
RESEARCH, INC.

CRAY® COMPUTER SYSTEMS

SUPERLINK/MVS

LOGIC LIBRARY VOLUME 2:

CONTROL FUNCTIONAL UNIT

SI-0182

Copyright® 1987 by CRAY RESEARCH, INC. This manual or
parts thereof may not be reproduced in any form without
permission of CRAY RESEARCH, INC.

RECORD OF REVISION RESEARCH, INC. PUBLICATION NUMBER SI-0182

Eachtime this manual is revisedand reprinted, allchanges issued against the previous versionare incorporated intothe new version
and the new version is assigned an alphabetic level.

Every page changed bya reprintwith revision has the revision level in the lowerrighthandcorner.Changesto part ofa page are noted
bya changebar in the margin directly opposite the change. Achangebar in the margin opposite the pagenumber indicates that the
entire page is new. Ifthe manual is rewritten, the revision levelchanges but the manual does not contain change bars.

Requests for copies of Cray Research, Inc. publications should be directed to the Distribution Center and comments about these
publications should be directed to;

CRAY RESEARCH, INC.

1345 Northland Drive

Mendota Heights, Minnesota 55120

Revision Description

October 1987 - Original printing,

CRAY, CRAY-1, SSD, and UMCOS are registered trademarks and APML, CFT, CFT77, CFT2, COS, CRAY-2,
CRAY X-MP, CSIM, ICS, SEGLDR, SID, and SUPERLINK are trademarks of Cray Research, Inc.

UYPERchannel and NSC are registered trademarks of Network Systems Corporation. IBVI is a registered trademark
of International Business Machines Corporation.

ii SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit SI-0182

CRAY PUBLICATIONS STANDARDS HAVE NOT BEEN APPLIED IN PRODUCING THIS
DOCUMENT. AS AN INFORMAL DOCUMENT, U S DIS IRIBUI ION IS LLMH ED l O SI I E
ANALYSTS UPON REQUES1.

Requests for the following informal SUPCRLINK/MVS 2.0 documents should be directed to Linda
Hughes, Customer Services, 2360 Pilot Knob Road, Mendota Heights, Mn. 55120, (612- 681-5923):

• SUPERLINK/MVS Logic Library Volume 2: Control Functional Unit, SI-0182

• SUPERLINK/MVS Logic Library Volume 3: Network Access Method, SI-0183

• SUPERLINK/MVS Logic Library Volume 4: Applications, SI-0184

These volumes supplement SUPERLINK/MVS Logic Library Volume 1, SI-018I, a formal CRI
publication. Volumes 2 through 4 arc not packaged as formal Cray publications because they provide
information at a dynamic level of detail; not all detail in these volumes can be guaranteed to reflect the
product exactly as shipped, so standardization of these volumes has been intentionally withheld.

Note that Volumes 2 through 4 will not be applicable to future releases of SUPERLINK/MVS.

Preface

SUPERLINK/MVS lo^cally links a CRAY X-MP or CRAY-1 computer system running COS 1.16
(or a later version) and an IBM or compatible computer system running MVS XA 2.0 withJob Entry
Subsystem version 2 or 3 (JES2or JES3.) SUPERLINK/MVS has 3 Functional Units. Each of them
are described in an overview volume (The SUPERLINK Logic Library Volume 1, Product and
Component Descriptions, CRI publication SI-0181) and also in a comprehensive volume devoted to
that particular Functional Unit.

This publication is the second volume of the four-volume set. Volumes 3 and 4 describe the
SUPERLINK Network Access Method (SLNET) and the SUPERLINK Applications Functional
Unit (SLAPPL) respectively. This manual provides a comprehensive description of the
SUPERLINK/MVS Control Functional Unit (SLCN). It is comprehensive because it contains both
the general description of the functional unit found in Volume 1,and a detailed guide to the code for
this functional unit.

All four volumes assume the reader is familiar with both the MVS and COS operating systems.
Familiarity with the Intemational Standards Organization/Open Systems Interconnect (ISO/OSI)
model is helpful but not necessary. Related ISO/OSI documents are listed in the SUPERLINK
Protocol Manual, publication SI-0175.

SUPERLINK Documentation

The following table is a library guide to the SUPERLINK manuals. The manuals are listed as they
relate to user tasks. The CRI publication number is given in parentheses after each manual title.

