Tape Subsystem Administration
SG-2307 10.0

Copyright © 1995, 1997 Cray Research, Inc. All Rights Reserved. This manual or parts thereof may not be reproduced in any
form unless permitted by contract or by written permission of Cray Research, Inc.

Portions of this product may still be in development. The existence of those portions still in development is not a commitment of
actual release or support by Cray Research, Inc. Cray Research, Inc. assumes no liability for any damages resulting from attempts
to use any functionality or documentation not officially released and supported. If it is released, the final form and the time of
official release and start of support is at the discretion of Cray Research, Inc.

Autotasking, CF77, CRAY, Cray Ada, CraySoft, CRAY Y-MP, CRAY-1, CRInform, CRI/TurboKiva, HSX, LibSci, MPP Apprentice,
SSD, SUPERCLUSTER, UNICOS, and X-MP EA are federally registered trademarks and Because no workstation is an island, CCI,
CCMT, CF90, CFT, CFT2, CFT77, ConCurrent Maintenance Tools, COS, Cray Animation Theater, CRAY APP, CRAY C90,

CRAY C90D, Cray C++ Compiling System, CrayDoc, CRAY EL, CRAY]90, CRAY]J90se, CrayLink, Cray NQS,
Cray/REELlibrarian, CRAY S-MP, CRAY SSD-T90, CRAY T90, CRAY T3D, CRAY T3E, CrayTutor, CRAY X-MP, CRAY XMS,
CRAY-2, CSIM, CVT, Delivering the power . . ., DGauss, Docview, EMDS, GigaRing, HEXAR, IOS,

ND Series Network Disk Array, Network Queuing Environment, Network Queuing Tools, OLNET, RQS, SEGLDR, SMARTE,
SUPERLINK, System Maintenance and Remote Testing Environment, Trusted UNICOS, UNICOS MAX, and UNICOS/mk are
trademarks of Cray Research, Inc.

DynaWeb is a trademark of Electronic Book Technologies, Inc. E-Systems, EMASS, ER90, and VolServ are trademarks of
E-Systems, Inc. FLEXIm is a trademark of Globetrotter Software, Inc. ESCON and IBM are trademarks of International Business
Machines Corporation. Kerberos is a trademark of the Massachusetts Institute of Technology. PostScript is a trademark of Adobe
Systems, Inc. Silicon Graphics and the Silicon Graphics logo are trademarks of Silicon Graphics, Inc. NFS and Sun are trademarks
of Sun Microsystems, Inc. SecurID is a tradmark of Security Dynamics, Inc., StorageTek is a trademark of Storage Technology
Corporation. UNIX is a registered trademark in the United States and other countries, licensed exclusively through X/Open
Company Limited. X/Open is a registered trade mark of X/Open Company Ltd.

The UNICOS operating system is derived from UNIX® System V. The UNICOS operating system is also based in part on the
Fourth Berkeley Software Distribution (BSD) under license from The Regents of the University of California.

New Features

Tape Subsystem Administration SG-2307 10.0

With the UNICOS 10.0 release, this manual documents the tape subsystem for both the UNICOS and
UNICOS/mk operating systems. Its title, UNICOS Tape Subsystem Administrator’s Guide, has been changed
to Tape Subsystem Administration, Cray Research publication SG-2307. Any administration differences
between the operating systems are highlighted in the text.

This revision documents the new and updated user exits, additional er r upt (8) information, updated
configuration information, and man page changes.

Miscellaneous editorial and technical changes were made.

Record of Revision

Version

9.0

9.2

9.3

10.0

SG-2307 10.0

Description

August 1995
Original Printing.

December 1996
Online documentation supports the administration of the UNICOS 9.2 release
running on the Cray Research computer systems.

August 1997
Online documentation supports the administration of the UNICOS 9.3 release
running on the Cray Research computer systems.

November 1997

Online documentation supports the administration of the UNICOS 10.0 release
running on the Cray Research computer systems and subsequent UNICOS/mk
running on Cray T3E systems.

Contents

Preface
UNICOS system administration publications

UNICOS/mk system administration publications
Related publications
Ordering Cray Research publications

Conventions

Reader comments

Tape Subsystem Administration [1]
Tape interfaces

Administration commands

Tape Configuration [2]

UNICOS configuration
Configuration settings
System boot parameter file

UNICOS/mk configuration
Configuration settings

Parameter file

Other Tape Administration Issues [3]
Naming and numbering device groups

User database considerations
User exits

Implementation

User exit descriptions

SG-2307 10.0

Page
vii
vii

viii
ix
Xi
Xi

xiii

—_

O© o0 N o a1 g G

11
11

11
12
12

14

Tape Subsystem Administration

Automatic volume recognition
Tape autoloaders

Command flow

StorageTek autoloader information

IBM autoloader information
EMASS autoloader information
General installation information

Organizing your devices in attended and unattended modes
Accessing tape cartridges

Message daemon and operator interface

Tape Troubleshooting [4]
Tape drive or job problems
Tape daemon problems

t pdf i xup utility

Tracing

Sample trace analysis

Trace information

Trace example

Source

Associated kernel trace entry
err pt (8) utility
Sample er r pt (8) analysis
Block mux and ESCON protocols
SCSI protocols

daenon. stderr file
crash(8) or cr ashik(8) utility

Appendix A Man Pages

Page

24
25

26
27

28
29
29
30

31
31

35
35
35
36
37
38

38
39

40
44

45
46
46
49

50
50

53

SG-2307 10.0

Contents

Index

Figures

Figure 1. UNIX autoloader communication

Tables

Table 1. Message daemon commands

SG-2307 10.0

Page

55

27

32

Preface

This manual documents UNICOS 10.0 release running on Cray Research
systems. It contains information needed in the administration of the tape
subsystem available to UNICOS and UNICOS/mk systems.

Warning: Starting with the UNICOS 10.0 release, the term Cray ML-Safe
replaces the term Trusted UNICOS, which referred to the system configuration
used to achieve the UNICOS 8.0.2 release evaluation. Because of changes to
available software, hardware, and system configurations since the UNICOS
8.0.2 system release, the term Cray ML-Safe does not imply an evaluated
product, but refers to the currently available system configuration that closely
resembles that of the evaluated Trusted UNICOS 8.0.2 system.

For the UNICOS 10.0 release, the functionality of the Trusted UNICOS
system has been retained, but the CONFIG_TRUSTEDption, which enforces
conformance to the strict B1 configuration, is no longer available.

UNICOS system administration publications

SG-2307 10.0

Information on the structure and operation of a Cray Research computer system
running the UNICOS operating system, as well as information on administering
various products that run under the UNICOS operating system, is contained in
the following documents:

General UNICOS System Administration, Cray Research publication SG-2301,
contains information on performing basic administration tasks as well as
information about system and security administration using the UNICOS
multilevel (MLS) feature. This publication contains chapters documenting
file system planning, UNICOS startup and shutdown procedures, file system
maintenance, basic administration tools, crash and dump analysis, the
UNICOS multilevel security (MLS) feature, and administration of online
features.

UNICOS Resource Administration, Cray Research publication SG-2302,
contains information on the administration of various UNICOS features
available to all UNICOS systems. This publication contains chapters
documenting accounting, automatic incident reporting (AIR), the fair-share
scheduler, file system quotas, file system monitoring, system activity and
performance monitoring, and the Unified Resource Manager (URM).

Vii

Tape Subsystem Administration

UNICOS Configuration Administrator’s Guide, Cray Research publication
SG-2303, provides information about the UNICOS kernel configuration files
and the run-time configuration files and scripts.

UNICOS Networking Facilities Administrator’s Guide, Cray Research
publication SG-2304, contains information on administration of networking
facilities supported by the UNICOS operating system. This publication
contains chapters documenting TCP/IP for the UNICOS operating system,
the UNICOS network file system (NFS) feature, and the network
information system (NIS) feature.

NQE Administration, Cray Research publication SG-2150, describes how to
configure, monitor, and control the Cray Network Queuing Environment
(NQE) running on a UNIX system.

Kerberos Administrator’s Guide, Cray Research publication SG-2306, contains
information on administration of the Kerberos feature, a set of programs and
libraries that provide distributed authentication over an open network. This
publication contains chapters documenting Kerberos implementation,
configuration, and troubleshooting.

Tape Subsystem Administration, Cray Research publication SG-2307, contains
information on administration of UNICOS and UNICOS/mk tape
subsystems. This publication contains chapters documenting tape subsystem
administration commands, tape configuration, administration issues, and
tape troubleshooting.

UNICOS/mk system administration publications

viii

This publication is one of a set of related manuals that cover information on the
structure and operation of a CRAY T3E computer system running the
UNICOS/mk operating system, as well as information on administering
various products that run under the UNICOS/mk operating system. This set
includes the following publications:

UNICOS/mk General Administration, Cray Research publication SG-2601
contains information on basic administration tasks, file system planning,
UNICOS/mk startup and shutdown procedures file system maintenance,
basic administration tools, crash and dump analysis, and administration of
online features.

UNICOS/mk Resource Administration, Cray Research publication SG-2602
contains information on the administration of various UNICOS/mk features
available on CRAY T3E systems. Topics include accounting, global resource

SG-2307 10.0

Preface

Related publications

SG-2307 10.0

management (GRM), political scheduling, system activity monitoring (SAM),
file system quotas, and file system space monitoring.

UNICOS/mk Configuration Reference Manual, Cray Research publication
SG-2603 provides details about the administration of UNICOS/mk
configuration files created when the UNICOS/mk operating system is
installed and configured.

UNICOS/mk Networking Facilities Administration, Cray Research publication
SG-2604 contains information on the administration of networking facilities
supported by the UNICOS/mk operating system, including TCP/IP for the
UNICOS/mk operating system, the UNICOS/mk network file system (INFS)
feature, the network information system (NIS) feature, and the Cray-based
network monitor.

UNICOS/mk Tape Subsystem Administration, Cray Research publication
SG-2607 introduces the Tape Management Facility and the tape interfaces
and includes chapters on tape subsystem administration commands, tape
configuration, and tape troubleshooting.

For tape user information, see the following publication:

Tape Subsystem User’s Guide, Cray Research publication SG-2051

The following UNICOS man page manuals contain additional information that
may be helpful.

Note: For the UNICOS 10.0 release, man page reference manuals are not
orderable in printed book form. Instead, they are available as printable
PostScript files provided on the same DynaWeb CD as the rest of the
supporting documents for this release. Individual man pages are still
available online and can be accessed by using the man(1) command.

UNICOS User Commands Reference Manual, Cray Research publication
SR-2011

UNICOS System Calls Reference Manual, Cray Research publication SR-2012

UNICOS File Formats and Special Files Reference Manual, Cray Research
publication SR-2014

UNICOS Administrator Commands Reference Manual, Cray Research
publication SR-2022

Tape Subsystem Administration

UNICOS System Libraries Reference Manual, Cray Research publication
SR-2080

The following UNICOS ready references are available in printed form from the
Distribution Center:

UNICOS User Commands Ready Reference, Cray Research publication SQ-2056
UNICOS System Libraries Ready Reference, Cray Research publication SQ-2147
UNICOS System Calls Ready Reference, Cray Research publication SQ-2215

UNICOS Administrator Commands Ready Reference, Cray Research publication
SQ-2413

The following manuals are also referenced on man pages in this document:

UNICOS Installation Guide, Cray Research publication SG-2112

Application Programmer’s Library Reference Manual, Cray Research publication
SR-2165

SWS-ION Administration and Operations Guide, Cray Research publication
5G-2204

Design specifications for the UNICOS multilevel security (MLS) feature are
based on the trusted computer system evaluation criteria developed by the U.
S. Department of Defense (DoD). If you require more information about
multilevel security on UNICOS, you may find the following sources helpful:

DoD Computer Security Center. A Guide to Understanding Trusted Facility
Management (DoD NCSC-TG-015). Fort George G. Meade, Maryland: 1989.

DoD Computer Security Center. Department of Defense Trusted Computer
System Evaluation Criteria (DoD 5200.28-STD). Fort George G. Meade,
Maryland: 1985. (Also known as the Orange book.)

