
UNICOS® Resource Administration
S–2302–10010

Copyright © 1996–1998, 2000, 2001 Cray Inc. This manual or parts thereof may not be reproduced in any form unless permitted
by contract or by written permission of Cray Inc. All Rights Reserved.

U.S. GOVERNMENT RESTRICTED RIGHTS NOTICE

The Computer Software is delivered as "Commercial Computer Software" as defined in DFARS 48 CFR 252.227-7014.

All Computer Software and Computer Software Documentation acquired by or for the U.S. Government is provided with
Restricted Rights. Use, duplication or disclosure by the U.S. Government is subject to the restrictions described in FAR 48 CFR
52.227-14 or DFARS 48 CFR 252.227-7014, as applicable.

Technical Data acquired by or for the U.S. Government, if any, is provided with Limited Rights. Use, duplication or disclosure by
the U.S. Government is subject to the restrictions described in FAR 48 CFR 52.227-14 or DFARS 48 CFR 252.227-7013, as applicable.

Autotasking, CF77, Cray, Cray Ada, Cray Channels, Cray Chips, CraySoft, Cray Y-MP, Cray-1, CRInform, CRI/TurboKiva, HSX,
LibSci, MPP Apprentice, SSD, SuperCluster, UNICOS, UNICOS/mk, and X-MP EA are federally registered trademarks and
Because no workstation is an island, CCI, CCMT, CF90, CFT, CFT2, CFT77, ConCurrent Maintenance Tools, COS,
Cray Animation Theater, Cray APP, Cray C90, Cray C90D, Cray CF90, Cray C++ Compiling System, CrayDoc, Cray EL, Cray J90,
Cray J90se, Cray J916, Cray J932, CrayLink, Cray MTA, Cray MTX, Cray NQS, Cray/REELlibrarian, Cray S-MP, Cray SSD-T90,
Cray SV1, Cray SV1ex, Cray SV2, Cray T90, Cray T94, Cray T916, Cray T932, Cray T3D, Cray T3D MC, Cray T3D MCA,
Cray T3D SC, Cray T3E, CrayTutor, Cray X-MP, Cray XMS, Cray-2, CSIM, CVT, Delivering the power . . ., DGauss, Docview,
EMDS, GigaRing, HEXAR, IOS, ND Series Network Disk Array, Network Queuing Environment, Network Queuing Tools,
OLNET, RQS, SEGLDR, SMARTE, SUPERLINK, System Maintenance and Remote Testing Environment, Trusted UNICOS, and
UNICOS MAX are trademarks of Cray Inc.

IBM is a trademark of International Business Machines Corporation. Kerberos is a trademark of the Massachusetts Institute of
Technology. REELlibrarian is a trademark of Sceptre Corporation. NFS, Sun, and SunOS are trademarks of Sun Microsystems, Inc.
UNIX, the “X device,” X Window System, and X/Open are trademarks of The Open Group in the United States and other
countries. All other trademarks are the property of their respective owners.

The UNICOS operating system is derived from UNIX System V. The UNICOS operating system is also based in part on the
Fourth Berkeley Software Distribution (BSD) under license from The Regents of the University of California.

New Features

UNICOS ® Resource Administration S–2302–10010

This book supports the 10.0.1.0 release of the UNICOS operating system. The following changes to the
resource administration documentation were made for this release:

Preface A reference to Cray L7R documentation was added.

Chapter 5 A warning was added stating that you should not remove the quota control
file while quotas are active on a file system.

Record of Revision

Version Description

9.0 August 1995
Original Printing. Documentation supports the administration of UNICOS 9.0
release running on Cray computer systems. This manual contains the contents of
and supersedes the information formerly provided in chapters “Accounting,”
“Automated Incident Reporting (AIR),” “Fair-share Scheduler,” File System
Quotas,” “File System Space Monitoring,” “System Activity Monitoring,” “Unified
Resource Manager (URM)” and appendix “Automatic Incident Reporting Tests” in
UNICOS System Administration, publication SG-2113 8.0.

9.2 December 1996
This rewrite supports the 9.2 release of the UNICOS operating system.

9.3 August 1997
This rewrite supports the 9.3 release of the UNICOS operating system.

10.0 November 1997
This rewrite supports the 10.0 release of the UNICOS operating system.

10.0.0.2 May 1998
This rewrite supports the 10.0.0.2 release of the UNICOS operating system.

10.0.0.3 September 1998
This rewrite supports the 10.0.0.3 release of the UNICOS operating system.

10008 November 2000
This rewrite supports the 10.0.0.8 release of the UNICOS operating system.

10.0.1.0 October 2001.
This rewrite supports the 10.0.1.0 release of the UNICOS operating system.

S–2302–10010 i

Contents

Page

Preface xxi

UNICOS System Administration Publications xxi

Related Publications . xxii

Ordering Printed Publications . xxv

Conventions . xxvi

Reader Comments . xxvii

Introduction to System Administration [1] 1

Accounting [2] 3

Cray System Accounting (CSA) . 3

Concepts and Terminology . 4

Files and Directories Overview 5

Structures of the acct and tmp Directories 5

Shell Scripts and C Binaries 7

Unprocessed Data Files . 7

Data Files Being Processed . 8

Processed Data Files . 9

Reports . 10

Daily Operation Overview . 10

Setting up CSA . 11

The csarun(8) Command . 16

Daily Invocation . 16

Error and Status Messages . 17

States . 17

S–2302–10010 iii

UNICOS® Resource Administration

Page

Restarting csarun(8) . 19

Verifying and Correcting Data Files 20

Fixing wtmp(8) Errors . 21

Verifying Data Files . 21

Editing Data Files . 21

Files and Directories . 23

/usr/adm/acct Directory . 23

/etc Directory . 28

/etc/config Directory . 28

CSA Data Processing . 29

Data Recycling . 33

How Sessions Are Terminated 33

Why Recycled Sessions Should Be Scrutinized 34

How to Remove Recycled Data 35

Adverse Effects of Removing Recycled Data 37

NQS Requests and Recycled Data 38

Tailoring CSA . 39

System Billing Units (SBUs) 40

Daemon Accounting . 51

Setting up User Exits . 51

Charging for NQS Jobs . 52

Tailoring CSA Shell Scripts and Commands 53

Using at to Execute csarun(8) 54

Allowing Nonsuper Users to Execute CSA 54

Using an Alternate Configuration File 55

Disk Usage Reporting (diskusg)(8) 56

Per-process Accounting Data . 56

Base Accounting Record . 56

iv S–2302–10010

Contents

Page

End-of-job Accounting Record 59

Multitasking Accounting Record 60

SDS Accounting Record . 61

MPP Accounting Record . 61

Performance Accounting Record 62

Multitasking Incentives . 62

Memory Integrals . 63

Reducing Charges . 64

Socket Accounting . 65

Device Accounting . 65

Categories of Devices . 66

Structures and Device Names 66

Configuration Changes . 67

System Header Files . 67

Using Device Accounting (devacct(8)) 68

Switching / and /usr File Systems 70

Logging Information . 70

Boot Log . 71

cron(8) Log . 71

dump Log . 72

New User Log . 72

su(8) Log . 72

OLDsu Log . 73

System Logs . 73

Error Log . 75

Multilevel Security (MLS) Log 75

System Activity Log . 76

S–2302–10010 v

UNICOS® Resource Administration

Page

Message Log . 76

Accounting Logs . 77

NQS Log . 78

Standard UNIX Accounting . 79

Files and Directories . 80

Daily Operation . 81

Setting up the Accounting System 82

Setting up a User Exit . 83

Converting Standard UNIX Accounting to CSA Accounting 83

The runacct Command . 84

Failure Recovery for runacct(8) 87

Restarting runacct(8) . 88

Fixing Corrupted Files . 88

Fixing wtmp Errors . 89

Fixing tacct Errors . 89

Updating Holidays . 90

Reports . 90

Daily Report . 91

Daily Usage Report . 91

Daily Command and Monthly Total Command Summaries 93

Last Login Report . 94

Accounting Files . 94

Front-end Formatting . 97

Why Use Front-end Formatting 97

Preparing to Use a Formatter . 98

CSA Front-end Formatting . 99

Generic Front-end Formatting . 99

Data Consolidation . 100

vi S–2302–10010

Contents

Page

Required Data Variables . 100

Default and Optional Data Variables 104

Data File Format . 119

csagfef(8) Source Scripts . 121

Automated Incident Reporting (AIR) [3] 137

AIR Components Overview . 137

AIR Configuration File . 137

AIR Coordinator Daemon . 138

AIR Monitoring Functions . 138

AIR Report Generator . 138

Initiation and Administration . 139

AIR Configuration . 140

Basic Syntactic Rules . 140

Configuration Keywords . 141

File Delineation Keywords . 141

Basic Operational Keywords 142

Monitored Products Keywords 144

Monitoring Function Specification 146

Installation Tool Configuration 147

Return Tags . 149

Sample Configuration File . 150

Configuration File Tuning and Validation 159

Monitoring Functions . 160

TCP/IP . 161

NQS . 162

Online Tapes . 163

Disk-integ . 164

S–2302–10010 vii

UNICOS® Resource Administration

Page

URM . 165

Adding Products and Functions 165

Creating Functions . 166

Integrating the Functions . 168

Configuring the Functions . 169

Function Configuration through the Installation Tool 171

Validating Configuration . 173

Production . 173

Final Verification . 174

Using the Report Generators . 174

Record Types . 174

Output . 176

Using the airprconf Command 176

Using the airdet Command 176

Using the airtsum Command 178

Using the airsum Command 180

Log File Analysis . 183

Summary . 188

Fair-share Scheduler [4] 191

Design Objectives . 191

Fair-share Feature Summary . 192

Components of Fair-share . 194

User Database (UDB) . 194

Support Functions . 196

User and Administrator Displays 197

Administrator Controls . 198

Fair-share Hierarchy . 198

viii S–2302–10010

Contents

Page

Share Normalizing . 199

Process Scheduling . 201

Fair-share Limits Node (Lnode) 201

Fair-share and NQS . 202

Fair-share and URM . 202

Using the Fair-share Scheduler . 202

Setting up a Fair-share Hierarchy 203

Creating Resource Groups . 205

Allocating Shares to Users . 207

Setting up System UDB Entries 209

Idle Account . 209

UnKnown or Unknown Account 210

Other System Resource Accounts 210

Setting up Share by Account Mode 211

Activating the Fair-share Scheduler 212

Setting Scheduling Options and Flags 213

Modifying Fair-share Scheduler Settings 215

Enabling Resource Group Administrators 216

Disabling the Fair-share Scheduler 217

Costs, Usage, and Background Users 218

Monitoring the Fair-share Scheduler 219

Using the shriview(1) Command 219

Using the shrmon(8) Command 221

Using the shrtree(8) Command 222

Customizing the Fair-share Scheduler (User Exit) 224

Fair-share User Exit Example . 225

Tuning the Fair-share Scheduler . 227

Fair-share Parameters . 227

S–2302–10010 ix

UNICOS® Resource Administration

Page

shradmin(8) Options Affecting Cost 227

-U Option (MAXUSAGE) . 228

-D Option (priority Decay Rates) 229

-X Option (maxushare) . 231

-Y Option (mingshare) . 231

-Z Option (sharemin) . 232

-R Option (delta) . 233

-K Option (usage Decay Rate) 234

Example Parameter Settings 234

Fair-share and the Memory Scheduler 236

Priority-based Scheduling and I/O Resources 236

Using CPU Quotas . 237

Additional Reference Material . 238

File System Quotas [5] 239

Components of the File System Quota Feature 239

Enabling the Quota Feature . 240

Changing the NQUOTA Value . 240

Quotas and Data Migration . 241

Configuring Quotas . 241

Format 1: Relative File Name . 242

Format 2: Absolute File Name 242

Format 3: Quota Control Groups 243

Determining Defaults and Special Users 243

Creating a Quota Control Source File 244

The qudu(8) Method of Source Creation 245

Changing Defaults . 245

Setting Specific Quotas . 247

x S–2302–10010

Contents

Page

Manual Source File Creation . 248

Generating the Quota Control File 248

Activating Quota Enforcement . 250

Setting Current Usage Information 251

Usage Accumulation Rules . 251

Inode Usage . 251

File Usage . 252

Administering the Quota Enforcement Feature 252

System Startup . 252

Back-up File Example . 258

Quota Enforcement Control . 259

Adding Users . 259

Deleting Users . 259

Creating or Extending Files . 260

Viewing Quota Control . 260

Additions to Login Profile . 261

User-level Behavior . 262

Nonstandard Configuration Options 263

Nonresident Quota Control Files 263

File System Groups under One Quota Control File 263

Aggregate Quotas . 264

Using the Oversubscription Option (Soft Quota) 265

Behavior of the Oversubscription Mechanism 265

Supported Algorithms . 265

Exponential Algorithm . 266

Linear Algorithm . 267

Algorithm Comparison . 268

Changing ID Class Control . 268

S–2302–10010 xi

UNICOS® Resource Administration

Page

Quota Enforcement Across a Network 268

File System Space Monitoring [6] 271

Operation of the Space Monitor . 271

Interprocess Communication . 272

The Monitor Daemon, fsdaemon(8) 272

File System Monitoring . 273

Critical and Warning Command Processing 274

Request Processing . 275

Status Display . 277

Example 1: . 277

Using the fsdaemon(8) and fsmon(8) Commands 279

The Log File . 280

Informative and Error Messages . 281

Installation and Operation Information 282

Installation . 283

Operation . 283

Permissions . 284

Testing . 284

Related Files . 284

System Activity Monitoring [7] 285

Standard UNIX System Activity Package (sar) 285

System Activity Counters . 286

CPU Time Counters . 287

lread and lwrite Counters 287

bread and bwrite Counters 287

phread and phwrite Counters 287

swapin and swapout Counters 287

xii S–2302–10010

Contents

Page

xswapin and xswapout Counters 288

switch and syscall Counters 288

runque, runocc, swpocc, and swpque Counters 288

iget, namei, and dirblk Counters 288

readch and writech Counters 289

rcvint and xmtint Counters 289

rawch, canch, and outch Counters 289

clists Counter . 289

I/O Activities . 289

Logical Device Cache . 290

Inode, File, Text, and Process Tables 290

sysrda, syswra, and syslstio Counters 290

pkin, pkout, and pkbad Counters 290

shuffle, textlock, datlock, and punlock Counters 290

Exchange Counts . 290

System Activity Commands . 291

sar(8) Command . 291

sag(8) Command . 292

timex(1) Command . 292

mppview(8) Command . 292

xmppview(8) Command . 293

Daily Report Generation . 293

Facilities . 293

Suggested Operational Setup 294

Source Files and Scripts . 295

Derivations . 296

Cray System Activity Monitoring (sam) Package 297

samdaemon(8) Process . 299

csam(8) Utility . 300

S–2302–10010 xiii

UNICOS® Resource Administration

Page

csam(8) Commands . 300

Record/replay Function . 301

xsam Utility . 305

X11 Window Settings . 305

xsam Windows . 306

Console Window and Available Commands 307

xsam Commands . 311

Cray System Activity Reporting (tsar(8)) Package 320

sdc(8) Command . 321

tsar(8) Command . 322

Data Collection . 322

CPU Data . 323

System Calls . 324

Process Management . 324

Memory Management . 325

System Table Management . 325

System I/O, General . 326

System I/O, Caching . 327

General System Data . 328

Disk Data . 330

Tape Data . 331

TCP/IP Data . 331

Terminal Data . 331

NFS Data . 332

Network Interface Data . 332

IPC Data . 333

Restricted Data Collection . 333

Data File Format . 334

Header Records . 334

xiv S–2302–10010

Contents

Page

Definitions Record . 335

Meta-data Record . 335

Data Records . 335

tsar(8) Modes . 336

Compilation-only Mode . 336

Online Mode . 336

Playback Mode . 336

tsar(8) Source Scripts . 337

BEGIN Section . 337

END Section . 337

RESTART Section . 337

RECONFIG Section . 338

function Section . 338

Body . 338

Example Source Scripts . 338

tsar(8) Language Description 338

Statements . 339

Operators . 340

Built-in Functions . 342

Built-in Variables . 344

Operational Setup . 345

Difference between sdc(8) and sdcx 345

Boot Time Data . 346

Shutdown Data . 346

crontab(1) Entries . 346

Examples . 347

sdc(8) Data Collection . 347

tsar(8) Data Collection . 348

tsar(8) Report Formatting . 348

S–2302–10010 xv

UNICOS® Resource Administration

Page

Limitations . 350

Disk Usage Monitoring . 352

Unified Resource Manager (URM) [8] 355

URM Features . 356

Summary of URM Commands . 357

Installing URM . 357

Verifying Automatic Startup of URM Daemon 358

Configuring Initial URM Values 359

Individual Session Initiator Configuration Changes 360

Verifying Security Parameters . 361

Enabling Service Providers . 361

Configuring URM . 361

Authorized Administrators . 362

Authorized Hosts . 364

Machine Load Evaluation Rates 364

Machine Target Values . 365

Individual Session Initiator Targets 367

Individual Session Initiator Defaults 367

URM Control Settings . 368

SDS Residency Time . 369

Local URM Configuration File 370

Rank Boost to Previously Running Batch Jobs 370

Weighting Factors for the Batch Selector 370

Auto-configuration Settings . 372

Resetting to Default URM Configuration 373

Importing URM Configuration 373

Activating URM Configuration Changes 373

Using URM with NQS . 374

xvi S–2302–10010

Contents

Page

URM Administrator Tasks . 374

Using URM Log Files . 375

Monitoring URM Log Files . 376

Turning Off URM Logging . 376

Moving the URM Log Files 376

Viewing URM Results . 377

Viewing Machine Load . 377

Viewing All Users . 377

Viewing Jobs of a Given User . 378

Changing a Job’s Minimum Rank 378

Changing URM Configuration Based on Time of Day (cron) 378

Customizing URM (User Exits) 379

URM User Exits . 380

URM Job-ranking Functions 380

URM Data Structures . 382

URM User Exit Example 1 . 383

URM User Exit Example 2 . 385

URM User Exit Example 3 . 387

URM User Exit Example 4 . 388

Troubleshooting URM . 390

URM Daemon Failures . 390

URM and NQS . 391

URM and the Fair-share Scheduler 392

Share Priority Weight . 392

Share Entitlement Weight . 393

Usage Weight . 393

URM Architecture . 394

Selection Server (urmd(8)) . 394

S–2302–10010 xvii

UNICOS® Resource Administration

Page

Query and Command Server (rmgr(8)) 395

SDS Management (sdsmgr) . 395

URM Resources . 397

URM Checkpointing . 398

Configuring URM Checkpointing 398

Managing Restart Images . 400

Checkpointing at Shutdown . 402

Tuning URM . 402

Tuning URM Control Settings . 403

Machine Target Values . 403

Monitoring Cycles . 407

Group Scheduling Control . 410

Load Smoothing Factors . 412

Tuning URM Job Selection Criteria 416

Batch Jobs . 417

Interactive Jobs . 422

Appendix A Automatic Incident Reporting Tests 425

Index 427

Figures
Figure 1. /usr/adm/acct and tmp Directory Structures 6

Figure 2. CSA Program Data Flow 30

Figure 3. Directory Structure of the Adm Login 80

Figure 4. Share Normalizing . 200

Figure 5. Example of System Resource Division for Fair-share 204

Figure 6. Hardware Configuration Options for Sam 298

Figure 7. The xsam Console Window 308

xviii S–2302–10010

Contents

Page

Figure 8. The xsam Device Display Window 318

Figure 9. Example of Different Smoothing Factors 414

Figure 10. Default Smoothing Factor for Memory Load 415

Tables
Table 1. Possible Effects of Removing Recycled Data 38

Table 2. Base Accounting Record Fields by Function 56

Table 3. End-of-job Accounting Record Fields by Function 59

Table 4. Required Data Variables 101

Table 5. pacct Base Record Variables — Per-process Values 105

Table 6. pacct Base Record Variables - Total Values 105

Table 7. pacct Base Record Variables - Prime Time Values 107

Table 8. pacct Base Record Variables - Nonprime Time Values 107

Table 9. pacct Secondary Data Storage (SDS) Record Variables - Total Values 108

Table 10. pacct SDS Record Variables - Prime Time Values 109

Table 11. pacct SDS Record Variables - Nonprime Time Values 109

Table 12. pacct End-of-job Record Variables 110

Table 13. pacct Device I/O Record Variables - Total Values 110

Table 14. pacct Device I/O Record Variables - Prime Time Values 111

Table 15. pacct Device I/O Record Variables - Non-prime Time Values 112

Table 16. pacct Massively Parallel Processing (MPP) Record Variables - Total Values . . . 113

Table 17. pacct MPP Record Variables - Prime Time Values 113

Table 18. pacct MPP Record Variables - Nonprime Time Values 114

Table 19. pacct Multitasking Record Variables - Total Values 114

Table 20. pacct Multitasking Record Variables - Prime Time Values 114

Table 21. pacct Multitasking Record Variables - Nonprime Time Values 114

Table 22. pacct Performance Record Variables - Total Values 115

Table 23. pacct Performance Record Variables - Prime Time Values 115

Table 24. pacct Performance Record Variables - Nonprime Time Values 116

S–2302–10010 xix

UNICOS® Resource Administration

Page

Table 25. Tape Accounting Variables 116

Table 26. NQS Accounting Variables 117

Table 27. Connect Time Accounting Variables 118

Table 28. System Billing Units (SBU) Variables 119

Table 29. Built-in Variables . 131

Table 30. Share Division Among Resource Groups 206

Table 31. Share Division within Resource Groups 208

Table 32. Field Usage of the Exponential Algorithm 266

Table 33. Field Usage of the Linear Algorithm 267

Table 34. CPU Data . 323

Table 35. System Call Data . 324

Table 36. Process Management Data 324

Table 37. Memory Management Data 325

Table 38. System Table Management Data 326

Table 39. General System I/O . 326

Table 40. System I/O - Caching 327

Table 41. General System Data . 329

Table 42. IOS-E Physical Disk Data 330

Table 43. Tape Drive Data . 331

Table 44. TCP/IP Performance Data 331

Table 45. Terminal Activity Data 332

Table 46. NFS Data . 332

Table 47. Network Interface Data 333

Table 48. IPC Activity Data . 333

Table 49. Records Written . 335

Table 50. tsar Command Built-in Variables 344

xx S–2302–10010

Preface

This manual documents UNICOS release 10.0.1.0 running on Cray systems. It
contains information needed in the administration of various UNICOS features
available to all UNICOS systems.

Note: Previously in the UNICOS operating system documentation, the term
Trusted UNICOS was used to refer to the configuration that most closely
approximated the B1 evaluated configuration of UNICOS release 8.0.2. In the
current UNICOS release, this configuration is referred to as the Cray ML-Safe
configuration of the UNICOS operating system. Although the Cray ML-Safe
configuration of the UNICOS operating system is not an evaluated product,
this configuration fully supports all functionality described in the B1
evaluation criteria.

UNICOS System Administration Publications

This guide is one of a set of related manuals that cover information on the
structure and operation of a Cray computer system running the UNICOS
operating system, as well as information on administering various products that
run under the UNICOS operating system. This set includes the following
documents:

• General UNICOS System Administration

• UNICOS Resource Administration

• UNICOS Configuration Administrator’s Guide

• UNICOS Networking Facilities Administrator’s Guide

• UNICOS NQS and NQE Administrator’s Guide

• Kerberos Administrator’s Guide

• Tape Subsystem Administration

General UNICOS System Administration, contains information on performing
basic administration tasks as well as information about system and security
administration using the UNICOS multilevel (MLS) feature. This publication
contains chapters documenting file system planning, UNICOS startup and
shutdown procedures, file system maintenance, basic administration tools, crash
and dump analysis, the UNICOS multilevel security (MLS) feature, and
administration of online features.

S–2302–10010 xxi

UNICOS® Resource Administration

UNICOS Resource Administration, contains information on the administration of
various UNICOS features available to all UNICOS systems. This publication
contains chapters documenting accounting, automatic incident reporting (AIR),
the fair-share scheduler, file system quotas, file system space monitoring,
system activity and performance monitoring, and the Unified Resource
Manager (URM).

UNICOS Configuration Administrator’s Guide, provides details about UNICOS
configuration files created when the UNICOS operating system is installed and
configured.

UNICOS Networking Facilities Administrator’s Guide, contains information on
administration of networking facilities supported by the UNICOS operating
system. This publication contains chapters documenting TCP/IP for the
UNICOS operating system, the UNICOS network file system (NFS) feature, the
network information system (NIS) feature, and the Cray-based network monitor.

UNICOS NQS and NQE Administrator’s Guide, contains information on
administration of the Network Queuing System (NQS) and the Network
Queuing Environment (NQE) features.

Kerberos Administrator’s Guide, contains information on administration of the
Kerberos feature, a set of programs and libraries that provide distributed
authentication over an open network. This publication contains chapters
documenting Kerberos implementation, configuration, and troubleshooting.

Tape Subsystem Administration, contains information on administration of
UNICOS and UNICOS/mk tape subsystems. This publication contains chapters
documenting tape subsystem administration commands, tape configuration,
and tape troubleshooting.

Related Publications

For detailed information on UNICOS installation procedures, see the following
Cray Inc. publications:

• UNICOS Installation Guide for Cray J90se and Cray SV1 Series GigaRing based
Systems

• UNICOS Installation Guide for Cray T90 and Cray T90 IEEE Model E based
Systems

• UNICOS Installation Guide for Cray SV1 Model V based Systems

xxii S–2302–10010

Preface

• UNICOS Installation Guide for Cray T90 and Cray T90 IEEE GigaRing based
Systems

• UNICOS System Configuration Using ICMS

For additional information about the UNICOS operating system and its
features, see the following Cray publications:

• Programming Environment Release Overview

• Application Programmer’s I/O Guide

• UNICOS Basic Administration Guide for Cray J90se and Cray SV1 Series Systems

• Tape Subsystem User’s Guide

• UNICOS Source Manager (USM) User’s Guide

• UNICOS Multilevel Security (MLS) Feature User’s Guide

• Cray Message System Programmer’s Guide

• Cray/REELlibrarian (CRL) Administrator’s Guide

• Cray Data Migration Facility (DMF) Administrator’s Guide

• Cray Data Migration Facility (DMF) Release and Installation Guide

• Cray Data Migration Facility (DMF) MSP Writer’s Guide

• FTA User and Administrator Manual

• OLNET Online Diagnostic Network Communications Program Maintenance
Manual for UNICOS. Cray PRIVATE. This document contains information
private to Cray, Inc. It can be distributed to non-Cray personnel only with
approval of the appropriate Cray manager.

For more information about the system workstation (SWS), see the following
Cray publications:

• SWS-ION Administration and Operations Guide

• SWS Solaris Operating System and Devices Installation Guide

• SWS-ION Release Overview

For more information about the I/O subsystem model E (IOS-E) and the
support system (OWS-E and OWS-T), see the following Cray publications:

S–2302–10010 xxiii

UNICOS® Resource Administration

• I/O Subsystem Model E (IOS-E) Support Guide. Cray PRIVATE. This document
contains information private to Cray, Inc. It can be distributed to non-Cray
personnel only with approval of the appropriate Cray manager.

• Support System Reference Manual

• Support System Operator’s Guide

• Support System Administrator’s Guide

• Support System and IOS-E Release Overview

For more information about the networking and communications software
supported under the UNICOS operating system, see the following Cray
publications:

• TCP/IP Network User’s Guide

• Cray L7R Release Overview and Software Installation Guide

• Network Queuing System (NQS) User’s Guide

• OSI Administrator’s Guide

• Kerberos User’s Guide

• Remote Procedure Call (RPC) Reference Manual

Design specifications for the UNICOS multilevel security (MLS) feature are
based on the trusted computer system evaluation criteria developed by the
U. S. Department of Defense (DoD). If you require more information about
multilevel security on UNICOS, you may find the following sources helpful:

• DoD Computer Security Center. A Guide to Understanding Trusted Facility
Management (DoD NCSC-TG-015). Fort George G. Meade, Maryland: 1989.

• DoD Computer Security Center.Department of Defense Trusted Computer
System Evaluation Criteria (DoD 5200.28-STD). Fort George G. Meade,
Maryland: 1985. (Also known as the Orange book.)

• DoD Computer Security Center. Trusted Network Interpretation of the Trusted
Computer System Evaluation Criteria (DoD NCSC-TG-005-STD). Fort George
G. Meade, Maryland: 1987. (Also known as the Red book.)

• DoD Computer Security Center.Summary of Changes, Memorandum for the
Record (DoD 5200.28-STD). Fort George G. Meade, Maryland: 1986.

xxiv S–2302–10010

Preface

• DoD Computer Security Center.Password Management
Guidelines(CSC-STD-002-85). Fort George G. Meade, Maryland: 1985.

• Wood, Patrick H. and Stephen G. Kochan. UNIX System Security. Hasbrouck
Heights, N.J.: Hayden Book Company, 1985.

Note: If your site wants to purchase the optional SecurID card used with
UNICOS MLS network security, the necessary hardware, software, and
user publications can be obtained from Security Dynamics, Inc., 2067
Massachusetts Avenue, Cambridge, MA, 02140, (617) 547-7820.

Ordering Printed Publications

To order printed copies of software publications, contact the Cray Software
Distribution Center in any of the following ways:

E-mail:
orderdsk@cray.com

Web:
http://www.cray.com/swpubs/

Click on the Download Request Form link.

Telephone (inside U.S., Canada):
1–800–284–2729 (BUG CRAY), then 605–9100

Telephone (outside U.S., Canada):
Contact your account or service representative, or call +1–651–605–9100

Fax:
+1–651–605–9001

Mail:
Software Distribution Center
Cray Inc.
1340 Mendota Heights Road
Mendota Heights, MN 55120–1128
USA

S–2302–10010 xxv

UNICOS® Resource Administration

Conventions

The following conventions are used throughout this document:

Convention Meaning

command This fixed-space font denotes literal items, such as
file names, pathnames, man page names,
command names, and programming language
elements.

manpage(x) Man page section identifiers appear in
parentheses after man page names. The following
list describes the identifiers:

1 User commands

1B User commands ported from BSD

2 System calls

3 Library routines, macros, and
opdefs

4 Devices (special files)

4P Protocols

5 File formats

7 Miscellaneous topics

7D DWB-related information

8 Administrator commands

Some internal routines (for example, the
_assign_asgcmd_info() routine) do not have
man pages associated with them.

variable Italic typeface indicates an element that you will
replace with a specific value. For instance, you
may replace filename with the name datafile in
your program. It also denotes a word or concept
being defined.

user input This bold, fixed-space font denotes literal items
that the user enters in interactive sessions.
Output is shown in nonbold, fixed-space font.

xxvi S–2302–10010

Preface

[] Brackets enclose optional portions of a syntax
representation for a command, library routine,
system call, and so on.

... Ellipses indicate that a preceding element can be
repeated.

The following machine naming conventions may be used throughout this
document:

Term Definition

Cray PVP systems All configurations of Cray parallel vector
processing (PVP) systems.

Cray UNICOS Version 10.0 is an X/Open Base 95 branded product.

Reader Comments

Please contact us with any comments that will help us to improve the accuracy
and usability of this manual. Be sure to include the title and number of the
document with your comments. We value your comments and will respond to
them promptly. Contact us in any of the following ways:

E-mail:
swpubs@cray.com

CRInform (for subscribers):
http://crinform.cray.com

Click on the Report a Software Problem link. Use PUBLICATIONS for the
group name, PUBS for the command, and NO-LICENSE for the release name.

Telephone (inside U.S., Canada):
1–800–950–2729 (Cray Customer Support Center)

Telephone (outside U.S., Canada):
Contact your account or service representative, or call +1–715–726–4993 (Cray
Customer Support Center)

Mail:
Software Publications
Cray Inc.
1340 Mendota Heights Road

S–2302–10010 xxvii

UNICOS® Resource Administration

Mendota Heights, MN 55120–1128
USA

xxviii S–2302–10010

Introduction to System Administration [1]

This guide is a teaching and reference document for people who manage the
operation of Cray computer systems running the UNICOS operating system. It
contains information needed in the administration of various UNICOS features
available to all UNICOS systems.

This manual provides information on the use and administration of the
following UNICOS products:

• Accounting: Cray system accounting (CSA) and standard UNIX accounting.

• Automatic incident reporting (AIR), a UNICOS facility that allows you to
automate the monitoring of UNICOS components, such as online tapes,
Network Queuing System (NQS), Transmission Control Protocol/Internet
Protocol (TCP/IP), and the kernel. This facility allows you to monitor
existence, ability to respond, and ability to function. This manual also
contains an appendix that provides descriptions of the tests available with
the automatic incident reporting (AIR) feature.

• Fair-share scheduler (also referred to as fair-share), a UNICOS facility that
provides resource control and allows a machine to be shared among groups
in an organized fashion.

• File system quotas, a UNICOS feature that allows you to control the amount
of file system space in blocks and the number of files used by each account,
group, and user on an individual basis.

• File system monitor, a UNICOS feature that improves the usability and
reliability of the system by observing the amount of free space on the
mounted file systems and taking remedial action if warning or critical
thresholds are reached.

• System activity and performance monitoring, including real-time
performance monitoring with the sam utility or the standard UNIX system
activity package, and disk use monitoring.

• Unified Resource Manager (URM), a job scheduler that balances the
demands of both batch and interactive sessions.

S–2302–10010 1

UNICOS® Resource Administration

This guide replaces neither experience nor other documents that more fully
describe specific system areas. Familiarity with the references listed in the
preface is necessary to effectively manage Cray computer systems running
UNICOS.

2 S–2302–10010

Accounting [2]

The UNICOS operating system supports two types of accounting: Cray system
accounting and standard UNIX accounting. Both types of accounting are
described in this chapter.

2.1 Cray System Accounting (CSA)

Cray system accounting (CSA) is designed to meet the unique accounting
requirements of Cray sites. Like the standard UNIX accounting package, CSA
provides methods to collect per-process resource utilization data, record connect
sessions, monitor disk usage, and charge fees to specific logins. CSA also
provides other facilities that are not available from the standard accounting
package. These include the following:

• Per-job accounting

• Accounting for socket usage

• Device accounting

• Daemon accounting (for the Network Queuing System (NQS) and the
UNICOS tape subsystem)

• Disk accounting by account ID

• Arbitrary accounting periods

• Flexible system billing unit (SBU) system

• One file containing all data for an accounting period

• Off-line archiving of accounting data

Sites may run either the standard UNICOS accounting programs or the CSA
package by invoking the appropriate shell scripts and programs. Both packages
are installed with the UNICOS 10.0 release.

UNICOS system features in the CSA package include configurable parameters
located in a single file, /etc/config/acct_config, and a set of user-defined
exits that allows sites to tailor the daily run of accounting to their specific needs.

S–2302–10010 3

UNICOS® Resource Administration

2.1.1 Concepts and Terminology

The following concepts and terms are important in CSA:

Term Description

Daily accounting Unlike the standard daily accounting, CSA’s
accounting can be run as many times as necessary
during a day. However, this feature is still
referred to as daily accounting.

Periodic accounting Accounting similar to the standard UNICOS
monthly accounting. CSA, however, lets system
administrators specify the time periods for which
“monthly” or cumulative accounting is to be run.
Thus, periodic accounting can be run more than
once a month.

Recycled data By default, accounting data for active sessions is
recycled until the session terminates. CSA reports
only data for terminated sessions unless
csarun(8) is invoked with the -A option.
csarun places recycled data into data files in the
/usr/adm/acct/day directory. These data files
are suffixed with 0; for example, per-process
accounting data for active sessions from previous
accounting periods is in the
/usr/adm/acct/day/pacct0 file.

Session CSA organizes accounting data by sessions and
boot times and then places the data into a session
record file.

For non-NQS jobs, a session consists of all
accounting data for a given job ID during a single
boot period.

A session for an NQS job consists of the
accounting data for all job IDs associated with the
job’s NQS sequence number/machine name
identifier. NQS jobs may span multiple boot
periods. If a job is restarted, it has the same job
ID associated with it during all boot periods in
which it runs. Rerun NQS jobs have multiple job
IDs. CSA treats all phases of an NQS job as being
in the same session.

4 S–2302–10010

Accounting [2]

Uptime period or boot
period

A period delineated by the system boot times
found in /etc/csainfo. The csaboots(8)
command writes to this file during system boot.

2.1.2 Files and Directories Overview

This section provides a brief overview of the CSA file and directory structure.
A more complete description of the files and directories can be found in Section
2.1.7, page 23.

2.1.2.1 Structures of the acct and tmp Directories

The directory structure of /usr/adm/acct is set up so that it is easy to find
CSA data files and reports. The /tmp structure is also used while csarun(8) is
running. Figure 1 illustrates the directory structure for both directories.

S–2302–10010 5

UNICOS® Resource Administration

/usr/adm/acct

day work sum fiscal nite

Raw data
files

MMDD

hhmm hhmm hhmm

Raw and preprocessed
data files

data rpt

Processing/
error

messages

MMDD MMDD MMDD MMDD

hhmm hhmm hhmm hhmm

pdacct
cms

pdacct
cms

rprt rprt

data rpt

MMDD MMDD MMDD MMDD

hhmm hhmm hhmm hhmm hhmm hhmm

cacct
dacct
cms

rprt

/tmp/AC.MMDD

hhmm

Super-record

●
●
●

●
●
●

cacct
dacct
cms

cacct
dacct
cms

●
●
●

●
●
●

rprt rprt

a10111

Figure 1. /usr/adm/acct and tmp Directory Structures

6 S–2302–10010

Accounting [2]

Note: As distributed, only the directory /usr/adm/acct/day is readable by
all users. Within the day directory, only the pacct* files are readable by all
users. This allows any user to examine the pacct* files by using the
acctcom(1) command. All other directories and files within
/usr/adm/acct are accessible only by root and users in the group adm.

Warning: acctcom(1) on a Cray ML-Safe configuration of the UNICOS
system is considered to be a covert channel. You may want to consider
restricting access to this command to the adm group.

The following abbreviations have these meanings:

Abbreviation Definition

MMDD Month, day

hhmm Hour, minute

2.1.2.2 Shell Scripts and C Binaries

The /usr/lib/acct directory contains virtually all of the programs and
scripts used by both the standard accounting and CSA packages. The only CSA
program not located here is /etc/csaboots (see csaboots(8)), which records
boot times at system startup. Programs used only by CSA begin with the
characters csa.

2.1.2.3 Unprocessed Data Files

Both CSA and the standard accounting package expect most unprocessed
accounting files to be located in the /usr/adm/acct/day directory. The use of
this directory simplifies tracking of the current accounting files. The following
table shows the location of the raw data files.

Accounting file Description

/usr/adm/acct/day/dtmp Disk accounting data

/usr/adm/acct/day/nqacct* NQS daemon accounting data

/usr/adm/acct/day/pacct* Per-process accounting data

/usr/adm/acct/day/tpacct* Tape daemon accounting data

S–2302–10010 7

UNICOS® Resource Administration

/usr/adm/acct/day/soacct* Socket accounting data

/etc/csainfo Boot times

/etc/wtmp Connect time accounting data

Warning: On a Cray ML-Safe configuration of the UNICOS system,
/etc/wtmp is considered a covert channel. You may want to consider
restricting access to this file to the adm group.

Accounting files in /usr/adm/acct/day whose names include the suffix 0
contain data from sessions that did not complete during the previous
accounting periods.

During CSA data processing, sites may select to archive the raw and/or
processed data off-line. Section 2.1.5, page 16, describes how to do this. By
default, all raw data files are deleted after use and are not archived.

2.1.2.4 Data Files Being Processed

At the start of a daily accounting run, CSA moves the raw data files from
/usr/adm/acct/day to the appropriate
/usr/adm/acct/work/MMDD/hhmm directory. The files in the work
directory are as follows:

File Description

Ever.tmp Data verification work file

Pctime* Preprocessed connect time data

Pnqacct* Preprocessed NQS data

Puptime* Uptimes

Rctime0 Connect data to be recycled in the next
accounting run

Rnqacct0 NQS data to be recycled in the next accounting
run

Rpacct0 Per-process accounting data to be recycled in the
next accounting run

Rtpacct0 Tape data to be recycled in the next accounting
run

Ruptime0 Uptimes to be recycled in the next accounting run

8 S–2302–10010

Accounting [2]

Wctime* Verified raw connect time data

Wdisktacct Disk accounting data (cacct.h format)

Wdtmp Disk accounting data from diskusg(8) or
acctdusg(8)

Wnqacct* Raw NQS accounting data

Wpacct* Raw per-process accounting data

Wsoacct* Raw socket accounting data

Wtpacct* Raw tape accounting data

Wwtmp Raw connect time data

2.1.2.5 Processed Data Files

CSA outputs the following data files:

File Description

/tmp/AC.MMDD/hhmm/Super-record

Session record file; this file is usually deleted after it has been
used by CSA.

/usr/adm/acct/fiscal/data/MMDD/hhmm/pdacct

Consolidated periodic data.

/usr/adm/acct/fiscal/data/MMDD/hhmm/cms

Periodic command usage data.

/usr/adm/acct/sum/data/MMDD/hhmm/cacct

Consolidated daily data; this file is deleted by csaperiod(8) if
the -r option is specified.

/usr/adm/acct/sum/data/MMDD/hhmm/cms

Daily command usage data; this file is deleted by
csaperiod(8) if the -r option is specified.

S–2302–10010 9

UNICOS® Resource Administration

/usr/adm/acct/sum/data/MMDD/hhmm/dacct

Daily disk usage data; this file is deleted by csaperiod(8) if
the -r option is specified.

2.1.2.6 Reports

CSA generates daily and periodic reports. The locations of these reports are as
follows:

File Description

/usr/adm/acct/fiscal/rpt/MMDD/hhmm/rprt

Periodic accounting report

/usr/adm/acct/sum/rpt/MMDD/hhmm/rprt

Daily accounting report

2.1.3 Daily Operation Overview

When the UNICOS operating system is run in multiuser mode, accounting
behaves in a manner similar to the following process. However, because sites
may customize CSA, the following may not reflect the actual process at a
particular site:

1. System boot time is written to /etc/csainfo. Each time the system is
booted, the boot time is written to /etc/csainfo by the /etc/csaboots
command, which is invoked by rc (see brc(8)) during system startup.

2. Process accounting is enabled. When the system is switched to multiuser
mode, the /usr/lib/acct/startup (see acctsh(8)) script is called by
/etc/rc and performs the following functions:

a. Writes an acctg on record to /etc/wtmp; the acctwtmp program is
used to write this record.

b. Enables process accounting with the command line
/usr/lib/acct/turnacct on; turnacct(8) calls the accton
program with the argument /usr/adm/acct/day/pacct.

c. Removes lock files and saved pacct and wtmp files.
/usr/lib/acct/remove is invoked to clean up saved pacct and
wtmp files in /usr/adm/acct/sum. Unlike the standard accounting

10 S–2302–10010

Accounting [2]

package, CSA does not leave files in this directory. In addition, the lock
files are removed from /usr/adm/acct/nite.

3. By default, daemon accounting for NQS, tape, and sockets is handled by
the /usr/lib/acct/startup script. However, in order to run NQS and
tape daemon accounting, you must modify the appropriate subsystem.
Section 2.1.4, page 11, describes this process in detail.

4. The amount of disk space used by each user is determined periodically.
/usr/lib/acct/dodisk (see dodisk(8)) is run periodically by cron to
generate a snapshot of the amount of disk space being used by each user.
dodisk should be run at most once for each time
/usr/lib/acct/csarun (see csarun(8)) is run. Multiple invocations of
dodisk during the same accounting period write over previous dodisk
output.

5. A fee file is created. Sites desiring to charge fees to certain users can do so
by invoking /usr/lib/acct/chargefee (see chargefee(8)). Each
accounting period’s fee file (/usr/adm/acct/day/fee) is merged into the
consolidated accounting records by /usr/lib/acct/csaperiod (see
csaperiod(8)).

6. Daily accounting is run. At specified times during the day, csarun is
executed by cron to process the current accounting data. The output from
csarun is a consolidated daily accounting file and an ASCII report.

7. Periodic accounting is run. At a specific time during the day, or on certain
days of the month, /usr/lib/acct/csaperiod (see csaperiod(8)) is
executed by cron to process consolidated accounting data from previous
accounting periods. The output from csaperiod is a consolidated periodic
accounting file and an ASCII report.

8. Accounting is disabled. When the system is shut down gracefully, the script
/usr/lib/acct/shutacct (see shutacct(8)) is executed by
/etc/shutdown (see shutdown(8)). shutacct writes an “acctg off”
record to /etc/wtmp. It then calls /usr/lib/acct/turnacct and
/usr/lib/acct/turndacct to disable per-process and daemon
accounting (see turnacct(8) and turndacct(8)).

2.1.4 Setting up CSA

The following is a brief description of setting up CSA. Site-specific
modifications are discussed in detail in Section 2.1.10, page 39. As described in
this section, CSA is run by a person with super-user permissions. CSA also can

S–2302–10010 11

UNICOS® Resource Administration

be run by users who have acct permissions and are in the adm group. See
Section 2.1.10.7, page 54, for the necessary modifications.

1. Change the default system billing unit (SBU) weighting factors, if necessary.
By default, no SBUs are calculated. If your site wants to report SBUs, you
must modify the configuration file /etc/config/acct_config.

2. Modify any necessary parameters in the /etc/config/acct_config file,
which contains configurable parameters for the accounting system. Ensure
that parameters, such as MEMINT, reflect the needs of your site.

3. If you want daemon accounting, you must enable daemon accounting at
system startup time by performing the following steps:

a. Ensure that the variables in /etc/config/acct_config for the
subsystems for which you want to enable daemon accounting are set to
on. Set the NQS_START, TAPE_START, and SOCKET_START parameters
to on to enable NQS, online tapes, and socket accounting, respectively.

b. If necessary, enable accounting from the daemon’s side. Specifically,
NQS and tape accounting must also be enabled by the associated
daemon. Use the qmgr(8) set accounting on command to turn on
NQS accounting. To enable tape daemon accounting, execute
tpdaemon(8) with the -c option. Socket accounting does not require
any additional processing.

4. Prior to setting up the following cron jobs, ensure that the
/etc/checklist file exists. By default, dodisk(8) performs disk
accounting on the special files listed in checklist. For most installations,
entries similar to the following should be made in
/usr/spool/cron/crontabs/root so that cron(8) automatically runs
daily accounting:

0 4 * * 1-6 /usr/lib/acct/csarun 2> /usr/adm/acct/nite/fd2log

0 3 * * 1-6 /usr/lib/acct/dodisk -a -v 2> /usr/adm/acct/nite/dk2log

csarun(8) should be executed at such a time that dodisk has sufficient
time to complete. If dodisk does not complete before csarun executes,
disk accounting information may be missing or incomplete.

dodisk must be invoked with either the -a or the -A option. If it is not,
csaperiod(8) aborts when it attempts to merge the disk usage information
with other accounting data.

12 S–2302–10010

Accounting [2]

5. Periodically check the size of the acct files. Entries similar to the following
should be made in /usr/spool/cron/crontabs/root:

0 * * * * /usr/lib/acct/ckdacct nqs tape socket

0 * * * * /usr/lib/acct/ckpacct

cron(8) should periodically execute the ckpacct(8) and ckdacct(8) shell
scripts. If the pacct file grows larger than 500 blocks (default), ckpacct
calls the command /usr/lib/acct/turnacct switch to start a new
pacct file. ckpacct also makes sure that there are at least 500 free blocks
on the file system containing /usr/adm/acct (/usr by default). If there
are not enough blocks, per-process accounting is turned off. The next time
ckpacct is executed, it turns per-process accounting back on if there are
enough free blocks.

ckdacct performs an analogous function for daemon accounting. If a
daemon’s accounting file is larger than 500 blocks (default), the command
/usr/lib/acct/turndacct switch is executed in order to start a new
accounting file. In addition, ckdacct also checks the amount of free blocks
on the ACCT_FS file system (/usr by default).

Ensure that the ACCT_FS and MIN_BLKS variables have been set correctly
in the /etc/config/acct_config configuration file. ACCT_FS is the file
system containing /usr/adm/acct; the default is /usr. MIN_BLKS is the
minimum number of free blocks needed in the ACCT_FS file system. The
default is 500.

It is very important that ckpacct and ckdacct be run periodically so that
an administrator is notified when the accounting file system (/usr by
default) runs out of disk space. After the file system is cleaned up, the next
invocation of ckpacct and ckdacct enables per-process and daemon
accounting. You can manually reenable accounting by invoking
turnacct(8) and turndacct(8) with the on operand.

If ckpacct and ckdacct are not run periodically, and the accounting file
system runs out of space, an error message is written to the console stating
that a write error occurred and that accounting is disabled. If you do not
free disk space as soon as possible, a vast amount of accounting data can be
lost unnecessarily. Additionally, lost accounting data can cause csarun(8)
to abort or report erroneous information.

S–2302–10010 13

UNICOS® Resource Administration

6. To run periodic accounting, an entry similar to the following should be
made in /usr/spool/cron/crontabs/root. This command generates a
periodic report on all consolidated data files found in
/usr/adm/acct/sum/data/* and then deletes those data files:

15 5 1 * * /usr/lib/acct/csaperiod -r 2> /usr/adm/acct/nite/pd2log

This entry is executed at such a time that csarun(8) has sufficient time to
complete. This example results in the creation of a monthly accounting file
and report on the first day of each month. These files contain information
about the previous month’s accounting.

7. Update the holidays file. The /usr/lib/acct/holidays file contains
the prime/nonprime time table for the accounting system, which should be
edited to reflect your site’s holiday schedule for the year.

By default, the holidays file is located in the /usr/lib/acct directory.
You can change this location by modifying the HOLIDAY_FILE variable in
/etc/config/acct_config. If necessary, modify the NUM_HOLIDAYS
variable (also located in /etc/config/acct_config), which sets the
upper limit on the number of holidays that can be defined in
HOLIDAY_FILE. The format of this file is composed of the following types
of entries:

• Comment lines: These lines may appear anywhere in the file as long as
the first character in the line is an asterisk (*).

• Version line: This line must be the first uncommented line in the file and
must only appear once. It denotes that the new holidays file format is
being used. This line should not be changed by the site.

• Year designation line: This line must be the second uncommented line
in the file and must only appear once. The line consists of two fields.
The first field is the keyword YEAR. The second field must be either the
current year or the wildcard character, asterisk (*). If the year is
wildcarded, the current year is automatically substituted for the year.
The following are examples of two valid entries:

YEAR 1997

YEAR *

• Prime/nonprime time designation lines: These must be uncommented
lines 3, 4, and 5 in the file. The format of these lines is as follows:

period prime_time_start nonprime_time_start

14 S–2302–10010

Accounting [2]

The variable period is one of the following: WEEKDAY, SATURDAY, or
SUNDAY. The period can be in either upper or lowercase.

The prime and nonprime start time can be one of two formats:

– Both start times are 4-digit numeric values between 0000 and 2359.
The nonprime_time_start value must be greater than the
prime_time_start value. For example, it is incorrect to have prime time
start at 07:30 A.M. and nonprime time start at 1 minute after
midnight. Therefore, the following entry is wrong and can cause
incorrect accounting values to be reported.

WEEKDAY 0730 0001

It is correct to specify prime time to start at 07:30 A.M. and nonprime
time to start at 5:30 P.M. on weekdays. You would enter the
following in the holiday file:

WEEKDAY 0730 1730

– Start times specify that the entire period is to be either all prime time
or all nonprime time. To specify that the entire period is to be
considered prime time, set prime_time_start to ALL and
nonprime_time_start to NONE. If the period is to be considered all
nonprime time, set prime_time_start to NONE and nonprime_time_start
to ALL. For example, to specify Monday through Friday as all prime
time, you would enter the following:

WEEKDAY ALL NONE

To specify all of Sunday to be nonprime time, you would enter the
following:

SUNDAY NONE ALL

• Company holidays lines: These entries follow the year designation line
and have the following general format:

day-of-year Month Day Description of Holiday

The day-of-year field is a number in the range 1 through 366, indicating
the day for a given holiday (leading white space is ignored). The other
three fields are commentary and are not currently used by other
programs. Each holiday is considered all nonprime time.

S–2302–10010 15

UNICOS® Resource Administration

If the holidays file does not exist or there is an error in the year
designation line, the default values for all lines are used.

If there is an error in a prime/nonprime time designation line, the entry
for the erroneous line is set to a default value. All other lines in the
holidays file are ignored and default values are used.

If there is an error in a company holidays line, all holidays are ignored.

The default values are as follows:

YEAR The current year.

WEEKDAY Monday through Friday is all prime time.

SATURDAY Saturday is all nonprime time.

SUNDAY Sunday is all nonprime time.

No holidays are specified

2.1.5 The csarun(8) Command

The /usr/lib/acct/csarun command is the primary daily accounting shell
script. It processes connect, disk, per-process, and daemon accounting files and
is normally initiated by cron(8) during nonprime hours.

csarun(8) also contains four user-exit points allowing sites to tailor the daily
run of accounting to their specific needs (see Section 2.1.10.3, page 51 for
information on setting up user exits callable from csarun and Section 2.2.3.1,
page 83, for information on setting up a user exit callable from runacct).

The csarun command does not damage files in the event of errors. It contains
a series of protection mechanisms that attempt to recognize an error, provide
intelligent diagnostics, and terminate processing in such a way that csarun can
be restarted with minimal intervention.

2.1.5.1 Daily Invocation

The csarun command is invoked periodically by cron(8). It is very important
that you ensure that the previous invocation of csarun completed successfully
before invoking csarun for a new accounting period. If this is not done,
information about unfinished sessions will be inaccurate.

16 S–2302–10010

Accounting [2]

Data for a new accounting period can also be interactively processed by
executing the following:

nohup csarun 2> /usr/adm/acct/nite/fd2log &

Before executing csarun in this manner, ensure that the previous invocation
completed successfully. To do this, look at the files active and statefile in
/usr/adm/acct/nite. Both files should specify that the last invocation
completed successfully.

2.1.5.2 Error and Status Messages

The csarun error and status messages are placed in the
/usr/adm/acct/nite directory. The progress of a run is tracked by writing
descriptive messages to the file active. Diagnostic output during the
execution of csarun is written to fd2log. The lock and lock1 files prevent
concurrent invocations of csarun; csarun will abort if these two files exist
when it is invoked. The clastdate file contains the month, day, and time of
the last two executions of csarun.

Errors and warning messages from programs called by csarun are written to
files that have names beginning with E and ending with the current date and
time. For example, Ebld.11121400 is an error file from csabuild(8) for a
csarun invocation on November 12, at 14:00.

If csarun detects an error, it sends an informational message to the operator
with msgi(1), sends mail to root and adm, removes the locks, saves the
diagnostic files, and terminates execution. When csarun detects an error, it
will send mail either to MAIL_LIST if it is a fatal error, or to WMAIL_LIST if it
is a warning message, as defined in the configuration file
/etc/config/acct_config.

2.1.5.3 States

Processing is broken down into separate reentrant states so that csarun can be
restarted. As each state completes, /usr/adm/acct/nite/statefile is
updated to reflect the next state. When csarun reaches the CLEANUP state, it
removes various data files and the locks, and then terminates.

The following describes the events that occur in each state. MMDD refers to the
month and day csarun was invoked. hhmm refers to the hour and minute of
invocation.

S–2302–10010 17

UNICOS® Resource Administration

State Description

SETUP The current accounting files are switched via turnacct(8) and
turndacct(8). These files are then moved to the
/usr/adm/acct/work/MMDD/hhmm directory. File names are
prefaced with W. /etc/wtmp and /etc/csainfo are also moved
to this directory.

WTMPFIX The wtmp file in the work directory is checked for accuracy by
wtmpfix (see fwtmp(8)). Some date changes cause csaline(8)
to fail, so wtmpfix attempts to adjust the time stamps in the
wtmp file if a date change record appears.

If wtmpfix is unable to fix the wtmp file, the wtmp file must be
manually repaired. This is described in Section 2.1.6.1, page 21.

VERIFY By default, per-process and NQS accounting files are checked for
valid data. In addition, tape and socket accounting files are
verified. Records with invalid data are removed. Names of bad
data files are prefixed with BAD. in the /usr/adm/acct/work/*
directory. The corrected files do not have this prefix.

PREPROC The NQS and connect time (wtmp) accounting files are run
through preprocessors. File names of preprocessed files are
prefixed with a P in the /usr/adm/acct/work/MMDD/hhmm
directory.

ARCHIVE1 First user exit of the csarun script. If a script named
/usr/lib/acct/csa.archive1 exists, it will be executed
through the shell . (dot) command. The . (dot) command will not
execute a compiled program, but the user exit script can. You
might use this user exit to archive the accounting files in
${WORK}.

BUILD The per-process, NQS, tape, socket, and connect accounting data
is organized into a session record file.

ARCHIVE2 Second user exit of the csarun script. If a script named
/usr/lib/acct/csa.archive2 exists, it will be executed
through the shell . (dot) command. The . (dot) command will not
execute a compiled program, but the user exit script can. You
might use this exit to archive the session record file.

CMS Produces a command summary file in cacct.h format. The
cacct file is put into the
/usr/adm/acct/sum/data/MMDD/hhmm directory for use by
csaperiod(8).

18 S–2302–10010

Accounting [2]

REPORT Generates the daily accounting report and puts it into
/usr/adm/acct/sum/rpt/MMDD/hhmm/rprt. A
consolidated data file,
/usr/adm/acct/sum/data/MMDD/hhmm/cacct, is also
produced from the session record file. In addition, accounting
data for unfinished sessions is recycled.

DREP Generates a daemon usage report based on the session file. This
report is appended to the daily accounting report,
/usr/adm/acct/sum/rpt/MMDD/hhmm/rprt.

FEF Third user exit of the csarun script. If a script named
/usr/lib/acct/csa.fef exists, it will be executed through the
shell . (dot) command. The . (dot) command will not execute a
compiled program, but the user exit script can. csarun variables
are available, without being exported, to the user exit script. You
might use this exit to convert the session record file to a format
suitable for a front-end system.

USEREXIT Fourth user exit of the csarun script. If a script named
/usr/lib/acct/csa.user exists, it will be executed through
the shell . (dot) command. The . (dot) command will not execute
a compiled program, but the user exit script can. csarun
variables are available, without being exported, to the user exit
script. You might use this exit to run local accounting programs.

CLEANUP Cleans up temporary files, removes the locks, and then exits.

2.1.5.4 Restarting csarun(8)

If csarun(8) is executed without arguments, the previous invocation is
assumed to have completed successfully.

The following operands are required with csarun if it is being restarted:

csarun [MMDD [hhmm [state]]]

MMDD is month and day, hhmm is hour and minute, and state is the csarun
entry state.

To restart csarun, follow these steps:

1. Remove all lock files by using the following command line:

rm -f /usr/adm/acct/nite/lock*

S–2302–10010 19

UNICOS® Resource Administration

2. Execute the appropriate csarun restart command, using the following
examples as guides:

a. To restart csarun using the time and state specified in clastdate and
statefile, execute the following command:

nohup csarun 0601 2> /usr/adm/acct/nite/fd2log &

In this example, csarun will be rerun for June 1, using the time and
state specified in clastdate and statefile.

b. To restart csarun using the state specified in statefile, execute the
following command:

nohup csarun 0601 0400 2> /usr/adm/acct/nite/fd2log &

In this example, csarun will be rerun for the June 1 invocation that
started at 4:00 A.M., using the state found in statefile.

c. To restart csarun using the specified date, time, and state, execute the
following command:

nohup csarun 0601 0400 BUILD 2> /usr/adm/acct/nite/fd2log &

In this example, csarun will be restarted for the June 1 invocation that
started at 4:00 A.M., beginning with state BUILD.

Before csarun is restarted, the appropriate directories must be restored. If the
directories are not restored, further processing is impossible. These directories
are as follows:

/usr/adm/acct/work/MMDD/hhmm
/usr/adm/acct/sum/data/MMDD/hhmm
/usr/adm/acct/sum/rpt/MMDD/hhmm
/tmp/AC.MMDD/hhmm

If you are restarting at state ARCHIVE2, CMS, REPORT, DREP, or FEF, the session
file must already exist in /tmp/AC.MMDD/hhmm. If the file does not exist,
csarun will automatically restart at the BUILD state. Depending on the tasks
performed during the site-specific USEREXIT state, the session file may or may
not need to exist.

2.1.6 Verifying and Correcting Data Files

This section describes how to remove bad data from various accounting files.

20 S–2302–10010

Accounting [2]

2.1.6.1 Fixing wtmp(8) Errors

The wtmp files generally cause the highest number of errors in the day-to-day
operation of the accounting subsystem. When the date is changed, and the
UNICOS system is in multiuser mode, a set of date change records is written
into the /etc/wtmp file. The wtmpfix (see fwtmp(8)) program is designed to
adjust the time stamps in the wtmp records when a date change is encountered.

Some combinations of date changes and reboots, however, slip by wtmpfix and
cause csaline(8) to fail. The following example shows how to repair a wtmp
file:

$ cd /usr/adm/acct/work/MMDD/hhmm
$ /usr/lib/acct/fwtmp < Wwtmp > xwtmp

$ ed xwtmp

(delete corrupted records)
$ /usr/lib/acct/fwtmp -ic < xwtmp > Wwtmp

(restart csarun at the WTMPFIX state)

If the wtmp file is beyond repair, create a null Wwtmp file. This prevents any
charging of connect time.

2.1.6.2 Verifying Data Files

You can verify data files with the csaedit(8), csapacct(8), and
csaverify(8) commands. csaedit and csapacct verify and delete bad data
records, while csaverify only flags bad records. By default, csaedit and
csaverify are invoked in csarun to verify the data files.

Note that these commands may allow files that contain bad data, such as very
large values, to be successfully verified.

2.1.6.3 Editing Data Files

You can use the csaedit(8) and csapacct(8) commands to verify and remove
records from various accounting files. The following example shows how you
can use csapacct to verify and remove bad records from a per-process
(pacct) accounting file.

In this example, csapacct is invoked with verbose mode enabled (valid data
records are written to the file pacct.NEW):

/usr/lib/acct/csapacct -v pacct pacct.NEW

S–2302–10010 21

UNICOS® Resource Administration

The output produced by this command line is as follows:

Bad record - starting byte offset is 077740 (32736)

invalid pacct record - bad base parent process id 97867

Found the next magic word at byte offset 0100130, ignored 120 bytes

Found 394 BASE records

Found 4 EOJ records

Found 1 MTASK (multitasking) records

Found 0 ERROR records

Found 0 IO records
Found 0 SDS records

Found 0 MPP records

Found 0 PERFORMANCE records

Outputted records for 398 processes

Ignored 120 bytes from the input file

You can use csaedit and csapacct in conjunction with csaverify, by first
running csaverify and noting the byte offsets of the first bad record. Next,
execute csaedit or csapacct and remove the record at the specified offset.
The following example shows how you can verify and then edit a bad pacct
accounting file:

1. The pacct file is verified with the following command line, and the
following output is received:

$ /usr/lib/acct/csaverify -P pacct

/usr/lib/acct/csaverify: pacct: invalid pacct record - bad base parent process id 97867

byte offset: start = 077740 (32736) word offset: start = 07774 (4092)

/usr/lib/acct/csaverify: pacct: invalid pacct record - bad magic word 03514000

byte offset: start = 0100070 (32824) word offset: start = 010007 (4103)

2. The record found at byte offset 32736 is deleted as follows (valid records are
written to pacct.NEW):

/usr/lib/acct/csapacct -o 32736 pacct pacct.NEW

22 S–2302–10010

Accounting [2]

3. The new pacct file is reverified as follows to ensure that all the bad
records have been deleted:

/usr/lib/acct/csaverify -P pacct.NEW

You can use csaedit to produce an abbreviated ASCII version of some of the
daemon accounting files and acctcom(1) to generate a similar ASCII version of
pacct files.

2.1.7 Files and Directories

This section describes the files and directories used by CSA.

2.1.7.1 /usr/adm/acct Directory

The /usr/adm/acct directory contains the following directories:

Directory Description

day Current accounting files

fiscal Periodic accounting data and reports

nite Processing messages and errors

sum Daily accounting data and reports

work Temporary work area

The /usr/adm/acct/day directory contains the current accounting files, as
shown in the following list. Files with names ending with 0 contain data for
uncompleted sessions from previous days.

File Description

dtmp Disk accounting data (ASCII) created by
dodisk(8)

nqacct* NQS daemon accounting data

pacct* Per-process accounting data

soacct* Socket accounting data

tpacct* Tape daemon accounting data

The /usr/adm/acct/fiscal/data/MMDD/hhmm directory contains
processed, periodic, binary accounting data in the form of the following files:

S–2302–10010 23

UNICOS® Resource Administration

File Description

cms Periodic command usage data in command
summary (cms) record format

pdacct Consolidated periodic data generated on MMDD
at hhmm

The /usr/adm/acct/fiscal/rpt/MMDD/hhmm directory contains the
periodic accounting report, rprt, that was generated on MMDD at hhmm.

The /usr/adm/acct/nite directory contains error messages and status
information about the accounting runs in the following files:

File Description

active Progress and status of csarun

activeMMDDhhmm Progress and status of csarun after an error has
been detected

clastdate Last two times csarun was executed; in MMDD
hhmm format

disktacct Disk accounting records in cacct.h format;
created by dodisk(8)

dk2log Diagnostic output created during execution of
dodisk

E*MMDDhhmm Error/warning messages for an accounting run
done on MMDD at hhmm

fd2log Diagnostic output created during execution of
csarun

lineuse tty line usage report

lock, lock1 Controls simultaneous invocations of csarun

pd2log Diagnostic output created during execution of
csaperiod

pdact Progress and status of csaperiod

pdactMMDDhhmm Progress and status of csaperiod after an error
has been detected

reboots The start and ending dates from wtmp and a
listing of reboots

statefile Current state during csarun execution

24 S–2302–10010

Accounting [2]

tmpwtmp The wtmp file corrected by wtmpfix (see
fwtmp(8))

wtmperror wtmpfix error messages

The /usr/adm/acct/sum/data/MMDD/hhmm directory contains daily,
binary accounting data in the following files:

File Description

cacct Consolidated daily data generated on MMDD at
hhmm in cacct.h format

cms Command usage data in command summary
(cms) record format

dacct Disk usage data in cacct.h format

The /usr/adm/acct/sum/rpt/MMDD/hhmm directory contains the daily
accounting report, rprt, which was generated on MMDD at hhmm.

The /usr/adm/acct/work/MMDD/hhmm directory is used as a work area
during the processing of the accounting data. It contains the following files:

File Description

BAD.Wnqacct* Unprocessed NQS accounting data containing
bad records (verified by csaedit)

BAD.Wpacct* Unprocessed per-process accounting data
containing bad records (verified by csaedit)

BAD.Wtpacct* Unprocessed tape accounting data containing bad
records (verified by csaedit)

Ever.tmp Data verification work file

Pctime* Preprocessed connect time data

Pnqacct* Preprocessed NQS data

Puptime* Uptimes

Rctime0 Recycled connect data to be used in the next
accounting period

Rnqacct0 Recycled NQS data to be used in the next
accounting period

Rpacct0 Recycled per-process accounting data to be used
in the next accounting run

S–2302–10010 25

UNICOS® Resource Administration

Rtpacct0 Recycled tape data to be used in the next
accounting period

Ruptime0 Recycled uptimes to be used in the next
accounting period

Wctime* Verified, unprocessed connect time data

Wdisktacct Disk accounting data (cacct.h format) created
by acctdisk(8)

Wdtmp Disk accounting report (ASCII) created by
diskusg(8) or acctdusg(8)

Wnqacct* Unprocessed NQS accounting data

Wpacct* Unprocessed per-process accounting data

Wtpacct* Unprocessed tape accounting data

Wsoacct* Unprocessed socket accounting data

Wwtmp* Unprocessed connect time data

The /tmp/AC.MMDD/hhmm directory contains the session record file,
Super-record, which is generated on MMDD at hhmm.

The /usr/lib/acct directory contains the following programs and shell
scripts used by CSA:

Program/script Description

csaaddc Merges consolidated (cacct) accounting files

csabuild Creates a session file

csacon Creates a consolidated (cacct) accounting file

csaconvert Converts UNICOS 8.0, 8.3, 9.0, 9.1, 9.2, and 9.3
accounting file(s), both System V and CSA, to a
10.0 format

csacrep Generates consolidated accounting reports

csadrep Reports daemon usage based on the session file

csaedit Verifies, deletes records, and prints various data
files

csafef Template to convert session files to an IBM
front-end format

csafef2 Template to summarize session file records by the
tuple user name, job ID, and account ID.

26 S–2302–10010

Accounting [2]

csagcon Consolidates accounting data for session and
pacct files

csagfef Formats consolidated accounting data

csaibm Template to convert session files to an IBM
front-end format

csajrep Generates job reports from a session file

csaline Preprocesses connect time data (/etc/wtmp)

csanqs Preprocesses NQS accounting data

csapacct Verifies and deletes records from a pacct file

csaperiod Performs periodic accounting

csaperm Changes the group ID and permissions on the
accounting files

csarecy Recycles session data for unfinished sessions

csarun Performs daily accounting

csaswitch Enables or disables kernel and daemon
accounting

csaverify Verifies various data files

getconfig Extracts values from the configuration file

The /usr/lib/acct directory may also contain the following programs if
your site uses the accounting user exits:

Program/script Description

csa.archive1 Site-generated user exit for csarun

csa.archive2 Site-generated user exit for csarun

csa.fef Site-generated user exit for csarun

csa.user Site-generated user exit for csarun

S–2302–10010 27

UNICOS® Resource Administration

2.1.7.2 /etc Directory

The /etc directory contains uptime and connect time data in the following files:

File Description

csaboots Captures system boot times

csainfo Output file of csaboots

wtmp Current connect time data

2.1.7.3 /etc/config Directory

The /etc/config directory is the location of the acct_config file that
contains the configurable parameters used by the accounting commands. These
parameters can be changed by using the UNICOS installation and configuration
menu system (the menu system). To see the acct_config file parameters, use
the following menu selection:

UNICOS 8.0 Installation / Configuration Menu System
->Configure System

->Accounting Configuration

The main menu for accounting configuration is as follows:

Mainframe Dependent Parameters ==>

Accounting Start Parameters ==>

Block Device SBUs ==>

Character Device SBUs ==>

Connect Time SBU ==>
Multitasking CPU SBUs=>

NQS SBUs ==>

Pacct File SBUs ==>

Tape SBUs ==>

Miscellaneous Settings ==>

Parameters for CSARUN and CSAPERIOD ==>
Site Defined Settings ==>

Import accounting configuration ...

Activate accounting configuration ...

Reload default accounting configuration ...

28 S–2302–10010

Accounting [2]

Online help for the acct_config parameters is available through the menu
system.

The main menu for accounting configuration displays a table of acct_config
parameters and the current values.

The Import accounting configuration ... option gets the local site
accounting configuration.

The Activate accounting configuration ... option rewrites the
/etc/config/acct_config file with the current values selected in the
menus.

The Reload default accounting configuration ... option reloads
the default values for the acct_config file from the released
/usr/src/skl/etc/config/acct_config file.

2.1.8 CSA Data Processing

The flow of data among the various CSA programs is explained in this section
and is illustrated in Figure 2.

S–2302–10010 29

UNICOS® Resource Administration

a11050

1
5

6
4

4

2

3

13

15

14
11

10

9

8

7

12 7

Session
record

csaboots csainfo csabuild

csanqs

csaline

csarecy

csacon

csadrep

csagfef

acctcms

cms

cms cms

cmsacctcms

csacrepcacct

cacct cacct

csaaddc

nqacct

pacct

usacct

tpacct

wtmp

fee

dtmp
diskusg

chargefee

acctdisk dacct

pdacct
csacrep

CSA system diagram

Periodic
report

Daemon
usage
report

Daily
report

Front-end
format

Session
record

csagcon

soacct

Figure 2. CSA Program Data Flow

1. Generate raw accounting files. Various daemons and system processes write
to the raw accounting files. These accounting files include pacct, nqacct,
soacct, usacct, tpacct, wtmp, and csainfo.

2. Create a fee file. Sites that want to charge fees to certain users can do so
with the chargefee(8) command. chargefee creates a fee file that is
processed by csaaddc(8).

3. Produce disk usage statistics. The dodisk(8) shell script allows sites to take
snapshots of disk usage. dodisk does not report dynamic usage; it only

30 S–2302–10010

Accounting [2]

reports the disk usage at the time the command was run. Disk usage is
processed by csaaddc.

4. Preprocess selected raw accounting files. Generally, a data file that must be
preprocessed contains multiple records for a session. These records are
scattered throughout the file, and the processing of the records often
depends upon other events that are logged in the accounting file (for
example, system reboot). The preprocessor collapses information about a
session into one output record.

NQS and connect time accounting data are preprocessed by csanqs(8) and
csaline(8), respectively.

5. Organize the accounting data. csabuild(8) organizes the raw and
preprocessed accounting data by sessions and boot times. With the
exception of disk usage statistics and fees, the csabuild output file
contains all of the accounting data available about each session.

Sometimes data for terminated sessions is continually recycled. This can
occur when accounting data is lost. To prevent data from recycling forever,
edit csarun so that csabuild is executed with the -o nday option, which
causes all sessions older than nday days to terminate. Select an appropriate
nday value (see the csabuild(8) man page for more information).

6. Recycle information about unfinished sessions. Accounting data about
uncompleted sessions is saved and processed again during the next
accounting period. This information is recycled until the session completes
or until manual intervention occurs. Accounting data for unfinished
sessions is reported during each accounting period.

7. Generate the daemon usage report, which is appended to the daily report.
csadrep(8) outputs information about interactive, NQS, tape, and socket
usage.

8. Convert the session record file to a front-end format. Sites that process
UNICOS accounting data on a front-end system can convert the session file
to a format suitable for use on the front end by using the csafef(8),
csafef2(8), or csaibm(8) command. These programs are templates, and
you must modify them to suit your site’s requirements. It is suggested that
you use the user exit in the FEF section of csarun (see Section 2.1.5, page
16 and Section 2.1.10.3, page 51) to convert the session record file to your
front-end format.

9. Generate command usage data. The information output by acctcms(8) is
reported in the daily and periodic reports.

S–2302–10010 31

UNICOS® Resource Administration

10. Consolidate the session record file. Session files are too large to retain on
disk for any amount of time. Consequently, CSA consolidates the data and
keeps the condensed version on disk. The accounting reports are based on
the consolidated data. Data consolidation is done by csacon(8).

11. Generate an accounting report based on the consolidated data. csacrep(8)
outputs the report.

12. Create the daily accounting report. The daily accounting report includes the
following:

• Connect time statistics (step 4)

• Disk usage statistics (step 3)

• Unfinished session information (step 6)

• Command summary data (step 9)

• Consolidated accounting report (step 11)

• Last login information

• Daemon usage report (step 7)

13. Generate periodic accounting data. Periodic accounting data is an
accumulation of the consolidated data created in step 10. csaaddc(8)
merges condensed data files together. The resulting file contains accounting
information for numerous accounting periods.

14. Generate periodic command usage data. acctcms(8) merges command
usage data from multiple accounting periods. The usage information was
created in step 9. Both an ASCII and a binary file are created.

15. Produce a periodic accounting report. csacrep(8) is used to generate a
report based on a periodic accounting file.

Steps 4 through 12 are performed during each accounting period by csarun(8).
Periodic accounting (steps 13 through 15) is initiated by the csaperiod(8)
command. Daily and periodic accounting, as well as fee and disk usage
generation (steps 2 through 3), can be scheduled by cron(8) to execute
regularly. See Section 2.1.4, page 11, for more information.

32 S–2302–10010

Accounting [2]

2.1.9 Data Recycling

A system administrator must correctly maintain recycled data in order to ensure
accurate accounting reports. The following sections discuss data recycling and
describe how an administrator can purge unwanted recycled accounting data.

Data recycling allows CSA to properly bill sessions that are active during
multiple accounting periods. By default, csarun(8) reports data only for
sessions that terminate during the current accounting period. Through data
recycling, CSA preserves data for active sessions until the sessions terminate.

In the Super-record file, csabuild(8) flags each session as being either
active or terminated. csarecy(8) reads the Super-record file and recycles
data for the active sessions. csacon(8) consolidates the data for the terminated
sessions, which csaperiod(8) uses later. csabuild, csarecy, and csacon
are all invoked by csarun.

csarun puts recycled data in the /usr/adm/acct/day directory. Data files
with names suffixed with 0 contain recycled data. For example, ctime0,
nqacct0, pacct0, tpacct0, usacct0, and uptime0 are generally the
recycled data files that are found in /usr/adm/acct/day.

Normally, an administrator should not have to manually purge the recycled
accounting data. This purge should only be necessary if accounting data is
missing. Missing data can cause sessions to recycle forever and consume
valuable CPU cycles and disk space.

2.1.9.1 How Sessions Are Terminated

Interactive sessions, cron jobs, and at jobs terminate when the last process in
the job exits. Normally, the last process to terminate is the login shell. The
kernel writes an end-of-job (EOJ) record to the pacct file when the session
terminates.

When the NQS daemon delivers an NQS request’s output, the request
terminates. The daemon then writes an NQ_DISP record type to the NQS
accounting file, while the kernel writes an EOJ record to the pacct file.

Unlike interactive sessions, NQS requests can have multiple EOJ records
associated with them. In addition to the request’s EOJ record, there can be EOJ
records for pipe clients, net clients, and checkpointed portions of the request.
The pipe client and net client perform NQS processing on behalf of the request.

S–2302–10010 33

UNICOS® Resource Administration

The csabuild command flags sessions in the Super-record file as being
terminated if they meet one of the following conditions:

• The session is an interactive, cron, or at job, and there is an EOJ record for
the job in the pacct file.

• The session is an NQS request, and there is both an EOJ record for the
request in the pacct file and an NQ_DISP record type in the NQS
accounting file.

• The session is an interactive, cron, or at job and is active at the time of a
system crash.

• The session is manually terminated by the administrator using one of the
methods described in Section 2.1.9.3, page 35.

2.1.9.2 Why Recycled Sessions Should Be Scrutinized

Recycling unnecessary data can consume large amounts of disk space and CPU
time. The session file and recycled data can occupy a vast amount of disk space
on the file systems containing /tmp and /usr/adm/acct/day. Sites that
archive data also require additional offline media. Wasted CPU cycles are used
by csarun to reexamine and recycle the data. Therefore, to conserve disk space
and CPU cycles, unnecessary recycled data should be purged from the
accounting system.

Any of the following situations can cause CSA erroneously to recycle
terminated sessions:

• Kernel or daemon accounting is turned off. At boot time, the rc command
must execute /usr/lib/acct/startup in order to start kernel and
daemon accounting.

The kernel, ckpacct(8) command, or ckdacct(8) command can turn off
accounting when there is not enough space on the file system containing
/usr/adm/acct/day.

• Accounting files are corrupt. Accounting data can be lost or corrupted
during a system or disk crash.

• Boot times are not recorded in /etc/csainfo. The csaboots command
must be invoked by rc to write a boot time record to /etc/csainfo.

• Recycled data is erroneously deleted in a previous accounting period.

34 S–2302–10010

Accounting [2]

2.1.9.3 How to Remove Recycled Data

Before choosing to delete recycled data, you should understand the
repercussions, as described in Section 2.1.9.4, page 37. Data removal can affect
billing and can alter the contents of the consolidated data file, which is used by
csaperiod.

You can remove recycled data from CSA in the following ways:

• Interactively execute the csarecy -A command. Administrators can select
the active sessions that are to be recycled by running csarecy with the -A
option. Users are not billed for the resources used in the sessions terminated
in this manner. Deleted data is also not included in the consolidated data file.

The following example is one way to execute csarecy -A (which generates
two accounting reports and two consolidated files):

1. Run csarun at the regularly scheduled time.

2. Edit a copy of /usr/lib/acct/csarun. Change the -r option on the
csarecy invocation line to -A. Also, do not redirect standard output to
${CRPT}/recyrpt. The result should be similar to the following:

csarecy -A -s ${SESSION_FILE} \

-N ${WORK}/Rnqacct -P ${WORK}/Rpacct \

-T ${WORK}/Rtpacct -U ${WORK}/Ruptime \

-C ${WORK}/Rctime -u ${WORK}/Rusacct \

2> ${NITE}/Erec.${DTIME}

Since both the -A and -r options write output to stdout, the -r option
is not invoked and stdout is not redirected to a file. As a result, the
recycled job report is not generated.

3. Execute the jstat command, as follows, to display a list of currently
active jobs:

jstat > jstat.out

4. Execute the qstat command to display a list of NQS requests. The
qstat command is used for seeing whether there are requests that are
not currently running. This includes requests that are checkpointed,
held, queued, or waiting.

S–2302–10010 35

UNICOS® Resource Administration

In order to list all NQS requests, execute the qstat command, as
follows, using a login that has either NQS manager or NQS operator
privilege:

qstat -a > qstat.out

5. Interactively run the modified version of csarun. If you execute
csarun soon after the first step is complete, this invocation of csarun
completes quickly because not very much data exists.

For each active session, csarecy asks you if you want to preserve the
session. Preserve the active and nonrunning NQS sessions found in the
third and fourth steps. All other sessions are candidates for removal.

• Execute csabuild with the -o ndays option, which terminates all active
sessions older than the specified number of days. Resource usage for these
terminated sessions is reported by csarun, and users are billed for the
sessions. The consolidated data file also includes this resource usage.

To execute csabuild with the -o option, edit /usr/lib/acct/csarun.
Add the -o ndays option to the csabuild invocation line. Specify for ndays
an appropriate value for your site.

Recycled data for currently active sessions will be removed if you specify an
inappropriate value for ndays.

• Execute csarun with the -A option. It reports resource usage for both
active and terminated sessions, so users are billed for recycled sessions. This
data is also included in the consolidated data file.

None of the data for the active sessions, including the currently active
sessions, is recycled. No recycled data files are generated in the
/usr/adm/acct/day directory.

• Remove the recycled data files from the /usr/adm/acct/day directory.
You can delete data for all of the recycled sessions, both terminated and
active, by executing the following command:

rm /usr/adm/acct/day/*[a-z]0

The next time csarun is executed, it will not find data for any recycled
sessions. Thus, users are not billed for the resources used in the recycled
sessions, and this data is not included in the consolidated data file. csarun
recycles the data for currently active sessions.

36 S–2302–10010

Accounting [2]

2.1.9.4 Adverse Effects of Removing Recycled Data

CSA assumes that all necessary accounting information is available to it, which
means that CSA expects kernel and daemon accounting to be enabled and
recycled data not to have been mistakenly removed. If some data is
unavailable, CSA may provide erroneous billing information. Sites should be
aware of the following facts before removing data:

• Users may or may not be billed for terminated recycled sessions.
Administrators must understand which of the previously described methods
cause the user to be billed for the terminated recycled sessions. It is up to
the site to decide whether or not it is valid for the user to be billed for these
sessions.

For those methods that cause the user to be billed, both csarun and
csaperiod report the resource usage.

• It may be impossible to reconstruct a terminated recycled session. If a
recycled session is terminated by the administrator, but the session actually
terminates in a later accounting period, information about the session is lost.
If a user questions the resource billing, it may be extremely difficult or
impossible for the administrator to correctly reassemble all accounting
information for the session in question.

• Manually terminated recycled sessions be improperly billed in a future
billing period. If the accounting data for the first portion of a session has
been deleted, CSA may be unable to correctly identify the remaining portion
of the job. Errors may occur, such as NQS requests being flagged as
interactive sessions, or NQS requests being billed at the wrong queue rate.
This is explained in detail in Section 2.1.9.5, page 38.

• CSA programs may detect data inconsistencies. When accounting data is
missing, CSA programs may detect errors and abort.

The following table summarizes the effects of using the methods described in
Section 2.1.9.3, page 35.

S–2302–10010 37

UNICOS® Resource Administration

Table 1. Possible Effects of Removing Recycled Data

Method Underbilling? Incorrect billing? Consolidated data file

csarecy -A Yes. Users are not
billed for the portion
of the session that
was terminated by
csarecy -A.

Possible. Manually
terminated recycled
sessions may be billed
improperly in a future
billing period.

Does not include data for
sessions terminated by
csarecy -A.

csabuild -o No. Users are billed
for the portion of the
session that was
terminated by
csabuild -o.