User Tasks Typical Audience
Recommended
Manuals Brief Description

Introducing
SUPERLINK/MVS

Users/ system
planners

SUPERLINK/MVS
General
Information
Manual (SI-0177)

Provides a
general overview
of the
SUPERLINK/MVS
product

Planning^
installing/
operating/ and
modifying
SUPERLINK/MVS

System planners/
systems
programmers/

operators

SUPERLINK/MVS
Installation/
Tuning/ and
Customization
(SI-0180)

Provides
information for
installing/
configuring/
customizing/
tuning/ and
operating the
product.

Programming and
running
applications

Users/
application
programmers

SUPERLINK/MVS
User Guide
(SI-0178)

Provides
information on
using the
SUPERLINK
interfaces

UserS/ systems
programmers/

operators

SUPERLINK/MVS
Messages
(SI-0179)

Documents the
messages produced
by SUPERLINK/MVS

Cray Research, Inc. Preface

User Tasks

Diagnosis

Implementation

Typical Audience

Systems
programmers/ site
analysts/ users/
operators

Software
programmers;

systems
programmers

Recommended
Manuals

SUPERLINK/MVS
Logic Library
Volume 1:
Product and
Components
Description
(SI-0181)
SUPERLINK/MVS
Logic Library
Volume 2:
Control
Functional Unit
(SI-0182)
SUPERLINK/MVS
Logic Library
Volume 3:
Network Access
Method (SI-0183)
SUPERLINK/MVS
Logic Library
Volume A:
Applications
CSI-018A)
SUPERLINK/MVS
Messages
(SI-0179)

SUPERLINK
Protocol
Information
Manual (SI-0175)

Brief Description

Provides an
internal overview
of the SUPERLINK
components on MVS
and a detailed
logic description
for each.

Provides the
necessary

information to
implement a
network access
method that will
interwork with
SUPERLINK/COS.

Conventions

The following conventions are used throughout this manual:

Convention

<=======>

Description

In hierarchical structure diagrams, this symbol represents
an error trapping routine that may be invoked from any
place by the operating system services when an abend
occurs during the execution of the code. No calls are
made explicitly by the module from which the error
trapping routine was invoked; the invoking module has
nominated the error routine to handle the errors.

In flow diagrams, this symbol shows the flow of data
between two programs that do not have a normal transfer
of control during error free processing.

iv SUPERLINK for MVS Logic Library Volume 2: Control Functional Unk SI-0182

Convention

S%xxxxxx

italics

Description

Headings that relate to information about
subcomponents or modules are preceded by the
subcomponent or module name in the format S@a:jca:xxx

xxxxxx specifies the specific subcomponent or module
name.

Variables are italicized.

Reader Comments

If you have comments about the technical accuracy, contents, or organization of this manual, please
tell us. You have several options that you can use to notify us:

• Call our Technical Publications department directly at (612) 681-5729 during normal business
hours

• Use the Reader's Comment form at the back of this manual

• Write to us at the following address:

Cray Research, Inc.
Technical Publications Department
1345 Northland Drive
Mendota Heights, MN 55120

We value your comments and assure a prompt response.

Cray Research, Inc. Preface

^ Table of Contents

1. Introduction
Architecture of SUPERLINK/MVS 1-1
SUPERLINK Control Functional Unit (SLCN) 1-2

SLCN Components 1-2
SLCN External Interface 1-4
SLCN Data Areas i-5

Manual Organization

2. SUPERLIXK Product Management Component 2-1
Product Management Module Structure 2-1
Product Management Services 2-2
Product Management Interfaces 2-2
Product Management Data Areas 2-5
Product Management Recovery 2-5

3. SUPERLINK Options Processor Component 3-1
Options Processor Module Structure 3-1
Options Processor Services 3-2
Options Processor Interfaces 3-2
Options Processor Data Areas 3-3
Options Processor Recovery 3-4

4. SUPERLINK Functional Subsystem Manager Coipponent 4-1
Functional Subsystem Subcomponents 4-1
S@CFOOOO - FSS Manager Control Subcomponent 4-1

S@CFOOOO - Module Structure 4-1
S@CFOOOO - Services 4-2
S@CFOOOO - Interfaces 4-2
S@CFOOOO - Data Areas 4-3
S@CFOOOO - Recovery 4-4

S@CF0100 - Cross-Memory Communications Subcomponent 4-20
S@CF0100 - Module Structure 4-20
S@CF0100 - Services 4-20
S@CF0100 - Interfaces 4-21
S@CF0100 - Data Areas 4-21
S@CF0100 - Recovery 4-22

