- =R AY"
_____________RESEARCH,INC.

RESEARCH, INC.

CRAY® COMPUTER SYSTEMS

SUPERLINK/MVS
LOGIC LIBRARY VOLUME 2:
CONTROL FUNCTIONAL UNIT

S1-0182

o Copyright® 1987 by CRAY RESEARCH, INC. This manual or
parts thereof may not be reproduced in any form without
permission of CRAY RESEARCH, INC.



=R AANY

RECORD OF REVISION RESEARCH, INC. PUBLICATION NUMBER  SI-0182

Each time this manual is revised and reprinted, all changes issued against the previous version are incorporated into the new version
and the new version is assigned an alphabetic level.

Every page changed by a reprint with revision has the revision level in the lower righthand corner. Changes to part of a page are noted
by a change bar in the margin directly opposite the change. A change bar in the margin opposite the page number indicates that the
entire page is new. If the manual is rewritten, the revision level changes but the manual does not contain change bars. '

Requests for copies of Cray Research, Inc. publications shoutd be directed to the Distribution Center and comments about these
publications should be directed to:

CRAY RESEARCH, INC.
1345 Northiand Drive
Mendota Heights, Minnesota 55120

Revision Description

October 1987 - Original printing.

CRAY, CRAY-1, SSD, and UNICOS are registered wrademarks and APML, CFT, CFT77, CFT2, COS, CRAY-2,
CRAY X-MP, CSIM, 108, SEGLDR, SID, and SUPERLINK are wrademarks of Cray Research, Inc.

HYPERchannel and NSC are registered trademarks of Network Systems Corporation. IBM is a registered trademark
of International Business Machines Corporation.

.o

SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit S1-0182



CRAY PUBLICATIONS STANDARDS HAVE NOT BEEN APPLIED IN PRODUCING THIS
DOCUMENT. AS AN INFORMAL DOCUMENT, ITS DISTRIBUTION IS LIMITED TO SITE
ANALYSTS UPON REQUEST.

Requests for the following informal SUPERLINK/MYVS 2.0 documents should be directed to Linda
Iughes, Customer Services, 2360 Pilot Knob Road, Mendota Heights, Mn. 55120, (612- 681-5923):

e SUPERLINK/MVS Logic Library Volume 2: Control Functional Unit, SI-0182
e SUPERLINK/MVS Logic Library Volume 3: Network Access Method, SI-0183
e SUPERLINK/MVS Logic Library Volume 4: Applications, SI-0184

These volumes supplement SUPERLINK/MVS Logic Library Volume 1, SI-0181, a formal CRI
publication. Volumes 2 through 4 are not packaged as formal Cray publications because they provide
information at a dynamic level of detail; not all detail in these volumes can be guaranteed to reflect the
product exactly as shipped, so standardization of these volumes has been intentionally withheld.

Note that Volumes 2 through 4 will not be applicable to future releases of SUPERLINK/MVS.



-~
Preface

SUPERLINK/MVS logically links a CRAY X-MP or CRAY-1 computer system running COS 1.16
(or a later version) and an IBM or compatible computer system running MVS XA 2.0 with Job Entry
Subsystem version 2 or 3 (JES2 or JES3.) SUPERLINK/MVS has 3 Functional Units. Each of them
are described in an overview volume (The SUPERLINK Logic Library Volume 1, Product and
Component Descriptions, CRI publication SI-0181) and also in a comprehensive volume devoted to

that particular Functional Unit.

This publication is the second volume of the four-volume set. Volumes 3 and 4 descnibe the
SUPERLINK Network Access Method (SLNET) and the SUPERLINK Applications Functional
Unit (SLAPPL) respectively. This manual provides a comprehensive description of the
SUPERLINK/MVS Control Functional Unit (SLCN). It is comprehensive because it contains both
the general description of the functional unit found in Volume 1, and a detailed guide to the code for

this functional unit.

All four volumes assume the reader is familiar with both the MVS and COS operating systems.

Familiarity with the International Standards Organization/Open Systems Interconnect (ISO/OSI)
model is helpful but not necessary. Related ISO/OSI documents are listed in the SUPERLINK
Protocol Manual, publication SI-0175.

Cray Research, Inc.

SUPERLINK Documentation
The following table is a library guide to the SUPERLINK manuals. The manuals are listed as they
relate to user tasks. The CRI publication number is given in parentheses after each manual title.
i Recommended
User Tasks Typical Audience | Manuals Brief Description
Introducing Users, system SUPERLINK/MVS Provides a
SUPERLINK/MVS planners General general overview
Information of the
Manual (SI-0177) SUPERLINK/MVS
product
Planning, System planners, SUPERLINK/MVS Provides
installing, systems Installation, information for
operating, and programmers, Tuning, and installing,
modifying operators Customization configuring,
SUPERLINK/MVS (S1-0180) customizing,
tuning, and
operating the
product.
Programming and Users, SUPERLINK/MVS Provides
running application User Guide information on
applications programmers (SI-0178) using the
SUPERL INK
interfaces
Users, systems SUPERLINK/MVS Documents the
programmers, Messages messages produced
operators (SI-0179) by SUPERLINK/MVS

Preface i



. Recommended
User Tasks Typical Audience | Manuals Brief Description
Diagnosis Systems SUPERLINK/MVS Provides an
programmers, site| Logic Library internal overview
analysts, users, Volume 1: of the SUPERLINK
operators Product and components on MVS
Components and a detailed
Description logic description
(SI-0181) for each.
SUPERLINK/MVS
Logic Library
Volume 2:
Control
Functional Unit
(S1-0182)
SUPERLINK/MVS
Logic Library
Volume 3:
Network Access
Method (SI-0183)
SUPERLINK/MVS
Logic Library
Volume 6:
Applications
(SI-0184)
SUPERLINK/MVS
Messages
(SI-0179)
Implementation Software SUPERLINK Provides the
programmers, Protocol necessary
systems Information information to
programmers Manual (SI-0175) implement a
network access
method that will
interwork with
SUPERLINK/COS.
Conventions

The following conventions are used throughout this manual:

Convention

Description

In hierarchical structure diagrams, this symbol represents
an error trapping routine that may be invoked from any
place by the operating system services when an abend
occurs during the execution of the code. No calls are
made explicitly by the module from which the error
trapping routine was invoked; the invoking module has
nominated the error routine to handle the errors.

In flow diagrams, this symbol shows the flow of data
between two programs that do not have a normal transfer
of control during error free processing.

iv SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit

SI-0182




Convention

S@xxxxxx

italics

Reader Comments

Description

Headings that relate to information about
subcomponents or modules are preceded by the
subcomponent or module name in the format S@xxxxxx

xxxxxx specifies the specific subcomponent or module
name.

Variables are italicized.

If you have comments about the technical accuracy, contents, or organization of this manual, please
tell us. You have several options that you can use to notify us:

e  Call our Technical Publications department directly at (612) 681-5729 during normal business

hours

e  Use the Reader’s Comment form at the back of this manual

e Write to us at the following address:

Cray Research, Inc.

Technical Publications Department
1345 Northland Drive

Mendota Heights, MN 55120

We value your comments and assure a prompt response.

Cray Research, Inc.

Preface v



Table of Contents

1. INtroduction . ......coveeeuneesenoesroseeseesonsssansaasonanaansscssssssss 1-1
Architecture of SUPERLINK/MVS ... i i i e e i e 1-1
SUPERLINK Control Functional Unit (SLCN) ...........c . 1-2

SLCN COMPONENLS ...t ivvv it tienseeateneanenneeanconnnnsenns 1-2
SLCN External Interface .. ... ... i e 1-4
SLCN Data AT€aS . ... vt cvoienen i tomna i enneananesnaneseeansess 1-5
Manual Organization . .. .. ... outiuinetnineneane et 1-6

2. SUPERLINK Product Management Component . ..........cciieierenceereceenns 2-1
Product Management Module Structure . ......... ... . o i 2-1
Product Management SErvICeS . . ... ...t vt enenn e nnenene et 2-2
Product Management Interfaces ............ .. ... it 2-2
Product Management Data Areas ..............ouittiurineitonnrnanteeennn 2-5
Product Management Recovery ..............tinniiniinininnienanneenns 2-5

3. SUPERLINK Options Processor Component . ...........c.utuieiieeiieceannneann 3-1
Options Processor Module Structure . ........ ... i 3-1
Options Processor SEIVICES . .. .. vvvivientennn ittt 3-2
Options Processor Interfaces . ......... ...t 32
Options Processor Data Areas .. ............cniiniunniiniininaeatnnen.n 33
Options Processor Recovery .............ciiiiiiiiiiiin.. [ 3-4

4. SUPERLINK Functional Subsystem Manager Component ................ooittnn, 4-1
Functional Subsystem Subcomponents . ........... ..ottt 4-1
S@CF0000 - FSS Manager Control Subcomponent . ........... ... ... oootn.. 4-1

S@CF0000 - Module Structure .. ... ...ttt 4-1
S@CFO000 - SErVACES . . .ot v v vt et it ae et 4-2
S@CFO0000 - Interfaces ... ......ouiie it 4-2
S@CFO0000 - Data Areas .. .........ocmenmunuenenneneneneneanennannns 4-3
S@CFO000 - RECOVEIY . vt i vt teie et iieieena e 4-4
S@CFO0100 - Cross-Memory Communications Subcomponent . ................... 4-20
S@CFO0100 - Module Structure .. ... ...ttt 4-20
S@CFO0100 - Services . .............. i e et 4-20
S@CFO0100 - Interfaces . ....... ..ot 4-21
S@CFOI00 - Data Areas .. ..........oueneeneneenencnenneanneansanns 4-21
S@CFO0100 - ReCOVEIY ..o v vttt i 4-22

5. SUPERLINK Product Operator Component .. .........ccceteeeneennennnaccacns 51
Product Operator Module Structure . .......... ... i 5-1
Product Operator SErviCes . ... ... .v i it oite ittt 5-3
Product Operator Command Definitions . ............ ...t 5-4
Product Operator Interfaces . ...... ... .. .. it 5-4
Product Operator Data Areas .. ......... ...ttt 5-4
Product Operator Recovery . ..... ... . .ttt 5-5

6. SUPERLINK LOG Processor Component . .......c.cootteverennoennnanaacosssas 6-1
LOG Processor SerVICES . .. v v oot it ettt it e ittt e e 6-1
LOG Processor Subcomponents ... ........... ittt e 6-1

Cray Research, Inc. Table of Contents vii



viii

S@C2100- LOGE Handler .......... ...ttt iiriinanaaneenn. 6-2

S@C2100 - Services .. ...ttt i e e 6-2
S@C2100 - Interfaces . .......c.iiiitinii ittt e e e 6-2
S@C2100 - Data Areas . ... ....ceiivreenenunrreaneerennnenenannees, 6-2
S@C2100 - RECOVEIY ..o ittt i ettt it ittt ettt enaeaneneens 6-2
S@C2200 - Output of Messages Subcomponent ..............ccoitiiueuinnnnn. 6-8
S@C2200 - Module Structure . ....... ... i e e 6-8
S@C2200 - ServiCes . ... ooir ittt it e ettt e 6-8
S@C2200 - Interfaces .. ...... .ottt e e e e 6-9
S@C2200 - Data Areas .. ......cvivueenuereennoeeneronerseannneennn 6-9
S@C2200 - ReCOVEIY .« oo iit ittt ee et ettt naer et ieaneaeneananen 6-9

7. SUPERLINK Management Interface Component  ............cciitiiiiinnecnnnn. 7-1
Management Interface Module Structure .. ....... ... .. . i i i i e 7-1
Management Interface Services . .......... ...t e 7-2
Service Primitive Types ... ...ttt et i e 7-2
Management Interface Service Primitives .. ........... ... ... ... ..., 7-3
Management Interface Local System Primitives ........................... 7-3
Management Interface Component Interfaces . .......... ... ... ... ............ 7-3
Management Interface Data Areas ................. ... .0ttt uiiinnnnnnnn. 7-3
Management Interface Recovery ... ....... ... ... .0t 7-4
8. SUPERLINK Association Manager Component ..........ccoeeveeoenascnocanasss 81
Association Manager Subcomponents .. ....... ... .l e e 8-1
Association Manager Subcomponent Flow ....................... .. ......... 8-1
Association Manager SErviCES . .. ... ...ttt e e e 8-2
Association Manager Services Offered to Application Entity Initiators on COS . 8-3
Association Manager Services Offered to Application Entity Responders on MVS .. 8-4
Association Manager Interfaces . ........... ... .. ... .. . . i e 8-4
Interfacing to the Network Access Method .............................. 8-4
Interfacing to User Exits .. ....... ... ... .. ... . it 8-5
Interfacing to Application Entity Responders . ........................... 8-5

The Queue Management Facility for Connection End Points . ................ 8-5
Association Manager User Exits . ........... ... .. ... ittt iiirnnnnnnn.. 8-6
S@C9000 - Association Manager Controller Subcomponent . ..................... 8-7
S@CI000 - Module Structure . .........ciiiiintiiiiiiiie ., 8-7
S@ECO000 - ServiCes ... oottt et et e e 8-8
S@CY000 - Tnitialization phase . ........... ...t 8-8

S@CI000 - Active state . . .....uttiiee it rneereanannenn. 8-8

S@C9000 - Termination Phase ................. 00ttt ennnnnn. 8-9

S@C9000 - Interfaces  ................... e 8-9
S@CO000 - Data Areas .. .........oiiiieimneeenneeereaneaeeannen.. 8-9
S@CO000 - RECOVEIY - . oottt ittt ettt it e e e eee e 8-10
S@C9100 - Association Manager Processor Subcomponent ...................... 8-18
S@CI100 - Module Structure . ................ .., e 8-18
S@COI00 - ServiCes . ..o oottt e e e e 8-19
S@CY9100 - Interfaces . ........iiitiii ittt e e e 8-21
S@CI100 - Data Areas . .........c.uuitiieminienteneenieenaeann 8-21
S@CII00 - ReCOVErY . . ..ottt ittt et e e e e 8-21
S@C9200 - Association Manager Interface ........... ... ... ... ... .. ... ... ..., 8-56
S@C9200 - Module Structure . .......... ...ttt 8-56
S@CO200 - Services . ..o v vt i e e e 8-56
S@C9200 - Interfaces .........outintiit i e 8-57
S@C200 - Data Areas . ......c.iiiine et imit e it 8-57
S@CI9300 - Association Manager Interval Timer .............................. 8-60
S@C9300 - Module Structure . ...ttt e e 8-60
S@C9300 - Services .. ..ottt e e e e 8-60

SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit S1-0182



S@C9300 - Interfaces .. ......citriiii i e e 8-60

S@CIUXAM - Association Manager User Exit Handler ........................ 8-66
S@CIUXAM - Module Structure ... ...t 8-66
S@CIUXAM - SEIVICES ..ot vvii it it ittt it eaenes 8-66
S@CIUXAM - Interfaces . ... ...ttt 8-66

9. SUPERLINK Message Processor Component  .........iitteiiiiinerennncenanns 9-1

Message Processor Module Structure . ........ ... e 9-1

Message Processor SEIVICES . ... .o v ittt e e 9-2

Message Processor Interfaces .......... ... i e 9-2

Message Processor Data Areas . ...ttt 9-2

Message Processor Recovery ....... ... .. i i - 93

10. SUPERLINK SVC Component . ......c.cveierienieiessoesoesoesannnnanonnas 10-1

SVC Module Structure . . ..o vttt et et et e e ettt e 10-1

O O 47 - S 10-2

O 117 o £11-: S 10-2

SVC Data ATCaS . . . . ittt ettt ettt et e e e 10-2

11. SUPERLINK User Resource Manager Component ... .......ccvieeeeeenenaenenn 11-1

page.User Resource Manager Module Structure . ............... ... . .. ... ... 11-1

User Resource Manager SErviCes . ... ..o cvviuu i ininnieetinninneenanneesns 11-1

User Resource Manager Interfaces . .......... oo, 11-1

User Resource Manager Data Areas . .........c.i it iniiiennnnenen, 11-1

User Resource Manager Recovery ... ..... ...t 11-2

Appendix A. Data Area Descriptions .......... ...ttt A-1

AM AMT e e e A-2

AM APDE .. e e A-3

AM APDH ..o A-4

AM CDT . e e e A-5

AM _GW A e e A-6

AM PCT e e A-7

AM PCTE o e e e e A-8

AM REDE . ... . e e A-10

AM REDH . ... e e A-12

AM REDQ ... i i e e e A-13

AM REDE PRIVATE ... ... . it e A-14

LP LOGE ..ottt e e ettt e e e e A-16

MH ME ... e A-18

1% . A-19

MH _MIE .. e e e A-20

MI MACB . . e e A-21

MI MICT . e e e e e A-26

MI_ MRQE ... e e A-28

SC CIOT o e e e e e e A-33

1] O @ 1 17\ 1 OO A-39

SC CIOTESS ittt e e e e et e i e A-40

SC CIOTMIC ... e et e e e e e A-41

L O 5 (0 1 1 A-42

SC FRQE .. it e e A-43

SC FSSC B ot e e e e e e A-44

SC G ST e e e A-46

SC OPC B .. e e e e e e A-47

SC S VT e e e s A-48

SC SLASV T . e e s A-53

SC URE ..o e e e e e s A-54

Cray Research, Inc. Table of Contents ix



X

S MDD e e et e e e A-56
N S 0. o 4 A-59
Sl ST AK o e e e e A-63
SV ESTW e e e e e A-64
Appendix B. SLON MAaCros . ..ottt itieriorosesosssssossossossonsansosnnsa B-1
Command Syntax Macros ... ... ittt ittt iat ety B-1
S@COADEF MaCro ... .ii ittt ittt ettt et ettt eeinaenns B-1
S@COCDEF Macro . ..ottt ettt e e enaeaaennn B-1
S@COKDEF Macro .. ...cciiiiiii ittt ettt et e et e e B-3
S@COLDEF Macro . ...t titt ittt iiiaeeaannns B-4
S@COPDEF Macro . ......ciiititiii ittt it e i eeiinaeannns B-5
S@CISYNX MacCro ..ottt it ettt et et e eaaeann B-6
Cross Memory Communications Macros . ............uuiiinunnnnnnnennnnnnn B-9
S@@CSERV Macro ..........couiiiiiiiiiieiiinannnnnn e B-9
Return Codes .. ..ottt e e e e B-11

) £ B-11
S@@FIREQ Macro . ... ittt i iiee e B-11
NOteS o it e e e e, B-12
S@@LOG Macro . ...ttt e et e e B-12
Return Codes . ..o i i i ittt e e et e et B-13

NOtES ittt ittt ittt it e e ettt e e, B-14
S@@SUBSY Macro ...ttt ittt e e ettt B-14
Association Manager Macros . ........ .ttt i e e e B-14
S@@MREQ Macro . ... ...ttt e e e e B-15
Return Codes ... ... it i et B-17
S@AC@QADD Macro . ...ttt ittt ettt et ettt e e B-18
S@C@OQREM Macro . ...ttt ittt ittt eeeeeenaannn B-18
S@C@AQSWI Macro .. ...ttt ittt ittt e st e e B-19
S@RC@TIMR Macro ... ..ottt e e et ettt eaaennn B-19
Message Processor Macros . ...... ...ttt e e B-21
S@@MDEF Macro . .:........iiiiiiiii it e e B-21
NOteS ..ttt e e B-21
ReStrCtONS .. ... ottt i e e e B-22

Example . ...... . . e e B-22
S@RE@MSG MaCrO ..ottt ittt i et e e e e e B-22
S@@MSG (Standard Form) ......... ... B-22

Return Codes . ... .ttt i i i e e i e e B-25
S@@MSG Restrictions . ............uiiiiiinniiiniinnieneennn B-26
S@@MSG (List Form) ............ e B-26
S@@MSG (Format Form) .............. . 0., B-27
S@@MSG (Execute Form) . ......... ..ttt B-28
S@E@MSGS Macro . ...ttt e e et B-29
Return Codes .. ... it i i e e e B-30

S@@SVC Macto ... . i e e e B-30
Return Codes ... ... ittt it e ettt e B-31

T T, O X-1

SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit SI-0182



List of Illustrations

Cray Research, Inc.

g9l

B

a
Pt bt b b b P J— Pt
CRUNRANRLN S 0RNO A LN~

. SUPERLINK/MVS Architecture . ...........ciuiniuesennnnenennanenns 1-2
Component Structure of SLCN . ... ... i 1-4
Module Structure of the Product Management Component ................. 2-2
Subsystem Interface Control Blocks ........... .. ... . ... . i, 2-3
Control Block Structure for Subsystem Interface Requests . ................. 2-4

. Module Structure of Options Processor Component .. ..................... 3-2
Module Structure of the FSS Manager Control Subcomponent ............... 4-2
MVS-level Control Block Structure . ......... ... ... i ... 4-3
Subsystem Interface Level Control Block Structure . ....................... 4-3
FSS Communication Channels ............ ... ... ... .. ... iviu.. 4-21
Module Structure of the Product Operator Component  .................... 5-3

. Module Structure of the Output of Messages Subcomponent . ................ 6-8

. Module Structure of the Management Interface Component .................. 7-2

. Association Manager Component Flowof Control ........................ 8-2
Module Structure of the Association Manager Controller Subcomponent ........ 8-8
Module Structure of the Association Manager Processor Subcomponent ........ 8-19
Module Structure of the Association Manager Interval Timer Subcomponent . ... 8-60
Module Structure of the Message Processor Component .................... 9-1
Module Structure of the SVC Component ...................c..oiiin.n. 10-1

List of Illustrations xi



l

List of Tables

Table 1. Return Codes and Feed-back Codes for the Options Processor ................

Table 2. Basic Service Primitive Forms

Cray Research, Inc.

........................................

List of Tables

xiil



List of Diagrams

Diagram
Diagram
Diagram
Diagram
Diagram
Diagram
Diagram
Diagram
Diagram
Diagram
Diagram
Diagram
Diagram

Diagram

Diagram
Diagram
Diagram
Diagram
Diagram
Diagram

Diagram
Diagram
Diagram
Diagram
Diagram
Diagram
Diagram
Diagram
Diagram
Diagram
Diagram
Diagram
Diagram
Diagram
Diagram
Diagram
Diagram
Diagram
Diagram
Diagram
Diagram
Diagram
Diagram
Diagram

Cray Research, Inc.

2-1. S@CCO0000 - Root Module of SLCN (part 1of4) .................. 2-6
2-2. S@CCO0000 - Root Module of SLCN (part20of4) .................. 2-8
2-3. S@CCO0000 - Root Module of SLCN (part 30of4) .................. 2-10
2-4. S@CCO0000 - Root Module of SLCN (part 40of4) .................. 2-12
2-5. S@CCORIM - Sybsystem Resource Initialization Routine . ............ 2-14
2-6. S@CCOSSI - Sybsystem Interface Initialization Routine (part 1 of 2) ..... 2-16
2-7. S@CCOSSI - Sybsystem Interface Initialization Routine (part 20f2) ..... 2-18
2-8. S@CCOSST - Subsystem Interface Termination Routine .. ............ 2-20
2-9. S@CCOEOT - Sybsystem Interface End-of-Task Routine . ............ 2-22
2-10. S@CCEOM - Subsystem Interface End-of-Memory Routine ........... 2-24
2-11. S@CCO0S34 - Subsystem Interface Support Routine (part 1 of2) ........ 2-26
2-12. S@CC0S34 - Subsystem Interface Support Routine (part 20f2) ........ 2-28
2-13. S@CCOFSS - Subsystem Interface FSS CONNECT/DISCONNECT
Routine (part 10f2) ....... ittt 2-30
2-14. S@CCOFSS - Subsystem Interface FSS CONNECT/DISCONNECT
Routine (part 20f2) ... .. e 2-32
2-15. S@QCCOFSI - FSS Interface Support Routine (part 1of 5) ............ 2-34
2-16. S@CCOFSI - FSS Interface Support Routine (part 2of 5) ............ 2-36
2-17. S@CCOFSI - FSS Interface Support Routine (part 3of 5) ............ 2-38
2-18. S@CCOFSI - FSS interface Support Routine (part4of5) ............ 2-40
2-19. S@CCOFSI - FSS Interface Support Routine (part Sof 5) ............ 2-42
2-20. S@CCOTRT - Commonly Available ASCII/JEBCDIC/ASCII Translate
Tables . ... e e e e e 2-44
3-1. S@CI1000 - Control Module ............. i 3-6
3-2. S@CI1010 - Initialization; Obtain Work Areas and Validate Parameter List . 3-8
3-3. S@C1020 - Termination; Release Work Areas; Return Diagnostic . ...... 3-10
3-4. S@C1030 - Statement Builder . ............ ... .. ... . i, 3-12
3-5. S@C1040 - Parameter Scan, Validate and Set Control Block Field(s) ..... 3-14
3-6. S@C1050 - Table of Valid Parameters, Value Range, Type, Conversion ... 3-16
3-7. S@CIGETM - Obtain Storage for and Anchor IOT Appendage ........ 3-18
3-8. S@CIDATA - Read Instream Data Records, Store in [OT/Appendage and  3-20
3-9. S@C1060 - Back-end, Release All IOT Appendages ................. 3-22
4-1. S@CF0000 - FSS Manager Root Module (part 1of3) ............... 4-6
4-2. S@CF0000 - FSS Manager Root Module (part 20f3) ............... 4-8
4-3. S@CF0000 - FSS Manager Root Module (part 30of3) ............... 4-10
4-4. S@CF00100 - Cross-Memory Environment Management Initialization . ... 4-12
4-5. S@CF0020 - Cross-Memory Environment Management - Termination ... 4-14
4-6. S@CF0030 - MVS START Command Creation and Issuance .......... 4-16
4-7. S@CF0040 - FSS Manager ESTAE . ...... ... .. ... ... ... 4-18
4-8. S@CF0100 - SCHEDULE SRBRoutine .............. .. .o, 4-24
4-9. S@CFO0110 - SRB Receive Routine . ............... ... v, .. 4-26
4-10. S@CFO0120 - Listen Task in Control Address Space . ................ 4-28
4-11. S@CFO0130 - Functional Recovery Routine for S@CFO0110 ............ 4-30
4-12. S@CF0140 - LISTEN Task ESTAERoutine ...................... 4-32
5-1. S@CO00000 - SUPERLINK Product Operator Component Root Module . 5-6
5-2. S@CO0010 - Product Operator Initialization ...................... 5-8
5-3.  S@CO00020 - SUPERLINK Product Operator Component Command
Parser ... e e e e 5-10

List of Diagrams XV



Diagram 5-4. S@CO0030 - Product Operator Operand Parser .................... 5-12
Diagram 5-5. S@CO0040 - Product Operator Syntax Graph ..................... 5-14
Diagram 5-6. S@CO0050 - SUPERLINK Product Operator Component Output

ProCessOr .. .. e 5-16
Diagram 5-7. S@CO0060 - SUPERLINK Product Operator Component Termination . 5-18
Diagram 5-8. S@CO0070 - Product Operator ESTAE ........... ... ... ......... 5-20
Diagram 5-9. S@COODIS - DISPLAY Command Processing Routine .............. 5-22
Diagram 5-10. S@COOSWT - SWITCH Command Processing Routine .............. 5-24
Diagram 5-11. S@COOSET - SET Command Processing Routine .................. 5-26
Diagram 5-12. S@COOSTR - START Command Processing Routine ............... 5-28
Diagram 5-13. S@COOSTP - STOP Command Processing Routine ................. 5-30
Diagram 5-14. S@COOSND - SUPERLINK SEND Command Processing Routine .. ... 5-32
Diagram 5-15. S@COOMSG - SUPERLINK MSG Command Processing Routine .. ... 5-34
Diagram 6-1. S@C2100 - LOGE Handler (part 10f2) ............. ... ... ... 6-4
Diagram 6-2. S@C2100 - LOGE Handler (part 20f2) ........... ... ... ... .. 6-6
Diagram 6-3. S@C2200 - Output of Messages Subcomponent - Control Module ....... 6-10
Diagram 6-4. S@C2210 - Output of Messages Subcomponent - LOG File Initialization .. 6-12
Diagram 6-5. S@C2220 - Output of Messages Subcomponent - LOG File Termination .. 6-14
Diagram 6-6. S@C2230 - Output of Messages Subcomponent - Queue Swap and Reorder 6-16
Diagram 6-7. S@C2240 - Output of Messages from LOGEs (part 10f2) ............ 6-18
Diagram 6-8. S@C2240 - Output of Messages from LOGEs (part 20f2) ............ 6-20
Diagram 6-9. S@C2250 - Output of Messages Subcomponent - ESTAE Routine ...... 6-22
Diagram 7-1. S@CI0000 - Root Module of Management Interface Component ...... 7-6
Diagram 7-2. S@CIC010 - Management Interface Initialization Routine ............. 7-8
Diagram 7-3. S@CI0020 - Management Interface Termination Routine ............. 7-10
Diagram 7-4. S@CI0030 - Management Interface ESTAE Routine ................. 7-12
Diagram 7-5. S@CI0040 - Management Interface Input Queue Server . .............. 7-14
Diagram 7-6. S@CI0050 - Management Interface Protocol Event Routine (part 1 of 2) .. 7-16
Diagram 7-7. S@CI0050 - Management Interface Protocol Event Routine (part 2 of 2) . 7-18
Diagram 7-8. S@CI0060 - Management Interface Qutput Queue Server ............. 7-20
Diagram 7-9. S@CI0070 - Management Interface Connection Protocol Task ESTAE .. 7-22
Diagram 7-10. S@CI0080 - Management Interface PDU Encoder/Decoder ............ 7-24
Diagram 8-1. S@C9000 - Root Module ........ ... ... . . i 8-12
Diagram 8-2. S@C9010 - ESTAE Exit Routine ............ ... ... .......... 8-14
Diagram 8-3. S@C9020 - State-event Machine and Termination ................... 8-16
Diagram 8-4. S@C9100 - Root Module and Main-line Code ..................... 8-22
Diagram 8-5. S@C9110 - ESTAEExit Routine . ............ ... iiniiininann.. 8-24
Diagram 8-6. S@CI121 - Action 1, Put Qut an A-OFFER . ..................... 8-26
Diagram 8-7. S@CI123 - Action 3 (Part I), Give End-point To Active Responder ... .. 8-28
Diagram 8-8. S@C9123B - Action 3 (Part II), Start a New Responder .............. 8-30
Diagram 8-9. S@C9124 - Action 4, Timer Expired When LISTEN Was Pending ...... 8-32
Diagram 8-10. S@CI125 - Action 5, Perform Required END-POINT GIVES Routine ... 8-34
Diagram 8-11. S@CI128 - Action 8, Clone Responder Entity Routine ............... 8-36
Diagram 8-12. S@C91212 - Action 12, Timer Expired When DELETE Was Pending . ... 8-38
Diagram 8-13. S@C914A - JOBTEXT Field Parser .. ..........co0viieinvennne... 8-40
Diagram 8-14. S@CI14C - Job Status/Cancel Processor ......................... 8-42
Diagram 8-15. S@CI14J - Card Image Generator .............c.uiueenueann.n. 8-44
Diagram 8-16. S@CI14K - Create Keyword Table ............. ... ... .. ... .. ... 8-46
Diagram 8-17. S@CI14R - Send A-ASSOCIATE (Negative Responses) .............. 8-48
Diagram 8-18. S@CI14S - Job Submission Processor . ..............ccuiiiiiinnn. 8-50
Diagram 8-19. S@CI14T - Task ATTACH Processor ..........c.oueueenmunennn. 8-52
Diagram 8-20. S@C914X - Create/Delete System Authorization Facility (SAF) ........ 8-54
Diagram 8-21. S@C9200 - Association Manager Interface Code .................... 8-58
Diagram 8-22. S@CI9300 - Root Module (Set and Cancel Timer) ............... v...8-62
Diagram 8-23. S@C9310 - Timer Expired Routine . ............................ 8-64
Diagram 8-24. S@CIUXAM - UserExit Handler ..................cvivin... 8-68
Diagram -1. S@@MO000 - Initial Message Processing Module .................... 9-4

xvi  SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit S1-0182



Diagram 9-2. S@@MO010 - Format the Message Variables Module ................. 9-6
Diagram 9-3. S@@MO15 - Formatted Message Returned to User Module ........... 9-8
Diagram 9-4. S@@M020 - Wnite to WTOor WTOR Module .................... 9-10
Diagram 9-5. S@@MO030 - Writeto LOG Module ............................ 9-12
Diagram 10-1. S@CCOSVC - SVC Type 3 Routine (part 1 of2) ................... 10-4
Diagram 10-2. S@CCOSVC - SVC Type 3 Routine (part 20f2) ................... 10-6
Diagram 10-3. S@CCOSVE - ESTAE Exit Routine (part 10of3) ................... 10-8
Diagram 10-4. S@CCOSVE - ESTAE Exit Routine (part 20f3) .................. 10-10
Diagram 10-5. S@CCOSVE - ESTAE Exit Routine (part 30f3) .................. 10-12
Diagram 10-6. S@CCOSVR -RetryRoutine ................................. 10-14
Diagram 11-1. S@CCOURM - User Resource Manager (part 1of2) ................ 11-4

Cray Research, Inc. List of Diagrams xvii



1. Introduction

SUPERLINK/MYVS is a general purpose, non-station communications product designed to link a
CRAY X-MP or CRAY-1 computer system to an IBM or compatible computer system. The
communications software used to perform this integration is based on the International Standards
Organization/Open Systems Interconnection (ISO/OSI) model.

SUPERLINK/MVS addresses the need for random and sequential data access and distributed
applications processing. It enables user applications running on the Cray mainframe to communicate
with applications running on the IBM computer system. Through subroutine calls and programming
macros, the SUPERLINK Network Access Method (SLNET) provides services that allow users to
develop installation-specific, cross-system applications.

Avrchitecture of SUPERLINK/MVS

The SUPERLINK/MYVS product is composed of three Functional Units; SLCN, SLNET, and
SLAPPL. SLCN utilizes the MVS Subsystem Interface; SLNET is an MVS Functional Subsystem
(FSS) owned by SLCN; and SLAPPL is composed of many Cray-written applications that can use
SUPERLINK/MYVS services from within a batch job and/or TSO user address space. Both SLCN and
SLNET are MVS-started task address spaces.

Figure 1 on page 1-2 provides a model of the SUPERLINK/MVS architecture.

Cray Research, Inc. 1. Introduction 1-1



SLAPPL
— N\
SLCN Spun—off User Job,
le—>] Job, Network
SUPERLINK Subsystem Control Data Access Access
FTAM Routines MC Routines
ACSE
SLNET Presentation Layer
Network Session Layer
Access
Method Transport Layer
Network Layer
Data Link Layer

Figure 1. SUPERLINK/MYVS Architecture

SUPERLINK Control Functional Unit (SLCN)

The SUPERLINK Control Functional Unit (SLCN) is an MVS subsystem that is configured using the
MVS Subsystem Interface.

SLCN Components

The following components are resident within SLCN:

Component Description

S@CCO0000 SUPERLINK Product Management component

The Product Management component is responsible for managing the
Subsystem Interface between SLCN and the MVS operating system.

1-2 SUPERLINK for MVS Logic Library Volume 2: Control Functicnal Unit SI-0182



Component

S@C1000

S@CF0000

S@CO00000

S@C2000

S@CI0000

S@C9000

S@@MO0000

Cray Research, Inc.

Description

SUPERLINK Options Processor component

The Options Processor component interprets initialization OPTIONS in a
parameter library (PARMLIB) from options specified by the customer
installation. These parameters specify which Functional Units must be active
and which components, resident within those Functional Units, are to be
supported for this execution of SUPERLINK/MVS. The Options Processor
component also checks the validity of the parameters provided and uses them
to form control blocks applicable to each Functional Unit.

SUPERLINK Functional Subsystem Manager component

The Functional Subsystem Manager component is responsible for the
initialization, termination, and recovery of each SUPERLINK Functional
Subsystem (FSS). This component also provides the means for inter-address
space communication.

SUPERLINK Product Operator component

The Product Operator component supports commands that allow an operator
to control the SUPERLINK/MYVS product. The operator commands are
entered from the multiple console support (MCS) console interface and are
processed by this component.

SUPERLINK LOG Processor component

The LOG Processor component allows all other SUPERLINK components to
write messages to the SUPERLINK LOG and/or the MVS system log. These
messages indicate progress status for normal events and provide reports of error
conditions.

SUPERLINK Management Interface component

The Management Interface component provides a permanent connection
between SLCN and the SUPERLINK for COS management function
(management interface responder (SLMIR)). This component uses the services
of the SUPERLINK Network Access Method to convey data between SLCN
and SLMIR.

SUPERLINK Association Manager component

The Association Manager component provides a set of services that support
process creation on the MVS system for either data access requests or
installation-developed cross-system AAC applications.

SUPERLINK Message Processor component

The Message Processor component provides a universal scheme for handling all
the messages from components within the SUPERLINK/MVS product.
Therefore, consistency is maintained between the messages issued by the product
and the message descriptions provided by SUPERLINK/MVS Messages,
publication SI-0179.

1. Introduction 1-3



Component

S@CCOSVC

S@CCOURM

Description

SUPERLINK SVC component

The SUPERLINK SVC component enables nonauthorized, problem program
mode users to use Network Access Method services (SLNET) and Association
Manager services (SLCN) through an SVC call. Control is returned to the caller
in the original processing mode, thus preserving MVS system integrity.
Specifically, this component allows callers from high-level languages (such as
Fortran) or from unauthorized assembler programs to make AAC calls.

SUPERLINK User Resource Manager component

The User Resource Manager component provides a global service for registering
users of SUPERLINK/MVS resources by task and ascending address space
identifier (ASID) order. Currently this global service is only used by the ACSE
component of the SUPERLINK Network Access Method.

Figure 2 shows the hierarchical structure of components within SLCN.

SaCCo0000

S9Cl1000

SaCF0000 S2C00000 SaC2000

S3CI0000

SJCCOURM

S3C90000 S3aM0000 Saccosvc

Figure 2. Component Structure of SLCN

SLCN External Interface

There are two external interfaces to SLCN:

¢ Initialization options validated and formatted by the Options Processor to define configuration
parameters for the SLCN Functional Unit.

®  Operator commands resident within the Product Operator component of SLCN. These
commands allow an operator to do the following:

= Start the SUPERLINK/MVS product
»  Display activity during product operation
=  Modify the SUPERLINK/MVS product configuration

1-4  SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit SI-0182



= Shut down the SUPERLINK/MYVS product

The SUPERLINK/MYVS Installation, Tuning, and Customization Guide, publication SI-0180,
provides a complete description of the SLCN initialization options and the supported operator
commands.

SLCN Data Areas

The Options Processor component of SLCN creates control blocks describing the configuration
parameters required for each Functional Unit. This subsection gives a brief description of these control

blocks.
Data Area Description
SC_CIOT Control Initialization Options Table

SC_CIOT determines the parameters that must be used to configure SLCN. It
maintains pointers to the Initialization Options Tables for the other Functional
Units within SUPERLINK/MVS.

A group of control blocks is necessary to support product management after SLCN is configured.
SLCN maintains the following control blocks to support SUPERLINK/MYVS product management:

Data Area Description

SC_SSVT Subsystem Vector Table

MVS requires this control block because SLCN is configured as an MVS
subsystem. The SC_SSVT functions as the anchor control block for the
SUPERLINK/MYVS product and describes the exit points within MVS that are
supported by this subsystem. It is also the anchor for information concerning
the FSSs owned by this MVS subsystem, and it holds information relating to the
management of components within SLCN. SC_SSVT is addressable from any
address space and lies in the common service area (CSA).

SC_GST Global Service Table

SLCN provides global services (for example, message services) for the
SUPERLINK/MVS product. SLCN maintains a table of common storage
locations that allows other address spaces within SUPERLINK/MYVS to locate
the routines that will satisfy the global services.

SC_SLASVT Address Space Vector Table

This table monitors the address spaces and the tasks within those address spaces
that make use of SUPERLINK/MYVS resources. SC_SLASVT consists of one
entry per address space, in ascending address space identifier (ASID) order and
a special entry for ASID value 0. A null value in one of these pointers indicates
that the associated address space is not making use of SUPERLINK/MVS
resources. A non-null value is a pointer to a chain of control blocks (one per
Task Control Block (TCB) per association and so on) called User Registration
Elements (SC_UREs). These are used to keep track of resource utilization by
task/ASID.

Cray Research, Inc. 1. Introduction 1-5



The Subsystem Interface processing routines create the following control block to notify the relevant
component managers of specific events:

Data Area Description

SC_OPCB Operator Command Buffer

The SUPERLINK Subsystem Interface routine for operator command
processing creates an operator command buffer, SC_OPCB. SC_OPCB contains
the operator command and information concerning point of origin. Once the
control block is complete, it is added to a queue of operator command buffers
awaiting processing by the Product Operator component.

“Appendix A. Data Area Descriptions” on page A-1 provides descriptions of the previous control
blocks.

Manual Organization

Each section of this manual describes a component of SLCN. Data area formats and interface macros
are described in appendixes A and B respectively.

1-6 SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit SI1-0182



2. SUPERLINK Product Management Component

The Product Management component manages the central point for error handling, initialization, and
termination of SUPERLINK components. It also manages the Subsystem Interface between SLCN
and the MVS operating system.

Product Management Module Structure

The modules described in the following list manage the SUPERLINK Functional Units.

Module
S@CC0000
S@CCORIM

S@CCOSSI
S@CCOSST
S@CCOEOT
S@CCOEOM
S@CCO0S34

S@CCOFSS

S@CCOFSI

Function
Root module for SLCN

Subsystem resource initialization routine, given control during MVS initial
program loader (IPL) sequence

Subsystem Interface initialization routine

Subsystem Interface termination routine

Subsystem Interface support routine for end-of-task conditions
Subsystemn Interface support routine for end-of-memory conditions

Subsystem Interface support routine for SVC34 conditions such as operator
command notification

Subsystem Interface support routine for FSS CONNECT/DISCONNECT
requests

FSS Interface support routine

Figure 3 on page 2-2 shows the hierarchical structure of the modules within the Product Management

component.

Cray Research, Inc.

2. SUPERLINK Product Management Component 2-1



S9CC0000
S@CCO0SSI SaCCOSST
From MVS IPL Sequence-—l From MVS FSI—l
S3CCORIM S3CCOFSI
From MVS Subsystem Interface—
S3CCOEOT S3CCOEOM SaCC0S34 SaCCOFSS

Figure 3. Moedule Structure of the Product Management Component

Product Management Services

SLCN is configured as an MVS subsystem. This configuration provides SUPERLINK/MVS with
more than 50 exit points throughout MVS system processing at which SUPERLINK -supplied routines
can gain control.

In addition to using the services provided by the Subsystem Interface, the Product Management
component provides a central point for the initialization and termination of components, and the
handling of failing components at a high level within SLCN. After initialization, this component is idle
unless another SUPERLINK component fails.

Product Management Interfaces

The Product Management component provides services that use the MVS Subsystem Interface.

MYVS enforces a control block structure to support a started task as an MVS subsystem. Figure 4 on
page 2-3 is a diagram of the Subsystem Interface control blocks.

2-2  SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit SI1-0182



LOC X'10°*

Address spaces use Subsystem Interface requests to make requests for FSS connection and

JESCT
> YJEST!
CcvT
—| JESSSCT
CVTJESCT
SSCVT SSCVT SSCVT
'*SSCT" -—‘-—> *SSCT? —> 'SSCT?
SSCTSCTA SSCTSCTA SSCTSCTA
SSCTSNAM SSCTSNAM SSCTSNAM
SSCTSSVT SSCTSSVT SSCTSSVT
SSVT SSVT SSVT
> >
SSVTCOD SSVTCOD SSVTCOD
SSVTRTN SSVTRTN SSVTRTN
Figure 4. Subsystem Interface Control Blocks

disconnection. MVS provides the control block structure required to satisfy these requests. Figure 5

on page 2-4 shows the control block structure for Subsystem Interface request control blocks.

Cray Research, Inc.

2. SUPERLINK Product Management Component

2-3



REGISTER 1

Parameter list

L [s0

SSO0B header

—> 'SSOB!
SSIB
SSOBLEN SSOBFUNC TSSIB’
>
SSOBSSIB I
SSIBLEN
SSIBSNAM
SSOBINDV
Function—
dependent
area

Function—dependent area
(SS0B extension)

—> length

Variable area
dependent on type
of function
requested

Figure 5.  Control Block Structure for Subsystem Interface Requests

SUPERLINK/MYVS provides routines for the following exit points:

Routine Description

S@CCOEOT Notification of cnd-of-task - Used specifically to indicate the termination of tasks
with active SUPERLINK/MVS resources. Recovery of active resources is
initiated.

S@CCOEOM Notification of end-of-address space - Used specifically to indicate whether

recovery actions are required. If an address space terminates while using
SUPERLINK/MYVS resources, the relevant Functional Unit must be notified.

S@CC0S34 Notification of an operator command - Used to support the MCS operator
interface. SLCN inspects commands input from an operator console to identify
the commands that must be processed by SUPERLINK/MVS.

S@CCOFSS FSS connect and disconnect - Used to support SUPERLINK/MYVS
multi-address space management

24 SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit S1-0132



& Product Management Data Areas

The Product Management component makes use of the control blocks described under -- Heading id
‘cndarea’ unknown --. Specifically, the following data areas are used:

Data Area Description

SC_SSVT Subsystem Vector Table
SC_GST Global Service Table
SC_SLASVT Address Space Vector Table
SC_OPCB Operator Command Buffer

The Options Processor component creates control blocks describing the configuration parameters
required for each Functional Unit. One of these control blocks, the Control Initialization Options
Table (SC_CIOT), determines the parameters that must be used to configure SLCN. The SC_CIOT
maintains pointers to the Initialization Options Tables for the other Functional Units within
SUPERLINK/MYVS.

Product Management Recovery

The Product Management component is notified of the failure of subordinate components within
~ SLCN. If the failure is irrecoverable (the subordinate component will have made extensive recovery),
the Product Management component brings SUPERLINK/MYVS to a controlled halt.

Failures in the Product Management component itself are handled by an ESTAE routine that attempts
to recover the internal error or produces a diagnostic dump if recovery is not possible.

Cray Research, Inc. 2. SUPERLINK Product Management Component 25



Diagram 2-1
S@CC0000 - Root Module of SLCN (part 1 of 4)

Entry from MVS |

v

Input

Register 1

Process

Output

Return code in

=> PLIST Register 15
> 1. Call Options Processor

=>Request l to validate installation . 1.Updated
type ‘ parameters; if error, return SC_CIOoT

=>SC_CIOT to MVS. JC_JIOT

=>Member NC_NIOT
name IC_OIOT

=>Feedback VC_VIOT
code 2 .Feedback

code

Register 1

=> PLIST Register 15
___J——> 2. Activate Subsystem
=>SC_CIOT Interface; if error, return Return Code
to MVS.
Allocate the SC_SLASVT. *°
The CPOOL from which SC_UREs => SC_SSVT
will be allocated is built.
If error, return to MVS.
3. Activate SUPERLINK LOG.
Register 1
=> PLIST
____f__> 6. Activate Product Operator; WAIT on
=>SC_SSVT wait for ‘oper—init—complete’ ECB

signal.

> continued

SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit

SI1-0182



Extended Description

Explanation

1.

Cray Research, Inc.

The Control module passes a parameter list to the SUPERLINK/MVS
Options Processor component. The parameter list contains the type of
request for initialization. It also contains a pointer to the SC_CIOT and
therefore to JC_JIOT, NC_NIOT, IC_OIOT, and VC_VIOT, which have
all just been allocated, chained, and primed by S@CC0000. The list also
contains the name of the member that contains the options parameters; this
name defaults to SLINIT00, but may be overridden in the PARM field in
the startup JCL. It returns the blocks completed from the initialization
parameters with a return code and a feedback code describing any error.

Branch to control module S@CCOSSI to initialize the Subsystem Interface.
A pointer to the SC_CIOT is passed so that S@CCOSSI initializes properly.
A return code indicates whether or not initialization has been successful.
The address of the SC_SSVT is retumned in the PLIST upon a return code
of 0 (successful completion) or 4 (successful recovery of an old SC_SSVT).
The other codes represent failure; control is returned to MVS after rcleasing
storage.

The SC _SLASVT is GETMAINed and chained from SC_SSVT.
SC_SLASVT is an array of fullword pointers with an index starting at 0 and
ending at the maximum number of address spaces available on the system.
It is initialized by clearing it to binary 0’s. The pool of buffers for the
SC_URE elements is built using CPOOL and is manipulated by the User
Resource Manager component.

The SUPERLINK/MVS LOG Processor component is entered by its root
module S@C2000 as an ATTACHed task. If the LOG processor task fails
to initialize successfully, SUPERLINK/MYVS will proceed to terminate.

Each component within SLCN must be activated in sequence. The control
module must be ready for shutdown requests at a very early stage. The
operator component (S@CO00000) is activated as an ATTACHed task and
is passed a parameter list containing the address of the SC_SSVT that
contains the anchor points for its queues. S@CCO0000 WAITs for an ECB
POSTed by the Product Operator component when it has initialized
successfully.

SLCN cannot be allowed to continue the initialization process until the
Product Operator component has been activated, as this provides the
mechanism for shutdown requests to be issued.

Module
S@CC0000

S@CC0000

S@CC0000

S@CCO0000

Label

2. SUPERLINK Product Management Component

2-7



Diagram 2-2
S@CC0000 - Root Module of SLCN (part 2 of 4)

continued I
v
Input Process Output
=> PLIST
___J——> 5. Activate FSS Manager; wait >| WAIT on
=>SC_SSVT for 'oper—init complete’ ECB
signal.
6. Wait for confirmation that >] WAIT on
SLNET is active. ECB

7. Wait for confirmation that
channel link is active.

28

SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit

> continued

SI-0182



~

Extended Description

Explanation

5.

Cray Research, Inc.

The FSS Manager (S@CF0000) is activated as an ATTACHed task and is
passed a parameter list containing the address of the SC_SSVT. S@CC0000
WAITSs on an ECB list until the FSS Manager signals that it has initialized
properly. Shutdown requests are valid from this point. SUPERLINK/MVS
“listens” for possible shutdown requests while waiting for a signal that the
FSS Manager is active.

The FSS Manager activates SLNET, the Network Access Method address
space. SLNET must signal that it is initialized before SLCN processing can
continue. S@CCO0000 WAITs for an ECB list until SLNET is initialized,
or else WAITs for a terminate request.

The channel connection to the Cray computer system must be allocated and
active before the SUPERLINK/MVS Management Interface can be
initialized. The MCS console operator requests activation of the channel
connection. SLNET must signal to SLCN that initialization processing can
continue. S@CCO0000 again WAITS for a terminate request.

Module
S@CC0000

S@CC0000

S@CC0000

Label

2. SUPERLINK Product Management Component

29



Diagram 2-3

S@CC0000 - Root Module of SLCN (part 3 of 4)

continued I
\)
Input Process Output
8. Activate SUPERLINK
Managenent Interface; if
error, prompt operator for
recovery action.
9. Initiate Association
Manager.
10. Indicate to FSS Manager,
0K to continue.”™ POST
ECB
11. If remote SUPERLINK support
not required, continue at 12.
12. Wait for shutdown request.
WAIT on
ECB list
ECB
ECB
> continued
2-10 SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit

SI1-0182



Extended Description

Explanation

8.

10.

11.

12.

Cray Research, Inc.

The SUPERLINK/MVS Management Interface component is entered by
root module S@CI0000.

The Association Manager handles all FTAM and AAC requests for
association. Once SLNET is active, the Association Manager must be active
to support session establishment requests. If the Association Manager
cannot initialize successfully, SUPERLINK/MVS will terminate indicating
the reason for failure.

The FSS Manager cannot initiate the application FSSs until the
SUPERLINK/MVS Management Interface has been successfully
established. The FSS Manager WAITs for an ECB POSTed by
S@CC0000.

The SUPERLINK/MVS control initialization options determine the
applicability of remote SUPERLINK/MYVS support.

SUPERLINK/MYVS is now initialized. S@CC0000 must WAIT for a
shutdown signal for the complete product; an ECB list containing the
termination ECB and ECBs is POSTed when any of the subtasks
ATTACHed in S@CCO0000 terminate prematurely.

Module
S@CC0000

S@CC0000

S@CC0000

S@CC0000

S@CC0000

Label

2. SUPERLINK Product Vanagement Component

2-11



Diagram 2-4

S@CC0000 - Root Module of SLCN (part 4 of 4)

continued I
v
Input Process Output
POSTed r————> 13. If a subtask has ended
ECB handle this problem; ’
if termination is requested,
then shut down components.
14. Notify Association Manager
of termination; wait for
confirmation.
15. Notify SUPERLINK Management
Interface of termination; >} POST FSS end
wait for confirmation. [_ ECB
16. Notify FSS Manager of
termination; wait for >| WAIT on FSS
> "Manager has completed™. ECB
ECB POSTed_l
by FSS
>|POST OPER end
| ECB
17. Notify operator component of
ECB POSTed ter?ination; wait for —m8 > Néé; on OPER
e |—> confirmation.
by OPER
18. Shut down SUPERLINK Log.
19. Free the SC_SLASVT storage,

delete the SC_URE CPOOL
storage, then deactivate
Subsystem Interface.

> Exit to MVS

2-12 SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit

SI-0182



Extended Description

Explanation

13.

16.

17.

18.

19.

Cray Research, Inc.

If the ECB POSTed is for termination of one of the subtasks ATTACHed
by this module, recovery action is attempted. If recovery is not possible,
termination proceeds as though the terminate ECB was POSTed. If the ECB
POSTed is for termination of the SUPERLINK/MVS system, the various
components are shut down.

Notify the FSS Manager of shutdown by POSTing its terminate ECB.
WAIT until it completes its shutdown processing via the POSTing of its
shutdown-complete ECB.

Notify the Product Operator component of the shutdown by POSTing its
terminate ECB. WAIT for it to complete its shutdown processing via the
POSTing of its shutdown-complete ECB. To prevent any additional
operator command from being eligible for SUPERLINK/MVS subsystem
processing, the SC_SSVT must be updated to indicate that the subsystem
is ending.

Branch to routine S@C2000 to shut down the SUPERLINK/MVS Log
component.

Free the SC_SLASVT. Any SC_URE blocks chained to it are already free,
since they are managed using CASE CPOOL storage management. Branch
to routine S@CCOSST to deactivate the Subsystem Interface.

Module
S@CC0000

S@CC0000

S@CCO0000

S@CC0000

S@CC0000

Label

2. SUPERLINK Product Management Component

2-13



Diagram 2-5
S@CCORIM - Sybsystem Resource Initialization Routine

Entry from MVS at IPL time ———————]

)
Input Process Output
Register 1
==> PLIST
[ > 1. Locate subsystem SSCVT.
==> SSCVT
2. Set flag to indicate possible
use of primary subsystem >
services. Updated

SSCVT

3. Clear SSCTSUSE field in
SSCVT.

4. Issue message.

> Exit to MVS

2-14 SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit

SI-0182



Extended Description

Explanation

1.

Cray Research, Inc.

On entry at IPL, register 1 points to a parameter list containing a pointer to
the SSCVT for this subsystem.

If a subsystem uses primary subsystem services (for example, SYSOUT
processing), an indicator must be set in the SSCVT. The indicator
determines whether or not Subsystem Interface requests are processed by the
Master Scheduler address space.

To perform recovery of a SUPERLINK/MYVS subsystem, the SSCTSUSE
ficld in the SSCVT is put to special use. On IPL the field is cleared. When
the subsystem is activated, the pointer to the SC_SSVT is placed in the
SSCTSSVT field, indicating to MVS that the subsystem is active. The
pointer is also placed in the SSCTSUSE field. Upon an abnormal
end-of-address-space event for the subsystem, the SC_SSVT pointer is
cleared from the SSCTSSVT ficld in the SSCVT, but the SSCTSUSE field

pointer to the SC_SSVT is left unchanged. This enables the
SUPERLINK/MVS subsystem initialization routine to perform recovery of
the subsystem in the event of abnormal termination (for example, if the
operator CANCELs).

Issue message to the operator indicating that the subsystem has been defined.

Module
S@CCORIM

S@CCORIM

S@CCORIM

S@CCORIM

Label

2. SUPERLINK Product Management Component

2-15



Diagram 2-6

S@CCOSSI - Sybsystem Interface Initialization Routine (part 1 of 2)

Entry from S3CC0000

v

Input
Register 1
=> PLIST

=> sc_cIoT

r—-> 1.

Process

Ensure that SUPERLINK is an
MVS—started task; if not,

return.

Ensure that started task name
is valid; if not, return.

Locate SSCVT; if none can

be found, return.

If SSCVT has SC_SSVT pointer
and subsystem is abending,
effect recovery at step 7.

If an active subsystem has
been found, exit with a
return code.

. Allocate storage for and

initialize SC_SSVT.

Ensure that SSI support
modules are loaded into
common storage; on failure

Output

> Register 15

> Register 15

> Register 15

> Register 15

> SC_SSVT

to load, exit with a return —> Register 15

code.

Otherwise, continue at step
11

12

16

48

20

2-16  SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit

> continued

SI1-0182



Extended Description

Explanation

1.

Cray Research, Inc.

The MVS Subsystem Interface can only be supported from a started task.
If SUPERLINK/MVS is not a started task, initialization of the subsystem
cannot continue, and an error code is returned to the caller in register 15.

An MVS subsystem must have a name between 1 and 4 characters long. If
it is suitable, the started-task name is used for this purpose. Otherwise, an
error code is returned to the caller in register 15.

At IPL, MVS builds an SSCVT for each defined subsystem. The chain of
SSCVTs is scanned for one matching the subsystem name.

MVS recognizes an inactive subsystem by the SC_SSVT pointer field in the
SSCVT. If this field is non-zero, the subsystem is either already active, or the
previous execution of the subsystem abended. If the SC_SSVT pointer is
zero, but the SSCTSUSE ficld is non-zero, a previous execution of the
subsystem abended. At the abend, the end-of-memory routine deactivated
the subsystem but left a pointer to the SC_SSVT in the SSCTSUSE field for
recovery.

If the SC_SSVT Subsystem Condition flag (refer to field SC_SSVT_COND
in the SC_SSVT format described in section “Appendix A. Data Arca
Descriptions” on page A-1) indicates a “subsystem abending” status,
subsystem recovery is attempted. The SC_SSVT pointer is used to access the
existing SC_SSVT.

If the SC_SSVT Subsystem Condition flag indicates “subsystem active”, the
request for initialization is erroneous. An error code is returned to the caller
in register 15, indicating that no further processing is possible.

The SC_SSVT control block must reside in CSA (below the 16Mb line).
The function matrix and entry point addresses are initialized, and
information from the SC_CIOT is used to complete the initialization.

Subsystem Interface support routines must reside in common storage. The
routines can cither be loaded permanently in LPA or loaded into global
storage at each subsystemn initialization process. If the routines are not
loaded correctly, the routine is exited with a return code after any allocated
control blocks are freed.

Module
S@CCOSSI

S@CCOSSI

S@CCOSSI

S@CCOSSI

S@CCO0SSI

S@CCOSSI

Label

2. SUPERLINK Product Management Component

2-17



Diagram 2-7

S@CCOSSI - Sybsystem Interface Initialization Routine (part 2 of 2)

continued

I
v
Pr

Input

SC_SSVT

SC_SSVT

SC_SSVT

__J—_> 10.

11.

12.

ocess

. Set subsystem recovery

indicator.

Ensure that subsystem name in
SC_SSVT is valid; if not
recoverable, exit with a
return code.

. Validate Subsystem Interface

matrix; if not recoverable,
exit with a return code.

Check Subsystem Interface
module entry points; if not
recoverable, exit with a
return code.

If reload of modules was

Output

— > | sc_ssvt

> Register 15

> Register 15

—> Register 15

tried but failed, exit with —> Register 15

a return code.

Validate control block
pointers in SC_SSVT; if bad

SC_SSVT in SSCVT chain, exit

with a return code.

If any other control block is
not recoverable, exit with
a return code.

Set SC_SSVT pointer in SSCVT.

> Register 15

> Register 15

and in SSCTSUSE field.

SC_SSVT

Set "subsystem active™
indicator; return address of
SC_SSVT to caller

SC_SSVT

in its PLIST.

Set a return code for caller
as follows: if initialization
was successful, return a

L

PLIST
=>SC_SSVT

value of 0.

If initialization was
successful in recovering an
old SC_SSVT from an abending
subsystem, return with a
code.

> Regiéter 15

> Register 15

24

36

28

32

40

66

00

2-18 SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit

> Exit to S3CC0000

SI1-0182



Extended Description

Explanation

8.

10.

11.

Cray Research, Inc.

For successful recovery of an existing SC_SSVT, the subsystem name in the
SC_SSVT must be the same as that in the SSCVT.

The Subsystem Interface matrix in the SC_SSVT must be validated to
ensure that the address of the interface routines are correct. If a routine is
detected as erroneous, it is reloaded into global storage, and the relevant
routine address is updated.

All the control block pointers in the SC_SSVT must be validated to ensure
that the relevant control blocks are still available. The ASCB pointer must
be updated. If an error is detected with any other control block ficld, the
MVS operator is prompted with a WTOR to indicate ecither that recovery
is to continue (that is, set field in error to 0) or that recovery is to be
abandoned, the existing SC_SSVT deleted, and a new SC_SSVT created and
initialized.

An update of the SC_SSVT pointer in the SSCVT control block ensures
that MVS recognizes the subsystem as active. To facilitate recovery, the
SSCVT user field is also updated to point to the SC_SSVT.

Module
S@CCOSSI

S@CCOSSI

S@CCOSSI

S@CCOSSI

Label

2. SUPERLINK Product Management Component

2-19



Diagram 2-8
S@CCOSST - Subsystem Interface Termination Routine
Entry from S?CC0000 |

v
Input [f Process Output

Register 1=> PLIST—> 1. Set 'Subsystem Ending®
indicator in SC_SSVT.
SC_SSVT

2. Issue WTO0, 'Subsystem
Interface dormant'.

3. Clear SC_SSVT pointer and
SSCTSUSE field in SSCVT. >

4. Free storage used by SC_SSVT.

SSCVT

> Exit to S3CC0000

220 SUPERLINK for MVS Logic Library Veolume 2: Control Functional Unit SI-0182



Extended Description

Explanation Module Label

3. Clearing the SC_SSVT pointer deactivates the Subsystem Interface for S@CCOSST
MVS. Clearing the SSCTSUSE field indicates that the subsystem
terminated sucessfully. Recovery processing checks this field when the
subsystem is next initialized.

Cray Research, Inc. 2. SUPERLINK Product Management Component 2-21



Diagram 2-9
S@CCOEOT - Sybsystem Interface End-of-Task Routine

Entry from MVS I

'}
Input I Process output

Register 0 —p—>1. Locate SC_SSVT

2. If SC_SLASVT exists
SSCVT .1f Pk
..get work area
..get LOCAL lock
..get CMS lock
SC_SSVT ..scan SC_UREs
..matching on the
Register 1 — ..TCB

>

.:when TCB matched
*SSOB* ...take copy
SSOBINDV ...of SC_URE

...and flag match
r . .end—when
>

.:free CMS lock
*SSIB! ..free LOCAL lock

..if a matched TCB
EOT SSOB ..had been flagged CASE Request
Extension

> ...issue A-EOT ———>| A-EOT
'SSET! .

..end-if
..free work area

.end—if
end-if

3. Return to caller.

l—) Exit to MVS

2-22 SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit SI1-0182



Extended Description

Explanation

2.

Cray Research, Inc.