DoD Computer Security Center. Trusted Network Interpretation of the Trusted
Computer System Evaluation Criteria (DoD NCSC-TG-005-STD). Fort George
G. Meade, Maryland: 1987. (Also known as the Red book.)

DoD Computer Security Center. Summary of Changes, Memorandum for the
Record (DoD 5200.28-STD). Fort George G. Meade, Maryland: 1986.

DoD Computer Security Center. Password Management Guidelines
(CSC-STD-002-85). Fort George G. Meade, Maryland: 1985.

SG-2307 10.0

Preface

* Wood, Patrick H. and Stephen G. Kochan. UNIX System Security. Hasbrouck
Heights, N.J.: Hayden Book Company, 1985.

Note: If your site wants to purchase the optional SecurID card used with
UNICOS MLS network security, the necessary hardware, software, and
user publications can be obtained from Security Dynamics, Inc., 2067
Massachusetts Avenue, Cambridge, MA, 02140, (617) 547-7820.

Ordering Cray Research publications

Conventions

SG-2307 10.0

The User Publications Catalog, Cray Research publication CP-0099, describes the
availability and content of all Cray Research hardware and software documents
that are available to customers. Cray Research customers who subscribe to the

Cray Inform (CRInform) program can access this information on the CRInform

system.

To order a document, either call the Distribution Center in Mendota Heights,
Minnesota, at +1-612-683-5907, or send a facsimile of your request to fax
number +1-612-452-0141. Cray Research employees may send electronic mail
to orderdsk (UNIX system users).

Customers who subscribe to the CRInform program can order software release
packages electronically by using the Order Cray Software option.

Customers outside of the United States and Canada should contact their local
service organization for ordering and documentation information.

The following conventions are used throughout this document:

Convention Meaning
command This fixed-space font denotes literal items such as

commands, files, routines, path names, signals,
messages, and programming language structures.

manpage(x) Man page section identifiers appear in
parentheses after man page names. The following
list describes the identifiers:

1 User commands

1B User commands ported from BSD

Xi

Tape Subsystem Administration

Xii

variable

user i nput

System calls

Library routines, macros, and

opdefs
4 Devices (special files)
4P Protocols
5 File formats
7 Miscellaneous topics
7D DWB-related information
8 Administrator commands

Some internal routines (for example, the
_assign_asgcemd_info () routine) do not have
man pages associated with them.

Italic typeface denotes variable entries and words
or concepts being defined.

This bold, fixed-space font denotes literal items
that the user enters in interactive sessions.
Output is shown in nonbold, fixed-space font.

Brackets enclose optional portions of a command
or directive line.

Ellipses indicate that a preceding element can be
repeated.

The following machine naming conventions may be used throughout this

document:

Term

Cray PVP systems

Cray MPP systems

Definition
All configurations of Cray parallel vector

processing (PVP) systems.

All configurations of the CRAY T3D series. The
UNICOS operating system is not supported on
CRAY T3E systems. CRAY T3E systems run the
UNICOS/mk operating system.

SG-2307 10.0

Preface

Reader comments

SG-2307 10.0

All Cray Research All configurations of Cray PVP and Cray MPP
systems systems that support this release.

The default shell in the UNICOS and UNICOS/mk operating systems, referred
to in Cray Research documentation as the standard shell, is a version of the Korn
shell that conforms to the following standards:

e Institute of Electrical and Electronics Engineers (IEEE) Portable Operating
System Interface (POSIX) Standard 1003.2-1992

* X/Open Portability Guide, Issue 4 (XPG4)

The UNICOS and UNICOS/mk operating systems also support the optional use
of the C shell.

Cray UNICOS Version 10.0 is an X/Open Base 95 branded product.

If you have comments about the technical accuracy, content, or organization of
this document, please tell us. You can contact us in any of the following ways:

¢ Send us electronic mail at the following address:
publications@cray.com

¢ Contact your customer service representative and ask that an SPR or PV be
filed. If filing an SPR, use PUBLICATIONS for the group name, PUBSfor the
command, and NO-LICENSE for the release name.

¢ (Call our Software Publications Group in Eagan, Minnesota, through the
Customer Service Call Center, using either of the following numbers:

1-800-950-2729 (toll free from the United States and Canada)
+1-612-683-5600

e Send a facsimile of your comments to the attention of “Software Publications
Group” in Eagan, Minnesota, at fax number +1-612-683-5599.

We value your comments and will respond to them promptly.

xiii

Tape Subsystem Administration [1]

1.1 Tape interfaces

This chapter introduces the tape interfaces and administration commands.

The tape subsystem supports two interfaces: the tape daemon-assisted interface
and the character-special tape interface. This manual describes the tape
daemon-assisted interface, which is referred to as the tape subsystem
throughout the manual. It is also called the Tape Management Facility.

The character-special tape interface and the tape daemon-assisted interface may
operate concurrently. Devices for both interfaces are defined in the same
configuration file and are defined identically; that is, the interface is not
identified in the configuration file. For information on the character-special tape
interface, see the Tape Subsystem User’s Guide, Cray Research publication
SG-2051.

Warning: Starting with the UNICOS 10.0 release, the term Cray ML-Safe
replaces the term Trusted UNICOS, which referred to the system configuration
used to achieve the UNICOS 8.0.2 release evaluation. Because of changes to
available software, hardware, and system configurations since the UNICOS
8.0.2 system release, the term Cray ML-Safe does not imply an evaluated
product, but refers to the currently available system configuration that closely
resembles that of the evaluated Trusted UNICOS 8.0.2 system.

For the UNICOS 10.0 release, the functionality of the Trusted UNICOS
system has been retained, but the CONFIG_TRUSTEDption, which enforces
conformance to the strict B1 configuration, is no longer available.

1.2 Administration commands

SG-2307 10.0

This section briefly describes tape subsystem administration commands
common to all Cray Research systems.

tpapm (8) The tpapm (8) command requests that the tape
daemon mount a volume (identified by the
volume serial number (VSN)) on any available
drive that may be serviced by an autoloader. This
function is useful when you must premount
volumes required by some program (for example,

Tape Subsystem Administration

tpbmx (8)

tpclr (8)

tpconf (8)

tpconfig (8)

tpcore (8)

tpdaemon (8)

tpdev (8)

tpdstop (8)

tpformat (8)

a backup) that is performing a multivolume
operation, and the required volumes reside in the
autoloader storage unit.

The tpbmx (8) command displays tape device
information that may be useful to operators and
system administrators. This information comes
primarily from the tpdtab structure for each
device in the kernel (the definition of tpdtab is
in the file /usr/include/sys/tpd.h).

The tpclr (8) command clears the last pending
request on the data path to a tape drive. All
tables and data associated with that device are
cleared, if possible.

The tpconf (8) command converts a tape daemon
configuration file to binary format for the tape
daemon to process when it is started.

The tpconfig (8) command configures tape
devices up and down, changes the status of the
associated media loaders, and assigns a media
loader to a device and reassigns a device group to
a device.

The tpcore (8) command initiates the tape
subsystem monitor.

The tpdaemon (8) command starts the tape
daemon. It provides the routing and control of
the various components used in tape resource
management, device management, volume
mounts and dismounts through operator
communication or autoloader requests, label
processing, volume switching, accounting,
security, and error recovery.

The tpdev (8) command displays the status of
tape devices and associated components of the
tape data path.

The tpdstop (8) command stops the tape
daemon in an orderly fashion.

The UNICOS tpformat (8) command reserves
the specified resource, mounts the requested

SG-2307 10.0

Tape Subsystem Administration [1]

tpfrls (8)

tpgstat (8)

tpinit (8)

tplabel (8)

tpmis (8)

tpmgl (8)

tpscr (8)

tpset (8)

tpu (8)

SG-2307 10.0

volume, and issues the volume format request to
the ER90 device.

The tpfrls (8) command lets the operator release
the tape reservations made by a user. tpfrls (8)
also clears all active tape devices and kills the
user processes using the tape devices.

The tpgstat (8) command displays the
reservation status for each device group in the
system for each tape user.

The tpinit (8) command initializes the tape
subsystem.

The tplabel (8) command labels tapes and may
perform other functions depending on the
interface being used.

The tpmls (8) command displays the status of the
tape loaders in the system.

The tpmgl (8) command displays the current
mount request list for all users who have
completed initial mount processing and have a
mount request pending.

The tpscr (8) command returns volumes
allocated by a user to the loader scratch pool.

The tpset (8) command sets features for the tape
daemon. It changes the status of automatic
volume recognition (AVR), the status of front-end
servicing (FES), the status of the
Cray/REELlibrarian (CRL), the status of
overcommitted mount requests, the status of
tracing for the tape daemon, or the destination of
tape operator messages issued by the tape
daemon.

All of these features except tracing can be set in
the tape configuration file. tpset (8) returns the
current status of all features.

The tpu (8) command is used by the system
operator to unload tapes. This command has no
effect on a tape that is currently in use. It is most

Tape Subsystem Administration

useful for unloading tapes and freeing tape drives
on systems running with automatic volume
recognition (AVR).

4 SG-2307 10.0

Tape Configuration [2]

This chapter provides information on UNICOS and UNICOS/mk configuration.

2.1 UNICOS configuration

In order for users to access tapes through the tape daemon-assisted interface or
through the character-special tape interface, the roptions file must contain a
tape entry. The following entry is required to activate the tape software:

RC-TAPE="YES"

Tape configuration is usually maintained through the UNICOS installation and
configuration menu system, which uses the text_tapeconfig file. You
should set the parameters in the file to values that suit your system. This
section contains information on configuration settings and the system boot
parameter file.

2.1.1 Configuration settings

SG-2307 10.0

Tape configuration on a UNICOS system is determined at the following four
levels. The higher levels override the lower levels if the settings differ.

1. Kernel generation. Kernel parameters that relate to tapes are located in
config.h , a Cray Research systems source file. It provides defaults for the
TAPE_MAX_CONF_Ukhd TAPE_MAXPER_DEVparameters in the system
boot parameter file.

2. System boot. The system boot parameter file specifies tape parameters in
~cri/os/uts/param , an operator work station (OWS) file, in the
/sys/iparam file for the CRAY J90 series systems with IOS-V, or in
{opt/CYRIOS/ systemnamelparam , a system workstation (SWS) file.

3. Tape system initialization. The tpinit (8) command reads and processes
the parameters you have specified in /etc/config/text _tapeconfig
For parameter descriptions, see the text_tapeconfig (5) man page. This
page also contains tape configuration file examples for GigaRing based
systems and for systems with I/O subsystems Model E (IOS-E) and Model
V (I0S-V).

Tape Subsystem Administration

4. Administration commands. You may specify particular settings and options
by using tape administration commands such as tpset (8) to make
run-time changes. For more information, see Chapter 1, page 1.

Tape configuration parameters that you can modify are defined in the system
boot parameter file and in the tape configuration file on Cray Research systems.

Note: For Trusted UNICOS systems, specific configuration values must be
observed. See "Configure the UNICOS 9.0 System" section in the UNICOS
Installation Guide, Cray Research publication SG-2112, for more information.

2.1.2 System boot parameter file

The system boot parameter file specifies parameters that define the kernel. The
following three parameters are tape-related:

TAPE_MAX_CONF_UP

TAPE_MAXPER_DEV

TAPE_MAX_DEV

This parameter defines the maximum number of
tape devices that can be configured up. The tape
configuration file may specify more devices than
are specified in this parameter. The default value
is 4.

This parameter defines the maximum number of
bytes that a device can have for buffers. This
number is rounded up to the next multiple of
4096 bytes by the tape driver. The default value is
65536 bytes.

This parameter specifies the maximum number of
tape devices in the system. The following define
the types of tape devices:

Real devices Tape devices upon
which you can

mount a tape.

These devices are
not real devices.
They are used by
the tape daemon
and tape users as
handles to gain
access to the tape
driver. A pseudo
device may be
opened and the

Pseudo devices

SG-2307 10.0

Tape Configuration [2]

unicos {

resulting file
descriptor used to
issue ioctl (2)
system calls to the
tape driver.

The value specified by this parameter is the sum
of all of the following;:

* The number of real tape devices

® The number of tape I/O processors (IOPs)
* The total number of channels for tapes
The default value is 32.

