
UNICOS® Networking Facilities
Administrator’s Guide
S–2304–10011

© 1995, 1997–1999, 2001, 2002 Cray Inc. All Rights Reserved. This manual or parts thereof may not be reproduced in any form unless
permitted by contract or by written permission of Cray Inc.

U.S. GOVERNMENT RESTRICTED RIGHTS NOTICE

The Computer Software is delivered as "Commercial Computer Software" as defined in DFARS 48 CFR 252.227-7014.

All Computer Software and Computer Software Documentation acquired by or for the U.S. Government is provided with Restricted
Rights. Use, duplication or disclosure by the U.S. Government is subject to the restrictions described in FAR 48 CFR 52.227-14
or DFARS 48 CFR 252.227-7014, as applicable.

Technical Data acquired by or for the U.S. Government, if any, is provided with Limited Rights. Use, duplication or disclosure by the
U.S. Government is subject to the restrictions described in FAR 48 CFR 52.227-14 or DFARS 48 CFR 252.227-7013, as applicable.

Autotasking, CF77, Cray, Cray Ada, Cray Channels, Cray Chips, CraySoft, Cray Y-MP, Cray-1, CRInform, CRI/TurboKiva,
HSX, LibSci, MPP Apprentice, SSD, SuperCluster, UNICOS, UNICOS/mk, and X-MP EA are federally registered trademarks
and Because no workstation is an island, CCI, CCMT, CF90, CFT, CFT2, CFT77, ConCurrent Maintenance Tools, COS,
Cray Animation Theater, Cray APP, Cray C90, Cray C90D, Cray CF90, Cray C++ Compiling System, CrayDoc, Cray EL,
Cray Fortran Compiler, Cray J90, Cray J90se, Cray J916, Cray J932, CrayLink, Cray MTA, Cray MTA-2, Cray MTX,
Cray NQS, Cray/REELlibrarian, Cray S-MP, Cray SSD-T90, Cray SV1, Cray SV1ex, Cray SV2, Cray SX-5, Cray SX-6,
Cray T90, Cray T94, Cray T916, Cray T932, Cray T3D, Cray T3D MC, Cray T3D MCA, Cray T3D SC, Cray T3E, CrayTutor,
Cray X-MP, Cray XMS, Cray-2, CSIM, CVT, Delivering the power . . ., DGauss, Docview, EMDS, GigaRing, HEXAR, IOS,
ND Series Network Disk Array, Network Queuing Environment, Network Queuing Tools, OLNET, RQS, SEGLDR, SMARTE,
SUPERLINK, System Maintenance and Remote Testing Environment, Trusted UNICOS, and UNICOS MAX are trademarks
of Cray Inc.

FLEXlm is a trademark of GLOBEtrotter Software, Inc. FORE Systems is a trademark of Marconi Corporation plc. Hyperchannel is a
trademark of the Network Systems Group of StorageTek (formerly NSC). Kerberos is a trademark of Massachusetts Institute of
Technology. Network Solutions and VeriSign are trademarks of VeriSign in the United States and/or other countries. NFS, ONC,
ONC+, Solaris, Sun, and SunSoft are trademarks of Sun Microsystems, Inc. in the United States and other countries. REELlibrarian is
a trademark of Sceptre Corporation. SecurID is a trademark of Security Dynamics Technologies, Inc. SGI and Silicon Graphics are
trademarks of Silicon Graphics, Inc. StorageTek is a trademark of Storage Technology Corporation. UNIX, the “X device,” X Window
System, and X/Open are trademarks of The Open Group in the United States and other countries. VAXBI is a trademark of Digital
Equipment Corporation. All other trademarks are the property of their respective owners.

Cray UNICOS Version 10.0 is an X/Open Base 95 branded product.

The UNICOS operating system is derived from UNIX System V. The UNICOS operating system is also based in part on the Fourth
Berkeley Software Distribution (BSD) under license from The Regents of the University of California.

New Features

UNICOS® Networking Facilities Administrator’s Guide S–2304–10011

This rewrite of UNICOS Networking Facilities Administrator’s Guide supports the 10.0.1.1 release of the UNICOS
operating system. The following changes to this manual were made for the UNICOS 10.0.1.1 release:

• As a result of SPR 707731, the ICMS menu directions were fixed in the sections for “Configuring Network
Interfaces” and “Creating the hycf File” in Chapter 2, page 3.

• Minor updates and corrections were made throughout this manual.

Record of Revision

Version Description

9.0 August 1995
Original Printing.

10.0 October 1997
Update to support the UNICOS 10.0 release running on Cray computer systems.

10.0.0.1 January 1997
Update to support the UNICOS 10.0.0.1 release running on Cray computer systems.

10.0.0.2 May 1998
Update to support the UNICOS 10.0.0.2 release running on Cray computer systems.

10.0.0.3 October 1998
Update to support the UNICOS 10.0.0.3 release running on Cray computer systems.

002 July 1999
Update to support the UNICOS 10.0.0.6 release.

10010 October 2001
Update to support the UNICOS 10.0.1.0 release.

10011 May 2002
Update to support the UNICOS 10.0.1.1 release.

S–2304–10011 i

Contents

Page

Preface xv

UNICOS System Administration Publications xv

Related Publications . xvi

Ordering Documentation . xvii

Conventions . xviii

Reader Comments . xxi

Introduction [1] 1

TCP/IP [2] 3

TCP/IP Basics . 4

Internet Structure . 5

Internet Addressing . 8

Address Classes . 8

Subnet and Supernet Addressing 10

Decimal Notation . 12

Mapping Internet Addresses to Names 12

Hardware Addressing . 12

Using the Address Resolution Protocol (ARP) 13

Using a Configuration File—Model E and Model V Systems Only 13

Using a Configuration File—GigaRing Based Systems Only 14

Using the Internet Address—Model E and Model V Based Systems Only 14

Routing of Information . 14

Routing Procedure . 17

Routing Algorithm . 19

Routing Tables . 20

Configuring TCP/IP . 22

S–2304–10011 iii

UNICOS® Networking Facilities Administrator’s Guide

Page

Configuration Issues . 23

Looking up Host Names and Addresses 23

Selection of Internet Addresses 25

Using a Cray L7R . 26

Configuring the TCP/IP Kernel Code 27

Determining the Number of Mbufs Needed 27

Setting the Number of Mbufs 28

Specifying Other Kernel Variables 29

Security Configuration Parameters for Networking 29

Setting up Network-Wide Configuration Files 30

The /etc/hosts File . 31

The /etc/networks File . 33

Setting up Local System Configuration Files 34

The/etc/services File . 34

The /etc/shells File . 36

The /etc/hosts.equiv File 37

The /etc/protocols File . 39

Configuring Network Interfaces—Model E and Model V Systems Only 40

Defining Hardware Devices 40

Naming the Cray Interface . 42

Choosing an Internet Address 44

Creating the hycf File . 44

Configuring Network Interfaces—GigaRing Based Systems Only 53

Defining I/O Node Configuration 53

Naming the Cray GigaRing Interface 55

Interface Name Prefix . 55

Identifying Character Special Devices 55

Creating HIPPI Character Special Device Nodes 56

Choosing an Internet Address 57

Creating the ghippi#.arp File 57

iv S–2304–10011

Contents

Page

Creating the atm.pvc File . 59

Configuring Daemons . 61

The gated Daemon . 61

The lpd Daemon . 70

The named Daemon . 77

The sendmail Daemon . 82

The snmpd Daemon . 86

The ntpd Daemon . 93

The inetd Daemon . 98

Performing Startup Procedures 106

Calling the First Local Script 107

Initializing Kernel Networking Variables 107

Updating the Binary Hosts Database 108

Configuring the Host Name 108

Loading the Maps . 109

Initializing the Network Interfaces 109

Calling the Midpoint Local Script 114

Setting up Routing . 114

Setting up Daemons . 116

Calling the Final Local Script 118

Using the telnet Linemode Feature 118

Tab Settings . 118

Special Character Processing 119

Command Completion/editing Shells (ksh/tcsh) 120

Simulated Terminal Input . 120

Assisting Users in Setting up Environments 120

The $HOME/.netrc File . 120

The $HOME/.rhosts File . 121

The bftp Facility . 122

Network Tuning . 123

S–2304–10011 v

UNICOS® Networking Facilities Administrator’s Guide

Page

Data Transmission Units . 123

Interface Mtu—Model E and Model V Based Systems Only 124

Using the Interface Mtu—GigaRing Based Systems Only 124

Datagram Size Limitations . 125

IP Datagram Size Selection . 125

Path Mtu Discovery . 125

TCP Segment Size Selection . 126

Buffering and Memory Requirements 128

Buffered Memory (Mbufs) . 129

A Network Example . 140

Network Routing . 148

Special Host Routing . 151

Load Balancing . 153

Controlling Routing by Group IDs 156

Controlling Access . 156

Diagnosing and Fixing Routing Problems 157

Labeling Route Entries with IP Type-of-Service (TOS) 165

Preventing the Cray System from Becoming a Gateway 167

Troubleshooting . 168

Troubleshooting Tools . 169

Hardware Diagnostics . 169

Network Monitoring . 170

Network Testing and Diagnosing 172

Network Services . 173

Basic Problem-solving Strategy 177

TCP/IP in a Cray System Environment 177

Monitoring and Controlling System Changes 181

Isolating the Failing Component 181

Isolating the Daemon and Client 182

Isolating the Hardware . 182

vi S–2304–10011

Contents

Page

Isolating the Networking Software 183

Examples of Network Problems and Solutions 184

Troubleshooting Guidelines . 185

Troubleshooting Examples . 186

Trace Facility . 206

Collecting Trace Information . 208

Formatting Trace Information . 209

Obtaining Trace Socket Status . 210

Security Administration Basics . 211

Network Security Functional Overview 211

Network Access List (NAL) . 212

IPSO Mapping Entries . 213

IP Security Options . 214

Workstation Access List (WAL) 215

Identification and Authentication 215

Login Authentication . 216

Network Security Configuration 216

UNICOS Security Configuration Guidelines 216

Network Security Options . 217

NFS Configuration Options . 218

Restricting Access to Network Interfaces 219

Labeling Network Interfaces 219

Network Security Configuration Procedures 222

inetd Operation . 229

Error Messages . 230

Network Access Violations . 230

reduce(8) Command . 233

Problem Isolation Guidelines 233

Network File System (NFS) [3] 235

Administering UNICOS NFS . 236

S–2304–10011 vii

UNICOS® Networking Facilities Administrator’s Guide

Page

Activating NFS . 236

Choosing a Configuration Method 237

UNICOS ICMS Configuration Method 237

Manual Configuration Method 238

Local Script and File Configuration 238

Setting up a UNICOS NFS Server 238

Setting up a UNICOS NFS Client 241

Mounting a Remote File System 241

Automount Facility . 244

Protocol between Cray Systems 244

Typical UNICOS NFS Layout . 245

ID Mapping . 246

Disabling ID Mapping . 247

Configuring and Using ID Mapping 248

Network Description Example 249

Setup, Creation, and Maintenance of ID Map Files Example 250

Kernel Map Manipulation Example 255

Other Administrative Considerations 261

Running pcnfsd with NFS ID Mapping Control 263

Deciding When to Use ID Mapping 264

Special MAP_THRU NFS ID Map 266

Configuring NFS Parameters . 267

Changing the config.h File 267

Changing the NFS Parameter File 268

General Security Concerns . 268

NFS and UNICOS Security . 270

Kerberos Authentication . 272

Kerberized NFS . 272

UDP Checksum . 273

Troubleshooting . 274

viii S–2304–10011

Contents

Page

Isolating the Problem . 275

NFS Mounting Problems . 275

Problems Accessing NFS Mounted Files 278

Problems with ID Mapping . 280

NFS Mount Failure . 281

NFS Mount Example . 281

NFS Mount Failure Error Messages 283

Hanging Programs . 285

No Super-user Access over the Network 286

File Operations Not Supported 287

Remote Device Access Not Supported 287

Confidence Testing . 287

Installation . 288

Test Execution . 289

Test Configurations . 291

Executing Individual Tests . 291

Cleaning up . 292

Test Contents . 292

Performance and Tuning . 293

Factors That Affect NFS Performance 293

NFS_MAXDATA Parameter . 294

mount Command Arguments 294

NFS Daemons . 295

File System Configuration and ldcache(8) 295

Network Speed . 296

Network Configuration and Load 296

NFS Server/client Configuration and Load 296

Obtaining NFS Performance Figures 296

Network Information Service (NIS) [4] 299

About NIS . 299

S–2304–10011 ix

UNICOS® Networking Facilities Administrator’s Guide

Page

NIS Databases . 301

NIS Maps . 301

NIS Domains . 301

Servers and Clients . 302

Servers . 303

Clients . 303

Masters and Slaves . 303

Naming . 304

Data Storage . 304

Supported Databases . 304

The /etc/passwd File . 305

The /etc/group File . 306

Changing NIS Data . 306

Using NIS . 306

NIS and UNICOS NFS . 307

Configuring NIS . 307

UNICOS NIS Domain Configuration Procedure 308

Adding a User to the UNICOS NIS Domain 309

Precautions Concerning Sets of Users 310

Precautions Concerning the Cray System As a Master Server 311

Precautions Concerning NIS and UNICOS Security 311

Secure RPC . 311

Generating the Database . 312

Developing Secure RPC Applications 314

About NIS+ . 315

NIS+ Licensing . 316

Comparing NIS and NIS+ . 317

Components of NIS+ . 317

NIS+ Namespace . 318

Directory Objects . 318

x S–2304–10011

Contents

Page

NIS+ Domains . 318

NIS+ Servers . 318

NIS+ Clients . 319

NIS+ Tables . 319

Name Service Switch . 321

NIS+ Commands . 322

NIS+ API . 324

Planning Your NIS+ Namespace . 324

Setting up Your First NIS+ Domain 326

Calculating Disk Requirements for Your Master Servers 326

How to Set up a Root Domain . 326

Initializing an NIS+ Client . 329

Setting up an NIS+ Server . 330

How to Set up a Nonroot Domain 330

Administering Your NIS+ Namespace 331

Migrating from NIS to NIS+ . 334

NIS-compatibility Mode . 334

NIS to NIS+ Command Compatibility 335

Appendix A MIB Variables Supported by Cray 337

System Group . 337

Interface Group . 337

Address Translation Group . 338

IP Group . 338

ICMP Group . 339

TCP Group . 340

UDP Group . 340

SNMP Group . 341

S–2304–10011 xi

UNICOS® Networking Facilities Administrator’s Guide

Page

Index 343

Figures
Figure 1. Two networks interconnected by gateway G 6

Figure 2. Several interconnected networks 7

Figure 3. Internet configuration with obvious paths 15

Figure 4. Internet configuration with alternative paths 16

Figure 5. Routing procedure example 18

Figure 6. Routing table example 21

Figure 7. Sample network configuration 67

Figure 8. Performance chart . 133

Figure 9. Double Buffering Network 137

Figure 10. Sample network configuration 141

Figure 11. Network routing example configuration 150

Figure 12. Special host routing example configuration 152

Figure 13. Load balancing example configuration 154

Figure 14. Route tracing example configuration 159

Figure 15. TCP/IP component interaction 179

Figure 16. Configuration example 221

Figure 17. System interfaces and ID mapping 247

Tables
Table 1. Characteristics of class A, B, and C addresses 9

Table 2. Supported Prefixes on Cray Systems 43

Table 3. /etc/inetd.conf file columns 100

Table 4. Configurable NFS Parameters 267

Table 5. NFS man pages . 274

Table 6. Comparing the features of NIS and NIS+ 317

Table 7. NIS+ tables on UNICOS systems 320

Table 8. Sample NIS+ client configuration 322

Table 9. NIS+ administration commands 322

xii S–2304–10011

Contents

Page

Table 10. NIS+ API functions . 324

Table 11. Common NIS+ commands 332

Table 12. Correspondence between information sources on a UNICOS system 334

Table 13. Comparing NIS and NIS+ commands on a UNICOS system 335

S–2304–10011 xiii

Preface

This manual contains information on the administration of networking facilities
supported by the UNICOS 10.0.1.1 operating system.

Warning: Starting with the UNICOS 10.0 release, the term Cray ML-Safe
replaced the term Trusted UNICOS, which referred to the system configuration
used to achieve the UNICOS 8.0.2 release evaluation. Because of changes to
available software, hardware, and system configurations since the UNICOS
8.0.2 system release, the term Cray ML-Safe does not imply an evaluated
product, but refers to the currently available system configuration that closely
resembles that of the evaluated Trusted UNICOS 8.0.2 system.

For the UNICOS 10.0 release and later, the functionality of the Trusted
UNICOS system has been retained, but the CONFIG_TRUSTED option, which
enforces conformance to the strict B1 configuration, is no longer available.

UNICOS System Administration Publications

Information on the structure and operation of a UNICOS system, as well as
information on administering various products that run under UNICOS, is
contained in the following documents:

• General UNICOS System Administration contains information on performing
basic administration tasks as well as information about system and security
administration using the UNICOS multilevel security (MLS) feature.
This publication contains chapters documenting file system planning,
UNICOS startup and shutdown procedures, file system maintenance, basic
administration tools, crash and dump analysis, the UNICOS MLS feature, and
administration of online features.

• UNICOS Resource Administration contains information on the administration
of various UNICOS features available to all UNICOS systems. This
publication contains chapters documenting accounting, automatic incident
reporting (AIR), the fair-share scheduler, file system quotas, file system
monitoring, system activity and performance monitoring, and the Unified
Resource Manager (URM).

• UNICOS Configuration Administrator’s Guide provides information about
the UNICOS kernel configuration files and the runtime configuration files
and scripts.

S–2304–10011 xv

UNICOS® Networking Facilities Administrator’s Guide

• UNICOS Networking Facilities Administrator’s Guide contains information on
administration of networking facilities supported by the UNICOS operating
system. This publication contains chapters documenting TCP/IP for the
UNICOS operating system, the UNICOS network file system (NFS) feature,
and the network information system (NIS) feature.

• NQE Administration describes how to configure, monitor, and control the Cray
Network Queuing Environment (NQE) running on a UNIX system.

• Kerberos Administrator’s Guide contains information on administration of the
Kerberos feature, a set of programs and libraries that provide distributed
authentication over an open network. This publication contains chapters
documenting Kerberos implementation, configuration, and troubleshooting.

• Tape Subsystem Administration contains information on administration of
UNICOS and UNICOS/mk tape subsystems. This publication contains
chapters documenting tape subsystem administration commands, tape
configuration, administration issues, and tape troubleshooting.

Related Publications

The following man page manuals contain additional information that may be
helpful.

• UNICOS User Commands Reference Manual

• UNICOS System Calls Reference Manual

• UNICOS File Formats and Special Files Reference Manual

• UNICOS Administrator Commands Reference Manual

• UNICOS System Libraries Reference Manual

The following publication is useful for establishing connectivity between the
High Performance Parallel Interface (HIPPI) network of a Cray mainframe
and any host that has a physical path to any of the network interfaces of the
Cray L7R.

• Cray L7R Release Overview and Software Installation Guide, contains information
on the Cray L7R release and details regarding software installation
and configuration for the Cray L7R. This publication contains chapters
documenting an overview of the release, purpose and function of the
Cray L7R, system and network configuration requirements, software
installation and configuration instructions, and troubleshooting.

xvi S–2304–10011

Preface

Design specifications for the UNICOS multilevel security (MLS) feature are
based on the trusted computer system evaluation criteria developed by the U. S.
Department of Defense (DoD). If you require more information about multilevel
security on UNICOS, you may find the following sources helpful:

• DoD Computer Security Center. A Guide to Understanding Trusted Facility
Management (DoD NCSC-TG-015). Fort George G. Meade, Maryland: 1989.

• DoD Computer Security Center. Department of Defense Trusted Computer System
Evaluation Criteria (DoD 5200.28-STD). Fort George G. Meade, Maryland: 1985.
(Also known as the Orange book.)

• DoD Computer Security Center. Trusted Network Interpretation of the Trusted
Computer System Evaluation Criteria (DoD NCSC-TG-005-STD). Fort George G.
Meade, Maryland: 1987. (Also known as the Red book.)

• DoD Computer Security Center. Summary of Changes, Memorandum for the
Record (DoD 5200.28-STD). Fort George G. Meade, Maryland: 1986.

• DoD Computer Security Center. Password Management Guidelines
(CSC-STD-002-85). Fort George G. Meade, Maryland: 1985.

• Wood, Patrick H. and Stephen G. Kochan. UNIX System Security. Hasbrouck
Heights, N.J.: Hayden Book Company, 1985.

Ordering Documentation

To order software documentation, contact the Cray Software Distribution Center
in any of the following ways:

E-mail:
orderdsk@cray.com

Web:
http://www.cray.com/craydoc/

Click on the Cray Publications Order Form link.

Telephone (inside U.S., Canada):
1–800–284–2729 (BUG CRAY), then 605–9100

Telephone (outside U.S., Canada):
Contact your Cray representative, or call +1–651–605–9100

S–2304–10011 xvii

UNICOS® Networking Facilities Administrator’s Guide

Fax:
+1–651–605–9001

Mail:
Software Distribution Center
Cray Inc.
1340 Mendota Heights Road
Mendota Heights, MN 55120–1128
USA

Conventions

The following conventions are used throughout this document:

Convention Meaning

command This fixed-space font denotes literal items, such
as file names, pathnames, man page names,
command names, and programming language
elements.

manpage(x) Man page section identifiers appear in parentheses
after man page names. The following list describes
the identifiers:

1 User commands

1B User commands ported from BSD

2 System calls

3 Library routines, macros, and
opdefs

4 Devices (special files)

4P Protocols

5 File formats

7 Miscellaneous topics

8 Administrator commands

Some internal routines (for example, the
_assign_asgcmd_info() routine) do not have
man pages associated with them.

variable Italic typeface indicates an element that you will
replace with a specific value. For instance, you
may replace filename with the name datafile in

xviii S–2304–10011

Preface

your program. It also denotes a word or concept
being defined.

user input This bold, fixed-space font denotes literal items
that the user enters in interactive sessions. Output
is shown in nonbold, fixed-space font.

[] Brackets enclose optional portions of a syntax
representation for a command, library routine,
system call, and so on.

... Ellipses indicate that a preceding element can be
repeated.

The following machine naming conventions may be used throughout this
document:

Term Definition

Cray PVP systems All configurations of Cray parallel vector
processing (PVP) systems, including Cray SV1
series systems.

Cray MPP systems All configurations of the Cray T3E series. The
UNICOS operating system is not supported on
Cray T3E systems. Cray T3E systems run the
UNICOS/mk operating system.

S–2304–10011 xix

Preface

Reader Comments

Contact us with any comments that will help us to improve the accuracy and
usability of this document. Be sure to include the title and number of the
document with your comments. We value your comments and will respond to
them promptly. Contact us in any of the following ways:

E-mail:
swpubs@cray.com

Telephone (inside U.S., Canada):
1–800–950–2729 (Cray Customer Support Center)

Telephone (outside U.S., Canada):
Contact your Cray representative, or call +1–715–726–4993 (Cray Customer
Support Center)

Mail:
Software Publications
Cray Inc.
1340 Mendota Heights Road
Mendota Heights, MN 55120–1128
USA

S–2304–10011 xxi

Introduction [1]

This guide is a teaching and reference document for people who manage the
operation of Cray systems running the UNICOS operating system. It contains
information on administration of networking facilities supported by the UNICOS
operating system.

This manual provides information on the use and administration of the following
network administration products:

• Transmission Control Protocol/Internet Protocol (TCP/IP), a networking
protocol suite that allows Cray systems to be added to any established
TCP/IP network and provides a large number of networks and users with
access to Cray systems.

• Network file system (NFS); UNICOS NFS is a software product that allows
users to share directories and files across a network of machines.

• Network information system (NIS) (formerly called yellow pages); UNICOS
NIS is a network service that allows information such as passwords and
group IDs for an entire network to be held in a single database.

Also included in this guide is an appendix listing supported management
information base (MIB) variables.

This guide replaces neither experience nor other documents that more fully
describe specific system areas. Familiarity with the reference publications listed
in the preface, combined with the full-time efforts of an individual, is necessary
to effectively manage Cray systems running the UNICOS operating system.

S–2304–10011 1

TCP/IP [2]

Transmission Control Protocol/Internet Protocol (TCP/IP) is an integrated
networking protocol suite developed by the U. S. Department of Defense (DoD)
for the Defense Data Network (DDN). The TCP/IP implementation described in
this section is for the UNICOS operating system, running on all Cray systems.
This implementation is compatible with other network communications products
that comply with the DoD TCP/IP specifications. It allows Cray systems to be
added to any established TCP/IP network and provides many networks and
users with access to Cray systems.

The following hardware and software are minimum requirements for installing
and operating TCP/IP:

• A Cray system running the UNICOS operating system.

• Network media, such as a Cray FEI-3 front-end interface, a Network Systems
Corporation (NSC) Data Exchange (DX) or Data Exchange Extended Chassis
(DXE) adapter, a Fiber Distributed Data Interface (FDDI), or a Cray High
Performance Parallel Interface (HIPPI).

Note: The required network media differs based on the type of Cray
system you have.

• At least one other host in the network that supports DoD standard TCP/IP
protocols.

This section provides you with the information you need to install and maintain
TCP/IP. It is assumed that you have a working knowledge of your particular
Cray system and the UNICOS operating system.

The following topics are discussed:

• TCP/IP basics

– Details of Internet addressing, including hardware address resolution and
subnet addressing

– Name and address mapping process

– Routing of data through gateways to its final destination

• Configuration for GigaRing, Model E (IOS-E), and Model V (IOS-V) based
systems

S–2304–10011 3

UNICOS® Networking Facilities Administrator’s Guide

– Physical network media through which Cray systems interface with
other systems

– Directions for configuring TCP/IP (with or without the use of the
UNICOS installation and configuration menu system (ICMS)). For more
information on the use of the UNICOS ICMS, see UNICOS System
Configuration Using ICMS.

• Network tuning

• Troubleshooting

• Trace facility

• Security administration basics

2.1 TCP/IP Basics

Cray systems operate in environments in which communication with computer
systems in other networks is necessary. Communication among these computers
is possible through a technology that connects the diverse systems and allows
each to access the other. This technology, known as internetworking, The
standards that specify the details of how these computers communicate, called
Transmission Control Protocol/Internet Protocol (TCP/IP), were developed by
the U. S. Department of Defense (DoD) Advanced Research Project Agency.
This collection of individual networks in government, military, university, and
industry installations is called the TCP/IP Internet, or simply the Internet provides
gateways through which the data can travel.

This section presents the aspects of TCP/IP that you must know to administer the
Cray system on the Internet. The following aspects are described:

• Internet structure

• Network hardware

• Internet addressing

• Hardware addressing

• Routing of information

4 S–2304–10011

TCP/IP [2]

2.1.1 Internet Structure

A computer network consists of two or more computers (also known as hosts)
that are connected to each other by network technology such as an NSC
HYPERchannel, a Cray FEI-3 front-end interface, an FDDI, or a Cray High
Performance Parallel Interface (HIPPI). This type of connection is known as a
direct connection and creates a network known as a local area network (LAN).
An internetwork consists of two or more interconnected LANs, which can be
interconnected by either a host or a router. Hosts and routers that interconnect
LANs are known as gateways.

Internet technology allows communication between networks (for example, a
gateway receives a packet of data from a computer on one network and sends
it to a computer on another network). Figure 1 shows gateway G connected to
both networks A and B. Gateway G receives packets of data from any host on
network A (dotted lines represent hosts) and transfers them to network B.
Likewise, gateway G receives packets of data from any host on network B and
transfers them to network A.

S–2304–10011 5

UNICOS® Networking Facilities Administrator’s Guide

Network A Network B a10180

G

Figure 1. Two networks interconnected by gateway G

Typical internetworks are more complex than the one depicted in Figure 1.
Packets are sometimes routed through numerous gateways before arriving at
the designated destination. Sometimes decisions have to be made as to the
most efficient route to take. Consider the internetwork in Figure 2. Dotted lines
represent hosts.

6 S–2304–10011

TCP/IP [2]

cathy jill

cathynet jillnet

bignet

fe1net

craynet

fe1

fastcray

fe2 fe3

a10181

Figure 2. Several interconnected networks

S–2304–10011 7

UNICOS® Networking Facilities Administrator’s Guide

Notice, for example, the choices for routes that a host on the jillnet network
would have when trying to send data to the craynet network. Data could
be routed through fe2 or fe3 to craynet, or through cathy, to the fe1nt
network, and then through fe1 to craynet. Planning the route that data will
take to get from one network to another is the job of the administrator. See
Section 2.1.4, page 14 for information on how this process works. See Section
2.3.3, page 148 for a discussion of how route selection can affect network
performance.

2.1.2 Internet Addressing

The technology that allows hosts to interface with Cray systems requires that two
types of addresses be specified: Internet and hardware. This section discusses
Internet addressing; the following section discusses hardware addressing.

TCP/IP provides an addressing system in which each host on the internetwork
is assigned at least one 32-bit address. This address is used for communication
among the hosts in the internetwork and is known as the Internet address. Each
host has as many Internet addresses as it has network interfaces. Those hosts
with more than one network interface can be used as gateways. For example, the
gateway called cathy in Figure 2, page 7 has three different Internet addresses
because it interfaces with cathynet, bignet, and fe1net. Gateways fe1,
fe2, fe3, and jill each have two Internet addresses. The hosts shown inside
the networks have only one Internet address each because they are connected
to only one network.

The Internet address consists of two main parts: the part that identifies the
network to which the host is connected, and the unique part that identifies the
host.

2.1.2.1 Address Classes

TCP/IP provides four types of addresses to accommodate the diversity of
Internet structures. Class A addresses are assigned for networks that consist of
more than 65,534 hosts. The high-order 8 bits identify the network; the remaining
24 bits identify the host. The first bit of a class A address is always 0. The
following Internet address is a class A address:

00000001 00001010 00100001 00000101

Network Host
a10253

8 S–2304–10011

TCP/IP [2]

Class B addresses are assigned to internetworks that consist of from 254 to
65,534 hosts. The high-order 16 bits identify the network; the remaining 16 bits
identify the host. The first and second bits of a class B address are always 10.
The following Internet address is a class B address:

10000001 00100001 00000101

Network Host
a10254

00001010

Class C addresses are assigned to internetworks that consist of fewer than 254
hosts. The high-order 24 bits identify the network; the remaining 8 bits identify
the host. The first three bits of a class C address are always 110. The following
Internet address is a class C address:

11000001 00000101

Network Host
a10255

00001010 00100001

Table 1, page 9 summarizes the characteristics of class A, B, and C addresses.

Table 1. Characteristics of class A, B, and C addresses

Address class
Maximum
hosts/network Maximum unique networks

A 16,777,214 126

B 65,534 16,382

C 254 2,097,150

Class D addresses are assigned to IP multicast group addresses. A multicast
address is used when sending an IP datagram to a group of hosts that belong to a
specific multicast group. A multicast group address is the combination of the
high-order four bits 1110 and the multicast group ID (the remaining 28 bits).
The following Internet address is a class D address:

S–2304–10011 9

UNICOS® Networking Facilities Administrator’s Guide

0000 00000000 00000000 000000001110

Multicast group ID
a10256

When written in decimal notation, these addresses range from 224.0.0.0 through
239.255.255.255. Some multicast group addresses are assigned as well-known
addresses by the Internet Assigned Number Authority (IANA). These are called
permanent host groups. For example, the address for the permanent host group
that includes all routers on a specified subnet is 224.0.0.2. See RFC 1700 for more
information about permanent host groups.

2.1.2.2 Subnet and Supernet Addressing

Some sites have numerous networks. If each network were assigned a different
network identifier, the routing process would become difficult. Subnet addressing
allows numerous networks to appear to the routing process to be part of the
same network. This standard is defined by RFC 950. See Section 2.1.4, page
14, for details of the routing process.

Subnet addressing uses part of the host portion of the Internet address to
designate subnetworks. Consider the class B address in the previous example.
Ordinarily, the last 16 bits specify the host identifier. With subnetting, you can
take part of the host portion to identify subnetworks and use the remaining part
of the host portion to identify hosts on the subnetworks. For example, you
could use the first 3 bits of the host portion to identify subnetworks. Using only
3 bits, you can identify as many as six different networks (001, 010, 011, and
so on). Bits 000 and 111 are reserved. The other 13 bits could then be used to
identify the hosts on the various subnetworks. You could identify as many as
8190 hosts per subnetwork this way.

The bits of the host identifier part of an Internet address can be divided in
whatever manner is necessary to identify your particular network structure. For
example, if you need more subnetworks, you can use more bits to identify the
subnetworks and fewer to identify the hosts.

If it is necessary to choose subnet addressing for your site, you must also choose a
32-bit subnet mask to identify your network. This mask shows which part of an
Internet address identifies the network (including the subnetwork) and which
identifies a host. The mask must contain 1’s to represent the bits that identify the
network portion and 0’s to represent the bits that identify the host portion. For
example, suppose your site has been assigned the following class C address:

10 S–2304–10011

TCP/IP [2]

11000000 00001001 00101000 00000000

Assume that you need to choose a subnet mask to identify the network and host
portions of this address. You know that the left three octets of the mask will be all
1’s, signifying that the first three octets are the network portion (class C addresses
always take 24 bits to identify the network portion). Because you are going to
use part of the host portion (rightmost octet) to identify the subnetwork, some
of the bits will be 1’s, and some will be 0’s in the last octet of the mask. How
much of this octet you use to identify the subnetwork and how much you use
to identify the hosts depends on the structure of your network. For example, if
you needed to identify six physical subnetworks, you would set the first 3 bits
of this octet to 1’s. You would set the rest of the bits to 0’s, to identify them as
host bits. Those 5 bits could identify up to 30 hosts on each of the subnetworks.
Your subnet mask would be as follows:

11111111 11111111 11111111 11100000

Maybe you have only two subnetworks to be identified. In that case, your subnet
mask would be as follows:

11111111 11111111 11111111 11000000

With this subnet mask, you could identify up to 62 hosts on each network.

You must specify this mask in the netmask argument of the ifconfig(8)
command. An example of using the netmask argument is shown on Section
2.2.9.6.2, page 112.

As the Internet continues to grow, the phenomenon of supernetting is starting to
become more common. Supernetting is the reverse of subnetting. In it, a block of
adjacent network addresses lying on a power-of-two boundary are combined
into a single, larger network. For example, 16 class C network addresses are
shown below:

11000000 00001001 00101000 00000000

11000000 00001001 00101000 00000000

11000000 00001001 00101000 00000000

11000000 00001001 00101000 00000000

These could be combined into a supernet for a site which needed an address
space somewhere between those of a class B and a class C network.

For more information on supernetting, see RFC 1519.

S–2304–10011 11

UNICOS® Networking Facilities Administrator’s Guide

2.1.2.3 Decimal Notation

For ease of use, Internet addresses are usually expressed as four decimal integers,
separated by decimal points. Each decimal integer represents one octet of the
32-bit address. For example, the Internet address

10000001 00001010 00100001 00000101

would be expressed as follows in decimal notation:

129.10.33.5

A class A address (which always begins with a high-order binary 0) is recognized
as any Internet address whose decimal notation begins with an integer in the
range 0 to 127. A class B address (which always begins with a high-order binary
10) is recognized as any Internet address whose decimal notation begins with
an integer in the range 128 to 191. A class C address (which always begins with
a high-order binary 110) is recognized as any Internet address whose decimal
notation begins with the integer in the range of 192 through 223.

Subnet masks can also be expressed as 4 decimal-separated numbers. The subnet
masks in the previous examples would be expressed as 255.255.255.224 and
255.255.255.192, respectively.

2.1.2.4 Mapping Internet Addresses to Names

Because it is easier to remember a name than an Internet address, Internet
protocol has provided a means by which you can assign names to all Internet
hosts. To do so, create the /etc/hosts file or use the domain name service
and create the /etc/resolv.conf file and enter the Internet addresses and
corresponding names or aliases. See Section 2.2.4.1, page 31, or Section 2.2.8.3,
page 77, for more details on the /etc/hosts file and the domain name service,
respectively). Subsequently, when a user issues a command and uses a name
instead of an Internet address, the appropriate database is searched, and the
name is matched with the corresponding Internet address.

2.1.3 Hardware Addressing

Network hardware and the associated device drivers are protocol-independent.
Therefore, the hardware cannot use Internet addresses to get the data to its
remote destination.

The device drivers write hardware addresses (not Internet addresses) into the
hardware message header. TCP/IP uses Internet addresses, however, to obtain
hardware addresses. This section describes three methods for determining the

12 S–2304–10011

TCP/IP [2]

destination’s hardware address, given its Internet address. This process is called
hardware address resolution.

2.1.3.1 Using the Address Resolution Protocol (ARP)

Address resolution protocol (ARP) is a dynamic address resolution protocol.
Broadcast LAN media, such as Ethernet and FDDI, support ARP. ARP allows a
host to find the physical address of a target host on the same physical network,
given only the target host’s Internet address. When a host that is connected
to a broadcast type network wants to resolve an Internet address such as
128.150.30.10, it broadcasts a special packet (ARP request) that asks the host with
Internet address 128.150.30.10 to respond with its physical (hardware) address
(for example, 00-00-95-40-00-30). All hosts on the LAN receive the request, but
only the host that recognizes its Internet address sends a reply that contains
its physical address. ARP is used on Cray FDDI and Ethernet interfaces to
implement the address resolution needed to map the 32-bit Internet address
(logical address) to a 48-bit FDDI/ Ethernet hardware address (physical address).

ARP is a caching protocol; to avoid repeated use of the protocol, it maintains a
cache of recently learned Internet-to-physical address mappings. For more
information about ARP, see RFC 826.

2.1.3.2 Using a Configuration File—Model E and Model V Systems Only

For each type of Cray network hardware used in the internetwork, you can
create a configuration file, in which you supply specific information about
the hardware. In this file, you include Internet addresses and corresponding
hardware addresses. (If you have created the /etc/hosts file, you can use
names instead of Internet addresses.)

For Model E and Model V based systems, this configuration file is commonly
referred to as the /etc/hycf. name file, or just the hycf file.

The hycf file is used as input to the hyroute(8) command, which does the
actual mapping of the Internet addresses to the network hardware addresses (see
Section 2.2.6.4, page 44, for details on the hycf file and the hyroute command).
The hycf file information supplied to the hyroute command is the information
that TCP/IP uses to build the message header (including the physical destination
address and the logical destination address). Use this method if you want to
control or customize any information in the message header. For HYPERchannel
connections, because of the information that must be specified, you must use
this method.

S–2304–10011 13

UNICOS® Networking Facilities Administrator’s Guide

2.1.3.3 Using a Configuration File—GigaRing Based Systems Only

For each type of Cray network hardware used in the internetwork, you can
create a configuration file, in which you supply specific information about
the hardware. In this file, you include Internet addresses and corresponding
hardware addresses. (If you have created the /etc/hosts file, you can use
names instead of Internet addresses.)

The HIPPI arp file has the following format: /etc/ghippiX.arp

where X is the ordinal of the HIPPI interface. The arp file is used by
/etc/initif, which performs arp -s.

The GigaRing arp file has the following format: /etc/grX.arp

where X is the ordinal of the GigaRing interface.

To use arp on a HIPPI or GigaRing interface, enter permanent ARP entries in
the ARP table with the arp -s command. ATM interface configuration is done
in the atm.pvc file. It is not necessary to configure an arp entry for interface
names on FDDI or Ethernet.

2.1.3.4 Using the Internet Address—Model E and Model V Based Systems Only

If you do not create a hycf file, TCP/IP constructs the hardware address, as well
as other control information, from the third and fourth octets of the Internet
address, as follows:

• The third octet is interpreted as the physical destination (byte 4 of the
message header).

• The fourth octet is interpreted as the logical destination (byte 5 of the message
header).

For example, if the Internet address were 128.123.10.8, the message header
physical destination address field would be 10; the message header
logical destination address field would be 8.

2.1.4 Routing of Information

routing is the process of finding a path or route for data to travel from source to
destination. This section describes static routing, in which the administrator plans
the most efficient route for the data. dynamic routing is an automatic process in
which the routes are chosen by use of the gated(8) command. See Section 2.2.8.1,
page 61, for a description of dynamic routing.

14 S–2304–10011

TCP/IP [2]

If the source address and the destination address are a part of the same network,
the route is considered direct. If the source and the destination are on different
networks, gateways must be used between them. These routes are considered
indirect. In some indirect Internet configurations, the path from source to
destination is obvious, as shown in Figure 3.

fe1

fe1net fe2net

craynet

fastcray

A

B

fe2

C

D

a10195

Figure 3. Internet configuration with obvious paths

S–2304–10011 15

UNICOS® Networking Facilities Administrator’s Guide

If data is to be sent between network craynet and host A or host B, it must be
routed through gateway fe1. If data is to be sent between craynet and host
C or host D, it must be routed through gateway fe2. However, in Figure 4, the
paths that the data must take to reach network craynet are not so obvious. Any
of the hosts in bignet can have data routed through gateway fe1 or fe2.

fe1

craynet

fastcray

A

fe2

bignet

B C D

a10196

Figure 4. Internet configuration with alternative paths

16 S–2304–10011

TCP/IP [2]

2.1.4.1 Routing Procedure

As an administrator, you must determine the proper routing information, based
on the configuration of your networks, for each host that is not directly connected
to the Cray system. For example, if you were administering the internetwork
shown in Figure 4, you would first determine which hosts will use which
gateways to communicate with the craynet network. You might decide that
hosts A and B will use gateway fe1, and hosts C and D will use gateway fe2.
The routing information you would supply for each host would indicate the first
gateway through which the data must travel to reach craynet. Each pass
through a gateway is known as a hop.

If there is more than one local network to which gateways are connected, you
must also specify a network route for each gateway. You can also specify default
gateways to provide paths for the hosts or networks that have no alternative
gateways to use.

Data is sent through the internetwork in pieces known as datagrams. When a host
is ready to send a datagram to another host, the destination Internet address is
included in the datagram, and the adapter encapsulates the datagram into a unit
of data known as a network packet. A network packet can travel only between
directly connected hosts.

In Figure 5, a datagram is routed from host A in network bignet to the craynet
network.

S–2304–10011 17

UNICOS® Networking Facilities Administrator’s Guide

A

fastcray

fe2

cathy

craynet
89.0.0.0

fenet
128.162.0.0

bignet
192.9.32.0

128.162.0.4

89.0.0.1

128.162.0.2

192.9.32.1

192.9.32.3

a10197

89.0.0.3

Figure 5. Routing procedure example

18 S–2304–10011

TCP/IP [2]

When host A (address 192.9.32.3) is ready to send a datagram to the craynet
network (network address 89.0.0.0), the routing information for host A reveals
that, for datagrams going to network 89.0.0.0, the first hop is gateway cathy
(address 192.9.32.1). Although the ultimate destination is for a host on craynet,
a packet is built and sent to cathy ’s address. This is as far as this packet can go.
When the packet reaches address 192.9.32.1, the datagram is stripped from the
packet. The destination address in the datagram is checked against cathy’s
routing information. cathy ’s information reveals that, for datagrams going
to network 89.0.0.0, the first hop is gateway fe2 (address 128.162.0.4). The
datagram is put into a new packet, with the destination address specified as fe2
’s address. When the packet reaches address 128.162.0.4, the datagram is again
stripped from the packet. The routing information for fe1 reveals a direct route
(no hops) to network 89.0.0.0. The datagram is put into yet another packet, and
the packet is sent to the destination host.

2.1.4.2 Routing Algorithm

You specify routes by creating kernel data structures known as routing tables.
Routing tables contain destination/gateway pairs; destination is the destination of
the datagram, and gateway is the gateway to be used for the next hop. A gateway
can be either a host or an adapter. The example in the previous section is based
on a routing algorithm that the routing software uses to find a match between a
datagram’s destination address and an address found in the destination field
of the routing table. When the match is found, the corresponding gateway is
used as the destination for the packet.

The algorithm is as follows:

1. If the destination address of the datagram exactly matches any of the
destination addresses in the host-specific routes of the routing table, return
the first such match.

2. Otherwise, if the network portion of the destination address of the datagram
matches any of the destination network addresses in the network routes in
the routing table, return the first such match.

3. Otherwise, if a default route is available, return that route.

4. Otherwise, there is not enough information to route the packet, and an error
is returned to the sender. If this occurs, user programs receive either a Host
unreachable or a Network unreachable error message.

S–2304–10011 19

UNICOS® Networking Facilities Administrator’s Guide

2.1.4.3 Routing Tables

A route for each network interface connected to a host is the only information
that the routing software needs to route data through the network. This
information is contained in the routing tables. Routes for directly connected
networks are set up automatically when an interface is initialized (see Section
2.2, page 22). However, the system administrator must set up routing tables on
all hosts that will be communicating with host networks that are not directly
attached. Each host has a start-up script, which is used to configure network
interfaces and initialize routing information whenever the system is initialized.
On many systems, the administrator places route(8) commands in the start-up
script to place the proper routing information in the routing tables when the
start-up script is executed.

The /etc/staticrts start-up script supplied with the UNICOS system takes a
slightly different approach, requiring the system administrator to place the
proper routing information in the /etc/gated.conf file, from which it will be
extracted and used to initialize the routing tables when the /etc/staticrts
script is executed.

Assume that you are the network administrator for the internetwork segment
shown in Figure 6. Routing tables must be set up for hosts A, B, C, D, E, and F,
and between smallnet and bignet. It is your job to determine the routing of
data from these hosts to the Cray system (fastcray). (See Section 2.3, page 123,
for details on selecting the most efficient routes.) The bignet network has four
hosts, and network smallnet has only two. If all data coming from bignet and
going to network craynet is routed through gateway G2, gateway G2 might be
too busy, and routing might become unnecessarily slow. Therefore, to minimize
the load on gateway G2, you can decide to route data from hosts A, B, and D
through gateway G2, and to route data from host C through gateway G1.

20 S–2304–10011

TCP/IP [2]

G1

craynet

fastcray

E

F

G2

A

B

C

D

bignetsmallnet

a10198

Figure 6. Routing table example

S–2304–10011 21

UNICOS® Networking Facilities Administrator’s Guide

The following list shows the routing tables set up from the route commands for
each host on the internetwork shown in Figure 6, page 21:

Host Routing table

A route add craynet G2

route add smallnet G1

B route add craynet G2

route add smallnet G1

C route add default G1

D route add craynet G2 route add
smallnet G1

E route add default G1

F route add default G1

fastcray route add smallnet G1

route add bignet G2

route add C G1

The routing tables set up for hosts A, B, and D specify that gateway G2 will
be used for network craynet destinations, and gateway G1 will be used for
smallnet destinations. The routing table for host C specifies that, no matter
what the destination, data from host C will be routed to gateway G1. The routing
tables for hosts E and F also indicate that gateway G1 will be used for all routing.
Hosts E and F have no other choice. The routing table for fastcray is set up
so that the route it uses to send data to each host is the same route that the
host uses to send data to fastcray.

2.2 Configuring TCP/IP

This section describes the configuration of TCP/IP in a UNICOS environment. It
describes the system components that are configurable, and it discusses methods
for configuring them. The following steps are described:

• Configuring the TCP kernel code (determining and setting mbufs, and
configuring other kernel parameters by using the netvar(8) and sysctl(2)
commands)

• Setting up network-wide configuration files (/etc/hosts and
/etc/networks)

22 S–2304–10011

TCP/IP [2]

• Setting up local system configuration files (/etc/services, /etc/shells,
/etc/hosts.equiv, /etc/config/spnet.conf, /etc/protocols,
and /etc/config/interfaces)

• Configuring network interfaces and daemons

• Performing start-up procedures

• Using the telnet linemode feature

• Assisting users in setting up environments (tab settings, $HOME/.netrc,
$HOME/.rhosts, and bftp)

If you are planning to run the UNICOS security feature on your Cray system,
refer to Section 2.6.3, page 216, for additional kernel configuration.

If you are also planning to tune your system, refer to Section 2.3, page 123.

2.2.1 Configuration Issues

This section describes several instances in which the configuration you choose
will affect the general operation of your TCP/IP networking software. Some
of these considerations involve choices among different methods by which
the software can accomplish something (such as looking up host name and
address information); others involve general policy considerations affecting the
configuration of your network (such as the selection of appropriate Internet
addresses); and, if used, the proper network configuration for installation and
configuration of the Cray L7R.

2.2.1.1 Looking up Host Names and Addresses

The underlying TCP/IP protocol suite identifies and communicates with all hosts
by their numeric Internet addresses. If the software that implements the protocols
allowed users to specify hosts by only numeric Internet addresses, however,
keeping track of which numeric address referred to which host would become a
tremendous burden on users (not to mention system administrators). To avoid
this problem and to make networking easier to use, the TCP/IP software allows
for central lookup of host names for conversion into the numeric Internet
addresses used by the underlying protocols. (It is easier to remember names than
to remember numbers.) UNICOS TCP/IP provides two separate configuration
methods to allow the software to map between Internet addresses and host
names. The method you choose for your system configuration has a large impact
on the networking capabilities provided to your system’s users.

S–2304–10011 23

UNICOS® Networking Facilities Administrator’s Guide

Note: These host address look-up methods are contained in library routines
common to all TCP/IP networking software; no software needs recompilation,
regardless of the configuration you choose.

The first method of mapping between host addresses and names is to place
the host addresses and names in the static text file /etc/hosts, as described
in Section 2.2.4.1, page 31. The advantage to using the /etc/hosts file is
simplicity; the information your users are seeking resides in one, easy-to-find
and easy-to-fix file. The disadvantage is that the /etc/hosts file on your Cray
system is merely a local copy of information that must be consistent across all
hosts on your networks; it is very easy for the information in your /etc/hosts
file to become out-of-date because of changes that occur to remote networks at
your site (for example, the addition of a new host, or a changed name of a host).

The second method is to use the Internet domain name service, the configuration
of which is described in Section 2.2.8.3, page 77. The domain name service is a
distributed collection of name servers on various hosts; these servers answer
requests for information about mappings between host addresses and names.
That is, the UNICOS TCP/IP software requests that a server (either on your local
Cray system or a remote system, according to your configuration) supply the
address for a given host name, and the server responds with the information
(possibly after consulting other name servers).

Note: The use of the domain name service is not allowed for the Cray ML-Safe
configuration of the UNICOS system.

The disadvantages of using the domain name service are that using this service is
more complex than relying on one /etc/hosts file (and, therefore, somewhat
more complex to administer) and that relying on name servers configured
by other administrators for information about those administrators’ remote
hosts and networks introduces the risk of incorporating mistakes from other
administrators’ information.

The advantages of using the domain name service are that, despite the
complexity of the domain name service, relying on it for information about
changes to remote hosts and networks is a lot less work than repeatedly updating
the /etc/hosts file by hand; also, your Cray system users can access more
remote hosts more conveniently and without administrator intervention.

However, the use of the domain name service for your host name and address
lookup does not completely eliminate the need for an /etc/hosts file.
Because the domain name service uses the underlying TCP/IP protocols to
ask information of and receive information from other name servers, system
startup can be a problem if the domain name service is requested to resolve a
host name that is necessary for network initialization (for example, the name

24 S–2304–10011

TCP/IP [2]

of a local interface to be configured up) before the networks have, in fact,
been initialized. Thus, even when using the domain name service, you must
have in your /etc/hosts file the names of any hosts referred to during your
start-up procedure. Typically, this list includes, at a minimum, all the hosts in
the network access list (NAL) and workstation access list (WAL), the names of
any local interfaces, and the names of any remote systems for which you will
be configuring routing information.

In summary, relying on /etc/hosts for your Cray system should be adequate
for sites with smaller networks administered by one central authority. However,
if your Cray system will be attached to the Internet or some other larger
collection of networks that are supported by many different administrators, the
use of the domain name service will provide more reliably consistent host name
and address mapping than will the use of an /etc/hosts file alone.

2.2.1.2 Selection of Internet Addresses

If you are connecting your Cray system to an existing TCP/IP network, Internet
addresses have already been established for the networks at your site; also, there
is likely to be an established list of host names and addresses for configuration of
your /etc/hosts file, or one or more existing domain name servers on various
hosts on the network to resolve host names and address for your system.

If, however, you are establishing a new TCP/IP network to which to attach
your Cray system, you must use a new network address. The UNICOS TCP/IP
software places no specific policy restrictions on the network numbers you use
for the addresses on any specific networks at your site; technically, you can
choose any number you want for a new network address. However, choosing a
network number in such a haphazard manner introduces the risk of conflicting
network numbers if your site decides to connect its TCP/IP networks to those
of another site.

To avoid conflicts of this type, administration centers exists for official Internet
network addresses. See The Accredited Registrar Directory at the following
Internet address for a listing of accredited agencies:

http://www.internic.net/regist.html

For example, to request official network addresses for any networks at your site,
you could send your request to VeriSign, Inc. (formerly Network Solutions,
Inc.) at the following location:

VeriSign, Inc.

505 Huntmar Park Drive

S–2304–10011 25

UNICOS® Networking Facilities Administrator’s Guide

Herndon, VA 20170

U.S. & Canada: 1-877-699-3243

Worldwide: +1 703-742-0914

E-mail Address: http://www.netsol.com/cgi-bin/help/contactus

Attn: Global Registry Services

See RFC 1400 for background information.

(In practice, sites with several local networks will typically request one official
network address for the site and differentiate among local networks by
establishing a different subnet address for each one, not by giving each local
network its own official network address.)

Note: Because it is often very difficult to foresee the future needs of a given
networking installation, it is strongly recommended that you secure official
Internet addresses from the InterNic for any TCP/IP networks at your site,
even if you have no current plans to connect your site to any outside networks.
This small precaution will prevent the trouble of converting your network’s
Internet addresses if your site should decide to connect to the Internet in
the future.

2.2.1.3 Using a Cray L7R

As with any Internet Protocol (IP) router, the Cray L7R provides connectivity
between various networks. The Cray L7R is intended to act as a specialized
router (gateway) between the High Performance Parallel Interface (HIPPI)
network of a Cray mainframe and any host that has a physical path to any of the
network interfaces of the Cray L7R, for example, a Gigabit Ethernet network.

Note: To obtain a current list of supported networking hardware, contact
your Cray service representative.

The Cray L7R specialized function is to off-load much of the Cray mainframe
resources spent dealing with IP networking traffic. This improves the TCP
bandwidth per connection between the Cray mainframe and host systems.

For information about installing and configuring the Cray L7R in your network,
see the Cray L7R Release Overview and Software Installation Guide.

26 S–2304–10011

TCP/IP [2]

2.2.2 Configuring the TCP/IP Kernel Code

This section describes the steps you must take to determine and set segments of a
special memory pool (mbufs), and to specify other kernel parameters through the
use of the netvar(8) facility. See Section 2.3.2.1, page 129, for a more detailed
description of mbufs.

2.2.2.1 Determining the Number of Mbufs Needed

To determine the number of mbufs to allocate, you must consider the following
factors:

• Whether HIPPI is being used as a TCP/IP interface. HIPPI does not
achieve its peak performance with TCP/IP unless you use large kernel
buffers (TCP_SNDBUF and TCP_RCVBUF socket options) and expanded
windows (TCP_WINSHIFT socket option). UNICOS ftp and ftpd facilities
automatically use these to maximize file transfer throughput.

Note: For Model E and Model V based systems, define a minimum of
1800 mbufs for each HIPPI interface configured for TCP/IP; for GigaRing
based systems, define a minimum of 4000 mbufs for each HIPPI interface
configured for TCP/IP.

• Mbufs are incremented by 4000. See Section 2.2.2.2.1, page 28 for a table
showing the number of mbufs required to ifconfig each interface type.

• Number of routing entries in the routing table (for Model E and Model V
based systems, each entry requires 1 mbuf; for GigaRing based systems,
each entry requires 2 mbufs.). See Section 2.1.4, page 14, for a description of
routing tables.

• Number of active sockets (for Model E and Model V based systems, each
requires 3 mbufs for the life of the connection; for GigaRing based systems,
each requires 2 mbufs for the life of the connection). See Section 2.3.2.1.4,
page 135, for a description of sockets.

• Number of UNICOS network file system (NFS) user ID maps configured
(approximately 150 mbufs for each).

• On systems running the UNICOS security feature, the number of NAL, WAL,
and Internet Protocol Security Options (IPSO) map entries (each requires
1 mbuf).

These factors account for a small, but fixed pool of mbufs. Additional mbufs
are required to handle transient peaks, packet headers, data queued for input
or output to active connections, and file transfer and remote shell connections.

S–2304–10011 27

UNICOS® Networking Facilities Administrator’s Guide

To avoid a setting that is too low, you should set your number of mbufs to 50%
above the minimum estimate. For more information on selecting the number
of mbufs to allocate, see Section 2.3.2.1.3, page 131.

2.2.2.2 Setting the Number of Mbufs

To set the number of mbufs, perform the following steps:

1. If you are using the UNICOS ICMS to configure your kernel, consult the
Configure System -> Kernel configuration menu for the item that
sets the appropriate number of mbufs.

If you are not using the UNICOS ICMS to configure your kernel,
set (or change) the value of the TCP_NMBSPACE parameter in the
/usr/src/uts/cf/config.h file to the appropriate number of mbufs.

Either method sets the number of mbufs, which will be allocated at system
initialization time for TCP/IP use. You cannot change the size of this pool
while the system is running.

2. Issue the nmake(1) command from the /usr/src/uts/cf directory (for
Cray J90 systems, the /usr/src/uts directory). This recompiles the module
with the new mbuf value and links a new kernel.

3. Issue the following command from the /usr/src/uts/cf or
/usr/src/uts directory:

nmake installsys

This installs the newly built kernel with the new number of mbufs in the
root directory.

2.2.2.2.1 Mbuf Requirements—for GigaRing Based Systems Only

1. The following shows the number of mbufs required to ifconfig each
interface type:

Interface mbufs required

ATM 2000

Ethernet 500

FDDI 1000

HIPPI 4000

28 S–2304–10011

TCP/IP [2]

GigaRing 4000

2.2.2.3 Specifying Other Kernel Variables

You can use either the netvar(8) or sysctl(8) command to set or change
other kernel networking variables, such as the TCP/IP send and receive
space, while the system is up and running. At system start-up time, the default
tcpstart(8) script, which is supplied with the UNICOS system, uses netvar(8)
to initialize kernel variables to values you select (see Section 2.2.9.2, page 107,
for details).

2.2.3 Security Configuration Parameters for Networking

Security configuration parameters for the UNICOS operating system are set in
the kernel parameters and config.h file. For information on installing and
configuring the UNICOS system, see UNICOS System Configuration Using ICMS.

The following are the security configuration parameters for networking:

Parameter Description

NFS_SECURE_EXPORT_OK

Flag indicating whether information on a secure file system
can be exported over NFS. A secure file system refers to a file
system that has been explicitly marked as secure by labelit(8)
or mkfs(8). This configuration parameter is retained for
compatibility with the UNICOS operating system.

If NFS_SECURE_EXPORT_OK is enabled (set to 1),
remote access to secure file systems will be allowed. If
NFS_SECURE_EXPORT_OK is disabled (set to 0), remote access to
secure file systems is prohibited.

It is recommended that sites use a setting of 1 for all
configurations of the UNICOS operating system.

The default setting is 1. There is no required ML-Safe setting.

NFS_REMOTE_RW_OK

Flag indicating whether remotely mounted NFS file systems can
be mounted as read/write or whether they must always be
read-only. If NFS_REMOTE_RW_OK is enabled (set to 1), remotely
mounted NFS file systems may be mounted read/write or
read-only. If NFS_REMOTE_RW_OK is disabled (set to 0), all
remotely mounted NFS file systems are mounted read-only.

S–2304–10011 29

UNICOS® Networking Facilities Administrator’s Guide

The default setting is 1. There is no required ML-Safe setting.

SECURE_NET_OPTIONS

A bit mask of flags that may contain the following bits. It allows
a site to configure certain global networking options.

Bit name Value Description

NETW_STRICT_B1 00001 Restrict network label ranges
so that NAL entries must
either specify an IP security
option or a single label for a
remote host.

NETW_SOCK_COMPAT 00002 Automatically make all
sockets set up by a privileged
process multilevel sockets.

NETW_RCMD_COMPAT 00004 Allow traditional
processing of .rhosts
and hosts.equiv.

The default setting is 6 (NETW_SOCK_COMPAT |
NETW_RCMD_COMPAT).

The 1 (NETW_STRICT_B1) bit is required for the Cray ML-Safe
configuration of the UNICOS system.

2.2.4 Setting up Network-Wide Configuration Files

This section describes the configuration and format of the /etc/hosts and
/etc/networks files, which map Internet addresses to host and network
addresses, respectively. Because the Internet addresses listed in these files must
be consistent across all hosts on the affected networks, many sites maintain
master copies of these files (maintained by a central administrator), and when
necessary, distribute updated copies to all of the systems that are based on the
UNIX system and attached to their networks. This administrative technique is
much simpler than relying on the individual administrators of each host to make
changes to the files manually; thus, it is particularly recommended for sites
with many networked hosts. However, if you ever need to modify the contents
of your /etc/hosts or /etc/networks file directly, you must adhere to the
formats specified in the following section.

30 S–2304–10011

TCP/IP [2]

2.2.4.1 The /etc/hosts File

The /etc/hosts file is a text file that associates each Internet address with one
or more host names. See Section 2.2.1.1, page 23, for information on setting up the
/etc/hosts file. There should be one entry in the /etc/hosts file (that is, one
Internet address) for each network interface on each host of the networks that
are accessible to your Cray system. The gethost(3) library routines, which are
compiled into the TCP/IP software, consult the entries in the /etc/hosts file to
map a host name supplied by the user to an Internet address (and vice versa).

If you are using the UNICOS ICMS to configure your Cray system, you can
disable the appropriate portion of the UNICOS ICMS and manually update the
/etc/hosts file. This would be appropriate for a site at which the /etc/hosts
file for all systems that are based on the UNIX system is maintained by a central
administrator and distributed to your Cray system. To complete the disable
procedure, consult the Configure System -> Configurator automation
options menu for the correct entry to use to automate the host address
configuration.

If you decide to use the UNICOS ICMS to configure your /etc/hosts file, the
Configure System -> Network configuration -> General network
configuration -> Host address configuration menu lets you specify
the remote hosts that are accessible to your Cray system, and it generates an
/etc/hosts file from the information you supply.

If you decide not to use the UNICOS ICMS to configure your /etc/hosts file,
or if you are not using the UNICOS ICMS for your configuration at all, you must
follow the guidelines in this section to edit the /etc/hosts file directly to
specify the remote hosts that are accessible to your Cray system.

The following is an example of an /etc/hosts file:

/etc/hosts

TCP/IP hosts file

#

127.0.0.1 localhost loopback

89.0.0.0x3 r-n-d rocky

89.0.0.4 support bullwinkle bw

89.00.0.5 cray-a peabody

192.9.0.5 cray-b boris

35.01.0.11 star

51.0.0.1 accounts

Use the following format rules for creating the /etc/hosts file:

S–2304–10011 31

UNICOS® Networking Facilities Administrator’s Guide

• Begin each line with an Internet address. Each segment of the address can
be expressed in decimal, octal, or hexadecimal format. Octal segments are
preceded by 0; hexadecimal segments are preceded by 0x. In the previous
example, the fourth segment of the address for host r-n-d is in hexadecimal
format; the second segment of the address for host cray-a is in octal format;
the second segment of the address for host star is in octal format; all
other segments are in decimal format. Each Internet address must appear
on a separate line.

• Follow the Internet address by at least one blank space or tab.

• Look at the official host name in the field following the Internet address.
Ensure that the host name does not exceed 63 characters and contains
only alphanumeric characters or the minus sign with the first character
alphanumeric.

• Allow the host name to be followed by blank space and one or more aliases.
In the previous example, host support, which has Internet address 89.0.0.4,
has the two aliases, bullwinkle and bw.

• Always use the Internet address for the loopback test (see "The hit(8)
command" and Section 2.4.1.1.3, page 170, for details of the loopback test).
In the previous example, the Internet address 127.0.0.1 for localhost is
used for the loopback test.

Note: In the Cray ML-Safe configuration of the UNICOS system, special
steps must be taken to run the hit(8) command (see General UNICOS
System Administration, for more details on non-TCP software and UNICOS
security).

• Add comment lines to the file by preceding the comments with a #. You can
enter comments on a separate line, with a # as the first character, or on part
of a line. Any data following a # and contained on the same line as the #
is considered a comment.

• If you insert multiple entries for a single remote host, the first entry is used.

For improved performance, you can also create /etc/hosts.bin, a binary
equivalent of the /etc/hosts file that can be searched more rapidly. If this
binary file is present, it is used instead of the /etc/hosts file to discover the
Internet address for a given host name. Use the mkbinhost(8) command to
create the /etc/hosts.bin file. If you are using the default tcpstart script,
this file is created automatically when the system is initialized.

32 S–2304–10011

TCP/IP [2]

2.2.4.2 The /etc/networks File

The /etc/networks file is a text file that associates names with networks
that are accessible to your Cray system by using the network portion of the
Internet addresses of the hosts on each network. (This is referred to as the network
number of the network.) You can choose not to provide any mapping between
network numbers and network names (that is, you can decide not to provide an
/etc/networks file). If you do not provide an /etc/networks file, however,
all references to networks in your configuration (typically as an argument to
the route(8) command as part of the NAL and WAL configurations, or in the
output of the netstat(1B) command) must be by network number, and not
by name. If you do provide an /etc/networks file, the getnet(3) library
routines, which are compiled into the TCP/IP software, consult the entries in
the /etc/networks file to map a network name that is supplied by the user to
a network number (and vice versa).

If you are using the UNICOS ICMS to configure your Cray system, you can
disable the appropriate portion of the UNICOS ICMS and manually update
the /etc/networks file. This would be appropriate for a site at which the
/etc/networks file for all systems that are based on the UNIX system is
maintained by a central administrator and distributed to your Cray system.
To complete the disable procedure, consult the Configure System ->
Configurator automation options menu for the correct entry to use to
automate the network address configuration.

If you decide to use the UNICOS ICMS to configure your /etc/networks
file, the Configure System -> Network configuration -> General
network configuration -> Network address configuration menu
lets you specify the networks that are accessible to your Cray system, and it
generates a /etc/networks file from the information you supply.

If you decide not to use the UNICOS ICMS to configure your /etc/networks
file, or if you are not using the UNICOS ICMS for your configuration at all,
you must follow the guidelines in this section to edit the /etc/networks file
directly to specify the networks that are accessible to your Cray system.

The following is an example of an /etc/networks file:

/etc/networks

TCP/IP networks file

#

loopback 127 # Class A network

craynet1 128.162.1 # Class B subnetted network

craynet2 128.162.2 #

ether1 128.162.3 r-n-d research

S–2304–10011 33

UNICOS® Networking Facilities Administrator’s Guide

Use the following format conventions for creating or changing the network file:

• Use the first field of every line as the official network name. The network
name must not exceed 63 characters and must contain only alphanumeric
characters and the minus sign with the first character alphanumeric.

Follow the network name by blank space (that is, by any number of spaces or
tabs).

• Note that the second field contains the network portion of an Internet address,
which can be in decimal, octal, or hexadecimal format. (Ensure that each
network number appears on a separate line.)

• Follow the network number by a blank space and one or more aliases. In the
previous example, network ether1, which has network number 128.162.3,
has the two aliases r-n-d and research.

• Remember that the /etc/networks file is searched sequentially. If there are
multiple entries for one network, the first entry is used.

• Use network number 127 for loopback processing. Because loop-back
processing is used to test the network, you should never use the official
network name as an alias for loopback.

• Add comment lines to the file by preceding the comments with a #. Enter
comments on a separate line, with a # as the first character, or on part of
a line. Any data following a # and contained on the same line as the #
is considered a comment.

2.2.5 Setting up Local System Configuration Files

The configuration files that are described in the following section must be
configured if your site uses the facility that the file represents.

2.2.5.1 The/etc/services File

The /etc/services file is a text file that associates the name of a service
with the protocol and standard port number that are used by the daemon that
provides the service. The default /etc/services file that is supplied with the
UNICOS system lists the Internet-standard protocols and ports for many services.
Therefore, you should never need to modify an existing entry. However, it might
be appropriate to add information about new services that are local to your site.

If you are using the UNICOS ICMS to configure your Cray system, you can
disable the appropriate portion of the UNICOS ICMS and manually update

34 S–2304–10011

TCP/IP [2]

the /etc/services file. To do so, consult the Configure System ->
Configurator automation options menu for the correct entry to use to
automate the services configuration.

If you decide to use the UNICOS ICMS to configure your /etc/services
file, the Configure System -> Network configuration -> General
network configuration -> Networking services configuration
menu lets you specify the services available on your Cray system, and it
generates an /etc/services file from the information you supply.

If you decide not to use the UNICOS ICMS to configure your /etc/services
file (or if you are not using the UNICOS ICMS at all), you can add services by
editing the /etc/services file directly and then running the rsvportbm(8)
command. This command prevents servers that use the bindresvport(3)
and rresvport(3) library routines from using the ports reserved in the
/etc/services file.

The /etc/services file contains the following information:

• Official service name

• Port number (see Assigned Numbers, RFC 1010)

• Slash (/)

• Protocol name (currently TCP, UDP, or OSI)

• Aliases of the service

The following is a sample network services file:

/etc/services

Network Services, Internet style

echo 7/tcp

echo 7/udp

netstat 15/tcp

ftp 21/tcp

telnet 23/tcp

smtp 25/tcp mail

hostnames 101/tcp hostname

sunrpc 111/tcp

sunrpc 111/udp

Host specific functions

tftp 69/udp

finger 79/tcp

UNIX specific services

S–2304–10011 35

UNICOS® Networking Facilities Administrator’s Guide

ntp 123/udp

exec 512/tcp

login 513/tcp log

shell 514/tcp sh

ntalk 518/udp

printer 515/udp

nqs 607/tcp

2.2.5.2 The /etc/shells File

The /etc/shells file is a text file that contains a list of shells that are associated
with user accounts. The ftpd(8) program on the Cray system consults the list of
shells in this file (by using the getusershell(3) library routine). If the login
shell of an account to which someone is trying to log in through ftp(1B) does
not appear in the /etc/shells file, ftpd(8) does not permit the login. If this
file does not exist on your Cray system, it is because only accounts that list the
standard shell (/bin/sh) or the C shell (/bin/csh) as their login shell are
permitted to access the Cray system by using ftp(1B) to transfer files.

If you are using the UNICOS ICMS to configure your TCP/IP software, consult
the Configure System -> Network configuration -> TCP/IP
configuration -> Shells menu to supply the list of shells for the
/etc/shells file.

If you are not using the UNICOS ICMS to configure your TCP/IP software, or if
you are not using the UNICOS ICMS at all, you must edit the /etc/shells
file directly.

The following shows a sample file that enables accounts that list the standard,
C, and Korn shells as their login shell to access files on the Cray system by
using ftp(1B).

/etc/shells

List of acceptable shells for chsh/passwd -s

Ftpd will not allow users who do not have one of these

shells to connect

#

/bin/sh

/bin/csh

/bin/ksh

36 S–2304–10011

TCP/IP [2]

2.2.5.3 The /etc/hosts.equiv File

The TCP/IP /etc/hosts.equiv file is an optional file that provides host access
permission information. The presence of a remote host’s name in this file grants
access to users on that host who have the same account name on the local host
without requiring them to enter a password.

Note: The implications of /etc/hosts.equiv are different when you are
running UNICOS security. See Section 2.6, page 211, for more details.

Following is an example of a hosts.equiv file:

hosts.equiv

twg # Allows access to users from twg who have

accounts on the local host

cray1 - steve # Allows all users from cray1 except steve

cray2 mark # Allows user mark to access all accounts on the

local host

Use the following format conventions for creating or changing the
/etc/hosts.equiv file:

• Begin each remote host’s name on a separate line.

• Follow the host name by a blank space and the login name of any user on the
host. The specified user can access all user accounts except root on the local
host. Use a minus sign (-) in the second field to deny access to specific users.

• Use the wildcard character (*) in either field to match any user or host name.

Note: It is a security risk to use the wildcard character. For example, the
wildcard character in the second field allows all users on the remote host to
access all user accounts on the local Cray host. Do not use the wildcard
character without a thorough understanding of its implications.

The rlogind(8), rshd(8), and rexecd(8) daemon processes use this file;
therefore, listing a remote host in /etc/hosts.equiv allows users of that
remote host to access the local host through the r-series commands.

Note: You can prohibit users on all remote hosts from using the r-series
commands by commenting out the references to r-series daemons (rshd,
rlogind, rexecd, and so on) in the /etc/inetd.conf file. See Section
2.2.8.7, page 98, for more information.