End-of-task  processing concerns only tasks  designated as
SUPERLINK/MYVS service users (that is, only tasks with an SC_URE entry
chained from the appropriate entry in the SC_SLASVT table).

To make best use of the time spent in this exit and under the CMS lock, the
predicate, Pk, is checked:

Pk The full-word pointer at offset 4 * k into the SC_SLASVT is not
null (k is an integer in the range l<k<maximum ASID
available).

In most cases, the predicate is not true and no further action is required. If
it is false, the CMS lock must be OBTAINed to scarch the queues of
SC_UREs, and the queues must not be altered by other
SUPERLINK/MYVS components.

If a match is made on the ASCB and TCB of the terminating task, then a
CASE AL_ARE request area is built in the module’s work area and an
A-EOT CASE local primitive is executed to clean up the resources used by
the task.

Returmn to caller.

Module
S@CCOEOT

S@CCOEOT

Label

2. SUPERLINK Product Management Component

2-23



Diagram 2-10

S@CCEOM - Subsystem Interface End-of-Memory Routine
Entry from MVS

L— SSCVT
>

Input

Register 0

SC_SSVT

Register 1 —

"SSOB'

A

SSOBINDV

*SSIB*

EOM SSOB
Extension

*SSEN?

Process

Locate SC_SSVT and end—of—
memory SSOB extension.

. Handle case of terminating

SLCN address space.

. Handle case of terminating

address space being a
SUPERLINK FSS.

OQutput

2-24

SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit

>Exit to MVS

S1-0182



Extended Description

Explanation

1.

Cray Rescarch, Inc.

End-of-memory processing is invoked from within the Master Scheduler
address area. Pointers to the SSCVT and SSOB are provided on entry.

If the SC_SSVT pointer in the SSCVT is not null and the ASCB pointer in
the SC_SSVT so chained matches that in the SSOB extension for the
terminating address space, SUPERLINK/MVS is terminating without
having cleaned up the Subsystem Interface. Flag the SC_SSVT as
“abending”; clear the pointer to the SC_SSVT to deactivate the Subsystem
Interface to MVS. This prevents abends, but leaves the SSCVT USER field
pointing to the SC_SSVT. Consequently, recovery processing on a new
initialization may recover the old control blocks.

If the SC_SSVT pointer in the SSCVT is not null, and the ASCB pointer
in one of the SC_FSSCB blocks matches that in the SSOB extension for the
terminating address space, an FSS is terminating. If the SC_FSSCB
indicates that the FSS should not terminate, POST the FSS Manager task,
indicating the unexpected termination of the FSS.

Module
S@CCOEOM

S@CCOEOM

S@CCOEOM

Label

2. SUPERLINK Product Management Component

2-25



Diagram 2-11

S@CC0S34 - Subsystem Interface Support Routine (part 1 of 2)

Entry from MVS

v
Input Process Output
Register 0 —y——> 1. Locate SC_SSVT.
==>
2. If command is not an MVS
| SSCVT STOP command, continue
l at step 6.
> 3. If MVS STOP command is not
SC_SSVT for SLCN, continue at step
) POST
Register 1 — 4. If subsystem is able to shutdown
== process STOP command, notify —>| ECB
shutdown processor,
SSOB indicating shutdown type.
SSOBINDV
5. Indicate to MVS that command
has been accepted by
> subsystem; return to MVS.
SSIB
6. If command is not prefixed by
subsystem command character,
continue at step 8.
SVC34 SSOB
Extension
SSCM
SSCMBUFF
Operator
Command Buffer

2-26 SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit

> continued

S1-0182



Extended Description

Explanation

1.

Cray Research, Inc.

Upon entry, register 0 points to the SSCVT for this subsystem; the
SC_SSVT is chained from the SSCVT. Register | points to the SSOB.

The buffer containing the operator command and its length is chained from
the SSOB extension (SSCM) for the Subsystem SVC34 operator command
function call. The command is left-adjusted and padded on the right with
16 blanks.

The name of the job being stopped is found by scanning the command
buffer for a matching jobname.

A subsystem must be in an active state to process an operator command.
If the subsystem is still initializing or is terminating, the command is
returned to MVS, indicating that it has not been accepted for processing.
The shutdown type is normal, quick, or abort.

A return code in the SSOB feedback code area, SSOBRETN, indicates to
MYVS that the command has been accepted by the subsystem. (EQUate
SSCMSUBC is used.)

The subsystem command character is installation-defined. The command
character is available from the SC_SSVT_CMDCHAR field.

Module
S@CC0S34

S@CC0S34

S@CC0S34

S@CC0S34

S@CC0S34

S@CC0S34

Label

2. SUPERLINK Product Management Component

2-27



Diagram 2-12
S@CCO0S34 - Subsystem Interface Support Routine (part 2 of 2)

S3aCC0534 — Subsystem Interface Operator Command Notify (part 2 of 2)
continued |

v
Input Process Output

7. If subsystem can process
command, create command SC_SSVT -——]

buffer, chain to operator
command queue, and notify
SUPERLINK operator.

L

<

8. If command is a special case >
MVS command, continue at —
Step 7.

9. Indicate to MVS that command

has NOT been accepted by the
subsystenm. POST
Product
Operator
component
—>| ECB

> Exit to MVS

2-28 SUPERLINK for MVS Logic Library Volume 2: Control Functicnal Unit SI1-0182



~

Extended Description

Explanation

7.

Cray Research, Inc.

A subsystem must be in an active state to process an operator command. If
the subsystem is either initializing or terminating and the Product Operator
component is not available, the command is returned to MVS, indicating
that the command has not been accepted for processing.

The SUPERLINK/MVS Product Operator component manages all
operator commands controlling SUPERLINK/MVS operation. A queue
of commands to be processed is chained from the SC_SSVT. The operator
processor is POSTed to perform the indicated actions.

SUPERLINK/MVS may extend the MVS operator display command to
provide a command interface familiar to the MVS operator. These
commands are detected by the “Operator Command Notify” routine and
chained to the operator command queue. The Product Operator processor
is POSTed to perform the command.

A return code in the SSOB feedback code area (SSOBRETN) indicates to
MYVS that the command has not been accepted by the subsystem.
(SSCMSCMD is EQUed).

Module
S@CC0S34

S@CC0S34

S@CC0S34

Label

2. SUPERLINK Product Management Component

2-29



Diagram 2-13
S@CCOFSS - Subsystem Interface FSS CONNECT/DISCONNECT Routine (part
1 of 2)

Entry from MVS I

v
Process Output

. Locate SC_SSVT.
. Validate FSS ID.

1
2
>| sscvr
l: 3. Locate FSS SC_FSSCB.
> 4

Input

Register 0 ———>

. If FSS request is invalid,
SC_SSVT return to MVS. >

5. If FSS request is CONNECT,
Register 1 — continue at step 7.

6. Validate DISCONNECT request;
*SSOB?* if in error, return to MVS, >
else continue at step 12. SSO0B

SS0B

7. Ensure that FSS request was
> solicited by SUPERLINK; if
YSSIB® not, return to MVS. >

SSOB

8. If FSS is already active,
return to MVS. : >

SSOB

9. Update SC_FSSCB. >
SC_FSSCB

> continued

2-30 SUPERLINK for MVS Logic Library Yolume 2: Control Functional Unit S1-0182



Extended Description

Explanation

2.

Cray Research, Inc.

The MVS START command which initiates the FSS address space has a
number of parameters. One parameter indicates the FSS ID of this FSS.
The FSS-ID must be equal to or less than the maximum number of FSS
address spaces supported by this FSS. This information is held in the
SC_CIOT. The address spaces are allocated by routine SA@F0000. Check
the pointer to see if S@CI0000 has allocated them.

. All FSS control blocks are contiguous. The FSS-ID supplied with the

START command locates the relevant SC_FSSCB.

Only FSS CONNECT or DISCONNECT requests are valid. Any other
requests are treated as error conditions; in this case, the return code is set in
the SC_SSOB and control is returned to MVS.

To ensure a valid FSS DISCONNECT request, the relevant FSS must be
active, and the ASCB requested must be the ASCB supported by the
SC_FSSCB. If either of these conditions is not satisfied, a return code is set
in the SC_SSOB and control is returned to MVS.

The MVS START command which initiates the FSS address space also
provides the originating subsystem name as a parameter. That name must
agree with the subsystem name defined in the SC_SSVT, and the ASCB
address of the subsystem must match the one stored in the SC_SSVT. If
an error is detected, a return code is set in the SC_SSOB, and control is
returned to MVS.

The subsystem address space and the FSS address space can update an
SC_FSSCB concurrently. Therefore, care must be taken to use irreducible
methods to update the SC_FSSCB whenever possible (for example,
compare and swap logic). Updates to the SC_FSSCB include the ASCB
address of the FSS and the TCB address of the mother task.

Module
S@CCOFSS

S@CCOFSS

S@CCOFSS

S@CCOFSS

S@CCOFSS

S@CCOFSS

Label

2. SUPERLINK Product Management Component

2-31



Diagram 2-14
S@CCOFSS - Subsystem Interface FSS CONNECT/DISCONNECT Routine (part
2 of 2)

continued I

Vv
Input Process Output

10. Load FSS support routine.

11. Update relevant FSS service
table.

12. Branch to FSS support module
via service table.

> Exit to FSS support routine

2-32  SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit SI1-0182



Extended Description

Explanation Module Label

10. The FSS interface is supported through an FSS support module. Unlike the S@CCOFSS
Subsystem Interface support module, which resides in common storage, the
FSS support module resides in the private area of the FSS. The support
module, named in the SC_CIOT, is loaded into LSQA. (The default FSS
interface support module name is S@CCOFSI.)

Be carcful to locate and load the correct module, since S@CCOFSS runs in
the FSS address space.

11. The addresses of the subroutines within the FSS support module are added S@CCOFSS
to the “Common Service Table” for the FSS. Once all table updates have
been made, control is given to the routine supporting either CONNECT or
DISCONNECT processing.

12. The FSS support module completes FSS CONNECT or DISCONNECT S@CCOFSS
processing,.

Cray Research, Inc. 2. SUPERLINK Product Management Component 2-33



Diagram 2-15 a
S@CCOFSI - FSS Interface Support Routine (part 1 of 5)
Entry from S3CCOFSS or SaCF0110 —

v
Input Process Output

CONNECT entry point.

1. Ensure that entry registers
are saved.

2. Allocate storage for FM_FSVT,
FM_FSCTs, and FM_FSSXB
control blocks; save FM_FSVT
address in ASXB.

3. Set CONNECT return code in
SS0B and inform FSS Manager.

4. If error, return to S3CCOFSS;
otherwise, return to
subsystem requester.

> continued

2-34 SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit SI1-0182



Extended Description

Explanation

1.

Cray Research, Inc.

On return from this routine, control is regained not by the calling routine
(S@COFSS), but by the user requesting FSS CONNECT Subsystem
Interface services. If an error condition is detected, control is returned to the
Subsystem Interface routine, S@CCOFSS.

For an FSS CONNECT, the relevant control blocks to describe an FSS
address space, (as determined by MVS), must be created and initialized.
These control blocks are:

e FM_FSVT - FSS Vector Table
e FM_FSCT - FSS Control Table
e FM_FSSXB - FSS extension control block

Section “S@CF0000 - Data Areas” on page 4-3 provides a complete
description of these control blocks.

Module
S@CCOFSI

S@CCOFSI

Label

2. SUPERLINK Product Management Component

2-35



Diagram 2-16
S@CCOFSI - FSS Interface Support Routine (part 2 of 5)

continued 1
v
Input Process Output

DISCONNECT entry point.

5. Ensure that FSS is already
connected.

6. Indicate that FSS is in the
disconnection phase.

7. Free storage allocated to FSS
control blocks.

> continued

2-36 SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit SI1-0182



Extended Description

Explanation Module Label

5. If a user makes an FSS DISCONNECT request, the FSS address space must S@CCOFSI
have previously completed a successful FSS CONNECT. The SC_FSSCB
data area includes a series of indicators describing the status of the relevant
address space.

6. The storage allocated during CONNECT processing to hold the FM_FSVT, S@CCOFSI
FM_FSCTs, and FM_FSSXB can now be released. The pointer to the
FM_FSVT, held in the ASXB, must also be erased.

Cray Research, Inc. 2. SUPERLINK Product Management Component 2-37



Diagram 2-17
S@CCOFSI - FSS Interface Support Routine (part 3 of 5)

continued |
\'
Input Process l Output
8. Set FSS DISCONNECT return >
code into SSOB. SSOB

9. Inform FSS Manager that FSS
DISCONNECT was successful.

10. In case of error, return to
SaCCOFSS (Subsystem
Interface support routine)d.

> continued

2-33 SUPERLINK for MVS Logic Library Velume 2: Control Functional Unit S1-0182



Extended Description
Explanation Module  Label

10. On entry to this routine, the Subsystem Interface support module registers S@CCOFSI
were saved, and a pointer was located for the save arca created on entry to
the Subsystem Interface support routine. If an error is detected, control is
returned to S@CCOFSS for further processing. During DISCONNECT,
S@CCOFSI assumes responsibility for deleting the FSS interface routine
from the system.

Cray Research, Inc. 2. SUPERLINK Product Management Component 2-39



Diagram 2-18
S@CCOFSI - FSS interface Support Routine (part 4 of 5)

continued |

v
Input Process Output

ORDER entry point.

11. Pass command embedded in FSI
ORDER to FSS subcomponent
responsible for processing
it (FSS—dependent, in
general).

> continued

240 SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit S1-0182



~

Extended Description
Explanation Module Label

11. Entry to the ORDER processing portion of the FSI routine is through S@CCOFSI
routine S@CF0110, which was SCHEDULEd under an SRB from the
control address space. = S@CFO0110 invoked this routine with a
S@@FIREQ TYPE = ORDER macro call; therefore this code is effectively
running in SRB mode.

The SC_FSIP, from which the command being delivered to this FSS can
be determined, is available to this routine. The actual mechanism of
processing the command depends to a certain extent on the particular FSS;
this routine simply places the command on a queue for processing. Replies
are sent asynchronously from the FSS with the SEND communications
primitive.

Cray Research, Inc. 2. SUPERLINK Product Management Component 241



Diagram 2-19

S@CCOFSI - FSS Interface Support Routine (part S of 5)

continued I

v

Input Process

SEND entry point.

12. Use SC_FSIP describing
request from FSS to
build an FM_STAG staging
area containing request.

13. Communicate request to
control address space.

Output

> Exit to FSI or SSI caller

2-42 SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit S1-0182



Extended Description

Explanation Module Label

12. Entry is from an FSS-specific routine that issues an S@@FIREQ S@CCOFSI
TYPE =SEND macro to send data to the control address space.

The FSI parameter list SC_FSIP describing the request is available at this
point.

13. This request is communicated to the control address space by embedding the S@CCOFSI

request in a staging area in common storage (FM_STAG) and POSTing the
“listen” task (S@CF0120) in the control address space.

Cray Research, Inc. 2. SUPERLINK Product Management Component 243



Diagram 2-20

S@CCOTRT - Commonly Available ASCII/EBCDIC/ASCII Translate Tables

Input Process

1. This is a non executable
module containing two
translate tables which are
available for use throughout
the SUPERLINK/MVS product.

An EBCDIC to ASCII translate
table is located at offset 0
into the the module.

An ASCII to EBCDIC translate
table is located at offset
256 into the module.

Output

244  SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit

S1-0182



Extended Description

Explanation Module Label

1. This module resides in common storage, is thus addressable from any S@CCOTRT
address space and is available for use by any component of
SUPERLINK/MVS which wishes to use ASCII[JEBCDIC/ASCII translate
tables.

The address of the module may be found in the field
SC_GST_TRANSLATE of the SC_GST (Global service table), which itself
may be located from the field SC_SSVT_GST of the Subsystem Vector table
(SC_SSVT).

Cray Research, Inc. 2. SUPERLINK Product Management Component 245



— 3. SUPERLINK Options Processor Component

The SUPERLINK/MYVS product is configured using initialization options supplied by the customer
installation. These initialization options define the SUPERLINK Functional Units that must be active,
and specify which components, resident in those Functional Units, are to be supported for this
execution of SUPERLINK/MVS. The Options Processor component performs validity checks on all
the parameters provided and forms initialization control blocks applicable to each Functional Unit.

This component is similar to the components in MVS and JES2/3 that are concerned with
initialization. The systems programmer specifies the initialization options in a parameter library
allocated in the SUPERLINK JCL with the DDNAME “SLPARM?”. These options are processed
and then held in storage using an internal format.

The Options Processor component has a “backend” that is invoked during SUPERLINK/MVS
termination. The “back-end” releases the Initialization Options Table (I0T) appendages obtained
during this component’s operation.

Options Processor Module Structure

The Options Processor component consists of the following modules:

—
Module Function
S@C1000 Control module
S@CI1010 Initialization; obtain work areas and validate parameter list.
S@C1020 Termination; release work areas and return diagnostic information.
S@C1030 Statement builder
S@C1040 Parameter scan; validate and set control block field(s).
S@C1050 Table of valid parameters, value ranges, types, conversions, and so on
S@CIGETM Obtain storage for and anchor IOT appendage
S@CIDATA Read in-stream data records; store in IOT appendage and IOT List.
S@CIFLAG Set multiple flag values in single byte field
S@C1060 Backend; release all IOT appendages.
Figure 6 on page 3-2 shows the hierarchical structure of the modules within the Options Processor
component.

_—

Cray Research, Inc. 3. SUPERLINK Options Processor Component 3-1



SaCl000 SaC1060
SaClo010 $3C1020 SaCl030
SaCl1040 SaC1050
SaCl1GETM S3C1DATA S3C1FLAG

Figure 6. Module Structure of Options Processor Component

Options Processor Services

The Product Management component (S@CCO0000) invokes the Options Processor component.
S@CCO0000 may request one of two functions: it asks the Options Processor component to provide
either the complete set of options or the options for a specific Functional Unit. A parameter list is
provided; this list gives the parameter requirements as well as the relevant output control blocks (see

“Options Processor Data Areas” on page 3-3).
An optional DDNAME of SLLIST may be used to provide printed output of parameters and

messages.

Options Processor Interfaces

The Options Processor component is either CALLed or ATTACHed and receives a parameter list on
entry. The contents of the parameter list are as follows:

*  An indication of the function for which options processing is required. An ALL indication must
have been successfully processed before receipt of a specific indication.

¢ A pointer to the Control Initialization Options Table (SC_CIOT)

¢  The member name containing the options

This parameter is mandatory for an ALL indication. For a specific indication, this value replaces
the SC_CIOT value and causes the named member to be read. If this paramecter is set to binary

Os or is omitted, the member named in the SC_CIOT is reused.

®  An area in which to return error information

32 SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit

SI-0182




A combination of return codes and feed-back codes describe an error, as shown in Table 1 on page

3-3.

Table 1. Return Codes and Feed-back Codes for the Options Processor

Return Feed-back .

Code Code Meaning

00 Successful completion

04 Successful completion; LIST output was requested but could not
be produced.

08 Processing terminated due to syntactical errors. For all
feed-back codes, the address of the statement in error is
returned. For feed-back codes 04 and 08, the address of the start
of the parameter is returned. For feed-back code 12, the current
address within the statement may be returned.

04 Scan error; an obsolete parameter was found.
08 Scan error; an unsupported parameter was found.
12 Scan error; an error was encountered during scan.

12 Processing terminated due to I/0 failure. For feed-back code
16, the abend code is also provided; an indication of the
attempted 170 operation is included if appropriate.

04 Member was not found in PARMLIB.
08 Invalid data control block (DCB) for PARMLIB
12 OPEN failed for DDNAME SLPARM (DD statement missing).
16 An abend was intercepted by ESTAE processing.
16 Processing was not performed.
04 The member name was invalid/omitted.
08 The control block address supplied was invalid.
12 A "refresh™ request for a specific options table was
received before the complete options were built.
16 Bad parameter list received

The backend (S@C1060) of the Options Processor component is called during SUPERLINK/MVS
termination to rclease all IOT appendages. It reccives the address of the SC_CIOT as a mandatory
parameter.

Options Processor Data Areas

Each SUPERLINK/MVS Functional Unit has an associated data area containing its options. These
data areas are allocated by S@CCO0000, and their addresses are passed to each Functional Unit. The
following is a list of these data areas:

Data Area Description
SC_CIOT Control Initialization Options Table (anchor for the NIOT)
SC_NIOT Network Initialization Options Table

“Appendix A. Data Area Descriptions” on page A-1 provides a description of the previous data areas.

Cray Research, Inc. 3. SUPERLINK Options Processor Component 33



Options Processor Recovery

An ESTAE is provided to intercept abends. Retry processing is not performed; rather, diagnostic
information in the form of feed-back codes is returned to the caller.

34 SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit SI-0182



This page has been intentionally left blank.

Cray Research, Inc. ’ 3. SUPERLINK Options Processor Component 35



Diagram 3-1

S@C1000 - Control Module
Entry from SQCCOOUO——]

v

Input

PLIST

. OPEN SLPARM and SLLIST.

. Loop back to step 3.

Process Output
Initialize CALL S3Cl1010. Updated PLIST,
return code
Find required member.

Initialize control block
values.

Process member, CALL S2C1030.

Terminate, CALL SaCl1020.

> Exit to S?CC0000

36 SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit

SI1-0182



Extended Description

Explanation

1.

Cray Research, Inc.

Module S@C1010 obtains work areas and validates the parameter list
(PLIST). The return code from S@C1010 is checked, and processing is
resumed at step 7 if errors occurred.

The parameter library is opened and validated. Any errors result in a branch
to step 7. The LIST dataset is validated and opened. Processing continues
in “NOLIST” mode if there are any errors. Return code 04 is given on
completion.

Search the parameter library’s directory for the required member name. If it
is not found, branch to step 7.

Module S@C0000 allocates the IOTs and places identifiers in them. The
fields in the IOT are sct to their starting values. For refresh, S@CC0000
may pass the address of the original 10T or may provide a new IOT. The
member read for refresh must contain statements for every OPTION
required (not just those to be amended).

Once the required member is found, module S@C1030 is called once to
process all records in the member. The return code from S@C1030 is
checked, and a branch is made to step 7 if errors occurred.

Loopback occurs only when the PLIST requested that a complete set of
options be built. Each set of OPTIONS is contained in a scparate member.
The member names are contained in a root member for SLCN OPTIONS.
Exit from the loop is taken when all named members have been processed.

Module S@C1020 releases the work areas and updates the parameter list to
reflect the processing done.

Module
S@CI1000

S@C1000

S@C1000

S@C1000

S@C1000

S@C1000

S@C1000

Label

3. SUPERLINK Options Processor Component

3-7



Diagram 3-2
S@C1010 - Initialization; Obtain Work Areas and Validate Parameter List

Entry from SQCIOOO——l

v
Input Process Output
PLIST 1. Validate parameter list. Work areas,
Return code,
2. Obtain storage for work Feedback code
areas.
3. Return to caller.

> Exit to S3Cl1000

33 SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit SI1-0182



~

Extended Description

Explanation

1.

Cray Research, Inc.

The parameter list supplied by S@CCO0000 to S@C1000 is passed to this
module. Its contents are validated here. The return and feedback codes
notify S@C1000 of errors. For more information about return and
feed-back codes, see the SUPERLINK/MVS Logic Library Volume I:
Product and Component Descriptions, CRI publication SI-0181.

The work areas must be used by S@C1030 and S@C1040. Module
S@CI1040 requires a work area stack of sufficient depth for the most
complex statement syntax. For example, the statcment

“START1 PROC =a,PARAM = (b,c)"

requires a depth of three (statement level, parameter level, subparameter
level).

Return and feedback codes indicate the processing done.

Module Label
S@CI1010

S@CI1010

S@C1010

3. SUPERLINK Options Processor Component

39



Diagram 3-3
S@C1020 - Termination; Release Work Areas; Return Diagnostic

Information
Entry from 5301000—]

v
Input Process Qutput
PLIST 1. Release work areas. Feedback and
return codes,
2. Update PLIST. updated PLIST

3. Pick up diagnostic codes.

> Exit to S3C1000

3-10 SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit SI-0182



~

Extended Description

Explanation

1. The work areas obtained by S@CI1010 are released. However, if there are
syntax errors, the offending statement is not freed, since it is required by
S@CC0000.

2. The PLIST-supplied S@CC0000 is updated with additional diagnostic
information. Return codes for which there is no feedback code, and return
codes for which the PLIST was in error are not updated.

3.  The return code and feedback codes are loaded and returned to the caller.

Module Label
S@C1020

S@C1020

S@C1020

Cray Research, Inc. 3. SUPERLINK Options Processor Component

3-11



Diagram 3-4
S@C1030 - Statement Builder

Entry from S3C100 0——|

PLIST

Input

v
Pr

H W N -

5.
6. Loop back to step 1.
7.

ocess

. Read a record from PARMLIB.

Build statement.
Loop back to step 1.

Parse statement
CALL SaCl040.

Produce LIST output.

Return to caller.

Output

Eeedback and
return codes

3-12

> Exit to S3Cl1000

SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit SI1-0182



Extended Description

Explanation

L.

Cray Research, Inc.

PARMLIB has becen OPENed by S@C1000 and the PDS member found.
The parameter list contains information (DCB address and so on) to enable
this module to read records.

The statement is formed from one or more records as a variable-length
string. Leading and/or trailing blanks are stripped. A statement may contain
a comment following the last parameter and may contain a continuation
character in column 72.

Loopback to step I occurs if the statement is continued onto another record.
This step is bypassed if the statement is a comment (first byte = *). Module
S@C1040 returns diagnostic information as a result of its processing. If there

are errors, branch to step 7.

The statement and any diagnostic information are written to SL2LIST, if
present.

Exit from the loop is taken at end-of-file. The dataset is not CLOSEd here
since further member(s) may be required.

Diagnostic information (feedback and return codes) is provided for the caller.

Module
S@C1030

S@C1030

S@C1030

S@C1030

S@C1030

S@C1030

S@C1030

Label

3. SUPERLINK Options Processor Component

3-13



Diagram 3-5
S@C1040 - Parameter Scan, Validate and Set Control Block Field(s)

Entry from 5361030——————————]

v
Input Process Output
PLIST, 1. Find parameter. Updated 10T,
CIoT feedback, and
2. Validate value. return codes.
3. Do conversion.
4. Set value in control block.
5. Loop back to step 1.
6. Return to caller.

> Exit to SaCl030

3-14 SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit S1-0182



Extended Description

Explanation

1.

Cray Research, Inc.

The PLIST contains the statement to be parsed, the address of the table of
valid parameters, and the address of the current work area in the stack. Work
arcas are chained, since this module is recursive for scanning subparameters.
The top of the work area (parent) is pointed to on initial entry from module
S@C1030.

The value of the parameter is validated against the table in module
S@C1050. Errors are indicated by a combination of return and feedback
codes.

The paramcter is converted from its external representation (character, hex
digits, and so on) to its internal rcpresentation (binary and so on), as
indicated by module S@C1050.

The value is stored in the CIOT, NIOT, or another table, as appropriate for
the OPTIONS being built. S@C1050 holds addressing information, which
enables the 10T field to be located for updating.

Loopback occurs if there are more parameters or if there are subparameters.

The caller is notified of the processing performed by return and feedback
code settings. ‘

Module

S@C1040

S@C1040

S@C1040

S@C1040

S@C1040
S@C1040

Label

3. SUPERLINK Options Processor Component

3-15



Diagram 3-6 '
S@C1050 - Table of Valid Parameters, Value Range, Type, Conversion

Accessed by S3Cl1030 and 3301040——————————]

v
Input Process Output

1. Definition of PARMLIB
syntax.

3-16 SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit SI1-0182



-~

Extended Description

Explanation

1.

Cray Research, Inc.

This look-up table is a nonexecutable module. There are a number of entries
that define the syntax, validation, conversion, and IOT control block fields
for parameter library statements. Module S@C1030 passes a pointer to this
module to S@C1040. Details are given on the S@CISYNX macro (see
“Appendix B. SLCN Macros” on page B-1).

An entry for each statement is followed by a list of entries for each
parameter. The parameter entry may be followed by a list of entries for each
subparamecter. Parameters may be keyword or positional and may be
subscripted. Parameters that have nonstandard syntax are handled by
specifying an internal exit. (For example, PARAM(a,b) on the START
statement is required as a single variable-length string a,b).

You can mark paramecters that are superseded from one software version to
the next as “obsolcte.” This fact is reported on the LIST dataset;
S@CCO0000 is also informed.

Module
S@C1050

Label

3. SUPERLINK Options Processor Component

3-17



Diagram 3-7

S@CI1GETM - Obtain Storage for and Anchor IOT Appendage

Entry from sac1oao——————————1

'}

Input Process Qutput
PLIST, Validate OPTION type. Updated 10T,
CIOT feedback and

Determine item count. return codes

. Attempt reuse of appendage.

H W N =

. Obtain new storage for
appendage.

> Exit to S3Cl040

3-18 SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit

SI1-0182



~

Extended Description

Explanation

1.

Cray Research, Inc.

The parameter list consists of two fullwords. The first is a pointer to the
current work area in the stack. The second is a pointer to the following list
of fullwords in S@C1050 (specified via AFT=(S@CIGETMlabel of
params).

e  Offset to anchor field in IOT
e  Length of an item (< 2*¥*16)

The current work area contains a pointer to the syntax table entry for the
item being processed. The item must be defined as being numeric
(CONV=NUM on S@CISYNX) or an error message and return code
result.

The value of the parameter is validated against the table in module
S@C1050. Errors are indicated by a combination of return and feedback
codes. For more information about return and feedback codes, see CRI
publication SI-0181, SUPERLINK/MYVS Logic Library Volume 1: Product
and Component Descriptions.

This internal SUPERLINK/MVS Options exit is taken after the item has
been validated and the CIOT updated. The syntax table definition for the
item contains the offset to the item within the IOT. Note that the item may
be 1,2 or 4 bytes long.

The anchor field is checked to see if an appendage already exits. If not, then
this step is bypassed. The count of items in the existing appendage is
compared with the current item count. If the current item count is higher,
then the existing appendage is released. Otherwise, the existing appendage
header fields are reset and the next step is bypassed.

The length of storage required for the appendage is calculated as follows:
appendage header length + (item count * item length). The storage is
obtained, the appendage header fields updated, and the appendage address
stored in the 10T anchor.

Module
S@CIGETM

S@C1040

S@CIGETM

S@CIGETM

S@CIGETM

Label

3. SUPERLINK Options Processor Component

3-19



Diagram 3-8
S@CIDATA - Read Instream Data Records, Store in IOT/Appendage and

List

Entry from 5361040—————————1

Vv
Input Process Output
CIOT 1. Locate SoCl030 work Feedback and
area. Return Codes
2. Locate DCBs and save EODAD
address.
3. To list.

6. Read next PARMLIB record.

5. Check for 'end of data'
appendage.

> SaCl040

320  SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit S1-0182



7~

Extended Description

Explanation

1.

Cray Research, Inc.

The parameter list consists of two fullwords. The first is a pointer to the
current work area in the stack. The second is a pointer to the following list
of fullwords in S@CI1050 (specified via PRE=(S@CIDATA label of
params).

e Offset to anchor field in IOT
e Pointer to syntax table entry for the item.

This intcrnal exit is called by S@C1040 before the current item on the
Options statement has been processed. It is not known how many times
S@C1040 has been invoked. However, the work arca stack is contiguous
with each element of a fixed size with a depth indicator. The S@C1030 work
area is at the top of the stack.

The DCB addresses are passed to S@C1030 in its parameter list from
S@C1000. The address of this parameter list is held in S@C1030’s work
area. This module must deal with “end of file” during its execution but must
restore the previous EODAD address on return.

The statement/data record which is in the buffer is listed. The first time
through the BEGIN statement that caused this internal exit to be invoke d
is listed. On subsequent passes, the previously read “data record” is listed.

The S@C1030 work area contains positioning information for reading
PARMLIB records. This information is used to advance within a block or
read a new block.

“End of Data” is reached when the record read is an END statement. The
name on the END statement is matched with the syntax table entry name
for the BEGIN statement. An error message is returned if the match fails;
otherwise, an exit from the list/read loop is taken. Reaching end of file
results in the error message “end of file before end of data”. The END
statement is left in the buffer to be listed by S@C1030.

The appendage header is used to check if there is room for the data record.
If not, an error message is returned. The offset within the appendage for the
star of the data record is computed using the appendage header fields.

Module
S@CIDATA

S@CIDATA

S@CIDATA

S@CIDATA

S@CIDATA

S@CIDATA

Label

3. SUPERLINK Options Processor Component

3-21



Diagram 3-9
S@C1060 - Back-end, Release All IOT Appendages

Entry from SQCCOODO——————————]

Vv
Input Process Qutput
PLIST 1. Validate PLIST. Updated IOT,
feed—back and
2. Locate appendage. return codes

3. Free appendage.
4. Go to step 2.

5. Set up for next I0T and go to
step 2.

> Exit to SaCC0000

3-22  SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit S1-0182



Extended Description

Explanation

1.

Cray Research, Inc.

The parameter list consists of a single fullword which contains the address
of the CIOT. This parameter is mandatory; it is the starting point for
appendage release. If the CIOT address is missing or invalid, return code
16 results.

If the anchor field within the current IOT is non-zero, it contains the address
of the appendage user data. If the anchor field is 0, step 3 is bypassed. The
address of the appendage header is computed by decrementing the
appendage user data address.

The appendage header contains the length of storage occupied by the
appendage.

Exit from the loop is taken when all appendages in the current IOT have
been released.

The CIOT contains pointers to all the other IOTs. These are processed in
the following sequence (providing the pointer is nonzero): NIOT, OIOT,
VIOT, JIOT.

Module
S@C1060

S@C1060

S@C1060

S@C1060

S@C1060

Label

3. SUPERLINK Options Processor Component

3-23



4. SUPERLINK Functional Subsystem Manager
Component

The FSS Manager component of SLCN is responsible for initialization, termination, and recovery of
SUPERLINK Functional Units, as well as activation of SUPERLINK FSSs such as SLNET. FSSs
can either be started automatically, under the control of SUPERLINK/MVS, or activated by an MCS
operator command.

Functional Subsystem Subcomponents

The FSS Manager component consists of the following subcomponents:

Subcomponent Description
S@CF0000 FSS Manager control subcomponent
S@CF0100 FSS Manager cross-memory communications subcomponent

S@CF0000 - FSS Manager Control Subcomponent

The FSS Manager control subcomponent is responsible for initiation, termination, and recovery of
SUPERLINK/MVS FSSs.

S@CF0000 - Module Structure

The FSS Manager control subcomponent consists of the following modules:

Module Function

S@CF0000 FSS Manager root module

S@CF0010 Cross-memory environment management initialization
S@CF0020 Cross-memory environment management termination
S@CF0030 MVS START command creation and issuance
S@CF0040 FSS Manager ESTAE processing

Figure 7 on page 4-2 shows the hierarchical structure of modules within the FSS Manager control
subcomponent.

Cray Research, Inc. 4. SUPERLINK Functional Subsystem Manager Component 4-1



SaCF0000 |<===========>| S3CF0040

SaCFo010 SaCF0020 S2CF0030

Figure 7. Module Structure of the FSS Manager Control Subcomponent

S@CF0000 - Services

The component managers resident within the FSS Manager control subcomponent modules are not
controlled by the FSS Manager component; they are dircctly controlled from within the associated
Functional Units. The FSS Manager control subcomponent controls the initialization and termination
of subordinate Functional Units through the FSS ORDER/SEND mechanism.

S@CFO0000 - Interfaces

The Functional Subsystem Interface (FSI), as defined by MVS/XA release 2.1.2 and later, is the
standard interface adopted by the FSS Manager component.

Other SUPERLINK components may make requests of the FSS Manager component by building an
FSS Request Element (FRQE) and adding it to the work queue for the FSS Manager component,
which is anchored in the SUPERLINK SC_SSVT control block.

The FSS Manager component provides MVS-required support for configuration of a started task as a
functional subsystem. It also enables the FSI to provide the multi-address space communication
mechanism.

SLCN handles the initialization and termination of subordinate Functional Units with the FSS
ORDER/SEND mechanism. The SUPERLINK/MVS ORDERS include the following:

ORDER Description

INIT Order issued to SLNET requesting allocation of link devices

MSG Order requiring the specified Functional Unit to reccive a message from SLCN

STATUS Order requesting current status information for the specified Functional Unit

TERM Order requesting an FSS to terminate its function. A subparameter of the
TERM ORDER indicates whether the termination sequence is one of the
following:

e Component shutdown; requests termination of a specific component or all
components resident within the specified Functional Unit.

e  Abort shutdown; requires termination regardless of session or data loss.

e Quick shutdown; requests normal termination of all active sessions with no
abort processing.

42  SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit SI-0182



An INIT ORDER for FSS initialization is unnecessary. The INIT ORDER is implicit in the MVS

START command issued by the controlling subsystem during the initialization sequence for the FSSs.
A Functional Unit issues a subsystem request (FSS CONNECT/DISCONNECT) during initialization;

this request allows the subsystem to acknowledge the Functional Unit as an FSS.

Note: RESTART is not a SUPERLINK/MVS ORDER. FSS RESTART is performed by a scries
of TERM ORDERs followed by MVS START commands. The MVS START commands perform

the FSS reinitialization sequence.

S@CF0000 - Data Areas

Several data areas are required to support an FSS. These data areas contain a fixed header followed
by component-specific fields. Figure 8 and Figure 9 illustrate the interaction between an FSS, the

Subsystem Interface, and relevant MVS control blocks.

ASCB
ASCBASXB
ASXB
>
ASXBJSVT
FSCT FSCT
— —>
*FSCT' ID YFSCT® ID
Reserved Reserved
Full—word Full—word
pointers to pointers to
FSVT processing processing

routines routines

*FSVT® ID for FSI for FSI
requests to requests to

FSS FSCT for [— owner FSS address

owner address address space space

space

FSS FSCT for

FSS address

space

Figure 8. MYVS-level Control Block Structure
FSSCB FSSXB

SSVT

SC_SSVT_FsCQ

o

Cray Research, Inc.

Figure 9.

4. SUPERLINK Functional Subsystem Manager Component

Subsystem Interface Level Control Block Structure

4-3



An SC_FSSCB exists for each FSS address space required and is resident in CSA. The
SC_SSVT_FSCQ is an anchor point for the chain of SC_FSSCBs belonging to this subsystem. The
FSSXB is an SC_FSSCB extension control block, resident in the FSS private area.

The FSS Manager component also makes use of the FSS Request Element (SC_FRQE), which
describes a request for the performance of some function. It is built by the requester and chained off
the SC_SSVT. “Appendix A. Data Area Descriptions” on page A-1 provides a description of these
data areas.

S@CFO0000 - Recovery

The FSS Manager runs as a subtask of the SLCN job step task. An ESTAE environment is established
to intercept abends of this component.

When invoked by an abend, the ESTAE routine logs the crror, gathers diagnostic information, and
determines whether FSS Manager component recovery is possible. If recovery is possible, the SETRP
macro is used to establish a retry routine. The ESTAE routine returns to the MVS Recovery
Termination Manager, which causes resumption of the FSS Manager component at the retry routine.

If recovery is not possible, the environment is cleaned up, and the abend is percolated to the parent task
(the SLCN job step task). The ESTAE detects the abend of the daughter task and determines whether
or not to reestablish the FSS Manager component.

44  SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit S1-0182



This page has been intentionally left blank.

Cray Research, Inc. 4. SUPERLINK Functional Subsystem Manager Component 4-5



Diagram 4-1

S@CF0000 - FSS Manager Root Module (part 1 of 3)

Entry from S9CC0000

v
Input Process Output
— 1. Calculate SC_FSSCB storage
SC_SSVT required.
Register 15
2. Establish ESTAE; if fail, -
exit with return code. >|Return code
<
SC_CIOT 3. Call S3aCF0010 to establish
cross—memory environment.
4. Inform SLCN that FSS
Manager is active.
5. If SLNET start is to be
automatic, continue at step
Register 15
If SLNET is not defined,
exit with return code. >|Return code
6. Wait for operator START
command.
7. Call S3CF0030 to issue
START command.
8. Wait for SLNET 'FSS active'.
9. Wait for *SLCN 0K to

Continue'.

4-6 SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit

> continued

S1-0182



Extended Description

Explanation

L.

Cray Research, Inc.

SC_FSSCBs are allocated in CSA in contiguous storage. The number of
FSS address spaces supported by SUPERLINK/MVS is defined in the
Initialization Options Table (SC_CIOT). An SC_FSSCB is located by its
FSS-ID, which acts as an index into the SC_FSSCB storage arca.

SLCN initialization must be informed that the FSS Manager component is
active so that initialization processing can continue.

The FSS definition in SC_CIOT includes a parameter stating whether FSS
initialization is to be automatically activated by SLCN, or is to be requested
by an MVS MCS console operator command.

A subsystem START command is necessary before SLNET can be
activated. All other START commands are invalid. The subsystem START
command has the following format:

#START FU = nnnnnn,....

where # denotes the subsystem command character defined in the
SC_CIOT.

CONNECT processing of the FSS POSTs this WAIT to indicate that
SLNET is active.

Subsequent FSS address spaces cannot be activated until SLCN has
completed its initialization sequence, which includes establishing the
SUPERLINK/MVS Management Interface session with SLCN resident on
COS.

Module
S@CF0000

S@CF0000

S@CF0000

S@CF0000

S@CF0000

S@CF0000

Label

4. SUPERLINK Functional Subsystem Manager Component

4-7



Diagram 4-2

S@CF0000 - FSS Manager Root Module (part 2 of 3)

Continued

v

Input

l1o0.

11.

12.

13.

14.

15,

16.

Process

If remaining FSSs are to be
started automatically,
continue at step 12.

Wait for operator START
command.

Call SaCF0030 to issue
START command and wait for
CONNECT processing to
indicate that FSS has
connected.

Repeat process from step 10
for all FSSs.

Wait for shutdown or request
start of an FSS or LISTEN
task termination or for
notification by end—of—
memory exit of FSS
termination.

If FSS start requested, call
SACF0030 to issue START and
go to step 14.

If LISTEN task is ended,
attempt to reinstate it.

If shutdown is requested for
SLNET, continue at step 18.

OQutput

43

> continued;

SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit

SI1-0182



Extended Description

Explanation

10. FSS address spaces can either be started automatically under the control of
SUPERLINK/MVS or activated by MCS operator command.

14. Once all the FSS address spaces have been activated, the FSS Manager is
required to act only under the following conditions:

Request for shutdown of a specific FSS
Request for shutdown of all FSSs

Request to start an FSS

Notification of FSS address space termination

o o 0 O

15. If an FSS start is requested, call S@CF0030 to issue the MVS START
command.

If the cross-memory environment has terminated prematurely, attempt to
reinstate it. If the reinstatement fails, POST the FSS Manager terminate
ECB to terminate cleanly. In either case, return via step 14.

16. If an operator requests a shutdown of SLNET, all application FSSs must
be closed down first.

Module
S@CF0000

S@CF0000

S@CF0000

S@CF0000

Label

Cray Research, Inc. 4. SUPERLINK Functional Subsystem Manager Component

49



Diagram 4-3

S@CF0000 - FSS Manager Root Module (part 3 of 3)

continued '
v
Input Process Output

17. Issue FSS ORDER (TERM) to
relevant FSS; wait for
confirm and return to
step 14.

18. Issue FSS ORDER (TERM) to
all application FSSs.

19. Notify all user applications
(started tasks only) of
termination request.

20. HWait for confirmation that
termination is complete.

21. Wait for '0K to continue’'.

22. Issue FSS ORDER (TERM) to
SLNET; wait for
confirmation.

23. Call S3CF0020 to delete
cross—memory environment.

24. Remove ESTAE.

> Exit to S3CC0000
4-10 SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit

SI1-0182



Extended Description

Explanation

17.

18.

19.

21.

Cray Research, Irc.

If a specific FSS shutdown has been requested, the FSS Manager issues an
FSS ORDER to indicate that termination is required. This can be achieved
by use of the S@@CSERV macro. A termination parameter determines
whether the shutdown is to be immediate or sedate.

Note: Immediate shutdown is likely to cause loss of data on active sessions.

The relevant FSS response must confirm that FSS DISCONNECT is
complete before the shutdown request can be considered as activated.

The processing for shutdown of the entire SUPERLINK/MVS product is
as previously described, except that, initially, only the application FSS
address spaces can be terminated. SLNET must remain active until the
SUPERLINK Management Interface has been disabled.

User-written applications can be supported as started tasks. As
SUPERLINK/MVS can initialize these applications, it must inform them
when termination processing is required.

SLCN notifies the FSS Manager “OK to continue” once the Management
Interface has been disabled.

Module
S@CF0000

S@CF0000

S@CF0000

S@CF0000

Label

4. SUPERLINK Functional Subsystem Manager Component

4-11



Diagram 4-4
S@CF00100 - Cross-Memory Environment Management Initialization

Entry from SaCF0000 I

v
Input Process Output

R1 => ——> 1. Determine action to be
performed from passed
PLIST parameter list.

If required, ATTACH LISTEN
task.

2. If required, load SRB Register 15
receive routine into common
storage; set return code.———>|Return code

> Exit to SaCF0000

4-12  SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit S1-0182



Extended Description
Explanation Module Label

1. ATTACH the “listen” task as a subtask of the FSS Manager (it must be up S@CF0010
before any SRBs can be SCHEDULEd to the FSS address spaces).

2. A cross-memory receive routine, which is SCHHEDULEd as an SRB in the S@CF0010
target FSS address space, is required. This routine enables FSS ORDERs
to be passed to the FSS Interface routines. These, in turn, invoke the
routines that process the ORDERs.

Cray Research, Inc. 4. SUPERLINK Functional Subsystem Manager Component

4-13



Diagram 4-5
S@CF0020 - Cross-Memory Environment Management - Termination

Entry from S3CF0000 I

v
Input Process Output

1. Delete SRB receive routine.

2. POST LISTEN task to
terminate, and DETACH it
once it has done so.

> Exit to SaICF0000

4-14  SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit S1-0182



Extended Description
Explanation Module Label

1. FSS termination has completed; therefore, the SRB receive routine used to S@CF0020
move data cross-memory from the SLCN address space is no longer required
and is DELETEd.

2. Stop the “LISTEN" task by POSTing its “terminate” ECB. WAIT for it to S@CF0020
terminate, then DETACH the task.

Cray Research, Inc. 4. SUPERLINK Functional Subsystem Manager Component 4-15



Diagram 4-6

S@CF0030 - MVS START Command Creation and Issuance
Entry from S2CF0000

v
Input I Process Output
> 1. Allocate storage for command
PLIST — buffer.
==>FSSCB 2. Obtain FSS name and JCL
procedure name from SC_FSSCB.
SC_FSSCB 3. Obtain subsystem parameters
< from SC_SSVT.
==> SSVT
4., Remove embedded blanks from START command
==>SC_CIOoT command.
S proc.id,,..
5. Issue START command.
6. Set return code. > Register 15
V SC_CIOoT
SC_SSVT
<—

4-16 SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit

> Exit to S2CF0000

S1-0182



Extended Description

Explanation

1.

Cray Research, Inc.

The command buffer must be allocated in 24-bit addressable storage for the
MGCR macro (it must be GETMAINed BELOW the line).

The JCL procedure name for the FSS is installation-defined. The
SC_FSSCB for the FSS in question points to the FSS imtialization
parameters in which the JCL procedure name is found.

These START parameters must be included:
e  The FSS name of the FSS being initiated

e A specification of whether the initialization parameters for this I'SS are
to be refreshed or revised from a specified parameter library member

The START command is created using fixed-length ficlds in the command
buffer. These fields are embedded with blanks. Blanks must be removed so
that the MVS START command processor does not ignore any important
parameters. The general syntax of the START command is as follows:

S proc.id,,,(subsys-name,f5s-id)
The START command is issued with the MGCR macro.

The MGCR SVC indicates whether or not the START command was
processed successfully. A return code of 8 indicates that the START
command failed; a return code of 0 indicates that the START command
was processed successfully, and register 15 contains the right-justified ASID
of the started address space.

Module
S@CF0030

S@CF0030

S@CF0030

S@CF0030

S@CF0030
S@CF0030

Label

4. SUPERLINK Functional Subsystem Manager Component

4-17



Diagram 4-7
S@CF0040 - FSS Manager ESTAE
Entry from MVS RTM I

v
Input Process Output

1. Determine type of abend.

2. If abend recurs, percolate
to next level.

3. If recovery is possible,
exit with retry.

4. If recovery is not possible,
percolate to next level after
ensuring that LISTEN task
has been DETACHed.

> Exit to MVS RTM

4-18 SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit SI1-0182



Extended Description

Explanation

2. To prevent reentry in an abend-type loop, check for recursion. If this is a
recursive abend, use the SDUMP routine to obtain a dump for diagnostic
purposes. Percolate the abend condition to the next level, where the
main-line code S@CCO000 detects the abend of the daughter task.

3. If recovery is possible, a retry routine can be specified on the SETRP macro.
The routine gains control after this exit has returned control to RTM.

4. If recovery is not possible, use the SDUMP routine to obtain a dump for
diagnostic purposes. Use the SETRP macro again to percolate the abend
condition to the next highest level, where the main-line code S@CC0000
detects the abend of the daughter task. DETACH the “LISTEN" task.

Module
S@CF0040

S@CF0040

S@CF0040

Label

Cray Research, Inc. 4. SUPERLINK Functional Subsystem Manager Component

4-19



S@CF0100 - Cross-Memory Communications Subcomponent

The cross-memory communications subcomponent of the FSS Manager component is primarily
concerned with the control of communications between SLCN and the FSSs.

The FSS scheme provides the structure in which one or more address spaces run as subordinate address

spaces to a controlling address space. This subsection describes how data is sent to a specified address
space and how associated replies are received.

S@CF0100 - Module Structure

The FSS cross-memory communications subcomponent consists of the following modules:

Module Description

S@CF0100 SCHEDULE the SRB receive routine in the target FSS

S@CFO0110 The SRB receive routine

S@CF0120 “listen” task in the control address space

S@CF0130 Functional Recovery Routine (FRR) for the SRB receive routine, S@CFO0110
S@CF0140 ESTAE routine for the “listen” task, S@CF0120

S@CFO0100 - Services

The cross-memory communications subcomponent is used for sending commands from SLCN to the
FSSs and returning associated replies to SLCN. This mechanism may also be used to notify SLCN
about asynchronous events occurring in the FSSs.

The following FSS communications subcomponent services arc used:
¢ ORDER enables data, typically commands, to be transferred from SLCN to an FSS.

¢ SEND enables an FSS to transfer data asynchronously to SLCN; typically this data consists of
replies to commands, but it may also be notification of exceptional events in the FSS.

The underlying mechanisms for transferring ORDERs and SENDs between SLCN and the FSI and
between the FSI and the FSS-specific routines differ as follows:

¢ ORDERs from SLCN to the FSI routines are moved between address spaces by using a service
request block (SRB) routine scheduled in the FSS.

¢  The SRB receive routine retrieves an ORDER and transfers it to the FSS-specific routines through
the FSI routines set up during FSS initialization.

¢ Like ORDERs from the FSI, SENDs from the FSS are passed to the FSI via the FSI routines.

¢ The SEND:s passed from the FSS to the FSI are passed to SLCN via the cross-memory POST
of a “listen” task in SLCN.

4-20 SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit SI1-0182



S@CF0100 - Interfaces

There are two major interfaces involved in the communication between SLCN and the target FSS:

e SLCN to the FSI routines that are part of the FSS
e  FSI routines to the FSS

Figure 10 illustrates these communication interfaces and the mechanisms used to transfer data across
them.

Control Address Space FSS Address Space

ORDER FSI
FSS Manager | | | Routines

SEND
ORDER I |

Specialized
FSS Routines

Figure 10. FSS Communication Channels

The control address space is notified of SENDs via cross-memory POST. ORDERs and SENDs are
transferred via the FSI mechanism.

The following macros provide the interfaces:
s S@@CSERV

This macro handles communications between SLCN and the FSI routines in SLCN. It
SCHEDULE:s the SRB to the FSS address space upon receipt of an ORDER and cross-memory
POSTs the control address space when a SEND is requested from SLCN.

A return code indicating the success or failure of the request is passed in register 15.
e S@@FIREQ

This macro handles the communications between the FSI and the FSS-specific routines. [t also
allows the FSS to CONNECT and DISCONNECT itself from the controlling address space
through Subsystem Interface function request 53.

“Appendix B. SLCN Macros” on page B-1 describes the syntax for these macros.

S@CF0100 - Data Areas

The following data areas correspond to the two main communication interfaces between SLCN and
the target FSS and to the mechanisms used to carry ORDER and SEND requests:

Cray Research, Inc. 4. SUPERLINK Functional Subsystem Manager Component 4-21



Data Area

SC_FSIP

SC_SERV

FM_STAG

FM_FSWQE

Description

FSI parameter list

This data area describes requests passed over the FSI/FSS interface. Extensions
to this structure are used to map different types of FSI requests. The extensions
are used for CONNECT/DISCONNECT and SEND;ORDER processing;
there are IBM mappings for CONNECT/DISCONNECT requests and for the
fixed headers for ORDER and SEND requests contained in the IAZFSIP
DSECT. Extensions to the ORDER and SEND mappings are provided to
accommodate special SUPERLINK/MVS requirements within the context of
requests passed via the ORDER and SEND primitives.

The parameter list associated with the S@@CSERYV macro

This data area is used to pass requests between the requester of a service and the
routine (S@CF0100) that SCHEDULEs the SRB in the target address space.
SC_SERV is completed by the S@ @ CSERYV macro.

Staging area buffer

This data area is the staging area buffer used to transport requests between two
address spaces. Control information about the SRB used to convey the request
is also maintained here.

FSS work request element

This data area is the cross-memory work request element for the FSS. It is
queued from the SC_FSSCB when an ORDER request is sent to the FSS. The
ORDER request, control information, and chaining pointers are embedded in
the FM_IF'SWQE. The cross-memory SRB routine allocates FM_FSWQLE in
the FSS-private area.

“Appendix A. Data Area Descriptions” on page A-1 provides a format description of these data areas.

S@CF0100 - Recovery

The SRB “receive” routine (S@CFO0110), which executes under an SRB in the target FSS, is covered
by a Functional Recovery Routine (FRR). This routine traps abends in the- FSI routines that are
performing the receive processing of ORDERs.

The “listen” task, which runs in SLCN and waits to be POSTed by one of the FSSs upon SEND
processing, is covered by an ESTAE. The ESTAE traps abends of this task and determines if successful
recovery processing is possible.

4-22 SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit S1-0182



This page has been intentionally left blank.

Cray Research, Inc. 4. SUPERLINK Functional Subsystem Manager Component 4-23



Diagram 4-8

S@CF0100 - SCHEDULE SRB Routine

Entry from service user —-—————————]

v

Input

Register 1
==>

SC_SERV

Jl

7.

Process

Service to be performed is
described in SC_SERV; if

requested service cannot be
performed, exit with return

OQutput

code.

Fill in request and build
a staging area (FM_STAG).

Get common storage for SRB.

>Register 15

Build SRB.

SCHEDULE S?CF0110 under SRB
in target FSS.

If requested, WAIT until
FSS has acknowledged
receipt of request.

Set return code for caller.

ESTAE protecting this routine.

8.

Free FM_STAG and SRB
if present; purge any
SRBs awaiting dispatch.

RETRY routine.

9.

Set return code for caller,
delete ESTAE environment,
and return to caller.

SRB

>Register 15

4-24

SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit

> Exit to service user

SI1-0182



Extended Description

Explanation

1.

Cray Research, Inc.

Register 1 points to the parameter list SC_SERYV, which was built by the
S@@CSERV macro in response to a Cross-memory communications
request. If the requested service is unavailable (for example, the request is
invalid or the requested FSS is not available), an appropriate return code
must be passed back to the caller.

The SRB used to dispatch the receive routine in the target FSS address space
must be built in commonly addressable storage.

The SCHEDULE macro is used to place the newly built SRB on the SRB
dispatch queue, which MVS will schedule later. The routine that will be
dispatched is the “receive” routine, S@CFO0110. It specifics that an FRR
recovery environment will be established at the time the SRB is entered, and
identifies this task as the associated task for the SRB.

The invoker of the S@@CSERYV macro may have requested WAIT = YES
or WAIT = NO on invocation. For WAIT = YES, this routine WAITs until
POSTed by the target FSS. Otherwise, no WAIT is performed.

A return code passed in register 15 informs the caller of the success or failure
of the request.

This ESTAE environment gains control when the FRR protecting the SRB
routine (S@CFO0130) continues with termination (percolates) rather than
retrying. Any common storage not already freed (FM_STAG, SRB) is freed
at this point, and any outstanding SRBs on the dispatch queue arc purged
with the PURGEDQ macro. This ESTAE retrics to step 9.

The ESTAE in step 8 retries to this point, which sets a rcturn code for the
caller indicating that the SRB FRR gained control and that the staging area
was not received by the target address space.

Module
S@CF0100

S@CF0100

S@CF0100

S@CF0100

S@CF0100

S@CF0100

S@CI0100

Label

4. SUPERLINK Functional Subsystem Manager Component

4-25



Diagram 4-9
S@CFO0110 - SRB Receive Routine

Entry from MVS I
v
Input Process Output
1. Entered with FRR environment
established.
> > 2. Retrieve request from
SC_FSSCB staging area (FM_STAG).
3. Free SRB. >
FM_STAG SRB

4. Issue SPFIREQ macro to
request the relevant FSI

service.
SC_FSIP
5. Cross—memory POST
issuer of S3aCSERV
request. >| POST
ECB

> Exit to MVS dispatcher

4-26  SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit

S1-0182



Extended Description

Explanation

1.

Cray Research, Inc.

To effect recovery in case of an abend, this routine is entered with an FRR
environment already defined. This was done when the SRB was
SCHEDULEd from S@CF0100, which indicated that S@CF0130 was the
FRR for this routine.

The request built by S@CF0100 in a staging arca (FM_STAG) is retrieved
to determine which request must be acted upon.

Once the requested action has been determined, the approprate FSS
Interface routine must be invoked to execute it. This is achieved by the
F@@FIREQ macro, which finds the appropriate routine from the
FM_FSVT and FM_FSCT and invokes it.

The control address space is cross-memory POSTed to notify the issuer of
the S@@CSERYV macro in the control address space of the receipt of the
request.

Module
S@CF0110

S@CF0110

S@CF0110

S@CF0110

Label

4. SUPERLINK Functional Subsystem Manager Component

4-27



Diagram 4-10
S@CF0120 - Listen Task in Control Address Space
Entry from S2CF0000 I

v

Input Process Output

1. Establish ESTAE environment
and initialize.

WAIT
2. WAIT to be P0OSTed by an FSS >
or the FSS Manager. ECBLIST

P0OSTed
ECB

] > 3. If POSTed by FSS Manager and

if terminate request, continue
at step 7; otherwise,
continue at step 2.

If POSTed by an FSS, continue
at step 4; otherwise,
continue at step 2.

| > 6. Retrieve SEND request
via SC_FSSCB.

SC_FSSCB

5. Process requested action.
6. Continue at step 2.
7. Delete ESTAE environment.

> Exit to S3CF0000

4-28 SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit

SI-0182



Extended Description

Explanation

L.

Cray Research, Inc.

To trap abends of this task and provide recovery facilities, an ESTAE
environment is established. The ESTAE routine is module S@CF0140.
Any initialization required is also handled at this point.

This is the main WAIT point of the whole module. Only two sources of
wakeup are defined:

¢  Wakeup by the FSS Manager
e  Wakeup by an FSS address space with data to pass

If a terminate request is received from the FSS Manager, the task should
terminate cleanly. If there is work to be done in receiving data from the FSS,
that unit of work should be processed. Any other source of stimulation
results in the WAIT state being reentered.

The request from the FSS is retrieved from the SEND queue anchored from
the SC_SSVT in staging area FM_STAG.

The request from the FSS is acted upon by passing the information received
to the appropriate destination within the control address space. For example,
if the request contained output from a previously-entered operator
command, it should be sent to the component responsible for displaying the
reply to the operator.

Reenter the WAIT state to wait for the next request.

Clear things up and terminate.

Module
S@CF0120

S@CF0120

S@CF0120

S@CF0120

S@CF0120

S@CF0120
S@CF0120

Label

4. SUPERLINK Functional Subsystem Manager Component

4-29



Diagram 4-11

S@CF0130 - Functional Recovery Routine for S@CF0110

Entry from MVS RTM

v

Input

. Determine type of abend.

. Percolate to next level so

Process

If abend recurs, percolate
to next level.

Indicate that FRR was invoked
for traceback purposes.

that ESTAE in S3CF0100
will be entered.

Output

4-30

> Exit to MVS RTM

SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit

SI-0182



Extended Description

Explanation

1.

Cray Research, Inc.

Routines running in SRB mode and requiring protection should be covered
by an FRR. This routine protects SRB receive routine S@CF0110. FRR
routines are always provided with an SDWA by RTM.

To prevent reentry in an abend-type loop, check for recursion. If this is a
recursive abend, use the branch entry (since this is an FRR) to the SDUMP
routine to obtain a dump for diagnostic purposes. The abend condition
should be percolated to the next level.

Since this is an FRR, use the branch entry to the SDUMP routine to obtain
a dump for diagnostic purposes. The abend condition should then be
percolated to the next level using the SETRP macro. This causes the
ESTAE in the associated task (S@CF0100) to gain control to perform more
recovery in the originating address space.

Module
S@CF0130

S@CF0130

S@CF0130

Label

4. SUPERLINK Functional Subsystem Manager Component

4-31



Diagram 4-12
S@CF0140 - LISTEN Task ESTAE Routine

Entry from MVS RTM 1
v
Input Process Output

1. Determine type of abend.

2. If abend recurs, percolate
to next level.

3. If recovery is possible,
exit with retry.

4. If recovery is not possible,
percolate to next level.

> Exit to MVS RTM.

4-32  SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit S1-0182



Extended Description

Explanation

2. To prevent reentry in an abend-type loop, check for recursion. If this is a
recursive abend, use the SDUMP routine to obtain a dump for diagnostic
purposes. Percolate the abend condition to the next level, where the FSS
Manager detects this task’s abend.

3. Ifrecovery is possible, a retry routine can be specified on the SETRP macro,
which gains control after this exit has returned control to RTM.

4. If recovery is not possible, use the SDUMP routine to obtain a dump for
diagnostic purposes. Using the SETRP macro again, percolate the abend
condition to the next level, where the FSS Manager detects this task’s abend.

Module
S@CF0140

S@CF0140

S@CF0140

Label

Cray Research, Inc. 4. SUPERLINK Functional Subsystem Manager Component

4-33



-~

5. SUPERLINK Product Operator Component

The Product Operator component of SLCN controls the SUPERLINK/MYVS product by processing
operator commands entered from the MCS console interface.

Product Operator Module Structure

The Product Operator component consists of the following modules:

Module

S@CO00000
S@CO00010
S@CO00020
S@CO00030
S@CO0040

S@C00050
S@CO0060

S@CO00070

S@CO0DIS
S@COoD010
S@COD020
S@COD030
S@COD040
S@COD050
S@COD060
S@COoD070
S@COD080
$@COD090

Cray Research, Inc.