The following example shows the section of the system boot parameter file that
specifies a maximum of 40 tape devices for the IOS-E:

3536 NBUF;
0 LDCHCORE;

32

TAPE_MAX_CONRJP; /* Maximum of 32 tapes configured up */

196608 TAPE_MAX_PER_DEV; /* Maximum size of buffer per device */

~

* (in bytes) *

40 TAPE_MAX DEV /¥ Maximum of 40 tape devices */

500

NLDCH,;

24 PDDMAX;

256
256
256
256
256

LDDMAX;
PDDSLMAX;
MDDSLMAX;
SSDDSLMAX;
SDDSLMAX;

2.2 UNICOS/mk configuration

SG-2307 10.0

Tape configuration is usually maintained through the UNICOS/mk
configuration tool, which uses the text_tapeconfig file. You should set the
parameters in the file to values that suit your system. This section contains
information on configuration settings and the parameter file.

Tape Subsystem Administration

2.2.1 Configuration settings
The following settings affect tape usage on a UNICOS/mk system:

1. Kernel generation. The system administrator should make sure that the

tape flag in the CRAY T3E /etc/config/config.mh file is set to 1. This
flag controls whether or not a site will have the online tape capability in the
kernel:

/*

* If set to one (1), the CONFIG_TAPEvariable turns on the online tape

* capability in the kernel. If set to zero (0), the code is turned

* off. Its default is one (1), or ON.

*/

#ifndef CONFIG_TAPE
#define CONFIG_TAPE1
#endif

2. rcoptions file set-up. The system administrator should also make sure
that the CRAY T3E rcoptions file contains the following tape entry:

RC_TAPE="YES"

This entry is required to activate tape software so that users can access
tapes. It is needed for either the tape daemon-assisted interface or the
character-special tape interface.

For information on startup and shutdown, see UNICOS/mk Configuration
Reference Manual, Cray Research publication SG-2603.

3. System startup. The system administrator can specify tape parameters in
the SWS /opt/CYRIlos/<mainframe_name>/param file.

4. Multiuser initialization. The tpinit (8) command reads and processes the
parameters specified in the /etc/config/text_tapeconfig file. For a
description of these parameters, see the text_tapeconfig (5) man page.

The tape daemon uses these values to decide what to do in various
situations. The tape configuration file must be updated to configure the
tape daemon before the daemon is started.

The tape configuration file defines all tape hardware used by the system.
The diagnostic devices are implicitly defined when the nodes and the
channels are defined. You must not define them again.

8 SG-2307 10.0

Tape Configuration [2]

2.2.2 Parameter file

SG-2307 10.0

5. Administration commands. Once the system is in multiuser mode, the
system administrator may specify particular settings and options by using
tape administration commands such as tpset (8) to make run-time changes.
For a brief description of the commands, see Chapter 1, page 1.

The parameters in the parameter file define the kernel. The following three

parameters are tape-related:

tpd_max_bufz

tpd_max_conf_up

tpd_maxdev

Specifies the maximum tape buffer size in bytes
for each tape device configured up. Accepts 0 to
999999999. This value is rounded up to the next

multiple of 4096 bytes.

Specifies the maximum number of tape devices
that may be configured up. Accepts 0 to 9999.

Specifies the maximum number of tape devices
that may be configured in the tape subsystem.
Accepts 0 to 9999. The following define the types

of tape devices:

Real devices

Pseudo devices

Tape devices upon
which you can
mount a tape.

These devices are
not real devices.
They are used by
the tape daemon
and tape users as
handles to gain
access to the tape
driver. A pseudo
device may be
opened and the
resulting file
descriptor used to
issue ioctl (2)
system calls to the
tape driver.

The value specified by this parameter is the sum

of all of the following;:

Tape Subsystem Administration

* The number of real tape devices

¢ The number of tape nodes

* The total number of channels for tapes
The default value is 32.

For more information, see SWS-ION Administration and Operations Guide, Cray
Research publication SG-2204.

The following example shows the section of the parameter file that specifies a
maximum of 32 tape devices.

tapedriver.tpd_maxdev = 32;
tapedriver.tpd_max_conf_up = 32;
tapedriver.tpd_max_bufz = 262144;

10 SG-2307 10.0

Other Tape Administration Issues [3]

This chapter describes the following important issues related to the tape
subsystem administration:

¢ Naming and numbering device groups
e User database (UDB) considerations

e User exits

* Tape autoloaders

* Message daemon and operator interface

3.1 Naming and numbering device groups

Device groups are communicated to all relevant subsystems; use care in naming
and numbering the device groups. The subsystems (such as the user database
(UDB), the Network Queuing System (NQS), the accounting system, dump(2)
and restore (8), and data migration) that use the tape subsystem have
different internal definitions for tape device groups. Any change (from CART
and TAPE to the names of the device groups will probably affect one of these
subsystems. Therefore, you should refer to the appropriate subsystem
documentation before changing or adding device group names.

The order of the device groups can be defined in the

/etc/config/text _tapeconfig file with the DEVICE_GROURtatement.
The order is determined from the devices defined by using the DEVICE
statement. Job limit checking is based on the order of device groups in the tape
configuration file.

3.2 User database considerations

SG-2307 10.0

The user database (UDB) contains several fields that are important to the user’s
ability to access tapes. The permbits field is directly accessed by the tape
subsystem during the execution of a tpmnt (1) command. In order for a user to
mount a tape with a label type of blp (bypass label processing), the user must
have the bypasslabel permission bit set. Any application that intends to use
high-speed positioning which bypasses tape daemon control, must also have
the tape-manage permission bit set.

11

Tape Subsystem Administration

3.3 User exits

3.3.1 Implementation

12

The tape administrator establishes batch and interactive tape limits by setting
the appropriate entries in the jtapelim table. The tape daemon restricts
accesses to device groups based on the values passed during job initiation. The
entries of jtapelim table correlate one for one with the device group
displayed with the tprst (1) command. The order of the device groups in the
tape configuration file determines the order in tprst (1) output.

The following example shows limits for batch tapes listed in a UDB:

jtapelim[b][0] :02:
jtapelim[b][1] :01:
jtapelim[b][2] :00:
jtapelim[b][3] :00:
jtapelim[b][4] :00:
jtapelim[b][5] :00:
jtapelim[b][6] :00:
jtapelim[b][7] :00:

If the tape configuration file defined device groups of CART TAPE 3490, and
TEST, then a corresponding tprst (1) command would show the following;:

dev grp w rsvd used available
CART 0 0 0
TAPE 0 0 0
3490 0 0 0
TEST 0 0 0

In this example, the user can submit a batch job that is limited to accessing 2
CARTdevices and 1 TAPE device.

User exits allow users to add special routines to communicate with the tape
daemon without having access to the source. User exits allow a system process
to examine and modify a structure associated with a tape file.

To implement an user exit, it is necessary to modify and recompile the

tpuex.c file and to switch the user exit on or off within the
[etc/config/text_tapeconfig file. To switch the individual user exit or
all user exits (UEX_ALL) on or off, make an entry in the tape configuration file.

SG-2307 10.0

Other Tape Administration Issues [3]

If you are using the Configuration Tool (CT), select Tapes from the CT’s
subsystem list and either load an existing configuration file or create a new
configuration file. User exit options are selected from the following CT menu:

Tape Configuration
Select Tape SubSystem Options
General Options

The following is an example of the entry to add to the OPTIONSstatement of
the tape configuration file:

user_exit mask = (UEX_ASK_EXPDT,UEX_ASK_LBSW,UEX_ASK_RETRY),

The user exits for user _exit_mask are as follows:

User exit Description

UEX_ALL Enables all user exits
UEX_ASKEXPDT Enables uex_askexpdt user exit
UEX_ASK_HDR1 Enables uex_ask_hdrl user exit
UEX_ASK_LBSW Enables uex_asklbsw user exit
UEX_ASK_RETRY Enables uex _askretry user exit
UEX ASK_VERSCR Enables uex_askverscr user exit
UEX ASK_VSN Enables uex_askvsn user exit
UEX_ASK_SCR_VSN Enables uex_scr _vsn user exit
UEX_CHKACCESS Enables uex_chk_access user exit
UEX _CLS FILE Enables uex_cls_file user exit
UEX_MAC_HDR2 Enables uex_mac_hdr2 user exit
UEX_MNT_MSG Enables uex_mnt_msg user exit
UEX_SM_DEX Enables uex_sm_dex user exit
UEX SM_DUX Enables uex_sm_dux user exit
UEX_SM_VAX Enables uex_sm_vax user exit
UEX_SM_VUX Enables uex_sm_vux user exit
UEX_START Enables uex_start user exit

SG-2307 10.0 13

Tape Subsystem Administration

3.3.2 User exit descriptions

14

TM425 - file

UEX_STOP Enables uex_stop user exit

If an invalid option is used, an error message appears in the daemon.stderr
file similar to the following;:

Jtext_tapeconfig, line 311 at ", offset 54 : syntax error:
KEYWORD_PARAM-VALUE.

To find the error, check the appropriate line in the text_tapeconfig file. The
at ")" in the error message indicates that the tape daemon does not expect to
see the character "," here.

There are two other files, tpuex.c and tpuex.h , that are necessary to
implement user exits. They are located in the directory
lusr/src/cmd/cl/tp/tpnex . The file tpuex.c has stub routines
corresponding to each user exit; the tpuex.h file contains the declarations
needed for defining the user structure (uex_table).

All user exits have access to the uex_table structure. An exit may make its
decisions based on the values contained in this structure.

To use the user exits, follow these three steps:
1. Modify the tpuex.c file to reflect the required action of the user exit.

2. Recompile the tpnex.c file using the nmake command in the directory
Jusr/src/cmd/cl/tp . This creates a new tpnex.o file, relinks the file,
and creates new executables.

3. Install the new tape daemon with the nmake install command.

Examples on how to code the user exits can be found in the tpuex.c file.

User exits returning the values of 0 or -1 can use the defined symbolic values of
YES (0) or NO(-1) defined in the tpuex.h file. Descriptions of tape subsystem
user exits follow:

uex_askexpdt(uex_table)

Receives the uex_table structure and returns an integer value
of YESor NQ

This exit returns an answer to the question "Can user userid
write on unexpired VSN ovsn?"

SG-2307 10.0

Other Tape Administration Issues [3]

SG-2307 10.0

uex_asklbsw(uex_table)

Receives the uex_table structure and returns an integer value
of YESor NQ

This exit returns an answer to the question "Can user userid
switch from label original label to new label for VSN vsn?"

uex_askretry(uex _table, message_type, server_or_front-end,

message_id,

reason _for_retrying)

Receives the uex_table structure and the additional
parameters as shown above and returns an integer value of YES
or NQ

It is called when the tape daemon is unable to send a request to
a front-end/server and returns an answer to the question
"Should message to front end be re-sent or aborted?"

The returned value of YESmeans to retry the request; NO
means to cancel the request.

uex_askverscr(uex_table, vsn)

Receives the uex _table structure and a VSN. It returns an
integer value of YESor NQ

This exit returns an answer to the question "Is volume vsn on
device dovn a valid scratch volume for the job ID jid?"

uex_askvsn(uex_table)

Receives the uex_table structure and returns either a
character pointer with the value NULL or an address of a string.

This exit returns an answer to the question "What is the VSN
on device don?"

The returned value of NULL means no VSN was returned while
a pointer to a string is used as the value of the scratch VSN. If
no VSN is returned, then the tape daemon calls the askvsn ()
routine, just as if the user exit had not been taken.

15

Tape Subsystem Administration

16

uex_ask_hdrl(uex_table)

Receives the uex_table structure and returns an integer value
of YESor NQ

This user exit is called from a child process in the tape daemon
at the point where the VOL1 and HDR1 labels have been read
from a tape and the child process prepares to check some of the
values in the HDR1 label against values that are kept by the
tape daemon and its child processes.

A site can use this user exit to add code that enables the tape
daemon to do the following:

Obtain a number that controls how many characters of the
file identifier field in a HDR1 label is compared to a
character string kept by the tape daemon or, to an alternate
character string that is provided by this user exit.