Possible. Manually
terminated recycled
sessions may be billed
improperly in a future
billing period.

Includes data for sessions
terminated by csabuild -o.

csarun -A No. All active and
recycled sessions are
billed.

Possible. All active and
recycled sessions that
eventually terminate may
be billed improperly in a
future billing period,
because no data is recycled.

Includes data for all active
and recycled sessions.

rm Yes. All users are not
billed for the portion
of the session that
was recycled.

Possible. All recycled
sessions that eventually
terminate may be billed
improperly in a future
billing period.

Does not include data for
any recycled session.

By default, the consolidated data file contains data only for terminated sessions.
Manual termination of recycled data may cause some of the recycled data to be
included in the consolidated file. These cases are noted in the previous table.

2.1.9.5 NQS Requests and Recycled Data

In order for CSA to identify all NQS requests, data must be properly recycled.
When an administrator manually purges recycled data for an NQS request,
errors such as the following can occur:

• CSA flags the NQS request as an interactive session. This causes the request
to be billed at interactive rates.

• The request is billed at the wrong queue rate.

• The wrong queue wait time is associated with the request.

38 S–2302–10010

Accounting [2]

These errors occur because valuable NQS accounting information was purged
by the administrator. Only a few NQS accounting records are written by the
NQS daemon, and all of the records are needed for CSA to properly bill NQS
requests.

NQS accounting records are only written under the following circumstances:

• The NQS daemon receives a request.

• A request is routed to a queue.

• A request executes. This includes executing a request for the first time, and
restarting and rerunning a request.

• A request terminates. A request can terminate because it is completed,
requeued, preempted, held, checkpointed, or rerun by the operator.

• Output is delivered.

Thus, for long running requests that span days, there can be days when no NQS
data is written. Consequently, it is extremely important that accounting data be
recycled. If the site administrator manually terminates recycled sessions, care
must be taken to be sure that only nonexistent NQS requests are terminated.

2.1.10 Tailoring CSA

This section describes the following actions in CSA:

• Setting up SBUs

• Setting up daemon accounting

• Setting up user exits

• Modifying the front-end formatting templates

• Modifying the charging of NQS jobs based on NQS termination status

• Tailoring CSA shell scripts

• Using at(1) instead of cron(8) to periodically execute csarun

• Allowing users without super-user permissions to execute CSA

• Using an alternate configuration file

S–2302–10010 39

UNICOS® Resource Administration

2.1.10.1 System Billing Units (SBUs)

A system billing unit (SBU) is a unit of measure that reflects use of machine
resources. You can alter the weighting factors associated with each field in each
accounting record to obtain an SBU value suitable for your site. SBUs are
defined in the accounting configuration file, /etc/config/acct_config. By
default, all SBUs are set to 0.0.

The source code for the default SBU calculations is located in
/usr/src/cmd/acct/lib/acct/sbu.c. For sites that do not have source
code, the default algorithms are also defined in
/usr/src/cmd/acct/lib/acct/user_sbu.c. By modifying
/usr/src/cmd/acct/lib/acct/user_sbu.c, compiling, and relinking the
accounting programs, your site can use local SBU calculations.

Accounting allows different periods of time to be designated either prime or
nonprime time (the time periods are specified in /usr/lib/acct/holidays).

Following is an example of how the prime/nonprime algorithm works:

Assume a user uses 10 seconds of CPU time, and executes for 100 seconds of
prime wall-clock time, and pauses for 100 seconds of nonprime wall-clock time.
Therefore, elapsed time is 200 seconds (100+100). If

prime = prime time / elapsed time
nonprime = nonprime time / elapsed time
cputime[PRIME] = prime * CPU time
cputime[NONPRIME] = nonprime * CPU time

then

cputime[PRIME] == 5 seconds

cputime[NONPRIME] == 5 seconds

Under CSA, an SBU value is associated with each record in the Session record
file when that file is assembled by csabuild(8). Final summation of the SBU
values is done by csacon(8) during the creation of the cacct record file.

Billing for SBU values is intended to be a combination of all the SBU values
from each record associated with a job, as follows:

Total SBU = (NQS queue SBU value) * (sum of all pacct record SBUs
+ sum of all tape record SBUs
+ sum of all ctmp record SBUs)

40 S–2302–10010

Accounting [2]

This allows a site to bill different NQS queues at differing rates. Again, if the
available formulas are insufficient to achieve the site’s requirements, a site can
modify the calculations found in the sbu library routine,
/usr/src/cmd/acct/lib/acct/user_sbu.c.

2.1.10.1.1 pacct SBUs

The SBUs for pacct data are separated into prime and nonprime values. Prime
and nonprime use is calculated by a ratio of elapsed time. If you do not want
to make a distinction between prime and nonprime time, set the nonprime time
SBUs and the prime time SBUs to the same value. Prime time is defined in
/usr/lib/acct/holidays. By default, Saturday and Sunday are considered
nonprime time.

The following is a list of prime time pacct SBU weights. Descriptions and
factor units for the nonprime time SBU weights are similar to those listed here.
SBU weights are defined in /etc/config/acct_config.

Value Description

P_BASIC Prime-time weight factor. P_BASIC is multiplied
by the sum of prime time SBU values to get the
final SBU factor for the pacct base record.

P_TIME General-time weight factor. P_TIME is multiplied
by the time SBUs (made up of P_STIME,
P_ITIME, P_SCTIME, and P_INTTIME) to get the
time contribution to the pacct base record SBU
value.

P_STIME System CPU-time weight factor. The unit used for
this weight is billing units per second. P_STIME is
multiplied by the system CPU time to get the
system CPU factor.

P_UTIME User CPU-time weight factor. The unit used for
this weight is billing units per second. P_UTIME is
multiplied by the user CPU time to get the user
CPU factor.

User time is the sum of user times after
weighting for multitasking. Multitasking may
affect the user CPU cost if the MUTIME_WEIGHT
parameters have been set to values other than 1.0.
See the following explanation of these values.

S–2302–10010 41

UNICOS® Resource Administration

P_ITIME This is the weight factor for the time spent
waiting in the kernel for I/O while the process is
locked in memory. The unit used for this weight
is billing units per second. P_ITIME is multiplied
by the I/O wait time.

P_SCTIME Weight factor for system call time. The unit used
for this weight is billing units per second.

P_INTTIME Weight factor for interrupt time. The unit used
for this weight is billing units per second.

P_MEM General-memory-integral weight factor. P_MEM is
multiplied by the memory SBUs (made up of
P_XMEM and P_IMEM) to get the memory
contribution to the pacct base record SBU value.

P_XMEM CPU-time-memory-integral weight factor. The
unit used for this weight is billing units per
Kword-minute. P_XMEM is multiplied by the
memory integral (see Section 2.1.12.1, page 63).
This value is affected by your site’s choice of
MEMINT (in the accounting configuration file
/etc/config/acct_config).

P_IMEM The weight factor used with the I/O wait time
memory integral. This integral includes the I/O
wait time while the process is locked in memory.
The unit used for this weight is billing units per
Kword-minute. P_IMEM is multiplied by the
I/O-wait-time memory integral.

P_IO General-I/O weight factor. P_IO is multiplied by
the I/O SBUs (made up of P_BYTEIO, P_PHYIO,
and P_LOGIO) to get the I/O contribution to the
pacct base record SBU value.

P_BYTEIO Characters-transferred weight factor. The unit
used for this weight is billing units per character
transferred. P_BYTEIO is multiplied by the bytes
of I/O transferred.

If tape or device I/O is to be charged at a rate
other than P_BYTEIO, the tape and device weight
factors need to be adjusted accordingly. See
Section 2.1.11.1, page 56 (field ac_io), for more
information.

42 S–2302–10010

Accounting [2]

P_PHYIO Physical-I/O-request weight factor. The unit used
for this weight is billing units per physical I/O
request. P_PHYIO is multiplied by the number of
physical I/O requests made. Physical requests are
the number of driver requests made.

P_LOGIO Logical-I/O-request weight factor. The unit used
for this weight is billing units per logical I/O
request. P_LOGIO is multiplied by the number of
logical I/O requests made. The number of logical
I/O requests is the total number of read(2),
write(2), reada(2), and writea(2) system calls.
The number of strides, multiplied by the number
of requests processed by each listio(2) call, is
also added to the total.

2.1.10.1.2 Multitasking SBUs

The MUTIME_WEIGHT i variables define the weighting factors that are used to
charge user CPU time for multitasking programs. It is used in conjunction with
the ac_mutime array (see /usr/include/sys/acct.h), which defines the
amount of CPU time the multitasking program spent with i + 1 CPUs connected.

MUTIME_WEIGHT i defines the marginal cost of getting the i + 1 CPU at one
instant. If these values are set to less than 1.0, there is an incentive for
multitasking. If the values are set to 1.0, multitasking programs are charged for
user CPU time just as all other programs.

For more information on multitasking incentives, see Section 2.1.12, page 62.

2.1.10.1.3 SDS SBUs

Secondary data storage (SDS) system billing units are calculated from the
statistics on SDS use in the pacct file. The SBU factors are defined in
/etc/config/acct_config.

The values are as follows:

Value Description

NP_SDSMEM or P_SDSMEM

SDS-memory-integral weight factor. The memory integral is
based on residency time and not on execution time. P_SDSMEM

S–2302–10010 43

UNICOS® Resource Administration

or NP_SDSMEM is multiplied by the SDS memory integral. The
unit used for this weight is billing units per Mword-second.

NP_SDSLOGIO or P_SDSLOGIO

SDS-logical-I/O-request weight factor. P_SDSLOGIO or
NP_SDSLOGIO is multiplied by the number of SDS logical I/O
requests. The unit used for this weight is billing units per
logical I/O request.

NP_SDSBYTEIO or P_SDSBYTEIO

SDS-characters-transferred weight factor. P_SDSBYTEIO or
NP_SDSBYTEIO is multiplied by the number of SDS characters
transferred. The unit used for this weight is billing units per
character transferred.

The SBU values should be very small. On Cray systems, it is possible to submit
a very large number of requests to SDS in a short time; therefore, to prevent
these numbers from dominating the SBU values, small weight factors must be
used. Values of 0 result in no charge.

2.1.10.1.4 MPP SBUs

Massively parallel processing (MPP) system billing units are calculated from the
statistics on MPP use in the pacct file. The SBU factors are defined in
/etc/config/acct_config.

The P_MPPPE or NP_MPPPE SBUs are the MPP processing elements (PEs)
weight factors, prime and nonprime charges. The prime time billing units for
PEs is calculated using the following equation:

P_MPPPE billing units = P_MPPPE *
of sessionsP

0

(no. MPP PEs used * MPP time used)

The nonprime time billing units for PEs is calculated using the following
equation:

NP_MPPPE billing units = NP_MPPPE *
of sessionsP

0

(no. MPP PEs used * MPP time used)

The unit used for these weights is billing units per PE-second.

44 S–2302–10010

Accounting [2]

The P_MPPBB or NP_MPPBB SBUs are the MPP barrier bits weight factors, prime
and nonprime charges.1 The prime time billing units for barrier bits is
calculated using the following equation:

P_MPPBB billing units = P_MPPBB *
of sessionsP

0

(no. MPP barrier bits used*MPP time used)

The nonprime time billing units for barrier bits is calculated using the following
equation:

NP_MPPBB billing units = NP_MPPBB *
of sessionsP

0

(no. MPP barrier bits used*MPP time used)

The unit used for these weights is billing units per barrier bit-second.

The P_MPPTIME or NP_MPPTIME SBUs are the MPP time weight factors, prime
and nonprime charges. The prime time billing units for MPP time is calculated
using the following equation:

P_MPPTIME billing units = P_MPPTIME *
of sessionsP

0

(MPP time used)

The nonprime time billing units for MPP time is calculated using the following
equation:

NP_MPPTIME billing units = NP_MPPTIME *
of sessionsP

0

(MPP time used)

The unit used for these weights is billing units per second.

The SBU values should be very small, which will prevent these numbers from
dominating the SBU values. Values of 0 result in no charge.

2.1.10.1.5 Connect Time SBUs

There are SBUs for both prime- and nonprime-time connect data. The SBU
values should reflect the system billing units per second of connect time. The
weight factors, CON_PRIME and CON_NONPRIME, are defined in
/etc/config/acct_config.

2.1.10.1.6 NQS SBUs

The /etc/config/acct_config file contains the configurable parameters
that pertain to NQS SBUs.

1 Deferred implementation.

S–2302–10010 45

UNICOS® Resource Administration

The NQS_NUM_QUEUES parameter sets the number of queues for which you
want to set SBUs (the value must be set to at least 1). Each NQS_QUEUE x
variable in the configuration file has a queue name and an SBU pair associated
with it (the total number of queue/SBU pairs must equal NQS_NUM_QUEUES).
The queue/SBU pairs define weights for the queues. If an SBU value is less
than 1.0, there is an incentive to run jobs in the associated queue; if the value is
1.0, jobs are charged as though they are non-NQS jobs; and if the SBU is 0.0,
there is no charge for jobs running in the associated queue. SBUs for queues
not found in the configuration file are automatically set to 1.0.

The NQS_NUM_MACHINES parameter sets the number of originating machines
for which you want to set SBUs (the value must be at least 1). Each
NQS_MACHINE x variable in the configuration file has an originating machine
and an SBU pair associated with it (the total number of machine/SBU pairs
must equal NQS_NUM_MACHINES). SBUs for originating machines not specified
in /etc/config/acct_config are automatically set to 1.0.

The queue and machine SBUs are multiplied together to give an NQS
multiplier. If the SBUs are set to less than 1.0, there is an incentive to run jobs
in these queues or from these machines. SBUs of 1.0 indicate that jobs in the
queues or from associated hosts are billed normally.

2.1.10.1.7 Socket SBUs

Currently, there is no way to charge for socket accounting. The socket
accounting records produced are only processed in order to make the data
available to the site-supplied user exits.

2.1.10.1.8 Tape SBUs

There is a set of weighting factors for each group of tape devices. By default,
there are only two groups, tape and cart. The TAPE_SBUi parameters in
/etc/config/acct_config define the weighting factors for each group.
There are SBUs associated with the following:

• Number of mounts

• Device reservation time (seconds)

• Number of bytes read

• Number of bytes written

46 S–2302–10010

Accounting [2]

2.1.10.1.9 Device SBUs

Device accounting system billing units are calculated from the device statistics
in the pacct file. SBUs can be set for both block and character devices in
/etc/config/acct_config. The fields in the acct_config file that affect
SBU factors for each device are as follows:

SBU factor Description

Logical I/O Sbu Weight given to each logical
I/O request.

Characters Xfer Sbu Weight given to the amount
of data transferred.

Device Name Device type name (see
Section 2.1.14, page 65).

The Logical I/O Sbu factor is multiplied by the number of system calls that
initiated I/O on a device type. The Characters Xfer Sbu factor is
multiplied by the number of bytes of data transferred to a device type.

The SBUs for block devices are labeled BLOCK_DEVICE x, where x is a number
from 0 to MAXBDEVNO-1. Character devices are labeled CHAR_DEVICE x, where
x is a number from 0 to MAXCDEVNO-1. The numeric suffixes for the
CHAR_DEVICE x variables must match the major numbers in /dev, which are
defined in /usr/src/uts/c1/cf/devsw.c in the cdevsw[] array.

MAXBDEVNO and MAXCDEVNO are located in the /usr/include/sys/param.h
include file and have default values of 10 and 35, respectively.

Device accounting is also discussed in Section 2.1.14, page 65.

The SBU values should be very small. On Cray systems, it is possible to
perform a very large number of I/O requests very quickly; therefore, to prevent
these numbers from dominating the SBU values, a small weight factor must be
used. A value of 0 results in no charge.

2.1.10.1.10 Example SBU Settings

The following section provides an example showing how you could set up the
SBU system. This example is restricted to pacct base records (you should also
consider pacct multitasking, pacct I/O (device accounting), and all the
daemon records). In this example, it is assumed that an SBU is equal to one
dollar of charge.

S–2302–10010 47

UNICOS® Resource Administration

The formula for calculating the whole pacct base record SBU value is as
follows:

PSBU = ((P_TIME * (P_STIME * stime + P_UTIME * utime + P_ITIME *

iowtime)) + (P_MEM * (P_XMEM * cpumem + P_IMEM * iowmem)) +

(P_IO * (P_BYTEIO * bytes + P_PHYIO * phy + P_LOGIO * log)));

NSBU = ((NP_TIME * (NP_STIME * stime + NP_UTIME * utime + NP_ITIME
* iowtime)) + (NP_MEM * (NP_XMEM * cpumem + NP_IMEM * iowmem)) +

(NP_IO*(NP_BYTEIO * bytes + NP_PHYIO * phy + NP_LOGIO * log)));

SBU = P_BASIC * PSBU + NP_BASIC * NSBU;

The variables in this formula are as follows:

Variable Description

stime System CPU time in seconds.

utime User CPU time in seconds. User CPU time is the sum of user
times after weighting for multitasking.

iowtime Time (in seconds) spent waiting in the kernel for I/O while the
process is locked in memory.

cpumem Memory integral (see Section 2.1.12.1, page 63).

iowmem I/O-wait-time memory integral.

bytes Number of bytes of data transferred.

phy Number of physical I/O requests made.

log Number of logical I/O requests made.

All time is considered prime time. Therefore, the nonprime time SBUs should
be set to the same values as their prime time counterparts.

In order to produce a billing that is somewhat repeatable, this example omits
various values, such as physical I/O (set P_PHYIO to 0.0), that depend on the
state of the machine at run time. In particular, system time varies greatly due to
system load and will cause this example to be nonrepeatable. Information on
which fields generate repeatable values is contained in Section 2.1.11.1, page 56.

In this example, users are charged for each logical request (P_LOGIO) and the
total data moved (P_BYTEIO). This provides users with an incentive to use
larger I/O requests, which may be more efficient. Processes that perform I/O

48 S–2302–10010

Accounting [2]

that locks them into memory are penalized (P_IMEM), because this may result
in memory fragmentation.

In this example, users are charged the following amounts for time (the
accounting record fields associated with the charge are also identified):

• $100 per hour of user CPU time. This is equal to $100 per 3600 seconds,
which is $0.02777777 per second (P_UTIME). To produce repeatable billing,
system time must be excluded. Thus, P_STIME is set to 0.0.

• $25 for each megaword of memory per hour of CPU time. The memory
integrals are in units of Kword-minutes, so the weighting factor is $25/(60
minutes * 2

10 Kwords) or 0.0004069010 (P_XMEM).

• $3 for each hour spent waiting on I/O while locked into memory. The wait
time is in units of seconds. so the weighting factor is $3/3600 seconds or
.0008333333 (P_ITIME).

• $25 for I/O wait time (locked in memory) per hour. This is the same value
as the memory charge because the process is using memory during this time
in the same way it would when executing. The weighting factor is $25/(60
seconds * 2

10 Kwords) or 0.0004069010 (P_IMEM).

• A DD-XX disk drive can perform I/O at a maximum rate of 9.6 Mbytes per
second. Assume that the original cost of the drive was $125,000, and it will
be paid for in 2 years. Also assume that it is busy 5% of the time (63072000
seconds * 5% = 3153600 seconds). The amount of I/O that can be completed
in 2 years is 31745177026560 bytes (9.6 Mbytes/second * 3153600 seconds).
Thus, you would charge $125,000/31745177026560 bytes or
$0.00000000393760 per byte, which is approximately $0.33/10 Mwords
(P_BYTEIO).

• $0 for physical I/O requests. This charge makes the billing more repeatable.
The byte I/O charge covers this activity (P_PHYIO).

• $0.01 per thousand logical I/O requests. This charge encourages the user to
perform larger I/O requests by charging less for a lower number of larger
I/O requests (instead of a lot of small I/O requests). The weighting factor is
computed as $0.01/1000 I/O requests or 0.00001 (P_LOGIO).

S–2302–10010 49

UNICOS® Resource Administration

Therefore, in this example, the pacct base record charges are as follows (the
nonprime time SBUs are set to the same value as their prime time counterparts):

Weight factor Charge

P_BASIC 1.0

P_TIME 1.0

P_UTIME 0.02777777777777

P_STIME 0.0

P_ITIME 0.00083333333333

P_MEM 1.0

P_XMEM 0.00040690104166

P_IMEM 0.00040690104166

P_IO 1.0

P_BYTEIO 0.00000000393760

P_PHYIO 0.0

P_LOGIO 0.00001000000000

P_BASIC, P_TIME, P_MEM, and P_IO are used to weight different factors of the
equation; you can use these depending on how your other groups of weighting
factors are picked. For example, you could change the P_IO and P_BYTEIO
factors as follows and receive the same results:

Weight factor Charge

P_BASIC 1.0

P_TIME 1.0

P_UTIME 0.02777777777777

P_STIME 0.0

P_ITIME 0.00083333333333

P_MEM 1.0

P_XMEM 0.00040690104166

P_IMEM 0.00040690104166

P_IO 0.00001

50 S–2302–10010

Accounting [2]

P_BYTEIO 0.000393760

P_PHYIO 0.0

P_LOGIO 1.0

2.1.10.2 Daemon Accounting

Accounting information is available from NQS, online tapes, and sockets. Data
is written to the nqacct, tpacct, and soacct files, respectively, in the
/usr/adm/acct/day directory.

In most cases, daemon accounting must be enabled by both the CSA subsystem
and the daemon. Section 2.1.4, page 11, describes how to enable daemon
accounting at system startup time. You can also enable daemon accounting
after the system has booted.

You can enable accounting for a specified daemon with the turndacct(8)
command. For example, to start tape accounting, you would execute the
following:

/usr/lib/acct/turndacct on tape

The NQS and online tape daemon also must enable accounting. Use the qmgr
set accounting on command to turn on NQS accounting. Tape daemon
accounting is enabled when tpdaemon(8) is executed with the -c option.

Daemon accounting is disabled by shutacct(8) at system shutdown (see
Section 2.1.4, page 11). It can also be disabled at any time by the turndacct(8)
command when used with the off operand. For example, to disable NQS
accounting, execute the following command:

/usr/lib/acct/turndacct off nqs

New daemon accounting files can be started when turndacct is invoked with
the switch operand. No data is lost when files are switched. For example, to
start a new NQS accounting file, execute the following command:

/usr/lib/acct/turndacct switch nqs

2.1.10.3 Setting up User Exits

CSA accommodates the following user exits, which can be called from certain
csarun states:

S–2302–10010 51

UNICOS® Resource Administration

csarun state User exit

ARCHIVE1 /usr/lib/acct/csa.archive1

ARCHIVE2 /usr/lib/acct/csa.archive2

FEF /usr/lib/acct/csa.fef

USEREXIT /usr/lib/acct/csa.user

These exits allow an administrator to tailor the csarun procedure to the
individual site’s needs by creating scripts to perform additional site-specific
processing during daily accounting.

While executing, csarun checks in the ARCHIVE1, ARCHIVE2, FEF, and
USEREXIT states for a shell script with the appropriate name.

If the script exists, it is executed via the shell . (dot) command. If the script
does not exist, the user exit is ignored. The . (dot) command will not execute a
compiled program, but the user exit script can. csarun variables are available,
without being exported, to the user exit script. csarun checks the return status
from the user exit and, if it is nonzero, the execution of csarun is terminated.

If CSA is run by a user without super-user permissions, the user exits must be
both readable and executable by this user (see page Section 2.1.10.7, page 54).

2.1.10.4 Charging for NQS Jobs

By default, SBUs are calculated for all NQS jobs regardless of the job’s NQS
termination code. If you do not want to bill portions of an NQS request, set the
appropriate NQS_TERM_ xxxx variable (termination code) in
/etc/config/acct_config to 0, which sets the SBU for this portion to 0.0.
By default, all portions of a request are billed.

The following table describes the termination codes:

Code Description

NQS_TERM_EXIT Generated when the request finishes running and
is no longer in a queued state. At NQS shutdown
time, requests that specified both the -nc (no
checkpoint) and -nr (no rerun) options for qsub
also have NQS_TERM_EXIT records written. In
addition, this record is written for requests that
specified the -nr option for qsub and were
running at the time of a system crash.

52 S–2302–10010

Accounting [2]

NQS_TERM_REQUEUE Written for running requests that are
checkpointed and then requeued when NQS
shuts down.

NQS_TERM_PREEMPT Written when a request is preempted with the
qmgr preempt request command.

NQS_TERM_HOLD Written for a request that is checkpointed with
the qmgr hold request command. The hold
request command differs from the checkpoint
done at daemon shutdown time because a “hold”
keeps the job from being scheduled until a qmgr
release command is executed.

NQS_TERM_OPRERUN Written when a request is rerun with the qmgr
rerun request command.

At NQS shutdown time, jobs that cannot be
checkpointed and do not have the -nr (no rerun)
option for qsub specified have this type of
termination record written. The requests are
requeued with this status.

2.1.10.5 Tailoring CSA Shell Scripts and Commands

Modify the following variables in /etc/config/acct_config if necessary:

Variable Description

ACCT_FS File system on which /usr/adm/acct resides.
The default is /usr.

MAIL_LIST List of users to whom mail is sent if fatal errors
are detected in the accounting shell scripts. The
default is root and adm.

WMAIL_LIST List of users to whom mail is sent if warning
errors are detected by the csarun script at
cleanup time. The default is root and adm.

S–2302–10010 53

UNICOS® Resource Administration

MIN_BLKS Minimum number of free blocks needed in
${ACCT_FS} to run csarun or csaperiod. The
default is 500 free blocks.

2.1.10.6 Using at to Execute csarun(8)

You can use the at(1) command instead of cron(8) to execute csarun
periodically. If your Cray system is down when csarun is scheduled to run via
cron, csarun will not be executed until the next scheduled time. On the other
hand, at jobs execute when the machine reboots if their scheduled execution
time was during a down period.

You can execute csarun with at in several ways. For instance, a separate
script can be written to execute csarun and then resubmit the job at a specified
time. Also, an at invocation of csarun could be placed in a user exit script,
/usr/lib/acct/csa.user, that is executed from the USEREXIT section of
csarun. See Section 2.1.10.3, page 51, for more information.

2.1.10.7 Allowing Nonsuper Users to Execute CSA

Your site may want to allow users without super-user permissions to run CSA
accounting. CSA can be run by users who are in the group adm and have
permission bit acct set in their UDB entries.

Note: If root has run CSA, you must execute the shell script
/usr/lib/acct/csaperm (see csaperm(8)) to change the group ID and
file permissions of all accounting files in /usr/adm/acct so they can be
accessed by a nonsuper user running CSA.

The following steps describe the process of setting up CSA so it is executed
automatically on a daily basis by a user without super-user permissions. In this
example, the user without super-user permissions is adm:

1. Ensure that user adm is a member of group adm and has the permission bit
acct set in its UDB entry (see udbgen(8)).

2. As root, execute the shell script csaperm to change the group ID and file
permissions of all accounting files in /usr/adm/acct so they can be
accessed by a nonsuper user.

3. Ensure that, if they exist, the user exits /usr/lib/acct/csa.archive1,
/usr/lib/acct/csa.archive2, /usr/lib/acct/csa.fef, and
/usr/lib/acct/csa.user have the group ID adm and are both readable
and executable by group adm.

54 S–2302–10010

Accounting [2]

4. Follow steps 1 through 5 of Section 2.1.4, page 11, to set up system billing
units, record system boot times, and turn off accounting before system
shutdown.

5. Include an entry similar to the following in
/usr/spool/cron/crontabs/root so that cron(8) automatically runs
dodisk(8):

0 3 * * 1-6 /usr/lib/acct/dodisk -a -v 2> /usr/adm/acct/nite/dk2log

dodisk must be executed by root, because no other user has the correct
permissions to read /dev/dsk/*.

6. Include entries similar to the following in
/usr/spool/cron/crontabs/adm so that user adm automatically runs
daily accounting by using cron:

0 4 * * 1-6 /usr/lib/acct/csarun 2> /usr/adm/acct/nite/fd2log
0 * * * * /usr/lib/acct/ckdacct nqs tape

0 * * * * /usr/lib/acct/ckpacct

csarun(8) should be executed at a time that allows dodisk to complete. If
dodisk does not complete before csarun executes, disk accounting
information may be missing or incomplete.

7. To run periodic accounting, place an entry similar to the following in
/usr/spool/cron/crontabs/adm (this command generates a periodic
report on all consolidated data files found in
/usr/adm/acct/sum/data/* and then deletes those data files):

15 5 1 * * /usr/lib/acct/csaperiod -r 2>/usr/adm/acct/nite/pd2log

8. Update the holidays file as described in Section 2.1.4, page 11.

2.1.10.8 Using an Alternate Configuration File

By default, the /etc/config/acct_config configuration file is used when
any of the CSA commands are executed. You can specify a different file by
setting the shell variable ACCTCONFIG to another configuration file, and then
executing the CSA commands.

For example, you would execute the following commands in order to use the
configuration file /tmp/myconfig while executing csarun(8):

ACCTCONFIG=/tmp/myconfig /usr/lib/acct/csarun 2> /usr/adm/acct/nite/fd2log

S–2302–10010 55

UNICOS® Resource Administration

2.1.10.9 Disk Usage Reporting (diskusg)(8)

The diskusg(8) command can be configured at your site. The site.c module
of diskusg contains an example to help you in customizing a report for your
site. You can delete your choice of comment-protection characters in the
example, compile the routine, relink diskusg, then print a sample report of
disk usage for your site. You can execute your modified diskusg command in
the USEREXIT state in csarun or runacct scripts.

2.1.11 Per-process Accounting Data

This section describes some of the fields found in the pacct file.
/usr/include/sys/acct.h defines the structure of this file.

2.1.11.1 Base Accounting Record

One base accounting record per process is written; each record contains the
following fields:

Table 2. Base Accounting Record Fields by Function

Type Field Description

Header ac_header Accounting header record word (see
/usr/include/sys/accthdr.h)

ac_flag Accounting flags.

Identifiers ac_acid Account ID.

ac_gid Real group ID.

ac_jobid Job ID.

ac_pid Process ID.

ac_ppid Parent process ID.

ac_uid Real user ID.

Process Information ac_btime Start time of the process.

ac_comm Command name (first 8 characters).

ac_etime Elapsed time while process executed (in clocks).
This number is not repeatable.

56 S–2302–10010

Accounting [2]

Type Field Description

ac_himem Memory-use high water mark in words.

ac_nice Nice value, measured at the end of 1 second of
system and user time or the most expensive
value used thereafter. This allows a process to
set the value at which most of its work should be
done; only charges for increased cost are levied.

ac_stat Low-order 8 bits from process’s exit value. See
the wait(2) man page for more information.

ac_tty Controlling tty device.

Counters ac_ctime Process raw connect time in clocks. For
multitasking jobs, ac_ctime is a sum of the
connect time across all CPUs used by the job.

ac_io Number of characters transferred by the process.
If any tape accouting information existed for this
process, the number of tape bytes read and
written is included in the ac_io field. Thus, the
amount of tape I/O is reported twice: once in
the ac_io field and again in the tape accounting
record. The ac_io field generally is larger,
because it includes additional I/O performed by
the process. This number is repeatable.
Device accounting I/O information is also
reported twice: by ac_io and in the device
accounting record field acd_ioch.
Charges for doing I/O to tape or to a particular
device can be adjusted by setting the SBU weight
factors for tape and device I/O. These weights
are defined in /etc/config/acct_config.
The tape SBUs are labeled TAPE_SBU x, and the
device SBUs are BLOCK_DEVICE x and
CHAR_DEVICE x.

S–2302–10010 57

UNICOS® Resource Administration

Type Field Description

Set the weight factors relative to P_BYTEIO. The
ac_io value is multiplied by P_BYTEIO. The
tape or device I/O value is multiplied by the
appropriate tape or device weight factor.
For example, if a surcharge is to be applied to
tape I/O, the read and write values for the
TAPE_SBU x variables must reflect the amount
over P_BYTEIO that should be charged.

ac_iobtim I/O wait time in clocks measured while the
process is not locked in memory (unlike
ac_iowtime). System buffer I/O accumulates
here. This number may vary due to system load.

ac_iosw Swap count. This number may vary due to
system load.

ac_iowtime I/O wait time (in clocks) measured while the
process is locked in memory. This means that
system buffered I/O does not appear here. Also,
this is a measure of the time elapsed from when
a process is removed from the run queue until
the process is reconnected to a CPU; therefore, it
may vary due to system load.

ac_lio Logical I/O request count; this is a count of the
read, write, reada, writea, and listio (list
entries) system calls made. This number is
repeatable.

ac_rw Number of physical I/O requests initiated by the
process. This number varies due to conditions in
the system buffer cache. Therefore, if repeatable
billing is desired, this number cannot be used.

ac_sctime System call time in clocks.

ac_stime System CPU time used (in clocks). This number
is not repeatable, because it varies with system
load.

58 S–2302–10010

Accounting [2]

Type Field Description

ac_utime User CPU time used (in clocks). For
nonmultitasked processes, this number does not
include semaphore wait time and is repeatable
(within the limitations caused by memory
conflicts).

Integrals ac_iowmem I/O-wait-time memory integral measured while
the process is locked in memory (in click-ticks).
This number may vary due to system load.

ac_mem Memory integral selected when MEMINT = 1 (in
clicks-ticks). (MEMINT is located in
/etc/config/acct_config.) This is the only
constant memory integral available (within the
limitations caused by memory conflicts);
therefore, if repeatable billing is required, this
number must be used.

ac_mem2 Memory integral selected when MEMINT = 2 (in
clicks-ticks). (MEMINT is located in
/etc/config/acct_config.) This integral is
not constant and varies with machine load.

ac_mem3 Memory integral selected when MEMINT = 3 (in
clicks-ticks). (MEMINT is located in
/etc/config/acct_config.) This integral is
not constant and varies with machine load.

2.1.11.2 End-of-job Accounting Record

There is one end-of-job record per job. The record is written when the last
process of a job is terminated. The record contains the following fields:

Table 3. End-of-job Accounting Record Fields by Function

Type Field Description

Header ac_header Accounting header record word (see
/usr/include/sys/accthdr.h)

ac_flag Accounting flags.

S–2302–10010 59

UNICOS® Resource Administration

Type Field Description

Identifiers ace_jobid Job ID of the job to which this record belongs.

ace_uid User ID from the job table.

Job Information ace_etime End time of the job (in seconds).

ace_fsblkused Sum of the file system storage used. This value
may be negative if more space was freed up than
was consumed.

ace_himem High-water memory use of job; sum of all
processes in a job at any given time (in clicks).
this can vary because of scheduling differences.

ace_nice Last nice value of the job.

ace_sdshiwat Secondary data segment high-water use; sum of
all processes in a job at any given time (in SDS
units). This can vary because of scheduling
differences.

2.1.11.3 Multitasking Accounting Record

If a process is multitasked, a multitasking accounting record is written when
the last member of the multitasked group is terminated. The record contains
the following fields:

Field Description

ac_header Accounting header record word (see
/usr/include/sys/accthdr.h)

ac_flag Accounting flags.

ac_smwtime Semaphore wait time (in clocks).

ac_mutime[MUSIZE] Time a process was connected to exactly (i + 1)
CPUs (in 1/100ths of a second format). The CPU
time used when the process was connected to (i +
1) CPUs is ac_mutime[i] * (i + 1) 1/100ths of a
second. For example, ac_mutime[1] is the time a
process was connected to two CPUs, and
ac_mutime[1] * 2) is the CPU time used while
connected to two CPUs.

ac_mutime[] includes wait semaphore time.

60 S–2302–10010

Accounting [2]

Prior to UNICOS release 8.3, the multitasking
CPU times were stored as 21-bit pseudo-floating
point numbers. Beginning with release 8.3, these
values are in 1/100ths of a second and are
compressed as 16-bit pseudo-floating point
numbers. The compression and unit changes
were made so that multitasking information for a
maximum of 32 CPUs can be stored in the pacct
file without changing the size of the records.

2.1.11.4 SDS Accounting Record

If a process utilizes SDS, an SDS accounting record is written. The record
contains the following fields:

Field Description

ac_header Accounting header record word (see
/usr/include/sys/accthdr.h)

ac_flag Accounting flags.

acs_mem Memory integral based on residency time, not
execution time (in click-ticks).

acs_lio Logical I/O request count; this count is the
number of ssread and sswrite system calls
made.

acs_ioch Number of characters transferred to and from the
SDS, stored in bytes.

2.1.11.5 MPP Accounting Record

If a process uses a Cray MPP system, an MPP accounting record is written that
contains the following fields:

Field Description

ac_header Accounting header record word (see
/usr/include/sys/accthdr.h)

ac_flag Accounting flags.

ac_mpppe Number of MPP processor elements used.

ac_mppbe Number of MPP barrier bits used.

S–2302–10010 61

UNICOS® Resource Administration

ac_mpptime Number of clocks that the MPP has been used.

2.1.11.6 Performance Accounting Record

When the optional performance accounting feature is enabled (by using the
devacct(8) command with the -b option), a performance accounting record is
written at the end of each process. Each record contains the following fields:

Field Description

ac_header Accounting header record word (see
/usr/include/sys/accthdr.h)

ac_flag Accounting flags.

acp_rtime The process start time offset (in clocks) from the
previous second (reported in the ac_btime field
of the base accounting record). This field allows
you to trace start times of processes that are
spawned in the same second.

acp_tiowtime The terminal I/O wait time (in clocks); in other
words, the period of time starting when a process
performing I/O to a tty or pseudo-tty is removed
from the run queue and ending when the process
is reconnected to a CPU. This number may vary
due to system load.

acp_srunwtime This field is currently disabled.

acp_swapclocks The time (in clocks) that a process spends on the
swap device.

acp_rwblks The number of physical blocks transferred by the
process using the system buffer I/O interface.
This number varies due to conditions in the
system buffer cache.

acp_phrwblks The number of physical blocks transferred by the
process using the raw I/O interface.

2.1.12 Multitasking Incentives

Some sites may want to provide accounting incentives for the use of
multitasking. Several of these are available through the appropriate setting of
installation parameters.

62 S–2302–10010

Accounting [2]

2.1.12.1 Memory Integrals

Three different memory integrals are available to the accounting software. The
differences among them are important to those sites that want to give incentives
for use of multitasking.

Memory integral #1 - At each change in memory size, memory integral #1 is
incremented by the total CPU time used since the last memory change, times
the memory size, as follows:

MI #1: memory size * (total CPU time since last size change)

Thus, a program that is connected to two CPUs for some period will pay twice
the memory cost for that period. When using memory integral #1, a
multitasking program incurs the same charges, no matter how many CPUs it
gets. This is helpful if consistent billing is important to your site, but not as
helpful if incentives for multitasking are important.

Memory integral #2 - The calculations for memory integral #2 are similar to those
for #1, except that the increment is the sum of times when at least one CPU was
connected, times the memory size, as follows:

MI #2: memory size * (total time when program was connected
to at least one CPU since last size change)

A multitasking program pays (in memory charges) only for the first CPU it
receives; additional CPUs do not increase the memory charge. Using memory
integral #2, a multitasking program can potentially decrease its memory charge
by a factor equal to the number of CPUs in the machine. This is an incentive
for using multitasking. However, because the amount of time a program is
connected to a number of CPUs varies from run to run, memory integral #2 is
not consistent. The maximum value for #2 is equal to #1 (if no connect time
overlap occurs). Note that this also means that #1 is equal to #2 for
single-tasked programs.

Memory integral #3 - Some sites with multi-CPU machines may wish to allow an
individual program to use a proportionally large amount of memory only if it is
also able to use more than one CPU. For instance, in a four-CPU machine,
allowing one program to use 90% of memory may idle some CPUs if the
program uses only one CPU.

Memory integral #3 allows the site to control this aspect of CPU use by adding
an extra factor into the calculation for memory integral #2. The total memory
available to user programs is divided by the number of CPUs to derive the
value of “one CPU worth of memory.” The memory size of the program is then

S–2302–10010 63

UNICOS® Resource Administration

divided by the “CPU worth” factor to get the extra factor in memory integral
#3, as follows (this extra factor cannot be less than 1):

MI #3: memory size * (total time when program was connected
to at least one CPU since last size change) *
(memory size / "one CPU worth of memory")

Memory integral #3 provides an incentive for single-tasked programs to limit
themselves to one CPU worth of memory. Multitasked programs will also pay
more in memory charges for lots of memory, but they can reduce their memory
charges by using multiple CPUs. However, memory integral #3 is as inconsistent
as #2, and it can also affect the memory charges for single-tasked programs.

Note that the changes from #1 to #2 and #2 to #3 are, in a sense, opposite for
multitasking programs. The changes from #1 to #2 reward multitasking
programs by a factor of up to the number of CPUs. The changes from #2 to #3
penalize large-memory programs by up to the number of CPUs. Thus, if a
multitasking program has used all memory (on a four-CPU machine), memory
integrals #1 and #3 would be nearly equal, and the value of #2 would be
approximately one-quarter the value of #1 or #3.

The accounting software is released with memory integral #2 as the default.
The MEMINT variable in /etc/config/acct_config can be changed to
match the site’s needs.

2.1.12.2 Reducing Charges

Another incentive you can provide for the use of multitasking is to reduce the
charges for CPU time for multitasking programs. This can be accomplished
with weighting factors. The operating system kernel maintains counters of the
length of time spent by a user program with one processor connected, two
processors connected, and so on.

By default, the charges for a multitasking program would be calculated as
follows:

sum = 0;

for (i=0; i < ncpu; i++)
sum += ac_mutime[i] * (i+1);

This calculation assumes that all CPU time is charged equally. With the
weighting factors, the site can specify, for instance, that a second CPU should
be only 75% as expensive as the first CPU. Therefore, a program that gets two
CPUs as it executes would have its CPU time charges reduced. Note that,
because this charge depends on how much overlap a program gets, charges

64 S–2302–10010

Accounting [2]

may vary from execution to execution. However, charges are never more than
the full price for all CPUs.

The accounting software is released with all CPUs having a cost of 1. The
MUTIME_WEIGHT x variables, defined in /etc/config/acct_config, can be
changed to meet the site’s needs.

Note that the user time reported by the time(1) command is adjusted so that
there is no charge for wait-semaphore time. (This is in order to provide
consistent CPU time charges.) The multitasking overlap times do not adjust for
wait-semaphore times and, hence, may actually calculate to a greater CPU time
than the sum of the user times. In this case, the CPU charge is limited to the
sum of the user times.

2.1.13 Socket Accounting

Socket accounting tracks network usage from the perspective of sockets,
wherein one process may use several sockets, and several processes may use
the same socket.

The recorded accounting information tracks all of a socket’s usage, but it can
only be linked to the process that most recently closed the socket. This
information can help you resolve network problems and/or monitor system
network usage.

You can use the csasocket(8) command to summarize and process the socket
data; csaswitch(8) can be used to check the status of, enable, and disable
accounting methods, including socket accounting. See the csasocket(8) and
csaswitch(8) man pages for more information.

2.1.14 Device Accounting

This section describes device accounting. On large computer systems with
expensive peripheral devices, it may be useful to associate device usage with
the user who initiated the I/O. Cray device accounting allows a system
administrator to specify the accounting data that should be collected for device
use. This system allows a site to individually label each mounted disk’s
partitions and so enables the site to charge each type of secondary storage at a
different rate. For example, the amount of I/O on a high-speed storage device
such as an SSD may be charged at a different rate than I/O on a disk device.

S–2302–10010 65

UNICOS® Resource Administration

2.1.14.1 Categories of Devices

The following three categories of devices under the UNICOS operating system
are important in device accounting:

• Character special devices, which are devices such as terminals, pseudo tty
devices, and the HSX channel.

• Block devices, which are devices such as disks, BMR, and the SSD.

• Logical devices, for device accounting, which are the individual file systems.
Such devices do not always correspond to a single device, but are treated as
such by device accounting.

The device accounting system accounts for device I/O by device type. For a
character device, device type is equivalent to its major number. For example, tty
devices are major number 1 (in the default system), so they are accounted for as
character device 1 (ios-tty). No accounting is performed for block devices,
because block devices are used to create file systems; instead, they are treated as
logical devices. Logical devices consist of one or more partitions of disk, SSD,
and BMR storage. Each logical device is formatted by the mkfs(8) command,
which provides it with a superblock. The devacct(8) program allows you to
write an accounting device type into the superblock of each logical device.

2.1.14.2 Structures and Device Names

The BLOCK_DEVICE x and CHAR_DEVICE x parameters in
/etc/config/acct_config contain the SBU values and names for device
accounting. Refer to Section 2.1.10.1.9, page 47, for an explanation of
configuring these parameters.

Device accounting uses arbitrary ASCII names for the user interface to
accounting; internally, these names are mapped by the accounting library
routines typetonam and namtotype. To be useful, these names should be
meaningful to even the beginning user, because the ja(1) (job accounting)
command displays these names when invoked with the -d option. The ASCII
names are defined in the device name field of the BLOCK_DEVICE x and
CHAR_DEVICE x parameters.

Logical device accounting names are displayed to the user by ja and the
accounting programs, and are used by devacct(8) to determine the numeric
values the kernel uses.

Logical and character device names should not match; in fact no two names
should match, because the user cannot distinguish between them.

66 S–2302–10010

Accounting [2]

If names contain spaces (the shell field separator (SHELL IFS), double quotes
must be used around the device type names during command invocation.

Device names are used as output by ja and the accounting programs; therefore,
keeping the names fairly short (less than 40 characters) will make them more
readable.

System billing units (SBUs) have the following meanings:

SBU Description

Logical I/O Sbu The total number of system
calls made to this type of
device is multiplied by
Logical I/O Sbu to
determine the SBU cost. This
value should be nonnegative.

Characters Xfer Sbu The total number of
characters transferred to this
device type is multiplied by
Characters Xfer Sbu to
determine the SBU cost. This
value should be nonnegative.

2.1.14.3 Configuration Changes

The system is released with the character devices configured to match the
released configuration; any changes to /usr/src/uts/c1/cf/devsw.c
should be reflected in the configuration file.

The block device configuration is released with a simple configuration. Several
extensions are possible, although some may require altering the values of
MAXBDEVNO and MAXCDEVNO, and rebuilding the system and accounting
commands. First, if a site has a special temporary device that is restricted to a
set of users, a special type might be placed on that device to allow the billing
process to increase the cost of use, offsetting the lower rate of use. Second, SSD
or BMR allocated to logical device cache may be reflected in the configuration.

2.1.14.4 System Header Files

The system header files discussed in this section are important in device
accounting.

S–2302–10010 67

UNICOS® Resource Administration

2.1.14.4.1 param.h Header File

The values MAXBDEVNO and MAXCDEVNO are contained in the
/usr/include/sys/param.h file; they set the maximum size of the
accounting structures in the user structure and the maximum size of the
accounting data written. It is recommended that they not be increased beyond
the current values unless necessary (although making MAXCDEVNO smaller and
MAXBDEVNO larger by the same amounts is acceptable).

MAXBDEVNO is the maximum number of block (logical) device accounting types.
This number can be changed from the current value of 10.

MAXCDEVNO is the maximum number of character device accounting types. This
number can be changed from the current value of 35.

2.1.14.4.2 acct.h Header File

The /usr/include/sys/acct.h header file contains all the kernel structures
for accounting and sets the following values related to device accounting:

Value Description

NODEVACCT The number of devio entries per accounting
record. This value is the number of device
accounting entries that fit into one accounting
record.

ACCT_CHSP A marker combined by an OR operation into the
type field (acd_type) to indicate that the devio
entry is for a character device.

_MAXDEVIOREC The maximum number of device accounting
records that can be written for any individual
process.

2.1.14.5 Using Device Accounting (devacct(8))

Use the devacct(8) command to label file systems with accounting types while
they are mounted. If a file system does not contain a device type label, device
accounting ignores it.

In order to enable device accounting, the system may be built to automatically
enable specific device types. However, an easier solution is to insert lines into
the system startup procedure (/etc/config/daemons) to enable device
accounting when bringing the system to multiuser mode. The following

68 S–2302–10010

Accounting [2]

example shows a line that can be added to the daemons file
(/etc/config/daemons) to enable device accounting (remember the device
type name is a single argument and so it may need to be enclosed in double
quotation marks if it contains shell separators):

SYS1 devacct YES - /usr/lib/acct/devacct -b "device type name"

The devacct command with the -l option may be used to label file systems
(file systems may be labeled only while mounted). The names of device types
are defined in the BLOCK_DEVICEx and CHAR_DEVICEx variables located in
/etc/config/acct_config. Some of the default names include spaces; such
names must be enclosed in double quotation marks on the command line.

For example, to label the device /dev/dsk/root with the label "dd49 with
ldcache", the command would be as follows:

/usr/lib/acct/devacct -l "dd49 with ldcache" /dev/dsk/root

Device accounting for any device type may be turned on at any time by
invoking the devacct command with the -b option. While device accounting
is on, no records are written unless per-process accounting is enabled.

For example, to enable accounting for the devices labeled "dd49 with
ldcache", the command is as follows:

/usr/lib/acct/devacct -b "dd49 with ldcache"

You can turn on performance accounting using the following command:

/usr/lib/acct/devacct -b perf01

Device accounting for any device type may be turned off at any time by
invoking the devacct command with the -t option. While accounting is
disabled, those processes that have already accumulated data will report that
data at termination if per-process accounting is enabled. For example, to disable
accounting for the devices labeled "dd49 with ldcache", the command is as
follows:

/usr/lib/acct/devacct -t "dd49 with ldcache"

To determine the current label for a device, use the devacct command with
the -L option. For example, to list the current label of /dev/dsk/root, you
would execute the following command:

/usr/lib/acct/devacct -L /dev/dsk/root

S–2302–10010 69

UNICOS® Resource Administration

2.1.14.5.1 Implications of Device Accounting

The system overhead for device accounting is fairly low. However, the amount
of accounting data produced in the worst cases is more than double that
produced by standard accounting. The more device accounting data kept, the
more file system space that is required. If one device is accounted for, processes
that use that device generate twice as much accounting data as a process that
did not use the device or the same process without device accounting. However,
for 1 to NODEVACCT device types, the maximum size of the accounting data
does not increase, except that more processes may use one of the devices.

2.1.14.5.2 Tape Device Accounting

To enable or disable tape device accounting, use the device type name associated
with the CHAR_DEVICE15 parameter in /etc/config/acct_config. By
default, this device name is "bmx daemon".

The device name associated with CHAR_DEVICE11 (the default is "bmx tape")
controls device accounting only for tape diagnostics.

To enable device accounting for the tapes, execute the following command:

/usr/lib/acct/devacct -b "bmx daemon"

2.1.15 Switching / and /usr File Systems

Occasionally, sites run on numerous / and /usr file systems and want to
maintain the same accounting files throughout. The easiest way to accomplish
this is to put /usr/adm or /usr/adm/acct on a separate file system and
mount this file system along with each different system.

In addition, two other files, /etc/csainfo and /etc/wtmp, must be copied
from the previously booted /. These files must be copied to the new root file
system before it is brought up. Failure to correctly copy /etc/csainfo to the
new / can cause csarun to abort abnormally. Incorrect connect time data is
reported when /etc/wtmp is not copied.

2.1.16 Logging Information

The following sections describe log files found in the UNICOS operating
system.

70 S–2302–10010

Accounting [2]

2.1.16.1 Boot Log

The boot log contains the date and time the system was booted. It is located in
/etc/boot.log and can be accessed through normal file manipulations such
as tail(1), cat(1), pg(1), and more(1). The /etc/rc (see brc(8)) script
appends the record to the boot.log. The format is as follows:

date, uname -a

yy/mm/dd hh:mm system node release version hardware

Example:

93/05/10 08:07 sn1703c cool 8.0.0tk dev.6 CRAY Y-MP

See date(1) and uname(1) for further information. See also who(1), and the
sample wtmp and utmp files in this chapter.

2.1.16.2 cron(8) Log

The cron log contains the history of all actions taken by the cron(8) command.
It is located in /usr/lib/cron/log and can be accessed by using normal file
manipulations such as tail(1), cat(1), pg(1), and more(1). The format of this
file is as follows:

CMD: command_executed username process_id job_type

start_time username process_id job_type

end_timerc=error return code

job_type can have one of the following values:

a at job

b Batch job

c cron job

Example:

> CMD: 645827040.a
> user1 7191 a Tue Jun 19 15:24:00 1990

> CMD: /usr/lib/sa/sa1 120 1

> root 7192 c Tue Jun 19 15:24:00 1990

< root 7192 c Tue Jun 19 15:24:00 1990

< user1 7191 a Tue Jun 19 15:24:00 1990

> CMD: 645827059.b
> user1 7273 b Tue Jun 19 15:24:19 1990

< user1 7273 b Tue Jun 19 15:24:20 1990 rc=1

S–2302–10010 71

UNICOS® Resource Administration

2.1.16.3 dump Log

The dump log contains the time and a reason for each dump. The system
supplies the time and the user supplies the reason. By default, the dump is
located in /etc/dump.log and can be accessed using the normal file
manipulations such as tail(1), cat(1), pg(1), and more(1). When the system is
changing out of single-user mode, brc(8) calls coredd(8) to copy a dump file
to a file system. The location of the dump can be reconfigured by using the
install tool. Note that the user may also change the location of the log file by
using the -l option with the cpdmp command.

Example of /etc/dump.log:

cpdmp: 035120 blocks on dump device - waiting to be copied

04/26/93 07:27:09 coredd: Copying system dump into /core//04260727.

Unicos-E dump copied to=/core//04260727/dump

dump taken: 04/26/93 at 07:18:51

reason: PANIC: master.s: EEX interrupt in UNICOS kernel

2.1.16.4 New User Log

The new user log contains information on new users given logins on the
system; this data includes who added the users, the times at which they were
added, and information about their environment defaults and IDs. This log is
located in /usr/adm/nu.log and can be accessed using normal file
manipulations such as tail(1), cat(1), pg(1), and more(1). It is created by the
nu(8) command. An example of the format follows:

user1:co:user login #1
user1:ui:10702:di:/j/user1:sh:/bin/csh:dr:/:pw:qQfHS6B8XYdzg

user1:gi:128,129,130,131,132

user1:ai:0

user1:dl:0:mx:0:mn:0:lk:0:tp:0

user1:dc:default:cm:default:pm:default
added by adm1 on Wed Jul 20 08:43:20 1988

2.1.16.5 su(8) Log

The su log records su(1) attempts for the current day. It is located in the
/usr/adm/sulog file and can be accessed using normal file manipulations
such as tail(1), cat(1), pg(1), and more(1). It is written by the su(1)
command. The format of the log is as follows:

SU MM/DD hh:mm flag tty olduser-newuser

72 S–2302–10010

Accounting [2]

flag can have the following values:

+ su was successful.

- su was not successful.

olduser is the login name of the user executing su, and newuser is the name of
the user the executing user is becoming. For example:

SU 06/19 15:13 + console operator-root SU 06/19 15:13 + ttyp025 \n

user1-root SU 06/19 15:14 + ttyp021 user2-adm SU 06/19 15:19 - ttyp026 \n

user3-root SU 06/19 15:19 - ttyp022 user4-root

2.1.16.6 OLDsu Log

The OLDsu log is a directory containing all files of daily su(1) attempts. It is
located in /usr/adm/OLDsu/* and can be accessed using normal file
manipulations such as tail(1), cat(1), pg(1), and more(1). The /etc/rc
script moved the /usr/adm/sulog file to the /usr/adm/OLDsu directory at
system startup. An example of the format follows:

$ ls -al OLDsu

-rw-rw-rw- 1 root 2864 Oct 31 19:02 Oct31

-rw-rw-rw- 1 root 20211 Sep 12 09:15 Sep01

-rw-rw-rw- 1 root 938 Sep 12 09:15 Sep02

$ cat Sep01

SU 09/01 16:29 + tty?? root-root

SU 09/01 16:30 + tty?? root-sys

SU 09/01 16:32 + tty?? root-sys

SU 09/01 16:32 + tty?? root-root

SU 09/01 16:34 + tty?? root-sys
SU 09/01 16:35 + tty?? root-root

SU 09/01 16:36 + tty?? root-sys

2.1.16.7 System Logs

The system logs are files into which the syslogd(8) command has logged
messages. They are located in the /usr/adm/syslog/* directory. Note that
these files are described by the configuration file /etc/syslog.conf. They
can be accessed using normal file manipulations such as tail(1), cat(1),

S–2302–10010 73

UNICOS® Resource Administration

page(1), and more(1). They are written by the /etc/syslogd command; the
logger(1B) command also makes entries in the system logs.

These logs consist of ASCII messages, which may include debug messages,
kernel messages, and so on.

The following example is the configuration file for /etc/syslogd (these fields
are described on the syslogd(8) and syslog(3) man pages):

$ cat /etc/syslog.conf

USMID @(#)man/2302/02.accounting 92.2 02/05/96 13:26:44

#

This is a configuration file for /etc/syslogd

#

#*.debug /usr/adm/syslog/debug

#
mail.debug /usr/spool/mqueue/syslog

#

kern.debug /usr/adm/syslog/kern

#

daemon,auth.debug /usr/adm/syslog/auth
#

#*.err;kern.debug;auth.notice /dev/console

#

*.err;kern.debug;daemon,auth.notice; /usr/adm/syslog/daylog

#
#*.alert;kern.err;daemon.err operator

*.alert root

Note: The /etc/syslogd.conf file does not work if spaces are in it; only
tabs can be used to separate items in this file.

The following example shows a listing of the files in the /usr/adm/syslog
directory:

$ ls -l /usr/adm/syslog

total 10

-rw-r--r-- 1 root root 168 Jun 19 15:35 auth
-rw-r--r-- 1 root root 5164 Jun 19 15:45 daylog

-rw-r--r-- 1 root root 4107 Jun 19 15:45 kern

drwxr-xr-x 2 root root 16864 Jun 19 15:09 oldlogs

74 S–2302–10010

Accounting [2]

2.1.16.8 Error Log

The error log is a file containing error records from the operating system. The
default error file is /usr/adm/errfile. There are two facilities available for
generating reports from the data collected by the error-logging mechanism. The
first is errpt(8), which processes error reports from the data, and the second is
olhpa, a hardware performance analyzer that reports the hardware errors and
statuses recorded in the system error log.

Note: The olhpa facility is only available on IOS-E based systems. It is not
available on GigaRing based systems.

The /etc/errdemon command (see errdemon(8)) reads /dev/error and
places the error records from the operating system into either the specified file,
or errfile, by default. The /etc/rc (see brc(8)) script starts
/etc/errdemon, and /etc/mverr is used to start a new errfile.

The following example shows sample errpt output:

Tue Jun 7 12:01:49 1988

Error reported from IOS 0 for device S49-0-21

Major:0 Minor:6 Block:140868 status: Recovered

Iop:0 Channel:21 Unit:0

Cylinder:1156 Head:5 Sector:0

Function:Read Requested:344064 bytes Received:344064 bytes

IOS 0 ERROR LOGGING ENABLED

See errpt(8) for further information. See the Online Maintenance Tools Guide for
Cray PVP Systems, or the olhpa(8) man page for information concerning
olhpa. 2

2.1.16.9 Multilevel Security (MLS) Log

The multilevel security (MLS) log is a file containing security-relevant event
loggings. The security log, /usr/adm/sl/slogfile, can be analyzed by
using the reduce command. reduce extracts, formats, and outputs entries
from UNICOS security event files. The security event logging daemon,
slogdemon(8), collects security-relevant records from the operating system by
reading the character special pseudo device /dev/slog. For more information
regarding the format of the security log and on the UNICOS MLS feature, see
the reduce(8) man page and General UNICOS System Administration.

2 CRAY PRIVATE. This document contains information private to Cray Inc. It can be distributed to non-Cray
personnel only with approval of the appropriate Cray manager.

S–2302–10010 75

UNICOS® Resource Administration

2.1.16.10 System Activity Log

The system activity report facility provides commands for generating various
system activity reports. Two reporting capabilities exist (one automatic and one
user-driven); however, the actual reports are created by the sar(8) program in
either case. The system activity log is located in /usr/adm/sa/saDD and can
be accessed with sar.

Warning: The log files located in /usr/adm/sa/saDD on a Cray ML-Safe
configuration of the UNICOS system are considered to be covert channels.
You may want to consider restricting access to these files to the adm group.

With this command, you can generate system activity reports in real time and
save system activities in a file for later use. The sa1, sa2, and sadc commands
(see sar(8)) generate system activity data on a routine basis, with sa2 calling
sar to generate the report.

UNICOS counters are incremented as various system actions occur. These
counters provide system-wide measurements. sadc accesses /dev/kmem to
read these system activity counters.

Refer to the sar(8) man page for more information on the format of the system
activity log.

2.1.16.11 Message Log

The message log contains messages and replies to the operator. It is located in
/usr/spool/msg/msglog.log and can be accessed using normal file
manipulations, such as tail(1), cat(1), pg(1), and more(1). All messages and
replies to and from the operator console are put into this file by the console. An
example of the file format follows:

Apr 1 07:11:06 Message daemon stopped

Apr 1 09:36:54 Message daemon started

Apr 1 08:09:49 Message 1: TM122 - mount tape WK1102(sl) on a CART

device for user1 50, () or reply cancel / device name

Warning: The msglog.log file is considered a covert channel on a Cray
ML-Safe configuration of the UNICOS system. You may want to consider
restricting access to this file to the adm group.

76 S–2302–10010

Accounting [2]

2.1.16.12 Accounting Logs

The accounting logs are files containing various accounting information, as
follows:

Log Description

csainfo A file containing boot times. It can be accessed with the od(1)
command (the -d option will give the seconds). Each time the
system is booted, the boot time is written to /etc/csainfo by
the /etc/csaboots (see csaboots(8)) command. csaboots is
invoked by /etc/rc (see brc(8)). See also the description of the
boot log in Section 2.1.16.1, page 71.

utmp A file containing active system and terminal connection
information. This log is used by write(1), who(1), wall(8), and
mail(1) in getting user information. It is located in /etc/utmp
and can be accessed using the who(1) and last(1B) commands. It
is written to by init(8), date(1), login(1), and getty(8). For
information on the format of utmp, see utmp(5).

Warning: On a Cray ML-Safe configuration of the UNICOS
system, utmp and wtmp are considered to be covert channels.
You may want to consider restricting access to these files to the
adm group.

wtmp A file containing a system and terminal connection history record.
This log includes usage statistics for each terminal, date change,
time stamp, boot records, reboots, shutdowns, and state changes.
wtmp must exist; programs that access it do not create it (the
/etc/rc script creates /etc/wtmp by default).

Records are in the form of utmp(5); acctcon(8) and csaline(8)
convert /etc/wtmp into session and charging records. This data
is merged into the system accounting reports. wtmp can also be
accessed using the who(1) and last(1) commands.

wtmp is written by init(8), date(1), login(1), and getty(8).
For information on the format of wtmp, see utmp(5).

pacct Files containing per-process accounting data; these are located in
/usr/adm/acct/day/pacct* and can be accessed using the
acctcom(1) command. Note that these files are read by system
accounting programs, and the information appears in the
accounting reports. pacct is written by the kernel, and its format
is described in /usr/include/sys/acct.h.

S–2302–10010 77

UNICOS® Resource Administration

Warning: On systems running a Cray ML-Safe configuration of
the UNICOS system, access to pacct* files should be
restricted to the adm group.

The following data files are accessed by system accounting programs, and their
information appears in the accounting reports:

Log Description

disktacct A file containing disk accounting data, located in
/usr/adm/acct/nite/disktacct. The
/usr/lib/acct/dodisk (see dodisk(8))
command writes this file.

fee A file containing user fees for accounting data,
located in /usr/adm/acct/day/fee. This file
is written by /usr/lib/acct/chargefee (see
chargefee(8)).

nqacct A file containing NQS daemon accounting data,
located in /usr/adm/acct/day/nqacct*. This
file is written by /usr/lib/nqs/nqsdaemon.
See /usr/include/acct/dacct.h for the
format.

soacct A file containing socket accounting data, located
in /usr/adm/acct/day/soacct*. This file is
written by the kernel. See
/usr/include/sys/acct.h for the format.

tpacct A file containing tape daemon accounting data,
located in /usr/adm/acct/day/tpacct*. This
file is written by /usr/lib/tp/tpdaemon (see
tpdaemon(8)). See
/usr/include/acct/dacct.h for the format.

2.1.16.13 NQS Log

The NQS log contains NQS information. Its default location is the ASCII file
/usr/spool/nqs/log (you can change the location of the log file with the
qmgr set log_file command; to see where the current log file resides, use
the qmgr show parameters command). Access to /usr/spool/nqs is
restricted; however, if you have the correct permissions, you can access the
NQS log file using normal file manipulations, such as tail(1), cat(1), pg(1),
and more(1). This log is created by the NQS log daemon.

78 S–2302–10010

Accounting [2]

Warning: On systems running a Cray ML-Safe configuration of the UNICOS
system, access to the NQS log should be restricted to the adm group.

An example of the log file’s format is as follows:

05/13 08:00:00 I getpkt(): Received packet from local process: <89775>.

05/13 08:00:00 I getpkt(): Client process real UID=<900>.

05/13 08:00:00 I getpkt(): Packet type=<PKT_QUEREQVLPQ(30)>.

05/13 08:00:00 I getpkt(): Packet contents are as follows:
05/13 08:00:00 I getpkt(): Pkt_str[1] = <batnam1>.

05/13 08:00:00 I getpkt(): Pkt_int[1] = <40>.

05/13 08:00:00 I getpkt(): Pkt_int[2] = <119>.

05/13 08:00:00 T nqs_quereq(): Request <40.cool>: Attempting to read request.

05/13 08:00:00 T nqs_quereq(): Request <40.cool>: Request was read.

2.2 Standard UNIX Accounting

The standard UNIX accounting feature of the UNICOS system provides
methods for collecting resource use data per process, recording connect
sessions, monitoring disk usage, and charging fees to specific logins. A set of C
language programs and shell procedures is provided to reduce this accounting
data into summary files and reports. This section describes the structure,
implementation, and management of the accounting system; it also describes
the reports generated and the meaning of the columnar data.

The following list is a synopsis of the standard accounting actions:

• At process termination, the UNICOS system kernel writes one record per
process in /usr/adm/acct/day/pacct.

• The login(1) and init(8) programs record connect sessions by writing
records into /etc/wtmp. Date changes, reboots, and shutdowns are also
recorded in this file. The wtmp file is described in utmp(5).

• The programs acctdusg(8) and diskusg(8) break down disk usage by
login.

• Fees can be charged to specific logins with the chargefee(8) shell
procedure.

• Each day the cron(8) shell procedure executes the runacct(8) shell
procedure, which reduces accounting data and produces summary files and
reports.

S–2302–10010 79

UNICOS® Resource Administration

• The monacct(8) procedure can be executed on a monthly or fiscal period
basis. It saves and restarts summary files, generates a report, and cleans up
the sum directory. These saved summary files could be used to charge users
for UNICOS system usage.

2.2.1 Files and Directories

The /usr/lib/acct directory contains all the C language programs and shell
procedures necessary for running the accounting system. The adm login is used
by the accounting system and has the login directory structure shown in Figure
3.

a10113

/usr/adm

acct

day nite sum fiscal

Figure 3. Directory Structure of the Adm Login

The /usr/adm/acct/day directory contains the active data collection files.
The nite directory contains files that are reused daily by the runacct(8)
procedure. The sum directory contains the cumulative summary files updated
by runacct(8). The fiscal directory contains periodic summary files created
by monacct(8).

In addition, configurable parameters are located in
/etc/config/acct_config. You should modify these parameters to meet
your site’s needs.

80 S–2302–10010

Accounting [2]

2.2.2 Daily Operation

When the UNICOS system is switched into multiuser mode,
/usr/lib/acct/startup is executed, as follows:

1. The acctwtmp(8) program adds a boot record to /etc/wtmp. This record
is signified by use of the system name as the login name in the wtmp record.

2. Process accounting is started with turnacct(8). The turnacct command
specified with the on argument, as follows, executes the accton(8)
program with the /usr/adm/acct/day/pacct argument:

/usr/lib/acct/turnacct on

3. The remove shell procedure is executed to clean up the saved pacct and
wtmp files left in the sum directory by runacct(8).

The ckpacct(8) procedure is run with cron(8) every hour to check if there is
enough space on the current file system (the default is /usr). If there are fewer
than MIN_BLKS free blocks (by default 500), accounting is stopped, and the
system administrator is notified about the action. MIN_BLKS is defined in the
configuration file /etc/config/acct_config. The ACCT_FS variable in
/etc/config/acct_config must be set to the file system containing
/usr/adm/acct. If the free space increases to 500 free blocks at a later time,
accounting is restarted, again with notification to the system administrator.

You can use the chargefee(8) program to bill users. It adds to
/usr/adm/acct/day/fee records that are picked up and processed by the
next execution of runacct and merged into the total accounting records.

The runacct command is executed with cron each night. It processes the
following active accounting files:

/usr/adm/acct/day/pacct

/etc/wtmp

/usr/adm/acct/day/fee

/usr/adm/acct/nite/disktacct

It produces command summaries and usage summaries by login. When the
system is shut down with shutdown(8), the shutacct(8) shell script is
executed. It writes a shutdown reason record into /etc/wtmp (see utmp(5))
and turns process accounting off.

S–2302–10010 81

UNICOS® Resource Administration

2.2.3 Setting up the Accounting System

This section explains how to automate the operation of the accounting system.
It also contains information on converting UNICOS 8.0, 8.3, 9.0, 9.1, 9.2, and 9.3
standard UNIX accounting files to UNICOS 10.0 CSA format.

To automate the operation of the accounting system, complete the following
steps:

1. Modify any necessary parameters in the file /etc/config/acct_config,
which contains configurable parameters for the accounting system. Ensure
that the parameters, such as MEMINT, reflect the needs of your site. You can
specify an alternate configuration file when running any of the accounting
commands. See Section 2.1.10.8, page 55, for more information.

2. If you maintain startup options with the Installation Configuration Menu
System (ICMS), configure RC_ACCT to have a value of YES. Otherwise, edit
the /etc/config/rcoptions file to set RC_ACCT to a YES value.

3. Add an entry similar to the following to
/usr/spool/cron/crontabs/root so that cron automatically runs
dodisk:

0 2 * * 4 /usr/lib/acct/dodisk

dodisk must be executed by root, because no other user has the correct
permissions to read /dev/dsk/*.

4. For most installations, you should make entries similar to the following in
/usr/spool/cron/crontabs/adm so that cron will run the daily
accounting automatically:

0 4 * * 1-6 /usr/lib/acct/runacct 2>/usr/adm/acct/nite/fd2log

50 * * * * /usr/lib/acct/ckpacct

The runacct(8) command should be run at a time when the dodisk(8)
routine has had sufficient time to complete. If dodisk has not completed
before runacct executes, disk information may be missing.

5. To facilitate monthly merging of accounting data, make an entry similar to
the following in /usr/spool/cron/crontabs/adm:

15 5 1 * * /usr/lib/acct/monacct

This entry allows the monacct(8) procedure to clean up all daily reports
and daily total accounting files and to deposit one monthly total report and
one monthly total accounting file in the fiscal directory. It takes

82 S–2302–10010

Accounting [2]

advantage of the default action of monacct, which uses the current
month’s date as the suffix for the file names. The entry is executed when
the runacct(8) procedure has sufficient time to complete. This results in
the creation of monthly accounting files on the first day of each month
containing the entire previous month’s data.

6. Set the PATH shell variable in /usr/adm/.profile to the following:

PATH=/usr/lib/acct:/bin:/usr/bin

2.2.3.1 Setting up a User Exit

Daily accounting provides one user exit, /usr/lib/acct/run.user, that you
can call from the runacct command. This user exit allows you to tailor the
runacct procedure to your site’s needs by creating a shell script to perform
any additional processing during the daily run of accounting. You do not have
to modify the runacct script.

While executing, runacct checks in the USEREXIT state for a shell script
named /usr/lib/acct/run.user. If the script exists, it is executed via the
shell . (dot) command. If the script does not exist, the user exit is ignored. The
. (dot) command will not execute a compiled program, but the user exit script
can. runacct variables are available, without being exported, to the user exit
script. runacct checks the return status from the user exit and, if it is nonzero,
the execution of csarun is terminated.

2.2.3.2 Converting Standard UNIX Accounting to CSA Accounting

If your site decides to run CSA instead of standard UNIX accounting, you
should wait until the start of an accounting period before implementing CSA.
(An accounting period usually begins on the first day of a month.) Before
switching to CSA, use the standard UNIX accounting package to process the
previous month’s accounting data.

Follow these steps to convert from standard UNIX accounting to CSA:

1. Run the current version of UNICOS standard UNIX accounting programs
until the first day of the next month. Use the runacct(8) command to
process the daily accounting data.

2. On the first day of the month, use the monacct(8) command to generate an
accounting report for the previous month.

3. On the first day of the month, switch from running the standard UNIX
accounting package to CSA.

S–2302–10010 83

UNICOS® Resource Administration

4. (Optional step) The daily tacct files must be converted to cacct format if
you later want to summarize this data by using csaperiod(8). The
conversion should be done by using the csaconvert(8) command. Refer
to the csaconvert(8) man page and the UNICOS Installation Guide,
publication SG-2112, for more information on conversion.

For details on how to set up CSA, see Section 2.1.4, page 11.

2.2.4 The runacct Command

The runacct(8) command is the main daily accounting shell procedure. It
processes connect, fee, disk, and process accounting files and prepares daily and
cumulative summary files for use by prdaily(8) or for billing purposes.
runacct also contains one user exit point that allows you to tailor the daily
accounting run to your site’s needs. It is normally initiated with the cron(8)
command during nonprime hours.

The following files in /usr/adm/acct, which are produced by runacct, are
of particular interest:

File Description

nite/daytacct The total accounting file for the previous day in
tacct.h format.

nite/lineuse Produced by acctcon(8). It reads the wtmp file
and produces usage statistics for each terminal
line on the system. This report is not especially
useful, but is a carryover from traditional UNIX
systems.

sum/cms The accumulation of each day’s command
summaries. It is restarted by the execution of
monacct(8). The ASCII version of this file is
nite/cms.

sum/daycms Produced by the acctcms(8) program. It
contains the daily command summary. The ASCII
version of this file is nite/daycms.

sum/loginlog Produced by the lastlogin(8) shell procedure.
This file contains a record of the last time each
login was used.

sum/rprtMMDD Each execution of runacct(8) saves a copy of the
daily report as produced by prdaily(8).

84 S–2302–10010

Accounting [2]

sum/tacct The accumulation of each day’s nite/daytacct.
It can be used for billing purposes and is
restarted each month or fiscal period by the
monacct(8) procedure.

The runacct command does not damage files in the event of errors. It
contains a series of protection mechanisms that attempt to recognize an error,
provide intelligent diagnostics, and terminate processing in such a way that
runacct can be restarted with minimal intervention.

The runacct command records its progress by writing descriptive messages
into the file active. (Files used by runacct are assumed to be in the
/usr/adm/acct/nite directory unless otherwise noted.) All diagnostic
output during the execution of runacct is written into fd2log. runacct
terminates execution if the lock and lock1 files exist when it is invoked. The
lastdate file contains the month and day runacct was last invoked and is
used to prevent more than one execution per day. If runacct detects an error,
it writes a message to /dev/console, sends mail to root and adm, removes
locks, saves diagnostic files, and terminates execution.

Processing is broken down into separate reentrant states so that runacct can
be restarted. The last state completed is recorded in a file. As each state
completes, statefile is updated to reflect the next state. When runacct
reaches the CLEANUP state, it removes the locks and terminates. States are
executed as follows:

State Description

SETUP The turnacct(8) command switch is executed.
The process accounting files,
/usr/adm/acct/day/pacct*, are moved to
/usr/adm/acct/day/Spacct*.MMDD. The
/etc/wtmp file is moved to
/usr/adm/acct/nite/wtmp.MMDD, with the
current date added at the end.

WTMPFIX The wtmpfix (see fwtmp(8)) program checks the
wtmp file in the nite directory for accuracy.
Some date changes cause acctcon1 (see
acctcon(8)) to fail, so wtmpfix attempts to
adjust the time stamps in the wtmp file if a date
change record appears.

S–2302–10010 85

UNICOS® Resource Administration

If wtmpfix is unable to fix the wtmp file, the
wtmp file must be manually repaired. Refer to
Section 2.2.5.1, page 89.

CONNECT1 Connect session records are written to ctmp in
the form of ctmp.h. The lineuse file and the
reboots file are created, showing all of the boot
records found in the wtmp file.

CONNECT2 The ctmp file is converted to ctacct.MMDD,
which is comprised of connect accounting records.
(Accounting records are in tacct.h format.)

PROCESS The acctprc1 and acctprc2 programs (see
acctprc(8)) are used to convert the process
accounting files,
/usr/adm/acct/day/Spacct*.MMDD, into
total accounting records in ptacct*.MMDD.
The Spacct and ptacct files are correlated by
number so that, if runacct fails, the Spacct
files are not reprocessed. One precaution should
be noted: when restarting runacct in this state,
remove the last ptacct file, because it will not
be complete.

MERGE The process accounting records are merged with
the connect accounting records, the output going
to daytacct.

FEES Any ASCII tacct records from the file fee are
merged into daytacct.

DISK On the day after the dodisk(8) procedure runs,
disktacct is merged with daytacct.

MERGETACCT The daytacct file is merged with sum/tacct,
the cumulative total accounting file. Each day,
daytacct is saved in sum/tacct.MMDD so
that sum/tacct can be recreated if it becomes
corrupted or lost.

CMS Today’s command summary is merged with the
cumulative command summary file sum/cms.
ASCII and internal format command summary
files are produced.

86 S–2302–10010

Accounting [2]

USEREXIT User exit point. If a script named
/usr/lib/acct/run.user exists, it will be
executed via the shell . (dot) command. The
. (dot) command will not execute a compiled
program, but the user exit script can. runacct
variables are available, without being exported, to
the user exit script. You might use this user exit
to run local accounting programs.

CLEANUP Clean up temporary files, run prdaily(8) and
save its output in sum/rprtMMDD, remove the
locks, and then exit.

2.2.4.1 Failure Recovery for runacct(8)

The runacct(8) program can fail for a variety of reasons; the most common
reasons are a system crash, a lack of space in the file system containing
/usr/adm/acct, and a corrupted wtmp file. If the active MMDD file exists,
check it first for error messages. If the active file and lock files exist, check
fd2log for messages.

The following are error messages produced by runacct and the recommended
recovery actions:

ERROR: locks found, run aborted

The lock and lock1 files were found. These files must be removed before
runacct can restart.

ERROR: acctg already run for date: check
/usr/adm/acct/nite/lastdate

The date in lastdate and today’s date are the same. Remove lastdate.

ERROR: turnacct switch returned rc=?

Check the integrity of turnacct(8) and accton(8). The accton program
must be owned by root, and the setuid bit must be set.

ERROR: Spacct?.MMDD already exists

File setups have probably already been run. Check status of files, then run
setups manually.

ERROR: /usr/adm/acct/nite/wtmp.MMDD already exists, run
setup manually.

S–2302–10010 87

UNICOS® Resource Administration

This message is self-explanatory.

ERROR: wtmpfix errors see /usr/adm/acct/nite/wtmperror

The wtmpfix(8) program detected a corrupted wtmp file. Use fwtmp(8) to
correct the corrupted file.

ERROR: Connect acctg failed: check /usr/adm/acct/nite/log

The acctcon1(8) program encountered a bad wtmp file. Use fwtmp to correct
the bad file.

ERROR: Invalid state, check /usr/adm/acct/nite/active

The statefile file is probably corrupted. Check statefile and read the
active file before restarting.

2.2.4.2 Restarting runacct(8)

If you invoke runacct(8) without arguments, the invocation is assumed to be
the first one of the day. The MMDD argument is necessary if runacct is being
restarted. It specifies the month and day for which runacct is to rerun the
accounting. The entry point for processing is based on the contents of
statefile. To override statefile, include the desired state on the
command line. For each case, see the appropriate example, as follows:

To start runacct:

nohup runacct 2> /usr/adm/acct/nite/fd2log&

To restart runacct using the state specified in statefile:

nohup runacct 0601 2> /usr/adm/acct/nite/fd2log&

To restart runacct at a specific state, overriding statefile:

nohup runacct 0601 WTMPFIX 2> /usr/adm/acct/nite/fd2log&

2.2.5 Fixing Corrupted Files

When file corruption occurs, some files can be ignored or restored from the file
save backup. Certain files, however, must be fixed in order to maintain the
integrity of the accounting system.

88 S–2302–10010

Accounting [2]

2.2.5.1 Fixing wtmp Errors

The wtmp files generally cause the highest number of errors in the day-to-day
operation of the accounting system. When the date is changed, and the
UNICOS system is in multiuser mode, a set of date change records is written
into the /etc/wtmp file. The wtmpfix program (see fwtmp(8)) is designed to
adjust the time stamps in the wtmp records when a date change is encountered.

Some combinations of date changes and reboots, however, slip through
wtmpfix and cause acctcon1 (see acctcon(8)) to fail.

The following example shows how to repair a wtmp file:

$ cd /usr/adm/acct/nite
$ /usr/lib/acct/fwtmp < wtmp.MMDD > xwtmp

$ ed xwtmp

(Delete corrupted records)
$ /usr/lib/acct/fwtmp -ic < xwtmp > wtmp.MMDD

(Restartrunacct at the WTMPFIX state)

If the wtmp file is beyond repair, create a null wtmp file, which prevents any
charging of connect time. The acctprc1 program (see acctprc(8)) cannot
determine which login owned a particular process, but the process is charged to
the first login in the /etc/udb file for that user ID.

2.2.5.2 Fixing tacct Errors

If your installation is using the accounting system to charge users for system
resources, the integrity of sum/tacct is quite important. Occasionally, tacct
records appear with negative numbers, duplicate user IDs, or a user ID of
65535. First, check the sum/tacctprev file with prtacct(8). If it looks
correct, the latest sum/tacct. MMDD should be corrected; sum/tacct must
then be recreated. A correctional procedure is as follows:

$ cd /usr/adm/acct/sum

$ /usr/lib/acct/acctmerg -v tacct.MMDD xtacct

$ ed xtacct

(Remove the bad records, write duplicate user ID records to another file)

$ /usr/lib/acct/acctmerg -i xtacct tacct.MMDD
$ /usr/lib/acct/acctmerg tacctprev tacct.MMDD tacct

The monacct(8) procedure removes all tacct. MMDD files; therefore, you
can recreate sum/tacct by merging these files.

S–2302–10010 89

UNICOS® Resource Administration

2.2.6 Updating Holidays

The /usr/lib/acct/holidays file contains the prime/nonprime time table
for the accounting system. You should edit the table to reflect your site’s
holiday schedule for the year. By default, the holidays file is located in the
/usr/lib/acct directory. You can change the location of this file by
modifying the HOLIDAY_FILE variable in /etc/config/acct_config. If
necessary, you should modify the NUM_HOLIDAYS variable (also located in
acct_config), which sets the upper limit on the number of holidays that can
be defined in HOLIDAY_FILE.

The format is composed of three types of entries:

1. Comment lines: These lines may appear anywhere in the file as long as the
first character in the line is an asterisk.

2. Year and time designation line: This line should be the first data line
(noncomment line) in the file and must appear only once. The line consists
of three fields of 4 digits each (leading white space is ignored). For
example, to specify the year as 1982, prime time at 9:00 A.M., and nonprime
time at 4:30 P.M., the following entry would be appropriate:

1982 0900 1630

As a special condition for the time field, the time 2400 is automatically
converted to 0000.

3. Company holidays lines: These entries follow the year designation line and
have the following general format:

day-of-year Month Day Description of Holiday

The day-of-year field is a number in the range of 1 through 366, indicating
the day for a given holiday (leading white space is ignored). The other
three fields are commentary and are not currently used by other programs.

2.2.7 Reports

The runacct(8) program generates five basic reports upon each invocation.
These reports cover the areas of connect accounting, usage by user on a daily
basis, command usage reported by daily totals, command usage reported by
monthly totals, and last login time by user. The diskusg command can be
configured at your site; see Section 2.1.10.9, page 56, for a description of how to
customize a report for your site.

90 S–2302–10010

Accounting [2]

The following sections describe the reports and interpretation of their tabulated
data.