Users from remote hosts who have accounts on the local host are automatically
logged in and given execution privileges if their login names are the same on
both the remote host and the local host. (Users can set up $HOME/.rhosts files

S–2304–10011 37

UNICOS® Networking Facilities Administrator’s Guide

in their home directories on the local host to allow automatic login and access
to their accounts, even if the login names are different on the Cray system and
the remote host.)

When using the rlogin(1B) program or rexec(3) library routine, users are
prompted for their login names, and possibly their passwords, when the
contents of the .rhosts file requires it. When using the rcp(1) or rsh (see
remsh(1B)) program, users are denied access if neither /etc/hosts.equiv
nor $HOME/.rhosts is configured. See the TCP/IP Network User’s Guide for the
format of entries in the .rhosts file.

A user with the login name root on the remote host can log in as root on
the Cray system only when listed in the Cray system .rhosts file. You must
carefully set up the /etc/hosts.equiv and /.rhosts files to minimize
security risks.

The r-series programs (rlogin(1B), rsh(1B), rcp(1B), and rexec(3)) work
only between hosts that run under operating systems that are based on a UNIX
operating system. These programs provide automatic user authentication
and automatically pass terminal information to the remote host by using the
following procedure:

1. If the user is not root, the server searches /etc/hosts.equiv for the
remote host’s name.

2. If the host name is not found, the server searches for the user’s login name
in /etc/passwd.

3. If the login name is found, the user’s .rhosts file is checked.

4. If the remote host name and remote user name are contained in the .rhosts
file, the user is immediately logged in to the local host.

Warning: Using the second field of the /etc/hosts.equiv file is a
security risk if NETW_RCMD_COMPAT is also enabled. The first field is a
remote system name; the second field is an optional user name. For any
remote system (R) and any user (U) that are listed in the first and second
fields of the /etc/hosts.equiv file, U can log in to any local account,
except root, from R, without using a password.

When NETW_RCMD_COMPAT is used, automatic authentication is a security risk
because passwords are not checked if a user’s local login and local host name
are listed in the remote .rhosts file. For example, a user with the login name
joan on any remote host that is in /etc/hosts.equiv is allowed automatic
login to local account joan.

38 S–2304–10011

TCP/IP [2]

Another network security problem involves the function of the second field in
the /etc/hosts.equiv file (when NETW_RCMD_COMPAT is running). After a
remote host name, you can enter the user name of any user on the remote host.
Then, when the -l username option is entered with any of the r-series commands,
the user in the /etc/hosts.equiv entry has automatic login and file access to
the accounts of every user on the local host except root.

For example, suppose you enter the following line in the /etc/hosts.equiv
file on the local host:

twghost mark

User mark can then enter the following command from host twghost:

$ rlogin runcray -l steve

User steve now has automatic login and file access to the accounts of every
user on the local host except root.

2.2.5.4 The /etc/protocols File

The /etc/protocols file is a text file that associates the name of a protocol in
the Internet protocol suite with the protocol number (and one or more aliases).
The default /etc/protocols file that is supplied with the UNICOS system
contains a standard list of protocols and, therefore, might not need to be
modified. However, it might be appropriate to add information about new
protocols that are local to your site.

If you are using the UNICOS ICMS to configure your TCP/IP software, you can
disable the appropriate portion of the UNICOS ICMS and manually update and
configure the /etc/protocols file. To do so, consult the Configure System
-> Configurator automation options menu for the correct entry to use
to automate the protocols configuration.

If you are using the UNICOS ICMS to configure your /etc/protocols
configuration file, the Configure System -> Network configuration
-> TCP/IP configuration -> Protocols menu lets you specify
the protocols available on your Cray system, and it generates a proper
/etc/protocols file from the information you supply.

If you are not using the UNICOS ICMS to configure your /etc/protocols file,
or if you are not using the UNICOS ICMS at all, you can add protocols by editing
the /etc/protocols file directly. For each protocol listed in the file, there
should be one line containing the official protocol name, the protocol number,

S–2304–10011 39

UNICOS® Networking Facilities Administrator’s Guide

and any aliases for the protocol name. The items are separated by any number of
blanks or tab characters (or both). A comment is identified by a #.

The following is an example /etc/protocols file:

/etc/protocols

ip 0 IP # internet protocol, pseudo protocol number

icmp 1 ICMP # internet control message protocol

tcp 6 TCP # transmission control protocol

udp 17 UDP # user datagram protocol

2.2.6 Configuring Network Interfaces—Model E and Model V Systems Only

The following section describe the following steps that you must take to
configure each Cray system interface on the network:

1. Define the hardware devices

2. Name the Cray interface

3. Choose an Internet address

4. Create the hycf file, if needed

Note: Before you begin the following steps, ensure that all of the hardware
diagnostic tests have been performed and that all of the hardware is
functioning properly. Consult the appropriate vendor documentation for
specific diagnostic information.

If you are using the UNICOS ICMS for configuration, you can use
the Configure System -> Network configuration ->
TCP/IPConfigure System -> Kernel Configuration ->
Communication Channel Configuration menu and then the
appropriate submenu, Low-speed Channel Configuration or
High-speed Channel Configuration to configure your interfaces.

2.2.6.1 Defining Hardware Devices

Defined hardware devices for Cray systems are as follows:

• Model E systems

Hardware devices for Model E systems are defined in the network section of
the ~cri/os/uts/param file on the OWS-E or the /etc/config/param

40 S–2304–10011

TCP/IP [2]

on the Cray mainframe. Following is a sample param file for a Cray Model
E system:

network {

.

.

.

npdev 0 {

iopath { cluster 0;eiop 0;channel 030;}

np_spec FEI3;

}

.

.

.

hidev 0 {

iopath {cluster 0;eiop 3;channel 030;}

logical path 0 {flags 00;I_field 00;ULP_id 00;}

flags 00;

input;

device type PS_32;

}

• Cray J90 Model V systems

Hardware devices for Cray J90 systems are defined in the network section of
the /sys/param file. The /sys/param file is located on the console disk for
Cray J90 systems. The HIPPI interface is not defined in this file because it
is detected during the boot sequence. Following is a sample param file
for a Cray Model V system:

network {

...

endev 0 {

iopath { cluster 1; eiop 0; channel 020; }

}

fddev 0 {

iopath { cluster 2; eiop 0; channel 040; }

}

atmdev 0 {

iopath { cluster 0; eiop 0; channel 020; }

}

atmdev 1 {

S–2304–10011 41

UNICOS® Networking Facilities Administrator’s Guide

iopath { cluster 3; eiop 0; channel 020; }

}

...

}

2.2.6.2 Naming the Cray Interface

The interface name, which TCP/IP uses to access a given hardware device,
consists of two parts. The first part, which is the interface name prefix, indicates
the type of hardware. The second part, which is the number of the interface name
(also known as the interface number), identifies the physical device.

2.2.6.2.1 Interface Name Prefix

The interface name prefix is derived from the UNICOS driver that controls the
hardware device. This prefix indicates the major number that TCP/IP uses when
it defines the character special device for the given hardware. Following is a list
of the prefixes and a description of the associated interfaces:

Prefix Type of interface

en Ethernet interface on Model V systems. Shown as
endev in the param file.

fd FDDI interface on Model E systems. Shown
as the fddev hardware device entry in the
/etc/config/param file.

fddi FDDI interface on Model V systems. Shown as
fddev in the param file.

hi HIPPI interface on Model E and Model V systems.
Shown as the hidev hardware device entry in
the /etc/config/param file (for Model E
systems only).

np Low-speed HYPERchannel interface on Model E
systems. Shown as the npdev hardware device
entry in the /etc/config/param file.

atm Asynchronous Transfer Mode (ATM) interface
on Model V systems.

bbgx:atmx ATM interface on Model E systems.

The following matrix summarizes the prefixes that Cray systems support:

42 S–2304–10011

TCP/IP [2]

Table 2. Supported Prefixes on Cray Systems

Cray Systems Supported Prefixes

en fd fddi hi np atm bbgx:atm

IOS Model E x x x x

IOS Model V x x x x

2.2.6.2.2 Interface Numbers

Interface numbers for hardware devices are derived from the order in which the
hardware device entries appear in the files in which they are defined.

On Model E systems, the interface number for hardware devices is derived from
the order in which the hardware device entry appears in the network section of
the param file. This number is used to distinguish interfaces of the same type.

The following example shows the network section of a param file:

network {

.

.

.

npdev 0 {iopath { cluster 0; eiop 0; channel 030;}

np_spec FEI3;

}

npdev 1 {iopath { cluster 0; eiop 0; channel 032;}

np_spec N130X;

hidev 0 {iopath { cluster 0; eiop 3; channel 030;}

logical path 0 {flags 00; I_field 00; ULP_id 00;}

flags 00;

input;

device type PS_32;

}

hidev 1 {

iopath {cluster 0; eiop 3; channel 032;}

logical path 0 {flags 00; I_field 00; ULP_id 00;}

flags 00;

output;

device type PS_32;

S–2304–10011 43

UNICOS® Networking Facilities Administrator’s Guide

}

The interface names for this example are as follows:

np0

np1

hi0

hi1

2.2.6.3 Choosing an Internet Address

Each interface on your system must have an Internet address. The network and
subnet parts of the Internet address of the interface must correspond to the
Internet address of the network to which the interface is attached. The host
portion of the address can be selected by using the preferred administrative
practices for your site. (Some sites have a central network administrator who
determines the new Internet addresses for new systems and interfaces; other sites
let the individual system administrator decide.)

When you are choosing an Internet address for an interface that is attached to a
new TCP/IP network, see Section 2.2.4, page 30, for guidelines.

2.2.6.4 Creating the hycf File

Note: For software loopback interfaces, direct FDDI interfaces, Ethernet
interfaces, and ATM interfaces, it is not necessary to create an hycf file.

If you are using the UNICOS ICMS for configuration, you can use the
Configure System -> Network Configuration -> General network
configuration -> Network hardware address configuration menu
to create and maintain the hycf.name file. The information you put in this file is
used as input to the hyroute(8) command, which initializes the interface with
hardware address information. This configuration file, sometimes known as the
hycf file, varies according to the type of network hardware used, as shown in
the following sections.

2.2.6.4.1 NSC Low-speed Connections

Note: Cray J90 systems support NSC boxes if you connect to a HYPERchannel
network A400, N400, or DX adapter.

Use the following format when you create the hycf file for NSC low-speed
connections:

44 S–2304–10011

TCP/IP [2]

connection hostname hardware_address ff00 0 [mtu];

connection Type of connection. The direct parameter
indicates that the host is connected to the same
HYPERchannel trunk as the Cray system. The
gateway parameter indicates that the host
resides on a remote HYPERchannel trunk that is
connected to the local trunk.

Note: If the connection is type gateway,
the fields that follow hostname must contain
the names of hosts that are connected to the
bridge. These hosts must be defined as direct
hosts in this hycf file and must precede the
gateway definition.

hostname Host name that appears in the /etc/hosts file,
or Internet address that is expressed in decimal
notation.

hardware_address Host’s 16-bit HYPERchannel address in
hexadecimal format.

The most significant octet (byte) is the physical
unit address that is configured within the network
adapter hardware or firmware. Consult the
documentation for your adapter for the best way
to retrieve this information.

The least significant octet is the logical address.
This corresponds to the low-level device driver’s
logical path. By convention, logical path 5 is used
for TCP/IP. However, the system administrator
can choose any value. The only restriction is that
the logical address chosen must be unique with
respect to all protocols that use the device.

The install tool does not support an alternate
logical path for TCP/IP. To use a logical path other
than 5, you must manually create the TCP/IP
nodes. To do so, use the following command:

mknod name c 35 (npdev *16) + logical path

S–2304–10011 45

UNICOS® Networking Facilities Administrator’s Guide

The npdev variable indicates the low-speed device ordinal. The parameter name
should be /dev/comm/tcp xxxx where xxxx is the four-digit octal representation
of the minor device number. For example, to create a TCP/IP node for logical
path 3 on device ordinal 1, you would use the following command:

mknod /dev/comm/tcp0023 c 35 19

The hardware address is included in the packet that is sent on the network to the
destination host. The adapter that is attached to the destination host recognizes
that the packet should be passed to the destination host by the physical unit
address part of the hardware address. When the destination host processes the
packet, the destination protocol is chosen based on the logical address. That is,
the physical unit address tells which adapter box on the HYPERchannel should
process the packet, and the logical address tells which protocol in the destination
machine will process the incoming packet.

For example, suppose that you are setting the hardware_address field for a Cray
system that has an adapter with physical unit address 0x52. Also assume that
TCP/IP is configured to open logical path 5 for that device. The hardware_address
field for that computer is 5205.

ff00 HYPERchannel control number in hexadecimal
format (trunks to try, control bits).

0 Access code. This number must be 0.

mtu Maximum transmission unit. The largest amount
of data that can be sent to the host in one packet.
The default is 4144. See Section 2.3.1, page 123
for details on specifying mtu.

The following is an example of an hycf file for NSC low-speed connections.
Note that some of the connections do not use logical path 5 for TCP/IP.

Configuration table for the hyroute command for NSC low-speed

connections

#

#direct MACH-NAME TO MTU

direct cray2 c605 ff00 0 4144;

direct cray1 c205 ff00 0 4144;

direct wilbur 12c1 ff00 0 4144;

direct orville 2200 ff00 0 4144;

direct wk01 2605 ff00 0 4144;

direct wk02 4623 ff00 0 4144;

direct wk03 4400 ff00 0 4144;

direct wk04 4402 ff00 0 4144;

46 S–2304–10011

TCP/IP [2]

2.2.6.4.2 FEI-3 or VAXBI Connections

Note: Cray J90 systems do not support FEI-3 connections.

Use the following format when creating the hycf configuration file for FEI-3 or
VAXBI connections:

direct hostname dest ff00 0 [mtu];

direct Type of connection. direct indicates a direct
connection between the Cray system and the host.

hostname Host name that appears in the /etc/hosts file,
or the Internet address expressed in decimal
notation.

dest Hardware address of FEI-3 or VAXBI in
hexadecimal format.

The leftmost 2 digits of the address must match the
last field of the device’s entry in the comm_info
structure. The hardware address can be any
number that is unique among the entries in the
comm_info structure. This structure is found in
the /usr/src/uts/cf/conf. sn .c file; sn
refers to the serial number of a Cray system.

The rightmost 2 digits are the logical address, and
they are chosen by the system administrator. The
only restriction is that they must be unique with
respect to all protocols that use the device.

ff00 This field is unused by the Cray system.

0 This field is unused by the Cray system.

mtu Maximum transmission unit. The largest amount
of data that can be sent to the host in one packet.
The default is 4144. See Section 2.3.1, page
123, for details on specifying mtu. For FEI-3
connections, mtu should be set to 4352. See fy
Driver Administrator’s Guide.

The following is an example of an hycf file for FEI-3 and VAXBI connections.

Configuration table for the hyroute command for FEI-3/VAXBI connections

#direct MACH-NAME TO NA NA MTU

direct snq1-vme 1e02 ff00 0 4144;

S–2304–10011 47

UNICOS® Networking Facilities Administrator’s Guide

direct yafs-vme 1e03 ff00 0 4144;

2.2.6.4.3 HIPPI Connections

Use the following format when you create the hycf file for the HIPPI
connections:

direct hostname ifield readdev writedev [mtu];

direct Type of connection. direct indicates a direct
connection between the Cray system and the host.

hostname Host name that appears in the /etc/hosts file,
or Internet address expressed in decimal notation.

ifield HIPPI I-field value for connection to this host
(hexadecimal notation). The I-field is typically
used to make a HIPPI connection through one
or more HIPPI crossbar switches. The I-field is
used by the switch(es) to determine the path
that is required to complete the connection. In
the most simple case, the I-field contains the
camp-on bit plus the port number to which
the host is connected. The camp-on bit is bit
2**24 (0x01000000). This bit directs the switch to
keep trying to make the connection until the
connection is completed or the source abandons
the connection attempt. The Cray HIPPI TCP/IP
implementation is designed to be used with the
camp-on bit if a switch that supports this feature
is present. Some switches support additional
routing implementations in which the destination
address is not a simple port number but is instead
a value that the switch converts into one or more
port numbers. Consult the switch manufacturer’s
documentation for details on constructing an
appropriate I-field.

The I-field is significant even when no switch is
present. If two systems are directly connected,
you must still specify an I-field for both systems:
the system you are currently configuring and the
system to which you are connected. Each I-field
must be unique. If they are equal, TCP/IP traffic

48 S–2304–10011

TCP/IP [2]

is not sent over the physical interface and all
operations fail. The camp-on bit is not significant
for connections in which no switch is present.

If a double-wide (64-bit) HIPPI connection can
be made between two systems, the I-field must
include bit 2**28 (0x10000000) for the driver to
make use of this capability. If this bit is not set
in the I-field, data is sent in 32-bit mode even
though the 64-bit capability exists. Only the IOS–E
can be configured to support the 64-bit HIPPI
interface. Some switches and HIPPI fiber optic
channel extenders offer 64-bit capability as well. If
a switch offers both 64-bit and 32-bit capabilities,
the hycf file should use the double-wide bit
for hosts to which a 64-bit connection can be
made. If a host has double-wide capability, but
another host is only 32-bit capable, the entry for
this host should not have the double-wide bit set.
The driver ensures that the connection is made
in the appropriate mode on a per-packet basis.
The double-wide bit is also significant in the case
in which no switch is present.

readdev Minor device number (in hexadecimal format)
of the character special device that TCP/IP will
open for reading. See Section 2.2.6.4.4, page 50,
for more information.

writedev Minor device number (in hexadecimal format)
of the character special device that TCP/IP will
open for writing. See Section 2.2.6.4.4, page 50,
for more information.

mtu Maximum transmission unit. The largest amount
of data to send to the host in one packet. The
default is 16496. See Section 2.3.1, page 123, for
details on specifying mtu.

The following is an example of an hycf file for HIPPI connections:

#

NSC PS32 HIPPI Switch

#

Minor number

Hostname I-field In Out MTU

S–2304–10011 49

UNICOS® Networking Facilities Administrator’s Guide

------------ -------- ---- ---- -----

direct sn1001-hippi 03000000 0060 0070 4352 ; # Port 0

direct sn1701-hippi 03000001 0020 0030 4352 ; # Port 1

direct sn1601-hippi 03000002 0020 0030 4352 ; # Port 2

direct uss-hippi 03000003 0020 0030 4352 ; # Port 3

direct sn1061-hippi 03000004 0020 0030 4352 ; # Port 4

2.2.6.4.4 Selecting readdev and writedev Values

The read and write minor device numbers, readdev and writedev, determine
the logical path that will be opened and provide the mapping to physical HIPPI
channels for this interface. A range of 16 minor numbers maps to each physical
HIPPI channel. Minor numbers 0 through 15 map to the first channel, numbers
16 through 31 map to the second and so on. The path number is the remainder of
the minor number divided by 16. For example, minor number 0 is path 0, as is
minor number 16. Minor number 1 is path 1 on the first HIPPI channel. Minor
number 17 is path 1 on the second HIPPI channel (17 mod 16 equals 1).

Path 0 is the dedicated path; other paths are shared paths. The dedicated path
can be opened only if no shared paths are currently open. Opening the dedicated
path prevents the subsequent opening of shared paths on that channel. TCP/IP
requires only one path and can be brought up on either the dedicated path or
on a shared path. If TCP/IP is brought up on a shared path, user programs
with appropriate privilege can share the HIPPI channel by opening character
special device files. It should be noted that user programs can interfere with
TCP/IP traffic, causing performance degradation. You should ensure the proper
functioning of applications that you allow to share the HIPPI channel with
TCP/IP. Among other things, these applications must adhere to the HIPPI-FP
standard for HIPPI packet formation. They must use an upper-level protocol
identifier (ULP-ID) other than 4; TCP/IP uses 4. If TCP/IP is brought up on a
shared path, performance is slightly lower than if it is brought up on a dedicated
path, even if no user program is currently active on another path.

On Model E systems and Cray J90 systems, there is also an I/O control-only path.
On this path, the open(2), close(2), and ioctl(2) system calls can be issued,
but attempts to transfer data are rejected. Usually, this path is used for gathering
statistical data from the device driver. The xnetmon(8) utility is an example of
this type of program.

The I/O control-only path is defined as MAXPATHS-1. On Model E systems,
MAXPATHS is set to the himaxpaths variable in the param file. For example, if
himaxpaths is set to 8, path 7 becomes the I/O control-only path. On Cray J90
systems, the param file is not used to configure HIPPI channels. MAXPATHS is
always set to 16, which means that path 15 is always the I/O control-only path.

50 S–2304–10011

TCP/IP [2]

The methods of determining which physical channel is assigned to each minor
number range are different for Model E systems and memory HIPPI systems.

• Model E systems

The method for associating a minor device number range for a physical HIPPI
channel on Model E systems includes making an entry in the network section
of the param file for each physical HIPPI channel. These entries begin with
hidev. Entry 0 (hidev 0) is the first HIPPI channel, hidev 1 is the second,
and so on. The first device is associated with minor numbers 0 through 15, the
second with 16 through 31. Following is an example of the HIPPI portion
of the network section of a Model E param file:

hidev 0 {

iopath {cluster 0; eiop 3; channel 030; }

logical path 0 {flags 00; I_field 00; ULP_id 00;}

flags 00;

input;

device type PS_32;

}

hidev 1 {

iopath {cluster 0; eiop 3; channel 032;}

logical path 0 {flags 00; I_field 00; ULP_id 00;}

flags 00;

output;

device type PS_32;

}

hidev 2 {

iopath {cluster 0; eiop 3; channel 034;}

logical path 0 {flags 00; I_field 00; ULP_id 00;}

flags 00;

input;

device type P_8;

}

hidev 3 {

iopath {cluster 0; eiop 3; channel 036;}

logical path 0 {flags 00; I_field 00; ULP_id 00;}

flags 00;

output;

device type P_8;

}

S–2304–10011 51

UNICOS® Networking Facilities Administrator’s Guide

The following shows the relationship between minor device numbers and hidev
entries (and therefore physical channel assignments) on Model E systems. This
assumes that himaxpaths is set to 16.

Path for
hidev

Minor number
range

Dedicated path minor
number

Shared paths minor
number ioctl only

0 0-15 0 1-14 15

1 16-31 16 17-30 31

2 32-47 32 33-46 47

3 48-63 48 49-62 63

Assume that you want to use channels 034 and 036, cluster 0, and IOP 3 for the
TCP/IP interface. If you choose the dedicated path, the minor numbers for the
read and the write device are 32 and 48 (0x20 and 0x30). The hycf entry is
as follows:

direct sn2402-hippi 01000006 0020 0030 65448 ;

• Model V systems (memory HIPPI systems)

On Model V systems, the param file is not used to configure HIPPI channels.
The physical channel number determines the minor device number range
associated with a given channel. The lowest numbered channel is the first
channel (numbers 0 through 15), with higher number channels being assigned
16 minor device numbers in order. In the following example, assume that two
memory HIPPI channel pairs are present:

Channel
Minor number
range

Dedicated path
minor number

Shared paths minor
numbers

Path for ioctl
only

064 0-15 0 1-14 15

067 16-31 16 17-30 31

0104 32-47 32 33-46 47

0107 48-63 48 49-62 63

On Model V systems, even-numbered channels are always input channels (read
devices); odd numbered channels are always output channels (write devices).

52 S–2304–10011

TCP/IP [2]

A Model V system using the dedicated path for channels 064 and 067 would use
minor number 0 for input and 16 (0x10) for output resulting in the following
hycf entry:

direct sn5194-hippi 01000004 0000 0010 65536 ;

2.2.7 Configuring Network Interfaces—GigaRing Based Systems Only

The following sections describe the following steps that you must take to
configure each Cray system interface on the network:

1. Define the I/O node configuration

2. Name the Cray interface

3. Choose an Internet address

4. If you are running HIPPI, create an arp file, ghippi#.arp, where # is the
interface number.

5. If you are running Host-to-Host GigaRing, create an arpfile gr#.arp,
where # is the interface number.

6. If you are running ATM, create the atm.pvc file.

FDDI and Ethernet automatically use the Address Resolution Protocol (ARP)
to resolve internet addresses into physical addresses. ATM and HIPPI require
you to configure addresses manually.

Note: Before you follow the procedures in this section, make sure that all
hardware diagnostic tests have been performed, and that all hardware
functions properly. Refer to the appropriate vendor documentation for
supporting information and procedures.

2.2.7.1 Defining I/O Node Configuration

Hardware devices that interface with Cray GigaRing based systems are defined
in the network portion of the /opt/CYRIos/snSerialNumber/param file that
resides on the system workstation (SWS). Following is a sample param file for
a Cray system with GigaRing I/O:

network {

...

gether 0 {

iopath { ring 1; node 4; channel 2; }

maxinputs 128;

S–2304–10011 53

UNICOS® Networking Facilities Administrator’s Guide

maxoutputs 128;

}

gfddi 0 {

iopath { ring 1; node 4; channel 0; }

}

gatm 0 {

iopath { ring 1; node 4; channel 3; }

}

gr 0 {

iopath { ring 5; node 7; }

}

ghippi 0 {

iopath { ring 4; node 8; channel 0; }

maxusers 4;

maxinputs 80;

maxoutputs 80;

}

ghippi 1 {

iopath { ring 4; node 8; channel 1; }

maxusers 3;

maxinputs 80;

maxoutputs 80;

}

...

}

The devices are defined according to the following parameters.

• The iopath ring number declares the ring the network device resides on.

• The iopath node number is the MPN node (for gether, gfddi, and gatm)
or SPN node (for ghippi), or the local host node for gr.

• The iopath channel number is the channel on the MPN node, or SPN node.

Note that the channel number is not valid for gr interfaces.

An HPN-1 has two HIPPI channel pairs. The first HIPPI channel pair (the top
two connectors on the back of the HPN) are channel 0. The second HIPPI channel
pair (the bottom two connectors on the back of the HPN) are channel 1.

An HPN-2 has either a single 100 Mb of 200 Mb HIPPI channel pair. Both are
designated as channel 0.

54 S–2304–10011

TCP/IP [2]

2.2.7.2 Naming the Cray GigaRing Interface

The interface name, which TCP/IP uses to access a given hardware device,
consists of two parts. The first part, which is the interface name prefix, indicates
the type of hardware. The second part, which is the number of the interface name
(also known as the interface number), identifies the physical device.

2.2.7.3 Interface Name Prefix

The interface name prefix is derived form the UNICOS driver that controls the
hardware device. This prefix indicates the major number that TCP/IP uses when
it defines the character special device for the given hardware. Following is a list
of the prefixes and a description of the associated interfaces:

Prefix Type of interface

gatm Asynchronous Transfer Mode (ATM)

gether Ethernet

gfddi FDDI

ghippi HIPPI

gr Host-to-Host GigaRing

2.2.7.4 Identifying Character Special Devices

You do not need to define character special device nodes to use TCP/IP with
Ethernet, ATM, HIPPI, or FIDDI channels; the host kernel creates the I-node(s)
it needs. TCP/IP is hard coded to use user number zero. However, if you are
using the HIPPI channel in “raw” mode, you must define character special
device nodes.

On non-GigaRing I/O Cray HIPPI implementations, there are separate character
special device files for input and output. The GigaRing I/O HIPPI “raw”
character special devices are full-duplex: each device logically represents a HIPPI
input and output channel. For example:

fd = open("/dev/ghippio/u0", O_RDWR);

/* reades and writes use the same file descriptor (fd) */

For GigaRing networking I/O, there is a single host driver for all networking
interfaces; gether, gfddi, gatm, gr, and ghippi. The major device number is
always 25. The minor device number for HIPPI character special devices for a
specific interface depends on the order in which all the network devices (not just
the HIPPI interfaces) are defined in the host’s configuration file.

S–2304–10011 55

UNICOS® Networking Facilities Administrator’s Guide

The number of character special device files for a HIPPI interface should at least
match the number of users defined by maxusers in the host’s configuration file.
Each device file corresponds to a specific user of the interface. Multiple users can
share the same HIPPI interface at the same time. The HIPPI channel can be used
in “raw” mode and by TCP/IP at the same time. The maximum number of users
for any networking interface is 256 (user number 0 to 255).

GigaRing character special devices have the following format:

/dev/gdevicenameX/uY

Where X is the HIPPI device number and ranges from 0 to # of
interfaces less 1 (that is, N-1, where N = number of interfaces),
devicename is the channel type, an Y is the user number (or logical path) ranging
from 0 to maxusers –1

For HIPPI character special device usage, there are restrictions or capabilities
associated with a particular user path, i.e., a specific path is not the dedicated
path or has a ULPid associated with it. If TCP/IP is being used on the HIPPI
channel, it will always use user path 0 (/dev/ghippix/u0).

2.2.7.5 Creating HIPPI Character Special Device Nodes

You can determine the order that the networking interfaces are defined by either
perusing the host’s configuration file or looking at the output from netstat -i.

For interfaces defined in the following order, the character special device nodes
for the two HIPPI interfaces are as follows:

Interface maxusers Starting minor#

--------- -------- ---------------

gether0 n/a 0

gfddi0 n/a 256

gatm0 n/a 512

gr0 n/a 768

ghippi0 4 1024

ghippi1 3 1280

mkdir /dev/ghippi0

chmod 755 /dev/ghippi0

cd /dev/ghippi0

/etc/mknod u0 c 25 1024

/etc/mknod u1 c 25 1025

/etc/mknod u2 c 25 1026

56 S–2304–10011

TCP/IP [2]

/etc/mknod u3 c 25 1027

chmod 666 u*

mkdir /dev/ghippi1

chmod 755 /dev/ghippi1

cd /dev/ghippi1

/etc/mknod u0 c 25 1280

/etc/mknod u1 c 25 1281

/etc/mknod u2 c 25 1282

chmod 666 u*

Warning: If, at a future time, additional networking interfaces are added to the
host’s configuration file, they must come after the HIPPI interface definitions.
If they are placed in front of the HIPPI interface definitions, the HIPPI interface
minor device numbers increase by 256 and become invalid.

2.2.7.6 Choosing an Internet Address

Each interface on your system must have an Internet address. The network and
subnet parts of the Internet address of the interface must correspond to the
Internet address of the network to which the interface is attached. The host
portion of the address can be selected by using the preferred administrative
practices for your site. (Some sites have a central network administrator who
determines the new Internet addresses for new systems and interfaces; other sites
let the individual system administrator decide.)

When you are choosing an Internet address for an interface that is attached to a
new TCP/IP network, see Section 2.2.4, page 30, for guidelines.

2.2.7.7 Creating the ghippi#.arp File

Note: For software loopback interfaces, direct FDDI interfaces, Ethernet
interfaces, and ATM interfaces, it is not necessary to create an arp file.

The information you put in this file is used as input to the arp(8) command,
which initializes the interface with hardware address information. This
configuration file, sometimes known as the arp file, varies according to the type
of network hardware used. Each ghippi connection requires a separate arp file.

Use the following format when you create the ghippi#.arp file for HIPPI
connections:

S–2304–10011 57

UNICOS® Networking Facilities Administrator’s Guide

hostname 00:00:AA:BB:CC:DD

hostname Host name that appears in the /etc/hosts file,
or Internet address expressed in decimal notation.

ifield (AA:BB:CC:DD) HIPPI I-field value for connection to this host
(hexadecimal notation) where AA:BB:CC:DD
corresponds to the I-field 0xAABBCCDD.
The I-field is typically used to make a HIPPI
connection through one or more HIPPI crossbar
switches. The I-field is used by the switch(es) to
determine the path that is required to complete the
connection. In the most simple case, the I-field
contains the camp-on bit plus the port number to
which the host is connected. The camp-on bit is
bit 2**24 (0x01000000). This bit directs the switch
to keep trying to make the connection until the
connection is completed or the source abandons
the connection attempt.

Some switches support additional routing
implementations in which the destination address
is not a simple port number but is instead a value
that the switch converts into one or more port
numbers. Consult the switch manufacturer’s
documentation for details on constructing an
appropriate I-field.

If a double-wide (64-bit) HIPPI connection can
be made between two systems, the I-field must
include bit 2**28 (0x10000000) for the driver to
make use of this capability. If this bit is not set
in the I-field, data is sent in 32-bit mode even
though the 64-bit capability exists. Only HPN-2
can be configured to support the 64-bit HIPPI
interface. Some switches and HIPPI fiber optic
channel extenders offer 64-bit capability as well. If
a switch offers both 64-bit and 32-bit capabilities,
the ghippi#.arp file should use the double-wide
bit for hosts to which a 64-bit connection can be
made. If a host has double-wide capability, but
another host is only 32-bit capable, the entry for
this host should not have the double-wide bit set.
The driver ensures that the connection is made

58 S–2304–10011

TCP/IP [2]

in the appropriate mode on a per-packet basis.
The double-wide bit is also significant in the case
in which no switch is present.

The following is an example of a ghippi#.arp file for a HIPPI connection:

sn1001-hippi 00:00:03:00:00:00

sn1701-hippi 00:00:03:00:00:01

sn1601-hippi 00:00:03:00:00:02

uss-hippi 00:00:03:00:00:03

sn1061-hippi 00:00:03:00:00:04

2.2.7.8 Creating the atm.pvc File

The atm.pvc file is used for configuring the Permanent Virtual Circuit (PVC)
identifiers for all GigaRing ATM interfaces.

The spansd implements the FORE Systems proprietary ATM signalling protocol
called SPANS. The q2931d implements the standard UNI ATM signalling
protocol. Both daemons should be in the SYS2 group, and are /etc/spansd and
/etc/q2931d, respectively.

Use the following format to create the atm.pvc file for ATM connections:

hostname ifc AAL VPI VCI QOS

The following is an example atm.pvc file for an ATM connection:

hostname ifc AAL VPI VCI QOS

-------- --- --- --- --- ---

atmhost1 gatm 5 0 32 5000

atmhost2 gatm 5 0 32 0

Where:

hostname Name of the remote host that this system
communicates with over the ATM network. This
name must appear in the host database (i.e.,
/etc/hosts file).

ifc Network interface. Must be gatm for a GigaRing
based system.

AAL ATM Adaption Layer Type. Defines the layer type
to use when communicating with the specified

S–2304–10011 59

UNICOS® Networking Facilities Administrator’s Guide

host. Only AAL 5 is currently supported. Specify
this number in decimal.

VPI Virtual Path Identifier. Identifies the path to use
when communicating with the specified host. The
VPI is placed into each ATM cell header so that
the cell can be routed through the ATM network.
Currently, GigaRing ATM interfaces support only
VPI 0. Specify this number in decimal.

VCI Virtual Circuit Identifier. Identifies the circuit to
use when communicating with the specified host.
The VIC is placed into each ATM cell header so
that the cell can be routed through the ATM
network. This number should be between 32 and
1023. Consult your local network administrator
to determine the VCI. Specify this number in
decimal.

QOS Quality of Service in Kbps. Determines the peak
data rate (expressed in kilobits per second) that
this host will deliver ATM calls to the remote host
via the GigaRing ATM interface. Placing a zero in
this field disables the peak rate control feature
when sending to the specified host, allowing
unlimited bandwidth.

2.2.7.8.1 Creating the gr#.arp File

The information you put in this file is used as input to the arp command, which
initializes the interface with hardware address information. This configuration
file, sometimes known as the arp file, varies according to the type of network
hardware used. Each gr interface requires a separate arp file. There needs to be
an entry in the arp file for each host you wish to access via the gr interface.

Use the following format when you create the gr#.arp file for Host-to-Host
GigaRing interfaces:

hostname 00:00:00:00:AA:BB

hostname Host name that appears in the /etc/hosts file,
or Internet address expressed in decimal notation.

ifield (00:00:00:00:AA:BB) Where AA is the ring number for this host
(hexadecimal notation). This ring number will

60 S–2304–10011

TCP/IP [2]

be the same value as that specified in the param
file for this gr interface. (All entries in a specific
gr#.arp file will have the same ring number.)

Where BB is the node number for this host
(hexadecimal notation).

The following is an example of a gr#.arp file:

sn9132-gr 00:00:00:00:05:01

sn7025-gr 00:00:00:00:05:04

2.2.8 Configuring Daemons

The following daemons can be configured:

Daemon Configuration

gated(8) Performs dynamic routing

lpd(8) Spools print files to remote printers

named(8) Provides domain name service

sendmail(8) Performs Simple Mail Transfer Protocol (SMTP)
operations

snmpd(8) Performs Simple Network Management Protocol
(SNMP) operations

ntpd(8) Provides mechanisms to synchronize time and
coordinate time distribution

inetd(8) Provides a sublist of daemons that can be started

Note: The gated(8), named(8), snmpd(8), and ntpd(8) daemons must not be
configured when you are running the Cray ML-Safe configuration of the
UNICOS system.

These daemons are described in the following sections.

2.2.8.1 The gated Daemon

As an alternative to the static routing that is performed by the route(8)
command, the gated(8) daemon can oversee dynamic management of the
routing table on the local Cray host. The gated daemon communicates with
remote hosts by using one or more routing protocols. Using these protocols,
gated collects information that enables it to determine and install the correct
routes that it uses to achieve optimal routing for packets that originate from the

S–2304–10011 61

UNICOS® Networking Facilities Administrator’s Guide

local Cray host. The gated daemon has the simple ability to detect the failure of
directly attached networks or gateways and to manipulate the routing table on
the local Cray host to reestablish IP service to remote hosts and networks whose
path to the local Cray host is affected by an unavailable network or gateway.

The gated daemon supports RFCs 1388, 1583, 1058, and parts of 1009. The
specific routing protocols supported by gated are as follows:

Protocol Description

RIP and OSPF Two interior protocols that are used to exchange
routing information within commonly
administered local networks

You can configure the gated daemon independently in each of the supported
protocols to supply routing information, to listen for routing information, or
both. For example, the gated daemon can be configured to simultaneously
listen for and supply OSPF routing information, and to only listen for RIP
routing information.

2.2.8.1.1 Configuration Guidelines for gated

The actual routing protocols that you configure for the gated daemon to use
on your Cray system depend on the routing protocols that the remote hosts and
gateways use on the networks to which the system is attached. For example, if
the other hosts on an attached network are using the RIP protocol to exchange
routing information, the gated daemon on the local Cray system should also be
configured to use the RIP protocol to exchange routing information. However,
the following general guidelines for configuring gated apply to Cray systems:

• A Cray system can have more than one directly attached network, and it can
be considered a gateway system between its directly attached networks, but
it is uncommon for a Cray system to function intentionally as a generic
gateway. A Cray system usually serves as an endpoint for connections to
and from the system, which allows the resources of the system to be spent
on user tasks rather than forwarding packets that are intended for other
systems. Consequently, it is more functional to configure gated to provide
dynamic rerouting when it encounters network or gateway failure than it is to
configure gated to use the Cray system as a true gateway.

Note: The Cray system must not perform forwarding (that is, act as
a gateway) when it is running the Cray ML-Safe configuration of the
UNICOS system.

62 S–2304–10011

TCP/IP [2]

• Cray systems typically do not serve as exterior gateways for their local
networks; therefore, they do not support Exterior Gateway Protocol (EGP) or
Border Gateway Protocol (BGP) protocol information.

• The gateways on networks that are directly attached to the Cray system must
be configured not only to send updates to the Cray system, but to work
with the configuration on the Cray system, because proper dynamic routing
requires cooperation among hosts to exchange routing updates. Configuring
gated on the Cray system in isolation from the configuration of the gateway
system is generally not sufficient to achieve optimal routing.

• Cray systems supports directly attached network media with no broadcast
capability. Some routing protocol implementations rely on a broadcast
capability for the local network to supply routing updates to other hosts
(such as the Berkeley routed program, which implements RIP). Therefore,
any gateway that wants to supply routing updates over a nonbroadcast
media to a Cray host must be capable of being configured to supply routing
updates over nonbroadcast network media. Usually, this means that the
gateway has implemented the gated daemon as a routing protocol, but other
routing protocol implementations can exist on a given gateway. Consult the
documentation supplied by the vendor of your gateway system to plan
your dynamic routing capabilities.

2.2.8.1.2 The /etc/gated.conf File

The complete format of the /etc/gated.conf file is described in the
gated-config(5) man page. If you are using the UNICOS ICMS, configure this
file by using the Configure System -> Network configuration ->
TCP/IP configuration -> Routing menu. Some general guidelines for
configuration of this file are as follows:

• You can specify hosts and networks in the gated.conf file by using either
the name or the Internet address. However, if you are using the named
daemon or the resolv.conf resolver library, you should use only Internet
addresses in the gated.conf file.

• When you do not want to supply routing information to other gateways, but
want gated only to listen for RIP updates, you must specify nobroadcast
on the appropriate rip statement.

• Any gateways residing on nonbroadcast networks to which you want to
supply RIP updates must be explicitly specified by the sourcegateways
directives of the appropriate rip statement because of the lack of a broadcast
capability on the directly attached networks.

S–2304–10011 63

UNICOS® Networking Facilities Administrator’s Guide

• You can exclude the interfaces to network media that function as virtual
point-to-point links, such as HIPPI or FEI-3 interfaces by using the
interface interface_list noripout directive of the appropriate rip
statement.

• To configure static routes, which are never removed in response to routing
protocol updates, use the static statement.

Note: extensions to the static route options in the gated configuration
file provide access to all of the proprietary routing extensions, such
as per-group restricted routing, and type of service routing; see
gated-config(5) for details.

• When a gateway on a network that is directly attached to the Cray system can
redirect traffic by sending ICMP REDIRECT messages, you can specify that
gateway as the gateway for the default route in the static statement.

• You can direct gated to listen for a specific set of hosts or networks through
the use of import statements. Information received in routing updates
about other hosts or networks is ignored. Alternatively, use of import
statement restrict directives excludes a specific set of hosts or networks
from consideration.

• You can limit the information that gated supplies to other gateways to a
specific set of hosts or networks through export statements. Alternatively,
use of export statement restrict directives causes gated to supply
information to other gateways about all hosts or networks that are not
included in the specified set.

2.2.8.1.3 gated Configuration Examples

This section contains two examples of gated configuration.

Consider the following sample network configuration:

64 S–2304–10011

TCP/IP [2]

fastcray

gw1 gw0 gw2

a10258

The gateway gw0 of this network configuration serves as the default gateway for
connections to the Cray system fastcray. Instead of sending all network traffic
through this one default gateway, however, it is recommended that traffic for the
networks that are attached to the other two gateways gw1 and gw2 use those
gateways. (For a more complete discussion of the effect of network routing on
overall network performance, see Section 2.3.3, page 148.) When gw0 can send
ICMP REDIRECT messages, the following sample /etc/gated.conf file is
sufficient to ensure proper maintenance of the routing tables on fastcray:

rip no ;

redirect yes ;

static {

default gateway gw0 ;

} ;

The redirect yes statement in this sample gated.conf file indicates that
fastcray listens to ICMP REDIRECT messages from the gateways on its
attached network and installs them in the kernel routing tables. (Conceptually,
this occurs in response to an ICMP REDIRECT message; however, in reality, the
UNICOS kernel installs the route directly, and the redirect yes statement
prevents gated from removing those installed routes.)

S–2304–10011 65

UNICOS® Networking Facilities Administrator’s Guide

For this configuration, when sending traffic to a host that is accessible through
the gw2 gateway, fastcray sends the initial packet to its default gateway gw0.
Like any gateway, gw0 consults its routing table and forwards the packet to
gateway gw2, and the packet eventually reaches its destination host on one of
the networks that is attached to gateway gw2. After forwarding the packet for
delivery, gateway gw0 determines that because fastcray and gateway gw2 are
both on the attached network from which gateway gw0 received the packet, it
is more efficient for fastcray to forward packets intended for the destination
host directly to gw2 (where gateway gw0 would send the packets anyway). Then
it sends an ICMP REDIRECT message to fastcray, informing it that packets
intended for that destination host should be redirected to gateway gw2.

One problem with this simple configuration is that some gateway systems send
a separate ICMP REDIRECT message for each appropriate destination host
instead of sending one message for the entire network. This can possibly lead
to inefficient use of system resources on the Cray system, because each ICMP
REDIRECT message generates a new host-level entry in its routing table. Also,
the procedure of sending an initial packet to gw0 for redirection and processing
the resultant ICMP REDIRECT message adds a small amount of overhead to
establishing initial connections to each destination system. You can eliminate
this problem by using static network routes on the Cray system. This can be
accomplished by changing the static statement in the /etc/gated.conf
file to the following:

static {

default gateway gw0 ;

othernet1 gateway gw1 ;

othernet2 gateway gw2 ;

} ;

By adding static routes for othernet1 and othernet2, fastcray sends
packets for those networks directly to gw1 and gw2, and it eliminates the need for
gw0 to send ICMP REDIRECT messages for the traffic to those networks.

The following sample network is a more complex example than the previous one:

66 S–2304–10011

TCP/IP [2]

fastcray myhost

gw1gw0

a11432

Ethernet device fddi device

ATM
device

Figure 7. Sample network configuration

This network configuration might be appropriate in a situation in which a
network administrator wants to provide two (or more) gateways to the Cray
system to ensure access to the system when one gateway fails. This technique
requires proper configuration of not only gated on the Cray system but also the
equivalent dynamic routing programs on the directly attached gateways.

The gated daemon detects failure of a gateway by tracking the elapsed time
since individual routes to destination hosts or networks were received in RIP
updates. If 180 seconds elapse without mention of a route in a routing update,
the route is deleted and considered to be in a hold down state. If the route is
being exported, for the next 120 seconds the route is announced with a metric
of infinity. This causes all listening routers to stop using this host for the route.
This means that the gated daemon’s detection of a gateway failure is implicit;
when no updates are received from the failed gateway, the routes through that
gateway are held down and deleted. This allows other routes to the destinations
to be installed.

This method of failure detection means that unless otherwise configured, gated
assumes that a gateway that does not send routing updates is down when in fact
it might be up but not configured to send updates.

S–2304–10011 67

UNICOS® Networking Facilities Administrator’s Guide

The following example is of a /etc/gated.conf file. This example provides
a basic back-up mechanism for this network configuration when a failure of
either gateway occurs.

For Model E based systems, where np0 is an Ethernet device, np1 is a FDDI
device, and np2 is an ATM device:

interfaces {

interface np2 passive ;

};

rip yes {

nobroadcast ;

sourcegateways gw0 gw1 ;

} ;

export proto rip gateway gw0 {

proto direct interface np1 np2 ;

} ;

export proto rip gateway gw1 {

proto direct interface np0 np2 ;

} ;

For GigaRing based systems, where gether0 is an Ethernet device, gfddi0 is a
FDDI device, and gatm0 is an ATM device:

interfaces {

interface gatm0 passive ;

};

rip yes {

nobroadcast ;

sourcegateways gw0 gw1 ;

} ;

export proto rip gateway gw0 {

proto direct interface gfddi0 gatm0 ;

} ;

export proto rip gateway gw1 {

proto direct interface gether0 gatm0 ;

} ;

There are several items in this example to note:

68 S–2304–10011

TCP/IP [2]

• The interface np2/gatm0 passive statement prevents gated from
deleting routes to the OWS/SWS, even when it received no routing updates
from the OWS/SWS.

• The two export statements inform each gateway of not only the interface
through which fastcray communicates with the OWS/SWS (np2/gatm0),
but also the interface through which the Cray system communicates with the
other gateway. This means that each gateway recognizes the address of the
other interface on the Cray system and forwards packets for that address
directly to the Cray system, instead of routing them to the gateway.

• The export statements instruct gated to advertise only the other directly
attached interfaces to fastcray. Implicitly, this means that in the routing
updates it distributes, gated does not advertise any routes that it learned
through an update from either gateway. This helps prevent fastcray from
functioning as a generic gateway.

For example, the following export statement that contains an added
proto rip directive makes the Cray system function as a generic gateway
by instructing gated to advertise routes it learned through RIP updates
from either gateway and also to explicitly advertise the networks for the
np0/gether0 and np2/gatm0 interfaces:

For IOS–E based systems, where np0 is an Ethernet device and np2 is an
ATM device:

export proto rip gateway gw1 {

proto rip ;

proto direct interface np0 np2 ;

} ;

For GigaRing based systems, where gether0 is an Ethernet device and
gfddi0 is an ATM device:

export proto rip gateway gw1 {

proto rip ;

proto direct interface gether0 gfddi0 ;

} ;

• Although this configuration provides a general backup mechanism if a
gateway fails, note that this backup does not preserve connections that exist
at the time of the failure. When a gateway fails, any connections that are
using that gateway are severed. However, the dynamic routing capabilities
of gated switch the routing to the alternate gateway, which allow users to
reestablish connections to fastcray and to continue use while the cause of
the gateway failure is investigated and corrected.

S–2304–10011 69

UNICOS® Networking Facilities Administrator’s Guide

2.2.8.2 The lpd Daemon

When the system is initialized, the line printer daemon passes through the
/etc/printcap file to obtain information about the existing printers; it prints
any files that are queued. In subsequent operations, this daemon listens for and
processes line printer requests that come in on port 515 (see Section 2.2.5.1,
page 34).

The /etc/printcap file configures all printers that are available to users
executing on the UNICOS system. The following commands provide users the
indicated access to those printers defined in /etc/printcap:

Command Description

lpq(1B) Displays the files queued for printing.

lpr(1B) Spools a file for printing.

lprm(1B) Removes a file from the queue. If printing has
already started on the file, it is aborted.

The following commands provide control of the state of each printer:

Command Description

lpc(8) Allows the super user to change the status of and
control the queues for each printer.

lpd(8) Controls the printing of all files that were spooled
for printing by the lpr command.

To configure and make printers available to users running on the UNICOS
system, the following steps must be performed:

1. Ensure that lpd is started during system initialization.

2. Create the /etc/printcap file, using the rules listed in the following
section, " printcap file creation rules."

3. Configure the printer spool directories, as listed in the /etc/printcap file.

2.2.8.2.1 printcap File Creation Rules

This section lists the rules for creating the /etc/printcap file. A sample
printcap file is shown on Section 2.2.8.2.4, page 76.

• Each line in the file defines one printer.

70 S–2304–10011

TCP/IP [2]

• All fields contained on a line define specific characteristics that are associated
with the printer. Each field is delimited by a colon (:).

• Spaces are significant and taken literally, rather than ignored.

• Any data following a # and continuing to the end of the line is considered a
comment.

• The first field contains a list of names by which a given printer is known
to users who are executing on UNICOS. Each name in the list must be
delimited by a vertical bar (|). All printer commands (lpq, lpr, lprm)
accept the -P option, or use the PRINTER environment variable, to indicate
a name in this list.

• The remaining fields are identified by keywords and can be arranged in any
order except where otherwise indicated. If a keyword is not specified, or is
followed by a @, the default value is used. The following section, "printcap
file keywords," lists the available keywords.

2.2.8.2.2 printcap File Keywords

The /usr/src/net/tcp/usr/ucb/lpr/lp.local.h file contains the
default value for each printcap file keyword. Only the first occurrence of a
keyword appearing on any printer definition line is used. The following example
printcap file is built with the lp command and defines default values.

/*

* Defaults for line printer capabilities data base

*/

#define DEFLP "lp"

#define DEFLOCK "lock"

#define DEFSTAT "status"

#define DEFSPOOL "/usr/spool/lpd"

#define DEFDAEMON "/usr/lib/lpd"

#define DEFLOGF "/dev/console"

#define DEFDEVLP "/dev/lp"

#define DEFRLPR "/usr/lib/rlpr"

#define DEFBINDIR "/usr/ucb"

#define DEFMX 1000

#define DEFMAXCOPIES 0

#define DEFFF "\f"

#define DEFWIDTH 132

#define DEFLENGTH 66

#define DEFUID 1

S–2304–10011 71

UNICOS® Networking Facilities Administrator’s Guide

The following keywords have the indicated meaning and default:

ff= Indicates the character string that represents a
form feed to the indicated printer. This keyword is
used only when the printer is defined as being
locally attached.

The DEFFF constant defines the form feed default
value, which is set to "\f".

if= Specifies the name of an input filter program that
is executed for each file that is printed. Standard
input to this program is set up to receive the
control file, and then the actual file to be printed.
Standard output is set up to go to the actual
printer device entry (defined by lp=). This
keyword is used only when the printer is defined
as being locally attached.

There is no default for this keyword; if it is not
specified, no input filter is started.

lf= Specifies the log file that the lpd daemon creates
to be used for error messages that are encountered
while printing a file on the given printer or
sending a file to the remote system for printing.

The DEFLOGF constant defines the log file default
value, which is set to /dev/console.

lo= Indicates the default lock file name. This file exists
in the spool directory for the given printer. Its
contents indicate the process ID of the daemon
started up to control printing. This file also
contains the control file name of the current file
being printed, if one is currently active.

The file mode of the default lock file indicates
whether printing is enabled (that is, if the owner
execute bit is off), whether queuing is enabled
(that is, if the group execute bit is off), and
whether lpd should reorder its queue after it
finishes printing the current file (that is, the world
execute bit is on).

72 S–2304–10011

TCP/IP [2]

The DEFLOCK constant defines the lock file default
name, which is set to lock. The value of the sd=
parameter controls the path name to this file.

lp= Indicates the printer device to be opened when
a file is requested to be printed on the indicated
printer. If specified as lp=:, the printer is
assumed to be located on a remote host.

The DEFDEVLP constant defines the printer device
default value, which is set to /dev/lp.

ma Specifies the maximum security label allowed on
this printer. This keyword is meaningful only
with UNICOS security.

mi Specifies minimum security label allowed on this
printer. This keyword is meaningful only on
with UNICOS security.

Note: With UNICOS security, the ma and mi
keywords define the maximum and minimum
labels supported by the printer. If the printer
is remote, it must be trustworthy to print
between those labels, and must supply banner
page and per-page human-readable labels on
the printed output.

of= Specifies the name of an output filter program
that is executed each time the lpd daemon starts
up. If another filter program is being used with a
given, locally attached printer (for example, an
input filter), this output filter performs whatever
processing is required by the printer between print
files. If no other filter program is being used with a
given, locally attached printer, this output filter
also acts as an input filter (as described under the
if= keyword).

For remote printers, standard input to this
program is set up to receive control information,
the print file’s control file, and the actual file to
be printed. Standard output is set up to go to
the remote system.

There is no default for this keyword; if it is not
specified, no output filter is started.

S–2304–10011 73

UNICOS® Networking Facilities Administrator’s Guide

The control information passed to the output filter,
when used for remote printers, is as follows:

Information Description

3 number filename

Indicates that the information
following this line is the print
file’s control file. number is the
size (in bytes) of the control file
being sent. filename is the name of
the control file being sent.

2 number filename

Indicates that the information
following this line is the actual file
to be printed. number is the size
(in bytes) of the print file being
sent. filename is the name of the
print file being sent.

1

Indicates that an error occurred
while the current file was being
read; the file is not printed. This
also signifies the end of the
current file.

0

Indicates the end of the file
currently being sent to the remote
system.

rm= Indicates the remote host name (or valid alias)
of the host to which the printer is attached. The
value specified for this keyword takes precedence
over what is specified for the lp= keyword.
Therefore, when this name is different from the
official host name (or valid alias) of the local host,
the lp= keyword is ignored, and the file is sent
to the remote host.

74 S–2304–10011

TCP/IP [2]

There is no default for this keyword; if it is not
specified, the printer is assumed to be locally
attached.

rp= Indicates the remote printer’s name. This is the
name by which the printer is known on the remote
host (that is, one of the names in the first field of
the remote host’s printcap file).

The DEFLP constant defines the remote printer
name default value, which is set to lp.

sd= Specifies the full path name of the directory to be
used for spooling files for printing. This directory
also contains all of the control files (that is, the
lock and status files) for the given printer.

Note: With UNICOS security, if the printer
supports a range of security labels, its spool
directory must be created as a multilevel
directory.

The DEFSPOOL constant defines the path of the
spool directory default value, which is set to
/usr/spool/lpd.

st= Indicates the default status file name. This file
exists in the spool file directory. Its content
describes the current status of the line printer
daemon (lpd) while it is running.

The DEFSTAT constant defines the default status
file’s default name, which is set to status.

tc= Specifies another printer’s name and is used to
indicate that this printer definition also contains
the list of keywords identified on the line defining
the other printer. If specified, this must be the last
keyword in the printer’s definition; otherwise, it is
ignored.

There is no default for this keyword; if it is not
specified, the printer’s characteristics are assumed
to be totally defined by the given line.

tr= Indicates the character string to be printed after
all queued files are printed. This keyword is

S–2304–10011 75

UNICOS® Networking Facilities Administrator’s Guide

used only when the printer is defined as being
locally attached.

There is no default for this keyword; if it is not
specified, nothing is sent to the printer when all
queued files are printed.

2.2.8.2.3 Remote Printers and the UNICOS System

Remote printers that will receive output from a UNICOS system are expected to
operate within the following restrictions:

• If the remote printer will print output at a single label, it is acceptable to print
this labeled output on prelabeled paper.

• If the remote printer is expected to print multiple labels of output, the printer
must be attached to a system that supports labeled printing.

• Any remote multilabel printer server must interpret the label of a connection
on the lpd port as the label to be printed on the output.

• Labels printed on output must be human-readable.

As described in the previous section, the mi and ma keywords in the
/etc/printcap entry for a particular printer define the range of labels allowed
on output transmitted to that remote printer.

2.2.8.2.4 Sample printcap File

The following is a sample printcap file:

Example file: /etc/printcap

#

lp0|myprinter:rm=remote1:sd=/usr/spool/printers/lp0:

lp1|devprinter:rm=remote2:rp=ps1:sd=/usr/spool/printers/lp1:

lp2:lp=:rm=remote3:rp=hisprinter:sd=/usr/spool/printers/lp2:

lp3:lp=/dev/null:if=/etc/myfilter:sd=/usr/spool/printers/lp3:

lp4:sd=/usr/spool/printers/lp4:tc=lp3:

In the preceding example, each printer has the following characteristics:

• lp0

– Known also as myprinter.

– Attached to the remote system remote1.

76 S–2304–10011

TCP/IP [2]

– Known as lp to remote1 because no lp= keyword was specified.

– Queues all files to be printed in the /usr/spool/printers/lp0
directory before being sent to the remote system.

• lp1

– Known also as devprinter.

– Attached to the remote system remote2.

– Known as ps1 to remote2.

– Queues all files to be printed in the /usr/spool/printers/lp1
directory before being sent to the remote system.

• lp2

– Attached to the remote system remote3.

– Known as hisprinter to remote3.

– Queues all files to be printed in the /usr/spool/printers/lp2
directory before being sent to the remote system.

• lp3

– Set up to execute the filter program /etc/filter. All files are discarded
after the filter program performs its processing on them (lp=/dev/null).

– Queues all files to be printed in the /usr/spool/printers/lp3
directory before being discarded.

• lp4

– Queues all files to be printed in the /usr/spool/printers/lp4
directory before being discarded.

– Contains all other printer characteristics that are identical to those of lp3.

2.2.8.3 The named Daemon

Note: The use of the named daemon is not allowed with the Cray ML-Safe
configuration of the UNICOS system.

As an alternative to using the /etc/hosts file, you can configure As an
alternative to using the /etc/hosts file, your UNICOS system to use the local
domain name server, named(), or the associated domain name resolver routines

S–2304–10011 77

UNICOS® Networking Facilities Administrator’s Guide

in the system library, to provide information (for example, host names and
Internet numbers) about remote hosts that are accessible to the local Cray host.

Because named is not available on systems running UNICOS security during
startup, every name that appears in the /etc/config/spnet.conf file must
exist in the /etc/hosts or /etc/networks files. This is because spnet(8)
must be executed to create the network access list (NAL) before applications can
begin creating socket connections.

2.2.8.3.1 Setting up the Cray System As a Name Server

To use the named server, first create an empty /etc/hosts.usenamed file on
your Cray system. This file does not contain any text because the presence of
the file indicates that the domain name service is to be used. Consequently, all
queries for information concerning hosts on the network will be resolved by the
domain name service, rather than by looking in the /etc/hosts file.

However, you still need the /etc/hosts file to resolve names encountered
during startup (for example, names in the /etc/config/interfaces file).

The /etc/named.boot file contains start-up information for the named server.
When this file includes a line beginning with the keyword directory, named
uses the specified directory as its current directory. Files that named must
consult when starting up or while running are then read from or placed in the
designated directory.

The named server always runs as a caching server. In addition, the named server
can be run as a slave, caching-only, or master server. Each of these processes is
described in the following sections.

The named.boot file must always specify, on a line beginning with the keyword
primary, primary server authority for the reverse-address mapping domain
(in-addr.arpa) that corresponds to the local loop-back interface (see the
following section for more information on primary servers).

During operating system boot and before the network interfaces are configured,
named cannot access other DNS servers. Therefore, DNS must be temporarily
disabled; for more information about how to do this, see the named(8) man page.

See the Name Server Operations Guide for BIND, written by Kevin J. Dunlap and
Michael J. Karels, for more information on name service.

78 S–2304–10011

TCP/IP [2]

2.2.8.3.2 named As a Slave Server

Internet addresses of one or more forwarding servers. Finally, it must If you
plan to run named as a slave server, in addition to the directory line, the
/etc/named.boot file must also specify, on a line beginning with the keyword
forwarders, the contain a line consisting of the keyword slave. The following
is a sample /etc/named.boot file for a slave server:

/etc/named.boot file for slave server

directory /usr/named

forwarders 123.45.67.89 234.56.78.90

primary 0.0.127.in-addr.arpa localhost.rev

slave

When the /etc/named.boot file is configured for a slave server, and it lists
one or more forwarding servers to resolve recursive queries, all queries that
cannot be answered from the local server’s cache of responses are forwarded to
the forwarding servers until one of the forwarding servers resolves the query.
Responses are cached by the local server, resulting in faster responses to queries
and less network traffic than the time and traffic associated with the remote
server method (see Section 2.2.8.3.5, page 81).

With this method, direct access to root domain name servers on the Internet is
not required. However, this method requires a remote server that can resolve
recursive queries.

2.2.8.3.3 named As a Caching-only Server

If you plan to run named as a caching-only server, in addition to the directory
line, the /etc/named.boot file must designate, on a line beginning with the
keyword cache, a zone file that contains information about the root domain
name servers on the Internet. A zone is a delegated subset of the domain name
service tree. It contains the tree that is specified by the domain name minus
subtrees delegated to other zones. It is the portion of the domain name service
tree under a single administrative control. A zone file is a text file that contains
information about a given zone.

The following is a sample /etc/named.boot file for a caching-only server:

/etc/named.boot file for caching-only server

directory /usr/named

cache . root.cache

primary 0.0.127.in-addr.arpa localhost.rev

S–2304–10011 79

UNICOS® Networking Facilities Administrator’s Guide

In the preceding example, the third field on the lines that begin with the
keywords cache and primary designate the files root.cache and
localhost.rev (in the /usr/named directory) as zone files; root.cache
contains the Internet addresses of and information about the root domain name
servers on the Internet, and localhost.rev contains the information that refers
the special Internet address 127.0.0.1 to the local Cray host.

The caching-only method does not require (but can use) a remote forwarding
server that can resolve recursive queries. It does require direct access to the root
domain name servers on the Internet.

2.2.8.3.4 named As a Master Server

If you plan to run named as a master server, you will need all of the information
specified in the /etc/named.boot file for a caching-only server, and also
additional lines beginning with the keywords primary or secondary for any
zones over which the local named server has primary or secondary authority.

A primary master server for a zone loads the data for that zone from a zone file on
disk (specified in the /etc/named.boot file). The data in the zone file consists
of the authoritative host names, Internet addresses, and other information for
the zone.

A secondary master server for a zone is delegated authority for the zone by the
zone’s primary master server, and periodically updates the data for the zone
as needed. This data can also be stored in a back-up copy on disk to provide
uninterrupted service if the primary master server for the zone is unavailable and
the local server has initialized its data.

The following is a sample /etc/named.boot file for a master server:

/etc/named.boot file for master server

directory /usr/named

cache . root.cache

primary 0.0.127.in-addr.arpa local

primary ourdomain.com ours

primary 12.in-addr.arpa ours.rev

secondary theirdomain.edu theirs.bak

secondary 78.56.234.in-addr.arpa theirs.rev.bak

In the preceding example, the last four lines designate the master files
(ours, ours.rev, theirs.bak, and theirs.rev.bak), which contain
information about the associated zones (ourdomain.com, 12.in-addr.arpa,
theirdomain.edu, and 78.56.234.in-addr.arpa, respectively). The

80 S–2304–10011

TCP/IP [2]

master files for the zones over which this server has primary authority (ours and
ours.rev) must contain the actual information about the hosts and Internet
addresses in the network; that is, these are the files that must be updated if a host
is added to or deleted from the network. The master files for the zones over
which this server has secondary authority (theirs.bak and theirs.rev.bak)
must contain back-up copies of the information about the associated zone, as
received from the zone’s primary server and written to the file by the local named
process. This information must not be changed directly.

One server can serve as a master for multiple zones; it can be designated as
primary for some and secondary for others. Queries are resolved by consulting
the local cache (for authoritative and nonauthoritative data), any forwarding
servers listed in the /etc/named.boot file, or root domain name servers on
the Internet.

This method does not require (but can use) a remote forwarding server that
can resolve recursive queries. It does require direct access to the root domain
name servers on the Internet.

The decision to make a domain name server that is running on the local Cray host
a master server depends on your local network’s domain service configuration.
You might prefer to let other servers perform most of the domain name resolution
for the Cray host by running the Cray host’s domain name server as a slave or
caching-only server. In this way you can reserve the power of the Cray host for
application processing. You might, on the other hand, prefer to give authority
over certain domains to this server even though this may place slightly greater
demands on the Cray host’s resources.

2.2.8.3.5 Using the Domain Name Resolver Library Routines

Note: Use of the resolver client is not allowed with the Cray ML-Safe
configuration of the UNICOS system. See Section 2.2.8.3, page 77, for more
information about named(8) in UNICOS security.

The resolver library routines are the client portion of the domain name
server. It resolves names whenever the /etc/hosts.usenamed file exists
(see gethost(3) for exceptions). The optional resolv.conf file allows
configuration of these routines.

The /etc/resolv.conf file can specify, on a line beginning with the keyword
domain, the domain that contains the local host; otherwise, the resolver gets the
default domain name from gethostname(2). On separate lines beginning with
the keyword nameserver, the file must specify the Internet address of each
remote host running domain name servers. These servers recursively process

S–2304–10011 81

UNICOS® Networking Facilities Administrator’s Guide

queries from the local Cray host. The following sample /etc/resolv.conf file
specifies the local domain and two such remote hosts:

Sample /etc/resolv.conf file

domain ourdomain.com

nameserver 127.0.0.1

nameserver 123.45.67.89

nameserver 234.56.78.90

The domain name resolver library routines do not cache any responses received
(all queries are resolved independently of each other), which could result in
slow responses and increased network traffic if a local name server daemon is
not running. Therefore, it is recommended to run a local name server when the
system is configured to resolve host names by using the Domain Name Service.

2.2.8.4 The sendmail Daemon

The sendmail(8) daemon performs Simple Mail Transfer Protocol (SMTP)
operations.

Note: For UNICOS security, the /usr/mail and /usr/spool/mqueue
directories must be installed as multilevel directories. See General UNICOS
System Administration, for information on installing multilevel directories with
UNICOS security.

With the UNICOS system, it is not necessary to use the newaliases(1)
command when implementing the SMTP. The program that implements the
SMTP is called sendmail(8). The sendmail program implements both the
client side and the server side of SMTP mail services; the mode of operation is
determined by the manner in which sendmail is invoked. The sendmail
program is in the /usr/lib/sendmail file, as it is on most other systems that
run under operating systems based on 4.4 BSD. As a client, sendmail is not
called directly by the user, but indirectly through the UNICOS mail(1) interface.

The sendmail daemon usually begins execution at system startup when it is
invoked from the /etc/config/daemons shell script. If it is not started in this
manner, the super user must invoke sendmail, as in the following example:

/usr/lib/sendmail -bd -q30m

With the Cray ML-Safe configuration of the UNICOS system, sendmail must
be invoked by a security administrator or a system administrator (active
secadm or sysadm category). The following is an example of enabling security

82 S–2304–10011

TCP/IP [2]

administrator status, invoking sendmail, and disabling security administrator
status:

setucat secadm

/usr/lib/sendmail -bd -q30m

setucat 0

For a system administrator, use setucat sysadm instead of setucat secadm.

The -bd option specifies that sendmail must operate as an SMTP server
process; the -q option sets the frequency with which sendmail must process
mail in its queue. In this example, the sendmail daemon processes queued mail
every 30 minutes. If you plan to run the sendmail daemon, add a line similar
to the preceding command line to the /etc/config/daemons file. Set -q to
the frequency you desire (see sendmail(8) for more information on how to
specify this option).

The /usr/lib/sendmail.cf file, referred to as the sendmail configuration
file, contains a set of directives to the sendmail(8) program. These directives
instruct the program about how to interpret and deliver mail messages to and
from the UNICOS system. The sendmail configuration file is distributed as a
skeleton that you must customize for your site.

Warning: Modification of the /usr/lib/sendmail.cf file must comply
with the guidelines set forth in the single-user mode descriptions in the
"UNICOS security feature" section of General UNICOS System Administration.
In addition, the sendmail daemon is running as a security administrator
or system process when commands used in /usr/lib/sendmail.cf
are executed. Therefore, additional care must be taken to ensure that the
operations that these commands perform follow the rules and restrictions that
are enforced for a security administrator, as described in the "UNICOS security
feature" section of General UNICOS System Administration.

The /usr/lib/sendmail.cf file should not contain user-specified
information unless that information has been verified to be acceptable by
a security administrator. Users should be encouraged to use their own
.forward files to customize their relationship with sendmail wherever
possible.

None of the suggested modifications in this description violate the intent of
this warning.

The lines that you must change are accompanied by comment lines that describe
the changes to be made. At a minimum, you will need to make changes to
the following lines:

S–2304–10011 83

UNICOS® Networking Facilities Administrator’s Guide

• Near the beginning of the file, on the line reading

DDdomain.domain

change domain.domain to the domain name of your network.

Note: You can obtain the domain name of your network from the domain
parameter of the resolve.conf file.

• If your system host name, as configured by the hostname(1) command
(see Section 2.2.9.4, page 108), does not include your domain name, locate
the following line near the beginning of the file:

#DE$D

Uncomment the line by removing the initial #.

• Near the beginning of the file, on the line reading

Cw

append the host name of the UNICOS system, all names from the
/etc/hosts file or domain name server that refer to specific network
interfaces on the UNICOS system, and any other aliases for the UNICOS
system. Consider the following examples for Model E and GigaRing based
systems:

If Model E based UNICOS system is given the official host name cray, has
two separate HYPERchannel interfaces labeled cray-np0 and cray-np1,
and also has been given the alias supercomputer, the line must be modified
to read as follows:

Cwcray cray-np0 cray-np1 supercomputer

If a GigaRing based UNICOS system is given the official host name cray, has
two separate FDDI interfaces labeled cray-gfddi0 and cray-gfddi1, and
also has been given the alias supercomputer, the line must be modified
to read as follows:

Cwcray cray-gfddi0 cray-gfddi1 supercomputer

The actual order of the names on the line is not significant.

If you want the UNICOS system to interpret mail addresses and deliver mail
messages directly, you must rewrite the sendmail configuration file for your
specific needs. However, if you are integrating the UNICOS system into
an existing network on which another system already serves as a central

84 S–2304–10011

TCP/IP [2]

clearinghouse for mail traffic on the network, you can modify the distributed
UNICOS sendmail configuration file as follows:

• Near the beginning of the file, on the line reading

DMmailhost

change mailhost to the host name of the central mail system.

After you have identified a central mail system on the network, you can modify
the sendmail configuration file to have the UNICOS system send all or some of
its mail to the central mail system, as follows:

• To have all nonlocal mail automatically forwarded to the central mail system,
locate the following line near the beginning of the file:

#DA$M

Uncomment the line by removing the initial #.

• To have all mail forwarded to the central mail system, locate the following
line near the beginning of the file:

#DX$M

Uncomment the line by removing the initial #. This disables local delivery; no
mail can be delivered locally on the Cray system.

• To have mail with nonlocal addresses of the form host ! user (using the
UUCP style) sent to the central mail system, locate the following line near
the beginning of the file:

#DU$M

Uncomment the line by removing the initial #.

• To have mail with addresses that specify nonlocal domains sent to the central
mail system, locate the following line near the beginning of the file:

#DN$M

Uncomment the line by removing the initial #.

Nonlocal domains are addresses of the form user @ host.domain; domain is not
the same as the local domain that is specified in the configuration file.

