share(5) in the UNICOS File Formats and Special Files Reference Manual, Cray Research publication
SR−2014

shrsync(8) in the UNICOS Administrator Commands Reference Manual, Cray Research publication
SR−2022

UNICOS Resource Administration, Cray Research publication SG−2302

LIMITS(2) LIMITS(2)

234 SR−2012 10.0

NAME

link − Creates a link to a file

SYNOPSIS

#include <unistd.h>

int link (const char *path1, const char *path2);

IMPLEMENTATION

All Cray Research systems

STANDARDS

POSIX, XPG4

DESCRIPTION

The link system call creates a new link (directory entry) for the existing file. Its accepts the following
arguments:

path1 Points to a path name identifying an existing file.

path2 Points to a path name identifying the directory entry to be created.

NOTES

The process must be granted search permission to every component of each path prefix via the permission bits
and access control list. The process must be granted search permission to every component of each path prefix
via the security label.

The process must be granted write permission to the parent directory of path2 via the permission bits and access
control list. The process must be granted write permission to the parent directory of path2 via the security
label.

If path1 is a directory, the process must have appropriate privilege to create a link.

If FSETID_RESTRICT is enabled, only processes with appropriate privileges can create a link to set-user-ID
or set-group-ID files.

A process with the effective privileges shown are granted the following abilities:

Privilege Description

PRIV_DAC_OVERRIDE The process is granted search permission to every component of each path prefix
via the permission bits and access control list.

PRIV_DAC_OVERRIDE The process is granted write permission to the parent directory of path2 via the
permission bits and access control list.

LINK(2) LINK(2)

SR−2012 10.0 235

PRIV_FSETID If FSETID_RESTRICT is enabled, the process can create a link to the
set-user-ID or set-group-ID file.

PRIV_LINK_DIR The process can create a link to a directory.

PRIV_MAC_READ The process is granted search permission to every component of each path prefix
via the security label.

PRIV_MAC_WRITE The process is granted write permission to the parent directory of path2 via the
security label.

If the PRIV_SU configuration option is enabled, the super user is granted search permission to every
component of each path prefix and is granted write permission to the parent directory of path2. The super user
can create a link to a directory. The super user or a process with the suidgid permission can override the
restriction enabled by the FSETID_RESTRICT system configuration option.

RETURN VALUES

If link completes successfully, a value of 0 is returned; otherwise, a value of −1 is returned, and errno is set
to indicate the error.

ERRORS

The link system call fails and no link is created if one of the following error conditions occurs:

Error Code Description

EACCES A component of either path prefix denies search permission.

EACCES The requested link requires writing in a directory with a mode that denies write
permission.

EEXIST The link specified by path2 exists.

EFAULT The path argument points outside the allocated address space of the process.

EMANDV The security label of the file does not allow linking.

EMANDV If the FSETID_RESTRICT and PRIV_SU configuration options are enabled, the
process does not have appropriate privileges to link to a set-user-ID or set-group-ID
file.

EMLINK The maximum number of links to a file (LINK_MAX) would be exceeded.

ENOENT A component of either path prefix does not exist.

ENOENT The file specified by path1 does not exist.

ENOENT The path2 argument points to a null path name.

ENOTDIR A component of either path prefix is not a directory.

EPERM The file specified by path1 is a directory, and the effective user ID is not that of a super
user.

LINK(2) LINK(2)

236 SR−2012 10.0

EQACT A file or inode quota limit was reached for the current account ID.

EQGRP A file or inode quota limit was reached for the current group ID.

EQUSR A file or inode quota limit was reached for the current user ID.

EROFS The requested link requires writing in a directory on a read-only file system.

EXDEV The link specified by path2 and the file named by path1 are on different logical
devices (file systems).

FORTRAN EXTENSIONS

The link system call can be called from Fortran as a function (on all systems except Cray MPP systems and
CRAY T90 series systems):

CHARACTER path1*M, path2*N
INTEGER LINK, I
I = LINK (path1, path2)

Alternatively, link can be called from Fortran as a subroutine (on all systems except Cray MPP systems and
CRAY T90 series systems). In this case, the return value of the system call is unavailable.

CHARACTER path1*M, path2*N
CALL LINK (path1, path2)

The Fortran program must not specify both the subroutine call and the function reference to link from the
same procedure. path1 and path2 may also be integer variables. In this case, the data must be packed 8
characters per word and terminated with a null (0) byte. The PXFLINK(3F) subroutine provides similar
functionality and is available on all Cray Research systems.

EXAMPLES

This example shows how to use the link system call to create a link to another user’s file. The following
link request creates a link (called joe_file) to user joe’s file, datafile.

The request causes a new directory entry named joe_file to be created and the inode for joe’s datafile
to reflect this additional link.

If user joe later removes (by using rm(1) or unlink(2)) datafile, the file is not actually removed from
the file system since another user now has a link to it. The file cannot be removed until the last link to the file is
removed.

if (link("../joe/datafile", "joe_file") == -1) {
perror("link failed creating new link to joe’s datafile");
exit(1);

}

LINK(2) LINK(2)

SR−2012 10.0 237

FILES

/usr/include/unistd.h Contains C prototype for the link system call

SEE ALSO

unlink(2)

rm(1) in the UNICOS User Commands Reference Manual, Cray Research publication SR−2011

PXFLINK(3F) in the Application Programmer’s Library Reference Manual, Cray Research publication
SR−2165

link(8) in the UNICOS Administrator Commands Reference Manual, Cray Research publication SR−2022

LINK(2) LINK(2)

238 SR−2012 10.0

NAME

listen − Listens for connections on a socket

SYNOPSIS

int listen (int s, int backlog);

IMPLEMENTATION

All Cray Research systems

DESCRIPTION

To accept connections, a socket must first be created with socket(2). A backlog for incoming connections is
then specified with listen, and the connections are accepted with accept(2). The listen call applies
only to sockets of type SOCK_STREAM.

Connection requests for an address go into the connection queue for the socket bound to the specified address.
The accept(2) system call removes connection requests from the queue.

The listen system call accepts the following arguments:

s Specifies the descriptor for a socket.

backlog Defines the maximum length to which the queue of pending connections can grow. If a connection
request arrives with the queue full, the client might receive an error with an indication of
ECONNREFUSED, or if the underlying protocol supports retransmission, the request might be
ignored so that retries can succeed.

The kernel has a limit for the maximum length of the queue of pending connections. If the backlog parameter
exceeds that limit, the kernel limit is used instead. However, the kernel also allows some number of
connections beyond the queue limit to be accepted, to allow for transient connections that never get established
fully.

Note: The maximum limit is defined by SOMAXCONN in the sys/socket.h file. Currently, the maximum
for queued pending connections is (backlog * 3)/2 +1.

NOTES

If the SOCKET_MAC option is enabled, the active security label of the process must be greater than or equal to
the security label of the socket. Note that SOCKET_MAC is part of TCP/IP configurable feature variables list in
uts/cf/Nmakefile. For more information, see the connect(2) man page.

A process with the effective privilege shown is granted the following ability:

Privilege Description

PRIV_MAC_READ The process is allowed to override the security label restrictions when the
SOCKET_MAC option is enabled.

LISTEN(2) LISTEN(2)

SR−2012 10.0 239

If the PRIV_SU configuration option is enabled, the super user is allowed to override security label restrictions
when the SOCKET_MAC option is enabled.

RETURN VALUES

If listen completes successfully, a value of 0 is returned; otherwise, a value of −1 is returned, and errno is
set to indicate the error.

ERRORS

The listen system call fails if one of the following error conditions occurs:

Error Code Description

EACCES If the SOCKET_MAC option is enabled, the process does not meet the security label
requirements and does not have appropriate privilege.

EBADF The s descriptor is invalid.

ENOTSOCK The s descriptor is not a socket.

EOPNOTSUPP The socket is not of a type that supports the operation listen (for example, the
socket is of type SOCK_DGRAM).

BUGS

Currently, the backlog is limited (silently) to five pending connection requests by SOMAXCONN (SOMAXCONN =
5 is defined in the sys/socket.h include file). When the number entered in the backlog argument is higher
than 5, no error message is issued.

EXAMPLES

This server program shows how to use the listen system call in context with other TCP/IP calls. (Some
system calls in this example are not supported on Cray MPP systems.) The program simply creates a TCP/IP
socket, waits for a client process from some host to attempt a connection, accepts the connection, and forks a
child process to provide the service to the client.

The original (parent) server loops back to look for additional connection attempts while the temporary (child)
server reads a string of data sent by the client process.

LISTEN(2) LISTEN(2)

240 SR−2012 10.0

/* Server side of client-server socket example. For client side,
see socket(2).
Syntax: server portnumber & */

#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <stdio.h>
#include <netdb.h>

main(int argc, char *argv[])
{

int s, ns;
struct sockaddr_in src; /* source socket address */
int len=sizeof(src);
char buf[256];

/* create port */
src.sin_family = AF_INET;
src.sin_port = atoi(argv[1]);
src.sin_addr.s_addr = 0;

if ((s = socket(AF_INET, SOCK_STREAM, 0)) < 0) {
perror("server, unable to open socket");
exit(1);

}

while (bind(s, (struct sockaddr *) &src, sizeof(src)) < 0) {
printf("Server waiting on bind...\n");
sleep(1);

}

listen(s, 5);

while (1) {
ns = accept(s, (struct sockaddr *) &src, &len);
if (ns < 0) {

perror("server, accept failed");
exit(1);

}

if (fork() == 0) {
/* in child server */
close(s); /* child will use socket ns, parent uses s */

LISTEN(2) LISTEN(2)

SR−2012 10.0 241

read(ns, &buf, sizeof(buf));
printf("Server read: %s\n", buf);
close(ns);
exit(0);

}
close(ns); /* close socket used by child */

}
}

FILES

/usr/include/sys/socket.h Header file for sockets

SEE ALSO

accept(2), connect(2), socket(2)

LISTEN(2) LISTEN(2)

242 SR−2012 10.0

NAME

listio − Initiates a list of I/O requests

SYNOPSIS

#include <sys/types.h>
#include <sys/iosw.h>
#include <sys/listio.h>

int listio (int cmd, struct listreq *list, int nent);

IMPLEMENTATION

All Cray Research systems

DESCRIPTION

The listio system call provides a means to initiate a list of distinct I/O requests and, optionally, waits for all
of them to complete. Each I/O request in the list provides for maximum control over the desired I/O
characteristics. The listio system call accepts the following arguments:

cmd Specifies a command. The following are valid cmd commands:

LC_START Initiates the I/O requests and returns control as soon as possible.

LC_WAIT Initiates the I/O requests and returns when all requests have completed.

list Points to an array of listreq structures. Each array includes the following members:

LISTIO(2) LISTIO(2)

SR−2012 10.0 243

int li_opcode; Operation code for the request:
LO_READ for read and LO_WRITE
for write.

unsigned li_drvr:32; Driver dependent.
unsigned li_flags:32; Special request flags: LF_LSEEK

to set initial file offset to li_offset.
long li_offset; Initial file byte offset, if LF_LSEEK

is set in flags.
int li_fildes; File descriptor (obtained from a

creat(2), dup(2), fcntl(2),
open(2), or pipe(2) system call).

char *li_buf; Pointer to an I/O data buffer
in memory.

unsigned li_nbyte; Number of bytes to read or write
for each stride.

struct iosw *li_status; Pointer to an I/O status word
where the kernel will put completion
status for this request. See reada(2).

int li_signo; Signal number of signal to send
to the process when the request
completes. If this field is 0,
no signal is sent (see signal(2)
for a list of signal numbers).

int li_nstride; Number of strides; defaults to 1.
(On Cray MPP systems, li_nstride must
be 0 or 1.)

long li_filstride; File stride in bytes;
default is for contiguous data flow
to/from the file. (On Cray MPP systems,
li_filstride must be 0.)

long li_memstride; Memory stride in bytes; default is
for contiguous data flow
to/from the memory buffer. (On Cray MPP systems,
li_memstride must be 0.)

nent Specifies the number of requests in the list to process.

When reading or writing an n-dimensional array on a disk, the desired data I/O occurs at regular intervals, but it
may not be contiguous. The last three variables in the listreq structure can be used to specify a compound
request, causing multiple sections of data to be transferred. The distance from the start of one section of data on
disk to the start of the next section is called the file stride. There is an analogous stride through memory.

When a particular request completes, the associated status word is filled in, and if li_signo was nonzero, the
signal corresponding to the number is sent to the process. In the iosw structure, the status word sw_flag is
always set upon completion; sw_error may contain a system call error number; and sw_count contains the
number of bytes actually moved. For a successful compound request, sw_count would be
li_nstride * li_nbyte.

LISTIO(2) LISTIO(2)

244 SR−2012 10.0

The following are three ways of handling I/O completions:
� When registering for a given signal by using the sigctl(2) system call, the process may specify 0 rather

than a handler function. After initiating one or more I/O requests with that signal number and doing any
other work available, the process checks for I/O completions and, finding none, goes to sleep using the
pause(2) system call. When the next I/O completes, the process is awakened. If an I/O completes after the
process checks it but before it actually goes to sleep, the pause(2) system call will return immediately.

� A process may register a signal handler for a given signal and specify that signal on the listio request.
When the I/O completes, the handler will be called and the process may service the completion. This
method is interrupt or event driven. See reada(2) for more information about this approach. Because the
kernel and library must save the process’ context before calling the signal handler and restore it again after
the signal handler, there is some additional overhead in this approach. The process’ context is A, S, and V
registers and some local memory.

� A process may specify 0, rather than a signal number, on the I/O request. In this case, the process must
arrange to be awakened by some other event, perhaps a timer, or through polling the status word. The
recall(2) (on all Cray Research system) and recalla(2) (on Cray PVP systems) system calls may be
used to wait for ending status.

If one or more of the I/O requests are ill-formed and cannot be started, an LC_WAIT type command will return
immediately.

NOTES

To perform a write operation, the process must be granted write permission via the security label. That is, the
active security label of the process must be equal to the security label of the file.

To perform a read operation, the process must be granted read permission via the security label. That is, the
active security label of the process must be greater than or equal to the security label of the file.

A process with the effective privileges shown is granted the following abilities:

Privilege Description

PRIV_MAC_READ The process is granted read permission to the file via the security label.

PRIV_MAC_WRITE The process is granted write permission to the file via the security label.

If the PRIV_SU configuration option is enabled, the super user is granted read and write permission to the file
via the security label.

RETURN VALUES

If listio completes successfully, a nonnegative integer is returned, indicating the number of requests that
were successfully started. Otherwise, a value of −1 is returned, and errno is set to indicate the error.

LISTIO(2) LISTIO(2)

SR−2012 10.0 245

ERRORS

The listio system call fails if one of the following error conditions occurs:

Error Code Description

EFAULT The request list is not fully contained within the process address space.

EINTR A signal was caught while waiting for all I/O requests to complete during an
LC_WAIT command.

EINVAL The cmd argument is not a valid command.

A particular request fails if one of the following error conditions occurs:

Error Code Description

EAGAIN Mandatory file and record locking was set, O_NDELAY was set, and there was a
blocking record lock.

EBADF The li_fildes value is not an open file descriptor.

EBADF The process is not granted read or write permission to the file via the security label and
does not have appropriate privilege.

EDEADLK The request was going to go to sleep and cause a deadlock situation to occur.

EFBIG An attempt was made to write a file that exceeds the process’ file size limit or the
maximum file size. See ulimit(2).

EINTR An I/O request to a slow device, such as tty, was interrupted.

EINTR A signal was caught waiting for an I/O quota or blocking record lock.

EINVAL The listreq entry contains an invalid argument.

ENOLCK The system record lock table was full, so the request could not go to sleep until the
blocking record lock was removed.

ENOSPC During a write to an ordinary file, no free space was found in the file system.

EQACT A file or inode quota limit was reached for the current account ID.

EQGRP A file or inode quota limit was reached for the current group ID.

EQUSR A file or inode quota limit was reached for the current user ID.

ESPIPE An attempt was made to specify a byte offset on a pipe or a FIFO special file (named
pipe).

EXAMPLES

This example shows how to use the listio system call to initiate a list of input requests. The following
listio request reads every tenth block (that is, blocks 1, 11, 21, 31, and so on) from file datafile. When a
total of 10 data blocks is transferred, a SIGUSR1 signal is sent to show that the transfer has been completed.

LISTIO(2) LISTIO(2)

246 SR−2012 10.0

The request is initiated asynchronously (LC_START), and the data is stored in the buffer buf contiguously.
Because input is performed asynchronously, the program can complete other work in parallel with the request.

#include <fcntl.h>
#include <sys/types.h>
#include <signal.h>
#include <sys/iosw.h>
#include <sys/listio.h>

#define BLK_SIZ 4096

struct blk {
char blk_data[BLK_SIZ];

};

main()
{

struct listreq request;
struct iosw reqstat;
struct blk buf[10];
int fd;

sigctl(SCTL_REG, SIGUSR1, 0); /* notify process on SIGUSR1 but */
/* don’t execute any handler */

if ((fd = open("datafile", O_RDONLY)) == -1) {
perror("open (datafile) failed");
exit(1);

}

/* Set up the I/O request */
request.li_opcode = LO_READ; /* request read */
request.li_fildes = fd; /* file descriptor */
request.li_buf = (char *) buf; /* store input data here */
request.li_nbyte = BLK_SIZ; /* each stride = 1 block */
request.li_status = &reqstat; /* status for this request */
request.li_signo = SIGUSR1; /* send signal upon completion */
request.li_nstride = 10; /* read 10 strides */
request.li_filstride = 10 * BLK_SIZ;/* file stride = 10 blocks */

sigoff(); /* defer signal reception so SIGUSR1 */
/* not received before pause() below */

if (listio(LC_START, &request, 1) != 1) {
perror("listio failed");

LISTIO(2) LISTIO(2)

SR−2012 10.0 247

exit(1);
}

/* other work can be performed here while listio request completes */

pause(); /* automatically calls sigon() */

printf("Number of bytes read = %d\n\n", reqstat.sw_count);
}

SEE ALSO

lseek(2), pause(2), reada(2), recall(2), recalla(2), sigctl(2), signal(2), ulimit(2),
write(2)

LISTIO(2) LISTIO(2)

248 SR−2012 10.0

NAME

lseek − Moves read/write file pointer

SYNOPSIS

#include <sys/types.h>
#include <unistd.h>

off_t lseek (int fildes, off_t offset, int whence);

IMPLEMENTATION

All Cray Research systems

STANDARDS

POSIX, XPG4

DESCRIPTION

The lseek system call sets the read/write file pointer. It accepts the following arguments:

fildes Specifies a file descriptor. It is returned from a creat(2), dup(2), fcntl(2), or open(2) system
call.

offset Specifies the number of bytes associated with the pointer’s new location.

whence Specifies a value to indicate the pointer’s location. The following are valid whence values.

0 or SEEK_SET Pointer is set to offset bytes.

1 or SEEK_CUR Pointer is set to its current location plus offset.

2 or SEEK_END Pointer is set to the file size plus offset.

Some devices such as terminals are incapable of seeking (for example, a user cannot reposition the current
offset in a file to an arbitrary position). The value of the file pointer associated with such a device is undefined.

RETURN VALUES

If lseek completes successfully, it returns a nonnegative integer indicating the file pointer value as measured
in bytes from the beginning of the file; otherwise, a value of −1 is returned, and errno is set to indicate the
error.

ERRORS

The lseek system call fails and the file pointer remains unchanged if one of the following error conditions
occurs:

Error Code Description

EBADF The fildes argument is not an open file descriptor.

LSEEK(2) LSEEK(2)

SR−2012 10.0 249

EINVAL The resulting file pointer would be negative.

EINVAL and SIGSYS signal
The whence argument is not 0, 1, or 2.

ESPIPE The fildes argument is associated with a FIFO special file (named pipe).

FORTRAN EXTENSIONS

The lseek system call can be called from Fortran as a function:

INTEGER fildes, offset, whence, LSEEK, I
I = LSEEK (fildes, offset, whence)

Alternatively, lseek can be called from Fortran as a subroutine. In this case, the return value of the system
call is unavailable.

INTEGER fildes, offset, whence
CALL LSEEK (fildes, offset, whence)

The Fortran program must not specify both the subroutine call and the function reference to lseek from the
same procedure.

EXAMPLES

The following examples show different applications of the lseek system call. For each lseek example, file
datafile is opened using the following:

int fd;
fd = open("datafile", O_RDWR);

Example 1: The following lseek request positions the current file pointer for datafile to the fourth data
block (4096 bytes each) of the file:

lseek(fd, (long) 3 * 4096, 0);

Example 2: This lseek request returns the process’s current offset into datafile:

int ret;
ret = lseek(fd, 0L, 1);

Example 3: This lseek request positions the current offset at the end of datafile. Therefore, the next
write operation to the file will append to the file:

lseek(fd, 0L, 2);

LSEEK(2) LSEEK(2)

250 SR−2012 10.0

Example 4: The following lseek request updates a record on datafile:

struct record recd;

read(fd, &recd, sizeof(struct record)); /* read record */
/* update record in user memory */
lseek(fd, (long) -sizeof(struct record), 1); /* backup file offset */
write(fd, &recd, sizeof(struct record)); /* write updated record */

Example 5: This lseek request returns the current size of datafile. However, the current offset into the
file is now positioned at the end-of-file (EOF):

int ret;
ret = lseek(fd, 0L, 2);

Example 6: This lseek request positions the current offset into datafile 100 bytes beyond the end of the
file. Therefore, the next write operation to datafile will cause a 100-byte, 0-filled gap to be created in the
file with the output data written at the current offset position.

If a read(2) request is issued to datafile while the current offset points beyond the end of the file, the
request just returns an EOF condition.

lseek(fd, 100L, 2);

Example 7: This lseek request always fails. A file’s current file pointer cannot be positioned before the
beginning of a file:

lseek(fd, -100L, 0);

FILES

/usr/include/sys/types.h Contains types required by ANSI X3J11

/usr/include/unistd.h Contains C prototype for the lseek system call

SEE ALSO

creat(2), dup(2), fcntl(2), open(2), read(2)

LSEEK(2) LSEEK(2)

SR−2012 10.0 251

NAME

lsetattr − Sets metadata for a file

SYNOPSIS

#include <sys/types.h>
#include <sys/vnode.h>

int lsetattr (char *fname, struct vattr *vap, int asize);

IMPLEMENTATION

Cray PVP systems

DESCRIPTION

The lsetattr system call makes the generality of the VOP_SETATTR() macro defined in the
sys/vnode.h file available to user space. A single kernel call can set all the user-accessible metadata
associated with a file. This information includes the time stamp, account ID, owner ID, and permission bits.

The lsetattr system call accepts the following arguments:

fname Points to the file name.

vap Points to an attribute structure containing the desired metadata changes.

asize Contains the size of the structure pointed to by the vap argument. asize provides robustness across
minor changes in the attribute structure definition; it will not cause an error return.

The lsetattr call does not follow symbolic links.

NOTES

Since some attribute change requests are validated above the vnode switch and since lsetattr goes directly
to the vnode switch, the initial implementation is restricted. A process with the effective privilege shown is
granted the following ability:

Privilege Description

PRIV_ADMIN The process is allowed to set metadata for a file.

If the PRIV_SU configuration option is enabled, the super user is allowed to set metadata for a file.

RETURN VALUES

If lsetattr completes successfully, a value of 0 is returned; otherwise, a value of −1 is returned, and errno
is set to indicate the error. For an explanation of the error, enter an explain(1) command or see the error
code list on the intro(2) man page.

LSETATTR(2) LSETATTR(2)

252 SR−2012 10.0

These calls are referenced on this man page instead of listing the errors in an ERRORS section because
lsetattr can behave like one or more system calls depending upon the arguments specified and can cause
several different errors.

EXAMPLES

The following examples illustrate different uses of the lsetattr system call.

Example 1: The following code fragment shows how a single lsetattr system call can perform the function
of combined chown(2) and chmod(2) system calls.

vap->va_uid = 1005;
vap->va_mode = 0644;
vap->va_mask = AT_UID | AT_MODE;
ex = lsetattr("file_name", vap, sizeof(*vap));
if (ex < 0) fprintf(stderr, "example failed\n");

Example 2: This example shows how to set the sitebits on a symbolic link.

vap->va_sitebits = SITE_BITS_VALUE;
vap->va_mask = AT_SITEBITS;
ex = lsetattr("link_name", vap, sizeof(*vap));
if (ex < 0) fprintf(stderr, "second example also failed\n");

Example 3: A final example illustrates how to set the account ID.

vap->va_acid = 42;
vap->va_mask = AT_ACID;
ex = lsetattr("nuther_file", vap, sizeof(*vap));
if (ex < 0) fprintf(stderr, "third example busted, too\n");

FILES

/usr/include/types.h Contains types required by ANSI X3J11

/usr/include/vnode.h Contains vnode, attribute structure, and bit definitions for
va_mask.

SEE ALSO

chmod(2), chown(2), intro(2)

explain(1) in the UNICOS User Commands Reference Manual, Cray Research publication SR−2011

LSETATTR(2) LSETATTR(2)

SR−2012 10.0 253

NAME

mkdir − Makes a directory

SYNOPSIS

#include <sys/types.h>
#include <sys/stat.h>

int mkdir (const char *path, mode_t mode);

IMPLEMENTATION

All Cray Research systems

STANDARDS

POSIX, XPG4

DESCRIPTION

The mkdir system call creates a new directory. It accepts the following arguments:

path Names the new directory.

mode Provides the mode of the new directory. The protection part of the mode argument is modified by the
process’ mode mask (see umask(2)).

The owner ID of the new directory is set to the process’ real user ID. The group ID of the new directory is set
to the group ID of the parent directory. The newly created directory is empty, with the exception of entries for
"." and "..".

NOTES

The new directory is assigned the active security label of the process.

The active security label of the process must fall within the security label range of the file system in which the
directory is being created.

To be granted search permission to a component of the path prefix, the active security label of the process must
be greater than or equal to the security label of the component.

The process must be granted write permission to the parent directory via the security label.

To be granted write permission to the parent directory, the active security label of the process must equal the
security label of the parent directory.

A process with the effective privileges shown is granted the following abilities:

Privilege Description

PRIV_DAC_OVERRIDE The process is granted search permission to every component of the path prefix
via the permission bits and access control list.

MKDIR(2) MKDIR(2)

254 SR−2012 10.0

PRIV_DAC_OVERRIDE The process is granted write permission to the parent directory via the
permission bits and access control list.

PRIV_MAC_READ The calling process is granted search permission to every component of the path
prefix via the security label.

PRIV_MAC_WRITE The process is granted write permission to the parent directory via the security
label.

If the PRIV_SU configuration option is enabled, to every component of the path prefix. If the PRIV_SU
configuration option is enabled, the super user is granted write permission to the parent directory.

RETURN VALUES

If mkdir completes successfully, a value of 0 is returned; otherwise, a value of −1 is returned, and errno is
set to indicate the error.

ERRORS

The mkdir system call fails and no directory is created if one of the following error conditions occurs:

Error Code Description

EACCES Either a component of the path prefix denies search permission or write permission is
denied on the parent directory of the directory to be created.

EACCES Parent directory label is not equal to the active security label of the process.

EEXIST The specified file already exists.

EFAULT The path argument points outside the allocated address space of the process.

EFLNEQ Attempt was made to create a directory outside the bounds of the file system.

EFLNEQ The active security label of the process falls outside the range of the file system.

EIO An I/O error has occurred during access of the file system.

EMLINK The maximum number of links to the parent directory would be exceeded.

ENOENT A component of the path prefix does not exist.

ENOENT The path is longer than the maximum allowed.

ENOTDIR A component of the path prefix is not a directory.

EQACT A file or inode quota limit was reached for the current account ID.

EQGRP A file or inode quota limit was reached for the current group ID.

EQUSR A file or inode quota limit was reached for the current user ID.

EROFS The path prefix resides on a read-only file system.

MKDIR(2) MKDIR(2)

SR−2012 10.0 255

SEE ALSO

umask(2)

MKDIR(2) MKDIR(2)

256 SR−2012 10.0

NAME

mknod, mkfifo − Makes a directory or a special or regular file

SYNOPSIS

#include <unistd.h>

int mknod (char *path, int mode, int dev, long p0, long p1,...,p7);

#include <sys/types.h>
#include <sys/stat.h>

int mkfifo (const char *path, mode_t mode);

IMPLEMENTATION

All Cray Research systems

STANDARDS

POSIX, XPG4 (applies only to mkfifo)

DESCRIPTION

The mknod system call creates a file or directory. It accepts the following arguments:

path Names the new file or directory.

mode Specifies the mode of the new file. (Symbolic names for these constants exist in
<sys/stat.h>). The following are valid values for mode.

0170000 File type, as follows:

0010000 FIFO special file (named pipe)

0020000 Character special file

0040000 Directory

0060000 Block special file

0100000 Regular file

0120000 Offline file without data

0110000 Offline file with data

0004000 Set user ID on execution

0002000 Set group ID on execution

0000777 Access permissions, as follows:

0000400 Read by owner

0000200 Write by owner

MKNOD(2) MKNOD(2)

SR−2012 10.0 257

0000100 Execute (search on directory) by owner

0000070 Read, write, or execute (search) by group

0000007 Read, write, or execute (search) by others

dev Specifies a device.

If mode indicates a block or character special file, dev is a configuration-dependent
specification of a character or block I/O device.

If mode does not indicate a block special or character special device, dev is ignored.

p0,p1,...,p7 Specifies device-specific parameter words. These words give the operating system more
information about the device’s configuration.

The file’s owner ID is set to the effective user ID of the process. The file’s group ID is set to the group ID of
the parent directory.

Values of mode other than the preceding are undefined and should not be used. The low-order 9 bits of mode
are modified by the file mode creation mask of the process; all bits set in the mask are cleared. See umask(2).

Only a process with appropriate privilege can use this system call.

The file handle for an offline file created by the mknod system call has zero elements.

The mkfifo routine creates a new FIFO special file named by the path name to which path points. The file
permission bits of the new FIFO are initialized from mode. The low-order 9 bits of mode are modified by the
file mode creation mask of the process; all bits set in the mask are cleared. See umask(2). mkfifo sets the
file’s owner ID and group ID, following the same rules that mknod uses.

NOTES

The active security label of the calling process must fall within the security label range of the file system on
which the new node will reside.

If the FSETID_RESTRICT option is enabled, only a process with appropriate privilege can create set-user-ID
or set-group-ID files.

To be granted search permission to a component of the path prefix, the active security label of the process must
be greater than or equal to the security label of the component.

To be granted write permission to the parent directory, the active security label of the process must equal the
security label of the directory.

A process with the effective privileges shown is granted the following abilities:

Privilege Description

PRIV_ADMIN The process is allowed to use this system call.

PRIV_DAC_OVERRIDE The process is granted search permission to every component of the path prefix
via the permission bits and access control list.

MKNOD(2) MKNOD(2)

258 SR−2012 10.0

PRIV_DAC_OVERRIDE The process is granted write permission to the parent directory via the
permission bits and access control list.

PRIV_FSETID When the FSETID_RESTRICT option is enabled, the process is allowed to
create set-user-ID or set-group-ID files.

PRIV_MAC_READ The process is granted search permission to every component of the path prefix
via the security label.

PRIV_MAC_WRITE The process is granted write permission to the parent directory via the security
label.

PRIV_RESTART The process is allowed to create a restart file.

If the PRIV_SU configuration option is enabled, the super user or a process with the PERMBITS_MKNOD
permbit is allowed to use this system call. The super user is granted search permission to every component of
the path prefix and is granted write permission to the parent directory. The super user is allowed to create
restart files. If the PRIV_SU and FSETID_RESTRICT configuration options are enabled, the super user is
allowed to create set-user-ID and set-group-ID files.

RETURN VALUES

If mknod or mkfifo completes successfully, a value of 0 is returned; otherwise, a value of −1 is returned, and
errno is set to indicate the error.

ERRORS

The mknod or mkfifo system call fails and the new file is not created if one of the following error conditions
occurs:

Error Code Description

EACCES Search permission is denied for a component of the path prefix.

EACCES Write permission is denied to the parent directory.

EEXIST The specified file exists.

EFAULT The path argument points outside the allocated process address space.

EFLNEQ The active security label of the calling process does not fall within the range of the file
system on which the new file or directory will reside.

EINVAL The call contains an argument that is not valid. For example, an attempt was made to
create a file or directory on a symbolic link.

ENOENT A component of the path prefix does not exist.

ENOTDIR A component of the path prefix is not a directory.

EPERM The process does not have appropriate privilege to use this system call.

EROFS The directory in which the file is to be created is located on a read-only file system.

MKNOD(2) MKNOD(2)

SR−2012 10.0 259

FORTRAN EXTENSIONS

The mknod system call can be called from Fortran as a function:

CHARACTER*n path
INTEGER mode, dev, MKNOD, I
I = MKNOD (path, mode, dev)

Alternatively, mknod can be called from Fortran as a subroutine. In this case, the return value of the system
call is unavailable.

CHARACTER*n path
INTEGER mode, dev
CALL MKNOD (path, mode, dev)

The Fortran program must not specify both the subroutine call and the function reference to mknod from the
same procedure. On all Cray PVP systems except CRAY T90 systems, path may also be an integer variable.
In this case, the data must be packed 8 characters per word and terminated with a null (0) byte.

EXAMPLES

The following examples illustrate use of the mkfifo and mknod system calls.

Example 1: This mkfifo request creates a named pipe (that is, FIFO special file), called name_pipe with
the specified permissions:

if (mkfifo("name_pipe", 0640) == -1) {
perror("mkfifo failed");
exit(1);

}

Example 2: This example shows one of the applications for the mknod system call, the creation of a named
pipe (that is, FIFO special file). This mknod request creates a named pipe called name_pipe with the
specified permissions.

if (mknod("name_pipe", 010640) == -1) {
perror("mknod failed");
exit(1);

}

FILES

/usr/include/sys/stat.h Contains ANSI C prototype for the mkfifo system call

/usr/include/sys/types.h Contains data type definitions and definition for mode_t

/usr/include/unistd.h Contains C prototype for the mknod system call

MKNOD(2) MKNOD(2)

260 SR−2012 10.0

SEE ALSO

chmod(2), creat(2), exec(2), umask(2)

mkdir(1) in the UNICOS User Commands Reference Manual, Cray Research publication SR−2011

fs(5) in the UNICOS File Formats and Special Files Reference Manual, Cray Research publication SR−2014

MKNOD(2) MKNOD(2)

SR−2012 10.0 261

NAME

mount − Mounts a file system

SYNOPSIS

#include <sys/mount.h>

int mount (char *spec, char *fsname, char *dir, char *options, int flags,
int fstyp, char *data, int datalen);

IMPLEMENTATION

All Cray Research systems

DESCRIPTION

The mount system call requests that a removable file system contained on a block or character special file be
mounted on a directory as specified by the following arguments:

spec Points to the block or character special file’s path name. The spec argument may be a block special
file.

fsname Points to the file system full path name.

dir Points to the path name of the directory on which spec is to be mounted. On successful
completion, references to the dir file refer to the root directory on the mounted file system. The full
path must be specified.

options Points to the file system mount options. This is a comma-separated list of words from the -o
option on the mount(8) command.

flags Identifies the flag whose low-order bit controls write permission on the mounted file system. If the
bit is 1, writing is forbidden; otherwise, writing is permitted according to individual file
accessibility. The flags argument can contain three values, as defined in
/usr/include/sys/mount.h:

MS_RDONLY Read only.

MS_FSS The fstyp argument has meaning.

MS_DATA The data and datalen arguments have meaning. This flag is used by the NFS file
system type.

fstyp Specifies the file system type being mounted (see sysfs(2)). This field is interpreted only if the
MS_FSS flag is set.

data Points to file-system-specific mount information of size datalen. The data and datalen arguments
are interpreted only if MS_DATA is set in flags.

datalen Specifies size of mount information, as described in explanation of data pointer.

MOUNT(2) MOUNT(2)

262 SR−2012 10.0

Only an appropriately privileged process can use this system call.

NOTES

If the MLS_OBJ_RANGES configuration is enabled, the minimum and maximum security levels (with the
exception of the syslow and/or syshigh security levels) and the authorized compartments of a file system
must fall within the authorized ranges of the UNICOS system, otherwise the mount request fails.

File systems that have not been explicitly assigned a security label range (by using the labelit(8) or
mkfs(8) commands) are considered to have the security label range [level 0: none, level 0: none].

The mount point label of the file system must be less than or equal to the lowest label assigned to the file
system.

When the MLS_OBJ_RANGES option is set to SECURE, the security label range of the file system must fall
within the security label range of the UNICOS system.

To mount a file system with DEV_ENFORCE_ON set to ON, the device must be off or the minimum and
maximum security level of the file system must be within the minimum and maximum security levels
authorized for the device. Also, the authorized security compartments for the file system must be equal to or a
subset of the authorized compartments for the device, and the device must be labeled as multilevel.

A process is granted search permission to a component of the path prefix only if the active security label of the
process is greater than or equal to the security label of the component.

A process with the effective privileges shown is granted the following abilities:

Privilege Description

PRIV_ADMIN The process is allowed to use this system call.

PRIV_DAC_OVERRIDE The process is granted search permission to every component of the path prefix
via the permission bits and access control list.

PRIV_MAC_READ The process is granted search permission to every component of the path prefix
via the security label.

If the PRIV_SU configuration option is enabled, a super user is allowed to use this system call and is granted
search permission to every component of the path prefix.

RETURN VALUES

If mount completes successfully, a value of 0 is returned; otherwise, a value of −1 is returned, and errno is
set to indicate the error.

ERRORS

The mount system call fails if one of the following error conditions occurs:

Error Code Description

EACCES Search permission is denied for a component of the path prefix.

MOUNT(2) MOUNT(2)

SR−2012 10.0 263

EBUSY The device associated with spec is currently mounted.

EBUSY The dir argument is currently mounted, is someone’s current working directory, or is
otherwise busy.

EFAULT The spec or dir argument points outside the allocated process address space.

EINVAL The fstyp argument is not valid.

ENODEV The file system super-block device number does not match the block special device.

ENOENT Any of the specified files does not exist.

ENOEXEC The super block or dynamic block of the file system is corrupt.

ENOTDIR A component of a path prefix is not a directory.

ENOTDIR The dir argument is not a directory.

ENXIO The device associated with spec does not exist.

EPERM The process does not have appropriate privilege to use this system call.

ESYSLV The upper security level of the file system is greater than the upper security level of the
UNICOS system and is not the syshigh security label.

ESYSLV The lower security level of the file system is less than the lower security level of the
UNICOS system and is not the syslow security label.

ESYSLV A user with an active security level (nonzero) tried to mount a non-UNICOS file
system. This file system is treated as unclassified with lower and upper security levels
equal to 0.

ESYSLV The MLS_OBJ_RANGES option is enabled, and the authorized compartments of the
file system are not a subset of the authorized compartments for the UNICOS system.

ESYSLV The DEV_ENFORCE_ON option is enabled and the file system label is not within the
device label range.

ESYSLV The DEV_ENFORCE_ON option is enabled and the device is on, but not labeled as
multilevel.

FILES

/usr/include/sys/mount.h Mount structure

SEE ALSO

sysfs(2), umount(2)

libudb(3C) in the UNICOS System Libraries Reference Manual, Cray Research publication SR−2080

labelit(8), mkfs(8), mount(8) in the UNICOS Administrator Commands Reference Manual, Cray
Research publication SR−2022

MOUNT(2) MOUNT(2)

264 SR−2012 10.0

NAME

msgctl − Provides message control operations

SYNOPSIS

#include <sys/msg.h>

int msgctl (int msqid, int cmd, struct msqid_ds *buf);

IMPLEMENTATION

Cray PVP systems

STANDARDS

XPG4

DESCRIPTION

The msgctl system call provides a variety of message control operations. It accepts the following arguments:

msqid Specifies a message queue identifier.

cmd Specifies a message control operation. The following are valid cmd values.

IPC_STAT Places the current value of each member of the msqid_ds data structure
associated with msqid into the structure pointed to by buf. The contents of this
structure are defined in the sys/msg.h include file (see msg(5)). The calling
process must have read permission to the message queue associated with msqid.

IPC_SET Sets the value of the following members of the msqid_ds data structure
associated with msqid to the corresponding value found in the structure pointed
to by buf.

msg_perm.uid
msg_perm.gid
msg_perm.mode /* only access permission bits */
msg_qbytes

IPC_SET can be executed only by a process that has an effective user ID
equal to the value of msg_perm.cuid or msg_perm.uid in the
msqid_ds data structure associated with msqid. Only a process with the
appropriate privilege can raise the value of msg_qbytes.

IPC_RMID Removes the message queue identifier specified by msqid from the system and
destroys the message queue and msqid_ds data structure associated with it.
IPC_RMID can be executed only by a process that has an effective user ID
equal to the value of msg_perm.cuid or msg_perm.uid in the
msqid_ds data structure associated with msqid.

MSGCTL(2) MSGCTL(2)

SR−2012 10.0 265

IPC_SETACL (Secure systems only) Sets the access control list (ACL) on the message queue
specified by msqid. The ipc_perm structure within the msqid_ds structure
pointed to by buf contains a pointer, ipc_acl, to an acl_rec structure with
the required ACL entries, and a count of those entries, ipc_aclcount. If an
ACL exists for the message queue, it is replaced by the one provided with this
call. If ipc_aclcount is 0, any existing ACL is removed. The calling
process must be the owner of the message queue specified by msqid.

IPC_GETACL (Secure systems only) Retrieves the access control list (ACL) for the message
queue specified by msqid. The ipc_perm structure within the msqid_ds
structure pointed to by buf contains a pointer, ipc_acl, to an acl_rec
structure where the ACL entries are to be returned. The count of entries to be
returned is specified in the ipc_aclcount field. If there are more than
ipc_aclcount entries, only the first ipc_aclcount entry is returned. If
there are fewer than ipc_aclcount entries, all entries are returned. The
return value indicates the number of entries returned. If there is no ACL, the
return value is 0. The calling process must have read permission to the
message queue specified by msqid.

IPC_SETLABEL (Secure systems only) Sets the security label on the message queue specified by
msqid. The ipc_perm structure within the msqid_ds structure pointed to
by buf contains a security level, ipc_slevel, and a compartment set,
ipc_scomps, to be set in the security label on the message queue. Only a
process with the appropriate privilege can set the security label of a message
queue.

buf Points to a structure.

NOTES

A process is granted read permission to a message queue only if the active security label of the process is
greater than or equal to the security label of the message queue, and the process is granted read access by the
message queue access control list (ACL) (if one is assigned). This applies to the IPC_STAT and
IPC_GETACL operations.

The IPC_SET, IPC_RMID, and IPC_SETACL operations require that the active security label of the process
is equal to the security label of the message queue.

A process with the effective privileges shown is granted the following abilities:

Privilege Description

PRIV_MAC_READ The process is considered to meet the security label requirements
for being granted read permission to a message queue.

PRIV_MAC_WRITE The process is considered to meet the security label requirements
for performing an IPC_SET, IPC_RMID, or IPC_SETACL
operation.

MSGCTL(2) MSGCTL(2)

266 SR−2012 10.0

PRIV_DAC_OVERRIDE The process is considered to meet the permission mode and ACL
requirements for being granted read permission to a message queue.

PRIV_FOWNER The process is considered to meet the message queue ownership
requirements for the IPC_SET, IPC_RMID, and IPC_SETACL
operations. For the IPC_SET operation, the process is also
permitted to raise the value of msg_qbytes.

PRIV_MAC_UPGRADE The process is allowed to raise the security label of a message
queue.

PRIV_MAC_DOWNGRADE The process is allowed to lower the security label of a message
queue.

If the PRIV_SU configuration option is enabled, the super user is granted the same abilities as all effective
privileges shown previously. The super user is considered the owner of a message queue, and is granted read
permission to that message queue.

RETURN VALUES

If msgctl completes successfully, a value of 0 is returned; otherwise, a value of −1 is returned, and errno is
set to indicate the error.

ERRORS

The msgctl system call fails if one of the following error conditions occurs:

Error Code Description

EACCES The cmd argument is IPC_STAT, and the calling process does not have read
permission (see msg(5)).

EACCES The cmd argument is IPC_GETACL, and the calling process does not have read
permission.

EFAULT The buf argument points to an illegal address.

EFAULT The cmd argument is IPC_SETACL or IPC_GETACL and the ipc_acl field in buf
points to an illegal address.

EINVAL The msqid argument is not a valid message queue identifier.

EINVAL The cmd argument is not a valid command.

EINVAL The cmd argument is IPC_SET, and msg_perm.uid or msg_perm.gid is not
valid.

EINVAL The cmd argument is IPC_SETACL, and one of the following is true:
� The ipc_aclcount field in buf is 0, but there is no ACL associated with msqid.
	 The ipc_aclcount field in buf is less than 0 or greater than 256.

 The ACL supplied failed validation.

MSGCTL(2) MSGCTL(2)

SR−2012 10.0 267

ENOMEM The cmd argument is IPC_SETACL, and no memory is available to store the ACL.
The command should be retried at a later time.

EPERM The cmd argument is IPC_RMID or IPC_SET, and the effective user ID of the calling
process is not equal to the value of msg_perm.cuid or msg_perm.uid in the
msgid_ds data structure associated with msqid; the calling process does not have the
appropriate privilege.

EPERM The cmd argument is IPC_SET, an attempt is being made to increase to the value of
msg_qbytes, and the calling process does not have the appropriate privilege.

EPERM The cmd argument is IPC_SETLABEL, and the calling process does not have the
appropriate privilege.

EPERM The cmd argument is IPC_SETACL, and the calling process does not meet ownership
requirements and does not have the appropriate privilege.

FILES

/usr/include/sys/msg.h Contains message-related data structures and macros

SEE ALSO

msgget(2), msgrcv(2), msgsnd(2)

ipc(5), msg(5) in the UNICOS File Formats and Special Files Reference Manual, Cray Research publication
SR−2014

ipc(7) Online only

MSGCTL(2) MSGCTL(2)

268 SR−2012 10.0

NAME

msgget − Accesses the message queue

SYNOPSIS

#include <sys/msg.h>

int msgget (key_t key, int msgflg);

IMPLEMENTATION

Cray PVP systems

STANDARDS

XPG4

DESCRIPTION

The msgget system call returns the message queue identifier. It accepts the following arguments:

key Specifies the message queue.

msgflg Specifies a flag value.

A message queue identifier and associated message queue and data structure (see msg(5)) are created for key if
one of the following is true:

� key is IPC_PRIVATE.
� key does not already have a message queue identifier associated with it, and the value of

msgflg&IPC_CREAT is not 0.

Upon creation, the data structure associated with the new message queue identifier is initialized as follows:

msg_perm.cuid, msg_perm.uid, msg_perm.cgid, and msg_perm.gid are set to the effective
user ID and effective group ID, respectively, of the calling process.

� The access permission bits of msg_perm.mode are set to the access permission bits of msgflg.
�

msg_qnum, msg_lspid, msg_lrpid, msg_stime, and msg_rtime are set to 0.
�

msg_ctime is set to the current time.
�

msg_qbytes is set to the system limit.

NOTES

If the calling process has the ipc_persist permission bit, the message queue is created as a persistent
queue. Persistent message queues will not be removed from the system unless a msgctl(2) system call with
the command IPC_RMID, or an ipcrm(1) command, is performed on the queue.

MSGGET(2) MSGGET(2)

SR−2012 10.0 269

If the calling process does not have this permission bit, the message queue is linked into a list of nonpersistent
queues belonging to the session of which the process is a member. When the last process of the session
terminates, all the message queues linked to the session are removed from the system.

A process with the effective privileges shown is granted the following abilities:

Privilege Description

PRIV_RESOURCE The process is considered to have the ipc_persist permission bit.

If the PRIV_SU configuration option is enabled, the super user is granted the same abilities as all effective
privileges shown above. The super user is considered to have the ipc_persist permission bit.

RETURN VALUES

If msgget completes successfully, a nonnegative integer, namely a message queue identifier, is returned;
otherwise, a value of −1 is returned, and errno is set to indicate the error.

ERRORS

The msgget system call fails if one of the following error conditions occurs:

Error Code Description

EACCES A message queue identifier exists for key, but operation permission as specified by the
low-order 9 bits of msgflg would not be granted (see ipc(7)).

EEXIST A message queue identifier exists for key but the values of msgflg&IPC_CREAT and
msgflg&IPC_EXCL are both nonzero.

ENOENT A message queue identifier does not exist for key, and the value of
msgflg&IPC_CREAT is 0.

ENOSPC A message queue identifier is to be created, but the system-imposed limit on the
maximum number of allowed message queue identifiers system-wide would be
exceeded.

FILES

/usr/include/sys/msg.h Contains message-related data structures and macros

SEE ALSO

msgctl(2), msgrcv(2), msgsnd(2)

ipcrm(1), ipcs(1) in the UNICOS User Commands Reference Manual, Cray Research publication SR−2011

stdipc(3C) in the UNICOS System Libraries Reference Manual, Cray Research publication SR−2080

ipc(5), msg(5) in the UNICOS File Formats and Special Files Reference Manual, Cray Research publication
SR−2014

ipc(7) Online only

MSGGET(2) MSGGET(2)

270 SR−2012 10.0

NAME

msgrcv − Reads a message from a message queue

SYNOPSIS

#include <sys/msg.h>

int msgrcv (int msqid, void *msgp, size_t msgsz, long msgtyp, int msgflg);

IMPLEMENTATION

Cray PVP systems

STANDARDS

XPG4

DESCRIPTION

The msgrcv system call reads a message from the queue associated with the message queue identifier and
places it in the user-defined buffer. It accepts the following arguments:

msqid Specifies a message queue identifier.

msgp Points to a user-defined buffer.

This user-defined buffer must contain a message type field (of type long int) followed by the
data portion for the message text. The following structure is defined in the include file
sys/msg.h (see msg(5)):

struct msgbuf {
long int msgtype; /* message type */
char msgtext[1]; /* message text */

}

The structure member msgtype is the received message’s type, as specified by the sending
process. The structure member msgtext is the text of the message.

msgsz Specifies the size, in bytes, of msgtext. The received message is truncated to msgsz bytes if it is
larger than msgsz and the value of msgflg&MSG_NOERROR is not 0. The truncated part of the
message is lost; no indication of the truncation is given to the calling process.

msgtyp Specifies the type of message requested. The following are valid types.
� If msgtyp is 0, the first message on the queue is received.
� If msgtyp is greater than 0, the first message of type msgtyp is received.
� If msgtyp is less than 0, the first message of the lowest type that is less than or equal to the

absolute value of msgtyp is received.

MSGRCV(2) MSGRCV(2)

SR−2012 10.0 271

msgflg Specifies a flag value.
If a message of the desired type is not on the queue, msgflg identifies one of the following actions:

� If the value of msgflg&IPC_NOWAIT is not 0, the calling process returns immediately with a
return value of −1 and sets errno to ENOMSG.

� If the value of msgflg&IPC_NOWAIT is 0, the calling process suspends execution until one of
the following occurs:

− A message of the desired type is placed on the queue.

− The message queue identifier msqid is removed from the system. When this occurs, errno
is set to EIDRM, and a value of −1 is returned.

− The calling process receives a signal that is to be caught. In this case, a message is not
received and the calling process resumes execution in the manner prescribed in
sigaction(2).

Upon successful completion, the data structure associated with msqid (see msg(5)) is changed as follows:
�

msg_qnum is decremented by 1.
�

msg_lrpid is set to the process ID of the calling process.
�

msg_rtime is set to the current time.

NOTES

A process is granted read permission to a message queue only if the active security label of the process is
greater than or equal to the security label of the message queue, and the process is granted read access by the
message queue access control list (ACL) (if one is assigned).

A process with the effective privileges shown is granted the following abilities:

Privilege Description

PRIV_MAC_READ The process is considered to meet the security label requirements for
being granted read permission to a message queue.

PRIV_DAC_OVERRIDE The process is considered to meet the permission mode and ACL
requirements for being granted read permission to a message queue.

If the PRIV_SU configuration option is enabled, the super user is granted the same abilities as all effective
privileges shown above. The super user is granted read permission to a message queue.

RETURN VALUES

If msgrcv completes successfully, a value that indicates the number of bytes actually placed in the msgtext
buffer is returned. Otherwise, a value of −1 is returned, and errno is set to indicate the error; no message is
received.

MSGRCV(2) MSGRCV(2)

272 SR−2012 10.0

ERRORS

The msgrcv system call fails and receives no message if one of the following error conditions occurs:

Error Code Description

E2BIG The value of msgtext is greater than msgsz, and msgflg&MSG_NOERROR is equal to 0.

EACCES Operation permission is denied to the calling process (see msg(5)).

EFAULT msgp points to an illegal address.

EIDRM The message queue identifier msqid is removed from the system.

EINTR The msgrcv system call was interrupted by a signal.

EINVAL msqid is not a valid message queue identifier.

EINVAL msgsz is less than 0.

ENOMSG The queue does not contain a message of the desired type, and msgtyp&IPC_NOWAIT
is not 0.

FILES

/usr/include/sys/msg.h Contains message-related data structures and macros

SEE ALSO

msgctl(2), msgget(2), msgsnd(2), sigaction(2)

ipc(5), msg(5) in the UNICOS File Formats and Special Files Reference Manual, Cray Research publication
SR−2014

ipc(7) Online only

MSGRCV(2) MSGRCV(2)

SR−2012 10.0 273

NAME

msgsnd − Sends a message to a message queue

SYNOPSIS

#include <sys/msg.h>

int msgsnd (int msqid, const void *msgp, size_t msgsz, int msgflg);

IMPLEMENTATION

Cray PVP systems

STANDARDS

XPG4

DESCRIPTION

The msgsnd system call sends a message to the queue associated with the message queue identifier. It accepts
the following arguments:

msqid Specifies a message queue identifier.

msgp Points to a user-defined buffer. It must contain a message type field (of type long int) followed
by a data portion for the message text. The following structure is defined in the include file
sys/msg.h (see msg(5)):

struct msgbuf {
long msgtype; /* message type */
char msgtext[]; /* message text */

}

The structure member msgtype is a positive integer that can be used by the receiving process for
message selection.

msgsz Specifies the length of msgtext in the number bytes. msgsz can range from 0 to a
system-imposed maximum.

msgflg Specifies the action to be taken if the message cannot be immediately processed. msgflg specifies
the action to be taken if one or more of the following are true and thus prevents the message from
being immediately processed:

� The number of bytes already on the queue is equal to msg_qbytes (see msg(5)).
� The total number of messages on all queues system-wide is equal to the system-imposed limit.

The following actions are available:
� If msgflg&IPC_NOWAIT is not 0, the message is not sent and the calling process returns

immediately.

MSGSND(2) MSGSND(2)

274 SR−2012 10.0

� If msgflg&IPC_NOWAIT is 0, the calling process suspends execution until one of the following
occurs:

− The condition responsible for the suspension no longer exists. In this case, the message is
sent.

− The message queue identifier msqid is removed from the system (see msgctl(2)). When
this occurs, errno is set to EIDRM, and a value of −1 is returned.

− The calling process receives a signal that is to be caught. In this case, the message is not
sent and the calling process resumes execution in the manner prescribed in the
sigaction(2) system call.

Upon successful completion, the data structure associated with msqid (see msg(5)) is changed as follows:
�

msg_qnum is incremented by 1.
�

msg_lspid is set to the process ID of the calling process.

msg_stime is set to the current time.

NOTES

A process is granted write permission to a message queue only if the active security label of the process is equal
to the security label of the message queue, and the process is granted write access by the message queue access
control list (ACL) (if one is assigned).

A process with the effective privileges shown is granted the following abilities:

Privilege Description

PRIV_MAC_WRITE The process is considered to meet the security label requirements for
being granted write permission to a message queue.

PRIV_DAC_OVERRIDE The process is considered to meet the permission mode and ACL
requirements for being granted write permission to a message queue.

If the PRIV_SU configuration option is enabled, the super user is granted the same abilities as all effective
privileges shown above. The super user is granted write permission to a message queue.

RETURN VALUES

If msgsnd completes successfully, a value of 0 is returned; otherwise, a value of −1 is returned, and errno is
set to indicate the error, and no message is sent.

ERRORS

The msgsnd system call fails and sends no message if one of the following error conditions occurs:

Error Code Description

EACCES Operation permission is denied to the calling process (see ipc(7)).

MSGSND(2) MSGSND(2)

SR−2012 10.0 275

EAGAIN The message cannot be sent for one of the reasons cited in the DESCRIPTION section,
and msgflg&IPC_NOWAIT is not 0.

EFAULT msgp points to an illegal address.

EIDRM The message queue identifier msqid is removed from the system.

EINTR The msgsnd system call was interrupted by a signal.

EINVAL The value of msqid is not a valid message queue identifier.

EINVAL The value of msgtype is less than 1.

EINVAL The value of msgsz is less than 0 or greater than the system-imposed limit.

FILES

/usr/include/sys/msg.h Contains message-related data structures and macros

SEE ALSO

msgctl(2), msgget(2), msgrcv(2), sigaction(2)

ipc(5), msg(5) in the UNICOS File Formats and Special Files Reference Manual, Cray Research publication
SR−2014

ipc(7) Online only

MSGSND(2) MSGSND(2)

276 SR−2012 10.0

NAME

mtimes − Provides multitasking execution overlap profile

SYNOPSIS

#include <sys/types.h>
#include <sys/mtimes.h>

struct mtms *mtimes (struct mtms *buf);

IMPLEMENTATION

Cray PVP systems

DESCRIPTION

The mtimes system call lets users have a structure in user memory continually updated with multitasking
execution overlap information. (This is the same information that appears in accounting records for
multitasking programs.) From this mtms structure, users can determine how much execution time the
multitasking program has accumulated in an interval.

The mtimes system call accepts the following argument:

buf Specifies the address of the structure to receive the data. If the address is 0, the structure will no
longer be updated.

The mtms structure contains the following members:

time_t mtms_update; /* Time of last update */
short mtms_conn; /* # of cpus presently connected */
time_t mtms_mutime[NCPU]; /* Multitask cpu utilization */

Update of the structure stops if one of the following occurs:
! The process shrinks, placing the structure outside the program’s address space.
" An exec(2) system call is executed.

NOTES

The times in the mtms structure refer to the period since the multitasking group began execution, not to the
period since the invocation of the mtimes call.

Monitoring the mtms structure at the user level is somewhat tricky because the operating system running in
another CPU may be updating it at the same time.

MTIMES(2) MTIMES(2)

SR−2012 10.0 277

RETURN VALUES

The mtimes system call returns the address of the mtms structure. If the value returned is 0, the feature is
disabled; otherwise, a value of −1 is returned, and errno is set to indicate the error.

ERRORS

The mtimes system call fails if the following error condition occurs:

Error Code Description

EFAULT The buf argument points outside the program’s address space.

SEE ALSO

exec(2)

MTIMESX(3F), MTTIMES(3F) in the UNICOS System Libraries Reference Manual, Cray Research publication
SR−2080

SECOND(3F) in the Application Programmer’s Library Reference Manual, Cray Research publication SR−2165

MTIMES(2) MTIMES(2)

278 SR−2012 10.0

NAME

newarraysess − Starts a new array session

SYNOPSIS

#include <unistd.h>

int newarraysess (void);

IMPLEMENTATION

IRIX and UNICOS systems

DESCRIPTION

The newarraysess system call creates a new array session and moves the current process from its original
array session to the new one. The parents, children, and siblings of the current process are not affected by this
move and remain in their original array sessions.

The system generates a handle for the new array session. Normally, the new handle is guaranteed to be unique
on the current system only, although some systems may be able to assign global array session handles that are
unique across an entire array of systems by setting the asmachid system variable. Otherwise, the range of
values that the system may assign for array session handles is defined by the system variables minash and
maxash. If necessary, the setash(2) system call can be used to override the default handle after the array
session has been created.

Ordinarily, a new array session should be started whenever the conceptual equivalent of a login is performed.
This includes programs that do conventional logins (for example, login(1) or telnet(1B)), as well as
programs that are essentially logging in to do work on behalf of another user, such as cron(8) or batch
queueing systems.

RETURN VALUES

If newarraysess completes successfully, a value of 0 is returned; otherwise, a value of -1 is returned, and
errno is set to indicate the error.

ERRORS

The newarraysess system call fails if the following condition occurs:

Error Code Description

ENOMEM The system is unable to allocate memory or other resources for the new array session.

NEWARRAYSESS(2) NEWARRAYSESS(2)

SR−2012 10.0 279

SEE ALSO

setash(2)

login(1), telnet(1B) in the UNICOS User Commands Reference Manual, Cray Research publication
SR−2011

array_services(7), array_sessions(7),

cron(8) in the UNICOS Administrator Commands Reference Manual, Cray Research publication SR−2022

NEWARRAYSESS(2) NEWARRAYSESS(2)

280 SR−2012 10.0

NAME

nice, nicem − Changes priority of processes

SYNOPSIS

#include <unistd.h>

int nice (int incr);

#include <sys/category.h>
#include <unistd.h>

int nicem (int category, int id, int incr);

IMPLEMENTATION

All Cray Research systems

STANDARDS

POSIX, XPG4 (applies only to nice)

DESCRIPTION

The nice system call adds a specified value to the nice value of the calling process. A process’ nice value is a
positive number for which a greater value results in lower CPU priority. Only an appropriately privileged
process can specify a negative incr.

Only an appropriately privileged process can set the nice value for a process that it does not own.

The system imposes a maximum nice value of 39 and a minimum nice value of 0. When values above or below
these limits are requested, the nice value will be set to the corresponding limit.

The nicem system call changes the nice value of a process or group of processes as specified by the following
arguments:

category Specifies a category. The following are valid values for category: C_PROC, C_PGRP, C_JOB,
or C_UID.

id Specifies the pid, pgrp, jid, or uid corresponding to category. A pid of 0 means the current
process, a pgrp of 0 means the current process group, a jid of 0 means the current job, and a uid
of 0 means the current user.

incr Specifies the value to be added to the nice value of the calling process.

NOTES

The active security label of the process must be greater than or equal to the security label of every affected
process.

NICE(2) NICE(2)

SR−2012 10.0 281

To set a nice value, the active security label of the process must equal the security label of every affected
process.

A process with the effective privileges shown is granted the following abilities:

Privilege Description

PRIV_MAC_READ The active security label of the process is considered to be greater than or equal to the
security label of all affected processes.

PRIV_MAC_WRITE The active security label of the process is considered to equal the security label of all
affected processes.

PRIV_POWNER The process is considered the owner of all affected processes.

PRIV_RESOURCE The process is allowed to specify a negative value for incr.

If the PRIV_SU configuration option is enabled, and is allowed to specify a negative value for incr. If the
PRIV_SU configuration option is enabled, the super user overrides all security label restrictions.

RETURN VALUES

When nice completes successfully, it returns the new nice value minus 20 (−20 <= return <= 19), and errno
is never set. When nicem completes successfully, it returns the new nice value unchanged
(0 <= return <= 39). Otherwise a value of −1 is returned, and errno is set to indicate the error.

ERRORS

The nice or nicem system call fails if one of the following error conditions occurs:

Error Code Description

EINVAL One of the arguments contains an invalid value.

EPERM The process specified a negative value for incr and does not have appropriate
privilege.

EPERM The process does not own all affected processes and does not have appropriate
privilege.

ESRCH No process can be found to match the category and id requests.

FORTRAN EXTENSIONS

The nice system call can be called from Fortran as a function:

INTEGER incr, NICE, I
I = NICE (incr)

The nicem system call can be called from Fortran as a function:

INTEGER category, id, incr, NICEM, I
I = NICEM (category, id, incr)

NICE(2) NICE(2)

282 SR−2012 10.0

EXAMPLES

This example illustrates how the nice and nicem system calls can change the nice value of a process and
thereby affect the CPU priority of the process. The following nice and nicem requests return the current
nice value of the calling process and increase the nice value to lower the CPU priority of the process. The
current nice value returned by nice is offset by a factor of −20.

Only users with super-user status can lower the nice value of a process and thereby raise the CPU priority.

#include <sys/category.h>
#include <unistd.h>

main()
{

int i;

printf("Current nice value from nice(2) = %d\n", nice(0));
printf("Current nice value from nicem(2) = %d\n", nicem(C_PROC, 0, 0));

if ((i = nicem(C_PROC, 0, 5)) == -1)
perror("nicem (+incr) failed");

else
printf("New nice value = %d\n", i);

if ((i = nicem(C_PROC, 0, -5)) == -1) /* for non-superusers - */
perror("nicem (-incr) failed"); /* always fails */

else
printf("New nice value = %d\n", i);

}

FILES

/usr/include/unistd.h Contains C prototype for the nice and nicem system calls

SEE ALSO

exec(2)

nice(1), renice(1) in the UNICOS User Commands Reference Manual, Cray Research publication SR−2011

passwd(5) in the UNICOS File Formats and Special Files Reference Manual, Cray Research publication
SR−2014

NICE(2) NICE(2)

SR−2012 10.0 283

NAME

nsecctl − Accesses or manipulates network security information

SYNOPSIS

#include <net/nsecctl.h>
#include <net/al.h>

int nsecctl (int op, caddr_t entry, struct al_addr *addr_list, int num);

IMPLEMENTATION

Cray PVP systems

DESCRIPTION

The nsecctl system call manipulates and accesses network security information stored in the kernel.

It accepts the following arguments:

op Specifies the operation to be performed. A version number is built into the upper halfword of
the operation. The following operations are valid:

NALM_ADD Adds one or more network access list (NAL) entries.

NALM_DELETE Deletes a NAL entry.

NALM_RESOLVE Gets a NAL entry.

WALM_ADD Adds one or more workstation access list (WAL) entries.

WALM_DELETE Deletes a WAL entry.

WALM_RESOLVE Gets a WAL entry.

WALM_CHECK Checks the access for a given WAL entry.

MAPM_ADD Adds a map.

MAPM_DELETE Deletes a map.

entry Specifies the address of a structure, the type of which depends on op. For NAL operations, this
is a pointer to a struct nalentry. For WAL operations, this is a pointer to a struct
walentry. For map operations, this is a pointer to a struct ipso_map.

On calls in which a walentry or nalentry is expected back, the resultant information is
placed at this address.

NSECCTL(2) NSECCTL(2)

284 SR−2012 10.0

addr_list Specifies a pointer to an array of al_addr structures. These specify either the host or network
addresses described by the NAL or WAL entry. This argument is ignored for map operations.

For NAL and WAL operations, this array is copied to the calling process upon completion of the
operation. If an error occurs in an add or delete operation for a NAL or a WAL entry, the error
number appears in the upper halfword of the al_flags field for that element of the al_addr
list. More than one element of the list can result in an error. Elements of the list for which an
error does not appear have been processed (added or deleted) successfully, except in cases where
errno is set to EACCES, ENOBUFS, or EINVAL.

num Specifies the number of entries in the al_addr list. This argument is ignored for map
operations.

NOTES

The calling process must have PRIV_ADMIN effective privilege.

RETURN VALUES

If nsecctl completes successfully, a value of 0 is returned; otherwise, a value of −1 is returned, and errno
is set to indicate the error.

If all elements of NAL and WAL multiple address requests are processed successfully, a value of 0 is returned.
If an error occurs for any element, a value of -1 is returned, and errno is set to indicate the last error
encountered.

ERRORS

The nsecctl system call fails if one of the following error conditions occurs:

Error code Description

EACCES The calling process did not have PRIV_ADMIN effective privilege. No list elements
were processed.

EEXIST An attempt was made to add an entry that already exists.

EINVAL The argument specified was not valid, or the calling process was not built with the
correct version of nsecctl.h. No list elements were processed.

ENOBUFS No buffer space is available. No list elements were processed.

ESRCH An attempt was made to delete or to resolve an entry that does not exist.

For an nsecctl call involving multiple addresses, each element that results in an error is processed if
possible, or else has the error number in the upper halfword of the al_flags field for that element of the
al_addr list.