The tape daemon uses the number in the user_fidl field
of the uex_table structure. If the site changes this number,
the modified number must have a value that is equal to or
greater than 1 and less than or equal to 16. The number

must be returned in the user_fidl field, while the return
value from this user exit must be YES If NOis returned, the
user_fidl field is not examined.

Obtain an alternate character string for the file identifier to
be compared to the character string in the file identifier field
in the HDR1 label from the tape.

The character string that the tape daemon uses is in the
user _fid field of the uex table structure. If the site
changes this string, the modified character string must be
stored in the user_fid field, while the return value from
this user exit must be YES If NOis returned, the user_fid
field is not examined.

Obtain an alternate one character string, which, in case of
ANSI labels, is compared to the accessibility character string
in the accessibility field in the HDR1 label from the tape. If
the character strings match, the action that is taken is the
same as the action taken for the space character as defined
in the ANSI standard.

SG-2307 10.0

Other Tape Administration Issues [3]

SG-2307 10.0

The character string that the tape daemon uses is in the
user_vac field of the uex_table structure. If the site
changes this string, the modified character string must be
stored in the user_vac field, while the return value from
this user exit must be YES If NOis returned, the user_vac
field is not examined.

If this user exit returns YES the following three actions occur:

e The surfeited field is checked for a number that is equal
to or greater than 1 and less than or equal to 16. If the

returned number is outside this range, the default value of
17 is used.

* The contents of the surfed field is copied into a tape
daemon structure.

¢ The contents of the served field is copied into a tape
daemon structure after it is checked against the following
characters:
A Z 0 .. 9 " N%&)*+,-I; <=>? "

If NOis returned, uex_table information is not used to update
data structures in the tape daemon.

uex _chk_access(uex_table)

Receives the uex_table structure and returns an integer value
of YESor NQ

This user exit is called from a child process in the tape daemon
at the point where the tape daemon has accepted a tape volume
to read from or to write to. It enables a site to add code to
check the access of the tape.

For example, the code could allow or reject access to a tape
volume after it has checked a locally maintained permission
file. When this user exit checks permission to access an output
tape, the tape daemon upon return from this user exit checks
the user_error field of the uex_table structure. If this field
contains error code ETNSC(90089 - not scratch), the tape
daemon rejects the tape volume. If more tape volumes have
been specified in the tpmnt (1) command, tpmnt (1) tries the
next tape volume.

17

Tape Subsystem Administration

18

Besides setting the user_error field to ETNSC this user exit
also sets the uex_table bit field uex_lst.flg.nsc to 1. The
tape daemon updates the fit field Ist.flg.nsc with this
information from the uex_table field.

If the user_error field contains any other error number, the
tape daemon upon return aborts the child process with error
code EACCE{13 - permission denied). If this user exit returns
the value NQ the tape daemon aborts the child process with
error code EACCESIS this user exit returns the value YES the
tape daemon accepts the tape volume and processing continues.

When this user exit checks permission to access an input tape,
the tape daemon upon return from this user exit checks the
return code. If the return code is NQ the tape volume is rejected
and the child process aborts with error code EACCESIf the
return code is YES the tape volume is accepted and processing
continues.

Besides the possible update of bit field Ist.flg.nsc in the
fit , no other information from the uex_table is used to
update data structures in the tape daemon.

uex _cls_file(uex_table)

Receives the uex_table structure and returns. The tape
daemon upon return from this user exit does not update any of
its information with information from uex_table

This user exit is called from a child process in the tape daemon
after the tape processing is completed and when the tape file is
about to be closed. The exit provides a site with an opportunity
to add code. For example, the code could enable the tape
daemon to add information to the tape.msg file concerning
the tape volumes that were used while processing the tape file.

uex_mac_hdr2(uex _table)

Receives the uex _table structure and returns an integer value
of YESor NQ

This user exit is called from a child process in the tape daemon
after the tape daemon reads the label information from the tape
and has called the security code to check proper
beginning-of-tape structure: VOL1, HDR1 and HDR?2 labels.
The user exit is called when a tape has a VOL1 and a HDR1

SG-2307 10.0

Other Tape Administration Issues [3]

SG-2307 10.0

label, but not a HDR?2 label. A site may use this user exit to
add code that allows or rejects access to the tape volume.

If this user exit returns the value NQ the tape daemon continues
its normal processing. It allows the tape to be overwritten, but
not to be read. If the exit returns the value YES the tape
daemon allows the user access to the tape. A return code of NO
complies with security guidelines.

No information from the uex table structure is used to
update data structures in the tape daemon.

uex_mnt_msg(uex_table)

Receives the uex_table structure and returns.

This user exit is called from either a child process or the tape
daemon itself after the tape daemon has built a tape mount
message and before it is sent to be processed. A site can use this
exit to add code that supplements information in the existing
mount message or changes it in some other way. When the tape
daemon transfers control to this user exit, the user_buff field
of the uex_table structure contains the address of the mount
message character string and the user_bytes field of the
uex_table structure contains the length in bytes of the
memory block that are allocated to hold the mount message.

If this user exit extends the length of the delivered character
string beyond the size of the allocated memory block, the user
exit allocates the necessary memory to store the newly
composed mount message. The address of which is returned to
the tape daemon in the user_buff location. The length in
bytes of the newly allocated memory block is returned in the
user_bytes field. The uex_table field update is set to a
nonzero value.

If this user exit does not extend the length of the delivered
character string beyond the size of the allocated memory block,
the code does not allocate another memory block, and the
address in the user_buff field is left unaltered. The length in
bytes of the allocated memory block in the user_bytes field
also remains unaltered. The update field of the uex_table
structure is set to zero.

19

Tape Subsystem Administration

When this user exit returns, the tape daemon checks the value
of the update field. If its value is zero, the tape daemon
continues its normal processing. It sends the mount message
from the location it has allocated to be processed. If the value
in the update field is nonzero, the tape daemon compares the
address of the memory block that it has allocated for its mount
message and the address that has been returned in the
user_buff field. If these addresses are the same, the tape
daemon continues its normal processing. If these addresses
differ, the tape daemon frees the memory block it had allocated
for its mount message and takes the address from the
user_buff field as its replacement.

No other uex_table information is used to update data
structures in the tape daemon.

uex _scr_vsn(uex_table)

Receives the uex_table structure and returns either a
character pointer with the value NULL or an address of a string.

This exit allows a site to specify the VSN for a scratch request.

The returned value of NULL means no VSN was returned while
a pointer to a string is used as the value of the scratch VSN. If
no VSN is returned, the tape daemon uses the default scratch
VSN, just as if the user exit had not been taken.

uex _sm_dex_1(uex_table)

20

Receives the uex_table structure and returns.

This user exit is called from a child process in the tape daemon
after the tape daemon has built a dataset enquiry (dex) request
for a servicing front-end machine and before it is sent to be
processed. A site can use this user exit to add code to
supplement information in the existing dex request or change it
in some other way.

When the tape daemon transfers control to this user exit, the
user_buff field of the uex_table structure contains the
address of the dex request and the user_bytes field of the
uex_table structure contains the length in bytes of the
memory block that is allocated to hold the dex request. The
{usr/src/cmd/cl/tp/tpuex/festbls.h header file

SG-2307 10.0

Other Tape Administration Issues [3]

SG-2307 10.0

contains a layout of the data structures making up the format
for the delivered dex request.

If this user exit extends the length of the delivered dex request
beyond the size of the allocated memory block, the code
allocates the necessary memory to store the newly composed
dex request. The address of this allocated memory block is
returned to the tape daemon in the user_buff location. The
length in bytes of the newly allocated memory block is returned
in the user_bytes field. The length in words of the newly
composed dex request is returned in the user_wc field of the
uex_table structure. The update field of the uex_table
structure must be returned set to a nonzero value, while the
yes_no field must be returned set to YES

If this user exit does not extend the length of the delivered dex
request beyond the size of the allocated memory block, the code
does not have to allocate another memory block and the
address in user_buff field remains unaltered. The length in
bytes of the allocated memory block in the user_bytes field
also remains unaltered. The length in words of the newly
composed dex request is returned in the user_wc field. The
update field must be returned set to a nonzero value, while
the yes_no field must be returned set to YES If this user exit
does not change the delivered dex request in any way, the
update field must be returned set to zero, while the yes _no
field is returned set to YES If this user exit determines that the
dex request should not be sent to the servicing front-end
machine, the yes_no field is has to be returned set to NQ

When this user exit returns, the tape daemon checks the value
returned in the yes _no field. If the value in this field is NQ the
tape daemon does not send the request to the servicing
front-end machine and continues its processing.

If the value returned in the yes_no field is YES the tape
daemon checks the value of the update field. If its value is
zero, the tape daemon continues its normal processing. It sends
the dex request from the location it has allocated to the
servicing front-end machine to be processed. If the value in the
update field is nonzero, the tape daemon replaces its value of
the length in words of the dex request with the value which is
returned in the user_wc field. It compares the address of the
memory block it has allocated for its dex request and the

21

Tape Subsystem Administration

22

address which has been returned in the user_buff field. If
these addresses are the same, the tape daemon continues its
normal processing. If these addresses differ, the tape daemon
frees the memory block it allocated for its dex request and takes
the address from the user_buff field as its replacement, after
which it continues its normal processing.

No other uex_table information is used to update data
structures in the tape daemon.

uex_sm_dux_2(uex_table)

Receives the uex_table structure and returns.

This user exit is called from a child process in the tape daemon
at the point where the tape daemon receives a reply from the
servicing front-end machine to a dataset enquiry (dex) request
and before it processes this reply. A site can use this exit to add
code that processes the reply in accordance with local
requirements. When the tape daemon transfers control to this
user exit, the user_buff field of the uex_table structure
contains the address of the dex reply and the user _bytes field
contains the length in bytes of the memory block which has
been allocated to hold the dex reply. The
{usr/src/cmd/cl/tp/tpuex/festbls.h header file
contains a layout of the data structures making up the format of
the delivered dex reply.

If this user exit determines that the servicing front-end machine
has returned a message in the reply, the address of the message
must be returned to the tape daemon in the user_tmsgp field
of the uex_table structure. It assures the message is properly
processed. If the servicing front-end machine has not returned
a message in the reply field, user_tmsgp has to be zero.

The user _error field is provided in case the user exit
encounters an error condition which has to abort the tape
daemon child process. When the user exit returns this field is
set to a nonzero value and the yes _no field of the uex_table
structure set to value NQ the tape daemon passes the value in
user_error on to the abort function. For a list of possible
return values, see the Tape Subsystem User’s Guide, Cray
Research publication SG-2051.

SG-2307 10.0

Other Tape Administration Issues [3]

If this user exit completes without errors and updates
information in the uex_table structure from the information
delivered in the dex reply, it returns a nonzero value to the tape
daemon in the update field of the uex_table structure and in
the yes_no field of the uex_table structure value YES This
causes various data structures in the tape daemon to be
updated with uex_table information. The code in function
uex_sm_dex_2() in the

lusr/src/cmd/cl/tp/tpuex/tpuex.c file contains an
example which is based on the way the tape daemon processes
the dex reply. It shows the uex_table fields which have to be
updated. If this user exit completes without updating the
uex_table fields and has determined that the tape daemon
has to do the processing of the dex reply, it returns to the tape
daemon with the yes_no field set to YESand the update field
set to zero. This prevents the tape daemon from updating its
data structures with information from the uex_table

structure. If the user exit relies on the tape daemon to process
the dex reply, the reply must be in the format the tape daemon
can handle.

uex_sm_vax(uex_table)

Receives the uex_table structure and returns an integer value
of YESor NQ

This exit returns an answer to the question "Can user uid access
volume vsn?" It is called in place of the volume access request
made to the front-end system.

This routine must validate access for a VSN and set the
following:

* Expiration information for the file
¢ The allowed-permission-bits structure
Returning a nonzero value denies access to the dataset.

uex_sm_vux(uex_table)

Receives the uex_table structure and returns an integer value
of YESor NQ

SG-2307 10.0 23

Tape Subsystem Administration

This exit provides the opportunity to update tables and log
fields after a volume has been accessed. It is called in place of
the volume access request made to the front-end system.

The return value YES means that the update was successful,
while the return value NOmeans that the update failed.