Description

Root module for the Product Operator component
Product Operator initialization

Parsing routine for all operator commands

Parsing routine for all command operands

Syntax graph describing all valid commands and their formats (this is a
nonexecutable module)

MCS console output processing routine

Product Operator termination

Product Operator ESTAE routine

Root module processing routine for the DISPLAY command
Command processing routine for the DISPLAY SLUSERS command
Command processing routine for the DISPLAY NODES command
Command processing routine for the DISPLAY TABLES command
Command processing routine for the DISPLAY OFFERS command
Command processing routine for the DISPLAY LINKS command
Command processing routine for the DISPLAY AM command
Command processing routine for the DISPLAY SESSIONS command
Command processing routine for the DISPLAY STORAGE command

Command processing routine for the DISPLAY MIC command

5. SUPERLINK Product Operator Component

5-1



5-2

Module
S@CODI100
S@CO0SWT
S@COOSET
S@COS010
S@CO0S020
S@CO0S030
S@COS040
S@COO0STR
S@CO0STP
S@COOSND
S@COOMSG

Description

Command processing routine for the DISPLAY FSS command
Command processing routine for the SWITCH command

Root module processing routine for the SET command
Command processing routine for the SET SESSION command
Command processing routine for the SET CASE command
Command processing routine for the SET AM command
Command ;;rocessing routine for the SET MI= XXXX command
Command processing routine for the START command
Command processing routine for the STOP command
Command processing routine for the SEND command

Command processing routine for the MSG command

Figure 11 on page 5-3 shows the hierarchical structure of the modules within the Product Operator

component.

SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit SI-0182



ESTAE
SaC00000 |<==========>| $53C00070
SaC00010 SaCc00020 SaC00060
S39C00030 S3C90040
SACO00DIS| | SICOOSKHT | | SSCOOSET| | S2COOSTR| | SACOO0STP| | S2COOSND| | S93COOMSG
SaC00050
S3CcoDo10 SaCcoD020 SaCoD030 SaC0D040
SaCcoDo10 Sacaobo2o SaCcoDo30 SaC0D040 S9C0D050
SaC0D060 SaCcoDo70 SaCoDo&o SaCoD090 SaCoD100
Module Structure of the Product Operator Component

Figure 11.

Product Operator Services

The Product Operator component controls the SUPERLINK/MVS product by processing the

following commands:

® 6 & 6 0 0 o

DISPLAY
MSG
SEND
SET
START
STOP
SWITCH

Cray Research, Inc.

S. SUPERLINK Product Operator Component

5-3



The SUPERLINK/MYVS Installation, Customization, and Tuning Guide, publication SI-0180,
provides more detailed information about these commands.

Product Operator Command Definitions

Commands are defined to the Product Operator component by a syntax table (S@C00040). This table
is generated by a series of macro calls that define the attributes of each command and the syntax of their
operands. The following macros are used:

Macro Description

S@COADEF This macro allows sets of altcrnate operands to be available on any command.
Alternate operand entrics may point to other alternate operand lists; in this way,
complex syntaxes can be defined.

S@COCDEF This macro defines the available commands and their attributes to the command
parser and dirccts the parser to one or more operand cntrics that define the
operands available on each command.

S@COKDEF This macro allows definition of keyword operands. The attributes and values
of the keywords are also defined.

S@COLDEF This macro defines literal operands that can be used on a specific command.

S@COPDEF This macro allows positional operands to be defined. The attributes and values

of the operands are also defined.

“Appendix B. SLCN Macros” on page B-1 describes the syntax of these macros.

Product Operator Interfaces

The Product Operator component is activated by operator commands entered at an MCS console. The
Subsystem Interface command processing routine, S@CCO0S34, interrogates all commands presented
to it by MVS. If a command other than a shutdown request is intended for SLCN, S@CC0S34 creates
an operator command buffer, SC_OPCB, and queues it onto a chain anchored from the SC_SSVT.
The Subsystem Interface cross-memory POSTs the Product Operator component to indicate that there
is an operator command to be processed. The Product Operator component processes the commands
in first-in-first-out (FIFO) order and continues processing until the queue is empty.

Product Operator Data Areas

54

The Product Operator component provides the following data areas:

Data Area Description

SI_OPCT Operator Control Table

This is the major control block of the Product Operator component.

SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit SI-0182



Data Area Description

SC_OPCB Operator Command Buffer

The Subsystem Interface command processing routine, part of the Product
Management component, creates the SC_OPCB control block to be used as
input to the Product Operator component.

S@CO00040 The syntax table used to parse commands and their operands

This syntax table consists of a number of entries mapped by the control block
SI_CMD. Entries have slightly different mappings depending on whether they
describe a command or a particular operand format.

The highest-order index in the table consists of a list of command entries that
are searched in linear order for a command verb match. Subordinate to each
command cntry is a syntax tree of the allowed operands for that command.

“Appendix A. Data Area Descriptions” on page A-1 provides format descriptions of these data areas.

Product Operator Recovery

The root module for the Product Operator component is protected by an ESTAE environment that
traps ABENDs within the Product Operator component and attempts to recover from them whenever
possible. If recovery is not possible, notification of the abend is percolated to the next level of the
recovery environment. If an abend occurs during the processing of a command, the command is
flushed.

Cray Research, Inc. 5. SUPERLINK Product Operator Component 55



Diagram 5-1 a
S@CO0000 - SUPERLINK Product Operator Component Root Module

Entry from S2CC0000 |

v
Input Process Output

1. Call S?C00010 to
initialize Product
Operator.

2. Enable ESTAE.
3. WAIT to be POSTed

indicating operator
command to process.

4. If termination is
requested, continue
at step 9.

5. Remove all command
buffers from queue.

6. Call SaC00020 to
process top—
of—queue command
buffer in FIFO
order.

7. Return to step 6
until all command /‘-\
buffers have been
processed.

8. Return to step 3
to await next
command.

9. Call operator
termination routine
SaC00060.

10. Disable ESTAE.

> Exit to SaCC0000

5-6 SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit SI-0182



Extended Description

Explanation Module Label

5. The command buffer queue, anchored from the SC_SSVT, is in LIFO S@CO00000
order. However, the operator commands must be processed in FIFO order.
The complete qucue of outstanding commands is now reorganized in
preparation for processing.

7. The Product Operator component must ensure that all command buffers S@CO00000
removed to form the FIFO queue are processed. These command buffers
are processed before any commands that were chained to the LIFO queue
in the SC_SSVT and after the command buffers were removed from the
LIFO queue.

Cray Research, Inc. 5. SUPERLINK Product Operator Component 5-7



Diagram 5-2
S@CO0010 - Product Operator Initialization
Entry from S3C00000 I

v
Input Process OQutput

1. Allocate and format
SI_OPCT. > |SI_OPCT

> Exit to S3C00000

S8  SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit S1-0182



This page has been intentionally left blank.

Cray Research, Inc.

5. SUPERLINK Product Operator Component

59



Diagram 5-3

S@CO00020 - SUPERLINK Product Operator Component Command Parser

Entry from S$3C00000

v
Input Process
—>1. Identify issuer of
SC_OPCB command.
2. Validate command
character string.
SI_OPCT
3. Validate issuer's
command authority.
4. Branch to SaC00030
to validate operands.
5. Branch to command
processing routine.

Output

5-10 SUPERLINK for MVS Logic Library Volume 2: Contrel Functional Unit

> Exit to S3C00000

SI-0182



Extended Description

Explanation

2.

Cray Research, Inc.

A syntax graph of valid operator commands and their operands is available
from module S@CO0040. The syntax graph is searched for the relevant
command entry, using the command character string input. If an entry is not
located, the command is invalid, and an error message must be returned to
the point of origin. In this case, an error message is formatted and the
process branches to module S@CO0050, the Product Operator MCS
console output processing routine. This routine issues the message to the
appropriate MCS console.

The command issuer’s authority must be checked before the command can
be acknowledged as valid. If the issuer is not allowed to issue this command
(authority levels are also defined within the syntax graph command
definitions), an error message is formatted and a call is made to module
S@CO00050, which outputs the message to the appropriate MCS console.

The syntax graph identifies the command processing module that supports
the command which was requested by the operator. Processing branches to
that routine, where the requested action is performed.

Module
S@C00020

S@CO00020

S@C00020

Label

5. SUPERLINK Preduct Operator Compenent

5-11



Diagram 5-4 ~
S@CO00030 - Product Operator Operand Parser
Entry from S3C00020 . I

v

Input Process OQutput
[ >1. Validate operand using
SI_OPCT SaC00040 syntax
definitions.

2. Return to caller with
return code.

> Exit to S2C00020

5-12 SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit SI1-0182



~ Extended Description

Explanation Module Label

1. The operands are validated according to their syntax description, that is, as S@CO00030
keywords, positional parameters, or literals. Indicators are sct in the
SI_OPCT to direct the command processing routines. If an operand is found
to be invalid, an error message is formatted. A branch to module
S@CO0050 causes the message to be output to the MCS console of origin.

Cray Research, Inc. S. SUPERLINK Product Operator Component 5-13



Diagram 5-5
S@CO0040 - Product Operator Syntax Graph

Entry from S3C00020
or S3C00030 |
v

Input Process Output

>1. Set flags to indicate
N presence of specific
operands.

SI_OPCT

> Exit to 53C00020 or S2C00030

5-14 SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit SI1-0182



) Extended Description
Explanation Module Label
1. A binary field is reserved in the SI_OPCT for each possible operand of a S@CO00040

command. This ficld indicates the presence of the operand and, if necessary,
its value.

Cray Research, Inc. 5. SUPERLINK Product Operator Component 5-15



Diagram 5-6
S@CO00050 - SUPERLINK Product Operator Component Output Processor

Entry from any Product Operator
component routine requiring
output services

\'
Input Process Output
Register 1 > 1. If function code
PLIST —> indicates multi-
line output,
?SC_SSVT gontinue at step

r 2. Issue WTO0 to point
Vv of origin; return

to caller.
@SI_OPCT

3. If message is
'end—of—message’
continue at step 6;

Vv if message is not

first line of a

SI_OPCT multiline message,

gontinue at step

4. Allocate page in
common storage.

5. Save message line
into common page
buffer and return
to caller.

6. Add 'end-of—data’
message to page
buffer.

7. Output multiline
message to point
of origin.

8. Release common
page buffer.

> Exit to caller

5-16 SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit SI1-0182



~

Extended Description

Explanation

L.

Cray Research, Inc.

On entry to module S@CO0050, register 1 points to a parameter list that
contains a pointer to the SC_SSVT (and thence to the SI_OPCT) and a
function code. This code indicates which type of processing the routine is to
perform. The output may be a single line of data or part of a multiline
message.

A multiline message includes two types of data line:

e Control line - First line of the message
¢ Data line - All subscquent lines within the message

To signify that all data has been transferred to the output processing routine,
a further call, indicating “end-of-data”, is made to S@CO0050. No data line
processing is performed on this call.

The SI_OPCT control block holds the information concerning the console
identifier of the console of origin.

The message for output may be longer than a 4K page of storage. If so, the
data is displayed to the console 4K at a time. After one 4K page of data has
been displayed, the 4K page is reused for the remainder of the message
output.

An “end-of-data” message is appended to the page buffer, indicating to the
operator that all data has been displayed.

Each message line from the buffer area is output to the point of origin;
information concerning command origin is found in the SI_OPCT. The
WTO service is used to output the data.

Module
S@C00050

S@C00050

S@C00050

S@CO00050

S@CO00050

Label

5. SUPERLINK Product Operator Component

5-17



Diagram 5-7

S@CO0060 - SUPERLINK Product Operator Component Termination

Entry from S2C00000

'

Input

1.

Process

Remove SI_OPCT pointer
from SC_SSVT.

2. Delete SI_OPCT.

Output

$-18 ~ SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit

> Exit to S?C00000

SI-0182



This page has been intentionally left blank.

Cray Research, Inc. : S. SUPERLINK Product Operator Component 5-19



Diagram 5-8

S@CO0070 - Product Operator ESTAE

Entry from MVS RTM

v

Input

1.

Process

Determine type of
abend.

. If abend recurs,

percolate to next
level.

If recovery is
possible, exit
with retry.

If recovery is not
possible,
percolate to next
level.

Output

5-20 SUPERLINK for MYVS Logic Library Volume 2: Control Functional Unit

> Exit to MVS RTM

SI1-0182



This page has been intentionally left blank.

Cray Research, Inc. , S. SUPERLINK Product Operator Component 5-19



Diagram 5-8

S@CO0070 - Product Operator ESTAE

Entry from MVS RTM

v

Input

Process

. Determine type of

abend.

If abend recurs,
percolate to next
level.

If recovery is
possible, exit
with retry.

If recovery is not
possible,
percolate to next
level.

Output

5-20 SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit

> Exit to MVS RTM

SI-0182



Extended Description

Explanation

1.
2.

Cray Research, Inc.

No retry is attempted on X22-type abends, nor is a dump obtained.

To prevent reentry in an abend recursive loop, check for recursion. If this
is a recursive abend, control should simply be percolated to the next level
of recovery, where the SLCN control module detects the termination of the
Product Operator component.

If recovery is possible for this abend and an SDWA is present, a retry routine
is specified on the SETRP macro. This routine gains control after the
ESTAE has rctumed control to RTM. A dump is also obtained for
diagnostic purposes with the SDUMP routinc.

The retry routine attempts to recover the existing SI_OPCT or builds a new
onc if the old one has been lost. The operator task reinitializes itsclf and
attempts to process the next command on the command qucue.

If recovery is not possible, use the SDUMP routine to obtain a dump for
diagnostic purposes. Using the SETRP macro again (if an SDWA is
obtained), percolate the abend condition to the next level of recovery. At this
level, the SLCN root module detects this task’s termination.

Module
S@CO00070
S@CO0070

S@C00070

S@CO00070

Label

5. SUPERLINK Product Operator Component

5-21



Diagram 5-9

S@COODIS - DISPLAY Command Processing Routine

Entry from S52C00020

v

Input

SI_OPCT

|

>

1.
2.

Process
GETMAIN a work area.

Determine what type of
DISPLAY command has
been requested.

Invoke submodule to
perform the requested
DISPLAY command.

Output

OQutput of requested
Information

l---——--—> Exit to DISPLAY submodule

5-22  SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit S1-0182



~

Extended Description

Explanation

2. As each operand on the DISPLAY command was validated, an indicator
was set in the SI_OPCT control block. This routine must interrogate each
of these indicators in turn to identify which operands have been input by the
operator.

3. The appropriate sub-modules available arc as follows:

Cray Research, Inc.

S@CODO010 (DISPLAY SLUSERS) - Display a List of all
SUPERLINK Users (using the SC_SLASVT)

S@COD020 (DISPLAY NODES) - Display a list of nctwork nodes
(using the Link Table)

S@COD030 (DISPLAY TABLES) - Display the address’s of some
SUPERLINK control blocks

S@COD040 (DISPLAY OFFERS) - Display a list of all application
titles on Offer (Using the ATE’s)

S@CODO050 (DISPLAY LINKS) - Display a list of entries in the Link
Table (Using Link Table entries)

S@COD060 (DISPLAY AM) - Display Association Manager values
and usage (Using AM Tables)

S@CODO070 (DISPLAY SESSIONS) - Display a list of connections
(using the ATE’s)

S@COD080 (DISPLAY STOARGE) - Display SLNET buffer usage
(Using the SMB)

S@COD09%0 (DISPLAY MIC) - Display Management. Interface
conncctions (Using the MI_MACB)

S@CODI100 (DISPLAY TFSS) - Display a list of Functional
Subsystems (Using the FSSCB)

Module
S@CO0DIS

S@COO0DIS

Label

5. SUPERLINK Product Operator Component

5-23



Diagram 5-10
S@COOSWT - SWITCH Command Processing Routine
Entry from S2C00020 I

v

Input I Process Output

> 1. Notify LOG of new
SI_OPCT I DDNAME to which
messages should be
logged.

> Exit to S2C00020

5-24 SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit S1-0182



2 Extended Description

Explanation Module Label

1. As cach operand on the SWITCH command was validated, an indicator was S@CO0SWT
set in the SI_OPCT control block. This routine must interrogate each of
these indicators in turn to identify which operands have been input by the
operator.

The DDNAME field is extracted. The LOG task is notified of the change
in the logging DDNAME by completing the command field to be logged in
the SC_SSVT and passing the new DDNAME across this interface.

Cray Research, Inc. 5. SUPERLINK Product Operator Component 5-25



Diagram 5-11
S@COOSET - SET Command Processing Routine
Entry from S59C00020 I

v
Process Output

. GETMAIN a work area.

Input

|
s1_oPcT — 1

N =

Determine what type of
SET command has
been requested.

3. Invoke submodule to Response indicating
perform the requested if request succeeded
SET command.

|—> Exit to SET submodule

5-26 SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit S1-0182



Extended Description

Explanation Module Label

2. As cach operand on the SET command was validated, an indicator was sct S@COO0SET
in the SI_OPCT control block. This routine must interrogate each of these
indicators in turn to identify which opecrands have been input by the
operator.

3. The appropriate sub-modulcs available are as follows: S@COOSET

e S@COS010 (SET SESSION) - Sct the Sessions layer dump or trace
options on or off

e S@COS020 (SET CASE) - Sect the ACSE layer dump or trace options
on or off

e S@COS030 (SET AM) - Modify Association Manager variables or set
the dump option on or off

e S@CO0S040 (SET MI=XXXXXX) - Sct the Management Interface
trace option on or off for a specific connection

Cray Research, Inc. 5. SUPERLINK Product Operator Component 5-27



Diagram 5-12
S@COOSTR - START Command Processing Routine

Entry from S2C00020 I
v
Input Process Output

r—> 1. Branch to sub—
SI_OPCT

routine supporting
specified operand
of START command.

2. To start a Manage—
ment Interface
connection, an
MI_MRQE request
representing an
MI_LOGON request is
built and queued to
the Management
Interface compo—
nent.

> Exit to 5aC00020

5-28 SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit S1-0182



& Extended Description

Explanation Module Label

1. As each operand on the START command was validated, an indicator was S@COO0STR
set in the SI_OPCT control block. This routine must interrogate each of
these indicators in turn to identify which operands have been input by the
operator.

A subroutine residing within S@COOSTR for each valid opcrand collects
the relevant information and formats it into a message for output to the
MVS console of origin. Routine S@COO0050 performs the output
processing.

Cray Research, Inc. 5. SUPERLINK Product Operator Component 5-29



Diagram 5-13

S@COOSTP - STOP Command Processing Routine

Entry from S3C00020

v

Input

> 1.
st_opcT ——

Process

Branch to sub—
routine supporting
specified operand
of STOP command.

. To stop a Manage—

ment Interface
connection, an
MI_MRQE request
representing an
MI_LOGOFF request
is built and queued
to the Management
Interface compo—
nent.

Output

5-30 SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit

> Exit to SaC00020

SI-0182



— Extended Description

Explanation Module Label

1. As cach operand on the STOP command was validated, an indicator was sct S@CO0STP
in the SI_OPCT control block. This routine must interrogate each of these
indicators in tumn to identify which operands have been input by the
operator.

A subroutine residing within S@COOSTP for each valid operand collects the
relevant information and formats it into a message for output to the MVS
console of origin. Routine S@CO0050 performs the output processing.

Cray Research, Inc. 5. SUPERLINK Product Operator Component 5-31



Diagram 5-14
S@COOSND - SUPERLINK SEND Command Processing Routine

Entry from 52C00020

)
Input Process Output
r—> 1. Build an MI_MRQE

SI_OPCT request element
representing an
MI-COMMAND request MI_MRQE
for the Management
Interface >| MI-COMMAND
component.

2. Queue the MI_MRQE
onto the work to
do queue of the
Management
Interface
component
3. POST the ECB

Management
Interface
component to
notify it of the
request

5-32

SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit

> Exit to S9C00020

SI1-0182



Extended Description

Explanation

1.

Cray Research, Inc.

As each operand on the SEND command was validated, an indicator was
set in the SI_OPCT control block. This routine must interrogate each of
these indicators in turn to identify which operands have been input by the
operator.

Since the opcrands on this command represent a command destined for
sending over the Management Interface component, a request unit for the
Management Interface is built containing the imbedded command for the
target system.

This request unit (MI_MRQE) represents an MI-COMMAND request on
the target connection.

The MI_MRQE, which is built, is placed on the Management Interface
work to do queue which is anchored off the MI_MICT control block which
in tumn is anchored from the SC_SSVT.

Module
S@CO0SND

S@CO0SND

Label

5. SUPERLINK Product Operator Component

5-33



Diagram 5-15

S@COOMSG - SUPERLINK MSG Command Processing Routine

Entry from S2C00020

v
Input Process Output
r—> 1. Build an MI_MRQE

SI_OPCT’ request element
representing an
MI—MESSAGE request MI_MRQE
for the Management
Interface > MI-MESSAGE
component.

2. Queue the MI_MRQE
onto the work to
do queue of the
Management
Interface
component
3. POST the ECB

Management
Interface
component to
notify it of the
request

5-34 SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit

> Exit to S52C00020

SI1-0132



Extended Description

Explanation

1.

Cray Research, Inc.

As each operand on the MSG command was validated, an indicator was sct
in the SI_OPCT control block. This routine must interrogate each of thesc
indicators in turn to identify which operands have been input by the
operator.

Since the operands on this command represent a command destined for
sending over the Management Interface component, a request unit for the
Management Interface is built containing the. imbedded command for the
target system.

This request unit (MI_MRQE) represents an MI-MESSAGE request on the
target connection.

The MI_MRQE, which is built, is placed on the Management Interface
work to do qucue which is anchored off the MI_MICT control block which
is in turn anchored from the SC_SSVT.

Module
S@COOMSG

S@COOMSG

Label

5. SUPERLINK Product Operator Component

5-35



6. SUPERLINK LOG Processor Component

SUPERLINK components provide progress messages for normal events and indications of crror
conditions. These messages arc queued by the relevant Functional Unit for subsequent processing by
the LOG Processor component. The LOG processor component outputs the message data to a
uscr-defined datasct.

LOG Processor Services

The LOG Processor component allows all other SUPERLINK components to write messages to the
SUPERLINK LOG and/or the MVS system log. Messages may consist of a single one-line message,
a single multiline message, or a number of messages output as a block. Each line of output is built from
a LOG clecment (LOGE).

The SUPERLINK LOG is allocated to either a dataset or SYSOUT depending on the SLLOG DD
statement coded in the SUPERLINK Control JCL procedure. Coding SLLOG DD DUMMY or
DSN = NULLFILE results in output to the MVS system log. If the DD statement is abscnt, the
SUPLERLINK LOG is dynamically allocated to SYSOUT, class A. If SLLOG cannot be allocated,
or an I/O failure occurs during processing, an attempt is made to use SYSOUT class A. If this attempt
also fails, the MVS system log 1s used. The site systems programmer specifies the route code(s) used
when outputting to the MVS system log on a SUPERLINK/MVS options statement.

The SWITCII operator command can be used to specify the DDNAME of a preallocated alternate log.
This command allows the printing of a datasct log while SUPERLINK/MVS is running. When the
SWITCIH command is used, SUPERLINK;MVS closes the primary log and opens the alternate log.
MVS utilities or TSO may be used to manipulate the primary log after the switch is complete.

The SUPERLINK/MVS Installation, Customization, and Tuning Guide, publication SI-0180,
provides more detailed information about the SWITCH command.

LOG Processor Subcomponents

The LOG Processor component consists of the following subcomponents:

Subcomponcent Description
S@C2100 LOGE handler
S@C2200 Output of messages

Cray Research, Inc. 6. SUPERLINK LOG Processor Component 6-1



S@C2100 - LOGE Handler a

SUPERLINK/MVS components call the LOGE handler subcomponent to obtain storage and chain
together a number of LOGEs. The LOGE:s arc formatted and then a call is made to queue the LOGEs.

S@C2100 - Services

The LOGE handler performs the following services:

Checks to ensure that SUPERLINK/MVS logging is active
Obtains and chains together requested LOGE:s for a GET request
Qucues LOGE:s for a QUEUE request

Informs the caller of actions taken

S@C2100 - Interfaces

The addition of queuc clements has two phases. The first phase returns a number of chained LOGEs.
The second phase places the LOGEs on the queuc after they have bcen formatted. A macro called
S@@LOG is provided as the interface to the second phase.

The sequence of actions required to chain and queue LOGE:s is as follows:

1. Call S@C2100 to obtain LOGEs.

2. Format LOGEs (message text, message ID, routing codes, and so on).

3. Call S@C2100 to queue LOGEs.

Components issuing S@@LOG do so in 31-bit addressing mode. Therefore, the address rcturncd by -~
S@@LOG is a 31-bit address. The message length in all returned LLOGEs (after GET) is sct to 0. ! i
“Appendix B. SLCN Macros” on page B-1 describes the syntax for the S@ @1.OG macro.

S@C2100 - Data Areas
The LOGE is the major data arca used.

S@C2100 - Recovery

There is no specific ESTAE for S@C2100. If the caller has an active ESTAE routine when S@C2100
is called, it gains control if an abend occurs.

6-2 SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit SI-0182



This page has been intentionally left blank.

Cray Research, Inc.

6. SUPERLINK LOG Processor Component

6-3



Diagram 6-1
S@C2100 - LOGE Handler (part 1 of 2)

Entry from any SUPERLINK comTonent via macro S?3L0G

\Y
Input Process Output
1. Validate parameter list. Updated SSVT or
chained LOGEs,
2. If SUPERLINK name is given, return code,
obtain SUPERLINK SC_SSVT feed—back code

address.

3. If GET request, obtain and
chain LOGEs.

> continued

6-4 SUPERLINK for MYVS Logic Library Volume 2: Control Functional Unit SI-0182



-~

Extended Description

Explanation

1.

Cray Research, Inc.

The parameter list consists of two fullwords. Register 0 describes the
contents of the parameter list. The first fullword is an address, and the arca
pointed to is cither the SUPERLINK/MVS SC_SSVT or the
SUPERLINK/MVS name.

The second fullword contains cither a count of LOGEs to be obtained or
the address of chained LOGEs to be queued. A rcturn and feed-back code
(sec macro S@@LOG) are given identifying an invalid parameter and a
branch to step 4 is taken. The SC_SSVT address may be 0 if the calling
SUPERLINK/MVS component resides in the SLCN address space. In this
casc, the SC_SSVT address is found here; otherwise, an error is indicated.

The macro S@@SUBSY is used to return the SUPERLINK/MVS
SC_SSVT address given the SUPERLINK/MVS name. In the cvent of
failure (namc not known), a bad paramcter indication is given (sce step 1).
The SC_SSVT is required in order to locate the queuc anchor or pool
address.

Each LOGE is obtained individually (CPOOL, pool address in SC_SSVT)
and chained to the previous one. The pointer to the next LOGE is set to 0.
The message length is set to 0. On return to the caller, register 1 contains the
address of the first LOGE.

If there is insufficient storage to obtain an LOGE, the actions taken depend
on the point at which the crror occurred. If the first LOGE was obtained, a
warning return code is sct; register 0 is set to the count of LOGESs obtained,;
and a branch is taken to step 3. If the first LOGE was not obtained, an crror
return code is sct, and a branch is taken to step 5. Control is returned to the
caller.

Module
S@C2100

S@C2100

S@C2100

Label

6. SUPERLINK LOG Processor Component

6-5



Diagram 6-2 .
S@C2100 - LOGE Handler (part 2 of 2)

continued

I
n\I
rr

Input ocess OQutput

6. If queue request, chain
block of LOGEs onto work
queue.

5. Return to caller.

—>

6-6 SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit S1-0182



Extended Description
Explanation Module Label

4. The work queue anchor is located in the SUPERLINK SC_SSVT. Using S@C2100
a compare double and swap instruction, the address of the chained LOGEs
supplicd replaces the head of the queue. The address of the previous LOGE
chain is stored in the newly added LOGE chain. The work queue is in LIFO
order. The message length in each LOGE is validated and, if outside the
range (0 is valid), is replaced with the maximum length allowed. In the latter
case, a warning return code is scnt to the caller.

5. The caller reccives a return code and, optionally, a feedback code to indicate S@C2100
the processing performed.

Cray Research, Inc. 6. SUPERLINK LOG Processor Component 6-7



S@C2200 - Output of Messages Subcomponent

The output of messages subcomponent takes messages from the queue, writes them to the appropriate
log(s), one at a time, and returns the LOGE:s to the pool for reuse. This subcomponent must complete
initialization before components are able to obtain LOGEs. Otherwise, components receive the
following return code: SUPERLINK Logging Inactive.

S@C2200 - Module Structure

S@C2200 consists of the following modules:

Module Description

S@C2200 Output of messages - control module

S@C2210 Qutput of messages - log file initialization

S@C2220 Output of messages - log file termination

S@C2230 Output of messages - queue swap and reorder

S@C2240 Output of messages - format and output a message from a LOGE
S@C2250 Output of messages - ESTAE

Figure 12 shows the hierarchical structure of modules within the output of messages subcomponent.

59C2200|<=======>]| 59C2250

Sac2210 53C2220 SaC2230 SaC2240

Figure 12. Module Structure of the Qutput of Messages Subcomponent

S@C2200 - Services

S@C2200 performs the following services:

¢ Informs the Product Management component (S@ CC0000) of product initialization status
e  Swaps the request and work queues to allow queuing to continue
¢ QOutputs messages from the swapped queue

6-8 SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit S1-0182



S@C2200 - Interfaces

The LOGE functions as the interface to this subcomponent and describes the messages to be written
to a log. The LOGEs are queued for processing, and this qucue is anchored from the SC_SSVT. --
IHcading id ‘cndarea’ unknown -- provides a more detailed description of SC_SSVT.

S@C2200 - Data Areas

The major data area is the LOGE, which describes a message and specifies the log where it will be
output. LOGEs are chained together for processing.

The LOG Processor component’s qucues, built in last-in, first-out (LIFO) order, are anchored in the
SSVT. Each queuc anchor is a doubleword. Thus, two queues are maintained: a work queuc and a
request queue. The request queue is updated by the addition of LOGEs; the work qucue is null. The
qucucs are swapped, the work queue (previously the request queue) is reversed (FIIFO ordered), and
individual LOGE:s are written to the log(s) and relcased to the pool when the LOGEs arc removed.

Storage for the queucs is obtained and managed using the MVS service, CPOOL. The address of the
pool is stored in the SSVT. Each LOGE's contents are mapped by the S@@LOG macro.

“Appendix B. SLCN Macros” on page B-1 describes the syntax of the S@@LOG macro.

S@C2200 - Recovery

The task that outputs messages has an ESTAL to intercept abends. In the case of I/O-related abends
(for example, SB37), processing continues with messages written to SYSOUT or the MVS system log,
as appropriate.

FFor other abends, the system log is closed, and diagnostic information is returned to the caller.

Following LOG closure, users of S@@LOG reccive return code 16, “SUPERLINK logging
inactive”.

Cray Research, Inc. 6. SUPERLINK LOG Processor Component 69



Diagram 6-3
S@C2200 - Output of Messages Subcomponent - Control Module

Entry from SQCCOOUU—]

Vv
Input Process Output
PLIST, POST 1. Activate recovery (ESTAE). P0OSTed ECB,
updated SC_SSVT,
2. Call S3C2210. return code

3. Periodically check work
queue (may go to step 7).

4. Call S3C2230 to obtain data.
5. Call S3C2240 to process data.
6. Return to step 3.

7. Call SaC2220.

8. Deactivate the ESTAE routine.

9. Return to caller.

> Exit to S3CC0000

6-10  SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit S1-0182



Extended Description

Explanation

L.

Cray Research, Inc.

The ESTAE is required to switch output to SYSOUT or the system log for
[/O- rclated abends in an attempt to allow SUPERLINK/MYVS to continue.
For other abends, the LOG is terminated. The MVS opcrator receives
messages indicating the type of error and proposed action(s) to be taken.

Module S@C2210 initializes the LOG file. In the cvent of failure, control
is returned to the caller with a bad retumn code. If initialization is successful,
the caller is POSTed (ECB address in PLIST), and processing continues.

This module is the head of a continuously-running task. A STIMER is used
to wait when the work quecue is empty. A field in the paramcter list is
checked to see if termination has becn ordered by the caller. If ABORT
termination is ordered, or the work qucue is cmpty for NORMAL
termination, a branch to step 7 is taken. .

The caller may request that a switch be made to an alternative preallocated
log (DDNAME supplied). This is done by branching to step 7 and then to
step 2 (not terminating).

Module S@C2220 is called to terminate the LOG file.

The caller receives rcturn and feedback codes indicating the processing
performed.

Module
S@C2200

S@C2200

$@C2200

S@C2200
S@C2200

Label

6. SUPERLINK LOG Processor Component

6-11



Diagram 6-4
S@C2210 - Output of Messages Subcomponent - LOG File Initialization

Entry from S3C2200 or 5302250—]

v
Input Process Output
PLIST 1. If reprieve from ESTAE, DCB,
skip to step 7. return and

feedback codes
2. Obtain storage for queues
and initialize queue anchors.

3. If SLLOG DD is absent,
allocate SLLOG.

4. If SLLOG DD is DUMMY or
DSN=NULLFILE,
use MVS system log.

5. If not using MVS system log,
open SLLOG.

6. Skip to step 8.

7. If not logging to SYSOUT,
allocate log to SYSOUT and
open log; otherwise use MVS
system log.

8. Return to caller.

"

> Exit to S3C2200 or SaC2250

6-12 SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit SI1-0182



Extended Description

Explanation

1.

Cray Research, Inc.

The PLIST indicates whether normal processing or repricve processing is
required. The PLIST may contain a DDNAME; if so, branch to step 5.

Storage is obtained using CPOOL. Each queue anchor consists of a
doubleword. There are two queues currently in usc: request and work. The
free queuc is managed by CPOOL and the anchor points to the pool. The
qucue anchors are located in the SC_SSVT.

SLLOG DD should be allocated to SYSOUT = A and the caller informed
that it was dynamically allocated (S@C2220 requires this information).

Upon return to the caller, register 1 contains the address of the DCB for the
log. If the system log is in use, register 1 is set to 0.

An attempt is made to use a SYSOUT log in place of a datasct log. In the
event of failure, or if SYSOUT was alrecady in use, the system log is used.
Allocation and open processing are as described in steps 2 and 4.

The caller receives return and feedback codes indicating the processing
performed.

Module
S@C2210

S@C2210

S@C2210

S@C2210

S@C2210

S@C2210

Label

6. SUPERLINK LOG Processor Component

6-13



Diagram 6-5
S@C2220 - Output of Messages Subcomponent - LOG File Termination

Entry from SSCZZOO—————————W

v
Pr

Input ocess Output

PLIST 1. Close LOG file. Return and

feedback codes

2. Release storage obtained
for queues.

3. If LOG file was allocated by
S3C2210, deallocate it.

4. Return to caller.

——> Exit to S53C2220

6-14 SUPERLINK for MVS Logic Library Volume 2: Contro! Functional Unit S1-0182



Extended Description

Explanation

1. If the DCB address contained in the parameter list is 0, (system log in use),
no action is taken by this module. All storage associated with the LOG is
released.

2. The address of the storage obtained is contained in the free queue anchor in
the SC_SSVT. CPOOL is used to release it.

3. The parameter list indicates whether or not module S@C2210 allocated the
LOG. The DDNAME should be obtained from the DCB, since a
system-gencrated DDNAME may be uscd following ESTAE reprieve.

4. The caller receives rcturn and feedback codes indicating the processing
performed.

Module
S@C2220

S@C2220

S@C2220

S@C2220

Label

Cray Research, Inc. 6. SUPERLINK LOG Processor Component

6-15



Diagram 6-6
S@C2230 - Output of Messages Subcomponent - Queue Swap and Reorder

Entry from SQCZZOO——————————]

v
Input Process Output
1. If work queue is empty or Return and
request queue is not empty, feedback codes

return to caller.

2. Swap work and request
queues.

3. Reorder request queue.

4. Return to caller.

> Exit to SaC2200

6-16 SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit S1-0182



Extended Description

Explanation

1. The qucue anchors are held in the SC_SSVT as double words. A qucue is
empty if the anchor contains a value of 0’s. The caller receives a warning
rcturn code if the work queuc is empty. The caller receives an error return
code and a message is written to the system log if the request queue is not
cmpty, since module S@C2240 may not have processed the qucue.

2. The queues are swapped using a compare double and swap to ensure correct
scrialization.

3.  The work queue is a LIFO qucue, and the request queuc must be in FIFO
order. This step is a loop to progress through the backward-chain pointers
building forward-chain pointers to allow FIFO processing. Sce “Appendix
A. Data Arca Descriptions” on page A-1 for a description of the LOGE.

4. The caller receives a return code indicating the processing performed.

Module
S@C2230

S@C2230

S@C2230

S@C2230

Label

Cray Research, Inc. 6. SUPERLINK LOG Processor Component

6-17



Diagram 6-7
S@C2240 - Output of Messages from LOGEs (part 1 of 2)

Entry from 5802200———I

v
Input Process Output
PLIST l. If request queue is empty, Return and
return to caller. feedback codes

2. Obtain address of LOG block.

3. Obtain address of LOGE
within a block.

G. If output to SUPERLINK LOG,
format and write line.

> continued

6-18 SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit S1-0182



Extended Description

Explanation

L.

Cray Research, Inc.

A waming rcturn code is given. Module S@C2240 is called following
reprieve processing by the ESTAE. It should output the line in progress at
the time of error to the new LOG (sce steps 2 and 3).

The request queue anchor block in the SC_SSV'T contains the address of the
first LOGE block. A LOGE block consists of onc or more LOGEs chained
by the uscr of the S@@LOG macro. For repricve processing (for example,
following an SB37 abend), the address of the next LOGE block is kept in
the queue anchor head-of-queue pointer.

Each LOGE contains the address of the next LOGE in a block; 0 indicates
the last LOGE. The first LOGE address is the same as the LOGE Block
address. For reprieve processing (for cxample, following an SB37 abend), the
address of the current LOGE within a block is stored in the first fullword
of the anchor block.

The parameter list contains the address of the DCB (0 if using system log).
This step is bypassed if the message length in the LOGE is 0. The LOGE
indicates where the output should be routed (sce macro S@@LOG found
under “Appendix B. SLCN Macros” on page B-1). The pnnt line is
described by macro S@C2PLNE and is built by copying from the LOGE.

Module

S@C2240

S@C2240

S@C2240

S@C2240

Label

6. SUPERLINK LOG Processor Component

6-19



Diagram 6-8
S@C2240 - Output of Messages from LOGEs (part 2 of 2)

continued I
Vv
Input Process Output
5. If output to MVS system log,
format line.
6. Release LOGE to pool.
7. If not end of block, go to
step 3; otherwise, if output
to system log, write block
to system log.
8. If not last block, go to
step 2; otherwise, update
request queue anchor.
9. Return to caller.
> Exit to S3C2200
SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit

6-20

S1-0182



Extended Description

Explanation

5.

The line for the system log output is the same as that for the SUPERLINK
LOG except that the ASA character and time are not required.

The LOGE just processed is returned to the pool using CPOOL. It then
becomes available for use by issuers of macro S@ @ LOG.

The chaining performed by macro S@@LOG ensures that message lines
appear as an uninterrupted block. Thus, lines for the system log are collected
at step S and output as a multiline WTO when the block is complete.

The request queue anchor must show that the request queue is empty and
is therefore set to 0’s.

Cray Research, Inc.

Module
S@C2240

S@C2240

S@C2240

S@C2240

Label

6. SUPERLINK LOG Processor Component

6-21



Diagram 6-9
S@C2250 - Output of Messages Subcomponent - ESTAE Routine

Entry from MVS I

v
Input Process Qutput
PLIST 1. Determine type of abend.

2. If 'out of space' abend,
close LOG and retry with
SYSOUT.

3. If "OPEN'/'CLOSE"'/'DCB’
abend, retry with SYSOUT
or MVS system log.

4. If abend recursion or Sx22,
percolate to the next level.

5. For all other abends,
close LOG and retry to exit.

> Exit to S3C2210 or MVS

6-22 SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit SI-0182



Extended Description

Explanation

2. Typically, the abends are Sx37 abends. The LOG is closed by calling

module S@C2220. The retry address is specified as S@C2210, and the
PLIST specifies “repricve.” Module S@C2210 effects the LOG switch.

3. Typically, the abends are Sx13/Sx14/S002 abends. The retry address is
specified as module S@C2210, and the PLIST specifics “reprieve”. Module
S@C2210 effects the LOG switch.

5. The LOG is closed by calling module S@C2220. The retry address is set so
that module S@CC0000 receives return and feedback codes indicating that
an abend occurred rather than the abend continuing.

Module
S@C2250

S@C2250

S@C2250

Label

Cray Research, Inc. 6. SUPERLINK LOG Processor Component

6-23



7. SUPERLINK Management Interface Component

Although SUPERLINK for MVS and SUPERLINK for COS must initialize independently, both
MVS and COS management of the SUPERLINK/MVS product must be provided from a central
point. In order to achicve this cooperation between the two systems, a pcrmanent connection is
established between the management functions on MVS (SLCN) and COS (SLMIR).

The Management Interface component, which takes the form of an OSI application, provides the
permancnt connection between SLCN and SLMIR. The component uses the services of the
SUPERLINK Network Access Mcthod (SLNET) to convey data between the management functions.

The Management Interface services enable two Management Interface components (typically one on
MVS and one on COS) to interact and exchange “management” type information. This information
typically includes commands and messages; messages may or may not be replies to commands.

Management Interface Module Structure

The Management Interface component consists of the following modules:

Module Function

S@CIC000 Management Interface root module

S@CI0010 Management Interface initialization

S@Cl10020 Management Interface termination

S@CI10030 Management Interface ESTAE

S@CI0040 Management Interface input queue server

S@CI0050 Management Interface connection protocol handler task
S@CI0060 Management Interface output queue server

S@CI0070 Management Interface connection protocol task ESTAE
S@CI0080 Management Interface protocol data unit (PDU) encoder/decoder

Figure 13 on page 7-2 shows the hierarchical structure of modules within the Management Interface
component.

Cray Research, Inc. 7. SUPERLINK Management Interface Component 7-1



ESTAE
SaCIigo00 ============= SaCI0030
SaCI0010 SaCI0020
SaCI0040 S9CI0060
ESTAE
(Subtask - SaCI0050 ====S=SE===I= SaCI0070
one per
active
connection)
S3CI0080
Figure 13. Module Structure of the Management Interface Component

Management Interface Services

In order to achieve cooperation between SLCN and SLMIR, a number of Management Interface
component services have been defined as follows:

e  Confirmed services - these scrvices take the form of a two-way cxchange of information between

the participating entities

e  Nonconfirmed services - these services take the form of a one-way transfer of information from

one entity to the other

e  Provider-initiated scrvices - these services take the form of an indication presented by the scrvice

provider to the participating entities

The following subscctions describe the basic service primitive types, Management Interface service

primitives, and Management Interface local system primitives.

Service Primitive Types

Table 2 describes the service primitives that allow a service user to interact with a service provider.

Table 2. Basic Service Primitive Forms

Form From To Function
REQUEST Originating | Service Activation of a particular service
service user | provider

7-2  SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit



Table 2. Basic Service Primitive Forms (continued)

Form From To Function
INDICATION | Service Service user | Provided at the destination end
provider system to advise the service user
of the activation of a particular
service
RESPONSE Service user | Service Provided at the destination end
provider system in response to an
indication
CONFIRM Service Requesting Complete a confirmed service
provider service user

Management Interface Service Primitives

The following primitives are uscd to establish a Management Interface connection and to cxchange data
over that conncction:

MI-LOGON
MI-LOGOFF
MI-ABORT
MI-P-ABORT
MI-COMMAND
MI-MESSAGE

The SUPERLINK Protocol Information Manual, publication SI-0175, provides more detailed
information about these primitives.

¢ 6 0 ¢ 0 0

Management Interface Local System Primitives

The following local system primitives are supported. The service user implements them to control the
service being used.

e MI-LOGON-OFFER
e MI-RECEIVE

Management Interface Component Interfaces

The Management Interface component is required to convey configuration details between the COS

and MVS Product Management components. The major source of input to this interface is from an
operator’s console. The types of commands and command responses flowing across this connection

are typically a subset of the COS DSPLxx commands.

All commands processed by this mechanism are considered to be MVS Master Console-only requests,
requiring the coordinated control that is achieved through the connection between SUPERLINK for
MVS and SUPERLINK for COS.

Management Interface Data Areas

The Management Interface component has the following main data areas:

Cray Rescarch, Inc. 7. SUPERLINK Management Interface Component 7-3



Data Areas Description

MI_MACB Management Interface connection manager control block

Each Management Interface connection defined in the SUPERLINK/MVS
initialization options statements is allocated a MI_MACB. This control block
monitors the state of its associated connection for the entire session.

MI_MICT Management Interface control table

This is the major control block of the Management Interface task itself. The
MI_MICT is anchored from the SC_SSVT and monitors information pertaining
to the Management Interface component.

MI_MRQE Management Interface request element

Work from other tasks or the operator is queued to the Management Interface
task by a work-to-do queue of MI_MRQEs. The elements are dequeued and
processed one at a time, in FIFO order.

“Appendix A. Data Area Descriptions” on page A-1 provides descriptions of these data areas.

Management Interface Recovery

7-4

The Management Interface component runs as a subtask of the main root module of SLCN
(S@CC0000). The root module of the Management Intcrface component (S@CI0000) enables an
ESTAE environment to-trap abends within the Management Interface subtask and attempts to recover
from them whenever possible. If recovery is not possible, notification of the abend is percolated to the
next level of the recovery environment.

Each Management Interface connection handler subtask is protected by an ESTAE environment which
attempts to recover the connection. The SUPERLINK/MVS configuration options statements
dctermine whether automatic restart of a connection is possible or opcrator intervention is necessary.

SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit SI-0182

m



This page has been intentionally left blank.

Cray Research, Inc. ' ‘ 7. SUPERLINK Management Interface Component 75



Diagram 7-1

S@CI0000 - Root Module of Management Interface Component

Entry from S3CC0000

v

Input

Register 1
==>PLIST

@SC_SSVT —]

V SC_SSVT

asc_cIoT

MI_MRQE

POSTed
ECB

>5.

10.

Process

. Establish ESTAE.

Initialize Management

Interface; Call
Interface;
call SaCI0010.

. Wait for work

- 1

to do.

If input queue
request present,
call SaCI00490;
repeat until input
queue is empty.

If message or,
command waiting
for disposal on
output queue,

call S3CI0060;
repeat until output
queue is empty.

If premature end
of a connection
manager subtask,
try to recover
situation by
calling SaCI0010
with reinstate
option.

If Termination
Request flag
termination, close
active connections.

When connections,
are all closed,
go to step 9.

Go to step 3 and
wait.

. Terminate

Output

Allocated
MI_MACBs

MI_MICT
WAIT

Management
Interface
component;

call S2CI0020.

Delete ESTAE.

ECBLIST

Deallocated
MI_MACBs

MI_MICT

7-6 SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit

> Exit to S3aCC0000

SI1-0182



Extended Description

Explanation

1.
2.

Cray Research, Inc.

The ESTAE routine is S@CI0030.

All the resources required to run the Management Interface component are
obtained during this step. Particulars about the number and characteristics
of the neccessary management connections are  defined in  the
SUPERLINK/MYVS startup processor. These dcfinitions are processed by
the Options Processor and formatted into the SC_CIOT control block.
Initialization uses this data to format the MI_MICT and MI_MACB
control blocks. All the defined subtasks which are handled by the
Management Interface connection are ATTACHed by routine S@CI0010.

If initialization completes successfully, POST the main control task in
SLCN; otherwise, branch to step 9 and return to the caller.

The Management Interface component waits for work-to-do requests to
arrive from various sources (input queue, output queue, terminate request
POSTed, or subtask termination).

Requests from the MVS operator, or other tasks or components of this task
itself which require use of the Management Interface, arrive as MI_MRQEs
on a qucuc hung from the SC_SSVT. If any requests are present on this
queue, they are rcmoved and processed, one at a time, by routine
S@CI10040, until the queue is empty.

These requests may be operator commands or messages to be sent on a
particular management conncction.

Messages and commands received on Management Interface connections
must be disposed to their correct destinations (for example, messages to the
SUPERLINK LOG or to the operator’s console and commands to the
correct component of SUPERLINK/MVS or MVS for cxecution).
S@CI0060 performs this function on data that has been reccived and queued
onto the output queue by instances of S@CI10050. S@CI0060 dequeues and
processcs cach clement until the queue is ecmpty.

The premature termination of a connecction manager subtask is detected
here, and a decision is made to reinstate the task, to terminate, or to notify
the operator for action.

If the main control task in SLCN has POSTed the Management Interface
component to terminate ECB, this task cleans up and exits.

This is done by determining the type of termination requésted
(NORMAL/QUICK/ABORT) and flagging all connections to terminate in
that manner. Once all connections have terminated correctly, the routine
branches to step 9 and exits.

The Management Interface component cleans up by frecing all the resouces
it has obtained. Each connection manager subtask is DETACIIed, having
completed its own termination.

Module
S@CI0000
S@CI0000

$@CI10000

S@CI0000

S@ CI0000

S@Cl10000

S@CI0000

S@CI10000

7. SUPERLINK Management Interface Component

7-7



Diagram 7-2

S@CI0010 - Management Interface Initialization Routine

Entry from S2CIO0000

v

Input

Register 1

v
PLIST

@SC_SSVT

V SC_SSVT

asc_cioT

POST

ECB

1.

Process
If reinstate of
subtask required,
flag reinstate
request.

Locate SC_CIOT.

Build chain

Output

MI_MACBs

of MI_MACB blocks
representing
Management Inter—
face connections
and main MI_MICT
control block.

Prime each MI_MACB
according to start—
up type specified
in OPTIONS
parameters.

ATTACH each

connection manager
subtask associated
with each MI_MACB.

. HAIT for each

MI_MACB to post
initialization
complete.

POST each MI_MACB
to be started auto—
matically when it
has work to do.

Set return code
for caller.

—

/

MI_MICT

WAIT

ECB

POST

ECB

Register 15

Return code

> Exit to S3CIO0000

7-8 SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit S1-0182



Extended Description

Explanation

1.

A reinstate request is made after a conncction manager subtask has failed
and is being reinitialized. Thus the logic of this module is the same as that
of S@CI0000, except that the MI_MICT and the MI_MACBs are already
present, and only one connection manager subtask must be initialized.

The SC_CIOT is chained from the SC_SSVT.

The SUPERLINK/MVS configuration OPTIONS statcments state how
many Management Interface connections are -defined and indicate the
characteristics of each one. One MI_MACB per defined connection and one
MI_MICT for the whole task are allocated.

Configuration options indicate: whether the connection is to be started
automatically or with an opcrator command; whether automatic restart is
to take place on a failed connection or whether the operator initiates the
restart sequence; and whether the connection is to come up as a primary end
(issues MI-LOGON requests) or a secondary end (issues
MI-LOGON-OFFER requests).

Lach connection to be started automatically has a request queued to its
MI_MACSB indicating whether it is to start as a primary or a sccondary end.

Each MI_MACB represents a Management Interface connection, and each
is managed by an instance of the connection manager subtask (S@CI0050).
Each connecction defined by an MI_MACB has an instance of this task
ATTACIHed, and is passcd the address of its own MI_MACB. End-of-task
should be notified by spccifying a common exit routine instcad of using a list
of ECBs, which proves more difficult to manage.

Each connection manager subtask must initialize itsclf. Processing must
WAIT until each has done so.

Those subtasks to be automatically started are POSTed. The ECB to be
POSTed is the same onc the subtask uses as its “external cancel” ECB
during A-RECEIVE processing; the subtasks also WAIT on this after
initialization and before they start to perform any work. POSTing indicates
that the task’s MI_MACB has work to do. When dispatched, they find the
MI_MRQE request clement on the work queuc and perform the initial
action required, for example, MI-LOGON request or MI-LOGON-OFFER
request (for testing).

A return code for caller is set indicating the state of initialization as follows:

00 Initialization was successful.
04 Initialization failure; able to proceed with reduced functionality.
08 Initialization failure; unable to proceed.

If reinstate of a subtask was rcquested, the return codes are as follows:

Cray Research, Inc.

00 Rcinstate was successful.
04 Recinstate failed.

Module Label
S@CI0010

S@Cl10010
S@Clo010

S@CI0010

S@CI0010

S@CI0010

S@CI0010

S@CI0010

7. SUPERLINK Management Interface Component

7-9



Diagram 7-3
S@Cl10020 - Management Interface Termination Routine

Entry from SaCI0000

v

Input

Register 1==
PLIST

1

MI_MICT

@SC_SSVT —]

V MI_MACBs

—1

>

Process

Locate MI_MICT and

MI_MACB queue.

Flush all requests

on MI_MRQE
queues.

DETACH each

connection manager
subtask associated
with each MI_MACB.

Output

MI_MACBs

Free chain of
MI_MACB control
blocks and
MI_MICT control
block.

. Set return code

for caller.

—

MI_MICT

>Register 15

7-10

> Exit

to

S2CI0000

SUPERLINK for MVS Logic Library Velume 2: Control Functional Unit

SI1-0182



Extended Description

Explanation Module Label
1. The MI_MICT and the MI_MACB queues are anchored from the S@SCI10020
SC_SSVT.

2. Both input and output M_MRQE qucues have all their outstanding S@Cl10020
MI_MRQE clements flushed (dequeued and FREEMAINed).

3.  Each MI_MACSB that has an ATTACHed connection manager subtask has S@SCI0020
that subtask DETACHed. The subtask will have alrcady terminated duc to
processing performed when a termination request was recognized in the
S@CI0000 module.

5. The rcturn codes sent to the caller are defined as follows: S@CI0020

00 Termination was successfully completed.
04 ‘Termination processing cncountered some error.

Cray Research, Inc. 7. SUPERLINK Management Interface Component 7-11



Diagram 7-4
S@CI10030 - Management Interface ESTAE Routine
Entry from MVS RTM |

v
Input I Process Output
> 1. Determine type of
SDWA — abend.
2. If abend recurs,
percolate to next
Data for level.
ESTAE

3. If recovery is
possible, exit
with retry.

4. If recovery is not
possible,
percolate to next
level.

> Exit to MVS RTM

7-12 SUPERLINK for MYVS Logic Library Volume 2: Control Functional Unit SI1-0182



Extended Description

Explanation

1.
2.

Cray Research, Inc.

No retry is attempted on X22-type abends, nor is a dump obtained.

To prevent reentry in an abend recursive loop, check for recursion. If this
is a recursive abend, control should simply be percolated to the next level
of recovery, where the SLLCN root module detects the termination of the
Management Interface component.

If recovery is possible for the type of abend encountered, a retry routine is
specificd on the SETRP macro (if an SDWA is present). This routine gains
control after the the ESTAE has rcturned control to RTM. Use the
SDUMP routine to obtain a dump for diagnostic purposes.

If recovery is not possible, use the SDUMP routine to obtain a dump for
diagnostic purposes. Using the SETRP macro (if SDWA is present) again,
percolate the abend condition to the next level of recovery, where the SLCN
root module detects the termination of this task.

Module
S CI10030
S@C10030

S@CI0030

S@CI0030

Label

7. SUPERLINK Management Interface Component

7-13



Diagram 7-5
S@CI0040 - Management Interface Input Queue Server
Entry from S3CI0000 |

v

Input l Process —Qutput

> 1. An MI_MRQE element
I which has been
dequeued from
input queue is
passed from caller.

MI_MRQE

MI_MACBs L3 2. Locate

MI_MACB which
represents
connection.

3. Queue request onto

correct MI_MACB. >

MI_MACB

6. POST connection POST

manager task, >
indicating ECB

that there is
work to be done.

5. Free MI_MRQE if
necessary and
return to caller
with return code. — > Register 15

> Exit to S?CI0000

7-14 SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit

S1-0182



~ Extended Description
Explanation Module Label

1. MI_MRQE clements queued may be destined for a remote management S@CI10040
component via MI-COMMAND or MI-MESSAGE rcquests, or for action
on the local system, such as a command to stop or start a particular
connection. :

5. If an MI_MRQE request clement is to be freed, free it; otherwise, do S@Cl10040
nothing. The rcturn code sct for the caller is as follows:

00 Request processed successfully; MI_MRQE not freed.
04 Request processed successfully; MI_MRQE freed.
08 Request not processed successfully; MI_MRQE freed.

Cray Research, Inc. 7. SUPERLINK Management Interface Component 7-15



Diagram 7-6

S@C10050 - Management Interface Protocol Event Routine (part 1 of 2)

Entry from S?CI0000

v

Input

MI_MACB

_I_!

POST

ECB

Terminate
MI_MACB

Event

MIPDU

Event

MI_MRQE

Process

Initialize and
enable ESTAE
environment.

. POST ATTACHer

indicating
completion of
initialization.

. WAIT until given

Output

POST

ECB

WAIT

go—ahead to
start processing.

If a termination
request has been
flagged, skip to
step 10.

. Handle any

incoming event
from CASE
laver.

. Handle any

incoming requests

queued by
Management
Interface user.

ECB

>| Action plus
new state

>| Action plus
new state

7-16 SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit

> continued

SI1-0182



Extended Description

Explanation

1.

Cray Research, Inc.

This module must be reentrant, because there are multiple instances of it
(one per active connection manager subtask).

Enable the ESTAE environment (module S@CI0070) and initialize.

Once initialization has completed successfully, POST S@CI0000 that this
subtask has correctly initialized.

WAIT for the ECB that will also be used as the A-RECEIVE “external
cancel” ECB for S@CI0000 to indicate that the work-to-do queue may now
be processed.

If a Terminate Request flag was set in MI_MACB, go to step 10.

Iandle any incoming events, using the State/Event table to determine the
appropnate action.

If (A-RECEIVE data pending) then do
extract-event-just-received;
perform-action(current-state,received-event);
end-if

Handle any requests queued via MI_MRQE elements, using the state/event
table to dctermine the appropriate action.

While (request queue is not empty)
dequeue-MI_MRQE-event;
perform-action(current-state,dequeued-event);
end-while

Module
S@CI0050

S@CI0050

S@CI0050

S@CI0050
S@CI0050

S@CI0050

Label

7. SUPERLINK Management Interface Component

7-17



Diagram 7-7

S@CI10050 - Management Interface Protocol Event Routine (part 2 of 2)

continued

v

Input

MI_MACB

Terminate

lo.

11.
12.

13,

Process

Issue A-RECEIVE
request.

. On returning from

implicit WAIT in
A—-RECEIVE, check
for outstanding
terminate request;
if one is

present, skip to
step 10.

. Go to step 5 to

check other work-—
pending action.

Free resources
obtained.

Delete ESTAE.

Return to caller
with return code.

Retry:
Set up MI-P—-ABORT
request if no

other action E—

OQutput

> Register 15

Return code

MI_MRQE

possible and
go to step 5.

MI-P—-ABORT

7-18 SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit

> Exit to S?CI0000

S1-0182



Extended Description

Explanation

7. Issuc an A-RECEIVE request (implicit WAIT on “external cancel” ECB).

8. When data is received on the outstanding A-RECEIVE or the “external
cancel” ECB is POSTed (indicating that the qucue contains work to do),
check whether a termination request has beecn made. If the Termination
Request flag is sct in the MI_MACB, go to stcp 10.

9. Check what sort of work is to be done by going to step 5.

10. Clean up any resources obtainced before terminating.

11. Declete the ESTAE environment.

12. Return to caller with return code indicating success of termination.

13. On retry processing from the ESTAE routine (S@CI0070), this routine is

Cray Research, Inc.

entered at this point. If there is no way to recover the existing connection,
an MI-P-ABORT request is placed on the work queue of this connection
manager subtask and branches to step 5 so the request can be acted upon
according to the State/Event table.

Module
S@CI0050
S@CI0050

S@CI0050
S@CI0050
S@CI0050
S@CI0050
S@CI0050

Label

7. SUPERLINK Management Interface Component

7-19



Diagram 7-8
S@CI10060 - Management Interface QOutput Queue Server
Entry from SaCI0000 |

v
Input Process Output

> 1. An MI_MRQE element
————r— which has been
dequeued from
output queue is
passed from caller.

MI_MRQE

2. If element is a
command request,
issue command to
correct component.

3. If element is a
message request,
send message to
correct
destination.

4. Free MI_MRQE if
required; set
appropriate return
code for caller. Register 15

> Exit to S?CI0000

720 SUPERLINK for MYVS Logic Library Volume 2: Control Functional Unit S1-01382



Extended Description

Explanation Module

1.

Cray Research, Inc.

These MI_MRQE eclements may have onginated from incoming S@ CI0060
MI-COMMAND or MI-MESSAGE indications within a connection
manager subtask.

If it is nccessary to free the MI_MRQE clement, do so; otherwise, lcave it S@CI0060
as it is. Set a return code for the caller as follows:

00 Request processed successfully; MI_MRQE not freed.
04 Request processed successfully; MI_MRQE freed.
08 Request not processed successfully; MI_MRQE freed.

Label

7. SUPERLINK Management Interface Component

7-21



Diagram 7-9

S@CI0070 - Management Interface Connection Protocol Task ESTAE

Entry from MVS RTM

v

Input

> 1.
SDHA I

. If abend occurs,

Process
Determine type of
abend.

percolate to next
level.

. If recovery is

possible, exit
with retry.

If recovery is not
possible,
percolate to next
level.

Output

7-22 SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit

> Exit to MVS RTM

Si1-0182



Extended Description

Explanation

Cray Research, Inc.

This routinc must be reentrant, since multiple instances (one per
Management Interface connection) exist at one time. -

No retry is attempted on X22-type abends, nor is a dump obtained.

To prevent reentry in an abend recursive loop, check for recursion. If this
is a recursive abend, control should be percolated to the next level of
recovery, where the Management Interface root control module (S@ CI10000)
detects the termination of the connection management subtask.

If recovery is possible for the type of abend encountered, a retry routine is
specified on the SETRP macro (if an SDWA is present). This routine gains
control after the the ESTAE has returned control to RTM. The recovery
routine resides in the S@CI0050 module. A dump is not obtained at this
level; however, a diagnostic message indicating the source of the problem is
written to the SUPERLINK LOG.

If recovery is not possible, the abend condition is percolated to the next level
of recovery using the SETRP macro again (if an SDWA is present). The
Management Interface root control module (S@CI0000) detects the
termination of this task. A diagnostic message indicating the source of the
problem is written to the SUPERLINK LOG.

Module
S@CI0070

S@CI0070

S@CI0070

S@CI0070

Label

7. SUPERLINK Management Interface Component

7-23



Diagram 7-10
S@C10080 - Management Interface PDU Encoder/Decoder

Entry from S?aCI0050 I

v
Input [ Process OQutput
Register 1 ———> 1. Determine whether
==>PLIST encoding or

decoding of an
MIPDU is required.

Request 2. If decoding is
required, decode
MIPDU passed in ——>| Decoded
PLIST. MIPDU

3. If encoding is -
required, complete —>| Encoded
MIPDU encoding MIPDU
according to
request passed in
PLIST.

4. Return to caller
with return code ——— > Register 15
indicating success
or failure.

> Exit to S3CI0050

7-24  SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit SI-0182



Extended Description

Explanation Module Label

2. Decoding of PDUs is performed according to the PDU ASN.1 definitions S@CI0080
and using the ASN.1 Basic Encoding Rules.

3. Encoding of PDUs is performed according to the PDU ASN.1 definitions S@C10080
and using the ASN.1 Basic Encoding Rules.

Cray Research, Inc. 7. SUPERLINK Management Interface Component 7-25



8. SUPERLINK Association Manager Component

The function of the SUPERLINK/MVS Association Manager is to issue A-OFFFER service request
primitives for all specificd application titles (using the ATITLE statcment within Options) and to
process all incoming A-ASSOCIATE indications for those application titles. The SUPERLINK/MVS
Installation, Tuning, and Customization Guide, publication SI-0180, describes the ATITLE statement.