For more information about sendmail, see the Sendmail Installation and Operation
Guide by Eric Allman.

S–2304–10011 85

UNICOS® Networking Facilities Administrator’s Guide

2.2.8.5 The snmpd Daemon

Note: The use of snmpd is not allowed with Cray ML-Safe configuration of
the UNICOS system.

The snmpd daemon, also known as a server/agent, performs Simple Network
Management Protocol (SNMP) operations on Cray systems. The agent resides in
the background and listens for SNMP requests on port 161. When a request is
received from a management station, snmpd performs the requested operations,
as defined by RFC 1155 and 1157, and it provides management variables from the
management information base (MIB), as defined by RFC 1213. See Appendix A,
for a list of the MIB variables that Cray systems supports.

The following steps enable the snmpd daemon:

1. Add the SNMP and SNMP-trap ports to the /etc/services file by
inserting the following lines (if they are not already there):

snmp 161/udp

snmp-trap 162/udp

snmp-trap 162/tcp

2. Assign management station community names to the /etc/snmpd.conf
file. This is a security feature in the SNMP protocol. Any community not
listed in /etc/snmpd.conf is not serviced (see the following section for
more details).

3. Ensure that /etc/snmpd is started by the /etc/config/daemons file
when the system is initialized.

Cray systems support all operations defined by RFC 1157.

2.2.8.5.1 The /etc/snmpd.conf File

The /etc/snmpd.conf file contains a list of communities that are allowed
to access the SNMP agent on the Cray system. The following is the sample
/etc/snmpd.conf file that is in the source file. In this sample, the file contains
keywords and parameters that specify access limits.

##

#

Sample snmpd configuration file:

#

1. Fill-in the value for "sysContact" and "sysLocation" below, e.g.,

#

variable sysContact "joe operator <joeo@mw.cray.com>"

86 S–2304–10011

TCP/IP [2]

#

variable sysLocation "upstairs machine room"

#

All the other objects in the system group are automatically

filled-in by the agent.

#

2. If your site has a management station that listens for traps,

fill-in the information for the trap sink, e.g.,

#

trap traps a.b.c.d

#

where "traps" is the community that the traps should be logged

under and a.b.c.d is the IP-address of the host where a trap

sink is listening on UDP port 162.

#

3. Fill in community statements to provide the correct access to

the workstations running the manager programs.

#

community name address access view

#

where "name" is the name that is used to make snmp queries,

"address" is the ip address of the host that may use the

community, "access" is one of readOnly, readWrite, or none,

and "view" is the subid of the view applicable to this community

name. An "address" of 0.0.0.0 allows all ip-addresses to use the

community.

#

4. Fill in view statements that define which portion of the mib a

particular community can access.

#

view subid mib_subtree

#

where subid is a mib sub-identfier that identifies this view.

Only the "n" portion need be changed, n can be any number from 1

to 255. mib_subtree can be any combination of mib sub identifiers.

#

##

readall;

community public localhost readOnly

community manage localhost readWrite 1.17.1

community system localhost readOnly 1.17.2

S–2304–10011 87

UNICOS® Networking Facilities Administrator’s Guide

view 1.17.1 system interfaces ip

view 1.17.2 system

logging file=snmpd.log size=500

logging slevel=fatal slevel=exceptions slevel=notice

logging sflags=close sflags=create sflags=zero

variable sysContact "Your name <Your@address>"

variable sysLocation "Your location "

trap traps localhost

2.2.8.5.2 Using the Set Operation to Make Configuration Changes

The snmpd daemon supports the use of the set operation on the MIB variables,
as defined by RFC 1213. You can use the snmptest(1) command to make
configuration changes. Follow the prompts after you enter snmptest.

Note: When you use snmp set requests to make configuration changes, the
changes remain in effect only until the next boot of the UNICOS system. These
changes do not affect the configuration files or the install tool database.

You can make the following network configuration changes with snmp set
requests:

• Add, delete, and change values of routes, as follows:

– To add a new route, set the
ip.iproutetable.iproutentry.ipnexthop.128.162.3.4
variable to 128.162.6.7, and set the
ip.iproutetable.iproutentry.iproutetype.128.162.3.4
variable to 3 if it is to a directly connected network or 4 if it is to an
indirectly connected host or gateway. This set operation is equivalent to
the route add 128.162.3.4 128.162.6.7 command.

– To delete a route, set the
ip.iproutetable.iproutentry.iproutetype.128.162.3.4
variable to 2 (this sets the type to invalid). This set operation is
equivalent to the route delete 128.162.3.4 command.

– To change the values of an existing netmask, set the
ip.iproutetable.iproutentry.iproutenetmask.1.2.3.0

88 S–2304–10011

TCP/IP [2]

variable to ff ff ff 00. This set operation is equivalent to the route
change 1.2.3.0 -netmask 0xffffff00 command.

• Change network interfaces, as follows:

– To change the logical state of a network interface to up, set the
interfaces.iftable.ifentry.ifadminstatus.1 variable to 1. For
Model E based systems, this set operation is equivalent to the ifconfig
np0 up command, where np0 is the first interface. For GigaRing based
systems, this set operation is equivalent to the ifconfig gfddi0 up
command, where gfddi0 is the first interface.

– To change the logical state of network interface to down, set the
interfaces.iftable.ifentry.ifadminstatus.1 variable to 2. For
Model E based systems, this set operation is equivalent to the ifconfig
np0 down command. For GigaRing based systems, this set operation is
equivalent to the ifconfig gfddi0 down command.

– (For Model E based systems only) To add a hyroute entry on interface
14 (HIPPI), set the

mgmt.mib-2.at.atTable.atEntry.atPhysAddress.14.1.128.162.94.13

variable to 01 00 00 07 00 20 00 30. This set operation is equivalent
to the hyroute command directive

add direct 128.162.94.13 01000007 0020 0030 mtu

where 128.162.94.13 is the Internet address of the host name,
01000007 is the I-field, 0020 is the minor input number, and 0030 is the
minor output number. The mtu is the mtu of the interface as specified
by the ifconfig(8) command.

Following is an example of adding a hyroute entry on a HIPPI interface:

poplar09$ snmptest squall write

Please enter the variable name: $S

Request type is SET REQUEST

Please enter the variable name:

mgmt.mib-2.at.atTable.atEntry.atPhysAddress.14.1.128.162.94.13

Please enter variable type [1|s|x|d|n|o|t|a]: o

Please enter new value: 01 00 00 07 00 20 00 30

Please enter the variable name:

Received GET RESPONSE from 128.162.82.6

requestid 0x4ef53739 errstat 0x0 errindex 0x0

S–2304–10011 89

UNICOS® Networking Facilities Administrator’s Guide

Name: mgmt.mib-2.at.atTable.atEntry.atPhysAddress.14.1.12.8.162.94.13

OCTET STRING- (hex): 01 00 00 07 00 20 00 30

Please enter the variable name: $Q

poplar09$

– (For Model E based systems only) To add a hyroute entry on interface 1
(HYPERchannel), set the

ip.ipNetToMediatable.ipNetToMediaentry.ipNetToMediaphysaddress.1.128.162.3.4

MIB variable to 0 0 66 77. This set operation is equivalent to the add
direct 128.162.3.4 6677 ctl access mtu command, where ctl
and access are the defaults for the interface. The mtu is the mtu of the
interface as specified by the ifconfig command.

– (For Model E based systems only) To delete a hyroute entry on interface
1, set the

ip.ipNetToMediatable.ipNetToMediaEntry.ipNetToMediatype.1.128.162.3.4

variable to 2.

• Turn IP forwarding on or off, as follows:

– To turn on IP forwarding, set the ip.ipForwrding.0 variable to 1. This
set operation is equivalent to the netvar -f on command.

– To turn off IP forwarding, set the ip.ipForwrding.0 variable to 2. This
set operation is equivalent to the netvar -f off command.

• Enable or disable the sending of SNMP authentication traps, as follows:

– To enable the sending of SNMP authentication traps, set the
snmp.snmpEnableAuthenTraps.0 variable to 1.

– To disable the sending of SNMP authentication traps, set the
snmp.snmpEnableAuthenTraps.0 variable to 2.

• Change the text describing the system contact and location, as follows:

– To change the text describing the system contact, set the
system.sysContact.0 variable to any ASCII string less than 255
characters.

Following is an example of changing the sysContact MIB variable
to the ASCII string phil:

90 S–2304–10011

TCP/IP [2]

poplar09$ snmptest

usage: snmptest gateway-name [community-name] [-P port]

poplar09$: snmptest squall write

Please enter the variable name: $S

Request type is SET REQUEST

Please enter the variable name: mgmt.mib-2.system.sysContact.0

Please enter variable type [i|s|x|d|n|o|t|a]: s

Please enter new value: phil

Please enter the variable name:

Received GET RESPONSE from 128.162.82.6

requestid 0x4ef53739 errstat 0x0 errindex 0x0

Name: mgmt.mib-2.system.sysContact.0

OCTET STRING- (ascii): phil

Please enter the variable name $Q

poplar09$

– To change the text describing the system location, set the
system.sysLocation.0 variable to any ASCII string less than 255
characters.

Following is the list of MIB variables that you can set. For a definition of data
formats, see RFCs 1155 and 1213.

MIB
variable

Setting

sysLocation

Can be set to any ASCII octet string.

sysContact

Can be set to any ASCII octet string.

sysName

Can be set to any ASCII octet string.

ifAdminStatus

Can be set to either 1 (up) or 2 (down).

snmpEnableAuthenTraps

Can be set to either 1 (enabled) or 2 (disabled).

S–2304–10011 91

UNICOS® Networking Facilities Administrator’s Guide

ipForwarding

Can be set to either 1 (forwarding, acting as a gateway) or 2 (not
forwarding, not acting as a gateway).

ipDefaultTTL

If set, it must be 255, the default IP maximum time-to-live.

ipRouteDest

If set, it must be the IP address of the route’s destination.

ipRouteIfIndex

If set, it must be an integer with the value of the interface index
of the route.

ipRouteMetric1

Can be set to -1 (no metric), 0 (a directly connected network, not
a gateway), or 1 (a route to a gateway)

ipRouteMetric2

If set, it must be -1 (no metric).

ipRouteMetric3

If set, it must be -1 (no metric).

ipRouteMetric4

If set, it must be -1 (no metric).

ipRouteMetric5

If set, it must be -1 (no metric).

ipRouteNextHop

Can be set to the IP address of the gateway of the route to create
a new route or change an existing route.

ipRouteType

Can be set to 2 (invalid, to delete the route), 3 (direct, to create a
route to a direct network), or 4 (remote, to create a route to a
gateway).

ipRouteMask

Can be set to a valid subnet mask if the destination is a network,
or it can be set to 255.255.255.255 if the destination is a host.

92 S–2304–10011

TCP/IP [2]

atphysaddress

This is the hexadecimal octet string of the physical address. To
delete the entry, provide a string of length 0; for HYPERchannel,
provide a string of length 4; for FDDI or Ethernet, provide a
string of length 6; for HIPPI, provide a string of length 8.

atnetaddress or ipNetToMedianetaddress

If either variable is set, it must be to the IP address of this entry.

atifindex or ipNetToMediaifindex

If either variable is set, it must be to the value of the interface
index for this entry.

ipNetToMediaphysaddress

This is the hexadecimal octet string of the physical address.
For HYPERchannel, provide a string of length 4; for FDDI or
Ethernet, provide a string of length 6; for HIPPI, provide a
string of length 8.

ipNetToMediaType

Can be set to 2 (invalid, an invalidated mapping), 3 (dynamic),
or 4 (static, if this is to be a permanent Address Resolution
Protocol entry).

2.2.8.6 The ntpd Daemon

The ntpd daemon provides the mechanisms Network Time Protocol (NTP)
to synchronize time and coordinate time distribution in a large, diverse
internetwork. The servers that implement this mechanism are known as
timeservers. Timeservers synchronize local clocks within a subnet by propagating
time information from primary hosts, which obtain national standardized time
information from radio or other very accurate sources. These servers can also
redistribute reference time by means of local algorithms and time daemons. A
timeserver is either a server or a peer read from the NTP configuration file (see
Section 2.2.8.6.1, page 95).

The NTP protocol is implemented on Cray systems by the ntpd daemon process.
When ntpd is started from the tcpstart(8) script, it begins gathering statistics
from its timeservers. It sends several messages to each candidate timeserver.
Then each timeserver returns a reply message which contains several items,
including the timeserver’s local time and the claimed accuracy of its clock. By
measuring the magnitude and distribution of the packet turnaround times for

S–2304–10011 93

UNICOS® Networking Facilities Administrator’s Guide

each timeserver, and by comparing the reported accuracy of each timeserver
clock with the others, the ntpd daemon determines which of the candidate
timeservers is currently the most accurate from the perspective of the local host.
Because clock accuracy, turnaround-time magnitude, and turnaround-time
distribution are all considered by the selection algorithm, there is no guarantee
that the closest timeserver (smallest average turnaround time) is selected as
the best timeserver.

To increase the possibility of making a good initial timeserver selection, ntpd
performs several measurements during the time span of several minutes before
actually making the selection. When the initial selection is made, ntpd might
call settimeofday(2) to synchronize the time on the local host with that of the
timeserver that it selected. When this happens, local users observe a time warp,
a term used to describe an instant in which local time appears discontinuous.
This initial time warp can be quite long. To prevent this time warp from affecting
UNICOS applications, it strongly recommended that the /etc/ntp -s -f
host1 ... hostn command be executed prior to invoking ntpd (host1 ... hostn are
servers and peers taken from the /etc/ntp.conf file). Usually, this command
forces the local time to be synchronized with one of the timeservers. This makes
the initial time warp occur during system startup and, therefore, before the user
processes begin. Alternatively, you can invoke the /etc/ntpstart.sh script.
This script issues the appropriate ntp command before invoking ntpd.

Note: Time warp can affect software (for example, performance tests) that
depends on smooth time and accounting. It can also affect the performance of
such commands as make(1), alarm(2), and sleep(1).

After the local time is set, it usually remains accurate. However, ntpd continues
to poll all configured timeservers at varying rates. The timeserver considered the
most accurate is polled approximately once every 64 seconds; the timeservers
initially considered less accurate are polled less often, perhaps once every 512
or 1024 seconds. After each poll, ntpd determines whether the local time is
sufficiently accurate. If not, ntpd begins the process of determining whether
the time difference is caused by clock drifting, and not by unexpected packet
delays. Usually, it is packet delays that introduce the doubt about the time
accuracy. However, when ntpd becomes convinced that its local clock has drifted
too far from real time, it must adjust the local clock again. Usually, ntpd can use
the adjtime(2) system call to gradually speed up or slow down the system
clock. Occasionally, the adjtime(2) system call is not sufficient, and ntpd
must call settimeofday(2). This creates another time warp. Fortunately, this
is a relatively rare occurrence on Cray systems. Most of the time, ntpd can
use the adjtime(2) system call to keep local time synchronized with network
time. Unless something very unusual happens, such as simultaneously losing
contact with most time servers, the system does not need to create time warps by

94 S–2304–10011

TCP/IP [2]

using settimeofday(2). If this type of backward time movement is considered
unacceptable at your site, ntpd must not be run on your server. In reality,
however, it is not very probable that these adjustments will adversely affect
UNICOS processes.

The ntpd daemon dynamically selects the best timeserver to use at any given
time. If a path from the local host to its best timeserver becomes congested or
lost, ntpd automatically selects another timeserver with which to synchronize.
When the path later clears, ntpd can automatically revert to using the original
timeserver if its performance is again superior to that of the other available
timeservers.

The ntpd daemon is robust enough to ignore data from timeservers that appear
suspicious. For example, ntpd disregards data from even a close timeserver if
the time it reports disagrees substantially with the time reported by most other
servers. Consequently, it is not likely to be fooled by a nonfunctional timeserver
if a sufficient number of candidate timeservers are configured.

This implementation is based on the NTP version 1 protocol, described in
detail in RFC 1059. Further information about NTP can be found in RFC 1119
and RFC 1129.

Note: The use of the ntpd daemon is not allowed with the Cray ML-Safe
configuration of the UNICOS system.

2.2.8.6.1 The /etc/ntp.conf File

To enable the Network Time Protocol (NTP) facility, you must create the
/etc/ntp.conf file, supplying timeserver information as shown in the
following example:

/etc/ntp.conf file

precision -10

server wwvb.isi.edu

peer umd1.umd.edu

server 130.126.174.40

precision Specifies the accuracy of the local clock to the
nearest power of 2 seconds. If you do not include
this line, ntpd is forced to try to determine
it; this process is not very effective. For Cray
systems, a precision of -10 gives good results, but
your system’s precision requirements can differ
according to its frequency. Use the following

S–2304–10011 95

UNICOS® Networking Facilities Administrator’s Guide

guidelines for setting the precision of your local
clock:

Frequency Precision

60 Hz 2**-6

100 Hz 2**-7

1000 Hz 2**-10

server In the first instance, server identifies a remote
host with which the local host can synchronize.
This remote host does not need to know anything
about the local host, because the remote host
does not synchronize with the local host under
any circumstances. This server line consists of
the keyword server, followed by at least one
blank character, followed by the name of a remote
host. The remote host’s name can be specified
in any format that is compatible with the local
implementation of gethostbyname(3).

In the second instance, server specifies the
server’s address in the familiar dot notation.

peer Like the server line, this line identifies a remote
host with which the local host can synchronize.
However, the peer line also implies that the
remote host can synchronize with the local
host, if appropriate. For this peer relationship
to work properly, if host A is a peer in host B’s
configuration file, host B must be a peer in host
A’s configuration file. Configuring a remote host
as a peer without the consent of the remote host
is functionally equivalent to configuring the
remote host as a server.

The peer line consists of the keyword peer,
followed by at least one blank character, followed
by a host name.

Note: The ntp(8) man page, and this section,
present specific requirements for correctly
selecting NTP peers and servers. Refer to this
documentation before you select your peers.

96 S–2304–10011

TCP/IP [2]

passive (Not shown in the example). This identifies a
type of relationship with a remote host that
is supported, but not recommended. The
configuration syntax is like that of server and
peer. The passive relationship causes packets to
be sent to the specified remote host when it polls
the local host. This prevents the local host from
initiating synchronization with the remote host,
but it forces the local host to synchronize with the
remote host through remote demand. Because this
relationship gives too much control to the remote
host, and it violates the traditional client/server
model, Cray does not recommend configuring any
passive hosts in the configuration file.

2.2.8.6.2 NTP Server Categories

The strata, based on their distance from NTP servers that have reference clocks
NTP servers are divided into categories called physically attached. Servers
deriving their time from attached clocks are defined as being in stratum 1.
Servers that synchronize with stratum-1 servers are in stratum 2, servers that
synchronize with stratum-2 servers are in stratum 3, and so on. This classification
scheme creates a hierarchy of time servers, with those in the lower numbered
strata being more accurate and reliable.

If you are configuring only the Cray system to run NTP, the configuration task
is relatively simple. Configure the /etc/ntp.conf file with three or four
Internet stratum 1 and 2 servers; this is a good trade-off between the benefits of
redundancy and the costs of protocol processing.

Configuration becomes more complex when you are trying to design the overall
NTP architecture of a local subnet. Consider the example in which you want to
begin running NTP not only on your Cray system, but also on several other
local hosts (if their NTP daemon executable files are available to you). You
must determine which servers will be in stratum 2 and which servers will be in
stratum 3. A good guideline is to select three of your systems with the best
clocks and your fileservers to be local servers. Choose six stratum-1 Internet
hosts and pair them off (a list of NTP servers is available through anonymous
FTP from louie.udel.edu in the pub/ntp/clock.txt) file. For each pair
of stratum-1 hosts, choose an external stratum-2 host that synchronizes with
primary servers other than that pair. Then configure each of your local servers in
the following manner:

server one_of_the_stratum_1_hosts

S–2304–10011 97

UNICOS® Networking Facilities Administrator’s Guide

server the_other_stratum_1_host
server corresponding_external_stratum_2_host
peer one_of_the_other_local_servers
peer the_third_local_server

This is an extremely robust configuration. It is resistant to nonfunctional
timeservers and generates less traffic than would occur if multiple machines were
all communicating with the same set of external peers. The second stratum-1 host
in each pair can be further away, because there is usually less traffic.

The remaining machines can now synchronize with your three local stratum-2
servers. They can be configured with the following entries:

server local_stratum_2
server another_local_stratum_2
server the_third_local_stratum_2

2.2.8.7 The inetd Daemon

The inetd command provides a mechanism for starting daemons that are listed
in the /etc/inetd.conf file. The inetd daemon is a super server because it
listens for incoming requests for the services. Whenever a request is received,
inetd starts the individual server process. Following is a list of the daemons that
inetd starts and the service each performs.

Note: The daemons listed with asterisks perform services that must not be
configured with the Cray ML-Safe configuration of the UNICOS system.

Daemon Service

fingerd(8) Remote user information display server

ftpd(8) Internet file transfer protocol server

ntalkd(8)* Visual communication server

rexecd(8) rexec(3) library routine server

rlogind(8) Remote login server

rshd(8) Remote shell server

telnetd(8) Internet virtual terminal server

tftpd(8)* Internet trivial file transfer protocol server

ypupdated(8)* Network information service (NIS) update server

rstatd(8)* Remote status daemon

rusersd(8)* Remote user information daemon

98 S–2304–10011

TCP/IP [2]

sprayd(8)* Remote spray daemon (used for testing)

rwalld(8)* Remote write all daemon

If you are using the UNICOS ICMS for your configuration, you can use
the Configure System -> Network configuration -> TCP/IP
configuration -> Internet daemon menu to configure the list of services
for which inetd listens. The following shows the sample /etc/inetd.conf
file that is included in the source file. Table 3, page 100, describes each column as
it relates to creating or modifying this file.

#

Sample /etc/inetd.conf file

Internet server configuration database

#

ftp stream tcp nowait root /etc/ftpd ftpd

telnet stream tcp nowait root /etc/telnetd telnetd

5100 stream tcp nowait root /etc/telnetd telnetd -D report

shell stream tcp nowait root /etc/rshd rshd

login stream tcp nowait root /etc/rlogind rlogind

exec stream tcp nowait root /etc/rexecd rexecd

Run as user "uucp" if you don’t want uucpd’s wtmp entries.

#uucp stream tcp nowait root /etc/uucpd uucpd

finger stream tcp nowait nobody /etc/fingerd fingerd

#tftp dgram udp wait tftp /etc/tftpd tftpd

#comsat dgram udp wait root /etc/comsat comsat

#ntalk dgram udp wait root /etc/ntalkd ntalkd

echo stream tcp nowait root internal

discard stream tcp nowait root internal

chargen stream tcp nowait root internal

daytime stream tcp nowait root internal

time stream tcp nowait root internal

echo dgram udp wait root internal

discard dgram udp wait root internal

chargen dgram udp wait root internal

daytime dgram udp wait root internal

time dgram udp wait root internal

#

#

RPC services syntax:

<rpc_prog>/<vers> <socket_type> rpc/<proto> <flags> <user> <pathname> <args>

ypupdated/1 stream rpc/tcp wait root /etc/ypupdated ypupdated

rstatd/2-4 dgram rpc/udp wait root /etc/rstatd rstatd

rusersd/1-2 dgram rpc/udp wait root /etc/rusersd rusersd

S–2304–10011 99

UNICOS® Networking Facilities Administrator’s Guide

sprayd/1 dgram rpc/udp wait root /etc/sprayd sprayd

rwalld/1 dgram rpc/udp wait root /etc/walld rwalld

Table 3. /etc/inetd.conf file columns

Column
number Column name Description

1 Service name Specifies the service. If a service is not needed, you can
disable it by commenting it out with a # preceding the
line. In the preceding sample file, uucp, tftp, comsat,
and ntalk services have been disabled. The inetd
program searches the /etc/services file for the
specified service and obtains the port number, which
can also be directly specified in this column, in place of
the service name. The inetd daemon opens the port
number and begins listening for incoming requests on it.
For RPC-based servers, the server name is followed by a
slash (/), which is followed by the version number of the
protocol (for example, sprayd /1 indicates version 1 of
sprayd, and rstatd /2-4 indicates versions 2 through 4
of rstatd).

2 Socket type Specifies the use of either a stream (TCP) or a datagram
(UDP) socket.

3 Protocol type Specifies which protocol is used: TCP (socket type is
stream), or UDP (socket type is dgram). For RPC-based
servers, the protocol type is preceded by rpc/ (for
example, rpc/tcp or rpc/udp).

4 Single-threaded/multithreaded Indicates whether a new server’s status is single-threaded
(wait) or multithreaded (nowait) (see inetd.conf(5)
for more information).

5 User Describes the access permissions for the daemons. The
ftp, telnet, shell, and login servers require root
permission; the finger and tftp servers should be
run as users with limited capability. In the preceding
sample file, the finger server runs with the capability of
user nobody; the tftp server (if enabled) runs with the
capability of user tftp. You must create these users and
assign limited permissions to them.

100 S–2304–10011

TCP/IP [2]

Column
number Column name Description

6 Server program Indicates the location of the program. The inetd
server requires an entry here. For internal services, put
internal in this column. For example, in the preceding
sample file, the telnet daemon is located in /etc; echo
is an internal service.

7 Server program and arguments Indicates the program’s name and describes the
arguments to be used on the exec(2) system call that
inetd executes. In the preceding sample file, a telnet
daemon is available on port 5100, which operates in
diagnostics reporting mode. The -D argument is specified
in the last column. See telnetd(8) for more information
on this argument.

Note: For security reasons, it is recommends that you disable tftpd(8). If
the site requires tftdpd, see Section 2.2.8.7.7, page 104, for configuration
information. tftpd must not be run with the Cray ML-Safe configuration of
the UNICOS system.

2.2.8.7.1 The fingerd Server

The server program for the remote finger(1B) routine is fingerd(8).

Note: The fingerd server must not be run with the Cray ML-Safe
configuration of the UNICOS system.

2.2.8.7.2 The ftpd Server

The server program for the Internet file transfer protocol is ftpd(8). The
/etc/ftpd command accepts the following options:

Option Description

-d Logs debugging information to the syslogd file.

-l Logs each ftp session to the syslogd file.

-t timeout Terminates an inactive session after timeout
seconds

-v Logs debugging information to the syslogd file.

See ftpd(8) for a complete list of options.

S–2304–10011 101

UNICOS® Networking Facilities Administrator’s Guide

If users create their own $HOME/.netrc files in the working directories of the
client hosts, they do not have to provide the ftp server with their user names
or passwords. For information on the $HOME/.netrc files, see the TCP/IP
Network User’s Guide. A version of ftpd that supports Kerberos authentication
is available (see the Kerberos Administrator’s Guide).

If the user name is anonymous or ftp, and an ftp account is present in the
password file, the user is allowed to log in by specifying any password. The
chroot(2) system call is executed to change to the login directory of the ftp
account. Because anyone can log in under anonymous, it is advisable to restrict
the access privileges to this account: files and directories should not be owned by
the ftp account, and read-only permission should be set. Because of the chroot
system call, the ftp account must have a bin directory with the ls(1) and pwd(1)
commands in it so that the ftp dir command works.

The /etc/ftpusers file contains the names of users who are denied access to
ftp from a remote host. Each time an ftp user attempts to log in, the ftpd(8)
server searches this file for the user’s login name. If the name is found, the user is
denied access. Valid user names (that is, names of users who should have access)
must not appear in the /etc/ftpusers file; if they do, access is denied them.

An example of an /etc/ftpusers file is as follows:

Sample etc/ftpusers file

denied ftp users

todd

doug

cheryl

bonnie

2.2.8.7.3 The ntalkd Server

The ntalkd program is the remote server used by the UNIX talk(1B)
command. This program is a visual communication program that copies lines
from your terminal to the terminal of another user.

Note: The ntalkd server must not be run with the Cray ML-Safe
configuration of the UNICOS system.

2.2.8.7.4 The rexecd Server

The server program for the remote execution routine is rexecd, which provides
an existing server for custom-designed network programs. (See the rexec(3)
man page for more information.) For information about how users on hosts that

102 S–2304–10011

TCP/IP [2]

run under operating systems based on UNIX can use remote execution for their
own applications, see therexecd(8)man page.

Remote users who want to use the rexecd server on the Cray system (the local
host) must authenticate themselves with user names and passwords for their
accounts. Users have three options for specifying names and passwords:

• Code the name or password into the local program.

• Direct rexec(3) to prompt the user for the name or password in the client
program.

• Store the name or password in the user’s $HOME/.netrc file on the client.

2.2.8.7.5 The rlogind and rshd Servers

The rlogin(1B) program allows remote login to other hosts that run under
operating systems based on UNIX (see the TCP/IP Network User’s Guide. The
rsh(1) program allows the execution of one command on other hosts that run
under operating systems based on UNIX, and it handles requests for the rcp(1)
(remote copy) commands. Versions of rlogind(8) and rshd(8) that support
Kerberos authentication are available (see the Kerberos Administrator’s Guide,
for details).

These programs allow users at other hosts to log in and execute commands on
a Cray system.

The rlogin, rcp, and rsh programs provide the following:

• Automatic remote login. Users are not required to enter their user names
and passwords on the serving hosts because the system verifies login
information based on the /etc/hosts.equiv, the $HOME/.rhosts, and
the /etc/password files.

• Terminal characteristics automatically passed to the serving host. Users are
not required to specify their terminal type to the serving host.

To allow automatic user login, you can create an /etc/hosts.equiv file on
the server host (see Section 2.2.5.3, page 37), or users can create their own
$HOME/.rhosts files (see Section 2.2.11.2, page 121). One of these files must be
properly configured to use the rsh and rcp commands. However, the rlogin
command does not require these files. If they are not present, rlogind validates
the user who is making the request by doing the following:

1. Prompts users for their user names on the server host.

S–2304–10011 103

UNICOS® Networking Facilities Administrator’s Guide

2. Verifies that the user names are in the server host’s password file and are
password-protected; they must not have a null password.

3. Prompts users for their passwords, which they must supply before remote
login operations can be performed.

2.2.8.7.6 The telnetd Server

The telnetd(8) program is a server to the DARPA standard telnet virtual
terminal protocol. It operates by allocating a pseudo-terminal device for a client
who is attempting to connect. After this allocation is complete, a login process
is initiated on the slave side of the pseudo-terminal with stdin, stdout, and
stderr assigned to the pseudo-terminal. telnetd manipulates the master side
of the pseudo-terminal and uses the telnet protocol to pass data between the
client and the login process.

The telnetd daemon is started by the inetd(8) daemon whenever a request
comes in on the specified port. telnetd supports the following options, which
can be specified in column 7 of the /etc/inetd.conf file as the program
arguments (see telnetd(8) for a complete list of options):

-r low_pty
high_pty

Specifies the incrementing range for finding a free pseudo-terminal. When
allocating pseudo-terminals, telnetd begins at
low_pty and continues incrementing by 1 until
either a free pseudo-terminal is found, or high_pty
has been tried. The defaults for low_pty and
high_pty are 0 and 100 (the value of the sysconf
variable SC_CRAY_NPTY), respectively.

-h Suppresses system message display. When a user
specifies telnet to access a Cray system, a system
message is displayed prior to the login prompt if
this option is not specified. This system message
indicates the remote host’s name, operating
system, and so on.

2.2.8.7.7 The tftpd Server

The server program for the Internet trivial file transfer protocol is tftpd, which
does not have a login facility. Because it does not validate users, this server can
be used to transfer only publicly readable files; however, the tftpd server
supports Kerberos authentication. Thus, authentication of the client can be

104 S–2304–10011

TCP/IP [2]

performed through the Kerberos subsystem; users can access all files that would
be available to them if they were logged in locally.

For security reasons, you should disable the tftp service. However, if this
service is needed, the following steps can be taken:

1. Create a user tftp file with limited privileges.

2. Modify the /etc/inetd.conf file to set the tftp access permission
parameter to the user created in step 1 (column 5 of the tftp line in the
/etc/inetd.conf file).

3. Edit the /etc.tftpd.conf file to include the directories you select if you
want the inbound tftp to access only certain directories (such as /tmp,
/usr/tmp, and so on). The /etc/tftpd.conf file contains a list of the
directories that are available through tftp access. A directory not listed in
this file is not accessible through tftpd.

You must provide the full path name of each directory specified in the
/etc/tftpd.conf file (for example, /tmp, /usr/tmp, and so on) and its access
permissions (R or r for read only, W or w for write only, and RW, WR, or rw for
read/write). If the tftpd access permissions are different from the directory’s
usual access permissions, the directory’s usual permissions override the tftpd
access permissions. For example, if a directory cannot be read by others, putting
that directory in the /etc/tftpd.conf file with read permission does not
permit read access.

The following example shows a sample /etc/tftpd.conf file. In this example,
/garbage is readable and writable through tftp, and /tmp is readable
through tftp, if these directories set public read/write and read permissions,
respectively.

#This is the tftpd configuration file. It contains the list of

#directories and the type of access for these directories for tftpd.

#The format is as follows:

Mode Directory

where Mode is either R (read only access via tftpd), W

(write only access via tftpd), or RW or WR (read/write

access via tftpd.) Each directory has to be specified on

a separate line.

#

#

#NOTE tftpd is a big security risk and should not be used unless

necessary.

S–2304–10011 105

UNICOS® Networking Facilities Administrator’s Guide

#

RW /garbage

R /tmp

Note: The tftpd daemon must not be configured with the Cray ML-Safe
configuration of the UNICOS system.

2.2.9 Performing Startup Procedures

When the system starts up, the networking software is started by the
/etc/tcpstart script, which is typically called by the network start-up script,
/etc/netstart (which is, in turn, typically called by the system start-up
script, /etc/rc).

Note: The /etc/tcpstart script that is supplied with the UNICOS system
should not be modified directly.

The default /etc/tcpstart script supplied with UNICOS is designed to be
sufficiently general in its capabilities to support the startup of networking on a
majority of UNICOS systems (if the underlying configuration files explained in
this section are configured correctly).

You can start the UNICOS networking software by using a method other than the
supplied /etc/tcpstart file. Sometimes administrative procedures for starting
networks are written already, or (infrequently) the local configuration has special
needs that are too complex for the supplied /etc/tcpstart file. (If the latter is
true, inform us of your needs so that they can be considered for future revisions
of /etc/tcpstart.) Nevertheless, becoming familiar with the actions taken
by the supplied /etc/tcpstart file is valuable, because any alternative script
or method you use to start the UNICOS networking software must accomplish
the goals described in this section.

The default for UNICOS is for the /etc/tcpstart script to perform the
following functions:

1. Calls a local script (/etc/tcpstart.pre), if present

2. Initializes kernel networking variables

3. Updates the binary copy of the /etc/hosts database

4. Configures the host name of the system

5. With UNICOS security, loads the NAL, WAL, and IPSO maps

6. Initializes the networking interfaces

106 S–2304–10011

TCP/IP [2]

7. Calls a local script (tcpstart.mid), if present

8. Sets up routing

9. Starts the networking daemons related to TCP/IP

10. Calls a local script (/etc/tcpstart.pst), if present

Each of these steps is discussed in the following sections.

2.2.9.1 Calling the First Local Script

The /etc/tcpstart script begins by calling the local script
/etc/tcpstart.pre if it exists and is executable. You should place the
following in this script:

• TCP/IP start-up processes that are specific to your local system

• TCP/IP start-up processes that must be performed before the networking
software is started

• TCP/IP start-up processes that cannot be accomplished by any of the other
mechanisms provided

2.2.9.2 Initializing Kernel Networking Variables

To initialize kernel networking variables that are configurable while the
system is running, the /etc/tcpstart script calls the /etc/netvar utility
with the contents of the /etc/config/netvar.conf file as arguments to
netvar. Lines in the /etc/config/netvar.conf file that begin with a
are considered comments and are ignored. For example, the following
/etc/config/netvar.conf file turns on IP forwarding in the kernel (-f on),
turns off sending of Internet control message protocol (ICMP) redirect packets
(-r off), and sets the default TCP/IP send space to 32,768 bytes:

/etc/config/netvar.conf file

set networking kernel variable at boot time

-f on

-r off

-t 32768

See netvar(8) for a full list of the kernel variables it can set and the associated
flags.

S–2304–10011 107

UNICOS® Networking Facilities Administrator’s Guide

2.2.9.3 Updating the Binary Hosts Database

To ensure that the binary host name and address database /etc/hosts.bin
is current with the information in the text file version /etc/hosts, the
/etc/tcpstart script calls the mkbinhost(8) command. This command
updates /etc/hosts.bin whenever /etc/hosts has changed, to avoid
problems that could arise from incorrect name translations.

2.2.9.4 Configuring the Host Name

The /etc/tcpstart script next configures the running system with the system
host name. Because a system can determine its host name in various ways, the
/etc/tcpstart script follows this procedure:

1. If the /etc/config/hostname.txt file exists, the /etc/tcpstart script
sets the system host name to the contents of the file.

2. Otherwise, if the /etc/net/makehostname script exists and is executable,
the /etc/tcpstart script executes the script and sets the system host
name to the output of its execution.

3. Otherwise, the /etc/tcpstart script sets the system host name to the
system name compiled into the UNICOS kernel, as reported by executing
the following:

uname -n

(See uname(1) for details.)

The rules to set the host name can be summarized, as follows:

• If you want the system host name to remain the same as the UNICOS kernel
system name, do not do anything.

• If you want the system host name to be different, and the name you want
is a simple character string, place it in the /etc/config/hostname.txt
file. For example, if you want your system host name to be mycray, place the
following in the /etc/config/hostname.txt file:

mycray

• Alternatively, you can generate the system host name at boot time by creating
a script to do so, placing it in the /etc/config/makehostname file, and
making the script executable. For example, if you want to append the domain
name our.domain to the kernel system name as reported by uname(1), place
the following in the /etc/config/makehostname file:

108 S–2304–10011

TCP/IP [2]

tiny script to create our host +

domain name from our uname

echo ‘uname -n‘.our.domain

Then make the script executable by typing the following command:

chmod +x /etc/config/makehostname

2.2.9.5 Loading the Maps

With UNICOS security, you must load the NAL, WAL, and IPSO maps from
the /etc/config/spnet.conf file. See spnet(8)) for a description of the
spnet.conf file.

2.2.9.6 Initializing the Network Interfaces

After the host name is configured, the TCP/IP startup procedure should initialize
the networking interfaces that permit TCP/IP communication over the attached
networks.

2.2.9.6.1 Using the UNICOS tcpstart Script to Initialize Interfaces

The /etc/tcpstart script calls the utility script /etc/initif to initialize the
networking interfaces. /etc/initif consults the /etc/config/interfaces
file for information about each interface to be initialized.

If you are using the UNICOS ICMS for configuration of your networking
interfaces, the UNICOS ICMS maintains the /etc/config/interfaces
file with the information you supply by using the Configure System ->
Network configuration -> General network configuration ->
Network interface configuration menu.

If you are not using the UNICOS ICMS, you must place the information about
your network interfaces directly in /etc/config/interfaces. Each line in
/etc/config/interfaces describes the startup of one interface. The format
of each line is as follows:

interface_name hycf_file or arp_file address_family host destination
[ifconfig_arguments]

S–2304–10011 109

UNICOS® Networking Facilities Administrator’s Guide

hycf_file (Model E based
systems only)

Name of a file containing the hardware address
information associated with this interface. If
hycf_file begins with a leading / (slash), it is
assumed to be a full path name; otherwise, it is
assumed to be the name of a file relative to the
configuration directory /etc/config.

arp_file (GigaRing based
systems only)

Name of a file containing the hardware address
information associated with ghippi or gr interface
only. If arp_file begins with a leading / (slash), it is
assumed to be a full path name; otherwise, it is
assumed to be the name of a file relative to the
configuration directory /etc/config.

interface_name Kernel identifier of the interface to be configured
(for example, lo0, np1, and so on).

address_family The address family of the address specified as the
host argument. For Internet addresses, this is
inet.

host Internet address (or host name corresponding
to the address, as found in the /etc/hosts
database) to be associated with this interface.

destination Internet address (or host name corresponding
to the address, as found in the /etc/hosts
database) of the destination for a point-to-point
link. If this interface is not a point-to-point link,
the column should contain - (one hyphen).

ifconfig_arguments List of optional arguments for this interface that
are passed to the interface configuration program
ifconfig. This list consists of keywords followed
by optional arguments (for example, netmask
0xffffff00, -trailers). See ifconfig(8)) for
a full list of permitted arguments.

Note: If you are running with UNICOS
security, also see Section 2.6, page 211, for
security-related parameters.

For maximum performance between two Cray systems, an mtu of 65536
is recommended for HIPPI interfaces, as well as for Host-to-Host GigaRing
interfaces.

For Model E based systems, you must ensure that the interface mtu is at least as
large as the mtu specified in the hycf file. The mtu in the hycf file is the size of

110 S–2304–10011

TCP/IP [2]

the largest IP datagram that can be sent to a given host. The interface mtu is the
size of the largest IP datagram that can be received on this interface.

The following is a sample /etc/config/interfaces file for a Model E system
that specifies three interfaces (and also the local loopback interface lo0):

#

Configuration file for interfaces known to /etc/initif.

#

File format is:

#

name hycf_file family address pt-to-pt-dest args:

netmask

iftype

broadcast

mtu

rbuf

wbuf

bg

np0 setup temporarily for 4801 through vme

#

lo0 - inet localhost -

np0 /etc/hycf.ows inet hot-030 - netmask 0xffffff00

iftype vme

np2 /etc/hycf.np2 inet hot-fddi - netmask 0xffffff00

iftype n130

hi0 /etc/hycf.hippi inet hot-hippi - netmask 0xffffff00

mtu 65536

The following is a sample /etc/config/interfaces file for a Cray J90 system
that specifies three interfaces (and also the local loop-back interface lo0):

#

Configuration file for interfaces known to /etc/initif (to be brought

up at system startup by /etc/tcpstart).

#

File format is:

#

name hycf_file family address pt-to-pt-dest args:

netmask

iftype

broadcast

mtu

rbuf

S–2304–10011 111

UNICOS® Networking Facilities Administrator’s Guide

wbuf

bg

#

lo0 - inet localhost -

en0 - inet sn5194-ccn - netmask 0xffffff00

fddi0 - inet sn5194-fddi - netmask 0xffffff00

hi0 /etc/hycf.hippi inet sn5194-hippi1 frost-hippi1 netmask 0xffffff00

mtu 65536

The following is a sample /etc/config/interfaces file for a GigaRing
based system that specifies one active interface (and the active local loopback
interface lo0):

#

Configuration file for GigaRing network interfaces to be brought

up by interfaces /etc/tcpstart through /etc/initif.

#

Supported network interfaces are:

#

name arp_file family address pt-to-pt-dest ifconfig_args

--

gether0 - inet snXXXX-ether - netmask 0xffffff00

gfddi0 - inet snXXXX-fddi - netmask 0xffffff00

ghippi0 /etc/ghippi0.arp inet snXXXX-hippi -rbuf32 wbuf32 netmask 0xffffff00 hwloop

gatm0 - inet snXXXX-atm - netmask 0xffffff00

gr0 /etc/gr0.arp inet snXXXX-gr - netmask 0xffffff00

#

name arp_file family address pt-to-pt-dest ifconfig_args

#

lo0 - inet localhost -

gether0 - inet snXXXX-ether - netmask 0xffffff00

2.2.9.6.2 Using Your Own Procedures to Initialize Interfaces

If you are not using the /etc/tcpstart script that is supplied with the
UNICOS system, your startup procedure must initialize the networking
interfaces for your attached networks.

You can initialize your system’s interfaces by using the same initif(8) script
that is used by the /etc/tcpstart script that is supplied by the UNICOS
system. If you choose this method, consult the preceding section or initif(8)
for operating details.

112 S–2304–10011

TCP/IP [2]

If you prefer not to use the initif script, you must arrange for your startup
procedure to execute the following commands for each interface to be initialized
at startup:

• fddiload(8) (IOS–E based systems that contain one or more FDDI interfaces
only).

Cray systems that have one or more FDDI interfaces must first have each of
the FDDI channel adapters (FCAs) downloaded with FDDI microcode. The
fddiload command performs this function. The microcode binary file
resides in the /etc/micro/fca1.ucode file.

• hyroute(8) (Model E and model V based systems only).

After the IOS channel is initialized for the networking interface (if
appropriate), the interface must be initialized with information about
the hardware addresses of the systems on its attached network. This is
accomplished with the hyroute(8) command and the appropriate hycf
file for the interface.

For example, if the information about the hardware addresses of the systems
attached to the network of interface np0 is stored in the /etc/hycf.np0
file, you must arrange for your startup procedure to perform the following
command before proceeding with configuration of the np0 interface:

hyroute np0 -s /etc/hycf.np0

For information about creating the proper hycf file for an interface, see
Section 2.2.6.4, page 44.

• ifconfig(8)

When you have initialized the hardware addresses for a network interface,
you must initialize the interface to an active state by using the ifconfig(8)
command. The ifconfig command initializes various parameters associated
with the interface, including the specific Internet address that identifies the
interface to the TCP/IP software.

The following examples show a typical ifconfig command executed during
system startup:

For Model E based systems:

ifconfig np0 mycray-net1 netmask 0xffffff00 iftype np

For GigaRing based systems:

ifconfig gfddi0 mycray-net1 netmask 0xffffff00 iftype np

S–2304–10011 113

UNICOS® Networking Facilities Administrator’s Guide

In these examples, mycray-net1 is the host name for the Internet address
that is associated with the np0/gfddi0 interface. The command also
specifies that addresses for the hosts on this network have a subnet mask of
0xffffff00 (for more information about subnets and subnet masks, see
Section 2.1.2.2, page 10).

The following examples show a typical ifconfig command for a HIPPI
interface:

For Model E based systems:

ifconfig hi0 sn2402-hippi mtu 65536 netmask 255.255.255.0

For GigaRing based systems:

ifconfig ghippi0 sn2402-hippi mtu 65536 netmask 255.255.255.0

If you specify the ptp argument and the interface is brought up on the
dedicated path, all HIPPI packets are sent in hold-connection mode. This
means that a HIPPI connection is made the first time a packet is sent. The
connection remains in place until the interface is configured down. Following
is an example of the ifconfig command for a HIPPI point-to-point
connection:

ifconfig hi0 sn2402-hippi sn5194-hippi ptp mtu 65536 netmask 255.255.255.0

The typical configuration for a Host-to-Host GigaRing interface is as follows:

ifconfig gr0 sn9132-gr netmask Oxffffff00

2.2.9.7 Calling the Midpoint Local Script

The /etc/tcpstart script next calls the local script /etc/tcpstart.mid if it
exists and is executable. You should place the following in this script:

• Processes that are specific to your local system

• Processes that must be performed after the network interfaces have been
initialized but before additional static routes have been installed

• Processes that cannot be accomplished by any of the other mechanisms
provided

2.2.9.8 Setting up Routing

After the networking interfaces are initialized, the TCP/IP startup procedure
should initialize the kernel tables for routing of network traffic. This initialization
must be performed before the startup procedure starts any other networking

114 S–2304–10011

TCP/IP [2]

software (such as system daemons), which may need routing information to
communicate with remote hosts.

2.2.9.8.1 Using the UNICOS tcpstart Script to Set up Routing

The /etc/tcpstart script initializes the kernel tables for routing of network
traffic from information placed in the /etc/gated.conf file. You can
create the gated.conf file by using the Configure System -> Network
configuration -> TCP/IP configuration -> Routing menu.

Usually, when the gated(8) routing daemon is started (see Section 2.2.8.1, page
61), it installs dynamic routing information from the /etc/gated.conf file
to initialize the routing table in the kernel. However, if the /etc/sdaemon
program indicates that the gated daemon is not starting as part of the group of
TCP/IP daemons that start during system startup, the /etc/tcpstart script
executes the /etc/staticrts script to initialize the kernel routing table with
the static routes listed in the /etc/gated.conf file.

Note: Even if you are not using dynamic routing (that is, the gated(8)
program), the /etc/staticrts script assumes that the information that
describes your static routes is located in the /etc/gated.conf file.

Using the gated routing daemon is the generally preferred method of installing
routing information because of the dynamic routing capabilities of gated. For
a full discussion of its capabilities and configuration, see Section 2.2.8.1, page
61. However, sites with simple networks that do not need the dynamic routing
capabilities of gated can avoid the overhead of the daemon by disabling the
gated daemon and relying on the /etc/staticrts script.

UNICOS extensions to the format of the /etc/gated.conf file allow
configuration of all Cray proprietary routing features, such as configuring an
mtu size for each route and the ability to impose route restrictions on users in
a specific list of groups. Thus, it should always be possible to configure your
system routing tables adequately by using the /etc/gated.conf file and either
the gated daemon or the /etc/staticrts script.

If, however, it becomes necessary to configure your system startup procedures to
use the route command directly, you can use the following methods to arrange
for the /etc/tcpstart script to execute the appropriate route commands at
system startup (in decreasing order of preference):

• Place a line in the /etc/config/daemons file to execute a local start-up
script that contains the necessary route commands. See Section 2.2.9.9, page
116, for a description of this file. The line must be part of the TCP group of
daemons, and it must be placed in the file before any other lines that belong to

S–2304–10011 115

UNICOS® Networking Facilities Administrator’s Guide

the TCP group of daemons. The line can have any string you want in the tag
column; it must contain the string YES in the start column; and it must have
a hyphen in the kill column, followed by the name of the script.

For example, if the script to be executed is /etc/myroutes, you must add
the following line to the /etc/config/daemons file:

TCP routes YES - /etc/myroutes

• Replace the /etc/staticrts script that is supplied with the UNICOS
system with a local start-up script that contains the necessary route
commands.

• Edit the /etc/tcpstart file to add the necessary route commands before
the call to etc/sdaemon, which starts the TCP group of daemons.

!
Caution: The last two methods of setting up your own static routing tables are
not recommended because the installation of future revisions of the UNICOS
system can overwrite the /etc/staticrts and/or the /etc/tcpstart
scripts with updated versions. If you have chosen either of these methods,
you must take the necessary steps to preserve the routing information that is
contained therein as a local configuration modification.

2.2.9.8.2 Using Your Own Procedures to Set up Routing

If you are not using the /etc/tcpstart script supplied with the UNICOS
system, your startup procedure must arrange to initialize the kernel routing
tables with the appropriate routing configuration for your network topology.

You may elect to use the full dynamic routing capabilities of gated(8), in which
case you should place the routing configuration for the gated daemon in the
/etc/gated.conf file (see Section 2.2.8.1, page 61), and start gated as part of
the TCP/IP daemon process (see Section 2.2.9.9, page 116, for information about
starting daemons).

If you do not need the dynamic routing capabilities of gated(8), you can
define static routing information in the /etc/gated.conf file and use
the /etc/staticrts script to initialize the kernel routing table with this
information. Alternatively, you can place route(8) commands in your start-up
script to add routes directly to the kernel routing table.

2.2.9.9 Setting up Daemons

The /etc/config/daemons file contains a list of processes, known as daemons,
necessary for system operation. To build the file, use the Configure systems

116 S–2304–10011

TCP/IP [2]

-> System daemons configuration -> System daemons table menu. In
the sample /etc/config/daemons file, the columns are as follows:

Column Description

group Indicates the product to which the process belongs

tag Indicates the name by which you want the process
to be known

start Indicates whether the process is to be started at
system startup

kill Contains the name of the file that contains the
process ID of the currently executing daemon, or a
hyphen (-) that indicates "do not kill," or an
asterisk (*) that indicates "perform ps | grep
pathname to find the process ID"

pathname Indicates the command to be executed to start
the daemon

arguments Indicates the arguments to be used with the
command in the pathname column

/etc/config/daemons

#

Configuration file for TCP daemons (and other commands) started by

/etc/tcpstart.

#

File format is:

#

group tag start kill pathname arguments

#

TCP gated YES /etc/gated.pid /etc/gated /usr/tmp/gated.log

TCP named YES /etc/named.pid /etc/named

TCP inetd YES - /etc/inetd /etc/inetd.conf

TCP talkd NO * /etc/talkd

TCP sendmail YES * /usr/lib/sendmail -bd -q30

/etc/tcpstart calls the utility script /etc/sdaemon to start the daemons.
The sdaemon script consults the /etc/config/daemons file and starts the
daemons that are listed there.

If you are not using the default tcpstart script, execute the daemons in your
tcpstart script.

S–2304–10011 117

UNICOS® Networking Facilities Administrator’s Guide

If you are using the default tcpstart script, check the /etc/config/daemons
file to ensure that all appropriate daemons are listed. Comment out any daemons
that should not be run at your site; add any daemons that your site needs.

The /etc/inetd.conf file contains a list of the daemons that inetd(8) can
start. Check this file to ensure that all appropriate daemons are listed. Comment
out any daemons that should not be run at your site.

The daemon processes that can be set up are listed in Section 2.2.8, page 61.

2.2.9.10 Calling the Final Local Script

The last process that /etc/tcpstart performs is to call the local script
/etc/tcpstart.pst, if it exists and is executable. You should place in this
script the following network-related processes:

• Processes that are specific to your local system

• Processes that must be performed after the networking software is started

• Processes that cannot be accomplished by any of the other mechanisms that
are provided

2.2.10 Using the telnet Linemode Feature

The telnet linemode feature improves efficiency by moving line-oriented
character processing from the Cray system to the front-end system. Usually,
this process is transparent to the user. However, because of the distribution of
character processing between the two systems, the user might see some minor
problems in the following areas:

• Tab settings

• Special character processing

• Command completion and editing shells (ksh and tcsh)

• Simulated terminal input

2.2.10.1 Tab Settings

Users might notice some erratic screen activity when tabs are sent to their
terminals. This activity is related to a difference in tab processing between the
front-end system and the Cray system. Some screen-oriented applications, such
as vi, appear to overwrite some characters randomly on the screen as the

118 S–2304–10011

TCP/IP [2]

cursor moves through the text. Also, some commands might produce columns
separated by tabs and one line (usually the first line of output) that is not aligned
with the other lines. The vi editor can be affected in this way if line numbers
are displayed.

You can address these problems by using the stty(1) command to check the
default tab processing characteristics for the front-end system and Cray system
tty drivers. The processing type should be set to either hard or soft tab settings;
use hard tabs for best results.

The following example shows output from a common UNIX front-end system
and a Cray system with the proper settings:

cunix> stty

new tty, speed 9600 baud; tabs crt pass8 <- "tabs" = hard tabs

pendin decctlq

start <undef>, stop <undef>, dsusp <undef>, lnext <undef>

Cray> stty

speed 9600 baud; -parity hupcl

eol <undef>;

-inpck icrnl onlcr <- tab info appears here if not hard tabs

echo echoe echok

You can set hard tabs by using stty tabs command. If you cannot set both
ends to use hard tabs, setting soft tabs (also known as tab expansion) on both ends
is preferred. When using soft tabs, columnar output is sometimes imperfect.
However, the worst formatting occurs when hard tabs are set on the Cray system
and soft tabs are set on the front-end system; this situation should be avoided.

2.2.10.2 Special Character Processing

One aspect of supporting the telnet linemode feature involves special
characters that are recognized by terminal drivers. When the front-end telnet
program reads in a special character (such as an interrupt character), the
front-end system must forward this character to the remote host for immediate
processing. Unfortunately, many telnet implementations support an older
telnet linemode feature, rather than the telnet linemode standard (RFC
1116). Although the older telnet linemode feature usually works well
enough not to be noticeable to users, including the job control feature can cause
the suspend character CONTROL-Z not to be forwarded to the Cray system.

S–2304–10011 119

UNICOS® Networking Facilities Administrator’s Guide

You can solve this problem either by switching to character mode, or (the
preferred solution) obtaining the latest copy of the telnet client.

You can set up character mode by giving a command to the telnet program
to switch to character mode. Many telnet implementations accept the mode
character command at their command prompt. (Check your front-end
system’s documentation for details.) Another method is to place the stty
-extproc command in your login script (.profile for /bin/sh users and
.login for /bin/csh users) on the Cray system. However, using character
mode is not the preferred solution because it defeats the efficiency gained by
making the telnet linemode feature available.

2.2.10.3 Command Completion/editing Shells (ksh/tcsh)

Using the ksh or tcsh shell removes the effect of the telnet linemode
feature. Typically, these shells turn off echo and line editing and perform their
own echoing and editing of the command line. Users who execute by using
these shells cannot realize full advantage of the performance benefits of the
linemode telnet feature.

2.2.10.4 Simulated Terminal Input

BSD UNIX has an ioctl procedure to simulate terminal input. This procedure is
used by the Berkeley mail feature when you use ~h to edit the mail header. It
uses TIOCSTI to echo what you have typed so that you can edit it. Currently, the
telnet linemode feature has no way of handling this facility.

2.2.11 Assisting Users in Setting up Environments

This section describes the following facilities for users:

• $HOME/.netrc file

• $HOME/.rhosts

• bftp facility

2.2.11.1 The $HOME/.netrc File

The $HOME/.netrc file is created by users and consists of the ftp(1B) and
rexec(3) user authentication table. This file, located in a user’s home directory,
lists the host name, user name, and password for the user account on the remote
host. When a user on the local host requests an ftp or rexec connection, the
user’s $HOME/.netrc file is searched and the user’s login ID and password are

120 S–2304–10011

TCP/IP [2]

automatically sent to the remote host. Consequently, the user is automatically
logged in and is not prompted to provide either the login ID or the password.

Only official host names (not aliases) can be used in this file. If $HOME/.netrc
does not exist, or exists but contains no entry for the host being accessed, the user
is prompted for a login name and password.

Because this file contains password information, ftp and rexec require that it
be accessible only to the owner; if it is not, an error message appears and ftp
aborts. The TCP/IP Network User’s Guide, contains additional information on
$HOME/.netrc files.

The format of this file is as follows:

machine hostname login userid password password

hostname Remote host’s name as given in the /etc/hosts
file. Aliases are not allowed.

userid The user’s login ID on the remote system.

password The user’s password on the remote system.

2.2.11.2 The $HOME/.rhosts File

The $HOME/.rhosts file, located in a user’s home directory, is a private
version of /etc/hosts.equiv and is used by the same servers as
/etc/hosts.equiv. This file allows local accounts on the TCP/IP host to be
used by specific remote users from specific remote hosts. This is especially
helpful if users’ login names on their remote hosts differ from their login
names on the local host, or if you choose not to include all hosts in the
/etc/hosts.equiv file. You do not maintain this file; however, you can supply
a new user with a default .rhosts file.

If you place a remote user’s login name in the second field of
/etc/hosts.equiv, the user’s $HOME/.rhosts file is not checked when the
-l option of the rlogin command is specified; instead, the remote user is given
automatic access to the account of the flagged user. See Section 2.2.5.3, page 37,
for the details of setting up the /etc/hosts.equiv file.

The format of the .rhosts file is as follows:

official_host_name login_name #optional comment

S–2304–10011 121

UNICOS® Networking Facilities Administrator’s Guide

The following provides an example of a .rhosts file for a user named Bonnie.
Notice that Bonnie’s login name on host twg is different from her login name on
the other hosts.

.rhosts file for Bonnie

#

cray1 bonnie

cray2 bonnie

twg bon

If the file is writable by anyone other than the owner, the autologin information
is ignored. For more information about the rules for setting up a .rhosts file,
see the TCP/IP Network User’s Guide.

Note: Additional restrictions are imposed when you are running with
UNICOS security. See Section 2.6, page 211, or the TCP/IP Network User’s
Guide, for more information.

!
Caution: If the super user on the Cray system includes the remote host’s
name and the login name root in a .rhosts file that is created in the root
directory of the local host, the root user from the remote host gains automatic
authentication to the root account of the Cray system.

2.2.11.3 The bftp Facility

The bftp facility is an interactive user interface for batch network file transfers.
The bftp program collects and queues information that is required for each
file transfer, and a file transfer service (FTS) manages the file transfer for each
request as the host becomes available on the network. After the user provides the
appropriate information, the request is queued and the user is free to continue
working without waiting for the completion of the file transfer.

The bftp(1B) command is most commonly invoked by a user already logged on
to the Cray system, as follows:

prompt> bftp sncray

It is also possible to access bftp from a remote site by using the -B option of
the telnetd(8) command. This is accomplished by running the telnet server
telnetd(8), on an alternate port (one other than the normal telnet port 23).
Using telnet for remote access to that port number allows the user to log in
and access the bftp command, rather than a shell.

For example, to support remote bftp access on port 50, the telnetd entry in
the inetd.conf file would be as follows:

122 S–2304–10011

TCP/IP [2]

50 stream tcp nowait root /etc/telnetd telnetd -B 50

The telnet command to access bftp would be as follows:

prompt> telnet sncray 50

2.3 Network Tuning

Tuning is the process of adjusting the configuration of a system to optimize its
efficiency. Tuning the UNICOS network software on your Cray system lets
you achieve the maximum performance possible from your computer network
and the Cray system.

The network software configuration that is included with the UNICOS system
works effectively. It is designed to adapt, as much as possible, to the system’s
capabilities and to use those capabilities efficiently. However, the system
configuration imposes limits. You must set the configuration properly to allow
the software to make the best possible use of the hardware and to operate the
network at its peak efficiency.

This section explains how to tune UNICOS network software parameters to
achieve maximum performance. Although the default parameters included in
the software might work well and require no tuning, by using this guide you
can determine the changes, if any, you should make to optimize your system’s
network performance. To help you achieve performance gains, this section
explains how the adjustable components of the system work and how you can
affect their operation by making changes in the configuration information. These
adjustable components include the following categories:

• Data transmission unit size

• Buffering and memory requirements

• Network routing

Each of the preceding has an enormous effect on network performance.

2.3.1 Data Transmission Units

Network software transfers data from one peer to another in data transmission
units called datagrams. Each datagram consists of user data and a header that
contains information used by the network software. IP carries datagrams
between hosts on the network. TCP datagrams (known as segments) and UDP
datagrams are carried in IP datagrams.

S–2304–10011 123

UNICOS® Networking Facilities Administrator’s Guide

The network carries datagrams in packets, which consist of a header used by the
hardware and the data to be carried in the packet. This data usually consists of
higher-level datagrams, such as IP datagrams.

The maximum size of packet data that the network hardware can transmit
at one time is known as the maximum transmission unit, or simply mtu. For
TCP/IP, the packet size includes the segment size plus the 40 bytes of TCP and IP
headers. For example, because the Ethernet can transmit 1500 bytes at a time, the
Ethernet’s mtu is 1500. The maximum TCP/IP segment an Ethernet can carry is
1460 bytes (1500 bytes minus 40 bytes for the TCP/IP headers).

You can control the actual size of the datagram, which lets you optimize network
performance. Because the headers are of a fixed size for a given connection, there
is a fixed amount of processing for each datagram, regardless of the amount of
user data it contains. Network performance is generally improved by sending the
largest possible datagram over a given network connection.

2.3.1.1 Interface Mtu—Model E and Model V Based Systems Only

Use the hycf. name configuration files and the hyroute(8) command to set
the mtus of various directly connected hosts. An hycf. name file can be created
for each network interface that is available to the Cray system. The hycf file
controls the interface write mtu; the ifconfig command controls the interface
read mtu. The hycf file is later used as input to the hyroute command, which is
invoked by the /etc/tcpstart file at boot time. Each entry or host contains an
mtu value. You can set the mtu value based on the mtu of the other hosts in the
network. You can obtain this value by issuing a netstat -i command (or its
equivalent) on the specific front-end system.

2.3.1.2 Using the Interface Mtu—GigaRing Based Systems Only

Use the /etc/config/interfaces mtu parameter to modify an interface’s
mtu and the ifconfig(8) command to set the mtus of various directly connected
hosts. Use the route command to set the write mtu for a directly connected
host, as follows:

route add -interface host -link hardware.address admmtu mtu

The ifconfig command controls the interface mtu, and is invoked by the
/etc/tcpstart file at boot time.

124 S–2304–10011

TCP/IP [2]

2.3.1.3 Datagram Size Limitations

The two characteristics of a network that limit datagram size are the mtu of the
network medium and the size of the largest datagram that a host on the network
can process. It is possible for a host to be connected to a network on which the
mtu is too large for the host to process. Also, the IP protocol limits the size of an
IP datagram. The largest allowable IP datagram is 65,535 bytes.

Because efficient use of the network relies on using the largest possible datagram
size, both TCP and IP code contain algorithms to determine the datagram size
to use for a given transfer.

2.3.1.4 IP Datagram Size Selection

IP protocol uses a very simple method to determine the size of IP datagrams to be
transmitted; it attempts to send the largest datagram that the outgoing network
interface can carry. If the datagram size is smaller than the interface mtu, the
datagram can be transmitted in one piece. If the datagram size is larger than the
mtu, IP protocol breaks the datagram into pieces known as fragments that are
smaller than the mtu. When the destination host receives the fragments, they
are reassembled into one IP datagram, and processing continues as though
the original datagram were not fragmented. The protocol specifies that some
datagrams must not be fragmented. When IP receives such a datagram, and the
interface mtu is too small, IP discards the datagram and returns an error to
the sender.

The mtu for each network interface should be set as large as possible when the
interface is configured. Refer to Section 2.3.2.2, page 140.

2.3.1.5 Path Mtu Discovery

The UNICOS implementation of path mtu discovery conforms to RFC 1191. Path
mtu discovery allows the network protocols to perform automatic mtu sizing.
Path mtu discovery is activated by default; however, it can be disabled with the
netvar command.

Path mtu discovery extends the IP mtu selection by using the IP don’t
fragment flag. Because of the nature of the mtu discovery mechanism, mtu
discovery works only with TCP/IP; however, mtu information that is discovered
by TCP/IP can be used by UDP and IP protocols. When sending data, TCP/IP
uses the path mtu that is stored in the routing table for a particular destination as
the segment size. The default size for the path mtu is the interface mtu that will
be sent to the next hop gateway. The don’t fragment bit is set in the IP header,
and if an intervening gateway returns an error message, which indicates that the

S–2304–10011 125

UNICOS® Networking Facilities Administrator’s Guide

datagram must be fragmented, IP lowers the mtu for that destination until an
mtu that is small enough for the gateway is found. Gateways that support path
mtu discovery return the correct size for the mtu; for gateways without path mtu
discovery, IP uses a table of common network mtu sizes.

By using path mtu discovery, a desirable mtu can be found for TCP/IP
connections so that IP fragmentation can be avoided, regardless of the mtu of the
network interface. Although path mtu discovery ensures that TCP/IP does not
send segments that need to be fragmented, it does not ensure that the segment
size is optimal for the connection. See Section 2.3.2.2, page 140, for an analysis
of other considerations for the mtu configuration.

2.3.1.6 TCP Segment Size Selection

TCP datagrams are known as segments. TCP protocol attempts to select a segment
size that is based on information about the interface, the route, and the host that
is receiving the data.

If no useful information is available to determine an optimal segment size,
TCP/IP uses a segment size that is guaranteed to be acceptable to the receiving
host. The value of TCP_MSS is commonly used. This value is derived from the IP
protocol that is specified in RFC 791, which specifies that every host that supports
IP must be able to process an IP datagram of at least 576 bytes. This minimum
size includes both the IP and the TCP headers; therefore, the actual minimum
number of bytes of data is 536 (TCP_MSS = 576 - 20 - 20 = 536). Some systems
decrease this number to a smaller value, such as 512, which leaves enough room
for unconventional TCP and IP headers that might each be larger than 20 bytes.

The general algorithm used by the TCP kernel software to select its desired
segment size is as follows:

1. Determine the route to be used. If no route can be determined, use TCP_MSS.

The basis for selecting a segment size is the route. The route specifies which
interface is used and which host on the network receives the packet. If no
route can be determined, no useful information is available; consequently, a
segment size of TCP_MSS is the only value that is guaranteed to be acceptable
to the receiving host.

2. Determine the mtu of the route if a route can be determined.

On a Cray system, the mtu is obtained by querying the driver for the mtu of
the network that receives the transmitted packets. If path mtu discovery is
enabled, TCP/IP offers the write interface mtu as the segment size. Then

126 S–2304–10011

TCP/IP [2]

path mtu discovery is used to find the best mtu for the path if a smaller mtu
is necessary due to fragmentation requirements at intervening gateways.

3. Compare the mtu specified for this route with the mtu of the directly
connected network; when different, use the smaller value.

(If an mtu is specified for the route, it is specified by the route(8) command.)

4. Determine if an mtu is specified for the route; if not, but the receiving host
is on a directly connected network, use its mtu.

5. Otherwise, compare the mtu of the directly connected host acting as a
gateway and TCP_MSS, and use the smaller of the two. The mtu of the
directly connected host should not be smaller than TCP_MSS, but if it is,
use the host’s mtu.

If the datagram must pass through a gateway, it is possible that the datagram
will be sent to networks and hosts of unknown capabilities. Therefore,
TCP_MSS is the only value you can use to guarantee that the segment size
will be correct. Section 2.3.1.6.1, page 127 provides more information to
determine whether a host is directly connected.

2.3.1.6.1 Subnetting and Direct Connections

Your Cray system might not be directly connected to the host, but it might still
use the write interface mtu size for its segment size rather than TCP_MSS.
Many networks are set up so that all of the local networks are subnets of one
internetwork. A subnet uses part of the host portion of an Internet address as
an extension of the network address.

Cray TCP/IP code is compiled so that two computers on different subnets of
the same network are considered directly connected for the purpose of TCP
segment size selection (more information on subnets can be found in RFC 950
and in Section 2.1.2.2, page 10). This means that if the two hosts have the same
network number (allowing for subnetting), the TCP segment size selection
algorithm uses the write interface mtu rather than the default size of TCP_MSS. If
the two hosts have different network numbers, the connection uses the segment
size TCP_MSS. You can continue to override the use of the TCP_MSS value by
using the route(8) command to create a route with a specified mtu or by using
dynamic mtu discovery.

Subnets that are to be treated as directly connected for the purpose of segment
size selection are known as local subnets. However, under certain circumstances
such as when various subnets are connected using network media of varying mtu
sizes, you might want the segment size to default to TCP_MSS; that is, you might

S–2304–10011 127

UNICOS® Networking Facilities Administrator’s Guide

not want the subnets to be considered local. If a subnet is not local, the mtu of the
directly connected interface is not considered to be the same as the subnet, and
the segment size on the route defaults to TCP_MSS.

Use the netvar(8) command to change the SUBNETSARELOCAL kernel
variable. You can change this variable temporarily at any time by using the
netvar command, or you can permanently change this variable by changing
your netvar.conf configuration file. See Section 2.2.9.2, page 107, for more
information.

2.3.1.6.2 Segment Size Acceptance and the TCP MSS Option

When a TCP/IP connection is starting up, TCP/IP hosts (including Cray systems)
send out the TCP maximum segment size (MSS) option (different from TCP_MSS),
using the value derived from the TCP segment size selection algorithm. The MSS
option indicates the largest segment that the host is willing to receive. It may
reflect the limits of the interfaces and networks that the host is connected to, or it
may reflect only the buffer space available in the host. MSS does not have to be
the same for both directions of a TCP/IP connection.

The TCP/IP segment size exchange can negate the effects of path mtu discovery.
If the peer TCP/IP determines that it should offer a segment size that is less
than its own interface mtu, that is the segment size that the Cray system uses
for the connection. To ignore the peer’s suggested segment size violates the
TCP/IP protocol.

Many systems do not implement path mtu discovery and suggest a small
segment size (usually TCP_MSS = 512 or 536 bytes) when connecting with
nonlocal networks. In this case, path mtu discovery has no effect. You can
determine whether this is occurring by using netstat with the -vv option. The
Maxseg column indicates the segment size of each TCP/IP connection; the
Peerseg column indicates the size of the segment that the peer TCP/IP offers
when the connection is established.

2.3.2 Buffering and Memory Requirements

Various parts of the network software operate by using memory to buffer
data. The network software should have enough memory so that individual
components can operate efficiently; however, it should have no more memory
than necessary, because extra memory that the network does not use is also
unavailable for other purposes. The UNICOS system is compiled with limits on
the amount of memory that the networking software can use and limits on the
size of buffers that can be used when transmitting and receiving user data.

128 S–2304–10011

TCP/IP [2]

If you are using the UNICOS ICMS, you can use the Configure System ->
Kernel configuration -> Network parameters menu to change these
values when you configure your system.

The TCP protocol ensures reliable transmission by storing user data before
transmitting it, so that the data can be retransmitted, if necessary. TCP does not
free stored data until the receiving host acknowledges receipt of the data. A TCP
connection can be viewed as a pipe with a specific capacity. The capacity of the
pipe varies, depending on the average time it takes for a host to acknowledge the
receipt of data. If the pipe is not kept full, data is not being transferred at the
highest possible transfer rate. If TCP software cannot buffer enough user data to
keep the pipe filled, the network is not operating at peak efficiency.