NSECCTL(2) NSECCTL(2)

SR−2012 10.0 285

FILES

usr/include/net/al.h Header file for address list al_addr structure

/usr/include/net/map.h Header file for ipso_map structure

/usr/include/net/nal.h Header file for nalentry structure

/usr/include/net/nsecctl.h Header file for nsecctl requests

/usr/include/net/wal.h Header file for walentry structure

SEE ALSO

spnet(8) in the UNICOS Administrator Commands Reference Manual, Cray Research publication SR−2022

NSECCTL(2) NSECCTL(2)

286 SR−2012 10.0

NAME

open − Opens a file for reading or writing

SYNOPSIS

#include <fcntl.h>

int open (const char *path, int oflag [,mode_t mode] [,long cbits]
[,int cblks]);

IMPLEMENTATION

All Cray Research systems

STANDARDS

POSIX, XPG4

DESCRIPTION

The open system call opens a file descriptor and sets the file status flags according to the value of the following
arguments:

path Points to a path name of a file.

oflag Specifies status flags. These are constructed by flags from the following list. Only one of the first
three flags may be used.

O_RDONLY If set, opens file for reading only.

O_WRONLY If set, opens file for writing only. To append a file, see the O_APPEND flag.

O_RDWR If set, opens file for reading and writing.

O_RAW If set, reads or writes whole sectors of data into user space, bypassing system
buffers. Usually, the system does automatic read-ahead and write-behind to
improve performance. Use of O_RAW does not imply O_LDRAW.

O_LDRAW When used in conjunction with O_RAW, I/O bypasses logical device cache as
well as system buffer cache. Use of O_LDRAW does not imply O_RAW.

O_NDELAY If set, affects subsequent reads and writes (see read(2) and write(2)).

When opening a FIFO special file (named pipe) with the O_RDONLY or
O_WRONLY flag set, the O_NDELAY flag results in the following actions:

If O_NDELAY is set, an open for reading-only returns without delay. An
open for writing-only returns an error if no process currently has the file
open for reading.

OPEN(2) OPEN(2)

SR−2012 10.0 287

$ If O_NDELAY is clear, an open for reading-only blocks until a process
opens the file for writing. An open for writing-only blocks until a process
opens the file for reading.

When opening a file associated with a communication line, the O_RDONLY
flag results in the following actions:

% If O_NDELAY is set, the open returns without waiting for a carrier.
& If O_NDELAY is clear, the open blocks until a carrier is present.

O_NONBLOCK With pipes, functions like O_NDELAY, but eliminates the ambiguity of 0 bytes
transferred, which means both end-of-file and no data available.

When the O_NDELAY flag is used while opening a pipe and a read from the
pipe is performed, if the read returns a 0 value, the user’s program cannot
determine whether this situation means an end-of-file condition or whether
there is no data currently in the pipe to read since a return value of 0 can
indicate either condition.

When the O_NONBLOCK flag is used while opening a pipe and a read from
the pipe is performed, if an end-of-file condition is encountered, the read
returns a value of 0. If there is simply no data in the pipe to read, the read
returns a value of −1.

When the O_NONBLOCK flag is used while opening a migrated file (file type
IFOFL or IFOFD), the open does not block waiting for the file to be recalled
from offline media. The open will return a value of −1 and set errno to
EDMNBLK while the recall of the file from the media is in progress.
Subsequent open calls with this flag will continue to return with this status
until the file is fully recalled, at which point the open proceeds normally.

O_NOCTTY If used while opening a terminal device, open does not cause the terminal
device to become the controlling terminal for the process.

O_BIG Allows a user to specify that a file is big when it is created, rather than wait
for the file to grow large enough for the system to categorize it as big.

The BIGFILE parameter (defined in the header file sys/param.h)
specifies the size in bytes past which a file is considered big.

File space, when allocated, comes from the secondary partition area (see
mkfs(8)), if such an area is defined.

O_APPEND If set, the file pointer is set to the end of the file before each write. In
addition, the file must be open for writing; see O_RDWR and O_WRONLY.

OPEN(2) OPEN(2)

288 SR−2012 10.0

O_CREAT This option requires a third argument, mode, which is of type mode_t. If the
file specified by path exists, this flag has no effect, except as noted under
O_EXCL in the following. Otherwise, the file is created; the file’s user ID is
set to the effective user ID of the process, the file’s group ID is set to the
group ID of the directory in which the file is created, and the low-order 12 bits
of the file mode are set to the value of mode, modified as follows (see
creat(2)): all bits set in the process’ file mode creation mask are cleared
(see umask(2)).

O_TRUNC If the file exists, its length is truncated to 0, and the mode and owner are
unchanged.

O_EXCL If O_EXCL and O_CREAT are set, open fails if the file exists.

O_PLACE If the file specified by path exists, this flag has no effect; otherwise, the
cbits and cblks parameters, if passed, are used to establish file system
partition residency and the number of blocks allocated in each partition.

Multiple set bits indicate that the file is to be striped on the specified
partitions.

O_RESTART If O_RESTART and O_CREAT and the process has appropriate privilege, the
file is created as a restart file (see restart(2) and chkpnt(2)).

O_SSD If O_SSD is set, all subsequent I/O is done from the users’ secondary data
segment (SDS) memory instead of main memory. The I/O is done with the
backdoor channel on the IOS if it is configured, or else it uses the sidedoor
(which is a backdoor software emulator) (Cray PVP systems except for
CRAY EL series, CRAY J90 series, and CRAY T90 series).

Addresses passed on the I/O requests are interpreted as word addresses
relative to the beginning of the process’ SDS field length (see ssbreak(2)).
The addresses must be on a 512-word boundary.

The count passed is still a byte count, but it must be a multiple of 4096 bytes.

This flag is not supported across NFS-mounted file systems. If the O_SSD
flag is used to open a file accessed via NFS, the EINVAL error code is
returned.

O_SYNC When a regular file is opened, this flag affects subsequent writes. If set, each
write(2) waits for both the file data and file status to be physically updated.

OPEN(2) OPEN(2)

SR−2012 10.0 289

O_T3D This flag controls memory usage when the high-speed (HISP) channel
connects the I/O subsystem (IOS) and CRAY T3D system. If the O_T3D flag
is set, all subsequent I/O is performed from the user’s CRAY T3D memory
instead of secondary data segments (SDS) or the main memory of the Cray
host computer system. The I/O is done via backdoor channel on the IOS only.
Sidedoor (which is a backdoor software emulator) is not supported.

Addresses passed on the I/O requests are interpreted as CRAY T3D memory
addresses.

The count passed is still a byte count but must be a multiple of disk sector size
of the referenced device.

O_WELLFORMED Used with O_RAW to force read and write requests that are not well-formed to
fail. If ill-formed I/O requests are not specified with O_RAW, they are
buffered without any notification to the user.

O_SFS_DEFER_TM
This flag is valid only for shared file systems (SFSs). It can reduce file system
overhead by declaring to the UNICOS kernel that updates to file inode time
stamps may be done less frequently than they otherwise would. If it is not
critical to the application that the time stamps returned by the stat or
fstat system calls be highly accurate, then setting this flag on very active
files is advisable. The number of inode updates to media is reduced, which
implies a reduction in overhead and a corresponding increase in performance.

O_SFSXOP This flag grants exclusive open lock on an SFS file system.
On return from the open the user process is guaranteed that no other process
in the SFS cluster has this file open. While that process owns the open lock,
the process may execute an unlink(2) system call on the file, thus causing
all other pending open calls for this file to fail with an ENOENT error. If a
process tries to open a file without the O_SFSXOP flag when the file is
already open by another process with an exclusive open lock, the resulting
behavior is determined by the presence or absence of either the O_NDELAY or
the O_NONBLOCK flags. If either is set on the attempted open, the open will
fail with EAGAIN. If neither flag is set, the process will sleep until the file has
been closed by all other processes on all machines. If the same process opens
a file with the exclusive open flag, and then attempts a subsequent non-
exclusive open, the second open attempt will fail with EDEADLK.

mode Sets the bit pattern denoting the file’s access permission. The following are valid patterns.

04000 Sets user ID on execution.

020#0 Sets group ID on execution if # is 7, 5, 3, or 1. Enables mandatory file or record
locking if the file is an ordinary file and # is 6, 4, 2, or 0.

00400 Reads by owner.

OPEN(2) OPEN(2)

290 SR−2012 10.0

00200 Writes by owner.

00100 Executes (or searches if a directory) by owner.

00070 Reads, writes, and executes (searches) by group.

00007 Reads, writes, and executes (searches) by others.

cbits Specifies the bits of the cbits argument correspond (starting with 2ˆ0 or the rightmost bit in the
argument) in the file system. Multiple set bits indicate that the file is to be striped on the specified
partitions. O_PLACE and O_CREAT must be set if cbits is passed as an argument to open().

If the file system uses primary and secondary partitions, you should not specify any cbits bits for
the primary partitions. The file system uses the primary partitions to hold file system metadata (that
is, inodes and directories) and the data for small files; it uses the secondary partitions to hold data
for large files. If cbits bits are specified for primary partitions, those partitions may fill up and thus
prevent the file system from creating any new files.

The primary partitions are always the first partitions in a file system. For example, if a file system
has 2 primary partitions and 8 secondary partitions, partitions 0 and 1 are primary, and partitions 2
through 9 are secondary.

In a C program, you can use the statfs(2) system call to identify the primary and secondary
partitions. The df(1) command with the -p option can be used to identify the primary and
secondary partitions.

cblks Specifies the number of 512-word blocks allocated in each partition (as specified in cbits per
stripe). This number is rounded up to the nearest multiple of the sector size. O_PLACE and
O_CREAT must be set if cblks is passed as an argument to open().

The file pointer used to mark the current position within the file is set to the beginning of the file.

The new file descriptor is set to remain open across exec(2) system calls. See fcntl(2).

No process may have more than OPEN_MAX file descriptors open simultaneously.

To ensure that data is written to disk immediately, either the O_SYNC flag or both the O_RAW and the
O_LDRAW flags should be used.

NOTES

Only a process with appropriate privilege can create a restart file.

Only a process with appropriate privilege can open restricted devices.

If the file has an access control list (ACL), users who are not the file owner have permissions checked with
respect to the access control list. Users who are not affected by entries in the access control list have
permissions checked with respect to the other mode bits.

OPEN(2) OPEN(2)

SR−2012 10.0 291

Permission to the file is also based on a comparison between the active security label of the process and the
security label of the file. These comparisons are summarized as follows:

' For read or execute permission, the active security label of the process must dominate the security label of
the file.

(For write permission, the active security label of the process must equal the security label of the file.
) For read permission to pipes, the active security label of the process must be equal to the security label of the

file if the SECURE_PIPE configuration option is enabled; otherwise, the active security label of the process
must dominate the security label of the file.

If the file is a labeled device, the active security label of the process must fall within the security label range of
the device.

Only appropriately authorized users are granted permission to files that are in the OFF state or that are
multilevel.

The process must be granted search permission to every component of the path prefix via the permission bits
and access control list. The process must be granted search permission to every component of the path prefix
via the security label.

If FSETID_RESTRICT is enabled, only processes with appropriate privileges can be granted write permission
to set-user-ID or set-group-ID files.

To create a file, the calling process must have write permission to the file’s parent directory via the permission
bits and access control list. To create a file, the calling process must have write permission to the file’s parent
directory via the security label.

To create a file, the process must specify a file system that has been labeled as secure. The active security label
of the process must fall with the security label range of the file system.

A process with the effective privileges shown are granted the following abilities:

Privilege Description

PRIV_DAC_OVERRIDE The process is granted search permission to every component of the path prefix
via the permission bits and access control list.

PRIV_DAC_OVERRIDE The process is granted read, execute, or write permission to the file via the
permission bits and access control list.

PRIV_FSETID If FSETID_RESTRICT is enabled, the process is granted write permission to
the set-user-ID or set-group-ID file or is allowed to create a set-user-ID or
set-group-ID file.

PRIV_IO The process is allowed to open restricted devices.

PRIV_MAC_READ The process is granted search permission to every component of the path prefix
via the security label.

PRIV_MAC_READ The process is granted read or execute permission to the file via the security
label.

OPEN(2) OPEN(2)

292 SR−2012 10.0

PRIV_MAC_WRITE The process is granted write permission to the file via the security label. For file
creation, the process is granted write permission to the file’s parent directory via
the security label.

PRIV_RESTART The process is allowed to create a restart file.

If the PRIV_SU configuration option is enabled, the super user is granted search permission to every
component of the path prefix and is granted read, execute, or write permission to the file. The super user is
allowed to create a restart file. The super user or a process with the suidgid permission can override the
restriction enabled by the FSETID_RESTRICT system configuration option. The super user is allowed to
open restricted devices.

RETURN VALUES

Upon successful completion of open, the file descriptor is returned; otherwise, a value of −1 is returned, and
errno is set to indicate the error.

ERRORS

The open system call fails to open the specified file if one of the following error conditions occurs:

Error Code Description

EACCES A component of the path prefix denies search permission.

EACCES The oflag permission is denied for the specified file.

EACCES The file is in the OFF state and the calling process does not have appropriate privilege.

EACCES The file is a multilevel file and the calling process does not have appropriate privilege.

EACCES The security label of the file does not allow the requested access.

EACCES If the FSETID_RESTRICT and PRIV_SU configuration options are enabled, the
process does not have appropriate privilege to gain write permission to the set-user-ID
or set-group-ID file.

EACCES The tape device file does not reside in directory /dev/tape, is a diagnostic device,
or the device is not configured down.

EAGAIN The file exists, mandatory file and record locking is set, and there are outstanding
record locks on the file (see chmod(2)).

EBUSY Device is already open.

EDMNBLK O_NONBLOCK is set and the specified file is migrated offline.

EDMOFF The specified file is offline, and the data migration facility is not configured in the
system.

EEXIST O_CREAT and O_EXCL are set, and the specified file exists.

EFAULT The path argument points outside the allocated process address space.

OPEN(2) OPEN(2)

SR−2012 10.0 293

EFLNEQ The active security label of the process falls outside the security label range of the
specified file system.

EFSNOTEXCL The caller is attempting to open a file with O_EXCL, and other processes have the file
open.

EINTR A signal was caught during the open system call.

EINTR The open system call was interrupted.

EINVAL O_APPEND was specified in oflag, and the file to be opened is a process in the /proc
file system.

EINVAL O_SSD was used to open a file accessed via NFS.

EISDIR The specified file is a directory, and oflag is write or read and write.

EMANDV The security label range of a device does not allow the requested access.

EMFILE OPEN_MAX file descriptors are currently open.

ENOENT O_CREAT is not set, and the specified file does not exist.

ENOTDIR A component of the path prefix is not a directory.

ENXIO The specified file is a character special or block special file, and the device associated
with this special file does not exist.

ENXIO O_NDELAY is set, the specified file is a FIFO special file, O_WRONLY is set, and no
process has the file open for reading.

EOFFLIN The specified file is offline, and automatic file retrieval is disabled.

EOFLNDD The specified file is offline, and the data management daemon is not currently
executing.

EOFLNNR The specified file is offline, and it is currently unretrievable.

EPERM O_CREAT and O_RESTART are set, and the effective user ID of the caller is not super
user.

EPERM The caller does not have appropriate privilege to open a restricted device.

EQACT A file or inode quota limit was reached for the current account ID.

EQGRP A file or inode quota limit was reached for the current group ID.

EQUSR A file or inode quota limit was reached for the current user ID.

EROFS The specified file resides on a read-only file system, and oflag is write or read and
write.

ESYSLV The specified file system has not been labeled as a secure file system.

ETPDCNF The tape subsystem has not been configured.

ETPD_BAD_REQT There is no path to the device.

OPEN(2) OPEN(2)

294 SR−2012 10.0

ETXTBSY The text file is busy.

FORTRAN EXTENSIONS

The open system call can be called from Fortran as a function (on all systems except Cray MPP systems and
CRAY T90 series systems):

CHARACTER*n path
INTEGER oflag, mode, OPEN, I
I = OPEN (path, oflag, mode)

The path argument may also be an integer variable. In this case, the data must be packed 8 characters per word
and terminated with a null (0) byte. The PXFOPEN(3F) subroutine provides similar functionality and is
available on all Cray Research systems.

EXAMPLES

The following examples illustrate different uses of the open system call.

Example 1: This file, specified by its full path name, is opened for reading only and uses the default buffered
I/O. That is, data passes through the system buffer cache because the O_RAW flag has not been specified.

int fd
fd = open("/usr/include/fcntl.h", O_RDONLY);

Example 2: This open request creates a file named newfile in the current directory (relative path name
supplied). The file is given permissions of 0644 adjusted by the current user file-creation mode mask value.
All write operations to the file are appended onto the end of the file.

If newfile already exists in the current directory, that file is opened for writing only.

int fd;
fd = open("newfile", O_WRONLY | O_CREAT | O_APPEND, 0644);

Example 3: The file, whose path name is found at the address specified by the pointer fptr, is created if it
does not currently exist. If the file already exists, it is opened with its contents truncated.

All write operations to the file bypass the system buffer cache (raw mode) and write directly to the device.

int fd;
char *fptr;
fd = open(fptr, O_WRONLY | O_TRUNC | O_CREAT | O_RAW, 0640);

Example 4: This open request creates newfile for writing only.

The exclusive create feature (O_EXCL) indicates that if a file named newfile already exists in the current
directory, the open request fails.

int fd;
fd = open("newfile", O_WRONLY | O_CREAT | O_EXCL, 0644);

OPEN(2) OPEN(2)

SR−2012 10.0 295

Example 5: The following open request with the O_SYNC flag forces each succeeding write operation (for
datafile, the file being opened) to wait until the output data has reached the physical device. By default,
output data is staged in the system’s buffer cache (buffered I/O) and does not reach the device immediately
(called delayed I/O).

int fd;
fd = open("datafile", O_WRONLY | O_CREAT | O_SYNC, 0600);

Using the O_SYNC feature impairs I/O performance.

Example 6: The O_SSD flag on an open request enables data residing in a user’s secondary data segments
(SDS) area on the SDS to be written directly to the user’s data file. For the following open request, succeeding
write operations transfer data from the user’s SDS area (rather than from the user’s process memory) to the
user’s file sdsdata. The write(2) operation transfers 10 blocks (40,960 bytes) of data, starting at block
position 1 (relative word location 512) of the user’s SDS area, to the file sdsdata.

int fd;
fd = open("sdsdata", O_WRONLY | O_CREAT | O_SSD, 0644);
write(fd, 512, 40960);

SEE ALSO

chkpnt(2), chmod(2), close(2), creat(2), dup(2), exec(2), fcntl(2), ialloc(2), lseek(2),
mknod(2), read(2), restart(2), setdevs(2), ssbreak(2), statfs(2), umask(2), unlink(2),
write(2)

umask(1) in the UNICOS User Commands Reference Manual, Cray Research publication SR−2011

PXFOPEN(3F) in the Application Programmer’s Library Reference Manual, Cray Research publication
SR−2165

mkfs(8), spdev(8) in the UNICOS Administrator Commands Reference Manual, Cray Research publication
SR−2022

OPEN(2) OPEN(2)

296 SR−2012 10.0

NAME

openi − Opens a file by using the inode number

SYNOPSIS

int openi (long dev, long ino, long gen, long uflag);

IMPLEMENTATION

Cray PVP systems

DESCRIPTION

The openi system call presents the user with a flat view of all native UNICOS file systems currently mounted.
Rather than use the directory tree structure to search through directories for a file, openi provides access by
inode number.

The openi system call accepts the following arguments:

dev Specifies the device number as built by the makedev macro that is defined outside of the kernel.

ino Specifies an inode number for the file as reported by the ls −i command.

gen Specifies the generation number of the inode. This provides a unique identification for a specific
file. The generation number changes when an inode is reused. To print the inode generation
values, use the fck(1) command with the -i and -l options.

uflag Specifies the open flags. These are bit values of the form O_name that are defined in the fcntl.h
file.

NOTES

Only a process with appropriate privilege can use this system call.

If the PRIV_SU configuration option is enabled, the super user is allowed to use this system call.

A process with the PRIV_MAC_READ and PRIV_DAC_OVERRIDE effective privileges are allowed to use this
system call. See the effective privilege discussion in the NOTES section of the open(2) man page for
additional privilege requirements. The open(2) search access discussions do not apply to this system call.

RETURN VALUES

If openi completes successfully, a nonnegative integer is returned which may be used in further I/O
operations. Otherwise, openi returns a negative value, and errno is set to indicate the error.

OPENI(2) OPENI(2)

SR−2012 10.0 297

ERRORS

The openi system call fails to open the specified file if one of the error conditions listed on the open(2) man
page occurs.

EXAMPLES

The following code fragment shows how openi is used in a program that examines restart files. The rv_fs
field is a file system identifier. The rv_fid field contains an ino gen pair.

fd = openi(usr_makedev(krn_major(rvp->rv_fs.val[0]),
krn_minor(rvp->rv_fs.val[0])),

rvp->rv_fid.fid_data[0],
rvp->rv_fid.fid_data[1], 0);

FILES

/usr/include/fcntl.h Contains symbol descriptions for the open(2) system call

/usr/include/sys/sysmacros.h Contains a description of the makedev macro

SEE ALSO

open(2)

fck(1), ls(1) in the UNICOS User Commands Reference Manual, Cray Research publication SR−2011

fsck(8) in the UNICOS Administrator Commands Reference Manual, Cray Research publication SR−2022

General UNICOS System Administration, Cray Research publication SG−2301

OPENI(2) OPENI(2)

298 SR−2012 10.0

NAME

pathconf, fpathconf − Determines value of file or directory limit

SYNOPSIS

#include <unistd.h>

long pathconf (const char *path, int name);

long fpathconf (int fildes, int name);

IMPLEMENTATION

All Cray Research systems

STANDARDS

POSIX, XPG4

DESCRIPTION

The pathconf and fpathconf system calls provide a method for an application to determine the current
value of a configurable limit or option (variable) that is associated with a file or directory.

The pathconf and fpathconf system calls accept the following arguments:

path Points to the path name of a file or directory.

name Represents the variable to be queried relative to that file or directory.

fildes Specifies an open file descriptor.

The values for name are listed below with a brief description of the value each returns.

_PC_LINK_MAX Returns the maximum number of links allowed per file.

_PC_MAX_CANON Returns the maximum number of bytes that can be read from a
terminal device in canonical mode. The behavior is undefined if path
or fildes does not refer to a terminal file.

_PC_MAX_INPUT Returns the maximum number of bytes that can be read from a
terminal device in raw mode. The behavior is undefined if path or
fildes does not refer to a terminal file.

_PC_NAME_MAX Returns the maximum number of characters in a file name relative to
the file system containing the file specified as the first argument.

If path or fildes refers to a directory, the value returned applies to the
file names within the directory. The behavior is undefined if path or
fildes does not refer to a directory.

PATHCONF(2) PATHCONF(2)

SR−2012 10.0 299

_PC_PATH_MAX Returns the maximum number of characters in a path name relative
to the file system containing the file specified as the first argument.

The behavior is undefined if path or fildes does not refer to a
directory. If path or fildes refers to a directory, the value returned is
the maximum length of a relative path name when the specified
directory is the working directory.

_PC_PIPE_BUF Returns the maximum number of bytes that can be written to a pipe
to be assured that the write is atomic. If the number of bytes written
to a pipe is less than the value returned by the _PC_PATH_MAX
request, then the writing process is assured that the data written is not
interleaved with data from another process’ write to the same pipe.

If path refers to a FIFO, or fildes refers to a pipe or FIFO, the value
returned applies to the referenced object itself. If path or fildes refers
to a directory, the value returned applies to any FIFOs that exist or
can be created within the directory. If path or fildes refer to any
other type of file, the behavior is undefined.

_PC_CHOWN_RESTRICTED Returns value 1 if chown() is a restricted operation; returns −1 if
chown() is unrestricted. The system can be configured such that
only users granted permission may use chown().

If path or fildes refers to a directory, the value returned applies to any
files, other than directories, that exist or can be created within the
directory.

_PC_NO_TRUNC Returns value 1 if path name components longer than NAME_MAX
generate an error. Returns value −1 if path name components longer
than NAME_MAX do not generate errors (that is, path name
components longer than NAME_MAX are truncated to NAME_MAX
characters without causing an error condition).

If path or fildes refers to a directory, the value returned applies to the
file names within the directory. The behavior is undefined if path or
fildes does not refer to a directory.

_PC_VDISABLE Returns the disable character for terminal devices. Terminal special
control characters defined in termios.h can be disabled using this
character value. The behavior is undefined if path or fildes does not
refer to a terminal file.

PATHCONF(2) PATHCONF(2)

300 SR−2012 10.0

NOTES

The process must be granted read permission to the file via the security label. That is, the active security label
of the process must be greater than or equal to the security label of the file.

To be granted search permission to a component of the path prefix (for the pathconf system call), the active
security label of the process must be greater than or equal to the security label of the component.

A process with the effective privileges shown is granted the following abilities:

Privilege Description

PRIV_DAC_OVERRIDE The process is granted search permission to a component of the path prefix via
the permission bits and access control list. (Only for pathconf system call.)

PRIV_MAC_READ The process is granted search permission to a component of the path prefix via
the security label. (Only for pathconf system call.)

PRIV_MAC_READ The process is granted read permission to the file via the security label.

If the PRIV_SU configuration option is enabled, the super user is allowed to use this system call and is granted
search permission to every component of the path prefix. If the PRIV_SU configuration option is enabled, the
super user is granted read permission to the file via the security label.

RETURN VALUES

If name is an invalid value, the pathconf and fpathconf system calls return a value of −1.

If the variable corresponding to name has no limit for the path or file descriptor, pathconf and fpathconf
return a value of −1 without changing errno.

If path determines the value of name and name is not associated with the file specified by path, or if the process
did not have the appropriate privileges to query the file specified by path, or if path does not exist, pathconf
returns a value of −1.

If fildes determines the value of name and name is not associated with the file specified by fildes, or if fildes is
an invalid file descriptor, fpathconf returns a value of −1. Otherwise, pathconf and fpathconf return
the current variable value for the file or directory without changing errno.

ERRORS

The pathconf or fpathconf system call returns a value of −1 and sets errno to the corresponding value
if one of the following conditions occurs:

Error Code Description

EINVAL The value of the name is not valid.

EPERM The process does not have appropriate privilege to use this system call.

PATHCONF(2) PATHCONF(2)

SR−2012 10.0 301

The pathconf system call returns a value of −1 and sets errno to the corresponding value if one of the
following conditions occurs:

Error Code Description

EACCES Search permission is denied for a component of the path prefix.

EACCES The process is denied read permission to the file via the security label.

EINVAL The variable name is not associated with the specified file.

ENAMETOOLONG The length of the path argument exceeds PATH_MAX, or a path name component is
longer that NAME_MAX when _POSIX_NO_TRUNC is in effect.

ENOENT The specified file does not exist or the path argument points to an empty string.

ENOTDIR A component of the path prefix is not a directory.

The fpathconf system call returns a value of −1 and sets errno to the corresponding value if one of the
following conditions occurs:

Error Code Description

EBADF The fildes argument is not a valid file descriptor.

EBADF The process is denied read permission to the file via the security label.

EINVAL The variable name is not associated with the specified file.

EXAMPLES

This example illustrates various applications of the pathconf system call for files and directories residing in
the user’s home (HOME) directory.

PATHCONF(2) PATHCONF(2)

302 SR−2012 10.0

#include <unistd.h>

main()
{

char path[100], *ptr;
long name_max;

if (ptr = getenv("HOME")) {
strcpy(path, ptr);

}
else {

fprintf(stderr, "getenv failed to locate HOME!\n");
exit(1);

}

printf("Configurable parameters for files within %s:\n", path);
printf(" maximum # of links = %ld\n", pathconf(path, _PC_LINK_MAX));
name_max = pathconf(path, _PC_NAME_MAX);
printf(" maximum # of chars in a filename = %ld\n", name_max);
printf(" maximum # of chars in a path name = %ld\n",

pathconf(path, _PC_PATH_MAX));
printf(" maximum # of bytes for atomic writes to a pipe = %ld\n",

pathconf(path, _PC_PIPE_BUF));
if (pathconf(path, _PC_CHOWN_RESTRICTED) == -1) {

printf(" chown is unrestricted\n");
}
else {

printf(" chown is restricted\n");
}
if (pathconf(path, _PC_NO_TRUNC) == -1) {

printf(" path name components longer than %d char’s ", name_max);
printf("do not generate errors;\n");
printf(" (that is, the system will use only the first ");
printf("%d characters)\n\n", name_max);

}
else {

printf(" path name components longer than %d char’s ", name_max);
printf("generate errors\n\n");

}

printf("Configurable parameters for terminals:\n");
printf(" maximum # bytes for canonial reads = %ld\n", fpathconf(0, _PC_M AX_CANON));
printf(" maximum # bytes for raw reads = %ld\n", fpathconf(0, _PC_MAX_IN PUT));

}

PATHCONF(2) PATHCONF(2)

SR−2012 10.0 303

FILES

/usr/include/unistd.h Contains C prototype for the pathconf and fpathconf system
calls

SEE ALSO

sysconf(2)

getconf(1), sysconf(1) in the UNICOS User Commands Reference Manual, Cray Research publication
SR−2011

PATHCONF(2) PATHCONF(2)

304 SR−2012 10.0

NAME

pause − Suspends process until signal

SYNOPSIS

#include <unistd.h>

int pause (void);

IMPLEMENTATION

All Cray Research systems

STANDARDS

POSIX, XPG4

DESCRIPTION

The pause system call suspends the calling process until it receives a signal. The signal must be one that is
not currently set to be ignored by the calling process. The pause system call causes an implicit sigon (see
sigoff(3C)).

On Cray MPP systems, the pause system call suspends the process only for the PE on which it is called. It has
no effect on any other PE of the application.

RETURN VALUES

If the signal causes termination of the calling process, pause does not return.

If the signal is caught by the calling process and control is returned from the signal-catching function (see
signal(2)), the calling process resumes execution from the point of suspension, a value of −1 is returned, and
errno is set to EINTR.

FORTRAN EXTENSIONS

The pause system call can be called from Fortran as a function:

INTEGER PAUSE, I
I = PAUSE ()

Alternatively, pause can be called from Fortran as a subroutine. In this case, the return value of the system
call is unavailable:

CALL PAUSE ()

PAUSE(2) PAUSE(2)

SR−2012 10.0 305

EXAMPLES

This example shows how to use the pause system call to make a process wait for a specific signal.

The pause system call suspends a process until any signal is received.

In this example, the use of the sigsetmask(2) system call with pause enables the request to delay the
program until receipt of a SIGUSR1 signal.

#include <signal.h>
#include <unistd.h>

int omask, nmask;

main()
{

void catch(int signo);

signal(SIGUSR1, catch);

/* Process performs work here, but after finishing work and before
proceeding, it needs to wait for a SIGUSR1 signal to be sent
from another process. */

nmask = ˜sigmask(SIGUSR1);/* enable all bits in mask except SIGUSR1 */
omask = sigsetmask(nmask);/* hold all signals except SIGUSR1 */
pause(); /* wait for SIGUSR1 signal only */

/* Work continues here after waiting and catching SIGUSR1 signal */
}

void catch(int signo)
{

sigsetmask(omask); /* restore signal hold mask after signal
is received */

}

FILES

/usr/include/unistd.h Contains C prototype for the pause system call

SEE ALSO

alarm(2), kill(2), signal(2), sigsetmask(2), wait(2)

sigoff(3C) in the Application Programmer’s Library Reference Manual, Cray Research publication
SR−2165

PAUSE(2) PAUSE(2)

306 SR−2012 10.0

NAME

pipe − Creates an interprocess channel

SYNOPSIS

#include <unistd.h>

int pipe (int fildes[2]);

IMPLEMENTATION

All Cray Research systems

STANDARDS

POSIX, XPG4

DESCRIPTION

The pipe system call creates an I/O mechanism called a pipe and returns two file descriptors. It accepts the
following argument:

fildes Specifies the file descriptors returned. These are fildes[0] and fildes[1]; fildes[0] is opened for
reading, and fildes[1] is opened for writing.

A maximum of MAXPIPE data is buffered by the pipe before the writing process is blocked. MAXPIPE,
defined in the /usr/src/uts/c1/cf/config.h header file, specifies the number of data blocks (4096
bytes each) reserved in the pipe’s kernel buffer space. A read on file descriptor fildes[0] accesses the data
written to fildes[1] on a FIFO special file basis.

NOTES

The active security label of the process must fall within the security label range of the root file system.

RETURN VALUES

If pipe completes successfully, a value of 0 is returned; otherwise, a value of −1 is returned, and errno is set
to indicate the error.

ERRORS

The pipe system call fails if one of the following error conditions occurs:

Error Code Description

EMFILE OPEN_MAX −1 or more file descriptors are currently open.

ENFILE The system file table is full.

ENOSPC During a write(2) to an ordinary file, the free space left on the device was exhausted.

PIPE(2) PIPE(2)

SR−2012 10.0 307

EFLNEQ The active security label of the process does not fall within the security label range of
the root file system.

FORTRAN EXTENSIONS

The pipe system call can be called from Fortran as a function:

INTEGER fildes(2), PIPE, I
I = PIPE (fildes)

EXAMPLES

This example shows how to use the pipe system call to create a system pipe. (Some system calls in the
example are not supported on Cray MPP systems.) Because a system pipe can transfer data only between
related processes, such as a parent and child or siblings, this example shows the essential elements of parent and
child processes needed for data transfer by a system pipe.

/* This is the parent side of the system pipe example. It delivers data to
the child process using a system pipe. */

#include <stdio.h>
#include <unistd.h>

main()
{

int fd[2];
char rfd[10], wfd[10];

if (pipe(fd) == -1) { /* create system (unnamed) pipe */
perror("creating system pipe failed");
exit(1);

}

if (fork() == 0) { /* create child process */
sprintf(rfd, "%d", fd[0]); /* convert pipe’s file descriptors - */
sprintf(wfd, "%d", fd[1]); /* to strings to pass as arguments */
execl("child_prog", "child_prog", rfd, wfd, 0);
perror("execl failed");
exit(1);

}

close(fd[0]); /* parent closes its read access to
pipe since the parent will write
to the pipe */

/* In this part of program, the parent writes to fd[1] to deliver data
to the pipe. */

close(fd[1]); /* parent closes its write access to pipe -

PIPE(2) PIPE(2)

308 SR−2012 10.0

required for the child to detect an EOF
condition */

wait((int *)0); /* parent waits for child to complete */
}

/* This is the child side of the system pipe example. It receives data
from the parent process on a system pipe. */

main(int argc, char *argv[])
{

int rfd, wfd;

rfd = atoi(argv[1]); /* since pipe’s file descriptors were
wfd = atoi(argv[2]); /* passed as arguments, the string

arguments are converted back to
integers */

close(wfd); /* child closes its write access
to pipe since the child will read
from the pipe - also required for child
to detect an EOF condition */

/* In this part of program, the child reads from rfd (fd[0]) to receive
data from the pipe. */

close(rfd); /* child closes its read access
to the pipe and then exits */

}

FILES

/usr/include/unistd.h Contains C prototype for the pipe system call

/usr/src/uts/c1/cf/config.h Contains MAXPIPE definition

SEE ALSO

read(2), write(2)

ksh(1) in the UNICOS User Commands Reference Manual, Cray Research publication SR−2011

PIPE(2) PIPE(2)

SR−2012 10.0 309

NAME

plock − Locks process in memory

SYNOPSIS

#include <sys/lock.h>

int plock (int op);

IMPLEMENTATION

Cray PVP systems

DESCRIPTION

The plock system call allows the calling process to lock itself in memory. Locked processes are immune to
all routine swapping. The plock system call also allows these segments to be unlocked. Only a process with
appropriate privilege can use this system call.

The plock system call accepts the following argument:

op Specifies a locking option. The following are valid op values:

DATLOCK Locks data in memory (data lock).

DLYSHUFFLE Locks process in memory, movable (process lock); does not force process to low-
memory address immediately.

NOSHUFFLE Locks process in memory, not movable (process lock).

PROCLOCK Locks process in memory, movable (process lock).

TXTLOCK Locks text in memory (text lock).

UNLOCK Removes locks.

NOTES

A process with the effective privilege shown is granted the following ability:

Privilege Description

PRIV_RESOURCE The process is allowed to use this system call.

If the PRIV_SU configuration option is enabled, the super user or a process with the PERMBITS_PLOCK
permbit is allowed to use this system call.

RETURN VALUES

If plock completes successfully, a value of 0 is returned to the calling process; otherwise, a value of −1 is
returned, and errno is set to indicate the error.

PLOCK(2) PLOCK(2)

310 SR−2012 10.0

ERRORS

The plock system call fails if one of the following error conditions occurs:

Error Code Description

EINVAL The op argument is equal to PROCLOCK, and a process lock already exists on the
calling process.

EINVAL The op argument is equal to NOSHUFFLE, and a process lock already exists on the
calling process.

EINVAL The op argument is equal to TXTLOCK, and a text lock or a process lock already exists
on the calling process.

EINVAL The op argument is equal to DATLOCK, and a data lock or a process lock already exists
on the calling process.

EINVAL The op argument is equal to UNLOCK, and no type of lock exists on the calling
process.

EINVAL The op argument is equal to TXTLOCK or DATLOCK, and the program is not compiled
with split code and data.

EINVAL The op argument is equal to DLYSHUFFLE, and a process lock already exists on the
calling process.

EPERM The process does not have appropriate privilege to use this system call.

FORTRAN EXTENSIONS

The plock system call can be called from Fortran as a function:

INTEGER op, PLOCK, I
I = PLOCK (op)

SEE ALSO

exec(2), exit(2), fork(2)

PLOCK(2) PLOCK(2)

SR−2012 10.0 311

NAME

policy − Returns or sets information on the CPU allocation policy

SYNOPSIS

#include <sys/types.h>
#include <sys/share.h>

int policy (int function, void *address, int action);

IMPLEMENTATION

Cray PVP systems

DESCRIPTION

The policy system call allows site selection of CPU allocation policy (deferred implementation) without
requiring changes to the priority adjustment mechanism in the UNICOS kernel. This system call is also used by
shrdaemon(8) to access the sh_consts structure in the kernel.

The policy system call accepts the following arguments:

function Specifies the CPU allocation policy to be affected by the action. The following policies are
available:

FAIR_SHARE Specifies the standard (default) CPU allocation policy for the fair-share
scheduler.

BANK_POINTS (Deferred implementation) Specifies the bank points CPU allocation policy,
which provides a "bank account" of resources that is depleted through use.

address Specifies the location of the policy-definition structure. For example, the sh_consts structure,
defined in the include file sys/share.h, is used for the standard fair-share information.

action Specifies the action to be performed. The following values are available:

GET_COSTS Retrieves the contents of the system sh_consts structure.

SET_COSTS Sets the contents of the system sh_consts table. This action acts on only
those parameters that can be changed at the user level; for example, the
counts and maximum value fields are not updated. Only a process with
appropriate privilege can specify this function.

MOD_MXUSG Sets the maximum usage value field (sc_mxcusage) of the shconst
structure. Only a process with appropriate privilege can specify this function.
This action is not valid with the BANK_POINTS function.

POLICY(2) POLICY(2)

312 SR−2012 10.0

NOTES

The implementation of the BANK_POINTS function is deferred. The following actions are currently available
(the example address &shconsts assumes a declaration of the form struct sh_consts shconsts):

*
policy(FAIR_SHARE, &shconsts, GET_COSTS)

+
policy(FAIR_SHARE, &shconsts, SET_COSTS)

,
policy(FAIR_SHARE, &shconsts, MOD_MXUSG)

A process with the effective privilege shown is granted the following ability:

Privilege Description

PRIV_RESOURCE The process is allowed to specify the SET_COSTS and MOD_MXUSG functions.

If the PRIV_SU configuration option is enabled, the super user or a process with the PERMBITS_SYSPARAM
permbit is allowed to specify the SET_COSTS and MOD_MXUSG functions.

RETURN VALUES

If policy completes successfully, a value of 0 is returned; otherwise, a value of −1 is returned, and errno is
set to indicate the error.

ERRORS

The policy system call fails if one of the following error conditions occurs:

Error Code Description

EFAULT The address of the structure points to invalid data.

EINVAL Either the function or action argument is invalid. This error is returned if the deferred
BANK_POINTS function is specified.

EPERM The process does not have appropriate privileges for the SET_COSTS and
MOD_MXUSG actions.

SEE ALSO

share(5) in the UNICOS File Formats and Special Files Reference Manual, Cray Research publication
SR−2014

shradmin(8), shrdaemon(8) in the UNICOS Administrator Commands Reference Manual, Cray Research
publication SR−2022

UNICOS Resource Administration, Cray Research publication SG−2302

POLICY(2) POLICY(2)

SR−2012 10.0 313

NAME

profil − Generates an execution time profile

SYNOPSIS

#include <unistd.h>

void profil (long *buf, int bufsiz, int offset, int scale, int rate);

IMPLEMENTATION

Cray PVP systems

DESCRIPTION

The profil system call generates an execution time profile of the user’s program. It accepts the following
arguments:

buf Points to a memory area.

bufsiz Specifies the length (in bytes) of the memory area.

offset Specifies the number subtracted from the user’s program counter (PC) every interval specified by
rate.

scale Specifies the multiplier of the difference resulting from subtracting offset from the user’s PC. It is
interpreted as an unsigned, fixed-point fraction with binary point at the left. If the resulting number
corresponds to a word inside buf, that word is incremented. The octal number 037777777777 gives
a one-to-one mapping of PCs to words in buf; the octal number 017777777777 maps each pair of
instruction words together; the octal number 02 maps all instructions onto the first word in buf
producing a noninterrupting core clock.

rate Specifies the rate in microseconds at which the program is sampled. Default is 1/100 second if rate
is 0 or is not specified (Cray PVP systems).

The profil system call is inoperative under the following conditions:
- An update in buf would cause a memory fault.
. The bufsiz argument is 0.
/ The scale argument is 0 or 1.
0 The exec(2) system call is executed.

The profil system call remains operative in both a child process and parent process after processing a
fork(2) system call.

PROFIL(2) PROFIL(2)

314 SR−2012 10.0

RETURN VALUES

None

FILES

/usr/include/unistd.h Contains C prototype for the profil system call

SEE ALSO

exec(2), fork(2)

PROFIL(2) PROFIL(2)

SR−2012 10.0 315

NAME

ptrace − Traces processes

SYNOPSIS

#include <unistd.h>

long ptrace (int request, int pid, long addr, long data);

IMPLEMENTATION

Cray PVP systems

DESCRIPTION

The ptrace system call provides a means by which a parent process may control the execution of a child
process. Its primary use is for the implementation of breakpoint debugging (see adb(1)). The child process
behaves normally until it encounters a signal (see signal(2) for the list), at which time it enters a stopped
state and its parent process is notified through wait(2). When the child process is in the stopped state, its
parent process can examine and modify its core image, using ptrace. Also, the parent process can cause the
child process either to terminate or to continue, with the possibility of ignoring the signal that caused it to stop.

The ptrace arguments are as follows:

request Identifies the action to be taken by ptrace. The following are valid values for request:

0 This request must be issued by the child process if it is to be traced by its parent process.
It turns on the child process’ trace flag, stipulating that the child process should be left in
a stopped state on receipt of a signal rather than the state specified by func; see
signal(2). The pid, addr, and data arguments are ignored, and a return value is not
defined for this request. If the parent process does not expect to trace the child process,
peculiar results occur.

The remainder of the requests can be used only by the parent process. The child process
must be in a stopped state before these requests are made.

1, 2 With these requests, the word at location addr in the address space of the child process is
returned to the parent process. Requests 1 and 2 produce equal results. The data
argument is ignored.

3 With this request, the word at location addr in the child process’ USER area in the
system’s address space (see the sys/user.h file) is returned to the parent process.
Addresses in this area range from 0 to sizeof (structure user). The data argument is
ignored. If addr is outside the USER area, this request fails.

4, 5 With these requests, the value given by the data argument is written into the address
space of the child process at location addr. Using either request 4 or 5 causes equal
results. On successful completion, the value written into the address space of the child
process is returned to the parent process.

PTRACE(2) PTRACE(2)

316 SR−2012 10.0

6 With this request, you can write a set of limited fields in the child process’ USER area.
The data argument gives the value to be written, and addr is the location of the entry.
You can write the following entries:

1 The general registers (that is, A, S, and V registers)
2 The vector mask (VM) and vector length (VL) special registers
3 B and T registers

7 This request causes the child process to resume execution. If the data argument is 0, all
pending signals, including the one that caused the child process to stop, are canceled
before it resumes execution. If the data argument is a valid signal number, the child
process resumes execution as if it had incurred that signal, and any other pending signals
are canceled. The addr argument must be 1. If the data argument is 0, the child process
resumes execution where it entered the stopped state. On successful completion, the
value of data is returned to the parent process.

8 This request causes the child process to terminate with the same consequences as those of
exit(2).

10 With this request, the word at location addr in the child process’ UCOMM area in the
system’s address space (see sys/user.h) is returned to the parent process. Addresses
in this area range from 0 to sizeof (structure ucomm). The data argument is ignored. If
addr is outside the UCOMM area, this request fails.

11 With this request, you can write a few entries in the child process’ UCOMM area. The
data argument gives the value to be written, and addr is the location of the entry. You
can write the following entries:

4 The semaphores
5 Shared B registers
6 Shared T registers

pid Specifies the process ID of the child process when request is 1 through 8. The pid argument is
ignored when request equals 0.

addr Specifies a location that varies in meaning depending on the value of request.

data Specifies information supplied to or received from the target process; this information varies in
meaning depending on the value of request.

To prevent fraud, ptrace inhibits the set user ID facility on subsequent exec(2) calls. If a traced process
calls exec(2), it stops before executing the first instruction of the new image showing the SIGTRAP signal.

PTRACE(2) PTRACE(2)

SR−2012 10.0 317

NOTES

On a UNICOS system using privilege assignment lists (PALs), a privileged process should not have itself
traced. The security policy could be circumvented if a privileged process is traced by a nonprivileged parent
process. This is also true if the PRIV_SU configuration option is enabled, although the phrase "privileged
process" means a process owned by root on a PRIV_SU system.

To retrieve information about a child process, the active security label of the process must be greater than or
equal to the security label of the child.

To set information about or modify the state of a child process, the active security label of the process must
equal the security label of the child.

A process with the effective privileges shown is granted the following abilities:

Privilege Description

PRIV_MAC_READ The process is allowed to retrieve information about a child process regardless of the
security label of the child.

PRIV_MAC_WRITE The process is allowed to set information about or modify the state of a child process
regardless of the security label of the child.

If the PRIV_SU configuration option is enabled, the super user is allowed to override the security label
restrictions.

CAUTIONS

Requests to read can return a valid data value of −1, which can be confused with an error return value. errno
is cleared by the library interface; therefore, if ptrace returns −1 and errno is nonzero, an error has
occurred.

RETURN VALUES

If ptrace completes successfully, any requested value is returned; otherwise, a value of −1 is returned to the
parent process, and the errno of the parent process is set to indicate the error.

ERRORS

The ptrace system call fails if one of the following conditions occurs:

Error Code Description

EIO The request argument is an illegal number, or when request is 7, data is not 0 or a
valid signal number.

ESRCH The pid argument identifies a child process that does not exist or that has not executed
a ptrace with request 0.

ESRCH The process does not meet security label requirements and does not have appropriate
privilege.

PTRACE(2) PTRACE(2)

318 SR−2012 10.0

FORTRAN EXTENSIONS

The ptrace system call can be called from Fortran as a function:

INTEGER request, pid, addr, data, PTRACE, I
I = PTRACE (request, pid, addr, data)

FILES

/usr/include/unistd.h Contains C prototype for the ptrace system call

SEE ALSO

exec(2), exit(2), signal(2), wait(2)

adb(1) in the UNICOS User Commands Reference Manual, Cray Research publication SR−2011

proc(4) in the UNICOS File Formats and Special Files Reference Manual, Cray Research publication
SR−2014

PTRACE(2) PTRACE(2)

SR−2012 10.0 319

NAME

ptyrecon − Manages pty reconnection

SYNOPSIS

#include <sys/ptyrecon.h>

int ptyrecon (int cmd, struct reconcntl *reconp);

IMPLEMENTATION

Cray PVP systems

DESCRIPTION

The ptyrecon system call enables or disables pty disconnection, and reconnects, searches, or hangs up
disconnected sessions.

If disconnection is enabled, a session does not disappear on a pty master side close operation, but remains
disconnected for a specified amount of time. Users can later search, reconnect to, or hang up disconnected
sessions.

The ptyrecon system call accepts the following arguments:

cmd Indicates the operation to be performed.

RECON_ENABLE Enables reconnection on a pty. After closing the connection (by using the
telnet close command or equivalent) the terminal remains in a
disconnected state for the time indicated in the distimeo field of the
reconcntl structure. If this value is 0, the default DISTIMEO is used.

RECON_DISABLE Disables reconnection that was enabled with RECON_ENABLE.

RECON_HANGUP Hangs up a terminal that is in a disconnected state.

RECON_SEARCH Fills the reconcntl structure with the data corresponding to the first
disconnected pty greater than or equal to the pty number that was passed
to the kernel. If the reconcntl flag RECON_ANYUSER is set, it returns
the following message:

Disconnected session owned by any user (superuser only).

Otherwise, it returns the following message:

Sessions owned by the caller

RECON_CONNECT Connects the current terminal to a disconnected session in another pty, and
terminates the current session.

PTYRECON(2) PTYRECON(2)

320 SR−2012 10.0

reconp Points to a two-way communication structure. All of the operations act on the pty specified in the
pty field of the reconcntl structure. If this field is set to RECON_CURRPTY, the operation acts
on the current (controlling) pty. Following is the reconcntl structure, followed by a list of the
possible operations:

struct reconcntl {
int pty; /* pty number */
int uid; /* session owner uid */
pid_t pid; /* process-id of session leader */
time_t distime; /* seconds disconnected */
time_t distimeo; /* max disconnect time (sec) */
int flags;

};

RETURN VALUES

If ptyrecon completes successfully, a value of 0 is returned; otherwise, a value of −1 is returned, and errno
is set to indicate the error.

ERRORS

The ptyrecon system call fails if one of the following error conditions occurs:

Error Code Description

EFAULT The reconp parameter is bad.

EINVAL The cmd parameter is bad.

ENOENT No more search entries exist.

ENOTTY No controlling tty exists.

ENXIO The pty number is bad.

EPERM You are not allowed to perform the operation.

SEE ALSO

ptyrecon(1) in the UNICOS User Commands Reference Manual, Cray Research publication SR−2011

PTYRECON(2) PTYRECON(2)

SR−2012 10.0 321

NAME

quotactl − Manipulates file system quotas

SYNOPSIS

#include <sys/types.h>
#include <sys/param.h>
#include <sys/quota.h>

int quotactl (char *spec, int request, char *arg);

IMPLEMENTATION

Cray PVP systems

DESCRIPTION

The quotactl system call manipulates disk quotas. The arguments are as follows:

spec Points to the name of the file system. The pointer may be either the device node name or the
directory on which the device is mounted.

request Specifies type of request. Types are defined in Request Types.

arg Specifies address of a request-specific data structure described with each request. All structures are
defined in the sys/quota.h file.

You can look at your own quota data and header information; however, only an appropriately
privileged process can view all the records and change information. The requests that get and set
information can be used only on file systems that have been mounted and activated with one of the
Q_ON_xxxx requests. The following are valid values for request.

Request Types
The following types of requests are supported:

Q_ON_COUNT Appropriately privileged process only. Turns on quotas for the file system specified in
spec but maintains only counts. arg points to the full name of the quota file to
associate with this file system.

Q_ON_INFORM Appropriately privileged process only. Turns on quotas for the file system specified in
spec, maintain counts, and issues warning and quota limit messages, but does not
enforce quota limits. arg points to the full name of the quota file to associate with this
file system.

Q_ON_ENFORCE Appropriately privileged process only. Turns on quotas for the file system specified in
spec, maintains counts, issues warning and quota limit messages, and enforces quota
limits. This is considered the normal mode of quota operation; the other modes are for
evaluation or test use. arg points to the full name of the quota file to associate with
this file system.

QUOTACTL(2) QUOTACTL(2)

322 SR−2012 10.0

Q_GETQUOTA Returns the quota information for the ID specified in the qf_entry.id field from
the file system specified in spec. If the request is not from an appropriately privileged
process, only information related to the caller’s uid, authorized gids, and the currently
active acids can be obtained. qf_magic must be set to QF_MAGIC as defined in the
sys/quota.h file. arg points to a q_request structure.

Q_SETQUOTA Appropriately privileged process only. Changes selected quota information for the ID
specified in the qf_entry.id field on the file system specified in spec. Selection is
through the acct, group, and user flag fields in the q_request structure.
qf_magic must be set to QF_MAGIC as defined in the sys/quota.h file. arg points
to a q_request structure.

For the Q_GETQUOTA and Q_SETQUOTA requests, arg points to a q_request
structure defined in sys/quota.h:

struct q_request {
long qf_magic; magic number
int acct; QFL_xxx account flags
int group; QFL_xxx group flags
int user; QFL_xxx user flags
struct qf_entry

qf_entry; quota record
};

The fields of struct qf_entry that contain valid information are indicated
through the acct, group, and user fields. Only the values in the flagged fields are
defined. The caller must set the correct acct, group, and user flags when making
a Q_SETQUOTA request; the kernel sets the flags when returning information from a
Q_GETQUOTA request. The following table shows the values that are returned and
their associated meanings:

QFL_F1 (1<< 0) Evaluator’s field 1
QFL_F2 (1<< 1) Evaluator’s field 2
QFL_F3 (1<< 2) Evaluator’s field 3
QFL_F4 (1<< 3) Evaluator’s field 4
QFL_F5 (1<< 4) Evaluator’s field 5
QFL_FQ (1<< 5) File quota
QFL_FR (1<< 6) Soft file quota (runquota)
QFL_FT (1<< 7) File warning time
QFL_FU (1<< 8) File usage
QFL_FW (1<< 9) File warning
QFL_IQ (1<< 10) Inode quota
QFL_IU (1<< 11) Inode usage
QFL_IW (1<< 12) Inode warning

Q_GETHEADER Returns the header information for the file system specified in the spec argument.
qf_magic must be set to QF_MAGIC. arg points to a qf_header structure.

QUOTACTL(2) QUOTACTL(2)

SR−2012 10.0 323

Q_SETHEADER Appropriately privileged process only. Changes the header information for the file
system specified in spec. All the header information, except for the qf_name field
(which cannot be altered through this interface), is changed by this request; therefore,
it is recommended that you use a Q_GETHEADER request to preset the qf_header
structure to preserve information you do not want to change. arg points to a
qf_header structure.

For the Q_GETHEADER and Q_SETHEADER requests, arg points to the following
structure:

struct qf_header {
long qf_magic; quota version identification
struct q_header

acct_h, account header
group_h, group header
user_h; user header

time_t qf_min_dm; minimum data migration threshold
uint qflvl : 8, Q_ON_DEFAULT enable level

qf_eval : 8, evaluator selector
qf_spare : 48; reserved

long hef1, field 1 reserved for evaluator’s use
hef2; field 2 reserved for evaluator’s use

uint qf_qfnamesize; size of qf_name[]
uint qf_hashents; length of the hash table in entries
off_t qf_hashtaboffs; offset of the hash table
char qf_name[PATH_MAX+1]; name of the quota file

};

The header contains all of the default values used for the quota control file used by the
specified file system.

See the sys/quota.h file for a description of the fields.

Q_FSINFO Returns file system specific information. File size, quota enforcement level, and other
information specific to a one quota control file is returned. arg points to a q_fsinfo
structure.

struct q_fsinfo {
int count; count of file systems using this quota file
in errors; count of errors on this quota file
long level; quota enforcement level
long size; size of the quota file in bytes

};

Q_GENINFO Returns generic quota enforcement information in a q_geninfo structure pointed to
by arg.

QUOTACTL(2) QUOTACTL(2)

324 SR−2012 10.0

struct q_geninfo {
long q_types; mask of configured quota types
long q_nquota; total number of quota entries
long q_curact; current number of active quota entries
long q_maxact; maximum number of active quota entries
long q_put; qput calls
long q_updat; qupdat calls
long q_get; qget calls
long q_read; qread calls
long q_cache; count of inode cache flushes
long q_wait; count of number of quota_wait sleeps
long q_readch; count of hash chain reads

};

The configured quota types mask (q_types) has a value for each configured
combination of ID classes, as shown in the following list:

Value ID classes
1 User ID
2 Group ID
3 User ID and group ID
4 Account ID
5 User ID and account ID
6 Group ID and account ID
7 User ID, group ID, and account ID

Q_ON_DEFAULT Appropriately privileged process only. Turns on quotas for the file system specified in
spec. The enforcement mode is the mode stored in the qf_lvl field of struct
qf_header of the specified quota file. arg points to the name of the quota file to
associate with this file system.

NOTES

To be granted read permission to the quota file, the caller’s active security label must be greater than or equal to
the security label of the quota file.

To be granted write permission to the quota file, the caller’s active security label must equal the security label
of the quota file.

To be granted searcdh permission to a component of the spec path prefix, the caller’s active security label
must be greater than or equal to the security label of the component.

A process with the effective privilege shown is granted the following abilities:

Privilege Description

PRIV_DAC_OVERRIDE The process is granted search permission to every component of the spec path
prefix via the permission bits and access control list.

QUOTACTL(2) QUOTACTL(2)

SR−2012 10.0 325

PRIV_DAC_OVERRIDE The process is granted read and write permission to the quota file via the
permission bits and access control list.

PRIV_MAC_READ The process is granted search permission to every component of the spec path
prefix via the security label.

The process is granted read permission to the quota file via the security label.

PRIV_MAC_WRITE The process is granted write permission to the quota file via the security label.

PRIV_RESOURCE The process is allowed to specify quotactl requests that are restricted to
processes with appropriate privilege.

If the PRIV_SU configuration option is enabled, the super user is allowed to override all file protections and is
allowed to specify quotactl requests that are restricted to processes with appropriate privilege.

RETURN VALUES

If quotactl completes successfully, a value of 0 is returned; otherwise, a value of −1 is returned, and errno
is set to indicate the error.

ERRORS

The quotactl system call fails if one of the following error conditions occurs:

Error Code Description

EACCES The caller does not have read and/or write permission to the quota file.

EACCES Search permission is denied for a component of the spec path prefix.

EACCES The magic number in the quota file does not match the one used by the kernel.

EBUSY The quota feature software is already running on file system spec.

EFAULT The arg argument points outside the allocated process address space.

EINVAL The request argument specified was not valid.

EIO The kernel could not read and/or update the quota entry specified by argument arg.

ENODEV The spec argument is not the root of a file system.

ENOENT The quota feature software is not running on file system spec.

EPERM The process does not have appropriate privilege to perform the requested action.

EPERM The spec argument specifies a nonnative file system.

EXAMPLES

The following program illustrates two features of the quotactl system call: Q_GETQUOTA and
Q_GETHEADER. The program is invoked specifying one argument, the path name of the file system for which
quota information is to be retrieved.

QUOTACTL(2) QUOTACTL(2)

326 SR−2012 10.0

#include <sys/types.h>
#include <sys/param.h>
#include <sys/quota.h>
#include <time.h>
#include <stdio.h>

main(int argc, char *argv[])
{

struct q_request request;
struct qf_header header;
int id;

if (argc < 2) {
fprintf(stderr, "File system path name not supplied as argument\n");
exit(0);

}

id = getuid();
request.qf_entry.id = id;
request.qf_magic = QF_MAGIC;

if (quotactl(argv[1], Q_GETQUOTA, &request) == -1) {
perror("quotactl (Q_GETQUOTA) failed");
exit(1);

}
printf("file system name = %s\n", argv[1]);
printf("account flags = %o\n", request.acct);
printf("group flags = %o\n", request.group);
printf("user flags = %o\n\n", request.user);
if (request.user) {

printf("Quotas for user %d are as follows:\n\n", id);
if (request.qf_entry.user_q.f_quota == QFV_DEFAULT) {

printf("The default file quota is in effect - see below\n");
}
else {

printf("File quota = %ld blocks\n",
request.qf_entry.user_q.f_quota);

}
printf("File usage = %ld blocks\n", request.qf_entry.user_q.f_use);
if (request.qf_entry.user_q.f_warn == QFV_DEFAULT) {

printf("The default file quota warning window is in effect ");
printf("- see below\n");

}
else {

printf("File quota warning window = %d blocks\n",
request.qf_entry.user_q.f_warn);

}
if (request.qf_entry.user_q.i_quota == QFV_DEFAULT) {

QUOTACTL(2) QUOTACTL(2)

SR−2012 10.0 327

printf("The default inode quota is in effect - see below\n");
}
else {

printf("Inode quota = %d\n", request.qf_entry.user_q.i_quota);
}
printf("Inode usage = %d\n", request.qf_entry.user_q.i_use);
if (request.qf_entry.user_q.i_warn == QFV_DEFAULT) {

printf("The default inode quota warning window is in effect ");
printf("- see below\n");

}
else {

printf("Inode quota warning window = %d\n",
request.qf_entry.user_q.i_warn);

}
if (request.qf_entry.user_q.f_wtime != 0) {

printf("Time when file warning was reached = %s\n",
ctime(&request.qf_entry.user_q.f_wtime));

}
}

header.qf_magic = QF_MAGIC;
if (quotactl(argv[1], Q_GETHEADER, &header) == -1) {

perror("quotactl (Q_GETHEADER) failed");
exit(2);

}
printf("\nDefault quotas for file system %s:\n\n", argv[1]);
printf("File quota = %ld blocks\n", header.user_h.def_fq);
printf("File warning window = %d blocks\n", header.user_h.warn_fq);
printf("File quota warning fraction = %3.1f\n", header.user_h.wf_fq);
printf("Inode quota = %d\n", header.user_h.def_iq);
printf("Inode warning window = %d\n", header.user_h.warn_iq);
printf("Inode quota warning fraction = %3.1f\n", header.user_h.wf_iq);

}

SEE ALSO

mount(2)

QUOTACTL(2) QUOTACTL(2)

328 SR−2012 10.0

NAME

read − Reads from file

SYNOPSIS

#include <sys/types.h>
#include <unistd.h>

ssize_t read (int fildes, void *buf, size_t nbyte);

IMPLEMENTATION

All Cray Research systems

STANDARDS

POSIX, XPG4

DESCRIPTION

The read system call tries to read a specified number of bytes from a file into a specified buffer. It accepts the
following arguments:

fildes Specifies a file descriptor. It is obtained from an accept(2), creat(2), dup(2), fcntl(2),
open(2), pipe(2), socket(2), or socketpair(2) system call

buf Points to the buffer into which the data is to be read.

nbyte Specifies the number of bytes to be read.

On devices capable of seeking, the read starts at a position in the file given by the file pointer associated with
fildes. On return from read, the file pointer is incremented by the number of bytes actually read.

Devices that are incapable of seeking always read from the current position. The value of a file pointer
associated with such a file is undefined.

On successful completion, read returns the number of bytes actually read and placed in the buffer; this number
may be less than nbyte if the file is associated with a communication line (see ioctl(2) and termio(4)), or if
the number of bytes left in the file is less than nbyte bytes. A value of 0 is returned when an end-of-file has
been reached.

When you try to read from an empty pipe (or FIFO special file), the following occurs:
7 If O_NDELAY is set, the read returns a 0.
8 If O_NONBLOCK is set, the read returns a −1.
9 If O_NDELAY and O_NONBLOCK are both clear, the read blocks until data is written to the file or the file is

no longer open for writing.

READ(2) READ(2)

SR−2012 10.0 329

When you try to read a file associated with a tty that has no data currently available, the following occurs:
: If O_NDELAY is set, the read returns a 0.
; If O_NONBLOCK is set, the read returns a −1.
< If O_NDELAY and O_NONBLOCK are both clear, the read blocks until data becomes available.

When you try to read from a regular file that has mandatory file and record locking set (see chmod(2)), and a
blocking write lock exists on the segment of the file to be read (that is, it is owned by another process):

= If either O_NDELAY or O_NONBLOCK is set, the read returns −1 and sets errno to EAGAIN.
> If O_NDELAY and O_NONBLOCK are both clear, the read sleeps until the blocking record lock is removed.

NOTES

The process must be granted read permission to the file via the security label. That is, the active security label
of the process must be greater than or equal to the security label of the file.

A process with the effective privilege shown is granted the following ability:

Privilege Description

PRIV_MAC_READ The process is granted read permission to the file via the security label.

If the PRIV_SU configuration option is enabled, the super user is granted read permission to the file via the
security label.

RETURN VALUES

If read completes successfully, a nonnegative integer is returned, indicating the number of bytes actually read;
otherwise, a value of −1 is returned, and errno is set to indicate the error.

ERRORS

The read system call fails if one of the following error conditions occurs:

Error Code Description

EAGAIN Mandatory file and record locking was set, O_NDELAY was set, and there was a
blocking record lock.

EBADF The fildes argument is not a valid file descriptor open for reading.

EBADF The active security label is not greater than or equal to the security label of the file, and
the process does not have appropriate privilege.

EDEADLK The read was going to go to sleep and cause a deadlock situation to occur.

EFAULT The buf argument points outside the allocated address space.

EINTR A signal was caught during the read system call.

READ(2) READ(2)

330 SR−2012 10.0

EINVAL The call contains an argument that is not valid such as the dismounting of a
nonmounted device, the mention of an undefined signal in signal(2) or kill(2), or
the reading or writing of a file for which lseek(2) has generated a negative pointer.
This error is also set by the math functions described in the (3) entries.

ENOLCK The system record lock table was full; so the read could not go to sleep until the
blocking record lock was removed.

ENXIO During a read or write on a special file, a subdevice that does not exist or is beyond the
limits of the device was referenced.

EXAMPLES

The following examples illustrate different uses of the read system call.

Example 1: This example shows a simple read request that reads 100 bytes sequentially from a regular data
file on each execution of the while loop. A value of 0 returned by read indicates an EOF condition has been
reached.

int fd, cnt;
char buf[100];

if ((fd = open("datafile", O_RDONLY)) == -1) {
perror("Opening file datafile failed");
exit(1);

}

while ((cnt = read(fd, buf, 100)) != 0) { /* read returning 0 means EOF */
/* process data (cnt bytes) in buf here */

}

printf("EOF reached on file datafile.\n");

Example 2: This example shows how to use a read system call with an open pipe. Since the pipe is opened
with the O_NONBLOCK flag set, read requests are not delayed when no data is available in the pipe to be read.
(Typically, an empty pipe causes a read request to delay (block) until data arrives in the pipe.)

A value of 0 returned by read indicates an EOF condition has been reached; while a value of −1 returned
means that no data is currently residing in the pipe to read.

READ(2) READ(2)

SR−2012 10.0 331

int pfd, cnt, nbyte;
char pdata[256];

if ((pfd = open("named_pipe", O_RDONLY | O_NONBLOCK)) == -1) {
perror("Opening named pipe named_pipe failed");
exit(1);

}

if ((cnt = read(pfd, pdata, nbyte)) > 0) {
/* process data (cnt bytes) from pipe in pdata here */

}
else {

if (cnt == 0) { /* read returning 0 means EOF */
printf("EOF reached on pipe named_pipe.\n");

}
else { /* read returning -1 means no data now */

/* no data currently available in pipe named_pipe -
perform some other work and try again later */

}
}

FILES

/usr/include/unistd.h Contains C prototype for the read system call

SEE ALSO

accept(2), chmod(2), creat(2), dup(2), fcntl(2), ioctl(2), kill(2), lseek(2), open(2), pipe(2),
signal(2), socket(2), socketpair(2)

termio(4) in the UNICOS File Formats and Special Files Reference Manual, Cray Research publication
SR−2014

READ(2) READ(2)

332 SR−2012 10.0

NAME

reada − Performs asynchronous read from a file

SYNOPSIS

#include <sys/types.h>
#include <sys/iosw.h>
#include <signal.h>

int reada (int fildes, char *buf, unsigned nbyte, struct iosw *status,
int signo);

IMPLEMENTATION

All Cray Research systems

DESCRIPTION

The reada system call tries to read a specified number of bytes from a file into a specified buffer (see the
read(2) man page). The system call returns directly, even when the data cannot be delivered until later.