5. SUPERLINK Product Operator Component 5-1
Product Operator Module Structure 5-1
Product Operator Services 5-3
Product Operator Command Definitions 5-4
Product Operator Interfaces 5-4
Product Operator Data Areas 5-4
Product Operator Recovery 5-5

6. SUPERLINK LOG Processor Component 6-1
LOG Processor Ser\'ices 6-1
LOG Processor Subcomponents 6-1

Cray Research, Inc. Tableof Contents VII

S@C2100 - LOGE Handler 6-2
S@C2I00 - Services 6-2
S@C2100 - Interfaces 6-2
S@C2100 - Data Areas 6-2
S@C2i00 - Recovery 6-2

S@C2200 - Output of Messages Subcomponent 6-8
S@C2200 - Module Structure 6-8
S@C2200 - Services 6-8
S@C2200 - Interfaces 6-9
S@C2200 - Data Areas 6-9
S@C2200 - Recovery 6-9

7. SUPERLINK Management Interface Component 7-1
Management Interface Module Structure 7-1
Management Interface Services 7-2

Service Primitive Types 7-2
Management Interface Service Primitives 7-3
Management Interface Local System Primitives 7-3

Management Interface Component Interfaces 7-3
Management Interface Data Areas 7-3
Management Interface Recovery 7-4

8. SUPERLINK Association Manager Component 8-1
Association Manager Subcomponents 8-1
Association Manager Subcomponent Flow 8-1
Association Manager Services 8-2

Association Manager Services Offered to Application Entity Initiators on COS 8-3
Association Manager Services Offered to Application Entity Responders on MVS . . 8-4

Association Manager Interfaces 8-4
Interfacing to the Network Access Method 8-4
Interfacing to User Exits 8-5
Interfacing to Application Entity Responders 8-5
The Queue Management Facility for Connection End Points 8-5

Association Manager User Exits 8-6
S@C9000 - Association Manager Controller Subcomponent 8-7

S@C9000 - Module Structure 8-7
S@C9000 - Services 8-8

S@C9000 - Initialization phase 8-8
S@C9000 - Active state 8-8
S@C9000 - Termination Phase 8-9

S@C9000 - Interfaces 8-9
S@C9000 - Data Areas ! 8-9
S@C9000 - Recovery 8-10

S@C9100 - Association Manager Processor Subcomponent 8-18
S@C9100 - Module Structure 8-18
S@C9100 - Services 8-19
S@C9100 - Interfaces 8-21
S@C9100 - Data Areas 8-21
S@C9100 - Recovery 8-21

S@C9200 - Association Manager Interface 8-56
S@C9200 - Module Structure 8-56
S@C9200 - Services 8-56
S@C9200 - Interfaces 8-57
S@C9200 - Data Areas 8-57

S@C9300 - Association Manager Interval Timer 8-60
S@C9300 - Module Structure 8-60
S@C9300 - Services 8-60

viii SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit SI-0182

S@C9300 - Interfaces 8-60
S@C9UXAM - Association Manager User Exit Handler 8-66

S@C9UXAM - Module Structure 8-66
S@C9UXAM - Services 8-66
S@C9UXAM - Interfaces * 8-66

9. SUPERLINK Message Processor Component 9-1
Message Processor Module Structure 9-1
Message Processor Services 9-2
Message Processor Interfaces 9-2
Message Processor Data Areas 9-2
Message Processor Recovery 9-3

10. SUPERLINK SVC Component 10-1
SVC Module Structure 10-1
SVC Services 10-2
SVC Interfaces 10-2
SVC Data Areas 10-2

11. SUPERLINK User Resource Manager Component 11-1
page.User Resource Manager Module Structure 11-1
User Resource Manager Services 11-1
User Resource Manager Interfaces 11-1
User Resource Manager Data Areas 11-1
User Resource Manager Recovery 11-2