Alternatively, if all active TCP connections are buffering a large amount of data,
there might not be enough memory allocated to network usage. If this happens,
some connections are forced to wait for memory to become available before
transmitting data. If there is not enough memory for all the users of the network
(using TCP, UDP, IP, and NFS applications), the network software cannot operate
at peak efficiency. Therefore, buffering and total memory requirements must be
set so that network software can operate at maximum efficiency.

Two types of memory parameters can be configured in the TCP/IP network
software. (These configurations also affect the NFS kernel software because it
shares the TCP/IP memory.) These parameters specify the total amount of
memory available for use by the TCP/IP and NFS software, and the maximum
amount of data that can be buffered at individual sockets.

2.3.2.1 Buffered Memory (Mbufs)

The TCP/IP and NFS network software uses memory from a special memory
pool. The size of this pool is built into the kernel, and memory is allocated when
the system is initialized (at boot time). The memory in this pool is grouped into
pieces called mbufs. All data that is buffered by the network software and all
dynamic data structures are stored in mbufs. The size of the mbuf pool is the
limit placed on the total amount of system memory that can be used by TCP/IP
and NFS.

2.3.2.1.1 the Mbuf Pool

When the Cray system boots, one part of the network initialization is to allocate
memory for the mbuf pool. The quantity of memory that is allocated depends
on a constant that is compiled into the kernel from the configuration file
/usr/src/uts/cf/config.h. This constant, TCP_NMBSPACE, is the number

S–2304–10011 129

UNICOS® Networking Facilities Administrator’s Guide

of 1-Kbyte mbufs to be allocated for use by the TCP/IP and NFS network
software.

If you are using the UNICOS ICMS, you can change this value by using
the Configure System -> Kernel configuration -> Network
parameters menu. This is the absolute maximum amount of memory that is
available to the network software for data buffering and storage of dynamic
data structures. If this number is set too low, network performance suffers.
However, after this memory is allocated from the system, it is not available to
user processes. Therefore, if you allocate excess memory to the network software,
user processes (particularly large processes) are deprived of some memory. The
following sections describe the criteria to use to allocate memory.

The network software uses mbufs for two purposes. The first is that user data is
copied into mbufs pending transmission, and data that is read from the network
is read into mbufs for storage until it is read by a user process. This use is related
to socket buffering, which is discussed in Section 2.3.2.1.4, page 135. The second
use is to keep track of dynamic data structures. Sockets, routing table entries,
NFS user ID maps, and other structures are kept in mbufs.

2.3.2.1.2 Effects of Insufficient Mbuf Allocations

Insufficient mbuf allocations can affect network performance. If mbufs are not
available when user programs are writing data to the network, the programs
must wait until mbufs are available (unless they are using nonblocking I/O, in
which case a write error occurs). If kernel-level software that is processing input
data from the network requires mbufs and none are available, data is lost and
requires retransmission. If user processes are trying to write data to the network
and must wait for mbufs to be available, this wait can become the limiting factor
in the performance of the network connection. If this is happening to several
users, they will perceive the network (and possibly the Cray system itself) as
being slow, or even down, when it actually is not.

When the network kernel software that processes incoming data from the
network needs memory, it cannot wait for mbufs to become available. If the
hardware drivers do not have memory available for network packets, those
packets are lost. If the protocol-processing code needs more buffer space and
cannot get it, the only alternative is to drop the data that is being processed. This
loss of data has a negative impact on performance because data that is lost must
be retransmitted. Also, there is a delay before the sender decides that the data
is lost and requires retransmission.

Before refusing an mbuf request due to lack of available mbufs, the mbuf code in
the kernel flushes the mbuf pool. During the flushing process, the mbuf code

130 S–2304–10011

TCP/IP [2]

retrieves all possible mbufs from the areas that are set aside to hold specific sizes
of mbufs (known as private queues), and it tries again to satisfy the request. Then,
if not enough mbufs are available, the protocols are asked to drain any mbufs
that are not absolutely necessary. For example, the IP protocol frees mbufs that
contain fragmented IP datagrams that are not yet fully reassembled. This data
needs to be retransmitted. This collection and compaction process (flushing
and draining) takes time and can result in loss of some data. If there is still not
enough memory to satisfy the request, the request is denied.

A shortage of mbuf space can have a very serious impact on the performance of
the network software; the amount of space should be monitored to ensure that
enough memory is available. If the system is flushing or draining the mbuf pool,
performance is diminished. If requests are being denied, too little memory is
allocated to mbufs. If flushes and drains are occurring, but no requests are being
denied, there is enough memory for the network to operate, but not enough for
the network to operate at maximum performance. Fortunately, you can easily
determine the optimal number of mbufs to allocate; this procedure is described in
the following section.

2.3.2.1.3 Mbuf Allocation and Monitoring

Using netstat -m is an easy method to determine the number of mbufs your
system requires. You can also use the netstat command to determine all of the
facts about how mbufs are being used on the Cray system. This command tells
you how many mbufs are in use, and how many are being used for each method
of mbuf allocation. It also gives valuable statistics on request denials and mbuf
pool flushing. Following is an example of output from a netstat -m command:

% netstat -m

941/1800 mbufs in use (1152 max), allocated as 625 mbuf clusters:

155 mbufs allocated to data (308 maximum)

0 mbufs allocated to packet headers (80 maximum)

101 mbufs allocated to socket structures (117 maximum)

101 mbufs allocated to protocol control blocks (117 maximum)

22 mbufs allocated to routing table entries (22 maximum)

0 mbufs allocated to fragment reassembly queue headers (1 maximum)

1 mbufs allocated to socket names and addresses (25 maximum)

0 mbufs allocated to socket options (1 maximum)

4 mbufs allocated to interface addresses (4 maximum)

0 mbufs allocated to NFS notify-when-free data areas (1 maximum)

180 mbufs allocated to NFS static data (180 maximum)

368 mbufs allocated to NFS dynamic data (368 maximum)

9 mbufs allocated to system buffer headers (29 maximum)

S–2304–10011 131

UNICOS® Networking Facilities Administrator’s Guide

0 mbuf queue flushes

0 protocol mbuf queue drains

0 requests for memory denied

%

The first line of output from netstat -m has four pieces of information. The
first two are the number of mbufs in use at that moment and the total number
of mbufs available, expressed as 941/1800 mbufs in use in the preceding
example. The next bit of information, 1152 max, indicates the largest number
of mbufs that were ever in use at any one time. This is the maximum number
of mbufs in use at some point in time since the system was last booted. Finally,
this line tells you how many clusters are in use at the current time. A cluster is a
group of mbufs being used as one large mbuf.

The indented lines from the netstat -m display tell how many mbufs are in
use for each of a variety of purposes. You can also see the maximum allocations
that have occurred for each of these purposes.

In the last three lines of the display, you can see how many times the mbuf pool
was flushed, and how many times the protocols were asked to drain mbufs that
were not absolutely necessary. You can also see how many times an mbuf request
was denied due to lack of available mbufs. The number of flushes is always
greater than or equal to the number of drains, and the number of drains is always
greater than or equal to the number of denials. The relationship between flushes,
drains, and denials can be stated as follows:

flushes >= drains >= denials

The value of flushes minus drains tells you how many times flushing was
successful at getting mbufs to satisfy a request. The value of drains minus denials
tells you how many times draining was successful at getting mbufs to satisfy
a request.

Five of the statistics that netstat -m provides are very valuable for
determining the number of mbufs your system requires. These are the number
of mbufs available (the second number in 941/1800) and the maximum mbuf
usage (1152 max) from the first output line, and the number of flushes, drains,
and denials. The usefulness of these statistics is directly proportional to the
length of time since the system was last rebooted. The longer the time, the more
useful the statistics.

These five numbers indicate the location of your system in the performance chart
shown in Figure 8.

132 S–2304–10011

TCP/IP [2]

Performance

Denial Draining Flushing Excess
A B C

Number of mbufs available
a10200

Figure 8. Performance chart

You will notice from the graph that adding mbufs improves network
performance up to point C, where adding mbufs has no further effect. At this
level, there are no flushes, drains, or denials, and maximum mbuf usage is equal
to the number of mbufs available. The system has exactly as many mbufs as it
needs. Point A on the chart is the point at which the system crosses the boundary
from denying requests to simply flushing and draining to satisfy requests. Point
B is the point at which draining ceases and only flushes are occurring.

You can determine the location of your system in this chart by looking at the five
statistics. If any requests were denied, your system is on the bottom quarter of
the chart. If draining occurred, but no requests were denied, your system is on
the second quarter of the chart. If flushes occurred, but no draining occurred,

S–2304–10011 133

UNICOS® Networking Facilities Administrator’s Guide

your system is on the third quarter of the chart. If maximum mbuf usage was
less than the number of mbufs available, your system is on the top quarter of
the chart.

Gains from adding mbufs are more significant as you go down the scale. In
the bottom half of the graph, data is being lost, and requires retransmission.
(Whenever a drain occurs, data is lost.) A drain that is followed by a denial
means that both data already received and incoming data are lost, which is
a very significant performance loss. Flushing is much less significant, because
the mbuf code simply clears its queues of presized mbufs; then no data and
only a small amount of time are lost.

Using this graph and netstat -m, you can determine how mbuf allocation is
affecting network performance, and you can identify the optimal mbuf allocation
for your system.

The optimal level for your system depends on how your system is used. The
only way to determine this is by trial and error; however, you can speed up
this process by configuring more mbufs than you think you will need. Use
netstat -m, and watch the machine’s statistics. Over time you will develop an
understanding of the mbuf usage. To calculate, take the highest mbuf usage and
round it up to the nearest 100 mbufs (an extra buffer of safety). Then reconfigure
your kernel to use this number of mbufs. You can do this by changing the
value of the TCP_NMBSPACE parameter in the /usr/src/uts/cf/config.h
file, or, if you are using the UNICOS ICMS, by setting the appropriate value
on the Configure System -> Kernel configuration -> Network
parameters menu. See Section 2.3.2.1.3, page 131, and Section 2.2.2.2, page
28, for more information on selecting initial mbuf pool size and changing this
parameter.

If you have a system with small memory, you might want to consider making a
trade-off between network performance and memory consumption. Performance
decreases greatly when drains and denials are occurring, but a worthwhile
trade-off can put your system into the flushing range of mbuf allocation.

If HIPPI or GigaRing is used as a network interface, you must allocate more than
the usual 1800 mbufs for best data rates. A range of 3500 to 10,000 mbufs might
be required, depending on how heavily the HIPPI or GigaRing interface is used.

For all interfaces, the number of mbufs used also depends on the values of
rbuf and wbuf.

134 S–2304–10011

TCP/IP [2]

2.3.2.1.4 Sockets and Socket Buffers

Sockets are end points of communication between two hosts; that is, they are the
points from which data is sent and at which data reaches its destination. Socket
buffers (also known as sockbufs) are clusters or chains of mbufs that hold the data
being transmitted and the data to be received; they are always defined in pairs.
All of the buffering at a socket is done in these two associated data structures.
There is a sockbuf for data being transmitted (the send sockbuf), and another
for data being received at the socket (the receive sockbuf). When data is to be
buffered in a sockbuf, an mbuf containing the data is added to a list of mbufs
maintained in the sockbuf.

Each sockbuf has an associated buffer limit. Defaults for these
limits are built into the kernel, but these limits can be changed. The
/usr/src/uts/include/sys/tcp_config.h file specifies the default limits
for TCP and UDP sockets. The SOCKETSEND and SOCKETRECV parameters
specify the default sockbuf size limits for TCP. The UDPSENDSPACE and
UDPRECVSPACE parameters specify the default sockbuf size limits for UDP.
The SOCKBUF_MAX parameter specifies the maximum size limit that socket
applications can specify through the SO_SNDBUF and SO_RCVBUF socket options.
The MAX_SOCKETS parameter specifies the maximum number of open sockets.

At run time, you can set these values by adding /etc/netvar with the
appropriate options and values to your tcpstart script. Selection of values
for these parameters and information about how to change them are discussed
in succeeding paragraphs.

The size limits on sockbufs can affect performance in more than one way. Not
only do the limits restrict the amount of data that can be buffered on a socket, but
the protocols also use this information.

Unlike UDP, which simply sends datagrams without considering the buffering
capacity at the other end, the TCP protocol has built-in features to optimize its
efficiency. Also, the Cray TCP protocol software has other optimizing features,
not specified by the protocol, that further improve performance.

The TCP protocol informs the sending host about the amount of buffering that
is available at the socket. One way the TCP protocol attempts to improve
performance involves keeping track of the amount of data buffering space that
is available at the receiving host. TCP does not send data to a host that the
TCP protocol determines does not have available buffer space. This limitation
improves efficiency by avoiding a waste of network bandwidth on data that must
be discarded by the receiver (due to lack of space) and then resent.

S–2304–10011 135

UNICOS® Networking Facilities Administrator’s Guide

The TCP protocol is a reliable protocol, and it ensures that data is transmitted
and received. TCP accomplishes this by saving a copy of all data transmitted
until it receives an acknowledgment from the other end of the connection that
data is received. There is a limit on the amount of data that TCP/IP buffers while
awaiting acknowledgment. This limit is the size of the send socket buffer.

Another way that the TCP protocol software attempts to efficiently use network
bandwidth is to send only full segments of data (instead of fragments) when
reasonable. A segment is the largest amount of data that can reasonably be
sent and received in one datagram. This helps to reduce the number of packets
sent on the network.

Because of the optimizations built into the TCP software, the strategy for
achieving optimal performance is to set configuration parameters so that they
equal or exceed the upper bounds of maximum performance. The TCP software
efficiently uses the available resources, but it does not tie up network resources
unnecessarily.

One factor to consider when determining the best size for the socket buffers is
that the limits that are set are not the amount of memory that is allocated to the
buffers, but the maximum amount of memory that can be used to store data on
the socket buffers. When a socket is created, its socket buffer size is initialized,
but no memory is allocated for that socket buffer. The buffer size simply limits
the number of mbufs that can be chained into the socket buffer’s mbuf list;
therefore, a large socket buffer does not necessarily indicate that a large amount
of memory is used for that buffer.

Choosing socket buffer size limits is not as straightforward as configuring your
system for enough mbufs. This is because the sockbuf sizes are dependent on the
buffering limits at the other end of the transmission. A reasonable choice is to set
the default buffer sizes for TCP at 64 KB, but this is not optimal. Although most
processes that use TCP read the incoming data quickly, some may not. Also, if
a TCP sender has a very large send buffer, but the receiver has a small receive
buffer, TCP fills the send buffer but gains little (if any) performance increase, thus
wasting memory. Because of these possibilities, arbitrarily large TCP buffers
might waste memory resources unnecessarily. (This is also true for UDP sockets.)

There are other reasons for not always setting the default buffer sizes for TCP at
64 KB. Because the buffer sizes are communicated between TCP peers, the peer
knows the receive buffer size. Some TCP implementations do not calculate buffer
sizes properly and do not work properly if the Cray buffer size is too large.

Choosing optimal buffer sizes is further complicated by the fact that the optimal
buffer size is relative to the size of the received segments, the speed of the
network, and the buffering available at the other end of the connection. For a

136 S–2304–10011

TCP/IP [2]

connection between two Cray systems over a high-speed channel, the buffer sizes
should always be 64 KB or larger (for example 128 or 256 KB), because large
segments can be used, and the network is very fast. However, for a connection
between a workstation and a Cray system, which goes through a front-end
system, a smaller buffer size is acceptable.

Choosing optimal send and receive sockbuf size limits can be greatly simplified
by considering the concept of double buffering. Double buffering is often used in
I/O systems in which a process or hardware device is filling a buffer that another
process or hardware device is reading. If there is only one buffer, one process
must wait for the other to finish reading (or writing) before it can proceed. If
there are two buffers, and the processes switch between them, one process can fill
one buffer while the other process is reading the other buffer. Both processes can
run at maximum speed at all times.

Consider the network shown in Figure 9. Suppose that the send and receive
sockbuf limits at the workstation are 8 KB. One direct effect of this is that the
workstation never has more than 8 KB of data in flight on the connection, where
in flight means that the data is sent but not yet acknowledged. This is because
the workstation can buffer only 8 KB of transmitted but unacknowledged data.
Also, suppose that the receiving process running on the Cray system is reading
the data as fast as it comes in. This can be faster than the data is being sent,
when considering the relative speed of the Cray system as compared to most
workstations that communicate over an Ethernet.

Router

FDDI

Ethernet

a10201

Cray System

Workstation

Figure 9. Double Buffering Network

When user data is read from the socket buffer, the data must be copied from the
kernel receive buffer to the user’s buffer. This takes time. If the kernel receive

S–2304–10011 137

UNICOS® Networking Facilities Administrator’s Guide

buffer is twice as large (double buffering) as the peer’s send buffer, the peer can
be filling one half of the receive buffer while the user is emptying the other half.
In this situation, a receive buffer of 16 KB is sufficient to achieve maximum
performance over the connection.

Similarly, a 16-Kbyte limit on the send sockbuf on the Cray system is also
sufficient to run the connection at maximum performance. Because the
workstation can never buffer more than 8 KB of data, TCP on the Cray system
never tries to send more than 8 KB of data without an acknowledgment from the
workstation. The extra-large send buffer ensures that data is available to send
when the protocol is ready to send data; because there is no waiting for data to
be copied from user memory to kernel memory, a 16-Kbyte send sockbuf limit
is enough.

Consider another example that uses the same network. This example relates to
TCP segment size. The Cray system sends a TCP MSS option for the mtu on the
FDDI connection, which defaults to 4352 bytes. With 40 bytes subtracted for the
TCP and IP headers, the request size is 4312 bytes. The workstation sends out a
TCP MSS option of 1460 bytes, based on the Ethernet mtu of 1500 bytes, minus 40
bytes for TCP and IP headers. Some workstations suggest a convenient size of
1 Kbyte (or 1024 bytes) for segments on Ethernet connections (the convenience
factor involves memory allocations). Suppose the workstation requests the
convenient size of 1024, and the Cray system honors this request and sends
segments of the requested size. When the workstation receives the Cray system’s
MSS of 4104 bytes, it determines that the mtu on its outbound interface is lower,
and it uses its own segment size.

It is necessary that the buffer limits be at least twice the segment size (double
buffering) being used for this connection. This allows some operations involved
in the transfer of data to overlap or run in parallel. If the buffer limits were the
same as the segment size, the connection would become a synchronous mode of
operation. In synchronous mode, the sender sends a full buffer (buffer limit =
segment size) of data, waits for acknowledgment before refilling the send buffer
with new data to send, and then sends it when the receiver informs the sender
that the receive buffer is clear and there is space for more data.

If the sockbuf size limits are twice the segment size, the sender can buffer and
send a second segment while the receiver is processing the first segment. When
the sender is ready to send another segment, the sender might have received
notice that the receiver has room to buffer the segment; if so, the sender can send
it immediately. Then, the sender is never waiting for buffer space to become
available at the receiver. This asynchronous mode of data transfer is more
efficient than the synchronous mode of data transfer; therefore, with a segment
size of 1024 bytes, the buffer limits must be at least 2048 bytes.

138 S–2304–10011

TCP/IP [2]

If the segment size is the same size as the capacity of the Ethernet (1500 bytes),
which is probable for workstations that do not round down the segment size to
a convenient size, the buffer limits should be at least 3 KB. In practice, a buffer
size of 3 or 4 times the segment size improves performance even more. Where
possible, buffering limits should be 4 times the segment size. Therefore, for this
example, the sockbuf limit should be 4 KB. If the buffer size that is calculated
relative to the segment size differs from the buffer size that is calculated from the
peer’s buffer size, use the larger of the two sizes, if possible.

Finally, consider the possibility that the network connection is slow between the
communicating peers. This has the effect of delaying the acknowledgment of
data that comes from the receiver and also the notification that buffer space is
available (data having been read by the user process). This delay could mean that
the sender sent a full buffer of data and is waiting for an update, even though
the receiver of the data may have sent the update. Ideally, it should take the
sender the same amount of time to send a full buffer of data as it takes for the
notification of available buffer space to get back to the sender. Assuming that
you cannot do anything to increase the speed of the network, the solution is to
make the receiver’s buffer large enough to ensure that the sender does not have
to wait for notification of available space. Of course, the sender’s send buffer
must be increased to take advantage of this. If you cannot change the buffer sizes
on your systems that are not Cray systems, you might not be able to resolve the
problems of a slow network. Fortunately, most local area networks are fast
enough, so that this is not a problem.

In considering these factors, you should set the default TCP sockbuf size limits to
the size required for your highest-performance connection. This is because all
network applications use the default size that is compiled into the network kernel
software, rather than each application using an optimal size for that particular
connection. If you set the size limits smaller, the high-performance network
connections do not work at their optimal performance level. Users expect large
increases in performance over high-performance connections.

If your Cray system is in a network in which it does not have high-bandwidth
connections, you can use lower default sizes in the kernel without decreasing
performance.

You can change the sockbuf size limits on a per socket basis with the
setsockopt() function. The SO_SNDBUF and SO_RCVBUF options are used to
set the send sockbuf size limit and the receive sockbuf size limit, respectively.
An example code fragment follows:

/* set sockbufs to 64k */

int sockbufsize = 65536;

/* set send sockbuf size limit */

S–2304–10011 139

UNICOS® Networking Facilities Administrator’s Guide

setsockopt(sock, SOL_SOCKET, SO_SNDBUF, &sockbufsize, sizeof(sockbufsize));

/* set receive sockbuf size limit */

setsockopt(sock, SOL_SOCKET, SO_RCVBUF, &sockbufsize, sizeof(sockbufsize));

You can set the send and receive sockbuf size limits to varying values, if you
want. However, this changes the buffer sizes for only a specific socket; no other
sockets are affected.

2.3.2.2 A Network Example

This example illustrates how the Cray system can be configured to ensure that
the optimal segment size is chosen. Remember that the segment size drops to the
smaller of the two segment sizes that are suggested by the peer or calculated by
the Cray system. TCP/IP on the Cray system should be set up to ensure that the
segment size it calculates is as large as or larger than that suggested by the peer.
A sample network configuration is shown in Figure 10.

140 S–2304–10011

TCP/IP [2]

fastcray

barbie ken peter

gina

sandy

susan

stan

biff

nick

fe2

fe1

fenet

craynet

barbienet kennet a11431

np1 network
device

Figure 10. Sample network configuration

The system called fastcray is a Cray system, and fe1 and fe2 are front-end
systems connected to it over HYPERchannel interfaces. barbie and ken are
workstation servers, and peter is a stand-alone system. fenet is a 100-Mbps
network medium with a 4478-byte mtu. barbienet uses the same medium and

S–2304–10011 141

UNICOS® Networking Facilities Administrator’s Guide

has the same characteristics as fenet, but kennet uses 10-Mbit/s medium with
a 1500-byte mtu. These mtus are the size of the maximum datagram that can be
transmitted, and network packet headers do not need to be considered.

Knowing the mtu of a network medium is not always enough. There are some
situations in which an interface to a network cannot support the full mtu of the
network. However, this is unusual and is not considered here. It is sufficient to
note that if a network interface supports an mtu that is smaller than the mtu
supported by the network medium, the interface mtu is the one that should be
used.

2.3.2.2.1 Selecting the HYPERchannel Interface Mtus

The first step in configuring this network is selecting the mtu for the fastcray
HYPERchannel interface. There are two mtus to consider: the mtu for outbound
datagrams being transmitted on the interface, and the mtu for datagrams being
read by the interface. The mtu for outbound datagrams is set to match the size of
the datagrams that the peer interfaces can accept.

Calculating the inbound (read) mtu is important because driver read buffers
are allocated in advance. The size of the buffers must be predetermined, and
multiple buffers must be allocated in advance. If the buffers are larger than
necessary, memory is wasted.

The default value for the read mtu on HYPERchannel interfaces is 16,432 bytes.
This value can be changed on a per-interface basis with the ifconfig(8)
command. The read mtu on an interface should be set to the size of the largest
datagram that is expected through that interface.

Next, you must determine the interface mtus on fe1 and fe2. Because the mtu
on the HYPERchannel is not a fixed value, a reasonable value must be chosen;
that is, the mtu must be set to a value that supports high transfer rates not only to
fe1 and fe2, but also to the other systems that use fe1 and fe2 as gateways
to fastcray.

Because the HYPERchannel network does not suggest an mtu, you must consider
other factors. For example, the mtu on other networks to which fe1 and fe2
are connected is important. You should also consider how the mtu affects the
TCP segment size and the relationship of TCP segment size to socket buffering
capacity. Obviously, the HYPERchannel mtus cannot be selected until the mtus of
the other interfaces are established.

142 S–2304–10011

TCP/IP [2]

2.3.2.2.2 Selecting Mtus for the Other Networks

Consider the buffering and datagram-handling capacities of fe1 and fe2. You
cannot send datagrams that are larger than the largest datagrams that fe1 and
fe2 can process. Usually, the limit on datagram size is the same as the socket
buffering limits. For more information, consult the documentation for your
specific systems.

Suppose that the socket buffering and datagrams limits are 8 KB for fe1 and
12 KB for fe2. This places a hard limit on the size of the datagrams that can be
transferred to these machines. The mtus must be selected so that the maximum
size of datagrams sent to fe1 is 8192 bytes or less, and the maximum size of
datagrams sent to fe2 is 12,288 bytes or less.

Next, consider the relationship of segment size to TCP socket buffering capacity.
Section 2.3.2.1.4, page 135, explains why it is necessary for the socket buffer limits
to be at least twice the segment size. Because of this, the mtu to fe1 and fe2
should be lowered to allow datagrams of only half the socket buffering capacity.
This allows much higher performance on TCP connections between fastcray
and the front-end systems. Therefore, selecting mtus for fe1 and fe2 of 4096
bytes and 6144 bytes, respectively, is reasonable.

2.3.2.2.3 Selecting Optimal Mtu Values

Using the values established in the previous section to determine the mtus for
the front-end systems might not be sufficient for optimal performance. One
consideration is that subnets can be used as local networks in the selection of
TCP segment size.

In this example, if the SUBNETSARELOCAL kernel variable is not changed from
its default value of true, and craynet, fenet, barbienet, and kennet are
all subnets of the same network, the TCP segment size for hosts on those nets
is selected as if the network mtu to those hosts were the same as the mtu to the
gateway being used to communicate with the hosts. Therefore, if datagrams for
barbie’s clients are routed through fe2, the TCP segment size is 6 KB, and
fe2 is forced to fragment the datagrams to send them out on fenet. Or, less
desirable, if datagrams for ken ’s clients are routed through fe2, fe2 fragments
the datagrams to transmit them on fenet, and ken must fragment the fragments
so that they can be transmitted on kennet. This is not optimal efficiency.

If subnets are not being used, or are being used but you use either the netvar(8)
command or the sysctl(8) command to change the SUBNETSARELOCAL
variable to false, the other networks need not be considered, because the mtu
on the interface is not used for the TCP segment size for nonlocal connections.

S–2304–10011 143

UNICOS® Networking Facilities Administrator’s Guide

Assume that this example network is configured so that all of the networks
are local subnets. You can control the segment size used for the local subnets
either by changing the mtu on the interface so that sufficiently small packets are
transmitted, or by using the -admmtu option of the route(8) command to affect
TCP segment size selection.

2.3.2.2.4 Changing the Interface Mtu

First, select an mtu that allows for the effects of local subnets. The mtu in fenet
(and the maximum datagram size) is 4478 bytes. To avoid fragmentation,
datagrams traveling through fe1 or fe2 should not exceed 4478 bytes. Assume
that the mtu on the fenet interfaces for barbie, ken, and peter is also 4478
bytes; therefore, fragmentation is not a factor. The socket buffering and largest
datagrams that barbie, ken and peter accept are 8 KB, 8 KB, and 6 KB,
respectively. These are large enough not to affect the mtus any further.

However, because you might want to set the mtu for fe2 down to 4478 bytes
(to avoid fragmentation), you should consider the effect on TCP performance of
barbie ’s, ken ’s, and peter ’s socket buffering. Decreasing the mtu to half
the size of the smallest buffer implies that half of peter ’s 6-Kbyte buffer is an
appropriate size for the mtu. So, at this point, a 3-Kbyte mtu from fastcray to
fe1 and fe2 appears correct.

Next, you should consider barbie ’s and ken ’s clients. Assume that barbie ’s
clients have the same characteristics as barbie, and, because they are connected
to barbie through the same high-performance network medium as fenet,
barbie ’s clients have no further effect on mtu calculations. However, ken ’s
clients are connected to ken through a slower network with a smaller mtu.
kennet ’s mtu of 1500 bytes suggests that fastcray ’s mtu to fe1 and fe2
should be dropped to 1500 bytes. Small datagram handling capabilities and
socket buffering at ken ’s clients might suggest an even smaller mtu.

Clearly, this is not an appropriate solution for selecting the mtu on the Cray
system’s network interface.

Note: You cannot change the mtu size of the Cray J90 system Ethernet or
FDDI interfaces.

2.3.2.2.5 Using the route Command

By using the route(8) command to specify an mtu for a route, you can specify
the TCP segment size for that route. Then you can override the interface mtu
and avoid choosing the small value of TCP_MSS. When adding routes to fenet,
barbienet, kennet, and peter, you can set the mtu on the route so that

144 S–2304–10011

TCP/IP [2]

the TCP segment size is calculated to an appropriate value. For this example,
use the following route commands:

/etc/route add fenet fe2 -admmtu 4478

/etc/route add peter fe1 -admmtu 3072

/etc/route add barbienet fe2 -admmtu 4478

/etc/route add kennet fe1 -admmtu 1500

For Model E based systems, the appropriate lines in the /etc/hycf.np0 file
are as follows:

direct fe1 4233 ff00 0 4478

direct fe2 4543 ff00 0 6144

This solution allows TCP segments of optimal size to travel to all hosts in the
network.

2.3.2.2.6 Inbound Mtu

Because the other mtu values are established, determining the inbound mtu
for fastcray ’s HYPERchannel interface is very easy. Set this value to the
largest outbound mtu for the interface. This is the largest packet that a directly
connected host is sending to fastcray. Read buffers of this size are sufficient to
hold the largest packets received. In this example, this value is 6144 bytes.

2.3.2.2.7 More Optimizing Considerations

Neither of the previously described solutions is completely optimal for all
situations. Consider the advantages and disadvantages of each method, and you
will see that both methods are useful.

The advantage of using the interface mtu to control datagram size is that this
control applies to all protocols. Consequently, all TCP, UDP, NFS, and IP
datagrams can be small enough to avoid fragmentation as they travel through
the network. Fragmentation, especially at a busy gateway, can have a severe
performance impact. The mtu set with the route command affects only the TCP
segment size and has no effect on UDP, NFS, or IP datagrams.

The disadvantage of changing the interface mtu is that this approach lowers
performance on all connections by limiting the datagram size to the optimal size
required for the connection with the lowest performance.

The advantage of using the route(8) command to control TCP segment size is
that you can tune performance to each host’s and network’s capabilities. TCP
uses appropriate segment sizes for each of the routes in the routing table.

S–2304–10011 145

UNICOS® Networking Facilities Administrator’s Guide

The disadvantage of using the route(8) command to control TCP segment size is
that you affect only TCP segment size, as previously described. NFS transfers
can be affected by significant fragmentation delays over lower performance
connections.

The advantage of having these competing goals is that you can often use the
route mtu (an option for only Cray systems) to optimize TCP transfers and
also to use the large hardware mtu. This is because systems offering high
performance transfers are typically connected to the high performance (and
large mtu) networks.

2.3.2.2.8 Policy for Decisions

After you have considered several factors that affect decisions about mtu size on
the Cray system’s network interface, you can determine a policy that helps you
make appropriate decisions.

First, for this example, consider how fe1 and fe2 are to be used. Consider
whether they are actual systems that are going to be used for actual computing,
or simply gateways to serve the remaining network. If they are gateways, all
they must do is move datagrams quickly between craynet and fenet. If they
do other work, consider the quality of network performance between them
and fastcray.

Also, consider how barbie, ken, and peter are used. Their functions
determine priorities in the quality of their connections. An NFS server that
contains files that will migrate to and from the Cray system must have a
high-quality connection with interface mtu sizes that are large enough to
support large datagrams. A server for a group of clients can also benefit from
high-bandwidth connections, but in this case, file transfer speed to the Cray
system might not be as important. A machine that is used only to support dial-up
lines and not to store much data probably will not require a high-performance
connection at all; perhaps the only access it will require to the Cray system is
telnet(1B)) (to support logins to the Cray system).

In this hypothetical network, assume the following:

• fe1 is used primarily as a gateway.

• fe2 is a computer that supports many users, and therefore, it must not be
overloaded with gateway work.

• barbie is a large fileserver, and it stores files that are used by many users
from many locations.

146 S–2304–10011

TCP/IP [2]

• ken is a smaller server for its local clients.

• peter supports dial-up lines.

peter ’s function as a telnet gateway to fastcray suggests that most
transfers between peter and fastcray are small and they do not affect other
decisions.

ken ’s status is similar to peter’s; this machine supports telnet connections
from clients and an occasional NFS transfer. Because there are no large transfers
from ken ’s clients (diskless clients), fragmentation is not an issue. Of course,
when a user uses ftp(1B) to transfer a file, that user must log in to ken,
either directly or through the proxy command, before transferring the file to
fastcray. It only slows down performance if the file must be pulled from ken
to the client (using NFS), and then over TCP to fastcray.

barbie’s status as a high-performance server suggests that it should have a
high-performance connection for NFS transfers. This means that the datagrams
that are transferred should be as large as possible.

Because fe1 is a gateway, the mtu to fe1 should be as large as fenet ’s mtu;
fe1 should not consider maximum datagram handling and socket buffering for
datagrams that are larger than fenet’s mtu. All routes from fastcray to the
remainder of the network should pass through fe1.

fe2 should support a high-performance connection to fastcray for TCP users.

For Model E based systems, use the following guidelines:

• The write mtu to fe1 in the hycf configuration file should be 4478 bytes; the
write mtu to fe2 in the hycf configuration file should be 6144 bytes. The
appropriate lines to put in the /etc/hycf.np0 file are as follows:

#direct MACH-NAME TO MTU

direct fe1 4233 ff00 0 4478

direct fe2 4543 ff00 0 6144

direct fastcray c205 ff00 0

The inbound mtu for the np0 interface is set to 6144 bytes (the largest
outbound mtu) when the interface is initialized with the ifconfig
command, as follows:

/etc/ifconfig np0 fastcray netmask 0xffffff00 mtu 6144

For GigaRing based systems, use the following guidelines:

S–2304–10011 147

UNICOS® Networking Facilities Administrator’s Guide

• The write mtu to fe1 in the arp route should be 4478 bytes; the write mtu
to fe2 in the arp configuration file should be 6144 bytes. The appropriate
route commands are as follows:

route add -interface fe1 -link hardware_address -admmtu 4478

route add -interface fenet fe2 -link hardware_address -admmtu 6144

The inbound mtu for the ghippi0 interface is set to 6144 bytes (the largest
outbound mtu) when the interface is initialized with the ifconfig
command, as follows:

/etc/ifconfig ghippi0 fastcray netmask 0xffffff00 mtu 6144

Appropriate routes to the world must be added. You should specify mtus for
those routes on which TCP performance is improved by using a smaller segment
size than the mtu allowed by the interface, as follows:

/etc/route add peter fe1 -admmtu 3072

/etc/route add fenet fe1

/etc/route add barbienet fe2

/etc/route add kennet fe1 -admmtu 1500

2.3.3 Network Routing

This section describes the route(8) command, but if you are using the UNICOS
start-up procedures, you must use the gated.conf file, which offers the same
functionality as the route command. See Section 2.2.9.8, page 114, for details
concerning the use of the gated.conf file.

The route(8) command is useful for setting mtus and also gives you complete
control of the routing table, allowing you to specify host, network, and default
routes. The destination operand on the command line specifies whether you are
adding a host, network, or default route. When a network address is given, a
network route is added; otherwise, a host route is added. To determine this, the
route command interprets a dot notation address (such as 174.200.84.132),
or it chooses between host or network based on which of getnetbyname() or
gethostbyname() successfully resolves a symbolic name. getnetbyname is
tried first; therefore, if you have a network and a host with the same name, you
must use the host operand on the route command line to create a host route
to that host. Similarly, the net operand indicates a network route. The route
command also recognizes the destination name default as directing it to add a
default route.

You can use your knowledge of how routing decisions are made (see Section
2.1.4.2, page 19) to affect these decisions. For example, a host-specific route

148 S–2304–10011

TCP/IP [2]

always takes precedence over network and default routes. Also, after a route is
found, no attempt is made to check for other possible routes. If a route that does
not work appears in the table before a route that does work, the invalid route is
used, and communication with that particular host or network is impossible.

You can configure the routing tables so that the routing algorithm chooses
among multiple potential routes. However, not all network configurations are
sufficiently complex to make this possible. Use the following techniques, when
possible, to achieve specific goals:

• Force data destined for a particular host to take a different path from that of
data going to other hosts on the same network.

• Use the path determined in item 1 to balance traffic between multiple
gateways to one network.

• Restrict use of particular routes by groups (a feature only Cray systems
support).

Consider the network shown in Figure 11.

S–2304–10011 149

UNICOS® Networking Facilities Administrator’s Guide

cray

fe2

betty

bobbi

barb

fe2net

fe1

fe1net

bill

bob

ben

cray-fd1cray-fd0

a11430

fddi1
network
device

fddi0
network
device

Figure 11. Network routing example configuration

Setting up this network is relatively simple. In your /etc/tcpstart script,
you have ifconfig(8) commands to initialize network interfaces np0 and np1.
However, you must still add routes to the networks attached to each of the
front-end systems. Therefore, the following route commands must be executed:

150 S–2304–10011

TCP/IP [2]

/etc/route add fe1net fe1

/etc/route add fe2net fe2

Of course, the routing tables on the front-end systems and the other hosts must
be configured so that they can send datagrams to the Cray system.

2.3.3.1 Special Host Routing

You can use host-specific routes to cause data for a specific host to take a special
route. Consider the example network shown in Figure 12.

S–2304–10011 151

UNICOS® Networking Facilities Administrator’s Guide

abby

brenda

fe1

abcnet

calvin

david

fe2

fastcray

craynet

a11428

fddi
network
device

Figure 12. Special host routing example configuration

This network shows two front-end systems (fe1 and fe2) connected to the
same network, abcnet. By using a combination of host and network routes, it
is possible to make most network traffic route through front-end system fe1,
but you must allow for traffic between fastcray and host calvin to route
through front-end system fe2.

152 S–2304–10011

TCP/IP [2]

The following route command routes traffic from fastcray to abcnet
through fe1:

/etc/route add abcnet fe1

The following route command routes traffic from fastcray to calvin
through fe2:

/etc/route add calvin fe2

The second route specification overrides the first because it is a host route, and
host routes are chosen before network routes. However, the route to calvin
does not affect routing to the other hosts on abcnet.

Of course, calvin is probably sending datagrams back to fastcray. If its
default route is to fe1, data it returns to fastcray is routed through fe1. You
can override this with either a network route to craynet or a direct host route to
fastcray, specifying fe2 as the gateway to use. calvin ’s route command
can be one of the following:

• To add a host route:

/etc/route add fastcray fe2

• To add a network route:

/etc/route add craynet fe2

Adding the network route implies that all traffic from calvin to network
craynet routes through fe2. Adding a host route directs traffic bound for
fastcray through fe2. It is best to use a host route for this situation, because
if a network route is used and network data is sent to fe1, it must still be sent
through fe2, rather than directly to fe1.

Special host routing like this can be desirable for both testing and performance
reasons. However, even though network traffic for calvin is moved from fe1 to
fe2 (thus reducing the network load that fe1 must carry), all network traffic for
abcnet still goes through interface np0 on the fastcray system.

2.3.3.2 Load Balancing

If you want to balance the load on the craynet network, consider having two
interfaces on craynet. You can then route the traffic over separate networks,
balancing the load between them. Consider the example network shown in
Figure 13.

S–2304–10011 153

UNICOS® Networking Facilities Administrator’s Guide

abby

brenda

fe1

abcnet

calvin

david

fe2

fastcray

fc-fd0net fc-fd1net

a11429

fddi1
network
device

fddi0
network
device

Figure 13. Load balancing example configuration

After using the ifconfig(8) command to initialize the interface, use the
route(8) command to add the following routes:

/etc/route add abcnet fe1 (abcnet traffic through fe1)

/etc/route add calvin fe2 (calvin’s traffic through fe2)

The route commands used to route traffic back from host calvin would be
changed to one of the following to allow for the new network:

154 S–2304–10011

TCP/IP [2]

/etc/route add np1int fe2 (to add a host route)
/etc/route add fc-np1net fe2 (to add a network route)

It is best to use the host route.

Using this special host routing between gateways and networks can be an
effective method of balancing network loads through front-end systems. You can
also add special host routes for more than one host so that traffic for multiple
special hosts is routed through specific gateways.

Of course, this balancing is limited by the bandwidth of the destination network.
And even though the network load may be balanced between fastcray
network interfaces and the front-end systems, the previous examples show all
network traffic still traveling through abcnet, which may not have sufficient
bandwidth to support it. In other examples, when the destination network has
high bandwidth relative to the front-end systems, this form of load balancing
can be very useful.

Having multiple interfaces on a Cray system, as shown in Figure 13, page 154,
also reveals new routing problems. Front-end systems fe1 and fe2 have
separate direct connections to fastcray. Therefore, all traffic from a front end to
fastcray travels over the direct connection. However, this is not always true;
datagrams travel over the connections on which they are routed.

Suppose that fe1 is intended as the primary front end for the fastcray system,
and the name fastcray is specified as the alias for np0int. This means that,
when the name fastcray is resolved to an Internet address, the address of the
np0int interface is returned. Routing decisions are then made based on this
Internet address.

In this example, fastcray is the name with which most users are familiar.
Therefore, a user on calvin might specify fastcray to access the fastcray
system, and (because of the previous route commands) expect datagrams
to travel from calvin to fe2 and then to the fastcray system. However,
because fastcray is an alias for np0int, datagrams route through fe1 (if a
route is set up to send default or fc-np0net traffic that way), or in the worst
case, cannot connect.

Therefore, calvin must have routes to all of the fastcray system’s interfaces
through fe2 to ensure that datagrams travel that path. You must add a route to
calvin ’s routing table for each of the fastcray system’s network interfaces,
as follows:

/etc/route add np0int fe2

/etc/route add np1int fe2

S–2304–10011 155

UNICOS® Networking Facilities Administrator’s Guide

However, you must consider other issues. fe2 might not know anything about
the fastcray system’s np0 interface and either cannot route datagrams or
sends them on to another gateway (fe1). Therefore, you must add a route to
connect to fe2, as follows:

/etc/route add np0int np1int

This route sends fastcray traffic for np0int through the direct connection to
np1int. It is apparent to the network software on the fastcray system that
the incoming datagrams have reached their destination, and no more hops
are necessary.

2.3.3.3 Controlling Routing by Group IDs

The route(8) command lets you specify particular groups that have permission
(inclusive routing) or do not have permission (exclusive routing) to use a particular
route; this is a special Cray system feature.

Groups are defined by the entries in the /etc/group file; see group(5). When a
group list is specified for a route, the routing algorithm is changed slightly. In this
example, when a route is selected, the routing algorithm checks to determine
whether the user accessing the route is permitted to use it. If not, the routing
algorithm continues looking for a route to the desired destination. Thus, it
is possible to prevent some groups (and the users in those groups) from using
particular routes, and to allow some groups to have access to special routes.
This feature can also be used to prevent groups from accessing some networks
and hosts completely.

Consider again the network shown in Figure 13, page 154, and the two route
commands that follow it. If the second route command is changed as follows,
only users in group specialgroup have network traffic from fastcray to
calvin routed through fe2.

/etc/route add calvin fe2 -gid +specialgroup

This does not affect traffic from calvin to fastcray. Traffic from other groups
travels from fastcray to calvin through fe1.

2.3.3.4 Controlling Access

With UNICOS security, the admin option of the ifconfig(8) command marks
an interface as restricted to privileged users only. Creating a socket with
PRIV_ADMIN effective on privilege-based systems, or with UID root on
PRIV_SU systems enables a socket for communication on this interface. In a
future release, an additional setsockopt system call will be required to enable

156 S–2304–10011

TCP/IP [2]

communication on the socket. The admin option also prevents forwarding of
IP packets to and from the interface.

2.3.3.5 Diagnosing and Fixing Routing Problems

When the TCP/IP network software is initialized, the routing tables are set up.
Routes are created by the ifconfig(8), route(8), and gated(8) commands.

The ifconfig command creates a route only for the interface being configured
and is not used to manipulate the routing table. The gated command can
configure many routes from one configuration file and can dynamically change
the routing tables. The route command is your primary tool for manually
changing the routing tables. For more information on how to use these
commands, see Section 2.2, page 22.

Diagnosing a routing problem requires checking the routing tables on all hosts
involved to see how each host is routing datagrams between peers. Often, it is
necessary for you to trace the route that is specified. You should be aware that
routes are not symmetrical; that is, having a route between two hosts in one
direction does not imply that there is a route back.

2.3.3.5.1 Using the netstat(8) Command to Inspect Routing Tables

You cannot tell from the routing table where a datagram will go after it has
reached a gateway; therefore, you must inspect the routing table at the gateway
to determine the next hop a datagram takes. You can inspect the routing
table being used by the Cray system at any time by using the -r option of
the netstat(1B) command. Options -n, -s, and -v can be used with -r to
obtain more information about the routing table (see netstat(1B) for more
information).

The netstat -r command prints out each routing table entry on one line. Host
names are printed instead of Internet addresses, but you can request Internet dot
addresses (such as 192.34.89.12) by using the netstat -rn command.

The netstat -r command lists the routes in the order that the routing
algorithm searches them. If the routes are not in a satisfactory order, use the
delete and add options of the route(8) command to rearrange them. When the
system is initialized, you should add the routes in the order desired. The output
from netstat -r also tells you exactly how datagrams are being routed out of a
host. Consider the following example output from netstat -r:

% netstat -r

Routing tables

S–2304–10011 157

UNICOS® Networking Facilities Administrator’s Guide

Destination Gateway Flags Refs Use Interface

Route Tree for Internet protocols

default router-001 UG 63 103861 fd0

localhost localhost UH 9 1036 lo0

libe-ows libe-ows-030 UGH 0 3 np0

vogonnet fagin-ip-dev UG 0 81 np1

torc-hyp libe U 12 20525 np1

torc-fddi libe-fddi U 8 1043 fd0

libe-030net libe-030 U 6 6838 fd0

224.0.0.9 localhost UH 0 10 lo0

%

Following is some of the information that this output provides:

• Destination 224.0.0.9 is a multicast address used by gated. It is an
address for RIP Version 2 routers, RIP2-ROUTERS.MCAST.NET.

• Datagrams for host libe-ows are sent on interface np0 in packets addressed
to gateway libe-ows-030, because the route is a host route (host routes
have an H in the Flags column) for host libe-ows.

• Datagrams bound for hosts on vogonnet travel through interface np1 to
gateway fagin-ip-dev. The G in the Flags column is set, which marks this
as an indirect route.

• Datagrams destined for hosts on network torc-fddi are sent in packets
directly to their destination, because the gateway flag is not set.

When inspecting the routing table, specifically notice the up flag (the U in the
Flags column), because a route that is not up cannot be selected for use.

The netstat -r command (or its equivalent) is available on several systems
other than Cray systems. Use the command that is appropriate for a particular
computer to use to inspect that computer’s routing table.

2.3.3.5.2 Tracing a Route between Two Hosts

Diagnosing a problem often requires tracing a route. The sample network in
Figure 14 shows the route that datagrams take between two hosts. In this section
the route is traced to point out why some hosts in the network cannot access a
Cray system. This section also explains that an inefficient route is set up, and
shows how to change it.

158 S–2304–10011

TCP/IP [2]

cathy jill

cathynet jillnet

bignet

fe1net

craynet

fe1

fastcray

fe2 fe3

hansmoby jack

sherrie

billee

vicki

jen

jae

jan

a10206

Figure 14. Route tracing example configuration

S–2304–10011 159

UNICOS® Networking Facilities Administrator’s Guide

For simplicity, the following diagram does not show interface names. Assume
the following conventions for interface names, relative to the position of the
connection to a host’s box:

i1

i2

i3

i4

a10259

Suppose that jill is a server, and jen, jae, and jan are workstation clients.
A user at workstation jae wants to use telnet(1B) to access the Cray system
fastcray and cannot get a connection (telnet prints a Host unreachable
or Network unreachable error message). Because jae can telnet to jack,
and jack can telnet to fastcray, all the network interfaces must be operating
properly. Following the routes on each of the systems lets you determine why
datagrams are not getting from jae to fastcray. First, check jae ’s routing
table.

jae’s routing table:

Destination Gateway Flags Interface

localhost localhost UH loop

jillnet jae U i4

default jill UG i4

From jae ’s routing table you can see that datagrams for fastcray go to jill;
therefore, you must now check jill ’s routing table.

160 S–2304–10011

TCP/IP [2]

jill’s routing table:

Destination Gateway Flags Interface

localhost localhost UH loop

jillnet jill U i3

bignet jill U i2

default cathy UG i2

From jill ’s routing table, you can see why jae can communicate with jack.
Because jack is on bignet, datagrams from jae to jack go through jill and
then directly to jack. But there are no useful routes to fastcray; consequently,
datagrams are sent to cathy over the default route. Therefore, you must go to
cathy to see where the datagrams go from there.

cathy’s routing table:

Destination Gateway Flags Interface

localhost localhost UH loop

cathynet cathy U i3

bignet cathy U i4

fe1net cathy U i2

jillnet jill UG i4

craynet fe1 UG i2

cathy does not have a default route. Because cathy is connected to all networks
in this internetwork, a default route is redundant. cathy is the default router
for all the other computers in the network. cathy passes jae ’s datagrams for
fastcray on to fe1, because that is where cathy routes datagrams for hosts on
craynet. Next, check fe1 ’s routing tables.

fe1’s routing table:

Destination Gateway Flags Interface

localhost localhost UH loop

fe1net fe1 U i3

craynet fe1 U i1

default cathy UG i3

fe1 ’s routing table suggests that it forwards datagrams for fastcray directly to
fastcray. Because you have traced datagram flow from jae to fastcray, you
can be sure that datagrams can get from jae to fastcray. However, this does
not ensure that datagrams can return to jae from fastcray. Therefore, the next
step is to follow the path back, first by checking fastcray ’s routing table.

S–2304–10011 161

UNICOS® Networking Facilities Administrator’s Guide

fastcray’s routing table:

Destination Gateway Flags Interface

localhost localhost UH loop

craynet fastcray U i3

fe1net fe1 UG i3

cathynet fe1 UG i3

bignet fe3 UG i3

default fe2 UG i3

As shown here, fastcray is connected to all networks except jillnet. Because
jae is on jillnet, datagrams for jae are routed to fe2, the default route.
Check fe2 ’s routing table.

fe2’s routing table:

Destination Gateway Flags Interface

localhost localhost UH loop

craynet fe2 U i1

bignet fe2 U i3

fe1net fe1 UG i1

cathynet cathy UG i3

This routing table shows part of the problem. fe2 appears to be configured as
a master router for fastcray, but it does not have a route to jillnet or a
default route. Consequently, when fastcray sends a packet for jae to fe2, fe2
does not know how to get the packet to jae, and discards it. You can fix this
problem by adding a route to fe2 ’s routing table; add either a default route to
cathy or a network route to jillnet.

In this example, you can easily choose which route to add by considering that
each hop a datagram takes lowers the overall performance over a network
connection; that is, the fewer the hops, the better the performance. Therefore, the
network route to jillnet should be added to fe2 ’s routing table.

However, a problem still exists with the routing tables. Datagrams from jae to
fastcray travel through cathy and fe1, rather than taking the more efficient
route through fe2 or fe3. Performance is improved by adding a network route
to craynet through fe2 to jill ’s routing table. fe2 is chosen because
datagrams from fastcray to jillnet are going the same route. However,
using fe3 as jill ’s gateway to craynet also works. After these changes, jill
’s and fe2 ’s routing tables contain the following:

jill’s routing table:

162 S–2304–10011

TCP/IP [2]

Destination Gateway Flags Interface

localhost localhost UH loop

jillnet jill U i3

bignet jill U i2

craynet fe2 UG i2

default cathy UG i2

fe2’s routing table:

Destination Gateway Flags Interface

localhost localhost UH loop

craynet fe2 U i1

bignet fe2 U i3

fe1net fe1 UG i1

cathynet cathy UG i3

jillnet jill UG i3

Now the routing tables are fixed so that jill ’s workstation clients can
communicate with the Cray system; an inefficiency in the routing tables is also
fixed so that datagrams between fastcray and jill ’s clients take the shortest
path.

2.3.3.5.3 Using Traceroute to Trace Routes

The UNICOS system provides traceroute, a tool to help you trace routes
without checking the routing tables on all systems involved. See traceroute(8)
for syntax details.

The traceroute command is a useful for tracing the route datagrams take
through a network; it is very useful for tracing routes over networks outside of
your local administrative domain. However, traceroute relies on aspects of
proper implementation of the IP protocol that do not exist in some environments;
thus, it is not a complete substitute for tracing routes by examining the relevant
tables.

If you were to use traceroute to trace the route from fastcray to jae, as
shown in the sample network in Figure 14, page 159, before fixing the routes,
you would see the following output:

traceroute jae

traceroute to jae (132.162.155.14), 30 hops max, 56 byte packets

1 fe2 (132.162.80.124) 11 ms 11 ms 11 ms (11.0/11.000)

2 fe2 (132.162.80.124) 11 ms !N 11ms !N 11ms !N (11.0/11.000)

S–2304–10011 163

UNICOS® Networking Facilities Administrator’s Guide

#

This output from traceroute shows that fe2 cannot forward packets to jae
(as indicated by the !N after the times for the probe packets). Quick inspection
of fe2’s routing table shows immediately that fe2 has neither a route to jae’s
network (jillnet) nor a default route to try. After a route to jillnet is added
to fe2’s routing table, the output of traceroute looks like the following:

traceroute jae

traceroute to jae (132.162.155.14), 30 hops max, 56 byte packets

1 fe2 (132.162.80.124) 11 ms 11 ms 11 ms (11.0/11.000)

2 jill (132.162.90.17) 12 ms 13 ms 12 ms (12.0/12.334)

3 jae (132.162.91.8) 14 ms 14 ms 13 ms (14.0/13.667)

#

The traceroute command lets you trace routes from your Cray system to
other computers, but if your other computers do not support traceroute or
a similar facility, you cannot trace datagrams going to the Cray system. Then,
manual inspection of routing tables is still necessary.

2.3.3.5.4 Using Snmproute to Trace Routes

The UNICOS system also provides snmproute, which is another tool to help you
trace routes without checking the routing tables on all of the systems involved.
This command uses the simple network management protocol (SNMP) to obtain
the information (see RFC 1155). See snmproute(8) for syntax details.

The snmproute command is very useful for tracing the route that IP datagrams
take between two nodes by using the Simple Network Management Protocol
(SNMP). The snmproute command also provides other useful information
about the interfaces.

The snmproute command performs a search of the routing table of the source
node to determine the next IP node in the route. This process is repeated for each
successive node in the route until the target node is found.

Thus, like traceroute, snmproute is not a complete alternative to examining
routing tables. Unlike traceroute, however, snmproute can trace a route
in both directions, providing a more complete view of the routing picture.
snmproute also provides information about the network interfaces used
to traverse the route.

164 S–2304–10011

TCP/IP [2]

For snmproute to determine a complete route to a target node, each node
along the route must be running an SNMP agent listening at standard port 161.
In addition, the SNMP agents must be configured to respond to the SNMP
community name used by the snmproute command (the default community
name is public). The -c option can be used to specify a different community
name to be used by the snmproute command.

If intermediate hosts do not have an SNMP agent running, or if the community
name is not known, snmproute provides routing information only up to the
host which is not running the agent.

The following example assumes that SNMP agents are listening at port 161 and
are configured to respond to community public for all of the nodes involved.
If you were to use snmproute to trace the route from hosta to hostb, you
would see the following output:

% snmproute hosta hostb

Tracing route from hosta(138.142.82.48) to hostb(138.142.82.27)

Out of 138.142.82.48 (hosta.mw.cray.com) I/F 18 (fd0) MTU 4352

Into 138.142.82.27 (hostb.mw.cray.com)

Reached 138.142.82.27 (hostb.mw.cray.com)

Here is an example in which a gateway between the source and target nodes is
not configured to respond to queries for community public:

% snmproute hosta hostc

Tracing route from hosta(138.142.82.48) to hostc(138.142.21.90)

Out of 138.142.82.48 (hosta) I/F 18 (fd0) MTU 4352

Into 138.142.84.100 (router1)

No SNMP Response from router1

2.3.3.6 Labeling Route Entries with IP Type-of-Service (TOS)

Routes that you create with the route(8) command can be labeled with an IP
Type-of-Service (TOS) value that can be used during routing lookups. When a
routing lookup is performed in the kernel, the TOS that is assigned to the socket
is passed as part of the lookup key. The look-up procedure attempts to find a
route that is labeled with the exact TOS that is requested. If none is available, the
procedure accepts the best fit. Of course, if there is no route for the particular
destination, the lookup fails. If the route entry is marked for exact TOS matching

S–2304–10011 165

UNICOS® Networking Facilities Administrator’s Guide

(using the -tosmatch option on the route(8) command), every TOS bit that is
set in the route must be set in the request.

TOS labels on routes can be used in a variety of ways. If your network has
routers or bridges that can direct packets that are based on the TOS field in the
IP header, you can use TOS labeling. You can also use TOS labeling to route
packets to different gateways. For example, the ftp command can use TOS
for its network connections. The command connection selects a low-delay bit
in the IP TOS field by using the delay argument of the -S option; ftp data
connections select the high-throughput bit in the IP TOS field by using the
throughput argument of the -S option. Suppose you entered the following
route commands:

route add bobo slowpoke

route add bobo quicky -S delay

route add bobo speedy -S throughput

The ftp command traffic to bobo goes to gateway quicky (ftp command
connections use low-delay TOS), and ftp data traffic goes to gateway speedy
(high-throughput TOS). The way in which the packets are routed beyond the first
hop gateway depends on the remainder of the network and how it is configured.
With this configuration, none of the FTP traffic is sent to slowpoke; however,
other applications that do not use TOS use slowpoke.

You must also configure multiple route entries if you are using the -tosmatch
option on the route command. For example, suppose your route entry has a
TOS label, as follows:

route add soho mist -S delay

The only route to soho is through mist. All traffic for soho is sent to mist.
However, suppose the -tosmatch option were specified on the route
command line, as follows:

route add soho mist -S delay -tosmatch

Only sockets that have specifically requested low-delay TOS can send packets to
soho. Other traffic needs another route entry to get to soho. The -tosmatch
flag also means that sockets that specify high throughput cannot use a route that
specifies low delay. However, a socket that specifies high throughput and low
delay can use an exact match route entry for either high throughput or low
delay (assuming that no route entry with both high throughput and low delay is
available). Therefore, when adding a route entry with the -tosmatch option, it
is advisable to add another route without a TOS entry, as follows:

166 S–2304–10011

TCP/IP [2]

route add soho mist -S delay -tosmatch

route add soho lake

If you are diagnosing a routing problem on a system in which TOS is being used,
use the -rv option when running netstat so that you can see the TOS labels on
routes. Using the netstat command with only the -r option does not display
the TOS labels. You could be misled into thinking that a route is available when it
is not because exact TOS matching is preventing some applications from using
that route. Look in the flags column for the T flag when diagnosing this problem.

2.3.3.7 Preventing the Cray System from Becoming a Gateway

By forwarding packets, any host on the network can act as a gateway. Even
when a host has only one network interface, routes can be configured so that the
host receives datagrams to forward to another gateway. However, forwarding
datagrams uses processing power; therefore, this is not an appropriate function
for a Cray system. Other computers in the network should perform this function.

There are three ways to prevent your Cray system from becoming a gateway:

1. Ensure that none of the other computers in the network have gateway routes
to the Cray system.

2. Mark some or all of the routes in the Cray system’s routing table as being
not forwarding. This is a feature specific to Cray systems. You can mark
a route as being not forwarding by using the noforward option of the
route(8) command when you add the route. Using the -rv option with the
netstat(1B) command displays the NOFORWARD flag on a route if that route
is marked not forwarding. If you choose this method, routes that are added
by other commands (such as ifconfig(8)) must be deleted and then added
again by using the route command.

3. Use the netvar(8) or the sysctl(8) command to turn off forwarding for all
routes. These commands let you toggle the flag that activates forwarding (the
ipforwarding flag) within the kernel. The ipforwarding flag is on by
default, so that IP datagrams can be forwarded through the Cray system. The
command to turn off forwarding is as follows:

netvar -f off

You can also use netvar in interactive mode to turn off IP datagram
forwarding.

S–2304–10011 167

UNICOS® Networking Facilities Administrator’s Guide

Note: When you are running the Cray ML-Safe configuration of the
UNICOS system, the ipforwarding flag must be turned off. This
is to prevent transmission of packets in violation of the MAC policy,
which could happen because forwarding would be done at a layer below
label processing.

You must be a super user to use netvar to change kernel variables. If you
want to configure your Cray system so that forwarding is always turned off,
you can use the Configure System -> Network configuration ->
TCP/IP configuration -> Kernel parameters menu to change the
netvar.conf file so that netvar -f off is executed at system startup.

When all routes on the Cray system are marked as being not forwarding, or
forwarding is turned off with the netvar command, the Cray system cannot
forward datagrams (a route that is marked as not forwarding is not selected for
datagrams that need to be forwarded). If forwarding is attempted, an error is
returned to the sender of the datagram, and the user sees this as a Network
unreachable error. You must then trace the route the datagrams are taking, and
fix the routing tables on the computers involved so that they are not trying to
use the Cray system as a gateway.

2.4 Troubleshooting

Networking problems can be difficult to diagnose because of the number
of individual elements that are involved in maintaining an entire network.
Communication between the Cray system and an end user can be affected by
problems in TCP/IP on the Cray system, hardware problems, bugs in the remote
system’s software, and bugs in other systems on the network. This section
provides information to assist you in resolving these problems. It describes
commands and tools, and it includes specific information about some of the
daemons and network services.

This information assists you with your debugging problems, but it also is
intended to help you test network changes before they are put into production.
This information does not replace the information found in the appropriate
man pages, but it only highlights what is available. Refer to the man page
documentation for complete descriptions of the commands described in this
section.

The following topics are covered:

• Troubleshooting tools

• Basic problem-solving strategy

168 S–2304–10011

TCP/IP [2]

• Network problems and solutions

Note: RFC 1147 provides detailed information about monitoring and
debugging TCP/IP networks.

2.4.1 Troubleshooting Tools

This section contains a description of the tools that are available to you for
resolving network problems. The following categories of tools are discussed:

• Hardware diagnostics

• Network monitoring

• Network testing and diagnosing

• Network services

2.4.1.1 Hardware Diagnostics

Diagnostic tools should be used when you suspect that a network problem is
caused by the actual networking hardware or UNICOS device drivers (including
the IOS for Model E based systems, and MPN and HPN for GigaRing based
systems). If a problem exists in any of these components, TCP/IP cannot
communicate on the network. (But, TCP/IP’s failure to communicate on the
network does not always indicate a hardware problem.) These tests can be
used to determine whether a problem is in TCP/IP, or in the hardware and
its associated device drivers.

The commands that are listed in this section test and verify that the UNICOS
driver (including the IOS driver for Model E based systems, and MPN and HPN
for GigaRing based systems) and networking hardware are functioning properly.
These diagnostic tools are a subset of all the tools available, and do not include
the tools that are available with OLNET products. For a full description of all
available diagnostic tools and the information they can provide, consult the
appropriate hardware manual and software command documentation.

2.4.1.1.1 The hit(8) Command

The hit(8) command tests a Cray low-speed channel cabled in loopback mode,
or an NSC A-series adapter and HYPERchannel connection.

Note: In the Cray ML-Safe configuration of the UNICOS system, special
steps must be taken to run the hit(8) command (see General UNICOS System
Administration, for more details on non-TCB software and UNICOS security).

S–2304–10011 169

UNICOS® Networking Facilities Administrator’s Guide

2.4.1.1.2 The nx(8) Command

This command tests an NSC adapter (either A-series or N-series) and a
HYPERchannel connection. The diagnostic can test communication over the
HYPERchannel to the remote adapter.

2.4.1.1.3 The scytest Command

The scytest command tests a Cray system low-speed channel cabled in
loopback mode, the FEI-3 interface cabled in loopback mode from the front
end, VME-based system, or the FEI-3 interface between the Cray system and
the front-end system. This diagnostic also verifies the front-end driver when
testing the FEI-3 interface cabled in loopback mode, or when testing the interface
between the Cray system and the front-end system. scytest is available
through the supplier of the FEI-3 driver for your front-end, VME-based system.

For the fy driver, use the diagnostics that Cray supplies instead of this test.

Note: Cray J90 systems do not support the scytest command.

2.4.1.1.4 The vht(8) Command

The vht(8) command tests a HIPPI channel that is either in loopback mode or
connected to another host.

Note: In ML-Safe UNICOS systems, special steps must be taken to run the
vht(8) command (see General UNICOS System Administration, for more details
on non-TCP software and UNICOS security).

2.4.1.2 Network Monitoring

You can use the commands listed in this section to determine the activities that
are occurring over the network and in TCP/IP on the Cray system.

2.4.1.2.1 The hyroute(8) Command

The hyroute(8) command creates, displays, and verifies the information that
TCP/IP is using to resolve hardware addresses. This display also includes the
mtu value that TCP/IP is using for directly connected hosts.

2.4.1.2.2 The arp(8) Command

The arp(8) command creates, displays, and verifies the information that TCP/IP
is using to resolve hardware addresses.

170 S–2304–10011

TCP/IP [2]

2.4.1.2.3 The netstat(1B) Command

The netstat(1B) command displays the contents of various network-related
data structures. This information is valuable when determining the current status
of the TCP/IP components of a given host. The following options are a subset of
those available by using the netstat(1B) command. For a full description of the
options, see the man page.

Option Description

-i Displays all of the available interfaces on a given host, and some
specific information about them.

-iv Displays the status of the queues for each interface, the number of
packets discarded, and the flags.

-is Displays statistics about the interfaces.

-m Displays statistics associated with TCP/IP mbuf usage.

-r Displays the routing information TCP/IP is using, in the order
that the routes are being searched. See Section 2.3.3, page 148, for
details about network routing.

-A Displays information about all active connections.

-a Displays information about all open sockets. This includes
information about all available services on the host (the last
column of the display indicates whether the socket is in the
LISTEN state).

-s Displays statistics associated with TCP/IP and packets received
and sent.

Adding -n to any of these netstat options prevents netstat from translating
numbers (that is, port numbers or Internet addresses) to their associated names.

2.4.1.2.4 The nslookup(1B) Command

The nslookup(1B) command provides an interface to the name server;
nslookup displays the actual host name and Internet address that is associated
with a specified name or address. This information is used by the network
components that require the official host name or Internet address that is
mapped to any given alias or address. This command interfaces only with the
Berkeley Internet name domain (BIND) server. It is particularly useful if you are
configuring and installing named(8) on a Cray system. By using nslookup, you
can verify whether named is configured properly.

S–2304–10011 171

UNICOS® Networking Facilities Administrator’s Guide

2.4.1.2.5 The ping(8) Command

The ping(8) command transfers a packet to a remote host and requests an echo.
It is useful for verifying the connection between any two systems.

2.4.1.2.6 The snmproute(8) Command

The snmproute(8) command traces the route IP takes from the local system to
the given remote host, and also the route back. snmproute can perform tracing
on all hosts that are running SNMP (simple setwork management protocol) on
the route between the local system and the remote host.

2.4.1.2.7 The traceroute(8) Command

This command traces the route IP uses when sending a packet from the local
system to the given remote host. (It does not trace the route from the remote host
to the local system.) traceroute continues until the remote host is reached.
This command depends on aspects of IP that do not exist in every environment;
therefore, it does not display hops through a system whose IP does not support
this feature; instead, those hops are displayed as * (asterisks).

2.4.1.3 Network Testing and Diagnosing

The commands that are listed in this section provide information that is useful for
testing and diagnosing TCP/IP problems.

2.4.1.3.1 The nettest(8) and nettestd(8) Commands

The nettest(8) and nettestd(8) commands perform client and server
performance tests for the various types of network connections that the
TCP/IP kernel code supports. This includes UNIX domain, TCP, and UDP
socket connections.

The nettest command performs the client side of the test; the nettestd
command performs the server side of the test.

Note: With the Cray ML-Safe configuration of the UNICOS system, special
steps must be taken to run the nettest(8) and nettestd(8) commands (see
General UNICOS System Administration, for more details on non-TCP software
and UNICOS security).

172 S–2304–10011

TCP/IP [2]

2.4.1.3.2 The trcollect(8) and trformat(8) Commands

The trcollect(8) and trformat(8) commands collect and format, respectively,
packets received and sent by TCP/IP on the Cray system. They accept options
that determine which packets are traced. These commands provide information
about network activities at the lowest possible level. See Section 2.5, page 206,
for details.

2.4.1.4 Network Services

This section presents information about the following network services, which
are available on the Cray system:

• inetd(8)

• telnet(1B)

• ftp(1B)

• sendmail(8)

• gated(8)

This information is useful when you are testing, debugging, planning to make
changes to your system, or configuring a new service. These services are the ones
most commonly used on Cray systems. For more information on these services,
and other available services, see Section 2.2, page 22.

2.4.1.4.1 The inetd Daemon

The inetd(8) daemon listens for incoming requests on the configured ports
and then starts up the appropriate program to process the request. As an
administrator, you must add entries to the /etc/inetd.conf file to specify
port numbers, commands to be executed, and so on. See Section 2.2.8.7,
page 98, for a complete explanation of the file fields. If you do not have an
/etc/telnetd entry in the file, and a user tries to use telnet(1B) to access
the Cray system, inetd refuses the connection and issues a Connection
refused message.

You can use the /etc/inetd.conf file to execute test versions of the various
services before putting them into production. For example, adding the following
line to the file lets you run another telnet daemon at port number 3200:

3200 stream tcp nowait root /usr/src/tcp/usr/etc/telnetd telnetd

S–2304–10011 173

UNICOS® Networking Facilities Administrator’s Guide

Putting this line in the /etc/inetd.conf file lets you test out the latest telnet
daemon before installing it into /etc/telnetd. That is, after upgrading to a
new level of the UNICOS system, you could try using telnet to access the Cray
system from the various front-end systems at your site, and verify that the new
telnet daemon does not introduce any new problems. To use this telnet
daemon, execute the following command on your front-end system:

telnet cray 3200

You can set up a test version of a service for any of the programs that are started
by inetd. You can also use inetd to start your own special network services.
inetd rereads its configuration file if you send it a SIGHUP signal (that is, if you
execute kill -HUP process_id; process_id is the process ID of the running inetd).

2.4.1.4.2 The telnet(1B) Command

The telnet(1B) command provides user access to the Cray system. A wide
variety of telnet implementations are used to gain access to the Cray system,
and we try to accommodate as many variations as possible. As a result, the
telnet daemon that is supported under the UNICOS system is sensitive to
changes; that is, attempting to correct one problem can introduce other problems.
This section assists you in resolving this type of problem.

When telnet is executed, the telnet client and telnet daemon negotiate the
handling of both the data and the terminal. The user can monitor and manipulate
this negotiating environment by using various telnet subcommands. The
following subcommands are particularly useful for monitoring:

Subcommand Description

status Lets you obtain a printout of the current status of
the telnet session, including whether telnet is
in line-by-line or character-at-a-time mode.

toggle options Lets you obtain, from the telnet client, a printout
of all option negotiation that occurs between the
telnet client and the remote daemon.

toggle netdata Lets you obtain a printout, from the telnet client,
of the hexadecimal representation of all data that is
both sent to and received from the remote daemon.

All of the subcommands in the preceding list must be executed at the telnet
prompt. To get this prompt, either execute telnet (rather than telnet
host_name), or at any time during the logon session, enter the telnet escape
sequence that is displayed during the connection sequence (usually ^]).

174 S–2304–10011

TCP/IP [2]

Note: The subcommands described in this section apply to the version
of telnet that is running on Cray systems. For a list of the correct
subcommands for the version of telnet that you are running, execute help
at the telnet prompt.