The first three arguments of the reada system call are the same as the read(2) system call. The last two
arguments enable you to notify the process when the request has completed.

The reada system call accepts the following arguments:

fildes Specifies a file descriptor. It is obtained from an accept(2), creat(2), dup(2), fcntl(2),
open(2), pipe(2), socket(2), or socketpair(2) system call.

buf Points to the buffer into which the data is to be read.

nbyte Specifies the number of bytes to be read.

status Points to a iosw structure. This structure is defined in the usr/include/sys/iosw.h file.
The status word has the following structure:

struct iosw {
uint sw_flag :1,

sw_error :31,
sw_count :32;

};

signo Specifies the signal that should be sent to indicate that the I/O transfer is complete. For a list of
signals, see the signal(2) man page.

When a request completes, the status word is filled in, and if signo was nonzero, that signal is sent to the
process. The sw_flag is always set on completion, sw_error may contain a system call error number (see
the intro(2) man page), and sw_count contains the number of bytes actually moved. If a process issues
reada on a slow device, such as a tty, and must be moved in memory to satisfy a brk(2) request, the reada
will fail with EINTR.

READA(2) READA(2)

SR−2012 10.0 333

When an attempt to read from a regular file with mandatory file and record locking set is made (see the
chmod(2) man page), and a blocking write lock exists on the segment of the file to be read (that is, it is owned
by another process), the following occurs:

? If either O_NDELAY or O_NONBLOCK is set, the read returns a −1, and sets errno to EAGAIN.
@ If O_NDELAY and O_NONBLOCK are both clear, the read sleeps until the blocking record lock is removed.

There is a limit to the number of outstanding asynchronous I/O requests that a process may have active. If a
process exceeds this limit, it is not rescheduled until one or more of the requests have completed.

The file position for reading or writing is always the file position at the time of the reada or writea(2)
system call. The file’s position is incremented at that time by nbyte bytes. In this way, reada, writea(2),
and lseek(2) system calls can be interspersed, and the file position is incremented naturally.

To use asynchronous I/O effectively, several rules must be followed:
A All outstanding I/O requests must have their own status words.
B One or more signal numbers may be used for I/O completions, but each signal must have its own handling

routine. Several outstanding requests may share a signal handling routine.
C When an I/O completion handler is entered, the status words under its control should be scanned for

completed I/Os.
D As the status words are processed, they must be set to 0.
E At the end of I/O completion handling, the status words are rescanned for newly completed I/Os. If any are

found, the signal handler loops back and processes the new completions; otherwise, the handler returns.

NOTES

The process must be granted read permission to the file via the security label. That is, the active security label
of the process must be greater than or equal to the security label of the file.

A process with the effective privilege shown is granted the following ability:

Privilege Description

PRIV_MAC_READ The process is granted read permission to the file via the security label.

If the PRIV_SU configuration option is enabled, the super user is granted read permission to the file via the
security label.

RETURN VALUES

If reada completes successfully, a nonnegative integer is returned, indicating the number of bytes remaining
to be read; otherwise, a value of −1 is returned, and errno is set to indicate the error.

READA(2) READA(2)

334 SR−2012 10.0

ERRORS

The reada system call fails if one of the following error conditions occurs:

Error Code Description

EAGAIN Mandatory file and record locking was set, O_NDELAY was set, and there was a
blocking record lock.

EBADF The fildes argument is not a valid file descriptor open for reading.

EBADF The active security label of the process is not greater than or equal to the security label
of the file, and the process does not have appropriate privilege.

EDEADLK The read was going to go to sleep and cause a deadlock situation to occur.

EFAULT The buf or status argument is not fully contained within the process address space.

EINTR The process caught a signal during the reada system call.

EINVAL The signo argument is not a valid signal number and not 0.

ENOLCK The system record lock table was full, so the read could not go to sleep until the
blocking record lock was removed.

FORTRAN EXTENSIONS

The reada system call can be called from Fortran as a function:

INTEGER fildes, buf(n), nbyte, istat, signo, READA, I
I = READA (fildes, buf, nbyte, istat, signo)

EXAMPLES

The following examples illustrate different ways of using the reada system call so that a read operation
completes in parallel with other work in a user’s process. Simpler solutions appear in the last two examples,
which make use of additional calls.

Example 1: In this program, the reada request specifies delivery of a SIGUSR1 signal on completion of the
request.

The program uses the pause(2) system call to wait for the completion of the asynchronous read operation (that
is, reception of the SIGUSR1 signal). The sigoff library routine provides assurance that the SIGUSR1
signal is not received before reaching the pause(2) request.

READA(2) READA(2)

SR−2012 10.0 335

#include <fcntl.h>
#include <signal.h>
#include <sys/types.h>
#include <sys/iosw.h>

struct iosw rdstat;

main()
{

char buf[1000];
int fd;
void rdhdlr(int signo);

signal(SIGUSR1, rdhdlr);

if ((fd = open("datafile", O_RDONLY)) == -1) {
perror("open (datafile) failed");
exit(1);

}

sigoff(); /* delay signal reception until pause() is reached */
reada(fd, buf, 1000, &rdstat, SIGUSR1); /* SIGUSR1 sent when

read completes */

/* perform other work here in parallel with I/O completion */

pause(); /* wait for read to complete - pause() calls sigon() */

/* input data from reada now available in buffer buf */
}

void rdhdlr(int signo)
{

signal(signo, rdhdlr);
printf("reada read %d bytes\n", rdstat.sw_count);
rdstat.sw_flag = 0;

}

READA(2) READA(2)

336 SR−2012 10.0

Example 2: (Some system calls in the example are not supported on Cray MPP systems.) Unlike the program
in example 1, this program uses the recalla(2) system call to wait for completion of the asynchronous input
operation. The user’s program is informed of the completion by reception of the SIGUSR1 signal. While
recalla(2) can wait for completion of multiple asynchronous I/O requests from multiple files, it only waits
for one read operation in this example.

#include <fcntl.h>
#include <signal.h>
#include <sys/types.h>
#include <sys/iosw.h>
#include <sys/param.h>

struct iosw rdstat;

main()
{

char buf[1000];
int fd;
long mask[RECALL_SIZEOF];
void rdhdlr(int signo);

signal(SIGUSR1, rdhdlr);

if ((fd = open("datafile", O_RDONLY)) == -1) {
perror("open (datafile) failed");
exit(1);

}

RECALL_SET(mask, fd); /* set bit for fd in mask */

reada(fd, buf, 1000, &rdstat, SIGUSR1); /* SIGUSR1 sent when
read completes */

/* perform other work here in parallel with I/O completion */

recalla(mask); /* wait for read to complete */

/* input data from reada now available in buffer buf */
}

void rdhdlr(int signo)
{

signal(signo, rdhdlr);
printf("reada read %d bytes\n", rdstat.sw_count);
rdstat.sw_flag = 0;

}

READA(2) READA(2)

SR−2012 10.0 337

Example 3: Unlike the programs in examples 1 and 2, this program does not have an I/O completion signal
specified on the reada request. The program uses the recall(2) system call to wait for completion of the
asynchronous read operation. While recall(2) can wait for completion of multiple asynchronous I/O
requests from multiple files or even the same file, it only waits for one read operation in this example.

#include <fcntl.h>
#include <signal.h>
#include <sys/types.h>
#include <sys/iosw.h>

main()
{

char buf[1000];
int fd;
struct iosw rdstat[1], *statlist[1];

if ((fd = open("datafile", O_RDONLY)) == -1) {
perror("open (datafile) failed");
exit(1);

}

reada(fd, buf, 1000, &rdstat[0], 0); /* no signal sent when
read completes */

statlist[0] = &rdstat[0];

/* perform other work here in parallel with I/O completion */

recall(fd, 1, statlist); /* wait for read to complete */

printf("reada read %d bytes\n", rdstat[0].sw_count);
rdstat[0].sw_flag = 0;

/* input data from reada now available in buffer buf */
}

SEE ALSO

brk(2), chmod(2), intro(2), lseek(2), pause(2), read(2), recalla(2), recall(2), writea(2)

sigoff(3C) in the UNICOS System Libraries Reference Manual, Cray Research publication SR−2080

READA(2) READA(2)

338 SR−2012 10.0

NAME

readlink − Reads value of a symbolic link

SYNOPSIS

#include <unistd.h>

int readlink (char *path, char *buf, int bufsiz);

IMPLEMENTATION

All Cray Research systems

DESCRIPTION

The readlink system call places the contents of the symbolic link in a buffer of specified size. The contents
of the link are not null terminated when returned.

The readlink system call accepts the following arguments:

path Specifies the contents of the symbolic link. That is, the path name of the file being referred.

buf Points to the buffer that contains the symbolic link.

bufsiz Specifies the buffer size in characters.

NOTES

To be granted search permission to a component of the path prefix, the active security label of the process must
be greater than or equal to the security label of the component.

The process must have read permission to the file via the security label. That is, the active security label of the
process must be greater than or equal to the security label of the file.

A process with the effective privileges shown is granted the following abilities:

Privilege Description

PRIV_DAC_OVERRIDE The process is granted search permission to the component via the permission
bits and access control list.

PRIV_MAC_READ The calling process is granted read permission to the file via the security label.

PRIV_MAC_READ The process is granted search permission to the component via the security label.

If the PRIV_SU configuration option is enabled, the super user is granted search permission to every
component of the path prefix. If the PRIV_SU configuration option is enabled, the super user is granted read
permission to the file via the security label.

READLINK(2) READLINK(2)

SR−2012 10.0 339

RETURN VALUES

If readlink completes successfully, the count of characters placed in the buffer is returned; otherwise, a
value of −1 is returned, and errno is set to indicate the error.

ERRORS

The readlink system call fails and the buffer is unchanged if one of the following error conditions occurs:

Error Code Description

EACCES Search permission is denied for a component of the path prefix of path.

EACCES The process is not granted read permission to the file via the security label and does
not have appropriate privilege.

EFAULT The path or buf argument extends outside the process allocated address space.

EINVAL The specified file is not a symbolic link.

EINVAL The path argument contained a byte with the high-order bit set.

EIO An I/O error occurred during a read from or write to the file system.

EMLINK Too many symbolic links were encountered in translating path.

ENAMETOOLONG The length of a component of path exceeds 255 characters, or the length of path
exceeds 1023 characters.

ENOENT The specified file does not exist.

EXAMPLES

This example shows how to use the readlink system call to retrieve the path name of a file for which a
symbolic link is targeting.

First, a symlink(2) system call is used to create a symbolic link. (Two arguments must be supplied to this
program; the first is the path name of an existing file, which is the target of the symbolic link, and the second is
the new link.) The readlink request then returns the path name of the target of the new link (that is, the
value of the first argument, argv[1]).

READLINK(2) READLINK(2)

340 SR−2012 10.0

#include <unistd.h>

main(int argc, char *argv[])
{

char buf[1024];

if (symlink(argv[1], argv[2]) == -1) { /* argv[1] -> existing file */
perror("symlink failed"); /* argv[2] -> new link */

}

readlink(argv[2], buf, 1024); /* buf should contain argv[1]
string */

printf("Symbolic link contains => %s\n", buf);
}

FILES

/usr/include/unistd.h Contains C prototype for the readlink system call

SEE ALSO

lstat(2), stat(2), symlink(2)

READLINK(2) READLINK(2)

SR−2012 10.0 341

NAME

recall, recalls − Waits for I/O completions

SYNOPSIS

#include <sys/types.h>
#include <sys/iosw.h>

int recall (int fildes, int cnt, struct iosw **list);

int recalls (int cnt, struct iosw **list);

IMPLEMENTATION

All Cray Research systems

DESCRIPTION

The recall system call provides a means to wait for any of a specified set of asynchronous I/O requests to
complete. Each element in list, if it is not null, points to an I/O completion status word. When the completion
bit is set in any of the specified status words, the system call returns. Any null entries in list are ignored. The
arguments are as follows:

fildes Specifies a file descriptor. It is obtained from a creat(2), dup(2), fcntl(2), open(2), or
pipe(2) system call or socket descriptor obtained from a call to the socket(2) system call.

cnt Specifies the number of elements in list.

list Points to an array of pointers to asynchronous I/O status structures of type struct iosw.

When calling recall, all status structures in list must correspond to I/O requests made for file descriptor
fildes. The recalls system call has the same effect as recall, but the restriction that all status structures in
list correspond to I/O requests for just one file descriptor is relaxed. Users are encouraged to use recall
because the fildes argument permits the procstat(1) command to gather more complete statistics.

RETURN VALUES

If recall or recalls completes successfully, the value of 0 is returned; otherwise, a value of −1 is returned,
and errno is set to indicate the error.

ERRORS

The recall or recalls system call fails if one of the following error conditions occurs:

Error Code Description

EFAULT The request list is not fully contained within the process address space.

EINTR A signal was caught during a wait for an I/O completion.

RECALL(2) RECALL(2)

342 SR−2012 10.0

EINVAL The cnt argument is not a valid size. Implementation-defined limits exist on the
maximum size of this list.

EXAMPLES

The following example shows how to use the recall system call to wait for completion of an asynchronous
read operation so that the operation is performed in parallel with other work in a user’s process.

In this program, the reada(2) request does not include an I/O completion signal. The recall request waits
for the read operation to complete. Although recall can wait for completion of multiple asynchronous I/O
requests from multiple files or even the same file, it waits for only one read operation in this example.

#include <fcntl.h>
#include <signal.h>
#include <sys/types.h>
#include <sys/iosw.h>

main()
{

char buf[1000];
int fildes;
struct iosw rdstat[1], *statlist[1];

if ((fildes = open("datafile", O_RDONLY)) == -1) {
perror("open (datafile) failed");
exit(1);

}

reada(fildes, buf, 1000, &rdstat[0], 0); /* no signal sent when
read completes */

statlist[0] = &rdstat[0];

/* perform other work here in parallel with I/O completion */

recall(fildes, 1, statlist); /* wait for read to complete */

printf("reada read %d bytes\n", rdstat[0].sw_count);
rdstat[0].sw_flag = 0;

/* input data from reada now available in buffer buf */
}

SEE ALSO

creat(2), dup(2), fcntl(2), listio(2), open(2), pipe(2), reada(2), recalla(2), socket(2),
writea(2)

procstat(1) in the UNICOS User Commands Reference Manual, Cray Research publication SR−2011

RECALL(2) RECALL(2)

SR−2012 10.0 343

NAME

recalla − Waits for I/O completion(s)

SYNOPSIS

#include <sys/param.h>
#include <sys/types.h>
#include <sys/iosw.h>

int recalla (long mask[RECALL_SIZEOF]);

RECALL_INIT (mask);
RECALL_CLR (mask, fd);
RECALL_SET (mask, fd);

IMPLEMENTATION

Cray PVP systems

DESCRIPTION

The recalla system call waits for the completion of one or more I/O requests on files specified by mask that
were previously initiated by a reada(2) or writea(2) system call.

It accepts the following argument:

mask Specifies a left-justified bit array in which each bit corresponds to a file descriptor. The bit array is
an array of size RECALL_SIZEOF where each array element is of type long.

If any of the files to which mask points are not busy, control is returned immediately. If all of the files to which
mask points are busy, the process is blocked until at least one of the file’s I/O requests completes.

The caller must check the status word associated with the files in the mask to ensure completion.

The following macros are defined in the sys/iosw.h file. In these macros, mask specifies the mask argument
used in the recalla call, and fd specifies a file descriptor.

RECALL_INIT (mask) Clears all bits in mask.

RECALL_CLR (mask, fd) Clears bit corresponding to fd in mask.

RECALL_SET (mask, fd) Sets bit corresponding to fd in mask.

RETURN VALUES

If recalla completes successfully, the value of 0 is returned; otherwise, a value of −1 is returned, and errno
is set to indicate the error.

RECALLA(2) RECALLA(2)

344 SR−2012 10.0

ERRORS

The recalla system call fails if one of the following error conditions occurs:

Error Code Description

EFAULT The request mask is not fully contained within the process address space.

EINTR A signal was caught during a wait for an I/O completion.

EXAMPLES

The following example shows how to use the recalla system call to wait for completion of an asynchronous
read operation so that the operation is performed in parallel with other work in a user’s process.

In this program, the reada(2) request specifies delivery of a SIGUSR1 signal on completion of the request.
The recalla system call waits for the completion of the read operation. The user’s program is informed of
the completion by the reception of the SIGUSR1 signal. While recalla can wait for completion of multiple
asynchronous I/O requests from multiple files, it only waits for one read request in this example.

#include <fcntl.h>
#include <signal.h>
#include <sys/types.h>
#include <sys/iosw.h>
#include <sys/param.h>

struct iosw rdstat;

main()
{

char buf[1000];
int fd;
long mask[RECALL_SIZEOF];
void rdhdlr(int signo);

signal(SIGUSR1, rdhdlr);

if ((fd = open("datafile", O_RDONLY)) == -1) {
perror("open (datafile) failed");
exit(1);

}

RECALL_SET(mask, fd); /* set bit for fd in mask */

reada(fd, buf, 1000, &rdstat, SIGUSR1); /* SIGUSR1 sent when
read completes */

/* perform other work here in parallel with I/O completion */

recalla(mask); /* wait for read to complete */

RECALLA(2) RECALLA(2)

SR−2012 10.0 345

/* input data from reada now available in buffer buf */
}

void rdhdlr(int signo)
{

signal(signo, rdhdlr);
printf("reada read %d bytes\n", rdstat.sw_count);
rdstat.sw_flag = 0;

}

SEE ALSO

listio(2), open(2), reada(2), recall(2), writea(2)

RECALLA(2) RECALLA(2)

346 SR−2012 10.0

NAME

recv, recvfrom, recvmsg − Receives a message from a socket

SYNOPSIS

All Cray Research systems:
#include <sys/types.h>
#include <sys/uio.h>
#include <sys/socket.h>

int recv (int s, char *buf, int len, int flags);

int recvfrom (int s, char *buf, int len, int flags,
struct sockaddr *from, int *fromlen);

Cray PVP systems:
#include <sys/types.h>
#include <sys/uio.h>
#include <sys/socket.h>

int recvmsg (int s, struct msghdr *buf, int flags);

IMPLEMENTATION

All Cray Research systems

DESCRIPTION

The recv, recvfrom, and recvmsg system calls receive a message (buf) from a socket.

You can use a recv call only on a connected socket. You can use recvfrom or recvmsg on either a
connected or unconnected socket. The recvmsg system call uses the same msghdr structure as the
sendmsg(2) system call to minimize the number of directly supplied arguments. For more information, see
the connect(2) and send(2) man pages.

The recv, recvfrom, and recvmsg system calls accept the following arguments:

s Specifies the descriptor of the socket from which messages are received. Descriptor is returned
when a socket is created by the socket(2) or socketpair(2) system call; socketpair(2)
uniquely identifies the socket’s access path.

buf Points to the address of a buffer into which received messages are placed.

len Specifies the length of the buffer pointed to by the buf argument.

flags Allows the caller to control the reception of messages. The argument value is formed by
performing an OR operation on one or more of the following values:

MSG_OOB Process out-of-band data.

MSG_PEEK Peek at incoming message without removing message from the socket.

RECV(2) RECV(2)

SR−2012 10.0 347

MSG_DONTROUTE Send without using routing tables.

MSG_EOR Data sent completes record.

MSG_TRUNC Data discarded before delivery.

MSG_CTRUNC Control data lost before delivery.

MSG_WAITALL Wait for full request or error.

The recvfrom and recvmsg system calls can be used to receive data on a socket whether or not it is in a
connected state. The recvfrom system call accepts the following additional arguments allowing the caller to
specify where the sender’s address should be recorded:

from Specifies the address of a sockaddr structure that the operating system will use to record the
address of the message sender.

fromlen Specifies the address of an integer that the operating system uses to record the length of the
sender’s address, which is recorded in from.

If no messages are available at the socket, the receive call waits for a message to arrive; however, if the socket
is nonblocking (set by using an ioctl(2) system call with FIONBIO (see socket(2)), a value of −1 is
returned, and the external variable errno is set to EWOULDBLOCK. Use the select(2) call to determine
when data arrives.

The recvmsg system call uses the same msghdr structure which is defined in the sys/socket.h file. This
structure has the following form:

struct msghdr {
caddr_t msg_name; /* optional address */
u_int msg_namelen; /* size of address */
struct iovec *msg_iov; /* scatter/gather array */
u_int msg_iovlen; /* # elements in msg_iov */
caddr_t msg_control; /* ancillary data, see below */
u_int msg_controllen; /* ancillary data buffer len */
int msg_flags; /* flags on received message */

};

In this structure, msg_name and msg_namelen describe the source address for recvmsg or the destination
address for sendmsg(2). If no names are desired or required, msg_name is given as a null pointer. The
msg_name and msg_namelen arguments operate similarly to the recvfrom from and fromlen arguments,
and the sendto(2) to and tolen arguments.

The msg_iov and msg_iovlen arguments describe an array of buffer descriptors. The msg_iov argument
points to an array of structure iovec, which is defined as follows:

struct iovec {
caddr_t iov_base;
int iov_len;

};

RECV(2) RECV(2)

348 SR−2012 10.0

Each iovec entry specifies the base address and length of an area in memory from which data must be read or
to which data must be written.

The iov_len argument specifies the number of structure iovec entries in the array to which msg_iov points.
recvmsg and sendmsg(2) always process the entire iov_len bytes of one iovec structure before
proceeding to the next.

The msg_control argument, which has length msg_controllen, is a buffer for other protocol
control-related messages or other miscellaneous ancillary data. The messages are of the following form:

struct cmsghdr {
u_int cmsg_len; /* data byte count, including hdr */
int cmsg_level; /* originating protocol */
int cmsg_type; /* protocol-specific type */

/* followed by
u_char cmsg_data[]; */

};

For recvmsg, the msg_controllen argument is a value-result parameter, which is initialized to the size of
the msg_control argument, and it displays the number of bytes of control information returned.

Open file descriptors are now passed as ancillary data for AF_UNIX domain sockets (for example,
cmsg_level is SOL_SOCKET and cmsg_type is SCM_RIGHTS). This feature is disabled on systems that
are configured to support nonzero security labels.

The msg_flags argument is set on return using a method that includes some of the same values that are
specified for the flags parameter to a recv system call. The returned value MSG_EOR indicates end-of-record,
MSG_TRUNC indicates that some trailing datagram data was discarded, and MSG_CTRUNC indicates that some
control data was discarded because of lack of space. MSG_OOB is returned to indicate that expedited data was
received.

NOTES

If the SOCKET_MAC option is enabled, the active security label of the process must be greater than or equal to
the security label of the socket. SOCKET_MAC is part of TCP/IP configurable feature variables list in
uts/cf/Nmakefile. For more information, see the connect(2) man page.

A process with the effective privilege shown is granted the following ability:

Privilege Description

PRIV_MAC_READ When the SOCKET_MAC is enabled, the process may override the security label
restrictions.

If the PRIV_SU configuration option is enabled, the super user may override security label restrictions when
the SOCKET_MAC option is enabled.

RECV(2) RECV(2)

SR−2012 10.0 349

If s is an Internet-domain socket and the recvfrom or recvmsg system call is used, the sin_addr and
sin_port fields of the sending socket name identify only the socket at the other end of the connection, not the
remote process or remote user. Additional knowledge is required to interpret those fields. For example, if the
sin_addr field designates another UNICOS system, a sin_port value of less than 1024 indicates a
connection with trusted software (for example, rlogin(1B)), which may include additional identity
information in its protocol data stream. If it is necessary to identify the actual user associated with the socket,
the communicating peers must agree in advance on a method, such as the sender placing its sin_port value
in a protected file accessed through NFS (or other means) by the receiver.

Because no sender name information can be obtained from a UNIX-domain socket, the other end of the
connection cannot be identified except to the extent that additional authentication techniques are used.
Although no identity-based access controls restrict use of connect(2) or sendto(2) for a UNIX-domain
socket, such a socket can be created in a directory to which execute (search) access is restricted. This limits the
ability of other processes to connect to the socket. Alternatively, the listening process could place a random
value or secret password in a protected file and require the value or password be included in all messages it
accepts; this ensures that only users with access to that file can send valid messages. For both Internet-domain
and UNIX-domain, this authentication requires explicit action on the part of the receiver.

RETURN VALUES

If recv, recvmsg, or recvfrom completes successfully, the number of characters received is returned;
otherwise, a value of −1 is returned, and errno is set to indicate the error.

ERRORS

The recv, recvfrom, or recvmsg system call fails if one of the following conditions occurs:

Error Code Description

EACCES Permission is denied (because of a security violation).

EACCES If the SOCKET_MAC option is enabled, the process does not meet the security label
requirements and does not have appropriate privilege.

EBADF Descriptor s is not valid.

EFAULT Data is specified to be received into a nonexistent or protected part of the process
address space.

EINTR Receive operation is interrupted by delivery of a signal before any data is available for
the receive.

EMSGSIZE The msg_iovlen field is greater than or equal to the MSG_MAXIOVLEN parameter
(defined in the sys/socket.h file).

EINVAL No out-of-band data is available when the MSG_OOB flag is specified.

ENOTCONN Socket is not connected.

ENOTSOCK Descriptor s is not a socket.

RECV(2) RECV(2)

350 SR−2012 10.0

EWOULDBLOCK Socket is marked nonblocking, and the receive operation would block.

FILES

/etc/config/spnet.conf Network access list file

/usr/include/sys/socket.h Contains definitions related to sockets, types, address families, and
options

/usr/include/sys/types.h Contains types required by ANSI X3J11

/usr/include/sys/uio.h Contains user I/O structures and definitions

SEE ALSO

accept(2), connect(2), ioctl(2), select(2), send(2), socket(2), socketpair(2)

rlogin(1B) in the UNICOS User Commands Reference Manual, Cray Research publication SR−2011

UNICOS File Formats and Special Files Reference Manual, Cray Research publication SR−2014

UNICOS Networking Facilities Administrator’s Guide, Cray Research publication SG−2304

RECV(2) RECV(2)

SR−2012 10.0 351

NAME

rename − Changes the name of a file

SYNOPSIS

#include <stdio.h>

int rename (const char *old, const char *new);

IMPLEMENTATION

All Cray Research systems

STANDARDS

POSIX, XPG4

DESCRIPTION

The rename system call changes the name of a file.

The rename system call accepts the following arguments:

old Points to the path name of the file to be renamed.

new Points to the new path name of the file.

If the old argument and the new argument both refer to links to the same existing file, the rename system call
returns successfully and performs no other action.

If the old argument points to the path name of a file that is not a directory, the new argument does not point to
the path name of a directory. If the link specified by the new argument exists, it is removed and old is renamed
new. In this case, a link named new exists throughout the renaming operation and refers either to the file
referred to by new or old before the operation began. Write access permission is required for both the directory
that contains old and the directory that contains new.

If the old argument points to the path name of a directory, the new argument points to the path name of a file
that is a directory. If the directory specified by the new argument exists, it shall be removed and old renamed
new. In this case, a link named new exists throughout the renaming operation and refers either to the file
referred to by new or old before the operation began. If new specifies an existing directory, it must be an empty
directory.

The new path name does not contain a path prefix that names old. Write access permission is required for the
directory that contains old and the directory that contains new. If the old argument points to the path name of a
directory, write access permission is required for the directory named by old, and, if it exists, the directory
named by new.

RENAME(2) RENAME(2)

352 SR−2012 10.0

If the link specified by the new argument exists and the file’s link count becomes 0 when it is removed and no
process has the file open, the space occupied by the file is freed and the file is no longer accessible. If one or
more processes have the file open when the last link is removed, the link is removed before rename returns,
but the removal of the file contents is postponed until all references to the file are closed.

Upon successful completion, rename marks for update the st_ctime and st_mtime fields of the parent
directory of each file.

NOTES

Under UNICOS, rename is implemented as a system call, but the rename(3C) function is also defined to be a
part of the ANSI Standard C library. For this reason, this documentation appears both here and in the UNICOS
System Libraries Reference Manual, Cray Research publication SR−2080.

The process must be granted search permission to every component of each path prefix via the permission bits
and access control list. The process must be granted search permission to every component of each path prefix
via the security label.

The process must be granted write permission to each path’s parent directory via the permission bits and access
control list. The process must be granted write permission to each path’s parent directory via the security label.

If old is a directory, and new’s parent directory is not the same as old’s parent directory, the process must be
granted write permission to old via the permission bits and access control list. If old is a directory and new’s
parent directory is not the same as old’s parent directory, the process must be granted write permission to old
via the security label.

If new already exists, the process must be granted write permission to new via the permission bits and access
control list. If new already exists, the process must be granted write permission to new via the security label.

If FSETID_RESTRICT is enabled, the set-user-ID and set-group-ID bits are cleared if the file is renamed
across file systems, unless the process has appropriate privilege.

A process with the effective privileges shown are granted the following abilities:

Privilege Description

PRIV_DAC_OVERRIDE The process is granted search permission to every component of each path prefix
via the permission bits and access control list.

PRIV_DAC_OVERRIDE The process is granted write permission to each path’s parent directory old, and
new (if it already exists) via the permission bits and access control list.

PRIV_FSETID If FSETID_RESTRICT is enabled, set-user-ID and set-group-ID bits are not
cleared access file systems.

PRIV_MAC_READ The process is granted search permission to every component of each path prefix
via the security label.

PRIV_MAC_WRITE The process is granted write permission to each path’s parent directory old, and
new (if it already exists) via the security label.

RENAME(2) RENAME(2)

SR−2012 10.0 353

If the PRIV_SU configuration option is enabled, the super user is granted search permission to every
component of each path prefix and is granted write permission to each path’s parent directory. The super user
is granted write permission to old and new (if it exists). The super user or a process with the suidgid
permission can override the restriction enabled by the FSETID_RESTRICT system configuration option.

RETURN VALUES

If rename completes successfully, a value of 0 is returned; otherwise, a value of −1 is returned, and errno is
set to indicate the error.

ERRORS

The rename system call fails if one of the following error conditions occurs:

Error Code Description

EACCES A component of either path prefix denies search permission; or one of the directories
containing old or new denies write permissions; or, write permission is required and is
denied for a directory pointed to by the old or new argument.

EBUSY The directory named by old or new cannot be renamed because it is being used by the
system or another process and the implementation considers this to be an error.

EEXIST or ENOTEMPTY
The link named by new is a directory containing entries other than dot and dot-dot.

EINVAL The new directory path name contains a path prefix that names the old directory.

EISDIR The new argument points to a directory and the old argument points to a file that is not
a directory.

ENAMETOOLONG The length of the old or new argument exceeds {PATH_MAX}, or a path name
component is longer than {NAME_MAX} when {_POSIX_NO_TRUNC} is in effect.

ENOENT The link named by the old argument does not exist or either old or new points to an
empty string.

ENOSPC The directory that should contain new cannot be extended.

ENOTDIR A component of either path prefix is not a directory; or the old argument names a
directory and the new argument names a nondirectory file.

EROFS The requested operation requires writing in a directory on a read-only file system.

EXDEV The links named by new and old are on different file systems and the implementation
does not support links between file systems.

RENAME(2) RENAME(2)

354 SR−2012 10.0

FILES

/usr/include/sys/stdlib.h Contains C prototype for the rename system call

SEE ALSO

link(2), rmdir(2), unlink(2)

rename(3C) in the UNICOS System Libraries Reference Manual, Cray Research publication SR−2080

RENAME(2) RENAME(2)

SR−2012 10.0 355

NAME

resch − Reschedules a process

SYNOPSIS

#include <unistd.h>

void resch (void);

IMPLEMENTATION

Cray PVP systems

DESCRIPTION

The resch system call causes a process to be rescheduled by logically placing it at the end of the queue of
processes that can run.

If the process is a thread-process with its wakeup flag set to 0, it is suspended until the wakeup flag is set to a
nonzero value. This is used by the microtasking library to activate and deactivate processes.

RETURN VALUES

None

FILES

/usr/include/unistd.h Contains C prototype for the resch system call

SEE ALSO

fork(2), thread(2)

RESCH(2) RESCH(2)

356 SR−2012 10.0

NAME

restart − Restarts a process, multitask group, or job

SYNOPSIS

#include <sys/restart.h>

int restart (char *path, long flags);

IMPLEMENTATION

Cray PVP systems

DESCRIPTION

The restart system call validates, loads, and restarts the process, multitask group, or job defined in the
specified restart file as created by the chkpnt(2) system call.

It accepts the following arguments:

path Specifies path name of the restart file containing the process, multitask group, or job (or interactive
session) to be recovered.

flags Identifies optional restart actions. The flags present in this field are OR’ed together to define
the optional actions to be performed by restart. The optional actions are as follows:

RESTART_FORCE Forces recovery even when one or more of the files referred to by processes
saved in the restart file have been changed.

RESTART_PAG Allows the restarted processes to inherit the Distributed Computing
Environment (DCE) credentials from the process that calls restart rather
than using the credentials stored in the restart file.

RESTART_PTRACE Restarts and traces the process (see ptrace(2)). If the
RESTART_PTRACE flag is set, the restart file must describe a process or
multitask group, not a job. If the restart is successful, the restarted process is
recovered as though it had executed a ptrace(2) system call. When
restarting a multitask group, it is as though the eldest process of the multitask
group executed the ptrace(2) system call.

RESTART_SUSPEND
Restarts all the recovered processes in a suspended state (see suspend(2)
and resume(2)).

RESTART_WAIT Makes the restarted process, if it is interactive, the foreground process.

The eldest process of each multitask group receives a SIGRECOVERY signal on restoration (see signal(2)).
By default, the SIGRECOVERY signal is ignored, but processes expecting to be checkpointed and restored
successively can elect to catch this signal; thereby, they can perform any special actions needed for their proper
recovery.

RESTART(2) RESTART(2)

SR−2012 10.0 357

Processes with open pipes can be checkpointed and restarted if their pipe connections do not go outside the job
or multitask group being checkpointed. For a process with open pipes to have been checkpointed, all of its pipe
connections must have terminated with processes also included in the restart file.

Processes with open files that reside on NFS file systems can be checkpointed and restarted. To restart a
process with open NFS files, the NFS file systems on which the files reside have to be mounted, unless the NFS
file systems are managed by the automounter. In this case, the automounter will try to remount the file systems
automatically.

Processes with open files that reside on Distributed File System (DFS) file systems can be checkpointed and
restarted. The following conditions must exist in order for a user to restart a process with an open DFS file.

F The DFS client must be running on the local host.
G The DFS server must be running on the host where the file resides.

Access to DFS files is controlled by a user’s DCE credentials as opposed to user identification (UID) and group
identification (GID). DFS credentials consist of Kerberos tickets stored in a special file. When a process is
checkpointed, a reference to these credentials is stored in the restart file. The credentials must be present and
valid when restart is performed. If the credentials are no longer present or have expired, accesses to DFS
files that are performed after the restart call will appear to be from the UID −2.

The RESTART_PAG flag allows the reference to the original credentials to be replaced by a reference to a new
set of credentials. Using this flag allows processes that access DFS files to be restarted after their original
credentials have been deleted or have expired.

Processes with unlinked files can be checkpointed and restarted if the total of the size of all unlinked files in use
by the target process set is within the size limit established by the system administrator. See the system variable
MAX_UNLINKED_BYTES in the /usr/src/uts/c1/cf/config.h file to see the site local definition.

On systems with SSD solid-state storage devices, processes that are using secondary data segments (SDS) can
be checkpointed and restarted if sufficient disk space is available and can contain an image of the process’ SDS
area within the restart file. An ENOSDS error may occur at restart time if the SDS area available at that time is
less than what was in use at checkpoint time. The ENOSDS error means that restart must be retried at a
later time when sufficient SDS space is available.

Processes using online tape files cannot be checkpointed or restarted.

NOTES

The following restrictions apply to processes and jobs (including interactive sessions) that are to be restarted:
H All files that a process was using when it was checkpointed must be present when the process is restarted.

These files include all open files, any shared-text executables that the process was using (such as shells), and
the present working directory. In the restart file, each of these files is identified by its inode number and the
minor number of the file system. If either changes, the restart system call fails, and the call returns an
EFILERM error. For example, if a file system is restored by /etc/restore, any process that was using
files on that file system and was checkpointed before the restore, will fail to restart. After the restore, each
file on the file system has a different inode number than it did when the process was checkpointed.

RESTART(2) RESTART(2)

358 SR−2012 10.0

I Only a process with appropriate privilege may checkpoint or restart another user’s job or process.
J Processes using online tapes cannot be checkpointed or restarted.
K Processes using shared memory segments (CRAY T90 series systems only) cannot be checkpointed or

restarted.
L Whenever any process is recovered from a restart file, all its multitask sibling processes are also recovered.

Thus, when restart is invoked to perform recovery from a process restart file (a restart file that does not
define an entire job), it is still possible for several processes to be recovered, because all the multitask
siblings of the original target process must also be restored.

M All processes recovered by restart retain their original attributes, such as process ID (PID), parent
process ID (PPID), process group ID (PGRP), and job ID (JID). The only possible exceptions to this rule
concern the process attributes of PGRP and PPID of the oldest restarted process.

N The exception to the pgrp conservation rule occurs only when one multitask group is recovered from a
process restart file. If the pgrp of the recovered multitask group is found to be nonzero and not equal to the
pid of a process in the group, the pgrp of the recovered group is set to the pgrp of the caller.

O If a user attempts to copy a restart file, the restart system call fails.
P If a user attempts to move a restart file to a different file system, the restart system call fails.
Q If an interactive session is checkpointed and later recovered with a restart system call, each process that

is part of the session that performed the restart system call is sent a SIGHUP signal to indicate that the
connection hung up. The call assigns the pseudo tty of the calling session to the restarted session.

A process with the effective privilege shown is granted the following abilities:

Privilege Description

PRIV_DAC_OVERRIDE The process is granted search permission to every component of the path prefix
via the permission bits and access control list.

PRIV_FOWNER The process is considered the owner of the specified file.

PRIV_MAC_READ The process is granted search permission to every component of the path prefix
via the security label.

PRIV_MAC_WRITE The process is granted write permission to the restart file via the security label.

PRIV_POWNER The calling process is considered the owner of the session being restarted.

If the PRIV_SU configuration option is enabled, the super user is considered the owner of the restart file and is
granted access to the restart file. The super user is considered the owner of the session being restarted.

RETURN VALUES

If restart completes successfully, the PID (JID) of the recovered process (job) is returned; otherwise, a
value of −1 is returned, and errno is set to indicate the error.

RESTART(2) RESTART(2)

SR−2012 10.0 359

ERRORS

The restart system call fails if one of the following error conditions occurs:

Error Code Description

EACCES A component of the restart file path prefix denies search permission.

EACCES The restart file is not owned by the caller, and the caller does not have appropriate
privilege.

EACCES The caller’s active security label did not dominate that of the restart file.

EAGAIN The system-imposed limit on the total number of processes in the system (NPROC)
would be exceeded by the recovery of all processes from the restart file.

EAGAIN The system-imposed limit on the total number of processes in the system allocated to
one user (CHILD_MAX) would be exceeded by the recovery of all processes from the
restart file.

EAGAIN The restart file contains recovery information for an entire job, and the maximum
number of jobs allowed to exist in the system (NJOB) at any one time already exist.

EAGAIN The multitask group or process defined in the restart file could not be recovered,
because a job I/O quota would be exceeded.

EBUSY One or more of the processes to be recovered from the restart file has a process ID that
is already allocated to an existing process in the system.

EBUSY The restart file contains recovery information for an entire job, and the job ID of the
job to be recovered is already allocated to an existing job in the system.

EDEADLK The reapplication of record lock(s) owned by the process(es) to be restarted would
result in a deadlock situation.

EFAULT The path argument points outside the allocated process address space.

EFILECH One or more files referenced in the restart file have been changed, and the
RESTART_FORCE flag was not set.

EFILECH One or more files referenced in the restart file have changed either user or group
ownership. This situation cannot be overridden by the RESTART_FORCE flag.

EFILERM One or more files referenced in the restart file are no longer present.

EFILERM One or more files referenced in the restart file reside on an NFS file system that is not
mounted.

EFILERM A DFS file cannot be located. Either the file has been removed, or the DFS server
holding it is either down or unreachable.

EINVAL The restart system call was invoked with the RESTART_PTRACE flag, and the
restart file described a job rather than a process or multitask group.

ENFILE The system inode or file table is full.

RESTART(2) RESTART(2)

360 SR−2012 10.0

ENODEV The DFS client is currently not running and needs to be started before restart can
proceed.

ENOENT The specified restart file does not exist.

ENOEXEC The restart file path name does not refer to a valid restart file.

ENOLCK One or more of the processes to be restored owned record locks at checkpoint time
(see fcntl(2) and lockf(3C)), and not enough record locks are available to
complete recovery.

ENOMEM There is not enough main memory or swap space to complete the recovery.

ENOSDS Insufficient SDS space is available to complete the recovery.

ENOSPC Insufficient free file space exists to re-create unnamed pipes previously in use by one
or more of the processes to be recovered.

ENOSPC Insufficient free file space exists to re-create unlinked regular files previously in use by
one or more of the processes to be recovered.

ENOTDIR A component of the restart file path prefix is not a directory.

ENOTTY One or more of the processes to be recovered had a controlling tty, and the caller has
no controlling tty.

EQACT A file or inode quota limit was reached for the current account ID.

EQGRP A file or inode quota limit was reached for the current group ID.

EQUSR A file or inode quota limit was reached for the current user ID.

ERFLOCK Record lock(s) owned by the process(es) to be restarted could not be reapplied because
record lock(s) owned by currently existing process(es) have one or more of the target
file regions already locked.

EXAMPLES

The following example shows how to use the restart system call to recover a checkpointed process or job.
The path name of the checkpoint/restart file, argv[1], is supplied as the only argument to this program.

(This system call is not used frequently by users because the restart(1) command provides similar
functionality.)

RESTART(2) RESTART(2)

SR−2012 10.0 361

main(int argc, char *argv[])
{

int id;

if ((id = restart(argv[1], 0)) == -1) {
perror("restart failed");
exit(1);

}

printf("pid (jid) of recovered process (job) = %d\n\n", id);
system("ps"); /* view recovered processes in ps(1) display */

}

FILES

/usr/include/sys/restart.h Contains the optional restart actions

/usr/src/uts/c1/cf/config.h Contains the system variable MAX_UNLINKED_BYTES

SEE ALSO

chkpnt(2), chmod(2), chown(2), creat(2), fcntl(2), open(2), ptrace(2), resume(2), signal(2),
suspend(2), _tfork(2)

chkpnt_util(1), restart(1) in the UNICOS User Commands Reference Manual, Cray Research
publication SR−2011

lockf(3C) in the UNICOS System Libraries Reference Manual, Cray Research publication SR−2080

RESTART(2) RESTART(2)

362 SR−2012 10.0

NAME

rmdir − Removes a directory

SYNOPSIS

#include <unistd.h>

int rmdir (const char *path);

IMPLEMENTATION

All Cray Research systems

STANDARDS

POSIX, XPG4

DESCRIPTION

The rmdir system call removes the directory specified by a path name. The directory must not have any
entries other than "." and "..".

The rmdir system call accepts the following argument:

path Points to the path name of the directory.

To remove a directory that has the "sticky" bit set, the process must be the owner of that directory.

NOTES

To be granted search permission to a component of the path prefix, the active security label of the process must
be greater than or equal to the security label of the component.

To be granted write permission to the parent directory, the active security label of the process must equal the
security label of the parent directory.

The process must be granted write permission to the directory being removed via the security label. That is, the
active security label of the process must equal the security label of the directory being removed.

A process with the effective privileges shown is granted the following abilities:

Privilege Description

PRIV_DAC_OVERRIDE The process is granted write permission to the parent directory via the
permission bits and access control list.

PRIV_DAC_OVERRIDE The process is granted search permission to every component of the path prefix
via the permission bits and access control list.

PRIV_FOWNER The process is considered the owner of a directory that has the "sticky" bit set.

PRIV_MAC_READ The calling process is granted search permission to every component of the path
prefix via the security label.

RMDIR(2) RMDIR(2)

SR−2012 10.0 363

PRIV_MAC_WRITE The process is granted write permission to the parent directory via the security
label.

PRIV_MAC_WRITE The process is granted write permission to the directory being removed via the
security label.

If the PRIV_SU configuration option is enabled, the super user is granted search permission to every
component of the path prefix. If the PRIV_SU configuration option is enabled, the super user is granted write
permission to the parent directory and to the directory being removed. The super user is considered the owner
of a directory that has the "sticky" bit set.

RETURN VALUES

If rmdir completes successfully, a value of 0 is returned; otherwise, a value of −1 is returned, and errno is
set to indicate the error.

ERRORS

The specified directory is removed unless one of the following error conditions occurs:

Error Code Description

EACCES Search permission is denied for a component of the path prefix.

EACCES Write permission is denied on the directory containing the directory to be removed.

EACCES The process is not granted write permission to the directory being removed via the
security label, and the process does not have appropriate privilege.

EACCES Directory label does not dominate the active security label of the process.

EACCES Parent directory label does not equal the active security label of the process.

EBUSY The directory to be removed is the mount point for a mounted file system.

EEXIST The directory contains entries other than those for "." and "..".

EFAULT The path argument points outside the process’ allocated address space.

EINVAL The current directory may not be removed.

EINVAL The "." entry of a directory may not be removed.

EIO An I/O error occurred during the access of the file system.

EMLINK The directory has been linked. Use unlink(2) to remove the directory.

ENOENT The specified directory does not exist.

ENOTDIR A component of the path prefix is not a directory.

EPERM The directory has the "sticky" bit set and the process is not the owner.

EROFS The directory entry to be removed is part of a read-only file system.

RMDIR(2) RMDIR(2)

364 SR−2012 10.0

FILES

/usr/include/unistd.h Contains C prototype for the rmdir system call

SEE ALSO

mkdir(2), unlink(2)

mkdir(1), rm(1), rmdir(1) in the UNICOS User Commands Reference Manual, Cray Research publication
SR−2011

RMDIR(2) RMDIR(2)

SR−2012 10.0 365

NAME

rmfacl − Removes an access control list from a file

SYNOPSIS

#include <sys/acl.h>

int rmfacl (char *fname);

IMPLEMENTATION

All Cray Research systems

DESCRIPTION

The rmfacl system call removes the access control list (ACL) from a file. A rmfacl request is allowed only
for a process with an active secadm category, a process executing on behalf of the file owner, or a process
with appropriate privilege. If the process is not a member of the owning group of the file, the set-group-ID
mode bit of the file is cleared unless the process has appropriate privilege. If the FSETID_RESTRICT system
configuration parameter is enabled, the set-user-ID and set-group-ID mode bits of a file are cleared unless the
process has appropriate privilege.

The rmfacl system call accepts the following argument:

fname Specifies the file from which the ACL is removed.

NOTES

Errors are recorded in the security log if discretionary access logging is enabled.

The functionality provided by this system call is also provided by the setfacl(2) system call.

The process must have write permission to the file via the security label. That is, the active security label of the
process must equal the security label of the file.

To be granted search permission to a component of the path prefix, the active security label of the process must
be greater than or equal to the security label of the component.

A process with the effective privileges shown is granted the following abilities:

Privilege Description

PRIV_DAC_OVERRIDE The process is granted search permission to the component via the permission
bits and ACL.

PRIV_FOWNER The process is considered the file’s owner.

PRIV_FSETID The process is allowed to set an ACL on a file whose mode includes the
set-user-ID or set-group-ID mode bit.

PRIV_MAC_READ The process is granted search permission to the component via the security label.

RMFACL(2) RMFACL(2)

366 SR−2012 10.0

PRIV_MAC_WRITE The process is granted write permission to a component of the path prefix via the
security label.

If the PRIV_SU configuration option is enabled, the super user is granted search permission to every
component of the path prefix and is granted write permission to the file via the security label. The super user is
considered the file owner and is allowed to set an ACL on a file whose mode includes the set-user-ID or
set-group-ID mode bit.

RETURN VALUES

If rmfacl completes successfully, a value of 0 is returned; otherwise, a value of −1 is returned, and errno is
set to indicate the error.

ERRORS

The rmfacl system call fails if one of the following error conditions occurs:

Error Code Description

EACCES A component of the path prefix denies search permission.

EFAULT The fname argument points outside the process address space.

EMANDV The process does not have write permission to the file via the security label and does
not have appropriate privilege.

ENAMETOOLONG The supplied file name is too long.

ENOACL The specified file does not have an ACL or its ACL is corrupted.

ENOENT The specified file does not exist.

ENOTDIR A component of the path prefix is not a directory.

EOWNV The process is not the file owner and does not have appropriate privilege.

FILES

/usr/include/sys/acl.h Contains C prototype for the rmfacl system call

SEE ALSO

getfacl(2), setfacl(2)

spacl(1), spclr(1), spset(1) in the UNICOS User Commands Reference Manual, Cray Research
publication SR−2011

acl(5), slog(4) in the UNICOS File Formats and Special Files Reference Manual, Cray Research publication
SR−2014

General UNICOS System Administration, Cray Research publication SG−2301

RMFACL(2) RMFACL(2)

SR−2012 10.0 367

NAME

schedv − Sets memory scheduling parameters

SYNOPSIS

#include <sys/schedv.h>

int schedv (int svar, struct schedvar *svartab);

IMPLEMENTATION

Cray PVP systems

DESCRIPTION

The schedv system call gets and sets the system memory scheduling (schedvar) structure. It accepts the
following arguments:

svar Specifies the command type. svar can be one of the following:

SVAR_GET Transfers system schedvar table to the specified svartab address.

SVAR_SET Transfers the schedvar table specified by svartab to the system schedvar
table. The caller must fill in the sv_magic and sv_size fields in the
schedvar structure with the SV_MAGIC constant and the size of the
schedvar structure. Only a process with appropriate privilege can specify this
command type.

svartab Points to the schedvar structure.

The schedvar structure includes the following members:

int sv_memhog; /* Size of a "big" process in clicks */
time_t sv_cpuhog; /* Utime ticks used by CPU-bound proc. */
int sv_hog_max_mem; /* Max clicks allotted to "hog" procs */
float sv_fit_boost; /* Best fit boost given to in-core proc */

/* if bigger than proc coming in */
int sv_thrash_inter; /* Thrash interval in seconds */
int sv_thrash_blks; /* Thrash blocks per interval */
float sv_mfactor_in; /* Memory size factor - loaded procs */
float sv_mfactor_out; /* Memory size factor - swapped procs */
float sv_tfactor_in; /* Time factor - loaded procs */
float sv_tfactor_out; /* Time factor - swapped procs */

/* tfactor’s are multiplied against time */
/* of residence. */

float sv_pfactor_in; /* Priority factor - loaded procs */
float sv_pfactor_out; /* Priority factor - swapped procs */
float sv_nfactor_in; /* Nice factor - loaded procs */
float sv_nfactor_out; /* Nice factor - swapped procs */
int sv_max_outage; /* Maximum time in seconds for which a */

/* swapped process will be passed over */

SCHEDV(2) SCHEDV(2)

368 SR−2012 10.0

/* during memory-tight situations. */
int sv_flags; /* Behavior modification flags */

/* Used for things such as interactive */
/* preferred, etc. See defines in */

/* schedv.h for list of flags */
time_t sv_packtime; /* The time, in clocks, between attempts */

/* slide processes down to pack memory. */
float sv_kfactor_in; /* 0’th polynomial term - incore procs */
float sv_kfactor_out; /* 0’th polynomial term - swapped procs */
float sv_gfactor0_in; /* Guaranteed residence factor 0 */

/* - loaded procs */
float sv_gfactor0_out; /* - swapped procs */
float sv_gfactor1_in; /* Guaranteed residence factor 1 */

/* - loaded procs */
float sv_gfactor1_out; /* - swapped procs */
float sv_ufactor_in; /* University of Texas priority factor */
float sv_ufactor_out; /* For interactive processes - */

/* Time since last interaction */
/* For non-interactive processes - */
/* Time remaining */
/* (cpu time limit - cpu time used) */

int sv_cpufactor; /* # of running processes in-core to try */
/* for. Default is 8 + (2 * ncpu) */

int sv_bigproc; /* If non-zero, processes above this */
/* size in clicks won’t be swapped unless*/
/* they’re expanding or suspended. */

word sv_magic; /* Magic number to indicate valid struct */
int sv_size; /* Size of schedvar structure. This is */

/* Used by the kernel to verify that the */
/* calling nschedv is in sync with the */
/* kernel. */

int sv_maxruns; /* Maximum # of sched runs per second. */
int sv_smallproc; /* Small interactive process click size */
int sv_itime; /* Interaction time */

Values of 0 disable all scheduling variables except for sv_max_outage.

NOTES

A process with the effective privilege shown is granted the following ability:

Privilege Description

PRIV_ADMIN The process is allowed to use the SVAR_SET command.

SCHEDV(2) SCHEDV(2)

SR−2012 10.0 369

If the PRIV_SU configuration option is enabled, the super user or a process with the PERMBITS_SYSPARAM
permbit is allowed to use the SVAR_SET command.

RETURN VALUES

If schedv completes successfully, a value of 0 is returned; otherwise, a value of −1 is returned, and errno is
set to indicate the error.

ERRORS

The schedv system call fails if one of the following error conditions occurs:

Error Code Description

EFAULT The user field length did not contain the schedvar structure to which svartab points.

EINVAL A value in either the sv_magic or sv_size field did not match the value expected
by the kernel.

EPERM The SVAR_SET command was used and the process did not have appropriate
privilege.

SEE ALSO

limit(2)

limit(1) in the UNICOS User Commands Reference Manual, Cray Research publication SR−2011

nschedv(8) in the UNICOS Administrator Commands Reference Manual, Cray Research publication
SR−2022

SCHEDV(2) SCHEDV(2)

370 SR−2012 10.0

NAME

secstat, lsecstat, fsecstat − Gets file security attributes

SYNOPSIS

#include <sys/types.h>
#include <sys/secstat.h>

int secstat (char *path, struct secstat *buf);

int lsecstat (char *path, struct secstat *buf);

int fsecstat (int fildes, struct secstat *buf);

IMPLEMENTATION

All Cray Research systems

DESCRIPTION

The secstat system call obtains the security attributes of a file; fsecstat system call obtains the same
information for an open file. The lsecstat system call is similar to secstat except when the specified file
is referenced by the link. In this case, lsecstat returns information about the link, and secstat returns
information about the file referenced by the link.

The secstat and lsecstat system calls accept the following arguments:

path Specifies the file from which the security attributes are obtained.

buf Points to a secstat structure in which the information is returned.

The fsecstat system call accepts the following arguments:

fildes Specifies the file descriptor that identifies the file from which the security attributes are obtained.

buf Points to a secstat structure in which the information is returned.

A secstat structure includes the following members:

int st_slevel; /* File security level */
long st_compart; /* File compartments */
long st_acldsk; /* Access control disk address */
int st_secflg; /* Security flag */
int st_intcls; /* Class (not used) */
int st_intcat; /* Categories (not used) */
int st_minlvl; /* Device minimum security level */
int st_maxlvl; /* Device maximum security level */
long st_valcmp; /* Device authorized compartments */

SECSTAT(2) SECSTAT(2)

SR−2012 10.0 371

NOTES

Any process may obtain the security attributes of a file labeled with a wildcard security label.

On a nondevice file, the st_minlvl, st_maxlvl, and st_valcmp fields of the secstat structure are
equal to the minimum security level, maximum security level, and valid compartments, respectively, of the file
system on which the file resides.

Only a process with appropriate privilege can retrieve the actual state of the file trap flags (trapr and trapw)
in the st_secflg field.

The secstat, lsecstat, and fsecstat requests are not recorded in the security log.

The process must have read permission to the file via the security label. That is, the active security label of the
process must be greater than or equal to the security label of the file.

To be granted search permission to a component of the path prefix, the active security label of the process must
be greater than or equal to the security label of the component. (secstat/lsecstat systems call only.)

A process with the effective privileges shown is granted the following abilities:

Privilege Description

PRIV_ADMIN The process is allowed to retrieve the trap state of the file.

PRIV_DAC_OVERRIDE The process is granted search permission to a component of the path prefix via
the permission bits and access control list. (secstat/lsecstat system calls
only.)

PRIV_MAC_READ The process is granted search permission to a component of the path prefix via
the security label. (secstat/lsecstat system calls only.)

PRIV_MAC_READ The process is granted read permission to the file via the security label.

If the PRIV_SU configuration option is enabled, the super user is granted search permission to every
component of the path prefix (secstat/lsecstat system calls only) and is granted read permission to the
file via the security label. The super user is allowed to retrieve the trap state of the file.

RETURN VALUES

If secstat, lsecstat, or fsecstat completes successfully, a value of 0 is returned; otherwise, a value of
−1 is returned, and errno is set to indicate the error.

ERRORS

The secstat or lsecstat system call fails if one of the following error conditions occurs:

Error Code Description

EACCES A component of the path prefix denies search permission.

EACCES The buf argument points outside the process address space.

SECSTAT(2) SECSTAT(2)

372 SR−2012 10.0

EACCES The process is not granted read permission to the file via the security label, and the
process does not have appropriate privilege.

EFAULT The path argument points outside the process address space.

ENAMETOOLONG The supplied file name is too long.

ENOENT The specified file does not exist.

ENOTDIR A component of the path prefix is not a directory.

ESYSLV The caller does not have an authorized secadm or sysadm category and is not a
trusted process.

The fsecstat system call fails if one of the following error conditions occurs:

Error Code Description

EBADF The fildes argument is not a valid open file descriptor.

EBADF The process is not granted read permission to the file via the security label, and the
process does not have appropriate privilege.

EFAULT The buf argument points outside the process address space.

EINVAL The specified file is a socket.

ESYSLV The caller does not have a authorized secadm or sysadm category, is not a trusted
process, and is not authorized to execute at the security label of the file.

BUGS

When secstat, lsecstat, or fsecstat is used to obtain the labeling information for an inactive pty
device special file, the labeling reported reflects the label and label range of the calling process. If the active
label of the calling process is outside the label range of the calling process, the label and range returned reflects
this. Since this is an illegal combination, any attempt to recreate a pty device node with these attributes fail.
Because the pty device is automatically relabeled the next time it is used, this failure does not leave the pty
device in an incorrectly labeled state even if it appears to do so.

FILES

/usr/include/sys/secstat.h Defines secstat structure

/usr/include/sys/types.h Contains types required by ANSI X3J11

SEE ALSO

getfacl(2), setdevs(2), setfacl(2), setfcmp(2), setfflg(2), setflvl(2)

spset(1) in the UNICOS User Commands Reference Manual, Cray Research publication SR−2011

General UNICOS System Administration, Cray Research publication SG−2301

SECSTAT(2) SECSTAT(2)

SR−2012 10.0 373

NAME

select − Examines synchronous I/O multiplexing

SYNOPSIS

#include <sys/param.h>
#include <sys/time.h>
#include <sys/types.h>
#include <unistd.h>

int select (int nfds, fd_set *readfds, fd_set *writefds, fd_set *exceptfds,
struct timeval *timeout);

FD_SET (fd, &fdset);
FD_CLR (fd, &fdset);
FD_ISSET (fd, &fdset);
FD_ZERO (&fdset);
int fd;
fd_set fdset;

IMPLEMENTATION

All Cray Research systems

DESCRIPTION

The select system call examines I/O descriptor sets to determine whether the files associated with the
specified file descriptors are ready for reading, are ready for writing, or have an exceptional condition pending.

An I/O descriptor set is an array of long integers where each bit in the array corresponds to a file descriptor
defined for the process. The leftmost bit in the first array element corresponds to file descriptor 0, and so on.
The number of bits allocated in each descriptor set is defined by the parameter FD_SETSIZE in header file
<sys/types.h> which corresponds to the maximum number of files a process can have open concurrently.

The select system call accepts the following arguments:

nfds Specifies the number of file descriptors that are to be checked in the descriptor sets pointed to by
readfds, writefds, and exceptfds. The bits from 0 through nfds -1 in the descriptor sets are
examined.

readfds Points to an I/O descriptor set used to specify which file descriptors are to be examined to
determine if the associated files are ready for reading. If no file descriptors are to be examined for
reading, specify a null pointer.

writefds Points to an I/O descriptor set used to specify which file descriptors are to be examined to
determine if the associated files are ready for writing. If no file descriptors are to be examined for
writing, specify a null pointer.

SELECT(2) SELECT(2)

374 SR−2012 10.0

exceptfds Points to an I/O descriptor set used to specify which file descriptors are to be examined to
determine if the associated files have any exceptional conditions pending. If no file descriptors are
to be examined for exceptional conditions, specify a null pointer.

timeout Points to a timeval structure which specifies the maximum interval to wait for the examination
to complete. If timeout is a null pointer, select is blocked indefinitely. To cause a poll, the
timeout argument must be nonzero, pointing to a timeval structure containing 0 values.

The select system call returns, in place, descriptor sets of the file descriptors that are ready. The value
returned by select is the total number of file descriptors which are ready.

The following macros are provided for manipulating I/O descriptor sets. In these descriptions, fd stands for file
descriptor, and fdset refers to file descriptor sets.

FD_CLR (fd, &fdset) Removes fd from fdset.

FD_ISSET (fd, &fdset) Returns nonzero if fd is a member of fdset; otherwise, returns 0.

FD_SET (fd, &fdset) Includes a particular in fd in &fdset.

FD_ZERO (&fdset) Sets all bits in fdset to 0.

The behavior of these macros is undefined if a descriptor value is less than 0 or greater than or equal to
FD_SETSIZE, which is normally equal to the maximum number of files a process can have open concurrently.
A program may give FD_SETSIZE a larger value by defining it before the inclusion of header file
<sys/types.h>.

NOTES

The active security label of the calling process must be greater than or equal to the security label of each file. If
this condition is not met for a given file descriptor, events on that file descriptor are ignored.

A process with the effective privilege shown is granted the following ability:

Privilege Description

PRIV_MAC_READ The calling process is allowed to override the security label restrictions.

If the PRIV_SU configuration option is enabled, the super user is allowed to override security label restrictions.

RETURN VALUES

If select completes successfully, it returns the number of descriptors contained in the descriptor sets. If the
time limit expires, select returns 0.

Because failure to meet the security label requirements causes a file descriptor to be ignored, this failure alone
does not result in an error.

If an error occurs, a value of −1 is returned, the descriptor sets remain unmodified (even in the case of an
interrupted call), and errno is set to indicate the error.

SELECT(2) SELECT(2)

SR−2012 10.0 375

ERRORS

An error return from the select system call indicates one of the following conditions:

Error Code Description

EBADF One of the descriptor sets specified a descriptor that was not valid.

EFAULT The argument address is not valid.

EINTR A signal was delivered before any of the selected events occurred, or the time limit
expired.

EINVAL The specified time limit is not valid; one of its components is negative or too large, or
nfds is less than or equal to 0.

BUGS

The current implementation works only for the master side of a pty, a tty, a pipe, and sockets.

The select system call should probably return the time remaining from the original time-out, if any, by
modifying the time value in place. This may be implemented in future versions of the system. Therefore, do
not assume that the time-out value will be unmodified by select.

SELECT(2) SELECT(2)

376 SR−2012 10.0

EXAMPLES

The following example shows how to use the select system call:

#include <sys/types.h>
#include <sys/param.h>
#include <sys/time.h>
#include <stdio.h>
#include <errno.h>
#include <unistd.h>

/*
*
*
* Returns:
* 0, if read would block
* 1, if read would not block
*/

chkread(fd)
int fd; /* File descriptor */
{

int nfound; /* Number of ready descriptors */
fd_set readfds; /* Read file descriptors bit mask */
struct timeval timeout;

FD_ZERO(&readfds); FD_SET(fd, &readfds);

timeout.tv_sec = 0; /* Cause select to return immediately */
timeout.tv_usec = 0;

while ((nfound = select(FD_SETSIZE, &readfds, 0, 0, &timeout)) == -1) {
if (errno == EINTR)

continue; /* Ignore interrupts */

fprintf(stderr, "select() failed, errno = %d\n", errno);
exit(1);

}
return(nfound);

}

FILES

/usr/include/unistd.h Contains C prototype for the select system call

SEE ALSO

read(2), write(2)

SELECT(2) SELECT(2)

SR−2012 10.0 377

NAME

semctl − Provides semaphore control operations

SYNOPSIS

#include <sys/sem.h>

int semctl (int semid, int semnum, int cmd, union semun arg. . .);

union semun {
int val;
struct semid_ds *buf;
ushort *array;

};

IMPLEMENTATION

Cray PVP systems

STANDARDS

XPG4

DESCRIPTION

The semctl system call provides a variety of semaphore control operations as specified by cmd. It accepts the
following arguments:

semid Specifies a semaphore identifier associated with a set of semaphores.

semnum Identifies the semaphore in the semid group.

cmd Specifies a semaphore control operation. The following are valid cmd values.

The following semaphore control operations are executed for the semaphore specified by semid and
semnum. The level of permission required for each operation is specified with each command (see
sem(5) ipc(7)).

GETVAL Returns the value of semval (see sem(5)). This command requires read
permission.

SETVAL Sets the value of semval to arg.val. When this command is successfully
executed, the semadj value corresponding to the specified semaphore in all
processes is cleared. This command requires alter permission.

GETPID Returns the value of sempid. This command requires read permission.

GETNCNT Returns the value of semncnt. This command requires read permission.

GETZCNT Returns the value of semzcnt. This command requires read permission.

The following values for cmd operate on each semval in the set of semaphores (see sem(5)):

SEMCTL(2) SEMCTL(2)

378 SR−2012 10.0

GETALL Places semvals into the array (of type unsigned short) pointed to by
arg.array. This command requires read permission.

SETALL Sets semvals according to the array (of type unsigned short) pointed to by
arg.array. When this cmd is successfully executed, the semadj values
corresponding to each specified semaphore in all processes are cleared. This
command requires alter permission.

The following values for cmd are also available (see ipc(5)):

IPC_STAT Places the current value of each member of the semid_ds data structure
associated with semid into the semid_ds structure pointed to by arg.buf. The
contents of this structure are defined in sem(5). This command requires read
permission.

IPC_SET Sets the value of the members of the semid_ds data structure associated with
semid to the corresponding value found in the semid_ds structure pointed to by
arg.buf. See the following:

sem_perm.uid
sem_perm.gid
sem_perm.mode /* only access permission bits */

The mode bits specified in ipc(7) are copied into the corresponding bits of
the sem_perm.mode associated with semid. The values of any other bits
are unaltered.

The IPC_SET command can be executed only by a process that has an
effective user ID equal to the value of sem_perm.cuid or
sem_perm.uid in the semid_ds data structure associated with semid.

IPC_RMID Removes the semaphore identifier specified by semid from the system and
destroys the set of semaphores and semid_ds data structure associated with it.
This command can be executed only by a process that has an effective user ID
equal to the value of sem_perm.cuid or sem_perm.uid in the semid_ds
data structure associated with semid.

IPC_SETACL Sets the access control list (ACL) on the semaphore set specified by semid. The
ipc_perm structure within the semid_ds structure pointed to by buf contains a
pointer, ipc_acl, to an acl_rec structure with the required ACL entries, and
a count of those entries, ipc_aclcount. If an ACL exists for the semaphore
set, it is replaced by the one provided with this call. If ipc_aclcount is 0, any
existing ACL is removed. The calling process must be the owner of the
semaphore set specified by semid.

