
General UNICOS® System
Administration
S–2301–10011

© 1995–1998, 2000–2002 Cray Inc. All Rights Reserved. This manual or parts thereof may not be reproduced in any form unless
permitted by contract or by written permission of Cray Inc.

U.S. GOVERNMENT RESTRICTED RIGHTS NOTICE

The Computer Software is delivered as "Commercial Computer Software" as defined in DFARS 48 CFR 252.227-7014.

All Computer Software and Computer Software Documentation acquired by or for the U.S. Government is provided with Restricted
Rights. Use, duplication or disclosure by the U.S. Government is subject to the restrictions described in FAR 48 CFR 52.227-14
or DFARS 48 CFR 252.227-7014, as applicable.

Technical Data acquired by or for the U.S. Government, if any, is provided with Limited Rights. Use, duplication or disclosure by the
U.S. Government is subject to the restrictions described in FAR 48 CFR 52.227-14 or DFARS 48 CFR 252.227-7013, as applicable.

Autotasking, CF77, Cray, Cray Ada, Cray Channels, Cray Chips, CraySoft, Cray Y-MP, Cray-1, CRInform, CRI/TurboKiva,
HSX, LibSci, MPP Apprentice, SSD, SuperCluster, UNICOS, UNICOS/mk, and X-MP EA are federally registered trademarks
and Because no workstation is an island, CCI, CCMT, CF90, CFT, CFT2, CFT77, ConCurrent Maintenance Tools, COS,
Cray Animation Theater, Cray APP, Cray C90, Cray C90D, Cray CF90, Cray C++ Compiling System, CrayDoc, Cray EL,
Cray Fortran Compiler, Cray J90, Cray J90se, Cray J916, Cray J932, CrayLink, Cray MTA, Cray MTA-2, Cray MTX,
Cray NQS, Cray/REELlibrarian, Cray S-MP, Cray SSD-T90, Cray SV1, Cray SV1ex, Cray SV2, Cray SX-5, Cray SX-6,
Cray T90, Cray T94, Cray T916, Cray T932, Cray T3D, Cray T3D MC, Cray T3D MCA, Cray T3D SC, Cray T3E, CrayTutor,
Cray X-MP, Cray XMS, Cray-2, CSIM, CVT, Delivering the power . . ., DGauss, Docview, EMDS, GigaRing, HEXAR, IOS,
ND Series Network Disk Array, Network Queuing Environment, Network Queuing Tools, OLNET, RQS, SEGLDR, SMARTE,
SUPERLINK, System Maintenance and Remote Testing Environment, Trusted UNICOS, and UNICOS MAX are trademarks
of Cray Inc.

FLEXlm is a trademark of Globetrotter Software, Inc. IBM is a trademark of International Business Machines, Inc. Kerberos is a
trademark of Massachusetts Institute of Technology. NFS and Sun are trademarks of Sun Microsystems, Inc. in the United States and
other countries. REELlibrarian is a trademark of Sceptre Corporation. SecurID is a trademark of Security Dynamics, Inc. UNIX,
the “X device,” X Window System, and X/Open are trademarks of The Open Group in the United States and other countries. All
other trademarks are the property of their respective owners.

Cray UNICOS Version 10.0 is an X/Open Base 95 branded product.

The UNICOS operating system is derived from UNIX System V. The UNICOS operating system is also based in part on the Fourth
Berkeley Software Distribution (BSD) under license from The Regents of the University of California.

New Features

General UNICOS® System Administration S–2301–10011

This revision of General UNICOS System Administration, supports the 10.0.1.1 release of the UNICOS operating
system.

The following changes were made:

• Chapter 8, page 145, Section 8.4.1.2.2, page 175

The following statement was added: “For sites that have users running at multiple labels,
/usr/preserve/LOGIN_NAME must be created as an MLD or a wildcard directory.”

• Entire Book

Various minor miscellaneous corrections were made throughout the Book.

Record of Revision

Version Description

9.0 August 1995
Original printing. Documentation supports the administration of UNICOS 9.0
release running on Cray computer systems. This manual contains the contents
of and supersedes the information formerly provided in sections “File System
Planning,” “Startup and Shutdown Procedures,” “File System Maintenance,” “Basic
Administration,” “Crash and Dump Analysis,” UNICOS Multilevel Security (MLS)
Feature,” “Administration of Online Documentation,” and appendixes “Job and
Process Recovery USENIX Paper,” “Security Attributes in Trusted UNICOS,” and
“Covert Channels in Trusted UNICOS” in UNICOS System Administration, publication
SG-2113 8.0.

9.2 December 1996
Documentation supports administration of the UNICOS 9.2 release running on
Cray computer systems.

9.3 August 1997
Documentation supports administration of the UNICOS 9.3 release running on
Cray computer systems.

10.0 November 1997
Documentation supports administration of the UNICOS 10.0 release running on
Cray computer systems.

10.0.0.3 October 1998
Documentation supports administration of the UNICOS 10.0.0.3 release running
on Cray computer systems.

10008 November 2000
Documentation supports administration of the UNICOS 10.0.0.8 release running
on Cray computer systems.

10010 October 2001
Documentation supports administration of the UNICOS 10.0.1.0 release running
on Cray computer systems.

10011 May 2002
Documentation supports administration of the UNICOS 10.0.1.1 release running
on Cray computer systems.

S–2301–10011 i

Contents

Page

Preface xvii

UNICOS System Administration Publications xvii

Related Publications . xviii

Ordering Documentation . xix

Conventions . xx

Reader Comments . xxi

Introduction to System Administration [1] 1

Overview of Contents . 1

UNICOS Multilevel Security (MLS) Feature and the Cray ML-Safe Configuration 2

User Exits . 3

File System Planning [2] 7

Introduction to UNICOS File Systems 7

File System Overview . 8

File System Types . 8

File System Strategies . 9

File System Concepts . 11

Disk Organization . 11

Disk Flawing (IOS-E and IPN-1 Only) 12

Disk Striping . 13

Disk Mirroring . 13

Physical Devices . 14

Simple Logical Devices . 14

Striped Logical Devices . 14

Mirrored Logical Devices . 15

Logical Device Descriptor Files 15

S–2301–10011 iii

General UNICOS® System Administration

Page

Using the mkspice(8) Command (IOS-E and IPN-1) 15

Creating File System Nodes . 17

Creating Physical Devices . 17

Examples of Physical Device Creation 19

Creating a Physical Disk Device 19

Creating RAM Disks . 21

Creating SSD Slices . 22

Creating Physical Devices (GigaRing Systems) 22

Creating Logical Devices . 23

Creating Simple Logical Devices 24

Restrictions on Simple Logical Devices 25

Creating Striped Logical Devices 25

Creating Mirrored Logical Devices 26

Restrictions on Striped and Mirrored Logical Devices 27

Creating Logical Descriptor Files 28

Defining Alternate Disk Paths . 28

Configuring Alternate Paths on FCN Devices 29

Configuring Alternate Paths on FCN Devices 30

Failure Modes . 32

Shared Dump and Swap Configuration 34

Configuring Disk Arrays . 36

Installing an Array . 36

Replacing a Failing Spindle . 39

Converting RAID Members to Single Spindles 41

Software Limitations . 41

File System Initialization . 42

Inode Allocation Strategies . 42

rrf Allocation . 43

rrd1 Allocation . 43

rrda Allocation . 44

iv S–2301–10011

Contents

Page

Inode Region Allocation . 44

Labeling a File System . 46

Mirrored File Systems . 46

Creating a Mirrored File System 46

Configuring a Mirrored Device 47

Default Configuration . 49

Mirrored Devices during Startup 49

Manual Startup of Mirrored File Systems 50

Performance Considerations . 50

Logical Device Cache . 51

Setting Cache Configuration 52

Displaying Cache Statistics . 52

Aging and Threshold Parameters of ldcache 54

System Buffer Cache . 55

Using SSD As a File System . 55

SSD Memory Access . 56

Back Door I/O Rules . 57

SuperRing Configuration Rules 57

Secondary Data Segments (SDS) 58

File System Placement . 59

Startup and Shutdown Procedures [3] 61

System Initialization . 61

Deadstarting the System . 61

Initializing the UNICOS Operating System 62

Setting the System Date and Time 63

Setting the System Time Zone . 63

Time-zone Information . 64

Time-zone Example 1 . 65

Time-zone Example 2 . 66

System Shutdown . 66

S–2301–10011 v

General UNICOS® System Administration

Page

The shutdown Command . 67

System Shutdown Configuration 68

The shutdown.pre User Exit 69

The shutdown.mid User Exit 69

The shutdown.pst User Exit 70

System Shutdown Procedures . 70

Run-level Configuration . 72

Changing Run Level . 73

Strategies for Using Run Levels 73

Single-user Mode . 73

Multiuser Mode . 74

Dedicated System . 76

Files That Control Run-level Activity 76

The /etc/inittab File . 76

The /etc/bcheckrc Script 77

The /etc/rc Script . 77

System Multiuser Startup . 77

Load the /etc/config/rcoptions File 78

Set up the /etc/rc Log File . 86

Execute /etc/rc.pre . 86

Make and Mount /tmp . 87

Mount the /usr File System . 87

Make and Mount /usr/tmp . 87

Preserve Interrupted vi/ex Sessions 87

Mount User File Systems . 87

Mount /proc . 87

Activate Logical Device Cache . 88

Execute /etc/rc.mid . 88

Perform Administrative Cleanup 88

Start the Security Log Daemon 88

vi S–2301–10011

Contents

Page

Start Accounting . 88

Start System Activity Data Collection 89

Activate Category SYS1 System Daemons 89

Activate netstart . 89

Activate Category SYS2 System Daemons 89

Create Network Access List . 89

Set MLS Wildcard Files and Directories 90

Execute /etc/rc.pst . 90

Complete the Multiuser Startup 90

File System Maintenance [4] 91

Mounting and Unmounting File Systems 91

File System Utilities . 92

File System Backup and Restoration 93

Local Backup . 93

Using the dump Command . 93

Using the restore Command 96

Remote Backup . 99

File System Checking and Repair with fsck 100

Overview of File System Operation 101

Using fsck . 102

fsck Phases . 104

Initialization Phase . 104

Phase 1 . 105

Phase 2 . 105

Phase 2X . 105

Phase 3 . 106

Phase 4 . 106

Phase 5 . 106

Phase 6 . 106

Termination Phase . 106

S–2301–10011 vii

General UNICOS® System Administration

Page

Basic Administration [5] 107

Using the cron and at Utilities . 107

Administrative Use of cron . 107

Administrative Use of at . 109

Restricting Use of crontab and at Utilities 111

The Temporary Directory (TMPDIR) 111

Communicating with Users . 112

The wall(8) Command . 112

The /etc/motd File . 113

The /etc/issue File . 113

The /usr/news Directory . 113

The write(1) Utility . 114

The mail(1) Utility . 116

Monitoring System Security . 116

Super-user Privileges . 117

Password Security for Super User 117

Physical Security . 118

Setuid Programs . 118

root PATH . 119

User Security . 120

The umask Utility . 120

Default PATH Variable . 120

User Groups . 121

File-owner Fraud . 121

Login Attempts . 121

Partition Security . 122

Job and Process Recovery . 122

Restrictions to Job and Process Recovery 122

Restrictions Common to Batch and Interactive 122

Recovery Restrictions Unique to Batch 124

viii S–2301–10011

Contents

Page

Checkpoint and Restart Errors . 125

Examining the Restart-information Buffer 125

Recovery and Signals . 126

SIGSHUTDN . 126

SIGRECOVERY . 126

Kernel User Exit (uesyscall) . 127

User Database (UDB) [6] 129

Login Accounts and the UDB . 129

Providing Login Accounts . 130

Removing Login Accounts . 130

User Control Capabilities . 131

User Limits . 131

Privileges . 132

Quota Fields . 133

Other UDB Information . 133

The /etc/passwd and /etc/group Files 134

The /etc/passwd File . 134

The /etc/group File . 135

The nu Command . 136

Crash and Dump Analysis [7] 139

Introduction . 139

Using the crash Program . 139

Analyzing System Problems . 140

Panic . 141

Debugging Panics . 141

Buffer Flushing . 142

Running System . 142

The fdmp Command . 143

S–2301–10011 ix

General UNICOS® System Administration

Page

UNICOS Multilevel Security (MLS) Feature [8] 145

Overview of UNICOS Security Mechanisms 146

System Management . 148

The Super-user Mechanism (PRIV_SU) 150

UNICOS Categories . 150

The PAL-based Privilege Mechanism 151

Overview of Process Privilege Attributes 152

UNICOS Security Privileges 154

Process Privileges . 158

Privilege Assignment List (PAL) 158

Propagation of Privileges . 161

Super-user PALs . 161

Software Not Part of the Set of Cray ML-Safe Components 163

Determining PAL Privileges 163

Process Privilege Management 165

Privilege Text Management . 165

Privileged Shell . 166

Overview of Access and Privilege Checks 168

Discretionary Access Control . 169

umask on a MLS System . 170

Managing Set-user-ID and Set-group-ID Files 170

Mandatory Access Control . 171

Directory Operations . 173

Removing Files from Directories 174

Wildcard and Multilevel Directories (MLDs) 174

Directory Permissions . 184

File System and File Operations 184

System High and System Low Labels 185

File System Labeling . 187

Changing File Labels . 188

x S–2301–10011

Contents

Page

File System Access Controls 188

File System Back up Operations 189

File System Security . 191

File Labeling . 192

Single-level and Multilevel Files and Devices 193

Assignment and Access Rules for Labeling Information 195

The spdev Command . 197

Pseudo Terminals . 197

Pty Device Inodes . 198

cron, batch, and at Operations 199

Multilevel Mail Operations . 199

The /proc File System Operations 200

syslogd Operations . 201

Destructive Reads on Named Pipes 201

IPC Objects . 202

MLS Identification and Authentication (I&A) 202

Overview of I&A Security Implementation 202

Login Procedures . 205

Interactive Logins . 205

Remote Logins with SecurID Card 205

Centralized Identification and Authentication (I&A) 206

Checks and Operations . 206

Library Routines Supporting I&A 207

I&A User Exits . 210

Password Security . 213

Last Login Notification . 214

Generic Login Message . 214

Password Aging . 214

Password Suppression . 215

Password Encryption . 215

S–2301–10011 xi

General UNICOS® System Administration

Page

Password Locking . 215

User Trapping . 216

Restricted Directory . 216

Login Attempts . 216

Machine-generated Passwords 217

MLS Login and Password Protection Features 220

Password Auditing . 225

Reenabling Accounts . 226

Object Reuse . 227

MLS Installation and Configuration 229

System Startup Procedure . 230

Subsystem Startup Procedure . 230

System Shutdown Procedure . 230

System Clearing Procedure . 231

MLS Configuration Parameters 231

The secparm.h File . 231

The uts/cf.SN/config.h File 232

The seclabs.c File . 234

Permission Definitions . 235

Defining MLS UDB Entries . 236

Directory Initialization Procedures 238

The privcmd Command . 239

MLS Installation and Configuration Procedures 239

Cray ML-Safe Configuration 240

Single Level UNICOS System to a Multilevel UNICOS System 251

MLS Auditing on a UNICOS System 258

Security Log Overview . 260

Security Logging Daemon . 263

Security Logging Daemon in Single-user Mode 263

The spaudit Command . 264

xii S–2301–10011

Contents

Page

Security Logging Configuration Parameters 265

Security Log Record Types . 267

Auditing on a Cray ML-Safe System Configuration 270

Security Log Record Header Definition 270

System Start Record (SLG_GO) 272

System Shutdown Record (SLG_STOP) 274

System Configuration Change Record (SLG_CCHG) 274

System Time Change Record (SLG_TCHG) 275

Discretionary Access Violation Record (SLG_DISC_7) 276

Discretionary Access Change Record (SLG_DAC_CHNG) 281

Mandatory Access Record (SLG_MAND_7) 284

Login Validation Record (SLG_LOGN) 287

Tape Activity Record (SLG_TAPE) 293

End-of-job Record (SLG_EOJ) 296

Change Directory Record (SLG_CHDIR) 297

Security-related System Call Record (SLG_SECSYS) 299

NAMI Function Record (SLG_NAMI) 304

Setuid System Call Record (SLG_SETUID) 307

Su Attempt Record (SLG_SU) 308

Networks Security Violations Record (SLG_IPNET) 309

Cray NFS Request Record (SLG_NFS) 312

File Transfer Record (SLG_FXFR) 313

Network Configuration Change Record (SLG_NETCF) 315

Audit Criteria Change Record (SLG_AUDIT) 318

NQS Configuration Change Record (SLG_NQSCF) 319

NQS Activity Record (SLG_NQS) 322

Cray ML-Safe Process Activity Record (SLG_TRUST) 324

Use of Privilege Record (SLG_PRIV) 326

Cray/REELlibrarian (CRL) Activity Record (SLG_CRL) 329

The reduce Command . 333

S–2301–10011 xiii

General UNICOS® System Administration

Page

Selecting Record Types (-t option) 334

Printing Security Labels in Record Header (-S and -L Options) 335

Selecting Records by Object Label (-O Option) 336

Displaying Path Names (-p Option) 337

Tracking a Specific User Name (-l and -u Options) 337

Tracing a User’s Login Session (-j Option) 339

Reducing Security Log Input (-r, -R, and -f Options) 341

Monitoring Security-relevant Events 341

Security Violation Error Codes . 343

NQS Operations . 347

Tape Operations . 347

TCP/IP Operations . 347

UNICOS NFS Operations . 348

MLS Data Migration Operations . 348

Administration of Online Documentation [9] 349

Modifying Online Glossary Files . 349

Modifying the Cray Definitions File 349

Creating a Local Definitions File 350

Glossary Keywording Rules . 351

Cray Message System . 352

Overview . 353

Message System Files . 354

File Names . 355

File Location . 355

Installing Message System Files 356

Changing the Message Text File 356

Editing the Message Text File . 357

Rebuilding Catalogs . 357

Rebuilding with nmake . 357

Rebuilding with Message System Commands 358

xiv S–2301–10011

Contents

Page

Printing Messages . 359

Local Man Pages . 361

Examples . 362

Example 1 . 362

Example 2 . 363

Display Order for Same-name Man Pages 364

Appendix A User-defined Locales 365

The localedef Utility . 365

Character Specifications . 366

General Syntax of the Locale Definition File 370

The LC_MONETARY Category . 372

The LC_MESSAGES Category . 374

The LC_NUMERIC Category . 375

The LC_TIME Category . 375

The LC_CTYPE Category . 378

Character Class and Case Mappings 379

The LC_COLLATE Category . 380

Collation Sequence . 381

String Ordering . 382

Glossary 385

Index 387

Figures
Figure 1. Configuration with No Alternate Path 30

Figure 2. Configuration 1: One FCN Device, Two Fibre Channel Loops 30

Figure 3. Configuration 2: Two FCN Devices, One GigaRing Channel 31

Figure 4. Configuration 3: Two FCN Devices, Two GigaRing Channels 32

Figure 5. UNICOS Security Mechanisms 147

Figure 6. Interaction of UNICOS Security Mechanisms 148

S–2301–10011 xv

General UNICOS® System Administration

Page

Figure 7. Propagation of Privileges 161

Figure 8. Overview of Initial MAC/DAC Checks and Assigning of Privileges 168

Figure 9. I&A Security Implementation 203

Figure 10. Overview of Security Auditing 259

Tables
Table 1. Spindle to Unit Number Mapping 39

Table 2. United States Time Zones 64

Table 3. rcoptions Decide String Parameters 78

Table 4. rcoptions Non-decide String Parameters 83

Table 5. rcoptions File System String Parameters 83

Table 6. Login Protection Parameter Configuration, Example 1 222

Table 7. Login Protection Parameters Configuration, Example 2 224

Table 8. Login Protection Parameters Configuration, Example 3 225

Table 9. Suggested Values for UDB Security Fields 237

Table 10. Security Log Records . 268

Table 11. Security Violation Error Codes 343

xvi S–2301–10011

Preface

This guide documents the UNICOS operating system running on Cray computer
systems. It provides information needed to perform basic administration tasks
as well as information needed for administering the multilevel security (MLS)
feature.

Warning: Starting with the UNICOS 10.0 release, the term Cray ML-Safe
replaces the term Trusted UNICOS, which referred to the system configuration
used to achieve the UNICOS 8.0.2 release evaluation. Because of changes to
available software, hardware, and system configurations since the UNICOS
8.0.2 system release, the term Cray ML-Safe does not imply an evaluated
product, but refers to the currently available system configuration that closely
resembles that of the evaluated Trusted UNICOS 8.0.2 system.

For the UNICOS 10.0 release and later, the functionality of the Trusted
UNICOS system has been retained, but the CONFIG_TRUSTED option, which
enforces conformance to the strict B1 configuration, is no longer available.

UNICOS System Administration Publications

Information on the structure and operation of a Cray computer system running
the UNICOS operating system, as well as information on administering various
products that run under the UNICOS operating system, is contained in the
following documents:

• General UNICOS System Administration contains information on performing
basic administration tasks as well as information about system and security
administration using the UNICOS multilevel security (MLS) feature.
This publication contains chapters documenting file system planning,
UNICOS startup and shutdown procedures, file system maintenance, basic
administration tools, crash and dump analysis, the UNICOS MLS feature, and
administration of online features.

• UNICOS Resource Administration contains information on the administration
of various UNICOS features available to all UNICOS systems. This
publication contains chapters documenting accounting, automatic incident
reporting (AIR), the fair-share scheduler, file system quotas, file system
monitoring, system activity and performance monitoring, and the Unified
Resource Manager (URM).

S–2301–10011 xvii

General UNICOS® System Administration

• UNICOS Configuration Administrator’s Guide provides information about the
UNICOS configuration files created when the UNICOS operating system is
installed and configured.

• UNICOS Networking Facilities Administrator’s Guide contains information on
administration of networking facilities supported by the UNICOS operating
system. This publication contains chapters documenting TCP/IP for the
UNICOS operating system, the UNICOS network file system (NFS) feature,
and the network information system (NIS) feature.

• NQE Administration describes how to configure, monitor, and control the Cray
Network Queuing Environment (NQE) running on a UNIX system.

• Kerberos Administrator’s Guide contains information on administration of the
Kerberos feature, a set of programs and libraries that provide distributed
authentication over an open network. This publication contains chapters
documenting Kerberos implementation, configuration, and troubleshooting.

• Tape Subsystem Administration contains information on administration of
UNICOS and UNICOS/mk tape subsystems. This publication contains
chapters documenting tape subsystem administration commands, tape
configuration, administration issues, and tape troubleshooting.

Related Publications

The following man page manuals contain additional information that may be
helpful.

• UNICOS User Commands Reference Manual

• UNICOS System Calls Reference Manual

• UNICOS File Formats and Special Files Reference Manual

• UNICOS Administrator Commands Reference Manual

• UNICOS System Libraries Reference Manual

The following publication is useful for establishing connectivity between the
High Performance Parallel Interface (HIPPI) network of a Cray mainframe
and any host that has a physical path to any of the network interfaces of the
Cray L7R.

• Cray L7R Release Overview and Software Installation Guide, contains information
on the Cray L7R release and details regarding software installation
and configuration for the Cray L7R. This publication contains chapters

xviii S–2301–10011

Preface

documenting an overview of the release, purpose and function of the
Cray L7R, system and network configuration requirements, software
installation and configuration instructions, and troubleshooting.

Design specifications for the UNICOS multilevel security (MLS) feature are
based on the trusted computer system evaluation criteria developed by the
U.S. Department of Defense (DoD). If you require more information about
multilevel security on UNICOS, you may find the following sources helpful:

• DoD Computer Security Center. A Guide to Understanding Trusted Facility
Management (DoD NCSC-TG-015). Fort George G. Meade, Maryland: 1989.

• DoD Computer Security Center. Department of Defense Trusted Computer System
Evaluation Criteria (DoD 5200.28-STD). Fort George G. Meade, Maryland: 1985.
(Also known as the Orange book.)

• DoD Computer Security Center. Trusted Network Interpretation of the Trusted
Computer System Evaluation Criteria (DoD NCSC-TG-005-STD). Fort George G.
Meade, Maryland: 1987. (Also known as the Red book.)

• DoD Computer Security Center. Summary of Changes, Memorandum for the
Record (DoD 5200.28-STD). Fort George G. Meade, Maryland: 1986.

• DoD Computer Security Center. Password Management Guidelines
(CSC-STD-002-85). Fort George G. Meade, Maryland: 1985.

• Wood, Patrick H. and Stephen G. Kochan. UNIX System Security. Hasbrouck
Heights, N.J.: Hayden Book Company, 1985.

Note: If your site wants to purchase the optional SecurID card used with
UNICOS MLS network security, the necessary hardware, software, and
user publications can be obtained from Security Dynamics, Inc., 2067
Massachusetts Avenue, Cambridge, MA, 02140, (617) 547-7820.

Ordering Documentation

To order software documentation, contact the Cray Software Distribution Center
in any of the following ways:

E-mail:
orderdsk@cray.com

Web:
http://www.cray.com/craydoc/

Click on the Cray Publications Order Form link.

S–2301–10011 xix

General UNICOS® System Administration

Telephone (inside U.S., Canada):
1–800–284–2729 (BUG CRAY), then 605–9100

Telephone (outside U.S., Canada):
Contact your Cray representative, or call +1–651–605–9100

Fax:
+1–651–605–9001

Mail:
Software Distribution Center
Cray Inc.
1340 Mendota Heights Road
Mendota Heights, MN 55120–1128
USA

Conventions

The following conventions are used throughout this document:

Convention Meaning

command This fixed-space font denotes literal items, such
as file names, pathnames, man page names,
command names, and programming language
elements.

manpage(x) Man page section identifiers appear in parentheses
after man page names. The following list describes
the identifiers:

1 User commands

1B User commands ported from BSD

2 System calls

3 Library routines, macros, and
opdefs

4 Devices (special files)

4P Protocols

5 File formats

7 Miscellaneous topics

8 Administrator commands

xx S–2301–10011

Preface

Some internal routines (for example, the
_assign_asgcmd_info() routine) do not have
man pages associated with them.

variable Italic typeface indicates an element that you will
replace with a specific value. For instance, you
may replace filename with the name datafile in
your program. It also denotes a word or concept
being defined.

user input This bold, fixed-space font denotes literal items
that the user enters in interactive sessions. Output
is shown in nonbold, fixed-space font.

[] Brackets enclose optional portions of a syntax
representation for a command, library routine,
system call, and so on.

... Ellipses indicate that a preceding element can be
repeated.

The following machine naming conventions may be used throughout this
document:

Term Definition

Cray PVP systems All configurations of Cray parallel vector
processing (PVP) systems.

Cray MPP systems All configurations of the Cray T3E series. The
UNICOS operating system is not supported on
Cray T3E systems. Cray T3E systems run the
UNICOS/mk operating system.

Reader Comments

Contact us with any comments that will help us to improve the accuracy and
usability of this document. Be sure to include the title and number of the
document with your comments. We value your comments and will respond to
them promptly. Contact us in any of the following ways:

E-mail:
swpubs@cray.com

Telephone (inside U.S., Canada):
1–800–950–2729 (Cray Customer Support Center)

S–2301–10011 xxi

General UNICOS® System Administration

Telephone (outside U.S., Canada):
Contact your Cray representative, or call +1–715–726–4993 (Cray Customer
Support Center)

Mail:
Software Publications
Cray Inc.
1340 Mendota Heights Road
Mendota Heights, MN 55120–1128
USA

xxii S–2301–10011

Introduction to System Administration [1]

This manual is a teaching and reference document for people who manage the
operation of Cray computer systems running the UNICOS operating system.
This chapter provides an introduction to the manual and includes sections
covering the following topics:

• A chapter-by-chapter description of the contents of this manual

• A brief introduction to the UNICOS multilevel security (MLS) feature and
Cray ML-Safe configuration of the UNICOS system

• A summary description of the user exits available in the UNICOS operating
system

1.1 Overview of Contents

This guide provides the following information:

• Descriptions of the general characteristics of UNICOS file systems.

• Descriptions of the startup and shutdown of a UNICOS system, including
system initialization, system shutdown, run-level configuration, and
multiuser startup.

• Information on the administration and maintenance of file systems, including
mounting and unmounting file systems, file system backup and restoration,
and file system checking and repair.

• Descriptions of tools and methods used in the daily administration of a
UNICOS system. This includes information about executing commands at
specified times (the at and cron commands), communicating with users,
monitoring system security, and job and process recovery.

• Description of the user database (UDB). The UDB is the Cray enhancement
of the traditional UNIX /etc/passwd and /etc/group files. The user
database contains an entry for each user allowed to log in to and run jobs on
your system; it provides faster access to this information than the traditional
UNIX password and group files, and it allows safe use of multiple sources
when user information is changed.

• Guidelines on crash and dump analysis for troubleshooting and debugging
purposes. Although it does not address all potential problems, this guide
describes general system crash analysis and recovery.

S–2301–10011 1

General UNICOS® System Administration

• Information on the UNICOS multilevel security (MLS) feature (also referred
to as security enhancements) and on the Cray ML-Safe configuration of the
UNICOS system. MLS provides mechanisms to protect both system integrity
and sensitive information.

• The administrative procedures required for the online glossary and the online
message system.

• Appendixes covering the following topics:

– User-defined locales, which are collections of culture-dependent
information used by an application to interact with a us

– A description of the development and design of the UNICOS job and
process recovery facility

This manual replaces neither experience nor other documents that more fully
describe specific system areas. Familiarity with the references listed in the
preface, combined with the full-time efforts of an individual, is necessary to
effectively manage Cray computer systems running the UNICOS operating
system.

1.2 UNICOS Multilevel Security (MLS) Feature and the Cray ML-Safe Configuration

The UNICOS multilevel security (MLS) feature provides specific mechanisms
and assurances to protect both system integrity and sensitive information.

The Cray ML-Safe configuration refers to a configuration of the UNICOS system
that supports processing at multiple security labels and system administration
using only non-super user administrative roles. The Cray ML-Safe configuration
consists of the subset of UNICOS software that offers these capabilities.

Warning: Starting with the UNICOS 10.0 release, the term Trusted UNICOS
has been replaced by the term Cray ML-Safe. Because of changes to available
software, hardware, and system configurations since the UNICOS 8.0.2 system
release, the term Cray ML-Safe does not imply an evaluated product, but refers
to the currently available system configuration that closely resembles that of
the evaluated Trusted UNICOS 8.0.2 system.

The MLS feature and the Cray ML-Safe configuration are described in Chapter
8, page 145. It is assumed that before you read this chapter, you have read the
UNICOS Multilevel Security (MLS) Feature User’s Guide.

In addition, the MLS feature is referenced throughout this guide as appropriate.

2 S–2301–10011

Introduction to System Administration [1]

1.3 User Exits

In the UNICOS operating system you can customize the programming
environment in accordance with local needs by means of user exits. A user exit
allows you to introduce local code at a defined point, even if you do not have
access to the source code. User exits are compatible from release to release.

User exits are provided in the following areas:

• General Administration

At system startup, the brc(8) script, which invokes system initialization shell
scripts, executes the rc.pre, rc.mid, and rc.pst scripts at specified points.
These scripts allow for local startup initialization that cannot be accomplished
through the existing rc script. These user exits are described in "System
multiuser startup," Section 3.4, page 77, and on the brc(8) man page.

At system shutdown, the shutdown(8) script provides three user exits
at specified points: the shutdown.pre, shutdown.mid, and the
shutdown.pst scripts, which allow you to provide additional shutdown
processing that is not provided by the shutdown script. These user exits are
described in Section 3.2.1, page 67, and on the shutdown(8) man page.

• System Call

The uesyscall system call template allows you to write system calls specific
to your site. This features allows you to access kernel structures not otherwise
available and to provide kernel support for local UNICOS functions. This
feature is documented in Section 5.6, page 127.

• Accounting

Cray system accounting provides four user exits at specified times during the
execution of the csarun(8) daily accounting shell script. For instructions for
setting up the user exits scripts, see UNICOS Resource Administration.

• Fair-share Scheduler

You can customize the fair-share scheduler’s CPU scheduling policy at your
site. This allows use of a different scheduling algorithm without modifying
the UNICOS kernel. See UNICOS Resource Administration for information
on this feature.

• Network Queuing Environment (NQE)

Through the NQS batch processing subsystem, user exits are provided to
tailor various NQS functions to your site. NQS user exits allow you to

S–2301–10011 3

General UNICOS® System Administration

customize queue destination selection, qsub option preprocessing, job startup
and termination processing, and NQS startup and shutdown processing. You
must keep your UNICOS build and your build for NQS user exits separate.

For more information, see NQE Administration.

• MLS

The MLS feature includes seven user exits as part of its centralized
identification and authentication (I&A) mechanism. These user exits allow
customers to control some aspects of user I&A, including I&A success and
failure processing. Some examples are as follows:

– Support of a local password format

– Allowing validation information to be held on a remote (that is, front-end)
host

– Disallowing multiple logins

– Bypassing password processing

– Limiting access to a selected group of users or selected network address

– Disabling su to root

Warning: The user exit feature does not meet the requirements of a Cray
ML-Safe system.

For information on user exits in MLS, see Section 8.5.4, page 210.

• Tape subsystems

User exits are available that allow you to add special routines to communicate
with the tape daemon. These user exits allow a system process to examine
and modify a structure associated with a tape file. The specific user exits
available for the tape subsystem, and instructions for their implementations,
are described in the Tape Subsystem Administration.

• Unified Resource Manager (URM)

URM contains code that allows you to customize URM for the specific needs
of your site by writing your own job selector. In URM, this locally-written
selector code is executed last.

As shipped, the selector code is empty; it defaults to exiting without doing
anything. However, you can write your selector based on any ranking
algorithm you choose, and insert your code into the URM user exit.

4 S–2301–10011

Introduction to System Administration [1]

URM user exits and their implementation are described in UNICOS Resource
Administration.

S–2301–10011 5

File System Planning [2]

All of the files that are accessible from within the UNICOS operating system are
organized into file systems. File systems store data in formats that the operating
system can read and write.

Warning: This chapter contains warnings and information critical to the use
of a Cray ML-Safe configuration.

This chapter discusses several aspects of administering file systems. This chapter
is organized as follows:

• Introduction to UNICOS file systems

• File system concepts

• Using the mkspice(8) command (IOS-E and IPN-1 systems only)

• Creating file system nodes

• Configuring disk arrays

• File system initialization

• Inode allocation strategies

• Inode region allocation

• Labeling a file system

• Mirrored file systems

• Performance considerations

2.1 Introduction to UNICOS File Systems

The following sections introduce some general characteristics of UNICOS file
systems. The following topics are discussed:

• File system overview

• File system types

• File system strategies

S–2301–10011 7

General UNICOS® System Administration

2.1.1 File System Overview

The file is the logical unit of data storage within the UNICOS operating system.
Files are grouped into structures called file systems. The root file system contains
the base or root of the file system tree. Other file systems are logically attached to
(mounted) and detached from (unmounted) the root file system by the super user.

A file system is typically made up of slices of one or more disk devices. However,
a file system can also reside totally or in part in memory.

2.1.2 File System Types

The exact format of the file system data is determined by the hardware
architecture, the mkfs(8) options used to make the file system, and the version
of the UNICOS operating system under which the file system was made. The
following list summarizes the types of file systems:

Type Description

NC1FS UNICOS file system on Cray PVP systems

NFS Network file system (NFS)

SFS Shared file system

PROC /proc file system

INODE /inode file system

NC1FS file systems are the standard UNICOS file system on Cray PVP systems.
The maximum size for an NC1 file system is 8 Tbytes.

File systems of the type NFS reside on a remote server, have been mounted
under the UNICOS operating system, and can be accessed through NFS. For
information on administering NFS file systems, see the UNICOS Networking
Facilities Administrator’s Guide.

The SFS file system is a file system that can be shared among multiple Cray
systems. To use the UNICOS Shared File System (SFS) feature you must obtain
a software license, which is maintained and administered through the Flexible
License Manager (FLEXlm) product. For information on the UNICOS SFS feature,
see Shared File System (SFS) Administrator’s Guide.

The /proc file system is intended to be used by the debugging utilities to debug
running processes and, to a lesser extent, as an interprocess communication
mechanism. The /proc file system is a special file system that consists of a
directory in which all of the processes present in the system appear as regular

8 S–2301–10011

File System Planning [2]

files. Processes can then be read and written as though they were simple disk
files.

The chown(1), chmod(1), and link(8) operations are prohibited in the /proc file
system. Users may modify the regular files (representing processes) that they
own. The super user may modify all files.

The /proc file system does not consume any disk space or kernel buffers.
Instead, it is produced directly from information that is maintained in the kernel
process table and is constantly changing as processes are created and destroyed
in the system. The /proc file system never needs to be checked for damage by
any of the file system repair utilities (for instance, fsck(8)) because such damage
is impossible.

The output of the df(1) command presents different information for the /proc
file system than for other file systems. The number listed under % disk space
used refers to the percentage of memory in use. The number listed under %
free refers to the percentage of memory available at the present time.

For more information about the /proc file system, see proc(4).

The /inode file system allows privileged processes access to a file or directory
when the process knows the device and inode number of a file system. For more
information about the /inode file system, see inode(4).

2.1.3 File System Strategies

No one configuration of available disk drives into file systems will prove best for
all purposes. In addition, as the needs of users change, the file system layout
will most likely need to be reconfigured occasionally. In the absence of a set of
absolute rules, the following facts and guidelines should prove useful when you
choose the file system layout for your system.

• When organizing disks into file systems, you should first consider attributes
of the user population. These attributes can provide a logical division, such as
the following:

– Location

– Project

– Applications

– File-storage requirements

– Security considerations

S–2301–10011 9

General UNICOS® System Administration

By considering these factors, you can significantly enhance system
performance.

• A large file system allows the maximum amount of resource sharing.
However, a large file system takes far longer to dump and restore than several
small file systems. In some cases, smaller file systems are desirable to separate
users and reduce disk contention. In addition, a file system that uses a small
number of disks has a lower risk of losing data because of disk failures.

There is no universal solution to deciding on the best file system size. In most
cases, a compromise is needed to maximize performance while maintaining
file system recoverability.

• Because each file is contained in a single file system, a file can be no larger
than the size of its file system.

• A user can take disk space from a file system only if it contains a directory
(or file) with write permissions for the user. This usually means that a
user can take space only in the file system that contains the user’s login
directory and in the file systems of shared temporary directories /tmp and
/usr/tmp. Therefore, two users can avoid competition over disk space if
they have login directories on different file systems and if they do not use
the shared temporary directories. Many UNICOS commands use temporary
directory space, but the location of the space can be controlled by the TMPDIR
shell variable.

• You should also consider throughput, or the file transfer rate, when dividing
disks into file systems. The two relevant factors are hardware transfer rate
and head-positioning overhead.

The hardware transfer rate is fixed and sets a limit on data transfer speed,
but several disks can be combined into a single file system to provide a
higher aggregate transfer rate.

Head-positioning overhead is a problem when a single disk is split into
several partitions and those partitions are active simultaneously. The time
wasted in moving the head between the two partitions can decrease the
effective transfer rate.

• To maintain optimum performance, you should configure your system with
no more than one slice per physical device for each file system. This reduces
head movement and channel contention.

10 S–2301–10011

File System Planning [2]

2.2 File System Concepts

The following sections provide an overview of the basic file system concepts.
The information is presented in the following order:

• Disk organization

• Disk flawing (IOS-E and IPN-1 only)

• Disk striping

• Disk mirroring

• Physical devices

• Simple logical devices

• Striped logical devices

• Mirrored logical devices

• Logical device descriptor files

2.2.1 Disk Organization

Disk drives are divided into sectors. The sectors are numbered, starting with 0.
Each sector can be identified by its sector number.

As a result of SPR 718787, the disk specification information for UNICOS based
Cray systems can be found only in the diskspec(7), disksmpn(7), and
disksfcn(7) man pages as follows:

disksfcn(7) Physical specifications of disk devices connected
to the Fibre Channel I/O Node (FCN-1).

diskspec(7) Physical specifications of disk devices connected
to the IPI-2 I/O Node (IPN-1).

disksmpn(7) Physical specifications of disk devices connected
to the Multipurpose I/O Node (MPN-1).

Disk drives are divided into sectors. The sectors are numbered, starting with 0.
Each sector can be identified by its sector number.

A track is a circle on the disk that the disk head can read in a single revolution of
the disk without moving. The density of the disk determines how many sectors
are in a track. The tracks are also numbered, starting from 0.

S–2301–10011 11

General UNICOS® System Administration

A cylinder is the group of tracks, one from each platter surface, with the same
track number. The number of tracks per cylinder is determined by the number
of surfaces within the disk device.

Note: Disk devices connected to the multipurpose node 1 (MPN-1) and disk
devices connected to the Fibre Channel I/O Node (FCN-1) do not organize
disks into tracks or cylinders, but only into sectors.

For a summary of the physical characteristics of the disk drives connected
to UNICOS based Cray systems, see the diskspec(7), disksmpn(7), and
disksfcn(7) man pages.

Disk drives are divided into slices, which are contiguous groups of sectors.
This division is specified during disk configuration. For each slice there is a
corresponding physical device node.

A partition is part of a file system that consists of a single slice of a disk device.

A collection of slices from one or more physical drives make up a logical device.
Logical devices are also specified at disk configuration. For each logical device
there is a corresponding logical device node.

Disk drives on IOS-E based systems and disk drives on the IPN-1 must have a
slice of cylinders reserved for use by the customer engineer (CE cylinders) and
a slice reserved as spares cylinders to be used in place of other cylinders of the
disk that become unusable or flawed.

2.2.2 Disk Flawing (IOS-E and IPN-1 Only)

Disk drives have minute defects, or flaws, on the recording surface that may
interfere with reading and writing data. The number of flaws and their locations
vary from drive to drive. Each disk device is shipped with a factory flaw table that
lists known flawed blocks on the disk. Disk flawing under the UNICOS system is
done on a physical device basis, by replacement of bad blocks with alternative
blocks from the spares cylinders.

The information for bad blocks is kept separate from the file system on each
physical device and is known only to the driver. The advantage of this
mechanism is that the logical device always appears contiguous, which allows
file systems to be transferred to various logical devices without regard for bad
blocks.

Flawing is done twice; once before a physical device is placed in the system and
again if blocks go bad during online use. Typically, flawing is done either before

12 S–2301–10011

File System Planning [2]

a new drive is placed online for the first time or once for each device when an
initial system install is performed.

For information on creating physical disk device inodes that describe the spare
sector map, factory flaw map, and diagnostic and customer engineering slices,
see Section 2.3, page 15.

2.2.3 Disk Striping

Striping is designed for moving large amounts of data at very high bandwidths,
higher than one can normally achieve with existing disk drives. With this
technique, several drives are combined into one logical unit. Data in n-sector size
pieces is written to and read in from the drives in a round-robin fashion, allowing
I/O to the individual disks to be overlapped. The drives of a stripe group must
all be the same type; for example, you cannot have a stripe group of two DD-49
disk drives and one DD-40 disk drive.

The overlapping of I/O operations causes the increased bandwidth. Each drive
in the stripe group (group of striped disks) can have an I/O operation active
simultaneously at any time. For example, consider a four-drive stripe group
to which you want to write several tracks of data. A write request for a track
is started for the first drive then a write request for the second track to second
drive is started without waiting for the first write to complete, and so on. The
I/O operations are asynchronous between drives in the stripe group.

The disadvantage to striping is that sequential data is scattered across several
disks. Losing any one of the disks of the stripe group ruins the striped files (for a
four-drive stripe group with a striping factor of one track, you would miss
every fourth track).

In most cases, the only device that you should use for striping is SWAPDEV, as
it is usually the only device with I/O requests large enough for striping to be
advantageous. You should not use striping for /root or /usr file systems.

2.2.4 Disk Mirroring

Mirroring is used to provide data redundancy when data integrity is important.
It is implemented by using two to eight slices, usually on as many different
physical disks, each of the same size. A write operation to a mirrored device
causes separate write operations to be performed on each of the components. A
read operation may be performed on any of the component devices.

For instructions on creating mirrored devices, see Section 2.4.4.4, page 26. For a
description of mirrored file systems, see Section 2.10, page 46.

S–2301–10011 13

General UNICOS® System Administration

2.2.5 Physical Devices

There are four types of physical-level devices, each with its own device driver,
as follows:

• Disk drive

• Solid-state disk

• RAM disk

• Network or HIPPI disk device

By convention, disk drive, solid-state disks, and RAM disk device files are
kept in the /dev/pdd directory and HIPPI disk device files are kept in the
/dev/hdd directory. Disk drives connected to the GigaRing channel are kept
in the /dev/xdd directory.

For instructions on creating physical devices, see Section 2.4.1, page 17.

2.2.6 Simple Logical Devices

A logical disk device is a collection of blocks on one or more physical disks or other
logical disk devices. A logical direct device indicates that the logical disk includes
exactly one partition or physical slice. A logical indirect device indicates that the
logical disk includes more than one partition or physical slice.

Logical drivers call the physical drivers by using the device switch mechanism.
By convention, logical device files are kept in the /dev/dsk directory.

The simple logical device is the highest level driver. Any mountable file system
will interface with the driver at this level. Logical device cache is supported
only at this level.

For information on creating logical devices, see Section 2.4.4, page 23.

2.2.7 Striped Logical Devices

A striped logical device is a means of combining two or more slices of two
different physical devices together to increase bandwidth. This is best for
heavily used partitions like the swap device where very large chunks of data
are being transferred.

Striped logical devices consist of physical device name lists, and can be combined
into simple logical devices. Striped logical device routines can be called directly

14 S–2301–10011

File System Planning [2]

with the open(2), close(2), read(2), write(2), and ioctl(2) system calls or
from another logical device driver.

By convention, striped logical device files are kept in the /dev/sdd directory.

For information on creating striped logical devices, see Section 2.4.4.3, page 25.

2.2.8 Mirrored Logical Devices

A mirrored logical device is used to provide data redundancy where data
integrity is important. It consists of two or more slices, typically on as many
different physical devices, each of the same size. A mirrored logical device is
similar in configuration to a striped device. A write operation to a mirrored
device causes separate write operations to be performed on each of the
components. A read operation may be performed on any of the component
devices.

Mirrored logical devices are made up of lists of physical device names, and can
be combined into simple logical devices. Mirrored logical device routines can be
called directly with the open, close, read, write, and ioctl system calls, or
from another logical device driver, but not concurrently.

By convention mirrored logical device files are kept in the /dev/mdd directory.

For more information on mdd files, see the mdd(4) man page. For instructions
on creating mirrored devices, see Section 2.4.4.4, page 26. For a description of
mirrored file systems, see Section 2.10, page 46.

2.2.9 Logical Device Descriptor Files

A logical device descriptor file is used to combine one or more character special
disk files to form a single logical disk device. A logical device descriptor file is a
list of absolute path names of striped, mirrored, physical, and HIPPI devices. By
convention, logical descriptor files are kept in the /dev/ldd directory.

For instructions on creating logical descriptor files, see Section 2.4.4, page 23.

2.3 Using the mkspice(8) Command (IOS-E and IPN-1)

When configuring a disk for the first time, use the mkspice(8) command to
create physical disk device inodes that describe the spare sector map, factory flaw
map, and diagnostic and customer engineering slices. You name the physical
disk devices according to their I/O paths. The following example creates the

S–2301–10011 15

General UNICOS® System Administration

spare, ift, diagnostic, and ce slices for DD-XXs on cluster 0, IOP 1, channel
30; cluster 1, IOP 2, channel 32; and cluster 1, IOP 3, channel 34:

/etc/mkspice -t ddXX 0130 01232 01334

The -i option of the mkspice(8) command initializes the spare maps from the
ift nodes. It also initializes the /etc/aft files (ASCII flaw files) which are used
with the bb(8) (bad block) command. See aft(5) for information on the aft files
and bb for information on creating the bad block files from the aft files.

The -i option of the mkspice(8) command invokes the ift(8) command to read
the Factory Flaw table from the /dev/ift node. The following is an example
of ift output.

*

* engineering flaw table for DDXX

*

* factory flaw map date: 10-08-86

*

* S/N C2236

0 0 0 0

* count head sector cylinder

1 3 0 1333

1 3 1 1333

1 3 24 1333

The -i option of the mkspice(8) command also invokes the spmap(8) command,
which generates and writes a physical disk spare map. The spmap command
reads flaw information from standard input in the same format written by the
ift(8) command. The output from ift can be piped directly into spmap, or
the output from ift can be written to an ASCII Flaw table and then piped
into spmap.

It is recommended that you create the ASCII Flaw tables. If a new flaw develops,
it must be added to the end of the ASCII Flaw table with a text editor. The
spmap command then needs to be rerun. If the ASCII Flaw table is lost, you
should recreate it, using spmap to ensure that the ordering of the alternate blocks
is preserved. For example:

/etc/spmap -r /dev/spare/0130 > /etc/aft/0130

16 S–2301–10011

File System Planning [2]

2.4 Creating File System Nodes

Disk partitions and logical devices are defined with the mknod(8) command.
Only the root and swap partitions are defined in the parameter file during
startup.

This section provides information on the following areas of creating file systems:

• Creating physical devices

• Examples of physical device creation

• Creating physical devices (GigaRing systems)

• Creating logical devices

• Creating logical descriptor files

• Defining alternate disk paths

• Shared dump and swap configuration

2.4.1 Creating Physical Devices

Note: For information on creating physical devices on GigaRing based
systems, see Section 2.4.3.

A disk slice is defined by an I/O path, a unit number, a starting sector number,
and a length in sectors. Slices must be aligned on track boundaries, and in
practice they are often aligned on cylinder boundaries.

To create a partition, you must first use the mknod(8) command to create a
character special file or node and specify a major and minor device number for
each slice you want to create. The major device number should be expressed
symbolically.

Symbol Device

dev_pdd Disk devices.

dev_rdd RAM disk devices.

dev_ssdd

SSD devices.

The minor device number ranges from 0 to PDDSLMAX for disk devices, 0 to
RDDSLMAX for RAM disk devices, and 0 to SSDDSLMAX for SSD devices.

S–2301–10011 17

General UNICOS® System Administration

The following minor device numbers have specific designations:

Number Designation

250 The root partition on the fsload tape.

251 The swap partition in the initial UNICOS kernel.

252 The diagnostic partitions.

253 The ce partitions (customer engineering).

254 The spare partitions (Factory Flaw table).

255 The ift partitions. The number 255 is special in that only nodes
with this minor device number can be used on the ioctl(8)
command to bring a disk device up after it has gone down.

Only one node of a minor device number can be open at any given time. With the
exception of the diagnostic, ce, and ift nodes, do not create two disk nodes
with the same minor device number.

The physical device driver fills in internal driver structures and checks for
conflicts in the device open routine. An array of slice structures are indexed by
the minor device number within a given physical device driver.

The following partitions can be opened by the system without using the nodes
in /dev (but may still be accessed through nodes):

• root

• swap

The index, offset, and length of these partitions is passed into the UNICOS
kernel through the parameter file. The parameter file index, offset, and length
must match the node information. A node for root is needed to run the fsck(8)
command; a node for swap is required for defining flaws; and a node for dump is
required for snatching dumps.

The following example shows the mknod command needed to create the
diagnostic physical device node for a DD-60 disk drive:

/etc/mknod /dev/ddd/2230.0 c dev_pdd 252 10 02230 0 120106 0137 0 0

Component Definition

/dev/ddd/2230.0 Device path name

c Character special

dev_pdd Major device number

18 S–2301–10011

File System Planning [2]

252 Minor device number

10 Disk type

02230 I/O path in octal

0 Starting sector number

120106 Length of slice in sectors

0137 Special purpose flags

0 Alternate I/O path for redundancy

0 Disk unit number

2.4.2 Examples of Physical Device Creation

Note: For information on creating physical devices on GigaRing based
systems, see Section 2.4.3.

The following sections give detailed examples of creating the following types
of physical devices:

• Disk

• RAM

Note: When working with I/O paths and flags, remember that octal
numbers must have a leading 0. Because I/O paths are usually expressed in
octal, take care when working with a multicluster system to express I/O
paths in the proper form to a command. For example, I/O path 0130
works as expected because of the leading 0, but I/O path 1232 needs a
leading 0 when expressed to a UNICOS command.

2.4.2.1 Creating a Physical Disk Device

To create a physical disk device, use the mknod(8) command. For information
about the physical disk device interface, including the supported disk types, see
the pdd(4) man page.

Slices normally begin and end on cylinder boundaries.

The I/O path is a concatenation of the cluster, EIOP, and channel numbers.
The major number is dev_pdd, and the minor number should be less than
PDDSLMAX, as defined in the parameter file.

The available flags are defined in the /usr/include/sys/eslice.h file
as follows:

S–2301–10011 19

General UNICOS® System Administration

/*

* flags for physical slice control

*/

#define S_CONTROL 0001 /* control device */

#define S_NOBBF 0002 /* no bad block forwarding */

#define S_NOERREC 0004 /* no error recovery */

#define S_NOLOG 0010 /* no error logging */

#define S_NOWRITEB 0020 /* no write behind */

#define S_CWE 0040 /* control device write enable */

#define S_NOSPIRAL 0100 /* no spiraling */

#define S_NOSORT 0200 /* no disk sorting */

Example 1: The following commands define two slices on a DD-XX on cluster 1,
EIOP 2, channel 32. The slice ddXX_0 starts at cylinder 0 and spans 732 (01334)
cylinders; its flags field is 0, there is no alternate I/O path, and its unit field is 0.
ddXX_1 starts at cylinder 732 (01334) and spans 150 (0226) cylinders; its flags
field is 0, there is no alternate I/O path, and its unit field is 0.

/etc/mknod /dev/pdd/ddXX_0 c dev_pdd 50 3 01232 0 245952 0 0 0

/etc/mknod /dev/pdd/ddXX_1 c dev_pdd 51 3 01232 245952 50400 0 0 0

Example 2: The following commands define two slices spanning an entire
DD-ZZ on cluster 0, EIOP 1, channel 30 (the DD-ZZs are daisy-chained and
are on units 0 and 1):

/etc/mknod /dev/pdd/ddZZ_0 c dev_pdd 200 10 0130 0 119692 0 0 0

/etc/mknod /dev/pdd/ddZZ_1 c dev_pdd 201 10 0130 0 119692 0 0 1

20 S–2301–10011

File System Planning [2]

Use the stor(8) command to examine your partitions. The following example
shows the stor output that you would receive if you typed in the preceding
mknod(8) commands:

DDZZ 0130.0

ID START END LENGTH

---------------------- ------------------ --------- ----------------

name minor block cyl.hd cyl.hd blocks mbytes

ddZZ_0 200 0 0.00 05052.00 119692 1961.0

DDZZ 0130.1

ID START END LENGTH

---------------------- ------------------ --------- ----------------

name minor block cyl.hd cyl.hd blocks mbytes

ddZZ_1 201 0 0.00 05052.00 119692 1961.0

DDXX 1232

ID START END LENGTH

---------------------- ------------------ --------- ----------------

name minor block cyl.hd cyl.hd blocks mbytes

ddXX_0 50 0 0.00 01334.00 245952 1007.4

ddXX_1 51 245952 01334.00 01562.00 50400 206.4

2.4.2.2 Creating RAM Disks

The amount of core memory available for creating RAM disks is specified in the
parameter file, as shown in the following example:

RAM ramdev { length 10240 blocks;

pdd ram {minor 3; block 0 ; length 10240 blocks;}

}

To create a RAM disk physical device, use the mknod(8) command. The device
type and I/O path parameters are not applicable and should be 0. The major
number is dev_rdd, and the minor number should be less than RDDSLMAX,

S–2301–10011 21

General UNICOS® System Administration

as defined in the parameter file. The following example shows the creation
of a RAM physical device:

/etc/mknod /dev/pdd/ram0 c dev_rdd 0 0 0 0 1024

/etc/mknod /dev/pdd/ram1 c dev_rdd 1 0 0 1024 9216

2.4.2.3 Creating SSD Slices

The amount of SSD memory available for creating SSD slices is specified in the
parameter file, as shown in the following example. (SSD devices are supported
only on Cray T90 systems.)

SSD ssddev { length 10240 blocks;

pdd ssd {minor 3; block 0 ; length 10240 blocks;}

}

To create an SSD physical device, use the mknod(8) command. The device
type and I/O path parameters are not applicable and should be 0. The major
number is dev_ssdd, and the minor number should be less than SSDDSLMAX,
as defined in the parameter file. The following example shows the creation
of an SSD physical device:

/etc/mknod /dev/pdd/ssd0 c dev_ssdd 0 0 0 0 1024

/etc/mknod /dev/pdd/ssd1 c dev_ssdd 1 0 0 1024 9216

For information on using the SSD as a logical device, see Section 2.11.3, page 55.

2.4.3 Creating Physical Devices (GigaRing Systems)

You define a disk slice on a GigaRing based system just as you define a disk slice
on an IOS-E based system, with the following considerations:

• The major device number for a disk device connected to the IPN-1 should be
expressed symbolically as dev_qdd. See the qdd(4) man page.

• The major device number for a disk device connected to the MPN-1 or the
FCN-1 should be expressed symbolically as dev_xdd. See the xdd(4) man
page.

• The I/O path for a physical device on a GigaRing based system is a
concatenation of the GigaRing number, the node number, and the controller
number of the device.

• By convention, xdd device files are kept in the /dev/xdd directory. qdd
device files, on the other hand, are kept in the /dev/pdd directory.

22 S–2301–10011

File System Planning [2]

The following example shows the mknod(8) command needed to create a
physical device node on a DD-318 disk drive connected to the MPN-1:

/etc/mknod /dev/xdd/s100a c dev_xdd 2 0 03021 0 100000 0 0 1 0

Component Definition

/dev/xdd/s1000a Device path name

c Character special

dev_xdd Major device number

2 Minor device number

0 Disk type

03021 I/O path in octal

0 Starting sector number

100000 Length of slice in sectors

0 Special purpose flags

0 Alternate I/O path for redundancy

1 Disk unit number

0 Disk subunit number

2.4.4 Creating Logical Devices

Logical devices are categorized into the following types:

• Simple logical

• Striped logical

• Mirrored logical

Each type has its own major number and associated device driver.

Logical devices are created by using the mknod(8) command, which has the
following format:

/etc/mknod name b major minor 0 0 path
/etc/mknod name c major minor 0 0 path

name Name of the logical device.

b Block special device.

S–2301–10011 23

General UNICOS® System Administration

c Character special device.

major Major device number.

minor Minor device number in the range 1 through LDDMAX. You cannot
use minor 0 for a logical device.

0 0 Placeholders for future use.

path Absolute path name to a physical device, logical device, or a
logical descriptor file.

2.4.4.1 Creating Simple Logical Devices

Simple logical devices can point to a physical device or a logical descriptor
file and use major number dev_ldd. The minor number must be less than
LDDSLMAX, as defined in the parameter file.

The following example command sequence creates a simple logical direct device
and its associated physical slice. The logical direct device has a minor device
number of 100, it is on a DD-XX, on IOC 0, IOP 1, channel 30, starting at 0 with a
length of 32,768 sectors.

/etc/mknod /dev/pdd/x0 c dev_pdd 100 3 0130 0 32768 0 0 0 0

/etc/mknod /dev/dsk/x0 b dev_ldd 100 0 0 /dev/pdd/x0

To examine logical device nodes, use the ddstat(8) command. The following is
an example of ddstat output for the preceding mknod(8) commands:

/etc/ddstat /dev/dsk/x0

x0 b 34/100 /dev/pdd/x0

/dev/pdd/x0 c 32/100 3 0130 0 32768 00 0 0 0

The following example command sequence creates a simple logical indirect
device and its associated physical slices:

/etc/mknod /dev/pdd/x0 c dev_pdd 100 3 0130 0 32768 0 0 0 0

/etc/mknod /dev/pdd/y0 c dev_pdd 110 3 0132 0 32768 0 0 0 0

/etc/mknod /dev/ldd/cluster0 L /dev/pdd/x0 /dev/pdd/y0

/etc/mknod /dev/dsk/cluster0 b dev_ldd 30 0 0 /dev/ldd/cluster0

The following is an example of the associated ddstat output:

/etc/ddstat /dev/dsk/cluster0

cluster0 b 34/30 /dev/ldd/cluster0

/dev/pdd/x0 c 32/100 3 0130 0 32768 00 0 0 0

/dev/pdd/y0 c 32/110 3 0132 0 32768 00 0 0 0

24 S–2301–10011

File System Planning [2]

2.4.4.2 Restrictions on Simple Logical Devices

Simple logical devices have an ldd disk driver restriction. The ldd disk driver
requires that the length of each partition within an ldd be a multiple of the
largest underlying device sector size. For example, if an ldd has two slices,
one from a DD-302 (sector size=1 block) and one from a DA-302 (sector size=4
blocks), the length of the DD-302 slice must be a multiple of 4 blocks.

If the length of any partition in an ldd is not a multiple of the largest underlying
device sector size, then the following message from the ldd driver is displayed
on the UNICOS console when you attempt to open the device using, for example,
mkfs:

uts/c1/io/ldd.c-02: WARNING i/o unit incompatible with length on open: devx

2.4.4.3 Creating Striped Logical Devices

Striped logical devices must point to a logical descriptor file. Striped logical
devices use major number dev_sdd, as defined in the parameter file.

The following example command sequence creates a striped logical device, its
associated physical slices, logical descriptor file, and direct logical device:

/etc/mknod /dev/pdd/x0 c dev_pdd 100 3 0130 0 32768

/etc/mknod /dev/pdd/y0 c dev_pdd 110 3 0132 0 32768

/etc/mknod /dev/ldd/stripe0 L /dev/pdd/x0 /dev/pdd/y0

/etc/mknod /dev/sdd/stripe0 b dev_sdd 30 0 0 /dev/ldd/stripe0

/etc/mknod /dev/dsk/stripe0 b dev_ldd 30 0 0 /dev/sdd/stripe0

The associated ddstat output is as follows:

/etc/ddstat /dev/dsk/stripe0

stripe0 b 34/30 /dev/sdd/stripe0

/dev/sdd/stripe0 b 39/30 /dev/ldd/stripe0

/dev/pdd/x0 c 32/100 3 0130 0 32768 00 0 0 0

/dev/pdd/y0 c 32/110 3 0132 0 32768 00 0 0 0

The following procedure provides an example of how to define devices that
include SSD devices.

1. Define physical device slices of equal size where each device is on a unique
I/O path (argument 6), each is of the same length (argument 8) and each has
the same stripe I/O unit (definable on SSD only).

/etc/mknod /dev/pdd/ssd0_s1 c dev_ssdd 10 3 001 0 1000000 0 0 0 1024

/etc/mknod /dev/pdd/ssd1_s1 c dev_ssdd 20 3 002 0 1000000 0 0 0 1024

S–2301–10011 25

General UNICOS® System Administration

/etc/mknod /dev/pdd/ssd2_s1 c dev_ssdd 30 3 004 0 1000000 0 0 0 1024

/etc/mknod /dev/pdd/ssd3_s1 c dev_ssdd 40 3 010 0 1000000 0 0 0 1024

2. Define a logical node to reference the four stripe components.

/etc/mknod /dev/ldd/s1 L /dev/pdd/ssd0_s1

/dev/pdd/ssd1_s1

/dev/pdd/ssd2_s1

/dev/pdd/ssd3_s1

3. Define a striped device.

/etc/mknod /dev/sdd/s1 c dev_sdd 10 0 0 /dev/ldd/s1

4. Define a logical disk device to reference the striped device.

/etc/mknod /dev/dsk/s1 b dev_ldd 10 0 0 /dev/sdd/s1

You can use the ddstat(8) or the stor(8) command to verify the device
structure as defined. This verification is done by reading the appropriate inodes
and files. The device is not opened when ddstat or stor performs a read
operation. Executing /etc/ddstat on the configuration example would show
the following:

/dev/dsk/s1 b 34/10 0 0 /dev/sdd/s1

/dev/sdd/s1 c 39/10 0 0 /dev/lss/s1

/dev/pdd/ssd0_s1 c 37/10 3 001 0 1000000 0 0 0 1024

/dev/pdd/ssd1_s1 c 37/20 3 002 0 1000000 0 0 0 1024

/dev/pdd/ssd2_s1 c 37/30 3 004 0 1000000 0 0 0 1024

/dev/pdd/ssd3_s1 c 37/40 3 010 0 1000000 0 0 0 1024

Errors in configuration are generally detected by the ddstat or stor command
or by the device drivers when the logical disk device is first opened. Errors at
open time are issued to the console and the kernel log.

2.4.4.4 Creating Mirrored Logical Devices

Mirrored logical devices must point to a logical descriptor file and use major
number dev_mdd. The minor number must be less than LDDSLMAX, as defined
in the parameter file. The following command sequence creates a mirrored

26 S–2301–10011

File System Planning [2]

logical device, its associated physical slices, logical descriptor file, and direct
logical device:

/etc/mknod /dev/pdd/x0 c dev_pdd 100 3 0130 0 32768

/etc/mknod /dev/pdd/y0 c dev_pdd 110 3 0132 0 32768

/etc/mknod /dev/ldd/mirror0 L /dev/pdd/x0 /dev/pdd/y0

/etc/mknod /dev/mdd/mirror0 c dev_mdd 30 0 077 /dev/ldd/mirror0

/etc/mknod /dev/dsk/mirror0 b dev_ldd 30 0 0 /dev/mdd/mirror0

The associated ddstat output is as follows:

/etc/ddstat /dev/dsk/mirror0

mirror0 b 34/30 /dev/mdd/mirror0

/dev/mdd/mirror0 b 40/30 0 077 /dev/ldd/mirror0

/dev/pdd/x0 c 32/100 3 0130 0 32768 00 0 0 0

/dev/pdd/y0 c 32/110 3 0132 0 32768 00 0 0 0

Each member of a mirrored group (in the previous example pdd/x0 and
pdd/y0) contains a rwmode parameter. The bits of this parameter control read,
write, and initialize privilege for each member; each octet represents (from
right to left) r-w-x (read/write/x(init)). For a rwmode of 077, as shown in the
preceding example, both x0 and y0 are read/write/x(init). A rwmode of 073
would indicate initialize x0 and y0, read only from y0, and write to both x0 and
y0. A rwmode of 037 would indicate that x0 is read-enabled and y0 is not.

See the mdd(4) man page for more information on mdd files. For a more complete
overview of mirrored file systems, see Section 2.10, page 46.

2.4.4.5 Restrictions on Striped and Mirrored Logical Devices

The following restrictions and guidelines apply to the configuration of striped
and mirrored groups:

• All slices must be of the same length.

• All devices on a striped group must be up. When configuring a mirror group,
only one member needs to be up.

• The starting sector of each slice must be a multiple of the stripe factor.

• The length of each slice must be a multiple of the stripe factor.

• When a stripe group is opened, the driver allocates a number of PBUF headers
equal to nine times the number of slices. For mirror groups, the number is
three times the number of slices. If there are not enough PBUF headers free,

S–2301–10011 27

General UNICOS® System Administration

the driver waits. If not enough PBUF headers are configured, the system
may hang.

2.4.5 Creating Logical Descriptor Files

A logical descriptor file can contain up to 64 absolute path names, each which
can be up to 48 characters in length. Each absolute path name is a member of the
logical disk device. The members are combined in a manner prescribed by the
character or block special device referencing the logical descriptor file. The
members can be physical or logical devices.

You can use the mknod command to create a logical descriptor file, using the
following format:

/etc/mknod name L member0 [member1 member2] ...

Example 1: To create a logical descriptor file x containing two physical slices of
type x0 and x2, specify the following:

/etc/mknod /dev/ldd/x L /dev/pdd/x0 /dev/pdd/x1

Example 2: To create a logical descriptor file y containing two logical striped
devices of type y0 and y2, specify the following:

/etc/mknod /dev/ldd/y L /dev/sdd/y0 /dev/sdd/y1

2.4.6 Defining Alternate Disk Paths

The UNICOS operating system allows you to define an alternate path to a disk
when you define the device node by using the mknod(8) command. The alternate
path provides a backup for the primary path to a device. If you configure a
device with an alternate path, it is initialized when you open the device. The
system then can attempt error recovery by means of the alternate path when it
detects a hard failure on the active disk path.

A path is defined as the hardware resources between the CPU and the disk
device. On IOS-E based systems, these consist of the low-speed channel to the
mainframe, the multiplexing I/O processor (MUXIOP), the low-speed channel
from the MUXIOP to a given model E I/O processor (EIOP), and the EIOP
itself with its channel adapter.

You can access a disk through the alternate path if any element of the primary
path is not functional and hardware elements exist to connect to a second port of

28 S–2301–10011

File System Planning [2]

the disk device. Optimally, on an IOS-E based system, the alternate path should
include a different I/O cluster and EIOP.

You create an alternate path when you define a physical device interface with the
mknod(8) command. The following example defines an alternate I/O path of
1130 to device 0236.7.

mknod /dev/pdd/device.7 c dev_pdd 15 10 0236 1472 32768 0 01130 7 0

A path of 1130 defines IOC 1, IOP 1, and channel 30.

The alternate path is used as part of error recovery. If the standard five retries
and micro-sequencing error recovery fails, the disk driver attempts recovery on
the alternate path. This can recover errors such as high-speed channel (HISP)
errors and errors on the channel adaptors or in the EIOP. Errors that are on the
disk itself remain as errors, just as on the primary path.

A device running on the alternate path does not switch back to the primary path
if normal error recovery fails. Errors that occur during write-behind, when the
CPU no longer has the data, cannot be recovered by switching to a different path,
because data cannot be retrieved from the IOS.

If a device is configured with an alternate path, the system, by default, switches
to the alternate path during error recovery. You can disable and enable the error
recovery switch with the autoswitch option of the sdconf(8) command,
as follows.

sdconf device autoswitch on | off

You can control both the primary and alternate path by using the sdconf
command. Executing sdconf device pripath and sdconf device altpath resets the
primary or alternate path.

You can also change the path to a device with the inform(8) command on the
OWS-E. If the pddinform function in the driver is notified that a given EIOP
has died, any device running on that EIOP that has an alternate path switches to
the alternate path to complete any outstanding I/O.

2.4.7 Configuring Alternate Paths on FCN Devices

FCN devices can be dual-ported. If these devices are dual-ported, the XDD driver
has the capability to dynamically switch to the alternate path when the primary
path fails. If the alternate path fails, the XDD driver will not switch back to the
primary path.

An FCN device can be dual-ported in any of three configurations:

S–2301–10011 29

General UNICOS® System Administration

• 2 Fibre Channel Loops on the same FCN device

• 2 FCN devices on the same GigaRing channel

• 2 FCN devices, each on a different GigaRing channel

These configurations are illustrated in "Configuring Alternate Paths on FCN
Devices," Section 2.4.7.1.

2.4.7.1 Configuring Alternate Paths on FCN Devices

The following diagram illustrates a system in which no devices are dual-ported
and no alternate paths are defined.

FCN

FCN
loop

a11320
Mainframe

GigaRing
channel

Disk
drive(s)

Figure 1. Configuration with No Alternate Path

The following diagram illustrates a system configured with two Fibre Channel
Loops on a single FCN device.

FCN

Mainframe

GigaRing
channel

FCN loop

FCN loop

Disk
drive(s)

a11321

Figure 2. Configuration 1: One FCN Device, Two Fibre Channel Loops

Configuration 1 shows the following path configuration:

30 S–2301–10011

File System Planning [2]

primary path Ring 1 Node 1 Channel 1 Unit 1

alternate path Ring 1 Node 1 Channel 2 Unit 1

Note: When configuring the primary and alternate paths, avoid configuring
them on the same ring. If the ring has a node failure, the failure will bring
the ring down.

The following command creates a device node with the primary and alternate
path definitions of Configuration 1:

/etc/mknod dd308 c 33 40 0 01011 0 2340000 0 01012 01 0

The following diagram illustrates a system configured with two FCN devices on
the same GigaRing channel.

Mainframe

GigaRing
channel

Disk
drive(s)

FCN

FCN

FCN loop

FCN loop

a11322

Figure 3. Configuration 2: Two FCN Devices, One GigaRing Channel

Configuration 2 shows the following path configuration:

primary path Ring 1 Node 1 Channel 1 Unit 1

alternate path Ring 1 Node 2 Channel 1 Unit 1

The following command creates a device node with the primary and alternate
path definitions of Configuration 2:

/etc/mknod dd308 c 33 40 0 01011 0 2340000 0 01021 01 0

The following command creates a device node with the primary and alternate
path definitions of Configuration 1:

/etc/mknod dd308 c 33 40 0 01011 0 2340000 0 01012 01 0

The following diagram illustrates a system configured with two FCN devices on
different GigaRing channels.

S–2301–10011 31

General UNICOS® System Administration

Mainframe

Disk
drive(s)

GigaRing
channel

GigaRing
channel

FCN

FCN

FCN loop

FCN loop

a11323

Figure 4. Configuration 3: Two FCN Devices, Two GigaRing Channels

Configuration 3 shows the following path configuration:

primary path Ring 1 Node 1 Channel 1 Unit 1

alternate path Ring 2 Node 2 Channel 1 Unit 1

The following command creates a device node with the primary and alternate
path definitions of Configuration 3:

/etc/mknod dd308 c 33 40 0 01011 0 2340000 0 02021 01 0

2.4.7.2 Failure Modes

Dynamic switching to the alternate path takes place under the following
conditions:

• Fibre Channel Loop failure

• FCN failure

• GigaRing channel failure

The following sections describe the system response to each of these conditions.

2.4.7.2.1 Fibre Channel Loop Failure

When the mainframe detects a failure of a request to the FCN that is associated
with the Fibre Channel Loop, and if there is an alternate path to the device
through another Channel Loop on the same FCN, another FCN on the same
GigaRing channel, or another GigaRing channel, the dynamic path switch
algorithm will be executed.

The FCN return a status indicating that this is a failure of the Fibre Channel Loop.

32 S–2301–10011

File System Planning [2]

You can force this type of failure by disconnecting the cable to the port or
disconnecting the Fibre Channel Loop cable.

2.4.7.2.2 FCN Failure

Failure of the FCN is detected by the PEER to PEER message protocol layer.
This condition is detected after failure of any communication from the FCN
with the mainframe after 30 seconds. At this time, the XDD driver is informed
of a PEER down message condition.

If there is an alternate path for these devices through another FCN on the same
GigaRing channel or another GigaRing channel, the XDD driver will execute the
alternate path switching algorithm.

You can force this type of failure by disconnecting the FCN from the GigaRing
channel.

2.4.7.2.3 GigaRing Channel Failure

Failure of the GigaRing channel is detected by the PEER to PEER message
protocol layer. This condition is detected after failure of any communication from
the FCN with the mainframe after 30 seconds. At this time, the XDD driver is
informed of a PEER down message condition. The system cannot return a status
that distinguishes between a GigaRing channel failure and an FCN failure.

If there is an alternate path for these devices either through another FCN on the
same GigaRing channel or another GigaRing channel, the XDD driver will execute
the alternate path switching algorithm.

If the alternate path is on another FCN on the same GigaRing channel, the path
switch will fail. If the alternate path is on a different GigaRing channel, the path
switching will be successful if the FCN is functional.

You can force this type of failure by disconnecting the GigaRing cable.

2.4.7.2.4 Alternate Path Switching Restrictions

The following restrictions apply to the use of the alternate path:

• On first open, both paths must be valid and functional; that is, the XDD driver
must be able to open both paths on first open.

• Once the device is being used on the alternate path, failure of the alternate
path will not cause the XDD driver to switch to the primary path.

S–2301–10011 33

General UNICOS® System Administration

2.4.8 Shared Dump and Swap Configuration

Under the UNICOS operating system, you can configure the same physical slice
that you use for a dump partition as part of the swap device. The dump header
is preserved permanently and space used by a system dump will be allocated
as needed for system dumps. The space is released back to the swap device
when the dump is processed by cpdmp(8). A single slice swap device may be
shared with the dump device.

The following restrictions apply when configuring a shared slice:

• The slice must be disk-based.

• SSD or RAM slices may not be used as the shared slice.

• The slice cannot be a member of a striped or mirrored device.

• The slice must be defined as a pdd type member of the swap device.

In the following swap configuration, slice dump may be chosen as the shared
slice, but slices ssd_swap, diskswap1, and diskswap2 may not.

SSD ssd {

length 1024 Mwords;

pdd ssd_sds {minor 4; block 0; length 1835008 blocks;}

pdd ssd_swap {minor 6; block 1835008; length 262144 blocks;}

disk d0130.1 {type DD60; iopath{cluster 0; eiop 1; channel 030;}

unit 1;

pdd dump {minor 22; sector 0; length 119692 sectors;}

disk d0236.0 {type DD60; iopath{cluster 0; eiop 2; channel 036;}

unit 0;

pdd diskswap1 {minor 67; sector 0; length 119692 sectors;}

}

disk d1236.0 {type DD60; iopath{cluster 1; eiop 2; channel 036;}

unit 0;

pdd diskswap2 {minor 68; sector 0; length 119692 sectors;}

sdd stripe_swap { minor 10; pdd diskswap1;

pdd diskswap2;

ldd swap { minor 10; pdd ssd_swap;

pdd dump;

sdd stripe_swap;

34 S–2301–10011

File System Planning [2]

swapdev is ldd swap;

Both a swap logical device and a dump logical device must be defined with the
shared slice as a component. The minor number of the dump logical device is
different than the minor number of the swap logical device, but they are not
required to be the same as the examples shown. For the above example the dump
device definition would be as follows:

ldd dump { minor 19; pdd dump ;

}

The dumpdev statement is provided below. To initialize and use the shared
partition, 3 different boot parameter files must be used.

For dump device initialization, the UNICOS system must be booted one time in a
nonshared configuration. The mkdmp command should be run as shown in the
mkdmp(8) man page. To initialize the dump device in the above example, use the
following parameter file definitions:

SSD ssd {

length 1024 Mwords;

pdd ssd_sds {minor 4; block 0; length 1835008 blocks;}

pdd ssd_swap {minor 6; block 1835008; length 262144 blocks;}

disk d0130.1 {type DD60; iopath{cluster 0; eiop 1; channel 030;}

unit 1;

pdd dump {minor 22; sector 0; length 119692 sectors;}

disk d0236.0 {type DD60; iopath{cluster 0; eiop 2; channel 036;}

unit 0;

pdd diskswap1 {minor 67; sector 0; length 119692 sectors;}

}

disk d1236.0 {type DD60; iopath{cluster 1; eiop 2; channel 036;}

unit 0;

pdd diskswap2 {minor 68; sector 0; length 119692 sectors;}

sdd stripe_swap { minor 10; pdd diskswap1;

pdd diskswap2;

ldd swap { minor 10; pdd ssd_swap;

sdd stripe_swap;

ldd dump { minor 19; pdd dump ;

}

S–2301–10011 35

General UNICOS® System Administration

swapdev is ldd swap;

dmpdev is ldd dump;

After the dump device is initialized, the shared configuration should be used.
Reinitialization of the dump device is only necessary if the dump device is
changed or if flaws are added or removed on the dump device. If reinitialization
is necessary, the nonshared configuration must booted for just the mkdmp(8)
processing.

To boot the UNICOS system in a shared dump/swap configuration, the dmpdev
statement must indicate that the dump device is a pdd device:

dmpdev is pdd dump;

To perform a system dump, the dumpsys(8) command requires that the dmpdev
statement indicate that the dump device is an ldd device, so the boot parameter
file cannot be used:

dmpdev is ldd dump;

It is suggested that the shared slice be named dump. This allows the cpdmp(8)
command to use defaults and will be easier to implement on-site.

2.5 Configuring Disk Arrays

This section contains information on how to configure DD-331 into a DA-331
array.

2.5.1 Installing an Array

Perform the following steps to install and configure a disk array:

• Copy any data to be saved to another media

• Initialize the device as a RAID-3 array

• Write data to the parity drive

• Modify configuration information

After you perform these steps, the array is ready for I/O. These steps are
described in detail below.

36 S–2301–10011

File System Planning [2]

1. Copy any data to be saved to another media.

It is not possible to move a file system on 4 single drives onto an array of 4+1
drives without first dumping, then restoring the data.

There are two factors that may affect the restore of the data:

• If there are many small files, the restored data could take more space. This
is because the minimum sector size is four blocks, so small files may
take more space.

• For extended files, the space allocation may be more efficient after the
restore and take less space.

Unless the existing file system is nearly full, it is unlikely that it will not
restore.