2.2.7.1 Daily Report

In the first part of the report, the from/to banner alerts you to the time period
being reported. The specified times are the time the last accounting report was
generated until the time the current accounting report was generated. This
banner is followed by a log of system reboots, shutdowns, power failure
recoveries, and any other record dumped into the /etc/wtmp file by the
acctwtmp(8) program.

The second part of the report is a breakdown of line usage. The TOTAL
DURATION value is the difference between the time stamps of the first and the
last record found in the wtmp file. The columns are as follows:

Column Description

LINE The terminal line or access port

MINUTES The total number of minutes the line was in use during the
accounting period

PERCENT The total number of MINUTES the line was in use, divided into
the TOTAL DURATION

#SESS The number of times this port was accessed for a login(1) session

2.2.7.2 Daily Usage Report

The daily usage report gives a breakdown of system resource usage by user. Its
data consists of the following:

Heading Description

ACCOUNT NAME If the UNICOS user-information database is
enabled, this field contains the account name;
otherwise, it contains default.

UID User ID.

LOGIN NAME Login name of the user; there can be more than
one login name for a single user ID (although this
is not recommended); this identifies the user.

CPU SECS The amount of time in seconds the user’s process
used the CPU.

S–2302–10010 91

UNICOS® Resource Administration

KCORE-MINS A cumulative measure of the amount of memory
a process used while running. The amount
shown reflects kiloword segments multiplied by
minutes used.

CONNECT (MINS) The real time used. Real time is the amount of
time that a user was logged in to the system. If
this time is rather high, and column # OF PROCS
is low, this person probably logs in first thing in
the morning and rarely uses the terminal the rest
of the day. This type of user can be a system
resource problem. If this user is logged in and is
not using the system at all, he or she may be
using a line to the system that someone else
needs.

DISK BLOCKS Output from the disk accounting programs after
that output has been merged into the total
accounting record (tacct.h). Disk accounting is
accomplished by the acctdusg(8) program.

OF PROCS The number of processes invoked by the user.
Large numbers indicate an uncontrolled user shell
procedure.

OF JOBS Number of times the user logged in to the system
(interactive or batch).

DISK SAMPLES Number of times disk accounting was run to
obtain the average number of DISK BLOCKS
listed earlier.

FEE The total accumulation of billing units charged
against the user by the chargefee(8) shell
procedure. The chargefee procedure is used to
levy charges against a user for special services
(such as file restores) performed. This field is
often unused.

SBU A site-specific system billing unit (SBU); default is
0. You can modify the SBU calculation for your

92 S–2302–10010

Accounting [2]

site by editing the source and recompiling the
accounting software (see Section 2.1.10.1, page 40).

2.2.7.3 Daily Command and Monthly Total Command Summaries

The daily command and monthly total command summaries are virtually the
same, except that the daily command summary reports only on the current
accounting period, while the monthly total command summary reports on the
time from the start of the fiscal period to the current date. That is, the monthly
report reflects the data accumulated since the last invocation of the monacct(8)
procedure.

The data included in these reports tells you which commands are used most
often. Based on this information, you can identify areas of the system using a
majority of system resources.

These two reports are sorted by TOTAL CPU-MIN. The following categories are
used:

Heading Description

COMMAND NAME The name of the command. All shell procedures
are under the name sh, because only object
modules are reported by the process accounting
system. The acctcom(1) program is a good tool
to use for identifying a user who executed a
suspiciously named command and also for
determining whether super-user privileges were
used.

NUMBER CMDS The total number of invocations of this particular
command.

TOTAL KCOREMIN The total cumulative measurement of the number
of kiloword segments of memory used by a
process per run-time minute.

TOTAL CPU-MIN The total processing time this program has
accumulated.

TOTAL REAL-MIN The total real-time (wall-clock) minutes this
program has accumulated.

MEAN SIZE-K The mean of the TOTAL KCOREMIN over the
number of invocations reflected by NUMBER
CMDS.

S–2302–10010 93

UNICOS® Resource Administration

MEAN CPU-MIN The mean derived between the NUMBER CMDS
and TOTAL CPU-MIN.

HOG FACTOR A relative measurement of the ratio of system
availability to system usage. It is computed by
the following formula:

(total CPU time) / (elapsed time)

This gives a relative measure of the total available
CPU time consumed by the process during its
execution.

K-CHARS TRNSFD The total number of characters moved by the
read(2) and write(2) system calls.

I/O BUFS RD/WR The total number of physical reads and writes
that a process performed.

2.2.7.4 Last Login Report

The last login report provides the date on which a particular login was last
used. You can use this report as a source of likely candidates to be moved to
the archives, or, of unused logins and login directories to be deleted.

2.2.8 Accounting Files

This section lists files relevant to the accounting system in the
/usr/adm/acct/day, /usr/adm/acct/nite, /usr/adm/acct/sum, and
/usr/adm/acct/fiscal directories.

Files in the /usr/adm/acct/day directory are as follows:

File Description

dtmp Output from the acctdusg(8) program.

fee Output from the chargefee(8) program (ASCII
tacct records).

pacct Active process-accounting file.

pacct* Process-accounting files switched using
turnacct(8).

94 S–2302–10010

Accounting [2]

Spacct*.MMDD Process-accounting files for MMDD during
execution of runacct(8).

Files in the /usr/adm/acct/nite directory are as follows:

File Description

active Used by runacct to record progress and print
warning and error messages. The activeMMDD
file is the same as active after runacct detects
an error.

cms ASCII total command summary used by
prdaily(8).

ctacct.MMDD Connect accounting records in tacct.h format.

ctmp Output of acctcon1 program (see acctcon(8));
connect session records in ctmp.h format.

daycms ASCII daily command summary used by
prdaily.

daytacct Total accounting records for one day in tacct.h
format.

disktacct Disk accounting records in tacct.h format;
created by dodisk(8) procedure.

fd2log Diagnostic output during execution of runacct.

lastdate Last day runacct executed in date +% m% d
format.

lineuse The tty line usage report used by prdaily.

lock lock1 Used to control serial use of runacct.

log Diagnostic output from acctcon1.

log MMDD Same as log after runacct detects an error.

reboots The beginning and ending dates from wtmp, and
a listing of reboots.

statefile A record of the current state during execution of
runacct.

tmpwtmp The wtmp file corrected by wtmpfix (see
fwtmp(8)).

wtmperror Place for wtmpfix error messages.

S–2302–10010 95

UNICOS® Resource Administration

wtmperrorMMDD Same as wtmperror after runacct detects an
error.

wtmp.MMDD Previous day’s wtmp file.

Files in the /usr/adm/acct/sum directory are as follows:

File Description

cms Total command summary file for current fiscal
year in internal summary format.

cmsprev Command summary file without latest update.

daycms Command summary file for yesterday in internal
summary format.

loginlog Login record file created by lastlogin(8).

pacct.MMDD Concatenated version of all pacct files for
MMDD; removed after reboot by remove(8)
procedure.

rprtMMDD Saved output of prdaily(8) program.

tacct Cumulative total accounting file for current fiscal
period.

tacctprev Same as tacct without latest update.

tacctMMDD Total accounting file for MMDD.

wtmp.MMDD Saved copy of wtmp file for MMDD, removed
after reboot by remove(8) procedure.

Files in the /usr/adm/acct/fiscal directory are as follows:

File Description

cms Total command summary file for the fiscal period
in internal summary format.

fiscrpt Report similar to prdaily(8) for fiscal period.

96 S–2302–10010

Accounting [2]

tacct* Total accounting file for fiscal period.

2.3 Front-end Formatting

Front-end formatting facilities let you customize accounting reports and
generate output files that can be processed on a front-end computer system.
The front-end formatting process consists of two main parts:

• Consolidating the accounting data you have collected to select useful
information and to reduce it to a manageable amount of data for the
front-end system.

• Formatting the consolidated data into meaningful reports and files for
further processing on the front-end system.

Accounting data is consolidated using identifier keys. These keys may include
user ID (uid), account ID (acid), job ID (jid), group ID (gid), and job class
(jclass). The front-end formatters then can send the consolidated data output
to either an ASCII report or to a binary file.

Note: Disk usage information is not available on a job basis in the UNICOS
operating system; thus, it cannot be consolidated by job ID or job class.
However, output from the dodisk(8) utility can be used for billing disk
usage on a user ID or account ID basis.

2.3.1 Why Use Front-end Formatting

Sites may want to use a front-end formatter to customize Cray accounting data
in the following situations:

• All billing is done on a single system. When accounting data from several
systems are processed on a single system, the units of measure may need to
be standardized. For example, all CPU time should be expressed in
milliseconds.

• The front-end system is an IBM machine that requires character fields to be
in EBCDIC format.

• Only a few fields are important to the billing system; these usually include
CPU time, memory use, disk use, and swap use.

Cray accounting products let you choose from two types of front-end
formatting:

S–2302–10010 97

UNICOS® Resource Administration

• Cray system accounting (CSA) front-end formatters are templates of C
programs that show you how to consolidate session file records and delivers
output in VM, MVS, or ASCII format.

• The generic front-end formatter, csagfef(8), accepts as input a generic
consolidated data file or multiple pacct (per-process accounting data) files.
It delivers output as either an ASCII report or a Cray binary file. csagfef
cannot convert output to VM or MVS format.

You should consider several factors when deciding which front-end formatter to
use:

• The CSA front-end formatters require a source license, while the generic
formatter does not.

• The generic front-end formatter delivers either ASCII or Cray binary data
output, where binary numbers are always written as a 64-bit word. CSA
formatters can be modified to write 32-bit numeric values or EBCDIC output.

• Both types of formatters process session record files, which are created by
csabuild(8). However, the generic formatter is also capable of processing
multiple pacct files.

2.3.2 Preparing to Use a Formatter

Before you attempt either to modify a CSA formatter or to execute the generic
formatter, you must make several decisions based on what you want the final
report or data file to contain. The issues you must decide upon include the
following:

• Identifying the data that needs to be reported.

A multitude of data can be extracted from a session or a pacct file. For
efficiency and the conservation of disk space, only the necessary data should
be consolidated by the CSA formatters or by csagcon(8).

• Selecting the consolidation keys.

You can use various keys to consolidate the data. Both types of formatters
support data consolidation by account ID, group ID, job ID, and user ID or
some combination thereof. csagcon also supports data consolidation by job
class, which is either interactive or batch through the Network Queuing
System (NQS).

• Determining which sessions should be consolidated when the input is a
session file.

98 S–2302–10010

Accounting [2]

You can consolidate data for only terminated sessions, only active sessions,
or both terminated and active sessions.

• Selecting the format of the ASCII report or binary data file.

Among the things to be decided are the units of the various fields, the
precision, the order of the data, the character set, the length of character
strings, and the size and format of binary integer and floating point numbers.

After making these decisions, you should modify or set up the front-end
formatter to generate reports or data files based on these specifications.
Normally, front-end formatters are executed by csarun in either the FEF or the
USEREXIT state. See Section 2.1.10.3, page 51, for more information on these
user exits.

2.3.3 CSA Front-end Formatting

All CSA front-end formatters contain code both to consolidate session record
data and to send consolidated data to a report or file. You must modify one of
these templates in order to consolidate and send the data output specifically
needed by your site.

Note: csafef(8), csafef2(8), and csaibm(8) are templates; if you execute
them as released, they produce a message stating that they are templates. If
your site wants to use one of these programs, you must have a source license
and you must make modifications to the code. Any local changes made to
these templates are not supported by Cray.

2.3.4 Generic Front-end Formatting

The generic accounting data consolidator csagcon(8) and the generic front-end
formatter csagfef(8) are more flexible versions of the csacon(8) and
csacrep(8) utilities. They let you do the following tasks:

• Consolidate a session file

• Consolidate one or more pacct accounting files

• Generate an ASCII report or a binary file based on a file created by csagcon

The csagcon and csagfef utilities let you specify the fields to be
consolidated and the format of the report. In contrast, csacon and csacrep
have hardcoded data specifications and formats that cannot be changed without
source code and local modifications.

S–2302–10010 99

UNICOS® Resource Administration

Administrators who execute csagcon may need privilege to access the the
/dev/kmem file. If this privilege is needed and you do not possess it, csagcon
will terminate with an error.

The csagcon and csagfef utilities can be executed from the csarun user exit
scripts. Both commands can be invoked from either the FEF or USEREXIT state
of csarun. See Section 2.1.10.3, page 51, for more information on user exits.

To invoke csagcon and csagfef from the FEF state, put these or similar
commands in the file /usr/lib/acct/csa.fef:

csagcon -S ${SESSION_FILE} -s username -o ${SESSION_DIR}/gacct

csagfef -f ${SESSION_DIR}/gacct source_file > ${CRPT_DIR}/site.rpt

Alternately, the same two commands can be placed into the
/usr/lib/acct/csa.user file; then, csagcon and csagfef will execute
from the csarun USEREXIT state.

2.3.4.1 Data Consolidation

The csagcon command consolidates data either from a session file, which is
created by csabuild(8), or from pacct files. You can choose the data that is to
be consolidated by using the csagcon -R option. If a data list is not specified,
a set of default variables is selected. In addition, some variables are always
selected.

The variable names listed throughout this section are used by both csagcon
and csagfef.

2.3.4.2 Required Data Variables

The following table lists the required variables that are always included in the
consolidated data file. You must not include any of these variables in a
csagcon request file (-R option). If you do, csagcon will terminate with an
error.

100 S–2302–10010

Accounting [2]

Table 4. Required Data Variables

Variable Type or Value Description

acid * Integer Account ID.

con_key Integer csagcon consolidation option(s) you specify. If you specify
multiple options, the values are added together.

Value csagcon consolidation option

0001 -a (consolidate by the account ID (acid)
variable)

0002 -c (consolidate by the job class (jclass)
variable; job class is either interactive or NQS)

0004 -g (consolidate by the group ID (gid) variable)

0010 -j (consolidate by the job ID (jid) variable)

0020 -u (consolidate by the user ID (uid) variable)

0040 -N (consolidate NQS requests strictly by job ID)

0100 -A (consolidate active and terminated sessions)

0200 -C (consolidate only active sessions)

creatime Integer Creation time of the file in seconds since 00:00:00 GMT,
1 January 1970.

file_end Integer If the input was a pacct file, this is the latest process end time
found in the file. If the input was a session file, this is the end
time of the last uptime period. Measured in seconds.

file_start Integer If the input was a pacct file, this is the earliest process end
time found in the file. If the input was a session file, this is the
start time of the first uptime period. Measured in seconds.

gid * Integer Group ID.

ios Integer I/O subsystem type.

Value I/O subsystem type

1 Model E

jclass * Integer Job class.

Value Job class

1 Interactive job

S–2302–10010 101

UNICOS® Resource Administration

Variable Type or Value Description

2 NQS job

jid * Integer Job ID.

ncpus Integer Number of CPUs started.

njobs Integer Number of jobs. Calculated as the number of pacct end-of-job
records found.

nproc Integer Number of processes.

nsess Integer Number of sessions. This is meaningful only when the input
was a session file.

num_datarec Integer Number of data records in the file.

sort_opt Integer csagcon sort option used.

Value csagcon sort option

0 None (unsorted)

1 -s acid (sorted by account ID then user ID)

2 -s acname (sorted by account name then user
name)

3 -s jclass (sorted by job class then job ID)

4 -s uid (sorted by user ID then account ID)

5 -s uname (sorted by user name then account
name)

tp_devgrp String An array that is indexed by 0 through (tp_ndevgrp -1) and
contains the names of the tape device groups. The names are
prefixed with tp_. If there are fewer than tp_ndevgrp tape
device groups, the unused entries have values of tp_null0,
tp_null1, and so on. This field is reported when the input
was a session file and tape information was requested.

tp_ndevgrp Integer Number of tape device groups. This field is reported when the
input was a session file and tape information was requested.

uid * Integer User ID.

us_nttype Integer Number of UNICOS station call processor (USCP) transfer
types. This field is reported when the input was a session file
and USCP information was requested.

102 S–2302–10010

Accounting [2]

Variable Type or Value Description

us_tname String An array that is indexed by 0 through (us_nttype -1) and
contains the names of the USCP transfer types. The names are
prefixed with us_. This field is reported when the input was a
session file and USCP information was requested.

BYTE_CLICK Integer Number of bytes per click.

BYTE_WORD Integer Number of bytes per word.

CLK_TCK Integer Number of clocks per second.

FPTYPE String Floating point type: Cray or IEEE.

HARDWARE String Machine identification. Includes serial number and mainframe
type.

MACHINE String Machine name.

MAXBDEVNO Integer Maximum number of block devices.

MAXCDEVNO Integer Maximum number of character devices.

MAXCPUS Integer Maximum number of CPUs for this mainframe type and
subtype.

MEMORY String Memory configuration.

MEMORY_NWORD Integer Total system and user memory in words.

NODENAME String Network node name.

OS_HZ Integer Clock rate (the frequency per second with which the clock
routine is called); usually 60 or 100.

RELEASE String Release of the operating system.

SDS_WGHT Integer Number of clicks per SDS allocation unit.

SOFTWARE String Software release information.

SYSNAME String Operating system name.

VERSION String Release version of the operating system.

WORD_CLICK Integer Number of words per click.

* If this variable is not selected as a consolidation key, its value is -2. For
example, the following command consolidates session record file by job ID:

csagcon -jN -S Session-Record.0928 -o gacct.0928

S–2302–10010 103

UNICOS® Resource Administration

In the file gacct.0928 the values for the acid, gid, jclass, and uid
variables will be -2 for records. This is because these variables were not selected
as consolidation keys on the command line.

2.3.4.3 Default and Optional Data Variables

The following sections describe the data that you can specify in a csagcon
request file (-R option). The request file contains a list of variables that will be
consolidated by csagcon. By default, csagcon consolidates the same data as
csacon(8).

The csagcon utility gets the default and optional data variables from the file
/usr/lib/acct/table_init. Specifying a different file using the -T option
is not recommended because csagcon expects the data variable names given in
this file. Use caution in specifying the -T option; normally it is used only for
debugging source code.

The column headings are defined as follows:

Heading Meaning

Variable The name that csagcon and csagfef use for the data item. This
name, except where noted, should appear in the request file when
you use the csagcon -R option.

Type The data type of the variable. Valid types are integer, float,
and string.

Unit The unit, if any, of the data item. The item can be converted to
another unit by csagfef (see Section 2.3.4.5.7, page 126).

Default Specifies whether a data item is consolidated when the csagcon
-R option is omitted.

Yes The data item is consolidated by default.

No The data item is not consolidated by default.

Job Specifies whether the csagcon -j option must be used when
the data item is consolidated.

Yes The csagcon -j option must be used. For this
data item to be consolidated when -j is specified,
either the -R option is not used and this is a default
item, or the -R option is used and this item is listed
in the request file.

104 S–2302–10010

Accounting [2]

No The csagcon -j option does not have to be used.

2.3.4.3.1 pacct Record Variables

This section describes the variables that contain pacct process information.
These variables are available when the csagcon input is either a session file or
one or more pacct files.

Note: The values in Table 5 are only available when using the csagcon -I
option.

Table 5. pacct Base Record Variables — Per-process Values

Variable Type Unit Default Job Description

pp_p_cmd String - No No Command name (first 8
characters).

pp_p_flag Integer - No No Record flags (See ac_flag in
/user/include/sys/acct.h).

pp_p_nice Integer - No No Nice value.

pp_p_pid Integer - No No Process ID.

pp_p_ppid Integer - No No Parent process ID.

pp_p_stat Integer - No No Exit status.

ps_p_tty String - No No Controlling tty device
(maximum of 8 characters).

Table 6. pacct Base Record Variables - Total Values

Variable Type Unit Default Job Description

pb_t_btime Integer Seconds No Yes Process start time.

pb_t_ctime Integer Clocks No No Process connect
time.

pb_t_etime Integer Clocks No No Elapsed time.

S–2302–10010 105

UNICOS® Resource Administration

Variable Type Unit Default Job Description

pb_t_io Integer Bytes No No Number of
characters
transferred.

pb_t_iobtime Integer Clocks No No I/O wait time.

pb_t_iosw Integer No No I/O swap count.

pb_t_iowmem Integer Click-
ticks

No No I/O wait time
memory integral
while locked in
memory.

pb_t_iowtime Integer Clocks No No I/O wait while
locked in memory.

pb_t_kcore Float Kiloword-
minute

No No Kcore-minutes.

pb_t_lio Integer No No Number of logical
I/O requests.

pb_t_mem Integer Click-
ticks

No No Memory integral.

pb_t_phimem_max Integer Words No No Maximum process
highwater memory
mark.

pb_t_phimem_min Integer Words No No Minimum process
highwater memory
mark.

pb_t_rw Integer No No Number of physical
I/O requests.

pb_t_sctime Integer Clocks No No System call time.

pb_t_stime Integer Clocks No No System CPU time.

pb_t_utime Integer Clocks No No User CPU time.

106 S–2302–10010

Accounting [2]

Table 7. pacct Base Record Variables - Prime Time Values

Variable Type Unit Default Job Description

pb_p_ctime Float Clocks No No Process connect time.

pb_p_etime Float Clocks No No Elapsed time.

pb_p_io Float Bytes Yes No Number of characters
transferred.

pb_p_iobtime Float Clocks Yes No I/O wait time.

pb_p_iosw Float No No I/O swap count.

pb_p_iowmem Float Click-
ticks

Yes No I/O wait time memory
integral while locked
in memory.

pb_p_iowtime Float Clocks Yes No I/O wait while locked
in memory.

pb_p_kcore Float Kiloword-
minute

Yes No Kcore-minutes.

pb_p_lio Float Yes No Number of logical I/O
requests.

pb_p_mem Float Click-
ticks

No No Memory integral.

pb_p_rw Float Yes No Number of physical
I/O requests.

pb_p_sctime Float Clocks Yes No System call time.

pb_p_stime Float Clocks Yes No System CPU time.

pb_p_utime Float Clocks Yes No User CPU time.

Table 8. pacct Base Record Variables - Nonprime Time Values

Variable Type Unit Default Job Description

pb_n_ctime Foat Clocks No No Process connect time.

pb_n_etime Float Clocks No No Elapsed time.

pb_n_io Float Bytes Yes No Number of characters
transferred.

S–2302–10010 107

UNICOS® Resource Administration

Variable Type Unit Default Job Description

pb_n_iobtime Float Clocks Yes No I/O wait time.

pb_n_iosw Float No No I/O swap count.

pb_n_iowmem Float Click-
ticks

Yes No I/O wait time memory
integral while locked
in memory.

pb_n_iowtime Float Clocks Yes No I/O wait while locked
in memory.

pb_n_kcore Float Kiloword-
minute

Yes No Kcore-minutes.

pb_n_lio Float Yes No Number of logical I/O
requests.

pb_n_mem Float Click-
ticks

No No Memory integral.

pb_n_rw Float Yes No Number of physical
I/O requests.

pb_n_sctime Float Clocks Yes No System call time.

pb_n_stime Float Clocks Yes No System CPU time.

pb_n_utime Float Clocks Yes No User CPU time.

Table 9. pacct Secondary Data Storage (SDS) Record Variables - Total Values

Variable Type Unit Default Job Description

ps_t_memsw Integer Click-
ticks

No No SDS execution
memory integral.

ps_t_sdioch Integer Bytes No No Number of bytes
transferred to or from
SDS.

ps_t_sdlio Integer No No Number of logical SDS
I/O requests.

ps_t_sdsmem Integer Click-
ticks

No No SDS residency
memory integral.

108 S–2302–10010

Accounting [2]

Table 10. pacct SDS Record Variables - Prime Time Values

Variable Type Unit Default Job Description

ps_p_memsw Float Click-
ticks

No No SDS execution
memory integral.

ps_p_sdioch Float Bytes Yes No Number of bytes
transferred to or from
SDS.

ps_p_sdlio Float Yes No Number of logical
SDS I/O requests.

ps_p_sdsmem Float Click-
ticks

No No SDS residency
memory integral.

Table 11. pacct SDS Record Variables - Nonprime Time Values

Variable Type Unit Default Job Description

ps_n_memsw Float Click-
ticks

No No SDS execution
memory integral.

ps_n_sdioch Float Bytes Yes No Number of bytes
transferred to or from
SDS.

ps_n_sdlio Float Yes No Number of logical SDS
I/O requests.

ps_n_sdsmem Float Click-
ticks

No No SDS residency
memory integral.

Note: All of the variables in Table 12 are available when -E is specified.
Job-specific variables (the Job value is Yes) are also accessible when the
csagcon -j option is used.

S–2302–10010 109

UNICOS® Resource Administration

Table 12. pacct End-of-job Record Variables

Variable Type Unit Default Job Description

pe_t_fsblkused Integer No Yes Number of file system
blocks used.

pe_t_jetime Integer Seconds No Yes Time the job ended.

pe_t_jhimem Integer Clicks No Yes Job highwater
memory mark.

pe_t_jnice Integer - No No Nice value at job
termination.

pe_t_sdshiwat Integer SDS
allocation
units

No Yes Job SDS highwater
mark.

In Table 13, the pd_t_bxxxx variables are arrays that are indexed by 0 through
(MAXBDEVNO - 1). The pd_t_cxxxx variables are arrays that are indexed by 0
through (MAXCDEVNO - 1).

Table 13. pacct Device I/O Record Variables - Total Values

Variable Type Unit Default Job Description

pd_t_bioch Integer Bytes No No Number of bytes
transferred to or from
the block device.

pd_t_blio Integer No No Number of logical I/O
requests for the block
device.

pd_t_btype Integer No No Major device number
for block devices. A
device number of -1
indicates that there is
no accounting
information for the
array index.

pd_t_cioch Integer Bytes No No Number of bytes
transferred to or from
the character device.

110 S–2302–10010

Accounting [2]

Variable Type Unit Default Job Description

pd_t_clio Integer No No Number of logical I/O
requests for the
character device.

pd_t_ctype Integer No No Major device number
for character devices.
A device number of -1
indicates that there is
no accounting
information for this
array index.

In Table 14, the pd_p_bxxxx variables are arrays that are indexed by 0 through
(MAXBDEVNO - 1). The pd_p_cxxxx variables are arrays that are indexed by 0
through (MAXCDEVNO - 1).

Table 14. pacct Device I/O Record Variables - Prime Time Values

Variable Type Unit Default Job Description

pd_p_bioch Float Bytes Yes No Number of bytes
transferred to or from
the block device.

pd_p_blio Float Yes No Number of logical I/O
requests for the block
device.

pd_p_btype Integer Yes no Major device number
for block devices. A
device number of -1
indicates that there is
no accounting
information for the
array index.

pd_p_cioch Float Bytes Yes No Number of bytes
transferred to or from
the character device.

S–2302–10010 111

UNICOS® Resource Administration

Variable Type Unit Default Job Description

pd_p_clio Float Yes No Number of logical I/O
requests for the
character device.

pd_p_ctype Integer Yes No Major device number
for character devices.
A device number of -1
indicates that there is
no accounting
information for this
array index.

In Table 15, the pd_n_bxxxx variables are arrays that are indexed by 0 through
(MAXBDEVNO - 1). The pd_n_cxxxx variables are arrays that are indexed by 0
through (MAXCDEVNO - 1).

Table 15. pacct Device I/O Record Variables - Non-prime Time Values

Variable Type Unit Default Job Description

pd_n_bioch Float Bytes Yes No Number of bytes
transferred to or from
the block device.

pd_n_blio Float Yes No Number of logical I/O
requests for the block
device.

pd_n_cioch Float Bytes Yes No Number of bytes
transferred to or from
the character device.

pd_n_clio Float Yes No Number of logical I/O
requests for the
character device.

112 S–2302–10010

Accounting [2]

Table 16. pacct Massively Parallel Processing (MPP) Record Variables - Total
Values

Variable Type Unit Default Job Description

pm_t_pe Integer No No Number of MPP
processing elements.

pm_t_pe_max Integer No No Largest number of
MPP processing
elements used by a
single process.

pm_t_pe_time Integer Clocks No No Sum of (number of
PEs used multiplied
by time used).

pm_t_time Integer Clocks No No MPP time used.

pm_t_time_max Integer Clocks No No Greatest amount of
MPP time used by a
single process.

Table 17. pacct MPP Record Variables - Prime Time Values

Variable Type Unit Default Job Description

pm_p_pe Float Yes No Number of MPP
processing elements.

pm_p_pe_time Float Clocks Yes No Sum of (number of
PEs used multiplied
by time used).

pm_p_time Float Clocks Yes No MPP time used.

S–2302–10010 113

UNICOS® Resource Administration

Table 18. pacct MPP Record Variables - Nonprime Time Values

Variable Type Unit Default Job Description

pm_n_pe Float Yes No Number of MPP
processing elements.

pm_n_pe_time Float Clocks Yes No Sum of (number of
PEs multiplied by
time used).

pm_n_time Float Clocks Yes No MPP time used.

Note: Each item in the following multitasking tables is an array that is
indexed by 0 through (MAXCPUS - 1).

Table 19. pacct Multitasking Record Variables - Total Values

Variable Type Unit Default Job Description

pu_t_mutime Integer Clocks No No Time connected to [i+1]
CPUs.

pu_t_smwtime Integer Clocks No No Semaphore wait time.

Table 20. pacct Multitasking Record Variables - Prime Time Values

Variable Type Unit Default Job Description

pu_p_mutime Float Clocks Yes No Time connected to [i+1]
CPUs.

pu_p_smwtime Float Clocks No No Semaphore wait time.

Table 21. pacct Multitasking Record Variables - Nonprime Time Values

Variable Type Unit Default Job Description

pu_n_mutime Float Clocks Yes No Time connected to
[i+1] CPUs.

pu_n_smwtime Float Clocks No No Semaphore wait time.

114 S–2302–10010

Accounting [2]

Table 22. pacct Performance Record Variables - Total Values

Variable Type Unit Default Job Description

pp_t_phrwblks Integer No No Number of raw
physical blocks
moved.

pp_t_rwblks Integer No No Number of buffered
physical blocks
moved.

pp_t_rtime Integer Clocks No No Process start time past
pb_t_btime.

pp_t_srunwtime Integer SecondsNo No SRUN wait time.

pp_t_swapclocks Integer Clocks No No Swapped time.

pp_t_tiowtime Integer Clocks No No Terminal I/O wait
time.

Table 23. pacct Performance Record Variables - Prime Time Values

Variable Type Unit Default Job Description

pp_p_phrwblks Float No No Number of raw
physical blocks
moved.

pp_p_rwblks Float No No Number of buffered
physical blocks
moved.

pp_p_rtime Float Clocks No No Process start time past
pb_t_btime.

pp_p_srunwtime Float Seconds No No SRUN wait time.

pp_p_swapclocks Float Clocks No No Swapped time.

pp_p_tiowtime Float Clocks No No Terminal I/O wait
time.

S–2302–10010 115

UNICOS® Resource Administration

Table 24. pacct Performance Record Variables - Nonprime Time Values

Variable Type Unit Default Job Description

pp_n_phrwblks Float No No Number of raw
physical blocks
moved.

pp_n_rwblks Float No No Number of buffered
physical blocks
moved.

pp_n_rtime Float Clocks No No Process start time past
pb_t_btime.

pp_n_srunwtime Float Seconds No No SRUN wait time.

pp_n_swapclocks Float Clocks No No Swapped time.

pp_n_tiowtime Float Clocks No No Terminal I/O wait
time.

2.3.4.3.2 Daemon Accounting Variables

The accounting variables that contain daemon usage information are available
only when the csagcon input file is a session file.

In Table 25 each item is an array that is indexed by the tape device group
names prefixed by tp_ (see the tp_devgrp array in Table 14, page 111) or by 0
through (tp_ndevgrp - 1).

Table 25. Tape Accounting Variables

Variable Type Unit Default Job Description

tp_nmount Integer Yes No Number of volumes
mounted.

tp_nread Integer Bytes Yes No Number of bytes read.

tp_nwrite Integer Bytes Yes No Number of bytes
written.

tp_rtime Integer Seconds Yes No Reservation time.

116 S–2302–10010

Accounting [2]

Variable Type Unit Default Job Description

tp_stime Integer Clocks Yes No System CPU time.

tp_utime Integer Clocks Yes No User CPU time.

In Table 26, the values for nq_init, nq_disp, and nq_term are found in
/usr/include/acct/dacct.h.

Table 26. NQS Accounting Variables

Variable Type Unit Default Job Description

nq_btime * Integer Seconds No Yes Start time of the
request.

nq_disp * Integer No Yes Dispose subtype
(NQ_DISP).

nq_elapse ** Integer Seconds No Yes Wall-clock time used
while the request was
running.

nq_init * Integer No Yes Initiation subtype
(NQ_INIT).

nq_machname String No Yes Originating machine
name (16 characters).

nq_mid * Integer No Yes Originating machine
ID.

nq_nreq Integer Yes No Number of NQS
requests.

nq_quename String No Yes Name of the last
queue in which the
request was located
(16 characters).

nq_qwtime Integer Seconds No No Queue wait time.

nq_reqname String No Yes Request name (16
characters).

nq_seqno * Integer No Yes Sequence number.

S–2302–10010 117

UNICOS® Resource Administration

Variable Type Unit Default Job Description

nq_stime Integer Clocks Yes No Shepherd system CPU
time.

nq_term * Integer No Yes Termination subtype
(NQ_TERM).

nq_utime Integer Clocks Yes No Shepherd user CPU
time.

nq_wallclock

Integer Seconds No Yes Total wall-clock time
for the request to
complete.

* If the value for this field is unknown, or if this is an interactive session, this
field is set automatically to -9.

** nq_elapse is the amount of wall-clock time which elapsed while the request
was running on a CPU. This does not include queue wait time, system down
time, or the period when the request was suspended, checkpointed, or held.

*** nq_wallclock is the total amount of wall-clock time it took the request to
complete. This includes queue wait time and system down time. This value is
reported only once for a request. It is possible that the amount of CPU time the
request uses is greater than the wall-clock time, because the request could have
created additional processes, been multitasked, or done work in the background.

Table 27. Connect Time Accounting Variables

Variable Type Unit Default Job Description

ct_con_n Integer Seconds Yes No Nonprime time
connect time.

ct_con_p Integer Seconds Yes No Prime time connect
time.

ct_nlogin Integer Yes No Number of interactive
logins.

2.3.4.3.3 System Billing Units (SBU) Variables

The following table describes the variables that contain information about the
system billing units (SBUs). If the input to csagcon is a session file, all the

118 S–2302–10010

Accounting [2]

SBUs are multiplied by the appropriate NQS weighting factor. The NQS
weighting factors are defined in the accounting configuration file
/etc/config/acct_config.

Table 28. System Billing Units (SBU) Variables

Variable Type Unit Default Job Description

sb_pacct Float Billing
units

No No pacct SBUs.

sb_tape Float Billing
units

No No Tape SBUs.

sb_uscp Float Billing
units

No No USCP SBUs.

sb_ctime Float Billing
units

No No Connect time SBUs.

sb_total Float Billing
units

Yes No Total SBU value.

2.3.4.4 Data File Format

The csagcon consolidated data file consists of header and data records. The
header records describe both the machine on which the data was collected and
the data records.

The csagfef -h option displays some of the information found in the header
records.

The file is organized as follows:

Record Type Description

Header word File identifier that is defined in
/usr/include/sys/accthdr.h.

gc-defs Definitions record.

gc-imeta Meta record for integer data.

gc-fmeta Meta record for floating point data.

gc-cmeta Meta record for character string data.

S–2302–10010 119

UNICOS® Resource Administration

gc-data Indicator for the start of data record 1.

gc-int Data record 1 containing integer data.

gc-float Data record 1 containing floating point data.

gc-char Data record 1 containing character string data.

gc-data Indicator for the start of data record 2.

gc-int Data record 2 containing integer data.

gc-float Data record 2 containing floating point data.

gc-char Data record 2 containing character string data.

(Additional gc-data, gc-int, gc-float, and gc-char records for each data
record.)

2.3.4.4.1 Header Records

Header records appear only once, at the beginning of the consolidated data file.
There are three types of header records:

Header Record Type Description

Header word Identifies the file according to
the format specified in the file
/usr/include/sys/accthdr.h.
This word allows other
accounting programs to check
for a valid input file type
before attempting to process
the file.

Definitions record Contains constants and
character strings that describe
the machine on which the
data was consolidated and
array element names. These
variables can be accessed by
csagfef(8) and are listed in
Section 2.3.4.2, page 100.

120 S–2302–10010

Accounting [2]

Meta record Describes the data in the data
records. A meta record lists
the name, type, and size of
each item or array in the data
records and the order of the
data found in the data
records. There is a separate
meta record for integer data,
floating point data, and
character string data.

2.3.4.4.2 Data Records

Data records follow the header records in a file. The gc-data record denotes
the start of the data for a unique consolidation identifier.

2.3.4.5 csagfef(8) Source Scripts

The csagfef(8) command is a translator that formats csagcon(8) output into
an ASCII report or a binary file according to the directives found in a source
script.

The csagfef scripts are based on four sections including the body, any of
which may be empty or missing. Scripts can contain any of the following
sections in any order:

BEGIN { statements }
END { statements }
function name (arglist) { statements }
statements

The csagfef command can process multiple source scripts, and one script can
contain multiple BEGIN, END, or body sections. In these cases, csagfef
executes the statements for all like sections in the order that they appear in the
scripts or script.

For example, all statements in the various BEGIN sections will be combined into
one BEGIN section. The statements will be in the same order as they appear in
the scripts or script.

S–2302–10010 121

UNICOS® Resource Administration

2.3.4.5.1 BEGIN Section

The statements associated with BEGIN comprise the preamble. The preamble is
executed once after the definition and meta-data records are read. The preamble
can be used to print report headings and to initialize variables used in the body

2.3.4.5.2 END Section

The statements associated with END comprise the postamble. The postamble is
executed once after all the records in the data file have been read. You can
instruct csagfef in this section to process and print summary data.

2.3.4.5.3 function Section

The statements in the function section of csagfef define functions as
specified by you. Functions always begin with the word function followed by
the function name and the argument list. The arglist consists of names
separated by commas. These argument names are the formal parameters of the
function and the variables that are local to the function. Function calls may be
nested and recursive. The return statement can be used to return a value.

2.3.4.5.4 Body

Statements that are not in any of the above sections form the body of the
csagfef source script. Typically, these statements print out information from
the data records. This section is executed once for each data record encountered.

2.3.4.5.5 Example Source Scripts

Examples of csagfef source scripts can be found in the
/usr/src/cmd/acct/src/csa/csagfef/examples directory.

2.3.4.5.6 csagfef Language Description

The csagfef language is the action language of nawk without the string
processing operations. If you are familiar with nawk, you will have little
difficulty writing and understanding csagfef scripts. The pattern part of
nawk is unnecessary in csagfef, because the data format is defined in the data
file. You merely select the data items to process by name.

csagfef implements a version of the awk language (new awk, or nawk)
described in The AWK Programming Language, by Alfred Aho, Brian Kernighan,
and Peter Weinberger (1988).

122 S–2302–10010

Accounting [2]

A csagfef script can include any of the following statements:

if (expression) statement [else statement]

while (expression) statement
do statement while (expression)

for (expression; expression; expression) statement
break

continue

{ [statements] }

expression
print expression-list [>expression]

printf format[, expression-list] [>expression]

next

exit [expression]

return [expression]

The following describes further the contents of statements in a csagfef script:

• Statement terminators. Statements are terminated by semicolons, right
braces, or newlines.

• Statement continuation. Statements can be continued on successive lines by
using \ as the last character of the line. Statements can also be continued
after the following symbols:

, (comma)

{ (left brace)
&& (logical AND)

|| (logical OR)

do

else

) (right parenthesis in an "if" or "for" statement)

• Comments. Nonexecutable comments begin with # and end with a newline.
They can appear anywhere in the source script.

• Expressions. Expressions include constants, variables, and operators.
Parentheses can be used to control the grouping of the operations in an
expression.

• Logical expressions. Logical expressions have a value of 1 (true) and 0
(false). As in the C language, any nonzero value is taken to be true.

• Numbers. Numbers can be integers or floating points. The format is the
same as that recognized by strtod(3C) and strtol(3C): digits, decimal

S–2302–10010 123

UNICOS® Resource Administration

point, digits, e or E, signed exponent. At least one digit or a decimal point
must be present; the other components are optional. Octal integers begin
with 0. Hexadecimal integers begin with 0 x.

• Variable names. Variable names consist of a letter followed by a string of
letters, numbers, or the character _. Variables are used to name the data
items found in the data records of the consolidated file.

Some variables in the consolidated data file are arrays. The elements of
these arrays can be referenced by indexing. For example, the variable,
pu_t_mutime, is an array that contains the time a process was connected to
(i+1) CPUs; see Table 19, page 114 (table: pacct multitasking record
variables). The time a process was connected to one CPU is referenced by
pu_t_mutime [0].

You can also define additional variables within the csagfef source script;
however, user-defined arrays are not supported.

A csagfef script can include prefix, infix, and suffix operators as follows:

Prefix operators The csagfef command applies a prefix operator
immediately preceding a term and any suffix
operators. It then applies any prefix operators to
the left of that operator, grouping them from right
to left.

Operator Action

++X Preincrement

–X Predecrement

+X Plus

-X Minus

!X Logical NOT

Infix operators The csagfef command applies infix operators,
in descending order of precedence, as follows:

Operator Action

X^Y Exponentiation

X*Y Multiplication

X/Y Division

X%Y Remainder

124 S–2302–10010

Accounting [2]

X+Y Addition

X-Y Subtraction

X<Y Less than

X<=Y Less than or equal

X>Y Greater than

X>=Y Greater than or equal

X==Y Equals

X!=Y Not equals

X&&Y Logical AND

X||Y Logical OR

Z?X:Y Conditional

X=Y Assignment

X*=Y Multiply assign

X/=Y Divide assign

X%=Y Remainder assign

X+=Y Add assign

X-=Y Subtract assign

X,Y Comma

Suffix operators The csagfef command applies a suffix operator
immediately following a term before it applies
any other operator. It then applies any suffix
operators to the right of that operator, grouping
them from left to right. The following list shows
the suffix operators:

Operator Action

X++ Postincrement

X– Postdecrement

X[Y] Subscript

S–2302–10010 125

UNICOS® Resource Administration

X(Y) Function call

2.3.4.5.7 Built-in Functions

The csagfef command has the following built-in functions, with the function
parameters (given in parentheses) defined at the end of the list:

Function name Description

abs(exp) Returns the absolute value of
exp.

acid2nam(num) Returns the character string
associated with the account
ID (num). If there is no
associated string, return
Unknown.

bytes_to(num[, unit]) Converts bytes to some other
unit. If [, unit] is not
specified, kilobytes are
returned.

clicks_to(num[, unit]) Converts clicks to some other
unit. If [, unit] is not
specified, kilobytes are
returned.

clocks_to(num[, tunit]) Converts clocks to some other
unit. If [, tunit] is not
specified, seconds are
returned.

close(str) Closes the file stream
specified by str.

frac(exp) Returns the fractional part of
exp.

gid2nam(num) Returns the character string
associated with the group ID
(num). If there is no
associated string, return
Unknown.

imax(arr) Returns the index of the
maximum element of array
arr.

126 S–2302–10010

Accounting [2]

imin(arr) Returns the index of the
minimum element of array
arr.

int(exp) Returns the integer part of
exp.

isdefined(sym) Returns 1 if sym is defined.
Otherwise, returns 0.

nam2acid(str) Returns the numeric account
ID associated with the
account name (str). If there is
no account ID, return -1.

nam2gid(str) Returns the numeric group
ID associated with the group
name (str). If there is no
group ID, returns -1.

nam2uid(str) Returns the numeric ID
associated with the user
name (str). If there is no user
ID, returns -1.

strcmp(str1, str2) Compares two strings.
Returns a value that is greater
than, equal to, or less than 0
according to whether str1 is
greater than, equal to, or less
than str2.

strftime(fmt, [calendar_time]) Formats the time into a string
according to (fmt). Time is an
integer; for example, the
required data variable
file_start.

strlen(str) Returns the number of
characters in string (str).

sum(arr) Returns the sum of the
elements in array arr.

system(str) Passes str to the shell for
execution.

ticks_to(num[, tunit]) Converts ticks to some other
unit. If [, tunit] is not

S–2302–10010 127

UNICOS® Resource Administration

specified, seconds are
returned.

uid2nam(num) Returns the character string
associated with the user ID
(num). If there is no
associated string, returns
Unknown.

words_to(num[, unit]) Converts words to some
other unit. If [, tunit] is not
specified, kilowords are
returned.

The definitions of the function parameters are as follows:

Parameter Definition

arr An array name. For example:

imax (pd_t_cioch)

exp A variable name or a function invocation. For
example:

abs (pb_t_rw)

Variable name

fmt NULL or a valid strftime(3C) format that is
enclosed in double quotes. For example:

strftime ()

NULL format

strftime (" %X ")

strftime format

num Either an integer value or the name of a variable
that contains an integer value. For example:

bytes_to (pb_t_io)

Variable name

uid2nam (uid)

Variable name

128 S–2302–10010

Accounting [2]

words_to (5125)

Integer value

str, str1, str2 Either character strings enclosed in double
quotation marks or the names of a variables
whose values are character strings. For example:

close (" cpu_data ")

Character string

command = "date; uname -a"

system (command)

Variable that contains a character
string

sym A variable name. Names of array elements are
not valid symbols. sym can be defined by the
csagfef -D option. For example:

if (isdefined (ios_e))

Variable

if (isdefined (us_stime [us_Dispose]))

Not valid

csagfef -DCPU

if (isdefined (CPU))

Symbol defined by the
csagfef -D option

unit May be one of the following:

B Converts to bytes

KB Converts to
kilobytes (210 bytes)

MB Converts to
megabytes (220

bytes)

S–2302–10010 129

UNICOS® Resource Administration

GB Converts to
gigabytes (230

bytes)

W Converts to words

KW Converts to
kilowords (210

words)

MW Converts to
megawords (220

words)

GW Converts to
gigawords (230

words)

number Uses number as the
divisor and divides
the value by
number

variable_name Uses
variable_name
as the divisor

Examples of using the unit function parameter
follow:

bytes_to (tp_nread, MB)

Converts bytes to megabytes

words_to (pb_t_phimem_max, 1000)

Uses 1000 as the divisor and
returns (pb_t_phimem_max
/ 1000)

tunit May be one of the following:

SEC Converts to seconds

MIN Converts to
minutes

HOUR Converts to hours

DAY Converts to days

130 S–2302–10010

Accounting [2]

Example:

clocks_to (pb_t_iowtime, MIN)

Convert clocks to minutes

2.3.4.5.8 Built-in Variables

The csagfef command has the following built-in variables, as shown in Table
29:

Table 29. Built-in Variables

Variable Default Description

FILENAME None Name of the current input file

NR None Number of data records read so far

OFMT %.6g Output format for printing numbers

OFS " " Output field separator

ORS \n Output record separator

RSIZE None Size of the data records in bytes

2.3.4.5.9 Generic Front-end Formatting Example

The extended example presented here illustrates how you can consolidate and
format data for NQS requests using csagcon and csagfef. It assumes input
from a session file. The example follows the steps listed in Section 2.3, page 97.

1. Identify the data that needs to be reported.

Determine the information that is useful to your site. In this case, for each
NQS request the example will report the following fields:

• User name

• Account name

• Request name

• Request ID

• Queue name

S–2302–10010 131

UNICOS® Resource Administration

• CPU time

• Memory high-water value

• Queue wait time

• Locked I/O wait time

• Unlocked I/O wait time

Because some of these items are not default csagcon consolidation items,
you must specify a request file when executing csagcon. The following
variable names, which are described in Table 14, page 111, through Table 29,
page 131, must be in the request file (nqs.req). You can find a copy of this
file in the /usr/src/cmd/acct/src/csa/csagfef/examples directory.

nq_reqname

nq_seqno

nq_quename

pb_t_stime
pb_t_utime

pb_t_phimem_max

nq_qwtime

pb_t_iowtime

pb_t_iobtime

Pass the request file name (nqs.req) to csagcon by using the -R option
(-R nqs.req).

2. Select the csagcon consolidation keys.

To extract information for each NQS request, you must select consolidation
keys: appropriate job ID (-j option) and job class (-c option). However,
you must be certain that all portions of an NQS request are processed as
though they have the same job ID, which is the default. (For this example,
do not specify the -N option, which consolidates each portion of an NQS
request according to its job ID).

To report the username and account name that is associated with each
request, you also must specify the -u and -a options. If these two keys are
not specified, the username and account name will not be known.

132 S–2302–10010

Accounting [2]

Note: All consolidation keys (acid, gid, jclass, jid, and uid) that
are not selected on the csagcon command line by the -a, -g, -c, -j,
and -u options, will have a value of -9.

For example, if you do not specify the -u option, the uid variable will
always have a value of -9.

If you want to sort the output, use the -s option. In this example, the
output is sorted alphabetically by username (-s username option).

To summarize, the consolidation and sort options used in this example are
the following: -j -c -u -a -s username.

3. Determine which sessions should be consolidated.

This example will consolidate only terminated sessions (default option).
You can use the -A or -C option to consolidate all sessions or only active
sessions.

The data to be consolidated now is identified and you are ready to execute
csagcon. If you assume that the input comes from a session file named
Super-Record.1130 and the output is written to the file gacct.1130,
you would execute the following command:

csagcon -S Super-Record.1130 -o gacct.1130 -R nqs.req -jcua -s username

4. Format the consolidated data into a report.

You must decide the units and length of the various fields. In this example,
memory highwater is reported in megawords and CPU time, queue wait
time, locked I/O wait time, and unlocked I/O wait time is reported in
seconds. Data that is not already in the correct units is converted by
csagfef. Tables Table 14, page 111 through Table 29, page 131 list the
default units of the various fields.

After deciding on the format, you must write a csagfef source script that
tells csagfef how to generate the report. The following script can be used
as input to csagfef and is found in the following file:

/usr/src/cmd/acct/src/csa/csagfef/examples/nqs.ss

The script contains variables that control the writing of the header and
summary lines. When -D HEADER is specified on the command line,
csagfef outputs the header. When -D SUMMARY is specified, summary
information is written.

S–2302–10010 133

UNICOS® Resource Administration

If you assume that the consolidated data file is named gacct.1130, and
the source script is named nqs.ss, the following command will generate a
report without the header and summary lines:

csagfef -f gacct.1130 nqs.ss

If you want both, the header and summary information, you should execute
the following command:

csagfef -f gacct.1130 -D HEADER -D SUMMARY nqs.ss

The nqs.ss source script listing follows.

BEGIN {

#

#

Figure out which sessions were consolidated.

#

if (con_key & 0100) {

CONSOL = "ACTIVE AND COMPLETED SESSIONS"

} else if (con_key & 0200) {

CONSOL = "ONLY ACTIVE SESSIONS"

} else {

CONSOL = "ONLY COMPLETED SESSIONS"

}

#

Initialize counters.

ntot_sess = 0 # Total number of sessions

nnqs = 0 # Number of NQS sessions

#

Print the header if "-D HEADER" was specified on the command line.

#

if (isdefined(HEADER)) {

printf("%s DAILY REPORT FOR %s (Rel %s, %s)\n\n",

strftime("%c", creatime), SYSNAME, RELEASE, VERSION)

printf("INCLUDES DATA FOR %s BETWEEN\n", CONSOL)

printf(" %s AND %s\n\n",

strftime("%c", file_start), strftime("%c", file_end))

printf(" REQUEST ")

printf(" CPU TIME MEM HIWAT QWAIT LCK IO ")

printf("UNLCK \n")

134 S–2302–10010

Accounting [2]

printf("USER NAME ACCOUNT NAME REQUEST NAME ID ")

printf("QUEUE NAME [SECS] [MW] [SECS] WAIT ")

printf("IO WAIT\n")

printf("============ ================ ================ ======== ")

printf("================ =========== ========= ======= ======= ")

printf("=======\n")

}

}

ntot_sess++ # count the total number of sessions

if (jclass == 2) { # output information only about NQS requests

nnqs++ # count the number of NQS requests

username = uid2nam(uid) # user name

acname = acid2nam(acid) # account name

cputime = clocks_to(pb_t_stime, SEC) + \ clocks_to(pb_t_utime, SEC)

CPU time in seconds

memhiwat = words_to(pb_t_phimem_max, MW) # memory high water in megwords

lockio = clocks_to(pb_t_iowtime, SEC) # locked I/O wait in seconds

ulockio = clocks_to(pb_t_iobtime, SEC) # unlocked I/O wait in seconds

printf("%-12.12s %-16.16s %-16.16s %-8d %-16.16s ",

username, acname, nq_reqname, nq_seqno, nq_quename)

printf("%11.3f %8.0f %7d %7.1f %7.1f\n",

cputime, memhiwat, nq_qwtime, lockio, ulockio)

}

#

Print summary information about the input file if "-D SUMMARY"

was specified on the command line.

#

END {

if (isdefined(SUMMARY)) {

printf("\n\nInput file: %s\nTotal number of sessions: %d\n",

FILENAME, ntot_sess)

printf("Number of NQS requests: %d\n", nnqs)

printf("Number of non-NQS requests: %d\n", ntot_sess - nnqs)

}

S–2302–10010 135

UNICOS® Resource Administration

The script above produces the following output. Both the header and summary
information are included.

Wed Nov 30 10:04:50 1994 DAILY REPORT FOR sn1703c (Rel 9.0.0ao, d90.50)

INCLUDES DATA FOR ONLY COMPLETED SESSIONS BETWEEN
Wed Nov 30 07:58:09 1994 AND Wed Nov 30 09:51:45 1994

REQ CPU TIME MEM HIWAT QWAIT LCK IO UNLCK
USER NAME ACCOUNT NAME REQUEST NAME ID QUEUE NAME [SECS] [MW] [SECS] WAIT IO WAIT
========= ============ ============ == ========== ======== ========= ====== ======= =======
fe Xydev STDIN 3 b_30_1 0.411 1 4 0.1 0.4
fe Xydev STDIN 4 b_30_1 0.414 1 3 0.1 0.3
pds SysAdm STDIN 6 b_30_1 0.570 0 4 0.0 0.4
root SysAdm STDIN 6 b_30_1 0.544 0 0 0.0 0.5
root SysAdm SLSCRUB 7 b_1200_1 0.958 0 0 0.0 1.6
root SysAdm STDIN 5 b_30_1 0.531 0 0 0.0 0.1
root Xydev STDIN 4 b_30_1 0.558 0 0 0.0 0.3
root Xydev STDIN 3 b_30_1 0.552 0 0 0.1 0.4
user1 SysAdm SLSCRUB 7 b_1200_1 2.079 0 9 0.1 14.8

Input file: gacct
Total number of sessions: 175
Number of NQS requests: 10
Number of non-NQS requests: 165

136 S–2302–10010

Automated Incident Reporting (AIR) [3]

The automated incident reporting (AIR) system allows you to measure overall
system availability for the following products:

• Transmission Control Protocol/Internet Protocol (TCP/IP)

• Network Queuing System (NQS)

• Online tapes

• UNICOS kernel

• Unified Resource Manager (URM)

Warning: The AIR feature is not part of a Cray ML-Safe configuration.
This section does not contain any further warnings or information
pertaining to the use of a Cray ML-Safe configuration of the UNICOS
system.

3.1 AIR Components Overview

The AIR system consists of four main components, as follows:

• Configuration file

• Coordinator daemon

• Monitoring functions

• Report generator

3.1.1 AIR Configuration File

The AIR configuration file, /usr/air/config_file, contains definitions for
all the configurable aspects of the AIR system, written in a simple configuration
language syntax. All AIR system components refer to this file at initiation for
information. Scanning, printing, validation, and translation routines manage the
processing of the data in the file.

S–2302–10010 137

UNICOS® Resource Administration

!
Caution: AIR configuration file, /usr/air/config_file, can be
maintained through the UNICOS Installation Menu System (installation tool).
If the installation tool is used to maintain this file, it should never be edited
manually.

3.1.2 AIR Coordinator Daemon

The AIR coordinator daemon, aird, executes configured functions at the
specified rates and enacts the return code processing cues.

The coordinator translates the configuration file into a work list consisting of
functions associated with each monitored product. The coordinator keeps a
running clock, executing the functions with rates indicating that they should be
executed. When the coordinator is not executing functions, it waits for function
completion. If there are no functions for which to wait, the coordinator sleeps
until the next time a function is configured to be executed.

3.1.3 AIR Monitoring Functions

The AIR monitoring functions are product verification processes; these
functions can be either shell scripts or executable binaries. The implementation
of the functions for each monitored product follows a hierarchical philosophy.
Several functions are specified for each monitored product, and they are
differentiated by the cost of the resources they use and the aspects of the
product that they test. For example, a function that verifies that a process exists
on the system would be low cost, and, thus, could be executed more frequently
than a function that required a tape mount. However, the higher-cost function
provides a better assurance of product verification. These issues must be
balanced by the rate specification in the configuration file and be configured for
each site’s specific needs.

3.1.4 AIR Report Generator

The AIR report generator collects information, such as the AIR configuration
and monitoring function event records from the coordinator log file, and
presents product availability and summary information in a text format.

The coordinator reads input from the configuration file and translates that data
into a series of event functions for periodic execution. The results of each
function’s executions are processed on completion, and pertinent information is

138 S–2302–10010

Automated Incident Reporting (AIR) [3]

written to the coordinator’s log file. Periodically, reports can be generated by
executing the report generation procedures, as follows:

Command Description

airprconf Prints AIR configuration file contents from the
configuration headers in the aird binary log file
(see airprconf(8)).

airsum Generates availability summary reports based on
the aird(8) binary log file (see airsum(8))

airtsum Generates detailed AIR reports based on the
coordinator binary log file (see airtsum(8))

airdet Generates detailed AIR reports based on the
aird binary log file (see airdet(8))

3.2 Initiation and Administration

The aird(8) process is initiated automatically at system boot time. aird is
listed in the system /etc/daemons file and is started in the same manner as
the other system daemons. The /usr/air/bin/start_air script contains
the sequence used to start the aird process; use this script if you need to start
aird manually. (See start_air(8) for more information.)

For systems running AIR, the following scripts are available (to be executed
periodically by cron) to perform useful, daily functions:

Shell script Description

mvfiles Moves the AIR log files to data directories,
resetting the log files. If you do not execute this
script periodically in your system, the binary log
file written to by aird will grow quite large.

airdchk Monitors aird. This script uses the airexist(8)
command to verify that aird exists on the
system. Mail is sent to root if aird is not running.

These two scripts are located in the /usr/air/bin directory. The following
example shows crontab entries for mvfiles and airdchk:

#

AIR utilities for periodic execution by cron.

Execute aird checking test every fifteen minutes.

S–2302–10010 139

UNICOS® Resource Administration

Move the log files every Sunday.

#
15 * * * * /usr/air/bin/airdchk

0 0 * * 0 /usr/air/bin/mvfiles

3.3 AIR Configuration

The AIR configuration file contains definitions for all configurable aspects of the
AIR system. The aird process reads the configuration file and translates the
contents into monitoring functions that are executed periodically. In addition to
initiating its internal processing worklist, aird also sets any environment
variables specified in the configuration file.

AIR configuration file can be maintained by using the UNICOS Installation
Menu System (installation tool). For completeness, the following sections
describe both the installation tool menus for AIR and the configuration file itself.

The AIR configuration file is composed of statements written in the AIR
configuration language. This section explains the configuration language in
detail along with the corresponding installation tool menus, examines the
default configuration file, /usr/air/config_file, and investigates tuning
and validating the configuration file.

3.3.1 Basic Syntactic Rules

The AIR configuration language is composed of a defined set of keywords and
their associated arguments. Each line of the configuration file is blank (white
space or a new line), a comment (containing a #, text and/or white space), or a
keyword and its associated arguments. A comment is permitted on a keyword
line.

The following basic syntactic rules apply:

• The configuration language can contain only printable ASCII characters; the
parser exits with an error if it finds an unprintable, non-ASCII character in
the configuration file.

• Keywords are uppercase names, and user values are lowercase names.

• Noncomment lines begin with a keyword followed by the appropriate
arguments.

• Comments in the file are designated like shell comments, beginning with the
character and continuing until an end-of-line is encountered.

140 S–2302–10010

Automated Incident Reporting (AIR) [3]

• Only one keyword may be present on a line, and it must begin with the first
nonwhite character on that line. The CONFIG keyword must be the first
keyword, and the ENDCONFIG keyword must be the last keyword.

• The maximum line length is 4096 characters.

• Legal separators are white space, tabs, colons, commas, and semicolons.

• All path names specified as arguments to keywords must be the full path
name of the file. (AIR validation routines ensure that all path names begin
with a /.)

• All rates specified as arguments to keywords are interpreted as minutes by
default. For example, a specification of 300 is interpreted as 5 hours. The
aird -C option lets you change the conversion factor of the specified
arguments (see aird(8)).

3.3.2 Configuration Keywords

This section contains lists of available keywords and associated arguments.
Refer to the configuration file on your system or to the AIR configuration menu
in the installation tool while examining these sections, noting the location and
value of each keyword and its arguments. The keywords are discussed in the
order they appear in the released configuration file.

3.3.2.1 File Delineation Keywords

The keywords described in the following sections define the beginning and end
of the configuration file.

3.3.2.1.1 CONFIG name

The CONFIG name keyword marks the beginning of the configuration
specification. Only comment or blank lines are allowed before a CONFIG line.
The name argument is the name of the configuration, which is any string.

3.3.2.1.2 ENDCONFIG name

The ENDCONFIG name keyword marks the end of the configuration
specification. Only comment or blank lines are allowed after an ENDCONFIG
line. The name argument is the name of the configuration, which is any string,
but must match the name specified with the CONFIG keyword in the file.

S–2302–10010 141

UNICOS® Resource Administration

3.3.2.2 Basic Operational Keywords

In your configuration file, the keywords described in the following sections
appear immediately after the CONFIG keyword and before a PRODUCT or
FUNCTION keyword specification. These keywords define the basic operational
configuration for the AIR system.

3.3.2.2.1 Installation Tool

The operational keywords correspond to the following installation tool menu:

M-> Configure system ->

M-> AIR configuration ->

M-> Coordinator setup ->

AIR Coordinator setup

S-> AIR daemon binary log file name /usr/spool/air/logs/blog

Monitoring function execution directory /usr/air/test
AIR daemon heartbeat rate 15

AIR daemon ASCII log file name /usr/spool/air/logs/coord.log

AIR daemon debugging level 0

AIR daemon information log level 0

3.3.2.2.2 COORD_LOG file

The COORD_LOG file keyword specifies the absolute path name to the aird
ASCII log file. This log file is used for debugging purposes only. Any
information needed by the report generators is logged into aird ’s binary log
file. The COORD_LOGLEV keyword specifies the number of messages written to
this ASCII log.

3.3.2.2.3 COORD_TESTDIR dir

The COORD_TESTDIR dir keyword specifies the absolute path name to the
directory where the configured monitoring functions are executed.

3.3.2.2.4 COORD_HBEAT rate

The COORD_HBEAT rate keyword specifies the rate at which aird should log its
own heartbeat record into its binary log file. The report generators use this
heartbeat record and the configured rate when determining AIR system
availability.

142 S–2302–10010

Automated Incident Reporting (AIR) [3]

3.3.2.2.5 COORD_DEBUG level

The COORD_DEBUG level keyword specifies the number of diagnostic messages
that should be logged to the aird ASCII log file (the location of which is set by
using the COORD_LOG keyword). The level argument is a number 0 through 20;
however, because this keyword is used for debugging purposes only, it is
recommended that level usually be set to 0.

3.3.2.2.6 COORD_BLOG file

The COORD_BLOG file keyword specifies the absolute path name to aird ’s
binary log file. The report generators use this log file when determining the
availability of the monitored products. Refer to Section 3.5, page 174, for more
information on the contents and use of this file.

3.3.2.2.7 COORD_LOGLEV level

The COORD_LOGLEV level keyword specifies the number of general
informational messages that should be logged to the aird ASCII log file. The
level argument is a number 0 through 20; however, because this keyword is used
for debugging purposes only, it is recommended that level usually be set to 0.

3.3.2.2.8 TYPE tag types

The TYPE tag type keywords are configured in the following installation tool
menu:

M-> Configure system ->

M-> AIR configuration ->
M-> Return tags and types setup ->

AIR Return tags and types setup

Tag Name Tag Type Type 1 Type 2 Type 3
---------- ---------------- ---------- ---------- ------

E-> PASSED PROD_AVAILABLE

FAILED PROD_UNAVAILABLE

CHANGED PROD_AVAILABLE WARN_ADMIN

NODEVICE PROD_AVAILABLE WARN_ADMIN WARN_OPS

NORESERVE PROD_AVAILABLE WARN_ADMIN
TIMEOFDAY PROD_AVAILABLE

NOMOUNT PROD_UNAVAILABLE WARN_OPS WARN_ADMIN

BADWRITE PROD_UNAVAILABLE

S–2302–10010 143

UNICOS® Resource Administration

BADJOB PROD_UNAVAILABLE

TIMEDOUT PROD_AVAILABLE WARN_ADMIN
QSUBFAILED PROD_UNAVAILABLE

AUDITERROR PROD_AVAILABLE WARN_ADMIN

TCPFAILED PROD_UNAVAILABLE

UDPFAILED PROD_UNAVAILABLE

ICMPFAILED PROD_UNAVAILABLE

The TYPE tag types keyword defines return tags and their associated types. The
tags are set as environment variables. aird and the monitoring functions use
the tags to communicate. The monitoring functions use the tags as return
values. The report generators use the types to report various aspects of the
system availability. The tags are also used in the MESSAGE and RETURN
keyword arguments, and additional text and subsequent actions are assigned to
the tag.

Other than two required tags, PASSED and FAILED, the tag argument
assignment is arbitrary; however, the tags defined in the configuration file must
match the expected return values for the configured monitoring functions. In
other words, for every expected return value in the monitoring functions, a
TYPE keyword definition with that return value listed as the tag argument must
exist.

The report generators use the PROD_AVAILABLE and PROD_UNAVAILABLE
types extensively when determining product availability.

The following types are allowed:

PROD_AVAILABLE PROD_UNAVAILABLE PROD_WARNING SEND_MAIL

SPR OIR WARN_OPS WARN_ADMIN

WARN_USERS 10% 20% 30%

40% 50% 60% 70%
80% 90% 91% 92%

93% 94% 95% 96%

97% 98% 99% 100%

3.3.2.3 Monitored Products Keywords

The keywords in the following sections appear immediately following the
TYPES keyword definitions in your configuration file. These keywords specify
the products to be monitored by the AIR system and configure the monitoring
functions to be used for each specified product. An explanation of how
products and functions are configured in the installation tool follows the
description of the keywords.

144 S–2302–10010

Automated Incident Reporting (AIR) [3]

3.3.2.3.1 PRODUCT name status

The PRODUCT name status keyword marks the beginning of a product definition
and is always paired with the ENDPRODUCT keyword. You can define multiple
products in a configuration file (within the CONFIG and ENDCONFIG keyword
pair); however, you cannot nest product specifications within other product
specifications. You can define single or multiple monitoring functions within
each PRODUCT / ENDPRODUCT pair. The name argument, which is indicated in
the report generators output, is an arbitrary string but it must be unique within
the configuration. The status argument indicates whether a product is active
(ON) or inactive (OFF). A product that is inactive is still part of the
configuration, but no functions defined within that product are executed.

3.3.2.3.2 ENDPRODUCT name

The ENDPRODUCT name keyword marks the end of a specific product
specification. This keyword is always paired with the PRODUCT keyword.

3.3.2.3.3 MESSAGE tag message

The MESSAGE tag message keyword specifies a text message to be associated
with the specified tag. As described in the TYPES keyword definition, the
return tag indicates a status returned by a monitoring function after executing.
aird sets these return tags to environment variables prior to the execution of
the monitoring functions. The report generators use the specified message text
when reporting availability statistics. The tag argument must be one of the tags
defined in a TYPE keyword specification. The message is any arbitrary string.
The entire line is limited to 4096 characters.

3.3.2.3.4 FUNCTION name status

The FUNCTION name status keyword marks the beginning of a function
definition and is always paired with an ENDFUNCTION keyword. You can
define multiple functions for a product (within a PRODUCT / ENDPRODUCT
keyword pair); however, you cannot nest function specifications within other
function specifications. The name argument which is indicated in the report
generators output, must be unique within a product specification, but does not
need to be unique within the configuration. The status argument indicates
whether a function is active (ON) or disabled (OFF).

S–2302–10010 145

UNICOS® Resource Administration

3.3.2.3.5 ENDFUNCTION name

The ENDFUNCTION name keyword marks the end of a FUNCTION specification.
This keyword is always paired with a FUNCTION keyword.

3.3.2.4 Monitoring Function Specification

The keywords described in the following sections appear within a FUNCTION /
ENDFUNCTION keyword pair. These keywords are required for a complete
monitoring function specification.

3.3.2.4.1 RATE rate

The RATE rate keyword specifies the frequency with which aird executes the
monitoring function. The rate argument is interpreted as number of minutes. If
the function is meant to be an action type of routine rather than a monitoring
function (for example, a function to restart a daemon when a FAILED status has
been returned to a monitoring function), the argument for RATE should be set
to NONE. This value prevents the function from being executed periodically
while allowing it to be executed from other functions. Refer to Section 3.4, page
160, for more information about rate specification on the monitoring functions.

3.3.2.4.2 EXECUTE file

The EXECUTE file keyword specifies the absolute path name of the monitoring
function that is to be executed.

3.3.2.4.3 LOGFILE file

The LOGFILE file keyword specifies the absolute path name of the file in which
the function output is placed. If there is no output of interest from the specific
monitoring function, set this argument to NONE.

3.3.2.4.4 TIMEOUT time

The TIMEOUT time keyword specifies the length of time that aird should wait
for the return of the function. If this time is exceeded, aird kills the
monitoring function and logs the abnormal termination in its binary log file.
The time argument can be set to NONE to indicate that the function should never
be timed out by aird.

146 S–2302–10010

Automated Incident Reporting (AIR) [3]

3.3.2.4.5 RETURN tag value action

The RETURN tag value action keyword specifies the return values for the
monitoring function. The return tag is a tag previously defined in a TYPE
keyword specification and associated with text from the MESSAGE keyword
specification. The value argument, to which the tag set in the environment is
assigned, is an integer between 0 and 200. The action argument specifies the
name of another function to be executed on the return of the specified tag value
from the monitoring function.

The function identified in the action argument must also be defined using the
function specifications within the current product specification. The action can
also be set to NONE, indicating that no further action should be taken on the
return of that tag from the monitoring function.

3.3.2.5 Installation Tool Configuration

The configuration of products and their monitoring functions span three
interconnected menus in the installation tool:

M-> Configure system ->

M-> AIR configuration ->
M-> Product enable ->

M-> Product functions ->

M-> Function return configuration ->

Each of these menus is described below.

3.3.2.5.1 Product Enable Menu

This first menu describes the products and whether they are to be monitored.
The menu consists of two fields: the name of the product, and whether it is
enabled.

An example of the product enable menu follows:

AIR Product enable

Product Name Product Enabled

------------ ---------------
E-> disk-integ YES

nqs YES

tapes YES

msgdaemon YES

tcp YES

urm YES

S–2302–10010 147

UNICOS® Resource Administration

The menu is used to determine the PRODUCT and ENDPRODUCT keywords in
the configuration file.

3.3.2.5.2 Product Functions Menu

This menu contains seven fields that are used to determine the FUNCTION,
ENDFUNCTION, RATE, EXECUTE, LOGFILE, and TIMEOUT keywords in the
configuration file.

Here is a short example of the product functions menu, focusing on the URM
product:

AIR Product functions

Prod Name Funct Name Enabled Rate Command Log File Timeout

--------- ---------- ------- ---- ----------------------------- -------

E-> urm function YES 25 /usr/air/test/urm/urm.funct NONE

urm response YES 20 /usr/air/test/urm/urm.response NONE

urm existence YES 10 /usr/air/test/urm/urm.exist NONE

urm restart NO NONE /usr/air/test/urm/urm.restart NONE

The Prod Name field associates these functions under a given product (there
must be a product with this name in the Product enable-> menu).

The Funct Name field (FUNCTION) names the function while the Enabled
field indicates whether this monitoring function is on or off. The Rate field
(RATE) indicates the time in minutes between executions of the monitoring
command set in the Command field (EXECUTE). The Log File field (LOGFILE)
is the name of a file where the output is to be placed (blank means no log file)
and the Timeout field (TIMEOUT) indicates the maximum amount of time the
monitoring function can take.

3.3.2.5.3 Function Return Configuration

This menu contains six fields that define the RETURN and MESSAGE keywords.
An example showing the function return configuration for the URM product is
as follows:

AIR Function return configuration

Product Name Function Name Return Name Return Value Action Return Message

------------ ------------- ----------- ------------ ------ --------------

E-> urm function PASSED 0 Test Passed

urm function FAILED 1 Test Failed

148 S–2302–10010

Automated Incident Reporting (AIR) [3]

urm response FAILED 1 Test Failed

urm response PASSED 0 Test Passed

urm existence FAILED 1 restart Test Failed

urm existence PASSED 0 Test Passed

urm restart FAILED 1 Test Failed

urm 1restart PASSED 0 Test Passed

The Product Name and Function Name fields are used to associate the
return information with a given product (must be a product by this name in the
Product enable-> menu) and function (must be a function by this name for
this product defined in the Product functions -> menu).

Each function under a product must have a minimum of two return values,
named PASSED and FAILED. These names correspond to an exit status (in this
case 0 and 1 respectively) and to a return message text.

Depending on the return value for a function, an action can be performed. This
action is specified by the Action field and corresponds to the name of another
function defined for this product. In the example above, if a FAILED status is
returned by the existence function of the urm product (exit status of 1 from
/usr/air/test/urm/urm.exist), the restart function is then started by
the aird process.

The restart function is a special function, since it is not used for monitoring
purposes but rather for restarting the URM daemon. Since the restart function
should only be started when the existence test fails, the restart function is
configured with a Rate (RATE) of NONE. This indicates that this product is not
to be started periodically. Note also that in the above example, the restart
function is turned off. Therefore, if the existence function were to fail, the
restart function would not be run because it is disabled.

3.3.3 Return Tags

This section contains an overview and summary of the TYPE, MESSAGE, and
RETURN keywords and the associated arguments.

The TYPE keyword defines return tags and their associated types. The TYPE tag
argument defines a variable to be used as an exit status by a monitoring
function. aird sets this variable in the environment when it initially processes
the configuration file. The types associated with each TYPE tag are associated
with the environment variables that serve as exit statuses for the monitoring
functions. The report generators use these types, associated with the tags, in
their processing. Only the PROD_AVAILABLE and PROD_UNAVAILABLE types
are used by the report generators at this time for availability determination.

S–2302–10010 149

UNICOS® Resource Administration

The report generators also use the MESSAGE keyword, which associates a text
message with a tag.

The RETURN keyword assigns the tag an environment variable and indicates
whether further action should be taken following the return of a monitoring
function.

3.3.4 Sample Configuration File

This section contains a sample configuration file and an interpretation of the
contents. Read this section if you are unsure of the correct interpretation or if
you want to check your understanding. Refer to this sample file as you read the
text following the file.

Start of Configuration File Generated by printcf on Thu Feb 21 15:31:40 1991

#

:%s./usr./sn1101/soft/os/crs

#
CONFIG kernel_test_version

#

Define Coordinator logfile

#

COORD_LOG /usr/spool/air/logs/coord.log
#

test directory

#

COORD_TESTDIR /usr/air/test

#

Define Coordinator Heart Beat
#

COORD_HBEAT 10

#

Define Debug level

#
COORD_DEBUG 0

#

Define Binary output file name

#

COORD_BLOG /usr/spool/air/logs/blog
#

Define ASCII logging level

#

COORD_LOGLEV 0

150 S–2302–10010

Automated Incident Reporting (AIR) [3]

#

Define TYPES
#

TYPE PASSED PROD_AVAILABLE

TYPE FAILED PROD_UNAVAILABLE

TYPE CHANGED PROD_AVAILABLE WARN_ADMIN

TYPE NODEVICE PROD_AVAILABLE WARN_ADMIN WARN_OPS

TYPE NORESERVE PROD_AVAILABLE WARN_ADMIN
TYPE NOMOUNT PROD_UNAVAILABLE WARN_OPS WARN_ADMIN

TYPE BADWRITE PROD_UNAVAILABLE

TYPE BADJOB PROD_UNAVAILABLE

TYPE QSUBFAILED PROD_UNAVAILABLE

TYPE AUDITERROR PROD_AVAILABLE WARN_ADMIN
TYPE TCPFAILED PROD_UNAVAILABLE

TYPE UDPFAILED PROD_UNAVAILABLE

TYPE ICMPFAILED PROD_UNAVAILABLE

#

Define product disk-integ
#

PRODUCT disk-integ ON

MESSAGE FAILED Test Failed

MESSAGE PASSED Test Passed

#

Define Function response of Product disk-integ
#

FUNCTION response ON

RATE 1

EXECUTE /usr/air/test/kern/kern.response

LOGFILE NONE
TIMEOUT NONE

RETURN FAILED 1 NONE

RETURN PASSED 0 NONE

ENDFUNCTION response

#
Define Function existence of Product disk-integ

#

FUNCTION existence ON

RATE 15

EXECUTE /usr/air/test/kern/kern.exist

LOGFILE NONE
TIMEOUT NONE

RETURN FAILED 1 NONE

RETURN PASSED 0 NONE

S–2302–10010 151

UNICOS® Resource Administration

ENDFUNCTION existence

ENDPRODUCT disk-integ
#

Define product nqs

#

PRODUCT nqs ON

MESSAGE PASSED Test Passed

MESSAGE FAILED Test Failed
MESSAGE QSUBFAILED Qsub failed during functional test.

MESSAGE BADJOB Returned job did not contain expected output

#

Define Function functional of Product nqs

#
FUNCTION function ON

RATE 15

EXECUTE /usr/air/test/nqs/nqs.funct

LOGFILE NONE

TIMEOUT 10
RETURN PASSED 0 NONE

RETURN FAILED 1 NONE

RETURN QSUBFAILED 2 NONE

RETURN BADJOB 3 NONE

ENDFUNCTION function

#
Define Function response of Product nqs

#

FUNCTION response ON

RATE 10

EXECUTE /usr/air/test/nqs/nqs.response
LOGFILE NONE

TIMEOUT NONE

RETURN FAILED 1 NONE

RETURN PASSED 0 NONE

ENDFUNCTION response
#

Define Function existence of Product nqs

#

FUNCTION existence ON

RATE 5

EXECUTE /usr/air/test/nqs/nqs.exist
LOGFILE NONE

TIMEOUT NONE

RETURN FAILED 1 NONE

152 S–2302–10010

Automated Incident Reporting (AIR) [3]

RETURN PASSED 0 NONE

ENDFUNCTION existence
#

Define Function netexist of Product nqs

#

FUNCTION netexist ON

RATE 5

EXECUTE /usr/air/test/nqs/nqsnet.exist
LOGFILE NONE

TIMEOUT NONE

RETURN FAILED 1 NONE

RETURN PASSED 0 NONE

ENDFUNCTION netexist
ENDPRODUCT nqs

#

Define product tapes

#

PRODUCT tapes ON
MESSAGE PASSED Test Passed

MESSAGE FAILED Test Failed

MESSAGE BADWRITE Write to tape failed

MESSAGE NOMOUNT Mount of tape failed

MESSAGE NORESERVE Reserve of tape failed

MESSAGE NODEVICE No devices available at start of test.
#

Define Function functional of Product tapes

#

FUNCTION function OFF

RATE 60
EXECUTE /usr/air/test/tapes/tape.funct

LOGFILE NONE

TIMEOUT 10

RETURN PASSED 0 NONE

RETURN FAILED 1 NONE
RETURN BADWRITE 2 NONE

RETURN NOMOUNT 3 NONE

RETURN NORESERVE 4 NONE

RETURN NODEVICE 5 NONE

ENDFUNCTION function

#
Define Function response of Product tapes

#

FUNCTION response ON

S–2302–10010 153

UNICOS® Resource Administration

RATE 10

EXECUTE /usr/air/test/tapes/tape.response
LOGFILE NONE

TIMEOUT 1

RETURN FAILED 1 NONE

RETURN PASSED 0 NONE

ENDFUNCTION response

#
Define Function existence of Product tapes

#

FUNCTION existence ON

RATE 5

EXECUTE /usr/air/test/tapes/tape.exist
LOGFILE NONE

TIMEOUT NONE

RETURN FAILED 1 NONE

RETURN PASSED 0 NONE

ENDFUNCTION existence
#

Define Function avrexist of Product tapes

#

FUNCTION avrexist ON

RATE 5

EXECUTE /usr/air/test/tapes/tapeavr.exist
LOGFILE NONE

TIMEOUT NONE

RETURN FAILED 1 NONE

RETURN PASSED 0 NONE

ENDFUNCTION avrexist
ENDPRODUCT tapes

#

Define product msgdaemon

#

PRODUCT msgdaemon ON
MESSAGE PASSED Test Passed

MESSAGE FAILED Test Failed

#

Define Function response of Product msgdaemon

#

FUNCTION response ON
RATE 10

EXECUTE /usr/air/test/msgd/msgd.response

LOGFILE NONE

154 S–2302–10010

Automated Incident Reporting (AIR) [3]

TIMEOUT 1

RETURN FAILED 1 NONE
RETURN PASSED 0 NONE

ENDFUNCTION response

#

Define Function existence of Product msgdaemon

#

FUNCTION existence ON
RATE 5

EXECUTE /usr/air/test/msgd/msgd.exist

LOGFILE NONE

TIMEOUT NONE

RETURN FAILED 1 NONE
RETURN PASSED 0 NONE

ENDFUNCTION existence

ENDPRODUCT msgdaemon

#

Define product tcp
#

PRODUCT tcp ON

MESSAGE FAILED Test Failed

MESSAGE PASSED Test Passed

MESSAGE TCPFAILED Transmission Control Protocol failure

MESSAGE UDPFAILED User Datagram Protocol failure
MESSAGE ICMPFAILED Control Message Protocol failure

#

Define Function functional of Product tcp

#

FUNCTION function ON
RATE 10

EXECUTE /usr/air/test/tcp/tcp.funct

LOGFILE NONE

TIMEOUT NONE

RETURN PASSED 0 NONE
RETURN FAILED 1 NONE

RETURN ICMPFAILED 2 NONE

RETURN UDPFAILED 3 NONE

RETURN TCPFAILED 4 NONE

ENDFUNCTION function

#
Define Function existence of Product tcp

#

FUNCTION existence ON

S–2302–10010 155

UNICOS® Resource Administration

RATE 5

EXECUTE /usr/air/test/tcp/tcp.exist
LOGFILE NONE

TIMEOUT NONE

RETURN FAILED 1 NONE

RETURN PASSED 0 NONE

ENDFUNCTION existence

#
Define Function gatedexist of Product tcp

#

FUNCTION gatedexist ON

RATE 5

EXECUTE /usr/air/test/tcp/tcpgated.exist
LOGFILE NONE

TIMEOUT NONE

RETURN FAILED 1 NONE

RETURN PASSED 0 NONE

ENDFUNCTION gatedexist
#

Define Function lpdexist of Product tcp

#

FUNCTION lpdexist ON

RATE 5

EXECUTE /usr/air/test/tcp/tcplpd.exist
LOGFILE NONE

TIMEOUT NONE

RETURN FAILED 1 NONE

RETURN PASSED 0 NONE

ENDFUNCTION lpdexist
#

Define Function namedexist of Product tcp

#

FUNCTION namedexist ON

RATE 5
EXECUTE /usr/air/test/tcp/tcpnamed.exist

LOGFILE NONE

TIMEOUT NONE

RETURN FAILED 1 NONE

RETURN PASSED 0 NONE

ENDFUNCTION namedexist
#

Define Function ntpdexist of Product tcp

#

156 S–2302–10010

Automated Incident Reporting (AIR) [3]

FUNCTION ntpdexist ON

RATE 5
EXECUTE /usr/air/test/tcp/tcpntpd.exist

LOGFILE NONE

TIMEOUT NONE

RETURN FAILED 1 NONE

RETURN PASSED 0 NONE

ENDFUNCTION ntpdexist
#

Define Function smailexist of Product tcp

#

FUNCTION smailexist ON

RATE 5
EXECUTE /usr/air/test/tcp/tcpsmail.exist

LOGFILE NONE

TIMEOUT NONE

RETURN FAILED 1 NONE

RETURN PASSED 0 NONE
ENDFUNCTION smailexist

#

Define Function snmpdexist of Product tcp

#

FUNCTION snmpdexist ON

RATE 5
EXECUTE /usr/air/test/tcp/tcpsnmpd.exist

LOGFILE NONE

TIMEOUT NONE

RETURN FAILED 1 NONE

RETURN PASSED 0 NONE
ENDFUNCTION snmpdexist

ENDPRODUCT tcp

#

Define product urm

#
PRODUCT urm ON

MESSAGE PASSED Test Passed

MESSAGE FAILED Test Failed

#

Define Function functional of Product urm

#
FUNCTION function ON

RATE 25

EXECUTE /usr/air/test/urm/urm.funct

S–2302–10010 157

UNICOS® Resource Administration

LOGFILE NONE

TIMEOUT NONE
RETURN PASSED 0 NONE

RETURN FAILED 1 NONE

ENDFUNCTION function

#

Define Function response of Product urm

#
FUNCTION response ON

RATE 20

EXECUTE /usr/air/test/urm/urm.response

LOGFILE NONE

TIMEOUT NONE
RETURN FAILED 1 NONE

RETURN PASSED 0 NONE

ENDFUNCTION response

#

Define Function existence of Product urm
#

FUNCTION existence ON

RATE 10

EXECUTE /usr/air/test/urm/urm.exist

LOGFILE NONE

TIMEOUT NONE
RETURN FAILED 1 restart

RETURN PASSED 0 NONE

ENDFUNCTION existence

#

Define Function restart of Product urm
#

FUNCTION restart OFF

RATE NONE

EXECUTE /usr/air/test/urm/urm.restart

LOGFILE NONE
TIMEOUT NONE

RETURN FAILED 1 NONE

RETURN PASSED 0 NONE

ENDFUNCTION restart

ENDPRODUCT urm

ENDCONFIG kernel_test_version
#

End of Configuration File Generated by printcf on Thu Feb 21 15:31:40 1991

#

158 S–2302–10010

Automated Incident Reporting (AIR) [3]

At the top of the configuration file, the global operational keywords are
defined. The ASCII log and binary log files for the aird process are set to
/usr/spool/air/logs/coord.log and /usr/spool/air/logs/blog,
respectively; however, the ASCII and debug logging levels are both set to 0,
which means that the aird ASCII log file should remain empty. The rate that
the aird process logs its own heartbeat record is set to every 10 minutes.