Several subcommands are available to use to manipulate this environment. For
example, the mode character command ensures that telnet operates in
character-at-a-time mode (rather than line-by-line mode). See Section 2.2.8.7.6,
page 104, for a description of the environment manipulation subcommands
that are available.

When attempting to debug a telnet session, you must first isolate the
failing component. Users sometimes try to access the Cray system through
intermediate hosts. That is, rather than accessing the Cray system directly from
their workstations, they access another host (or even several), and then try to
access the Cray system. Attempting to access the Cray system through various
combinations of hosts can help to isolate the failing component.

Typing the escape character returns the user to the original telnet environment.
To monitor a second or even third telnet session, the user must first change
the escape character in all previous sessions. This ensures that ^] escapes to the
telnet session you want to monitor.

2.4.1.4.3 The ftp(1B) Command

The ftp(1B) command provides user access to the Cray system. The following
information describes methods for obtaining debug information from both the
ftp and the ftpd(8) daemon when a problem is encountered.

Executing ftp puts the user in an environment that the ftp client sets up. In
this environment, several subcommands are available. For example, put and
get let the user send and retrieve files, respectively; debug lets the user see the
commands that the ftp client is sending to the remote host.

The ftp protocol specifies which commands the client can send to the remote
host, and also the meaning and format of the server’s responses. Commands and
responses are grouped in pairs. As a result, you can monitor the communication,
and thus control the connection between the local client and the remote server.

You can obtain other information to assist in debugging ftp by specifying the
following options to ftpd:

-d or -v If these options are specified, ftpd logs
debugging information to the system log, auth,
defined in the /etc/syslog.conf file.

S–2304–10011 175

UNICOS® Networking Facilities Administrator’s Guide

-l If this option is specified, ftpd logs general
information to the system log, auth, defined in
the /etc/syslog.conf file.

Information in syslog is useful when determining the activities that are
occurring on the server side of the connection.

2.4.1.4.4 The sendmail(8) Command

The sendmail program provides several modes of operation. One of the most
useful modes is invoked by specifying the following:

/usr/lib/sendmail -bt

The -bt option lets you view the values that sendmail is using to interpret the
configuration file (option -C file can be specified to instruct sendmail to use file
as the configuration file). For an explanation of how sendmail interprets the
configuration file, see the example on Section 2.4.3.2.2, page 200.

Another valuable sendmail mode is invoked by specifying the following:

/usr/lib/sendmail -v -dx.y addressee

Using this option rather than executing mail addressee lets you send email and
print debug messages from the code in the numeric range x to y. For example,
specifying -d8.99 prints all debug messages that have a value greater than
8. The output from this process assists you when determining the location
of the problem.

2.4.1.4.5 The gated(8) Command

When gated is executed (typically by the /etc/netstart script), it can be
given the argument of the name of a file to which it should log any tracing
information during its run. For example, gated can be executed by using the
following command line:

/etc/gated /usr/tmp/gated_log

This command causes gated to log information to the /usr/tmp/gated_log
file, as directed by the traceoptions statement in the /etc/gated.conf file.
The trace flags specified on the traceoptions statement specify the desired
level of tracing output. At a minimum, the trace flags that are recommended are
general and mark. See the gated(8) man page for a full listing of trace flags.

When gated is executed, logging of information to the file can be stopped and
started dynamically by a signal sent to the running gated process. To make

176 S–2304–10011

TCP/IP [2]

sending this signal convenient, gdc(8) is provided. gdc provides a user-oriented
interface for the operation of gated.

The following signals have the identified effects on gated:

Signal Description

1 (SIGHUP) Causes gated to reread its configuration file to
update specific pieces of information. See the
gated(8) man page for details.

2 (SIGINT) Causes gated to schedule a dump of its memory
contents to the /usr/tmp/gated_dump file;
this dump includes the status of all interface
configurations and routes that are known to
gated.

49 (SIGUSR1) Causes gated to stop logging information
(when currently logging information) or start
logging information (when not currently logging
information) to the log file that is specified when
gated is executed.

2.4.2 Basic Problem-solving Strategy

This section describes a basic strategy for resolving network-related problems.
This strategy can be used to isolate a failing network component. It also
isolates the part of the network that is causing the problem. Because the
ultimate resolution of any problem requires specific expertise in the failing
area, this approach enables you to know whom to contact if you cannot resolve
the problem yourself.

2.4.2.1 TCP/IP in a Cray System Environment

This section describes the manner in which TCP/IP components interact with
each other; it does not describe how TCP/IP is configured on a Cray system. It is
assumed that you are familiar with the following concepts:

• Addressing networks in a UNICOS environment (that is, the fact that a
network address consists of the identification of a physical device and a logical
path). See Section 2.1.1, page 5.

• Assigning Internet addresses for Cray systems. See Section 2.1.2, page 8.

• Mapping Internet addresses to their hardware equivalent. See Section 2.1.3,
page 12.

S–2304–10011 177

UNICOS® Networking Facilities Administrator’s Guide

• Determining logical paths on Cray systems. See Section 2.1.4, page 14.

• Enabling and disabling network interfaces. See Section 2.2.9, page 106.

• Specifying routing information. See Section 2.2.9.8, page 114.

Figure 15 illustrates the interaction of TCP/IP components that run on Cray
systems.

178 S–2304–10011

TCP/IP [2]

NQS

NFS

User commands
telnet
ftp

and so on

sendmail
/usr/lib/sendmail.cf

gated
/etc/gated.conf

snmpd
/etc/snmpd.conf

named
/etc/named.boot

telnetd

ftpd
inetd

/etc/inetd.conf

/etc/services

TCP UDP

IP and ICMProute
command

Device
drivers

Hardware
interface

MPN/SPN

Network a10207

arp and
ifconfig cmd
commands

Hyroute

Model E IOS

Figure 15. TCP/IP component interaction

S–2304–10011 179

UNICOS® Networking Facilities Administrator’s Guide

Also shown in Figure 15, page 179 are the configuration files that some of the
daemons use. For example, inetd reads in the /etc/inetd.conf file and uses
this information to determine the network processes for which it listens.

The commands and files shown outside the boxes in Figure 15, page 179
indicate (with an arrow) which TCP/IP components or interfaces they affect.
For example, the /etc/services file affects the interface between network
applications and TCP/IP by using names to map applications to their port and
network protocol.

Not identified on the chart are the /etc/hosts and /etc/networks files.
These files map names (either host names or network names, respectively) to
their Internet addresses. This mapping is used by all network components.

Note: When the /etc/hosts.usenamed file exists (its contents are
meaningless), the mapping of names to Internet addresses is provided by the
name server (that is, named) rather than the /etc/hosts file.

Assume that you are trying to determine why TCP/IP cannot communicate
with any of the hosts connected to a certain hardware interface. The ping(8)
command indicates that the remote hosts are not responding, and no other
commands work by using this interface. Knowing that the ping command sends
an Internet control message protocol (ICMP) Echo packet to another host, you
can see in Figure 15, page 179 that at least one of the functions, which is located in
the section from the bottom of the chart to the part of the chart that shows ICMP,
is probably not working. That is, the problem exists in the hardware, device
drivers, or the routing between the hosts.

Given the list of commands and components that are tested by the ping
command, you can check to determine whether each is functioning properly.
When ping indicates no response, you must check to ensure that hyroute
and ifconfig commands are set up to configure the given interface correctly.
The problem can range from the network interface not being enabled (that is,
ifconfig was never executed to initialize the interface), to an error in the
actual networking hardware.

After the problem is isolated to higher-level software, an increased amount of
debugging information is available. Because each higher-level network service
consists of a client program that is communicating with a server, another level
of investigation is required to determine whether the problem exists on the
client or the server side of the connection. The information provided in the
documentation that accompanies the hardware can offer additional information
to further isolate the problem.

For security issues, see Section 2.6, page 211.

180 S–2304–10011

TCP/IP [2]

2.4.2.2 Monitoring and Controlling System Changes

Because any change in a component on the network increases the probability that
a problem will occur, it is important to monitor any network changes. It is also
important to ensure, whenever possible, that any change made to any component
on the network can be reversed. In this way, problems that are introduced by
network changes can be resolved quickly.

For example, assume that users begin to encounter problems when they use
telnet to access the Cray system. If you do not know what change occurred in
the network, you must begin resolving the problem by trying to determine which
component introduced the problem.

The task of resolving the problem can be simplified if changes can be reversed.
Assume that you know that the telnet daemon on the Cray system was
changed in the upgrade to a new bugfix release of the UNICOS system. If the
previous version of the daemon was not deleted in the upgrade, you can replace
the new version of the daemon with the old one and determine whether the
problem disappears. If this corrects the situation, the appropriate analyst should
be contacted to fix the current version of the daemon.

2.4.2.3 Isolating the Failing Component

When a network service is in use, several components are interacting with each
other. These components can be grouped as follows:

• Components that comprise the networking software, such as routing, flow
control, and so on

• Components that provide the physical connection, such as hardware and
device drivers

• Components that provide the user interface, such as server and client
programs

When attempting to isolate the network component that is causing a problem,
you must first identify all components that are involved. For example, when a
user uses ftp to transfer files between a front-end system and the Cray system,
all of the networking code and hardware that exists between the front-end system
and the Cray system, and also the client ftp program on the front end and the
server ftp daemon on the Cray system, are involved. From this point, you
can begin to use the various tools available to isolate the component that is
causing the problem.

S–2304–10011 181

UNICOS® Networking Facilities Administrator’s Guide

2.4.2.4 Isolating the Daemon and Client

To isolate a problem, you must first determine whether communications exist
between the Cray system and the front-end system that has the problem. A
very useful tool for determining this is ping(8). If ping is executed and shows
that no packets are being lost, you know that data can be exchanged between
the two systems, and that the problem must be in the higher-level software. If
ping indicates that packets are being lost, data is not being exchanged between
the two systems, and the problem is either in the networking software or in
the actual hardware.

If data is being exchanged between the two systems, the problem is either in the
client program or in the daemon program. One method of further isolating the
problem is to try various combinations of client programs with the daemon
program: the sequence of events that produces the problem should be tried from
various front-end systems, because each front end has a different client program.
Similarly, you can use one client program and vary the daemon programs. Then
the sequence of events that produces the problem should be tried from one
front-end system to varying remote systems.

See the client and server commands man pages for additional information.

2.4.2.5 Isolating the Hardware

Any problems that are encountered in the hardware and/or device drivers
appear in data not being delivered between the Cray system and the host that is
directly connected to the Cray system over the given physical hardware. The
following tools are useful to determine whether the hardware is functioning
properly between the Cray system and a directly connected host:

• The ping(8) command can be used to determine whether the Cray system
can communicate over the physical hardware to the host to which it is
directly connected.

• The netstat(1B) command with the -i or -iv option can be used to
determine whether packets are being sent or received on the interface or
whether errors are occurring.

• The various diagnostics that are available for the given type of hardware can
be used.

The results from using these tools can be used to determine whether the problem
is in the actual hardware or in the interface between TCP/IP and the device
drivers. If the hardware diagnostics do not function properly (see the appropriate
documentation on how to use the hardware diagnostics), the problem exists

182 S–2304–10011

TCP/IP [2]

either in the device drivers or in the actual hardware itself. To further isolate
the problem, you should consult an analyst who is familiar with the type of
hardware you are using.

If the hardware diagnostics function properly, but ping indicates 100% packet
loss, a problem exists in the interface between TCP/IP and the device drivers.
By executing ping from both the Cray system and the directly connected host,
and then reviewing the output from the netstat command, you can determine
the following:

• Whether the Cray system is sending data that is not being received by the
remote system

• Whether the remote system is sending data that is not being received by
the Cray system

• Whether the Cray or the remote host is experiencing I/O errors when
attempting to use the interface

The following items should be checked if you suspect the problem to be in the
interface between TCP/IP and the hardware:

• Whether the Cray system is sending data to the correct hardware address of
the remote host. This includes verifying that the Cray system is sending data
to the correct logical path that TCP/IP has open on the remote system.

• Whether the remote system is sending data to the correct hardware address
(including logical path) of TCP/IP on the Cray system.

• Whether the correct interface type is specified in the ifconfig(8) command.

• Whether valid mtu values are specified in the hycf file used by hyroute(8)
when configuring the interface.

• Whether the interface in the IOS is initialized.

2.4.2.6 Isolating the Networking Software

If the Cray system can communicate with the hosts that are connected directly
to its interfaces, but data is not being exchanged between the Cray system and
other systems, the problem exists in the networking software on one of the
hosts in the path between the Cray system and those remote systems. You must
identify the host that is introducing the problem. The following tools are useful
for determining whether the problem exists within TCP/IP on the Cray system
or on another host:

S–2304–10011 183

UNICOS® Networking Facilities Administrator’s Guide

• The traceroute(8) and snmproute(8) commands can be used to determine
the route that packets are taking to allow the Cray system to communicate
with the remote system.

• The netstat(1B) command can be used to determine the status of TCP/IP
on the Cray system. Use this command to view various items such as mbuf
usage, the current state of all active connections, and routing information.

• The trcollect(8) and trformat(8) commands can be used to trace packets
going into and out of the Cray system.

Using these tools will help you determine where on the network the problem
is occurring. Check the following items when you suspect that the problem is
in the networking software:

• Whether the Cray system is running short of memory (that is, netstat with
the -m option indicates that requests for memory are being denied).

• Whether a route exists from the Cray system to the remote host and from
the remote host to the Cray system.

• Whether all hosts are up on the route between the remote system and the
Cray system.

• Whether data, if any, is being exchanged between the remote system and the
Cray system.

• Whether valid mtu values are specified on the route(8) command for this
remote system.

• Whether the correct group restrictions are used on the route command for
this remote system.

• Whether the interface is configured for privileged use only with UNICOS
security (as in ifconfig admin).

2.4.3 Examples of Network Problems and Solutions

This section describes troubleshooting guidelines and shows several examples
of networking problems and approaches you can take to resolve them. The
solutions tell how the failing component is isolated and how the problem
was ultimately resolved. These examples give you some ideas in resolving
network-related problems; they do not describe a step-by-step method of
resolving problems.

184 S–2304–10011

TCP/IP [2]

2.4.3.1 Troubleshooting Guidelines

Use the following guidelines to help you troubleshoot reported problems:

• For problems with installation and configuration involving the Cray L7R, see
the Cray L7R Release Overview and Software Installation Guide.

• Understand exactly what the users are attempting to do and ask them
for the exact syntax of their commands. For example, you should have the
following information: Does the path involve a gateway? Are colons and
periods in the right places? Are binary or ASCII files being transferred? Is
case sensitivity an issue?

• Determine the remote host configuration. You must identify the operating
system of the remote host and the networking product currently being run
(because some products support a different set of protocols), identify the
types of interfaces involved, and determine whether the remote host is the
client or the server for the command.

• Determine whether the problem is specific to the local TCP/IP host or to the
remote host. For example, if the user receives the error message Connection
refused, are any of the following actions possible?

– Can you perform a telnet(1B) operation back to the local TCP/IP host
by using your Internet address?

– Can you perform a telnet operation to any other remote host on the
network?

– Can anyone else perform a telnet operation to the problem host?

– Can the remote host perform a telnet operation back to itself?

• Determine whether this is a recent or an ongoing problem.

• Determine whether changes were made to the system.

• Determine whether privilege is an issue; that is, is the command available
only to the super user (or limited to certain categories with UNICOS
security)?

The following are common problems that you might encounter:

• The remote or local interface is down.

• An incorrect address for the remote host exists in /etc/hosts.

S–2304–10011 185

UNICOS® Networking Facilities Administrator’s Guide

• There is a conflict between the Internet address specified for a remote host
in /etc/hosts and the address associated with it (as specified by the
ifconfig(8) command).

• The /etc/hosts file has duplicate entries for the host name. Because this
file is searched sequentially, the first entry is used.

• The user is not aware of case sensitivity associated with certain commands.

• Daemons are down.

• Routes were deleted or incorrectly entered with the route(8) commands.

• The gateway is down.

• The /etc/hosts.bin file is out of date.

2.4.3.2 Troubleshooting Examples

This section describes the most common problems that are encountered on the
network and provides suggestions for solving them.

2.4.3.2.1 Connection Problems

The following problems can occur when a user is trying to connect to a remote
host. In this section, the message is given (message text is shown in bold
monospace font), followed by a description of the problem, the probable cause,
and a possible solution. Some of the problems have more than one probable
cause and possible solution listed.

Note: There are several reasons for prohibiting connections with UNICOS
security. See spnet(8) for an explanation of the NAL, WAL, and IPSO map
tables and their effect on network connections. See ifconfig(8) regarding
labels on interfaces and limiting the use of an interface to privileged processes.
See "Restricting access to network interfaces," Section 2.6.3.4, page 219, for
more details of these restrictions.

Connection closed by remote host

Problem:

A user has established a connection to a remote host, and the connection closes
before the user logs out.

Cause:

186 S–2304–10011

TCP/IP [2]

This usually occurs because the remote host performed a shutdown and severed
the connection, or the user process for the associated daemon was terminated.

Solution:

Use the ping(8) command to determine whether the host is running. Determine
whether the remote host is down by contacting the host network administrator. If
the host is not down, use telnet(1B) to reestablish the connection.

Connection refused

Problem:

Users cannot connect to a remote host. The remote host is up, and the interface is
up, but a connection cannot be established.

Several possible causes and solutions for the problem follow.

Cause:

The wrong port number for the program is listed in the /etc/services file on
the local or the remote host.

Solution:

Check the protocol’s port number in the network services file (/etc/services)
on the local host. It must agree with the port number shown in the default
network services file (see an example of a network services file on page 36). If
these numbers match, ask the network administrator on the remote host to
perform the same check. Assume that the result of the check is as follows:

&Network services, Internet style

#

telnet 25/tcp

The telnet daemon should have port number 23 instead of 25; therefore,
the /etc/services file that is in error must be edited accordingly. The
/etc/services data file should always keep the standard protocol port
numbers. When the client program is started (that is, a user initiates a command),
it opens /etc/services, obtains a port number, and looks for a daemon
program that is listening on that remote host port.

When the daemon program is started (at boot time or when the network
administrator starts it separately), the daemon opens /etc/services, obtains a
port number, and listens for a request on that port. Therefore, if someone changes
the port number in /etc/services on the client, the client will request a port
number other than the one on which the standard daemon program is listening.

S–2304–10011 187

UNICOS® Networking Facilities Administrator’s Guide

If the daemon program is listening on a nonstandard port number, it does not
recognize a client’s request on a standard port number. A connection cannot be
established unless both port numbers agree.

If it is necessary to use a nonstandard port number (this is often done for testing),
use the following procedure to start a daemon or client program on a different
port number without interfering with the standard network programs and
daemons:

1. To start a telnet server on port 35, add another line to the
/etc/inetd.conf file, as follows:

35 stream tcp nowait root /etc/telnetd telnetd

This line enables two telnet servers, one at port 23 (default) and the other
at port 35. (You can test a trial version of telnet by enabling two telnet
servers.)

2. To connect to the telnet server on port 35, the client telnet(1) program
from a remote host issues the following commands:

telnet

telnet> open hostname 35

Now the two servers are talking because the port numbers agree. (If a server is
not invoked by inetd (for example lpd or sendmail), these commands can be
entered directly from the command line.)

In an implementer’s own programs, the port number is sometimes embedded in
the code. If this is the case, check the source code.

For information about the syntax and format of the /etc/inetd.conf file,
see Section 2.2.8.7, page 98.

Cause:

The /etc/inetd daemon is down.

Solution:

If TCP/IP users cannot connect to any of the networking services on a particular
host, contact the network administrator for the remote host to determine whether
inetd is operating.

If remote users cannot connect to the local TCP/IP host, enter the ps(1) command
with the -ae options to determine whether inetd is running. For example,

188 S–2304–10011

TCP/IP [2]

the following ps -ae output indicates that inetd is not running, because
inetd is not listed:

ps -ae

81 ? 0:00 lpd

83 ? 0:00 sendmail

The following dialog activates inetd on the TCP/IP host and verifies that
the daemon is now running:

/etc/inetd

ps -ae

81 ? 0:00 lpd

83 ? 0:00 sendmail

85 ? 0:00 inetd

Cause:

The server is not enabled by /etc/inetd.conf.

Solution:

If TCP/IP users can connect with other network services but cannot connect with
a particular service on a host, contact the network administrator for the remote
host to determine whether the daemons on the host are operating.

If remote users cannot connect to a particular service, but can connect to other
services on the local TCP/IP host, your /etc/inetd.conf file is probably not
set up correctly. Enter the netstat command with the -a option to determine
whether the remote service is running.

The following output from netstat -a verifies that the telnetd service is not
listening because telnet is not listed:

netstat -a

Active connections (including servers)

Proto Recv-Q Send-Q Local Address Foreign Address (state)

tcp 0 0 *.smtp *.* LISTEN

tcp 0 0 *.exec *.* LISTEN

tcp 0 0 *.shell *.* LISTEN

tcp 0 0 *.login *.* LISTEN

tcp 0 0 *.finger *.* LISTEN

S–2304–10011 189

UNICOS® Networking Facilities Administrator’s Guide

tcp 0 0 *.ftp *.* LISTEN

If the telnetd service is not listening, view the /etc/inetd.conf file to
determine whether the telnet service is enabled. If not, add the telnet entry
to the /etc/inetd.conf file and issue a SIGHUP signal to the inetd process.

Use netstat -a again to verify that the daemon is now running:

netstat -a

Active connections (including servers)

Proto Recv-Q Send-Q Local Address Foreign Address (state)

tcp 0 0 *.smtp *.* LISTEN

tcp 0 0 *.exec *.* LISTEN

tcp 0 0 *.shell *.* LISTEN

tcp 0 0 *.login *.* LISTEN

tcp 0 0 *.finger *.* LISTEN

tcp 0 0 *.ftp *.* LISTEN

tcp 0 0 *.telnet *.* LISTEN

Connection timed out

Problem:

The local host is trying to connect to the remote host but is not making an active
connection. The telnet program sent a packet to a specific address, but no hosts
are responding. The telnet(1B) client program times out if a connection is not
made within a certain time limit (usually between 30 and 75 seconds).

Example:

Assume that the user from the local TCP/IP host issued the following command:

telnet hostname
telnet connection timed out

Several possible causes and solutions for the problem follow.

Cause:

The remote host or network is down.

Solution:

If you suspect that the remote host or network is down, contact the network
administrator for the host and request the host’s status.

190 S–2304–10011

TCP/IP [2]

Cause:

With UNICOS security, there is not a NAL entry that authorizes access by your
host or at your security label. The remote host appears to be down.

Solution:

If you suspect that the remote host or network is down, contact the network
administrator for the host and request the host’s status.

Cause:

An incorrect Internet address is specified for the remote host.

Solution:

A conflict in the Internet address can arise from the following situations:

• A user entered an incorrect Internet address on the command line. The user
should retry the command, using the official host name or alias (to avoid
reentering an incorrect Internet address).

• A network administrator changed the Internet address of the remote host
without informing the other hosts on the network. The address associated
with the host is different from that in the local /etc/hosts table. The
network administrator for the host should verify that the address is correct.

• The local host table contains varying entries for the remote host. Only the
first entry is used, regardless of which one is correct. Therefore, if multiple
entries for a remote host appear in your /etc/hosts file, ensure that the first
one is correct and delete the others.

Cause:

There is a hardware problem.

Solution:

Check the connections between the Cray system and the network hardware. (Use
the hit(8) command to determine whether the network hardware is working.)

Note: In the Cray ML-Safe configuration of the UNICOS system, special
steps must be taken to run the hit(8) command (see General UNICOS System
Administration, for more details on non-TCP software and with UNICOS
security).

Cause:

S–2304–10011 191

UNICOS® Networking Facilities Administrator’s Guide

The remote host’s interface is down. (If the network hardware interface on the
local TCP/IP host is down, the error message Network is unreachable
appears.)

Solution:

If you suspect that the remote host’s network interface is down, contact the
network administrator and request the host’s status.

Cause:

Nonexistent or incorrect routes are set up.

Solution:

If you suspect that the remote host’s route(8) commands are configured
incorrectly, contact the network administrator and request the host’s status. If the
route entry on the local TCP/IP host is at fault, the error message Network
is unreachable appears.

Login incorrect

Problem:

A user is attempting to issue the rlogin(1B) command and receives the error
message Login incorrect.

Cause:

The error message is returned from the remote host because the user entered
an invalid user name or password for the host. When an invalid user name
is specified, or an autologin is impossible because /etc/hosts.equiv or
$HOME/.rhosts is not set up to allow an autologin, the user receives a prompt
for a login and password.

Solutions:

• Set up the /etc/hosts.equiv or $HOME/.rhosts file correctly so that
the user is not prompted for a password. See Section 2.2.5.3, page 37, and
Section 2.2.11.2, page 121, for more information.

• Users must know their valid accounts and passwords on the remote hosts.

The .netrc file not correct mode

Problem:

192 S–2304–10011

TCP/IP [2]

A user attempts to use ftp(1B) with autologin to a remote host. The user’s
$HOME/.netrc file is set up properly with machine, username, and password
entries, but the error message is returned, and ftp aborts.

Cause:

The file has read permissions set for someone other than the owner. Because of
the sensitivity of information in $HOME/.netrc, the $HOME/.netrc file should
be accessible only to the owner.

Example:

The following permissions are incorrect:

-rw-r--r-- 1 peter other 24 Dec 26 14:14 /usr/peter/.netrc

Solution:

Change the access mode of the .netrc file to 600, as follows:

Example:

chmod 600 /u2/peter/.netrc

The following dialog verifies that the mode was changed:

ls -la .netrc

-rw------- 1 peter other 24 Dec 26 14:14 /usr/peter/.netrc

Network is unreachable

Problem:

The user attempts to connect to a host outside the local area network (LAN) and
cannot establish the connection. Both hosts are known to be up.

Cause:

• The local network hardware interface is down. If the remote interface is
down, the error message Connection refused is returned.

• The local network hardware interface is up, but the Internet address
associated with it is incorrect. The interface is on a network that is different
from the one for which it was intended.

• The route was deleted for the local interface.

• A route was not set up for the destination host.

S–2304–10011 193

UNICOS® Networking Facilities Administrator’s Guide

• An incorrect route was set up for the destination host.

• The configuration file specified for /etc/hyroute does not properly map
Internet addresses to hosts, or it does not properly list gateways to other
low-speed channels.

Solution:

1. If users cannot perform a telnet(1B) operation back to themselves (using
the local host name rather than loopback), the problem is in the interface.

Example:

User peter on crayhost issues the following command:

telnet crayhost

Trying.....

network is unreachable

Enter the netstat command with the -i option to determine whether the
local interface board is up, as follows:

netstat -i

Name Mtu Network Address Ipkts Ierrs Opkts Oerrs Collis

np0* 1500 twgnet crayhost 59803 0 45458 0 0

lo0 1536 Loopback localhost 5601 0 5601 0 0

The asterisk following np0 indicates that the interface is down. Use the
ifconfig(8) command to initialize the interface, as follows:

ifconfig np0 crayhost up

The following output from netstat -i verifies that the interface is up:

netstat -i

Name Mtu Network Address Ipkts Ierrs Opkts Oerrs Collis

np0 1500 twgnet crayhost 59803 0 45458 0 0

lo0 1536 Loopback localhost 5601 0 5601 0 0

Try again to perform a telnet operation back to the local host. If you are
unsuccessful, check the hyroute(8) command in /etc/netstart. The
hyroute command should always be run before ifconfig.

Determine the name of the configuration file that is specified on the hyroute
command line and examine the file. Ensure that the correct network

194 S–2304–10011

TCP/IP [2]

hardware address for the user’s host interface is properly mapped to the
user’s host name. Make any necessary corrections and try again to perform
a telnet(1B) operation back to the local host.

2. If users can perform a telnet(1B) operation to themselves, but not to
anyone else on the local network, verify the address of the local interface.

Example:

User peter is on crayhost (local network 32) and is trying to perform a
telnet operation to cray2, as follows:

telnet cray2

Trying ...

network is unreachable

Enter the netstat -ni command:

netstat -ni

Name Mtu Network Address Ipkts Ierrs Opkts Oerrs Collis

np0 1500 31 31.0.18.121 1373 0 753 0 0

lo0 4608 127 127.0.0.1 394 0 394 0 0

Although peter thought his network hardware interface was configured on
network 32, it was actually configured on network 31. Therefore, peter
must perform the following steps:

First check the Internet address in the /etc/hosts table for the interface.
The following dialog shows that crayhost was set to an incorrect address:

cat /etc/hosts

31.0.18.121 crayhost

32.0.0.2 cray2

Change the Internet address in this host file, and reassign the new address to
the interface, using the following ifconfig(8) command (first ensure that
you change the Internet address in the /etc/hosts file). Verify by using
netstat -ni. The dialog follows:

ifconfig np0 down

ifconfig np0 crayhost up

Name Mtu Network Address Ipkts Ierrs Opkts Oerrs Collis

np0 1500 32 32.0.18.121 1373 0 753 0 0

S–2304–10011 195

UNICOS® Networking Facilities Administrator’s Guide

lo0 4608 127 127.0.0.1 394 0 394 0 0

If the host table appears to be correct, check the ifconfig command in
/etc/netstart. This command should use the official host name instead
of the Internet address.

A common error occurs when users add their official host name to the
loopback line (127.0.0.1). When they initialize the network, their interface
board is assigned to 127.0.0.1 rather than to the intended Internet address
in /etc/hosts.

Try again to perform a telnet(1B) operation to a host on the local network.

3. If users can perform a telnet(1B) operation to themselves and to anyone
on the local network, but not to a host on another network, the route is
the problem.

For example, peter is on network 32 (local host crayhost) and wants to
perform a telnet operation to cray3 on network 68.

Enter netstat -nr to verify the following routes that are set up, as follows:

netstat -nr

Routing tables

Destination Gateway Flags Refs Use Interface

32 32.0.18.121 UG 4 1129 np1

127 127.0.0.1 U 0 0 lo0

This route table shows that peter can get to only networks 32 and 127
(loopback). peter must set up a route for network 68. For example, if host
kit on his network were the gateway to network 68, peter would add the
route as shown in the following example.

route add net 68 kit

netstat -nr

Routing tables

Destination Gateway Flags Refs Use Interface

68 32.0.0.4 UG 0 354 np0

32 32.0.18.121 UG 4 1129 np0

127 127.0.0.1 U 0 0 lo0

Because kit is the gateway to network 68, it contains two addresses: one for
network 68, and one for local network 32. Because crayhost is on network

196 S–2304–10011

TCP/IP [2]

32, the gateway host address that should be used is the same as that of
crayhost (for example, 32.0.0.4).

When multiple gateways are involved, another problem occurs with routes.
Then you must determine which intermediate gateway is set up with
improper routes.

If the fault does not lie with the routing commands, determine the name of
the configuration file invoked by the hyroute(8) command, and examine the
file. Ensure that the remote host has a gateway configured for it, and that
the correct hardware address for the gateway has been properly mapped to
its host name. Make any necessary corrections and try again to perform a
telnet(1B) operation to the remote host.

Ruserok: permission denied

Problem:

A user is trying to use the rsh(1), remsh(1B), rcp(1), or rlogin(1B) command
and receives the error message.

Example:

User peter on crayhost attempts a remote shell (rsh or remsh) command on
a given host through sue ’s account, and issues the following command:

$ rsh hostname -l sue who

ruserok: permission denied

Several possible causes and solutions follow:

Cause:

The $HOME/.rhosts file on the remote host does not exist or is not set up
to allow access to the user.

Example:

User sue’s $HOME/.rhosts file is not set up to allow peter to use her account;
the contents of her $HOME/.rhosts file are as follows:

crayhost sally george

In this example, sue has authorized access for sally and george, but not
for peter.

Solution:

S–2304–10011 197

UNICOS® Networking Facilities Administrator’s Guide

Create or update the $HOME/.rhosts file on the remote host to allow access.

Example:

User sue ’s $HOME/.rhosts file should be modified as follows:

crayhost sally george peter

Cause:

The $HOME/.rhosts file on the remote host is not owned by the user who
owns $HOME.

Example:

User sue ’s $HOME/.rhosts file is owned by anne, as shown in the following
ls(1) output:

$ ls -l .rhosts

-rw------- 1 anne users 22 Dec 16 15:09 .rhosts

Solution:

The super user must change the owner of the $HOME/.rhosts file to the owner
of $HOME.

Example:

The super user uses the chown(1) utility to change the file’s ownership, as
follows:

chown sue .rhosts

ls -l .rhosts

-rw------- 1 sue users 22 Dec 16 15:09 .rhosts

Cause:

The host name is not specified.

Example:

Host birch has two names corresponding to two IP addresses. The
$HOME/.rhosts file should include both names to ensure a name that matches
the address used is found.

Cause:

The $HOME/.rhosts file on the remote host is publicly writable.

198 S–2304–10011

TCP/IP [2]

Example:

Other users can modify user sue’s $HOME/.rhosts file, as the following ls
output shows:

$ ls -l .rhosts

-rw-rw-rw- 1 sue users 22 Dec 16 15:09 .rhosts

Solution:

Change the permissions on the $HOME/.rhosts file to 600.

Example:

Use the chmod(1) utility to change the file’s permissions, as follows:

$ chmod 600 .rhosts

$ ls -l .rhosts

-rw------- 1 sue users 22 Dec 16 15:09 .rhosts

Unknown host

Problem:

A user tries to connect to another host and receives the error message. This
error is generated from the client side.

Example:

ftp otherhost
hostname: Unknown host.

ftp>

Cause:

There is an invalid entry in /etc/hosts. Each host to which the user wants to
connect must have a valid entry in the local hosts file unless the user specifies
the Internet address of the destination host. The remote host does not need an
entry for the user in the hosts file, because the IP header contains the source
address.

Solution:

Check the entry in /etc/hosts for the host name to which the user is trying to
connect. Ensure that no comment indicator (#) precedes the entry.

Problem starting up /etc/netperf

S–2304–10011 199

UNICOS® Networking Facilities Administrator’s Guide

Problem:

The user cannot start netperf(8).

Several possible causes and solutions follow.

Cause:

The display workstation does not support the X Window System (X) server;
consequently, the following message is displayed, indicating that the X server
is not enabled:

Connection refused

Solution:

You must run netperf on a bit map display workstation that supports X.

Cause:

The setting of the DISPLAY environment variable (after the user logs on to the
Cray system) does not specify the displaying workstation.

Solution:

Set the DISPLAY environment variable, as follows:

setenv DISPLAY myworkstation:0

Ensure that the displaying workstation has the Cray system in its Xhosts list,
which is a list of the hosts that can display X output.

2.4.3.2.2 Sendmail Problems

This section discusses error messages that can occur when a user is trying to use
the sendmail facility. It offers guidelines for analyzing and resolving the error
message problems.

Host unknown

A user attempts to send email from the Cray system, and the email is returned as
undeliverable. This problem started only recently. The following is an example of
a message returned by the system:

>From root Thu May 24 07:45 GMT 1990

Return-Path: <MAILER-DAEMON>

Received: by myhost.domain.name

id AA07406; 5.61/CRI-7.0; Thu, 24 May 90 02:45:18 -0500

200 S–2304–10011

TCP/IP [2]

Date: Thu, 24 May 90 02:45:18 -0500

From: Mail Delivery Subsystem <MAILER-DAEMON>

Full-Name: Mail Delivery Subsystem

Message-Id: <9005240745.AA07406@myhost.domain.name>

Subject: Returned mail: Host unknown

To: yourid

----- Transcript of session follows -----

550 yourid@yourhost... Host unknown

----- Unsent message follows -----

Received: by myhost.domain.name

id AA07404; 5.61/CRI-7.0; Thu, 24 May 90 02:45:18 -0500

Date: Thu, 24 May 90 02:45:18 -0500

From: John Doe <yourid>

Full-Name: John Doe

Message-Id: <9005240745.AA07404@myhost.domain.name>

To: yourid@yourhost

This is the message I wanted to send to you.

The Host unknown message indicates that sendmail could not find the name
yourhost in the table of host names. This table provides the mapping of names
to Internet addresses.

Using the preceding information, you can conclude that one of the following
problems exists:

• The sendmail program contains an error.

• The sendmail.cf file is not configured properly.

• The routine that performs the host mapping function (/etc/hosts or the
name server, depending on which one your site is using) is not correct, which
causes the output that is returned by gethostbyname(3) to be in error.

The reason for this conclusion is that these are the only components involved in
determining valid host names. The part of the sendmail program that creates
destination addresses is suspected because the destination address cannot be
found. The process of resolving valid host names is suspected because the error
message indicates that the host name is unknown.

To isolate the cause of this problem, look at the changes that are made to these
components on the Cray system. For this example, assume that you have
upgraded the version of TCP/IP that is running, you have changed from using

S–2304–10011 201

UNICOS® Networking Facilities Administrator’s Guide

the /etc/hosts file to using the name server, and you have changed the
sendmail configuration file.

First, check to determine whether the problem was introduced by the
change from the /etc/hosts file to the name server. To test this possibility,
you must go back to using /etc/hosts. Because the existence of the
/etc/hosts.usenamed file indicates that the name server is being used,
delete this file.

Next, attempt to send a test message to yourid@yourhost. If the email is
delivered to yourid@yourhost, the /etc/hosts file is not in error.

Using this information, you can conclude that the problem is either with the
method that sendmail used to interface with the name server or with the name
server itself. Change back to the name server, and look at the tools available
to assist in debugging the name server. The program nslookup(1) is a tool
that queries the name server and displays the results. Following is a sample
nslookup dialog:

prompt> nslookup

Default Server: myhost.domain.name

Address: 128.162.75.1

> yourhost

Server: myhost.domain.name

Address: 128.162.75.1

Name: yourhost.domain.name

Address: 128.162.154.12

> ^D

prompt>

The output from nslookup indicates that the name server does know about host
yourhost. Therefore, the problem must be with the method that sendmail
used to interface with the name server. To determine the host name that
sendmail is using when communicating with the name server, execute the
following:

prompt> /usr/lib/sendmail -bt

ADDRESS TEST MODE

Enter <ruleset> <address>

> 0 yourid@yourhost

rewrite: ruleset 3 input: "yourid" "@" "yourhost"

rewrite: ruleset 8 input: "yourid" "@" "yourhost"

202 S–2304–10011

TCP/IP [2]

rewrite: ruleset 8 returns: "yourid" "@" "yourhost"

rewrite: ruleset 3 returns: "yourid" "<" "@" "yourhost" ">"

rewrite: ruleset 0 input: "yourid" "<" "@" "yourhost" ">"

rewrite: ruleset 3 input: "yourid" "@" "yourhost"

rewrite: ruleset 8 input: "yourid" "@" "yourhost"

rewrite: ruleset 8 returns: "yourid" "@" "yourhost"

rewrite: ruleset 3 returns: "yourid" "<" "@" "yourhost" ">"

rewrite: ruleset 0 returns: "^V" "tcp" "^W" "yourhost" "^X" "yourid" "@" "yourhost"

> ^D

prompt

The output shows that sendmail attempts to establish a TCP/IP connection
with host yourhost (that is, the name following "^W"). This appears to be
correct because yourhost is known to the name server. At this point, all you
know is that sendmail is using the alias yourhost when it queries the name
server, rather than using the official host name (yourhost.domain.name) that
is displayed in the output from nslookup.

Next, look at the sendmail.cf file, and find the rule that produces the results
returned by ruleset 0, as follows:

R$*<@$+>$* $#tcp $@$2 $:$1@$2

The results returned by ruleset 0 are indicated on the right side of this rule.
For example, tcp indicates a TCP/IP connection, shown as "^V" "tcp" in
the output; $2 represents the token that indicates the destination host’s name,
shown as "^W" "yourhost" in the output; and $1@$2 represents the token
that indicates the recipient’s email address, shown as "^X" "yourid" "@"
"yourhost" in the output. The character strings $1 and $2 represent the tokens
that are created by the left side of the rule.

To ensure that sendmail always uses the official host name, change the rule to
the following:

R$*<@$+>$* $#tcp $@$2.$D $:$1@$2.$D

After making this change to the configuration file, you can send email addressed
to yourid@yourhost, and it now works properly.

Cannot reply to e-mail originating from the Cray

A user attempts to reply to email received from a user on the Cray system,
and the reply is returned as undeliverable. This problem started to occur only
recently.

S–2304–10011 203

UNICOS® Networking Facilities Administrator’s Guide

Using this information, you can conclude that one of the following problems
exists:

• The sendmail program that exists on the Cray system contains an error.

• The sendmail program is not configured properly on the Cray system.

• The official host name for the Cray system is not being used.

• The sendmail program on the remote system contains an error.

• The sendmail program is not configured properly on the remote system.

• The routine that performs the host mapping function (/etc/hosts or the
name server, depending on which one your site is using) is not correct, which
causes the output that is returned by gethostbyname(3) to be in error.

The problem must be either with the method the Cray system uses to build
its return address or with the method the remote system uses to return the
email. (However, communication might be denied because of UNICOS security
label policies.)

To isolate the cause of this problem, look at the changes that have been made
in the components on the Cray system. For this example, assume that the
only factor that has changed is that you now use the name server rather than
the /etc/hosts file. Currently, you do not know what has changed on the
remote system, but after you eliminate the possibility of an error in the Cray
components, you can begin to look at the remote system.

Because the sendmail program is not changed, and this problem is new, you can
assume that the sendmail program that exists on the Cray system is not in error.
The next step is to determine which address this sendmail program is using as
its return address. Either the official host name for the Cray system is not set up
correctly, or the configuration file incorrectly constructs the name it is given.

The following example is a sendmail debugging tool that produces the
sequence of events that sendmail executes when it delivers email to the remote
system:

prompt> /usr/lib/sendmail -d8.99 -v yourid@yourhost

To: yourid@yourhost

From: u3441

asdf

u3441@yourhost... Connecting to yourhost.domain.name (tcp)...

220 yourhost.domain.name Sendmail 3.2/CRI-3.12 ready at Thu, 24 May 90 04:54:16 CDT

>>> HELO myhost.domain.name.domain.name

250 yourhost.domain.name Hello myhost.domain.name.domain.name, pleased to meet you

204 S–2304–10011

TCP/IP [2]

>>> MAIL From:<u3441@myhost.domain.name.domain.name>

250 <u3441@myhost.domain.name.domain.name>... Sender ok

>>> RCPT To:<u3441@yourhost.domain.name>

250 <u3441@yourhost.domain.name>... Recipient ok

>>> DATA

354 Enter mail, end with "." on a line by itself

>>> .

250 Mail accepted

>>> QUIT

221 yourhost.domain.name delivering mail

u3441@yourhost... Sent

prompt>

The -d option produces debug messages; the -v option requests a verbose
execution method.

Note: When using this method to execute sendmail, you must enter the To:
and From: lines, and the message text you are sending.

In the preceding output, the Cray host (that is, myhost) is telling
the remote system (that is, yourhost) that its host name is actually
myhost.domain.name.domain.name. This cannot be correct, because the
domain name should appear only once. To determine whether the problem is in
the method used to configure sendmail (that is, in the sendmail.cf file), you
must first determine the method sendmail uses to construct this return address.

Then you can either consult the sendmail documentation or contact an analyst
who is familiar with sendmail. Either way, sendmail uses the $j macro to
define the local host’s name, and thus, its return address. So you must locate the
line in the sendmail.cf file that defines how $j is to be constructed. Locate the
following line in the sendmail.cf file:

Dj$w.$D

The values that are returned from the $w and $D macros are concatenated with
a period (.) between them. The $w macro is the official host name of the local
host, and the $D macro is the local domain name.

To determine the name that is being returned as the official host name for the
Cray system, you can execute nslookup. The following is a sample session:

prompt> nslookup

Default Server: myhost.domain.name

Address: 128.162.75.1

S–2304–10011 205

UNICOS® Networking Facilities Administrator’s Guide

> myhost

Server: myhost.domain.name

Address: 128.162.75.1

Name: myhost.domain.name

Address: 128.162.75.1

> ^D

prompt>

The $w macro returns myhostname.domain.name, which causes the sendmail
configuration file to add incorrectly the value of $D (that is, the domain name) to
the official host name.

Therefore, to resolve this problem, change the construction of the local host name
in the sendmail.cf file by changing the line Dj$w.$D to Dj$w.

2.5 Trace Facility

This section describes the trace facility, which retrieves trace information from
the TCP/IP and NFS kernel codes, and stores trace information in a file. This
information can be formatted and used for program analysis and debugging.

A socket(2) system call that has the address family AF_TRACE creates a trace
socket. A connect(2) system call, with appropriate options, connects this trace
socket to the entries that are to be traced. The following types of parameters are
accepted:

Parameter types Description

Generic Connects to a generic protocol or system layer, and
all trace entries from that layer are sent to the user.
The type field in the sockaddr_trace structure
specifies generic; the mask field determines the
layer. The following layers are supported:

if, ip, rawip, icmp, tcp, udp, nfs, idmap

TCP specific Connects to a specific TCP connection (defined
by foreign and local addresses and ports). The
sockaddr_trace type field specifies tcp; the
str_in structure determines a connection.

UDP specific Connects to a specific UDP connection. The
options are similar to TCP specific tracing.

206 S–2304–10011

TCP/IP [2]

Interface specific Connects to a specific interface. The interface
name is provided in the if_str field of the
sockaddr_trace structure.

Because they might be needed to trace multiple entries at one time, multiple
connects are allowed on the trace socket. It is also possible for more than one
user to trace one entry.

After the socket is created and connections are specified, three mbufs are queued
up on the socket. Then the entities to be traced begin posting trace entries into
these mbufs. When the mbuf is full, it is queued onto the socket-received space.
The user can read the data by issuing a read(2) system call on the socket. The
close(2) system call frees up the socket, the mbufs, and all structures related to
the socket.

Each trace entry is prepended by a header that contains information that is used
for formatting and data verification. The header includes the following fields:

Field Description

magic Magic cookie to use for synchronization if data
is lost

str Eight-character ASCII string, or an integer that
the formatter can use

id Unique ID for each trace entry

type Type of entry (for example, if, ip, and so on)

len Length of trace entry data

subtype Used by the formatter

rtc Real-time clock value of when the trace entry is
made

For security reasons, only root is allowed to obtain trace information.
Furthermore, because of the specialized nature of this socket type, only the
following socket system calls are valid:

• socket

• connect

• read

• close

• setsockopt

S–2304–10011 207

UNICOS® Networking Facilities Administrator’s Guide

• getsockopt

2.5.1 Collecting Trace Information

The trcollect(8) command collects TCP/IP and NFS trace information from
the kernel. The syntax is as follows:

trcollect [general options] [tcp/udp/interface options][generic options]

The following general options are accepted:

-f tracefile Specifies a trace file in which trace output is
stored. Redirecting standard output to a file
has the same effect.

-b buffersize Specifies the buffer (mbuf) size for the trace socket.
Three mbufs per socket are queued. Note that the
socket receive space must be greater than three
times the buffer size. The default buffer size is
1 Kbyte.

-r recvspace Specifies the socket receive space. The default
socket receive size is 32 KB.

-s timeout Specifies a time-out on read processes. By default,
if no read occurs during the interval, after every
5 seconds the program flushes the current mbuf
from the socket queue onto the receive space.

The following TCP/IP and UDP options are accepted:

-t connectioninfo Specifies a TCP connection to be traced. The
following options are accepted for connectioninfo:

-fa faddress Specifies foreign
address.

-la laddress Specifies local
address.

-fp fport Specifies foreign
port.

-lp lport Specifies local port.

Note: Any options that are not specified are
wildcarded. At least one option is required to
trace TCP/IP connections.

208 S–2304–10011

TCP/IP [2]

-u connectioninfo Specifies a UDP connection. The connectioninfo
options are the same as those for the -t option.

-i interface Specifies an interface to be traced (for example,
-i np0 traces all entries that go through the
np0 interface).

The following generic options are accepted:

if Traces information on all interfaces.

ip Traces information in the IP layer.

tcp Traces all TCP/IP sockets in which the SO_DEBUG
flag has been set.

udp Traces all UDP sockets in which the SO_DEBUG
flag has been set.

icmp Traces information through the ICMP layer.

rawip Traces information through the rawip layer.

nfs Traces information through NFS.

idmap Traces information through the NFS ID mapping
scheme.

2.5.2 Formatting Trace Information

The trformat(8) program formats the trace information that is collected
through the trcollect(8) command. The syntax is as follows:

trformat [options] [types]

The following options are accepted:

-h Displays only the trace entry header information.
The data part of the trace entries is skipped.

-c Checks the sequences in the entries to ensure that
entries are not missing.

-f filename Specifies the trace file that is to be formatted.
Redirecting from standard input has the same
effect.

-v Specifies that detailed information is to be printed.

-x Specifies that trace entry data is to be printed in
hexadecimal format.

S–2304–10011 209

UNICOS® Networking Facilities Administrator’s Guide

-n Specifies that addresses are to be displayed in dot
format, and that ports are to be displayed as
integers.

-m hex_bitmap Specifies the types of ID map entries to be
formatted.

-s hex_bitmap Specifies the types of NFS entries to be formatted.

The type option lets the user select entries of the specified type. The options for
this field are the same as for the generic options field of the trcollect command.

2.5.3 Obtaining Trace Socket Status

You can use the netstat(1B) command to view the status of a trace socket.
netstat -f trace displays all active trace sockets. Following is an example of
output from this command:

Active trace connections

Trace.ID Recv-Q State Msize Que Rds/Flsh Tracing

133 0 CONN 1024 3 11/0 ip(generic)

Following is a description of the fields:

Field Description

Trace.ID Current trace ID.

Recv-Q Amount of data (in bytes) in the socket receive
queue.

State Connection state. CONN indicates that a socket is
connected to a tracing entity.

Msize Size of the mbufs queued on the trace socket.

Que Mbuf queue length.

Rds Number of reads (not including flushes) on the
socket.

Flsh Number of times buffers were flushed from the
socket queue to the receive buffer space.

Tracing Shows data that is currently being traced by
this socket.

210 S–2304–10011

TCP/IP [2]

2.6 Security Administration Basics

This section presents information about security administration that you must
know to administer the Cray system on an ML-Safe network. The following
aspects are described:

• Network security functional overview

• Identification and authentication

• Network security configuration

• Error messages

It is assumed that the reader is familiar with UNICOS security and the
Cray ML-Safe configuration of the UNICOS system. For details of security
administration, see General UNICOS System Administration.

2.6.1 Network Security Functional Overview

To provide secure communications, the Cray ML-Safe configuration of the
UNICOS system and UNICOS security require hosts and networks to be defined
in a network access list (NAL), thereby providing the security administrator or a
system administrator a means to control networked accesses. The NAL describes
the security labeling values associated with each remote host. This information is
used to enforce the mandatory access policy on a network address basis.

UNICOS ML-Safe network operation is based upon protection at two levels: the
interface to the network and the application interface.

Two mechanisms work at the network-interface level. These are the NAL and
network interface label ranges. The NAL provides the system with detailed
information about the capabilities of all remote hosts and networks with which
the UNICOS system operates. The network-interface-label ranges ensure that
communication is carried out only over network media that provide the correct
level of assurance in accordance with the sensitivity of the data being transferred.

Each incoming or outgoing Internet Protocol (IP) datagram has a security label
associated with it. This label can be implicit (as defined in the NAL) or explicit
(as transmitted in IP security options). The datagram label is used to enforce the
restrictions imposed by the NAL and the network-interface-label range and to
ensure that data is delivered only to applications with the proper active label.

For incoming and outgoing datagrams, the datagram label must fall within the
label range of the network interface that is used and within the label range
specified in the NAL entry associated with the remote host.

S–2304–10011 211

UNICOS® Networking Facilities Administrator’s Guide

At the application level, the UNICOS ML-Safe network services provide
protection by requiring positive identification and authentication for all network
transactions (except those that provide public information). In addition, the
workstation access list (WAL) optionally controls application access based on
user ID and/or group ID and the host from which access is desired.

Incoming and outgoing security violations and integrity errors are recorded
in the security log, and Internet control message protocol (ICMP) responses
are issued in accordance with the security rules defined in the Request For
Comments (RFCs) for the particular IP security option.

The spnet(8) command manipulates the NAL, WAL, and Internet Protocol
Security Options (IPSO) mapping tables in kernel memory. A properly
authorized user may add, delete, and list entries in all three tables. The
/etc/config/spnet.conf file is the repository for the contents of these tables.
The spnet.conf file is a free-form text file, which the site administrator can
maintain by using the installation tool or by editing directly.

2.6.1.1 Network Access List (NAL)

The network access list (NAL) contains information about remote hosts (or
networks) that are authorized to connect to the local UNICOS system to perform
sensitive processing or to access sensitive information. The NAL resides in kernel
memory and is maintained through the use of the spnet command.

Each NAL entry can apply to either a single host or an entire network. The
structure of the NAL is similar to the structure of the routing tables in the kernel.
When a search for a host is performed, an exact match is tried first. If no exact
match is found, it searches the network portion of the address. Finally, if no
network entry is found, it uses the optional default NAL entry.

Each entry in the NAL consists of the following information about the remote
host:

• Minimum security label

• Maximum security label

• Send and receive message authorization modes

• Security class

• Security option support (IP basic security option (BSO), Common IP Security
Option (CIPSO), or none)

– Domain of interpretation for CIPSO

212 S–2304–10011

TCP/IP [2]

– Protection authority (in and out) for IP BSO

The spnet(8) command creates and maintains the NAL, which is stored in the
/etc/config/spnet.conf file.

If you are using the UNICOS ICMS, you can set up the NAL by using the
Configure system -> Multilevel security (MLS) configuration
-> Network security options -> MLS Network access list (NAL)
sets menu.

2.6.1.2 IPSO Mapping Entries

With UNICOS security or the Cray ML-Safe configuration of the UNICOS
system, using connections that support Internet Protocol Security Options (IPSO),
every incoming and outgoing packet has its security label information translated
through a designated IPSO map. The map is designated in the NAL entry for the
remote host on the network to which the UNICOS security or the Cray ML-Safe
configuration of the UNICOS system is communicating.

To conserve space in the IP protocol, security levels and compartments are
represented by numbers rather than by their ASCII equivalent. IPSO maps are
translation tables that allow the security administrator to control the numeric
network representations and to adjust for differences in the implementation of
labels among hosts on the network. Every incoming and outgoing packet from
a UNICOS system to a particular host on the network has its label information
translated through a designated IPSO map.

IPSO maps are numbered and, optionally, named. The map number, known as
the Domain of Interpretation (DOI) number, is a 32-bit quantity that is included
in every IP packet. A DOI is a collection of hosts that share a common definition
of label values and meanings. The UNICOS system validates the DOI number
against the DOI value in the NAL entry for the remote host. When the IPSO
attribute in the NAL is set to basic, the DOI number is 0 implicitly. You can
use the map domain name as a convenience within an spnet input file for
associating NAL entries with maps. The UNICOS ICMS requires this name, but a
default name is generated automatically when the spnet input file is imported,
if it is missing.

When you are creating an IPSO map, you must consider the following issues:

• The host-internal numeric level values range as follows: syslow, 0 to 16,
syshigh.

• The host-internal numeric compartment values are each a power of 2 ranging
from 2**0 to 2**62.

S–2304–10011 213

UNICOS® Networking Facilities Administrator’s Guide

• The numeric network representations for levels range from 0 to 255, and
for compartments, from 0 to 65534.

• Each local level or compartment value must correspond to only one network
value.

• Each network level or compartment value must correspond to only one
local value.

• Network administrators must ensure that network-wide mappings are
nonpermuting; that is, a translation from host A to host B to host C to host A
would result in the original label.

• DOI 0 supports four levels and no compartments.

2.6.1.3 IP Security Options

An IP datagram always has an associated security label that is either implicit in
the NAL definition or is explicitly carried with the packet that uses an IP security
option in the options portion of the IP header. UNICOS security supports two
explicit labeling types: the IP basic security option (IP BSO) (defined in Internet
RFC 1108), and the Common IP Security Option (CIPSO) (defined in draft 2.2
of the Trusted Systems Interoperability Group (TSIG) document, The Common
IP Security Option).

Both of these options represent security labels in a network representation that
differs from the UNICOS internal representation. UNICOS security allows
mapping table definitions that are used to translate between the network and
host representations, and can adjust for differences in representations between
hosts.

2.6.1.3.1 IP Basic Security Option (IP BSO)

The IP BSO is limited to providing the following sensitivity levels and no
compartments:

• Unclassified

• Confidential

• Secret

• Top secret

By default, these levels map to the UNICOS levels 0, 1, 2 and 3, respectively. A
site can override this default mapping, if required (see Section 2.6.3.6.5, page 228).

214 S–2304–10011

TCP/IP [2]

The IP BSO also carries a bit mask that represents a set of protection authorities.
Network interfaces are marked with the valid protection authorities for which
data can be sent or received on that interface. The NAL entries for hosts that
use the IP BSO specify the protection authorities required on packets received
from each host and the protection authorities that will be placed on datagrams
destined for each host (see Section 2.6.3.6.3, page 223).

2.6.1.3.2 Common IP Security Option (CIPSO)

The CIPSO allows the representation of one of 256 levels and several of 65,535
compartments on each datagram. A Domain of Interpretation (DOI) identifies
a mapping from a defining authority’s level and compartment names to the
network numerical representation. A DOI is identified by a 32-bit number,
thus allowing for 232 possible DOIs.

No default mapping exists between UNICOS labels and CIPSO labels. To use
the CIPSO, you must define an IP mapping table for each DOI with which
communication is to occur, and load it into the kernel.

Each host that uses the CIPSO is identified with one particular DOI, which is
specified in the NAL (see Section 2.6.3.6.3, page 223).

2.6.1.4 Workstation Access List (WAL)

The workstation access list (WAL) provides access control authorization for
application-layer services. An entry in the WAL can apply to hosts or to an entire
network. You can also create an optional default entry.

A WAL entry consists of a list of user/group pairs and the services for which
those users and groups are allowed access. The user and/or the group can be
wildcarded. The login user ID and primary group of the subject are used to
perform WAL permission checks. First, a check is performed for the specific user
and group, or for the user and a wildcard group. If no match occurs, a check is
performed for the group. Finally, if no match has occurred, the *.* entry is used.

2.6.2 Identification and Authentication

Every subject (user) must be authenticated before being allowed access to
UNICOS system services and sensitive data. For remote access, most subject
authentications are initiated by telnetd(8) or rlogind(8), which connect to
the login(1) process or by ftpd(8), which performs user validation. The NFS
daemon conducts the authentication of subjects for NFS services. The NQS
daemon conducts the authentication of subjects for NQS services.

S–2304–10011 215

UNICOS® Networking Facilities Administrator’s Guide

2.6.2.1 Login Authentication

Each login request is based on a valid password entry (or SecurID value).
Security clearances assigned are determined by the most restrictive set that is
specified by the user database (UDB) in the /etc/udb file, the NAL, and the
network interface over which the connection is made. The subject clearances that
are granted for an authenticated user include the following:

• Active security label

• Minimum and maximum security label

When running one of the IPSOs, and when running the Cray ML-Safe
configuration of the UNICOS system, the active security label of a session
cannot be changed.

2.6.3 Network Security Configuration

This section describes the configuration operations for the UNICOS UNICOS
network security. All of the information in Section 2.2, page 22, is applicable for a
successful TCP/IP with UNICOS security enabled, and it should be read and
followed prior to the UNICOS security configuration.

2.6.3.1 UNICOS Security Configuration Guidelines

The security configuration guidelines for the UNICOS security network software
recommend that operations be performed in the following order:

1. Install the UNICOS operating system as released.

2. Install the network software as released.

3. Verify that the system operates correctly.

4. Verify the UNICOS security was installed with the default option settings.

5. Change the default options set for the UNICOS release, as necessary.

Note: The named(8) name server is not allowed under the Cray ML-Safe
configuration of the UNICOS system.

When named is used with UNICOS security, there are special considerations.
When the UNICOS system is put into multiuser mode, the spnet(8) command
defines the NAL entries that allow socket communications. It reads the text
version of the NAL from the /etc/config/spnet.conf file and translates the
host names to host addresses. The named service will not be operating at this

216 S–2304–10011

TCP/IP [2]

time because localhost sockets have not yet been allowed by a NAL entry.
This means that name-to-address translations will be done from the /etc/hosts
file (or /etc/hosts.bin, if it exists), which must be current and contain all of
the hosts named in the spnet.conf file. The same is true for networks named in
the spnet.conf file and translations from the /etc/networks files.

2.6.3.2 Network Security Options

The UNICOS security software for networks is activated when the security
feature is enabled for the UNICOS operating system. This setting is maintained
in low memory. See Section 2.6.3.6, page 222, for installation details.

Your site can alter the network security options described in the following
sections to modify certain aspects of the operation of the ML–Safe network
software. You can change these options by using the installation tool or by
editing the kernel source file config.h. If you change any of these options,
you must rebuild the UNICOS kernel.

Each configuration option is represented by a bit in the SECURE_NET_OPTIONS
macro in the config.h file. To turn on an option, the option bit is OR’ed into
SECURE_NET_OPTIONS.

Warning: When you are running the Cray ML-Safe configuration of the
UNICOS system, some of the options described in this section require specific
values. These options are noted where appropriate.

2.6.3.2.1 Strict B1 Networking: NETW_STRICT_B1

The NETW_STRICT_B1 kernel option, when enabled, requires that all IP
datagrams be unambiguously labeled. This means that hosts that do not use
IP security options cannot have differing minimum and maximum labels in
the NAL. If the system is configured as the Cray ML-Safe configuration of the
UNICOS system, this option is turned on by default and must remain on in order
to meet the requirements of the evaluation.

Note: When you are running the Cray ML-Safe configuration of the UNICOS
system, the NETW_STRICT_B1 configuration option must be turned on.

2.6.3.2.2 Multilevel Socket Compatibility: NETW_SOCK_COMPAT

The NETW_SOCK_COMPAT option, when enabled, automatically makes a socket
created by an ML-Safe process into a multilevel socket. Set this option only
if there are existing site-supplied ML–Safe processes that expect this socket
behavior. Use of this option is strongly discouraged. If the system is running the

S–2304–10011 217

UNICOS® Networking Facilities Administrator’s Guide

Cray ML-Safe configuration of the UNICOS system, this option is turned off by
default and must remain off in order to meet the requirements of the evaluation.

An ML-Safe process has PRIV_SOCKET in a privilege assignment list (PAL)
system or an ID of root in a PRIV_SU system. When the socket becomes
connected, the socket’s active label is frozen. When the socket is created, its
minimum and maximum labels are set to the process minimum and maximum
labels.

Note: When you are running the Cray ML-Safe configuration of the UNICOS
system, the NETW_SOCK_COMPAT configuration option must be turned off.

2.6.3.2.3 The r Command Compatibility: NETW_RCMD_COMPAT

The default behavior when UNICOS security is running is to require a
host to be identified in both the /etc/hosts.equiv file and the user’s
.rhosts file, and the user must have the same ID on both systems. To
operate with the traditional behavior, which requires a host to be identified
in either the /etc/hosts.equiv file or the user’s .rhosts file, set the
NETW_RCMD_COMPAT option. This option can be set by using the installation tool
or by editing the cf/config.h file.

2.6.3.3 NFS Configuration Options

Network file system (NFS) configuration options are maintained in low memory.
The options are as follows:

Option Description

NFS secure export When enabled, this option indicates that NFS is
permitted to export file systems that are labeled
with security levels and/or compartments. This
option is enabled with the UNICOS release. It is
maintained in the nfs_secure_export_ok
variable in the config.h file. A nonzero value
indicates that exporting file systems that are
labeled with security levels and/or compartments
is permitted.

NFS remote read/write Indicates that NFS is permitted to import remote
file systems in read/write mode. This option is
enabled with the UNICOS release. It is maintained
in the nfs_remote_rw_ok variable in the
config.h file. A value of 0 indicates read-only
mode; a nonzero value indicates read/write mode.

218 S–2304–10011

TCP/IP [2]

UID mapping See Section 3.1.6.8, page 264, and Section 3.1.6.9,
page 266, respectively, for details of these options.

If you are using the UNICOS ICMS to select NFS export and import
restrictions, use the Configure system -> Multilevel security (MLS)
configuration -> Network security options menu with the OK to
export unclassified data via NFS or OK to import unclassified
data via NFS selections.

2.6.3.4 Restricting Access to Network Interfaces

UNICOS security supports a configuration option for restricting access to
network interfaces to privileged processes. This option can be used to limit access
to the OWS-E, MWS, and SWS workstations. To enable this option, invoke
the /etc/ifconfig command with the admin keyword, as in the following
example. To disable, use the -admin keyword.

/etc/ifconfig np0 admin

/etc/ifconfig np0

np0: flags=2041<UP,RUNNING,ADMIN> iftype vme

inet 223.255.25.5 netmask ffffff00

level0-level16 compart 0-0777777777777777777777

Note: When you are running the Cray ML-Safe configuration of the UNICOS
system, the OWS-E interface must have the admin option set.

2.6.3.5 Labeling Network Interfaces

The network security installation process also includes setting the proper labels
on network objects such as network interfaces. When the system is up and
running, you can set these labels manually or you can use the UNICOS ICMS.
For more information, refer to Section 2.2.9.6, page 109. To perform this task in
multiuser mode, the administrator must be running as root in a PRIV_SU
system, and/or have the appropriate security category active in a PAL system.

The network interfaces are labeled with minimum and maximum security labels.

Note: System daemons must be able to access the loopback interface at any
label. Set the label range of the loopback interface the same as the system
range. When the system is configured to enforce system high/system low
labels, the label range must be syslow to syshigh.

S–2304–10011 219

UNICOS® Networking Facilities Administrator’s Guide

2.6.3.5.1 Network Interface Label

Use the following command to assign a security label to a network interface:

/etc/ifconfig ifname level min-max compart min-max

Use the following command to display the security label of a network interface:

/etc/ifconfig ifname

In the following example the security label of network interface np0 is displayed,
and the label range of the loopback interface is set:

/etc/ifconfig np0

np0: flags=41<UP,RUNNING>

inet 201.201.201.2 netmask ffffff00

level level0-syshigh compart 0x0-0x9

/etc/ifconfig lo0 level syslow-syshigh

compart 0-0777777777777777777777

2.6.3.5.2 Network Security Configuration Example

The commands typically used when installing network security are as follows:
ifconfig(8), netstat(1B), spget(1), and spset(1). This section contains
a configuration example for a UNICOS security network (see Figure 16) and
describes the installation commands that can be used. The example is UNICOS
security with several hosts connected. Assume the following information:

• The UNICOS security host is a Cray Y-MP system with a serial number of
1007.

• Hosts connected to the b-net network support the BSO.

• Hosts connected to the c-net network support the CIPSO.

Note: It is always advisable to install and verify the released UNICOS
system (with default option settings) before changing any default options.

220 S–2304–10011

TCP/IP [2]

feb fec

UNICOS MLS
system

fddi0
network
device

wsb-1 wsb-2 wsc-1 wsc-2

b-net c-net

a1-net a2-net

a11427

fddi1
network
device

Figure 16. Configuration example

To initialize the network interfaces np0 and np1, set up the
/etc/config/interface file as follows:

np0 - inet crayb netmask 0xffffff00

np1 - inet crayc netmask 0xffffff00

To establish the routes shown in the example, use the following route
commands:

/etc/route add b-net feb *** b-net traffic thru feb
/etc/route add c-net fec *** c-net traffic thru fec

To see how the network interfaces are configured, use the netstat -i
command. Following is an example of a partial display:

netstat -i

S–2304–10011 221

UNICOS® Networking Facilities Administrator’s Guide

Name Mtu Network Address

np0 32880 a1-net crayb

np1 32880 a2-net crayc

To obtain information and security labels for the network interface np0, use the
ifconfig np0 command.

To observe network route information, use the netstat -rv command.

2.6.3.6 Network Security Configuration Procedures

This section describes each of the steps you must follow for proper network
security configuration. The steps are as follows:

1. Set options.

2. Check the system label.

3. Create the NAL.

4. Create the WAL.

5. Create the label map tables.

6. Label the network interfaces.

2.6.3.6.1 Step 1 - Setting Options

If you are going to use the UNICOS system without changing the installation
options, you can skip the rest of this step and go directly to step 2.

When the UNICOS system has been installed as released and UNICOS security
has been verified to operate correctly, you can make any changes to the released
default configuration options (see Section 2.6.3.2, page 217).

You can use the UNICOS ICMS to set the configuration options through a menu
presentation. After these options have been set, the UNICOS kernel must be
rebuilt, shut down, and restarted.

If you are not using the UNICOS ICMS to set the installation options, you must
set the options by making changes to the source in the /usr/src/uts/cf.sn
/config.h file. After these options have been set in the source files, the
UNICOS kernel must be rebuilt, shut down, and restarted. When the startup
of the system is complete, proceed to the next step.

222 S–2304–10011

TCP/IP [2]

2.6.3.6.2 Step 2 - Checking the System Label

Because the system security label sets the security ranges for the UNICOS
security environment, you should understand these security values before you
label network interfaces and define the security ranges to be established for the
remote hosts in the NAL. In some network configurations it might be necessary
for ML–Safe daemons to communicate over the network (for example, when the
Data Migration Facility (DMF) operates on one host and uses storage media on
another host). In a case like this you must establish a range in the NAL and on
the interface for the communication path to allow the syshigh label. To avoid
runtime security violations, you should restrict the security label ranges applied
to network objects to be within the system boundaries. However, a range that
ends with syshigh includes all of the levels that are higher than the beginning
of the range. Because of this effect, the use of syshigh in a label range should
be minimized.

To see the current security label for UNICOS security, enter the spget -s
command. This command produces the following sample output:

spget -s

system minimum level is 0

level0

system maximum level is 16

level16

valid system compartments are 0777777777777777777777

comp24

comp39

comp63

The names associated with the levels and compartments are configured in
the site’s cf. nnnn /seclab.c file. Remember the system’s minimum and
maximum security label when you label the network interfaces and when you set
security labels for remote hosts in the NAL. Refer back to this step as necessary
when you perform subsequent steps.

2.6.3.6.3 Step 3 - Creating the NAL

Before you create the network access list (NAL), identify the hosts and networks
with which you want to communicate, and decide if you want a default entry (if
you configured the NETW_EXEMPT_NAL flag in prior releases, you will probably
want to do this). For each host or network identified, do the following:

S–2304–10011 223

UNICOS® Networking Facilities Administrator’s Guide

• Determine the host classification. The host classification designates the
capabilities and level of trust assigned to a remote host. The class value
is one of the following: D, C1, C2, B1, B2, B3 and A1. By default, a host
is classified as B1.

Note: The class is used only as an indication of function, it does not
necessarily indicate the evaluated rating of the host.

Hosts classified as D are not trusted to perform any of the functions of
mandatory access control (MAC), discretionary access control (DAC),
auditing, or identification and authentication (I&A). However, a class D
host must be administratively or physically protected such that it does not
receive packets for another destination, and it must ensure that the correct
source address is placed in all outgoing packets. A class D host can operate at
only a single security label.

Hosts classified as C1 satisfy the class D requirements and also provide I &
A and DAC functionality. Despite the additional functionality, the UNICOS
system treats class C1 and class D hosts the same, because C1 hosts do not
perform auditing.

Hosts classified as C2 satisfy the class D and class C1 requirements and also
provide audit functionality. In addition, a C2 host must restrict TCP and UDP
reserved port numbers (those less than 1024) to ML–Safe users with the
required privilege. The UNICOS system allows the relegation of I&A to C2
hosts by allowing assertion of identity on these reserved ports. You might
choose this class for workstations even when they do not provide auditing,
so that they can provide I&A information to the UNICOS system. However,
this classification is not allowed with the Cray ML-Safe configuration of
the UNICOS system.

Note: For r-series commands, such as rlogin, rcp, and rsh, the host must
be listed as class C2 or higher to establish a connection. This is also true for
remote line printing through lpd, and for NFS clients.

Hosts classified as B1, B2, B3 or A1 satisfy all the D, C1, and C2 requirements
and also enforce MAC policy. Thus, a host designated with B1, B2, B3, or A1
classification is allowed to have minimum and maximum labels that differ.
If the NETW_STRICT_B1 configuration is selected, such a host must use an
IP security option.

• Determine whether IP security options are to be used. Either the BSO or the
CIPSO can be used. In the case of the BSO, the allowed (incoming) and
required (outgoing) protection authorities must be identified. For CIPSO,
the DOI must be identified.

224 S–2304–10011

TCP/IP [2]

• Determine the appropriate label range. For multilabel systems (the minimum
and maximum labels are not the same), the class must be B1 or higher,
and an IP security option must be used (BSO or CIPSO). The security
option is not required when the ‘Strict B1 evaluation rules’
option is not configured. This option is found in the Configure system
-> Multilevel security (MLS) configuration -> Network
security options menu in the installation tool.