Appendix A. Data Area Descriptions A-1
AM_AMT A-2
AM_APDE A-3
AM_APDH A-4
A.M_CDT A-5
AM_GWA A-6
AM_PCT A-7
AM_PCTE A-8
AM_REDE A-10
AM_REDH A-12
AM_REDQ A-13
AM_REDE_PRIVATE A-14
LP_LOGE A-16
MH_ME A-18
MH_MI A-19
MH_MIE A-20
MI_MACB A-21
MI_MICT A-26
MI_MRQE A-28
SC_CIOT A-33
SC_CIOTATI A-39
SC_CIOTFSS A-40
SC_CIOTMIC A-41
SC_CIOTS A-42
SC_FRQE A-43
SC_FSSCB A-44
SC_GST A-46
SC_OPCB A-47
SC_SSVT A-48
SC_SLASVT A-53
SC_URE A-54

Cray Research, Inc. Table of Contents ix

SC_URM A-55
SI_CMD A-56
SI_OPCT A-59
SI_STAK A-63
SV_ESTW A-64

Appendix B. SLCN Macros B-1
Command Syntax Macros B-1

S@COADEF Macro B-1
S@COCDEF Macro B-1
S@COKDEF Macro B-3
S@COLDEF Macro B-4
S@COPDEF Macro B-5
S@C1SYNX Macro B-6

Cross Memory Communications Macros B-9
S@@CSERV Macro B-9

Return Codes B-11
Notes B-11

S@@FIREQ Macro B-11
Notes B-12

S@@LOG Macro B-12
Return Codes B-13
Notes B-14

S@@SUBSY Macro B-14
Association Manager Macros B-14

S@@MREQ Macro B-15
Retum Codes B-17

S@C@QADD Macro B-18
S@C@QREM Macro B-18
S@C@QSWI Macro B-19
S@C@TIMR Macro B-19

Message Processor Macros B-21
S@@MDEF Macro . . B-21

Notes B-21
Restrictions B-22
Example B-22

S@@MSG Macro B-22
S@@MSG (Standard Form) B-22
Retum Codes B-25
S@@MSG Restrictions B-26
S@@-MSG (List Form) B-26
S@@MSG (Format Form) B-27
S@@MSG (Execute Form) B-28

S@@MSGS Macro B-29
Retum Codes B-30

S@@SVC Macro B-30
Retum Codes B-31

Index X-1

SUPERLINK for MVS Logic Library Volume 2; Control Functional Unit 81-0182

List of Illustrations

Figure 1. SUPERLINK/MVS Architecture 1-2
Figure 2. Component Structure of SLCN 1-4
Figure 3. Module Structure of the Product Management Component 2-2
Figure 4. Subsystem Interface Control Blocks 2-3
Figure 5. Control Block Structure for Subsystem Interface Requests 2-4
Figure 6. Module Structure of Options Processor Component 3-2
Figure 7. Module Structure of the FSS Manager Control Subcomponent 4-2
Figure 8. MVS-level Control Block Structure 4-3
Figure 9. Subsystem Interface Level Control Block Structure 4-3
Figure 10. FSS Communication Charmels 4-21
Figure 11. Module Structure of the Product Operator Component 5-3
Figure 12. Module Structure of the Output of Messages Subcomponent 6-8
Figure 13. Module Structure of the Management Interface Component 7-2
Figure 14. Association Manager Component Flow of Control 8-2
Figure 15. Module Structure of the Association Manager Controller Subcomponent 8-8
Figure 16. Module Structure of the Association Manager Processor Subcomponent 8-19
Figure 17. Module Structure of the Association Manager Interval Timer Subcomponent 8-60
Figure 18. Module Structure of the Message Processor Component 9-1
Figure 19. Module Structure of the SVC Component 10-1

Cray Research, Inc. List of Illustrations xi

^ List of Tables

Table 1. Return Codes and Feed-back Codes for the Options Processor 3-3
Table 2. Basic Service Primitive Forms 7-2

Cray Research, Inc. List of Tables XIII

List of Diagrams

Diagram
Diagram
Diagram
Diagram
Diagram
Diagram
Diagram
Diagram
Diagram
Diagram
Diagram
Diagram
Diagram

1

•2

•3

-4

•5

-6

-7

•8

-9

2-10
2-11

2-12

2-13

Diagram 2-14

Diagram
Diagram
Diagram
Diagram
Diagram
Diagram

Diagram
Diagram
Diagram
Diagram
Diagram
Diagram
Diagram
Diagram
Diagram
Diagram
Diagram
Diagram
Diagram
Diagram
Diagram
Diagram
Diagram
Diagram
Diagram
Diagram
Diagram
Diagram
Diagram
Diagram

Cray Research, Inc.