Next, the return tags and associated types are defined. The required PASSED
and FAILED tags are at the top of the specification block. Also, the
PROD_AVAILABLE and PROD_UNAVAILABLE types associated with the various
tags are specified.

The next component of the file is the product’s specification, the first one being
the disk-integ. Messages are assigned to the two required tags, PASSED and
FAILED, and two functions, response and existence, are defined. The response
function is configured to execute every 90 minutes. No log file or time-out limit
is specified, and no subsequent action is defined for the two required return
tags. The existence function is configured to execute every 15 minutes and has
no output, time-out, or subsequent actions specified. The actual monitoring
functions are found in /usr/air/test/kern/kern.response and
/usr/air/test/kern/kern.exist, respectively.

3.3.5 Configuration File Tuning and Validation

You can change the contents of the configuration file by using the UNICOS
Installation Menu System (installation tool) validation. You can validate your
configuration through the airckconf(8) command prior to putting that file
into production on your system. The airckconf command uses the same
validation routines that the aird process uses on the contents of the
configuration file.

The AIR configuration menu in the installation tool allows you to verify your
configuration before activating it. Simply select the Verify air
configuration ... action in the AIR configuration menu. This action will
generate a test configuration file based on your selections and then run the
airckconf(8) command on it.

An example of an area that you may need to change is the execution rates for
the monitoring functions.

Note: Before making changes to the execution rates of the functions, please
read through Section 3.4, page 160, to determine the appropriate balance for
your system.

S–2302–10010 159

UNICOS® Resource Administration

Changing the rates is accomplished by editing the argument for the RATE
keyword in a specific function (or the Rate field in the Product functions
-> menu of the installation tool). For example, if you want the existence
function for URM to run once every 10 minutes instead of the default of 5
minutes, you would change the RATE keyword argument from 5 to 10 in the
existence function specification of the URM product specification.

Any associated keyword arguments can be changed in the same manner. To
add functions or products, refer to Section 3.4.6, page 165.

3.4 Monitoring Functions

The monitoring functions are the actual product verification processes and are
either shell scripts or executable binaries. The implementation of the functions
for each monitored product follows a hierarchic philosophy. Several functions
are specified for each monitored product, and they are differentiated by the cost
of the resources they use and the aspects of the product that they test.

For example, a function that verifies that a process exists on the system would
be low cost, and, thus, could be executed more frequently than a function that
required a tape mount. However, the higher-cost function provides a better
assurance of product verification. These issues must be balanced by the rate
specification in the configuration file, and be configured for each site’s specific
needs.

This section discusses the product testing coverage provided by the monitoring
functions. This section also describes functions that need to be configured on a
site-by-site basis and the procedures for adding those functions and other
products, to the AIR system.

!
Caution: Since the test scripts installed under /usr/air/test can be
overwritten during a software update, local changes to the supplied
monitoring functions should be made by copying the file to another directory
(or renaming it) and then altering this copy. Be sure to update the
configuration of AIR to point to the local copy of the monitor script.

Refer to the individual monitoring function man pages for more detailed
information on the contents of the individual tests.

160 S–2302–10010

Automated Incident Reporting (AIR) [3]

Monitoring functions are provided for TCP/IP, NQS, online tapes, URM, and
disk-integ (general system checks). The functions for these products are divided
into the following types determined by the aspect of the product they are
testing:

• Existence

• Response

• Functional invocation

The existence functions are low-cost verification routines that check for processes
on a system. The response functions are also lower-cost routines that cause a
product to respond in some manner, but do not cause significant operational
changes on a system. The functional invocation routines can be high-cost
functions. These functions are responsible for causing the product to
accomplish work in the same way a user would. The specified rates in the
configuration file for each of these functions reflects the cost involved; the
existence and response functions’ rates are much higher than those for the
functional invocation tests. Again, these rates are site-configurable.

The airexist(8) command verifies product component existence.

It is important to note that these functions are opaque objects in the AIR
system. Although they are grouped as described previously, they are by no
means restricted to those types. The basic structure of the aird process and
monitoring functions allows maximum flexibility in monitoring the products.

The following sections describe the product testing coverage and the functions
that can be configured for each product.

3.4.1 TCP/IP

Existence and functional monitoring functions are available for TCP/IP.

The existence functions use the airexist command for process verification.
There are separate existence functions for each of the following processes:

• Internet services daemon (inetd)

• Gateway routing daemon (gated)

• Line printer daemon (lpd)

• Internet domain name server (named)

• Time synchronization daemon (ntpd)

S–2302–10010 161

UNICOS® Resource Administration

• Mail daemon (sendmail)

• SNMP daemon (snmpd)

These daemons are checked separately so that a site can disable any of the
functions that check processes not configured on their system.

The functional invocation test uses an enhanced version of ping to send ECHO
packets to network hosts using the following protocols:

• Internet Control Message Protocol (ICMP)

• Internet Transmission Control Protocol (TCP/IP)

• Internet User Datagram Protocol (UDP)

Failure to receive the expected REPLY packet constitutes a failed status.

The existence functions for TCP/IP check for the following processes, which
must be configured on the system:

Function Process checked

tcp.exist inetd

tcpgated.exist gated

tcplpd.exist lpd

tcpnamed.exist named

tcpntpd.exist ntpd

tcpsmail.exist sendmail

tcpsnmpd.exist snmpd

If you are not using one of the listed processes, you must disable the associated
function in the configuration file. If you do not disable a function that checks for
a process that does not exist, TCP/IP will always be reported as available 0%.

3.4.2 NQS

Existence, response, and functional monitoring functions are available for NQS.

The existence functions use the airexist command for process verification.
There are separate existence functions for each of the following processes:

• Main NQS daemon (nqsdaemon)

162 S–2302–10010

Automated Incident Reporting (AIR) [3]

• TCP/IP networking component (netdaemon)

These daemons are checked separately so that a site can disable any of the
functions that check processes not configured on their system.

The response function uses the nqsresp command to verify that the
nqsdaemon process is able to read its named pipe. The nqsresp command
attempts to open the named pipe; if the open fails, this function returns a failed
status (see nqsresp(8)).

The functional invocation test uses the NQS qsub command to submit a job.
The test then verifies that the expected string is found in the job output file.
This function must also be configured to use a valid enabled, started, and
running batch queue.

The existence functions for NQS check for the following processes, which must
be configured on the system:

Function Process checked

nqs.exist nqsdaemon

nqsnet.exist netdaemon

If you are not using one of the listed processes, disable the associated function
in the configuration file. If you do not disable a function that checks for a
nonexistent process, NQS will always be reported as available 0%.

Because it invokes a generic qsub(1) command, the nqs.funct function
monitoring test is dependent on an enabled, started, and running default batch
queue. If you cannot ensure that a default batch queue is always available, edit
nqs.funct so that the job is directed to an available queue by using the
appropriate qsub options.

3.4.3 Online Tapes

Existence, response, and functional monitoring functions are available for online
tapes.

The existence functions use the airexist command for process verification.
There are separate existence functions for each of the following processes:

• Tape daemon (tpdaemon)

• Message daemon (msgd)

• AVR component (avrproc)

S–2302–10010 163

UNICOS® Resource Administration

These daemons are checked separately so that a site can disable any of the
functions that check processes not configured on their system.

The tpstat(1) command is a tape status command that forces a response from
the tpdaemon process. The response function determines the ability of the
tpdaemon to respond based on the return value from tpstat. The response
function for the msgd process invokes the msgd command, and redetermines
the ability for response based on the return value.

The function invocation test uses the dd(1) command to write a file to tape by
using the tape daemon. This test serves as a template only. Due to the variance
of device groups, label types, and volume serial numbers, each site needs to
modify this script to reflect their configuration.

If you are not using AVR, disable the tapeavr.exist function in the AIR
configuration file. If AVR is nonexistent and you do not disable
tapeavr.exist, online tapes will always be reported as available 0%.

The tape.funct function monitoring test uses the tpmnt(1) command to
mount a tape on a drive, and then uses the dd command to write data to that
tape. Edit this test to reflect your local tape environment, paying particular
attention to the DEVGRP, LABEL, and VOLSER variables and the time check at
the top of the script. By default, this test executes between 10 A.M. and 4 P.M.;
otherwise, it returns a passed exit status without execution.

3.4.4 Disk-integ

System monitoring functions that check existence and integrity are available for
the kernel.

The existence script invokes various user commands, such as cd, ls, and cat,
to verify that the kernel is working and to gain some idea of the interactive
response time.

The integrity function checks the following:

• Unrecovered disk errors

• File system free space and inodes

This script is configured to send mail to the appropriate administrators with
pertinent information.

164 S–2302–10010

Automated Incident Reporting (AIR) [3]

3.4.5 URM

Existence, response, and functional monitoring functions are available for the
Unified Resource Manager (URM).

The existence function uses the airexist command to determine if the urmd
process exists in the system.

The rmgr command is a URM status command that forces a response from
URM. The response function determines the ability of URM to respond based
on the return value from rmgr.

The functional invocation test uses the URM rmgr command to send a
REGISTER request to urmd to verify whether or not urmd is initialized and
functioning. The URM product also has a special function called restart. The
function is not a monitoring function, but rather, an action. The existence
function defines it to be started in response to a FAILED exit status (the urmd
process not running) in order to restart the urmd process. Since it is not a
monitoring function, its RATE is set to NONE to indicate to aird that it should
not be periodically started.

In the preceding example configuration, the restart function is turned off. In
order for the restart function to be started by the aird process in response
to the failure in existence, it must be turned on.

3.4.6 Adding Products and Functions

In the AIR system, you can easily extend product sets and enhance monitoring
functions.

This section describes the addition of products and monitoring functions to the
AIR system.

Follow these steps in order to add a product to the AIR system:

1. Create the appropriate monitoring functions for the product.

2. Create the appropriate directory in the test directory tree, and move the
monitoring functions to that directory.

3. Add the product and monitoring function specifications to the configuration
file.

4. Use the airckconf command on the newly edited configuration file to
validate your changes.

S–2302–10010 165

UNICOS® Resource Administration

5. Move the file into production; send a SIGHUP signal to the aird process.

6. Check to ensure that the added functions are working as expected.

3.4.6.1 Creating Functions

The first step in adding a product to the AIR system is creating the appropriate
monitoring functions. This step is quite important because the accuracy and
effectiveness of product monitoring depends on the quality of the monitoring
functions. The creation method described in this section is recommended, but
because the functions are opaque in the system, you may use any method that
works for your site.

In this example, the data migration product and functions are added to the AIR
system by using the same hierarchical implementation as the released functions.
These functions are incomplete and meant only as examples; however, you can
use them as the basis for monitoring the data migration facility.

The following example shows an existence function for the dmdaemon process:

#! /bin/sh

#
dmf.exist Product DMF existence test.

#

Test Description:

This is an existence test for DMF. It checks for the

existence of the following process: dmdaemon.
#

Dependencies:

The environment variable PASSED must be set.

The environment variable FAILED must be set.

The airexist command is installed in /usr/air/bin.

#
PATH=$PATH:/usr/air/bin

airexist -u 0 dmdaemon

if [$? -eq 1]

then
EXITVAL=$PASSED

else

EXITVAL=$FAILED

fi

exit ${EXITVAL}

166 S–2302–10010

Automated Incident Reporting (AIR) [3]

#
End of product DMF existence test.

#

Functional monitoring of data migration could be accomplished in one of two
ways:

• Attempting to migrate and restore a file to online tape media

• Attempting to migrate and restore a file to the MVS station

The following example shows the online tape function test; the MVS front-end
function would be identical to this one except that the specified media would
be the MVS front end:

#! /bin/sh

#

dmftape.funct Product DMF online tape functional test.

#
Test Description:

This is a functional test for the online tape media

capability of the data migration facility. Note that

this script, through the forced migration of a file,

calls for a tape mount and should be run at a rate
appropriate for the site operational personnel and tape

environment.

#

Dependencies:

The environment variable PASSED must be set.
The environment variable FAILED must be set.

The environment variable PUTFAIL must be set.

The environment variable NOMIGRATE must be set.

The environment variable GETFAIL must be set.

The MIGRATE_FILE must be defined and exist.

#
MIGRATE_FILE="site defined"

MEDIA_TYPE=1

#

Migrate the file. Indicate that the tape media should be used.
#

dmput -p ${MEDIA_TYPE} MIGRATE_FILE

if [$? -ne 0]

S–2302–10010 167

UNICOS® Resource Administration

then

exit ${PUTFAIL}
fi

#

Verify that the file has at least been premigrated.

#

if [!(-M MIGRATE_FILE)]
then

exit ${NOMIGRATE}

fi

#
Restore the file.

#

dmget MIGRATE_FILE

if [$? -ne 0]

then
exit ${GETFAIL}

fi

#

Verify that the file has been returned.

#
if ["‘ls -l MIGRATE_FILE | cut -c1‘" = "m"]

then

exit ${FAILED}

else

exit ${PASSED}
fi

#

End of product DMF online tape functional test.

#

3.4.6.2 Integrating the Functions

After you have created the monitoring functions, you must create the
appropriate directory in the test directory tree and place the new functions in
that directory.

168 S–2302–10010

Automated Incident Reporting (AIR) [3]

In this example, you would create the /usr/air/test/dmf directory. Then
you would copy the dmf.exist, dmftape.funct, and dmfmvs.funct
monitoring functions created in the previous section into that directory.

3.4.6.3 Configuring the Functions

After you create the monitoring functions and place them in the test directory,
you must follow these steps to instruct the aird process what to do with these
monitoring functions. (Refer to Section 3.3.2, page 141, for a discussion of the
configuration file and information concerning the specific keywords and their
associated arguments in the configuration language syntax. There is a section
for users of the UNICOS Installation Menu System, as well as for those who
manually update the configuration file.)

3.4.6.3.1 Manual Function Configuration

Use the following procedures to manually add new products/functions to the
AIR configuration file.

1. This step is necessary only if you are not using the installation tool to
configure AIR.

Copy the configuration file, /usr/air/config_file, to a temporary file,
as in the following example:

$ cp /usr/air/config_file /tmp/tmp_config_file

2. Using a standard text editor, add the product and monitoring functions’
specification to the file, in the following two-step process:

a. Add the additional return types (PUTFAIL, NOMIGRATE, and GETFAIL)
used in the functional tests to the TYPES definition area near the top of
the configuration file, as in the following example:

#

Define TYPES

#

TYPE PASSED PROD_AVAILABLE

TYPE FAILED PROD_UNAVAILABLE
TYPE CHANGED PROD_AVAILABLE WARN_ADMIN

TYPE NODEVICE PROD_AVAILABLE WARN_ADMIN WARN_OPS

TYPE NORESERVE PROD_AVAILABLE WARN_ADMIN

TYPE NOMOUNT PROD_UNAVAILABLE WARN_OPS WARN_ADMIN

TYPE BADWRITE PROD_UNAVAILABLE

TYPE BADJOB PROD_UNAVAILABLE

S–2302–10010 169

UNICOS® Resource Administration

TYPE QSUBFAILED PROD_UNAVAILABLE

TYPE AUDITERROR PROD_AVAILABLE WARN_ADMIN
TYPE TCPFAILED PROD_UNAVAILABLE

TYPE UDPFAILED PROD_UNAVAILABLE

TYPE ICMPFAILED PROD_UNAVAILABLE

TYPE PUTFAIL PROD_UNAVAILABLE WARN_OPS WARN_ADM

TYPE NOMIGRATE PROD_UNAVAILABLE WARN_OPS WARN_ADM

TYPE GETFAIL PROD_UNAVAILABLE WARN_OPS WARN_ADM

Although the WARN_OPS and WARN_ADMIN return types are not
implemented for use, they will be important pieces of information for
the real-time evaluation of the monitored products.

b. Add the product and functions specification anywhere below the
TYPES area, as in the following example:

ENDPRODUCT tcp

#

Define Product DMF

#

PRODUCT dmf ON
MESSAGE PASSED Test Passed

MESSAGE FAILED Test Failed

MESSAGE PUTFAIL Migration of file failed

MESSAGE NOMIGRATE Expected migrated file not migrated

MESSAGE GETFAIL Restore of file failed
#

Define function existence of Product DMF

#

FUNCTION existence ON

RATE 5

EXECUTE /usr/air/test/dmf/dmf.exist
LOGFILE NONE

TIMEOUT NONE

RETURN PASSED 0 NONE

RETURN FAILED 1 NONE

ENDFUNCTION existence
#

Define function online functional of Product DMF

#

FUNCTION tapefunct ON

RATE 60
EXECUTE /usr/air/test/dmf/dmftape.funct

LOGFILE NONE

170 S–2302–10010

Automated Incident Reporting (AIR) [3]

TIMEOUT 10

RETURN PASSED 0 NONE
RETURN FAILED 1 NONE

RETURN PUTFAIL 2 NONE

RETURN NOMIGRATE 3 NONE

RETURN GETFAIL 4 NONE

ENDFUNCTION tapefunct

#
Define function MVS functional of Product DMF

#

FUNCTION mvsfunct ON

RATE 60

EXECUTE /usr/air/test/dmf/dmfmvs.funct
LOGFILE NONE

TIMEOUT 10

RETURN PASSED 0 NONE

RETURN FAILED 1 NONE

RETURN PUTFAIL 2 NONE
RETURN NOMIGRATE 3 NONE

RETURN GETFAIL 4 NONE

ENDFUNCTION mvsfunct

ENDPRODUCT dmf

3.4.6.4 Function Configuration through the Installation Tool

This section describes how to use the UNICOS Installation Menu System
(installation tool) to add new products and functions to AIR.

1. Enter the Return tags and types setup -> submenu under the AIR
configuration menu. Add the new return types (PUTFAIL, NOMIGRATE, and
GETFAIL) used in the functional tests as follows:

AIR Return tags and types setup

Tag Name Tag Type Type 1 Type 2 Type 3

---------- ---------------- ---------- ---------- ------

...

E-> PUTFAIL PROD_UNAVAILABLE WARN_OPS WARN_ADM

NOMIGRATE PROD_UNAVAILABLE WARN_OPS WARN_ADM

GETFAIL PROD_UNAVAILABLE WARN_OPS WARN_ADM

...

2. Add the product to the product list in the Product enable -> menu:

S–2302–10010 171

UNICOS® Resource Administration

AIR Product enable

Product Name Product Enabled

------------ ---------------

disk-integ YES

nqs YES

tapes YES

msgdaemon YES
tcp YES

urm YES

E-> dmf YES

3. Create the three functions in the Product functions -> menu:

AIR Product functions

Prod Name Funct Name Enabled Rate Command Log File Timeout

--------- ---------- ------- ---- ----------------------------- -------

E-> dmf mvsfunct YES 60 /usr/air/test/dmf/dmfmvs.funct 10

dmf tapefunct YES 60 /usr/air/test/dmf/dmftape.funct 10

dmf existence YES 5 /usr/air/test/dmf/dmf.exist NONE

4. Create the function return information through the Function return
configuration -> menu:

AIR Function return configuration

Product Name Function Name Return Name Return Value Action Return Message

------------ ------------- ----------- ------------ ------ --------------

E-> dmf tapefunct FAILED 1 Test Failed

dmf tapefunct PASSE 0 Test Passed

dmf tapefunct PUTFAIL 2 Migration of file failed

dmf tapefunct NOMIGRATE 3 Expected migrated file not migrated

dmf tapefunct GETFAIL 4 Restore of file failed

dmf mvsfunct FAILED 1 Test Failed

dmf mvsfunct PASSED 0 Test Passed

dmf mvsfunct PUTFAIL 2 Migration of file failed

dmf mvsfunct NOMIGRATE 3 Expected migrated file not migrated

dmf mvsfunct GETFAIL 4 Restore of file failed

dmf existence FAILED 1 Test Failed

dmf existence PASSED 0 Test Passed

172 S–2302–10010

Automated Incident Reporting (AIR) [3]

3.4.6.5 Validating Configuration

All essential components are in place for monitoring a new product. Before
placing the new configuration file into production, however, you should
validate the changes and additions that have been made. The airckconf(8)
command runs the configuration file through the same verification routines that
the aird process uses during its internal processing initiation. The following
sample command line verifies the temporary configuration file produced in the
previous section:

$ airckconf tmp_config_file

If you are using the installation tool, perform the Verify air
configuration ... action to verify that the changes made in the menu
system are correct.

For more detailed information, see airckconf(8).

Note: Do not proceed to the next step until airckconf is executing without
error on the new configuration file.

3.4.6.6 Production

Before copying the new configuration file over the current one, make a back-up
copy of /usr/air/config_file. If you are using the installation tool to
update the AIR configuration, the backup is not necessary, since backups are
made automatically. After creating a back-up copy and copying in the new
configuration file (activating the configuration if using the installation tool),
either start the aird process, using the /usr/air/bin/start_air script, or,
if aird is already running, send the aird process the SIGHUP signal. Use the
ps(1) command to determine the process ID of aird and use the kill(1)
command to send the SIGHUP signal to that pid, as in the following example:

$ ps -el | grep aird

0 S 0 12954 1 0 39 24 26236 98 561 - 0:07 aird

$ kill -1 pid

By sending the SIGHUP signal, you cause the aird process to break out of its
processing loop and reread the configuration file, thus adding the changes to its
internal work list.

S–2302–10010 173

UNICOS® Resource Administration

3.4.6.7 Final Verification

Verify that the new monitoring functions are operating as expected. Wait until
all added functions have executed several times; the time to wait depends on
the configured execution rates for the functions. Use the airdet(8) command
to examine the records that have been logged pertaining to those functions, as
in the following example:

airdet -p dmf -dmt /usr/spool/air/logs/blog

If you receive messages, final verification of the process is complete.

3.5 Using the Report Generators

This section examines the use of the four report generator commands,
airprconf(8), airdet(8), airtsum(8), and airsum(8). The section includes a
discussion of the record types used as input for each generator, an explanation
of the output from each generator, and an analysis of a binary log file that
highlights how you can use these commands and how they interact.

The availability numbers produced by the AIR report generators indicate the
length of time a monitored product is available to a monitoring function.
Whether the reported availability is the true availability depends on the quality
of the monitoring functions and the AIR configuration. For example, if you
configure your functional tests to run once a day, the numbers reported and the
actual availability may be quite different for a product. Through careful crafting
of the monitoring functions, and thorough configuring of the systems, accurate
and detailed availability statistics can be obtained.

It is recommended that you read the man pages for the four report generators
before reading this section, and that you keep the text of the man pages
available for reference.

3.5.1 Record Types

The four report generator commands provide extensive and tunable selection
criteria for the presentation of the availability statistics from the data gathered
by the automated incident reporting system (AIR). This data consists of the
binary records logged by the aird(8) process into its binary log file.

The following record types make up the contents of the aird binary log file:

174 S–2302–10010

Automated Incident Reporting (AIR) [3]

Record type Description

Configuration header When initiated, the aird process reads the
configuration file and translates the contents of
that file into its own internal processing worklist.
After completing the file translation, the aird
process logs a configuration header record that
delineates the contents of the configuration file
just processed. If the aird process receives a
SIGHUP signal, it breaks out of its internal
processing loop and rereads the configuration file.
After processing the configuration file, the aird
process then logs another configuration header
record into its binary log file.

Event Upon the return of each configured monitoring
functions, the aird process logs an event
structure denoting the product and function
names, the start and end times of the function,
and the return type structure as specified in the
configuration file.

Heartbeat At a configured rate, the aird process logs a
heartbeat record from which subsequent AIR
system availability can be determined.

Time-out If a monitoring function exceeds the specified
TIMEOUT value, the aird process kills the test
and logs a message indicating the abnormal
termination.

The following list contains the AIR commands and descriptions of the reports
they provide:

Command Description

airprconf Reads the configuration header records logged by
the aird process and prints the contents of the
configuration files that the records represent

airdet A detailed reporting mechanism that reads and
prints event, heartbeat, and time-out records

airtsum Collates event records and prints a summary of
statistics for the configured monitoring functions

S–2302–10010 175

UNICOS® Resource Administration

airsum Prints statistics on the availability of each
monitored product by using event and heartbeat
records

3.5.2 Output

This section discusses the output information printed by each generator
command.

Note: Because the airprconf and airdet commands merely log available
statistics and do no collation or summarization, no interpretation of the
output they produce is needed. However, the reports produced by the
airtsum and airsum commands do require interpretation and this section
contains the explicit derivation for the numbers found in the reports.

3.5.2.1 Using the airprconf Command

The default report generated by the airprconf(8) command contains the
following information:

• Time the configuration header record was written to the binary log file by
the aird process

• Number of types, messages, products, and functions defined

• Mapping of values and tags to the types

• Messages and functions defined for each product

For an example of the default report, see airprconf(8). Refer to Section 3.3.2,
page 141, for a discussion of the configuration file and its contents, and for
further information regarding the return types and their mappings.

If the -P option is specified, airprconf prints the configuration as it appears
in the configuration file as it was in that period. All information found in the
original configuration file is printed. Refer to Section 3.3.2, page 141, when
interpreting this output.

3.5.2.2 Using the airdet Command

The default report generated by the airdet command consists of all event,
heartbeat, and time-out records found in the aird binary log file. For each
record, the product and function names and the message type are shown. For
an example of a default report, see airdet(8).

176 S–2302–10010

Automated Incident Reporting (AIR) [3]

The options for airdet allow you to change the selection of records and the
information displayed for each selected record.

The selection criteria contain the following capabilities:

• The -b and -e options let you specify the range of time within which the
records must fall in order to be selected. This option is helpful if you want
to analyze only certain time periods.

• The -p and -f options let you limit the printed records to those from the
given product or function, respectively.

• The -n option lets you specify a time so that the only records printed are
those whose elapsed time exceeds the specified time. This option provides a
back-end implementation of noticing for the AIR data. Noticing is the
capability to indicate, or provide notice, when a particular record’s elapsed
time has exceeded a specified time. This capability can be useful if you want
to highlight periods of time when a system may have been experiencing
performance problems.

• The -T and -O options let you isolate the specified return type tags. These
options are helpful if you are searching for specific as well as general
product status. Refer to Section 3.3.2, page 141, for an explanation of the
return type tags and what they indicate about their associated products.

The information criteria contain the following capabilities:

• The -l option outputs the elapsed time of the given record. If -l is
specified with the -n option, airdet verifies the specified status.

• The -t option outputs the time stamps (beginning and end) for the selected
records.

• The -m option outputs the text associated with the return type found in the
record. This further denotes the status of the selected record.

• The -h option provides headers for the record delineation.

You can use the options previously described in a myriad of ways to assist you
in analyzing the data collected by the AIR system. The airdet(8) man page
describes basic concepts and provides examples to help you easily analyze a
binary log file.

The following usage tips may be useful:

• When attempting to observe a particular range of time, use the -b and -e
options.

S–2302–10010 177

UNICOS® Resource Administration

• When attempting to observe particular products or functions, use the -p or
-f options, respectively.

• When attempting to isolate product status, use the -T and -O options,
keying off the desired status type.

• When attempting to identify abnormal elapsed times, use the -n option.
You can use either the airtsum or airsum command with the -E option if
you need to isolate a certain period of time. This option prints summary
reports for each configuration header encountered. The default action is to
display only the summary information over the range of files specified on
the command line and not denote the smaller samples contained within.

Note: If the -E option is specified, both commands generate much more
information, depending on the number of SIGHUP signals, machine boots,
and AIR system startups contained within the specified binary log file.

3.5.2.3 Using the airtsum Command

The airtsum command prints summary statistics for the monitoring functions.
This section discusses each column of information available within this report
and the options associated with those columns. Note that the first four columns
contain the default information printed in these reports.

Column Description

Product Name

Name of the monitored product. Each of the configured
products is displayed.

Function Name

Name of the monitoring tests. The monitoring functions
specified for each of the monitored products are displayed.

Total Executed

Number of monitoring tests that returned. This number is
really a count of the records logged by the aird process on
return of each specific monitoring function. This number
reflects the number of times that a specific monitoring function
was executed during the given sample time of AIR data.

178 S–2302–10010

Automated Incident Reporting (AIR) [3]

Total Time Tested

Time over which a specific function was monitoring its product.
This time begins at the start time of the first record logged for
the given function, and ends at the end time of the last record
logged for the given function.

From Time/Until Time

(Displayed using the -S option) Beginning and end times that a
specific function was monitoring its product. These times are
used in the calculation of the total time tested.

Percent Time

(Displayed using the -p option) Percentage of time that the
product was monitored by the specific function. This
percentage is calculated by dividing the total time the specific
function tested the product by the total time that UNICOS was
running. The total time that UNICOS was running is calculated
by subtracting the end time of the last record read from the
boot time of the system. The equations for these calculations
are as follows:

%_tested = total_time_tested / total_system_timetotal_system_time = system_boot_time - last_end_time

Return Type/Number Returned

(Displayed using the -r option) Breakdown of each return type
for each monitoring function. Each return type and the number
of times that each type was returned are displayed for each
configured monitoring function. The return numbers indicate
the number of records logged by the aird process that
contained the specific return type.

In the following columns, intervals are determined by subtracting the end time
of the previous record of the same function type from the start time of the
current record:

Column Description

Long Interval

(Displayed using the -l option) Longest period of time
between executions of the specific monitoring function

S–2302–10010 179

UNICOS® Resource Administration

Short Interval

(Displayed using the -s option) Shortest period of time
between executions of the specific monitoring function

Average Interval

(Displayed using the -a option) Average period of time
between executions of the specific monitoring function

Configured Interval

(Displayed using the -c option) Period of time that should
transpire between the execution of the specific monitoring
function, as specified in the configuration file

The airtsum and airsum commands also accept -b and -e options, which
specify sample times. They are used in the same manner as described
previously in the airdet discussion.

3.5.2.4 Using the airsum Command

The airsum command reports summary statistics on the availability of each of
the monitored products. The formats of report information are described in the
following sections.

3.5.2.4.1 Default Summary Information Section

The Default Summary Information section contains default output from
the airsum command. Specifically, this section contains the following basic
availability information for each of the monitored products:

Column Description

Product Name

Name of the monitored product. Each of the configured
products are displayed.

Total Time Available

Entire time that the monitored product was available to its
monitoring functions.

180 S–2302–10010

Automated Incident Reporting (AIR) [3]

Total Time Unavailable

Entire time that the monitored product was unavailable to its
monitoring functions.

Relative Percentage Available

Percentage of time that the monitored product was available
with respect to the total time that the aird process was
available.

Real Percentage Available

Percentage of time that the monitored product was available
with respect to the total time that the system was available.

3.5.2.4.2 Product Availability Breakdown Section

When the records in the aird binary log file are processed, the final step is to
determine the availability state of each product. A product’s state indicates
whether it is available or unavailable, and also the time during which this
status is in effect. The state is determined not only by a change in availability,
but also by configuration restarts either through SIGHUP signals or system
boots. The availability breakdown for a product is the complete record of any
availability changes; this section of the report contains availability breakdowns
for each product and can be printed using the -B option. The report contains
the following columns of information:

Column Description

Product Name

Name of the monitored product. Each of the configured
products is displayed.

Product Status

Status of each of the product’s states. The status can be either
available or unavailable.

S–2302–10010 181

UNICOS® Resource Administration

From Time/Until Time

Range of time that the specific product was in the current state.

3.5.2.4.3 Summary Information for Periods Section

You can print each column of information in the Summary Information for
Periods section by using the appropriate option, or you can print all columns
by using the -A option. The airsum command collects the statistics from the
product availability state breakdown. The report contains the following
columns of information:

Column Description

Product Name

Name of the monitored product. Each configured product is
displayed.

Total Time Available

(Displayed by using the -t option) Entire time that the
monitored product was available to its monitoring functions.

Total Time Unavailable

(Displayed by using the -T option) Entire time that the
monitored product was unavailable to its monitoring functions.

Longest Period Available

(Displayed by using the -l option) Longest period of time that
the specific product was in the available state.

Longest Period Unavailable

(Displayed by using the -L option) Longest period of time that
the specific product was in the unavailable state.

Shortest Period Available

(Displayed by using the -s option) Shortest period of time that
the specific product was in the available state.

Shortest Period Unavailable

(Displayed by using the -S option) Shortest period of time that
the specific product was in the unavailable state.

182 S–2302–10010

Automated Incident Reporting (AIR) [3]

Average Period Available

(Displayed by using the -m option) Average period of time that
the specific product was in the available state.

Average Period Unavailable

(Displayed by using the -M option) Average period of time that
the specific product was in the unavailable state.

The -a and -u options let you specify the return type tags used in determining
the availability of the monitored products. By default, the airsum command
uses the PROD_AVAILABLE and PROD_UNAVAILABLE return type tags for the
availability determination. For examples of all options, see airsum(8).

3.5.2.5 Log File Analysis

This section analyzes an aird binary log file to provide you with the basic
concepts involved in determining product availability from the data collected
by the AIR system.

The following steps lead you through the analysis of an aird binary log file.

The most direct way to determine the availability of each monitored product on
your system is to create the default report generated from the airsum
command, as in the following example command line:

airsum -h /usr/spool/air/logs/blog

The -h option provides headers for the printed information and the default
report contains the availability numbers for each monitored product on the
system, as well as for the aird process itself. The following output is produced
by the previous command line:

*** Total Availability Summary ***

Summary Information

Product Total Time Total Time Rel. Perc. Real Perc.

Name Available Unavailable Available Available

---------------- -------------- -------------- ---------- ----------

aird 04:22:43 00:00:00 100 99

tcp e 00:00:00 04:20:33 0 0

nqs 00:00:00 04:20:33 0 0

tapes 04:20:33 00:00:00 99 99

S–2302–10010 183

UNICOS® Resource Administration

msgdaemon 04:15:33 00:00:00 97 97

urm 04:15:33 00:00:00 97 97

disk-integ 04:08:03 00:00:00 94 94

--

By interpreting this information, you can tell that the example binary log file
spans approximately 4 hours (most log files will be much longer than this).

This summary report indicates that the aird process was available the entire
time the system was up; thus the relative and real percentages are identical for
all products. If, for any reason, the aird process had not been running during
the entire system time contained in the sample, the relative and real percentages
would differ.

The availability times vary greatly among the products shown as never
unavailable. Products that are always available do not necessarily have the
same availability time values for a given sample for the following reasons:

1. Each monitoring function is executed at its individual, and commonly
different, rate, as specified within the configuration file.

2. The availability of the product is keyed off the time marks found in the
records logged by the aird process when each respective function returns
from execution.

Thus, a product showing a shorter availability time indicates that the product’s
monitoring functions are configured to execute at a slower rate than a product
showing a longer availability time. The disparity depends on the sample size
and the configured execution rate for a function; the disparity increases as
sample sets decrease in size and execution rates increase.

The following airtsum command line illustrates these concepts:

% airtsum -h /usr/spool/air/logs/blog

*** Total Test Summary ***

Function Summary Information

Product Function Total Total Time

Name Name Executed Tested

---------------- ---------------- -------- --------------

tcp gatedexist 14 01:05:00

namedexist 14 01:05:00

ntpdexist 14 01:05:00

existence 14 01:05:00

184 S–2302–10010

Automated Incident Reporting (AIR) [3]

smailexist 14 01:05:00

snmpdexist 14 01:05:00

lpdexist 14 01:05:00

function 7 01:00:00

nqs existence 14 01:05:00

netexist 14 01:05:00

response 7 01:00:00

function 5 01:00:16

tapes existence 14 01:05:00

avrexist 14 01:05:00

response 7 01:00:00

msgdaemon response 7 01:00:00

existence 14 01:05:00

urm response 7 01:00:00

existence 14 01:05:00

function 5 01:02:00

disk-integ existence 14 01:05:00

function 5 01:02:00

--

The output from this command shows how varied testing can be for each
product. The frequency of executions indicates how often the function has
monitored the product. The kernel response test has been configured to execute
at a very high frequency, as indicated by the high number of total executions.
Also, because it has the highest frequency of execution, it also has the longest
testing time accumulated. Remember that these times converge as the sample
length is extended.

The testing times shown in the airtsum report and the availability times
shown in the airsum output differ greatly (approximately 1 hour versus
approximately 4 hours). The airsum report generator cause this variance by
assigning a product’s first state to the status returned by the first record
pertaining to the product. This first state extends from the system boot time to
the end time of the first record. In normal operations, the time between booting
the system and logging the first record is negligible. In this example,
approximately 1 hour previous to the time this snapshot of the binary log file
was taken, the mv_files script was executed. Therefore, the binary log file
contains information from only the last hour or so. The availabilities calculated
by the airsum command, however, reflect the fact that the system was booted
4 hours ago. In cases such as this, where the time between the system boot and
first record of the sample is no longer insignificant, you should gather all
information by specifying the last binary log file, in addition to the current
binary log file, on the report generator command lines.

S–2302–10010 185

UNICOS® Resource Administration

The numbers in the airtsum report indicate the execution rate for each
function and you verify the information by using the airprconf command,
which prints the current configuration file (see Section 3.3.4, page 150 for a
sample configuration file).

By observing the airtsum output and this file, you can see the results of the
different execution rates specified in the file. For example, the kernel response
function is set to a 1-minute execution rate while most of the other functions are
5 and 10 minutes. Refer to Section 3.3.2, page 141, for more information on
using this file.

If you return to the summary report generated by the airsum command, you
can see that, although NQS and TCP/IP are available, AIR marks them as
unavailable. To understand this discrepancy, you could run airsum to create
the product availability breakdown section, as follows:

% airsum -hB /usr/spool/air/logs/blog

*** Total Availability Summary ***

Product Availability Breakdown

Product Product From Until

Name Status Time Time

---------- ---------------- -------------------- ---------------------

aird PROD_AVAILABLE May 1 08:37:44 1991 May 1 13:00:27 1991

tcp PROD_UNAVAILABLE May 1 08:37:44 1991 May 1 12:58:17 1991

nqs PROD_UNAVAILABLE May 1 08:37:44 1991 May 1 12:58:17 1991

tapes PROD_AVAILABLE May 1 08:37:44 1991 May 1 12:58:17 1991

msgdaemon PROD_AVAILABLE May 1 08:37:44 1991 May 1 12:53:17 1991

urm PROD_AVAILABLE May 1 08:37:44 1991 May 1 12:53:17 1991

disk-integ PROD_AVAILABLE May 1 08:37:44 1991 May 1 12:45:47 1991

In this example, the breakdown does not provide any additional information
because the sample is too short for much change in states. However, for larger
samples, this report allows you to view the availability breakdown for any
products you may be examining. For example, if the airsum summary report
indicates that the aird process is unavailable for some period of time, the
product availability breakdown report would show the time that the product
was available and unavailable.

Because this report has not revealed any additional clues, the next report to
examine is that created by the airtsum command. In particular, it shows the

186 S–2302–10010

Automated Incident Reporting (AIR) [3]

functional breakdown in terms of return types or the status each function
marked the product, as follows:

% airtsum -hr /usr/spool/air/logs/blog

*** Total Test Summary ***

Function Summary Information

Product Function Total Return Number Total Time

Name Name Executed Type Returned Tested

---------- ---------- -------- ---------------- -------- --------------
tcp gatedexist 14 PROD_UNAVAILABLE 14 01:05:00

namedexist 14 PROD_AVAILABLE 14 01:05:00

ntpdexist 14 PROD_AVAILABLE 14 01:05:00

existence 14 PROD_AVAILABLE 14 01:05:00

smailexist 14 PROD_AVAILABLE 14 01:05:00

snmpdexist 14 PROD_AVAILABLE 14 01:05:00
lpdexist 14 PROD_AVAILABLE 14 01:05:00

function 7 PROD_UNAVAILABLE 7 01:00:00

nqs existence 14 PROD_AVAILABLE 14 01:05:00

netexist 14 PROD_AVAILABLE 14 01:05:00

response 7 PROD_AVAILABLE 7 01:00:00
function 5 PROD_UNAVAILABLE 5 01:00:16

tapes existence 14 PROD_AVAILABLE 14 01:05:00

avrexist 14 PROD_AVAILABLE 14 01:05:00

response 7 PROD_AVAILABLE 7 01:00:00

msgdaemon response 7 PROD_AVAILABLE 7 01:00:00
existence 14 PROD_AVAILABLE 14 01:05:00

urm response 7 PROD_AVAILABLE 7 01:00:00

existence 14 PROD_AVAILABLE 14 01:05:00

function 5 PROD_AVAILABLE 5 01:02:00

disk-integ existence 14 PROD_AVAILABLE 14 01:05:00

function 5 PROD_AVAILABLE 5 01:02:00
--

This output shows that only the gatedexist function (not all of TCP/IP) was
returning a status of unavailable. For NQS, the function test was failing.

If an existence test continually returns an unavailable status, ensure that the
particular process the function is verifying is actually configured to exist on the
system. In the example, the running system does not have the routing daemon

S–2302–10010 187

UNICOS® Resource Administration

configured. Thus, the gatedexist function should be disabled in the
configuration file.

If you do not properly configure monitoring functions for your system, the tests
might report incorrect information about the monitored products. Ensure that
all configured functions are appropriate for your system so that you may
quickly diagnose and correct errors.

Although the cause of the existence functions failures in the example has been
identified, the cause of the NQS functional test failure is still unknown. Use the
airdet command to produce more details on system activities. Use the
following command line to print all records for the NQS function test:

% airdet -hm -p nqs -f function /usr/spool/air/logs/blog

Product Function Type of Message Message

Name Name Text

------- -------- ---------------- --
nqs function PROD_UNAVAILABLE Returned job did not contain expected output

nqs function PROD_UNAVAILABLE Returned job did not contain expected output

nqs function PROD_UNAVAILABLE Returned job did not contain expected output

nqs function PROD_UNAVAILABLE Returned job did not contain expected output

nqs function PROD_UNAVAILABLE Returned job did not contain expected output

Obviously, the batch job submitted to NQS was returned and does not contain
the expected output. At this point, you must log into the system and try to
determine why the output was not appearing correctly.

Note: If you do not properly configure monitoring functions for your system,
the tests might report incorrect information about the monitored products.
Ensure that all configured functions are appropriate for your system so that
you may quickly diagnose and correct errors.

3.5.2.6 Summary

In the example in the previous section, a short binary log file is analyzed. The
airsum command is used to first look at the global availability statistics for
each of the monitored products. This section discussed the concepts of real
versus relative percentages as they were displayed in the report, and examined
the derivation of the net system statistics. We also touched upon the reasons
that the availability numbers did not always match other products of similar
states, and used the airtsum and airprconf commands to convey the results
of the variable execution rates. As an aside, we talked about the assumption
made by the airsum command in calculating the total test time starting from

188 S–2302–10010

Automated Incident Reporting (AIR) [3]

the system boot time. We then went on to troubleshoot why various products
were marked unavailable, and used the breakdown report generated by
airsum, as well as the return type breakdown report generated by airtsum, in
our examination of the failing products. We pointed out the importance of
properly configuring the AIR system, and the results of an incorrect
configuration. And finally we went on to use the airdet command to isolate
the truly failing function and to determine the reason for that failure.

S–2302–10010 189

Fair-share Scheduler [4]

The fair-share scheduler (also referred to as fair-share) controls CPU resources
and allows the Cray system to be shared among groups in an organized
fashion. To accomplish this, the fair-share scheduler assigns the system’s CPU
resource to the most deserving processes.

Other system resources, such as usage of memory, tape, SSD, and system calls,
are monitored by appropriate system components. However, the fair-share
scheduler can be configured to add a penalty for usage of these resources as
well as the CPU resource.

This section includes information on the following topics:

• Design objectives, Section 4.1, page 191

• Fair-share feature summary, Section 4.2, page 192

• Components of fair-share, Section 4.3, page 194

• Using fair-share (setup and administration), Section 4.4, page 202

• Customizing fair-share (user exits), Section 4.5, page 224

• Tuning fair-share, Section 4.6, page 227

• Using CPU quotas, Section 4.7, page 237

4.1 Design Objectives

The fair-share scheduler is designed to allow users with similar share allocations
(the number of shares allocated in the user database, or UDB) to utilize similar
amounts of the CPU resource, regardless of the number of active processes they
have executing. By contrast, traditional UNIX process schedulers allow users
with more processes to have a larger percentage of the system than their
priority might typically allow. The fair-share scheduler knows the aggregate
consumption rate of each user, and it does not allow users with many active
processes to utilize CPU resources at a higher rate than those users with only a
few active processes.

Another goal of resource scheduling is to provide adequate and predictable
response times. However, it is possible to have levels of system loading that
create a long response time, regardless of the scheduling mechanism used. It is

S–2302–10010 191

UNICOS® Resource Administration

your responsibility to control the amount of work in process, using other
available methods.

Before the UNICOS 8.0 release, the Network Queuing System (NQS) queue
structures were the primary method of controlling the system workload.
Beginning with 8.0, the Unified Resource Manager (URM) can be used to control
the workload. Using URM ensures that the work the system is expected to do is
reasonable, and predictable responsiveness is achievable. For more information
on URM, see "Unified Resource Manager (URM)," Chapter 8, page 355.

Under the UNICOS operating system, users are allocated a portion of the CPU
resource specified by their share. To improve the fair distribution of resources
among users who are allocated equal shares, the concept of usage history has
been introduced. Usage history allows the scheduler to allocate proportionally
more resource to a user who has done less work in the recent past than one who
has done more. This rewards users who distribute their work over time and can
be valuable in environments where deadlines cause users to do work within a
short span of time (which increases the possibility of overloading the system).

The length of time during which past work affects the priority calculation is
determined by a decay factor (expressed as the half-life of usage history). This
controls the rate at which past usage is reduced as a factor in scheduling the
user’s processes. It can be set anywhere in a range from seconds to many days.

4.2 Fair-share Feature Summary

The fair-share scheduler and the portion of resource control represented by it
can be summarized as follows:

• Comprehensive user information is contained in the UDB. A number of
utilities and library routines are provided to maintain and view this
information and migrate from earlier mechanisms for user validation and
control.

• Two system calls, limits(2) and policy(2), provide an interface between
the kernel and user levels of the fair-share scheduler. A daemon,
shrdaemon(8), updates usage information in the UDB and recovers user
information from unplanned system halts. If user-level fair-share mode is
enabled, the daemon also updates lnode information in the kernel. The
login(1) command, the cron(8) command, and NQS access the new user
information and pass it on to the kernel by using the setshares() routine
to create lnodes (limits nodes) based on the UDB definitions.

192 S–2302–10010

Fair-share Scheduler [4]

• The system tracks usage of users or accounts with a user limits structure
called an lnode in kernel memory for each active user name on the system.
Users can access their system usage with the limits(2) system call.

• Both the user and administrator have displays of scheduling activity
available through the shrview(1) command (as well as the command
shrmon(8)). A user’s profile can be viewed with the command udbsee(1),
and the administrator may use features of this command to help generate
reports or create source input, which, with further manipulation, can be
used by udbgen(8) for UDB maintenance.

• At system startup or during operation, the administrator uses the
shradmin(8) command to set or alter the behavior of the fair-share
scheduler to tune the system or prepare for differences in operational
emphasis. (The shrdist(8) and shrsync(8) commands can be used to
adjust shares.)

• A fair-share hierarchy can be defined to proportion resources among and
within organizations so that a predictable amount of system resources can
be allocated to each organization. This method of allocation is dynamic and
does not allow a portion of the resource to go unused if some of the
organizations are not presently active or are unable to utilize their share.
Users and administrators can display the fair-share hierarchy with the
shrtree(8) utility.

• An optional Share by Account mode can be used to assign shares to account
IDs rather than to users as in the default Share by User mode. With this
feature, a user’s share allocation and resulting scheduling priority are
determined by the user’s account ID, which is set initially to the default
account ID for the user (in the UDB). Scheduling priorities are determined
by the current account ID as users change from one account to another
using the newacct(1) command.

• Usage history to the degree desired is available the administrator. It allows
users or organizations who have equal shares but have utilized unequal
amounts of resource to come into balance by encouraging the load to be
spread over time rather than in a last-minute flurry of activity before a
deadline.

• An optional CPU scheduling mode, user-level fair-share, provides a user exit
and duplicates kernel functionality at the user level. In this mode, the
fair-share scheduler’s calculations are performed by the fair-share daemon,
shrdaemon(8), instead of the kernel. shrdaemon replaces the kernel
functions that apply the scheduling policy algorithms. This optional mode is
enabled with the USRLEVLFSS flag in shradmin(8).

S–2302–10010 193

UNICOS® Resource Administration

4.3 Components of Fair-share

Several components, both at the user level and in the kernel, work together to
accomplish the objectives of the fair-share scheduler. These are described in the
following sections and include the UDB, support functions, user and
administrator displays, administrator controls, hierarchical share, share
normalizing, and process scheduling.

4.3.1 User Database (UDB)

In resource control, all user profile information must be stored in a
comprehensive way. The UDB contains all the user information (factors) used
for the scheduler. The UDB factors used for the fair-share scheduler are as
follows. (For more information on UDB fields, see the udbgen(8) man page.)

Factor Description

Acids The UDB stores account IDs (acids) as a list of up
to 64 (set by MAXVIDS) numeric account IDs or
account names separated by commas. If acids are
used, they must be added to the /etc/acid file
before udbgen is executed. The UDB acids field
is maintained by the administrator; it has the
following format:

acids =|+|- :n1, n2, ..., nn:

Charges The UDB stores the long-term accumulated costs
from the fair-share scheduler. The UDB
shcharge field is maintained by the fair-share
scheduler; it has the following format:

shcharge :vv.vv:

Exit-time Records the time that the user last completely
logged off the system (that is, the last time there
were zero processes owned by this user running
in the system). The UDB shextime field is
maintained by the fair-share scheduler; it has the
following format: shextime :n:

Resource-group In a fair-share hierarchy, a user can be a member
of an entity known as a resource group. Resource
groups can be members of other resource groups.
Four levels are enabled by default; the maximum

194 S–2302–10010

Fair-share Scheduler [4]

number of levels is limited only by the
configuration, but system overhead increases for
each additional level. Resource groups can be
further divided by account IDs, or shareholders, by
using specific values in the UDB share-flags field
(see the "Shareholders" entry in this list).

Resource groups exist in the UDB with the
character "*" as the password, ensuring that no
user logs in as a resource group. The UDB
resgrp field is maintained by the administrator;
it has the following format: resgrp:n:

Shareholder Subdivision of a resource group, used when Share
by Account mode has been selected; also called an
account ID. In Share by Account mode, there
must be an entry in the UDB for each account ID
that is in use. These entries must correspond with
account ID (acid) numbers; that is, they must
exist in the /etc/acid file before udbgen is
executed (see the "Acids" entry in this list).

Shares Each user of the system is allocated a number of
shares. This number has meaning only as a
proportional value; that is, a share represents the
proportion of system resources relative to all
other users or accounts within the same group.
The actual share values in the UDB are not
relevant in any other way. The UDB shares field
is maintained by the administrator; it has the
following format: shares:n:

Share-flags Certain user entries in the UDB can represent an
entity other than a direct user of the system (such
as a resource group or a shareholder). The UDB
shflags field is used to denote these special
UDB entries. This field is maintained by the
administrator; it has the following
format: shflags =|+|-:octal: (The fair-share
scheduler now enforces correct usage of the
fair-share fields in the UDB.)

Usage One principal factor that the fair-share scheduler
uses for establishing priority is a user’s previous
usage of the system. When a user is completely

S–2302–10010 195

UNICOS® Resource Administration

logged off the system, that user’s decayed usage
of the system is recorded in the UDB. The next
time the user logs in to the system, the login
process calculates a new decayed-usage value to
be installed in the system, based upon the
amount of time that has passed since the user last
logged out (see the "Exit-time" entry in this list).
The UDB shusage field is maintained by the
fair-share scheduler; it has the following
format: shusage:vv.vv:

In addition to the fair-share fields in the UDB, several special user accounts
(UDB entries) are necessary for the proper operation of the system, including
the Idle account, the UnKnown or unknown account, and resource group
entries. (See "Setting up system UDB entries," Section 4.4.4, page 209, for a list
of these special UDB entries.)

Idle processes are treated just like any other user of system resources in the
fair-share system and, as such, need an entry in the UDB. User ID 11 is
reserved in UNICOS for representing the idle usage of the system.

There must also be an entry in the UDB called UnKnown or unknown; this entry
is used when no valid UDB entry for a user can be found.

Each resource group or shareholder (account ID) represented within the
fair-share hierarchy must also have an entry in the UDB. Resource groups and
shareholders are assigned shares, which are taken to be relative to the shares
allocated to other resource groups at the same level, and are a subset of the
shares in the next higher level in the fair-share hierarchy.

4.3.2 Support Functions

At the user level, the fair-share daemon shrdaemon(8) performs the following
activities:

• At 1-minute intervals, shrdaemon records in the UDB usage for each user
and resource group that has finished execution.

• At 5-minute intervals, shrdaemon checkpoints the kernel tables holding
fair-share usage information about running users and resource groups.

• When the UNICOS operating system is restarted after an unscheduled
shutdown, shrdaemon recovers user and group CPU consumption
information from the checkpoint file.

196 S–2302–10010

Fair-share Scheduler [4]

At the kernel level, the fair-share scheduler performs the following activities:

• At configurable intervals (4 seconds by default), the fair-share scheduler
accumulates charges and updates usage information in the lnodes.

Note: In user-level fair-share mode, updating usage and lnode
information is done by the fair-share daemon rather than by the kernel.

• Every 1/60th of a second, CPU usage is accumulated and stored in the
lnodes of processes having had the CPU, and the p_sharepri values are
adjusted based on usage.

• At 1-second intervals, the share priority of each process is decayed
according to the rate determined by the nice value of the process.

The most significant factors affecting placement on the kernel run queue (high
or low) are as follows:

• The process’s resource usage during the last cycle, relative to other processes.

• The process’s proportion of machine shares relative to other users or groups
(active lnodes) at that time.

The scheduling calculations can lower, raise, or leave unchanged the position of
the process in the run queue. When this evaluation has been accomplished, the
processes at the top of the run queue are connected to a CPU.

In addition, the positions of all the processes in the queue are evaluated by
decaying their resource consumption at a rate determined by their nice values
(processes with smaller nice values move toward the top of the queue faster).
This has the effect of gradually moving processes to the top of the queue and
ensures that every process will be scheduled to run; note that only processes
which have not received the CPU recently actually move up in the queue. It is
necessary to balance the rate of migration to the top of the queue and the rate
of resource consumption so that relative priorities are remembered for a long
enough time period to prevent large numbers of processes from migrating to
the top of the queue.

4.3.3 User and Administrator Displays

Fair-share displays are generated by the shrview(1) command, the shrmon(8)
command, and the shrtree(8) command. In addition, users can view their
share control values by using the udbsee(1) command, which displays the
content of the UDB (with the exception of sensitive information).

S–2302–10010 197

UNICOS® Resource Administration

Note: The shrmon(8) command will not be available in future releases of the
UNICOS operating system. Its functionality has been replaced by the
shrview(1) command.

4.3.4 Administrator Controls

The shradmin(8) command changes scheduling parameters, decay rates, flags,
and other useful items. One of the intended uses of shradmin is to set
appropriate control parameters at startup so that you can alter the behavior of
the system to reflect current needs without resorting to recompiling modules or
other inefficient mechanisms. It is also possible to change scheduling
characteristics during system operation. This facility could be used to change
scheduling emphasis during portions of the day when, for example, mostly
interactive or batch work is encouraged.

Note: You must run shradmin before activating the fair-share daemon,
shrdaemon(8). For more information, see "Activating the fair-share
scheduler," Section 4.4.6, page 212.

You can use the -n option of shradmin(8) to lend more reliability to the
fair-share scheduler information in the UDB. This option specifies the interval,
in seconds, to be used for copying lnode information to the UDB. When this
feature is enabled, the fair-share daemon writes accumulated usage and charge
information from the lnodes to the UDB at the specified interval. For more
information, see the shradmin(8) man page.

The shrview(8) command monitors the operation of the fair-share scheduler at
a closer level of detail.

To turn off fair-share scheduling, see "Disabling the fair-share scheduler,"
Section 4.4.9, page 217.

4.3.5 Fair-share Hierarchy

A flat, or single-level, fair-share mechanism is inadequate for many
environments because it does not provide a convenient way to allocate shares
among organizations and then to the users within each organization. The
fair-share hierarchy grants each organization a part of the system, determined by
the proportional shares assigned to each. After this is accomplished, the
members of each organization can be allocated shares as though that
organization had exclusive use of the system. This makes the allocation of
shares within an organization easier; however, individual user share values are
not comparable across organization boundaries.

198 S–2302–10010

Fair-share Scheduler [4]

Whenever the active user population changes, the shares assigned through the
fair-share hierarchy are converted to an internal value known as machine share.
This is the proportion of the available resources to which a group or user is
entitled. (You can see these values in the fair-share displays.) Because they are
normalized across organizations with respect to each organization’s share
proportion, machine-share relative values can be directly compared; user shares
cannot. Machine shares are recomputed whenever a user logs in or out or when
an organization becomes active or inactive. For more information, see "Share
normalizing," Section 4.3.6, page 199.

You can activate the optional Share by Account mode by using shradmin(8) to
set the SHAREBYACCT scheduling flag. In this mode, fair-share determines the
relative share based on the account ID rather than the user ID (UID). The initial
association is based on the default account ID, which is the first ID in the list of
valid account IDs for that user in the UDB entry. In Share by Account mode,
the newacct(1) command reassociates the user with the new account ID, which
allows the user to move within the fair-share hierarchy.

If Share by Account mode is enabled, the fair-share hierarchy must have
resource-group lnodes at the head of the hierarchy chain; the hierarchy chain
must terminate with shareholder (account ID) lnodes.

You can use the shrtree(8) command to display and verify the fair-share
hierarchy; see "Using the shrtree(8) command," Section 4.4.11.3, page 222, for
more information.

4.3.6 Share Normalizing

In Figure 4, page 200, three groups have been given portions of the system
resources. Groups G1 and G3 have 25%, while Group G2 has 50%. This
illustration is a snapshot of a particular instant in time when the active group
membership is as shown. Within each group, shares have been allocated based
on some arbitrary range of values. G1 is based on the range 0 through 1000, G2
on the range 0 through 10, and G3 on the range 0 through 100, to show that the
normalizing function works in mixed-range situations.

The columns headed "G Sh" show the shares allocated to the currently active
users from each group. Column "G %" shows the percentage of the group’s
resource to which each user is entitled, based on the allocated shares and the
active group membership. (The percentage will vary as group members arrive
and depart because the goal is to distribute the system proportion fairly
according to each user’s share among the active users at a given instant.)

S–2302–10010 199

UNICOS® Resource Administration

The column headed "M %" shows the actual machine share each user should
have, based on the group in which the user exists. The totals at the bottom of
the figure show that the sum of machine shares from each group adds up to the
share allocated to the group.

G1 = 25% G2 = 50% G3 = 25%

G Sh

700
150
150

G%

70
15
15

M%

17.5
3.75
3.75

G1 Total: 25%

1
2
3
4

10
20
30
40

5
10
15
20

G2 Total: 50%

40
25
15

50
31.25
18.75

12.5
7.8125
4.6875

G3 Total: 25%

G Sh G% M% G Sh G% M%

Group share total = 100%

a11426

Figure 4. Share Normalizing

Normalizing is accomplished as follows:

1. Calculate the number of shares active, SAg, within each group g for each
member m:

SAg

m=maxX

m=1

sharem

(4.1)

2. Calculate machine share, MSm, for each member m of group g:

MSm = Group_proportiong � (sharem � SAg)

This example considers only one hierarchy level. When more than one level is
being supported on a given system, the method shown above is recursively
applied down the hierarchy tree until the MSm of each group and user node has
been calculated. As more levels are added, however, there is a corresponding
increase in the system overhead required to perform all the calculations for each
cycle. See "Tuning the fair-share scheduler," Section 4.6, page 227, for more
information on this overhead.

200 S–2302–10010

Fair-share Scheduler [4]

4.3.7 Process Scheduling

The purpose of process scheduling is to ensure that all system processes are
running and to assign the remaining CPU resource to user processes. As
discussed previously, this means that the CPU is assigned to the process at the
top of the run queue. As resources are utilized, processes move down the
queue, and as processes age, they move up the queue. This change in queue
position is also influenced by the user’s share of the system, the interaction
between shares, resource consumption, and the passage of time. This process
scheduling is the essence of the fair-share scheduling process.

4.3.8 Fair-share Limits Node (Lnode)

When a user enters the system (through NQS, cron, rsh, or interactive access)
or exits the system, the system tracks that user’s usage as follows:

1. The system creates a user limits structure called an lnode (limits node) in
kernel memory. In Share by User mode, there is an lnode for each active
user on the system; in Share by Account mode, there is an lnode for each
active account ID (shareholder). System usage from the relevant UDB entry
is passed to the kernel by the setshares () routine, which calls the
limits(2) system call.

2. The time elapsed since the user last exited the system is determined, and
the user’s or shareholder’s usage is aged by this last exit time. The
fair-share scheduler uses this calculated decayed usage in the adjustment of
process priorities. The decay rates can be configured by the system
administrator; see shradmin(8) for more detail.

3. If necessary, the system creates lnode entries representing the ancestors
(controlling levels in the fair-share hierarchy) of the user’s lnode.

4. Once the lnode chain has been created and the user’s login shell has been
spawned (for both interactive and batch usage), all subsequent processes of
the session reference (are attached to) the terminal lnode. However, in Share
by Account mode the newacct(1) command can be used to attach a
process to a different lnode.

5. The fair-share daemon, shrdaemon(8), updates the user database every 60
seconds (by default). Information from any lnode structures that have no
attached process table entries is recorded; these lnodes are subsequently
released. When the lnode structure is removed (if a user or group has no
running processes), shrdaemon records the exit time in the shextime field
of the user’s UDB entry, and records the usage in the shusage field.

S–2302–10010 201

UNICOS® Resource Administration

6. To prevent loss of current usage information stored in the lnode (for
example, because of a system interrupt), shrdaemon writes all the active
lnode structures to the checkpoint file /etc/lnodes.chkpt every 5
minutes.

7. In user-level fair-share mode, the scheduling policy algorithms are applied
to lnode data by the fair-share daemon rather than by the kernel.

4.3.9 Fair-share and NQS

Fair-share data can also be used by the Network Queuing System (NQS) to
select batch jobs for execution. This makes it possible for the fair-share scheduler
to influence both queued and running jobs. The amount of influence fair-share
has on NQS job scheduling is established by NQS scheduling parameters.

Sites running fair-share NQS should read the following section on fair-share
setup and administration ("Using the fair-share scheduler," Section 4.4, page
202). For information on start-up and administration of fair-share NQS, see the
qmgr(8) man page and the UNICOS NQS and NQE Administrator’s Guide,
publication SG-2305.

4.3.10 Fair-share and URM

On a system using the fair-share scheduler, the Unified Resource Manager
(URM) uses share values in its priority calculations for NQS job initiation
recommendations. During the batch job ranking phase, if the fair-share
weighting factors for machine share, usage, and share entitlement are nonzero
values, URM computes a fair-share priority value based on effective share and
past usage. This priority is combined with other scheduler weighting factors to
determine the job selection order.

For more information on URM setup and administration, see "Unified Resource
Manager (URM)," Chapter 8, page 355.

4.4 Using the Fair-share Scheduler

The following sections describe how to set up, activate, and monitor the
fair-share scheduler, including the following tasks:

• Setting up a fair-share hierarchy

• Creating resource groups

202 S–2302–10010

Fair-share Scheduler [4]

• Allocating shares to users

• Setting up Share by Account mode

• Setting up system UDB entries

• Activating the fair-share scheduler

• Modifying fair-share scheduler settings

• Enabling resource group administrators

• Disabling the fair-share scheduler

• Monitoring the fair-share scheduler

The fair-share scheduler has two modes of operation: Share by User and Share
by Account. In the default Share by User mode, the fair-share scheduler
calculates priorities and costs for each active user. In the optional Share by
Account mode, fair-share calculates priorities and costs for each active account
ID. If a user works on different projects, Share by Account mode allows that
user to switch between projects, which are set up as accounts, by using the
newacct(1) command. This allows the user to work under a different set of
fair-share priorities for each project.

The steps to set up and activate Share by Account mode are similar to those for
Share by User mode, but there are some significant differences. The hierarchy of
resource groups can be set up the same way. In addition, you must create UDB
entries for each valid shareholder, or account ID, and assign share allocations to
them. The following sections describe the procedures for setting up Share by
User mode. See "Setting up Share by Account mode," Section 4.4.5, page 211,
for specific information on setting up this optional share allocation method.

4.4.1 Setting up a Fair-share Hierarchy

This section describes how to establish a fair-share hierarchy. An example
hierarchy is used throughout the section for demonstration purposes; note that
actual division of resources on Cray systems will differ for each installation.

Although using a multilevel fair-share hierarchy is optional, the process of
share allocation is simplified by organizing users in resource groups. In Share
by User mode, the fair-share hierarchy has users at the end of the resource
group chain; in Share by Account mode, the hierarchy has projects or groups,
also known as account IDs, at the end of the chain.

S–2302–10010 203

UNICOS® Resource Administration

Resource group chains are created for important divisions of users at the site
(for example, different divisions, projects, or physical locations). As an example,
site ACME divides UNICOS resources into three categories for three different
projects: Projects 1, 2, and 3. Each of these projects must be assigned the
appropriate proportion (share) of the system. In addition, system maintenance
functions must receive enough resources to accomplish their tasks. The
following figure shows the desired division of resources:

ACME system

Project 1 Project 2 Project 3 Maintenance

Project
1A

Project
1B

Project
1A

users

Project
1B

users

Project
2

users

Project
3

users

System
maintenance

accounts

a10166

Figure 5. Example of System Resource Division for Fair-share

Four levels of hierarchy are available by default (the number of levels may be
changed by using shradmin -G). The first level is permanently assigned to
root. Additional levels of resource groups can be defined by creating a
resource group that references its parent resource group in the UDB.

Note: Users or shareholders must not be connected directly to the root lnode.
There must be at least one level of resource groups above the user or
shareholder level. When this rule is not followed, the shrtree(8) command
issues a warning message about referencing ROOT directly.

When designing a fair-share hierarchy, keep it as simple as possible. You can
make later refinements to the hierarchy as needed without having to change
other fair-share parameters. For information on how to make UDB or hierarchy

204 S–2302–10010

Fair-share Scheduler [4]

changes on a running system, see "Modifying fair-share scheduler settings,"
Section 4.4.7, page 215. For information on how to display the fair-share
hierarchy, see "Using the shrtree(8) command," Section 4.4.11.3, page 222.

4.4.2 Creating Resource Groups

The first step in creating a usable fair-share hierarchy is to create UDB entries
for the resource groups. All resource groups must have an entry in the UDB.
(Use the udbgen(8) command to create these entries.) The following guidelines
apply to resource groups:

• Each resource group must have a unique user ID (UID). It is helpful to use a
unique range of UIDs so the resource groups are easy to distinguish. To
prevent accidental logins for the resource group’s UID, do not specify a
password (the default encrypted password is the character "*").

• Each resource group must be assigned shares relative to the shares allocated
to other resource groups at the same level of the hierarchy. A common
technique would be to apportion the shares among resource groups at the
same level such that the total number of shares adds up to 100 or 1000 (for
example, 50-50 or 700-200-100); however, any numbers can be used.

• Resource groups must have their shflags field in the UDB initialized to
040000. (The fair-share scheduler now enforces correct usage of the
fair-share fields in the UDB.)

• For each resource group, the resgrp field indicates the UID of the
controlling resource group (that is, the resource group above it in the
hierarchy chain). Resource groups can belong to other resource groups, as
explained on Section 4.3.1, page 194. Top-level resource groups (chain
leaders) should have this field set to the root UID, which is always 0.

Because resource groups are defined in the UDB with the ordinary user entries
and shareholders (account IDs), it is recommended that you establish a naming
scheme to help distinguish resource group entries from user and shareholder
entries and to avoid use of identical names. One convention that works well is
to capitalize the first character of the names of the resource groups.

Note: A resource group entry for a system group is required for the system
UDB entries such as root, cron, and system daemons. This group is often
called system or admin (group Maint is used at example site ACME).

For the example site, the following project names are used as resource group
chain leaders: Proj1, Proj2, and Proj3. Table 30 contains the project names,
their desired proportion of the system, and their equivalent share value. A

S–2302–10010 205

UNICOS® Resource Administration

separate share of the system has also been reserved for maintenance (Maint). A
total share value of 1000 is distributed among the projects in the desired
proportion.

Table 30. Share Division Among Resource Groups

Project Proportion Share value

Maint 10% 100

Proj1 50% 500

Proj2 25% 250

Proj3 15% 150

Total 100% 1000

The UDB entries for these resource group chain leaders can be created by using
udbgen(8) with the following directives:

create:Maint:uid:999:gid:10:passwd:*:shflags:040000:shares:100:resgrp:0:

create:Proj1:uid:111:gid:20:passwd:*:shflags:040000:shares:500:resgrp:0:

create:Proj2:uid:222:gid:30:passwd:*:shflags:040000:shares:250:resgrp:0:
create:Proj3:uid:333:gid:40:passwd:*:shflags:040000:shares:150:resgrp:0:

A comment field can be used to include an explanation for the UDB entries, but
that was not done in this example. The value used in the gid field is a
site-dependent group ID (GID); at least one GID must be specified, or warning
messages will occur. The passwd field has been set to the character "*" to
ensure that no one is able to log in to a resource group account. Notice the
shflags value of 040000. This value marks these entries as resource groups.
Also note that the shares field contains the share value numbers from Table 30.

Additional levels of resource groups can be defined by creating a resource
group, as in the first example, including the name or user ID of the parent
resource group in the resgrp field. (Four levels are available by default; use
the shradmin -G command to increase this amount as desired.) For example,
site ACME would subdivide resource group Proj1 into two resource groups,
Proj1A and Proj1B, using the following udbgen directives:

create:Proj1A:uid:444:gid:20:passwd:*:shflags:040000:shares:500:resgrp:111:

create:Proj1B:uid:555:gid:20:passwd:*:shflags:040000:shares:500:resgrp:111:

206 S–2302–10010

Fair-share Scheduler [4]

Each new resource group now has 500 shares, or, half the resources of Proj1
(1000 was used as the total share value for this level). The resgrp field is set to
the UID of Proj1 (111) to mark these resource groups as shareholders of Proj1.

4.4.3 Allocating Shares to Users

The next step in setting up fair-share allocations is to decide which users belong
to each resource group and assign them to the appropriate group with an
appropriate share value. Within each resource group, the share values are
relative to each other. A convenient total share value, such as 100 or 1000, will
make the job of assigning proportional shares easier. However, any number can
be used for the total share value; only the relative values are important.

The allocation of shares in the UDB should occur as follows:

1. If Share by User mode will be enabled, set the resource group of each user
(the resgrp field) to the name of that user’s controlling resource group.

2. If Share by Account mode will be enabled, ensure that each user has a list
of valid account IDs in the acids list (the acids field) of the UDB; at least
one entry is required in this list. Fair-share uses the first account ID in the
list as the user’s default, or initial, account. (See "Setting up Share by
Account mode," Section 4.4.5, page 211, for more information.)

3. Allocate each user and shareholder entry in the UDB a number of shares (in
the shares field). The exact number is not critical, but it is convenient to
pick a value that could later be adjusted up or down. (For example, each
user could be allocated 100 shares.)

You can use the udbgen command to analyze share resource assignments in the
UDB and report any problems. For Share by User mode, use the following
command to analyze the default UDB in the /etc directory:

udbgen -a -R

For Share by Account mode, use the following command to analyze share
resource groups based on the acids field instead of the resgrp field:

udbgen -a -A

Table 31 shows the division of shares for the example site.

S–2302–10010 207

UNICOS® Resource Administration

Table 31. Share Division within Resource Groups

Group User Proportion Share value

Maint u1 25% 25

u2 25% 25

u3 25% 25

u4 25% 25

Proj1

Proj1A u5 25% 50

u6 25% 50

Proj1B u7 25% 50

u8 25% 50

Proj2 u9 50% 50

u10 30% 30

u11 10% 10

u12 10% 10

Proj3 u13 25% 25

u14 25% 25

u15 25% 25

u16 25% 25

These entries show, for each resource group, the users in the group ("User"
column), the percentage of resources each user is to have within the group
("Proportion" column), and the individual share value equivalent to the
proportion ("Share value" column). For each group, a total share value of 100
was used.

The following udbgen directives update the UDB to reflect this division of
resources (only Share by User mode will be enabled):

update:u1:resgrp:999:shares:25:
update:u2:resgrp:999:shares:25:

update:u3:resgrp:999:shares:25:

update:u4:resgrp:999:shares:25:

update:u5:resgrp:444:shares:50:

208 S–2302–10010

Fair-share Scheduler [4]

update:u6:resgrp:444:shares:50:

update:u7:resgrp:555:shares:50:
update:u8:resgrp:555:shares:50:

update:u9:resgrp:222:shares:50:

update:u10:resgrp:222:shares:30:

update:u11:resgrp:222:shares:10:

update:u12:resgrp:222:shares:10:

update:u13:resgrp:333:shares:25:
update:u14:resgrp:333:shares:25:

update:u15:resgrp:333:shares:25:

update:u16:resgrp:333:shares:25:

The resgrp field for each entry is set to the UID of the resource group (Maint
is 999, Proj1A is 444, Proj1B is 555, Proj2 is 222, and Proj3 is 333). The
specified resource group and user entries must already exist in the UDB before
these update directives can be executed.

4.4.4 Setting up System UDB Entries

System UDB entries such as Idle, root, and system daemons have special
requirements for the resource group and shares fields. This section describes
the following accounts:

• Idle account

• UnKnown or unknown account

• Other system accounts (root, cron, system daemons, and so on)

4.4.4.1 Idle Account

A special account, called Idle, is required for the fair-share scheduler to work
correctly. (During initial installation of the UNICOS operating system, the UDB
initialization process sets up a correct Idle entry by default.) The following
guidelines exist for the Idle account:

• The UID for the Idle account (the uid field in the UDB) must be 11.

• The Idle account must be assigned no shares (the shares field must be
omitted or set to 0).

• The controlling resource group (the resgrp field) must be 0, which is the
UID of root.

• The acids field must be set to a null value (that is, acids::).

S–2302–10010 209

UNICOS® Resource Administration

• The shflags field must be 0. (The fair-share scheduler now enforces correct
usage of the fair-share fields in the UDB.)

The following example shows a sample Idle account for site ACME:

Idle:uid:11:comment:System Idle:passwd:*:gids:0:acids::resgrp:0:shflags:0:

Note: It is critical to the proper operation of the system that only the Idle
entry be allocated zero shares in the UDB.

4.4.4.2 UnKnown or Unknown Account

The UDB must contain an entry called UnKnown or unknown; this entry is used
when no valid UDB entry for a user can be found. You must add this entry to
the UDB before enabling the fair-share scheduler.

The following example shows a sample unknown account for site ACME:

unknown:uid:12:passwd:*:gids:0:acids::resgrp:999:shflags:0:shares:1:

4.4.4.3 Other System Resource Accounts

Each system account requires a resource group entry in the UDB. This includes
entries for root, cron, the operator, NQS, system daemons, and other system
user IDs. These system UDB entries must be assigned to the system or
administrator resource group (often called system or admin; group Maint is
used at example site ACME). In addition, if Share by Account mode will be
enabled, the acids field of each system entry should be set to the account ID
of the system or administrator shareholder.

For initial installations of the UNICOS operating system the UDB skeleton file
creates a default list of resource group and user accounts in the UDB, and sets
the resgrp field to 0 (root).

The UDB skeleton file is located in the file /usr/src/skl/c1/etc/initudb.
It sets up the following accounts: root, sync, bin, sys, adm, cron, nqs,
daemon, operator, ce, Idle, unknown, osi, and nobody.

Note: Upgrading sites should verify their UDB system account entries
against the UDB skeleton file.

To enable a fair-share hierarchy, you must add the UDB entry for a system or
administrator resource group and set the resgrp field of the system accounts
to the UID of this resource group. The resgrp field is used to link the resource
tree of the hierarchy.

210 S–2302–10010

Fair-share Scheduler [4]

If Share by Account mode will be enabled, the acids field of the root UDB
entry should be set to the UID of the system maintenance or administration
resource group (for example, 999 at site ACME specifies the Maint resource
group).

4.4.5 Setting up Share by Account Mode

By default, the fair-share scheduler runs in Share by User mode, in which a
user’s relative priority is determined by the resgrp field in the UDB. However,
you can activate the optional Share by Account mode by using the shradmin(8)
command to set the SHAREBYACCT scheduling flag. In this mode, fair-share
associates and sets priorities based on the shareholder, or account ID (acids
field in the UDB). The initial association is based on the default account ID.
This is the first ID in the list of valid account IDs for a user in the UDB entry.

Administrators have the option of assigning shares to users (Share by User
mode) or accounts (Share by Account mode). If a user works on different
projects, Share by Account mode allows that user to switch between projects,
which are set up as accounts, by using the newacct(1) command. This allows
the user to work under a different set of fair-share priorities for each project.

Enabling Share by Account mode is similar to enabling Share by User mode.
The hierarchy of resource groups is set up the same way. However, the
following additional administration tasks are necessary to set up Share by
Account mode:

• Create a UDB entry for each valid account. It is helpful to use a unique
range of UIDs so the account IDs are easy to distinguish. The UIDs for
account ID entries (shareholders) must not overlap with resource group or
user entries in the UDB.

• Set the shflags field for each account ID entry to 01000000. (The fair-share
scheduler now enforces correct usage of the fair-share fields in the UDB.)

• Assign share allocations to each valid account ID entry.

• Assign a passwd of "*" to each account ID entry so no user can log in as a
resource group.

• Verify that each account ID entry has been added to the /etc/acid file
before udbgen(8) is executed.

• Set the resgrp field of each account ID entry in the UDB to the appropriate
resource group entry. The resgrp field is used to link the resource tree of
the hierarchy.

S–2302–10010 211

UNICOS® Resource Administration

• Specify the first account ID in the acids field of each user entry as the
name of the user’s default account ID. Each user must have at least one
account ID in this field; enter a comma-separated list of account IDs for
users who can change to different accounts.

• Verify that the Idle UDB entry specifies a null account ID field; that is, the
acids field should be omitted or set to acids::.

• Set the acids field for the root UDB entry to the UID of the system
maintenance or administration resource group (for example, 999 at site
ACME specifies the Maint resource group).

• If there are more than four levels in the fair-share hierarchy, including
account ID entries, use the shradmin -G command to increase the number
of hierarchy levels.

4.4.6 Activating the Fair-share Scheduler

To activate the fair-share scheduler during system startup, the system
configuration script must be modified to execute the shradmin(8) command
with the appropriate options and start up the fair-share daemon,
shrdaemon(8). (To change and reactivate fair-share on a running system, see
"Modifying fair-share scheduler settings," Section 4.4.7, page 215.)

There are two methods to modify the system configuration script: using the
UNICOS Installation and Configuration Menu System, or editing the file
/etc/config/daemons.

If you are using the menu system, access the following menu to make this
change:

Configure System ->

System daemons configuration ->
System daemons table

If you are not using the menu system, access the file /etc/config/daemons
to make this change. An example of /etc/config/daemons is as follows:

/etc/config/daemons excerpt

group tag start kill pathname arguments

SYS1 share YES * /etc/shradmin options
SYS1 share YES * /etc/shrdaemon

212 S–2302–10010

Fair-share Scheduler [4]

These lines control initiation of /etc/shrdaemon (the fair-share daemon) and
the administrator command /etc/shradmin, which activates the fair-share
scheduler using the options described in the following paragraphs.

Note: The /etc/shradmin command must be run before the
/etc/shrdaemon command.

4.4.6.1 Setting Scheduling Options and Flags

The following shradmin options are important for enabling fair-share
functions. (See the shradmin(8) man page for a complete description of all
options; see "Tuning the fair-share scheduler," Section 4.6, page 227, for
information on performance impact of shradmin values.)

Option Description

-F (flags) Sets the fair-share control flags in the kernel sh_consts
structure. The following flags are available:

NOSHARE (001) Turns off the fair-share
scheduler. Leaves accumulated
charges in the UDB unless they are
cleared by the system administrator.

ADJGROUPS (002) Specifies adjustments by
group IDs (group share allocation).

LIMSHARE (004) Specifies limits on maximum
share.

SHAREBYACCT (010) Specifies Share by Account
mode.

NOSCHED (020) Gathers fair-share charges and
usage information, but does not use
these values for CPU scheduling.

USRLEVLFSS (0100) Specifies user-level fair-share
mode; in this mode, the fair-share
daemon (shrdaemon(8)) performs
the share calculations and updates
the lnodes. This will be the default
mode in future releases of the
UNICOS operating system.

-K (half-life) Establishes the length of time that past usage of
resources are remembered. Longer decay rates cause the

S–2302–10010 213

UNICOS® Resource Administration

scheduler to distribute resources fairly over a longer period of
time. This option can have a significant impact on interactive
responsiveness; see "Tuning the fair-share scheduler," Section 4.6,
page 227, for more information.

Note: Never set the -K option to a value lower than 1 hour
(3600 seconds).

-R (delta) Sets the major fair-share adjustment cycle to the specified
value. This means that once every cycle, the resource usage of all
users and groups active on the system is evaluated, and, if the
ADJGROUPS flag is set, the group hierarchy is evaluated to
determine what adjustments are necessary to achieve proper
group sharing.

-t (tick) Sets the cost per tick. The usage field of the user owning
that process is increased by this amount.

-X (maxushare) Limits how much past usage can be accrued; it is
used only when the LIMSHARE flag is set. See "Tuning the
fair-share scheduler," Section 4.6, page 227, for more information.

-Y (mingshare) Specifies the deviation between group share allocation
and the actual rate of resource consumption allowed before the
scheduling algorithm tries to compensate. It has an effect only
when the ADJGROUPS flag is set. See "Tuning the fair-share
scheduler," Section 4.6, page 227, for more information.

-Z (sharemin) Sets a minimum allocation of machine shares for any
active lnode (user or account ID). See "Tuning the fair-share
scheduler," Section 4.6, page 227, for more information.