Note: The localhost NAL entry is an exception. It must have a label
range that is the same as the system range and a class equal to B1, but it
must not have an IP security option. When the system is configured to
enforce system high and low security labels, the label range for local host
must be syslow to syshigh.

• Determine the access modes. Specifying send allows TCP connections from
the local system to the remote system to complete. Specifying receive
allows TCP connections from the remote system to the local system to
complete. If set to none, no communication is allowed with the remote host.
If omitted, the mode attribute defaults to send and receive.

The NAL configuration data is located in the /etc/config/spnet.conf
file. It is identified by the nal keyword, followed by the NAL data, enclosed
in curly braces. The following code shows an example of the NAL portion of
the spnet.conf file:

nal {

ip host localhost {

class = B1;

min label = syslow;

max label = syshigh, 0777777777777777777777;

}

ip net default {

min label = 0;

max label = 0;

class = D;

}

ip net basic-net { !default class = B1

min label = 0;

max label = top_secret;

ipso = basic;

auth-in = 0x8;!DOE

auth-out = 0x8;!DOE

}

S–2304–10011 225

UNICOS® Networking Facilities Administrator’s Guide

ip net cipso-net { !default class = B1

min label = 0;

max label = level16, software, accounting, engineering;

ipso = cipso;

doi = 1;

}

ip non-cipso-host { !default ipso = none

min label = 0;

max label = 0;

class = C2;

}

}

In the preceding example, two local networks use IP security options. One uses
BSO and the other uses CIPSO. A default entry is defined, which allows any
other hosts to access the UNICOS system at level 0 only. In addition, one host
on the cipso-net network non-cipso-host does not use the cipso option;
therefore, a host entry is defined with the minimum and maximum labels of 0.

The range of the local host entry must be equivalent to the system range. The
range should be from syslow to syshigh on systems with the SECURE_MAC
configuration parameter set.

NAL entries become active when they are loaded at start-up time, or they are
loaded manually by using the spnet add -nal command.

If you are using the UNICOS ICMS, you can set up the NAL by using the
Configure system -> Multilevel security (MLS) definitions ->
MLS Network security options -> Network Protocol Security
Configuration -> MLS Network Authorization List (NAL) Sets
menu.

For more information on the NAL configuration and the operation of the spnet
command, see the spnet(8) man page.

2.6.3.6.4 Step 4 - Creating the WAL

The workstation access list (WAL) controls application access authorization by
host, user, and group identification.

The WAL configuration data is located in the /etc/config/spnet.conf
file. It is identified by the keyword wal, followed by the WAL data, enclosed

226 S–2304–10011

TCP/IP [2]

in curly braces. The following code shows an example of the WAL portion of
the spnet.conf file:

wal {

ip net default {

. = all;

}

ip net network-a {

0.* = none;

fred.* = ftp;

. = all;

}

ip host-b {

. = none;

sally.* = login, ftp;

*.red = ftp;

*.blue = login;

}

}

In this example, a default entry, a network entry, and a host entry are defined.
By default, all users in all groups are granted access to all WAL-controlled
applications. On the network called network-a, user root is not allowed
access, user fred is allowed only ftp access, and everyone else is allowed access
to all WAL-controlled applications. For host host-b, user sally is allowed
login and ftp access, users in group red are allowed ftp access, users in
group blue are allowed login access, and everyone else is denied access.

WAL entries become active when they are loaded at start-up time, or when the
spnet add -wal command is used to load them manually.

If you are using the UNICOS ICMS, you can set up the WAL by using the
Configure system -> Multilevel security (MLS) configuration
-> MLS Network security Definitions -> Network Protocol
Security Configuration-> MLS Workstation access list (WAL)
Sets menu.

For more information on the WAL configuration and the operation of the spnet
command, see the spnet(8) man page.

S–2304–10011 227

UNICOS® Networking Facilities Administrator’s Guide

2.6.3.6.5 Step 5 - Creating Translation Tables

This section describes creation of translation tables for hosts that support the IP
basic security option (BSO) and for hosts that support CIPSO. The IP security
option mapping tables are defined in the /etc/config/spnet.conf file.
Multiple maps might be defined. They are identified by the keyword map,
followed by map definitions, inside curly braces.

The following code shows an example of map definitions in the
/etc/config/spnet.conf file:

map {

basic {

levels {

0 = 0;

1 = 1;

2 = 2;

3 = 3;

}

}

cipso 1 {

levels {

public = 0;

private = 1;

proprietary = 2;

syslow = 063;

syshigh = 066;

}

compartments {

accounting = 1;

software = 2;

engineering = 3;

}

}

}

In this example, two maps are defined. The first map defines the mapping for
the basic security option. For the purpose of defining the map, network levels 0,
1, 2, and 3 correspond to the following basic levels, respectively: unclassified,
confidential, secret, and top secret.

The cipso map definition defines a mapping for CIPSO domain of interpretation
1.

228 S–2304–10011

TCP/IP [2]

Translation tables become active when they are loaded at start-up time, or when
the spnet add -map command is used to load them manually.

If you are using the UNICOS ICMS, you can set up the cipso map by using the
Configure system -> Multilevel security (MLS) configuration
-> MLS Network security Definitions -> Network Protocol
Security Configuration -> CIPSO Map Domain Sets menu.

For more information on map configuration and the operation of the spnet
command, see the spnet(8) man page.

2.6.3.6.6 Step 6 - Labeling the Network Interfaces

After UNICOS security is installed and operating, the security label of the
network interfaces can be changed or set.

To set a security label on the network interfaces lo0, np0, and np1 in the
configuration example shown in Figure 16, page 221, enter the following
commands:

/etc/ifconfig lo0 level syslow-syshigh compart 0-777777777777777777777

/etc/ifconfig np0 crayb netmask 0xffffff00 level 0-6 compart 0-7

/etc/ifconfig np1 crayc netmask 0xffffff00 level 0-syshigh compart 0-777

To verify the security label settings, display the security label of a network
interface by entering the ifconfig ifname command, as follows:

/etc/ifconfig np0

np0: flags=41<UP,RUNNING>

inet 128.162.82.1 netmask ffffff00

level0-level6 compart 0x0-0x7

2.6.3.7 inetd Operation

The inetd operation has been modified so that it can be used safely in a
UNICOS security environment. inetd opens each listen socket as a multilabel
socket capable of receiving requests at any label that is valid for the user that
is requesting a service. When a TCP connection request or UDP datagram is
received, inetd forks the server at the same label as the incoming connection or
datagram, and passes it as a single-label socket at that label.

On a system that uses privilege assignment lists (PALs), inetd leaves the
system category active. ML–Safe servers should have a PAL that grants them
the necessary privilege.

S–2304–10011 229

UNICOS® Networking Facilities Administrator’s Guide

Warning: When you are running the Cray ML-Safe configuration of the
UNICOS system, you cannot add ML–Safe servers to /etc/inetd.conf
other than those supplied.

2.6.4 Error Messages

This section lists the error messages that are presented to the user when security
violations are detected. The conditions that can produce the error messages are
summarized, and the general corrective measures are stated.

These error messages can be presented for error conditions other than network
security violations; therefore, this section also describes a method for searching
for IP audit records in the security log. The administrator must analyze the
security log entries to determine the actual security violation.

Finally, this section describes the steps you can use to isolate and correct the
problems reported. These network security debugging guidelines should be
applied in addition to those in Section 2.4, page 168.

2.6.4.1 Network Access Violations

The security violations detected for network access operations are always
recorded in the security log and reported to the user with an error message. For
the detected security violations, the administrator should further investigate
the error messages reported to the user either by analyzing the security log or
by checking for the conditions that are associated with the error message. To
obtain the exact violation condition, the administrator must use the reduce(8)
command to extract the actual network security violation. See Section 2.6.4.2,
page 233, for more information on using this command.

Note: UNICOS NFS does not record all detected security violations in the
security log.

The error messages presented to the user are as follows:

• Connection timed out

• Host is unreachable

• Login incorrect

• Network is unreachable

• Permission denied

230 S–2304–10011

TCP/IP [2]

• Software caused connection abort

This section describes the possible security violations that could generate each
message.

2.6.4.1.1 Connection timed out

This message is usually displayed at the remote host when UNICOS security
detects a security violation with the incoming request from the remote host. This
message is presented when one of the following security violation conditions
are sensed:

• The security label of the incoming datagram does not fall within the security
label range of the UNICOS security host.

• An entry for the remote host does not exist in the NAL.

• The remote host specified in the NAL is not authorized to receive datagrams
from this UNICOS system.

• The remote connection requires an IP security option and the incoming IP
datagram does not contain the IP security option.

• A network-security-label to host-security-label translation error occurred.

• The remote host requires the CIPSO and a translation table is not available on
UNICOS security for the remote host’s domain of interpretation.

The connection timed out responses for the most common commands
are as follows:

ftp sn7007

ftp: connect: Connection timed out

ping sn7007

sn7007 not responding

rlogin sn131

sn131: Connection timed out

telnet sn7007

Trying 128.162.82.1

telnet: Unable to connect to remote host:

Connection timed out

S–2304–10011 231

UNICOS® Networking Facilities Administrator’s Guide

The Connection timed out message usually indicates a problem with the
NAL entry for the remote host when it attempts to access the UNICOS security
host. Your first isolation step should be to check the NAL values for the remote
host. The security log for netip record type might also provide additional
information.

2.6.4.1.2 Host is unreachable

This message can be displayed when routing by group ID fails.

2.6.4.1.3 Login incorrect

This message is issued by a user validation process (for example, ftp or login)
when it detects that user access from the given remote host or to the requested
service is not authorized in the WAL. Some of the network services that require
authorization are ftp and telnet.

For a UNICOS system, the WAL can be used to allow or to disallow the use of the
following services:

• ftp

• login (telnet, rlogin, and rsh without a command)

• nfs

• nqs

• rexec

• rsh

The other conditions that initiate the Login incorrect message are as follows:

• Login is denied because of a WAL violation

• Login process request to set the user’s security values (through the setusrv
system call) failed

• Maximum number of attempts to login were exceeded

2.6.4.1.4 Network is unreachable

This message can be displayed when the security label of incoming datagram
does not match the network interface.

232 S–2304–10011

TCP/IP [2]

This message is usually issued when an IP datagram has a security label that
does not fit within the security label range for the network interface. Your first
isolation step should be to check the security labels of the network interfaces.

2.6.4.1.5 Permission denied

This error message is typically issued because of an error or security violation
detected for an outgoing transmission request from a UNICOS security process; it
is displayed when one of the following security violations is detected:

• The security label of the outgoing request does not fit within the security label
range of the remote host in the NAL or on the interface.

• An entry for the remote host does not exist in the NAL.

• The remote host specified in the NAL is not authorized to receive datagrams
from this UNICOS system.

• A security label mapping error was detected for an outgoing datagram.

The Permission denied message usually indicates a problem with the NAL
entry for the remote host that the UNICOS security host process is attempting
to access. Your first isolation step should be to check the NAL values for the
remote host.

2.6.4.1.6 Software caused connection abort

This message is displayed when the security label of the incoming datagram is
not within the security label range of the socket connection.

2.6.4.2 reduce(8) Command

The reduce(8) command provides detailed information on network security
violations. For information about the security log, see the description of the
UNICOS security feature in General UNICOS System Administration.

2.6.4.3 Problem Isolation Guidelines

This section describes solutions for problems that occur because of changes in
the UNICOS security configuration or inconsistencies in the applied security
privileges.

S–2304–10011 233

UNICOS® Networking Facilities Administrator’s Guide

2.6.4.3.1 Session Hangs

When an interactive or batch session hangs, you receive no response to
commands. This situation can occur when the NAL entries defined for your
remote host were altered after your session started. If a NAL entry for your
remote host changed to exclude your session’s label from the entry’s range, your
UNICOS session no longer communicates with your remote host or workstation.

The session hang condition can also occur if network interfaces are altered such
that the UNICOS process can no longer access the network.

2.6.4.3.2 Security Log Entries

The security log contains records of security violations detected by the kernel.
Use the reduce command to recover network security violations recorded in the
security log. For more security log information and examples, see the description
of the UNICOS security feature in General UNICOS System Administration.

234 S–2304–10011

Network File System (NFS) [3]

The UNICOS network file system (UNICOS NFS) is a Cray software product
that lets users share directories and files across a network of machines. Users
of UNICOS NFS can use standard UNICOS I/O system calls, commands, and
permission controls to access files from any file system. Similarly, other users of
NFS can make use of UNICOS file systems from anywhere in the local network
environment. UNICOS NFS can be used in diverse administrative environments
through the use of the ID mapping facility. This facility is on by default in the
UNICOS kernel. The user interface to UNICOS NFS is transparent.

UNICOS NFS supports version 2 and version 3 of the NFS protocol. However, in
addition to the UNICOS license, a customer must purchase a separate contractual
license for ONC+ to obtain a FLEXlm key. Without a FLEXlm key, a customer
cannot access the NFS version 3 technology within UNICOS.

UNICOS NFS uses a server/client system to provide access to files on the
network. A server is any machine that allows a part of its local disk space to
be exported (made available for mounting on a host machine). A client is any
machine that makes a request for an exported file system. When a user of
UNICOS issues an I/O call (such as read(2), write(2), or create(2)) for a file
that resides on a file system mounted by NFS, the call is transmitted to the
server machine. When the server receives the request, it performs the indicated
operation. For read or write requests, the indicated data is returned to the client
or written to disk, respectively. This processing is transparent to users, and it
appears that the file resides on a disk drive that is local to the UNICOS operating
system.

UNICOS NFS supports Bulk Data Service (BDS), a nonstandard NFS extension.
BDS improves large file transfer-speeds by providing direct I/O capabilities over
the network for files that 100 MB or larger. For more information about BDS, see
the bds(8) man page.

Both BDS Client and BDS Server are automatically shipped with UNICOS. A
customer must contractually license BDS Client and/or BDS Server as separate
items, each with their own separate license fee to obtain the FLEXlm keys
to access BDS.

The following sections explain various aspects of UNICOS NFS:

• Section 3.1, page 236, provides system administrators with necessary
information on activating and configuring NFS, setting up servers and clients,
ID mapping, and security.

S–2304–10011 235

UNICOS® Networking Facilities Administrator’s Guide

• Section 3.2, page 274, describes some common problems facing system
administrators and suggests solutions.

• Section 3.3, page 287, describes the test suite that provides for early detection
of UNICOS NFS problems.

• Section 3.4, page 293, describes factors that affect NFS performance, and
methods for obtaining performance figures.

3.1 Administering UNICOS NFS

UNICOS NFS supports both NFS server and client capabilities. UNICOS NFS
servers allow remote systems to mount local UNICOS file systems or directories;
UNICOS NFS clients allow remote file systems or directories to be mounted
locally. Users can then access and manipulate files in the usual way, subject
to usual permission checks. The fact that parts of a file system might reside
on various machines around the network is transparent to users. As system
administrator, you control the use of these file systems. The following sections
provide the information you need to activate, configure, and maintain NFS.

3.1.1 Activating NFS

If you are upgrading from UNICOS 9.0 and using the conversion utility, the NFS
feature is on or off, depending on whether the feature was turned on or off in
your UNICOS 9.0 configuration. Otherwise, the NFS feature is off by default.

If you are using the UNICOS Installation Configuration Menu System (ICMS) for
your configuration, consult the Configure System -> Major software
configuration menu for the menu item that turns on the NFS feature.

If you are not using the UNICOS ICMS for your configuration, you can turn on
the NFS feature by modifying the /etc/config/config.mh file. Change the
line that reads

#define CONFIG_NFS 0

to read

#define CONFIG_NFS 1

After you make this change, follow the rest of the system build procedures
outlined in the UNICOS System Configuration Using ICMS.

236 S–2304–10011

Network File System (NFS) [3]

3.1.2 Choosing a Configuration Method

The following sections describe three methods you can use to configure UNICOS
NFS. Details of NFS server and client configuration are described in Section
3.1.3, page 238, and Section 3.1.4, page 241, respectively. Details of ID map
configuration are described in Section 3.1.6, page 246.

3.1.2.1 UNICOS ICMS Configuration Method

You can use the UNICOS ICMS to configure NFS servers and clients.

Note: The UNICOS ICMS does not support configuration of NFS ID mapping.
Refer to Section 3.1.6, page 246, for details of ID mapping.

As you use the UNICOS ICMS, the scripts and files that the UNICOS system
supplies are updated for you.

Following is a description of the submenus that you can use to configure an
NFS server:

• Configure system -> Network configuration -> NFS
configuration

This submenu lets you configure your system as an NFS server and create an
/etc/exports file.

• Configure system -> System daemons configuration ->
System daemons table

This submenu configures daemons that are required for an NFS server by
updating the /etc/config/daemons file.

Following is a description of the submenus that you can use to configure an
NFS client:

• Configure system -> Network configuration -> NFS
configuration

This submenu lets you configure your system as an NFS client and create
automount maps.

• Configure system -> File System (fstab) Configuration
-> NFS file systems

This submenu lets you configure the /etc/fstab file with a list of static NFS
mounts. The /etc/mountnfs file that is called within the /etc/nfsstart
script can mount these NFS file systems or directories at system startup.

S–2304–10011 237

UNICOS® Networking Facilities Administrator’s Guide

• Configure system -> System daemons configuration

This submenu lets you configure daemons required for an NFS client by
updating the /etc/config/daemons file.

The help menus provide further assistance for using the UNICOS ICMS to
configure NFS.

3.1.2.2 Manual Configuration Method

You can manually configure NFS by using the scripts and files that are supplied
with the UNICOS operating system. The /etc/nfsstart script, which is called
from the /etc/netstart script, is the script that allows manual configuration.
After you have activated UNICOS NFS (see Section 3.1.1, page 236, for details of
activating NFS), the /etc/nfsstart script performs the following actions:

1. Executes the /etc/uidmaps/Set.domains script, which either enables
or disables ID mapping. See Section 3.1.6, page 246, for details on creating
this and other ID mapping scripts.

2. Calls the /etc/sdaemon script to start the necessary NFS daemons in the
/etc/config/daemons file. You must manually update this file. All input
required for this file is described in Section 3.1.3, page 238, and Section
3.1.4, page 241.

3. Mounts selected remote NFS file systems or directories by calling the
/etc/mountnfs script. You must manually update this script. All input
required for this script is described in Section 3.1.4, page 241.

3.1.2.3 Local Script and File Configuration

You can configure UNICOS NFS by using local scripts and files. Details of this
method of configuration are given in Section 3.1.3, page 238, Section 3.1.4, page
241, and Section 3.1.6, page 246.

3.1.3 Setting up a UNICOS NFS Server

A UNICOS NFS server is a machine that can export its own file systems and
directories to another machine (an NFS client). Following are the steps required
to configure your system as an NFS server:

1. Export file systems and directories

238 S–2304–10011

Network File System (NFS) [3]

As super user, enter the mount-point path name of the file systems and
directory hierarchies that you want to export in the /etc/exports file. (See
exports(5) for the file format details.)

For example, to export /usr/src/mybin to machine7 and machine9,
and to export /usr/man to all machines, add the following lines to the
/etc/exports file (or use the UNICOS ICMS):

/usr/src/mybin -access=machine7:machine9

/usr/man

As shown, if no machines are specified for a file system, the file system is
exported globally (that is, any machine can mount it).

The exportfs(8) command activates export entries in the /etc/exports
files. By default, the exportfs command reads the /etc/exports file and
puts an entry for each valid export in the /etc/xtab file. The mountd(8)
command reads the /etc/xtab file to determine access rights.

The exportfs command is usually run during system startup from an entry
within the NFS group of the /etc/config/daemons file. However, if a
change is made to the /etc/exports file while the system is running, the
exportfs command must be executed to make the changes effective. For
example, the following command activates or changes a single export in
the /etc/exports file:

exportfs pathname

The pathname variable specifies the full path name of the file system or
directory to be exported. Any options associated with this export are read
from the /etc/exports file.

The /etc/exports file must have unique entries for each file system; if
entries are repeated, only the last entry that is read is valid. For example,
consider the following commands:

/tmp orion, stardust

/tmp starship

In this example, only starship has access to /tmp.

2. Set up NFS server daemons

The following daemons are required for an NFS server (this list assumes that
the /etc/portmap daemon for RPC was already started through the TCP
group in the /etc/config/daemons file):

S–2304–10011 239

UNICOS® Networking Facilities Administrator’s Guide

Daemon Description

mountd The NFS mount daemon handles incoming
NFS mount requests from NFS clients. When
the NFS mount request is received, mountd
reads the /etc/xtab file to determine
which file systems and directories are
available to export and to determine the NFS
client systems to which these files can be
exported (see the preceding step regarding
/etc/xtab). The mountd daemon is usually
run during system startup from an entry in the
NFS group of the /etc/config/daemons
file.

nfsd The NFS daemons handle NFS client file
access requests after an NFS file system
is mounted successfully. Typically, four
nfsd daemons are run; these daemons
are usually started during system startup
from an entry within the NFS group of the
/etc/config/daemons file, and it has no
options. Following is a sample command that
shows a request for four processes:

/etc/nfsd 4

cnfsd The cnfsd (Cray nfsd) daemon starts NFS
server daemons, which use a modified NFS
protocol that allows protocol extensions and
eliminates most eXternal Data Representation
(XDR) processing. One advantage of using
cnfsd is that it allows Cray systems to
communicate with other Cray systems with
64-bit file offsets; nfsd uses the NFS protocol
standard of 32-bit file offsets. cnfsd does
not provide a significant performance
enhancement over nfsd; cnfsd is intended as
an NFS functionality enhancement between
Cray systems.

The cnfsd daemon is intended for use only
between Cray systems. For additional NFS
communication to systems that are not
Cray systems, nfsd must also be started in
conjunction with cnfsd.

240 S–2304–10011

Network File System (NFS) [3]

pcnfsd This daemon is required on an NFS server
if any NFS clients are personal computers
(PCs). Because PC users do not have
user IDs, it is necessary to perform special
user authentication when an NFS request
comes from them. The pcnfsd daemon
runs continuously on an NFS server
system to service PC NFS requests for user
authentication and print spooling.

kerbd The kerbd daemon is required if AUTH_KERB
NFS is configured. The daemon handles
requests from the kernel NFS and sends
requests to and from the Kerberos key
distribution center (KDC). kerbd also maps
Kerberos user names into local user and
group IDs.

Note: Remote Procedure Call (RPC) server applications (for example, mountd
and nfsd), communicate with portmapper on the last local Internet interface
that is up and running (usually loopback). With UNICOS security, the
application must be allowed to connect with a socket on this interface. This
is done by adding an explicit NAL entry in the spnet.conf file for the
corresponding host name or a default entry. You can use the netstat -iv
command to determine the IP address of the last up and running interface
connection.

3.1.4 Setting up a UNICOS NFS Client

A UNICOS NFS client is a machine that can mount remote file systems and
directories from another machine (an NFS server). To configure your system as
an NFS client, the system must gain access to an exported file system and files
must be set up to perform desired mounts during system startup. Automounter
maps can also be set up for dynamic mounting. The following sections describe
these procedures.

3.1.4.1 Mounting a Remote File System

To gain access to an exported file system, an NFS client simply mounts the file
system as if it were located on a local disk. By using the mount(8) command,
you can mount any exported file system or directory on your machine if you can
reach its NFS server over the network and if your machine is included in the
/etc/exports list for that file system, or the file system is exported globally.

S–2304–10011 241

UNICOS® Networking Facilities Administrator’s Guide

Using the automount(8) command, you can cause specified file systems to be
automatically and transparently mounted whenever a file or directory within
that file system is opened (see Section 3.1.4.2, page 244, for more details on
automatic mounting).

After a file system is mounted, it is accessible to users as if it were a local
subdirectory.

To mount a file system or directory from an NFS server, become the super user
or activate one of the administrative categories with UNICOS security, and
type the mount(8) command with the desired options. For example, to mount
the man pages from remote machine elvis on the local directory /usr/man,
you can type the following:

mount -t NFS -o bg,soft,rsize=8192,wsize=8192,nreadah=2 \

elvis:/usr/pubs/man /usr/man

The bg argument indicates that if the NFS mount fails, the NFS mount request
should be tried repeatedly in the background. Without either the bg or the soft
arguments, failed NFS mount requests are retried up to the maximum number
of retries specified (or set by default) on the mount command; these retries
occur in the foreground.

The soft argument indicates that if the server does not respond to either an
NFS mount request or an NFS request to an already mounted file system, the
requested operation fails with an error. This argument prevents processes on the
client from hanging while waiting for the NFS server to respond.

It is strongly recommended that all NFS mounts from a Cray system be soft
mounts because hard mounts, indicated by the hard argument of the mount
command, continue to try either mounting the NFS file system or accessing that
mounted system in the foreground until the NFS server responds to the NFS
request. This can cause processes and especially system startups to hang until the
NFS server responds. It is further recommended that you avoid mounting NFS
file systems directly on the root directory or any other system-critical directory.

The intr argument can be used with the hard argument at mount time, which
lets you interrupt a process that is hung while waiting for the NFS server
to respond.

The rsize and wsize arguments set the read and write buffer sizes,
respectively, to the specified number of bytes. The default value for both rsize
and wsize is 8192 (8 Kbytes). This value is adequate for most NFS servers.
However, when the server is also a Cray system running the UNICOS system,
setting rsize and wsize to 32768 improves NFS performance. The nreadah
argument sets the number of rsize asynchronous read-aheads. The default

242 S–2304–10011

Network File System (NFS) [3]

value of this argument is 1. See Section 3.4, page 293, for more details on rsize
and wsize.

At system startup, you can mount frequently used file systems and directories
by placing mount entries for them in the /etc/fstab file (see fstab(5))
and invoking the /etc/mountnfs script from within /etc/nfsstart.
The /etc/nfsstart script is called from the /etc/netstart script. The
/etc/mountnfs file could contain, for example, the following lines:

mount /usr2 &

mount /usr/man &

The corresponding entries for the NFS file systems in the /etc/fstab file
might be as follows:

titan:/usr2 /usr2 NFS bg,soft,rw,rsize=8192,wsize=8192,nosuid

venus:/usr/man /usr/man NFS soft,nosuid

If no fstab entry exists, the /etc/mountnfs file could contain the following
lines:

mount -t NFS -o bg,soft,rw,rsize=8192,wsize=8192,nosuid titan:/usr2 /usr2 &

mount -t NFS -o soft,nosuid venus:/usr/man /usr/man &

Note: Performing NFS mounts in the background (this is done by starting
/etc/nfsstart in the background or by using the & shown in the preceding
example) ensures that the remainder of system startup completes in a timely
manner, even if the remote NFS server systems do not respond to the mount
requests.

The biod client daemon handles asynchronous block I/O. The biod daemon
attempts to collect contiguous data from system buffers and write them to the
network in wsize length sections.

On Cray systems, the biod(8) daemon enables asynchronous write-behind and
read-ahead processes that can significantly improve read and write performance.
The biod daemon is usually run during system startup from an entry within the
NFS group of the /etc/config/daemons file, and it has no options, except the
number of biod daemons to start. For optimal performance, the number of biod
daemons should never exceed the total number of static client handles. Following
is a sample command that shows a request for four processes:

/etc/biod 4

S–2304–10011 243

UNICOS® Networking Facilities Administrator’s Guide

3.1.4.2 Automount Facility

Note: The use of the automount facility is not supported with the Cray
ML-Safe configuration of the UNICOS system.

The automount facility automatically and transparently mounts and unmounts
an NFS file system as it becomes necessary. When a user on an NFS client
machine running the automount facility enters a command that accesses a file
or directory that belongs to a remote file system, the remote file system is
automatically mounted. When the automatically mounted remote file system
has not been accessed within a period of time, the file system is unmounted
automatically.

The automount(8) command does not consult the /etc/fstab file for a list
of remote file systems or directories to mount, but instead, has its own set of
configuration files known as maps. Therefore, to enable the automount facility,
you must first create map files. See automount for the format of these files
and a description of the command.

The automount daemon is required if the NFS client will be running the
automounter. The automount command is usually run during system startup
from an entry within the NFS group of the /etc/config/daemons file.
Following is a sample automount command:

/etc/automount -m -f /etc/auto/auto.master

This is a typical automount command because the UNICOS system requires the
-m option and the use of an automount master file.

Note: Any automount options listed within the indirect map entries override
all options listed in the master map for that entry. If you are using automount
when running ID mapping on an NFS client, you must define loopback or
localhost as an ID mapping domain.

3.1.4.3 Protocol between Cray Systems

When processing is between two Cray systems, you can use a modified NFS
protocol (which the cnfsd(8) daemon uses) to reduce the CPU time required to
process an NFS request. The removal of XDR processing makes this reduction
possible. You can access much larger files across NFS with this protocol than
with the standard NFS protocol because all file size and file offset fields within
the modified protocol are a full 64 bits. Another advantage of using cnfsd is
that it uses 32 Kbytes read and write sizes; nfsd defaults to 8 Kbytes. You can
use the modified NFS protocol between Cray systems by specifying the -o
option and cray operand with the mount(8) command on the Cray NFS client

244 S–2304–10011

Network File System (NFS) [3]

when mounting a Cray NFS server. Also, you must start at least one cnfsd
process on the Cray NFS server. See mount(8) and cnfsd (see nfsd(8)) for
more information.

3.1.5 Typical UNICOS NFS Layout

The following output from two mount(8) commands demonstrates the layout of
UNICOS NFS in a typical environment, showing both the Cray client and a client
that is not a Cray client. The first example is from a Cray system called cray2.
It shows the local file systems and the NFS mounted file system /nfs/titan
(exported from server titan). The output from the mount operation is followed
by a listing of the mounted file system.

Example 1: cray2 as client, titan as server, as seen from the cray2 system:

cray2% /etc/mount

/ on /dev/dsk/root read/write on Mon Apr 4 06:55:07 1988

/usr on /dev/dsk/usr read/write on Mon Apr 4 06:55:35 1988

/u on /dev/dsk/u read/write on Mon Apr 4 06:55:35 1988

/nfs/titan on titan:/usr/titan read/write,rsize=8192,wsize=8192 on Mon

Apr 4 06:55:45 1988

cray2% ls -l /nfs/titan

total 39

drwxr-x--- 22 btk network 1536 Mar 31 10:16 btk

drwxr-xr-x 9 common cray2 512 Feb 1 08:32 X

drwxr-xr-x 37 mer netqa 2560 Mar 31 15:50 mer

drwxr-xr-x 5 prb cray2 3072 Apr 1 22:51 prb

drwxr-xr-x 23 wtg appl 1024 Mar 23 13:32 wtg

Example 2: titan as client, cray2 as server, as seen from the titan system:

titan% /etc/mount

/dev/xy0a on / type 4.2 (rw)

/dev/xy1c on /usr.MC68020/titan type 4.2 (rw)

cray2:/u on /usr/cray2/u type nfs (rw,soft,bg)

titan% ls -lg /usr/cray2/u

total 32

drwxr-x--x 26 btk secure 1715 Jun 10 1984 btk

drwxrwxr-x 59 common os 1089 Jan 7 1987 X

drwxr-xr-x 41 mer netqa 3134 Apr 13 16:45 mer

drwxr-xr-x 12 pfh starter 557 Jun 2 1986 pfh

S–2304–10011 245

UNICOS® Networking Facilities Administrator’s Guide

drwxr-x--- 2 slevy msc 512 Feb 18 2:11 slevy

drwxr-xr-x 35 wtg network 544 Apr 4 10:06 wtg

3.1.6 ID Mapping

UNICOS NFS includes an ID mapping facility that allows the use of NFS in
diverse administrative environments. Traditional NFS environments make use of
the Sun Microsystems network information service (NIS) distributed look-up
service to provide for various network management functions. The user space
that NIS provides is flat; that is, a given ID number always refers to the same user
or group. This flat user space is necessary because NFS transmits user and group
identifiers in binary form, and it provides no translation services for these values.

Cray systems, however, are often shared by many different administrative
environments, making the creation of a single administrative space for user and
group identification technically or organizationally difficult, if not impossible. A
given ID number can refer to different users or groups in different administrative
environments. To meet the needs of these environments, ID mapping was
developed.

ID maps contain an equivalent remote ID for each local ID in a map. There are
two types of ID maps: user ID maps and group ID maps. For every user ID map,
a corresponding group ID map exists.

ID mapping domains associate Internet addresses with a particular pair of user
and group ID maps. When an NFS request is sent to or received from an address
within an ID mapping domain, the pair of ID maps associated with that ID
mapping domain can be used to replace the IDs in the request.

ID mapping can also be used to control access to the local Cray system through
NFS by allowing requests only from certain Internet addresses, or by restricting
permissions for certain users at these addresses.

Figure 17 is a diagram of the ID mapping function as it relates to UNICOS NFS
system interfaces.

246 S–2304–10011

Network File System (NFS) [3]

Client Server

System
call I/F

File system
switch

Network
file system

UNICOS
file system

RPC/XDR

UDP/IP

Network

ID mapping location

File system
switch

Network
file system

UNICOS
file system

RPC/XDR

UDP/IP

Network

a10209

Figure 17. System interfaces and ID mapping

3.1.6.1 Disabling ID Mapping

ID mapping in the UNICOS kernel is on by default. The nfsidmap(8) command
disables the use of ID mapping at run time. NFS ID mapping is not required

S–2304–10011 247

UNICOS® Networking Facilities Administrator’s Guide

when the Cray system and all other systems using NFS use the same user
ID space.

To disable NFS ID mapping, create an executable
/etc/uidmaps/Set.domains script that contains the following
line:

/etc/uidmaps/nfsidmap -d

3.1.6.2 Configuring and Using ID Mapping

Configuring and using NFS ID mapping is a site-dependent function. However,
you should always use the following basic steps to configure NFS ID mapping:

1. Obtain the passwd(5) and group(5) files from each remote administrative
environment for which IDs will be mapped.

2. Use the passwd and group files from the local Cray system, along with
those obtained from the remote systems, to create the user and group ID map
files between the remote domains and the local Cray system.

3. Load the ID maps into the kernel, and define the ID mapping domains.

If a remote administrative environment is the same as that on the local Cray
machine, the creation of an ID map for use between these machines (steps 1 and
2) is not necessary unless you are running with UNICOS security. With UNICOS
security, ID maps are required for all remote environments.

The /etc/uidmaps directory exists to store ID mapping commands and
associated files for ID mapping. In an environment without UNICOS security,
the password and group files can be collected into this directory and processed.
This directory also contains the ID mapping commands, the administrative shell
scripts, and files that contain the constructed ID maps that will be loaded into
the kernel. In a UNICOS security environment, the /etc/uidmaps directory
is created with a syshigh label to protect the commands and maps after they
are created. A directory with a syshigh label is unsuitable for remote copies
from the network, so a separate directory must be created for collecting password
and group files from remote systems.

There are two /etc/uidmaps subdirectories. The /etc/uidmaps/users
directory should contain all passwd files from the remote administrative
domains that are being mapped, and any exceptions files (explained in
"Exceptions file," page Section 3.1.6.4.4, page 253). The /etc/uidmaps/groups
directory should contain all group files from the remote administrative domains
that are being mapped, and any exceptions files.

248 S–2304–10011

Network File System (NFS) [3]

3.1.6.3 Network Description Example

The example used throughout this section shows how to configure and use the
UNICOS NFS ID mapping facility. The procedures (shell scripts) shown can
be used on all Cray machines in the example. Although the sequence of the
commands shown is common to any Cray system using ID mapping, the specific
contents of the procedures might vary according to site standards.

Assume the following network consisting of three Cray machines configured to
perform various types of ID mapping, a single machine (not a Cray machine)
with its own administrative domain, and several workstation networks using
different NIS domains:

Name Description

groucho A Cray machine with its own administrative
domain.

chico A Cray machine with its own administrative
domain.

harpo A Cray machine with its own administrative
domain.

zeppo A different type of machine with its own
administrative domain; that is, the assigning of
login names and group names (and binary values
associated with those names) occurs separately
from those operations on other machines on the
network. This machine is also running a version of
UNIX, rather than another operating system.

nfl A network of workstations that share a single
NIS domain for both the /etc/passwd and
/etc/group files. The name nfl was chosen
because nfl is a file server that is the NIS master
for the password and group NIS databases.

disney A network of workstations similar to nfl, but
with separate administration using NIS.

Each machine name is the host name of a representative machine for its
administrative domain. It is also the name that is chosen for each ID mapping
domain.

S–2304–10011 249

UNICOS® Networking Facilities Administrator’s Guide

3.1.6.4 Setup, Creation, and Maintenance of ID Map Files Example

User and group ID map files are built from the passwd and group files of the
local Cray system and of each remote administrative domain. Mappings are
created for each user or group on the Cray system that matches a user or group
on a remote administrative domain. Each mapping is placed in either a user
ID map file or a group ID map file.

ID map files are built by using the nfsmerge(8) utility. The Get.domains and
Merge.domains scripts control the creation of user maps. These scripts, which
you must configure for local systems, correspond to steps 1 and 2 of configuring
ID mapping domains, as described in Section 3.1.6.2, page 248. For these two
steps, it is not necessary to run a kernel with ID mapping configured.

Note: You must manually supervise the running of Get.domains and
Merge.domains to ensure that they actually work, because the scripts
contain no error handling of their own. If they are run automatically and they
encounter errors, the resulting user ID maps might not be valid or secure.

3.1.6.4.1 ID Map File Setup

The Get.domains script copies passwd and group files from the local system
and from a representative of each remote administrative domain to the local
system. You are free to use any utilities or mechanisms to create these files.
Usually, rsh(1), rcp(1), or ftp(1B) is used to copy files from the remote systems.
(If rsh(1) or rcp(1) is used, remote execution from the local Cray machine must
be allowed on all remote machines.) If a remote machine has an operating system
other than UNIX or one of its derivatives, the administrator of that machine must
construct the equivalent passwd and group files to enable the nfsmerge(8)
utility to create an ID map file.

The following is an example Get.domains script, which should be run
whenever you are notified that users or groups were added to any of the remote
domains:

Note: If your site uses ID mapping, root (uid equals 0) must be contained in
the passwd(5) files to be used for the mapping.

The Get.domains script is historically stored at /etc/uidmaps/. This script is
unique to each site’s administration policies.

% cat /etc/uidmaps/Get.domains

#

Script to collect and sort password and

250 S–2304–10011

Network File System (NFS) [3]

group files from the various domains referenced.

#

This for loop collects information from non-NIS hosts

#

USERS=/etc/uidmaps/users

GROUPS=/etc/uidmaps/groups

for sv in groucho chico harpo zeppo

do

echo "Getting passwd from $sv"

remsh $sv cat /etc/passwd | sort -t: +0 -1 -o $USERS/passwd.$sv

echo "Getting group from $sv"

remsh $sv cat /etc/group | sort -t: +0 -1 -o $GROUPS/group.$sv

done

#

This loop collects information from NIS hosts

#

for yp in nfl disney

do

echo "Getting passwd from $yp"

remsh $yp ypcat passwd | sort -t: +0 -1 -o $USERS/passwd.$yp

echo "Getting group from $yp"

remsh $yp ypcat group | sort -t: +0 -1 -o $GROUPS/group.$yp

done

The created files are called passwd. domain and group. domain. (As with the
copying of files, this procedure requires that each remote machine allow remote
execution from the local Cray machine.) Each of these files is sorted on the user
or group name. It is not necessary to sort the passwd or group files before
making the ID maps; however, sorting generally speeds the creation of the maps.

3.1.6.4.2 ID Map File Creation

The Merge.domains script creates the ID map files. This script calls the
nfsmerge(8) utility to create the ID map files between the local Cray machine
and the remote administrative domains. The nfsmerge(8) utility uses the
passwd and group files (usually a copy of each) from the local Cray machine
and from a remote administrative domain to create a mapping between the
numerical user and group ID values on the two domains, using login and group
names for comparison. It expects, for example, that the login name grumpy on

S–2304–10011 251

UNICOS® Networking Facilities Administrator’s Guide

the local Cray machine and on the remote administrative domain refers to the
same user. The same is true for groups.

3.1.6.4.3 ID Map File Maintenance

Rerun Get.domains periodically to update the map files (see Section 3.1.6.4.1,
page 250). The following Merge.domains script should be run after any update
of the local copies of the passwd and group files by the Get.domains script.
It should also be run when an exceptions file changes (see Section 3.1.6.4.4,
page 253).

Note: With UNICOS security, NFS ID maps contain mandatory access
control (MAC) configuration information. Because these maps contribute to
enforcement of MAC policy, you must protect these maps and the scripts that
produce them by labeling them with the syslow label. To safeguard against
security risks, the maps must also be manually inspected each time they are
created. This is because the maps are constructed from password and group
files that might not be protected by the syslow label when they are collected
from the other systems on the network. The method of inspection and the
degree to which that process can be automated is site-dependent.

To meet this labeling requirement, every script or program used in ID map
generation must have a syslow label; they must be executed at syslow, and
the resulting map files must have a syslow label. The NFS commands in the
/etc/uidmaps directory and the directory itself are automatically installed with
this label. These commands are privileged to access the syslow -labeled ID map
files and to load the maps into the kernel. To use these commands, you must
have the secadm category active. The nfsmerge(8) utility, which creates ID map
files, labels them with its process-execution label. However, existing ID map files
are overwritten without their label being changed. Therefore, you should remove
all existing ID map files at the start of the ID map generation process.

The following is an example of a Merge.domains script, which is historically
stored at /etc/uidmaps. This script is unique to each site’s administration
policies.

% cat /etc/uidmaps/Merge.domains

#

Script to create ID maps from the sorted passwd and group files

for each administrative domain.

#

HOST=‘hostname‘

252 S–2304–10011

Network File System (NFS) [3]

USERS=/etc/uidmaps/users

GROUPS=/etc/uidmaps/groups

CMD=/etc/uidmaps/nfsmerge

for cray in groucho chico harpo

do

for domain in groucho chico harpo zeppo nfl disney

do

if ‘test $cray != $domain‘ then

echo "Creating user and group ID maps between $cray and $domain"

| tee l.$cray.$domain

$CMD -l $USERS/e.$cray.$domain -u u.$cray.$domain

-e $GROUP/e.$cray.$domain -g g.$cray.$domain

$USERS/passwd.$cray $USERS/passwd.$domain

$GROUPS/group.$cray $GROUPS/group.$domain >> l.$cray.domain

done

fi

done

3.1.6.4.4 Exceptions File

Users are likely to have the same login name wherever possible, even though
they might use several machines from different administrative environments.
However, if a user has a login name in the remote administrative environment
that differs from that on the local Cray machine, that user ID can be mapped into
an exceptions file. The same applies to group ID mapping.

The exceptions file should contain a list of name pairs, one pair per line, the
names separated by white space. The name pairs are of the following form:

local_name equivalent_remote_name

For example, user Big Bad Wolf has the login name bbw on machine groucho
and the login name wolf in the disney NIS domain. The exceptions file on
groucho could be called /etc/uidmaps/users/e.groucho.disney and
could contain the following entry:

bbw wolf

Use of this exceptions file when making the map file between groucho and the
disney NIS domain would ensure that the user ID mapping for Big Bad Wolf is
placed in the map file.

S–2304–10011 253

UNICOS® Networking Facilities Administrator’s Guide

If equivalent_remote_name is not specified in the exceptions file, it is considered
the same as local_name. This feature is useful for restricting maps to use only
the names in the exceptions files (see the -E or -L option of the nfsmerge(8)
command for details).

An exceptions file can be used to prevent user names from being mapped. You
can use a name that is not present in the remote passwd or group file as an
exception for each name that is to be restricted. For example, assume that NFS
access to a Cray system is to be restricted for login names maleficent and
stepmother from the disney NIS domain. Entries for these users could be put
into the exceptions file, as follows:

maleficent BogusUser

stepmother BogusUser

The login name BogusUser is not a valid login name in the disney NIS domain
or on the Cray system. Therefore, user IDs for these users are not mapped
between groucho and any machines using the disney NIS domain.

Examine the passwd and group files for exceptions before running the
Merge.domains script, which is written to expect an exceptions file for all
mappings. If an exceptions file is not present, but specified on the command line,
the Merge.domains script issues a warning message.

3.1.6.4.5 Map Files

The previous Get.domains and Merge.domains example scripts assume that
ID map files are maintained in the /etc/uidmaps directory.

The Merge.domains script creates map files only between the local Cray
machine and all remote administrative domains. A log file, user ID file, and
group ID file are created each time nfsmerge is called in the script. These files
are placed in the /etc/uidmaps directory.

The log files contain a line identifying the type of ID map, the names of the local
and remote passwd files, and a list of all names for which IDs were mapped. The
example script is written so that it is obvious from the name of the map file which
user or group ID map was created.

The files involved in mapping user IDs between local machine harpo and the
NIS domain nfl in the example are as follows:

254 S–2304–10011

Network File System (NFS) [3]

File Description

/etc/uidmaps/users/passwd.harpo

A copy of the local passwd file sorted on login name

/etc/uidmaps/users/passwd.nfl

A copy of the remote passwd file sorted on login name

/etc/uidmaps/users/e.harpo.nfl

A list of login name exceptions between the administrative
domains harpo and nfl

/etc/uidmaps/l.harpo.nfl

A log file from the creation of the user and group ID map
between harpo and the nfl NIS domain

/etc/uidmaps/u.harpo.nfl

The user ID map file between harpo and the nfl NIS domain

Similarly, the files involved in mapping group IDs between harpo and the nfl
NIS domain are as follows:

File Description

/etc/uidmaps/groups/group.harpo

A copy of the local group file sorted on group name

/etc/uidmaps/groups/group.nfl

A copy of the remote group file sorted on group name

/etc/uidmaps/groups/e.harpo.nfl

A list of group name exceptions between the administrative
domains harpo and nfl

/etc/uidmaps/l.harpo.nfs

A log file from the creation of the group ID map between harpo
and the nfl NIS domain

3.1.6.5 Kernel Map Manipulation Example

Each ID map is given a name to use for display purposes and to use with some
commands related to ID mapping. A separate map should be created for each
autonomously administered system. For example, a map might be created for

S–2304–10011 255

UNICOS® Networking Facilities Administrator’s Guide

each stand-alone mainframe system on the network; one map would be required
for a network of workstations in a single NIS domain.

Mapping in the kernel is a two-step process. The first step involves determining
the particular ID mapping domain, given an Internet address. The second step
uses the ID mapping domain, the type of map operation (user or group), and
the direction (into or out of the Cray system) to determine the effective user or
group identifier. Both of these operations occur in the UNICOS kernel with
NFS configured and are based on information inserted into the kernel by the
nfsaddmap(8) and nfsaddhost(8) utilities. See the UNICOS Administrator
Commands Reference Manual, for a complete description of these commands.

Hosts are grouped into ID mapping domains based on sets of address, mask pairs
on nfsaddhost calls. Addresses can be specified in standard form (for example,
128.1.0.1), as network names (names are found in /etc/networks), or as host
names (from /etc/hosts). Default masks for hosts and standard forms are all
1’s; for network names, the default masks are 1’s covering the network part of the
address (see the example of masks in the nfsaddhost(8) command description).

User ID mapping is straightforward. Each user ID map entry contains the local
user ID and groups list and the remote user ID and groups list. When an NFS
request is sent to the Cray system and the Cray system is mapping IDs for
client-side requests, the Internet address to which the request is sent determines
the ID map to be used. The map is searched for the local user ID; if it is found,
the remote user ID and groups list is used in that request. If the local user ID is
not found in the ID map, the ID mapping domain is checked to see what should
be done (the nfsaddhost(8) command has options that determine the action
associated with a particular ID mapping domain). There are three choices:

• The value for a bad user ID (-1) can be returned. In this case, the request
should be denied with an RPC authentication error. This is the default.

• The value for the user "nobody" (-2) can be returned. In this case, the user has
access only to other-accessible files and directories on the server.

• The local IDs can remain unmapped and can be put into the request. Group
ID mapping is even simpler. The group ID map tables are used only to map
file attributes (that is, to map IDs associated with a file that is accessed
through NFS). Each group map entry contains a local group ID to correspond
to a remote group ID.

Kernel ID mapping tables and ID mapping domains are inserted by the
/etc/uidmaps/Set.domains script, called out of the /etc/nfsstart
script. The Set.domains script example corresponds to step 3 of configuring
ID mapping domains, as described in Section 3.1.6.2, page 248. This script

256 S–2304–10011

Network File System (NFS) [3]

primarily uses three ID mapping commands, nfsclear(8), nfsaddmap(8),
and nfsaddhost(8)). The nfsclear(8) command is called first to ensure
that any previous ID mapping information in the kernel is cleared out. The
nfsaddmap(8) utility is called to read a map file, previously created with the
nfsmerge(8) command, into the kernel. The nfsaddhost(8) utility defines the
ID mapping domains; it associates Internet addresses with the kernel ID maps
to use for mapping.

A special domain name, MAP_THRU, is defined for systems known to share the
local Cray system’s user and name space. The MAP_THRU domain simply allows
user and group identifiers to pass through, without modifying them in any way.

Note: Do not use MAP_THRU with UNICOS security because the security
information that NFS requires with UNICOS security will be missing.

The Set.domains example performs configurations, as follows:

Note: Your Set.domains file should contain the loopback entry as shown in
the example; it is required if you are running the automounter.

1. Cray hosts groucho and chico perform server ID mapping between them.

2. Cray host chico performs all ID mapping between Cray host harpo and
itself.

3. Cray hosts harpo and groucho perform client ID mapping between them.

4. Cray hosts groucho, chico, and harpo perform both client and server
mapping to all other hosts on the network. The Set.domains script
is as follows:

% cat /etc/uidmaps/Set.domains

#

Set

#

HOST=‘hostname‘MAPS=/etc/uidmaps

CMDS=/etc/uidmaps

#

Reinitialize kernel ID mapping information.

#

$CMDS/nfsidmap -d

S–2304–10011 257

UNICOS® Networking Facilities Administrator’s Guide

sleep 3

$CMDS/nfsclear

$CMDS/nfsaddhost -l loopback

#

Set ID maps and ID mapping domains between all of

the Cray machines on the network.

#

if ‘test $HOST = groucho‘then

Groucho does server ID mapping only for chico

$CMDS/nfsaddmap -u $MAPS/u.$HOST.chico

-g $MAPS/g.$HOST.chico chico

$CMDS/nfsaddhost -d chico -s -l chico-inet

$CMDS/nfsaddhost -d chico -s -l chico-prod

$CMDS/nfsaddhost -d chico -s -l chico-lsp

$CMDS/nfsaddhost -d chico -s -l chico-hsx -u chico-hsx2

Groucho does client mapping only for harpo.

$CMDS/nfsaddmap -u $MAPS/u.$HOST.harpo

-g $MAPS/g.$HOST.harpo harpo

$CMDS/nfsaddhost -d harpo -c -l harpo-inet

$CMDS/nfsaddhost -d harpo -c -l harpo-vme24

$CMDS/nfsaddhost -d harpo -c -l harpo-vme26

$CMDS/nfsaddhost -d harpo -c -l harpo-vme32

$CMDS/nfsaddhost -d harpo -c -l harpo-lsp

elif ‘test $HOST = chico‘then

Chico does server mapping only for groucho.

$CMDS/nfsaddmap -u $MAPS/u.$HOST.groucho

-g $MAPS/g.$HOST.groucho groucho

$CMDS/nfsaddhost -d groucho -s -l groucho-inet

$CMDS/nfsaddhost -d groucho -s -l groucho-lsp

$CMDS/nfsaddhost -d groucho -s -l groucho-hsx -u groucho-hsx2

Chico does both client and server mapping to harpo.

$CMDS/nfsaddmap -u $MAPS/u.$HOST.harpo

-g $MAPS/g.$HOST.harpo harpo

$CMDS/nfsaddhost -d harpo -c -s -l harpo-inet

$CMDS/nfsaddhost -d harpo -c -s -l harpo-vme24

$CMDS/nfsaddhost -d harpo -c -s -l harpo-vme26

$CMDS/nfsaddhost -d harpo -c -s -l harpo-vme32

$CMDS/nfsaddhost -d harpo -c -s -l harpo-lsp

$CMDS/nfsaddhost -d harpo -c -s -l harpo-hsx

258 S–2304–10011

Network File System (NFS) [3]

elif ‘test $HOST = harpo‘then

Harpo does client mapping only to groucho.

$CMDS/nfsaddmap -u $MAPS/u.$HOST.groucho

-g $MAPS/g.$HOST.groucho groucho

$CMDS/nfsaddhost -d groucho -c -l groucho-inet

$CMDS/nfsaddhost -d groucho -c -l groucho-lsp

$CMDS/nfsaddhost -d groucho -c -l groucho-hsx -u groucho-hsx2

Harpo maps through to chico (MAP_THRU facility).

$CMDS/nfsaddhost -l chico-inet

$CMDS/nfsaddhost -l chico-prod

$CMDS/nfsaddhost -l chico-lsp

$CMDS/nfsaddhost -l chico-hsx -u chico-hsx2

else

echo "don’t know how to set domains for $HOST"

exit

fi

The Cray machines necessarily do both client and server mapping for

all of the rest of the machines in the network.

#

zeppo

#

$CMDS/nfsaddmap -u $MAPS/u.$HOST.zeppo -g $MAPS/g.$HOST.zeppo zeppo

$CMDS/nfsaddhost -d zeppo -c -s -l zeppo-inet

#

Workstation network (nfl YP domain)

#

$CMDS/nfsaddmap -u $MAPS/u.$HOST.nfl -g $MAPS/g.$HOST.nfl nfl

#

Networks in the nfl YP domain

#

$CMDS/nfsaddhost -d nfl -c -s -l afc-eastnet -u afc-westnet

$CMDS/nfsaddhost -d nfl -c -s -l nfc-eastnet

$CMDS/nfsaddhost -d nfl -c -s -l nfc-centralnet

$CMDS/nfsaddhost -d nfl -c -s -l nfc-westnet

S–2304–10011 259

UNICOS® Networking Facilities Administrator’s Guide

#

Explicit hosts in the nfl YP domain

#

$CMDS/nfsaddhost -d nfl -c -s -l nfl-gate

$CMDS/nfsaddhost -d nfl -c -s -l afc-gate

$CMDS/nfsaddhost -d nfl -c -s -l nfc-gate

$CMDS/nfsaddhost -d nfl -c -s -l nfc-east-server

$CMDS/nfsaddhost -d nfl -c -s -l nfc-central-server

$CMDS/nfsaddhost -d nfl -c -s -l nfc-west-server

$CMDS/nfsaddhost -d nfl -c -s -l afc-east-server

$CMDS/nfsaddhost -d nfl -c -s -l afc-central-server

$CMDS/nfsaddhost -d nfl -c -s -l afc-west-server

$CMDS/nfsaddhost -d nfl -c -s -l superbowl-server

$CMDS/nfsaddhost -d nfl -c -s -l bears-inet

$CMDS/nfsaddhost -d nfl -c -s -l colts-prod

$CMDS/nfsaddhost -d nfl -c -s -l giants-inet

$CMDS/nfsaddhost -d nfl -c -s -l redskins-prod

$CMDS/nfsaddhost -d nfl -c -s -l broncos-inet

$CMDS/nfsaddhost -d nfl -c -s -l vikings-inet

$CMDS/nfsaddhost -d nfl -c -s -l niners-prod

$CMDS/nfsaddhost -d nfl -c -s -l raiders-inet

$CMDS/nfsaddhost -d nfl -c -s -l patriots-prod

$CMDS/nfsaddhost -d nfl -c -s -l saints-prod#

Workstation network (disney YP domain)

#

#$CMDS/nfsaddmap -u $MAPS/u.$HOST.disney -g $MAPS/g.$HOST.disney disney

#

Networks in the disney YP domain

#

$CMDS/nfsaddhost -d disney -c -s -l snowwhitenet

$CMDS/nfsaddhost -d disney -c -s -l junglebooknet

$CMDS/nfsaddhost -d disney -c -s -l bambinet

#

Hosts in the disney YP domain

#

$CMDS/nfsaddhost -d disney -c -s -l disney-gate

$CMDS/nfsaddhost -d disney -c -s -l disney-land

260 S–2304–10011

Network File System (NFS) [3]

$CMDS/nfsaddhost -d disney -c -s -l disney-world

$CMDS/nfsaddhost -d disney -c -s -l snowwhite-server

$CMDS/nfsaddhost -d disney -c -s -l snowwhite-inet

$CMDS/nfsaddhost -d disney -c -s -l bashful-inet

$CMDS/nfsaddhost -d disney -c -s -l sleepy-inet

$CMDS/nfsaddhost -d disney -c -s -l sneezy-inet

$CMDS/nfsaddhost -d disney -c -s -l dopey-prod

$CMDS/nfsaddhost -d disney -c -s -l dopey-inet

$CMDS/nfsaddhost -d disney -c -s -l happy-inet

$CMDS/nfsaddhost -d disney -c -s -l grumpy-prod

$CMDS/nfsaddhost -d disney -c -s -l doc-inet

$CMDS/nfsaddhost -d disney -c -s -l doc-prod

$CMDS/nfsaddhost -d disney -c -s -l junglebook-server

$CMDS/nfsaddhost -d disney -c -s -l junglebook-prod

$CMDS/nfsaddhost -d disney -c -s -l mowgli-inet

$CMDS/nfsaddhost -d disney -c -s -l hista-prod

$CMDS/nfsaddhost -d disney -c -s -l sherkan-inet

$CMDS/nfsaddhost -d disney -c -s -l baloo-inet

$CMDS/nfsaddhost -d disney -c -s -l kinglouie-inet

$CMDS/nfsaddhost -d disney -c -s -l bakkera-prod

$CMDS/nfsaddhost -d disney -c -s -l bambi-server

$CMDS/nfsaddhost -d disney -c -s -l bambi-inet

$CMDS/nfsaddhost -d disney -c -s -l thumper-inet

$CMDS/nfsaddhost -d disney -c -s -l flower-inet

$CMDS/nfsidmap -e

3.1.6.6 Other Administrative Considerations

When ID mapping is configured, all server activity makes use of it. Most NFS
client systems pass the root user ID (0) for user identification on their mount
requests; these values are also subject to ID mapping.

You can remove kernel ID maps and ID mapping domains through the use of
the nfsrmmap(8) and nfsrmhost(8) commands. These commands, along with
nfsaddmap(8), nfsaddhost(8), nfsadduser(8), and nfsrmuser(8), give you
the ability to modify ID mapping at any time; it is not necessary to recompile
anything to modify the ID maps. To view the currently defined ID mapping
domains, use the nfslist(8) command.

S–2304–10011 261

UNICOS® Networking Facilities Administrator’s Guide

The following is an abbreviated sample of the use of nfslist(8) on machine
groucho:

groucho% nfslist

NFS ID Mapping is : ENABLED

NFS ID NFS ID Lower Upper

Map Mapping Bound Bound Address

Name Flags Address Address Mask

nfs CLIENT SERVER BAD_ID c0.09.23.00 c0.09.26.00 [ff.ff.ff.00]

Addr(dec) Addr(hex) Host Name

128.1.35.0 c0.09.23.00 afc-eastnet

128.1.36.0 c0.09.24.00 afc-centralnet

128.1.37.0 c0.09.25.00 afc-westnet

zeppo CLIENT SERVER BAD_ID c0.09.0e.5a c0.09.26.5a [ff.ff.ff.ff]

Addr(dec) Addr(hex) Host Name

128.1.14.90 c0.09.0e.5a zeppo-inet

chico SERVER BAD_ID 54.00.cf.05 54.00.cf.05 [ff.ff.ff.ff]

Addr(dec) Addr(hex) Host Name

84.0.207.5 54.00.cf.05 chico

chico SERVER BAD_ID 5c.00.00.05 5c.00.00.05 [ff.ff.ff.ff]

Addr(dec) Addr(hex) Host Name

92.0.0.5 5c.00.00.05 chico-lsp

harpo CLIENT BAD_ID 54.00.cf.06 54.00.cf.06 [ff.ff.ff.ff]

Addr(dec) Addr(hex) Host Name

84.0.207.6 54.00.cf.06 chico-lsp

harpo CLIENT BAD_ID 5c.00.00.06 5c.00.00.06 [ff.ff.ff.ff]

Addr(dec) Addr(hex) Host Name

92.0.0.6 5c.00.00.06 chico-lsp

To remove an ID mapping domain, the options of nfsrmhost(8) must exactly
match the definition of the domain. You cannot remove part of a domain. Also,
to remove a kernel ID map, you must remove all ID mapping domains that
reference that map.

262 S–2304–10011

Network File System (NFS) [3]

You must also be aware of hosts that are running NFS but are not UNIX systems.
For these hosts, the Get.domains script used in the example must be modified
according to specific characteristics of the site’s network. For example, the script
run in the example in this section assumes that passwd and group files exist
on the remote system. This is not necessarily true for hosts that are not UNIX
systems. To create the map files necessary for mapping IDs through NFS,
you must construct files in passwd and group format for any administrative
domains that do not already have these files (that is, you must create synthetic
passwd and group files). If you create synthetic passwd and group files for use
with ID mapping, you must ensure that entries are present for user root and
group sys, or whatever these entries are called on the local Cray system.

3.1.6.7 Running pcnfsd with NFS ID Mapping Control

Note: The use of pcnfsd is not supported with the Cray ML-Safe
configuration of the UNICOS system.

If you have a PC NFS client, the pcnfsd(8) daemon runs on an NFS server.
When a PC NFS client connects to a pcnfsd, the client prompts for a login
name and password. After verifying the password for the given login name,
the pcnfsd daemon passes a user ID and a groups list back to the PC NFS
client. The PC uses the IDs it receives from pcnfsd for subsequent NFS requests
to that NFS server.

The pcnfsd daemon on a Cray system can use NFS ID mapping, which makes
PC NFS access more secure. After the password validation that pcnfsd
performs is complete, the user ID map entry for that user is added to an ID
map. Therefore, if pcnfsd on a Cray system is configured to use an ID map,
only users whose passwords were actually validated through pcnfsd can access
a Cray NFS server.

To use pcnfsd with NFS ID mapping, ensure that the following steps have
been taken:

1. Create an ID map file for a Cray system to the same Cray system in the
Merge.domains script, as follows:

nfsmerge -u /etc/uidmaps/u.cray.cray -g /etc/uidmaps/g.cray.cray

/etc/passwd /etc/passwd /etc/group /etc/group

Note: If you are also setting up a special MAP_THRU NFS ID map (see
Section 3.1.6.9, page 266), the nfsmerge command needs to be executed
only once because pcnfsd ID mapping and special MAP_THRU ID
mapping use the same ID map file.

S–2304–10011 263

UNICOS® Networking Facilities Administrator’s Guide

2. Add that ID map to the kernel with an appropriate name in the
Set.domains script. The following command adds an empty user ID map
and a group ID map called pcidmap to the kernel:

nfsaddmap -g /etc/uidmaps/g.cray.cray pcidmap

The user ID map is empty so that pcnfsd can add user entries when the
user’s password validation succeeds.

3. Ensure that the network addresses of the PCs that will be accessing the NFS
server on the Cray system are in an ID mapping domain that uses the ID map
(called pcidmap in the previous examples), as follows:

nfsaddhost -d pcidmap -c -s -l pc_addr1
nfsaddhost -d pcidmap -c -s -l pc_addr2

. . . .

nfsaddhost -d pcidmap -c -s -l pc_addrN

4. Start pcnfsd with the name of the user ID map file and kernel map name,
as follows:

pcnfsd -u /etc/uidmaps/u.cray.cray -m pcidmap

The pcnfsd daemon does not remove entries that pcnfsd has added to this
map. Therefore, until the system administrator resets the ID maps in the
kernel by running the Set.domains script or until the system reboots, any
user validated through pcnfsd has NFS access to a Cray system from the PC
network addresses in the ID mapping domains that reference pcidmap.

3.1.6.8 Deciding When to Use ID Mapping

Kernel ID maps contain the following information for each local user ID:

• Default account ID (acid)

• Security information (minimum and maximum security level and valid
security compartments)

• Pointer to a list of optional Kerberos authenticated Internet addresses

• Pointer to a list of client side auth_kerb validated structures

• Pointer to a list of server side auth_kerb validated structures

Following is a description of circumstances in which it is desirable and
circumstances in which it is necessary for the Cray NFS server to access this
information:

264 S–2304–10011

Network File System (NFS) [3]

• When acids rather than user IDs are being used for disk accounting and/or
file quotas.

In this case, NFS ID mapping is desirable, but not necessary. Acids are unique
to UNICOS and therefore are not passed across the network as part of the
NFS protocol. When files are created on the NFS server through NFS, the acid
given to the file is the acid in the user structure of the nfsd process that
does the first write operation to the file. Because acids are not part of the
credentials in the NFS request, the acid attached to any file created across NFS
is the acid of the running nfsd process (root’s default acid). This defeats
disk quotas and disk accounting based on acids. Because ID maps contain the
user’s default acid, the NFS server can use this information when ID mapping
occurs. A user cannot change the acid in the ID maps.

• When UNICOS security is enabled (with or without the IP security option
(IPSO) enabled).

In this case, NFS ID mapping is necessary. When UNICOS security
information is required on the Cray system, and is passed across the network
(through IPSO), the NFS server must validate the NFS requests based on the
security information for the user making the request. The ID maps contain
such security information.

Note: MAP_THRU ID mapping domains do not contain the required security
information for UNICOS security, and cannot be used.

• When file systems or directories have been exported with the krb (Kerberos
authentication required) export option in the /etc/exports file.

In this case, NFS ID mapping is necessary. Users are required to run the
nfsid command from the NFS client machine to the Cray NFS server
machine to gain access to those file systems that have been exported with the
krb option. The information by which users have been validated through
Kerberos from certain Internet addresses is kept in the ID maps.

Note: The kerberos and krb operands used with the exportfs
command are not supported on the Cray ML-Safe configuration of the
UNICOS system.

• When file systems or directories in the /etc/exports file have been
exported by using the exportfs command with the -o option and the
kerberos operand (auth_kerb RPC authentication required). In this case,
NFS ID mapping is necessary.

Following is a description of circumstances in which it is necessary for a Cray
NFS client to access information contained in ID maps.

S–2304–10011 265

UNICOS® Networking Facilities Administrator’s Guide

• When the mount(8) command with the -o option and kerberos operand
(auth_kerb RPC authentication required) is used to mount an NFS file
system. In this case, NFS ID mapping is necessary.

3.1.6.9 Special MAP_THRU NFS ID Map

If you need access to the information kept in ID maps (see the circumstances
listed in the previous section), you must create a special ID map called a
MAP_THRU map if one of the following situations is true:

• You have been running with NFS ID mapping and you have MAP_THRU ID
mapping domains.

• You were not previously running with NFS ID mapping. In this case, you
must also set up MAP_THRU ID mapping domains for all hosts and networks
that are using the Cray system as an NFS server or client.

Typically, MAP_THRU ID mapping domains do not use a kernel ID map. However,
if the MAP_THRU ID map is defined in the kernel, all MAP_THRU ID mapping
domains use it. The special MAP_THRU ID map is built from the /etc/passwd
file and /etc/group file from the local machine only. Following is a sample
nfsmerge command to be added to the Merge.domains script that builds
the ID map file:

nfsmerge -u /etc/uidmaps/u.cray.cray -g /etc/uidmaps/g.cray.cray /etc/passwd

/etc/passwd /etc/group /etc/group

The ID map file built by this command is the same ID map file that can be used
with pcnfsd as described in Section 3.1.6.7, page 263). Therefore, if you are
running pcnfsd with NFS ID mapping and you are using the special MAP_THRU
NFS ID map, you need to execute the nfsmerge command only once.

To add the special MAP_THRU ID map to the kernel, add the following to the
Set.domains file:

/etc/uidmaps/nfsaddmap -M /etc/uidmaps/u.cray.cray

To determine whether the MAP_THRU ID map is defined in the kernel, use the
following command:

nfsidmem -v | grep MAP_THRU

If there are MAP_THRU ID mapping domains defined when the MAP_THRU ID
map is loaded into the kernel, those ID mapping domains are also converted to
use the MAP_THRU ID map. Conversely, if the MAP_THRU ID map is removed
from the kernel, all MAP_THRU ID mapping domains (which point to the

266 S–2304–10011

Network File System (NFS) [3]

MAP_THRU ID map) are converted back to standard MAP_THRU ID mapping
domains (which do not point to an ID map). The special MAP_THRU ID map is the
only ID map that can be removed from the kernel with the nfsrmmap command
while ID mapping domains are referencing it. The following command adds the
host address to the ID mapping domain:

/etc/uidmaps/nfsaddhost -l hostname

3.1.7 Configuring NFS Parameters

You can change NFS configuration parameters, such as the size of the rnode
table, in several ways. All configurable NFS parameters appear in the
/usr/src/uts/cf. xxxx /config.h file; you can change them by editing
this file and building a new kernel. You can change the NFS parameters at
boot time by entering appropriate entries in the network section of the system
parameter file. You can use the UNICOS ICMS to make these changes, or you
can make them manually.

3.1.7.1 Changing the config.h File

Table 4, Configurable NFS parameters, lists and describes the configurable
parameters in the config.h file:

Table 4. Configurable NFS Parameters

Name
Default
value Description

NFS_MAXDATA 32768 Maximum number of bytes of user data read or written.

NFS_NUM_RNODES 256 Number of NFS rnodes. Each active NFS file or directory
requires an rnode.

NFS_PORTMON 0 If set as non-zero, then NFS clients are required to use
privileged ports (ports < IPPORT_RESERVED) in order
to get NFS services.

NFS_PRINTINTER 0 Time interval in tenths of seconds between service not
responding messages appearing on the console.

NFS_STATIC_CLIENTS 8 Number of permanently allocated client handles. Each NFS
request to a server requires a client handle.

NFS_TEMP_CLIENTS 8 Number of temporarily allocated client handles. These
client handles are destroyed when freed.

S–2304–10011 267

UNICOS® Networking Facilities Administrator’s Guide

Name
Default
value Description

CNFS_STATIC_CLIENTS 8 Number of permanently allocated client handles for
sending requests to a server whose file system is mounted
with the cray mount option.

CNFS_TEMP_CLIENTS 8 Number of temporarily allocated Cray NFS client handles.

NFS_MAXDUPREQS 1200 Number of entries in the duplicate request cache. This
value should be large enough so that the request entry is
still present when the first retry of that request arrives.

NFS_DUPTIMEOUT 3 Time interval in seconds after the original request, during
which duplicate requests received by the server are not
reprocessed.

3.1.7.2 Changing the NFS Parameter File

You can change the configurable NFS parameters at boot time by placing entries
in the network section of the system parameter file, /etc/config/param.
The parameter names are the same as in the config.h file, except that they
appear in lowercase.

Following is an example of the network section of a system parameter file:

network {

.

.

.

.

512 nfs_num_rnodes;

16 nfs_static_clients;

16 nfs_temp_clients;

.

.

.

.

}

3.1.8 General Security Concerns

Although UNICOS NFS is an excellent tool for sharing files between computer
systems, it also makes the files on a server vulnerable to unauthorized access.
A user with root access on a workstation and a knowledge of how UNICOS

268 S–2304–10011

Network File System (NFS) [3]

NFS works can pretend to be any user on the network and thereby gain access to
server files that would not otherwise be accessible to that user. For example, the
/etc/exports file and the /etc/mountd process are convenient mechanisms
for providing the information needed by legitimate NFS clients. However, this
information can usually be obtained by other means, making it possible to bypass
the access controls that the /etc/exports file provides.

ID mapping provides some additional security by restricting access to NFS to
those network addresses specified in the ID maps.

Because the standard NFS protocol was not designed with the use of access
control lists (ACLs) in mind, access across NFS to files that use ACLs can be
denied unexpectedly. (This does not occur if you use the cray option of the
mount(8) command when processing between two Cray systems.) The NFS client
checks the UNICOS permissions and sends the request to the server based on
those permissions. However, the NFS server checks the ACL entries and grants
or denies the request according to the procedures provided in the description of
the UNICOS security feature in General UNICOS System Administration.

An additional security concern is the execution of setuid programs. An
individual with root permission on a workstation or fileserver can create a
setuid root program that can then be executed on a UNICOS NFS client. The
nosuid argument to the -o option on the UNICOS mount(8) command prevents
this operation.

The basic security mechanisms in UNICOS NFS are as follows:

Security
mechanism

Description

Export control Administrators can choose to restrict the list of
hosts allowed to mount Cray file systems through
the exports(5) file.

Mount control Administrators control both the remote systems
from which they import file systems and the
permissions used on the UNICOS directories
on which mounting is done through mount(8)
options.