SEMCTL(2) SEMCTL(2)

SR−2012 10.0 379

IPC_GETACL Retrieves the access control list (ACL) for the semaphore set specified by semid.
The ipc_perm structure within the semid_ds structure pointed to by buf
contains a pointer, ipc_acl, to an acl_rec structure where the ACL entries
are to be returned. The count of entries to be returned is specified in the
ipc_aclcount field. If there are more than ipc_aclcount entries, only the
first ipc_aclcount is returned. If there are fewer than ipc_aclcount
entries, all entries are returned. The return value indicates the number of entries
returned. If there is no ACL, the return value is 0. The calling process must have
read permission to the semaphore set specified by semid.

IPC_SETLABEL
Sets the security label on the semaphore set specified by semid. The ipc_perm
structure within the semid_ds structure pointed to by buf contains a security
level, ipc_slevel, and a compartment set, ipc_scomps, to be set in the
security label on the semaphore set. Only a process with the appropriate privilege
can perform this operation.

arg Specifies an optional structure used by the cmd argument.

NOTES

A process is granted read permission to a semaphore set only if the active security label of the process is greater
than or equal to the security label of the semaphore set, and the process is granted read access by the semaphore
set ACL (if one is assigned). This applies to the IPC_STAT and IPC_GETACL operations.

The IPC_SET, IPC_RMID, and IPC_SETACL operations require that the active security label of the process
is equal to the security label of the semaphore set.

A process with the effective privileges shown is granted the following abilities:

Privilege Description

PRIV_MAC_READ The process is considered to meet the security label requirements for
being granted read permission to a semaphore set.

PRIV_MAC_WRITE The process is considered to meet the security label requirements for
performing an IPC_SET, IPC_RMID, or IPC_SETACL operation.

PRIV_DAC_OVERRIDE The process is considered to meet the permission mode and ACL
requirements for being granted read permission to a semaphore set.

PRIV_FOWNER The process is considered to meet the semaphore set ownership
requirements for the IPC_SET, IPC_RMID, and IPC_SETACL
operations.

If the PRIV_SU configuration option is enabled, the super user is granted the same abilities as all effective
privileges shown above.

SEMCTL(2) SEMCTL(2)

380 SR−2012 10.0

The super user is considered the owner of a semaphore set, and is granted read permission to that semaphore
set.

RETURN VALUES

Upon successful completion, the value returned by semctl depends on cmd, as follows:

GETVAL Value of semval

GETPID Value of sempid

GETNCNT Value of semncnt

GETZCNT Value of semzcnt

All others Value of 0

Otherwise, a value of −1 is returned, and errno is set to indicate the error.

ERRORS

The semctl system call fails if one of the following error conditions occurs:

Error Code Description

EACCES Operation permission is denied to the calling process (see sem(5)).

EACCES The cmd argument is IPC_GETACL, and the calling process does not have read
permission.

EFAULT arg.buf points to an illegal address.

EFAULT The cmd argument is IPC_SETACL or IPC_GETACL, and the ipc_acl field in buf
points to an illegal address.

EINVAL The semid argument is not a valid semaphore identifier.

EINVAL The semnum argument is less than 0 or greater than (sem_nsems −1).

EINVAL The cmd argument is not a valid command.

EINVAL The cmd argument is IPC_SET, and sem_perm.uid or sem_perm.gid is not
valid.

SEMCTL(2) SEMCTL(2)

SR−2012 10.0 381

EINVAL The cmd argument is IPC_SETACL, and one of the following is true:
R The ipc_aclcount field in buf is 0, but there is no ACL associated with msqid.
S The ipc_aclcount field in buf is less than 0 or greater than 256.
T The ACL supplied failed validation.

ENOMEM The cmd argument is IPC_SETACL, and no memory was available to store the ACL.
The command should be retried at a later time.

EPERM The cmd argument is equal to IPC_RMID or IPC_SET, and the effective user ID of
the calling process is not equal to the value of sem_perm.cuid or sem_perm.uid
in the semid_ds data structure associated with semid, and the calling process does
not have appropriate privilege.

EPERM The cmd argument is IPC_SETLABEL, and the calling process does not have
appropriate privilege.

EPERM The cmd argument is IPC_SETACL, and the calling process does not meet ownership
requirements and does not have appropriate privilege.

ERANGE The cmd argument is SETVAL or SETALL, and the value to which semval is to be
set is greater than the system-imposed maximum.

FILES

/usr/include/sys/sem.h Contains semaphore-related data structures and macros

SEE ALSO

semget(2), semop(2)

ipcs(1) in the UNICOS User Commands Reference Manual, Cray Research publication SR−2011

ipc(5), sem(5) in the UNICOS File Formats and Special Files Reference Manual, Cray Research publication
SR−2014

ipc(7) Online only

SEMCTL(2) SEMCTL(2)

382 SR−2012 10.0

NAME

semget − Provides access to semaphore identifiers

SYNOPSIS

#include <sys/sem.h>

int semget (key_t key, int nsems, int semflg);

IMPLEMENTATION

Cray PVP systems

STANDARDS

XPG4

DESCRIPTION

The semget system call returns the semaphore identifier associated with key. It accepts the following
arguments:

key Specifies the semaphore.

nsems Specifies the number of semaphores to allocate for the key.

semflg Specifies a flag value.

A semaphore identifier, with its associated semid_ds data structure and set containing nsems semaphores (see
sem(5)), is created for key if one of the following is true:

U key is equal to IPC_PRIVATE.
V key does not already have a semaphore identifier associated with it, and semflg&IPC_CREAT is not 0.

Upon creation, the semid_ds data structure associated with the new semaphore identifier is initialized as
follows:

W
sem_perm.cuid, sem_perm.uid, sem_perm.cgid, and sem_perm.gid are set to the effective
user ID and effective group ID, respectively, of the calling process.

X The low-order 9 bits of sem_perm.mode are set to the low-order 9 bits of semflg.
Y

sem_nsems is set to the value of nsems.
Z

sem_otime is set to 0, and sem_ctime is set to the current time.
[The data structure associated with each semaphore in the set is not initialized. The SETVAL or SETALL

command of the semctl(2) system call can be used to initialize each semaphore.

SEMGET(2) SEMGET(2)

SR−2012 10.0 383

NOTES

If the calling process has the ipc_persist permission bit, the semaphore set will be created as a persistent
set. Persistent semaphore sets will not be removed from the system unless a semctl(2) system call with the
command IPC_RMID or an ipcrm(1) command is performed on the set.

If the calling process does not have this permission bit, the semaphore set will be linked into a list of
nonpersistent sets belonging to the session of which the process is a member. When the last process of the
session terminates, all the semaphore sets linked to the session will be removed from the system.

A process with the effective privilege shown is granted the following abilities:

Privilege Description

PRIV_RESOURCE The process is considered to have the ipc_persist permission bit.

If the PRIV_SU configuration option is enabled, the super user is granted the same abilities as all effective
privileges shown above. The super user is considered to have the ipc_persist permission bit.

RETURN VALUES

If semget completes successfully, a nonnegative integer, namely a semaphore identifier, is returned;
otherwise, a value of −1 is returned, and errno is set to indicate the error.

ERRORS

The semget system call fails if one of the following error conditions occurs:

Error Code Description

EACCES A semaphore identifier exists for key, but operation permission as specified by the
low-order 9 bits of semflg would not be granted (see ipc(7)).

EEXIST A semaphore identifier exists for key but both semflg&IPC_CREAT and
semflg&IPC_EXCL are not 0.

EINVAL The value of nsems is either less than or equal to 0 or greater than the system-imposed
limit.

EINVAL A semaphore identifier exists for key, but the number of semaphores in the set
associated with it is less than nsems, and nsems is not equal to 0.

ENOENT A semaphore identifier does not exist for key, and semflg&IPC_CREAT is 0.

ENOSPC A semaphore identifier is to be created, but the system-imposed limit on the maximum
number of allowed semaphore identifiers system-wide would be exceeded.

SEMGET(2) SEMGET(2)

384 SR−2012 10.0

FILES

/usr/include/sys/sem.h Contains semaphore-related data structures and macros

SEE ALSO

semctl(2), semop(2)

ipcrm(1), ipcs(1) in the UNICOS User Commands Reference Manual, Cray Research publication SR−2011

stdipc(3C) in the UNICOS System Libraries Reference Manual, Cray Research publication SR−2080

ipc(5), sem(5) in the UNICOS File Formats and Special Files Reference Manual, Cray Research publication
SR−2014

ipc(7) Online only

SEMGET(2) SEMGET(2)

SR−2012 10.0 385

NAME

semop − Provides general semaphore operations

SYNOPSIS

#include <sys/sem.h>

int semop (int semid, struct sembuf *sops, size_t nsops);

IMPLEMENTATION

Cray PVP systems

STANDARDS

XPG4

DESCRIPTION

The semop system call is used to perform an array of semaphore operations atomically on the set of
semaphores associated with the semaphore identifier.

The semop system call accepts the following arguments:

semid Specifies a semaphore identifier associated with a set of semaphores.

sops Points to the array of semaphore-operation structures.

nsops Specifies the number of such structures in the array. Each sembuf structure includes the
following members:

short sem_num; /* semaphore number */
short sem_op; /* semaphore operation */
short sem_flg; /* operation flags */

Each semaphore operation specified by sem_op is performed on the corresponding semaphore specified by
semid and sem_num. See the sem(5) man page for information on the available types of permissions. The
variable sem_op specifies one of three semaphore operations, as follows:

1. If sem_op is a negative integer and the calling process has alter permission, one of the following actions
occurs:

\ If semval (see sem(5)) is greater than or equal to the absolute value of sem_op, the absolute value of
sem_op is subtracted from semval. Also, if sem_flg&SEM_UNDO is not 0, the absolute value of
sem_op is added to the calling process’ semadj value for the specified semaphore (see exit(2)).

] If semval is less than the absolute value of sem_op and sem_flg&IPC_NOWAIT is not 0, semop
returns immediately.

SEMOP(2) SEMOP(2)

386 SR−2012 10.0

^ If semval is less than the absolute value of sem_op and sem_flg&IPC_NOWAIT is 0, semop
increments the semncnt associated with the specified semaphore and suspends execution of the calling
process until one of the following conditions occurs:

− semval becomes greater than or equal to the absolute value of sem_op. When this occurs, the
value of semncnt associated with the specified semaphore is decremented, the absolute value of
sem_op is subtracted from semval, and, if sem_flg&SEM_UNDO is not 0, the absolute value of
sem_op is added to the calling process’ semadj value for the specified semaphore.

− The semid for which the calling process is awaiting action is removed from the system (see
semctl(2)). When this occurs, errno is set equal to EIDRM, and a value of −1 is returned.

− The calling process receives a signal that is to be caught. When this occurs, the value of semncnt
associated with the specified semaphore is decremented, and the calling process resumes execution
in the manner prescribed in the sigaction(2) system call.

2. If sem_op is a positive integer and the calling process has alter permission, the value of sem_op is added
to semval, and, if sem_flg&SEM_UNDO is true, the value of sem_op is subtracted from the calling
process’s semadj value for the specified semaphore.

3. If sem_op is 0 and the calling process has read permission, one of the following actions occurs:
_ If semval is 0, semop returns immediately.
` If semval is not equal to 0 and sem_flg&IPC_NOWAIT is not 0, semop returns immediately.
a If semval is not equal to 0 and sem_flg&IPC_NOWAIT is also 0, semop increments the semzcnt

associated with the specified semaphore and suspends execution of the calling process until one of the
following occurs:

− semval becomes 0, at which time the value of semzcnt associated with the specified semaphore
is decremented.

− The semid for which the calling process is awaiting action is removed from the system. When this
occurs, errno is set equal to EIDRM, and a value of −1 is returned.

− The calling process receives a signal that is to be caught. When this occurs, the value of semzcnt
associated with the specified semaphore is decremented, and the calling process resumes execution
in the manner prescribed in the sigaction(2) system call.

Upon successful completion, the value of sempid for each semaphore specified in the array pointed to by sops
is set equal to the process ID of the calling process.

NOTES

A process is granted read permission to a semaphore set only if the active security label of the process is greater
than or equal to the security label of the semaphore set, and the process is granted read access by the semaphore
set access control list (ACL) (if one is assigned).

SEMOP(2) SEMOP(2)

SR−2012 10.0 387

A process is granted write permission to a semaphore set only if the active security label of the process is equal
to the security label of the semaphore set, and the process is granted write access by the semaphore set ACL (if
one is assigned).

A process with the effective privileges shown is granted the following abilities:

Privilege Description

PRIV_MAC_READ The process is considered to meet the security label requirements for
being granted read permission to a semaphore set.

PRIV_MAC_WRITE The process is considered to meet the security label requirements for
being granted write permission to a semaphore set.

PRIV_DAC_OVERRIDE The process is considered to meet the permission mode and ACL
requirements for being granted read and write permission to a semaphore
set.

If the PRIV_SU configuration option is enabled, the super user is granted the same abilities as all effective
privileges shown above. The super user is granted read and write permission to a semaphore set.

RETURN VALUES

If semop completes successfully, a value of 0 is returned; otherwise, a value of −1 is returned, and errno is
set to indicate the error.

ERRORS

The semop system call fails if one or more of the following are true for any of the semaphore operations
specified by sops:

Error Code Description

E2BIG The nsops argument is greater than the system-imposed maximum.

EACCES Operation permission is denied to the calling process (see ipc(7)).

EAGAIN The operation would result in suspension of the calling process, but
sem_flg&IPC_NOWAIT is not 0.

EFAULT The sops argument points to an illegal address.

EFBIG The sem_num field is less than 0 or greater than or equal to the number of semaphores
in the set associated with semid.

EIDRM The semaphore identifier semid was removed from the system.

EINTR The semop system call was interrupted by a signal.

EINVAL The semid argument is not a valid semaphore identifier.

EINVAL The number of individual semaphores for which the calling process requests a
SEM_UNDO would exceed the limit.

SEMOP(2) SEMOP(2)

388 SR−2012 10.0

ENOSPC The limit on the number of individual processes requesting a SEM_UNDO would be
exceeded.

ERANGE An operation would cause a semval value to overflow the system-imposed limit.

ERANGE An operation would cause a semadj value to overflow the system-imposed limit.

FILES

/usr/include/sys/sem.h Contains semaphore-related data structures and macros

SEE ALSO

exec(2), exit(2), fork(2), semctl(2), semget(2), sigaction(2)

ipcs(1) in the UNICOS User Commands Reference Manual, Cray Research publication SR−2011

ipc(5), sem(5), types(5) in the UNICOS File Formats and Special Files Reference Manual, Cray Research
publication SR−2014

ipc(7) Online only

SEMOP(2) SEMOP(2)

SR−2012 10.0 389

NAME

send, sendmsg, sendto − Sends a message from a socket

SYNOPSIS

All Cray Research systems:
#include <sys/types.h>
#include <sys/socket.h>

int send (int s, char *buf, int len, int flags);

int sendto (int s, char *buf, int len, int flags, struct sockaddr *to,
int tolen);

Cray PVP systems:
#include <sys/types.h>
#include <sys/socket.h>

int sendmsg (int s, struct msghdr *buf, int flags);

IMPLEMENTATION

All Cray Research systems

DESCRIPTION

The send, sendmsg, and sendto system calls transmit a message (buf) to another socket.

You can use a send call only on a connected socket. You can use sendto or sendmsg on either a
connected or unconnected socket. The sendmsg system call uses the same msghdr structure as the
recvmsg(2) system call to minimize the number of directly supplied arguments. For more information, see
the connect(2) and recv(2) man pages.

The send, sendmsg, and sendto system calls accept the following arguments:

s Specifies the descriptor for a socket.

buf Points to the address of the message to be sent. See recv(2) for a description of the msghdr
structure.

len Specifies the number of bytes to be sent. If the message is too long to pass atomically through the
underlying protocol, the error message EMSGSIZE is returned, and the message is not transmitted.

flags Specifies optional flags that control transmission of the message. The following are valid values
for flag:

MSG_OOB Specifies that the message should be sent out-of-band on sockets that support
such a notion. Out-of-band messages correspond to the TCP notion of
urgent data.

SEND(2) SEND(2)

390 SR−2012 10.0

MSG_DONTROUTE Specifies that the message be sent without using local routing tables. Allows
the caller to take control of routing (for example, in network debugging
software).

to Points to a sockaddr structure that must be filled with the destination address.

tolen Specifies the length of the destination address, specified by to.

The send system call is unreliable. A return value of −1 indicates some locally detected errors, but you cannot
determine whether the message was received. The send call only queues data for transmission. When send
returns 0, it indicates that the message was put in the queue. If the message is not received, error messages are
unavailable.

If no message space is available at the socket to hold the message to be transmitted, send usually waits for
space to become available, unless the socket was placed in the nonblocking I/O mode by an ioctl(2) request
of FIONBIO. You can use the select(2) call to determine when it is possible to send more data.

NOTES

These system calls can be subjected to additional security rules. The two sockets being connected each have
security attributes that are inherited from their associated processes. These attributes must be equal if the
SOCKET_MAC option is enabled. In addition, the network and remote host have security-attribute ranges,
which are specified in the network access list (NAL) portion of the spnet.conf configuration file and
administered with the spnet(8) command.

If the SOCKET_MAC option is not enabled, the security attributes of the socket are not required to be equal, but
the security range of the process, which is specified in the UDB for the user, must include the minimum label
for the remote host as specified in the NAL. Note that SOCKET_MAC is part of TCP/IP configurable feature
variables list in uts/cf/Nmakefile.

A process with the effective privilege shown is granted the following ability:

Privilege Description

PRIV_MAC_WRITE The process is allowed to override the security label restrictions when the
SOCKET_MAC option is enabled.

If the PRIV_SU configuration option is enabled, the super user is allowed to override security label restrictions
when the SOCKET_MAC option is enabled.

RETURN VALUES

If send, sendmsg, or sendto completes successfully, the number of characters sent is returned; otherwise, a
value of −1 is returned, and errno is set to indicate the error.

SEND(2) SEND(2)

SR−2012 10.0 391

ERRORS

The send, sendmsg, or sendto system call fails if one of the following conditions occurs:

Error Code Description

EACCES Permission is denied (because of a security violation).

EACCES If the SOCKET_MAC option is enabled, the process does not meet the security label
requirements and does not have appropriate privilege.

EBADF Descriptor s is not valid.

EFAULT Invalid user space address is specified for a parameter.

EMSGSIZE Socket requires the message to be sent atomically, and the size of the message to be
sent makes this impossible.

EMSGSIZE The msg_iovlen field is greater than or equal to the MSG_MAXIOVLEN parameter
(defined in the sys/socket.h file).

ENOBUFS System cannot allocate an internal buffer. The operation can succeed when buffers
become available.

ENOBUFS Output queue for a network interface is full. This generally indicates that the interface
has stopped sending, but it can indicate transient congestion.

ENOTSOCK Descriptor s is not a socket.

EWOULDBLOCK Socket is marked nonblocking, and the requested operation would block.

FILES

/etc/config/spnet.conf Network access list file

/usr/adm/sl/slogfile Receives security log records

/usr/include/sys/socket.h Contains definitions related to sockets, types, address families, and
options

/usr/include/sys/types.h Contains types required by ANSI X3J11

SEE ALSO

ioctl(2), recv(2), select(2), socket(2)

slog(4) in the UNICOS File Formats and Special Files Reference Manual, Cray Research publication
SR−2014

spnet(8) in the UNICOS Administrator Commands Reference Manual, Cray Research publication SR−2022

UNICOS Networking Facilities Administrator’s Guide, Cray Research publication SG−2304

SEND(2) SEND(2)

392 SR−2012 10.0

NAME

setash − Sets an array session handle

SYNOPSIS

#include <sys/types.h>
#include <unistd.h>

#int setash (ash_t ash);

IMPLEMENTATION

IRIX and UNICOS systems

DESCRIPTION

The setash system call changes the handle for the array session containing the current process to the
specified value. The current process must have super-user privileges to invoke the setash system call.

Ordinarily, a handle that is unique within the current system is assigned to an array session when the array
session is created with the newarraysess(2) system call. The setash system call can override this default
handle, perhaps for assigning a handle that is unique across an entire array or for synchronizing handles with an
array session on another system.

The setash system call accepts the following argument:

ash Represents the array session handle that is to be assigned to the current array session. The handle
specified by ash must be a positive value, must not be in use on the current system, and must not be in
the range of values that UNICOS uses for default array session handles. The range of default handles
is defined by the system variables minash and maxash.

RETURN VALUES

If setash completes successfully, a value of 0 is returned; otherwise, a value of -1 is returned, and errno is
set to indicate the error.

ERRORS

The setash system call fails if one of the following conditions occurs:

Error Code Description

EINVAL ash is negative, in use by another array session on this system, or in the range of values
reserved by the system for default array session handles.

EPERM The current process does not have super-user privileges.

SETASH(2) SETASH(2)

SR−2012 10.0 393

SEE ALSO

getash(2), newarraysess(2)

array_services(7), array_sessions(7)

SETASH(2) SETASH(2)

394 SR−2012 10.0

NAME

setdevs − Sets file security label and security flag attributes

SYNOPSIS

#include <sys/secdev.h>

int setdevs (char *dname, struct secdev *sdev);

IMPLEMENTATION

All Cray Research systems

DESCRIPTION

The setdevs system call sets the minimum, maximum, and active security labels, and the security flags of a
file to the values contained in the secdev structure.

The setdevs system call accepts the following arguments:

dname Specifies the file for which the security labels and flags are set.

sdev Points to the secdev structure which contains the security values to be set.

A secdev structure includes the following members:

int dv_minlvl; /* minimum security level */
int dv_maxlvl; /* maximum security level */
int dv_actlvl; /* active security level */
long dv_valcmp; /* authorized compartments */
long dv_actcmp; /* active compartments */
int dv_intcls; /* active integrity class (not used) */
long dv_intcat; /* active integrity categories (not used) */
int dv_devflg; /* device security flags */
int dv_devprv; /* device privileges */

NOTES

Only an appropriately privileged process can set the minimum or maximum security label of a device special
file. Any process can attempt to set the minimum or maximum security label of a file that is not a device
special file. If the file is not a device special file, then the supplied minimum and maximum security labels are
ignored, and the file’s minimum and maximum security labels are set to the minimum and maximum security
labels of the file system on which the file resides.

Only an appropriately privileged process can downgrade the active security label of the specified file. If the
specified file is an empty directory, then any process can upgrade the active security label of the file.
Otherwise, only an appropriately privileged process can upgrade the active security label of the file.

SETDEVS(2) SETDEVS(2)

SR−2012 10.0 395

If the specified file is a device special file, and the supplied security flags include the mldev flag, then the
supplied active security label is ignored, and the active security label of the file is set to the supplied maximum
security label.

If the supplied file is a device special file, and the supplied security flags do not include the secdv flag, then
the secdv and state flags are turned off for the specified file.

This system call changes only the state of the state, secdv, mldev, and entry security flags. No other
security flags are changed.

If the file is not a device special file, attempts to enable state are ignored. If the file is a device special file,
attempts to enable state without also enabling secdv are ignored. Disabling secdv automatically causes
state to be disabled.

Attempts to change the security label or flags on a public device are ignored. Attempts to change the flags on a
pseudo tty are ignored.

A user is allowed to upgrade the label on his/her directory if the directory is empty and the user has write access
to the directory.

To be granted search permission to a component of the path prefix, the active security label of the process must
be greater than or equal to the security label of the component.

A process with the effective privileges shown is granted the following abilities:

Privilege Description

PRIV_ADMIN The process is allowed to set the minimum and maximum security label of the
file.

PRIV_ADMIN The process is allowed to set the security flags of the file.

PRIV_DAC_OVERRIDE The process is granted search permission to a component of the path prefix via
the permission bits and access control list.

PRIV_MAC_DOWNGRADE The process is allowed to downgrade the active security label of the file.

PRIV_MAC_READ The process is granted search permission to a component of the path prefix via
the security label.

PRIV_MAC_UPGRADE The process is allowed to upgrade the active security label of the file.

If the PRIV_SU configuration option is enabled, the super user is granted search permission to every
component of the path prefix. The super user is allowed to set the minimum, maximum, and active security
label of the file, and the security flags of the file.

RETURN VALUES

If setdevs completes successfully, a value of 0 is returned; otherwise, a value of −1 is returned, and errno
is set to indicate the error.

SETDEVS(2) SETDEVS(2)

396 SR−2012 10.0

ERRORS

The setdevs system call fails if one of the following error conditions occurs:

Error Code Description

EACCES A component of the path prefix denies search permission.

ECOMPV The specified compartments are not valid within the compartments of the system.

ECOMPV If the MLS_OBJ_RANGES configuration option is enabled, and the specified
compartments are not valid compartments for the file.

EFAULT Error occurred in reading setdev structure.

EINVAL The security label parameters are not valid.

EINVFS The file system on which the file exists is a pre-UNICOS 6.0 file system.

ENAMETOOLONG The dname argument is longer than allowed by PATH_MAX.

ENOENT The specified file does not exist.

ENOTDIR A component of the path prefix is not a directory.

EPERM The process does not have permission to upgrade an empty directory.

ESECADM The process does not have appropriate privilege to use this system call.

ESYSLV If the MLS_OBJ_RANGES configuration option is enabled, and the specified levels are
not within the security level range of the system.

SEE ALSO

secstat(2), setfacl(2), setfcmp(2), setfflg(2)

slog(4), slrec(5) in the UNICOS File Formats and Special Files Reference Manual, Cray Research
publication SR−2014

spdev(8) in the UNICOS Administrator Commands Reference Manual, Cray Research publication SR−2022

General UNICOS System Administration, Cray Research publication SG−2301

SETDEVS(2) SETDEVS(2)

SR−2012 10.0 397

NAME

setfacl − Sets access control list for file

SYNOPSIS

#include <sys/types.h>
#include <sys/acl.h>

int setfacl (char *fname, struct acl *aclents, int count);

IMPLEMENTATION

All Cray Research systems

DESCRIPTION

The setfacl system call sets the access control list (ACL) of a file to the value specified in an array. A file’s
ACL controls, in part, access to the file. Only the file owner or a process with appropriate privilege can set an
ACL on a file. If the process is not a member of the owning group of the file, the set-group-ID mode bit of the
file is cleared unless the process has appropriate privilege. If the FSETID_RESTRICT system configuration
parameter is enabled, the set-user-ID and set-group-ID mode bits of a file are cleared unless the process has
appropriate privilege.

The setfacl system call accepts the following arguments:

fname Specifies the file for which the ACL is set.

aclents Specifies an array of ACL entries.

count Indicates the number of entries in the array; cannot exceed 256.

NOTES

A setfacl request replaces any previously existing ACL on the file.

If the system is configured with discretionary access violation logging enabled, all errors are recorded in the
security log (except errors of type ENOENT, ENOTDIR, and ENAMETOOLONG).

The process must have write permission to the file via the security label. That is, the active security label of the
process must be equal to the security label of the file.

To be granted search permission to a component of the path prefix, the active security label of the process must
be greater than or equal to the security label of the component.

A process with the effective privileges shown is granted the following abilities:

Privilege Description

PRIV_DAC_OVERRIDE The process is granted search permission to the component via the permission
bits and ACL.

PRIV_FOWNER The process is considered the owner of the file.

SETFACL(2) SETFACL(2)

398 SR−2012 10.0

PRIV_FSETID The file’s set-user-ID or set-group-ID mode bit are not cleared.

PRIV_MAC_READ The process is granted search permission to the component via the security label.

PRIV_MAC_WRITE The process is granted write permission to a component of the path prefix via the
security label.

If the PRIV_SU configuration option is enabled, the super user is granted search permission to every
component of the path prefix and is granted write permission to the file via the security label. The super user is
considered the file owner and is allowed to set an ACL on a file whose mode includes the set-user-ID or
set-group-ID mode bit. If the caller is the super user, the file’s set-user-ID and set-group-ID mode bits are not
cleared.

RETURN VALUES

If setfacl completes successfully, the number of elements in the file’s ACL is returned; otherwise, a value of
−1 is returned, and errno is set to indicate the error.

ERRORS

The setfacl system call fails if one of the following error conditions occurs:

Error Code Description

EACCES A component of the path prefix denies search permission.

EFAULT The fname argument points outside the process address space.

EFAULT The aclents argument points outside the process address space.

EINVAL The count argument is less than 0. If count exceeds 256, its value is truncated to 256.

EINVAL The specified file resides on a nonnative file system.

EMANDV The process does not have write permission to the file via the security label.

ENAMETOOLONG The specified file name is too long.

ENOACL The file’s previously assigned ACL, if one exists, is corrupted.

ENOENT The specified file does not exist.

ENOTDIR A component of the path prefix is not a directory.

EOWNV The process is not the file owner and does not have appropriate privilege.

EXAMPLES

This example shows how to use the setfacl system call to create ACL entries for a file.

First, a getfacl(2) system call displays (on stdout) the current ACL entries for the file, argv[1]. After
this display, the program allows the user to add entries to the ACL. A setfacl request then creates a new
ACL for the designated file.

SETFACL(2) SETFACL(2)

SR−2012 10.0 399

ACLSIZE, defined in the sys/acl.h file, specifies the maximum number of entries that can exist in an ACL.

#include <stdio.h>
#include <sys/types.h>
#include <sys/acl.h>
#include <pwd.h>

main(int argc, char *argv[])
{

struct acl buf[ACLSIZE];
struct passwd *pwptr;
char lid[15];
int no, i;

if ((no = getfacl(argv[1], buf, ACLSIZE)) == -1) {
perror("getfacl failed");
exit(1);

}

printf("Access control list for %s currently contains", argv[1]);
printf(" the following users:\n\n");
printf("ID Login ID Name");
printf(" Permissions\n\n");

for (i = 0; i < no; i++) {
pwptr = getpwuid(buf[i].ac_usid);
printf("%-5d %-10s %-25s %c%c%c\n",

buf[i].ac_usid, pwptr->pw_name, pwptr->pw_gecos,
buf[i].ac_mode & 04 ? ’r’ : ’ ’,
buf[i].ac_mode & 02 ? ’w’ : ’ ’,
buf[i].ac_mode & 01 ? ’x’ : ’ ’);

}

/* Add entries to access control list. */
printf("\nWhich entries are to be added (q to quit)?\n\n");
while(1) {

printf("User’s login ID --> ");
gets(lid);
if (strcmp(lid, "q") == 0) break;
if ((pwptr = getpwnam(lid)) == NULL) {

fprintf(stderr, "Invalid login ID!\n");
continue;

}
buf[no].ac_usid = pwptr->pw_uid;
buf[no].ac_grid = pwptr->pw_gid;

SETFACL(2) SETFACL(2)

400 SR−2012 10.0

buf[no].ac_flag = FLAG_UIDGID;
buf[no].ac_mode = 04; /* allow read permission only */
buf[no].ac_sort = 0;
buf[no].ac_same = 0;
no++; /* increment number of ACL entries */

}

if (setfacl(argv[1], buf, no) == -1) {
perror("setfacl failed");
exit(1);

}
}

SEE ALSO

getfacl(2), rmfacl(2), secstat(2), setdevs(2), setfcmp(2), setfflg(2), setflvl(2)

spacl(1), spclr(1), spset(1) in the UNICOS User Commands Reference Manual, Cray Research
publication SR−2011

slog(4) in the UNICOS File Formats and Special Files Reference Manual, Cray Research publication
SR−2014

General UNICOS System Administration, Cray Research publication SG−2301

SETFACL(2) SETFACL(2)

SR−2012 10.0 401

NAME

setfcmp − Sets file compartments

SYNOPSIS

#include <unistd.h>

int setfcmp (char *fname, long fcmp);

IMPLEMENTATION

All Cray Research systems

DESCRIPTION

The setfcmp system call sets the compartments of a file to the value specified by the compartment bit mask.
A file’s compartments control, in part, access to the file on a UNICOS system. Only a process with appropriate
privilege can use this system call.

The setfcmp system call accepts the following arguments:

fname Specifies the file for which the compartments are set.

fcmp Specifies the compartment bit mask which determines the value of the compartments to be set.

NOTES

All setfcmp requests are recorded in the security log, indicating success or failure (except errors of type
ENOENT, ENOTDIR, and ENAMETOOLONG).

A user is allowed to upgrade the label on his or her directory if the directory is empty and the user has write
access to the directory.

To be granted search permission to a component of the path prefix, the active security label of the process must
be greater than or equal to the security label of the component.

A process with the effective privileges shown is granted the following abilities:

Privilege Description

PRIV_DAC_OVERRIDE The process is granted search permission to a component of the path prefix
via the permission bits and access control list.

PRIV_MAC_DOWNGRADE The process as allowed to use this system call to set the file’s compartments
to a value that does not include every compartment that is currently
associated with the file.

PRIV_MAC_READ The process is granted search permission to a component of the path prefix
via the security label.

SETFCMP(2) SETFCMP(2)

402 SR−2012 10.0

PRIV_MAC_UPGRADE The process is allowed to use this system call to set the file’s compartments
to a value that includes at least every compartment that is currently
associated with the file.

If the PRIV_SU configuration option is enabled, the super user is granted search permission to every
component of the path prefix and is allowed to upgrade or downgrade the file’s compartments.

RETURN VALUES

If setfcmp completes successfully, a value of 0 is returned; otherwise, a value of −1 is returned, and errno
is set to indicate the error.

ERRORS

The setfcmp system call fails if one of the following error conditions occurs:

Error Code Description

EACCES A component of the path prefix denies search permission.

ECOMPV The requested compartments are not authorized for the file system in which the file
resides.

EFAULT The fname argument points outside the process address space.

EINVAL The specified file resides on a nonnative file system.

ENAMETOOLONG The specified file name is too long.

ENOENT The specified file does not exist.

ENOTDIR A component of the path prefix is not a directory.

EPERM The process does not have permission to upgrade an empty directory.

ESECADM The process does not have appropriate privilege to use this system call.

The security administrator’s security level range must include the security level of the file, and the security
administrator’s authorized compartments must dominate the specified compartments of the file.

FILES

/usr/include/unistd.h Contains C prototype for the setfcmp system call

SETFCMP(2) SETFCMP(2)

SR−2012 10.0 403

SEE ALSO

secstat(2), setdevs(2), setfacl(2), setfflg(2), setflvl(2)

spset(1) in the UNICOS User Commands Reference Manual, Cray Research publication SR−2011

slog(4), slrec(5) in the UNICOS File Formats and Special Files Reference Manual, Cray Research
publication SR−2014

General UNICOS System Administration, Cray Research publication SG−2301

SETFCMP(2) SETFCMP(2)

404 SR−2012 10.0

NAME

setfflg − Sets file security flags

SYNOPSIS

#include <unistd.h>
#include <sys/tfm.h>

int setfflg (char *fname, long flags);

IMPLEMENTATION

All Cray Research systems

DESCRIPTION

The setfflg system call sets the security flags of a file to the value specified by flag bit mask. A file’s
security flags indicate whether a file requires special handling. Only a process with appropriate privilege can
use this system call.

The setfflg system call accepts the following arguments:

fname Specifies the file for which the flags are set.

flags Specifies the flag bit mask which determines the value of the flags to be set.

NOTES

Only the ml_symlink, exec, trapr, trapw, mldev, and entry flags can be set using the setfflg
system call. Requests to set other flags are ignored. The secdv flag can be cleared but not set by setfflg.
The exec flag is obsolete on UNICOS 9.1 and later systems.

If the specified file is a device special file, and the supplied security flags include the mldev flag, the active
security label of the file is sent to the maximum security label.

The ml_symlink flag is the only flag that can be placed on a symbolic link. Attempts to set ml_symlink
and additional flags on a symbolic link in a single request results in an error. Attempts to set the
mld_symlink flag on anything other than a symbolic link results in an error. Attempts to change the flags on
a public device or a pseudo ttyp are ignored.

To be granted search permission to a component of the path prefix, the active security label of the process must
be greater than or equal to the security label of the component.

A process with the effective privileges shown is granted the following abilities:

Privilege Description

PRIV_ADMIN The process is allowed to use this system call.

PRIV_DAC_OVERRIDE The process is granted search permission to a component of the path prefix
via the permission bits and access control list.

SETFFLG(2) SETFFLG(2)

SR−2012 10.0 405

PRIV_MAC_READ The process is granted search permission to a component of the path prefix
via the security label.

If the PRIV_SU configuration option is enabled, the super user is granted search permission to every
component of the path prefix and is allowed to use this system call.

RETURN VALUES

If setfflg completes successfully, a value of 0 is returned; otherwise, a value of −1 is returned, and errno
is set to indicate the error.

ERRORS

The setfflg system call fails if one of following error conditions occurs:

Error Code Description

EACCES A component of the path prefix denies search permission.

EFAULT The fname argument points outside the process address space.

EINVAL The specified file resides on a nonnative file system.

EINVFS The file system on which the file exists is from a release previous to the UNICOS 6.0
release.

ENAMETOOLONG The specified file name is too long.

ENOENT The specified file does not exist.

ENOTDIR A component of the path prefix is not a directory.

ESECADM The process does not have appropriate privilege to use this system call.

ESECFLGV Requested security flags are not authorized for the UNICOS system.

ESECFLGV Requested security flags are not allowed for the object type.

FILES

/usr/include/sys/tfm.h

/usr/include/unistd.h Contains C prototype for the setfflg system call

SEE ALSO

secstat(2), setdevs(2), setfacl(2), setfcmp(2), setflvl(2)

spset(1) in the UNICOS User Commands Reference Manual, Cray Research publication SR−2011

slog(4), slrec(5) in the UNICOS File Formats and Special Files Reference Manual, Cray Research
publication SR−2014

General UNICOS System Administration, Cray Research publication SG−2301

SETFFLG(2) SETFFLG(2)

406 SR−2012 10.0

NAME

setflvl − Sets security level of a file

SYNOPSIS

#include <unistd.h>

int setflvl (char *fname, int flvl);

IMPLEMENTATION

All Cray Research systems

DESCRIPTION

The setflvl system call sets the security level of file to a specified value. A file’s security level controls, in
part, access to the file on a UNICOS system. Only a process with appropriate privilege can use this system call.

The setflvl system call accepts the following arguments:

fname Specifies the file for which the level is set.

flvl Specifies the security level.

NOTES

All setflvl requests are recorded in the security log, indicating success or failure (except errors of type
ENOENT, ENOTDIR, and ENAMETOOLONG).

A user is allowed to upgrade the label on his or her directory if the directory is empty and the user has write
access to the directory.

To be granted search permission to a component of the path prefix, the active security label of the process must
be greater than or equal to the security label of the component.

A process with the effective privileges shown is granted the following abilities:

Privilege Description

PRIV_DAC_OVERRIDE The process is granted search permission to a component of the path prefix via
the permission bits and access control list.

PRIV_MAC_DOWNGRADE The process is allowed to use this system call to set the security level of the file
to a value that is less than or equal to the current security level of the file.

PRIV_MAC_READ The process is granted search permission to a component of the path prefix via
the security label.

PRIV_MAC_UPGRADE The process is allowed to use this system call to set the security level of the file
to a value that is greater than or equal to the current security level of the file.

SETFLVL(2) SETFLVL(2)

SR−2012 10.0 407

If the PRIV_SU configuration option is enabled, the super user is granted search permission to every
component of the path prefix and is allowed to upgrade or downgrade the security level of the file.

RETURN VALUES

If setflvl completes successfully, a value of 0 is returned; otherwise, a value of −1 is returned, and errno
is set to indicate the error.

ERRORS

The setflvl system call fails if one of the following error conditions occurs:

Error Code Description

EACCES A component of the path prefix denies search permission.

EFAULT The fname argument points outside the process address space.

EINVAL The specified file resides on a nonnative file system.

ELEVELV The requested security level is not authorized for the file system on which the file
resides.

ENAMETOOLONG The specified file name is too long.

ENOENT The specified file does not exist.

ENOTDIR A component of the path prefix is not a directory.

EPERM The process does not have permission to upgrade an empty directory.

ESECADM The process does not have appropriate privilege to use this system call.

FILES

/usr/include/unistd.h Contains C prototype for the setflvl system call

SEE ALSO

secstat(2), setdevs(2), setfacl(2), setfcmp(2), setfflg(2)

spset(1) in the UNICOS User Commands Reference Manual, Cray Research publication SR−2011

slog(4), slrec(5) in the UNICOS File Formats and Special Files Reference Manual, Cray Research
publication SR−2014

General UNICOS System Administration, Cray Research publication SG−2301

SETFLVL(2) SETFLVL(2)

408 SR−2012 10.0

NAME

setjob − Sets job ID

SYNOPSIS

int setjob (int uid, int sig);

IMPLEMENTATION

All Cray Research systems

DESCRIPTION

The setjob system call creates a new job by assigning a new job ID and job table entry to the calling process.
If successful, the calling process becomes the first process in the job.

The setjob system call accepts the following arguments:

uid Specifies the real user ID of the job owner.

sig Specifies the signal to be sent to the job parent when the last process in the job exits. The job parent
is defined as the parent of the calling process. If sig is 0, no signal is sent on job termination.

A job is a set of one or more processes. Jobs may have resource limits that are enforced by the system. The job
ID and all resource limits are inherited by child processes. Only a process with appropriate privilege can use
this system call.

NOTES

A process with the effective privilege shown is granted the following ability:

Privilege Description

PRIV_RESOURCE The process is allowed to use this system call.

If the PRIV_SU configuration option is enabled, the super user or a process with the PERMBITS_ID permbit
is allowed to use this system call.

RETURN VALUES

If setjob completes successfully, the job ID is returned; otherwise, a value of −1 is returned, and errno is
set to indicate the error.

ERRORS

The setjob system call fails if one of the following error conditions occurs:

Error Code Description

EAGAIN The job table is full.

EINVAL Invalid uid or sig argument.

SETJOB(2) SETJOB(2)

SR−2012 10.0 409

EPERM The process does not have appropriate privilege to use this system call.

SEE ALSO

fork(2), getjtab(2), killm(2), limit(2), nicem(2), signal(2), suspend(2), waitjob(2)

SETJOB(2) SETJOB(2)

410 SR−2012 10.0

NAME

setlim − Sets user-controllable resource limits

SYNOPSIS

#include <sys/category.h>
#include <sys/resource.h>

int setlim (int id, struct resclim *rptr);

IMPLEMENTATION

All Cray Research systems

DESCRIPTION

The setlim system call establishes resource limit values. It accepts the following arguments:

id Specifies the PID, SID, or UID that corresponds to the resclim field resc_category. A 0
indicates the current PID, SID, or UID. Only a process with appropriate privilege can set resource
limits of another user, process, or session.

rptr Points to the resclim structure. It includes the following members (for a complete list, see
/usr/include/sys/resource.h):

struct resclim {
int resc_resource; /* One of: L_CPU */
int resc_category; /* One of: C_PROC, C_SESS, C_UID, C_SESSPROCS */
int resc_type; /* One of: L_T_ABSOLUTE, L_T_HARD, L_T_SOFT */
int resc_action; /* One of: L_A_TERMINATE, L_A_CHECKPOINT */
int resc_used; /* Current amount of resource used */
int resc_value[R_NLIMTYPES];/* Current resource limit value for each of: */

/* L_T_ABSOLUTE, L_T_HARD, L_T_SOFT */
};

To set a limit value, all resclim fields must be set to either a value or a null. To set a value to be unlimited,
use CPUUNLIM. To set a value to be null, use NULL.

The following describes each of the fields in the resclim structure and their acceptable values.

Field Description

resc_resource Represents the resource for which a limit is to be established. Currently, only central
processing unit (CPU) resources are supported; therefore, the value of
resc_resource must be L_CPU.

resc_category Identifies which category of resource is to be set. The resc_category determines if
the id argument is a PID, SID, or UID. Acceptable values are: C_PROC, C_SESS,
C_UID, and C_SESSPROCS. The resc_category of C_SESSPROCS requires a
SID. A short description follows:

SETLIM(2) SETLIM(2)

SR−2012 10.0 411

Value Description

C_PROC Sets process limits

C_SESS Sets session limits

C_UID Sets user limits

C_SESSPROCS Sets default process limits for the session

resc_type Identifies the type of limit to be set. Acceptable values are: L_T_ABSOLUTE,
L_T_HARD, and L_T_SOFT. Only a process with appropriate privilege can set
L_T_ABSOLUTE limits.

resc_action Determines, when a hard limit is reached, whether the process is checkpointed before
termination. Acceptable values are: NULL, L_A_TERMINATE or
L_A_CHECKPOINT. When the resc_action field is set to L_A_TERMINATE or
L_A_CHECKPOINT, the resc_type must be L_T_HARD.

resc_used Is not used with the setlim system call. The acceptable value is NULL.

resc_value[R_NLIMTYPES]
Is an array of three words that contain the absolute, hard, and soft limit values. To set
the absolute limit, field resc_value[L_T_ABSOLUTE] must be set. Only a process
with appropriate privilege can set absolute limits. To set hard limits, the field
resc_type must be set to L_T_HARD and a value must be placed in
resc_value[L_T_HARD]. To set soft limits, field resc_type must be set to
L_T_SOFT and a value must be placed in resc_value[L_T_SOFT]. The values in
resc_value[R_NLIMTYPES] for resc_resource L_CPU must be in clocks.
Only one of the following can be set with each setlim system call:
resc_value[L_T_ABSOLUTE], resc_value[L_T_HARD], or
resc_value[L_T_SOFT].

NOTES

The following mandatory access control (MAC) write check is performed based on the resc_category
parameter:

Parameter Description of check

C_PROC Against the specified process

C_SESS Against the session leader

C_SESSPROCS Against each process in the session

C_UID No MAC check performed

That is, the active security label of the calling process must be equal to the security label of each process where
MAC write access is being verified.

SETLIM(2) SETLIM(2)

412 SR−2012 10.0

A process with the effective privileges shown is granted the following abilities:

Privilege Description

PRIV_MAC_WRITE The calling process is granted write permission to every affected process via the
security label.

PRIV_POWNER The calling process is allowed to set the resource limits of another user, process, or
session.

PRIV_RESOURCE The calling process is allowed to set absolute limits.

If the PRIV_SU configuration option is enabled, the super user is allowed to set the resource limits of another
user, process, or session. The super user is allowed to set absolute limits. If the PRIV_SU configuration option
is enabled, the super user is granted write permission to every affected process via the security label.

RETURN VALUES

If setlim completes successfully, a value of 0 is returned; otherwise, a value of −1 is returned, and errno is
set to indicate the error.

ERRORS

The setlim system call fails and no resource limits are set if one of the following conditions occurs:

Error Code Description

EFAULT The address specified for rptr is not valid.

EINVAL One of the arguments contains a value that is not valid.

EPERM The calling process does not have appropriate privilege to set absolute limits.

EPERM The calling process does not have appropriate privilege to set resource limits of
another user, process, or session.

EPERM An attempt is made to change a limit on a system process; this is not allowed.

ESRCH No processes are found that match the request.

SEE ALSO

getlim(2)

nlimit(1) in the UNICOS User Commands Reference Manual, Cray Research publication SR−2011

nlimit(3C) in the UNICOS System Libraries Reference Manual, Cray Research publication SR−2080

NLIMIT(3F) in the Application Programmer’s Library Reference Manual, Cray Research publication SR−2165

SETLIM(2) SETLIM(2)

SR−2012 10.0 413

NAME

setpal − Sets the privilege assignment list (PAL) and privilege sets of a file

SYNOPSIS

#include <sys/types.h>
#include <sys/priv.h>

int setpal (char *path, pal_t *buf, int bufsize);

IMPLEMENTATION

All Cray Research systems

DESCRIPTION

The setpal system call sets the privilege assignment list (PAL) and privilege sets of a file using the
information in the buffer. The calling process must have PRIV_SETFPRIV in its effective privilege set, and
must either own the file or have PRIV_FOWNER in its effective privilege set. The calling process must have
MAC write access to the file or have PRIV_MAC_WRITE in its effective privilege set. The caller can change
the state of privileges in the file’s allowed, forced, or set-effective privilege sets only when those privileges are
also in the caller’s permitted privilege set.

If the PRIV_SU configuration option is enabled, then any process with effective user ID 0 meets all the
requirements specified in the previous paragraph.

The setpal system call accepts the following arguments:

path Specifies the file for which the PAL and privilege sets are set.

buf Points to the buffer that contains the PAL and privilege set information.

bufsize Indicates the size of the buffer in bytes.

RETURN VALUES

If setpal completes successfully, a value of 0 is returned; otherwise, a value of −1 is returned, and errno is
set to indicate the error.

ERRORS

The setpal system call fails if one of the following error conditions occurs:

Error Code Description

EACCES A component of the path prefix denies search permission.

EACCES The caller is denied MAC write access to the file.

EFAULT The buf or path argument points outside the address space of the process.

EINVAL The bufsize argument specifies an invalid value.

SETPAL(2) SETPAL(2)

414 SR−2012 10.0

EINVAL The contents of the supplied PAL is invalid.

ENAMETOOLONG The supplied file name is too long.

ENOENT The specified file does not exist.

ENOTDIR A component of the path prefix is not a directory.

EPERM The process is not the file owner and does not have appropriate privilege.

EROFS The affected file system is a read-only file system.

ESECADM The process does not have appropriate privilege to use this system call.

SEE ALSO

fgetpal(2), fsetpal(2), getpal(2)

SETPAL(2) SETPAL(2)

SR−2012 10.0 415

NAME

setpgid − Sets process-group-ID for job control

SYNOPSIS

#include <sys/types.h>
#include <unistd.h>

int setpgid (pid_t pid, pid_t pgid);

IMPLEMENTATION

All Cray Research systems

STANDARDS

POSIX, XPG4

DESCRIPTION

The setpgid system call is used to join either an existing process group or create a new process group within
the session of the calling process. The process-group-ID of a session leader does not change.

The setpgid system call accepts the following arguments:

pid Specifies the existing process ID.

pgid Specifies the new process ID.

On successful completion, the process-group-ID of the process with a process ID that matches pid is set to pgid.
As a special case, if pid is 0, the process ID of the calling process is used; if pgid is 0, the process ID of the
process indicated by pid is used.

RETURN VALUES

If setpgid completes successfully, a value of 0 is returned; otherwise, a value of −1 is returned, and errno
is set to indicate the error.

ERRORS

The setpgid system call fails if one of the following error conditions occurs:

Error Code Description

EACCES The value of pid matches the process ID of a child process of the calling process and
the child process has successfully executed one of the exec(2) functions.

EINVAL The value of pgid is less than 0 or is not a value supported by the implementation.

SETPGID(2) SETPGID(2)

416 SR−2012 10.0

EPERM The process indicated by pid is a session leader. The value of pid is valid but matches
the process ID of a child process of the calling process and the child process is not in
the same session as the calling process. The value of pgid does not match the process
ID of the process indicated by pid and no process with a process group ID exists that
matches the value of pgid in the same session as the calling process.

ESRCH The value of pid does not match the ID of the calling process or of a child of the
calling process.

FILES

/usr/include/sys/types.h Contains types required by ANSI X3J11

/usr/include/unistd.h Contains C prototype for the setpgid system call

SEE ALSO

exec(2), getpgrp(2), setsid(2), tcgetpgrp(2), tcsetpgrp(2)

SETPGID(2) SETPGID(2)

SR−2012 10.0 417

NAME

setpgrp − Sets process-group ID

SYNOPSIS

#include <unistd.h>

int setpgrp (void);

IMPLEMENTATION

All Cray Research systems

DESCRIPTION

The setpgrp system call sets the process-group ID of the calling process to the process ID of the calling
process and returns the new process-group ID.

RETURN VALUES

The setpgrp system call returns the value of the new process-group ID.

FORTRAN EXTENSIONS

The setpgrp system call may be called from Fortran as a function:

INTEGER SETPGRP, I
I = SETPGRP ()

EXAMPLES

This example shows how to use the setpgrp system call to establish a new process group. (Some system
calls in the example are not supported on Cray MPP systems.) The group includes the calling process as well as
any of its descendents (in this case, three child processes). As a result of the setpgrp request, the new
process group ID (PGID) is the process ID (PID) of the calling process.

Typically, a user’s processes terminate when the user logs off because all of the user’s processes are usually
included in the process group of the user’s shell process. In contrast, if this program is initiated as a
background process and the interactive user logs off from UNICOS, the process and its descendents will not
terminate but continue to execute.

SETPGRP(2) SETPGRP(2)

418 SR−2012 10.0

#include <unistd.h>

main()
{

int res;

setpgrp(); /* establish new process group here */

res = fork();
if (res == 0) {

execl("child1", "child1", 0);
perror("execl for child1 failed");
exit(1);

}

res = fork();
if (res == 0) {

execl("child2", "child2", 0);
perror("execl for child2 failed");
exit(1);

}

res = fork();
if (res == 0) {

execl("child3", "child3", 0);
perror("execl for child3 failed");
exit(1);

}

/* parent program performs its work here */

}

FILES

/usr/include/unistd.h Contains C prototype for the setpgrp system call

SEE ALSO

exec(2), fork(2), getpid(2), intro(2), kill(2), signal(2)

SETPGRP(2) SETPGRP(2)

SR−2012 10.0 419

NAME

setportbm, getportbm − Sets or gets the kernel memory port bit map

SYNOPSIS

#include <sys/types.h>
#include <sys/sysmacros.h>

int setportbm (unsigned long *bitmap);

int getportbm (unsigned long *bitmap);

IMPLEMENTATION

All Cray Research systems

DESCRIPTION

The setportbm system call copies bitmap into the kernel memory port bit map, which reflects the
well-known reserved port numbers defined in the /etc/services file.

The getportbm system call gets a copy of the port bit map in the kernel memory.

The setportbm and getportbm system calls accept the following argument:

bitmap Points to the bit map to copy into or from the kernel memory. bitmap is an array of unsigned long
integers. Its declaration should always be as follows:

u_long bitmap[PORTBITMAX];

NOTES

Never use the setportbm and getportbm system calls directly. Only the rsvportbm(8) administrator
command should set the kernel memory port bit map, and only the bindresvport(3C) and
rresvport(3C) library routines should access the port bit map.

Only a super user or a process with PRIV_ADMIN on a least privilege system can use the setportbm system
call.

RETURN VALUES

If setportbm or getportbm completes successfully, a value of 0 is returned; otherwise, a value of −1 is
returned, and errno is set to indicate the error.

ERRORS

The setportbm system call fails if one of the following error conditions occurs:

Error Code Description

EFAULT Cannot copy the bit map into the kernel memory.

SETPORTBM(2) SETPORTBM(2)

420 SR−2012 10.0

EINVAL The pointer to the port bit map (bitmap) is NULL.

EPERM The user is not super user.

The getportbm system call fails if one of the following error conditions occurs:

Error Code Description

EFAULT Cannot get the bit map from the kernel memory.

EINVAL The pointer to the port bit map (bitmap) is NULL.

EXAMPLES

The following example shows how to use the setportbm and getportbm system calls:

#include <sys/types.h>
#include <sys/sysmacros.h>

main()
{

u_long bitmap[PORTBITMAX];

setportbm(&bitmap[0]);
getportbm(&bitmap[0]);

}

FILES

/etc/services Contains a list of port numbers

SEE ALSO

bindresvport(3C), rresvport(3C) in the UNICOS System Libraries Reference Manual, Cray Research
publication SR−2080

rsvportbm(8) in the UNICOS Administrator Commands Reference Manual, Cray Research publication
SR−2022

SETPORTBM(2) SETPORTBM(2)

SR−2012 10.0 421

NAME

setppriv − Sets the privilege state of the calling process

SYNOPSIS

#include <sys/types.h>
#include <sys/priv.h>

int setppriv (priv_proc_t *buf, int bufsize);

IMPLEMENTATION

All Cray Research systems

DESCRIPTION

The setppriv system call sets the privilege state of the calling process to the state contained in the buffer.
This call returns an error if an attempt is made to modify the state of any privilege that is not permitted for the
process. This system call does not set the value of the process privilege text.

The setppriv system call accepts the following arguments:

buf Specifies the privilege state to be set to the calling process.

bufsize Specifies the size of the buffer in bytes.

RETURN VALUES

If setppriv completes successfully, a value of 0 is returned; otherwise, a value of −1 is returned, and errno
is set to indicate the error.

If the return value is −1, the privilege state of the calling process is not affected.

ERRORS

The setppriv system call fails if one of the following error conditions occurs:

Error Code Description

EFAULT The buf argument points outside the address space of the process.

EPERM The caller attempted to modify the state of a privilege that did not exist in its permitted
privilege set.

SEE ALSO

getppriv(2)

SETPPRIV(2) SETPPRIV(2)

422 SR−2012 10.0

NAME

setregid, setegid, setrgid − Sets real or effective group ID

SYNOPSIS

All Cray Research systems:
#include <unistd.h>

int setregid (int rgid, int egid);

Cray PVP systems:
#include <unistd.h>

int setegid (int egid);

int setrgid (int rgid);

IMPLEMENTATION

All Cray Research systems

DESCRIPTION

The setregid system call sets the real and effective group IDs of the current process to the argument values
rgid and egid, respectively. It accepts the following arguments:

rgid Specifies the real group ID.

egid Specifies the effective group ID.

If rgid is −1, the real group ID is not changed; if egid is −1, the effective group ID is not changed. The
setegid call sets the effective group ID of the current process; setegid(egid) is equivalent to the
following:

setregid(-1, egid)

The setrgid call sets the real group ID of the current process; setrgid(rgid) is equivalent to the
following:

setregid(rgid, -1)

Processes with appropriate privilege can set their real and effective group IDs to any value. All other processes
can change only their effective group ID to their real group ID or their real group ID to their effective group ID.

NOTES

These calls are provided for compatibility reasons; they aid in the porting of code from other systems. Future
releases may not support them.

SETREGID(2) SETREGID(2)

SR−2012 10.0 423

A process with the effective privilege is granted the following ability:

Privilege Description

PRIV_SETGID The process may set its real and effective group IDs to any specified value.

If the PRIV_SU configuration option is enabled, the super user may set its real and effective group IDs to any
specified value.

RETURN VALUES

If the setregid, setegid, or setrgid calls complete successfully, a value of 0 is returned; otherwise, a
value of −1 is returned, and errno is set to indicate the error.

ERRORS

If the following condition occurs, the setregid, setegid, or setrgid system call fails.

Error Code Description

EPERM The process does not have appropriate privilege to set its real and effective group IDs
to the specified values.

EXAMPLES

The setegid request is generally used in setgid programs. A setgid program is one that has had its setgid
permission bit (octal 2000) set by the chmod(1) command.

When a user executes a setgid program belonging to another group, the effective group ID and saved group ID
of the process is set to the group ID of the group owning the program. It is the process’s effective group ID that
is checked when access to a file is attempted.

Therefore, a user executing another user’s setgid program would be allowed to open files belonging to the other
user’s group for which the user possibly would not be given access permission by the normal access permission
bits. While a process’s effective group ID is changed to that of another user’s group, UNICOS thinks the
process belongs to that other group.

The following program has had its setgid permission bit (octal 2000) set by the chmod(1) command. This
program shows a common usage of the setegid request.

SETREGID(2) SETREGID(2)

424 SR−2012 10.0

#include <unistd.h>

main()
{

int gid, egid;

gid = getgid();
egid = getegid();

printf("real group ID of process (before setegid()) is %d\n", gid);
printf("effective group ID of process (before setegid()) is %d\n", egid);

/* Open any files that have restricted access here. That is, this
program (assuming it can be executed by any user) needs to open files
belonging to the same group as the owner of this program but those
files have no general access permission for any other user. Assuming
this program is a setgid program, these open(2) requests are permitted
since the effective group ID of this process has been changed to the
group ID of the owner of the program. */

setegid(getgid()); /* for security reasons, set effective group ID to
value of real group ID */

printf("real group ID of process (after setegid()) is %d\n", getgid());
printf("effective group ID of process (after setegid()) is %d\n",

getegid());
}

FILES

/usr/include/unistd.h Contains C prototype for the setregid, setegid, and
setrgid system calls

SEE ALSO

getgid(2), setgid(2), setreuid(2), setuid(2)

chmod(1) in the UNICOS User Commands Reference Manual, Cray Research publication SR−2011

SETREGID(2) SETREGID(2)

SR−2012 10.0 425

NAME

setreuid, seteuid, setruid − Sets real or effective user ID

SYNOPSIS

#include <unistd.h>

int setreuid (int ruid, int euid);

int seteuid (int euid);

int setruid (int ruid);

IMPLEMENTATION

Cray PVP systems

DESCRIPTION

The setreuid system call sets the real and effective user IDs of the current process according to the
argument values ruid and euid, respectively. It accepts the following arguments:

ruid Specifies the real user ID.

euid Specifies the effective user ID.

If ruid or euid is −1, the real or effective user ID remains unchanged. The seteuid call sets the effective user
ID of the current process; seteuid(euid) is equivalent to the following:

setreuid(-1, euid)

The setruid call sets the real user ID of the current process; setruid(ruid) is equivalent to the following:

setreuid(ruid, -1)

Processes with appropriate privilege can set their real and effective user IDs to any value. Any other process is
restricted to changing only its effective user ID to either its real user ID or saved user ID.

NOTES

These calls are provided for compatibility reasons; they aid in the porting of code from other systems. Future
releases might not support these calls; therefore, use setuid(2), which will continue to be supported.

A process with the effective privilege shown is granted the following ability:

Privilege Description

PRIV_SETUID The process may set its real and effective user IDs to any specified value.

SETREUID(2) SETREUID(2)

426 SR−2012 10.0

If the PRIV_SU configuration option is enabled, the super user may set its real and effective group IDs to any
specified value.

RETURN VALUES

If the setreuid, seteuid, or setruid call completes successfully, a value of 0 is returned; otherwise, a
value of −1 is returned, and errno is set to indicate the error.

ERRORS

If the following error condition occurs, the setreuid, seteuid, or setruid system call fails.

Error Code Description

EPERM The process does not have appropriate privilege to set it real and effective user IDs to
the specified values.

BUGS

If NFS block io daemons are running (biod for asynchronous write operations) and the write request is
handled by a biod, the write() will appear to succeed. The biod will get an error back, but will be unable
to return the error to the user, because it was an asynchronous operation. The server is left with an empty file,
and the error is listed in the error return following the close().

EXAMPLES

The seteuid request is generally used in setuid programs. A setuid program is one that has had its setuid
permission bit (octal 4000) set by the chmod(1) command.

When a user executes a setuid program belonging to another user, the effective ID and saved ID of the process
is set to the ID of the user owning the program. It is the process’s effective ID that is checked when access to a
file is attempted.

Therefore, a user executing another user’s setuid program would be allowed to open files belonging to the other
user for which the user possibly would not be given access permission by the normal access permission bits.
While a process’s effective ID is changed to that of another user, UNICOS thinks the process belongs to that
other user.

The following program has had its setuid permission bit (octal 4000) set by the chmod(1) command. This
program shows common usages of the seteuid request.

SETREUID(2) SETREUID(2)

SR−2012 10.0 427

#include <unistd.h>

main()
{

int uid, euid;

uid = getuid();
euid = geteuid();

printf("real ID of process (before setuid()) is %d\n", uid);
printf("effective ID of process (before setuid()) is %d\n", euid);

/* Open any files that have restricted access here. That is, this
program (assuming it can be executed by any user) needs to open files
belonging to the same user as the owner of this program but those
files have no general access permission for any other user. Assuming
this program is a setuid program, these open(2) requests are permitted
since the effective Id of this process has been changed to that of the
owner of the program. */

seteuid(getuid()); /* for security reasons, set effective ID to value
of real ID */

printf("real ID of process (after setuid()) is %d\n", getuid());
printf("effective ID of process (after setuid()) is %d\n", geteuid());

seteuid(euid); /* set effective ID back to the effective ID the
process originally had since another restricted
file needs to be opened now */

/* open the restricted file here */

seteuid(getuid()); /* for security reasons, set effective ID to
value of real ID - will automatically occur
when process dies */

}

FILES

/usr/include/unistd.h Contains C prototype for the setreuid, seteuid, and
setruid system calls

SETREUID(2) SETREUID(2)

428 SR−2012 10.0

SEE ALSO

getuid(2), setregid(2), setuid(2)

chmod(1) in the UNICOS User Commands Reference Manual, Cray Research publication SR−2011

SETREUID(2) SETREUID(2)

SR−2012 10.0 429

NAME

setsid − Creates session and sets process group ID

SYNOPSIS

#include <sys/types.h>
#include <unistd.h>

pid_t setsid (void);

IMPLEMENTATION

All Cray Research systems

STANDARDS

POSIX, XPG4

DESCRIPTION

If the calling process is not a process group leader, the setsid system call creates a new session. The calling
process is the session leader of this new session, the process group leader of a new process group, and has no
controlling terminal. The process group ID of the calling process is set equal to the process ID of the calling
process. The calling process is the only process in the new process group and the only process in the new
session.

RETURN VALUES

If setsid completes successfully, it returns the process group ID of the calling process; otherwise, a value of
−1 is returned, and errno is set to indicate the error.

ERRORS

The setsid system call fails if the following condition occurs:

Error Code Description

EPERM The calling process is already a process group leader, or the process ID of the calling
process equals the process group ID of a different process.

FILES

/usr/include/unistd.h Contains C prototype for the setsid system call

SEE ALSO

exec(2), exit(2), fork(2), getpid(2), kill(2), setpgid(2), sigaction(2)

tty(4) UNICOS File Formats and Special Files Reference Manual, Cray Research publication SR−2014

SETSID(2) SETSID(2)

430 SR−2012 10.0

NAME

setsysv − Sets minimum and maximum level range, authorized compartments, and security auditing options

SYNOPSIS

#include <sys/types.h>
#include <sys/param.h>
#include <sys/sysv.h>

int setsysv (struct sysv *buf, int bufsize);

IMPLEMENTATION

All Cray Research systems

DESCRIPTION

The setsysv system call sets the authorized compartments, and minimum and maximum security level range
for the UNICOS system.

The setsysv system call accepts the following arguments:

buf Points to a sysv structure in which the security values are stored.

bufsize Specifies the size of the sysv structure in bytes.

The sysv structure includes the following members:

short sy_minlvl; /* minimum security level */
short sy_maxlvl; /* maximum security level */
long sy_valcmp; /* authorized compartments */

The setsysv system call can be used by a properly privileged process to change the selection of the security
audit options. To change the options, the options and the sy_audit_chng flag are set in the sysv structure,
which is passed via the buf argument.

Only a process with appropriate privilege can use this system call.

NOTES

A process with the effective privilege shown is granted the following ability:

Privilege Description

PRIV_ADMIN The process is allowed to use this system call.

If the PRIV_SU configuration option is enabled, the super user is allowed to use this system call.

The setsysv system call sets the security boundary conditions (the minimum and maximum security levels,
and authorized compartments) for execution within the system.

SETSYSV(2) SETSYSV(2)

SR−2012 10.0 431

The setsysv system call does not force termination of tasks initiated at the original system security levels;
therefore, the system can still have processes outside of the new level range and authorized compartments.

When the MLS_OBJ_RANGES configuration option is enabled, a check is made to ensure that the new
minimum and maximum levels and authorized compartments do not conflict with any of the mounted file
system labels. Therefore, it is most effective to use setsysv at system startup, before the file systems are
mounted. The file systems of other companies are treated as if they have a security label of a maximum and
minimum security level of 0, and no authorized security compartments.

When the setsysv system call is used to change the security auditing options, the new option values are
saved into the kernel low memory tables (lowmem.c)

All setsysv requests are recorded in the security log, indicating success or failure.

RETURN VALUES

If setsysv completes successfully, a value of 0 is returned; otherwise, a value of −1 is returned, and errno
is set to indicate the error.

ERRORS

The setsysv system call fails if one of the following error conditions occurs:

Error Code Description

ECOMPV If the MLS_OBJ_RANGES configuration option is enabled, and the requested
authorized compartments are not within the authorized UNICOS system set.

ECOMPV The requested authorized compartments conflict with those of a mounted file system.

EFAULT The buf argument points outside the process address space.

EINVAL The bufsize argument is less than the size of the sysv structure. If bufsize is greater
than the size of the sysv structure, bufsize is bounded silently by the actual size.