An example of ACME’s /etc/config/daemons is as follows:

/etc/config/daemons excerpt

group tag start kill pathname arguments

SYS1 share YES * /etc/shradmin -t100 -F06 -K3600s -X3.0 -Y.85 -Z .002

SYS1 share YES * /etc/shrdaemon

The -t option sets the cost per tick to 100. The -F option enables Share by User
mode by setting the fair-share control flags; that is, the ADJGROUPS and
LIMSHARE flags are set, while the NOSHARE flag is cleared. The -K option sets
the usage decay rate to a half-life of 3600 seconds. The -X option sets maxushare
to 3.0, which decreases the possibility that users with very low past usage can
monopolize the CPU. The -Y option sets mingshare to .85 to decrease the
deviation between group share allocation and the actual rate of resource

214 S–2302–10010

Fair-share Scheduler [4]

consumption. The -Z option sets sharemin to .002, which guarantees each user
or shareholder a minimum machine share of 0.2%.

4.4.7 Modifying Fair-share Scheduler Settings

Elements of fair-share configuration that can be changed on a running system
include the following:

• Maximum levels in the fair-share hierarchy

• Distribution of shares within resource groups and account ID shareholders

• Existing UDB entries, such as the acids, resgrp, or shares fields

• Addition or deletion of UDB entries

• All shradmin(8) options (tuning parameters)

Use the shradmin -G command to change the maximum number of levels for
the fair-share hierarchy (there are four levels by default). See the shradmin(8)
man page for more information.

For information on allowing other users to administer share distribution within
a resource group, see "Enabling resource group administrators," Section 4.4.8,
page 216.

Use the udbgen(8) command to analyze share resource assignments in the UDB
and report any problems. For Share by User mode, use the following command
to analyze the default UDB in the /etc directory:

udbgen -a -R

For Share by Account mode, use the following command to analyze share
resource groups based on the acids field instead of the resgrp field:

udbgen -a -A

See the udbgen(8) man page for more information.

To make and enable share allocation changes on a running system, use the
shrdist(8) command to make changes. Users do not have to log out in order
for these changes to take effect. (To make substantial changes, you can also use
the udbsee(1), udbgen(8), and shrdist(8) commands; see the man pages for
more information.)

S–2302–10010 215

UNICOS® Resource Administration

Note: In order to change from Share by User mode to Share by Account
mode (or vice versa), it is recommended that the system be brought to
single-user mode, then restarted with the appropriate shradmin options.
Changing between fair-share modes on a running system can cause
unpredictable results for priority calculations.

If your site will alternate between fair-share modes, ensure that each user
entry in the UDB sets both the resgrp field and the acids field to the
appropriate values. See "Setting up Share by Account mode," Section 4.4.5,
page 211, for more information on setting these fields.

4.4.8 Enabling Resource Group Administrators

System administrators may find it useful to set up separate administrators for
each resource group. This capability allows the owner of a resource group (for
example, the project manager) to modify share allocations within the resource
group without requiring system administrator intervention to do so. For
example, if project A changes priority over time, or project B needs more shares
towards the end of the month, a resource group administrator could make the
necessary changes without system administrator intervention. This is done by
setting up the shrdist.auth file, which enables the listed resource group
administrators to reallocate shares within the group.

To redistribute shares within a resource group, use the shrdist(8) command.
For this command to work properly, you must create an authorization file called
/etc/shrdist.auth. The shrdist.auth file consists of two fields: the login
name of the resource group owner and the name of the resource group or
groups.

The following lines from a shrdist.auth file allow user mlb to administer
shares for two resource groups, Mktg and tng. If a resource group is not
specified (with the -g option), the first match (in this case, Mktg) is used.

mlb Mktg
mlb tng

The shrdist(8) command can be used to adjust shares. The shrdist
command operates in both batch and interactive mode. To reallocate share
values in interactive mode, perform these steps:

1. Use the following command to access the share allocation database:

/etc/shrdist

216 S–2302–10010

Fair-share Scheduler [4]

2. Position the cursor at the rightmost digit of the share allocation field for the
desired account and enter the new values.

3. Enter u to update the share allocation database.

4. Enter q to exit the shrdist command.

You can also perform updates in batch mode by using the shrdist -b
command. However, this method only allows you to update one account for
every execution of the shrdist command. Test mode is also supported
(shrdist -p). This capability is similar to test mode for the udbgen(8) and
udbsee(1) commands.

4.4.9 Disabling the Fair-share Scheduler

To turn off the fair-share scheduler after it has been enabled, perform the
following steps:

1. Execute the following shradmin command:

shradmin -F 021

This sets the NOSHARE flag, which specifies that no fair-share scheduling is
done. It also sets the NOSCHED flag, which prevents the marooning of
running processes by ignoring the shcharge and shusage information in
the CPU scheduling algorithm.

2. Wait for at least 1 minute. This delay allows shrdaemon enough time to
update the fair-share usage and charge information in the UDB.

3. Find the process ID (PID) of the fair-share daemon, shrdaemon, as follows:

ps -efl | grep shrdaemo

(The ps command truncates command names at 8 characters.)

4. Disable updating of fair-share information in the UDB by stopping the
shrdaemon process with the SIGTERM signal, as follows:

kill -27 PID_of_shrdaemon

Turning off the fair-share scheduler in this manner leaves all fair-share usages
and charges in the UDB. If a clean UDB is desired (for example, at the
beginning of a new fiscal year), perform the following steps:

S–2302–10010 217

UNICOS® Resource Administration

1. Use the udbsee(1) command to create an ASCII version of the UDB
fair-share usage and charge fields, shusage and shcharge, and save this
output to a file, as follows:

udbsee -a -fupdate,uid,resgrp,shares,shusage,shcharge > tempfile

The uid, resgrp, and shares fields will not be changed, but they may be
useful as a reference during this operation.

2. Clear the fair-share information by editing tempfile as follows: replace the
values in the shrusage and shcharge fields with 0.

3. Bring the system to single-user mode. It is important that the next step be
performed when no other process is updating the UDB.

4. Use the udbgen command with the edited file, tempfile, to update the
UDB with the changes removing the fair-share information.

5. Return the system to multiuser mode.

4.4.10 Costs, Usage, and Background Users

Watch the relationship between costs, usage, and the MAXUSAGE value.
(MAXUSAGE is set by the shradmin -U command to the upper bound for
reasonable usages; the default is a very large number.) If the cost factors are set
high enough that a user’s usage accumulation rises more quickly than the decay
rate can bring it down, and the usage accumulation exceeds MAXUSAGE, then
that user is put into the background user category by the fair-share scheduler.
This situation can be controlled by either raising MAXUSAGE with the shradmin
-U command, or by adjusting the following cost factors in a relatively uniform
downward direction: bio (block I/O operations), tio (stream I/O operations),
click (memory ticks), syscall (system calls), and tick (CPU ticks).

The tick cost, which is charged to the user up to 60 times per second, is usually
the cost that causes users’ usages to rise very rapidly. A background user can
be recognized as running at priority 996 in a ps(1) display.

Processes that have been assigned a nice value of 39 are treated as special by
the fair-share scheduler. They run at priority 997 and are not charged for CPU
use. Processes attached to lnodes with 0 shares run at priority 998.

See "Tuning the fair-share scheduler," Section 4.6, page 227, for more
information on fair-share costs and nice values, or for information on increasing
the default MAXUSAGE value.

218 S–2302–10010

Fair-share Scheduler [4]

4.4.11 Monitoring the Fair-share Scheduler

Three commands display information about what is currently happening in a
fair-share system: shrview(1), shrtree(8), and shrmon(8). The shrview(1)
command provides the most functionality; it serves as a single interface for the
functions of the other fair-share display commands. The shrtree(8) command
displays the fair-share hierarchy. The shrmon(8) command is intended for use
by the administrator; it is located in the /etc directory.

Note: The shrmon(8) command will not be available in future releases of the
UNICOS operating system. Its functionality is replaced by the shrview(1)
command.

All fair-share display commands can be executed in line mode, repeat mode, or
continuous mode. In each mode, the time period used as a delay to collect
information, or between successive display updates, is the share cycle time set
by the -R option of the shradmin(8) command.

In line mode, the command collects information and prints its findings to
standard output (stdout). In repeat mode, the command behaves as if in line
mode and repeats the cycle as many times as specified with the -r option to
shrview, separating the outputs with a form-feed character. In continuous
mode, the command uses the curses(3) library capability and produces a
full-screen display that it updates periodically. For displays involving more
data than can be displayed (for example, 40 users on a 24-line terminal screen),
only the first screen is displayed.

4.4.11.1 Using the shriview(1) Command

The shrview command is an integrated tool for displaying information about
the behavior and current state of the fair-share scheduler. Many different
display options and formats are available. Selection and configuration of
displays may be done interactively when in curses mode.

The following sample display shows the ADJGROUPS display (-da option) of
resource groups (-so option), organized by group name in alphabetical order
(-oi option). This display helps quantify system use by resource group; the
Rate%, CPU%, and Rshr% columns show that resource group Xydev in
SoftDev is using the largest percentage of the system.

S–2302–10010 219

UNICOS® Resource Administration

% shrview -da -so -oi

SHRVIEW Type:adjgroup Select:only groups Sort_opt:id

Name Rate% CPU% Rshr% Nrun Rate Proj% Adj_a New% Pri%

------------ ----- ----- ----- ----- ---- ----- ------- ----- -----

CCN 0.00 0.00 26.67 0.00 0.00 20.92 1.00 16.63 15.67

SysAdm 0.00 0.00 17.78 0.00 0.00 13.82 1.00 10.99 10.35
Syssup 0.00 0.00 8.89 0.00 0.00 7.10 1.00 5.64 5.32

Mktg 0.31 0.23 13.33 0.00 0.00 56.65 1.00 45.05 9.99

Country 0.09 0.00 4.44 0.00 0.00 53.91 1.00 42.87 6.66

Intl 0.22 0.23 4.44 0.00 0.00 0.83 1.00 0.66 1.66

TechOps 0.00 0.00 4.44 0.00 0.00 1.91 1.00 1.52 1.66
SoftDev 97.62 99.77 60.00 65.76 21.48 22.42 1.00 38.31 74.34

Userint 12.37 21.14 10.00 14.00 12.31 3.73 1.00 2.97 9.05

Users 3.29 7.95 10.00 11.76 1.94 11.30 1.00 22.09 18.66

Netdev 1.59 3.86 2.00 2.00 1.00 0.00 1.00 0.00 0.75

Xydev 81.96 70.68 40.00 40.00 7.22 7.39 1.00 13.25 46.63

The following example shows the monitor display (-dm option) on a system
with two levels of hierarchies.

shrview -dm

Shrview: sampling over 11 seconds starting at Tue Jul 25 12:27:33 1995

SHRVIEW Type:monitor Select:all Sort_opt:id

Name Rate% Eshr% Rshr% Usage(k) Rate Muse Ref Chld Flags
------------ ----- ----- ----- ---------- ----- ----- --- ---- ------

CCN 93.84 11.76 11.76 1000000000 1.00 0 0 2 50000

SysAdm 93.84 7.84 7.84 199667501 0.84 1358396 12 0 1010000

Syssup 0.00 3.92 3.92 570650974 0.84 489820 1 0 1010000

Idle 0.00 0.00 0.10 1000000000 17.84 24 2 0 10000

Mktg 6.16 11.76 11.76 1000000000 1.00 0 0 2 50000
Country 0.00 5.88 5.88 119543509 0.84 29760 2 0 1010000

TechOps 6.16 5.88 5.88 41308301 0.84 3652 1 0 1010000

SoftDev 0.00 52.94 52.94 1000000000 1.11 0 0 4 50000

Netdev 0.00 13.24 13.24 67308849 0.84 83308 6 0 1010000

Userint 0.00 13.24 13.24 203251100 1.11 541828 23 0 1010000
Users 0.00 13.24 13.24 200168203 0.84 1609728 8 0 1010000

*Xydev 0.00 13.24 13.24 144301956 0.94 236500 19 0 1010000

System 0.00 23.53 23.53 1000000000 1.00 0 0 1 50000

220 S–2302–10010

Fair-share Scheduler [4]

Admin 0.00 23.53 23.53 10437769 0.84 428412 1 0 1010000

4.4.11.2 Using the shrmon(8) Command

The fair-share monitor, shrmon(8), produces a columnar formatted output that
can be used to monitor most of the more important accumulators and feedback
parameters found in the fair-share scheduling node within the kernel.

Note: The shrmon(8) command will not be available in future releases of the
UNICOS operating system. Its functionality is replaced by the shrview(1)
command.

The following display shows sample shrmon output:

$ shrmon -vv
Tue Sep 20 09:06:20 1988

CPUs charge rate nrun %Rate %share %CPU %rshare kids ref

11.2 0.0 1.3 13 0.0 100.0 100.0 100.0 12 59 System

0.0 0.0 3.8 4 0.0 0.0 0.0 0.0 0 4 Idle

3.4 0.2 1.3 2 0.0 8.3 30.5 33.3 2 9 Regions
0.0 0.0 0.8 0 0.0 4.2 0.0 2.0 0 3 poulet

3.4 0.2 1.4 2 0.0 4.2 30.5 33.3 0 6 ub

0.0 0.0 0.0 0 0.0 8.3 0.0 2.0 2 2 LibProd

0.0 0.0 0.8 0 0.0 4.2 0.0 2.0 0 1 saa

0.0 0.0 0.8 0 0.0 4.2 0.0 2.0 0 1 jam
7.7 0.3 5.0 5 0.0 16.7 69.4 66.7 3 22 OpSysDev

0.0 0.0 0.8 0 0.0 5.6 0.0 2.0 0 1 dak

0.0 0.0 1.0 1 0.0 5.6 0.0 2.0 0 3 sen

7.7 0.4 5.0 5 0.0 5.6 69.4 66.7 0 20 dws

0.0 0.0 0.0 0 0.0 8.3 0.1 2.2 4 11 Operatns

0.0 0.0 0.8 0 0.0 2.1 0.1 2.0 0 3 operator
0.0 0.0 0.8 0 0.0 2.1 0.0 2.0 0 3 tqa

0.0 0.0 0.8 0 0.0 2.1 0.0 2.0 0 5 backup

0.0 0.0 0.8 0 0.0 2.1 0.0 2.2 0 0 ce

0.0 0.0 0.8 0 0.0 2.8 0.0 2.0 0 1 mab

0.0 0.0 0.8 0 0.0 2.8 0.0 2.0 0 4 gop
0.0 0.0 0.8 0 0.0 2.8 0.0 2.0 0 1 aaw

0.0 0.0 0.0 0 0.0 8.3 0.0 2.0 1 1 Appl

0.0 0.0 0.8 0 0.0 8.3 0.0 2.0 0 1 wgh

0.0 0.0 0.0 0 0.0 8.3 0.0 2.0 1 0 IOS

0.0 0.0 0.8 0 0.0 8.3 0.0 2.0 0 0 stt
0.0 0.0 0.0 0 0.0 8.3 0.0 2.0 1 2 Services

0.0 0.0 0.8 0 0.0 8.3 0.0 2.0 0 2 hhj

0.0 0.0 0.0 0 0.0 8.3 0.0 2.0 1 1 CompDev

S–2302–10010 221

UNICOS® Resource Administration

0.0 0.0 0.8 0 0.0 8.3 0.0 2.0 0 1 plu

0.0 0.0 0.0 0 0.0 8.3 0.0 2.0 1 1 Diag
0.0 0.0 0.8 0 0.0 8.3 0.0 2.0 0 1 ljl

0.0 0.0 0.0 0 0.0 8.3 0.0 2.0 1 0 Netwrkng

0.0 0.0 0.8 0 0.0 8.3 0.0 1.9 0 0 jyj

The most important factors in this display are %rshare and %CPU. The
%rshare factor is the machine share of the system, expressed as a percentage,
to which this particular user or group is entitled based on the current active
users and the fair-share hierarchy defined in the UDB. The %CPU factor is the
percentage of CPU resources allocated to the lnode over the sampling interval.

Interactive users, who are relatively idle at the time of the sample, each hold a
2.0% rshare.

Note that the fair-share hierarchy in this example involves two levels: group
levels have names beginning with a capital letter; and users are identified by
lowercase login names.

4.4.11.3 Using the shrtree(8) Command

The shrtree(8) command displays the share tree, or fair-share hierarchy, that
is defined in the UDB, and highlights problems that could prevent logging in to
the system or submitting jobs. Any problems in the UDB that would affect the
fair-share scheduler are marked in the shrtree output. (Most problems can
prevent logging in and submitting jobs for the affected users.)

The shrtree command displays such useful statistics as the group share and
usage value from the UDB. This command also displays a general
approximation of share distribution by displaying a static analysis of what the
relative entitlements would be if all the users in the UDB were logged on at the
same time.

The following display shows sample output for shrtree with no options
(short form report). The system is running Share by User mode, with a
maximum of four levels in the fair-share hierarchy. In this example, the Serv
entry has warning flag Nc; Unknown has warning flag Zs; and Country,
Region, and TechOps have flags Nc and Zs.

$ shrtree

DISPLAY OF SHARE TREE

UDB path: DEFAULT

222 S–2302–10010

Fair-share Scheduler [4]

Analyzed: By UID

Format: Groups only
Maxgroups: 4

Node: ALL

Group Count: 15

Account Count: 0

User Count: 1370

Warnings: 9
Errors: 0

Warning Count: 4 (Nc) Group has no references

Warning Count: 1 (Zs) User has zero shares

Warning Count: 4 (Zs) Group has zero shares

System Group System

Lv Name ID Share Share Usage Status Flags

__ __________________________ ________ ______ ______ ______ ________ ________

0 _ROOT_ 0 100.0% 100.0% 100.0% G 40000
1 Demos 8367 100.0% 100.0% 0.0% G 40000

2 Serv 8001 100.0% 100.0% 0.0% G|Nc 40000

1 System 8389 0.0% 0.0% 0.0% G 40000

2 Admin 8306 0.0% 2.9% 0.0% G 40000

1 Unknown 8393 0.0% 0.0% 0.0% G|Zs 40000

1 Users 8395 0.0% 0.0% 28.8% G 40000
2 CCN 8354 0.0% 4.8% 0.2% G 40000

2 Country 8359 0.0% 0.0% 0.0% G|Nc|Zs 40000

2 HardDev 8372 0.0% 4.8% 0.0% G 40000

2 Intl 8374 0.0% 14.3% 0.0% G 40000

2 Mktg 8381 0.0% 28.6% 0.1% G 40000
2 Region 8385 0.0% 0.0% 0.0% G|Nc|Zs 40000

2 SoftDev 8386 0.0% 47.6% 28.5% G 40000

2 TechOps 8390 0.0% 0.0% 0.0% G|Nc|Zs 40000

The following example shows the error display for the same system (shrtree
with the -e option). Only the entries with errors are displayed.

$ shrtree -e

DISPLAY OF SHARE TREE

UDB path: DEFAULT

Analyzed: By UID

Format: Groups only

S–2302–10010 223

UNICOS® Resource Administration

Maxgroups: 4

Node: ALL
Group Count: 15

Account Count: 0

User Count: 1370

Warnings: 9

Errors: 0

Warning Count: 4 (Nc) Group has no references

Warning Count: 1 (Zs) User has zero shares

Warning Count: 4 (Zs) Group has zero shares

Type Name ID Status Description
_________ ________ _____ ________ ____________________________________

WARN* Serv 8001 10 Nc: Group has no references

WARN* Unknown 8393 1000 Zs: Group has zero shares

WARN* unknown 12 1001 Zs: User has zero shares

WARN* Country 8359 1010 Nc: Group has no references
WARN* Country 8359 1010 Zs: Group has zero shares

WARN* Region 8385 1010 Nc: Group has no references

WARN* Region 8385 1010 Zs: Group has zero shares

WARN* TechOps 8390 1010 Nc: Group has no references

WARN* TechOps 8390 1010 Zs: Group has zero shares

4.5 Customizing the Fair-share Scheduler (User Exit)

You can customize the fair-share scheduler’s CPU scheduling policy at your
site. This allows use of a different scheduling algorithm without modifying the
UNICOS kernel.

To customize the scheduling policy, you provide a user exit routine and set the
USRLEVLFSS flag with the shradmin(8) command. The fair-share daemon,
shrdaemon(8), includes a stub routine (in the module shrsiteux.c) that has
an entry point named site_adjust_lnodes. After reading the lnodes from
the kernel and performing the calculations indicated by the share flags, this
user exit is invoked before writing the lnodes back to the kernel.

The following calling sequence is defined in the include file sys/lnode.h:

site_adjust_lnodes(&Lnodes[0], count, Traceflag)

The arguments of site_adjust_lnodes have the following meanings:

224 S–2302–10010

Fair-share Scheduler [4]

Argument Description

Lnodes This argument is a pointer to the lnode table in
the shrdaemon(8) memory; it is of type struct
kern_lnode *Lnodes. All the address fields in
the lnode table can be used for scanning, because
shrdaemon converts them to shrdaemon
memory addresses before performing any
analysis.

count This parameter specifies the number of lnodes in
the lnode array; it is of type int count.

Traceflag This parameter is of type int Traceflag; it can
be used to specify logging, as in the following
example:

if (Traceflag)

fprintf(stderr, "Adjusting lnodes\n").

4.5.1 Fair-share User Exit Example

As a simple example of a user exit, the following routine allows UID 104 to use
as many CPU resources as necessary. This capability allows a system daemon
to run under a different UID than root (some sites prefer to do this for
accounting reasons), but removes the resource limitations that are normally
enforced for all non- root UIDs.

static char USMID[] = "@(#)man/2302/04.fair.share 92.1 12/11/95 16:48:26";

/*

* (C) COPYRIGHT INC.
* UNPUBLISHED PROPRIETARY INFORMATION.

* ALL RIGHTS RESERVED.

*/

#include <stdio.h>
#include <errno.h>

#include <sys/types.h>

#include <sys/param.h>

#include <sys/lnode.h>

#include <sys/share.h>

/*

S–2302–10010 225

UNICOS® Resource Administration

* site_adjust_lnodes()

*
* User exit stub to allow sites to perform any calculations

* desired upon lnode data before the shrdaemon writes them

* back to kernel memory.

*

* A ptr to the lnode table in the shrdaemon memory is passed

* in; all the address linkages have been converted to shrdaemon
* memory addresses.

*/

void

site_adjust_lnodes(struct kern_lnode *Lnodes, int count, int Traceflag)
{

int i;

struct kern_lnode *lp;

/*
* Site can now perform any calculations desired on lnode data.

*/

for (lp = Lnodes, i = 0; i < count; i++, lp++) {

if (lp->kl.l_uid == 104) {

/* This user is special, must never starve for cpu. */
lp->kl.l_usage = 2.0;

lp->kl_usage = 2.0;

}

if (Traceflag) {
fprintf(stderr, "Adjusting lnode %s.0, lp->kl.l_name);

fprintf(stderr, "l_uid %d0, lp->kl.l_uid);

fprintf(stderr, "l_usage %g0, lp->kl.l_usage);

fprintf(stderr, "l_charge %g0, lp->kl.l_charge);

fprintf(stderr, "kl_usage %g0, lp->kl_usage);
fprintf(stderr, "kl_totuse %g0, lp->kl_totuse);

fprintf(stderr, "kl_adj %g0, lp->kl_adj);

fprintf(stderr, "kl_rate %g0, lp->kl_rate);

fprintf(stderr, "kl_cost %d0, lp->kl_cost);

fprintf(stderr, "0);

fflush(stdout);
}

}

226 S–2302–10010

Fair-share Scheduler [4]

return;

}

4.6 Tuning the Fair-share Scheduler

This section discusses tuning issues relating to the fair-share scheduler. If you
run fair-share, it is important to consider other factors such as memory
scheduling and NQS configuration to achieve your CPU scheduling goals.

This section discusses the following:

• Fair-share parameters

• Memory scheduling parameters and fair-share

• Priority-based scheduling with nice values (this item is not strictly about
fair-share; but, it is a related topic)

4.6.1 Fair-share Parameters

Fair-share parameters provide you with considerable control over the behavior
of the fair-share scheduler but do not allow you to directly affect system
throughput. Before attempting to tune fair-share, it is important to establish a
clear set of CPU scheduling goals. Tuning fair-share usually involves a
compromise between accurate distribution of resources by share allocations and
interactive responsiveness.

This section describes the shradmin(8) options most useful for tuning the
fair-share scheduler and provides an example of possible parameter settings.
For more information on fair-share parameters, see the shradmin(8) man page.

4.6.1.1 shradmin(8) Options Affecting Cost

The following options for the shradmin(8) command allow you to set the cost
for various system resources:

Option Description

-b Cost for logical I/O request

-m Cost for each memory click

-s Cost for each system call

-t Cost for a CPU tick

S–2302–10010 227

UNICOS® Resource Administration

-y Cost for a tty read/write operation

The shradmin command allows you to apply a percent multiplier to all of
these cost factors. For example, the command shradmin 20 specifies that all
cost values should be multiplied by the factor 0.2. By applying the multiplier,
you can uniformly scale the cost parameters.

Because fair-share schedules only the CPU resources, it is recommended that
costs be weighted heavily, or exclusively, for CPU use.

4.6.1.2 -U Option (MAXUSAGE)

If the usage value for a process reaches MAXUSAGE, that process hangs if there is
no idle time (the priority of the process is set to 998, which prevents the process
from getting the CPU). Therefore, MAXUSAGE should be set such that it will only
take effect under extreme circumstances.

The default setting of MAXUSAGE is 1.0e+12. This is too low for systems with 8
or more CPUs and fast cycle times. For a system with 8 CPUs, a better starting
value is 1.0e+15; for a system with 16 CPUs, a better starting value is 1.0e+18.
For any site, if a very long usage decay rate (greater than 24 hours) or large cost
values are used (greater than 1000), it is recommended that this value be
increased.

Use the shrview(1) command with the -ds option to obtain statistics on
process usage values. This command samples the average number of users
logged on at one time, as in the following example:

% shrview -ds

Shrview: sampling over 5 seconds starting at Thu Aug 5 16:55:14 1993

SHRVIEW Type:statistics Select:all Sort_opt:id

High Max

---------- ----------

Active id’s: 62/300 Usage: 5.9689e+09 1.0000e+12

Active groups: 6 Share_pri: 3.8694e+03 1.0000e+28

syscall bio sio tick click

----------- ---------- ---------- ---------- ----------

Charge: 0% 0% 0% 100% 0%

Costs: 0 0 0 100 0

Counts: 501753913 6866002 0 15649624 0

228 S–2302–10010

Fair-share Scheduler [4]

If clipping is occurring on MAXUSAGE (that is, if the actual usage is consistently
close to the MAXUSAGE setting), increase the value for MAXUSAGE in the
/etc/config/daemons file.

4.6.1.3 -D Option (priority Decay Rates)

The -D option sets priority decay rates for processes in the following areas and
alters the effect of nice:

• Normal nice values (20)

• Maximum nice values (39)

These two values are used to build a table of priority decay rates for each nice
value (0 through 39). As the difference between the two rates increases, the
effect of nice is more pronounced. This effect is not related directly to fair-share;
it occurs even if fair-share is not enabled. Shorter decay rates cause the
scheduler to act in more of a round-robin fashion. Longer values cause the
scheduler to be more influenced by fair-share information.

The effect of this option is subtle and might have undesirable side effects. Long
decay rates can cause marooning, where a compute-bound process can control
the CPU(s) for long periods of time. The default values for the -D option (2,60)
are recommended, and any changes should be carefully considered. Do not use
values of less than (1,30) because this generates negative decay rates for some
of the lower nice values.

The shrinfo (1) command used with the -v option shows the decay rates for
the nice values of 0, 20, and 39, as in the following example:

Scheduling flags = ADJGROUPS, LIMSHARE

Charging percentage = 100%

Usage decay rate = 0.95484160 (half-life of 60.0 seconds)

Active users = 59/300, active groups = 6.

---syscall-- ----bio---- ----tio--------tick--- ---click--- (NULL)

Charge: 0% 0% 0% 100% 0%

Costs: 0 0 0 100 0

Counts: 494584243 6698323 0 15173200 0

Process priority decay rate biased by "nice":-

high priority (nice -20) 0.4044 (half-life of 0.8 seconds),

avg priority (nice 0) 0.7039 (half-life of 2.0 seconds),

low priority (nice 19) 0.9885 (half-life of 60.0 seconds).

Run rate decay rate 0.8409 (half-life of 4.0 seconds).

S–2302–10010 229

UNICOS® Resource Administration

Max. value for normal usage = 1.000000e+12,

Max. value for normal p_sharepri = 1.000000e+28,

Max. value for idle p_sharepri = 1.000000e+38.

High value of current normal usage = 3.369134e+10,

High value of current p_sharepri = 9.236291e+03.

User <anne> owns 100 shares.

The shrview -dn command shows a table of decay rates for each nice value,
as in the following example:

Shrview: sampling over 5 seconds starting at Thu Aug5 16:41:36 1993

SHRVIEW Type:nice tables Select:all Sort_opt:id

NiceDecays Nice Nice

N Nice Decay 1/2life Rates Ticks

-- ---- ------ ------- ------ -----
0 -20 0.4044 0.766 0.1591 150

1 -19 0.4194 0.798 0.1591 147

2 -18 0.4343 0.831 0.1591 145

3 -17 0.4493 0.866 0.1591 142

4 -16 0.4643 0.903 0.1591 140
5 -15 0.4793 0.942 0.1591 137

6 -14 0.4943 0.984 0.1591 135

7 -13 0.5092 1.027 0.1591 132

8 -12 0.5242 1.073 0.1591 130

9 -11 0.5392 1.122 0.1591 127
10 -10 0.5542 1.174 0.1591 125

.

.

.

17 -3 0.6590 1.662 0.1591 107

18 -2 0.6740 1.757 0.1591 105
19 -1 0.6890 1.860 0.1591 102

20 0 0.7039 1.974 0.1591 100

21 1 0.7189 2.100 0.1515 97

22 2 0.7339 2.240 0.1446 95

23 3 0.7489 2.397 0.1384 92
.

.

.

230 S–2302–10010

Fair-share Scheduler [4]

37 17 0.9586 16.377 0.0860 57

38 18 0.9735 25.844 0.0837 55
39 19 0.9885 60.000 0.0000 1

4.6.1.4 -X Option (maxushare)

The -X option (maxushare) defines the maximum effective share for an
individual user, when the global scheduling flag LIMSHARE is set (with the
shradmin -F command). This option can be used to minimize marooning by
preventing users with very low past usage from monopolizing the CPU or by
preventing users with very high past usage from being locked out.

Values close to 1 ensure good interactive response regardless of past usage and
provide a leveling effect so that all users will have scheduling priorities that
correlate closely to their share allocations. Increasing this value allows
scheduling priorities to deviate more from share allocations as determined by
past usage.

The default value of 2.0 is a good initial value if interactive use is important at
your site. Values of 8.0 and greater are good for a batch environment. If
interactive response is not important, and consistent distribution of resources
has the highest priority, you should turn off this option by setting the
LIMSHARE flag equal to 0. This option must be set to a value greater than 1.0.

You can view the effect of the maxushare option with the shrview -dl
command.

4.6.1.5 -Y Option (mingshare)

The -Y option (mingshare) specifies the deviation between group share
allocation and the actual rate of resource consumption allowed before the
scheduling algorithm tries to compensate. It has an effect only when the global
scheduling flag ADJGROUPS is set (with the shradmin -F command). This
option can diminish to some degree the effect of the -X (maxushare) option.

The default setting of .75 allows a 25% or less deviation. Values closer to 1.0
allow less deviation, but may interfere with maxushare. This option must be set
to less than 1.0.

When accurate distribution of resources based on group share allocations is a
high priority, this option is very important and should be set near to 1.0 (.90 to
.95).

The effect of the mingshare option can be viewed with the shrview -da
command, as in the following example:

S–2302–10010 231

UNICOS® Resource Administration

% shrview -da

Shrview: sampling over 5 seconds starting at Thu Aug 5 16:47:12 1993

SHRVIEW Type:adjgroup Select:all Sort_opt:id

Name Rate% CPU% Rshr% Nrun Rate Proj% Adj_a New% Pri%

------------ ----- ----- ----- ----- ---- ----- ------- ----- -----
Idle 0.00 3.11 0.02 0.00 7.62 0.00 1.00 0.00 0.00

System 4.52 6.14 10.00 0.00 0.00 0.00 1.00 0.00 8.12

operator 0.00 0.00 5.00 0.00 0.84 0.00 1.00 0.00 6.50

jkl 4.52 6.14 5.00 5.00 1.00 0.00 1.00 0.00 1.62

Users 63.65 45.37 90.00 0.00 19.48 0.00 1.00 0.00 29.24
CCN 0.00 0.00 5.00 0.00 0.84 0.00 1.00 0.00 1.62

abc 0.00 0.00 1.64 0.00 0.84 0.00 1.00 0.00 0.53

zyx 0.00 0.00 1.64 0.00 0.84 0.00 1.00 0.00 2.13

c1234 0.00 0.00 1.64 0.00 0.84 0.00 1.00 0.00 2.13

HardDev 5.41 2.43 5.00 0.00 0.84 0.00 1.00 0.00 1.62
paul 2.71 2.43 4.76 0.00 0.87 0.00 1.00 0.00 1.55

Mktg 0.17 0.05 30.00 0.00 0.84 0.00 1.00 0.00 9.75

*anne 0.08 0.05 3.61 0.00 0.84 0.00 1.00 0.00 1.17

steven 0.00 0.00 3.61 0.00 0.84 0.00 1.00 0.00 1.17

c0987 0.00 0.00 3.61 0.00 0.84 0.00 1.00 0.00 1.17

gregj 0.00 0.00 3.61 0.00 0.84 0.00 1.00 0.00 4.70
SoftDev 58.07 42.90 50.00 0.00 13.77 0.00 1.00 0.00 16.25

ali 0.00 0.00 1.20 0.00 0.84 0.00 1.00 0.00 1.57

birk 0.00 0.00 1.20 0.00 0.84 100.00 1.00 100.00 1.57

bobo 0.17 0.18 1.20 1.20 1.19 0.00 1.00 0.00 0.39

cde 0.00 0.00 1.20 0.00 0.84 0.00 1.00 0.00 1.57
.

.

.

zzzyzzy 0.08 0.60 1.20 0.00 0.84 0.00 1.00 0.00 0.39

4.6.1.6 -Z Option (sharemin)

The -Z option (sharemin) specifies the minimum machine share allocated to a
user. This option, when combined with the maxushare option, sets a range for
individual priorities to allow reasonable interactive response for all users. The
default value of 0 sets no minimum share allocation for users. It is
recommended that you select a nonzero value for this option to provide
reasonable response for all users. Select a value based on the reciprocal of the
average number of users logged on (1 average_users), rounded to three digits.

232 S–2302–10010

Fair-share Scheduler [4]

For example, use the value 0.013 on a system with an average of 80 users
logged on at any one time.

The effect of the -Z option can be seen by comparing the Eshr and Rshr
columns from the shrview -dm output, as in the following example. The
values in these columns should be as close as possible.

Shrview: sampling over 5 seconds starting at Thu Aug 5 16:57:21 1993

SHRVIEW Type:monitor Select:all Sort_opt:id

Name Rate% Eshr% Rshr% Usage(k) Rate Muse Ref Chld Flags

------------ ----- ----- ----- ---------- ----- ----- --- ---- ------

Idle 0.00 0.00 0.02 1000000000 7.62 56 8 0 10000

System 0.00 10.00 10.00 1000000000 0.00 0 6 2 50000
operator 0.00 5.00 5.00 0 0.84 1210410 1 0 10000

jkl 0.00 5.00 5.00 0 0.84 48068 5 0 10000

Users 66.67 90.00 90.00 1000000000 15.93 0 1598474 4 50000

CCN 0.00 5.00 5.00 0 0.84 0 60666 3 10000

abc 0.00 1.64 1.64 0 0.84 32836 4 0 10000

zyx 0.00 1.64 1.64 0 0.84 3475 3 0 10000
c1234 0.00 1.64 1.64 0 0.84 14100 3 0 10000

HardDev 1.44 5.00 5.00 0 0.84 0 14813 1 10000

paul 0.72 4.76 4.76 0 0.94 81902 9 0 10000

Mktg 10.41 30.00 30.00 0 1.02 0 211197 7 10000

*anne 0.06 4.11 4.11 0 0.84 3536 3 0 10000
steven 0.00 4.11 4.11 0 0.84 2626 2 0 10000

c0987 0.00 4.11 4.11 0 0.84 3414 1 0 10000

gregj 0.00 4.11 4.11 0 0.84 2848 1 0 10000

SoftDev 54.81 50.00 50.00 0 8.46 0 1311798 41 10000

ali 0.00 1.20 1.20 0 0.84 5720 1 0 10000

birk 0.00 1.20 1.20 0 0.84 6638 1 0 10000
bobo 0.23 1.20 1.20 0 1.82 131743 11 0 10000

cde 0.00 1.20 1.20 0 0.84 14404 1 0 10000

.

.

.
zzzyzzy 0.00 1.20 1.20 0 0.84 89449 4 0 10000

4.6.1.7 -R Option (delta)

The -R option (delta) determines how often usage values are updated and is
directly related to the overhead for fair-share processing. Shorter values increase

S–2302–10010 233

UNICOS® Resource Administration

the scheduler’s responsiveness to changing conditions, but they increase
overhead longer values decrease overhead but also decrease responsiveness.

The default of 4 seconds is a good compromise for interactive environments.
For batch environments, the value can be increased; however, overhead is
increased by the number of active lnodes and levels in the fair-share hierarchy.

4.6.1.8 -K Option (usage Decay Rate)

The -K option (usage decay rate) establishes the length of time that past usage of
resources are remembered. Longer decay rates cause the scheduler to distribute
resources fairly over a longer period of time. This option can have a significant
impact on interactive responsiveness. On a heavily loaded machine with a large
number of users, short decay rates provide uniformly poor response for all
users with small share allocations. Longer rates will provide good interactive
response for users that have used less than their allocated share and worse
response for those who have used more. Very short usage decay rates (less than
3600 seconds, or 60 minutes) limit the effect of the maxushare and mingshare
options. For these reasons, decay rates greater than 60 minutes will generally
provide more accurate distribution of resources and better interactive response
times.

Note: Do not set the decay rate to less than 1 hour (the default) for general
fair-share operation. Decay rates of minutes or seconds are recommended
only for debugging purposes.

4.6.1.9 Example Parameter Settings

The following parameter settings show sample values at a site presently running
fair-share. The goals for choosing these settings were to provide the following:

• Good interactive response during prime time regardless of the share
allocations or past usage

• Close tracking of share allocations and usage during nonprime time

• Incentive for nonprime time usage

• Usage decay rate that would be similar in effect to the one-week refreshing
of "bank point" (a local concept for this site)

• Limit on the impact of long-running batch jobs on interactive performance

The following option settings are used during prime time:

234 S–2302–10010

Fair-share Scheduler [4]

Option setting Description

-D 2,60 Priority decay rate

-F 006 LIMSHARE and ADJGROUPS flags

-K 120 Usage decay rate of 5 days

-R 4 delta

-X 2.0 maxushare

-Y 0.7 mingshare

-Z .02 sharemin (2%; default)

-b 2 Cost of block I/O

-m 2 Cost of memory click

-t 200 Cost per CPU tick

-s 2 Cost of system calls

100 Percent multiplier (100%)

The following option settings are used during nonprime time:

Option setting Description

-D 2,60 Priority decay rate

-F 006 LIMSHARE and ADJGROUPS flags

-K 120 Usage decay rate of 5 days

-R 8 delta

-X 8.0 maxushare

-Y 0.9 mingshare

-Z .01 sharemin (1%)

-b 2 Cost of block I/O

-m 2 Cost of memory click

-t 200 Cost per CPU tick

S–2302–10010 235

UNICOS® Resource Administration

-s 2 Cost of system calls

60,40 Percent multiplier (60% night, 40% weekend)

4.6.2 Fair-share and the Memory Scheduler

When using the fair-share scheduler, it is important to consider how fair-share
interacts with the memory scheduler. If you are using fair-share, the memory
scheduler parameters should be set to achieve the CPU scheduling goals
without excessive swapping overhead. If your goals are to base scheduling
completely on share allocations, it is possible that the system could become idle
as large memory processes dominate the system. Using both the memory
scheduler and the fair-share scheduler provides your site with a compromise
between improving system throughput and meeting scheduling objectives.

Deciding what values to use in order to achieve the desired results is more
difficult than if you were using only the memory factors or only the priority
factors. It is important to investigate the following areas:

• Memory oversubscription

• Fair-share priorities of jobs in relation to memory size (in other words, does
a user with low fair-share priority run big memory jobs and a user with
high fair-share priorities run small memory jobs?)

Using this type of scheduling ensures that processes with high fair-share
priorities are more likely to be in memory without causing excessive swapping
and system overhead.

For more information on the memory scheduler, see the nschedv(8) man page
in the UNICOS Administrator Commands Reference Manual.

4.6.2.1 Priority-based Scheduling and I/O Resources

When you use both fair-share and priority memory scheduling, it is important
to consider how the system I/O resources are used. If a job with a low
fair-share priority uses a large amount of disk or SDS resources, significant
problems could result for the entire system.

If you can determine that I/O-intensive jobs are a problem for your system,
consider changing the memory scheduling parameters so that either this type of
job is favored or has equal access to memory. Changing fair-share parameters
might also be necessary. Getting this job out of the system as soon as possible
helps the total system throughput.

236 S–2302–10010

Fair-share Scheduler [4]

4.7 Using CPU Quotas

The CPU quota feature allows you to control the total CPU time used by each
user login or account on the system in increments of tenths of seconds. CPU
quotas function only when your site is running the fair-share scheduler.

The CPU quota feature is similar to the CPU limits feature, but resource
consumption information is accumulated for the user rather than the job or
process. When a user reaches the quota, a SIGCPULIM signal is sent to the
user’s processes. (The SIGCPULIM signal is ignored by default.) When the user
reaches a specified threshold above the quota (the default is 3 seconds), the
kernel sends a SIGKILL signal to all the user’s processes and terminates them.

The UDB contains a quota field (cpuquota) and a time-used field
(cpuquotaused) that set a user’s CPU quota in seconds and the amount of
CPU time used in seconds, respectively. You can use the udbgen(8) command
to update these fields. For example, to set a quota of 10 seconds for user xyz,
you would enter the following command:

udbgen -c ’update:xyz: cpuquota:10:’

To cancel the accumulated time for user xyz, you would enter the following
command:

udbgen -c ’update:xyz: cpuquotaused:0:’

The amount of time that a user accumulates while running jobs (the accumulated
CPU time) is calculated by the kernel. After a user’s last session exits the
system, the fair-share daemon updates the cpuquotaused field in the UDB (as
well as other fields) with the accumulated CPU time. During this process, any
changes that have been made to an active user’s cpuquotaused field in the
UDB are overwritten with the old value from the UDB (plus the latest
accumulated CPU time). Therefore, you must take extra steps to ensure that
changes made to an active user’s cpuquotaused field, such as clearing the
field, remain in effect after the user has exited the system.

To ensure that changes to an active user’s cpuquotaused field are not lost, use
the shrsync(8) command. This command synchronizes various fields in the
UDB, including the cpuquotaused field, with the corresponding data in the
kernel.

The following procedure shows the shrsync commands used to update the
cpuquotaused fields in the UDB while in multiuser mode:

1. Use the -u option of the shrsync command to update the UDB with the
information from the active system. Because the active system will be

S–2302–10010 237

UNICOS® Resource Administration

updated with information from the UDB, the information in the UDB must
first be brought up to date (in particular, the CPU-quota-used information
of the running sessions).

/etc/shrsync -u

2. Update the cpuquotaused fields in the UDB, as in the following example
for user xyz:

/etc/udbgen -c ’update:xyzfP: cpuquotaused:0:’ ; ...

3. Use the -q option of the shrsync command to indicate that all active users
will have their cpuquotaused information updated on the system from
the UDB, as follows:

/etc/shrsync -q

See the udbgen(8) man page for more information on the CPU quota fields; see
the shrsync(8) man page for more information on synchronizing UDB and
kernel information.

4.8 Additional Reference Material

The paper, "A Fair Share Scheduler," by J. Kay and P. Lauder, was published in
the January 1988 (volume 31, number 1) issue of Communications of the ACM
(pages 44-55). Although the UNICOS implementation does not exactly parallel
the description as published, it is substantially similar, and this paper is
recommended to anyone interested in the theory and philosophy of this
scheduling mechanism.

The paper "The Fair Share Scheduler," by G.J. Henry, was published in the
October 1984 Bell Labs Technical Journal, LVIII-8b. This paper also contains
design information about the fair-share scheduler.

238 S–2302–10010

File System Quotas [5]

The file system quota enforcement feature allows you to control the amount of
file system space in blocks and the number of files used by each account, group,
and user on an individual basis. Controls may be applied to some or all of the
configured file systems, except for the root file system. Attempts to exceed
these limits result in an error similar to the error that occurs if the file system is
out of free space. Optional warning levels are also available for informing users
when usage gets close to the quota.

Warning: This section contains warnings and information critical to the
proper use of a Cray ML-Safe configuration of the UNICOS system.

5.1 Components of the File System Quota Feature

The following components make up the file system quota feature:

• Quota control files (see quota(5)).

• Kernel support and enforcement code.

• Quota administration tools (quadmin(8) and qudu(8)).

• Quota configuration additions to /etc/fstab (see fstab(5)).

• Quota reporting tool (quota(1)).

• Quota warning and limit signal (SIGINFO).

• Quota limit error numbers (EQACT, EQGRP, and EQUSR).

• User warning and limit message generation. This feature is provided
automatically by the Korn, Bourne, and C login shells. The quotamon(1)
command is no longer needed.

The quota control files contain all quota information and must be created and
maintained correctly. The following sections concentrate on how to set up the
quota files and perform the configuration tasks for various operation modes.
The quota control files are discussed as though there were one file per
controlled file system. Other modes of operation are described in Section 5.15.2,
page 263, but you must fully understand the fundamentals of the feature before
going on to more elaborate configurations.

S–2302–10010 239

UNICOS® Resource Administration

Throughout this section, the term ID is a generic term meaning account, group,
and user IDs. A distinction among the different IDs is needed only when you
actually reference specific data structures.

Note: If users on your system use the UNICOS Network File System
(UNICOS NFS) to move files, the account numbers will be assigned by the
NFS daemon, and the account quotas will not be accurate.

5.2 Enabling the Quota Feature

If you are not using the menu system to set the configuration, find the
following line in the /etc/config/config.mh file:

#define CONFIG_FQUOTAS n

Edit this line to set n to 1 to enable the quota feature, or to set n to 0 to disable
it. The kernel must be rebuilt for this change to become effective. For more
information on the config.mh file, refer to Chapter 4 of the UNICOS
Configuration Administrator’s Guide.

If you are using the menu system, you can turn quotas on or off by selecting on
or off in the Configure System -> Major software configuration
-> File quotas menu of the UNICOS Installation and Configuration menu
system. For more information on the UNICOS installation and configuration
menu system (ICMS), refer to UNICOS System Configuration Using ICMS.

These methods apply to all systems that support UNICOS.

5.3 Changing the NQUOTA Value

The NQUOTA value represents the default number of in-core quota entries. If
you are not running file system quotas, the default NQUOTA value is 0. If you
are running file system quotas, the default NQUOTA value is 1400. Note that
this value must equal ((NINODE/4) + NC_SIZE). If desired, you can change
this value to better fit your site’s needs.

If you are not using the menu system, you can change the NQUOTA value by
editing the following line in the /usr/src/uts/cf.SerialNumber/config.h
file:

#define NQUOTA 1400

240 S–2302–10010

File System Quotas [5]

The kernel must be rebuilt for any changes to become effective. For more
information on the config.h file, refer to Chapter 3 of the UNICOS
Configuration Administrator’s Guide.

If you are using the menu system, you can change the NQUOTA value in the
Configure System -> UNICOS Kernel Configuration -> Table
Size Parameters -> In core quota entries (NQUOTA) menu of the
UNICOS Installation and Configuration menu system. For more information on
the UNICOS installation and configuration menu system (ICMS), refer to
UNICOS System Configuration Using ICMS.

These methods apply to all systems that support UNICOS.

5.4 Quotas and Data Migration

In the default setting, when data migration is turned on and a file is migrated,
the space the file occupied is credited to the file owner’s ID. When a file is
brought back online, the number of blocks is added to the ID’s file quota. If
bringing a file back would violate an enforced quota limit, that file cannot be
brought online.

With the optional aggregate quotas setting, the off-line and on-line date is
tracked together, and users are limited in the total amount of space they can
use. Because of this, unmigration of a file is always allowed. See Section 5.16,
page 264, for more information.

5.5 Configuring Quotas

Information on file system quota configuration is contained in the /etc/fstab
file (see fstab(5)). The instructions for creating quota control files assume that
the /etc/fstab file has been set up correctly.

Warning: The /etc/fstab file is part of a Cray ML-Safe configuration of
the UNICOS system. For more information on configuring the /etc/fstab
file, see the UNICOS Configuration Administrator’s Guide.

S–2302–10010 241

UNICOS® Resource Administration

The options field in the /etc/fstab file includes a quota option, which can
be in one of the following three formats. Each of these formats is discussed in
one of the following sections.

quota=quota_file_relative_name

quota=quota_file_full_name

quota=/dev/dsk/filesystem_name

5.5.1 Format 1: Relative File Name

Use the first format (quota= quota_file_relative_name) if you want the quota
control file to reside on the file system it controls. The file name is relative to
the root directory of the file system and, if you use the default name as
recommended ($QFILE, as defined in quadmin(8)), the option would be
written as follows:

quota=$QFILE

By default, the special name $QFILE maps to the .Quota60 file in the root
directory of the file system.

5.5.2 Format 2: Absolute File Name

Use the second format (quota= quota_file_full_name) if you want the quota
control files to reside in a directory other than the root directory of the file
system it controls. For example, if the quota files were to reside in the
/etc/admin/quota70 directory, the options field of the /etc/fstab file
would contain the following line:

quota=/etc/admin/quota70/$FILESYS

The special name $FILESYS is the last component of the file system name on
this line in the /etc/fstab file. For example, the /etc/fstab file contains
the following line:

/dev/dsk/slash_b /b C1FS quota=/etc/admin/quota70/$FILESYS

This line would resolve to the following:

quota=/etc/admin/quota70/slash_b

A directory, quota70, holds all quota control files. The file system name is
used to identify each individual quota control file within the directory.

242 S–2302–10010

File System Quotas [5]

5.5.3 Format 3: Quota Control Groups

Use the third format (quota=/dev/dsk/filesystem_name) to show that the
specified file system is under the control of a quota file defined and used to
control other file systems as well. You should use this format when multiple file
systems will be controlled as a group. (Multiple tmp file systems can be
handled this way so that the user’s tmp quota is independent of which or how
many tmp file systems might be in use.)

For example, assume that three lines from the /etc/fstab file were written as
follows:

/dev/dsk/tmp_1 /tmp_1 C1FS quota=$QFILE

/dev/dsk/tmp_2 /tmp_2 C1FS quota=/dev/dsk/tmp_1

/dev/dsk/tmp_3 /tmp_3 C1FS quota=/dev/dsk/tmp_1

These lines define the quota control file as .Quota60, residing in the root
directory of /tmp_1. The /tmp_2 and /tmp_3 file systems are controlled by the
same quota control file; therefore, the quota information for usage of any or all
of the three file systems is common and reflects the combined usage of all three.

Note: If the right-hand side of a quota option matches one of the other file
system names in the /etc/fstab file, it is a declaration in the third format,
and the specified file system must contain a quota option naming a file. Only
one level of indirection is supported.

5.6 Determining Defaults and Special Users

For each file system for which you intend to enforce quotas, you must choose
between various quota enforcement options, as follows:

1. Select the class or classes of enforcement you want to use (a combination of
user, group, and account quotas).

2. For each of those classes, decide whether to enforce inode quota limits, file
quota limits, or both.

3. Pick default values for inode and file limits and their corresponding
warning values that will work for most users on the file system.

4. Decide if any special users require limits different from the default values,
and decide what those values should be.

S–2302–10010 243

UNICOS® Resource Administration

5. If you want to use oversubscription, pick one of the evaluation algorithms
and an evaluation period. You can perform this task later if you do not
want to make a decision now.

All of these choices depend heavily on how the file system is used by users,
how many users use the system, and so on; there are no easy rules for making
those decisions. However, the qudu(8) command allows you to observe current
usage on the file system, which helps you choose proper values. After you have
picked the values, read Section 5.7, page 244, which shows you how to produce
a quota source file for each file system using these values.

The following examples show how to collect both file and inode usage data for
the hypothetical file system /dev/dsk/netos.

In example 1, the command line prints a list of all user IDs, group IDs, and
account IDs that currently have files allocated on the /dev/dsk/netos file
system. The list is sorted in ascending order, first by ID class and second by
number of inodes in use.

Example 1:

/etc/qudu /dev/dsk/netos | cut -d’ ’ -f1-5 | sort +0 -1 +4n

In example 2, you want to enforce file quotas only for user IDs. The command
line prints a list of user IDs on the /dev/dsk/netos file system, sorted into
descending order based on the number of disk blocks currently in use.

Example 2:

/etc/qudu /dev/dsk/netos | grep uid | cut -d’ ’ -f1,2,6-8 | sort 4nr

5.7 Creating a Quota Control Source File

When a UNICOS kernel has been built with quota enforcement enabled, you
must create quota control files for each file system on which you want to
enforce quotas. The simplest way to enforce quotas is to place the file in the
controlled file system, as described in this section. Other methods are discussed
in Section 5.10, page 251. To create a quota file, the information needed in the
file must be expressed in quadmin directive format (see the quadmin(8) man
page). You can make a file in the correct format by using qudu(8), or you can
create your own quadmin source file. See Section 5.7.1, page 245, and Section
5.7.2, page 248, for more detailed information on this process.

When you initially create the source file, you must use the quadmin command
with the -F option. The name of the quota control source file is determined

244 S–2302–10010

File System Quotas [5]

from the /etc/fstab line belonging to the file system specified on the
filesystem directive in the quadmin input file.

It is not recommended that you create a very elaborate quota scheme the first
time. Using appropriate defaults generates quota files almost automatically, and
you can always adjust specific quotas later if the need arises.

Note: The file system that is specified and the file system that has the quota
control file must be mounted.

5.7.1 The qudu(8) Method of Source Creation

The qudu(8) command looks at each inode in a file system and accumulates
inode counts and total file size for every account ID, group ID, and user ID
found. This information is written in a form suitable for input to quadmin(8),
which creates or updates the quota control file. When you have run qudu, the
output file contains usage information for every ID currently using space on the
file system you selected. Run qudu on one file system and examine the output
to get an idea of its appearance and the information it contains. (It takes a few
minutes to run this command on a large file system.)

If you do not want usage information for all account, group, and user IDs,
select the specific class or classes of ID you want with the -A (account), -G
(group), or -U (user) options. If none of these options is present, the default is
the same as if -AGU had been included. For example, if you want to control
only group and user IDs, specify -GU.

If you use the resulting output file as input to quadmin, a quota control file is
created with an entry for every ID in use. The usage information is current; if
users are running on the file system, the information becomes obsolete quickly,
but every entry has default quotas and warnings assigned to it. If the defaults
are satisfactory, you are finished; otherwise, you must change whatever is
necessary to get to the state you want.

5.7.1.1 Changing Defaults

If default values are suitable for all IDs using the file system, but the defaults
defined in the sys/quota.h file are not correct for your site, edit the output
from qudu and add the correct defaults to the file by using the quadmin
default directive (see the quadmin(8) man page for a description of the
directive format). This information should be placed after the filesystem and
open directives and the first acid, gid, or uid directive line in the file. If you
use this file as input to quadmin, the defaults reflect the values you specified
and are applied to every entry in the file.

S–2302–10010 245

UNICOS® Resource Administration

The following example shows how to use the output file from qudu to change
default values:

Usage report by qudu: (SN-1203) on Thu Feb 15 09:36:05 CST 1990

version 6

filesystem dsk/usr_c /usr/c/$QFILE; open dsk/usr_c

remove all usage

The following lines were inserted to change the defaults

default account file quota 8500 inode quota 700

default group file quota 10000 inode quota unlimited

default user file quota 2500 inode quota 300

The remainder of the file is exactly as written by qudu

uid 0 inode usage 1375 file usage 25721

gid 0 inode usage 1401 file usage 26165

acid 0 inode usage 7114 file usage 74981

gid 1 inode usage 2 file usage 71

uid 2 inode usage 1 file usage 71

gid 3 inode usage 1 file usage 32

acid 2 inode usage 168 file usage 0

uid 233 inode usage 361 file usage 2500

uid 247 inode usage 1 file usage 0

uid 258 inode usage 12 file usage 2

uid 263 inode usage 334 file usage 5201

uid 264 inode usage 29 file usage 937

uid 269 inode usage 505 file usage 6893

uid 273 inode usage 23 file usage 6548

uid 283 inode usage 1 file usage 0

uid 285 inode usage 29 file usage 0

Setting defaults needs to be done only once for each quota control file, because
the defaults persist for the life of the file, unless you change them.

Note: You must apply infinite quotas to all account IDs, group IDs, and user
IDs used by system daemons, root, and other special users. These types of
special users should not receive write errors because a quota limit has been
reached. Infinite quotas for special users is not part of the software design
because the IDs used cannot be predicted. See Section 5.7.1.1, page 245.

246 S–2302–10010

File System Quotas [5]

5.7.1.2 Setting Specific Quotas

If some IDs in the quota control file need quota values different from the
default, follow these steps:

1. Decide on suitable defaults and follow the procedure recommended in the
previous section.

2. Using an editor, find the IDs in the file created by qudu that need special
attention (they appear in ascending numeric order) and insert appropriate
file quota, file warning, inode quota, and inode warning values for the
relevant ID class (account ID, group ID, or user ID). If there are only a few
IDs that need changing, this process does not take much time. If many IDs
require different quotas, this process takes some time, but it is possible to
automate the insertion of quota information with a stream editor or a
program.

The following example shows how to change quota values for specific IDs:

Usage report by qudu: (SN-1203) on Thu Feb 15 09:36:05 CST 1990

version 6

filesystem dsk/usr_c /usr/c/$QFILE; open_dsk/usr c

remove all usage

The following lines were inserted to change the defaults

default account file quota 8500 inode quota 700

default group file quota 10000 inode quota unlimited

default user file quota 2500 inode quota 300

Change the quotas for uid, gid, and acid 0 to unlimited

acid 0 file quota unlimited inode quota unlimited

gid 0 file quota unlimited inode quota unlimited

uid 0 file quota unlimited inode quota unlimited

The remainder of the file is exactly as written by qudu

uid 0 inode usage 1375 file usage 25721

gid 0 inode usage 1401 file usage 26165

acid 0 inode usage 7114 file usage 74981

gid 1 inode usage 2 file usage 71

uid 2 inode usage 1 file usage 71

acid 2 inode usage 168 file usage 0

S–2302–10010 247

UNICOS® Resource Administration

gid 3 inode usage 1 file usage 32

uid 233 inode usage 361 file usage 2500

uid 247 inode usage 1 file usage 0

uid 258 inode usage 12 file usage 2

uid 263 inode usage 334 file usage 5201

uid 264 inode usage 29 file usage 937

uid 269 inode usage 505 file usage 6893

uid 273 inode usage 23 file usage 6548

uid 283 inode usage 1 file usage 0

uid 285 inode usage 29 file usage 0

Setting specific quotas needs to be done only once for each quota control file,
because the quota settings persist for the life of the file, unless you change
them. If you have done much manual work, create an ASCII back-up copy of
the quota control file by executing quota with the -b option.

5.7.2 Manual Source File Creation

You can create a source file for quadmin(8) manually, as shown in the example
found on the quadmin(8) man page. If your installation uses ranges of IDs for
specific categories of accounts, groups, or users, this method allows you to
create a file fairly easily using the enable directive provided by quadmin. If
each ID has a different quota, you must create directives one at a time. To make
this process easier, you can create a skeleton directive file with all of the general
information and then edit that file to insert specific quota information. You can
always create a source file with a program, if the information needed to specify
the quotas for each user is available or can be derived from an existing source.

5.8 Generating the Quota Control File

When the source file has been created, you must generate a quota control file.
Use quadmin with the -F option for this step, because the quota file does not
exist and therefore cannot be accessed through the quotactl(2) system call.
The -F option causes quadmin to write the file directly.

Warning: You should not remove the quota control file while quotas are
active on a file system.

Follow these steps to generate the file:

1. If the source file has been created initially by qudu, and /etc/fstab has
the current quota configuration, the quota file name on the filesystem

248 S–2302–10010

File System Quotas [5]

directive line in the source file should be correct. If it is not correct, choose
one of the following methods to rename the quota file:

• Ensure that /etc/fstab is correct and remove the file name from the
filesystem directive. This forces quadmin to use the file system name
specified in /etc/fstab.

• Do not have this file system configured in /etc/fstab. This forces
quadmin to use the file system name specified in the filesystem
directive.

• Change the file system name on the filesystem directive line to match
the one in /etc/fstab. In this case, quadmin uses the name from
/etc/fstab, but, because the name matches the one on the
filesystem directive, quadmin does not warn you about a name
mismatch.

Assuming that /etc/fstab is set up, the directive line for creating a quota
control file in /usr/cwould read as follows:

filesystem /usr/c; open /usr/c

Always use an explicit open directive so that, if the source files are ever
combined, there will be no confusion about what information belongs to
each file system.

2. With the proper information in the source file, run the following command:

quadmin -F -m source_file_name

This command creates the quota control file specified either in /etc/fstab
or with the optional second parameter of the filesystem directive. You
must have permission to create files in the directory specified for the quota
control file.

3. When you are finished, ensure that the quota file has root ownership and
owner-only permissions, so other users cannot access or accidentally alter
or remove it. quadmin creates the file with whatever ownership it has
inherited and owner read/write access only.

It is recommended that you create each quota control file separately in order to
deal with any mistakes or problems more easily. Also, having a quota source
file for each file system makes maintenance easier.

Quotas applied to the root file system or to user ID 0 (root) are ignored. The
kernel refuses to activate quotas on this file system. Be especially cautious that

S–2302–10010 249

UNICOS® Resource Administration

quota control files do not get removed by accident or inadvertently reloaded
from a backup.

5.9 Activating Quota Enforcement

After a quota control file has been created, you can activate quota enforcement
on that file system by entering the quadmin(8) command with the -c option
(you must be super user to activate the quota feature; for use on a Cray
ML-Safe configuration of the UNICOS system, see the quadmin(8) manual page
for more information). To activate quota enforcement, you must specify one of
the following activation choices as an argument to the -c option:

Activation choice Description

count Turns on quotas for file system; maintains counts.

default Turns on quotas for the relevant file system in the
mode it was previously in. The kernel records the
activation mode and uses the most recent mode
when default is used. Unless explicitly
changed by use of a default directive, a newly
created quota file has count as the default mode.

inform Turns on quotas for the relevant file system,
maintains counts, and issues warning and quota
limit signals.

enforce Turns on quotas for the relevant file system,
maintains counts, issues warning and quota limit
signals, and enforces quota limits.

These choices are described in more detail on the quotactl(2) man page.

The following examples use enforce, but the other activation choices can be
used in the identical manner. The easiest way to activate quota enforcement is
to use the quota source file you used to create the quota file. The information in
the quota control file has not been changed; quadmin searches for the
filesystem directive in the source file and gets the needed information from
it. Run the following command:

quadmin -c enforce source_file_name

If you do not want to use the directive file, run the following command to
activate quota enforcement on the /usr/c file system:

quadmin -c enforce -s /usr/c

250 S–2302–10010

File System Quotas [5]

If there are no error messages, quota enforcement is running on the file system.
You may change the enforcement level at any time.

Quotas may be activated automatically when the file system is mounted if the
-q option is added to the mount(8) command line. The enforcement level is
default.

5.10 Setting Current Usage Information

The qudu(8) command generates usage information based on the content of the
target file system at the time it is run. Because qudu uses the raw device
interface, you can run usage extraction on an unmounted device. If the quota
control file resides on the controlled file system as recommended, the usage
information cannot be entered in the file until the device is mounted.
quadmin(8) should be run immediately after the device is mounted in order for
the quota control file usage information to be as accurate as possible.

Usage information in the quota control file must be set initially when quota
control is installed on the file system and whenever fsck(8) changes
information related to usage. (You will not know when fsck changes
information, so run qudu routinely after fsck.) Inaccurate usage information in
the quota control file does not affect system processes, but quota limit and
warning thresholds are dependent upon the accuracy of the quota control file.
To ensure that quota control is consistent and accurate, make it a policy to
update usage information before users can alter the file system.

5.11 Usage Accumulation Rules

Assuming that both inode and file space are controlled, the following sections
describe how the kernel accounts for space usage.

5.11.1 Inode Usage

Only inodes associated with regular files (IFREG), migrated files (IFOFL,
IFOFD), symbolic links, and directories (IFDIR) are counted. The account,
group, and user IDs found in the inode are charged one unit for each inode
belonging to them. Inodes are not counted as file space.

S–2302–10010 251

UNICOS® Resource Administration

5.11.2 File Usage

Any indirect blocks (blocks containing disk allocation information not accessible
to the user) are counted as file space, as are access control limit (ACL) blocks, if
the UNICOS multilevel security (MLS) feature is enabled.

Files and directories whose data resides entirely in the inode (possible only on
Cray T90 systems) have an allocated block count of 0. Only actual blocks
allocated are counted, rather than the space logically used. Therefore, the length
reported by the ls(1) or du(1) commands can be very different from the
amount of space really used (either more or less), especially if sparse allocation
occurs or files have data residing in the inode. The amount charged is always
in units of allocation rather than logical length, which varies depending on the
implementation and device configuration from one sector to many tracks per
unit.

When files are migrated, the space occupied is credited to the IDs in the inode
of the file. If the file is later brought back online, the space needed for the file is
applied against the quotas. If bringing a file online violates an enforced quota
limit, that file cannot be brought online.

5.12 Administering the Quota Enforcement Feature

The following sections contain information about basic administration of the
quota feature, including starting up the system, activating quota enforcement
control, adding users, deleting users, creating or extending files, and viewing
network quota information.

5.12.1 System Startup

If you run fsck(8), also run qudu(8) to generate correct usage information.
Immediately after the file system is mounted, run quadmin(8) to correct the
quota control file.

The following example shows how the file system quota feature can be activated
at system startup. The first box contains a script from the /etc/rc.mid file,
which is called by the system start-up script file etc/rc. (The script can be
placed in any file called by the system start-up script.) In this example, the
script uses the shell script /admin/etc/quotas/qurun (shown in the second
box) to create and update each file system’s quota control file, start the file
system quota enforcement feature, and set the enforcement level to enforce.

252 S–2302–10010

File System Quotas [5]

initialize quotas for the day

#

if [-f /admin/etc/quotas/qurun]

then

echo "Rebuilding disk quotas... (could take several minutes)..."

/admin/etc/quotas/qurun -i

echo "Disk Quotas rebuilt"

fi

#

turn quotas on and run the exceptions files

#

/admin/etc/quotas/qurun -s enforce

/admin/etc/quotas/qurun -d

In this example, the /admin/etc/quotas/qurun shell script is used to
automate routine administrative duties for each file system specified on the shell
script’s command line. If no file systems are specified, the list $FILESYSTEMS
is used. The options that can be specified on the command line are as follows:

Option Description

-b Backup. For each file system, this option creates a back-up file in
directory $BACKDIR containing all the quadmin directives
necessary to reconstruct the file system’s current quota file,
excluding usages. The quotas feature can be running, and users
can be in the file system during a backup.

-i Install. For each file system, this option creates a new quota
control file by using the defaults in the back-up file (if it exists) in
directory $BACKDIR. The qudu command is then used to update
the quota file with the current usages. This option is useful when
setting up quotas for the first time, or when the quota file has
been destroyed or is out-of-date. The quota feature cannot be
running during an install, and users cannot be in the file system.

-d Defaults. For each file system, this option updates the quota
control file with any defaults from the back-up file in directory
$BACKDIR. This option is useful when you have made changes to
the back-up file and you want to activate those changes in the file
system. The quotas feature can be running, and users can be in
the file system when the quota control file is updated.

S–2302–10010 253

UNICOS® Resource Administration

-r Report. For each file system, this option issues a report showing
the number of disk blocks and inodes owned by each user, group,
and account, sorted by increasing usage amount. This option is
useful when picking defaults or when looking for users who have
exceeded their limits. The quotas feature can be running and
users can be in the file system while a report is issued. The -r
option requires that the awk script qusort be in your binary
search path. (The qusort script is intended to provide a
mechanism for formatting the qurun report; it is not provided in
the release or in this example.)

-s Start. For each file system, this option starts the quotas feature or,
if the feature is already running, it changes the enforcement level.
The available levels are count, inform, and enforce. If you do
not specify a level with -s, the enforce level is used. To
preserve accuracy, you must make sure no users are in the file
system when turning on the quotas feature. Users can be in the
file system when changing enforcement levels.

-u Update. For each file system, this option uses the qudu command
to update the quota file with the current usages. This option is
primarily used while the quota feature is running to update the
quota file when it is believed that the quota file is out-of-date.
The update option improves the accuracy of the usages, but it
does not guarantee absolute accuracy.

The following box contains the shell script /admin/etc/quotas/qurun.

#

#Sample code for the shell script /admin/etc/quotas/qurun:

#

FILESYSTEMS="/sn1001/soft/os /sn1001/cnn /sn1001/mktg" # default list of

filesystems to act on

BACK51=/admin/etc/quotas/backup # directory for 5.1 backup files

BACK60=/admin/etc/quotas/backup60 # directory for 6.0 backup files

QUOTDIR= # directory for quota files

BIN=/usr/bin/ # directory where the quota commands reside

ETC=/etc/ # directory for qudu and quadmin

#

Determine the operating system level. Use it to pick the correct

backup directory.

254 S–2302–10010

File System Quotas [5]

#

${ETC}quadmin -Q >/dev/null 2>&1

if [$? -eq 0]; then # if at 6.0 or greater

QFILE=.Quota60

BACKDIR=$BACK60

else

QFILE=.Quota51

BACKDIR=$BACK51

fi

flags=0

set -- ‘getopt ’bdhirsu’ $*‘

if [$? -eq 0]; then

while ["$1" != "--"]

do

case $1 in

-b)

command=Backup;;

-d)

command=Defaults;;

-i)

command=Install;;

-r)

command=Report;;

-s)

command=Start;;

-u)

command=Update;;

esac

shift

flags=‘expr $flags + 1‘

done

shift

fi

if [$flags -ne 1]; then

cat >&2<EOF

Usage: ‘basename $0‘ [-b | -i | -d | -r | -s [count|inform|enforce] |

-u] [filesys ...] ‘basename $0‘ is used to administer the File Quotas

feature.

EOF

exit 1

S–2302–10010 255

UNICOS® Resource Administration

fi

if ["$command" = "Start"]; then # if Start, check for enforcement level

level=enforce

case $1 in

count|inform|enforce)

level=$1

shift

esac

fi

if [$# -ne 0]; then # if no filesystems specified, use default list

FILESYSTEMS=$*

fi

for filesys in $FILESYSTEMS

do

echo $filesys

DEVDSK=‘/etc/mount | awk ’$3 == "’$filesys’" {print $1}’‘

if ["$DEVDSK" = ""]; then

echo "$filesys is not mounted! $command not done."

continue

fi

#

Determine if quotas is running on the filesystem. Sometimes it matters.

#

QUOFF=F # assume quotas not running

${BIN}quota -s $filesys 1>/dev/null 2>&1

if [$? -eq 0];then

QUOFF= # quotas is running

fi

#

Compute the backup file and quota file names for this filesystem.

#

bakfile=$BACKDIR/‘basename $filesys‘

if ["$QUOTDIR"]; then

quofile=$QUOTDIR/‘basename $filesys‘

else

quofile=$filesys/$QFILE

fi

Perform the requested subfunction.

#

256 S–2302–10010

File System Quotas [5]

case $command in

Backup)

rm -f $bakfile

if [! -r $quofile]; then

echo "Quota file $quofile not found. Will create it now."

$0 -u $filesys

fi

(${BIN}quota -bEs $filesys -q $quofile > $bakfile) &

;;

Defaults)

if [-r $bakfile]; then

(${ETC}quadmin -m$QUOFF $bakfile) &

echo ${ETC}quadmin -m$QUOFF $bakfile

else

echo "File $bakfile is unreadable; Defaults are unchanged.">&2

fi

;;

Install)

if ["$QUOFF"]; then

rm -f $quofile

$0 -d $filesys

(${ETC}qudu -q $quofile $DEVDSK | ${ETC}quadmin -mF) &

else

echo "$filesys has quotas enabled! Install not done."

fi

;;

Report)

echo " filesystem $filesys"

${ETC}qudu -U $DEVDSK | /bin/grep uid | /bin/sort -r -n +7

echo ""

;;

Start)

if [! -r $bakfile]; then

echo "Backup file $bakfile not found. Will create it now."

$0 -b $filesys

fi

${ETC}quadmin -c $level $bakfile

;;

Update)

(${ETC}qudu -q $quofile $DEVDSK | ${ETC}quadmin -m$QUOFF) &

;;

esac

done

S–2302–10010 257

UNICOS® Resource Administration

wait

If you decide to use the example script, you must first set the first three
variables to match your configuration. The variables are as follows:

Variable Description

FILESYSTEMS Set to the list of file systems on which you intend
to run quotas. The file system names should be
separated by blanks.

BACKDIR Set to the path name of a directory where
back-up copies of each quota file will be kept.
The back-up files contain all the default quota
settings and all settings for users whose limits are
different than the defaults.

QUOTDIR Usually, leave this blank, which causes the quota
file for each file system to be placed in the root
directory of that file system. If you are short of
disk space in the quota file systems, set QUOTDIR
to the path name of a directory on a file system
where there is more room and where all the
quota files are kept. If you install quotas and then
later decide to change QUOTDIR, make sure that
you place the new quota file path names in the
filesys directive of each of your back-up files.

5.12.1.1 Back-up File Example

The following box contains an example of a back-up file. The back-up file is
located in directory $BACKDIR and is created by /admin/etc/quotas/qurun
option -b. The back-up file is used by options -i (install) and -d (defaults).

Created by quota on Thu Aug 31 11:54:48 1989

filesystem /sn1001/soft/os /sn1001/soft/os/.Quota60; open /sn1001/soft/os

default account flags off

default account file quota 40000 file warning 0.900000
default account inode quota 200 inode warning 0.900000

default group flags off

default group file quota 40000 file warning 0.900000

default group inode quota 200 inode warning 0.900000

default user flags fi
default user file quota 4000 file warning 0.900000

default user inode quota 1000 inode warning 0.900000

258 S–2302–10010

File System Quotas [5]

user root file quota infinite inode quota infinite

5.12.2 Quota Enforcement Control

When a file system is mounted by using mount(8), quota control is activated in
its default mode. If a default level directive is not included when the
quota control file is created, the default mode is count. The enforcement mode
can be changed by using the quadmin -c option, and the specified mode then
becomes the default mode. After quota control is activated, you can change its
mode, but you cannot deactivate it; only unmounting the file system by using
umount (see mount(8)) deactivates quota control.

5.12.3 Adding Users

If a new user of the file system becomes active, the kernel automatically creates
quota control entries with default quota and warning values for any IDs not
already defined in the quota control file. If the default values are improper, you
must run quadmin when you create the new IDs to set up the correct quota
information on all file systems available to those IDs. When you run qudu to
set up initial usage information, quadmin adds records to the quota control file
with default quota and warning values for all IDs found on the file system,
whether or not they were defined in the existing quota control file.

5.12.4 Deleting Users

You can use quadmin to delete entries from the existing quota control file.
When an entry is deleted, its usage value is set to 0 and the limit and warning
values are set to their defaults; the entry is not removed.

To remove an entry from the quota control file, use the following steps:

1. Create the ASCII version of the quota control file by using the quota
command.

2. Using an editor, delete all records corresponding to the deleted entry.

3. Create a new quota control file by using the quadmin command.

Note: If any inodes with the deleted or removed ID exist in the file
system, those entries are restored (with default limit and warning values)
if the output of qudu is processed by quadmin without any editing.

S–2302–10010 259

UNICOS® Resource Administration

5.12.5 Creating or Extending Files

One of the following rules is applied when files are being created or extended.
Both inode and file space quotas are dealt with at the same time (assuming both
are being enforced). The privilege of the process making the request is not an
issue, so processes owned by root are constrained by the same rules as others.

• If the file is owned by root, quotas are not enforced, and the file can be
extended without limit.

• If the file is not owned by root, the owner’s quotas are enforced.

When ownership of a file changes, one of the previous rules is followed,
depending on the target’s ID.

5.12.6 Viewing Quota Control

The quadmin(8) command executed with the -v option displays generic quota
information and the enforcement level of each file system with active quota
enforcement. The following example shows a typical display created by
quadmin -v:

Quota Generic Information on Fri Feb 9 10:17:51 CST 1990

Quota control configured for: Accounts, Groups, Users
Quota entries configured: 375

Maximum used: 78, Current: 36

Quota entry accesses: get 487532, put 487294

Quota file accesses: read 54219, update 1004

Quota hash chain: read 34

Inode cache flushes: 0, sleep 0

/c....... INFORM /d.......COUNT /fsmtest..ENFORCE

This display created by quadmin shows that the kernel is configured to support
account, group, and user quotas and has a total of 375 quota entries configured.
The Maximum used and Current fields show the greatest number of quota
entries used at one time and the current number in use. The maximum value is
intended to help you decide how large the quota table in the kernel must be. If
the maximum is far below the number of configured entries and stays that way
over a period of time when you know typical workloads are being run, you
may reduce the number configured, thereby reducing the size of the kernel.

The number of hash chain reads indicates how many quota records were found
other than at the beginning of a hash chain. This number is not important in

260 S–2302–10010

File System Quotas [5]

most situations, because it is mostly an indication of the hashing mechanism’s
efficiency relative to the particular mix of IDs being used.

Usually, tuning the configuration too close to the minimum is not advisable.
Individual quota table entries are not very large; reducing the total number by a
small percentage does not result in any significant benefit. If you see consistent
behavior such as that indicated in the example display (where 375 entries are
configured and the maximum usage is only 78), and it would be advantageous
for your kernel size to be reduced slightly, you can safely lower the number of
configured quota entries to 150.

The remainder of the statistics portion of the display shows information that is
useful only in extreme situations. The get and put values show how many
times quota table entries were read and changed. The read and update counts
show the actual number of disk accesses needed to retrieve new quota entries
and to keep the file current.

The ratio between get and read or between update and put indicates how
beneficial cache is in reducing actual I/O activity caused by quota enforcement.
If any I/O errors occur on the quota control files, an error count also appears in
the display.

The last statistics line shows the number of times the quota system was
required to flush inodes and/or sleep in order to acquire a quota table entry for
a newly opened file. These numbers should normally be small; significant
increases indicate an insufficient number of quota entries. If it persists, this
condition can reduce system performance.

The last line on the display lists the file systems and their level of quota
enforcement. Only file systems with some level of quota enforcement are
shown, and the format is adjusted to fit the maximum number of names on a
line consistent with an attractive and readable format.

5.13 Additions to Login Profile

If you want automatic reporting of quota warning and limit conditions when
the user logs in or a batch job starts, place the quota(1) command in the login
profile (.login or /etc/cshrc (see cshrc(5)) for csh(1) and .profile or
/etc/profile (see profile(5)) for ksh(1)), as follows:

quota -r wl

This command line reports the names of any file systems where the user ID,
default account ID, or default group ID have usage values above the warning

S–2302–10010 261

UNICOS® Resource Administration

level. If you want to check all users’ authorized account IDs and group IDs,
add the following command to the login profile:

quota -A -G -r wl

If you only want to report on the user’s home file system, add the -s option to
quota, specifying the path of the home file system.

Because quota provides special exit codes for specific conditions, you can write
scripts to analyze the information and produce more informative messages,
provide information to local log files, inform the administrator, or perform
special actions if batch jobs are involved. Refer to the quota(1) man page for
more information.

5.14 User-level Behavior

User warning and limit messages are automatically written to the stderr file
by the Korn, Bourne, and C login shells. However, if you are not using any of
these shells, and if you want to enable user warning and limit messages, you
must start one copy of quotamon(1) for each session (interactive and batch).
Without it, users are not notified of quota warning conditions unless they use
quota(1) periodically. Before using quotamon, decide whether the cost of
running this background process is acceptable in your environment; quotamon
is small and uses no CPU time except when writing messages.

If you are running a Cray ML-Safe configuration of the UNICOS system, prior
to changing your active security label you must kill quotamon, because it is a
background process. After changing your label, you can restart quotamon.

Starting quotamon is best done by adding code to /etc/profile and
/etc/cshrc, as in the following:

ps | grep quotamon > /dev/null

if ($status == 1) then
/usr/bin/quotamon -s 60

endif

The -s option specifies the amount of time in seconds to delay repetitions of
the same kind of quota message; the default is 45 seconds. You may specify as
large a value as you wish (up to the signed integer maximum).

The quotamon process can be killed by the user. This capability allows users to
remove the process if they object to its presence.

262 S–2302–10010

File System Quotas [5]

If a program traps a SIGINFO signal, you can use the getinfo(2) system call
to determine what event occurred. If a SIGINFO occurs, the signal is sent to all
processes attached to the same job table entry that have not cleared a previous
signal occurrence by executing a getinfo system call. The signal is ignored by
default.

5.15 Nonstandard Configuration Options

This section discusses alternative ways to configure quota control files; the
recommended configuration provides for one quota control file per file system,
with each such file residing on the file system it controls (all configuration
options are provided through the /etc/fstab file).

The kernel can activate quota control where the quota control file is on another
mounted file system and also allows more than one file system to be controlled
by the same quota control file. However, you must understand the
consequences of nonstandard configurations before using them.

5.15.1 Nonresident Quota Control Files

The major operational complications resulting from configuring a quota control
file that does not reside on the file system it controls are as follows:

• The file system on which the quota control file resides must be mounted
before quotas can be activated on the controlled file system. Conversely, you
must unmount the controlled file system before unmounting the file system
on which the quota control file resides.

• You should place the configuration information in /etc/fstab to ensure
that quota usage is consistent. You can use the -Q option with the mount(8)
command to perform this function, but this is not recommended.

• Performance may be affected by too much quota control file traffic on a
single file system.

• Quota control would be lost on the controlled file system (but the system
would continue to perform I/O correctly) if the control file became
inaccessible because of some malfunction on its file system.

5.15.2 File System Groups under One Quota Control File

File system groups under control of one quota control file (also known as quota
groups, domain quotas, or quota domains) are similar in operational complexity to

S–2302–10010 263

UNICOS® Resource Administration

the configuration described in the previous section. The key to successful use of
this feature is placing the configuration information in the /etc/fstab file so
that all administrative commands have a consistent view of the organization.
Usage information generated by qudu(8) consists of the sum of usage for all
IDs present on all the file systems that are members of the quota group when
any one file system is specified on the command line.

5.16 Aggregate Quotas

The aggregate quotas option enables sites to charge for off-line files in much the
same way as they charge for online files. In the default quotas setting, an
attempt to migrate a file could fail because bringing the file online might violate
a quota limit. With the aggregate quotas setting, file unmigration is always
allowed by the quota mechanism. The UNICOS operating system tracks off-line
and online data together, and users are limited in the total amount of space
they can use.

Using aggregate quotas has the following ramifications:

• Administrators can limit (approximately) the amount of space used in the
off-line archive.

• Administrators have no quota control over what users have online; they can
control only the total space used.

• Off-line file data blocks are always charged in units of 4096-byte blocks;
therefore, the quota charge for an off-line file is always less than or equal to
the charge for the same file online, depending on how the file was created or
how the file system is configured.

• Users can accidentally unmigrate more data than the file system can hold.

• Users are always charged for data blocks and MLS blocks, whether or not
the file is migrated.

Aggregate quotas affect the following commands:

qudu(8) The -a option must be used to specify to use the aggregate quota
counting method.

quadmin(8) The default style directive must be changed from online to
aggregate. This directive specifies whether quota counts are
maintained only for files that are physically on disk (online), or
whether files migrated off line by the Data Migration Facility
(DMF) are included in the count (aggregate).