Standard UNICOS file
permission checking

User and group ownerships and read, write, and
execute-search permissions operate the same
way on UNICOS NFS file systems as they do on
UNICOS file systems. Users and administrators
concerned about security should fully understand
these mechanisms.

S–2304–10011 269

UNICOS® Networking Facilities Administrator’s Guide

Kerberized NFS Each NFS request is sent using the AUTH_KERB
flavor of RPC. This RPC flavor protects packets
by including an encrypted time stamp and other
information on each packet. Users must have a
valid Kerberos granting ticket prior to making
NFS AUTH_KERB transactions.

Another level of security can be implemented through the ID mapping facility
of UNICOS NFS. Administrators who elect to make exported file systems
globally accessible (in the /etc/exports file) can impose restrictions through
selective inclusion of remote addresses in the ID mapping domains, and they
can further restrict access on those systems by the inclusion or exclusion of
users in a particular domain’s user or group ID map. (See Section 3.1.6.4.4,
page 253, for more details.)

For information regarding avoiding mandatory access control (MAC) violation
risks in the creation and use of NFS ID maps, see Section 3.1.6.4.3, page 252.

3.1.8.1 NFS and UNICOS Security

Note: This section describes NFS in a UNICOS security environment; however,
no additional considerations exist for NFS with a secure environment, except
that if you are running the Cray ML-Safe configuration of the UNICOS system,
you must enable the Internet Protocol Security Option (IPSO).

When you are running UNICOS with UNICOS security, information about the
sensitivity label of client users and server files must be communicated between
the client and server hosts. No provision exists for this communication in the
NFS protocol that UNICOS uses. To solve this problem, UNICOS places an
interpretation on the labels of the datagrams that contain the NFS requests
and responses.

When an NFS request is required, the client sends it at the label of the process
that is attempting to access the file. The server uses the label of the request to
perform mandatory access checks. The label must be a valid label for both the
client host (through the NAL), and the user making the request. Valid user label
ranges are stored in the kernel NFS ID maps. For this reason, ID mapping is
required on UNICOS systems that run UNICOS security. See Section 3.1.6, page
246, for information on setting up ID maps.

After the server processes the request, the response packet is sent labeled with
the sensitivity label of the file being accessed. If this label is invalid for the
client host, the response is dropped.

270 S–2304–10011

Network File System (NFS) [3]

When the client receives a response from the server, the label on the datagram is
used as the sensitivity label of the file for any mandatory access checks that the
client NFS software performs.

It is important to note that this scheme works only if both the client and the
server can unambiguously determine the labels on datagrams passed between
them. They can do this only if the systems use IP security labeling or the hosts
are single-label hosts. If you are running with the NETW_STRICT_B1 kernel
option, NFS access is supported with any system that uses IP security options.

Warning: If you are running UNICOS security without the NETW_STRICT_B1
kernel option (thus allowing multilabel ranges for hosts that do not use IP
security options), do not export file systems to or mount file systems from
any host that does not use IP security options and has a multilabel range in
the NAL. UNICOS NFS is unable to correctly enforce MACs with such a
configuration.

Note: Do not hard-mount file systems if one of the following is true:

• The Cray system is a system with UNICOS security and an NFS client.

• The NFS client system is mounting from a Cray NFS server system with
UNICOS security.

With UNICOS security, requests that fail MAC do not receive responses;
therefore, NFS requests on hard-mounted file systems hang.

Parameters in the config.h file that are supported with UNICOS security and
NFS are as follows:

NFS_SECURE_PORTMON Enables (nonzero) or disables (zero) whether
NFS clients are required to use privileged ports
(ports < IPPORT_RESERVED) in order to get
NFS services. This, along with NFS_PORTMON (see
Table 4), must be disabled for non-privileged
access on MLS systems.

NFS_SECURE_EXPORT_OK When set to a nonzero value, this parameter
allows labeled file systems to be exported (used
by the NFS server).

NFS_REMOTE_RW_OK When set to a nonzero value, this parameter
allows a Cray NFS client to mount a remote file
system in read-write mode. When set to 0, NFS
mounts the file system in read-only mode.

S–2304–10011 271

UNICOS® Networking Facilities Administrator’s Guide

Note: If you are running NFS with SECURE_MAC enabled, the address
associated with the localhost interface must be defined as syslow to
syshigh levels and all compartments are in the Network Access list (NAL)
(see spnet(8)). If SECURE_MAC is not enabled, the address associated with the
localhost interface must be defined as 0 through 16 and all compartments
are in the NAL. Under the Cray ML-Safe configuration of the UNICOS system,
SECURE_MAC is enabled.

3.1.8.2 Kerberos Authentication

Note: Kerberos authentication is not supported with the Cray ML-Safe
configuration of the UNICOS system.

Kerberos authentication can be required for NFS access to exported UNICOS
file systems through the krb operand of the exports(5) command. This export
option requires users to register with mountd, using the nfsid(1) command
on the client machine from which they want NFS access to exported UNICOS
file systems. ID maps are required to support the krb export option and are
described in Section 3.1.6, page 246. For more information, see the nfsid(1)
command.

The following examples show the mapping option (-m), which registers the
user with mountd and the unmapping option (-u), which removes the user’s
registration:

nfsid -m remote_host_name
nfsid -u remote_host_name

Users who have not executed the nfsid command are granted only others
access to files in file systems exported with the Kerberos option.

3.1.8.3 Kerberized NFS

Kerberized NFS uses the AUTH_KERB kernel RPC for NFS requests. Each NFS
request contains additional information, which is validated by the NFS server’s
kernel.

UNICOS file systems may be exported by using the exportfs(8) command with
the -o option and the kerberos operand. These exported file systems are
mounted by using the mount(8) command with the -o option and kerberos
operand. The super user, or user as root, must have an unexpired Kerberos
Ticket Granting Ticket (TGT) before executing the mount command. A TGT is
obtained by using the kinit(1) command.

272 S–2304–10011

Network File System (NFS) [3]

Note: The krb and kerberos operands of the exportfs command may not
be used at the same time.

Machines running Kerberized NFS must have an NFS principal entry in the
/etc/srvtab file. Your Kerberos database must contain a principal of nfs and
an instance of hostname. You must install a new /etc/srvtab file with the
nfs principal prior to running Kerberized NFS.

The following guidelines must be understood in order to run Kerberized NFS:

• Your Kerberos database must contain specific information. For example, if
your host name is harpo, you must have a principal of nfs and an instance
of harpo in your Kerberos database. The srvtab entry would list nfs as the
service and an instance of harpo.

• The kerbd(8) daemon must be running. kerbd handles requests from kernel
level NFS and sends the requests to and from the Kerberos key distribution
center (KDC).

• The user must have an unexpired TGT prior to attempting access to a
Kerberos NFS mounted file system.

• A root user ticket must be regenerated every 21 hours. This is due to a
limitation in the current implementation. All file systems mounted with the
automounter and Kerberos NFS mount options are affected by this limitation.

3.1.9 UDP Checksum

The standard NFS implementation does not calculate user datagram protocol
(UDP) checksums for the packets exchanged between NFS clients and servers.
However, situations occur in which checksumming might be desirable, such as
when the network is suspected to be error prone. Therefore, on UNICOS systems,
checksumming for NFS is implemented in two parts: client and server.

To enable client-side checksumming, use the cksum argument on the mount(8)
command. This argument causes the client to calculate and verify the checksums
for all UDP packets sent to the server of this file system. However, this does not
ensure that the server will also calculate and verify the checksum. You should
confirm that the server in question verifies incoming checksummed packets.

The UNICOS NFS server automatically calculates and verifies the checksum
for incoming checksummed packets. To enable server-side checksumming for
outgoing packets, use the cksum export option within the /etc/exports
file. However, this argument does not ensure that the NFS client that receives
the packet will calculate and verify the checksum.

S–2304–10011 273

UNICOS® Networking Facilities Administrator’s Guide

3.2 Troubleshooting

When a network service is not performing properly, the trouble usually lies in
one of the following areas (listed from most likely to least likely):

• The network access control policies do not allow the operation, or
architectural constraints prevent the operation.

• The NFS client software or environment is malfunctioning.

• The NFS server software or environment is malfunctioning.

• The network between the NFS server and client is malfunctioning.

The following sections offer a checklist for determining the location of the
problem, some common problems, and a list of mount(8) command error
messages.

Before trying to debug UNICOS NFS, read the man pages from the following lists
that are relevant to your NFS environment:

Table 5. NFS man pages

Server Client ID mapping

mountd(8) mount(8) nfslist(8)

nfsd(8) automount(8) nfsidmem(8)

exports(5) biod(8) nfsuid(8)

exportfs(8) fstab(5) nfsckhash(8)

portmap(8) portmap(8) nfsmerge(8)

rpcinfo(8) rpcinfo(8) nfsidmap(8)

pcnfsd(8) nfsid(1) nfsaddmap(8)

nfsaddhost(8)

nfsclear(8)

nfsadduser(8)

nfsgid(8)

nfsrmhost(8)

nfsrmmap(8)

274 S–2304–10011

Network File System (NFS) [3]

3.2.1 Isolating the Problem

The following sections contain a checklist to help you either resolve the problem
or isolate the problem (that is, help identify the environment in which the
problem occurred). This checklist is sequential, and it verifies whether all of the
basic functions required for NFS are working. Use this checklist as a starting
point if you have no idea where the NFS problem is occurring.

The checklist is grouped into the following topics:

• NFS mounting problems

• Problems accessing NFS mounted files

• Problems with ID mapping

If you are having problems configuring NFS for the first time, use the complete
checklist. Individual items within the checklist can be used at any time to help
isolate or resolve problems when NFS is already up and running.

This checklist assumes that an NFS client is having problems mounting or
accessing NFS files from an NFS server.

3.2.1.1 NFS Mounting Problems

If the mount(8) command times out, perform the following steps:

1. Ensure that the NFS server machine is up and that you can access the NFS
server from the NFS client. On the NFS client, use the ping(8) command,
as follows:

ping server_hostname

2. Ensure that the NFS server machine is at least running either portmap(8) or
rpcbind(8), mountd(8), and nfsd(8) daemons. On the NFS server machine,
use the ps(1) command, as follows:

ps -ae | egrep ’portmap|rpcbind|mountd|nfsd’

Following is sample output from the ps command:

668 - 0:02 portmap

1347 - 0:00 mountd

1343 - 0:00 nfsd

1341 - 0:00 nfsd

1342 - 0:00 nfsd

1344 - 0:00 nfsd

S–2304–10011 275

UNICOS® Networking Facilities Administrator’s Guide

Only one portmap and mountd daemon should be running at any one
time, but one or more nfsd daemons can be running at one time (a typical
number is 4).

If more than one mountd daemon is running, conflicts regarding the mountd
requests can occur and the client mount requests will not be serviced.

If portmap or rpcbind(8) is not running, stop the mountd, nfsd, and
pcnfsd(8) daemons. You must also stop any other RPC registered servers
that are running. Then start the portmap or rpcbind daemon. After this
daemon is started (the ps -ae command shows portmap or rpcbind
running), start mountd and the nfsd daemons.

Note: Look into server idiosynchracies, for example, if the NFS server is
a Silicon Graphics (SGI) system and the Cray system is the client, the
mountd daemon on the SGI system must be started with the -n option.

Sun Microsystems has the -n option set by default within their startup
scripts; other systems may vary.

3. Ensure that portmap(8) or rpcbind(8), mountd(8), and nfs(4P) are
registered RPC services on the NFS server machine. On the client, use the
rpcinfo(8) command, as follows:

rpcinfo -p server_hostname

Following is partial sample output from the rpcinfo command:

program vers proto port

100005 1 tcp 678 mountd

100005 1 udp 676 mountd

100003 2 udp 2049 nfs

:

:

:

100000 2 tcp 111 portmapper

100000 2 udp 111 portmapper

There are two entries for mountd and portmapper, one for udp, and the
other for tcp. NFS has only one entry, because it uses only udp as the
transport protocol.

If one or more of these programs are not registered RPC programs, either step
2 has failed, or you should kill the portmap or rpcbind, mountd, and nfsd
daemons (along with any other RPC registered programs) and restart them.

276 S–2304–10011

Network File System (NFS) [3]

Start portmap or rpcbind first; after it has begun, start the mountd and
nfsd daemons, along with any other RPC daemons.

The -u option of the rpcinfo command can also be run on the client to
determine whether these servers are registered and responding through
portmap. The -u option uses user datagram protocol (UDP) to the specified
server on the specified program, as in the following example:

rpcinfo -u server_hostname 100005 1

The program number for mountd is 100005.

Following is sample output from the rpcinfo command:

program 100005 version 1 ready and waiting

4. Ensure that the file system or directory you are trying to mount is exported
on the NFS server giving the client permission to mount. Use the following
command only if you are running as root:

/etc/exportfs

The exportfs command without options prints the currently exported
file systems or directories.

If you are not running as root, use the following command:

cat /etc/xtab

This file is updated by exportfs; thus, it also shows the current list of
exported file systems or directories.

Note: Viewing the /etc/exports file does not necessarily show the
currently exported file systems or directories; therefore, it should not be
used to determine whether something is exported.

5. Ensure that the /etc/hosts files are accurate on both the NFS server and
client. Check to verify that the entry in the /etc/hosts file for the server
is the same on both systems (that is, the server’s host name used on both
systems points to the same Internet address), and perform the same check
with the entry for the client on both systems.

Note: If you are running the domain name server, using the named(8)
daemon, the /etc/hosts file is not accessed and you should use either
the nslookup(1) or the host(1B) command to identify the host entry. See
the man pages for details. If you are using NIS, use the ypcat HOSTS
| grep host command, where host is the name of the host or machine
you want to access.

S–2304–10011 277

UNICOS® Networking Facilities Administrator’s Guide

See the troubleshooting steps in Section 3.2.1.3, page 280, if you are using ID
mapping and either the NFS server or client has multiple network interfaces
(therefore, multiple /etc/hosts file entries).

3.2.1.2 Problems Accessing NFS Mounted Files

After the NFS system is mounted, do the following if you cannot access these
files:

1. Ensure that the file system or directory is still mounted on the NFS client.
Use the following mount(8) command without options to list all currently
mounted local and NFS file systems:

/etc/mount

The rsize and wsize options of the mount command specify the number of
bytes in the read buffer and the write buffer, respectively (they are typically
set to the same value). Ensure that these options are correct.

To determine these values, check the exact mount command used (you
may need to look in /etc/fstab to determine the exact options used). If
an rsize or wsize option is not used with the mount command, these
values are set to a default size. On UNICOS systems, the default size is 8
Kbytes. However, the maximum size, 32 Kbytes, is set by the NFS_MAXDATA
kernel variable in the config.h file. A similar variable should exist on
systems that are not UNICOS systems. Contact the appropriate vendor
for this information.

Following are some suggestions for setting rsize and wsize on the mount
command under various configurations:

• Cray-to-Cray NFS environment

For UNICOS systems, the default value for read and write buffers is
8 Kbytes, which is the maximum buffer size for many other systems.
However, if you are running UNICOS NFS between two Cray systems,
you should set rsize and wsize to the maximum value of 32 Kbytes.
With Cray systems running earlier releases of UNICOS, it is not necessary
to specify rsize and wsize, because the default is 32 Kbytes.

• Cray NFS client and other vendor’s NFS server

The rsize and wsize values set on the Cray NFS client, or the default
value set if these options were not specified, must not exceed the
maximum read or write buffer size of the NFS server. A typical maximum
value for other vendors is 8 Kbytes. If you are running UNICOS 9.0 or

278 S–2304–10011

Network File System (NFS) [3]

later, the client default value is 8 Kbytes; therefore, it is not necessary to
specify the rsize and wsize options, unless the NFS server’s limit is
less than 8 Kbytes.

Contact your vendor for the maximum buffer size (NFS_MAXDATA)
supported. See Section 3.4, page 293, for more details.

• Cray NFS server and other vendor’s NFS client

In this configuration, the limiting factor is again the other vendor’s
maximum buffer size (NFS_MAXDATA). See Section 3.4, page 293, for
more details on rsize and wsize.

2. Ensure that the access options and the directory and file permission settings
on the NFS server and client are not the problem.

On the NFS server, check the following exportfs(8) or exports(5) options
to see whether the file system or directory was exported with any options
that affect permissions:

Option Description

ro Export read-only.

rw= hostname Export read-write to hostname only.

anon= uid User ID for unknown user.

root= hostname Give root access to hostname only.

krb Kerberos authentication required for access.

See the exportfs(8) and exports(5) man pages for more detail.

On the NFS client, check the permissions of the following:

• The mount point. If the file system or directory is already mounted, you
must unmount it to obtain the actual mount point directory permission
settings. At a minimum, the mount point directory permissions should
be set to 555.

• The mounted files or directories that are having trouble being accessed.
Check the owner and group name and permission settings to see whether
this might be the problem.

Ensure that you have a flat administrative environment in which all user
IDs are the same across all systems, or that you are running NIS, or that
you have UNICOS ID mapping set up and running. See the following
section for more information on ID mapping troubleshooting). If you are
not using UNICOS ID mapping (that is, you do not have map-through

S–2304–10011 279

UNICOS® Networking Facilities Administrator’s Guide

ID mapping domains), ensure that ID mapping is disabled by using
the /etc/uidmaps/nfsidmap -d command. You must have root
permission to use this command.

3. Ensure that enough memory buffers (mbufs) are available. Use the following
command to obtain an mbuf count:

/etc/netstat -m

See Chapter 2, page 3, and netstat(1) for more details on mbufs and their
use.

3.2.1.3 Problems with ID Mapping

If the Cray system is an NFS server or NFS client, UNICOS ID mapping can
occur. It is recommended that if both server and client are Cray systems, ID
mapping should occur on the NFS server. You can perform the following
troubleshooting steps on either an NFS server or client, depending on where
the ID mapping is occurring.

1. Ensure that ID mapping is enabled. Output from the following command
(without options) specifies whether ID mapping is enabled or disabled:

/etc/uidmaps/nfsidmap

2. Ensure that an ID mapping domain exists for the system experiencing
problems. Use the following command to list the ID mapping domains
that contain the hostname address:

/etc/uidmaps/nfslist -a hostname

The host name specified in this command should be the same host name
specified on the mount(8) command.

If multiple network interfaces (that is, multiple network paths) are between
the NFS server and client systems, ensure that an ID mapping domain is set
up for the correct interface or for all such interfaces, if routing is not static.

3. Ensure that ID maps and corresponding hash tables are accurate. Use the
following command (without options) to check the consistency of the user ID
and group ID maps in the kernel:

/etc/uidmaps/nfsckhash

If this command indicates any problems, follow the procedure to rebuild
your ID maps, as previously described.

280 S–2304–10011

Network File System (NFS) [3]

4. Ensure that the user(s) are set up correctly. During the actual mount
command operation, root is the user. If the Cray system is experiencing
access problems when trying to mount an NFS file system, root is the
affected user. You should not have any exceptions listed in an exceptions file
for user root. For example, although root must be present in an exceptions
file for mounting, you should not attempt to map root to the bad user ID.

After the file system is mounted, any user can try to access that file system.
Ensure that the user entries, such as group lists, are in the required ID map
and that the entries contain the most current information. Use the following
command to print the user entries:

/etc/uidmaps/nfsuid -m map_name list_of_user_names

The specified map name should be the map listed as output from the
nfslist command described in step 2.

If a map-through map was created for the domain in question and you are
not running UNICOS security, you do not need to perform this command.

5. Because the UDB allows user entries with no group ID, it creates password
files with empty group ID fields. Because the nfsmerge(8) command does
not accept an entry without a group ID field, you might receive the following
message if you execute nfsmerge:

nfsmerge: WARNING!! Could not read entire password file.

There is probably an invalid entry (no gid?).

The resulting ID map file may be incomplete.

For mapping to work, a user must have a group ID. If this error occurs,
assign the user a group ID.

3.2.2 NFS Mount Failure

This section consists of an example of an NFS mount, followed by a list of error
messages with explanations. If your mount(8) command fails for any reason,
check the generated error messages for information about possible solutions.

3.2.2.1 NFS Mount Example

The mount(8) command can get its parameters from the command line or from
the /etc/fstab file. The following example assumes command-line arguments,
but the same debugging techniques work if /etc/fstab is used. Look at a
sample mount request made from a client machine:

S–2304–10011 281

UNICOS® Networking Facilities Administrator’s Guide

mount -t NFS krypton:/usr/src /krypton.src

The example asks the server machine called krypton to return a file handle
for the /usr/src directory. This file handle is then passed to the kernel in
the mount(2) system call. The kernel looks up the /krypton.src directory;
if everything is working properly, it ties the file handle to the directory in a
mount record. From now on, all file system requests to that directory, and any
subdirectories, will go through the file handle to krypton.

The following is a list of steps the mount command takes to mount a remote file
system, as in the previous example:

1. The mount(8) command parses the first argument into host krypton and
remote directory /usr/src.

2. The mount command determines the Internet Protocol (IP) address of
krypton.

3. The mount command calls the krypton mountd(8) program and passes
/usr/src to it.

4. The krypton server’s mountd command reads /etc/exports and looks
for the exported file system that contains /usr/src.

5. The krypton server’s mountd command expands the host names and
network groups in the export list for /usr/src.

6. The krypton server’s mountd command gets a file handle for /usr/src
from the operating system.

7. The krypton server’s mountd command returns fhandle.

8. The mount(8) command performs an NFS mount system call with the file
handle and the /krypton.src directory.

9. The NFS mount system call determines whether the caller is a super user and
whether /krypton.src is a directory.

10. The NFS mount system call does a statfs(2) system call to krypton ’s
UNICOS NFS server (nfsd).

11. The mount command opens the /etc/rmtab file and appends an entry to it.

282 S–2304–10011

Network File System (NFS) [3]

3.2.2.2 NFS Mount Failure Error Messages

Any one of the steps in the previous section can fail, some of them in more
than one way. Following are specific error messages, along with descriptions
of the failures associated with each.

/etc/fstab: No such file or directory

The mount(8) command tried to search for the name in /etc/fstab, but
/etc/fstab did not exist.

mount: ... Block device required

A likely cause is the omission of the krypton: part of the following request:

mount krypton:/usr/src /krypton.src

The mount(8) command assumes that you are doing a local mount, unless there
is a colon in the file system name or the file system type is NFS in /etc/fstab.

mount: directory path must begin with /

The second parameter to mount identifies the path of the specified directory. This
must be a full path name beginning with /.

mount: ...: No such file or directory

Either the remote directory or the local directory does not exist. Check the
spelling, and use ls(1) to request a listing of each directory.

mount: ...: Not a directory

Either the remote path or the local path specified is not a directory. Check the
spelling, and use ls(1) to request a listing of each directory.

mount: ... not found in /etc/fstab

If mount is called with either a directory or a file system name, but not both, it
looks in /etc/fstab for an entry whose file system or directory name field
matches the argument on the command line. For example, the following entry
results in a search of /etc/fstab for a line that has a directory name field
of /krypton.src:

mount /krypton.src

Assume that an entry such as the following is found:

krypton:/usr/src /krypton.src NFS rw,soft,rsize=8192,wsize=8192

S–2304–10011 283

UNICOS® Networking Facilities Administrator’s Guide

The mount is then performed as though you had typed the following:

mount -t NFS -o rw,soft,rsize=8192,wsize=8192 krypton:/usr/src /krypton.src

The “not found” message indicates that a match for the argument given to mount
was not found in any of the entries in /etc/fstab.

mount: not in export list for ...

In the /etc/exports file, your machine name is not included in the export list
for the file system you want to mount. You can look at the file by logging in to
the server system or by using remsh(1B). If you are to mount the system, add
your machine names to the relevant exports list, or the list of machine names
should be null, indicating that any machine can mount the file system.

mount: ...: Not owner

You must do the mount as super user on your machine because it affects the file
system configuration for the whole machine, not just for you.

mount: ...: Permission denied

This message generally indicates that some authentication failed on the server.
It could simply be that your machine name is not included in the appropriate
/etc/exports list (see the preceding message) or that the server could not
determine who you are. Possibly, the server does not acknowledge that you are
who you say you are. Check the server’s /etc/exports file.

mount: ... server not responding: RPC_PMAP_FAILURE -
RPC_TIMED_OUT

Either the server from which you are trying to mount is down, or its portmapper
is dead or hung. Try logging in to that machine. If you can log in, enter the
following:

rpcinfo -p hostname

You should see a list of registered program numbers. If you do not, you might
have to restart the portmap(8) daemon. If you cannot perform a remote login
to the server, but the server is up, you should check your network connection
by trying a remote login to some other machine. You should also check the
server’s network connection.

mount: ... server not responding: RPC_PROG_NOT_REGISTERED

This message indicates that mount got through to the portmapper, but the NFS
mount daemon (mountd) was not registered.

284 S–2304–10011

Network File System (NFS) [3]

arp;... unknown host

The host name you supplied could not be found in /etc/hosts. First check
the spelling and the placement of the colon in your mount call. If the spelling
and syntax are correct, try ping(8) on the local machine (client) and on another
machine to determine whether the remote host is responding.

For UNICOS, mountd(8) is typically started from /etc/netstart. Use
sdaemon(8) to start it manually. Generally, it can be restarted by simply entering
the following command:

/etc/mount mountd

3.2.3 Hanging Programs

If programs hang while they are performing file-related work, your server might
be dead. In this case, you might see the following message on your console:

NFS server Internet address not responding, still trying

This problem originates with either one of your servers or the network. If the
problem is with a server, you can determine which server is malfunctioning by
locating the address provided in the message in /etc/hosts. If your machine
hangs completely, check the server(s) from which you have mounted. If one (or
more) of them is down, your programs will continue automatically when the
server comes back up. There will be no indication that the server died, and
no files will be destroyed.

If a soft-mounted server dies, other work should not be affected. Programs
that time out while trying to access soft-mounted remote files will fail with
the errno value of ETIMEDOUT, but you should still be able to work on your
other file systems.

If all servers are running, check to see whether anyone else using the server
or servers in question is having trouble. If more than one machine is having
problems getting service, it is probably a problem with the server’s daemon
(nfsd(8)). Log in to the server and execute the ps(1) command to see whether
nfsd is running and accumulating CPU time. If not, you might be able to
terminate and then restart nfsd. If this does not work, you must reboot the
server.

If no one else is having problems, check the network connection and the
connection of the server.

S–2304–10011 285

UNICOS® Networking Facilities Administrator’s Guide

If your machine comes up partially after a boot, but it hangs where it would
usually be doing NFS mounts, one or more servers is probably down or a
problem exists with your network connection.

3.2.4 No Super-user Access over the Network

Under UNICOS NFS, a server exports the file systems it owns so that clients can
mount them remotely. When you become a super user on a client, you are denied
access on remotely mounted file systems. Consider the following example:

% cd

% touch test1 test2

% chmod 777 test1

% chmod 700 test2

% ls -l test*

-rwxrwxrwx 1 jsbach 0 Mar 24 16:12 test1

-rwx------ 1 jsbach 0 Mar 24 16:12 test2

Now, retry it as super user.

% su

Password:

touch test1

touch test2

touch: test2: Permission denied

ls -l test*

-rwxrwxrwx 1 jsbach 0 Mar 21 16:16 test1

-rwx------ 1 jsbach 0 Mar 21 16:12 test2

The problem usually appears during the execution of a setuid root program.
Programs that run as root cannot access files or directories, unless the
permission for other allows it.

Also, if the server is not an NFS server and the export(5) file or the export
option on the exportfs(8) command does not allow your workstation root
access, you cannot change ownership of remotely mounted files. Because, in this
case, users cannot perform a chown(1) command, and the super user is treated as
a standard user on remote access, no one but the super user on the server can
change the ownership of remote files. For example, if you try to execute chown

286 S–2304–10011

Network File System (NFS) [3]

as yourself on new program a.out, which must be setuid root, it will not
work, as demonstrated in the following example:

% chmod 4777 a.out

% su

Password:

chown root a.out

a.out: Not owner

To change the file ownership, you must log in to the server as a super user and
then make the change. Alternatively, you can move the file to a file system
owned by your machine (for example, /usr/tmp is always owned by the local
machine) and make the change there.

3.2.5 File Operations Not Supported

Remote file systems support file locking if the daemons lockd(8) and statd(8)
are running. By default, file locking is supported.

If you do not want file locking, mount the file system using the nolock option
on the mount(8) command.

Append mode and atomic writes are also not ensured to work on remote files
that are accessed simultaneously by multiple clients.

3.2.6 Remote Device Access Not Supported

Under UNICOS NFS, you cannot access a remotely mounted device or any other
character or block special file, such as a named pipe.

3.3 Confidence Testing

The UNICOS NFS confidence test suite is provided to ensure the proper
installation of UNICOS NFS. These tests are used by system analysts and
administrators. Two types of test groups are included in the test suite: functional
and performance.

Functional tests verify that specific features are working as expected. If the
functional tests fail, you should look for errors in installation or configuration.
The functional test group includes the following groups of tests:

S–2304–10011 287

UNICOS® Networking Facilities Administrator’s Guide

Test group Description

Basic Determines whether UNICOS NFS is providing
basic functionality

General Checks some commonly used applications such as
compiles, nroff(1), and tbl(1)

Special Analyzes specific facilities that have required
special attention in the past

Cray client Analyzes facilities that have required special
attention on Cray systems as NFS clients

After the functional tests pass, you can look at performance to determine whether
the system can be fine-tuned to run faster. The performance test provides file
transfer rate measurements.

All confidence tests are self-checking. Error messages are provided to help
you determine the source of a problem. The tests described in this section are
designed to be compiled and executed on client machines running the UNICOS
operating system. No test suite software runs on the server.

During the execution of the test suite on a client machine, directories and files
are created along a separate path called the test directory. The test directory
usually consists of the path to a remote directory that was mounted on the
client from a server. Optionally, the test suite can mount a remote directory
on the local machine.

3.3.1 Installation

The /usr/src/net/nfs/tests directory contains the confidence test suite
source code. This source code should be copied to a user directory before it is
compiled. The /usr/src/net/nfs/tests/Makefile makefile can be used to
distribute the test source code to a new location, as follows:

su root

make dist DESTDIR=destination_path_for_test_source

After placing the source tree in the desired location, use the Makefile makefile
to compile the tests. Execute the following command in the destination directory:

cd destination_path_for_test_source
make all

To move the compiled tests to a new location, use the following makefile:

288 S–2304–10011

Network File System (NFS) [3]

su root

make copy DESTDIR=destination_path_for_compiled_tests

When the test suite is created successfully and is in its execution location, the
permission mode and ownership of binary file domount, which exists in the root
of the test suite tree, must be changed. The super user must own domount, and
the setuid bit must be set. As super user, enter the following commands:

chown root domount

chmod 4555 domount

3.3.2 Test Execution

Execute the test suite as follows:

1. As super user, mount the desired NFS directory.

Example:

mount -t NFS -o rw,soft,wsize=8192,rsize=8192 cray2:/tmp /usr/tmp/mount

2. As a standard user, set the NFSTESTDIR environment variable to a
subdirectory of the mounted directory. For example, use the mount point in
the previous example, as follows:

setenv NFSTESTDIR /usr/tmp/mount/craytest

If the test directory already exists, the test suite deletes it and its contents
(craytest, in this example).

3. Modify the TESTS and TESTARG variables in the tests.init file to
indicate the type of functional test you want to run, as follows:

• Set the TESTS variable to indicate which of the following tests you
want to run:

Variable Test type

TESTS="-b" Runs the basic tests

TESTS="-g" Runs the general tests

TESTS="-s" Runs the special tests

TESTS="-c" Runs the Cray client tests

TESTS="-a" Runs all of the preceding tests (default)

S–2304–10011 289

UNICOS® Networking Facilities Administrator’s Guide

• Set the TESTARG variable (which affects only the basic tests) to run an
abbreviated functional test, as follows:

Variable Test type

TESTARG="-f" Causes the basic tests to run a shorter
functional test. Use this variable in
conjunction with TESTS="b" to run a
quick-look test of NFS.

TESTARG="-t" Causes the basic tests to run a longer test
with timing functions (default).

• Run the functional tests with the runtests command, as follows:

runtests

The runtests script (located in the root directory of the test tree) is
invoked on the client machine. If the test directory exists, you are given
the following message and choice:

The NFSTESTDIR directory /usr/tmp/mount/craytest exists.

The NFS tests expect to create this directory.

Remove the existing directory (and its contents!)

and continue with the NFS tests (n[y])?

To delete the directory and continue, type y; to abort the test and leave the
directory intact, type n. n is the default.

• Run the performance test as a separate test. For meaningful performance
numbers, the client machine, the network, and the server machine must
be dedicated to the test. Run the test as follows:

nfsperf [-l num_times_to_loop_thro_test]
[-d results_directory]
[-n num_of_concurrent_tests]
[-s file_size]
[-f num_of_files]
testdir

Option Description

-l Determines the number of times to repeat
each test; default is 1.

-d Indicates that the results_directory
directory is to be used to store the results
files.

290 S–2304–10011

Network File System (NFS) [3]

-n Indicates the number of concurrent tests;
default is 1.

-s Indicates the size of files that will be
created during the tests in multiples of 32
Kbyte blocks; default is 50.

-f Indicates the number of files to create for
each test; default is 5.

testdir Name of directory that contains the
tests. This parameter is optional if the
NFSTESTDIR environment variable has
been set.

3.3.3 Test Configurations

The following test configurations are suggested for UNICOS NFS confidence
testing in a Cray environment:

1. Run the test suite on a Cray machine, specifying NFSTESTDIR as a local (not
remotely mounted) directory. The tests run against standard file space,
providing a baseline set of results and timings (speed of the Cray file system)
if the -t option is selected for the basic tests).

2. Make the Cray machine both the server and the client machine by mounting
a local file system onto another local directory, using localhost as the
server_name argument on the mount(8) command.

3. Mount a file system from a remote server machine onto the Cray system. The
test directory then exists on a remote machine.

3.3.4 Executing Individual Tests

You can execute any individual test by setting the NFSTESTDIR environment
variable to the name of a directory within the mounted directory. For example, if
a remote directory is mounted on local test directory /usr/tmp/mount, specify
a new subdirectory, such as /usr/tmp/mount/craytest. Then execute the
following command:

setenv NFSTESTDIR /usr/tmp/mount/craytest

To run a basic test, change to the basic test directory, check the specific test for
required arguments, and then run the test, as follows:

test_name arguments

S–2304–10011 291

UNICOS® Networking Facilities Administrator’s Guide

For example, to run functionality test test3 from the basic section, execute the
following commands:

cd basic

test3 -f

To run any of the tests other than the basic tests, you must first copy the tests to
the mounted test directory.

Example:

mkdir $NFSTESTDIR

make copy DESTDIR=$NFSTESTDIR

cd $NFSTESTDIR

rename 100

3.3.5 Cleaning up

If the runtests script is used to run the test suite, all files and directories
created in the test directory are removed at the completion of testing. However,
the tester must clean up the test directory after running an individual test.

The following command attempts to remove files in the test suite, including
$NFSTESTDIR :

rm -rf $NFSTESTDIR

The super user must remove executable file domount.

3.3.6 Test Contents

Basic tests create and remove files and directories, obtain and set file attributes,
perform look-up functions, read and write files, read directory entries, and
obtain file system statistics.

Special test functions include checking access to open files that have had their
modes changed, checking replies lost on nonidempotent requests, performing
exclusive create functions, performing seeking functions to a negative offset,
repeatedly renaming files, creating and accessing files with holes (data blocks not
allocated), and taking proper umask(1) action on remote files.

Performance tests provide a file transfer rate benchmark. Several files are created
from the mounted file system, and then data is written to and read from those
files.

292 S–2304–10011

Network File System (NFS) [3]

General file system tests include compiles, simultaneous compiles, doing a
makefile, nroffing a file, or using tbl. They also provide timing information
for performance measures.

Cray client tests include tests of special areas that are unique to UNICOS,
including asynchronous I/O, truncation tests, and additional umask tests.

Please send comments and suggestions concerning the UNICOS NFS test suite to
the following:

Cray Inc.

Software Test Group

1340 Mendota Heights Road

Mendota Heights, MN 55121

Additional tests to be added to the suite are welcome.

3.4 Performance and Tuning

NFS is a synchronous protocol designed for reliable remote access. The
synchronous characteristic means that for each NFS request sent, a response must
be received (indicating the completion of the request) before another NFS request
can be sent. This characteristic is one of the primary reasons NFS is not as fast
as other TCP/IP applications. NFS uses UDP/IP, which is a connectionless,
unreliable transport protocol (NFS does not use TCP). Therefore, NFS runs
best over reliable local area networks.

Many NFS performance factors are related to the manner in which UNICOS
TCP/IP networking parameters were tuned or optimized. Particularly affecting
performance are maximum transmission units (mtus) (see Section 2.3.1, page
123); memory buffers (mbufs) (see Section 2.3.2, page 128); and network routing
(see Section 2.3.3, page 148).

The following sections describe factors that affect NFS performance and methods
for obtaining performance figures.

3.4.1 Factors That Affect NFS Performance

The following sections describe factors that can affect NFS performance and offer
guidelines for increasing performance.

S–2304–10011 293

UNICOS® Networking Facilities Administrator’s Guide

3.4.1.1 NFS_MAXDATA Parameter

The NFS_MAXDATA parameter (defined in the config.h file) defines
the maximum size of the data part of a remote NFS request. By default,
NFS_MAXDATA is set at 32 Kbytes (32,768 bytes) on UNICOS systems. This
parameter has the greatest effect on NFS servers, but it also affects NFS clients.
For example, a Cray system acting as an NFS server can receive a maximum of
32 Kbytes of data from an NFS client request. However, the maximum amount
of data an NFS client can send is determined by the value of its NFS_MAXDATA
variable. This makes the limiting factor the system with the smallest
NFS_MAXDATA size. Generally, the more data that can be sent and received at one
time, the better the performance. Therefore, it may be advantageous to increase
NFS_MAXDATA on systems that are not Cray systems.

Note: It is not known how all other systems define this parameter, or whether
the parameter can be changed on all of these systems. Contact the appropriate
vendor for such information.

3.4.1.2 mount Command Arguments

The mount(8) arguments rsize and wsize can have a direct effect on NFS
performance. You can set these parameters when issuing the mount command
on the NFS client. However, rsize and wsize cannot be set above the client’s
NFS_MAXDATA size, and they should not be set greater than the server’s
NFS_MAXDATA value.

The rsize parameter specifies the read buffer size in bytes (the maximum
amount of data the NFS client can accept from an NFS read request); the wsize
parameter specifies the write buffer size in bytes (the maximum amount of data
the NFS client will send in an NFS write request). Generally, rsize and wsize
are set to the same value. A guideline to use in setting these parameters is to set
them as large as possible, but not to exceed the smaller of the NFS_MAXDATA size
of the client or server. If these mount parameters are not specified, the default
used is based on the client’s default buffer size.

For Cray systems running UNICOS , the default buffer size (default rsize
and wsize) is 8 Kbytes, with a maximum of 32 Kbytes (NFS_MAXDATA). Most
systems that are not Cray systems have both their default and maximum buffer
sizes set to 8 Kbytes. Therefore, generally, NFS client systems do not need
to specify rsize and wsize; instead, the default of 8 Kbytes is used. One
exception to this is when NFS is being run between two Cray systems; for better
performance, you should set rsize and wsize on the mount command to 32
Kbytes instead of using the default of 8 Kbytes.

294 S–2304–10011

Network File System (NFS) [3]

3.4.1.3 NFS Daemons

Other factors that affect NFS performance are the number of NFS daemons
(nfsd(8)) running on the NFS server and the number of block I/O daemons
(biod(8)), if any, running on the NFS client. The nfsd daemons are used on the
NFS server to respond to requests from NFS clients for access to exported file
systems. The biod daemons are used on the NFS client to allow for applications
to use asynchronous block I/O. The biod daemons on the UNICOS system
provide write-behind capabilities on behalf of the application.

The typical number of nfsd daemons running on a UNICOS NFS server system
is 4; the typical number of biod daemons running on a UNICOS NFS client
system is 4. If your system, acting as an NFS server, is going to be used as a
fileserver for the rest of the network, more nfsd daemons may be required.
However, it is not clear how to determine whether you are running enough of
these daemons. You must use a trial-and-error method in which you determine
whether adding more daemons makes any improvements to NFS performance.

Note: Adding more nfsd or biod daemons does not improve performance of
a single stream, but it does affect the overall performance of multiple users.
However, you should run some biod daemons, because running biod
daemons increases the performance of a single write stream. You should also
note that biod daemons do use mbufs (see Section 2.3.2.1, page 129 , for details
on setting the number of mbufs).

3.4.1.4 File System Configuration and ldcache(8)

One of the major limiting factors for any NFS server is its performance in
accessing data (disk I/O performance). Many times this is the only limiting factor
and therefore, performance never improves above the NFS server’s disk I/O
performance. For Cray systems acting as NFS servers, disk I/O performance
is affected by whether ldcache(8) is configured and how it is used. If a Cray
system is acting as an NFS server with a heavy NFS access load, using ldcache
can greatly increase performance.

However, you should be aware of some factors. Ensure that using ldcache
for NFS data access does not negatively affect local I/O performance (see the
UNICOS Configuration Administrator’s Guide, for more information on ldcache
and configuring disks). Also, ldcache violates the NFS stateless protocol. For
example, if the NFS server goes down, it should not affect the NFS client, except
for a delay in processing until the NFS server comes back up. However, if the
NFS server uses ldcache and the NFS server goes down, it may affect the NFS
client, in that any NFS data that was changed or added by the client may not
have been written to disk before the crash; the NFS client will not be aware that

S–2304–10011 295

UNICOS® Networking Facilities Administrator’s Guide

the changes were not made to the disk. Of course, similar concerns also affect
local I/O requests using ldcache.

3.4.1.5 Network Speed

The network speed of channel devices such as the 10 Mbit/s Ethernet, 100 Mbit/s
FDDI, 50 Mbit/s HYPERchannel, or 800 Mbit/s HIPPI affects performance.
Generally, the faster the network, the better the performance. However, there
can be exceptions because network speed is not the only factor that affects
performance. One network can be faster than another network, but it can have
higher overhead that decreases performance.

3.4.1.6 Network Configuration and Load

Performance is poor for any network application if the network is overloaded or
poorly configured. You should check your networks for signs of overload (for
example, a high number of collisions) by using such utilities as netstat(1B)
to evaluate the state of your network, and netperf(8) and nfsstat(8), which
display NFS/RPC statistics.

You should also try to configure your networks to reduce the number of gateway
hops that are required to get from an NFS client to an NFS server.

3.4.1.7 NFS Server/client Configuration and Load

If a system will be an NFS server for several NFS clients with heavy access,
it should be configured as a dedicated NFS server system and be used only
minimally for other purposes. If an overloaded system is acting as either an NFS
server or client, performance will be poor.

3.4.2 Obtaining NFS Performance Figures

NFS performance figures can be obtained by running the NFS
performance test, fileperf, included in the NFS source directory,
/usr/src/net/nfs/tests/nfsperf. Tests should be run with the Cray
system acting as an NFS server and run again with the Cray system acting as an
NFS client. See Section 3.3.6, page 292, for more details.

If possible, you should run the same tests through a similar network
configuration, between two systems that are not Cray systems, to obtain figures
that can be compared to the Cray system performance figures.

296 S–2304–10011

Network File System (NFS) [3]

To obtain peak performance numbers for a particular configuration, follow
these guidelines:

• Use the fastest networks available for NFS access (see the previous section for
exceptions to this guideline).

• Ensure that the client machine, the network, and the server machine are
dedicated for the test.

• Eliminate (or at least reduce) gateway hops.

• Set the value of NFS_MAXDATA on the NFS server and client to the optimal
size. By default, Cray systems set NFS_MAXDATA to 32 Kbytes; it is desirable,
but not always possible, to match this value on the other system. See Section
3.4.1.1, page 294, for more information on setting this value.

• Set the mtu for the interface to the optimal size (see Chapter 2, page 3, for
details on setting the mtu size).

• Use ldcache(8) on Cray systems, or comparable caching methods on other
systems, for the file systems on the NFS server.

• Run biod(8) daemons on the NFS client system.

NFS peak performance figures are usually no better than 50% of peak
performance rates obtained with ftp (in some cases, NFS figures may be
considerably less than 50%). One of the major factors for these statistics is that
NFS is a synchronous protocol.

S–2304–10011 297

Network Information Service (NIS) [4]

Warning: The network information service (NIS) feature is not part of the
Cray ML-Safe configuration of UNICOS. This chapter does not contain any
further warnings or information pertaining to the use of the Cray ML-Safe
configuration of UNICOS.

4.1 About NIS

The UNICOS network information service (NIS) facility (formerly known as
yellow pages) is a network service that allows information such as passwords
and group IDs for an entire network to be held in one database. Implemented
along with the Remote Procedure Call (RPC) and eXternal Data Representation
(XDR) library routines, UNICOS NIS has the following features:

• Look-up service. UNICOS NIS maintains a set of databases that can be
queried through the use of pointers, or keys. Programs can request the value
associated with a particular key, or all of the keys, in a database.

• Network service. Programs do not need to know the location of data or
how it is stored. Instead, they use a network protocol to communicate with
a database server that contains the information.

• Distributed service. Databases are fully replicated on several machines,
known as NIS servers. The servers propagate updated databases among
themselves, ensuring consistency.

NIS+ was designed to accommodate large and complex networks by allowing
administrators to organize users into a hierarchical structure that reflects their
interactions and not physical network setups. This structure, which is a collection
of network information about users, machines, and privileges, is called the
NIS+ namespace. You define the namespace with this information in a series of
tables to arrange how your organization is best structured to fulfill and share
computing needs.

The namespace is organized by domains. Each domain has a principal or master
server and at least one backup or replica server. Information about each user,
workstation, and domain in the namespace is organized in NIS+ tables. Twelve
different NIS+ tables are referenced in an NIS+ database on a UNICOS system.
NIS+ tables are maintained on both master server and replica servers, and

S–2304–10011 299

UNICOS® Networking Facilities Administrator’s Guide

changes to network information are easily made from any server and quickly
propagated from the master server to other replicas.

The structure of the NIS+ namespace and information about its machine and
human members is protected by a security system that determines the privileges
of any user making requests. User access requests to network information tables
can be finely controlled by NIS+ security.

The UNICOS NIS environment includes at least one Cray computer system and
one or more front-end machines that are used to access the Cray system. Because
UNICOS NIS differs from the NIS facility used on other systems based on the
UNIX system, administration of an NIS domain that includes a Cray system must
be different from administration of an NIS domain that does not.

If you are unfamiliar with NIS, it is recommended that you begin by reading
the NIS documentation for the front-end system. When you have familiarized
yourself with the general NIS mechanism, read the following sections to
familiarize yourself with UNICOS NIS:

• NIS databases

• NIS maps

• NIS domains

• Servers and clients

• Masters and slaves

• Naming

• Data storage

• Supported databases

• Using NIS

Note: Information on network information service plus (NIS+) is presented
at the end of this chapter. NIS+ software is part of SunSoft’s Open
Network Computing plus (ONC+) product now shipped with the UNICOS
operating system. UNICOS customers must purchase a separate license in
order to use NIS+. See your license file, /etc/craylm/license.dat,
to determine if the required license is installed.

For more information about NIS, see the Sun manual YP Protocol Specifications.

300 S–2304–10011

Network Information Service (NIS) [4]

4.2 NIS Databases

UNICOS NIS contains network-wide databases. Usually, these databases contain
files, such as /etc/passwd and /etc/group, that previously resided in
directory /etc. However, users can add their own databases. Without the NIS
service, each machine on the network would have its own identical copy of
certain administrative files (for example, the /etc/group file on each machine
would have to be updated with the same entry each time you added a user
to the network).

UNICOS NIS can serve many databases. Servers containing copies of the
databases are spread throughout the network. For example, when a machine
in the network must look up something in /etc/passwd, it makes an RPC
call to one of the servers to get the information. One server is the master; the
other servers are the slaves. Only the database on the master server can be
modified. The slaves can be periodically updated so that their information is
the same as that of the master (see Section 4.6, page 303, for more information
on this relationship).

4.3 NIS Maps

NIS databases contain NIS maps. Each map contains a set of keys and associated
values. For example, the host map contains (as keys) all host names on a network
and (as values) the corresponding Internet addresses. Each NIS map has a map
name; programs use the map name to access data in the map.

A program must also know the format of the data in the map it wants to access.
On Cray systems, the information in the NIS map is usually identical to the
information in the /etc/passwd and /etc/group ASCII files. The maps
are implemented in dbm(3C) format in the subdirectories of /etc/yp on NIS
server machines.

4.4 NIS Domains

An NIS domain is a named set of NIS maps. An NIS server contains all of the NIS
domain maps in a subdirectory of /etc/yp; this subdirectory is named after
the domain. You can determine the name of your NIS domain by executing the
domainname(1) command.

You must use a domain name to retrieve data from an NIS database. For
example, if your NIS domain is menagerie, and you want to find the Internet
address of host dbserver, you must use the following command to ask NIS

S–2304–10011 301

UNICOS® Networking Facilities Administrator’s Guide

for the value associated with the dbserver key in the hosts.byname map
within the NIS domain menagerie:

ypmatch -d menagerie dbserver hosts.byname

Maps for the menagerie domain would be in subdirectory
/etc/yp/menagerie. Each machine in the network belongs to a default
domain, set when /etc/ypstart is entered at boot time. The domainname
command is entered and sets the domain name to the domain that is configured
in /etc/config/ypdomain.txt. For information on changing a domain
name, see Section 4.10.3, page 308.

4.5 Servers and Clients

Servers provide resources; clients use them. However, neither a server nor a client
is necessarily restricted to one role. For example, consider the following services:

Service Description

UNICOS NFS If a server machine has exported a file system,
UNICOS NFS allows client machines to mount the
file system remotely and to access files in place.
However, a server that exports file systems can
also mount remote file systems exported by other
machines, thus becoming a client; therefore, a
specific machine can be both server and client,
client only, or server only.

NIS The NIS server is a process that runs on a machine
that might not be an NFS server. A process can
request information from the NIS database,
making it unnecessary to have such information
on all machines. All processes that use NIS
services are NIS clients. Clients can be served
by NIS servers on the same machine or by NIS
servers that run on another machine. If a remote
machine that runs an NIS server process crashes,
client processes can receive NIS services from
another machine. Consequently, NIS services
are usually available.

302 S–2304–10011

Network Information Service (NIS) [4]

4.5.1 Servers

To become a server, a machine must have the NIS databases and run the NIS
daemon ypserv(8). The ypinit(8) command automatically invokes this
daemon and contains a flag that indicates whether you are creating a master or a
slave server. When you update the master copy of a database, you can use the
yppush(8) command to send the changes to the slave server. Conversely, you
can use the ypxfr(8) command from the slave server to receive any changes
from the master.

The makefile in /etc/yp first uses the makedbm(8) command to create a
database, and then calls the yppush(8) command to send the change throughout
the network.

4.5.2 Clients

A client machine that is not a server does not access local copies of /etc files
(except for the /etc/passwd and /etc/group files); instead, it makes an RPC
call to an NIS server each time it needs information from an NIS database. The
ypbind (see ypserv(8)) daemon retains the name of a server. When a client
boots, ypbind broadcasts, requesting the name of an NIS server. Similarly, if
the old server crashes, ypbind broadcasts, requesting the name of a new NIS
server. The ypwhich(1) command gives the name of the server to which ypbind
currently points.

You can use the ypcat(1) and ypmatch(1) commands to read and search files
because client machines do not contain entire copies of files in the NIS database.
For example, to search for a user’s password entry, enter one of the following
commands:

ypcat passwd | grep username
ypmatch username passwd

4.6 Masters and Slaves

An NIS server is either a master or a slave. For any map, one NIS server is
designated the master; all changes to the map should be made on that machine.
The changes are then propagated from NIS master to NIS slaves. When a map is
built by the makedbm(8) command, it is internally time-stamped. If you build
an NIS map on a slave server, you temporarily break the NIS update algorithm
and must then synchronize all versions manually.

S–2304–10011 303

UNICOS® Networking Facilities Administrator’s Guide

Different maps can have different servers as the master. A given server can also
be master with regard to one map, and slave with regard to another. To avoid
confusion, however, it is recommended that one server be designated as master
for all maps created by the ypinit(8) command in one domain. The examples in
this chapter assume that one server is the master for all maps in a given domain.

4.7 Naming

You can use the domainname(1) command and the getdomainname
library routine (see getdomain(3C)) to give two networks different domain
names. The NIS databases for each domain name is stored in the /etc/YP/
domainname directories. Thus, the passwd.byname map for the menagerie
domain is stored as /etc/yp/menagerie/passwd.byname/pag and
/etc/yp/menagerie/passwd.byname/dir.

For example, assume that a company has two different networks, each with its
own separate list of hosts and passwords. Within each network, the user names,
numerical user IDs, and host names are unique. However, some duplication
occurs between the two networks. Although one domain name should be
used whenever possible, in this case, the hostname(1) command and the
gethost(3C) library routine would not be able to identify a host or user name
uniquely. Therefore, the domainname command and the getdomainname
library routine should be used to identify the domain in which a particular host
or user name can be found.

4.8 Data Storage

The NIS data is stored in dbm(3C) format. For example, the NIS map
passwd.byname for the menagerie domain is stored on an NIS server as
/etc/yp/menagerie/passwd.byname.pag for the file that contains only
data, and as /etc/yp/menagerie/passwd.byname.dir. for the directory
that contains a bit map. The makedbm(8) command takes an ASCII file such as
/etc/passwd and converts it into a dbm file suitable for NIS to use.

4.9 Supported Databases

Cray supports the publickey, passwd, group, and netgroup NIS files. The
publickey and netgroup files function the same on Cray systems as on Sun
systems. The passwd and group files function differently; they are described in
the following sections.

304 S–2304–10011

Network Information Service (NIS) [4]

4.9.1 The /etc/passwd File

The /etc/passwd file is stored as two separate maps in the NIS database.
The first map, passwd.byname, is indexed by login name. The second map,
passwd.byuid, is indexed by user ID.

You can also reference the maps by nicknames. For example, when you use the
ypcat(1) command to display or print information about a map, and you use the
map’s nickname, the routine translates that nickname into the actual name of the
map. Therefore, ypcat passwd is translated into ypcat passwd.byname,
because no file is named passwd in the NIS database. The ypcat -x command
furnishes a list of map names and nicknames.

The user database (UDB) generates the /etc/passwd file. The UNICOS system
requires the use of the UDB for login control, accounting, and user limits.
Therefore, a user must have a UDB entry in order to log in to a Cray system that
runs the UNICOS system. The UDB file is searched first when a user calls the
getpwent(3) library routine.

If password control is to be administered from the NIS database rather than from
the UDB, all users should be set up in the UDB with an empty password field,
and the UDB flag permbits:YP: must be set in the UDB entry for each user
whose password is to be maintained by NIS. This method is analogous to the
method used on other systems based on the UNIX system, in which each user
listed in the NIS password map has the following entry in the /etc/passwd file:

+user::uid:gid:::

These entries direct NIS to fill in the missing fields from the NIS password
database. (The colons are delimiters for the login name, password, uid, gid,
comment, home directory, and shell fields, respectively.)

For more information on the UDB, see General UNICOS System Administration.

The generation of the /etc/passwd file is done automatically by certain UDB
commands. The password file generated by the UDB is merged with the master
copy of the password file that resides on the master server. The login name,
user ID, and default group ID fields in the UDB-generated password file must
be identical to those in the master copy when the files are merged. Because
these fields are required to be present in the UDB, they will never be empty in
the UDB-generated password file. However, if any of the password fields in
the UDB-generated password file are empty, you must enter the associated
passwords into the master copy when merging the two files.

S–2304–10011 305

UNICOS® Networking Facilities Administrator’s Guide

4.9.2 The /etc/group File

On Cray systems, the /etc/group file is read and sometimes modified by the
UDB. However, the group file does not depend on the UDB as much as the
password file does. The UDB can modify the group file only when a numerical
group ID is assigned to a UDB entry and that numerical ID does not appear in the
group file. In this case, the UDB generates a new group name for that numerical
ID and adds the numerical ID and the new name to the end of the group file.

The group file can be administered as on any UNIX system, even though it can
be modified by the UDB commands. However, because the UDB modifies the
/etc/group file directly, the /etc/group file on the Cray system should
be without a default + entry.

4.9.3 Changing NIS Data

Each time the /etc/passwd file or /etc/group file is modified on the master
NIS server, a new NIS database should be generated. You can use the passwd(1)
command to change the password before generating the new NIS database or
you can use the yppasswd(1) command to change the password after generating
the new NIS database.

To change other data in the NIS, you must log in to the master server and edit
databases there; the ypwhich(1) command tells you which NIS server to use.

To change their passwords in the NIS database, users of Cray systems should
use the yppasswd command (this command works only if you have started the
yppasswdd(8) daemon on the NIS master server machine).

4.10 Using NIS

The primary goal of NIS is to maintain one administrative environment for the
machines in a local network. The NIS facility maintains a consistent set of login
names and IDs across multiple machines. When you configure NIS into the
UNICOS operating system, the Cray system becomes a participating member of
one administrative environment. UNICOS commands and library calls include
the necessary code to support access to NIS databases. Although you can use
NIS to access other information, Cray currently supports the distribution of
only the following databases:

• group

• passwd

306 S–2304–10011

Network Information Service (NIS) [4]

• publickey

• netgroup

The following sections describe the relationship of UNICOS NFS to NIS, NIS
installation procedures, NIS domain configuration procedures, the procedure for
adding a user to the UNICOS NIS domain, precautions concerning procedures
not recommended by Cray, and secure RPC.

4.10.1 NIS and UNICOS NFS

The UNICOS network file system (NFS) is designed to be used within one
administrative environment (such as an NIS domain). Use of NIS ensures that
login names and, most importantly for NFS, numerical user IDs and group IDs
are unique for all users in the administrative environment.

The need for ID mapping in UNICOS NFS is reduced when the Cray system is a
member of an NIS domain. Although the ID mapping process incurs minimal
overhead, the ID mapping tables reside in kernel memory. However, the Cray
system is typically placed in the middle of several (perhaps many) different
administrative environments. Therefore, ID mapping can still be used between
the Cray system and any host or network that is not part of the NIS domain
of which the Cray system is a member. In this case, the UDB is generally a
superset of the NIS password and group maps. See Chapter 3, page 235, for more
information on UNICOS NFS and ID mapping.

4.10.2 Configuring NIS

If you are upgrading UNICOS and are using the conversion utility, the NIS
feature is on or off, depending on whether the feature was turned on or off in
your UNICOS configuration (prior to the upgrade). Otherwise, the NIS feature is
on by default.

If you are using the UNICOS Installation and Configuration Menu System
(ICMS), see the Configure System -> Major software configuration
menu for the selection that turns on the NIS feature.

If you are not using the UNICOS ICMS for your configuration, you can turn on
the NIS feature by modifying the /etc/config/config.mh file. Change the
following line

#define CONFIG_YP 0

to read as follows:

S–2304–10011 307

UNICOS® Networking Facilities Administrator’s Guide

#define CONFIG_YP 1

After you make this change, follow the remaining system build procedures
outlined in the UNICOS System Configuration Using ICMS.

4.10.3 UNICOS NIS Domain Configuration Procedure

After NIS has been installed, you are ready to configure the Cray system as a
slave server. Making the Cray system a slave server instead of a master server
or a client provides the most efficient performance.

It is not recommended that you configure the Cray system as a master server,
because responding to requests from other clients that are binding to the Cray
server uses Cray cycles; this is not the most efficient use of the capabilities of the
Cray system. Also, as a master server, the Cray system can overload the network
with NIS traffic.

It is not recommended that you configure the Cray system as a client because the
speed of the system overloads the NIS server, and because the performance of
user programs is slowed when the network is accessed for look-up functions.

Use the following steps to configure the Cray system as a slave server:

1. Before initializing the system for multiuser mode, set the NIS domain name
to null, as follows:

domainname ""

2. Initialize multiuser mode, or initialize and configure the network.

3. Specify the domain name on the Cray system to be the same as the name of
the domain for which it is to be a slave server, as follows:

domainname domain

4. Run the ypinit(8) script (this needs to be done only once), as follows:

/etc/yp/ypinit -s YP_master_server_hostname

5. Reset the domain name to null, as follows:

domainname ""

This prevents error messages from occurring during any unintentional
reference to NIS until the remaining configuration is complete.

The Cray system is now known to the NIS master server as a slave server;
that is, the host name of the Cray system has been added to the NIS database

308 S–2304–10011

Network Information Service (NIS) [4]

ypservers. The Cray system now has copies of the NIS databases that it
supports.

If you are using the startup procedures provided with the UNICOS system
(that is, the /etc/ypstart file), and if you turned on the NIS feature during
installation, you can specify the NIS domain name by placing the name in the
/etc/config/ypdomain.txt file. One way of specifying the NIS domain
name in this file is as follows:

echo your_NIS_domain_name > /etc/config/ypdomain.txt

The /etc/ypstart script accesses this file to set the NIS domain name and
then starts the required NIS daemons.

If you are using the UNICOS ICMS for your configuration, use the Configure
System -> Network configuration -> NIS configuration menu to
set the contents of this file.

If you are not using the startup procedures provided with the UNICOS system
(that is, if you are using a modified /etc/netstart file or another script of
your own creation), add the following commands to your start-up file:

domainname your_NIS_domain_name
ypserv

ypbind -h ‘hostname‘

If you want to use secure RPC, you must start up the keyserv process by
invoking the /etc/keyserv daemon in the /etc/netstart script.

4.10.4 Adding a User to the UNICOS NIS Domain

If the NIS domain has been configured as recommended in Section 4.10.3, page
308, you can add a user to the NIS domain, as follows:

1. Choose a user ID for the new user. Examine the UDB and the NIS database to
ensure that the user ID is unique.

2. Add the user to the UDB. Ensure that the NIS_PERMBITS flag is set in the
PERMBITS field of the UDB entry (this flag indicates the use of UNICOS
NIS). If password control is to be administered from the NIS database rather
than from the UDB, you must leave the password field empty.

3. Copy the new user’s UDB-generated /etc/passwd file entry into the
/etc/passwd file that resides on the master server.

S–2304–10011 309

UNICOS® Networking Facilities Administrator’s Guide

4. As root, run passwd(1) on the NIS master server machine to give the new
user a password, because the UDB-generated password file entry does
not include one.

5. Remake the NIS database.

6. Create the new user’s home directory. You must determine whether the
home directory on the Cray system is the same as that in the rest of the
NIS domain.

Note: When a user is added to or deleted from the UNICOS NIS domain,
both the UDB and the NIS master server’s password database reflect the
change.

4.10.5 Precautions Concerning Sets of Users

It is possible, but not recommended, to have an intersecting set of users in the
NIS database and the UDB; that is, systems other than Cray systems might have
users who are allowed to use the Cray system and users who are not allowed
to use the Cray system. Consequently, some users on a given system would
be listed in the UDB, and some would not. Although users listed in the NIS
databases can log in anywhere else within the NIS domain, only users listed in
the UDB can use the Cray system. Such an environment defeats the purpose of
putting the Cray system into an NIS domain, unless this domain is one of many
administrative environments that include the Cray system.

When intersecting sets of users are present, you must be careful when merging
the UDB-generated password file with the password file that is used to generate
the NIS database. Take the following precautions:

• Ensure that users who are allowed to use the Cray system and are members
of the NIS domain have identical login names, user IDs, and group IDs
in the UDB and the NIS databases.

• Ensure that users who are allowed to use the Cray system but are not
members of the NIS domain do not have their UDB login names, user IDs,
or group IDs in the NIS database.

• Ensure that users who are not allowed to use the Cray system but are
members of the NIS domain do not have their NIS database login names,
user IDs, or group IDs in the UDB.

310 S–2304–10011

Network Information Service (NIS) [4]

4.10.6 Precautions Concerning the Cray System As a Master Server

If the Cray system is configured as a master server, it is recommended that no
other machines bind to it.

You cannot use the /etc/passwd and /etc/group files to generate the NIS
password and group maps. Copies of these files must be placed elsewhere;
the information missing from the UDB must be added manually. This makes
password control more difficult.

You cannot use a standard command to give a user a password before making
the NIS password map. The passwd(1) command modifies the UDB (not the
/etc/passwd file). The yppasswd(1) command modifies the NIS password
map. However, you should assign the user a password before building the NIS
database. Therefore, you must use the -f option of the passwd(1) command to
change the password field in a passwd(5) format file, rather than in the UDB.

4.10.7 Precautions Concerning NIS and UNICOS Security

If UNICOS security features are enabled on your Cray machine, you must take
special precautions to ensure that NIS will operate properly. Specifically, all local
host network interfaces must be added to the network access list (NAL) in the
network security file /etc/config/spnet.conf. For more details, see the
spnet(8) command. As a result, NIS processes (such as portmap, ypserv, and
ypbind) can communicate with each other through all local interfaces.

4.10.8 Secure RPC

The secure Remote Procedure Call (RPC) subsystem is the means by which the
AUTH_DES style of RPC authentication is implemented. See the Remote Procedure
Call (RPC) Reference Manual, for details of RPC authentication.

Each user of secure RPC must have an entry in a special NIS database of public
and private keys. There must be one such entry for each host that the user
accesses. Similarly, each host that supports secure RPC must have an entry
for each server it accesses.

The NIS database file is called publickey.byname and it consists of 16
characters. This implies that, if secure RPC is to be run, this file must exist on a
file system that supports names of this length.

The following sections describe methods for generating the database and
developing applications.

S–2304–10011 311

UNICOS® Networking Facilities Administrator’s Guide

4.10.8.1 Generating the Database

Issue the newkey(8) command to add entries to the /etc/publickey file.
This command creates public key/private key pairs for users and hosts on the
network. A public key is accessible to all users; a private key is encrypted according
to the Data Encryption Standard (DES) with the existing password, and it is
accessible only to the user or host to which it is assigned.

To add a user to the database, enter the following command:

/etc/newkey -u username

The newkey program prompts for the login password of the user specified by
username and then creates a unique public key/private key pair for that user.

To add a host to the database, enter the following command:

/etc/newkey -h hostname

The newkey program prompts for the root password of the host specified by
hostname and then creates a unique public key/private key pair for that host.

4.10.8.1.1 Database Format

Secure RPC authentication uses a cryptographic scheme that allows each
client/server pair to obtain a unique key with which authentication data can be
encrypted. The entries in the publickey.byname database are of the following
format:

opsys.id@domain publickey:privatekey

The fields of the entry are as follows:

opsys Operating system. This field is always unix in the
current implementation.

id UNICOS or UNIX identifier for the user or host.
For users, it is the same as the uid field in the
passwd file. For hosts, it is the full name of the
host, which can be obtained by executing the
ypwhich(1) command.

domain Name of the NIS domain within which the
database resides.

publickey String of 48 hexadecimal digits that represent a
192-bit public key for this ID. This public key is

312 S–2304–10011

Network Information Service (NIS) [4]

stored in a nonencrypted form and can be read by
any user on the system.

privatekey String of 48 hexadecimal digits that represent a
192-bit private key, corresponding to the previous
public key field. Unlike the public key field, the
private key field is stored in a DES-encrypted
format. Only the user or host specified by
id can obtain access to the private key in its
nonencrypted format.

After the new users and hosts are added to the /etc/publickey file, you
must rebuild the publickey.byname database. If the master server is a Cray
machine (which Cray does not recommend), enter the following command
in the /etc/yp directory:

make -f yp.mk publickey

Note: The secure RPC subsystem depends on the existence of the NIS database
file of public and private keys. This implies that NIS must be configured on the
Cray system if it is to support secure RPC.

4.10.8.1.2 Database Access

The keyserv(8) program accesses the publickey.byname database, encrypts
and decrypts private keys, and performs the relatively complex mathematics
used to implement the public key system used by secure RPC. The keyserv
process is a daemon that is usually started up from the /etc/netstart (or
equivalent) script.

A keyserv process must run on both the client and the server machines. This
process can be run only by root, and it binds to a reserved port on a user
datagram protocol (UDP) socket. keyserv registers itself with portmap, and it
is always program number 100029.

To determine whether a keyserv process is active on any given host, users
can enter the following command:

rpcinfo -u hostname 100029

The rpcinfo command either returns the following error message:

rpcinfo: RPC: Program not registered

program 100029 is not available

or returns the following completion message:

S–2304–10011 313

UNICOS® Networking Facilities Administrator’s Guide

program 100029 version 1 ready and waiting

Communication between a client or server and the keyserv process is
accomplished through a process called keyenvoy(8). The keyenvoy process is
setuid root and cannot be run interactively. It is created and destroyed
dynamically by the RPC library routines in libc. The keyenvoy process
creates a secure communications channel between a client or server process and
keyserv. The keyenvoy process communicates with keyserv through secured
local RPC channels. keyenvoy communicates with the client or server process
through stdin and stdout. This process should be completely transparent
to all users.

The keylogin(1) program informs keyserv that a user is interested in using the
secure RPC subsystem. keyserv then caches the public key/private key entry
for this user so that it does not have to look up this information at run time.

Usually, there is no reason for the user to run the keylogin program, because
the login(1) program informs keyserv of new users. However, if for
some reason the login program fails to communicate with keyserv, or if
the keyserv program crashes and must be restarted, or if a user has a null
password, the keylogin program can be invoked to inform keyserv directly of
the user’s interest in using secure RPC.

When keylogin is invoked, the user is prompted for the password. If the
password is incorrect, this error is reported to the user. Unless an error message
indicates otherwise, the password has been accepted by the RPC subsystem, and
keyserv has cached the relevant key information successfully.

4.10.8.2 Developing Secure RPC Applications

To prevent false identification, some restrictions must be observed in developing
secure RPC applications.

If a client wants to use a server process that is running as root, the client
must specify the network name of the host as the first parameter of the
authdes_create() call. This specification ensures that the server that is
running on the remote host is actually a root process. The network name of the
host can be obtained by making a call to the host2netname routine, as follows:

char netname[MAXNETNAMELEN+1];

char *hostname;

char *domainname;

hostname = "mycray";

domainname = "my_yp_domain";

host2netname(netname, hostname, domainname);

314 S–2304–10011

Network Information Service (NIS) [4]

When this call returns, the network name of the host is written in array netname.
If the domainname pointer is null, the host2netname routine uses the default
domain name.

If a client wants to use a server process that is not running as root, the user must
know the network name of the user who is running it. This name can be obtained
through a call to the user2netname routine, as follows:

char netname[MAXNETNAMELEN+1];

int uid;

char *domainname;

uid = 134; /* assume remote user has uid 134 */

domainname = "my_yp_domain";

user2netname(netname, uid, domainname);

When this call returns, the network name of the user is written into array
netname. Again, if the domain name pointer is null, the user2netname routine
uses the default domain name. This network name can then be passed as the first
argument to the authdes_create call.

4.11 About NIS+

The following sections briefly describe the administration basics of the network
information service plus (NIS+) facility. This information is aimed at system and
network administrators who have a working knowledge of NIS version 2 and
client-server networks. If you are unfamiliar with NIS, you should first read
the previous sections in this chapter.

For an introduction to NIS+ that describes conceptual aspects and pre-setup
planning strategies, see ONC+ Technology for the UNICOS Operating System. This
guide contains a discussion of enterprise networks, NIS+ domains, NIS+ objects,
and the hierarchical structure of the NIS+ namespace. The following sections
represent a subset of information on the functionality of NIS+. See also Rick
Ramsey’s book, All About Administering NIS+, for more detailed information on
NIS+ operations, and migration from NIS to NIS+.

The following sections briefly describe what NIS+ is and how to set it up on
your UNICOS system:

• NIS+ licensing

• NIS+ overview

• Comparing NIS and NIS+

S–2304–10011 315

UNICOS® Networking Facilities Administrator’s Guide

• Components of NIS+

• Planning your NIS+ namespace

• Setting up your first NIS+ domain

• How to set up a root domain

• Initializing an NIS+ client

• Setting up an NIS+ server

• How to set up a nonroot domain

• Administering your NIS+ namespace

• Migrating from NIS to NIS+

4.12 NIS+ Licensing

Network Information Service plus (NIS+), is a trademarked software product
developed for the Solaris operating system by SunSoft Inc., a Sun Microsystem
company. NIS+ is one of several software products that make up SunSoft’s Open
Network Computing plus (ONC+) product line.

Under agreement with SunSoft, Cray has ported NIS+ for the UNICOS operating
system. Although this NIS+ software is packaged with the current release of
UNICOS, it is a separately licensed product. You must purchase a Cray license to
use NIS+ and other SunSoft ONC+ products on your UNICOS systems.