EINVAL The requested minimum security level is greater than the requested maximum security
level.

ESECADM The process does not have appropriate privilege to use this system call.

ESYSLV The requested minimum and maximum security level range falls outside the allowable
UNICOS system range.

ESYSLV If the MLS_OBJ_RANGES configuration option is enabled, and the requested
minimum and maximum security level range conflicts with that of a mounted file
system.

SETSYSV(2) SETSYSV(2)

432 SR−2012 10.0

FILES

/usr/include/sys/param.h Defines configuration files

/usr/include/sys/sysv.h Defines structure for system security values

/usr/include/sys/types.h Contains types required by ANSI X3J11

SEE ALSO

getsysv(2)

spset(1) in the UNICOS User Commands Reference Manual, Cray Research publication SR−2011

slog(4), slrec(5) in the UNICOS File Formats and Special Files Reference Manual, Cray Research
publication SR−2014

General UNICOS System Administration, Cray Research publication SG−2301

SETSYSV(2) SETSYSV(2)

SR−2012 10.0 433

NAME

setucat − Sets active categories of a process

SYNOPSIS

#include <unistd.h>

int setucat (long cat);

IMPLEMENTATION

All Cray Research systems

DESCRIPTION

The setucat system call sets the active categories of the process to the value specified by the category bit
mask. The category bit mask is the union of bit values corresponding to each category to be activated. The
requested categories must be authorized for the process. A process with appropriate privilege can set its active
categories to any value within the authorized category range of the system.

The setucat system call accepts the following argument:

cat Specifies the value of the category bit mask, which is used to set the active categories of the process.

NOTES

All setucat requests are recorded in the security log, indicating success or failure.

A process with the effective privilege shown is granted the following ability:

Privilege Description

PRIV_MAC_RELABEL_SUBJECT The process is allowed to set its active categories to any value
within the authorized category range of the system.

If the PRIV_SU configuration option is enabled, the super user is allowed to set its active categories to any
value within the authorized category range of the system.

RETURN VALUES

If setucat completes successfully, a value of 0 is returned; otherwise, a value of −1 is returned, and errno
is set to indicate the error.

ERRORS

The setucat system call fails if one of the following error conditions occurs:

Error Code Description

EINTCATV The requested categories are not authorized for use on the UNICOS system.

SETUCAT(2) SETUCAT(2)

434 SR−2012 10.0

EINTCATV The requested categories are not a subset of the caller’s authorized categories, and the
process does not have appropriate privilege.

FILES

/usr/include/unistd.h Contains C prototype for the setucat system call

SEE ALSO

getusrv(2), setucmp(2), setulvl(2), setusrv(2)

setucat(1) in the UNICOS User Commands Reference Manual, Cray Research publication SR−2011

slog(4), slrec(5) in the UNICOS File Formats and Special Files Reference Manual, Cray Research
publication SR−2014

General UNICOS System Administration, Cray Research publication SG−2301

SETUCAT(2) SETUCAT(2)

SR−2012 10.0 435

NAME

setucmp − Sets active compartments of the process

SYNOPSIS

#include <unistd.h>

int setucmp (long cmp);

IMPLEMENTATION

All Cray Research systems

DESCRIPTION

The setucmp system call sets the active compartments of the process to the value specified by the
compartment bit mask. The compartment bit mask is the union of bit values corresponding to each
compartment to be activated. The cmp argument must include all compartments that were active for the process
prior to this call.

Each compartment specified by cmp must be authorized for the process. A process with appropriate privilege
can set its active compartments to any value within the authorized compartment range of the system.

The setucmp system call accepts the following argument:

cmp Specifies the value of the compartment bit mask, which is used to set the active compartments of the
process.

NOTES

A process with the effective privileges shown is granted the following abilities:

Privilege Description

PRIV_MAC_RELABEL_SUBJECT The process is allowed to set its active compartments to any value
within the authorized compartment range of the system.

PRIV_MAC_RELABEL_SUBJECT The process is not restricted to the login shell process.

PRIV_MAC_RELABEL_SUBJECT The process environment may contain additional background
processes.

PRIV_MAC_RELABEL_SUBJECT The process is allowed to override security compartment access
violations with open files.

If the PRIV_SU configuration option is enabled, the super user is allowed to set its active compartments to any
value within the authorized compartment range of the system. The super user is not restricted to the login shell
process. The super user environment may contain additional background processes. The super user is allowed
to override security compartment access violations with open files.

SETUCMP(2) SETUCMP(2)

436 SR−2012 10.0

Because of standard I/O buffering, data may be lost when a subject’s security label is changed. This occurs if
the subject does not have MAC access to the file when the buffer is flushed.

RETURN VALUES

If setucmp completes successfully, a value of 0 is returned; otherwise, a value of −1 is returned, and errno
is set to indicate the error.

ERRORS

The setucmp system call fails if one of the following error conditions occurs:

Error Code Description

EMANDV The requested compartments are not authorized for use on the UNICOS system.

EMANDV The requested compartments are not a subset of the caller’s authorized compartments,
and the process does not have appropriate privilege.

EMANDV Activating the requested compartments creates an access violation with existing open
files (open character special files owned by the caller are a special case), and the
process does not have appropriate privilege.

EMANDV The request is not issued from the login shell process, and the process does not have
appropriate privilege.

EMANDV There was more than one multitask group in the job (there are background processes),
and the process does not have appropriate privilege.

EMANDV The requested compartment set does not include all compartments that were active
prior to this call, and the process does not have appropriate privilege.

FILES

/usr/include/unistd.h Contains C prototype for the setucmp system call

SEE ALSO

getusrv(2), setucat(2), setulvl(2), setusrv(2)

setucmp(1) in the UNICOS User Commands Reference Manual, Cray Research publication SR−2011

slog(4), slrec(5) in the UNICOS File Formats and Special Files Reference Manual, Cray Research
publication SR−2014

General UNICOS System Administration, Cray Research publication SG−2301

SETUCMP(2) SETUCMP(2)

SR−2012 10.0 437

NAME

setuid, setgid − Sets user or group IDs

SYNOPSIS

#include <sys/types.h>
#include <unistd.h>

int setuid (uid_t uid);

int setgid (gid_t gid);

IMPLEMENTATION

Cray PVP systems

STANDARDS

POSIX, XPG4

DESCRIPTION

The setuid system call sets the real user ID, effective user ID, and saved user ID of the calling process;
setgid sets the real group ID, effective group ID, and saved group ID of the calling process. The setuid
and setgid system calls accept the following arguments:

uid Specifies the real user ID, effective user ID, and saved user ID.

gid Specifies the real group ID, effective group ID, and saved group ID.

The following conditions determine the setting of an ID. They are checked in the order given, and the first
condition that is true is the one that applies:

� If the process has appropriate privilege, the real, effective, and saved IDs are all set to uid (or gid).
� If uid is equal to either the real user ID or the saved user ID, the effective user ID is set to uid.
� If gid is equal to either the real group ID or the saved group ID, the effective group ID is set to gid.

NOTES

A process with the effective privileges shown is granted the following abilities:

Privilege Description

PRIV_SETGID The process may set the real group ID, effective group ID, and saved group ID.

PRIV_SETUID The process may set the real user ID, effective user ID, and saved user ID.

If the PRIV_SU configuration option is enabled, the super user may set the real, effective, and saved IDs.

SETUID(2) SETUID(2)

438 SR−2012 10.0

RETURN VALUES

If setuid or setgid completes successfully, a value of 0 is returned; otherwise, a value of −1 is returned,
and errno is set to indicate the error.

ERRORS

The setuid or setgid system call fails if one of the following error conditions occurs:

Error Code Description

EINVAL The uid is out of range.

EPERM The real user or group ID of the calling process is not equal to uid or gid, and the
process does not have appropriate privileges.

FORTRAN EXTENSIONS

The setuid system call can be called from Fortran as a function:

INTEGER uid, SETUID, I
I = SETUID (uid)

The setgid system call can be called from Fortran as a function:

INTEGER gid, SETGID, I
I = SETGID (gid)

BUGS

If a shell script is made set uid or set gid and starts with "#!" and the name of the shell to execute the shell
script, exec(2) in the kernel should execute the shell with the specified effective gid or effective gid. Instead,
exec(2) checks the shell for set uid and set gid, even though the set uid and set gid of the shell script should
take precedence.

EXAMPLES

The setuid request is generally used in setuid programs. A setuid program is one that has had its setuid
permission bit (octal 4000) set by the chmod(1) command.

When a user executes a setuid program belonging to another user, the effective ID and saved ID of the process
is set to the ID of the user owning the program. It is the process’s effective ID that is checked when access to a
file is attempted.

Therefore, a user executing another user’s setuid program would be allowed to open files belonging to the other
user for which the user possibly would not be given access permission by the normal access permission bits.
While a process’s effective ID is changed to that of another user, UNICOS thinks the process belongs to that
other user.

SETUID(2) SETUID(2)

SR−2012 10.0 439

The following program has had its setuid permission bit (octal 4000) set by the chmod(1) command. This
program shows common usages of the setuid request. It behaves differently if the owner is a privileged user.

#include <unistd.h>

main()
{

int uid, euid;

uid = getuid();
euid = geteuid();

printf("real ID of process (before setuid()) is %d\n", uid);
printf("effective ID of process (before setuid()) is %d\n", euid);

/* Open any files that have restricted access here. That is, this
program (assuming it can be executed by any user) needs to open files
belonging to the same user as the owner of this program but those
files have no general access permission for any other user. Assuming
this program is a setuid program, these open(2) requests are permitted
since the effective ID of this process has been changed to that of the
owner of the program. */

setuid(getuid()); /* for security reasons, set effective ID to value
of real ID */

printf("real ID of process (after setuid()) is %d\n", getuid());
printf("effective ID of process (after setuid()) is %d\n", geteuid());

setuid(euid); /* set effective ID back to the effective ID the
process originally had since another restricted
file needs to be opened now */

/* open the restricted file here */

setuid(getuid()); /* for security reasons, set effective ID to
value of real ID - will automatically occur
when process dies; call fails if program is
owned by a privileged user */

}

FILES

/usr/include/sys/types.h Contains types required by ANSI X3J11

/usr/include/unistd.h Contains C prototype for the setuid system call

SETUID(2) SETUID(2)

440 SR−2012 10.0

SEE ALSO

exec(2), getuid(2), intro(2), setregid(2), setreuid(2)

chmod(1) in the UNICOS User Commands Reference Manual, Cray Research publication SR−2011

SETUID(2) SETUID(2)

SR−2012 10.0 441

NAME

setulvl − Sets the active security level of the process

SYNOPSIS

#include <unistd.h>

int setulvl (int level);

IMPLEMENTATION

All Cray Research systems

DESCRIPTION

The setulvl system call raises the active security level of the calling process. A process with appropriate
privilege can raise or lower its active security level to syslow, syshigh, or to any value within the security
level range of the system.

The setulvl system call accepts the following argument:

level Specifies the value of the active security level of the calling process. This argument must fall within
the authorized security level range of the process.

NOTES

A process with the effective privileges shown is granted the following abilities:

Privilege Description

PRIV_MAC_RELABEL_SUBJECT The process is allowed to raise or lower its active security level to
syshigh, syslow, or to any value within the security level range
of the system.

PRIV_MAC_RELABEL_SUBJECT The process is not restricted to the login shell process.

PRIV_MAC_RELABEL_SUBJECT The process environment may contain additional background
processes.

PRIV_MAC_RELABEL_SUBJECT The process is allowed to override security level access violations
with open files.

If the PRIV_SU configuration option is enabled, the super user is allowed to raise or lower its active security
level to syslow, syshigh, or to any value within the security level range of the system. The super user is
not restricted to the login shell process. The super user environment may contain additional background
processes. The super user is allowed to override security level access violations with open files.

Because of standard I/O buffering, data may be lost when a subject’s security label is changed. This occurs if
the subject does not have MAC access to the file when the buffer is flushed.

SETULVL(2) SETULVL(2)

442 SR−2012 10.0

RETURN VALUES

If setulvl completes successfully, a value of 0 is returned; otherwise, a value of −1 is returned, and errno
is set to indicate the error.

ERRORS

The setulvl system call fails if one of the following error conditions occurs:

Error Code Description

EMANDV The requested level is not authorized for use on the UNICOS system.

EMANDV The requested level is not within the caller’s authorized security level range, and the
process does not have appropriate privilege.

EMANDV The requested level is less than the current active security level of the process, and the
process does not have appropriate privilege.

EMANDV Changing to the requested level creates an access violation with existing open files
(open character special files owned by the caller are a special case), and the process
does not have appropriate privilege.

EMANDV The request is not issued from the login shell process, and the process does not have
appropriate privilege.

EMANDV There was more than one multitask group in job (there are background processes), and
the process does not have appropriate privilege.

FILES

/usr/include/unistd.h Contains C prototype for the setulvl system call

SEE ALSO

getusrv(2), setucat(2), setucmp(2), setusrv(2)

setulvl(1) in the UNICOS User Commands Reference Manual, Cray Research publication SR−2011

slog(4), slrec(5) in the UNICOS File Formats and Special Files Reference Manual, Cray Research
publication SR−2014

General UNICOS System Administration, Cray Research publication SG−2301

SETULVL(2) SETULVL(2)

SR−2012 10.0 443

NAME

setusrv − Sets security validation attributes of the process

SYNOPSIS

#include <sys/types.h>
#include <sys/usrv.h>

int setusrv (struct usrv *buf);

IMPLEMENTATION

All Cray Research systems

DESCRIPTION

The setusrv system call sets security validation attributes for a process.

The setusrv system call accepts the following argument:

buf Points to a usrv structure in which the attribute values are stored.

A usrv structure includes the following members:

short sv_minlvl; /* minimum security level */
short sv_maxlvl; /* maximum security level */
long sv_valcmp; /* authorized compartments */
long sv_savcmp; /* TFM_EXEC command saved compartments (not used)*/
long sv_actcmp; /* active compartments */
short sv_permit; /* permissions */
short sv_actlvl; /* active security level */
short sv_savlvl; /* TFM_EXEC saved security level (not used) */
short sv_intcls; /* active integrity class (not used) */
short sv_maxcls; /* maximum integrity class (not used) */
long sv_intcat; /* active categories */
long sv_valcat; /* authorized categories */
struct { /* saved integrity parameters over TFM_EXEC

(not used) */
int actcls :32; /* integrity class before TFM_EXEC

(not used) */
int actcat :32; /* active category before TFM_EXEC

(not used) */
} sv_savint;
int sv_audit_off :1; /* audit on/off flag */
int sv_audit_chng :1; /* audit change flag */

SETUSRV(2) SETUSRV(2)

444 SR−2012 10.0

A process can use this system call to expand or constrict its active and authorized security attributes. Any
process can constrict its authorized security attributes (minimum and maximum security level range, authorized
compartments, authorized categories, and so on). Only an appropriately privileged process can expand its
authorized security attributes or modify its active security attributes.

A process can enable or disable kernel auditing of its activities by setting the sv_audit_chg flag and
setting/clearing the sv_audit_off flag. Any process can enable kernel auditing for itself. Only an
appropriately privileged process can disable kernel auditing of its activities.

NOTES

The login program sets the active security level to the user’s default security level with a setulvl(2) system
call immediately after the setusrv call.

All setusrv requests are recorded in the security log, indicating success or failure.

A process with the effective privileges shown is granted the following abilities:

Privilege Description

PRIV_ADMIN The process is allowed to change the state of the usrtrap
permission.

PRIV_AUDIT_CONTROL The process is allowed to disable kernel auditing of its activities.

PRIV_MAC_RELABEL_SUBJECT The process is allowed to expand its authorized security attributes
and to set its active security attributes.

If the PRIV_SU configuration option is enabled, the super user is allowed to expand its authorized security
attributes and to set its active security attributes. A trusted process is allowed to change the state of the
usrtrap permission. The super user is allowed to disable kernel auditing of its activities.

Because of standard I/O buffering, data may be lost when a subject’s security label is changed. This occurs if
the subject does not have MAC access to the file when the buffer is flushed.

RETURN VALUES

If setusrv completes successfully, a value of 0 is returned; otherwise, a value of −1 is returned, and errno
is set to indicate the error.

ERRORS

The setusrv system call fails if one of the following error conditions occurs:

Error Code Description

ECOMPV The requested active compartments are not authorized for the process.

EFAULT The buf argument points outside the process address.

EINTCATV The requested authorized categories include the archive category.

EINTCATV The requested active categories are not valid for the process.

SETUSRV(2) SETUSRV(2)

SR−2012 10.0 445

EINTCLSV The requested maximum class is not equal to or greater than the authorized minimum
class.

EINTCLSV The requested active class is not within the minimum and maximum classes for this
process.

ESYSLV The requested minimum level is greater than the requested maximum level.

ESYSLV The requested minimum and maximum level range is not included in the UNICOS
system minimum and maximum level range.

ESYSLV The requested active level is not within the minimum and maximum levels for this
process.

Additionally, when called by a process without appropriate privilege, setusrv fails if one of the following
error conditions occurs:

Error Code Description

ECOMPV Attempt was made to expand the authorized compartments.

ECOMPV Attempt was made to change active compartments.

EINTCATV Attempt was made to expand authorized categories.

EINTCATV Attempt was made to change active categories.

EINVAL Attempt was made to expand permissions.

ESYSLV Attempt was made to expand the authorized security level range.

ESYSLV Attempt was made to change active security level.

If the requested minimum and maximum security levels are outside those authorized for the UNICOS system,
they are set within the bounds of the system.

If the requested valid compartments, categories, or permissions are outside those authorized for the UNICOS
system, they are set within the bounds of the system.

If the calling process does not have suidgid permission, the file creation mask of the process is set to
disallow creation of setuid or setgid files.

If the calling process has no permissions, or has only user permissions, the process is assigned only the user
permissions from the requested set. If the calling process has at least one nonuser permission, setusrv sets
the process’ permissions to the requested value.

When called by a process without appropriate privilege, setusrv sets the security labels of open character
special files (ttys) to the process’ active security label.

SEE ALSO

setulvl(2), getusrv(2)

setusrv(1) in the UNICOS User Commands Reference Manual, Cray Research publication SR−2011

SETUSRV(2) SETUSRV(2)

446 SR−2012 10.0

NAME

shmat − Attaches shared memory segment

SYNOPSIS

#include <sys/shm.h>

void *shmat (int shmid, void *shmaddr, int shmflg);

IMPLEMENTATION

All Cray Research systems. The interface is supported on all platforms, but invocation will return an ENOSYS
error for all systems except the CRAY T90 series.

STANDARDS

XPG4

DESCRIPTION

The shmat system call attaches the shared memory segment associated with the shared memory identifier. It
accepts the following arguments:

shmid Specifies a shared memory segment.

shmaddr Specifies the address of the shared memory segment.

shmflg Specifies a flag value.

The segment is attached to the address specified by one of the following criteria:
� If shmaddr is a null pointer, the segment is attached at the first available address as selected by the system.
� If shmaddr is not a null pointer and shmflg&SHM_RND is not 0, the segment is attached at the address given

by shmaddr − (shmaddr modulus SHMLBA).
� If shmaddr is not a null pointer and shmflg&SHM_RND is 0, the segment is attached at the address given by

shmaddr. shmaddr must be aligned (on a MEMKLIK boundary).

The segment is attached for reading if shmflg&SHM_RDONLY is not 0 and the calling process has read
permission. Otherwise, if shmflg&SHM_RDONLY is 0 and the process has read and write permission, the
segment is attached for reading and writing.

NOTES

If the user has persistence permission, shared memory segments will remain in the system. If the user does not
have persistence permission, and does not explicitly remove segments created, these segments are removed
from the system when the session terminates or after the final detach, if attached by processes from another
session.

SHMAT(2) SHMAT(2)

SR−2012 10.0 447

The user must explicitly remove shared memory segments after the last reference to them has been removed.

The alignment requirement, which varies in different machines, is determined by the mapping size of the
memory system. (To remain XPG4 compliant, SHMLBA is expressed as a byte value on UNICOS systems.
This allows it to be used in expressions passed into shmget(2) to specify a size.)

Processes that have attached shared memory segments cannot be checkpointed or restarted; a checkpoint
operation fails with error ESHMA.

A process is granted read permission to a shared memory segment only if the active security label of the
process is greater than or equal to the security label of the shared memory segment, and the process is granted
read access by the shared memory segment access control list (ACL) (if one is assigned).

A process is granted write permission to a shared memory segment only if the active security label of the
process is equal to the security label of the shared memory segment, and the process is granted write access by
the shared memory segment ACL (if one is assigned).

A process with the effective privileges shown is granted the following abilities:

Privilege Description

PRIV_MAC_READ The process is considered to meet the security label requirements for
being granted read permission to a shared memory segment.

PRIV_MAC_WRITE The process is considered to meet the security label requirements for
being granted write permission to a shared memory segment.

PRIV_DAC_OVERRIDE The process is considered to meet the permission mode and ACL
requirements for being granted read and write permission to a shared
memory segment.

If the PRIV_SU configuration option is enabled, the super user is granted the same abilities as all effective
privileges shown above. The super user is granted read and write permission to a shared memory segment.

RETURN VALUES

If shmdt completes successfully, the value of the shm_nattch field in the data structure associated with the
shared memory ID of the attached shared memory segment is incremented and a value of 0 is returned;
otherwise, a value of −1 is returned, and errno is set to indicate the error.

SHMAT(2) SHMAT(2)

448 SR−2012 10.0

ERRORS

The shmat system call fails and does not attach the shared memory segment if one of the following error
conditions occurs:

Error Code Description

EACCES Operation permission is denied to the calling process (see ipc(7)).

EINVAL The shmid argument is not a valid shared memory identifier.

EINVAL The shmaddr argument is not equal to 0, and the value of shmaddr − (shmaddr
modulus SHMLBA) is an illegal address for attaching shared memory.

EINVAL The shmaddr argument is not equal to 0, shmflg&SHM_RND is equal to 0, and the value
of shmaddr is an illegal address for attaching shared memory.

EMFILE The number of shared memory segments attached to the calling process would exceed
the system-imposed limit.

ENOMEM The available data space is not large enough to accommodate the shared memory
segment.

ENOSYS Shared memory operations are permitted only on the CRAY T90 series.

FILES

/usr/include/sys/shm.h Contains shared memory data structures and macros

SEE ALSO

exec(2), exit(2), fork(2), shmctl(2), shmdt(2), shmget(2)

ipc(5), shm(5) in the UNICOS File Formats and Special Files Reference Manual, Cray Research publication
SR−2014

ipc(7) Online only

SHMAT(2) SHMAT(2)

SR−2012 10.0 449

NAME

shmctl − Provides shared memory control operations

SYNOPSIS

#include <sys/shm.h>

int shmctl (int shmid, int cmd, struct shmid_ds *buf);

IMPLEMENTATION

All Cray Research systems. The interface is supported on all platforms, but invocation will return an ENOSYS
error for all systems except the CRAY T90 series.

STANDARDS

XPG4

DESCRIPTION

The shmctl system call provides a variety of shared memory control operations. It accepts the following
arguments:

shmid Specifies the shared memory identifier.

cmd Specifies a shared memory control operation. The following are valid cmd values.

IPC_STAT Places the current value of each member of the data structure associated with
shmid into the structure pointed to by buf. The contents of this structure are
defined in the include file sys/shm.h (see shm(5)). This command
requires read permission.

IPC_SET Sets the value of members of the shmid_ds data structure associated with
shmid. It sets the value of the following members to the corresponding value
found in the structure pointed to by buf:

shm_perm.uid
shm_perm.gid
shm_perm.mode /* low-order 9 bits */

The IPC_SET command can be executed only by a process that has an
effective user ID equal to the value of shm_perm.cuid or
shm_perm.uid in the data structure associated with shmid.

SHMCTL(2) SHMCTL(2)

450 SR−2012 10.0

IPC_RMID Removes the shared memory identifier specified by shmid from the system
and destroys the shared memory segment and shmid_ds data structure
associated with shmid. The IPC_RMID command can be executed only by a
process that has an effective user ID equal to the value of
shm_perm.cuid or shm_perm.uid in the data structure associated with
shmid.

IPC_SETACL Sets the access control list (ACL) on the shared memory identifiers specified
by shmid. The ipc_perm structure within the shmid_ds structure
pointed to by buf contains a pointer, ipc_acl, to an acl_rec structure
with the required ACL entries, and a count of those entries,
ipc_aclcount. If an ACL exists for the shared memory identifier, it is
replaced by the one provided with this call. If ipc_aclcount is 0, any
existing ACL is removed. The calling process must be the owner of the
shared memory identifiers specified by shmid.

IPC_GETACL Retrieves the access control list (ACL) for the shared memory identifier
specified by shmid. The ipc_perm structure within the shmid_ds
structure pointed to by buf contains a pointer, ipc_acl, to an acl_rec
structure where the ACL entries are to be returned. The count of entries to
be returned is specified in the ipc_aclcount field. If there are more than
ipc_aclcount entries, only the first ipc_aclcount entries are
returned. If there are less than ipc_aclcount entries, all entries are
returned. The return value indicates the number of entries returned. If there
is no ACL, the return value is 0. The calling process must have read
permission to the shared memory identifiers specified by shmid.

IPC_SETLABEL Sets the security label on the shared memory identifier specified by shmid.
The ipc_perm structure within the shmid_ds structure pointed to by buf
contains a security level, ipc_slevel, and a compartment set,
ipc_scomps, to be set in the security label on the shared memory
identifier. If the shared memory segment is currently attached by any
processes, the security label is not altered; a value of −1 is returned and
errno is set to EAGAIN. Only a process with the appropriate privilege can
perform this operation.

SHM_DCACHE Disables scalar caching of this segment for this process.

SHM_ECACHE Enables scalar caching of this segment for this process.

SHM_ICACHE Invalidates the scalar cache of each CPU currently running a process with
the specified segment attached and cached.

SHM_LOCK Locks the shared memory segment specified by shmid in memory. This
command can be executed only by a process with the appropriate privilege.

SHM_UNLOCK Unlocks the shared memory segment specified by shmid. This command can
be executed only by a process with the appropriate privilege.

SHMCTL(2) SHMCTL(2)

SR−2012 10.0 451

buf Points to a structure.

NOTES

If the user has persistence permission, shared memory segments will remain in the system. If the user does not
have persistence permission, and does not explicitly remove segments created, these segments are removed
from the system when the session terminates or after the final detach, if attached by processes from another
session.

The user must explicitly remove shared memory segments after the last reference to them has been removed.

If the kernel list of processes caching each segment becomes corrupted, all processes with that segment
attached will be sent the SIGSMCE signal. The default action is termination.

A process is granted read permission to a shared memory identifier only if the active security label of the
process is greater than or equal to the security label of the shared memory identifier, and the process is granted
read access by the shared memory identifier ACL (if one is assigned). This applies to the IPC_STAT and
IPC_GETACL operations.

The IPC_SET, IPC_RMID, and IPC_SETACL operations require that the active security label of the process
is equal to the security label of the shared memory identifier.

A process with the effective privileges shown is granted the following abilities:

Privilege Description

PRIV_MAC_READ The process is considered to meet the security label requirements for
being granted read permission to a shared memory identifier.

PRIV_MAC_WRITE The process is considered to meet the security label requirements for
performing an IPC_SET, IPC_RMID, or IPC_SETACL operation.

PRIV_DAC_OVERRIDE The process is considered to meet the permission mode and ACL
requirements for being granted read permission to a shared memory
identifier.

PRIV_FOWNER The process is considered to meet the shared memory identifier ownership
requirements for the IPC_SET, IPC_RMID, and IPC_SETACL
operations. The process is also permitted to lock and unlock a shared
memory segment.

If the PRIV_SU configuration option is enabled, the super user is granted the same abilities as all effective
privileges shown above.

The super user is considered the owner of a shared memory identifier, and is granted read permission to that
shared memory identifier. The super-user is also permitted to lock and unlock a shared memory segment.

SHMCTL(2) SHMCTL(2)

452 SR−2012 10.0

RETURN VALUES

If shmctl completes successfully, a value of 0 is returned; otherwise, a value of −1 is returned, and errno is
set to indicate the error.

ERRORS

The shmctl system call fails if one of the following error conditions occurs:

Error Code Description

EACCES The cmd argument is equal to IPC_STAT and the calling process does not have read
permission (see shm(5)).

EACCES The cmd argument is IPC_GETACL and the calling process does not have read
permission.

EAGAIN The cmd argument is IPC_SETLABEL and the shared memory segment is currently
attached by one or more processes.

EFAULT The buf argument points to an illegal address.

EFAULT The cmd argument is IPC_SETACL or IPC_GETACL, and the ipc_acl field in buf
points to an illegal address.

EINVAL The shmid argument is not a valid shared memory identifier.

EINVAL The cmd argument is not a valid command.

EINVAL The cmd argument is IPC_SET, and shm_perm.uid or shm_perm.gid is not
valid.

EINVAL The cmd argument is IPC_SETACL and one of the following is true:
� The ipc_aclcount field in buf is 0, but there is no ACL associated with shmid.
� The ipc_aclcount field in buf is less than 0 or greater than 256.
� The ACL supplied failed validation.

ENOMEM The cmd argument is equal to SHM_LOCK and there is not enough memory.

ENOMEM The cmd argument is IPC_SETACL and no memory was available to store the ACL.
The command should be retried at a later time.

ENOSYS Shared memory operations are permitted only on the CRAY T90 series.

EPERM The cmd argument is equal to IPC_RMID or IPC_SET, and the effective user ID of
the calling process is not equal to the process with the appropriate permissions or to
the value of shm_perm.cuid or shm_perm.uid in the data structure associated
with shmid, and the process does not have the appropriate privilege.

EPERM The cmd argument is IPC_SETLABEL, and the calling process does not have the
appropriate privilege.

SHMCTL(2) SHMCTL(2)

SR−2012 10.0 453

EPERM The cmd argument is SHM_LOCK or SHM_UNLOCK, and the calling process does not
have the appropriate privilege.

EPERM The cmd argument is IPC_SETACL, and the calling process does not meet ownership
requirements and does not have the appropriate privilege.

FILES

/usr/include/sys/shm.h Contains shared memory data structures and macros

SEE ALSO

exec(2), exit(2), fork(2), shmat(2), shmget(2), shmdt(2)

ipcs(1) in the UNICOS User Commands Reference Manual, Cray Research publication SR−2011

ipc(5), shm(5) in the UNICOS File Formats and Special Files Reference Manual, Cray Research publication
SR−2014

ipc(7) Online only

SHMCTL(2) SHMCTL(2)

454 SR−2012 10.0

NAME

shmdt − Detaches shared memory segment

SYNOPSIS

#include <sys/shm.h>

int shmdt (void *shmaddr);

IMPLEMENTATION

All Cray Research systems. The interface is supported on all platforms, but invocation will return an ENOSYS
error for all systems except the CRAY T90 series.

STANDARDS

XPG4

DESCRIPTION

The shmdt system call detaches the shared memory segment from the calling process’s address space. It
accepts the following argument:

shmaddr Specifies the address of the shared memory segment.

NOTES

If the user has persistence permission, shared memory segments will remain in the system. If the user does not
have persistence permission, and does not explicitly remove segments created, these segments are removed
from the system when the session terminates or after the final detach, if attached by processes from another
session.

The alignment requirement, which varies on different machines, is determined by the mapping size of the
memory system.

RETURN VALUES

If shmdt completes successfully, the value of the shm_nattch field in the data structure associated with the
shared memory ID of the attached shared memory segment is decremented and a value of 0 is returned;
otherwise, a value of −1 is returned, and errno is set to indicate the error.

ERRORS

The shmdt system call fails and does not detach the shared memory segment if one of the following error
conditions occurs:

Error Code Description

EINVAL The shmaddr argument is not the data segment start address of a shared memory
segment.

SHMDT(2) SHMDT(2)

SR−2012 10.0 455

EINVAL There are outstanding asynchronous I/O operations.

ENOSYS Shared memory operations are permitted only on the CRAY T90 series.

FILES

/usr/include/sys/shm.h Contains shared memory data structures and macros

SEE ALSO

exec(2), exit(2), fork(2), shmat(2), shmctl(2), shmget(2)

ipc(5), shm(5) in the UNICOS File Formats and Special Files Reference Manual, Cray Research publication
SR−2014

ipc(7) Online only

SHMDT(2) SHMDT(2)

456 SR−2012 10.0

NAME

shmget − Accesses shared memory identifier

SYNOPSIS

#include <sys/shm.h>

int shmget (key_t key, size_t size, int shmflg);

IMPLEMENTATION

All Cray Research systems. The interface is supported on all platforms, but invocation will return an ENOSYS
error for all systems except the CRAY T90 series.

STANDARDS

XPG4

DESCRIPTION

The shmget system call returns the shared memory identifier associated with key. It accepts the following
arguments:

key Specifies the shared memory segment.

size Specifies the shared memory segment size in bytes.

shmflg Specifies a flag value.

A shared memory identifier, associated data structure, and shared memory segment of at least size bytes (see
shm(5)) are created for key if one of the following is true:

	 key is equal to IPC_PRIVATE.

 key does not already have a shared memory identifier associated with it, and shmflg&IPC_CREAT is not 0.

Upon creation, the data structure associated with the new shared memory identifier is initialized as follows:
�

shm_perm.cuid, shm_perm.uid, shm_perm.cgid, and shm_perm.gid are set to the effective
user ID and effective group ID, respectively, of the calling process.

� The low-order 9 bits of shm_perm.mode are set to the low-order 9 bits of shmflg. shm_segsz is set to
the value of size.

shm_lpid, shm_nattch, shm_atime, and shm_dtime are set to 0.

�
shm_ctime is set to the current time.

SHMGET(2) SHMGET(2)

SR−2012 10.0 457

NOTES

If the calling process has the ipc_persist permission bit, then the shared memory identifier will be created
as a persistent ID. Persistent shared memory identifiers will not be removed from the system unless a
shmctl(2) system call with the command IPC_RMID or an ipcrm(1) command is performed on the ID.

If the calling process does not have this permission bit, then the shared memory identifier will be linked into a
list of nonpersistent IDs belonging to the session of which the process is a member. When the last process of
the session terminates, all the shared memory identifiers linked to the session will be removed from the system.

A process with the effective privileges shown is granted the following abilities:

Privilege Description

PRIV_RESOURCE The process is considered to have the ipc_persist permission bit.

If the PRIV_SU configuration option is enabled, the super user is granted the same abilities as all effective
privileges shown in the preceding list.

The super user is considered to have the ipc_persist permission bit.

RETURN VALUES

If shmget completes successfully, a value of 0 is returned; otherwise, a value of −1 is returned, and errno is
set to indicate the error.

ERRORS

The shmget system call fails if one of the following error conditions occurs:

Error Code Description

EACCES A shared memory identifier exists for key but operation permission as specified by the
low-order 9 bits of shmflg would not be granted (see ipc(7)).

EEXIST A shared memory identifier exists for key but both shmflg&IPC_CREAT and
shmflg&IPC_EXCL are not 0.

EINVAL The size argument is less than the system-imposed minimum or greater than the
system-imposed maximum.

EINVAL A shared memory identifier exists for key, but the size of the segment associated with
it is less than size and size is not equal to 0.

EMEMLIM The request would exceed the limits for the session associated with the calling process.

ENOENT A shared memory identifier does not exist for key and shmflg&IPC_CREAT is 0.

ENOMEM A shared memory identifier and associated shared memory segment are to be created,
but the amount of available memory is not sufficient to fill the request.

ENOSPC A shared memory identifier is to be created, but the system-imposed limit on the
maximum number of allowed shared memory identifiers system-wide would be
exceeded.

SHMGET(2) SHMGET(2)

458 SR−2012 10.0

ENOSYS Shared memory operations are permitted only on the CRAY T90 series.

FILES

/usr/include/sys/shm.h Contains shared memory data structures and macros

SEE ALSO

shmat(2), shmctl(2), shmdt(2)

ipcrm(1) in the UNICOS User Commands Reference Manual, Cray Research publication SR−2011

stdipc(3C) in the UNICOS System Libraries Reference Manual, Cray Research publication SR−2080

ipc(5), shm(5) in the UNICOS File Formats and Special Files Reference Manual, Cray Research publication
SR−2014

ipc(7) Online only

SHMGET(2) SHMGET(2)

SR−2012 10.0 459

NAME

shutdown − Shuts down part of a full-duplex connection

SYNOPSIS

int shutdown (int s, int how);

IMPLEMENTATION

All Cray Research systems

DESCRIPTION

The shutdown system call shuts down all or part of a full-duplex connection on the specified socket. It
accepts the following arguments:

s Specifies the descriptor for the socket.

how Specifies whether further sends and receives are allowed. The following are valid how values:

0 Further receives are disallowed.

1 Further sends are disallowed.

2 Further sends and receives are disallowed.

Unlike the close(2) system call, shutdown can shut down a socket one direction at a time (send or receive).
The close(2) system call frees up kernel resources and the socket descriptor, but shutdown does not.

NOTES

If some protocols (such as tcp(4P)) do a shutdown before a close(2), the normal termination of a
connection is modified.

If the SOCKET_MAC option is enabled, the active security label of the process must equal the security label of
the socket. Note that SOCKET_MAC is part of TCP/IP configurable feature variables list in
uts/cf/Nmakefile.

A process with the effective privilege shown is granted the following ability:

Privilege Description

PRIV_MAC_WRITE The process is allowed to override the security label restrictions when the
SOCKET_MAC option is enabled.

If the PRIV_SU configuration option is enabled, the super user is allowed to override security level and
compartment restrictions when the SOCKET_MAC option is enabled.

SHUTDOWN(2) SHUTDOWN(2)

460 SR−2012 10.0

RETURN VALUES

If shutdown completes successfully, a value of 0 is returned; otherwise, a value of −1 is returned, and errno
is set to indicate the error.

ERRORS

The shutdown system call fails if one of the following error conditions occurs:

Error Code Description

EACCES If the SOCKET_MAC option is enabled, the process does not meet the security label
requirements and does not have appropriate privilege.

EBADF The s descriptor is not valid.

EINVAL An invalid value was specified for how.

ENOTSOCK The s descriptor is not a socket.

SEE ALSO

close(2), connect(2), socket(2)

tcp(4P) in the UNICOS File Formats and Special Files Reference Manual, Cray Research publication
SR−2014

SHUTDOWN(2) SHUTDOWN(2)

SR−2012 10.0 461

NAME

sigaction, sigvec − Examines or changes action associated with a signal

SYNOPSIS

#include <signal.h>

int sigaction (int sig, const struct sigaction *act,
struct sigaction *oact);

int sigvec (int sig, struct sigvec *vec, struct sigvec *ovec);

IMPLEMENTATION

All Cray Research systems

STANDARDS

POSIX, XPG4 (applies only to sigaction)

DESCRIPTION

The sigaction system call allows the calling process to examine or specify (or both) the action to be
associated with a specific signal.

The sigaction system call accepts the following arguments:

sig Specifies the signal. See signal(2) for sig values.

act or vec Specifies the action to be taken when the signal is delivered.

oact or ovec Returns the previous signal action.

On Cray MPP systems, the sigaction system call examines or changes the signal action only for the PE on
which it is called. It has no effect on any other PE of the application.

The sigaction structure, which describes an action to be taken, is defined in the signal.h header file, and
contains the following members:

struct sigaction {
void (*sa_handler) (); /* SIG_DFL, SIG_IGN, or pointer to a function */
sigset_t sa_mask; /* added to signal mask when in handler */
int sa_flags; /* flags to affect behavior of signal */

}

If the argument act is not null, it points to a structure specifying the action to be associated with the specified
signal. If the argument oact is not null, the action previously associated with the signal is stored in the location
pointed to by the argument oact. If act is null, signal handling is unchanged by this call; thus the call can be
used to inquire about the current handling of a given signal.

SIGACTION(2) SIGACTION(2)

462 SR−2012 10.0

The sa_flags field specifies a set of flags used to modify the behavior of the specified signal. It is formed by
OR’ing together any of the following values (defined in signal.h):

SA_NOCLDSTOP If set and if sig equals SIGCHLD, sig is not sent to the calling process when its children
change state due to job control.

SA_RESETHAND If set, the action associated with sig is reset to SIG_DFL on entry to the signal handler
(except for the SIGILL, SIGTRAP, and SIGPWR signals).

SA_CLEARMASK If set, sig is cleared from the calling process’ signal mask on registration.

SA_CLEARPEND If set, sig is cleared from the set of pending signals on registration.

SA_NODEFER If set, sig is not added to the calling process’ signal mask when entering the signal
handler.

SA_NOCLDWAIT If set, children of the calling process do not create zombie processes when they
terminate.

SA_WAKEUP If set, the process is just awakened when sig is received and does not enter a signal
handler.

SA_REGMTASK If set, signal registration is performed for all the tasks in a multitasking group; starting in
UNICOS 8.0 this is the default behavior. To get the previous behavior, see the
SA_REGLWP flag.

SA_REGLWP If set, signal registration is performed for the current process; this was the default
behavior before UNICOS 8.0. However, it is not recommended that applications depend
on this behavior since it may not be supported in later releases.

When a signal is caught by a signal-catching function installed by sigaction, a new signal mask is
calculated and installed for the duration of the signal-catching function (or until the signal mask is changed
explicitly by another system call). This mask is formed by taking the union of the current signal mask and the
value of sa_mask for the signal being delivered, and then including the signal being delivered. If and when
the user’s signal handler returns normally, the original signal mask is restored.

Once an action is installed for a specific signal, it remains installed until another action is explicitly requested or
until one of the exec(2) functions is called.

If sigaction fails, a new signal handler is not installed.

The sigvec system call is provided for 4.3 BSD compatibility. Since the semantics of sigvec are
equivalent to those of sigaction (and the sigvec structure has similar members to the sigaction
structure), this system call is implemented by calling sigaction with the same arguments as sigvec.

The sigvec structure has the following members:

struct sigvec {
void (*sv_handler) (); /* signal handler */
int sv_mask; /* added to signal mask when in handler */
int sv_flags; /* use SA_* flags in sigaction(2) */

}

SIGACTION(2) SIGACTION(2)

SR−2012 10.0 463

RETURN VALUES

If sigaction or sigvec completes successfully, a value of 0 is returned; otherwise, a value of −1 is
returned, and errno is set to indicate the error.

ERRORS

The sigaction or sigvec system call fails if one of the following error conditions occurs:

Error Code Description

EFAULT A sigaction (act or oact) or sigvec (vec or ovec) argument points to an invalid
address.

EINVAL The sig argument is an illegal signal number, SIGKILL, or SIGSTOP.

SIGACTION(2) SIGACTION(2)

464 SR−2012 10.0

EXAMPLES

This example shows how to use the sigaction system call to prepare for the receipt of a signal. In the
following program, the sigaction request is anticipating receipt of SIGINT.

#include <signal.h>

main()
{

void catch(int signo);
struct sigaction act, oact;

act.sa_handler = catch;
sigemptyset(&act.sa_mask);
act.sa_flags = 0;

sigaction(SIGINT, &act, &oact);

printf("\nPrevious disposition for signal SIGINT (#%d) = %o",
SIGINT, oact.sa_handler);

if (oact.sa_handler == SIG_DFL)
printf(" (Default)\n");

else if (oact.sa_handler == SIG_IGN)
printf(" (Ignored)\n");

else
printf("\n");

/* The process performs its work here fully prepared if a SIGINT
signal should be delivered to this process - if SIGINT signal
is sent, process is interrupted and control passes to routine "catch". */

}

void catch(int signo)
{

/* Code to process a SIGINT signal resides here - function returns to
the point of interruption when complete. */

}

SEE ALSO

exec(2), signal(2), sigpending(2), sigprocmask(2), sigsuspend(2)

sigsetops(3C) in the UNICOS System Libraries Reference Manual, Cray Research publication SR−2080

SIGACTION(2) SIGACTION(2)

SR−2012 10.0 465

NAME

sigctl − Provides generalized signal control

SYNOPSIS

#include <signal.h>

int sigctl (int action, int sig, void (*func) (int));

IMPLEMENTATION

All Cray Research systems

DESCRIPTION

The sigctl system call, like signal(2), allows the calling process to specify what to do upon receipt of a
signal.

The sigctl system call accepts the following arguments:

action Specifies the action to be taken when the signal is received.

The simplest, and most common, use of sigctl is to set sig to the desired signal number and set
action to one of the three bits:

SCTL_DEF Takes a system-defined default action.

SCTL_IGN Ignores the signal.

SCTL_REG Registers to catch the signal.

In this case, func contains the address of the signal-catching function or 0. If func is set to 0, the
process is awakened when the signal occurs, but no signal-catching function is called.

Previously, the following actions provided additional control over the action taken.

SCTL_KIL
SCTL_DMP
SCTL_STOP
SCTL_CONT

This control is no longer supported; see the NOTES section for more information. The use of these
actions is equivalent to specifying SCTL_DEF.

sig Specifies a signal. See signal(2) for sig values.

func Specifies the address of the signal handler if the action is SCTL_REG.

The sigctl system call provides additional functionality and control beyond that offered by signal(2). The
two primary differences with signal-catching in sigctl are the following:

� Normally, func does not revert to SIG_DFL; therefore, the process does not need to re-register the
signal-catching function.

SIGCTL(2) SIGCTL(2)

466 SR−2012 10.0

� Further signal catching is postponed when the signal-catching function is entered (see sigon(3C)).

NOTES

With the introduction of the sigaction(2) system call in UNICOS 6.0, the sigctl system call has become
obsolete. While the sigaction(2) interface does not provide a superset of the functionality of sigctl, the
additional functionality that sigctl provides is no longer considered necessary. Because of this change, both
the UNICOS MAX and UNICOS versions of sigctl are written in terms of sigaction(2).

The specific additional functionality provided by sigctl is the ability to choose an arbitrary action for any
signal. For example, set SIGINT to terminate with a core dump or SIGUSR1 to stop the process. In contrast,
sigaction(2) only allows the user to ignore, catch with a signal handler, or choose a system-defined
"default" action for each signal. For example, SIGINT always terminates the process by default, and
SIGABRT always terminates the process and causes a core dump by default.

When written in terms of sigaction(2), calls to sigctl with SCTL_KIL, SCTL_DMP, SCTL_STOP, or
SCTL_CONT as the action are mapped to a sigaction(2) call with the handler set to SIG_DFL. The other
characteristics of sigctl are handled as before.

Some additional complexity is involved in returning from the signal-catching function to the point at which the
process was interrupted. The C library manages this complexity so that users do not need to understand it. To
return to the point of interruption, the operating system must be called to restore the last few registers. Nesting
is not limited. To return to the previous environment, a special action bit, SCTL_RET, is used.

To provide the functionality of signal efficiently, where signal-catching usually reverts to killing the process
or killing with core dump, there is one additional complexity: When registering a signal-catching function, the
process may specify a second bit besides SCTL_REG. Before entering the signal-catching function, the status
for that signal will be set to one of the following signals as requested, and further signal catching is not
postponed.

SCTL_IGN
SCTL_KIL
SCTL_STOP
SCTL_CONT
SCTL_DMP

RETURN VALUES

If sigctl completes successfully, it returns the previous action for the specified signal sig; otherwise, a value
of −1 is returned, and errno is set to indicate the error.

SIGCTL(2) SIGCTL(2)

SR−2012 10.0 467

ERRORS

The sigctl system call fails if the following error condition occurs:

Error Code Description

EINVAL The sig argument is an invalid signal number, including SIGKILL or SIGSTOP.
Also, only SIGCONT may be set with the action SCTL_CONT; SIGCONT cannot be
registered with SCTL_KIL, SCTL_DMP, or SCTL_STOP.

FORTRAN EXTENSIONS

The sigctl system call may be called from Fortran through fsigctl(3F).

EXAMPLES

The following example shows how to use the sigctl system call to prepare for the receipt of a signal. In this
program, the sigctl request is anticipating receipt of SIGINT.

#include <signal.h>

main()
{

void catch(int signo);

sigctl(SCTL_REG, SIGINT, catch);

/* The process performs its work here fully prepared
if a SIGINT signal should be delivered to this process -
if SIGINT signal is sent, process is interrupted
and control passes to routine "catch". */

}

void catch(int signo)
{

/* Code to process a SIGINT signal resides here -
function returns to the point of interruption
when complete. */

}

SIGCTL(2) SIGCTL(2)

468 SR−2012 10.0

SEE ALSO

kill(2), pause(2), ptrace(2), sigaction(2), signal(2), wait(2)

kill(1) in the UNICOS User Commands Reference Manual, Cray Research publication SR−2011

setjmp(3C), sigon(3C) in the UNICOS System Libraries Reference Manual, Cray Research publication
SR−2080

fsigctl(3F) in the Application Programmer’s Library Reference Manual, Cray Research publication
SR−2165

SIGCTL(2) SIGCTL(2)

SR−2012 10.0 469

NAME

signal, bsdsignal, sigset, sigignore − Changes action associated with a signal

SYNOPSIS

#include <signal.h>

void (*signal (int sig, void (*func) (int))) (int);

void (*bsdsignal (int sig, void (*func) (int))) (int);

void (*sigset (int sig, void (*func) (int))) (int);

int sigignore (int sig);

IMPLEMENTATION

All Cray Research systems

STANDARDS

POSIX, XPG4 (applies only to signal)

DESCRIPTION

The signal, bsdsignal, sigset, and sigignore system calls allow the calling process to choose the
action to be associated with the receipt of a specific signal. All of these calls are implemented in terms of the
sigaction(2) system call. The sig argument specifies the signal, and the func argument specifies the choice
(sigignore has no func argument; it implicitly ignores the specified signal).

Valid arguments for the signal, bsdsignal, sigset, and sigignore system calls are as follows:

sig Specifies the signal. It can be assigned any one of the signals available on the operating system except
SIGKILL or SIGSTOP (which cannot be caught or ignored): These are listed in the following table:

Signal Number Default Description

SIGHUP 1 Exit Hangup
SIGINT 2 Exit Interrupt
SIGQUIT 3 Core Quit
SIGILL 4 Core Illegal instruction
SIGTRAP 5 Core Trace trap
SIGABRT 6 Core Abort
SIGERR 7 Core Error exit
SIGFPE 8 Core Floating-point exception
SIGKILL 9 Exit Kill (cannot be caught or ignored)
SIGPRE 10 Core Program range error
SIGORE 11 Core Operand range error

SIGNAL(2) SIGNAL(2)

470 SR−2012 10.0

Signal Number Default Description

SIGSYS 12 Core Bad argument to system call
SIGPIPE 13 Exit Write on a pipe with no one to read it
SIGALRM 14 Exit Alarm clock
SIGTERM 15 Exit Software termination signal from kill
SIGIO 16 Ignore Input/output possible signal
SIGURG 17 Ignore Urgent condition on I/O channel
SIGCLD 18 Ignore Death of a child process
SIGPWR 19 Ignore Power failure
SIGBUFIO 22 Exit Reserved for CRI-library use on Cray MPP systems
SIGRECOVERY 23 Ignore Recovery signal (advisory)
SIGUME 24 Core Uncorrectable memory error
SIGDLK 25 Core True deadlock detected (Cray PVP systems)
SIGCPULIM 26 Exit CPU time limit exceeded (see limit(2))
SIGSHUTDN 27 Ignore System shutdown imminent (advisory)
SIGSTOP 28 Stop Sendable stop signal not from a tty (cannot be caught

or ignored)
SIGTSTP 29 Stop Stop signal from a tty
SIGCONT 30 Ignore Continue a stopped process
SIGTTIN 31 Stop To reader’s process group on background tty read
SIGTTOU 32 Stop Like SIGTTIN for output, if selected
SIGWINCH 33 Ignore Window size changes
SIGRPE 34 Exit Cray PVP register parity error
SIGWRBKPT 35 Core Write breakpoint (CRAY C90 series only)
SIGNOBDM 36 Core Cray PVP binary enabled bidirectional memory

(cannot be caught or ignored)
SIGAMI 37 Core CRAY T90 address multiply interrupt
SIGSMCE 38 Exit Shared memory caching error
SIGINFO 48 Ignore Information signal (see getinfo(2))
SIGUSR1 49 Exit User-defined signal 1
SIGUSR2 50 Exit User-defined signal 2

The following alternative definitions are also available:

SIGIOT 6
SIGHWE 6
SIGEMT 7
SIGBUS 10
SIGSEGV 11
SIGCHLD 18

Signals 49 through 64 are available for users.

SIGNAL(2) SIGNAL(2)

SR−2012 10.0 471

func Specifies the action associated with the signal.

SIG_DFL The default actions are outlined in the default column of the signal table. The
defaults are as follows:

Exit Upon receipt of the sig signal, the receiving process is terminated with all
of the consequences outlined in exit(2).

Core Upon receipt of the sig signal, the receiving process is terminated. A core
image is made in the current working directory of the receiving process if
the following conditions are met: first, the effective user ID and the real
user ID of the receiving process are equal, and second, a file named core
(or, if extended core file naming is turned on, core.pid) can be written
or created.

Two forms of a core image can be created. The system attempts to create
a restart file of the process (see restart(1)). If this fails, the system
creates a core image that cannot be restarted. Both forms describe the
state of the process at the point the signal was received, but the restart file
allows the user to continue execution under the control of a debugger.

Stop Upon receipt of the sig signal, the receiving process is stopped.

Ignore Upon receipt of the sig signal, the receiving process ignores it. This
default is identical to the action specified by SIG_IGN.

SIG_IGN The sig signal is ignored.

SIG_HOLD (sigset only) The specified signal is added to the calling process’ signal mask.

function address Upon receipt of the sig signal, the receiving process executes the signal-catching
function pointed to by func. The signal number sig is passed as the only argument to
the signal-catching function.

Upon return from the signal-catching function, the receiving process resumes
execution at the point at which it was interrupted.

When a signal that is to be caught occurs during certain system calls (for example, a
read(2) or write(2) system call on a terminal or pipe), the signal-catching
function is executed, and then the interrupted system call returns a −1 to the calling
process with errno set to EINTR.

The SIGKILL, SIGSTOP, and SIGNOBDM signals cannot be caught or ignored; also, these signals cannot be
blocked by using sigset with the SIG_HOLD action.

Whenever a process receives a SIGSTOP, SIGTSTP, SIGTTIN, or SIGTTOU signal, regardless of the action
associated with it, any pending SIGCONT signal is discarded.

SIGNAL(2) SIGNAL(2)

472 SR−2012 10.0

Whenever a process receives a SIGCONT signal, regardless of the action associated with it, any pending
SIGSTOP, SIGTSTP, SIGTTIN, or SIGTTOU signal is discarded. In addition, if the process was stopped, it
is continued.

NOTES

The signal system call is compatible with the ANSI C standard, and also follows UNIX System V, Release
3.0 semantics. The bsdsignal system call is compatible with the 4.3 BSD signal system call, and is
renamed to avoid conflicts with the ANSI routine. The sigset and sigignore system calls are provided
for System V3 compatibility; their use is discouraged as they do not belong to any particular standard.

Differences in the semantics of these system calls are described in the following list:

System Call Description

signal When a signal is received (and the action is to execute a signal handler),
the action for that signal is reset to SIG_DFL before entering the handler
(except for the SIGILL, SIGTRAP, and SIGPWR signals). Also, when a
process registers for a signal, all pending signals of that type are cleared.

bsdsignal, sigset When a signal is received (and the action is to execute a signal handler),
the received signal is added to the process’ signal mask before entering
the handler.

signal, sigset, sigignore Setting the action for SIGCLD to SIG_IGN causes any child processes of
the calling process to not create zombie processes when they terminate
(see exit(2)). If the parent process then does a wait(2), the wait
blocks until all of the child processes terminate before returning a value of
−1 with errno set to ECHILD.

sigset, sigignore When a process registers for a signal, that signal is cleared from the
calling process’ signal mask.

Under UNICOS, signal is implemented as a system call, but the signal(3C) function is also defined to be a
part of the ANSI Standard C library. For this reason, this documentation appears both here and in the UNICOS
System Libraries Reference Manual, Cray Research publication SR−2080.

RETURN VALUES

If signal, bsdsignal, or sigset completes successfully, the previous signal action (func) is returned;
otherwise, a value of SIG_ERR is returned (defined in header file signal.h), and errno is set to indicate
the error.

If sigignore completes successfully, 0 is returned; otherwise, a value of −1 is returned, and errno is set to
indicate the error.

SIGNAL(2) SIGNAL(2)

SR−2012 10.0 473

ERRORS

The signal, bsdsignal, sigset, or sigignore system call fails if the following error condition occurs:

Error Code Description

EINVAL The sig argument is an illegal signal number, SIGKILL, or SIGSTOP.

FORTRAN EXTENSIONS

The signal system call can be called from Fortran as a function:

INTEGER sig, FSIGNAL, I
EXTERNAL FUNC
I = FSIGNAL(sig, FUNC)

Alternatively, signal can be called from Fortran as a subroutine. In this case, the return value of the system
call is unavailable.

INTEGER sig
EXTERNAL FUNC
CALL FSIGNAL (sig, FUNC)

The Fortran program must not specify both the subroutine call and the function reference to signal from the
same procedure.

EXAMPLES

The following examples illustrate different uses of the signal system call.

Example 1: This signal request prepares for the receipt of a SIGINT signal. When using signal to catch
signals, the programmer needs to remember to re-register to catch the signal in the signal-handling function,
because the signal’s default disposition is reinstated before entrance to the handler.

SIGNAL(2) SIGNAL(2)

474 SR−2012 10.0

#include <signal.h>

main()
{

void catch(int signo);

signal(SIGINT, catch);

/* The process performs its work here fully prepared
if a SIGINT signal should be delivered to this process -
if SIGINT signal is sent, process is interrupted and
control passes to routine "catch". */

}

void catch(int signo)
{

signal(SIGINT, catch);

/* Code to process a SIGINT signal resides here -
function returns to the point of interruption
when complete. */

}

Example 2: This signal request in conjunction with a wait(2) system call causes a process to wait (delay)
until all of its child processes have completed:

#include <signal.h>

main()
{

int ret_val, ret_stat;

signal(SIGCLD, SIG_IGN);

/* Parent process forks child processes here and
performs other work - it then wants to wait
for all of its child processes to terminate. */

ret_val = wait(&ret_stat);

/* Parent process proceeds after completion
of all child processes. */

}

SIGNAL(2) SIGNAL(2)

SR−2012 10.0 475

SEE ALSO

exit(2), getinfo(2), limit(2), read(2), restart(2), sigaction(2), sigpending(2),
sigprocmask(2), sigsuspend(2), wait(2), write(2)

restart(1) in the UNICOS User Commands Reference Manual, Cray Research publication SR−2011

sigsetops(3C), signal(3C) in the UNICOS System Libraries Reference Manual, Cray Research
publication SR−2080

SIGNAL(2) SIGNAL(2)

476 SR−2012 10.0

NAME

sigpending − Stores pending signals

SYNOPSIS

#include <signal.h>

int sigpending (sigset_t *set);

IMPLEMENTATION

All Cray Research systems

STANDARDS

POSIX, XPG4

DESCRIPTION

The sigpending system call stores the set of signals that are blocked from delivery and pending for the
calling process. It accepts the following argument:

set Points to the space where the set of signals is stored. On Cray MPP systems, the sigpending
system call stores pending signals only for the PE on which it is called. It has no effect on any other
PE of the application.

RETURN VALUES

If sigpending completes successfully, a value of 0 is returned; otherwise, a value of −1 is returned, and
errno is set to indicate the error.

EXAMPLES

The following example shows how to use the sigpending system call in a program to determine whether
there are any signals currently pending and blocked for this process. If any signals are pending, the program
displays the corresponding signal numbers.

SIGPENDING(2) SIGPENDING(2)

SR−2012 10.0 477

sigset_t pset;
long i;
int j;

if (sigpending(&pset) == -1) {
perror("sigpending failed");
exit(1);

}
printf("sigpending reveals the following signals are pending => ");
printf("%lo\n", pset);
if (pset != 0) {

printf(" or signals numbered => ");
for (i = 1L, j = 1; i > 0; i <<= 1, j++) {

if (pset & i) {
printf("%d ", j);

}
}
printf("\n");

}

SEE ALSO

sigaction(2), signal(2), sigprocmask(2), sigsuspend(2)

sigsetops(3C) in the UNICOS System Libraries Reference Manual, Cray Research publication SR−2080

SIGPENDING(2) SIGPENDING(2)

478 SR−2012 10.0

NAME

sigprocmask, sigblock, sigsetmask, sighold, sigrelse − Examines and changes blocked
signals

SYNOPSIS

#include <signal.h>

int sigprocmask (int how, const sigset_t *set, sigset_t *oset);

int sigblock (int mask);

int sigsetmask (int mask);

mask = sigmask (sig);

int sighold (int sig);

int sigrelse (int sig);

IMPLEMENTATION

All Cray Research systems

STANDARDS

POSIX, XPG4 (applies only to sigprocmask)

DESCRIPTION

The sigprocmask system call examines or changes (or both) the calling process’s signal mask.

how Indicates the manner in which the set is changed. It consists of one of the following values, as
defined in the header file signal.h:

SIG_BLOCK The resulting set is the union of the current set and the signal set to which set
points.

SIG_UNBLOCK The resulting set is the intersection of the current set and the complement of the
signal set to which set points.

SIG_SETMASK The resulting set is the signal set to which set points.

set Points to a set of signals that can be used to change the current signal mask. If the set argument is
null, it does not point to a set of signals.

oset Points to the space in which the previous mask is stored. If the oset argument is null, it does not
point to this space. If the value of set is null, the value of how is not significant and the process
signal mask is unchanged by this system call; the call can be used to inquire about currently blocked
signals.

mask Specifies a set of signals as a bitmask.

SIGPROCMASK(2) SIGPROCMASK(2)

SR−2012 10.0 479

sig Specifies a signal. See signal(2) for sig values.

If any pending unblocked signals exist after a call to sigprocmask, at least one of those signals is delivered
before sigprocmask returns.

It is not possible to block the SIGKILL and SIGSTOP signals; this is enforced by the system without causing
an error to be indicated.

The sigblock and sigsetmask system calls are provided for 4.3 BSD compatibility, and call
sigprocmask to actually change the signal mask. The sigblock system call adds the signals specified in
mask to the calling process’s signal mask. The sigsetmask system call sets the calling process’s signal mask
to the value of mask. The sigmask macro creates a signal mask for these system calls; to mask a signal sig,
use sigmask(sig).

The sighold and sigrelse system calls are provided for UNIX System V, Release 3.0, compatibility; they
also call sigprocmask to actually change the signal mask. The sighold system call adds the signal sig to
the calling process’s signal mask; sigrelse removes the signal sig from the mask.

On Cray MPP systems, the sigprocmask system call examines or changes blocked signals only for the PE
on which it is called. It has no effect on any other PE of the application.

RETURN VALUES

If sigprocmask, sighold, or sigrelse completes successfully, a value of 0 is returned; otherwise, a
value of −1 is returned, and errno is set to indicate the error.

The sigblock and sigsetmask system calls return the old value of the signal mask.

ERRORS

The sigprocmask system call fails if one of the following error conditions occurs:

Error Code Description

EFAULT The set or oset argument points to an address that is not valid.

EINVAL The value of how is not equal to one of the defined values.

The sighold and sigrelse system calls fail if the following error condition occurs:

Error Code Description

EINVAL The sig argument is an illegal signal number, SIGKILL, or SIGSTOP.

EXAMPLES

The following examples illustrate how to use the sigprocmask, sigsetmask, sigblock, and sighold
system calls.

SIGPROCMASK(2) SIGPROCMASK(2)

480 SR−2012 10.0

Example 1: In this program, the sigprocmask request blocks and unblocks signals for a process. In other
words, the example shows how bits are added and removed from the process’s signal hold mask.

#include <signal.h>

#define NULL 0

main()
{

sigset_t set, oset;

if (sigprocmask(NULL, NULL, &oset) == -1) {
perror("sigprocmask failed");
exit(1);

}
printf("\nInitial signal mask = %lo\n", oset);

sigemptyset(&set); /* clear the signal set */
sigaddset(&set, SIGINT);
sigaddset(&set, SIGFPE);
sigaddset(&set, SIGUSR1);

if (sigprocmask(SIG_BLOCK, &set, NULL) == -1) {
perror("sigprocmask failed");
exit(2);

}

/* Signals SIGINT, SIGFPE, and SIGUSR1 are now blocked
as well as any other signals blocked prior to the
sigprocmask request. */

/* Later, it is needed to unblock one of those signals, SIGFPE. */

sigdelset(&set, SIGUSR1); /* Modify mask such that SIGFPE */
sigdelset(&set, SIGINT); /* can be unblocked */

if (sigprocmask(SIG_UNBLOCK, &set, NULL) == -1) {
perror("sigprocmask failed");
exit(3);

}
}

SIGPROCMASK(2) SIGPROCMASK(2)

SR−2012 10.0 481

Example 2: In this program, the sigsetmask, sigblock, and sighold requests manipulate a process’s
signal hold mask.

#include <signal.h>

main()
{

int ret, mask;

/* sigsetmask(2) is used to hold signals SIGINT and SIGQUIT -
all other signal types are not held. */

mask = sigmask(SIGINT) | sigmask(SIGQUIT);
printf("initial mask = %lo\n", sigsetmask(mask));

/* sigblock(2) is used to add signal types SIGFPE and SIGUSR2
to signal hold mask. */

mask = sigmask(SIGFPE) | sigmask(SIGUSR2);
ret = sigblock(mask);
printf("after sigsetmask, mask = %lo\n", ret);

ret = sigsetmask(0L); /* determine current mask */
printf("after sigblock, mask = %lo\n", ret);
(void) sigsetmask(ret); /* restore mask */

/* sighold(2) is used to add signal type SIGUSR1
to signal hold mask. */

(void) sighold(SIGUSR1);
printf("after sighold, mask = %lo\n", sigsetmask(0L));

}

SEE ALSO

sigaction(2), signal(2), sigpending(2), sigsuspend(2)

sigsetops(3C) in the UNICOS System Libraries Reference Manual, Cray Research publication SR−2080

SIGPROCMASK(2) SIGPROCMASK(2)

482 SR−2012 10.0

NAME

sigsuspend, bsdsigpause, sigpause − Releases blocked signals and waits for interrupt

SYNOPSIS

#include <signal.h>

int sigsuspend (const sigset_t *sigmask);

int bsdsigpause (int mask);

int sigpause (int sig);

IMPLEMENTATION

All Cray Research systems

STANDARDS

POSIX, XPG4 (applies only to sigsuspend)

DESCRIPTION

The sigsuspend system call replaces the process’ signal mask with the set of signals pointed to by the
sigmask argument and then suspends the process until delivery of a signal whose action is either to execute a
signal-catching function or to terminate the process.

The sigsuspend, bsdsigpause, and sigpause system calls accept the following arguments:

sigmask Specifies a set of signal as a bitmask.

mask Specifies a set of signal as a bitmask.

sig Specifies a signal. See signal(2) for sig values.

If the action is to terminate the process, sigsuspend does not return. If the action is to execute a
signal-catching function, sigsuspend returns after the signal-catching function returns, with the signal mask
restored to the setting that existed prior to the sigsuspend call. It is not possible to block the SIGKILL and
SIGSTOP signals; this is enforced by the system without indicating an error.

The bsdsigpause system call is equivalent to the 4.3 BSD sigpause system call; it is renamed to avoid
conflicts with the UNIX System V, Release 3.0, sigpause system call. It has the same behavior as
sigsuspend.

The sigpause system call is provided for UNIX System V, Release 3.0, compatibility. It releases the signal
sig, and suspends the process until an interrupt occurs.

On Cray MPP systems, the sigsuspend system call suspends only on the PE on which it is called. It has no
effect on any other PE of the application.

SIGSUSPEND(2) SIGSUSPEND(2)

SR−2012 10.0 483

RETURN VALUES

Since sigsuspend, bsdsigpause, and sigpause suspend process execution indefinitely, no successful
completion return value exists; instead, a value of −1 is always returned, and errno is set to indicate the error.