264 S–2302–10010

File System Quotas [5]

quota(1) The quotas report column File blocks is changed to Aggregate
blocks. This column shows the quota block counts and block
usage for aggregate quotas.

5.17 Using the Oversubscription Option (Soft Quota)

The normal operation of the file quota mechanism is to issue warning messages
to the user when the warning level is exceeded and to stop any new allocation if
the quota is reached. In addition to this mode of operation, an oversubscription
mechanism is also available on a file system basis. This mechanism lets users
exceed quotas by a controlled amount for a limited period of time.

5.17.1 Behavior of the Oversubscription Mechanism

Each quota control file has header fields that select the oversubscription
algorithm to be used and specify parameters to the algorithm. This means that
all account IDs, group IDs, and user IDs controlled from the file are under a
single discipline. Oversubscription is available for file space only; inode use is
enforced with the standard mechanism. When you select this mode of
operation by setting the algorithm selector in a header field, quota control
changes its behavior as follows:

• The quota remains the hard upper boundary on allocation.

• A second field in the quota record, f_runquota, becomes the enforced
quota value. When this field is nonzero, the kernel enforces at this value
rather than at the f_quota allocation limit.

• The warning level becomes the oversubscription threshold.

• The quota(1) command changes its display to show information related to
the soft quota, such as the time when new allocation is prohibited or
permitted.

• The quadmin(8) command supports additional fields needed by the
evaluation algorithms in the header and record structures.

5.17.2 Supported Algorithms

Two oversubscription algorithms, an exponential and a linear function, are
supplied, and two additional algorithm selection values are reserved for site use.

S–2302–10010 265

UNICOS® Resource Administration

The default algorithm (named none) realizes the original behavior of file
quotas. Sites that have access to source can add local algorithms (named site1
and site2) to the kernel and their inverses to the quota(1) command. The
quota(1) command uses the inverse to provide predictive information to the
user.

5.17.2.1 Exponential Algorithm

The exponential algorithm, as follows, is based on the COS RDM
oversubscription model.

A = U + (A − U)es s s
−(t−s)

P

where:

A = Average now

As = Average at time s
P = Characteristic period (in seconds)

s = Time at A sub s
t = Time now

Us = Usage at time s

In Table 32, the second column is the name used by the quadmin(8) command
to set the field. Note that the implementation is such that if usage changes from
one calculation period to the next, U s is set to current usage, s is set to the
current time, and A s is set to A. This prevents usage changes from affecting the
average until at least some history of that usage level can be accumulated.

Table 32. Field Usage of the Exponential Algorithm

Location Field name Variable Description

Header algorithm Exponential (actual
value)

Header ef1 P Characteristic period in
seconds

Header ef2 Not used

Record ef1 As Average at time s

266 S–2302–10010

File System Quotas [5]

Location Field name Variable Description

Record ef2 Us Usage at time s

Record ef3 Not used

Record ef4 Not used

Record ef5 s Prior evaluation time

5.17.2.2 Linear Algorithm

The linear algorithm is a linear form of oversubscription that eliminates the
more time-consuming calculation of the exponential function.

A = Us
(t − s)

P
P − (t − s)

Ps+ A

where:

A = Average now
As = Average at time s
P = Characteristic period (in seconds)

s = Time at A sub s

t = Time now

Us = Usage at time s

In Table 33, the second column is the name used by the quadmin(8) command
to set the field. Note that the implementation is such that if usage changes from
one calculation period to the next, Us is set to current usage, s is set to the
current time, and As is set to A. This prevents usage changes from affecting the
average until at least some history of that usage level can be accumulated.

Table 33. Field Usage of the Linear Algorithm

Location Field name Variable Description

Header algorithm Linear (actual value)

Header ef1 P Characteristic period in seconds

Header ef2 Not used

S–2302–10010 267

UNICOS® Resource Administration

Location Field name Variable Description

Record ef1 As Average at time s

Record ef2 Us Usage at time s

Record ef3 Not used

Record ef4 Not used

Record ef5 s Prior evaluation time

5.17.2.3 Algorithm Comparison

Both the exponential algorithm and the linear algorithm have similar long-term
behavior, but the linear form generally reacts more quickly to drastic changes in
usage. The inverse functions mentioned previously are used to predict when
inflation or decay will cross the warning value (soft limit) and so answer the
following questions:

• When will I be able to allocate more space if the average is above the soft
limit but actual usage is below?

• When will I be prevented from allocating more space if the average is below
the soft limit but actual usage is above?

5.18 Changing ID Class Control

If control over an ID class (account, group, or user) is added or deleted while
quota enforcement is active on a file system, files whose inodes are in the cache
before the change is made are not affected and retain their prior class
enforcement state. This happens, for example, if a file system has been set up
with default account flags off and then, while the system is mounted,
a default account flags fi quadmin directive is issued. This behavior
should be taken into account if you change the class enforcement policy on an
active file system.

5.19 Quota Enforcement Across a Network

When dealing with the control of file space consumed by processes running as
servers to another machine, quotas can be enforced only on the machine that
physically owns the resource. This situation occurs because quota enforcement
on a file system must be done in one and only one place, and the machine that
owns the resource presumably has administrators most interested in its control.

268 S–2302–10010

File System Quotas [5]

Also, in heterogeneous networks, there is no guarantee that any node other
than the one owning a resource really knows what it is, how it is allocated, and
so forth.

A question you may have about this situation is how much information about
the resource consumer is available to the enforcing node. To enforce quotas, the
node must know the relevant IDs of the consumer, but in situations where IDs
are mapped onto the node there is a potential for ambiguity. Also, UNICOS
supports account IDs, but most network protocols, including NFS and OSI, do
not have the capability of passing an account ID to the server.

S–2302–10010 269

File System Space Monitoring [6]

The file system space monitoring capability improves the usability and
reliability of the system. Space monitoring observes the amount of free space on
the mounted file systems and takes remedial action if warning or critical
thresholds are reached.

This section describes the space monitoring feature, its installation, and use of
the commands fsdaemon(8), the monitor daemon, and fsmon(8), the daemon
interface.

6.1 Operation of the Space Monitor

There are three major components to the space monitor: the monitor daemon
(fsdaemon), the daemon interface (fsmon), and the operator’s interface
(msgdaemon).

The daemon may be started by the /etc/rc script (see brc(8)) in the area of
the script reserved for starting daemons, or it can be started manually by using
the fsdaemon command. Once the daemon starts and configures its monitor
tables, it begins monitoring file system free space on a timed cycle. It remains
running until stopped by an operator command or a system shutdown.

If the operator wants to continuously examine the current status of the
monitored file systems or to alter some aspect of the monitoring process, the
operator enters a command through the msgdaemon operator interface
command. The fsmon command must be defined in the list of valid operator
commands in the configuration file $HOME/.operrc. The operator interface
executes fsmon and the output is returned to the operator’s display screen.

The daemon interface may also be called by a privileged user. In this case, it
returns its output to the stdout file.

The purpose of the daemon is to take action when the free space on one or
more monitored file systems reaches either a warning or a critical free space
threshold. When this occurs, the daemon may perform the following actions
based on its configuration instructions:

• Send a message to the operator through msgdaemon(8)

• Initiate a shell script or command

S–2302–10010 271

UNICOS® Resource Administration

6.2 Interprocess Communication

Communication between fsdaemon(8) and fsmon(8) occurs by way of named
pipes. When it initializes, fsdaemon establishes a request pipe with a known
name; all requests to it are made through that pipe.

When fsmon executes, it opens the fsdaemon request pipe and includes the
name of the reply pipe along with the request it writes into the request pipe.
fsdaemon replies to each request using the reply pipe name specified with the
request. This allows multiple instances of fsmon to run without conflict.

Communication between fsdaemon and msgdaemon(8) is used only for
warnings and critical operator messages. It works in much the same way as the
fsdaemon to fsmon mechanism previously described. In this case, however,
fsdaemon is the originator rather than the recipient of requests. An include file
(msg.h) provided with the operator message daemon (msgdaemon) ensures
that the interface is structured properly. The form of operator messages
indicates that an operator response is expected even though the actual response
is discarded. This is merely to ensure that operator messages are displayed and
stay displayed until the operator responds or they are canceled by fsdaemon.

When an fsmon command is given to the operator interface, the parameters are
passed on the command line. Output from fsmon is sent back to the operator
interface through the stdout file. This interface is not interactive but allows
fsmon to be run either as a normal or an operator command.

Communication between fsdaemon and administrator-specified commands or
scripts occurs when fsdaemon detects that a warning or critical threshold has
been reached for a particular file system. fsdaemon appends the name of the
file system, preceded by a space, to the specified command or script, executes a
fork(2) system call, and runs the command or script with ksh(1). The
command or script is initiated with the daemon’s environment (the stdin file
is closed and the stdout file and stderr file are open on /dev/null) and,
once started, fsdaemon pays no attention to the command and does not wait
for it to complete. No other command or script is executed for the affected file
system until a reset request has been received, or until a critical threshold has
been reached.

6.3 The Monitor Daemon, fsdaemon(8)

This section describes the monitor daemon capabilities, both functionally and
from a user’s point of view.

272 S–2302–10010

File System Space Monitoring [6]

Except when initializing and terminating, fsdaemon(8) always evaluates the
current state of file systems and watches for requests from the interface
program. The monitoring process is controlled by these parameters:

• Names of the file systems to monitor

• Warning and critical threshold values for each file system (default values are
used if specific values are not provided)

• A Monitoring enable switch for each file system

• Operator message enable switches for warning and critical thresholds

• Critical and warning command execution flags

• A command (if any) to run if a warning or critical threshold occurs

• Length of time between each monitor cycle

• Priority (nice value) of the daemon

• plock(2) state of the daemon

• Ability to add monitored file systems at any time

6.3.1 File System Monitoring

When the daemon starts, it does not know which file systems you want it to
monitor or the thresholds you want to assign to each file system. The file
systems are identified and their thresholds set with the fsmon command. The
following paragraphs describe the monitoring process after the daemon has
been started and configured. See Section 6.3.3, page 275, for more information
about configuring the daemon by using the fsmon command.

Once each cycle, fsdaemon collects usage information for each file system
enabled in the monitor list and takes the following steps:

1. Each entry is examined to determine whether a threshold has been reached
(a threshold is reached when usage is greater than or equal to the
threshold). If not, the daemon waits for the next cycle time and repeats the
process. If a threshold is reached, the next stage of processing is started.

2. If a new critical threshold has occurred and a critical command is not
already running, the daemon starts the critical threshold command (if one
has been defined using the fsdaemon command), issues the critical
operator log messages for this file system (unless operator messages have
been disabled with fsmon -n), marks that this entry has been processed,

S–2302–10010 273

UNICOS® Resource Administration

and records the time the condition was detected. Then it moves to the next
enabled entry.

3. If a new warning threshold has occurred, and a critical or warning
command is not already running, the daemon starts the warning threshold
command (if one has been defined), issues the warning operator log
messages for this file system, marks that this entry has been processed, and
records the time the condition was detected. Then it moves to the next
enabled entry.

Once a file system has reached the warning or critical threshold, the messages
have been logged, and the command started, the daemon does not attempt to
start another command of the same kind until a reset request is processed.

6.3.2 Critical and Warning Command Processing

In addition to starting the daemon, the fsdaemon command can be used to
specify commands to be run when critical or warning thresholds are reached.
Full or relative path names for the commands must be specified. Options to the
commands and command redirection can also be specified; if this is desired, the
command must be enclosed in quotation marks. You start the command by
using the exec(2) system call to execute ksh(1) with the command as the -c
option, and so you should initialize the environment variables and working
directory as needed for execution.

When a critical or warning command is started, all files except the stdin file,
the stdout file, and the stderr file have been closed. These special files are
initiated as follows:

• The stdin file is closed.

• The stdout file and the stderr file are open. In normal mode, they are
assigned to /usr/spool/fsmonitor/Fd.fd12. In test mode, they are
assigned to ./Fd.fd12.

This means that, if the command needs to access any of these files, they must
be redirected properly.

In test mode (-t option on the fsdaemon command), the file Fd.fd12 is
created in the directory the daemon inherits when it is started. In normal mode,
the file is in the directory /usr/spool/fsmonitor unless you specify a
different directory using the -p option directory. In normal mode, the daemon’s
home directory also defaults to /usr/spool/fsmonitor, unless the -p option
specifies another directory. The command always starts with the home
directory set to /.

274 S–2302–10010

File System Space Monitoring [6]

See the fsdaemon(8) man page for a detailed description of the fsdaemon
command and the options you can use to specify critical or warning commands.

6.3.3 Request Processing

The fsdaemon program includes a number of requests designed to configure
the daemon, control the monitoring process, and allow the operator to view the
current state of the file systems. Requests are created from the options specified
with the fsmon command. Access to the request processor is through the
request pipe (using fsmon).

The following paragraphs provide a brief overview of fsmon command
options. For a detailed description of each option, see the fsmon man page.

The -a option lets you add a file system to the table of monitored file systems.
The command lines for this function are as follows:

fsmon -a [-c nnn] [-i [c][w]|-n [c][w]] [-w nnn] [-e] filesystems
fsmon -a [-c nnn] [-w nnn] [-d] filesystems

The -m option allows you to change entries in the table of monitored file
systems. The command lines are as follows:

fsmon -m [-c nnn] [-i cw | -n cw] [-w nnn] [-e] [-f cw] filesystems

fsmon -m [-c nnn] [-w nnn] [-d] [-f cw] filesystems

You can use the optional options with the -a or -m option to do the following:

• Set critical and warning threshold percentages.

• Enable or disable operator messages.

• Enable or disable monitoring for the specified file system.

• Manually set the critical or warning condition on the specified file system.
(This function is intended for testing use.)

The filesystems operand can be a name, an ordinal, or the special name all. An
ordinal is defined as the number that appears in the n column of the file system
status display for a particular entry in the table. (See Example 1, page 277.)
Ordinals allow you to indicate a particular file system without typing the full
name. (Ordinals are not fixed but depend on the specific configuration and can
change whenever an entry is added to the table of monitored file systems.
Ordinals have meaning only to fsdaemon, as shown on the status display, and
have no connection with any kind of file system ordinals UNICOS may use

S–2302–10010 275

UNICOS® Resource Administration

internally.) If you use the file system name all with the -m option, it alters
every entry in the table.

New entries are inserted in alphabetical order as determined by the result of a
strcmp () comparison, which causes the ordinals of all entries beyond the new
one to increase by one.

The -q option causes fsdaemon to close and rename the log file and terminate.
This option is available only if fsdaemon had been started with the -q option.
The command line is as follows:

fsmon -q

The -r option signals the daemon that the critical or warning command has
completed on the specified file systems by causing the "command is running"
state to be removed from the selected entries. In effect, this reenables the
monitoring of the specified file system. The command lines are as follows (the
first is for the completion of a critical command, the second for the completion
of warning command):

fsmon -r c filesystems
fsmon -r w filesystems

A command of the same type (critical or warning) is not restarted until the
occupancy of the file system falls below and then crosses above the threshold
again. This mechanism prevents more than one instance of a warning or critical
command from being active on the same file system, but allows a critical
command to be started if the warning command has not yet completed its
operation. To prevent the daemon from immediately restarting the command
(in the event that the actual state of the file system has not been changed
enough to remove the threshold condition), the occupancy of the file system
must fall below the threshold and then rise through it again before the
command will start.

If appropriate for your site, you may also specify the -r option with cw to
indicate that both critical and warning commands have been completed. The
special file system name all resets every file system in the table. Use this name
carefully because it could allow more than one command to be active on the file
system at the same time.

The -R option resets file system monitoring by clearing the internal flags that
indicate whether warning or critical commands are executing, and most state
information from the table of monitored file systems. The command line is as
follows:

fsmon -R filesystems

276 S–2302–10010

File System Space Monitoring [6]

This option is intended to be used when corrective action has been completed
following a warning or critical event and you want to enable critical and
warning monitoring. The special name all resets every file system in the table.
Use this option carefully because it could cause multiple commands to be active
in the same file system. fsdaemon evaluates the state of the file system after
this request is processed. A warning or critical event could occur immediately.

The -s option lets you display file system status by sending a status block in
addition to the normal reply to a request. fsmon formats the information for
the operator display as shown in Example 1, page 277. The command line is as
follows:

fsmon [-s cdew] [filesystems]

The -s option with possible arguments c, d, e, and w limits the class of table
entries to display from the list. c is critical, d is disabled, e is enabled, and w is
warning. Any combination may be set, but you must specify at least one type.

The -t option suppresses display headers and informative messages. The
following example displays all critical file systems, but suppresses the header
shown in Example 1, page 277:

fsmon -t c

Currently this is the only directive that has a header, but -t is allowed with all
directives.

The -p option specifies an alternate path to the daemon request pipe and log
file. Communication between the daemon and fsmon uses named pipes and
consists of mutually defined structures containing mixed ASCII and binary data.

6.3.4 Status Display

Example 1, page 277 is an example of a file system status display. This section
describes the contents of this display.

Example 1:

n File System Status Use Warn Crit Time encountered

1 / E------- 71.6% 85.0% 95.0%
2 /a E-X---- 95.2% 85.0% 95.0% 10:22:53 06/23

3 /arch E------- 5.7% 85.0% 95.0%

4 /b E-X---- 97.6% 85.0% 95.0% 10:22:53 06/23

5 /bnch E---W-X- 92.6% 85.0% 95.0% 10:22:53 06/23

6 /c E---W-X- 92.3% 85.0% 95.0% 10:22:53 06/23

S–2302–10010 277

UNICOS® Resource Administration

7 /core E------- 84.6% 85.0% 95.0%

8 /d E------- 83.4% 85.0% 95.0%
9 /drop E------- 2.3% 85.0% 95.0%

10 /e E-X---- 96.3% 85.0% 95.0% 10:22:53 06/23

11 /ea E------- 50.3% 85.0% 95.0%

12 /ea/usr E------- 31.7% 85.0% 95.0%

13 /ea/usr/src E------- 65.1% 85.0% 95.0%

14 /g E---W-X- 89.3% 85.0% 95.0% 10:22:53 06/23
15 /h E-X---- 97.1% 85.0% 95.0% 10:22:53 06/23

16 /j E---W-X- 92.9% 85.0% 95.0% 10:22:53 06/23

17 /l E---W-X- 90.2% 85.0% 95.0% 10:22:53 06/23

18 /n E------- 84.1% 85.0% 95.0%

19 /p E-X---- 99.5% 85.0% 95.0% 10:22:53 06/23

The n column holds the file system ordinal that can be used as a synonym for
the file system name. The File System column holds the name of the file
system. In order to fit the entire display line on an 80-column window, very
long names may cause the remainder of the status line to appear below the
name rather than to the right of it. The Status column has eight status flags.
A position with - means that the status does not apply to the file system.
Position 1 always has either D, E, or * visible.

The following list describes the status flags:

Status Meaning

E------- Monitoring is enabled

D------- Monitoring is disabled

*------- Monitoring error

-C------ Critical threshold detected

--c----- Manual critical forced

---X---- Critical command executing

----W--- Warning threshold detected

-----w-- Manual warning forced

------X- Warning command executing

-------? Internal error

The Use column is the current usage level of the file system expressed as
percentage. A file system that is disabled or in the error state does not have a
value displayed. The Warn column is the warning percentage threshold
currently set. The Crit column is the critical percentage threshold currently

278 S–2302–10010

File System Space Monitoring [6]

set. The Time encountered column is the time, in hh:mm:ss mm/dd format,
when the warning or critical threshold level was reached. Critical conditions
take precedence over warnings. If there is a monitoring error, a message is
displayed in this column.

6.3.5 Using the fsdaemon(8) and fsmon(8) Commands

The following example shows how you can use the fsdaemon and fsmon
commands to start and configure the file system monitor. In this example, the
following commands are executed as part of the startup file when the system is
brought up:

/etc/fsdaemon -w /admin/scripts/warning/ -c /admin/scripts/critical

/etc/fsmon -a -w 93 -c 97 / /usr /usr/tmp /tmp

/etc/fsmon -a -w 88 -c 90 /core

The fsdaemon command line starts the daemon and configures it to execute a
warning script named /admin/scripts/warning when a warning threshold
is reached and to execute a critical script named /admin/scripts/critical
when a critical threshold is reached. What the scripts do (or if they exist)
depends on the needs of your site. Because the daemon does not attempt to start
another script of the same kind until a reset request is processed, the warning
and critical scripts must end with a fsmon command to perform the reset
request. See Section 6.3.3, page 275, for a description of fsmon reset options.

The fsmon command configures the daemon. The first fsmon command line
(using the -a option) adds the file systems named /, /usr, /usr/tmp, and
/tmp to the table of monitored file systems, and sets the warning threshold
(using the -w option) to 93% and the critical threshold (using the -c option) to
97% for each of those file systems.

The second fsmon command line adds the file system named /core with a
warning threshold of 88% and a critical threshold of 90%. You can use as many
fsmon command lines as you need to add the file systems you want to monitor.
All the file systems with the same threshold values can be added with one
command.

With the daemon set up using the previous example, a display of the current
status might look like the following:

n File System Status Use Warn Crit Time encountered

1 / E------- 88.2% 93.0% 97.0%

2 /core E------- 81.4% 88.0% 90.0%

S–2302–10010 279

UNICOS® Resource Administration

3 /tmp E------- 5.7% 93.0% 97.0%

4 /usr E------- 61.3% 93.0% 97.0%

5 /usr/tmp E------- 1.6% 93.0% 97.0%

If you want to change the critical threshold on /tmp to 95% and the warning
threshold to 80%, you could use the following command:

/etc/fsmon -m -c 95 -w 80 /tmp

Because the n value shown on the display for /tmp is 3, you could also use the
following command:

/etc/fsmon -m -c 95 -w 80 3

After either of these commands has been executed, a display of the current
status would look like the following:

n File System Status Use Warn Crit Time encountered

1 / E------- 88.2% 93.0% 97.0%

2 /core E------- 81.4% 88.0% 90.0%

3 /tmp E------- 5.7% 80.0% 95.0%

4 /usr E------- 61.3% 93.0% 97.0%

5 /usr/tmp E------- 1.6% 93.0% 97.0%

6.3.6 The Log File

The log file records events that occur during the monitor daemon operation,
and are intended for operations personnel. The recorded events include
automatic actions taken by the monitor, operator requests that cause a change
in the operation of the daemon, and error events detected by the daemon. An
example of log file messages follows:

06/22 16:05:34 (06) Fsmonitor initiated.

06/22 16:05:34 (06) Critical command: ’critical_command’

06/22 16:05:34 (06) Warning command: ’warning_command’

06/22 16:05:34 (06) Entered Main loop

06/22 16:06:12 (06) Added: /a -c 95.0% -w 85.0% -d

06/22 16:06:12 (06) Added: /b -c 95.0% -w 85.0% -d

06/22 16:06:12 (06) Added: /c -c 95.0% -w 85.0% -d

06/22 16:06:12 (06) Added: /d -c 95.0% -w 85.0% -d

06/22 16:06:12 (06) Added: /e -c 95.0% -w 85.0% -d

06/22 16:06:12 (06) Added: /f -c 95.0% -w 85.0% -d

06/22 16:07:05 (06) Changed: /c -c 98.0% -w 91.0% -e

280 S–2302–10010

File System Space Monitoring [6]

06/22 16:07:05 (06) Pid 28083 running: ’warning_command /c’

06/22 16:07:05 (06) WARNING THRESHOLD ON /c

06/22 16:07:06 (06) Changed: /f -c 98.0% -w 91.0% -e

06/22 16:07:07 (06) Changed: /g -c 98.0% -w 91.0% -e

06/22 16:08:13 (06) Daemon terminated; exit(0) "Stopped by quit"

The sample log shows the configuration of six file systems (/a through /f)
with default levels of critical (-c) and warning (-w) thresholds. All file systems
were initially disabled, but later (at 16:07:05) a request changed the threshold
values and enabled threshold detection for file system /c. As soon as
monitoring was enabled on /c, a warning was detected, causing process ID
28083 to run the warning command. The last line of the log shows a normal
termination caused by the quit request. When fsdaemon terminates, the name
of the log file is changed to include the process ID. If the daemon is restarted, a
new log file is opened.

6.4 Informative and Error Messages

Messages seen by a user of fsmon may come directly from fsmon or by way of
the reply pipe from fsdaemon. This section lists the most important messages
from both sources. All messages indicate errors, unless specifically stated
otherwise, and cause an exit value of 1; informative messages cause an exit
value of 0.

Usage messages that are not explained here adequately describe the error
without additional explanation.

Message Description

Daemon did not respond in 30 seconds

fsmon waits for a reply from the daemon for a limited period
of time before indicating that it did not respond. This could be
caused by system load or scheduling problems, but also may
indicate that fsdaemon is present but not responding.

File system monitor daemon may not be running

When fsmon has accepted its options, they must be translated
and passed on to fsdaemon for processing. This message
indicates that communication was impossible, possibly because
the daemon was not running. This message also occurs when
the -p option is given the wrong directory tree, or when the

S–2302–10010 281

UNICOS® Resource Administration

user does not have permission to access the daemon’s request
pipe.

fsnames required for -a, -m or -r

The file system name is mandatory with these options.

File system xxx exists in monitor list

The named entry cannot be added because it already exists.

File system xxx not in monitor list

The named file system is not currently in the monitor list.

Monitor list empty

This is an error only when the -m option has been used, but it
can occur as an informative message as well.

Monitor list full

Another file system may not be added to the monitor list.
Because the monitor list size is set to twice the maximum
number of mounted file systems when the daemon is started,
this should not be a problem unless some sort of configuration
error occurs.

No entries selected

This informative message states that no monitor table entries
matched the type criteria. Select -s cdew to see everything in
the table.

Ordinal nn not in monitor list

The file system ordinal is 0 or greater than the current
maximum value.

6.5 Installation and Operation Information

This section describes some useful information about the monitor’s operational
characteristics.

282 S–2302–10010

File System Space Monitoring [6]

6.5.1 Installation

The commands fsmon(8) and fsdaemon(8) are installed by default in the /etc
directory because they are intended as operator or administrator commands.
The log file and command pipe are found in the /usr/spool/fsmonitor
directory. Except for the file Fd.fd12, other files used during operation are
named using tempnam (see tmpnam(3)) and so reside in the preferred
temporary directory. None of the temporary files are intended to exist for long
periods of time. File Fd.fd12 is created in the directory described in Section
6.3.2, page 274, each time a command runs. This file holds all non-redirected
standard output and standard error text from a command until the next
command is started by the daemon. This file is intended for debugging or
monitoring and is not intended as a log or other recording mechanism.

6.5.2 Operation

You must start the monitor daemon with critical and warning commands
specified on its command line if you want any action to occur when a threshold
is reached. You cannot change these command names without terminating and
restarting fsdaemon. You can circumvent this restriction by writing critical and
warning scripts that start the desired warning or critical operations. You can
then alter or switch these initiation scripts during operation to provide
whatever degree of flexibility is necessary.

Getting the monitor configured correctly is the most important issue following
installation. Once fsdaemon is running and all the file systems are mounted,
the easiest way to establish monitoring of all mounted file systems is to execute
the following command line:

fsmon -a -c nnn -w nnn all

You must decide what critical threshold values (-c nnn) and warning values
(-w nnn) are appropriate. (The defaults are 95 for critical and 85 for warning.)
When starting fsdaemon, the critical and warning commands are the most
important options. You should select which command to execute if either of the
threshold conditions occurs.

After the monitor is configured and running, you may ask for displays and
change its configuration by using the fsmon(8) options described previously.
Because the monitor keeps track of old log files (it renames them before
termination so the old file does not interfere with the next initiation), you
should develop a procedure to clean up the old files from time to time. Do not
allow the log to become very large under normal circumstances.

S–2302–10010 283

UNICOS® Resource Administration

6.5.3 Permissions

Who uses the fsdaemon commands is determined by who can write to the
command pipe. The daemon creates the command input pipe with owner
read/write and group write permissions. This limits access to the owner
and group that started the daemon. This may be changed by altering the value
of IN PIPE MODE in the dmparams.h file in the fsdaemon_source directory.
The directory in which the special files reside is created by the installation
process to be owned by root and to belong to the operator group. This may
also be changed if necessary. If permissions are changed, think about the
implications, because other users could disable threshold monitoring. This
could affect data migration, because in many environments threshold detection
is used to activate the data migration feature.

6.5.4 Testing

To do any testing without disrupting a running version of the monitor, the path
option (-p) is available. This makes it possible to run the monitor with its files
and pipes in a directory separate from the default, so that two or more versions
can run at the same time. The -t option with fsdaemon is also convenient for
testing, because it prevents the process from detaching itself and running
without a controlling terminal. The following command line is an example of
testing fsdaemon:

fsdaemon -t -q -p /tmp/fsd.test -w warncmd -c critical &

6.5.5 Related Files

The running log file is usually named as follows:

/usr/spool/fsmonitor/Fd.log

When fsdaemon is terminated, the running log is renamed with the process ID
of the daemon appended (Fd.log becomes Fd.log.12345, if the process ID is
12345). If for some reason the daemon does not rename the log file (for
instance, if the system crashed), a new invocation of the daemon appends its
output to the existing file.

Temporary files are created for the reply pipe (managed by the requesting side,
not fsdaemon) and the reply pipe from the message daemon. The file names
are prefixed with Fs. None of the temporary files should be left around when
the daemon is correctly terminated.

284 S–2302–10010

System Activity Monitoring [7]

This section describes the design and implementation of the following system
activity monitoring packages:

• Standard UNIX system activity package (sar, sag, timex, mppview,
xmppview, sadc, sa1, and sa2 commands)

• Cray system activity monitoring package (sam, xsam, csam, and
samdaemon commands)

• Cray system activity reporting package (sdc and tsar commands)

• Disk usage monitoring

Warning: Although the standard UNIX system activity package (sar and
related commands) is part of a Cray ML-Safe configuration of the
UNICOS system, the Cray system activity monitoring and reporting
commands described in this section are not part of the Cray ML-Safe
configuration, including sam, tsar, and their associated commands. This
section does not contain any further warnings or information pertaining
to the use of a Cray ML-Safe configuration.

7.1 Standard UNIX System Activity Package (sar)

The UNICOS operating system contains a number of counters that are
incremented as various system actions occur. The standard UNIX system
activity package reports system-wide measurements for the UNICOS operating
system, including central processing unit (CPU) utilization, disk and tape
input/output (I/O) activities, terminal device activity, buffer usage, system
calls, system switching and swapping, file-access activity, and queue activity.
The package provides commands that generate various kinds of reports, allow
you to monitor Cray MPP systems, and automatically generate daily reports.

The functions of the activity package are as follows:

Command Function

sag(1) Produces data and command files suitable for use
on a front-end machine to produce graphic
displays of system activity

S–2302–10010 285

UNICOS® Resource Administration

sar(1) Allows users to generate system activity reports
in real time and to save system activities in a file
for later use

timex(1) A modified time(1) command that times a
command and produces a report on concurrent
system activity

mppview(8) Displays massively parallel processing (MPP)
system activity

xmppview(8) Displays Cray MPP system activity through a
graphic user interface

You can produce system activity daily reports automatically by using the sadc,
sa1, and sa2 commands (see sar(8)). Use of these commands is discussed in
Section 7.1.3, page 293.

The system activity information reported by this package is derived from a set of
counters in the operating system kernel, as described in Section 7.1.1, page 286.

The following sections provide information about the standard UNIX system
activity package:

• System activity counters

• System activity commands

• Daily report generation

• Source files and scripts

• Derivations

7.1.1 System Activity Counters

The UNICOS operating system manages a number of counters that record
various activities and provide a basis for the system activity reporting system.
The data structure for most of these counters is defined in the sysinfo
structure in the /usr/include/sys/sysinfo.h file. The system table
overflow counters are stored in the syserr structure. The device activity
counters are extracted from the device status tables. The I/O activity of any
disk devices attached to the I/O subsystem (IOS) is recorded by the device
activity counters.

The system activity counters monitored by the system activity package are
described in the following sections.

286 S–2302–10010

System Activity Monitoring [7]

7.1.1.1 CPU Time Counters

When the sadc program (see sar(8)) collects the data, it increments four
standard time counters. The counters give an overview of CPU performance
and record activity on each the information is also provided on a per-CPU
basis. The counters are updated from the counters maintained in the processor
working storage (pws) structure. These counters record activity on each CPU,
also providing information on a per-CPU basis. Each time the UNICOS
operating system executes an exchange into the kernel, it updates the counters
in the pws table. These counters are incremented according to the mode that
the CPU is in at the time of the exchange: idle, user, or kernel. I/O wait time is
always 0. The pws counters are incremented by the number of machine cycles
since the last exchange.

7.1.1.2 lread and lwrite Counters

The lread and lwrite counters record the number of logical read and write
requests issued by the system block devices.

7.1.1.3 bread and bwrite Counters

The bread and bwrite counters record the number of times data is transferred
between the system buffers and the block devices. The actual I/O operations
are triggered by the logical I/O operations that cannot be satisfied by the
current contents of the buffers. The ratio of block I/O to logical I/O is a
common measurement of the effectiveness of the system buffer cache.

7.1.1.4 phread and phwrite Counters

The phread and phwrite counters record read and write requests issued by
the system to raw devices.

7.1.1.5 swapin and swapout Counters

The swapin and swapout counters are incremented for each system request
that initiates a transfer to or from the swap device. The amount of data
transferred between the swap devices and memory is measured in blocks and
counted by bswapin and bswapout.

S–2302–10010 287

UNICOS® Resource Administration

7.1.1.6 xswapin and xswapout Counters

The xswapin counter is incremented each time a shared text segment is
swapped in. The xswapout counter is incremented each time a shared text
segment is freed.

7.1.1.7 switch and syscall Counters

The switch and syscall counters are related to the management of
multiprogramming. The syscall counter is incremented every time a system
call is invoked. In addition, the numbers of read(2), write(2), fork(2), and
exec(2) system calls are kept in the sysread, syswrite, sysfork, and
sysexec counters respectively.

The pswitch variable counts the times that the kernel subroutine swtch () was
called to switch to another user. This occurs in the following situations:

• A system call results in a road block

• An interrupt occurs and awakens a higher-priority process

• A clock interrupt occurs

7.1.1.8 runque, runocc, swpocc, and swpque Counters

The runque, runocc, swpocc, and swpque counters record queue activities;
they are implemented in the clock.c routine. At each 1-second interval, the
clock routine examines the process table to see whether any processes are in
core memory and are in the ready state. If so, the routine increments the
runocc counter and adds the number of such processes to the runque counter.
While examining the process table, the clock routine also checks to see
whether any processes in the swap queue are in ready state. If the swap queue
is occupied, the clock routine increments the swpocc counter and adds the
number of processes in the swap queue to the swpque counter.

7.1.1.9 iget, namei, and dirblk Counters

The iget, namei, and dirblk counters apply to file-access operations. The
iget and namei counters, in particular, are the names of UNICOS routines.
These counters record the number of times that the respective routines are
called.

The namei routine performs file path searches. It searches the various directory
files to get the associated i-number (inode) of a file corresponding to the path.

288 S–2302–10010

System Activity Monitoring [7]

The iget routine locates the inode entry of a particular file (i-number). It first
searches the table of inodes in core memory. If the inode entry is not in the
table, the iget routine gets the inode from the file system in which the file
resides and enters the information in the table. The iget routine returns a
pointer to this entry. The namei routine calls iget, but other file-access
routines also call routine iget. Therefore, the iget counter is always greater
than the namei counter.

The dirblk counter records the number of directory block reads issued by the
system. The number of directory blocks read divided by the number of namei
calls provides an estimate of the average path length of files.

7.1.1.10 readch and writech Counters

The readch and writech counters record the total number of bytes
transferred by the read(2) and write(2) system calls.

7.1.1.11 rcvint and xmtint Counters

The device rcvint and xmtint counters measure T-packet activity to and
from terminals attached to the IOS. The rcvint counter measures the number
of packets flowing into the Cray computer system. The xmtint counter
measures the number of packets acknowledged as received by the IOS.

7.1.1.12 rawch, canch, and outch Counters

The rawch, canch, and outch counters record the number of characters in the
unbuffered queue, canonical queue, and output queue, respectively. Characters
generated by terminal devices operating in unbuffered mode are counted in
both rawch and, as they are edited, in canch.

7.1.1.13 clists Counter

The clists counter records the usage and overflow of clists so that you can
carefully set the number of clists for terminal devices.

7.1.1.14 I/O Activities

All disk and tape I/O is monitored for each device. This counter shows the
number of read and write operations on each device. Each read or write
operation represents a maximum of 4096 bytes transferred. Response time and
active time recorded on other UNIX systems is not useful here, because the IOS
deals with the device.

S–2302–10010 289

UNICOS® Resource Administration

7.1.1.15 Logical Device Cache

This counter records all logical device cache activity. The ratio of cache-to-user
and cache-to-disk is a common measurement of the effectiveness of logical
device cache.

If a user without root privileges executes the sar(1) command with the
frequency arguments t and n specified, logical device cache data will not be
available. Logical device cache statistics are obtained from /dev/dsk, which
can only be read by users with root privileges.

7.1.1.16 Inode, File, Text, and Process Tables

The information from the inode, file, text, and process tables comes in two
forms. The first shows the current utilization of table entries and the maximum
configured number of table entries. The second is extracted from the syserr
structure. When a table overflow occurs, the counter for the corresponding
table is incremented.

7.1.1.17 sysrda, syswra, and syslstio Counters

The sysrda and syswra counters monitor reada(2) and writea(2)
asynchronous I/O system call usage respectively. The syslstio counter
counts listio usage.

7.1.1.18 pkin, pkout, and pkbad Counters

The pkin, pkout, and pkbad counters monitor IOS packet traffic.

7.1.1.19 shuffle, textlock, datlock, and punlock Counters

The shuffle counter measures the number of requests to shuffle a process into
low memory. The textlock and datlock counters measure the number of
text and data areas locked in memory. The punlock counter measures text and
data area unlocks, unlocking the process.

7.1.1.20 Exchange Counts

The kernel logs user-initiated exchanges of the following error types:

Type Description

err Error exchange

290 S–2302–10010

System Activity Monitoring [7]

pre Program-range error

ore Operand-range error

fpi Floating-point interrupt

dli Dead lock interrupt

7.1.2 System Activity Commands

The system activity package provides commands for generating various system
activity reports. The sar(8) and sag(1) commands allow users to specify a
sampling interval and number of intervals for examining system activity, and
then to display the observed level of activity in tabular and graphic form. The
timex(1) command reports the amount of system activity that occurred during
the precise period of execution of a timed command. The mppview(8)
command displays the system activity of a Cray MPP system. The xmppview(8)
command displays Cray MPP system activity through a graphic user interface.

7.1.2.1 sar(8) Command

The sar(8) command reports on various types of system activity. When you
specify frequency arguments t and n, sar invokes the sadc data collection
program to sample the system activity counters in the operating system every t
seconds for n intervals and generates system activity reports in real time.
Generally, it is desirable to include the -o option to save the sampled data in a
file for later examination. The format of the data file is shown in the file
/usr/src/prod/admin/sa/c1/sa.h (not available on UNICOS binary-only
systems). In addition to the system counters, a time stamp is included. It lists
the time at which the sample was taken. If you do not supply frequency
arguments, sar generates a system activity report for a specified time interval
from an existing data file created by sadc (see sar(8)) at an earlier time. The
sar(8) man page describes the use of the command and the various types of
reports.

The sar(1) command extracts operating system activity information for a
specified time interval. The following sections describe, by option, all displays
that the sar(1) command can produce.

S–2302–10010 291

UNICOS® Resource Administration

Note: By default, the sar(1) command runs every 10 minutes, reading data
from tables in the kernel and writing to the sa file. It is recommended that
the 10-minute default not be increased. (The overhead for sar is quite low.)
You can decrease this interval to cause sar(1) to run more often, which can
help solve performance problems by providing more continuous data;
however, if the sar(1) interval is too small, this could generate too much
system activity data for daily operation, increase requirements for disk space,
and potentially degrade system performance.

7.1.2.2 sag(8) Command

The sag(8) command displays system activity data graphically. It relies on the
data file produced by a prior run of sar(8); sag then creates plot commands
and data files for any column or combination of columns of data from the sar
report. These files are run on a machine that supports plotting. The command
syntax allows you to specify either cross plots or time plotting. Select data
items by using the sar column header names. (See the sar(8) man page for
information about its options and usage.) The system activity graphics program
cannot run on Cray systems.

7.1.2.3 timex(1) Command

The timex(1) command is an extension of the time(1) command. When you
do not specify any options, timex behaves exactly like time. In addition to
giving time information, it also prints a system activity report derived from the
system counters. The timex(1) man page explains its use.

Although you, as an administrator, typically will use timex to measure a single
command, you also can time multiple commands, either by combining them in
an executable file and timing it, or, more concisely, by typing the following
command:

timex sh -c "cmd1;cmd2; ..."

This use of timex establishes the necessary relationships between parent and
child processes so that the user and system times consumed by cmd1, cmd2, and
sh can be extracted correctly.

7.1.2.4 mppview(8) Command

The mppview(8) command displays a map of active partitions running on a
Cray MPP system (see the mppview(8) man page). It uses the curses(3)

292 S–2302–10010

System Activity Monitoring [7]

library to drive the terminal display so that many terminal types can be
supported. You can specify the host system to be monitored.

Through rpc(3), mppview communicates with the system activity monitoring
(sam) server, samdaemon(8), running on the host system to obtain the
information that you request.

7.1.2.5 xmppview(8) Command

A graphical user interface also is available through the xmppview(8) command.
It uses the X Window System X11 tool. The display graphically represents
usage of processing elements according to criteria you select and gives system
performance statistics in tables accessible through pull-down menus. xmppview
also contains a tutorial. (See the xmppview(8) man page for set-up
requirements.)

7.1.3 Daily Report Generation

It is recommended that you routinely monitor and record system activity for
historical analysis. This section describes how to produce a standard daily
report of system activity automatically.

7.1.3.1 Facilities

For full descriptions of the commands used in generating reports, see the sar(8)
man page. Use the following commands to produce a system activity report:

Command Function

sadc Reads system counters from the /dev/kmem and /dev/dsk files
and records them in a file. In addition to the file argument, two
frequency arguments are usually specified to indicate the
sampling interval and number of samples to be taken. If no
frequency arguments are given, sadc writes a dummy record in
the file to indicate a system restart.

sa1 Invokes the sadc command to write the system counters in the
daily data file /usr/adm/sa/sa dd; dd represents the day of the
month. sa1 may be invoked with sampling interval and
iterations as arguments.

sa2 Invokes the sar command to generate the daily report
/usr/adm/sa/sar dd from the daily data file /usr/adm/sa/sa
dd. sa2 also removes the daily data files and report files after one

S–2302–10010 293

UNICOS® Resource Administration

week. The starting and ending times and all the report options of
sar are applicable to sa2.

7.1.3.2 Suggested Operational Setup

It is suggested that you have the cron(8) daemon control the normal data
collection and report generation operations. For example, the following sample
entries in the crontab file /usr/spool/cron/crontabs/root would cause
the data collection program sadc (see sar(8)) to be invoked every 20 minutes
between 8 A.M. and 5 P.M., and every hour otherwise:

0 8-17 * * 1-5 "/usr/lib/sa/sa1 1200 3 &"

0 18-7 * * 1-5 "/usr/lib/sa/sa1 &"

Data sampling is more frequent during prime time to allow more detailed
analysis. The sa1 program should be invoked hourly rather than daily to
ensure that, if the system crashes, data collection will resume within 1 hour
after the system is restarted.

Invoking sadc through the root crontab file ensures that all data is collected.
Logical device cache statistics are read from /dev/dsk, which is readable only
by root.

Because the system activity counters are reset to when the system is restarted,
sadc writes a special record in the data file to reflect this situation. To
accomplish this process, sadc is invoked with no frequency arguments within
/etc/rc when going to multiuser state:

/usr/lib/sa/sadc /usr/adm/sa/sa‘date +%d

For more information on using rc, see General UNICOS System Administration.

The cron command also controls the invocation of sar to generate the daily
report by the shell procedure sa2. You may choose the time period to be
covered by the daily report and the groups of system activity to be reported.

For example, if the following is an entry in the crontab file
/usr/spool/cron/crontabs/root, cron executes the sar command to
generate daily reports from the daily data file at 20:00 on weekdays:

0 20 * * 1-5 su sys -c "/usr/lib/sa/sa2 -s 8:00 -e 18:00 -i3600 -A"

The report includes a full set of information from 08:00 to 18:00.

294 S–2302–10010

System Activity Monitoring [7]

In case of a problem, such as disk space shortage, these data files and report
files can be removed by the super user. The man page entry for sar(1)
describes the daily report generation procedures.

7.1.4 Source Files and Scripts

(Not available on UNICOS binary-only systems.) The source files and shell
programs of the system activity package are located in the
/usr/src/prod/admin/sa/c1 directory.

File or Program Description

sa.h A system activity header file that defines the
structure of data file and device information for
measured devices. It is included in sadc.c,
sar.c, and timex.c records.

sadc.c A data collection program that accesses the
/dev/kmem and /dev/dsk files to read the
system activity counters and that writes data
either on standard output or on a binary data file.
It is invoked when the sar(1) command
generates a real-time report. It is also invoked
indirectly by entries in the
/usr/spool/cron/crontabs/root file to
collect system activity data.

sar.c A report generation program that invokes the
sadc command to examine system activity data,
generates reports in real time, and saves the data
to a file for later usage. It also can generate
system activity reports from an existing data file.
It is invoked indirectly by the cron(8) daemon to
generate daily reports.

saghdr.h A header file for the saga.c and sagb.c
programs. It contains data structures and
variables used by saga.c and sagb.c.

saga.c, sagb.c A graph generation program that first invokes
sar to format the data of a data file in tabular
form and writes a command file and data files so
that the sar data can be displayed in graphic
form on another machine.

S–2302–10010 295

UNICOS® Resource Administration

sa1.sh A shell script that invokes sadc to write data file
records. It is activated by entries in the file
/usr/spool/cron/crontabs/root.

sa2.sh A shell script that invokes sar to generate the
report. It also removes the daily data files and
daily report files after a week. It is activated on
weekdays by an entry in the
/usr/spool/cron/crontabs/root file.

timex.c A program that times a command and generates
a system activity report.

7.1.5 Derivations

This section lists the derivations of reported items. Each item discussed is the
data difference sampled at two distinct times, t1 and t2 (in seconds).

CPU utilization time is as follows:

%-of-cpu = (cpu-util / cpu-total) * 100

The value of cpu-util is either the idle, user, or kernel (system) CPU utilization
time. The value of cpu-total is the sum of the idle, user, and kernel (system)
CPU utilization time. For a system with multiple CPUs, the information is also
presented as the sum of the utilization time of each CPU, divided by the sums
of the idle, user, and kernel utilization time, divided by the number of CPUs.

The cache hit rate is as follows:

%-of-cache-I/O = ((logical-I/O - block-I/O) / logical-I/O) * 100

I/O can be either a cache read or cache write operation.

Queue activity is as follows:

avg-x-queue-length = x-queue / x-queue-occupied-time;
%-of-x-queue-occupied-time = x-queue-occupied-time / (t2 - t1);

The value of x-queue is the length of either a run or swap queue.

The remainder of system activity is as follows:

avg-rate-of-x = x / (t2 - t1)

The rate is expressed as occurrences per second. The value of x can be swap or
drop in/out, terminal device activities, read/write characters, block

296 S–2302–10010

System Activity Monitoring [7]

read/write, logical read/write, process switch, system calls, read/write,
fork/exec, iget, nami, directory blocks read, disk activities, IOS packets in
and out, secondary cache read and written, clists active, shuffles, text/data
and process unlocks, and asynchronous I/O activities.

7.2 Cray System Activity Monitoring (sam) Package

The Cray system activity monitor, sam, collects and displays system activity
data from selected Cray computer systems. It consists of a data acquisition
daemon, samdaemon, and two display clients, xsam and csam. Figure 6
illustrates the hardware configuration options for sam.

S–2302–10010 297

UNICOS® Resource Administration

samdaemon

FEI

OWS or SWS

samdaemon
Courses
display

X11 display

Courses
display

X11 display

Cray System

Cray System

Figure 6. Hardware Configuration Options for Sam

The samdaemon process can run on a Cray mainframe or on a connected
operator workstation (OWS) or system workstation (SWS). When samdaemon is
executed on a mainframe, data collection is done through the /dev/kmem
special file using read(2) system calls. When samdaemon is executed on an
operator workstation it uses the I/O path of the front-end interface to access
data fields in memory, thus reducing the load on the UNICOS operating system.

The sam(8) command is a generic interface that invokes either the xsam utility
(for use with terminals that run the X Window System) or the csam utility (for
use with terminals compatible with curses(3)). Both utilities provide a user

298 S–2302–10010

System Activity Monitoring [7]

interface with menus for selecting and displaying system activity data.
Alternately, you can use the xsam or the csam command to enter the menus.

See the sam(8) man page for more information on which client sam invokes and
on their respective displays.

The following sections discuss the daemon and commands:

Utility Description

samdaemon System activity data acquisition daemon

csam Displays system activity data using the
curses(3) library routines

xsam Displays system activity data using the X
Window System

7.2.1 samdaemon(8) Process

The system activity monitor daemon, samdaemon(8), reads kernel data
structures in memory as requested by the display clients, xsam(8) or csam(8).
samdaemon can run on a Cray mainframe or on a connected operator
workstation. The daemon and the clients communicate through the Remote
Procedure Call (RPC) utility. When a client is not requesting data, samdaemon
ceases to read from memory.

When started, samdaemon generates a private configuration database by
forking a configuration utility, sama. On the Cray mainframe, sama uses the
nlist(3) library routine to obtain the necessary data addresses. When
samdaemon is running on the operator workstation, it generates this database
by having sama make a request to the samdaemon process running on the Cray
mainframe. Once samdaemon is initialized on the operator workstation, all
subsequent data is obtained directly from mainframe memory through the
front-end interface (FEI) connection without involvement of any processes
running on the mainframe.

The samdaemon process provides access control to UNICOS data with the use
of a validation file. If samdaemon finds a validation file
(/usr/lib/samdaemon.val, by default), it will return data only for validated
users.

See the samdaemon(8) man page in the UNICOS Administrator Commands
Reference Manual, for more details on samdaemon, its options, and setup.

S–2302–10010 299

UNICOS® Resource Administration

Note: The samdaemon command is not intended to be built and installed on
an operator workstation by a site; it is part of the binary release for the
operator workstation. samdaemon will not build on an operator workstation.

7.2.2 csam(8) Utility

The csam(8) utility displays system activity on a terminal that is compatible
with the curses(3) library routines. csam can execute either on a Cray system
or on a connected operator workstation. csam receives data by communicating
with the samdaemon process on the local host, or on a remote host if one has
been specified.

Because csam relies on the curses library routines, it can support a variety of
terminals. csam is able to check the size of the screen and the LINES
environment variable and adjust most displays to fill the screen.

You can invoke csam by using the csam command or the generic sam
command. You can select various system performance statistics for display. See
the csam(8) man page in the UNICOS Administrator Commands Reference Manual,
for more detailed information on the csam command and its options.

7.2.2.1 csam(8) Commands

Once csam is running on your terminal, you can use the following commands
to change displays, move within a display, increase or decrease refresh rates,
and exit the system:

Command Description

c or C Selects host system configuration display.

d or D Selects disk display.

e or E Quits program.

f or F Selects ldcache display.

g or G Leaves single-step mode.

h or H Selects help screen.

k or K Selects kernel display.

l or L Selects logical device display.

m or M Selects memory display.

n or N Advances to next page (disk, ldcache, logical
device, process, and tape displays). To reset these

300 S–2302–10010

System Activity Monitoring [7]

scrolled displays, use the d, f, l, p, or t
command.

p or P Selects process display.

q or Q Quits program.

r or R Resets bar graphs and ldcache display.

s or S Selects user/kernel/wait/idle usage on kernel
display.

t or T Selects tape display. (Implementation deferred)

u or U Selects user and system CPU usage on kernel
display.

w or W Selects swap map display.

x or X Selects top process display.

y or Y Selects system call display.

z or Z Selects record/replay control panel. The csam
record/replay function is described in detail in
this section.

+ Increases refresh interval by 1 second.

- Decreases refresh interval by 1 second. The
refresh interval cannot be lowered below the
refresh rates set by the server.

. (Type the dot character.) Enters single-step mode.
This freezes the display refresh until you press
the space bar to advance it.

space bar Advances the display in single-step mode.

numeric input Selects a process ID for the snap display. This is
only accepted in the process display. The ID must
be terminated by a carriage return. The erase and
kill characters are accepted during this numeric
input.

7.2.2.2 Record/replay Function

The record/replay function works in a manner similar to that of an audio tape
recorder. From the record/replay control screen, you can set up csam to record
data for replay at a later time or to replay data that was recorded at an earlier

S–2302–10010 301

UNICOS® Resource Administration

time. Enter the csam record/replay control screen by typing the z or Z
command while the cursor is in any csam terminal screen.

By default, the display refresh rate of the replay function is set at 1 second,
which is the minimum rate. You can adjust this rate by using the + and -
commands. However, altering the playback refresh rate does not alter the
refresh rates for displays obtained directly from samdaemon.

The following default values are displayed near the top of the record/replay
control screen when it is invoked:

Record/Replay File name: client.recplay

Mode : record

State : not loaded

These lines are referred to as the status lines.

Status line Indicates

File name The name of the file to which data will be
recorded or from which data will be replayed.

Mode Either record or replay.

State The current state of the file.

The State status line contains two fields. The
first field displays one of three values:

• not loaded

• stopped

• running

The second field may be blank or may display
either of two values:

• rewound

• end of tape

The following states are what you typically see:

not loaded

stopped rewound

stopped end of tape

302 S–2302–10010

System Activity Monitoring [7]

running end of tape

running rewound

Commonly used command keys are displayed below the status lines on the
screen. While the cursor is in the record/replay control screen, you can use the
following keys to set up either a record session or a replay session:

Key Description

s Stops recording or replaying. The State status line displays
stopped.

b Begins (starts) recording or replaying. The State status line
displays running.

r Rewinds the file. You must return to the beginning of the file in
order to replay the data recorded there. A file is at end of tape
position when you stop recording or when all the data has been
replayed. A file is rewound automatically when it is loaded.

f Fast forward to the end of file. This allows you to append
additional data to the end of the file.

l Load the file. This is required before recording or replaying can
begin. The State status line displays stopped rewound.

e Eject the file. The file is no longer loaded. The State status line
displays not loaded.

d Done setting up record/replay. This command returns you to the
csam Help screen. You can use this command to exit the
record/replay control screen in order to switch to one of the data
display screens and begin recording or replaying data.

m Switch mode. This command toggles between record mode and
replay mode. The Mode status line displays which mode is
currently active. The file is unloaded automatically when the
mode is changed.

n Change file. This allows you to change the file name for
recording or replaying. Terminate the name with RETURN. The
File name status line displays the current file name.

q Quit. This command allows you to exit csam and return to the
shell.

t Truncate. This command truncates the file at the position where
the command is entered. For example, if you are replaying data

S–2302–10010 303

UNICOS® Resource Administration

and want to truncate the file, you would return to the
Record/Replay Control screen by entering the z or Z command,
and then pressing the t key. This position becomes the end of the
file. The only way to overwrite the file is to use the t (truncate)
command subsequent to pressing the r (rewind) key in the
record/replay screen; pressing the b (begin) key in record mode
automatically moves to the end of the file (the end of tape
position).

Recording data. To record data, follow these steps, starting with the cursor in
the record/replay control screen:

1. Press m to select record mode if record is not currently displayed on the
Mode status line.

2. If desired, press n to change the file name, then press the RETURN key.

3. Press l to load the file.

4. Press b to start recording.

5. Press d to exit the record/replay control screen in order to select data for
recording.

6. In the csam terminal screen, select the data you want to record and enter
the appropriate command to display that screen. For example, to record
kernel data, enter the k command. The data displayed on the kernel screen
will be recorded to the file.

7. To stop recording data, enter the z or Z command, which returns you to the
record/replay control screen, and then press the s key.

Replaying data. To replay data, follow these steps, starting with the cursor in
the record/replay control screen:

1. If the second field of the State status line does not display rewound,
assure that replay starts at the beginning of the file by pressing r to rewind
the file.

2. To replay a file other than the one displayed on the File name status line,
press n and enter a file name and press RETURN.

3. Press m to select replay mode if replay is not currently displayed on the
Mode status line.

4. Press l to load the file.

304 S–2302–10010

System Activity Monitoring [7]

5. Press b to start the replay.

6. Press d to exit the record/replay control screen in order to select the data to
replay. For example, in the csam terminal screen, enter k to replay kernel
data. This will cause csam to switch to that screen and immediately begin
displaying the recorded data. The message, End of file reached on
playback file, will be displayed after all data have been displayed.

7. To stop replaying data, type z or Z, which returns you to the record/replay
control screen, and then type s.

7.2.3 xsam Utility

The xsam(8) utility allows you to use graphic displays to monitor system
activity on a UNICOS system. xsam can execute on either a Cray system or on
a connected operator workstation, and its display can be viewed on any
terminal running the X Window System that is connected to the network. The
xsam utility receives data by communicating with the samdaemon process on
the local host, or on a remote host if one has been specified.

You can invoke the xsam utility by using the command xsam or the generic
command sam with a valid DISPLAY shell environment variable. xsam accepts
the following options:

Option Description

X11 options Regular X11 options to control X11 defaults.

-f file Initial startup script.

7.2.3.1 X11 Window Settings

You can set your regular X11 default settings (in the .Xdefaults file or using
the xrdb(1X) command) by using the application name xsam. For example, the
following command will set your default font to 10x20:

xsam*Font: 10x20

In addition, you can specify individual X11 defaults by including the widget
name in the .Xdefaults statement. The following widget names are defined
by xsam:

"menu bar" : the menu bar for all windows

"menu entry" : all pop-up menus

"console" : the main xsam console

S–2302–10010 305

UNICOS® Resource Administration

"setup display" : the setup window

"host display" : the host window
"help display" : the help window

"config display" : the target configuration display

"device display" : disk and logical I/O display

"graph console" : graph console for kernel and I/O graphs

"graph display" : graph display for kernel and I/O graphs

"map display" : main and swap memory display
"snapshot display" : process snapshot display

The following example sets the background for menu bar to lightblue and
also specifies the font for all menus. The font for the graph console is set to
fg-22 and to fixed for the graph display (different from the menu bar in
the graph display).

xsam*menu bar.background: lightblue

xsam*menu entry.font: -*-helvetica-bold-o-*-*-20-*-*-*-*-*-*-*

xsam*graph console*Font: fg-22

xsam*graph display.font: fixed

7.2.3.2 xsam Windows

The xsam utility creates six types of windows, described as follows:

Window Description

Console window Controls all aspects of xsam. It can be used to
request other xsam displays. It also contains a
message section that displays all error and
informational messages.

Configuration window Shows aspects of the hardware and software
configuration of the target system.

Graph window Monitors various kernel counters including CPU
utilization, I/O statistics, and system call usages.

Map window Displays a representation of memory. Within the
map are several columns of boxes, each with its
own name and each corresponding to a process
in memory. The size of each box is proportional
to the size of the process in main memory. As the
process moves or grows, the box moves and
grows.

306 S–2302–10010

System Activity Monitoring [7]

Command options allow you to display the
process ID, view a section of memory, and view a
snapshot of any process.

Snapshot window Displays information about a specific process in
text form. The data is extracted from the kernel’s
process structure for the target process. A
snapshot can be requested from a memory map
or with the snapshot command.

The snapshot window contains several sets of
statistics including user information (such as the
size and address of the process and user and
process flags), scheduling parameters, and an area
devoted to user identification.

Device I/O window Displays device configuration and I/O
performance on a system-wide level, as well as
on an individual device level. Possible device
types are disks and logical devices.

7.2.3.3 Console Window and Available Commands

After the xsam utility is started, it opens a console window. This window is the
primary interface for all information about xsam and interaction with the xsam
utility, and is described in detail in this section. The console window, shown in
Figure 7, consists of four major parts:

• Menu bar, at the top of the window

• Information area

• Command input area, in the middle of the console window

• Message output area, at the bottom of the console window

S–2302–10010 307

UNICOS® Resource Administration

a10835

Figure 7. The xsam Console Window

To show a menu, click the left mouse button when the cursor is placed on the
menu name you want to select. Most of the menu items will start a new display.

The console menu bar provides access to three menus: File, View, and Help.
A Cray logo also is shown: when selected, it displays copyright information
about xsam.

308 S–2302–10010

System Activity Monitoring [7]

• The File menu has the following entries:

Setup ...

Hosts ...
Fork xsam

Quit xsam

• The View menu has the following entries:

Host Configuration

Kernel Graphs ...

Memory Map

Swap Map

Disk I/O
Logical Device I/O

• The Help menu has the following entry:

General Information

To activate the associated window for these entries and others, select the
corresponding menu entry by clicking the left mouse button.

Note: Alternately, as mentioned throughout the discussion of xsam displays,
you can enter the commands directly in the command input area of the
console window to bypass the menu structure or to specify options to your
command.

The information area in the console window shows some global identification,
such as xsam 9.0 console and the name of the current host.

The Commands input area provides an alternative way to activate a function of
xsam, by entering a command in the input area. With some exceptions, both
the menu structure and direct command input allow access to the same
functions. Whereas using xsam through the menu interface is self explanatory,
the command interface is summarized here.

After you enter a command in the Commands input area, start the command by
using the left mouse button to click on the Request button.

Note: Under normal conditions, requests also can be started by pressing the
RETURN key while the cursor is positioned in the input area. However, the
widget used to implement the input area allows some sophisticated editing
(see the "Text Widget" section in the Cray Doo-Dad Set Reference Manual) that
can disable this feature (such as using the built-in vi style editing). In those
situations, a command must be started by using the Request button.

S–2302–10010 309

UNICOS® Resource Administration

The following list shows the commands you can use in the commands input
area:

quit
help

host [host name]
setup setup options
script filename
config [X11 options]
graph [X11 options] name [name ...]
map [X11 options] name [map options]
snapshot [X11 options] pid
device [X11 options] name

The menu interface allows you to issue all of these commands except the
script command. (In addition, the fork and record/playback commands
are available from the console menu.) The script command initiates execution
of xsam commands from a script file. No additional support, such as flow
control within the script or parameter substitution, is available. Although
scripts can be nested, all scripts operate within the same xsam environment.
(For instance, if a lower-level script changes the current host, this effects the
execution of the higher-level scripts as well).

Several commands also allow you to specify X11 options. However, not all
normal X11 options are available on the xsam command input level.

The following X11 options are available:

bg color
fg color

geometry [[Width]x[Height]][+Xposition][+Yposition]

fn font

You can also specify X11 options by using the X11 set-up tools. For more
information about X11 setup, see the online help facility available in xsam.

Note: Some window managers vary regarding when to grant geometry
requests. Check the manual for your window manager for information about
setting up your window manager correctly.

The Messages area echos the commands issued either through the menu
selections or by entering the commands directly in the commands area. It also
displays informational and error messages.

In both the Commands and the Messages areas, you can use the scroll bar at
the far right of each area to view the history of entries. The left mouse button

310 S–2302–10010

System Activity Monitoring [7]

moves the text down, while the right button moves the text up; the position of
the pointer along the scroll bar controls how far the text moves with each click.

7.2.3.4 xsam Commands

From the console window, the xsam utility allows all of the commands available
from the command input area, except the script command. In addition, the
console menu makes available the fork and record/playback commands.

Command Description

Quit To terminate the entire xsam session, you can
either select the Quit xsam menu entry in the
File menu or enter quit in the Commands area.
The menu entry may ask for confirmation.

Help Select the General Information entry in the
Help menu or enter the help command to bring
up this display. You can click on an item in the
Help Options area to locate it quickly in the
help display. Use the DISMISS button to exit the
help display.

Host xsam allows you to monitor several hosts from
within a single session. This is controlled by
using either the host display menu or the
host command. You can view multiple displays
monitoring multiple hosts in a single xsam
session.

To activate the Host display, select the
Hosts ... entry in the File menu. To enter a
new host name from the Host display, move the
cursor to the area labeled Set Host, enter the
host name and press the RETURN key. The new
host becomes the current host and also is
highlighted in the Available Hosts area. You
also can change the current host by clicking on its
name in the Available Hosts area.

A host also can be entered and made current by
typing host hostname in the Commands input area
of the console window. The host command
without any arguments displays the current host
in the Messages area of the console window.

S–2302–10010 311

UNICOS® Resource Administration

Fork Use the Fork xsam entry in the File menu to
disconnect your xsam session from your tty
session. This allows you to continue running
xsam and to execute other programs or UNICOS
commands within the same tty session. Fork can
be executed only once during a session. Its
function is disabled if logging is active and
connected to your tty. Fork also can be started
by the command:

setup fork

Setup The Setup display provides control over
resources that are local to your xsam session. To
activate the Setup display, select the Setup ...
entry in the File menu. Alternately, you can
execute set-up commands in the console window
to customize your X11 display.

The setup display allows you to select three
options:

Echo Commands to Console Window

Exit from Script upon Error

Confirm Program Quit Request

They can be activated either from within the
setup display or by entering the following
commands in the console window:

setup [no]echo
setup [no]abort

setup [no]confirm

The left mouse button acts as a toggle on the
display to turn the options on (represented by a
dark box) and off (represented by a light box).

The Setup display area labeled Record and
Playback Control controls the data recording
and playback features. To specify the file name
you want to use, move the mouse to the area
labeled Record File Name or Playback File
Name, enter the file name and press the RETURN
key to activate the file. You must click on the

312 S–2302–10010

System Activity Monitoring [7]

START button to begin recording or playback.
The record and playback feature is not accessible
through the command interface. See the
Record/Playback description in this list for
further information.

The Setup display area labeled Logfile
Control is used to control command and debug
output logging. To activate logging, move the
mouse into the area labeled Log File Name,
enter a file name and press the RETURN key. Then
select, by clicking, one or both of the types of
logging messages available:

Console

or

Debug

An empty string entered as a file name will close
the log file without opening a new one. The file
names stdout and stderr correspond to the
related standard UNIX files.

These logging functions also can be controlled by
entering any of the following commands in the
Console window:

setup logfile file name
setup nologfile

setup [no]debug

setup [no]conslog

S–2302–10010 313

UNICOS® Resource Administration

Record/Playback You must access record and playback sessions
through the Setup display of the File menu;
they are not available from the Commands input
area of the console window. When recording is
turned on, all incoming data is written to a file
that can be used for playback. You can start
recording at any time during a normal session.

When playback is turned on, data is taken from
that file instead of contacting a running
samdaemon process. Use of the playback
feature is restricted in the following ways:

• playback sessions are single host sessions.

• playback can be activated only before
connection to samdaemon has been
established. After playback has been
activated, no further real connections can be
made within this xsam session.

• playback cannot show any data that was not
recorded, but can show more information than
was monitored while recording the data. What
is or is not available depends on the packaging
of the information that is exchanged between
samdaemon and the xsam client. For example,
if recording was done while a graph user-0
was active, all information about CPU
utilization is included in the data file. Thus,
during playback, you may have user-Sum,
kernel-Sum, and idle-Sum active.

To activate either record or playback, you
must first enter the name of the data file, press
the RETURN key to select the file, and then
click the START button. After record or
playback is activated, use the associated
buttons as you would on an audio tape deck,
with the exception of the TRUNC button. This
button truncates the file at the position when
the button is clicked. For example, if you are
playing back a file and stop the playback by
clicking the STOP button, and then you click

314 S–2302–10010

System Activity Monitoring [7]

the TRUNC button, the file will be truncated at
the point currently displayed.

After activating the playback process, you
must select which data to display from the file
(through the View menu or through
commands).

Config The Config display is available through the Host
configuration option of the View menu. It
displays information about the hardware and
software configuration of your target system. You
also can activate it with the following command:

config

Graph Select the Kernel Graphs ... entry in the
View menu to bring up the graph console,
which will show you a list of available graphs for
that specific host. You can select graphs by
clicking on their names. Selected graphs are
indicated by a dark box; clicking on them again
will deselect them, as indicated by a light box.
Click on the Request Selected Graphs
button to bring up the Graph display. Graphs are
shown in alphabetical order.

If a graph name is known to the user, it also can
be activated by using the following command:

graph graphname1 graphname2 ...

In addition, this allows you to specify some X11
options. Graphs are shown in the order specified
in the command.

The Graph display shows actual performance
data. It also shows the time of day of the host
machine.

Within a Graph display, you can use the mouse
to request additional displays such as time
information. For information about using the
mouse within a Graph display, see the online
help facility available in xsam.

S–2302–10010 315

UNICOS® Resource Administration

Two interesting types of graphs are the -all and
-sum graphs for CPU utilization data. The -all
graph shows the current utilization of all
configured CPUs of the target system within a
single graph (no history). This is useful for a
quick overview of general system performance
from hosts with many CPUs. The -sum graph
shows the CPU utilization accumulated over all
configured CPUs of the target host. These two
options can be used for CPU utilization graphs
user, kernel, and idle.

You can also display a selected graph for a
specific CPU with the following graph command:

graph graphtype-CPU

graphtype may be user, kernel, or idle; the
- is required (no spaces), and CPU is a valid CPU
number.

Map Select either the Memory Map or the Swap Map
entries in the View menu to bring up the map
display.

This display shows a box (or a line, for small
entries) for every process that currently resides on
the specified target memory. The size of a box is
related to its actual process size, and the position
of a box is related to its position within the target
memory.

You can zoom into an active Map display by
moving the cursor to the desired start position in
the Map display, clicking the left mouse button
(this will show you the actual start position),
moving to the desired end position, and clicking
the right mouse button. A new Map display will
be activated.

A Map display also can be activated with the
following command:

map [map name][-start addr][-end addr][-id][-size]

316 S–2302–10010

System Activity Monitoring [7]

map name Either memory (the
default), or swap.

-start addr Specifies a specific
starting address of
the map. Leading
zeroes indicate an
octal value.

-end addr Specifies a specific
ending address of
the map. Leading
zeroes indicate an
octal value.

-id Requests that
process IDs be
displayed. (Space
permitting)

-size Requests that
process sizes be
displayed. (Space
permitting)

Snapshot The Snapshot display shows detailed
information about running processes. You can
activate the display directly from the Map display
by positioning the cursor inside the box that
corresponds with the desired process and
pressing either the middle mouse button or the p
key. The snapshot display can also be activated
with the following command:

snapshot < pid >

pid is a valid process ID number.

Device Select either the Disk I/O or the Logical
Device I/O entry in the View menu to bring up
the Device display.

A Device display can also be activated by the
device command. This command allows you to

S–2302–10010 317

UNICOS® Resource Administration

specify some X11 options. In addition you must
specify a valid device name.

Figure 8 shows the xsam device display window.

a10825

Figure 8. The xsam Device Display Window

The Device display shows four fields of information.

• On the left side of the window is a tree of the current configuration. This
tree contains all real nodes, such as physical disks or logical devices, and
several configuration nodes.

318 S–2302–10010

System Activity Monitoring [7]

– The disk display shows nodes for all IO-Clusters, for EIOPs, for disk
channels (DCAs), and the global System node.

– The logical device display shows the global System node and two
additional nodes for Cached and Normal (non-cached) devices.

Possible actions you can take by using the cursor inside the configuration
tree are described in the "Tree Widget" section of the Cray Doo-Dad Set
Reference Manual. The mouse action select-node, triggered by pressing
the left button on the mouse, selects a node. This selection affects the
function of the lower speedometer, which shows the I/O rate of the sub-tree
starting at this node.

• The right side of the device display shows two speedometers and a bar
diagram.

– The upper speedometer (labeled Current System I/O
[KBytes/Sec]) shows the current and maximum I/O rates in kilobytes
per second. The maximum value is the highest I/O rate seen in the
lifetime of this display.

– The lower speedometer (labeled <NAME> I/O [% of Current) shows
the I/O percentage rate of the current selected device subtree with respect
to the current I/O rate (as shown in the upper speedometer). The current
selected device subtree starts at the node highlighted in the configuration
tree. An additional line shows the absolute value of this I/O rate.

– The bar diagram shows the I/O percentage rate of all real devices with
respect to the current I/O rate (as shown in the upper speedometer).
Configuration nodes (such as System) are not part of this diagram.

You can perform three actions with the cursor positioned in the bar
diagram. The left and right mouse buttons change the lower and upper
ends, respectively, of the nodes displayed. This allows you to zoom into
the diagram for sites with a larger disk or logical device farm. The
middle mouse button selects a specific disk or logical device node. This,
too, affects the function of the lower speedometer. If the node is not
hidden in the configuration tree, the configuration tree is changed in
such a way that it is more likely that the selected node is visible; if the
node is hidden, its name is printed on the main console.

The View menu of the Device display contains two entries:

I/O Graphs ...

Reset

S–2302–10010 319

UNICOS® Resource Administration

Select the Reset entry to reset the internal counters (such as maximum I/O
rate), clear the speedometers and the bar diagram, make the entire
configuration tree visible, and select the System node.

Select the I/O Graphs entry to bring up a graph console that allows you to
select detailed statistics about individual nodes. For disk nodes and non-cached
logical devices, two graphs are available:

<NAME>:nrds

<NAME>:nwrts

For cached devices, four graphs are available:

<NAME>:crds

<NAME>:cwrts

<NAME>:drds
<NAME>:dwrts

The extensions have the following meaning:

Extension Meaning

nrds Number of blocks read

nwrts Number of blocks written

crds Number of blocks read from cache to user

cwrts Number of blocks written from user to cache

drds Number of blocks read from disk to cache

dwrts Number of blocks written from cache to disk

7.3 Cray System Activity Reporting (tsar(8)) Package

You can use the sdc(8) and tsar(8) commands together to gather and to report
system activity data.

Information about the system activity reporting package is divided into the
following areas:

• sdc command

• tsar command

• Data collection

• Data file format

320 S–2302–10010

System Activity Monitoring [7]

• tsar source scripts

• tsar language description

• Operational setup

• Examples

• Limitations

The functionality of sdc and tsar is similar to that of the sadc and sar
commands. The sdc and tsar combination offers the following advantages:

• You can specify how much data is to be collected, either all of the sdc data
or a subset. If you are interested only in CPU utilization, then you can direct
sdc to gather only CPU data.

• Data can be summarized in a manner that is appropriate for your site. tsar
report formats are not hard coded. Reports are formatted according to the
directives in tsar source scripts, which you write.

• sdc data files are portable from one Cray platform to another. The files
contain headers that describe the data records.

The current release has limitations on its implementation. See Section 7.3.10,
page 350, for more information.

7.3.1 sdc(8) Command

The sdc(8) command gathers system activity data from the kernel by
generating a C program and an executable, sdcx. The sdc process creates a
new session and calls the fork(2) system call to create a child process, which
executes sdcx. The child process performs the actual data collection while the
parent sdc process exits.

The sdc command can collect the following types of data:

• CPU utilization

• System calls

• Process management

• Memory management

• System table management

• System I/O

S–2302–10010 321

UNICOS® Resource Administration

• General system data

• Disk activity

• Tape activity

• TCP/IP activity

• Terminal activity

• NFS activity

• Network interface activity

• IPC activity

Tables in this section list the available data items for each of these types.

For more detailed information on the command see the sdc(8) man page.

7.3.2 tsar(8) Command

The tsar(8) command formats the data collected by the sdc command
according to user-specified directives. The directives are placed in source
scripts, which tsar processes.

The tsar utility is a translator that processes a subset of the awk language,
described in The AWK Programming Language, by Alfred Aho, Brian Kernighan,
and Peter Weinberger.

For more detailed information on the command see the tsar(8) man page.

7.3.3 Data Collection

By default, the sdc command collects data for over 100 system activity
counters. You can sample a subset of these counters by invoking sdc with the
-R option. The system activity data types and the data items (or counters)
available for each type are described in tables in this section; the four column
heads are defined as follows:

Column Head Meaning

Name The name that tsar and sdc use for the data
item. This name should appear in the request file
when you use the sdc -R option.

322 S–2302–10010

System Activity Monitoring [7]

Cum As shown in the tables, each data item is either
cumulative (Y) or not (N).

Y The value for this item is
cumulative. Thus, to determine the
item’s value for an interval, the
value from the previous record
must be subtracted from the current
record. This type of counter
generally is initialized at boot time.

N The value for this item is not
cumulative.

Unit The unit, if any, in which the data item is
reported.

7.3.3.1 CPU Data

The data shown in Table 34 is available for each CPU. Each item, except ncpus,
is an array indexed by the CPU number. Each array has ncpus entries.

Table 34. CPU Data

Name Cum Unit Description

ncpus N Number of CPUs configured

cpuuser Y clocks CPU time in user mode

cpuUNIX Y clocks CPU time in kernel mode

cpuidle Y clocks CPU idle time

cpupre Y Number of program range errors

cpuore Y Number of operand range errors

cpuerr Y Number of error exchanges

cpufpi Y Number of floating point errors

cpudli Y Number of deadlock errors

cpurpe Y Number of register parity errors

S–2302–10010 323

UNICOS® Resource Administration

7.3.3.2 System Calls

The data shown in Table 35 is available for each system call. Each item, except
nsysc, is an array indexed by the system call name prefixed by sc_ (such as
sc_fork, sc_exec, and sc_read) or by 0 through (nsysc -1). Each array has
nsysc entries.

Table 35. System Call Data

Name Cum Unit Description

nsysc N Number of system calls

sc_name N ASCII Name of system calls

scall Y Number of requests

scalltime Y clocks Total time used by system call

scallmax N clocks Maximum time to complete

scallmin N clocks Minimum time to complete

7.3.3.3 Process Management

The data shown in Table 36 is available to monitor process management.

Table 36. Process Management Data

Name Cum Description

pswitch Y Number of process switches

punlock Y Number of times a process is unlocked

runocc Y Number of times runque was updated

runque Y Length of the run queue

srunwait Y Number of times processes were loaded and runnable but not
running

srunwaitproc Y Number of processes loaded and runnable but not running

324 S–2302–10010

System Activity Monitoring [7]

7.3.3.4 Memory Management

The data shown in Table 37 is available to monitor memory management.

Table 37. Memory Management Data

Name Cum Unit Description

bswapin Y Number of blocks swapped in

bswapout Y Number of blocks swapped out

datlock Y Number of data locks

memlock N clicks Amount of memory locked

shuffle N Number of shuffles in memory

swap N swap allocation Total amount of swap space units

swapavail N swap allocation Amount of available swap space units

swapin Y Number of swap ins

swapout Y Number of swap outs

swpocc Y Number of times swpque was updated

swpque Y Length of the swap queue

txtlock Y Number of text locks

umem N words Amount of memory available to user
processes

umemuse N clicks Amount of memory in use by user processes

xswapin Y Number of times a shared-text process was
swapped in

xswapout Y Number of times a shared-text process was
swapped out

7.3.3.5 System Table Management

The data shown in Table 38 is available to monitor system table management
activity.

S–2302–10010 325

UNICOS® Resource Administration

Table 38. System Table Management Data

Name Cum Description

file N Number of active entries in the file table

file_sz N Size of the file table

file_ov N Number of overflows in the file table

nc1inode N Number of active entries in the nc1inode table

nc1inode_sz N Size of the nc1inode table

nc1inode_ov N Number of overflows in the nc1inode table

proc N Number of active entries in the proc table

proc_sz N Size of the proc table

proc_ov N Number of overflows in the proc table

text N Number of active entries in the text table

text_sz N Size of the text table

text_ov N Number of overflows in the text table

7.3.3.6 System I/O, General

The data shown in Table 39 is available to monitor general system I/O.

Table 39. General System I/O

Name Cum Unit Description - Number of

arblks Y blocks Blocks read by aread ()

aread Y aread () calls

awblks Y blocks Blocks written by awrite ()

awrite Y awrite () calls

bdrblks Y blocks Buffer blocks read from devices

bdread Y bread () calls actually read from devices

bdwblks Y blocks Buffer blocks written to devices

326 S–2302–10010

System Activity Monitoring [7]

Name Cum Unit Description - Number of

bdwrite Y bwrite () calls - buffer writes to devices

burblks Y blocks lread blocks read - buffer blocks read to user

buread Y blocks aread () and bread () requests - buffer reads
to user

buwblks Y lread blocks written - buffer blocks written
from user

buwrite Y awrite () and bwrite () requests - buffer
writes from user

pktin Y I/O input packets processed

pktout Y I/O output packets sent

pktbad Y I/O illegal packets received

prblks Y blocks Raw (physio ()) blocks read

pread Y Raw (physio ()) reads

pwblk Y blocks Raw (physio ()) blocks written

pwrite Y Raw (physio ()) writes

rchar Y bytes Bytes read by read(2), reada(2), listio(2)

wchar Y bytes Bytes written by write(2), writea(2),
listio(2)

7.3.3.7 System I/O, Caching

The data shown in Table 40 is available to monitor caching. Each item, except
nldds, is an array indexed by the logical device name prefixed by ld_ (such as
ld_root and ld_usr) or by through (nldds -1). Each array has nldds entries.

Table 40. System I/O - Caching

Name Cum Unit Description

nldds N Number of logical devices

ld_active N Number of current ldcache requests

ld_agelo N clocks Trickle sync lower threshold

S–2302–10010 327

UNICOS® Resource Administration

Name Cum Unit Description

ld_ageup N clocks Trickle sync upper threshold

ld_bread Y blocks Number of blocks read from device

ld_bwrite Y blocks Number of blocks written to device

ld_dirthi N cache units Dirty unit high-water mark

ld_dirtlo N cache units Dirty unit low-water mark

ld_dirtpd N cache units Number of dirty units being synced

ld_dirty N cache units Number of dirty units

ld_dread Y blocks Number of reads from disk to cache

ld_dwrite Y blocks Number of writes from cache to disk

ld_name N ASCII Logical device name

ld_nch N Number of cache units

ld_rhit Y Number of read hits on ldcache

ld_rmiss Y Number of read misses on ldcache

ld_rreq Y Number of ldcache read requests

ld_sch N blocks Size of each cache unit

ld_uread Y blocks Number of reads from cache to user

ld_uwrite Y blocks Number of writes from user to cache

ld_whit Y Number of write hits on ldcache

ld_wmiss Y Number of write misses on ldcache

ld_wreq Y Number of ldcache write requests

7.3.3.8 General System Data

The data shown in Table 41 is available to monitor other system activity.

328 S–2302–10010

System Activity Monitoring [7]

Table 41. General System Data

Name Cum Unit Description

CLK_TCK N clocks Number of clock ticks per second

HARDWARE N ASCII Machine type

MACHINE N ASCII Machine identification

MEMORY N ASCII Memory configuration

NODENAME N ASCII Network node name

RELEASE N ASCII UNICOS release

SOFTWARE N ASCII Software release

SYSNAME N ASCII System name

VERSION N ASCII UNICOS version

dirblk Y blocks Number of directory blocks read by c1namei
()

iget Y Number of iget () function calls

ios_e N Set if the system has an IOS model E

namei Y Number of namei () function calls

nwpc N words Number of words per click

semlockc Y Number of locked events

semlockt Y clocks Time spent waiting on a semaphore

swapau N clicks Swap allocation units in clicks

boottime Y seconds Time at which sdc -B was executed

headertime Y seconds Time at which a header record was written

shuttime Y seconds Time at which sdc -S was executed

time Y seconds Time at which the record was written

In this table, boottime, headertime, shuttime, and time are in seconds
since 00:00:00 GMT, January 1, 1970.

S–2302–10010 329

UNICOS® Resource Administration

7.3.3.9 Disk Data

A set of data items (system activity counters) is available for the IOS model E
(IOS-E).

The amount of I/O transferred is reported in sectors, the basic I/O unit for a
given disk device type. On the IOS-E, a sector is not always a block. For
example, DD-XX devices have a sector size of 2048 words (4 blocks), while
DD-ZZ devices have 512 words per sector.

The data shown in Table 42 is available for each IOS-E physical disk. Each item,
except npdds, is an array indexed by the physical disk number prefixed by pd_
(such as pd_1334_03) or by 0 through (npdds -1). Each array has npdds
entries.