In addition, the new user exit, uex_vsn _ok_to_use , is called prior to sending
a tape mount request to the tape daemon. It provides the requested VSNs for
the tape mount. A site may replace the default exit with an exit tailored for its
needs.

3.4 Automatic volume recognition

24

A tape daemon with automatic volume recognition (AVR) enabled
automatically reads the label of a tape mounted on a device that is configured
up but is not assigned to a user. The tape daemon saves the volume serial
number (VSN); consequently, when the tape is requested by a tpmnt (1)
command, the correct tape is assigned. When a nonlabeled tape is mounted, the
operator is asked to supply the VSN.

For ER90 devices, the tape daemon saves the format ID. The correct tape is
assigned based on this format ID. When a blank tape is mounted, the operator
is asked to supply the external ID.

You can dynamically turn the AVR option on and off by issuing the tpset (8)
command. To turn AVR on, enter the following command:

tpset -a on
To turn AVR off, enter the following command:
tpset -a off

When the tape daemon successfully switches the AVR option, no message is
issued. If the tape daemon is busy with active tape users, you will receive a
message, and the AVR option will not be switched.

Issuing tpset (8) with no options results in a report of the status of AVR
front-end servicing, the status of front-end servicing, the status of tape tracing,
the status of the volume management facility, the status of Cray/REELlibrarian,
and tape operator ID.

When a user asks for a tape, the tape daemon verifies that the requested tape is
mounted on a drive in the requested device group and that it is not already

SG-2307 10.0

Other Tape Administration Issues [3]

3.5 Tape autoloader s

SG-2307 10.0

assigned to a user. If the tape is found, it will be assigned to the user who
issued the request. If the tape is not found, a message will be sent to the
operators requesting that the tape be mounted.

When the tape daemon is looking for a device to assign to a user, it stops the
search as soon as a matching VSN for BMX devices or format ID for ER90
devices is found. If multiple tapes with the same VSN are mounted, the first
drive that has a matching VSN and is not already assigned is assigned to the
user. Others with a matching VSN are queued. Therefore, it is best to have a
unique VSN for all tapes, including scratch tapes.

AVR allows the operator to mount a tape requested by a user on one of the
following devices:

* Any drive that is not assigned to a tape user of the requested device group.
The output of the tpstat (1) command shows the drives that are
unassigned.

* The drive assigned to the user. The operator can determine the drive
assigned to a given user by looking at the output of the tpstat (1)
command. The drive assigned to the user is indicated by the VSN and an
asterisk (*) preceding the VSN.

When a device is released (and neither the -n option of the rls (1) command
nor the -u option of the tpmnt (1) command has been specified), the tape is
unloaded.

If the user asks for a scratch tape (by failing to specify a VSN on the tpmnt (1)
command), the tape daemon asks for a mount with the default scratch VSN.
The operator must specify the name of a device that has a scratch tape mounted
in the reply to the mount message. The tape daemon then assigns the drive to
the user.

After a tape drive is configured up and a tape is mounted, the operator should
not unload the tape by pressing the "reset” button or the "not ready” button. A
tape should be unloaded by use of the tpu (8) command. The tpu (8) command
unloads tapes only on drives that are configured up but not assigned.

This subsection briefly describes the command flow between the software
components that are involved in the handling of tape volumes through an
autoloader. This flow is described in general and then in detail for StorageTek,
EMASS, and IBM autoloaders. This subsection also describes how to install and

25

Tape Subsystem Administration

configure each type of autoloader; and describes some pointers in organizing,
numbering, naming and accessing tape devices.

3.5.1 Command flow

Note: EMASS autoloaders are only supported on UNICOS systems.

The following steps describe command flow between software components that
are involved in the handling of tape volumes.

1.

The tape daemon starts a child process for each autoloader that has been
configured up. This child process is a daemon process that executes as long
as the autoloader it is associated with is configured up. If this autoloader is
configured down, the child process is terminated.

The tape daemon sends requests to the child process over a named pipe;
the tape daemon receives a confirmation reply and a final reply for each of
these requests. The final reply contains status information concerning the
completion of the request.

After the child process has received a request from the tape daemon and
has returned a confirmation reply, it translates the request into a format that
is acceptable to software supplied by the autoloader vendor. This software
is installed on a computer platform that is connected to a network to which
the Cray Research system is connected.

The translated request is sent to the vendor-supplied software using the
Remote Procedure Call/eXternal Data Representation (RPC/XDR) protocol
by way of Transmission Control Protocol/Internet Protocol (TCP/IP).

The vendor software returns a confirmation reply after the request has been
received from the Cray Research system.

After the vendor-supplied software has completed the request, it sends a
final reply to the Cray Research system over the network. The reply
contains status information concerning the completion of the request.

When the child process receives the reply from the vendor-supplied
software, it translates this reply into a format that is acceptable to the tape
daemon and sends it over a pipe to the tape daemon.

This process is depicted in Figure 1.

26

SG-2307 10.0

Other Tape Administration Issues [3]

Tape Loader , Vendor
daemon daemon software
Named TCP/IP
pipe

al0050

Figure 1. UNIX autoloader communication

3.5.2 StorageT ek autoloader information

SG-2307 10.0

The StorageTek Autoloader Cartridge Systems (ACS) support the IBM 3480,
3490, and 3490E compatible tape cartridges as well as the cartridges used for
the helical-scan StorageTek Redwood drives. These systems use the StorageTek
4480 drive, StorageTek Silverton drive, StorageTek Timberline drive, and
StorageTek Redwood drive.

The child process started by the tape daemon for a StorageTek autoloader is
named stknet , and the vendor-supplied software is called Automated
Cartridge System Library Server (ACSLS). The ACSLS application typically runs
on a Sun platform.

stknet is a program in executable binary format for which the building blocks
are delivered with the release materials. The cmd/cl/tp/stkacs directory
contains these building blocks:

File Description
Nmakefile Contains instructions to create stknet out of

stknet.o and stklib.a . It is installed in the
cmd/cl/tp/stkacs directory. This Nmakefile
file is, typically, called into execution from the
Nmakefile located in the cmd/cl/tp directory.

When this Nmakefile file is called into execution
with the install parameter, stknet is placed
in the /usr/lib/tp directory from which the
tape daemon calls it into execution.

stklib.a Contains an archive of modules in relocatable
binary format that link into the executable
version of stknet

27

Tape Subsystem Administration

stknet.o Contains a module in relocatable binary format.

stknet supports all tape drives that can be connected to a StorageTek library.
If stknet serves StorageTek Redwood drives, license CRSTK/STKRED and its
accompanying Cray FLEXIm key is required to activate the code in stknet that
supports the StorageTek Redwood drives. For assistance with the license,
contact your Cray Research service representative. No license is needed for all
other tape drives that can be connected to a StorageTek library.

3.5.3 IBM autoloader information

28

The IBM 3494 Tape Library Dataserver supports the IBM 3480, 3490, and 3490E
tape cartridges and uses the drives that IBM supports with these autoloaders.

The child process started by the tape daemon for an IBM autoloader is called
ibmnet and the vendor-supplied software is called Controlled Path Service
(CPS). The atl application typically runs on an IBM RISC system /6000
platform.

ibmnet is a program in executable binary format for which the building blocks
are delivered with the release materials. The directory cmd/cl/tp/ibmtld
contains these building blocks:

File Description
Nmakefile Contains instructions to create ibmnet out of

ibmnet.o and ibmlib.a . It is installed in the
cmd/cl/tp/ibmtld directory. This Nmakefile
file is, typically, called into execution from the
Nmakefile located in the cmd/cl/tp directory.

When this Nmakefile file is called into execution
with the install parameter, ibmnet is placed
in the /ust/lib/tp directory from which the
tape daemon calls in execution.

ibmlib.a Contains an archive of modules in relocatable
binary format that link into the executable
version of ibmnet .

ibmnet.o Contains a module in relocatable binary format.
The functionality that is coded within ibmnet is only accessible to sites that
have obtained license CRIBM/IBM3495 which is required for the IBM 3494 Tape

Library Dataserver, and the accompanying Cray FLEXIm key. For assistance
with the license, contact your Cray Research service representative.

SG-2307 10.0

Other Tape Administration Issues [3]

3.5.4 EMASS autoloader information

The child process started by the tape daemon for an EMASS autoloader is

called esinet

and the vendor-supplied software is called VolServ. The VolServ

application typically runs on a Sun platform.

esinet is a program in executable binary format for which the building blocks
are delivered with the UNICOS release materials. The cmd/cl/tp/dtdl
directory contains these building blocks.

File

Nmakefile

esilib.a

esinet.o

Description

Contains instructions to create esinet out of
esinet.o and esilib.a . It is installed in the
cmd/cl/tp/dtdl directory. This Nmakefile

file is, typically, called into execution from the
Nmakefile located in the cmd/cl/tp directory.

When this Nmakefile file is called into execution
with the install parameter, esinet is placed
in the /usr/lib/tp directory from which the
tape daemon calls into execution.

Contains an archive of modules in relocatable
binary format that link into the executable
version of esinet

Contains a module in relocatable binary format.

The functionality which is coded within esinet is only accessible to sites that
have obtained license CREMS/DTDL and the accompanying Cray FLEXIm key.
For assistance with the license, contact your Cray Research service

representative.

3.5.5 General installation information

To use an IBM autoloader, an EMASS autoloader, or the UNIX version of the
StorageTek autoloader, you must build your system with TCP/IP turned on in

the /etc/config/config.mh
contain the following lines:

#define CONFIG_TCP1
#define CONFIG_RPC1

file. That is, /etc/config/config.mh must

The UNIX storage server host name must be defined in the local /etc/hosts
file. For more information, see the hosts (5) man page. The UNIX storage

SG-2307 10.0

29

Tape Subsystem Administration

system host name also must be specified in the server parameter of the
LOADERdefinition in the /etc/config/text_tapeconfig file.

For the UNIX version of the StorageTek autoloader, you must set
CSI_UDP_RPCSERVICEnd CSI_TCP_RPCSERVICHo TRUEin the
/usr/ACSSS/rc.acsss file of the UNIX storage server host.

It is recommended that you use the installation documentation for the
autoloaders at your site to correctly install these products.

3.5.6 Organizing your devices in attended and unattended modes

30

If the autoloader is the only mechanism your site uses to service mount
requests, you may skip the following discussion. However, if the tape daemon
processes mount requests in a mixed environment, you must organize the
devices to use the devices and loaders in the most efficient manner possible.

A mixed environment consists of devices serviced by a manual operator and
devices serviced by an autoloader. A volume has a domain associated with it
and, as such, has a preferred or best loader to service a mount request. If the
domain of a tape cartridge is a tape vault, the best loader is an operator. If the
tape cartridge resides in the autoloader’s domain (silo), the best loader is the
autoloader.

Each tape device belongs to a device group, which is a collection of devices with
equivalent physical characteristics. Although cartridge devices can have
equivalent physical characteristics, you should consider the manner in which the
devices will be serviced to determine whether or not they should be grouped.

One of the principal reasons for using an autoloader is that the loader can be
run in unattended mode (that is, without an operator). Using the autoloader in
this manner means that no imports or exports are considered, and a
user-requested tape mount that cannot be satisfied by the autoloader is canceled.

The easiest way to prevent canceled mounts is to assign the autoloader drives
to a device group different from the one serviced by manual operators. A user
can then determine whether the required device group is available before
requesting a tape mount. The only drawback to this method is that the user
must be aware of the domain in which the tape resides and, if necessary, make
changes to scripts if the domain of the tape changes.

For operations that have 24-hour operator coverage, all tape cartridges can be
assigned to one device group, with the operator deciding whether the mount
request should be queued or canceled, or whether the volume should be

SG-2307 10.0

Other Tape Administration Issues [3]

imported or exported. In this case, the user need not be concerned about the
domain of the tape.

3.5.7 Accessing tape cartridges

3.6 Message daemon

SG-2307 10.0

Another administration issue is the accessibility of tape cartridges in an
autoloader. In the past, control of a volume serial number (VSN) was provided
by an operator or by security programs on a front-end computer. With an
autoloader, control of VSNs does not exist; therefore, with the distributed tape
daemon software, any user may request the mounting of any VSN in the
domain of the autoloader.