To see if you already have a Cray license for NIS+, enter any of the NIS+
commands, such as the following nisls(8) command:

nisls

If you do not have an ONC+ license, the following error message appears on
your screen:

ONC+ license required

If you would like to purchase a Cray license to use NIS+ or other ONC+ software,
contact your purchasing department or your Cray sales representative. NIS+ is a
new network information service that was created to replace NIS.

316 S–2304–10011

Network Information Service (NIS) [4]

4.13 Comparing NIS and NIS+

As computer networks become larger and more complex, administrative
complexity grows as well. The model of central administration for computing
networks is obsolete because keeping track of information for all the users and
machines in a enterprise network is labor intensive and slow to update.

NIS+ has many advantages over NIS. Speed and security are the most prominent
differences. A comparison of NIS and NIS+ is summarized in the following table.

Table 6. Comparing the features of NIS and NIS+

Feature NIS NIS+

Organization Flat domains Hierarchical structure

Data storage Bicolumn maps Multicolumn tables

Security No authentication available DES authentication

Information One network service Multiple network services
(NIS, NIS+, DNS, or local files)

Server updates Delayed batch propagation Immediate incremental updates

4.14 Components of NIS+

NIS+ consists of the following main components:

• NIS+ namespace

• Directory objects

• NIS+ domains

• NIS+ servers

• NIS+ clients

• NIS+ tables

• Name service switch

S–2304–10011 317

UNICOS® Networking Facilities Administrator’s Guide

4.14.1 NIS+ Namespace

The NIS+ namespace is a collection of network information stored by NIS+.
The namespace can be configured in a variety of ways to fit the needs of an
organization. Although the structure of an NIS+ namespace can vary from site to
site, all sites use the same structural components including directories, tables,
and groups. These components are called NIS+ objects. There is always only one
namespace per computing environment.

4.14.2 Directory Objects

Directory objects define the sections of the namespace. When these directory
objects are arranged in a tree-like structure, they divide the namespace into
separate parts. A namespace can have several levels of directories. The topmost
directory is called the root directory. A namespace with only one directory is
defined as flat.

With two or more directories arranged in a hierarchical organization, an
NIS+ namespace looks similar to the way UNIX directories are organized in
hierarchical file systems. UNIX directories, however, are designed to hold files,
and NIS+ directories are designed to hold NIS+ objects.

NIS+ objects include other directories, tables and groups containing information
about the network’s machines, processes and users. Any NIS+ directory that
stores NIS+ groups is named group_dir. Any directory that stores NIS+ system
tables is named org_dir. NIS+ system tables contain several categories of
network information and they are briefly described in this section.

4.14.3 NIS+ Domains

Domains are not tangible locations or physical objects of the NIS+ namespace.
They are names for sections of the namespace and therefore they reflect the
organization of users and machines in a computing environment. Domains are
designated to support separate portions of the namespace. An NIS+ domain
consists of a directory object, its org_dir directory, its groups_dir directory,
and a set of NIS+ tables. Each domain contains client machines and servers to
support the users working in that section of the namespace. The servers keep
track of who (clients) is on the network and what access rights they have.

4.14.4 NIS+ Servers

The servers store the domain’s directories, groups, and tables. They answer
requests for access from users, administrators, and applications. Each domain is

318 S–2304–10011

Network Information Service (NIS) [4]

supported by one set of servers, but that same set of servers can also support
more than one domain. A server that supports a domain is not associated with
the domain but with the domain’s directory.

When the connection between the server and the directory is established, the
directory stores the name and Internet Protocol (IP) address of its server. This
information is used by clients to send requests for service.

Two type of servers support an NIS+ domain: master and replica servers. The
master server of the root domain is called the root master server. A namespace has
only one root master server. Both master and replica servers store NIS+ tables
and answer client requests. The master server stores the master domain tables.
The replicas store only duplicates. The administrator loads information into the
tables in the master server, and the master server propagates the information
to replica servers. Any workstation can be set up as either a master server or a
replica server. Sometimes a master server is a workstation that has more disk
capacity to handle the many client requests.

4.14.5 NIS+ Clients

An NIS+ client is a workstation that has been set up to receive NIS+ service. An
NIS+ client can access any part of the namespace subject to security constraints. If
the client has been authenticated and if it has been granted permission rights, the
client can access information or objects in any domain in the namespace. When a
client requests access to the namespace, it is actually requesting access to a
particular domain in that namespace. Therefore, a client sends its request to the
server that supports the domain it is trying to access.

4.14.6 NIS+ Tables

There are at least 11 standard NIS+ tables that contain network information
about your namespace. NIS+ tables on UNICOS systems are listed in Table 7,
page 320. These tables have a column-entry structure and, therefore, have several
advantages over other sources of network information, such as flat bicolumn
maps or local flat /etc files. All NIS+ tables have the same structure of rows
and columns. A client with proper access rights can access the information of the
whole table or by an individual key, column or entry. NIS+ software examines
the privileges of a user by authentication, and either allows or refuses access
requests to network information by a process called authorization.

Custom NIS+ tables can be set up by administrators. They can be searched
individually by entry or colum, or several can be symbolically linked or
connected by a concatenation path.

S–2304–10011 319

UNICOS® Networking Facilities Administrator’s Guide

Table 7. NIS+ tables on UNICOS systems

NIS+ table Fields Table information for each domain

auto_home Mount point

Options and locations

Names of users and the locations of their home
directories

auto_master Mount point

Map name

Mount points and names of automounter maps

cred Secret key

Public key

Credentials of client workstations and client users

group Name

Password

GID

Numbers

Names, passwords, IDs, and members of UNICOS
groups

ethers Ethernet address

Official host name

Names and Ethernet addresses of workstations

netgroup Group name

List of members

Names of network groups and lists of their
members.

networks Network name

Network number

Aliases

Internet names, and numbers of networks and
their aliases

protocols Protocol name

Protocol number

Aliases

Comments

Names, numbers, and aliases of protocols used by
the Internet

320 S–2304–10011

Network Information Service (NIS) [4]

NIS+ table Fields Table information for each domain

rpc RPC program name

RPC program number

Aliases

Comments

Names, numbers, and aliases of RPC programs

services Service name

Port/Protocol

Aliases

Comments

Names, port numbers, and aliases of Internet
services

timezone Time zone name

Workstation/Domain name

Comments

The default time zone and names of workstations
or one domain name

4.14.7 Name Service Switch

NIS+ interacts in a different way with /etc files than NIS. NIS+ interacts with
all network information services, including /etc files, through the name service
switch. A configurations file is located on every NIS+ client and lists the sources
for network information for that client. Sources of network information include:

• /etc files

• NIS bicolumn maps

• Domain name service (DNS) zone files

• NIS+ tables

NIS+ lookups follow the look up sequence defined by the configuration file on
NIS+ clients. A sample configuration file is set up like the following table.

S–2304–10011 321

UNICOS® Networking Facilities Administrator’s Guide

Table 8. Sample NIS+ client configuration

Type of information Service Look up sequence

passwd: files nisplus

group: files nisplus

hosts: nisplus [NOTFOUND=return] files

services: nisplus [NOTFOUND=return] files

networks: nisplus [NOTFOUND=return] files

protocols: nisplus [NOTFOUND=return] files

rpc: nisplus [NOTFOUND=return] files

ethers: nisplus [NOTFOUND=return] files

publickey: nisplus

netgroup: nisplus

automount: files nisplus

aliases: files nisplus

See the nsswitch(4) man page for more detailed information on the name
service switch and corresponding data files.

4.14.8 NIS+ Commands

The following NIS+ administration commands control the setup and
maintenance of the NIS+ namespace. The printed man pages for these commands
are found in Chapter 8 of the UNICOS Administrator Commands Reference Manual.
Man pages describe in detail the options and parameters of command use.

Table 9. NIS+ administration commands

Command Description

nisaddcred Creates security credentials for NIS+ principals

nisaddent Creates NIS+ tables from corresponding /etc files and NIS maps

nis_cachemgr Maintains a cache of location information about NIS+ servers

niscat Displays the contents of NIS+ tables and objects

nischgrp Changes the group owner of NIS+ objects or entries

322 S–2304–10011

Network Information Service (NIS) [4]

Command Description

nischmod Changes the access rights of NIS+ objects or entries

nischown Changes owner of NIS+ object

nischttl Changes the time-to-live value of an NIS+ object or entry

nisctl Controls the operation of NIS+ servers; enters cache flushing, debugging and
report printing

nisd ONC RPC daemon that implements NIS+ service

nisdefaults Displays NIS+ default values returned by NIS+ local name functions

niserror Displays and translates NIS+ error number messages into text

nisgrpadm Creates or destroys NIS+ groups and administers principals in those groups.

nisinit Initializes a machine to be an NIS+ client and server

nisln Symbolically links NIS+ objects

nislog Displays the contents of NIS+ server transaction log

nisls Lists the contents of an NIS+ directory

nismatch Searches NIS+ tables by matching text strings

nisgrep Searches NIS+ tables by text string or keypat expressions

nismkdir Creates a nonroot NIS+ directory or adds a replica to an existing directory

nispasswd Changes NIS+ password information

nispath Prints out search path of a given NIS+ name

nisping Sends a ping to all replica servers of an NIS+ directory

nisrm Removes NIS+ objects from the namespace

nisrmdir Removes existing NIS+ directories

nissetup Initializes NIS+ domain

nisshowcache Prints out the contents of the shared cache file

nisstat Reports NIS+ server statistics

nistbladm Creates, deletes, adds, modifies and removes NIS+ tables

nistest Returns the state of the NIS+ namespace

nisupdkeys Updates the public keys in an NIS+ directory object

S–2304–10011 323

UNICOS® Networking Facilities Administrator’s Guide

4.14.9 NIS+ API

The NIS+ application programming interface contains 54 functions that can be
called by an application to maintain and manipulate NIS+ objects. For reference,
these functions can be organized into nine families. Each function name listed
below is also the name of the NIS+ man page that describes its family of routines.

Table 10. NIS+ API functions

Functions Family

nis_subr Application subroutine functions

nis_db Database access

nis_error Error message display functions

nis_groups Group manipulation functions

nis_local_names Local name functions

nis_names Object manipulation functions

nis_tables Table access functions

nis_admin Transaction log functions

Man pages describing NIS+ functions and library routines are found in an
appendix in ONC+ Technology for the UNICOS Operating System. An API NIS+
programming example using these routines also presented in ONC+ Technology
for the UNICOS Operating System.

4.15 Planning Your NIS+ Namespace

Before setting up NIS+ on your UNICOS system, it is recommended that you do
the following tasks:

1. Diagram the structure of your organization.

2. Divide this structure into administration groups.

3. Select servers that will support each group.

4. Determine the access rights of users and groups in your organization.

324 S–2304–10011

Network Information Service (NIS) [4]

Note: If an NIS namespace is already defined at your site, you can use
its flat domain structure for your new NIS+ namespace. NIS+ contains
scripts that allow administrators to construct an NIS+ namespace from
NIS bicolumn maps or local files.

When designing your namespace and setting up your domains, consider the
following factors in your plan:

• Locations of NIS+ tables

Consider that the lower in the domain hierarchy that you store tables, the
easier it is to administrate them.

• Custom NIS+ tables

Decide which NIS maps can be converted to NIS+ tables and whether any of
your current applications depend on existing NIS maps.

• Connections between NIS+ tables

Decide whether to connect your tables by paths or links. This decision weighs
convenience and performance.

Establishing a path from tables low in one hierarchical domain to a single
table in a remote domain may save look-up time because a search examines
the remote table directly, without scanning the tables above it in the home
domain. Another advantage to this strategy is that administrative updates
to the remote domain table are visible to users across domains. Linking
NIS+ tables eliminates some performance concerns because NIS+ lookups
do not search a local table in the users path first, but enter a search directly
on the linked table.

Note: Although decreasing the number of tables searched increases the
performance of NIS+, look-up searches across domains makes users in one
domain dependent on the network availability of another domain.

The following guidelines may help you decide how to set up, customize, locate,
or link NIS+ tables.

• Every domain must have access to every standard table.

• Frequently accessed data should be located as close to users in a domain as
possible.

• The lower in the hierarchy data is located, the easier it is to administer.

• Data that is frequently accessed by many domains should be located higher in
the hierarchy.

S–2304–10011 325

UNICOS® Networking Facilities Administrator’s Guide

• NIS clients cannot access NIS+ tables that are symbolically linked or
referenced by paths.

4.16 Setting up Your First NIS+ Domain

After you have diagrammed the organization of users and workstations at your
site, you must consider the traffic load of your proposed NIS+ namespace.
Ideally, each domain in your namespace will have one master server and a
number of replicas. To make each domain efficient, it is recommended that you
limit the number of replicas to two. Since each domain may have a different
traffic load, you need to calculate the disk space requirements of each master
server in your namespace. This calculation is described in the following section.

4.16.1 Calculating Disk Requirements for Your Master Servers

Consider the following factors when determining disk requirements for master
servers:

• Disk space for /etc/nis (and /etc/yp)

• Amount of memory

NIS+ tables, objects, and groups and client information are stored in /etc/nis.
Typically, /etc/nis uses about 5 Kbytes of disk space per client. An NIS+
namespace with 1000 clients requires approximately 5 Mbytes of disk space. It
is recommended however, that you add an additional 10 to 15 Mbytes of disk
space to handle transaction logs. It is also recommended that you checkpoint
transaction logs regularly to reduce their size.

The amount of memory that is required for NIS+ servers is also determined
by the size of your NIS+ domains. The minimum requirement is 32 Mbytes.
We recommend that you have up to 64 Mbytes for servers that support large
domains.

4.17 How to Set up a Root Domain

To set up an NIS+ root domain on your UNICOS system, perform the following
steps:

1. Log into the root master server machine as root.

326 S–2304–10011

Network Information Service (NIS) [4]

2. Set the domain name of the root master server by using the domainname
command. For example, if you want to name your first domain nis.com,
enter the following command line:

domainname nis.com

3. Make sure that the /etc/nsswitch.conf file is configured for NIS+
service. See the nsswitch(4) man page for more information on the syntax
of the nsswitch.conf file.

4. Remove any NIS+ files and kill any existing processes by entering the
following command lines:

rm -rf /etc/nis/*

ps -aef | grep nis_cachemgr

kill -9 $PID

5. Set the administration group for the root domain by exporting the
environment variable NIS_GROUP for either the standard shell, Korn shell, or
C shell environments by entering one of the following command lines:

export NIS_GROUP=admin.nis.com

(for standard or Korn shell)

setenv NIS_GROUP admin.nis.com.

(for C shell)

6. Initialize the root master server by entering the nisinit command as
follows:

nisinit -r

7. Terminate any running NIS+ daemons by searching for nisd processes and
killing their process IDs by using the following command line:

ps -aef | grep nisd

kill -9 $PID

8. Start the NIS+ daemon by entering the nisd command with the -r and -S
options as follows:

nisd -r -S 0

If you are setting up to run in NIS-compatibility mode, enter the nisd
command with the -r, -Y, and -S options as follows:

nisd -r -Y -S 0

S–2304–10011 327

UNICOS® Networking Facilities Administrator’s Guide

9. Create NIS+ subdirectories and tables by entering the nissetup command
as follows:

nissetup

If you are setting up to run in NIS-compatibility mode, enter the nissetup
command with the -Y option as follows:

nissetup -Y

10. Create the DES credentials by entering the nisaddcred command with the
DES argument as follows:

nisaddcred DES

11. Update the public key for the parent and subdirectories by entering the
nisupdkeys command as follows:

nisupdkeys nis.com.

nisupdkeys org_dir.nis.com.

nisupdkeys groups_dir.nis.com.

See the nisupdkeys(8) man page for more information.

12. Search for and eliminate any NIS+ daemon that is currently running by
entering the following command lines:

ps -aef | grep nisd

kill -9 $PID

13. Restart the nisd daemon with security level 2 (the default) by entering
the following command:

nisd -r

If you are setting up to run in NIS-compatibility mode, enter the nisd
command with the -r and -Y options as follows:

nisd -r -Y

14. Add root’s DES credentials to the root domain by entering the
nisaddcred(8) command with the -p option as follows:

nisaddcred -p unix.0@nis.com -P root.nis.com. DES

328 S–2304–10011

Network Information Service (NIS) [4]

4.18 Initializing an NIS+ Client

Initialize your NIS+ clients by using the following steps:

1. Log in to the domain’s master server.

2. Create DES credentials for the new client machine by entering the
nisaddcred command with the -p option as follows:

nisaddcred -p unix.mach_name@nis.com -P mach_name.nis.com. DES

3. Log in to the client machine as root.

4. Assign the domain by entering the domainname command as follows:

domainname nis.com

5. Check that the /etc/nsswitch.conf file is configured for NIS+ service.

6. Remove any existing NIS+ files in /etc/nis and search for and kill any
active processes by entering the following command lines:

rm -rf /etc/nis/*

ps -aef | grep nis_cachemgr

kill -9 $PID

7. Initialize the NIS+ client by entering the nisinit command with the
broadcast, host name, or coldstart file option. Choose and enter only one
of the following command lines:

nisinit -c -B

(for broadcast)

nisinit -c -H master_server

(for host name)

nisinit -c -C /tmp/NIS_COLD_START

(for coldstart file)

8. Search for and eliminate any existing active processes and restart the
keyserv daemon by entering the following command lines:

ps -aef | grep keyserv

rm -f /etc/.rootkey

keyserv

9. Enter the keylogin command with the -r option as follows:

S–2304–10011 329

UNICOS® Networking Facilities Administrator’s Guide

keylogin -r

10. Reboot the client.

4.19 Setting up an NIS+ Server

Set up an NIS+ server on your UNICOS system by performing the following
steps.

Note: Before a machine is set up as a replica, a server must be set up as the
root domain, and the potential replica machine must be initialized as an NIS+
client.

1. Log in as root to the machine that you want to be a replica server.

2. Start the NIS+ daemon by entering the nisd(8) command as follows:

nisd

If you are setting up to run in NIS-compatibility mode, enter the nisd
command with the -Y option as follows:

nisd -Y

3. Start the NIS+ cache manager by entering the nis_cachemgr(8) command,
as follows:

nis_cachemgr

4.20 How to Set up a Nonroot Domain

Set up a nonroot domain on your UNICOS system by performing the following
steps:

1. Log in to the domain’s master server.

2. Set the administration group for the domain by exporting the environment
variable NIS_GROUP for either standard shell, Korn shell, or C shell
environments by entering one of the following command lines:

export NIS_GROUP=admin.sales.nis.com.

(for standard or Korn shell)

setenv NIS_GROUP admin.sales.nis.com.

330 S–2304–10011

Network Information Service (NIS) [4]

(for C shell)

3. Create the new domain’s directory and specify its servers by entering the
nismkdir(8) command with the -m and -s options as follows:

nismkdir -m master_server -s replica_server sales.nis.com.

See the nismkdir(8) man page for information about command options
and arguments.

4. Create the subdirectories and tables by entering the nissetup command
as follows:

nissetup sales.nis.com.

If you are setting up to run in NIS-compatibility mode, enter the nissetup
command with the -Y option as follows:

nissetup -Y sales.nis.com.

5. Create the domain’s administration group by entering the nisgrpadm
command with the -c option as follows:

nisgrpadm -c admin.sales.nis.com.

6. Assign group members access rights to the new directory by entering the
nischmod(8) command with the rights argument as follows:

nischmod g+rmcd sales.nis.com.

See the nischmod(8) man page for details about the content and syntax of
the rights argument.

7. Add master and replica servers to the domain’s administration group by
entering the nisgrpadm command with the -a option as follows:

nisgrpadm -a admin.sales.nis.com. master_server.nis.com.

replica_server.nis.com.

4.21 Administering Your NIS+ Namespace

Table 11 shows NIS+ commands.

S–2304–10011 331

UNICOS® Networking Facilities Administrator’s Guide

Table 11. Common NIS+ commands

Task Command line

For NIS+ groups:

Create a group nisgrpadm -a groupname.domainname

List members of a group nisgrpadm -l groupname

Delete a group nisgrpadm -a groupname

Add members to a group nisgrpadm - a groupname members ...

For NIS+ clients:

Initialize an NIS+ client nisinit -c -H hostname

Initialize an NIS+ client nisinit -c -B

Initialize an NIS+ client nisinit -c -C coldstart filename

Display all information about a workstation nisdefaults

For NIS+ servers:

Initialize the root master server nisinit -r

Start a cache manager nis_cachemgr

Checkpoint a database nisping -C domainname .com

Display the contents of the transaction log nislog

For NIS+ tables:

Display the contents of a table niscat -h -A tablename

Create a table nistbladm -c table-type column-spec...
tablename

Delete a table nistbladm -d tablename

Add an entry to a table nistbladm -a entry

332 S–2304–10011

Network Information Service (NIS) [4]

Task Command line

Modify a table entry nistbladm -m new-entry old-entry

Remove a table entry nistbladm -r indexedname

Load information into tables from text files nisaddent -t filename table type

Load information into tables from NIS maps nisaddent -t NISdomain table type

Display the object properties of a table niscat -o tablename .org_dir

Search for regular expressions in NIS+ tables nisgrep expression tablename

Search for strings in NIS+ tables nismatch string tablename

Change the time to live value of table entries nischttl [column = value], tablename

For NIS+ objects:

Expand an existing NIS+ directory into a domain nissetup directory

Create a link between NIS+ objects nisln source target

Display the contents of a client’s directory cache nisshowcache

Display the time-to-live value of an object nisdefaults -t

Change the time-to-live value of NIS+ objects nischttl time-to-live object name

For NIS+ security:

Set the security level of service nisd -S level

Add credentials for a new user nisaddcred -p [-P]

Remove credentials nisaddcred -r principal name

Update or change your credentials nisaddcred credential-type

Add access rights for an object nischmod category +right object name

Add access rights for an entry nischmod category +right [column-name = value]
,tablename

Display all local domain password information nispasswd -a

Display password information for a specific user nispasswd -d username

S–2304–10011 333

UNICOS® Networking Facilities Administrator’s Guide

Task Command line

Clear public keys stored by a directory nisupdkeys -C directory

Update the IP addresses of a server nisupdkeys -a -H server-name

4.22 Migrating from NIS to NIS+

NIS+ can handle requests from both NIS version 2 and NIS+ clients. NIS+ has an
NIS built-in compatibility mode that provides two service interfaces to answer
NIS and NIS+ requests transparently. Although there is no additional setup
required to run an NIS+ server in NIS-compatibility mode, the instructions for
setting up in this mode are different than setting up a standard NIS+ server. An
NIS server running in NIS-compatibility mode does not support the ypupdate
and ypxfr protocols and, therefore, cannot be used as a master or slave NIS
server.

Note: NIS servers do not provide any of the user or request credentials that
NIS+ servers expect from their clients. Therefore, all NIS+ tables must have
access rights set to allow unauthenticated requests in order for NIS client
requests for information to be accepted and filled by NIS+ servers.

4.22.1 NIS-compatibility Mode

NIS+ uses fewer tables than NIS. Determine the information sources that you
need to load by examining the mapping of local files, NIS maps, and NIS+
tables in the following table.

Table 12. Correspondence between information sources on a UNICOS system

Local files NIS maps NIS+ tables

auto.home auto_home

auto.master auto_master

/etc/ethers ethers

/etc/group group.bygid group

/etc/group group.byname group

/etc/hosts hosts

/etc/netgroup netgroup netgroup

334 S–2304–10011

Network Information Service (NIS) [4]

Local files NIS maps NIS+ tables

/etc/netgroup netgroup.byhost netgroup

/etc/netgroup netgroup.byuser netgroup

cred

/etc/networks networks

/etc/passwd passwd.byname passwd

/etc/passwd passwd.byuid passwd

/etc/protocols protocols

/etc/rpc rpc

/etc/services services

4.22.2 NIS to NIS+ Command Compatibility

The following table lists the NIS and NIS+ commands supported on a UNICOS
system.

Table 13. Comparing NIS and NIS+ commands on a UNICOS system

NIS server NIS-compatible server NIS+ server

makeddm --- nistbladm, nisaddent

ypbind ypbind ---

ypcat ypcat niscat

ypwhich -m ypwhich -m niscat -o

ypinit -m ypinit -c ---

ypinit -s --- ---

ypmake --- nissetup, nisaddent

ypmatch --- nismatch, nisgrep

yppasswd --- nispasswd

yppush --- nisping

yppoll --- ---

ypserv nisd -Y nisd

S–2304–10011 335

UNICOS® Networking Facilities Administrator’s Guide

NIS server NIS-compatible server NIS+ server

ypset --- ---

ypxfr --- ---

336 S–2304–10011

MIB Variables Supported by Cray [A]

This appendix lists the management information base (MIB) variables that Cray
supports for the Simple Network Management Protocol (SNMP).

Note: SNMP is not part of the Cray ML-Safe configuration of the UNICOS
system.

A.1 System Group

Cray supports the following system group (1.3.6.1.2.1.1) variables:

sysContact

sysDescr

sysLocation

sysName

sysObjectID

sysServices

sysUpTime

A.2 Interface Group

Cray supports the following interface group (1.3.6.1.2.1.2) variables:

ifAdminStatus

ifDescr

ifInDiscards

ifInErrors

ifInNUcastPkts

ifInOctets

ifInUcastPkts

ifInUnknownProtos

ifIndex

ifLastChange

ifMtu

ifNumber

ifOperStatus

ifOutDiscards

ifOutErrors

S–2304–10011 337

UNICOS® Networking Facilities Administrator’s Guide

ifOutNUcastPkts

ifOutOctets

ifOutQLen

ifOutUcastPkts

ifPhysAddress

ifSpecific

ifSpeed

ifType

A.3 Address Translation Group

Cray supports the following address translation group (1.3.6.1.2.1.3) variables:

atIfIndex

atNetAddress

atPhysAddress

A.4 IP Group

Cray supports the following IP group (1.3.6.1.2.1.4) variables:

ipAdEntAddr

ipAdEntBcastAddr

ipAdEntIfIndex

ipAdEntNetMask

ipAdEntReasmMaxSize

ipDefaultTTL

ipForwDatagrams

ipForwarding

ipFragCreates

ipFragFails

ipFragOKs

ipInAddrErrors

ipInDelivers

ipInDiscards

ipInHdrErrors

ipInReceives

ipInUnknownProtos

ipNetToMediaIfIndex

ipNetToMediaNetAddress

ipNetToMediaPhysAddress

ipNetToMediaType

338 S–2304–10011

MIB Variables Supported by Cray [A]

ipOutDiscards

ipOutNoRoutes

ipOutRequests

ipReasmFails

ipReasmOKs

ipReasmReqds

ipReasmTimeout

ipRouteAge

ipRouteDest

ipRouteIfIndex

ipRouteInfo

ipRouteMask

ipRouteMetric1

ipRouteMetric2

ipRouteMetric3

ipRouteMetric4

ipRouteMetric5

ipRouteNextHop

ipRouteProto

ipRouteType

ipRoutingDiscards

A.5 ICMP Group

Cray supports the following ICMP group (1.3.6.1.2.1.5) variables:

icmpInAddrMaskReps

icmpInAddrMasks

icmpInDestUnreachs

icmpInEchoReps

icmpInEchos

icmpInErrors

icmpInMsgs

icmpInParmProbs

icmpInRedirects

icmpInSrcQuenchs

icmpInTimeExcds

icmpInTimestampReps

icmpInTimestamps

icmpOutAddrMaskReps

icmpOutAddrMasks

icmpOutDestUnreachs

S–2304–10011 339

UNICOS® Networking Facilities Administrator’s Guide

icmpOutEchoReps

icmpOutEchos

icmpOutErrors

icmpOutMsgs

icmpOutParmProbs

icmpOutRedirects

icmpOutSrcQuenchs

icmpOutTimeExcds

icmpOutTimestampReps

icmpOutTimestamps

A.6 TCP Group

Cray supports the following TCP group (1.3.6.1.2.1.6) variables:

tcpActiveOpens

tcpAttemptFails

tcpConnLocalAddress

tcpConnLocalPort

tcpConnRemAddress

tcpConnRemPort

tcpConnState

Note: Cray does not support the set operation on tcpConnState.

tcpCurrEstab

tcpEstabResets

tcpInErrs

tcpInSegs

tcpMaxConn

tcpOutRsts

tcpOutSegs

tcpPassiveOpens

tcpRetransSegs

tcpRtoAlgorithm

tcpRtoMax

tcpRtoMin

A.7 UDP Group

Cray supports the following UDP group (1.3.6.1.2.1.7) variables:

340 S–2304–10011

MIB Variables Supported by Cray [A]

udpInDatagrams

udpInErrors

udpLocalAddress

udpLocalPort

udpNoPorts

udpOutDatagrams

A.8 SNMP Group

Cray supports the following SNMP group (1.3.6.1.2.1.8) variables:

snmpEnableAuthenTraps

snmpInASNParseErrs

snmpInBadCommunityNames

snmpInBadCommunityUses

snmpInBadValues

snmpInBadVersions

snmpInGenErrs

snmpInGetNexts

snmpInGetRequests

snmpInGetResponses

snmpInNoSuchNames

snmpInPkts

snmpInReadOnlys

snmpInSetRequests

snmpInTooBigs

snmpInTotalReqVars

snmpInTotalSetVars

snmpInTraps

snmpOutBadValues

snmpOutGenErrs

snmpOutGetNexts

snmpOutGetRequests

snmpOutGetResponses

snmpOutNoSuchNames

snmpOutPkts

snmpOutSetRequests

snmpOutTooBigs

snmpOutTraps

S–2304–10011 341

Index

A
Access

code, NSC connections, 46
controls, 268–269
denied, 286
permissions for tftpd, 105

Account ID (ACID)
for ID mapping, 265

Accredited Registrar Directory, 25
Address resolution protocol, 13
Addresses

class A, 8
class B, 9
class C, 9
hardware, 8
Internet, 8
Internet to hardware mapping, 13
looking up host, 23
physical and logical destination, 13

Addressing
hardware, 12
subnet, 10

Administrative environment, 306
Advanced Research Project Agency (ARPA), 4
Algorithm

for TCP segment size, 126
routing, 19, 156

Applications
secure RPC, 314

ARP, 13
arp command, 57, 170
arp file, 14, 57, 59
ARPA, see Advanced Research Project Agency, 4
Authentication
AUTH_DES style, 311
data, 312

Autologin information, 122
Automatic

authentication, 38
login, 37
remote login, 103

Automount
automount daemon, 244
facility, 244
map creation, 237

automount command, 242, 244

B
Basic confidence tests, 287
Batch

network file transfers, 122
BDS

See Bulk Data Service (BDS)
Berkeley Internet Name Domain (BIND), 171
bftp script, 122
Binary

host database, 108
BIND, see Berkeley Internet Name Domain, 171
biod daemons, 243
Buffer

pool, 28
Buffered memory (mbufs), 129
Buffering, 128
Bulk Data Service (BDS), 235

C
C shell, 36
cache keyword, 79
cf directory, 28
Character

mode, 120
processing, 118

Checksumming, 273
CIPSO

functional overview, 211
Clients

S–2304–10011 343

UNICOS® Networking Facilities Administrator’s Guide

and keyserv, 314
confidence tests for, 287
daemons, 243
isolating, 182
NFS, 241
requirements, 303
sendmail, 82

comm_info structure, 47
Commands

printer
access, 70
status control, 70

r-series, prohibit use, 37
Comment lines

in hosts file, 32
in networks file, 34

conf.sn.c file, 47
Confidence tests, 287

contents, 292
for client, 287

config.h file, 28, 134–135
config.mh file, 236
Configuration

complex needs, 106
Cray L7R, 26
file maps, 244
files

TCP/IP, 86, 95, 124, 128
TCP/IP master copies, 30

host name, 108
methods for NFS, 237
network daemons, 61
NFS tests, 291
of servers, 97
tables

FEI-3 and VAXBI connections, 47
HIPPI connections, 49, 59
NSC connections, 46

Configuration and installation menus
networking
Configurator automation options, 31,

33, 35, 39

Configure hardware addresses, 44
Configure inet daemon, 99
Configure interfaces, 40, 109
Configure protocols, 39
Configure shells, 36
Host address configuration, 31
Kernel configuration, 28
Network address configuration, 33
Network parameters, 130, 134
Networking services
configuration, 35

TCP/IP network parameters, 129
Configuration file, network portion of, 55
Configure interfaces, 53
connect system call, 206
Connections

direct, 5, 127
problems, 186
test

FEI-3 or VME, 170
NSC or HYPERchannel, 169

types, 48
direct, 45, 47
gateway, 45

Control number, HYPERchannel, 46
Copying

files, 250
lines, 102

Cray L7R
purpose, 26
troubleshooting, 185

D
Daemons

access permissions, 100
comment out, 118
configuration, 61
domain name service, 24
dynamic routing, 14
isolating, 182
line printer, 70
local domain name server, 77

344 S–2304–10011

Index

lockd, 287
Network File System (NFS), 295
network request processing, 173, 229
Network Time Protocol, 93
NFS server, 239
routing, 115
routing table management, 61
security services, 229
setting up, 116
SMTP operations, 82
snmpd operations, 86
started by inetd, 104, 118
starting, 117
starting network, 98
statd, 287
using /etc/hosts.equiv, 37

daemons shell script, 82
for local startup, 115
list of processes, 116

Data
storage, 304
transmission units, 123

Databases
adding, 301
for domain names, 304
new NIS, 306
NIS, 301, 306
NIS publickey.byname, 311
NIS user sets, 310
of keys, 311
password information, 305
publickey.byname, 313

Datagrams
description, 17, 123
destination of, 19
routing, 157
size limitations, 125
size optimization, 145
tracing routes, 163

Decimal notation, 12, 45, 47–48, 58, 60
Defense Data Network (DDN), 3
Destination/gateway pairs, 19

Destinations
logical, 14
physical, 14

Diagnostics, hardware, 169
Direct connections, 127
Directories

available through tftp, 105
cf, 28
exporting, 239
file handles for, 282
test, 292

directory keyword, 78
Distribution Center,
DNS
named daemon, 77
Setting up, 78

Domain
name

resolver, 81
resolver routines, 77
server, 77, 81
service, 12, 24

domain keyword, 81
Domains

adding users to NIS, 309
configuration, 308
multiple, 81
names

for networks, 304
in databases, 304
to retrieve data, 301

NIS, 301
Dynamic

data structures, 130
routing, 14, 115–116

E
Echoing and line editing, 120
Environment variables

used in NFS test suite, 289
Environments, setting up, 120
Error messages

S–2304–10011 345

UNICOS® Networking Facilities Administrator’s Guide

NFS, 283
/etc/config/daemons file, 237–238, 244
/etc/config/interface, 221
/etc/config/interfaces, 124
/etc/config/interfaces file, 78, 109, 111–112
/etc/exports file, 237, 239
/etc/fstab file, 243
/etc/gated.conf file, 63
/etc/hosts.equiv file, 37
/etc/initif file, 14
/etc/mountnfs file, 243
/etc/staticrts shell script, 115
/etc/xtab file, 239
Exceptions files, 248, 253
Export control, 269
exports file

bypassing controls, 269
global access, 270
information, 269

F
False identification, 314
FEI-3

connecting hosts, 5
connection, 47

FEI-3/VME connection test, 170
File

handle, 282
locking, 287
transfer

batch network, 122
File systems

local mounts, 236
using remote, 235

Files
copying from remote systems, 250
created with nfsmerge, 254
exporting with NFS, 239
local system configuration, 34
master, 79
network-wide configuration, 30
NFS exceptions, 248, 253

NFS log, 254
TCP/IP configuration, 13–14
writability, 122
zone, 79

finger server, 100
fingerd server, 101
FLEXlm key, 235
Flushing and draining of mbufs, 131
forwarders keyword, 79
Fragments, 125, 136
Front-end

driver test, 170
fstab file, 281
ftp

command, 36, 175
server, 100

ftpd
daemon, 36
server, 101

ftpusers file, 102
Functional tests, 287

G
gated

daemon, 14
gated daemon, 115, 157, 176

configuration, 64
configuration guidelines, 62
dynamic management, 61
with OWS, 69

gated.conf file, 20, 115–116
Gateways

default, 17
description, 5
failure, 67
for indirect routing, 15
for traveling data, 4
hosts used as, 8
lighten load, 20
network routes, 17
preventing CRI systems, 167

General confidence tests, 287

346 S–2304–10011

Index

Generic
connect type, 206

Get.domains shell script
for groups added, 250
for ID map setup, 250
modifying, 263

gethost routine, 31
gethostbyname routine, 96
gethostbyname variable, 96
getnet routine, 33
getnetbyname variable, 148
getusershell routine, 36
ghippi#.apr file, 57
ghippi.arp file, 57
gr#.arp file, 53, 60–61
group file, 156, 249

examine for exceptions, 254
for configuration, 248
NIS, 306
to create mapping, 251

group.domain file, 251
Groups

IDs, 156

H
Hanging programs, 285
Hard/soft tabs, 119
Hardware

address
FEI-3, 47
HYPERchannel, 46
resolution, 13
VAXBI, 47

configuration files, 13–14
devices, 40, 54
diagnostic tests, 40, 53
diagnostics, 169
isolating, 182

High throughput connections, 166
HIPPI

allocating mbufs, 27
ARP, 14

arp file format, 14
connections, 48, 57
Cray L7R, 26
/etc/initif, 14

HIPPI channel
character special device nodes

creating, 56
connecting hosts, 5
using “raw” mode, 55

hit command, 169
Hop

description, 17
determining, 157

hostname.txt file, 108
Hosts

access permission information, 37
addresses (from names), 23
directly connected, 17
grouping, 256
name

and address lookup, 23
configuration, 108

names and addresses, 23
start-up scripts, 20
used as gateways, 8
with Internet addresses, 8

hosts file, 12, 24–25, 31, 45, 47–48, 58, 60, 108, 180,
256

hosts.bin file, 32, 108
hosts.equiv file, 37–38, 103, 121
hosts.usenamed file, 78, 180
hycf file, 13, 44, 47–49, 113, 124
HYPERchannel

connecting hosts, 5
hyroute command, 44, 113, 124, 170

I
I/O devices

Configuration file, network portion of, 55
ICMP REDIRECT messages, 65
ID map contents, 264
ID mapping

S–2304–10011 347

UNICOS® Networking Facilities Administrator’s Guide

configuration, 248
configuring and using, 248
disabling, 247
domains

description, 246
enabling, 255
viewing, 261

environment, 246
example, 250
exceptions files, 253
file

creation, 251
maintenance, 252
setup, 250

groups, 256
host grouping, 256
in NFS, 307
names, 255
removing

domain, 262
maps, 261

security concerns, 269
tables, 256, 307
users, 256

ID mapping domains
MAP_THRU, 266

ID maps, mbufs for, 27
ifconfig command, 113, 124, 157
inetd daemon, 98, 104, 173
inetd daemon list, 98
inetd server, 101
inetd.conf file, 37, 99, 104–105, 173, 180
initif shell script, 109, 112
Installation

setting options, 222
Interface

initialization, 109, 113
name prefix, 42
naming, 40, 54
specific connect type, 207

Interfaces
labeling, 219

interfaces file, 78, 109, 111–112, 124, 221
Internet

addresses
choosing, 44, 57
conversion from host names, 23
fourth octet, 14
host portion, 10
map to host/network addresses, 30
mapping to names, 12
network portion, 33
third octet, 14
to construct hardware addresses, 14
to obtain hardware addresses, 13

addressing, 8
decimal notation, 12
using hosts file, 12
using resolv.conf file, 12

description, 4
protocol suite, 39
structure, 5

Internet addresses
selection, 25

Internet trivial file transfer protocol (TFTP), 104
Internetwork, description, 5
Internetworking, description, 4
IP

datagrams
description, 123
size selection, 125

packet size maximum, 125
protocol, 125

IP Basic Security Option (IP BSO)
functional overview, 211

K
kerbd daemon, 241
Kerberos authentication, 104, 215, 272
Kernel

code, TCP/IP, 27
map manipulation, 255
networking variables, 107
tables initialization, 114

348 S–2304–10011

Index

variables
initialize, 29
set or change, 29
SUBNETSARELOCAL, 128, 143

keylogin process, 314
Keys, public and private, 311
keyserv process, 309, 313
Korn shell, 36
ksh shell, 120

L
Labels

interface, 220
network, 219

interface, 229
remote object, 212
system, 223

LAN, see Local area network, 5
license

Bulk Data Service (BDS), 235
ONC+, 235

Line printer daemon, 70
Local

area network (LAN), 5
domain name server, 77
shell scripts

TCP/IP, 107, 114, 118
start-up script (TCP/IP), 115
subnets, 127

lockd, 287
Log files

ID map identification, 254
Logical

address
FEI-3 and VAXBI connections, 47
NSC connections, 45

Login
names

consistent set, 306
in UDB, 310
root, 38

shells, 36

login server, 100
Loop-back

interface, 78
mode test, 169

Low delay connections, 166
lpc command, 70
lpd command, 70
lpd daemon, 70
lpq command, 70
lpr command, 70
lprm command, 70

M
Magic cookie, 207
Mail address interpreting, 84
makehostname shell script, 108
Management Information Base (MIB), 337

variables
address translation group, 338
ICMP group, 339
interface group, 337
IP group, 338
SNMP group, 341
system group, 337
TCP group, 340
UDP group, 340

Map tables, 256
Map-through facility, 257
MAP_THRU ID maps, 266
Mapping

between host addresses and names, 24
network name/network number, 33

Maps
for domains, 302
network information service (NIS), 301

database, 305
password, 305

nicknames, 305
on master servers, 303
password, 311

Masks
default for hosts and networks, 256

S–2304–10011 349

UNICOS® Networking Facilities Administrator’s Guide

subnet, 10, 114
Master

and slaves, 303
server, 80
servers, CRI systems, 311

Maximum transmission unit (mtu)
changing for interface, 144
description, 124
FEI-3 and VAXBI connections, 47
HIPPI connections, 49
inbound, 145
interface, 124
NSC connections, 46
selecting

for networks, 143
HYPERchannel interface, 142
optimal values, 143

set value, 124
size, 127

configuration, 115
policy decision, 146

specifying through route, 144
Mbufs

allocating, 27, 130–131
description, 129
determining, 27
draining, 131
mbuf pool flushing, 130
monitoring, 131
new value, 28
pool, 129
private queues, 131
setting, 27–28
space shortage, 131

Memory requirements, 128
Menu system, see Configuration and installation

menus, 28
Merge.domains shell script, 266

creating ID map files, 251
exceptions, 254
file maintenance, 252

Message

header
building, 13
customizing, 13

Messages
ICMP REDIRECT, 65

MIB, see Management Information Base, 337
Minor device number, 49
mkbinhost command, 32, 108
mode character command, 120
Mount

control, 269
remote file systems, 241

mount command
fails, 281
list of steps, 282

mountd command, 239
mountd daemon, 276
mountd shell script, 269
mountnfs shell script, 238
MSS option, 128
Mtu, see Maximum transmission unit, 124

N
named daemon, 24, 77

as master server, 80
as slave server, 79

named.boot file, 78–79
nameserver keyword, 81
.netrc file, 101, 120
netstart shell script, 106
netstat command, 124, 131, 157, 171, 182–184
nettest command, 172
netvar command, 27, 29, 128, 167
netvar shell script, 107, 135
netvar.conf file, 107, 128
Network

access violations, 230
bandwidth, 135
components, failing, 181
daemon security services, 229
databases, 301
description example, 249

350 S–2304–10011

Index

example, 140
Gigabit Ethernet, Cray L7R, 26
interfaces, 109

configuration, 40, 53
labeling, 219–220

labeling
interfaces, 229

load balancing, 153
monitoring, 170
number, 33
packet description, 17
peak efficiency, 129
problem

location, 184
solving strategy, 177

problems
and solutions, 184

route labeling, 219
routing, 148
security

installation, 222
services, 173
software, isolating, 183
testing/diagnosing, 172
tools for troubleshooting, 169
traffic routing, 114
troubleshooting, 168
tuning, 123
UNICOS security

operations, 216
options, 217

Network access list (NAL), 211–212
display, 213

Network File System (NFS)
administering, 236
automount facility, 244
background mounts, 243
client daemons, 243
clients, 241
configuration methods, 237
daemons, 239–240
default, 236

description, 235
environment, 307
ID mapping, 246, 307
in NIS domain, 307
installation options, 218
installing, 236
local scripts and files, 238
manual configuration, 238
mount daemon, 240
mounting problems, 275
performance factors

file system configuration, 295
mount command parameters, 294
network speed, 296
NFS_MAXDATA parameter, 294

servers, 238–239
test suite, 289
troubleshooting, 274
typical environment, 245
UNICOS ICMS use, 237

Network information service (NIS)
adding users, 309
administration, 299
changing data, 306
data storage, 304
domains, 301
installation, 307
maps, 301
UNICOS security, 311

Network Systems Corporation (NSC)
connection test, 169
connections, 44

Network Time Protocol (NTP), 93
servers, 97

Networks
directly connected, 20

networks file, 33, 180, 256
newaliases command, 82
NFS services

NFS clients, 267, 271
NFS, see Network File System, 235
NFS_PORTMON, 267

S–2304–10011 351

UNICOS® Networking Facilities Administrator’s Guide

NFS_REMOTE_RW_OK, 271
NFS_SECURE_EXPORT_OK, 271
NFS_SECURE_PORTMON, 271
nfsaddhost command, 256
nfsd daemon, 240
nfslist sample, 262
nfsmerge command, 251, 254
nfsstart shell script, 238, 243, 256
NFSTESTDIR environment variable, 289
NFSTESTDIR variable, 291
Nicknames for maps, 305
nmake command, 28
NSC, see Network Systems Corporation, 44
nslookup command, 171
ntalkd server, 102
NTP, see Network Time Protocol, 93
ntp.conf file, 95, 97
ntpd daemon, 93–94
nx command, 170

O
ONC+ license, 235

P
Packets

datagrams in, 124
lost, 130
routing, 6

Parameters
networking, 28, 206

Passive hosts, 97
passive keyword, 97
passwd file, 38, 103, 248–249

examine for exceptions, 254
for configuration, 248
to create mapping, 251

passwd.domain file, 251
Password

changing, 306
control, 305, 311
file generation, 305

Path mtu discovery, 125

pcnfsd daemon, 241
peer keyword, 96
Performance

confidence tests (NFS), 287
NFS, 293

Permission checking, 269
Physical address, 46
ping command, 172, 180, 182–183
Port

alternate, 122
portmap daemon, 276
precision keyword, 95
primary keyword, 78, 80
printcap file, 70
Printer configuration, 70
Private

keys, encrypting/decrypting, 313
queues, 131

Protocol
number, 39
RIP, 62
specification, 39
type, 100

protocols file, 39
Pseudo terminal

device, 104
Public and private keys, 311
Public keys, 313

R
R-series commands

for automatic authentication, 38
prohibit use, 37

rc shell script, 106
rcp command, 103
Real time, 94
Recursive queries, 80–81
reduce(8) command, 233
Reference clocks, 97
Remote

hosts, 212
mount failure, 281

352 S–2304–10011

Index

object labels, 212
site, bftp access, 122

Remote procedure call (RPC) subsystem
UNICOS security, 311

resolv.conf file, 12, 81
rexecd daemon, 37
rexecd server, 102
.rhosts file, 38, 103, 121
rlogin command, 103
rlogind daemon, 37
rlogind server, 103
root login name, 38
Root permission, 100
Route

labeling, 165
route command, 20, 22, 144, 148, 157, 184
Routes

direct and indirect, 15
forwarding/no forwarding, 168
labeling, 219
restrictions, 115
tracing, 163–164
tracing between hosts, 158

Routines
domain name resolver, 77

Routing
algorithm, 19, 156
controlled by group IDs, 156
Cray L7R, 26
daemon, 115
example, 15–17
for network, 148
hosts, 151
inclusive/exclusive, 156
of information, 14
problem diagnosis and fix, 157
procedure, 17
setting up, 114
static, 115
table examples, 160
tables, 19–20

configuration, 149

example, 20, 22
inspection, 157
management, 61
number of mbufs, 27

RPC, see Remote procedure call, 311
rsh command, 103
rshd daemon, 37
rshd server, 103
runtests shell script

for test suite, 292

S
scytest command, 170
sdaemon shell script, 115–117, 238
secondary keyword, 80
Secure

communications, 314
RPC

authentication, 312
with keylogin, 314
with keyserv, 309, 314

Security
concerns

with NFS, 268
with TCP/IP, 38, 207

disable tftp, 101, 105
Kerberos authentication, 272
levels, 270
risks, 38
trace information, 207
translation tables, 228
troubleshooting, 230
with ID mapping, 263

Security labels, 220
segments

carried in IP datagrams, 123
Segments

description, 136
optimal size, 140
size, 127

acceptance, 128
selection, 126

S–2304–10011 353

UNICOS® Networking Facilities Administrator’s Guide

sendmail facility, 176
configuration file, 83
daemon, 82
file, 82
problems, 200

sendmail.cf file, 83
server keyword, 96
Server/agent snmpd, 86
Servers

and keyserv, 314
as root, 314
BIND, 171
caching, 79
caching-only, 78–79, 81
Cray as slave, 308
CRI systems, 308, 311
domain name, 25, 77, 81
dying, 285
finger, 100
fingerd, 101
forwarding, 79, 81
ftp, 100
ftpd, 101
inetd, 101
login, 100
master, 78, 80–81, 301
masters and slaves, 303
NFS, 238
not as root, 315
ntalkd, 102
NTP, 97
primary master, 80
requirements, 303
rlogind, 103
root domain name, 79
rshd, 103
secondary master, 80
shell, 100
slave, 78–79, 81, 301
srexecd, 102
strata categories, 97
telnet, 100

telnetd, 104
tftp, 100
tftpd, 104
timeservers, 93
using ID mapping, 261

Service name, 100
Services (NIS)

distributed, 299
look-up, 299
network information, 299
servers and clients, 302

services file, 34, 180
Set.domains shell script

called from nfsstart, 256
disabling ID mapping, 248
enabling ID mapping, 238

Setuid programs, 269
Shell scripts

local
TCP/IP, 107, 114, 118

network startup, 20
shell server, 100
Shells
ksh, 120
tcsh, 120

shells file, 36
Simple Mail Transfer Protocol (SMTP)

commands, 61
daemons, 82
operations, 82

Simple Network Management Protocol
(SNMP), 164
agent access, 86
commands, 61
daemons, 86
operations, 86

Single-threaded/multithreaded, 100
slave keyword, 79
Slave servers, 79, 308
SMTP, see Simple Mail Transfer Protocol, 82
snmpd daemon, 86
snmpd.conf file, 86

354 S–2304–10011

Index

snmproute command, 164, 172, 184
Sockbufs, see Sockets, buffers, 135
socket system call, 206
Sockets

buffers
changing size limits, 139
default size, 136
description, 135
size limits, 136

description, 135
required mbufs, 27
type, 100

Special
character processing, 119
confidence tests, 287

Standard shell, 36
Startup

information for named, 78
procedure not tcpstart, 116
procedure not using tcpstart, 112
procedure, using tcpstart, 106

statd, 287
Static routing, 14, 115
Static routing alternative, 61
staticrts shell script, 20, 115–116
stderr file, 104
stdin file, 104
stdout file, 104
Subnet

addressing, 10, 127
mask, 10, 114

SUBNETSARELOCAL kernel variable, 128
Super server, 98
Supported NIS databases, 304
sysctl command, 29, 167
System

changes, monitoring and controlling, 181
initialization, start-up scripts, 20
label checking, 223
message display, 104

T
Tab settings, 118
Tables

kernel, 114
routing, 19–20, 22, 149, 157
user authentication, 120

TCP/IP, see Transmission Control Protocol/Internet
Protocol, 3

TCP_MSS variable, 127
TCP_NMBSPACE parameter, 28
tcpstart file, 124
tcpstart shell script, 29, 93
tcpstart.mid shell script, 114
tcpstart.pre shell script, 107
tcpstart.pst shell script, 118
tcsh shell, 120
telnet command, 104, 174
linemode feature, 118

telnet server, 100
Telnet Virtual Terminal Protocol, 104
telnetd

daemon, 104
server, 104

Terminal
characteristics, 103
input, simulated, 120

TESTARG environment variable, 289
Tests

hardware diagnostic, 40, 53
NFS confidence, 291

TESTS
environment variable, 289

tftp file, 105
tftp server, 100
TFTP, see Internet trivial file transfer protocol, 104
tftpd server, 104
tftpd.conf file, 105
Time warp, 94
Timeservers, 93
TOS labels, 165
tpd command, 101
Trace

S–2304–10011 355

UNICOS® Networking Facilities Administrator’s Guide

entry headers, 207
facility, 206
information

collected from the kernel, 208
formatting, 209
security concerns, 207

socket, 206
socket status, 210

traceroute command, 163, 172
Translation tables

creating, 228
Transmission Control Protocol/Internet Protocol

(TCP/IP)
basics, 4
component interaction, 177
configuration issues, 23

Cray L7R, 26
configuring kernel code, 27
datagrams, 123
description, 3
hardware and software required, 3
installation, 22
MSS option, 128
new network, 25
protocol, 135
segment size selection, 126
specific connect type, 206

trcollect command, 173, 209
trformat command, 173, 184, 209
Troubleshooting

networking
Cray L7R, 185
examples, 186
guidelines, 185

NFS, 274

U
UDP, see User Datagram Protocol, 273
uidmaps directory

files with nfsmerge, 254
for ID mapping commands, 248
groups subdirectory, 248

users subdirectory, 248
UNICOS ICMS

File system configuration (fstab), 237
NFS configuration, 237
System daemons configuration, 237–238

UNICOS security
authentication, 215
configuration example, 220
daemon services, 229
ID maps, 265
installation guidelines, 216
privileges, 211
problem isolation, 233
with NIS, 311
with RPC, 311

User
accounts, 36
authentication table, 120
Datagram Protocol (UDP)

checksumming, 273
datagrams, 123
specific connect type, 206

User database (UDB)
adding users (NIS), 310
excluding users (NIS), 310
for login (NIS), 305
for password control (NIS), 305
group file (NIS), 306

Users
adding to

UDB, 310
deleting from

NIS, 310
UDB, 310

intersecting NIS sets, 310

V
Variables

kernel networking, 107
VAXBI

connection, 47
vht command, 170

356 S–2304–10011

Index

Y
Yellow pages, see Network information service

(NIS), 299

Z
Zone

file, 79

S–2304–10011 357

	toc
	UNICOS® Networking Facilities Administrator's Guide
	New Features
	Preface
	UNICOS System Administration Publications
	Related Publications
	Ordering Documentation
	Conventions
	Reader Comments

	Introduction [1]
	TCP/IP [2]
	2.1 TCP/IP Basics
	2.1.1 Internet Structure
	2.1.2 Internet Addressing
	2.1.2.1 Address Classes
	2.1.2.2 Subnet and Supernet Addressing
	2.1.2.3 Decimal Notation
	2.1.2.4 Mapping Internet Addresses to Names

	2.1.3 Hardware Addressing
	2.1.3.1 Using the Address Resolution Protocol (ARP)
	2.1.3.2 Using a Configuration File Model E and Model V Systems O
	2.1.3.3 Using a Configuration File GigaRing Based Systems Only
	2.1.3.4 Using the Internet Address Model E and Model V Based Sys

	2.1.4 Routing of Information
	2.1.4.1 Routing Procedure
	2.1.4.2 Routing Algorithm
	2.1.4.3 Routing Tables

	2.2 Configuring TCP/IP
	2.2.1 Configuration Issues
	2.2.1.1 Looking up Host Names and Addresses
	2.2.1.2 Selection of Internet Addresses
	2.2.1.3 Using a Cray€L7R

	2.2.2 Configuring the TCP/IP Kernel Code
	2.2.2.1 Determining the Number of Mbufs Needed
	2.2.2.2 Setting the Number of Mbufs
	2.2.2.2.1 Mbuf Requirements for GigaRing Based Systems Only

	2.2.2.3 Specifying Other Kernel Variables

	2.2.3 Security Configuration Parameters for Networking
	2.2.4 Setting up Network-Wide Configuration Files
	2.2.4.1 The /etc/hosts File
	2.2.4.2 The /etc/networks File

	2.2.5 Setting up Local System Configuration Files
	2.2.5.1 The /etc/services File
	2.2.5.2 The /etc/shells File
	2.2.5.3 The /etc/hosts.equiv File
	2.2.5.4 The /etc/protocols File

	2.2.6 Configuring Network Interfaces Model E and Model V Systems
	2.2.6.1 Defining Hardware Devices
	2.2.6.2 Naming the Cray Interface
	2.2.6.2.1 Interface Name Prefix
	2.2.6.2.2 Interface Numbers

	2.2.6.3 Choosing an Internet Address
	2.2.6.4 Creating the hycf File
	2.2.6.4.1 NSC Low-speed Connections
	2.2.6.4.2 FEI-3 or VAXBI Connections
	2.2.6.4.3 HIPPI Connections
	2.2.6.4.4 Selecting readdev and writedev Values

	2.2.7 Configuring Network Interfaces GigaRing Based Systems Only
	2.2.7.1 Defining I/O Node Configuration
	2.2.7.2 Naming the Cray GigaRing Interface
	2.2.7.3 Interface Name Prefix
	2.2.7.4 Identifying Character Special Devices
	2.2.7.5 Creating HIPPI Character Special Device Nodes
	2.2.7.6 Choosing an Internet Address
	2.2.7.7 Creating the ghippi##.arp File
	2.2.7.8 Creating the atm.pvc File
	2.2.7.8.1 Creating the gr##.arp File

	2.2.8 Configuring Daemons
	2.2.8.1 The gated Daemon
	2.2.8.1.1 Configuration Guidelines for gated
	2.2.8.1.2 The /etc/gated.conf File
	2.2.8.1.3 gated Configuration Examples

	2.2.8.2 The lpd Daemon
	2.2.8.2.1 printcap File Creation Rules
	2.2.8.2.2 printcap File Keywords
	2.2.8.2.3 Remote Printers and the UNICOS System
	2.2.8.2.4 Sample printcap File

	2.2.8.3 The named Daemon
	2.2.8.3.1 Setting up the Cray System As a Name Server
	2.2.8.3.2 named As a Slave Server
	2.2.8.3.3 named As a Caching-only Server
	2.2.8.3.4 named As a Master Server
	2.2.8.3.5 Using the Domain Name Resolver Library Routines

	2.2.8.4 The sendmail Daemon
	2.2.8.5 The snmpd Daemon
	2.2.8.5.1 The /etc/snmpd.conf File
	2.2.8.5.2 Using the Set Operation to Make Configuration Changes

	2.2.8.6 The ntpd Daemon
	Time warp can affect software (for example, performance tests) t
	2.2.8.6.1 The /etc/ntp.conf File
	2.2.8.6.2 NTP Server Categories

	2.2.8.7 The inetd Daemon
	2.2.8.7.1 The fingerd Server
	2.2.8.7.2 The ftpd Server
	2.2.8.7.3 The ntalkd Server
	2.2.8.7.4 The rexecd Server
	2.2.8.7.5 The rlogind and rshd Servers
	2.2.8.7.6 The telnetd Server
	2.2.8.7.7 The tftpd Server

	2.2.9 Performing Startup Procedures
	2.2.9.1 Calling the First Local Script
	2.2.9.2 Initializing Kernel Networking Variables
	2.2.9.3 Updating the Binary Hosts Database
	2.2.9.4 Configuring the Host Name
	2.2.9.5 Loading the Maps
	2.2.9.6 Initializing the Network Interfaces
	2.2.9.6.1 Using the UNICOS tcpstart Script to Initialize Interfa
	2.2.9.6.2 Using Your Own Procedures to Initialize Interfaces

	2.2.9.7 Calling the Midpoint Local Script
	2.2.9.8 Setting up Routing
	2.2.9.8.1 Using the UNICOS tcpstart Script to Set up Routing
	2.2.9.8.2 Using Your Own Procedures to Set up Routing

	2.2.9.9 Setting up Daemons
	2.2.9.10 Calling the Final Local Script

	2.2.10 Using the telnet Linemode Feature
	2.2.10.1 Tab Settings
	2.2.10.2 Special Character Processing
	2.2.10.3 Command Completion/editing Shells (ksh/tcsh)
	2.2.10.4 Simulated Terminal Input

	2.2.11 Assisting Users in Setting up Environments
	2.2.11.1 The $HOME/.netrc File
	2.2.11.2 The $HOME/.rhosts File
	If the super user on the Cray system includes the remote host's
	2.2.11.3 The bftp Facility

	2.3 Network Tuning
	2.3.1 Data Transmission Units
	2.3.1.1 Interface Mtu Model E and Model V Based Systems Only
	2.3.1.2 Using the Interface Mtu GigaRing Based Systems Only
	2.3.1.3 Datagram Size Limitations
	2.3.1.4 IP Datagram Size Selection
	2.3.1.5 Path Mtu Discovery
	2.3.1.6 TCP Segment Size Selection
	2.3.1.6.1 Subnetting and Direct Connections
	2.3.1.6.2 Segment Size Acceptance and the TCP MSS Option

	2.3.2 Buffering and Memory Requirements
	2.3.2.1 Buffered Memory (Mbufs)
	2.3.2.1.1 the Mbuf Pool
	2.3.2.1.2 Effects of Insufficient Mbuf Allocations
	2.3.2.1.3 Mbuf Allocation and Monitoring
	2.3.2.1.4 Sockets and Socket Buffers

	2.3.2.2 A Network Example
	2.3.2.2.1 Selecting the HYPERchannel Interface Mtus
	2.3.2.2.2 Selecting Mtus for the Other Networks
	2.3.2.2.3 Selecting Optimal Mtu Values
	2.3.2.2.4 Changing the Interface Mtu
	2.3.2.2.5 Using the route Command
	2.3.2.2.6 Inbound Mtu
	2.3.2.2.7 More Optimizing Considerations
	2.3.2.2.8 Policy for Decisions

	2.3.3 Network Routing
	2.3.3.1 Special Host Routing
	2.3.3.2 Load Balancing
	2.3.3.3 Controlling Routing by Group IDs
	2.3.3.4 Controlling Access
	2.3.3.5 Diagnosing and Fixing Routing Problems
	2.3.3.5.1 Using the netstat (8) Command to Inspect Routing Table
	2.3.3.5.2 Tracing a Route between Two Hosts
	2.3.3.5.3 Using Traceroute to Trace Routes
	2.3.3.5.4 Using Snmproute to Trace Routes

	2.3.3.6 Labeling Route Entries with IP Type-of-Service (TOS)
	2.3.3.7 Preventing the Cray System from Becoming a Gateway

	2.4 Troubleshooting
	2.4.1 Troubleshooting Tools
	2.4.1.1 Hardware Diagnostics
	2.4.1.1.1 The hit (8) Command
	2.4.1.1.2 The nx (8) Command
	2.4.1.1.3 The scytest Command
	2.4.1.1.4 The vht (8) Command

	2.4.1.2 Network Monitoring
	2.4.1.2.1 The hyroute (8) Command
	2.4.1.2.2 The arp (8) Command
	2.4.1.2.3 The netstat (1B) Command
	2.4.1.2.4 The nslookup (1B) Command
	2.4.1.2.5 The ping (8) Command
	2.4.1.2.6 The snmproute (8) Command
	2.4.1.2.7 The traceroute (8) Command

	2.4.1.3 Network Testing and Diagnosing
	2.4.1.3.1 The nettest (8) and nettestd (8) Commands
	2.4.1.3.2 The trcollect (8) and trformat (8) Commands

	2.4.1.4 Network Services
	2.4.1.4.1 The inetd Daemon
	2.4.1.4.2 The telnet (1B) Command
	2.4.1.4.3 The ftp (1B) Command
	2.4.1.4.4 The sendmail (8) Command
	2.4.1.4.5 The gated (8) Command

	2.4.2 Basic Problem-solving Strategy
	2.4.2.1 TCP/IP in a Cray System Environment
	2.4.2.2 Monitoring and Controlling System Changes
	2.4.2.3 Isolating the Failing Component
	2.4.2.4 Isolating the Daemon and Client
	2.4.2.5 Isolating the Hardware
	2.4.2.6 Isolating the Networking Software

	2.4.3 Examples of Network Problems and Solutions
	2.4.3.1 Troubleshooting Guidelines
	2.4.3.2 Troubleshooting Examples
	2.4.3.2.1 Connection Problems
	2.4.3.2.2 Sendmail Problems

	2.5 Trace Facility
	2.5.1 Collecting Trace Information
	2.5.2 Formatting Trace Information
	2.5.3 Obtaining Trace Socket Status

	2.6 Security Administration Basics
	2.6.1 Network Security Functional Overview
	2.6.1.1 Network Access List (NAL)
	2.6.1.2 IPSO Mapping Entries
	2.6.1.3 IP Security Options
	2.6.1.3.1 IP Basic Security Option (IP BSO)
	2.6.1.3.2 Common IP Security Option (CIPSO)

	2.6.1.4 Workstation Access List (WAL)

	2.6.2 Identification and Authentication
	2.6.2.1 Login Authentication

	2.6.3 Network Security Configuration
	2.6.3.1 UNICOS Security Configuration Guidelines
	2.6.3.2 Network Security Options
	2.6.3.2.1 Strict B1 Networking: NETW_STRICT_B1
	2.6.3.2.2 Multilevel Socket Compatibility: NETW_SOCK_COMPAT
	2.6.3.2.3 The r Command Compatibility: NETW_RCMD_COMPAT

	2.6.3.3 NFS Configuration Options
	2.6.3.4 Restricting Access to Network Interfaces
	2.6.3.5 Labeling Network Interfaces
	2.6.3.5.1 Network Interface Label
	2.6.3.5.2 Network Security Configuration Example

	2.6.3.6 Network Security Configuration Procedures
	2.6.3.6.1 Step 1 - Setting Options
	2.6.3.6.2 Step 2 - Checking the System Label
	2.6.3.6.3 Step 3 - Creating the NAL
	2.6.3.6.4 Step 4 - Creating the WAL
	2.6.3.6.5 Step 5 - Creating Translation Tables
	2.6.3.6.6 Step 6 - Labeling the Network Interfaces

	2.6.3.7 inetd Operation

	2.6.4 Error Messages
	2.6.4.1 Network Access Violations
	2.6.4.1.1 Connection timed out
	2.6.4.1.2 Host is unreachable
	2.6.4.1.3 Login incorrect
	2.6.4.1.4 Network is unreachable
	2.6.4.1.5 Permission denied
	2.6.4.1.6 Software caused connection abort

	2.6.4.2 reduce (8) Command
	2.6.4.3 Problem Isolation Guidelines
	2.6.4.3.1 Session Hangs
	2.6.4.3.2 Security Log Entries

	Network File System (NFS) [3]
	3.1 Administering UNICOS NFS
	3.1.1 Activating NFS
	3.1.2 Choosing a Configuration Method
	3.1.2.1 UNICOS ICMS Configuration Method
	3.1.2.2 Manual Configuration Method
	3.1.2.3 Local Script and File Configuration

	3.1.3 Setting up a UNICOS NFS Server
	3.1.4 Setting up a UNICOS NFS Client
	3.1.4.1 Mounting a Remote File System
	3.1.4.2 Automount Facility
	3.1.4.3 Protocol between Cray Systems

	3.1.5 Typical UNICOS NFS Layout
	3.1.6 ID Mapping
	3.1.6.1 Disabling ID Mapping
	3.1.6.2 Configuring and Using ID Mapping
	3.1.6.3 Network Description Example
	3.1.6.4 Setup, Creation, and Maintenance of ID Map Files Example
	3.1.6.4.1 ID Map File Setup
	3.1.6.4.2 ID Map File Creation
	3.1.6.4.3 ID Map File Maintenance
	3.1.6.4.4 Exceptions File
	3.1.6.4.5 Map Files

	3.1.6.5 Kernel Map Manipulation Example
	3.1.6.6 Other Administrative Considerations
	3.1.6.7 Running pcnfsd with NFS ID Mapping Control
	3.1.6.8 Deciding When to Use ID Mapping
	3.1.6.9 Special MAP_THRU NFS ID Map

	3.1.7 Configuring NFS Parameters
	3.1.7.1 Changing the config.h File
	3.1.7.2 Changing the NFS Parameter File

	3.1.8 General Security Concerns
	3.1.8.1 NFS and UNICOS Security
	3.1.8.2 Kerberos Authentication
	3.1.8.3 Kerberized NFS

	3.1.9 UDP Checksum

	3.2 Troubleshooting
	3.2.1 Isolating the Problem
	3.2.1.1 NFS Mounting Problems
	3.2.1.2 Problems Accessing NFS Mounted Files
	3.2.1.3 Problems with ID Mapping

	3.2.2 NFS Mount Failure
	3.2.2.1 NFS Mount Example
	3.2.2.2 NFS Mount Failure Error Messages

	3.2.3 Hanging Programs
	3.2.4 No Super-user Access over the Network
	3.2.5 File Operations Not Supported
	3.2.6 Remote Device Access Not Supported

	3.3 Confidence Testing
	3.3.1 Installation
	3.3.2 Test Execution
	3.3.3 Test Configurations
	3.3.4 Executing Individual Tests
	3.3.5 Cleaning up
	3.3.6 Test Contents

	3.4 Performance and Tuning
	3.4.1 Factors That Affect NFS Performance
	3.4.1.1 NFS_MAXDATA Parameter
	3.4.1.2 mount Command Arguments
	3.4.1.3 NFS Daemons
	3.4.1.4 File System Configuration and ldcache (8)
	3.4.1.5 Network Speed
	3.4.1.6 Network Configuration and Load
	3.4.1.7 NFS Server/client Configuration and Load

	3.4.2 Obtaining NFS Performance Figures

	Network Information Service (NIS) [4]
	4.1 About NIS
	4.2 NIS Databases
	4.3 NIS Maps
	4.4 NIS Domains
	4.5 Servers and Clients
	4.5.1 Servers
	4.5.2 Clients

	4.6 Masters and Slaves
	4.7 Naming
	4.8 Data Storage
	4.9 Supported Databases
	4.9.1 The /etc/passwd File
	4.9.2 The /etc/group File
	4.9.3 Changing NIS Data

	4.10 Using NIS
	4.10.1 NIS and UNICOS NFS
	4.10.2 Configuring NIS
	4.10.3 UNICOS NIS Domain Configuration Procedure
	4.10.4 Adding a User to the UNICOS NIS Domain
	4.10.5 Precautions Concerning Sets of Users
	4.10.6 Precautions Concerning the Cray System As a Master Server
	4.10.7 Precautions Concerning NIS and UNICOS Security
	4.10.8 Secure RPC
	4.10.8.1 Generating the Database
	4.10.8.1.1 Database Format
	4.10.8.1.2 Database Access

	4.10.8.2 Developing Secure RPC Applications

	4.11 About NIS+
	4.12 NIS+ Licensing
	4.13 Comparing NIS and NIS+
	4.14 Components of NIS+
	4.14.1 NIS+ Namespace
	4.14.2 Directory Objects
	4.14.3 NIS+ Domains
	4.14.4 NIS+ Servers
	4.14.5 NIS+ Clients
	4.14.6 NIS+ Tables
	4.14.7 Name Service Switch
	4.14.8 NIS+ Commands
	4.14.9 NIS+ API

	4.15 Planning Your NIS+ Namespace
	4.16 Setting up Your First NIS+ Domain
	4.16.1 Calculating Disk Requirements for Your Master Servers

	4.17 How to Set up a Root Domain
	4.18 Initializing an NIS+ Client
	4.19 Setting up an NIS+ Server
	4.20 How to Set up a Nonroot Domain
	4.21 Administering Your NIS+ Namespace
	4.22 Migrating from NIS to NIS+
	4.22.1 NIS-compatibility Mode
	4.22.2 NIS to NIS+ Command Compatibility

	MIB Variables Supported by Cray [A]
	A.1 System Group
	A.2 Interface Group
	A.3 Address Translation Group
	A.4 IP Group
	A.5 ICMP Group
	A.6 TCP Group
	A.7 UDP Group
	A.8 SNMP Group

	tables
	Table 1. Characteristics of class A, B, and C addresses
	Table 2. Supported Prefixes on Cray Systems
	Table 3. /etc/inetd.conf file columns
	Table 4. Configurable NFS Parameters
	Table 5. NFS man pages
	Table 6. Comparing the features of NIS and NIS+
	Table 7. NIS+ tables on UNICOS systems
	Table 8. Sample NIS+ client configuration
	Table 9. NIS+ administration commands
	Table 10. NIS+ API functions
	Table 11. Common NIS+ commands
	Table 12. Correspondence between information sources on a UNICOS
	Table 13. Comparing NIS and NIS+ commands on a UNICOS system