Table 42. IOS-E Physical Disk Data

Name Cum Unit Description

npdds N Number of physical disk devices

dr_iotime Y clocks Actual I/O read time

dr_rerrs Y Number of recovered read errors

dr_uerrs Y Number of unrecovered read errors

dr_rectime Y clocks Read recovery time

dw_nqreqs Y Number of queued write requests

dw_qtime Y clocks Time waiting in the write queue

dw_nioreqs Y Number of I/O write requests to the IOS-E

dw_nblks Y sectors Number of write sectors transferred

dw_iotime Y clocks Actual I/O write time

dw_rerrs Y Number of recovered write errors

dw_uerrs Y Number of unrecovered write errors

dw_rectime Y clocks Write recovery time

330 S–2302–10010

System Activity Monitoring [7]

7.3.3.10 Tape Data

The data shown in Table 43 is available for each tape drive. Each item, except
ntpds, is an array indexed by the physical tape number prefixed by tp_ (such
as tp_170) or by 0 through (ntpds -1). Each array has ntpds entries.

Table 43. Tape Drive Data

Name Cum Unit Description

ntpds N Number of tape drives

tp_name N ASCII Name of tape drive

tp_mounts Y Number of volumes mounted

tp_nread Y bytes Number of bytes read

tp_nwrite Y bytes Number of bytes written

7.3.3.11 TCP/IP Data

The data shown in Table 44 is available for analyzing TCP/IP performance.

Table 44. TCP/IP Performance Data

Name Cum Unit Description

tcp_hwint Y clocks Time spent on TCP/IP hardware interrupts

tcp_swint Y clocks Time spent on TCP/IP software interrupts

tcp_scall Y clocks Time spent on TCP/IP system calls

7.3.3.12 Terminal Data

The data shown in Table 45 is available for analyzing terminal activity.

S–2302–10010 331

UNICOS® Resource Administration

Table 45. Terminal Activity Data

Name Cum Description

canch Y Number of canonical characters input through tty interface

clist N Number of clist entries in use

clist_ov Y Number of overflows in the clist buffer

outch Y Number of characters output through tty interface

rawch Y Number of raw characters input through tty interface

rcvint Y Number of T (terminal) packet input interrupts

xmtint Y Number of T (terminal) packet output interrupts

7.3.3.13 NFS Data

The data shown in Table 46 is available for analyzing network file system (NFS)
server and client activity. Each item, except nnfsc, is an array indexed by the
NFS call index (0 through nnfsc -1).

Table 46. NFS Data

Name Cum Unit Description

nfsc_name N ASCII Name of NFS call

nfscl_calls Y Number of client calls

nfssv_calls Y Number of server calls

nnfsc N Number of NFS call types

7.3.3.14 Network Interface Data

The data shown in Table 47 is available for analyzing activity for each network
interface that has been configured. Each item, except nnet, is an array indexed
by network (0 through nnet -1).

332 S–2302–10010

System Activity Monitoring [7]

Table 47. Network Interface Data

Name Cum Unit Description

nw_colls Y Number of collisions

nw_ierrs Y Number of input errors

nw_ipkts Y Number of input packets

nw_name N ASCII Internet name (address) of the network

nw_oerrs Y Number of output errors

nw_opkts Y Number of output packets

nnw N Number of configured network interfaces

7.3.3.15 IPC Data

The data shown in Table 48 is available for analyzing IPC activity.

Table 48. IPC Activity Data

Name Cum Description

msgsend Y Number of IPC messages sent

msgrecv Y Number of IPC messages received

semops Y Number of semaphore operations

shmat Y Number of shared memory attaches

shmdt Y Number of shared memory detaches

7.3.3.16 Restricted Data Collection

As mentioned in Section 7.3.3, page 322, a subset of the data in the system
activity counters can be sampled by using the sdc -R option. You must specify
the name of a request file, which contains a list of the data to be collected.

Each request file must include at least the following data items: boottime,
headertime, shuttime, and time. These items are needed to determine
when the data was sampled and whether there was a system boot or shutdown.

S–2302–10010 333

UNICOS® Resource Administration

For example, only data for memory and swap usage will be gathered when sdc
is executed with a request file that contains these items:

boottime
headertime

shuttime

time

HARDWARE

MEMORY

umem
nwpc

swap

swapau

swapavail

umemuse
memlock

The tsar script /usr/src/prod/admin/uma/sar.t/M formats the data into
a report.

7.3.4 Data File Format

The system activity data file, created by the sdc(8) command, consists of
header and data records. A data record is created for each time interval that is
sampled. The data records are preceded by two ASCII header records, which
define the data records.

7.3.4.1 Header Records

There must always be header records at the beginning of the data file. Two
ASCII header records define the data being collected: a definitions record and a
meta-data record.

The purpose of the header records is to label the data in the data records that
follow. If the header records do not correspond with the data records, tsar
will be unable to process the data. Header records must be placed at the
following locations.

• The beginning of the data file.

• When the system has been reconfigured and the reconfiguration affects the
data that sdc is sampling.

• When a subset of the data listed in Section 7.3.3, page 322, is sampled.

334 S–2302–10010

System Activity Monitoring [7]

When sdc is invoked with either the -B or -S option, header records also
contain the system boot time and shutdown time.

7.3.4.2 Definitions Record

The first header record written to the data file is the data definitions record.
This record contains system call names, device names, kernel table sizes, and
ASCII strings that describe the system configuration. When processing the data
file, tsar 8* updates the data definitions each time it encounters a definitions
record.

7.3.4.3 Meta-data Record

The second header record written to the data file is the meta-data record. This
record contains the name and size of each item or array that is in the actual
data record. When processing the data file, tsar(8) updates the meta-data
definitions each time it encounters a meta-data record.

7.3.4.4 Data Records

Data records are written each time sdc samples the system activity counters.
Each set of data records must be preceded by a definitions and a meta-data
header record.

There are two types of data records. The first type contains non-ldcache data. If
ldcache statistics are requested, the second type of data record is generated.
Each ldcache data record is immediately preceded by a definitions record and a
meta-data record, which together define and describe the ldcache data record.

Table 49 describes which sdc, sdcx, and tsar options produce header records
or data records. When the table shows that one header record is written, it
means that both a definition and a meta-data record are written.

Table 49. Records Written

Command Option Record written

sdc -c One header record.

sdc -B One header record containing the boot time.

S–2302–10010 335

UNICOS® Resource Administration

Command Option Record written

sdc -R One header record. If -c, -B, and -S are not also
specified, data records are written.

sdc -S One header record containing the shutdown time.

sdc none of the
above

One header record and data records.

sdcx any Data records.

tsar -h One header record and data records.

!
Caution: The tsar(8) command assumes that the header records define the
data records that follow them. If a system reconfiguration occurs, and no
header record is written to define the reconfiguration, then the tsar output
may be erroneous or tsar may abort.

7.3.5 tsar(8) Modes

The tsar(8) command operates in one of three modes: compilation-only mode,
online mode, or playback mode.

7.3.5.1 Compilation-only Mode

The tsar -c option places tsar in compilation-only mode. This mode is used
to debug tsar source scripts. tsar compiles the scripts but does not execute
them. The system activity data is not formatted into an ASCII report.

7.3.5.2 Online Mode

The tsar -h option places tsar in online mode. In this mode, tsar collects
data from the host system through the sdc(8) command. The data can be
written to a file and/or formatted into an ASCII report as it is being collected.

7.3.5.3 Playback Mode

The tsar -p option places tsar in playback mode; this also can be done by
not specifying the -h option. In this mode, tsar processes data from an
existing system activity data file. This is the default tsar mode.

336 S–2302–10010

System Activity Monitoring [7]

7.3.6 tsar(8) Source Scripts

The tsar(8) command is a translator that formats system activity data into an
ASCII report according to the directives found in a source script.

The tsar scripts consist of six sections, including the body, any of which may
be empty or missing. Scripts can contain any of the following sections, in any
order:

BEGIN { statements }
END { statements }
RESTART { statements }
RECONFIG { statements }
function name (arglist) { statements }
statements

The tsar command can process multiple source scripts, and one script can
contain multiple BEGIN, END, RESTART, RECONFIG, function, or body
sections. In these cases, tsar executes the statements for all like sections in the
order that they appear in the scripts or script.

For example, all statements in the various BEGIN sections will be combined into
one BEGIN section. The statements will be in the same order as they appear in
the scripts or script.

7.3.6.1 BEGIN Section

The statements associated with BEGIN comprise the preamble. The preamble is
executed once after the first definition and meta-data records are read. The
preamble can be used to print report headings and to initialize variables used in
the body.

7.3.6.2 END Section

The statements associated with END comprise the postamble. The postamble is
executed once after all the records in the data file have been read. You can
instruct tsar in this section to process and print summary data.

7.3.6.3 RESTART Section

The statements associated with RESTART comprise the restart section. These
statements are executed each time a system boot or shutdown is found in the
header record. The amount of time the system was up or down can be
calculated in this section.

S–2302–10010 337

UNICOS® Resource Administration

7.3.6.4 RECONFIG Section

The statements associated with RECONFIG comprise the reconfiguration section.
These statements are executed each time a system reconfiguration or a change
in which data items are sampled is detected in the header records.

Note: When a restart or reconfiguration is detected, tsar assumes that all of
the system activity counters have been reset. For example, the built-in
function sdiff (x) calculates the difference between the current sample of x
and the first sample of x in this boot or reconfiguration period. It does not
calculate the difference between the current sample and the first sample
found in the data file.

7.3.6.5 function Section

The statements in the function section of tsar define functions as specified
by the user. Functions always begin with the word function followed by the
function name and the argument list. The arglist consists of names separated by
commas. These argument names are the formal parameters of the function and
the variables that are local to the function. Function calls may be nested and
recursive. The return statement can be used to return a value.

7.3.6.6 Body

Statements that are not in any of the preceding sections form the body of the
tsar source script. Typically, these statements calculate the usage for each
interval. This section is executed once for each data record encountered.

7.3.6.7 Example Source Scripts

Examples of tsar source scripts can be found in the
/usr/src/prod/admin/uma/sar.t directory. These scripts produce output
that is similar to sar(8) output. There is one script for each sar option. The
name of the tsar script is the same as in the sar option.

7.3.7 tsar(8) Language Description

The tsar language is the action language of nawk without the string
processing operations. Users familiar with nawk will have little difficulty
writing and understanding tsar scripts. The pattern part of nawk is
unnecessary in tsar, because the data format is defined in the data file. Users
merely select the data items to process by name.

338 S–2302–10010

System Activity Monitoring [7]

tsar implements a subset of the awk language described in The AWK
Programming Language, by Alfred Aho, Brian Kernighan, and Peter Weinberger.

7.3.7.1 Statements

A tsar script can include any of the following statements:

if (expression) statement [else statement]

while (expression) statement
do statement while (expression)

for (expression; expression; expression) statement
break
continue

{ [statements] }

expression
print expression-list [>expression]

printf format[, expression-list] [>expression]
next

exit [expression]

return [expression]

The following explains further the contents of statements:

• Statement Terminators. Statements are terminated by semicolons, right
braces, or newline characters.

• Statement Continuation. Statements can be continued on successive lines by
using \ as the last character of the line. Statements can also be continued
after the following symbols:

, (comma)

{ (left brace)

&& (logical AND)

|| (logical OR)

do

else) (right parenthesis in an "if" or "for" statement)

• Comments. Nonexecutable comments begin with # and end with a newline
character. They can appear anywhere in the source script.

• Expressions. Expressions include constants, variables, and operators.
Parentheses can be used to control the grouping of the operations in an
expression.

S–2302–10010 339

UNICOS® Resource Administration

• Logical Expressions. Logical expressions have a value of 1 (true) and 0
(false). As in the C language, any nonzero value is taken to be true.

• Numbers. Numbers can be integers or floating points. The format is the
same as that recognized by strtod and strtol: digits, decimal point,
digits, e or E, signed exponent. At least one digit or a decimal point must
be present; the other components are optional. Octal integers begin with 0.
Hexadecimal integers begin with 0x.

• Variable Names. Variable names consist of a letter followed by a string of
letters, numbers, or the character _. Variables are used to name the data
items found in the data records of the system activity file.

Some variables in the system activity data file are arrays. The elements of
these arrays can be referenced by indexing. For example, the variable,
cpuuser, is an array that contains the CPU time in user mode (see Section
7.3.3, page 322). The CPU time for CPU 0 is referenced by cpuuser [0].

Users can also define additional variables within the tsar source script;
however, user-defined arrays are not supported.

7.3.7.2 Operators

Prefix, infix, and suffix operators are available for use in tsar scripts.

Prefix Operators The tsar command applies a prefix operator
immediately preceding a term and any suffix
operators. It then applies any prefix operators to
the left of that operator, grouping them from right
to left.

Operator Action

++X Preincrement

--X Predecrement

+X Plus

-X Minus

!X Logical NOT

Infix Operators The tsar command applies infix operators, in
descending order of precedence, as follows:

340 S–2302–10010

System Activity Monitoring [7]

Operator Action

X^Y Exponentiation

X*Y Multiplication

X/Y Division

X%Y Remainder

X+Y Addition

X-Y Subtraction

X<Y Less than

X<=Y Less than or equal

X>Y Greater than

X>=Y Greater than or equal

X==Y Equals

X!=Y Not equals

X&&Y Logical AND

X||Y Logical OR

Z?X:Y Conditional

X=Y Assignment

X*=Y Multiply assign

X/=Y Divide assign

X%=Y Remainder assign

X+=Y Add assign

X-=Y Subtract assign

X,Y Comma

Suffix Operators The tsar command applies a suffix operator
immediately following a term before it applies
any other operator. It then applies any suffix
operators to the right of that operator, grouping
them from left to right. The following list shows
the suffix operators:

Operator Action

X++ Postincrement

X-- Postdecrement

S–2302–10010 341

UNICOS® Resource Administration

X[Y] Subscript

X(Y) Function call

7.3.7.3 Built-in Functions

The tsar command has the following built-in functions, with the function
parameters (given in parentheses) defined at the end of the list:

Function name Description

abs(exp) Return the absolute value of exp.

diff(term) Return the difference between the current and
previous sample values of term. If term is an
array name, then diff () returns the sum of the
differences of the array elements.

close(str) Close the file stream specified by str.

frac(exp) Return the fractional part of exp.

imax(arr) Return the index of the maximum element of
array arr.

imin(arr) Return the index of the minimum element of
array arr.

int(exp) Return the integer part of exp.

isdefined(sym) Return 1 if sym is defined. Otherwise return 0.

rate(exp) Return the rate of exp in counts per second.

sdiff(term) Return the difference in the value of term between
the present and first sample in this boot or
reconfiguration period. If term is an array name,
sdiff () returns the sum of the differences of the
array elements.

sum(arr) Return the sum of the elements in array arr.

system(str) Pass str to the shell for execution.

strftime(fmt) Format the time into a string according to fmt.

timen(val) Return the time stamp in seconds, minutes, or
hours. The time stamp is normally represented as
hh:mm:ss. timen (0) returns the time stamp in

342 S–2302–10010

System Activity Monitoring [7]

seconds, which is t = hh(3600) + mm(60) +
ss. timen (1) returns minutes, which is
calculated as t/60. timen (2) returns hours,
which is t/3600.

The function parameters are as follows:

arr arr is an array name. For example:

imax (ld_active)

exp exp is a variable name or a function invocation. For example:

abs (runque)

variable name

rate (diff (scall [sc_reada]))

function invocation

fmt fmt is NULL or a valid strftime format, which is enclosed in
double quotes. For example:

strftime ()

ULL format

strftime (" %X ")

strftime format

str str is either a character string enclosed in double quotes or the
name of a variable whose value is a character string. For example:

close (" disk.data ")

character string

command = "date; uname -a"

system(command)

variable which contains a character string

sym sym is a variable name. Names of array elements are not valid
symbols. sym can be defined by the tsar -D option. For
example:

S–2302–10010 343

UNICOS® Resource Administration

if (isdefined (ios_e))

variable

if (isdefined (ld_active [ld_root]))

invalid

tsar -DCPU

if (isdefined (CPU))

symbol defined by the tsar -D option

term term is an expression (exp) or an array name. For example:

diff (scall [sc_reada])

expression

diff (tp_mounts)

array name

val val is 0, 1, or 2. For example:

timen (0) Returns the time in seconds

timen (1) Returns the time in minutes

timen (2) Returns the time in hours

7.3.7.4 Built-in Variables

The tsar command has the built-in variables shown in Table 50.

Table 50. tsar Command Built-in Variables

Variable Description Default value

END_TIME Ending time of the sampling period None

NR Number of sample intervals None

OFMT Output format for printing numbers %.6g

OFS Output field separator " "

344 S–2302–10010

System Activity Monitoring [7]

Variable Description Default value

ORS Output record separator \n

RSIZE Size of the data records in bytes None

START_TIME Start time of the sampling period None

7.3.8 Operational Setup

Information about boot and shutdown times can be collected by executing the
sdc(8) command during the system boot and shutdown process. A crontab(1)
or at(1) job can be used to gather system activity data while the system is
running.

Regardless of how data is collected, the sdc, sdcx, and tsar -h commands
must be executed by a user who has read access to the /unicos and
/dev/kmem files.

7.3.8.1 Difference between sdc(8) and sdcx

As explained in Section 7.3.1, page 321, sdc(8) generates and compiles sdcx
(see sdc(8)). This process can take a significant amount of wall-clock time on a
busy system. Instead of continually generating and compiling sdcx, you can
use the sdc -c option to write a header record and save the sdcx binary. The
sdcx binary can then be used to collect data samples, thus bypassing the need
to regenerate and recompile sdcx.

The sdcx binary only writes data records and not header records, as mentioned
in Section 7.3.4.1, page 334. Thus, when a system reconfiguration affects the
sdcx data samples, a new header record must be written and a new sdcx must
be generated. Failure to do this can cause tsar to create erroneous reports or
to be unable to read the data files.

If no system reconfigurations occur during the sampling interval, sdc can be
executed once to write a header record and to save the sdcx binary. sdcx can
then be used to collect the data samples.

If reconfigurations are likely during the sampling interval, it is always best to
execute sdc. Each time sdc is executed, a header record is written. Data
samples also can be collected.

It is important to understand when sdc writes the header and data records.
Section 7.3.4, page 334, and Section 7.3.8.4, page 346, describe which command
options write the various records. Both sections show examples.

S–2302–10010 345

UNICOS® Resource Administration

7.3.8.2 Boot Time Data

The sdc command with the -B option must be executed during the system
boot process in order for sdc to record the boot time. One way of doing this is
to invoke sdc from the /etc/rc.pst. Code similar to the following can be
used in /etc/rc.pst:

if [-x /usr/bin/sdc]

then

/usr/bin/sdc -B /usr/adm/tsar/dcf.‘date +%m%d‘
fi

This will write a header record, which contains the boot time, to the file
/usr/adm/tsar/dcf.MMDD, where MMDD is the current month and day.
No data will be sampled.

If no system reconfigurations are going to occur while the system is running,
the sdc -c option can also be used in /etc/rc.pst. The -c option will save
the sdcx binary in the specified directory. This binary can be executed from a
crontab file.

7.3.8.3 Shutdown Data

The system shutdown time is recorded by the sdc -S option. This command
can be invoked from the /etc/shutdown.pst file. Code similar to the
following can be put in the file:

if [-x /usr/bin/sdc]

then

/usr/bin/sdc -S /usr/adm/tsar/dcf.‘date +%m%d‘

fi

This will write a header record, which contains the shutdown time, to the file
/usr/adm/tsar/dcf.MMDD, where MMDD is the current month and day.
No data will be sampled.

The sdc -B and -S options may take significant wall-clock time to execute on
busy systems, as noted in Section 7.3.8.1, page 345, and under the Section 7.3.10,
page 350.

7.3.8.4 crontab(1) Entries

System activity data can be collected periodically by sdc, sdcx, or tsar -h,
through the crontab(1) command. The following examples show how this can
be done.

346 S–2302–10010

System Activity Monitoring [7]

Example 1: This example writes a header record (definitions and meta-data
records) followed by three data records each hour. Data is sampled at a rate of
one sample every 20 minutes. A header and data record is written on the hour.
Additional data records are written at 20 and 40 minutes after the hour.

If a system reconfiguration occurs at 09:25, then tsar may interpret the 09:40
data record written incorrectly. tsar assumes that the 09:40 record has the
format described in the 09:00 header record.

0 8-17 * * 1-5 /usr/bin/sdc -i 20m -n 3 /usr/adm/tsar/dcf.‘date +%m%d

Example 2: This example writes a header and data record every 20 minutes.
Because each data record is preceded by its own header record, system
reconfigurations will be detected by tsar.

0,20,40 8-17 * * 1-5 /usr/bin/sdc -n 1 /usr/adm/tsar/dcf.‘date +%m%d

Example 3: This example writes a data record every 20 minutes. No header
records are written. It is assumed that both a header record and the sdcx
binary were generated at boot time. (See Section 7.3.8.2, page 346.) System
reconfigurations will not be detected by tsar, as the data file contains only one
header record.

0 8-17 * * 1-5 /usr/adm/tsar/sdcx -i 20m -n 3 >> /usr/adm/tsar/dcf.‘date+%m%d

7.3.9 Examples

System boot, shutdown, and system activity data can be collected by invoking
sdc as described in Section 7.3.8.2, page 346, Section 7.3.8.3, page 346, and
Section 7.3.8.4, page 346. Data gathering and reporting, however, do not have to
be scheduled by cron(8).

7.3.9.1 sdc(8) Data Collection

Like sadc (see sar(8)), sdc can be executed at any time to collect data. For
example, to sample data in the background at 10 minute intervals for 2 hours,
you can execute the following:

nohup sdc -i 10m -n 12 dcf.‘date +%m%d‘&

The equivalent sadc command is as follows:

nohup sadc 600 12 sa.‘date +%m%d‘&

sdc data is written to the file dcf.MMDD, and sadc output is directed to
sa.MMDD, where MMDD is the current month and day.

S–2302–10010 347

UNICOS® Resource Administration

The startup time for sdc is longer than that for sadc, because sdc must
generate and compile the sdcx.c code.

7.3.9.2 tsar(8) Data Collection

Like sar(8), tsar can be used to simultaneously sample and format data. For
example, to sample data at 5-minute intervals for 1 hour and report swap
activity on a machine named gust, you can execute the following:

tsar -h gust -i 5m -n 12 -r dcf.‘date +%m%d‘ M

In this example, M is a copy of a script that is found in the
/usr/src/prod/admin/uma/sar.t directory.

The equivalent sar command is as follows:

sar -o sa.‘date +%m%d‘ -M 300 12

sdc data is written to the file dcf.MMDD, and sadc data is directed to
sa.MMDD, where MMDD is the current month and day. The ASCII reports
are written to stdout.

7.3.9.3 tsar(8) Report Formatting

The tsar utility allows users to generate ASCII reports in a variety of formats.
Users specify the report format in scripts described in Section 7.3.6, page 337,
and Section 7.3.7, page 338. This differs from sar, in that sar report formats
are hard coded in the source code and cannot be readily changed by the user.

The /usr/src/prod/admin/uma/sar.t directory contains tsar scripts
which correspond to the various sar reports. In addition to mimicking sar
reports, users can write tsar scripts that create reports in a site-specific format
or graph the data.

The following tsar script graphs the read and write activity of a specified
device against the sample time. If the script is named disk_plot, and the
sample data is in the file dcf.1007, then the plot for device 1130_00 is
generated by the following command:

tsar -Ddisk=\"1130_00\" -p dcf.1007 disk_plot

#

tsar script to plot the total disk i/o of a specified device via

xgraph. The i/o is plotted as the number of sectors read and

written vs. the time expressed as hours.

#

348 S–2302–10010

System Activity Monitoring [7]

The tsar "-D" option is used to specify the device.

For example, to graph the i/o for a disk device named 1130_00,

you would execute something similar to:

tsar -Ddisk=\"1130_00\" -p dcf.1007 disk_plot

BEGIN {

F_ALL_DISKS = "disk.data" # file with i/o stats for all disk devices

F_XDATA = "xgraph.data" # file with info needed to plot the graph

F_CMD = "disk.cmd" # file with grep command to extract specified i/o stats

system("rm -f disk.data xgraph.data disk.cmd")

if (ios_e) {

nitem = npdds

} else {

nitem = ndsds

}

first_time = 1

#

Setup the titles and limits for the graph.

#

printf("TitleText: %s Total Disk IO on %s %s\n",

disk, NODENAME, strftime("%D")) > F_XDATA

print("XUnitText: Time of Day") > F_XDATA

print("YUnitText: Sectors") > F_XDATA

print("YLowLimit: 0") > F_XDATA

}

#

For each sample interval, write the i/o statistics for

busy devices to file F_ALL_DISKS

#

if (first_time == 1) {

printf("XLowLimit: %2.4f\n", timen(2)) > F_XDATA

first_time = 0

}

for (n = 0; n < nitem; n++) {

if (diff(dr_nblks[n]) + diff(dw_nblks[n]) != 0) {

printf("%2.4f %9.0f ", timen(2),

diff(dr_nblks[n]) + diff(dw_nblks[n])) >> F_ALL_DISKS

if (ios_e) {

printf("%s\n", pd_name[n]) >> F_ALL_DISKS

} else {

S–2302–10010 349

UNICOS® Resource Administration

printf("%s\n", dd_name[n]) >> F_ALL_DISKS

}

}

}

END {

#

Extract the i/o statistics for the specified device and

write them to file F_XDATA.

#

printf("XHighLimit: %2.4f\n", timen(2)) > F_XDATA

print("\"\"") > F_XDATA

print(" ") > F_XDATA

printf("grep ’%s’ %s >> %s\n", disk, F_ALL_DISKS, F_XDATA) > F_CMD

close(F_ALL_DISKS)

close(F_XDATA)

close(F_CMD)

system("chmod 755 disk.cmd")

system("./disk.cmd")

#

Plot the i/o via xgraph.

#

system("/usr/bin/X11/xgraph -title ’Total Disk IO’ -tk xgraph.data")

system("rm -f disk.data xgraph.data disk.cmd")

}

7.3.10 Limitations

The following are descriptions of limitations to use of the sdc and tsar
commands.

Large system activity data file

The sdc output file (system activity data file) may be much
larger than the equivalent sar(8) data file. The size of the sdc
output file can be controlled by sampling a subset of the system
activity counters through the sdc -R option. Ldcache and disk
data can require an enormous amount of disk space, so sample
them only when necessary.

350 S–2302–10010

System Activity Monitoring [7]

Undetected ldcache or disk reconfigurations

If either ldcache or disks have been reconfigured, a header
record must be written to the system activity file. If a header
record is not written, tsar may report erroneous ldcache or
disk information, or tsar may abort.

Long sdc(8) execution time

The sdc command always generates and compiles sdcx. Thus,
when you specify the -B or -S options to sdc, it may take a
while for them to complete on a busy system. This can be
particularly true when sdc -S is executed from the system
shutdown script.

imin() examines unused array entries

Arrays such as dr_nblks, ld_active, and tp_mounts often
contain unused entries. imin() examines these entries and may
return an index to them, because unused array entries contain 0.

No user-defined arrays

tsar does not support user-defined arrays. Therefore, it may
be difficult to save or sum array elements across restarts or
configurations.

No string comparison functions

Built-in tsar string comparison functions are not currently
available.

Limited access to the first data record

Data from the first record in each boot or reconfiguration period
cannot be accessed except through some of the built-in
functions.

No sdcx(8) record locking (see sdc(8))

The sdcx binary does not lock records when writing output.
Thus, if multiple sdcx or sdc processes write to the same
output file, the output could become corrupt.

S–2302–10010 351

UNICOS® Resource Administration

No support for foreign file systems

The sdc command locks the records in the output file before
writing the output. Because record locking is not supported on
foreign file systems (such as network file systems), sdc cannot
write to a file that is on such a file system.

No support for tsar(8) running on the SunOS operating system

The tsar command may not run on the SunOS Release 4.1
operating system. The system must have an ANSI C compiler
(acc) to run tsar. This feature is not supported in the current
release.

Disk I/O units may differ

The sdc command records disk I/O in units of sectors, but the
size of a sector differs according to the disk device type. (See
Section 7.3.3.9, page 330.) The device type is not available
through sdc, so tsar is unable to adjust the data to a common
unit.

7.4 Disk Usage Monitoring

One of the most important responsibilities of the system administrator is to
monitor system disk usage and to ensure that users have sufficient free space
on their file systems to accomplish their work.

The following commands are useful in monitoring disk use:

Command Description

diskusg(8) Summarizes the disk usage on a file system by file ownership and
identifies users who are using most of the space on a file system.
The /usr/lib/acct/diskusg command is the preferred
command for summarizing disk use. It is faster and more
accurate than du(1) because it bypasses the file system software in
the kernel.

du(1) Provides a summary of the disk use on a file system, by directory
structure. The -s option provides the total number of disk blocks
used under each directory (or file) named. For example, if user

352 S–2302–10010

System Activity Monitoring [7]

accounts are stored on the /u file system, the following lists the
total number of blocks used by each account on the file system:

cd /u
du -s *

The output of du(1) may be piped into sort(1), as follows,
providing a sorted list of directories that use the most disk space
(allowing you to identify users who are using the most disk
space):

du -s * | sort +nr

This command is useful for locating the points at which users are
using most of the file system’s disk space and, in conjunction
with diskusg, identifying users who may own files located in
directory subtrees other than their home directories. Results from
the du(1) program can be affected by changes to the file system
during execution of du.

find(1) Identifies large files in an emergency when disk space is scarce;
however, find does not identify temporary files whose directory
links are removed. The following command line, when executed
from the topmost directory of a file system, lists all files on file
systems that are larger than 1 Mbyte, sorting them in order of size:

find . -size +1000000c -print |

xargs ls -li | sort +5nr

With such a list, you can look for a few large files that are likely
candidates for deletion because they have not been modified or
used for a specified length of time (this value is site-dependent,
but is usually a month), because the owner no longer needs the
file, or because the file is unreasonably large.

Similarly, the find command can look for all files that have not
been modified or used within a certain span of time (for example,
the last 3 months).

To free disk space, you may find it appropriate to perform one of
the following functions:

• Archive such files to tape for permanent storage.

• Archive such files on tape for eventual deletion, perhaps using
a set of four tapes rotated on a weekly basis. This would

S–2302–10010 353

UNICOS® Resource Administration

allow a user 1 month to ask for retrieval of an archived file
before its tape is reused.

• Delete such files.

• You can use the crontab(1) command to execute find
regularly during off-peak hours in order to generate a daily
list of large, old files that can be archived to tape by operators.

354 S–2302–10010

Unified Resource Manager (URM) [8]

The Unified Resource Manager (URM) is a job scheduler that balances the
demands of both batch and interactive sessions. URM provides a high-level
method of controlling the allocation of system resources to run jobs that
originated either in batch mode or in an interactive session.

Note: In this section, the term job is used to identify the scope of the object
being managed by URM. For purposes of this discussion, an interactive
session is considered a job.

Controlled system resources include CPU time, memory, tape devices, number
of jobs, and Secondary Data Segment (SDS) allocation. The URM feature is
common among all Cray architectures, but the managed resources are tailored
to the hardware configuration on which URM is installed.

Prior to the introduction of URM, the UNICOS operating system included
separate facilities for scheduling batch jobs and interactive sessions. Batch jobs
were scheduled by the Network Queuing System (NQS). Interactive sessions
were scheduled by transient session initiators, such as login and rsh.
However, URM takes input from all session initiators, including NQS and the
transient session initiators.

URM combines the management of machine resources under a single umbrella,
making it possible to provide consistent treatment of resource demands arriving
from these various sources. In addition to monitoring resource demands, URM
also monitors the following:

• History of system usage. By monitoring the UNICOS fair-share scheduler,
URM monitors past use of important system resources by each user.

• Current system load. URM monitors current use of all important system
resources.

• Future work backlog. URM predicts future demands on all important
system resources, as indicated by the job backlog and the amount of work in
process and waiting to be initiated.

• Target loads. URM manages memory oversubscription, number of active
processes, SDS oversubscription, tape usage, and the number of active batch
and interactive jobs.

Using this information, URM evaluates requests to initiate jobs. Requests arrive
from such UNICOS service providers as NQS (for batch) and login (for

S–2302–10010 355

UNICOS® Resource Administration

interactive). Following the selection process, URM sends to each service
provider a list of jobs that URM recommends for initiation.

URM does not actually initiate jobs. The service providers retain full
responsibility for and control of jobs within their scope. Jobs are not required to
be processed through the selection server portion of URM. This is allowed in
order to retain command execution capability if the system is behaving
improperly. Under normal operation, service providers use the URM selection
server and follow the job initiation recommendations of URM.

The Unified Resource Manager is described in detail in the following sections:

• URM features

• Summary of URM commands

• Installing URM

• Configuring URM

• URM administrator tasks

• Troubleshooting URM

• URM architecture

• URM resources

• URM checkpointing

• Tuning URM

8.1 URM Features

The Unified Resource Manager provides the following functionality:

• Provides uniform services for all types of jobs (batch and interactive, for
example) and eliminates non-essential differences among them.

• Uses sdsmgr to schedule use of SDS space for both batch and interactive
sessions.

• Maintains job resource predictions (as offered by the service providers) as
well as consumption information to assist the algorithms selecting jobs to
recommend for initiation.

• Provides job initiation recommendations to NQS and other service providers.

356 S–2302–10010

Unified Resource Manager (URM) [8]

• Supports SDS oversubscription through job preemption. (The preemption
mechanism is suspend/resume.)

• Supports system scheduling on Cray T3D systems by monitoring the load
information and job backlog, and by recommending the best job candidates
for initiation.

• Controls the number of active jobs. This includes control over the number of
jobs of each type as well as the total number of all jobs.

• Uses the information provided by the fair-share scheduler to evaluate a
user’s potential priority among those competing to have a job initiated.

• Provides a way to report an assessment of machine loading, a list of jobs
currently recommended for initiation, and other information upon request.

8.2 Summary of URM Commands

The following UNICOS commands support URM:

Command Description

rmgr(1) Provides an interface to the URM daemon

urmd(8) Starts the URM daemon

urmsnap(8) Captures the current URM configuration information

usetjob(8) Changes the minimum rank of batch jobs

ustat(1) Displays URM job information

For details of the rmgr(1) and ustat(1) commands, see the UNICOS User
Commands Reference Manual. For details of the urmd(8), urmsnap(8), and
usetjob(8) commands, see the UNICOS Administrator Commands Reference
Manual.

8.3 Installing URM

To install URM, use the UNICOS Installation / Configuration Menu System (the
menu system). For details about the menu system and how to use it, see the
following publications:

• UNICOS System Configuration Using ICMS

• UNICOS Installation Menu System Reference Card

S–2302–10010 357

UNICOS® Resource Administration

Perform these basic steps to install URM:

1. Verify the automatic startup of the URM daemon

2. Configure the initial URM values

3. Verify the security parameters

4. Enable the service providers

The following sections discuss these steps.

Warning: The following information on configuring URM is not written for a
site running a Cray ML-Safe configuration of the UNICOS system. For
information on configuring URM for a Cray ML-Safe configuration, see the
description of the UNICOS MLS feature in General UNICOS System
Administration, publication SG-2301.

8.3.1 Verifying Automatic Startup of URM Daemon

To ensure that the URM daemon (urmd) is invoked automatically, verify that
the /etc/config/daemons file includes a line for urmd. If the
/etc/config/daemons file does not contain a line for urmd, you should
create one by using the menu system. Traverse the menus by using the
following menu selections:

UNICOS 10.0 Installation / Configuration Menu System ->

Configure system ->

System daemons configuration ->

System daemons table ->

The final menu selection displays a list of all active system daemons and their
attributes, as shown in the following example:

Group Name Start Opts Kill Program >

----- --------- ----------- -------------------- ----------

SYS1 cron 5=NO:*=YES * /etc/cron

SYS1 fsdaemon 5=NO:*=YES * /etc/fsmon

TCP gated NO /etc/gated.pid /etc/gated

E-> SYS2 urmd YES /usr/lib/urm/urmend /etc/urmd

If this table does not include such a line for urmd, create a new entry having
the following attributes:

S-> Group SYS2
Name urmd

358 S–2302–10010

Unified Resource Manager (URM) [8]

Startup at boot time? YES

Kill action /usr/lib/urm/urmend
Executable pathname /etc/urmd

The meaning of these attributes is as follows:

Attribute Description

SYS2 Places urmd in the group of daemons started last.

urmd Names the URM daemon.

YES The URM daemon executes automatically at
system startup. If this attribute were NO, the
daemon would not execute automatically at
system startup; however, the daemon could be
started manually by using the command
sdaemon urmd.

/usr/lib/urm/urmend Specifies the command to shut down urmd and
request interactive checkpointing (if configured).

/etc/urmd Identifies the full path name of the executable for
the URM daemon.

To activate this configuration change, use the following menu selections:

UNICOS 10.0 Installation / Configuration Menu System ->

Configure system ->

System daemons configuration ->
Activate the daemon configuration ...

Activation causes the menu system to add a urmd line to the
/etc/config/daemons file. You can then stop urmd manually by using the
sdaemon -k urmd command or restart urmd manually by using the sdaemon
urmd command.

8.3.2 Configuring Initial URM Values

As-shipped default parameters for URM configuration are designed to
minimize the impact of URM installation on a running system. This allows you
to learn about URM and control its effects as you activate the configuration
changes that allow URM to monitor various system limits.

The default configuration should have no effect on a running system until you
explicitly change certain of these URM configuration values. The following
section discusses these changes.

S–2302–10010 359

UNICOS® Resource Administration

8.3.2.1 Individual Session Initiator Configuration Changes

The as-shipped default URM configuration overrides all URM limits and
recommends initiation for all jobs started by all individual session initiators
except batch. (In the case of batch jobs, this default never applies, since the NQS
configuration parameters override these values.) To change these defaults and
permit URM to make recommendations about whether or not to initiate jobs
that started from individual session initiators, use the following menu selections:

UNICOS 10.0 Installation / Configuration Menu System ->

Configure system ->

URM configuration ->
Individual session initiator defaults ->

Initially, every entry in the default table of values is 0:

Name CPU Time Memory Usage

----- -------- ------------

E-> batch 0 0

cron 0 0
ftp 0 0

login 0 0

null 0 0

rexec 0 0

rsh 0 0
site1 0 0

site2 0 0

site3 0 0

For a given session initiator (login, for example), if both the CPU Time and
the Memory Usage entries are 0, then you override URM limits and allow all
jobs started by that session initiator. For example, if the CPU Time and Memory
Usage entries for login are 0, URM favorably recommends all login
requests, regardless of system load. Only when either entry for login is a
nonzero value are login requests subject to URM limits.

Therefore, to enable communication between each session initiator and URM,
change each 0 for that session initiator to a nonzero value. For example, for
login and rsh, you might use a minimum of the estimated size of a shell
process (in clicks).

Note: Configuration parameters in the NQS override these values for batch.

The rsh settings also affect rcp (remote copy).

360 S–2302–10010

Unified Resource Manager (URM) [8]

For any changes to these configuration parameters to take effect, you must
activate the changes by using the following menu selections:

UNICOS 10.0 Installation / Configuration Menu System ->
Configure system ->

URM configuration ->

Activate urm configuration ...

For details of the activation process, see Section 8.4.12, page 373.

8.3.3 Verifying Security Parameters

As part of any URM installation, you should verify that the URM configuration
parameters establish only the authorized administrators and authorized hosts
that you want. To learn about these parameters and how to change them, see
Section 8.4.1, page 362.

8.3.4 Enabling Service Providers

With one exception, all service providers (such as ftp, login, and rsh)
automatically use URM. The one exception is NQS. You must explicitly enable
URM services in NQS.

To change the NQS configuration parameters to enable URM services, use the
menu system. To enable communication between NQS and URM, the NQS
configuration must include a statement to set URM on.

To ensure that this communication continues after a restart, the NQS
configuration also must include a statement to set URM restart on. For details
of how to enable URM services and how to enable URM restart in NQS, see the
UNICOS NQS and NQE Administrator’s Guide, publication SG-2305.

8.4 Configuring URM

After URM has been installed and all initial values have been configured, you
can change the URM configuration values as needed. The following sections
describe the URM configuration parameters, how to use the menu system to
implement changes in URM configuration, and how to activate changes.

S–2302–10010 361

UNICOS® Resource Administration

Warning: The following information on configuring URM is not written for a
site running a Cray ML-Safe configuration of the UNICOS system. For
information on configuring URM for a Cray ML-safe configuration, see the
description of the UNICOS MLS feature in General UNICOS System
Administration, publication SG-2301.

To make changes to the URM configuration, use the menu system. Traverse the
menus using the following menu selections:

UNICOS 10.0 Installation / Configuration Menu System ->

Configure system ->

URM configuration ->

This menu selection displays the following menu:

M-> Authorized administrators ->

Authorized hosts ->
Machine load evaluation rates ->

Machine target values ->

Individual session initiator targets ->

Individual session initiator defaults ->

URM control settings ->
Weighting factors for the selector ->

Auto-configuration settings ->

Reset DEFAULT urm configuration ...

Import urm configuration ...
Activate urm configuration ...

The following sections discuss each line of this URM configuration menu. In
addition, online help is accessible on each menu in the menu system.

8.4.1 Authorized Administrators

To control access to URM, use the menu system. Traverse the menus using the
following menu selections:

UNICOS 10.0 Installation / Configuration Menu System ->

Configure system ->

URM configuration ->

Authorized administrators ->

362 S–2302–10010

Unified Resource Manager (URM) [8]

The as-shipped defaults for these parameters are as follows:

Login name Type
---------- ----------

E-> root privileged

* public

* anonymous

These parameters have the following meanings:

Parameter Description

privileged Can read any internal information. Can stop the URM daemon
(using rmgr -c ’stopdaemon’).

public Can read only global information and information owned by this
user.

anonymous Can read only global information.

If you want to add an authorized administrator, create a line for the login of the
new authorized administrator (admin2, for example):

Login name Type

---------- ----------

root privileged
* public

* anonymous

E-> admin2 privileged

If, for security reasons, you want to limit who can use rmgr to access URM,
delete the two asterisked lines:

Login name Type

---------- ----------

root privileged

E-> admin2 privileged

This limits access privileges to root and admin2.

Note: For proper URM functioning, you must retain the root privileged
entry.

The login name * is not recognized in the privileged node. Therefore, the
entry * privileged is not allowed. This restriction also applies to the local
URM configuration file; an entry of the form /admin/privileged/* is
purposely illegal.

S–2302–10010 363

UNICOS® Resource Administration

8.4.2 Authorized Hosts

To control access to URM from remote hosts, use the following menu selections:

UNICOS 10.0 Installation / Configuration Menu System ->

Configure system ->
URM configuration ->

Authorized hosts ->

The as-shipped default for this parameter is as follows:

Host name

E-> *

This parameter has the following meaning:

* (all) Allows any client from a remote host to connect to urmd,
assuming the administrator configuration also allows the
connection.

If, for security reasons, you want to disallow connections from all remote hosts,
remove the asterisk (*). You can then add a line for each host from which you
want to allow connections (system1 and system2, for example):

Host name

system1
E-> system2

8.4.3 Machine Load Evaluation Rates

The as-shipped URM configuration includes a set of smoothing factors that are
designed to reduce the impact of sudden changes in resource usage. These
factors reduce the rate at which changes are factored into the URM
decision-making process. This, in turn, protects URM users by making URM
results more predictable.

To see or change the smoothing factors, use the following menu selections:

UNICOS 10.0 Installation / Configuration Menu System ->

Configure system ->

URM configuration ->

Machine load evaluation rates ->

364 S–2302–10010

Unified Resource Manager (URM) [8]

The as-shipped default rates are as follows:

S-> MEMORY rate 0.8
SDS rate 0.8

TAPE rate 1.0

MPP BARRIERS rate 1.0

MPP PROCESSING ELEMENTS (pe) 1.0

These rates should not be changed, except by an analyst experienced in tuning
systems using URM.

8.4.4 Machine Target Values

To properly perform its scheduling functions, URM must be aware of target
usage limits for important system resources. These resources include memory,
SDS, job count, tapes, and MPP (massively parallel processing systems).

During installation, a URM automatic configuration command changes many of
the URM default targets. Automatic configuration determines the actual
configuration of your system and replaces the as-shipped default values with
values derived from the actual values for your system.

The formula used to change these values can be modified by using the menu
system. Values that can be changed globally include memory and SDS
oversubscription, and limits for job count, tapes, and MPP. In addition to these
values, values for CPU time and memory usage can be set for each individual
session initiator (see "Installing URM," Section 8.3, page 357).

The following sections describe the URM configuration values that can be set
globally.

To verify or change the value (either multiplier or limit) for each important
system resource, use the following menu selections:

UNICOS 10.0 Installation / Configuration Menu System ->

Configure system ->

URM configuration ->
Machine target values ->

The as-shipped URM configuration has the following values:

S-> Memory oversubscription multiplier 2.0

SDS oversubscription multiplier 1.5

Target session maximum MAX

Target tape limit MAX

S–2302–10010 365

UNICOS® Resource Administration

Target MPP barriers limit MAX

Target MPP PE limit MAX

The auto-configure script uses each of these values as follows:

Value Description

2.0 Multiplies the value of your system’s actual physical user
memory (user_memory) by this value (2.0) to calculate a
memory oversubscription value (memory). URM strives to hold
memory usage below this memory oversubscription value. To see
the value being used by URM, view the object
/machine/target/memory. You cannot alter this object
directly; you can only change the multiplier.

1.5 Multiplies the value of your system’s actual SDS user space
(user_sds) by this value (1.5) to calculate an SDS
oversubscription value (sds). URM strives to hold SDS usage
below this SDS oversubscription value. To see the value being
used by URM, view the object /machine/target/sds. You
cannot alter this object directly; you can only change the
multiplier.

MAX The following paragraphs describe, for each parameter, the effects
of a MAX value.

For Target session maximum, the MAX value sets the
maximum number of jobs (both interactive and batch combined)
that URM allows to be running at any time (jobcount). The
upper limit for this range is defined by limits in the kernel
configuration. That is, if this field contains a number that is
higher than the maximum established in the kernel configuration
parameters, this higher number is ignored, and the kernel
configuration value is used. However, if this field contains a
lower number, the lower number takes effect for URM.

For Target tape limit, the MAX value compiles a list of all
tape systems actually available on the system and puts this
information in the field tape.

For MPP limits, the MAX value allows URM to determine whether
or not the system configuration includes an MPP system and, if
so, allows URM to factor MPP limits into its scheduling algorithm.

366 S–2302–10010

Unified Resource Manager (URM) [8]

Note: To allow proper URM autoconfiguration to occur, do not
change the keyword MAX for this resource.

Using the menu system, you can reset these factors to any value you decide is
reasonable.

For changes to these configuration parameters to take effect, you must activate
the changes by using the following menu selections:

UNICOS 10.0 Installation / Configuration Menu System ->

Configure system ->

URM configuration ->

Activate urm configuration ...

For details of the activation process, see Section 8.4.12, page 373.

8.4.5 Individual Session Initiator Targets

To verify or change the target values for each individual session initiator, use
the following menu selections:

UNICOS 10.0 Installation / Configuration Menu System ->

Configure system ->

URM configuration ->

Individual session initiator targets ->

This menu selection displays a table of target values, as in the following
example:

Name bb cputime jobcount memory pe petime sds tape

----- --- ------- -------- ------ --- ------- --- ----

E-> batch MAX 9999999 MAX MAX MAX 9999999 MAX MAX

8.4.6 Individual Session Initiator Defaults

To change the default values for each individual session initiator, use the
following menu selections:

UNICOS 10.0 Installation / Configuration Menu System ->

Configure system ->

URM configuration ->

Individual session initiator defaults ->

This menu selection displays the table of default values. For example:

S–2302–10010 367

UNICOS® Resource Administration

Name CPU Time Memory Usage

----- -------- ------------
E-> batch 0 0

cron 0 0

ftp 0 0

login 40 250

null 0 0

rexec 0 0
rsh 0 0

site1 0 0

site2 0 0

site3 0 0

Entries for CPU Time are given in seconds. Entries for Memory Usage are
given in clicks. You can raise or lower these limits by changing the entries in
this table.

Lines for site1, site2, and site3 are for local session initiators defined by
the site.

For a given session initiator (except batch), if both entries are 0, that session
initiator is not subject to URM limits.

Note: Configuration parameters in the NQS override these values for batch.

The rsh settings also affect rcp (remote copy).

For changes to these configuration parameters to take effect, you must activate
the changes by using the following menu selections:

UNICOS 10.0 Installation / Configuration Menu System ->
Configure system ->

URM configuration ->

Activate urm configuration ...

For details of the activation process, see "Activating URM configuration
changes," Section 8.4.12, page 373.

8.4.7 URM Control Settings

The URM configuration includes a variety of control factors that affect URM
performance. To see a list of these control factors, use the following menu
selections:

368 S–2302–10010

Unified Resource Manager (URM) [8]

UNICOS 10.0 Installation / Configuration Menu System ->

Configure system ->
URM configuration ->

URM control settings ->

This menu selection displays a table of URM control factors and current
settings. For example:

Seconds between load info access 10

Seconds to wait for job initiation 1800
Seconds between scheduling cycles 10

Main loop sleep period 10

Old Caller timeout in seconds 600

Share evaluation period in seconds 900

Name of the SDS suspend command UPATH/sdsspnd

S-> SDS residency time in secs (0=SDS mgmt off) 900
Full path name of local URM config file /etc/config/urm

Full path name of URM chkpnt directory /PPATH/chkpnt

Checkpoint policy Shutdown

Share policy Standard

Minimum # of seconds between checkpoints 1800
Checkpoint interval measurement base Clock

Maximum # of seconds to keep chkpnt file 432000

Name of the interactive chkpnt command /UPATH/intchkpt

Restart flag policy Force

Name of the interactive restart command /UPATH/irstart
Rank boost to previously running batch jobs 6.0

The following sections discuss three of these factors that may be particularly
useful to administrators: SDS residency time in secs, Full path name
of local URM config file, and Rank boost to previously
running batch jobs.

8.4.7.1 SDS Residency Time

This menu selection determines the minimum amount of time that a job
remains in SDS before being swapped out (900 seconds, in this example). This
applies to both batch and interactive. Prior to UNICOS 8.0, qfdaemon
performed this function, but only for batch jobs.

If SDS residency time is set to 0, then URM does not perform SDS management.
If SDS residency time is set to a nonzero number, then URM performs SDS
management on interactive jobs. For URM to perform SDS management on
both interactive and batch jobs, SDS residency time must be set to a nonzero

S–2302–10010 369

UNICOS® Resource Administration

number and the NQS set job scheduling option parameter must be set to
the correct option. For details of enabling URM services in NQS, see the
UNICOS NQS and NQE Administrator’s Guide.

8.4.7.2 Local URM Configuration File

This menu selection is used to identify a site-defined configuration file. When
activated, changing this value to filename adds an Include filename statement to
the end of the /etc/config/urm/configuration file.

You can change the URM configuration by editing this site-defined
configuration file. Or you could change the URM configuration by writing a
cron job that accesses this file.

8.4.7.3 Rank Boost to Previously Running Batch Jobs

This menu selection specifies an additional value given to checkpointed batch
jobs to improve their rank. This value is applied to batch jobs that were
previously running and were checkpointed due to a shutdown or hold. The
rank boost is added after the job’s rank has been calculated using the weighting
factors (described in the following section).

8.4.8 Weighting Factors for the Batch Selector

The method by which URM selects the next batch job to recommend for
initiation depends upon the interaction between the NQS and URM. This
interaction is influenced by a set of weighting factors established in the URM
configuration. To see or change these weighting factors, use the following menu
selections:

UNICOS 10.0 Installation / Configuration Menu System ->

Configure system ->

URM configuration ->

Weighting factors for the selector ->

370 S–2302–10010

Unified Resource Manager (URM) [8]

The as-shipped default settings for these factors are as follows:

S-> Age in queue weight 0.5
MPP Barrier bits weight 0.5

MPP Processor elements weight 0.5

MPP Requested PE time limit weight 0.5

Requested CPU time weight 0.5

Requested Memory weight 0.5
Requested SDS weight 0.5

Requested Tape weight 0.5

Service provider priority weight 0.5

Share priority weight 0.5

Share entitlement weight 0.5
Usage weight 0.5

Possible values are in the range of 0.0 to 1.0. For each batch job, URM assigns a
ranking based upon place in each queue. For example, using the Age in
queue weight factor, the oldest job is assigned a ranking of 0.5, while the
youngest job is assigned a ranking of 0.0. By comparing the resulting weighting
factor for each batch job, URM determines the highest priority job.

These default settings should be changed only by a system analyst experienced
at tuning systems running URM.

Note: Share priority is the result of the following calculation:

Usage/entitlement2

Although the share priority, usage, and share entitlement weighting factors
all have a nonzero value by default, you must disable one or two of these
values. Configure only one of the following choices:

• Share priority weight

• Share entitlement weight

• Usage weight

• Share entitlement weight and usage weight

S–2302–10010 371

UNICOS® Resource Administration

8.4.9 Auto-configuration Settings

To enable auto-configuration of various subsystems, URM includes a tool in the
menu system. To see or change the auto-configuration settings, use the
following menu selections:

UNICOS 10.0 Installation / Configuration Menu System ->

Configure system ->

URM configuration ->

Auto-configuration settings ->

The as-shipped default setting for each subsystem is as follows:

Resource Enabled Tries Wait time
-------- ------- ----- ---------

E-> memory YES 10 20

mpp YES 10 20

serial YES 10 20

session YES 10 20

sds YES 10 20
tape YES 10 20

The URM has the ability to determine the available system resources. This menu
allows you to modify the retry parameters of the auto-configuration mechanism.

The Resource field names the resource to be auto-configured. URM can
automatically determine the system’s memory, mpp, serial, session, sds,
and tape resources. The serial resource configures the machine’s serial
number and the information available through uname(3). The session
resource corresponds to the system’s defined maximum number of sessions
(NSESS). The Enabled (Perform auto-configuration) field is used to
enable or disable the auto-configuration of the specified resource. Cray
recommends that these fields remain set to YES, to allow auto-configuration.

Note that disabling auto-configuration prevents URM from using the MAX
settings in the URM Machine target values and URM Individual
session initiator targets menus.

The Tries (Number of tries) field indicates the number of times URM
should attempt to auto-configure the specified resource. It is necessary to have
a retry value, because some resources may not be available when URM is first
initialized. For example, if URM is brought up before the tape daemon is
running, URM’s first attempt at auto-configuring tape resources fails.

The Wait time field represents the time in seconds to wait before retrying the
auto-configuration of the specified resource.

372 S–2302–10010

Unified Resource Manager (URM) [8]

8.4.10 Resetting to Default URM Configuration

The menu system allows you to reset all URM configuration parameters to the
as-shipped default state. This could be useful if you find that configuration
changes you have made have created unexpected problems and you want to
start over with a known-working URM configuration. To remove all local
changes, and return to the as-shipped default configuration parameters, use the
menu system. Traverse the menus using the following menu selections:

UNICOS 10.0 Installation / Configuration Menu System ->

Configure system ->

URM configuration ->
Reset DEFAULT urm configuration ...

8.4.11 Importing URM Configuration

For systems on which a URM configuration has not yet been imported, the
menu system provides a tool that reads in certain defaults. To read in all values
contained in the /etc/config/urm/configuration file, use the following
menu selections:

UNICOS 10.0 Installation / Configuration Menu System ->
Configure system ->

URM configuration ->

Import urm configuration ...

Warning: This menu item should be selected only on systems that do not
have a running URM, as it overwrites any previously existing values for
these URM parameters.

The values read in are for the following parameters: init, machine, res,
structure, urminfo, and val.

8.4.12 Activating URM Configuration Changes

After implementing any URM configuration changes, you must activate the
changes for them to take effect. To activate the changes from within the menu
system, use the following menu selections:

UNICOS 10.0 Installation / Configuration Menu System ->

Configure system ->

URM configuration ->

Activate urm configuration ...

S–2302–10010 373

UNICOS® Resource Administration

The next time urmd is started, the menu system updates the contents of the
/etc/config/urm/configuration file.

!
Caution: The /etc/config/urm/configuration file should never be
edited directly; any changes should be made through the menu system.

Changes activated from within the menu system do not affect the currently
executing urmd process; you can make the changes known to the currently
executing urmd process by typing the following:

rmgr /etc/config/urm/configuration

8.4.13 Using URM with NQS

By default, URM does not control NQS jobs. To enable full URM control over
the initiation of NQS jobs, enter the following qmgr subcommand:

set job scheduling urm unlimited

With full URM control, NQS queue limits are no longer honored; instead,
URM’s resource targets and job ranking priorities determine which jobs are
recommended to NQS for initiation. For information about NQS parameters,
see the qmgr(8) man page. For information on changing NQS configuration
parameters, see the UNICOS NQS and NQE Administrator’s Guide.

8.5 URM Administrator Tasks

To administer URM, you should understand the following procedures:

• Using URM log files

• Viewing URM results

• Viewing machine load

• Viewing all users

• Viewing jobs of a given user

• Changing a job’s minimum rank

• Changing URM configuration based on time of day (cron)

• Customizing URM (user exits)

These procedures are described in the following sections.

374 S–2302–10010

Unified Resource Manager (URM) [8]

8.5.1 Using URM Log Files

The urmd process maintains a log file to record its actions. Each time the
daemon initializes, it creates a log file if one does not exist in the URM log
directory. The log file is placed in the /usr/adm/urm/ directory and is named
Urm. yymmdd. The log file is appended to throughout the day (yymmdd),
recording all directives, errors, and other important actions when the daemon is
running. The next day, when a log message occurs, the existing log file is
closed, the date is incremented, and a new log file is created.

An example of log entries is as follows:

11:16:20 153 U D Set Basenode /

11:16:20 153 U D Set Kernelaccess

11:16:20 153 U D Set Initialized

The format of the log messages is as follows:

hh:mm:ss 000000 x y message

The message is prefixed by the time the message was logged (hh:mm:ss), the
UID of the current user when the message occurred (000000), the access
privilege (x), and the severity code (y). UID 999999 means that the message
comes from urmd and is not associated with a user.

The access privilege labels (x) are as follows:

L Public socket access

N No user defined (internal message)

U Unrestricted privilege socket access

The severity labels (y) are as follows:

D Logging a directive

F Fatal

I Informative

L Log message

N No error

S–2302–10010 375

UNICOS® Resource Administration

R Error type out of range

W Warning

X Exit message

8.5.1.1 Monitoring URM Log Files

Because urmd creates a new log file each day (/usr/adm/urm/Urm. yymmdd),
the number of log files grows rapidly. To conserve disk space, you should
monitor this growth and implement a strategy to minimize the effects. For
example, you could archive all but the most recent log files. You could use
cron to accomplish this on a scheduled basis, such as running an archiving
script at the end of each week.

8.5.1.2 Turning Off URM Logging

The log file can be turned off, using the local configuration file. To turn off
logging the activities of URM commands, enter the following:

rmgr

rmgr-> set nolog

8.5.1.3 Moving the URM Log Files

By default, the URM log files are in the /usr/adm/urm directory. You can
change the default directory with either of the following methods.

When invoking the the URM daemon, /etc/urmd, use the -l option to specify
an alternate log directory. The log file names cannot be changed, only the path.
See the urmd(8) man page for more information about the -l option.

When URM is running, an authorized URM administrator can change the
location of the log using the following rmgr(1) subcommand:

set log directory

If directory specifies a valid directory, the current log is terminated with a
message and closed, and a new log is opened in directory. Error messages are
issued if the new log file cannot be opened, and logging remains with the old
log file.

The set log directory directive can also be specified in the local configuration
file. However, when this method is used, the URM daemon writes the
initialization log in the default directory (/usr/adm/urm). To change the

376 S–2302–10010

Unified Resource Manager (URM) [8]

location of the initialization log, use the -l option when starting /etc/urmd.
See the rmgr(1) man page for more information about the set log directive.

8.5.2 Viewing URM Results

At any time while URM is running, you can generate a list of the jobs that
URM currently recommends for initiation. To generate this list, first invoke the
rmgr(1) command:

rmgr

Then choose the view jselect (view job select) option:

rmgr-> view jselect

This yields a report of jobs currently recommended for initiation. You can use
this report to help determine configuration changes needed to tune URM for
your site.

8.5.3 Viewing Machine Load

To assess machine load, first invoke the rmgr(1) command:

rmgr

Then choose the view /machine/load (view machine load) option:

rmgr-> view /machine/load

This yields a report of the resource usage of all jobs currently running, showing
the load on all subsystems monitored by URM. This report can be useful in
troubleshooting URM, to determine whether some parameter has been set too
low and has been exceeded.

8.5.4 Viewing All Users

To generate a list of all URM users, first invoke the rmgr(1) command:

rmgr

Then choose the view users (view all users) option:

rmgr-> view users

This yields a report of all users currently connected to the URM daemon and
their respective privileges (privileged, public, or anonymous).

S–2302–10010 377

UNICOS® Resource Administration

8.5.5 Viewing Jobs of a Given User

To monitor the activities of a single user, first invoke the rmgr(1) command:

rmgr

Then choose the view jobs (view one user) option:

rmgr-> view jobs login | UID

This yields a report of all jobs currently recommended for initiation that are
owned by the specified user (login or UID). This might be useful in predicting
system load or in troubleshooting URM.

8.5.6 Changing a Job’s Minimum Rank

By default, NQS sets the minimum rank of jobs in the job backlog. The
ustat(1) command allows the URM administrator to change the minimum
rank of a specific job or jobs to affect the URM rank of those jobs.

Use ustat(1) to display the minimum rank of batch jobs, as in the following
example:

ustat -a -m

The view directive of rmgr(1) also displays minimum rank values.

Use the usetjob(8) command to change the minimum rank of batch jobs. The
following example changes the minimum rank for NQS job ID 12345:

usetjob -r 7 12345

If multiple machines submit jobs, the machine name is necessary to prevent
possible misinterpretation of the request ID. If the job in this example
originated from the machine fred, you would use the NQS request ID
12345.fred. The host ID (for example, 999) could be used instead of the
machine name, giving a job identification field of 12345.999.

8.5.7 Changing URM Configuration Based on Time of Day (cron)

You can use the cron command to change the URM configuration at certain
times of day. This would be useful, for example, if you wanted one
configuration for daytime loads that include more interactive sessions and a
different configuration for night-time loads consisting primarily of batch jobs.
To implement such a configuration change:

378 S–2302–10010

Unified Resource Manager (URM) [8]

1. Use the menu system to create a configuration file for daytime use (for
example, config.day) and activate the change.

cp /etc/config/urm/configuration /etc/config/urm/config.day

2. Use the menu system to create a configuration file for night-time use (for
example, config.night) and activate the change.

cp /etc/config/urm/configuration /etc/config/urm/config.night

3. Specify a local configuration file to be included when urmd is started (for
example, /etc/config/urm/local).

4. Edit the config.day and config.night files to remove from each file
the following line:

Include "/etc/config/urm/local"

This allows the auto-configuration to work properly in the event of a restart.

5. Create a crontab file that includes the following:

cp /etc/config/urm/config.day /etc/config/urm/local

rmgr /etc/config/urm/local

The correct configuration file for the time of day must be copied to the
local file, so that, in the event of a restart, the correct configuration file is
used automatically.

8.5.8 Customizing URM (User Exits)

The URM contains code that allows you to customize it for the specific needs of
your site by creating a site-written job selector. In URM, this site-written
selector code is called last.

As shipped, the selector code is empty; it defaults to exiting without doing
anything. However, you can write your selector based on any ranking
algorithm you choose, and insert your code into URM. Then you could turn off
all URM selectors and allow your site-written selector to make all job-initiation
recommendations based on your ranking algorithm.

Warning: Use of any user exit is not permitted on a Cray ML-Safe
configuration of the UNICOS system. Use of any user exit may result in loss
of the evaluated rating.

S–2302–10010 379

UNICOS® Resource Administration

8.5.8.1 URM User Exits

URM includes two user exits. The URM daemon (/etc/urmd) contains two
routines that can be replaced with a set of user-defined versions by re-linking
urmd with them. These user exits are defined in site_rank.c.

User exit Description

site_adjust_merit Allows the user to modify the ranking factor. A
higher number increases the chances that a job
will be recommended for execution. A lower
number makes it more difficult for the job to be
recommended.

site_target_check Allows the user to set and reset limit flags for a
job entry in URM. Jobs that have flags set will not
be recommended for execution.

The order in which these ranking functions are invoked affects how the user
exits can be used.

To understand URM user exits, you must understand certain functions and data
structures in URM that are involved with the URM user exits. These are
described in the following two sections.

8.5.8.2 URM Job-ranking Functions

URM includes three job-ranking functions (defined in rank.c) that call the user
exits. The job-ranking functions are as follows:

Function Description

rank_jobs() Forms the jobs list. To qualify, the job must pass
raw_select () and maximum filters. Next, the
relative priorities and resource requirements are
used for the final ranking in the job list. The
other two functions are called from this one.

adjust_merit() Adjusts the merit parameters of a job. The user’s
share is evaluated and used to adjust the relative
merit of a job. The relative ranking value is
stored in urm_rank. Called with 0 to preset the
statics. This function calls the user exit
site_adjust_merit().

380 S–2302–10010

Unified Resource Manager (URM) [8]

target_check() Determines whether or not the job exceeds the
target usage limits. If the job will not exceed the
target, returns UR_NONE. If the job will exceed the
target, returns one of the other UR_xxx reason
codes. This function calls the user exit
site_target_check().

The pseudo-code for rank_jobs() is as follows.

rank_jobs { /* The real ranking function. */

initialize_the_first_list /* Initialize firstlist of jobs.*/

initialize_the_job_list /* Initialize job list. */

initialize_the_rec_list /* Initialize recommend list. */

initialize_the_pre_list /* Initialize prempt list. */
initialize_the_rest_list /* Initialize restore list. */

initialize_the_chkpnt_list /* Initialize checkpoint list. */

get_loadinfo(objects) /* Get system load information. */

adjust_merit(initialize variables) /* Initialize ranking weights. */
site_adjust_merit(initialize) /* Allow user to initial other */

/* user specific variables. */

target_check(0, TC_INIT) /* Initialize usage limits. */

site_target_check(initialize) /* Allow user to initial other */
/* user specific limits. */

for (job_objects) { /* Add job objects to lists. */

update_prelist(job_object) /* Add to prempt list. */

update_restlist(job_object) /* Add to restore list. */

update_chkpntlist(job_object) /* Add to checkpoint list. */
if (already_ranked_job)

target_check(job, TC_PRELOAD) /* Update potential usage and */

site_target_check(initialize) /* initialize again. */

if (raw_select(job_object)) /* if job passes raw limits then*/

update_firstlist(job_object) /* add to the first list. */
}

for (first_list) {

apply_jobmax_constraints /* Begin to weed out jobs. */

create_job_list /* Create actual job list. */
}

S–2302–10010 381

UNICOS® Resource Administration

for (job_list) { /* Loop through the job list. */

adjust_merit(job) /* Calculate this jobs ranking */
/* factor. */

site_adjust_merit(job) /* And user can make changes to */

/* the ranking factor. */

}

sort_job_list /* Sort job list. */

for (job_list) { /* Loop through the job list. */

target_check(job) /* Will the job exceed limits? */

site_target_check(job) /* Allow user to do more checks */

/* and even reset limit flags.*/
if (no_reason_code)

add_job_to_rec_list /* Add to recommend list. */

}

}

/* The rec_list now contains the recommended list of jobs that */
/* the session initiator should try and start. */

8.5.8.3 URM Data Structures

The structures and typedefs that URM uses to contain the job list information
are defined in the following header files:

#include <urm.h>

#include <errnum.h>

#include "urmdefs.h"
#include "object.h"

#include "job.h"

#include "rank.h"

Two URM data structures in particular are useful to the user exits. These
structures are defined in the following two header files, which are found in the
directory /usr/src/prod/admin/urm/urmdaemon:

Typedef Object; Defined in object.h

Typedef Job; Defined in job.h

The Job data structure contains a field that allows URM to manage site-specific
job information. When the JOBHIST_UXIT flag in the history field is set,
URM interprets the uxit union in the Job data structure as a pointer to
allocated memory and frees the specified space. However, if the user exit does

382 S–2302–10010

Unified Resource Manager (URM) [8]

not use the uxit field or uses it as a number, the JOBHIST_UXIT flag must not
be set.

It is vital to URM that a user exit correctly modifies data in these structures.
Whoever is working with user exits should understand and be familiar with the
structures present in the header files, in order to use them effectively.

There are also three predefined site flags and reason codes. When URM does a
target check, it returns a flag and a reason code for what caused the job to not
be recommended. The flags are defined as macros in rank.h and the reason
codes are defined by the typedef URM_code in job.h. The predefined site flags
and reason codes are as follows:

Flag Reason code

_SITE1_TAR UR_SITE1_TAR

_SITE2_TAR UR_SITE2_TAR

_SITE3_TAR UR_SITE3_TAR

!
Caution: The user exits can give a site almost total control over the ranking
algorithm used by URM. In theory, a site can totally modify the
recommended job list (and other internal URM structures).

When writing user exits, be careful when using any of the following.

These can have an adverse affect on URM and could result in an unreliable
or unusable URM daemon. The user exit should, if possible, avoid any of
these conditions or uses.

• System calls or functions that would block (such as trying to connect to a
socket).

• fork and exec calls.

• Creating pipes or opening files.

• Use of signals.

• Code that significantly slows down the ranking.

8.5.8.4 URM User Exit Example 1

In this example, a user is submitting a weather model batch job that should be
given a high priority to run, and should not have to wait in an NQS queue for

S–2302–10010 383

UNICOS® Resource Administration

very long. The URM user exits can be used to ensure that user’s job is set to
run before most other jobs, if not first.

One solution is to use the site_adjust_merit() function. When
adjust_merit() calls site_adjust_merit() with obj set to 0, this indicates
that the user exit should initialize any variables. When an actual obj is passed
to site_adjust_merit(), it contains an associated job and the ranking factor.
At this point this user exit returns an increased ranking factor. The amount of
the increase determines where in the job list URM puts this job. The closer to
the top, the more likely this job is to be recommended by URM before others (if
no targets are exceeded in target_check()).

The following example code (which should be placed in site_rank.c) would
do this:

/*

* Variable hold the static value for site_adjust_merit

*/
static float site_rank_adjust;

/*

* float site_adjust_merit() - Adjust the ranking of a job

* depending on specific needs of the site.
*

* Return the rank this job should have.

*/

float

site_adjust_merit(float rank,
const Object *obj)

{

if (!obj) { /* initialize values */

site_rank_adjust = 10.0; /* set adjustment value */

/* This value may need to be */

/* increased at your site. */

} else { /* else make adjustment */

if (strncmp(obj->ovalue.job->owner,"user1",5) == 0) {

rank += site_rank_adjust;

} /* If ’user1’ is the owner */
} /* give a high rank value. */

return (rank);

}

384 S–2302–10010

Unified Resource Manager (URM) [8]

In this example code, obj->ovalue.job->owner contains the name of the
owner of that job. This example compares name to user1, which is assumed to
be running the weather model batch job. If true, the rank is adjusted and the
new value is returned. By giving a high rank to this job, we are guaranteed that
this job will be ordered first (or almost first) on the job list.

Note that if the weather model job does not pass the target checks, it still will
not be recommended for execution.

8.5.8.5 URM User Exit Example 2

In this example, a user should be prevented from running batch jobs from 8:00
A.M. to 5:00 P.M. (during peak interactive loads). The URM user exits can be
used to prevent this particular user from running batch jobs during this time.

One solution would be to change the ranking factor as in example 1, but instead
of adding to the ranking factor, decrease it by a significant amount (make sure
the ranking is a positive number). Although this user could still possibly run
jobs, those jobs will be very difficult for URM to recommend for initiation.

Another way to prevent the user’s batch jobs from running during this time is
to use the site_target_check() user exit. The following example code
(which should be placed in site_rank.c) would do this:

/*

* int peak_inter_time() - determine if between 8:00am and 5:00pm

*/
static int

peak_inter_time()

{

int rc=0; /* 0 = off hours, 1 = peak time */

time_t timval; /* see time(2) man pages */

struct tm *tmptr; /* see time(2) man pages */

timval = TOTIME(_rtc()); /* TOTIME is a URM macro that acts */

/* like time() system call but uses */

/* the real time clock instead and */

/* does not cause a context switch. */

tmptr = localtime(&timval); /* break into components */

if ((tmptr->tm_hour >= 8)&&(tmptr->tm_hour < 17)) rc = 1;

/* If greater than 8:00am and less */
/* than 5:00pm set the return code. */

S–2302–10010 385

UNICOS® Resource Administration

return (rc);

}

/*

* int site_target_check() - Extend the target checking function

* according to needs of the site.

*

* Return appropriate flags to the calling routine.
*

* If init_flag is true, this is an initialization call which

* may or may not be useful depending on the nature of the

* code.

*/
int

site_target_check(int flags,

Object *obj,

struct _indirect_vals *target,

struct _indirect_vals *load,
struct _total_vals *total,

struct _need_vals *need,

const int init_flag)

{

if (init_flag) { /* initialize values */

/* do initialization */ /* set values */

} else { /* else make adjustment */

if (strncmp(obj->ovalue.job->owner,"user1",5) == 0) {

/* If ’user1’ is the owner, */

if (peak_inter_time()) { /* and this is peak interactive time, */

flags |= _SITE1_TAR; /* prevent the job from running by */

} /* setting the flag. target_check() */

/* will set the reason code later. */
}

}

return (flags);

}

The site_target_check() uses peak_inter_time() only to say if the
system is currently running in peak interactive time. site_target_check()
checks to see if this job is owned by user1, and, if so, it calls
peak_inter_time() to find out if this is peak interactive time. If all true, set

386 S–2302–10010

Unified Resource Manager (URM) [8]

the flag value for _SITE1_TAR, meaning that a site-defined target has been
exceeded by this job (in this case, the job will not be recommended). After
returning the flag, target_check() knows that this flag means to set the
reason code to UR_SITE1_TAR and the job will not be recommended to run. If
user1 were to queue up batch jobs at 4:45 P.M., they will sit in the NQS queue
until 5:00 P.M., at which time the user exit no longer flags these jobs and URM
begins to recommend that they be run.

8.5.8.6 URM User Exit Example 3

In this example, an NQS queue has been designated as a high priority queue
called weather, into which weather model batch jobs are submitted. The URM
user exits can be used to ensure that this queue gets high priority.

This example is similar to example 1, but instead of basing priority on the user
ID, priority is established by service priority. An assumption is made that NQS
queues have unique service priorities and that the weather queue service
priority is known inside the user exit. Using site_adjust_merit(), the
ranking factor for jobs having the service priority for the weather queue can
be increased. The amount of the increase determines where in the job list URM
puts this job. The closer to the top, the better chance this job has of being
recommended by URM before others (if no targets are exceeded in
target_check()).

The following example code (which should be placed in site_rank.c) would
do this:

/*

* Variable site_weather_svcpri holds the static value for svcpri.

* Variable site_rank_adjust holds the static value for rank adjustment.

*/
static int site_weather_svcpri;

static float site_rank_adjust;

/*

* float site_adjust_merit() - Adjust the ranking of a job
* depending on specific needs of the site.

*

* Return the rank this job should have.

*/

float
site_adjust_merit(float rank,

const Object *obj)

{

S–2302–10010 387

UNICOS® Resource Administration

if (!obj) { /* initialize values */

site_weather_svcpri = 40; /* set ’weather’ queue service pri */
site_rank_adjust = 10.0; /* set adjustment value */

} else { /* else make adjustment */

if (obj->ovalue.job->svcpri == site_weather_svcpri) {

rank += site_rank_adjust;

} /* If svcpri of ’weather’ queue, */
} /* then give a high rank value. */

return (rank);

}

In the example code, obj->ovalue.job->svcpri contains the svcpri of the
batch queue of that job. This example compares an svcpri of 40, which is
assumed to be the service priority of the weather NQS queue, to what is in
obj->ovalue.job->svcpri for the job. If they are the same, the rank is
adjusted and the new value is returned. By giving a high rank to this job, we
are guaranteed that this job will be ordered first (or almost first) on the job list.

If the weather model job does not pass the target checks, it still will not be
recommended for execution.

8.5.8.7 URM User Exit Example 4

This example shows how to modify the site_target_check() function so
that NQS jobs from queues with a specific service priority will always be
recommended for initiation.

#define EXPRESS_PRI 15

/*

* This module is reserved for local use.

*

* Please see rank.c for the calls to these function.
*/

/*

* int site_target_check() - Extend the target checking function

* according to needs of the site.
*

* Return appropriate flags to the calling routine.

* Zero means no targets exceeded.

* If init_flag is true, this is an initialization call which

388 S–2302–10010

Unified Resource Manager (URM) [8]

* may or may not be useful depending on the nature of the code.

*/

int

site_target_check(int flags,

Object *obj,

struct _indirect_vals *target,

struct _indirect_vals *load,
struct _total_vals *total,

struct _need_vals *need,

struct _max_vals *max,

const int init_flag)

{
Job *jp;

char msg[132];

if (init_flag) {

/*
* Do nothing for initialization.

*/

return(flags);

}

jp = obj->ovalue.job; /* Get the job object pointer */

if (jp->svcpri == EXPRESS_PRI) {

/*

* If the job’s svcpri is EXPRESS_PRI, format and write

* a log message.

* Returning zero makes sure this job is not removed
* from consideration by the target checking rules.

*/

sprintf(msg, "Batch job %d in NQS express queue (pri %d) cleared",

jp->svcid, EXPRESS_PRI);
write_urm_log(ESTATE_INFO, msg);

return(0);

} else {

S–2302–10010 389

UNICOS® Resource Administration

/*

* Jobs that are not EXPRESS_PRI get no special treatment;
* ’flags’ is returned without change.

*/

return (flags);

}

}

8.6 Troubleshooting URM

The URM is part of the Cray Message System and provides explicit indications
of the cause of many error conditions and statuses. Both the urmd(8) daemon
process and the rmgr(1) user interface command access the message system.

8.6.1 URM Daemon Failures

If the urmd process fails to start or aborts during execution, check the log file
for an indication of the reason. Reasons for the urmd process to fail include:

• The urm service name does not exist in the /etc/services file. Use the
menu system to create the urm service port.

• The /bin/rmgr command does not exist.

• The /etc/urmd process was not initiated by a privileged process.

• Configuration files either have not been installed in /etc/config/urm or
contain invalid commands.

• Files with the same names as the configuration files exist in /usr/adm/urm.
To open a configuration file, rmgr first checks its current directory (during
initialization, /usr/adm/urm) before the configuration directory
(/etc/config/urm). The critical file names are configuration, init,
local, machine, res, structure, urminfo, and val.

The urmd process can be restarted on an active system. It reads the session
table to determine the current state of the machine and continue from there. It
is important to reconnect the NQS daemon to the restarted urmd process. To do
so, use qmgr directives to set URM scheduling on and to set URM restart on.
For details of enabling URM services in NQS, see the UNICOS NQS and NQE
Administrator’s Guide.

390 S–2302–10010

Unified Resource Manager (URM) [8]

If the rmgr command fails to connect to a urmd process on a remote machine,
it is likely that the URM configuration on the remote machine does not have
this machine in its /hosts list.

Note: To execute the following procedure and get the expected results, you
must be in the URM authorized administrator list (/admin/privileged).

To view which machines are allowed to connect remotely, use the rmgr
command, followed by the view /hosts option:

rmgr

rmgr-> view /hosts

-Vrw-- 0 0 Jan 4 13:22 <* > "null"

In this case, the * shows that remote connections are accepted from all hosts (as
long as user validation also passes). If the desired host is not in the hosts list,
use the menu system to add the host(s) to the URM configuration.

If a non-superuser process fails to obtain a privileged connection to the urmd
process even though their name is in the URM /admin/privileged/ list,
ensure that the /bin/rmgr executable has been installed properly. This
program must be installed as setuid-root in order to use a privileged socket
connection with the urmd process.

8.6.2 URM and NQS

The URM and NQS work closely together to maintain the desired system loads.
For NQS to work with URM, the NQS daemon must be configured to
communicate with the urmd process. To verify this communication, first make
sure that the urmd process is executing (and if not, restart it). Then check the
NQS configuration parameters to verify that URM scheduling is turned on (the
NQS set job scheduling option parameter must be set to the correct option).
For information on displaying the NQS configuration parameters, see the
qmgr(8) man page. For information on changing NQS configuration
parameters, see the UNICOS NQS and NQE Administrator’s Guide.

To manually establish (or re-establish) communication between NQS and URM
on a running system, you can use the qmgr(8) command, specifying the
appropriate subcommand.

To return NQS to its default mode (disable URM control), enter the following
qmgr subcommand:

set job scheduling nqs normal

S–2302–10010 391

UNICOS® Resource Administration

For more information on the qmgr command and subcommands, see the
qmgr(8) man page.

8.6.3 URM and the Fair-share Scheduler

The URM considers fair-share usage information from the user data base (UDB)
when prioritizing batch jobs. If your system has the fair-share scheduler turned
on, it must be functioning properly, that is updating the usage information in
the UDB.

This section explains the three fair-share components used by URM: share
priority weight, share entitlement weight, and usage weight. For more
information on fair-share, see "Fair-share Scheduler", Chapter 4, page 191.

8.6.3.1 Share Priority Weight

In a system using the fair-share scheduler, URM evaluates the effective share of
each resource group and stores the information in a table named /share in the
URM object tree. Each of the table entries holds the relative share of its resource
group. The groups are converted from the hierarchy into a flat organization for
ease of searching and evaluation. Relative shares are not adjusted for usage in
the object tree.

URM evaluates the share organization at a rate determined by
/urm/share_eval (the time to go before the next evaluation is found in
/urm/share_to_go). Normally, the resource group hierarchy and the relative
priorities among the resource groups do not change frequently. If the
administrator changes the organization of the resource hierarchy or the relative
shares within the hierarchy, URM can be forced to regenerate its internal view
of the resource groups by setting share_to_go to 0.

When a job is being evaluated, the user’s resource group is determined as input
to the share evaluation function. The entitlement of the user is determined as
described in the following section. Next, usage is determined as described in
the "Usage weight" section, Section 8.6.3.3, page 393 (the method depends on
the setting of share_policy), and the priority is determined from the
following expression:

priority=usage/entitlement2

This is the same expression that is used in the kernel to compute kl_usage,
which is the main component of p_sharepri. Numerically smaller values are
better. If the fair-share scheduler is not active, the value of this component is 0.

392 S–2302–10010

Unified Resource Manager (URM) [8]

Each job’s share priority for ranking is determined from the following
expression:

share_wt*(1.0-(job_priority/max_priority))

Share priority ranking is a combination of usage and entitlement ranking
available separately. It is expected that either share priority ranking or a
combination of usage and entitlement ranking would be chosen, but not some
combination of share ranking and usage or entitlement ranking. This capability
offers additional flexibility in ranking choices.

8.6.3.2 Share Entitlement Weight

The share entitlement at each level in the fair-share hierarchy is determined
from the following expression:

entitlement=node_share/group_share

The value group_share is the total number of shares allocated in the resource
group. This means that a node’s entitlement is the fraction of the total shares of
the group assigned to that node, without regard to how many nodes in the
group have activity. This is not how the fair-share scheduler evaluates a user’s
entitlement, but an exact method is very difficult to implement when some of
the users or resource groups waiting to have jobs initiated may not be active.
The intent is to determine the relative entitlements of a number of users
competing for initiation.

Each level of the hierarchy is evaluated as described in the preceding
paragraph, and the product of the entitlements of each level in the hierarchy
becomes the user’s entitlement. This value is returned to the share priority
calculation and to the ranking evaluator separately to be normalized and
weighted with the entitle_wt factor.

Numerically larger values are better. If the fair-share scheduler is not active, the
value of this component is 0. Each job’s entitlement for ranking is determined
from the following expression:

entitle_wt*(job_entitlement/max_entitlement)

8.6.3.3 Usage Weight

Usage is derived from the decayed usage as maintained by the fair-share
scheduler in either the lnode or the UDB. When URM examines a job, it checks
for current active usage by using the limits(2) system call. If the user is active
(has an lnode), current usage is returned. If the user is not active, the user’s

S–2302–10010 393

UNICOS® Resource Administration

record is read from the UDB, and the current usage value is calculated from the
recorded usage decayed over the time period since the user last used the
machine.