2. Initialize the device as a RAID-3 array:

xdms -a init -m 35 02010.011 # 02010.011 in octal

See the xdms(8) man page for details.

The syntax -m 35 means raid 3, 5 units and does not indicate a mask, but a
hex value that identifies the raid type (mode) to initialize.

3. Write data to parity drive.

xdms -a scrub 02010.011

A scrub of a DA-331 takes about one hour and 50 minutes.

If the scrub fails or is interrupted with Control-C, you will see errors when
you execute mkfs(8) on the file system

4. Modify configuration information:

/etc/mknod /dev/xdd/name c 33 minor 4 pripath 0 2340000 0 altpath unit

The dtype field needs to be 4 (to indicate a RAID-3 device); the 4 specifies
that there are four 512-word blocks per sector. Loop_ID is sometimes used
instead of unit number. Only one /dev/xdd/XXXX node is needed to
represent an entire array.

The following example shows the output from a ddstat -m disk*
command on an array:

Name Type Maj. Min. Sector Path Start Length Flags Alt Path Unit I Field

/etc/mknod disk1 c 33 39 4 02010 0 2340000 0 0 001 0

/etc/mknod disk2 c 33 40 4 02010 0 2340000 0 0 011 0

S–2301–10011 37

General UNICOS® System Administration

/etc/mknod disk3 c 33 41 4 02020 0 2340000 0 0 001 0

/etc/mknod disk4 c 33 42 4 02030 0 2340000 0 0 001 0

/etc/mknod disk5 c 33 43 4 02030 0 2340000 0 0 011 0

The last line in the above example represents a RAID-3 slice on ring 2, node
3, FCN channel/loop 0, involving Loop-IDs/units 011-015 (see the values
under Path and Unit for this information).

Note: The following describes some of the column headings: Maj. is major
number, Min. is minor number, and Alt Path is alternative path. IField
applies only to ND-4x HIPPI disks.

Configure the /dev/dsk entries:

/etc/mknod disk1 b 34 39 0 0 /dev/xdd/disk1

/etc/mknod disk2 b 34 40 0 0 /dev/xdd/disk2

/etc/mknod disk3 b 34 41 0 0 /dev/xdd/disk3

/etc/mknod disk4 b 34 42 0 0 /dev/xdd/disk4

/etc/mknod disk5 b 34 43 0 0 /dev/xdd/disk5

The following example shows the output from a ddstat -m * command:

/etc/mknod disk1 b 34 39 0 0 /dev/xdd/disk1

/etc/mknod /dev/xdd/disk1 c 33 39 4 02010 0 2340000 0 0 01 0

/etc/mknod disk2 b 34 40 0 0 /dev/xdd/disk2

/etc/mknod /dev/xdd/disk2 c 33 40 4 02010 0 2340000 0 0 011 0

/etc/mknod disk3 b 34 41 0 0 /dev/xdd/disk3

/etc/mknod /dev/xdd/disk3 c 33 41 4 02020 0 2340000 0 0 01 0

/etc/mknod disk4 b 34 42 0 0 /dev/xdd/disk4

/etc/mknod /dev/xdd/disk4 c 33 42 4 02030 0 2340000 0 0 01 0

/etc/mknod disk5 b 34 43 0 0 /dev/xdd/disk5

/etc/mknod /dev/xdd/disk5 c 33 43 4 02030 0 2340000 0 0 011 0

38 S–2301–10011

File System Planning [2]

After performing the above steps, the array is ready for I/O:

/etc/mkfs -q -A96 /dev/dsk/disk1

/etc/mkfs: *** NC1FS file system initialized on /dev/dsk/disk1 ***

*** Lower security level = 0 Upper security level = 0

*** Valid security compartments = 0

none

*** Big file: 32768 bytes big allocation unit: 96 blocks

*** Allocation strategy: Round robin all files(rrf)

*** 1 partitions / 9360000 total blocks / 9351704 free

*** 131072 total inodes / 131068 free

*** 1 primary partitions / 4 blocks per alloc. unit

*** File system partitions:

part 0: primary blocks 0 - 9359999 on device disk1

*** Panic on error option selected

2.5.2 Replacing a Failing Spindle

Use the following procedure to replace a failing spindle when unrecovered
errors are occurring.

1. Determine the failing spindle from the failing spindle mask provided in
the errpt output or system console log. See "Spindle to unit number
mapping", Table 1.

Table 1. Spindle to Unit Number Mapping

Unit Spindle Spindle mask

0?1 4 020 (parity)

0?2 3 010

0?3 2 004

0?4 1 002

0?5 0 001

2. Disable the spindle:

xdms -a disable iopath.unit-spindle

S–2301–10011 39

General UNICOS® System Administration

For example:

xdms -a disable 02010.01-3 # disable spindle 3

This step, disabling the spindle, may take place automatically, depending
on the type of errors encountered.

3. Spin down the spindle:

xdms -a spindown iopath.unit-spindle

If you try to spin down a drive that is not disabled, the next I/O to that
array/spindle will cause the array to spin up as part of normal error
recovery.

4. Replace the failing spindle.

Note: Pulling or insertion of a spindle will cause the FCN software to
re-initialize the DSF. This DSF initialization may take a few minutes and
will affect not just the DSF containing the pulled/pushed spindle (which
will suspend I/O to other drives in the DSF), but will affect other DSFs
on the same daisy-chained channel. Some error/console message may
appear at this time.

Before reconstructing the array, check that the serial number of the drive/unit
(on the I/O path) is correct:

xdms -a info iopath.unit-spindle

5. Reconstruct the spindle.

The replacement drive that is to be used to reconstruct the full 4+1 array does
not need to be initialized.

Execute the following command:

xdms -a reconstruct iopath.unit

A reconstruct can take 1.5 hours, minimum, depending on other I/O to the
same disk array or other I/O to the same DSF. Some reconstructs have taken
over 13 hours to complete, when running heavy I/O to the same array
(for example, by using fstest(8)).

A message appears on the console (and in the ion_syslog.info) when
the reconstruct is complete:

10/16/97 17:39:17 NOTICE sdisk_admin_r3.c line 774

Array Reconstruction is complete on FC Loop 0 Target 1

40 S–2301–10011

File System Planning [2]

2.5.3 Converting RAID Members to Single Spindles

The following example initializes all RAID members to a single spindle:

./xdms -ainit -m 1 4044.21

4044.21 appears to be a member of a RAID-3S 4+1 .

To init JUST THIS MEMBER to Single Spindle enter "y"

To init ALL RAID MEMBERS to Single Spindle enter "a"

Please be sure all activity to device is idled before continuing with init.

Continue with Init to Single Spindle now? (y, a, or n)

a

xdms: Initialized iopath 4044 unit 21

xdms: Initialized iopath 4044 unit 22

xdms: Initialized iopath 4044 unit 23

xdms: Initialized iopath 4044 unit 24

xdms: Initialized iopath 4044 unit 25

Note: If the -z option is used with the -a init action and the device mode is
a -m 1 only the RAID member specified will be initialized. The net affect of
the -z option is the same as in previous example.

2.5.4 Software Limitations

The following limitations are in effect when configuring and restoring disk
arrays.

• Executing a Control-C after issuing a xdms -a reconstruct command
does not halt the reconstruct. After the initial reconstruct request, the FCN
performs the reconstruct. However, xdms(8) can resume monitoring status
of the reconstruct by reissuing the reconstruct or issuing an info request on
the array device. The info request will indicate the percent of reconstruct
complete if there is a reconstruct currently in process.

• The addresses of array members cannot be changed. If the array was
initialized as targets/units 1–5, it cannot be moved to 9–13 (011–015),
17–21 (021–025), etc. It can be moved to another channel as long as the target
addresses are the same. When you want to change the addresses, you must
execute xdms -a init and remake the /dev/xdd nodes.

S–2301–10011 41

General UNICOS® System Administration

2.6 File System Initialization

Use the mkfs(8) command to initialize file systems. The mkfs command builds
the file system with a boot block, a super block, a root inode and a bit map of
free blocks. By default, it also performs a surface check and zeroes the disk data
blocks before initialization. When the UNICOS multilevel security (MLS) feature
is enabled, mkfs provides the new file system with minimum and maximum
security levels and authorized compartments. See Chapter 8, page 145, for more
information on using mkfs on a UNICOS MLS system.

NC1FS file systems include a secondary allocation area. The secondary allocation
area is a means of segmenting file data by usage. The secondary allocation area
contains only user file data and may be allocated in different allocation units than
primary allocation areas. If a secondary allocation area exists, default allocation
of user data will occur there once a file has grown to "big file" size, as defined in
the sys/param.h file or with the mkfs(8) or setfs(8) commands.

For a complete list of the options available with mkfs, see the mkfs(8) man page.
For further information on allocation of inode regions, see Section 2.8, page 44.

2.7 Inode Allocation Strategies

You can specify inode allocation strategies at system configuration time by using
the mkfs(8) command with the -a option, as follows:

mkfs -a strategy

You can also change the allocation style after configuration is complete by using
the setfs(8) command.

The allocation strategies are as follows:

Strategy Description

rrf Round-robin files (default)

rrd1 Round-robin first-level directories

rrda Round-robin all directories

Round-robin allocation is a process of allocating files and directories to partitions in
sequence. When a file or directory is created, it is assigned to the next partition in
sequence after the partition to which the previous file or directory was assigned.

42 S–2301–10011

File System Planning [2]

When a file or directory is created in the last partition, the next partition in
sequence is partition 0.

Each allocation strategy specifies the preferred location for data blocks, directory
blocks, and inodes; however, if the preferred locations are full, the kernel places
these items wherever possible in the file system.

If you use the logical device cache with your file systems, you can reduce system
overhead by using the mkfs command to make the allocation unit equal to the
logical device cache block size or a multiple of the same. Alternatively, you can
use partition cache with some or all of the partitions of a file system to reduce
system overhead.

You can improve performance on individual jobs and by pre-allocating space
using the setf(1) command, the assign(1) command, or the ialloc(2) system
call. These commands and system call perform all the allocation in one step and
allocate storage in contiguous or nearly contiguous areas. Additionally, you can
use setf, assign, and ialloc to force allocation from particular file system
slices, so that different files can be placed on different physical disk devices.

2.7.1 rrf Allocation

The default allocation strategy, rrf, is the recommended strategy. The inodes
and directories are assigned to the first 25% of partition 0 whenever possible.
When new files are created, the data blocks are round-robined. As data blocks are
added to a file, they remain on the same partition as the preceding data blocks
whenever possible. This allocation style provides good recovery and a good
distribution of file blocks for performance.

2.7.2 rrd1 Allocation

The rrd1 allocation strategy round-robins all first-level directories among the
available partitions. (First level directories are directories defined in the root
(top-level) directory of the file system.) The inode and the directory data blocks
for each directory are in the assigned partition. Within a first-level directory, all
files and subdirectories remain in the same partition as the first-level directory
whenever possible.

This allocation scheme allows for better recovery and performance by limiting
the impact of system crashes. For example, if a first-level directory corresponds
to a single user, as in the typical home directory case, then all the files for one
user are in the same partition and on the same disk. If one disk of a multidisk
crashes, only a subset of all the users are affected. However, the top-level

S–2301–10011 43

General UNICOS® System Administration

directory data blocks and inode are on partition 0. If the first disk is lost, the
entire file system must be restored as before.

The disadvantage to this allocation strategy is that there can be severe
performance penalty for assigning all of the files for one user on the same disk.
If, for example, you use the cp(1) command to copy a file within the directory
to another file within that directory, you would be reading from and writing to
files on the same disk drive.

2.7.3 rrda Allocation

The rrda allocation strategy round-robins each new directory that is created.
The disk files within a directory have their inodes and data blocks in the same
partition as the parent directory.

This strategy produces bad performance and recovery. If one disk of a three
disk site were lost, even though the root directory is in partition 0, one third
of its directory entries will have been on the bad disk. Of the remaining two
thirds, the files within those directories will be recoverable, but one third of the
subdirectories will be unrecoverable. The more complex the directory tree is, the
worse this situation is. Using the fsck(8) command on this file system is not
always productive.

The same performance problems of the rrd1 allocation also affect the rrda
strategy. If you copy one file to another in one directory, the command is always
doing I/O on one drive only. Also, the data blocks for files within a directory
are not distributed among the disks in the system.

2.8 Inode Region Allocation

Before creating a file system, you must understand how inode regions are
allocated and how the mkfs -i option can be used. Up to 64 partitions can exist
in an NC1FS file system. Each partition can have up to four inode regions. The
size of an inode region is limited by the number of bits contained in the first block
that is used as a bit map for free inodes. For disks with 512-word sectors, each
inode region can contain at most 32,768 inodes. The size of an inode region is
defined when the region is created and cannot later expand or contract.

When the mkfs(8) command creates a file system, exactly one inode region is
created in each partition. When an inode region in a partition is full, a new one is
created in that partition unless there are already four regions. Then, an inode
region in the next partition is tried. If all four regions in all partitions are full, no
more files can be created until some files (and inodes) are released.

44 S–2301–10011

File System Planning [2]

The mkfs -i option specifies the desired ratio of blocks to inodes; the default
value is 4.

Consider some examples in which the file systems have been created with the
mkfs -i 2 command and they contain 100,000 blocks. The -i 2 option and
argument indicate that 50,000 inodes (100,000/2) should be created. It is assumed
that the default rrf allocation strategy is used in the following examples.

File system 1 contains one partition. Because one inode region is created and an
inode region can contain at most 32,768 inodes, only 32,768 inodes are created
for this file system. If all 32,768 are used, the file system will create another
inode region if there is room on the device. A maximum of four inode regions
can be created per partition. Therefore, at most, four inode regions can exist
on file system 1.

File system 2 contains two partitions. The inode region on the first partition
contains 32,768 inodes. The inode region on the second partition contains 17,232
inodes, so there are 50,000 inodes available in the file system. If the inode region
in the first partition fills, a second, then a third, and finally a fourth are created
before the inode region in the second partition is used. An exception to this rule
would occur if there were not enough contiguous blocks to create additional
regions in the first partition. In that case, the kernel would switch immediately to
the inode region in the second partition.

File system 3 contains three partitions. The inode region on the first partition
contains 32,768 inodes, the region on the second partition contains 17,232 inodes,
and the region on the third partition contains 16 inodes. (One block contains 16
inodes; this is the smallest region that is created.) File system 3 contains 50,016
inodes. As with file system 2, the kernel will create more regions in the first
partition (up to four total regions) before using the inode region in the second
partition. The kernel attempts to create all four regions in the second partition
before using the inode region in the third partition.

The size of the inode regions created in these example file systems when the first
region is full do not depend on what had been specified with the mkfs -i
option. Rather, the size depends on the ratio of the number of blocks actually
in use to the number of inodes (used and unused) in all of the existing inode
regions.

For example, the first inode region fills up in file system 2 and 80,000 blocks are
used in the file system. Because there is already room for 50,000 inodes (in the
regions in both partitions), the blocks-to-inode ratio is 80,000/50,000 = 1 (integer
division). Therefore, a blocks-to-inode ratio of 1 is used for the next region.
Because there are 20,000 free blocks in the file system, room is allocated for
20,000/1 = 20,000 inodes in the second inode region in the first partition.

S–2301–10011 45

General UNICOS® System Administration

2.9 Labeling a File System

A label on a newly created file system should be created through the labelit(8)
command. It is optional, but when a label is not given to a file system, a warning
message is issued in the following format when the file system is mounted; mntpt
is the mount point of the file system:

mount: warning: <> mounted as </mntpt>

The basic format of the labelit command is as follows:

/etc/labelit device [fsname volname]

The device is the name of the device file that you want to label. The variables
fsname and volname specify the file system name and volume name to be written
in the label. The labelit command takes several options. See the labelit(8)
man page for a description of the options to labelit.

The following example shows how to label the device /dev/dsk/usr as the file
system usr with a volume name of usr-6.1. After the file system is labeled, a
sync(1) command is issued.

/etc/labelit /dev/dsk/usr usr usr-6.1sync

2.10 Mirrored File Systems

A mirrored file system resides in two or more component devices, each of
which contains a full copy of the mirrored information. A write operation
to the mirrored device causes separate write operations to be performed on
each of the components. A read operation may be performed on any of the
component devices.

The multiple write operations provide for redundancy and for recovery in the
case of a failure by a single component. The multiple read paths provide more
options for scheduling the read operation, leading to faster completion

2.10.1 Creating a Mirrored File System

Example 1: The following example creates a mirrored file system consisting of
identical areas on two different physical disks.

for each component

/etc/mknod /dev/pdd/m0 c dev_pdd 100 10 0130 0 119692 0 0 0

46 S–2301–10011

File System Planning [2]

/etc/mknod /dev/pdd/m1 c dev_pdd 101 10 0132 0 119692 0 0 0

grouping the physical devices into a logical device

/etc/mknod /dev/ldd/log_mir L /dev/pdd/m0 /dev/pdd/m1

making the mirror

/etc/mknod /dev/mdd/mir c dev_mdd 100 0 07777 /dev/ldd/log_mir

making the fs

/etc/mknod /dev/dsk/fs_mir b dev_ldd 100 0 0 /dev/mdd/mir

/etc/mkfs /dev/dsk/fs_mir

Example 2: The following example creates a mirrored file system consisting of a
slice of the SSD paired with a slice of disk. This file system is intended to create
an "all-cached-spindle" in which you perform read operations from the SSD and
write operations to both the SSD and the non-volatile disk; this combines the
speed of SSD with the permanence of a non-volatile disk. Because of the nature of
the default path through system startup, it is important that the SSD component
be declared second in the mirror.

for each component

/etc/mknod /dev/pdd/acs_disk c dev_pdd 100 10 0130 0 4600 0 0 0

/etc/mknod /dev/pdd/acs_ssd c dev_ssdd 10 10 0 4600

for the logical device

/etc/mknod /dev/ldd/acs_ldd L /dev/pdd/acs_disk /dev/pdd/acs_ssd

for the mirror

/etc/mknod /dev/mdd/acs_mir c dev_mdd 100 0 037 /dev/ldd/acs_ldd

for the file system

/etc/mknod /dev/dsk/acs b 100 0 0 /dev/mdd/acs_mir

/etc/mkfs /dev/dsk/acs

2.10.2 Configuring a Mirrored Device

While the mountable file systems are usually found in the /dev/dsk directory,
the mirrored devices are usually in the /dev/mdd directory. At this level, before
it is a file system, the mirrored device may be configured to enable reading
and/or writing on selected components of the device.

For an open mirrored device that is known to the mdd driver in the kernel,
the configuration is carried in a kernel table. For a closed mirrored device, the
configuration is in one of the device-dependent fields of the inode.

Just as a standard file is characterized by a read/write/execute mode, each
component of a mirrored device can be summarized by r-w-x bits, or by a single
octal digit. The rightmost field describes the state of the first component.

The meaning of the bits are as follows:

S–2301–10011 47

General UNICOS® System Administration

Bit Meaning

04 (r-bit) This component is enabled for reading

02 (w-bit) This component is enabled for writing

01 (x-bit) This component is undamaged and physically available

You can use the /etc/mddconf program to display or change the configuration.
If you specify the -p option with a new configuration, the value is written to the
permanent disk-resident inode. Following are four sample configurations.

Example 1: This example shows a two-component mirrored file system that is
enabled in all components for reading and for writing:

/etc/mddconf /dev/mdd/mir

device name r/w mode

-------------------------- ------------------------

/dev/mdd/mir ------------------rwxrwx

Example 2: This example shows a two-component mirrored file system that reads
from a single device but writes to both:

/etc/mddconf /dev/mdd/acs_mir

device name r/w mode

-------------------------- ------------------------

/dev/mdd/mir ------------------rwx-wx

No matter what is written to the following file system, the data that is read
will not change:

/etc/mddconf /dev/mdd/hard_head

device name r/w mode

-------------------------- ------------------------

/dev/mdd/mir -------------------wxr-x

Example 3: This example shows a two-component mirror; both components are
being synchronized with the data in the read-enabled component:

/etc/mddconf /dev/mdd/new

device name r/w mode

-------------------------- ------------------------

48 S–2301–10011

File System Planning [2]

/dev/mdd/mir ------------------wx-rwx

Though the previous examples show a file system as composed of a single logical
device that is a mirror of physical devices, other configurations are possible.

2.10.3 Default Configuration

In software provided by Cray, the default configuration for a mirrored device is
rwx in each component. For file systems such as the acs file system described in
one of the previous examples, the default configuration may be changed by a
mirror= entry in the options field of the /etc/fstab description for the file
system. For the acs example with an SSD in the second mirrored component, the
/etc/fstab description would be:

/dev/dsk/acs /mount_point NC1FS rw,mirror=(acs_mir:073)

The mirror configurations are specified within the parentheses. The first field is
the base name of the mirrored device. The second field, separated from the first
by a colon, is the configuration specification given numerically. A leading zero is
recommended so that the configuration will be interpreted in octal.

If there is more than one mirrored device in a file system, the semicolon separates
entries, as in the following example:

mirror=(zero:0337;one:0373;two:0733)

If the existing configuration of a mirror does not contain an exercise (x) bit in
each component, any configuration found in /etc/fstab is ignored. The tuned
configuration used by Cray software will enable read and write operations in
every component that is marked with the x bit.

2.10.4 Mirrored Devices during Startup

If a file system containing a mirrored device has been cleanly dismounted, it may
be remounted without examination. If a mirrored file system is in an unknown
state as the result of a system crash, it must be handled with special processing to
prevent different components from being matched in a mirror. There are three
programs that help in bringing up a mirrored device.

The first program, /etc/mdd_pre, runs before the fsck(8) utility. If the file
system needs to be checked, it configures all mirrors to a single component
read/write configuration; for example, 0117, 0171, or 0711. The configuration
permissions ensure that fsck sees a consistent set of data.

S–2301–10011 49

General UNICOS® System Administration

The second program, /etc/fsck, is used by all file systems, mirrored or not.

The third program, /etc/mdd_post, is used after fsck. Though the file
system may be mounted and used as soon as fsck completes, the mdd_post
program performs the following steps to finish bringing up the mirrored parts of
the file system:

1. Reconfigures the mirror to a wide-write state. In this state, all read operations
are completed by the mirrored component used during the fsck step, but
the write operations go to every component.

2. Executes /etc/mddcopy. This program uses ioctl calls at the mdd driver
level to copy identical information to all components of the mirror.

3. Reconfigures the mirror to the tuned state.

The mdd_pre and mdd_post programs should be placed in the start-up scripts
before and after the mfsck(8) command. Experience in the field suggests that
mdd_pre fits in /etc/inittab and mdd_post fits in rc.pst.

2.10.5 Manual Startup of Mirrored File Systems

It is possible to bring up a mirrored file system without using the
/etc/mdd_pre and /etc/mdd_post programs. This technique might be
valuable when there are more recently updated mirror components than the one
chosen by mdd_pre.

First, use the /etc/mddconf command to restrict the I/O to a single component
of each mirrored device in the file system. Then run the fsck(8) utility. You can
repeat the mddconf and fsck step using the -n option on fsck to survey
the status of the file system.

When fsck has run to completion and performed the necessary corrections,
the file system may be mounted. You can perform the mdd_post processing
manually, as outlined above, or you can start the /etc/mdd_post program with
a single file system as a parameter.

2.11 Performance Considerations

The following sections discuss device and file system configuration that can
affect the performance of the system:

• Logical device cache

• System buffer cache

50 S–2301–10011

File System Planning [2]

• Using SSD as a file system

• Secondary data segments (SDS)

• File system placement

2.11.1 Logical Device Cache

The logical device cache provides an excellent means of utilizing the SSD, by
providing the capability to assign SSD cache to specified logical devices. The
benefit of this type of cache is that predictable and high-speed I/O can be
assigned to specific file systems, based on the needs of a particular group or
individual and at the discretion of the administrator. It is suggested that you
assign cache to /tmp and other heavily used file systems.

Cache for logical devices is assigned by the ldcache(8) command or with the
installation and configuration menu system. Cache may be changed dynamically.

The cache for a logical device is specified as a number of units and a count of
4096-byte blocks per unit. The ability to dynamically alter the cache for logical
devices allows you to easily tailor the cache for differing job mixes.

The relationship between number of cache units and the size of each cache
unit can dramatically affect the throughput of the cache. For extremely sparse,
random I/O, a greater number of units reduces the wait time for a cache unit to
become available and increases the probability that data will remain in the cache
for a reasonable amount of time. Larger cache units provide higher I/O rates for
sequential data access and lower system overhead.

There are some applications for which you might want to bypass the logical
device cache when performing I/O on particular files. For example, applications
that the perform a large amount of I/O and that access more data than will fit in
a cache can significantly decrease system performance because of thrashing in the
logical device cache. To bypass the logical device cache, set the O_LDRAW flag and
the O_RAW flag with the open system call, as described on the open(2) man page.

Each cache unit configured requires a header, which is maintained in main
memory. At boot time, you can change the number of logical device cache
headers allocated by editing the NLDCH parameter in the configuration
specification language (CSL) parameter file. If NLDCH is not specified in the CSL
parameter file, the value specified in config.h is used.

The ldcache(8) command lets you set logical device cache configuration and
display cache statistics. Logical device cache configuration use is restricted to the
super user, but users can display cache information.

S–2301–10011 51

General UNICOS® System Administration

2.11.1.1 Setting Cache Configuration

To set cache configuration, use the following command line:

ldcache -l dev -n units [-s size] [-t type]

The options perform the following functions:

-l dev Specifies a file system name, or the name or number of a logical
device. If dev is a device name, it must begin with /.

-n units Specifies the number of cache units to be assigned. If 0, all cache for
the device is released.

-s size Specifies the size of each cache unit in 4096 byte blocks. This
option is meaningful only when the -n option is nonzero. size is
typically chosen to be a multiple of the track size of the disk on
which the file system resides.

-t type Specifies the memory type for cache; type can be SSD, or MEM (main
memory). The default is SSD. This option is meaningful only when
specified with the -n option.

2.11.1.2 Displaying Cache Statistics

To display cache statistics, you can use either of the following command lines:

ldcache -a
ldcache -l dev -r rate

The -a option displays devices that have any read or write operations,
even though no cache is attached. The -l option functions as it does in the
configuration command line. The -r option specifies the refresh rate for detailed
display; the default refresh rate is 1 second.

52 S–2301–10011

File System Planning [2]

If you specify no options or arguments, ldcache displays information about all
devices with cache in the format of the following example:

T units size hits misses hit rate name

S 200 252 66196 361 99.457608 /dev/dsk/drop

S 800 84 1186345 897 99.924447 /dev/dsk/tmp

M 300 42 2250878 4248 99.811629 /dev/dsk/root

S 300 42 618508 1789 99.711590 /dev/dsk/usr

S 100 42 289529 4267 98.547632 /dev/dsk/slash_a

S 100 42 117462 6167 95.011688 /dev/dsk/slash_b

S 100 42 163790 6207 96.348759 /dev/dsk/slash_c

In the T (memory type) column, S stands for SSD and M stands for main
memory. If you use the -l option to specify a specific device, ldcache displays
information about that device at the refresh rate specified (with the -r option) or
at the default refresh rate of 1 second.

For example, to receive information on /dev/dsk/root, you would specify the
following command line and get the output shown:

cray$ ldcache -l /dev/dsk/root

/dev/dsk/root Tue May 24 09:26:51 1988

Read Data Write Data

Blocks transferred: 23549 4864

Average request size: 2 blks 1 blks

Lst transfer rate: 1.067367 Mbs 0.044813 Mbs

Max transfer rate: 10.751468 Mbs 1.870442 Mbs

Cache hits: 12025 4864

Cache misses: 35 0

Cache hit rate: 99.709784 100.000000

You can use the following commands when viewing the display produced by
the -l option of ldcache:

Command Description

n Goes to next device with cache attached

+ Increases refresh interval by 1 second

- Decreases refresh interval by 1 second

S–2301–10011 53

General UNICOS® System Administration

c Clears counters to 0

2.11.1.3 Aging and Threshold Parameters of ldcache

For large applications that perform frequent write requests, you may want to
consider using the following options of the ldcache(8) command:

Option Description

-x max, min Specifies, in seconds, aging parameters for units
in the logical device cache. When the age of any
dirty cache unit exceeds the max value, the kernel
automatically flushes all dirty units older than
the min value.

-h high, low Specifies threshold values for the dirty units in
the logical device cache. The high value specifies
the maximum number of dirty units that can be
in cache at one time. If the number of dirty units
equals the high value, requests to dirty more cache
units are put to sleep until the number of dirty
units falls below this threshold value. When
the low threshold value is exceeded, ldcache
starts flushing the oldest dirty units until the low
threshold is no longer exceeded.

These options implement a trickle sync mechanism, which lessens periods of
intense disk activity caused by an ldsync(8) command.

The -h parameter of ldcache provides a relatively stable read cache within a
larger read/write cache. The -h max parameter limits the number of dirty units
that can be in the cache. The difference between this value and the size of the
cache is the size of the read cache. These extra units are, in effect, reserved for
read requests, which are typically more likely to be reused.

To pick effective -h parameter values for ldcache, you need to determine the
relative amounts of the different types of I/O requests that are made to each
ldcache file system. For example, if most of the requests are read requests, the
-h parameter is unnecessary. If most of the requests are write requests and the
amount of data written over a relatively short period of time is larger than the
cache, set the -h parameter so that there is enough read cache left over to handle
the read I/O requests of the applications.

When you use the trickle sync option, you may want to disable the LDSYNCTM
parameter. To do this, manually set ldsynctm in the /etc/inittab file or

54 S–2301–10011

File System Planning [2]

change LDSYNCTM in the /usr/src/cmd/init/conf.c file to a value greater
than 1000000 and rebuild /etc/init.

2.11.2 System Buffer Cache

The amount of system buffer cache configured affects the performance of a
system. A cache that is too small degrades system performance; too large a
cache wastes memory that could be of use elsewhere. For I/O-intensive jobs
that do not use raw I/O, a larger system buffer cache can be used to increase
throughput. Experimentation can help determine the optimal number of buffers.
System buffers are allocated at boot time in 512-word blocks and use up part of
main memory.

You can change the system buffer allocation by using the following menu of the
installation and configuration menu system:

Configure System
->Kernel configuration

->Table size parameters

At boot time, you can change the number of system buffers allocated by editing
the NBUF parameter in the CSL parameter file.

The effectiveness of your system buffer cache and I/O in general can be
monitored by using the sar(8) command.

2.11.3 Using SSD As a File System

SSD can be used as a logical partition. The SSD can be configured as a logical
device and mounted individually, or grouped with other logical slices and
mounted as a logical device. System performance can be improved by using the
SSD as a logical device where access time is critical to system performance (for
example, for file systems such as /tmp, /bin, or /lib). File systems that are
used heavily can be mounted on the SSD to increase throughput and reduce
I/O wait time.

As a file system, the SSD can be configured in the same manner as disk devices;
that is, it is configured as one or more slices each having a starting block number
and number of blocks.

One or more of these slices may be used as logical devices upon which file
systems can be built. In addition, SSD slices can be combined with disk slices to
form logical devices.

S–2301–10011 55

General UNICOS® System Administration

Note: SSD data can be lost across system power failures. This must be taken
into account when deciding whether or not a file system should span both
disks and SSD. It is recommended that file systems reside completely on
disk and that logical device cache blocks be assigned to the SSD (see Section
2.11.1, page 51.

2.11.3.1 SSD Memory Access

Cray SV1ex systems have a new faster memory subsystem. Depending on system
configuration, the Cray SV1ex can have extended memory, a portion of which
includes an auxiliary memory known as an internal static storage device (SSD-I)
and a high speed block transfer engine (BTE). SSD-I is internal to the Cray SV1ex
main memory modules. Main memory occupies the lower 32 Gbytes of the
memory subsystem, while SSD memory occupies the upper address space.
Depending on the system configuration, each mainframe cabinet can have an
SSD that is 0-, 32-, or 96-Gbytes. All memory words are 64 bits wide.

This release supports the Cray SV1ex GigaRing based system with

The main purpose of SSD is to temporarily store dat sets of a job to speed up
access to data sets. It is used essentially as the SSD-T (Cray SSD-T90) and SSD-E
(Model E SSD) are used on other Cray PVP systems. Supported uses for SSD-I
include fast swap space, file system space, logical device (disk) cache, and
secondary data segment (SDS). The BTE provides a CPU-controlled data path for
direct memory to memory transfers, for example, between main memory and
extended memory or even within main memory.

SSD memory is accessible in two ways: front door and back door. All systems
that have an SSD have front door access capability, which allows the SSD to be
used as a swap device and/or SSD file system. Only system configured with
back door access have full SSD functionality, such as direct disk transfer to
and from SSD space and ldcache.

Front door access is defined as the movement of data between main memory and
the internal SSD (SSD-I). This is accomplished by using ssread and sswrite
system calls for access to SDS space. Control logic transfers words directly
between Main memory and SSD. The transfer rate depends on buffer alignment,
that is, BTE versus data movement via CPU. SSD-resident file systems and
swap I/O also use front door access.

Back door access is defined as the movement of data directly between SSD-I
and disk devices. Back door transfers can occur over either a conventional
point-to-point GigaRing or a SuperRing consisting of two to four mainframe
GigaRing adapters. Back door transfer rates are a function of the number of

56 S–2301–10011

File System Planning [2]

mainframe nodes, disk controllers, and disk devices, connected to the GigaRing
or SuperRing channel. Whereas, the number of rings that can be configured is
dependent on the number of processor modules in the system.

2.11.3.2 Back Door I/O Rules

Back door I/O can be provided on a Cray SV1ex system as follows:

1. The minimum configuration is a point-to-point ring consisting of one
mainframe GigaRing connection and one ION, where the ION is an FCN,
IPN, HPN, or disk or network MPN (not tape).

2. Alternatively, a SuperRing configuration, consisting of two to four
mainframe GigaRing connections and one or more IONs on a single ring, can
in some cases provide improved I/O bandwidth. See Section 2.11.3.3, page
57 for more information.

3. Although a ring that is set up to allow back door I/O can also be used for
I/O transfers between disk and main memory, no networking or tape IONs
can exist on the same ring. Any attempt to open a tape device on a ring
configured with back door capability will fail and generate an error message
on the system console.

4. Back door I/O access to ldcache in the SSD is limited to file systems that
exist entirely on disk partitions that reside on properly configured back
door-capable rings, including both primary and alternate I/O paths.

5. Back door I/O is required to use the SSD for secondary data segment (SDS)
space (to support SDS space swapping).

2.11.3.3 SuperRing Configuration Rules

The following rules apply to all systems that have a SuperRing configuration:

1. A SuperRing is defined to be a single GigaRing consisting of two to four
mainframe GigaRing channel adapters (on either processor modules or I/O
modules) and one or more IONs on a single ring. Although a SuperRing can
be configured to support front door (regular) I/O, a SuperRing is primarily
intended to support back door (direct disk to SSD) I/O transfers.

2. There is no maximum supported configuration on a single SuperRing.
However, if the total number of mainframe GigaRing adapters and IONs on a
ring is greater than 6, performance might be degraded significantly.

S–2301–10011 57

General UNICOS® System Administration

3. A SuperRing configuration of three mainframe GigaRing connections with
two FCNs provides the best balanced overall capability for back door I/O.
The FCNs can move data at ~300 Mbyte/s and the mainframe nodes operate
at 200 Mbyte/s.

4. Multiple SuperRings can be configured on a single mainframe; however, a
SuperRing can not be a shared ring between multiple mainframe nodes.

5. On systems that use an 8x8 backplane, all the mainframe GigaRing adapters
that make up a single SuperRing must be on the same side of the mainframe.
(CPU slots 0-3 are on one side, 4-7 are on the other.)

6. On systems that use a 4x4 backplane, only one SuperRing consisting of either
two or three mainframe GigaRing adapters is possible unless the system boot
ring is configured as a SuperRing.

2.11.4 Secondary Data Segments (SDS)

Secondary data segments (SDS) is a feature that allows a part of the SSD to be used
as extended memory. This area must be defined in the parameter file.

A user can specify that a file resides on the SDS by using the assign(1)
command. Users then make requests to either expand or contract their SDS field
length. SDS is automatically released when the owning process terminates.

The system maintains a base and limit address for the SDS area of each process.
All I/O requests to SDS are relative to address 0. The simple mapping scheme
allows use of a short-circuited path to process I/O requests to SDS, providing
transfer rates up to 10 times higher than that of SSD file systems. The system
calls ssbreak(2), ssread, and sswrite (see ssread(2)) are discussed in
UNICOS System Calls Reference Manual.

The status of processes using SDS space can be determined with the sdss(1)
command.

The UNICOS operating system also supports direct data transfers between SDS
and disk files through the back door or side door channel.

Allocation of a file on SDS is accomplished by opening a disk file with the O_SSD
flag set (see open(2)). All read/write addresses are then treated as relative to
SDS.

Fortran I/O library support allows particular files to be assigned to SDS in a
program-transparent manner. See assign(1) and env(1) in the UNICOS User
Commands Reference Manual.

58 S–2301–10011

File System Planning [2]

For a discussion of SDS management in the batch environment, refer to the
NQE Administration.

2.11.5 File System Placement

The /usr partitions should be on a different disk drive than the root (/)
partition(s) to reduce disk I/O contention. In addition, system core dumps
should be copied to another partition so the root partition is not filled.

The /usr/spool and /usr/adm directories should be on separate file systems
from the /usr file system so that Network Queuing System (NQS) and
accounting are not interrupted if /usr becomes filled.

User directories should not be located on either the root (/) or /usr partition to
prevent users from filling these partitions.

S–2301–10011 59

Startup and Shutdown Procedures [3]

This chapter describes the startup and shutdown of a UNICOS system. It
discusses the following administration areas:

• System initialization

• System shutdown

• Run-level configuration

• System multiuser startup

Warning: This chapter contains warnings and information critical to the
proper use of a Cray ML-Safe system configuration.

3.1 System Initialization

The following sections describe how to initialize your Cray system. The
following tasks are covered:

• Deadstarting the system

• Initializing the UNICOS operating system

• Setting the system date and time

• Setting the system time zone

3.1.1 Deadstarting the System

The procedures for deadstarting a UNICOS system vary according to the type of
I/O hardware and system hardware. Different procedures exist for GigaRing
based systems (which use the system workstation (SWS)) and for systems based
on an I/O subsystem model E (IOS-E) (which use an operator workstation
(OWS)).

To start a GigaRing based system, use the SWS bootsys(8) command. For
information about this command and the SWS, see the SWS-ION Administration
and Operations Guide and the SWS-ION Reference Manual.

To start an IOS-E based system, issue the load command at the BOOT> prompt
on the OWS, and then issue the /bin/boot command to start the UNICOS
operating system.

S–2301–10011 61

General UNICOS® System Administration

3.1.2 Initializing the UNICOS Operating System

The final phase in starting your system is to initialize the UNICOS operating
system. This procedure requires that you check and reset the UNICOS time,
check the UNICOS file systems, and enable the network connections. The
following procedure details a typical initialization. The UNICOS initialization
procedure is customized for each site; messages and questions not explained in
this chapter may appear during normal UNICOS initialization at your site.

If your machine is an IOS-E based system, use the zip window on the OWS. If
your machine is GigaRing based, use the mfcon(8) window on the SWS.

Perform the following steps:

1. To start multiuser mode (when the system is in single-user mode), enter the
following command from the console window (OWS or SWS):

/etc/init 2

Note: Most commands typed on the UNICOS interactive console must
be entered in lowercase.

2. The date verification prompt appears as follows:

Is the date dow MM dd hh:mm:ss tz yyyy correct? (y or n)

The dow variable is the day of the week, MM is the month, dd is the day of the
month, hh is the hour in 24-hour time, mm is the minute, ss is the second, tz
is the time zone acronym, and yyyy is the year.

Example:

Is the date Thu Mar 17 15:57:13 CST 1995 correct? (y or n)

Respond by typing y for yes, or n for no.

If the date or time is wrong, see Section 3.1.3, page 63.

If the time zone is wrong, see Section 3.1.4, page 63.

3. On a Cray IOS-E based system or on a GigaRing based system, if a dump of
the system had been done previously, the system prompts as follows:

Enter reason for sysdump:

Respond by entering the reason for the dump, followed by RETURN.

62 S–2301–10011

Startup and Shutdown Procedures [3]

The system continues with the following question:

Do you want to copy the dump to another file system? (y or n)

If you respond with y, the dump is written to the file
/core/core.MMdd.hhmm, where MM, dd, hh, and mm represent the current
month, day, hour, and minute, respectively. Otherwise, the dump is written
to /core.sys. (The location of this file is determined by the options given
to coredd in /etc/bcheckrc.)

Note: If the /core.sys file is not copied or moved to another file, the
dump is overwritten when a new system dump is written to /core.sys.

3.1.3 Setting the System Date and Time

The UNICOS system date and time can be set at boot time (or during operation
with the root login ID). This section describes the procedure for setting the
date and time at boot time.

To change the date and time at boot time, respond with n when asked the
following question:

Is the date dow MM dd hh:mm:ss tz yyyy correct? (y or n)

Enter the correct date in the following format:

MMddhhmm[yy[ss]]

The MM variable is the month, dd is the day of the month, hh is the hour in
24-hour time, mm is the minute, yy is the last 2 digits of the year (optional entry),
and ss is the second (optional entry).

Example:

0502161595

This example changes the date and time to May 2, 1995, 4:15 P.M.

Verify the date and time that the system prints and continue with the startup
procedure.

3.1.4 Setting the System Time Zone

The UNICOS kernel clock keeps track of the date and time relative to Greenwich
mean time (GMT). The software must convert between GMT and local time
whenever the time is entered or displayed. Local time refers to the time zone

S–2301–10011 63

General UNICOS® System Administration

where the machine is located. The UNICOS release software is configured for
use in the Central time zone (CST) of the United States. You can change the
time zone used by the conversion routines if your system is not located in the
Central time zone.

Note: Binary-only sites should set their time-zone information in the TZ
environment variable, as described in the following sections. Ignore the
references to source code and simply follow the formats shown for setting
the TZ variable (TZ=...).

3.1.4.1 Time-zone Information

To change the time zone in the UNICOS operating system, you must have the
following information about your time zone:

1. The number of hours away from GMT

2. The direction from GMT (East or West)

3. The name of the time zone

4. Whether your area has daylight savings time

5. Whether the UNICOS algorithm for daylight savings time is correct for
your site’s location

The daylight savings time conversions used in the UNICOS operating system
are valid for most parts of the United States, but may need to be changed
for other countries. The conversion algorithm is located in the routine
/usr/src/lib/libc/gen/ctime.c (see ctime(3)).

The library routines in /usr/src/lib/libc/gen/ctime.c determine the
daylight savings time rules by using a table containing limits for the dates on
which the time change takes place. The algorithm assumes that the time change
takes place on a Sunday at 0200 local time.

Table 2 lists the time zones for the United States.

Table 2. United States Time Zones

Zone name Hours from GMT Acronym

Eastern 5 EST

Central 6 CST

64 S–2301–10011

Startup and Shutdown Procedures [3]

Zone name Hours from GMT Acronym

Mountain 7 MST

Pacific 8 PST

All the time zones in the United States are west of GMT. The release software is
shipped for Central time, which is 6 hours west of GMT, with daylight savings
time enabled and the time zone names of CST and CDT. If your time zone is not
in Table 2, page 64, find out the correct information for your area by calling
Software Product Support (SPS).

To change the time zone, edit the /etc/inittab file and change the tz line to
be correct for your site. The tz line in the release is as follows:

tz::timezone:TZ=CST6CDT

For example, to change to Eastern time, the tz line would be:

tz::timezone:TZ=EST5EDT

For sites located in areas that do not have daylight savings time, specify only one
time-zone name, as follows:

tz::timezone:TZ=EST5

For sites east of GMT, use a minus sign before the number of hours difference
between local time and GMT, as follows:

tz::timezone:TZ=SOT-1

For the time-zone change to take effect, you must reboot the UNICOS operating
system.

3.1.4.2 Time-zone Example 1

The following is an example of setting the time zone for a site located in Geneva,
Switzerland. There is no official time-zone acronym for this area, so the acronym
MET (Middle European Time) will represent the time zone that is one hour east
of GMT. Daylight savings time exists in this time zone; however, it begins and
ends on days other than those in the United States.

This example uses the following conditions:

Geneva is 1 hour east of GMT. For this example, the time zone is named Middle
European Time (MET). Geneva has daylight savings time, so two names must
be specified: one name for standard time, and one name for daylight savings

S–2301–10011 65

General UNICOS® System Administration

time. These two names can be the same. The name MET will be used for both
standard and daylight savings time.

This example assumes the following data:

Number of hours away from GMT: 1

Direction from GMT (East or West): East

Time zone name (standard): MET

Time zone name (daylight savings): MET

Beginning day of daylight savings time: Last Sunday in March

Ending day of daylight savings time: Last Sunday in September

You change the time-zone line in the file /etc/inittab. You use the data given
above to modify the tz line released with the UNICOS operating system. You
give the name of the time zone when using standard time (in the following
example: MET), followed by a plus or minus sign to reflect the sites’ direction
east or west of GMT (in the following example: ’ - ’), followed by the number of
hours from GMT (in the following example: 1), followed by the name of the time
zone when using daylight savings time (in the following example: MET).

In the following example, the M3.5.0 is the day that daylight savings begins:
March (3), the last (5) Sunday (0). The M9.5.0 is the time daylight savings ends:
September (9), the last (5) Sunday (0).

The released and modified tz lines follow:

Released: tz::timezone:TZ=CST6CDT

Modified: tz::timezone:TZ=MET-1MET,M3.5.0,M9.5.0

3.1.4.3 Time-zone Example 2

The rules for the United Kingdom are different. Daylight savings time runs from
the last Sunday in March to the Sunday after the fourth Saturday in October.
For 1995, you would specify:

tz::timezone:TZ=GMT0BST,M3.5.0,M10.5.0

3.2 System Shutdown

You must perform several steps when shutting down the UNICOS operating
system. These steps must be performed in the indicated order. However, you
can stop the shutdown procedure when you reach single-user mode if you are

66 S–2301–10011

Startup and Shutdown Procedures [3]

doing maintenance procedures that require the UNICOS operating system to be
at the single-user run level.

Warning: You should never remove power from a peripheral device that is
in service, and never power down the system until the UNICOS operating
system has been halted.

The shutdown(8) script performs most of the shutdown functions. The
shutdown script is described in detail in the following section. A subsequent
section describes a sample shutdown procedure and gives an example of a
typical shutdown session.

Warning: If your site is running a Cray ML-Safe system configuration, see
Section 3.2.3, page 70, for more information.

3.2.1 The shutdown Command

The shutdown(8) shell script provides an orderly method of shutting down the
system. Whenever the system must be shut down, such as for a reboot, run the
shutdown command. You may find it necessary, or convenient, to change the
script to accommodate your local system configuration.

The shutdown script released with the UNICOS operating system provides three
user exits (shutdown.pre, shutdown.mid, and shutdown.pst) that allow
you to modify the shutdown process.

You can specify the grace period allowed between the sending of a warning
message and the actual shutdown. This grace period is the number of seconds of
delay. For example, specifying a grace period of 300 results in a 5-minute delay. If
no period is specified, the default period is 60 seconds.

The shutdown script released with the UNICOS operating system performs the
following functions:

• Determines the user’s current directory and does not proceed if the current
directory is not the root directory (/), /etc, /ce, or /sysops.

• Executes the user exit /etc/shutdown.pre, if it exists. If a nonzero return
status is returned from the user exit, shutdown will prompt the user for
confirmation before continuing.

• Sends a message, using wall(8), warning the users who are currently logged
in to the system that the system is being shut down.

• Shuts down the NQE subsystem to allow batch jobs to be checkpointed
before they are terminated.

S–2301–10011 67

General UNICOS® System Administration

• Sends a SIGSHUTDN signal to all currently running processes.

• Stops the DM daemon, Tape daemon, and error logging.

• Stops SYS1 and SYS2 type daemons, using the /etc/sdaemon command.

• Sends a SIGHUP signal to all currently running processes.

• Sends a SIGKILL signal to all currently running processes.

• Shuts down system accounting, using the following command (see
acctsh(8)):

/usr/lib/acct/shutacct

The shutacct(8) command records the action of shutting down system
accounting in the /etc/wtmp file.

• Releases all logical device cache (ldcache).

• Runs the user exit /etc/shutdown.mid, if it exists. If a nonzero return
status is returned from the user exit, shutdown will prompt the user for
confirmation before continuing.

• Shuts down all configured network interfaces (defined in the
/etc/config/interfaces file), using the ifconfig(8) command.

• Runs the user exit /etc/shutdown.pst, if it exists. If a nonzero return
status is returned from the user exit, a warning message will be printed
(the shutdown cannot be stopped at this point, because all daemons and
processes have been terminated).

• Unmounts all file systems. If any local file systems cannot be unmounted, the
shutdown script will issue a warning message.

• Brings the system to single-user mode, using the init(8) command with
an s argument, as follows:

/etc/init s

When shutdown completes, the UNICOS operating system is in single-user
mode. The administrator can safely perform system-related work.

3.2.2 System Shutdown Configuration

To allow the shutdown process to be tailored to the needs of the site, the
shutdown(8) script provides three user exits: shutdown.pre, shutdown.mid,
and shutdown.pst. The following sections describe these user exits.

68 S–2301–10011

Startup and Shutdown Procedures [3]

3.2.2.1 The shutdown.pre User Exit

The shutdown.pre script is the first user exit of the shutdown script.

Warning: Modification (and/or creation) of this script must comply with the
guidelines set forth in the single-user mode descriptions in Chapter 8, page
145. Additionally, the Cray ML-Safe configuration is available to normal
users at the time that this script is executed. Therefore, additional care must
be taken to ensure that the operations performed by this script follow the
same rules and restrictions that are enforced for a security administrator, as
described in Chapter 8, page 145.

If an executable named /etc/shutdown.pre exists, it will be executed during
shutdown. At this point, nothing has been done in shutting down the system.
All daemons are still running, all file systems are mounted, and all users are still
active and unaware that this script is running.

A possible use of this exit would be to verify the user’s permission to run the
shutdown script or to run some system cleanup routines.

The shutdown script will check the return status from the shutdown.pre
program. If the return status is nonzero, the user will be queried as to whether or
not to continue the shutdown processing. At this point, the shutdown can be
stopped without any effect on the system.

3.2.2.2 The shutdown.mid User Exit

The shutdown.mid script is the second user exit of the shutdown script. If an
executable named /etc/shutdown.mid exists, it will be executed during
shutdown.

At this time, all processes (users and daemons) have been terminated, the disk
cache (ldcache) has been released, but the network interfaces are still configured,
and all of the file systems are still mounted.

A possible use of this exit would be to allow NFS file systems to be unmounted
before the networks are stopped.

The shutdown script will check the return status from the shutdown.mid
program. If the return status is nonzero, the user will be queried whether to
continue the shutdown processing or not. This exit is given to address any
possible problem that may exist with the file systems still mounted and the
networks that are still running.

S–2301–10011 69

General UNICOS® System Administration

3.2.2.3 The shutdown.pst User Exit

The shutdown.pst script is the third (and last) user exit of the shutdown
script. If an executable named /etc/shutdown.pst exists, it will be executed
during shutdown.

At this point, all processes (users and daemons) have been terminated, but
the file systems are still mounted. This is virtually single-user mode, except
for the file systems.

After this point, the file systems are unmounted and /etc/init is invoked to
go to single-user mode. The /etc/init s command will kill all remaining
processes (including the process running the shutdown script), so there is no
place to put a user exit beyond this point.

Because the system is virtually shut down by this point, there is no reason to halt
the script if the user exit return status is not zero. The status returned from
/etc/shutdown.pst is checked, but shutdown will only issue a warning
message and then continue to single-user mode.

Note: Be careful in what you allow shutdown.pst to execute. Because the
various logging daemons (such as syslogd) are not available to free up the
space, shutdown.pst could potentially fill up the file system(s) containing
the log files.

3.2.3 System Shutdown Procedures

To shut down the system, perform the following steps:

1. On a UNICOS system with PRIV_SU enabled, log in as root on the system
console. On a system with PRIV_SU disabled (for example, a Cray ML-Safe
system configuration), you must log in to the security administrator login
and have an active secadm category to shut down the system. You will also
need to activate the secadmin category. For more information, see Section
8.2.3.2, page 154, and Section 8.2.2, page 150.

2. Use wall(8) to give users a 10-minute warning. The wall command can
read either a file or standard input for the message it sends. For more
information about using the wall command to communicate with users,
see Section 5.3.1, page 112.

In the following example, the administrator types a shutdown message
(terminated by CONTROL-d) into standard input; wall broadcasts this
message.

70 S–2301–10011

Startup and Shutdown Procedures [3]

% /etc/wall

UNICOS is coming down in 10 minutes.

CONTROL-d

In addition to sending a shutdown message by using wall, it is
recommended that you put a short message in the /etc/issue file (see
issue(5)) to inform any users who log in after the warning has been sent
that the system will be coming down shortly.

3. Enter the following command to begin the shutdown procedure:

shutdown

All users logged in to the system are instructed by a broadcast message to
log off the system.

A typical session with the shutdown program is as follows:

shutdown 300

SHUTDOWN PROGRAM

Thu Sep 1 18:51:58 EST 1992

Executing user exit: /etc/shutdown.pre

User exit /etc/shutdown.pre completed, continuing shutdown

Do you want to send your own message (y or n):y

Type your message followed by <ctrl>d...

System coming down for maintenance!

Please log off.

CONTROL-d

System coming down for maintenance!

Please log off.

(Waits for 5 minutes)

SYSTEM BEING BROUGHT DOWN NOW ! ! !

Warning: Cray ML-Safe processing occurs only when in multiuser mode
(level 2).

S–2301–10011 71

General UNICOS® System Administration

When the shutdown program completes, it displays the following message:

INIT: SINGLE USER MODE

4. Issue the sync(1) command as follows to flush the file system cache to disk:

sync

Pause approximately 30 seconds before continuing with the following step.

5. Issue the ldsync(8) command as follows to flush data from all logical device
caches to disk:

ldsync

At this point, you are in single-user mode and can perform any system
administration work that is necessary.

6. If you want to halt the system, perform one of the following steps, depending
on your hardware:

• On GigaRing based systems, use the SWS haltsys(8) command. For
information about this command, see the SWS-ION Administration and
Operations Guide.

• On Cray IOS-E based systems, type ehalt(8) in a local OWS window, or
use the xhalt function in the opi interface.

3.3 Run-level Configuration

A run level is a software configuration of the system. Each run level allows
only a selected group of processes to exist. Although run levels are most
commonly used to configure the system in single-user or multiuser operation
modes, thoughtful management of the run-level configuration on the system is a
convenient method of tailoring the system’s resources to accommodate users’
needs.

There are two main modes of operation for the UNICOS operating system:
single-user (level s) and multiuser (level 2). Single-user mode is always indicated
by run level s or S. Multiuser mode is typically run level 2; however, the system
can be configured to run in multiuser mode at any level from 0 to 6.

Warning: Cray ML-Safe processing occurs only when in multiuser mode
(level 2).

72 S–2301–10011

Startup and Shutdown Procedures [3]

The characteristics of each run level are determined by information supplied in
the /etc/inittab file. The /etc/inittab file contains entries that specify
actions associated with run levels. Refer to the inittab(5) and init(8) man
pages for more information about the format of the /etc/inittab file.

One common use of the /etc/inittab file is to set up a run level so that
certain procedures are followed automatically only the first time a run level is
entered. For example, normally you are asked to verify the date and check the
file systems the first time you change your system to multiuser mode. These
actions are caused by an entry in the inittab file. Subsequent changes in
run level do not result in this procedure automatically unless you specifically
change the inittab file.

3.3.1 Changing Run Level

You can change your run level by issuing the following command. level is the
run level you want to initiate:

/etc/init level

The specific actions that occur when a run level is initiated are controlled by the
/etc/inittab file. The following sections discuss the strategies for using run
levels for different purposes.

3.3.2 Strategies for Using Run Levels

Successful use of run levels requires that you think through the requirements for
the system and tailor the initializations of the various run levels to provide for
convenient transitions from one run level to another.

All systems have a single-user mode (for system work that needs to be performed
unencumbered by the presence of other users on the system) and at least one
multiuser mode. If the system is restricted at various times to dedicated use by
one or more users, there should be one or more run levels devoted to initializing
the system for this dedicated use. In all cases except for single-user mode
(which requires little or no initialization), initialization is carried out by the rc
script (see brc(8)).

3.3.2.1 Single-user Mode

Many system maintenance, modification, testing, configuration, and repair
procedures are carried out while the system is in single-user mode to protect
system users from potential instability and to ensure that user processes do not

S–2301–10011 73

General UNICOS® System Administration

interfere with the system’s work while it is in progress. Therefore, the purpose
of performing any initialization before the system is in single-user mode is to
ensure that the system is known to be in an idle state.

Warning: When you enter single-user mode, you exit the Cray ML-Safe secure
processing mode. Use of the Cray ML-Safe configuration in single-user mode
by an authorized administrator does not violate the requirements of the Cray
ML-Safe configuration.

When the UNICOS operating system is in single-user mode, all network
connections and hard-wired terminals are disabled, and only the console
terminal can interact with the system. This mode of operation allows you to
make necessary changes to the system without doing any other processing.
The # character is the system prompt when the UNICOS operating system is
in single-user mode.

In most cases, the system is brought into single-user mode either following a
system boot or by shutdown. In neither case should there be any user processes
running after the system is in single-user mode (no user processes will have
started following a boot, and shutdown kills all user processes before entering
single-user mode). Thus, there should be no need for initialization related to user
processes when the system enters single-user mode.

It is important that all file systems be unmounted. This provides an extra
measure of protection against inadvertent damage done to a mounted file
system by single-user mode development work or testing. Traditionally, the
person doing the system work or testing while in single-user mode mounts only
the partitions he or she requires. To help with this aspect of system work, you
can provide a script in /etc that mounts the file systems containing system
commands not usually found on the root partition (the /usr file system) and the
home directories of the system staff.

3.3.2.2 Multiuser Mode

Traditionally, run level 2 is the system’s primary run level for multiuser mode.

Warning: If your site is running a Cray ML-Safe system configuration, see
Chapter 8, page 145, for information on the correct configuration.

Among the initializations generally carried out for multiuser mode are the
following:

• Recording system startup time in /etc/wtmp.

74 S–2301–10011

Startup and Shutdown Procedures [3]

• Mounting all the file systems required for normal system operation. This
includes the regular system file systems (/usr and /tmp), the file system or
systems containing the home directories of the system’s users, and other file
systems containing files to which the users must have access.

• Removing any lock files that may interfere with normal system operation (for
example, a lock file for a system daemon).

• Running daemons that provide various system services. The list may include,
but is not restricted to, the following:

– errdemon

– slogdemon (for the UNICOS multilevel security (MLS) feature)

– cron

– tapestart (for online tapes, when enabled in /etc/recoptions)

– syslogd

• Running the netstart(8) script to initialize the system’s TCP/IP network
connections.

• Starting system accounting.

• Moving or truncating log files (for example, /usr/lib/cron/log or
/usr/spool/nqs/log) to prevent them from growing without limits.

• Allowing users to log in.

You can perform some system administration tasks in multiuser mode. For
example, you can perform file restore procedures (if necessary) and take periodic
status checks of the system. These status checks can include the following:

• A check of free blocks (df(1)) remaining on all mounted file systems to ensure
that a file system does not run out of space

• A check on mail (mail(1)) to root or whatever login receives requests for
file restores

• A check on the number of system users (who(1))

• A check of all running processes (ps -eaf) to determine whether some
process is using an abnormally large amount of CPU time

You may want to prepare additional multiuser modes that have the following
characteristics:

S–2301–10011 75

General UNICOS® System Administration

• They do not mount certain file systems that should be kept secure from
the system’s users.

• They do not provide certain services or run certain daemons.

• They do not permit users to log in to the system by using certain pieces
of software (for example, TCP/IP).

3.3.2.3 Dedicated System

It is sometimes necessary to provide dedicated system time so that a particularly
large or time-critical job can run unencumbered by other user processes.
Additionally, there will be times at which system development work requires that
the system be brought up as though it were running in multiuser mode, when
access to the machine is actually restricted to the system staff.

Access to a UNICOS system can be restricted by having the rc script (see brc(8))
alter the ue_permbits field in the user database (UDB) records to allow system
access only to selected users.

3.3.3 Files That Control Run-level Activity

Certain files control various aspects of a system’s run levels. The following
sections describe those files in detail.

3.3.3.1 The /etc/inittab File

The /etc/inittab file controls the system’s available run levels. The
inittab(5) man page explains the file’s format and options in detail. This file
should have the following attributes:

• The initial run level (specified by an entry with the action initdefault)
should be single-user mode (specified by the letter s in the rstate field).

• Following the initdefault entry, there should be an entry with the action
timezone to set the TZ environment variable to the appropriate value for the
time zone in which the system is located.

• Following the timezone entry, there should be calls to shell scripts that
actually initialize the system’s state for the run level being entered.

The bcheckrc (see brc(8)) program is called by an entry with the action
bootwait to carry out boot-time-only actions, and the rc (see brc(8))
program is called by an entry with the action wait to carry out actions for

76 S–2301–10011

Startup and Shutdown Procedures [3]

switching from one run level to another (including switching from the initial
single-user mode to multiuser mode).

• There should be an entry with the action wait that links the special file
/dev/systty to /dev/syscon.

• There must be an entry for all run levels, with an action of respawn, which
executes the getty(8) command.

• Any run levels that accept logins from users on front-end systems need an
entry with an action of generic. This entry instructs init(8) to accept
login requests from daemons through the /etc/initreq FIFO special file
(named pipe). (This is true even if the run level is intended for use by a single
dedicated user; restricting access to the system is accomplished by the rc
script (see Section 3.3.3.3), not by limiting logins to specific devices, as is often
done on traditional UNIX systems.

3.3.3.2 The /etc/bcheckrc Script

By convention, the bcheckrc script (see brc(8)) is executed only at system boot
time, before any file systems are mounted. Its main function is to set the current
date and time, prompting the person booting the system for the current date, if
necessary, and using the date(1) command to set the date.

3.3.3.3 The /etc/rc Script

The /etc/rc script is traditionally executed when the init process goes from
run level s or 1 to a run level greater than 1. By default, the UNICOS operating
system has a standard /etc/inittab file that is designed to activate the
/etc/rc script when the following command is executed:

/etc/init 2

3.4 System Multiuser Startup

The /etc/rc script supplied by Cray is installed in the /etc directory. Its
source is in file /usr/src/skl/etc. The file includes optional execution of
local scripts at special points in the rc script. The /etc/rc script is designed so
that it does not need to be modified for most sites.

Note: Previously, sites have heavily modified /etc/rc to suit their specific
needs. Because the /etc/rc script is now unconditionally installed, you
should not modify it. Please notify Cray of any modifications you found
necessary so that your requirements can be considered for future releases.

S–2301–10011 77

General UNICOS® System Administration

When it is invoked by /etc/init, the /etc/rc script performs several
operations that are required to bring the UNICOS operating system into
multiuser mode. The following sections provide more detailed explanations of
the events and files referenced by the /etc/rc startup script. Refer to the brc(8)
man page for additional information on the rc script.

3.4.1 Load the /etc/config/rcoptions File

If there is a file named rcoptions in the /etc/config directory, the /etc/rc
script uses the standard shell command dot (.) to source the file into its
environment variable name space. Existing variables are overridden.

Warning: If your site is running a Cray ML-Safe system configuration, see
Chapter 8, page 145, for information on the correct configuration.

If you are using the Installation and Configuration Menu System, the rcoptions
(shown in Table 3) can be defined on the Configure System->Startup
(/etc/rc) configuration menu. The parameters can have one of three
values:

• YES

• NO

• ASK

If the parameter is set to YES or NO, the associated action is taken or skipped
unconditionally; that is, the operator is not prompted for a response. If the
parameter is set to ASK, the operator is interrogated at boot time; each parameter
description begins with the associated operator prompt.

Table 3. rcoptions Decide String Parameters

Parameter Description

RC_ACCT (Do you want to start accounting?)

If this parameter is set to YES, or if it is set to ASK and
the operator replies YES to the question, the accounting
subsystem is activated.

The default value for this parameter is YES.

78 S–2301–10011

Startup and Shutdown Procedures [3]

Parameter Description

RC_CONTERR (Do you want to continue with system
startup?)

If this parameter is set to YES, or if it is set to ASK and the
operator replies YES to the question, then the startup will
continue in the face of errors from any commands or utilities
during system startup. A selection value of NO instructs
/etc/rc to terminate system startup and immediately
return to single-user mode upon encountering an error
during system startup. A selection value of YES instructs
/etc/rc to enter multiuser mode regardless of any errors
encountered during startup.

The default value for this parameter is ASK.

RC_DCE (Do you want to start DCE?)

If this parameter is set to YES, or if it is set to ASK and the
operator replies YES to the question, then DCE is started.

The default value for this parameter is ASK.

RC_DFS (Do you want to start DFS?)

If this parameter is set to YES, or if it is set to ASK and the
operator replies YES to the question, then DFS is started.

The default value for this parameter is ASK.

RC_FSCK (Do you want to execute fsck?)

If this parameter is set to YES, or if it is set to ASK and the
operator replies YES to the question, then mfsck will run on
each file system listed in /etc/fstab. Setting this to NO
will still cause mfsck to run fsck, but it will do so in quick
mode (fsck -q).

The default value for this parameter is YES.

S–2301–10011 79

General UNICOS® System Administration

Parameter Description

RC_FSCK_Y (Do you want to automatically respond yes to
the fsck prompts for ... ?)

If this parameter is set to YES, or if it is set to ASK and
the operator replies YES to the question, then all the fsck
invocations during the boot process will have the -y flag
present. The -y flag’s presence causes fsck to assume a
YES response to all of its prompts.

The default value for this parameter is NO.

RC_MKTMP (Do you want to mkfs /tmp?)

If this parameter is set to YES, or if it is set to ASK and the
operator replies YES to the question, mkfs(8) is used to
remake the /tmp file system device. If this parameter is set
to NO, fsck(8) is used to check the /tmp device.

The default value for this parameter is ASK.

RC_MKUTMP (Do you want to mkfs /usr/tmp?).

If there is a /usr/tmp device configured, this parameter is
checked; otherwise, it is ignored.

If this parameter is set to YES, or if it is set to ASK and the
operator replies YES to the question, mkfs(8) is used to
remake the /usr/tmp file system device.If this parameter is
set to NO, fsck(8) is used to check the /usr/tmp device.

If the /usr/tmp file system device is remade, recovery of
the vi or ex editing file is impossible.

RC_NET (start the network?)

If this parameter is set to YES, or if it is set to ASK and the
operator replies YES to the question, the /etc/netstart
script is executed.

The default value for this parameter is YES.

80 S–2301–10011

Startup and Shutdown Procedures [3]

Parameter Description

RC_NFS (Do you want to start NFS?)

If this parameter is set to YES, or if it is set to ASK and the
operator replies YES to the question, then NFS is started.

The default value for this parameter is ASK.

RC_SADC (Do you want to start the system activity
daemon?)

If this parameter is set to YES, or if it is set to ASK and the
operator replies YES to the question, the system activity data
collection process is activated.

The default value for this parameter is YES.

RC_SMT (Do you want to start the FDDI SMT daemon?)

If this parameter is set to YES, or if it is set to ASK and the
operator replies YES to the question, the FDDI SMT daemon
is started.

The default value for this parameter is ASK.

RC_SSHD (Do you want to start the SSH daemon?)

If this parameter is set to YES, or if it is set to ASK and the
operator replies YES to the question, the SSH daemon is
started.

The default value for this parameter is ASK.

RC_TAPE (Do you want to start the tape daemon?)

If this parameter is set to YES, or if it is set to ASK and the
operator replies YES to the question, the /etc/tpinint
command is executed.

The default value for this parameter is ASK.

S–2301–10011 81

General UNICOS® System Administration

Parameter Description

RC_TCP (Do you want to start TCP?)

If this parameter is set to YES, or if it is set to ASK and
the operator replies YES to the question, the networks are
started.

The default value for this parameter is ASK.

RC_USRMNT (Do you want to mount the user file systems?)

If the /etc/fstab file exists, this parameter is checked;
otherwise, it is ignored.

If this parameter is set to YES, or if it is set to ASK and the
operator replies YES to the question, the file systems in
/etc/fstab are mounted. The /etc/fstab file has the
following format:

file_system_device_name mount_point_directory

(If you are using the configuration tool, select fstab, load
your /etc/fstab file, and modify the File system
configuration menu.)

The default value for this parameter is YES.

RC_YP (Do you want to start NIS (formerly YP)?)

If this parameter is set to YES, or if it is set to ASK and the
operator replies YES to the question, then NIS is started.

The default value for this parameter is ASK.

If you are using the Installation and Configuration Menu System, the
security rcoptions parameters (shown in Table 4, page 83) can be
defined on the Configure System->Multilevel Security (MLS)
Configuration->MLS System Options menu.

82 S–2301–10011

Startup and Shutdown Procedures [3]

Table 4. rcoptions Non-decide String Parameters

Parameter Description

RC_CRONLOGDIR The path to the cron log directory.

The default value for this parameter is /usr/lib/cron.

RC_LOG The file name in which the startup entries and various
information is sent.

The default value for this parameter is /etc/rc.log.

RC_NFSLOG The file name of the NFS log.

The default value for this parameter is /etc/nfs.log.

RC_SECLOW The lower security level (used by mkfs(8) to construct /tmp
and /usr/tmp).

The default value for this parameter is 0.

RC_SECHIGH The upper security level (used by mkfs(8) to construct /tmp
and /usr/tmp).

The default value for this parameter is 0.

RC_SECMASK The security compartments mask.

The default value for this parameter is none.

If you are using the Installation and Configuration Menu System, the following
variables (shown in Table 5, page 83) can be defined in the Configure
System->Special system device definitions menu.

Table 5. rcoptions File System String Parameters

Parameter Description

DUMPDEV The dump device used by the dumpsys(8) utility. It should
be assigned the value of dmpdev in the configuration file
on the SWS.

The default value for this parameter is " ".

S–2301–10011 83

General UNICOS® System Administration

Parameter Description

DUMPDIR The directory created on the file system (DUMPFS) into
which the dump directory is created. The value of DUMPDIR
is passed to /etc/coredd, which creates a unique
directory for the dump (mmddhhmm) and copies the dump
and current versions of /unicos and /etc/crash to that
directory. The directory structure looks like the following:
/DUMPMPT/DUMPDIR/mmddhhmm

The default value for this parameter is "".

DUMPMPT The mount point onto which the file system (DUMPFS) is
temporarily mounted for /etc/coredd to copy the dump
onto when the system is brought up in multiuser mode. If
this directory does not exist, it is created by /etc/coredd.

The default value for this parameter is /mnt.

DUMPFS The file system to which a system dump is copied when the
system comes up in multiuser mode. The value of DUMPFS
is passed to /etc/brc, which calls /etc/coredd. The file
system is temporarily mounted on the selected mount point
(DUMPMPT), and the dump is copied onto that file system.
The file system is unmounted and then mounted in its usual
place (specified by fstab) as the system comes up.

The default value for this parameter is core.

MNTTMPOPTS The temporary (/tmp) mount options. This specifies any
miscellaneous options for the mount(8) command (for
example, quotas or number of inodes) used to initialize
/tmp. Note that any values specified for the -o or -t
options will be overridden. The -o option is forced to rw in
/etc/rc, and the -t option is forced to NC1FS.

The default value for this parameter is "".

84 S–2301–10011

Startup and Shutdown Procedures [3]

Parameter Description

MNTUTMPOPTS The user temporary (/usr/tmp) mount options. This
specifies any miscellaneous options for the mount(8)
command (for example, quotas or number of inodes) used to
initialize /usr/tmp. Note that any values specified for the
-o or -t options will be overridden. The -o option is forced
to rw in /etc/rc, and the -t option is forced to NC1FS.

The default value for this parameter is "".

PIPEDEV The device name of the pipe file system. It is typically
the same as ROOTDEV. It should be assigned the value of
pipedev in the configuration file on the SWS.

The default value for this parameter is root.

ROOTDEV The device name of the / file system, or the root file system
device. It should be assigned the value of rootdev in the
configuration file on the SWS.

The default value for this parameter is root.

SRCDEV The file system that contains the UNICOS source. It is used
in single-user mode to mount /usr/src and used by secure
labeling to install trusted subject programs.

The default value for this parameter is src.

SWAPDEV The swap logical device name. It should be assigned the
value of swapdev in the configuration file on the SWS.

The default value for this parameter is swap.

TMPDEV The device name of the /tmp file system. The /etc/rc
script must mount the /tmp file system to facilitate the
system boot. Optionally, /etc/rc makes the tmp system
device or uses fsck(8) to check it and then mounts it.

The default value for this parameter is tmp.

TMPOPTS The temporary (/tmp) mkfs(8) options. This specifies
any miscellaneous options for the mkfs(8) command (for
example, quotas) used to initialize /tmp.

The default value for this parameter is "".

S–2301–10011 85

General UNICOS® System Administration

Parameter Description

USRDEV The logical device of the /usr file system device. The
/etc/rc script must mount the /usr file system to enable
access to administrative directories.

The default value for this parameter is usr.

USRTMPDEV The device name of the /usr/tmp file system device, if it
is configured. This parameter cana be set to blank ("") in
/etc/config/rcoptions. A blank value indicates that
/usr/tmp is part of the /usr file system device; in this
case, the parameter is ignored. If this value is not blank,
/etc/rc can (optionally) make and mount the file system.

The default value for this parameter is usr_tmp.

USRTMPOPTS The user temporary (/usr/tmp) mount options. This
specifies any miscellaneous options for the mkfs(8)
command (for example, quotas) used to initialize
/usr/tmp.

The default value for this parameter is "".

3.4.2 Set up the /etc/rc Log File

The /etc/rc log file is defined by the RC_LOG parameter; output from the
/etc/rc script is captured in this file. The log file is reused (overwritten) for
each boot. If the RC_LOG parameter is set to a blank value, all output goes to
/dev/console. The RC_LOG parameter is exported so that scripts called by
/etc/rc can also access the log file.

3.4.3 Execute /etc/rc.pre

If the local executable script /etc/rc.pre exists, it is executed at this time. That
is, the /etc/rc.pre script is executed after the /etc/rc log file is established
and before any file system mounts are done.

This file is not supplied by Cray.

Warning: This script does not meet the requirements of a Cray ML-Safe system
configuration.

86 S–2301–10011

Startup and Shutdown Procedures [3]

3.4.4 Make and Mount /tmp

If the RC_MKTMP parameter is set to YES, or if it is set to ASK and the operator
replies YES to the question, the /tmp file system device is created. It is always
checked (using fsck(8)) and then mounted at this time.

3.4.5 Mount the /usr File System

The /etc/rc script mounts the /usr file system. The file system is not checked
with fsck(8), because it is usually in the /etc/fstab table, and, therefore, is
checked before /etc/rc is executed (see bcheckrc on the brc(8) man page
and fstab(5)).

3.4.6 Make and Mount /usr/tmp

If you have a /usr/tmp file system device, this action is taken. If the
RC_MKUTMP parameter is set to YES, or if it is set to ASK and the operator replies
YES to the question, the file system is remade. It is always checked (using
fsck(8)) and then mounted.

3.4.7 Preserve Interrupted vi/ex Sessions

If the /usr/tmp file system was not remade, expreserve (see vi(1)) is
executed to preserve any interrupted vi or ex(1) editing sessions.

3.4.8 Mount User File Systems

If the /etc/fstab file exists, /etc/rc uses the list it contains to mount the user
file systems. Depending on the number of user file systems configured, it may
take a significant amount of time to mount them; therefore, a speedometer is
displayed at this point in the /etc/rc script.

3.4.9 Mount /proc

The /proc file system mount point is set, and the /proc (special) file system
is mounted. Because various UNICOS subsystems require the presence of the
/proc file system, this step is mandatory.

S–2301–10011 87

General UNICOS® System Administration

3.4.10 Activate Logical Device Cache

If the /etc/config/ldchlist file exists, the /etc/rc script uses the list it
contains to assign cache to the designated file systems. See ldcache(8) for
more information.

3.4.11 Execute /etc/rc.mid

If the local executable script called /etc/rc.mid exists, it is executed at this
time. That is, the /etc/rc.mid script is executed after the user file systems
are mounted, but before any administrative cleanup is done or any daemons
are active.

This file is not supplied by Cray.

Warning: This script does not meet the requirements of a Cray ML-Safe system
configuration.

3.4.12 Perform Administrative Cleanup

The /etc/rc script performs the following cleanup operations:

1. If coredd left a mail file, the file is mailed to root (see coredd(8)).

2. The /usr/adm/acct/nite/lock* files are removed.

3. Maintenance is performed on the super-user log (sulog).

4. Maintenance is performed on the cron log (see cron(8)).

5. Maintenance is performed on the file /etc/wtmp.

3.4.13 Start the Security Log Daemon

The UNICOS MLS feature /etc/rc script starts the security log daemon.

3.4.14 Start Accounting

If the RC_ACCT parameter is set to YES, or if it is set to ASK and the operator
replies YES to the question, the accounting startup script is activated.

88 S–2301–10011

Startup and Shutdown Procedures [3]

3.4.15 Start System Activity Data Collection

If the RC_SADC parameter is set to YES, or if it is set to ASK and the operator
replies YES to the question, the activity data collection startup daemon is
activated.

3.4.16 Activate Category SYS1 System Daemons

The sdaemon(8) command is used to start all category SYS1 daemons at this
time. SYS1 daemons are those that must be started before network startup.

For more information, see the description of the netstart script in the UNICOS
Configuration Administrator’s Guide.

3.4.17 Activate netstart

If the RC_NET parameter is set to YES, or if it is set to ASK and the operator
replies YES to the question, the network startup script is activated. The
netstart(8) script initializes all networking activities.

3.4.18 Activate Category SYS2 System Daemons

The sdaemon(8) command is used to start all category SYS2 daemons at this
time. SYS2 daemons are those that must be started after network startup.

For more information, see the description of the netstart script in the UNICOS
Configuration Administrator’s Guide.

3.4.19 Create Network Access List

With the UNICOS MLS feature, the secure network access list (NAL) is
created in the Installation and Configuration Menu System in the Configure
System->Multilevel Security (MLS)->Configuration->MLS
Network Security Options->Network Protocol Security
Configuration->MLS Network Access List (NAL) Sets menu.

The NAL is defined in the /etc/config/spnet.conf file, along with the
workstation access list (WAL) and CIPSO map-domain sets. When the UNICOS
operating system is put into multiuser state, the spnet.conf file is read by the
/etc/spnet command to load the NAL, WAL and CIPSO map tables into
the kernel.

S–2301–10011 89

General UNICOS® System Administration

3.4.20 Set MLS Wildcard Files and Directories

With the UNICOS MLS feature, the/etc/spwcard program (see spwcard(8)) is
executed. This program assigns certain directories and files, such as /dev/null,
a wildcard label, which allows them to contain files at varying security levels.

Note: If your site has already configured the system to support the Cray
ML-Safe configuration, using the spwcard command does not relabel any
file or directory (for example, relabel a multilevel directory (MLD) with a
wildcard label).

3.4.21 Execute /etc/rc.pst

If the local executable script called /etc/rc.pst exists, it is executed at this
time. That is, the /etc/rc.pst script is executed after all daemons are started,
and just before the multiuser startup process is finished.

This file is not supplied by Cray.

Warning: Modification (and/or creation) of this script must comply with
the guidelines set forth in the single-user mode descriptions in Chapter 8,
page 145.

Additionally, the Cray ML-Safe system configuration is available to normal
users at the time that this script is executed. Therefore, additional care must
be taken to ensure that the operations performed by this script follow the
same rules and restrictions that are enforced for a security administrator, as
described in Chapter 8, page 145.

3.4.22 Complete the Multiuser Startup

As its final task, /etc/rc writes an entry into /etc/boot.log, if that file
exists.

90 S–2301–10011

File System Maintenance [4]

This chapter includes the following topics for all Cray systems:

• Mounting and unmounting file systems

• File system utilities

• File system backup and restoration

• File system checking and repair with fsck(8)

4.1 Mounting and Unmounting File Systems

A disk device is a sequential array of data until it is mounted. When the device
is mounted, the UNICOS kernel interprets the data as a UNICOS file system
and makes the file system available as part of the system’s complete directory
structure.