ERRORS

The sigsuspend, bsdsigpause, and sigpause system calls fail if the following error condition occurs:

Error Code Description

EINTR A signal is caught by the calling process, and control is returned from the
signal-catching function.

EXAMPLES

This example shows how to use the sigsuspend system call to wait for a signal to be delivered to a process.
In particular, it shows how the sigsuspend request suspends the program until the process receives a specific
signal (SIGUSR1).

#include <signal.h>

main()
{

struct sigaction act;
sigset_t set;

act.sa_handler = catch;
sigemptyset(&act.sa_mask);
act.sa_flags = 0;
sigaction(SIGUSR1, &act, NULL);

sigfillset(&set); /* turn on (1) all bits in set - */
sigdelset(&set, SIGUSR1); /* except SIGUSR1 */

/* Process performs work here, but after finishing work and before
proceeding, it needs to wait for a SIGUSR1 signal to be sent
from another process. */

sigsuspend(&set); /* wait for SIGUSR1 signal */

/* Work continues here after waiting and catching SIGUSR1 signal. */
}

void catch(int signo)
{

/* process SIGUSR1 signal here */

SIGSUSPEND(2) SIGSUSPEND(2)

484 SR−2012 10.0

}

SEE ALSO

pause(2), sigaction(2), signal(2), sigpending(2), sigprocmask(2)

sigsetops(3C) in the UNICOS System Libraries Reference Manual, Cray Research publication SR−2080

SIGSUSPEND(2) SIGSUSPEND(2)

SR−2012 10.0 485

NAME

slgentry − Makes security log entry

SYNOPSIS

#include <sys/types.h>
#include <unistd.h>

int slgentry (int type, word *entry);

IMPLEMENTATION

All Cray Research systems

DESCRIPTION

The slgentry system call makes an entry in the /dev/slog security log. The caller defines the type of the
entry to be made and passes the address of the entry. The type is decoded and the entry is cast as the proper
security structure before the entry is written to the security log.

The slgentry system call accepts the following arguments:

type Defines the type of the entry to be made.

entry Specifies the address of the entry.

The slgentry system call accepts only a specific subset of valid record types. See slrec(5) for more
information on these types.

Only an appropriately privileged process can use this system call.

NOTES

A process with the effective privilege shown is granted the following ability:

Privilege Description

PRIV_AUDIT_WRITE The process is allowed to use this system call.

If the PRIV_SU configuration option is enabled, the super user is allowed to use this system call.

RETURN VALUES

If slgentry completes successfully, a value of 0 is returned; otherwise, a value of −1 is returned, and errno
is set to indicate the error.

SLGENTRY(2) SLGENTRY(2)

486 SR−2012 10.0

ERRORS

The slgentry system call fails if one of the following error conditions occurs:

Error Code Description

EFAULT The process specified an entry where the length is not valid (that is, less than 0 or
larger than the largest allowed slgentry record).

EINVAL The process specified an entry in which some portion of the entry is outside the user’s
address space.

ESECADM The process does not have appropriate privilege to use this system call.

FILES

/usr/include/sys/types.h Contains types required by ANSI X3J11

/usr/include/unistd.h Contains C prototype for the slgentry system call

SEE ALSO

slog(4), slrec(5) in the UNICOS File Formats and Special Files Reference Manual, Cray Research
publication SR−2014

slogdemon(8) in the UNICOS Administrator Commands Reference Manual, Cray Research publication
SR−2022

General UNICOS System Administration, Cray Research publication SG−2301

SLGENTRY(2) SLGENTRY(2)

SR−2012 10.0 487

NAME

socket − Creates an endpoint for communication

SYNOPSIS

#include <sys/types.h>
#include <sys/socket.h>

int socket (int af, int type, int protocol);

IMPLEMENTATION

All Cray Research systems

DESCRIPTION

The socket system call creates sockets. A socket is an endpoint for communications on a local or a remote
host.

The socket system call accepts the following arguments:

af Specifies an address family with which addresses specified in later operations that use the socket
should be interpreted.

These families are defined in include file sys/socket.h. The Internet address family
(AF_INET), the UNIX address family (AF_UNIX), and the ISO address family (AF_ISO) are
the only families currently recognized by UNICOS.

type Specifies the type of socket to be created. Sockets are typed according to their communications
properties. Currently defined types are as follows:

SOCK_STREAM Provides sequenced, reliable, two-way, connection-based byte streams. It
also provides an auxiliary out-of-band data transmission mechanism.

SOCK_DGRAM Supports datagrams, which are connectionless, unreliable messages of a
fixed (typically small) maximum length.

SOCK_RAW Provides access to internal network interfaces. These sockets are available
only to the super user.

protocol Specifies a protocol to be used with the socket. (See icmp(4P) for an example.) Usually, only
one protocol exists to support a particular socket type, using a given address family. However,
many protocols can exist; in which case, you must specify a particular protocol in this argument.
The protocol number to use is particular to the communication domain in which communication
occurs; see protocols(5).

SOCKET(2) SOCKET(2)

488 SR−2012 10.0

Sockets of type SOCK_STREAM are full-duplex byte streams. A stream socket must be in a connected state
before any data can be sent from or received on it. A connection to another socket is created with a
connect(2) or accept(2) call. After the socket is connected, data can be transferred using read(2) and
write(2) calls or some variant of the send(2) and recv(2) system calls. When a message is complete, a
close(2) call can be performed. Out-of-band data, which is data not sent in sequence with other data, can
also be transmitted (as described in send(2)) and received (as described in recv(2)).

The communications protocols used to implement a socket of type SOCK_STREAM ensure that data is not lost
or duplicated. If a piece of data for which the peer protocol has buffer space cannot be transmitted successfully
within a reasonable length of time, the connection is considered broken, and system calls using the connection
return a −1 value and place the ETIMEDOUT code in the global variable errno. The protocols optionally keep
sockets active by forcing transmissions every minute in the absence of other activity. If no response can be
elicited on an otherwise idle connection for a extended period (for example, 5 minutes), an error is then
indicated. If a process sends on a broken stream, a SIGPIPE signal is raised; this causes naive processes,
which do not handle the signal, to terminate.

SOCK_DGRAM and SOCK_RAW sockets allow sending of datagrams to correspondents specified in send(2)
calls. It is also possible to receive datagrams at such a socket by using recvfrom (see the recv(2) man
page).

You can use an ioctl(2) call to specify a process group to receive a SIGURG signal when out-of-band data
arrives.

The socket call sets up send and receive socket buffers (sockbufs) using a protocol-specific sockbuf space
limit (see netvar(8)). The socket call fails and returns an ELIMIT error if this call would cause the user’s
per-session sockbuf space limit to be exceeded.

Socket-level options control the operation of sockets. These options are defined in the sys/socket.h
include file and in the following list. Use setsockopt(2) and getsockopt(2) (see getsockopt(2)) to
set and to get options, respectively.

The ioctl(2) system call performs a variety of functions at different levels (socket, interface, and routing).
The following is a list of command names for the ioctl(2) system call and a description of the function
performed by each command.

Command Description

Socket level:

FIOASYNC Sets and clears asynchronous input/output by using SIGIO.

FIONBIO Sets and clears nonblocking input/output.

FIONREAD Gets number of bytes available for reading from socket.

SIOCATMARK Indicates whether any out-of-band data is waiting in the socket (0 means yes;
otherwise, no).

SIOCGPGRP Gets process group to receive SIGIO and SIGURG for this socket.

SIOCSPGRP Sets process group to receive SIGIO and SIGURG for this socket.

SOCKET(2) SOCKET(2)

SR−2012 10.0 489

Interface level:

SIOCGIFADDR Gets network address of interface into the ifr_addr member to which the data
argument points.

SIOCGIFCONF Returns interface configuration information into the ifconf structure to which the
ioctl data argument points.

SIOCGIFDSTADDR Specifies address of the remote host on a point-to-point link in the ifr_addr
member of the ifreq structure to which the data argument points.

SIOCGIFFLAGS Returns interface flags in the ifr_flags member of the ifreq structure to which
the data argument points.

SIOCSIFADDR Sets network address of interface from the ifr_addr member of the ifreq
structure to which the data argument points. Also initializes a routing table entry for
the interface (must be root).

SIOCSIFDSTADDR Sets network address of the remote node on a point-to-point link from the ifr_addr
member of the ifreq structure to which the data argument (must be root) points.

SIOCSIFFLAGS Sets interface flags from the ifr_flags member of the ifreq structure to which
the data argument (must be root) points. Flag values are as follows:

IFF_UP 0x1 /* interface is up */
IFF_DEBUG 0x4 /* turn on debugging */
IFF_POINTOPOINT 0x10 /* interface is point-to-point link */
IFF_NOTRAILERS 0x20 /* avoid use of trailers */
IFF_NOARP 0x80 /* no address resolution protocol */

Network media sublevel:

HYSETROUTE Sets HYPERchannel routing table.

HYGETROUTE Gets HYPERchannel routing table.

HYSETTYPE Sets interface type.

HYGETTYPE Gets interface type.

NOTES

The socket is assigned the active security label of the process.

RETURN VALUES

If socket completes successfully, a descriptor that references the socket is returned; otherwise, a value of −1
is returned, and errno is set to indicate the error.

SOCKET(2) SOCKET(2)

490 SR−2012 10.0

ERRORS

The socket system call fails if one of the following error conditions occurs:

Error Code Description

EMFILE Either the per-process descriptor table is full, or the system file table is full.

ELIMIT The user’s socket buffer space limit is exceeded.

ENOBUFS Buffer space is not available. The socket cannot be created.

EPERM Permission denied for operation.

EPROTONOSUPPORT The specified protocol is not supported.

EXAMPLES

Because the socket system call is used in both client and server programs along with other networking calls,
the following examples are simple client and server programs that illustrate how to use the socket request.

Example 1: The client program creates a TCP/IP socket and then attempts to establish a connection between
the newly created socket and the socket within the server program on the designated server host. If a
connection is successful, the client process sends a string of data to the server process.

/* Client side of client/server socket example.
Syntax: client hostname portnumber */

#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <stdio.h>
#include <netdb.h>

/* in in.h is this socket structure
*
* Socket address, internet style.
*
* struct sockaddr_in {
* short sin_family;
* u_short sin_port;
* struct in_addr sin_addr;
* char sin_zero[8];
* };
*/

#define DATA "Test message from client to server."

main(int argc, char *argv[])
{

SOCKET(2) SOCKET(2)

SR−2012 10.0 491

int s;
struct sockaddr_in dest; /* destination socket address */
struct hostent *hp; /* host structure pointer */

/* Convert host name into network address */
hp = gethostbyname(argv[1]);
bzero((char*)&dest, sizeof(sockaddr_in));
dest.sin_family = hp->h_addrtype; /* addr type (AF_INET) */
bcopy(hp->h_addr_list[0], &dest.sin_addr, hp->h_length);
dest.sin_port = atoi(argv[2]);

/* create port */

if ((s = socket(AF_INET, SOCK_STREAM, 0)) < 0) {
perror("client, cannot open socket");
exit(1);

}
if (connect (s, (struct sockaddr *) &dest, sizeof(dest)) < 0) {

close(s);
perror("client, connect failed");
exit(1);

}
write(s, DATA, sizeof(DATA));

close(s);
exit(0);

}

Example 2: (Some system calls in this example are not supported on Cray MPP systems.) The server program
creates a TCP/IP socket, waits for a client process from some host to attempt a connection, accepts the
connection, and then forks a child process to provide the service to the client.

The original (parent) server loops back to look for additional connection attempts while the temporary (child)
server reads a string of data sent by the client process.

SOCKET(2) SOCKET(2)

492 SR−2012 10.0

/* Server side of client-server socket example.
Syntax: server portnumber & */

#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <stdio.h>
#include <netdb.h>

main(int argc, char *argv[])
{

int s, ns;
struct sockaddr_in src; /* source socket address */
int len=sizeof(src);
char buf[256];

/* create port */
src.sin_family = AF_INET;
src.sin_port = atoi(argv[1]);
src.sin_addr.s_addr = 0;

if ((s = socket(AF_INET, SOCK_STREAM, 0)) < 0) {
perror("server, unable to open socket");
exit(1);

}

while (bind(s, (struct sockaddr *) &src, sizeof(src)) < 0) {
printf("Server waiting on bind...\n");
sleep(1);

}

listen(s, 5);

while (1) {
ns = accept(s,(struct sockaddr *) &src, &len);
if (ns < 0) {

perror("server, accept failed");
exit(1);

}

SOCKET(2) SOCKET(2)

SR−2012 10.0 493

if (fork() == 0) {
/* in child server */
close(s); /* child will use socket ns, parent uses s */
read(ns, &buf, sizeof(buf));
printf("Server read: %s\n", buf);
close(ns);
exit(0);

}
close(ns); /* close socket used by child */

}
}

FILES

/usr/include/net/route.h Route file that contains the rtentry structure

/usr/include/sys/socket.h Defines the address families

/usr/include/sys/types.h Defines types of sockets

SEE ALSO

accept(2), bind(2), close(2), connect(2), getsockname(2), getsockopt(2), ioctl(2),
listen(2), read(2), recv(2), select(2), send(2), shutdown(2), socketpair(2), write(2)

icmp(4P), protocols(5), services(5) in the UNICOS File Formats and Special Files Reference Manual,
Cray Research publication SR−2014

netvar(8) in the UNICOS Administrator Commands Reference Manual, Cray Research publication SR−2022

SOCKET(2) SOCKET(2)

494 SR−2012 10.0

NAME

socketpair − Creates a pair of connected sockets

SYNOPSIS

#include <sys/types.h>
#include <sys/socket.h>

int socketpair (int af, int type, int protocol, int sv[2]);

IMPLEMENTATION

All Cray Research systems

Implemented only for the UNIX address domain (AF_UNIX)

DESCRIPTION

The socketpair system call was designed to simulate the UNIX pipe mechanism with the use of sockets.
The call is very similar to the socket(2) system call. With standard network operations, sockets are created
individually using socket(2). To simulate pipe operations, the calling process must create both endpoints for
the communication simultaneously. socketpair creates a pair of sockets in one request to the operating
system.

The socketpair system call accepts the same af, type, and protocol arguments as socket(2) does. For
descriptions of these arguments, see the socket(2) man page. In addition, socketpair accepts the
following argument:

sv Specifies an array of two integers (sv[0] and sv[1]) that receive the descriptors for the new pair of
sockets.

NOTES

The socket is assigned the active security label of the process.

RETURN VALUES

If socketpair completes successfully, a value of 0 is returned; otherwise, a value of −1 is returned, and
errno is set to indicate the error.

ERRORS

The socketpair system call fails if one of the following error conditions occurs:

Error Code Description

EAFNOSUPPORT This machine does not support the specified address family.

EFAULT The sv address does not specify a valid part of the process address space.

EMFILE Too many descriptors are in use by this process.

SOCKETPAIR(2) SOCKETPAIR(2)

SR−2012 10.0 495

EOPNOTSUPP The specified protocol does not support creation of socket pairs.

EPROTONOSUPPORT This machine does not support the specified protocol.

FILES

usr/include/sys/socket.h Header file for sockets

usr/include/sys/types.h Header file for types

SEE ALSO

pipe(2), read(2), write(2)

SOCKETPAIR(2) SOCKETPAIR(2)

496 SR−2012 10.0

NAME

ssbreak − Changes size of secondary data segment

SYNOPSIS

#include <unistd.h>

int ssbreak (long incr);

IMPLEMENTATION

All Cray Research systems except CRAY J90 series and CRAY EL series

DESCRIPTION

The ssbreak system call increases or decreases the size of the secondary data segment (SDS), which is
allocated from an area of the SSD solid-state storage device reserved for this purpose at configuration time (see
ssd(4)). It accepts the following argument:

incr Specifies a count of 4096-byte blocks allocated and deallocated in the SSD.

The ssbreak system call changes secondary storage size, as follows:
� If the ssbreak system call has a positive incr argument, the amount of secondary storage increases by a

multiple of the number of blocks that is defined as the unit allocation size. The unit allocation size is the
number of 4096-byte blocks that compose the smallest amount of space that a user process can allocate in
the SDS; UNICOS is delivered with a unit allocation size of 128 blocks. The unit allocation size can be
found as SDS_WGHT in /usr/include/sys/ssd.h. If the incr argument is less than or equal to the
number of blocks in one unit, the ssbreak system call allocates one whole unit of secondary storage. If
the incr is larger than the number of blocks in one unit and less than or equal to twice the number of blocks
in one unit, two units of secondary storage are allocated, and so on. Because the unit for secondary storage
usually is greater than one block, the amount of storage allocated can be greater than that requested.

� If the ssbreak system call has a negative incr argument, it deallocates secondary storage only in multiples
of one unit. The incr argument must be larger than or equal to the number of blocks in one unit for
deallocation to result.

� If the ssbreak system call has an incr argument of 0, the size of secondary storage remains the same.

Secondary storage allocated by the ssbreak system call is freed on exit of the program.

CAUTIONS

The ssbreak system call works only on a system with an SSD in its configuration, and a secondary data
segment (SDS) area must be configured as a slice of the SSD.

Using ssbreak directly interferes with the operation of sdsalloc(3F), which manages the SDS space
within a process; sdsalloc(3F) should be used instead of ssbreak. CRI strongly discourages direct use of
ssbreak in user programs.

SSBREAK(2) SSBREAK(2)

SR−2012 10.0 497

RETURN VALUES

If ssbreak completes successfully, the current amount of secondary data storage in blocks is returned to the
caller; otherwise, a value of −1 is returned, and errno is set to indicate the error.

ERRORS

The ssbreak system call fails if the following error condition occurs:

Error Code Description

ENOMEM The request requires more secondary storage than can be satisfied.

FORTRAN EXTENSIONS

The ssbreak system call can be called from Fortran as a function:

INTEGER incr, SSBREAK, I
I = SSBREAK (incr)

The ssbreak system call should not be used in a Fortran program that accesses SDS through the assign(1)
command or auxiliary arrays because the libraries use sdsalloc(3F) to control SDS allocation. Using
ssbreak from Fortran directly conflicts with the SDS management that sdsalloc(3F) provides.

EXAMPLES

The following example shows how to use the ssbreak system call to request a SDS allocation. In this case,
the programmer asks for an area of 10 blocks for the process. Because SDS segment space is allocated in units
called the unit allocation size, which is typically configured at 128 blocks, this ssbreak request actually
allocates the process 128 blocks of SDS space.

SSBREAK(2) SSBREAK(2)

498 SR−2012 10.0

int size;

if ((size = ssbreak(10L)) == -1) {
perror("sds allocation error");
exit(1);

}
else {

printf("The size of the sds is now %d - 4096-byte blocks\n", size);
}

/* To make use of the allocated SDS area, the program next issues
ssread and sswrite requests. */

/* When usage of the allocated SDS area is complete, the program
releases its SDS allocation using ssbreak with negative argument -
process termination also releases SDS space. */

if ((size = ssbreak(-size)) == -1) {
perror("sds deallocation error");
exit(1);

}
else {

printf("The size of the sds is now %d - 4096-byte blocks\n", size);
}

FILES

/usr/include/unistd.h Contains C prototype for the ssbreak system call

SEE ALSO

assign(1) in the UNICOS User Commands Reference Manual, Cray Research publication SR−2011

sdsalloc(3F) in the UNICOS System Libraries Reference Manual, Cray Research publication SR−2080

ssd(4) in the UNICOS File Formats and Special Files Reference Manual, Cray Research publication SR−2014

SSBREAK(2) SSBREAK(2)

SR−2012 10.0 499

NAME

ssread, sswrite − Reads or writes to secondary data segment

SYNOPSIS

#include <unistd.h>

int ssread (long pds, long sds, long count);

int sswrite (long pds, long sds, long count);

IMPLEMENTATION

All Cray Research systems except CRAY J90 series and CRAY EL series

DESCRIPTION

The ssread system call moves data from a secondary data area reserved with the ssbreak(2) system call to
a buffer. The sswrite system call moves data from a buffer to a secondary data area.

The ssread system call accepts the following arguments:

pds Specifies a word-aligned address of a buffer.

sds Specifies the secondary data area offset. This is a 4096-byte sector offset in the process’ secondary
data area. It is specified numerically, with 0 giving the beginning block, 1 giving the second block,
and so on. It must be allocated with ssbreak(2).

count Specifies the number of 4096-byte blocks to be moved.

CAUTIONS

The ssread and sswrite system calls work only on a system with an SSD solid-state storage device in its
configuration, and a secondary data segment area (SDS) must be configured as a slice of the SSD.

RETURN VALUES

If ssread or sswrite completes successfully, a value of 0 is returned; otherwise, a value of −1 is returned,
and errno is set to indicate the error.

ERRORS

The ssread and sswrite system calls fail if one of the following error conditions occurs:

Error Code Description

EFAULT The request exceeds the boundaries of either the buffer or the secondary data area.

EIO An error occurred during the data transfer.

SSREAD(2) SSREAD(2)

500 SR−2012 10.0

FORTRAN EXTENSIONS

The ssread system call can be called from Fortran as a function:

INTEGER pds (512*n), sds, words, SSREAD, I
I = SSREAD (pds, sds, words)

The third argument to the Fortran interface to SSREAD specifies the number of words to be read. This is
different than the third argument to the system call. The sswrite system call can be called from Fortran as a
function:

INTEGER pds (512*n), sds, words, SSWRITE, I
I = SSWRITE (pds, sds, words)

The third argument to the Fortran interface to SSWRITE specifies the number of words to be written. This is
different than the third argument to the system call.

EXAMPLES

The following example shows how to use the ssread system call in conjunction with other system calls to
transfer data to and from the SDS allocation for a process. In this portion of the program, the ssbreak(2)
request asks for an SDS area of 1000 blocks, and the sswrite request then transfers 1000 blocks of data from
the user’s process memory space to the process’s SDS allocation. Lastly, ssread reads the 1000 blocks of
data back into the user’s process memory from the SDS allocation.

SSREAD(2) SSREAD(2)

SR−2012 10.0 501

int size;
char buff[4096 * 1000];

if ((size = ssbreak(1000L)) == -1) {
perror("sds allocation error");
exit(1);

}
else {
printf("The size of the sds is now %d - 4096-byte blocks\n", size);

}

/* SDS write illustration */

if (sswrite((long) buff, 0L, 1000L) == -1) {
perror("sswrite error");
exit(2);

}

/* SDS read illustration */

if (ssread((long) buff, 0L, 1000L) == -1) {
perror("ssread error");
exit(3);

}

FILES

/usr/include/unistd.h Contains C prototype for the ssread and sswrite system calls

SEE ALSO

ssbreak(2)

assign(1) in the UNICOS User Commands Reference Manual, Cray Research publication SR−2011

ssd(4) in the UNICOS File Formats and Special Files Reference Manual, Cray Research publication SR−2014

SSREAD(2) SSREAD(2)

502 SR−2012 10.0

NAME

stat, lstat, fstat − Gets file status

SYNOPSIS

#include <sys/types.h>
#include <sys/stat.h>

int stat (const char *path, struct stat *buf);

int lstat (const char *path, struct stat *buf);

int fstat (int fildes, struct stat *buf);

IMPLEMENTATION

All Cray Research systems

STANDARDS

POSIX, XPG4 (applies only to stat, fstat)

DESCRIPTION

The stat system call obtains information about the file specified by path. All directories in the path name
leading to the file must be searchable, although it is not necessary to have read, write, or execute permission to
the file.

The lstat system call is similar to stat, except when the specified file is a symbolic link. In this case,
lstat returns information about the link, and stat returns information about the file that the link references.

The fstat system call obtains the same information as stat about a specified open file. When using fstat
on a file descriptor returned from the accept(2), socket(2), or socketpair(2) system call, only the
st_uid, st_gid, st_slevel, st_blksize, st_oblksize, and the type portion of st_mode fields
are meaningful. All other fields will be 0.

The stat, lstat, and fstat system calls accept the following arguments:

path Points to a file’s path name (stat and lstat only). Read, write, or execute permission of the
specified file is not required, but all directories listed in the path name leading to the file must be
searchable.

buf Points to the stat structure.

fildes Specifies a file descriptor. It is obtained from a successful accept(2), creat(2), dup(2),
fcntl(2), open(2), pipe(2), socket(2), or socketpair(2) system call (fstat only).

STAT(2) STAT(2)

SR−2012 10.0 503

A stat structure includes the following members:

mode_t st_mode; /* File mode; see mknod(2). */
ino_t st_ino; /* Inode number for this file */
dev_t st_dev; /* Device on which this file resides */
dev_t st_rdev; /* Device ID; this entry is defined only */

/* for character special or block special files. */
nlink_t st_nlink; /* Number of links */
uid_t st_uid; /* User ID of the file’s owner */
gid_t st_gid; /* Group ID of the file’s group */
int st_acid; /* Account id of the file */
off_t st_size; /* File size in bytes */
time_t st_atime; /* Time that file data was last accessed; */

/* changed by system calls creat(2), mknod(2), */
/* pipe(2), utime(2), and read(2). */

time_t st_mtime; /* Time when data was last modified; */
/* changed by system calls creat(2), mknod(2), */
/* pipe (2), utime(2), and write(2). */

time_t st_ctime; /* Time when file status was last changed; */
/* times measured in seconds since 00:00:00 */
/* GMT, January 1, 1970. Changed by */
/* system calls chmod(2), chown(2), creat(2), */
/* link(2), mknod(2), pipe(2), unlink(2), utime(2), */
/* and write(2). */

int st_count; /* Reference count from inode; number of active */
/* file table entries */

int st_blocks; /* Number of 4096 byte blocks allocated to the file */
unsigned int

st_msref:1, /* Modification signature referenced flag */
st_ms:31, /* Modification signature */
st_gen; /* Inode generation number */

int st_param[8]; /* Device parameter words; this entry is defined only */
/* for character special or block special files */

ushort st_dm_mode; /* Actual file mode when migrated */
long st_dm_status; /* Migrated file status flags */
long st_dm_mid; /* Migrated file machine id */
long st_dm_key; /* Migrated file key */
unsigned int

st_hasacl:l, /* File has an ACL */
st_hascomps:l;/* File has compartments */

short st_slevel; /* File level */
short st_secflg; /* Security flags (not used) */
short st_intcls; /* Integrity class (not used) */
short st_intcat; /* Integrity category (not used) */

long st_site; /* Site field from inode */
long st_allocf; /* Allocation control flags; see fcntl(2) */

STAT(2) STAT(2)

504 SR−2012 10.0

The file type S_IFREG is returned in st_mode if an IFOFL (offline file) is encountered. The actual file type
S_IFOFL is returned in st_dm_mode.

NOTES

The process must have read permission to the file via the security label. That is, the active security label of the
process must be greater than or equal to the security label of the file.

To be granted search permission to a component of the path prefix, the active security label of the process must
be greater than or equal to the security label of the component (stat/lstat system calls only).

A process with the effective privileges shown is granted the following abilities:

Privilege Description

PRIV_DAC_OVERRIDE The process is granted search permission to a component of the path prefix via
the permission bits and access control list (stat/lstat system calls only).

PRIV_MAC_READ The process is granted search permission to a component of the path prefix via
the security label (stat/lstat system calls only).

PRIV_MAC_READ The process is granted read permission to the file via the security label.

If the PRIV_SU configuration option is enabled, the super user is granted search permission to every
component of the path prefix (stat/lstat system calls only) and is granted read permission to the file via the
security label.

RETURN VALUES

If stat, lstat, or fstat completes successfully, a value of 0 is returned; otherwise, a value of −1 is
returned, and errno is set to indicate the error.

ERRORS

The stat or lstat system call fails if one of the following error conditions occurs:

Error Code Description

EACCES Search permission is denied for a component of the path prefix.

EACCES The process is not granted read permission to the file via the security label, and the
process does not have appropriate privilege.

EFAULT The buf or path argument points to an address that is not valid.

ENAMETOOLONG The supplied file name is too long.

ENOENT The specified file does not exist.

ENOTDIR A component of the path prefix is not a directory.

STAT(2) STAT(2)

SR−2012 10.0 505

The fstat system call fails if one of the following error conditions occurs:

Error Code Description

EBADF The fildes argument is not a valid open file descriptor.

EBADF The process is not granted read permission to the file via the security label, and the
process does not have appropriate privilege.

EFAULT The buf argument points to an address that is not valid.

FORTRAN EXTENSIONS

The stat system call can be called from Fortran as a function (on all systems except Cray MPP systems and
CRAY T90 series systems):

CHARACTER*n path
INTEGER buf(m), STAT, I
I = STAT (path, buf)

Alternatively, stat can be called from Fortran as a subroutine (on all systems except Cray MPP systems and
CRAY T90 series systems). In this case, the return value of the system call is unavailable.

CHARACTER*n path
INTEGER buf(m)
CALL STAT (path, buf)

The Fortran program must not specify both the subroutine call and the function reference to stat from the
same procedure. path may also be an integer variable. In this case, it must be packed 8 characters per word
and terminated with a null (0) byte. The PXFSTAT(3F) subroutine provides similar functionality and is
available on all Cray Research systems.

EXAMPLES

The following examples illustrate how to use the stat and lstat system calls.

STAT(2) STAT(2)

506 SR−2012 10.0

Example 1: This example shows the simplest form of the stat system call. The following stat request
provides status information for a file whose path name is supplied as an argument.

#include <sys/types.h>
#include <sys/stat.h>

main(int argc, char *argv[])
{

struct stat buf;

if (stat(argv[1], &buf) == -1) {
perror("stat failed");
exit(1);

}

/* Data from the specified file’s inode now available in buf. */
}

STAT(2) STAT(2)

SR−2012 10.0 507

Example 2: This example shows how to use the lstat, readlink(2), and stat requests. It uses the list of
file names supplied as arguments to produce a display listing each file name along with the size of each file. If
any file in the argument list is a symbolic link, the program also displays the path name of the file that is the
target of the link as well as that file’s size. For a definition of S_IFLNK, see the sys/stat.h file.

#include <sys/types.h>
#include <sys/stat.h>

main(int argc, char *argv[])
{

char file[50], tfile[50];
struct stat buf;
int i;

for (i = 1; i < argc; i++) {
strcpy(file, argv[i]);
if (lstat(argv[i], &buf) == -1) {

perror("lstat failed");
continue;

}
if ((buf.st_mode & S_IFLNK) == S_IFLNK) { /* a symbolic link? */

readlink(argv[i], tfile, 50);
if (stat(tfile, &buf) == -1) {

perror("stat failed");
exit(1);

}
strcat(file, "->");
strcat(file, tfile);

}
printf("%-50s %d\n", file, buf.st_size);

}
}

SEE ALSO

accept(2), chmod(2), chown(2), creat(2), dmofrq(2), dup(2), fcntl(2), link(2), mknod(2),
open(2), pipe(2), readlink(2), socket(2), socketpair(2), time(2), unlink(2)

PXFSTAT(3F) in the Application Programmer’s Library Reference Manual, Cray Research publication
SR−2165

STAT(2) STAT(2)

508 SR−2012 10.0

NAME

statfs, fstatfs − Gets file system information

SYNOPSIS

#include <sys/statfs.h>

int statfs (char *path, struct statfs *buf, int len, int fstyp);

int fstatfs (int fildes, struct statfs *buf, int len, int fstyp);

IMPLEMENTATION

All Cray Research systems

DESCRIPTION

The statfs system call returns a generic superblock describing a file system. It can be used to acquire
information about mounted and unmounted file systems, and usage is slightly different in the two cases. The
statfs and fstatfs system calls accept the following arguments:

path Specifies path to a file system.

buf Points to a structure. It will be filled by the system call, as described in the following text.

len Specifies the number of bytes of information that the system should return in the structure.

The len argument must be no greater than sizeof (struct statfs), and ordinarily it contains
exactly that value; if it holds a smaller value, the system fills the structure with that number of bytes.
(This allows future versions of the system to grow the structure without invalidating older binary
programs.)

fstyp Specifies file system type.

fildes Specifies open file descriptor.

If the file system of interest is currently mounted, path must specify a file that resides on that file system. In this
case, the file system type is known to the operating system, and the fstyp argument must be 0. For an
unmounted file system, path must specify the block special file containing it, and fstyp must contain the nonzero
file system type. In both cases, read, write, or execute permission of the specified file is not required, but all
directories listed in the path name leading to the file must be searchable.

The statfs structure to which buf points includes the following members:

STATFS(2) STATFS(2)

SR−2012 10.0 509

short f_fstyp; /* File system type */
long f_bsize; /* Block size */
long f_frsize; /* Fragment size */
long f_blocks; /* Total number of blocks */
long f_bfree; /* Count of free blocks */
long f_files; /* Total number of file nodes */
long f_ffree; /* Count of free file nodes */
char f_fname[6]; /* Volume name */
char f_fpack[6]; /* Pack name */
long f_priparts; /* Bitmap of primary partitions */
long f_secparts; /* Bitmap of secondary partitions */
long f_npart; /* Number of partitions (logical drives) in FS*/
long f_bigsize; /* Block to "bigunit" allocation crossover */
long f_bigunit; /* Allocation size for large files */
long f_prinblks; /* Total number of 512 wd blocks in primary */
long f_prinfree; /* Number of free 512 wd blocks in primary */
long f_priaunit; /* Size of primary area allocation unit */
long f_secnblks; /* Total number of 512 wd blocks in secondary */
long f_secnfree; /* Number of free 512 wd blocks in secondary */
long f_secaunit; /* Size of secondary area allocation unit */

The fstatfs system call is similar, except that the file specified by path in statfs is identified instead by an
open file descriptor, fildes, obtained from a successful creat(2), dup(2), fcntl(2), open(2), or pipe(2)
system call.

If fstyp indicates the network file system (NFS) file system, the fields of the structure have the following
meanings:

f_frsize 0

f_bsize Block size on a remote system

f_blocks Number of blocks on remote file system

f_bfree Free blocks on remote file system

f_files 0

f_ffree 0

f_fname Name of host in which remote file system resides

NOTES

The statfs system call obsoletes the ustat(2) system call for most purposes.

STATFS(2) STATFS(2)

510 SR−2012 10.0

To be granted search permission to a component of the path prefix (for the statfs system call), the active
security label of the process must be greater than or equal to the security label of the component.

A process with the effective privileges shown is granted the following abilities:

Privilege Description

PRIV_DAC_OVERRIDE The process is granted search permission to a component of the path prefix via
the permission bits and access control list (statfs system call only).

PRIV_MAC_READ The process is granted search permission to a component of the path prefix via
the security label (statfs system call only).

If the PRIV_SU configuration option is enabled, the super user is granted search permission to every
component of the path prefix.

RETURN VALUES

If statfs completes successfully, a value of 0 is returned; otherwise, a value of −1 is returned, and errno is
set to indicate the error.

ERRORS

The statfs or the fstatfs system call fails if one of the following error conditions occurs:

Error Code Description

EACCES Search permission is denied for a component of the path prefix.

EBADF The fildes argument is not a valid open file descriptor.

EBADF The calling process does not have MAC read access to the file to which the file
descriptor refers.

EFAULT The buf or path argument points to an address that is not valid.

EINVAL The fstyp argument is an not a valid file system type; the path argument is not a block
special file, and the fstyp argument is nonzero; the len argument is negative or is
greater than sizeof (struct statfs).

ENOENT The specified file does not exist.

ENOTDIR A component of the path prefix is not a directory.

EXAMPLES

This example shows how to use the statfs and sysfs system calls to obtain file system information. The
statfs request retrieves information for the file system containing the file whose name is passed as an
argument. The sysfs system call converts the numerical file system type to a character-string format before
displaying it.

STATFS(2) STATFS(2)

SR−2012 10.0 511

#include <sys/types.h>
#include <sys/statfs.h>
#include <sys/fstyp.h>
#include <sys/fsid.h>

main(int argc, char *argv[])
{

struct statfs stats;
char buf[FSTYPSZ];

if (statfs(argv[1], &stats, sizeof(struct statfs), 0) == -1) {
perror("statfs error");
exit(1);

}

if (sysfs(GETFSTYP, stats.f_fstyp, buf) == -1) {
perror("sysfs (GETFSTYP) error");
exit(1);

}

printf("File system type = %s\n", buf);
printf("Block size = %d\n", stats.f_bsize);
printf("Fragment size = %d\n", stats.f_frsize);
printf("Total number of blocks on file system = %d\n", stats.f_blocks);
printf("Total number of free blocks = %d\n", stats.f_bfree);
printf("Total number of file nodes (inodes) = %d\n", stats.f_files);
printf("Total number of free file nodes = %d\n", stats.f_ffree);
printf("Volume name = %s\n", stats.f_fname);
printf("Pack name = %s\n", stats.f_fpack);
printf("Primary partition bit map = %o\n", stats.f_priparts);
printf("Secondary partition bit map = %o\n", stats.f_secparts);
printf("Number of partitions = %d\n", stats.f_npart);
printf("Big file threshold = %d bytes ", stats.f_bigsize);
printf("or %d blocks\n", stats.f_bigsize/stats.f_bsize);
printf("Big file allocation unit size = %d bytes ", stats.f_bigunit);
printf("or %d blocks\n", stats.f_bigunit/stats.f_bsize);
printf("Number of blocks in primary partitions = %d\n", stats.f_prinblks);
printf("Number of free blocks in primary partitions = %d\n",

stats.f_prinfree);
printf("Primary partition allocation unit size = %d ", stats.f_priaunit);
printf("bytes or %d blocks\n", stats.f_priaunit/stats.f_bsize);
printf("Number of blocks in secondary partitions = %d\n",stats.f_secnblks);
printf("Number of free blocks in secondary partitions = %d\n",

stats.f_secnfree);
printf("Secondary partition allocation unit size = %d ",stats.f_secaunit);
printf("bytes or %d blocks\n", stats.f_secaunit/stats.f_bsize);

}

STATFS(2) STATFS(2)

512 SR−2012 10.0

SEE ALSO

chmod(2), chown(2), creat(2), dup(2), fcntl(2), link(2), mknod(2), open(2), pipe(2), read(2),
time(2), unlink(2), ustat(2), utime(2), write(2)

fs(5) in the UNICOS File Formats and Special Files Reference Manual, Cray Research publication SR−2014

STATFS(2) STATFS(2)

SR−2012 10.0 513

NAME

statvfs, fstatvfs − Gets file system information

SYNOPSIS

#include <sys/statvfs.h>

int statvfs (const char *path, struct statvfs *buf);

int fstatvfs (int fildes, struct statvfs *buf);

IMPLEMENTATION

All Cray Research systems

STANDARDS

XPG4

DESCRIPTION

The statvfs system call obtains information about the file specified by path. All directories in the path name
leading to the file must be searchable, although it is not necessary to have read, write, or execute permission to
the file.

The fstatvfs system call obtains the same information as statvfs about the file referenced by fildes

The statvfs and fstatvfs system calls accept the following arguments:

path Points to a file’s path name (statvfs only).

buf Points to the statvfs structure.

fildes Specifies a file descriptor (fstatvfs only).

The following flags can be returned in the f_flag member:

ST_RDONLY read-only file system

ST_NOSUID setuid/setgid bits ignored by exec

ST_NOTRUNC does not truncate long file names

NOTES

The process must have read permission to the file via the security label. That is, the active security label of the
process must be greater than or equal to the security label of the file.

To be granted search permission to a component of the path prefix, the active security label of the process must
be greater than or equal to the security label of the component (statvfs system calls only).

STATVFS(2) STATVFS(2)

514 SR−2012 10.0

A process with the effective privileges shown is granted the following abilities:

Privilege Description

PRIV_DAC_OVERRIDE The process is granted search permission to a component of the path prefix via
the permission bits and access control list (statvfs system calls only).

PRIV_MAC_READ The process is granted search permission to a component of the path prefix via
the security label (statvfs system calls only).

PRIV_MAC_READ The process is granted read permission to the file via the security label.

If the PRIV_SU configuration option is enabled, the super user is granted search permission to every
component of the path prefix (statvfs system calls only) and is granted read permission to the file via the
security label.

RETURN VALUES

If statvfs or fstatvfs completes successfully, a value of 0 is returned; otherwise, a value of −1 is
returned, and errno is set to indicate the error.

ERRORS

The statvfs or fstatvfs system call fails if one of the following error conditions occurs:

Error Code Description

EIO An I/O error occurred while reading the file system.

EINTR A signal was caught during execution of the function.

The statvfs system call fails if one of the following error conditions occurs:

Error Code Description

EACCES Search permission is denied for a component of the path prefix.

ELOOP Too many symbolic links were encountered in resolving the path.

ENAMETOOLONG The supplied file name is too long.

ENOENT The specified file does not exist.

ENOTDIR A component of the path prefix is not a directory.

The fstatvfs system call fails if the following error conditions occurs:

Error Code Description

EBADF The fildes argument is not a valid open file descriptor.

EBADF The process is not granted read permission to the file via the security label, and the
process does not have appropriate privilege.

STATVFS(2) STATVFS(2)

SR−2012 10.0 515

FILES

sys/statvfs.h

SEE ALSO

chmod(2), chown(2), creat(2), dup(2), exec(2), fcntl(2), link(2), mknod(2), open(2), pipe(2),
read(2), time(2), unlink(2) utime(2) write(2)

STATVFS(2) STATVFS(2)

516 SR−2012 10.0

NAME

stime − Sets time

SYNOPSIS

#include <unistd.h>

int stime (long *tp);

IMPLEMENTATION

Cray PVP systems

DESCRIPTION

The stime system call sets the system time and date.

tp Points to the value of time as measured in seconds from 00:00:00 Greenwich mean time (GMT),
January 1, 1970. Only a process with appropriate privilege can use this system call.

NOTES

A process with the effective privilege shown is granted the following ability:

Privilege Description

PRIV_TIME The process is allowed to use this system call.

If the PRIV_SU configuration option is enabled, the super user or a process with the PERMBITS_SYSPARAM
permbit is allowed to use this system call.

RETURN VALUES

If stime completes successfully, a value of 0 is returned; otherwise, a value of −1 is returned, and errno is
set to indicate the error.

ERRORS

The stime system call fails if the following error condition occurs:

Error Code Description

EPERM The process did not have appropriate privilege to use this system call.

FILES

/usr/include/unistd.h Contains C prototype for the stime system call

SEE ALSO

time(2)

STIME(2) STIME(2)

SR−2012 10.0 517

NAME

suspend, resume − Controls execution of processes

SYNOPSIS

#include <sys/category.h>
#include <unistd.h>

int suspend (int category, int id);

int resume (int category, int id);

IMPLEMENTATION

All Cray Research systems

DESCRIPTION

The suspend system call makes a process or group of processes ineligible to execute; the resume system
call restores a process or group of processes to be eligible to execute.

The suspend and resume system calls accept the following arguments:

category Specifies one of the following categories: C_PROC, C_PGRP, or C_SESS

id Specifies the PID, PGRP, or SID corresponding to the category. A PID of 0 means that the current
process is affected, and a PID of −1 means that all processes except the current process are
affected. Similarly, a PGRP of 0 means that all processes in the current process group are affected,
and a PGRP of −1 means that all processes not in the current process group are affected. A SID of
0 means that all processes in the current session are affected. System processes, such as processes
0 and 1, are never suspended.

The calling process must be the owner of the specified process or have appropriate privilege. If an affected
process is not part of the calling process’ session, the calling process must have appropriate privilege.

NOTES

The active security label of the calling process must be equal to the active security label of every affected
process.

A process with the effective privileges shown is granted the following abilities:

Privilege Description

PRIV_ADMIN The calling process is allowed to suspend or resume a process that is not part of
its session.

PRIV_MAC_WRITE The calling process is allowed to override the security label restrictions for
suspend and resume.

PRIV_POWNER The calling process is considered the owner of the specified process.

SUSPEND(2) SUSPEND(2)

518 SR−2012 10.0

If the PRIV_SU configuration option is enabled, the super user is considered the owner of every affected
process and is allowed to suspend or resume a process that is not part of its session. If the PRIV_SU
configuration option is enabled, the super user is allowed to override security label restrictions.

RETURN VALUES

If suspend or resume completes successfully, a value of 0 is returned; otherwise, a value of −1 is returned,
and errno is set to indicate the error.

ERRORS

The suspend or resume system call fails if one of the following error conditions occurs:

Error Code Description

EAGAIN One of the processes being suspended was never in a suspendible state during the last
120 seconds. The suspend system call may be attempted again.

EINTR An asynchronous signal (such as interrupt or quit), which you have elected to
catch, occurred during a suspend system call. When execution resumed after
processing the signal, the interrupted system call returned this error condition.

EINVAL One of the arguments contains a value that is not valid.

EPERM The calling process does not own an affected process and does not have appropriate
privilege.

EPERM The calling process is attempting to suspend or resume a process that is not part of its
session and does not have appropriate privilege.

ESRCH No process can be found that matches the category and id requests.

ESRCH The calling process does not meet security label requirements and does not have
appropriate privilege.

ESRCH The calling process does not own any processes in the requested process group or
session and does not have appropriate privilege.

FORTRAN EXTENSIONS

The suspend system call can be called from Fortran as a function:

INTEGER category, id, SUSPEND, I
I = SUSPEND (category, id)

The resume system call can be called from Fortran as a function:

INTEGER category, id, RESUME, I
I = RESUME (category, id)

SUSPEND(2) SUSPEND(2)

SR−2012 10.0 519

EXAMPLES

The following examples show how to use the suspend and resume system calls to suspend and resume
program execution.

Example 1: This program suspends itself using the suspend request. When the process resumes, it computes
the number of seconds it was in a suspended state.

#include <sys/category.h>
#include <sys/types.h>
#include <time.h>
#include <unistd.h>

main()
{

time_t stime, etime;

stime = time((long *) 0);

if (suspend(C_PROC, 0) == -1) {
perror("suspend failed");
exit(1);

}

etime = time((long *) 0);
printf("Program was suspended for %ld seconds\n", etime - stime);

}

SUSPEND(2) SUSPEND(2)

520 SR−2012 10.0

Example 2: Using the resume system call, this program resumes any suspended process whose process
identification number (PID) is supplied as an argument.

#include <sys/category.h>
#include <stdio.h>
#include <unistd.h>

main(int argc, char *argv[])
{

int pid;

sscanf(argv[1], "%d", &pid); /* convert pid string to int */

if (resume(C_PROC, pid) == -1) {
perror("resume failed");
exit(1);

}
}

FILES

/usr/include/unistd.h Contains C prototype for the suspend and resume system calls

SEE ALSO

suspend(8) in the UNICOS Administrator Commands Reference Manual, Cray Research publication
SR−2022

SUSPEND(2) SUSPEND(2)

SR−2012 10.0 521

NAME

symlink − Makes a symbolic link to a file

SYNOPSIS

#include <unistd.h>

int symlink (char *name1, char *name2);

IMPLEMENTATION

All Cray Research systems

DESCRIPTION

The symlink system call makes a symbolic link to a file. It accepts the following arguments:

name1 Specifies the string used in creating the symbolic link.

name2 Specifies the name of the file created.

A symbolic link name2 is created to name1. Either name may be an arbitrary path name; the files do not need
to be on the same file system.

NOTES

The active security label of the calling process must fall within the security label range of the file system on
which name2 will reside.

To be granted search permission to a component of the path prefix of name2, the active security label of the
process must be greater than or equal to the security label of the component.

To be granted write permission to the parent directory of name2, the active security label of the process must be
equal to the security label of the directory.

A process with the effective privileges shown is granted the following abilities:

Privilege Description

PRIV_DAC_OVERRIDE The process is granted search permission to every component of the name2 path
prefix via the permission bits and access control list.

PRIV_DAC_OVERRIDE The process is granted write permission to the parent directory of name2 via the
permission bits and access control list.

PRIV_MAC_READ The process is granted search permission to every component of the name2 path
prefix via the security label.

PRIV_MAC_WRITE The process is granted write permission to the parent directory of name2 via the
security label.

SYMLINK(2) SYMLINK(2)

522 SR−2012 10.0

If the PRIV_SU configuration option is enabled, the super user is granted search permission to every
component of the path prefix and is granted write permission to the parent directory of name2.

RETURN VALUES

If symlink completes successfully, a value of 0 is returned; otherwise, a value of −1 is returned, and errno
is set to indicate the error.

ERRORS

The symlink system call fails if one of the following error conditions occurs:

Error Code Description

EACCES Search permission is denied for a component of the path prefix of name2.

EACCES Write permission is denied to the parent directory of name2.

EEXIST The file referred to by name2 already exists.

EFAULT The name1 or name2 argument points outside the process allocated address space.

EFLNEQ The active security label of the calling process does not fall within the range of the file
system on which name2 will reside.

EINVAL The name2 argument contains a character with the high-order bit set.

EIO An I/O error occurred during a read from or write to the file system.

EMLINK Too many symbolic links were encountered in translating name2.

ENAMETOOLONG A component of either name1 or name2 exceeds 255 characters, or either name1 or
name2 exceeds 1023 characters.

ENOENT A component of the path prefix of name2 does not exist.

ENOSPC The directory in which the entry for the new symbolic link is being placed cannot be
extended because of one of the following:

� There is no space left in the file system to make the directory longer. Sometimes,
but not always, the new directory name added by symlink requires that an
additional block be allocated.

� There was not enough space (one block) to write the name2 string to disk.

ENOSPC The new symbolic link cannot be created because no space left is on the file system
that will contain the link.

ENOSPC No free inodes exist on the file system on which the file is being created.

ENOTDIR A component of the path prefix of name2 is not a directory.

SYMLINK(2) SYMLINK(2)

SR−2012 10.0 523

EQACT The new symbolic link cannot be created for one of the following reasons: the quota
of inodes on the file system on which the file is being created has been exhausted for
the current account, the account’s quota of disk blocks on the file system that will
contain the link has been exhausted, or the directory in which the entry for the new
symbolic link is being placed cannot be extended because the account’s quota of disk
blocks on the file system containing the directory has been exhausted.

EQGRP The new symbolic link cannot be created for one of the following reasons: the quota
of inodes on the file system on which the file is being created has been exhausted for
the current group, the group’s quota of disk blocks on the file system that will contain
the link has been exhausted, or the directory in which the entry for the new symbolic
link is being placed cannot be extended because the group’s quota of disk blocks on
the file system containing the directory has been exhausted.

EQUSR The new symbolic link cannot be created for one of the following reasons: the quota
of inodes on the file system on which the file is being created has been exhausted for
the current user, the user’s quota of disk blocks on the file system that will contain the
link has been exhausted, or the directory in which the entry for the new symbolic link
is being placed cannot be extended because the user’s quota of disk blocks on the file
system containing the directory has been exhausted.

EROFS The file name2 would reside on a read-only file system.

SYMLINK(2) SYMLINK(2)

524 SR−2012 10.0

EXAMPLES

This example shows how to use the symlink system call to create a symbolic link. The following symlink
request makes a symbolic link to a file from information supplied as arguments. The first argument, argv[1],
is the path name of an existing file or directory that is the target of the new link. The second argument,
argv[2], is the name of the new link. The program later forces an ls -l display of the new link.

#include <stdio.h>
#include <string.h>
#include <unistd.h>

main(int argc, char *argv[])
{

static char cmd[50] = {"ls -l "};

if (argc < 3) {
fprintf(stderr, "Insufficient arguments supplied!\n");
exit(1);

}

if (symlink(argv[1], argv[2]) == -1) {
perror("symlink failed");
exit(1);

}

strcat(cmd, argv[2]);
system(cmd);

}

FILES

/usr/include/unistd.h Contains C prototype for the symlink system call

SEE ALSO

link(2), lstat(2), readlink(2), stat(2), unlink(2)

ln(1) in the UNICOS User Commands Reference Manual, Cray Research publication SR−2011

SYMLINK(2) SYMLINK(2)

SR−2012 10.0 525

NAME

sync − Flushes system buffers out of main memory

SYNOPSIS

#include <unistd.h>

void sync (void);

IMPLEMENTATION

All Cray Research systems

DESCRIPTION

The sync system call causes all information in memory that should be on disk to be flushed out of main
memory, including modified inodes and delayed block I/O.

Information is flushed to the logical device cache (a second-level cache) or disk if a logical device cache is not
configured. The ldsync(8) command flushes data from the logical device cache to disk.

Use sync in programs that examine a file system (for example, fsck(8) and df(1)). You must execute sync
before halting or rebooting the system.

The sync system call issues the write request; it may return before all of the data is written.

RETURN VALUES

None

FORTRAN EXTENSIONS

The sync system call can be called from Fortran as a function:

INTEGER SYNC, I
I = SYNC ()

Alternatively, sync can be called from Fortran as a subroutine, because there is no return value:

CALL SYNC ()

FILES

/usr/include/unistd.h Contains C prototype for the sync system call

SYNC(2) SYNC(2)

526 SR−2012 10.0

SEE ALSO

fsync(2), ioctl(2)

df(1), sync(1) in the UNICOS User Commands Reference Manual, Cray Research publication SR−2011

fsck(8), ldsync(8) in the UNICOS Administrator Commands Reference Manual, Cray Research publication
SR−2022

General UNICOS System Administration, Cray Research publication SG−2301

SYNC(2) SYNC(2)

SR−2012 10.0 527

NAME

sysconf − Retrieves system implementation information

SYNOPSIS

#include <unistd.h>

long sysconf (int name);

IMPLEMENTATION

All Cray Research systems

STANDARDS

POSIX, XPG4

DESCRIPTION

The sysconf system call provides a method for an application to determine the current value of a
configurable system limit or option. It accepts the following argument:

name Represents the system variable to be queried.

The values for name specified by the POSIX P1003.1 standard are listed in the following with a brief
description of the value each returns:

_SC_ARG_MAX The maximum length of arguments in bytes for exec().

_SC_CHILD_MAX The maximum number of processes allowed per user.

_SC_CLK_TCK The number of clock ticks per second.

_SC_JOB_CONTROL The POSIX job control option has been implemented; if true, it is 1.

_SC_NGROUPS_MAX The multigroups size; if multigroups are not implemented, it is 0.

_SC_OPEN_MAX The maximum number of open files.

_SC_PID_MAX The maximum value for a process ID. (This name is no longer specified by
POSIX P1003.1.)

_SC_SAVED_IDS The exec() routine saves the real UID and GID of the caller for later use; if
true, it is 1.

_SC_STREAM_MAX The number of streams that one process can have open at any given time.

_SC_TZNAME_MAX The maximum number of bytes supported for the name of a time zone.

_SC_UID_MAX The maximum value for a user ID. (This name is no longer specified by
POSIX P1003.1.)

_SC_VERSION The version/revision of the POSIX standard used for this implementation.

SYSCONF(2) SYSCONF(2)

528 SR−2012 10.0

The values for name specified by the POSIX P1003.2 standard are listed in the following with a brief
description of the value each returns:

_SC_BC_BASE_MAX The maximum obase value allowed by the bc(1) utility.

_SC_BC_DIM_MAX The maximum number of elements permitted in an array by the bc(1) utility.

_SC_BC_SCALE_MAX The maximum scale value allowed by the bc(1) utility.

_SC_BC_STRING_MAX The maximum length of a string constant accepted by the bc(1) utility.

_SC_COLL_WEIGHTS_MAX The maximum number of weights that can be assigned to an entry of the
LC_COLLATE order keyword in the locale definition file.

_SC_EXPR_NEST_MAX The maximum number of expressions that can be nested within parentheses
by the expr(1) utility.

_SC_LINE_MAX Unless otherwise noted, the maximum length, in bytes, of a utility’s input line
(either standard input or another file), when the utility is described as
processing text files. The length includes room for the trailing newline
character.

_SC_RE_DUP_MAX The maximum number of repeated occurrences of a regular expression
permitted when using the interval notation m,n.

_SC_2_VERSION The C-language development facilities support the POSIX P1003.2
C-Language Bindings Option.

_SC_2_C_DEV The system supports the POSIX P1003.2 C-Language Development Utilities
Option.

_SC_2_FORT_DEV The system supports the POSIX P1003.2 FORTRAN Development Utilities
Option.

_SC_2_FORT_RUN The system supports the POSIX P1003.2 FORTRAN Runtime Utilities
Option.

_SC_2_LOCALEDEF The system supports the POSIX P1003.2 Locale Creation Option.

_SC_2_SW_DEV The system supports the POSIX P1003.2 Software Development Utilities
Option.

_SC_2_C_BIND The system supports the POSIX P1003.2 C-Language Bindings Option.

_SC_2_CHAR_TERM The system supports at least one terminal type capable of all operations in the
POSIX standard.

_SC_2_C_VERSION The version of the POSIX P1003.2 interfaces used for this implementation.

The values for name specified by the X/Open XPG4 standard are listed in the following with a brief description
of the value each returns:

_SC_PASS_MAX The maximum size of a password.

_SC_XOPEN_VERSION The version of the X/Open standard supported by this implementation.

SYSCONF(2) SYSCONF(2)

SR−2012 10.0 529

_SC_XOPEN_CRYPT The system supports the X/Open Encryption Feature Group.

_SC_XOPEN_ENH_I18N The system supports the X/Open Enhanced Internationalization Feature
Group.

_SC_XOPEN_SHM The system supports the X/Open Shared Memory Feature Group.

_SC_LOGIN_NAME_MAX The maximum length of a login name.

_SC_TTY_NAME_MAX The maximum length of a tty path name.

_SC_GETGR_R_SIZE_MAX The maximum size of data buffers used by the getgrgid_r and
getgrnam_r library functions.

_SC_GETPW_R_SIZE_MAX The maximum size of data buffers used by the getpwgid_r and
getpwnam_r library functions.

The values for name that are unique to Cray Research are listed in the following with a brief description of the
value each returns. These unique values will not change.

_SC_CRAY_AVL Additional vector logical hardware; if present, it is 1.

_SC_CRAY_BDM Bidirectional memory enabled; if true, it is 1.

_SC_CRAY_BMM Bit matrix multiply unit; if present, it is 1.

_SC_CRAY_CHIPSZ The memory chip size.

_SC_CRAY_CPCYCLE The CPU cycle time in picoseconds.

_SC_CRAY_EMA Extended memory addressing hardware; if present, it is 1.

_SC_CRAY_HPM Hardware performance monitor hardware; if present, it is 1.

_SC_CRAY_IOS The I/O subsystem type; IOS_MODEL_E.

_SC_CRAY_MFSUBTYPE The mainframe subtype (see sys/sn.h and sys/machd.h).

_SC_CRAY_MFTYPE The mainframe type (see sys/sn.h and sys/machd.h for all systems).

_SC_CRAY_NBANKS The number of memory banks on the Cray Research mainframe.

_SC_CRAY_NBUF Number of 512-word system I/O cache blocks.

_SC_CRAY_NCPU The number of CPUs currently available.

_SC_CRAY_NDISK The number of disk devices configured on the system.

_SC_CRAY_NMOUNT The number of file-system mount points configured in the system.

_SC_CRAY_NPTY The maximum number of pty devices configured into the currently running
version of the operating system.

_SC_CRAY_NUSERS The number of users configured.

_SC_CRAY_NVHISP The number of VHISP channels to the SSD solid-state storage device.

_SC_CRAY_OPEN_MAX The value of the largest open file limit supported by the kernel.

SYSCONF(2) SYSCONF(2)

530 SR−2012 10.0

_SC_CRAY_OS_HZ The frequency per second (usually 100) with which the operating system
clock routine is called.

_SC_CRAY_RELEASE The release level of the currently running version of the operating system.
The release level is multiplied by 1000 (for example, release level 5.0 = 5000,
release level 5.1 = 5100, and so on).

_SC_CRAY_SCTRACE System call timing; if on, it is 1.

_SC_CRAY_SDS Size of secondary data segment (SDS) memory in 512-word blocks.

_SC_CRAY_SECURE_MAC The system supports syshigh and syslow security labels. This implies
that file systems have been appropriately labeled.

_SC_CRAY_SECURE_SYS The system has been generated with security enabled. Always returns TRUE
(nonzero).

_SC_CRAY_SERIAL The system serial number (see sys/sn.h).

_SC_CRAY_SSD Size of the SSD in words.

_SC_CRAY_SYSMEM The size of the kernel and tables, in words.

_SC_CRAY_USRMEM The user memory available, in words.

RETURN VALUES

If name not a valid value, the sysconf system call returns a value of −1, and sets errno to EINVAL. If
name is valid, sysconf returns the current variable value for the system.

EXAMPLES

This example shows how to use the sysconf system call to retrieve system implementation information. The
following sysconf requests illustrate some of the different types of information available through this call.
Because sysconf returns the mainframe type as an integer, the programmer creates a table to convert the
mainframe type to a more recognizable character string.

SYSCONF(2) SYSCONF(2)

SR−2012 10.0 531

#include <unistd.h>

main()
{

/* The following table based upon the mainframe definitions
in the sys/machd.h and sys/machcons.h header files. */

static char *mftype[] = {"", "CRAY Y-MP", "", "CRAY C90"};

printf("The mainframe type = %s\n",
mftype[sysconf(_SC_CRAY_MFTYPE)]);

printf("The current number of available cpu’s = %ld\n",
sysconf(_SC_CRAY_NCPU));

printf("The size of the kernel and tables = %ld words\n",
sysconf(_SC_CRAY_SYSMEM));

printf("The amount of user memory available = %ld words\n",
sysconf(_SC_CRAY_USRMEM));

printf("The number of clock ticks per second = %ld\n",
sysconf(_SC_CLK_TCK));

}

FILES

/usr/include/sys/machd.h Contains machine-dependent information

/usr/include/sys/sn.h Contains Cray Research mainframe hardware information

/usr/include/sys/tfm.h Defines TFM_UDB_6

/usr/include/unistd.h Contains C prototype for the sysconf system call

SEE ALSO

pathconf(2)

bc(1), expr(1) in the UNICOS User Commands Reference Manual, Cray Research publication SR−2011

General UNICOS System Administration, Cray Research publication SG−2301

SYSCONF(2) SYSCONF(2)

532 SR−2012 10.0

NAME

sysfs − Gets file system type information

SYNOPSIS

#include <sys/fstyp.h>
#include <sys/fsid.h>

int sysfs (int opcode, char *fsname);

int sysfs (int opcode, int fs_index, char *buf);

int sysfs (int opcode);

IMPLEMENTATION

All Cray Research systems

DESCRIPTION

The sysfs system call returns information about the file system types configured in the system. The number
of arguments accepted by sysfs varies and depends on the opcode.

opcode Specifies function to perform. The following are valid opcode values:

GETFSIND Translates fsname, a null-terminated file system identifier, into a file system type
index.

GETFSTYP Translates fs_index, a file system type index, into a null-terminated file system
identifier and writes it into the buffer to which buf points. This buffer must be at
least of size FSTYPSZ, as defined in sys/fstyp.h.

GETNFSTYP Returns the total number of file system types configured in the system.

fsname Specifies file system identifier.

fs_index Specifies file system type index.

buf Points to a buffer.

RETURN VALUES

If sysfs completes successfully, it returns the file system type index if opcode is GETFSIND, a value of 0 if
opcode is GETFSTYP, or the number of file system types configured if opcode is GETNFSTYP. Otherwise, a
value of −1 is returned, and errno is set to indicate the error.

SYSFS(2) SYSFS(2)

SR−2012 10.0 533

ERRORS

The sysfs system call fails if one of the following error conditions occurs:

Error Code Description

EFAULT The buf or fsname argument points to a user address that is not valid.

EINVAL The fsname argument points to a file system identifier that is not valid; fs_index is 0, or
not valid; opcode is not valid.

EXAMPLES

This example shows how to use the sysfs and statfs(2) system calls to obtain file system information. The
statfs(2) request retrieves information for the file system containing the file whose name is passed as an
argument. The sysfs system call converts the numerical file system type to a character-string format before
displaying it. The final sysfs request determines the total number of file system types configured in the
system.

#include <sys/types.h>
#include <sys/statfs.h>
#include <sys/fstyp.h>
#include <sys/fsid.h>

main(int argc, char *argv[])
{

struct statfs stats;
char buf[FSTYPSZ];
int nconfig;

if (statfs(argv[1], &stats, sizeof(struct statfs), 0) == -1) {
perror("statfs error");
exit(1);

}

if (sysfs(GETFSTYP, stats.f_fstyp, buf) == -1) {
perror("sysfs (GETFSTYP) error");
exit(1);

}

printf("File system type => %s\n", buf);
printf("Block size = %d\n", stats.f_bsize);
printf("Fragment size = %d\n", stats.f_frsize);
printf("Total number of blocks on file system = %d\n", stats.f_blocks);
printf("Total number of free blocks = %d\n", stats.f_bfree);
printf("Total number of file nodes (inodes) = %d\n", stats.f_files);
printf("Total number of free file nodes = %d\n", stats.f_ffree);
printf("Volume name => %s\n", stats.f_fname);
printf("Pack name => %s\n\n", stats.f_fpack);

SYSFS(2) SYSFS(2)

534 SR−2012 10.0

if ((nconfig = sysfs(GETNFSTYP)) == -1) {
perror("sysfs (GETNFSTYP) error");
exit(1);

}
else {

printf("Number of file system types configured = %d\n", nconfig);
}

}

SEE ALSO

statfs(2)

SYSFS(2) SYSFS(2)

SR−2012 10.0 535

NAME

syssgi − Provides a system interface to Silicon Graphics workstations

SYNOPSIS

#include <sys/syssgi.h>

ptrdiff_t syssgi (int request, ...);

IMPLEMENTATION

IRIX and UNICOS systems

DESCRIPTION

The syssgi call is a system interface specific to Silicon Graphics workstations. It accepts the following
argument:

request Represents the requested interface. The currently supported values for request are listed below.

The following request values are interfaces that implement various libc functions. They are all
subject to change and should not be called directly by applications.

SGI_GETASH

SGI_SETASH

SGI_GETPRID

SGI_GETDFLTPRID

SGI_SETPRID

SGI_GETSPINFO

SGI_SETSPINFO

SGI_NEWARRAYSESS

The following request values are interfaces that implement various libarray functions. They
are all subject to change and should not be used directly by applications.

SGI_ENUMASHS

SGI_GETARSESS

SGI_GETASMACHID

SGI_PIDSINASH

SGI_SETASMACHID

SYSSGI(2) SYSSGI(2)

536 SR−2012 10.0

RETURN VALUES

If syssgi completes successfully, a command-dependent value (default of 0) is returned; otherwise, a value
of -1 is returned, and errno is set to indicate the error.

ERRORS

The syssgi system call fails if one of the following conditions occurs:

Error Code Description

EFAULT A buffer is referenced which is not in a valid part of the calling program’s address
space.

ENOMEM The specified buffer was not large enough to hold the entire list of process IDs
returned by the SGI_PIDSINASH function.

SYSSGI(2) SYSSGI(2)

SR−2012 10.0 537

NAME

tabinfo, tabread − Returns information on and reads a system table

SYNOPSIS

#include <sys/table.h>

int tabinfo (char *name, struct tbs *info);

int tabread (char *name, char *buf, long nbytes, long offset);

IMPLEMENTATION

Cray PVP systems

DESCRIPTION

The tabinfo and tabread system calls let you read a system table without reading /dev/kmem. The
tabinfo call describes table characteristics: location, header length, number of entries, and size of entry.
Using the information returned by tabinfo, you can create a user buffer into which tabread will read all or
part of a table.

If you have read permission on /dev/kmem, you will have unlimited access with tabinfo and tabread,
regardless of the table permissions. The calls let you process a table in segments; the requirement for an
arbitrarily large buffer does not exist. Using the information from tabinfo, you can calculate buffer sizes.

The tabinfo and tabread system calls accept the following arguments:

name Points to a table name (defined in sys/table.h).

info Points to the tbs structure to receive the information.

buf Points to the character to which the buffer points to receive the table.

nbytes Specifies the number of bytes to be read.

offset Specifies the number of bytes after the table base at which tabread is to start reading.

NOTES

The tabinfo and tabread system calls are similar to the nlist(3C) library routine and have some of the
same functionality.