If share_policy is Standard, only the terminal node’s usage is returned. If
share_policy is Fair_ratio, usage of the subject node, proportional to the
sum of the usage in each level of the hierarchy, is multiplied together to form
the usage value. Usage supplied to the share priority component is the value
determined by share_policy; this value is also returned to the ranking
evaluator separately to be normalized and weighted with the usage_wt factor.

Numerically smaller values are better. If the fair-share scheduler is not active,
the value of this component is 0. Each job’s usage for ranking is determined
from the following expression:

usage_wt*(1.0-(job_usage/max_usage))

8.7 URM Architecture

The URM includes three servers: the urmd selection server, the rmgr query and
command server, and the sdsmgr job server. The following sections describe
these URM servers.

8.7.1 Selection Server (urmd(8))

The urmd selection server (the URM daemon) accepts job selection requests and
responds with recommendations. This is the server that NQS, login, and other
session initiators use to get initiation recommendations from URM. This server
uses information about the state of the system and the backlog to recommend
which job or jobs should be initiated. If any of the resources required by the job
are not available, a recommendation is not issued and the job should not be
started, because it may block or fail during its device reservation process.

The initiating service makes requests of the selection server by presenting a
single job to add to the current backlog or by presenting its entire backlog of
jobs otherwise eligible to initiate. There is also the capability of removing a job
from the URM backlog. These functions are intended to provide enough
information internal to URM to know the backlog, while giving flexibility to the
service to add, delete, or rearrange jobs as required within the scope of the
service policy. Services such as login that do not have a backlog simply
present a job for evaluation. URM assumes that when a single job is presented
for evaluation, a positive recommendation implies job initiation.

394 S–2302–10010

Unified Resource Manager (URM) [8]

Device availability checks must succeed for URM to recommend initiation of a
job. Resource requirements known to the selection server do not affect the
execution of the job, because nothing is really reserved until the job initiates
and makes its own reservation requests. This approach is taken to prevent
incomplete or inaccurate resource information from affecting the actual
execution of jobs.

The selection server expects that all relevant information about the resources
needed by a job will be presented to it when a recommendation is requested.
Only in this way are useful recommendations possible. All of the URM
attributes associated with the job should be presented so they can also be
evaluated. URM evaluates these attributes and recommends initiation only
when all of the requirements are satisfied. Other information needed is the
identification of the service (NQS, interactive, and so on) and, for each job, the
following information:

• User name and/or user ID

• Memory and SDS size limits

• CPU time limit and nice value

• Tape usage information and other resource requirements of the job (batch
only)

• Fair-share resource group ID

• Job priority (minimum rank)

8.7.2 Query and Command Server (rmgr(8))

The rmgr query and command server accepts requests for status information
and replies to such requests as appropriate. This server is intended to support
the needs of network-level scheduling and local administrators. This server also
provides the configuration capability to URM.

For more information about the query and command server, see the rmgr(1)
man page.

8.7.3 SDS Management (sdsmgr)

URM includes the sdsmgr job server, which monitors any interactive or batch
session that uses secondary data space (SDS) in the SSD. When the sdsmgr is
enabled, SDS space can be oversubscribed in the same manner as memory can
be oversubscribed, by swapping SDS to swapdev. SDS in use and SDS changes

S–2302–10010 395

UNICOS® Resource Administration

requested by all sessions are determined from the session table by the
kerninfo.c module of URM, which gathers load information. sdsmgr reads
the sdsmap information to obtain the amount of SDS that is available but not in
use at that time. If the amount of SDS in use at a particular point in time is
greater than the physical amount of SDS space available after ldcache
allocation, SDS is considered to be oversubscribed.

Changing the state of a session from active use of SDS to waiting for a turn at
using this resource is termed preemption. This releases the SDS space for use by
another session. Preemption of SDS space is done via the suspend () system
call, which causes both process memory and SDS space for the session to be
written to the swap device. Restoration of a session to a running state is
accomplished by using the resume () system call, which removes the
PC_SSPND flag from each process. When sched makes each process eligible for
running and swapper swaps it in, the SDS space is reallocated. If the required
SDS space is not available, the process is not swapped in.

To manage SDS, sdsmgr first makes a list of sessions using SDS; this list is
ordered by nice value and time-in-queue. Preference is given to lower nice
values and older jobs in order to provide fastest wall-clock turnaround. The
amount of SDS in use (s_sdsuse in the session table) is further broken down
into SDS in core and SDS swapped out (S_SUSPNDED flag set). The amount of
SDS requested (s_sdsreqsz in the session table) is further broken down into
additional SDS needed for swapin and SDS needed to grow in core. As long as
no session needs more SDS, and no session needs to be swapped in to continue
running, sdsmgr takes no actions.

If, after accounting for swapped sessions, there is a session trying to ssbreak
for more SDS space, sdsmgr looks for a preemption candidate. Sessions with
SDS are guaranteed not to be preempted for a specific length of wall-clock time
(known as a residence interval), as long as they do not change their SDS
allocation. Sessions in core that are waiting on ssbreak (that is, the kernel
cannot allocate a larger SDS area) are preempted first. Exceptions to this rule
are sessions that have just been initiated (sp->s_sdsuse == 0 and
sp->s_sdsreqsz > 0). These sessions are given a chance to acquire SDS and
start running before being preempted. Because NQS jobs acquire all their SDS
specified on the qsub on the first ssbreak, NQS jobs should not be preempted
when they first start running, as happened with qfdaemon. This behavior also
assumes that users have not changed the environment variables SDSLIMIT,
SDSINCR, and SDSMAXFR.

If no sessions trying to grow their SDS space are found, sessions that have had
SDS allocated longer than the configured SDS residence interval are considered
for preemption next. Sessions are preempted until enough SDS space has been

396 S–2302–10010

Unified Resource Manager (URM) [8]

freed up to satisfy the in-core SDS requested. If SDS space is available, and
there are swapped out sessions, the job that has been out the longest, has the
most favorable (lowest) nice value, and fits in the available SDS is swapped in.
As long as as there are no sessions needing SDS to be swapped in, sessions
currently using SDS are not preempted, even if they have exceeded the SDS
residence interval. The sdsmgr does only one preempt for residence time
exceeded and one restore per URM cycle.

8.8 URM Resources

This section describes the resources that URM controls. These are the resources
usually associated with physical objects and with such notions as available
devices or capacity.

URM resources include the following:

Resources Description

CPU time Like memory, this resource can be used to control job initiation
but is more likely to be used to group jobs of similar duration for
selection decisions.

Memory Memory is not strictly a controlled resource, but URM manages
oversubscription (swap control) and recommends against
initiating jobs that require memory usage above a specified
maximum. This is mostly needed for administrative controls,
such as preventing jobs needing more than a specified amount of
memory from being initiated during periods of heavy interactive
use. Another use of this resource is to group jobs of similar
usage, so that jobs with large memory requirements need not
compete against one another during execution.

MPP The MPP resources can be configured to allow multiple user
applications to run concurrently (space sharing). The MPP
hardware resources that must be shared are the barrier bits and
the processing elements (PEs). URM monitors the MPP barrier
synchronization mechanism (barrier pools for user-designated bits
and for operating-system-designated bits). URM monitors the
MPP administrative resource pools (sets of PEs designated for use
by batch, interactive, or both job types).

SDS Allocation of SDS space is evaluated both to deliver service to
deserving jobs in the proper order and to manage resource
conflicts to avoid oversubscription beyond manageable limits.

S–2302–10010 397

UNICOS® Resource Administration

User limits on SDS space are controlled through the UDB limits
on batch and interactive.

Share Although shares, as used in the fair-share scheduler, are not
resources in the sense of tapes, each user has potential to do work
based on a priority derived from the share. Because this priority
depends on the user’s history, as well as the set of users active on
the machine at a given time, URM must consider the effective
priority of each request in the initiation recommendation.

Tape URM supports tape resources as defined by the UNICOS tape
subsystem. Eight different user limits are available to control tape
resources.

8.9 URM Checkpointing

URM can be configured to checkpoint interactive sessions at shutdown, if
requested by the owner of the session. The resulting restart images are kept in
the URM chkpnt directory.

URM can also be configured to do periodic checkpoints of interactive or batch
sessions, if requested by the owner of the session. URM sends checkpoint
notices to NQS when a batch session requires periodic checkpointing; the
resultant restart files are kept in the NQS chkpnt directory. URM manages
restart files for interactive sessions in a special URM chkpnt directory.

8.9.1 Configuring URM Checkpointing

Checkpointing is done only on an individual session basis. The chkptint(1)
command provides the mechanism by which any user is able to specify that
checkpointing be done at shutdown for an interactive session or that periodic
checkpointing is desired for an interactive or a batch session.

This command has one required option, of the form -s sec, which specifies the
requested checkpoint frequency in seconds. When URM is running in
checkpoint only at shutdown mode, all that is required is that the
chkptint -s # be nonzero; chkptint -s 0 can be used to turn off the
automatic or periodic checkpoint request for that session. The chkptint
command can be part of a script or placed in a user’s .cshrc or .profile file.

The following URM objects (as taken from a rmgr-> view /urm display) are
used to configure URM checkpoint features:

398 S–2302–10010

Unified Resource Manager (URM) [8]

LVrwr- 0 0 Dec 28 08:13 <restart_switch> "Force"

LVrwr- 0 0 Dec 28 08:13 <chkpnt_switch > "Auto"
LVrwr- 0 0 Dec 28 08:13 <min_interval > Int, 1800

LVrwr- 0 0 Dec 28 08:13 <interval_type > "CPU, Clock"

LVrwr- 0 0 Dec 28 08:13 <retain_chkpnt > Int, 432000

LVr-r- 0 0 Dec 28 08:13 <shutdown > Int, 0

LVr-r- 0 0 Dec 28 08:13 <shut_done > Int, 0

LVrwr- 0 0 Dec 28 08:13 <restart_cmd > "UPATH/irstart"
LVrwr- 0 0 Dec 28 08:13 <chkpnt_path > "PPATH/chkpnt"

LVrwr- 0 0 Dec 28 08:13 <chkpnt_cmd > "UPATH/intchkpt"

The restart_switch object indicates whether or not to use the
RESTART_FORCE flag on the restart system call when restarting an interactive
session.

The chkpnt_switch object defines the type of checkpointing desired. No turns
both features off; Shutdown turns on checkpointing for interactive sessions at
shutdown; and Auto turns on periodic checkpointing of batch and interactive
sessions and specifies checkpointing for interactive sessions at shutdown as well.

The min_interval object defines the minimum interval (in seconds) between
checkpoints with which URM will comply. If a user requests a checkpoint
interval less than this minimum, the minimum will be used. This constraint
applies only to periodic checkpoint behavior.

The interval_type object defines the checkpoint criteria. CPU means
user-plus-system CPU time; Clock means elapsed wall-clock time. This
constraint applies only to periodic checkpoint behavior.

The retain_chkpnt object defines the length of time (in seconds) URM will
keep a restart image before deleting it. Deleting these images prevents taking
up disk space with unwanted restart files.

The shutdown and shut_done flags indicate whether or not shutdown is in
progress or completed. When shutdown and shut_done are both 0, no
shutdown is in progress. If shutdown is equal to 1, URM goes through the
process of looking for sessions to checkpoint, but does not terminate when
completed. If shutdown is equal to 2, a checkpoint and terminate sequence has
been requested. When all shutdown checkpointing is complete, shut_done is
set to 1.

The restart_cmd object defines the name of the command rmgr executes to
restart a selected interactive session.

S–2302–10010 399

UNICOS® Resource Administration

The chkpnt_path object defines the path to the URM checkpoint directory.
The default is /usr/adm/urm/chkpnt.

The chkpnt_cmd object defines the name of the command URM spawns as a
separate process to checkpoint an interactive session.

For periodic checkpointing of interactive sessions, URM scans the session table,
notes when a checkpoint interval has been set by using the chkptint
command, and sets a timer for that session. When the requested CPU or
wall-clock interval has elapsed, URM will fork and exec a process to do the
checkpoint for the interactive session. The timer is reset after a successful
checkpoint.

When URM determines that it is time to do a periodic checkpoint of a batch
job, URM sends a chkpnt request, defined as part of the interface between
NQS and URM, along with job sequence number, MID, and SID. NQS creates
the restart file in the NQS checkpoint directory, as if a qchkpnt command had
been issued by the user.

8.9.2 Managing Restart Images

Several rmgr subcommands aid in the management of restart images. Upon
logging in, an interactive user can query URM, using the rmgr utility
view restart subcommand, to see if the user has any checkpointed sessions
available.

rmgr-> view restart kcz
Restart images belonging to User <kcz>, UID 343 on path /ptmp/urm/chkpnt/kcz

<1> 12281123.2640

<2> 12281153.2640

<3> 12281223.2640

User <kcz> has 3 restart images.

To decide which of the saved restart images to try to restart, a user can use the
rmgr utility view restart subcommand to obtain a detailed description of
the restart image.

rmgr-> view restart kcz 2

Restart file /tmp60/kcz/chkpnt/kcz/12281153.2640 belongs to uid 343
Restart file 12281153.2640 for session 2640 created Dec 28 11:53

Restart file session characteristics:

#procs = 5; #tasks = 5; pgrp inheritance = 69747; nice value = 20.

PID of session parent = 69746; PID of foreground process group = 76223.

400 S–2302–10010

Unified Resource Manager (URM) [8]

User cputime = 118212137; system cputime = 196492829

cpulimit[0] = 4611686018427387903
cpulimit[1] = 4611686018427387903

cpulimit[2] = 4611686018427387903

Memory in use = 868; memhiwat = 2047; memlimit = 35184372088831

SDS in use = 0; sdshiwat = 0; sdslimit = 900000

Max #of procs allowed = 100

Mtask 1: name: csh pid: 69747 #sibs: 1.

process group pid = 102032, parent pid = 69746

Memory size= 124 klics, swap_image size= 0 klics.

SDS allocated= 0 klics, SDS requested= 0 klics.

Mtask 2: name: zup pid: 70005 #sibs: 1.

process group pid = 102032, parent pid = 69747

Memory size= 156 klics, swap_image size= 0 klics.

SDS allocated= 0 klics, SDS requested= 0 klics.

Mtask 3: name: csh pid: 70030 #sibs: 1.

process group pid = 102032, parent pid = 70005

Memory size= 96 klics, swap_image size= 0 klics.

SDS allocated= 0 klics, SDS requested= 0 klics.

Mtask 4: name: man pid: 76223 #sibs: 1.
process group pid = 102032, parent pid = 70030

Memory size= 148 klics, swap_image size= 0 klics.

SDS allocated= 0 klics, SDS requested= 0 klics.

Mtask 5: name: more pid: 76224 #sibs: 1.
process group pid = 102032, parent pid = 76223

Memory size= 112 klics, swap_image size= 0 klics.

SDS allocated= 0 klics, SDS requested= 0 klics.

User <kcz> has 2 restart images.

The rmgr utility delete restart subcommand allows users to delete
unwanted saved restart images. For example:

rmgr-> delete restart kcz 1

Deleted restart image <1> for user kcz

rmgr->

To request that a previously saved session be restarted, a user first views the
saved images and then specifies that a particular image be restarted. The

S–2302–10010 401

UNICOS® Resource Administration

existing session with rmgr is eliminated, and the terminal connected to the
login shell is saved in the restart session.

The following example restarts a saved session that was in the middle of a man
ps command. Output resumes where it left off when the job was saved.

rmgr-> view restart kcz

Restart images belonging to User <kcz>, UID 343 on path /tmp60/kcz/chkpnt/kcz

<1> 12281153.2640

<2> 12281223.2640
User <kcz> has 2 restart images.

rmgr-> restart kcz 1

When a process has exited and has a parent, but the parent has not

waited for it, the process is marked <defunct>.

Format Specification

The -o option allows the output format to be specified under user

control. The format specification consists of a list of field names

--More--

8.9.3 Checkpointing at Shutdown

The rmgr subcommands used in a controlled shutdown are
set shutdown stopdaemon, or set shutdown and stopdaemon used
separately and sequentially. When set shutdown stopdaemon is used, urmd
terminates after all checkpointing has completed. When set shutdown is
used, any requested checkpoints are performed, but urmd continues. When
stopdaemon is used, urmd terminates without performing any checkpointing.

8.10 Tuning URM

This section provides information specific to tuning the Unified Resource
Manager (URM). It covers the following topics:

• Tuning URM control settings

• Tuning URM job selection criteria

• Using URM with NQS

The examples in this section demonstrate changing URM settings with the
rmgr(1) command. Any changes made with rmgr affect the running version of
URM only; when the URM daemon is stopped, these changes are lost. To make

402 S–2302–10010

Unified Resource Manager (URM) [8]

permanent changes to URM settings, use the menu system (install(8)
command), as described in Section 8.4, page 361.

8.10.1 Tuning URM Control Settings

URM is released with a set of default control settings, including the following:

• Machine target values (/machine/target)

• Monitoring cycles (/urm)

• Group scheduling control (/machine/target/group_sched)

• Load smoothing factors (/machine/rate)

The remainder of this section describes how to change each of these control
settings.

8.10.1.1 Machine Target Values

The URM machine target values set system-wide resource usage boundaries.
URM does not recommend initiation of jobs specifying resources that exceed
these targets.

When determining the recommendation status of each job, URM compares
system resource loads against the following targets:

• Memory oversubscription target

• SDS oversubscription target

• Maximum session target

• Tape limit target

• MPP limit targets

The values for the tape and MPP limit targets are automatically updated by
URM through its automatic configuration capability and should not be changed
manually. However, if your site does not have tapes, the automatic
configuration of tape usage targets should be disabled.

Use the rmgr command to view the current machine target values, as shown in
the following example:

rmgr => view /machine/target
.

S–2302–10010 403

UNICOS® Resource Administration

.

.
LVrwr- 0 0 Sep 16 06:21 <sds_os > Float, 2.000000

LVrwr- 0 0 Sep 16 06:21 <memory_os > Float, 2.000000

.

.

.

LVrwr- 0 0 Sep 16 06:21 <tape > Int, 2
LVrwr- 0 0 Sep 16 06:21 <jobcount > Int, 300

LVrwr- 0 0 Sep 16 06:21 <pe > Int, 0

LVrwr- 0 0 Sep 16 06:21 <bb > Int, 0

The /machine/target display also shows other URM values, such as the
group scheduling controls; these values are discussed in following sections.

To change a machine target value, use the following rmgr directive:

/machine/target/resource=value

To permanently change the configuration, use the following menu in the menu
system:

UNICOS 10.0 Installation / Configuration Menu System ->

Configure system ->

URM configuration ->

Machine target values

The remainder of this section describes the configurable machine targets for the
memory, SDS space, and active jobs.

8.10.1.1.1 Memory Oversubscription Target

The amount of memory in use is called the memory load. URM computes the
memory load by adding the size of all running jobs and recommended jobs.
The size of a running job is calculated from the actual size in the kernel session
table, smoothed by the requested size of the job (see Section 8.10.1.4, page 412).
The size of a recommended job is the amount of memory the job requested. If a
job did not request memory requirements (that is, interactive jobs), the default
memory usage is used; see Section 8.10.2.2.2, page 423, for more information.

The memory oversubscription target, /machine/target/memory_os, sets an
upper limit on the total amount of user memory (including swap space) that can
be in use at the same time. If the actual memory load matches or exceeds the
target value, no jobs are initiated until the load drops. This limitation includes

404 S–2302–10010

Unified Resource Manager (URM) [8]

only jobs from session initiators that have been configured to allow URM
control of job initiation; for more information, see Section 8.10.2.2.2, page 423.

Estimating memory use in this manner allows URM to plan ahead for future
memory use, if smoothing factors are used, because most jobs do not use the full
amount of declared memory until they have been running for a period of time.

The memory oversubscription target is a multiplier, or percentage value, instead
of an absolute value. The default multiplier, 2.0, sets the memory target to twice
the total amount of user memory configured.

If a high amount of swapping is affecting system performance, consider
decreasing the memory oversubscription multiplier. For example, to change the
memory oversubscription target to 1.5, enter the following rmgr directive:

/machine/target/memory_os = 1.5

To permanently change the configuration, use the following menu in the menu
system:

UNICOS 10.0 Installation / Configuration Menu System ->

Configure system ->

URM configuration ->

Machine target values ->

Memory oversubscription multiplier

Note: The maximum value for the memory oversubscription target is limited
by the amount of swap space configured on the system. Do not set this target
to a value larger than the amount of available swap space. (If SDS space is
configured, the sum of the memory oversubscription target and the SDS
oversubscription target should be less than or equal to the amount of
available swap space.)

The following example demonstrates how to calculate a value for memory
oversubscription that corresponds to previous usage of the system by using the
data from the system sar(1) logs. For example, assume that the sar log for a
typical day shows the following average values for memory use:

• 53730 clicks of total user memory available (umemtot)

• 38144 clicks of user memory in use (umemuse)

• 46769 clicks of swap space in use (swapuse)

S–2302–10010 405

UNICOS® Resource Administration

Use the following equation to calculate the memory oversubscription target
value for URM:

memory_os = (umemuse + swapuse) / umemtot

= (38144 + 46769) / 53730

= 1.6

Setting /machine/target/memory_os to 1.6 will result in memory use with
URM that is similar to previous system behavior.

8.10.1.1.2 SDS Oversubscription Target

The SDS oversubscription target, /machine/target/sds_os, sets an upper
limit on the total amount of SDS space that can be in use at the same time. If
the actual SDS load matches or exceeds the target value, no jobs requesting SDS
space are initiated until the load drops.

The SDS oversubscription target is a multiplier, or percentage value, instead of
an absolute value. The default multiplier, 1.5, sets the SDS target to one and
one-half times the amount of available SDS space. This target could be
increased to allow URM to recommend more jobs using SDS space (which
might increase swapping as well), as in the following example:

/machine/target/sds_os = 2.0

To permanently change the configuration, use the following menu in the menu
system:

UNICOS 10.0 Installation / Configuration Menu System ->

Configure system ->

URM configuration ->
Machine target values ->

SDS oversubscription multiplier

Note: The maximum value for the SDS oversubscription target is limited by
the amount of swap space configured. Do not set this target to a value larger
than the amount of available swap space. (If SDS space is configured, the
sum of the memory oversubscription target and the SDS oversubscription
target should be less than or equal to the amount of available swap space.)

In addition to monitoring SDS load, URM manages SDS space by preempting
the jobs using SDS to allow other jobs a chance to use SDS space. (Both batch

406 S–2302–10010

Unified Resource Manager (URM) [8]

and interactive jobs are affected by this feature.) For more information, refer to
Section 8.10.1.2.5, page 409.

8.10.1.1.3 Maximum Session Target

The maximum session target, /machine/target/jobcount, determines the
boundary at which URM stops recommending the initiation of any more jobs.
By default, this target is set to the size of the kernel session table (set by the
NSESS parameter).

Note: Setting the active job target to too small a value could result in wasted
CPU resources, because URM would not recommend jobs even when
adequate resources are available. To control job count and prevent the system
from becoming overcommitted, use the job targets for the individual session
initiators. Refer to Section 8.10.2, page 416, for more information on these
targets.

8.10.1.2 Monitoring Cycles

The URM monitoring cycles control the frequency of load monitoring, batch job
ranking, and SDS preemption. These cycles define the minimum possible delay
for initiation of batch jobs. (Interactive jobs are always handled immediately.)
The controlling monitoring cycle is called the main loop; this cycle calls all other
monitoring cycles. Therefore, all other cycles cannot occur more frequently than
the main loop cycle.

The monitoring cycles can be changed to increase or decrease URM’s sensitivity
to fluctuations in job load. This section describes changing the interval, or
delay, for the main loop and the subsidiary cycles.

8.10.1.2.1 URM Main Loop

The URM main loop consists of the following operations:

Operation Description

Kernel information check Checks system load and
configuration information,
monitors SDS usage

Job scheduling check Ranks and recommends any
batch jobs that are waiting in
its backlog

S–2302–10010 407

UNICOS® Resource Administration

Share evaluation check Reevaluates the fair-share
hierarchy

SDS residence management Manages SDS usage

The main loop is controlled by the main loop delay, /urm/sleep_time; it is
set to 10 seconds by default. This delay specifies the amount of time URM
waits before performing the subsidiary cycles. Each subsidiary cycle in the
main loop has its own delay; these should be set to a multiple of the main loop
delay. If they are not, the main loop delay will take precedence.

To increase the main loop delay to 20 seconds, for example, enter the following
rmgr directive:

/urm/sleep_time = 20

To permanently change the configuration, use the following menu in the menu
system. However, it is recommended that you not change this value.

UNICOS 10.0 Installation / Configuration Menu System ->
Configure system ->

URM configuration ->

URM control settings ->

Main loop sleep period

8.10.1.2.2 Kernel Information Check

The kernel information delay, /urm/info_delay, controls the frequency of
checks for resource loads and configuration information; it is set to 10 seconds
by default. Changing this value is not recommended. Refer to Section 8.10.1.4,
page 412, for more information on the kernel information delay.

8.10.1.2.3 Job Scheduling Check

The job scheduling check controls the frequency of batch job ranking and batch
job recommendation. During the job scheduling check, URM ranks all jobs in
the backlog and makes any possible recommendations.

The job scheduling delay, /urm/sched_delay, is set to 10 seconds by default.
This delay, along with the main loop delay, defines the actual minimum delay
for batch jobs to receive an initiation recommendation after they are registered
with URM.

408 S–2302–10010

Unified Resource Manager (URM) [8]

8.10.1.2.4 Share Evaluation Check

If the fair-share scheduler is enabled, URM periodically evaluates the machine
share (normalized share) of each resource group or shareholder (account ID) for
use in the batch job ranking calculation.

The share evaluation cycle is controlled by the share evaluation delay,
/urm/share_eval, which is set to 900 seconds (15 minutes) by default.
Resource group hierarchies and relative priorities among the resource groups
tend to change infrequently, so this evaluation is not performed as often as the
other cycles.

The countdown timer for the fair-share evaluation period,
/urm/share_to_go, contains the amount of time remaining until the next
evaluation. Use the following rmgr directive to view this value:

view /urm/share_to_go

If relative fair-share priorities change on a one-time basis (for example, when
the share allocations are changed in the UDB), set /urm/share_to_go to 0;
this ensures that share evaluation will be performed during the next main loop
cycle.

For more information on the fair-share scheduler, see "Fair-share scheduler,"
Chapter 4, page 191.

8.10.1.2.5 SDS Residence Management

URM controls SDS oversubscription by preempting jobs, both batch and
interactive, to ensure that other jobs waiting for SDS space get a chance to use
it. Once during each main loop, URM checks to see if SDS space is in use, then
calls the sdsmgr program to handle the actual preemption.

The SDS residence interval is controlled by /urm/sds_residence; this value
is set to 900 seconds (15 minutes) by default. You can disable URM
management of SDS space by setting /urm/sds_residence to 0.

To permanently change the configuration, use the following menu in the menu
system:

UNICOS 10.0 Installation / Configuration Menu System ->

Configure system ->

URM configuration ->

URM control settings ->

SDS residency time in secs

S–2302–10010 409

UNICOS® Resource Administration

The following example shows the view sds directive to the rmgr command
on a system with SDS oversubscription:

rmgr-> view sds

SDSwork: SDS residence interval set to 900

Number of sessions using SDS = 2

Number of preempted SDS jobs = 0

SDS jobs:

preempted = 0

restoring = 0

swapped = 1
in core = 1

SDS units:

physical size 12288

allocated 23296

requested 0
available 128

in memory 12160

swapped out 11136

needed by running jobs 0

needed by suspended jobs 0
being preempted out 0

being restored to memory 0

SDS state is OVERSUBSCRIBED by 11008

8.10.1.3 Group Scheduling Control

During the batch job ranking phase (see Section 8.10.2.1.1, page 417), the default
behavior for URM is to select the jobs with the best (highest) rank to
recommend for initiation. However, some jobs might receive a consistently low
rating because of atypical resource usage. Using rank alone as a selection
criterion can prevent these jobs from being recommended for initiation on busy
systems. To prevent this situation, URM has a group scheduling control feature to
control job recommendations by group characteristics, or similarity of resource
usage, as well as the batch job ranking calculation.

By default, group scheduling control is disabled. All jobs fall into the same
default group (also called the batch job pool). Group scheduling control is
enabled by setting /machine/target/group_sched to 1. When this feature
is enabled, URM divides all batch jobs into four groups (defined by computing

410 S–2302–10010

Unified Resource Manager (URM) [8]

the average rank and standard deviation) based on how similar each job is to
the average job. Group 1 contains jobs closest to the average, and group 4
contains jobs farthest from the average. URM stores a count of jobs for each
group in four /machine/target/jobs_in_sg values.

URM also monitors the recommendation history for each group, that is, the
number of jobs selected, or picked, from each group. The group scheduling
control feature allows you to change the job selection percentage to favor
unusual or low ranked jobs by setting the pick value (selection percentage) for
each group. The pick values define how often a job is selected from each group.
URM stores integer values in four /machine/target/pick_in_sg values;
these are converted to relative values, or percentages. By default, a total value
of 20 is used to divide the group pick values; the pick value for group 1 is 9
(45% of jobs are selected from this group), group 2 is 7 (35%), group 3 is 3
(15%), and group 4 is 1 (5%). The recommendation history is stored in four
/machine/target/rec_from_sg values.

The following rmgr directive displays sample URM values used for group
scheduling control:

rmgr => view /machine/target

.

.

.

LVrwr- 0 0 Sep 20 07:23 <group_sched > Int, 1

.

.

.
LVr-r- 0 0 Sep 20 07:23 <jobs_in_sg1 > Int, 20

LVr-r- 0 0 Sep 20 07:23 <jobs_in_sg2 > Int, 11

LVr-r- 0 0 Sep 20 07:23 <jobs_in_sg3 > Int, 4

LVr-r- 0 0 Sep 20 07:23 <jobs_in_sg4 > Int, 2

LVr-r- 0 0 Sep 20 07:23 <rec_from_sg1 > Int, 45

LVr-r- 0 0 Sep 20 07:23 <rec_from_sg2 > Int, 35
LVr-r- 0 0 Sep 20 07:23 <rec_from_sg3 > Int, 15

LVr-r- 0 0 Sep 20 07:23 <rec_from_sg4 > Int, 5

LVrwr- 0 0 Sep 20 07:23 <pick_in_sg1 > Int, 9

LVrwr- 0 0 Sep 20 07:23 <pick_in_sg2 > Int, 7

LVrwr- 0 0 Sep 20 07:23 <pick_in_sg3 > Int, 3
LVrwr- 0 0 Sep 20 07:23 <pick_in_sg4 > Int, 1

.

.

.

S–2302–10010 411

UNICOS® Resource Administration

The line for group_sched shows that group scheduling control is enabled. The
number of jobs in each group are displayed in the values jobs_in_sg1,
jobs_in_sg2, jobs_in_sg3, and jobs_in_sg4. The recommendation
history is shown in the values rec_from_sg1, rec_from_sg2,
rec_from_sg3, and rec_from_sg4. The default pick values are shown in
pick_in_sg1, pick_in_sg2, pick_in_sg3, and pick_in_sg4.

To change the percentages for group selection, modify the pick_in_sg values.
The following example enables group scheduling control and sets pick values
so that jobs are selected from each group on an equal basis:

/machine/target/group_sched = 1
/machine/target/pick_in_sg1 = 1

/machine/target/pick_in_sg2 = 1

/machine/target/pick_in_sg3 = 1

/machine/target/pick_in_sg4 = 1

Note: The sum of the pick_in_sg values should be less than or equal to the
maximum number of initiations for the session initiator (that is, the value set
by /machine/jobmax/ initiator /start_max). See Section 8.10.2.1.3, page
421, for more information.

To permanently enable group scheduling control and make permanent changes
to the pick values, insert the appropriate rmgr directives in the local
configuration file by using the following menu in the configuration menu
system:

UNICOS 10.0 Installation / Configuration Menu System ->

Configure system ->
URM configuration ->

URM control settings ->

Full pathname of local URM config file

8.10.1.4 Load Smoothing Factors

Each resource that URM monitors has a specific load associated with it (stored
in /machine/load/ resource) that indicates the amount of the resource in use.
URM tracks the load for the following resources:

• Memory

• Total active sessions

• SDS usage

• Tape usage

412 S–2302–10010

Unified Resource Manager (URM) [8]

• MPP resource usage

• Individual session initiators: batch, login, rsh, rexec, null, ftp, and
cron.

• Site-specific session initiators site1, site2, and site3, if defined (see
Section 8.4.5, page 367, for more information)

Use the rmgr directive view /machine/load to display the current load
values, as in the following example:

rmgr => view /machine/load

LVrwr- 0 0 Sep 17 08:22 <memory > Int, 41905
LVrwr- 0 0 Sep 17 08:22 <shared_txt > Int, 10660

LVrwr- 0 0 Sep 17 08:22 <sesstab_mem > Int, 54222

LVrwr- 0 0 Sep 17 08:22 <sds > Int, 0

LVrwr- 0 0 Sep 17 08:22 <tape > Int, 1

LVrwr- 0 0 Sep 17 08:22 <bb > Int, 0

LVrwr- 0 0 Sep 17 08:22 <pe > Int, 0
LVrwr- 0 0 Sep 17 08:22 <site3 > Int, 0

LVrwr- 0 0 Sep 17 08:22 <site2 > Int, 0

LVrwr- 0 0 Sep 17 08:22 <site1 > Int, 0

LVrwr- 0 0 Sep 17 08:22 <rsh > Int, 1

LVrwr- 0 0 Sep 17 08:22 <rexec > Int, 0
LVrwr- 0 0 Sep 17 08:22 <null > Int, 31

LVrwr- 0 0 Sep 17 08:22 <login > Int, 35

LVrwr- 0 0 Sep 17 08:22 <ftp > Int, 0

LVrwr- 0 0 Sep 17 08:22 <cron > Int, 1

LVrwr- 0 0 Sep 17 08:22 <batch > Int, 1

Instead of using actual load values to estimate available system resources, URM
applies a smoothing function to each resource load before using the load in its
recommendation calculations. The smoothing function prevents overreaction to
fluctuations in resource use and helps protect users from an erratic system
response. (The load smoothing function is also called a moving average or rolling
average.) The amount of smoothing is controlled by smoothing factors.

Each resource has its own smoothing factor, which can be set to a proportional
value between 0.0 and 1.0, depending on how accurately you want it to
represent changes in actual resource loads. The value 1.0 specifies that URM
should match load values to actual changes; the value 0.0 specifies no change to
existing load values. The closer a smoothing factor is to 1.0, the more quickly
load changes will be adjusted. The closer to 0.0, the less effect actual resource
usage has on job selection. For example, the smoothing factors for the session

S–2302–10010 413

UNICOS® Resource Administration

initiators (batch, ftp, login, and so on) are set to 1.0 by default; this allows
URM to enforce any session boundaries (jobcount target values).

Note: Smoothing occurs only when resource use drops. Increases in resource
use are reflected immediately.

The graph in Figure 9 shows how this adjustment takes place. This example
compares the results of four different smoothing factors for the memory load:

16

14

12

10

8

6

4

2

0

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140

Memory size
(Mwords)

Seconds

Measured use = 1.0

Smoothing factor = 0.2

Smoothing factor = 0.4

Smoothing factor = 0.05
a10170

Figure 9. Example of Different Smoothing Factors

Note: Smoothing factors of values at or near 0.0 is not recommended. Setting
a smoothing factor below 0.1 would cause URM to cease updating the load
values. Using a very low value for a smoothing factor can cause URM to
react too slowly to changes in resource loads.

414 S–2302–10010

Unified Resource Manager (URM) [8]

The graph in Figure 10 shows the effect of the default smoothing factor for
memory (0.8) on URM calculations of memory load over time:

32

30

28

26

24

22

20

18

16

14

12

10

0 10 20 30 40 50

Memory size
(Mwords)

Seconds

Measured use

Smoothing factor = 0.8

0

a10171

Figure 10. Default Smoothing Factor for Memory Load

Use the rmgr command to display the current smoothing factors, as in the
following example:

rmgr =>view /machine/rate

S–2302–10010 415

UNICOS® Resource Administration

LVrwr- 0 0 Oct 25 23:59 <memory > Float, 0.800000

LVrwr- 0 0 Oct 25 23:59 <sds > Float, 0.800000
LVrwr- 0 0 Oct 25 23:59 <tape > Float, 1.000000

LVrwr- 0 0 Oct 25 23:59 <bb > Float, 1.000000

LVrwr- 0 0 Oct 25 23:59 <pe > Float, 1.000000

LVrwr- 0 0 Oct 25 23:59 <site3 > Float, 1.000000

LVrwr- 0 0 Oct 25 23:59 <site2 > Float, 1.000000

LVrwr- 0 0 Oct 25 23:59 <site1 > Float, 1.000000
LVrwr- 0 0 Oct 25 23:59 <rsh > Float, 1.000000

LVrwr- 0 0 Oct 25 23:59 <rexec > Float, 1.000000

LVrwr- 0 0 Oct 25 23:59 <null > Float, 1.000000

LVrwr- 0 0 Oct 25 23:59 <login > Float, 1.000000

LVrwr- 0 0 Oct 25 23:59 <ftp > Float, 1.000000
LVrwr- 0 0 Oct 25 23:59 <cron > Float, 1.000000

LVrwr- 0 0 Oct 25 23:59 <batch > Float, 1.000000

To change any of the load smoothing factors, enter the following rmgr directive:

/machine/rate/resource = factor

The value resource specifies the resource, such as memory, and factor specifies a
value between 0.1 and 1.0.

To permanently change the configuration, use the following menu in the menu
system:

UNICOS 10.0 Installation / Configuration Menu System ->
Configure system ->

URM configuration ->

URM machine load evaluation rates

8.10.2 Tuning URM Job Selection Criteria

In addition to controlling system resource targets, URM controls the job
selection criteria for each session initiator. (The job selection criteria are called
individual session initiator targets in the menu system.)

For the batch session initiator, URM monitors the session maximum targets (in
/machine/jobmax values) and the resource loads (in /machine/load
values). For nonbatch session initiators, URM monitors the defaults (in
/machine/default values) and the resource loads (in /machine/load
values) for each session initiator.

416 S–2302–10010

Unified Resource Manager (URM) [8]

The following sections describe the job selection criteria used for batch jobs and
for interactive jobs.

8.10.2.1 Batch Jobs

URM tracks the following job selection criteria for batch jobs:

• Job count; total number of active sessions allowed for the batch session
initiator

• Maximum number of batch job initiations per scheduling cycle

• Memory request for a batch job

• CPU request for a batch job

• Tape request for a batch job

• SDS request for a batch job

• MPP requests for a batch job

In addition to the job selection criteria, URM checks the machine target values
and batch job ranking before recommending a job for initiation. (Refer to
Section 8.10.1.1, page 403, for more information about target values; see the
following section for information on the batch job ranking calculation.)

Use the following rmgr directive to change any of the job selection criteria for
the batch session initiator:

/machine/jobmax/batch/resource = value

To permanently change the configuration, access the following menu and select
batch as the session initiator name:

UNICOS 10.0 Installation / Configuration Menu System ->

Configure system ->

URM configuration ->

URM control settings ->

Individual session initiator targets

The following sections discuss each of the batch job selection criteria.

8.10.2.1.1 Batch Job Ranking Calculation

URM assigns a rank to each job based on the job’s resource attributes, or declared
amount of resources requested by the job (see "Using URM with NQS," Section

S–2302–10010 417

UNICOS® Resource Administration

8.4.13, page 374, for more information). During batch job ranking, each resource
attribute is normalized (converted to a proportional value between 0.0 and 1.0)
and multiplied by a weighting factor. Each resource has an associated
weighting factor that can be configured to a smaller or larger value based on
the desired importance for that resource in the batch job ranking calculation.

By default, all weighting factors are equal (set to 0.5). Increasing the value of a
weighting factor increases its relative importance in the ranking; setting a
weighting factor to 0 effectively removes that resource from the calculation.

URM uses following equation for batch job ranking:

rank = (share * share_wt) +

(usage * usage_wt) +
(service_pri * service_wt) +

(age * age_wt) +

(cpu * cpu_wt) +

(memory * mem_wt) +

(tape * tape_wt) +
(SDS * sds_wt) +

(bb * bb_wt) +

(PE * pe_wt) +

(PE_time * petime_wt) +

(prevrun_boost) +

(min_rank)

The resources and associated weighting factors are represented in this equation
as follows:

share * share_wt

Fair-share component. If the fair-share scheduler is not enabled,
the value of this component is 0. If fair-share is enabled, share
represents the normalized share value of the job owner’s
resource group or account; share_wt represents the fair-share
weighting factor. URM evaluates the system share hierarchy at
a rate determined by /urm/share_eval (default 900 seconds).
This weighting factor can be adjusted by changing
/urm/share_wt with the rmgr command.

usage * usage_wt

CPU usage component. The value usage represents the
normalized usage maintained for the job’s user in the shrusage
field in the UDB; usage_wt represents the usage weighting

418 S–2302–10010

Unified Resource Manager (URM) [8]

factor. If the user already has jobs active on the system, the
current usage is obtained; otherwise, the decayed usage from
the UDB is used. The usage weighting factor can be adjusted
by changing /urm/usage_wt with the rmgr command.

service_pri * service_wt

NQS queue priority component. The value service_pri represents
the interqueue priority from NQS; service_wt represents the
service weighting factor. If service_wt is set to 0, the NQS
interqueue priorities no longer take effect in the URM priority
calculation. This weighting factor can be adjusted by changing
/urm/service_wt with the rmgr command.

age * age_wt

Age-in-queue component. The value age represents the length
of time the job has been waiting for initiation from the URM
queue; age_wt represents the age weighting factor. The age of
the oldest job is 1.0, and the age of the youngest job is 0.0. The
age weighting factor can be adjusted by changing
/urm/age_wt with the rmgr command.

cpu * cpu_wt

Requested CPU resource component. The value cpu represents
the normalized CPU requirement specified with each batch job;
cpu_wt represents the CPU weighting factor. The cpu_wt
value can be adjusted by changing /urm/cpu_wt with the
rmgr command.

memory * mem_wt

Requested memory resource component. The value memory is
the normalized memory requirement specified with each batch
job; the largest job is 0.0, and the smallest job is 1.0. The value
mem_wt represents the memory weighting factor. This
weighting factor can be set by changing /urm/mem_wt with the
rmgr command.

tape * tape_wt

Requested tape resource component. The value tape is the
normalized tape device requirement specified with each batch
job; tape is set to 0.0 for the job requesting the most tape
resources, and to 1.0 for the job requesting the least resources.

S–2302–10010 419

UNICOS® Resource Administration

The value tape_wt represents the tape weighting factor. This
weighting factor can be set by changing /urm/tape_wt with
the rmgr command.

SDS * sds_wt

Requested SDS resource component. The value SDS represents
the normalized SDS requirement specified with each batch job;
SDS is set to 0.0 for the job requesting the most SDS space, and
to 1.0 for the job requesting the least resources. The value
sds_wt represents the SDS weighting factor. This weighting
factor can be set by changing /urm/sds_wt with the rmgr
command.

BB * bb_wt

PE * pe_wt

PE_time * petime_wt

These components define the MPP resource attributes for MPP
barriers, processor elements, and requested PE time job
attributes, respectively.

prevrun_boost

Value to improve the rank of a previously checkpointed job.

min_rank

Minimum rank (NQS job priority).

To make a permanent configuration change to the weighting factors, use the
following menu in the menu system:

UNICOS 10.0 Installation / Configuration Menu System ->

Configure system ->

URM configuration ->

Weighting factors for the selector

420 S–2302–10010

Unified Resource Manager (URM) [8]

8.10.2.1.2 Batch Job Count

The job count, or maximum number of active batch sessions, is controlled by
/machine/jobmax/batch/jobcount. By default, this value is set to the size
of the kernel session table (set by the NSESS parameter) during URM’s
automatic configuration process. Changing this value affects the relative
proportions of batch and interactive jobs on the system.

8.10.2.1.3 Batch Maximum Initiation

The maximum number of batch initiations allowed during a single scheduling
cycle is controlled by the /machine/jobmax/batch/start_max value.
When this limit is reached, URM does not recommend any more batch jobs
until its next scheduling cycle. The default for this value is 10.

If group scheduling control is enabled, the sum of the pick_in_sg values
should be less than or equal to this value; see Section 8.10.1.3, page 410, for
more information.

8.10.2.1.4 Batch Memory Request Target

The memory request target for batch jobs is controlled by
/machine/jobmax/batch/memory. This value determines the maximum
size, in clicks, of a batch job. Jobs requesting more memory than this value will
not be recommended.

By default, this value is configured automatically to the maximum amount of
user memory available. Consider increasing this value if your site runs batch
jobs that have two or more processes whose total memory requirements exceed
the amount of available user memory.

8.10.2.1.5 Batch CPU Request Target

The CPU request target is controlled by /machine/jobmax/batch/cputime.
This value determines the maximum amount of CPU time, in seconds, for a
batch job. Jobs requesting more CPU usage than this value are not
recommended for initiation. By default, this value is set to 9999999 seconds.

8.10.2.1.6 Batch Tape Request Target

The batch tape request target is controlled by
/machine/jobmax/batch/tape. This value specifies the maximum number
of tape devices allowed for a batch job. Jobs requesting more devices than this

S–2302–10010 421

UNICOS® Resource Administration

value will not be recommended. This value is set to the number of online tape
devices during URM’s automatic configuration process.

8.10.2.1.7 Batch SDS Request Target

The SDS request target is controlled by /machine/jobmax/batch/sds. This
value specifies the maximum amount of SDS space, in clicks, that a batch job
can use. Jobs requesting a larger SDS usage than this value are not
recommended for initiation. This value is set to the amount of available SDS
space during URM’s automatic configuration process. Consider increasing this
value if your site runs jobs whose total SDS requirements exceed the amount of
available space.

8.10.2.2 Interactive Jobs

Interactive jobs (jobs initiated from all session initiators except batch) are
evaluated for initiation by URM immediately. Unlike batch jobs, no backlog
queue is maintained by URM. In most cases, if URM does not recommend the
job for initiation, the session initiator will terminate it. This is the case for jobs
submitted by login.

In order for URM to recommend an interactive job for initiation, the requested
resources for the job must not exceed the following target and maximum values:

• Active job target for the system (/machine/target/jobcount). For more
information, refer to Section 8.10.1.1.3, page 407.

• Interactive job count; maximum number of active sessions for the specified
interactive session initiator.

• Memory oversubscription target for the system.

8.10.2.2.1 Interactive Job Count

The job count maximum for each interactive session initiator is controlled by
/machine/jobmax/ initiator /jobcount The default values for each
interactive session initiator are determined during the automatic configuration
process for URM. For example, the maximum job count for login sessions is
set to the size of the kernel session table by default. Use the rmgr command to
change this value, as in the following example:

/machine/jobmax/login/jobcount = 100

422 S–2302–10010

Unified Resource Manager (URM) [8]

To permanently change the configuration, access the following menu and select
the desired session initiator name (for example, login):

UNICOS 10.0 Installation / Configuration Menu System ->
Configure system ->

URM configuration ->

URM control settings ->

Individual session initiator targets

8.10.2.2.2 Interactive Memory and CPU Defaults

For interactive jobs, URM does not monitor session initiator values, as is done
for the batch service initiator, because the interactive service initiators do not
supply resource requirement information to URM. Instead, URM uses the
default values for memory and CPU use in /machine/default/ initiator
/memory and /machine/default/ initiator /cputime. For example, to
determine if a login session will exceed the memory oversubscription target,
URM compares the memory default for the job (in
/machine/default/login/memory) to the current system memory load.

By default, these values are set to 0; this specifies that URM should recommend
all interactive jobs for initiation. To enable URM control of the number of active
interactive sessions for a specific initiator, both the memory and cputime
defaults must be set to a nonzero value. For example, use the following rmgr
directives to enable URM control of login sessions:

/machine/default/login/memory = 200
/machine/default/login/cputime = 10

The value 200 specifies the average size of memory, in clicks, allowed for login
sessions. The value 10 specifies the average amount of CPU time in seconds.
URM does not consider the cputime value when recommending interactive
sessions, but both memory and cputime must be set to a nonzero value to
enable URM to control jobs from a session initiator.

Note: The session initiator defaults are used only for URM job initiation
recommendations. They do not affect the actual memory and CPU limits of
the executing session.

S–2302–10010 423

Automatic Incident Reporting Tests [A]

This appendix contains descriptions of the tests available with the automatic
incident reporting (AIR) feature.

Note: The AIR feature is not part of a Cray ML-Safe configuration of the
UNICOS system.

The following tests are included:

Test Description

msgd.exist Message daemon existence test

msgd.response Message daemon response test

nqs.exist NQS daemon existence test

nqs.funct NQS functional test

nqs.response NQS daemon response test

nqsnet.exist NQS networking existence test

tape.exist UNICOS tape subsystem existence test

tape.func UNICOS tape subsystem functional test

tape.response UNICOS tape subsystem response test

tapeavr.exist UNICOS tape subsystem AVR existence test

tcp.exist TCP/IP existence test

tcp.funct TCP/IP functional test

tcpgated.exist TCP/IP gated existence test

tcplpd.exist TCP/IP lpd existence test

tcpnamed.exist TCP/IP named existence test

tcpntpd.exist TCP/IP ntpd existence test

tcpsmail.exist TCP/IP sendmail existence test

tcpsnmpd.exist TCP/IP snmpd existence test

S–2302–10010 425

UNICOS® Resource Administration

urm.exist URM daemon existence test

urm.funct URM functional test

urm.response

URM daemon response test

426 S–2302–10010

Index

A

Accounting
base record, 56
billing unit (SBU)

and CSA setup, 12
boot log, 71
checking file size, 13
connect time SBUs, 45
Cray system (CSA)

allowing non-super users to execute, 54
commands, 26
converting from UNIX accounting, 83
daily operation overview, 10
data processing, 29
description, 3
file structure, 5
location of configurable parameters, 28
reports, 10
setting up, 11
tailoring, 39
tailoring commands and shell scripts, 53

cron
command, 12
log, 71

csainfo file, 10
csarun command

executing, 54
restarting, 19

daemon, 11, 12, 51
daily, 4
data consolidation, 97
device, 65

acct.h header file, 68
categories, 66
configuration, 67
description, 65
devacct command, 68
implications, 70

param.h header file, 68
SBUs, 47
system header files, 67

dodisk command, 11
dump log, 72
editing data files, 20
end-of-job record, 59
error log, 75
fee file, 11
files, 94
fixing corrupted files, 88
front-end formatting, 97
log files, 70, 77
memory integrals, 63
message log, 76
MPP record, 61
multilevel security (MLS) log, 75
multiple / and /usr file systems, 70
multitasking

incentives, 62
SBUs, 43

Network Queuing System (NQS)
description, 51, 52
enabling, 12
log, 78
SBUs, 45

new user log, 72
OLDsu log, 73
pacct

file, 56
SBUs, 41

per-process
data, 56

periodic, 4, 14
process, 10
SDS SBUs, 43
session data, 4
shutdown, 11

S–2302–10010 427

UNICOS® Resource Administration

socket, 12, 46, 51, 65
standard UNIX

automating, 82
command summaries, 93
converting to CSA, 83
daily operation, 81
daily report, 91
daily usage report, 91
description, 79
fd2log, 85
files and directories, 80
holidays, updating, 90
last login report, 94
reports, 90
runacct command, 84, 87, 88
setting up, 82

su log, 72
system

activity log, 76
logs, 73

system billing unit (SBU), 40
connect time, 45
device, 47
MPP, 44
multitasking, 43
NQS, 45
pacct, 41
SDS, 43
tape subsystem, 46

tacct errors, 89
tailoring, 53

CSA shell scripts, 53
UNICOS tape subsystem

description, 51
enabling, 12
SBUs, 46

unprocessed files, 7
user disk space, 11
/usr/adm/acct/day files, 7
/usr/adm/acct/work files, 8
verifying data files, 20, 21
wtmp errors, 89

Accounting front-end formatting

CSA, 99
generic, 99

Accounts
and fair-share scheduler, 205, 209, 210
number of files used, 239
system entries in user database (UDB), 196,

205, 207, 209, 210
acct.h header file, 68
ACCT_FS

setting free blocks, 54
ACCT_FS file system, 53
aggregate quotas, 264
AIR, see Automated incident reporting (AIR), 137
aird daemon

binary log file, 143
record types, 174

initiation, 139
airdchk shell script

description, 139
example crontab entry, 139
location, 139

airdet command, 174–176
description, 139

airexist command
process verification, 161

airprconf command, 174–176
description, 139

airsum command, 174, 176, 180
description, 139

airtsum command, 174, 175, 178
description, 139

Algorithm
oversubscription, 265
quota evaluation, 244

Asynchronous I/O, 290
Automated incident reporting (AIR)

adding
data migration (example), 166
monitoring functions, 166
products, 165

aird log file
record types, 174

428 S–2302–10010

Index

availability
data, 174
definition, 174

commands, 139
components, 137
configuration

file, 137
function, 171
keywords, 141, 143, 144
language, 140
new functions, 169
sample file, 150
tags, 144
validation, 173

configuration file
contents, 140
installation tool, 138
tuning, 159
validation, 159

coordinator daemon
description, 138

existence test
kernel, 164
NQS, 162
tape subsystem, 163
TCP/IP, 162
URM, 165

functional test
NQS, 163
tape subsystem, 164
URM, 165

functions
execution rates, 160

initiation, 139
integrating new functions, 168
integrity checking

kernel, 164
monitoring functions

description, 138
products, 161
types, 161
use of, 160

new functions

adding, 166
configuring, 169
integrating, 168

overview, 137
product testing

NQS, 162
tape subsystem, 163
TCP/IP, 161
URM, 165

report generator, 174
description, 138

response test
NQS, 163
tape subsystem, 164
URM, 165

return tags, 143
shell scripts, 139
TCP/IP existence tests, 162

Automatic
quota reporting, 261

Automatic volume recognition (AVR)
existence test, 425
functional test (AIR), 164

B

Basic
operational keywords (AIR), 142

batch
queue

availability and AIR, 163
Batch systems

fair-share scheduler, 234
response time, 231

batch systems
and URM, 374, 407, 408, 410, 413, 416, 417,

421, 422
Binary

log file (AIR), 143
bread device activity counter, 287
bwrite device activity counter, 287

S–2302–10010 429

UNICOS® Resource Administration

C

Cache, see Logical device cache, 290
canch device activity counter, 289
cat command

AIR existence test, 164
cd command

AIR existence test, 164
chargefee command, 11
checkpointing

and URM, 398, 420
ckdacct shell script, 13
ckpacct shell script, 13
Click

fair-share scheduler cost, 227
clists, 289
Command summary reports (accounting), 93
Commands

AIR, 139
Cray system accounting (CSA), 26

CONFIG configuration keyword (AIR), 141
config.h file, 240
config.mh file, 240
Configuration

AIR file, 137, 140
tuning and validation, 159

AIR file language, 140
AIR sample file, 150
Cray system accounting (CSA) parameters, 28
file

system quotas, 241
keywords (AIR), 141, 144
tags (AIR), 144
validation for AIR, 173

Configuration and installation menus
file system quotas, 240, 241

Conversion
from standard UNIX to CSA, 83

COORD_BLOG configuration keyword (AIR), 143
COORD_DEBUG configuration keyword

(AIR), 143
COORD_HBEAT configuration keyword

(AIR), 142

COORD_LOG configuration keyword (AIR), 142
COORD_LOGLEV

configuration keyword (AIR), 143
COORD_LOGLEV configuration keyword

(AIR), 142
COORD_TESTDIR configuration keyword

(AIR), 142
Coordinator daemon (AIR)

description, 138
Counters, device activity, 287–290
CPU

activity, 287
performance, 287
quota feature, 237
scheduling

and fair-share scheduler, 228
see also Fair-share scheduler, 191

tick, fair-share cost, 227
usage

and URM, 419
usage and fair-share scheduler, 192

Cray system accounting (CSA), see
Accounting, Cray system (CSA), 3

Cray system activity monitor (sam)
description, 297

cron
command, 12, 13
log, 71

cron and URM, 378
cron command, 294
crontab file, 294
csa.archive1 user exit, 27
csa.archive2 user exit, 27
csa.fef user exit, 27
csa.user user exit, 27
csaaddc shell script, 26
csaboots command, 5, 10
csabuild command, 26
csacon command, 26
csaconvert command, 26
csacrep command, 26
csadrep command, 26

430 S–2302–10010

Index

csaedit command, 21, 26
csafef command, 26
csafef2 command, 27
csagfef command, 99

built-in functions, 126
example, 131

csagfef command language, 122
csagfef command language built-in variables, 131
csagfef command language operators, 124
csagfef command language statements, 123
csagfef command nawk language, 122
csagfef command source scripts, 122
csagfef language description, 122
csaibm command, 27
csainfo file, 10
csajrep command, 27
csaline command, 27
csam utility, 297, 298

commands, 300
description, 300
record/replay function, 301

csanqs command, 27
csapacct command, 21, 27
csaperiod command, 27
csaperiod shell script

tailoring, 53
csaperm command, 27
csarecy command, 27
csarun command, 4, 5, 16, 27

tailoring, 53
csaswitch command, 27
csaverify command, 21, 27

D

Daemon accounting, 11, 12, 51
Daemons

file system monitor, 272
interface, 271
monitor, 271
networking

existence tests (AIR), 161

daemons file, 212, 229
daemons shell script

AIR initiation, 139
Daily

accounting
operation, 10
report, 91

usage report (accounting), 91
Data collection

CPU, 323
disk, 330
I/O caching, 327
IPC activity, 333
memory management, 325
network interface activity, 332
NFS activity, 332
process management, 324
restricted, 333
sdc, 322
sdc example, 347
system activity, 322
system calls, 324
system data (general), 328
system I/O, 326
system table management, 326
tape, 331
TCP/IP, 331
terminal activity, 331
tsar example, 348

Data migration
monitoring with AIR (example), 166

data migration
and quotas, 241

datlock device activity counter, 290
dd command

AIR function monitoring, 164
Decay factor in process scheduling, 192, 197
devacct command, 68
Device

accounting, 65
activity counters, 287–290
status tables, 286

S–2302–10010 431

UNICOS® Resource Administration

dirblk device activity counter, 288
Directives

file system quotas, 250
Directories

Cray system accounting (CSA), 5, 23
standard UNIX accounting, 80

Disk
I/O monitoring, 289
monitoring, 352

Disk usage
site-configurable reports, 56

Disks
and fair-share scheduler, 227, 236
I/O, 227, 236

diskusg command, 352
Displays

file system monitor status, 277
dli exchange, 291
dmparams.h file, 284
dodisk command, 11
Domain

quotas, 263
du(1) command, 352
Dump log, 72

E

ENDCONFIG configuration keyword (AIR), 141
Environment variables

AIR, 140
err exchange, 290
errfile file, 75
Error

log (accounting), 75
/etc/config directory, 28
/etc/config/daemons file, 212, 229
Exchanges, user-initiated, 290
exec system call, 274, 288
Execution rates

AIR functions, 159
Existence

tests (AIR), 425

Existence functions (AIR)
description, 161

Exponential oversubscription algorithm, 266

F

FAILED configuration tag (AIR), 144
Fair-share scheduler

accounts, 196, 205, 209, 210
activating, 212, 215
allocation of shares, 191, 193, 195, 205, 207, 211
components, 194
cost factors, 227, 228
decay factors, 192, 197, 213, 218, 229, 234
disabling, 217
displays, 193, 197, 219, 221, 222
/etc/config/daemons file, 212, 229
features, 191, 192
flags, 195, 213, 214, 217, 231
fragmentation, 236
hierarchy, 193, 194, 198, 200, 203, 210, 212, 215
I/O resources, 236
interactive response, 227
limits system call, 192
lnodes, 193, 197, 201
load levels, 191
machine shares, 197, 199, 200, 214, 222
memory scheduling, 236
monitor information, 219, 221, 222
nice values, 229
policy system call, 192
process scheduling, 201
recommendations

avoiding fragmentation, 236
batch systems, 231, 234
decay rates, 234
delta factor, 234
interactive systems, 231, 234
limiting marooning, 231
mingshare factor, 231
sharemin factor, 232

432 S–2302–10010

Index

resource costs, 227, 228
resource groups, 194, 196, 203, 210, 211

resource group administrators, 216
scheduling factors, 192, 197, 213, 218, 227
setting flags, 213
Share by Account mode, 193, 195, 199, 211,

213, 215
Share by User mode, 193, 203, 207, 211, 214,

215
share control values, 197
share normalizing, 199, 200
shares, 191, 195, 200, 207
shradmin command, 227–229, 231–234
shrdist.auth file, 216
shrsync command, 237
system UDB entries, 209
tuning issues, 227
udbgen command, 237
usage history, 193, 195, 218
user database (UDB), 194, 195, 205, 209, 237
user information, 192

fair-share scheduler
and URM, 392, 409
share entitlement weight in URM, 393
share priority weight in URM, 392
usage weight in URM, 393

Fd.fd12 file, 274
Fd.log file, 284
fd2log log, 85
File

AIR configuration, 137, 140
configuration (AIR), 137, 140
delineation keywords (AIR), 141
format

system activity data, 291, 334
system activity data

format, 291, 334
tables, 290

File system quotas
absolute file name, 242
activation, 251
adding users, 259
administering quota enforcement, 252

aggregate quotas, 241, 264
algorithm comparison, 268
algorithms, 265
alternative configuration, 263
automatic reporting, 261
changing

defaults, 245
ID class control, 268

configuration, 241
configuring, 240

NQUOTA, 240
control

source file, 244, 245
viewing, 260

control files, 239, 241, 242
changing values, 247
file system groups, 263
generating, 248
nonresident, 263
setting specific quotas, 247

control source file
creating, 244
qudu method, 245

creating
and extending files, 260
directives, 248

data migration, 241
defaults, 243
deleting users, 259
description, 239
domains, 263
enabling, 240
enforcement, 250

across a network, 268
control, 259
options, 243

file
size, 245
usage, 252

groups, 263
infinite quotas, 246
inode

S–2302–10010 433

UNICOS® Resource Administration

count, 245
usage, 251

manual source file creation, 248
oversubscription, 244, 265
quota control groups, 243
relative file name, 242
setting

defaults, 246
specific quotas, 248

skeleton directive file, 248
special users, 243, 246
system startup, 252
tuning configuration, 261
usage

accumulation rules, 251
classes, 245
information, 251

user-level behavior, 262
viewing quota control, 260

File systems
control, 243
log file, 280
monitoring, 273

File systems monitor
command processing, 274
daemon, 272
installation, 282
log file, 284
messages, informative and error, 281
operation, 282
request processing, 275
space monitoring, 271
status display, 277
status flags, 278

Files
accounting log, 71
config.h, 240
config.mh, 240
controlling use, 239
Cray system accounting (CSA), 5, 23
editing accounting data, 20
fair-share scheduler configuration, 212, 229
fstab, 241, 264

holidays file (accounting) updating, 14
moving, 240
quota control, 239
standard UNIX accounting, 94
tmp_1, 243
tmp_2, 243
tmp_3, 243
unprocessed accounting, 7
user database (UDB) default entries, 210
verifying accounting data, 20, 21

filesystem directive, 250
find command, 353
FMAILLIST variable, 53
fork system call, 272, 288
fpi exchange, 291
Fragmentation

and fair-share scheduler, 236
Free space

monitoring, 271
threshold

critical, 271
warning, 271

Front-end formatting
accounting data, 97
csagcon data file format, 119
csagcon utility, 99
csagfef language description, 122
csagfef source scripts, 121
csagfef utility, 99
data consolidation, 100
data variables, 100
generic, 99

example, 131
Fs prefix, 284
fsck command, 251
fsdaemon command, 271, 272

processing, 274
test mode, 274
testing, 284

fsmon command, 271
fstab file, 241, 264
Function

434 S–2302–10010

Index

automated incident reporting (AIR)
configuration, 171

monitoring (AIR)
dd command, 164
tpmnt command, 164

Functional invocation test (AIR)
TCP/IP, 162

Functional routines (AIR)
description, 161

Functional tests (AIR), 425

G

gated daemon
AIR existence test, 162
functional test, 425

Gateway
routing

daemon, 161
Generic

quota information, 260
getconfig command, 27
getinfo system call, 263
Group

permissions, 284
group scheduling control in URM, 410, 421

H

Heartbeat record (AIR), 142
Hierarchical shares, see Fair-share scheduler

hierarchy, 193
holidays file (accounting) updating, 14

I

I/O
activities, 289
and fair-share scheduler, 227, 236
asynchronous, 290

caching
data collection, 327

cost for disk I/O, 227
cost for read/write, 228
disk, monitoring, 289
tape, monitoring, 289

I/O caching
data collection, 327

ID class control, 268
Idle account in user database (UDB), 196, 209
Idle time

and fair-share scheduler (MAXUSAGE
parameter), 228

iget device activity counter, 288
inetd daemon

AIR existence test, 162
Inode tables, 290
Install tool, see UNICOS installation menu

system, 142
installation and configuration menus

Configure System ->URM configuration ->
Machine target values, 404–406
URM control settings, 408, 410, 412, 417, 423
URM machine load evaluation rates, 416
Weighting factors for the selector, 421

Installation tool, see UNICOS installation menu
system, 142

Interactive systems
fair-share scheduler, 234
response time, 227, 231

interactive systems
and URM, 404, 423, 409, 416, 422

Internet
domain name

server, 161
services

daemon, 161
Internet Control Message Protocol (ICMP)

AIR functional test, 162
Internet Transmission Control Protocol (TCP)

AIR functional test, 162
Internet User Datagram Protocol (UDP)

S–2302–10010 435

UNICOS® Resource Administration

AIR functional test, 162
Interprocess communication, 272
IPC

activity monitoring, 333

J

jobs
ranking in URM, 408, 410, 417

K

Kernel
AIR

existence test, 164
integrity checking, 164
product testing, 164

L

Last login report, 94
limits system call, 192
Line printer

daemon, 161
Linear oversubscription algorithm, 267
listio system call, 290
Lnodes (limits nodes), 192, 193, 197, 201
Load levels and fair-share scheduler, 191
Log

binary file for AIR, 143
Log file

file system, 280
Logical device cache (ldcache)

activity, 290
lpd daemon

AIR existence test, 162
functional test, 425

lread device activity counter, 287
ls command

AIR existence test, 164

lwrite device activity counter, 287

M

Machine
shares and fair-share scheduler, 197, 199,

200, 214, 222
/machine/default values, 423, 416
/machine/jobmax values, 416, 417, 421, 422
/machine/load values, 412, 416
/machine/rate values, 416
/machine/target values, 403

group_sched, 410
jobcount, 407
jobs_in_sg, 411
memory_os, 404, 405
pick_in_sg, 411, 421
rec_in_sg, 411
sds_os, 406

Mail
daemon, 162
list for accounting errors, 53

MAXUSAGE fair-share scheduler factor, 228
maxushare fair-share scheduler factor, 231
Memory

integrals for accounting, 63
Memory click, see click, 227
memory load in URM, 404, 415
Memory scheduling

and fair-share scheduler, 236
Message

accounting log, 76
MESSAGE configuration keyword (AIR), 144, 150
Messages

daemon
existence test, 425
response test, 425

file system monitor, 281
operator, 272

mingshare fair-share scheduler factor, 231
minimum rank in URM, 378, 420

436 S–2302–10010

Index

Monitor
daemon, 271, 272

Monitored products (AIR), 144
Monitoring

file system, 273
file system space, 271
free space, 271
functions (AIR), 138, 160
performance, 285
system activity, 285

MPP
accounting record, 61
system billing units (SBUs), 44

mppview command, 286, 292
msg.h file, 272
msgd daemon

existence test, 425
response test, 425

msgd.exist AIR test, 425
msgd.response AIR test, 425
msgdaemon command, 271
Multilevel security feature (MLS)

accounting log, 75
Multitasking

accounting incentives for, 62
mvfiles shell script

description, 139
example crontab entry, 139
location, 139

N

named daemon
AIR existence test, 162
functional test, 425

namei device activity counter, 288
nawk

tsar scripts, 322, 337
description, 338

nawk csagfef scripts description, 122
netdaemon

AIR existence test, 163

Network
quota enforcement, 268

Network interface
activity monitoring, 332

Network Queuing System (NQS)
accounting

charge for jobs, 52
enabling, 12

daemon
existence test, 425
response test, 425

functional test, 425
log, 78
networking

existence test, 425
requests and recycled data, 38
system billing units (SBUs), 46

Network queuing system (NQS)
AIR existence test, 162
AIR functional test, 163
AIR product testing, 162
AIR response test, 163
automated incident reporting (AIR), 137

New user log, 72
newacct command, 193, 199, 201, 203, 211
NFS

activity monitoring, 332
Nice value, 273
Nice values

and process scheduling, 197, 218
Nice values and fair-share scheduler, 229
Nonprime time system billing units (SBUs), 41
NQS

and fair-share scheduler, 192
and URM, 374, 391, 419
disabling URM control, 391
enabling URM control, 374
interqueue priority and URM, 419

nqs.exist AIR test, 163, 425
nqs.funct AIR test, 425
nqs.response AIR test, 425
nqsdaemon

S–2302–10010 437

UNICOS® Resource Administration

AIR existence test, 163
nqsnet.exist AIR test, 163, 425
NSESS parameter, 407, 421
ntpd daemon

AIR existence test, 162
functional test, 425

O

OIR configuration tag (AIR), 144
OLDsu log, 73
Online tapes (AIR), 137
Operational keywords (AIR), 142
Operator

interface, 271
messages, 272

Operator workstation
Cray system activity monitor, sam, 298
sam (system activity monitor), 298

.operrc file, 271
ore exchange, 291
outch device activity counter, 289
Oversubscription

algorithm comparison, 268
mechanism, 265

P

pacct file, 56
param.h header file, 68
PASSED configuration tag (AIR), 144
Performance

monitoring, 285
Performance impact

fair-share scheduler
decay rates, 234
disk fragmentation, 236
MAXUSAGE factor, 228
nice values, 229

performance problems
swapping, 405, 406

Permissions, 284
phread device activity counter, 287
phwrite device activity counter, 287
pkbad device activity counter, 290
pkout device activity counter, 290
plock state, 273
policy system call, 192
pre exchange, 291
Prime time system billing units (SBUs), 41
Priority, nice value, 273
Process

accounting, 10
management

activity monitoring, 324
tables, 290

Processes
scheduling, 201

Processor working storage (pws)
CPU activity monitoring, 287

PROD_AVAILABLE configuration tag (AIR), 144
PROD_UNAVAILABLE configuration tag

(AIR), 144
PROD_WARNING configuration tag (AIR), 144
Product testing coverage (AIR), 160
Product verification processes (AIR), 138
punlock device activity counter, 290
pws, see Processor working storage, 287

Q

qmgr command, 374, 391
quadmin command

activating quota enforcement, 250
creating quota file, 244
current usage information, 251
display, 260

qudu command, 244, 264
quota command, 261
quota70 directory, 242
quotamon command, 262
Quotas, see File system quotas, 239

438 S–2302–10010

Index

R

Rates
execution, changing (AIR), 160

rawch device activity counter, 289
rc shell script, 271, 294
rcvint device activity counter, 289
read system call, 288, 289
read/write permissions, 284
reada system call, 290
readch device activity counter, 289
Recycled data, 4, 33

deleting, 35, 37
NQS requests, 38

Reports
daily, 293
generation

daily, system activity, 293
generator (AIR)

description, 138
system activity, 293

Reset file system monitor, 274
Resource

control
and user database (UDB), 194, 195
Fair-share scheduler, 191

groups
accounts in user database (UDB), 196
and fair-share hierarchy, 194, 196, 203,

210, 211
Response

tests (AIR), 425
Response functions (AIR)

description, 161
RETURN configuration keyword (AIR), 144, 150
Return tags

AIR, 149
rmgr command, 357, 395, 402

batch job selection criteria, 417
controlling interactive sessions, 423
disabling log files, 376
enabling group scheduling control, 411
interactive job count, 422

machine target values, 403
main loop delay, 408
memory oversubscription target, 405
resource loads, 413
SDS information, 410
smoothing factors, 415
/urm/share_to_go value, 409
use with AIR, 165
viewing all users, 377
viewing job list, 377
viewing machine load, 377
viewing user activity, 378

runacct command, 84, 87, 88, 90
runocc device activity counter, 288
runque device activity counter, 288

S

sa.h file, 291, 295
sa1 command, 286
sa1.sh shell, 296
sa2 command, 286
sa2.sh shell, 296
sadc command, 286, 291
sadc data collection program, see sar

command, 287
sadc.c program, 295
sag command, 285, 292
saga.c program, 295
sagb.c program, 295
saghdr.h file, 295
sam command, 297

description, 298
samdaemon daemon, 297

description, 299
samdaemon.val validation file, 299
sar command, 286, 290, 291

sadc data collection program, 291
system activity information, displaying, 291

sar.c program, 295
SBU, see System, billing unit, 12

S–2302–10010 439

UNICOS® Resource Administration

Scheduling
cycle, 197

sdc command, 320
data collection, 322
data types, 321
description, 321
difference from sdcx, 345
limitations, 350

sdcx executable, 321
difference from sdc, 345

SDS
and URM, 369, 406, 410, 420
preemption by URM, 409
residency and URM, 369
sdsmgr program in URM, 409
URM management, 395

sdsmgr program, 395
sdsmgr program in URM, 409
security parameters

Unified Resource Manager (URM), 361
SEND_MAIL configuration tag (AIR), 144
sendmail daemon

AIR existence test, 162
functional test, 425

sessions
control by URM, 421
NSESS parameter, 407, 421
URM maximum session target, 407
URM session initiators, 413, 416, 417, 421–423

Share by Account mode, see Fair-share
scheduler, 193

Share by User mode, see Fair-share scheduler, 193
Share, see Fair-share scheduler, 191
sharemin fair-share scheduler factor, 232
Shell scripts

AIR, 139
Shells, 272, 274, 296
shradmin command, 193, 198, 211–213, 215,

217, 218
cost factors, 227, 228
delta factor, 233
examples, 234
interactive response, 231

limiting marooning, 231
MAXUSAGE factor, 228
maxushare factor, 231
mingshare factor, 231
priority decay factor, 229
sharemin factor, 232
usage decay factor, 234

shrdaemon command, 198, 213
shrinfo command

displaying priority decay rates, 229
shrmon command, 193, 197, 221
shrsync command, 237
shrtree command, 193, 197, 222
shrview command, 193, 197, 198, 219
shuffle device activity counter, 290
SIGINFO signal, 263
Simple Network Management Protocol (SNMP)

daemon, 162
smoothing function in URM, 412, 414, 415
snmpd daemon

AIR existence test, 162
functional test, 425

Soft quota option, 265
Source scripts

tsar, 337, 338
Source scripts csagfef, 122
Space monitor operation, 271
SPR configuration tag (AIR), 144
start_air shell script, 139
Status display

file system monitor, 277
strcmp command, 276
su log, 72
swapin device activity counter, 287
swapout device activity counter, 287
swapping

URM oversubscription targets, 405, 406
switch device activity counter, 288
swpocc device activity counter, 288
swpque device activity counter, 288
syscall device activity counter, 288
sysexec system call, 288

440 S–2302–10010

Index

sysfork system call, 288
sysinfo.h file, 286
syslstio device activity counter, 290
sysrda device activity counter, 290
sysread system call, 288
System

accounting logs, 73
activity log, 76
activity monitoring, see System activity, 285
billing unit (SBU)

and CSA setup, 12
connect time, 45
defined, 40
device, 47
multitasking, 43
nonprime time, 41
NQS, 45
pacct, 41
prime time, 41
SDS, 43
UNICOS tape subsystem, 46

file system quotas startup, 252
I/O

data collection, activity monitoring, 326
monitoring, system activity package, 285
resources and fair-share scheduler, 191
startup, quota feature, 252
table, overflow counters, 286

System activity
commands, 291
counters, 286
CPU data, 323
data

file format, 334
gathering, 320
reporting, 320

monitoring
csam curses display, 300
sam, 297
xsam windows display, 305

package (sar), 286
package, Cray (sam), 297
package, standard UNIX (sar), 285

reporting
operational setup (tsar), 345

reporting (sar), 286
reporting package, 320
reports, 291
shell scripts, 295
source files, 295

System calls
data

system activity reporting, 324
fair-share scheduler cost, 227
system activity data, 324

System workstation
Cray system activity monitor, sam, 298
sam (system activity monitor), 298

syswra device activity counter, 290
syswrite system call, 288

T

Tables
file, 290
inode, 290
process, 290
text, 290

tacct errors, 89
Tailoring CSA, 39
tape subsystems

and URM, 420
tape.exist AIR test, 425
tape.func AIR test, 425
tape.funct AIR test, 164
tape.response AIR test, 425
tapeavr.exist AIR test, 164, 425
Tapes

automated incident reporting (AIR), 137
data collection, 331

tcp.exist AIR test, 162, 425
tcp.funct AIR test, 425
TCP/IP, see Transmission control

protocol/internet protocol, 137

S–2302–10010 441

UNICOS® Resource Administration

tcpgated.exist AIR test, 162
tcpgated.funct AIR test, 425
tcplpd.exist AIR test, 162
tcplpd.funct AIR test, 425
tcpnamed.exist AIR test, 162
tcpnamed.funct AIR test, 425
tcpntpd.exist AIR test, 162
tcpntpd.funct AIR test, 425
tcpsmail.exist AIR test, 162
tcpsmail.funct AIR test, 425
tcpsnmpd.exist AIR test, 162
tcpsnmpd.funct AIR test, 425
Terminal

activity monitoring, 331
Text tables, 290
textlock device activity counter, 290
Thresholds

free space, 271
Tick, see CPU tick, 227
Time

synchronization daemon, 162
timex command, 286, 292
timex.c program, 296
tpmnt command

AIR function monitoring, 164
Transmission Control Protocol/Internet

Protocol (TCP/IP)
existence test, 425
existence test (AIR), 162
functional invocation test (AIR), 162
functional test, 425
gated functional test, 425
lpd functional test, 425
monitoring functions (AIR), 161
named functional test, 425
ntpd functional test, 425
sendmail functional test, 425
snmpd functional test, 425

Transmission control protocol/internet protocol
(TCP/IP)

automated incident reporting (AIR), 137
performance monitoring, 331

tsar command, 320

description, 322
examples, 347

report formatting, 348
sdc data collection, 347
tsar data collection, 348

language, 338
boot time data, 346
built-in functions, 342
built-in variables, 344
crontab entries, 346
difference between sdc and sdcx, 345
operators, 340
shutdown time, 346
statements, 339

limitations, 350
modes, 336
nawk

language, 338
scripts, 322, 337

operational setup, 345
report formatting example, 348
source scripts, 322, 338

debugging, 336
description, 337
sections, 337

tsar language
description, 338

tuning URM, 402
TYPE configuration keyword (AIR), 144, 149

installation tool menu, 143

U

udbgen command, 193, 206–208, 215, 218, 237
udbsee command, 193, 197
UNICOS

kernel
automated incident reporting (AIR), 137

UNICOS installation menu system (installation
tool)

AIR configuration file, 138, 140

442 S–2302–10010

Index

automated incident reporting (AIR), 143
configuration (AIR)

function, 171
function return configuration, 147
product enable, 147
product functions, 147

coordinator setup, 142
corresponding operational keywords

(AIR), 142
menu, 142

UNICOS tape subsystem
AVR existence test, 425
daemon response test (AIR), 164
enabling accounting, 12
existence test, 425
existence test (AIR), 163
functional test, 425
functional test (AIR), 164
I/O, 289
product testing (AIR), 163
response test, 425
response test (AIR), 164

Unified Resource Manager (URM), 402
and fair-share scheduler, 192, 202, 392
and NQS, 374, 391, 419
architecture, 394
auto-configuration settings, 372
batch systems, 374, 407, 408, 410, 413, 416,

417, 421, 422
changing minimum rank, 378
checkpointing, 398
command summary, 357
configuration, 359, 361

activation of changes, 373
default values, 373
night/day changes, 378

control settings, 368, 370, 423, 408, 410, 412,
417

CPU usage, 419
daemon (urmd), 358, 390, 394
data structures, 382
features, 356
group scheduling control, 410, 421

initiation recommendations, 407, 408, 421, 422
installation, 357
interactive systems, 404, 423, 409, 416, 422
job count, 421
job ranking, 378, 380, 408, 417
job scheduling delay, 408
jobs, 377
kernel information delay, 408
log files, 375, 376
/machine/default values, 423, 416
/machine/jobmax values, 416, 417, 421, 422
/machine/load values, 412, 416
/machine/rate values, 416
/machine/target values, 403–407, 410, 411, 421
main loop delay, 407, 408
maximum session target, 407
memory oversubscription target, 404, 405
monitoring cycles, 407
permanent changes, 403
query and command server, 395
resource loads, 397, 404, 406, 408, 412, 413, 415
rmgr command, 357, 402

batch job selection criteria, 417
controlling interactive sessions, 423
enabling group scheduling control, 411
interactive job count, 422
machine target values, 403
main loop delay, 408
memory oversubscription target, 405
resource loads, 413
SDS information, 410
smoothing factors, 415
/urm/share_to_go value, 409
viewing machine load, 377
viewing users, 377, 378

SDS management (sdsmgr), 395, 409
SDS oversubscription target, 406
SDS usage, 420
security parameters, 361
selection server, 394
service providers, 361
session initiators, 413, 416, 417, 421–423

S–2302–10010 443

UNICOS® Resource Administration

share evaluation, 409, 418
smoothing, 404, 412–415
troubleshooting, 390
tuning, 402
/urm values, 408, 409, 418–420
urmd command, 357, 390
urmsnap command, 357
user exits, 379, 380, 383, 385, 387, 388
usetjob command, 357, 378
ustat command, 357, 378
viewing machine load, 377

Unified resource manager (URM)
automated incident reporting (AIR), 137

unknown account in user database (UDB), 210
URM

daemon existence test, 426
daemon response test, 426
functional test, 426

URM, see Unified Resource Manager, 402
URM, see Unified resource manager, 137
urm.exist AIR test, 426
urm.funct AIR test, 426
urm.response AIR test, 426
/urm values, 408, 409, 418–420
urmd command, 357

description, 390
urmd daemon

existence test (AIR), 165
urmsnap command, 357
Usage history and fair-share scheduler, 192,

193, 195, 218
User

attributes and fair-share scheduler, 192
User database (UDB)

allocation of shares, 207
and fair-share scheduler, 191, 194, 195, 205, 209
CPU quota feature, 237
default entries, 210
maintenance, 193, 206–208, 215, 218
resource control, 194, 195
skeleton file (initudb), 210
special system accounts, 196, 205, 207, 209, 210
special system entries, 210

udbgen command, 237
User exits

accounting, 18
site-generated, 27, 51, 52

csarun, 16
daily accounting, 83, 84
runacct, 84
USEREXIT point, 87

user exits
and URM, 379, 380, 383, 385, 387, 388

User-initiated exchanges, 290
usetjob command, 357

description, 378
/usr/adm/acct directory, 5, 23
/usr/adm/acct/day directory, 7, 80
/usr/adm/acct/work directory, 8
/usr/lib/acct directory, 80
ustat command, 357

description, 378

W

WARN_ADMIN configuration tag (AIR), 144
WARN_OPS configuration tag (AIR), 144
WARN_USERS configuration tag (AIR), 144
WMAILLIST variable, 53
write system call, 288, 289
writea system call, 290
writech device activity counter, 289
wtmp

errors, 89
file, 21

X

X Window System
xsam utility, 305

xmppview command, 286, 293
xmtint device activity counter, 289
xsam utility, 297, 298

444 S–2302–10010

Index

commands, 309
description, 311
help, 311
host, 311

Config display, 315
console window, 307
description, 305
device display

disk I/O, 317
logical device I/O, 317

File menu, 309
Fork xsam, 312
graph console, 315
host display, 311
Kernel Graphs, 315

map display, 316
Memory Map, 316
record/playback menu, 314
set-up commands, 312
Setup display, 312
snapshot command, 317
Snapshot display, 317
Swap Map, 316
View menu, 309
windows, 306
X11 window settings, 305

xswapin device activity counter, 288
xswapout device activity counter, 288

S–2302–10010 445