File systems are mounted with the mount(8) command. The start-up script
/etc/rc (see brc(8)) traditionally mounts the various file systems that are
available during system operation. It may prove more convenient to have
/etc/rc execute another script or set of scripts (located in the /etc directory) to
mount the various file systems, allowing system users to use the same scripts
to mount the file systems during single-user mode.

The /etc/fstab file (see fstab(5)) contains descriptions of file systems and
swapping partitions. The mount command searches this file, if present, to
determine the parameters it should use.

File systems are unmounted from the system by using the /etc/umount
command (see mount(8)). When unmounting clustered file systems, you must
specify the directory on which the file system is mounted; umount does not work
if the file system is a cluster and you specify the cluster descriptor file name. You
may use the node name to unmount a regular file system.

The umount(8) command flushes the file system cache to the disk before actually
unmounting the file system.

S–2301–10011 91

General UNICOS® System Administration

4.2 File System Utilities

The following utilities are associated with the maintenance of file systems and
files (more information about these commands can be found in UNICOS man
pages).

Command Description

bmap(8) Reports the current use of a given block in a file
system. Used to determine whether a block that
needs to be flawed is currently in use by a file and,
if so, the name of the file.

ddstat(8) Displays configuration information about disk
type character and block special devices.

df(1) Reports the number of free blocks available for
mounted file systems.

diskusg(8) Summarizes the disk usage on a file system by
file ownership.

dmap(8) Reports the slices of all physical devices that
compose a given logical device or the slices of all
logical devices that reside on a given physical
device.

du(1) Provides a summary of the disk use on a file
system by directory structure.

fck(1) Displays data block allocation for a specific file.

fsck(8) Checks and corrects the consistency of a file
system before it is mounted. File system checking
should always be a part of the system startup
procedures.

Use of the fsck command is described in detail on
Section 4.4.1, page 101.

fsed(8) Debugs file systems.

fsmap(8) Reports all free block areas in a specific file system;
useful for determining fragmentation.

fstest(8) Tests file systems and disk devices.

labelit(8) Reads or writes file system labels and security
levels.

ldcache(8) Assigns and displays logical device cache.

mkfs(8) Creates a file system on a logical device.

92 S–2301–10011

File System Maintenance [4]

mknod(8) Builds a directory entry and inode for a special
file.

mkspice(8) Creates physical disk device inodes that describe
the spare sector map, factory flaw map, and
diagnostic and customer engineering slices.

sdconf(8) Controls the state of a disk drive.

sdstat(8) Displays information about disk device I/O.

setf(1) Initializes a new or existing file. The file is created
if it does not already exist, and a specified number
of bytes or blocks are allocated to it.

setfs(8) Modify attributes of a file system after creation.

4.3 File System Backup and Restoration

This section describes some of the procedures you can use to back up files and
file systems on Cray systems running UNICOS.

The following sections discuss the three major applications of the file system
backup and restoration tools:

• Local backup of file systems (usually to tape), using the dump(8) and
restore(8) commands

• Remote backup of file systems through the network to another server by
using the rdump(8) and rrestore(8) commands

4.3.1 Local Backup

The UNICOS dump(8) and restore(8) utilities provide the capability to backup
and reload file systems. This is usually done using tapes. This section assumes
that your Cray computer system has a tape subsystem as the target for the file
system dump.

Warning: Use of the dump(8) and restore(8) utilities on a Trusted UNICOS
system requires a multilevel archive medium.

4.3.1.1 Using the dump Command

The dump command copies to magnetic tape all files changed after a specified
date in a specified file system. Refer to the dump(8) man page for a complete list

S–2301–10011 93

General UNICOS® System Administration

of the options available for use with dump. Some of the most useful options
are described in this section.

The -t dump_type option and argument specify the dump level; dump_type can
be a number from 0 through 9. If the -t option is omitted, dump defaults to a
level-9 dump. A level-0 dump is a complete dump; all files in a file system are
copied to tape. For a given dump level x, only those files modified since the last
dump of level- y (y <= x) are dumped.

For example, if you did a level-2 dump on Monday, followed by a level-4 dump
on Tuesday, a subsequent level-3 dump on Wednesday would contain all files
modified or added since Monday.

Although this arrangement provides significant flexibility in scheduling dumps,
a relatively simple scheme is recommended:

• Once a week, perform a level-0 dump of each file system. Use at least two sets
of tapes so that you can recover files even if a file system is destroyed while
you are dumping it. Because dump opens and reads a raw file system (instead
of using the operating system to open and read each file), it is recommended
that at least this complete dump be performed on a quiet system, with no
users other than the administrator or operator logged in. dump can read an
unmounted file system; if you prefer, you can unmount the file system to be
dumped before you begin.

• On each day that you do not perform the level-0 dump, perform a level-9
dump of each file system. Use a different set of tapes each day for two weeks
to safeguard your data. Each level-9 dump contains the files modified since
the last weekly level-0 dump. Thus, to reload a file system, you need only two
sets of tapes: the weekly dump, and the latest daily dump.

To simplify the task of performing dumps, you can set up a shell script for your
operator as follows:

if ["$1" = "daily"] ; then

level=9

elif ["$1" = "weekly"] ; then

level=0

else

echo "Usage: backup daily|weekly"

exit 1

fi

for fs in /dev/dsk/root /dev/dsk/usr /dev/dsk/slash_u ; do

/etc/dump -t level -u $fs

done

94 S–2301–10011

File System Maintenance [4]

Using this script, the operator needs to enter only backup daily for a daily
backup, or backup weekly for a weekly backup.

The -u option causes dump to write the date and time of the beginning of the
dump in the /etc/dumpdates file, which contains the file system name, the
level of dump, and the time and date that the dump started. (Refer to dump(5) for
the format of the dumpdates file.)

The following options can be used with dump(8) to specify different tape
attributes:

-l Specifies labeling of the tapes. The following values can be used
with the -l option:

nl Nonlabeled tapes

sl IBM standard labeled tapes

al ANSI labeled tapes

-v Allows you to enter a list of volume serial numbers (VSNs). If this
option is omitted, you are asked to type in a VSN list; the VSNs in
the list are separated by colons (:). Each VSN is a string consisting
of 1 to 6 characters. In the following example, dump would use
the volumes r1, r2, and r3:

/etc/dump -t 0 -u -v r1:r2:r3 /dev/dsk/root

-D Allows you to request a specific tape device for the dump, as in
the following example:

/etc/dump -t 2 -u -D tape00 /dev/dsk/usr

Refer to the tpmnt(1) command for a more complete description of these
tape-specific options. The dump command actually performs an rsv(1) and
tpmnt(1) from these specifications.

You may want to perform your own rsv and tpmnt commands before the
dump, as in the following example:

rsv TAPE 1

tpmnt -l sl -P /tmp/name -v r1:r2:r3

/etc/dump -t0 -u -f /tmp/name /dev/dsk/root

rls -a

You may also use a disk file, rather than tape, for some special purpose, by
specifying the -f option, as in the following example:

/etc/dump -t 9 -f /tmp/dumpfile /dev/dsk/usr

S–2301–10011 95

General UNICOS® System Administration

Refer to the dump(8) man page for a complete list of the options available for
use with the dump command.

Warning: Use of the dump(8) and restore(8) utilities on a Trusted UNICOS
system requires a multilevel archive medium.

4.3.1.2 Using the restore Command

You can reload a file system from the dump tapes by using the restore(8)
command. The restore command accepts various options. Refer to the
restore(8) man page for a complete list of the options available for use with
restore. Some of the most useful options are described in this section.

To reload a file system from dump tapes, first use the mkfs(8) command
to initialize the unmounted file system. Mount the file system and change
directories (using cd(1)) to the mount point. Next, use restore with the -r
option to reload the full (level-0) dump; use restore with the -r option again to
reload the incremental (level-9) dump.

The restore command requires many synchronous write operations, which can
be time-consuming. You can disable synchronous write operations and increase
the efficiency of the restore command by using the ldcache(8) facility.

The following examples show how you would perform a full restore operation if
you had a file system that had been destroyed. First, you would initialize the
unmounted file system, /newfs; then you would mount the file system, change
directories to the mount point, and reload the full dump, as follows:

/etc/mkfs /dev/dsk/newfs

/etc/mount /dev/dsk/newfs /newfs

cd /newfs

/etc/restore -r -V fs1:fs2:fs3

The -V option specifies a volume serial number (VSN) list of dump tapes to be
used for the restore operation. In this example, the tapes with VSNs of fs1,
fs2, and fs3 are used.

After this completes, you would restore the last incremental dump, as follows:

/etc/restore -r -V fsd1

Now, you would remove the restoresymtab file (this file is created to pass
along information between the restore of the complete dump and incremental
dump) by using the following command:

rm restoresymtab

96 S–2301–10011

File System Maintenance [4]

The new file system would have all of the files in it up to the last incremental
dump.

If you want to reload a particular set of files from a dump tape, use the following
invocation of restore:

/etc/restore -x filenames

The -x option causes restore to extract named files from the tapes. The file
names are relative to the mount point of the file system.

For example, if you had a file system /dev/dsk/usr_mail mounted on
/usr/mail, you would dump it by using the following command:

/etc/dump -t 0 -u /dev/dsk/usr_mail

To reload /usr/mail/fred and /usr/mail/root from this dump, you would
first change directories to /usr/mail, and then use restore with the -x option
to reload those particular files, as follows:

cd /usr/mail

/etc/restore -x fred root

The restore command can also be used in interactive mode. After reading in
the directory information, restore provides a shell-like interface that allows
you to move around the directory tree, selecting files for extraction. You can use
the commands ls(1), cd(1), and pwd(1) as they are used in the shell and add or
delete files as you wish. This is a convenient way to examine the contents of a
dump tape and restore one or more single files or directories.

The restore command also has a -t option that writes out the table of contents
of the dump tape to standard output.

As with dump, you can perform your own rsv(1) and tpmnt(1) first, using the
-f option, as in the following example:

rsv CART

tpmnt -l sl -v r1:r2:r3 -g CART -P /tmp/tape

/etc/restore -if /tmp/tape

Select files to extract and quit the interactive mode

rls -a

The -F option of the restore command specifies the tape file ID of the dump
tape to be restored. The default ID is the volume serial number (VSN) of the
first tape of the dump file.

S–2301–10011 97

General UNICOS® System Administration

You must follow some special procedures if your /usr or / (root) file system is
destroyed, because you need certain files and directories to use the restore
command and the online tape daemon. The default installed tape daemon
uses the /usr/spool/tape directory, and the message daemon uses the
/usr/spool/msg and /usr/adm/msg directories. If the tape daemon or
message daemon have not been installed by default, other directories may be
used. Directories used by the daemons must exist so that the tape and message
daemons can add files to them before you restore the /usr file system.

When restoring / (the root file system), you also need the tape daemon and
message daemon. If a lack of disk space prevents you from keeping a spare
root file system, you must keep the following binary files on the operator’s
workstation on Cray PVP systems.

/etc/msgdstop

/etc/tpapm

/etc/tpbmx

/etc/tpclr

/etc/tpdev

/etc/tpconfig

/etc/tpdstop

/etc/tpfrls

/etc/tpgstat

/etc/tplabel

/etc/tpmls

/etc/tpmql

/etc/tpset

/etc/tpu

/usr/lib/tp/avrproc

/usr/lib/tp/clsfile

/usr/lib/tp/fesreq

/usr/lib/tp/flush

/usr/lib/tp/openfile

/usr/lib/tp/opentdt

/usr/lib/tp/proceot

/usr/lib/tp/proceov

/usr/lib/tp/readerr

/usr/lib/tp/readvol

/usr/lib/tp/slnet

/usr/lib/tp/stknet

/usr/lib/tp/tpdaemon

/usr/lib/tp/tppos

/usr/lib/tp/writeerr

/usr/lib/tp/writevol

98 S–2301–10011

File System Maintenance [4]

/usr/lib/msg/infd

/usr/lib/msg/msgd

/usr/lib/msg/msgdaemon

/usr/lib/msg/oper

/usr/lib/msg/rep

/bin/rls

/bin/rsv

/bin/tpcatalog

/bin/tplist

/bin/tpmnt

/bin/tprst

/bin/tpscr

/bin/tpstat

The following character special file for tapes is also needed for restoring
directories and files, and it should be kept on the operator’s workstation on
Cray PVP systems.

/dev/bmxdem

Any other files you need for deadstarting the system should also be kept on
the boot media.

You will need the following files to run restore when the system is running:

/usr/lib/msg/msgdaemon

/usr/lib/tp/tpdaemon

Copy these files into your new root file system, and then start the tape and
message daemons. Now you should be ready to proceed with the restoration of
your root dump tapes.

If you are running an autoloader, you must have a full system, which includes
all the basic files in the major directories of your system, in order to run the
restore command successfully. Therefore, the procedure outlined in this
section will not provide you with everything you need.

4.3.2 Remote Backup

This section describes how to perform file system dumps and restorations on
machines that do not have Cray online tapes but are part of a TCP/IP network.

Warning: This feature is not supported on a Cray ML-Safe configuration
of the UNICOS operating system.

S–2301–10011 99

General UNICOS® System Administration

The rdump(8) and rrestore(8) commands are used to perform file system
backups to a tape device on a remote host. These commands provide an I/O
interface between the dump and restore commands on the Cray mainframe and
the device on the remote host. The commands create a remote server process
running the /etc/rmt command on the client machine. This processes accesses
the tape device.

You must log in as root to perform the backup and restore procedures. Because
the file transfer is performed across the network, you must ensure that the user
root on the remote host has the Cray mainframe listed as a target machine
in the .rhosts file.

For example, if you (as root) want to dump a file system from the Cray
mainframe named sn1203 to the remote server hall, be sure that a .rhosts
file exists in the root directory on hall and that it contains an entry for sn1203.
For more information about .rhosts files, see the rhosts(5) man page.

The following examples illustrate the use of rdump and rrestore.

Example 1: The following command performs a level 0 dump of file system fs1
to the tape device rst0 on the host host1:

rdump -f host1:/dev/rst0 - -t 0 /dev/dsk/fs1

Example 2: The dump performed in example 1 can be restored to a file system
filesys2 on the Cray system with the following command:

rrestore -f host1:/dev/rst0 - -x

Refer to the rdump(8), rrestore(8), dump(8), and restore(8) man pages
for complete descriptions of these commands and their options. The fsck(8)
command is an indispensable tool that maintains the consistency of UNICOS file
systems by interactively repairing most file system damage resulting from an
operating system crash. fsck reports its progress through a series of phases,
checking a file system for consistency and repairing any inconsistencies it
discovers. If fsck determines that a file system has no inconsistencies, or that it
has had its inconsistencies repaired, you can safely mount the file system. You
should also use fsck to ensure that file systems are not damaged before going
into multiuser mode or doing backups.

4.4 File System Checking and Repair with fsck

The following section provides an overview of file system operation, and how
using the fsck(8) command can help ensure date integrity. The subsequent

100 S–2301–10011

File System Maintenance [4]

sections describe the behavior of fsck and the phases that fsck goes through
while checking a file system.

4.4.1 Overview of File System Operation

The file system directories consist of pointers to inodes. In turn, these inodes
point to blocks of pointers to data and directories. Unfortunately, the operating
system cannot perform extensive validation of file system integrity, and when
this elaborate construction loses its consistency, there can be a serious loss of
data. With careful maintenance, however, you can ensure that the file system
works safely and efficiently.

Damage to the file system occurs when a portion of its structure is lost before
it can be written to disk. This damage is typically caused by a hardware,
operational, or operating system failure. While a file system is in use, it consists
of a combination of data on disk and, for efficiency, data in kernel memory.

The memory-resident data is written at regular intervals by the init(8) process
with the sync(2) system call. The cache can be written to disk at any time by
using the sync(1) command. On Cray PVP systems that use logical device
caching, the logical device cache can be written to disk at any time by using
the ldsync(8) command. (ldsync should always be issued after the sync
command is issued.)

The inittab(5) file allows you to control the rate of the sync and ldsync
operations with the sleeptime and ldsynctm entries. More frequent execution
of the ldsync command reduces the risk of file system corruption in the event
of a system crash, but the increased system overhead may impact system
performance. The default rate of ldsync is 120 seconds, and the default rate of
sync is 30 seconds.

If the operating system is stopped before all the data is returned to disk, the
structure of the file system may be damaged. Usually, this damage is corrected by
fsck at restart time. If the file system is used in an inconsistent state, however,
the damage quickly spreads throughout the system and destroys it.

The rules for correct use of the file system are as follows:

• Before using a file system, you must ensure that it is consistent

• When you stop the system, each file system must be consistent

The fsck(8) command checks and corrects the consistency of a file system
before it is mounted. File system checking should always be part of the system
startup procedures.

S–2301–10011 101

General UNICOS® System Administration

4.4.2 Using fsck

When using the fsck(8) command, usually you will respond yes to all of the
prompts. However, in the event of a system crash, the damage may be extensive
enough to warrant recovery from a back-up tape. If the file system is consistent,
fsck prints a summary of statistics about the file system.

Note: Many corrective actions may result in some data loss.

You can use the -y option on the fsck command to avoid the questions asked by
fsck concerning inconsistencies it found. This option automatically attempts
repairs as though you had answered yes to the questions. Use this with caution,
however, because the corrections may involve some data loss.

The following examples show the results of the use of fsck, first, without the -y
option, and then with the -y option.

$ /etc/fsck tmp2fs

tmp2fs: device tmp2fs opened as partition 0

tmp2fs: superblock fname , fpack

tmp2fs: Phase 1 - Check Blocks and Sizes

tmp2fs: Phase 2 - Visit Directories

tmp2fs: Phase 3 - Checking Directories

tmp2fs: Phase 4 - Checking Non-Directories and Link Counts

tmp2fs:

tmp2fs: i-node 0.0000002 has problems

tmp2fs: i-node summary

tmp2fs: owner 0, mode 100644, link 1

tmp2fs: size 13312, mtime Wed Dec 31 18:00:00 1989

tmp2fs: paths to this i-node ...

tmp2fs: - ./afile

tmp2fs: out-of-range allocations

tmp2fs: (warning) file size field in i-node is incorrect

tmp2fs: clear (’y’ or ’n’)? y

tmp2fs: Phase 5 - Verify Dynamic Information

tmp2fs: block 0/71 missing from free block list

tmp2fs: block 0/72 missing from free block list

tmp2fs: block 0/73 missing from free block list

tmp2fs: partition 0, free i-node count is 62, should be 63

tmp2fs: rebuild dynamic information (’y’ or ’n’)? y

tmp2fs: Phase 6 - Rebuilding Dynamic Information

tmp2fs: file system summary

tmp2fs: partition 0 on device tmp2fs

tmp2fs: 64 total i-nodes (63 free i-nodes)

102 S–2301–10011

File System Maintenance [4]

tmp2fs: 30 total tracks (25 free tracks, 8 free blocks)

tmp2fs: ***** FILE SYSTEM WAS MODIFIED *****

$ /etc/fsck -y tmp2fs

tmp2fs: device tmp2fs opened as partition 0

tmp2fs: superblock fname , fpack

tmp2fs: Phase 1 - Check Blocks and Sizes

tmp2fs: Phase 2 - Visit Directories

tmp2fs: Phase 3 - Checking Directories

tmp2fs: Phase 4 - Checking Non-Directories and Link Counts

tmp2fs:

tmp2fs: i-node 0.0000002 has problems

tmp2fs: i-node summary

tmp2fs: owner 0, mode 100644, link 1

tmp2fs: size 13312, mtime Wed Dec 31 18:00:00 1989

tmp2fs: paths to this i-node ...

tmp2fs: - ./afile

tmp2fs: out-of-range allocations

tmp2fs: (warning) file size field in i-node is incorrect

tmp2fs: clear? yes

tmp2fs: Phase 5 - Verify Dynamic Information

tmp2fs: block 0/71 missing from free block list

tmp2fs: block 0/72 missing from free block list

tmp2fs: block 0/73 missing from free block list

tmp2fs: partition 0, free i-node count is 62, should be 63

tmp2fs: rebuild dynamic information? yes

tmp2fs: Phase 6 - Rebuilding Dynamic Information

tmp2fs: file system summary

tmp2fs: partition 0 on device tmp2fs

tmp2fs: 64 total i-nodes (63 free i-nodes)

tmp2fs: 30 total tracks (25 free tracks, 8 free blocks)

tmp2fs: ***** FILE SYSTEM WAS MODIFIED *****

All mountable file systems should be listed in the fstab(5) file, which the
mfsck(8) command uses, and you should check these file systems each time the
system is rebooted.

The fsck command cannot be executed on a mounted file system, because this
would repair only the physical disk, leaving all the system buffers incorrect. The
only exception to this is the root file system, which is always mounted and must
be repaired while mounted.

S–2301–10011 103

General UNICOS® System Administration

To repair the root file system, enter the following command:

fsck /dev/dsk/root

fsck may respond by asking questions. You can use mfsck to run file system
checks in parallel, which can speed system startup. If fsck prompts for a
response to any problem, an analyst experienced in repairing UNICOS file
systems should assist you. You may reply n to any fsck prompt, leaving the
indicated inconsistency unresolved.

Under no circumstances should you mount or boot from any file system that still
has unresolved inconsistencies detected by fsck.

When you are using fsck to repair damage following a crash, it is useful to first
use the -n option with fsck to survey the damage (the -n option assumes an
automatic no response to all questions). Having seen the extent of the damage
and determined that there are no extraordinary inconsistencies, you may use the
-y option, in conjunction with other fsck options, to avoid having to type y in
response to each question.

The fsck command provides orphan checking, which allows the possible
recovery of files that have no links to the file system directory structure. (Such
a file may occur when a directory entry for the file is not written to the disk
prior to a system crash.)

Note that the set-user-ID and set-group-ID bits are cleared on all orphans
recovered by fsck.

4.4.3 fsck Phases

The fsck(8) command goes through nine phases, described in the following
sections. Unless otherwise specified, the phases are the same for all native Cray
file systems.

4.4.3.1 Initialization Phase

During the initialization phase, fsck verifies that all opened devices are
partitions of the same file system. Most problems cause the program to stop.
The following checks are performed:

• All superblocks and dynamic blocks can be located

• Inode blocks, bad blocks, super blocks, and dynamic blocks can be allocated
without error

104 S–2301–10011

File System Maintenance [4]

• Track size and root inode number are consistent across all partitions in the
file system

• Total inode count is consistent with the number of blocks allocated for inodes

• Track size and total size are consistent with the value returned by a stat(2)
system call

4.4.3.2 Phase 1

During phase 1, fsck examines each active inode. Errors detected during this
phase will be announced during phase 3 or 4 when a file name is associated
with the inode.

The following checks are performed:

• The mode field is valid

• The sectors belonging to the file may be allocated without conflict and within
valid areas of the file system

• The last byte of the file is contained in an allocated sector

4.4.3.3 Phase 2

If the -f option is not specified, fsck enters phase 2 and examines the contents
of all directory sectors, noting garbled sectors and inodes that are not valid. Links
from the directory to inodes are saved. The fsck command travels through
the directories by order of the address of the first disk block, rather than in
directory tree search order. By doing so, the execution speed is faster, but a phase
3 subroutine is required to gather a file name for a problem report.

For each entry in a directory, fsck verifies that a nonzero inode field refers to
an accessible inode.

The directory tree structure is validated. Each directory should be accessible
along only one path, and it should contain valid . (dot) and .. (dot dot) entries.

4.4.3.4 Phase 2X

If the -f option is specified, fsck skips phases 2 through 4 and prints the errors
discovered during phase 1, but offers no opportunity to clear the inode.

S–2301–10011 105

General UNICOS® System Administration

4.4.3.5 Phase 3

The fsck command reports errors in directory inodes. The names of unlinked
directories are displayed to the operator to be selected for relinking and
directories with garbled sectors are displayed to the operator to be selected
for clearing.

4.4.3.6 Phase 4

All nondirectory inodes with problems are reported in phase 4.

4.4.3.7 Phase 5

During phase 5, fsck examines the free track, free sector, and free inode
information in the dynamic block. Any errors detected are announced. The
operator is offered an opportunity to rebuild the dynamic block.

4.4.3.8 Phase 6

During phase 6, fsck rebuilds all information in the dynamic block, except
the magic word.

4.4.3.9 Termination Phase

A summary of the state of the file system is printed.

106 S–2301–10011

Basic Administration [5]

This chapter describes the following tools and methods, many of which are
commonly used in the day-to-day operation of a UNICOS system:

• Using the cron and at utilities

• The temporary directory (TMPDIR)

• Communicating with users

• Monitoring system security

• Job and process recovery

• Kernel user exit (uesyscall)

Warning: This chapter contains warnings and information critical to the
proper use of a Cray ML-Safe configuration of a UNICOS system.

5.1 Using the cron and at Utilities

The cron(8) and at(1) utilities are invaluable tools for automating many
administrative tasks. You can use them to run administrative tasks at regular
intervals and during off-peak hours, when they will not interfere with the
interactive work of most users. Neither utility is appropriate for every
administrative task; by using both, however, administrators can avoid many
time-consuming and repetitive tasks.

Note: For information on using the cron and at utilities on a Cray ML-Safe
system configuration, see Section 8.4.4, page 199.

5.1.1 Administrative Use of cron

The cron(8) process executes commands at specified dates and times. As a
system administrator, you can use the cron process to run tasks on a periodic
basis. The cron utility is especially convenient for the following administrative
tasks:

• Turning off the programs in certain directories during prime time (by using
the chmod(1) utility to remove execute permission for the program).

• Running programs during hours other than prime time for the following
procedures:

S–2301–10011 107

General UNICOS® System Administration

– File system administration

– Accounting

– System security procedures

You can specify the commands to be executed by using the crontab(1) utility,
which takes as its argument a crontab file that describes the commands and the
times at which they should be run. The cron process consults the files located in
the directory /usr/spool/cron/crontabs to determine which tasks are to be
performed and at what times they are to be performed.

Each user maintains only one individual crontab file, which is the user’s ID,
and which requires that the /usr/spool/cron/crontabs directory contain
separate files for each user. The name of the crontab file is used as a user ID
to get user and group permissions.

A crontab file consists of lines containing six fields each. The fields are
separated by spaces or tabs. The first five fields are integers that specify the
following:

• Minute (0 to 59)

• Hour (0 to 23)

• Day of the month (1 to 31)

• Month of the year (1 to 12)

• Day of the week (0 to 6, with 0 = Sunday)

Any of the first five fields can be an asterisk (*), indicating that any value is
appropriate. The last field is the command line to be executed at the appropriate
time. For example, the following line in a crontab file would execute a local
program called /usr/bin/task once a week, every Sunday morning at
6:30 A.M.:

30 6 * * 0 /usr/bin/task

If the system is not running at the time a command is to be executed by cron, the
command does not execute. Consequently, cron is most appropriate for periodic
tasks that do not interfere with normal system operation if not executed, and
for tasks that must be run at a specific, regular time.

The cron(8) process is usually started from the file /etc/rc during system
startup. See crontab(1) and ksh(1) for more detailed information.

108 S–2301–10011

Basic Administration [5]

The cron daemon makes an attempt to report fatal errors that cause termination
by printing an error message on the system console. Also, a user of the at or
crontab utility receives a warning message if the cron daemon is not active
at the time the at or crontab command is issued.

The cron daemon can limit dynamically the number of concurrently running
jobs. It can also maintain up to 26 separate queues, and control the number of
jobs executed in each queue. The file /usr/lib/cron/queuedefs is used to
maintain definitions for all queues. If this file does not exist, the default values
are used. See queuedefs(5) for more detailed information.

Changes to queue definitions take effect before the next job is executed by the
cron daemon.

The cron daemon logs all command invocations, terminations, and status
information in the file /usr/lib/cron/log. Records that begin with the
character > pertain to command invocations. Two invocation records are written
for each command execution: the first displays the command being executed; the
second contains the login name of the user who executed the command and the
process ID, job queue, and time stamp for the command. Command termination
records begin with the character < and are similar to the second invocation
record, except that a nonzero termination status or exit status is also printed.
Records that begin with the character ! indicate status information.

The cron utility uses named pipes to communicate between the user-level
commands and the daemon process.

5.1.2 Administrative Use of at

The at(1) utility submits commands or shell scripts for execution at a specific
time. Its format is as follows:

at time [date]

It takes as its argument the time (and optionally, the date) at which to execute
a list of commands that it reads from the standard input. Other options and
arguments are available (see the at(1) man page).

The at utility is intended primarily for single, nonrepetitive execution of a
command or script, and is thus especially appropriate for scheduling large
jobs to run during off-peak hours. However, the at utility can set up periodic
execution of a task if a script being run by at uses at itself to reschedule its
own execution. For example, if a script, whose file name is /usr/bin/task,
contains a line such as the following, it reschedules itself to be run at 3:30 the

S–2301–10011 109

General UNICOS® System Administration

next morning (and the morning after that, and so on, because the script still
contains the rescheduling line):

echo "sh /usr/bin/task" | at 0330 tomorrow

The advantage to using at instead of crontab(1) for periodic command
execution is that you are assured that the command will run; if the system is
down at the time at would normally run the command, it runs as soon as the
system is brought up again. The drawback to this automatic execution is that
the command is not guaranteed to run at the specific time you request. That is,
if a command is submitted through at to be executed at 3:30, and the system
is down for dedicated time until 7:30, the command will run at 7:30 when
the system is running, which may interfere with users’ work if it is a large,
CPU-intensive command.

The prototype file allows you to customize at command files by controlling what
information is written into the at job file, /usr/spool/cron/atjobs. If a file
named /usr/lib/cron/.proto.q exists (q is a queue name), this file is copied
into the job file. Otherwise, the /usr/lib/cron/.proto file is used.

The following substitutions are made during creation of an at job file:

Variable Description

$a User’s current account name

$m User’s current file creation mask (see umask(2))

$l User’s current file size limit (see ulimit(2))

$d Name of the current directory

$t Time (in seconds since 1/1/70) when the job is scheduled to
execute

$< Read standard input until EOF is reached

The following is an example of a prototype file:

newacct $a

cd $d

ulimit $l

umask $m

$<

At minimum, a prototype file containing $< must exist to successfully run the at
utility. The at utility exits with an error if no prototype file exists.

The at utility can queue jobs in one of 25 different queues, with the cron
daemon controlling the number of executions for each queue. (You can use this

110 S–2301–10011

Basic Administration [5]

queuing mechanism to limit the use of the crontab and at utilities.) Running
the at utility with the -qx option as the first argument queues the command in
queue x. The default queue is a. A special queue, b, is defined as a batch queue;
jobs in this queue run whenever the defined maximum level is not exceeded (as
specified in the queuedefs file). Queues d through z, by default, run at the
same priority as b. Queue c (available with the standard AT&T at utility to run
cron executions) is not available with the UNICOS at utility; the crontab(1)
utility should be used to submit crontab jobs. Jobs in all other queues run at the
time specified on the command line.

5.1.3 Restricting Use of crontab and at Utilities

Users can potentially abuse system resources when using the crontab(1)
and at(1) utilities. However, both the crontab and at utilities provide
methods for restricting user access. The /usr/lib/cron/cron.allow
and /usr/lib/cron/at.allow files contain the login names of users
(one per line) allowed access to the crontab and at utilities, while the
/usr/lib/cron/cron.deny and /usr/lib/cron/at.deny files contain
login names of users denied access to the utilities.

When a user submits a crontab file, crontab checks cron.allow for a list of
users permitted to have a crontab file. If no cron.allow file exists, the file
cron.deny is scanned for users who are denied crontab files. If neither file
exists, only root is allowed to have a crontab file. The same process is used
for determining access to the at utility. The null cron.allow file would mean
no user is allowed a crontab file, while a null cron.deny file would mean
that no user is denied a crontab file.

For additional information on the at.allow, at.deny, cron.deny, and
cron.allow files, see the UNICOS Configuration Administrator’s Guide.

5.2 The Temporary Directory (TMPDIR)

The TMPDIR directory contains temporary user subdirectories and files. TMPDIR
is created at the beginning of an interactive session or batch job. All the files
and directories in TMPDIR are deleted at the completion of the session or job.
UNICOS commands and libraries create temporary files in TMPDIR instead of
/tmp or /usr/tmp.

UNICOS temporary directories are owned by the user and have group and other
permissions turned off. This prevents other users from seeing or deleting files in
a temporary directory they do not own.

S–2301–10011 111

General UNICOS® System Administration

5.3 Communicating with Users

During the operation of a UNICOS system, it is frequently necessary for
administrators to use the system to communicate information to its users. This
section discusses a number of UNICOS commands and tools that enable you
to communicate with users:

• The wall(8) command

• The /etc/motd file

• The /etc/issue file

• The /usr/news directory

• The write(1) utility

• The mail(1) utility

5.3.1 The wall(8) Command

The wall(8) command broadcasts items of immediate concern to all users
currently logged in to the system. Run the command by typing the following:

/etc/wall

The wall command responds by telling you to type your message and to press
CONTROL-d when you are finished. To ensure that all users who are currently
logged in see a message sent by wall, run the command while you have root
privileges; otherwise, the message goes only to users who allow messages to be
written to their terminals (see mesg(1)). Additionally, users who are not currently
logged in will never see the message; wall is thus not a suitable method for
communicating a message to all users who have accounts on the system.

The wall command is typically used to send the following messages:

• Warnings that the system will soon be brought down for scheduled
downtime. Users who log in after the message is sent, however, miss the
message and should be notified by the /etc/issue file (see login(1)).

• Warnings that the system must be brought down immediately to address a
system emergency.

• Warnings that a particular file system has run out of disk space and that
users should make an immediate effort to delete any unneeded files (see the
description of the -g option on the wall(8) man page).

112 S–2301–10011

Basic Administration [5]

5.3.2 The /etc/motd File

The /etc/motd (message-of-the-day) file is displayed to users after they are
logged in to the system. The /etc/motd file is an ordinary text file, and the
administrator may place messages in it by using any UNICOS text editor.

Messages that should be placed in /etc/motd are those that are less immediate
than those requiring the use of wall(8), but they are important enough that users
should be forced to see them. The administrator should remove messages from
/etc/motd as soon as they are no longer needed. Suitable items for inclusion in
this file include the following:

• Warnings to users to clean up unnecessary files on a particular file system
or systems

• Brief explanations of recent problems that may have affected a number
of users, often with a pointer to a news item containing a more detailed
explanation

5.3.3 The /etc/issue File

The /etc/issue file is displayed while a user is logging in, before the user has
successfully logged in to the system. It is an ordinary text file, and you may place
messages in it by using any UNICOS text editor.

Messages placed in /etc/issue should be brief and so important that users
may need the information to decide whether or not to log in to the system.
Possible messages include the following:

• Warnings that the system will be brought down soon (so that users who do
not see a wall(8) message are not surprised when the system is brought
down shortly after they log in)

• Warnings that the system is being used for dedicated time and that not all
users will be able to log in

5.3.4 The /usr/news Directory

When users log in to the system they are alerted to the existence of any new files
placed in the /usr/news directory. When a user then runs the news(1) utility, it
displays any news files that have been created or modified since the last time the
user ran news. The files placed in /usr/news are ordinary text files created with
any UNICOS text editor, and they are usually assigned names that give a general

S–2301–10011 113

General UNICOS® System Administration

idea as to their contents. For instance, a news file containing information about a
modification to a system library might be given the name new.library.

Because users are not notified of the existence of a new news file until the next
time they log in, and because there is no guarantee that any given user will see
the file (a user may choose to ignore the item by not running the news utility),
/usr/news is appropriate for items that are not time-sensitive or items that are
of interest to only some of the system’s users. These categories include the
following:

• Notices regarding recent system changes, such as a newly installed version
of a command or library

• Explanations of imminent system reconfigurations or changes

• Explanations of recent system problems and their possible effects on users

It is a good idea to remove any old files in /usr/news periodically, not only to
save disk space, but also to prevent new users on the system from having to
read through a long list of out-of-date news items. The /usr/news file may
be cleaned out regularly by cron(8).

5.3.5 The write(1) Utility

The write(1) utility initiates immediate person-to-person communication with a
logged-in user by opening that user’s tty or pty for writing and copying each
line of text you type to his or her screen. To write to a user with a login name of
dolores, for example, you would issue the following command:

write dolores

If the user dolores happened to be logged in on more than one tty or pty, you
could specify the connection:

write dolores ttyp001

If, in this example, the user dolores is currently logged in, a message appears
on her screen indicating that you are writing to her. Typically, the user dolores
replies by writing back to your account; each line of text she types appears
on your screen.

Given the immediate nature of its communication, the write utility allows you
to perform the following functions:

• Converse with a user

• Obtain information about what a user is doing

114 S–2301–10011

Basic Administration [5]

• Warn a specific user to stop what he or she is doing

• Instruct a specific user to clean up his or her directories

Because each typed line appears on the other user’s terminal without regard for
what that person may be typing at the moment, it is easy for the other user’s
messages to your terminal to appear to interfere with your typing. This problem
is customarily solved by having the two users take turns typing, ending a
message with an o on a line by itself (standing for "over," much as in a two-way
radio conversation). To end such a session, either user then ends a message with
an oo on a line by itself (for "over and out"). Thus, a typical "conversation"
carried out by write might look like this (your input appears in bold):

write dolores

Message from dolores (ttyp001) - Mon May 11 08:20:15 - ...

Yes

o

Please clean up your account, we’re out of space.

o

All right, I will.

o

Thank you.

oo

<EOT>

Because many users either do not know of this etiquette when using write, or
do not follow it, they think that write is difficult to use. In practice, it is used
rather sparingly, mainly when more convenient forms of communication (such as
simply calling the user on the telephone) are impossible. Taking steps to educate
your user community in the proper use of the write utility will prove valuable
when write is the appropriate communication method.

Note: On a UNICOS system or Cray ML-Safe configuration, for write to
execute properly, the user’s active security labels must be equal.

S–2301–10011 115

General UNICOS® System Administration

5.3.6 The mail(1) Utility

The mail(1) utility provides a way to leave messages for specific users, whether
or not they are currently logged in to the system. The mail utility is used
as follows:

mail ralph

Type in message

CONTROL-d

You may specify more than one account name, in which case copies of the
message go to each user named. The next time users to whom you (or anyone
else) have sent mail messages log in to the system, the system alerts them to the
fact that they have mail messages waiting. The mail utility is thus particularly
well suited for messages such as the following:

• Instructions to clean up directories

• Asking or responding to questions

• General communication

In theory, there is no guarantee that the recipient of a mail message will actually
see the message, because the recipient may choose not to run the mail utility
to read the message; however, in practice, most users read their mail when
they log in.

Note: On a Cray ML-Safe configuration, the recipient of a mail message might
not be authorized to read mail at the classification with which it was sent.

For more information see mail(1) and mailx(1).

5.4 Monitoring System Security

Maintaining security on UNICOS systems is largely a matter of vigilance on the
part of the system administrator, who should maintain constant surveillance
for potential security problems and for evidence of past security breaches.
Fortunately, the UNICOS system includes programs that provide the necessary
tools for the creation of a set of procedures that allows you to automate much
of the daily work of monitoring system security. This section discusses security
issues in three areas: system security (ensuring that the super-user privileges are
safe), user security, and partition security.

116 S–2301–10011

Basic Administration [5]

5.4.1 Super-user Privileges

In the UNICOS operating system, with PRIV_SU enabled, the user identification
number (user ID) of 0, associated with the account named root, has special
privileges and may override the security features governing the activity
of normal users. Such a user is referred to as a super user, and the super
user’s powers allow the administrator great flexibility in responding to
system problems and keeping the system running smoothly. The dominant
security concern for a UNICOS administrator is ensuring that access to
super-user privileges remains solely in the hands of the administrator and the
administrator’s staff. Failure to guard this access allows an unauthorized user
to acquire super-user privileges. At best, one user could then look at other
users’ sensitive files without authorization and, at worst, an outside intruder
(knowingly or unknowingly) could cause damage to the entire system.

5.4.1.1 Password Security for Super User

The password to the super user (root) account is the first line of defense against
security breaches. Anyone logging in as root or using the su(1) utility to acquire
super-user privileges uses this password.

Cray recommends the following steps to maintain secure access to the root
account:

• The root password should not be obvious and should be very difficult to
guess. Do not use a normal word in any language that might be known to a
majority of the system’s users. Additionally, capitalizing a random letter or
two (not the first letter of the password), or including a punctuation character
or a numeral in the password, or both, helps to keep super-user privileges
safe from an intruder who is trying to guess the root password.

• The root password should be changed frequently, at least once a month.

• The root password should never be written down anywhere.

• The root password should be known to as few people as possible. Generally,
these should be the system administrator and the administrator’s staff.

Use of the root password can be monitored, and potential security breaches
caught, by compiling the su utility so that it logs each use of the utility in the
/usr/adm/sulog file. The administrator can then use the grep(1) utility
to generate periodic lists of successful and unsuccessful attempts to assume
super-user privileges by use of su. These lists can be compared against the
names of users known to have valid authorization, alerting the administrator to

S–2301–10011 117

General UNICOS® System Administration

unauthorized super users (a security breach) or users who are repeatedly trying
to gain super-user privileges (a security risk).

5.4.1.2 Physical Security

A person with access to the SWS, OWS, and IOS consoles and a knowledge of
how to halt and reboot the system could do so and thus acquire unauthorized
super-user privileges.

To guard against this possibility, Cray Inc. recommends that the SWS, OWS,
and IOS consoles and the system itself be physically accessible only to those
persons with genuine need for that access. If this is not possible, they should at
least be monitored to prevent unauthorized persons from attempting to enter
commands on the system console.

5.4.1.3 Setuid Programs

An executable UNICOS program may have the setuid bit in its permissions code
set, indicating that whenever any user executes the program, the program runs
with an effective user ID of the owner of the file. Thus, any program that is
owned by root (user ID 0) and has its setuid bit set is able to override normal
permissions, regardless of who executes the program.

This feature is useful and necessary for many UNICOS utilities and commands,
but it can be a potential security problem if an astute user discovers a way to
create a copy of the shell owned by root, with the setuid bit on. To avoid this
possible security breach, the administrator should make regular checks of all disk
partitions on the system for programs that have a setuid (or setgid) of 0.

The find(1) utility can generate a list of all setuid/setgid 0 files on the system (if
all file systems are mounted), as follows:

find / \ -user 0 -perm -4000 -o -group 0 -perm -2000 \ -print

This list may be compared against a list of known setuid/setgid 0 programs. Any
new setuid/setgid 0 programs that are not on the known list and whose creation
you cannot account for may indicate a security breach.

The administrator should check the list of known setuid/setgid 0 programs
regularly to ensure that none have been modified since the last check and that
any modifications that have been made are known (in other words, were made
by the system administrator or a member of the administrator’s staff). Unknown
modification of a setuid/setgid 0 program may indicate a security breach.

118 S–2301–10011

Basic Administration [5]

Finally, the list of known setuid/setgid 0 programs should be checked to ensure
that write permission on each file is properly restricted.

Because checking the entire system for setuid/setgid programs uses a large
amount of CPU time, Cray Inc. recommends that this check be performed
during off-peak hours. Use of the cron(8) or at(1) utility to perform the check
automatically and to notify the administrator of any suspicious results should
make the task unobtrusive.

5.4.1.4 root PATH

The PATH environment variable consists of a list of the directories searched by the
shell for typed commands. This means that the PATH for the root account must
have the following security features:

• It must never contain the current directory (.).

• All directories listed in the root PATH must never be writable by anyone
other than root.

The root PATH is set in two separate places:

• The /.profile file sets the PATH for root whenever root logs in on the
system console.

• The su(1) utility changes the PATH after a user has successfully entered the
root password to assume super-user privileges.

Both places should be monitored from time to time to make sure they have not
been changed since the last approved change known to the administrator.

Keeping the current directory out of the root PATH is somewhat inconvenient;
super users must remember to precede the names of any programs or scripts they
want to run from their current directory with ./, as in ./newprogram, because
the shell does not search the current directory for a command name. However,
convenience should not take precedence over system security. Failure to follow
these guidelines leaves the system open to a security breach.

For example, suppose a knowledgeable user creates a program that mimics a
commonly used system utility, such as ls(1). In addition to performing the
expected system function (listing the files in the current directory), the new ls
utility makes a copy of a program such as ksh(1) and turns on the setuid bit on
the copy. An unsuspecting super user with the current directory in PATH, having
changed directories to a user’s directory and inadvertently run the bogus ls,
then creates a setuid 0 shell, which gives anyone executing it complete control
over the system.

S–2301–10011 119

General UNICOS® System Administration

5.4.2 User Security

In addition to general system security, the administrator should ensure that
files owned by system users are secure from examination and modification
by other users.

5.4.2.1 The umask Utility

The system default umask value is normally set in the /etc/profile file by
using the umask(1) utility. It allows you to choose the permissions that will
typically be set when users create new files. For example, a umask value of 027
means that the group and other write permissions and the other read and execute
permissions are not set when a user creates a file. For possible umask values and
descriptions, see the umask(1) man page.

In general, only the owner of the file should have write permission, which makes
a default umask value of 022 appropriate. If members of a given user group
should not be able to read the files of other user groups, using a umask value of
026 to remove other read permission is recommended.

You should choose a umask value that restricts default access permissions to
a level appropriate to the desired security of the system. However, because
users can override the default value by using the umask utility themselves, do
not make the default umask value too stringent, as users may find that the
default value interferes with their work. For instance, if two users are working
on a joint project, and each needs access to the other’s files, they may want to
change their umask values so that, on any new files they create, the permissions
will be more open.

5.4.2.2 Default PATH Variable

The default PATH variable for the system’s users is set in the /etc/profile and
/etc/cshrc files. It specifies the system directories that will be searched for
command names typed by the users.

The users expect to be able to execute programs in the current directory without
having to precede the program name with ./ to explicitly indicate the current
directory. However, many UNICOS systems traditionally place the current
directory first in the PATH, which can make the users vulnerable to a security
breach, as described in Section 5.4.2.4, page 121. The current directory should
thus be the last entry in the default PATH, after the normal system directories.

120 S–2301–10011

Basic Administration [5]

5.4.2.3 User Groups

User security can be enhanced by the careful placement of users into groups. In
general, it is a good idea to use factors external to the system when deciding
upon the placement of users into groups. Some examples might be the following:

• Members of a specific software project

• Accounts for a client company purchasing system time

• Intercompany divisions

Having many groups, each containing a small number of users, is safer than
having fewer groups, each with large numbers of users with access to each
other’s files. Members of most logical groups (for example, members of a
software development project) want to share files with one another, and the
default umask should permit this.

To prevent inappropriate sharing of data, you should create a group with only
one user in it, rather than create a default "other" or "miscellaneous" group for
users who do not fit elsewhere. Because users may belong to more than one
group, and groups are active simultaneously, you may also choose to create a
separate group for each individual user at the time you create the account, and
then add users to additional logical groups as necessary.

5.4.2.4 File-owner Fraud

Neither the listed owner ID of a file nor its location in the directory tree always
leads to the actual creator and owner of the file. That is, users tend to think of
the files residing in their home directory as their only files, even though they
may own files in another home directory, such as those being used for a project
involving several other users. Conversely, it may not be completely appropriate
to count files that reside in one user’s home directory tree but are owned by
another user.

Users may realize this confusion and try to avoid a disk usage monitoring system
by using the chown(1) utility to change the ownership of some of their files to
another user (most likely one who will cooperate and give the file back when
requested). Nevertheless, diskusg(8) and du(1), when used together, provide a
general idea of the users who are perennial problems.

5.4.2.5 Login Attempts

Unauthorized users might attempt to gain access to the system by making
repeated attempts to login. To help prevent such attempts, you can configure the

S–2301–10011 121

General UNICOS® System Administration

number of bad login attempts that will be allowed before the login terminates.
By default, the system will allow an unlimited number of bad login attempts.
To put a limit on such attempts, edit the /etc/config/confval file (see
login(1)).

Note: For information on limiting login attempts on a UNICOS system or a
Cray ML-Safe system configuration, see Chapter 8, page 145.

5.4.3 Partition Security

When administered properly, the UNICOS file system should provide adequate
protection for user and system files. You can enhance system security, however,
by mounting partitions only when they are needed. In particular, if there are
users who will be allowed dedicated time on your system, you can provide extra
protection for those accounts by not mounting the file systems that contain
other users’ accounts.

To prevent users from accessing disk partitions directly, without going through
the UNICOS file system, the disk device nodes in /dev/dsk and /dev/rdsk
must never be readable or writable by anyone other than root.

5.5 Job and Process Recovery

This section describes the recoverability considerations and restrictions of the
UNICOS operating system.

5.5.1 Restrictions to Job and Process Recovery

This section lists restrictions to recovering jobs and processes submitted either
interactively or as batch jobs via the Network Queuing Environment (NQE)
and Network Queuing System (NQS). The sections that follow list restrictions
common to batch and interactive recovery, and restrictions unique to batch
recovery.

5.5.1.1 Restrictions Common to Batch and Interactive

The following list describes restrictions common to batch and interactive job
and process recovery:

• All the files that a process was using when it was checkpointed must be
present when the process is restarted. This includes all open files, the present
working directory, and any shared-text binaries (such as shells) in use by

122 S–2301–10011

Basic Administration [5]

the process. If any of these is not available when the process is restarted,
the restart(2) system call fails and returns an EFILERM error (errno 51).
In the restart file, each of these files is identified by the file system minor
number and inode number. If either number changes, for example, if a file
system is restored after a process is checkpointed, the restart(2)) system
call fails with an EFILERM error.

The requirement for shared-text binaries to be present can cause restart
failures if a system is booted on an alternate root file system, for example,
when a system is upgraded from one UNICOS update release to another. If
the old root file system is not available when checkpointed jobs are restarted,
the restarts will fail with an EFILERM error, because the shells are not
available. When converting from one root file system to another, the old root
should be mounted on some alternate mount point (/mnt for example) so that
checkpointed processes can be recovered.

• If the RESTART_FORCE option is not specified on the restart(1) invocation,
any file that was in use at checkpoint time must not have been modified since
that restart file was created in a nonsequential fashion. That is, the restart
will fail if any bytes in the file between offset 0 and the file size have been
modified since the checkpoint occurred. This rule allows the job or process to
be checkpointed and to continue execution, sequentially extending output
files, without invalidating the restart file.

If a restart file includes files that were being written to in a nonsequential
mode, it will probably abort or produce incorrect results unless the
programmer of the user application has programmed properly for this type
of operation.

• The access permissions of the files and directories in use at checkpoint time
must not have been changed from their original values, or changed to deny
the required access at restart time.

• User and group ownership of the files must be unchanged.

• The sum of the sizes of all unlinked files in use by the target process set
must be less than the system limit specified as MAX_UNLINKED_BYTES in
config.h. Note that the intent is to checkpoint and restart processes and jobs
using unlinked (sometimes called zerolink) files, as long as the files in question
are small. This covers such cases as unlinked files created by /bin/sh in
order to handle here documents, and small temporary files typically used
by compilers. Applications that use very large temporary files (for example,
assign -t) should be changed to use files in the linked temporary directory.

S–2301–10011 123

General UNICOS® System Administration

• If a user attempts to copy a restart file or to move a restart file to a different
file system, it is no longer marked as a restart file and is not restartable.

• An open pipe connection that originates, or terminates, outside the checkpoint
target set prevents the successful completion of the checkpoint.

• Any form of TCP/IP socket usage prevents the successful completion of the
checkpoint. Note that the innocent use of certain TCP/IP system calls, such as
gethostname(2), can cause the TCP special device /dev/net to be opened,
and this causes a checkpoint request to fail.

• At checkpoint time, there must be sufficient disk space to contain the restart
file. Note that the restart file contains at least two sectors worth of header
information, any pipe data in transit between processes, the contents of any
unlinked files in use, and the user control structures and program image for
each process in the checkpoint target set.

On systems with SSDs, any secondary data segment (SDS) regions in use are
appended to the data region of the associated process.

• There must be sufficient system resources, such as inode buffers, file table
entries, and job table slots.

• There must be sufficient process slots available so that the successful
execution of restart will not exceed either the system or user maximum
number of processes allowable.

• None of the process, process group, and job IDs needed for the successful
execution of restart may be in use at restart time.

• Processes using shared memory segments (Cray T90 series systems only)
cannot be successfully restarted.

• For a UNICOS system or Cray ML-Safe system configuration, the user
must be the owner and have MAC write access or be an authorized user or
privileged process.

5.5.1.2 Recovery Restrictions Unique to Batch

The following list describes job and process recovery restrictions unique to
batch jobs submitted through NQS:

• If the user specifies at submission time, by way of the qsub(1) option -nc,
that the job is not to be checkpointed, it is never checkpointed, even in
response to a qchkpnt(1) command.

124 S–2301–10011

Basic Administration [5]

• The super user cannot checkpoint an NQS job directly (using the chkpnt(1)
utility), without letting NQS know what is happening, and expect it to
recover. The qmgr(8) command must be used to checkpoint an NQS job so
that the main NQS daemon is aware of what is happening.

• Because NQS does not use the RESTART_FORCE flag on the restart
invocation, any file that was in use at checkpoint time must not have been
modified in a nonsequential fashion since the restart file was created. That is,
the restart will fail if any bytes in the file between offset 0 and the file size
have been modified since the checkpoint occurred. This rule allows the job to
be checkpointed and to continue execution, sequentially extending output
files, without invalidating the restart file.

5.5.2 Checkpoint and Restart Errors

If something goes wrong during a chkpnt(2) or restart(2) system call, an error
code is returned in the global variable errno. For lists of such error codes, see
the chkpnt(2) and restart(2) man pages.

The following section discusses how to use the crash program to examine
the restart-information buffer to help determine why a checkpoint or recovery
was not successful.

5.5.2.1 Examining the Restart-information Buffer

If you are having difficulty determining why an application will not checkpoint
or restart, attempt to recreate the scenario on a relatively quiet system, and use
the kernel debugger program crash(8) to examine the restart-information buffer.

The system is built with several restart-information buffers. A restart-information
buffer is obtained and used for each checkpoint and restart operation.

The resinfo subcommand of the crash command may be used to obtain a
usage summary for the restart-information buffers in a system. Using a quiet
system allows you to examine an individual restart-information buffer without
having it overwritten. If you have determined which restart-information buffer
you want to see in detail, invoke crash and issue the following command to
receive a detailed account of everything that is still in the restart-information
buffer. The - (dash) option causes the long form of the listing to be output.

resinfo - buffer number

If you are not sure which buffer to examine, the resinfo - command displays
all the restart-information buffers.

S–2301–10011 125

General UNICOS® System Administration

5.5.3 Recovery and Signals

The UNICOS operating system supports the automatic checkpoint and restart
of batch jobs run by NQS across multiple shutdown and restart events. No
modifications are needed for batch job requests run by NQS in order to take
advantage of the UNICOS recovery facility, except in special circumstances.

There are two signals involved in the implementation of job and process
recovery. The SIGSHUTDN signal warns of impending system shutdown, and
the SIGRECOVERY signal is delivered to a recovered process. The following
sections discuss these two signals.

5.5.3.1 SIGSHUTDN

To support special batch job requests that cannot be automatically checkpointed
and restarted, and to allow limited recovery of interactive processes, a user
process can register to catch the SIGSHUTDN signal. This indicates that the
system is in the process of an orderly system shutdown.

Upon receipt of a SIGSHUTDN signal, the catching process can take steps to
record its own state for later recovery, or improve its chances for recovery by
closing unrecoverable files, and so on. Interactive processes can checkpoint and
kill themselves by using the chkpnt(2) system call, thereby creating a restart
file for later recovery.

The NQS qmgr(8) command for bringing down NQS in an orderly manner is
as follows:

shutdown grace-time

The grace-time operand specifies the length of time between notifying a job
with the SIGSHUTDN signal, and checkpointing or killing the job. Note that a
shutdown or shutdown 0 command does not send the SIGSHUTDN signal to
the jobs; rather the jobs are immediately checkpointed or killed.

Any shutdown scripts that are executed when an orderly system shutdown is
imminent should first invoke the NQS qmgr command to shut down NQS,
checkpointing all recoverable batch jobs, and then send the SIGSHUTDN signal to
all interactive processes in the system by using the killall(8) command.

5.5.3.2 SIGRECOVERY

When a process is recovered from a restart file, either by itself or as a member
of an NQS job, a SIGRECOVERY signal is posted to that process. By default, the
SIGRECOVERY signal is ignored, so a process must register a signal handler

126 S–2301–10011

Basic Administration [5]

for SIGRECOVERY if there may be action necessary (for example, to restore
previously closed unrecoverable files).

5.6 Kernel User Exit (uesyscall)

The uesyscall system call is a user exit into the kernel that allows you to write
a site-specific system call. This function gives you access to kernel structures not
otherwise available and allows a site to implement functionality in the UNICOS
operating system that requires kernel support.

Warning: The kernel user exit (uesyscall) does not meet the requirements of
a Cray ML-Safe configuration of the UNICOS operating system.

The structure of uesyscall is as follows:

int uesyscall (int subsyscall, void *paramaddress, int len);

subsyscall Sub-system call number defined by the site in
uex.h, the system call include file. The subsystem
call allows multiple system calls from one
common entry point.

paramaddress Address of the parameter list passed to the
system call. The site-defined parameter list
allows different parameters to be passed to each
subsystem call.

len Length (in words) of the parameter list. The length
argument allows different parameters to be passed
to each subsystem call.

An entry in the system call table has been added to the
uts/c1/os/sysent.c file to support the uesyscall system call. The
uts/c1/md/krn_uex_syscall.c file contains the system call source. The
associated uts/include/sys/uex.h include file contains user exit definitions.
The source for the system call and include file are distributed with source and
binary releases.

The krn_uex_syscall.c source file contains a stub routine that simply
returns. The main routine parses the input parameters and calls specified
subsystem calls, which allows you to write multiple site system calls.

If you want the system call to be accessible to any user, it is recommended that
you write a library interface to the system call. Creating a library interface allows

S–2301–10011 127

General UNICOS® System Administration

extra sanity checks and validation, and provides a cleaner, more understandable
user interface.

!
Caution: Use caution when creating a site-specific system call to avoid
introducing the ability to corrupt data and to panic the system. In addition,
the UNICOS kernel is now multithreaded. If a site adds code to update any
tables in the kernel, you may need to place multithreading locks around
the kernel structure being updated.

128 S–2301–10011

User Database (UDB) [6]

The user database (UDB) contains an entry for each user allowed to log into and
run jobs on your system. The UDB, which replaces the traditional /etc/passwd
authorization file, allows faster access to an individual user’s information than
with the user database previously supplied; it also allows safe use of multiple
sources when user information is being changed.

Warning: If your site is using SecurID, there must be consistent definitions in
the UDB and the SecurID database. See the preface of this manual for more
information on SecurID documentation.

Processes needing information about a user do not need to know the structure or
design of the UDB; library interface functions present user information in forms
compatible with traditional use. Also, Cray continues to support the traditional
/etc/passwd and /etc/group files.

The /etc/passwd file is automatically generated during UDB updates and
requires no manual modification. The /etc/group file must be manually
updated to include the proper group IDs and group names, but the group
membership lists are automatically maintained when the UDB is updated. The
/etc/acid file must be manually updated to include the proper account IDs
and account names; this file has no membership lists.

The UDB is the core component of the user limits feature, which is discussed in
Section 6.2.1, page 131. This section describes the UDB maintenance utilities.

6.1 Login Accounts and the UDB

The UDB consists of the files /etc/udb and /etc/udb.public, plus extension
files udb.index, udb.priva, and udb.pubva in the directory /etc/udb_2.
These extension files support additional fields that could not be added to the
existing files. The UDB files /etc/udb.public, /etc/udb_2/udb.index,
and /etc/udb_2/udb.pubva have public read permission and reflect all
current public information in the database. Sensitive information, such as
encrypted passwords and security fields, are present only in the files /etc/udb
and /etc/udb_2/udb.priva.

The UDB has one entry, or record, per user or resource group. Each entry
has many fields, which are divided among the UDB files. The access library
libudb(3) collects all information belonging to a specific record and presents it

S–2301–10011 129

General UNICOS® System Administration

in a combined form to the calling process. For a description of the exact content
of UDB entries, refer to the udbgen(8) man page.

Warning: For information on setting up accounts on a Cray ML-Safe
configuration of the UNICOS operating system, see Chapter 8, page 145.

6.1.1 Providing Login Accounts

A primary responsibility of any system administrator is to provide users with
system login accounts. These logins should allow users to access the system as
efficiently as possible, with the smallest possible impact on the system and
on other users.

A login needs the following two elements:

• An entry in the UDB

• A home directory for the login

Use the udbgen(8) command to create and maintain the UDB. The udbsee(1)
utility converts the database format to an ASCII file that may be used as input
to udbgen.

Although the UDB exists in an encoded form, the udbsee utility converts the
UDB into a simple text format file. The udbsee utility also provides a number
of selection and formatting options that may be used to extract data for reports
and other administrative uses. Users can always use udbsee to view their own
non-secure control parameters, and, in the form of a text file, the UDB can be
transported easily from system to system and manipulated by other UNICOS
commands.

Note that dynamic user information is updated internally in the UNICOS system
but is not written into the UDB except when certain events occur. Therefore, the
UDB files may not show the exact state of accumulated information. However,
alterations to fixed user information are immediately reflected in the UDB because
the database editor writes changes as soon as they have been verified by the
administrator. The udbpl(8) command produces reports containing information
from the kernel tables and the UDB.

6.1.2 Removing Login Accounts

To remove a login account, use the udbgen(8) delete subcommand to remove
the relevant entry from the UDB. However, because the user’s files and work in
progress may be valuable to other users working with a particular project, it is

130 S–2301–10011

User Database (UDB) [6]

more useful initially to disable the user’s ability to log in to his or her former
account. To do this, use the udbgen command to disable the login:

udbgen -c ’update:john:permbits+:system-restricted:’

After the login has been disabled long enough for authorized users to retrieve
any valuable files, you should delete the login’s home directory and files.

You may also delete the entry in the UDB at this time; it is more useful, however,
simply to keep the entry in the UDB as a record of the login’s existence. This may
prove useful in cases in which the deleted user owns files in directories other
than the home directory and also for accounting purposes.

6.2 User Control Capabilities

UDB entries can include not only general information users need to log in and
establish an initial environment, but also specific information for controlling user
limits. This section describes user limits and privileges and their use.

6.2.1 User Limits

User limits are generally applied to processes or jobs and establish the maximum
amount of a resource that can be requested. Limit information may be separated
for job (J) and process (P) usage. Most limits are actually two values; one for
batch and the other for interactive. This means that you can provide restricted
resources for interactive use, for example, without limiting a user’s batch
resources to the same degree. The following limits are available:

Resource Control

Number of processes J

CPU time J, P

Memory J, P

Secondary data segments (SDS) (Cray
PVP systems only)

J, P

Tapes J

File allocation J, P

PE limit J

MPP time J, P

MPP barrier J

S–2301–10011 131

General UNICOS® System Administration

Core file limit P

Open file limit P

Shared memory segments (Cray T90
series systems only)

J

Shared memory size (Cray T90 series
systems only)

J

Limits can be disabled by assigning a 0 value, except for CPU time, memory, file
allocation (where a zero value means unlimited), and the open file limit (which
can be set only within a range of values). When a new UDB record is created
with a minimum set of parameters, for example, as with the following command,
default values are assigned to all limit fields.

udbgen -c ’create:buck:uid:230:gids:10:’

The default values are as follows:

• Allow unlimited CPU, memory, file, and core file limits

• Deny access to all other resources (such as tapes and SDS)

• Set the open file limit to 255

• Set the process limit to the configured kernel process limit

The defaults are a property of the UDB; the administrator can change them
to site-specific defaults as desired.

6.2.2 Privileges

Privileges are enforced in several ways, depending on what they are and how the
privilege is handled in the system. Various mechanisms exist to identify privilege
violations that are affected by this control. Some privileges, such as interactive
authorization, should be made clear to the user.

There are a number of controls for establishing privileges. The following list
shows those controls necessary ("Type" can be categorized as an L or an A. The
L represents a single value privilege, such as true, false, or an integer, and an
A represents an array of privileges):

Privilege Type

Account IDs A

Compartments A

Default compartments A

132 S–2301–10011

User Database (UDB) [6]

Minimum compartments A

Default security level L

Default integrity class L

Default integrity category A

Group IDs A

Maximum security level L

Minimum security level L

Maximum integrity class L

Categories A

Permissions A

MLS permissions A

Site-specific A

Note that there are two permission fields in the UDB: permbits for user
permissions and permits for MLS permissions.

Some arrays may also be bit lists, as used for security controls. Some privileges,
such as access to tapes and SDS, are implied by nonzero values in the relevant
limit control field and do not require an explicit privilege in this category.

Space for 32 site-specific privilege bits is provided. There is no use of these
bits in the released system.

6.2.3 Quota Fields

The UDB includes three fields for controlling quotas:

Field Description

CPU quotas Tenths of seconds allotted

CPU quotas used Accumulated CPU time in tenths of a second

Login failures Quotas for UNICOS MLS feature

6.2.4 Other UDB Information

There is a collection of items that do not fit neatly into the limit, quota, or
privilege categories previously described. They mostly involve the areas of data
migration and the fair-share scheduler, as follows:

S–2301–10011 133

General UNICOS® System Administration

Control Category

Authorized shares Share

Decaying accumulated costs Share

Last decay time Share

Nice increment System

Online thresholds Data migration

Password aging System

Media selection Data migration

An example of fair-share scheduling using UDB entries can be found in UNICOS
Resource Administration.

6.3 The /etc/passwd and /etc/group Files

The /etc/passwd and /etc/group files exist and can be used with programs.
They are automatically updated when the UDB is updated. You do not need to
update these files, except to add group names and group IDs to the /etc/group
file when a new group is added.

6.3.1 The /etc/passwd File

The /etc/passwd file (see passwd(5)) is maintained by the udbgen(8)
command and is provided for compatibility with previous systems (and will
never be removed because it is an integral part of the UNIX system). This file is
not capable of performing UNICOS user validation.

An entry in /etc/passwd has the following format:

login:passwd:uid:gid:comment:home:shell

login The identifier for the login. The user uses this as the name
under which to log in to the system. It is often helpful to the
administrator (and to the system’s users) if there is some evident
logic behind the assignment of login names to users; typical
examples include the user’s initials, last name (plus a first initial),
or employee identification number. Alternatively, because the
who(1) utility lists login names of those logged in to the system,
login names can be arbitrary strings of letters or numbers if the
users of those logins require anonymity when using the system.

134 S–2301–10011

User Database (UDB) [6]

passwd The encrypted string representing the login’s password. This string
is always an asterisk (*) in a system using the UDB.

uid The numeric user identification number given to the user when he
or she logs in to the login account.

gid The numeric group identification number given to the user when
he or she logs in to the login account. The gid should be a valid
group listed in the /etc/group file (see group(5) for details on
the file format).

comment Traditionally used to store the name of the user for whom the
login has been created.

home The path name of the login’s home directory, to which the user’s
current directory is set when the user logs in. The home directory
must exist, and its user and group ownership should be set to the
user’s uid and gid numbers. The directory’s permissions should
be set so that the owner has read, write, and execute (search)
permission for the directory; the group and other permissions may
be set according to local security considerations.

shell The program executed as the user’s login shell program. This field
may be left blank, in which case the shell program is the standard
shell /bin/ksh (see ksh(1)).

6.3.2 The /etc/group File

The /etc/group file (see group(5)) is provided to translate group names to
group IDs and group IDs to names. It is not used for user validation.

An entry in /etc/group has the following format:

group:passwd:gid:logins

group The group name. The name can be up to 8 characters long, the
first of which must be alphabetic; the remaining characters are
alphanumeric.

passwd The encrypted password for the group. This field is always set to
an asterisk (*) (this field is unused) in a system using the UDB.

gid The numeric group ID. The gid is an integer with 0 through 99
reserved for system use and 100 through 65535 available for user
group identification.

S–2301–10011 135

General UNICOS® System Administration

logins A list of login names as defined in the UDB. The names are
separated by commas.

If the list of login names is longer than approximately 400 characters, additional
lines are created in /etc/group to hold the remainder of the membership list.
All the lines for a single group are adjacent in the file, and the group, passwd, and
gid fields in each line for each group member are identical. This accommodates
groups with an arbitrarily large membership, while keeping the line length
in /etc/group within reasonable bounds and imposing minimal impact on
existing usage.

You can edit this file in order to add a new group name. To do so, add a line
similar to the following:

group_name:*:137:

Otherwise, a group name cannot be used with the udbgen gid field directive,
only group ID numbers. When a new group ID number is introduced through
the udbgen gid field directive, a default name, G-nnnnn, is created (where
nnnnn is the gid number). You may later change this name in /etc/group to
something more meaningful.

6.4 The nu Command

You can use the nu(8) command to create, modify, delete, and eliminate login
accounts. If you prefer to use a graphical interface to manage user logins, you
can use the xadmin(8) command, which has all the functionality of nu. For
additional information about the xadmin command, see the xadmin(8) man
page or the online tutorial in xadmin.

The nu command handles file locking and syntax checking, and it permits the
use of configurable defaults, making the process of maintaining large numbers
of logins easier.

When adding new logins, the nu program prompts for the login ID, password,
name, and other information for each new user. The program facility then creates
the login, creates its directories, initializes the directory contents, and makes
an entry in a log file.

When modifying logins, the nu program asks repeatedly for login names and
instructions for the changes that are to be made to those logins. When the
changes are completed, it sorts the updated login records and merges them
simultaneously into the UDB.

136 S–2301–10011

User Database (UDB) [6]

When logins are deleted, an entry exists in the UDB for the deleted logins. This
prevents those specific UIDs from being reused, and it permits accounting data
to be meaningful after the accounts are deleted. The program repeatedly asks
for the names of logins to be deleted and verifies the deleting of files within
those logins.

The nu program can also eliminate logins. In this case, nu deletes almost all
information pertaining to a specified login ID.

A complete description of the use of nu and the setup of the configuration file are
presented in the UNICOS Administrator Commands Reference Manual.

S–2301–10011 137

Crash and Dump Analysis [7]

This chapter includes information on system crash analysis and recovery,
including diagnosis and debugging of system problems.

Warning: This chapter contains warnings and information critical to the use of
a Cray ML-Safe configuration of the UNICOS operating system.

This chapter does not answer all questions or solve all problems. If you need
assistance in debugging a system crash, or if you have a recurring UNICOS
kernel problem, contact Global Product Support. It is important to have available
all dumps and a copy of the UNICOS operating system that caused the crash.

7.1 Introduction

This chapter describes system crash analysis and recovery, including the dump
process and the operation of the UNICOS kernel debugger crash(8). It also
discusses ways to diagnose and debug system problems.

When recovering from system crashes, you should have the following
information available:

• UNICOS kernel source code, if available

• UNICOS Administrator Commands Reference Manual

• UNICOS User Commands Reference Manual

7.2 Using the crash Program

The crash(8) command is an interactive program that helps locate the problem
causing the error by examining the UNICOS system image, which can be either
the image of the running system or the image saved following a system crash.
crash provides an interactive interface that formats and displays system control
information from the system memory image.

After you enter the crash command, you can examine the following elements of
the UNICOS system memory image:

• Buffer and buffer headers

• Callout table

S–2301–10011 139

General UNICOS® System Administration

• File table

• I-node table

• Map tables (coremap only)

• Buffers

• Mount table

• Process table

• Pseudo-tty table and tty table

• Other system tables

• Stack dump, traceback, and frame package formatting

• System (dump) statistics

• User structures

To use crash effectively, you need a dump, knowledge of the computer system
instruction set, and familiarity with the UNICOS system kernel. Alternatively,
you can run crash on an active system by using /dev/mem instead of a dump.

Many commands are available in the crash utility; those described in this
manual are proc, stat, trace, stack, and ut. Two especially valuable features
of crash are pipes and redirection, which allow crash to interface easily with
other UNICOS commands.

Once inside the crash utility, you can enter ? or help to produce an abbreviated
list of commands. Refer to the crash(8) man page for the syntax and description
of each command.

!
Caution: System dumps and the data obtained and written when executing the
crash command should be labeled at syshigh on UNICOS MLS and Cray
ML-Safe system configurations to avoid accidental disclosure of protected
information.

7.3 Analyzing System Problems

This section is a guide to identifying problems that lead to a crash, not a
step-by-step guide for debugging crashes. Experience in debugging and
knowledge of the UNICOS kernel program are the keys to success in debugging a
crash.

140 S–2301–10011

Crash and Dump Analysis [7]

System crashes can be divided into the two following categories:

• Panic

• Running system

7.3.1 Panic

The UNICOS kernel program panics when it encounters an unrecoverable
hardware or software problem. When UNICOS panics, a panic message is
displayed on the operator’s workstation. The SYSDUMP1? prompt is displayed
and the operator is given the opportunity to perform a system dump.

7.3.1.1 Debugging Panics

To debug a panicked system, follow these steps:

1. Use the stat command (see crash(8)), which tells you why the system
panicked, the time of the crash, how long the system was up, and the system
name. Debugging concentrates on the CPU that detected the panic condition.
This information is displayed by stat.

2. Executing the stat command reports the process slot of the panicked
process. For example, the output of the stat command may include the
following:

Panic process: p[76]

You can use this process number as the argument to the stack command, as
in the following example:

stack 76

Executing stack in this manner produces the kernel stack traceback for the
panicked process.

3. Use the ut command (see crash(8)) to examine the system trace buffer. The
trace buffer provides a history of the most recent action within the UNICOS
system. Try to correlate the trace buffer entries to the data on the stack.

4. Check the load on the system by using the proc command (see crash(8)) to
display all of the current processes. Pay particular attention to the number of
swapped processes or large numbers of similarly named processes.

S–2301–10011 141

General UNICOS® System Administration

The stack traceback or the trace buffer should have pointed you to the failing area
within UNICOS. If the stack data appears to be correct, check the per-process
data in the process table and user area for the crashed CPU.

Beyond this point, the number of causes of a panic are too numerous to list. Your
best strategy is to use crash(8) to examine the details of the data structures in
the failing area of the system and to compare the data values for both a running
system and the UNICOS kernel source code, if available.

!
Caution: Security administrators should examine system dumps for security
audit data that may have been generated, but not written to the official security
log. The administrator can examine the dump via crash(8) using slog and
rslog, and by using the reduce(8) command.

7.3.1.2 Buffer Flushing

The UNICOS operating system provides a feature that minimizes file system
corruption by flushing buffered data to its target I/O devices before the system
is halted. You implement this feature as a option configurable at compile-time.
By default, it is enabled at configuration. To disable the feature, define the
FLUSHONPANIC variable in the config.h file as 0 and compile the kernel. You
may do this manually or through the install tool.

When this feature is enabled, three types of buffered data are flushed:

• Kernel data structures that must be updated on disk, such as mount, inode,
and quota table entries

• UNICOS system buffer cache

• Logical device cache (ldcache)

This feature significantly reduces the amount of user and system data lost when a
UNICOS system crashes as a result of a call to the panic() routine. The reduction
of lost data minimizes file system corruption.

7.3.2 Running System

This section discusses systems that have not crashed, but are not running
normally. You may still be able to log into the system, or there may be some users
who are still logged in and are able to use the system effectively.

Sometimes it is impossible to fix a system, even when it is still running. If this is
the case, log off as many users as possible, and issue the sync(1) and ldsync(8)
commands. When you halt the system, get a dump so that the problem can be

142 S–2301–10011

Crash and Dump Analysis [7]

studied and solved. This is an extreme measure, so it should not be done without
first exhausting all measures for fixing the system while it is still active.

Perform the following steps when the system is not running normally:

1. Examine the system console for error messages.

2. If you are able to log in to the system, use the ps(1) command with the -elf
options, as follows, to get a list of all processes on the system:

ps -elf

Check for the following conditions:

• Swapped processes. If you notice a large number of processes swapped
out (the PC_LOAD bit in per-process flags is off), try to determine what
is causing the swapping. Several large processes can cause the system
to begin swapping, which degrades the response time for interactive
processes.

• Running processes. A large number of running processes should not
degrade interactive response time, but they can degrade turnaround time
for utilities that are CPU-intensive, such as compilers, assemblers, and
pattern-matching tools.

• Zombie processes. If you notice more than a few zombie processes,
look at the PGRP label of the processes in question to determine what
happened to the parent process. If the parent is init, use crash to check
the WCHAN address (ds address) and try to determine why init is not
waiting for its child processes.

7.4 The fdmp Command

The fdmp(8) command formats system dump images. It also provides the ability
to format data from the IOS, which is not available from the crash(8) command.
In addition, fdmp allows 132-column output suitable for line printers.

S–2301–10011 143

UNICOS Multilevel Security (MLS)
Feature [8]

This chapter describes the UNICOS multilevel security (MLS) feature for system
and security administrators. The UNICOS security environment is established at
UNICOS build time.

The information in this chapter is intended for system and security
administrators. It is assumed that you have read and understood the information
presented in the UNICOS Multilevel Security (MLS) Feature User’s Guide.

In general, a secure system must protect information from unauthorized
disclosure and modification. A secure system must also be designed to guarantee
that established security mechanisms are correctly implemented and consistently
maintained. The UNICOS MLS feature provides mechanisms to protect both
system integrity and sensitive information.

Warning: In previous releases of UNICOS operating system documentation,
the term Trusted UNICOS was used to refer to the configuration that most
closely approximated the B1 evaluated configuration of UNICOS release
8.0.2. Starting in the UNICOS 10.0 release, this configuration is referred to as
the Cray ML-Safe configuration of the UNICOS operating system. Although
the Cray ML-Safe configuration of the UNICOS operating system is not an
evaluated product, this configuration fully supports all functionality described
in the B1 evaluation criteria.

Design specifications for the MLS feature were derived from the Department of
Defense Trusted Computer System Evaluation Criteria (TCSEC). The UNICOS MLS
feature implementation strategy is defined by the following basic DoD control
objectives:

• Security policy

• Accountability

• Assurance

These Department of Defense (DoD) objectives are implemented by UNICOS
MLS feature mechanisms that can be divided into the following security policies:

• Privilege and system management (also referred to as trusted facility
management)

• Mandatory access control (MAC)

S–2301–10011 145

General UNICOS® System Administration

• Discretionary access control (DAC)

• Identification and authentication (I&A)

• Object reuse

• Installation and configuration

• Auditing

The following sections describe the mechanisms and associated procedures for
the UNICOS MLS feature.

8.1 Overview of UNICOS Security Mechanisms

UNICOS security mechanisms are either part of the traditional UNICOS
operating system (for example, file permission bits) or are enhancements to
traditional UNICOS structures or functions (for example, mandatory access
controls). These mechanisms and how they correlate to the Trusted Computer
System Evaluation Criteria (TCSEC) are shown in Figure 5.

146 S–2301–10011

UNICOS Multilevel Security (MLS) Feature [8]

• Identification and authentication
- user name/password sequence

• Auditing

Enforces accountability
requirements

• Discretionary access control (DAC) mechanism
- file permission bits
- access control lists (ACLs)

• Mandatory access control (MAC) mechanism
- security labels for subjects and objects
- IPSO/CIPSO on networks
- device labeling
- multilevel directories
- network access list (NAL)

• Object reuse

Enforces security policy
requirements

• Privilege mechanism
-

- allows overriding of MAC/DAC and other security

policy restrictions
- use of this mechanism is restricted and duration of

 privilege is limited

• System management
- allows separation of traditional root capabilities
- allows for definition of different administrative roles

 and tasks

Enforces assurance
requirements

a11383

primarily needed to allow system management policy
required by Cray ML-Safe system configuration

Figure 5. UNICOS Security Mechanisms

Figure 6 presents a high-level overview of how the following security
mechanisms interact in the sequence of UNICOS tasks:

• Identification and authentication (I&A)

• The security label portion of mandatory access controls (MAC) and
discretionary access controls (DAC)

• The PAL-based privilege mechanism

S–2301–10011 147

General UNICOS® System Administration

NAL WAL

Networking
layer

Remote
workstation

user

UDB

Executable
file

User's security
attributes

Security attributes

execution

user

request

MAC, DAC,
privilege

checks for
user

Process
w/privilege

Process
w/ no

or

privilege

I&A

Access checks &
privilege assignment

MAC, DAC,
privilege

checks for
process

MAC, DAC,
privilege

checks for
process

Process
execution

Process
execution
successful

Process
execution
successful

attributes in
kernel tables

telnet(1) login(1)

'User s

a11003

security

Figure 6. Interaction of UNICOS Security Mechanisms

Security auditing is not shown in Figure 6 because auditing overlays the whole
system. That is, auditing records can be generated by various actions, which are
not easily shown in the figure. For an introduction to auditing, see Section 8.8,
page 258.