2-15,

2-16.
2-17,

2-18,

2-19,

2-20,

3-1,
3-2,

3-3

3-4

3-5

3-6

3-7.
3-8

3-9

4-1

4-2

4-3

4-4

4-5

4-6

4-7
4-8

4-9
4-10

4-11

4-12

5-1

5-2

5-3

S@CCOOOO - Root Module of SLCN (part 1 of 4) 2-6
S@CCOOOO - Root Module of SLCN (part 2 of 4) 2-8
S@CCOOOO - Root Module of SLCN (part 3 of 4) 2-10
S@CCOOOO - Root Module of SLCN (part 4 of 4) 2-12
S@CCORIM - Sybsystem Resource Initialization Routine 2-14
S@CCOSSI - Sybsystem Interface Initialization Routine (part 1 of 2) 2-16
S@CCOSSI - Sybsystem Interface Initialization Routine (part 2 of 2) 2-18
S@CCOSST - Subsystem Interface Termination Routine 2-20
S@CCOEOT - Sybsystem Interface End-of-Task Routine 2-22
S@CCEOM - Subsystem Interface End-of-Memory Routine 2-24
S@CC0S34 - Subsystem Interface Support Routine (part 1 of 2) 2-26
S@CC0S34 - Subsystem Interface Support Routine (part 2 of 2) 2-28
S@CCOFSS - Subsystem Interface ESS CONNECT/DISCONNECT

Routine (part 1 of 2) 2-30
S@CCOFSS - Subsystem Interface FSS CONNECT/DISCONNECT

Routine (part 2 of 2) 2-32
S@CCOFSI - FSS Interface Support Routine (part 1 of 5) 2-34

, S@CCOFSI - FSS Interface Support Routine (part 2 of 5) 2-36
. S@CCOFSI - FSS Interface Support Routine (part 3 of 5) 2-38
, S@CCOFSI - FSS interface Support Routine (part 4 of 5) 2-40
, S@CCOFSI - FSS Interface Support Routine (part 5 of 5) 2-42
, S@CCOTRT - Commonly Av^able ASCII/EBCDIC/ASCII Translate
Tables 2-44
. S@C1000 - Control Module 3-6
, S@C1010 - Initialization; Obtain Work Areas and Validate Parameter List . 3-8
, S@C1020 - Termination; Release Work Areas; Return Diagnostic 3-10
, S@C1030 - Statement Builder 3-12
, S@C1040 - Parameter Scan, Validate and Set Control Block Ficld(s) 3-14
. S@C1050 - Table of Valid Parameters, Value Range, Type, Conversion ... 3-16
. S@C1GETM - Obtain Storage for and Anchor lOT Appendage 3-18
. S@C1DATA - Read Instream Data Records, Store iii lOT/Appendage and 3-20
. S@C1060 - Back-end, Release All lOT Appendages 3-22
. S@CFOOOO - FSS Manager Root Module (part 1 of 3) 4-6
. S@CFOOOO - FSS Manager Root Module (part 2 of 3) 4-8
. S@CFOOOO - FSS Manager Root Module (part 3 of 3) 4-10
, S@CF00100 - Cross-Memory Environment Management Initialization 4-12
. S@CF0020 - Cross-Memory Environment Management - Termination ... 4-14
. S@CF0030 - MVS START Command Creation and Issuance 4-16
, S®CF0040 - FSS Manager ESTAE 4-18
. S@CF0100 - SCHEDULE SRB Routine 4-24
, S@CF0110 - SRB Receive Routine 4-26
. S@CF0120 - Listen Task in Control Address Space 4-28
. S@CF0130 - Functional Recovery Routine for S@CF0110 4-30
. S@CF0140 - LISTEN Task ESTAE Routine 4-32
. S@COOOOO - SUPERLINK Product Operator Component Root Module . 5-6
. S@C00010 - Product Operator Initialization 5-8

S@C00020 - SUPERLINK Product Operator Component Command
Parser 5-10

List of Diagrams xv

Diagram 5-4.

Diagram 5-5.

Diagram 5-6.
1

Diagram 5-7.
Diagram 5-8.

Diagram 5-9.

Diagram 5-10.

Diagram 5-11.

Diagram 5-12.

Diagram 5-13.

Diagram 5-14.

Diagram 5-15.

Diagram 6-1.

Diagram 6-2.

Diagram 6-3.

Diagram 6-4.

Diagram 6-5.
Diagram 6-6.

Diagram 6-7.

Diagram 6-8.