Association Manager Subcomponents

The Association Manager component consists of the following subcomponents, which are described
later in this subsection:

Subcomponent Description

S@C90600 Association Manager controller (AM_controller)
S@CI9100 Association Manager processor (AM_processor)
S@C9200 Association Manager interface (AM_interface)
S@C9300 Association Manager timer services (AM_timer)
S@CIUXAM Association Manager User Exit Handler (AM_exits)

Association Manager Subcomponent Flow

Figure 14 on page 8-2 shows the subcomponent flow for the Association Manager component.

Cray Research, Inc. 8. SUPERLINK Association Manager Component 8-1



SeCs000
Stort dl required
processors s o
demand dictotes. SaC9100
SeC9200 SeC
—> zm inoourgrtlg 3| Entily responders
8 ion req started by the
from responders. r_' m_pmc?ssors.
AM_processor.
—>
]6—1 Network Routines.
. I SeC9300
If there is no byt -
activity for some Post ECB when time [
time, close down F expires, A
idle processors.
Cleon up and
Return.

Figure 14. Association Manager Component Flow of Control

Association Manager Services

The Association Manager component provides the following services:

Issues an A-OFFER service request primitive for cach registered application title defined by the
ATITLE statcment within the SUPERLINK options. As soon as an inbound connection
establishment request is delivered to the Association Manager, another A-OFFER service request
primitive is issued.

Passes connection end points to a responder (if a responder that can take the end point is active)
upon receipt of an incoming A-ASSOCIATE indication '

Initiates a responder to take connection end points (if no responder is currently active) upon
receipt of an incoming A-ASSOCIATE indication. Once the initiated responder becomes active,
the connection end point is transferred to the responder.

Initiates copies of responders that become congested and passes the work still to be processed to
the new responders.

Monitors for premature termination of responders. Any unprocessed connection end points are
either rejected or passed to another responder for processing.

8-2 SUPERLINK for MYVS Logic Library Volume 2: Control Functional Unit S1-0182



g Association Manager Services Offered to Application Entity Initiators on COS

When the Association Manager reccives an incoming A-ASSOCIATE indication from an initiator on
COS, it attempts to match it to any rcsponder that is already active. The Association Manager uscs
the following matching criteria for «RAMTYPE=MULTIPLE:

MVS user ID

MVS group ID

MVS accounting information
MVS user 1D password

~~~~~

A-ASSOCIATE indication. If these ficlds are not specificd, the critena is supplicd by default from the
SUPERLINK/MYVS Options.

If the default, &KAMTYPE = SINGLE, is specified, the following information is included as part of the
matching critenia:

e PSAP ID (COS job name and JSQ)
e  Mainframe ID of the A-ASSOCIATE indication

Once a determination of a match has been made, one of the following occurs:

e If the responder is active and has registered itself with the Association Manager (by performing a
LISTEN call using the Association Manager interface via the S@ @MREQ macro), the
connection end point is given to the responder and the Association Identifier (AID) is added to
the responder’s qucuc.

e If the responder has been submitted but has not yet performed a LISTEN call, the end point is
held until the responder is ready. The AID is added to the responder’s queue.

When a match is not made, the Association Manager initiates a ncw responder. SUPERLINK/MVS
options and a scrics of variables are used to complete a JCL template. This JCL is used to submit the
responder companion job. Any variables referred to within the JCL cither use default values from the
SUPERLINK options, or override these defaults using valucs from within the A-ASSOCIATE
indication TEXT, IDENT, and AUTH fields. The variables include REGION, CLASS, PROC, and
so on. For further details, refer to “S@C9100 - Association Manager Processor Subcomponent” on
page 8-18. The SUPERLINK/MYVS Installation, Tuning, and Customization Guide, publication
SI-0180, provides more dctail about specifying options.

Association Manager component processing 1s controlled by parameters supplied by the COS
application entity initiator.

The following arc the parameters in the incoming A-ASSOCIATE indication:

Parameter Description

AUTHI Level one authorization information (MVS password); overrides default and
TEXT values.

AUTH2 Level two authorization information; not used by Association Manager
component but is passed to AM User exit 4 (Security Validation)

AUTH3 Level three authorization information; not used by Association Manager
component but is passed to AM User exit 4 (Security Validation)

IDENI Level one identification information (MVS user ID); overrides default and
o~ TEXT values.

Cray Research, Inc. 8. SUPERLINK Association Manager Component 8-3



Parameter

IDEN2

IDEN3

TEXT
MF ID
PSAP ID

Description

Level two identification information (MVS accounting information); overrides
default and TEXT values.

Level three identification information (MVS group ID); overrides default and
TEXT values.

Values for keyword variables; overrides all default values.
Mainframe identifier (used only for &AMTYPE = SINGLE).

Presentation service access point (PSAP) identifier (used only for
&AMTYPE =SINGLE).

Association Manager Services Offered to Application Entity Responders on MVS

All responders initiated by the Association Manager can use the Association Manager Interface via the
S@@MREQ macro. Using the interface allows them to do the following:

LISTEN - The responder is active and ready to receive work.

NOTIFY - The responder wants to be notified of an event via the POST mechanism.
PROCESS - The responder wants details of an event, if there is one.

DELETE-EP - The responder is not receptive to subscquent events, with the exception of

termination requests.
e DELETE-ANY - The responder is not receptive to any events.

The following inbound or outbound events are valid:

¢  Connection end point given
e  Termination order, defined as follows:

= Graccful - All outstanding functions arc completed, but new requests for SUPERLINK/MVS
services are denied prior to termination processing.

= Quick - All pending activity is flushed, then orderly termination of all active functions is

performed.

=  Abort - All active functions are abruptly terminated.

Association Manager Interfaces

The following subsections describe interfacing to the Network Access Method, interfacing to user exits,
interfacing to application entity responders, and the queue management facility for connection end

points.

Interfacing to the Network Access Method

The Association Manager component uses ACSE as an interface to the Network Access Method.

84  SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit S1-0182



Interfacing to User Exits

The Association Manager user exit handler, (S@CIUXAM), is invoked whenever a user exit is to be
invoked. This module establishes the environment required for the user exit and also sets up the
parameters that the user exit requires. The Association Manager user cxit handler may be called from
anywhere within the Association Manager component by using the S@CIEXIT macro.

Interfacing to Application Entity Responders

Application entity responders interface with the Association V.\ianager ,éotnpo.nent by issuing the
S@@MREQ macro. The expansion of this macro results in a call to the AM_interface subcomponent
(S@C9200), a reentrant module located in common storage.

The Queue Management Facility for Connection End Points

A queue management facility is uscd for transferring connection end points from the Association
Manager to initiated responders via the AM_interface subcomponent. The items to be qucued are
AIDs. The Association Manager issues an A-ENDPOINT-GIVE scrvice request primitive and qucucs
the AID for a responder. When a responder becomes active, it calls the S@@MREQ macro and is
given the AID, which is then used to take the connection by issuing an A-ENDPOINT-TAKE service
request primitive.

The facility consists of the following two queues for each responder:
¢ Request queue (RQ); AM_processors add AIDs for connections to the queue as required.

e  Work queue (WQ); when a responder is ready to accept work, the interface routine switches items
from the request queue to the work queue and then extracts items from the queue as the responder
requests them.

Each queue contains the following items:

e A queue anchor
¢  Qucuc clements (chained together)

Queuc elements are processed in FIFO order. Therefore, the work qucuc is double-headed,
double-threaded, and noncircular. To add or remove a queue clement, the following operations must
be performed in onc action:

¢  Chain or dechain a queue element
e  Update the double-headed queue anchor

To perform this action, the two-qucue method has been adopted. The qucues are organized as follows:

® A request queue is organized in LIFO order
e A work queue is organized in FIFO order

When adding an item, a qucue element is added to the end of the request qucue. When removing an
item, the item is taken from the head of the work queue. If the work queue is empty, it is switched
with the request queue. This is done with a “compare double and swap” instruction within a loop to
ensure serialization. Queuc clements are reordered from LIFO to FIFO by double-chaining the work
queue prior to its processing.

This queue management facility provides the following features:
¢ No lock/unlock, climinating possible contention

e  No “bit-spin” loop
¢ Any number of tasks can simultancously add clements to a single request queue.

Cray Research, Inc. 8. SUPERLINK Association Manager Component 85



All queue elements are aligned on a double-word boundary. Each queue has an associated anchor
which is also aligned on a double-word boundary. The backward chaining is established as elements
are added to the request queue and the forward chaining is established after a request queue has been
switched to a work queue.

The following macros are uscd for handling the qucues:

Macro Description

Sa@C@QADD Add an item to the request qucue.

This macro expansion obtains a queue element from a cell pool, inserts the data
into the clement, and chains it in the specified request queue.

S@C@QREM Remove a queue element from the head of the work queue.

This macro expansion dechains a work queue element, copies its contents to the
specificd target arca, and returns the queue clement to the cell pool.

S@C@QSWI Switch a request queue to an empty work queue.

This macro expansion switches an empty work queue with a request queue.

“Appendix B. SLCN Macros” on page B-1 provides a description of these macros.

Association Manager User Exits

A number of uscr exits are provided within the Association Manager to allow installations to perform
validation and “local” processing. The Association Manager component has the following four
installation exits:

Variable validation installation exit
Validation of JCL for submission exit
Job scheduling installation exit
Sccurity validation exit

The SUPERLINK/MYVS Installation, Tuning, and Customization Guide, publication SI-0180,
provides more information about these user exits.

The installation exit modules are dynamically loaded at startup and remain until closedown. The exit
module names are specified in the &UXAMa installation options.

An ESTAE is used to detect abends within user exits. If an abend occurs, an appropriate error message
is output and the exit is disabled.

Normal conventions are followed for the use of registers. Upon entry the registers are as follows:

Register Contents

R1 Pointer to parameter list

R13 Pointer to 72 byte register save area
R14 Return address

8-6  SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit SI-0182



Register Contents
R15 Base address of User exit

RO, R2-R12 Undefined

The installation exits receive control in problem program state, storage protect key 8 and in the
addressing mode assigned to the load module. The exits must restore the caller’s addressing mode upon
return (using the BSM assembler instruction).

S@C9000 - Association Manager Controller Subcomponent

The Association Manager controller subcomponent (AM_controlier) is responsible for the overall
control of the Association Manager component under the direction of the SLCN root module
(S@CC0000).

The AM_controller starts as many processors as required (up to the maximum specified on the
&AMLIMIT parameter in the initialization options) to meet the demands placed upon it. It initially
starts one processor for each application title specified, using the ATITLE statement in the
SUPERLINK options. Each processor issues an A-OFFER service request primitive to process any
incoming A-ASSOCIATE indications. ‘

S@C9000 - Module Structure

The AM_controller consists of the following modules:

Module Function

S@C9000 Initialization module

S@C9010 Error recovery (ESTAE) exit routine
S@C9020 State/event machinc and termination
S@C9030 Termination request handler
S@C9099 AM Termination module

Figure 15 on page 8-8 shows the hierarchical structure of modules within the AM_controller
subcomponent.

Cray Rescarch, Inc. 8. SUPERLINK Association Manager Component 8-7



$9C9000

<============>|53C9010

SaC9030 [— S52C9099

Figure 1S. Module Structure of the Association Manager Controller Subcomponent

S@C9000 - Services

The AM_controller performs the initialization and termination of the Association Manager component.
During normal running it attaches and controls AM_processor subtasks.

S@C9000 - Initialization phase

Root module S@CCO0000 attaches the AM_controller during the initialization phase of SLCN. The
AM_controller initializes the data areas that the Association Manager component requires in common
storage. It then starts up one AM_processor subtask. Once initialized, the AM_controller enters the
active state.

S@C9000 - Active state

The AM_controller listens for any of the following events to occur:

Shutdown request from SLCN

The shutdown signal is issued by the root module, S@CC0000. Once the request is accepted, the
AM_controller enters its tcrmination phase.

“Processor idle” notification from a processor

Once an AM_processor becomes idle, it is ready for work. If there are any application titles that
do not have an outstanding receptor for an association request (OFFER), the AM_controller
orders the idle AM_processor to register an application title by using the A-OFFER service request
primitive. If additional application titles are required, the AM_controller attaches more
AM_processors. This cycle continues until there is an A-OFFER request pending for all known
application titles.

“Offer accepted” notification from a processor

When an A-ASSOCIATE indication is received in response to an A-OFFER service request
primitive, an AM_processor subtask notifies the AM_controller, which in turn activates a new
AM_processor subtask to issue another A-OFFER request. However, if an AM_processor
subtask is already in the idle state, the AM_controller will activate the idle processor, by the POST
macro, to indicate that another A-OFFER service request primitive must be issied. Otherwise,
the AM_controller attaches a new AM_processor subtask to perform this operation.

“Queucd connection requests not being accepted” notification from a processor

88 SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit S1-0182



This event occurs if an entity responder uses the S@ @MREQ macro to perform a delete end point
(DELETE-EP) (the responder will not accept any more A-ASSOCIATE indications) while end
points wait for processing on the responder’s queue. The AM_controller starts another copy of the
entity responder and gives the queue with the end points to the new job for processing.

¢ “Time-out” inactivity for at least 10 minutes

The quantity of AM_processors ATTACHed at any one time is determined by the demand placed
upon the Association Manager component. If there is a period of inactivity lasting approximately
10 minutes, one idle AM_processor, if there is one, is terminated.

e  Processor termination

If an AM_processor terminates, the AM_controller rcleases the data arcas as required.

S@C9000 - Termination Phase

The following termination sequences are defined:
e  Graceful

¢ Quick

e Abort

The AM_controller reflects the appropriate termination order to its AM_processors, which in turn issue
termination orders at the same level to all responders defined in the AM_resporider directory. When
all of its AM_processor subtasks have been detached, the AM_controller performs clean-up processing
and terminates.

“Association Manager Services Offered to Application Entity Responders on MVS” on page 8-4
provides a description of these termination sequences.

S@C9000 - Interfaces

The interfaces are described under “Association Manager Interfaces” on page 8-4.

S@C9000 - Data Areas

When the Association Manager component is initiated, it creates its own series of tables. The following
reside in common storage until the Association Manager and all of its processors have terminated:

Table Description

AM_APD Association Manager Application Program Directory
AM_APD is a register of all application titles known to the Association

Manager. An A-OFFER service request is issued for each defined application
title.

AM_CDT Association Manager Controller Data Table
AM_CDT contains data used by the AM_controller.

AM_GWA Index to the Association Manager Global Work Area

Cray Research, Inc. 8. SUPERLINK Association Manager Component 89



Table Descriptfou

AM_PCT Association Manager Processor Control Table

AM_PCT contains a header for each ATTACHed AM_processor. An entry
index is used to find the cntries.

AM_RED Association Manager Responder Directory

AM;RED has an entry for each application entity responder. An entry index
is used to find the entnes.

AM_VT Association Manager Vector Table

AM_VT contains the entry point addresses of Association Manager component
modules, pointers to data arcas, and other global information. This is the only
table accessible to modules that are external to the Association Manager
component. It contains an ECB that is posted by an external module when it
wants to inform the Association Manager component of termination processing.

“Appendix A. Data Area Descriptions” on page A-1 provides format descriptions of these data areas.

S@C9000 - Recovery

8-10

An ESTAE is established at initialization. A message is issued to the SUPERLINK LOG and retry
is attempted from the start of the state/event machine processing (S@C9020). The retry routine
proceeds as follows:

¢  Abend during initialization - The initialization sequence performed prior to the abend is reversed,
and the Association Manager component then terminates.

¢  Abend during normal operation - The main cycle is reentered at the top. The process waits for the
next event before continuing. If the same abend occurs again, the Association Manager component
terminates in as orderly a way as possible.

®  Abend during termination - The termination scquence that caused the abend is ignored, and the
ESTAE rcenters the termination sequence just beyond the section that caused the abend.

SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit SI1-0182



This page has been intentionally left blank.

Cray Rescarch, Inc. 8. SUPERLINK Association Manager Component 8-11



Diagram 8-1

S@C9000 - Root Module

Entry from MVS
(attached by S2C0000)

v

Input

8.
9.
10.

11.

12.

Process

. GETMAIN work area.
. Create a recovery environment.

. Calculate size of common

storage required.

. Acquire common storage.

Load interval timer S3C9300.

Load user exit handlef and
user exit modules.

Initialize Common Storage
Tables.

Build required cell pools.

‘Build Events Table.

Initialize ECBs upon which
controller will WAIT.

Start up first processor
(module S2C9100).

Pass control to
State/Event machine
(modulg $S3C9020).

>

Output
Work area

ESTAE environment

Common Storage
Interval Timer

User Exits and
Handler

AMT, GWA, CDT, RED,
PCT, APD

3 cell pools
Events Table

Processor
Attached

8-12  SUPERLINK for MYS Logic Library Volume 2: Control Functional Unit

> Exit to S3C9020

SI1-0182



Extended Description

Explanation

1.

Cray Research, Inc.

The acquired work area starts with the register save arca and is followed by
a more general work area. This area is passed from module to module in a
controller context to eliminate the need for further GETMAINS.

Module S@C9000 issues an ESTAE macro instruction to establish an
ESTAE recovery environment. The ESTAE routine (S@C9010) traps all
abends scheduled by this module.

The following items in the list arc totaled to give the required size of
common storage:

Association Manager Vector Table (AMT) size

Global Work Area (GWA) index size

Controller Data Table (CDT) size

.Processor Control Table (PCT) header size

(PCT entry size) x (Number of responders + 2)

Responder Directory (REDE) header size

Application Program Directory (APD) header size

(APD entry size) x (Number of Application Titles in options)
24 bytes for rounding up to full-word boundaries

The Interval Timer is module S@C9300. The entry point for the interval
timer is saved in the initial AMT.

The User exit handler is module S@CIUXAM. The entry points for the
uscr exits are saved in the GWA index.

The cell pools required arc as follows:

e Cell pool with REDE entry clements. The quantity set up is determined
by the number of responders specified in the CIOT.

e Cell pool containing 40-byte elements used as both queue elements and
queue management cells in the REDE -

e  Cell pool with PRB;/PRC buffers which arc used with each A-OFFER
issued

The following proportions are used to calculate the size of the Events Table:

e 2 per responder (the ECB on the ATTACH and the ECB for
processor-to-controlier communication)

e | for the termination ECB

e | for the interval timer

. Before the processor is started, an entry in the PCT is acquired. The

processor is then started using the ATTACH macro.

Module
S@C90600

S@C9000

S@C9000

S@C9000

S@C9000

S@C9000

S@C9000

S@C9000

Label

8. SUPERLINK Association Manager Component

8-13



Diagram 8-2
S@C9010 - ESTAE Exit Routine

Abend Occurs
(ESTAE exit invoked) \I’

Input Process Qutput

PLIST 1. If no SDHA, go to step 3.

2. Perform initial processing
as if an SWDA is present;
then go to step 4.

3. Perform initial processing
as if an SWDA is not present.

4. Output an abend message Abend message
to SUPERLINK LOG.
5. If requested, produce an SVC dump
SVC dump.
6. If retry is possible, Retry Attempt

attempt to go to retry
entry point S$3C9021.

7. If retry is not possible _0/P Retry Not Possible
percolate to next level. message

> Exit to retry point at S2C9021

or
Percolate, letting abend proceed

8-14 SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit SI-0182



Extended Description

Explanation Module Label
1. Register 0 contains F’12 if there is no SDWA. S@C9010
2. Ifthere is an SDWA, the abend code contained in the SWDA must be saved. S@C9010
3. If there is no SDWA, the abend code contained in register 1 must be saved. S@C9010
4. The abend message output contains the system abend code, the user abend S@C9010

code, and the rcason code. It also indicates whether the abend occurred in
the the Association Manager controller subcomponent (S@C9000) or one
of the processors.

6. Retry is not possible in the following conditions: S@C9010

¢ The retry-not-allowed flag is set in the SDWA.
e This is a CANCEL.

e  This is a step abend.

e This is an STAE error/higher task.

7. If percolation does not occur, another message is written to the S@C9010
SUPERLINK LOG indicating that a retry was not possible.

Cray Research, Inc. 8. SUPERLINK Association Manager Component 8-15



Diagram 8-3
S@C9020 - State-event Machine and Termination
Entry from S2C9000 l

v

Input Process

1. Set interval timer to expire
©in 10 minutes.

2. WAIT for an event ﬁo occur.

3. Cancel the interval timer.

4. Process incoming events
using the State/Event
combination to determine
what should be done.

5. Go back to step 2.

Int

>

Output

erval timer

running

WAIT Event

> Exit to S3C9020

8-16 SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit

S1-0182



Extended Description

Explanation

1. As demand increases, the quantity of ATTACIed processors increases. The
timer is set to expire after 10 minutes of inactivity to terminate Idle
Processors.

2. The program WAITs for one of the “event-has-occurred” ECBs to be posted.

3. Since an event has occurred, the inactivity timer is cancclled.

As soon as an event occurs, the state/cvent machine is used to invoke one

of the following actions:

Cray Research, Inc.

Graceful termination - Allow no new activity and drain the present
activity. As processors become idle, terminate them. When there are no
more active processors, tcrminate the SUPERLINK Association
Manager componcnt.

Quick tecrmination - Flush all activity from the system. Send
A-ASSOCIATE (negative) for all unprocessed A-ASSOCIATEs.

Abort termination - Close down without tidying up.

Processor gone IDLE - If an Idle processor is requited to perform some
work then the Idle processor will be POSTed to perform it.

An idle processor could be used to do the following:

=  Perform an OEFER that needs to be put out )
= Handle association identificrs qucued for a processor controlling a
task that is unable to handlc them.

A-OFFER taken up - The A-OFFER needs to be issued again. A
search for an IDLE processor to do this is performed. If there are no
idle processors available to do this, another processor is ATTACHed.

Timer Expired - The timer has indicated 10 minutes of inactivity.
Search for one idle processor and POST it to terminate.

ATTACHED Processor Terminated - The table entries for the
processor are cleancd up. If the processor terminated abnormally,
leaving unprocessed A-ASSOCIATES , they are handled.

Module
S@C9020

S@C9020
S@C9020
S@C9020

Label

8. SUPERLINK Association Manager Component

8-17



S@C9100 - Association Manager Processor Subcomponent

Each Association Manager Processor subcomponent (AM_processor) is ATTACHed and controlled
by the AM_controller. During normal operation, scparate processors are active simultancously as
different tasks.

S@C9100 - Module Structure

‘The AM_processor consists of the following modules:

Module Description

S@CI9100 Root module; main-line routine.

S@&CI110 ESTAE exit routine

S@CI121 Action I: Issue an A-OFFER service request primitive for each defined

application title.

S@C9123 Action 3, Part 1: Handle incoming association protocol information by trying
to match it to an active responder. If not possible, call Part 2.

S@C9123B Action 3, Part 2: Handle incoming association protocol information by
initiating a responder to process it.

S@C9124 Action 4: Handle interval timer expiration if “listen” pending
S@C9125 Action 5: Listen has been performed.

S@C9128 Action 8: Duplicate responder entity.

S@C91212 Action 12: Handle interval timer expiration if “delete-any” pending
S@CI14A TEXT and STEXT field parser

S@C914C Job status/éancel processor

S@C914) Card images generator

S@CI14K Keyword Table creation

S@C914R SEND an A-ASSOCIATE (negative response)

S@C914S Job submission processor

S@C914T Task attach processor

S@C914X Create/Delete system access facility (SAF) environment processor

Figure 16 on page 8-19 shows the hierarchical structure of modules within the AM_processor
subcomponent.

8-18  SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit St-0182



S3C9100|<=============>|S53C9110
S2C9121 S9C9124 SaC9125 S3C9128 SaC91212
Status Reject Reject Reject
Status
Status<—{S2C9123 SaC9123B
;_>|

Reject .

S3C914K Sac914J SaC914sS

SC914A $3C914X

Reject——>|SaC914R Status—>|S3C914C

Figure 16. Module Structure of the Association Manager Processor Subcomponent

S@C9100 - Servi

ces

The AM_processor provides the following services:

e Initially i
AM_con

ssues an A-OFFER service request primitive for an Application Title (as requested by the
troller)

¢  Waits for an incoming A-ASSOCIATE indication

®  Processes the conncction end point if the Association Manager can locate an appropriate responder

e  Takes the following actions if the Assoctation Manager cannot locate an active responder:

» Initiates a new responder to process the connection end point
= Holds the connection end point until the responder becomes active
= Passes over all queued end points once the responder is active

"The AM_processor is cvent-driven and uses a finite-state machine (FSM) strategy to perform all its
functions. The following states are used for the AM_processor FSM:

State
IFREE
INIT
IDLE

Cray Research, Inc.

Description
Initial and final state of the FSM
AM_processor initializing; initialization not complete.

Waiting for an order to be given by the AM_controller

8. SUPERLINK Association Manager Component 8-19



State Description
ACTIVE An IDLE processor has been posted but the request has not yet been delivered.

OFFER-PD OFFER pending; waiting for an A-ASSOCIATE indication primitive. The
AM_processor can cancel the pending A-OFFER service request by issuing an
A-RELEASE service request primitive. The A-OFFER service request is also
cancelled if the AM_controller issues a termination order.

LISTEN-PD LISTEN pending; waiting for a LISTEN indication from the submitted
companion job.

DELETE-PD DELETE pending; waiting for a DELETE TYPE = ANY indication from the
MVS responder.

TERM AM_processor terminating; termination not yet completed.

When an A-ASSOCIATE indication has been received by an AM_processor, the AM_processor
notifies the AM_controller. The AM_controller responds by indicating to another AM_processor task,
through the POST macro, that the AM_processor must issue an A-OFFER service request primitive
for the application title. If necessary, a new AM_processor task is ATTACHed.

For each connection end point, an element is added to the request queue associated with the
application entity responder. When a responder entity is listening, connection end points are handed
over to it.

If a responder is to be initiated in response to an incoming association identificr, the following sequence
of events is followed:

1. A Keyword Table is generated. This table contains all the variables permitted in the companion
job’s skeleton JCL, specified by SUPERLINK options. The TEXT, IDEN, and AUTH fields
on the incoming A-ASSOCIATE indication may contain values that override the default values
from the SUPERLINK Options.

2. The Keyword Table is passed to user exit 1 (S@C9UXI - variable validation user exit).

3. The identification and authentication information is passed to user exit 4 (S@C9UX4 - sccurity
validation).

4.  The JCL is resolved by taking the skeleton JCL associated with the application title being
processed and substituting the real values for the variable keywords from the Keyword Table.

5. The resolved JCL is passed to user exit 2 (S@C9UX2 - pre-JCL submit user exit).
6. The JCL is submitted according to the following sequence:

Dynamically allocate the JES internal reader

Create environment; call to the SAF using RACINIT via RACROUTE.
Open internal rcader

Output JCL using VSAM PUT

Close the internal reader

Delete environment; call to SAF using RACINIT via RACROUTE.

g.  Dynamically dcallocate the JES internal reader

™o e op

A check 1s made at regular intervals to determine if the submitted JOB has started execution. This is
done as follows:

8-20 SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit SI1-0182



Create a Subsystem OPTIONS Block (SSOB) to request the status of the JOB submitted and
chain it off the Subsystem Interface Block (SSIB).

Make the call to JES, in supervisor mode, using the MVS subsystem interface request macro
(IEFSSREQ).

Determine JOB status from the return code in the SSOB.

If the companion job is not initiated within an expected time period, onc of the following events occurs:

User exit 3 is called (S@C9I9UX3 - job schcdulin’g user exit), if it exists. It returns with one of the
following: '

Continue; corrective action taken.
Please wait.

Try later.

Take action specified in Options.

The canccl-the-job option is taken if it was specified via Options; if no option was specificd, the
cancel is performed in the same manner as a status request.

The ask-the-opecrator option is taken if it was specified via Options. The operator is asked to select
either the continue-to-wait or cancel-job option.

S@C9100 - Interfaces

Sce “Association Manager Interfaces” on page 8-4 for a complete description of AM_processor
interfaces. '

S@C9100 - Data Areas

See “S@CY000 - Data Areas” on page 8-9 for a complete description of AM_processor data areas.

S@C9100 - Recovery

In the event that an abend occurs within an AM_processor, AM_processor ESTAE is invoked. This
recovery routine performs the following scquence:

1.
2.
3.
4.

Issues a message containing the abend code and reason code.
Resets internal flags, indicating the new state of the AM_processor
Produces an SVC dump is produced if the option has been selected.

Attempts to restart the AM_processor, if this is not possible, the abend is percolated.

If percolation occurs, any storage being used for presentation request buffers (PRB) and prescntation
request contexts (PRCs) are released. Any jobs pending are also cancelled and all end points held by
the processor are rejected.

If a retry is possible, the AM_processor is reentered at the start of the main cycle. Upon retry, a position
flag is uscd to determine the appropriate action that is to be taken.

Cray Research, Inc. 8. SUPERLINK Association Manager Component 8-21



Diagram 8-4

S@C9100 - Root Module and Main-line Code

Entry from MVS

(attached by SC9000) |

v
Input - Process
PLIST Initialize local work area.

. Establish ESTAE.
Build Events Table for ECBs.
Initialize ECBs.

. HAIT for an event to occur.

a b w N -

. Process incoming events
using the State/Event
combination to determine
what should be done.

7. Go back to step 5.

Termination Sequence:

8. Delete storage acquired.
9. Cancel recovery environment.

10. Clean up and return.

Output
Work area
ESTAE environment

Events table

—>| WAIT Event

ESTAE cancelled

Completion code

- > Exit to MVS.

8-22 SUPERLINK for MVS Logic Libfary Volume 2: Control Functional Unit

SI-0182



Extended Description

Explanation

2.

Cray Research, Inc.

S@C9100 issues an ESTAE macro instruction to establish an ESTAE
recovery environment. The ESTAE exit routine (S@C9110) traps all abends
scheduled by this module.

The EVENTS macro is used to build a table to hold four ECBs.

The ECBs in the Events Table are initialized. They are all contained in the
PCT entry associated with the processor.

The program WAITs for one of the ECBs to be POSTed.

As soon as an event occurs, the State/Event combination is used to
determine which of the specified actions should be executed. One of the
following actions is performed when an event occurs:

Action 1: Put out an A-OFFER for a specific title, (Module S@C9121
is invoked to perform this action).

Action 2: Cancel the A-OFFER that was put out.

Action 3: Process an incoming A-ASSOCIATE indication, (Modules
S@C9123 and S@CY123B are invoked to perform this action).

Action 4: Timer expired when LISTEN pending so determine if
responder is active, (module S@C9124 is invoked to perform this
action).

Action 5: LISTEN performed by JOB; perform END-POINT GIVES
for all Queued Association Identifiers, (Module S@C9125 is invoked
to perform this action).

Action 6: DELETE-ANY performed by JOB; put processor back into
an IDLE state.

Action 7: Operator replied to a WTOR; analyze his response.

Action 8: Cloning requested; spin off a copy of the requested job and
swap queues, (Module S@C9128 is invoked to perform this action).

Action 9: DELETE-EP performed by JOB; determine whether cloning
is required. If so, sct that process in motion.

Action 10: ATTACHed task terminated; clean up after the task.

Action 11: Handle a closedown request received while in the
LISTEN-PENDING state. '

Action 12: Timer expired when DELETE pending so determine if
responder still active, (module S@C91212 is invoked to perform this
action).

Module
S@C9100

S@C9100

S@CI100

S@C9100
S@C9100

Label

8. SUPERLINK Association Manager Component:

8-23



Diagram 8-5
S@C9110 - ESTAE Exit Routine

Abend Occurs
(ESTAE exit invoked) ‘II

Input Process Output

PLIST 1. If no SDWA, go to step 3.

2. Perform initial processing
as if SDWA is present;
then go to step 4.

3. Perform initial processing
as if SDWA is not present.

4. Output an abend message abend message
to SUPERLINK LOG.

5. Perform any required clean up.

6. If requested, produce an SVC Dump
SVC dump.

7. If retry is possible,
attempt it; go to retry
entry point S3C9101.

8. If retry is not possible, 0/P Retry Not Possible
percolate. message

> Exit to retry point at S2C9101

or
Percolate, letting abend proceed.

8-24  SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit S1-0182



Extended Description

Explanation

1.

& e

Cray Research, Inc.

Register 0 contains 12 if there is no SDWA.
If there is an SDWA, the abend code contained in it must be saved.
If there is no SDWA, the abend code contained in register 1 must be saved.

The abend message output contains the system abend code, the user abend
code, and the reason code. It also indicates if the abend occurred in the
Association Manager controller subcomponent (S@C900) or in one of the
Proccssors.

'The required clean up actions are as follows:
e  Clear out Job-not-known-yet lock.

¢ Any ENQs on the Responder Directory lleader or the responder
Directory entry are DEQed.

Retry is not possible under the following conditions:

The Retry-not-allowed flag is set in the SDWA.
This is a CANCEL.

This is a step abend.

This is an STAE error/higher task.

If percolation does not occur the following will occur:

¢  An appropiate "PERCOLATION HAS OCCURED” message will be
output

® The PRB/PRC cell will be released if obtained for an A-OFFER
e A responder is cancelled using module S@C914C if it is pending

¢  Any outstanding connection end points will be rejected using module
S@CI14R

Module

S@CI110
S@C9110
S@CI110
S@CI110

S@CI110

S@C9110

S@C9110

Label

8. SUPERLINK Association Manager Component

8-25



Diagram 8-6

S@C9121 - Action 1, Put Out an A-OFFER

Entry from S2C9100

v

Input

PRB/PBC Buffer

Process

. Clear out Processors work
area in private storage.

. Cancel any timers running.

. Get and format PRB/PRC

buffer.

Output—

Set up "OFFER—-PENDING®' state. New Processor state

PUT out the A—OFFER for the —1+—>| A—OFFER
application title.

. Validate response to A—OFFER.

> Return to S3C9100 (If failure occured)
> Exit to S9C9123 (If A—ASSOCIATE indication

8-26 SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit S1-0182

received)

N



Extended Description

Explanation

1. Only the top end of the processor’s working storage is cleared out. This
includes the private REDE section and the CASE ARE section.

3. The PRB/PRC buffer is obtained from a cell pool and consists of a section
of ECSA storage. It will be split up as follows:

® o 0 0 0

Onec PRB

Three PRBEs

Two 4K Inbound buffers

One PRC

The required number of PRCEs (minimum two, maximum three)

5. Once the CASE call is made to perform the OFFER, it will return only
under the following conditions:

[ X B BN J

An A-ASSOCIATE is received.

A P-ABORT is reccived.

An error occurs.

The Association Manager controller subcomponent posts the Cancel
ECB.

6. Once a response is received to the A-OFFER the following validation is
carried out:

Cray Research, Inc.

If the cancel ECB was posted, return to S@C9100 to wait for another
event, (Possibly a cancel).

If an A-ASSOCIATE indication was rcceived, exit to module S@C9123
to process it. A

If this module is in a termination phase, return to S@C9100 to wait for
the closedown request.

If the A-OFFER failed because the maximum number of CASE
responders limit has been reached, then set a timer to expire after an
interval. Then exit to S@C9100 to wait for the timer to expire. When
the timer expires, an attempt is made to re-issue the A-OFFER.

If an error occurred, output an error message. If this is the 5th
occurrence of the error, mark the Application Title being handled as
'FAILED’ and go idle. Otherwise, if its not the 5th occurrence, issue
the A-OFFER again.

Module
S@C9121

S@C9121

S@CI121

S@C9121

Label

8. SUPERLINK Association Manager Component

8-27



Diagram 8-7

S@C9123 - Action 3 (Part I), Give End-point To Active Responder

Entry from S53C9100

v

Input

A—ASSOC indication
in ARE area

Process

. Tell AM controller that an

A—ASSOCIATE indication has
been received.

Extract information required
from A—-ASSOCIATE indication.

. Create Keyword Table and

Invoke AM User Exit 1.

Search for active responder
to take connection end point.

If responder is not found,
exit to S?C9123B to initiate
a new responder

If responder is found, performd

" an END-POINT GIVE

Put the Association Id into
the responder queue.

Put Processor into an IDLE
state.

Return to S9C9100 to wait for
the next event to occur.

Output

Keyword Table

—>| END—POINT
GIVE

AID added to REDE
queue

Processor now in

IDLE state /-.\

> Exit to S9C9100 (To wait for next Event to occur)

or
> Exit to S2C9123B (To initiate a new Responder)

8-28  SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit S1-0182



Extended Description

Explanation

1.

Cray Research, Inc.

The AM controller's ECB is POSTed. This causes the AM controller to get
another processor to put out an A-OFFER for the particular application
title being handled.

The following is extracted from the incoming A-ASSOCIATE indication:
e Idcntification Fields 1to 3

o  Authentication Fields 1 to 3, (2 and 3 are not used by the Association
Manager itself, only passed to the Security Exit AM user exit 4)

o  The contents of the Text Field
o The PSAP id

e  The ornginators Mainframe Id

The Keyword table of variable values is created using module S@C914K.
Module S@C914K invokes User Exit 1 (Variable validation) via the
S@CIEXIT macro.

The Responder Directory (REDE) is searched for a similar application title.
If onc is found, the caller’s user ID, password, group ID, and account are
compared with those of the responder initiator; if they match, the responder
is permitted to process the Association Identifier (AID).

For the duration of the search, scralization is ensurcd by ENQing upon the
Responder Directory Headers address.

Steps 6 and 7 are scrialized using an ENQ. The address of the responders
entry in the directory will be the minor name for the ENQ.

If the responder is in a LISTEN state, then the end point is given to the
responders address space. Otherwise, the cnd point is given to the
SUPERLINK address space. (SUPERLINK/MVS keeps the end point
until it is told that the responder issued a LISTEN or the responder
terminates)

The Association Identifier is inserted into the responders queue using the
S@C@QADD macro.

Module
S@CI123

S@C9123

S@C9123

S@C9123

S@C9123

S@C9123

S@C9123

8. SUPERLINK Association Manager Component

8-29



Diagram 8-8
S@C9123B - Action 3 (Part H), Start a New Responder
Entry from 53C9123 |

)
Input Process Output

—>|REDE entry

1. Create a new responder
directory entry.

2. Set the processor's state to New Processor

LISTEN-PENDING state
AID in ARE area in 3. The Association Identifier is Additional AID
private storage added to the queue in the new on REDE queue

responder directory entry.

9. AM User Exit 6 (Security
Validation) is invoked.

Skeleton JCL 5. The JCL that will be used to JCL Cards
initiate the new responder is
created by module SaC914J.

Formatted JCL 6. The JCL is submitted to the New Responder
Cards JES internal reader by module Job
S3C914S.
7. The interval timer is primed Interval timer
to start running. running
8. Return to caller with return Register 15
code.

> Exit to S53C9100

8-30 SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit S1-0182



~

Extended Description

Explanation

L.

Cray Research, Inc.

The new REDE is obtained from a Cell pool. The pointer to it is inserted
into the Responder Directory header. A Queue anchor is also obtained from
another cell pool and the pointer to it is inserted into the new REDE entry.
Both the new REDE and its queue anchor are located in ECSA.

Serialization is ensured by ENQing upon the Responder Directory Headers
address.

If an error occurs in any of the following steps right up to step 8 the
A-ASSOCIATE indication being handled will be rejected, the new REDE
and its queue anchor will be released, the processors state will be set to
IDLE, and control will be returned to S@C9100 to wait for the next event.
Appropriate error messages will also be issued during this process.

The Association Identifier is inserted into the responder’s queue using the
S@C@QADD macro.

The user exit is invoked via the S@C9EXIT macro.
The interval for the timer is obtained from the SUPERLINK Options deck.

Module
S@C9123B

$@C9123B

S@C9123B
S@C9123B

Label

8. SUPERLINK Association Manager Component

8-31



Diagram 8-9

S@C9124 - Action 4, Timer Expired When LISTEN Was Pending

Entry from S2C9100

v

Input

REDE entry

Process

. Check status of companion job:

If Active, go to step 10.
If Waiting, go to step 2.
If on 0/p Q, go to step 8.
If unknown, go to step 9.

If total wait time is not
expired, continue at step 7.

. Call user exit 3 to ask what

to do. Determine action based
on following answers:

— If no user exit, go to
step 4.

If CONTINUE, go to step 7.
If WAIT, go to step 7.

If CANCEL, go to step 5.
If STANDARD, go to step &.

I

. Take default action specified

through options:

— If CANCEL, go to step 5.
— If operator, go to step 6.

. Cancel job; go to step 10.

. Ask operator what to do,

output message, and go to
step 10.

. Reset interval timer and go to

step 10.

Log a message; job terminated.

9. Clean up after failure.

10.

Return to caller.

Output

Responder Cancelled

Operator message

8-32  SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit

> Exit to S3C9100

SI-0182



Extended Description

Explanation

1.

Cray Research, Inc.

The status of the responder entity is determined by calling module
S@CI914C with register 1 set up to request job status.

User exit 3 may ask the processor to perform one of the following actions
when a job has failed:

Continue; corrective action has been taken.

WAIT for the job to start.

CANCEL the job and send a message (TRY LATER).
Perform the standard default action specified in the options.

® 6 0 0

The default actions for job failures which may be specified through
SUPERLINK/MYVS options are as follows:

e CANCEL the job.
®  Ask the opcrator what to do.

The responder entity is cancelled by calling module S@C914C with register
1 set up to request a CANCEL.

The messages macro is used to send a message to the operator, specifying
TYPE=WTOR + LOG.

Clean up consists of sending a negative response for the A-ASSOCIATE
received and setting the processor’s status to IDLE.

Module
S@C914C

S@Co124

S@&C9124

S@C9124

S@CI124

S@C9124

Label

8. SUPERLINK Asscciation Manager Component

8-33



Diagram 8-10
S@C9125 - Action 5, Perform Required END-POINT GIVES Routine

Entry from S2C9100 I

v
Input Process Output
PLIST 1. LISTEN has occurred; Cancel
and reset the interval timer.
2. Set processor state to Processor state
DELETE-PENDING. DELETE—PENDING
3. POST interface code and wait —}—>|X—memory Post

for a LISTEN confirmation.

4. Set responder into dual state Responder in Dual
LISTEN and LISTEN-PENDING. state

5. ENQ upon the REDE.

6. Perform an END—POINT GIVE for
all connection end points —>| End points
queued up for the responder. given

7. DEQ upon the REDE.

8. Revert responder from dual Responder State
state to LISTEN. LISTEN
9. POST the user's ECB if its —1—> X—memory Post

'Notify me' flag is set.

10. Return to caller.

Output

> Exit to S2C9100

8-34  SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit S1-0182



Extended Description

Explanation

1.

Cray Research, Inc.

The Responder is now active and S@C9125 is no longer checking to see if
it is active at intervals. S@C9125 still requires the timer to expire after
intervals. To determine if it is still active, it might terminate without doing
a DELETE-ANY

If the STATE is already DELETE-PENDING, this is the sccond time
through. Therefore, return to the main cycle without doing anything.

The Listen notification from the interface code is serialized hence S@C9125
needs to cross-memory post it to confirm that the listen notification has been
received.

The responder is sct into a dual statc; LISTEN mcans that any further
conncctions added to the responders qucuc will have an END-POINT
GIVE performed and the LISTEN-PENDING mcans that the responder
itsclf will be inhibited from taking queued items for processing until
S@C9125 changes the state in step 8

To ensure serialization occurs, an ENQ is performed. The responders REDE
entry address will be the minor name. (If a DELETE-ANY occurs the
interface code will hold the responder until a DEQ is performed).

Both the request queue and work queue are processed. Prior to cach
END-POINT GIVE, a flag is checked to sece if a DELETE-ANY was
initiated and if so, any outstanding cnd points are rejected via module
S@CY14R and control is returned to S@CI100.

If any of the END-POINT GIVE:s fail, then the individual connection end
point will be rejected.

The “Notify Me” flag is sct if the responder performs a successful NOTIFY
call. The NOTIFY supplics the address of an ECB that is to be posted when
there is somcthing to pass to it. Sincc the END-POINT GIVEs have been
performed, the queued items are now ready to be passed.

Module
S@CI125

S@CI125

S@CI125

S@CI125

S@C9125

S@C9125

S@CI125

Label

8. SUPERLINK Association Manager Component

8-35



Diagram 8-11

S@C9128 - Action 8, Clone Responder Entity Routine

Entry from S2C9100

v

Input

0ld Responders
Private REDE area

0l1d REDE Queue

Skeleton JCL

JCL cards

lo.
11.

. Take all the connection

Process

. Access text that was used to

create job to be cloned.

. Recreate Keyword Table for

job to be cloned.

. Acquire a new entry in REDE.

. Swap queue of job to be cloned

with empty queue of new REDE.

end points back.

. Cross—memory confirmation.

Invoke AM User Exit 4
(Security Validation).

. Create the JCL to initiate a

new copy of the responder.

. Submit the JCL to the JES

internal reader.
Star the interval timer.

Return to caller.

———1—>| END—-POINT

Output

New responders
Private REDE area

Keyword Table

New REDE entry

New REDE queue

TAKEs
X—memory POST

JCL cards

New Responder Job

Active Interval
Timer

8-36  SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit

> Exit to S3C9100

S1-0182



Extended Description

Explanation

1. The text is held in private storage; the responder’s entry in the REDE points
to this storage area. It is extracted and copied.

2.  Module S@C914K is used to recreate the Keyword Table.

5. All the connection end points on the queue just exchanged the need to be
taken with an END-POINT TAKE from the responder that had them. They
will be given to the new responder when it perform a LISTEN

6. The DELETE-EP that invoked the cloning process is a confirmed service.
S@C9128 needs to cross-memory post the interface code to inform it that
the qucuc items have now been successfully extracted and will be processed.

7.  User exit 4 is invoked using macro S@CIEXIT.

8. Module S@C914J is used to create thec JCL for the initiation of the new
copy of the responder

9. Module S@C914S is used to submit the JCL cards to the JES internal
reader of the responder

10. Now that the job has been started, S@C9128 will nced to check at intervals

Cray Research, Inc.

to determine if the job is active yet or if it has failed. The timer is set to run
for the first interval period.

Module
S@C9128

S@C9128

S@C9128

S@C9128

S@C9128

S@C9128

S@C9128

S@C9128

Label

8. SUPERLINK Association Manager Component

8-37



Diagram 8-12
S@C91212 - Action 12, Timer Expired When DELETE Was Pending
Entry from S23C9100 I

Vv
Input Process Output
1. Cancel the Interval timer.
REDE entry >2. Determine if the responder is

active.

3. If the job is active, reset Timer now
internal timer; go to step 6. running

4. If the job is not active, Error message
output an error message.

5. Fake a DELETE—ANY. >| POST

6. Return to caller with return
code. Register 15

> Exit to 53C9100

8-33  SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit SI-0182



Extended Description

Explanation

L.

Cray Research, Inc.

To ensure that the interval timer is no longer running, it is cancelled because
it is possible for a timer expiration to be faked to force the invoking of this
module.

Module S@C914C is used to determine if the responder is still active

If the responder is still active, than everything is OK. All that nceds to be
done is to reset the timer so that a check can be made again later.

The responder is no longer there and an appropriate crror message is
gencrated.

The entry for the responder in the Responder dircctory and any outstanding
end points nced to be tidicd up because a responder has terminated without
performing a DELETE-ANY. To do this, a DELETE-ANY is faked using
the POST macro.

Module
S@C91212

S@CY1212

S@CoI1212

S@CI91212

S@CI1212

Label

8. SUPERLINK Association Manager Component

8-39



Diagram 8-13

S@C914A - JOBTEXT Field Parser

Entry from S3C914K

l

v

Input

Text String

Keyword Table

Process

. Search for keyword in TEXT

string; if not found, then
return to caller with return
code.

. Obtain the entry in the

Keyword Table for the keyword
that was located.

. Obtain location of keyword

value in TEXT string and its
length.

If value in quotes, then strip
out the quotes.

Insert into the keyword table
the address of the keyword's
value and its length.

. Go back to step 1.

Output

Register 15

Updated Keyword
table entry

8-40 SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit

> Exit to S3C914K

S1-0182



Extended Description

Explanation

1.

Cray Rescarch, Inc.

S@CI14A scans for the next keyword in the text string supplied by the
caller. When the end of the string is reached, the caller is returned with an
appropriate retumn code. )

If a syntax error is encountered, then the scan is aborted and a non-zero
return code is given to the caller.

The entry that is to be updated in the keyword table is located. If not found,
(keyword not recognized), the module exits to the caller with an appropriate
non-zero return code.

If the value is enclosed within parenthesis, then everything within the
parenthesis, (including the parenthesis), is considercd to be the value.

Everything between the quotes, (except the quotes themsclves), is considered
to be the value. Double quotes within the quotes are treated as a single
quote. :

Everytime a keyword table entry is updated, a flag is set to indicate it has
been processed. If a flag is found to be already set, then duplication has
occurred. Another flag is set to indicate that this has happened. Upon return
to the caller, a non-zero return code will be set to indicate duplication has
occurred if the duplication flag is set.

- Module
S@CI14A

S@CI14A

S@CII4A

S@CI14A

S@CI14A

Label

8. SUPERLINK Association Manager Component

8-41



Diagram 8-14
S@C914C - Job Status/Cancel Processor

Entry from Association Manager
(S2C9123, S2C9124 or S3C91212)

'

Input I Process Output

PLIST r-> 1. Analyze parameter list.

2. Build SSOB.
3. Issue réquest to JES.
4. Indicate results to caller.

5. Return to caller with return Register 15
code.

842

> Exit to caller

SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit

S1-0182

7



Extended Description

Explanation

1. The parameter list (PLIST) is for either a STATUS or a CANCEL request.
It contains such associated information as JOBNAME and JOBID.

2. The Subsystem Interface block (SSOB) is built, then attached to the SSIB.
3. A subsystem request is issued using the IEFSSREQ macro.

4. The results from the subsystem request are returned to the caller as
completion code (register 15) and feedback code (register 0).

- Module

S@C914C

S@CI14C
S@C914C
S@C914C

Label

Cray Research, Inc. 8. SUPERLINK Association Manager Component

843



Diagram 8-15

S@C914J - Card Image Generator
Entry from Association Manager ————]

(S3C9123 or SaC9128)

v

Input

JCL Cards >3.

. Put processed card into

10.

Process

. Generate values for the "N'—

keyword, and if required, the
default JOBNAME value.

Initialization for JCL
cracking

START OF MAIN LOOP
Obtain a skeleton JCL card
START OF INNER LOOP

. Scan for variable; if end of

card is reached, go to 8.

Locate associated entry in
keyword table for variable.

. Replace variable with the

value from the keyword table.
Go back to step 4.
END OF INNER LOOP

output area.

If there are more cards to
process, go back to step 3.

END OF MAIN LOOP

FREEMAIN any working storage
acquired, then return to
caller with a return code. —

—_—1—>| JCL ;1

Output

—>|Value for N
Keyword

—> Register 15

8-44 SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit

> Exit to caller (S3C9123 or S3C9128)

SI1-0182



Extended Description

Explanation

1.

10.

Cray Research, Inc.

The "N’ keyword variable value is generated as a unique 4 digit number.

If no JOBNAME value was specified, then the default value generated
consists of the User Id plus a unique character. If a JOBNAME default was
provided via the SUPCRLINK options deck, then the default gencrated is
this value padded out to cight bytes using the value of the "N’ keyword to
pad it.

Pointers are established to the keyword table and the Skeleton JCL. An
output area for the processed cards in private storage below the line is also
GETMAINed.

The card to be processed is moved into a work area.

The card is scanned for the variable delimiter which was specified in the
SUPERLINK options deck.

Once all of the card has been processed, then the inner loop is finished.

If the variable in the skeleton is not a recognized keyword, then the card will
be output with an appropriate error message.

If a length was specified with the variable in the skeleton JCL, then only the
length of the value requested will be inserted into the card. If the length
requested is greater than the length of the value, then it will default to the
actual length ‘of the value.

If any errors occurred, then the output area is FREEMAINed and
processing returns to the caller with an appropriate error message.
Otherwise, if no errors occurred, the processing returns to the caller with a
zero return code.

Module
S@C914J

S@Co14]

S@C914]
S@C914J

S@C914)

S@C914)

S@C914J

Label

8. SUPERLINK Association Manager Component

84s



Diagram 8-16
S@C914K - Create Keyword Table

Entry from Association Manager
(S2C9123 or S2C9128) 3

Input Process Output

Mask

> 1. Set up keyword mask.

2. Insert default values for
parameters specified through
SUPERLINK/MVS OPTIONS.

3. Generate the value for the —>|Value for PARM
*PARM' keyword. Keyword

4. Insert values from text field
into the Kevword Table.

5. Insert the IDENT and AUTH
values from the A—ASSOCIATE
into the keyword table.

6. Invoke AM User Exit 1
(Variable validation).

7. Validate the length of values.

8. Return to caller. Keyword Table and
Return code

> Exit to S2C9123 or 52C9128

8-46 SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit SI-0182



Extended Description

Explanation

L.

Cray Rescarch, Inc.

The keyword mask contains the keywords and null values for the keyword
parameters.

The value generated for the “PARM?” keyword consists of the SSVT address
(8 digits giving a hex repesentation), the index number for the responder (8
digits giving a translation of the binary index number), and “R”, which tells
it to run in responder mode. '

The parse-a-text-string processor (S@C914A) inserts the text values into the
table.

The Identification and Authentication information is” saved initially in
private storage by module S@C9123 when an incoming A-ASSOCIATE
indication is being processed. Pointers to those values are then inserted into
the keyword table.

The user exit is invoked via macro S@CI9EXIT.

The length of each value in the keyword table is checked to ensure that it
does not exceed the maximum permitted for its associated keyword.

Module
S@CI14K

S@CI14K

S@CI14K

S@CI14K

S@CI14K
S@C914K

Label

8. SUPERUSK Association Manager Component

847



Diagram 8-17
S@C914R - Send A-ASSOCIATE (Negative Responses)

Entry from Association Manager ————l

Process

Set up and Translate to ASCII

(S2C€9100, SacC9123, SaC9123B,
S3C9124, S3C9125 or S2C9128)
Input
Translate >1.
Table

. Reject the connection
" end point held.

. Go to step 8.

. Set the responders status to

. Reject all the connection

. Return to caller.

any EBCDIC text message that
is to be sent with each
A—ASSOCIATE negative response.

If a REDE pointer indicates
that there is a queue to the
process, go to step 6.

If there is no A—ASSOCIATE

indication in the ARE area, go
to step 8.

FAILURE.

end points held on the -
request queue and work queue.

Qutput

A—ASSOCIATE
Neg Response .

A—ASSOCIATE
Neg Responses

8-48

SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit

> Exit to caller.

SI-0182



W

Extended Description |

Explanation

2.

Cray Research, Inc.

Initially, S@C914R will search for a responder directory entry associated
with the processor. If it finds one, S@C914R will reject all the connection
end points on its queue. If it does not find one, it will search for a connection
end point in the ARE area in private storage; if found, it will be rejected.

S@CI14R sends an A-ASSOCIATE response negative. An appropriate
message is output to indicate which connection end point has been rejected.
Finally, the PRB/PRC buffer is released back to its cell pool.

Each individual end point on the queues are rejected and then cleaned up in
thc same manner as the individual end point in step 4.

The end points are removed from the queues using the S@C@QREM

macro. This has the effect of rcleasing the queue element as they are released

back to the qucue clement cell pool.

Module
S@CI14R

S@CII4R

S@C914R

Label

8. SUPERLINK Association Manager Component

849



Diagram 8-18

S@C914S - Job Submission Processor

Entry from Association Manager
(SaC9123B or S3C9128) I

v
Input Process Output
1. Build ACB and RPL.
2. Issue a CREATE call to SAF.
3. Dynamically allocate of JES
internal reader.
4. OPEN internal reader.
. Invoke AM User Exit 2,
(JCL Validation).
JCL Cards :
T 6. Loop PUTing JCL into JES
I >interval reader.
7. Find MVS job number from —> | New Responder
RPL after ENDREQ macro. Job
8. CLOSE internal .reader.

9. Dynamically de—allocate JES

10.
11.
12.

Internal Reader.
Issue DELETE call to SAF.
Log job submitted if required.

Return to caller with return
code.

Register 15

> Exit to caller

8-50  SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit SI-0182



Extended Description

Explanation

2. The SAF Create is performed via module S@C914X

The parameters passed to SAF are those for RACINIT; TYPE = CREATE,
USER, GROUP, and PASSWORD.

If the ‘bypass password checking’ flag is set, then PASSCHK = NO, wilj be
used.

6. The cards inserted have been previously set up in an output area by a call
to module S@C914J.

7. An FNDREQ macro is issued to terminate the insertion of the JCL into the
JES internal rcader. This puts the job number of the job into the RPL. The
job number will be extracted from the RPL and saved.

10. The SAF Delete is performed via module S@C914X.
11. If Association Manager tracing is on, then the JCL submitted will be logged

in the SUPERLINK LOG. Any occurrences of PASSWORD= on any
card will be suppressed.

Module
S@CI14S

S@CI14S

S@CI14S

S@CI14S
S@CI14S

Label

Cray Research, Inc. 8. SUPERLINK Association Manager Component

8-51



Diagram 8-19
S@C914T - Task ATTACH Processor

Entry from Association Manager
(S3C9123B or Sa3C9128) I
v

Input Process Output

1. Issue CREATE call to SAF.

2. ATTACH responder as a Task —T—>|New Responder
within the SUPERLINK address Task
space.

3. Issue DELETE call to SAF.

4. Log the message 'Task Msg in Log
Attached."' _

5. Return to caller with return Register 15
code.

> Exit to caller

852  SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit S1-0182



Extended Description
Explanation Module Label
1. The SAF Create call is made using module S@C914X. S@C914T

2. The ATTACH is done with an ECB so that the SUPERLINK Association S@C914T
Manager component can pick it up in the event of an abnormal termination.

3. The SAF Delete call is made using module S@C914X. S@CI14T

Cray Research, Inc. 8. SUPERLINK Association Manager Component 8-33



Diagram 8-20
S@C914X - Create/Delete System Authorization Facility (SAF)

Environment Processor
Entry from Association Manager
(S”C914S or S2C914T) I

v
Input Process Output
1. GETMAIN some storage for Working Storage
RACROUTE parameters. for RACROUTE
parameters
Request type 2. If this is a DELETE request,
indicator in Rl go to step 5.
3. Set up RACROUTE parameters.
6. Call RACROUTE, giving it
RACINIT parameters for a
CREATE request; go to step 6.
5. Call RACROVUTE, giving it
RACINIT parameters for a
DELETE request.
6. FREEMAIN area used for
RACROUTE parameters.
7. Return to caller with return Register 15
code.

> Exit to caller

8-54 SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit SI-0182



Extended Description

Explanation Module Label

1. The RACROUTE parameters must be bclow the line. Since normal S@C14X
working storage is above the line, another GETMAIN is required.

3.  The parameters passed to RACROUTE for the SAF create request are S@C914X
handled as follows:
¢  User ID - this is mandatory, it must be resolved.

®  Group ID - this is optional, if not resolved a null value will be used.
In this instance the default Group Id for the user will take effect.

¢ Password - this is mandatory if the “bypass password checking” flag is
not set. If the flag is sct, then it will be ignored.

Cray Rescarch, Inc. 8. SUPERLINK Association Manager Component 8-55



S@C9200 - Association Manager Interface

The Association Manager interface subcomponent (AM_interface) enables application entity
responders that have been initiated by the Association Manager to interface with the Association
Manager through the S@@MREQ macro. This subcomponent is loaded by SUPERLINK/MVS and
may be used to perform interface requests.

The AM_interface communicates asynchronously with AM_jrocessor tasks running in SLCN. The
AM _interface routines are event-driven and use an FSM strategy to perform the preceding functions
for the interface caller. The following states are used:

State Description
IDLE Waiting for a LISTEN request from a responder
LISTEN-PENDING A LISTEN request was received from a companion job. The

Association Manager issues A-ENDPOINT-GIVE service request
primitives to pass the queued connections to the responder.

LISTEN A LISTEN request was received from a companion job and all
connection end points have been given to the responder. The
companion job should now be processing queued events in FIFO
order.

STOP-NEW-DATA A DELETE TYPE = EP request was received from the companion
job. The companion job may now receive only termination
notifications from the Association Manager component.

TERM-ABORT The Association Manager component has informed the companion
job that an “abort” is in progress.

TERM-GRACE The Association Manager component has informed the companion
job that “graceful termination” is in progress; all system activity is
being halted.

TERM-QUICK The Association Manager component has informed the companion

job that a “quick termination” is in progress.

S@C9200 - Module Structure
The AM_interface consists of only one module, S@C9200.

S@C9200 - Services

The AM_interface allows application entity responders to perform the following services via the
S@@MREQ macro:

® LISTEN - The respondcr informs AM it is active and ready.
e  NOTIFY -The responder requires notification of an event via the POST mechanism.
e PROCESS - The responder requests delivery of inbound data

e DELETE-EP - The responder is not receptive to subsequent cvents, with the exception of
termination requests.

8-56  SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit SI-0182



¢ DELETE-ANY - The responder is not able to accept subsequent events.
Valid inbound or outbound events are as follows:

¢ Conncction cnd point given
¢  Termination order:
=  Graceful
= Quick
= Abort :
Sce “Association Manager Services Offered to Application Entity Responders on MVS” on page
8-4 for definition of these termination orders.

S@C9200 - Interfaces

The main external interface to the AM_interface is the S@@MREQ macro. “Appendix B. SLCN
Macros” on page B-1 describes the syntax of the S@@MREQ macro.

Sce the general discussion of interfaces under “Association Manager Interfaces” on page 8-4 for