Security object reuse is not shown in Figure 6 because this mechanism is inherent
in the UNICOS operating system and is not easily shown in the figure. For an
introduction to object reuse, see Section 8.6, page 227.

I&A mechanisms are explained in more detail in Section 8.5, page 202. DAC
mechanisms are described in more detail in Section 8.3, page 169. MAC
mechanisms are described in more detail in Section 8.4, page 171. System
management mechanisms are described in more detail in Section 8.2, page 148.

8.2 System Management

Many different administrative tasks are performed by multiple administrators
with differing levels of expertise and authority. Operator tasks often differ from
those of a security or system administrator. On a traditional UNIX system, the
use of root (USER ID 0) allows for relatively easy administration of a computer
system. root can override virtually all system restrictions in order to perform

148 S–2301–10011

UNICOS Multilevel Security (MLS) Feature [8]

a task, possibly with no way to trace the action back to a specific user. This
potential lack of administrative accountability is undesireable.

System management (or trusted facility management (TFMgmt), as it is referred
to in the TCSEC) allows administrative work to be accomplished on a UNICOS
system. The principal requirements of system management, as defined in A
Guide to Understanding Trusted Facility Management, publication NCSC-TG-015,
are as follows:

• The separation of operator and administrator functions.

• The logical (or physical) separation of the database information
corresponding to those functions.

• The implementation of least privilege such that functions have only the
minimum necessary privileges to the databases.

On a UNICOS system, system management is supported by the following
mechanisms:

• A super-user mechanism

• The privilege assignment list (PAL)-based privilege mechanism

The super-user mechanism (enabled by the PRIV_SU configuration parameter)
allows the root user to override virtually all system restrictions. This
mechanism provides the traditional method of system administration support on
a UNICOS system.

The PAL-based privilege mechanism uses privilege assignment lists (PALs) to
support the principle of least privilege, which is the ability to grant each subject
the most restrictive set of privileges for only as long as needed to perform a set
of authorized tasks.

With the PAL-based privilege mechanism, PALs are associated with files that
administrative users typically execute. When a user executes a file, privilege
attributes from the PAL are assigned to the resulting process. The assigned
privilege attributes can vary, depending on the active category of the user.

A process with no active categories (that is, running on behalf of a
nonadministrative user) can also be assigned privilege attributes from the
PAL of the file. This provides the traditional set-user-ID-root functionality by
allowing nonadministrative users to perform limited administrative functions in
a controlled environment.

The PAL-based privilege mechanism is always available and cannot be
configured through a configuration option. However, this mechanism is

S–2301–10011 149

General UNICOS® System Administration

effective only after PALs have been assigned to files by using the privcmd(8),
setpal(7X), and/or setprivs(8) commands.

Warning: In UNICOS 9.2 and later releases, all sites are required to assign
PALs. The supported privilege configurations are as follows:

• PALs augmented by PRIV_SU

• PALs only

The following sections provide more information about the super-user
mechanism, the PAL-based privilege mechanism, and information about
UNICOS categories used by the PAL-based privilege mechanism.

8.2.1 The Super-user Mechanism (PRIV_SU)

The UNICOS operating system supports a fully functional super-user
mechanism. This mechanism works as the super user does on earlier UNICOS
systems that do not use the MLS feature, and it allows a process with an effective
user ID of 0 to override UNICOS restrictions.

The PRIV_SU configuration parameter enables the use of the super-user
mechanism. To enable or disable this parameter, use the Configure
system->Multilevel security (MLS) configuration->System
options->Super-user privilege policy? selection in the UNICOS
Installation and Configuration Menu System. The default setting for this
mechanism is ON.

8.2.2 UNICOS Categories

UNICOS categories are used on systems that use the PAL-based privilege
mechanism to identify administrative roles. Each role is represented by a
category. A category has a name and a corresponding bit value within a 32-bit
mask. The following categories are defined in the tfm.h file:

Category Description

secadm Defines the security administrator role

sysadm Defines the system administrator role

sysops Defines the system operator role

unicos Not currently used/reserved for use by Cray

sysfil Not currently used/reserved for use by Cray

archive Not currently used/reserved for use by Cray

150 S–2301–10011

UNICOS Multilevel Security (MLS) Feature [8]

datamgr Defines the data migration daemon

netadm Not currently used/reserved for use by Cray

diagadm Defines the diagnostic administrator role

daemon Not currently used/reserved for use by Cray

system Defines the single-user mode administrator
for systems using the PAL-based privilege
mechanism.

smail Not currently used/reserved for use by Cray

Note: The category names described in the previous list are reserved for
use by Cray.

The user responsible for creating or modifying administrative accounts should
assign each administrative user an appropriate set of authorized categories in
the user database (UDB). The authorized categories define the set of categories
available to the administrative user.

An administrative user can activate an authorized category (or categories) by
using the setucat(1) command. The user’s active category identifies his or her
current administrative role.

The UNICOS Installation and Configuration Menu System does not support the
ability for a site to define local administrative categories. If your site requires
categories other than those defined by Cray, a manual procedure for defining
local administrative categories is available to sites with access to UNICOS source
code.

8.2.3 The PAL-based Privilege Mechanism

The PAL-based privilege mechanism uses categories to define administrative
roles and abilities. The following general policy is used by the PAL-based
privilege mechanism to define the types of abilities allowed to the administrator
roles:

• Users with an active system (for single-user mode) or secadm category
are allowed to override all command restrictions, including security label
restrictions.

• Users with an active sysadm category are allowed to perform typical
system administrator functions, but are usually constrained by security
label restrictions.

S–2301–10011 151

General UNICOS® System Administration

• Users with an active sysops category are limited to performing typical
system operator functions.

The administrative abilities that are specific to a command on a system using the
PAL-based privilege mechanism can be found in the man page documentation
for that command. Administrative abilities allowed by a command can be
modified by updating the privilege assignment list (PAL) associated with that
command.

Warning: The PAL-only configuration of the UNICOS operating system is
highly restrictive, designed to meet the needs of the evaluated configuration.
This configuration is only recommended where the evaluated configuration is
absolutely required.

The system management policy supported by the PAL-based privilege
mechanism does not automatically grant special abilities to users based on their
active category. Rather, special abilities are granted according to the effective
privileges and privilege text of a process.

A process is assigned privileges and privilege text when the user executes an
executable file that has been assigned a PAL. A PAL provides mapping from a
user’s active category to the privileges and privilege text of the process. In
general, the UNICOS kernel grants special abilities based only on the effective
privileges of a process, while UNICOS commands grant special abilities based
only on the privilege text of a process.

An administrator can use the setpal(8) and setprivs(8) to set the PAL
attributes of a file. Also, the privcmd(8)command can be used to assign the MLS
attributes (including PALs) to files.

For an overview of how PALs and categories work to enforce the assignment of
privileges, see Section 8.2.3.1.

8.2.3.1 Overview of Process Privilege Attributes

The following sections provide an overview of how process privilege attributes
that are obtained from the privilege assignment list (PAL) are used.

8.2.3.1.1 The Process

When a user executes a file, the resulting process is assigned privilege attributes
based on the user’s active category and privileges and the PAL of the file. The
privilege attributes of the process consist of permitted privileges, effective
privileges, and privilege text. Effective privileges are checked by the UNICOS
kernel and allow a process to override specific restrictions. Permitted privileges

152 S–2301–10011

UNICOS Multilevel Security (MLS) Feature [8]

are the privileges that a process can make effective. Privilege text is checked by
UNICOS commands and allows a process to perform special actions that are
controlled entirely within the command.

8.2.3.1.2 Privileges

The UNICOS operating system has a unique privilege for each ability
that is traditionally associated with the user root. For example, the
PRIV_DAC_OVERRIDE privilege overrides the permissions mode and access
control list (ACL) protections on any object.

The UNICOS system also has defined privileges to override the UNICOS
security restrictions. For example, the PRIV_MAC_WRITE privilege overrides the
mandatory access controls for writing to an object.

When a process issues a system call to request a restricted action, the UNICOS
kernel verifies that a process has the specific effective privilege(s) needed to
perform the action. For example, a process may issue the open(2) system call
to open a file, but is denied discretionary access control (DAC) access by the
permissions mode and ACL of the file. For this example, the UNICOS kernel
would verify if the process had the PRIV_DAC_OVERRIDE privilege. If it does,
then the DAC access is granted; if not, the kernel rejects the request to open
the file.

8.2.3.1.3 Privilege Text

Although most processes rely on checks done by the UNICOS kernel to control
privileged operations, there can be times when the kernel cannot completely
enforce the desired policy. This is when privilege text is used.

An example of using privilege text can be shown with the passwd(1) command.
On a traditional super-user system, the passwd command allows a user to
change any user’s password if the user executing the command has the real user
ID of root. If the user is not root, then passwd allows the changing of only
the current user’s password.

On a system using the PAL-based privilege mechanism, the passwd command
verifies if it is running with the chgany privilege text. If it is, the passwd
command allows the changing of any user’s password. If not, the passwd allows
the changing of only the current user’s password. If the super-user mechanism
is also being enforced, the passwd command also allows real user ID root to
change any user’s password.

S–2301–10011 153

General UNICOS® System Administration

Enforcement of, and abilities granted by, a specific privilege text is unique for
every command. The chgany privilege text can be used in other commands to
control restricted actions that are unrelated to changing passwords. Conversely, if
another command can be used to change passwords, it can use any privilege text
value to enforce the same policy as the passwd command.

8.2.3.2 UNICOS Security Privileges

The UNICOS privileges are a granular representation of traditional super-user
abilities that are enforced within the UNICOS kernel. That is, instead of allowing
a process with effective user ID 0 to override all UNICOS kernel restrictions, a set
of specific privileges have been defined that allow a process to override specific
sets of UNICOS kernel restrictions.

A process with the following privileges effective is allowed to perform the action
described:

Privilege Description

PRIV_ACCT

The following is allowed:

• Allowed to use the acct(2) system call, which is used to
enable or disable process accounting.

• Allowed to use the dacct(2) system call, which is used to
enable or disable process or daemon accounting.

• Allowed to use the devacct(2) system call, which is used to
control device accounting.

• Allowed to use the wracct(2) system call, which is used to
write accounting records.

PRIV_ADMIN

Allowed to perform restricted network-related administrative
functions. Also allowed to perform various restricted system
administrative functions where other privileges do not apply.

PRIV_AUDIT_CONTROL

The following is allowed:

• Allowed to open the audit log device file (/dev/slog) by
using the open(2) system call. This privilege is used by the
auditing daemon to manage audit data.

154 S–2301–10011

UNICOS Multilevel Security (MLS) Feature [8]

• Allowed to disable kernel auditing for itself by using the
setusrv(2) system call. This privilege is used by Cray
ML-Safe processes to manage their own auditing.

• Allowed to obtain its current auditing state by using the
getusrv(2) system call. If a process does not have this
privilege effective when calling getusrv, the current
auditing state that is returned is indeterminate. This
functionality prevents a process from determining whether its
actions are being audited.

PRIV_AUDIT_WRITE

Allowed to use the slgentry(1X) system call, which is used to
write data to the audit trail.

PRIV_CHOWN

When {_POSIX_CHOWN_RESTRICTED} is enabled, a process
that uses the chown(2) system call is allowed to change the
owner of a file and specify a group to which it does not belong.

PRIV_DAC_OVERRIDE

Allowed to override the permission bit and access control list
(ACL) protections on named objects. This privilege is applicable
to system calls that accept path name parameters.

PRIV_FOWNER

Allowed to act as the owner of a file. This privilege is applicable
to system calls that are used to set file attributes.

PRIV_FSETID

Overrides the following restrictions:

• The effective user ID of the calling process must match
the file owner when setting the set-user-ID (S_SUID) or
set-group-ID (S_SGID) mode bits on that file.

• The effective group ID or one of the supplementary group
IDs of the calling process must match the group ID of the
file when setting the set-group-ID (S_SGID) mode bits on
that file.

• The set-user-ID (S_SUID) and set-group-ID (S_SGID) mode
bits on a file are cleared upon successful return from the
chown(2) system call.

S–2301–10011 155

General UNICOS® System Administration

• When FSETID_RESTRICT is enabled, a process cannot create
or manipulate set-user-ID or set-group-ID files as allowed on
traditional UNICOS systems.

PRIV_IO

Allowed to perform restricted tape and disk I/O related
functions. This privilege is applicable to system calls that make
use of I/O drivers.

PRIV_KILL

Allowed to send a signal to a process that it does not own.

PRIV_LINK_DIR

Allowed to create or delete a hard link to a directory.

PRIV_MAC_DOWNGRADE

The following is allowed:

• Allowed to downgrade the active security label of an object.

• Allowed to relabel a socket as multilevel or "fuzzy."

PRIV_MAC_READ

The following is allowed:

• Allowed to override security label protections on an object
when attempting to gain read, execute, or search permission
to that object.

• After a process obtains read access to an object (for example,
through the open(2) system call), this privilege ensures that
the process may continue to read the contents of that object,
even if the security label of that object is modified.

PRIV_MAC_RELABEL_SUBJECT

Allowed to set its authorized and/or active MLS attributes to
any value.

PRIV_MAC_UPGRADE

The following is allowed:

• Allowed to upgrade the active security label of an object.

• Allowed to relabel a socket as multilevel or "fuzzy."

156 S–2301–10011

UNICOS Multilevel Security (MLS) Feature [8]

PRIV_MAC_WRITE

The following is allowed:

• Allowed to override security label protections on an object
when attempting to gain write permission to that object.

• After a process obtains write access to an object (for example,
through the open(2) system call), this privilege ensures that
the process may continue to write the contents of that object,
even if the security label of that object is modified.

PRIV_PAL_KEEP

Overrides the restriction that, when the contents of a file is
modified, all associated file privileges and PAL category records
are cleared.

PRIV_POWNER

Allowed to act as the owner of a process. This privilege is
applicable to system calls that are used to set or retrieve
attributes of other processes.

PRIV_PROC_ACCESS

Overrides the restriction that a /proc file process that is not the
calling process cannot be accessed if the /proc file process has
the PC_NOCORE flag is set.

PRIV_RESOURCE

Allowed to use system calls that set or retrieve session resource
attributes (for example, limits, nice values, and so on).

PRIV_RESTART

Allowed to create or set the attributes of a restart file.

PRIV_SETFPRIV

Allowed to set file privileges and PALs.

PRIV_SETGID

Allowed to change its real group ID.

PRIV_SETUID

Allowed to change its real or saved user IDs.

S–2301–10011 157

General UNICOS® System Administration

PRIV_SOCKET

Allowed to access a privileged socket.

PRIV_TIME

Allowed to set a time adjustment value for the system clock.

8.2.3.3 Process Privileges

A process is allowed to override system restrictions that are enforced by the
UNICOS kernel only if it possesses the appropriate granular privilege or
privileges that are required to override those restrictions. Every process has
two sets of privileges: permitted and effective. These privileges are defined
as follows:

Privilege set Description

Permitted privileges Privileges that are authorized for use by a process.
These privileges do not allow a process to override
system restrictions. The permitted privileges of a
process are a superset of its effective privileges.

Effective privileges The privileges with which a process is currently
functioning. These privileges are checked by the
kernel to determine if the process can override
system restrictions. The effective privileges of a
process are a subset of its permitted privileges.

A process can add or remove any of its permitted privileges to or from its
effective privileges. The permitted privileges serve as a base set of privileges
that can be made effective. A process cannot add privileges to its permitted
privileges, but it can remove privileges.

8.2.3.4 Privilege Assignment List (PAL)

A process is assigned permitted and effective privileges when a user executes an
executable binary file that has been assigned a privilege assignment list (PAL).
A PAL is comprised of file privileges and PAL category records, which are
explained in the following sections.

8.2.3.4.1 File Privileges

Every executable binary file has three sets of privileges: allowed, forced, and
set-effective. When a process executes a executable binary file, the permitted and
effective privileges of a process are modified, based on the privileges of the file. If

158 S–2301–10011

UNICOS Multilevel Security (MLS) Feature [8]

a file has not been explicitly assigned file privileges, the default value for each set
of privileges is the null set. File privileges are defined as follows:

Privilege set Description

Allowed privileges The maximum set of privileges that are inherited
from the process that executed the file. The
intersection of the allowed privileges with the
permitted privileges of the process becomes the
permitted privileges of the new image process.

Forced privileges These privileges are unconditionally added to the
permitted privileges of the new process image.

Set-effective privileges These privileges are made effective for the new
process image. Only the privileges that are also
permitted for the process can be made effective.

An administrator can modify the privilege sets of a file by using the setprivs(8)
command.

8.2.3.4.2 PAL Category Records

After the permitted and effective privileges of a process have been initialized
using the allowed, forced, and set-effective file privileges, the permitted and
effective privileges of a process are further constrained based on the user’s active
category. This refinement is performed by using PAL category records.

A PAL category record is comprised of three components: an active category,
privileges, and privilege text. Each record is in the following form:

Active_category:Privileges:Privilege_Text

When a user’s active category matches that of a PAL category record, the
permitted and effective privileges of a process are further constrained by the
privileges specified in that record. A PRIV_NULL privilege in the Privileges
field indicates that no privileges are assigned to the process.

The privilege text value in the record is also assigned to the process. A
TEXT_NULL privilege text in the Privilege_Text field indicates that no
privilege text is assigned to the process.

Every executable binary file has at least one PAL category record. If a file has not
been explicitly assigned a PAL category record, the default record is as follows:

other:PRIV_NULL:TEXT_NULL

S–2301–10011 159

General UNICOS® System Administration

If a user’s active category does not match any PAL category records, then the
other PAL category record is used to further constrain privileges and to assign
privilege text. If the user has no active category, the other PAL category record
is used. The privileges and privilege text of the other PAL category record can
be modified, but the other PAL category record cannot be removed.

Warning: Cray has defined PALs for executable files in the set of Cray ML-Safe
components. If a site modifies a UNICOS Cray-ML Safe component PAL for a
file to define a local administrative policy, all PAL category records must be
defined in terms of the privileges and privilege texts defined by Cray for that
file. The site should modify only the active categories specified in the PAL
category records and include only the privilege text values as specified on
the man page for that file.

Assigning PALs to files that are not part of the set of Cray ML-Safe
components, or modifying UNICOS Cray ML-Safe component PALs for files
such that a PAL specifies a set of privileges not defined for that file by Cray,
should not be done on a Cray ML-Safe system configuration.

An administrative user can update the PAL category records of a file by using
the setpal(8) command.

8.2.3.4.3 Privilege Text

Privilege text is assigned to a process through a PAL category record. This text is
a character sequence of up to 8 characters in length. Privilege text is associated
only with PAL category records that have a specific active category. That is, it is
not typically associated with the other PAL category record.

Privilege text is used to identify a type of administrative user. For example, a
command may grant special abilities to a specific type of administrative user.
However, if the command just checked for a specific active category, there would
be little flexibility for a site to customize the administrative policy.

Instead, commands can check for a specific privilege text to determine if the
user should be granted special abilities. This allows a site to customize the
administrative policy by updating the PAL category records with various active
categories, but specifying the privilege text that the command checks.

A command uses the cmptext(2) system call to check privilege text values. You
can use the privtext(1) command to display the privilege text that is assigned
if a user executes a specific command. See the UNICOS User Commands Reference
Manual for examples on using this command.

160 S–2301–10011

UNICOS Multilevel Security (MLS) Feature [8]

8.2.3.5 Propagation of Privileges

Figure 7 shows how the process privilege state, the file privileges, and the
privilege assignment list (PAL) form and propagate privileges across an exec(2)
system call.

Authorized categories

Permitted privileges

Active category Active_category : Privilege_set : text

Process image
before exec(2)

Effective privileges

Privilege text

(MATCH)

File privilege
assignment list

Forced privileges

Allowed privileges

Set-effective privileges

File privilege sets

exec(2)

(AND) (AND)

(OR)

Effective privileges

Privilege text

Permitted privileges

Process image
after exec(2)

Authorized categories

Active category

(AND)

a10161

Figure 7. Propagation of Privileges

8.2.3.6 Super-user PALs

To make administrative applications function on a system using privilege
assignment lists (PAL), changes to application source code are often required.
Simply assigning a privilege assignment list to an application does not guarantee
that the application will run properly.

S–2301–10011 161

General UNICOS® System Administration

Administrative applications often contain internal checks for real and/or
effective user ID 0 and can grant special abilities to users with those attributes.
Set-user-ID root applications often toggle their effective user ID between user ID
0 and the user’s real user ID to control the availability of traditional root abilities.

On a system using PALs, dependence on user ID 0 is not desirable because
administrative users on such a system do not necessarily run with user ID 0.
Applications that check for user ID 0 may not grant administrators the abilities
that they require or, in the worst case, the application can simply fail to run.

Modifying application source code to make it work on a system using PALs
may not be an option for some Cray sites. Sites may not have the technical
understanding of application source code that is necessary to safely modify it or
do not always have access to application source code.

The goal of super-user PALs is to provide a relatively easy way for customers to
make applications work on a system using PALs without requiring modifications
to application source code.

To make an administrative application run on a system using PALs, the
application executable binary file must be assigned the priv_root flag. This
flag can be assigned using the spset(1) command.

The file should also be assigned a PAL. To guarantee that the program runs with
all traditional root abilities, the following file privileges should be assigned:

File privileges Privilege

Allowed PRIV_NULL

Forced PRIV_ALL

Set-effective PRIV_ALL

The following PAL category record should also be assigned:

system:PRIV_ALL:TEXT_NULL

other:PRIV_NULL:TEXT_NULL

Additional category entries can also be specified to allow privileged execution
by various types of administrators.

When a user executes an executable binary file that has been assigned a PAL and
the priv_root flag, permitted and effective privileges and privilege text are
initially assigned to the process according to the usual privilege assignment
algorithm. However, once permitted and effective privileges have been assigned,
they propagate across subsequent program executions and are not constrained by
PALs.

162 S–2301–10011

UNICOS Multilevel Security (MLS) Feature [8]

Also, the real and saved user IDs of the process are forced to 0. If the file is a
set-user-ID file, the effective user ID of the process is initialized to the file owner.
Otherwise, the effective user ID of the process is forced to 0.

Forcing user IDs to 0 is necessary to address potential user ID 0 checks within
the application. This means that when an administrator executes such a file,
the process runs as if it were executed directly by the root user regardless of
the administrator’s original user IDs.

If a process sets the value of its effective user ID to 0, all of the permitted
privileges of the process are made effective. If a process sets the value of its
effective user ID to nonzero, the effective privileges of the process are cleared.

If a process uses the setuid(1X) system call to change its real, effective,
and saved user IDs to nonzero values (that is, removes its ability to function
as the root user), the permitted and effective privileges of the process are
automatically cleared.

8.2.3.7 Software Not Part of the Set of Cray ML-Safe Components

Cray has defined PALs for executable files in the set of Cray ML-Safe
components. UNICOS commands that are not included in the set of Cray
ML-Safe components may not have PALs defined by Cray. Such commands
may be required for administrative tasks, but will not function in a strict
PAL-based privilege environment because PALs (or super-user PALs) have not
been assigned.

The UNICOS Installation and Configuration Menu System is assigned a
super-user PAL and allows escaping to a specially-privileged shell. By escaping
to this shell and running an administrative command that is not included in the
set of Cray ML-Safe components, it allows the command to function properly in a
strict PAL-based privilege environment.

Warning: Using the specially-privileged shell in multiuser mode to run
commands that are not included in the set of Cray ML-Safe components
should not be done on a Cray ML-Safe system configuration. The
specially-privileged shell should be used only from single-user mode.

8.2.3.8 Determining PAL Privileges

To determine the privileges to include in the PAL for a command, the command
should be analyzed by investigating the code and associated documentation. The
following example shows how the cat(1) command can be analyzed.

S–2301–10011 163

General UNICOS® System Administration

The cat command displays file contents. This involves reading data from one or
more files and writing that information to standard output. The cat command
depends only on the UNICOS kernel to grant special abilities to administrative
users.

For administrative users, the cat command (through the UNICOS kernel) allows
reading data from any file and writing that information to standard output
(which can be redirected to any file). The privileges involved in overriding the
security label, permission bit, and access control list (ACL) protections of any
file are the PRIV_MAC_READ, PRIV_MAC_WRITE, and PRIV_DAC_OVERRIDE
privileges.

If you do not completely understand the high-level functionality of a command,
you can construct a set of required privileges by determining the privileges that
are used in each system call that the command directly or indirectly invokes.
The man pages for the system calls contain the privileges associated with each
system call.

The cat command does not internally alter its behavior based on any user
attributes (for example, user ID, active category, and so on). This means that only
the TEXT_NULL privilege text is required.

The cat command should not grant special abilities through the UNICOS kernel
to nonadministrative users. This means that the PRIV_NULL privilege should be
associated with nonadministrative users, which is done as follows:

other:PRIV_NULL:TEXT_NULL

The default administrative policy for PAL-based privilege ensures that users with
an active system or secadm category are allowed to override all mandatory
access and discretionary access control protections of a file. This means the PAL
category records for the system and secadm categories should contain the
PRIV_MAC_READ, PRIV_MAC_WRITE, and PRIV_DAC_OVERRIDE privileges.

The default administrative policy for PAL-based privilege ensures that users with
an active sysadm category can override only the discretionary access control
protections on a file. This means the PAL category record for the sysadm
category should contain only the PRIV_DAC_OVERRIDE privilege.

This results in the following PAL category records:

system:PRIV_DAC_OVERRIDE,PRIV_MAC_READ,PRIV_MAC_WRITE:TEXT_NULL

secadm:PRIV_DAC_OVERRIDE,PRIV_MAC_READ,PRIV_MAC_WRITE:TEXT_NULL

sysadm:PRIV_DAC_OVERRIDE:TEXT_NULL

other:PRIV_NULL:TEXT_NULL

164 S–2301–10011

UNICOS Multilevel Security (MLS) Feature [8]

Defining the allowed, forced, and set-effective file privileges can be based
on the privileges in the PAL category records. Privileges are rarely, if ever,
inherited from a previous process. This means the allowed privileges contain
only PRIV_NULL. The forced and set-effective privileges contain all the privileges
specified in the PAL category records. This means the file privileges consist of
the following:

allowed = PRIV_NULL

forced = PRIV_DAC_OVERRIDE,PRIV_MAC_READ,PRIV_MAC_WRITE

set-effective = PRIV_DAC_OVERRIDE,PRIV_MAC_READ,PRIV_MAC_WRITE

8.2.3.9 Process Privilege Management

A process should begin execution with the minimum set of permitted privileges
that are necessary to complete its task. Some or all of those privileges may also be
effective upon execution using the set-effective privileges of the executable file.

A process does not have to remove effective privileges if leaving those privileges
effective for the life of the process does not cause the process to perform an
action that compromises the system security policy. If a process must perform
an action that, because one or more privileges are effective, causes the process
to perform an action that places the system security policy at risk, the process
should remove the undesired effective privileges.

If a process must execute a file, the process should remove privileges that are not
required for propagation from its permitted (and effective) privileges.

UNICOS library routines allow a process to set, retrieve, and manipulate its
permitted and effective privileges. The names of these routines have the prefix
priv_. See the UNICOS System Libraries Reference Manual for more information
on these routines.

8.2.3.10 Privilege Text Management

A program that internally verifies user IDs and/or categories does so by
retrieving these attributes with the getuid(2), geteuid(2), and getusrv(2)
system calls. The retrieved information is then compared against a desired value
(for example, user ID 0, secadm category, sysadm category, and so on) and the
program alters its behavior accordingly.

The altered behavior may consist of granting special abilities to a user who
possesses specific attributes and granting more restrictive abilities to all other
users. For example, on UNICOS 7.0 MLS systems, the /bin/passwd command
allows a user with real user ID 0 to modify any user’s password, but restricts all

S–2301–10011 165

General UNICOS® System Administration

other users to modifying only their own password. The /bin/passwd program
accomplishes the check for real user ID 0 using the getuid system call.

In a PAL-based privilege environment, administrative tasks are not performed
by users with user ID 0. Instead, programs grant special abilities based on the
privilege text. Programs use the cmptext(2) system call to check privilege text
values. The cmptext system can be used to verify if a user has effective user ID
0, real user ID 0, or a specific privilege text value. This system call is used as a
replacement for the getuid and geteuid system calls to determine if a user
should be granted special abilities.

8.2.4 Privileged Shell

The UNICOS user environment relies on the shell for command execution,
I/O redirection, and management of a user’s session. Proper execution of the
shell requires that an administrator set up the necessary conditions for the
correct execution of commands using the shell. The administrative work may
include changing the working directory, redirecting I/O, setting the label of the
process, and so on.

Note: On the UNICOS system, the default shell (/bin/sh) is the Korn shell.

To make it possible for administrators to execute these administrative functions
correctly on a UNICOS system, privilege is needed in some cases. The privileged
shell is used on UNICOS systems to provide the mechanism needed to enable
and manage privileges within the shell when appropriate. The privileged shell is
available only if the system is using the PAL-based privilege mechanism.

This privileged shell can be used to accomplish the following tasks by the
security administrator, system administrator, and system operator roles:

• The security administrator can override all MAC and DAC restrictions on
files and directories, as well as override all restrictions on killing processes,
setting the shell process label, and changing the shell process resource
restrictions. The following shell built-in actions are privileged for the security
administrator:

– I/O redirection

– File name expansion

– cd(1)

– echo(1)

– kill(1)

166 S–2301–10011

UNICOS Multilevel Security (MLS) Feature [8]

– print (see ksh(1))

– pwd(1)

– read(1)

– setusrv(1)

– setucmp(1)

– setulvl(1)

– test(1)

– ulimit (see ksh(1))

• The system administrator can override DAC restrictions on files and
directories, kill processes regardless of process ownership (subject to the MAC
restrictions), and override restrictions on changing the shell process resource
limits. The system administrator does not have the authority to override
MAC restrictions or set process labels. The following shell built-in actions are
privileged for the system administrator:

– I/O redirection

– File name expansion

– cd(1)

– kill(1)

– pwd(1)

– test(1)

– ulimit (see ksh(1))

• The operator can kill processes regardless of process ownership (subject to
the MAC restrictions) and override restrictions on changing the shell process
resource limits. The operator does not have the authority to override MAC
restrictions, override DAC on files, or set process labels. The following shell
built-in actions are privileged for the operator:

– kill(1)

– ulimit (see ksh(1))

S–2301–10011 167

General UNICOS® System Administration

To use the privileged shell, an administrator enters the shell by activating the
appropriate administrative or operator category (by using the setucat(1)
command) and executing a subshell.

8.2.5 Overview of Access and Privilege Checks

This section shows the relationship between mandatory access control (MAC),
discretionary access control (DAC), and privilege checks by describing a
nonadministrative user login and command execution sequence.

After login(1) successfully sets up the kernel table MLS attributes for the user’ s
login shell, the user is free to execute a command. As shown in , this results in a
new child process (which is essentially a mirror image of the login shell).

Priv text

Categories

Privileges

Groups

User ID

Security label

Executable file

Security label

Permission

PAL

passed

passed

failed

no access

passed

passed

failed

no access

Priv text

Categories

Privileges

Groups

User ID

Security label

Execution
request

Kernel table
attributes for

user's login shell

and /or ACL

Privilege/
priv text

assignment

New
attributes for

process

Update child
proc table entry

Process
w/privilege
and priv text

or

Process
w/no privilege
and priv text

all done in
exec(2)

To execute an object, the security label of the subject must dominate the security label of the object. If not, a privilege check is done.

MAC
check

failed
Privilege

check
DAC
check

failed
Privilege

check

Kernel table
 attributes for child

fork(2) exec(2)

Priv text

Categories

Privileges

Groups

User ID

Security label

a11005

Figure 8. Overview of Initial MAC/DAC Checks and Assigning of Privileges

168 S–2301–10011

UNICOS Multilevel Security (MLS) Feature [8]

The exec(2) system call then verifies that the child process has access to the
command.

MAC access is granted if either of the following conditions are true:

• The active security label of the child process dominates the security label of
the command

• The child process has the appropriate privilege to override the MAC policy
for file execution

If neither condition is true, then execute permission to the file is denied.

If either condition is true, then DAC checks are performed. The group IDs and
effective user ID assigned to the login shell are compared against the permission
bits and ACL of the executable file, as defined by the algorithm outlined in the
UNICOS Multilevel Security (MLS) Feature User’s Guide.

If DAC access is granted, the process is assigned permitted privileges, effective
privileges, and privilege text based on the user’s active category and the PAL of
the file. The effective user and group IDs of the process could change if the file
was a setuid or setgid program.

8.3 Discretionary Access Control

Discretionary access control (DAC) is implemented through a set of rules that
control and limit access to an object, based on an identified individual’s need
to know and without intervention by a security officer for each individual
assignment.

This is accomplished by the use of standard UNICOS mode permission bits and
an access control list (ACL); the ACL and mode bits allow the owner of a file to
control read (r), write (w), and execute (x) access to that file. The file’s owner can
create or modify an ACL that contains the identifiers and the r/w/x permissions
for those individuals and groups that are allowed to access the file.

An ACL contains one or more ACL entries; each ACL entry defines file access
information for a user. The entry contains a user field (which defines the user’s
login name), a group field (which defines the group name), and the permissions
field (which is used to define any combination of r/w/x or define no (n) access).

The ACL entries, which define the absolute permissions, are intersected with the
file’s group (mask) bits to determine the type of discretionary access allowed; this
is called the effective permissions.

S–2301–10011 169

General UNICOS® System Administration

Object access is always governed by the mandatory policy restrictions established
by the security administrator.

Refer to the section on using ACLs in the UNICOS Multilevel Security (MLS)
Feature User’s Guide for more information on the following:

• How ACLs are used

• Examples of how to create and maintain ACLs

You can also refer to spacl(1) in the UNICOS User Commands Reference Manual.

8.3.1 umask on a MLS System

On a Cray ML-Safe system configuration, the default setting for umask(1) is
077. This default is defined in the umask command in skl/c1/etc/profile
and skl/c1/etc/cshrc.

This default should not be changed on a Cray ML-Safe system configuration.
Users of umask are affected in the following ways:

• Users that rely on new files automatically having group and/or world access
must manually set the file access permission bits to enable this access.

• Users who want a umask other than 077 must place the umask command in
their $HOME/.profile or $HOME/.login file.

Site administrators should ensure that any affected users are made aware of
these changes.

8.3.2 Managing Set-user-ID and Set-group-ID Files

The UNICOS set-user-ID (setuid) or set-group-ID (setgid) functionality can be
very useful, although it poses some security risks. A poorly designed setuid or
setgid program can compromise the security of the owner or owning group of a
file. When the owner of a file grants access permission to other users, the owner
effectively relinquishes control over the setuid or setgid file.

Previous releases of the UNICOS system with the MLS feature enabled have
restricted the management of setuid and setgid files. The UNICOS system uses
the FSETID_RESTRICT configuration parameter to allow sites to restore the
UNICOS non-MLS functionality of setuid and setgid files.

When FSETID_RESTRICT is enabled, only appropriately authorized users can
create or link to setuid or setgid files. Only appropriately authorized users can

170 S–2301–10011

UNICOS Multilevel Security (MLS) Feature [8]

open setuid or setgid files for writing. Also, for chmod(2), chown(2), and for
setting access control list (ACL) operations, the setuid and setgid mode bits of a
file are cleared if the user is not properly authorized.

When FSETID_RESTRICT is not enabled, the UNICOS (POSIX) policy on setuid
and setgid files is enforced. In addition, when setting an ACL on a file, the setgid
mode bit of a file is cleared if the user does not belong to the owning group of the
file and is not an appropriately authorized administrative user. This functionality
makes the set-ACL behavior consistent with the behavior of chmod.

The FSETID_RESTRICT parameter is enabled by default. To enable or disable
this parameter, use the Configure system->Multilevel security
(MLS) configuration->System options->Restrict setuid/setgid
file creation selection in the UNICOS Installation and Configuration
Menu System.

Note: For the UNICOS 10.0 release, the default value of the
FSETID_RESTRICT configuration parameter will be changed to OFF.

The spcheck(8) utility allows the security administrator to search the system
for setuid and setgid files and to maintain surveillance of their use. See Section
8.8.9, page 341, for more information.

8.4 Mandatory Access Control

Mandatory access control (MAC) is implemented through the UNICOS security
policy, which is a set of rules that control access based directly on a comparison
of the subject’s clearance and the object’s classification. The UNICOS security
policy is enforced for all attempts to access an object.

The security policy controls read and write operations in order to prohibit
unauthorized disclosure of any system or user information. The security
policy is defined as the set of rules and practices by which a system regulates
the disclosure of information. The mandatory security policy enforced by the
UNICOS MLS feature is as follows:

• A subject may read or execute an object only if the active security label of the
subject dominates the security label of the object.

• A subject may write to an object only if the security label of the subject is
equal to the security label of the object.

A security label consists of a security level and zero or more security
compartments. A maximum of 17 hierarchical security levels and 63

S–2301–10011 171

General UNICOS® System Administration

nonhierarchical compartments are used to represent a nonadministrative
subject’s clearance and an object’s classification on the UNICOS system.

The security levels can range from through 16, with having the lowest value and
16 the highest. The UNICOS system also uses system high (syshigh) and
system low (syslow) labels. See Section 8.4.2.1, page 185, for more information
on these labels.

An appropriately authorized administrator can use the nu(8) or udgben(8)
commands to assign each user a minimum, maximum, and default security level
in the user database (UDB). The security administrator also assigns each user a
set of active and authorized compartments in the UDB. The active compartments
define the set of compartments with which a user is currently functioning. The
authorized compartments define the range of compartments that a user can
add to his or her active set of compartments. For more information on how
these values are used to determine a user’s security attributes, see the UNICOS
Multilevel Security (MLS) Feature User’s Guide.

Objects are assigned security labels by the installation process, administrative
procedures, or by inheriting the active security label of the subject who creates it.
If an object is not explicitly assigned a security label by one of these methods, it
has a security label of level 0 and null compartments by default.

A session’s security attributes are set at session initiation. These attributes are
determined by the information defined in the UDB plus information defined for
network and other configuration options.

MAC checks are always performed before discretionary access control (DAC)
checks. If either of the conditions in the first two bullets described previously
are met, then DAC checks are made. Otherwise, the subject is denied access to
the object.

The security administrator can use the deflbl_as_minlbl configuration field
/etc/config/confval to allow minimum security labels to be defined for
users. Enabling this field allows the user’s default security label (that is the
deflvl and defcomp fields in the user database) to become the user’s minimum
security label. Use of this field means users must log in with a security label that
dominates their default security label.

The security administrator can also use the mincomps field in the UDB to define
a user’s minimum compartment set. See Section 8.5.3, page 206, for more
information on these fields.

The security administrator can also define a set of permissions for each user in
the UDB. These permissions grant special privileges to the user and are defined

172 S–2301–10011

UNICOS Multilevel Security (MLS) Feature [8]

in the security parameter file (sys/secparm.h). See Section 8.7.5.4, page 235, for
more information on these permissions.

For more information on how these values are used to determine a user’s
security attributes, see the UNICOS Multilevel Security (MLS) Feature User’s Guide.
This manual explains the interactive login process for both UNICOS and Cray
ML-Safe system configurations. For more information on setting up UDB security
entries, see Section 8.7.6, page 236, for more information.

The following sections describe how the UNICOS MAC policy affects the
following system operations:

• Directory operations

• File system operations

• Device labeling

• cron and at operations

• Cray ML-Safe mail

• /proc operations

• syslogd operations

• IPC objects

8.4.1 Directory Operations

You can use the mkdir -L command to create a directory with a security label
that is different than your active security label (assuming the requested label is
within your authorized range). If the relabeling fails, the directory’s label remains
at your active security label. If the mkdir -L -p command is used, only the
last directory in the path is relabeled. All intermediate directories are created
at your active label.

Any user can upgrade the label of an empty directory (for example, when using
the spset -c or spset -l commands) if all of the following conditions are
met:

• The user has MAC write access to the target directory

• The user is the owner of the target directory

• The target directory is empty

S–2301–10011 173

General UNICOS® System Administration

If you are properly authorized, you can override these restrictions and change the
label of any directory; the definition of properly authorized depends on which
system management mechanism your system is using. For more information, see
the mkdir(1) man page in the UNICOS User Commands Reference Manual.

To create a directory, the security label of the directory must always fall within
the security label range of the file system on which the directory resides.

8.4.1.1 Removing Files from Directories

To ensure compliance with the TCSEC object reuse requirements, the UNICOS
system clears the name of the object being removed from the directory. Only the
object name is cleared by this change. The remaining entries in the directory
entry structure (for example, inode number, name signature, record length and
name length) are not cleared.

Administrators should be aware that directories with removed objects that exist
on UNICOS 8.0 MLS systems continue to have "removed" object names in them
on later UNICOS releases until the directory entries are replaced with another
object or the directory block is released.

8.4.1.2 Wildcard and Multilevel Directories (MLDs)

The UNICOS MLS feature uses two mechanisms for labeling directories that
contain objects at different security labels: wildcard directories and multilevel
directories (MLDs). The following sections explain the function and use of
these directories. These two types of directories can be used exclusively or in
combination on a UNICOS system. Wildcard directories should not be used on
evaluated configurations of the UNICOS operating system. Cray recommends
using MLDs for products that process multiple security labels (for example,
mail, lpr, lpd, cron, NQS, and CRL). See Section 8.4.1.2.2, page 175, for more
information.

8.4.1.2.1 Wildcard Directories

The UNICOS MLS feature uses security level 63 to indicate a wildcard directory.
A wildcard directory can contain files at any security label within the boundaries
of the file system. Access to files in the wildcard directory must satisfy the
discretionary and mandatory access policy enforced by the UNICOS MLS feature.

You can apply security compartments to a wildcard directory, although these
compartments are ignored by the system when doing a mandatory access
control check.

174 S–2301–10011

UNICOS Multilevel Security (MLS) Feature [8]

Wildcard directories are established primarily for daemons that must service
many requests and output queues; the assignment of wildcard directories should
be restricted to those described in Section 8.7.7, page 238. Also, the use of
wildcard directories avoids replication of special directories for every use.

The /usr/tmp and /tmp directories, which are accessible to many system
utilities, must be assigned the wildcard security level (or converted to multilevel
directories (MLDs), which is explained in the next section) to allow them to
contain files with varying security levels.

The Network Queuing System (NQS) spooled output and data files directories
must also be labeled as wildcard directories (or MLDs). The NQS directories
are automatically labeled by NQS.

For more information on labeling these directories, see Section 8.7.7, page 238.

8.4.1.2.2 Multilevel Directories (MLDs)

The UNICOS system has relied upon the use of wildcard directories to hold files
at multiple labels. These directories have been used for public directories like
/tmp as well as for spool directories (for example, /usr/spool/mqueue).

The use of wildcard directories violates the TCSEC requirements, as they create a
potential for write-down security policy violations. Wildcard directories have
been replaced with MLDs.

Warning: Only the use of MLDs is allowed on the evaluated configuration of a
UNICOS system. There are no checks or warnings enforced by an evaluated
system to ensure only MLDs are used. This requirement must be enforced
by administrative procedures. There is no configuration parameter in the
UNICOS Installation and Configuration Menu System that enables MLDs.

MLDs provide a method of sharing a common directory name, while partitioning
the actual directory contents according to security labels.

For example, a wildcard directory provides a single name space at all labels.
Because of this, if /tmp is labeled as a wildcard directory, a process at level
0 and compartment set 077 can create /tmp/file at level 0 and compartment
set 077, but a process at level 0 and compartment 0 would be unable to create
/tmp/file at level 0 and compartment set 0, as that file already exists in the
directory and is not writable by the second process.

A MLD has two parts: a root directory and a multilevel symbolic link to the root
directory. A MLD provides a discrete name space for each label represented
within the directory. As a result, if /tmp is a MLD, a process at level 0 and

S–2301–10011 175

General UNICOS® System Administration

compartment set 077, and a process at level 0 and compartment set 0 can each
create a file known to each process as /tmp/file. The result is two different files
at two different labels containing completely different data.

Warning: Because of the nature of the symbolic link expansion, MLDs do
not work across NFS mount points. It is not recommended to use MLDs on
NFS mounted file systems.

The following list contains the Cray products or commands that use MLDs when
running on a Cray ML-Safe system configuration. The mail directories require the
use of MLDs on either a UNICOS or a Cray ML-Safe system configuration:

• jtmp directories

• /tmp directory

• /usr/tmp directory

• cron(8) and at(1) spool directories

• lpr(1) and lpd(8) spool directories

• Mail directories (/usr/mail and /usr/spool/mqueue), plus the user’s
directories that are used to save mail messages.

• NQS spool directories

• CRL debug log directory as defined by ${RLLOGDIR}

For sites that have users running at multiple labels,
usr/preserve/LOGIN_NAME must be created as an MLD or a
wildcard directory.

8.4.1.2.3 Creating a MLD

The following information on MLDs assumes you have read and understood the
MLD section in the UNICOS Multilevel Security (MLS) Feature User’s Guide.

There are several ways to create a MLD:

• Create a new MLD

• Customize the directory by first creating it and then creating a link to it

• Convert an existing directory structure to a MLD

To create a new MLD, use the mlmkdir(8) command. This command creates
the directory and the symbolic link, labeling both with a mode of rwxrwxrwx.

176 S–2301–10011

UNICOS Multilevel Security (MLS) Feature [8]

This labeling scheme is convenient if you want to create a directory that is
available to public use or when creating a directory for users (for example, a
user’s mailbox directory). A more appropriate mode should be assigned after
creating the directory.

The mlmkdir command creates the multilevel symbolic link with the name
specified on the command line and adds the .mld suffix to the name to create the
directory. This naming convention is convenient, but not required, as shown in
the following example.

The following example shows how to use the mlmkdir command. The ls -l
command is used in this example to show the result of the operation; for ease of
use, the output from the ls command has been edited to remove the link counts,
owners, groups, and creation time:

$ setucat secadm

secadm$ pwd

/home/user

secadm$ mlmkdir /home/user/mld

secadm$ ls -l

total 32

drwxr-xr-x .

drwxr-xr-x ..

lrwxrwxrwx mld -> /home/user/mld.mld

drwxrwxrwx mld.mld

secadm$ cd mld

secadm$ /bin/pwd

/home/user/mld.mld/000

secadm$ cd ..

secadm$ /bin/pwd

/home/user

secadm$ setucat 0

$

If you do not want to use the .mld suffix for the directory name, or you want
to create a multilevel symbolic link to an existing directory, you can use the -m
option of the ln(1) command. This option works like the -s option of the ln
command, but instead of creating a regular symbolic link, it creates a multilevel
symbolic link.

The following example shows how to change the .mld suffix to a .dir suffix. In
this example, the directory is created by using the mkdir(1) command and then
the multilevel symbolic link is created using the ln command:

S–2301–10011 177

General UNICOS® System Administration

$ setucat secadm

secadm$ pwd

/home/user

secadm$ mkdir mymld.dir

secadm$ ln -m /home/user/mymld.dir mymld

secadm$ ls -l

total 48

drwxr-xr-x .

drwxr-xr-x ..

lrwxrwxrwx mld -> /home/user/mld.mld

drwxrwxrwx mld.mld

lrwxrwxrwx mymld -> /home/user/mymld.dir

drwxr-xr-x mymld.dir

secadm$ cd mymld

secadm$ /bin/pwd

/home/user/mymld.dir/000

secadm$ cd ..

secadm$ /bin/pwd

/home/user

secadm$ setucat 0

$

To remove a MLD, you can use the mlrmdir(8) command. This assumes that the
directory is empty (that is, only the root directory and labeled subdirectories are
present, with no files or directories created by users). The following example
removes both directories created in the two previous examples. Use of this
command removes both the multilevel symbolic link and the directory:

$ setucat secadm

secadm$ pwd

/home/user

secadm$ mlrmdir mld mymld

secadm$ ls -l

total 16

drwxr-xr-x .

drwxr-xr-x ..

secadm$ setucat 0

$

The cvtmldir(8) command provides the ability to convert between wildcard
directory and MLD structures.

178 S–2301–10011

UNICOS Multilevel Security (MLS) Feature [8]

The cvtmldir command allows an administrator to convert a wildcard
directory to a MLD, while preserving all files and directory tree structure, and
placing each file correctly in the multilevel directory tree.

The cvtmldir command also allows an administrator to convert a multilevel
directory to a wildcard labeled directory, but the conversion may not be perfect,
as file name collisions can result.

To use cvtmldir on a PRIV_SU system, you must be the super user. To use
cvtmldir on a system using only the privilege mechanism, you must have
an active system category.

On a Cray ML-Safe system configuration, the only way to obtain an active
system category is to bring the system to single-user mode. On systems that
use the PAL-based privilege mechanism, but are not strict Cray ML-Safe
environments, it is possible that a user be assigned the system category in a
multiuser state.

The following sections provide examples of converting directories.

8.4.1.2.4 Converting from Wildcard Directory to MLD

Conversion from a wildcard directory to a MLD can be done by one of the two
following procedures:

• As a copy from one directory tree to another

• As a conversion "in-place," using the source directory as the root of the
directory tree that is created for the destination

In either case, cvtmldir does not change the source directory structure. This
avoids loss of data in the event of an unsuccessful conversion. Once conversion
completes successfully, you must remove the source directory tree. In either case,
cvtmldir uses file system links whenever possible to reduce the amount of
storage needed to perform the conversion.

8.4.1.2.5 Conversion by Copying

If the directory to be converted is not the root of a mounted file system, the
simplest way to convert it is by copying from the original directory structure to a
new directory structure. In this case, to clean up after the conversion, remove
the old directory structure.

For this conversion method, rename the source directory and convert the
renamed source directory into a directory with the original name. This reduces

S–2301–10011 179

General UNICOS® System Administration

the probability that the source directory changes during the conversion and there
is no need to rename the destination directory.

The following example shows the conversion of /usr/spool/mqueue on a
system with the PRIV_SU configuration option enabled. This example assumes
that /usr/spool/mqueue is not the root of a mounted file system and the file
system on which /usr/spool/mqueue resides does not support the syslow
label.

mv /usr/spool/mqueue /usr/spool/mqueue.old

cvtmldir -m /usr/spool/mqueue.old /usr/spool/mqueue

rm -rf /usr/spool/mqueue.old

spset -l 0 /usr/spool/mqueue.mld

If your file systems support the syslow security label, use the spset -l
syslow /usr/spool/mqueue.mld command instead of the spset command
sequence shown in the previous example.

The following example shows the conversion of /usr/spool/mqueue on a
system using only the privilege mechanism (again, this example assumes that
/usr/spool/mqueue is not the root of a mounted file system):

setucat system

mv /usr/spool/mqueue /usr/spool/mqueue.old

cvtmldir -m /usr/spool/mqueue.old /usr/spool/mqueue

spset -l syslow /usr/spool/mqueue.mld

setucat 0

When the conversion is completed, you can remove the
/usr/spool/mqueue.old directory.

In the previous example, the setucat system command activates the system
category. If this category is already active, ignore this step. The setucat 0
command deactivates the system category. If you are doing other tasks that
require the system category immediately after this task, ignore this step.

In all conversion examples in the following sections, the procedures are shown
for a system with PRIV_SU enabled. Add the setucat commands when
necessary to use the procedures on a system with the PAL-based privilege
mechanism.

8.4.1.2.6 Converting In-place

If you want to convert the mount point of a file system into a MLD, you cannot
convert by copying as shown in the previous section, as there is no way to make

180 S–2301–10011

UNICOS Multilevel Security (MLS) Feature [8]

the copy become the root of the file system. To make this type of conversion, you
need to convert the directory "in-place." The in-place conversion of a wildcard
directory results in the entire wildcard directory structure being located in
/tmp.mld.

The most reliable way to successfully complete this type of conversion is to do
it in single-user mode. This is necessary to unmount and remount the new
directory, as /tmp is usually busy on a multiuser system.

The /dev/dsk/tmp device is used in the following example; if the device
containing the /tmp file system has a different name on your system, use that
device.

The following example shows the conversion of the /tmp directory from a
wildcard directory to a MLD.

umount /dev/dsk/tmp

mv /tmp /tmp.mld

mount /dev/dsk/tmp /tmp.mld

cvtmldir -f -m /tmp.mld /tmp

spset -l syslow /tmp.mld

When the conversion is completed, /tmp.mld contains a set of directories,
each of which has a name of octal digits that begins with a zero. Each of these
directories is a labeled subdirectory; the name of each directory is an octal value
with the first three characters representing the security level and all following
characters representing the octal compartment mask (this naming convention is
explained later).

Before /tmp can be used as a MLD, remove the entries that are not names of
labeled subdirectories from /tmp.mld, as follows:

1. Remove all entries that have nonoctal characters in their names or entries
that do not consist of at least three octal characters starting with 0, as shown
in the following example:

cd /tmp.mld

ls -l | grep -v "0[0-7][0-7]*" | xargs rm -rf

2. Execute the ls -l command. Remove any entry that is not a directory.

3. Examine each remaining directory to determine whether the name of the
directory matches the label. To do this, use the spget(1) command to obtain
the level and compartments of each directory and convert the level value
to octal using the following table:

S–2301–10011 181

General UNICOS® System Administration

Label Octal representation

0 000

1 001

2 002

3 003

4 004

5 005

6 006

7 007

8 010

9 011

10 012

11 013

12 014

13 015

14 016

15 017

16 020

51 063 (syslow)

54 066 (syshigh)

63 077 (wildcard)

Note: The naming convention for MLDs outlined in this section may change in
future UNICOS releases.

After converting the level to octal, delete the leading zero on the compartment bit
mask and put the two octal values together as follows:

<octal level><compartment bit mask>

For example, if a directory has a level of 14 and a compartment set of 0705,
its name as a labeled subdirectory would be 016705. If an existing directory
name does not match the name you have determined, then it is not a labeled
subdirectory and should be removed.

182 S–2301–10011

UNICOS Multilevel Security (MLS) Feature [8]

8.4.1.2.7 Converting from MLD to Wildcard Directory

Warning: Only MLDs are supported on a Cray ML-Safe system configuration.

Converting from a MLD to a wildcard directory can result in name collisions. The
cvtmldir(8) command renames the colliding file and reports both the old and
new name to the administrator. The administrator should tell the affected users
that the files are renamed.

Conversion from a MLD to a wildcard directory can be done by one of the two
following procedures:

• As a copy from one directory tree to another

• As a conversion "in-place," using the source directory as the root of the
directory tree that is created for the destination

The following example shows how to convert a directory that is not the root of a
file system to a wildcard directory:

rm /usr/spool/mqueue

cvtmldir -w /usr/spool/mqueue.mld /usr/spool/mqueue

Successful completion of this example results in a wildcard directory tree in
/usr/spool/mqueue and a MLD tree in /usr/spool/mqueue.mld. Remove
the multilevel directory tree as follows:

rm /usr/spool/mqueue.mld

To convert a MLD that is the root of a file system to a wildcard directory,
you must convert it in-place. You may find it useful to know what labeled
subdirectories are in the MLD before starting the conversion.

Do this by changing to the directory containing the MLD structure (usually
<pathname>.mld) and executing the ls(1) command to obtain a list of all
directories in the root of the MLD. You may want to save the output from the
ls command execution in a file for future reference.

S–2301–10011 183

General UNICOS® System Administration

The following example shows the in-place conversion of /tmp from a MLD to a
wildcard directory:

cd /tmp.mld

ls

cd /

rm /tmp

cvtmldir -f -w /tmp.mld /tmp.mld

umount /tmp.mld

mv /tmp.mld /tmp

mount /tmp

Successful execution of this conversion results in a wildcard directory
representation of the MLD structure, although there may be residual labeled
subdirectories. These are the directories in the list obtained from ls before the
conversion. Remove these directories.

8.4.1.3 Directory Permissions

Regardless of whether the UNICOS MLS feature is enabled, directories such as
/bin and /etc should not have public write access permission assigned to them.
If public write permission exists on such a directory, a user could conceivably
replace an existing command with a modified version with the same name, thus
introducing a Trojan horse.

A suitable access mode for these directories is 755, which specifies public read
access. Read permission allows users to read a directory as a file, discovering
all the names it contains. For similar reasons, a user’s home directory and
.profile (see sh(1)) or .login and .cshrc (see csh(1)) files should be owned
by that user, and write access should be restricted to the file owner.

8.4.2 File System and File Operations

The following sections explain the labeling and use of file systems and files on a
UNICOS system by providing the following information:

• System high and system low labels

• File system labeling

• File system access control

• File system backup

• File system security

184 S–2301–10011

UNICOS Multilevel Security (MLS) Feature [8]

• File labeling

8.4.2.1 System High and System Low Labels

The ability to protect system files from unauthorized access or modification
was provided on pre-8.0 MLS systems by discretionary access controls (DAC)
only. In order to support the UNICOS security policy and TCSEC criteria, the
UNICOS system now uses the system high (syshigh) and system low (syslow)
security labels.

Only a properly authorized user can override these labels to modify, read, or
write to a system file. The syshigh and syslow labels do not fall within the
range of labels used by the nonadministrative user population on a UNICOS
system.

The syshigh label is assigned to system-private databases, such as the user
database (UDB), audit logs, and administrator-only binaries. The syshigh label
is not dominated by any user label. This means that system files protected by the
syshigh label cannot be read or written to by an unauthorized user.

The syslow label is assigned to the majority of binaries, public databases, and
public directories. The syslow label is dominated by all user labels, but is equal
to no user label. This means that system files protected by the syslow label can
be read, but not written to by an unauthorized user.

A security administrator has the capability to use a privileged shell in order to set
his or her label to the syshigh or syslow labels in order to do any necessary
administrative work. See Section 8.2.4, page 166, for more information.

The MLS feature provides a default set of security labels for system files. See
/etc/privdb for more information.

The SECURE_MAC configuration parameter indicates the following to system
commands and daemons:

• That UNICOS file system label ranges (including /tmp and /usr/tmp) have
been updated to include the syshigh and syslow labels.

• That administrative procedures have been established to adequately manage
files with syshigh and syslow labels.

This parameter is set by using the Configure system->Multilevel
security (MLS) configuration->System options->Enforce system
high/low security labels? selection in the UNICOS Installation and
Configuration Menu System.

S–2301–10011 185

General UNICOS® System Administration

Once the SECURE_MAC parameter has been enabled and the new configuration
has been activated through the installation tool, a new kernel must be built and
booted in order for the parameter to become effective.

Warning: The SECURE_MAC parameter is intended for use on UNICOS
systems using the PAL-based privilege mechanism.

You can enable the SECURE_MAC parameter on systems with PRIV_SU
enabled. However, administrative commands that depend on set-group-ID
(setgid) functionality (instead of the root user ID) to access protected
devices do not have the authority to override device label protections as
required. A site can convert setgid commands to use the PAL-based privilege
mechanism.

A command or daemon that needs to create syshigh or syslow labels initially
has to invoke sysconf(2) to determine if it should manipulate its active label
throughout its execution to create and/or manage the syshigh and syslow
labels.

If the SECURE_MAC configuration option is not enabled, the calling process
manages file labels as was done on UNICOS 7.0 MLS systems.

The following library routines support system labeling. Man pages for these
routines can be found in the UNICOS System Libraries Reference Manual.

Routine Description

mls_create(3) Allocates and creates an opaque security label for
use during security label comparisons.

mls_extract(3) Extracts a label from an opaque security structure.

mls_import(3) Converts the text representation of the security
label to the internal representation.

mls_export(3) Converts internal security label to text
representation.

mls_free(3) Frees security label storage space.

mls_dominate(3) Performs a security label domination test.

mls_equal(3) Performs a security label equality test.

mls_glb(3) Computes the greatest lower bound.

mls_lub(3) Computes the least upper bound.

Note: Local (site) code that now performs security label comparisons should
be modified to use the mls_equal and mls_dominate library routines,
rather than attempting to perform their own label comparison.

186 S–2301–10011

UNICOS Multilevel Security (MLS) Feature [8]

8.4.2.2 File System Labeling

You can use the mkfs -L and mkfs -U commands to define the minimum and
maximum security levels, respectively, and the -C option to define the authorized
compartments of a new file system. The defined values and a security label are
then written to the file system, as shown in the following example:

/etc/mkfs -L 0 -U 5 -C 0377 /dev/dsk/usa

If these options are not specified, the minimum and maximum security levels of
the file system default to 0 and no valid compartments are specified. This means
that files assigned any other security label cannot be written to the file system.
A file outside the range of the file system’s security label cannot be written to
the file system.

The RC_SECLOW, RC_SECHIGH, and RC_SECMASK configuration parameters
allow an administrator to assign a label range (minimum security level,
maximum security level, and compartment mask, respectively) to the /tmp
and /usr/tmp file systems when the mkfs command is used during a reboot
process. If you want to support the use of the syshigh and syslow security
labels on these file systems, the SECURE_MAC parameter must be enabled.
These parameters can be set by using the following selections in the UNICOS
Installation and Configuration Menu System:

• For RC_SECLOW, use the Configure system->Multilevel security
(MLS) configuration->System options->/tmp and /usr/tmp
minimum security level selection

• For RC_SECHIGH, use the Configure system->Multilevel security
(MLS) configuration->System options->/tmp and /usr/tmp
maximum security level selection

• For RC_SECMASK, use the Configure system->Multilevel security
(MLS) configuration->System options->/tmp and /usr/tmp
compartment mask (octal) selection

The -u, -l, and -c options of the labelit(8) command can write an upper
security level, a lower security level, and authorized compartments, respectively,
to an existing mounted or unmounted file system. The -s option is used when
installing the UNICOS MLS feature. It sets a security label on a nonsecure file
system.

When used with the -c option, the -s option can change the authorized
compartment set of a file after the compartments have been initially set. This
includes the ability to remove as well as add compartments. When used with
the -l or -u options, the -s option increases the minimum security level or

S–2301–10011 187

General UNICOS® System Administration

decreases the maximum security level of a file system after these values have
been initially set. You must be properly authorized to use the -s option for
these purposes.

The following is an example of using the labelit command:

/etc/labelit -u 5 -l 0 -c 0377 /dev/dsk/usa

Labeling a file system with the labelit -c command can be done any time
before it is mounted; the UNICOS MLS feature does not have to be enabled to
do so.

8.4.2.3 Changing File Labels

You can use the -c, -l, and -k options of the spset command to set the security
compartments, security level, and flags, respectively, on files.

You must be properly authorized to use these options. This means you must
have the following security attributes:

• On a system with PRIV_SU enabled, you must be the super user

• On a system using the PAL-based privilege mechanism, you must have
an active secadm category.

8.4.2.4 File System Access Controls

On a UNICOS system, the following condition must be met to successfully
mount a file system:

• If the Configure System->Multilevel Security (MLS)
Configuration->System Options->Restrict file system
labels to system range? configuration option is turned on, then the
minimum and maximum security levels (with the exception of the syslow
and/or syshigh security levels) and the authorized compartments of a
file system must fall within the authorized ranges of the UNICOS system;
otherwise the mount request fails.

To mount a file system on a UNICOS system with DEV_ENFORCE_ON set to ON,
the device on which the file system resides must have one of the following
sets of attributes:

• It must be in the OFF state.

• It must be in the ON state with the mldev flag on. It must also have a
minimum and maximum security level range that encompasses the range

188 S–2301–10011

UNICOS Multilevel Security (MLS) Feature [8]

of the file system and have an authorized set of security compartments that
contains all the valid compartments of the file system.

Whenever the kernel is requested to assign an inode from the inode free list, the
following checks are applied to the relevant file system:

• The file system is checked for a security label.

• The file system is checked to ensure that its maximum and minimum security
levels and compartments bound the new file’s security label.

If any of these security checks fail, the system call requiring the allocation of the
inode fails, and the inode is not allocated.

8.4.2.5 File System Back up Operations

Enabling the UNICOS MLS feature does not alter the need for sound security
practices such as file system back-up operations. All backups to tape should
be stored in a secure area.

The cpio(1) command provide back-up operations for a file system; it processes
files for the active security label of the user. On UNICOS systems using the
PAL-based privilege mechanism or have the PRIV_SU configuration option
enabled, the cpio command allows any user to archive data to a single-level
medium. An appropriately authorized user can archive data to a multilevel
medium.

Warning: Authorized users can override MAC and DAC restrictions when
using the cpio command. Special care must be taken to ensure that data
is not inadvertently downgraded.

This may occur if you do not use the -M and -z options of cpio. Also, when
using the -d option, the directory is created with the label of the last object
processed. If no object has been processed, the directory is created at the
label of the person invoking cpio.

In addition, cpio supports the following functions:

• Allows authorized users to restore all security attributes from a multilevel
medium.

• Provides the mechanism necessary to archive privilege assignment list (PAL)
information in the cpio(5) archives.

• Minimizes the chance that security attributes in a cpio archive can be altered
or fabricated by a non Cray ML-Safe process.

S–2301–10011 189

General UNICOS® System Administration

• Minimizes the risk that a multilevel cpio archive created by an authorized
user can be read by an unauthorized user who does not have at least MAC
read access to every file in the archive.

These changes to cpio cause the following migration issues:

• cpio can only restore security attributes from archives on a multilevel
medium.

• For archives created with the -z option, redirection of cpio output and input
must be done in a privileged shell.

• For archives created with the -z option, pipes connecting cpio output and
input must be labeled as multilevel.

In addition, access control lists (ACLs) are preserved if the user is the owner of
the file and has MAC write access, or is a security administrator.

The following rules must be observed when using cpio:

• For cpio, your active security label must dominate the security label of the
files being copied. An appropriately authorized user can copy any file.

• To dump files, your active category must be a superset of the categories
of the file.

• ACLs are preserved only if the user is the owner of the file, has an active
secadm category, or has write access to the file.

On a UNICOS system use the cpio -z command to make a secure copy of a
file. This option must be used when you copy in (-i), copy out (-o), or pass
(-p) a file. In addition, the -x (excludes copying or preservation of ACLs), -M
(preserving all security attributes), and -P (excludes copying or preservation
of PAL information) options are valid only when used with the -z option on a
system that has MLS enabled.

The dump(8) and restore(8) commands allow a security administrator to
process a subset of or an entire file system with files at various security levels
and compartments. These commands also dump and restore ACLs applied to
files and directories.

!
Caution: You should take special care to ensure that dump files cannot be
modified or accessed by unauthorized users.

190 S–2301–10011

UNICOS Multilevel Security (MLS) Feature [8]

8.4.2.6 File System Security

The system or security administrator should perform the following tasks to
ensure file and file system security:

• Protect memory access; there should be no public access to /dev/kmem (see
mem(4)) and /dev/mem. Permitting public access would give users access to
information not belonging to them.

• Protect access to devices; there should be no public access to the raw disk
devices used for storing user files. If public access were permitted, it would
be possible for a user to read from the inode list, locate the position of any
information on the disk, and read it. Therefore, all entries in the /dev
directory that pertain to disks should be owned by root and assigned an
access mode of 600.

On systems that have DEV_ENFORCE_ON enabled, raw disk devices
containing file systems are protected from public access in one of the
following ways:

– By default, they are in the OFF state, which means only privileged
processes can access them.

– If they are in the ON state, they can only be mounted as file systems if
they have the mldev flag set. This means only privileged processes can
access them.

Caution should be used to preserve these attributes when manipulating the
labels of raw disk devices. For example, when changing a disk device from
OFF to ON, ensure that you change it from single-level to multilevel at the
same time (or before you change the state of the device).

• Protect public access to terminals. On UNICOS systems without PRIV_SU
enabled, the default mode and access control lists (ACLs) on terminals
prohibit access to the terminal by anyone but the owner. Utilities like
write(1) override this restriction to allow interaction between users. User
can use the mesg(1) command to allow access to their terminal through
the write command. write filters its input to avoid transmission of
nonprintable characters that can be interpreted as escape sequences by the
recipient’s terminal.

On UNICOS non-MLS systems or systems with PRIV_SU enabled, this
protection is not available. Users should be advised to set the mode on their
terminals to 600 if they want to prevent others from writing directly to their
terminals. On these systems, setting a mode of 600 disables the write
command on that terminal and prevents direct writes to the terminal.

S–2301–10011 191

General UNICOS® System Administration

• Protect access to source code; generally, UNICOS source code should not be
available online at customer sites. To protect UNICOS source code and system
logic, the code should be assigned the system category.

On systems that support the use of the syshigh label, this label should be
used instead of the unicos or system categories to protect source code.

• Keep your file system backups in a physically secure area.

• Turn on accounting and security logging.

• Educate users on the use of UNIX file permissions, UNICOS security levels
and compartments, and the -x option (encryption mode) of the vi(1), ed(1),
or ex(1) commands.

In addition, a security administrator can assign one of the two following flags
to a file (but not to directories) so that read or write access to that file is logged
in the security log:

• trapr

• trapw

Both flags trap read and write accesses. That is, if you assign the trapr flag to
a file, both read and write accesses to that file are logged; if you assign trapw
to the file, the same thing happens. The functions of the flags may be split in
future releases.

Use the -k option of the spset(1) command, as shown in the following example,
to set these flags; you must have an active secadm category to set them:

spset -k trapr file1

spset -k trapw file2

8.4.2.7 File Labeling

Regular files, named pipes, and sockets are assigned the active security level and
active compartments of the creating subject. This information is recorded in both
the memory and disk versions of the inode describing the object.

Block and character special files are created with a security label set to 0 and in
the OFF state. The administrator must change this label to reflect the nature of the
information available through the device at any given time. Use the spdev(8)
command to label the device.

192 S–2301–10011

UNICOS Multilevel Security (MLS) Feature [8]

Only a properly authorized user can raise or lower the security level of a file.
The security administrator can assign a security label to a file as long as the label
being assigned is within the authorized range of the security administrator.

A regular file, block or character special file, or named pipe can be removed or
unlinked only by a subject with the same security level and compartments as
those of the object.

All nondirectory files created within a directory must have a security level and
compartments equal to the security level and compartments of the directory.

See the UNICOS Multilevel Security (MLS) Feature User’s Guide for more
information on creating and using files on a UNICOS system.

8.4.3 Single-level and Multilevel Files and Devices

On UNICOS systems with the MLS feature, the concept of multilevel devices
has been extended to files. As a result, it is possible to have single-level and
multilevel files as a general concept, and single-level and multilevel devices
when rules apply to special devices.

Whether a file is single-level or multilevel depends on the nature of the data
to be stored in the file. If the data in the file can be protected by a single,
externally-applied label, then the file should be made a single-level file. This is
the case for most files on a UNICOS system.

If the data in the file contains internal labeling information that describes the
classification of specific portions of the data, the file should be made a multilevel
file. An example of this type of file is the raw disk device file for a file system that
contains inodes that contain labels that reflect the classifications of files.

The information stored within a single-level file is all at one security label,
which is the active security label on the inode. Because the kernel knows this
label, it enforces the normal MAC rules regarding access to the file and allows
nonprivileged processes to gain access subject to mandatory and discretionary
access controls.

The active label on a single-level file reflects the nature of the data in the file. If
the file is a device special file, the data in the file is the data currently accessible
through the device (for example, the data on a currently-mounted tape volume).
If the file is a regular or FIFO file, the data in the file is the data that was placed
there by the creator and subsequent writers to that file.

In addition to the active label, a file has a label range. This label range determines
what the legal values for the active label on the file. If the file is a device special

S–2301–10011 193

General UNICOS® System Administration

file, the label range is set by the administrator and reflects the physical security
of the device, as well as any applicable site security policy issues relating to
the use of the device.

If the file is a regular or FIFO file, the label range is set by the kernel and reflects
the label range of the file system on which the file resides. Regardless of the
type of file, the active label of the file can never be set outside the label range
of the file.

On a UNICOS system, most regular and FIFO files are single-level files. An
example of a single-level device special file is the tape pseudo device. This is
provided by the tape daemon to a nonadministrative user when it is asked
to manage tape data.

The information stored on a multilevel file is at different security labels. Each
chunk of information is associated with a label embedded within the data on
the file. The labels on data within a multilevel file are managed by the software
that places the data in the file.

Each data object represented within a multilevel file has its own active label, so
the active label of the file itself has little meaning. The label range on the file
does dictates the range of differently-labeled objects that can be placed in the
file. As with single-level files, the label range on a device special file is set by
the administrator, while the range of a regular or FIFO file is set by the kernel,
based on the file system label range.

Because the data contained in a multilevel device is at more than one label, and
the labels can only be managed by the software that put them there, the normal
MAC rules cannot be used to control access to multilevel files. Instead, access
to multilevel files is only granted to privileged processes. Enforcement of this
restriction is controlled by the DEV_ENFORCE_ON configuration parameter,
which is explained later in this section.

An example of a multilevel file is a dump archive. It contains an archived file
system, which can be shipped to a disk or across a network. An example of
a multilevel device is a file system.

Note: Devices that are used as multilevel devices, but are physically secure as
the system itself, can be left in the OFF state to signify that they can handle
data from privileged processes at any label allowed by the system. This is a
convenient way to handle disk devices that are well-secured and will contain
file systems. The rules for access to devices in the OFF state are the same as for
access to multilevel devices. Files cannot be placed in the OFF state, so they
must be labeled as multilevel if they are used for multilevel data.

194 S–2301–10011

UNICOS Multilevel Security (MLS) Feature [8]

To make a file multilevel, you must enable the multilevel security flag (mldev),
as shown in the following example:

spdev -m filename

In the previous example, the -m option of the spdev(8) command sets the mldev
and secdv flag (the spdev and state flags are explained in the next section)
and preserves all other flags with their current values. To enable the device (that
is, set the state flag), use the -s option as shown in the following example:

spdev -m -s filename

The following example shows how to use the -k option of the spset(1)
command to set the mldev flag and preserve the current value of the secdv. The
spset command cannot be used to set the secdv flag.

spset -k mlsdev,secdv filename

The following example shows how to set or preserve the state flag (which is
described in the next section) on a device file:

spdev -k mldev,state,secdv filename

Once a file is made multilevel, you can make it single-level by using the spset
command to specify every flag that is currently set, except for the mldev flag, as
shown in the following example. This example makes the file single-level, but
preserves the value of the secdv flag:

spset -k secdv filename

The -k option of the spset command can be used to set or preserve flags (for
example, the trap flags). See the spset man page in the UNICOS Administrator
Commands Reference Manual for more information.

8.4.3.1 Assignment and Access Rules for Labeling Information

The previous section addressed only the multilevel and single-level flag (mldev),
the active label, and the label range of files. Two other flags also control access
and labeling of devices only. They are the secure device flag (secdv) and the
state flag (state). The following paragraphs describe the rules for assigning
labels, label ranges, and flags to devices and files:

• If the secdv flag is 0, the state flag must be off (that is secdv must be on
in order to enable state).

• If secdv is 0, the label is invalid.

S–2301–10011 195

General UNICOS® System Administration

• If the state flag is off on a device, access is restricted to privileged processes
only.

• If mldev is set to 1, the file is multilevel. Only a privileged process can access
it. If mldev is set to 0, the file is single-level. It is accessible to users subject to
normal MAC and DAC rules.

• The minimum and maximum label ranges of nondevice inodes are always
equal to the label range of the file system on which they reside.

• The active label on a single-level inode are always within the label range
of the inode.

• When mounting a file system, if the device on which the file system resides is
enabled (that is, state is 1), the device must be multilevel (mldev is 1), and
must have a label range that encompasses the label range of the file system.

The setdevs(2) system call is allowed to set the secdv flag to 1 or 0. The
setfflg(2) system call is only allowed to set it to 0.

If DEV_ENFORCE_ON is enabled, system calls that check for MAC write access
to file inodes fail if the user is not authorized and the inode is in one of the
following states:

• It is a device inode and the state flag is not on.

• The file is multilevel (mldev is set to 1).

To set the DEV_ENFORCE_ON parameter use the Configure system
-> ->Multilevel security (MLS) configuration->System
options->Enforce strict device labeling rules? selection in the
UNICOS Installation and Configuration Menu System. The default setting is OFF;
no change in the way devices are handled should occur when set to OFF. This
parameter must be on for a Cray ML-Safe system configuration.

Warning: The DEV_ENFORCE_ON parameter is intended for use on UNICOS
systems using the PAL-based privilege mechanism.

You can enable the DEV_ENFORCE_ON parameter on systems with PRIV_SU
enabled. However, administrative commands that depend on set-group-ID
(setgid) functionality (instead of the root user ID) to access protected devices
do not have the authority to override device label protections as required. A
site can convert setgid commands to use the PAL-based privilege mechanism.

Enabling this parameter means that devices must be labeled before they are
made available to nonprivileged users and that access to the devices is subject to
the restrictions described previously.

196 S–2301–10011

UNICOS Multilevel Security (MLS) Feature [8]

If DEV_ENFORCE_ON is disabled, device labeling is enforced according to the
UNICOS 7.0 implementation, although the pty behavior described in Section
8.4.3.3, page 197, is available.

Physical disk devices are always left off to ensure that only privileged processes
can gain access to them. Devices constructed of multiple physical devices or
logical devices residing on pieces of physical devices are used as the entry points
to physical devices for normal system operations.

8.4.3.2 The spdev Command

To set file and device labels, ranges, and labeling related flags, use the spdev(8)
command. For complete information, see the spdev(8) man page. The spdev
command uses the following options:

• The -L and -K options specify the active level and compartments,
respectively, on a single-level device. These options are ignored for multilevel
devices, since the kernel forces the active label on a multilevel device to
the maximum label.

• With the exception of the -C (clearing all device labeling information on the
device) and the -p option (printing all device labeling information on the
device), all operations through the spdev command are incremental. That
means an administrator can set the label range, return and set the active label,
and return again to turn the device on without having to specify all the other
options for each command invocation.

• Multiple file names on the command line are allowed and apply the requested
operations to each in turn.

• All user-level checks for security administrator category or root are
removed. All operations that can be requested by spdev are mediated by
the kernel.

The UNICOS Installation and Configuration Menu System allows the setting
of minimum and maximum levels, and the authorized compartments for tape
devices. Use the Minimum security level for this group:, Maximum
security level for this group:, and Maximum compartments
for this group: selections in the Configure system->Tape
configuration->configure tape resource group(s) menu in the
UNICOS Installation and Configuration Menu System.

8.4.3.3 Pseudo Terminals

For pseudo terminals (ptys), the following rules apply:

S–2301–10011 197

General UNICOS® System Administration

• The pty label is set by the first user who opens it. The kernel labels the pty
(instead of login(1)).

• The master and slave labels are kept in sync by the kernel.

• A pty label automatically changes when a nonprivileged process issues a
setulvl(2) or setucmp(2) system call. When a privileged process issues a
setulvl or setucmp system call, the pty label does not change.

The setusrv(2) system call sets the label and range on a pty if executed by a
privileged process.

8.4.3.4 Pty Device Inodes

Pseudo terminal (pty) devices provide the terminal connection emulation for a
UNICOS login session. Access to a pty must be carefully controlled on a Cray
ML-Safe system configuration to prevent avenues of attack. The following two
avenues of attack are known to exist on a Cray ML-Safe system configuration:

• The ability of a process with write access to a pty slave device special file to
subvert the physical hardware or the terminal emulation software on the
other end of a login connection by using escape sequences.

• The ability of a process with read or write access to a pty slave device
special file different from the one currently in use as a controlling tty of
a login session to force a device driver close on the pty, thereby closing the
connection.

The first attack allows a user to cause another user to issue commands without
knowing it. The second attack, under certain circumstances, can result in a
login session remaining active on a pty that becomes available for another login
as well. This can result in unauthenticated access to the system through the
previous, still active, login session.

A Cray ML-Safe system configuration ensures proper protection of pty slave
device special files in the dev directory of the running root file system.
However, it cannot protect access to the pty device through device special files
outside the /dev directory of the running root file system.

Warning: The following information must be observed for a Cray ML-Safe
system configuration.

To ensure proper protection of pty devices, do the following:

• Administrators must not create pty slave device special files outside the
/dev directory of a root file system.

198 S–2301–10011

UNICOS Multilevel Security (MLS) Feature [8]

• When an alternative root file system is mounted, mount it beneath a
directory that prevents search access by nonadministrative personnel. A
suggested way to do this is to have all the mount points for alternative root
file systems in a single directory that is owned by an administrative user, has
an administrative owning group, and has a mode that allows search access
only to the owner and the owning group. An access control list (ACL) or a
syshigh security label can also be used to enforce this restriction.