If the process does not have read permission to /dev/kmem and the table permissions restrict access, the
process must belong to the appropriate table group, or the process must have appropriate privilege.

If the SECURE_MAC option is enabled, the calling process uses the tabread system call to retrieve process
table information and the active security label of the process table entry is greater than the active security label
of the calling process, the returned process table entry is zero-filled. A process with appropriate privilege is
allowed to override this behavior.

TABINFO(2) TABINFO(2)

538 SR−2012 10.0

A process with the effective privileges shown is granted the following abilities:

Privilege Description

PRIV_ADMIN The process is granted access to tables whose permissions restrict access.

PRIV_DAC_OVERRIDE The process is granted search permission to every directory component of the
/dev/kmem path prefix via the permission bits and access control list.

PRIV_DAC_OVERRIDE The process is granted read permission to /dev/kmem via the permission bits
and access control lists.

PRIV_MAC_READ The process is granted search permission to every directory component of the
/dev/kmem path prefix via the security label.

PRIV_MAC_READ The process is granted read permission to /dev/kmem via the security label.

PRIV_MAC_READ The process is allowed to read all process table entries. That is, process table
entries are not zero-filled.

If the PRIV_SU configuration option is enabled, the super user is allowed to override all tabread and
tabinfo restrictions.

RETURN VALUES

If tabinfo or tabread completes successfully, a value of 0 is returned; otherwise, a value of −1 is returned,
and errno is set to indicate the error.

ERRORS

The tabinfo or tabread system call fails if one of the following error conditions occurs:

Error Code Description

EACCES Access is not permitted.

EFAULT The address of info or buf is illegal.

EINVAL The name argument points to an undefined table name.

EXAMPLES

The following example shows how to use the tabinfo and tabread system calls to retrieve information
from a system table. In this case, the entire file table from the system is read into the process’s memory space.

TABINFO(2) TABINFO(2)

SR−2012 10.0 539

#include <sys/table.h>
#include <stdlib.h>

/* The structure of type tbs defined as follows (from <sys/table.h>):

struct tbs {
char name[9]; - ASCII name of table entry -
long *addr, - Start address of table (word *) -

head, - Length of table header (chars) -
ent, - Number of entries -
len, - Length of each entry (chars)-
perm; - Permission word -

}; */

main()
{

struct tbs tinfo;
char *tloc;
long tsize;

if (tabinfo(FILETAB, &tinfo) == -1) {
perror("tabinfo failed");
exit(1);

}

tsize = tinfo.head + (tinfo.ent * tinfo.len);
tloc = (char *) malloc(tsize);

if (tabread(FILETAB, tloc, tsize, 0) == -1) {
perror("tabread failed");
exit(1);

}
}

FILES

/usr/include/sys/table.h Contains user or system structure declaration

SEE ALSO

nlist(3C) in the UNICOS System Libraries Reference Manual, Cray Research publication SR−2080

TABINFO(2) TABINFO(2)

540 SR−2012 10.0

NAME

target − Retrieves or modifies machine characteristics

SYNOPSIS

#include <sys/target.h>

int target (int request, struct target *addr);

IMPLEMENTATION

All Cray Research systems

DESCRIPTION

The target system call provides a mechanism for compilers to determine the physical characteristics of the
host system.

Users may retrieve machine characteristics for the machine on which they are running (host machine) or for the
machine for which they are targeting code (target machine). Only a process with appropriate privilege can
modify characteristics for the target machine.

The target system call accepts the arguments:

request Specifies the type of request; request may be one of the following:

MC_GET_SYSTEM Retrieves the host machine characteristics.

MC_GET_TARGET Retrieves the target machine characteristics.

MC_SET_TARGET Modifies the target machine characteristics
(on all systems except Cray MPP systems).

addr Specifies the address of a structure of type target.

NOTES

A process with the effective privilege shown is granted the following ability:

Privilege Description

PRIV_ADMIN The process is allowed to modify characteristics of the target machine.

If the PRIV_SU configuration option is enabled, the super user or a process with the PERMBITS_SYSPARAM
permbit is allowed to modify characteristics of the target machine.

RETURN VALUES

If target completes successfully, a value of 0 is returned; otherwise, a value of −1 is returned, and errno is
set to indicate the error.

TARGET(2) TARGET(2)

SR−2012 10.0 541

ERRORS

The target system call fails if one of the following error conditions occurs:

Error Code Description

EFAULT The target structure address is not within the user’s bounds.

EINVAL The request field is not valid.

EPERM The process tried to use the MC_SET_TARGET request but did not have appropriate
privilege.

EXAMPLES

The following example shows how to use the target system call to retrieve the characteristics of the target
machine. The field containing the primary machine type name (mc_pmt in the target structure) contains
character data, but the field type is defined as long int.

#include <sys/target.h>

main()
{

struct target data;

if (target(MC_GET_TARGET, &data) == -1) {
perror("target failed");
exit(1);

}

printf("Primary machine type name = %s\n", &data.mc_pmt);
printf("Number of memory banks = %ld\n", data.mc_bank);
printf("Number of started processors = %ld\n", data.mc_ncpu);
printf("Instruction Buffer Size (words) = %ld\n", data.mc_ibsz);
printf("Main memory size (words) = %ld\n", data.mc_msz);
printf("Number of clocks for a memory read = %ld\n", data.mc_mspd);
printf("Clock period in picoseconds = %ld\n", data.mc_clk);
printf("Number of cluster register sets = %ld\n", data.mc_ncl);
printf("Memory bank busy time in clocks = %ld\n", data.mc_bbsy);
printf("Number of clock ticks per second = %ld\n", data.mc_clktck);
printf("System serial number = %ld\n", data.mc_serial);
printf("UNICOS release level = %ld\n", data.mc_rls/1000);

}

SEE ALSO

target(1) in the UNICOS User Commands Reference Manual, Cray Research publication SR−2011

TARGET(2) TARGET(2)

542 SR−2012 10.0

NAME

tcgetpgrp, tcsetpgrp − Gets or sets terminal process group ID of the foreground process group

SYNOPSIS

#include <sys/types.h>
#include <unistd.h>

pid_t tcgetpgrp (int fildes);

pid_t tcsetpgrp (int fildes, pid_t pgrp_id);

IMPLEMENTATION

All Cray Research systems

STANDARDS

POSIX, XPG4

DESCRIPTION

The tcgetpgrp system call returns the value of the process group ID of the foreground process group; the
tcsetpgrp system call sets the foreground process group ID to pgrp_id.

The tcgetpgrp and tcsetpgrp system calls accept the following arguments:

fildes Specifies the controlling terminal of the calling process, and that controlling terminal must be
currently associated with the session of the calling process.

pgrp_id Matches a process group ID of a process in the same session as the calling process.

NOTES

The tcgetpgrp system call is allowed from a process that is a member of a background process group;
however, the information may subsequently be changed by a process that is a member of a foreground process
group.

RETURN VALUES

If tcgetpgrp completes successfully, it returns the process group ID of the foreground process group
associated with the terminal; otherwise, a value of −1 is returned, and errno is set to indicate the error.

If tcsetpgrp completes successfully, a value of 0 is returned; otherwise, a value of −1 is returned, and
errno is set to indicate the error.

TCGETPGRP(2) TCGETPGRP(2)

SR−2012 10.0 543

FILES

/usr/include/sys/types.h Contains types required by ANSI X3J11

/usr/include/unistd.h Contains C prototype for the tcgetpgrp and tcsetpgrp system
calls

TCGETPGRP(2) TCGETPGRP(2)

544 SR−2012 10.0

NAME

_tfork − Creates a multitasking process

SYNOPSIS

#include <unistd.h>

int _tfork (void);

IMPLEMENTATION

Cray PVP systems

DESCRIPTION

The _tfork system call creates a process much as fork(2) does. The main difference between fork(2) and
_tfork is that a process created by _tfork shares the same memory area as the parent process. Because the
calling process and the created process share the same memory area, the two processes have a sibling-sibling
relationship rather than a parent-child relationship. The two processes are said to share a multitasking group.
These processes have the following differences from normal processes:

� The process ID (PID) returned when the last process in the multitasking group exits is the pid of the first
process to exist in the group. The parent pid of all processes in the multitasking group is the parent pid of
the first process in the group. Only the last process in the group can be detected by the wait(2) call. Each
process, except the last one to exit, does so without signaling its parent process.

� Whenever a process from a multitasking group is connected to a physical CPU, the process has a cluster.
The cluster is loaded when the first process from the group is connected, and it remains loaded as long as
any process in the group is connected.

The restart(2) system call and any of the exec(2) family of system calls are not allowed during
multitasking. Using them results in the EINVAL error.

RETURN VALUES

If _tfork completes successfully, it returns to each process its own pid. If _tfork fails, a value of −1 is
returned. Because the two processes share a memory area, a call to _tfork from C does not function as
expected, because the stack is not copied; therefore, _tfork is most commonly called from a multitasking
library.

FILES

/usr/include/unistd.h Contains C prototype for the _tfork system call

SEE ALSO

exec(2), fork(2), restart(2), wait(2)

_TFORK(2) _TFORK(2)

SR−2012 10.0 545

NAME

thread − Registers this process as a thread

SYNOPSIS

#include <sys/types.h>
#include <sys/thread.h>

int thread (struct thread *buf);

IMPLEMENTATION

Cray PVP systems

DESCRIPTION

The thread system call registers this process as a thread and requests special handling by the kernel. It
accepts the following argument:

buf Specifies the address of the thread communication area.

The library uses _tfork(2) and this system call to implement microtasking. The thread structure and
context structure are used for fast communication between the library and the kernel. A thread structure
includes the following members:

long pid; /* Pid of this process */
long wakeup; /* Request by library to wakeup this proc */
long giveup; /* Request by kernel to give up cpu */
long context; /* Pointer to context save area */

The wakeup flag may be set by a sibling process in a multitasking group to request that the kernel wake up a
sleeping sibling. The giveup flag is set by the kernel to request that the thread voluntarily give up the CPU.
This is done so that the thread may get to a convenient stopping point and thereby allow the other threads to
progress. If the thread does not give up the CPU promptly after giveup is set, the kernel will take the CPU.

If the process at any time sets the context pointer to refer to an area outside its address space or shrinks its
address space by using sbreak(2) so that the thread structure is no longer included, the kernel revokes the
thread status of the process and sends the SIGERR signal to the process.

RETURN VALUES

If thread completes successfully, a value of 0 is returned; otherwise, a value of −1 is returned, and errno is
set to indicate the error.

THREAD(2) THREAD(2)

546 SR−2012 10.0

ERRORS

The thread system call fails if one of the following error conditions occurs:

Error Code Description

EBUSY The process is already a thread.

EFAULT The thread structure to which buf points is not fully contained in the process address
space.

EINVAL The pid value in the thread structure is not the correct value for this process.

SEE ALSO

sbreak(2), _tfork(2)

THREAD(2) THREAD(2)

SR−2012 10.0 547

NAME

time − Gets time

SYNOPSIS

#include <time.h>

time_t time (time_t *tloc);

IMPLEMENTATION

All Cray Research systems

STANDARDS

POSIX, XPG4

DESCRIPTION

The time system call returns the value of time in seconds since 00:00:00 Greenwich mean time (GMT),
January 1, 1970. It accepts the following argument:

tloc Points to a second location where the return value is stored.

If tloc is 0, time returns the time only as the return value. If the tloc argument points to an address
that is not valid, the actions for time are undefined.

NOTES

Under UNICOS, time is implemented as a system call, but the time(3C) function is also defined to be a part
of the ANSI Standard C library. For this reason, this documentation appears both here and in the UNICOS
System Libraries Reference Manual, Cray Research publication SR−2080.

RETURN VALUES

The time system call returns the value of time.

FORTRAN EXTENSIONS

The time system call can be called from Fortran as a function:

INTEGER TIME, I
I = TIME ()

TIME(2) TIME(2)

548 SR−2012 10.0

EXAMPLES

The following example shows how to use the time system call to retrieve the current time from the system. It
also illustrates how the value returned by time is converted to character-string format in two different ways
using the ctime(3C) and localtime(3C) (see ctime(3C)) library routines.

#include <time.h>
#include <sys/types.h>

main()
{

static char *daytab[] = {"Sunday", "Monday", "Tuesday",
"Wednesday", "Thursday", "Friday", "Saturday"};

time_t timval;
struct tm *tmptr;

time(&timval);
printf("The time in seconds since Jan 1, 1970 is %ld\n", timval);

printf("The date and time are %s", ctime(&timval));

tmptr = localtime(&timval);
printf("The reformatted date and time are %s %2d/%2d/%2d %.2d:%.2d\n",

daytab[tmptr->tm_wday], tmptr->tm_mon + 1, tmptr->tm_mday,
tmptr->tm_year, tmptr->tm_hour, tmptr->tm_min);

}

SEE ALSO

stime(2)

ctime(3C), time(3C) in the UNICOS System Libraries Reference Manual, Cray Research publication
SR−2080

TIME(2) TIME(2)

SR−2012 10.0 549

NAME

times − Gets process and child process times

SYNOPSIS

#include <sys/times.h>

clock_t times (struct tms *buffer);

IMPLEMENTATION

All Cray Research systems

STANDARDS

POSIX, XPG4

DESCRIPTION

The times system call returns time-accounting information to the process. It accepts the following argument:

buffer Points to the tms structure.

A tms structure includes the following members:

clock_t tms_utime; CPU time used during the execution
of instructions in the user space
of the calling process

clock_t tms_stime; CPU time used by the system
on behalf of the calling process

clock_t tms_cutime; Sum of the "tms_utime"s and "tms_cutime"s
of the child processes

clock_t tms_cstime; Sum of the "tms_stime"s and "tms_cstime"s
of the child processes

This information comes from the calling process and each of its terminated child processes for which it has
executed a wait(2). All times are given in system hardware clock ticks; there are CLK_TCK system hardware
clock ticks per second. The CLK_TCK macro is defined in the time.h file.

RETURN VALUES

If times completes successfully, it returns the elapsed real time, in system hardware clock ticks, since an
arbitrary point in the past (for example, system start-up time). This point does not change from one invocation
of times to another. If times fails, a −1 is returned, and errno is set to indicate the error.

TIMES(2) TIMES(2)

550 SR−2012 10.0

ERRORS

The times system call fails if the following error condition occurs:

Error Code Description

EFAULT The buffer argument points to an illegal address.

FORTRAN EXTENSIONS

The times system call can be called from Fortran as a function:

INTEGER buffer(n), TIMES, I
I = TIMES (buffer)

EXAMPLES

This example shows how to use the times system call to gather CPU usage information to time a particular
section of user code:

#include <sys/times.h>
#include <time.h>

main()
{

struct tms before, after;
clock_t utime, stime, startime, endtime;
startime = times(&before);

/* The section of code to be timed resides here. */

endtime = times(&after);

utime = after.tms_utime - before.tms_utime;
stime = after.tms_stime - before.tms_stime;

printf("\nCPU time used in user space = %f sec or %ld clock ticks\n",
(float)utime/(float)CLK_TCK, utime);

printf("CPU time used by the system = %f sec or %ld clock ticks\n",
(float)stime/(float)CLK_TCK, stime);

printf("Wall clock time used by process = %f sec ",
(float)(endtime - startime)/(float)CLK_TCK);

printf("or %ld clock ticks\n", endtime - startime);
}

SEE ALSO

exec(2), fork(2), time(2), wait(2)

TIMES(2) TIMES(2)

SR−2012 10.0 551

NAME

trunc − Truncates a file

SYNOPSIS

#include <unistd.h>

long trunc (int fildes);

IMPLEMENTATION

All Cray Research systems

DESCRIPTION

The trunc system call sets the size of the file indicated by fildes to the current file pointer. The process must
have write permission to the file. The trunc system call accepts the following argument:

fildes Indicates the size of the file.

NOTES

In addition to changing the size of a file, the trunc system call releases file storage beyond the truncated size,
including any storage preallocated to the file through the ialloc(2) system call.

A process is granted write permission to the file only if the active security label of the process is equal the
security label of the file.

A process with the effective privilege shown is granted the following ability:

Privilege Description

PRIV_MAC_WRITE The process is granted write permission to the file via the security label.

If the PRIV_SU configuration option is enabled, the super user is granted write permission to the file.

RETURN VALUES

If trunc completes successfully, the new file size is returned; otherwise, a value of −1 is returned, and errno
is set to indicate the error.

ERRORS

The trunc system call fails if one of the following error conditions occurs:

Error Code Description

EAGAIN Mandatory file and record locking is set (see chmod(2)), outstanding record locks
exist on the file (see fcntl(2)), and O_NDELAY was set in the file flag word.

EBADF The fildes argument is not a valid file descriptor open for writing.

TRUNC(2) TRUNC(2)

552 SR−2012 10.0

EBADF The active security label of the process does not equal the security label of the file, and
the process does not have appropriate privilege.

EDEADLK A deadlock situation would have occurred waiting for a blocking record lock to be
removed.

EINTR Mandatory file and record locking is set (see chmod(2)), outstanding record locks
exist on the file (see fcntl(2)), and O_NDELAY is not set in the file flag word.

EINVAL The pointer for fildes is beyond the end-of-file.

ENOLCK The system record lock table was full; therefore, it was not possible to wait for a
blocking record lock to be removed.

FORTRAN EXTENSIONS

The trunc system call can be called from Fortran as a function:

INTEGER fildes, TRUNC, I
I = TRUNC (fildes)

EXAMPLES

This example shows how to use the trunc system call to truncate the last half of a file’s contents. In this case,
the request truncates file test_data so that the file is one-half of its original size.

TRUNC(2) TRUNC(2)

SR−2012 10.0 553

#include <fcntl.h>
#include <unistd.h>

main()
{

int fd;
long size;

if ((fd = open("test_data", O_RDWR)) == -1) {
perror("open failed");
exit(1);

}

size = lseek(fd, 0L, 2); /* determine size of the file */

lseek(fd, size/2, 0); /* seek to middle of the file */

if (trunc(fd) == -1) { /* truncate last half of the file */
perror("trunc failed");
exit(1);

}

close(fd);
}

FILES

/usr/include/unistd.h Contains C prototype for the trunc system call

SEE ALSO

chmod(2), fcntl(2), ialloc(2), lseek(2)

TRUNC(2) TRUNC(2)

554 SR−2012 10.0

NAME

ulimit − Gets and sets user limits

SYNOPSIS

#include <ulimit.h>

long int ulimit (int cmd, ...);

IMPLEMENTATION

All Cray Research systems

STANDARDS

POSIX, XPG4

DESCRIPTION

The ulimit system call controls process limits. It accepts the following argument:

cmd Specifies one of the values, defined in the ulimit.h file. These values are as follows:

UL_GETFSIZE Gets the regular file size limit of the process. The limit is in units of 512-byte
blocks and is inherited by child processes. Files of any size can be read.

UL_SETFSIZE Sets the file size limit of the process to the value of the second argument,
taken as a long int. Any process can decrease this limit, but only a
process with an effective user ID of the super user can increase the limit. The
new file size limit is returned.

UL_GMEMLIM Gets the maximum break value in bytes. On Cray PVP systems, this value is
an integer number of bytes; on Cray MPP systems, it is the actual byte
address of the break value. To use this value as an argument to the brk(2)
system call, see example 2 in the EXAMPLES section.

Only an appropriately privileged process can increase a file size limit.

NOTES

The minimum allocation unit, both on disk and in memory, for all Cray Research systems is 4096 bytes. When
ulimit is called to set the process limit, the limit is rounded to the next 4096-byte boundary. (For example, if
ulimit is called to set the limit at 5120 bytes, it is actually set to 8192 bytes.)

A process with the effective privilege shown is granted the following ability:

Privilege Description

PRIV_RESOURCE The process is allowed to increase a file size limit.

ULIMIT(2) ULIMIT(2)

SR−2012 10.0 555

If the PRIV_SU configuration option is enabled, the super user or a process with the PERMBITS_RESLIM
permbit is allowed to increase a file size limit.

RETURN VALUES

If ulimit completes successfully, a nonnegative value is returned; otherwise, a value of −1 is returned, and
errno is set to indicate the error.

ERRORS

If the following error condition occurs when the value of cmd is UL_SETFSIZE, the ulimit system call fails
and the process limit remains unchanged.

Error Code Description

EINVAL An illegal argument was passed to the system call.

EPERM A process without appropriate privilege tried to increase the file size limit.

FORTRAN EXTENSIONS

The ulimit system call can be called from Fortran as a function:

INTEGER cmd, newlimit, ULIMIT, I
I = ULIMIT (cmd, newlimit)

EXAMPLES

The following examples illustrate use of the ulimit system call to get and set user limits.

Example 1: This ulimit request returns the file size limit for the current process. Because the file size limit
value is in 512-byte units, it is converted to the more familiar unit of 512 words.

#include <ulimit.h>

main()
{

long fslim;

fslim = ulimit(UL_GETFSIZE);
printf("File size limit = %ld (512-byte) blocks\n", fslim);
printf(" = %ld (512-word) blocks\n", fslim/8);
}

ULIMIT(2) ULIMIT(2)

556 SR−2012 10.0

Example 2: This ulimit request returns the maximum break value for this process; then the brk system call
attempts to increase the process size to that limit.

#include <ulimit.h>

main()
{

if ((brk(((char *)0) + ulimit(UL_GMEMLIM))) == -1) {
perror("brk failed");
exit(1);

}
}

FILES

/usr/include/ulimit.h Contains C prototype for the ulimit system call; also contains the
UL_GETFSIZE, UL_SETFSIZE, and UL_GMEMLIM symbols.

SEE ALSO

brk(2), limit(2), write(2)

ULIMIT(2) ULIMIT(2)

SR−2012 10.0 557

NAME

umask − Sets and gets file creation mask

SYNOPSIS

#include <sys/types.h>
#include <sys/stat.h>

mode_t umask (mode_t cmask);

IMPLEMENTATION

All Cray Research systems

STANDARDS

POSIX, XPG4

DESCRIPTION

The umask system call sets the file creation mode mask of the process to cmask and returns the previous value
of the mask.

The umask system call accepts the following argument:

cmask Specifies the new value of the file creation mode mask. Only the low-order 9 bits of cmask and the file
creation mode mask are used.

RETURN VALUES

The previous value of the file mode creation mask is returned.

FORTRAN EXTENSIONS

The umask system call can be called from Fortran as a function:

INTEGER cmask, UMASK, I
I = UMASK (cmask)

EXAMPLES

This example shows how to use the umask system call to change a process’s file creation mask. The following
umask request changes the file creation mask of the current process to 077, and the previous file creation mask
is displayed.

After the file creation mask is altered, an open request creates a file with permissions of 0755. Because the file
creation mask is now 077, the permissions set for the new file are 0700.

UMASK(2) UMASK(2)

558 SR−2012 10.0

main()
{

printf("The previous file creation mask was %o\n", umask(077));

if ((fd = open("datafile", O_CREAT | O_WRONLY, 0755)) == -1) {
perror("open failed");
exit(1);

}
}

SEE ALSO

chmod(2), creat(2), mknod(2), open(2)

mkdir(1), ksh(1) in the UNICOS User Commands Reference Manual, Cray Research publication SR−2011

UMASK(2) UMASK(2)

SR−2012 10.0 559

NAME

umount − Unmounts a file system

SYNOPSIS

int umount (char *file);

IMPLEMENTATION

All Cray Research systems

DESCRIPTION

The umount system call accepts the following argument:

file Points to a path name.

The umount system call requests that a previously mounted file system contained on the block special device
or directory identified by file be unmounted; file is a pointer to a path name. After unmounting the file system,
the directory on which the file system was mounted reverts to its ordinary interpretation.

Only an appropriately privileged process can use this system call.

NOTES

Unmounting the root device causes the kernel to reread all in-core (in memory) information from that device.

A process is granted search permission to a component of the path prefix only if the active security label of the
process is greater than or equal to the security label of the component.

A process with the effective privileges shown is granted the following abilities:

Privilege Description

PRIV_ADMIN The process is allowed to use this system call.

PRIV_DAC_OVERRIDE The process is granted search permission to every component of the path prefix
via the permission bits and access control list.

PRIV_MAC_READ The process is granted search permission to every component of the path prefix
via the security label.

If the PRIV_SU configuration option is enabled, the super user is allowed to use this system call and is granted
search permission to every component of the path prefix.

RETURN VALUES

If umount completes successfully, a value of 0 is returned; otherwise, a value of −1 is returned, and errno is
set to indicate the error.

UMOUNT(2) UMOUNT(2)

560 SR−2012 10.0

ERRORS

The umount system call fails if one of the following error conditions occurs:

Error Code Description

EACCES Search permission is denied for a component of the path prefix.

EBUSY A file on file is busy.

EFAULT The file argument points outside the allocated process address space.

EINVAL The file argument is not mounted.

ENAMETOOLONG The lenth of the file argument exceeds PATH_MAX, or a path name component exceeds
NAME_MAX while POSIX_NO_TRUNC is in effect.

ENOENT The specified file does not exist or the file argument points to an empty string.

ENOTDIR A component of the path prefix is not a directory.

EPERM The process does not have appropriate privilege to use this system call.

SEE ALSO

mount(2)

UMOUNT(2) UMOUNT(2)

SR−2012 10.0 561

NAME

uname − Gets name of current operating system

SYNOPSIS

#include <sys/utsname.h>

int uname (struct utsname *name);

IMPLEMENTATION

All Cray Research systems

STANDARDS

POSIX, XPG4

DESCRIPTION

The uname system call stores information identifying the current operating system. It accepts the following
argument:

name Points to the structure to receive the information. Each member of the structure receives a
null-terminated character string.

A utsname structure includes the following members:

char sysname[9]; /* Current operating system name */
char nodename[9]; /* Name by which the system is known

on a communications network */
char release[9]; /* Release of the operating system */
char version[9]; /* Release version of the operating system */
char machine[12]; /* Standard name identifying the hardware

on which the operating system is running */

RETURN VALUES

If uname completes successfully, a nonnegative value is returned; otherwise, a value of −1 is returned, and
errno is set to indicate the error.

ERRORS

The uname system call fails if the following error condition occurs:

Error Code Description

EFAULT The name argument points to an address that is not valid.

UNAME(2) UNAME(2)

562 SR−2012 10.0

FORTRAN EXTENSIONS

See UNAME(3F) in the Application Programmer’s Library Reference Manual, Cray Research publication
SR−2165 (for all systems except Cray MPP systems and CRAY T90 series systems). Also see the
PXFUNAME(3F) subroutine.

EXAMPLES

This example shows how to use the uname system call to retrieve the name of the operating system as well as
the release and version of the operating system:

#include <sys/utsname.h>

main()
{

struct utsname opname;

if (uname(&opname) == -1) {
perror("uname failed");
exit(1);

}
else {

printf("The current operating system is %s\n", opname.sysname);
printf(" Release %s\n", opname.release);
printf(" Version %s\n", opname.version);

}
}

SEE ALSO

uname(1) in the UNICOS User Commands Reference Manual, Cray Research publication SR−2011

PXFUNAME(3F), UNAME(3F) in the Application Programmer’s Library Reference Manual, Cray Research
publication SR−2165

UNAME(2) UNAME(2)

SR−2012 10.0 563

NAME

unlink, unlink2 − Removes directory entry

SYNOPSIS

All Cray Research systems:
#include <unistd.h>

int unlink (const char *path);

Cray PVP systems:
#include <unistd.h>
int unlink2 (const char *path);

IMPLEMENTATION

All Cray Research systems

STANDARDS

POSIX, XPG4 (applies only to unlink)

DESCRIPTION

The unlink system call removes the directory entry specified by the path name to which the path argument
points. When all links to a file have been removed and no process has the file open, the space occupied by the
file is freed and the file ceases to exist. If one or more processes have the file open when the last link is
removed, the removal is postponed until all references to the file have been closed.

The unlink2 system call, which is a Cray Research extension, functions like the unlink system call except
for the values returned.

The unlink and unlink2 system calls accept the following argument:

path Points to the path name of the directory entry to be removed.

The values returned by the unlink2 system call differ from those returned by unlink. When all links to a
file have been removed and no process has the file open, the space occupied by the file is freed and the file
ceases to exist. In this case, unlink2 returns a positive value that represents the number of blocks of space
returned to the file system free space pool.

If one or more processes have the file open when the last link is removed, the removal is postponed until all
references to the file are closed. In this case, unlink2 returns a 0 if the operation is allowed, and the actual
file space is returned later.

UNLINK(2) UNLINK(2)

564 SR−2012 10.0

NOTES

The unlink system call does not remove a directory from the file system, it simply unlinks the reference from
the specified directory. Use of unlink on directories by privileged users can cause file system errors
(unlinked inodes), which can be fixed by using the fsck(8) command. A privileged user should use rmdir(2)
to remove a directory from the file system.

A process is granted write permission to the directory containing the link only if the active security label of the
process is equal to the security label of the directory.

A process is granted search permission to a component of the path prefix only if the active security label of the
process is greater than or equal to the security label of the component.

The process must be granted write permission to the file via the active security label. That is, the security label
of the process must equal the security label of the specified file.

A process with the effective privileges shown is granted the following abilities:

Privilege Description

PRIV_ADMIN The process is allowed to unlink a directory.

PRIV_DAC_OVERRIDE The process is granted search permission to every component of the path prefix
via the permission bits and access control list.

PRIV_DAC_OVERRIDE The process is granted write permission to the file’s parent directory via the
permission bits and access control list.

PRIV_FOWNER The process is allowed to specify a directory that has the "sticky" mode bit set
and that the process does not own.

PRIV_MAC_READ The process is granted search permission to every component of the path prefix
via the security label.

PRIV_MAC_WRITE The process is granted write permission to the specified file and its parent
directory via the security label.

If the PRIV_SU configuration option is enabled, the super user is allowed to unlink a directory. The super user
is allowed to specify a directory that has the "sticky" mode bit set and that it does not own. The super user is
granted search permission to every directory component of the path prefix. The super user is granted write
permission to the file and its parent directory. If the PRIV_SU configuration option is enabled, the super user is
granted write permission to the file via the security label.

RETURN VALUES

If unlink completes successfully, a value of 0 is returned.

If unlink2 completes successfully and the file space has already been returned to the file system free space
pool, a positive value that represents the number of blocks of space returned is returned. If the actual return of
the file space to the file system free pool has been postponed because some other process still references the file,
then a value of 0 is returned.

UNLINK(2) UNLINK(2)

SR−2012 10.0 565

If unlink or unlink2 fail to complete successfully, a value of −1 is returned, and errno is set to indicate
the error.

ERRORS

The unlink or unlink2 system call fails and the specified file remains linked if one of the following error
conditions occurs:

Error Code Description

EACCES Search permission is denied for a component of the path prefix.

EACCES Write permission is denied on the directory containing the link to be removed.

EACCES The active security label of the process does not equal the specified security label of
the file.

EBUSY The entry to be unlinked is the mount point for a mounted file system.

EFAULT The path argument points outside the allocated process address space.

ENAMETOOLONG The path argument is longer than PATH_MAX characters.

ENOENT The specified file does not exist.

ENOTDIR A component of the path prefix is not a directory.

EPERM The specified file is a directory, and the process does not have appropriate privilege.

EROFS The directory entry to be unlinked is part of a read-only file system.

FORTRAN EXTENSIONS

The unlink system call can be called from Fortran as a function (on all systems except Cray MPP systems
and CRAY T90 series systems):

CHARACTER*n path
INTEGER UNLINK, I
I = UNLINK (path)

Alternatively, unlink can be called from Fortran as a subroutine (on all systems except Cray MPP systems
and CRAY T90 series systems). In this case, the return value of the system call is unavailable.

CHARACTER*n path
CALL UNLINK (path)

The Fortran program must not specify both the subroutine call and the function reference to unlink() from
the same procedure. path may also be an integer variable. In this case, the data must be packed 8 characters
per word and terminated with a null (0) byte. The PXFUNLINK(3F) subroutine provides similar functionality
and is available on all Cray Research systems.

UNLINK(2) UNLINK(2)

566 SR−2012 10.0

EXAMPLES

This example shows how to use the unlink system call to implement a scratch file for use in the program. A
unique name for the scratch file is derived by calling the tmpnam subroutine. The unlink request unlinks the
scratch file immediately after it is opened. At this point, the file has no links and is called a zero-linked file.

The scratch file (possessing no links) is not removed because the program still has it open for access. The
scratch file remains in existence until the program closes it, terminates without closing it, or abnormally
terminates, or until the UNICOS system dies.

#include <stdio.h>
#include <fcntl.h>
#include <unistd.h>

main()
{

int fd;
char *scratch; /* path name to a scratch file */

scratch = tmpnam((char *) 0); /* create unique temp file name */

/* Create a file; open it for read & write. */

if((fd = open(scratch, O_RDWR | O_CREAT | O_EXCL, 0600)) == -1) {
perror("open failed");
exit(1);

}

/* Now remove links, but don’t close it. */

if (unlink(scratch) == -1) {
perror("unlink failed");
exit(1);

}

/* Program writes and reads the file here. */

close(fd); /* also removes file, since # links = 0 */
}

FILES

/usr/include/unistd.h Contains C prototype for the unlink and unlink2 system calls

UNLINK(2) UNLINK(2)

SR−2012 10.0 567

SEE ALSO

close(2), link(2), open(2), rmdir(2)

rm(1) in the UNICOS User Commands Reference Manual, Cray Research publication SR−2011

PXFUNLINK(3F) in the Application Programmer’s Library Reference Manual, Cray Research publication
SR−2165

fsck(8) in the UNICOS Administrator Commands Reference Manual, Cray Research publication SR−2022

UNLINK(2) UNLINK(2)

568 SR−2012 10.0

NAME

upanic − Stops the system from a user process

SYNOPSIS

#include <sys/panic.h>

int upanic (int cmd);

IMPLEMENTATION

Cray PVP systems

DESCRIPTION

The upanic system call, which is referred to as the user panic, allows the system to be stopped from a user
process. This feature is useful with problems, such as bad data on an I/O read, that cannot be detected at the
system level or for problems that occur only with a specific user code or activity, such as user data corruption.
The upanic system call accepts the following argument:

cmd Specifies an entry. It can be one of the following:

PA_SET Sets the user panic flag; requires appropriate privilege.

PA_RELAX Clears the user panic flag; requires appropriate privilege.

PA_PANIC Stops the system if the user panic flag has been set; can be called by any process.

When PA_PANIC is sent but the user panic flag is not set, the call is inoperative;
thus, it can be embedded in code with no side effect other than the overhead of the
system call path.

Only an appropriately privileged process can set or clear the user panic flag.

NOTES

A process with the effective privilege shown is granted the following ability:

Privilege Description

PRIV_ADMIN The process is allowed to set or clear the user panic flag.

If the PRIV_SU configuration option is enabled, the super user is allowed to set or clear the user panic flag.

RETURN VALUES

When upanic completes successfully, a value of 0 is returned; otherwise a value of −1 is returned, and
errno is set to indicate the error.

UPANIC(2) UPANIC(2)

SR−2012 10.0 569

ERRORS

The upanic system call fails if one of the following error conditions occurs:

Error Code Description

EINVAL An argument is not valid. The command is not one of the listed values.

EPERM The process does not have appropriate privilege to set or clear the user panic flag.

SEE ALSO

panic(8) in the UNICOS Administrator Commands Reference Manual, Cray Research publication SR−2022

UPANIC(2) UPANIC(2)

570 SR−2012 10.0

NAME

ustat − Gets file system statistics

SYNOPSIS

#include <sys/types.h>
#include <ustat.h>

int ustat (dev_t dev, struct ustat *buf);

IMPLEMENTATION

All Cray Research systems

DESCRIPTION

The ustat system call returns information about a mounted file system. It accepts the following arguments:

dev Specifies a device number that identifies a device containing a mounted file system.

buf Points to a ustat structure.

The ustat structure includes the following members:

daddr_t f_tfree; /* Total free blocks */
ino_t f_tinode; /* Number of free inodes */
char f_fname[6]; /* Name of the mounted file system */
char f_fpack[6]; /* Name of the file system pack */

NOTES

The statfs(2) system call obsoletes some purposes of ustat, but ustat remains useful for determining
whether a given device is mounted.

RETURN VALUES

If ustat completes successfully, a value of 0 is returned; otherwise, a value of −1 is returned, and errno is
set to indicate the error.

ERRORS

The ustat system call fails if one of the following error conditions occurs:

Error Code Description

EFAULT The buf argument points outside the allocated process address space.

EINVAL The dev argument is not the device number of a device containing a mounted file
system.

USTAT(2) USTAT(2)

SR−2012 10.0 571

FORTRAN EXTENSIONS

The ustat system call can be called from Fortran as a function:

INTEGER dev, buf(m), USTAT, I
I = USTAT (dev, buf)

SEE ALSO

stat(2), statfs(2)

fs(5) in the UNICOS File Formats and Special Files Reference Manual, Cray Research publication SR−2014

USTAT(2) USTAT(2)

572 SR−2012 10.0

NAME

utime − Sets file access and modification times

SYNOPSIS

#include <sys/types.h>
#include <utime.h>

int utime (const char *path, const struct utimbuf *times);

IMPLEMENTATION

All Cray Research systems

STANDARDS

POSIX, XPG4

DESCRIPTION

The utime system call sets the access and modification times of a specified file. It accepts the following
arguments:

path Points to a file path name.

times Specifies source of the access and modification times.

If times is null, the access and modification times of the file are set to the current time. A process
must be the file owner or have write permission to use utime in this manner.

If times is not null, it is interpreted as a pointer to a utimbuf structure, and the access and
modification times are set to the values contained in the designated structure. Only the file owner
can use utime this way.

The utimbuf structure follows:

struct utimbuf {
time_t actime; /* Access time */
time_t modtime; /* Modification time */

};

Times are measured in seconds since 00:00:00 Greenwich mean time (GMT), January 1, 1970.

The utime function also causes the time of the last file status change (st_ctime) to be updated (see
stat(2)).

UTIME(2) UTIME(2)

SR−2012 10.0 573

NOTES

A process is granted write permission to the file only if the active security label of the process is equal to the
security label of the file.

A process is granted search permission to a component of the path prefix only if the active security label of the
process is greater than or equal to the security label of the component.

A process with the effective privileges shown is granted the following abilities:

Privilege Description

PRIV_DAC_OVERRIDE The process is granted search permission to every component of the path prefix
via the permission bits and access control list.

PRIV_DAC_OVERRIDE The process is granted write permission to the file’s parent directory via the
permission bits and access control list.

PRIV_FOWNER The process is considered the file owner.

PRIV_MAC_READ The process is granted search permission to every component of the path prefix
via the security label.

PRIV_MAC_WRITE The process is granted write permission to the file via the security label.

If the PRIV_SU configuration option is enabled, the super user is considered the file owner, is granted search
permission to every component of the path prefix, and is granted write permission to the file.

RETURN VALUES

If utime completes successfully, a value of 0 is returned; otherwise, a value of −1 is returned, and errno is
set to indicate the error.

ERRORS

The utime system call fails if one of the following error conditions occurs:

Error Code Description

EACCES Search permission is denied by a component of the path prefix.

EACCES The process is not the file owner, times is null, write permission is denied, and the
process does not have appropriate privilege.

EFAULT The path argument points outside the allocated process address space.

EFAULT The times argument is not null and points outside the allocated process address space.

EMANDV The active security label of the process does not equal the security label of the file, and
the process does not have appropriate privilege.

ENOENT The specified file does not exist.

ENOTDIR A component of the path prefix is not a directory.

UTIME(2) UTIME(2)

574 SR−2012 10.0

EPERM The process is not the file owner, times is not null, and the process does not have
appropriate privilege.

EROFS The file system containing the file is mounted as read only.

FORTRAN EXTENSIONS

The utime system call can be called from Fortran as a function (on all systems except Cray MPP systems and
CRAY T90 series systems):

CHARACTER*n path
INTEGER times, UTIME, I
I = UTIME (path, times)

Alternatively, utime can be called from Fortran as a subroutine (on all systems except Cray MPP systems and
CRAY T90 series systems). In this case, the return value of the system call is unavailable.

CHARACTER*n path
INTEGER times
I = UTIME (path, times)

The Fortran program must not specify both the subroutine call and the function reference to utime from the
same procedure. path may also be an integer variable. In this case, the data must be packed 8 characters per
word and terminated with a null (0) byte. The PXFUTIME(3F) subroutine provides similar functionality and is
available on all Cray Research systems.

EXAMPLES

This example shows how to use the utime system call to modify the last accessed and last modified
time-stamps in a file’s inode.

The program first displays the current time stamps saved in the file’s inode. Then, the utime request modifies
the two time stamps, and they are displayed again.

UTIME(2) UTIME(2)

SR−2012 10.0 575

#include <sys/types.h>
#include <utime.h>
#include <sys/stat.h>
#include <time.h>
#include <stdio.h>
#include <unistd.h>

main()
{

static char file[] = {"datafile"};
struct stat buf;

if (stat(file, &buf) == -1) {
perror("stat failed");
exit(1);

}

printf("Before utime(), %s was last accessed on %s",
file, ctime(&buf.st_atime));

printf("Before utime(), %s was last modified on %s",
file, ctime(&buf.st_mtime));

if (utime(file, ((struct utimbuf *) 0)) == -1) { /* set timestamps to */
perror("utime failed"); /* current time */
exit(1);

}

if (stat(file, &buf) == -1) {
perror("stat failed");
exit(1);

}

printf("\nAfter utime(), %s was last accessed on %s",
file, ctime(&buf.st_atime));

printf("After utime(), %s was last modified on %s",
file, ctime(&buf.st_mtime));

}

SEE ALSO

stat(2)

PXFUTIME(3F) in the Application Programmer’s Library Reference Manual, Cray Research publication
SR−2165

UTIME(2) UTIME(2)

576 SR−2012 10.0

NAME

vfork − Creates a new process in a memory efficient way

SYNOPSIS

#include <unistd.h>

int vfork (void);

IMPLEMENTATION

Cray PVP systems

DESCRIPTION

The vfork system call can be used to create new processes without fully copying the address space of the old
process. It is useful when the purpose of fork(2) would have been to create a new system context for an
execv(2). The vfork system call differs from fork(2) in that the child borrows the parent’s memory and
thread of control until a call to execve(2) or an exit (either by a call to exit(2) or an abnormal exit). The
parent process is suspended while the child is using its resources.

The vfork system call returns 0 in the child’s context and (later) the process ID of the child in the parent’s
context.

The vfork system call can normally be used just like fork. It does not work, however, to return while
running in the child’s context from the procedure that called vfork since the eventual return from vfork
would then return to a no longer existent stack frame. Be careful to call _exit(2) rather than exit(2) if you
cannot call execve(2), because exit(2) will flush and close standard I/O channels, and mess up the parent
process’s standard I/O data structures. (Even when using fork(2), it is wrong to call exit(2) because
buffered data would then be flushed twice.)

RETURN VALUES

If vfork completes successfully, it returns a value of 0 to the child process and returns the process ID of the
child process to the parent process; otherwise, a value of −1 is returned to the parent process, no child process is
created, and errno is set to indicate the error.

ERRORS

The fork system call fails and no child process is created if one of the following error conditions occurs:

Error Code Description

EAGAIN The system-imposed limit on the total number of processes under execution in the
whole system (NPROC) is exceeded.

EAGAIN The system-imposed limit on the total number of processes under execution by one
user (CHILD_MAX) is exceeded.

ENOMEM Not enough main memory or swap space exists.

VFORK(2) VFORK(2)

SR−2012 10.0 577

BUGS

Because UNICOS signal(2) and sigctl(2) signal registration is implemented with a library-level signal
vector, any changes in signal registration by the child will be reflected in the parent process. This behavior
differs from other UNIX systems supporting the vfork system call. Other changes to signal disposition (for
example, SIG_IGN or SIG_DFL) will behave the same as with the fork(2) system call.

EXAMPLES

The following examples illustrate different uses of the vfork system call.

Example 1: The vfork request generates a new process (referred to as the child process). The child process
returns from vfork and executes in the same process space as the parent process. The parent process does not
return from the vfork request until the child process has executed some form of exec(2) request or an exit.
At the time that the child process issues an exec(2) request, enough memory is generated for the new (child)
process to execute the specified program; then the parent process returns from vfork and continues execution.
The return value from vfork indicates whether execution is in the parent or child process.

int res;

if ((res = vfork()) == -1) {
perror("vfork failed");
exit(1);

}

if (res == 0) {
/* Code here is executed in the child process until an exec or

_exit request is made. Parent does not return from vfork
until child process issues one of these requests. Since child
process has access to parent’s data fields and signal
dispositions here until an exec or _exit request, it should
not modify those on which the parent depends. Child process
must refrain from returning (e.g., falling out of the process)
since that will cause the parent process’ stack frame to be
removed. Parent process expects presence of the stack frame. */

}

else {
/* Code here is executed in the parent process after the child

process issues an exec or _exit request. */
}

Example 2: This example illustrates a typical usage of the vfork request. When a parent process generates a
child process so that a different program can execute in the child process, the vfork request is the most
efficient way to handle the task.

VFORK(2) VFORK(2)

578 SR−2012 10.0

Typically, when the child process returns from vfork, it immediately performs an exec(2) request (in this
case execl(2)) to generate a new process space and to load the specified program for execution into the child
process. With vfork, the process space for the parent is not duplicated in the child process. The parent and
child processes then execute different programs in parallel.

int res;

if ((res = vfork()) == -1) {
perror("vfork failed");
exit(1);

}

if (res == 0) { /* In child process? */
execl("childprog", "childprog", "arg1", "arg2", 0);
perror("exec for childprog failed");
_exit(1);

}

/* Parent process continues execution here after successful execl
request in the child process. */

FILES

/usr/include/unistd.h Contains C prototype for the vfork system call

SEE ALSO

exec(2), fork(2), sigctl(2), signal(2), wait(2)

VFORK(2) VFORK(2)

SR−2012 10.0 579

NAME

wait, waitpid − Waits for a child process to stop or terminate

SYNOPSIS

#include <sys/types.h>
#include <sys/wait.h>

pid_t wait (int *stat_loc);

pid_t waitpid (pid_t pid, int *stat_loc, int options);

IMPLEMENTATION

Cray PVP systems

STANDARDS

POSIX, XPG4

DESCRIPTION

The wait system call suspends the calling process until one of the child processes terminates or until a child
process that is being traced stops because it has hit a breakpoint. If a signal is received, wait returns
prematurely. If a child process has stopped or terminated before the call on wait, return is immediate.

The wait and waitpid system calls accept the following arguments:

stat_loc Returns the status of a terminated child process.

pid Specifies the child process that will have its status returned. -1 indicates that the status of any
available terminated process should be returned.

options Sets optional flag for the waitpid system call. The options argument is constructed from the
bitwise inclusive OR of 0 or more of the following flags, defined in header file sys/wait.h:

WNOHANG Indicates that waitpid returns immediately and does not suspend execution of
the calling process if status is not available for one of the child processes
specified by pid.

WUNTRACED Provides the following status if job control is supported. Reports to the
requesting process the status of any child process specified by pid that has
stopped and whose status has not yet been reported since it stopped.

WMTWAIT Waits for the children of any member of the multitasking group. In UNICOS
9.0 this is the default behavior for both wait and waitpid. The flag is still
provided for source compatibility. To get the previous behavior, see the
description of the WLWPWAIT flag.

WLWPWAIT Waits only for the immediate children of the calling light-weight process (LWP).
This flag is not recommended for general use.

WAIT(2) WAIT(2)

580 SR−2012 10.0

If 0, the caller will suspend until a child process stops or terminates.

If the stat_loc argument is not 0, 16 bits of status information are stored in the low-order 16 bits of the location
to which stat_loc points. This status differentiates between stopped and terminated child processes. If the child
process has terminated, The status identifies the cause of termination and passes useful information to the parent
process. This is accomplished in the following manner:

� If the child process has stopped, the high-order 8 bits of status contain the number of the signal that
caused the process to stop and the low-order 8 bits are set equal to 0177.

� If the child process has terminated because of an exit(2) call, the low-order 8 bits of status are 0
and the high-order 8 bits contain the low-order 8 bits of the argument that the child process passed
to exit(2).

� If the child process has terminated because of a signal, the high-order 8 bits of status are 0 and the
low-order 8 bits contain the number of the signal that caused the termination. If the low-order
seventh bit (that is, bit 0200) is set, a core image will also have been produced; see signal(2).

If a parent process terminates without waiting for its child processes to terminate, the parent process ID of each
child process is set to 1. This means that the initialization process inherits the child processes.

The waitpid system call behaves identically to wait if the pid argument has a value of −1 and the options
argument has a value of 0; otherwise, the values of pid and options modify its behavior.

The pid argument specifies a set of child processes for which status is requested. The waitpid system call
returns only the status of a child process from this set.

� If pid is equal to −1, status is requested for any child process; waitpid is then equivalent to wait.
� If pid is greater than 0, it specifies the process ID of a single child process for which status is requested.
� If pid is equal to 0, status is requested for any child process with a process group ID that is equal to that of

the calling process.
� If pid is less than −1, status is requested for any child process with a process group ID that is equal to the

absolute value of pid. The options argument is constructed from the bitwise inclusive OR of 0 or more of
the following flags, defined in header file sys/wait.h:

If wait and waitpid return because the status of a child process is available, these system calls return a
value equal to the process ID of the child process. In this case, if the value of the stat_loc argument is not
NULL, information is stored in the location to which stat_loc points. If, and only if, the status returned is from a
terminated child process that returned a value of 0 from main() or passed a value of 0 as the status argument
to _exit(2) or exit(2), the value stored at the location to which stat_loc points is 0.

Regardless of its value, this information is interpreted using macros. These macros are defined in the
sys/wait.h file and evaluate to integral expressions. The stat_val argument is the integer value to which
stat_loc points.

WIFEXITED (stat_val) Returns a nonzero value if the child process terminated normally.

WAIT(2) WAIT(2)

SR−2012 10.0 581

WEXITSTATUS (stat_val) Determines the low-order 8 bits of the argument that the child process passed to
_exit(2) or exit(2), or the value the child process returned from main().
Use only if WIFEXITED returns a nonzero value.

WIFSIGNALED (stat_val) Returns a nonzero value if the child process terminated due to the receipt of a
signal that it did not catch (see the signal.h file).

WTERMSIG (stat_val) Determines the number of the signal that caused the termination of the child
process. Use only if WIFSIGNALED returns a nonzero value.

WIFSTOPPED (stat_val) Returns a nonzero value if the child process is stopped due to a signal.

WSTOPSIG (stat_val) Determines the number of the signal that caused the child process to stop. Use
only if WIFSTOPPED returns a nonzero value.

If the information in the location to which stat_loc points is stored there by a call to waitpid that specified the
WUNTRACED flag, exactly one of the WIFEXITED, WIFSIGNALED, and WIFSTOPPED macros evaluates to a
nonzero value. If the information stored at the location to which stat_loc points is stored there by a call to
waitpid that did not specify the flag or a call to wait, exactly one of the WIFEXITED and WIFSIGNALED
macros evaluates to a nonzero value.

If a parent process terminates without waiting for all of its child processes to terminate, the remaining child
processes (now orphaned) are assigned a new parent process ID. The parent process of orphaned child
processes is the init process (pid = 1).

NOTES

In UNICOS 9.0, the default behavior of both wait and waitpid acts as though the WMTWAIT flag was set.
The WLWPWAIT flag provides the previous default behavior. However, it is not expected that this will be useful
because using waitpid with a specified process ID should provide the necessary control for child process
management.

The idea of a parent process has changed in UNICOS 9.0. Previously, the parent was the entity (previously
termed a process, now a light-weight process) that created the child by using the fork(2) system call. Now,
the parent process is the entire multitasking group in which the former parent process was a member. This
change is part of the more general change that moves from a multitasking model that supports multiple
processes in a multitasking group to a model that supports a single process. This change is described more fully
in the getpid(2) man page.

RETURN VALUES

If the child process stopped or terminated after the parent process’s call to wait, the system call returns the
child process ID. If wait is interrupted by a signal other than the death-of-a-child-process signal (SIGCLD) or
if the calling process has no existing zombie-producing child processes (see the following paragraph), a value
of −1 is returned, and errno is set to indicate the error.

WAIT(2) WAIT(2)

582 SR−2012 10.0

A zombie-producing child process results when the death-of-a-child-process signal SIGCLD is set to anything
other than to be ignored. If SIGCLD is set to be ignored, a call to wait returns −1, and an errno of ECHILD.

If wait or waitpid returns because the status of a child process is available, the call returns a value equal to
the process ID of the child process for which status is reported. If wait or waitpid returns due to the
delivery of a signal to the calling process, a value of −1 is returned and errno is set to EINTR. If the
waitpid system call is invoked with WNOHANG set in options, it has at least one child process specified by pid
for which status is not available, and status is not available for any process specified by pid, a value of 0 is
returned; otherwise, a value of −1 is returned, and errno is set to indicate the error.

ERRORS

The wait system call fails and its actions are undefined if the stat_loc argument points to an illegal address.
The call fails and returns immediately if one of the following error conditions occurs:

Error Code Description

ECHILD The calling process has no existing unwaited-for child processes.

EINTR Receipt of a signal other than the death-of-a-child-process signal.

The waitpid system call returns −1, and errno is set to indicate the error if one of the following error
conditions occurs:

Error Code Description

ECHILD The process or process group specified by pid does not exist or is not a child of the
calling process.

EINTR The call was interrupted by a signal. The value of the location to which stat_loc points
is undefined.

EINVAL The value of the options argument is not valid.

FORTRAN EXTENSIONS

The wait system call may be called from Fortran as a function:

INTEGER statloc, WAIT, I
I = WAIT (statloc)

EXAMPLES

The following examples illustrate use of the wait and waitpid system calls. Both examples show a parent
process waiting for its child process to complete.

WAIT(2) WAIT(2)

SR−2012 10.0 583

Example 1: In this program, the wait request in the parent process waits for its child process to complete.

The program first creates a child process and allows the child process to perform some other work. Executing
in parallel with the child process, the parent displays the process identification number (PID) of the forked child
process and then waits for its completion. Once the child process completes, the parent uses a macro (that is,
WIFEXITED or WIFSIGNALED) to determine the cause of the child’s termination.

#include <stdio.h>
#include <unistd.h>
#include <sys/wait.h>

main()
{

int res, cid_ret, cid_stat;

if ((res = fork()) == -1) {
perror("fork failed");
exit(1);

}

if (res == 0) { /* child process */
/* child process performs its work here */

} else { /* parent process */
printf("Child process has pid = %d\n", res);
cid_ret = wait(&cid_stat); /* waits for child to complete */
if (WIFEXITED(cid_stat)) { /* if child terminated normally */

printf("Child process %d terminated normally with ", cid_ret);
printf("exit status = %d.\n", WEXITSTATUS(cid_stat));

} else {
if (WIFSIGNALED(cid_stat)) { /* if child terminated (signal) */

printf("Child process %d terminated due to ", cid_ret);
printf("signal no. -> %d.\n", WTERMSIG(cid_stat));

}
}

}
}

WAIT(2) WAIT(2)

584 SR−2012 10.0

Example 2: In this program, the waitpid request in the parent process waits for its child process to complete.

The program first creates a child process and allows the child process to perform some other work. Executing
in parallel with the child process, the parent displays the PID of the forked child process and then waits for its
completion. Once the child process completes, the parent uses a macro (that is, WIFEXITED or
WIFSIGNALED) to determine the cause of the child’s termination.

#include <unistd.h>
#include <sys/wait.h>

main()
{

int res, cid_ret, cid_stat;

if ((res = fork()) == -1) {
perror("fork failed");
exit(1);

}

if (res == 0) { /* child process */
/* child process performs its work here */

} else { /* parent process */
printf("Child process has pid = %d\n", res);
cid_ret = waitpid(res, &cid_stat, 0);/* waits for child to complete */
if (WIFEXITED(cid_stat)) { /* if child terminated normally */

printf("Child process %d terminated normally with ", cid_ret);
printf("exit status = %d.\n", WEXITSTATUS(cid_stat));

} else {
if (WIFSIGNALED(cid_stat)) { /* if child terminated (signal) */

printf("Child process %d terminated due to ", cid_ret);
printf("signal no. -> %d.\n", WTERMSIG(cid_stat));

}
}

}
}

SEE ALSO

exec(2), exit(2), fork(2), getpid(2), intro(2), pause(2), signal(2)

WAIT(2) WAIT(2)

SR−2012 10.0 585

NAME

waitjob − Gets information about a terminated child job

SYNOPSIS

#include <sys/types.h>
#include <sys/jtab.h>

int waitjob (struct jtab *jtab);

IMPLEMENTATION

Cray PVP systems

DESCRIPTION

The waitjob system call obtains information about a terminated child job (that is, a child job in which all of
the processes have exited) that has been configured to send a signal to its parent on termination. The system
call is named waitjob because, like the wait(2) system call, it returns information about only an object that
is considered to be a child of the calling process. Unlike wait, however, and despite its name, waitjob
never blocks the caller’s execution.

The waitjob system call accepts the following argument:

jtab Returns the jtab entry for the terminated job.

If the jtab argument is not 0, the jtab structure containing statistics for the terminated job is returned at that
address; otherwise, no jtab structure is returned.

If the parent process of any job exits, the parent process ID of each remaining child job is set to 0, and the jobs
exit silently from the system on termination.

The waitjob system call obtains information only for a terminated job that was configured to send a signal to
its parent on termination. The setjob(2) system call makes it possible to create jobs that exit from the system
silently. These jobs do not send a signal to their parent on termination, and waitjob provides no information
about these jobs.

See getjtab(2) for a description of the jtab structure.

NOTES

Any process that does not ignore SIGCLD signals (see signal(2)) and uses waitjob must first issue a
wait(2) system call, which gathers the eldest child of the job when the child exits. If wait(2) is not issued,
the job will continue to exist, with the eldest process of the job existing as a zombie process; waitjob will not
consider the job to be terminated.

WAITJOB(2) WAITJOB(2)

586 SR−2012 10.0

RETURN VALUES

If waitjob completes successfully, the job ID of the terminated job is returned; otherwise, a value of −1 is
returned, and errno is set to indicate the error.

ERRORS

The waitjob system call fails if one of the following error conditions occurs:

Error Code Description

EAGAIN The calling process is the parent of one or more jobs configured to send a signal on
termination, but none of the child jobs has terminated.

ECHILD The calling process does not have any child jobs configured to send a signal on
termination.

EFAULT The jtab argument points outside the allocated process address space.

SEE ALSO

getjtab(2), setjob(2), signal(2), wait(2)

WAITJOB(2) WAITJOB(2)

SR−2012 10.0 587

NAME

wracct − Writes an accounting record to the kernel accounting file or to a daemon accounting file

SYNOPSIS

#include <acct/dacct.h>

int wracct (char *buf, int did, int jid, int nbyte);

IMPLEMENTATION

All Cray Research systems

DESCRIPTION

The wracct system call writes an accounting record to a daemon accounting file. If a user enables job
accounting, the accounting record will also be written to the user’s job accounting file. The ja(1) command
can process this file.

The wracct system call accepts the following arguments:

buf Points to the accounting record. The size (in bytes) of this buffer is specified by nbyte. The
accounting records are defined in acct(5) and in /usr/include/acct/dacct.h.

did Specifies the type of accounting record that will be written. These daemon identifiers are specified
in /usr/include/sys/accthdr.h.

jid Specifies the job ID of the process for which the record is being written. This is usually the job ID
contained in the accounting record to which buf points.

nbyte Specifies the size (in bytes) of buf.

The daemons and the accounting subsystem must enable the appropriate type of accounting by using the
turnacct(8) or turndacct(8) command.

Only a process with appropriate privilege can use this system call.

NOTES

A process with the effective privilege shown is granted the following ability:

Privilege Description

PRIV_ACCT The process is allowed to use this system call.

If the PRIV_SU configuration option is enabled, the super user is allowed to use this system call.

WRACCT(2) WRACCT(2)

588 SR−2012 10.0

RETURN VALUES

If wracct completes successfully, a value of 0 is returned; otherwise, a value of −1 is returned, and errno is
set to indicate the error.

ERRORS

The wracct system call fails if one of the following error conditions occurs:

Error Code Description

EINVAL An argument that is not valid was passed to the system call.

EPERM The process does not have appropriate privilege to use this system call.

FILES

/usr/include/acct/dacct.h Defines daemon accounting files

/usr/include/sys/accthdr.h Specifies daemon identifiers

SEE ALSO

jacct(2)

ja(1) in the UNICOS User Commands Reference Manual, Cray Research publication SR−2011

acct(5) in the UNICOS File Formats and Special Files Reference Manual, Cray Research publication
SR−2014

qmgr(8), tpdaemon(8), turnacct(8), turndacct(8) in the UNICOS Administrator Commands Reference
Manual, Cray Research publication SR−2022

WRACCT(2) WRACCT(2)

SR−2012 10.0 589

NAME

write − Writes on a file

SYNOPSIS

#include <sys/types.h>
#include <unistd.h>

ssize_t write (int fildes, const void *buf, size_t nbyte);

IMPLEMENTATION

All Cray Research systems

STANDARDS

POSIX, XPG4

DESCRIPTION

The write system call writes from a buffer to a file. It accepts the following arguments:

fildes Specifies the file descriptor. It is obtained from an accept(2), creat(2), dup(2), fcntl(2),
open(2), pipe(2), socket(2), or socketpair(2) system call

buf Points to the buffer in which the data is stored.

nbyte Specifies the number of bytes to be written.

On devices capable of seeking, the writing of data proceeds from the position in the file indicated by the file
pointer. On return from write, the file pointer is incremented by the number of bytes written.

On devices incapable of seeking, writing starts at the current position. The value of a file pointer associated
with such a device is undefined.

If the O_APPEND flag of the file status flags is set, the file pointer is set to the end of the file before each write.

If the file being written is a pipe (or FIFO special file), some special semantics apply:
� If the O_NDELAY and O_NONBLOCK flags in the file flag word are both clear (the normal case), the write

request will block until there is room to copy all the data into the pipe.
 If the O_NDELAY flag is set (no delay), the number of bytes to be written to the pipe is less than or equal to

the value PIPE_BUF, and insufficient space exists in the pipe, write returns a value of 0 immediately (no
blocking) with no data written to the pipe.

! If the O_NONBLOCK flag is set (no delay), the number of bytes to be written to the pipe is less than or equal
to the value PIPE_BUF, and insufficient space exists in the pipe, write returns a value of −1 immediately
(no blocking) with no data written to the pipe.

WRITE(2) WRITE(2)

590 SR−2012 10.0

" If the O_NDELAY flag is set (no delay), the number of bytes to be written to the pipe is greater than the value
PIPE_BUF, and insufficient space exists in the pipe, write copies as many bytes to the pipe as possible
and returns the number of bytes written.

If the O_NONBLOCK flag is set (no delay), the number of bytes to be written to the pipe is greater than the
value PIPE_BUF, and insufficient space exists in the pipe, write copies as many bytes to the pipe as
possible and returns a value of −1 to the user. (The user is not able to determine the number of bytes
actually delivered to the pipe.)

The value PIPE_BUF is defined in the header limits.h and typically has a value of 512 words (4096 bytes).

For regular files, if the O_SYNC flag of the file status flags is set, the write does not return until both the file data
and file status are updated physically. This function is for special applications that require extra reliability at
the cost of performance. For block special files, if O_SYNC is set, the write does not return until the data is
updated physically. A write to a regular file is blocked if mandatory file and record locking is set (see
chmod(2)) and a record lock is owned by another process on the segment of the file to be written. If
O_NDELAY and O_NONBLOCK are both clear the write sleeps until the blocking record lock is removed.

NOTES

A process must be granted write permission to the file via the security label. That is, the active security label of
the process must be equal to the security label of the file.

A process with the effective privilege shown is granted the following ability:

Privilege Description

PRIV_MAC_WRITE The process is granted write permission to the file via the security label.

If the PRIV_SU configuration option is enabled, the super user is granted write permission to the file via the
security label.

RETURN VALUES

If write completes successfully, the number of bytes actually written is returned; otherwise, a value of −1 is
returned, and errno is set to indicate the error.

ERRORS

The write system call fails and the file pointer remains unchanged if one of the following error conditions
occurs:

Error Code Description

EAGAIN Mandatory file and record locking was set, O_NDELAY was set, and a blocking record
lock exists.

EBADF The fildes argument is not a valid file descriptor open for writing.

EBADF The active security label of the process does not equal the security label of the file, and
the process does not have appropriate privilege.

WRITE(2) WRITE(2)

SR−2012 10.0 591

EDEADLK The write was going to go to sleep and cause a deadlock situation to occur.

EFAULT The buf argument points outside the allocated process address space.

EFBIG An attempt was made to write a file that exceeds the file size limit or the maximum file
size of the process. See ulimit(2).

EINTR A signal was caught during the write system call (see signal(2)).

ENOLCK The system record lock table was full; therefore, the write could not go to sleep until
the blocking record lock was removed.

ENOSPC During a write to an ordinary file, no free space was found in the file system.

EPIPE and SIGPIPE signals
An attempt is made to write to a pipe that is not open for reading by any process.

EQACT A file or inode quota limit was reached for the current account ID.

EQGRP A file or inode quota limit was reached for the current group ID.

EQUSR A file or inode quota limit was reached for the current user ID.

EXAMPLES

The following examples illustrate different uses of the write system call.

WRITE(2) WRITE(2)

592 SR−2012 10.0

Example 1: In this example, the read(2) and write system calls sequentially update the records of file
datafile. For each iteration of the while loop, a record is read into user memory, updated, and then written
back to datafile.

A value 0 returned by read(2) indicates an end-of-file (EOF) condition has been reached. The data read and
written is staged in the system buffer cache because the O_RAW flag is not specified on the open(2) request.

#include <unistd.h>

main()
{

int fd, cnt;
char buf[100];

if ((fd = open("datafile", O_RDWR)) == -1) {
perror("Opening file datafile failed");
exit(1);

}

while ((cnt = read(fd, buf, 100)) != 0) { /* read returning 0 means EOF */

/* update data (cnt bytes) in buf here and then write back */

lseek(fd, (long) cnt, 1); /* backup to beginning of record */
if (write(fd, buf, cnt) == -1) { /* write record back to file */

perror("write failed");
exit(1);

}
}

printf("EOF reached on file datafile.\n");
}

WRITE(2) WRITE(2)

SR−2012 10.0 593

Example 2: In this example, the read(2) and write system calls perform a simple file copy operation. The
first argument to the program is the file name of the file to be copied. The second argument is the file name of
the duplicate copy.

#include <fcntl.h>

#define BUFSIZE 4096

main(int argc, char *argv[])
{

int ifd, ofd, noread, nowrite, cnt;
char buf[BUFSIZE];

if ((ifd = open(argv[1], O_RDONLY)) == -1) {
perror("opening input file failed");
exit(1);

}

if ((ofd = open(argv[2], O_WRONLY | O_CREAT | O_TRUNC, 0644)) == -1) {
perror("opening output file failed");
exit(1);

}

while ((noread = read(ifd, buf, BUFSIZE)) != 0) {
if (noread == -1) {

perror("read error");
exit(1);

}
cnt = 0;
do {

if ((nowrite = write(ofd, &buf[cnt], noread - cnt)) == -1) {
perror("write error");
exit(1);

}
cnt += nowrite;

} while (cnt < noread);
}

close(ifd); close(ofd);
}

FILES

/usr/include/sys/types.h Contains types required by ANSI X3J11

/usr/include/unistd.h Contains C prototype for the write system call

WRITE(2) WRITE(2)

594 SR−2012 10.0

SEE ALSO

accept(2), chmod(2), creat(2), dup(2), fcntl(2), lseek(2), open(2), pipe(2), read(2), signal(2),
socket(2), socketpair(2), ulimit(2), writea(2)

WRITE(2) WRITE(2)

SR−2012 10.0 595

NAME

writea − Performs asynchronous write on a file

SYNOPSIS

#include <signal.h>
#include <sys/types.h>
#include <sys/iosw.h>

int writea (int fildes, char *buf, unsigned nbyte, struct iosw *status,
int signo);

IMPLEMENTATION

All Cray Research systems

DESCRIPTION

The writea system call performs an asynchronous write of a specified number of bytes from a buffer to a file.
The first three arguments of the writea system call are the same as the write(2) system call. The last two
arguments are used for I/O completion notification as in the reada(2) system call.