additional information.

S@C9200 - Data Areas

The Association Manager data areas are discussed under “S@C9000 - Data Areas” on page 8-9.

Cray Research, Inc. 8. SUPERLINK Association Manager Component 8-57



Diagram 8-21

S@C9200 - Association Manager Interface Code

Entry via S?9MREQ macro ———————————]

Input

Parameter List

—>1.

message.

6. Return to caller.

v
Process Output

Initialization.
2. Validation.
3. Determine state of caller.
G. Use State/Event combination to

_perform a specific action.

5. If trace flag is set, ———1—>| Diagnostic

output a diagnostic message

>| Return code
(data in work
is a PROCESS)

> Exit to SJ3IMREQ caller

8-38  SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit

SI-0182



Extended Description

Explanation Module Label
1. A work area is acquired, and the trace flag is saved for use upon termination. S@C9200
2. For the call to the interface code to proceed, the following must be true: S@C9200

e  The SSVT address must be valid.
e The SUPERLINK Association Manager component must be active.
® The S@@MREQ macro’s parameters must be valid, as follows:

= The ID parameter must be specified for all types (except the initial
LISTEN request), and it must contain the identifier returned to the
caller in register 1 after the initial LISTEN request.

« If the NOTIFY function was requested, the caller must use the
ECB parameter to specify the address of an ECB.

= If the PROCESS function was requested, the caller must use the
WKAREA parameter to specify the address of a work area.

3. The STATE of the caller is determined by examining the responders status S@C9200
flags in its entry in the Responder Directory.

4. Upon cntry to the state/event machine one of the following action routines S@C9200
will be performed:

Action-R Invalid state/event combination. Set up a response code indicating
“request rejected” with a qualifier indicating the state.

Action-1 Scarch for the entry in the REDE; if it is not found, create a new
entry. Then set the state to “LISTEN".

Action-2 Set the state from “STOP-NEW-DATA” back to “LISTEN".
Action-3 Post the uscr’s ECB when there is an event for it to process.
Action-4 Inscrt details of an event (if there is one) into the user’s work area.

Action-5 Set the state to STOP-NEW-DATA, inhibiting all events except
termination requests. If there was anything on the queue, pass it

back to the Association Manager controller subcomponent for
handling.

Action-6 Set the state to IDLE and inform the Association Manager
processor subcomponent that a “DELETE ANY"” has been
successfully performed.

5. If the Trace flag was specified in options, a diagnostic message is written to S@C9200
the SUPERLINK LOG.

6. The user is given a return code in register 15, with a qualifier in register 0. S@C9200

Cray Research, Inc. 8. SUPERLINK Association Manager Component 8-39



S@C9300 - Association Manager Interval Timer

The Association Manager interval timer (AM_timer) provides an interface between the Association
Manager and the standard MVS timer facilities. Upon completion of a specified time interval, a
specified ECB will be POSTed. Each Association Manager task may have one active timer. That timer
can be SET and left to expire (POST an ECB), or can be cancelled before it expires. It uses the
STIMER macro internally.

The timer service can be used only by the Association Manager component. It is loaded at initialization
by the AM_controller and is invoked from the the S@C@TIMR macro.

S@C9300 - Module Structure

The AM_interval timer facility consists of the following modules:

Module Description
S@C9300 Root. module; mainline routine.
S@C9310 Timer expired routine

Figure 17 shows the hierarchical structure for modules within the AM_timer subcomponent.

S2C9300

SaC9310

Figure 17. Module Structure of the Association Manager Interval Timer Subcomponent

S@C9300 - Services

The AM_timer performs the following functions:
e Initiates a timing sequence, specifying a real-time interval in scconds (for the calling task only)

®  Cancels any timing sequences that are running (for the calling task only)
e Notifies the requester when the real-time interval has expired

S@C9300 - Interfaces

AM_timer services are provided through specification of the SECETIMR execution-time macro
instruction. “Appendix B. SLCN Macros” on page B-1 describes the syntax of the S@C@TIMR
macro. :

860  SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit S1-01382



This page has been intentionally left blank.

Cray Research, Inc. 8. SUPERLINK Asseciation Manager Component  8-61



Diagram 8-22

S@C9300 - Root Module (Set and Cancel Timer)

Entry from S3aCaTIMR macro —l

v
Input I Process Output
PLIST from |—> Initialize.
S3CaTIMR
2. If function = SET, establish Interval Timer
an interval using STIMERM and running
specifying S3C9310 as the
exit.
3. If function = CANCEL, use
STIMERM to cancel all timer
intervals for the calling
task.
4. Return to caller.

862  SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit

> Exit to caller

SI-0182



Extended Description

Explanation

1. No storage is acquired. The caller must provide a work area through register
13. Register 13 should point to the caller’s register save area (72 bytes),
which is followed by a 20-word work area for use by the interval timer.

(The register save area is not uscd).

2. The STIMERM macro is used to establish the S@C9310 routine. It
becomes active when the interval specified has expired and POSTs the user’s
ECB.

3. The STIMERM macro is used to perform a universal CANCEL for all
intcrval times established by the calling task.

4. The caller is given a return code to indicate success or failure.

Module
S@CY300

S@C9300

S@C9300

S@C9300

Label

Cray Research, Inc. 8. SUPERLINK Association Manager Component

8-63



Diagram 8-23 M
S@C9310 - Timer Expired Routine

Entry via STIMERM exit
(Time interval expired) l

v
Input Process Output
Reoict ] 1. Initialize.
egister —1
>] 2. Post user's ECB. >| Posted ECB

3. Exit.

>-Exit to control program

8-64  SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit SI-0182



Extended Description
Explanation Module Label

2. The user’s ECB is supplied to the routine through the 8-byte area pointed S@C9310
to by register 1. The ECB is POSTed with a return code of “20”.

3. The address in register 14 is the return address to the control program. S®@C9310

Cray Rescarch, Inc. 8. SUPERLINK Association Manager Component 8-65



S@CIUXAM - Association Manager User Exit Handler

The Association Manager User Exit handler (AM_exit) provides an interface between the Association
Manager and any user supplied exit routines. The objective is to isolate the user exit from Association
Manager processing. The Exit Handler intercepts abends within the user exit and returns control to the
Association Manager with an appropriate return code indicating the nature of the abend.

The User Exit Handler also isolates user exits from the Association Manager’s storage by passing the
exit parameters in private storage, (the private storage is obtained by the Exit Ilandler through the
GETMAIN macro). This prevents a user exit corruption of Association Manager control blocks.

The Exit Handler may only be used by the Association Manager component. It is loaded at
initialization by the AM_controller and is invoked by the S@CIEXIT macro.

S@C9UXAM - Module Structure
The User Exit Handler consists of one module, S@CIUXAM.

S@CIUXAM - Services

The Association Manager User Exit Handler performs the following functions:

e Determines if the user exit has been loaded. If not, control is returned with return code zero. If
it does exist them it is invoked.

¢  Obtains private storage below the 16 megabyte line and establishes the required parameters for the
exit.

¢  Ensures that the exit is invoked in problem program state

e  Establishes an ESTAE environment for the duration of the exit call to recover from any abends
within the user exit.

e [ssues a message if the return code from the user exit is nonzero. Any text message returned by
the exit is also output to the SUPERLINK LOG.

S@CI9UXAM - Interfaces

The Association Manager User Exit Handler may be invoked from any location within the Association
Manager by using the S@CIEXIT macro. The parameters passed are the user exit required, (1, 2, 3,
or 4) and the type of call being made (1 for initialization, 2 for normal, or 3 for termination).

For each of the Association Manager User Exits an appropriate mapping macro is provided that defines
the parameter list of each user exit. The rclationship between user exits and macros is as follows:

User Exit Macro

AM user exit 1 S@CIUXI1
AM user exit 2 S@CIUX?2
AM user exit 3 S@CIUX3
AM user exit 4 S@CIUX4

The SUPERLINK/MVS Installation, Tuning, and Customization Guide, publication SI-0180,
provides more detailed information about the user exits and their respective macros.

866  SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit S1-0182



This page has been intentionally left blank.

Cray Research, Inc. 8. SUPERLINK Assaciation Manager Component

8-67 .



Diagram 8-24
S@CIUXAM - User Exit Handler

Entry from Association Manager
(Invoked via macro SaC9EXIT) I

v
Input Process Output
PLIST 1. Determine if required exit

exists.

2. GETMAIN private storage for
exit parameter list.

3. Use MODESET to revert to
problem state.

4. Establish parameter list in
GETMAINed area.

Establish ESTAE.
Invoke User exit.
Remove ESTAE.

. Analysis of result.

W 0 N &,
. . . .

Revert back to Supervisor
state.

10. FREEMAIN private storage.

11. Return to caller.

> Exit to caller

8-68 SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit

S1-0182



Extended Description

Explanation

1.

Cray Research, Inc.

The User cxits are loaded by the Association Manager component if they
are specified within the SUPERLINK options deck. If they were not loaded,
control is returned to the caller with return code 0.

The storage GETMAINcd is below the line. This will enable user exits to
be in either AMODE 24 or AMODE 31.

The contents of the parameter list varies depending upon the exit being
invoked. The type of call being made can also vary the parameter list. If
invoked during Association Manager component initialization or
termination, some of the paramcters will not be available; This means that
the pointers to them in the parameter list will be null.

Only AM User Exit 4 (Secunty Validation) may be invoked during AM
initialization or termination. This enables the exit to establish and remove
any tables or storage it requires for normal validation calls.

The ESTAE provided resides at the end of the S@CIUXAM module. If
invoked by an abend, it outputs an appropriate abend message and returns
control to the main scction of S@CIUXAM. S@CIUXAM
FREEMAINS storage and returns control to the caller.

If a non-zero return code is received from the exit, an appropriate message
is output to flag the non-zero return code. If the exit also returned a text
message, (if a text arca was provided for the exit) then this text message is
also output.

Module Label
S@CIUXAM

S@CIUXAM

S@CIUXAM

S@CIUXAM

S@CIUXAM

8. SUPERLINK Association Manager Component

8-69



9. SUPERLINK Message Processor Component

The Message Processor component of SLCN provides one source for both the documentation of
messages and the gencration of macros used to describe the messages within the SUPERLINK/MVS
product. This source is maintained in generalized markup language (GML) format. The Message
Processor component is designed to maintain consistency between the messages issued by the product
and the message descriptions provided by SUPERLINK/MVS Messages, publication SI-0179.

The macros generated by GML processing produce nonexecutable CSECTSs containing the message
text available to the SUPERLINK/MVS product.

Message Processor Module Structure

The Message Processor component consists of the following modules:

Module Description

S@@MO000 Initial processing; locate the message.

S@@MO010 Format the variables into the message.

S@@MO015 " Return a formatted message to the user, if requested.
S@@M020 Perform the TYPE=WTO or 'l"YPE =WTOR request.
S@@MO030 Perform the TYPE = LOG request.

Figurc 18 shows the hicrarchical structure of modules within the Mcssage Processor component.

SaaM000

S23M010 S9aM015 S2aM020 S93M030

Figure 18. Module Structure of the Message Processor Component

Cray Research, Inc. 9. SUPERLINK Message Processor Component 9-1



Message Processor Services

The Message Processor provides the following services:

e  Returns the address of a message within a message CSECT

e  Rctumns a formatted message to an arca provided by the caller

e  Formats a message and outputs it to the MVS system log, the SUPERLINK LOG, or both.

e  Formats a message and issucs a WTOR for an operator reply, which is returned to an area
provided by the caller. '

Message Processor Interfaces

The following macros provide the interface to the Mcssage Processor component.

Macro Description

S@@MDEF This macro is used to create the messages CSECT. The S@ @MDEF macros
are generated by DCF/SCRIPT from GML tags.

S@@MSGS This macro is used to locate a particular message within a specified message
table.

S@@MSG This is the major macro of the Message Processor component. It calls the

Message Processor component to perform various functions, including
formatting a message, outputting it to a specific target, and so on. The
S@@MSG macro has four forms: ordinary, list, format, and execute.

“Appendix B. SLCN Macros” on page B-1 describes the syntax of cach of these macros.

Message Processor Data Areas

The following data areas, used by the Message Processor component, are contained within the message

CSECTs:

Data Area Description

MH_MI Message index

MH_MIE Message index entry

MIH_ME Message Element

MII_MPPL Message processing paramcter list

9-2  SUPERLINK for MYVS Logic Library Volume 2: Control Functional Unit S1-0182



) Message Processor Recovery

The Message Processor component does not perform its own recovery. All recovery actions are
determined by the recovery environment enabled by the caller of the SUPERLINK/MVS Message
Handler.

Cray Research, Inc. 9. SUPERLINK Message Processor Component 9-3



Diagram 9-1

S@@MO000 - Initial Message Processing Module

Entry from T

v

Input

PLIST

Message
CSECT

Process

Initialize,
validate, and
perform initial
locate of message.

. If TYPE=LOCATE,

return message
address in

register 1 and
skip to step 7.

. Call S3aM010 to

format variables
into message.

If the user return
address is
specified, call
S3aaM015.

If TYPE=WTO or
TYPE=WTOR,
call Sa3M020.

If TYPE=LOG,
call S3aM020.

. Return to caller.

OQutput

> Register 1

> Formatteg
message in
return area

> Register 1

94  SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit

> Exit to S?3aMSG caller

S1-0182



Extended Description

Explanation

1.

Cray Research, Inc.

The initial validation of the parameters received is carried out at this stage.

If TYPE=LOCATE, proceed to step 2. For all other message types, a
GETMAIN is exccuted at this stage. The storage acquired is used as a save
arca and as working storage; the working storage used follows the save arca.
The parameters are set up in this T-storage area, and all work areas to be
uscd are initialized. As control processes through the various modules, the
address of this area is passed in register 13.

The parameters are now validated. If they are all correct, the message is
located within the Message Table using a binary search. A binary search
jumps to the middle of the index and determines if the message lies above
or below that point. This process is repeated with successively smaller
fractions of the index until a match is made.

If TYPE=LOCATE, the TABLE parameter is validated, and the requested
message is located within the Message Table. The address of the message is
set up in register 1, and a return is made to the caller.

S@@MO010 is now used to format the message. If TYPE=WTOR or
TYPE=WTOR + LOG, the message is formatted into a WTOR parameter
list; otherwise, the message is formatted into a WTO parameter list.

If the user requested it, S@ @MO015 now inserts the formatted message into
the user’s return area.

If TYPE=WTO or WTOR, S@@MO020 is called to perform the required
processing.

For TYPE = LOG, S@@MO030 is called to perform the required processing.
Register 1 contains the address of the message that is to be output.

Module
S@@M000

S@@M000

S@@MO000

S@@MO00

S@@M000

S@@M000

Label

9. SUPERLINK Message Processor Component

95



Diagram 9-2
S@@MO010 - Format the Message Variables Module

Entry from S33M000

v
Input Process Output
> 1. Initialize working
I storage.
Working
storage 2. Obtain storage
into which message
is formatted.
Message > X. Insert variables
entry into message.
4. Return to caller. >| Working
storage

9-6

SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit

> Exit to S3aM000

S1-0182



Extended Description

Explanation

l.

Cray Research, Inc.

Initially, register 13 points to the save area, which is followed by the working
storage. The working storage section uses register 11 as a base register, and
register 13 points to the sccondary save area.

If TYPE=WTO or WTO + LOG, and the message has multiple lines, the
required amount of storage is acquired by a GETMAIN.

For all other types, the message is formatted into an area in working storage
large enough to hold a WTOR parameter list of maximum size.

The message is moved from the CSECT into the target arca, and the
variables are inserted into the message text. For TYPE=WTOR and
TYPE=WTOR + LLOG, the address of the formatted message in working
storage points to a WTOR parameter list containing the méssage text. For
all other types, the address points to a WTO parameter list containing the
message text.

Control is returned to the caller. The address of the formatted message is
contained in the working storage section used.

Module
S@@MO10

S@@MO10

S

®

@M010

S@@Mo010

Label

9. SUPERLINK Message Processor Component

9-7



Diagram 9-3
S@@MO15 - Formatted Message Returned to User Module

Entry from S32M000

Output

v
Input I Process
- __[_> 1. Initialize.
Working
storage 2. Move message
area.
3. Return to caller.

into user's return——>| Message in

user return
area

9-8

> Exit to S33M000

SUPERLINK for MYVS Logic Library Volume 2: Control Functional Unit

SI-0182



Extended Description.
Explanation Module  Label
1. Initially, register 13 points to the save area, which is followed by the working Se@M015

storage. Register 11 is used as a base register for the working storage section,
and register 13 points to the secondary save arca.

If the user’s return arca address is null, go to step 3.

2. The message is moved into the user’s return arca. A space is inscrted S@@M015
between each character of a multiline message. If the length of data specified
by the user at the start of the buffer is reached, the process ends, giving the
user as much of the message as possible.

3. Control is returned to the caller. Sw@MO015

Cray Rescarch, Inc. 9. SUPERLINK Message Processor Component 99



Diagram 9-4
S@@MO020 - Write to WTO or WTOR Module

Entry from S3aM010

v
Input I Process Output
> 1. Initialize.
Working —————J_
storage 2. Output message
using WTO.
3. Output message
using WTOR.
4. Return to caller.

9-10

> Exit to S?3M000

SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit

SI1-0182



Extended Description

Explanation

1. Initially, register 13 points to the save area, which is followed by the working
storage. Register 11 is used as a base register for the working storage section
and register 13 points to the secondary save arca.

2. If TYPE=WTO or WTO + LOG, the exccute form of the WTO macro
outputs the message using the WTO parameter list that is pointed to.

3. If TYPE=WTOR or WTOR + LOG the exccute form of the WTOR
macro outputs the message using the WTOR parameter list that is pointed
to.

4. A return is made to the caller, S@ @M000.

Module
S@@M020

S@@MO020

S@@MO020

S@@MO020

Label

Cray Research, Inc. 9. SUPERLINK Message Processor Component

9-11



Diagram 9-5
S@@MO030 - Write to LOG Module

Entry from S23M000

v
Input Process Output
Working > 1., Initialize.
storage
2. Output message.
Formatted
message

3. Return to caller.

9-12

|—> Exit to S3aM000

SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit

SI-0182



Extended Description

Explanation

1. Initially, register 13 points to the save area, which is followed by the working
storage. Register 11 is used as a base register for the working storage section,
and register 13 points to the sccondary save area.

2. The required number of LOGEs is acquired. The formatted message is
inserted into the LOGEs; the LOGE:s are then qucued for output.

If TYPE=WTOR or WTOR + LOG, the text in the single-line WTOR
parameter list is split over two LOGE:s.

3. A return is made to the caller, S@ @ M000.

M odulé
S@@MO30

S@@M030

S@@M030

Label

Cray Research, Inc. 9. SUPERLINK Message Processor Component

9-13



10. SUPERLINK SVC Component

In order to use the services offered by the SUPERLINK Network Access Method, the calling program
is required to be in supervisor mode. For assembler programmers, this privilege can be assigned by the
systems programmer. However, user programs typically run in problem program mode.

The SUPERLINK SVC component enables nonauthorized, problem program mode users to usc
Network Access Method services (SLNET) or Association Manager services (SLCN) of the
SUPERLINK/MYVS product. Specifically, this component allows callers from high-level languages
(such as Fortran) to usc the AAC interface and allows unauthorized assembler programs to use the
ACSE interface. It docs not allow the user’s program to access any other services, and control is
returned to the caller in the original processing mode, thus preserving MVS system integrity.

SVC Module Structure

The SVC component consists of the following modules:

Module Description
S@CCOSVC SVC routine
S@CCOSVE ESTAE exit routine
S@CCOSVR Retry routine
S@CCOSVM Messages CSECT

Figure 19 shows the hicrarchical structure of modules within the SVC component.

S?ACCOSVC|<=========>|53CCOSVE

SACCOSVR S?CCOSVM

Figure 19.  Module Structure of the SVC Component

Cray Rescarch, Inc. 10. SUPERLINK SVC Component 10-1



SVC Services

The following global service routines can be accessed through the SVC component:

¢ Association Manager interface (SLCN)
¢ ACSE interface (SLNET)

The SVC component has been designed to satisfy the following requirements:

e  Maintain MVS system integrity (MVS/XA System Programming Library: System Macros and
Facilities Volume 1, GC28-1150, Protecting the System)

¢ Minimize system overhcad; the SVC component uses branch entry services.

e DProvide a universal interface so that new SUPERLINK services can easily be made accessible via
the SVC component

SVC Interfaces

The S@@SVC macro is used to pass the parameters required by the SVC component. The first
parameter is positional; all others are keyword parameters.

The SC_CIOT (S@CICIOT mapping macro) must be addressable when the S@@SVC macro is
issued. The SVC number is obtained from this control block. “Appendix B. SLCN Macros” on page
B-1 describes the syntax of the S@@SVC macro.

SVC Data Areas

The following data arcas arc used by the SVC component:

Data Area Description
SV_ESTW SVC ESTAE work arca
S@CCSVEW Mapping macro

10-2 SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit Si1-0182



This page has been intentionally left blank.

Cray Research, Inc. 10. SUPERLINK SVC Component 10-3



Diagram 10-1 _
S@CCOSVC - SVC Type 3 Routine (part 1 of 2)
Entry from MVS SLIH I

v

Input Process : Output

Registers 0 to 15 1. Get storage for a work area
from subpool 230 in key 0.

If unsuccessful, go to step 6
with a return code of X'04°'.

> continued...

10-4 SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit

SI-0182



Extended Description

Explanation Module-  Label

The SVC main routine reccives control in PSW key 0, in supervisor state, S@CCOSVC
enabled, and unlocked. Register contents at entry are as follows:

Register  Contents -

RO This register contains the following bytes:

Byte Description

0 Index in the SC_GST of the global service routine
to be called

1 If byte 3, bit 0 is set, this register contains the offset
of the SC_SSVT in the parameter list pointed to by
R1.

2 Reserved

3 Option byte:

Bit 0 - When this flag is set, the SC_SSVT
pointer is in the entry parameter list. Otherwise
the SC_SSVT pointer is contained in R15.

Bit 1 - When this flag is set, an ESTAE exit is
to be established.

R1 Address of the parameter list to be passed to the global service
routine

R2 Unpredictable

R3 Address of the CVT

R4 ‘T'CB address

RS SVRB address

Ré6 Address of the SVC routine entry point

R7 ASCB address

R8-R12  Unpredictable
R13 Contents when the SVC instruction was exccuted
R14 “Return address
e [f byte 3, bit 0 in register 0 is on, content is irrelevant.

e [If byte 3, bit 0 in register 0 is off, R15 contains the address
of the SC_SSVT.

Storage for a work arca is obtained from subpool 230 in key 0. If
GETMAIN failed, processing continucs at stcp 6 with a return code of
X04.

Cray Research, Inc. 10. SUPERLINK SVC Component

10-35



Diagram 10-2

S@CCOSVC - SYC Type 3 Routine (part 2 of 2)

continued ]
v
Input Process Qutput

Establish an ESTAE exit if
required:

= Initialize ESTAE work
area (SV_ESTW).

— Attempt with FESTAE.

— Branch enter ESTAE
if FESTAE failed.

If unsuccessful, go to step 6
with a return code of X'08°'.

. Locate SC_SSVT.

If SC_SSVT pointer is invalid,
go to step 6 with a return
code of X'10°'.

Locate SC_GST and EPA of
global service routine.

If unsuccessful, go to step 6
with a return code of X'10°.

. Call global service routine

with BASSM R14,R15.

Insert SVC return code in

" byte 0 in register 15.

Cancel ESTAE if necessary.
Release virtual storage.

Return to caller.

ESTAE environment

Return code

10-6  SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit

> Exit to MVS

SI1-0182



Extended Description

Explanation

2.

Cray Rescarch, Inc.

On cntry, byte 3, bit 1 in register 0 indicates whether or not an ESTAE
environment should be established by the SVC. If an ESTAE is required,
the following actions arc required:

e The ESTAE work areca, SV_ESTW, is initialized.

¢ A fast ESTAE (FESTAE) macro instruction is issued first. If FESTAE
fails, the branch entry interface of ESTAE is used.

e [f the ESTAE cnvironment cannot be established, précessing continucs
at step 6 with a return code of X’08'.

On entry, byte 3, bit 0 in register 0 indicates whether the SC_SSVT pointer
is contained in register 15 or in the entry parameter list. The contents upon
entry of registers 0, 1, and 15 have been saved in the SVRB.

If the SC_SSVT pointer is not in register 15, the contents of byte 1 in register
0 upon entry contain its offset in the parameter list pointed to by register.

To check the validity of the SC_SSVT pointer, loop through the SSVT
chain until a match is found. If no match is found, or if the corresponding
subsystem is not ready, processing proceeds to step 6 with a return code of
xX'oc.

The SC_GST pointer is found in the SC_SSVT. If this pointer is null, or if
the SC_GST does not contain a valid acronym, processing continues at step
6 with a rcturn code of X’10".

On entry, the index of the requested service routine in the SC_GST is in the
contents of byte 0 in register 0 (saved in the SVRB). The index is checked
to determine whether it is within bounds and whether or not it identifies a
service routine that can be invoked through the SVC. The corresponding
entry point address in the SC_GST is not valid if it is null.

If no suitable entry point address has been found, processing proceeds at step
6 with a return code of X'10".

The global service routine, whose entry point was found in step 3, is called
with BASSM registers 14 and 15. Standard linkage conventions arc used.
Register 13 points to an 18-word save area with a storage protection key of
0.

The global service routine receives control in PSW key 0, in supervisor state,
cnabled and unlocked.

The SVC return code is inserted into byte 0 in register 15. The ESTAE
environment is cancelled if one has been established.

The storage allocated for the work area is released.

Registers 0, 1, 14, and 15 are restored, and control is returned to MVS.

Module
S@CCOSVC

S@CCoSVC

S@CCOSVC

S@CCOSVC

S@CCOSVC

Label

10. SUPERLINK SVC Component

10-7



Diagram 10-3
S@CCOSVE - ESTAE Exit Routine (part 1 of 3)

Entry from MVS RTM I

Vv
Input Process— Output
Registers 0, 1,2, 1. Determine whether or not
13, 14, and 15 an SDHA is present.

Find user parameter list.
Save registers.

Save abend completion code.

> continued

10-8 SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit S1-0182



Extended Description

Explanation ' Module Label

1.

The ESTAE-type recovery routine receives control from RTM in PSW key S@CCOSVE
0, in supervisor state, enabled and unlocked.

Register contents at cntry differ depending on whether or not RTM can
obtain an SDWA.

If an SDWA was obtained, register contents at entry are as follows:

Register  Contents

RO Code indicating the type of 1/O processing performed
Rl Address of the SDWA

R13 Save arca address (72 bytes)

R14 Return address

RI15 Entry point address of the ESTAE recovery routine

The contents of all other registers are unpredictable.

If no SDWA was obtainced, register contents at entry are as follows:

Register  Contents

RO Decimal 12 to indicate that an SDWA was not obtained
R1 Abend completion code

R2 Address of user-supplied parameter list

R13 Unpredictable

R14 Return address

R15 Entry point address of the ESTAE recovery routine

The contents of all other registers are unpredictable.
The code in register 0 is examined first to sce if an SDWA was provided.

If there is an SDWA, registers 14 through 12 are saved in the save area
pointed to by register 13. The pointer to the ESTAE work area, SV_ESTW,
is found in the SDWAPARM ficld of the SDWA. The abend completion
code is copied from the SDWA into the SV_ESTW for later analysis.

If there 1s no SDWA, register 2 points to the ESTAE work area, SV_ESTW.
Registers 14 through 12 are saved in the SV_ESTW_SAVE standard save
arca. Register 7 is cleared to indicate that there is no SDWA. The abend
completion code contained in register 1 is saved into the SV_ESTW for later
analysis.

The ESTAE routine base register is established, and the save areas are
chained.

Cray Research, Inc. 10. SUPERLINK SVC Component

10-9



Diagram 10-4
S@CCOSVE - ESTAE Exit Routine (part 2 of 3)

continued |

v
Input Process Output

2. Check for recursion.

If recursion, go to step 7
(percolation).

> continued

10-10 SUPERLINK for MYS Logic Library Volume 2: Control Functional Unit S1-0182



™ Extended Description

Explanation ' ' Module Label

2. Ifbit SV_ESTW_ERECURS in SV_ESTW_FLAG is set, there is recursion. S@CCOSVE
In this case, processing continues at step 7 (percolation).

Cray Research, Inc. 10. SUPERLINK SVC Component 10-11



Diagram 10-5
S@CCOSVE - ESTAE Exit Routine (part 3 of 3)

continued ]
v
Input Process Output

. Get system and user completion

codes, reason code, and
current time.

Issue format form of
S?3aMSG macro.

Issue execute form of
S?2aMSG macro.
Issue SDUMP macro if a dump

is required.

Determine if a retry is
possible.

— If a retry is possible,
go to step 6

— If a retry is not possible,
go to step 7 (percolation).

Request a retry.

Specify continue with
termination (percolation).

10-12

SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit

> Exit to MVS RTM

SI1-0182



Extended Description
Explanation Module Label

3. The abend completion code was saved in SV_ESTW_ABENDCC in step 1 S@CCOSVE
processing.

The reason code is found in the additional component service data extension
of the SDWA when there is an SDWA.

A TIME macro instruction is issued to get the current time.

The preceding information is converted to printable form. If the SC_SSVT
address is null, no message is issued; otherwise, the format form and the
execute form of the S@ @ MSG macro are issued.

4. If there is no SDWA, a dump is always obtained. S@CCOSVE
If there is an SDWA, no dump is rcquired if at least one of the following
bits 1s set:
Bit Description
SDWACTS If the SDWACTS bit is on, another task within the
same jobstep tree has requested a “STEP” abend.
SDWAMABD If the SDWAMABD bit is on, an ancestor of this
task has abended.
SDWAEAS If the SDWAEAS bit is on, a dump has already becn
obtaincd.

If the SDUMP routine cxecutes successfully, the SDWAEAS bit is sct to
indicate that a dump has becn obtained.

5. If the retry address in SV_ESTW_ARETRY is null, percolate. S@CCOSVE
If there is no SDWA, a retry is always attempted.
If there is an SDWA, percolate if the SDWACLUP bit is sct.

6. Reinstate the previous save arca and test register 7 to determine whether or S@CCOSVE
not an SDWA is present.

If there is an SDWA, use the SETRP macro to specify retry.

If there is no SDWA, place retry code 4 in register 15; load register 0 with
the retry routine entry point address; restore registers | through 12; and
return to MVS,

7. Reinstate previous save area, and test register 7 to determine whether or not S@CCOSVE
an SDWA is present.

If there is an SDWA, use the SETRP macro to specify percolation.

If there is no SDWA, restore registers 14 through 12; place percolation code
0 in register 15; and returm to RTM.

Cray Research, Inc. 10. SUI"ERLINK SVC Component 10-13



Diagram 10-6
S@CCOSVR - Retry Routine

Entry from MVS RTM 4]
v
Input Process Output
SV_ESTH 1. Find ESTAE work area,

SV_ESTH, which is passed as
? user—supplied parameter
ist.

Restore all registers from
SV_ESTW_RETREGS and return.

> Exit to resume point

10-14 SUPERLINK for MYVS Logic Library Volume 2: Control Functional Unit S1-0182



~

Extended Description

Explanation

L.

Cray Research, Inc.

The retry routine reccives control from RTM in PSW key 0, in supervisor
state, enabled and unlocked.

Register contents at entry differ depending on whether or not RTM could
obtain an SDWA and whether or not the SDWA was freed.

If the ESTAE-type recovery routine did not request register update or freeing
of the SDWA, register contents upon entry are as follows:

Register  Contents

RO Zero

R1 Address of the SDWA

R14 Address of supcrvisor-assisted linkage (SVC 3)
R15 Entry point address of the retry routine

The contents of all other registers are unpredictable.

If the ESTAE did not request register update but did request that the SDWA
be freed, or if no SDWA was obtained, register contents at entry are as
follows:

Register  Contents

RO A decimal code as follows:
Code Meaning
20 The ESTAE did not request register update but did
request that the SDWA be freed.
12 No SDWA was obtained.
R1 Address of the user-supplied parameter list
R2 A pointer to the PIRL or 0
R14 Address of supcrvisor-assisted linkage (SVC 3)
R15 Entry point address of the retry routine

The contents of all other registers are unpredictable.
The ESTAE work area, SV_ESTW, is found directly or from the SDWA.

All registers are restored from the SV_ESTW_RETREGS ficld, and control
is returned to the resume point through BR register 14.

Module
S@CCOSVR

Label

10. SUPERLINK SVC Component 10-15



11. SUPERLINK User Resource Manager Component

The User Resource Manager (URM) component of SLCN is a global service routinc that provides
basic functions for the manipulation of User Resource Elements (UREs) which are used to keep track
of the use of SUPERLINK/MYVS resources by task and ascending address space identificr (ASID).

Those services are invoked by the ACSE component of SLNET. A URE is defined for every
connection end point and contains information that is essential for end-of-task processing: ASCB, task
control block (T'CB), and association identifier (AID). The ASCB and TCB identify the task which
owns the end point. The AID uniquely identifies the connection end point.

page.User Resource Manager Module Structure

The User Resource Manager component consists of a single module:

Module Description

S@CCOURM User Resource Manager (URM) service routine

User Resource Manager Services

The following functions are provided for the manipulation of UREs:

Locate
Queue
Dequcue
Switch

o 0 00

User Resource Manager Interfaces

The S@CCOURM macro is used to pass the parameters required by the User Resource Manager
component. The S@CCOURM macro is found in the macro library for the SLCN component.

User Resource Manager Data Areas

The following data areas are used by the User Resource Manager component:

Cray Research, Inc. Il. SUPERLINK User Resource Manager Component 11-1



Data Area

SC_SLASVT

SC_URE

SC_URM

Description
Address Space Vector Table

This table keeps track of the address spaces and the tasks within these address
spaces that arec making use of SUPERLINK/MVS resources. There is one entry
per address space in ascending address space identifier (ASID) order, plus a
special entry for ASID valuc 0. A null value in one of these pointers indicates
that the associated address space is not making use of SUPERLINK/MVS
resources. A non-null value is a pointer to a chain of control blocks called User
Resource Elements (SC_URE:s).

User Resource Element (URE)

The User Resource Element is a control block that is used to keep track of
resource utilization by task and ASID. There is one SC_URE per Task Control
Block (TCB) per connection end point (AID).

User Resource Manager parameter list (SC_URM)

User Resource Manager Recovery

11-2

The User Resource Manager component does not perform its own recovery. All recovery actions are
determined by the recovery environment enabled by the caller of the SUPERLINK/MVS User
Resource Manager component.

SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit S1-0182



This page has been intentionally left blank.

Cray Research, Inc.

I1. SUPERLINK User Resource Manager Component

11-3



Diagram 11-1
S@CCOURM - User Resource Manager (part 1 of 2)

Entry from any module —————1

v

Input I Processing Output
>

SC_URM +—

1. Validate entry parameter list,
analyze request, and branch to
the appropriate subroutine.

2. If request is LOCATE, then
> Model scan queue for the given ASID
SC_URE and search for matching TCB

and AID. If URE found, —> Model
copy it into model URE. SC_URE

3. If request is QUEUE, then copy
model URE into URE obtained

from cell. pool and queue it New
on queue for given ASID. —> SC_URE

4. If request is DEQUEUE, then
scan queue for the given ASID
and search for matching TCB
and AID. If URE found,
dequeue it and return it to
the cell pool.

5. If request is SWITCH, then
locate URE with ASID, TCB and
AID matching those of model
URE, update URE, dequeue and
queue URE if new ASID is
different.

6. Return to caller.

> Exit to caller

114 SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit

SI1-0182



Extended Description

Explanation

1.

Cray Research, Inc.

The entry parameter list (SC_URM) ) contains the requested function code
and a pointer to a model SC_URE.

For a LOCATE request, first the SC_URE is cleared out and then the queue
of SC_URE’s associated with the ASID specified in the SC_URM is
searched for a matching 'T'CB and AID. If a match is found, the located
SC_URE is copied into the model SC_URE. Both the local and CMS locks
are held while scanning the queue.

For a QUEUE request, a cell is obtained from the cell pool and the content
of the model SC_URE 1is copied into it. The TCB, ASCB, ASID and AID
fields are copied from the SC_URM parameter list. Then, the SC_URE
obtained from the cell pool is queued in the queue associated with the ASID
specified in the SC_URM with both the local and CMS locks held.

For a DEQUEUE request, the queue of SC_UREs associated with the
ASID specified in the SC_URM is searched for a matching TCB and AID.
If a match is found, the located SC_URE is dequeued and its storage is
retumned to the cell pool. Both the local and CMS locks are held while
scanning the queue and dequeuing the SC_URE.

For a SWITCH request, the queue of SC_URE’s associated with the ASID
specified in the SC_URM is searched for a matching TCB and AID. If a
match is found, the located SC_URE is updated with the AID, ASID,
ASCB and TCB specified in the SC_URM. If the target ASID is different
from the previous one, the SC_URE isdequeued and queued into the queue
associated with the target ASID. Both the local and CMS locks are held
while scanning the queue and/or updating, queuing, or dequeuing the
SC_URE.

Module Label
S@CCOURM MAIN

S@CCOURM LOCATE

S@CCOURM QUELE

S@CCOURM DEQULEUE

S@CCOURMSWITCH

11. SUPERLINK User Resource Manager Component 11-5



APPENDIX SECTION






a Appendix A. Data Area Descriptions

Cray Research, Inc. Appendix A. Data Area Descriptions A-1



AM_AMT

Common name: Association Manager Table

Macro ID:
DSECT name:
Created by:
Location:
Pointed to by:

Serialization:

S@@AMT

AM_AMT

Association Manager (S@C9000)

ECSA subpool 241 and key 8

SC_SSVT_AMT field in the SSVT control block

None

Function: Contains anchor points for Association Manager cell pools and global routines. It also
contains the termination ECB.
Offsets Type Length Name Description
0 (0) CHARACTER G M_AMT_ID TABLE ANACRONYM ‘AMVT'
4 (4) A-ADDRESS 4 M_AMT_SacC9300 --;EAM INTERVAL TIMER
) Co
8 (8) A-ADDRESS 9 M_AMT_GWA --> AM GLOBAL WORK AREA
12 ) FIXED ' 4 M_AMT_CPOOL CELL POOL ID FOR
REQUEST QUEUE'S
16 (10) FIXED 4 M_AMT_CPOOL_¢4 CELL POOL ID FOR PRB'S
' AND PRC'S
20 (14)  FIXED 4 M_AMT_ECB ECB TO BE POSTED IF
TERMINATION
ce RAIN_CODE GRACEFUL TERMINATION
S § LUSH_CODE QUICK TERMINATION
e ..1. BORT_CODE ABORT
24 (18) CHARACTER 4 M_AMT_ECB_ACRO ECB ANACRONYM 'TERM®
EQUATE X'1c* M_AMT_SIZE LENGTH OF SC_AMT INC
VAR PART
EQUATE 241 M_AMT_SPOOL SUBPOOL TO BE USED ON
GETMAIN
EQUATE X'03° M_AMT_CONTEXTS MAX NUMBER OF CONTEXTS
SUPPORTED .
EQUATE X'258' M_AMT_INTERVAL TIMER INTERVAL WHILE
DELETE-ANY

A-2  SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit SI-0182



AM_APDE

Common name: AM Application Dircctory Entry

Macro ID: S@CaGWA
DSECT name: AM_APDE
Created by: Association Manager (S@C9000)
Location: ECSA subpool 241 and key 8
Pointed to by: Index value into Application Directory
Serialization:  None
Function: Each APDE entry contains information for an application title being handled by the
Association Manager
offsets Type Length Name Description
0 (0) CHARACTER 4 AM_APDE_ACRO ACRONYM ‘'APDE’
4 (4) FIXED 4 AM_APDE_QTPDU QUALITY OF SERVICE
TPDU SIZE
8 (8) BITSTRING 1 AM_APDE_ATITLE_L APPLICATION TITLE
LENGTH
9 (9) CHARACTER 32 AM_APDE_ATITLE APPLICATION TITLE
41 (29) CHARACTER 8 AM_APDE_TASK ¥2gELE NAME OF USERS
49 (31) CHARACTER 8 AM_APDE_CTXT :§5EENTATION CONTEXT
57 (39) CHARACTER 3 Reserved
60 (3C) STRUCTURE 0 (ALIGN ON A WORD
BOUNDRY)
60 (3C)  BITSTRING 1 AM_APDE_FLAGS APPLICATION STATUS
B APDE_JOB APPLICATION IS A JOB
... ... APDE_APPL APPLICATION IS A TASK
. ...1 APDE_OFFER OFFER PENDING
cese ool APDE_FAILURE UNABLE TO PUT OUT OFFER
61 (3D) BITSTRING 1 AM_APDE_JCL INDEX # CORRESPONDING
JCL AREA
62 (3B) BITSTRING 1 AM_APDE_QLVL QUALITY OF SERVICE
LEVEL
AR | APDE_QLOW LOW
R U APDE_QMED MEDIUM
..11 APDE_QHI HIGH
63 (3F) CHARACTER 1 Reserved
64 (40) STRUCTURE 0 (ALIGN ON A WORD
BOUNDRY)
EQUATE X'40° AM_APDE_SIZE LENGTH OF ENTRY

Cray Rescarch, Inc.

Appendix A. Data Area Descriptions A3



AM_APDH

Common name: AM Application Directory Header
Macro ID: S@C@GWA

DSECT name: AM_APDH

Created by: Association Manager (S@C9000)
Location: ECSA subpool 241 and key 8

Pointed to by:  AM_GWA_APD field of the AM_GWA data area

Serialization: None

Function: Contains a count of the maximum and current number of Application Dircctory
entries _
Offsets Type Length Name Description

0 (0) CHARACTER 4 AM_APDH_ACRO ANACRONYM "APDH'

4 (4) FIXED 4 AM_APDH_MAX# MAXIMUM NUMBER OF
ENTRIES

8 (8) FIXED 4 AM_APDH_CUR#S CURRENT NUMBER OF
ENTRIES

EQUATE Xt'C* AM_APDH_SIZE LENGTH OF AM_APD ENTRY

A4 SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit

S1-0182



AM_CDT

Common name: AM Controller Data Table
Macro ID:
DSECT name:
Created by:

Location:

Pointed to by:

Serialization:

S@C@GWA
AM_CDT

Association Manager (S@C9000)
ECSA Subpool 241 and key 8

AM_GWA_CDT field in the AM_GWA data arca

None

Function: Contains general Association Manager Counts and status values used by the
association Manager controller
Offsets Type Length Name Description
0 (0) CHARACTER 4 M_CDT_ACRO AN ACRONYM *CDT '
4 (4 CHARACTER 8 M_CDT_SL_JOBID SLCN JOBID
12 ) BITSTRING 1 M _CDT_FLAG1 UNIVERSAL STATUS FLAGS
1... .... LAG1_DIAG_S
S D LAG1_DIAG_C
RS LAG1_DIAG_T
.. 1 L. LAG1_SvC_DumpP
ceee 1. LAG1_ST_ACTIVE
eee. 1. LAG1_ST_TERM_G
cee: .. 1. LAG1_ST_TERM_Q
.o R | LAG1_ST_TERM_A
13 (D) BITSTRING 1 M_CDT_FLAG2 UNIVERSAL STATUS FLAGS
U LAG2_TIMER_SET
R | LAG2_AIDS_STUCK
14 (E) BITSTRING 1 M_CDT_FLAG3 UNIVERSAL STATUS FLAGS
RS | LAG3_ATTACH
1.. LAGG_PSAP_TEST SET IF AMTYPE=MULTIPLE
. SPECIFIED
I LAGG_PASSCHK_NO SET IF RACF CALL WITH
. PASSCHK=NO
15 (F) BITSTRING 1 M CDT_FLAGY EERESASSOC MGR STATUS
A
16 (10) FIXED G M _CDT_ATTACH NUMBER OF PROCESSOR
BEING
20 (14) FIXED 4 M_CDT_FAILURE THIS FIELD KEEPS A
COUNT OF THE
26 (18) FIXED 4 M_CDT_OFR_EXT THIS KEEPS A COUNT OF
: PRB/PRC
28 (1C) FIXED 9 M_CDT_ECB ECB TO BE POSTED IF
TIMEOUT
32 (20) CHARACTER 4 M_CDT_ECB_ACRO ECB ANACRONYM 'TIME®
EQUATE X247 M_CDT_SIZE LENGTH OF SC_AMT INC

Cray Research, Inc.

Appendix A. Data Arca Descriptions

VAR PART

A-S



AM_GWA

Common name: Association Manager Global Work Area

Macro ID:
DSECT name:
Created by:
Location:
Pointed to by:

Serialization:

S@C@GWA

AM_GWA

Association Manager (S@C9000)

ECSA Subpool 241 and key 8

AM_AMT_GWA field in the AM_AMT data area

None

Function: Contains pointers to all the other Association Manager tables
Offsets Type Length Name Description
0 (0) CHARACTER 4 AAM_GNA_ACRO ANACRONYM 'GHWA '
4 (4) A-ADDRESS G AM_GWA_SSVT ~=> SUPERLINK SSVT
ADDRESS
8 (8) A-ADDRESS 4 AM_GWA_CDT ==> CONTROLLER DATA
TABLE
12 ) A-ADDRESS 4 AM_GWA_PCT ~=> PROCESSOR CONTROL
TABLE
16 (10) A-ADDRESS G AM_GWA_RED -=> RESPONDER
DIRECTORY
20 (14) A-ADDRESS 4 AM_GWA_APD -=> APPLICATION
PROGRAM DIR
26 (18) A-ADDRESS 4 AM_GWA_SaC9UXAM GENERAL USER EXIT
' INVOCKATION ROUTINE
28 (1C) A-ADDRESS 4 AM_GWA_USERDATA USER DATA FOR EXIT4
(SET BY INIT CALL
32 (20) A-ADDRESS G AM_GWA_SaCIuXxl FOR S3C9100 -~ VARIABLE
’ VALIDATION
36 (24) A-ADDRESS 4 AM_GWA_SaC9uXx2 FOR 5aC9100 - JCL
) VALIDATION
60 (28) A-ADDRESS 4 AM_GNA_SQC‘)UXS FOR S3C9100 - JOB
: EXECUTION PROBLEMS
46 (2C) A-ADDRESS 4 AM_GWA_S3C9uUX4 SECURITY EXIT
48 (30) A-ADDRESS 4 AM_GWA_S3C9UX5 (UNDEFINED)
52 (34) A-ADDRESS 4 AM_GWA_S3C9UX6 (UNDEFINED)
EQUATE X*'38' AM_GHWA_SIZE LENGTH OF SC_GWA INDEX

A-6 SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit SI-0182



AM_PCT

Common name: AM Processor Control Table header

Macro ID: S@Ca@GWA

DSECT name: AM_PCT

Created by: Association Manager (S@C9000)

Location: ECSA Subpool 241 and key 8

Pointed to by: AM_GWA_PCT ficld in the AM_GWA data arca

Serialization: None

Function: Contains a count of the current and maximum number of entries in the processor
control table.
offsets Type Length Name Description
0 (0) STRUCTURE 0 AM_PCTH PCT - HEADER
0 (0) CHARACTER 4 AM_PCTH_ACRO ANACRONYM *PCTH®
1 (4) CHARACTER 4 Reserved
8 (8) STRUCTURE 0 ALIGN ON DOUBLE WORD
BOUNDRY
8 (8) FIXED 4 AM_PCTH_MAX# MAXIMUM NUMBER OF
ENTRIES
12 Cc) FIXED : & AM_PCTH_CUR# CURRENT NUMBER OF
: ’ ENTRIES IN: USE
16 (10) FIXED % AM_PCTH_JOBN UNIQUE JOB NUMBER
20 (19) FIXED 4 AM_PCTH_JOBI INDICATOR.- OF CHAR FOR
: JOBNAME
1 1., AM_PCTH_SIZE LENGTH OF AM_PCT
HEADER

Cray Rescarch, Inc. Appendix A. Data Area Descriptions A-7



AM_PCTE

Common name: Association Manager Processor Control Table Entry

A8

Macro ID:

DSECT name:

Created by:
Location:

Pointed to by:

Scrialization:

S@C@GWA

AM_PCTE

Association Manager (S@ C9000)

ECSA Subpool 241 and key 8

An Index offset into the PCT data area

AM_REDE_PCTEIX ficld in an associated REDE entry contains the index value

None

Function: Contains a scries of ECBs uscd for AM Processor control and information relating to
the work being done by a processor.
Offsets Type Length Name Description
0 (0) CHARACTER 4 M_PCTE_ACRO ACRONYM °*PCTE"
4 (4) FIXED 4 M_PCTE_ECB1 ATTACH ECB FOR
PROCESSOR
8 (8) CHARACTER 4 M_PCTE_ECB1_ID (ACRONYM 'ECB1')
12 ) FIXED 4 M_PCTE_ECB2 POSTED WHEN PROCESSOR
) GOES IDLE
16 (10) CHARACTER 4 M_PCTE_ECB2_ID (ACRONYM 'ECB2')
20 (14) FIXED 4 M_PCTE_ECB3 POSTED WHEN
A-ASSOCIATE RECEIVED
24 (18) CHARACTER 4 M_PCTE_ECB3_ID (ACRONYM 'ECB3')
28 (10) FIXED 4 M_PCTE_ECB4 POSTED WHEN CLONING IS
REQUIRED
32 (20) CHARACTER 4 M_PCTE_ECB4_ID (ACRONYM 'ECB4')
36 (24) FIXED 4 M_PCTE_ECBS CONTROLLER WANTS AN
A-OFFER DONE
490 (28) CHARACTER 4 M_PCTE_ECBS5_ID (ACRONYM *ECB5')
46 (2C) FIXED 6 M_PCTE_ECB6 CONTROLLER WANTS CLOSE
DOWN DONE
48 (30) CHARACTER 6 M_PCTE_ECB6_ID (ACRONYM 'ECBé6')
52 (34) FIXED 4 M_PCTE_ECB7 CONTROLLER WANTS
: CLONING DONE
56 (38) CHARACTER 4 M_PCTE_ECB7_ID (ACRONYM 'ECB7')
60 (3C) FIXED 4 M_PCTE_ECBS INTERFACE CODE :
. LISTEN DONE
66 (40) CHARACTER 4 M_PCTE_ECB&_ID (ACRONYM 'ECB8')
68 (44) FIXED 4 M_PCTE_ECB9 INTERFACE CODE :
DELETE-EP DONE
72 (48) CHARACTER 4 M _PCTE_ECB9_ID (ACRONYM ‘ECB9')
76 (4C) FIXED 4 M_PCTE_ECBA INTERFACE CODE :
DELETE-ANY DONE
80 (50) CHARACTER 6 M_PCTE_ECBA_ID (ACRONYM 'ECBA'")

SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit

S1-0182



Offsets Type Length Name Description
864 (54) FIXED 4 M_PCTE_ECBB INTERVAL TIMER HAS
POPPED
88 (58) CHARACTER 4 M_PCTE_ECBB_ID (ACRONYM 'ECBB')
92 (50C) FIXED 4 M_PCTE_ECBC 2P5¥3;0R RESPONDER TO
96 (60) CHARACTER G4 M_PCTE_ECBC_ID (ACRONYM 'ECBC')
100 (64) FIXED 4 M_PCTE_ECBD ATTACHED TASK HAS
TERMINATED
106 (68) CHARACTER 4 M_PCTE_ECBD_ID (ACRONYM 'ECBD')
108 (6C) FIXED 4 M_PCTE_CASE ECB FOR CASE
112 (70) FIXED 4 M _PCTE_ENTRY ENTRY NUMBER FOR THIS
PCT ENTRY
116 (74) A-ADDRESS 4% M_PCTE_APDE EO%g;ER TO ASSOC PCTE
. . N
120 (78) BITSTRING 1 M_PCTE_ATITLE_L h;EEgF APPL TITLE ON
121 (79) CHARACTER 32 M_PCTE_ATITLE GEFE§CATION TITLE ON
153 (99) CHARACTER 3 Reserved
156 (9C) A-ADDRESS 4 M_PCTE_TCB TCB ADDRESS
160 (AO0) A-ADDRESS 4 M_PCTE_SWOP ADDR OF RED ENTRY WITH
STUCK @ .
164 (A4) STRUCTURE 0 M_PCTE_RQ
166 (A4) BITSTRING 1 M_PCTE_RQ_FLAGS STATUS OF PROCESSOR
ceee eaan CT_FREE ¥ PCT ENTRY FREE
. ...1 CT_INIT ¥ PCT ENTRY BEING
INITIALISED
.1. CT_WAIT ¥ WAIT FOR TASK TO
TERMINATE
1., CT_ACTIVE ¥ IDLE BUT HAS BEEN
POSTED '
1... CT_TERM ¥ PCT ENTRY BEING
TERMINATED
S CT_IDLE ¥ PROCESSOR IDLE
A I CT_OFFER_PD ¥ OFFER PENDING
B P CT_LISTEN_PD ¥ LISTEN PENDING
) 1... .... CT_DELETE_PD ¥ DELETE PENDING
165 (AS) BITSTRING 1 M_PCTE_ACTIONS SEESEDARY STATUS
VA S
U I CT_NO_CELL ¥ NO PRB/PRC CELL,
UNABLE TO
1., CT_POSTED ¥ IDLE PROCESSOR
REQUESTED -
166 (A6) BITSTRING 2 Reserved
168 (A8) FIXED 4 M_PCTE_REDEIX ASSOCIATED AM_RED
ENTRY INDEX
172 (AC) FIXED 80 M_PCTE_MACHORK WORK AREA FOR THE
‘ ATTACH MACRO
EQUATE X*'FC?* M_PCTE_SIZE LENGTH OF AM_PCT ENTRY

Cray Research, Inc.

Appendix A. Data Area Descriptions

A-9



AM_REDE

Common name: Responder Directory Entry (Common Storage)

A-10

Macro 1ID:
DSECT name:
Created by:
Location:

Pointed to by:

Scrialization:

S@C@GWA

AM_REDE

Association Manager Processor (S@C9123B or S@C9128)
ECSA subpool 241 and key 8

An index value gives the offset to an address within the REDH data area that contains
a pointer to it. '

AM_PCTE_REDEIKX field in an associated PCTE data area contains the index value.

Serialization is performed by using ENQ and DEQ. The major name used is
“ASSOCMGR” and the minor name used is the address of the REDE entry.

Function: Contains information that felates to a responder initiated by the Association Manager
Offsets Type Length Name Description
0 (0) CHARACTER 4 AM_REDE_ACRO ANACRONYM 'REDE*
4 (4) FIXED 4 AM_REDE_INDEX INDEX VALUE FOR THIS
‘ ENTRY
8 (8)  BITSTRING 1 AM_REDE_TYPE RESPONDER TYPE
T REDE_JOB :RESPONDER IS A
STARTED JOB
1... .... REDE_TASK " :RESPONDER IS AN
ATTACHED TASK
9 (9 CHARACTER 4 AM_REDE_SUBSYS SUBSYSTEM NAME
13 (D) CHARACTER 8 AM_REDE_JOBNAME MVS JOBNAME
21 (15) CHARACTER 8 AM_REDE_JOBID MVS JOB ID
13 (D) CHARACTER 8 AM_REDE_TASK MVS TASK NAME
21 (15) CHARACTER 3 Reseirved
24 (18)  A-ADDRESS G AM_REDE_TASK_TCB MVS TASK TCB ADDRESS
28 (1C)  CHARACTER -1 Reserved
29 (1D) CHARACTER 1 AM_REDE_ATITLE_L APPLICATION TITLE
' LENGTH
30 (1E) CHARACTER 32 AM_REDE_ATITLE APPLICATION TITLE
62 (3E) CHARACTER 2 Reserved
66 (40) A-ADDRESS 4 AM_REDE_APDE APD ENTRY
68 (44) A-ADDRESS 4 AM_REDE_POINTER POINTER TO DATA IN
PRIVATE STORE
72 (48) A-ADDRESS 4 AM_REDE_ASCB ASCB ADDRESS FOR
A-ENDPOINT-GIVE
76 (4C) A-ADDRESS 4 AM_REDE_TCB TCB ADDRESS FOR
A-ENDPOINT-GIVE
80 (50) A-ADDRESS 4 AM_REDE_UECB ?ngESS OF USERS ECB
86 (54) FIXED 4 AM_REDE_PCTEIX ASSOCIATED AM_PCT

ENTRY INDEX

SUPERLINK for MYVS Logic Library Volume 2: Control Functional Unit S1-0182



Offsets Type Length Name Description
88 (58) A-ADDRESS 4 AM_REDE_REDG ADDRESS OF QUEUE
- MANAGEMENT CELL
EQUATE X'5C*' AM_REDE_SIZE LENGTH OF AM_REDE

Cray Research, Inc.

ENTRY

Appendix A. Data Area Descriptions

A-11



AM_REDH

Common name: Responder Directory Header
Macro ID:
DSECT name:
Created by:

Location:

Pointed to by:

Serialization:

S@C@GWA

AM_REDII

Association Manager (S@C9000)

ECSA Subpool 241 and key 8

AM_GWA_RED field of the AM_GWA data area

Serialization is performed using ENQ and DEQ. The major name used is

“ASSOCMGR” and the minor name uscd is the address of the responder directory
header.

Function: Contains a count of the current and maximum number of REDE cntrics in the
directory. It also contains an indexed list of pointers to the cntrics such that an index
value of 1 refers to the first responders pointer, an index value of 2 refers to the second
responders pointer and so on.

Offsets Type Length Name Description
0 (0) CHARACTER 4 AM_REDH_ACRO ANACRONYM °*REDH'
4 (4) CHARACTER G Reserved
8 (3) STRUCTURE 0 ALIGN ON DOUBLE WORD
BOUNDRY
8 (8) . FIXED 4 AM_REDH_MAX# MAXIMUM NUMBER OF
ENTRIES
12 ) FIXED 4 AM_REDH_CUR# CURRENT NUMBER OF
ENTRIES
16 (10) FIXED 4 AM_REDH_LOCK PCTE THAT LAST ENQ'ED
-UPON REDH
20 (14) FIXED 4 AM_REDH_CPOOL CELL POOL ID FOR RED
ELEMENTS
24 (18) A-ADDRESS % AM_REDH_EBASE START OF LIST OF ENTRY
ADDRESS'S

A-12 SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit SI-0182



AM_REDQ

Common name: Responder Directory Entry (Queue Management Cell)

Macro ID:
DSECT name:
Created by:
Location:
Pointed to by:

Serialization:

S@CAGWA
AM_REDQ

Association Manager Processor (S@C9123B or S@C9128)

ECSA subpool 241 and key 8

AM_REDE_REDG field in the REDE entry that owns the queue

Compare Double and Swap (CDS) serialization techniques are used here

Function: Contains the status of the Associated Responder Directory Entry and the headers for
the Request qucue and Work queue which are used to contain requests for the
associated responder '

offsets Type Length Name Description
0 (o BITSTRING 1 AM_REDQ_RQAFLAGS RESPONDER STATUS FLAGS
1... .... NOTIFY_USER :+ BIT 0 SET IF NOTIFY
REQUIRED
.. 1 FLAG_LISTEN_PD :
.. 1. FLAG_LISTEN :
1.. FLAG_STOP_DATA }OBITS 1 —— 7ARE SET
... 1., FLAG_TERM_G :FINDICATE THE STATUS
0
P N FLAG_TERM_Q THE CONNECTION
D N FLAG_ABORT
B FLAG_FAILURE
1 (1) CHARACTER 1 AM_REDQ_FLAG2 pfﬁgsRESPONDER STATUS
1... FLAG2_DELETE_ANY :DELETE-ANY REQUEST
PERFORMED
1., FLAG2_CLONING :RESPONDER BEING
: CLONED
2 (2> FIXED 2 AM_REDQ_RQACNT  REQUEST QUEUE :
- ELEMENT COUNT
4 (4) A-ADDRESS 4 AM_REDQ_RQATAIL REQUEST QUEUE :
BACKWARD LINK
8 (8) A-ADDRESS 4 AM_REDQ_WQAHEAD T?Rﬁ QUEUE : FORWARD
N
12 (C) A-ADDRESS 4 AM_REDQ_WQATAIL WORK QUEUE :
. BACKWARD LINK
16 (10) BITSTRING 26 (UNDEFINED)
EQUATE X*28? AM_REDQ_SIZE LENGTH OF AM_REDQ
ENTRY

Cray Rescarch, Inc.

Appendix A. Data Area Descriptions

A-13



AM_REDE_PRIVATE

Common name: Responder Directory Entry (Private Storage)
Macro ID:
DSECT name:
Crcated by:

A-14

Location:

Pointed to by:

Serialization:

S@C@GWA

AM_REDLE_PRIVATE

Association Manager Processor (S@C9123B and S@C9128)
Private storage subpool 0 and key 8 (below 16M line)
AM_REDE_POINTER

None

Function: Contains identification and authentication information relating to the associated
responder. This information is in private storage so that access to it is restriced to the
Association Manager’s address space.
offsets Type Length Name Description
0 (0) FIXED 2 AM_REDE_USERL LENGTH OF USER
IDIDENTIFIER
2 (@ CHARACTER 8 AM_REDE_USER USER IDENTIFIER
(IDENT1)
10 (A) FIXED 2 AM_REDE_USACL LENGTH OF ACCOUNT
INFORMATION
12 ) CHARACTER 70 AM_REDE_USAC ACCOUNT INFORMATION
(IDENT2)
82 (52) FIXED 2 AM_REDE_GROUPL LENGTH OF GROUP
, IDENTIFIER
86 (54) CHARACTER 8 AM_REDE_GROUP GROUP IDENTIFIER
(IDENT3)
92 (50) FIXED 2 AM_REDE_PASSL LENGTH OF USER
, PASSWORD
96 (5E) CHARACTER 8 AM_REDE_PASS USER PASSHWORD
- (AUTH1)
102 (66) BITSTRING 1 AM_REDE_AUTHZ2_L LENGTH OF AUTH2
103 (67) CHARACTER 16 AM_REDE_AUTH2 x% UNDEFINED xx
. (AUTH2)
119 (77) BITSTRING 1 AMdREDE=AUTH3_L LENGTH OF AUTH3
120 (78) CHARACTER 16 AM_REDE_AUTH3 %% UNDEFINED xx
) (AUTH3)
136 (83) BITSTRING 1 AM_REDE_PSAPL LENGTH OF INITIATORS
PSAP ID
137 (89) CHARACTER 16 AM_REDE_PSAP INITIATORS PSAP ID
153 (99) CHARACTER 2 AM_REDE_MF INITIATORS M/F ID
155 (9B) BITSTRING 1 AM_REDE_TEXT_L A-ASSOCIATE TEXT
LENGTH
156 (9C) CHARACTER 255 AM_R.EDE_TEXT AEIE\S§0CIATE TEXT (SAVE
AREA
411 (19B) BITSTRING 1 AM_REDE=R_TEXT_L RESOLVED TEXT LENGTH
412 (190C) CHARACTER 255 AM_REDE_R_TEXT §EERI)NED TEXT (SAVE

SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit SI1-0182



Offsets Type Length Name Description
EQUATE X'29B" ﬂ_REDE_PRIVATE_ LENGTH OF PRIVATE AREA
: H

Cray Research, Inc. Appendix A. Data Area Descriptions A-15



LP_LOGE

A-16

Common name: Log Element
Macro ID: S@@LOGE
DSECT name: LP_LOGE

Created by:

Location: Subpool 241, key 8
Pointed to by: SSVT
Serialization: None

Log Processor initialization routine (S@C2210)

Function: Holds information on a log message
Offsets Type Length Name Description
0 (0) A-ADDRESS 4 LP_LOGEFWD FORWARD CHAIN ('LOGE*
-~ WORK Q)
ceee e LP_LOGEID _ANACRONYM *LOGE®*
% (4) A-ADDRESS 4 LP_LOGEBWD BACKWARD CHAIN
8 (38) A-ADDRESS 4 LP_LOGEBLK r(lg)éThr;ESSAGE IN A BLOCK
12 (C) STRUCTURE 0 ALIGN FOR WTO
EQUATE X'6A* LP_LOGE_MSGLENM MAXIMUM VALUE OF
LP_LOGE_MSGLEN
12 ) BITSTRING 2 LP_LOGE_MSGLEN LENGTH OF MESSAGE TEXT
CONTAINED
14 (E) CHARACTER 2 FOR WTO
16 (10) CHARACTER 0 LP_LOGEMID SUPERLINK MESSAGE
IDENTIFIER
16 (10) CHARACTER 2 LP_LOGEMID_GLBL gLOBAL MESSAGE PREFIX
/5L
18 (12) CHARACTER 2 LP_LOGEMID_COMP COMPONENT ID (EG
UV=0PTIONS)
20 (14) CHARACTER 49 LP_LOGEMID_NUM MESSAGE NUMBER
26 (18) CHARACTER 1 LP_LOGEMID_TYPE CLASSIFICATION OF THE
MESSAGE
11.. 1..1 LP_LOGEMID_TYPEI 'I' - INFORMATION
111. .11. LP_LOGEMID_TYPEW 'W®' — WARNING
11.. .1.1 LP_LOGEMID_TYPEE 'E®' - ERROR
111. ..1. LP_LOGEMID_TYPES 'S' - SEVERE
11.. .1.. LP_LOGEMID_TYPED 'D' - DISASTER
25 (19) CHARACTER 1 LP_LOGEMID_BLK EYE CATCHER FOR
BLOCKED MESSAGES
1.1 11.. LP_LOGEMID_BLKC *%' - THIS LOGE IS A
CONTINUATION OF
PREVIOUS LOGE
1., LP_LOGEMID_BLKS * v - NORMAL SETTING
OF LP_LOGEMID_BLK
EQUATE 60 LP_LOGE_MSGTEXTM MAX MSG TEXT
26 (1A) CHARACTER 60 LP_LOGE_MSGTEXT MESSAGE TEXT
86 (56) BITSTRING 4 SPACE FOR ROUTE AND

SUPERLINK for MYVS Logic Library Volume 2: Contral Functional Unit

DESCRIPTOR

SI-0182



offsets Type Length Name Description

90 (5A) BITSTRING 1 LP_LOGE_ROUTCDE AN INDICATION OF TO
WHERE THE

S | LP_LOGE_SLLOG EggPUT TO SUPERLINK

R LP_LOGE_MVSLOG EgEPUT TO MVS SYSTEM

91 (5B) CHARACTER 1 Reserved
92 (5C) STRUCTURE 0 ENSURE CPOOL ALIGNS
EQUATE Xt*5C? LP_LOGE_LEN LENGTH OF LOG ELEMENT

EQUATE 300 LP_LOGE_COUNT COUNT OF LOG ELEMENTS
IN THE POOL
(TOTAL-SECONDARIES=0)

EQUATE 241 LP_LOGE_SPOOL SUBPOOL NUMBER FOR
STORAGE

Cray Research, Inc. Appendix A. Data Area Descriptions A-17



MH_ME

Common name: Message 'Entry

"A-18

Macro ID:
DSECT name:
Loaded by:
Location:
Pointed to by:

Serialization:

S@@MOMT
MH_ME

SLCN root module S@CCO0000

SLCN private storage
MH_MIE_MSGADDR field in MH_MIE

None

Function: Contains the text for a specific message. It also includes a count of variables and the
offset and length of each
Offsets Type Length Name Description
0 (0) CHARACTER 4 MH_ME_MSGNUM MESSAGE NUMBER (IN
EBCDIC)
4 (4) CHARACTER 1 MH_ME_SEVERITY MESSAGE SEVERITY
INDICATOR
5 (5) A-ADDRESS 1 MH_ME_NOMSGS NUMBER OF LINES IN
’ MESSAGE
6 (6) A-ADDRESS 2 MH_ME_MSGLEN II.ENGTHEOF MESSAGE TEXT
N LIN
8 (8) A-ADDRESS 1 MH_ME_NOVARS NUMBER OF VARIABLES IN
THIS LINE
9 9) A-ADDRESS 1 MH_ME_VAROFF VARIABLE OFFSET WITHIN
MSGTEXT
10 (A) A-ADDRESS 1 MH_ME_VARLTH LENGTH OF VARIABLE IN
MSGTEXT .
11 (B) STRUCTURE 0 MH_ME_MSGTEXT MESSAGE TEXT STARTS

SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit

HERE

SI-0182



MH_MI

Common name: Message Index

Macro ID:

DSECT name:

Loaded by:

Location:

Pointed to by:

S@@MOMT
MH_MI

SLCN root module S@CC0000
SLCN private storage
SC_SSVT_MSGTAB field of the SC_SSVT

Scrialization: None
Function: Provides the number of entries in the message index and the size of each index entry.
offsets Type Length Name Description
0 ) CHARACTER 2 MH_MI_ID CON}'ROL BLOCK ACRONYM
- M
2 (2) CHARACTER 2 Reserved
4 4) A-ADDRESS 4 MH_MI_NOENTRY NUMBER OF ENTRIES
WITHIN INDEX
8 (8) A-ADDRESS 4 MH_MI_ENTRYLEN LENGTH OF EACH INDEX
ENTRY
EQUATE x'ct MH_MI_SIZE LENGTH OF INDEX HEADER

Cray Research, Inc.

Appendix A. Data Area Descriptions A-19



MH_MIE

Common name: Message Index Entry

Macro ID: S@@MOMT

DSECT name: MH_MIE

Loaded by:  SLCN root module S@CC0000
Location: SLCN private storage

Pointed to by:  An offset within the message index

Serialization: None

Function: Provides a pointer to the message entry for a specific message
Offsets Type " Length Name Description
0 0) A-ADDRESS 4 MH_MIE_MSGNUM MESSAGE NUMBER (IN
BINARY)
4 (4) A-ADDRESS 4 MH_MIE_MSGADDR é£¥§$SS OF THE MESSAGE
EQUATE X*8* MH_MIE_SIZE LENGTH OF INDEX ENTRY

A-20 SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit SI1-0182



MI_MACB

Common name: Management Interface Association Control Block

Macro ID: S@CIMACB
DSECT name: MI_MACB
Created by: S@CI0000
Location: SLCN private storage
Pointed to by: MI_MICT
Serialization: None
Function: Contains all the information required by the connection manager subtask to manage
a single management interface connection.
Offsets Type Length Name Description
0 (0) CHARACTER 4 MI_MACB_ID *MACB' ACRONYM
4 (4) CHARACTER 8 MI_MACB_NAME MI CONNECTION NAME
12 (C) A-ADDRESS 4 MI_MACB_SSVT ==> SC_SSVT
16 (10) A-ADDRESS 4 MI_MACB_MICT -=> MI_MICT
20 (14) A-ADDRESS 4 MI_MACB_IPARMS EEETINIT. PARMS OFF TH
26 (18) BITSTRING 1 MI_MACB_TITLELN LENGTH OF TITLE FIELD
CONTENTS
25 (19 CHARACTER. 32 MI_MACB_TITLE APPLICATION ENTITY
TITLE FIELD
57 (39) BITSTRING 1 MI_MACB_MFIDLN g?%th MFID LENGTH
58 (3A) CHARACTER 2 MI_MACB_MFID CALLED MFID FIELD
60 (3C) FIXED 2 MI_MACB_CONNID CONNECTION IDENTIFIER
62 (3BE) FIXED 2 MI_MACB_PDUSIZE MIPDUSIZE IN WORK AREA
64 (40) A-ADDRESS 4 MI_MACB_ENDSCAN -> END OF MIPDU SCAN
: ADDRESS
68 (44) A-ADDRESS 4 MI_MACB_WORKAREA BZT&ORK BUFFER FOR CASE
EQUATE X*2000°* MI_MACB_WORKSIZE SIZE OF THE WORK BUFFER
72 (48) A-ADDRESS 4 MI_MACB_WORKMRQE -> WORK BUFFER FOR
- MIPDU-DECODE
e e MI_MACB_WORKPOOL SUBPOOL FOR THE WORK
BUFFER
76 (4C) BITSTRING 1 MI_MACB_STATUS STATUS OF THIS MI_MACB
1. . MI_MACB_ACTIVE MANAGER SUBTASK IS
ACTIVE
.1. . MI_MACB_TERM MANAGER SUBTASK IS
. TERMINATING
..1. . MI_MACB_LOGON CSNNECTION IS LOGGED
0
..1 . MI_MACB_LOGOFF CONNECTION LOGOFF
. PENDING
.. 1., MI_MACB_REINS SUBTASK IS TO BE

Cray Research, Inc.

Appendix A. Data Area Descriptions

RE-INSTATED

A-21



Offsets

Type Length Name . Description
. 1., MI_MACB_IWAIT SUBTASK IN INITIAL
. OPERATOR WAIT
.o ..l MI_MACB_CASEDATA CASE DATA PRESENT FOR
PROCESSING
77 (4D) BITSTRING 1 MI_MACB_STATUS2 i;ATUS OF THIS MI_MACB
... ... MI_MACB_NOKWAIT NO CENTRAL WAIT
REQUIRED
AL ... MI_MACB_NORECV NO CENTRAL RECEIVE
. REQUIRED
1 P MI_MACB_TRACE TRACE ACTIVE FOR THIS
MI_MACB
1 .. MI_MACB_XECBPOST EXTERNAL ECB WAS
POSTED
.. 1. MI_MACB_REQMRQE RE-QUEUE CURRENT
) MI_MRQE
78 (4E) BITSTRING 1 MI_MACB_REQUEST Egagggg FOR THIS
1... ... MI_MACB_RTERM SUBTASK IS T0
TERMINATE
79 (4F) BITSTRING 1 MI_MACB_RTYPE CLARIFICATION OF TERM
REQ. TYPE
cee e MI_MACB_TNORMAL TERMINATE NORMAL
REQUEST
..1 MI_MACB_TQUICK TERMINATE QUICK
_ REQUEST
ees o.l. MI_MACB_TABORT TERMINATE ABORT
REQUEST
80 (50) BITSTRING 1 MI_MACB_INEVENT CURRENT INPUT EVENT IN
PROCESS
. e MI_MACB_IMILGRQ
U | MI_MACB_IMIOFRQ
ceas a1l MI_MACB_ILGRQ
ceee o.11 MI_MACB_IMILGRSP
cees o1, MI_MACB_IMILGRSN
cees o1.1 MI_MACB_ILGRSP
ceee W11, MI_MACB_ILGRSN
cee. L1111 MI_MACB_IMILFRQ
P R MI_MACB_ILFRQ
R S | MI_MACB_IMILFRSP
vees 1.1, MI_MACB_IMILFRSN
ee.. 1,11 MI_MACB_ILFRSP
RS § P MI_MACB_ILFRSN
.. 11.1 MI_MACB_IMIABRGQ
.. 111. MI_MACB_IABRT
ee.. 1111 MI_MACB_IPBRT
...l ... MI_MACB_IMICMRQ
...1 ...1 MI_MACB_ICMRQ
...1 .1, MI_MACB_IMIMGRQ
...1 .11 MI_MACB_IMGRQ
...1 ..11 MI_MACB_MAXINEV  MAXIMUM INPUT EVENT
NUMBER
81 (51) BITSTRING 1 MI_MACB_OUTEVENT CURRENT OUTPUT EVENT
IN PROCESS
. MI_MACB_OLGRQ
. 1 MI_MACB_OAOFFRQ

A-22

MI_MACB_OMILGCNP

SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit

S1-0182



Offsets Type Length Name Descriptiocn
.. ..11 MI_MACB_OMILGCNN
e W1, MI_MACB_OLFRQ
.. 1.1 MI_MACB_OMILFIN
.. .11, MI_MACB_OMILFCNP
.. 111 MI_MACB_OMILFCNN
. 1... MI_MACB_OABRT
. 1..1 MI_MACB_OMIABIN
eees 1.1, MI_MACB_OMIPAIN
... 1011 MI_MACB_OLFRSP
cees 11, MI_MACB_OLFRSN
. 11.1 MI_MACB_OMILGIN
. 111. MI_MACB_OLGRSP
ee.. 1111 MI_MACB_OLGRSN
D MI_MACB_OCMRQ
...1 ...1 MI_MACB_OMICMIN
...1 ..1. MI_MACB_OMGRQ
...1 ..11 MI_MACB_OMIMGIN
82 (52) BITSTRING MI_MACB_STATE CURRENT STATE OF THIS
MI_MACB
83 (53) BITSTRING MI_MACB_OLDSTATE OLD STATE FOR
TRACEBACK
. . MI_MACB_STATE_O STATE NUMBER STAO
ceee ee MI_MACB_STATE_1l STATE NUMBER STAl
O I MI_MACB_STATE_2 STATE NUMBER STA2
ceee o110 MI_MACB_STATE_3 STATE NUMBER STA3
P MI_MACB_STATE_4 STATE NUMBER STA4
eeee 1.1 MI_MACB_STATE_S STATE NUMBER STAS
eee. o111, MI_MACB_STATE_6 STATE NUMBER STA6
.11. MI_MACB_MAXSTATE MAXIMUM STATE NUMBER
8¢ (54) BITSTRING MI_MACB_ACT ACTION TO BE PERFORMED
R | MI_MACB_ACT_U1 ACTION NUMBER Ul
.. 1. MI_MACB_ACT_U2 ACTION NUMBER U2
.11 MI_MACB_ACT_U3 ACTION NUMBER U3
.. MI_MACB_ACT_U4 ACTION NUMBER U4
.1.1 MI_MACB_ACT_U5 ACTION NUMBER U5
.11. MI_MACB_ACT_U6 ACTION NUMBER U6
. .111 MI_MACB_ACT_U7 ACTION NUMBER U7
.. 1., MI_MACB_ACT_US8 ACTION NUMBER U8
.. 1..1 MI_MACB_ACT_U9 ACTION NUMBER U9
.. 1.1, MI_MACB_ACT_U10 ACTION NUMBER Ul0
.. 1.11 MI_MACB_ACT_Ul1l ACTION NUMBER Ull
... 11.. MI_MACB_ACT_Al ACTION NUMBER Al
.. 11.1 MI_MACB_ACT_A2 ACTION NUMBER A2