8.4.4 cron, batch, and at Operations

For the cron(8) command to work with multiple labels on UNICOS systems,
the /usr/spool/crontabs and /usr/spool/atjobs directories should be
converted to multilevel directories (MLDs). In order for cron to process nonzero
labeled requests, the cron daemon directories must also be converted to MLDs.

This allows users to have crontab files and one-time batch jobs at more than one
label and run successfully. The label at which the job runs is the active label at the
time the job was submitted with the at(1), batch(1), or crontab(1) commands.

If the label at which the job runs is not valid (that is, the legal range in the user
database (UDB) and the label at which the job runs is no longer valid, the job at
the invalid label is deleted. The mail(1) command attempts to send this deletion
notification. Mail is received at the new security label if that label dominates the
older, invalid security label.

If MLDs are used, users of at(1),) batch(1), and crontab can use the full
functionality of these commands on a UNICOS system. See Section 8.4.1.2.2, page
175, for more information on converting to or creating a MLD.

8.4.5 Multilevel Mail Operations

The mail(1) and mailx(1) commands support a multilevel mail capability. This
capability is needed so that users can communicate through electronic mail
without violating the UNICOS security policy.

In general, mail is delivered only to a user if the label of the sender is dominated
by the maximum label of the recipient. The exception is when mail is sent with a
syshigh label. Mail with this label is usually the output of administrative
batch jobs or information sent to administrators by system daemons. It must be
delivered, but it is never dominated by the maximum label of the recipient, as no
user can log in with a label of syshigh.

Mail delivered at syshigh is delivered to the recipient on the local machine
(unless it is addressed off of the machine by the sender. In this case, attempts are

S–2301–10011 199

General UNICOS® System Administration

made to deliver it to the target machine. These attempts may not succeed; this
depends on your network configuration).

The .forward file of the recipient is not processed when mail with a syshigh
label is delivered, but the /usr/lib/aliases file is processed. When
configuring the /usr/lib/aliases file, ensure that actions taken when
delivering mail run safely at syshigh regardless of what user is receiving
the mail with a syshigh label. Programs that permit access to or change
data not directly relating to the delivery of mail should not be used in the
/usr/lib/aliases file, nor should user-supplied programs or programs
subject to change by users be allowed.

Warning: Programs within the /usr/lib/aliases file that are not part of
the set of Cray ML-Safe components should not be used on a Cray ML-Safe
system configuration. Even when using commands in the set of Cray ML-Safe
components, avoid commands and command line arguments that can
compromise the security policies if executed on behalf of a nontrusted recipient
at the syshigh label.

See the TCP/IP Network User’s Guide for more information on the user interface
changes for trusted mail.

In addition, the following administrative changes should be made to ensure the
proper execution of multilevel mail:

• Your site may want to restrict the mail files from which a user can get
mail-received announcements. To do this, remove the PRIV_MAC_READ
privilege from the privilege assignment lists (PALs) for mail and mailx.

• To allow users to save mail messages at different security labels, the user’s
directory that contains the saved mail message file should be converted to or
created as a multilevel directory (MLD).

• The directories containing the system mail box (/usr/mail) and the
directory used to spool queued outgoing mail (/usr/spool/mqueue)
should be converted to or created as a MLD.

See Section 8.4.1.2.2, page 175, for more information on converting to or creating
a MLD.

8.4.6 The /proc File System Operations

When using the /proc file system on a UNICOS system, the following rules are
observed:

200 S–2301–10011

UNICOS Multilevel Security (MLS) Feature [8]

• Mediation changes make it possible for a different errno to be returned. The
difference occurs if there are multiple errors. For example, if discretionary
access controls (DAC) are checked before mandatory access controls (MAC),
and a process has neither DAC or MAC access, a MAC violation error is
returned instead of a DAC violation error as before.

• Processes can only display files on the /proc file system that their label
dominates.

• Cray ML-Safe processes can override MAC write restrictions.

8.4.7 syslogd Operations

The FORCED_SOCKET configuration parameter controls the use of the /dev/log
pipe. When enabled, the syslogd(8) command cannot use the world-writable
/dev/log pipe. Instead, syslogd is forced to use the socket interface.

To enable this parameter, use the Configure system->Multilevel
security (MLS) configuration->System options->Enforce socket
usage for syslogd? selection in the UNICOS Installation and Configuration
Menu System.

By default, the FORCED_SOCKET configuration parameter is disabled on a
UNICOS 10.0 system, which means that syslogd(8) and syslog(3) continue to
work as they did on UNICOS 7.0 MLS systems. If your site chooses to run a Cray
ML-Safe system configuration, this configuration parameter must be enabled.

8.4.8 Destructive Reads on Named Pipes

In previous releases of the UNICOS system with the MLS feature enabled, the
mandatory access control (MAC) read policy has been enforced for reading
all objects, including pipes. Because reading a pipe is destructive, this read
operation is also considered a write operation. Therefore, pipes can be used by
two cooperating processes to subvert the MAC policy. This is a covert channel.

The SECURE_PIPE configuration parameter can be used to close this covert
channel. When enabled, MAC write access is required to read a pipe. When
disabled, only MAC read access is needed to read a pipe.

To enable this parameter, use the Configure system->Multilevel
security (MLS) configuration->System options->Enforce
restricted pipes? selection in the UNICOS Installation and Configuration
Menu System.

S–2301–10011 201

General UNICOS® System Administration

8.4.9 IPC Objects

The System V IPC mechanism uses three named object types on the UNICOS
system: shared memory segments, semaphores, and message queues. These
objects have associated security label and ACL information that users need to
set and get by using the spget(1), spset(1), and spclr(1) commands. See the
associated man pages for more information on how to set and get information
on these object types. See the ipcs(1) man page for more information on IPC
objects.

In addition, IPC object creation and use can be audited on a UNICOS system. See
Section 8.8.7.6, page 276, and Section 8.8.7.8, page 284, for more information.

8.5 MLS Identification and Authentication (I&A)

This section provides an overview of I&A security implementation and describes
login and password features used on a UNICOS system. The following sections
refer to login(1), but the information applies to the ftpd(8) and rexecd(8)
daemons also.

8.5.1 Overview of I&A Security Implementation

A UNICOS system supports the following interactive logins:

• Through telnet(1b) or rlogin(1b) for ordinary interactive login sessions

• Through rsh (see remsh(1b)) and rexecd(8) for single command executions

• Through ftp(1b) for interactive file transfer

• Through su(1) for changing user identity during a session

• Through /dev/console through the operator workstation (OWS)

• Through dgdemon(8) for hardware maintenance access

The following example gives an overview of the I&A sequence on a UNICOS
system and highlights the security mechanisms outlined in using the telnet
command.

202 S–2301–10011

UNICOS Multilevel Security (MLS) Feature [8]

Remote
workstation

Packet
over
network
interface

telnetd(8)

NAL

WAL

UDB

IP
layer

Socket
connection

TCP
layer

PTY

login(1)

a11004

Figure 9. I&A Security Implementation

As shown in Figure 9, the user executes the telnet(1b) command to initiate the
identification and authentication sequence by sending a packet and associated
security label through the network interface to the IP layer.

A major function of the IP layer is to define the basic unit of data transfer on
TCP/IP. The IP layer defines the security structure of these units (called an IP
datagram). The security structure contains the following information:

Field Description

Flag Indicates a loopback packet; it is used for
debugging and performance analysis. It is not
sent over the network.

Security Option The IP security option: Basic Security Option
(BSO) or Common IP Security Option (CIPSO).

Authority/domain The protection authority (for BSO) or domain of
interpretation (CIPSO).

Active, minimum, and
maximum security
labels

Active security label of the packet and the
minimum and maximum label as determined by
the network access list (NAL) and the network
interface label ranges.

S–2301–10011 203

General UNICOS® System Administration

UNICOS systems support the use of the BSO and CIPSO security options. The
BSO security option supports the use of security levels only; no compartments
are used. The CIPSO security option supports both levels and compartments.
For more information on these security options, see the UNICOS Networking
Facilities Administrator’s Guide.

The IP layer performs label format translation between the BSO/CIPSO and
UNICOS representation of labels.

The TCP layer enforces the security policy at the kernel/subject boundary for
TCP users and at the system/network boundary for incoming datagrams.
After receiving the IP packet from the IP layer, TCP validates an incoming
datagram’s active security label against the security label range of the network
interface, the security label range defined in the NAL for the remote host, and the
security label of the socket. A failure results in the packet being dropped and
a violation logged.

The NAL controls remote host access. It grants or denies access to the local
UNICOS system based on the security labels of the remote hosts (or networks).
The NAL can have an entry for each remote host or network that is allowed to
connect to the UNICOS system. A default entry can be used in the NAL.

Each NAL entry describes the security attributes associated with the remote
host/network and the IP security option to be applied for that host’s/network’s
communication with the local UNICOS applications. A remote host for which
there is no specific host record, no applicable network entry, and there is no
default NAL defined, is denied access to the UNICOS system.

After the checks are successfully completed, TCP sets the security label of the
newly created socket. The label of the socket is set to the label of the incoming
packet, and the label range of the socket is set to the intersection of the label
range of the remote host’s/network’s NAL entry and the label range of the
network interface.

TCP port numbers less than 1024 are considered privileged. A TCP peer that
communicates using a privileged port from a Cray ML-Safe host is considered to
be Cray ML-Safe. The following UNICOS processes use the privilege necessary to
use these ports: ftpd(8), inetd(8), lpd(8), rexecd(8), rlogind(8), rshd(8),
telnetd(8), portmap(8), and NQS.

telnetd opens the first pseudo pty available and sets the security label on the
master and corresponding slave and makes it available for the user process.

The session is initiated with the security attributes that are determined by the
centralized I&A mechanism.

204 S–2301–10011

UNICOS Multilevel Security (MLS) Feature [8]

8.5.2 Login Procedures

The following sections describe login procedures and features on a UNICOS
system. Also, the user exits for the UNICOS MLS identification and
authentication mechanism are explained.

8.5.2.1 Interactive Logins

On a UNICOS system, the security administrator creates and maintains the user
database (UDB) that contains the following security-relevant information for each
user who is allowed to access the system:

• Minimum and maximum security levels

• A default security level

• Active compartment(s)

• Authorized compartment(s)

• Minimum compartment set

• Permissions

• Maximum integrity class (obsolete)

• Active integrity class (obsolete)

• Authorized category (or categories)

• Active category (or categories)

• An encrypted password

This information is assembled for use by login(1) to authenticate each user who
tries to access the UNICOS system.

The interactive login procedures for both a UNICOS and a Cray ML-Safe system
configuration are explained in more detail in the UNICOS Multilevel Security
(MLS) Feature User’s Guide.

8.5.2.2 Remote Logins with SecurID Card

The UNICOS system supports the use of the SecurID card, which is
manufactured by Security Dynamics, Inc. This authentication mechanism makes
it harder to break into accounts because new passcodes are generated for each
authentication and a passcode cannot be used more than one time.

S–2301–10011 205

General UNICOS® System Administration

Note: Use of SecurID is optional on a Cray ML-Safe system configuration.

The SecurID hardware, software, and documentation must be ordered from
Security Dynamics, Inc. (see "Other publications" in the preface for the address).
For more information on how to use the SecurID card, refer to instructions
provided by Security Dynamics, Inc.

8.5.3 Centralized Identification and Authentication (I&A)

The UNICOS system supports the centralized identification and authentication
(I&A) mechanism.

The following commands and daemons use centralized I&A on the UNICOS
system:

• dgdemon(8)

• ftpd(8)

• login(1)

• NQS

• rexecd(8)

• rshd(8)

• su(1)

• cron(8)

rlogind(8) and telnetd(8) indirectly use centralized I&A, as both of these
daemons use login through the exec(2)) system call. cron uses only the
ia_mlsuser(3) library routine.

8.5.3.1 Checks and Operations

The I&A mechanism includes the following checks and operations, not all of
which may be performed (depending on the request). For example, requesting
passwords for batch jobs is not always necessary.

• Identify the user

• Check the password authentication

• Check SecurID authentication (if used)

206 S–2301–10011

UNICOS Multilevel Security (MLS) Feature [8]

• Check the workstation access list (WAL)

• Check password expiration

• Check the user’s disabled flag

• Determine the session’s security attributes

• Audit the successful creation of a session

• Audit the failed creation of a session and list the reason

• Update the user database (UDB) with successful or failed login information

• Disable the account after too many failed login attempts

The workstation access list (WAL) controls user access to a UNICOS system from
remote hosts and workstations. It grants or denies access to services on the
local system based on the identification of the user and the host or workstation
from which the service request originated. The WAL can have an entry for each
network address (host or workstation) that can connect to the system. If there
is not an entry for the network address, it is automatically allowed to connect
to the system.

Each WAL entry specifies the users and groups allowed access to a UNICOS
system from that address and the services authorized for each of them to use
at that address. See the UNICOS/mk Networking Facilities Administration for
a complete list of supported services and the rules for gaining access through
the WAL.

8.5.3.2 Library Routines Supporting I&A

The following library routines implement the I&A mechanism and provide a
consistent, common mechanism for user identification, user authentication,
auditing, user database (UDB) updating, and calculating a user’s session security
attributes. For more information on these routine, see the man pages in the
UNICOS System Libraries Reference Manual:

Routine Description

ia_user(3) The common UNICOS I&A authentication
mechanism.

ia_failure(3) The I&A failure processing routine. It manages
updating the UDB entry authentication failure
information, performs I&A failure auditing, and
processes login delay.

S–2301–10011 207

General UNICOS® System Administration

ia_success(3) The I&A success processing routine. It manages
updating the UDB entry authentication success
information and performs the I&A success
auditing.

ia_mlsuser(2) Determines a user’s session MLS attributes.

The ia_mlsuser routine uses six security labels when determining the security
label of a session. Two of these labels are related to the network connection, three
are related to the UDB entry of the user, and the last label is a requested label. In
this description, a security label is defined as x:y, where x is the security level
and y is the compartment bit mask.

The network labels used are the maximum label on the connection (referred to
as netmax in the following examples) and the active label on the connection
(referred to as netmin in the following examples). The range of the connection is
defined as netmin to netmax.

The UDB labels include the following:

• The maxlvl and compart fields, which define the maximum security label
for the user. In the following examples, this label is referred to as udbmax.

• The deflvl and defcomps fields, which define the default security label for
the user. In the following examples, this label is referred to as udbdef.

• The minlvl and mincomps fields, which define the minimum security label
for the user. In the following examples, this label is referred to as udbmin.

The value of the deflbl_as_minlbl field (product login) of the configuration
file option forces the user’s default UDB security label to serve as the user’s
minimum UDB security label.

The range of the user’s security label is defined as udbmin to udbmax. The range
of the session’s security label is determined first. The session’s security label is
defined as the intersection of the connection’s security label range and the user’s
security label range. The session’s maximum security label is the greatest lower
bound (GLB) of the user’s and connection’s maximum security labels. The
session’s minimum security label is the least upper bound (LUB) of the user’s
and connection’s minimum security labels.

LUB is the greater of the two levels and the union of the two compartment sets.
The LUB of 0:011 and 1:001 is 1:011. The LUB can be thought of as the least label
that dominates both labels.

208 S–2301–10011

UNICOS Multilevel Security (MLS) Feature [8]

The GLB is the lesser of the two levels and the intersection of the two
compartment sets. The GLB of 0:011 and 1:001 is 0:001. The GLB can be thought
of as the greatest label that is dominated by both labels.

The session’s security label range determines the minimum and maximum
security labels for the session. The user is not allowed on the system if there is
no intersection between the ranges.

Next, the active security label of the session is determined. If a label is requested,
the active label is set to the requested label. Access is denied if the requested label
is not within the session’s security label range.

If a label is not requested, the session’s active label is set to udbdef, if udbdef
is within the session’s security label range. The session’s active label is set to
udbmin, if udbdef is not within the session’s security label range.

The following examples show how the session’s security label is determined,
based on the security labels of the connection and the UDB entry values.

In the following example, assume the following values have been defined for the
connection’s security label range and the user’s UDB entries:

netmin = 1:00001

netmax = 4:00001

udbmin = 0:00000

udbdef = 0:00010

udbmax = 5:00010

The connection’s security label range is 1:00001 through 4:00001, while the user’s
security label range is 0:00000 through 5:00010.

Access would be denied, because there is no intersection between the
connection’s and user’s security label ranges. The network connection has a
minimum compartment set of 00001 and the user’s security label range does not
include this compartment set.

In the following example, assume following values have been defined for
the connection’s security label range and the user’s UDB entries and that the
deflbl_as_minlbl field has not be configured:

netmin = 1:00000

netmax = 4:01110

udbmin = 0:00000

udbdef = 2:00010

udbmax = 5:01010

S–2301–10011 209

General UNICOS® System Administration

The connection’s security label range is 1:00000 through 4:01110, while the user’s
security label range is 0:00000 through 5:01010. The session’s security label range
is 1:00000 through 4:01010.

The udbdef is within the session’s security label range, so the active security
label is set to the value of udbdef (2:00010).

In the following example, assume following values have been defined for
the connection’s security label range and the user’s UDB entries and that the
deflbl_as_minlbl field has not be configured:

netmin = 1:00010

netmax = 1:01110

udbmin = 0:00000

udbdef = 2:00010

udbmax = 5:01010

The connection’s security label range is 1:00010 through 1:01110, while the user’s
security label range is 0:00000 through 5:01010. The session’s security label range
is 1:00010 through 1:01010.

The udbdef is not within the session’s security label range, so the active security
label is set to the session’s minimum label (1:00010). Access would have been
denied if deflbl_as_minlbl was configured. The user’s security label range
would have had a minimum level of 2 and the maximum connection level is 1.

8.5.4 I&A User Exits

Warning: The centralized I&A user exits should not be used on a Cray
ML-Safe system configuration.

Seven user exits are supported on a UNICOS system. The user exits allow a site
to control user I&A, including I&A success and failure process. Some examples
are as follows:

• Supporting use of a local password format

• Allowing validation information to be held on a remote (that is, front-end)
host

• Disallowing multiple logins

• Bypassing password processing

• Limiting access to a selected group of users or selected network address

• Disabling the use of the su(1) command to become root

210 S–2301–10011

UNICOS Multilevel Security (MLS) Feature [8]

The ia_user(3) routine supports three user exits: one at the beginning, which
allows for complete replacement of the routine; a second one, which comes after
normal I&A for additional site-specific authentication; and a third at the end of
the routine. These routines are as follows:

User exit Description

ia_uex_authrep Provides the ability to replace functionality
performed by ia_user or modify the ia_user
parameters. The ia_uex_authrep routine has
write access to all of the ia_user parameters,
allowing ia_uex_authrep to modify the
parameters. In addition, this routine can
request that ia_user does not perform
normal processing, but returns on return from
ia_uex_authrep.

ia_uex_authadd Provides the ability for additional authentication
after successful normal authentication. It is called
by ia_user after identification and the requested
authentication has been performed. It is called
before the password aging, maximum logins, and
other login/password checking mechanisms are
processed. This exit has write access to all of the
ia_user parameters, allowing ia_uex_authadd
to modify these parameters.

ia_uex_authend Provides capability for a user exit to be called at
the end of the ia_user routine regardless of
the status that would be returned by ia_user.
ia_uex_authend has write access to all of the
ia_user parameters, allowing ia_uex_authend
to modify the parameters.

The ia_failure(3) routine supports two user exits: one at the beginning,
which allows for complete replacement of the routine; and a second one, which
comes after normal auditing for additional site-specific auditing. These routines
are as follows:

User exit Description

ia_uex_failure Provides for the complete replacement of
ia_failure or the ability to modify the
ia_failure parameters. The ia_uex_failure
routine is called at the beginning of ia_failure.

S–2301–10011 211

General UNICOS® System Administration

ia_uex_failaudit Provides for additional processing to be
performed after normal I&A failure logging is
complete, but before log-delay processing. The
ia_uex_failaudit routine is called at the end
of ia_failure before log-delay processing. The
ia_uex_failaudit routine has write access to
all of the ia_failure parameters, allowing
ia_uex_failaudit to modify the parameters.

The ia_success(3) routine supports two user exits: one at the beginning,
which allows for complete replacement of the routine; and a second one, which
comes after normal auditing for additional site-specific auditing. These routines
are as follows:

User exit Description

ia_uex_success Provides for the complete replacement of
ia_success or the ability to modify the
ia_success parameters. The ia_uex_success
routine is called at the beginning of ia_success.

ia_uex_succaudit Provides for additional processing to be performed
after normal I&A success logging is complete. The
ia_uex_succaudit routine is called at the
end of ia_success. The ia_uex_succaudit
routine has write access to all of the ia_success
parameters, allowing ia_uex_succaudit to
modify the parameters.

In addition, login(1) and su(1) supports the use of a user exit that is called
before setting process attributes for the user’s process. This routine is as follows:

User exit Description

ia_uex_preattr Provides for additional processing before the
login and su processes set their attributes to
that of the user. The ia_uex_preattr routine
is called while the process is still running with
special attributes (that is, as super user or with
privilege).

The ia_mlsuser(3) routine does not support the use of user exits.

The user exits called at the beginning of the ia_user, ia_failure, and
ia_success routines support the ability to request normal processing after
returning from the user exit. If normal processing is not requested, the entire

212 S–2301–10011

UNICOS Multilevel Security (MLS) Feature [8]

routine is bypassed after the user exit processing is completed. In this case, the
corresponding user exits in the ia_user, ia_failure, and ia_success
routines are also bypassed.

8.5.5 Password Security

Most systems use passwords to regulate access to the system and prevent
unauthorized individuals from logging into the system. It is important to
establish a set of password guidelines for system users, educate the users on the
importance of selecting, protecting, and using their passwords, and then enforce
the guidelines by monitoring and auditing password use.

On a UNICOS system using a Cray ML-Safe configuration, it is of critical
importance to enforce the correct use of passwords, and to use the monitoring
and auditing features provided, especially in the case where repeated invalid
password attempts are made.

The following list provides some rules to enforce, configuration parameters that
can be used for password protection, and commands that can be used to audit
password use on a UNICOS system:

• Change the root password often and audit its use. Limit the number of
people who are allowed access to the root password.

• Remove old login accounts or disable them.

• Use the CONSOLE_MSG, DISABLE_ACCT, MAXLOGS, LOGDELAY,
DISABLE_TIME, and DELAY_MULT parameters to protect MLS logins and
passwords from unauthorized use and to lock a user’s account after a
specified number of failed login attempts; see Section 8.5.5.11, page 220, for
more information.

• Enable the machine-generated password feature by setting the
RANDOM_PASS_ON parameter. This feature generates a pronounceable, yet
hard-to-guess password for users. See Section 8.5.5.10, page 217, for more
information.

• Force users to change their passwords often by using the password aging
feature; see Section 8.5.5.3, page 214, for more information.

• Use the password locking feature to lock the passwords of users on vacation
or absent for any extended amount of time. See Section 8.5.5.6, page 215, for
more information.

• Monitor and audit the use of passwords. This can be done in a variety
of ways.

S–2301–10011 213

General UNICOS® System Administration

– Use the spcheck(8) command to monitor failed attempts from the su
program. See See Section 8.8.9, page 341, for more information.

– Use the cll(8) command to display a user’s invalid login attempts. See
Section 8.5.6, page 225, for more information.

– Use the user trap feature to monitor the activity of suspicious logins. See
Section 8.5.5.7, page 216, for more information.

– Use the reduce command to audit login activity from security log entries.
See Section 8.8.7.9, page 287.

• Do not run rshd(8).

Ultimately, it is the responsibility of the security administrator to select the
password features to be used, to educate system users on how to use these
features, and to enforce the proposed guidelines. The remaining sections explain
the password protection features in more detail.

8.5.5.1 Last Login Notification

At the time of each login, this feature allows the system to display the last login
date, the last login time, the number of intervening login failures, and the ID of
the terminal at which the user last logged in. If the user recognizes a discrepancy,
the password compromise should be reported to the security administrator and
investigated; see Section 8.5.6, page 225, for more information.

8.5.5.2 Generic Login Message

This feature allows the system to display a generic Login incorrect message
when an unsuccessful login attempt is detected. Because it does not explicitly
identify the incorrect portion of the login entry, this form of reply makes it harder
to guess user names and passwords.

8.5.5.3 Password Aging

Use of the age field in the UDB allows a maximum and minimum number to be
assigned to each user password. The maximum number specifies the maximum
number of weeks that the password can be used. When this limit is reached, the
user is forced to change his or her password during login.

The minimum number specifies the number of weeks that a user must keep a
password before changing it again. Use of the minimum number prohibits
users from changing their password and then immediately changing it back to
the original password. The limits assigned to each user must be greater than or

214 S–2301–10011

UNICOS Multilevel Security (MLS) Feature [8]

equal to and less than or equal to 63. The following example shows how to use
the udbgen(8) command to assign or change maximum or minimum numbers
(the maximum number is the first number in the age field):

/etc/udbgen -c "update:jack:age:6,1:"

In the preceding example, Jack can use his password for a maximum of 6 weeks
before being forced to change it and must use it for a minimum of 1 week before
he is allowed to change it.

The system or security administrator can also force users to change their
passwords before the next login attempt, as shown in the following example:

/etc/udbgen -c "update:jack:age:force:"

The force field forces the user to change the password during the next login
attempt. See udbgen(8) and udb(5) for more information on password aging.

8.5.5.4 Password Suppression

By default, this feature allows the system to suppress the display or printing of
passwords supplied by users.

8.5.5.5 Password Encryption

This feature allows each user password to undergo a one-way encryption before
it is written to the UDB. At the time of login, the password supplied by the user
is also encrypted and compared to the encrypted password in the UDB. This
method prevents the display, storage, or reading of raw passwords.

8.5.5.6 Password Locking

This feature allows the security or system administrator to lock a specific user
password to prohibit access to the system. This may be necessary during periods
of inactivity (for example, vacations). The disabled UDB security field is used
to disable a login, as shown in the following example:

/etc/udbgen -c "update:jack:disabled:1"

When 1, the user is not allowed access to the system, even if a valid password is
given. A value of 0 (the default value) enables the login.

S–2301–10011 215

General UNICOS® System Administration

8.5.5.7 User Trapping

When password compromise is suspected, this feature allows the security or
system administrator to put the suspect user into a trap mode by assigning the
usrtrap permission in the user’s UDB entry.

Assigning this permission causes the system to log all auditable events,
regardless of the system-wide auditing configuration (except for SLG_STATE).
This includes all discretionary and mandatory access attempts made by the
user. Use of the usrtrap permission results in the generation of many audit
records, which means that the size of the internal kernel audit buffer may have
to be increased.

To review the actions of this trapped login, use the reduce(8) command as
shown in Section 8.5.6, page 225.

8.5.5.8 Restricted Directory

The UDB contains a root directory for a user’s environment; at login time,
login(1) issues a system call to chroot(2), causing this directory to become
the root directory for the user. This mechanism confines users to a given root
directory and its subdirectories. This effectively confines the user to a subset of
the file system hierarchy. Consequently, the user cannot access files in directories
outside the restricted environment.

A typical restricted environment should permit access to at least the following
subdirectories: /bin, /etc, /tmp, and /dev; the security administrator should
place separate copies of these subdirectories in the restricted environment. This
allows users in a restricted environment to execute command files residing
in the restricted directory. Regardless of whether a restricted environment
is established, user access to directories is always subject to mandatory and
discretionary access controls.

8.5.5.9 Login Attempts

This feature defines the maximum number of login attempts per connection.
When this limit is reached, login(1) exits and the user must reestablish a
connection to the UNICOS system before trying to login again. Use of this
feature does not affect or supersede the use of the MAXLOGS or DISABLE_TIME
parameters (see Section 8.5.5.11, page 220). Also, use of this feature does not
depend on the MLS feature being enabled.

216 S–2301–10011

UNICOS Multilevel Security (MLS) Feature [8]

8.5.5.10 Machine-generated Passwords

Although the password is usually the first line of defense in protecting access
to a system, and in spite of any attempts to educate users on the importance of
selecting proper passwords, many users continue to select simple, easy-to-guess
passwords.

Use of machine-generated passwords enables the system to force users to select
a randomly-generated password that is both easy to remember and hard for
anyone else to guess, thus making password cracking harder to accomplish.
You should note that use of this feature makes it impossible for users to pick
their own passwords (that is, the "normal" UNICOS password mechanism is
overridden when the machine-generated password feature is enabled); the only
passwords available are the ones generated by this feature.

To enable the machine-generated password feature, the RANDOM_PASS_ON
parameter must be set to ON. To do this, use the Configure
system->Multilevel security (MLS) configuration->Login /
Password options->Machine-generated passwords? selection in the
UNICOS Installation and Configuration Menu System.

In addition, the minimum length of the generated password is controlled by the
PASS_MINSIZE parameter. The default minimum size is 8. Cray established this
default, because use of a smaller number leads to a substantially greater chance
of generating duplicate passwords.

To change the PASS_MINSIZE parameter, use the Configure
system->Multilevel security (MLS) configuration->Login /
Password options->Minimum machine-generated password length
selection in the UNICOS Installation and Configuration Menu System.

The maximum length of the generated password is controlled by the
PASS_MAXSIZE parameter. The default maximum size is 8. UNICOS does
not support the use of passwords that are greater than 8 characters, so
PASS_MAXSIZE cannot be set greater than 8. Also, PASS_MAXSIZE must be
greater than or equal to PASS_MINSIZE; if not, the password generator forces the
maximum size to be greater than or equal to the minimum size.

To change the PASS_MAXSIZE parameter, use the Configure
system->Multilevel security (MLS) configuration->Login /
Password options->machine-generated password length selection in
the UNICOS Installation and Configuration Menu System.

The algorithm used by the machine-generated password feature generates
passwords that are easy to remember, but are difficult to guess. The following list
contains examples of the type of passwords generated:

S–2301–10011 217

General UNICOS® System Administration

• lempamdo

• coochona

• vethsymy

Note: Although the chances are extremely small, the password-generating
algorithm may produce a password that may seem offensive to a user. The
appearance of such a password is random and is not intended to be offensive.
A user has the choice of rejecting any generated password and picking a
subsequent password.

As explained in previous paragraphs, because passwords of less than 7 characters
substantially increase and less than 8 increase the possibility of generating
duplicate passwords, and the fact that 8 is the maximum length that can be
used on a UNICOS system, a default of 8 is used for both PASS_MINSIZE and
PASS_MAXSIZE on a UNICOS system. It is recommended that your site uses the
default setting of 8 for both parameters.

Enabling this feature introduces user interface changes to the passwd(1) and
nu(8) command interfaces; these commands use the ranpass utility to generate
the passwords. There are no changes to login(1), because it executes passwd to
change passwords.

When machine-generated passwords are enabled the passwd command prompts
the user with a password, as shown in the following example:

$ passwd

Changing password for jane

Old password:

Your new password is: kudniqui

Re-enter password or (CR) to get another:$

The user has the option to accept the password or to have another password
generated, as shown in the following example:

$ passwd

Changing password for jane

Old password:

Your new password is: kudniqui

Re-enter password or (CR) to get another:

Your new password is: keltifok

Re-enter password or (CR) to get another:

218 S–2301–10011

UNICOS Multilevel Security (MLS) Feature [8]

Your new password is: coochona

Re-enter password or (CR) to get another:

Your new password is: rhecirou

Re-enter password or (CR) to get another:

Your new password is: osniyuib

Re-enter password or (CR) to get another:

$

The new password cycle continues until the user reenters the generated
password, signifying that he or she accepts the password.

You cannot use the passwd -b (batch) option when machine-generated
passwords are enabled.

When administrators uses the nu -a or nu -m options, they can no longer
select a user’s password as before, but must select one of the machine-generated
passwords, as shown in the following example:

$ nu -a

cmd/nu/nu.c 80.4 9/25/91 15:51:03 (sn18:/etc/nu.cf60)

Login name? (1-8 characters) [quit] bob

New password is: ralcuhyd

Re-enter new password or (CR) to get another:

New password is: osniyuib

Re-enter new password or (CR) to get another:

Enter actual user name: Bob Smith

.

.

.

After the password is selected, the nu sequence is the same as when the
machine-generated password feature is not enabled.

When using this feature, it is important that you as a security administrator do
not select a new password for yourself or other users in the presence of another
person (or, at the very least, shield your screen from the other person’s view).
Also, when you are done selecting a password, remove or erase the screen, so
that no one else can obtain the new password.

S–2301–10011 219

General UNICOS® System Administration

8.5.5.11 MLS Login and Password Protection Features

The UNICOS MLS feature provides six site-configurable parameters to protect
and monitor the login process and the use of passwords. The parameters are
as follows:

• MAXLOGS

• DISABLE_ACCT

• DISABLE_TIME

• CONSOLE_MSG

• LOGDELAY

• DELAY_MULT

All are found in uts/cf.SN/config.h.

Use of these parameters is site-dependent and can be used in a variety of
combinations to protect MLS logins and passwords. The CONSOLE_MSG
and DISABLE_ACCT parameter work independently of each other. That is,
CONSOLE_MSG does not have to be on for DISABLE_ACCT to work and vice
versa, although both can be on and continue to work successfully. Each of these
two parameters affect how the MAXLOGS parameter is used; DISABLE_ACCT
affects if DISABLE_TIME works.

Regardless of how the parameters are used, it is important for the security
administrator to audit password usage on a daily basis and investigate any
excessive or suspicious failed login attempts.

The following sections explain how to use the UNICOS installation and
configuration tool to set these parameters and provide examples of how the
parameters work.

8.5.5.11.1 The MAXLOGS, DISABLE_ACCT, and DISABLE_TIME Parameters

MAXLOGS defines the maximum number of consecutive failed login attempts
allowed to a user. For example, if MAXLOGS is set to 3, a user is allowed only
three attempts at selecting a correct password. Whether the user is allowed to
log in on the fourth (or subsequent) correct attempt depends on the state of
DISABLE_ACCT and DISABLE_TIME.

The logfails field in a user’s UDB entry is incremented each time the
user makes an incorrect login attempt. When logfails equals or exceeds
MAXLOGS, the account is disabled only if the DISABLE_ACCT parameter is ON. If

220 S–2301–10011

UNICOS Multilevel Security (MLS) Feature [8]

DISABLE_ACCT is OFF, then the user’s login attempts are not restricted by the
limit set by MAXLOGS.

DISABLE_TIME defines the number of seconds a user is disabled from logging
on after exceeding the limit set by MAXLOGS (assuming that DISABLE_ACCT
is enabled). It is recommended that DISABLE_TIME always be set to a
nonzero number. Setting this parameter to a negative number disables the user
indefinitely (or until a security administrator intervenes). When using a positive
number, it is recommended that you use a value no less than 60 seconds, as
smaller values render this parameter ineffective.

See the examples in Section 8.5.5.11.5, page 223, for more information on the use
of these parameters.

MAXLOGS does not affect root and security administrator accounts. That is,
root can log in from the console (/dev/console) and authorized security
administrators can log in from any terminal even though MAXLOGS is exceeded.

The MAXLOGS parameter is configured by using the Configure
system->Multilevel security (MLS) configuration->Login /
Password options->Maximum login attempts (MAXLOGS) selection in
the UNICOS Installation and Configuration Menu System.

The DISABLE_ACCT parameter is configured by using the Configure
system->Multilevel security (MLS) configuration->Login /
Password options->Disable account after MAXLOGS attempts?
selection in the UNICOS Installation and Configuration Menu System.

The DISABLE_TIME parameter is configured by using the Configure
system->Multilevel security (MLS) configuration->Login /
Password options->Disable time after max logins (seconds)
selection in the UNICOS Installation and Configuration Menu System.

8.5.5.11.2 The CONSOLE_MSG Parameter

When enabled, CONSOLE_MSG sends a message to the console when a user equals
or exceeds the login limit set by MAXLOGS. See the examples in Section 8.5.5.11.4,
page 222, for more information on the use of these parameters.

The CONSOLE_MSG parameter is configured by using the Configure
system->Multilevel security (MLS) configuration->Login /
Password options->Console messages upon reaching MAXLOGS?
selection in the UNICOS Installation and Configuration Menu System.

S–2301–10011 221

General UNICOS® System Administration

8.5.5.11.3 The LOGDELAY and DELAY_MULT Parameters

LOGDELAY defines the number of seconds that must elapse between login
prompts after a failed login attempt. For example, if LOGDELAY is set to 10
seconds, then the login prompt would not appear for 10 seconds after each
failed login attempt.

The LOGDELAY parameter is configured by using the Configure
system->Multilevel security (MLS) configuration->Login /
Password options->Seconds to delay between login tires
selection in the UNICOS Installation and Configuration Menu System.

When enabled, DELAY_MULT multiplies the number of seconds defined by
LOGDELAY by the number of failed login attempts to linearly lengthen the delay
between each login prompt after a failed attempt. This parameter is configured
by using the Configure system->Multilevel security (MLS)
configuration->Login / Password options->Increment login
delay time? selection in the UNICOS Installation and Configuration Menu
System. See Section 8.5.5.11.7, page 225, for more information.

8.5.5.11.4 Using the CONSOLE_MSG and MAXLOGS Parameters

When the CONSOLE_MSG parameter is on, and DISABLE_ACCT is off, MAXLOGS
is used only to determine when a message is sent to the console. That is,
when MAXLOGS is equaled or exceeded, a message alerts the operator or
administrator that someone is attempting one or more invalid login attempts.
This configuration does not prohibit a user from logging in with a correct
password after MAXLOGS has been equaled or exceeded, however.

This situation is shown in Table 6. Assume that CONSOLE_MSG is ON,
DISABLE_ACCT is OFF, MAXLOGS is set to 5, and DISABLE_TIME is set to 60.

Table 6. Login Protection Parameter Configuration, Example 1

Login sequence User results Console message

1 valid attempt Login accepted No message

1 invalid/1 valid Login accepted No message

4 invalid/1 valid Login accepted No message

5 invalid/1 valid Login accepted 1st console message

6 invalid/1 valid Login accepted 2nd console message

222 S–2301–10011

UNICOS Multilevel Security (MLS) Feature [8]

As shown in Table 6, messages are sent when MAXLOGS is equaled or exceeded,
and the user is allowed to successfully log in when a valid password is entered.
In other words, the user (malicious or otherwise) is allowed access and it is up to
the operator or administrator monitoring the console to decide what to do. The
table also shows that the DISABLE_TIME parameter is not used in this situation.

The console that receives the message is defined by the
SYSTEM_ADMIN_CONSOLE parameter (see Section 8.7.5.2.2, page 233, for more
information on this console). The appearance of the message on the console
screen is preceded by a warning bell.

The format of the message is as follows:

Warning: user loginname has reached or exceeded MAXLOGS on

tty/pty line from host hostname

The fields are defined in the following list:

Field Description

loginname Login name of the user

tty/pty line The device name

hostname The name of the user’s host

The following is an example of the warning message:

Warning: user tim has reached or exceeded MAXLOGS

on ttyp065 from host branch15

The warning message generated from NQS is slightly different than the one
shown previously, in that the tty/pty line portion is replaced with via NQS.
Otherwise, the field descriptions are the same as defined previously and NQS
uses the password protection features in the same way as login. The following
example shows a warning message for a NQS user:

Warning: user mary has reached or exceeded MAXLOGS via

NQS from host cray

8.5.5.11.5 Using the DISABLE_ACCT, MAXLOGS, and DISABLE_TIME Parameters

When the DISABLE_ACCT parameter is on, and CONSOLE_MSG is off, MAXLOGS
and DISABLE_TIME are used to prohibit incorrect login attempts.

This situation is shown in Table 7. Assume that CONSOLE_MSG is OFF,
DISABLE_ACCT is ON, MAXLOGS is set to 5, and DISABLE_TIME is set to 60.

S–2301–10011 223

General UNICOS® System Administration

Table 7. Login Protection Parameters Configuration, Example 2

Login sequence User results Console message

1 valid attempt Login accepted Not applicable

1 invalid/1 valid Login accepted Not applicable

4 invalid/1 valid Login accepted Not applicable

5 invalid/1 valid Login denied Not applicable

5 invalid/ Time-out expired/1 valid Login accepted Not applicable

As shown in Table 7, the user is granted access until MAXLOGS is equaled (line
4 of the table). When the user makes five invalid attempts, he or she is denied
access even though a valid attempt is then made. This is caused by the use of
the DISABLE_TIME parameter, which defines the number of seconds a user’s
account is disabled after exceeding the MAXLOGS limit.

When this defined amount of time has expired, the user is allowed one more
attempt at logging in. If successful, the user is granted access (as shown in line 5
of the table). If unsuccessful, then the user must again wait for the time specified
by DISABLE_TIME before being allowed one more attempt to log in. Notice that
no messages are sent to the console; this is because CONSOLE_MSG is off.

The Login incorrect message appears for any login attempt made after
MAXLOGS is equaled or exceeded and prior to the expiration of the time limit set
by DISABLE_TIME,

The DISABLE_TIME sequence continues until a successful login attempt is
completed or a security administrator intervenes by resetting the login failures.
As previously explained, each failed login attempt is tracked by the UDB
logfails field. At no time is the logfails field set to 0 when DISABLE_TIME
expires.

8.5.5.11.6 Using CONSOLE_MSG and DISABLE_ACCT Parameters

When both the DISABLE_ACCT and CONSOLE_MSG parameters are set to on, then
login is denied when MAXLOGS is equaled or exceeded, and messages are sent
to the console. This is shown in Table 8. Assume that CONSOLE_MSG is ON,
DISABLE_ACCT is ON, MAXLOGS is set to 5, and DISABLE_TIME is set to 0.

224 S–2301–10011

UNICOS Multilevel Security (MLS) Feature [8]

Table 8. Login Protection Parameters Configuration, Example 3

Login sequence User results Console message

1 valid attempt Login accepted No message

1 invalid/1 valid Login accepted No message

5 invalid/1 valid Login denied 1st console message

5 invalid/ Time-out expired/1 valid Login accepted 1st console message

5 invalid/ Time-out expired/1 invalid Login denied 2nd console message

5 invalid/ Time-out expired/2 invalid Login denied 3rd console message

In Table 8, DISABLE_ACCT, MAXLOGS, and DISABLE_TIME work as explained
for Table 7, page 224. In addition, because CONSOLE_MSG is enabled, the correct
number of messages are sent to the console for invalid attempts.

8.5.5.11.7 Using the DELAY_MULT Parameter

A site can further restrict login attempts by setting the DELAY_MULT parameter;
when enabled, it multiplies the LOGDELAY parameter by the number of
successive failed attempts. This lengthens the delay between each login prompt
after a failed login attempt.

For example, if LOGDELAY is set to 10 seconds, the login prompt would not
appear for 20 seconds after the second failed login attempt, 30 seconds after the
third failed login attempt, and so on.

!
Caution: Use of the DELAY_MULT parameter tends to disclose information
about valid users. This information becomes apparent to unauthorized users
because a valid user name shows a delay between successive failed attempts.

8.5.6 Password Auditing

To audit password usage, the security administrator can use the spcheck -q
command (which reports excessive failure of the su(1) command) and check the
output of the reduce(8) command, as shown in the following examples. The
following example displays the users who have exceeded the limit defined by
MAXLOGS:

/etc/reduce -t logn | grep Disabled

S–2301–10011 225

General UNICOS® System Administration

The following example displays a line of information that contains the user name
and login ID for any user who had a password failure when logging in:

/etc/reduce -t logn | grep Password

To help determine the guesser’s identity, the output of the login record through
the reduce command identifies the host where the attempts took place. See
Section 8.8.7.9, page 287, for more information on this record.

A properly authorized user can also use the cll(8) command to display a
specific user’s failed login attempts, as shown in the following example. See
Section 8.5.6.1, page 226, for a definition of a properly authorized user for the
cll command:

$/etc/cll -l jack

cll: user <jack> has 0 login failures.

The cll -L command can be used to display the failed login attempts (if greater
than 0) for all user logins, as shown in the following example:

$/etc/cll -L

User 0 <root > has 1 login failures

User 6 <nqs > has 5 login failures

User 128 <tom > has 25 login failures

User 146 <alice > has 2 login failures

User 149 <sue > has 1 login failures

User 204 <mary > has 7 login failures

8.5.6.1 Reenabling Accounts

The configuration parameters explained in Section 8.5.5.11, page 220, can be used
to prohibit incorrect login attempts or permanently disable a user’s account. The
following information assumes that you understand how these parameters can
be used to disable a user’s account.

To reenable a disabled user’s account, use the cll(8) or udbgen(8) commands,
as shown in the following examples.

You must be properly authorized to use the cll command to reset the logfails
field in the UDB for one user or all users. Properly authorized is defined as
follows:

226 S–2301–10011

UNICOS Multilevel Security (MLS) Feature [8]

• On a system with PRIV_SU enabled, you must be the super-user.

• On a system using the PAL-based privilege mechanism, you must have an
active secadm or sysadm category.

The following example shows how to use the cll -r command to reset the
logfails field for the user jack:

/etc/cll -r jack

To clear the logfails field in the UDB, use the udbgen command as shown in
the following example:

/etc/udbgen -c "update:mary:logfails:0:"

You must be properly authorized to use the udbgen command. Properly
authorized is defined as follows:

• On a system with PRIV_SU enabled, you must be the super-user.

• On a system using the PAL-based privilege mechanism, you must have
an active secadm category to change all UDB fields. If you have an active
sysadm category, you can change all UDB fields except for security-sensitive
fields.

8.6 Object Reuse

The UNICOS kernel manages shared resources (for example, process table
entries, inodes, disk blocks, I/O buffers, and user memory). To ensure proper
operation, these resources must be initialized when they are released to the
system and reallocated. For example, when a file is removed, its data blocks are
released and made available for reallocation. If the data block contents were not
initialized before allocation to a different file, it would be possible for users to
search for sensitive data in reallocated disk blocks.

The UNICOS kernel ensures that the user-visible contents of all the
kernel-managed data resources are overwritten with zeroes or initialized to
new, correct values before they are reallocated. In the case of disk blocks, the
memory representation of a disk block is filled with zeroes or the data specified
by the calling process whenever the block is allocated. This prevents access to
the previous contents.

Most data resources are initialized at allocation time, as this saves time if the
resource is never reused. Some data resources are initialized at deallocation
because reuse is a certainty or there is no way to ensure correct initialization at

S–2301–10011 227

General UNICOS® System Administration

reallocation time. In either case, the system call interface used by the UNICOS
operating system prevents nonprivileged user-level processes from obtaining
the contents of a data resource until it is allocated. This means there is no
mechanism by which nonprivileged processes can bypass the UNICOS object
reuse mechanisms.

For sites concerned about data that may remain on file system media when
the media are removed, the UNICOS operating system provides the following
additional mechanisms that manually or automatically overwrite disk blocks
before they are released:

• The spclr(1) command, which overwrites the contents of files and deletes
them. This allows users to ensure that the data in their files has been erased
from the disk before the file is removed.

• The SECURE_SCRUB configuration parameter, which enables the overwriting
of the contents of all disk blocks with zeroes before releasing them.

The following configuration parameters affect the behavior of the spclr
command:

• SANITIZE_PATTERN

• DECLASSIFY_DISK

• OVERWRITE_COUNT

• DECLASSIFY_PATTERN

The spclr -s command overwrites disk space with a pattern determined
by the SANITIZE_PATTERN parameter. It is recommended that the
SANITIZE_PATTERN parameter be set to zeros. To set this parameter,
use the Configure system->Multilevel security (MLS)
configuration->Disk options->Scrub disk write pattern selection
in the UNICOS Installation and Configuration Menu System.

The DECLASSIFY_PATTERN parameter allows you to set the original overwrite
pattern used when the spclr -d command is executed (the default pattern is
0). You can also use the -p option with the -d option. In this case, disk space is
overwritten with the pattern, then with the negated pattern, and finally with a
random pattern.

To set this parameter, use the Configure system->Multilevel security
(MLS) configuration->Disk options->Disk declassify write
pattern selection in the UNICOS Installation and Configuration Menu System.

228 S–2301–10011

UNICOS Multilevel Security (MLS) Feature [8]

The OVERWRITE_COUNT parameter (default is three times) determines
the number of times that the DECLASSIFY_PATTERN is written when the
spclr -d command is executed. To set this parameter, use the Configure
system->Multilevel security (MLS) configuration->Disk
options->Disk declassify overwrite count selection in the UNICOS
Installation and Configuration Menu System.

The DECLASSIFY_DISK parameter must be set to YES for the
OVERWRITE_COUNT and DECLASSIFY_PATTERN parameters to work
correctly. To set this parameter, use the Configure system->Multilevel
security (MLS) configuration->Disk options->Allow disk
declassification selection in the UNICOS Installation and Configuration
Menu System.

When the SECURE_SCRUB parameter is enabled (ON), the disk space is
automatically overwritten once when a file is removed. It is recommended
that the overwrite pattern be set to zeros (which is done by setting the
SANITIZE_PATTERN parameter).

If the SECURE_SCRUB parameter is disabled (OFF), the disk space is not
overwritten unless the user specifically executes the spclr -s command.

To set the SECURE_SCRUB parameter, use the Configure
system->Multilevel security (MLS) configuration->Disk
options->Scrub data blocks on file selection in the UNICOS
Installation and Configuration Menu System. This parameter is not required by
the TCSEC, because UNICOS does not allow a user to access any residual disk
data.

!
Caution: Significant performance degradation occurs if the SECURE_SCRUB
parameter is enabled.

8.7 MLS Installation and Configuration

The following sections provide MLS installation and configuration information
for UNICOS and Cray ML-Safe system configurations:

• Startup and shutdown procedures

• Organization of the MLS menus used on the UNICOS Installation and
Configuration Menu System (ICMS)

• Installation procedures

• Defining MLS portions of UDB entries

S–2301–10011 229

General UNICOS® System Administration

• Directory initialization

• Labeling commands (privcmd(8))

• Configuring a Cray ML-Safe system configuration

8.7.1 System Startup Procedure

The MLS feature, enabled by default, does not alter system startup operations.
When the MLS feature is enabled, however, the following message format is
displayed at the operator’s console during startup:

SECURE_SYS.levels = PZ_MINLVL/PZ_MAXLVL, Compartment = xxxxxxxxxxxxxxxxxxx

PZ_MINLVL (which is usually 0) and PZ_MAXLVL (which is usually 16) are
the parameters that define the operating system’s minimum and maximum
security levels. The Compartment = xxxxxxxxxxxxxxxxxxx field defines the
operating system’s compartment set. The following example shows the display:

SECURE_SYS levels = 0/16, compartment = 0777777777777777777777

You can use the spset -s command to change the security level and
compartment for the operating system. You must be properly authorized to use
this option. See Section 8.7.5.2.1, page 232, for more information.

You can use the spget -s command to display the system’s security label.
Anyone can use this option to display the information.

During system startup (even after a system failure), the /dev/tty* entries are
automatically accessed and cleared by spwcard(8).

8.7.2 Subsystem Startup Procedure

Daemons are started automatically during system startup from within the
/etc/rc file through the /etc/sdaemon command, which is executed on entry
to the multiuser state. You must be a properly authorized administrator to
manually start or restart a daemon.

8.7.3 System Shutdown Procedure

The MLS feature, enabled by default, does not alter system shutdown operations.
The shutdown(8) command sends a shutdown warning message on a UNICOS
system through the wall(8) command to all users regardless of their security
labels.

230 S–2301–10011

UNICOS Multilevel Security (MLS) Feature [8]

If you want to send a separate message to all users, then you must be properly
authorized when executing the wall command. If you are not properly
authorized then only those users executing at the same security label and have
messages turned on receive the message.

A properly authorized user is defined as the super user on systems with
PRIV_SU enabled; for systems using the PAL-based privilege mechanism,
properly authorized is defined as having an active secadm or sysadm category.

8.7.4 System Clearing Procedure

Before the UNICOS system is started, the Cray System Clear package can be used
to clear (or scrub) the Cray hardware environment.

The Cray System Clear utility is a stand-alone routine that writes over the
data in all memory (mainframe, IOS buffer memory and IOP local memory),
stacks, internal buffers, and registers, as well as on selected disks and specified
high-speed channel buffers. The interactive session or a shell script can be used
to activate and control the hardware scrubbing process.

It is important to note that this utility has not been integrated with the UNICOS
startup process; therefore, system scrubbing operations must be initiated
manually. See your Cray engineer for instructions on how to run this utility.

Note: The Cray System Clear utility is not supported for use on a Cray
ML-Safe system configuration.

8.7.5 MLS Configuration Parameters

The following files are used to configure the MLS feature on a UNICOS system:

• sys/secparm.h

• uts/cf.SN/config.h

• cf/seclabs.c

The secparm.h file cannot be configured by your site; the remaining two files
can be changed by the site. The following sections describe these files.

8.7.5.1 The secparm.h File

In pre-6.0 releases, the secparm.h file contained all the security parameters that
could be configured by a site. For post-6.0 releases, it contains parameters that are
used by the UNICOS kernel and cannot be changed by site personnel.

S–2301–10011 231

General UNICOS® System Administration

The file contains definitions for the following:

• The names and representations for the user permissions

• The definitions of the process 0 initial security parameters

• The macros used to identify certain Cray ML-Safe processes

8.7.5.2 The uts/cf.SN/config.h File

The uts/cf.SN/config.h file contains all the parameters that can be
configured by the site (except for the site-specific level naming conventions
and the site-specific compartment definitions, which are defined in the
seclabs.c file). These uts/cf.SN/config.h parameters can be set
by using the Configure system->Multilevel security (MLS)
configuration->appropriate selections in the UNICOS Installation and
Configuration Menu System.

The appropriate selections are as follows:

• System options

• Network security options

• Login / Password options

• Disk options

• Security log configuration

• Import the security configuration ...

Each security submenu has help files that explain the various selection or refers
you to the proper documentation in this manual. The selections found in these
menus are documented throughout the relevant sections of this MLS chapter and
are not be repeated here, except for the following selections, which did not fall
into any other discussion.

See the UNICOS System Configuration Using ICMS for more information on the
selections and help files available for all MLS configuration menus.

8.7.5.2.1 Setting the System’s Security Label

The operating system’s default minimum and maximum security
levels (MINSLEVEL and MAXSLEVEL, respectively) are defined in
/uts/cf.SN/config.h.

232 S–2301–10011

UNICOS Multilevel Security (MLS) Feature [8]

To configure MINSLEVEL, use the Configure system->Multilevel
security (MLS) configuration->System options->Minimum
security level selection in the UNICOS Installation and Configuration
Menu System.

To configure MAXSLEVEL, use the Configure system->Multilevel
security (MLS) configuration->System options->Maximum
security level selection in the UNICOS Installation and Configuration Menu
System. This information is resident in memory.

The operating system’s valid set of compartments (SYSVCOMPS) is also defined in
uts/cf.SN/config.h. This octal mask can be set by using the Configure
system->Multilevel security (MLS) configuration->System
options->Valid system compartment mask (octal) selection in the
UNICOS Installation and Configuration Menu System. For a compartment to
be available on the system, its associated bit setting in this octal mask must
be set to 1.

An appropriately authorized user can use the spset -s command to
change this mask. See the UNICOS User Commands Reference Manual for more
information on the spset(1) command.

8.7.5.2.2 Configuring Consoles

Access to the operator or administrator ID can be restricted to a console through
use of the following parameter, which is found in uts/cf.SN/config.h:

Parameter Description

SYSTEM_ADMIN_CONSOLE Allows the site to set the
system console to the named
console; reset at time of
system initialization. This
parameter must be set to
/dev/console.

SECURE_SYSTEM_CONSOLE Use of this parameter is
obsolete as of the UNICOS
9.2 release.

SECURE_OPERATOR_CONSOLE Use of this parameter is
obsolete as of the UNICOS
9.2 release.

To set the SYSTEM_ADMIN_CONSOLE, use the Configure
system->Multilevel security (MLS) configuration->System

S–2301–10011 233

General UNICOS® System Administration

options->Default system console selection in the UNICOS Installation
and Configuration Menu System.

Note: These parameters will no longer be available in the UNICOS 10.0
release.

8.7.5.3 The seclabs.c File

The seclabs.c file contains the site-specific compartment definitions
and the security level naming options. You can define these parameters
by selecting Configure system->Multilevel security (MLS)
configuration->Site labels configuration->Compartments or
Levels selections in the UNICOS Installation and Configuration Menu System.

8.7.5.3.1 Security Level Naming

If the security level names were imported during the installation process, then, by
default, security levels (0, 1, 2,...) are assigned names (level0, level1, and so
on). These security level names can be changed. For example, level0 could be
named public, level2 could be named private, and so on.

It is possible to define new, or redefine existing security level names and values
without rebuilding commands, utilities, and libraries (only the UNICOS kernel
must be rebuilt). This capability is supported by using the getsectab(2) system
call and sectab(5) structure. The UNICOS system allows the getsectab(2)
system call to return the configured security tables, regardless of whether MLS is
enabled. This allows you to to configure various MLS information (for example,
security-relevant fields in the user database (UDB)) before actually booting a
UNICOS MLS kernel.

8.7.5.3.2 Compartment Definition

Compartment use and definition should be determined by the security personnel
before a Cray ML-Safe configuration of the system is installed. Redefining
compartments after the system is installed and running can present many
security holes.

For example, redefining a compartment, and then assigning the new
compartment to a new user, could possibly grant the new user unwanted
permission to an object labeled with the old compartment definition.

234 S–2301–10011

UNICOS Multilevel Security (MLS) Feature [8]

8.7.5.4 Permission Definitions

The following paragraphs clarify the definitions and differences between the
following user permissions:

• permbits (permission bits for user permissions)

• permits (permission bits for user permissions on UNICOS systems)

• sitebits (permission bits reserved for site definition)

These permissions are defined in the user database (UDB) on UNICOS and
Cray ML-Safe system configurations. These permissions are assigned to a user
at login. See the udbgen(8) man page for more information on assigning these
permissions. The permissions are used throughout the session unless explicitly
turned off by a process.

permbits are used on both UNICOS systems with MLS and without MLS,
and provide users the authority to perform certain functions such as changing
the ownership of their files. permbits are not used within the Cray ML-Safe
configuration kernel for determining privileges, although the tape subsystem
uses the tape-manage, bypasslabel, and wrunlab permbits.

permits are similar in function to permbits. When PRIV_SU is enabled,
the UNICOS system uses the suidgid and usrtrap permits. These
permits have no effect on systems using the PAL-based privilege mechanism.
The permits are permanently defined in the security parameter file
(sys/secparm.h).

The suidgid permission gives the user explicit permission to set the set-user-ID
(setuid) and/or set-group-ID (setgid) bits for a file. Restricted management
of setuid and setgid files is enforced only on UNICOS systems with the
FSETID_RESTRICT configuration parameter enabled. This permission is used
only on systems with PRIV_SU enabled.

The usrtrap permission can be used on any UNICOS configuration. This
permission is not, by a true definition of the word, a permission, but a process
attribute. It is described here, as it is defined in sys/secparm.h. The usrtrap
permission sets the user in trap mode, causing the system to log all auditable
events, regardless of the system-wide auditing configuration (except for
SLG_STATE). This includes all discretionary and mandatory access attempts
by this user.

For example, if SLG_ALL_VALID is disabled, but the user has the usrtrap
permission assigned, all valid file access attempts for the user are still logged. For

S–2301–10011 235

General UNICOS® System Administration

more information on the security log, see Section 8.8.1, page 260. Do not assign
the usrtrap permission to the security administrator.

You may see instances where the the reclsfy, lbypass, wrunlab, and
install permissions are displayed in audit records and other UNICOS outputs.
These are obsolete permits and they have no effect on a UNICOS system.

sitebits are similar in function to permbits, but the meaning of each
bit is defined by the site. Their usefulness is limited only by the site’s need
to maintain compatibility with other UNICOS sites. They can be used on a
UNICOS system with PRIV_SU enabled, with the understanding that the site is
aware of how any security-related sitebits could affect the default security
policies enforced on either of these security configurations. The introduction of
site-written code that uses sitebits to enforce security policies on a Cray
ML-Safe system configuration should not be used unless proper accreditation
procedures are followed.

8.7.6 Defining MLS UDB Entries

The user database (UDB) has fields that pertain specifically to the UNICOS MLS
feature. These fields include the following:

Field Description

maxlvl Maximum security level

minlvl Minimum security level

defcomps Active compartments

deflvl Default security level

mincomps Minimum compartment set

comparts Authorized compartments

permits User permissions

intcat Active category

valcat Authorized categories

The udbgen(8) command creates and maintains the UDB.

Before booting a UNICOS system to multiuser mode, you should define all
users in the UDB. All user entries should be carefully defined, because a user
with more privileges than necessary can (inadvertently or maliciously) corrupt or
destroy system or user data.

236 S–2301–10011

UNICOS Multilevel Security (MLS) Feature [8]

Defining the security administrator entry is of special importance to successfully
installing and maintaining the UNICOS system. Administrative user entries
should be set up according to the following guidelines:

• Assign each administrative user a unique, non-root login ID. If you need
more than one person to function as the same type of administrator on
non-PRIV_SU systems, define a unique login ID for each user and assign each
login account the same administrative category. On UNICOS systems that
depend on the super user for administration (that is, the system has PRIV_SU
enabled), require administrators to use the su(1) command to become the
root user.

Table 9 gives guidelines for defining the UDB security fields for administrators,
operators, and general users on a UNICOS system.

Table 9. Suggested Values for UDB Security Fields

UDB Security administrator System administrator System operator Users

minlvl 0 0 0 0

maxlvl 16 * * *

deflvl 0 0 0 0

comparts * * * *

defcomps None None None None

mincomps 0 0 0 0

permits suidgid suidgid suidgid **

intcat None None None None

valcat secadm sysadm sysops None

* Definition of this field is site-specific.

**Assign the suidgid only if necessary. Assign the usrtrap permission if you with to log all the user’s
discretionary and mandatory access requests in the security log.

In addition to establishing a user’s UDB entry, the security administrator
should ensure that the user’s home directory and any initial files (for example,
.profile, .cshrc, and .login) are labeled to match the user’s UDB entry.

S–2301–10011 237

General UNICOS® System Administration

8.7.7 Directory Initialization Procedures

Several directories must be either converted to multilevel directories (MLDs) or
assigned the wildcard label to enable the concurrent processing of user clearances
and file classifications at multiple security labels.

Assigning the wildcard label to many of the directories is done at system startup
time by the spwcard(8) command, which is run automatically from the /etc/rc
script. NQS and the tape daemon also assign the needed wildcard labels through
their respective initialization routines. See Section 8.4.1.2.2, page 175, and Section
8.4.1.2.1, page 174, for more information on converting to MLDs and wildcard
directories, respectively.

Note: Wildcard directories cannot be used on a Cray ML-Safe system
configuration. Where wildcard labels were used on UNICOS systems (that is,
non-Cray ML-Safe UNICOS systems), they have been replaced with MLDs.
If your site has already configured the system to support a Cray ML-Safe
system configuration, using the spwcard command does not relabel any file or
directory (for example, relabel a MLD with a wildcard label).

The tape daemon and the NQS installation and startup procedures also do not
support the use of wildcard labels on a Cray ML-Safe system configuration.

The spwcard command assigns a wildcard label to the following directories
when it is executed by the /etc/rc script:

• /tmp

• /usr/tmp

• /usr/mail

• /usr/spool/mqueue

During the initial installation of NQS, the qstart utility executes qconfigchk
and looks for the NQE_NQS_MAC_DIRECTORY variable. If the variable is set to 1,
then the NQS spool directories will be created as MLDs.

If you are upgrading your NQS configuration to use MLDs, you must do the
conversion manually. For more information on converting the NQS spool
directories, see the NQE Administration.

The directories assigned the wildcard security label and automatically set by the
NQS process are as follows:

• /usr/spool/nqs/private/root/control

• /usr/spool/nqs/private/root/data

238 S–2301–10011

UNICOS Multilevel Security (MLS) Feature [8]

• /usr/spool/nqs/private/root/failed

• /usr/spool/nqs/private/root/interproc

• /usr/spool/nqs/private/root/output

• /usr/spool/nqs/private/root/chkpnt

• /usr/spool/nqs/private/root/FIFO

• /usr/spool/nqs/private/root/LOGFIFO

• /usr/spool/nqs/private/root/reconnect

• /usr/spool/nqs/private/requests

8.7.8 The privcmd Command

The privcmd command sets file privileges, the security label, permissions
mode, owner, owning group, and security flags on system objects. For more
information on using this command, see the privcmd(8) man page in the
UNICOS Administrator Commands Reference Manual.

8.7.9 MLS Installation and Configuration Procedures

Warning: In UNICOS 9.2 and later releases, all sites are required to assign
PALs. The supported privilege configurations are as follows:

• PALs augmented by PRIV_SU

• PALs only

There are several procedures you can use for configuring the MLS feature on a
UNICOS 10.0 system, depending on whether you are performing an initial install
or an upgrade. The following three procedures are documented in UNICOS
System Configuration Using ICMS:

• An initial UNICOS 10.0 installation (with MLS)

• A UNICOS 9.3 system with MLS upgraded to a UNICOS 10.0 system with
MLS

• A UNICOS 9.1 or earlier system without MLS upgraded to a UNICOS 10.0
system with MLS

S–2301–10011 239

General UNICOS® System Administration

The procedures for migrating to a Cray ML-Safe system configuration and
migrating from a single-level UNICOS system to a multilevel UNICOS system
are outlined in the following sections:

• A UNICOS 10.0 system with MLS to a Cray ML-Safe system configuration

• A single-level UNICOS system to a multilevel UNICOS system

8.7.9.1 Cray ML-Safe Configuration

A Cray ML-Safe configuration of the UNICOS system is established when the
specified configuration of the UNICOS system is enabled. In order to install the
UNICOS portion of a Cray ML-Safe configuration, the following documentation
must be used, depending on your system:

• UNICOS Installation Guide for Cray J90se and Cray SV1 Series GigaRing based
Systems

• UNICOS Installation Guide for Cray T90 and Cray T90 IEEE Model E based
Systems

• UNICOS Installation Guide for Cray T90 and Cray T90 IEEE GigaRing based
Systems

In addition, several software releases and related documentation are needed for
the proper installation of other Cray ML-Safe software components. Installation
manuals include:

• NQE Administration

• UNICOS System Configuration Using ICMS

• OWS x.x Release and Installation Notes

• Support System and IOS-E Release Overview

• Cray Data Migration Facility (DMF) Release Overview and Installation Guide

• SWS-ION Release Overview

The following procedures assume you have already installed and are running a
UNICOS 10.0 system.

Before you configure a Cray ML-Safe system, you should make the following
preparations:

• You must have the security administrator, system administrator, and system
operator roles defined by assigning the correct category to the appropriate

240 S–2301–10011

UNICOS Multilevel Security (MLS) Feature [8]

site personnel before installing the Cray ML-Safe configuration. For more
information, see Section 8.7.6, page 236.

• You should review your crontab jobs before migrating to a Cray ML-Safe
configuration. The following example shows the type of change that should
be made; failure to make these changes means that the jobs will fail on a Cray
ML-Safe configuration, as they call commands that require privilege. For
example, change the following in root crontab as shown:

su sys -c "/usr/lib/sa/sa1"

to

setucat secadm >/dev/null; su sys -c "/usr/lib/sa/sa1"

The umask setting in skl/etc/profile and skl/etc/cshrc must be
copied to /etc/profile and /etc/cshrc, respectively, to ensure that the
proper setting of 077 is used. For more information, see Section 8.3.1, page 170

• The trivial file transfer protocol (TFTP) must be disabled on a
Cray ML-Safe configuration. To disable this feature, use the
Configure system->Network Configuration->TCP/IP
Configuration->Generic Internet Daemon Configuration
selection in the UNICOS Installation and Configuration Menu System.

In addition to these preparations, the following products should be installed
before installing a Cray ML-Safe configuration:

• If your site is running the Cray Data Migration Facility (DMF), refer to the
Cray Data Migration Facility (DMF) Release and Installation Guide for installation
instructions for a Cray ML-Safe configuration.

• If your site is using online tapes for nonadministrative users, the
Cray/REELlibrarian (CRL) must be installed. CRL is not required for
administrative-only access to tapes. Refer to the Cray/REELlibrarian (CRL)
Administrator’s Guide for installation instructions for a Cray ML-Safe
configuration.

• On UNICOS systems using an IOS-E, install the operator interface (opi) in
Cray ML-Safe mode. Refer to the OWS Operator Workstation Administrator’s
Guide, publication SG-3038, for installation instructions for a Cray ML-Safe
configuration. The OWS-E interface must have the admin option set.

Use the following instructions to build and install a Cray ML-Safe configuration.
Unless otherwise noted, these steps may be completed in any order prior to
booting the Cray ML-Safe kernel. Cray recommends that this procedure be
done in dedicated time.

S–2301–10011 241

General UNICOS® System Administration

1. If the system is in multiuser mode, go to single-user mode and unmount all
file systems. Sync the file system and flush the ldcache (if any).

2. Label the root, /usr, /tmp, spool, src, the file system on which the job
temporary directories reside, and the file system on which the security logs
reside (by default, this is /usr/adm/sl, although it can be site-defined) with
a syslow to syshigh label range by using the labelit(8) command, as
shown in the following example. The core file system must be labeled
with a syshigh label.

/etc/labelit -l syslow -u syshigh /dev/dsk/usr

/etc/labelit -l syslow -u syshigh /dev/dsk/tmp

/etc/labelit -l syslow -u syshigh /dev/dsk/spool

/etc/labelit -l syslow -u syshigh /dev/dsk/src

/etc/labelit -l syslow -u syshigh /dev/dsk/jtmp

/etc/labelit -l syslow -u syshigh /dev/dsk/usr_adm_sl

/etc/labelit -u syshigh /dev/dsk/core

/etc/labelit -l syslow -u syshigh /dev/dsk/root

!
Caution: Do not sync the file systems after this point.

3. Reboot your initial UNICOS 10.0 PRIV_SU system, which makes the new
label range on the root file system effective. Go to multiuser mode.

4. As root, prepare for entering the Installation and Configuration Menu
System by ensuring the src file system is mounted. If it is not mounted,
mount it at this time, as shown in the following example:

/etc/mount /usr/src

Set the TERM environment variable so you can run the Installation and
Configuration Menu System, as shown in the following example:

export TERM=xterm

eval ‘resize‘

Run the Installation and Configuration Menu System, as shown in the
following example:

cd /etc/install

./install

5. For any product that is specified as YES in the UNICOS Installation
and Configuration Menu System, the menu system must automate
the configuration. To ensure that the settings are set to YES, check the

242 S–2301–10011

UNICOS Multilevel Security (MLS) Feature [8]

following product settings in the Configure system->Configurator
automation options menu selection:

Major software configuration? YES

Mainframe hardware configuration? YES

IOS configuration? YES

Kernel configuration? YES

Multilevel security (MLS) configuration? YES

Tape configuration? YES

Cray/REELlibrarian configuration? YES

Host address configuration? YES

Network address configuration? YES

Services configuration? YES

Network interface configuration? YES

Network hardware address configuration? YES

TCP/IP configuration? YES

TCP/IP protocols configuration? YES

TCP/IP lookup configuration? YES

NFS configuration? YES

NQS configuration? YES

System daemons configuration? YES

Startup (/etc/rc) configuration? YES

6. If you have manually changed any configuration files since the last system
build, or you are now automating a major configuration item from the
previous step, you must import those files at this time. If the files are not
imported, this information is lost. For instructions on importing UNICOS 9.3
configuration information, see UNICOS System Configuration Using ICMS.

7. In the next step, you make the necessary changes for a Cray ML-Safe
configuration. Before doing so, check your NAL set configuration. Any NAL
set name that has security ranges lower than B1 must be removed. Change
any of the NAL sets that are needed at this time. All NAL entries must be
B1 or greater on a Cray ML-Safe configuration.

8. Enable the Cray ML-Safe configuration by manually setting the following
items in the Installation and Configuration Menu System.

S–2301–10011 243

General UNICOS® System Administration

In the Configure System->Major software configuration menu
selection, make the following settings:

Kerberos network data encryption: OFF

Network Information Service (NIS): OFF

Cray based network monitor: OFF

Network testing tools: OFF

DCE Distributed File Service (DFS): OFF

File Transfer Agent (FTA): OFF

In the Configure System->Multilevel security (MLS)
configuration menu selection, make the following settings.

System options:

Enforce system high/low security labels? ON

/tmp and /usr/tmp minimum security level: SYSLOW

/tmp and /usr/tmp maximum security level: SYSHIGH

Enforce strict device labeling rules? ON

Enforce socket usage for syslogd? ON

Super-user privilege policy? OFF

Network security options:

Strict B1 evaluation rules: YES

Default to multi-level privileged sockets for compatibility: NO

Traditional hosts.equiv & .rhosts: NO

In the Configure System->Multilevel security
(MLS) configuration->Network security
options->Network-Protocols Security Configuration menu
selection, make the following settings.

MLS Network Access List (NAL) Sets:

Security class: Must be B1, B2, B3, or A1. D, C1, and C2 are not evaluated.

MLS Network Security Definitions:

Item type: Must be either ip_host or ip_net. ’station’ is not evaluated

In the Configure System->Tape configuration->Select tape
subsystem options menu selection, make the following settings.

244 S–2301–10011

UNICOS Multilevel Security (MLS) Feature [8]

General options:

Front end servicing at startup: NO

Allow unprotected tapes: NO

Secure front end: NO

Ask operator permission to switch label type: YES

Check options:

Check file identifier: YES

Check protection flags: YES

Default options:

Is servicing front end mandatory? NO

Operator verify each scratch mount: YES

In the Configure System->Network configuration->General
network configuration->Network interface configuration
menu selection, make the following setting:

Address family: inet [afnet]

In the Configure System->Network configuration->TCP/IP
configuration menu selection, make the following settings:

Host/address lookup:

Use Domain Name (DN) service? NO

Kernel parameters:

IP forwarding? NO

In the Configure System->Network configuration->NFS
configuration->List of exported file systems menu selection,
make the following setting:

Require Kerberos authentication (krb): <NULL> [cannot set to ’krb’]

In the Configure System->Ctartup (/etc/rc) configuration
menu selection, make the following setting:

Start system accounting? NO

9. Exit the current menu by pressing e. Activate the configuration by using the
Configure system->Activate the configuration... selection.

S–2301–10011 245

General UNICOS® System Administration

10. Build the new Cray ML-Safe kernel by using the Build/Install System
menu and setting the build selections as shown in the following example:

M-> Build options ==>

/usr/src reconfiguration files ==>

Build action to take install

Build object all objects

Components to build specific component

Major components selection ==>

Specific component to build uts

Do the build in batch? NO

NQS submission options ==>

Do the build ...

Restart the build ==>

Review last build summary ...

Escape to a chroot shell ...

Execute the build by selecting the Do the build ... selection. This
results in building and installing a Cray ML-Safe system configuration.

Note: If you build and install any product on a Cray ML-Safe system,
it must be done from within the Installation and Configuration Menu
System. For products that are not currently supported on the menu
system, the administrator must invoke the menu system and then move to
a shell before attempting to build and install the product. This is necessary,
because the base Installation and Configuration Menu System binary
enables the necessary privileges to build and install the various UNICOS
binaries. The following example shows the sequence:

setucat secadm

cd /etc/install

./install

Then, from the Installation and Configuration Menu System, you would
escape to a chroot shell as follows:

M-> Build/Install System ==>

A-> Escape to a chroot shell ...

11. Transfer the Cray ML-Safe kernel to the workstation (SWS, OWS, or
console) by hand. For lists of files and their locations, see UNICOS System
Configuration Using ICMS. Keep the old PRIV_SU kernel on the workstation.
If the Cray ML-Safe kernel will not boot into multiuser mode, the old
PRIV_SU kernel can be booted into single-user mode to aid in analyzing
the problem. Events such as incorrect kernel configuration or incorrect

246 S–2301–10011

UNICOS Multilevel Security (MLS) Feature [8]

or missing system file labels and PALs can prevent the booting of a Cray
ML-Safe kernel.

12. Escape to the shell by using the ! command.

13. Configure NQS by using the NQE configuration tool instead of the
Installation and Configuration Menu System. Configurable MLS features
are disabled by default. For information on configuring NQS, see NQE
Administration.

The following list summarizes the configuration changes for NQS on a
Cray ML-Safe configuration:

• Set the following parameters in the /etc/nqeinfo configuration file:

NQE_NQS_MAC_COMMAND 1

NQE_NQS_MAC_DIRECTORY 1

NQE_NQS_PRIV_FIFO 1

• Ensure that NQS user validation is set to either password or file
(no_validation is not acceptable for a Cray ML-Safe configuration).
Edit the NQS configuration file and search for the set validation
configuration command. The argument must be either password or
file. If the argument is no_validation, change it to password
or file.

• Ensure that the NQS configuration does not use FTA as an output agent.
Edit the NQS configuration file text and search for output_agent.
For each machine ID that currently has FTA as an output agent, delete
the FTA line.

• Ensure that all the NQS spool directories, logfile, and console file are on a
file system with a syslow to syshigh label range.

The Installation and Configuration Menu System should be set as follows:

Configure system ==>

Multilevel security (MLS) configuration ==>

System Options ==>

Enforce system high/low security labels ==> ON

• Convert all NQS wildcard directories to MLDs. The nqsdaemon must
not be running when you convert the directories. For information on
converting directories, see NQE Administration.

S–2301–10011 247

General UNICOS® System Administration

The following is a list of directories that must be converted
(NQE_NQS_SPOOL is defined in /etc/nqeinfo):

NQE_NQS_SPOOL/private/requests

NQE_NQS_SPOOL/private/root/chkpnt

NQE_NQS_SPOOL/private/root/control

NQE_NQS_SPOOL/private/root/data

NQS_SPOOL/private/root/failed

NQE_NQS_SPOOL/private/root/interproc

NQE_NQS_SPOOL/private/root/output

NQE_NQS_SPOOL/private/root/reconnect

14. If you have not already done so, all wildcard labeled directories must be
converted to MLDs. The following list contains the directories that require
the use of MLDs on a Cray ML-Safe configuration:

• /usr/mail

• /usr/spool/mqueue

• /usr/spool/cron/crontabs

• /usr/spool/cron/atjobs

• lpr(1) and lpd(8) spool directories (/usr/spool/*)

• /tmp

• /usr/tmp

If you want to preserve existing job temporary directories and carry them
forward to the new system, then each existing job temporary directory must be
converted into a MLD under the /tmp.mld/jtmp directory.

Note: The conversion of /tmp and /usr/tmp must be done in single-user
mode, as some of the daemons use this directory while in multiuser mode.

See Section 8.4.1.2.4, page 179, for more information on converting the directories.

15. The umask setting as shown in skl/c1/etc/profile and
skl/c1/etc/cshrc must be copied to /etc/profile and /etc/cshrc,
respectively. The umask setting for a Cray ML-Safe configuration must be
077.

16. The device labels on the various tty lines to the OWS are assigned by
getty(8) via the /etc/inittab file. The file must be set as shown in the
following example. Any other tty line that is in the /etc/inittab file

248 S–2301–10011

UNICOS Multilevel Security (MLS) Feature [8]

should be changed with the getty -L -C command, as shown in the
following example:

co::respawn:/etc/getty -L 0-16 -C 0-0777777777777777777777

console console

01:2:respawn:/etc/getty -L 0-16 -C 0-0777777777777777777777

tty01 9600

02:2:respawn:/etc/getty -L 0-16 -C 0-0777777777777777777777

tty02 9600

Cray platforms support several lines to the OWS. Access to these devices is
controlled through opi in the Cray ML-Safe mode from the OWS side and by
the device labels on the UNICOS side.

17. Change the label range on the local host interface from syslow to
syshigh and 0 compartments to all available compartments. Go to the
Configure system->Network configuration->General Network
Configuration->Network interface configuration selection
and select the localhost (lo0). Change the following items: Minimum
security label to syslow; Maximum security label to syshigh; Maximum
security compartments to 0777777777777777777777.