On all Cray Research systems, the released routines reside in the vsnexit.c
module; you can change the module to suit the particular needs or desires of
your site.

and operator interface

The message daemon and its associated operator interface provide mount
messages for administrators and operators who are loading and unloading
tapes. This subsection provides a brief overview of the daemon and interface.

You must have super-user privileges to start or stop the message daemon.

Only one message daemon can be running at any time. If you attempt to start
the message daemon while it is already running, an error message will be
returned.

All messages are logged by the message daemon as they are received. The logs
are kept in the msglog.log log file in the /usr/spool/msg directory. The
letc/newmsglog shell script saves the last several versions of the log. The
versions are called msglog.log.0 , msglog.log.1 , and so on, with
msglog.log.0 being the most recent. This script also instructs the message
daemon to reopen the log file; it should be run from the crontab (1) command.

The message daemon request pipe is located in the /usr/spool/msg directory.

Table 1 shows the message daemon commands and the privileges required to
access them.

31

Tape Subsystem Administration

32

Table 1. Message daemon commands

Command Privilege Description

msgdaemon(8) Super user Starts the message daemon

msgdstop (8) Super user Stops the message daemon

oper (8) Operator Operator display; displays
messages

msgi (1) All users Sends informative message to
operator

msgr (1) All users Sends action message to
operator

An operator is defined as anyone with a special operator group ID. The default
group is operator . This group ID can be changed in the Nmakefile file in
the /usr/src/cmd/msg directory. On Trusted UNICOS or MLS systems, the
sysops category is also necessary.

The operator display provided by the oper (8) command can be run from any
terminal defined in the /usr/lib/terminfo file. It requires at least 80
columns and 24 lines. The three lines at the bottom of the operator display
screen are used for input and for running commands that do not display
information on the screen. The rest of the screen is used as a refresh display to
display messages and to run other display commands.

Configuration file $HOME/.operrc lists the commands to be run as refresh
displays and those that require full control of the screen. $HOMBEs the user’s
home directory. If this file does not exist, the default configuration file
{usr/lib/oper.rc is used.

Commands not listed in the configuration file are assumed to be nondisplay
commands.

The following are three of the commands available from the operator display:

Command Description

infd (8) Displays informative messages
msgd(8) Displays action messages

rep (8) Replies to action messages

Two types of messages appear on the operator interface:

SG-2307 10.0

Other Tape Administration Issues [3]

¢ Informative messages, which are deleted after the operator has seen them.
The operator cannot reply to informative messages.

* Action messages, which require a reply from the operator. These are
primarily tape mount messages, but they may be other types of messages to
which users need responses. An action message is not deleted until either
the operator replies to it or the sender cancels it.

Both types of messages are logged by the message daemon.

SG-2307 10.0 33

Tape Troubleshooting [4]

Occasionally you may experience problems with the hardware or the software
while running magnetic tapes. If so, there are certain steps you should take to
try to clear the user, job, tape drive, or the tape daemon itself, and save the
proper information to debug the problem.

This chapter describes the following troubleshooting topics:
¢ Tape drive or job problems

¢ Tape daemon problems

e tpdfixup utility

* Tracing

* Sample trace analysis

e errpt (8) utility

e Sample errpt (8) analysis

e daemon.stderr file

e crash (8) orcrashmk (8) utility

4.1 Tape drive or job problems

If a tape drive appears to be hung, but the tape daemon is still responding to
commands such as tpstat (1) and tpgstat (8), you can use the tpfrls (8)
command to clear the user’s tape reservation. You can determine the user ID
and job ID to use with tpfrls from either tpstat or tpgstat . If this does
not work, try the tpclr (8) command, with the tape device ID as an operand. If
the problem appears to be hardware related, free the user by the preceding
methods (check this with the tpstat (1) command). Then configure the drive
down with the tpconfig (8) command, and discuss the problem with the
appropriate hardware personnel.

4.2 Tape daemon problems

If the tape daemon (see tpdaemon (8)) is hung (no tapes moving, no response
from any tape commands), and you must take the tape daemon down, first try

SG-2307 10.0 35

Tape Subsystem Administration

4.3 t pdf i xup utility

36

the tpdstop (8) command. If this does not work, or the command hangs,
determine the process ID of the tape daemon (by using the ps(1) command),
and enter the following command line:

kil -2 pid

The pid argument is the process ID of tpdaemon . If kill -2 does not work,
enter the following command line:

kil -9 pid

If you want to report the preceding or other tape problems (such as the
abnormal termination of the tape daemon), it is important that you save the
trace files from the tape daemon. These files help to track down a tape problem.
The trace files are kept in a directory set up during the initial installation of the
tape daemon; see TRACEPFXn the /usr/include/tapereq.h file to find out
where these files are kept.

The default installation of the trace files is in the /usr/spool/tape directory.
Copy these files as follows:

cd directory
cp /usr/spool/tape/trace.*

The directory argument is the directory in which you want to keep the trace
files. It is also a good idea to create a file or note that explains what the
problem was and specifies the devices that were affected: you may also want to
keep a copy of the user job that seemed to cause the problem.

Another useful command is the tpbmx (8) command. tpbmx specified with the
-d option displays the tape driver’s tables for every device. It is recommended
that you save a copy of the tpbmx -d output before attempting to execute
tpdstop or attempting to terminate the daemon with the kill (1) command.

The tpdfixup utility collects information pertinent to the online tape
subsystem on Cray Research computer systems. A privileged user may run this
script when a tape related problem occurs. The information is placed in a
separate directory so it can be easily packaged and shipped for offline analysis.
For the collected information to be of optimal use, tracing for the tape
subsystem should be enabled. For detailed information, please contact the Cray
Research Technical Support Center.

SG-2307 10.0

Tape Troubleshooting [4]

4.4 Tracing

SG-2307 10.0

Before anything is copied to the information directory, the tpdfixup utility
attempts to determine whether the tape daemon is in its normal state, and if
not, runs a few checks for known hang situations.

The tpdfixup utility should be executed to gather information once trouble
with the tape daemon is suspected prior to attempting to terminate the tape
daemon.

Tracing for the tape subsystem is turned on by default. All child processes
created by the tape daemon have tracing enabled. While tracing is a very
important tool for debugging tape subsystem problems, it uses additional CPU
time. Tracing can be turned on and off by issuing the tpset (8) command. To
turn tracing off, enter the following command:

tpset -T off
To turn tracing on, enter the following command:
tpset -T on

If the stability of the tape subsystem at a site has been established, tape tracing
may be an unnecessary overhead. The CPU cycles saved by turning tracing off
depends on the mix of jobs submitted, because some tape operations generate
more trace information than others.

When tracing is turned off, the tape daemon and its child processes still trace
entry to and exit from child processes and abnormal termination of tape
processes. Abnormal terminations include those induced by the operator and
terminations caused by errors within the tape subsystem. A tape mount request
canceled by an operator or interrupted user job is considered an abnormal
termination induced by the operator.

The option of turning tracing off for the tape subsystem allows sites running
with a stable tape subsystem to substantially reduce the system and user time
used by the tape daemon. This gain in system and user time must be weighed
with the knowledge that some error information and all trace information will
be lost in case of a tape daemon problem. The only way to analyze the problem
is to turn tracing on, resubmit the job, and collect traces when the problem
reappears.

37

Tape Subsystem Administration

4.5 Sample trace analysis

To obtain a complete picture of a problem, save trace information as soon as
possible after you identify an error situation. You can use the tpdfixup utility
to aid in the data gathering process.

This utility saves all the pertinent trace files in /usr/spool/tape as well as
kernel traces through the issuance of crash (8) or crashmk (8) commands (in
particular tpt and tps). If the tape daemon is not hung, the display
command output is also saved. When you execute the utility, you are asked to
comment on how the system was behaving at the time tpdfixup ~ was run.

All of the trace files are circular. For instance, if a particular tape drive is hung,
by the time it is noticed the tape daemon trace (trace.daemon) has probably
been overwritten. However, the drive trace (trace.omx###) and the kernel
drive trace should provide some useful information. By default, the drive traces
are 409600 bytes in length while the trace.daemon file is 10 times that value
(the default is 4096000 bytes). This parameter is configurable in the tape
configuration file.

Each time a tape daemon routine is entered, tracing for that routine begins.
This is done by using the FUNCfunction defined in the tape.h file. RETURN
and EXIT, also defined in tape.h , indicate when the routine is done.

Within each routine, you can place calls to the trace function to obtain more
detailed information. By using this information, you can trace the paths that the
software took to perform various tape functions.

When tpdaemon (8) forks off its children, (for example, opentdt and

readerr) their trace information is written into the respective tape daemon
device traces (trace.omx###). There are also trace files for avrproc , stknet ,
esinet , and tcpnet . By using all of the appropriate traces, you can obtain the
entire picture of what was happening when a failure occurred.

4.5.1 Trace information

38

The following example shows the information you obtain from a trace line.

10:59:58 151257598.1241 1450 tpdaemon mounttp function entered

FAYAYAYAYAYAYAVAN VAVAYAVAVANRVAVAVAVAV,V VAV, V)N FAYAYAYAN FAYAYAYAYAYAYAVAN NANAN AN ANANNNNNNNN FAVAYAYAYAN

The fields in this line are labeled as follows:

SG-2307 10.0

Tape Troubleshooting [4]

4.5.2 Trace example

SG-2307 10.0

Field

Description

References the wall clock time. Having this time available is
helpful in relating events in one trace to other traces, errpt (8)

files, console messages or daemon.stderr

messages.

References the real time clock. You use this time when timing
issues are more important. It helps to determine whether the
events truly took place in the proper order.

References the process number of the main routine. In the

trace.daemon

the trace.bmx###
tpdaemon (8) forks off to process the request (for example,

opentdt , or writeerr

).

Identifies the main routine.

file, this value will invariably be tpdaemon (8); in
files, the value will be the particular child

References the particular routine called by the main routine. In
this example, the routine is named mounttp .

Provides detailed trace information about the entry. This example
shows that the mounttp function was entered.

The following example shows what happens when a user issues an rsv (1)
command. The listing contains fields E and F of the trace information from
trace.daemon

(Start

getreq
getreq
getreq
getreq
getreq
getreq
getreq
getreq
getreq
getreq
getreq
getreq
getreq
getreq
getreq

of trace)
function
request
request X
000312fe
00031300
00031302
00031304
00031306
00031308

0003130e
00031310
00031312
00031314
00031316

entered
came from /usr/spool/tape/daemon.request

5472657148000470 0000000000000214
0000000000000293 0000000000000000
0000000000000000 0000000000000000
2f7573722f73706f 6f6c2f746170652f
5¢36353972737635 3439353700000000
0000000000000000 0000000000000000
*kkkk same *kkkk

0000000000005b6e 0000000000002e3c
0000000000005b6e 0000000000000000
0000000000000000 0000000000000000
2f746d702f6a746d 702e303030363539
612f544150455f52 45515f3635390000

lusr/spool/tape/
659rsv54957....

/tmp/jtmp.000659
a/TAPE_REQ 659..

39

Tape Subsystem Administration

getreq
getreq
getreq
getreq
getreq
getreq
getreq
getreq
getreq
getreq
getreq
getreq
getreq
getreq
getreq
getreq
getreq
getreq
getreq
getreq
getreq
getreq

4.5.2.1 Source

00031318 0000000000000000 0000000000000000
*kkkk same *kkkk

0003131e 2f636c6f7564792f 75362f6261722f74

00031320 6170652e6d736700 0000000000000000

00031322 0000000000000000 0000000000000000
*kkkk same *kkkk

00031328 6261720000000000 0000000000000000

0003132a 0000000000000001 4341525400000000

0003132c 0000000000000000 0000000000000001

0003132e 0000000000000000 0000000000000000
*kkkk same *kkkk

00031342 0000000000000000 0000000000000063

00031344 0000000000000063 0000000000000063
*kkkk same *kkkk

0003134a 0000000000000000 0000000000000000

0003134c 0000000000002e3c 0000000000000009

0003134e 00000000000003ef 0000000000000003

00031350 0000000000003128 00000000000030f6

00031352 0000000000000000 0000000000000000
*kkkk same *kkkk

0003138a 0000000000000000 0000000000000000

getreq returns code =1

/cloudy/u6/bar/t

ape.msg.......