.. 111. MI_MACB_ACT_A3 ACTION NUMBER A3
... 1111 MI_MACB_ACT_A4 ACTION NUMBER A4
.1 L., MI_MACB_ACT_AS ACTION NUMBER A5
P SR | MI_MACB_ACT_Aé6 ACTION NUMBER A6
.1 .1, MI_MACB_ACT_A7 ACTION NUMBER A7
.1 0011 MI_MACB_ACT_A8 ACTION NUMBER A8
..1 .1.. MI_MACB_ACT_A9 ACTION NUMBER A9
..1 .1.1 MI_MACB_ACT_Al0 ACTION NUMBER A1l0
..1 .11. MI_MACB_ACT_I1 %¥%XINTERNAL X% ACTION
NUMBER I1
..1 .111 MI_MACB_ACT_IZ2 XXINTERNALXx ACTION
NUMBER I2
1 .111 MI_MACB_MAXACT MAXIMUM ACTION NUMBER

Cray Research, Inc.

Appendix A. Data Area Descriptions

A-23



A-24

offsets Type Length Name Description
85 (55)  BITSTRING 1 RESERVED FOR LATER USE
86 (56) FIXED 2 MI_MACB_#BADCASE # CONSECUTIVE BAD
A-RECEIVES
cees 1.1 MI_MACB_MAXRECVE MAXIMUM SUCH NUMBER
ALLOWED .
88 (58) A-ADDRESS 4 MI_MACB_TCB -~-> TCB OF MANAGER
SUBTASK
92 (50C) FIXED 4 MI_MACB_EXTECB EXTERNAL ECB FOR THIS
CONNECTION
96 (60) FIXED 4 MI_MACB_PECB ECB POSTED - SUBTASK
ENDED
100 (64) FIXED 4 MI_MACB_IECB ECB POSTED - SUBTASK
INITIALISED
104 (68) STRUCTURE 8 MI_MACB_PARMLIST E?g?DDED PARAMETER
112 (70) STRUCTURE 136 MI_MACB_ARE IMBEDDED APPLICATION
. REQ ELT
248 (F8) STRUCTURE 24 MI_MACB_PRB IMBEDDED PRES. REQ
BUFFERS
272 (110> STRUCTURE 36 MI_MACB_PRBEMIF IMBEDDED PRES. BUFF
EL(M I/F)
308 (134) STRUCTURE 36 IMBEDDED PRES. BUFF
EL(CASE)
cees .1, MI_MACB_#PRBE # OF PRBE
LAl. ... MI_MACB_PRB_LEN LENGTH OF PRB/PRBE
DEFN.
3446 (158) STRUCTURE 24 MI_MACB_PRBABRT IMBEDDED ABORT PRB
368 (170) STRUCTURE 36 MI_MACB_PRBEABRT IMBEDDED ABORT PRBE
' EL(M I/F)
404 (194) STRUCTURE 36 IMBEDDED ABORT PRBE
ELC(CASE) :
P I MI_MACB_S#PRBEAB & OF PRBE ELTS
15 5 R MI_MACB_PRBA_LEN LENGTH OF PRB/PRBE
ABORT DEFN
440 (1B8) STRUCTURE 20 MI_MACB_PRC IR?EDDED PRES. CONTEXT
DATA
460 (1CC) STRUCTURE 12 MI_MACB_PRCEMIF IMBEDDED PRES. CTXT
. EL(M I/F)
472 (1D38) STRUCTURE 12 IMBEDDED PRES. CTXT
EL(CASE)
S MI_MACB_#PRCE # OF PRCE
..1. 11.. MI_MACB_PRC_LEN LENGTH OF PRC/PRCE
DEFN.
484 (1E4) A-ADDRESS G . MI_MACB_WORKQ_F FIFOEORDERED REQUEST
QUEU
488 (1lE8) A-ADDRESS 4 MI_MACB_MWORKQ_L LIESEORDERED REQUEST
QU
492 (1EC) Y-ADDRESS 2 MI_MACB_SESSREQ SESSION REQUEST
PARAMETERS
494 (1EE) BITSTRING 1 MI_MACB_PRESREQ PRESENTATION REQUEST
PARAMETERS
495 (1EF) BITSTRING 1 RESERVED FOR LATER USE
496 (1F0) CHARACTER 8 MI_MACB_CNTXNAME CONTEXT NAME TO BE USED

SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit

S1-0182



offsets Type Length Name Description

504 (1F8) FIXED 4 MI_MACB_TIMER TIMER INTERVAL FOR
STIMERM
508 (1FC) FIXED 4 MI_MACB_TIMERECB $%I‘BdEEOSTED BY INTERVAL
512 (200) FIXED 4 MI_MACB_QOS QUALITY OF SERVICE
PARAMETERS
516 (204) FIXED G ’ ' RESERVED FOR LATER USE
EQUATE X*208" MI_MACB_SIZE LENGTH OF MI_MACB
EQUATE 0 MI_MACB_SPOOL SUBPOOL TO USE

Cray Rescarch, Inc. Appendix A. Data Area Descriptions A-25



MI_MICT

Common name: Management Interface Control Table

S@CIMICT

A-26

Macro ID:

DSECT name:

Created by:

Location:

Pointed to by:

Serialization:

MI_MICT
S@CI0000

SLCN private storage

SC_SSVT

None

Function: This is the major control block of the management interface component. It describes
the state of the component as a whole.
Offsets Type Length Name Description
0 (0) CHARACTER 6 MI_MICT_ID YMICT' ACRONYM
4 (%) A-ADDRESS 4 MI_MICT_SSVT --> SC_SSVT
8 (3) BITSTRING 1 MI_MICT_TITLELN LENGTH OF TITLE FIELD
CONTENTS
9 (9) CHARACTER 32 MI_MICT_TITLE APPLICATION ENTITY
TITLE FIELD
41 (29) BITSTRING 1 MI_MICT_STATUS STATUS OF THIS MI_MICT
... ..., MI_MICT_TPEND M I/F TERMINATION
PENDING
.1. .. MI_MICT_STILLACT M I/F SUBTASKS STILL
ACTIVE
.1. . MI_MICT_NODEFS NO MICOND
DEFINITINIONS EXIST
.1 MI_MICT_NONMIC NO MICON STATEMENT
PRESENT
cee. 1., MI_MICT_DETACHED SUBTASK ABORTIVE
DETACH DONE
42 (2A) BITSTRING 2 RESERVED FOR LATER USE
44 (20) FIXED 4 MI_MICT_ELST MANAGEMENT INTERFACE
cees W1l MI_MICT_ELEN LENGTH OF A SINGLE
ENTRY
48 (30) FIXED 20 Z2ND AND SUBSEQUENT
, ENTRIES
...1 1... MI_MICT_LEN LENGTH OF TOTAL LIST
cees W11, MI_MICT_ENUM NUMBER OF ENTRIES
68 (44) FIXED 12 MI_MICT_BXLESCAN PARMS FOR BXLE SCAN OF
MI_MACBS
80 (50) FIXED 4 MI_MICT_TERMECB M I/F TO TERMINATE ECB
e e MI_MICT_TERM.N - ———---—-- TERMINATE
NORMAL
.1 MI_MICT_TERM_ Q@  --———-——- TERMINATE
QUICK
.. 1. MI_MICT_TERM_A  ---=--—- TERMINATE
ABORT
84 (54) FIXED 4 MI_MICT_WORKECB M I/F WORK-TO-DO-ECB
88 (58) FIXED 6 MI_MICT_SUBTECB CONN. MGR. SUBTASK

SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit

TERMINATED

SI1-0182



Offsets Type Length Name Description
92 (5C) FIXED 6 MI_MICT_CONNECB A CONNECTION HAS
: LOGGED ON ECB
96 (60) A-ADDRESS 4 MI_MICT_MACBQ -> MI_MACB TABLE
100 (64) FIXED 6 MI_MICT_MACBN # MI_MACBS 'IN THE TABLE
106 (68) FIXED 4 MI_MICT_MACBL LENGTH OF WHOLE
: MI_MACB TABLE
108 (6C) A-ADDRESS 4 MI_MICT_MIFIQ L INPUT QUEUE (LIFO
‘ ORDER)
112 (70) A-ADDRESS % MI_MICT_MIFIQ_F INPUT QUEUE (FIFO
) ORDER)
116 (74) A-ADDRESS 4 MI_MICT_MIFOQ_L OUTPUT QUEUE (LIFO
: . ORDER)
120 (78) A-ADDRESS 4 MI_MICT_MIFOQ_F OUTPUT QUEVUE (FIFO
ORDER)
124 (7€) BITSTRING 4 RESERVED FOR LATER USE
128 (80) STRUCTURE (1] ENSURE WE'RE MULTIPLE
OF DWORD
EQUATE X'80' MI_MICT_SIZE LENGTH OF MI_MICT
EQUATE 0 MI_MICT_SPOOL SUBPOOL TO USE

Cray Research, Inc.

Appendix A. Data Area Descriptions A-27



MI_MROQE

Common name: Maﬁagemcm Interface Request Element

A-28

Macro ID:

DSECT name:

Creatced by:

Location:

Pointed to by:

S@CIMRQE
MI_MRQE

Components of SLCN wishing to communicate with the management interface
component (such as the Product Operator component)

SLCN private storage ’
Request block chained from a queue anchored to MI_MICT or MI_MACB

Serialization: None
Function: Conveys requests from components of SLCN to the Management Interface
component.
offsets Type Length Name Description
0 (0) CHARACTER 6 MI_MRQE_ID *MRQE® ACRONYM
4 (4) A-ADDRESS G MI_MRQE_NEXT —==> NEXT MI_MRQE ON
' CHAIN
8 (3) FIXED 4 MI_MRQE_SIZE SIZE OF MI_MRQE
12 ) FIXED 4 MI_MRQE_SUBPOOL SUBPOOL CONTAINING THE
MI_MRQE
16 (10) CHARACTER 8 MI_MRQE_CONAME TARGET/SOURCE
CONNECTION NAME
26 (13) BITSTRING 1 MI_MRQE_REQUEST REQUEST TO BE
: PERFORMED
. cees MI_MRQE_RLOGON LOGON REQUEST
R | MI_MRQE_RLOGOFF LOGOFF REQUEST
R MI_MRQE_RLOFFER LOGON OFFER REQUEST
I B § MI_MRQE_RCOMMAND COMMAND REQUEST
T G MI_MRQE_RMESSAGE MESSAGE REQUEST
cees W11 MI_MRQE_ICOMMAND COMMAND INDICATION
vee. 11, MI_MRQE_IMESSAGE MESSAGE INDICATION
eees 111 MI_MRQE_RSTART START REQUEST
ceee 1oL MI_MRQE_ILOGOFF LOGOFF INDICATION
R A | MI_MRQE_CLOGOFF LOGOFF CONFIRMATION
ce.. 1.1, MI_MRQE_ILOGON LOGON . INDICATION
N S & | MI_MRQE_CLOGON  LOGON CONFIRMATION
cees 11, MI_MRQE_IABORT ABORT ~INDICATION
... 11,1 MI_MRQE_IPBORT P-ABORT INDICATION
... 111, MI_MRQE_SLOGON LOGON RESPONSE
... 1111 MI_MRQE_SLOGOFF LOGOFF RESPONSE
.1 .. MI_MRQE_RABORT ABORT REQUEST
R MI_MRQE_MAXREQ MAXIMUM PRESENTLY
ALLOCATED
25 (19) BITSTRING 1 MI_MRQE_RESULT RESULT OF REQUEST
cee eeen MI_MRQE_ACCEPTED ACCEPTED
P | MI_MRQE_REJECTED REJECTED
26 (1A) BITSTRING 1 MI_MRQE_REASON REASON FOR REJECTION
ceer eeen MI_MRQE_LGRSNORM LOGON REQ NORMAL
LOGON

SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit SI-0182



U] ‘yaseasay Aer)

67-V suondudsa(] vaiy Ble( °y Xipuaddy
N31 _ -
a3IXId vivd 33440 NO901 N3INA Y440713BYW IN  +H0.X Jivnd3a
HLIN31 _ _
av3aH @3IXI4d 33440 N0S0T N3IT YJ40713VYW IW 1 HHaX 3Lvnd3a
13vd GIXId 40 HLONIT NIX ¥440T130dW IW 402X 3ivnd3a
03¥ NO9O1T ¥04 SV IWVS 9¢ 3JN1ONALS 02) ¢¢

49410 UOBOT JOJ JUDWATd 3}SanNbad 0} UOTISU3IXJ

N31 a3XId4 _ _
ViVQ 1S3N30Y NOSOT NI1A NOSOTIIDIW IW 404X 31vnd3
H19N31 QV3IH _ _
@3axI4 1S3Nd3¥ NO9GT NITNOSOIIBIW IW  1H24X 31vnd3
18Vd G3XI4 40 HI9N3T NIX NO9OOT1IBIW IW 024X 3lvnd3
viva
¥3sn 1S3nd3I¥ NOS01 AN NOSOIIBAW IW 0 ¥ILOVAVHD  (¥2) 9%
H19N31 VLVA _ _
¥3sn 1S3nd3¥ NOSOT 1AN NOSOTIDAW IW 2 a3xIi4  (22) ¢
paAJasay 1 ¥ILOVAVHD  (12) €€
0-NOIS¥3A - _
1000104d 1S3Nd3Y NO9O1 OAd NOSOIIDAW IW e e
NOIS¥3IA _ _
1020103d 1S3ND3Y NO9O1 Ad NO9SOIIDIW IW I ONI¥ISLIE  (02) 2€

}S9nbaJ UOGOT 404 }JUSWITO 3}SONbOJ 0] UOTSUIYXT

1314 vivd 40 1¥ViS VIV 303W IN © JANLINALS 02) 2¢
3asn 01 10049NS 10045 J0AN IW 0 31vnd3a
_d43av3aH a3axid - -
30UW IW 40 HION3IT N3TH 30AW IW - 402.X a1ynd3
@13Id ViIvad 30 HIONIT NITVIVA 30¥W IW & aaxid Q1) 82
3ISN ¥Y3ILYT 304 q3IAN3S3A 1 ONIYISLId] 41) L2
NOSV3IY d3II4ID3d4SNN _ _
------- u——-— dSNNSAYIT VAW IMW I SR
a3131dKW0J _ _
10N ——~~——- a——-=  WOOINSY4T IDAW IW |
- 440901 _ _
TYWAON " dS3d 440907 WHONSHAT J0dW IW )
NOSV3d da3Id4IJ3dSNN - _
————— u---- dSNNDY4T FOUW IW B
440901 _ _
INI93N  ————- u-—== 19ANBA4T IDAW IW | S
440901 _ _
TVWION 53y 440907 WYONDYLT 0UW IW Tttt
ad3.130dd4dnS 10N _ _
10201034d ———~u~=== dSNdS¥91 3BUYW IKW N
NOSVY3¥ Q3I4ID3dSNN _ _
————u--—= dSNNS¥OT IDIW IKW |
uotydrJaasaq aweN yjbus1- adAL $39$340



0ffsets

Type

Length Name

Description

Extension to request element for logoff request

32

(20)

BITSTRING

e LECERErY

S |
P I

1 MI_MRQELOGOF_TYP
MI_MRQELOGOF_TNO

MI_MRQELOGOF_TUR
MI_MRQELOGOF_TUS

LOGOFF REQUEST TYPE
-- NORMAL LOGOFF
REQUEST

—-— URGENT LOGOFF
REQUEST

—= UNSPECIFIED LOGOFF
REQUEST

33

(21)

CHARACTER

Reserved

34

(22)

FIXED

MI_MRQELOGOF_UDL

LOGOFF REQUEST USER
DATA LENGTH

36

(24)

CHARACTER

0 MI_MRQELOGOF_UD

LOGOFF REQUEST USER
DATA

EQUATE

MI_MRQELOGOF_XLN

LENGTH OF FIXED PART

EQUATE

MI_MRQELOGOF_LEN

LOGOFF REQUEST FIXED
HEAD LENGTH

‘EQUATE

MI_MRQELOGOF_DLEN

LOGOFF REQUEST DATA
FIXED LEN

Extension to request element for command request

1" MI_MRQECMD_TYP

32 (20) BITSTRING COMMAND REQUEST TYPE
e e MI_MRQECMD_TFO  -- FORMATTED CMD
~ REQUEST
R | MI_MRQECMD_TUF  -- UNFORMATTED CMD
REQUEST
33 (21) BITSTRING 1 MI_MRQECMD_DST  COMMAND DESTINATION
e e MI_MRQECMD_DOP  -- LOCAL OPERATING
SYSTEM
U | MI_MRQECMD_DSL  -- SUPERLINK
36 (22)  BITSTRING 1 MI_MRQECMD_SRF  SOURCE TYPE FLAG FIELD
e e MI_MRQECMD_SRFNP SOURCE FIELD NOT
, PRESENT
AU | MI_MRQECMD_SRFTU SOURCE USER FIELD
PRESENT
e. .1 MI_MRQECMD_SRFCN MCS CONSOLE ID FIELD
PRESENT
.11 MI_MRQECMD_SRFRF REMOTE SYSTEM FORMAT
PRESENT
35 (23)  CHARACTER 1 Reserved
36 (24)  FIXED 0 MI_MRQECMDSOURCE START OF SOURCE FIELD
36 (24) BITSTRING 1 MI_MRQECMD_SRCC %ggaghe ID IF OPERATOR
36 (24)  CHARACTER 8 MI_MRQECMD_SRC  COMMAND SOURCE USER ID
36 (26)  BITSTRING 1 MI_MRQECMD_SRRFL gEEOBE FORMAT LENGTH
IEL
37 (25) BITSTRING 20 MI_MRQECMD_SRRFD REMOTE FORMAT SOURCE

SUPERLINK for MYVS Logic Library Volume 2: Control Functional Unit

FIELD

SI1-0182



1€-V

suondudsa ey ejeq vy xipuaddy

*au] ‘yaseasay Le1)

1¥Vd @3XI4 40 HIONIT  NIXOSWIDAW IN  0Z:X 31vnd3
v1iva d3sn 1S3nd3y¥ 9SW an 9SWIdIW IW 0 ¥3LOVAVHD  (8%) 24
HLON3 1 _ _
ViVa ¥3SN 1SINDIY 9SW 1N 9SWIDIW IW 2 aaxid (9% oL
paAuasay 3 W3ILOVIVHD  (65) LS
a1314 B
J¥S JT0HM 40 HIONIT NITOUSOSWIDAW IN  4VIaX 31vnd3
a1314
32¥N0S LVWI04 FLOWIN QAANSTOSWIADAW IW 02 ONI¥ISLIE  (§2) (IS
REEE _ _
HLON3T LVW¥04 31O0WIN 1JAYSTOSWILIW IW 1 ONI¥ISLIE  (b2) 9f
QI ¥3SN 323N0S ONVWWOD  DdS OSWIDAW IW 8 ¥ILOVIYHD  (b2) 9%
a3anssI _
d01V¥Id0o 41 GI 3TOSNOD  IJUS OSWIDAW IN 1 ONINISLIE  (b2) 9f
@13I4 32dN0S 40 L1dV1S 3IDUNOSOSWIdAW IW 0 aaxid  (v2) 9¢
paAsasay T ¥ILOVAVHD  (£2) SS
IN3S3¥d _ _
LVWY04 WILSAS J10W3IY JYIASTOSWIDIW IW 14 S
IN3S3¥d _ _
@1314 QI 310SNOD SOW NIANSTOSWIDIW IW T
IN3S3¥d - _
@13I4 ¥3SN 323N0S NL4USTOSWIDAW IW 1
IN3S3¥d _ _
10N @13I4 3D3N0S dNANSTOSWIDIW_IW e
@13I4 9V1d 3dAL 33N0S  AUSTOSWIDIWN IW I ONTNLSIIE  (22) ¢
NIOINO 40 INIOd -- 400 OSWIDAW IW e
201 _
ANV 370SNOD ¥ILSVW -- WG _OSWIBAIW_IW i SRR
310SNOD ¥ILSYW --  OWG_9SWIDAW_IW T
907 INITHINS --  1SA_OSWIdAIW_IW e A
NOILVNILSIA 39VSSIW  1SA OSWIBAW IW T ONI¥LSLIE®  (12) €€
153nd3Y _ _
OSW GILLVWYOANA --  JNLTOSWIADAW IN T
1S3nd3y _ ~
OSW QILIVWN0A -- 041 OSWIDIW IW e e
3dAL 1S3Nd3Y 3OVSSIH  dAL OSWIDAW IN T ONI¥LSIIE  (02) 2%

}SONnbaJ puLUUIOD J0j JUSIWI T }SONbIJ 0} UOTISUIYIX]

N31
@3XI4 vivd 1S3Nd3¥ AWD  NIT@ QWOADAW IW  IT.X 31vnd3
H19N31 _ - '
aV3IH q3axIid 1sand3y dwd NIT QWIADAUW IW 4 9H.X 31vnd3a
13Vd @3IXI4d 40 HI9N31 NIX AWI3DAW IW  +02:X 31vnd3
Viva d33sn 1S3nd3y¥ awd an awo3dAW IN 0 YILIVAVHI (9%) 04
HL9N31 _ _ '
Viva d33sn 1s3andIy awd AN AWO3BIW IW 2 a3ixid (bH) 89
PoA4aSIY I YI1IVIVHI (6%) LS
© @131d _
J¥S JFI0HM 40 HION3T NITOASAWITDAW IW 2 LT4X 1vnd3
uotydrJoasaq aweN yjbuai adA)L $319S340



wIFIS }u() [euonduURy jonuo) 37 wnjoA Areiqr] N30T SAW 40§ NNITHAINS  TEV

N3 d3xI1d _ _N
viva 1S3N3dY 1309V 370 1¥09VIOAW IW  420.X 31vnd3
HL9N31 aV3H _ _
@axId 1S3N03Y 130GV NI1 LY0GVIDAW IW  48%aX 31vnd3
viva _ -
d3sn 1S3INd3¥ 1309V AN LY0AVIDIW IW O YILOVAVHO  (22) bE
9N31 vivd _ _
d¥3Sn 1S3nd3¥ L¥04Y 1AN LA0GVIOIW IW 2 a3axIid (02) 2%
}SonbaJ jJdogqe J0j JUDWITd }S3Nb3aJ 0} UOTISUIR}X]
NIT _ _
@3XI4 Viva 1S3nd3¥ 9SW NIIA OSWIdAW IW  +3T.X 31vnd3
, HL9NI1 _ _
QV3H @3XI4 1SINd3Y 9SW  NITOSWIDAW IW  .8Y:X 31vnd3

uot3druoasada aweN yjbuaq adAL S39S3430



SC _CIOT

Common name: SUPERLINK Control Initialization Options Table

Macro ID: S@CICIOT
DSECT name: SC_CIOT
Crcated by: S@CC0000
Location: Common service area
Pointed to by: SC_SSVT
Serialization: None
Function: Contains a digest of the contents of the SUPERLINK subsystem’s parameter library
member.
offsets Type Length Name Description
0 0) CHARACTER 4 SC_CIOTID ?g?g??L BLOCK ACRONYM
EQUATE 261 SC_CIOT_SPOOL SUBPOOL FOR IOTS,
INDIRECT AREAS
4 (4) CHARACTER 1 SC_CIOTCHAR SUBSYSTEM COMMAND
CHARACTER
1 1 O | SC_CIOTCHAR_DFLT DEFAULT FOR
SC_CIOTCHAR
5 (5) CHARACTER ¢ SC_CIOTSSM SUBSYSTEM SUPPORT
MODULE PREFIX
9 (9) CHARACTER 3 Reserved
12 (c) A-ADDRESS 4 SC_CIOTNIOT —-=> SLNET OPTIONS
TABLE (NIOT)
16 (10) A-ADDRESS 4 SC_cCcIoTtJIoT E-> SLJP OPTIONS TABLE
JI0T) ‘
20 (14) A-ADDRESS 4 SC_CIOTVIOT ;;;0?%VT OPTIONS TABLE
24 (138) A-ADDRESS 4 SC_CIOToIoT ;a;0¥%0P OPTIONS TABLE
28 (1C) A-ADDRESS 4 SC_CIOTPFSS ——=> AREA CONTAINING
FSS DETAILS
32 (20) A-ADDRESS 4 SC_CIOTPMIC -=> AREA CONTAINING
, MIC DETAILS
36 (24) A-ADDRESS 4 SC_CIOTPATI --=> AREA CONTAINING
APPLICATION
EQUATE 10 SC_CIOT#JCL NUMBER OF JCL AREAS
60 (28) STRUCTURE 0 SC_CIOTPJCL START -->S TO AREAS
: : CONTAINING
40 (28) FIXED ¢ SC_CIOTPJCL_#01 --> 1ST AREA
CONTAINING JCL
4 (2C) FIXED 4 SC_CIOTPJCL_#%02 -=> 2ND AREA
CONTAINING JCL
48 (30) FIXED "4 SC_CIOTPJCL_#03 --> 3RD AREA
CONTAINING JCL
52 (34) FIXED 4@ SC_CIOTPJCL_#04 --> 4TH AREA

Cray Research, Inc.

Appendix A. Data Area Descriptions

CONTAINING JCL

A-33



Offsets Type Length Name Description
56 (38) FIXED 4 SC_CIOTPJCL_#%05 --> 5TH AREA
CONTAINING JCL
60 (3C) FIXED 4 SC_CIOTPJCL_%06 --> 6TH AREA
CONTAINING JCL
66 (40) FIXED 4 SC_CIOTPJCL_%07 --> 7TH AREA
CONTAINING JCL
68 (44) FIXED ¢ SC_CIOTPJCL_#%08 --> 8TH AREA
CONTAINING JCL
72 (48) FIXED ¢ SC_CIOTPJCL_#09 --> 9TH AREA
CONTAINING JCL
76 (4C) FIXED 4 SC_CIOTPJCL_#%10 -=> 10TH AREA
CONTAINING JCL
80 (50) BITSTRING 1 SC_CIOTNOFS # SUPERLINK FSS
ADDRESS SPACES
81 (51) BITSTRING 1 SC_CIOTNMIC # SUPERLINK MI CONNECT
DETAILS
82 (52) BITSTRING 1 SC_CIOTNATI # SUPERLINK
: APPLICATION TITLE
83 (53 STRUCTURE 0 SC_CIOTNJCL START JCL STATEMENT
COUNTS
83 (53 BITSTRING 1 SC_CIOTNJCL_%#01 & JCL STATEMENTS IN
. AREA 01
84 (549) BITSTRING 1 SC_CIOTNJCL_#02 # JCL STATEMENTS IN
AREA 02
85 (55%) BITSTRING 1 SC_CIOTNJCL_#%03 # JCL STATEMENTS IN
AREA 03
86 (56) BITSTRING 1 SC_CIOTNJCL_#%04 # JCL STATEMENTS IN
: AREA 04
87 (57) BITSTRING 1 SC_CIOTNJCL_#%05 # JCL STATEMENTS IN
AREA 05
88 (58) BITSTRING 1 SC_CIOTNJCL_#%06 & JCL STATEMENTS IN
: AREA 06
89 (59 BITSTRING 1 SC_CIOTNJCL_#07 & JCL STATEMENTS IN
AREA 07
90 (5A) BITSTRING 1 SC_CIOTNJCL_#808 # JCL. STATEMENTS IN
AREA 08
91 (5B) BITSTRING 1 SC_CIOTNJCL_#09 # JCL STATEMENTS IN
A AREA 09
92 (5C) BITSTRING 1 SC_CIOTNJCL_#10 # JCL STATEMENTS IN
AREA 10
93 (5D) BITSTRING 1 SC_CIOTSLRM FLAG BYTE - REMOTE
SERVICES
... ... SC_CIOTSLRM_NR REMOTE SERVICES NOT
REQUIRED
96 (5E) CHARACTER 8 SC_CIOT_SRB FSS SRB
102 (66) CHARACTER 8 SC_CIOT_FRR FSS SRB FRR
110 (6E) CHARACTER 8 SC_CIOT_LTASK FSS LISTENER,K TASK
118 (76) CHARACTER 8 SC_CIOTNMN ﬁk:ET OPTIONS MEMBER
126 (7E) CHARACTER 8 SC_CIOTJMN SLJP OPTIONS MEMBER

A-34

SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit

NAME

S1-0182



Offsets Type Length Name Description
136 (86) CHARACTER 8 SC_CIOTVMN SLVE OPTIONS MEMBER
NAM ,
142 (8E) CHARACTER 8 SC_CIOTOMN SkgP OPTIONS MEMBER
E
150 (96) FIXED 2 SC_CIOT#s goggT OF SITE MVS START
M
152 (98) A-ADDRESS 4 SC_CIOTPS --> AREA MVS START CMD
: DETAILS
156 (9C) CHARACTER 8 SC_CIOTNAM EXSERLINK SUBSYSTEM
166 (A4) CHARACTER 50 SC_CIOT_SITE SITE NAME
214 (D6) BITSTRING 0 SC_CIOT_LOGRCDE LOG ROUTE CODES
214 (D6) BITSTRING 1 SC_CIOT_LOGRCDE1 lSTégYTE LOG ROUTE
" CcoD
215 (D7) BITSTRING 1 SC_CIOT_LOGRCDE2 EQBEQYTE LOG ROUTE
216 (D8) CHARACTER 8 SC_CIOT_CNMSGNME SUB-SYSTEM MESSAGE
TABLE NAME
226 (EO0) CHARACTER 8 SC_CIOT_DAMSGNME DATA ACCESS MESSAGE
TABLE NAME
232 (E8) BITSTRING 1 SC_CIOT_#CDTKS MAX NUMBER OF DATA
. ACCESS TASKS
... 1.1, SC_CIOT_#CDTKSD DEFAULT FOR
) SC_CIOT_%CDTKSD
233 (E9) BITSTRING SC_CIOT_ROUTCDE WTO/WTOR ROUTE CODES
233 (E9) BITSTRING 1 SC_CIOT_ROUTCDEl -1ST BYTE WTO/WTOR
_ ROUTE CODES
236 (EA) BITSTRING 1 SC_CIOT_ROUTCDEZ2 2ND BYTE WTO/HWTOR
. "ROUTE CODES
EQUATE X'8000' SC_CIOT_ROUTCDED DEFAULT ROUTCDES
235 (EB)  BITSTRING 1 SC_CIOT_SVC# SUPERLINK SVC NUMBER
111. .11. SC_CIOT_SVC#D DEFAULT SUPERLINK SVC
NUMBER
236 (EC) CHARACTER 1 SC_CIOT_MICATL LENGTH OF
~SC_CIOT_MICAT
237 (ED) CHARACTER 32 SC_CIOT_MICAT APPLICATION ENTITY
TITLE C(LOCAL)
269 (10D) CHARACTER 1 Reserved
270 (10BE) STRUCTURE 0 SC_CIOT_PROCVECS Association Manager
vectors
270 (10E) FIXED 2 SC_CIOT_PROCINIT MAX # INITIATORS
v 1.1, SC_CIOT_PROCINID DEFAULT MAX #
INITIATORS
272 (110) FIXED 2 SC_CIOT_PROCRESP . MAX & RESPONDERS
cee. 1.1, SC_CIOT_PROCRESD DEFAULT MAX #
RESPONDERS
276 (112) FIXED 2 SC_CIOT_PROCCELL MAX # CELLS
276 (114) BITSTRING 1 SC_CIOT_PROCTRCE QESOC MGR TRACING AND
. AGS
ceee ..l SC_CIOT_TRACE1 BASIC AM-TRACE TO WTO

Cray Research, Inc.

..1.

SC_CIOT_TRACE2

Appendix A. Data Area Descriptions

BASIC AM-TRACE TO WTO
+ LOG

A-35



A-36

Offsets Type Length Name Description
eee. 1. SC_CIOT_TRACE3 . FULL AM-TRACE TO WTO
eees 1., SC_CIOT_TRACE4 FUtBG AM-TRACE TO WTO
+
1... . SC_CIOT_MULTIPLE SKIP PSAP ID
VERIFICATION
.. e "SC_CIOT_SINGLE  DONT SKIP PSAP 1D
VERIFICATION
277 (115) CHARACTER 0 SC_CIOT_CJUEXITS gg??gNION JOB USER
277 (115) CHARACTER 8 SC_CIOT_DYNEXIT DY??MIC ALLOCATION
EX
285 (11D) CHARACTER 8 SC_CIOT_FTAMEXIT PRE/POST FTAM EXIT
293 (125) CHARACTER 3 Reserved
296 (128) FIXED 4 SC_CIOT_OUTLIM SYSOUT OUTPUT LIMIT
EQUATE X'7A120° DEFAULT SYSOUT OUTPUT
SC_CIOT_OUTLIMD LIMIT
300 (12C) FIXED 2 SC_CIOT_PRBLK PRINT BLKSIZE
EQUATE X*1000* SC_CIOT_PRBLKD DEFAULT PRINT BLKSIZE
302 (12E) FIXED 2 SC_CIOT_PRLRECL PRINT LRECL
1...1..1 SC_CIOT_PRLRECLD DEFAULT PRINT LRECL
304 (130) BITSTRING 1 SC_CIOT_PRRECFM PRINT RECFM
1.1 .1.. SC_CIOT_PRRECFMD DEFAULT PRINT RECFM
(VBA)
305 (131) CHARACTER 1 SC_CIOT_PRCLASS PRINT CLASS
11.. ...1 SC_CIOT_PRCLASSD PRINT CLASS
306 (132) FIXED 2 SC_CIOT_PUBLK PUNCH BLKSIZE
308 (134) FIXED 2 SC_CIOT_PULRECL PUNCH LRECL
310 (136) BITSTRING 1 SC_CIOT_PURECFM PUNCH RECFM
311 (137) CHARACTER 1 SC_CIOT_PUCLASS PUNCH CLASS
312 (133) FIXED 2 SC_CIOT_PLBLK PLOT BLKSIZE
314 (13A) FIXED 2 SC_CIOT_PLLRECL PLOT LRECL
316 (13C) BITSTRING 1 SC_CIOT_PLRECFM PLOT RECFM
317 (13D) CHARACTER 1 SC_CIOT_PLCLASS PLOT CLASS
318 (13E) CHARACTER 0 SC_CIOT_AMUEXITS ASSOCIATION MANAGER
USER EXITS
318 (13E) CHARACTER 8 SC_CIOT_AMUX1 ¥ARIABLE VALIDATION
326 (146) CHARACTER 8 SC_CIOT_AMUX2 %CL VALIDATION
334 (14E) CHARACTER 8 SC_CIOT_AMUX3 §OB PROBLEM RESOLUTION
3642 (156) CHARACTER 8 SC_CIOT_AMUX4 EECURITY
350 (15E) CHARACTER 8 SC_CIOT_AMUXS gUNDEFINED)
358 (166) CHARACTER 8 SC_CIOT_AMUXé6 gUNDEFINED)
366 (16E) BITSTRING 1 SC_CIOT_SAFPARML
367 (16F) BITSTRING 60 SC_CIOT_SAFPARM

SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit

INSTALLATION DATA FOR
S.A.F.

SI-0182



Offsets Type Length Name Description )

427 (1AB) CHARACTER 0 SC_CIOT_DELIM JCL PARM DELIMITERS

627 (1AB) CHARACTER 1 SC_CIOT_DELIMS START
11.. .... SC_CIOT_DELIMSD START DEFAULT

428 (1AC) CHARACTER 1 SC_CIOT_DELIME END
11.1 .... SC_CIOT_DELIMED END DEFAULT

429 (1AD) CHARACTER 1 Reserved

430 (1AE) STRUCTURE 0 SC_CIOT_JOBSVECS Association Manager

. job scheduling vectors
430 (1AE) FIXED 2 SC_CIOT_AMTTIME ?gégg;MGR TOTAL TIME
432 (1B0) FIXED 2 SC_CIOT_AMITIME ASSOC MGR INTERVAL
: TIME (SECS)

634 (1B2) BITSTRING 1 SC_CIOT_JACTION ACTION TO BE TAKEN
1... .... SC_CIOT_JACT_O PROMPT THE OPERATOR
o SC_CIOT_JACT_C CANCEL THE JOB

435 (1B3) BITSTRING 1 SC_CIOT_ACCOUNTL

436 (1B4) CHARACTER 70 SC_CIOT_ACCOUNT ACCOUNT

506 (1FA) BITSTRING 1 SC_CIOT_MSGLEVLL

507 (1FB) CHARACTER 5 SC_CIOT_MSGLEVL MSGLEVEL

512 (200) BITSTRING 1 SC_CIOT_PASSHWRDL

513 (201) CHARACTER 8 SC_CIOT_PASSWRD PASSWORD

521 (209) BITSTRING: 1 SC_CIOT_PROGNMEL

522 (20A) CHARACTER 20 SC_CIOT_PROGNME PROGRAMMER NAME

562 (21E) BITSTRING 1 SC_CIOT_NOTIFYL

543 (21F) CHARACTER 7 SC_CIOT_NOTIFY NOTIFY

550 (226) BITSTRING 1 SC_CIOT_PROCL

551 (227) CHARACTER 8 SC_CIOT_PROC PROC

559 (22F) BITSTRING 1 SC_CIOT_CLASSL

560 (230) CHARACTER 8 SC_CIOT_CLASS CLASS

568 (238) BITSTRING 1 SC_CIOT_USERL

569 (239) CHARACTER 7 SC_CIOT_USER USER

576 (240) BITSTRING 1 SC_CIOT_GROUPL

577 (241) CHARACTER 8 SC_CIOT_GROUP GROUP

585 (249) BITSTRING 1 SC_CIOT_REGIONL

586 (24A) CHARACTER 8 SC_CIOT_REGION REGION

596 (252) BITSTRING 1 SC_CIOT_MSGCLSSL

595 (253) CHARACTER 1 SC_CIOT_MSGCLSS MSGCLASS

596 (254) BITSTRING 1 SC_CIOT_DATAIL

597 (255) CHARACTER 70 SC_CIOT_DATAl SITE DATA 1

667 (29B) BITSTRING 1 SC_CIOT_DATA2L

668 (29C) CHARACTER " 70 SC_CIOT_DATAZ SITE DATA 2

738 (2E2) BITSTRING -1 SC_CIOT_DATA3L

739 (2E3) CHARACTER 70 SC_CIOT_DATA3 SITE DATA 3

809 (329) BITSTRING ‘1 SC_CIOT_TIMEL

810 (32A) CHARACTER 7 SC_CIOT_TIME TIME

Cray Research, Inc.

Appendix A. Data Area Descriptions

A-37



offsets Type Length Name Description

817 (331) BITSTRING 1 SC_CIOT_JOBNAMEL
818 (332) CHARACTER 8 SC_CIOT_JOBNAME JOBNAME
EQUATE X*33A' SC_CIOT_LEN : LENGTH OF DSECT

A-38 SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit S1-0182



SC CIOTATI

Common name: Application Titles Details
Macro ID: S@CICIOT

DSECT name: SC_CIOTATI

Created by: Options Processor (S@C1000)
Location: CSA

Pointed to by: SC_CIOTPATI

Scrialization: None

Function: Association Manager offer processing.
Offsets Type Length Name Description
0 0) FIXED 4 SC_CIOTATI_QTPDU QUALITY OF SERVICE
TPDU SIZE
4 (4) BITSTRING 1 SC_CIOTATI_ATL LENGTH OF SC_CIOT_AT
5 (5) °  CHARACTER 32 SC_CIOTATI_AT APPLICATION ENTITY
TITLE (LOCAL)
37 (25) CHARACTER 8 SC_CIOTATI_MOD MODULE NAME
45 (2D) CHARACTER '8 SC_CIOTATI_CTXT zﬁﬁgENTATION CONTEXT
53 (35) BITSTRING 1 SC_CIOTATI_QLVL EgeEETY OF SERVICE
56  (36) BITSTRING 1 SC_CIOTATI_T FLAG BYTE - TYPE OF
APPLICATION
... .... SC_CIOTATI_TT TASK
Ao oL, SC_CIOTATI_TJ JOB
55 (37) BITSTRING 1 SC_CIOTATI_JCL INDEX # CORRESPONDING
} ‘ : JCL AREA
EQUATE Xr38° SC_CIOTATI_LEN LENGTH OF DSECT

Cray Research, Inc. Appendix A. Data Area Descriptions A-39



SC_CIOTFSS

Common name:
Macro ID:
DSECT name:
Created by:
Location:
Pointed to by:

Serialization:

Functional Subsystem Details

S@CICIOT
SC_CIOTFSS

Options Processor

CSA
SC_CIOTPFSS

None

Function: Functional subsystem management
Offsets Type Length Name Description
0 (') CHARACTER 8 SC_CIOTFSSN NAME OF FSS (SLNET,
SLJP, SLOP
8 3> CHARACTER 8 SC_CIOTFSSP PROCNAME OF FSS (ABS
EQU FSSN)
16 (10) CHARACTER 8 SC_CIOTFSSS NAME OF FSS SUPPORT
MODULE
24 (138) BITSTRING 1 SC_CIOTFSSA FLAG BYTE - METHOD OF
FSS START
1... .... SC_CIOTFSSA_A AUTOMATICALLY a
SUPERLINK INIT
D SC_CIOTFSSA_O BY OPERATOR COMMAND
EQUATE X*'19°* SC_CIOTFSS_LEN LENGTH OF DSECT

A40 SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit

SI1-0182



SC_CIoTMIC

Common name: Management interface connection details
Macro ID: S@CICIOT

DSECT name: SC_CIOTMIC

Created by: Options Processor.

Location: CSA

Pointed to by: SC_CIOTPMIC

Serialization:  None

Function: Management interface connection management
Offsets Type Length Name Description
0 (0) CHARACTER 8 SC_CIOTMICN NAME OF CONNECTION
8 (8) BITSTRING 1 SC_CIOTMIC_ATL LENGTH OF SC_CIOT_AT
9 9) CHARACTER 32 SC_CIOTMIC_AT APPLICATION ENTITY
TITLEC(REMOTE)
41 (29) BITSTRING 1 SC_CIOTMICA FLAG BYTE - TYPE AND
' ’ METHOD OF
... .... SC_CIOTMICS_A AUTOMATICALLY @
SUPERLINK INIT
B SC_CIOTMICS_O BY OPERATOR COMMAND
FR SC_CIOTMICR_A AUTOMATICALLY BY
SUPERLINK
R SC_CIOTMICR_O BY OPERATOR COMMAND
I R SC_CIOTMICM_P PRIMARY
. 1., SC_CIOTMICM_S SECONDARY
1. SC_CIOTMICT_ON TE%CE=0N (IF NEITHER
S
.1 SC_CIOTMICT_OFF TRACE=0FF TRACE=
OMITTED/NULL)
42 (2A) CHARACTER 2 SC_CIOTMIC_MF MAINFRAME ID
44 (20) FIXED 4 SC_CIOTMICI RETRY INTERVAL (1100
SECS)
48 (30) CHARACTER 8 SC_CIOTMICC CONTEXT NAME
EQUATE X'38' SC_CIOTMIC_LEN  LENGTH OF DSECT

Cray Rescarch, Inc. Appendix A. Data Area Descriptions A1l



SC_CIOTS

Common name: MVS START command details

Macro ID:

DSECT name:
Created by:

Location:

Pointed to by:

Serialization:

SgCICIOoT

SC_CIOTS

Options Processor (S@C1000)
CSA

SC_CIOTPS

None

Function: Contains information for the automatic starting of sitc programs by the SUPERLINK
subsystem.
offsets Type Length Name Description
0 0) CHARACTER 8 SC_CIOTSPRC JCL PROCEDURE NAME FOR
: START CMD
8 (8) FIXED 2 SC_CIOTSPLN LEN OF PARAM TEXT FOR
_ START CMD
EQUATE X'80°* SC_CIOTSPLN_MAX MAX VALUE FOR
SC_CIOTSPLN
10 (A) STRUCTURE 0 SC_CIOTSPS START OF PARAMS FOR
START CMD
EQUATE X'8A* SC_CIOTS_LENM MAX LEN OF DSECT

A-42  SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit

SI1-0182



SC_FRQE

Common name: FFSS Manager Work-to-do Request Element

Macro ID:

DSECT name:

Created by:

Location:
Pointed to by:

Serialization:

S@CFFRQE
SC_FRQE

Components wishing to communicate with the Functional Subsystern Manager
component

Common service area
Request block chained from queue anchored from SC_SSVT

None

Function: Contains requests from components of SUPERLINK to the Functional Subsystem
Manager.
offsets - Type Length Name Description
0 (0) CHARACTER 4 SC_FRQE_ID ACRONYM FOR FSSM
) REQUEST ELEMENT
4 (4) A-ADDRESS 4 SC_FRQE_NEXT ~=> NEXT REQUEST
ELEMENT
8 (8) FIXED 4 SC_FRQE_ORIGIN . REQUEST ORIGIN
12 (C) CHARACTER 8 SC_FRQE_FSSNAME TARGET FSS FOR REQUEST
20 (19) BITSTRING 1 SC_FRQE_REQ REQUESTED FUNCTION
... ..., SC_FRQE_REQ_INIT START THE NAMED FSS
%
D SC_FRQE_REQ_STOP STOP THE NAMED FSS
*
R SC_FRQE_REQ_SALL STOP ALL FSS'S
*
21 (15) BITSTRING 1 SC_FRQE_QUAL QUALIFIER FIELD FOR
FUNCTION .
... .... : SC_FRQE_QUAL_N NORMAL TYPE STOP (IE
i DRAIN) *
B SC_FRQE_QUAL_Q QUICK TYPE STOP
*
B SC_FRQE_QUAL_A ABORT TYPE STOP
. x
EQUATE 241 SC_FRQE_SPOOL SUBPOOL USED FOR FRQE
EQUATE Xt'16°* SC_FRQE_SIZE LENGTH OF SC_FRQE

Cray Research, Inc.

Appendix A. Data Area Descriptions A3



SC_FSSCB

Common name: Functional Subsystem Control Block

A-44

Macro ID:

DSECT name:

Created by:
Location:
Pointed to by:

Serialization:

S@CFSSCB
SC_FSSCB
S@CF0000

Common scivice arca

SC_SSVT

Compare and swap logic should be used to manipulate fields.

Function: Describes an individual functional subsystem of SLCN.
offsets Type Length Name Description
0 (0) CHARACTER 4 SC_FSSCB_ID *FSCB* ACRONYM
4 (4) CHARACTER - 8 SC_FSSCB_NAME FUNCTIONAL SUBSYSTEM
_ ’ NAME
12 (Cc) A-ADDRESS 6 SC_FSSCB_SSVT -=> SC_SSVT
16 (10) CHARACTER 6 SC_FSSCB_SNAM NAME OF OWNING
SUBSYSTEM
20 (14) A-ADDRESS 4 SC_FSSCB_ASCB --> ASCB FOR FSS
26 (18) A-ADDRESS 4 SC_FSSCB_IPARMS -=> INITIALISATION
TABLE FOR FSS
28 (10) FIXED 4 SC_FSSCB_RCONF FSS ORDER RECEIPT
CONFIRMED ECB
32 (20) FIXED 4 SC_FSSCB_WTDECB FSS WORK TO DO ECB
36 (24) A-ADDRESS 4 SC_FSSCB_LISAECB --> ECB POSTED BY
LISTEN TASK
40 (28) FIXED 4 SC_FSSCB_CDECB ECB POSTED BY
(CONN/DISCONN)ECT
46 (20) FIXED 2 SC_FSSCB_FSSID FUNCTIONAL SUBSYSTEM
ID
46 (2E) BITSTRING 1 SC_FSSCB_STATUS FgS STATUS INDICATORS
#
1... SC_FSSCB_STATUS_STRRY HAS BEEN STARTED
1., SC_FSSCB_STATUS_ FSS START COMMAND
SFAIL FAILED
..1. SC_FSSCB_STATUS_ FSS CONNECTED
CONCT SUCCESSFULLY
. | SC_FSSCB_STATUS_ FSS TERM ORDER
. TERM OUTSTANDING
1. SC_FSSCB_STATUS_ FSS TERM ORDER FAILED
TFAIL
.1. SC_FSSCB_STATUS_ FSS DISCONNECTED
DISC SUCCESSFULLY
1. SC_FSSCB_STATUS_ FSS BEING CONNECTED
CTING
.1 SC_FSSCB_STATUS_ FSS BEING DISCONNECTED
DTING
1.1. SC_FSSCB_STATUS_ FSS is active (STARTED

ACTIV

SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit

and CONNECTED)

SI1-0182



offsets Type Length Name Description
1111 1.1. SC_FSSCB_STATUS_ Reset all but
RESET DISCONNECTED and
DICONNECTING
1111 1111 SC_FSSCB_STATUS_ ALL BITS ON - USED FOR
ALL CLEARING
47 (2F) BITSTRING 1 SC_FSSCB_STATUS1 ,;?S STATUS INDICATORS
... ... SC_FSSCB_STATUS1_ FSS FLAGGED AS
EOM TERMINATED BY EOM
1111 1111 EEIFSSCB_STATUSI_ RESET ALL BITS FIELD
48 (30) BITSTRING 2 RESERVED
50 (32) CHARACTER 2 Reserved
52 (34%) A-ADDRESS 4 SC_FSSCB_FSSXB --> FM_FSSXB
56 (38) A-ADDRESS % SC_FSSCB_SERVTAB E;; SERVICE TABLE FOR
60 (3C) A-ADDRESS G SC_FSSCB_TCB ——> CURRENT TCB
66 (40) A-ADDRESS 6 SC_FSSCB_AFSSM --> FSS SUPPORT MODULE
68 (44) FIXED 4 SC_FSSCB_FSSML . LENGTH OF FSS SUPPORT
MODULE
72 (48) A-ADDRESS 4 SC_FSSCB_MSGTAB --> MSG TABLE CSECT
76 (4C) CHARACTER % Reserved
80 (50) STRUCTURE 0 SC_FSSCB_WORKQ ANCHOR FOR WORK AREA Q
80 (50) A-ADDRESS 4 SC_FSSCB_MWORKQ_F - WORK AREA Q (FIFO0)
84 (54) A-ADDRESS % SC_FSSCB_WORKQ_L - WORK AREA Q (LIFO0)
88 (58) BITSTRING 16 SC_FSSCB_FUAREA  FUNCTIONAL UNIT AREA
106 (68) STRUCTURE 0 ENSURE WE'RE MULTIPLE
OF DWORD
EQUATE X'68" SC_FSSCB_SIZE LENGTH OF SC_FSSCB
EQUATE 241 SC_FSSCB_SPOOL SUBPOOL TO USE
EQUATE X*00'° SC_FSSCB_ACRONYM KEPT FOR COMPATIBILITY
88 (58) A-ADDRESS 4 SC_FSSCB_IST INTERNAL SERVICE TABLE
92 (5C) A-ADDRESS 4 - SC_FSSCB_NST NETWORK SERVICE TABLE
96 (60) A-ADDRESS 4 SC_FSSCB_NSP NETWORK STORAGE POOL
100 (64) A-ADDRESS 4 RESERVED

Cray Research, Inc.

Appendix A. Data Area Descriptions

A-d5



SC GST

Common name: Global Service Table

Macro ID:

DSECT name:

Created by:
Location:
Pointed to by:

Serialization:

S@CCOGST
SC_GST
S@CC0000

Common service area

SC_SSVT

None

Function: Providces a vector table for global SUPERLINK scrvices.
Offsets Type Length Name Description
0 (0) CHARACTER 4 SC_GST_ID *GST ' CONSTANT
G (4) A-ADDRESS 4 SC_GST_SSVT —-—=> SC_SSVT
8 (8) A-ADDRESS 4 SC_GST_SBY —=> SLSUBSYS SERVICE
12 (C) A-ADDRESS 4 SC_GST_LOGR -=> L0G QUEUE SERVICE
16 (10) A-ADDRESS 4 SC_GST_AMGR --> ASSOC. MANAGER
SERVICE
20 (14) A-ADDRESS 4 SC_GST_MSG -=> MESSAGE PROCESSOR
26 (18) A-ADDRESS G4 SC_GST_SCHEDSRB --> S3CF0100 TO
SCHEDULE SRB
28 (1C) A-ADDRESS 4 SC_GST_CASE -==> CASE SERVICE
32 (20) A-ADDRESS 49 SC_GST_TRANSLATE --> GLOBAL TRANSLATE
TABLES
36 (24) A-ADDRESS 4 SC_GST_RESMAN ==> SaCCOURM RESOURCE
MANAGER
40 (28) A-ADDRESS 8 SC_GST_RESERVED RESERVED FIELDS FOR
LATER USE
EQUATE X'30° SC_GST_SIZE LENGTH OF SC_GST
EQUATE 261 SC_GST_SPOOL SUBPOOL WHERE HE LIVES

A-16 SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit

SI-0182



SC_OPCB

Common name: Operator Command Buffer

Macro ID:

DSECT name:

Created by:
Location:
Pointed to by:

Scrialization:

S@CCOPCB

SC_OPCB

Any component wishing to communicate with the Product Operator component
Common service area

Chained from a queue anchored from SC_SSVT

None

Function: Conveys requests from SUPERLINK components to the Operator component of
SLCN.
offsets Type Length Name Description
0 (0) CHARACTER 4 SC_OPCB_ID "OPCB® CONSTANT
4 (4) A-ADDRESS 4 SC_OPCB_SPOOL SUBPOOL WHERE COMMAND
8 3 A-ADDRESS 4 SC_OPCB_NXTC ——> NEXT COMMAND
BUFFER IN Q
12 (C)  BITSTRING 1 SC_OPCB_FLAGS SOME FLAG FIELDS
1... .... SC_OPCB_FLAGSMIC ORIGIN IS MANGMT. I/F
. CONNECTN.’ '
13 (D) BITSTRING 3 RESERVED FOR LATER USE
16 (10) STRUCTURE 0 SC_OPCB_ORIGIN EOMMAND ORIGIN - MVS
ORM
16 (10) BITSTRING 3 SC_OPCB_CONSFLAG ZERO IF ORIGIN IS
CONSOLE
19 (13) BITSTRING 1 SC_OPCB_CONSOLID CONSOLE ID IF FLAG = 0
16 (10) BITSTRING 2 SC_OPCB_TSOASID ASID IF ORIGIN IS TSO
USER
18 (12) BITSTRING 1 SC_OPCB_TSOFLAG AUTHORISATION IF
TSOUSER
.1 SC_OPCB_TSOAUTH AUTH FLAG IN TSOFLAG
FIELD
16 (10) CHARACTER 8 SC_OPCB_MIFID MANAGEMENT I/F
CONNECTION ID
2¢ (18) BITSTRING 1 -SC_OPCB_MIFSULN LENGTH OF SOURCE USER
DATA FIELD
25 (19) BITSTRING 20 SC_OPCB_MIFSUD SOURCE USER DATA FIELD
45 (2D) CHARACTER 1 Reserved
46 (2E) FIXED 2 SC_OPCB_LEN LENGTH OF OPERATOR
) COMMAND
48 (30) CHARACTER 136 SC_OPCB_COMMAND OPERATOR COMMAND
EQUATE X'B8? SC_OPCB_SIZE LENGTH OF SC_OPCB
EQUATE X'88" SC_OPCB_CMDSIZE LEN OF SC_OPCB COMMAND
(MAX)
EQUATE 241 SC_OPCB_POOL SUBPOOL USED FOR OPCB

Cray Research, Inc.

Appendix A. Data Area Descriptions A-47



SC_SSVT

Common name: SUPERLINK Subsystem Vector Table

Macro ID:
DSECT name:
Created by:
Location:
Pointed to by:

Serialization:

S@CCSSVT
SC_SSVT
S@CCOSSI

Common scrvice area

SSCVT (IBM subsystem control block)

Compare and swap lbgic is used to manipulate fields.

Function: This is the main control block of the SUPERLINK product, identifying it as an MVS
subsystem.
Offsets Type Length Name Description
0 (0) FIXED 2 SC_SSVT_RSV1 RESERVED
2 (2) FIXED 2 SC_SSVT_FNUM # FUNCTIONS SUPPORTED
BY SUBSYS
4 (4) BITSTRING 256 SC_SSVT_MATRIX FUNCTION CODE MATRIX
EQUATE X'104' SC_SSVT_FSIZE LENGTH OF SC_SSVT
FIXED PART
260 (104) A-ADDRESS 4 SC_SSVT_ADDRS FIRSE ADDRESS ENTRY IN
TABL
264 (108) A-ADDRESS 1020 Rest of table
EQUATE X'5064" SC_SSVT_MAX_SIZE MAXIMUM SIZE OF SSVT

HEADER

SUPERLINK supported functions header

2 (2)

Y-ADDRESS

2

SUPERLINK supported functions matrix

7 (7) A-ADDRESS 1 Address offset #0464 -
' End of task
11 (B) A-ADDRESS 1 Address offset #08 -
End of memory
13 (D) A-ADDRESS 1 Address offset $10 -
SVC 34
56 (38) A-ADDRESS 1 Address offset #53 -

FSS processing

SUPERLINK supported functions vector table

EQUATE

X*'100°

SC_SSVT_ORIGIN

A48 SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit

MATRIX BASE OFFSET

SI1-0182



Offsets Type Length Name Description
260 (104) A-ADDRESS 4 SC_SSVT_S2CCOEOT END OF TASK PROCESSING
264 (108) A-ADDRESS 4 SC_SSVT_S2CCOEOM END OF MEMORY
PROCESSING
268 (10C) A-ADDRESS 4 SC_SSVT_S?CC0534 5SVYS34 - OPERATOR
COMMAND PROC.
272 (110) A-ADDRESS § SC_SSVT_S?CCOFSS FSS CONNECT/DISCONNECT
PROCING
EQUATE X*'110° SC_SSVT_LAST LAST FUNCTION DEFINED
276 (114) A-ADDRESS 40 SOME SPARE LOCATIONS
316 (13C) CHARACTER 4 SC_SSVT_ID SC_SSVT CONTROL BLOCK
ACRONYM
320 (140) A-ADDRESS 4 SC_SSVT_SSCT --> SSCVT FOR
SUBSYSTEM
324 (144) A-ADDRESS 4 SC_SSVT_ASCB -—> ASCB FOR SUBSYSTEM
328 (148) A-ADDRESS 4 SC_SSVT_CIOT --> SC_CI0T
332 (14C) A-ADDRESS 4 SC_SSVT_GST --> SC_GST
336 (150) A-ADDRESS G SC_SSVT_OPCT --> SI_OPCT
340 (154) A-ADDRESS 4 SC_SSVT_AMT -=> ASSOCIATION
MANAGER TABLE
364 (158) FIXED 4 SC_SSVT_COND CONDITION OF SUBSYSTEM
cete eeee SC_SSVT_COND_uP SUBSYSTEM ACTIVE
EQUATE X*'80000000° -===f-——— ABENDED OR
SC_SSVT_COND_AB ABENDING
EQUATE X*40000000° ———=%———— RECOVERY IN
SC_SSVT_COND_RP PROGRESS
EQUATE X' OFFFFFFF* ~ . ====M-——— S| TERM.
SC_SSVT_COND_TR REQUESTED
348 (15C) STRUCTURE 0 SC_SSVT_STATUS SUBSYSTEM STATUS
) INDICATORS
348 (15C) BITSTRING 1 SC_SSVT_STATUS] %1 STATUS 1ST BYTE
(SUBSYSTEM)
1... SC_SSVT_STATUS1_ SUBSYS IN
INIT INITIALISATION PHASE
1.. SC_SSVT_STATUS1_ SUBSYS IN TERMINATION
TERM PHASE
1. SC_SSVT_STATUS1_ SUBSYS IN READY STATE
REDY
349 (15D) BITSTRING 1 SC_SSVT_STATUS2 %2 STATUS 2ND BYTE
(GENERAL)
1... .... SC_SSVT_STATUS2_ GENERAL DUMP ON ERROR
DUMP ENABLED
350 (15E) BITSTRING 1 SC_SSVT_STATUS3 %3 STATUS 3RD BYTE (FSS
SUPPORT)
1... SC_SSVT_STATUS3_ FSS CONNECT/DISCONNECT

Cray Research, Inc.

..
.1.

CDF
SC_SSVT_STATUS3_
FMT

SC_SSVT_STATUS3_
FAC
SC_SSVT_STATUS3_
LAC
SC_SSVT_STATUS3_
0AC

Appendix A. Data Area Descriptions

FAILURE
FSS MANAGER TO

TERMINATE FLAG
FSS MANAGER IS ACTIVE
LOG MANAGER IS ACTIVE

OPR MANAGER IS ACTIVE

A-49



A-50

offsets Type Length Name Description
. .. SC_SSVT_STATUS3_ ASSOC. MANAGER IS
AAC ACTIVE
N SC_SSVT_STATUS3_ MANAGEMENT I/F IS
MAC ACTIVE
351 (15F) BITSTRING 1 SC_SSVT_STATUSG x4 STATUS 4TH BYTE
(RESERVED)
352 (160) CHARACTER 1 SC_SSVT_CMBCHAR SUBSYSTEM COMMAND
CHARACTER
353 (161) BITSTRING 1 SC_SSVT_TERMTYPE TERMINATION TYPE
......... SC_SSVT_NORMAL NORMAL TERMINATION
.1 SC_SSVT_QUICK QUICK TERMINATION
ceee ool SC_SSVT_ABORT ABORT TERMINATION
354 (162) BITSTRING 6 RESERVED
360 (168) STRUCTURE 0 SC_SSVT_CMDQ ANggggs FOR OP COMMAND
QU
360 (168) A-ADDRESS 6 SC_SSVT_CMDQ_LI -> OP CMD QUEUE (LIFO)
364 (16C) A-ADDRESS 4 SC_SSVT_CMDQ_FI -> RE-ORDERED CMD
QUEUE (FIF0)
368 (170) STRUCTURE 0 SC_SSVT_FSMQ ANCHORS FOR FSS
MNGR.REQ. QUEUES
368 (170) A-ADDRESS 4 SC_SSVT_FSMQ_LI -> REQ. QUEUE (LIFO0)
372 (176) A-ADDRESS 4 SC_SSVT_FSMQ_FI  -> RE-ORDERED REQ.
QUEUE (FIFO0)
376 (178) STRUCTURE 0 SC_SSVT_SNDQ ANCHORS FOR °'SEND®
WORK QUEUES
376 (178) A-ADDRESS 4 SC_SSVT_SNDQ_LI ;> SEND REQ. QUEUE
LIFO)
380 (17C) A-ADDRESS 4 SC_SSVT_SNDQ_FI -> RE-ORDERED REQ.
QUEUE (FIFO0)
384 (180) BITSTRING 8 SC_SSVT_LOGQ_F ANCEOR FOR SUBSYS LOG
FREE Q
1... .... SC_SSVT_LOGQ_T LOG PROCESSOR
TERMINATING
392 (188) BITSTRING 8 SC_SSVT_LOGQ_R aggHOR FOR SUBSYS LOG
Q
400 (190) BITSTRING 8 SC_SSVT_LOGQ_W ﬁgg:og FOR SUBSYS LOG
608 (198) A-ADDRESS 6 SC_SSVT_ECB_LIST MAIN WAIT ECB LIST
NP S SC_SSVT_ECB_ELEN AN ENTRY LENGTH
412 (19C) A-ADDRESS 80 ECBLIST POINTERS
1.1 .1.. SC_SSVT_ECB_LEN SIZE OF LIST IN BYTES
.1 .1.1 SC_SSVT_ECB_SIZE # IN LIST
492 (1EC) FIXED G4 SC_SSVT_PECB SUBSYS TERMINATION ECB
496 (1F0) FIXED 4 SC_SSVT_OPR_PECB OPERATOR COMPONENT
TASK END ECB
500 (1F4) FIXED 6 SC_SSVT_OPR_WECB OPERATOR COMPT. WORK
TO DO ECB
504 (1F8) FIXED 4 SC_SSVT_OPR_IECB OPERATOR INIT.
COMPLETE ECB
508 (1FC) A-ADDRESS 4 SC_SSVT_OPR_TCB -> TCB OF OPERATOR

SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit

COMPONENT

SI-0182



Offsets Type Length Name Description
512 (200) FIXED 4 SC_SSVT_LOG_PECB LOG COMPONENT TASK
‘ ENDED ECB
516 (204) FIXED 4 SC_SSVT_LOG_IECB LOG COMPONENT
INITIALISED ECB
520 (208) A-ADDRESS 4 SC_SSVT_LOG_TCB -> TCB OF LOG COMPONENT
524 (20C) STRUCTURE 0 SC_SSVT_LOG_ORDR %ggLSDMPONENT ORDER
526 (20C) BITSTRING 3 RESERVED FOR LOG
COMPONENT
527 (20F) BITSTRING 1 SC_SSVT_LOG_CMND LOG COMPONENT REQUEST
FIELD
528 (210) A-ADDRESS % SC_SSVT_LOG_ADDN LOG COMPONENT ->
SWITCH DDNAME
532 (214) CHARACTER 8 SC_SSVT_LOG_SWDD LOG SWITCH NEW DDNAME
540 (21C) FIXED 4 SC_SSVT_FSS_PECB Egg MANAGER TASK ENDED
544 (220) FIXED & SC_SSVT_FSS_IECB FSS MANAGER
INIT.COMPLETE ECB
548 (224) FIXED -4 SC_SSVT_FSS_CECB sgngONTINUE ECB - SLCN
552 (228) FIXED 6 SC_SSVT_FSS_RECB FSS MANAGER REQUEST
TERM. ECB
556 (22C) FIXED 4 SC_SSVT_FSS_WECB Egs MANAGER WORK TO DO
B
560 (230) FIXED G4 SC_SSVT_FSS_FECB FSS MANAGER FSS
. TERMINATED ECB
564 (234) FIXED 4 SC_SSVT_NET_IECB SLNET COMPNT.
i INIT.COMPLETE ECB
568 (238) A-ADDRESS 4 SC_SSVT_LIST_TCB -> TCB OF LISTEN TASK
572 (23C) A-ADDRESS 4 SC_SSVT_LIST_ECB -> TERM. REQUEST ECB
FOR LISTEN
576 (240) A-ADDRESS 6 SC_SSVT_SND_ECB => 'SEND' REQUEST
: ARRIVED ECB
580 (244) A-ADDRESS G SC_SSVT_RECSRBEP -> ENTRY POINT FOR
RECEIVE SRB
584 (248) A-ADDRESS 4 SC_SSVT_RECFRREP -> EP FOR RECEIVE SRB
FRR
588 (24C) A-ADDRESS 6 SC_SSVT_OPT_EP - -> EP FOR OPTIONS
PROCESSOR
592 (250) A-ADDRESS 4 SC_SSVT_FSSM_TCB ;; ECB OF FSS MANAGER
S
596 (254) CHARACTER 4 SC_SSVT_SNAM SUBSYS NAME AS KNOWN
TO MVS
600 (258) CHARACTER 8 SC_SSVT_ANAM SUBSYS NAME AS KNOW TO
APPL PROG
608 (260) A-ADDRESS 4 SC_SSVT_FSCQ ANCHOR FOR FSS CONTROL
BLOCKS
612 (264) FIXED 4 SC_SSVT_FSCL TOTAL LENGTH OF
SC_FSSCB TABLE
616 (268) FIXED 4 SC_SSVT_FSCN # FSSCB'S IN CHAIN
620 (26C) A-ADDRESS 4 SC_SSVT_FSCELIST --> ECBLIST FOR FSS

Cray Research, Inc.

Appendix A. Data Area Descriptions

TERMINATION

A-51



Ooffsets Type Length Name Description
624 (270) A-ADDRESS % SC_SSVT_SBUF --> FSS START COMMAND
BUFFER
628 (274) A-ADDRESS 4 SC_SSVT_MSGTAB --> MESSAGE TABLE
CSECT
632 (278) A-ADDRESS 4 SC_SSVT_XMEMTECB --> X-MEMORY PREMATURE
TERM ECB
636 (27C) A-ADDRESS G SC_SSVT_XMEMCECB --> X-MEMORY CONTINUE
ECB
640 (280) FIXED 4 SC_SSVT_SLASVTLN #nggﬂ OF SC_SLASVT
644 (284) A-ADDRESS 6 SC_SSVT_ASLASVT 5[3 zc_SLASVT CONTROL
C
648 (288) FIXED 20 RESERVED FOR LATER USE
668 (29C) FIXED 4 SC_SSVT_ASM_PECB éggoc. MGR. TASK ENDED
672 (2A0) FIXED 4 SC_SSVT_ASM_IECB ASSOC. MGR.
. INITIALISED ECB
676 (2A4) A-ADDRESS 4 SC_SSVT_ASM_TCB ;XSICB OF ASSOC. MGR.
680 (2A8) FIXED 4 SC_SSVT_MIF_PECB MANAGMENT I/F TASK
ENDED ECB
684 (2AC) FIXED 4 SC_SSVT_MIF_IECB MANAGEMENT I/F
INITIALISED ECB
688 (2B0) A-ADDRESS 4 SC_SSVT_MIF_TCB -> TCB OF MANAGEMENT
I/F TASK
692 (2B4) A-ADDRESS 4 SC_SSVT_MICT -> MANAGEMENT I/F
CONTROL TABLE
696 (2B38) FIXED 4 SC_SSVT_FSS_TECB Egg TERMINATE CONTINUE
700 (2BC) A-ADDRESS 4 SC_SSVT_CPOOLID CPOOL ID FOR SC_URE
CPOOL GETS
704 (2C0) FIXED 4 SC_SSVT_NAMAVAIL Eég AVAILABLE FOR USE
708 (2C4) FIXED 32 SC_SSVT_RESERVED RESERVED FOR EXPANSION
7640 (2E4) CHARACTER 4 Reserved
7644 (2E8) STRUCTURE 0 JUST ALIGN
EQUATE X*504' SC_SSVT_SIZE LENGTH OF SC_SSVT INC
VAR PART
EQUATE 2641 SC_SSVT_SPoOL SUBPOOL TO BE USED ON

A-52

SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit

GETMAIN

SI-0182



SC_SLASVT

Common name: SUPERLINK Address Space Vector Table
Macro ID: S@CCASVT

DSECT name: SC_SLASVT

Created by: S@CC0000

Location:. Common service area

Pointed to by: SC_SSVT

Scrialization: The CMS lock must be held when manipulating this control block.

Function: Provides a list of the SUPERLINK resources used by address spaces, on an address
space basis.
Offsets Type Length Name Description
0 (0) STRUCTURE 0 SC_SLASVT_START ?IQEE OF THE VECTOR
EQUATE 241 SC_SLASVT_SPOOL SUBPOOL USED FOR TABLE

Cray Research, Inc. Appendix A. Data Area Descriptions A-33



SC_URE

Common name: User Resource Llement

Macro ID:

DSECT name:

Created by:
Location:
Pointed to by:

Serialization:

S@CCOURE
SC_URE
S@CCOURM
Common service area

SC_SLASVT

The CMS lock must be held when manipulating the SC_URE queues and when

updating the SC_URE.

Function: Represents a task, in a particular address space, using SUPERLINK resources.
Offsets Type Length Name Description
0 (0) CHARACTER 4 SC_URE_ID 'URE ' EYECATCHER
4 (4) A-ADDRESS 4 SC_URE_FPTR ==> NEXT SC_URE ON THE
QUEUE
8 (8) A-ADDRESS 6 SC_URE_BPTR --> PREVIOUS SC_URE ON
THE QUEUE
12 c) A-ADDRESS 4 SC_URE_ATCB --> TCB ASSOC. WITH
THIS ENTRY
16 (10) FIXED 4 SC_URE_AID ASSOCIATION IDENTIFIER
20 (14) BITSTRING 1 SC_URE_FLAG gEAEgE FLAGS FOR THIS
1... SC_URE_FLAG_EOT END OF TASK FLAGGED FOR
THIS URE
21 (15) BITSTRING 1 RESERVED FOR LATER USE
22 (16) FIXED 2 SC_URE_ASID ADDRESS SPACE ID FOR
THIS ENTRY
26 (18) A-ADDRESS 4 SC_URE_ASCB -> ASCB FOR
THIS ENTRY
28 (1C) FIXED 4 RESERVED FOR LATER USE
32 (20) STRUCTURE 0 ROUND UP TO A DOUBLE
WORD
EQUATE X*20°* SC_URE_SIZE LENGTH OF SC_URE
EQUATE 2641 SC_URE_SPOOL SUBPOOL OF CPOOL FOR

A-54

SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit

SC_URE

S1-0182



SC URM

Common name: User Resource Manager Entry Parameter List and Fcedback Area

Macro ID:

DSECT name:

Created by:
Location:
Pointed to by:

Scrialization:

S@CCOURM
SC_URM

ACSE

Private storage
Register | on entry

None

Function: Provides the parameter list for requesting services from the User Resource Manager
and is used to hold the return code.
Offsets Type Length Name Description
0 (0) CHARACTER 4 SC_URM_ID 'URM ' EYECATCHER
4 (4) A-ADDRESS 9 SC_URM_SSVT -=> SC_SSVT
8 (8) BITSTRING 1 SC_URM_RFC ggggESTED FUNCTION
e SC_URM_RFC_LOC LOCATE
.1 SC_URM_RFC_Q QUEUE
..1. SC_URM_RFC_DEQ DEQUEUE
..11 SC_URM_RFC_SHI SWITCH
9 (9) BITSTRING 1. RESERVED
10 (A) FIXED 2 SC_URM_ASID ADDRESS SPACE ID FOR
THIS ENTRY
12 ) A-ADDRESS 4 SC_URM_ASCB --> ASCB FOR
: THIS ENTRY
16 (10) A-ADDRESS 4 SC_URM_TCB -=> TCB ASSOC. WITH
THIS ENTRY
20 (14) A-ADDRESS 4 SC_URM_AID ASSOCIATION IDENTIFIER
24 (18) A-ADDRESS 4 SC_URM_URE --> MODEL URE
28 (1C) BITSTRING 1 SC_URM_RC RETURN CODE
1... SC_URM_RC_SSVT SC_SSVT NOT FOUND
... 11, SC_URM_RC_SLASVT SC_SLASVT NOT FOUND
D R SC_URM_RC_URM INVALID SC_URM
...l 1., SC_URM_RC_RFC INVALID RFC
.1 1... SC_URM_RC_LOC NO SC_URE LOCATED
...1 11.. SC_URM_RC_URE INVALID SC_URE
R S SC_URM_RC_GETM GETMAIN FAILURE
AC000071
29 (1D) BITSTRING .3 RESERVED
EQUATE X'20' SC_URM_SIZE LENGTH OF SC_URM

Cray Research, Inc.

Appendix A. Data Area Descriptions



SI CMD

A-56

Common name: Command Definition Table

Macro ID: S@COCMAP

DSECT name: SI_CMD

Created by: Built at asscmbly time

Location: SLCN private arca

Link-cdited into the Product operator component. Not available

Serialization: None

Function: Maps operator command definitions built at assembly time
offsets Type Length Name Description
0 (0) FIXED 2 SI_CMD_LENGTH LENGTH OF AN ENTRY
2 (2) BITSTRING 1 SI_CMD_FORMAT FORMAT OF THIS ENTRY
1... .... SI_CMD_POSITION POSITIONAL PARAMETER
D SI_CMD_KEYWORD KEYWORD PARAMETER
N R SI_CMD_LITERAL LITERAL OPERAND
R S SI_CMD_ALTERNATE ALTERNATE OPERAND LIST
ceen 1L, SI_CMD_COMMAND COMMAND DEFINITION
3 (3) BITSTRING 1 SI_CMD_FLAGS FLAG BYTE
1... .... SI_CMD_TSOUSER ﬂgERBE ISSUED BY TSO
B SI_CMD_OPERATOR MAY BE ISSUED BY
OPERATOR
4 (4) STRUCTURE 0 SI_CMD_HEAD_END END OF COMMON 'FIXED
HEADER
EQUATE X'4"* SI_CMD_HEAD_SIZE LENGTH OF SI_CMD FIXED
HEADER

Extension to SI_CMD for command table entries themselves

4 (4)  FIXED 2 SI_CMD_C_OPERNUM NUMBER OF OPERAND
TABLES PRESENT

6 (6) FIXED 2 SI_CMD_C_MAXLEN LENGTH OF COMMAND NAME

8 (8) FIXED 2 SI_CMD_C_MINLEN LENGTH OF MINIMUM
ABREVIATION

10 (A)  CHARACTER 20 SI_CMD_C_NAME COMMAND NAME ITSELF

S O SI_CMD_C_OFFSET

30 (1E)  CHARACTER 2 Reserved

32 (20)  A-ADDRESS 4 SI_CMD_C_MODULE -> PROCESSING MODULE
FOR COMMAND

36 (264)  A-ADDRESS 0 SI_CMD_C_OPANDS START OF OPERAND TABLE
ADDRESSES

SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit SI-0182



Offsets

Type

Length Name

Description

Extension to SI_CMD for alternate operand list table entries

G (4) FIXED SI_CMD_A_ALTNUM rggggn OF ALTERNATE
6 (6) FIXED 2 SI_CMD_A_DESCLEN LENGTH OF DESCRIPTION
8 (8) FIXED 2 - RESERVED

10  (A) CHARACTER 28 SI_CMD_A_DESC DESCRIPTION
38 (26) CHARACTER 2 Reserved
60 (28)  STRUCTURE 0 ALIGN ON WORD BOUNDARY
40 (28) FIXED 2 SI_CMD_A_OPERLEN LENGTH OF OPERAND LIST
62 (2A) FIXED 2 SI_CMD_A_OPERNUM NUM?ER OF OPERANDS IN

LIS

GG (2C) A-ADDRESS 0 SI_CMD_A_OPERAND START OF OPERAND TABLE

ADDRESSES

Extension to SI_CMD for keyword operand definition entries

G (4) CHARACTER 4 SI_CMD_K_TYPE KEYWORD OPERAND TYPE
8 (8) FIXED 2 SI_CMD_K_MAXLEN MAX LENGTH OF KEYWORD

10 (A) FIXED 2 SI_CMD_K_MINLEN MIN LENGTH OF KEYWORD

12 ) CHARACTER 20 SI_CMD_K_NAME NAME OF KEYWORD

32 (20) FIXED 2 SI_CMD_K_DESCLEN #ENGTH OF DESCRIPTION
EXT

36 (22) FIXED 2 RESERVED

36 (249) CHARACTER 28 SI_CMD_K_DESC DESCRIPTION TEXT
ITSELF

66 (40) BITSTRING 8 SI_CMD_K_OINST INSTRUCTION TO
INDICATE KEYWORD

72 (48) FIXED 4 SI_CMD_K_XVALUE X-value: For
._K_TYPE='N' this is
minimum value

76 (4C) FIXED % SI_CMD_K_YVALUE Y-value: For
._K_TYPE=*N' this is
maximum value,
otherwise this is
maximum string length

80 (50) BITSTRING 8 SI_CMD_K_INST INST. TO MOVE VALUE TO
SYM TAB

88 (58) FIXED 2 SI_CMD_K_DEFLEN LENGTH OF DEFAULT
VALUE

90 (5A) CHARACTER 2 Reserved

92 (5C) STRUCTURE 0 ENSURE ALIGNMENT OF

. DEFVAL
92 (5C) CHARACTER 28 SI_CMD_K_DEFVAL DEFAULT OPERAND VALUE
120 (78) A-ADDRESS 0 SI_CMD_K_ENTEND END OF KEYWORD ENTRY

Cray Research, Inc.

Appendix A. Data Area Descriptions

A-57



Offsets

Type

Length Name

Description

Extension to SI_CMD for positional operand definition entries

% (4) CHARACTER 4 SI_CMD_P_TYPE $$géTIONAL OPERAND
8 (8) FIXED 2 SI_CMD_P_DESCLEN %EQ?TH OF DESCRIPTION
10 (A) FIXED 2 RESERVED
12 o) CHARACTER 28 SI_CMD_P_DESC DESCRIPTION TEXT
ITSELF
40 (28) BITSTRING 8 SI_CMD_P_OINST INSTRUCTION TO
INDICATE PRESENCE
48 (30) FIXED 4 SI_CMD_P_XVALUE X-VALUE
52 (34) FIXED 4 SI_CMD_P_YVALUE Y-VALUE
56 (38) BITSTRING 8 SI_CMD_P_INST INST. TO MOVE VALUE TO
SYM TAB
66 (40) FIXED 2 SI_CMD_P_DEFLEN LENGTH OF DEFAULT
VALUE
66 (42) CHARACTER 2 Reserved
68 (44) STRUCTURE 0 ENSURE ALIGNMENT OF
DEFVAL
68 (44) CHARACTER 28 SI_CMD_P_DEFVAL DEFAULT OPERAND VALUE
96 (60) A-ADDRESS 0 SI_CMD_P_ENTEND END OF POSITIONAL

ENTRY

Extension to SI_CMD for literal operand definition entries

4 (4) CHARACTER 4 SI_CMD_L_TYPE LITERAL OPERAND TYPE

8 (8) FIXED 2 SI_CMD_L_MAXLEN MAXIMUM LITERAL LENGTH

10 (A) FIXED 2 SI_CMD_L_MINLEN MINIMUM LITERAL LENGTH

12 (C) CHARACTER 20 SI_CMD_L_NAME LITERAL NAME

32 (20) BITSTRING 8 SI_CMD_L_OINST INSTRUCTION TO

INDICATE LITERAL

40 (28) A-ADDRESS 0 SI_CMD_L_ENTEND END OF LITERAL ENTRY

EQUATE X'78' SI_CMD_MAXLENGTH MAXIMUM LENGTH OF A

A-58 SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit

TABLE

SI1-0182



SI_ OPCT

Common name: Opcrator Control Table
Macro ID:
DSECT namc:
Created by:

Location:

Pointed to by:

Scrialization:

S@COOPCT
SI_OPCT
S@CO00000

SLCN private storage
SC_SSVT_OPCT

None

Function: Controls the processing of an individual command by the Product Operator
component.
Offsets Type Length Name Description
0 (0) CHARACTER 4 SI_OPCT_ID YOPCT' CONSTANT
ACRONYN
G (4) FIXED 4 SI_OPCT_TERM ECB FOR TERMINATION OF
OPERATOR
1l... SI_OPCT_CLEAR CLEAR FROM HERE ON
RESET
8 (8) A-ADDRESS 4 SI_OPCT_CMDBUF -=-> COMMAND BUFFER
12 ) A-ADDRESS 4 SI_OPCT_BUFP ==> INTO COMMAND
BUFFER DATA
16 (10) FIXED % SI_OPCT_CHARS # CHARS REMAINING IN
BUFFER
20 (14) FIXED 4 SI_OPCT_MSGNUM MESSAGE NUMBER TO
BUILD MSG TEXT
24 (18) A-ADDRESS 4 SI_OPCT_DESCP ==> CURRENT
DESCRIPTION DATA
28 (10) BITSTRING 1 SI_OPCT_HKWHO ISSUER OF COMMAND
1... ... SI_OPCT_WHO_OPER OPERATOR
B SI_OPCT_WHO_AUSR AUTHORISED USER
B SI_OPCT_WHO_TSOU TSO USER
R SI_OPCT_WHO_MICN MANAGEMENT INTERFACE
CONNECTION
29 ((1D) BITSTRING 1 SI_OPCT_FLAG SOME FLAGS
... ..., SI_OPCT_FLAGTEXT FLAG LAST OPERAND AS
'TEXT' TYPE
B SI_OPCT_FLAGKMAT FLAG LAST OPERAND AS
KWORD TYPE
B SI_OPCT_FLAGCMNT FLAG COMMENT PRESENT
ON COMMAND
30 (1E) CHARACTER 2 Reserved
32 (20) FIXED 4 SI_OPCT_CONSOLE CONSOLE ID OF COMMAND
ORIGIN
36 (24) CHARACTER 8 SI_OPCT_TSOUSER TSO ID OF COMMAND
ORIGIN,
44 (2C) CHARACTER 8 SI_OPCT_TERMID TERMINAL ID OF ORIGIN
52 (34) CHARACTER 8 SI_OPCT_MICONID MANAGEMENT I/F
CONNECTION

Cray Research, Inc.

Appendix A. Data Area Descriptions A-39



A-60

offsets Type Length Name Description
60 (3C) BITSTRING 1 SI_OPCT_MICONUL MGMT. I/F SOURCE USER
‘ _ DATA LEN.
61 (3D) BITSTRING 20 SI_OPCT_MICONUD MG?X. I/F SOURCE USER
DA
81 (51) CHARACTER 3 Reserved
864 (54) A-ADDRESS 4 SI_OPCT_SYNTX --> SYNTAX GRAPH OF
THIS COMMAND
88 (58) A-ADDRESS 4 SI_OPCT_OPLIST —==> CURRENT OPERAND
LIST
92 (5C) FIXED 2 SI_OPCT_OPLEFT # OPERANDS LEFT TO
PROCESS
94 (5E) FIXED 2 SI_OPCT_COMMENTL LENGTH OF COMMENT IF
ANY
96 (60) A-ADDRESS 4 SI_OPCT_COMMENTP -;> C$MMENT IN COMMEND
IF AN
100 (64) A-ADDRESS 4 SI_OPCT_HEADSTAK -->c2EAD OF SI_STAK
STA
106 (68) A-ADDRESS 4 SI_OPCT_CURRSTAK E§¥R$URRENT STACK
108 (6C) A-ADDRESS 4 SI_OPCT_FREESTAK --> NEXT FREE STACK
ELEMENT
112 (70) BITSTRING 8 SI_OPCT_PACKWORK WORK AREA FOR PACK
120 (78) A-ADDRESS 6 SI_OPCT_MSGPTR -> MESSAGE FOR
SaC00050
124 (70C) A-ADDRESS 4 SI_OPCT_PAGBUF -> PAGE BUFFER FOR
MULTILINE MSG
128 (80) A-ADDRESS 4 SI_OPCT_PAGBUFP -> CURRENT LOCATION IN
BUFFER
132 (84) FIXED 4 SI_OPCT_OLDEST ?%gEST DISPLAY AREA
136 (88) FIXED 4 SI_OPCT_LINECNT CURRENT COUNT OF LINES
IN MSG
140 (8C) FIXED 4 SI_OPCT_WTOMNUM ngg RETURNED MULT-LINE
146 (90) FIXED 0 SI_OPCT_MSG FORMATTED MESSAGE
BUFFER
144 (90) FIXED 2 SI_OPCT_MSGTLEN LENGTH FIELD FOR
MESSAGE TEXT
146 (92) CHARACTER 125 SI_OPCT_MSGTEXT FORM%TTED MESSAGE
. FIEL )
271 (10F) BITSTRING 1 SI_OPCT_FUNC FUNCTION CODE FOR
S2C00050
272 (110) BITSTRING 1 SI_OPCT_DISPLAY DISPLAY AREA
IDENTIFIER
273 (111) CHARACTER 1 Reserved
2746 (112) FIXED 0 SI_OPCT_WTOPARM ALIGN '‘PARM BUFFER
276 (112) CHARACTER 125 SI_OPCT_WTOBUF E?ggER FOR WTO PARM
399 (18F) CHARACTER 1 Reserved
400 (190) STRUCTURE 0 SI_OPCT_SYM START OF SYMBOL TABLE
400 (190) STRUCTURE 0 SI_OPCT_P_XXXXXX POSITIONAL OPERANDS

SUPERLINK for MYVS Logic Library Volume 2: Control Functional Unit

SI1-0182



Offsets Type Length Name Description
400 (190) CHARACTER 8 SI_OPCT_P_MICON SEND MICON PARAMETER
408 (198) BITSTRING 0 SI=0PCT_Q_XXXXXX POSITIONAL FLAGS
EQUATE X'10°". SI_OPCTEQ=MICON *MICON® PRESENT
408 (198) STRUCTURE 0 SI_OPCT_K_XXXXXX KEYWORD OPERANDS
408 (198) CHARACTER 8 SI_OPCT_K_FU FU NAME VALUE
416 (1A0) CHARACTER 8 gI_OPCT_K_OPTION OPTIONS NAME VALUE
424 (1A8) CHARACTER 8 SI_OPCT_K_APL APL NAME VALUE
432 (1B0) CHARACTER 8 SI_OPCT_K_MI MI NAME VALUE
440 (1B38) CHARACTER 8 SI_OPCT_K_JOB JOBNAME VALUE
448 (1C0) CHARACTER 8 SI_OPCT_K_DDNAME DDNAME NAME VALUE
EQUATE X'1Cl* SI_OPCT_K_DD _ALIAS FOR DDNAME
KEYWORD
456 (1C8) CHARACTER 22 SI_OPCT_K_JOBS JOBS=(NNNNN, NNNNN, XXXXXXXX)
478 (1DE) CHARACTER 15 ?I_OPCT_K_AMLIMI AMLIMIT=C(NNN, NNN, NNN,N)
493 (1ED) BITSTRING 1 SI_OPCT_F_XXXXXX KEYWORD FLAGS
l... .... SI_OPCT_F_FU *FU=" KEYWORD
: PRESENT
SI_OPCT_F_OPTION VALUE=40".
S "OPTIONS=" KEYWORD
PRESENT
cee eeas SI_OPCT_F_APL VALUE=20". 'APL="'
KEYWORD PRESENT
. ceee SI_OPCT_F_DDNAME VALUE=10*. °DDNAME="'
KEYWORD PRESENT
. e SI_OPCT_F_DD VALUE=10*. °‘'DDNAME="'
KEYWORD PRESENT
e SI_OPCT_F_MI VALUE=08'., 'MI='
KEYWORD PRESENT
ceee SI_OPCT_F_JOB VALUE=04"'. ‘*JOB="*
KEYWORD PRESENT
SI_OPCT_F_JOBS VALUE=02'. 'JOBS='
KEYWORD PRESENT
. . SI_OPCT_F_AMLIMI VALUE=01"*.
T *AMLIMIT=' KEYWORD
PRESENT
494 (1EE) BITSTRING 1 WHERE FLAGS LIVE
495 (1EF) 1 SI_OPCT_L_XXXXXX LITERAL FLAGS BYTE 1

Cray Research, Inc.

BITSTRING

e s o0

:I_OPCT_L_REFRES
SI_OPCT_L_QUICK

"SI_OPCT_L_ABORT

SI_OPCT_L_ALL
SI_OPCT_L_LINKS
SI_OPCT_L_OFFERS
SI_OPCT_L_AM

Appendix A. Data Area Descriptions

VALUE=80*. °'REFRESH'
LITERAL PRESENT
VALUE=40"'. 'QUICK'
LITERAL PRESENT

VALUE=20'. 'ABORT®
LITERAL PRESENT
VALUE=10'. ‘ALL"
LITERAL PRESENT
VALUE=08"'. 'LINKS®
LITERAL PRESENT
VALUE=04"'. 'OFFERS"'
LITERAL PRESENT
VALUE=02'. ‘'AM®
LITERAL PRESENT

A-61



810-1S Nuf) [euonduUNg [05u0) T dwnjop L1eaqr] N80T SAIN 10§ NITHAINS 9V
12d071IS _ _
¥04 3ISN 01 100d9NnS 700dS 12d0 IS 0 31vnd3
13S3y _ _
304 ¥Y3IT1D 01 INNOWY N3IT¥VY3T1D 10d0 IS .93T.X 31vnd3
A2019 T10JINOD _ -
12d0 IS 40 3ZIS 3Z1IS 13d0 IS +€dT4X 3Lvnd3
379YL T09WAS 40 3ZIS 3IZIS WAS 1240 IS 1£94X 31vnd3
INJIS3¥d TVA3ILIT _ _
1S3749Y1L. " 102=3N1TVA S37dvl 1 12d0 IS
1IN3S3dd TVH3LIN _ _
1+SAAONs "2 05=3NTVA S3AON 1 1240 IS
INISIAd TVAILIT o _
+923. Ta08=3NTVA 423 1 12d0 1S ettt
b 3LA9 SOVI4d IVE3ILIN -1 ONTNILSLIA (241) 86Y
INISIAd TVHILIT _ _
+3SVYI: "L T0=3NTVA ASVd 1 12d0 1S
INISIAdd TVHILIN _ _ N
«NOISS3S: ".20=3N1TVA 0ISS3sS 1 13d0 IS M
IN3S3dd TVH3LIT _ _
sJUNSON:.  “+H0=3N7TVA dVYNSON 1 12d0 IS -
IN3S3Add IWVIILI R _
+dVNS:  “a80=3N1TVA dVNS 1 13d0 IS : Tttt
AIN3S3¥d TVA3ILIN _ _
odWNAON: "2 0T=3NTVA dWNAON 1 1240 IS *
IN3IS3dd TVI3LIN o _
sdWNds "4 02=3N1TVA dWnd 1 12d0 IS °
INIS3dd TVI3ILIT _ _ 3
+JOVALON: 4 0H=3ATVA JVILON 71 1240 IS °
AIN3ISIAd TVI3ILIT - _
3OVAL. T4 02=3NTVA JIVIL 1 10d0 IS st ot
¢ 31A9 SOVId WA3ILIT I ONIY1S1Ig (T41) Lé6Y
IN3ISIAd TVH3ILI - _ S
4 S¥3IASNIAS: "L T0=3NTVA JY3ISATIS 1 12d0 1S e
AIN3S3Ad TVH3LI _ _
aSSds "420=3N1TVA SSd 1 13d0 1S °
IN3SIAd TVHILIT _ _
«JIWs  aH0=3NTVA JIW 1 12d0 1S
AIN3S3Ad TVI3ILIN _ _
+dS3Y¥s T4 80=3NTVA dS3y¥ 1 13d0 IS
AIN3S3dd TVA3ILIN . _
1S20¥ds "L 0T=3N1TVA SJ0¥d 1 12d0 IS
IN3SIYd TVA3ILIT _ _
+SNLIVLIS: “a02=3N1TVA SNLVLS 1 12d0 IS
INISIAdd TVvH3ILIT _ _ 3
+39V¥01S. "4 0H=3NTVA  OVH0LS T 13d0 IS
INISIUd TVHILIT _ _
+ 11NN "4 08=3N1TVA TIAN 7 1340 IS terottte
Z 31A9 SOVI4d IV¥ILINT I ONIY1S1Id (0d1) 96Y
IN3S3dd
IVH3LIT +SNOISS3S, _ _SN
3+ T0=3NTVA 0ISS3S 1 13d0 IS °
uotTldrJoasaq aweN yibuai adAlL $385440



SI STAK

Common name: Alternate Operand Stack Element
Macro ID:
DSECT name:
Created by:

Location:

Pointed to by:

Serialization:

S@COSTAK
SI_STAK
S@C00030

SLCN private storage

SI_OPCT

None

Function: Provides a recursive work element within tht Product Operator component.
offsets Type Length Name Description
0 (0) ~ A-ADDRESS G SI_STAK_NEXT -> NEXT SI_STAK ON THE
STACK
G (4) A-ADDRESS 4 SI_STAK_AOPAND ;;BQETERNATE OPERAND
8 (3) A-ADDRESS G SI_STAK_AOPLIST -;SélTERNATE OPERAND
L
12 (C) A-ADDRESS. G SI_STAK_AOPENTRY -> ALTERNATE OPERAND
. LIST ENTRY.
16 (10) FIXED 2 SI_STAK_LISTNUM # LISTS LEFT 7O PROCESS
18 (12) FIXED 2 SI_STAK_ENTRYNUM & ENTRIES LEFT IN LIST
20 (14) A-ADDRESS G SI_STAK_RETURN RETURN ADDRESS FROM
PROCESSOR
EQUATE X*18"* SI_STAK_SIZE LENGTH OF SI_STAK

Cray Research, Inc.

Appendix A. Data Area Descriptions A-63



SV_ESTW

Common name: SVC ESTAE Work Arca

Macro ID:
DSECT name:
Created by:
Location:

Secrialization:

S@CCSVEW
SV_ESTW
S@CCOSVC
Private arca

None

Function: Work area for the ESTAE recovery routine.
Offsets Type Length Name Description
0 (0) STRUCTURE 0 ALIGN PARAMETER LIST
0 (0) FIXED 72 SV_ESTW_REG zgéxDARD 18-WORD SAVE

72 (48) FIXED 72 SV_ESTW_SAVE zgéxDARD 18-WORD SAVE

144 (90) BITSTRING 8 SV_ESTW_ZPACK DOUBLE WORD FOR PACK

152 (98) A-ADDRESS 4 SV_ESTHW_ARETRY RETRY ROUTINE ENTRY
POINT ADDRESS

156 (9C) FIXED 64 SVY_ESTW_RETREGS sggﬁiTERS FOR RESUME

156 (9C) FIXED % SV_ESTW_RETRO RO

160 (A0) FIXED % SVY_ESTW_RETR1 R1

166 (A4) FIXED 4 SV_ESTHW_RETR2 R2

168 (A8) FIXED 4 SV_ESTW_RETR3 R3

172 (AC) FIXED 4 SV_ESTHW_RETR4 R4

176 (BO0) FIXED 4 SV_ESTHW_RETR5 RS

180 (B4) FIXED 4 SV_ESTHW_RETRé6 R6

184 (B8) FIXED 6 SV_ESTW_RETR? R7

188 (BC) FIXED 4 SV_ESTW_RETRS R38

192 (C0) FIXED 4 SV_ESTW_RETR9 R9

196 (C4) FIXED 4 SV_ESTW_RETR10 R10

200 (C8) FIXED 4 SV_ESTW_RETRI11 R11

206 (CC) FIXED 4 SV_ESTW_RETR12 R12

208 (DO) FIXED 4 SV_ESTHW_RETRL13 (R13) --> STANDARD
SAVE AREA

212 (D4) FIXED 4 SV_ESTW_RETR14 (R14) --> RESUME POINT

216 (D8) FIXED 4 SV_ESTHW_RETR15 (R15) = RETURN CODE
FROM RETRY

220 (DC) A—-ADDRESS G SV_ESTW_SSVT? SC_SSVT ADDRESS

224 (EO0) FIXED 6 SV_ESTW_ABENDCC ABEND COMPLETION CODE

228 (E4) FIXED 4 SV_ESTW_SYSTEMCC SYSTEM COMPLETION CODE

232 (E8) FIXED 4 SV_ESTHW_USERCC USER COMPLETION CODE

236 (EC) CHARACTER 1

A-64

SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit

S1-0182



offsets  Type Length Name Description
237 (ED) CHARACTER 3 SV_ESTHW_SCC SYSTEM COMPLETION
CODE, HEX. "XXX*®
240 (FO0) CHARACTER ¢ SV_ESTW UCC USER COMPLETION CODE,
DECIMAL *'DDDD*
244 (F4) CHARACTER 8 SV_ESTW_REASON REASON CODE
252 (FC)  CHARACTER 8 SV_ESTW_TIME TIME HH.MM.SS
1111 11.. SV_ESTHW_HH HH
1111 1111 SV_ESTW_MM MM
EQUATE X'102* SV_ESTW_SS SS
260 (104) BITSTRING 1 SV_ESTH_FLAG FLAG BYTE
’ l..: .... SV_ESTW_ERECURS 1 = RECURSION
261 (105) CHARACTER 1 Reserved
262 (106) FIXED 0 SV_ESTW_DMSGL HALFWORD LENGTH FIELD
FOR S3aMSG
262 (106) BITSTRING 1 FILLER - SHOULD
CONTAIN ZERO
263 (107) BITSTRING 1 SV_ESTW_DDUMPHDR LENGTH OF THE DUMP
TITLE IN BYTES
266 (108) CHARACTER 100 SV_ESTW_DDUMPTIT DUMP TITLE (MAXIMUM
. 100 CHARACTERS)
3646 (16C) STRUCTURE 0 SV_ESTW_DSDUMP SDUMP PARAMETER LIST
366 (16C) A-ADDRESS 1 FLAG BYTE
365 (16D) A-ADDRESS ) | FLAG BYTE
366 (16E) A-ADDRESS 1 FLAG BYTE
367 (16F) A-ADDRESS 1 FLAG BYTE
368 (170) A-ADDRESS 4 ADDRESS OF DCB
372 (174) A-ADDRESS 4 ﬁgg%ﬁss OF STORAGE
376 (178) A-ADDRESS 4 ADDRESS OF USER DATA
380 (17C) A-ADDRESS 4 ADDRESS OF ECB
384 (180) A-ADDRESS 2 CURRENT ASID
386 (182) A-ADDRESS 2 OTHER ASID
388 (184) A-ADDRESS 4% ADDRESS OF ASID LIST
392 (188) A-ADDRESS 4 ADDRESS OF
SUMLIST/SUMLSTA LIST
aG38
396 (18C) A-ADDRESS 4 RESERVED
aG33VPHD
400 (190) A-ADDRESS 4 RESERVED
?9G33VPHD
604 (194) STRUCTURE 0 SV_ESTW_DMSG ALIGN
404 (194) A-ADDRESS 4 MESSAGE NUMBER
408 (198) CHARACTER 2 COMPONENT IDENTIFIER
410 (19A) CHARACTER 1 TYPE OF PROCESSING
REQUIRED
411 (19B) A-ADDRESS 1 WTORLTH LENGTH OF
WTORPLY
412 (19C) A-ADDRESS 4 WTORPLY POINTER
616 (1A0) A-ADDRESS ] WTORECB POINTER

Cray Research, Inc.

Appendix A. Data Areca Descriptions

A-65



Offsets Type Length Name Description
420 (1A4) A-ADDRESS 4 SSVT POINTER
424 (1A8) A-ADDRESS 4 MESSAGE TABLE POINTER
428 (1AC) A-ADDRESS 4 RETURN MESSAGE AREA
432 (1B0) BITSTRING 1 ROUTING CODES
433 (1Bl) CHARACTER 1 Reserved
434 (1B2) BITSTRING 1 DESCRIPTOR CODES
435 (1B3) CHARACTER 1 Reserved
436 (1B4) A-ADDRESS 1 NUMBER OF VARIABLES
437 (1B5) CHARACTER 3 Reserved
440 (1B3) A-ADDRESS 4 ADDR OF A MESSAGE
VARIABLE -
444 (1BC) A-ADDRESS 4 ADDR OF A MESSAGE
i VARIABLE
EQUATE X'1C0' SV_ESTW_SIZE

A-66

SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit

SI1-0182



Appendix B. SLCN Macros

Command Syntax Macros

S@COADEF Macro

The S@COADEF macro allows scts of alternate operands to be available on any command. Alternate
operand entries may themselves point to other alternate operand lists so that complex syntaxes may

be defined.
name name: symbal. Begin name in column 1.
b One or more blanks must precede S@COADEF.
S@COADEF
b One or more blanks must follow S@COADEF.
desc . desc: character string. Enclose the string in quotes.
param group(s) param group(s): One or more groups separated by commas. Each group

consists of one or more RX-type addresses; if more than one address is coded,
the addresses must be enclosed in parentheses and separated by commas.

The parameters are explained as follows:

desc
Specifies a textual description which can be included in error messages generated by the parser
while it is processing this operand definition.

param group(s) .
Specifies one or more addresses of operand definitions generated by other operand definition
macros.

Each group of addresses represents one valid operand group for a command, from a choice of
operand groups.

S@COCDEF Macro

The S@COCDEF macro defines each of the commands available to. the command parser and its
attributes. This macro also directs the parser to one or more operand entries which define the operands
that are availabl¢ on the command.

Cray Research, Inc. Appendix B. SLCN Macros B-1



B-2

name name: symbol. Begin name in column 1.

b One or more blanks must precede S@COCDEF.
S@COCDEF
b One or more blanks must follow S@COCDEF.
cmd cmd: character string.
,minlen minlen: decimal digit.
Loplist oplist: RX-type address or list of RX-type addresses enclosed in parentheses
and separated by commas.

,TSO=NO Default: TSO=NO

,TSO=YES

LOPER=NO Default: OPER = YES

,OPER=YES

,MODULE = module name module name: character string.

If this is the first S@COCDEF macro in the syntax table:

LOPCTREG = opct register opct register: decimal digits.

The parameters are explained as follows:

cmd
Specifies the name of the command being defined.

minlen
Specifies the minimum length of the command name which will be recognized by the command
parser.

oplist
Specifies the address or addresses of operand definitions, generated by the operand definition
macros, which define valid operands for this command.

TSO=NO
TSO=YES _
Specifies whether or not the command is available for use by TSO users.

OPER=NO

OPER=YES
Specifies whether or not the command is available for use by an operator via an MCS console
or by an authorized TSO user.

MODULE = module name
Specifies the name of the module to be entered to process the command once the command has
been correctly parsed.

OPCTREG = opct register )
Specifies a register. This register must be the same as the one used to address the SI_OPCT in
the command and operand parsing routines.

It is used to generate the instructions which will be executed in the syntax table from the parsing
routines to move data to the symbol table in the SI_OPCT. It must be present on the first and
only on the first S@ COCDLF macro in the syntax table.

SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit S1-0182



S@COKDEF Macro

The S@COKDEF macro allows definitions of keyword operands to be made. The attributes of the
keyword itself and the values that the keyword may take are also capable of being defined.

name name: symbol. Begin name in column 1.
b One or more blanks must precede S@COKDEF.
S@COKDEF
b One or more blanks must follow S@GCOKDEF.
keyword keyword: character string.
_minlen minlen: decimal digit.
,desc desc: a character string enclosed in quotes.
ype type: one of the following values:

Jower bound
Jupper bound

Jdefault value

,ISO=NO
,TSO=YES

,OPER=NO
JOPER=YES

N AN ALL TEXT

lower bound: decimal digits.

upper bound: decimal digits.

default value: depends on the fype value or may be specified as one of the
following values:

NONE NULL

Default: TSO=NO

Default: OPER = YES

The paramecters are explained as follows:

keyword

Specifies the name of the keyword being defined.

minlen

Specifies the minimum length of the keyword name that will be recognized by the operand parser.

desc

Gives a short description of the operand. This may be used in error messages when the operand
parser encounters an error while processing this operand.

type

Specifies the type of value which may be coded with this operand; the valid types are listcd below:

N This operand will accept only numeric values. Conversion to binary will be done by the
parser after checking the validity of the value presented.

AN This operand will accept only alphanumeric strings of characters. Validity checking is

done by the parser.

ALL  This operand will accept strings including “national” characters. Validity checking is

done by the parser.

Cray Research, Inc.

Appendix B. SLCN Macros B-3



TEXT This operand will accept strings containing arbitrary characters (including blanks),
provided that the text is enclosed in quotes. Validity checking is done by the parser.

lower bound ‘
Specifies the lower bound of the value allowed in the case of numeric operand values.

upper bound
Specifies the upper bound of the value allowed in the case of numeric operands. The maximum
string length allowed in the case of the other operand types.

default value _
Specifies the default value to be used if this operand is not specified on the command line.

This may be an actual value or one of the following literals:
NONE No default value is to be gencrated if this operand is not specificd on the command line.

NULL A null (X’FFFF....FF’) default value is to be generated if this operand is not specificd
on the command line.

TSO=NO
TSO=YES
Specifies whether the command is available for use by TSO users.

OPER=NO
OPER = YES

Specifics whether or not the command is available for use by an operator via an MCS console
or by an authorized TSO user.

S@COLDEF Macro

The S@COLDEF macro defines literal operands that may be used on a specific command.

name name: symbol. Begin name in column 1.
b One or more blanks must precede S@COLDEF.
S@COLDEF
b One or more blanks must follow S@COLDEF.
literal lireral: character string.
Jminlen minlen: decimal digit.

,TSO=NO Default: TSO=NO

,TSO=YES

JLOPER =NO Default: OPER = YES

JOPER =YES

The parameters are explained as follows:

literal
Specifies the name of the keyword being defined.

minlen

B4 SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit SI-0182



Specifies the minimum length of the keyword name that will be recognized by the operand parser.

TSO=NO
TSO=YES
Specifies whether or not the command is available for use by TSO users.

OPER =NO

OPER =YES
Specifies whether or not the command is available for use by an operator via an MCS console
or by an authorizéd TSO user.

S@COPDEF Macro

The S@COPDEF macro allows positional operands to be defined. The attributes of the operand itself
and the values that the operand may take are also capable of being defined.

name name: symbol. Begin name in column 1.
b One or more blanks must precede S@COPDEEF.
S@COPDEF
b One or more blanks must follow S@COPDEF.
desc desc: A character string enclosed in quotes.
Jype type: one of the following values:
N AN AL; TEXT
Jower bound lower bound: decimal digits.
upper bound upper bound: decimal digits.