18. Ensure that the root, /usr, /src, and administrative file systems have
been mounted, as follows:

/etc/mount /usr

/etc/mount /usr/src

/etc/mount /usr/spool # if site has one

/etc/mount /usr/adm # if site has one

/etc/mount /usr/adm/sl # if site has one

19. Two objects are not included in the base Cray ML-Safe database
file (/etc/privdb/mls.db). If the following lines are not already
included in /etc/privdb/mls.db (and if your site has the
/usr/src/cmd/sp/privdb/mls.db file), add them, as follows:

file = { name = /etc/privdb/gen.db; MAC = [syslow,none]; };

#if exists(/usr/spool/logs/airlog)

file = { name = /usr/spool/logs/airlog; MAC = [syshigh,none]; };

#endif

20. Run the privcmd command to label system files with the file privilege states,
permission modes, owner, and group, and to assign privilege assignment
lists (PALs) and security labels, as shown in the following example:

/etc/privcmd

S–2301–10011 249

General UNICOS® System Administration

Note: Any time you change (or add to) your system configuration, you
must execute the privcmd command to label these files. This step is
required for rebuilds also.

If your current UNICOS system was not configured with the syshigh
and syslow labels (SECURE_MAC), you will see error messages, such as
WARNING: syshigh/syslow MAC labels are not set. Ignore
these messages at this time.

21. Protect the NFS ID maps and the scripts that produce the maps (see page
1291, for more information).

Every script or program used in ID map generation must have a syslow
label. These scripts and programs must be executed at the syslow label,
and the resulting map files must have a syslow label. The NFS commands
in the /etc/uidmaps directory and the directory itself are automatically
installed with the syslow label. Add the syslow label to locally-written
scripts. When cron(8) is used to execute the scripts, ensure that the cron job
is set to run with the syslow label. Existing ID map files are overwritten
by the nfsmerge(8) command without changing their labels; you should
remove all existing ID map files at the start of the ID map generation process.

22. Shut down the currently running UNICOS PRIV_SU system

23. Boot the Cray ML-Safe system configuration, and stay in single-user mode.

24. Disable auditing by executing the /etc/spaudit -d state command.

25. Execute the following sequence of commands:

/etc/mount /usr

/etc/mount /usr/src

/etc/mount /usr/spool # if the site has one

/etc/mount /usr/adm # if the site has one

/etc/mount /usr/adm/sl # if the site has one

/etc/privcmd

This sequence of commands must be executed because the various objects
labeled by privcmd do not have the correct security label unless the
SECURE_MAC configuration option is enabled.

26. Reenable auditing by executing the /etc/spaudit -e state command.

250 S–2301–10011

UNICOS Multilevel Security (MLS) Feature [8]

27. Unmount all file systems, execute the sync command, and reboot the Cray
ML-Safe configuration, as follows:

cd /

/etc/umountem

sync

sync

sync

/etc/ldsync

<reboot>

28. Go to multiuser mode by executing the init 2 command.

8.7.9.2 Single Level UNICOS System to a Multilevel UNICOS System

Use the following procedure to convert your single-level UNICOS system to a
multilevel UNICOS system:

1. Configure and build a UNICOS kernel. This can be done during normal
production hours. Enter the menu system as follows:

cd /etc/install

./install

2. To administer your UNICOS MLS configuration options using the
UNICOS Installation and Configuration Menu System, enable it by
setting the Configure system->Configurator automation
options->Security configuration option to YES.

3. Import the default security level names by selecting Configure
system->Multilevel Security (MLS) configuration->Import
the security configuration option in the UNICOS Installation
and Configuration Menu System.

4. Set up all new site-defined security level and compartment names at this
time so you do not have to rebuild the kernel later. To define new security
level names, use the Configure system->Multilevel security
(MLS) configuration->Site labels configuration->Levels
selection in the UNICOS Installation and Configuration Menu
System. To define new security compartment names, use Configure
system->Multilevel security (MLS) configuration->Site
labels configuration->Compartments selection in the UNICOS
Installation and Configuration Menu System.

S–2301–10011 251

General UNICOS® System Administration

5. Set all the necessary configuration parameters found in the Configure
system->Multilevel security (MLS) configuration menu in the
UNICOS Installation and Configuration Menu System.

One of the most important selections is the system management mechanism.
Cray recommends enabling the PRIV_SU mechanism, which means the
super-user policy is enforced. Enable this option by using the Configure
system->Multilevel security (MLS) configuration->System
options->Super-user privilege policy? selection in the UNICOS
Installation and Configuration Menu System.

6. Configure the security levels and compartments on the networking
interfaces found by using the Configure system->Network
configuration->General network configuration->Network
interface selections in the UNICOS Installation and Configuration
Menu System.

If these interfaces and routes are not labeled, the authorized security levels
and compartments of the users connecting to the UNICOS system are set to
0 and none, respectively.

7. When all the configuration options have been set, build the kernel
by activating the security and system configuration. Activating the
configuration, which updates the appropriate source files, must be done
before building the UNICOS kernel. To activate the configuration, use the
Configure system->Activate the configuration selection in the
UNICOS Installation and Configuration Menu System.

Each time a configuration is activated, the Installation and Configuration
Menu System determines which files are affected by the changes. The
following message is then displayed:

Do you want to proceed with the configuration update (y/n)?

Respond by typing y.

8. Build the kernel. This involves three selections in the Build/install
system selection of the UNICOS Installation and Configuration Menu
System. First, use the Build/install system->Components to
build selection and set to selected major components. Then use the
Build/install system->Components to build selection to set all
selections to NO, except for the UNICOS kernel selection, which must be set to
YES. Last, use the Build/install system->Do the build selection to
rebuild the kernel selection.

9. Transfer the newly built UNICOS kernel to the boot medium.

252 S–2301–10011

UNICOS Multilevel Security (MLS) Feature [8]

10. Label all file systems that are to be mounted under the UNICOS kernel. At a
minimum, these file systems must be labeled by using the labelit(8)
command, as shown in the following example:

/etc/labelit -s -u 0 -l 0 -c 0 /dev/dsk/user1

Note: You must use the -u, -l, and -c options when using the -s option
of the labelit command.

If your site uses nonzero levels and compartments, then use the following
guidelines for labeling file systems:

Note: If SECURE_MAC is enabled, then the range of labels should be
syslow to syshigh.

• The root file system must be labeled with all the security levels and
compartments that are assigned to users on the UNICOS system. This
is necessary because pipes are usually allocated through the root
device. Also, tty devices change labels to match that of the user through
the root device.

• The file system that contains the NQS, mail files, and line printer queues
must be labeled with all the security levels and compartments assigned
to users on the UNICOS system.

• The /usr/tmp and /tmp files must also be labeled with all the security
levels and compartments that are assigned to users on the UNICOS
system.

• If the system is configured with SECURE_MAC is enabled and syslow
through syshigh security labels, you must ensure the core file system
(where dumps are to be written) is authorized for syshigh.

• If the system is configured with SECURE_MAC enabled and syslow
through syshigh security labels, you must ensure the job temporary file
system (if it differs from /tmp) is authorized for syslow.

11. Your site may need to specify a maximum security level and authorized
compartments values that are nonzero. For example, if your site plans on
using security levels 0 through 16 and compartment 04700, then your root
file system must be labeled as follows:

/etc/labelit -s -l 0 -u 16 -c 04700 /dev/dsk/root

S–2301–10011 253

General UNICOS® System Administration

Another example is if the system is configured with SECURE_MAC enabled,
and syslow through syshigh security labels, then the root file system
must be labeled as follows:

/etc/labelit -s -l syslow -u syshigh -c 07777 /dev/dsk/root

You cannot label the root file system while mounted, which means you
must boot an alternate root file device. Label the original root file system
as previously described in this procedure and boot this labeled root file
system.

12. All user file systems must be correctly labeled, as shown in the following
example:

/etc/labelit -s -l 0 -u 3 -c 01000 /dev/dsk/user1

Boot the new UNICOS kernel into single-user mode. For more information
about booting into single-user mode, see the installation guide for your
Cray system.

13. Disable auditing in single-user mode as shown in the following example:

/etc/spaudit -d state

If you run a PRIV_SU and PALs system, then execute the privcmd
command, as shown in the following example:

/etc/privcmd

14. Unmount all file systems mounted in the previous step.

15. Create or update a UDB login for the security administrator. See Section
8.7.6, page 236, for more information on setting up this entry. Depending on
the privilege mechanism(s) used, the security administrator login should be
given the additional UDB fields with the following values:

• For PRIV_SU systems: permits:suidgid:;

• For systems with PALs: valcat:secadm:

254 S–2301–10011

UNICOS Multilevel Security (MLS) Feature [8]

Ensure that the chown permbit is assigned to the security administrator
account, as shown in the following example:

/etc/udbgen

udbgen: 1>update:user:

udbgen: 2>valcat:secadm:maxcls:0:

udbgen: 3>permits:suidgid:

udbgen: 4>permbits+:chown:

udbgen: 5>quit

Updated 1 record

Additionally, if the security administrator is to reclassify user files, assign
all the security levels and compartments for the system to the security
administrator account.

16. For UNICOS systems, the system console device entries under the /dev
directory must be labeled. The getty -L and getty -C commands specify
the security level and compartment ranges, respectively, for the system
console devices, /dev/console, /dev/tty00, /dev/tty01, and so on.
Additionally, you can use the getty -m command to indicate that the
specified console device is a multilevel device.

If SECURE_MAC is enabled, label the console to syslow.

The getty command for these devices are specified in the /etc/inittab
file, as shown in the following example:

co::respawn:/etc/getty -L 0-16 -C 0-0777777777777777777777 console console

01:23:respawn:/etc/getty -L 0-16 tty01 9600

02:23:respawn:/etc/getty -L 0-5 tty02 9600

17. If TCP/IP network access is to be permitted to the UNICOS system (for
example, telnet or ftp), entries for the following Internet address(es) must
appear in the network access list (NAL):

• Localhost (127.0.0.1)

• Local network interfaces for all directly-connected networks

• Network interfaces on the OWS (if network access is permitted to the
UNICOS system from the OWS-E).

18. On a UNICOS system, a default NAL entry controls the label given to a host
not specified in the kernel NAL table. If a default entry is not in the NAL,
then only specified hosts are allowed to connect to the UNICOS system.
Add the default entry to the NAL if you want hosts not specified in the
kernel NAL table to connect to the UNICOS system. The default entry can

S–2301–10011 255

General UNICOS® System Administration

be added by using the Configure System->Multilevel Security
(MLS) Configuration->Network Security Options->Network
Protocol Security Configuration->MLS Network Access List
(NAL) Sets and MLS Network Security Definitions selection
in the UNICOS Installation and Configuration Menu System. The default
entry host name to use is default.

The following is the NAL definition from the file
/etc/config/spnet.conf, which is generated by the Installation and
Configuration Menu System. In this example, the default entry is allowed
only a nonzero label connection.

ip net "default" {

name = "%NBY";

class = B1;

max label = level0, 0;

}

See the spnet(8) man page for more information on setting up the NAL.

19. If used, the workstation access list (WAL) entries for the UNICOS system
should also be generated. The WAL is not required and may be configured at
a later time. To configure the WAL entries at this time, use the Workstation
Access List (WAL) Sets selections in the UNICOS Installation
and Configuration Menu System. See the spnet(8) man page for more
information on setting up the WAL.

20. If the local networks on the site support the Commercial IP Security
Option (CIPSO), you must create the security label translation tables. The
CIPSO Map Domain Sets selection of the UNICOS Installation and
Configuration Menu System defines the maps, and the Network Security
Definitions selections associate CIPSO hosts with their CIPSO maps. See
the spnet(8) man page for more information on setting up the CIPSO maps.

21. The security administrator must also define each user in the UDB. Each UDB
entry defines the active and authorized security levels, active category,
authorized categories, active and authorized compartments, and permissions.
Proper definition of a user in the UDB is critical to maintaining a Cray
ML-Safe configuration of the UNICOS system. Ensure that each user is
given only those levels, categories, compartments, and permissions that
are absolutely necessary.

The security administrator can use the nu(8) or udbgen(8) commands to
create or modify UDB entries. (The udbgen command does not perform all
the initialization tasks that the nu command performs.) This can be done in

256 S–2301–10011

UNICOS Multilevel Security (MLS) Feature [8]

single-user mode, but to do so successfully, mount all file systems that the nu
command needs to create the user login directories. If mounted, these file
systems should be unmounted before going to the next step.

It is not recommended that the system be put in multiuser mode at this point,
but bringing up multiuser mode without the network is an alternative to
running the nu command in single-user mode.

Set proper security labels on the home directories of users with a nonzero
default level and/or a nonnull default compartment set. This can be done by
using the spset -l and spset -c command.

The nu command creates and initializes a home directory for each new user,
but it cannot set it to a nonzero label. If users try to log in they will not
be able to access their home directory unless it has been changed from its
nonzero status. Any other files associated with the user’s home directory
may also require new label settings if the user is allowed to access them (for
example, .cshrc or .profile). Files created after a user has logged in are
automatically set with the correct security label.

22. Determine if MLDs are to be used and which directories must be converted
to MLDs. Sites can use all wildcards, all MLDs or a mix of both. If mail is
to be used in a nonzero label environment, convert the /usr/mail and
/usr/spool/mqueue directories to MLDs.

If cron(1), at(1), or lpr(1)) are to be used in a nonzero label environment,
then their corresponding spool directories must be set up as MLDs. See
Section 8.4.1.2.2, page 175, for more information. For information on using
MLDs for NQS, see NQE Administration.

23. Prior to booting to multiuser mode, reenable auditing, as shown in the
following example:

/etc/spaudit -e state

Go to multiuser mode by doing the following:

/etc/init 2

After entering multiuser mode, you can change the UNICOS MLS
configuration parameters, but the kernel must be rebuilt and rebooted after
the changes are made.

S–2301–10011 257

General UNICOS® System Administration

8.8 MLS Auditing on a UNICOS System

MLS auditing on a UNICOS system consists of collecting data on
security-relevant events. As shown in Figure 10, the kernel determines whether
an auditable event should be audited based on the audit selection criteria. These
criteria are saved in the low memory table in the kernel. The initial settings of
the criteria are defined by the configuration parameters, which are set by the
UNICOS Installation and Configuration Menu System; these settings can be
changed by using either the UNICOS Installation and Configuration Menu
System or spaudit(8). If an event is being audited, when the event occurs, a
record is written to the security log pseudo device, /dev/slog (see slog(4)).

The security logging daemon (slogdemon(8)) reads /dev/slog and writes
the records to the disk-resident security log (/usr/adm/sl/slogfile). The
security administrator can generate (by using the reduce(8) command) the audit
records from the security log to produce information on how the Cray ML-Safe
configuration of the UNICOS system is being used.

258 S–2301–10011

UNICOS Multilevel Security (MLS) Feature [8]

Trusted processes

login(1)

tpdaemon(8)

su(1)

slgentry(2)

slgwrite()

open(/tmp/xyz)

unlink(/tmp/xyz)

creat(/tmp/xyz)

UNICOS kernel

User processes
(invoking system calls)

/usr/adm/sl/slogfile reduce(8)

Properly
authorized administrator

Other system calls

V-node
interface

Kernel
interfaces

Is event
enabled for

auditing
?

Yes

spaudit(8)

Low-memory
configuration table

a10162

•
•
•

•
•
•

System
configuration
file

Figure 10. Overview of Security Auditing

For UNICOS systems using the PAL-based privilege mechanism, the security log
is protected with a syshigh label and you must be an authorized user with the
exec privilege text to use the reduce command to access the log.

The UNICOS system maintains a lockout parameter that is common to the
security log device driver to ensure activation of only a single security log file
and daemon.

The following sections explain auditing by providing the following information:

• Description of the security log and how to enable and configure it

• Description of the security log daemon

S–2301–10011 259

General UNICOS® System Administration

• How to enable the type of events to be recorded in the log

• Description of the security log record types

• Examples of how to use the reduce command

8.8.1 Security Log Overview

The /etc/slogdemon (see slogdemon(8)) program is the system security
logging daemon. The daemon collects security log records from the operating
system by reading the security log pseudo device, /dev/slog (see slog(4)), and
writing the records to a disk-resident security log (/usr/adm/sl/slogfile).

/dev/slog is a read-only pseudo device that buffers security log records. By
default, it holds approximately 1000 security log records (see the description
of SLG_BUFSIZE later in this section for more information on defining the
size of /dev/slog).

If /dev/slog becomes more than 50% full, each process that tries to generate
audit records is tested to see if it matches one of the following conditions:

• If the buffer is more than 50% full and slogdemon is not running, all
nonadministrative processes are put to sleep.

• If the buffer is more than 87% full, all nonadministrative processes are put
to sleep.

• If the buffer is 93% full, all processes, except for the security log daemon
and the idle process are put to sleep.

Once the buffer is emptied, a wakeup is sent to the sleeping processes.

If standard system buffering is done through ldcache, and the system panics,
the flush-on-panic routine, if it is enabled, attempts to flush the ldcache buffers
and system buffers to disk. Repeated attempts are made to flush buffers to disk.
Because of this flushing mechanism, the potential for losing records is decreased,
but records can still be lost under the following set of circumstances:

• When records are being transferred into a system buffer by a write(2) system
call.

• When records are being transferred out of a system buffer.

The situation that provides the greatest chance for losing records is when the
records reside in /dev/slog and the flush-on-panic routine is not enabled. The
number of lost records depends on the size of /dev/slog. If the default setting

260 S–2301–10011

UNICOS Multilevel Security (MLS) Feature [8]

is used, then approximately 1000 records would be lost. /dev/slog can be read
from a system dump by using the slog and rslog commands of crash(8).

If the security logging daemon is not running, /dev/slog eventually fills
up, and all processes that require security log entries sleep while waiting for
the device to be emptied by the daemon. The amount of processing that can
be accomplished when the daemon is not active depends upon the size of
/dev/slog and the volume of security log data being sent to it. Even if the
security log daemon is running, the size of /dev/slog can be configured too
small and a system panic or hang can result.

The parameters that define the state, location, and size of the security log are
found in uts/cf.SN/config.h, and are as follows:

Parameter Description

SLG_STATE Defines if the security log is enabled. By default,
the security log is ON.

SLG_DIR Defines the disk-resident security log directory
for both active and retired security logs. The
default is /usr/adm/sl.

SLG_FILE Defines the file name, relative to SLG_DIR, of
the active disk-resident security log file (that is,
SLG_DIR/SLG_FILE defines the file name for the
active security log file). The default is slogfile.

SLG_FPREFIX Defines the file name prefix, relative to SLG_DIR,
of the retired disk-resident security log file (that
is, SLG_DIR/SLG_FPREFIX defines the file
name prefix for the retired security log files).
The default is s.

SLG_MAXSIZE Defines the threshold value, which once reached,
causes the disk-resident security log to be retired.
The default is 8,192,000 bytes.

SLG_BUFSIZE Defines the size of /dev/slog; the default is
163,840 bytes.

The SLG_STATE parameter allows you to enable or disable the security
log. If disabled, all other security logging options are ignored. To set this
parameter, use the Configure system->Multilevel security (MLS)
configuration->Security log file configuration->Enable
security logging? selection in the UNICOS Installation and Configuration
Menu System.

S–2301–10011 261

General UNICOS® System Administration

The SLG_DIR parameter allows you to specify the directory in which
both active and retired disk-resident security logs are kept. To set this
parameter, use the Configure system->Multilevel security (MLS)
configuration->Security log file configuration->Directory
for security logs selection in the UNICOS Installation and Configuration
Menu System.

The SLG_FILE parameter allows you to specify the actual name (within the
directory specified by SLG_DIR) of the active disk-resident security log. To set
this parameter, use the Configure system->Multilevel security (MLS)
configuration->Security log file configuration->Filename
of active security log selection in the UNICOS Installation and
Configuration Menu System.

The SLG_FPREFIX parameter allows you to define the file name prefix (within
the directory specified by SLG_DIR) of a disk-resident security log file that
is archived. The path to the archived security log file must reside on the
same file system as SLG_FILE. To set this parameter, use the Configure
system->Multilevel security (MLS) configuration->Security
log file configuration->Prefix for retired security logs
selection in the UNICOS Installation and Configuration Menu System.

The SLG_MAXSIZE parameter defines the threshold value (in bytes), that once
reached, causes the disk-resident security log to be retired. The actual maximum
size of the security log may be larger than SLG_MAXSIZE by a small amount (less
than 1024 bytes). It is recommended to make SLG_MAXSIZE no smaller than the
default; increments should be made in 4096-word blocks.

When the log reaches SLG_MAXSIZE, it is renamed with a
SLG_DIR/SLG_FPREFIXyymmddhhmmss name, where yymmddhhmmss is the
time of the renaming, and a new log file is created. The security/system
administrator must archive the renamed logs promptly to prevent the file system
containing the security log from becoming full. If the system runs out of disk
space for the security log, /dev/slog eventually fills, causing the system to stop.

To set the SLG_MAXSIZE parameter, use the Configure
system->Multilevel security (MLS) configuration->Security
log file configuration->Maximum log file size selection in the
UNICOS Installation and Configuration Menu System menu.

The SLG_BUFSIZE parameter defines the size of /dev/slog. The default size
is 163,840 bytes (approximately 1000 security log records). The default size
should not be decreased unless your site has never enabled auditing. In this
case, SLG_BUFSIZE can be set to 0. If the SLG_ALL_NAMI or SLG_ALL_VALID
configuration parameters are enabled, the default should be increased by a

262 S–2301–10011

UNICOS Multilevel Security (MLS) Feature [8]

factor of two or three. Any increase to the default should be made in 8-byte
increments (that is, multiples of 8).

To set SLG_BUFSIZE, use the Configure system->Multilevel security
(MLS) configuration->Security log file configuration->Log
buffer size selection in the UNICOS Installation and Configuration Menu
System.

8.8.2 Security Logging Daemon

The security logging daemon is capable of running in all states (that is,
single-user mode, multiuser mode, and so on). The default is for the daemon to
run only in multiuser mode.

The security logging daemon should be initiated through inittab(5) or the
/etc/rc script. At installation time, the install scripts create the pseudo device
for /dev/slog. If it is necessary to recreate it, refer to the mknod(8) man page.
The major device number is 20 and the minor device number is 0 for /dev/slog.

To restart slogdemon in multiuser mode, locate the process ID of the
slogdemon process. Then, send a termination signal (15) to the process and
restart the daemon, as shown in the following example:

kill -15 ‘cat /etc/slogd.pid‘ && sleep 1 && /etc/slogdemon

If the daemon is started manually, then it must be done by root (UID = 0). The
security administrator and appropriate operators should be the only users who
know the password for this login ID.

8.8.3 Security Logging Daemon in Single-user Mode

There are two methods to initiate the security logging daemon in single-user
mode. The first method is to add a command to inittab to mount all file
systems in the path to the security log file and then start the daemon. This
is shown in the following example. In this example, a separate sl file system
contains the security log; where the files are actually placed is site-dependent:

slg::sysinit:/etc/mount /dev/dsk/sl /etc/sl&&/etc/slogdemon #start slog

Ensure that the path to the security log in inittab is the same as specified
by the security log configuration parameter in uts/cf.SN/config.h.
To do this, set the SLG_DIR parameter by using the Configure
system->Multilevel security (MLS) configuration->Security

S–2301–10011 263

General UNICOS® System Administration

log file configuration->Directory for security logs selection in
the UNICOS Installation and Configuration Menu System.

The second method is to start the daemon manually. To do this, you must first
mount the file system and then start slogdemon. Before going to multiuser
mode, you must kill slogdemon and unmount the file system. If you restart
the kernel in single-user mode, you must first kill slogdemon and unmount
the file system.

8.8.4 The spaudit Command

The spaudit(8) command allows a properly authorized administrator to
change the security auditing criteria while the UNICOS system is running. This
command can also be used to change the security log edition.

The spaudit -e enableopts command enables the specified security logging
configuration option(s). The spaudit -d disableopts command disables the
specified security logging configuration option(s). The valid options are as
follows:

Option Description

all_nami Logs all mkdir, rmdir, link, and rm calls

all_rm Logs all remove requests

all_valid Logs all access requests

audit Logs all security auditing criteria changes

chdir Logs all change directory requests

config Logs all UNICOS configuration changes

crl Logs Cray/REELlibrarian activity

dac Logs discretionary access changes

discv Logs discretionary access violations

filexfr Logs all file transfer requests

ipnet Logs all network violations

jend Logs end of job

jstart Logs start of job

linkv Logs all link (ln) violations

mandv Logs mandatory access violations

mkdirv Logs all make directory (mkdir) violations

netcf Logs network configuration changes

264 S–2301–10011

UNICOS Multilevel Security (MLS) Feature [8]

netwv Logs network violations (not currently used)

nfs Logs all NFS activity

nqs Logs NQS activity

nqscf Logs NQS configuration changes

object_path Logs object’s full path name on accesses

operator Logs operator actions

priv Logs use of privilege

removev Logs all remove violations

rmdirv Logs all remove directory (rmdir) violations

secsys Logs all security system call requests

setuid Logs all setuid requests

shutdown Logs system shutdown requests

startup Logs system startup requests

state Defines if security log is on (1) or off (0)

sulog Logs all su attempts

tapes Logs tape activity

time_change Logs system time change

trust Logs Cray ML-Safe process activity

user Logs user password for failed login attempts

The command can be used in either single-user or multiuser mode to
enable/disable security logging options. See the spaudit(8) man page for more
information on using this command.

8.8.5 Security Logging Configuration Parameters

The auditing of all security-relevant events can be configured on a UNICOS
system. The following list summarizes the configuration parameters that
enable/disable the logging of security events:

Parameter Description (default setting)

SLG_DISCV Logs discretionary access violations (on)

SLG_MANDV Logs mandatory access violations (on)

SLG_NETWV Currently not used

SLG_MKDIRV Logs all make directory (mkdir) violations (on)

S–2301–10011 265

General UNICOS® System Administration

SLG_RMDIRV Logs all remove directory (rmdir) violations (on)

SLG_LINKV Logs all link (ln) violations (on)

SLG_ALL_RM Logs all remove (rm) requests (off)

SLG_REMOVEV Logs all remove violations (on)

SLG_ALL_NAMI Logs all mkdir, rmdir, link, and rm calls (off)

SLG_ALL_VALID Logs all access requests (off)

SLG_ALL_NETW Currently not used

SLG_PHYSIO_ERRORS Currently not used

SLG_CF_NET Logs all network configuration changes (off)

SLG_FILEXFR Logs all file transfers (off)

SLG_PATH_TRACK Tracks all path names on accesses (on)

SLG_SULOG Logs all su attempts (on)

SLG_NFS Logs all Cray-to-Cray NFS requests (off)

SLG_CF_UNICOS Logs UNICOS configuration changes (off)

SLG_CF_NQS Logs NQS configuration changes (off)

SLG_JSTART Logs start of job (on)

SLG_JEND Logs end of job (on)

SLG_SUID_RQ Logs all setuid requests (on)

SLG_USER Logs name and password on login password
failure (off)

SLG_ACT_NQS Logs NQS activity (off)

SLG_T_PROC Logs Cray ML-Safe process activity (off)

SLG_LOG_PRIV Logs use of privilege in system calls (off)

SLG_LOG_AUDIT Logs all changes of audit criteria (off)

SLG_LOG_CHDIR Logs all change directory requests (off)

SLG_LOG_CRL Logs Cray/REELlibrarian activity (off)

SLG_LOG_DAC Logs discretionary access changes (on)

SLG_LOG_IPNET Logs all network violations

SLG_LOG_OPER Logs operator actions (off)

SLG_LOG_SECSYS Logs security system calls (off)

SLG_LOG_STARTUP Logs system startup (off)

SLG_LOG_SHUTDWN Logs system shutdown (off)

SLG_LOG_TAPE Logs tape activity (off)

266 S–2301–10011

UNICOS Multilevel Security (MLS) Feature [8]

SLG_LOG_TCHG Logs system time change (off)

8.8.6 Security Log Record Types

There are different records that can be logged when the security log is enabled
(SLG_STATE = ON). The types of records are summarized in the following list:

• System start record (SLG_GO)

• System logging stop record (SLG_STOP)

• System configuration change record (SLG_CCHG)

• System time change record (SLG_TCHG)

• Discretionary access violation record (SLG_DISC_7)

• Mandatory access record (SLG_MAND_7)

• Operational access record (SLG_OPER)

• Login validation record (SLG_LOGN)

• Tape activity record (SLG_TAPE)

• End-of-job record (SLG_EOJ)

• Change directory record (SLG_CHDIR)

• Security system call record (SLG_SECSYS)

• Discretionary access change record (SLG_DAC_CHNG)

• setuid system call record (SLG_SETUID)

• su attempt record (SLG_SU)

• File transfer logging record (SLG_FXFR)

• Network security violations record (SLG_IPNET)

• Cray NFS request record (SLG_NFS)

• Network configuration change record (SLG_NETCF)

• Audit criteria selection change record (SLG_AUDIT)

• NQS configuration change record (SLG_NQSCF)

• NQS activity record (SLG_NQS)

S–2301–10011 267

General UNICOS® System Administration

• Cray ML-Safe process activity record (SLG_TRUST)

• Use of privilege record (SLG_PRIV)

• Cray/REELlibrarian activity record (SLG_CRL)

Table 10 summarizes the record types, the configuration parameter that enables
the generation of the record, the spaudit argument that enables generation of
the record, and the reduce option used to view the record.

Table 10. Security Log Records

Record type Configuration parameter spaudit -e reduce -t

SLG_GO SLG_LOG_STARTUP startup go

SLG_STOP SLG_LOG_SHUTDWN shutdown stop

SLG_CCHG SLG_CF_UNICOS config cchg

SLG_TCHG SLG_LOG_TCHG time_change tchg

SLG_DISC_7 SLG_DISCV discv disc

SLG_MAND_7 SLG_MANDV and/or
SLG_ALL_VALID

mandv, all_valid

SLG_OPER SLG_LOG_OPER operator oper

SLG_LOGN SLG_JSTART jstart logn

SLG_TAPE SLG_LOG_TAPE tapes tape

SLG_EOJ SLG_EOJ jend eoj

SLG_CHDIR SLG_PATH_TRACK and
SLG_LOG_CHDIR

object_path, chdir chdir

SLG_SECSYS SLG_LOG_SECSYS secsys secsys

SLG_NAMI SLG_MKDIR, SLG_RMDIRV,
SLG_LINKV, SLG_REMOVEV,
SLG_ALL_RM, and/or
SLG_ALL_NAMI

mkdirv, rmdirv,
linkv, removev,
all_rm, all_nami

nami

SLG_DAC_CHNG SLG_LOG_DAC dac dac

SLG_SETUID SLG_SUID_RQ setuid setuid

SLG_SU SLG_SULOG sulog sulog

SLG_FXFR SLG_FILEXFR filexfr xfer

268 S–2301–10011

UNICOS Multilevel Security (MLS) Feature [8]

Record type Configuration parameter spaudit -e reduce -t

SLG_IPNET SLG_LOG_IPNET ipnet netip

SLG_NFS SLG_NFS nfs nfs

SLG_NETCF SLG_CF_NET netcf netcf

SLG_AUDIT SLG_LOG_AUDIT audit audit

SLG_NQSCF SLG_CF_NQS nqscf nqscf

SLG_NQS SLG_ACT_NQS nqs nqs

SLG_TRUST SLG_T_PROC trust trust

SLG_PRIV SLG_LOG_PRIV priv priv

SLG_CRL SLG_LOG_CRL crl crl

Assigning the usrtrap permission to a user or the trapr or trapw flags to an
object overrides any security logging configuration parameter setting except
for SLG_STATE.

The SLG_PATH_TRACK parameter allows the logging of all path names on access
requests. No specific record is used when this parameter is enabled, but instead
it forces more data to be stored with each access type record generated by the
other parameters. See Section 8.8.7.6, page 276, for an example of the information
produced (see the example in which the -p option is used). This parameter must
be enabled in order for the reduce -p command to work correctly.

To set this parameter, use the Configure system->Multilevel security
(MLS) configuration->Security log file configuration->Track
all pathnames on accesses? selection in the UNICOS Installation and
Configuration Menu System.

The use of this parameter means that all chdir(2) requests must also be logged.
See Section 8.8.7.12, page 297, for more information on enabling this record type.

If object path tracking is required for auditing of file manipulations that are being
done by file descriptors, the SLG_ALL_VALID parameter must be enabled. If this
parameter is enabled, then the initial file access that is made through the open(2)
system call is logged and the object path name is included in this record. This
allows the reduce utility to determine the full path name for any succeeding file
descriptor operations that occur on this file.

For more information on enabling the SLG_ALL_VALID parameter, see Section
8.8.7.8, page 284.

S–2301–10011 269

General UNICOS® System Administration

8.8.7 Auditing on a Cray ML-Safe System Configuration

The security auditing policy for a site running a Cray ML-Safe configuration can
be defined by the site. That is, you can run a Cray ML-Safe configuration with
or without security auditing enabled. It is recommended that the site policy
be determined before the system is up and running and that it be applied
consistently at all times. Consistent and proper use of the MLS auditing features
helps ensure site security.

Also, there are no settings specified for the the security logging options on a Cray
ML-Safe configuration, with the one exception noted in the next paragraph. Cray
ships the UNICOS release with default settings for the security logging options.
See Section 8.8.5, page 265, for information on the default settings.

To fulfill TCSEC auditing requirements, you must be able to identify an object
by its full path name. A Cray ML-Safe configuration can meet this requirement
only if the path-tracking configuration option (SLG_PATH_TRACK) is enabled.
This option is on by default.

8.8.7.1 Security Log Record Header Definition

Each security log record has a header (slg_hdr), followed by record-specific
information. The kernel provides the header information for all kernel-generated
security log records. A non-kernel Cray ML-Safe process that is performing an
activity on behalf of a user formats its own security log record header. However,
the kernel also places information in the header fields for the record.

To meet TCSEC requirements regarding the ability to select records by the
object label, it was necessary to expand the number of fields in the security log
record header.

To maintain compatibility with earlier releases of UNICOS with the MLS feature,
the older version of the security log header (slghdr0) is retained and a new
header structure (slghdr) that contains the same information as slghdr0 is
provided, plus the fields necessary to record the security label information
(that is, both the security level and compartments) of the subject and the object.
The older version of the header contains only the security level of the subject
and object.

The reduce command uses the -S and -L options, which allow you to select
either the new version (-S) or older version (-L) of header information in the
display produced by the reduce command.

The use of the -S option is shown in some of the examples in the following
sections. If the -S or -L options are not specified, the older version of the security

270 S–2301–10011

UNICOS Multilevel Security (MLS) Feature [8]

log header is displayed by reduce (that is, the -L display is the default for
the UNICOS system).

See Section 8.8.8.2, page 335, for more information on these options.

The security log record header using the older version is as follows:

Date_time Type o_lvl:n s_lvl:n jid:n pid:n

r_ids:[ssss(n),ssss(n)] e_ids:[ssss(n),ssss(n)] **********

Login uid: ssss(n)

The new version of the security log record header is as follows:

Date_time Type jid:n pid:n r_ids:[ssss(n),ssss(n)]

e_ids:[ssss(n),ssss(n)]

S_Label: level,cmpts O_Label: level,cmpts

Login uid: ssss(n)

The fields are defined as follows:

Field Description

Date_time

The date and time at which the kernel entered the record
in /dev/slog.

Type

The type-of-record.

o_lvl:n

The security level of the object; this is not meaningful if no
object is involved. This field is used only on the older version
of the record header.

s_lvl:n

The security level of the subject. This field is used only on the
older version of the record header.

jid:n

The job ID.

pid:n

The process ID.

S–2301–10011 271

General UNICOS® System Administration

r_ids:[ssss(n),ssss(n)]

The real user and group names and IDs in the form of
[username(user ID),groupname(group ID)].

e_ids:[ssss(n),ssss(n)]

The effective user and group names and IDs in the form of
[username(user ID),groupname(group ID)].

S_Label: level,cmpts

The security label of the subject. This field is used only on the
new version of the record header.

O_Label: level,cmpts

The security label of the object. This field is used only on the new
version of the record header.

Login uid: ssss(n)

The user name and ID at the time of job initiation in the form of
username(user ID). This is the most reliable identifier in the log
entry because it cannot be changed after logging in. This ID is
the one for which the password was checked. The login user
ID is in the initial SLG_LOGN record for any job, regardless of
origin. The only exception to this occurs when a user executes
the setsid(2) or setjob(2) system call to create a new session.
In this case, the login user ID of the new session is shown in
the SLG_SECSYS record, that is generated by the setsid or
setjob system call.

The format of the record-specific information following the header can differ,
although some records have the same output format, as described in the
following sections.

Note: Some of the security audit records described in the following sections
use a Class field. This field is no longer used and its contents are not
meaningful. The class value should be set to 0 by a properly authorized user,
as nonzero values are no longer used on UNICOS systems.

8.8.7.2 System Start Record (SLG_GO)

The SLG_GO record is written as the system is booted into single-user mode. The
SLG_LOG_STARTUP parameter must be on for this record to be generated. To
set this parameter, use the Configure system->Multilevel security
(MLS) configuration->Security log file configuration->Log

272 S–2301–10011

UNICOS Multilevel Security (MLS) Feature [8]

system startup? selection in the UNICOS Installation and Configuration
Menu System.

You can also use the spaudit -e startup command to enable the generation
of this record or the spaudit -d startup command to disable the generation
of this record.

In addition to the header information, the SLG_GO record displays the following
information:

System Node Release Version Machine Mem: Avail_user_mem/Max_mem

The fields are defined as follows:

Field Description

System Value of the SYS parameter in
utsname

Node Value of NODE parameter in
utsname

Release Release level of operating
system

Version Version level of operating
system

Machine Type of machine

Mem: Avail_user_mem/Max_mem The amount of available user
memory and configured
memory, respectively

To display a SLG_GO record, use the reduce command, as shown in the
following example.

$ /etc/reduce -t go

Feb 5 17:00:00 1992 Startup o_lvl: 0 s_lvl: 0 jid:0 pid:0

r_ids:[root(0),root(0)] e_ids:[root(0),root(0)] **********

Login uid: root(0)

sn1405 sn1405 8.0.0ah d80.55 Cray Y-MP Mem: 32595968/33554176

See Section 8.8.8, page 333, for more information on using this command.

S–2301–10011 273

General UNICOS® System Administration

8.8.7.3 System Shutdown Record (SLG_STOP)

The SLG_STOP record is written when the security log daemon receives a
SIG_TERM signal, causing the daemon to exit. This occurs only when an
operator issues the shutdown(8) command. The only information recorded in
this record is the header information described in Section 8.8.7.1, page 270,
for more information.

The SLG_LOG_SHUTDWN parameter must be on for this record to be generated.
To set this parameter, use the Configure system->Multilevel security
(MLS) configuration->Security log file configuration->Log
system shutdown? selection in the UNICOS Installation and Configuration
Menu System.

You can also use the spaudit -e shutdown command to enable the generation
of this record or the spaudit -d shutdown command to disable the
generation of this record.

8.8.7.4 System Configuration Change Record (SLG_CCHG)

The SLG_CCHG record is written if the system’s configuration is changed by using
the udbgen(8), nu(1), or xadmin(8) commands.

The SLG_CF_UNICOS parameter must be on for this record to be generated. To
set this parameter, use the Configure system->Multilevel security
(MLS) configuration->Security log file configuration->Log
UNICOS configuration changes? selection in the UNICOS Installation and
Configuration Menu System.

You can also use the spaudit -e config command to enable the generation
of this record or the spaudit -d config command to disable the generation
of this record.

To display a SLG_CCHG record, use the reduce command, as shown in the
following example. The fields in this record type are self-explanatory:

$ /etc/reduce -t cchg

Jul 15 10:34:19 1993 Configuration o_lvl: 0 s_lvl: 0 jid:1231 pid:33951

r_ids:[operator(9),operator(9)] e_ids:[operator(9),operator(9)]

Login uid: operator(9)

Subtype: UDB change

login directory: /

274 S–2301–10011

UNICOS Multilevel Security (MLS) Feature [8]

login root: /

login shell: /bin/sh

login name: operator

action: changed

uid: 9

valid gids: 9

permbits:

login failures: 0

default level: level0

max level: level0

min level: level0

default comparts: none

valid comparts: none

authorizations: none

flags: none

default categories: none

valid categories: sysops

password: same

See Section 8.8.8, page 333, for more information on using this command.

8.8.7.5 System Time Change Record (SLG_TCHG)

The SLG_TCHG record is written when the system’s time is set during the system
startup sequence. This record is also generated when an administrator changes
the system’s time with the date(1) command.

The SLG_LOG_TCHG parameter must be on for this record to be generated. To set
this parameter, use the Configure system->Multilevel security (MLS)
configuration->Security log file configuration->Log system
time change? selection in the UNICOS Installation and Configuration Menu
System.

You can also use the spaudit -e time_change command to enable the
generation of this record or the spaudit -d time_change command to
disable the generation of this record.

In addition to the header information, the SLG_TCHG record displays the
following information:

Time changed to: time

This information displays the system’s new time.

S–2301–10011 275

General UNICOS® System Administration

To display a SLG_TCHG record, use the reduce command, as shown in the
following example:

$ /etc/reduce -t tchg

Apr 1 09:09:38 1991 Time o_lvl: 0 s_lvl: 0 jid:2 pid:4

r_ids:[root(0),root(0)] e_ids:[root(0),root(0)] **********

Login uid: root(0)

Time changed to: Mon Apr 1 09:09:22 1991

See Section 8.8.8, page 333, for more information on using this command.

8.8.7.6 Discretionary Access Violation Record (SLG_DISC_7)

The discretionary access violation record is written for all discretionary access
failures. The SLG_DISC_7 record is used.

The SLG_DISCV parameter must be on for this record to be generated. To set
this parameter, use the Configure system->Multilevel security
(MLS) configuration->Security log file configuration->Log
discretionary access violations? selection in the UNICOS Installation
and Configuration Menu System.

You can also use the spaudit -e discv command to enable the generation
of this record or the spaudit -d discv command to disable the generation
of this record.

A discretionary access violation record is generated for any discretionary access
violation that occurs when a process attempts any operation that involves
evaluation of access to a file system object or its path.

Specifically, discretionary access violation records can be generated for the
following system calls: access(2), acct(2), chacid(2), chdir(2), chmod(2),
chown(2), chroot(2), creat(2), dacct(2), exec(2), getacl(2), jacct(2),
join(2), lchown(2), link(2), lsecstat(2), lstat(2), mkdir(2), mknod(2),
mount(2), msgsys(2), open(2), pathconf(2), readlink(2), rename(2),
rmdir(2), rmfacl(2), secstat(2), semsys(2), setacl(2), setfcmp(2),
setflvl(2), setpal(2), shmsys(2), stat(2), statfs(2), symlink(2),
unlink(2), and utime(2).

276 S–2301–10011

UNICOS Multilevel Security (MLS) Feature [8]

In addition to the header information, the SLG_DISC_7 record displays the
following information:

Function: func (nn) Violation: text (nnn)

System call: syscall(number)

Subject: Compartments : sub_comps

Permissions : sub_permits

Class : sub_intcls

Categories : sub_intcat

Access Mode : access_mode

Object: Level:lvl uid: user(ID) gid: group(ID) device: maj,min

inode: INUM

Pathname : file

Compartments : obj_comps

Class : obj_intcls

Categories : obj_intcat

Mode : obj_mode

The fields are defined as follows:

Field Description

Function: func (nn)

The function name and its system call number.

Violation: text (nnn)

The error message associated with this violation followed by the
error number. If no violation occurred, the value NONE(0) is
shown. See Section 8.8.10, page 343, for more information.

System call: syscall(number)

The system call and its number. The system call is printed
after the function. This field is included, as the function that
causes the discretionary access violation can be different than
the system call.

Subject: sub_comps

The subject’s active security compartments.

Permissions: sub_permits

The subject’s authorized permissions (as defined in the UDB).

Class: sub_intcls

The subject’s active class. This value is no longer used.

S–2301–10011 277

General UNICOS® System Administration

Categories: sub_intcat

The subject’s active category.

Access Mode: access_mode

The subject’s requested access mode for the desired object. This
field is available only on 7.0 and later UNICOS systems with
the MLS feature.

Object: Level: lvl

The object’s security level.

uid: user(ID)

Owner of the object and the owner’s user ID number.

gid: group(ID)

Owning group of the object and the owning group’s group
ID number.

device: maj,min

Major and minor device numbers of the device the object
resides on.

inode: INUM

The inode number of the object.

Pathname: file

The full pathname to the object (displayed if the -p option of
the reduce command is used and the path tracking option is
enabled).

Compartments: obj_comps

The object’s security compartments.

Class: obj_intcls

The object’s integrity class. This value is no longer used.

Categories: obj_intcat

The object’s category.

Mode: obj_mode

The object’s UNICOS mode permission bits.

278 S–2301–10011

UNICOS Multilevel Security (MLS) Feature [8]

To display a discretionary access violation record, use the reduce command,
as shown in the following example.

$ /etc/reduce -t disc

Apr 1 09:50:00 1991 Discretionary o_lvl: 0 s_lvl: 0 jid:167 pid:7026

r_ids:[operator(9),operator(9)] e_ids:[operator(9),operator(9)]

Login uid: operator(9)

Function: open (5) Violation: Permission denied (13)

System call : access (33)

Subject: Compartments : none

Permissions : suidgid

Class : 0

Categories : none

Access Mode : write

Object: Level: 0 uid: root(0) gid:root(0) device:0, 235 inode:3412

Compartments : none

Class : 0

Categories : none

Mode : 100755

The following example shows the discretionary access violation record that
is produced when the -S option is specified. When this option is used, the
Subject: Compartments, Object: Level, and Compartments
information is not printed in the body of the record, but in the record header. See
Section 8.8.8.2, page 335, for more information on this option:

$ /etc/reduce -t disc -S

Oct 21 13:24:22 1993 Discretionary jid:945 pid:79982

r_ids:[operator(9),operator(9)] e_ids:[operator(9),operator(9)]

S_Label: 0,none O_Label: 0,none

Login uid: operator(9)

Function: open (5) Violation: Permission denied (13)

System call : access (33)

Subject: Permissions : none

Class : 0

Categories : none

Access Mode : write

Object: 0 uid: root(0) gid:root(0) device:0, 235 inode:3412

S–2301–10011 279

General UNICOS® System Administration

Compartments : none

Class : 0

Categories : none

Mode : 40755

To show the full path name to the object, use the -p option, as shown in the
following example. The SLG_PATH_TRACK parameter must be enabled to
generate this information.

$ /etc/reduce -p -t disc

Apr 1 09:50:00 1991 Discretionary o_lvl: 0 s_lvl: 0 jid:167 pid:7026

r_ids:[root(0),root(0)] e_ids:[root(0),root(0)] **********

Login uid: root(0)

Function: open (5) Violation: Permission denied (13)

System call : open (5)

Subject: Compartments : none

Permissions : suidgid

Class : 0

Categories : none

Access Mode : write

Object: Level: 0 uid: root(0) gid:root(0) device:0, 235 inode:3412

Pathname : /etc/utmp

Compartments : none

Class : 0

Categories : none

Mode : 100755

For the shmsys, semsys, and msgsys system calls, the SLG_DISC_7 record
format displays the header information and the following information:

System call: syscall(number) Violation: text (nnn)

Subject: Categories : sub_intcat

Object: Owner uid: user(ID)

Owner gid: group(ID)

Creator uid: creator(ID)

Creator gid: group(ID)

Access mode: mode

Slot sequence number: seq_number

Key: key_number

280 S–2301–10011

UNICOS Multilevel Security (MLS) Feature [8]

The majority of these fields are self-explanatory, except for the following fields,
which are defined as follows:

Field Description

Slot sequence
number

Indicates the sequence number of the slot for the
IPC object. A slot is the entry in a kernel table for
the IPC object.

Key Indicates the user-selected, 64-bit identifier for
the IPC object. For a private IPC object, the key
is 0; in other cases, it is a hex number used in
the reduce output.

The following example shows the record displayed for a semsys system call:

$ /etc/reduce -t disc

Jul 27 17:34:19 1994 Discretionary o_lvl:0 s_lvl:0 jid:34 pid:1804

r_ids:[vsx0(36056),vsxg0(31000)] e_ids:[root(0),vsxg0(31000)] ******

Login uid: vsx0(36056)

System call : semsys (53) Violation: Permission denied (13)

Subject: Categories : none

Object: Owner uid : 36056 (vsx0)

Owner gid : 31000 (vsxg0)

Creator uid : 36056 (vsx0)

Creator gid : 31000 (vsxg0)

Access Mode : read write

Slot sequence number : 1

Key : 0

See Section 8.8.8, page 333, for more information on using this command.

8.8.7.7 Discretionary Access Change Record (SLG_DAC_CHNG)

The discretionary access change record is written for all successful and failed
attempts to change the discretionary access control (DAC) attributes of a file. It
also records changes to the access control list (ACL) and owner of a file. The
SLG_DAC_CHNG record type is used to record this information.

On UNICOS 7.0 and earlier systems, this record type was called the SLG_SUID
record, because only changes to setuid file attributes were being audited

S–2301–10011 281

General UNICOS® System Administration

(although this record type was used to indicate changes to the file permissions
mode bits also).

DAC changes are logged for the following system calls: getfacl(2),
setfacl(2), rmfacl(2), chmod(2), fchmod(2), chown(2), and fchown(2).

The SLG_LOG_DAC parameter must be on to log this record type To set
this parameter, use the Configure system->Multilevel security
(MLS) configuration->Security log file configuration->Log
discretionary access changes? selection in the UNICOS Installation and
Configuration Menu System.

You can also use the spaudit -e dac command to enable the generation
of this record or the spaudit -d dac command to disable the generation
of this record.

In addition to the header information, the SLG_DAC_CHNG record with path
tracking enabled contains the following information:

Function: func (nnn) Violation: text (nnn)

System call : syscall (nnn)

Subject: Compartments : sub_cmpts

Permissions : sub_permits

Class : sub_intcls

Categories : sub_intcat

Object: Level: lvl uid: user(ID) gid: user(id) device: maj, min

inode: INUM

Pathname : /pathname

Compartments : obj_comps

Class : obj_intcls

Categories : obj_intcat

Mode : obj_mode

The field definitions are the same as for for the discretionary access violation
record. See Section 8.8.7.6, page 276, for a description of the format.

To display a DAC change record for a fchmod(2) system call with object
path tracking enabled, use the reduce command, as shown in the following
example. The -S option is used in this example, which means that the Subject:
Compartments and Compartments : obj_comps fields are not printed in
the body of the record, but in the record header. See Section 8.8.8.2, page 335,
for more information on this option:

$ /etc/reduce -t dac -S -p

Oct 21 13:24:22 1993 DAC Change jid:945 pid:79982

282 S–2301–10011

UNICOS Multilevel Security (MLS) Feature [8]

r_ids:[root(0),root(0)] e_ids:[root(0),root(0)]

S_Label: 0,none O_Label: 0,none

Login uid: root(0)

Function: chown (16) Violation: NONE (0)

System call : chown (16)

Subject: Permissions : none

Class : 0

Categories : none

Object: Level: 51 uid: root(0) gid: root(0)

device: 0, 5 inode: 555

Pathname : /etc/mnttab

Class : 0

Categories : none

Mode : 40755

The following example shows the DAC change record for attaching an ACL to
a file:

$ /etc/reduce -t dac -p

Jul 15 10:12:29 1993 DAC Change o_lvl: 0 s_lvl: 0 jid:1214 pid:33078

r_ids:[operator(9),operator(9)] e_ids:[operator(9),operator(9)]

Login uid: operator(9)

Function: setacl (87) Violation: NONE (0)

System call : setacl (87)

Subject: Compartments : none

Permissions : suidgid

Class : 0

Categories : none

Object: Level: 0 uid: operator(9) gid: operator(9)

device: 0, 8 inode: 5008

Pathname : cmd/myfile

Compartments : none

Class : 0

Categories : none

Mode : 100600

The following is an example of a DAC change record for a chown(2) system call:

S–2301–10011 283

General UNICOS® System Administration

$ /etc/reduce -t dac -p

Jul 15 10:59:13 1993 DAC Change o_lvl: 0 s_lvl: 0 jid:1274 pid:34497

r_ids:[operator(9),operator(9)] e_ids:[operator(9),operator(9)]

Login uid: operator(9)

Function: chown (16) Violation: NONE (0)

System call : chown (16)

Subject: Compartments : none

Permissions : suidgid

Class : 0

Categories : none

Object: Level: 0 uid: root(0) gid: root(0)

device: 0, 22 inode: 1784

Pathname : /tmp/maAAAa34497

Compartments : none

Class : 0

Categories : none

Mode : 100000

See Section 8.8.8, page 333, for more information on using this command.

8.8.7.8 Mandatory Access Record (SLG_MAND_7)

The mandatory access record is written for successful file system object accesses,
for mandatory access violations that occur during access to a file system object or
its path, and for mandatory access violations with process-to-process accesses.
The SLG_MAND_7 record is used.

A SLG_MAND_7 record is written for the following system calls when a
successful file system object access attempt is made or when an unsuccessful
mandatory access violation occurs during access to a file system object or
its path: access(2), acct(2), chacid(2), chdir(2), chmod(2), chown(2),
chroot(2), creat(2), dacct(2), exec(2), fchmod(2), fchown(2), fcntl(2),
fgetpal(2), fstat(2), getacl(2), getdents(2), jacct(2), join(2), lchown(2),
lsecstat(2), lstat(2), mkdir(2), mknod(2), open(2), pathconf(2),
quotactl(2), readlink(2), rename(2), restart(2), rmfacl(2), secstat(2),
select(2), setacl(2), setdevs(2), setfcmp(2), setflvl(2), setpal(2),
stat(2), statfs(2), symlink(2), and utime(2).

A SLG_MAND_7 record is automatically written for setflvl(2), setfcmp(2), and
setfflg(2) system calls, regardless of success or failure.

284 S–2301–10011

UNICOS Multilevel Security (MLS) Feature [8]

The SLG_MAND_7 record for mandatory access failures for process-to-process
accesses is written by the following system calls: acctid(2), chkpnt(2),
cpselect(2), getlim(2), kill(2), killm(2), limit(2), nicem(2), ptyrecon(2),
resume(2), setlim(2), and suspend(2).

The SLG_MAND_7 record for mandatory access failures is automatically written
for the following system calls for mandatory access failures on accesses and for
mandatory access failures or successes when removing one of the IPC objects:
msgctl(2), msgget(2), msgrcv(2), msgsnd(2), semctl(2), semget(2), semop(2),
shmat(2),shmctl(2), shmdt(2), orshmget(2). For removal failures to be audited,
the SLG_ALL_RM configuration parameter must be enabled. For the mandatory
access control failures on accesses to be audited, the SLG_MANDV configuration
parameter must be enabled. See Section 8.8.7.6, page 276, for a description of
the format of these records.

The SLG_MANDV parameter must be on for mandatory access violations to be
logged.

To set this parameter, use the Configure system ->Multilevel security
(MLS) configuration->Security log file configuration->Log
mandatory access violations? selection in the UNICOS Installation and
Configuration Menu System.

You can also use the spaudit -e mandv command to enable the generation
of this record. The spaudit -d mandv command disables the generation
of this record.

The SLG_ALL_VALID parameter must be on for all successful file system object
accesses to be logged. All of the object fields in the record may be 0, depending
on what type of error is encountered. To set this parameter, use the Configure
system->Multilevel security (MLS) configuration->Security
log file configuration->Log all access attempts? selection in the
UNICOS Installation and Configuration Menu System.

You can also use the spaudit -e all_valid command to enable the
generation of this record for successful accesses. The spaudit -d all_valid
command disables the generation of this record.

The format of this record is the same as described previously for the discretionary
access violation record. See Section 8.8.7.6, page 276, for a description of the
format.

To display a SLG_MAND_7 record, use the reduce command, as shown in the
following example. The example shows the actual system call causing the
violation is shown. This line is printed when the system call is different than the
function. In this example, the create(2) system call called the open(2) function,

S–2301–10011 285

General UNICOS® System Administration

causing the violation. The (8) after the creat in the following example is the
actual system call number:

$ /etc/reduce -p -t mand

Apr 1 09:52:42 1991 Mandatory o_lvl: 0 s_lvl: 0 jid:17 pid:7476

r_ids:[root(0),root(0)] e_ids:[root(0),root(0)] **********

Login uid: operator(9)

Function: open (5) Violation: Security category violation (319)

System call : creat (8)

Subject: Compartments : none

Permissions : suidgid

Class : 0

Categories : secadm sysadm

Access Mode : write

Object: Level: 0 uid: root(0) gid:sys(3) device:0, 225 inode:926

Pathname : /etc/udb

Compartments : none

Class : 0

Categories : none

Mode : 100600

The following example shows the record produced for a process-to-process access
violation. This example shows the use of the -S option. See Section 8.8.8.2, page
335, for more information on this option:

$ /etc/reduce -t mand -S

Nov 19 09:29:51 1993 Mandatory jid:38 pid:1843

r_ids:[root(0),root(0)] e_ids:[root(0),root(0)]

S_Label: 4,comp24 O_Label: 7,none

Login uid: root(0)

System call : limit (115) Violation: No such process (3)

Subject: Categories : none

Object: Job ID : 50

Process ID : 1810

Process uid : 0 (root)

See Section 8.8.8, page 333, for more information on using this command.

286 S–2301–10011

UNICOS Multilevel Security (MLS) Feature [8]

8.8.7.9 Login Validation Record (SLG_LOGN)

The SLG_LOGN record is written for all successful and unsuccessful login
attempts. This includes all login attempts that are done interactively through
NQS, ftp(1b), rlogin(1), dgdemon(8), and rshd(8). The cron(8) command also
issues this record whenever a crontab(1) or at(1) job is initiated on behalf of a
user. For sublogins, the audit record that is written is for the initial successful
login only. This matches the user ID and job ID in the job termination record.

Except for sublogins, the login user ID and job ID that are written in this record
remain unchanged throughout the life of a job on the system and can be used
to track all activities of this job from initiation to completion. For sublogins,
the audit record contains the initial user ID or the second login user ID. For
sublogins, after the job initiation record is written, audit records that are
generated during execution of the job may contain the second login user ID.

The entries are logged through the slgentry(2) system call.

If a login failure is because the user’s name is not valid (that is, not in the UDB),
the failure is logged as an invalid user ID. The text string for the invalid user
name is not logged. This is done to ensure that if a user inadvertently types his
or her password in the ID prompt, the clear text password is not written in the
security log. The entries are logged through slgentry.

The SLG_JSTART parameter must be on to enable the generation of this record.
To set this parameter, use the Configure system->Multilevel security
(MLS) configuration->Security log file configuration->Log
start of job? selection in the UNICOS Installation and Configuration
Menu System.

You can also use the spaudit -e jstart command to enable the generation
of this record. The spaudit -d jstart command disables the generation
of this record.

The SLG_LOGN record type uses the SLG_LOG_USER record subtype to record
clear text passwords for failed logins. If this record is enabled and the user is
trapped (by having the usrtrap permission assigned in the user database (UDB)
entry), and the user’s login attempt fails, the password is recorded as part of the
record. This means that passwords are sometimes recorded in the security log.

The SLG_USER parameter must be on to record the clear text password violations
(assuming the SLG_JSTART parameter is also enabled). Again, the entered
password is recorded only for a failed login attempt when the usrtrap
permission is set for the user. To set this parameter, use the Configure
system->Multilevel security (MLS) configuration->Security
log file configuration->Log name and password on login

S–2301–10011 287

General UNICOS® System Administration

password fail? selection in the UNICOS Installation and Configuration
Menu System.

The spaudit -e user command enables the user password to be recorded for
failed password attempts by a trapped user. The spaudit -d user disables
this ability.

In addition to the header information, the SLG_LOGN record displays the
following information:

Login: [ssss(n),ssss(n)] : Result Host tty line Failures

The fields are defined as follows:

Field Description

Login:
[ssss(n),ssss(n)]

The user, group names, and IDs in the form of
[username(user ID),groupname(group ID)].

Result Indicates whether the login was successful
(signified by Okay) or displays a violation
message if the login was unsuccessful. The
following list explains the login violation
messages:

Message Description

Lastlog login was unable to update the
user’s Last Login Time entry
in the UDB.

Password The user entered an invalid
password.

Setusrv User’s defined security label is
invalid, outside the range of the
system’s label, or outside the range
defined in the NAL.

Shell
exec

User was not found in the
/etc/utmp file.

Locked Account is disabled in the UDB.

Disabled Account is disabled because the
logfails field in the UDB exceeds
the limits defined by MAXLOGS.

Dialup An invalid dialup password was
used.

288 S–2301–10011

UNICOS Multilevel Security (MLS) Feature [8]

Trusted
subject

User has authorized system or
daemon category.

Root
console

The user attempted to log in as
root from a console other than the
system console.

Setjob
failed

Unable to set up login process with
a new job ID and table entry.

Attempted
to
login
to
localhost

A login attempt was not allowed for
localhost.

There are four different message formats:

Format Description

Message
error

Message describes the reason for the
failure (as defined in the previous
list).

Message
error
(disabled)

Message describes the reason for
the failure, while (disabled)
means that account is disabled
because MAXLOGS was equaled or
exceeded. See Section 8.5.5.11, page
220, for more information on how
MAXLOGS works.

The errors most likely to use this
message format are the Password
and Disabled messages. Until
an account is disabled, only
the message portion appears.
For example, if the password is
incorrectly entered, the Password
error message is recorded.

The first time MAXLOGS is equaled,
in addition to the Message, the
(disabled) portion of the
message also appears. For example,
if an incorrect password is entered
until MAXLOGS is equaled, the

S–2301–10011 289

General UNICOS® System Administration

Password error (disabled)
message is recorded in the log.

Any subsequent attempts to log
into an account after the first time
MAXLOGS is equaled is logged
with the Disabled error
(disabled) message. The account
stays disabled until it is cleared.

Message
error
(disabled)

Message describes the reason for the
failure, and (disabled) means
the account is disabled because
MAXLOGS was exceeded.

Host Name of remote host

tty line The tty line used for the login attempt or the
source of the login attempt (for example, cron
or rshd).

Failures Number of login failures to date

To display a SLG_LOGN record, use the reduce command, as shown in the
following examples. The first example shows a record produced when a user
logs in correctly and has no previous login errors:

$ /etc/reduce -t logn

Apr 29 08:12:57 1991 Validation o_lvl: 0 s_lvl: 0 jid:0 pid:994

r_ids:[operator(9),operator(9)] e_ids:[operator(9),operator(9)]

Login to [operator(9),operator(9)] : Okay via ows131 on /dev/console

The following example shows the record produced when a user logs in correctly,
but has a previous login failure:

$ /etc/reduce -t logn

Apr 29 08:14:21 1991 Validation o_lvl: 0 s_lvl: 0 jid:0 pid:1067

r_ids:[operator(9),operator(9)] e_ids:[operator(9),operator(9)]

Login uid: operator(9)

290 S–2301–10011

UNICOS Multilevel Security (MLS) Feature [8]

Login to [operator(9),operator(9)] : Okay via juniper04

on /dev/ttyp001 -- 1 previous failures

The following example shows the record produced when a user entered an
incorrect password:

$ /etc/reduce -t logn

Apr 29 08:14:15 1991 Validation o_lvl: 0 s_lvl: 0 jid:0 pid:1067

r_ids:[operator(9),operator(9)] e_ids:[operator(9),operator(9)]

Login uid: operator(9)

Login to [operator(9),operator(9)] : Password error via juniper04

on /dev/ttyp001 -- 0 previous failures

The following example shows the record produced when a user has exceeded the
maximum number of login attempts (defined by MAXLOGS):

$ /etc/reduce -t logn

Apr 29 09:07:55 1991 Validation o_lvl: 0 s_lvl: 0 jid:0 pid:2456

r_ids:[operator(9),operator(9)] e_ids:[operator(9),operator(9)]

Login uid: operator(9)

Login to [operator(9),operator(9)] : Disabled error (disabled)

via fir28 on /dev/ttyp066 -- 5 previous failures

The following example shows the record produced when an administrator has
set the disabled field in the UDB for a user. This record is produced when
the disabled user attempts to log in:

$ /etc/reduce -t logn

Apr 29 09:10:28 1991 Validation o_lvl: 0 s_lvl: 0 jid:0 pid:2907

r_ids:[operator(9),operator(9)] e_ids:[operator(9),operator(9)]

Login uid: operator(9)

S–2301–10011 291

General UNICOS® System Administration

Login to [operator(9),operator(9)] : Locked error via fir28

on /dev/ttyp066 -- 0 previous failures

The following example shows the record produced for a trapped user with a
password failure and SLG_USER is enabled:

$ /etc/reduce -t logn

Jul 15 10:45:47 1993 Validation o_lvl: 0 s_lvl: 0 jid:0 pid:34302

r_ids:[operator(9),operator(9)] e_ids:[operator(9),operator(9)]

Login uid: operator(9)

Login to [operator(9),operator(9)] : Password error via cherry21

on /dev/ttyp012 - - 0 previous failures

name: operator, password: badpass

The following example shows the record produced for a user who logged
in through the remote shell:

$ /etc/reduce -t logn

Oct 18 10:55:43 1993 Validation o_lvl:0 s_lvl:0 jid:3389 pid:65592

r_ids:[operator(9),operator(9)] e_ids:[operator(9),operator(9)]

**** ******

Login uid: operator(9)

Login to [operator(9),operator(9)] : Okay via pecan10 on rshd

The following example shows the record produced for a user who initiated
a job through cron:

$ /etc/reduce -t logn

Oct 18 11:00:01 1993 Validation o_lvl:0 s_lvl:0 jid:3393 pid:66918

r_ids:[operator(9),operator(9)] e_ids:[operator(9),operator(9)]

Login uid: operator(9)

Login to [operator(9),operator(9)] : Okay via cron on

292 S–2301–10011

UNICOS Multilevel Security (MLS) Feature [8]

The following example shows the user to produce the record header with the
subject and object label information. See Section 8.8.8.2, page 335, for more
information on this option:

$ /etc/reduce -t logn -S

Oct 21 13:24:17 1993 Validation jid:1094 pid:79926

r_ids:[operator(9),operator(9)] e_ids:[operator(9),operator(9)

S_Label: 0,none O_Label: 0,none

Login uid: operator(9)

Login to [operator(9),operator(9)] : Okay via cherry21 on /dev/ttyp043

See Section 8.8.8, page 333, for more information on using this command.

8.8.7.10 Tape Activity Record (SLG_TAPE)

All records generated by tpdaemon(8) are logged using the SLG_TAPE record.
The entries are logged through slgentry(2).

The following two additional events generate audit records by tpdaemon:

• Mandatory access control (MAC) failures on requests to reserve a device.

• Any tape MAC mediation performed by tpdaemon; this event is never
recorded on a Cray ML-Safe system configuration, as all tape mediation is
performed by Cray/REELlibrarian.

The SLG_TAPE record is generated by the following tape commands: rls(1),
rsv(1), tpapm(8), tpcatalog(1), tpdev(8), tpdstop(8), tpfrls(8),
tpgstat(8), tpmls(8), tpmnt(1), tprst(1), tpscr(8), tpset(8), tpstat(1),
and tpu(8).

The SLG_TRUST record is generated by the tpconfig(8) command. See Section
8.8.7.24, page 324, for more information on this record type.

The SLG_LOG_TAPE parameter must be on for this record to be generated. To
set this parameter, use the Configure system->Multilevel security
(MLS) configuration->Security log file configuration->Log
tape activity? selection in the UNICOS Installation and Configuration
Menu System.

S–2301–10011 293

General UNICOS® System Administration

You can also use the spaudit -e tapes command to enable the generation
of this record or the spaudit -d tapes command to disable the generation
of this record.

The message file field in the SLG_TAPE record is used only by the rsv(1)
command. The external VSN field is used only on commands that take a VSN
as a parameter. The violation field is the tpdaemon error; otherwise, for
commands, it is the return code from tpdaemon.

To display this record, use the reduce command as shown in the following
example:

$ /etc/reduce -t tape

Nov 9 16:45:17 1993 Tape I/O o_lvl: 0 s_lvl: 0 jid:1158 pid:33559

r_ids:[operator(9),operator(9)] e_ids:[root(0),root(0)] **********

Login uid: operator(9)

NQS batch job ID:

Operation: Tape Mount

violation: 0

permitted privileges: PRIV_NULL

tape file name: AAAA33531

request pipe: /usr/spool/tape/daemon.request

reply pipe: /usr/spool/tape/1158tpmn33559

message file:

external VSN: 001815

The following example shows the record generated by the tpstat command:

$ /etc/reduce -t tape

Dec 3 11:12:43 1993 Tape I/O o_lvl: 0 s_lvl: 0 jid:514 pid:32969

r_ids:[operator(9),operator(9)] e_ids:[root(0),root(0)] **********

Login uid: operator(9)

NQS batch job ID:

Operation: Tape Status Request

violation: 0

permitted privileges: PRIV_NULL

tape file name:

request pipe: /usr/spool/tape/daemon.request

reply pipe: /usr/spool/tape/514tpst32969

message file:

294 S–2301–10011

UNICOS Multilevel Security (MLS) Feature [8]

The following example shows the record generated by the tape daemon for a
rsv command:

$ /etc/reduce -t tape

Dec 3 11:13:26 1993 Tape I/O o_lvl: 0 s_lvl:54 jid:9 pid:32987

r_ids:[root(0),root(0)] e_ids:[root(0),root(0)] **********

Login uid: root(0)

NQS batch job ID:

Operation: User Reserve Status Request

violation: 0

permitted privileges: PRIV_NULL

tape file name:

request pipe: /usr/spool/tape/daemon.request

reply pipe: /usr/spool/tape/9gsta32987

message file:

The following example shows the record generated by the rsv command:

$ /etc/reduce -t tape

Dec 3 11:13:30 1993 Tape I/O o_lvl: 0 s_lvl: 0 jid:514 pid:32990

r_ids:[operator(9),operator(9)] e_ids:[operator(9),operator(9)]

Login uid: operator(9)

NQS batch job ID:

Operation: Reservation Request

violation: 0

permitted privileges: PRIV_DAC_OVERRIDE,PRIV_MAC_READ,

PRIV_MAC_WRITE

tape file name:

request pipe: /tmp.mld/jtmp/jtmp.000514a/TAPE_REQ_514

reply pipe: /usr/spool/tape/514rsv32990

message file: /drizzle/operator/tape.msg

The following example shows the record generated by the tpmnt command:

$ /etc/reduce -t tape

S–2301–10011 295

General UNICOS® System Administration

Dec 3 11:14:01 1993 Tape I/O o_lvl: 0 s_lvl: 0 jid:514 pid:32998

r_ids:[operator(9),operator(9)] e_ids:[operator(9),operator(9)]

Login uid: operator(9)

NQS batch job ID:

Operation: Tape Mount

violation: 0

permitted privileges: PRIV_NULL

tape file name: PSU

request pipe: /usr/spool/tape/daemon.request

reply pipe: /usr/spool/tape/514tpmn32998

message file:

external VSN: 002895

The following example shows the record generated by the rls command:

$ /etc/reduce -t tape

Dec 3 11:14:06 1993 Tape I/O o _lvl: 0 s_lvl: 0 jid:514 pid:33000

r_ids:[operator(9),operator(9)] e_ids:[operator(9),operator(9)]

Login uid: operator(9)

NQS batch job ID:

Operation: Free Device Group

violation: 0

permitted privileges: PRIV_NULL

tape file name:

request pipe: /usr/spool/tape/daemon.request

reply pipe: /usr/spool/tape/514rls33000

message file:

See Section 8.8.8, page 333, for more information on using this command.

8.8.7.11 End-of-job Record (SLG_EOJ)

The SLG_EOJ record is written when a user’s session exits the system, regardless
of how the session originates (that is, whether the session is initiated through
batch or interactive means, cron(8), rlogin(1), rshd(8), or through the
setsid(2) system call). This record can be correlated with a SLG_LOGN record
through the login user ID field and the job ID field. Except for sublogins, these

296 S–2301–10011

UNICOS Multilevel Security (MLS) Feature [8]

fields are the same in both the SLG_LOGN and SLG_EOJ records. For sublogins,
the login user ID in a SLG_EOJ record is the initial login user ID; in this case, the
job ID should be used to track a sublogin SLG_EOJ record.

The SLG_JEND parameter must be on for this record to be generated. To set this
parameter, use the Configure system->Multilevel security (MLS)
configuration->Security log file configuration->Log end of
job? selection in the UNICOS Installation and Configuration Menu System.

You can also use the spaudit -e jend command to enable the generation
of this record or the spaudit -d jend command to disable the generation
of this record.

Only the header information is produced for this record, as shown in the
following example:

$ /etc/reduce -t eoj

Apr 1 09:56:46 1991 End of Job jid:188 uid:operator(9) **********

Login uid: operator(9)

Apr 1 09:57:05 1991 End of Job jid:58 uid:operator(9) **********

Login uid: operator(9)

Apr 1 09:57:05 1991 End of Job jid:59 uid:root(0) **********

Login uid: root(0)

See Section 8.8.7.1, page 270, for a description of the header information.

8.8.7.12 Change Directory Record (SLG_CHDIR)

The SLG_CHDIR record is produced each time a chdir(2) system call is made
(that is, whenever users change their directories).

The SLG_LOG_CHDIR parameter must be on for this record to be generated. To
set this parameter, use the Configure system->Multilevel security
(MLS) configuration->Security log file configuration->Log
chdir requests? selection in the UNICOS Installation and Configuration
Menu System.

S–2301–10011 297

General UNICOS® System Administration

In addition, the SLG_PATH_TRACK parameter must be on for this
record to be generated. To set this parameter, use the Configure
system->Multilevel security (MLS) configuration->Security
log file configuration->Track all path names on accesses?
selection in the UNICOS Installation and Configuration Menu System.

You can also use the spaudit -e chdir,object_path command to enable
the generation of this record. The spaudit -d chdir,object_path
command disables the generation of this record.

In addition to the header information, the SLG_CHDIR record displays the
following information:

Relative directory path: rel_path

Absolute directory path: abs_path

The fields are defined as follows:

Field Description

rel_path The relative path name to the object

abs_path The absolute path name to the object (usually starts with /). It is
possible to get a path name that does not start with /. For example,
if you are using reduce to examine a new security log file and
your original login (and the cd $HOME) record was in an archived
log file, then reduce would be unable to determine where you
started. Instead, it creates as much of the path name as possible.

To display a SLG_CHDIR record, use the reduce command, as shown in the
following example, which shows the -S option used to produce the record
header with the subject and object label information: See Section 8.8.8.2, page 335,
for more information on this option.

$ /etc/reduce -S -t chdir

Oct 21 13:24:18 1993 Change Directory jid:1094 pid:79963

r_ids:[operator(9),operator(9)] e_ids:[operator(9),operator(9)]

S_Label: 0,none O_Label: 0,none

Login uid: operator(9)

Relative directory path: ./libc

Absolute directory path: /ulib/usr/src/lib/libc

298 S–2301–10011

UNICOS Multilevel Security (MLS) Feature [8]

$ /etc/reduce -t chdir -s 04010930

Apr 1 09:59:10 1991 Change Directory o_lvl:0 s_lvl:0 jid:192 pid:9232

r_ids:[root(0),root(0)] e_ids:[root(0),root(0)] **********

Login uid: root(0)

Relative directory path: /usr/spool/nqs/private/root

Absolute directory path: /usr/spool/nqs/private/root

See Section 8.8.8, page 333, for more information on using this command.

8.8.7.13 Security-related System Call Record (SLG_SECSYS)

The SLG_SECSYS record is written whenever one of the following
security-related system calls is executed: fsetpal(2), setjob(2), setpal(2),
setsid(2), setucat(2), setucmp(2), setulvl(2), and setusrv(2).

It is also written if an authorization error or system error occurs when a process
issues the slgentry(2) system call. The slgentry system call is used by the
Cray ML-Safe process to write the record to the security log.

The SLG_LOG_SECSYS parameter must be on for this record to be generated.
To set this parameter, use the Configure system->Multilevel security
(MLS) configuration->Security log file configuration->Log
security system calls? selection in the UNICOS Installation and
Configuration Menu System.

You can also use the spaudit -e secsys command to enable the generation
of this record. The spaudit -d secsys command disables the generation
of this record.

There are three formats for this record. The first format is used when the
setucat(2) and setusrv(2) system calls are executed. This format is also
used for an authorization error or system error occurs when a process issues
the slgentry(2) system call. For the first format, in addition to the header
information, the SLG_SECSYS record displays the information shown in the
following example.

Function: func (nn) Violation: text (nnn)

Subject: Active Compartments : sub_active_comps

Valid Compartments : sub_val_comps

Permissions : sub_permits

Class : sub_intcls

Active Categories : sub_act_cat

Valid Categories : sub_val_cat

S–2301–10011 299

General UNICOS® System Administration

The fields are defined as follows:

Field Description

Function: func (nn)

The function name and its system call.

Violation: text (nnn)

The error message associated with this violation followed by the
error number. If no violation occurred, the value NONE(0) is
shown. See Section 8.8.10, page 343, for more information.

sub_act_comps

The subject’s active security compartments.

sub_val_comps

The subject’s authorized security compartments.

sub_permits

The subject’s authorized permissions (as defined in the UDB).

sub_intcls

The subject’s active integrity class. This value is no longer used.

sub_act_cat

The subject’s active category.

sub_val_cat

The subject’s authorized categories.

To display the first format of a SLG_SECSYS record, use the reduce command,
as shown in the following example:

$ /etc/reduce -t secsys

Apr 1 10:02:35 1991 Security Syscall o_lvl:0 s_lvl:0 jid:212 pid:11855

r_ids:[root(0),root(0)] e_ids:[root(0),root(0)] **********

Login uid: root(0)

Function: setusrv (89) Violation: NONE (0)

Subject: Active Compartments : none

Valid Compartments : none

Permissions : suidgid

300 S–2301–10011

UNICOS Multilevel Security (MLS) Feature [8]

Class : 0

Active Categories : none

Valid Categories : secadm

Apr 1 10:02:37 1991 Security Syscall o_lvl:0 s_lvl:0 jid:212 pid:11855

r_ids:[root(0),root(0)] e_ids:[root(0),root(0)] **********

Login uid: root(0)

Function: setucat (154) Violation: NONE (0)

Subject: Active Compartments : none

Valid Compartments : none

Permissions : suidgid

Class : 0

Active Categories : none

Valid Categories : system

Apr 1 10:02:39 1991 Security Syscall o_lvl:0 s_lvl:0 jid:212 pid:11855

r_ids:[root(0),operator(9)] e_ids:[root(0),operator(9)] ********

Login uid: operator(9)

Function: setusrv (89) Violation: NONE (0)

Subject: Active Compartments : none

Valid Compartments : none

Permissions : suidgid

Class : 0

Active Categories : none

Valid Categories : secadm

The second format of the SLG_SECSYS record is used by the setsid(2) and
setjob(2) system calls to audit the creation of a new job or session ID from
within an existing session. The purpose of this record is to document the
changing of the job or session ID so that all actions taken by the new job or
session can be traced to the original session and user ID.

S–2301–10011 301

General UNICOS® System Administration

In addition to the header information, this form of the SLG_SECSYS record
displays the following information:

Function: func: (nn) Violation: text (nnn)

Subject: Active Compartments : sub_active_comps

Valid Compartments : sub_val_comps

Permissions : sub_permits

Class : sub_TFM_class

Active Categories : sub_act_cat

Valid Categories : sub_val_cat

New job id : new_job_id

New job uid : new_uid (nnnn)

To display the second format of a SLG_SECSYS record, use the reduce
command, as shown in the following example:

$ /etc/reduce -t secsys

Oct 18 14:47:33 1993 Security Syscall o_lvl:0 s_lvl:0 jid:4455 pid:65926

r_ids:[operator(9),operator(9)] e_ids:[operator(9),operator(9)]

Login uid: operator(9)

Function: setsid (117) Violation: NONE (0)

Subject: Active Compartments : none

Valid Compartments : none

Permissions : suidgid

Class : 0

Active Categories : none

Valid Categories : secadm sysadm

New job id : 4456

New job uid : dnn (1346)

A third form of the SLG_SECSYS record is written when the setpal(2) system
call is executed. The following example shows this type of record. The subject
and object security labels are supplied in the following format: level,
compart1 compart2,.... The first record is generated by a setprivs(8)
command and no privilege assignment lists (PALs) entries were used. The second
record was generated by a setpal(1) command and three PAL entries were set.