The tape daemon checks its request pipes and determines a request is pending.
The getreq function is entered as shown by the trace entry. While you
examine the trace information, you may want to access the tpdaemon (8)

source. Following the code in getreq.c

if (reghdr.code 1=
trace(func,"request

TR_TPS) {
came from
DUMP("request”,reqp,reghdr.size);

/*
%s",reqfsp->fn);

don’t dump tpstat

is a trace entry:

*

This code traces from where the request came as well as dumping the request.

If the request is a tpstat

tpstat

the line request

40

(1) command, it is not dumped because the

(1) command is issued so often. To determine what the request is,
examine the code in word one of the request. In this example, word 1 contains
0000000000000214. The information is dumped in hexadecimal as evidenced by

X. (A dump in octal would show request

Q)

SG-2307 10.0

Tape Troubleshooting [4]

fir013%
#define

SG-2307 10.0

To identify the request, check the tape.h file:

grep 214 tape.h

TR_RSV

0x214 /* reserve devices */

The request structures for each request are generally contained in the files
named tr xxxx.h. xxxx refers to the command issued. To examine the request
structure for this example, look in the trsv.h file. If a structure does not have
its own header (.h) file, it is probably located in tape.h , the mount tape
structure.

Within the tpdaemon (1) source is a series of case statements. Based on the
request code, tpdaemon (1) calls the necessary function. In this instance, the
request code of x214 corresponds to TR_RSV

(from tpdaemon.c)
case TR_RSV:
cfunc = rsvdev;
break;

(Trace continued)
rsvdev function entered
gettusr function entered

gettusr gettusr returns : code = 0
addq function entered

addq addq returns : code = 157881
dgpavail function entered

dgpavail dgpavail returns : code =1

addrsv function entered
gettrsv function entered
gettrsv gettrsv returns : code = 201728

The rsvdev trace is the next function entered. It calls gettusr to determine if
the user has already reserved a tape drive. gettusr returns a 0 indicating that
no reserves are currently assigned to this user. Since a 0 is returned, the
following if statement is false and the if block is bypassed.

(from rsvdev.c)
if (tusrp = gettusr(regp- >rh.jid)) { /* user found */

By looking at the code, you can deduce that this example was run on a system
that did have security running because it does not contain any security trace
entries.

41

Tape Subsystem Administration

42

Many of the tpdaemon (8) subroutines are contained within their own named
.c file. Others are contained within various subroutines. If you cannot locate a
particular routine, use a grep (1) command on the tpdaemon (1) source to find it.

rsvdev continues on. addq is then entered and returns the queue header
pointer to rsvdev .

The dgpavail routine is called to determine if a device is available within the
device group requested.

(from rsvdev.c)
FUNC(dgpavalil);

for (i = 0; i < tdth.numdgp; i++) |

trsvp = tdth.tusrgh.f- >trsvp +
if (!strcmp(trsvp- >dgn,dgn)) { /* found */
if (hum > trsvp- >num) {
rc = -1;
} else {
*trsvpa = trsvp;
rc =1,
}
break;
}
}
RETURN(rc);

The value that is returned, 1, indicates that a device is available. A particular
return code is neither good nor bad based on its value; you must examine the
source to determine the meaning of a code.

c = dgpavail(reqp->dgn[i].name,regp->dgn[i].num,&tdtrsvp);
c >0 { /* available *

addrsv(tusrp,reqp- >dgn[i].name,regp->dgn[i].num);

Since c is greater than 0, the next block of code is executed. addrsv is called to
add to tape reserved. addrsv calls gettrsv to return the address of the trsv
structure. The code returned by gettrsv is the decimal address 201728, which
converts to 31400 in hexadecimal. The addrsv trace dumps the tusr and

trsv structures. The trsv structure is dumped from location x31400:

(Trace continued)
addrsv tusr X
addrsv 0003138f 0000000000000000 000000000002bcd4

SG-2307 10.0

Tape Troubleshooting [4]

addrsv
addrsv
addrsv
addrsv
addrsv
addrsv
addrsv
addrsv
addrsv
addrsv
addrsv
addrsv
addrsv
addrsv
addrsv
addrsv
addrsv
addrsv
addrsv
addrsv
addrsv
addrsv
addrsv
addrsv
addrsv
addrsv
addrsv
addrsv
addrsv
addrsv
addrsv
addrsv
addrsv
addrsv

The next routine called, bdmrsv , sends an ioctl

00031391 2f746d702f6a746d 702e303030363539
00031393 612f544150455f52 45515f3635390000
00031395 0000000000000000 0000000000000000
*kkkk same *kkkk
0003139d 000000000000000d 0000000000000293
0003139f 0000000000000000 0000000000000000
000313a1 0000000000000000 6261720000000000
000313a3 0000000000000000 0000000000005b6e
000313a5 0000000000005b6e 2f636c67564792f
000313a7 75362f6261722f74 6170652e6d736700
00031329 0000000000000000 0000000000000000
*kkkk same *kkkk
000313b1 0000000000000000 0000000000000001
000313b3 0000000000000000 0000000000000000
*kkkk same *kkkk
000313b7 0000000000031400 0000000000002e3c
000313b9 0000000000000000 0000000000000000
*kkkk same *kkkk
000313bd 0000000000002e3c 0000000000000009
000313bf 00000000000003ef 0000000000000003
000313c1 0000000000003128 00000000000030f6
000313c3 0000000000000000 0000000000000000
*kkkk same *kkkk
000313fb 0000000000000000 0000000000000000
trsv = X
00031400 4341525400000000 0000000000000000
00031402 0000000000000001 0000000000000000
00031404 5441504500000000 0000000000000000
00031406 0000000000000000 0000000000000000
00031408 5445535400000000 0000000000000000
0003140a 0000000000000000 0000000000000000
0003140c 3334393000000000 0000000000000000
0003140e 0000000000000000 0000000000000000
addrsv returns code =0

reserve to the kernel.

(from rsvdev.c)

if (ioctl(bmxfs.fd,BDM

_RSV,jid)

<0 {

errmsg(func,ETSYS, TM047 ,bmxfs.dvn,bmxfs.fn,

RETURN(errno);

SG-2307 10.0

"ioctl",

"BDM_RSV",errno);

/tmp/jtmp.000659
a/TAPE_REQ_659..

(2) system call about the

43

Tape Subsystem Administration

}
usrmsg(func, TM000); /* tell user about it *

(Trace continued)

bdmrsv function entered

bdmrsv TMOOO - tape resource reserved for you
bdmrsv bdmrsv returns @ code = 0

4.5.2.2 Associated kernel trace entry

The kernel code to process the ioctl (2) system call is in
{usr/src/uts/cl/io/tpddem.c . You can obtained this kernel information
by issuing a tpt tpdemreq command from within the tpdaemon (8)
command. These traces are in the oldest-to-latest order; the following is the
latest or last trace entry:

tpddemct 0000000000000000002061 0000001000500000002006 1. .
tpddemct is entered as follows:

(from /usr/src/uts/cl/io/tpddem.c)
tpddemctl(vp, cmd, arg)

The trace is coded as:

(from /usr/src/uts/cl/io/tpddem.c)
TPD_TRACE(io, ’'tpddemct’, arg, UTPACK(cmd, vp));

From the ioctl (2) system call in bdmrsv , you can equate vp to bmxfs.fd ,
BDMRSVto cmd, and jid to arg . Based on the kernel trace entry, 2061 should
be the job ID. In this case, 1073 (decimal equivalent of 2061) is the job ID, and
10005 corresponds to the BDM_RS\Wommand.

(from /usr/src/uts/cl/sys/tpddem.h)
#define TDMRSV 010005 /* Mark job having device(s) reserved */

rsvdev then dumps tusr and trsv , calls sendrep to send the reply, and
returns with a code of 0 that indicates successful completion.

rsvdev tusr X

rsvdev 0003138f 0000000000000000 000000000002bcd4 ...

rsvdev 00031391 2f746d702f6a746d 702e303030363539 /tmp/jtmp.000659
rsvdev 00031393 612f544150455f52 45515f3635390000 a/TAPE_REQ 659..
rsvdev 00031395 0000000000000000 0000000000000000 ccoeenveee

rSVdeV *kkkk same *kkkk

rsvdev 0003139d 000000000000000d 0000000000000293 cccceueee

44 SG-2307 10.0

Tape Troubleshooting [4]

4.6 err pt (8) utility

SG-2307 10.0

rsvdev
rsvdev
rsvdev
rsvdev
rsvdev
rsvdev
rsvdev
rsvdev
rsvdev
rsvdev
rsvdev
rsvdev
rsvdev
rsvdev
rsvdev
rsvdev
rsvdev
rsvdev
rsvdev
rsvdev
rsvdev
rsvdev
rsvdev
rsvdev
rsvdev
rsvdev
rsvdev
rsvdev
sendrep
sendrep
rsvdev

0003139f 0000000000000000 0000000000000000

000313al 00599e4eeclee788 6261720000000000

000313a3 0000000000000000 0000000000005b6e

000313a5 0000000000005b6e 2f636¢67564792f

000313a7 75362f6261722f74 6170652e6d736700

00031329 0000000000000000 0000000000000000
*kkkk same *kkkk

000313b1 0000000000000000 0000000000000001

000313b3 0000000000000000 0000000000000000
*kkkk same *kkkk

000313b7 0000000000031400 0000000000002e3c

000313b9 0000000000000000 0000000000000000
*kkkk same *kkkk

000313bd 0000000000002e3c 0000000000000009

000313bf 00000000000003ef 0000000000000003

000313c1 0000000000003128 00000000000030f6

000313c3 0000000000000000 0000000000000000
*kkkk same *kkkk

000313fb ~ 0000000000000000 0000000000000000

trsv X

00031400 4341525400000000 0000000000000000

00031402 0000000000000001 0000000000000000

00031404 5441504500000000 0000000000000000

00031406 0000000000000000 0000000000000000

00031408 5445535400000000 0000000000000000

0003140a 0000000000000000 0000000000000000

0003140c 3334393000000000 0000000000000000

0003140e 0000000000000000 0000000000000000

function entered

sendrep returns code =0
rsvdev returns code =0

The errpt (8) utility processes data collected by the error-logging mechanism
(errdemon (8)) and generates a report of that data. The default report is a
summary of all errors posted in the files specified on the command line. The
options apply to all files. If you do not specify any files, errpt (8) attempts to

use the /usr/adm/errfile

file.

A summary report notes the options that can limit its completeness, records the
time stamped on the earliest and latest errors encountered, and specifies the

45

Tape Subsystem Administration

total number of errors of one or more error types. The number of times that
errpt (8) has difficulty reading input data is included as read errors.

A detailed report contains, in addition to specific error information, all instances
in which the error logging process was started and stopped, and the time
changes (using the date (1) command) that may have occurred during the
interval being processed. A summary of each error type included in the report
is appended to a detailed report.

A report can be limited to certain records by the use of options.

For the tape subsystem, the errpt (8) command generates information useful
for debugging both hardware and software. For more information, see the
errpt (8) man page.

The following example will generate a detailed report about tape devices:

errpt -f -d tape

4.7 Sample err pt (8) analysis

The errpt (8) analysis available for SCSI protocols is more detailed than that
for the block multiplexer (mux) and ESCON protocols. The samples in this
section illustrate this difference.

4.7.1 Block mux and ESCON protocols

This analysis deals with errpt (8) tape errors for the block mux and ESCON
protocols. Error information is generally logged in /usr/adm/errfile . When
these logs are restarted, they are saved as files named errfile # where # is a
sequential number starting with and incrementing. The errpt (8) program or
the UNICOS olhpa (8) program reads the logs and formats the data. Error
messages reported by errpt (8) are created by the bmxereclog routine called
from the bmx routines in /ust/src/uts/cl/io

You can also display these messages on the console by using the bmxconmsg
routine. The console messages generally have the following form:

ebmx: cart04: unassign, command reject, C040002700000020 0000154400000000

AAAA BBBBBB CCCCC

46

CCC DDDDDDDDDDDDDIEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE

The fields in this line are labeled as follows:

SG-2307 10.0

Tape Troubleshooting [4]

Tue Nov

Field Description

A Indicates the calling program, ebmx.