Jdefault value default value: Depends on the fype value or may be specified as one of the
following values:
NONE NULL
,ISO =NO Default: TSO=NO
,TSO=YES
LOPER=NO Default: OPER=YES
JLOPER=YES

The parameters are explained as follows:

desc
Gives a short description of the operand. This may be used in error messages when the operand
parser encounters an error while processing this operand. ‘

type
Specifies the type of value which may be coded with this operand; the valid types are listed below:

N This operand will accept only numeric valucs. Conversion to binary will be done by the
parser after checking the validity of the value presented.

AN This operand will accept only alphanumeric strings of characters. Validity checking is
done by the parser.

Cray Research, Inc. Appendix B. SLCN Macros B-5

:



ALL  This operand will accept strings including “national” characters. Validity checking is
done by the parser. '

TEXT This operand will accept strings containing arbitrary characters including blanks provided
the text is enclosed in quotes. Validity checking is done by the parser.

lower bound
Specifies the lower bound of the value allowed in the case of numeric operand values.

upper bound
Specifies the upper bound of the value allowed in the case of numeric operands. The maximum
string length allowed in the case of the other operand types.

default value
Specifies the default value to be used if this operand is not specified on the command line.

This may be an actual value or one of the following literals:
NONE No default value is to be generated if this operand is not specificd on the command line.

NULL A null (X'FFFF....FF’) default value is to be generated should this operand not be
specified on the command line.

TSO=NO
TSO=YES
Specifies whether or not the command is available for use by TSO users.

OPER =NO

OPER =YES
Specifies whether or not the command is available for use by an operator via an MCS console
or by an authorized TSO user.

S@CISYNX Macro

name name: symbol. Begin name in column 1.
b One or more blanks must precede S@CISYNX.
S@CISYNX
b One or more blanks must follow S@CISYNX.
DSECT =YES keyword name: character string.
TABLE=START
TABLE=END

NAME = keyword name

For NAME requests:

,CONY = conversion conversion: Type one of the following:

NUM HEX CHARxxxx FLAG SUBSCAN VECTOR ALIAS
SUBENT = table entry table entry: symbol.
,CB = control block name or reference control block name or reference: Type one of the following:

CIOT NIOT JIOT VIOT or PARENT

LFIELD = (name of fieldname of length  name of field: symbol.

B-6 SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit SI-0182



Sield)
JRANGE = (lower limitupper limir)

,VALUE = (value,value)
,PRE = pre-scan exit name
LAFT = post-scan exit name

LOBS=YES
,OBS =NO

,SUBSCRP = (lower subscript,upper
subscript,anchor name,total length)

L,VCOUNT = count of vectors

name of length field: symbol.

lower limit: symbol or decimal digits, 0-4294967295.
upper limit: symbol or decimal digits, 0-4294967295.

value: character string.

pre-scan exit name: symbol.

post-scan exit name: symbol.

Default: OBS=NO

lower subscript: character string. A-Z,0-9
upper subscripr: character string. A-Z,0-9
anchor name: symbol.

total length: symbol or decimal digits, 1-32767.

count of vectors: symbol or decimal digits, 1-255.
Default: 1

The parameters are explained as follows:

DSECT=YES

specifies that a mapping of the data areas be generated and not a look-up table.

TABLE = START

specifies that a new table is to be begun. The name field on the macro call is mandatory and is

used to identify the table in a SUBENT parameter or on an assembler ENTRY statement.

TABLE=END

specifies that the current table is finished.

NAME = keyword name

specifies the name of the keyword being defined in the table.

CONY = conversion

specifies the conversion required for the parameter. The following possible alternatives available:

¢ NUM - numeric stored as binary

e HEX - hexadecimal stored as binary

¢ CHARxxxx - value stored in character form and must conform to given character set(s) x
or cxplicit values. Possible character set(s) x are:

= A - Alphabetic

= N - Numeric

s J - JCL rules (first character must be alphabetic or national)

» S - Special national @3$#

= F - First must be alphabetic

Note: Explicit values follow the CHARxxxx parameter as additional subparamcters of

CONV = eg CONV=(CHAR,%,6B). The explicit valucs are denoted by either a single

character or two hex digits.

e  FLAG - value is represented by flag bits in a flag byte

e SUBSCAN - keyword requires further subscanning using other table entries

Cray Research, Inc.

Appendix B. SLCN Macros

B-7



e  VECTOR - keyword requires vector subscanning using further table entries

e ALIAS - keyword is an ALIAS of another keyword

SUBENT = table entry
specifies the name of a further table entry to be used for scanning.

CB = contro! block name or reference
specifics the name of the control block to be updated or refers to a previous table entry.

FIELD = (name of field,name of length field)
e Name of field specifies the name of the control block field to be updated.

e Name of length field specifies the name of the.control block ficld to contain the length of
input in bytes for CONV = CHAR.

RANGE = (lower limitupper limit)

e [ower limit specifies a minimum acceptable value except when CONV = CHAR, when it
specifies a minimum length in bytes.

¢ Upper limit specifies a maximum acceptable value except when CONV =CHAR, when it
specifies a maximum length in bytes.

Note: RANGE = and VALUE = are mutually exclusive.

VALUE = (value,value)

specifies a list of acceptable values unless CONV = FLAG. For CONV = FLAG specifies a series
of triples as follows:

e Keyword name or null

e Value to OR

e Valuc to AND

Note: RANGE = and VALUE = are mutually exclusive.

PRE = pre-scan exit name
specifies the name of an internal routine which may perform specialized syntax analysts and
control block updating.

AFT = post-scan exit name
specifies the name of an internal routine which performs specialized functions once the value of

a parameter is known, for example obtaining storage for sub-scripted items after the maximum
has been defined.

OBS=YES
0OBS=NO
specifies whether a parameter is obsolete or current.

SUBSCRP = (lower subscriptupper subscript,anchor name,total length)
¢ Lower subscript specifies the first sub-script in a serics, normal LBCDIC collating sequence.

¢ Upper subscript specifies the last sub-script in a series, normal EBCDIC collating sequence.

B-8  SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit SI-0182



e  Anchor name spccifics the name of the control block ficld containing the address of the

appendage to hold the subscripted item(s). This sub paramcter is omitted for inline

subscripted items.

e  Total length specifies the length of each subscripted item to be used when obtaining storage,
etc. It is particularly useful when the subscripted item is a complex data structure and the
length of the symbol given in FIELD = is inappropniate.

Cross Memory Communications Macros

S@@CSERYV Macro

The S@@CSERYV macro handles communications between the control address space (SLCN) and the
Functional Subsystem Interface (FSI) routines in the FSI part of the Functional Subsystem (FSS)
address space. The macro SCHEDULE: the SRB to the FSS address space upon an ORDER-type
communication, and cross memory POSTs the control address space when a SEND type
communication from the FSS address space is requested.

name
b
S@@CSERV
b

name: symbol. Begin name in column 1.

One or more blanks must precede S@@CSERV.

One or more blanks must follow S@@CSERV.

TARGET = FSS
TARGET =SILCN

JTYPE=ORDER
,JTYPE=SEND

,JFUNC =(TERM,term type)
,JFUNC=STATUS
LFUNC=MSG
,FUNC=INIT

,PARM = plist addr
JFSID=fss5 id

WAIT =YES
WAIT=NO

,ECB = ECB addr
,DATA = data addr
,LDATA =data length
SSVT =SSVT addr

Default: TARGET =SLCN
Default: TYPE=SEND

term type: One of the following values:
QUICK NORMAL ABORT

plist addr: RX-type address or register (2)-(12).
J55 id: RX-type address, register (2)-(12) or decimal digit.
Default: WAIT=YES

ECB addr: RX-type address or register (2)-(12).
data addr: RX-type address or register (2)-(12).
data length: RX-type address or register (2)-(12).
SSVT addr: RX-type address or register (2)-(12).

The parameters are explained as follows:

TARGET =FSS
TARGET =SLCN

Specifics the subsystem that is the target of this request. Two values are possible:

Cray Research, Inc.

Appendix B. SLCN Macros



SLCN. The control address space (SLCN) is the target of this request. This is the default if
TARGET is not specified.

FSS  The Functional Subsystem (FSS) address space is the target of this request and is
identified by the FSID parameter.

TYPE = ORDER
TYPE=SEND
Specifies the type of request. One of the following may be coded:

ORDER The type of request carried by the parameter list is a Functional Subsystem ORDER
primitive. This must be accompanied by TARGET = FSS

SEND The type of request carried by the parameter list is a Functional Subsystem SEND
primitive. This is the default if TYPE is not specified. This must be accompanied by
TARGET =SLCN (default value).

FUNC = (TERM,term type)
FUNC=STATUS
FUNC=MSG
FUNC =INIT
Indicates the type of ORDER or SEND request to perform as follows:

(TERM,QUICK) This is a TERMINATE ORDER request for a QUICK shutdown.
(TERM,NORMAL) Thisis a TERMINATE ORDER request for a NORMAL shutdown.
(TERM,ABORT) This is a TERMINATE ORDER request for an ABORT shutdown.

STATUS This is a STATUS type ORDER request.
MSG This is a MSG type ORDER request.
INIT This is an INIT type ORDER request.

PARM = plist addr
Specifies the address of the parameter list (SC_SERYV) which contains data rclevant to the service
requested. If this parameter is not specified, the address of the SC_SERYV must have been placed
previously in register 1.

FSID = fss id
Identifies the FSS that is the target of this request.

WAIT=YES

WAIT=NO
Specifies whether or not the the macro will be exited before the target FSS address space has
notified the control address space via a cross memory post of the successful receipt of the request.
YES is the default option if this parameter is not specified.

If YES is coded, control will not be returned until the notification has been received.

If NO is coded, the macro will schedule the SRB, but will not wait for notification of successful
receipt. Care should be exercised when specifying this option, because the invoker is responsible
for recovery processing should the SRB fail or ABEND.

ECB= ECB addr
Specifies the address of the ECB to be POSTed as specified by the WAIT = parameter.

DATA =data addr
Specifies the address of data associated with the specific request.

B-10 SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit SI1-0182



LDATA = data length

Specifies the length of data identified by the DATA = paramcter.

This length is specified in a fullword or in a general register.

SSVT =SSVT addr

Specifies the address of the SC__SSVT control block.

Return Codes

A return code passed in register 15 indicates the success or failure of the request. This return code is the
same as that returned from routine S@CF0100.

Notes

All parameters on the S@@CSERYV macro are optional; however, if all of the parameters arc omitted,
the address of the SC_SERV must be specified in register 1, and the SC_SERV data area must be
formatted with all the relevant information required to complete the request.

S@@FIREQ Macro

The S@ @FIREQ macro handles the communications between the I'SI component of the FSS address
space and the FSS-specific routines. It also allows the FSS to CONNECT and DISCONNECT itself
from the controlling address space (SLCN) via Subsystem Interface function request 53.

name
b
S@@FIREQ
b

name: symbol. Begin name in column 1.

One or more blanks must precede S@ @ FIREQ.

One or more blanks must follow S@ @ FIREQ.
O\

REQUEST = requested service

,TARGET =SLCN
,TARGET = FSS

,PARM = plist addr
JFSID =/f5s id

,FSSCB = FSSCB addr
WORK =work area

requested service: register (2)-(12). Alternatively, one of the following values
may be coded: )
FSICON FSIDCON FSISEND FSIORDER

Default: TARGET =SLCN

plist addr: RX-type address or register (2)-(12).
J3s id: RX-type address, register (2)-(12) or decimal digit.
FSSCB addr: RX-type address or register (2)-(12).

work area: RX-type address or régisler (2)-(12).

The parameters are explained as follows:

REQUEST = requested service
Specifies the requested service.

Valid services are:

FSICON CONNECT notifies the SLCN that the ISS has initialized and is available.

Cray Rescarch, Inc.

Appendix B. SLCN Macros B-11



Notes

FSIDCON DISCONNECT notifies SLCN that the FSS is terminating and is no longer available.
FSISEND SEND cnables the FSS to send a responsc to the SLCN.
FSIORDER ORDER enables the SLCN to send a command or order to the FSS address space.

If this paramcter is not specified, one of the EQUated values for the required service must have
been stored previously in the SC_FSIP_FUNC field of the SC_FSIP parameter list. For
CONNECT and DISCONNECT requests, the REQUEST parameter must be specificd.

TARGET=SLCN
TARGET =FSS
Specifies the target of this request. Two values are possible:

SLCN SLCN is the target of this request. This is the default if TARGET is not specified.
IF'SS  The FSS address spacc identified by the FSID paramecter is the target of this request.

PARM = plist addr
Specifies the address of the parameter list (SC_FSIP) which contains data relevant to the scrvice
requested.

If this parameter is not specified, the address of the SC_FSIP must be in register 1.

FSID = fss id
Identifies the FSS that is the target of this request.

If this parameter is not specified, the FSS-identifier must be in the SC_FSIP_FSID ficld in the
SC_FSIP.

FSSCB= FSSCB addr
Specifics the address of the SC_FSSCB of the F'SS identified by the FSID parameter.

This parameter is required only on ORDER and SEND requests. It is not required on
CONNECT or DISCONNECT requests.

WORK = work area
Specifies the address of a 100-byte work area for use by the FSI routines.

This parameter is required only on ORDER and SEND requests. It is not required on
CONNECT or DISCONNECT requests.

All parameters on the S22 @ FIREQ macro are optional, however if all of the paramecters are omitted,
the address of the SC_FSIP must be specified in register 1, and the SC_FSIP must be formatted with
all the relevant information required to process the request.

S@@LOG Macro

B-12

name name: symbol. Begin name in column 1.

(=2

One or more blanks must precede S& @ LOG.

w
®
®

=

Qo

o

SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit SI1-0182



b One or more blanks must follow S@ @ LOG.

GET

QUEUE

For GET requests:

L,COUNT = number of LOGEs number of LOGEs.‘: decimal digits, 0-10 or register (2)-(12).
SLNAME = subsystem name mb&ystem name: RX-type address or register (2)-(12).
SSVT =ssvt address ssvt address: RX-type address or register (2)-(12).

Default: SSVT =0
For QUEUE requests:

,LEAD =(Rn) n: decimal digits, 2-12.
SLNAME = subsystem name subsystem name: RX-type address or register (2)-(12).
SSVT =ssvt address ssvi address: RX-type address or register (2)-(12).

Default: SSVT =0

The paramecters are cxplained as follows:

GET
QUEUE
Specifies the type of request.

GET signifies a request for Log Elements (LOGE:s) to be allocated and chained. On return from

a successful GET request, register 1 points to the first LOGE of the chain.

QUELUE signifies a request for the LOGEs obtained through a GET request to be queued for
processing.

COUNT = number of LOGEs
Specifies the number of LOGEs required.

LEAD = (Rn)
Spccifics a register which contains the address of the LOGEs as returned by a GET request.

SLNADMIE = subsystem name
SSVT = ssvt address
Identifics which SUPERLINK subsystem is to perform the processing:

SLNAME This option specifies the address of an area containing the name of the subsystem.

SSVT This option specifies the address of the subsystem’s SSVT control block.
Components within the SLCN address space may specify SSVT =0.

Return Codes

Code Description
00 Successful completion

04 GET multiple request was only partially satisfied; register 0 contains a count of the LOGEs
returned (at least 1; see return code 08).

QUEUE message length(s) outside range, using maximum

08 Insufficient storage

Cray Research, Inc. Appendix B. SLCN Macros B-13



Notes

12 Bad paramecter; register 0 indicates the relevant parameter:
0 SLNAME or SSVT
4 COUNT
8 LEAD

16 SUPERLINK logging is inactive.

Components issuing S@ @LOG do so in 31-bit addressing mode. S@ @L.OG returns a 31-bit address.

The message length in all returned LOGE:s (after processing GET) is set to zero.

S@@SUBSY Macro

name name. symbol. Begin name in column 1.
b One or more blanks must precede S@@SUBSY.
S@@SUBSY
b One or more blanks must follow S@@SUBSY.
SLNAME = superlink name superlink name: character string. Length must be 1 to 8 characters.
\VERS = version id yer.l\'a;n dld: two EBCDIC characters. These must be in quotes if a blank is
included.

Default: VERS =" ’ (two blanks, hexadecimal ‘4040°)

The paramcters arc explained as follows:

SLNAME = superlink name
Specifies the name of the SUPERLINK subsystem that is to provide the requested service.

This name is not necessarily the MVS subsystem name. It is the name known to the application
program and provided to SUPERLINK by the installation as a parameter in the initialization
options.

VERS = version id
Specifies a particular version of the SUPERLINK subsystem.

The specified characters are appended to the string “SL” to form the full string which identifies
a subsystem as a SUPERLINK subsystem. The full string is compared with the user ficld in the
SSCVT.

Association Manager Macros

B-14

SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit S1-0182



a S@@MREQ Macro

The

Association Manager interface code is invoked by external modules using the S@ @ MREQ macro

to request a function. The S@ @MREQ macro format is as follows:

name name: symbol. Begin name in column 1.
b One or more blanks must precede S@@MREQ.
S@@MREQ
b One or more blanks must follow S@ @ MREQ.
FUNC = LISTEN JSunction: register (2)-(12).

FUNC = PROCESS
FUNC = NOTIFY
FUNC =DELETE

Cray Research,

FUNC = function
SLNAME =system name system name: RX-type address or register (2)-(12).
SSVT = ssvr addr ssvt addr: RX-type address or register (2)-(12).
,ECB = ecb addr ech addr: RX-type address or register (2)-(12).
,TYPE=EP type: register (2)-(12).
,TYPE=ANY
,TYPE=1type
D = identifier identifier: RX-type address or register (2)-(12).
"WKAREA =work area work area: RX-type address or register (2)-(12).
/A\ JMF=L work area: RX-type address or register (2)-(12).
,MF = (Ectrl addr)
,BRANCH =YES rype: SVC or branch entry
,BRANCH =NO Default: BRANCH = NO.
The parameters are explained as follows:
FUNC =LISTEN
FUNC =PROCESS
FUNC = NOTIFY
FUNC=DELETE
FUNC = function
Specifies the type of function that the caller requires.
LISTEN specifies that events may be qucued for the address space of the requester. It scts the
user from either STATE=IDLE or STATE=STOP-NEW-DATA into STATE= LISTEN.
Initially, when the STATE=IDLE and LISTEN is invoked, register 1 (upon return) will contain
an identifier that the Association Manager component assigned to the address space of the
requester. This ID should be quoted on all other function requests that use the ID parameter.
PROCESS requests processing of the first queued event, if any.
NOTIFY requests the Association Manager component to post an ECB when an event occurs.
Notification 1s immecdiate if one or more cvents are already queued. The ECB must be
reinitialized and the NOTIFY function reinvoked in order to be notified again.
DELETE deletes the LISTEN request for one of the following:
-~

Inc. Appendix B. SLCN Macros B-15



¢  Everything but termination requests (TYPE = EP; the state is set from STATE = LISTEN
to STATE=STOP-NEW-DATA)
* Everything (I'YPE=ANY; the state is set from STATE=LISTEN to STATE=IDLE)

FUNC = function may be used to specify the function from a code within a register. This code
must be contained in the low-order byte of the register. The following codes are valid:

X’0l" - LISTEN
X’02" - PROCESS
X'04" - NOTIFY
X'08" - DELETE

SLNAME = system name
SSVT = ssvt addr
Identifies the SUPERLINK system that is to process the request.

SLNAME specifics the address of an 8-character area in storage containing the SUPERLINK
name. In-linc code generated by the macro and stored in the parameter list resolves this into an
SSVT address.

SSVT specifies a fullword containing the address of the SUPERLINK SSVT address.

ECB = ech addr
Specifies the address of the full-word event control block to be posted when an event pertaining
to association management occurs. This ECB must be initialized before the NOTIFY function
is invoked. This parameter is only required when FUNC = NOTIFY is requested.

TYPE=EP

TYPE=ANY

TYPE = type
Specifies the type of DELETE being requested. This parameter is required only when
FUNC=DELETE is coded.

EP specifies the end-point given event.
ANY specifies any cvent.

TYPE = type may be used to specify the type from a code within a register. This event type must
be contained in the low-order byte of the register. The following types are valid:

e  X'0l" - Connection end point given
e X'02 - Any

1D = identifier
Specifies the address of a full-word containing the identifier associated with the address space of
the requester. This identifier is assigned by the Association Manager and is used as an index in
a table to locate the correct entry. The JOBNAME and JOB ID of the requester are checked
against those contained in the entry for validity.

WKAREA =work area
Specifies the address of a 2-word work area to be used when a PROCESS request is made. The
low-order byte of the first word contains an event code. The previous byte may contain a
subcode as follows:
Hex Code Description
00 No event was queued.

] Connection end point was given; the second word contains the AID.

B-16 SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit SI1-0132



02

Termination requested; the subcode specifies the type of termination:
e X'00" - 'Graceful’

e X'0I" - Quick
e X'02 - Abort

BRANCH=YES

BRANCH=NO
Specifies that an SVC entry is to be performed (NO) or that a branch entry is to be performed
(YES) to the interface code.

Return Codes

The following is a list of return codes generated by the Association Manager Interface when it is called

by the S@@MREQ macro. The return code is returned in register 15; the qualifier is returned in

register 0:

Code
00
04

08

0C

10

Cray Research, Inc.

Description
Successful completion

Missing parameter

Qualifier:

Code Meaning

04 ECB address required for FUNC = NOTIFY
08 TYPE required for FUNC= DELETE

0C ID required .

10 WKAREA required for FUNC=PROCESS
14 SLNAME/SSVT required

Invalid: parameter

Qualifier:

04 Invalid code specified on FUNC

08 Invalid code specified on TYPE

0C Invalid identifier specified on ID

10 Invalid SSVT address

14 Invalid Association Manager Vector Table address in SSVT
Function requested has been rejected

Qualifier:

00 STATE is not recognized

04 STATE = IDLE

08 STATE = STOP-NEW-DATA

0C Association Manager component is terminating
10 STATE = LISTEN

14 STATE = LISTEN-PENDING

Association Manager failed or is inactive

Qualifier:

Code Meaning

00 Null address found when trying to link to Association Manager Interface

Appendix B. SLCN Macros

B-17



04 Association Manager STATE = INACTIVE

08 Association Manager GWA address in Association Manager vector table is null

0C Resp Dir header address in GWA is null

10 Resp Dir pointer base address in header is null

14 Resp Dir entries queue cell address is null

18 Responder not initiated by Association Manager
14 Insufficient space available for Association Manager

Qualifier:

Code Meaning

00 All entries in responder directory in use

04 No more elements for queue management cells

08 No more elements for RED entries

S@C@QADD Macro

name name: symbol. Begin name in column 1.
b One or more blanks must precede S@C@QADD.
S@C@QADD
b One or more blanks must follow S@C@QADD.
CPID =¢pid ¢pid: RX-type address or register (2)-(12).
,DATA =data data: RX-type address or register (2)-(12).
SQUEUE = queue queue: RX-type address or register (2)-(12).

The parameters are explained as follows:

CPID = ¢pid
Specifies the address of a 4-byte arca containing the ccll pool identificr of the qucue element ccll
pool. A queue clement will be obtained from this cell pool to hold the data in the request queue.

DATA =data
Specificd the address of the area that contains the queue element that is to be added to the queue.
Its layout is defined by the S@ C@QUE macro.

QUEUE = queue

Specifics the address of the request queue anchor. The data specified is inserted into a new cell
pool element. The cell pool element is then chained onto the request queue.

S@C@QREM Macro

name name: symbol. Begin name in column 1.
b One or more blanks must precede SGC@QREM.
S@CEQREM

B-18  SUPERLINK for MVS Logic Library Volume 2: Contro! Functional Unit S1-0182



b One or more blanks must follow S@C@QREM.

CPID =cpid ¢pid: RX-type address or register (2)-(12).
,TARGET = rarget targer: RX-type address or register (2)-(12).
SQUEUE = queue queue: RX-type address or register (2)-(12).

The parameters are explained as follows:

CPID = cpid
Specifies the address of a 4-byte area containing the cell pool identificr of the queuc clement cell

pool. The queuc element is returned to this cell pool once the data has been inserted into the
target arca.

TARGET = target
Specifies the address of the the area that is to contain the clement removed off the queue. The
layout of queue elements is defined by the S@C@QUE macro.

QUEUE = queue
Specifies the address of the work queue anchor.

S@C@QSWI Macro

name name: symbol. Begin name in column 1.
b One or more blanks must precede S@C@QSWI.
S@C@QSWI
b One or more blanks must follow S@C@EQSWI.
RQUEUE = request queue request queue: RX-type address or register (2)-(12).
MWQUEUE = work queue work queue: RX-type address or register (2)-(12).

The parameters arc explained as follows:

RQUELUE = request queue
Specifies the address of the request queue anchor.

WQUELUE = work queue
Specifies the address of the work queue anchor.

S@C@TIMR Macro

name name: symbol. Begin name in column 1.

b One or more blanks must precede S@SETIMR.

Cray Research, Inc. Appendix B. SLCN Macros B-19



S@S@TIMR

b One or more blanks must follow S@SE TIMR.

FUNC=SET Junction: register (0)-(10).
FUNC=CANCEL
FUNC = function

,ECB = timer ecb timer ecb: RX-type address or register (2)-(12).
JTIME =interval interval: RX-lype address or register (2)-(12).
SLNAME = system name system name: RX-type address or register (2)-(12).
SSVT = ssvt address ssvt address: RX-type address or register (2)-(12).
WME=1 ctrl addr: RX-type address or register (2)-(12).

MF = (Ectrl addr)

The parameters are explained as follows:

FUNC=SET
FUNC=CANCEL
FUNC = function
Specifies the time interval is to be set or cancelled.

If SET is requested, the specified ECB is posted when the specified TIME has expired if it is not
cancelled. If a register is specified, the function code must be contained in the low-order byte of
the register. The following codes are valid:

e C§-SET
e C(CC’'-CANCEL

ECB = timer ecb .
Specifies the address of the ECB that is to be posted when the time interval expires. This
parameter is only required when FUNC=SET is coded.

TIME = interval )
Specifies the time interval in seconds that is to expire before the user’s ECB is posted. This
parameter is only required when FUNC=SET is coded.

SLNAME = spstem name
SSVT = ssvt address
Identifies the SUPERLINK system that is to process the request.

SLNAME specifies the address of an 8 character area in storage that contains the SUPERLINK
name. In-line code generated by the macro and stored in the parameter list resolves this into an
SSVT address.

SSVT specifies a fullword containing the address of the SUPERLINK SSVT address.

MF=L
MF = (E,ctrl addr)
Specifies alternative forms of the macro.

L is used to specify the list form and (E,ctrl addr) specifics the exccute form.

B-20  SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit S1-0182



~

Message Processor Macros

S@@MDEF Macro

Notes

When the GML-encoded messages are formatted by DCF/SCRIPT they are converted to specifications
of S@@MDEF macros. All macro paramcters are positional.

The S@ @ MDEF macro instruction is specified as follows:

name name: symbol. Begin name in column 1.
b One or more blanks must precede S@@MDEF.
S@@MDEF
b One or more blanks must follow S@ @& MDEF.
msg number msg number: decimal digits.

Range: 1 to 9999

Severity severity: Single character
Jmessage line message line: This is of the form (text,var), where rext is a quoted character

string and var is a decimal integer enclosed in parentheses. The var
subparameter may be omitted.

Note: The two subparameters, as well as this parameter, may be repeated.

The parameters are explained as follows:

msg number
Specifies a unique 4-digit identifier for the message.

severity
Specifies a 1-digit severity indicator associated with the message. It is recommended that the
traditional values (I, W, E, and so on) be used.

message line
Specifies a message line in terms of literal text and variable portions.

Each complete parameter enclosed in parentheses represents a complete line of the message. If
a message line contains variable parts, the whole line is defined by one or more fixed text portions
separated by subparameters specifying the length of a variable part. The position of the variable
lengths in the macro identifies the position of the variable text in the message relative to the
surrounding fixed text.

If a message consists of more than one line, more than one parameter is coded.

The S@ @ MDET macro expands to a message data structure; the message structure consists of an
index section and a data section. The two scctions are generated as two CSECTS. The name of the
CSECT that contains the index section is the label used on the first S@ @ MDEF macro encountered
in the list. If the first macro has no label, a default label of SLNDEX is used.

Cray Research, Inc. Appendix B. SLCN Macros B-21



Restrictions

The following is a list of restrictions that apply when using the S@ @ MDEF macro:

e  The messages formatted by DCF/SCRIPT should be contained in sequential order within the
members in the *“Messages” library.

e  Each line of text is restricted to 60 bytes. This applics to both single and multi-line messages.

e There is a limit of 50 variables per mcssage.

Example
The following example shows a two line message with a variable in  the first line of the message:
SaaMDEF 1234,1, X
(*THE VARIABLE IS ',(3),' THREE BYTES LONG'), X

("THIS IS THE SECOND LINE OF THE MESSAGE')

S@@MSG Macro

The S@@MSG macro is available to all components within the SUPERLINK/MVS product and is
used to invoke the message processing service. During initialization processing within SLCN, the
message processing service routines are loaded and anchored from the Global Service Table (GST).
There are four different forms of this macro: standard, list, format and execute. Each of these formats
is described in detail in the following subsections.

S@@MSG (Standard Form)

The standard form of.the S@@ MSG macro instruction is specificd as follows:

name name: symbol. Begin name in column 1.
b One or more blanks must precede S@ @ MSG.
S@@MSG
b One or more blanks must follow S@@ MSG.
message number message number: register (2)-(12).
LCOMPID = component id component id: character string of length 2
,TABLE = message table message table: RX-type address or register (2)-(12).
SLNAME = system name system name: RX-type address or register (2)-(12).
SSVT = ssvt address ssvt address: RX-type address or register (2)-(12).

,JTYPE=LOCATE Default: TYPE=WTO + LOG

,TYPE=FORMAT

JYPE=WTO

,TYPE=WTO + LOG

JYPE=WTOR

JYPE=WTOR ~ LOG

JYPE=LOG

VAR = (variable texr) variable text: RX-type address or register (2)-(12). One or more values may

be coded, separated by commas.

,ROUTCDE = (routing code) rouring code: decimal digits, 1-16 or register (2){12). A list of integers may

B-22 SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit S1-0182



£-9 SORIA NDIS g Xipuaddy *2uf ‘4a4easay Aes)

*1sonba1 oY) sso001d 01 st jey) WdISAS NI U S Y soynudp]

SS24ppD 1455 = LASS
aumu was (s = JINYN'IS

-1010wresed 1oquunu d3essow oYy £q poyIIUdPI
o8essow Sy sureIuOd 1By 3[qel dFessow Y1 JO SSIIPPe AYI SUTUTRIUOD pIOM-[N] B sOI103dg
a)qpy a3pssaw = JIAV L

-1910wrered (D110 241 uo
poy1dads sopod unnoi oY1 Suisn pansst 3q 01 ST YO LA\ 10 QLA © eyl £10ads YO LA\ PUe OLM

"198re) parsonbar Y3 st DOT ANITITINS AU 18Y) $oy199ds OO
*1081€1 poisanbal oy sI vare WINJdI §,19sn Sy eyl soydads | VINYO.]

"1981e1 parsanbas sy 01 indino pue panreuuio) st sfessow
oy ‘suondo ay) Jo 1821 9y} J0,] "] J9SIRAI Ul A1jua dfessowl 9yl JO sSaIppe ayl swnial VIO

"Ino pawred 3q o} Sutssasoid jo ad£y oy soydadg
D01=3dAL
DOT+HOLAM =adAL
JOILAA=TJAL
DOT+ 0L =TdAL
OLAA=UddAL
LVINHOd =1dAL
JLVIOT=ddAL

(paaousBt st sotowrered siyy ‘payoads st JLVOOT1=ddAL
JI) "oxoew a8essaw sty Suisn s1 1ey) Jusuodwiod Ay} JO JSYIUSP! JIBIP-Z € soYIoadg

p1 wauoduios = IINOD
*o]qe) d3essowr 9y Ut aFessow B £JIUdpI Isnul oquuiny d3essaw dy |, -Lreulq ut pquinu
a8essow sy} surejuod jey) 193si3al e sarads Jo Jaquinu [eusidap 3BIp-p 01 -] anbiun e sayadg
Aaquinu 33pssau

:smoJ[o} se paute]dxo ore siojourered oy,

*(z21)-(z) 12151301 J0 ssaippe adK1-X Y -patp Sswi pa4p 3w = VAV
HIVDOT 10 LYINYO:4 tou §i anjea soowesed G Al 241 JI
(21)-(2) 10151821 10 ssaippe adL1-X 3 :vaIp Ssw v34p Sswt = VIAVITA"

‘papod st LVINYOd =ddALJI

(21)-(2) 10151821 10 ssaippe adA1-X ¥ g22 Ajdas o3 f)das = GOTYOIM®
patv Ajdas nepq

(2 1)-(z) 10151801 10 ssouppe adA1-v y18uay A)das Y18u3) Gdas = HI'THOIM'

(z1)«7) 1915181 10 ssaippe adh1-X Y ‘vasp Ajdas D240 A)dad = ATJHOIM'

papod s1 DOT +~ YOLM =TdAL 10 YJOIM =ddALJI

‘ssa1ppe ad£1-) ¥ -4ppv osap )
‘sewwod Aq paresedas ‘payioads aq Jppv 253p = DS (]
Kew s1o8awn Jo 151 v (21)-(7) 19151804 J0 91~ ‘suBIp [ewDdp *3po3 401d1153p (apos asap) = DSIA"

‘ssasppe ad1-X ¥ -4ppp apainos
‘sewwod £q paresedoas ‘payoads aq ippp 3painos =1(AD1.N0Y"



B-24

SLNAME specifies the address of an 8-character area in storage that contains the SUPERLINK
name. In-line code generated by the macro and stored in the parameter list resolves this into an
SSVT address. :

SSVT specifies a full-word containing the address of the SUPERLINK SSVT address.

VAR = (variable text)

Specifics the addresses of message variables that are to be inserted into the message.

"The values coded on the parameter arc positional; each variable represents the corresponding
variable ficld within the message text. The user’s variable data may be preceded by a halfword
containing the length of the variable data. If the data length is zcro, the parameter area in the
message is padded with spaces. If the data length is not specified, the default length is the
maximum permissible sizc of the varable defined in the message table entry. The maximum
number of variables permitted is 50.

ROUTCDE = (routing code)
ROUTCDE = routcde addr

Specifies the routing code or codes to be used for the WTO or WTOR.
This parameter may be specified in one of three ways:

e A list of decimal integers (each between 1 and 16) enclosed in parentheses; the list may
contain only one integer.

¢ An RX-type address which points to a halfword containing a routing code.
® A register containing the address of a halfword; the halfword contains the routing code.

The routing codes are as follows:

1 Master console action 9 System security

2 Master console information 10 System error/maintenance

3 Tape pool 11 Programmer information

4 Direct access pool 12 Emulators

5 Tape library 13 Reserved for customer use

6 Disk library 14 Reserved for customer use

7 Unit record pool 15 Reserved for custorer use

8 Teleprocessing control 16 Reserved for future expansion

DESC = (desc code)
DESC = desc addr

Specifies the descriptor code or codes to be used for the WTO.
This parameter may be specified in one of three ways:

e A list of decimal integers (each between 1 and 16) enclosed in parentheses; the list may
contain only one integer.

e  An RX-type address which points to a halfword containing a descriptor code.
e A register containing the address of a halfword; the halfword contains the descriptor code.

The descriptor codes are as follows:

1 System failure 7 Application program/processor
2 Immediate action required 8 Out-of-line message

3 Eventual action required 9 Operator request

4 System status 10 Dynamic status requests

SUPERLINK for MVS Logic Library Volume 2: Control Functienal Unit S1-0182

N



5 Immediate command response 11 Critical eventual action required
6 Job status 12-16 Reserved for furure use

Note: Descriptor codes | through 6 and code 11 are mutually exclusive. Codes 7 through 10 can
be assigned in combination with any other code.

WTORPLY = reply area
Specifies the address of an arca into which the control program is to place the reply to the

WTOR.

WTORLTH = reply length
Specifics the length of the area pointed to by WTORPLY. Valid values are 1 through 115.

WTORECB = reply ech
Specifics the address of the ECB that the control program is to usc to indicate the completion
of the reply and the ID of the replying console. After the control program receives the reply, the

[ECB is updated as follows:

Length
(in
offset bytes) Contents
+0 1 Completion code
+1 2 Reserved
+3 1 Console ID in hexadecimal

RETAREA = msg area
Specifies the address of an area in which the formatted message will be returned to the user. The
area must begin with a halfword containing the maximum length of the user’s return area. Upon
return, the halfword contains the actual length of the message within the buffer. If the halfword
contains zcro, no data has been returned. This parameter is ignored if TYPE=LOCATE and
is mandatory if TYPE = FORMAT. For all other types, this paramcter is optional.

The macro will create a parameter list and call the message processing service to perform the necessary
action.

Return Codes

The following is a list of return codes that will be generated by the message processing service when it
is called by the S@@ MSG macro. The return code is set in register 15 and the qualifier is set in register
0. (Ifa WT'O;WTOR call is to be made, register 1 will contain the WTO;WTOR identification

number.)
Code Description
00 Successful complction
04 Partial completion
Qualifiers:
Code Meaning
04 Message to LOG was truncated
08 Message to WTOR was truncated
12 Message to WTOR + LOG was truncated
16 Logging is inactive (where TYPE=WTO + LOG, the WTO was performed but

the logging was not)

Cray Research, Inc. Appendix B. SLCN Macros B-25



08

12

16

S@

-~

The requested processing failed; register 0 indicates reason

Qualifiers:

00 Unable to locate the specificd message number
12 S@@LOG GET call failed

16 S@ @ LOG QUELE call failed

20 Logging is inactive (TYPE = LOG only)
Bad parameter; register 0 indicates parametcers in error
Qualifiers:

Code Meaning

00 FUID

04 COMPID

08 VAR

12 ROUTCDE

16 WTORPLY

20 WTORLTI

24 WTORECB

28 SLNAME /SSVT

32 TABLE

Bad return code from WTO/WTOR; register 0 contains the WTO/WTOR return code.

@MSG Restrictions

The following restrictions apply when using the S@ @MSG macro.

Each line of text is restricted to 60 bytes. This applies to both single and multi-line messages.
Each text message has a maximum of 50 variablcs.

For TYPE=WTOR and TYPE=WTOR + LOG, the total text permitted is 112 bytes. Multi-line
messages arc¢ compressed into a single-line WTOR. When text is being compressed and the limit
1s reached, the rest of the text is truncated and an appropriate return code is set. (If
TYPE=WTOR + LOG and text for WI'OR is truncated, the text in the log is also truncated).

For TYPE=WTO and TYPE=WTO + L.OG (also TYPE=10G and TYPE=WTOR + 1.OG,
if log output is going to the console), there is a limit of 10 lines of text in multi-line messages for

all unauthorized programs. For authorized programs (supervisor state, protection key 0-7, or AP
authorized), the limit is 255 lines of text.

S@@MSG (List Form)

The list form of the S@ @ MSG macro instruction is used to construct a control program parameter
list.

The list form of the S@ @ MSG macro instruction is specified as follows:

name name: symbol. Begin name in column 1.

One or more blanks must precede S:& & MSG.

One or more blanks must follow S& & MSG.

B-26 SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit S1-0182



message number
,COMPID = component id
,TYPE=LOCATE
,TYPE=FORMAT
,JTYPE=WTO
JTYPE=WTO + LOG
,TYPE=WTOR
,TYPE=WTOR+ LOG
,TYPE=LOG

JVAR=(,..)

,ROUTCDE = (routing code)

,DESC = (desc code)

ME=L

The parameters are described under
the standard form of the macro
instruction, with the following
exception:

MF=L
Specifies the list form of the

S@@MSG macro instruction.

S@@MSG (Format Form)

message number: register (2)-(12).
component id: character string of length 2

Default: TYPE=WTO + LOG

Note: This parameter is used to reserve space for one or more parameter
values.

routing code: decimal digits, 1-16. A list of integers, separated by commas,
may be specified.

descriptor code: decimal digits, 1-16 or register (2)-(12). A list of intcgers may
be specified, separated by commas.
desc addr: RX-type-address.

The format form of the S@ @ MSG macro instruction is used to insert fixed run-time parameters, such
as SSVT or TABLE, into a control program parameter list gencrated by the list form of the macros.

The format form of the S@ @ MSG macro instruction is specificd as follows:

name
b
S@@MSG
b

name: symbol. Begin name in column 1.

One or more blanks must precede S@ @& MSG.

One or more blanks must follow S@ @& MSG.

message number
LCOMPID = component id
,TABLE = message table

SLNAME = system name
SSVT = ssvt address

,TYPE=LOCATE
,TYPE=FORMAT
JYPE=WTO
,JTYPE=WTO - LOG
,JTYPE=WTOR
JYPE=WTOR ~ LOG

Cray Research, Inc.

message number: register (2)-(12).
component ID: character string of length 2
message table: RX-1ype address or register (2)-(12).

system name. RX-type address or register (2)-(12).
ssvr address: RX-1ype address or register (2)-(12).

Default: TYPE=WTO - 1.0G

Appendix B. SLCN Macros B-27



,['YPE=LOG

VAR = (variable text) variable text: RX-type address or register (2)-(12). One or more values,

separated by commas, may be specified.

,ROUTCDE = (routing code)
LROUTCDE = routcde addr

routing code: decimal digits, 1-16 or register (2)-(12). A list of integers,
separated by commas, may be specified. A list of registers may not be
specified.

,DESC = (desc code)

descriptor code: decimal digits, 1-16 or register (2)-(12). A list of integers may
,DLSC = desc addr

be specified, separated by commas. A list of registers may not be specified.
desc addr: RX-type address.
routede addr: RX-type address.

,WTORPLY =reply area reply area: RX-type address or register (2)-(12).

,WTORLTH =reply length reply length: A-type address or register (2)-(12).
Default: L'reply area

JWTORECB = reply ecb reply ecb: RX-type address or register (2)-(12).

JLRUETAREA = msg area msg area: RX-type address or register (2)-(12).

,MF = (F,ctrl addr) ctrl area: RX-type address or register (2)-(12).

The parameters are described under the standard form of the macro instruction with the following
exception:

MF = (F,ctr! addr)
Specifies the format form of the S@ @ MSG macro instruction using a remote control program
paramcter list.

S@@MSG (Execute Form)

The exccute form of the S@ @ MSG macro instruction uses a remote control program paramcter list.
‘The paramecter list can be gencrated by the list form of the macro and modificd by the format form of
the macro. The parameter list may also be modificd by the execute macro form.

The exccute form of the S@@MSG macro instruction is specificd as follows:

name name: symbol. Begin name in column 1.
b One or more blanks must precede S@& & MSG.
S@@MSG
b One or more blanks must follow S@ @ MSG.

message number
LCOMPID = component id
,TABLE = message table

SLNAME = system name
SSVT = ssvt address

,TYPE = LOCATE
,TYPE = FORMAT
TYPE=WTO

JYPE- WTO - LOG
JTYPE=WTOR
JYPE=WTOR~-LOG
JTYPE=LOG

message number: register (2)-(12).
component I1D: character string of length 2
message table: RX-type address or register (2)-(12).

system name: RX-type address or register (2)-(12).
ssv1 address: RX-type address or register (2)-(12).

Default: TYPE = WTO - LOG

SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit S1-0182



VAR = (variable text)-

,ROUTCDE = (routing code)
,ROUTCDE = routcde addr

,DESC = (desc code)
,DESC = desc addr

MWTORPLY =reply area
JWTORLTH =reply length

JWTORECB =reply ecb
RETAREA =msg area

MF = (E,ctrl addr)

variable text: RX-type address or register (2)-(12). One or more values,
separated by commas, may be specified.

routing code: decimal digits, 1-16 or register (2)-(12). A list of integers,
separated by commas, may be specified. A list of registers may not be
specified.

descriptor code: decimal digits, 1-16 or register (2)-(12). A list of integers may
be specified, separated by commas. A list of registers may not be specified.
desc addr: RX-type address.

routcde addr: RX-type address.

reply area: RX-type address or register (2)-(12).

reply length: A-type address or register (2)-(12).
Default: L'reply area

reply ecb: RX-type address or register (2)-(12).
msg area: RX-lype address or register (2)-(12).

ctrl area: RX-type address or register (2)-(12).

The parameters are explained under the standard form of the macro instruction with the following

exception:

MF = (E,ctr{ addr)

Specifics the exccute form of the S@ @ MSG macro instruction using a remote control program

parameter list.

a S@@MSGS Macro

The S@ @ MSGS macro is available to all components within the SUPERLINK MVS product and is
uscd to locate a specified message entry within a message table. It generates in-line code to locate the
entry, using only registers (14) through (1), and it does not require a save arca. Upon return, registers

(2) through (13) remain unchanged.

The S@&@MSGS macro instruction is specified as follows:

name
b
S@@MSGS
b

name: symbol. Begin name in column 1.

One or more blanks must precede S@ & MSGS.

One or more blanks must follow S@ @ MSGS.

message number

,message table

message number: decimal digits or register (2)-(12).

message table: RX-type address or register (2)-(12).

The paramecters are explained as follows:

message number

Specifics a unique 4-digit identifier of the message contained within the specificd message table.

message table

Cray Rescarch, Inc.

Appendix B. SLCN Macros B-29



Specifies a full-word containing the address of the message table that is to be searched for the
message.

Return Codes

The following is a list of return codes that are returned upon exit from this macro call. The return code
is set in register 15.

Code Description
00 Successful completion, the address of the located message is in register |
08 IFailed to locate the message within the table

16 Invalid table address

S@@SVC Macro

This macro is used to pass the paramcters required by the SVC. The first parameter is positional. The
others are keyword parameters.

The SC_CIOT (S@CICIOT mapping macro) must be addressable when the S@@SVC macro is
issued because the SVC number 1s obtained from this control block.

The S@@SVC macro instruction is specified as follows:

name name: symbol. Begin name in column 1.
b One or more blanks must precede S@@SVC.
s@@svce
b One or more blanks must follow S@&SVC.
p
R
SERYV = service service: symbol.
SSVT = ssvt address ssvt address: register (0)-(15).

Default: SSVT =(15)
Note: This parameter is only relevant if R is also coded.

JOFFSET = plist offset plist offset: symbol or decimal digits.
Range: 0 to 255.

Note: This parameter is valid only if P is also coded.

L,ESTAE=YES Default: ESTAE = YES
JESTAE=NO

The parameters are explained as follows:
l)
R
Indicates the location of the SC_SSVT address.

B-30 SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit SI1-0182



Cray Research, Inc.

Coding “R” specifies that the SC_SSVT address is contained in a register.

Coding “P” specifies that the SC_SSVT address is contained within a parameter list.

SERY = service
Specifies the service name. The following names are currently defined:

¢ AMGR
e CASE

SSVT = ssvt address
Specifies the register which contains the SC_SSV'T address.

OFFSET = plist offset
Specifies the offset in the entry paramcter list of the SC_SSVT pointer.

ESTAE=YES
ESTAE=NO
Specifies whether or not an ESTAE environment should be established by the SVC.

Note: The S@@SVC macro expands into in-linc code that loads a one-word parameter list into

register 0. Optionally, register 15 is also loaded with the address of the SC_SSVT. Register 1 is left

unchanged.

Return Codes

When control retums to the program that issued the SVC, byte 0 in register 15 contains one of the

following retumn codes:

Code Meaning

0 Successful completion

4 SVC routinc unable to obtain virtual storage for its work arca. Byte 3 in R15 contains the
return code from GETMAIN.

8 SVC routine unable to establish an ESTAL environment. Byte 3 in Register 15 contains
the return code from ESTAEL.

C The SC_SSVT control block could not be located.

10 The cntry point of the global service routine could not be located.

14 The ESTAE routine has successfully recovered an abnormal termination.

Appendix B. SL.CN Macros

B-31



INDEX






A

A-ASSOCIATE indication paramters 8-3
AUTHI1 8-3

AUTH2 8-3
AUTH3 8-3
IDENT 8-3
IDEN2 8-3
IDEN3 8-4
TEXT 8-4

Address Space Vector Table (SC_SLASVT) 1-5
AM_APD
See Association Manager application program
directory (AM_APD)
AM_CDT
Sce Association Manager Controller Data Table
(AM_CDT)
AM_controller
See Association Manager controller
subcomponent (AM_controller)
AM_exit
See Association Manager User Exit Handler
(AM_cxit)
AM_GWA
Sec Association Manager Global Work Arca
Index (AM_GWA)
AM_IND
See Association Manager initiator directory
(AM_IND)
AM_interface
See Association Manager Interface (AM_interface)
AM_PCT
Sec Association Manager Processor Control Table
(AM_PCT)
AM_processor
See Association Manager Processor
subcomponent (AM_processor)
AM_RLED
See Association Manager Responder Directory
(AM_RLED)
AM_timer
See Association Manager Interval Timer
(AM_timer)
AM_VT
See Association Manager Vector Table (AM_VT)
Applications Functional Unit (SLAPPL)
description -1

Cray Research, Inc.

Index

Association Manager application program directory
(AM_APD) 8-9
Association Manager component  8-1
description 1-3, 8-1
services  8-2
offered to application entity initiators on
COS 83
offered to application entity responders on
MVS 8-4
subcomponent flow §-1
subcomponents  8-1
Association Manager controller subcomponent
(AM_controller) 8-7
Association Manager Interface
(AM_interface) 8-56
Association Manager Interval Timer
(AM_timer) 8-60
Association Manager Processor subcomponent
(AM_processor) 8-18
Association Manager Controller Data Table
(AM_CDT) 8-9
Association Manager controller subcomponent
(AM_controller)
data arcas 8-9
Association Manager application program
directory (AM_APD) 8-9
Association Manager Controller Data Table
(AM_CDT) 89
Association Manager Global Work Arca Index
(AM_GWA) 89
Association Manager Initiator Dircectory
(AM_IND) 8-9
Association Manager Processor Control Table
(AM_PCT) 8-9
Association Manager Responder Directory
(AM_RED) 8-10
Association Manager Vector Table
(AM_VT) 8- 10
description  8-7
interfaces  8-9
module structure  8-7
recovery 8-10
services  8-8
Association Manager Global Work Arca Index
(AM_GWA) 89
Association Manager initiator dircctory
(AM_IND) 8-9
Association Manager Interface (AM_interface)

Index X-1



data areas 8-57
description  8-56
interfaces  8-57
module structure 8-56
Association Manager Interval Timer (AM_timer)
description  8-60
interfaces  8-60
module structure  8-60, 8-66
services  8-60
Association Manager Processor Control Table
(AM_PCT) 8-9
Association Manager Processor subcomponent
(AM_processor)
data areas 8-21
description  8-18
interfaces  8-21
module structure  8-18
recovery 8-21
services  8-19
Association Manager Responder Directory
(AM_RED) 8-10
Association Manager User Exit Handler (AM_exit)
description 8-66
interfaces 8-66
services 8-66
Association Manager Vector Table (AM_VT) 8-10

C

Command parser syntax table (S@CO0040) 5-5
Common service arca (CSA)
description  1-5
CONFIRM scrvice primitive  7-3
data arcas 7-3
Management Interface Control Table
(MI_MICT) 7-4
Management Interface Request Element
(MI_MRQE) 7-4
Managment Interface Connection Manager
Control Block (MI_MACB) 7-4
interfaces  7-3
Confirmed services 7-2
Control Functional UNIT (SLCN)
components 1-2
Association Manager component  8-1
Functional Subsystem Manager
component  4-1
LOG Processor component  6-1
Management Interface component  7-1
Message Processor component  9-1
Options Processor component  3-1
Product Management component  2-1
Product Opcrator component  5-1
SVC component  10-1

X-2 SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit

User Resource Manager component  11-1
data areas 1-5
Address Space Vector Table
(SC_SLASVT) 1-5
Control Initialization Options Table
(SC_CIOT) 1-5
Global Service Table (SC_GST) 1-5
Operator command. buffer (SC_OPCB) 1-6
Subsystem Vector Table (SC_SSVT) 1-5
description  1-2
Control Initialization Options Table
(SC_CIOT) 1.5
Cross-memory communications subcomponent
See Functional Subsystem cross-memory
communications subcomponent (S@CF0100)
CSA
See Common service area (CSA)

D

D@C9125 8-18
DISPLAY command 5- 3

E

Exit points
S@CCOEOM 2-4
S@CCOEOT 2-4
S@CCOrss 2-4
S@CCo0S34 2-4

F

I'inite-state machine (FSM)
AM _interface  8-56
AM_processor  8-19
FM_FSWQE
Sce FSS work request clement (FM_FSWQE)
FM_STAG
~ See Staging arca buffer (FM_STAG)
FSI
See Functional Subsystem Interface (FSI)
FSI parater list (I'SI) 4-22
FSM
See Finite-state machine (FSM)
I'SS Manager component
Sce ?
I'SS Manager control subcomponent
Sce Functional Subsystem Manager control
subcomponent (S CIF0000)
I'SS work request clement (FM_FSWQE)  4-22

S1-0182



~

Functional Subsystem cross-memory

communications subcomponent

(S@CF0100) 4-20
data arcas 4-21

FSI parameter list (SC_FSIP) 4-22
FSS work request element
(FM_FSWQE) 4-22

S@@CSERV parameter list

(SC_SERV) 4-22

Staging arca buffer (FM_STAG) 4-22

interfaces  4-21

S@@CSERV macro  4-21

S@@FIREQ 4-21

module structure 4-20

recovery  4-22
services  4-20

Functional Subsystem Interface (FSI) 4-2
Functional Subsystem Manager component

description  1-3

Functional Subsystem Manager control
subcomponent (S@CF0000) 4-1

data areas 4-3
interfaces 4-2

module structure 4-1

recovery  4-4
services  4-2

G

Global Secrvice Table (SC_GST)

1

1-5

INDICATION service primitive 7-2

INIT order 4-2
Initialization

Association Manager component

components  2-2
FFunctional Units
Initialization options

Initialization Options Table (IOT) appendages 3-1
Initialization Options Table (SC_CIOT) 3-3
Intialization control blocks (formation) 3-1

Introduction 1-1

10T

See also Initialization Options Table (I07T)

appendages
module structure

Cray Research, Inc.

4-1
3-1

3-1

8-8

L

LOG element (LOGLE) 6-1, 6-9
LOG Processor component

description  1-3

LOGE
See also LOG ¢lement (LOGE)

M

subcomponents  6-1

LOGE Handler subcomponent
Output of messages subcomponent  6-8
LOGE Handler subcomponent

data areas 6-2
interfaces 6-2
recovery 6-2
services 6-2

Macros

data areas 5-4

Command parser syntax table
(S@CO0040) 5-5

6-2

6-2

Opcrator command buffer (SC_OPCB) 5-4

Opcrator Control Table (SI_OPCT) 5-4

interfaces 5-4
S@@CSERV 4-21
S@eFIREQ 4-21
§ @LOG 6-2,6-9
CMDEF  9-2
MREQ 8-5
MSG 9-2
MSGS 9-2
SVC 10-2
CTI\IR 8-60
CSVEW  10-2
COURM 11-
O:\DFF 3--
S

A\

@@@@@

oC
O
U
ﬁ
gs!

OKDIT 5-4
OLDEF 5-4
OPDEF 5-4
ICIOT 10-2
9EXIT 8-66
9UX1 8-66

IUX2 8-66

ERAEREEEREEEEEERE®® (@)( @

NALLNNNNNANLNLNAN L LN
O(‘)O(’)(‘)OO(‘)OOOO

DE)
@)
O
o
A
(967
.40
O\
(@,

®G

S& CIUX4 8-66

.\lanagcmcnt Interface component

description  1-3, 7-1

module structure  7-1

Management Interface Connection Manager Control

Block (MI_MACB) 7-4
Management Interface Control Table

(MI_MICT) 7-4

Index

X-3



Management Interface Request Iilement
(MI_MRQL) 7-4
Message Element (MII_ME) 9-2
message index (MH_MI) 9-2
message index entry (MH_MIE) 9-2
Message processing parameter list (MII_MPPL) 9-2
Message Processor component
data areas 9-2
Message Element (MII_ME) 9-2
message index (MH_MI) 9-2
message index entry (MH_MIE) 9-2
message processing parameter list
(MH_MPPL) 9-2
description 1-3, 9-1
interfaces  9-2
module structure 9-1
recovery  9-3, 11-2
services 9-2
MII_ME
See Message Element (MH_ME)
MH_MI
See message index (MH_MI)
MH_MIE
See message index entry (MH_MIE)
MII_MPPL
See Message processing parameter list
(MH_MPPL)
MI_MACB
See Management Interface Connection Manager
Control Block (MI_MACB)
MI_MICT
See Management Interface Control Table
(MI_MICT)
MI_MRQE
See Management Interface Request Element
(MI_MRQE)
MSG command 5-3
MSG order 4-2

N

Network Access Method Functional Unit (SLNET)
description  1-1
Network Initialization Options Table
(SC_NIOT) 3-3
rccovery 3-4
Nonconfirmed services  7-2

X4 SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit

0

Operator command buffer (SC_OPCB)
Operator commands
DISPLAY 5-3
MSG 5-3
SEND 5-3
SET 5-3
START 5-3
STOP 5-3
SWITCH 5-3
Operator Control Table (SI_OPCT) 5-4
Options Processor component
description 1-2, 3-1
Options validity checks 3-1
Output of messages subcomponent (S@C2200) 6-8
data areas 6-9
interfaces  6-9
module structure 6-8
recovery 6-9
services 6-8

1-6, 5-4

P

Paramcter library 1-3
Problem program mode 10-1
Product Management component
description  1-2, 2-1
module structure  2-1
Product Operator component
description  1-3, 5-1
module structure  5-1
Provider-initiated services  7-2

Q

Qucuc anchors  8-5
Qucue clements  8-5
Uscr Exits 8-6
Qucue management facility 8-5

R

Recovery
components  2-2
IF'unctional Units  4-1
interfaces  2-2
S@CCOEOM 2-4
SECCOLEOT 2-4
S@CCOFSS 2-4
S&CC0S34 2.4

~

S1-0182



&X Xapuj

0Z-S ‘1-S  0L000DZS
81-C ‘I-¢  090000&S
91-¢ ‘1-¢  0S000D TS
c-C A10A0001
(0+000D2S)
dlqel xejuss Josied pucuuuo:) ose 033
£1-6 ‘I-¢  0r000D TS
1-S ‘1-S  0£000D2S
01-€ ‘1-¢  02000DZS
8-S ‘I-¢  01000DZS
9-¢ ‘I-¢  00000D2S
$Z-6 ‘TS LMS00DTS
82-6 ‘T-S  YLS00DTS
0€-S ‘TS dLSO0DZS
€S ‘;- ANS00D DS

¢ -g SIIAIDS
9 uonduosop
+€-¢ ‘TS OSIHN00DZS
TTS ‘1-S  S1A00D2S
0F0SOD2S
0£0SOD2S
020S0D¥S
010s03@s
s J]GdOJ"b
s J9d lOI)"’
v JAAN0DZS
001Ad0D®S
060A0DDS
080d0D®S
0.0d0DWS
090d0DZS
0S0d0D2S
0P0A0D DS
0£0d0D®S
020a0D®S
010d0D2S
t-¢  J:1dD0D%S
t-¢  onrw JUAVOIPBS
Z-L  sodAy oannuaud 9914108
T-L  S901AI0s pojeriul-1opiaoid
T-L S9OIAIDNS pOULIJUOIUOU
L S:)D!AJOS pau.uguoo
L SIJIAIDS
08001D@)S

V\V\lﬂlﬂ'ﬁmwmmlﬁ

1
I
I-
I-
I-
I-
I
!
I
I-

-L  09001D%S
0500102
0r001D DS
0£001D%@S
020010%2S
01001D%2S
00001D7%S

L 0001D®S

I-
I
I
|

S S S S S S S S

¢

1
1
1
|
I-

~ 0 S

3

9
Y 0T 017104:)@5
0€-v '0z-v  0€1010DS
8Z-¥ ‘0z 0Z10:10PS

0L00IDDS

*2u| ‘Yyaaedsay fes)

9Z-+ ‘0T-+ 01104028
(00]0:]:)@ S) 1uauodmoaqns SUO!]ED!UH[I.RUOD
.(JOILIDI.U-SSO.IO umls,(sqng [BUO[lJun:] OS[D QDS
+Z-+ '0c-+  00104D2S
-+ 0r004D72S
-+ 0£00:1D02S
-+ 01004D072S
(00004D% ) wduodwoogns
[OJIUO.) JOﬁBUEI\’ u.mls,(sqng |euogpun:] OS[B :):)S
I-+ 00001D0%2S
T1-2'01-T ‘8- ‘9-T ‘1-T  0000DDDS
[-11 omew N YN0DDDS
P11 'T-11 IWYN0DDDS
-7 LY.L0DD2S
82-7 ‘92-C ‘v ‘1-T  ££S0DDDS -
F1-01 ‘1-01 YAS0DDZS
1-01 WAS0DDDS
Z1-01 “01-01 ‘8-01 ‘1-01 smsoo:ms
9-01 ‘+-01 ‘1-01 DAS0DD% m
0Z-Z ‘1-C  1SS00D2S
81-C ‘91-C ‘1-C  I1SS0DDWS
$1-C '1-C INIW0DD DS
G- Ssedle Bmp
T€-T '0€-T ‘+-T ‘1-T  SS:A00D2S
z-z ‘S:):)!AJOS
TH-T '0F-T '8€-T ‘9€-T ‘v€-C ‘1-¢  1SA0DDDS
$-¢ ALI00DDS
22T T 1T 1000028
+2-T ‘v '1-T IN0d0DDVS
701 onew MIASIDDS
09-§ O1RW YIN]LDDDS
701 onerw DASB S
216 ‘16 0SONT S
01-6 ‘16 00ND DS
6'1-6 SION®®S
6 ‘16 0I0N@®S
6‘1-6 000IN® @S
onEw SOSIND S
76 OPEW.OSINW DS
G- onew OPYINT LS
-6 orw dqm\@@s
6-9 ‘79 omew HOTVAS
_ 12t OFAIIBDS
¢y (AMAS DY) 15 1pwered AYASOD VS
12+ AdASODES

8-
9-
¥
6

6

S

€-L oantuud 531A15 FJSNOJSIY
¢~ anuwud 2o1a1s 1$1NQTY
¢-g (DY) ononb isonboy
[-¢ wouodwooqns [o1u0d 133euejy SS:1
0z Iuosuodwooqgns
SUONEIIUNWWIO) AIOWOW-SSOID
I-¢ swouodwoogns



S@CICIOT macro  10-2
S@CIDATA 3-1, 3-20
S@CIFLAG 3-1

SGCIGETM 3-1,3-18

Sa,C1000

('J(,IOIO
QC(‘]OZO
S@C1030
S@C1040
S@C1050
S@C1060

data areas 3 3
description  4-1
interfaces 3-2

feed-back codes

return codes  3-3

services

S@C2100
S@C2200
S@C2210
S@C2220
S@C2230
S@C2240
S@C2250

3-2

6-4, 6-6

6-8, 6-10

6-8, 6-12

6-8, 6-14

6-8, 6-16

6-8, 6-18, 6-20
6-8, 6-22

S@CIEXIT macro 8-66
S@CIUXAM 8-66, 8-68
S@CIUXn macros 8-66

S@C9000 8-7, 8-12
S@C9010 8-7, 8-14
S@C9020 8-7, 8-16
S@CI100 8-18, §-22
S@CI110 8-18, 8-24
S@C9121 8-18, 8-26
S@C91212 8-18, 8-38
S@C9123 8-18, 8-28
S@C9123B  8-30
S@C9124 8-18, 8-32
$@C9125 8-34
S@C9128 8-18, 8-36
S@DCIIA 818, 8-40
S@CI4C  8-18, 8-42
S@CI14) 8-18, 8-44
S@WCII4K  8-18, 8-46
S@CII4R  8-18, 8-48
S@CI14S  8-18, 8-50
S@CII14T  8-18, 8-52
S@CY14X  8-18, 8-54
S@C9200 8-56
S@C9300 8-60, 8-62
S@C9310 8-60, 8-64
SC_CIOT

See Control Initialization Options Table

(SC_CIOT)

SC_I'SIP

Sece FSI parater list (FFSI)

SC_GST

See Global Service Table (SC_GS'T)

33

SC_OrcsB

‘See Operator command buffer (SC_OPCB)
SC_SERV

‘See S@@CSERYV parameter list (SC_SERV)
SC_SSvT

See Subsystern Vector Table (SC_SSVT)
SC_URE

See User registration elements (SC_URE)
SEND command  5-3

- Service primitive types 7-2

CONFIRM 7-2,7-3
INDICATION 7-2
REQUEST 7-2
RESPONSE 7-3
SET command 5-3
SLoPCT
See Operator Control Table (SI_OPCT)
SLAPPL-
See Applications Functional Unit (SLAPPL)
SLASVT
See Address Space Vector Table (SC_SLASVT)
SLCN
See Control Functional UNIT (SLCN)
SLNET
See Network Access Method Functional Unit
(SLNET)
Staging area buffer (FM_STAG) 4-22
START command 5-3
STATUS order 4-2
STOP command 5-3
Subsystem Vector Table (SC_SSVT) I-5
SUPERLINK/MVS
Applications  1-1
Architecture  1-1
Control Functional UNIT (SLCN) I-1, 1-2
Network Access Method (SLNET) 1-1
SVC component  1-3, 10-1
User Resource Manager component  11-1-
SUPERLINK/MVS (Definition) 1-1
SV_ESTW
Sce SVC ESTAE work area (SV_ESTW)
SVC component
data areas 10-2
SVC ESTALE work area (SV_ESTW) 10-2
SVCCSVEW mapping macro  10-2
description 1-3, 10-1
interfaces 10-2
module structure  10-1
services 10-2
SVC ESTAE work area (SV_ESTW) 10-2
SWITCH coramand  5-3
command definitions  5-4
S@C():\I)IZF 5-4
@COCDEF  5-4
'(” OKDEF  5-4
COLDEF 5-
COPDEF 3

o\

® (s)(

S
S
S

X-6  SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit S1-0182



T

TERM order 4-2
Termination
Association Manager component  8-8
components  2-2
Functional Units 4-1
interfaces  8-4
termination order  8-4
abort 8-4, 8-9, 8-5
graceful  8-4, 8-9, 8
quick 8-4, 8-9, 8-5

U

User exits (Association Manager) 8-6
User registration clements (SC_URE)  1-5
User Resource Manager component
data arcas 11-1
Address Space Vector Table
(SC_SLASVT 11-2

Cray Research, Inc.

User Resource Element (SC_URE) 11-2
User Resource Manager parameter list
(SC_URM) 11-2
description 1-4, 11-1
interfaces 11-1
module structure  11-1
services  11-1

A

Validity checks (of Initialization options) 3-1

w

Work Queue (WQ) 8-5

Index

X-7



READER'S COMMENT FORM

SUPERLINK/MVS Logic Library Volume 2: Control Functional Unit SI-0182

Your reactions to this manual will help us provide you with better documentation. Please take a moment to
check the spaces below, and use the blank space for additional comments.

1) Your experience with computers: ____ 0-1year ___1-5years __ 5+ years
2) Your experience with Cray computer systems: ____0-1year_____1-5 years __5+ years
3) Your occupation: _____computer programmer ____ non-computer professional
_____other (please specify):
4) How you used this manual: ____inaclass ____as a tutorial or introduction __ as a reference guide
___fortroubleshooting

Using a scale from 1 (poor) to 10 (excellent), please rate this manual on the following criteria:

5) Accuracy 8) Physical qualities (binding, printing)
6) Completeness 9) Readability
7) Organization 10) Amount and quality of examples

Please use the space below, and an additional sheet if necessary, for your other comments about this
manual. If you have discovered any inaccuracies or omissions, please give us the page number on which
the problem occurred. We promise a quick reply to your comments and questions.

Name Address

Title A City

Company State/ Country
Telephone Zip Code

Today's Date




3N SIHL ONOTV 1ND

FOLD
I " NO POSTAGE
NECESSARY
F MAILED
IN THE
UNITED STATES |
] I
]
]
BUSINESS REPLY CARD — |
FIRST CLASS PERMIT ND 6184 ST PAUL MN _'-' l
POSTAGE WILL BE PAID BY ADDRESSEE N :
.}
=R Y ——
]
—
. ]
Attention: PUBLICATIONS ———
1345 Northland Drive
Mendota Heights, MN 55120
|
|
—_ _ _ —_
FOLD

STAPLE

)



READER'S COMMENT FORM

SUPERLINK/MVS Logic Library Volume 2: Control Functional Unit SI-0182

Your reactions to this manual will help us provide you with better documentation. Please take a moment to
check the spaces below, and use the blank space for additional comments.

1) Your experience with computers: ____ 0-1year ___1-5years ___ 5+years
2) Your experience with Cray computer systems: ____0-1year__ 1-5 years ____ 5+ years
3) Youroccupation: ____ computer programmer _____ non-computer professional
_____other (please specify):
4) How you used this manual: ____inaclass ____as atutorial orintroduction ____ as a reference guide
_____fortroubleshooting

Using a scale from 1 (poor) to 10 (excellent), please rate this manual on the following criteria:

5) Accuracy 8) Physical qualities (binding, printing)
6) Completeness 9) Readability
7) Organization 10) Amount and quality of examples

Please use the space below, and an additional sheet if necessary, for your other comments about this
manual. If you have discovered any inaccuracies or omissions, please give us the page number on which
the problem occurred. We promise a quick reply to your comments and questions.

Name Address

Title City

Company State/ Country
Telephone Zip Code

Today's Date




)

3NIT SIHL ONOTV LND

FOLD
| " " NO POSTAGE
NECESSARY
IF MAILED
IN THE
UNITED STATES I
—— |
]
]
BUSINESS REPLY CARD — |
FIRST CLASS  PERMIT KO 6184 ST PAUL MN __'- |
POSTAGE WILL BE PAID BY ADDRESSEE ] { /A\
]
=AY ——
. ]
—_—
]
Attention: PUBLICATIONS ——
1345 Northland Drive
Mendota Heights, MN 55120
|
FOLD

STAPLE