This record type can contain up to eight PAL entires, which is enough for all
software released by Cray. If a record generated by setpal(2) contains more

302 S–2301–10011

UNICOS Multilevel Security (MLS) Feature [8]

than eight PAL entries, the additional records are written until all PAL entries
have been logged:

$ /etc/reduce -t secsys

Jul 15 11:15:12 1993 Security Syscall o_lvl:0 s_lvl:0 jid:1274 pid:34930

r_ids:[operator(9),operator(9)] e_ids:[operator(9),operator(9)]

Login uid: operator(9)

Function: setpal (220) Violation: NONE (0)

Subject: active categories: secadm

Label: 0, none

Object: Label: 0, none

uid: operator(9) gid: operator(9)

device: 0, 8 inode: 5244

Pathname: mybin

allowed privileges: PRIV_NULL

forced privileges: PRIV_DAC_OVERRIDE,PRIV_MAC_READ,

PRIV_MAC_WRITE

set effective privileges: PRIV_DAC_OVERRIDE,

PRIV_MAC_READ,PRIV_MAC_WRITE

total PAL entries: 0

PAL version number: 0

PAL entries: 0

Jul 15 11:15:38 1993 Security Syscall o_lvl:0 s_lvl:0 jid:1274 pid:34933

r_ids:[operator(9),operator(9)] e_ids:[operator(9),operator(9)]

Login uid: operator(9)

Function: setpal (220) Violation: NONE (0)

Subject: active categories: secadm

Label: 0, none

Object: Label: 0, none

uid: operator(9) gid: operator(9)

device: 0, 8 inode: 5244

Pathname: mybin

allowed privileges: PRIV_NULL

forced privileges: PRIV_DAC_OVERRIDE,PRIV_MAC_READ,

PRIV_MAC_WRITE

set effective privileges: PRIV_DAC_OVERRIDE,PRIV_MAC_READ,

S–2301–10011 303

General UNICOS® System Administration

PRIV_MAC_WRITE

total PAL entries: 3

PAL version number: 0

PAL entries: 3

privilege set: PRIV_DAC_OVERRIDE,PRIV_MAC_READ,

PRIV_MAC_WRITE

privilege text: exec

privileged category: secadm

privilege set: PRIV_DAC_OVERRIDE,PRIV_MAC_READ,

PRIV_MAC_WRITE

privilege text: exec

privileged category: sysadm

privilege set: PRIV_DAC_OVERRIDE,PRIV_MAC_READ,

PRIV_MAC_WRITE

privilege text: exec

privileged category: system

See Section 8.8.8, page 333, for more information on using this command.

8.8.7.14 NAMI Function Record (SLG_NAMI)

This record is produced whenever a file’s path is searched by any of the following
system calls: link(2), mkdir(2), rmdir(2), and unlink(2). If logging of this
record is enabled, it is written in addition to any other type of discretionary or
mandatory access records that are written.

The format is the same as described for the discretionary access violation record.
See Section 8.8.7.6, page 276, for a description of the format.

The SLG_MKDIR, SLG_RMDIRV, SLG_LINKV, SLG_REMOVEV, SLG_ALL_RM,
and/or SLG_ALL_NAMI parameters must be on for this record to be generated.

The SLG_MKDIRV parameter allows the logging of all mkdir(2) system call
violations.

To set this parameter, use the Configure system->Multilevel security
(MLS) configuration->Security log file configuration->Log
all directory make (mkdir) violations? selection in the UNICOS
Installation and Configuration Menu System.

304 S–2301–10011

UNICOS Multilevel Security (MLS) Feature [8]

You can also use the spaudit -e mkdirv command to enable the generation
of this record or the spaudit -d mkdirv command to disable the generation
of this record.

The SLG_RMDIRV parameter allows the logging of all rmdir(2) system call
violations.

To set this parameter, use the Configure system->Multilevel security
(MLS) configuration->Security log file configuration->Log
all directory remove (rmdir) violations? selection in the UNICOS
Installation and Configuration Menu System.

You can also use the spaudit -e rmdirv command to enable the generation
of this record or the spaudit -d rmdirv command to disable the generation
of this record.

The SLG_LINKV parameter allows the logging of all link violations, which
includes mandatory access violation within link. This violation is also logged if
the SLG_MANDV or SLG_ALL_NAMI configuration parameters are enabled.

To set this parameter, use the Configure system->Multilevel security
(MLS) configuration->Security log file configuration->Log
all link (ln) violations? selection in the UNICOS Installation and
Configuration Menu System.

You can also use the spaudit -e linkv command to enable the generation
of this record or the spaudit -d linkv command to disable the generation
of this record.

All of the object fields in the record may be 0, depending on what type of error is
encountered and which routine (link or nami) generated the record.

The SLG_REMOVEV parameter allows the logging of all file removal violations for
the unlink(2) system call.

To set this parameter, use the Configure system ->Multilevel security
(MLS) configuration->Security log file configuration->Log
all remove violations? selection in the UNICOS Installation and
Configuration Menu System.

You can also use the spaudit -e removev command to enable the generation
of this record or the spaudit -d removev command to disable the generation
of this record.

The SLG_ALL_RM parameter allows the logging of all remove (unlink(2))
requests regardless of the success or failure of the action.

S–2301–10011 305

General UNICOS® System Administration

To set this parameter, use the Configure system->Multilevel security
(MLS) configuration->Security log file configuration->Log
all remove (rm) requests? selection in the UNICOS Installation and
Configuration Menu System.

You can also use the spaudit -e all_rm command to enable the generation
of this record or the spaudit -d all_rm command to disable the generation
of this record.

The SLG_ALL_NAMI parameter allows the logging of all mkdir(2), rmdir(2),
link(2), and unlink(2) system calls regardless of success or failure of the call.

To set this parameter, use the Configure system->Multilevel security
(MLS) configuration->Security log file configuration->Log
all mkdir, rmdir, link, and rm calls? selection in the UNICOS
Installation and Configuration Menu System.

You can also use the spaudit -e all_nami command to enable the generation
of this record or the spaudit -d all_nami command to disable the
generation of this record.

All of the object fields in the record may be 0, depending on what type of error
is encountered.

To display this record, use the reduce command as shown in the following
example:

$ /etc/reduce -t nami -s 04011000 -p

Apr 1 10:04:24 1991 File Control o_lvl:0 s_lvl:0 jid:102 pid:7496

r_ids:[root(0),root(0)] e_ids:[root(0),root(0)] **********

Login uid: operator(9)

Function: link (9) Violation: File exists (17)

Subject: Compartments : none

Permissions : suidgid

Class : 0

Categories : none

Object: Level: 0 uid: root(0) gid:root(0) device:0, 192 inode:689

Pathname : /fstest1/ram1/bo125

Compartments : none

Class : 0

Categories : none

Mode : 100644

306 S–2301–10011

UNICOS Multilevel Security (MLS) Feature [8]

See Section 8.8.8, page 333, for more information on using this command.

8.8.7.15 Setuid System Call Record (SLG_SETUID)

This record is produced whenever a setuid(2) or setreuid(2) system call is
executed.

The SLG_SUID_RQ parameter must be on for this record to be generated. To set
this parameter, use the Configure system->Multilevel security (MLS)
configuration->Security log file configuration->Log all
setuid requests? selection in the UNICOS Installation and Configuration
Menu System.

You can also use the spaudit -e setuid command to enable the generation
of this record or the spaudit -d setuid command to disable the generation
of this record.

In addition to the header information, the SLG_SETUID record displays the
following information:

Setuid call from real_name (RUID) to eff_name (EUID) was text

The fields are defined as follows:

Field Description

real_name The real user login name

RUID The real user ID

eff_name The effective user login name

EUID The effective user ID

text Indicates if call was successful (successful or NOT
successful)

To display this record, use the reduce command as shown in the following
example:

$ /etc/reduce -t setuid -s 04010800 -p

Apr 1 10:27:50 1991 Setuid Syscall o_lvl:0 s_lvl:0 jid:310 pid:21296

r_ids:[operator(9),operator(9)] e_ids:[operator(9),operator(9)]

Login uid: operator(9)

Setuid call from operator (9) to root (0) was NOT successful

S–2301–10011 307

General UNICOS® System Administration

Apr 1 10:27:58 1991 Setuid Syscall o_lvl:0 s_lvl:0 jid:312 pid:21343

r_ids:[operator(9),operator(9)] e_ids:[operator(9),operator(9)]

Login uid: operator(9)

Setuid call from operator (9) to operator (9) was successful

Apr 1 10:28:00 1991 Setuid Syscall o_lvl:0 s_lvl:0 jid:313 pid:21347

r_ids:[root(0),root(0)] e_ids:[root(0),root(0)] **********

Login uid: root(0)

Setuid call from root (0) to root (0) was successful

Apr 1 10:28:12 1991 Setuid Syscall o_lvl:0 s_lvl:0 jid:85 pid:9464

r_ids:[operator(9),operator(9)] e_ids:[operator(9),operator(9)]

Login uid: operator(9)

Setuid call from root (0) to operator (9) was successful

See Section 8.8.8, page 333, for more information on using this command.

8.8.7.16 Su Attempt Record (SLG_SU)

This record is produced for all successful or unsuccessful attempts to execute the
su command, essentially producing the same information found in sulog.

The SLG_SULOG parameter must be on to generate this record. To set
parameter, use the Configure system->Multilevel security (MLS)
configuration->Security log file configuration->Log all su
attempts? selection in the UNICOS Installation and Configuration Menu
System.

You can also use the spaudit -e sulog command to enable the generation
of this record or the spaudit -d sulog command to disable the generation
of this record.

In addition to the header information, the SLG_SULOG record displays the
following information:

Setuid call from real_name (RUID) to eff_name (EUID) was text

308 S–2301–10011

UNICOS Multilevel Security (MLS) Feature [8]

The fields are defined as follows:

Field Description

real_name The real user login name

RUID The real user ID

eff_name The effective user login name

EUID The effective user ID

text Indicates if call was successful (successful or NOT
successful)

To display this record, use the reduce command as shown in the following
example:

$ /etc/reduce -t sulog

Dec 11 05:10:07 1991 Sulog o_lvl: 0 s_lvl: 0 jid:11 pid:3072

r_ids:[root(0),root(0)] e_ids:[root(0),root(0)] **********

Login uid: root(0)

Setuid call from root (0) to adm (4) was successful

See Section 8.8.8, page 333, for more information on using this command.

8.8.7.17 Networks Security Violations Record (SLG_IPNET)

This record is produced for all network errors. The entries are logged through
the slgentry(2) system call.

This record is generated only if the SLG_LOG_IPNET configuration parameter
is enabled. To set parameter, use the Configure system->Multilevel
security (MLS) configuration->Security log file
configuration->Log IP layer activity? selection in the UNICOS
Installation and Configuration Menu System.

You can also use the spaudit -e ipnet command to enable the generation
of this record or the spaudit -d ipnet command to disable the generation
of this record.

In addition to the header information, the SLG_IPNET record displays the
following information:

S–2301–10011 309

General UNICOS® System Administration

The fields are defined as follows:

Function: requested_function Violation: text (nnn)

IP Security Option : type

Network Interface : number

Network Route : number

Subject: Host : host

Level : sub_level

Compartments : sub_comparts

Object: Level : obj_level

Compartments : obj_comparts

Field Description

Function: requested_function

Defines one of the following functions: Set IP Security Option (1)
or Get IP Security Option (2). A record with a requested function
of 1 is generated when there is an error in the ip_output ()
routine. A record with a requested function of 2 is generated
when there is an error on the IP input in the transport layer
routines. In the latter case, the security header information is not
relevant because the error occurred in an interrupt handler.

Violation: text (nnn)

Violation description and error number. See Section 8.8.10, page
343. for more information.

IP Security Option : type

Defines one of the following IP security option types: None (0),
BSO (1), or CIPSO (2)

Network Interface : number

Reserved for future use

Network Route : number

Reserved for future use

Subject: Host : host

Subject’s host machine. If the remote host is not in /etc/hosts,
then the Internet address is displayed. The Subject field refers

310 S–2301–10011

UNICOS Multilevel Security (MLS) Feature [8]

to the local process or the remote host, depending on whether the
datagram is outgoing or incoming, respectively.

Level : sub_level

Subject’s active security level

Compartments : sub_comparts

Subject’s active compartments

Object: Level : obj_level

Security level of incoming datagram

Compartments : obj_comparts

Active compartments of the incoming datagram

To display this record, use the reduce command as shown in the following
example:

$ /etc/reduce -t netip

Dec 11 15:34:24 1991 Network IP Layer o_lvl: 0 s_lvl:16 jid:115 pid:5787

r_ids:[operator(9),operator(9)] e_ids:[operator(9),operator(9)]

Login uid: operator(9)

Function: Set IP Security Option (1) Violation: Host not authorized

in NAL (330)

IP Security Option : NONE (0)

Network Interface : 0

Network Route : 0

Subject: Host : pecan01.cray.com

Level : 16

Compartments : none

Object: Level : 0

Compartments : none

See Section 8.8.8, page 333, for more information on using this command.

S–2301–10011 311

General UNICOS® System Administration

8.8.7.18 Cray NFS Request Record (SLG_NFS)

This record is produced for all Cray-to-Cray NFS requests, regardless of success
or failure of the request.

The SLG_NFS parameter must be on to generate this record. To set this
parameter, use the Configure system->Multilevel security (MLS)
configuration->Security log file configuration->Log all
Cray-to-Cray NFS requests selection in the UNICOS installation and
configuration menu system.

You can also use the spaudit -e nfs command to enable the generation
of this record or the spaudit -d nfs command to disable the generation
of this record.

In addition to the header information, the SLG_NFS record displays the following
information:

Function: requested_function Violation: text (nnn)

Remote Server (Client): address

Session ID : sid

Transaction ID : xid

Device Number : dev

Inode Number : inode

The fields are defined as follows:

Field Description

Function: requested_function

Cray NFS (CNFS) procedure number, which indicates what
CNFS operation is returned

Violation: text (nnn)

Violation description and error number. See Section 8.8.10, page
343. for more information.

Remote Server (Client) : address

The hostname of the remote CNFS server or client, respectively.
If the hostname is not known, the Internet address is shown.

Session ID : sid

The session identification number of the client process that
made the request

312 S–2301–10011

UNICOS Multilevel Security (MLS) Feature [8]

Transaction ID : xid

The RPC packet transaction identification generated by the
CNFS client

Device Number : dev

The major or minor device number in the server’s file systems of
the file being accessed

Inode Number : inode

The inode number in the server’s file system of the file being
accessed

To display this record, use the reduce command as shown in the following
example:

$ /etc/reduce -t nfs

Sept 10 15:17:32 1992 NFS o_lvl: 0 s_lvl: 0 jid:629 pid:44007

r_ids:[operator(9),operator(9)] e_ids:[operator(9),operator(9)]

Login uid: operator(9)

Function: lookup (4) Violation: NONE (0)

Remote Server : uss.cray.com

Session ID : 629

Transaction ID : 324f0b0bd17d44

Device Number : 8767

Inode Number : 4

See Section 8.8.8, page 333, for more information on using this command.

8.8.7.19 File Transfer Record (SLG_FXFR)

This record is produced for all successful and failed ftpd(8) attempts. These
entries are logged through the slgentry(2) system call.

The SLG_FILEXFR parameter must be on to generate this record. To set this
parameter, use the Configure system->Multilevel security (MLS)
configuration->Security log file configuration->Log all
file transfers? selection in the UNICOS Installation and Configuration
Menu System.

S–2301–10011 313

General UNICOS® System Administration

You can also use the spaudit -e filexfr command to enable the generation
of this record or the spaudit -d filexfr command to disable the generation
of this record.

In addition to the header information, the SLG_FXFR record displays the
following information:

Type_of File Transfer

Remote Host: ip_address Remote Port: host_port Local Port: host_port

Function: func (nn) Violation: text (nnn)

Subject: Compartments : sub_comps

Permissions : sub_permits

Class : sub_intcls

Categories : sub_intcat

Access Mode : access_mode

Object: Level:lvl uid: user(ID) gid: group(ID) device: maj,min

inode: INUM

Pathname : file

Compartments : obj_comps

Class : obj_intcls

Categories : obj_intcat

Mode : obj_mode

The fields are defined as follows:

Field Description

Type_of File Transfer

Defines if the file is to be imported or exported by indicating
Incoming File Transfer or Outgoing File Transfer.

Remote Host: ip_address

The host name (or internet address) of the remote host.

Remote Port: host_port

Remote host port number that is used for the transfer.

Local Port: host_port

The Cray port number that is used for the transfer. If this port is
registered in /etc/services, then the network service text is
displayed in parentheses after the port number.

314 S–2301–10011

UNICOS Multilevel Security (MLS) Feature [8]

The rest of this record is formatted as described previously for the discretionary
access violation record. See Section 8.8.7.6, page 276, for a description of the
format.

To display this record, use the reduce command as shown in the following
example:

$ /etc/reduce -p -t xfer

Dec 10 20:00:31 1992 File Transfer o_lvl:0 s_lvl:0 jid:5058 pid:82087

r_ids:[root(0),root(0)] e_ids:[root(0),root(0)] **********

Login uid: operator(9)

Incoming File Transfer

Remote Host: fox Remote Port: 1973 Local Port: 21 (ftpd)

Function: open (5) Violation: Security category violation (319)

Subject: Compartments : none

Permissions : suidgid

Class : 0

Categories : none

Access Mode : write

Object: Level: 0 uid: root(3) gid:sys (3) device:0, 225 inode:926

Pathname : /sn422/os/jnn/text

Compartments : none

Class : 0

Categories : none

Mode : 100600

See Section 8.8.8, page 333, for more information on using this command.

8.8.7.20 Network Configuration Change Record (SLG_NETCF)

This record is written when changes are made to the workstation access list
(WAL), network access list (NAL), interface, and CIPSO map. These entries are
logged through the slgentry(2) system call.

The SLG_CF_NET parameter must be on for this record to be generated. To set
this parameter, use the Configure system->Multilevel security (MLS)
configuration->Security log file configuration->Log all
network configuration changes? selection in the UNICOS Installation
and Configuration Menu System.

S–2301–10011 315

General UNICOS® System Administration

You can also use the spaudit -e netcf command to enable the generation
of this record or The spaudit -d netcf command to disable the generation
of this record.

The SLG_NETCF record uses the following five record subtypes:

• SLG_NET_NAL (records changes to the network access list (NAL))

• SLG_NET_WAL (records changes to the workstation access list (WAL))

• SLG_NET_INTF (records changes to the interface)

• SLG_NET_MAP (records changes to the CIPSO map)

• SLG_NET_ROUTE (records changes to the route)

In addition to the header information, the SLG_NET_NAL record displays the
following fields, which are defined as follows:

Field Description

Function Can be add or delete, depending on whether the
NAL entry was added or deleted, respectively.

Address The host or network address for the entry

Netmask The netmask for network entries

Class The class value. This value is no longer used.

Min level The minimum security level

Min comparts The minimum compartment set

Max level The maximum security level

Access modes The access modes

IP security option One of the following security options: Domain
of interpretation for CIPSO (DOI); the required
protection authority on input flags for BSO
(Authority in); the required protection
authority on output for BSO (Authority out)

In addition to the header information, the SLG_NET_WAL record displays the
following fields, which are defined as follows:

Field Description

Function Can be add or delete, depending on whether the
WAL entry was added or deleted, respectively.

Address The host or network address for the entry

316 S–2301–10011

UNICOS Multilevel Security (MLS) Feature [8]

Netmask The netmask for network entries

uid.gid =3D
services

For each WAL permission; uid is the numeric
user ID. gid is the numeric group ID or a * for
wildcard. services is the mask of allowed
services.

In addition to the header information, the SLG_NET_INTF record displays the
following fields, which are defined as follows:

Field Description

Name The interface name

Address The interface address

Netmask The interface netmask

Flags The interface flags

Min level The minimum security level

Min comparts The minimum compartment set

Max level The maximum security level

Max comparts The maximum compartment set

Authority The allowed BSO protection authority flags

In addition to the header information, the SLG_NET_MAP record displays the
following fields, which are defined as follows:

Field Description

Map ID

The numeric map ID

level hostlevel =3D netlevel

For each mapped level; hostlevel is the numeric host’s level.
netlevel is the numeric network’s level.

compartment hostcmp =3D netcmp

For each mapped compartment; hostcmp is the host’s
compartment values. netcmp is the network’s compartment
values.

In addition to the header information, the SLG_NET_ROUTE record displays the
following fields, which are defined as follows:

S–2301–10011 317

General UNICOS® System Administration

Field Description

Function Can be add, change or delete, depending
on whether the route was added, changed, or
deleted, respectively.

Destination The destination of the route

Netmask The route netmask

8.8.7.21 Audit Criteria Change Record (SLG_AUDIT)

This record is produced whenever a change is made to change the configuration
of the security logging options. The security logging configuration is changed
when a security administrator uses the spaudit -e or spaudit -d to enable
or disable the security logging options, respectively.

The SLG_LOG_AUDIT parameter must be on to generate this record. To set this
parameter, use the Configure system -> Multilevel security (MLS)
configuration ->Security log file configuration->Log audit
criteria changes? selection in the UNICOS Installation and Configuration
Menu System.

You can also use the spaudit -e audit command to enable the generation
of this record or the spaudit -d audit command to disable the generation
of this record.

In addition to the header information, the SLG_AUDIT record displays the
following information. The output of this record is shows the state of all the
auditing options following any changes that have been made:

$ /etc/reduce -t audit

Jul 15 11:09:54 1993 Audit Change o_lvl:0 s_lvl:0 jid:1274 pid:34814

r_ids:[operator(9),operator(9)] e_ids:[operator(9),operator(9)]

Login uid: operator(9)

security auditing state: ON

all nami requests: OFF

all rm requests: OFF

all valid accesses: OFF

audit criteria changes: ON

chdir requests: ON

config changes (UNICOS): ON

Cray Reel Librarian: OFF

318 S–2301–10011

UNICOS Multilevel Security (MLS) Feature [8]

DAC changes: ON

discretionary violations: ON

file transfer requests: ON

I/O errors: OFF

IPnet layer activities: ON

job end: ON

job initiation: ON

link violations: ON

mandatory violations: ON

mkdir violations: ON

network config changes: ON

network violations: ON

NFS activity: OFF

NQS activity: ON

NQS config changes: ON

object path tracking: OFF

operator actions: ON

privilege use: OFF

remove violations: ON

rmdir violations: ON

security syscalls: ON

setuid requests: ON

system shutdown: ON

system startup: ON

system time change: ON

su requests: ON

tape activity: OFF

trusted process activity: ON

user password on login fail: OFF

See Section 8.8.8, page 333, for more information on using this command.

8.8.7.22 NQS Configuration Change Record (SLG_NQSCF)

This record is produced whenever a change is made to the configuration of
NQS by using the qmgr(8) command. These entries are logged through the
slgentry(2) system call.

The SLG_CF_NQSCF parameter must be on to generate this record. To set
this parameter, use the Configure system->Multilevel security
(MLS) configuration->Security log file configuration->Log
NQS configuration changes? selection in the UNICOS Installation and
Configuration Menu System.

S–2301–10011 319

General UNICOS® System Administration

You can also use the spaudit -e nqscf command to enable the generation
of this record or the spaudit -d nqscf command to disable the generation
of this record.

In addition to the header information, the SLG_NQSCF record displays the
following information:

Function: func

Violation: type_violation

Job sequence number: seqno

Origin host: orighost

Client host: chost

Origin user id: origuid

Target user id: tuid

Complex/Queue: queue

Object user id: ouid

Old validation: oldvalid

New validation: newvalid

The fields are defined as follows:

Field Description

Function: func

The request function being audited.

Violation: type_violation

The type of violation; None(0), Insufficient
privilege(1), Not secadm(3), and Not job owner(4).

Job sequence number: seqno

The NQS job sequence number or N/A.

Origin host: orighost

The job submission host or N/A.

Client host: chost

The client host (that is, the host generating the audit record).

Origin user id: origuid

The user ID of the caller.

320 S–2301–10011

UNICOS Multilevel Security (MLS) Feature [8]

Target user id: tuid

The user ID of the caller.

Complex/Queue: queue

The applicable queue name or N/A.

Object user id: ouid

The user ID of the object (that is, manager being added or
deleted through qmgr).

Old validation: oldvalid

The prior NQS user validation type (None, File, Password,
Password if received, or Else file).

New validation: newvalid

The new NQS user validation type (None, File, Password,
Password if received, or Else file).

To display this record, use the reduce command as shown in the following
example:

$ /etc/reduce -t nqscf

May 9 19:31:49 1993 NQS Config. o_lvl: 0 s_lvl: 0 jid:94 pid:6100

r_ids:[operator(9),operator(9)] e_ids:[root(0),root(0)] *******

Login uid: operator(9)

Function: Abort request(0)

Violation: Insufficient privilege(1)

Job sequence number: 13

Origin host: drizzle

Client host: drizzle

Origin user id: operator(9)

Target user id: operator(9)

Complex/Queue: N/A

Object user id: operator(9)

Old validation: Password

New validation: Password

See Section 8.8.8, page 333, for more information on using this command.

S–2301–10011 321

General UNICOS® System Administration

8.8.7.23 NQS Activity Record (SLG_NQS)

This record is produced whenever a NQS delete request is made. Delete requests
include deleting a queued NQS job and sending a signal to an executing job. The
signal can be any valid UNICOS signal, including a kill to delete the job signal.
These entries are logged through the slgentry(2) system call.

If the caller is an NQS administrator, a Cray ML-Safe process activity record is
also generated, assuming SLG_T_PROC and NQS is configured to enforce MAC
rules (that is, IC_MAC_COMMAND is enabled).

The SLG_ACT_NQS parameter must be on to generate this record. To set this
parameter, use the Configure system->Multilevel security (MLS)
configuration->Security log file configuration->Log NQS
activity? selection in the UNICOS Installation and Configuration Menu
System.

You can also use the spaudit -e nqs command to enable the generation
of this record or the spaudit -d nqs command to disable the generation
of this record.

In addition to the header information, the SLG_NQS record displays the following
information:

Login uid: user_id

Function: func

Violation: type_violation

Job sequence number: seqno

Origin host: orighost

Client host: chost

Origin user id: origuid

Target user id: tuid

Subject compartments: scmp

Object compartments: ocmp

The fields are defined as follows:

Field Description

Login uid: user_id

The user ID.

Function: func

The request function being audited.

322 S–2301–10011

UNICOS Multilevel Security (MLS) Feature [8]

Violation: type_violation

The type of violation; None(0), Insufficient
privilege(1), Not secadm(3), and Not job owner(4).

Job sequence number: seqno

The NQS job sequence number or N/A.

Origin host: orighost

The job submission host or N/A.

Client host: chost

The client host (that is, the host generating the audit record).

Origin user id: origuid

The user ID of the job’s original submitter.

Target user id: tuid

The target user ID.

Subject compartments: scmp

The caller’s active compartment set.

Object compartments: ocmp

The executing job’s compartment set.

To display this record, use the reduce command as shown in the following
example:

$ /etc/reduce -t nqs

May 10 08:01:12 1993 NQS Activity o_lvl:0 s_lvl:0 jid:32 pid:1246

r_ids:[operator(9),root(0)] e_ids:[root(0),root(0)] ******

Login uid: operator(9)

Function: Remote job delete(155)

Violation: None(0)

Job sequence number: 32

Origin host: squall

Client host: drizzle

Origin user id: operator(9)

Target user id: ce(10)

Subject compartments: none

Object compartments: none

S–2301–10011 323

General UNICOS® System Administration

See Section 8.8.8, page 333, for more information on using this command.

8.8.7.24 Cray ML-Safe Process Activity Record (SLG_TRUST)

This record is produced by UNICOS Cray ML-Safe processes to describe the Cray
ML-Safe activities that are performed on behalf of the user. This record provides
a higher-level view of Cray ML-Safe process activity than is provided by normal
kernel-level auditing.

Execution of the following Cray ML-Safe processes generates this record:
cleantmp(8), cll(8), fsoffload(8), fuser(8), init(8), jstat(1), labelit(8),
mail(1), mailx(1), msgdaemon(8), reduce(8), reply(8), passwd(1), ps(1),
sdss(1), setfs(8), spnet(8), su(1), and tpconfig(8). It is written in NQS when
a NQS administrator is allowed to bypass the mandatory access control checking
on job deletion and status requests.

Each SLG_TRUST record contains the process name, a list of the permitted
privileges for the process, and a brief text description of the the Cray ML-Safe
activity performed by the process.

The SLG_T_PROC parameter must be on to generate this record. To set this
parameter, use the Configure system->Multilevel security (MLS)
configuration->Security log file configuration->Log trusted
process activity? selection in the UNICOS Installation and Configuration
Menu System. Also, for the jstat, sdss, fuser, and ps commands to generate
a Cray ML-Safe process activity record, the MAC_COMMAND parameter must be
enabled. See Section 8.4.2.6, page 191, for more information.

You can also use the spaudit -e trust command to enable the generation
of this record or the spaudit -d trust command to disable the generation
of this record.

In addition to the header information, the SLG_TRUST record displays the two
following formats of information. The first format is used when no object label
information is needed; the second is used when object label information is

324 S–2301–10011

UNICOS Multilevel Security (MLS) Feature [8]

needed. The second format is generated only by the labelit(8) and setfs(8)
commands:

Process: process name

permitted privileges: list of process permitted privileges

privilege text: process privilege text used

process action: description of process action

Process: process name

permitted privileges: list of process permitted privileges

privilege text: process privilege text used

minimum compartments: object minimum compartments

maximum compartments: object maximum compartments

minimum level: object minimum level

maximum level: object maximum level

device: device number

process action: description of process action

To display this record, use the reduce command as shown in the following
example:

$ /etc/reduce -t trust

Jul 15 10:37:11 1993 Trusted Process o_lvl:0 s_lvl:0 jid:1254 pid:34142

r_ids:[operator(9),operator(9)] e_ids:[operator(9),operator(9)]

Login uid: operator(9)

Process: spnet

permitted privileges: PRIV_ADMIN,PRIV_DAC_OVERRIDE,

PRIV_MAC_READ,PRIV_MAC_WRITE,

PRIV_AUDIT_WRITE,PRIV_AUDIT_CONTROL

privilege text: TEXT_NULL

process action: error 17 adding default to NAL

Jul 15 10:37:16 1993 Trusted Process o_lvl: 0 s_lvl:54 jid:1 pid:34156

r_ids:[root(0),root(0)] e_ids:[root(0),root(0)] **********

Login uid: root(0)

Process: cleantmp

permitted privileges: PRIV_CHOWN,PRIV_FOWNER,

PRIV_DAC_OVERRIDE,PRIV_MAC_UPGRADE,

PRIV_MAC_DOWNGRADE,PRIV_MAC_READ,

PRIV_MAC_WRITE,PRIV_AUDIT_WRITE,

S–2301–10011 325

General UNICOS® System Administration

PRIV_AUDIT_CONTROL

privilege text: TEXT_NULL

process action: /etc/cleantmp operator /tmp.mld

/jtmp/jtmp.001242a

Jul 15 10:28:50 1993 Trusted Process o_lvl:0 s_lvl:0 jid:1238 pid:33562

r_ids:[operator(9),operator(9)] e_ids:[operator(9),operator(9)]

Login uid: operator (9)

Process: ps

permitted privileges: PRIV_DAC_OVERRIDE,PRIV_MAC_DOWNGRADE,

PRIV_MAC_READ ,PRIV_MAC_WRITE,

PRIV_AUDIT_WRITE,PRIV_AUDIT_CONTROL

privilege text: TEXT_NULL

process action: MAC policy enforced

Jul 15 10:37:16 1993 Trusted Process o_lvl: 0 s_lvl:54 jid:1 pid:34156

r_ids:[root(0),root(0)] e_ids:[root(0),root(0)] **********

Login uid: root(0)

Process: labelit

permitted privileges: PRIV_DAC_OVERRIDE,PRIV_MAC_READ,

PRIV_MAC_WRITE,PRIV_AUDIT_WRITE,

PRIV_AUDIT_CONTROL

privilege text: TEXT_NULL

minimum compartments: none

maximum compartments: comp24 comp39 comp63

minimum level: 0

maximum level: 16

device: 0

process action: File system labeled: /dev/dsk/usa

See Section 8.8.8, page 333, for more information on using this command.

8.8.7.25 Use of Privilege Record (SLG_PRIV)

This record is written to the security log when any system call, except for the
read(2), reada(2), write(2), or writea(2) system call, invokes a privilege to
perform its function or when a system call fails because the calling process
lacks a required privilege.

326 S–2301–10011

UNICOS Multilevel Security (MLS) Feature [8]

During system call processing, when privileges are checked by the UNICOS
kernel, any required active privilege is recorded for that process. Also, for system
calls that can only be executed with privilege (for example, the setsysv(2)
system call), a privilege failure is recorded if the process that issued the system
call does not have the necessary privileges.

The SLG_PRIV record is written for the following system calls: access(2),
acct(2), acctid(2), adjtime(2), chacid(2), chdir(2), chkpnt(2), chmem(2),
chmod(2), chown(2), chroot(2), cpselect(2), creat(2), dacct(2), exec(2),
fchmod(2), fchown(2), fcntl(2), fgetpal(2), fjoin(2), fpathconf(2),
fsecstat(2), fsetpal(2), fstat(2), getdents(2), getfacl(2), getpal(2),
getsysv(2), getusrv(2), ialloc(2), ioctl(2), jacct(2), join(2), lchown(2),
limit(2), limits(2), link(2), listio(2), lsecstat(2), lstat(2), mount(2),
nice(2), nicem(2), open(2), pathconf(2), plock(2), ptyrecon(2),
quotactl(2), readlink(2), rename(2), restart(2), resume(2), rmdir(2),
rmfacl(2), schedv(2), secstat(2), select(2), setdevs(2), setfacl(2),
setfflg(2), setgid(2), setgroups(2), setjob(2), setlim(2), setpal(2),
setpermit(2), setregid(2), setreuid(2), setsysv(2), settimeofday(2),
setucmp(2), setuid(2), setulvl(2), setusrv(2), stat(2), stime(2),
suspend(2), tabinfo(2), tabread(2), target(2), trunc(2), ulimit(2),
umount(2), unlink(2), upanic(2), utime(2), and wracct(2).

Many system calls can execute without using privilege if the user is not
attempting to override a system security policy restriction. These same system
calls may also be made by a privileged process that needs to override such
restrictions. Because of this situation, privilege failure records are not issued
for most system calls. Instead, the failed attempt to perform the requested
function is logged as another type of record such as mandatory access failure or
discretionary access failure.

The SLG_PRIV record is written when system call processing completes, but
before control is returned to the calling process. At this time, a check is made
to determine if any privileges were used by the system call or if any privilege
failures were recorded. If privileges were used or privilege failures occurred,
then a SLG_PRIV record is written.

The SLG_PRIV parameter must be on to generate this record. To set this
parameter, use the Configure system -> Multilevel security (MLS)
configuration->Security log file configuration->G selection in
the UNICOS Installation and Configuration Menu System.

You can also use the spaudit -e priv command to enable the generation
of this record or the spaudit -d priv command to disable the generation
of this record.

S–2301–10011 327

General UNICOS® System Administration

The format is the same as described for the discretionary access violation record,
with the addition of the following fields. See Section 8.8.7.6, page 276, for a
description of the format. The fields are defined as follows:

Field Description

privileged used List of privileges that were actually used to
perform the described function.

privilege failed List of privileges that are needed by subject, but
the subject did not have to perform the given
function.

To display this record, use the reduce command as shown in the following
example:

$ /etc/reduce -t priv

Jul 15 10:41:49 1993 Privilege Use o_lvl: 0 s_lvl: 0 jid:1259 pid:34239

r_ids:[operator(9),operator(9)] e_ids:[operator(9),mail(1)]

Login uid: operator(9)

Function: stat (147) Violation: NONE (0)

Subject: Active Compartments : none

Valid Compartments : none

Permissions : suidgid

Class : 0

Active Categories : none

Valid Categories : secadm sysadm

privilege used : PRIV_MAC_READ

privilege failed : none

Jul 15 10:41:49 1993 Privilege Use o_lvl: 0 s_lvl: 0 jid:1259 pid:34239

r_ids:[operator(9),operator(9)] e_ids:[operator(9),mail(1)]

Login uid: operator(9)

Function: secstat (92) Violation: NONE (0)

Subject: Active Compartments : none

Valid Compartments : none

Permissions : suidgid

Class : 0

Active Categories : none

Valid Categories : secadm sysadm

328 S–2301–10011

UNICOS Multilevel Security (MLS) Feature [8]

privilege used : PRIV_MAC_READ

privilege failed : none

See Section 8.8.8, page 333, for more information on using this command.

8.8.7.26 Cray/REELlibrarian (CRL) Activity Record (SLG_CRL)

There are four types of Cray/REELlibrarian (CRL) activity log records. Each type
is defined by the process that logs the record and the class of activity being
monitored. The CRL processes that generate the four types are as follows:
tpdaemon(8), spset(1), the CRL daemon, and the CRL client commands. Each
CRL record contains a field that defines which of the four processes requested the
log entry.

The tpdaemon logs access mediation of the tape volumes and the tape files.
Access requests are for the information that is resident on the volumes (that is,
the tape file contents).

The spset command logs the use or attempted use of security administrator
privilege to change the security label of a CRL file or volume set.

The CRL daemon logs the following three different classes of catalog access:

• The creation and deletion of volume sets and files

• The requests that change the mandatory access control and discretionary
access control attributes of volume sets and files

• The use of CRL administrator privilege.

The CRL client commands (defined as those commands linked to /bin/RCOM)
log user access of CRL objects (files and volume sets). When appropriate, the
client process is specific in its identification of the object whose access is being
requested. In other cases, where the CRL request is not object-specific, the user
request description is logged.

The SLG_LOG_CRL parameter must be on to generate this record. To set
this parameter, use the Configure system->Multilevel security
(MLS) configuration->Security log file configuration->Log
Cray/REELlibrarian activity? selection in the UNICOS Installation and
Configuration Menu System.

You can also use the spaudit -e crl command to enable the generation
of this record or the spaudit -d crl command to disable the generation
of this record.

S–2301–10011 329

General UNICOS® System Administration

In addition to the header information, the SLG_CRL record displays the following
information:

Subject: Label : level,cmpt

caller privileges : priv

requested operation : req_oper

result : result

entry logger : logger

Object: Label : level,cmpts

The fields are defined as follows:

Field Description

Subject: Label : level,cmpt

This is the active level and compartments of the subject
requesting the CRL operation.

caller privileges : priv

The active privilege set of the caller at the time of the request.
This field is valid only for the CRL daemon entries, as the
daemon is not aware of the caller’s privileges. The CRL daemon
assumes the Cray ML-Safe client making the request has
validated the requester’s privileges and that the client logs the
application of any such privileges.

requested operation : req_oper

An ASCII description of the CRL operation that was requested. It
may take the form of a CRL client/server interface subroutine
name (for example, rl_vid), a specific CRL daemon object
operation (for example, delete), or a generic administrator
privilege use message which is quantified by the request
parameters field.

result : result

An ASCII description of the error that was encountered or
request complete if no error occurred.

entry logger : logger

Describes which process is making the CRL activity log entry.

330 S–2301–10011

UNICOS Multilevel Security (MLS) Feature [8]

Object: Label : level, cmpts

The level and compartment set of the file or volume set in a
specific CRL object reference. In the case of a volume set, it is the
lower label of the (possibly) multilevel object.

For a specific volume set object reference, the following fields are used:

Field Description

volset name

The volume set name in valid CRL syntax.

volset upper level

The upper level of the volume set. The lower level of the
(possibly) multilevel volume set is found in the Object:
Label: field.

volset upper compartments

The upper compartment set of the volume set. The lower
compartment set of the (possibly) multilevel is found in the
Object: Label: field.

request parameters

An ASCII string which qualifies the requested operation
field to help determine the effect of the request.

To display this record, use the reduce command as shown in the following
example:

$ /etc/reduce -t crl

Oct 12 16:22:19 1993 REELlibrarian o_lvl:0 s_lvl:0 jid:135 pid:12066

r_ids:[operator(9),operator(9)] e_ids:[operator(9),operator(9)]

Login uid: operator(9)

Subject: Label : 0, none

caller privileges : none

requested operation : delete

result : request complete

entry logger : crl daemon

volset name : .SL0007

volset upper level : level0

S–2301–10011 331

General UNICOS® System Administration

volset upper compartments : none

Object: Label : 0, none

Oct 12 16:22:19 1993 REELlibrarian o_lvl:0 s_lvl:0 jid:126 pid:21990

r_ids:[operator(9),operator(9)] e_ids:[operator(9),operator(9)]

Login uid: operator(9)

Subject: Label : 0, none

caller privileges : none

requested operation : rl_vscratch

result : request complete

entry logger : crl client

request parameters : .SL0007

Oct 15 16:05:39 1993 REELlibrarian o_lvl:0 s_lvl:0 jid:64 pid:7618

r_ids:[operator(9),operator(9)] e_ids:[operator(9),operator(9)]

Login uid: operator(9)

Subject: Label : 0, none

caller privileges : none

requested operation : CRL administrator privilege

result : request complete

entry logger : crl daemon

request parameters : rl_nvrec request

Oct 15 08:53:10 1993 REELlibrarian o_lvl:0 s_lvl:0 jid:64 pid:6902

r_ids:[operator(9),operator(9)] e_ids:[operator(9),operator(9)]

Login uid: operator(9)

Subject: Label : 0, none

caller privileges : none

requested operation : delete

332 S–2301–10011

UNICOS Multilevel Security (MLS) Feature [8]

result : request complete

entry logger : crl daemon

file name : .SL0A09^FILE2

Object: Label : 0, none

Oct 15 10:18:19 1993 REELlibrarian o_lvl:0 s_lvl:0 jid:64 pid:6902

r_ids:[operator(9),operator(9)] e_ids:[operator(9),operator(9)]

Login uid: operator(9)

Subject: Label : 0, none

caller privileges : none

requested operation : CRL administrator privilege

result : request complete

entry logger : crl daemon

request parameters : ’x’ mode permission

Oct 15 10:18:41 1993 REELlibrarian o_lvl:3 s_lvl:0 jid:60 pid:91261

r_ids:[operator(9),operator(9)] e_ids:[operator(9),operator(9)]

Login uid: operator(9)

Subject: Label : 0, none

caller privileges : none

requested operation : rl_vid

result : mandatory violation

entry logger : crl client

volset name : .SL0021

volset upper level : level3

volset upper compartments : comp24

Object: Label : 3, comp24

8.8.8 The reduce Command

The reduce(8) command extracts and formats entries collected by the security
log daemon and generates a report of the data. The default is to report all entries

S–2301–10011 333

General UNICOS® System Administration

currently in the disk-resident security log (you can select one of the date-defined
files to be processed instead of the current log).

On a system with PRIV_SU enabled, you must be root (UID = 0) to use this
command.

On a system using the PAL-based privilege mechanism, you must have an active
secadm category to use the reduce command.

By using one or more of the reduce options, you can choose the type of event
to be extracted and formatted, as explained in the following sections. See the
reduce man page in the UNICOS Administrator Commands Reference Manual for
more information on all the options.

8.8.8.1 Selecting Record Types (-t option)

The -t option allows you to specify the type of entry formatted. The valid
security record types are as follows:

Type Description

go System startup

stop System shutdown

tchg System time change

cchg System configuration change

dac Discretionary access change

disc Discretionary access violation event

mand Mandatory access event

oper Not currently used

logn Login validation process

netw Not currently used

disk Not currently used

ssd Not currently used

eoj End of job

chdir Change directory

tape Tape I/O error

secsys Security-related system calls

nami File manipulation system calls

setuid setuid system calls

334 S–2301–10011

UNICOS Multilevel Security (MLS) Feature [8]

other Not currently used

sulog su attempts

netip Network IP layer

nfs Cray-to-Cray NFS requests

xfer File transfers

netcf Network configuration changes

audit Security auditing criteria changes

nqscf NQS configuration changes

nqs NQS activity

trust Cray ML-Safe process activity

priv Use of privilege

crl Cray/REELlibrarian (CRL) activity

See the previous sections on auditing records for examples of using the -t
option.

8.8.8.2 Printing Security Labels in Record Header (-S and -L Options)

On UNICOS systems, you can print both the security label of the subject and
object in the record header by using the reduce -S option.

The subject’s security label information appears in the following format in the
header:

S_Label: level,comp1,comp2,...,compn

The object’s security label information appears in the following format in the
header:

O_Label: level,comp1,comp2,...,compn

When then the -S option is used, no subject or object label information is printed
in the record body. The format produced by the -S option will become the
default format in a future UNICOS system release.

The reduce -L option prints only the subject’s and object’s security level as
part of the record header. This option has been maintained for compatibility with
previous UNICOS releases, but is no longer supported.

S–2301–10011 335

General UNICOS® System Administration

8.8.8.3 Selecting Records by Object Label (-O Option)

You can use the reduce -O option to select record entries by the security label of
an object. The security label is specified in the following form:

level[,compartment[,compartment[...]]]

The following example shows what is displayed when the -O option is used; only
those records that have the same object label (that is, with a label of security level
4 and compartment comp24) are selected. Also, the new version of the record
header is displayed, as the -S option is used:

$ reduce -s11231255 -e11231300 -p -S -O 4,comp24

Nov 23 12:55:42 1993 Mandatory jid:59 pid:5433

r_ids:[operator(9),operator(9)] e_ids:[operator(9),operator(9)]

S_Label: 0,none O_Label: 4,comp24

Login uid: operator(9)

Function: stat (147) Violation: Permission denied (13)

System call : stat (147)

Subject: Permissions : suidgid

Class : 0

Categories : none

Access Mode : read

Object: uid: operator(9) gid: operator(9) device: 34, 5

inode: 34

Pathname : /dev/ttyp000 * No current directory *

Class : 0

Categories : none

Mode : 20622

Nov 23 12:55:47 1993 Mandatory jid:13 pid:5458

r_ids:[operator(9),operator(9)] e_ids:[operator(9),operator(9)]

S_Label: 0,none O_Label: 4,comp24

Login uid: operator(9)

Function: setfcmp (86) Violation: NONE (0)

System call : setfcmp (86)

Subject: Permissions : suidgid

Class : 0

Categories : none

336 S–2301–10011

UNICOS Multilevel Security (MLS) Feature [8]

Access Mode : write

Object: uid: operator(9) gid: operator(9) device: 34, 22 inode: 693

Pathname : /tmp.mld/jtmp/jtmp.000013a.mld/000/mxc.5308

/mxctcs02_dir/reg_file * No current directory *

Class : 0

Categories : none

Mode : 100770

8.8.8.4 Displaying Path Names (-p Option)

The -p option reconstructs a path name. The path tracking logging option must
be enabled in order for this option to work; see Section 8.8.6, page 267, for more
information on this option. For each entry that contains a relative path name,
this option attempts to reconstruct the full path name being referenced from the
previous path history.

For displaying record types that record object-relevant functions, such as the
discretionary and mandatory access records, it is helpful to use the -p option. If
this option is not used, the only file information displayed is the inode number,
and major and minor device numbers, making locating the actual file name
time consuming.

8.8.8.5 Tracking a Specific User Name (-l and -u Options)

The -l and -u options of the reduce command allow you to trace a specific
user. The -l option tracks a login user ID from the point of login throughout
the session. The login user ID is the most reliable identifier in the log entry
because it cannot be changed after logging in. This ID is the one for which
the password was checked.

The -u option can be used to monitor a login account when a user logs into the
account or a setuid call is made to the account.

For example, a user may log in using the name john. Then the user could use
the su command to change the user name to ted and then to beth. If you want
to see all the activity for user login sessions under the login john, then the
-l option should be used.

If you wanted to see all activity done under the user login john (which would
include any setuid calls to the login john), then the -u option should be used.

If a user creates a new session with a different real user ID, using the -l option
does not work for tracking during the new session. An administrator can tell
when a new session is created by a setsid (117) in the Function field of the

S–2301–10011 337

General UNICOS® System Administration

security system call audit record (SLG_SECSYS). To track the new session, use the
-l option to track the new user ID and/or the -j option to track the new job
ID. The -j option is described in the next section.

When tracking sublogin sessions, the records contain either the initial login
user ID or the second login user ID. The job ID should be used to track records
for sublogins.

The following example shows activity traced for the login rll. In this example,
rll never logged in during the time frame. Rather, the login jnk executed
under the real user ID of rll:

$ /etc/reduce -u rll

Apr 29 11:04:12 1991 Setuid Syscall o_lvl:0 s_lvl:0 jid:85 pid:9464

r_ids:[rll(626),tng(23510)] e_ids:[rll(626),tng(23510)] ******

Login uid: jnk(204)

Setuid call from root (0) to rll (626) was successful

Apr 29 11:04:12 1991 Discretionary o_lvl:63 s_lvl:0 jid:85 pid:9464

r_ids:[rll(626),tng(23510)] e_ids:[rll(626),tng(23510)] ******

Login uid: jnk(204)

Function: open (5) Violation: Permission denied (13)

Subject: Compartments : none

Permissions : suidgid

Class : 0

Categories : none

Access Mode : write

Object: Level: 63 uid: jnk(204) gid:tng(23510) device:0, 211

inode: 26

Compartments : none

Class : 0

Categories : none

Mode : 100644

338 S–2301–10011

UNICOS Multilevel Security (MLS) Feature [8]

8.8.8.6 Tracing a User’s Login Session (-j Option)

Every user session is assigned a unique job ID at the time of login. This ID can
be used to pick out all related activity of a single interactive or batch session by
using the -j option of the reduce command. The following example shows
how to use the -j option:

$ /etc/reduce -j 85

Apr 29 09:05:30 1991 Security Syscall o_lvl:0 s_lvl:0 jid:85 pid:2327

r_ids:[jnk(204),tng(23510)] e_ids:[jnk(204),tng(23510)] **********

Login uid: jnk(204)

Function: setusrv (89) Violation: NONE (0)

Subject: Active Compartments : none

Valid Compartments : none

Permissions : suidgid

Class : 0

Active Categories : none

Valid Categories : secadm

Apr 29 09:05:37 1991 Setuid Syscall o_lvl:0 s_lvl:0 jid:85 pid:2327

r_ids:[jnk(204),tng(23510)] e_ids:[jnk(204),tng(23510)]

Login uid: jnk(204)

Setuid call from root (0) to jnk (204) was successful

Apr 29 09:05:37 1991 Change Directory o_lvl:0 s_lvl:0 jid:85 pid:2327

r_ids:[jnk(204),tng(23510)] e_ids:[jnk(204),tng(23510)] **********

Login uid: jnk(204)

Relative directory path: /sn131/mktg/tng/jnk

Absolute directory path: /sn131/mktg/tng/jnk

Apr 29 09:05:48 1991 Setuid Syscall o_lvl:0 s_lvl:0 jid:85 pid:2344

r_ids:[root(0),root(0)] e_ids:[root(0),root(0)] **********

Login uid: jnk(204)

Setuid call from jnk (204) to root (0) was successful

S–2301–10011 339

General UNICOS® System Administration

Apr 29 09:10:08 1991 Mandatory o_lvl:0 s_lvl:0 jid:85 pid:2861

r_ids:[root(0),root(0)] e_ids:[root(0),root(0)] **********

Login uid: jnk(204)

Function: open (5) Violation: Security category violation (319)

Subject: Compartments : none

Permissions : suidgid

Class : 0

Categories : none

Access Mode : read

Object: Level: 0 uid: root(0) gid:sys(3) device:0, 245 inode:262

Compartments : none

Class : 0

Categories : none

Mode : 104755

Apr 29 11:04:12 1991 Setuid Syscall o_lvl:0 s_lvl:0 jid:85 pid:9464

r_ids:[rll(626),tng(23510)] e_ids:[rll(626),tng(23510)] *********

Login uid: jnk(204)

Setuid call from root (0) to rll (626) was successful

Apr 29 11:04:12 1991 Discretionary o_lvl:63 s_lvl:0 jid:85 pid:9464

r_ids:[rll(626),tng(23510)] e_ids:[rll(626),tng(23510)] **********

Login uid: jnk(204)

Function: open (5) Violation: Permission denied (13)

Subject: Compartments : none

Permissions : suidgid

Class : 0

Categories : none

Access Mode : write

Object: Level: 63 uid: jnk(204) gid: tng(23510) device: 0, 211

inode: 26

Compartments : none

Class : 0

Categories : none

Mode : 40700

340 S–2301–10011

UNICOS Multilevel Security (MLS) Feature [8]

Apr 29 11:04:31 1991 Mandatory o_lvl:0 s_lvl:0 jid:85 pid:9493

r_ids:[root(0),root(0)] e_ids:[root(0),root(0)] **********

Login uid: jnk(204)

Function: open (5) Violation: Security category violation (319)

Subject: Compartments : none

Permissions : suidgid

Class : 0

Categories : none

Access Mode : read

Object: Level: 0 uid: bin(2) gid: bin(2) device: 0, 245

inode: 267

Compartments : none

Class : 0

Categories : secadm

Mode : 100755

8.8.8.7 Reducing Security Log Input (-r, -R, and -f Options)

The -r option of the reduce command can be used to save the selected security
log entries in raw format. The -R option performs the identical function, but
while the -r option uses a default file to save the entries, you must specify an
output file for the -R option. The following example shows how to use the
-R option:

$ /etc/reduce -t logn,mand,disc -R slog.4_1 > /dev/null

$ ls -l slog.4_1

-rw------- 1 root root 16544 Apr 2 00:01 slog.4_1

If a redirect to /dev/null is not done (as shown in the previous example),
reduce echos all of the records that are being placed into the raw log.

The resultant file can be viewed later by using the reduce -f command. This
file could then be moved offline to another storage medium to conserve space.

8.8.9 Monitoring Security-relevant Events

The spcheck(8) command checks a variety of security-relevant events on a
UNICOS system. It should be used on a daily basis to detect actual or potential
security breaches.

S–2301–10011 341

General UNICOS® System Administration

The -a, -g, -l, -p, -q, and -w options are of special importance when checking
a UNICOS system:

• The -a option reports users who have the administrative category and/or
permissions (you need both root permission and the secadm category
to use this option).

• The -g option reports users in groups root, adm, bin, and sys; the
-G option does the same thing, but uses the group names listed in
/etc/grpcheck. The /etc/grpcheck file contains valid group names and
has the following format:

group1 group2 group3 ... groupn

You need root permission to use this option.

• The -l option lists any user login IDs that have not logged in for at least 14
days or 180 days. Also, it lists amp;.profile and amp;.cshrc files that can
be written by anyone (you need root permission and the secadm category to
use this option). See the following example.

• The -p option reports users with duplicate IDs, users who cannot change
their password, and users whose passwords do not expire (you need root
permission and the secadm category to use this option).

• The -q option reports users who have 10 or more su command failures in the
current sulog file (you need root permission to use this option).

• The -w option reports files in the system that can be written by any system
user.

This command has some options that can be used by users other than the security
administrator. See the UNICOS Administrator Commands Reference Manual for
more information on the command and its options.

The following example shows how to use the spcheck command:

$ /etc/spcheck -l

=====Users with no login for 14 days =====

root

sync

bin

sys

adm

cron

342 S–2301–10011

UNICOS Multilevel Security (MLS) Feature [8]

nqs

uucp

ce

ttg

lms

mac

=====Users with no login for 180 days =====

llm

pim

mcm

=====Users with .profiles or .cshrc writable by anyone =====

cet

kan

$ /etc/spcheck -q

=====User’s with excessive su failures in /usr/adm/sulog=====

jnn had 10 su failures on 2/22

8.8.10 Security Violation Error Codes

Table 11 describes the return codes that are set in the security log to indicate
a security policy violation.

Table 11. Security Violation Error Codes

Error condition Error code Description

ESYSLV 300 Indicates the specified security level falls outside the allowed
security level range of the process, file system, or UNICOS
system.

EREADV 301 Indicates an attempt to gain read access to a file failed because
the user’s active security level was less than the file’s security
level.

EWRITV 302 Indicates an attempt to gain write access to a file failed because
the user’s active security label was not equal to the file’s
security label.

S–2301–10011 343

General UNICOS® System Administration

Error condition Error code Description

EEXECV 303 Indicates an attempt to gain execute/search access to a file
failed because the user’s active security level is less than the
file’s security level.

ECOMPV 304 Indicates the specified security compartment falls outside the
allowed security compartment range of the file.

EMANDV 305 Indicates a mandatory access violation.

EOWNV 306 Indicates that the user is not the owner of the object to be
accessed.

ELEVELV 307 Indicates that the requested security level is outside the user’s
security-level range.

ESECADM 308 Indicates that a subject who does not possess the proper
authorization attempted to perform an operation available only
to properly authorized users.

EFLNEQ 309 Indicates that a security level violation occurred during the
mounting of a file system.

ENOTEQ 310 Indicates buffer level is not equal to the file level.

EPERMIT 311 Indicates a permission violation; the appropriate permission
is required.

EACLV 312 Indicates an ACL access violation.

ENOACL 313 Indicates that no ACL list was found.

ESLBUSY 314 Indicates that an attempt to open the security log (/dev/slog)
failed because pseudo device /dev/slog was already open
to another process.

ESLNXIO 315 Indicates an attempt to open the security log (/dev/slog) for
other than a read operation.

ESLFAULT 316 Indicates a read error on the security log (/dev/slog).

ESLNOLOG 317 Indicates that the security log state was OFF when a security
log request was made.

EINTCLSV 318 Indicates the requested integrity class falls outside the allowed
integrity class range of the process, or the UNICOS system. The
class value is no longer used.

EINTCATV 319 Indicates the requested category is not included in the allowed
categories of the process, or the UNICOS system.

344 S–2301–10011

UNICOS Multilevel Security (MLS) Feature [8]

Error condition Error code Description

ENONAL 320 Indicates that no network access list (NAL) entry was found.

EMNTCMP 321 Indicates that a security compartment violation occurred when
a mount file system request was processed.

EFIFOV 322 Indicates a security FIFO violation.

EAPPNDV 323 Indicates that a security violation occurred on an append
request.

ETFMCATV 324 Indicates user requested an illegal combination of categories

ECOVERT 325 Indicates a user performed a legal operation that has created a
possible covert channel condition.

ERCLSFY 326 Indicates an attempt has been made to change the security label
of a file that does not reside in a wildcard directory.

EPRLABEL 327 Indicates that security label printing is disabled.

ENONSECURE 328 Indicates that a MLS system call was made on a system running
a non-MLS kernel.

ESECFLGV 329 Indicates a request to set file security flags has failed because
the requested flags are not allowed for the system.

EHOSTNAL 330 Indicates access to or from an unauthorized host or workstation
was attempted. The host is not authorized in the NAL.

ESLVLNAL 331 Indicates a security level was detected outside of the range of
security levels authorized for the host in the NAL. The kernel
detected this condition when processing the Internet Protocol
(IP) security option associated with a datagram.

ESCMPNAL 332 Indicates a security compartment was detected outside of the
range of compartments authorized for the host in the NAL. The
kernel detected this condition when processing the IP security
option associated with a datagram.

EMODENAL 333 Indicates an illegal mode (send or receive) of transfer was
attempted by a host or workstation.

ESLVNIF 334 Indicates a security level was detected outside of the range of
security levels authorized for the UNICOS network interface
(I/F). The kernel detected this condition when processing the IP
security option associated with a datagram.

S–2301–10011 345

General UNICOS® System Administration

Error condition Error code Description

ESCMPNIF 335 Indicates a security compartment was detected outside of
the range of security compartments authorized for the host
in the UNICOS I/F. The kernel detected this condition when
processing the IP security option associated with a datagram.

ESOCKLVL 336 Indicates an illegal attempt was made to change the security
level of a single level socket (SLS) connection. Except for a
privilege granted by the security administrator (for example,
NFS), all socket connections are created as SLS.

ESOCKCMP 337 Indicates an illegal attempt was made to change the security
compartment of a SLS connection. Except for a privilege
granted by the security administrator (for example, NFS), all
socket connections are created as SLS.

ENFSAUTH 338 Indicates the proper authentication credentials were not passed
to NFS.

ESLVLNRT 339 Indicates a security level was detected outside of the range of
security levels authorized for the network route selected, or a
route with the correct sensitivity label could not be found.

ESCMPNRT 340 Indicates a security compartment was detected outside of the
range of security compartments authorized for the network
route selected, or a route with the correct sensitivity label could
not be found. The kernel detected this condition when selecting
routes.

EBADIPSO 341 Indicates an illegal IP security option was detected by the
kernel. The kernel performs integrity and security checks
against each IP security option received.

ENOIPSO 342 Indicates an IP security option did not accompany an incoming
datagram. The kernel detects this condition by using IP
security option information defined in the NAL for each
host/workstation.

ESLVLMAP 343 Indicates a translation error was detected when mapping the
security level (between UNICOS form and network form).
When necessary, using the NAL, the kernel translates the
UNICOS security label to the network security label (for
outgoing datagrams) and translates the network security label
to the UNICOS security label (for incoming datagrams).

346 S–2301–10011

UNICOS Multilevel Security (MLS) Feature [8]

Error condition Error code Description

ESCMPMAP 344 Indicates a translation error was detected when mapping the
security compartment (between UNICOS form and network
form). When necessary, using the NAL, the kernel translates
the UNICOS security label to the network security label (for
outgoing datagrams) and translates the network security label
to the UNICOS security label (for incoming datagrams).

EAUTHFLG 345 Indicates an authority protection violation was detected for
either an incoming or outgoing datagram with a Basic Security
Option.

EIPSOMAP 346 Indicates no translation table was available to translate the
security label for a given host connection. The kernel could
access the mapping table identified in the NAL for the host.

8.9 NQS Operations

For more information on using NQS on a UNICOS or Cray ML-Safe system
configuration, see the NQE Administration.

8.10 Tape Operations

For more information on using tapes on a UNICOS or Cray ML-Safe system
configuration, see Tape Subsystem Administration.

Note: If your site plans to allow nonadministrative user access to tapes on a
Cray ML-Safe system tapes, Cray/REELlibrarian (CRL) is required. CRL is not
required on a Cray ML-Safe system if administrative-only access is allowed.

Sites are not required to run tapes with a Cray ML-Safe system configuration; in
this case, CRL is not required. CRL is licensed and charged separately from the
UNICOS system. See the Cray/REELlibrarian (CRL) Administrator’s Guide and the
Cray/REELlibrarian (CRL) User’s Guide for more information on using CRL on
UNICOS and Cray ML-Safe system configurations.

8.11 TCP/IP Operations

For information on TCP/IP operations on a UNICOS system with the MLS
feature, see the UNICOS Networking Facilities Administrator’s Guide.

S–2301–10011 347

General UNICOS® System Administration

8.12 UNICOS NFS Operations

For more information on NFS operations on a UNICOS system with the MLS
feature, see the UNICOS Networking Facilities Administrator’s Guide.

8.13 MLS Data Migration Operations

The data migration facility supports the UNICOS and Cray ML-Safe system
configurations. See the Cray Data Migration Facility (DMF) Administrator’s Guide
for more information.

348 S–2301–10011

Administration of Online Documentation [9]

This chapter describes the administrative procedures required for the online
glossary, the Cray message system, and local man pages.

9.1 Modifying Online Glossary Files

The UNICOS define(1) utility allows quick, online retrieval of Cray technical
terms and their definitions, as well as terms and definitions added by a local site,
that match a specified search string. With the define utility, Cray provides a
definitions file called Craydefs_i, which contains embedded keywords. Sites
can modify this definitions file or can add local definitions files by using the
builddefs(1) utility.

9.1.1 Modifying the Cray Definitions File

The following procedure shows how to use builddefs to modify the Cray
definitions file that the define utility uses:

!
Caution: If you make changes to the Craydefs_i definitions file, the changes
will be lost when a UNICOS revision or update is installed. In this case, back
up the Craydefs_i file, do the installation, and then reapply the changes
you backed up.

1. Copy the Craydefs_i definitions file, which has embedded keywords, from
the default definitions directory, /usr/lib/define, to your working
directory.

2. Edit the file to make the desired changes.

3. Run builddefs on the edited file, as follows (Craydefs_i is the input file,
and Craydefs is the output file):

builddefs CRAYdefs_i CRAYdefs

This command produces a Craydefs file, which is a definitions file without
embedded keywords and a Craydefs_k file, which is a keyword file.

S–2301–10011 349

General UNICOS® System Administration

4. Set the DEFINEDIR environment variable to the working directory
(directoryname) that contains the Craydefs and Craydefs_k files. For the
Korn and standard shells, set the variable, as follows:

DEFINEDIR=directoryname
export DEFINEDIR

For the C shell, set the variable as follows:

setenv DEFINEDIR directoryname

5. Test the modified file by using the define utility on selected terms.

6. Install the Craydefs_i, Craydefs, and Craydefs_k files in the
/usr/lib/define directory.

7. If necessary, reset the DEFINEDIR environment variable. For the Korn and
standard shells, reset the variable as follows:

unset DEFINEDIR

For the C shell, reset the variable as follows:

unsetenv DEFINEDIR

9.1.2 Creating a Local Definitions File

The following procedure shows how to use the builddefs(1) utility to create a
local definitions file for use by the define(1) utility. When multiple definitions
files are in the definitions directory, the define utility reads the files in
alphabetical order; that is, it searches file aaa before file bbb.

!
Caution: If your site begins the installation process from a clean partition,
your local definitions files installed in the default define directory,
/usr/lib/define, might be removed during the installation of a UNICOS
revision or update. In this case, back up your local definitions files, install the
UNICOS revision or update, and then reinstall your local definitions files.

1. Prepare an input file that contains embedded keywords according to the
keywording rules contained in the following section.

2. Run builddefs on the local file, as shown in the following example.
sitedefs_i is the input file, and sitedefs is the output file. This command
produces a sitedefs file, which is a definitions file without embedded
keywords, and a sitedefs_k file, which is a keyword file.

builddefs sitedefs_i sitedefs

350 S–2301–10011

Administration of Online Documentation [9]

3. If you want to test how your local file works, set the DEFINEDIR
environment variable to the working directory (directoryname) that contains
the new formatted definition file. If you do not want to test the local file, skip
to step 6. For the Korn and standard shells, set the variable as follows:

DEFINEDIR=directorynameexport DEFINEDIR

For the C shell, set the variable as follows:

setenv DEFINEDIR directoryname

4. Change directories by entering the following command line:

cp sitedefs sitedefs_k directoryname/

5. Test the new file by using the define utility on selected terms.

6. Install the sitedefs and sitedefs_k files in the /usr/lib/define directory.
The define utility reads the files in this directory and searches them in
sequence for search string matches.

7. If necessary, reset the DEFINEDIR environment variable. For the Korn and
standard shells, reset the variable, as follows:

unset DEFINEDIR

For the C shell, reset the variable as follows:

unsetenv DEFINEDIR

9.1.3 Glossary Keywording Rules

The builddefs(1) utility reads a definitions file that has embedded keywords
to produce a keyword file and a definitions file without embedded keywords.
A pair of keywords in the form ++term marks each definition in the input file.
Synonyms for the term, if any, also begin with ++ and follow the keyword
line. (Do not mark synonyms in pairs.) You should enter all keywords and
synonyms into the definitions file and use the correct capitalization conventions.
The keywords and synonyms are recorded in the keyword file in lowercase
characters.

S–2301–10011 351

General UNICOS® System Administration

Example:

++access control list

++ACL

The access control lists (ACLs) are an extension to the normal

UNICOS file discretionary access control. ACLs support the ability

to grant or deny access to a file on any user and/or group

basis. For more information on ACLs, see the acl(1) man page.

++access control list

The builddefs utility checks all keywords for keywording errors. The
following rules apply to keywording:

• The two ++ symbols that appear in columns 1 and 2 of the intermediate
definitions file identify a keyword. The keyword immediately follows the
++ symbols, with no intervening blank spaces and tabs. Empty keywords
(that is, ++ with no following text) are not allowed.

• A keyword can consist of up to 48 characters. If a keyword is longer than
48 characters, it will be truncated.

• Each definition must have two keywords (a matching pair). The first keyword
indicates the start of the definition. The second keyword indicates the end of
the definition.

• Synonyms for a keyword are in the form ++synonym and are limited to 48
characters. Do not mark synonyms in pairs.

9.2 Cray Message System

The Cray message system (formerly called the UNICOS message system) consists
of tools and procedures for issuing error messages to users from program code
and delivering documentation on those messages. The message system is based
on the X/Open Native Language System specification.

This section contains information that administrators need to install, maintain,
and update message system files under the UNICOS operating system.

Warning: Sites using the Cray ML-Safe configuration of the operating system
can use the information and procedures outlined in the following sections to
change or add messages. However, for changed messages, you must not alter
the original, underlying meaning of the message.

Message system files are easy to install. They are shipped in both source and
catalog format, and they are ready to use after they are loaded in the proper

352 S–2301–10011

Administration of Online Documentation [9]

directories. This section focuses on message system terminology, the location
of message system files, and procedures for rebuilding message catalogs when
message information changes.

9.2.1 Overview

The message system includes the following features that aid in improving error
reporting and problem resolution:

• Published guidelines for writing good messages and good message
documentation

• Message catalogs, located separately from the program code, that contain the
text of the messages issued at run time

• Explanation catalogs that contain a discussion of the error and suggest
solutions

• Online user access to message documentation by using the explain(1)
command

• User control of the message format through the MSG_FORMAT environment
variable

• Message text source files distributed with the release

These features create the following advantages for products that use the message
system:

• Messages are more informative and usable.

• Online and printed explanations are readily available to users and
administrators.

• Messages are easier to trace to their source because they contain a unique
identifier that includes their product of origin.

• Messages and explanations are centralized in catalogs. The text of both
is readily accessible for update and translation.

• Users can change the message format by using the MSG_FORMAT variable.

These advantages are achieved through a design that removes error messages
from program code and places them in a message text file, which also includes
explanations for each message.

S–2301–10011 353

General UNICOS® System Administration

The message text file is processed into a catalog of messages and a catalog of
explanations. Library calls in the program code access the message catalog at run
time. An accompanying explanation catalog contains explanations of the messages
in the message catalog. To access these explanations, use the explain command.

The system administrator is responsible for installing, maintaining, and updating
the message catalogs. The following sections explain how to work with message
text files and message catalogs. They describe how to install the message system
files so that UNICOS programs can access them. They also describe how you
can update your message catalogs if your site wants to add or change message
or explanation text.

See the Cray Message System Programmer’s Guide for a complete description of the
message system from a programmer’s perspective.

The man pages for the message system routines contain descriptions and
examples of the commands, routines, and environment variables that compose
the message system. See the following man pages:

• caterr(1)

• catxt(1)

• explain(1)

• gencat(1)

• whichcat(1)

• catgetmsg(3)

• catgets(3)

• catmsgfmt(3)

• catopen(3) and catclose(3)

• nl_types(5)

• msg(7d)

9.2.2 Message System Files

The message system uses the following three kinds of files:

• Message text file

• Message catalog

354 S–2301–10011

Administration of Online Documentation [9]

• Explanation catalog

The message text file is the source file for message system text. The message and
explanation catalogs are binary files produced from the message text file by using
the caterr(1) command. The release tape includes both the source and binary
forms of the message system files.

9.2.2.1 File Names

Each type of message system file has a name in the form group.suffix. The group
code (group) identifies the product, and the suffix (suffix) identifies the file type.

The group code is any string that relates to the product or products that the file
supports. For example, the segldr(1) and ld(1) loader commands use the ldr
group code. The explain(1) man page lists all of the group codes used by
Cray software.

Each type of message file has a different suffix after the group code. The message
text file has the suffix .msg, the message catalog has the suffix .cat, and the
explanation catalog has the suffix .exp.

Thus, the following three message system files are associated with the SEGLDR
product:

File name Description

ldr.msg Message text file

ldr.cat Message catalog

ldr.exp Explanation catalog

9.2.2.2 File Location

The location of a message system file is determined by its type, text or catalog,
and its product.

The message text file (group.msg) is located in the source tree with other files
in the product’s program library (for example, the message text file used by the
loaders is located in the /usr/src/prod/segldr/ldr.msg file).

Most message and explanation catalogs (group.cat and group.exp) are installed
in the /usr/lib/nls/En directory. Some products must be available when
the /usr/lib file system is not mounted; the catalogs for these products are
installed in the /lib/nls/En directory.

S–2301–10011 355

General UNICOS® System Administration

9.2.3 Installing Message System Files

The release media includes the message text file, message catalog, and
explanation catalog for each product that uses the message system. Cray
recommends that you install the message files initially without changes. The
UNICOS installation process creates the /usr/lib/nls/En and /lib/nls/En
directories on your system and copies the message system files to these
directories. With these files in place, the message system functions correctly and
issues messages from UNICOS software.

9.2.4 Changing the Message Text File

The message system lets you update the message and explanation catalogs with
site-specific information. Situations in which you may want to add site-specific
information to existing catalogs include the following:

• A local modification to the code has created the need to add a new message
or to change an existing message.

• A particular error condition has a site-specific remedy that you want to
describe in the explanation.

• You want to add names or phone numbers for persons or groups to be
notified if certain errors occur.

• You are creating a new program and want to use the message system to
issue the error messages.

• The site wants to translate the messages into a different native language;
catalogs of messages in the target language must be created and installed.

Warning: Local modifications to message and explanation catalogs will be
overwritten during the installation of the next UNICOS revision or update
that contains those catalogs. Sites must back up their local modifications,
install the new catalogs and message text files, and reapply their local
modifications.

If catalogs for a product are mistakenly deleted from the system, you may have to
rebuild them.

The following sections describe how to edit and rebuild message system files.

356 S–2301–10011

Administration of Online Documentation [9]

9.2.5 Editing the Message Text File

The message text file is the source file for messages and explanations. If you
make changes to a product that have an impact on that product’s messages,
this is the file that you must change.

The message text file contains the following four types of information:

• Message text, preceded by the $msg tag

• Explanation text that contains nroff(1) formatting codes, preceded by the
$nexp tag

• Plain ASCII explanation text, preceded by the $exp tag

• Comments, consisting of $<space><text>, $<tab><text>, or $<newline>

Blank lines are also acceptable within a message text file, but they are ignored
during text-to-catalog processing.

Edit the message text file to include new information. Ensure that the resulting
file conforms to the format specified in the Cray Message System Programmer’s
Guide.

9.2.6 Rebuilding Catalogs

After new information is incorporated into a message text file, you must rebuild
the related catalogs. You can build catalogs in two ways:

• Use the makefile for the product to remake the catalogs

• Use message system commands to remake the catalogs

The first method, using the makefile, is simpler. It requires fewer steps and less
intervention on your part. However, it is less flexible because it calls the message
system commands in a specific way.

The second method, using message system commands to remake the catalogs,
gives you more options, but it also requires that you understand more about the
message system commands and how to use them.

The following sections describe the two methods of rebuilding catalogs.

9.2.6.1 Rebuilding with nmake

The makefile for each product builds a message and explanation catalog from
the message text file. It places these catalogs in the current directory (usually

S–2301–10011 357

General UNICOS® System Administration

within the source tree). The nmake install command places the catalogs in
the proper subdirectory. (It also reinstalls other software in that directory.)

The makefile varies from product to product, but, basically, nmake calls the
caterr command twice. The first call to caterr creates a message catalog from
the $msg-tagged information in the message text file. This message catalog is
placed in the message system directory. For a discussion of where catalogs are
located in the directory structure, see Section 9.2.2.2, page 355.

The second call to caterr creates an explanation catalog from the $nexp- and
$exp-tagged information in the message text file. The explanation catalog is
placed in the same directory as the message catalog.

To create an explanation catalog from source material tagged with $nexp,
caterr calls nroff and a file of message macros. nroff processes the
formatting codes embedded in the explanations and passes the formatted text
back to caterr. caterr then completes its catalog creation process.

9.2.6.2 Rebuilding with Message System Commands

The caterr command rebuilds message system catalogs from the message text
file. You can use caterr to rebuild a message catalog or an explanation catalog.
Rebuilding both catalogs for a product requires that you invoke caterr twice.
See the caterr(1) man page for details of the syntax.

For example, if changes were made only to a product’s messages (not to
the explanations), use the caterr command to process the messages into an
updated message catalog. Use the -c option to call gencat(1).

The following command rebuilds the ldr.cat message catalog from the
ldr.msg message text file:

caterr -c ldr.cat ldr.msg

The caterr command processes the text file, then calls gencat, which creates
the new message catalog.

If changes were made only to a product’s explanations (not to the messages),
use caterr to remake the explanation catalog. Use the -e option to produce an
explanation catalog instead of a message catalog.

The following command rebuilds the ldr.exp explanation catalog from the
ldr.msg message text file:

caterr -e -c ldr.exp ldr.msg

358 S–2301–10011

Administration of Online Documentation [9]

The caterr command processes the text file, then calls gencat, which creates
the new explanation catalog.

9.2.7 Printing Messages

The messages for any group code can be printed as a document. You might want
to do this in either of the following cases:

• Local changes are made to the message file and the site wants to provide an
updated message document to users

• Cray has provided the messages only online, but the site wants to provide a
printed message document

Follow the steps below to print a message document locally. Throughout this
procedure replace group with the group code for the product whose messages
you want to print.

1. Locate the message text file in the source tree for the product. If you are
not familiar with the structure of the source tree, use the following find
command syntax to locate the message text file. This invocation of the
command displays the path name of the file group.msg.

find /usr/src -name group.msg -print

2. Locate or create a header file for use in printing. Check in the directory
where the message text file was found for a file named group.head. If this
file exists, proceed to the next step. If it does not, create a header file that
contains at least the following macros. (The msg(7d) man page describes the
text processing macros used in this header file.)

.GC group

.ST "group Messages"

.2S

3. Extract the explanations from the message text file. Use the catxt command
to perform this step. The following invocation of the catxt command
extracts the explanations from the file group.msg and places them in the file
group.nexp. Invoke this command from a directory in which you have write
permission. This may require that you copy the message text file (group.msg)
to a directory outside of /usr/src.

catxt -n group.nexp group.msg

If the group.msg file contains #include directives, the files specified
in those directives must also be available in your working directory. If

S–2301–10011 359

General UNICOS® System Administration

#include directives appear in the file, the messages use symbolic names
instead of literal message numbers. Use the following form of the catxt
command (instead of the command shown previously) to extract the
explanations. The -s option resolves the symbolic names into message
numbers.

catxt -s -n group.nexp group.msg

4. Process the group.nexp file with a version of the troff(1) text processor and
print the resulting file. The commands to perform this step depend on the
target printer. (This procedure assumes that the target printer is connected to
a UNIX system networked to the Cray system.)

If the target printer is capable of printing files output from the
device-independent version of troff (sometimes called ditroff), go to
step a. If the target printer is not capable of printing these files, go to step b.

If you are unsure of the capability of the target printer to accept
device-independent troff input, check the lpr(1) command man page for
the UNIX system to which the printer is connected (not the lpr man page on
the Cray system). If the lpr command accepts the -n option, the printer is
capable of handling output from device-independent troff.

a. Device-independent troff procedure

Cray systems include device-independent troff as part of the base
software release. On your Cray system, use the following command line
to process the header and explanation files with device-independent
troff:

troff -msg group.head group.nexp | lpr -n

b. troff procedure

Many UNIX systems other than Cray systems include troff (not
device-independent troff) as part of the base software release. Copy
the Cray message system macro file /usr/lib/tmac.sg to the UNIX
system connected to the target printer. Also copy the group.head and
group.nexp files from the Cray system to the UNIX system.

On this UNIX system, use the following command line to process the
header and explanation files with troff:

troff -t tmac.sg group.head group.nexp > outfile

360 S–2301–10011

Administration of Online Documentation [9]

Use the following command to print the troff output (outfile):

lpr -t outfile

9.3 Local Man Pages

The man(1) command displays online man pages. The man command used in
the UNICOS release is compatible with the UNIX 4.3BSD man command. The
following two differences affect how you can implement local man pages:

• The man command references unformatted man pages in a set of manx
directories, and formatted man pages in a set of catx directories (the source,
or unformatted, man pages are not released with the UNICOS system).
Directories follow the BSD organization.

Directory Description

cat1 User commands

cat2 System calls

cat3 Library routines

cat4 Special files (devices)

cat5 File formats

cat7 Miscellaneous information and DWB macro descriptions

cat8 Administrator commands

catl (letter l) Local man pages

• The MANPATH environment variable lets you maintain local man pages in the
directory of your choice. The X Window System xman command also uses
the MANPATH environment variable.

The MANPATH environment variable lists the directories that the man command
should search for man pages. When the MANPATH environment variable is not
set, the man command, by default, searches the /usr/man subdirectories for man
pages. Users can set the MANPATH environment variable to find man pages
in directories other than /usr/man.