The writea system call accepts the following arguments:

fildes Specifies a file descriptor. It is obtained from a creat(2), dup(2), fcntl(2), open(2), or
pipe(2) system call or socket descriptor obtained from a call to the socket(2) system call

buf Points to the buffer in which the data is stored.

nbyte Specifies the number of bytes to be written.

status Points to a iosw structure. This structure is defined in the usr/include/sys/iosw.h file.

signo Specifies the signal that should be sent to indicate that the I/O transfer is complete. For a list of
signals, see the signal(2) man page.

A write to a regular file is blocked if mandatory file and record locking is set (see the chmod(2) man page), and
a record lock is owned by another process on the segment of the file to be written. If O_NDELAY and
O_NONBLOCK are both clear, the write sleeps until the blocking record lock is removed.

NOTES

A process must be granted write permission to the file via the security label. That is, the active security label of
the proces must be equal to the security label of the file.

A process with the effective privilege shown is granted the following ability:

Privilege Description

PRIV_MAC_WRITE The process is granted write permission to the file via the security label.

WRITEA(2) WRITEA(2)

596 SR−2012 10.0

If the PRIV_SU configuration option is enabled, the super user is granted write permission to the file via the
security label.

RETURN VALUES

If writea completes successfully, the number of bytes remaining to be written is returned; otherwise, a value
of −1 is returned, and errno is set to indicate the error.

ERRORS

The writea system call fails and the file pointer remains unchanged if one of the following error conditions
occurs:

Error Code Description

EAGAIN Mandatory file and record locking was set, O_NDELAY was set, and a blocking record
lock exists.

EBADF The fildes argument is not a valid file descriptor open for writing.

EBADF The active security label of the process does not equal the security label of the file, and
the process does not have appropriate privilege.

EDEADLK The write was going to go to sleep and cause a deadlock situation to occur.

EFAULT The buf or status argument is not fully contained in the process address space.

EFBIG An attempt was made to write a file that exceeds the file size limit or the maximum file
size of the process. See the ulimit(2) man page.

EINTR The process caught a signal during the writea system call (see signal(2)).

EINVAL The signo argument is not a valid signal number or 0.

ENOLCK The system record lock table was full; therefore, the write could not go to sleep until
the blocking record lock was removed.

ENOSPC During a write to an ordinary file, no free space was found in the file system.

EPIPE and SIGPIPE signals
An attempt is made to write to a pipe that is not open for reading by any process.

EQACT A file or inode quota limit was reached for the current account ID.

EQGRP A file or inode quota limit was reached for the current group ID.

EQUSR A file or inode quota limit was reached for the current user ID.

FORTRAN EXTENSIONS

The writea system call can be called from Fortran as a function:

INTEGER fildes, buf(n), nbyte, status, signo, WRITEA, I
I = WRITEA (fildes, buf(n), nbyte, status, signo)

WRITEA(2) WRITEA(2)

SR−2012 10.0 597

EXAMPLES

The following examples illustrate different uses of the writea system call. In each example, the write
operation completes in parallel with other work in the user’s process. Simpler solutions appear in the last two
examples, which make use of additional calls.

Example 1: In this program, the writea request specifies the delivery of a SIGUSR1 signal on the
completion of the request.

The program uses the pause(2) request to wait for the completion of the asynchronous write operation (that is,
reception of the SIGUSR1 signal). The library routine sigoff(3C) provides assurance that the SIGUSR1
signal is not received before reaching the pause(2) request.

#include <fcntl.h>
#include <signal.h>
#include <sys/types.h>
#include <sys/iosw.h>

struct iosw wrstat;

main()
{

char buf[4096];
int fd;
void wrhdlr(int signo);

signal(SIGUSR1, wrhdlr);

if ((fd = open("newfile", O_WRONLY | O_CREAT | O_RAW, 0644)) == -1) {
perror("open (newfile) failed");
exit(1);

}

/* Program populates buffer buf with data here. */

sigoff(); /* delay signal reception until pause() is reached */
writea(fd, buf, 4096, &wrstat, SIGUSR1); /* SIGUSR1 sent when

write completes */

/* Perform other work here in parallel with I/O completion. */

pause(); /* wait for write to complete - pause() calls sigon() */

/* Output data has now vacated buffer buf due to writea. */
}

void wrhdlr(int signo)
{

WRITEA(2) WRITEA(2)

598 SR−2012 10.0

signal(signo, wrhdlr);
printf("writea wrote %d bytes\n", wrstat.sw_count);
wrstat.sw_flag = 0;

}

Example 2: (Some system calls in the example are not supported on Cray MPP systems.) Unlike the program
in example 1, this program uses the recalla(2) system call to wait for completion of the asynchronous output
operation. The user’s program is informed of the completion by reception of the SIGUSR1 signal. While
recalla(2) can wait for the completion of multiple asynchronous I/O requests from multiple files, it only
waits for one write operation in this example.

#include <fcntl.h>
#include <signal.h>
#include <sys/types.h>
#include <sys/iosw.h>
#include <sys/param.h>

struct iosw wrstat;

main()
{

char buf[4096];
int fd;
long mask[RECALL_SIZEOF];
void wrhdlr(int signo);

signal(SIGUSR1, wrhdlr);

if ((fd = open("newfile", O_WRONLY | O_CREAT | O_RAW, 0644)) == -1) {
perror("open (newfile) failed");
exit(1);

}

/* Program populates buffer buf with data here. */

RECALL_SET(mask, fd); /* set bit for fd in mask */

writea(fd, buf, 4096, &wrstat, SIGUSR1); /* SIGUSR1 sent when
write completes */

/* Perform other work here in parallel with I/O completion. */

recalla(mask); /* wait for write to complete */

/* Output data has now vacated buffer buf due to writea. */
}

void wrhdlr(int signo)

WRITEA(2) WRITEA(2)

SR−2012 10.0 599

{
signal(signo, wrhdlr);
printf("writea wrote %d bytes\n", wrstat.sw_count);
wrstat.sw_flag = 0;

}

Example 3: Unlike the programs in examples 1 and 2, this program does not have an I/O completion signal
specified on the writea request. The program uses the recall(2) system call to wait for the completion of
the asynchronous write operation. While recall(2) can wait for completion of multiple asynchronous I/O
requests from multiple files or even the same file, it only waits for one asynchronous write operation in this
example.

#include <fcntl.h>
#include <signal.h>
#include <sys/types.h>
#include <sys/iosw.h>

main()
{

char buf[4096];
int fd;
struct iosw wrstat[1], *statlist[1];

if ((fd = open("newfile", O_WRONLY | O_CREAT | O_RAW, 0644)) == -1) {
perror("open (newfile) failed");
exit(1);

}

/* Program populates buffer buf with data here. */

writea(fd, buf, 4096, &wrstat[0], 0); /* no signal sent when
write completes */

statlist[0] = &wrstat[0];

/* Perform other work here in parallel with I/O completion. */

recall(fd, 1, statlist); /* wait for write to complete */

printf("writea wrote %d bytes\n", wrstat[0].sw_count);
wrstat[0].sw_flag = 0;

/* Output data has now vacated buffer buf due to writea. */
}

WRITEA(2) WRITEA(2)

600 SR−2012 10.0

SEE ALSO

chmod(2), creat(2), dup(2), fcntl(2), open(2), pause(2), pipe(2), reada(2), recall(2),
recalla(2), signal(2), socket(2), ulimit(2), write(2)

sigoff(3C) in the UNICOS System Libraries Reference Manual, Cray Research publication SR−2080

WRITEA(2) WRITEA(2)

SR−2012 10.0 601

INDEX

Absolute addresses Exchanges control ... exctl(2) 109
accept(2) ... Accepts a connection on a socket accept(2) 29
Accepts a connection on a socket Accepts a connection on a socket accept(2) 29
Access control list .. Gets access control list entries for file getfacl(2) 144
Access control list .. Removes an access control list from a file rmfacl(2) 366
Access control list .. Sets access control list for file .. setfacl(2) 398
Access permission .. Changes the mode of a file .. chmod(2) 71
access(2) ... Determines accessibility of a file access(2) 33
Accesses or manipulates network security
information ... Accesses or manipulates network security

information ... nsecctl(2) 284
Accesses shared memory identifier Accesses shared memory identifier shmget(2) 457
Accesses the message queue Accesses the message queue ... msgget(2) 269
Account IDs ... Changes account ID of a process acctid(2) 42
Account IDs ... Changes disk file account ID .. chacid(2) 56
Accounting ... Enables or disables job accounting jacct(2) 219
Accounting ... Provides multitasking execution overlap profile mtimes(2) 277
Accounting ... Checks status of, enables, and disables process,

daemon, and record accounting acctctl(2) 39
Accounting ... Gets process and child process times times(2) 550
Accounting ... Writes an accounting record to the kernel accounting

file or to a daemon accounting file wracct(2) 588
Accounting ... Enables or disables process and daemon accounting dacct(2) 97
Accounting ... Controls device accounting ... devacct(2) 99
acct(2) ... Enables or disables process accounting acct(2) 37
acctctl(2) .. Checks status of, enables, and disables process,

daemon, and record accounting acctctl(2) 39
acctid(2) ... Changes account ID of a process acctid(2) 42
Active categories .. Sets active categories of a process setucat(2) 434
Active compartments Sets active compartments of the process setucmp(2) 436
Active security level Sets the active security level of the process setulvl(2) 442
adjtime(2) .. Corrects the time to allow synchronization of the

system clock .. adjtime(2) 44
alarm(2) ... Sets a process alarm clock .. alarm(2) 46
Allocates storage for a file Allocates storage for a file .. ialloc(2) 211
Asynchronous I/O .. Performs asynchronous read from a file reada(2) 333
Asynchronous I/O .. Performs asynchronous write on a file writea(2) 596
Attaches shared memory segment Attaches shared memory segment shmat(2) 447
Auditing ... Gets security attributes ... getsysv(2) 189
Authorized categories Sets active categories of a process setucat(2) 434
Authorized compartments Sets minimum and maximum level range, authorized

compartments, and security auditing options setsysv(2) 431
Authorized compartments Sets active compartments of the process setucmp(2) 436
Backdoor channel ... Opens a file for reading or writing open(2) 287
bind(2) ... Binds a name to a socket .. bind(2) 49
Binds a name to a socket Binds a name to a socket .. bind(2) 49

SR−2012 10.0 603

Block special devices Unmounts a file system ... umount(2) 560
Block special files .. Makes a directory or a special or regular file mknod(2) 257
Block special files .. Mounts a file system ... mount(2) 262
Blocks ... Changes size of secondary data segment ssbreak(2) 497
brk(2) .. Changes data segment space allocation brk(2) 53
bsdsignal(2) .. Changes action associated with a signal signal(2) 470
bsdsigpause(2) Releases blocked signals and waits for interrupt sigsuspend(2) 483
Buffers .. Reads from file .. read(2) 329
Buffers .. Reads or writes to secondary data segment ssread(2) 500
Calling processes .. Executes a file ... exec(2) 111
Categories ... Sets active categories of a process setucat(2) 434
chacid(2) ... Changes disk file account ID .. chacid(2) 56
Changes a directory by using the inode
number ... Changes a directory by using the inode number chdiri(2) 61
Changes account ID of a process Changes account ID of a process acctid(2) 42
Changes action associated with a signal Changes action associated with a signal signal(2) 470
Changes data segment space allocation Changes data segment space allocation brk(2) 53
Changes disk file account ID Changes disk file account ID .. chacid(2) 56
Changes owner and group of a file Changes owner and group of a file chown(2) 75
Changes priority of processes Changes priority of processes ... nice(2) 281
Changes size of secondary data segment Changes size of secondary data segment ssbreak(2) 497
Changes the mode of a file Changes the mode of a file .. chmod(2) 71
Changes the name of a file Changes the name of a file .. rename(2) 352
Changes the root directory Changes the root directory .. chroot(2) 79
Changes working directory Changes working directory ... chdir(2) 58
Channels ... Creates an interprocess channel pipe(2) 307
Character special files Controls device ... ioctl(2) 214
Character special files Makes a directory or a special or regular file mknod(2) 257
Character special files Mounts a file system ... mount(2) 262
chdir(2) ... Changes working directory ... chdir(2) 58
chdiri(2) ... Changes a directory by using the inode number chdiri(2) 61
Checkpoints a process, multitask group,
or job .. Checkpoints a process, multitask group, or job chkpnt(2) 63
Checks status of, enables, and disables
process, daemon, and record accounting Checks status of, enables, and disables process,

daemon, and record accounting acctctl(2) 39
Child jobs ... Gets information about a terminated child job waitjob(2) 586
Child processes .. Waits for a child process to stop or terminate wait(2) 580
chkpnt(2) ... Checkpoints a process, multitask group, or job chkpnt(2) 63
chmem(2) ... Retrieves or modifies system physical memory

availability .. chmem(2) 69
chmod(2) ... Changes the mode of a file .. chmod(2) 71
chown(2) ... Changes owner and group of a file chown(2) 75
chroot(2) ... Changes the root directory .. chroot(2) 79
Clock ticks .. Gets process and child process times times(2) 550
Clocks ... Gets or sets date and time ... gettimeofday(2) 194
Clocks ... Corrects the time to allow synchronization of the

system clock .. adjtime(2) 44
Clocks ... Sets a process alarm clock .. alarm(2) 46

604 SR−2012 10.0

Clocks ... Gets time ... time(2) 548
close(2) ... Closes a file descriptor .. close(2) 81
Closes a file descriptor Closes a file descriptor .. close(2) 81
cmptext(2) .. Compares the supplied character sequence with the

privilege text of the calling process cmptext(2) 82
Compares the supplied character sequence
with the privilege text of the calling
process .. Compares the supplied character sequence with the

privilege text of the calling process cmptext(2) 82
Compartments .. Sets file security label and security flag attributes setdevs(2) 395
Compartments .. Sets file compartments .. setfcmp(2) 402
Compartments .. Sets minimum and maximum level range, authorized

compartments, and security auditing options setsysv(2) 431
Compartments .. Sets security validation attributes of the process setusrv(2) 444
Configurable limits Sets resource limits ... limit(2) 227
Configurable limits Determines value of file or directory limit pathconf(2) 299
connect(2) .. Initiates a connection on a socket connect(2) 84
Connection acceptance Accepts a connection on a socket accept(2) 29
Connections .. Manages pty reconnection .. ptyrecon(2) 320
Controls and reports the status of major
guest system functions Controls and reports the status of major guest system

functions ... guestctl(2) 202
Controls device .. Controls device ... ioctl(2) 214
Controls device accounting Controls device accounting ... devacct(2) 99
Controls execution of processes Controls execution of processes suspend(2) 518
Controls open files Controls open files .. fcntl(2) 121
Corrects the time to allow synchronization
of the system clock Corrects the time to allow synchronization of the

system clock .. adjtime(2) 44
cpselect(2) .. Selects which processors may run the process cpselect(2) 88
CPU allocation policy Returns or sets information on the CPU allocation

policy .. policy(2) 312
CPU resources .. Obtains current resource limit information getlim(2) 160
CPU time .. Sets user-controllable resource limits setlim(2) 411
creat(2) ... Creates a new file or rewrites an existing one creat(2) 90
Creates a link to a file Creates a link to a file ... link(2) 235
Creates a multitasking process Creates a multitasking process .. _tfork(2) 545
Creates a new file or rewrites an existing
one .. Creates a new file or rewrites an existing one creat(2) 90
Creates a new process Creates a new process ... fork(2) 131
Creates a new process in a memory
efficient way ... Creates a new process in a memory efficient way vfork(2) 577
Creates a pair of connected sockets Creates a pair of connected sockets socketpair(2) 495
Creates an endpoint for communication Creates an endpoint for communication socket(2) 488
Creates an interprocess channel Creates an interprocess channel pipe(2) 307
Creates session and sets process group ID ... Creates session and sets process group ID setsid(2) 430
Current operating system Gets name of current operating system uname(2) 562
cutimes(2) .. Updates user execution time ... cutimes(2) 94
dacct(2) ... Enables or disables process and daemon accounting dacct(2) 97

SR−2012 10.0 605

Daemons ... Checks status of, enables, and disables process,
daemon, and record accounting acctctl(2) 39

Daemons ... Enables or disables process and daemon accounting dacct(2) 97
Data migration .. Sets and gets data migration retrieval mode dmmode(2) 102
Data migration .. Processes offline file requests ... dmofrq(2) 103
Data segments .. Changes data segment space allocation brk(2) 53
Dates ... Gets or sets date and time ... gettimeofday(2) 194
Dates ... Sets time .. stime(2) 517
Detaches shared memory segment Detaches shared memory segment shmdt(2) 455
Determines accessibility of a file Determines accessibility of a file access(2) 33
Determines value of file or directory limit ... Determines value of file or directory limit pathconf(2) 299
devacct(2) .. Controls device accounting ... devacct(2) 99
Device accounting .. Controls device accounting ... devacct(2) 99
Device control functions Controls device ... ioctl(2) 214
Device numbers .. Gets device number or driver entry getdevn(2) 143
Device numbers .. Changes a directory by using the inode number chdiri(2) 61
Device special files Sets file security label and security flag attributes setdevs(2) 395
Devices ... Opens a file by using the inode number openi(2) 297
Directories .. Reads and formats directory entries as file system

independent ... getdents(2) 141
Directories .. Makes a directory ... mkdir(2) 254
Directories .. Makes a directory or a special or regular file mknod(2) 257
Directories .. Removes a directory ... rmdir(2) 363
Directories .. Changes working directory ... chdir(2) 58
Directories .. Changes a directory by using the inode number chdiri(2) 61
Directory entries ... Creates a link to a file ... link(2) 235
Directory entries ... Removes directory entry ... unlink(2) 564
Directory limits .. Determines value of file or directory limit pathconf(2) 299
Discretionary access control Removes an access control list from a file rmfacl(2) 366
Discretionary access control Sets access control list for file .. setfacl(2) 398
Disk files .. Changes disk file account ID .. chacid(2) 56
Disk quotas ... Manipulates file system quotas quotactl(2) 322
dmmode(2) ... Sets and gets data migration retrieval mode dmmode(2) 102
dmofrq(2) ... Processes offline file requests ... dmofrq(2) 103
Driver names .. Gets device number or driver entry getdevn(2) 143
dup(2) .. Duplicates an open file descriptor dup(2) 107
Duplicates an open file descriptor Duplicates an open file descriptor dup(2) 107
Effective group IDs Gets real user, effective user, real group, or effective

group IDs .. getuid(2) 197
Effective group IDs Sets real or effective group ID .. setregid(2) 423
Effective group IDs Sets user or group IDs ... setuid(2) 438
Effective group IDs Creates a new file or rewrites an existing one creat(2) 90
Effective user IDs ... Gets real user, effective user, real group, or effective

group IDs .. getuid(2) 197
Effective user IDs ... Sets real or effective user ID .. setreuid(2) 426
Effective user IDs ... Sets user or group IDs ... setuid(2) 438
Effective user IDs ... Creates a new file or rewrites an existing one creat(2) 90
Enables or disables job accounting Enables or disables job accounting jacct(2) 219
Enables or disables process accounting Enables or disables process accounting acct(2) 37

606 SR−2012 10.0

Enables or disables process and daemon
accounting .. Enables or disables process and daemon accounting dacct(2) 97
Entries .. Makes security log entry ... slgentry(2) 486
errno .. Introduces system calls and error numbers intro(2) 1
Error codes ... Introduces system calls and error numbers intro(2) 1
Error returns ... Introduces system calls and error numbers intro(2) 1
Examines and changes blocked signals Examines and changes blocked signals sigprocmask(2) 479
Examines or changes action associated
with a signal ... Examines or changes action associated with a signal sigaction(2) 462
Examines synchronous I/O multiplexing Examines synchronous I/O multiplexing select(2) 374
Exchanges control .. Exchanges control ... exctl(2) 109
exctl(2) ... Exchanges control ... exctl(2) 109
exec(2) ... Executes a file ... exec(2) 111
execl(2) ... Executes a file ... exec(2) 111
execle(2) ... Executes a file ... exec(2) 111
execlp(2) ... Executes a file ... exec(2) 111
Executes a file .. Executes a file ... exec(2) 111
Execution ... Selects which processors may run the process cpselect(2) 88
Execution time ... Updates user execution time ... cutimes(2) 94
Execution time profile Generates an execution time profile profil(2) 314
execv(2) ... Executes a file ... exec(2) 111
execve(2) ... Executes a file ... exec(2) 111
execvp(2) ... Executes a file ... exec(2) 111
_exit(2) ... Terminates process ... exit(2) 118
exit(2) ... Terminates process ... exit(2) 118
fchmod(2) ... Changes the mode of a file .. chmod(2) 71
fchown(2) ... Changes owner and group of a file chown(2) 75
fcntl(2) ... Controls open files .. fcntl(2) 121
fgetpal(2) .. Gets the privilege assignment list (PAL) and privilege

sets of a file ... fgetpal(2) 130
FIFO special files ... Makes a directory or a special or regular file mknod(2) 257
FIFO special files ... Opens a file for reading or writing open(2) 287
File access time .. Sets file access and modification times utime(2) 573
File concatenation .. Joins files .. join(2) 221
File creation masks Sets and gets file creation mask umask(2) 558
File descriptors ... Duplicates an open file descriptor dup(2) 107
File descriptors ... Synchronizes the in-core state of a file with that on

disk .. fsync(2) 138
File descriptors ... Opens a file for reading or writing open(2) 287
File descriptors ... Examines synchronous I/O multiplexing select(2) 374
File descriptors ... Closes a file descriptor .. close(2) 81
File limits ... Determines value of file or directory limit pathconf(2) 299
File links ... Makes a symbolic link to a file symlink(2) 522
File names .. Changes the name of a file .. rename(2) 352
File pointers .. Moves read/write file pointer .. lseek(2) 249
File requests ... Processes offline file requests ... dmofrq(2) 103
File security .. Gets file security attributes ... secstat(2) 371
File security .. Sets security level of a file .. setflvl(2) 407
File status flags ... Opens a file for reading or writing open(2) 287

SR−2012 10.0 607

File system quotas .. Manipulates file system quotas quotactl(2) 322
File systems .. Reads and formats directory entries as file system

independent ... getdents(2) 141
File systems .. Gets file system information ... statfs(2) 509
File systems .. Gets file system type information sysfs(2) 533
File systems .. Gets file system statistics .. ustat(2) 571
Files .. Controls open files .. fcntl(2) 121
Files .. Gets the privilege assignment list (PAL) and privilege

sets of a file ... getpal(2) 167
Files .. Allocates storage for a file .. ialloc(2) 211
Files .. Sets metadata for a file .. lsetattr(2) 252
Files .. Makes a directory or a special or regular file mknod(2) 257
Files .. Sets file compartments .. setfcmp(2) 402
Files .. Sets file security flags ... setfflg(2) 405
Files .. Gets file status ... stat(2) 503
Files .. Gets file system information ... statvfs(2) 514
Files .. Truncates a file .. trunc(2) 552
Files .. Writes on a file .. write(2) 590
Files .. Performs asynchronous write on a file writea(2) 596
Files .. Changes owner and group of a file chown(2) 75
fjoin(2) ... Joins files .. join(2) 221
Flags ... Opens a file for reading or writing open(2) 287
Flags ... Sets file security flags ... setfflg(2) 405
Flushes system buffers out of main
memory .. Flushes system buffers out of main memory sync(2) 526
fork(2) ... Creates a new process ... fork(2) 131
fpathconf(2) .. Determines value of file or directory limit pathconf(2) 299
fsecstat(2) .. Gets file security attributes ... secstat(2) 371
fsetpal(2) .. Sets the privilege assignment list (PAL) and privilege

sets of a file ... fsetpal(2) 136
fstat(2) ... Gets file status ... stat(2) 503
fstatfs(2) .. Gets file system information ... statfs(2) 509
fstatvfs(2) .. Gets file system information ... statvfs(2) 514
fsync(2) ... Synchronizes the in-core state of a file with that on

disk .. fsync(2) 138
Generates an execution time profile Generates an execution time profile profil(2) 314
Generation numbers Changes a directory by using the inode number chdiri(2) 61
getash(2) ... Gets an array session handle ... getash(2) 140
getdents(2) .. Reads and formats directory entries as file system

independent ... getdents(2) 141
getdevn(2) .. Gets device number or driver entry getdevn(2) 143
getegid(2) .. Gets real user, effective user, real group, or effective

group IDs .. getuid(2) 197
geteuid(2) .. Gets real user, effective user, real group, or effective

group IDs .. getuid(2) 197
getfacl(2) .. Gets access control list entries for file getfacl(2) 144
getgid(2) ... Gets real user, effective user, real group, or effective

group IDs .. getuid(2) 197
getgroups(2) .. Gets or sets group list ... getgroups(2) 148

608 SR−2012 10.0

gethostid(2) .. Gets or sets unique identifier of local host gethostid(2) 151
gethostname(2) Gets or sets name of local host gethostname(2) 153
getinfo(2) .. Gets specified user, job, or process signal information .. getinfo(2) 155
getjtab(2) .. Gets the job table entry associated with a process getjtab(2) 158
getlim(2) ... Obtains current resource limit information getlim(2) 160
_getlwpid(2) .. Gets process, process group, or parent process IDs getpid(2) 176
_getlwppid(2) ... Gets process, process group, or parent process IDs getpid(2) 176
getmount(2) .. Returns information about the kernel mount table getmount(2) 163
getpal(2) ... Gets the privilege assignment list (PAL) and privilege

sets of a file ... getpal(2) 167
getpeername(2) Gets name of connected peer .. getpeername(2) 169
getpermit(2) .. Gets or sets user permissions .. getpermit(2) 172
getpgrp(2) .. Gets process, process group, or parent process IDs getpid(2) 176
getpid(2) ... Gets process, process group, or parent process IDs getpid(2) 176
getportbm(2) .. Sets or gets the kernel memory port bit map setportbm(2) 420
getppid(2) .. Gets process, process group, or parent process IDs getpid(2) 176
getppriv(2) .. Gets the privilege state of the calling process getppriv(2) 179
Gets access control list entries for file Gets access control list entries for file getfacl(2) 144
Gets an array session handle Gets an array session handle ... getash(2) 140
Gets and sets user limits Gets and sets user limits ... ulimit(2) 555
Gets device number or driver entry Gets device number or driver entry getdevn(2) 143
Gets file security attributes Gets file security attributes ... secstat(2) 371
Gets file status .. Gets file status ... stat(2) 503
Gets file system information Gets file system information ... statfs(2) 509
Gets file system information Gets file system information ... statvfs(2) 514
Gets file system statistics Gets file system statistics .. ustat(2) 571
Gets file system type information Gets file system type information sysfs(2) 533
Gets information about a terminated child
job ... Gets information about a terminated child job waitjob(2) 586
Gets name of connected peer Gets name of connected peer .. getpeername(2) 169
Gets name of current operating system Gets name of current operating system uname(2) 562
Gets or sets date and time Gets or sets date and time ... gettimeofday(2) 194
Gets or sets group list Gets or sets group list ... getgroups(2) 148
Gets or sets name of local host Gets or sets name of local host gethostname(2) 153
Gets or sets options on sockets Gets or sets options on sockets getsockopt(2) 184
Gets or sets terminal process group ID of
the foreground process group Gets or sets terminal process group ID of the

foreground process group ... tcgetpgrp(2) 543
Gets or sets unique identifier of local host ... Gets or sets unique identifier of local host gethostid(2) 151
Gets or sets user permissions Gets or sets user permissions .. getpermit(2) 172
Gets process and child process times Gets process and child process times times(2) 550
Gets process, process group, or parent
process IDs ... Gets process, process group, or parent process IDs getpid(2) 176
Gets real user, effective user, real group,
or effective group IDs Gets real user, effective user, real group, or effective

group IDs .. getuid(2) 197
Gets security attributes Gets security attributes ... getsysv(2) 189
Gets security names and associated values .. Gets security names and associated values getsectab(2) 180

SR−2012 10.0 609

Gets security validation attributes of the
process .. Gets security validation attributes of the process getusrv(2) 199
Gets socket name ... Gets socket name .. getsockname(2) 182
Gets specified user, job, or process signal
information ... Gets specified user, job, or process signal information .. getinfo(2) 155
Gets the job table entry associated with a
process .. Gets the job table entry associated with a process getjtab(2) 158
Gets the privilege assignment list (PAL)
and privilege sets of a file Gets the privilege assignment list (PAL) and privilege

sets of a file ... fgetpal(2) 130
Gets the privilege assignment list (PAL)
and privilege sets of a file Gets the privilege assignment list (PAL) and privilege

sets of a file ... getpal(2) 167
Gets the privilege state of the calling
process .. Gets the privilege state of the calling process getppriv(2) 179
Gets time .. Gets time ... time(2) 548
getsectab(2) .. Gets security names and associated values getsectab(2) 180
getsockname(2) Gets socket name .. getsockname(2) 182
getsockopt(2) ... Gets or sets options on sockets getsockopt(2) 184
getsysv(2) .. Gets security attributes ... getsysv(2) 189
gettimeofday(2) Gets or sets date and time ... gettimeofday(2) 194
getuid(2) ... Gets real user, effective user, real group, or effective

group IDs .. getuid(2) 197
getusrv(2) .. Gets security validation attributes of the process getusrv(2) 199
_globalexit(2) Terminates process ... exit(2) 118
globalexit(2) ... Terminates process ... exit(2) 118
Group IDs ... Sets process-group-ID for job control setpgid(2) 416
Group IDs ... Sets process-group ID ... setpgrp(2) 418
Group IDs ... Sets real or effective group ID .. setregid(2) 423
Group IDs ... Creates session and sets process group ID setsid(2) 430
Group IDs ... Gets or sets terminal process group ID of the

foreground process group ... tcgetpgrp(2) 543
Groups .. Gets or sets group list ... getgroups(2) 148
Groups .. Changes owner and group of a file chown(2) 75
guestctl(2) .. Controls and reports the status of major guest system

functions ... guestctl(2) 202
Hardware registers Exchanges control ... exctl(2) 109
Header information Manipulates file system quotas quotactl(2) 322
Host names ... Gets or sets name of local host gethostname(2) 153
Hosts ... Gets or sets unique identifier of local host gethostid(2) 151
Hosts ... Gets name of connected peer .. getpeername(2) 169
Hosts ... Retrieves or modifies machine characteristics target(2) 541
ialloc(2) ... Allocates storage for a file .. ialloc(2) 211
Initiates a connection on a socket Initiates a connection on a socket connect(2) 84
Initiates a list of I/O requests Initiates a list of I/O requests .. listio(2) 243
Inode numbers .. Opens a file by using the inode number openi(2) 297
Inode numbers .. Changes a directory by using the inode number chdiri(2) 61
Interprocess channels Creates an interprocess channel pipe(2) 307
Interprocess communication Accesses the message queue ... msgget(2) 269

610 SR−2012 10.0

Interprocess communication Reads a message from a message queue msgrcv(2) 271
Interprocess communication Sends a message to a message queue msgsnd(2) 274
Interprocess communication Provides semaphore control operations semctl(2) 378
Interprocess communication Provides access to semaphore identifiers semget(2) 383
Interprocess communication Provides general semaphore operations semop(2) 386
Interprocess communication Attaches shared memory segment shmat(2) 447
Interprocess communication Provides shared memory control operations shmctl(2) 450
Interprocess communication Detaches shared memory segment shmdt(2) 455
Interprocess communication Accesses shared memory identifier shmget(2) 457
intro(2) ... Introduces system calls and error numbers intro(2) 1
Introduces system calls and error numbers .. Introduces system calls and error numbers intro(2) 1
I/O descriptor sets .. Examines synchronous I/O multiplexing select(2) 374
I/O requests .. Initiates a list of I/O requests .. listio(2) 243
I/O requests .. Performs asynchronous read from a file reada(2) 333
I/O requests .. Waits for I/O completions .. recall(2) 342
I/O requests .. Waits for I/O completion(s) .. recalla(2) 344
I/O requests .. Performs asynchronous write on a file writea(2) 596
ioctl(2) ... Controls device ... ioctl(2) 214
IPC functions .. Provides message control operations msgctl(2) 265
IPC functions .. Accesses the message queue ... msgget(2) 269
IPC functions .. Reads a message from a message queue msgrcv(2) 271
IPC functions .. Sends a message to a message queue msgsnd(2) 274
IPC functions .. Provides semaphore control operations semctl(2) 378
IPC functions .. Provides access to semaphore identifiers semget(2) 383
IPC functions .. Provides general semaphore operations semop(2) 386
IPC functions .. Attaches shared memory segment shmat(2) 447
IPC functions .. Provides shared memory control operations shmctl(2) 450
IPC functions .. Detaches shared memory segment shmdt(2) 455
IPC functions .. Accesses shared memory identifier shmget(2) 457
jacct(2) ... Enables or disables job accounting jacct(2) 219
Jobs ... Gets specified user, job, or process signal information .. getinfo(2) 155
Jobs ... Gets the job table entry associated with a process getjtab(2) 158
Jobs ... Enables or disables job accounting jacct(2) 219
Jobs ... Restarts a process, multitask group, or job restart(2) 357
Jobs ... Sets job ID .. setjob(2) 409
Jobs ... Sets process-group-ID for job control setpgid(2) 416
Jobs ... Gets information about a terminated child job waitjob(2) 586
Jobs ... Checkpoints a process, multitask group, or job chkpnt(2) 63
join(2) ... Joins files .. join(2) 221
Joins files .. Joins files .. join(2) 221
Kernel limits ... Returns or sets limits structure for fair-share

scheduler ... limits(2) 232
Kernel memory .. Sets or gets the kernel memory port bit map setportbm(2) 420
Kernel mount table Returns information about the kernel mount table getmount(2) 163
kill(2) ... Sends a signal to a process or a group of processes kill(2) 223
killm(2) ... Sends a signal to a process or a group of processes kill(2) 223
Large file allocation strategy Opens a file for reading or writing open(2) 287
lchown(2) ... Changes owner and group of a file chown(2) 75

SR−2012 10.0 611

Level ranges ... Sets minimum and maximum level range, authorized
compartments, and security auditing options setsysv(2) 431

Levels ... Sets security level of a file .. setflvl(2) 407
Levels ... Sets security validation attributes of the process setusrv(2) 444
limit(2) ... Sets resource limits ... limit(2) 227
Limits ... Obtains current resource limit information getlim(2) 160
Limits ... Determines value of file or directory limit pathconf(2) 299
Limits ... Sets user-controllable resource limits setlim(2) 411
Limits ... Gets and sets user limits ... ulimit(2) 555
limits(2) ... Returns or sets limits structure for fair-share

scheduler ... limits(2) 232
link(2) ... Creates a link to a file ... link(2) 235
Links ... Reads value of a symbolic link readlink(2) 339
Links ... Makes a symbolic link to a file symlink(2) 522
listen(2) ... Listens for connections on a socket listen(2) 239
Listens for connections on a socket Listens for connections on a socket listen(2) 239
listio(2) ... Initiates a list of I/O requests .. listio(2) 243
Lnodes .. Returns or sets limits structure for fair-share

scheduler ... limits(2) 232
Local area network Corrects the time to allow synchronization of the

system clock .. adjtime(2) 44
Local hosts ... Gets or sets unique identifier of local host gethostid(2) 151
Local hosts ... Gets or sets name of local host gethostname(2) 153
_localexit(2) ... Terminates process ... exit(2) 118
localexit(2) .. Terminates process ... exit(2) 118
Locks process in memory Locks process in memory ... plock(2) 310
Log entries .. Makes security log entry ... slgentry(2) 486
lsecstat(2) .. Gets file security attributes ... secstat(2) 371
lseek(2) ... Moves read/write file pointer .. lseek(2) 249
lsetattr(2) .. Sets metadata for a file .. lsetattr(2) 252
lstat(2) ... Gets file status ... stat(2) 503
_lwp_alarm(2) ... Sets a process alarm clock .. alarm(2) 46
_lwp_exit(2) .. Terminates process ... exit(2) 118
_lwp_kill(2) .. Sends a signal to a process or a group of processes kill(2) 223
_lwp_killm(2) ... Sends a signal to a process or a group of processes kill(2) 223
Machine characteristics Retrieves or modifies machine characteristics target(2) 541
Makes a directory ... Makes a directory ... mkdir(2) 254
Makes a directory or a special or regular
file ... Makes a directory or a special or regular file mknod(2) 257
Makes a symbolic link to a file Makes a symbolic link to a file symlink(2) 522
Makes security log entry Makes security log entry ... slgentry(2) 486
Manages pty reconnection Manages pty reconnection .. ptyrecon(2) 320
Manipulates file system quotas Manipulates file system quotas quotactl(2) 322
Maximum authorized compartments Sets minimum and maximum level range, authorized

compartments, and security auditing options setsysv(2) 431
Maximum level ranges Sets minimum and maximum level range, authorized

compartments, and security auditing options setsysv(2) 431
Memory availability Retrieves or modifies system physical memory

availability .. chmem(2) 69

612 SR−2012 10.0

Memory scheduling Sets memory scheduling parameters schedv(2) 368
Message queues .. Provides message control operations msgctl(2) 265
Message queues .. Accesses the message queue ... msgget(2) 269
Message queues .. Reads a message from a message queue msgrcv(2) 271
Message queues .. Sends a message to a message queue msgsnd(2) 274
Metadata ... Sets metadata for a file .. lsetattr(2) 252
Minimum authorized compartments Sets minimum and maximum level range, authorized

compartments, and security auditing options setsysv(2) 431
mkdir(2) ... Makes a directory ... mkdir(2) 254
mkfifo(2) ... Makes a directory or a special or regular file mknod(2) 257
mknod(2) ... Makes a directory or a special or regular file mknod(2) 257
Modes ... Changes the mode of a file .. chmod(2) 71
Modes ... Creates a new file or rewrites an existing one creat(2) 90
mount(2) ... Mounts a file system ... mount(2) 262
Mounts a file system Mounts a file system ... mount(2) 262
Moves read/write file pointer Moves read/write file pointer .. lseek(2) 249
msgctl(2) ... Provides message control operations msgctl(2) 265
msgget(2) ... Accesses the message queue ... msgget(2) 269
msgrcv(2) ... Reads a message from a message queue msgrcv(2) 271
msgsnd(2) ... Sends a message to a message queue msgsnd(2) 274
mtimes(2) ... Provides multitasking execution overlap profile mtimes(2) 277
Multiplexing ... Examines synchronous I/O multiplexing select(2) 374
Multitask groups .. Checkpoints a process, multitask group, or job chkpnt(2) 63
Multitasking ... Provides multitasking execution overlap profile mtimes(2) 277
Multitasking ... Restarts a process, multitask group, or job restart(2) 357
Multitasking ... Creates a multitasking process .. _tfork(2) 545
Named pipes ... Makes a directory or a special or regular file mknod(2) 257
Names ... Gets name of current operating system uname(2) 562
Networks .. Accesses or manipulates network security

information ... nsecctl(2) 284
New processes .. Executes a file ... exec(2) 111
New processes .. Creates a new process ... fork(2) 131
New processes .. Creates a new process in a memory efficient way vfork(2) 577
newarraysess(2) Starts a new array session ... newarraysess(2) 279
_newexit(2) .. Terminates process ... exit(2) 118
newexit(2) .. Terminates process ... exit(2) 118
newgetpid(2) .. Gets process, process group, or parent process IDs getpid(2) 176
newgetppid(2) ... Gets process, process group, or parent process IDs getpid(2) 176
nice(2) ... Changes priority of processes ... nice(2) 281
nicem(2) ... Changes priority of processes ... nice(2) 281
nsecctl(2) .. Accesses or manipulates network security

information ... nsecctl(2) 284
Obtains current resource limit information .. Obtains current resource limit information getlim(2) 160
open(2) ... Opens a file for reading or writing open(2) 287
openi(2) ... Opens a file by using the inode number openi(2) 297
Opens a file by using the inode number Opens a file by using the inode number openi(2) 297
Opens a file for reading or writing Opens a file for reading or writing open(2) 287
Operating system names Gets name of current operating system uname(2) 562
Owners ... Changes owner and group of a file chown(2) 75

SR−2012 10.0 613

Parent process IDs .. Gets process, process group, or parent process IDs getpid(2) 176
pathconf(2) .. Determines value of file or directory limit pathconf(2) 299
pause(2) ... Suspends process until signal ... pause(2) 305
Peer names ... Gets name of connected peer .. getpeername(2) 169
Performs asynchronous read from a file Performs asynchronous read from a file reada(2) 333
Performs asynchronous write on a file Performs asynchronous write on a file writea(2) 596
Permissions .. Gets or sets user permissions .. getpermit(2) 172
Permissions .. Determines accessibility of a file access(2) 33
Permissions .. Sets file security label and security flag attributes setdevs(2) 395
Permissions .. Sets security validation attributes of the process setusrv(2) 444
Physical memory availability Retrieves or modifies system physical memory

availability .. chmem(2) 69
pipe(2) ... Creates an interprocess channel pipe(2) 307
Pipes ... Makes a directory or a special or regular file mknod(2) 257
Pipes ... Writes on a file .. write(2) 590
plock(2) ... Locks process in memory ... plock(2) 310
policy(2) ... Returns or sets information on the CPU allocation

policy .. policy(2) 312
Port bit map .. Sets or gets the kernel memory port bit map setportbm(2) 420
Priorities ... Changes priority of processes ... nice(2) 281
Privilege policy .. Gets the privilege assignment list (PAL) and privilege

sets of a file ... fgetpal(2) 130
Privilege policy .. Sets the privilege assignment list (PAL) and privilege

sets of a file ... fsetpal(2) 136
Privilege policy .. Gets the privilege assignment list (PAL) and privilege

sets of a file ... getpal(2) 167
Privilege policy .. Gets the privilege state of the calling process getppriv(2) 179
Privilege policy .. Sets the privilege assignment list (PAL) and privilege

sets of a file ... setpal(2) 414
Privilege policy .. Sets the privilege state of the calling process setppriv(2) 422
Privilege policy .. Compares the supplied character sequence with the

privilege text of the calling process cmptext(2) 82
Process account IDs Changes account ID of a process acctid(2) 42
Process accounting Enables or disables process accounting acct(2) 37
Process accounting Checks status of, enables, and disables process,

daemon, and record accounting acctctl(2) 39
Process accounting Enables or disables process and daemon accounting dacct(2) 97
Process group IDs .. Gets process, process group, or parent process IDs getpid(2) 176
Process group IDs .. Gets or sets terminal process group ID of the

foreground process group ... tcgetpgrp(2) 543
Process IDs ... Gets process, process group, or parent process IDs getpid(2) 176
Process priorities .. Changes priority of processes ... nice(2) 281
Process scheduling Reschedules a process ... resch(2) 356
Process’ security attributes Gets security validation attributes of the process getusrv(2) 199
Process’ security validation attributes Gets security validation attributes of the process getusrv(2) 199
Process termination Terminates process ... exit(2) 118
Processes .. Creates a new process ... fork(2) 131
Processes .. Gets specified user, job, or process signal information .. getinfo(2) 155
Processes .. Gets the job table entry associated with a process getjtab(2) 158

614 SR−2012 10.0

Processes .. Sends a signal to a process or a group of processes kill(2) 223
Processes .. Locks process in memory ... plock(2) 310
Processes .. Traces processes ... ptrace(2) 316
Processes .. Restarts a process, multitask group, or job restart(2) 357
Processes .. Sets process-group-ID for job control setpgid(2) 416
Processes .. Sets process-group ID ... setpgrp(2) 418
Processes .. Creates session and sets process group ID setsid(2) 430
Processes .. Controls execution of processes suspend(2) 518
Processes .. Creates a multitasking process .. _tfork(2) 545
Processes .. Registers this process as a thread thread(2) 546
Processes .. Gets process and child process times times(2) 550
Processes .. Creates a new process in a memory efficient way vfork(2) 577
Processes .. Checkpoints a process, multitask group, or job chkpnt(2) 63
Processes .. Selects which processors may run the process cpselect(2) 88
Processes offline file requests Processes offline file requests ... dmofrq(2) 103
profil(2) ... Generates an execution time profile profil(2) 314
Profiles ... Provides multitasking execution overlap profile mtimes(2) 277
Provides a system interface to Silicon
Graphics workstations Provides a system interface to Silicon Graphics

workstations .. syssgi(2) 536
Provides access to semaphore identifiers Provides access to semaphore identifiers semget(2) 383
Provides general semaphore operations Provides general semaphore operations semop(2) 386
Provides generalized signal control Provides generalized signal control sigctl(2) 466
Provides message control operations Provides message control operations msgctl(2) 265
Provides multitasking execution overlap
profile ... Provides multitasking execution overlap profile mtimes(2) 277
Provides semaphore control operations Provides semaphore control operations semctl(2) 378
Provides shared memory control
operations ... Provides shared memory control operations shmctl(2) 450
ptrace(2) ... Traces processes ... ptrace(2) 316
ptyrecon(2) .. Manages pty reconnection .. ptyrecon(2) 320
quotactl(2) .. Manipulates file system quotas quotactl(2) 322
Ranges .. Sets minimum and maximum level range, authorized

compartments, and security auditing options setsysv(2) 431
Raw mode .. Opens a file for reading or writing open(2) 287
read(2) ... Reads from file .. read(2) 329
reada(2) ... Performs asynchronous read from a file reada(2) 333
Reading files ... Opens a file for reading or writing open(2) 287
readlink(2) .. Reads value of a symbolic link readlink(2) 339
Reads a message from a message queue Reads a message from a message queue msgrcv(2) 271
Reads and formats directory entries as file
system independent Reads and formats directory entries as file system

independent ... getdents(2) 141
Reads from file ... Reads from file .. read(2) 329
Reads or writes to secondary data
segment .. Reads or writes to secondary data segment ssread(2) 500
Reads value of a symbolic link Reads value of a symbolic link readlink(2) 339
Real group IDs ... Gets real user, effective user, real group, or effective

group IDs .. getuid(2) 197

SR−2012 10.0 615

Real group IDs ... Sets real or effective group ID .. setregid(2) 423
Real group IDs ... Sets user or group IDs ... setuid(2) 438
Real user IDs .. Gets real user, effective user, real group, or effective

group IDs .. getuid(2) 197
Real user IDs .. Sets real or effective user ID .. setreuid(2) 426
Real user IDs .. Sets user or group IDs ... setuid(2) 438
recall(2) ... Waits for I/O completions .. recall(2) 342
recalla(2) .. Waits for I/O completion(s) .. recalla(2) 344
recalls(2) .. Waits for I/O completions .. recall(2) 342
Receives a message from a socket Receives a message from a socket recv(2) 347
Record accounting .. Checks status of, enables, and disables process,

daemon, and record accounting acctctl(2) 39
recv(2) ... Receives a message from a socket recv(2) 347
recvfrom(2) .. Receives a message from a socket recv(2) 347
recvmsg(2) .. Receives a message from a socket recv(2) 347
Registers this process as a thread Registers this process as a thread thread(2) 546
Regular files ... Makes a directory or a special or regular file mknod(2) 257
Release version .. Gets name of current operating system uname(2) 562
Releases blocked signals and waits for
interrupt .. Releases blocked signals and waits for interrupt sigsuspend(2) 483
Removable file systems Mounts a file system ... mount(2) 262
Removes a directory Removes a directory ... rmdir(2) 363
Removes an access control list from a file ... Removes an access control list from a file rmfacl(2) 366
Removes directory entry Removes directory entry ... unlink(2) 564
rename(2) ... Changes the name of a file .. rename(2) 352
Requests ... Retrieves system implementation information sysconf(2) 528
resch(2) ... Reschedules a process ... resch(2) 356
Reschedules a process Reschedules a process ... resch(2) 356
Resource limits ... Obtains current resource limit information getlim(2) 160
Resource limits ... Sets resource limits ... limit(2) 227
Resource limits ... Sets user-controllable resource limits setlim(2) 411
Restart files ... Checkpoints a process, multitask group, or job chkpnt(2) 63
restart(2) .. Restarts a process, multitask group, or job restart(2) 357
Restarts a process, multitask group, or job .. Restarts a process, multitask group, or job restart(2) 357
resume(2) ... Controls execution of processes suspend(2) 518
Retrieval mode ... Sets and gets data migration retrieval mode dmmode(2) 102
Retrieves or modifies machine
characteristics ... Retrieves or modifies machine characteristics target(2) 541
Retrieves or modifies system physical
memory availability Retrieves or modifies system physical memory

availability .. chmem(2) 69
Retrieves system implementation
information ... Retrieves system implementation information sysconf(2) 528
Returns information about the kernel
mount table ... Returns information about the kernel mount table getmount(2) 163
Returns information on and reads a
system table .. Returns information on and reads a system table tabinfo(2) 538

616 SR−2012 10.0

Returns or sets information on the CPU
allocation policy ... Returns or sets information on the CPU allocation

policy .. policy(2) 312
Returns or sets limits structure for
fair-share scheduler Returns or sets limits structure for fair-share

scheduler ... limits(2) 232
rmdir(2) ... Removes a directory ... rmdir(2) 363
rmfacl(2) ... Removes an access control list from a file rmfacl(2) 366
Root directory .. Changes the root directory .. chroot(2) 79
Routine swapping ... Locks process in memory ... plock(2) 310
sbreak(2) ... Changes data segment space allocation brk(2) 53
sbrk(2) ... Changes data segment space allocation brk(2) 53
Scheduling .. Reschedules a process ... resch(2) 356
schedv(2) ... Sets memory scheduling parameters schedv(2) 368
Secondary data segments Changes size of secondary data segment ssbreak(2) 497
Secondary data segments Reads or writes to secondary data segment ssread(2) 500
secstat(2) .. Gets file security attributes ... secstat(2) 371
Security administrator category Gets access control list entries for file getfacl(2) 144
Security attributes .. Gets security attributes ... getsysv(2) 189
Security attributes .. Gets security validation attributes of the process getusrv(2) 199
Security attributes .. Gets file security attributes ... secstat(2) 371
Security attributes .. Sets minimum and maximum level range, authorized

compartments, and security auditing options setsysv(2) 431
Security flags .. Sets file security flags ... setfflg(2) 405
Security information Accesses or manipulates network security

information ... nsecctl(2) 284
Security levels .. Sets the active security level of the process setulvl(2) 442
Security log .. Gets access control list entries for file getfacl(2) 144
Security log .. Gets security validation attributes of the process getusrv(2) 199
Security log .. Removes an access control list from a file rmfacl(2) 366
Security log .. Sets file security label and security flag attributes setdevs(2) 395
Security log .. Sets access control list for file .. setfacl(2) 398
Security log .. Sets file compartments .. setfcmp(2) 402
Security log .. Sets security level of a file .. setflvl(2) 407
Security log .. Sets active compartments of the process setucmp(2) 436
Security log .. Sets the active security level of the process setulvl(2) 442
Security log .. Sets security validation attributes of the process setusrv(2) 444
Security log .. Makes security log entry ... slgentry(2) 486
select(2) ... Examines synchronous I/O multiplexing select(2) 374
Selects which processors may run the
process .. Selects which processors may run the process cpselect(2) 88
Semaphore control operations Provides semaphore control operations semctl(2) 378
Semaphore control operations Provides access to semaphore identifiers semget(2) 383
Semaphore control operations Provides general semaphore operations semop(2) 386
semctl(2) ... Provides semaphore control operations semctl(2) 378
semget(2) ... Provides access to semaphore identifiers semget(2) 383
semop(2) ... Provides general semaphore operations semop(2) 386
send(2) ... Sends a message from a socket send(2) 390
sendmsg(2) .. Sends a message from a socket send(2) 390

SR−2012 10.0 617

Sends a message from a socket Sends a message from a socket send(2) 390
Sends a message to a message queue Sends a message to a message queue msgsnd(2) 274
Sends a signal to a process or a group of
processes .. Sends a signal to a process or a group of processes kill(2) 223
sendto(2) ... Sends a message from a socket send(2) 390
Session creation .. Creates session and sets process group ID setsid(2) 430
setash(2) ... Sets an array session handle ... setash(2) 393
setdevs(2) .. Sets file security label and security flag attributes setdevs(2) 395
setegid(2) .. Sets real or effective group ID .. setregid(2) 423
seteuid(2) .. Sets real or effective user ID .. setreuid(2) 426
setfacl(2) .. Sets access control list for file .. setfacl(2) 398
setfcmp(2) .. Sets file compartments .. setfcmp(2) 402
setfflg(2) .. Sets file security flags ... setfflg(2) 405
setflvl(2) .. Sets security level of a file .. setflvl(2) 407
setgid(2) ... Sets user or group IDs ... setuid(2) 438
Set-group-ID bit ... Changes owner and group of a file chown(2) 75
setgroups(2) .. Gets or sets group list ... getgroups(2) 148
sethostid(2) .. Gets or sets unique identifier of local host gethostid(2) 151
sethostname(2) Gets or sets name of local host gethostname(2) 153
setjob(2) ... Sets job ID .. setjob(2) 409
setlim(2) ... Sets user-controllable resource limits setlim(2) 411
setpal(2) ... Sets the privilege assignment list (PAL) and privilege

sets of a file ... setpal(2) 414
setpermit(2) .. Gets or sets user permissions .. getpermit(2) 172
setpgid(2) .. Sets process-group-ID for job control setpgid(2) 416
setpgrp(2) .. Sets process-group ID ... setpgrp(2) 418
setportbm(2) .. Sets or gets the kernel memory port bit map setportbm(2) 420
setppriv(2) .. Sets the privilege state of the calling process setppriv(2) 422
setregid(2) .. Sets real or effective group ID .. setregid(2) 423
setreuid(2) .. Sets real or effective user ID .. setreuid(2) 426
setrgid(2) .. Sets real or effective group ID .. setregid(2) 423
setruid(2) .. Sets real or effective user ID .. setreuid(2) 426
Sets a process alarm clock Sets a process alarm clock .. alarm(2) 46
Sets access control list for file Sets access control list for file .. setfacl(2) 398
Sets active categories of a process Sets active categories of a process setucat(2) 434
Sets active compartments of the process Sets active compartments of the process setucmp(2) 436
Sets an array session handle Sets an array session handle ... setash(2) 393
Sets and gets data migration retrieval
mode ... Sets and gets data migration retrieval mode dmmode(2) 102
Sets and gets file creation mask Sets and gets file creation mask umask(2) 558
Sets file access and modification times Sets file access and modification times utime(2) 573
Sets file compartments Sets file compartments .. setfcmp(2) 402
Sets file security flags Sets file security flags ... setfflg(2) 405
Sets file security label and security flag
attributes ... Sets file security label and security flag attributes setdevs(2) 395
Sets job ID .. Sets job ID .. setjob(2) 409
Sets memory scheduling parameters Sets memory scheduling parameters schedv(2) 368
Sets metadata for a file Sets metadata for a file .. lsetattr(2) 252

618 SR−2012 10.0

Sets minimum and maximum level range,
authorized compartments, and security
auditing options .. Sets minimum and maximum level range, authorized

compartments, and security auditing options setsysv(2) 431
Sets or gets the kernel memory port bit
map ... Sets or gets the kernel memory port bit map setportbm(2) 420
Sets process-group ID Sets process-group ID ... setpgrp(2) 418
Sets process-group-ID for job control Sets process-group-ID for job control setpgid(2) 416
Sets real or effective group ID Sets real or effective group ID .. setregid(2) 423
Sets real or effective user ID Sets real or effective user ID .. setreuid(2) 426
Sets resource limits Sets resource limits ... limit(2) 227
Sets security level of a file Sets security level of a file .. setflvl(2) 407
Sets security validation attributes of the
process .. Sets security validation attributes of the process setusrv(2) 444
Sets the active security level of the
process .. Sets the active security level of the process setulvl(2) 442
Sets the privilege assignment list (PAL)
and privilege sets of a file Sets the privilege assignment list (PAL) and privilege

sets of a file ... fsetpal(2) 136
Sets the privilege assignment list (PAL)
and privilege sets of a file Sets the privilege assignment list (PAL) and privilege

sets of a file ... setpal(2) 414
Sets the privilege state of the calling
process .. Sets the privilege state of the calling process setppriv(2) 422
Sets time ... Sets time .. stime(2) 517
Sets user or group IDs Sets user or group IDs ... setuid(2) 438
Sets user-controllable resource limits Sets user-controllable resource limits setlim(2) 411
setsid(2) ... Creates session and sets process group ID setsid(2) 430
setsockopt(2) ... Gets or sets options on sockets getsockopt(2) 184
setsysv(2) .. Sets minimum and maximum level range, authorized

compartments, and security auditing options setsysv(2) 431
settimeofday(2) Gets or sets date and time ... gettimeofday(2) 194
setucat(2) .. Sets active categories of a process setucat(2) 434
setucmp(2) .. Sets active compartments of the process setucmp(2) 436
setuid(2) ... Sets user or group IDs ... setuid(2) 438
setulvl(2) .. Sets the active security level of the process setulvl(2) 442
Set-user-ID bit .. Changes owner and group of a file chown(2) 75
setusrv(2) .. Sets security validation attributes of the process setusrv(2) 444
Shared memory control functions Accesses shared memory identifier shmget(2) 457
Shared memory control operations Detaches shared memory segment shmdt(2) 455
Shared memory operations Attaches shared memory segment shmat(2) 447
Shared memory segments Provides shared memory control operations shmctl(2) 450
shmat(2) ... Attaches shared memory segment shmat(2) 447
shmctl(2) ... Provides shared memory control operations shmctl(2) 450
shmdt(2) ... Detaches shared memory segment shmdt(2) 455
shmget(2) ... Accesses shared memory identifier shmget(2) 457
shutdown(2) .. Shuts down part of a full-duplex connection shutdown(2) 460
Shuts down part of a full-duplex
connection .. Shuts down part of a full-duplex connection shutdown(2) 460

SR−2012 10.0 619

sigaction(2) .. Examines or changes action associated with a signal sigaction(2) 462
sigblock(2) .. Examines and changes blocked signals sigprocmask(2) 479
sigctl(2) ... Provides generalized signal control sigctl(2) 466
sighold(2) .. Examines and changes blocked signals sigprocmask(2) 479
sigignore(2) .. Changes action associated with a signal signal(2) 470
Signal handlers ... Initiates a list of I/O requests .. listio(2) 243
signal(2) ... Changes action associated with a signal signal(2) 470
Signals .. Sends a signal to a process or a group of processes kill(2) 223
Signals .. Suspends process until signal ... pause(2) 305
Signals .. Examines or changes action associated with a signal sigaction(2) 462
Signals .. Provides generalized signal control sigctl(2) 466
Signals .. Changes action associated with a signal signal(2) 470
Signals .. Stores pending signals .. sigpending(2) 477
Signals .. Examines and changes blocked signals sigprocmask(2) 479
Signals .. Releases blocked signals and waits for interrupt sigsuspend(2) 483
sigpause(2) .. Releases blocked signals and waits for interrupt sigsuspend(2) 483
sigpending(2) ... Stores pending signals .. sigpending(2) 477
sigprocmask(2) Examines and changes blocked signals sigprocmask(2) 479
sigrelse(2) .. Examines and changes blocked signals sigprocmask(2) 479
sigset(2) ... Changes action associated with a signal signal(2) 470
sigsetmask(2) ... Examines and changes blocked signals sigprocmask(2) 479
sigsuspend(2) ... Releases blocked signals and waits for interrupt sigsuspend(2) 483
sigvec(2) ... Examines or changes action associated with a signal sigaction(2) 462
slgentry(2) .. Makes security log entry ... slgentry(2) 486
Socket descriptors .. Creates a pair of connected sockets socketpair(2) 495
Socket system calls Introduces system calls and error numbers intro(2) 1
socket(2) ... Creates an endpoint for communication socket(2) 488
socketpair(2) ... Creates a pair of connected sockets socketpair(2) 495
Sockets ... Gets name of connected peer .. getpeername(2) 169
Sockets ... Gets socket name .. getsockname(2) 182
Sockets ... Gets or sets options on sockets getsockopt(2) 184
Sockets ... Listens for connections on a socket listen(2) 239
Sockets ... Accepts a connection on a socket accept(2) 29
Sockets ... Receives a message from a socket recv(2) 347
Sockets ... Sends a message from a socket send(2) 390
Sockets ... Shuts down part of a full-duplex connection shutdown(2) 460
Sockets ... Creates an endpoint for communication socket(2) 488
Sockets ... Binds a name to a socket .. bind(2) 49
Sockets ... Creates a pair of connected sockets socketpair(2) 495
Sockets ... Initiates a connection on a socket connect(2) 84
Space allocation ... Changes data segment space allocation brk(2) 53
Special files .. Opens a file for reading or writing open(2) 287
ssbreak(2) .. Changes size of secondary data segment ssbreak(2) 497
SSD memory .. Opens a file for reading or writing open(2) 287
SSD Solid-state storage devices Changes size of secondary data segment ssbreak(2) 497
SSD solid-state storage devices Reads or writes to secondary data segment ssread(2) 500
ssread(2) ... Reads or writes to secondary data segment ssread(2) 500
sswrite(2) .. Reads or writes to secondary data segment ssread(2) 500
Starts a new array session Starts a new array session ... newarraysess(2) 279

620 SR−2012 10.0

stat(2) ... Gets file status ... stat(2) 503
statfs(2) ... Gets file system information ... statfs(2) 509
Statistics ... Gets file system statistics .. ustat(2) 571
Status .. Gets file status ... stat(2) 503
Status .. Gets file system information ... statvfs(2) 514
statvfs(2) .. Gets file system information ... statvfs(2) 514
stime(2) ... Sets time .. stime(2) 517
Stops the system from a user process Stops the system from a user process upanic(2) 569
Stores pending signals Stores pending signals .. sigpending(2) 477
suspend(2) .. Controls execution of processes suspend(2) 518
Suspends process until signal Suspends process until signal ... pause(2) 305
Symbolic links .. Reads value of a symbolic link readlink(2) 339
Symbolic links .. Makes a symbolic link to a file symlink(2) 522
symlink(2) .. Makes a symbolic link to a file symlink(2) 522
sync(2) ... Flushes system buffers out of main memory sync(2) 526
Synchronizes the in-core state of a file
with that on disk ... Synchronizes the in-core state of a file with that on

disk .. fsync(2) 138
sysconf(2) .. Retrieves system implementation information sysconf(2) 528
sysfs(2) ... Gets file system type information sysfs(2) 533
syssgi(2) ... Provides a system interface to Silicon Graphics

workstations .. syssgi(2) 536
System buffers .. Flushes system buffers out of main memory sync(2) 526
System clocks ... Corrects the time to allow synchronization of the

system clock .. adjtime(2) 44
System information Gets file system information ... statfs(2) 509
System information Retrieves system implementation information sysconf(2) 528
System information Gets file system type information sysfs(2) 533
System tables .. Returns information on and reads a system table tabinfo(2) 538
tabinfo(2) .. Returns information on and reads a system table tabinfo(2) 538
tabread(2) .. Returns information on and reads a system table tabinfo(2) 538
target(2) ... Retrieves or modifies machine characteristics target(2) 541
tcgetpgrp(2) .. Gets or sets terminal process group ID of the

foreground process group ... tcgetpgrp(2) 543
tcsetpgrp(2) .. Gets or sets terminal process group ID of the

foreground process group ... tcgetpgrp(2) 543
Terminates process Terminates process ... exit(2) 118
Termination .. Waits for a child process to stop or terminate wait(2) 580
Termination .. Gets information about a terminated child job waitjob(2) 586
texit(2) ... Terminates process ... exit(2) 118
_tfork(2) ... Creates a multitasking process .. _tfork(2) 545
tfork(2) ... Creates a multitasking process .. _tfork(2) 545
thread(2) ... Registers this process as a thread thread(2) 546
_threadexit(2) Terminates process ... exit(2) 118
Time ... Corrects the time to allow synchronization of the

system clock .. adjtime(2) 44
Time ... Sets a process alarm clock .. alarm(2) 46
Time ... Sets time .. stime(2) 517
Time ... Gets time ... time(2) 548

SR−2012 10.0 621

Time limits ... Sets user-controllable resource limits setlim(2) 411
Time zone ... Gets or sets date and time ... gettimeofday(2) 194
time(2) ... Gets time ... time(2) 548
times(2) ... Gets process and child process times times(2) 550
Traces ... Traces processes ... ptrace(2) 316
Traces processes ... Traces processes ... ptrace(2) 316
trunc(2) ... Truncates a file .. trunc(2) 552
Truncates a file ... Truncates a file .. trunc(2) 552
Trusted facility management Sets active categories of a process setucat(2) 434
Types .. Gets file system type information sysfs(2) 533
udb structure .. Gets or sets user permissions .. getpermit(2) 172
ulimit(2) ... Gets and sets user limits ... ulimit(2) 555
umask(2) ... Sets and gets file creation mask umask(2) 558
umount(2) ... Unmounts a file system ... umount(2) 560
uname(2) ... Gets name of current operating system uname(2) 562
UNICOS maximum authorized
compartments ... Sets minimum and maximum level range, authorized

compartments, and security auditing options setsysv(2) 431
UNICOS maximum level ranges Sets minimum and maximum level range, authorized

compartments, and security auditing options setsysv(2) 431
UNICOS minimum authorized
compartments ... Sets minimum and maximum level range, authorized

compartments, and security auditing options setsysv(2) 431
UNICOS minimum level ranges Sets minimum and maximum level range, authorized

compartments, and security auditing options setsysv(2) 431
UNICOS under UNICOS Controls and reports the status of major guest system

functions ... guestctl(2) 202
Unique requests .. Retrieves system implementation information sysconf(2) 528
unlink(2) ... Removes directory entry ... unlink(2) 564
unlink2(2) .. Removes directory entry ... unlink(2) 564
Unmounts a file system Unmounts a file system ... umount(2) 560
upanic(2) ... Stops the system from a user process upanic(2) 569
Updates user execution time Updates user execution time ... cutimes(2) 94
User IDs ... Sets real or effective user ID .. setreuid(2) 426
User information .. Gets specified user, job, or process signal information .. getinfo(2) 155
User limits .. Gets and sets user limits ... ulimit(2) 555
User memory .. Updates user execution time ... cutimes(2) 94
User panic .. Stops the system from a user process upanic(2) 569
User permissions .. Gets or sets user permissions .. getpermit(2) 172
ustat(2) ... Gets file system statistics .. ustat(2) 571
utime(2) ... Sets file access and modification times utime(2) 573
Validation attributes Gets security validation attributes of the process getusrv(2) 199
vfork(2) ... Creates a new process in a memory efficient way vfork(2) 577
wait(2) ... Waits for a child process to stop or terminate wait(2) 580
waitjob(2) .. Gets information about a terminated child job waitjob(2) 586
waitpid(2) .. Waits for a child process to stop or terminate wait(2) 580
Waits for a child process to stop or
terminate ... Waits for a child process to stop or terminate wait(2) 580
Waits for I/O completion(s) Waits for I/O completion(s) .. recalla(2) 344

622 SR−2012 10.0

Waits for I/O completions Waits for I/O completions .. recall(2) 342
Working directories Changes working directory ... chdir(2) 58
wracct(2) ... Writes an accounting record to the kernel accounting

file or to a daemon accounting file wracct(2) 588
write(2) ... Writes on a file .. write(2) 590
writea(2) ... Performs asynchronous write on a file writea(2) 596
Writes an accounting record to the kernel
accounting file or to a daemon accounting
file ... Writes an accounting record to the kernel accounting

file or to a daemon accounting file wracct(2) 588
Writes on a file ... Writes on a file .. write(2) 590
Writing files .. Opens a file for reading or writing open(2) 287

SR−2012 10.0 623