Indicates the device on which the error occurred.
Shows the bmx command that was issued.

Shows the resulting error message.

m o O @

Usually records sense bytes 0 through 15. Verify by checking the
specific error message in ebmx.c .

For aid in breaking down the sense bytes, see the appropriate IBM
documentation.

The following command produced the sample errpt (8) record:
errpt -d tape -s 11011400 -e 11011500

The -s and -e parameters refer to the starting and ending times that were
used. They are in the mmddhhmnformat. The -d parameter indicates that
errpt (8) should report on tape errors.

1 14:53:53 1994
Tape Error record Cluster 0 IOS 1 Device 150
Volume: Owner: 0 Command:

(CART) Error type: Drive assigned elsewhere Final status: UNRECOVERED

Initial channel: 036 Initial control unit: 013 Initial device: 000
Final channel : 000 Final control unit : 000 Final device : 000
Request code: O0x9a Response code: O0x0e

Channel command: Assign

Initial status (erpa): 0x045 Extended status: 0x2002

Initial device status : Ox02 Final device status : 0x00

Block: 0 Density: 0 Retry count: 00000

Sense bytes: (hexadecimal)

SG-2307 10.0 47

Tape Subsystem Administration

48

00
04
08
12
16
20
24
28

41 40 80 45
00 00 00 20
01 40 33 e4
00 00 00 00
00 00 00 70
00 00 00 00
f6 80 34 72
20 50 00 00

This sample is a relatively straightforward errpt (8) record. If a tape job were
involved, the volume, owner, and command fields would contain relevant
information. However, the error type field indicates that the drive was assigned
elsewhere with a final status of unrecovered.

The channel is octal 36, the control unit is octal 13, and the drive ID (initial
device) is 0. You can verify this information in the tape configuration file:

{
CONTROL_UNIT

protocol = STREAMING,
status = UP,
path = ((036, 11))
DEVICE
name = 150 ,
device _group_name = CART,
id = 00 ,
type = 3480 ,
status = DOWN,
loader = Operator

The request code of x9a indicates a command list, and the response code of
x0e is a sequencer detected error. These commands are in the
{usr/include/sys/epackt.h file under request codes to the IOS and I0S
response codes.

/*

* Define request codes to ios

*/

#define TCommandList 0232
/*

* 10S response codes

SG-2307 10.0

Tape Troubleshooting [4]

#define

*

#define RUnitCheck 016

The channel command is assign . The ERPA code of X045 can be located in
the /usr/include/sys/erec.h file.

T3480_DAE 0x45 /* Drive assigned elsewhere */

4.7.2 SCSI protocols

The sample shows the additional information that is available for SCSI

protocols.
Tue Aug 6 15:48:53 1996

Tape Error record Cluster 3 I0S 2 Device $9490s0
Volume: Owner: 40 Command:
(CART) Error type: Read data check Final status: UNRECOVERED
Initial channel: 002 Initial control unit: 002 Initial device: 000
Final channel 000 Final control unit 000 Final device 000
Request code: O0x9a Response code: O0x0Oe
Channel command: Load display
Initial status (erpa): 0x023 Extended status: 0x400e
Initial device status 0x0e Final device status 0x00
Block: 0 Density: 0 Retry count: 00000
Sense bytes: (hexadecimal)

00 - 48 40 00 23

04 - 00 00 00 00

08 - 00 00 00 00

12 - 00 00 00 00

16 - 00 00 00 00

SG-2307 10.0

49

Tape Subsystem Administration

20 -
24 -
28 -
32 -
36 -
40 -
44 -
48 -
52 -
56 -
60 -

SCSI Sense Byte
SCSI Sense Byte
SCSI Sense Bytes

SCSI Sense bytes:
00 -
04 -
08 -
12 -
16 -
20 -
24 -
28 -

00
00
00
00
00
00
11
00
00
00
00

2 bits

2 bits

12/13:

3 - 0: 0x3(Medium Error)

7

5: 0x0

(hexadecimal)

00
00
00
11
00
00
00
00

4.8 daenon. st derr file

4.9 crash(®) or crashnk() utility

50

The /usr/spool/tape/daemon.stderr

Research for offline analysis.

00
00
00
00
00
00
01
00
00
00
00

0x1101(Read Retries

00
00
00
01
00
00
00
00

00 00
00 00
00 00
03 00
00 00
00 00
00 00
00 00
00 00
00 00
00 00
Exhausted)
03 00
00 00
00 00
00 00
00 00
00 00
00 00
00 00

file contains all tape daemon error
messages. Therefore, this file contains debug information that helps diagnose
errors. This file, along with the output from errpt (8), is useful for
administrators when working on drive problems. It is also useful for debugging
tape daemon problems when sent with other tape daemon trace files to Cray

The crash (8) or crashmk (8) utility can help you discover and correct tape
subsystem problems. This interactive utility can examine an operating system

SG-2307 10.0

Tape Troubleshooting [4]

core image. It has facilities for interpreting and formatting the various control
structures in the system and certain miscellaneous functions that are useful
when examining a dump file.

The core_filename argument specifies where the system image can be found. The
default value of core_filename is /dev/imem , which lets you use the crash (8) or
crashmk (8) utility without an operand to examine an active system. If you
specify the system image file, it is assumed to be a system core dump and the
default process is set to that of the process active in the kernel at the time of the
crash. This is determined by a value stored in a fixed location by the dump
mechanism.

The following crash (8) or crashmk (8) commands are useful for tape problem
solving:

tpt [devicel][device2]...

Prints kernel level tape device traces. tpt called without any
arguments prints out a table containing the device name (as
seen in the tpstat (1) display); index (physical device name);
and the start, middle, and end trace pointers for each device in
the tape table. tpt called with a device name prints out traces
for that device.

On UNICOS systems, tpt called with a dash (-) instead of
devicel dumps out traces for all tape devices in the system.

For more information concerning the tpt command on
UNICOS/mk systems, use help tpt from within the
crashmk (8) utility.

tps [devicel][device?]...

(UNICOS systems only) Prints tape device structures. tps
called without any arguments prints out tape I/O structures for
all tape devices in the system. tps called with a device name
prints out the tape structures associated with that device. tps
called with a dash (-) instead of devicel prints out tape
structures for all tape devices in the system.

SG-2307 10.0 51

Man Pages [A]

SG-2307 10.0

This chapter lists the administration commands and utilities associated with the
tape subsystem. Use the man(1) command to access the individual man pages.
The following four categories of man pages exist:

* Devices (special files)
tape (4)
tpddem (4)
¢ File formats
tapereq (5)
tapetrace (5)
text_tapeconfig 5)
* Miscellaneous topics
tape (7)
¢ Administration commands
tpapm (8)
tpbmx (8)
tpclr (8)
tpconf (8)
tpconfig (8)
tpcore (8)
tpdaemon (8)
tpdev (8)
tpdstop (8)
tpformat (8) (UNICOS systems only)

tpfrls (8)
tpgstat (8)
tpinit (8)

53

Tape Subsystem Administration

tplabel (8)
tpmis (8)
tpmgl (8)
tpscr (8)
tpset (8)
tpu (8)

xtpldr (8)

54 SG-2307 10.0

Index

A

Accounting system
device groups, 11
tpdaemon command, 1
Action messages, 32
Administration commands
Configuration settings, 6
man page list, 53
run-time changes, 9
summary, 1
Attended mode, 30
Autoloaders
general configuration, 25
specific products, 27
Automatic volume recognition
tpset command, 1, 24
tpu command, 1
usage, 24
AVR

(See automatic volume recognition), 24

B

Block mux protocol, 46

C

Character-special tape interface, 1, 8
Command flow, 26
Configuration

(See Tape configuration), 5, 8
Configuration file

(See text_tapeconfig file), 1
Configuration tool, 7
cp command, 36
crash utility, 38, 44, 50

SG-2307 10.0

crashmk utility, 38, 44, 50
CRAY tape subsystem

(See tape daemon-assisted interface), 1

Cray/REELlibrarian, 1
CRL

(See Cray/REELlibrarian), 1

crontab command, 31

D

daemon.stderr file, 50

Debugging tools, 37

Device groups, 11, 30

Device organization, 30

Devices (special files) man pages, 53
Diagrams, 26

Drive problems, 35

dump command, 11

E

EMASS autoloaders

EMASS command flow, 29
general command flow, 25
installation information, 29
VolSer software, 29

errdemon command, 45
errpt utility

block mux and ESCON protocols, 46
drive problems, 50

file usage, 38

reports, 45

SCSI protocols, 49

ESCON protocol, 46

55

Tape Subsystem Administration

F

FES

(See Front-end serving), 1
File format man pages, 53
Front-end serving, 1

H

hosts man page, 29

IBM autoloaders
general command flow, 25
IBM command flow, 28
ibmnet process, 28
installation information, 29
infd command, 32
Informative messages, 32
Interfaces, 1
ioctl, 6,9
ioctl system call, 44

Job problems, 35

K
Kernel generation, 5, 8
kill command, 35

M
man command, 53
Man page list, 53

Menu system

56

UNICOS installation and configuration, 5

Message daemon

commands, 31

operator interface, 31
Miscellaneous topics man pages, 53
Mixed device environment, 30
msgd command, 32
msgdaemon command, 31
msgdstop command, 31
msgi command, 31
msgr command, 31
Multiuser initialization, 8

N
Network Queuing System
device groups, 11
o
oper command, 31
Operator interface, 32
P
Parameter file, 9
ps command, 35
R
rcoptions file , 8
rep command, 32
restore command, 11

rls command, 25
rsv command, 39

SG-2307 10.0

Index

S (See Tape Management Facility), 1
tpapm command, 1, 53
SCSI protocols, 49 tpbmx command, 2, 36, 53
StorageTek autoloaders tpclr command, 2, 35, 53
general command flow, 25 tpconf command, 2, 53
installation information, 29 tpconfig command, 2, 35, 53
stknet process, 27 tpcore command , 2, 53
StorageTek command flow, 27 tpd_max_bufz parameter, 9
System boot, 5 tpd_max_conf_up parameter, 9
System startup, 8 tpd_maxdev parameter, 9

tpdaemon command, 2, 35, 53
tpddem man page, 53

T tpdev command, 2, 53
tpdfixup utility, 36
Tape cartridge access, 31 tpdstop command, 2, 35, 53
Tape configuration tpdtab structure, 2
file, 5,7 tpformat command , 2, 53
settings, 5, 8 tpfrls command, 3, 53
Tape daemon tpgstat command, 3, 35, 53
problems, 35 tpinit command, 3, 8, 53
Tape daemon-assisted interface, 1 tplabel command , 3, 53
Tape interfaces, 1 tpmls command, 3, 53
tape man page, 53 tpmnt command, 11, 25
Tape Management Facility tpmgl command, 3, 53
(See tape daemon-assisted interface), 1 tprst command, 12
Tape subsystem tpscr command, 3, 53
(See tape daemon-assisted interface), 1 tpset command, 3, 9, 24, 37, 53
Tape system initialization, 5 tpstat command, 25, 35, 40
Tape troubleshooting, 35 tpu command, 3, 25, 53
TAPE_MAX_CONF_UP parameter, 6 Trace analysis, 37
TAPE_MAX_DEV parameter, 6 Trace files, 36
TAPE_MAX_PER_DEV parameter, 6 Troubleshooting topics, 35

tapereq man page, 53
tapetrace man page, 53

TCP/IP support, 29)

text_tapeconfig file
autoloader installation, 29 UDB
device group order, 11 (See User database), 11
man page, 53 Unattended mode, 30
multiuser initialization, 8 UNICOS configuration
settings, 5,7 (See Tape configuration), 5
user exits, 12

TMF

SG-2307 10.0 57

Tape Subsystem Administration

UNICOS installation and configuration menu
system, 5
UNICOS/mk configuration
(See Tape configuration), 7
User database
device groups, 11
tape related fields, 11
User exits, 12

\'%

VolSer software, 29

58

vsnexit.c module, 31

X

xtpldr command, 53

SG-2307 10.0