You can install local man pages as either source (unformatted) man pages
(in manx directories) or as formatted man pages (in catx directories). When
the source page is newer than the formatted page, or when the formatted
page is not available, the man command uses the man page macros defined in
/usr/lib/tmac/tmac.uc to format source man pages.

S–2301–10011 361

General UNICOS® System Administration

If you install your local man pages in directories that are not affected by UNICOS
upgrades, you will not have to reinstall them after future upgrades; however,
users must set the MANPATH environment variable to include the local man
page directory.

Man pages installed in the /usr/man manl or catl subdirectories will have to
be reinstalled after each UNICOS upgrade. Save your local man pages before
beginning the upgrade, then restore those packages to the appropriate location.

Only when man page searches fail on the first specified path does the man
command search the next path. For example, by setting the MANPATH
environment variable to include the local man page directory before the Cray
man page directory, the man command will display local man pages, rather than
Cray man pages that have the same name.

For more information about the man command and the MANPATH environment
variable, see the UNICOS User Commands Reference Manual.

9.3.1 Examples

The following two examples illustrate ways of using the MANPATH environment
variable to implement local man pages on your system.

9.3.1.1 Example 1

You can install local man pages in the same directory structure as the associated
binary files, such as /usr/local. If /usr/local/man is used for local man
pages, you would follow these steps:

1. Create the /usr/local/man directory, then create the catx or manx
directories under /usr/local/man.

2. Have users add the MANPATH environment variable to their .cshrc or
.profile file, as follows:

In .cshrc:

setenv MANPATH /usr/man:/usr/local/man

In .profile:

MANPATH=/usr/man:/usr/local/man

export MANPATH

3. Add the system-wide definition of the MANPATH environment variable to
/etc/cshrc and /etc/profile, as follows:

362 S–2301–10011

Administration of Online Documentation [9]

In /etc/cshrc:

setenv MANPATH /usr/man:/usr/local/man

In /etc/profile:

MANPATH=/usr/man:/usr/local/man

export MANPATH

4. Install the local man pages in the /usr/local/man/catx or
/usr/local/man/manx directories. Alternative man directories must
follow the subdirectory structure and the naming convention as used in
/usr/man. The man page file name convention allows an extension that
corresponds to the number of the directory, such as l for catl and manl,
plus a one-letter extension, as follows:

• file .1 (b, c, g, m, or X)

• file .3 (c, f, g, i, l, m, n, r, s, u, x, or X)

• file .4 (f, n, or p)

• file .7 (d or X)

• file .8 (c, v, or e)

9.3.1.2 Example 2

Users can have private man pages, or man pages restricted to a specific group of
users. To include private man pages in $HOME/man or restricted man pages in
/restricted_man_dir/man, follow these steps:

1. Add $HOME/man or /restricted_man_dir/man to the MANPATH environment
variable in the .cshrc or .profile file, as follows:

In .cshrc:

setenv MANPATH /usr/man:/usr/local/man:$HOME/man:/restricted_man_dir/man

In .profile:

MANPATH=/usr/man:/usr/local/man:$HOME/man:/restricted_man_dir/man
export MANPATH

2. Install the private man pages in the alternative man directories specified
in the MANPATH environment variable; those directories must follow the
subdirectory structure and the naming convention as used in /usr/man
(see step 4 in example 1).

S–2301–10011 363

General UNICOS® System Administration

9.3.2 Display Order for Same-name Man Pages

If a local man page has the same name as a Cray man page, the man(1) command
displays the man pages in the order found. The man command searches the
subdirectories in numerical order, 1-8, and searches the l (local) subdirectory last.
For example, man1/cat1 are searched before man2/cat2, and man8/cat8 are
searched before manl/catl.

When the MANPATH environment variable is set, the man command searches the
next path only when a search fails on the first specified path. The man command
will not display all same-name man pages installed in separate search paths.

If you want to display both man pages, do the following:

• To display the Cray man page first, followed by the local man page, install the
local man pages in /usr/man/catl.

• To display the local man page first, followed by the Cray page, do the
following:

1. Install the local man page in /usr/man/catx by using the appropriate
file extension or suffix for catx with contents clearly marked "Local."

2. Move the Cray original page to /usr/man/catl (or /usr/man/manl
source pages), with the file extension .l, then modify it to mark its
contents "Cray original."

364 S–2301–10011

User-defined Locales [A]

In order to provide more flexible support for multicultural software interfaces,
the UNICOS system supports the concept of a locale. A locale is a collection of
culture-dependent information used by an application to interact with a user. The
information in a locale includes information on the following:

• Sorting or collation (LC_COLLATE)

• Character classes and case mapping (LC_CTYPE)

• Basic interaction messages (LC_MESSAGES)

• Monetary formats (LC_MONETARY)

• Numeric formats (LC_NUMERIC)

• Time and date formats (LC_TIME)

To make use of these features in an application, that application must be written
to use the information in a locale or interfaces that access the locale implicitly.
Use of this information from a locale can help an application be free of cultural
dependencies. Such an application is said to be internationalized. The goal is that
such an application can then be run by a user and, through the manipulation of
environment variables, interact with that user in a more natural manner.

A.1 The localedef Utility

Locales are defined using the localedef(1) utility. The input to localedef
is a text file (known as a locale definition file) that describes all the attributes of
the desired locale. Using this information, localedef creates files that can be
loaded by application (using the setlocale(3) library routine) to establish that
locale in the environment of the application.

The localedef utility is invoked in the following manner:

localedef [-c] [-i localefile] [-f charmap] locale

The optional arguments are used as follows:

-c Creates the locale even if warning messages are
issued. By default, the locale will not be created if
any warnings occur.

S–2301–10011 365

General UNICOS® System Administration

-i localedef Specifies the name of the locale definition file. If
not specified, the locale definition will be read
from the standard input.

-f charmap Indicates the character encoding to be used.
Currently two are supported: 646 (which supports
the ISO 646 or ASCII character encoding) and
8859 (which supports the ISO 8859-1 character
encoding). The default is 646.

The specified locale is the name of the locale to be created. If locale contains a
slash character, it is interpreted as a path name of a directory to put the locale
files in (if the directory does not exist, it will be created). Otherwise, the locale
will be created in /usr/lib/locale, making it generally available for users.

A.1.1 Character Specifications

In a locale definition file, characters can be specified symbolically or as literal
values. The use of symbolic values is preferred, because this allows the locale
definition file to be independent of the particular character encoding.

Literal values can either be the specific character itself (assuming that the target
locale will have the same encoding for that character as the 646 locale) or a
numeric value. Numeric values can be of the following forms (assuming that
the backslash (\) is the current escape character):

\xNN For hexadecimal byte values
\dNNN For decimal byte values
\NNN For octal byte values

A multibyte numeric value can be specified by concatenating byte specifications
of the above form.

Characters can also be specified symbolically in a locale definition file. For
example, the encoding of the characters ’a’, ’5’, or the bell character can be
specified as < a >, < five >, and < alert >. The symbolic names for characters
in the 646 and 8859 charmap are specified in the following list:

Name Value

<NUL> \x00

<SOH> \x01

<STX> \x02

<ETX> \x03

366 S–2301–10011

User-defined Locales [A]

<EOT> \x04

<ENQ> \x05

<ACK> \x06

<BEL> \x07

<alert> \x07

<backspace> \x08

<tab> \x09

<newline> \x0a

<vertical-tab> \x0b

<form-feed> \x0c

<carriage-return> \x0d

<SO> \x0e

<SI> \x0f

<DLE> \x10

<DC1> \x11

<DC2> \x12

<DC3> \x13

<DC4> \x14

<NAK> \x15

<SYN> \x16

<ETB> \x17

<CAN> \x18

 \x19

<SUB> \x1a

<ESC> \x1b

<IS4> \x1c

<IS3> \x1d

<IS2> \x1e

<IS1> \x1f

<SP> \x20

<space> \x20

<exclamation-mark> !

S–2301–10011 367

General UNICOS® System Administration

<quotation-mark> “

<number-sign> #

<dollar-sign> $

<percent-sign> %

<ampersand> &

<apostrophe> ’

<left-parenthesis> (

<right-parenthesis>)

<asterisk> *

<plus-sign> +

<comma> ,

<hyphen> -

<hyphen-minus> -

<period> .

<full-stop> .

<slash> /

<solidus> /

<0> or <zero> 0

<1> or <one> 1

<2> or <two> 2

<3> or <three> 3

<4> or <four> 4

<5> or <five> 5

<6> or <six> 6

<7> or <seven> 7

<8> or <eight> 8

<9> or <nine> 9

<colon> :

<semicolon> ;

<less-than-sign> <

<equals-sign> =

<greater-than-sign> >

368 S–2301–10011

User-defined Locales [A]

<question-mark> ?

<commercial-at> @

<A>...<Z> A...Z

<left-square-bracket> [

<backslash> \

<reverse-solidus> \

<right-square-bracket>]

<circumflex> ^

<circumflex-accent> ^

<underscore> _

<low-line> _

<grave-accent> ‘

<a>...<z> a...z

<left-brace> {

<left-curly-bracket> {

<vertical-line> |

<right-brace> }

<right-curly-bracket> }

<tilde> ~

 \x7f

<PAD> \x80

<HOP> \x81

<BPH> \x82

<NBH> \x83

<IND> \x84

<NEL> \x85

<SSA> \x86

<ESA> \x87

<HTS> \x88

<HTJ> \x89

<VTS> \x8a

<PLD> \x8b

S–2301–10011 369

General UNICOS® System Administration

<PLU> \x8c

<RI> \x8d

<SS2> \x8e

<SS3> \x8f

<DCS> \x90

<PU1> \x91

<PU2> \x92

<STS> \x93

<CCH> \x94

<MW> \x95

<SPS> \x96

<EPA> \x97

<SOS> \x98

<SGCI> \x99

<SCI> \x9a

<CSI> \x9b

<ST> \x9c

<OSC> \x9d

<PM> \x9e

<APC> \x9f

<nobreakspace> \xa0

A.1.2 General Syntax of the Locale Definition File

The format of the locale definition file is a list of category specifications. Each
category corresponds to the basic groups of locale information: LC_COLLATE,
LC_CTYPE, LC_MESSAGES, LC_MONETARY, LC_NUMERIC, and LC_TIME. The
general format for these categories is the following:

category_name

keyword value

keyword value...

END category_name

category_name is either LC_MESSAGES, LC_MONETARY, LC_NUMERIC, or
LC_TIME. The specific keywords and the valid associated values are detailed
below. The possible values can be strings (enclosed in quotes) or integers or

370 S–2301–10011

User-defined Locales [A]

lists of either of these. If the value is a list, then the list elements are separated
by semicolons.

Note that the format of the remaining categories, LC_COLLATE and LC_CTYPE, is
quite different and is unique for each of these categories. The details of all the
category specifications is described in the following sections.

In addition to the list of category specifications, the locale definition file can
have the following global statements:

escape_char value

comment_char value

These define the character used to precede comments, and escape the usual
meaning of a character. The default values for these are the following:

escape_char

comment_char #

The comment character must appear as the first character of a line. It causes
localedef to ignore the rest of that line. The escape character is used to specify
numeric character constants and to do line continuation. The latter is necessary
since each localedef directive must appear on a single line. The escape
character allows the breaking up of long lines while allowing localedef to
consider such a set of lines as a single line.

The following example shows specification of the LC_MONETARY category:

LC_MONETARY

int_curr_symbol "<U><S><D><space>"

currency_symbol "<dollar-sign>"

mon_decimal_point "<period>"

mon_thousands_sep "<comma>"

mon_grouping 3

positive_sign "<plus-sign>"

negative_sign "<hyphen-minus>"

int_frac_digits 2

frac_digits 2

p_cs_precedes 1

p_sep_by_space 0

n_cs_precedes 1

n_sep_by_space 0

p_sign_posn 4

n_sign_posn 4

END LC_MONETARY

S–2301–10011 371

General UNICOS® System Administration

A.1.3 The LC_MONETARY Category

The LC_MONETARY category describes monetary formatting conventions. The
following keywords are recognized by localedef in the category:

int_curr_symbol type: string

The international currency symbol. The value is the three
character international currency symbol defined by the ISO
4217:1987 standard followed by a character, such as a space, to
separate the currency symbol from the value.

currency_symbol type: string

The local currency symbol.

mon_decimal_point type: string

The symbol used as a decimal point for monetary values.

mon_thousands_sep type: string

The symbol used to separate groups of digits for monetary
values.

mon_grouping type: list of integers

Describes how mon_thousands_sep is used to separate digit
groups. For the nonfractional part of a monetary value, the digits
are separated by mon_thousands_sep into groups of the sizes
specified in this list beginning from the least significant digits.
All groups should be greater than zero other than the last value
which may be -1. If the last value is -1, no further grouping of
digits will be done; otherwise, the last grouping value will be
used to determine the size of all subsequent groups. As an
example, if the value was 1;2;-1 then the value 123456789
would be formatted as 123456,78,9. A typical use would be
to separate thousands of digits for an entire value regardless
of length. A value of 3 would produce the desired result in
this case.

positive_sign type: string

The symbol used to indicate positive monetary values.

negative_sign type: string

The symbol used to indicate negative monetary values.

372 S–2301–10011

User-defined Locales [A]

int_frac_digits type: integer

The number of fractional digits printed for values formatted with
an international currency symbol.

frac_digits type: integer

The number of fractional digits printed for values formatted
with a local currency symbol.

p_cs_precedes type: integer

This value (indicated in parentheses) indicates whether the
international and local currency symbols precede (1) or succeed
(0) a positive monetary value.

p_sep_by_space type: integer

This value indicates that no space separates the international or
local currency symbol from a positive monetary value (0), or if
a space separates the symbol from the value (1), or if a space
separates the symbol and the sign string if adjacent (2).

n_cs_precedes type: integer

This value indicates if the international and local currency
symbol precedes the value for a negative monetary value (1) or if
the symbol succeeds the value (0).

n_sep_by_space type: integer

This value indicates that no space separates the international or
local currency symbol from a negative monetary value (0), or if
a space separates the symbol from the value (1), or if a space
separates the symbol and the sign string if adjacent (2).

p_sign_posn type: integer

This value indicates the relative position of the positive sign and
a positive monetary value.

Value Description

0 Parentheses enclose the value and the currency
symbol (local or international).

1 The sign precedes the value and the currency
symbol.

2 The sign succeeds the value and currency symbol.

3 The sign precedes the currency symbol.

S–2301–10011 373

General UNICOS® System Administration

4 The sign succeeds the currency symbol.

n_sign_posn type: integer

This value indicates the relative position of the negative sign
and a negative monetary quantity. The values are the same
as for p_sign_posn above.

copy type: string

Causes the copying of the LC_MONETARY specification from the
locale specified as the keyword value. This keyword cannot be
combined with any of the other keywords in the category.

This category affects the operation of the strfmon () library routine. This
information is also available directly from the localeconv () library routine.

A.1.4 The LC_MESSAGES Category

The LC_MESSAGES category describes messages for user interaction. Currently
this is limited to the format of simple acknowledgment (yes or no) requests. The
following keywords are recognized by localedef in the category:

yesexpr type: string

An extended regular expression defining the possible value
for an affirmative response.

noexpr type: string

An extended regular expression defining the possible value for
a negative response.

yesstr type: string

A string defining an affirmative response.

nostr type: string

A string defining a negative response.

copy type: string

Causes the copying of the LC_MESSAGES specification from the
locale specified as the keyword value. This keyword cannot be
combined with any of the other keywords in the category.

This information is available directly from the nl_langinfo () library routine.

374 S–2301–10011

User-defined Locales [A]

A.1.5 The LC_NUMERIC Category

The LC_NUMERIC category describes numeric formatting conventions. The
following keywords are recognized by localedef in the category:

decimal_point type: string

The symbol used as a decimal point for numeric values.

thousands_sep type: string

The symbol used to separate groups of digits for numeric values.

grouping type: list of integers

Describes how thousands_sep is used to separate digit groups.

copy type: string

Causes the copying of the LC_NUMERIC specification from the
locale specified as the keyword value. This keyword cannot be
combined with any of the other keywords in the category.

This category affects the operation of the printf () and scanf () family of
library routines. This information is also available directly from the localeconv
() and nl_langinfo () library routines.

A.1.6 The LC_TIME Category

The LC_TIME category describes time and date formatting conventions. The
following keywords are recognized by localedef in the category:

day type: list of strings

A list, which must have seven entries, of the days of the week.
Example: "Monday";"Tuesday";... (most of the following
examples will not use symbolic format for string, for example,
"<M><o><n><d><a><y>", for clarity even though this is,
strictly, bad form)

abday type: list of strings

A list, which must have seven entries, of the abbreviated names
of the days of the week. Example: "Mon";"Tue";...

mon type: list of strings

A list, which must have twelve entries, of the months of the year.
Example: "January";"February";...

S–2301–10011 375

General UNICOS® System Administration

abmon type: list of strings

A list, which must have twelve entries consisting of the
abbreviated names of the months of the year. Example:
"Jan";"Feb";...

d_t_fmt type: string

The format of a date and time specification. See the description
of the strftime(3) library interface for the syntax of time/date
format strings.

d_fmt type: string

The format of a date specification. See the description of the
strftime(3) library interface for the syntax of time/date
format strings.

t_fmt type: string

The format of a time specification. See a description of the
strftime () library interface for the syntax of time/date
format strings.

am_pm type: list of strings

A list, which must have two entries, of the names of
antemeridian and postmeridian periods of the day. Example:
"AM";"PM"

t_fmt_ampm type: string

The form of a date and time specification using a 12-hour clock
qualified by the appropriate entry from the am_pm list. See a
description of the strftime () library interface for the syntax
of time/date format strings.

era type: list of strings

Defines how years are counted and displayed for each era in
a locale. Each element of the list indicates how a specific time
range will be displayed. Each list entry identifies the range
of dates that it corresponds to and the format that should be
applied for that era. More specifically, each entry has the
following form:

direction:offset:start_date:end_date:era_name:era_format

376 S–2301–10011

User-defined Locales [A]

The details of each of these fields is detailed below. Using
a simple example, the following describes the BC/AD era
convention:

"+:1:-0001/12/31:-*:BC:%Ey %EC" ; "+:0:0000/01/01:+*:AD:%EC %Ey"

This example will be used to clarify the meaning of the
individual fields in an era description.

Field Description

direction

Either a + or - to indicate whether the year of
the start_date has lower or higher numeric
values than the year of the end_date.

offset

The number of the year closest to start_date.

start_date

The year, month, and day of the beginning
of the era. The year, month, and day should
be specified in the format yyyy/mm/dd,
respectively.

end_date

The ending date of the era. This can either be
specified in the same format as start_date
or as either -* (beginning-of-time) or +*
(end-of-time).

era_name

The name of the era. In the above example,
either BC or AD.

era_format

The format for the printing days in the era.

era_d_fmt type: string

The format of the date in alternative era
notation.

S–2301–10011 377

General UNICOS® System Administration

era_t_fmt type: string

The format of the time in alternative era
notation.

era_d_t_fmt type: string

The format of the date and time in alternative
era notation.

alt_digits type: list of strings

The alternate names for digits in a date
specification. Example:

"1st";"2nd";"3rd";"4th";"5th";"6th" ...

Up to 100 alternate names can be specified.

copy type: string

Causes the copying of the LC_TIME specification
from the locale specified as the keyword value.
This keyword cannot be combined with any of
the other keywords in the category.

This category affects the operation of the strftime () and strptime () library
routines. This information is also available directly from the nl_langinfo ()
library routine.

A.1.7 The LC_CTYPE Category

The LC_CTYPE category can be used to:

• Define membership of character classes

• Specify case conversion

The members of character classes (such as alpha, digit, xdigit punct,
space) can be defined as in the following example. This specifies that the alpha
class contains a-z and A-Z.

alpha <a>;;<c>;<d>;<e>;<f>;<g>;<h>;<i>;<j>;<k>;<l>;<m>;\

<n>;<o>;<p>;<q>;<r>;<s>;<t>;<u>;<v>;<w>;<x>;<y>;<z>;\

<A>;;<C>;<D>;<E>;<F>;<G>;<H>;<I>;<J>;<K>;<L>;<M>;\

<N>;<O>;<P>;<Q>;<R>;<S>;<T>;<U>;<V>;<W>;<X>;<Y>;<Z>

378 S–2301–10011

User-defined Locales [A]

Alternatively, range specifications can be used. The following is equivalent to
the previous example:

alpha <a>;...;<z>;<A>;...;<Z>

The possible character classes are the following:

alpha print phonogram

blank punct ideogram

cntrl space english

digit xdigit number

graph special

Additionally, user-defined character classes can be created. For example, the
following defines a character class named xalpha that includes all alphabetic
characters that are used as hexadecimal digits:

charclass xalpha

xalpha <a>;...;<f>;<A>;...;<F>

It is necessary to declare all user-defined character classes with the charclass
keyword before the members of that class are specified.

Character class mapping may also be defined via the toupper and tolower
keywords. The following example illustrates this:

toupper (<a>,<A>);(,);(<c>,<C>);(<d>,<D>);(<e>,<E>);\

(<f>,<F>);(<g>,<G>);(<h>,<H>);(<i>,<I>);(<j>,<J>);\

(<k>,<K>);(<l>,<L>);(<m>,<M>);(<n>,<N>);(<o>,<O>);\

(<p>,<P>);(<q>,<Q>);(<r>,<R>);(<s>,<S>);(<t>,<T>);\

(<u>,<U>);(<v>,<V>);(<w>,<W>);(<x>,<X>);(<y>,<Y>);\

(<z>,<Z>)

Unfortunately, the current version of localedef does not support ranges for
case mapping, so all of the mapping pairs must be specified explicitly.

A.1.7.1 Character Class and Case Mappings

There are implicit rules and restrictions for building character classes and case
mappings, so that all relationships do not need to be specified explicitly.

Membership in a class can implicitly add a character to other classes as well.

• Members of the upper or lower classes are added to the alpha class.

• Members of the alpha class are added to the alnum class.

S–2301–10011 379

General UNICOS® System Administration

• Members of the digit classes are added to the xdigit and alnum classes.

• Members of the blank class are added to the space class.

• Members of the alpha, digit, xdigit, and punct classes are added to the
graph and print classes.

Restrictions on character class membership:

• Members of the digit class cannot be in the upper or lower classes.

• Members of the alpha and xdigit classes cannot be members of the space,
cntrl, or punct classes.

• Members of the space character class cannot be members of the graph class.

• Members of the graph or print classes cannot be members of the cntrl class.

Note that the relationships need to be considered in conjunction. For example,
since members of the xdigit class cannot be members or the cntrl class, then
neither can members of the digit class, since membership in the digit class
implies members in the xdigit class. This is a bit complicated but should not be
a problem in defining actual locales, because these relationships simply enforce
the logical relationships between classes.

For case conversion, the following actions and restrictions are imposed:

• Each member of the conversion must be members of the upper or lower
classes, as appropriate.

• If no conversions are specified, the traditional a-z to A-Z conversion will
be done.

• If a toupper conversion is specified without a tolower conversion, then the
tolower conversion will be the inverse of the toupper conversion.

Note that the a-z to A-Z conversions are not included implicitly in a conversion if
that conversion is explicitly defined.

A.1.8 The LC_COLLATE Category

Collation controls the relative order of characters and of strings of characters.
In general, the ordering of strings and individual characters is independent.
However, they are typically closely related.

380 S–2301–10011

User-defined Locales [A]

A.1.8.1 Collation Sequence

The relative order of characters is referred to as the collation sequence. It defines
the characters referred to by a range in regular expressions, such a A-Z or 0-9.
The collation sequence is defined by a simple listing of the characters in order,
one per line.

Additionally, it is possible to define a multicharacter sequence as having a unique
position in the collation sequence. Such a sequence is called a multicharacter
collating element, whereas the simpler term collating element refers to either a
character or a multicharacter collating element. For example, the two-character
sequence ch could be treated as a single character for the purposes of the
collation sequence (and for string sorting).

The following is a simple example of a collation sequence:

LC_COLLATE

collating-element <ch> from "<c><h>"

collating-element <CH> from "<C><H>"

order_start

<a>

<c>

<ch>

<d>

<z>

<A>

<C>

<CH>

<D>

<Z>

<one>

<nine>

order_end

END LC_COLLATE

This collation sequence reverses the convention of lowercase preceding
uppercase characters. Additionally, it defines uppercase and lowercase forms of
the multicharacter collating element ch. Also, all digits will succeed alphabetic
characters in the collation sequence.

The use of ellipses to indicate ranges of characters is allowed syntax in the locale
definition file and is not just a convention for simplifying this example. An
ellipsis can also be used before and after the other characters in the collation

S–2301–10011 381

General UNICOS® System Administration

sequence to indicate, respectively, all characters earlier or later in the order
of the current character encoding, not including the smallest (typically 0) or
the largest value.

The keyword UNDEFINED can be inserted into the collation sequence. This
results in all characters which are not explicitly in the collation sequence being
put into the sequence at the point of the UNDEFINED statement in the order of
their encoded values.

A.1.8.2 String Ordering

Character string ordering can also be specified by extending the syntax described
in the preceding example. In general, the locale definition file can describe a
multipass ordering of strings with pass-specific ordering rules. Passes can scan
strings in forward or reverse order.

Multipass sorting works in the following manner. Two strings are compared on
the first pass. If they are not equal, the ordering for the first pass defines the
ordering of the strings. If, however, they are equal on the first pass, a second
comparison pass will be done. This continues until a pass compares the strings as
unequal or the maximum number of passes have been executed.

String sorting is defined by the weights of the collating elements being compared.
These are specified by putting the weights to the right of the specification of an
element in the collation sequence. There may be up to COLL_WEIGHTS_MAX
(currently 8) weights specified, each separated by a semicolon. A weight can be
any of the following:

1. A character. In this case, the order is indicated by the position of that
character in the collation sequence.

2. A multicharacter collating element. The order is indicated by the collating
elements’ position in the collation sequence.

3. A collating symbol. A collation symbol is a symbol that marks a position in
the collation sequence. Once defined, the only purpose for a collation symbol
is to define weights for collating elements.

4. An ellipsis. In this case, it refers to the collation value of the character or
collation element. It is only valid to use this on a line that begins with an
ellipsis or in an UNDEFINED statement.

5. The keyword IGNORE. In this case the collating element is ignored for the
purposes of sorting. One exception to this is if the position parameter is
specified for the associated collation pass.

382 S–2301–10011

User-defined Locales [A]

The following is an example of a specification of a collation sequence with
explicit string ordering information:

LC_COLLATE

collating-symbol <LOW>

order_start forward;backward

UNDEFINED

<LOW>

<a> <a>;<a>

 ;

<c> <c>;<c>

<d> <d>;<d>

<z> <z>;<z>

<A> <a>;<A>

 ;

<C> <c>;<C>

<D> <d>;<D>

<E> <e>;<E>

<F> <f>;<F>

<G> <g>;<G>

<H> <h>;<H>

<I> <i>;<I>

<J> <j>;<J>

<K> <k>;<K>

<L> <l>;<L>

<M> <m>;<M>

<N> <n>;<N>

<O> <o>;<O>

<P> <p>;<P>

<Q> <q>;<Q>

<R> <r>;<R>

<S> <s>;<S>

<T> <t>;<T>

<U> <u>;<U>

<V> <v>;<V>

<W> <w>;<W>

<X> <x>;<X>

<Y> <y>;<Y>

<Z> <z>;<Z>

<one> <one>;<LOW>

... ...;<LOW>

<nine> <nine>;<LOW>

END LC_COLLATE

S–2301–10011 383

General UNICOS® System Administration

The preceding example is case-insensitive on the first pass but considers case
on the second pass. For digits they are considered to be higher than alphabetic
characters in the first pass and are sorted according to their numeric value.
However, in the second pass they will sort after all the alphabetic characters and
will be considered equivalent to each other.

The specification of the weights of the lowercase letters is unnecessary since the
default for unspecified weights is to use the location of the collating element in
the collation sequence.

The previous example is not very useful for any real-world collation. A more
typical use of multipass and multidirection sorting would be in the processing
of accents or other diacriticals. The first pass would compare two strings in a
forward direction without considering the diacriticals. If the strings were equal,
the second pass would compare the strings backward considering the diacriticals
significant, as in the following example:

LC_COLLATE

order_start forward;backward,position

<a> <a>;<a>

<a-acute> <a>;<a-acute>

<a-grave> <a>;<a-grave>

<a-circumflex> <a>;<a-circumflex>

<a-diaeresis> <a>;<a-diaeresis>

order_end

LC_COLLATE

The use of the keyword position in describing the second pass is not
significant in this example and is added to give an example of the general format
of an order_start directive. That format is of a semicolon-separated list of
pass-specific parameters. When multiple parameters refer to the same pass, they
are separated by commas. For example:

order_start forward;backward;forward,position;backward,position

The only valid parameters for a pass are the following:

forward The pass shall scan the string from beginning to end.

backward The pass shall scan the string from the end to the beginning.

position The position of ignored weights will be considered significant. The
string with the first mismatched ignored element shall succeed
the other string.

384 S–2301–10011

Glossary

cylinder

A group of tracks, one from each platter surface, that is under the read and write
heads of a disk drive during one rotation. The number of surfaces within the
disk device determine the number of tracks per cylinder. Usually, a disk drive
has a set of arms, on which the read/write heads are mounted, that can be
moved along the platter surface. All of these arms move together as a group,
and the tracks under these read/write heads, as a group, are what makes up
a cylinder. See also track.

explanation catalog

A binary file, produced by the gencat(1) command, that contains the text of
UNICOS error message explanations. The user accesses and displays these
explanations by using the explain(1) command. For more information, see also
the explain(1) man page.

fixed

As in RECFM=F, F indicates that all records, both logical and physical, in an MVS
dataset are the same length.

logical device

One or more physical device slices that the operating system treats as a single
device.

logical disk device

A collection of blocks on one or more physical disk or other logical disk devices.

message catalog

A binary file produced by the gencat(1) command that contains the text of error
messages as they are called from the software at run time.

message text file

The file that contains the source form of the messages and explanations. A
message text file can contain messages, formatted and unformatted explanations,
and comments.

S–2301–10011 385

General UNICOS® System Administration

partition

(1) On Cray MPP systems, a group of processing elements (PEs) and a portion of
the barrier synchronization resources that are assigned to one application. (2)
A logical or physical grouping of memory and CPUs or processing elements in
a computer system so that all process one application; it is a contiguous set of
blocks on a logical device that holds a file system.

A partition of a logical device corresponds to a slice on a physical device. In file
allocation, partitions permit the distribution of files across the physical devices
underlying the logical device on which a file system is mounted. (3) A whole or
partial disk unit that consists of an arbitrary number of consecutive tracks on a
physical disk device. See hardware partition and IOS partition.

run level

A software configuration of the system, controlled by the contents of the
/etc/inittab file (see the inittab(5) man page). The two most common run
levels are single-user mode and multiuser mode.

throughput

The rate of data transfer through a computer system. Throughput is an important
method of measuring the real work that a system performs; it is limited by
the slowest function of the system.

Usually, throughput is measured as a function of data measurement from initial
input into the system to the completion of output from the system. Throughput
is limited (this is a basic application of von Neumann’s Law) by the slowest
function of the computer system.

track

The area under one read/write head on a platter surface in a disk storage unit.
These platter surfaces are usually stacked on top of each other to create a disk
pack. The tracks on these platters, looking vertically through the disk pack
are composed of groups called cylinders. Typically, tracks are divided into
records, which are sometimes also called disk blocks. The most common disk
block size used in UNICOS is 512 Cray words, or 4096 bytes. See also cylinder.

386 S–2301–10011

Index

character prompt, 74

A
Access permissions, 123
Accounting

startup, 78, 88
acid file, 129
Active security compartments, 172
Administrative

cleanup, 88
Allowed privileges, 159
Alternate disk paths, 28
at utility

administrative usage, 107, 109
restrictions, 111

at.allow file, 111
at.deny file, 111
atjobs file, 110
Auditing

audit selection criteria change record, 318
change directory record, 297
configuration parameters, 265
Cray ML-Safe configuration, 270
Cray ML-Safe process activity record, 324
Cray NFS requests record, 312
CRL activity record, 329
discretionary access change record, 281
discretionary access violation record, 276
displaying path names from security log, 337
end of job record, 296
file transfer record, 313
login validation record, 287
mandatory access record, 284
network configuration change record, 315
network security violations record, 309
NQS activity record, 322
NQS configuration change record, 319
passwords, 225

path tracking, 269
printing security labels in record header, 335
saving security log input, 341
security

introduction, 258
security log daemon, 260
security log in single-user mode, 263
security log pseudo device, 260
security log record header, 270
security log record types, 267
security system call record, 299
selecting records by object label, 336
selecting security log record types, 334
setuid system call record, 307
spaudit command, 264
su attempt record, 308
system configuration change record, 274
system logging stop record, 274
system start record, 272
system time change record, 275
tape activity record, 293
tracing user’s login session in security log, 339
use of privilege record, 326

Authorized security compartments, 172

B
Back door I/O access, 56
Back door I/O configuration rules, 57
Backup of file systems, 93

remote, 99
through the network, 99
to tape, 93
using TCP/IP, 99

Basic administration, 107
bcheckrc shell script, 77
boot.log file, 90
Buffer

flushing, 142

S–2301–10011 387

General UNICOS® System Administration

inode, 124
restart-information, 125

C
Catalogs

explanation, 354–355
installing, 356
message, 354
rebuilding, 357

Category definitions, 150
caterr command, 355, 358
catxt command, 359
CE cylinders, 12
Centralized identification and authentication

(I&A), 206
checkrc program, 76
chkpnt system call, 125–126
chkpnt utility, 125
chown utility, 121
Cleanup operations, 88
cll command, 226–227
Communication

immediate person-to-person, 114
person-to-person, 116
users, 112

Communication with /etc/issue, 113
Communication with /etc/motd, 113
con.allow file, 111
con.deny file, 111
config.h file, 123
Configurable defaults, 136
Configuration

configuring consoles, 233
defining /dev/slog, 263
defining prefix of archived log, 262
defining size of security log, 262
disk options, 228
enabling audit selection criteria change

record, 318
enabling change directory record, 297
enabling Cray ML-Safe process activity

record, 324

enabling Cray NFS requests, 312
enabling CRL activity record, 329
enabling discretionary access change record, 282
enabling end of job record, 297
enabling enforcement of socket usage for
syslogd, 201

enabling file transfer logging, 313
enabling logging of all file removal

violations, 305
enabling logging of all link violations, 305
enabling logging of all remove requests, 305
enabling logging of all SLG_ALL_NAMI

requests, 306
enabling login validation record, 287
enabling mandatory access record, 285
enabling network configuration change

record, 315
enabling network security violations, 309
enabling NQS activity record, 322
enabling NQS configuration change record, 319
enabling path tracking, 269
enabling recording of clear text password

violations, 287
enabling remove directory system call

violations, 305
enabling security log, 261
enabling security login and password

features, 217, 220
enabling security system call record, 299
enabling setuid and setgid functionality, 170
enabling setuid system call record, 307
enabling su attempt record, 308
enabling successful file system object

accesses, 285
enabling super-user mechanism on MLS

system, 150
enabling system configuration change

record, 274
enabling system logging stop record, 274
enabling system start record, 272
enabling system time change record, 275
enabling tape activity record, 293

388 S–2301–10011

Index

enabling use of privilege record, 327
enforcing device labeling rules, 196
enforcing system high/low security labels, 185
labeling consoles on MLS system, 234
maximum security level for system, 233
minimum security level for system, 233
mounting file systems on MLS system, 188
naming of active security log, 262
organization of MLS parameters, 231
overview of security logging parameters, 265
setting /tmp labels, 187
system compartments, 233
where to keep retired logs, 262

Configuring
Cray ML-Safe, 240

CONSOLE_MSG configuration parameter, 221
core file, 63
cpio command on MLS systems, 189
CPU quotas, 133
crash command, 125

description, 139
resinfo subcommand, 125

Cray ML-Safe
configuration, 240
daemon startup, 230
introduction, 145

Cray System Clear utility, 231
CRC_ACCT parameter, 88
CRC_MKTMP parameter, 87
CRC_NET parameter, 89
CRC_SADC parameter, 89
Creating

a multilevel directory (MLD), 175
directories on MLS system, 173
file systems on MLS system, 187
logins, 136

cron
daemon, 109
utility

administrative usage, 107
restrictions, 111

cron command, 107

crontab utility, 108
crontabs directory, 108
cshrc file, 120
cvtmldir command, 178
Cylinder, definition, 12

D
daemon, 151
Daemons
cron, 109
security log, 88
system, 89

Data migration
security, 348

Data transfers, direct, 58
datamgr, 151
date command, 77
Dates, setting, 63
Daylight savings time algorithm, 64
Debuggers
crash command, 139

DECLASSIFY_DISK configuration parameter, 228
DECLASSIFY_PATTERN configuration

parameter, 228
Dedicated system, 76
Default security level, 172
Defaults

configurable, 136
Defining

PAL privileges, 163
security administrator entry in UDB, 237
security compartments, 234
security levels, 234
UDB entries on MLS system, 236

DELAY_MULT configuration parameter, 222, 225
Deleting logins, 136–137
DEV_ENFORCE_ON configuration parameter, 196
/dev/slog, 260
diagadm, 151
Directories

location of
cron files, 108

S–2301–10011 389

General UNICOS® System Administration

news files, 113
temporary user files, 111

MLS system
assigned wildcard level, 238
initializing, 238

multilevel directories (MLDs), 175
wildcard, 174, 238

DISABLE_ACCT configuration parameter, 221
DISABLE_TIME configuration parameter, 221
Discretionary access control

definition, 169
Disk arrays, 36
Disk devices

logical, 12
mirrored striped, 15
mirroring, 13
simple logical, 23
striped logical, 14

Disk drives
CE cylinders, 12
contention, 10
cylinders, 12
factory flaw table, 12
organization, 11
sectors, 11
slices, 12
spares cylinders, 12
striping, 13
tracks, 11

Disk flawing, 12
Disk organization, 11
Distribution Center,
dump command, 93–95
dumpdates file, 95
DUMPDEV parameter, 83
DUMPDIR parameter, 84
DUMPFS parameter, 84
Dumping file systems, see File systems,

backup, 93
DUMPMPT parameter, 84

E
EACLV error code, 344
EAPPNDV error code, 345
EAUTHFLG error code, 347
EBADIPSO error code, 346
ECOMPV error code, 344
ECOVERT error code, 345
EEXECV error code, 344
Effective privileges, 158
EFIFOV error code, 345
EFLNEQ error code, 344
EHOSTNAL error code, 345
EINTCATV error code, 344
EINTCLSV error code, 344
EIPSOMAP error code, 347
ELEVELV error code, 344
Eliminating logins, 136
EMANDV error code, 344
EMNTCMP error code, 345
EMODENAL error code, 345
Encrypted password, 129
Encryption of password on MLS system, 215
ENFSAUTH error code, 346
ENOACL error code, 344
ENOIPSO error code, 346
ENONAL error code, 345
ENONSECURE error code, 345
ENOTEQ error code, 344
Environment variables
MANPATH, 361–362
temporary directory, 10

EOWNV error code, 344
EPERMIT error code, 344
EPRLABEL error code, 345
ERCLSFY error code, 345
EREADV error code, 343
ERFMCATV error code, 345
errno variable, 125
Error codes on MLS system, 343
Error messages, message system, 352
Errors

checkpoint, 125

390 S–2301–10011

Index

restart, 125
ESCMPMAP error code, 347
ESCMPNAL error code, 345
ESCMPNIF error code, 346
ESCMPNRT error code, 346
ESECADM error code, 344
ESECFLGV error code, 345
ESLBUSY error code, 344
ESLFAULT error code, 344
ESLNOLOG error code, 344
ESLNXIO error code, 344
ESLVLMAP error code, 346
ESLVLNAL error code, 345
ESLVLNRT error code, 346
ESLVNIF error code, 345
ESOCKCMP error code, 346
ESOCKLVL error code, 346
ESYSLV error code, 343
etc directory, 77
/etc/cshrc file, 362
/etc/profile file, 362
EWRITV error code, 343
explain command, 354–355
Explanation catalogs, 354–355

F
Factory Flaw table, 16
Failed login attempt display, 226
fdmp command, 143
File privileges, 158
File systems

backup, 93
backup on UNICOS systems, 189
checking, 91, 101
damage to, 101
description, 7
dumping, 93
fsck phases, 105
initialization, 42
INODE type, 8
labeling, 46
mounting, 91

NC1FS file system type, 8
NC1FSmaximum size, 8
NFS type, 8
nodes, creation, 17
/proc, 8
PROC type, 8
restoration, 93
restoring /usr and / (root), 98
security, 191
SFS type, 8
size recommendations, 10
SSD as, 55
strategies, 9
types, 8
unmounting, 91
utilities, 92

File transfer rate, 10
File-owner fraud, 121
Files

creating on MLS system, 192
locking, 136
table entries, 124

Flawing disks, 12
Flushing, buffer, 142
Forced privileges, 159
FORCED_SOCKET configuration parameter, 201
Fraud, 121
Front door I/O access, 56
fsck command, 101–102

description, 100
examples, 102
orphan checking, 104
phases

description, 104
termination, 106

FSETID_RESTRICT configuration parameter, 170
fstab file, 82, 87, 103

G
gencat command, 358
Generic login message, 214
gethostname system call, 124

S–2301–10011 391

General UNICOS® System Administration

getty command, 77
gid field (udbgen), 136
Gid, see Group identification number, 135
Grace period, 67
Group

identification number (gid), 135
name, 135
password, 135

Group codes (message system), 355
group file, 129, 135

H
hdd directory, 14
Home directory, login, 135

I
ia_failure I&A routine, 207
ia_mlsuser I&A routine, 208
ia_success I&A routine, 208
ia_user I&A routine, 207
init command, 101
Initialization

file systems, 42
UNICOS, 62

Initializing directories on MLS system, 238
initreq file, 77
inittab file, 73, 76

run level control, 76
inode allocation strategies, 42
/inode file system, 8
INODE file system type, 8
inode region allocation, 44
inodes, buffer, 124
Installing

Cray ML-Safe, 239
message system, 356
MLS, 239

internal SSD (SSD-I)
See SSD-I

Interrupted vi/ex sessions, 87
IPC objects

security information, 202

issue file, 71, 113

J
Job

queue control, 109–110
recovery restrictions, 122
recovery signals, 126
table slots, 124

K
Kernel

debugger, 139
killall command, 126

L
Labeling

devices and files, 195
file systems, 46
tapes with dump, 95

labelit command, 46, 187–188
Last login notification, 214
ldcache command, 51
ldcache, see logical device cache, 51
ldchlist file, 88
ldd directory, 15
ldsync command, 101, 142
Limits, see User limits, 131
Local man pages, 361

display order, 364
duplicate names, 364
installing, 361

example, 362
macros, 361
private, example of, 363
search order, 362

Local shell scripts
related to rc, 86, 88, 90

lock* file, 88
Log files
cron, 88, 109
rc, 86

LOGDELAY configuration parameter, 222

392 S–2301–10011

Index

Logical device cache (ldcache)
back door I/O access, 57
configuring cache, 52
description, 51
displaying cache statistics, 52
flushing the cache, 101
startup, 88

Logical devices
description, 12
descriptor files, 15, 28
disk, 14
mirrored, 26
simple, 23
striped, 14, 25

Login
accounts

and the UDB, 129
creating, 130, 136
deleting, 136–137
description, 130
eliminating, 136
home directory, 135
identifier, 134
modifying, 136
password, 135
removing, 130
shell program, 135

programs, 135
Login attempt display, 226
login command, 205
Logins

secure, 205

M
Machine-generated passwords, 217
Macros for manpages, 361
Mail

multilevel, 199
restricting mail-received announcements, 200

mail utility, 116
Man pages

search order, 362

Man pages, local, 361
display order, 364
duplicate names, 364
installing, 361

example, 362
macros, 361
private, example of, 363

man(1) command, 361
directories, 361

Mandatory access control, 171
Mandatory access controls

UNICOS security policy, 171
MANPATH environment variable, 361

setting, 362
system-wide definition of, 362

MAX_UNLINKED_BYTES configuration
parameter, 123

Maximum security level, 172
MAXLOGS configuration parameter, 220
MAXSLEVEL configuration parameter, 233
Message catalogs, 354
Message system

advantages, 353
catalogs, 354
changing text files, 356
design, 353
editing messages and explanations, 357
features, 353
files

location, 355
names, 355
types, 354

group codes, 355
header file, 359
installing, 356
introduction, 352
nmake command, 357
printing messages, 359
rebuilding catalogs, 357

Message text file, 354
mfsck file, 103
Minimum

S–2301–10011 393

General UNICOS® System Administration

default security label, 172
security level, 172

MINSLEVEL configuration parameter, 233
Mirrored file systems, 46
Mirrored logical devices, 15

restrictions, 27
Mirroring, 13
mkfs command, 8, 42, 96, 187
mknod command, 18
mkspice(8) command, 15
mldev flag, 195
MLDs, see multilevel directories, 174
mlmkdir command, 176
mlrmdir command, 178
MNTTMPOPTS parameter, 84
MNTUTMPOPTS parameter, 85
Modifying logins, 136
Monitoring security, 341
Monitoring system security, 116
motd file, 113
mount command, 91

on MLS system, 188
Mounting file systems, 87, 91

on MLS system, 188
Multilevel directories (MLDs), 174

conversion procedures, 179–180, 183
creating, 176
cvtmldir command, 178
definition, 175
naming convention, 181
removing, 178

Multilevel files and devices, 193
Multilevel flag, 195
Multilevel security

feature, 145
Multilevel security feature (MLS)

file system creation, 42
Multiuser mode, 72

N
NBUF parameter, 55
NC1FS file systems, definition, 8

net device, 124
netstart shell script, 75, 80, 89
Network access list (NAL), creation, 89
Network File System (NFS)

security, 348
Network Queuing System (NQS)

security, 347
Network security

NQS operations, 347
TCP/IP operations, 347

Networks
startup, 82

New files, 113
news directory, 113
NFS

startup, 81
NFS file system type, 8
NIS

startup, 82
nmake command

and message system, 357
nu command, 136

O
Object reuse, 227
Online documentation, 349
Online tapes, see UNICOS tape subsystem, 95
Open pipe connection, 124
Orphan checking
fsck command, 104

Overview of chapter contents, 1
OVERWRITE_COUNT configuration parameter, 228

P
PAL category records, 159
PAL-based privilege mechanism

defining PAL privileges, 163
file privileges, 158
introduction, 151
PAL category records, 159
privilege assignment lists, 158
privilege definitions, 154

394 S–2301–10011

Index

privilege propagation, 161
Privilege text, 160
process privileges, 158
super-user PALs, 161

PALs, 158
Partitions

security, 122
PASS_MAXSIZE configuration parameter, 217
PASS_MINSIZE configuration parameter, 217
passwd file, 129

description, 134
Passwords

aging, 214
auditing, 225
encrypted, 129
generic login message, 214
group, 135
guidelines, 213
last login notification, 214
locking, 215
login, 135
machine-generated, 217
on MLS system

encryption of, 215
protection, 220
reenabling login accounts, 226
security, 117
security of, 213
suppression, 215

Paths, alternate disk, 28
pdd directory, 14
Performance

effect of configuration, 50
file transfer rate, 10
throughput, 10

Permbits, 133
Permissions on MLS systems, 235
Permitted privileges, 158
Physical device creation

GigaRing systems, 22
IOS-E, 17

Physical devices, 14

Physical security, 118
Pipe connection, 124
PIPEDEV parameter, 85
Printing messages from the message system, 359
PRIV_ADMIN, 154
PRIV_AUDIT_CONTROL, 154
PRIV_AUDIT_WRITE, 155
PRIV_CHOWN, 155
PRIV_DAC_OVERRIDE, 155
PRIV_FOWNER, 155
PRIV_FSETID, 155
PRIV_IO, 156
PRIV_KILL, 156
PRIV_LINK_DIR, 156
PRIV_MAC_DOWNGRADE, 156
PRIV_MAC_READ, 156
PRIV_MAC_RELABEL_SUBJECT, 156
PRIV_MAC_UPGRADE, 156
PRIV_MAC_WRITE, 157
PRIV_PAL_KEEP, 157
PRIV_POWNER, 157
PRIV_PROC_ACCESS, 157
PRIV_RESOURCE, 157
PRIV_RESTART, 157
PRIV_SETFPRIV, 157
PRIV_SETGID, 157
PRIV_SETUID, 157
PRIV_SOCKET, 158
PRIV_SU configuration parameter, 150
PRIV_TIME, 158
privcmd command, 239
Privilege

privileged shell, 166
process privilege management, 165
propagation, 161
text, 160

Privilege assignment lists (PALs), 158
category records, 159
determining privileges, 163
privilege text, 160
privilege text management, 165
super-user PALs, 161

S–2301–10011 395

General UNICOS® System Administration

Privilege text, 160
Privilege text management, 165
Privileged shell, 166
Privileges

allowed, 159
definitions, 154
effective, 158
file privileges, 158
permitted, 158
process privileges, 158
set-effective, 159
super user, 117
UDB, 132

/proc file system, 8, 87
PROC file system type, 8
Process

privilege management, 165
privileges, 158
recovery restrictions, 122
recovery signals, 126
slots, 124
using SDS space, 58

profile file, 120
Prototype files, 110
Pseudo terminals on MLS systems, 197
PZ_MAXLVL parameter, 230
PZ_MINLVL parameter, 230

Q
qchkpnt command, 124
qmgr command, 125–126
qsub command, 124
queuedefs file, 109
Quotas

CPU, 133
fields in UDB, 133

R
RAM disks, 21
RANDOM_PASS_ON configuration parameter, 217
rc shell script, 73, 77, 91

log file, 86

RC_ACCT parameter, 78
RC_CONTERR parameter, 79
RC_CRONLOGDIR parameter, 83
RC_DCE parameter, 79
RC_DFS parameter, 79
RC_FSCK parameter, 79
RC_FSCK_Y parameter, 80
RC_LOG parameter, 83, 86
rc.mid local shell script, 88
RC_MKTMP parameter, 80
RC_MKUTMP parameter, 80, 87
RC_NET parameter, 80
RC_NFS parameter, 81
RC_NFSLOG parameter, 83
rc.pre local shell script, 86
rc.pst local shell script, 90
RC_SADC parameter, 81
RC_SECHIGH configuration parameter, 187
RC_SECHIGH parameter, 83
RC_SECLOW configuration parameter, 187
RC_SECLOW parameter, 83
RC_SECMASK configuration parameter, 187
RC_SECMASK parameter, 83
RC_SMT parameter, 81
RC_SSHD parameter, 81
RC_TAPE parameter, 81
RC_TCP parameter, 82
RC_USRMNT parameter, 82
RC_YP parameter, 82
rcoptions file, 78
rdump command, 100
Recovery signals, 126
reduce command, 226, 333

displaying path names, 337
printing record header, 335
records by object label, 336
saving log input, 341
selecting record types, 334
tracing login sessions, 339
tracking users, 337

Reenabling login accounts, 226
resinfo subcommand, (crash), 125

396 S–2301–10011

Index

Restart
errors, 125
file, 123–126

restart system call, 123, 125
restart utility, 124
RESTART_FORCE flag, 123, 125

RESTART_FORCE flag (restart), 123, 125
Restart-information buffer, 125
restore command, 96–97
Restoring file systems, 93
Restricted directory, 216
Restricting mail-received announcements, 200
rhosts file, remote backup, 100
ROOTDEV parameter, 85
rrestore command, 100
rstate field in /etc/inittab, 76
rsv command, 95
Run levels

changing, 73
configuration, 72
dedicated system, 76
files, 76
strategies, 73

multiuser mode, 74
single-user mode, 73

S
SANITIZE_PATTERN configuration

parameter, 228
sdaemon command, 89
sdss command, 58
secadm, 150
secdv flag, 195
seclabs.c file, 234
Secondary data segments (SDS)

configuring, 58
recovery restrictions, 124

secparm.h file, 231
Sectors, 11
Secure logins

interactive, 205
passwords

aging, 214
auditing, 225
encryption, 215
generic login message, 214
last login notification, 214
locking of, 215
protection, 220
security of, 213
suppression of, 215

passwords, trapping, 216
SECURE_OPERATOR_CONSOLE configuration

parameter, 233
SECURE_SCRUB configuration parameter, 229
SECURE_SYS.levels parameter, 230
SECURE_SYSTEM_CONSOLE configuration

parameter, 233
SecurID

card, 205
login procedure, 205

Security
compartments, 172

naming of, 234
fields, 129
levels

definition, 172
naming of, 234

log
daemon in single-user mode, 263–264
displaying pathnames, 337
enabling, 261
error codes, 343
printing record header, 335
record header, 270–271
record header format, 271
record types, 267, 272, 274–276, 281, 284, 287,

293, 296–297, 299, 307–309, 312–313, 315, 319
records by object label, 336
saving security log input, 341
selecting record types, 334
size of, 262
starting processing, 263
tracing user’s login session, 339

S–2301–10011 397

General UNICOS® System Administration

tracking user name, 337
log daemon, 88
partition, 122
super-user privileges, 117
user, 120
violation error codes, 343

Set-effective privileges, 159
Set-group-ID (setgid)

on MLS system, 170
permission, 235

Set-user-ID (setuid)
on MLS system, 170
permission, 235
programs, 118

setgid permission, 235
Setgid, see Set-group-ID, 170
setpal command, 152
setprivs command, 152
Setting system date, 63
Setting UDB
age field, 215
disabled field, 215
force field, 215

setuid permission, 235
Setuid, see Set-user-ID, 170
SFS file system type, 8
sh program, 123, 135
Shared file system, 8
Shared memory,checkpoint/restart

limitations, 124
Shell scripts, local

related to rc, 86, 88
Shell scripts,local

related to rc, 90
Shell variables, see Environment variables, 10
Shutdown

procedures, 61, 66
security feature, 230

shutdown shell script, 67, 126
Signals

job and process recovery, 126
SIGRECOVERY, 126

SIGSHUTDN, 126
SIGRECOVERY signal, 126
SIGSHUTDN signal, 126
Simple logical devices, 23

restrictions, 25
Single-level files and devices, 193
Single-user mode, 72
SLG_ACT_NQS configuration parameter, 322
SLG_ALL_NAMI configuration parameter, 306
SLG_ALL_RM configuration parameter, 305
SLG_ALL_VALID configuration parameter, 285
SLG_AUDIT record, 318
SLG_BUFSIZE configuration parameter, 261
SLG_CCHG record, 274
SLG_CF_NET configuration parameter, 315
SLG_CF_NQSCF configuration parameter, 319
SLG_CF_UNICOS configuration parameter, 274
SLG_CHDIR record, 297
SLG_CRL record, 329
SLG_DAC_CHNG record, 281
SLG_DIR configuration parameter, 261
SLG_DISC_7 record, 276
SLG_EOJ record, 296
SLG_FILE configuration parameter, 261
SLG_FILEXFR configuration parameter, 313
SLG_FPREFIX configuration parameter, 261
SLG_FXFR record, 313
SLG_GO record, 272
slg_hdr security log header, 270
SLG_IPNET record, 309
SLG_JEND configuration parameter, 297
SLG_JSTART configuration parameter, 287
SLG_LINKV configuration parameter, 305
SLG_LOG_AUDIT configuration parameter, 318
SLG_LOG_CHDIR configuration parameter, 297
SLG_LOG_CRL configuration parameter, 329
SLG_LOG_DAC configuration parameter, 282
SLG_LOG_IPNET configuration parameter, 309
SLG_LOG_SECSYS configuration parameter, 299
SLG_LOG_SHUTDWN configuration parameter, 274
SLG_LOG_STARTUP configuration parameter, 272
SLG_LOG_TAPE configuration parameter, 293

398 S–2301–10011

Index

SLG_LOG_TCHG configuration parameter, 275
SLG_LOGN record, 287
SLG_MAND_7 record, 284
SLG_MANDV configuration parameter, 285
SLG_MAXSIZE configuration parameter, 261
SLG_NAMI record, 304
SLG_NET_INTF, 316
SLG_NET_MAP, 316
SLG_NET_NAL, 316
SLG_NET_ROUTE, 316
SLG_NET_WAL, 316
SLG_NETCF record, 315
SLG_NFS configuration parameter, 312
SLG_NFS record, 312
SLG_NQS record, 322
SLG_NQSCF record, 319
SLG_PATH_TRACK configuration parameter, 269
SLG_PRIV configuration parameter, 327
SLG_PRIV record, 326
SLG_REMOVEV configuration parameter, 305
SLG_RMDIRV configuration parameter, 305
SLG_SECSYS record, 299
SLG_SETUID record, 307
SLG_STATE configuration parameter, 261
SLG_STOP record, 274
SLG_SU record, 308
SLG_SUID_RQ configuration parameter, 307
SLG_SULOG configuration parameter, 308
SLG_T_PROC configuration parameter, 324
SLG_TAPE record, 293
SLG_TCHG record, 275
SLG_TRUST record, 324
SLG_USER configuration parameter, 287
Slices, 12
slogdemon command, 260
Spare maps, 16
Spares cylinders, 12
spaudit command, 264
spcheck command, 341
spclr command, 228
spdev command, 197
Spindle failure, 39

spset command, 188, 195, 233
spwcard command, 238
spwcard program, 90
SRCDEV parameter, 85
SSD memory access, 56
SSD slices, 22
SSD solid-state storage device

used as file system, 55
SSD-I, 56
SSH daemon

startup, 81
Starting

security feature, 230
subsystems

security, 230
Startup

menu system options, 82
multiuser mode, 77
procedures, 61

state flag, 195
Status checks, 75
stor command, 21
Striped logical devices, 14, 25

mirrored, 15
restrictions, 27

Striping, 13
su utility, 119
Submitting batch jobs on MLS systems, 199
Super-user

log, 88
mechanism on MLS systems, 150
privileges, 117

SuperRing
configuration rules, 57
definition, 57

Suppression of password, 215
SWAPDEV parameter, 85
sync command, 72, 101, 142
sync system call, 101
Syntax checking, 136
sysadm, 150
sysfil, 150

S–2301–10011 399

General UNICOS® System Administration

sysops, 150
system, 151
System

activity daemon startup, 81, 89
buffer cache configuring, 55
clearing

security, 231
deadstarting, 61
high label, 185
low label, 185
memory examination, 139
multiuser startup, 77
recovery, 139
scrub utility

security, 231
security

monitoring, 116
users, 120

shutdown, 66
configuration, 68
procedures, 70
security, 230
typical session, 71
user exits, 68

startup, 79
security, 230

subsystem startup
security, 230

system administration
introduction, 1

System high label, 185
System initialization, 62
System low label, 185
System management

introduction, 148
SYSTEM_ADMIN_CONSOLE configuration

parameter, 233
systty file, 77
SYSVCOMPS configuration parameter, 233

T
Tape daemon

startup, 81
Tape operations

security, 347
Tape subsystem, see UNICOS tape subsystem, 95
TCP/IP

file system backup by using, 99
socket usage, 124

Temporary
directory, 111
user subdirectories, 111

Throughput, 10
Time zone, setting, 63
/tmp directory, 175, 238
tmp file system, 75, 87
TMPDEV parameter, 85
TMPDIR directory, 111
TMPDIR environment variable, 10
TMPOPTS parameter, 85
tpmnt command, 95
Tracking user name in security log, 337
Tracks, 11
Transmission Control Protocol/Internet Protocol

(TCP/IP)
security, 347

Trapped users, 216
trapr/trapw flags, 192
troff command, 360
TZ environment variable, 76

U
udb file, 129
UDB, see User database, 129
udb.index file, 129
udb.priva file, 129
udb.public file, 129
udb.pubva file, 129
udbgen command, 130–132, 134
delete option, 130
gid field, 136

udbpl command, 130
udbsee utility, 130
Uid, see User identification number, 135

400 S–2301–10011

Index

umask on MLS systems, 170
umask utility, 120
umount command, 91
UNICOS categories, 150
UNICOS multilevel security (MLS)

introduction, 145
UNICOS security policy, definition, 171
UNICOS tape subsystem

labeling with dump, 95
Unmounting file systems, 91
User

communications, 112
file systems, 87
groups, 121
limits

description, 131
job usage, 131
process usage, 131

rc modifications, 77
security, 121
trap permission, 216, 235
trapping, 216

User database (UDB)
age field, 215
conversion, 130
defining MLS entries, 236
defining security administrator entry, 237
disabled field, 215
force field, 215
login accounts, 129
miscellaneous information, 133
privileges, 132
quota fields, 133
suggested values for security entries, 237

User exits, 3, 68
centralized identification and

authentication, 210
shutdown.mid, 69

shutdown.pre, 67, 69
shutdown.pst, 70

User identification number (uid), 135, 137
usr file system, 74, 87
/usr/adm/sl/slogfile file, 260
/usr/mail directory, 238
/usr/spool/mqueue directory, 238
/usr/tmp directory, 175, 238
USRDEV parameter, 86
USRTMPDEV parameter, 86
USRTMPOPTS parameter, 86
usrtrap permission, 216, 235
uts/cf.SN/config.h file, 232, 261

V
Variables
MANPATH, 361–362

vi/ex sessions interrupted, 87
Volume serial numbers (VSN)
dump command and, 95
restore command and, 96

VSN, see Volume serial numbers, 95

W
wall command, 71, 112
Warnings

login messages, 113
wall command, 112

who utility, 134
Wildcard directories, 174, 238
Wildcard files, 90
write utility, 114
wtmp file, 88

X
xadmin command, 136

S–2301–10011 401

	toc
	General UNICOS® System Administration
	New Features
	Preface
	UNICOS System Administration Publications
	Related Publications
	Ordering Documentation
	Conventions
	Reader Comments

	Introduction to System Administration [1]
	1.1 Overview of Contents
	1.2 UNICOS Multilevel Security (MLS) Feature and the Cray ML-Saf
	1.3 User Exits

	File System Planning [2]
	2.1 Introduction to UNICOS File Systems
	2.1.1 File System Overview
	2.1.2 File System Types
	2.1.3 File System Strategies

	2.2 File System Concepts
	2.2.1 Disk Organization
	2.2.2 Disk Flawing (IOS-E and IPN-1 Only)
	2.2.3 Disk Striping
	2.2.4 Disk Mirroring
	2.2.5 Physical Devices
	2.2.6 Simple Logical Devices
	2.2.7 Striped Logical Devices
	2.2.8 Mirrored Logical Devices
	2.2.9 Logical Device Descriptor Files

	2.3 Using the mkspice (8) Command (IOS-E and IPN-1)
	2.4 Creating File System Nodes
	2.4.1 Creating Physical Devices
	2.4.2 Examples of Physical Device Creation
	2.4.2.1 Creating a Physical Disk Device
	2.4.2.2 Creating RAM Disks
	2.4.2.3 Creating SSD Slices

	2.4.3 Creating Physical Devices (GigaRing Systems)
	2.4.4 Creating Logical Devices
	2.4.4.1 Creating Simple Logical Devices
	2.4.4.2 Restrictions on Simple Logical Devices
	2.4.4.3 Creating Striped Logical Devices
	2.4.4.4 Creating Mirrored Logical Devices
	2.4.4.5 Restrictions on Striped and Mirrored Logical Devices

	2.4.5 Creating Logical Descriptor Files
	2.4.6 Defining Alternate Disk Paths
	2.4.7 Configuring Alternate Paths on FCN Devices
	2.4.7.1 Configuring Alternate Paths on FCN Devices
	2.4.7.2 Failure Modes
	2.4.7.2.1 Fibre Channel Loop Failure
	2.4.7.2.2 FCN Failure
	2.4.7.2.3 GigaRing Channel Failure
	2.4.7.2.4 Alternate Path Switching Restrictions

	2.4.8 Shared Dump and Swap Configuration

	2.5 Configuring Disk Arrays
	2.5.1 Installing an Array
	2.5.2 Replacing a Failing Spindle
	2.5.3 Converting RAID Members to Single Spindles
	2.5.4 Software Limitations

	2.6 File System Initialization
	2.7 Inode Allocation Strategies
	2.7.1 rrf Allocation
	2.7.2 rrd1 Allocation
	2.7.3 rrda Allocation

	2.8 Inode Region Allocation
	2.9 Labeling a File System
	2.10 Mirrored File Systems
	2.10.1 Creating a Mirrored File System
	2.10.2 Configuring a Mirrored Device
	2.10.3 Default Configuration
	2.10.4 Mirrored Devices during Startup
	2.10.5 Manual Startup of Mirrored File Systems

	2.11 Performance Considerations
	2.11.1 Logical Device Cache
	2.11.1.1 Setting Cache Configuration
	2.11.1.2 Displaying Cache Statistics
	2.11.1.3 Aging and Threshold Parameters of ldcache

	2.11.2 System Buffer Cache
	2.11.3 Using SSD As a File System
	2.11.3.1 SSD Memory Access
	2.11.3.2 Back Door I/O Rules
	2.11.3.3 SuperRing Configuration Rules

	2.11.4 Secondary Data Segments (SDS)
	2.11.5 File System Placement

	Startup and Shutdown Procedures [3]
	3.1 System Initialization
	3.1.1 Deadstarting the System
	3.1.2 Initializing the UNICOS Operating System
	3.1.3 Setting the System Date and Time
	3.1.4 Setting the System Time Zone
	3.1.4.1 Time-zone Information
	3.1.4.2 Time-zone Example 1
	3.1.4.3 Time-zone Example 2

	3.2 System Shutdown
	3.2.1 The shutdown Command
	3.2.2 System Shutdown Configuration
	3.2.2.1 The shutdown.pre User Exit
	3.2.2.2 The shutdown.mid User Exit
	3.2.2.3 The shutdown.pst User Exit

	3.2.3 System Shutdown Procedures

	3.3 Run-level Configuration
	3.3.1 Changing Run Level
	3.3.2 Strategies for Using Run Levels
	3.3.2.1 Single-user Mode
	3.3.2.2 Multiuser Mode
	3.3.2.3 Dedicated System

	3.3.3 Files That Control Run-level Activity
	3.3.3.1 The /etc/inittab File
	3.3.3.2 The /etc/bcheckrc Script
	3.3.3.3 The /etc/rc Script

	3.4 System Multiuser Startup
	3.4.1 Load the /etc/config/rcoptions File
	3.4.2 Set up the /etc/rc Log File
	3.4.3 Execute /etc/rc.pre
	3.4.4 Make and Mount /tmp
	3.4.5 Mount the /usr File System
	3.4.6 Make and Mount /usr/tmp
	3.4.7 Preserve Interrupted vi/ex Sessions
	3.4.8 Mount User File Systems
	3.4.9 Mount /proc
	3.4.10 Activate Logical Device Cache
	3.4.11 Execute /etc/rc.mid
	3.4.12 Perform Administrative Cleanup
	3.4.13 Start the Security Log Daemon
	3.4.14 Start Accounting
	3.4.15 Start System Activity Data Collection
	3.4.16 Activate Category SYS1 System Daemons
	3.4.17 Activate netstart
	3.4.18 Activate Category SYS2 System Daemons
	3.4.19 Create Network Access List
	3.4.20 Set MLS Wildcard Files and Directories
	3.4.21 Execute /etc/rc.pst
	3.4.22 Complete the Multiuser Startup

	File System Maintenance [4]
	4.1 Mounting and Unmounting File Systems
	4.2 File System Utilities
	4.3 File System Backup and Restoration
	4.3.1 Local Backup
	4.3.1.1 Using the dump Command
	4.3.1.2 Using the restore Command

	4.3.2 Remote Backup

	4.4 File System Checking and Repair with fsck
	4.4.1 Overview of File System Operation
	4.4.2 Using fsck
	4.4.3 fsck Phases
	4.4.3.1 Initialization Phase
	4.4.3.2 Phase 1
	4.4.3.3 Phase 2
	4.4.3.4 Phase 2X
	4.4.3.5 Phase 3
	4.4.3.6 Phase 4
	4.4.3.7 Phase 5
	4.4.3.8 Phase 6
	4.4.3.9 Termination Phase

	Basic Administration [5]
	5.1 Using the cron and at Utilities
	5.1.1 Administrative Use of cron
	5.1.2 Administrative Use of at
	5.1.3 Restricting Use of crontab and at Utilities

	5.2 The Temporary Directory (TMPDIR)
	5.3 Communicating with Users
	5.3.1 The wall (8) Command
	5.3.2 The /etc/motd File
	5.3.3 The /etc/issue File
	5.3.4 The /usr/news Directory
	5.3.5 The write (1) Utility
	5.3.6 The mail (1) Utility

	5.4 Monitoring System Security
	5.4.1 Super-user Privileges
	5.4.1.1 Password Security for Super User
	5.4.1.2 Physical Security
	5.4.1.3 Setuid Programs
	5.4.1.4 root PATH

	5.4.2 User Security
	5.4.2.1 The umask Utility
	5.4.2.2 Default PATH Variable
	5.4.2.3 User Groups
	5.4.2.4 File-owner Fraud
	5.4.2.5 Login Attempts

	5.4.3 Partition Security

	5.5 Job and Process Recovery
	5.5.1 Restrictions to Job and Process Recovery
	5.5.1.1 Restrictions Common to Batch and Interactive
	5.5.1.2 Recovery Restrictions Unique to Batch

	5.5.2 Checkpoint and Restart Errors
	5.5.2.1 Examining the Restart-information Buffer

	5.5.3 Recovery and Signals
	5.5.3.1 SIGSHUTDN
	5.5.3.2 SIGRECOVERY

	5.6 Kernel User Exit (uesyscall)

	User Database (UDB) [6]
	6.1 Login Accounts and the UDB
	6.1.1 Providing Login Accounts
	6.1.2 Removing Login Accounts

	6.2 User Control Capabilities
	6.2.1 User Limits
	6.2.2 Privileges
	6.2.3 Quota Fields
	6.2.4 Other UDB Information

	6.3 The /etc/passwd and /etc/group Files
	6.3.1 The /etc/passwd File
	6.3.2 The /etc/group File

	6.4 The nu Command

	Crash and Dump Analysis [7]
	7.1 Introduction
	7.2 Using the crash Program
	7.3 Analyzing System Problems
	7.3.1 Panic
	7.3.1.1 Debugging Panics
	7.3.1.2 Buffer Flushing

	7.3.2 Running System

	7.4 The fdmp Command

	UNICOS Multilevel Security (MLS) Feature [8]
	8.1 Overview of UNICOS Security Mechanisms
	8.2 System Management
	8.2.1 The Super-user Mechanism (PRIV_SU)
	8.2.2 UNICOS Categories
	8.2.3 The PAL-based Privilege Mechanism
	8.2.3.1 Overview of Process Privilege Attributes
	8.2.3.1.1 The Process
	8.2.3.1.2 Privileges
	8.2.3.1.3 Privilege Text

	8.2.3.2 UNICOS Security Privileges
	8.2.3.3 Process Privileges
	8.2.3.4 Privilege Assignment List (PAL)
	8.2.3.4.1 File Privileges
	8.2.3.4.2 PAL Category Records
	8.2.3.4.3 Privilege Text

	8.2.3.5 Propagation of Privileges
	8.2.3.6 Super-user PALs
	8.2.3.7 Software Not Part of the Set of Cray ML-Safe Components
	8.2.3.8 Determining PAL Privileges
	8.2.3.9 Process Privilege Management
	8.2.3.10 Privilege Text Management

	8.2.4 Privileged Shell
	8.2.5 Overview of Access and Privilege Checks

	8.3 Discretionary Access Control
	8.3.1 umask on a MLS System
	8.3.2 Managing Set-user-ID and Set-group-ID Files

	8.4 Mandatory Access Control
	8.4.1 Directory Operations
	8.4.1.1 Removing Files from Directories
	8.4.1.2 Wildcard and Multilevel Directories (MLDs)
	8.4.1.2.1 Wildcard Directories
	8.4.1.2.2 Multilevel Directories (MLDs)
	8.4.1.2.3 Creating a MLD
	8.4.1.2.4 Converting from Wildcard Directory to MLD
	8.4.1.2.5 Conversion by Copying
	8.4.1.2.6 Converting In-place
	8.4.1.2.7 Converting from MLD to Wildcard Directory

	8.4.1.3 Directory Permissions

	8.4.2 File System and File Operations
	8.4.2.1 System High and System Low Labels
	8.4.2.2 File System Labeling
	8.4.2.3 Changing File Labels
	8.4.2.4 File System Access Controls
	8.4.2.5 File System Back up Operations
	8.4.2.6 File System Security
	8.4.2.7 File Labeling

	8.4.3 Single-level and Multilevel Files and Devices
	8.4.3.1 Assignment and Access Rules for Labeling Information
	8.4.3.2 The spdev Command
	8.4.3.3 Pseudo Terminals
	8.4.3.4 Pty Device Inodes

	8.4.4 cron, batch, and at Operations
	8.4.5 Multilevel Mail Operations
	8.4.6 The /proc File System Operations
	8.4.7 syslogd Operations
	8.4.8 Destructive Reads on Named Pipes
	8.4.9 IPC Objects

	8.5 MLS Identification and Authentication (I&A)
	8.5.1 Overview of I&A Security Implementation
	8.5.2 Login Procedures
	8.5.2.1 Interactive Logins
	8.5.2.2 Remote Logins with SecurID Card

	8.5.3 Centralized Identification and Authentication (I&A)
	8.5.3.1 Checks and Operations
	8.5.3.2 Library Routines Supporting I&A

	8.5.4 I&A User Exits
	8.5.5 Password Security
	8.5.5.1 Last Login Notification
	8.5.5.2 Generic Login Message
	8.5.5.3 Password Aging
	8.5.5.4 Password Suppression
	8.5.5.5 Password Encryption
	8.5.5.6 Password Locking
	8.5.5.7 User Trapping
	8.5.5.8 Restricted Directory
	8.5.5.9 Login Attempts
	8.5.5.10 Machine-generated Passwords
	8.5.5.11 MLS Login and Password Protection Features
	8.5.5.11.1 The MAXLOGS, DISABLE_ACCT, and DISABLE_TIME Parameter
	8.5.5.11.2 The CONSOLE_MSG Parameter
	8.5.5.11.3 The LOGDELAY and DELAY_MULT Parameters
	8.5.5.11.4 Using the CONSOLE_MSG and MAXLOGS Parameters
	8.5.5.11.5 Using the DISABLE_ACCT, MAXLOGS, and DISABLE_TIME Par
	8.5.5.11.6 Using CONSOLE_MSG and DISABLE_ACCT Parameters
	8.5.5.11.7 Using the DELAY_MULT Parameter

	8.5.6 Password Auditing
	8.5.6.1 Reenabling Accounts

	8.6 Object Reuse
	8.7 MLS Installation and Configuration
	8.7.1 System Startup Procedure
	8.7.2 Subsystem Startup Procedure
	8.7.3 System Shutdown Procedure
	8.7.4 System Clearing Procedure
	8.7.5 MLS Configuration Parameters
	8.7.5.1 The secparm.h File
	8.7.5.2 The uts/cf.SN/config.h File
	8.7.5.2.1 Setting the System's Security Label
	8.7.5.2.2 Configuring Consoles

	8.7.5.3 The seclabs.c File
	8.7.5.3.1 Security Level Naming
	8.7.5.3.2 Compartment Definition

	8.7.5.4 Permission Definitions

	8.7.6 Defining MLS UDB Entries
	8.7.7 Directory Initialization Procedures
	8.7.8 The privcmd Command
	8.7.9 MLS Installation and Configuration Procedures
	8.7.9.1 Cray ML-Safe Configuration
	8.7.9.2 Single Level UNICOS System to a Multilevel UNICOS System

	8.8 MLS Auditing on a UNICOS System
	8.8.1 Security Log Overview
	8.8.2 Security Logging Daemon
	8.8.3 Security Logging Daemon in Single-user Mode
	8.8.4 The spaudit Command
	8.8.5 Security Logging Configuration Parameters
	8.8.6 Security Log Record Types
	8.8.7 Auditing on a Cray ML-Safe System Configuration
	8.8.7.1 Security Log Record Header Definition
	8.8.7.2 System Start Record (SLG_GO)
	8.8.7.3 System Shutdown Record (SLG_STOP)
	8.8.7.4 System Configuration Change Record (SLG_CCHG)
	8.8.7.5 System Time Change Record (SLG_TCHG)
	8.8.7.6 Discretionary Access Violation Record (SLG_DISC_7)
	8.8.7.7 Discretionary Access Change Record (SLG_DAC_CHNG)
	8.8.7.8 Mandatory Access Record (SLG_MAND_7)
	8.8.7.9 Login Validation Record (SLG_LOGN)
	8.8.7.10 Tape Activity Record (SLG_TAPE)
	8.8.7.11 End-of-job Record (SLG_EOJ)
	8.8.7.12 Change Directory Record (SLG_CHDIR)
	8.8.7.13 Security-related System Call Record (SLG_SECSYS)
	8.8.7.14 NAMI Function Record (SLG_NAMI)
	8.8.7.15 Setuid System Call Record (SLG_SETUID)
	8.8.7.16 Su Attempt Record (SLG_SU)
	8.8.7.17 Networks Security Violations Record (SLG_IPNET)
	8.8.7.18 Cray NFS Request Record (SLG_NFS)
	8.8.7.19 File Transfer Record (SLG_FXFR)
	8.8.7.20 Network Configuration Change Record (SLG_NETCF)
	8.8.7.21 Audit Criteria Change Record (SLG_AUDIT)
	8.8.7.22 NQS Configuration Change Record (SLG_NQSCF)
	8.8.7.23 NQS Activity Record (SLG_NQS)
	8.8.7.24 Cray ML-Safe Process Activity Record (SLG_TRUST)
	8.8.7.25 Use of Privilege Record (SLG_PRIV)
	8.8.7.26 Cray/REELlibrarian (CRL) Activity Record (SLG_CRL)

	8.8.8 The reduce Command
	8.8.8.1 Selecting Record Types (-t €option)
	8.8.8.2 Printing Security Labels in Record Header (-S and -L Op
	8.8.8.3 Selecting Records by Object Label (-O Option)
	8.8.8.4 Displaying Path Names (-p Option)
	8.8.8.5 Tracking a Specific User Name (-l and -u Options)
	8.8.8.6 Tracing a User's Login Session (-j Option)
	8.8.8.7 Reducing Security Log Input (-r, -R, and -f Options)

	8.8.9 Monitoring Security-relevant Events
	8.8.10 Security Violation Error Codes

	8.9 NQS Operations
	8.10 Tape Operations
	8.11 TCP/IP Operations
	8.12 UNICOS NFS Operations
	8.13 MLS Data Migration Operations

	Administration of Online Documentation [9]
	9.1 Modifying Online Glossary Files
	9.1.1 Modifying the Cray Definitions File
	9.1.2 Creating a Local Definitions File
	9.1.3 Glossary Keywording Rules

	9.2 Cray Message System
	9.2.1 Overview
	9.2.2 Message System Files
	9.2.2.1 File Names
	9.2.2.2 File Location

	9.2.3 Installing Message System Files
	9.2.4 Changing the Message Text File
	9.2.5 Editing the Message Text File
	9.2.6 Rebuilding Catalogs
	9.2.6.1 Rebuilding with nmake
	9.2.6.2 Rebuilding with Message System Commands

	9.2.7 Printing Messages

	9.3 Local Man Pages
	9.3.1 Examples
	9.3.1.1 Example 1
	9.3.1.2 Example 2

	9.3.2 Display Order for Same-name Man Pages

	User-defined Locales [A]
	A.1 The localedef Utility
	A.1.1 Character Specifications
	A.1.2 General Syntax of the Locale Definition File
	A.1.3 The LC_MONETARY Category
	A.1.4 The LC_MESSAGES Category
	A.1.5 The LC_NUMERIC Category
	A.1.6 The LC_TIME Category
	A.1.7 The LC_CTYPE Category
	A.1.7.1 Character Class and Case Mappings

	A.1.8 The LC_COLLATE Category
	A.1.8.1 Collation Sequence
	A.1.8.2 String Ordering

	Glossary

	tables
	Table 1. Spindle to Unit Number Mapping
	Table 2. United States Time Zones
	Table 3. rcoptions Decide String Parameters
	Table 4. rcoptions Non-decide String Parameters
	Table 5. rcoptions File System String Parameters
	Table 6. Login Protection Parameter Configuration, Example 1
	Table 7. Login Protection Parameters Configuration, Example 2
	Table 8. Login Protection Parameters Configuration, Example 3
	Table 9. Suggested Values for UDB Security Fields
	Table 10. Security Log Records
	Table 11. Security Violation Error Codes