Diagram 6-9.
Diagram 7-1.
Diagram 7-2.

Diagram 7-3.

Diagram 7-4.
Diagram 7-5.
Diagram 7-6.
Diagram 7-7.

Diagram 7-8.

Diagram 7-9.
Diagram 7-10.

Diagram 8-1.

Diagram 8-2.

Diagram 8-3.
Diagram 8-4.

Diagram 8-5.
Diagram 8-6.

Diagram 8-7.
Diagram 8-8.

Diagram 8-9.

Diagram 8-10.

Diagram 8-11.
Diagram 8-12.
Diagram 8-13.

Diagram 8-14.
Diagram 8-15.
Diagram 8-16.

Diagram 8-17.

Diagram 8-18.

Diagram 8-19.
Diagram 8-20.
Diagram 8-21.
Diagram 8-22.

Diagram 8-23.
Diagram 8-24.
Diagram 9-1.

S@C00030 - Product Operator Operand Parser 5-12
S@C00040 - Product Operator Syntax Graph 5-14

S@C00050 - SUPERLINK Product Operator Component Output
Processor 5-16

S@C00060 - SUPERLINK Product Operator Component Termination .5-18
S@C00070 - Product Operator ESTAE 5-20
S@COODIS - DISPLAY Command Processing Routine 5-22
S@COOSWT - SWITCH Command Processing Routine 5-24
S@COOSET - SET Command Processing Routine 5-26
S@COOSTR - START Command Processing Routine 5-28
S@COOSTP - STOP Command Processing Routine 5-30
S@COOSND - SUPERLINK SEND Command Processing Routine 5-32
S@COOMSG - SUPERLINK MSG Command Processing Routine 5-34
S@C2100 - LOGE Handler (part 1 of 2) 6-4
S@C2100 - LOGE Handler (part 2 of 2) 6-6
S(^C2200 - Output of Messages Subcomponent - Control Module 6-10
S(^C2210 - Output of Messages Subcomponent - LOG File Initialization . . 6-12
S@C2220 - Output of Messages Subcomponent - LOG File Termination . . 6-14
S@C2230 - Output of Messages Subcomponent - Queue Swap and Reorder 6-16
S(^C2240 - Output of Messages from LOGEs (part 1 of 2) 6-18
S(^C2240 - Output of Messages from LOGEs (part 2 of 2) 6-20
S(^C2250 - Output of Messages Subcomponent - ESTAE Routine 6-22

S@CIOOOO - Root Module of Management Interface Component 7-6
S(§CI0010 - Management Interface Initialization Routine 7-8
S(^CI0020 - Management Interface Termination Routine 7-10
S(^CI0030 - Management Interface ESTAE Routine 7-12
S@CI0040 - Management Interface Input Queue Server 7-14
S@CI0050 - Management Interface Protocol Event Routine (part 1 of 2) . . 7-16

S@CI0050 - Management Interface Protocol Event Routine (part 2 of 2) .7-18
S@CI0060 - Management Interface Output Queue Server 7-20

S@CI0070 - Management Interface Connection Protocol Task ESTAE . . 7-22
S@CI0080 - Management Interface PDU Encoder/Decoder 7-24
S@C9000 - Root Module 8-12
S@C9010 - ESTAE Exit Routine 8-14
S@C9020 - State-event Machine and Termination 8-16
S(@C9100 - Root Module and Main-line Code 8-22
S@C9110 - ESTAE Exit Routine 8-24
S(^C9121 - Action 1, Put Out an A-OFFER 8-26
S@C9123 - Action 3 (Part I), Give End-point To Active Responder 8-28
S@C9123B - Action 3 (Part II), Start a New Responder 8-30
S(^C9124 - Action 4, Timer Expired When LISTEN Was Pending 8-32
S(^C9125 - Action 5, Perform Required END-POINT GIVES Routine . . . 8-34
S(^C9128 - Action 8, Clone Responder Entity Routine 8-36
S@C91212 - Action 12, Timer Expired When DELETE Was Pending 8-38
S@C914A - JOBTEXT Field Parser 8-40
S@C914C - Job Status/Cancel Processor 8-42
S(^C914J - Card Image Generator 8-44
S@C914K - Create Keyword Table 8-46
S@C914R - Send A-ASSOCIATE (Negative Responses) 8-48
S@C914S - Job Submission Processor 8-50
S@C914T - Task ATTACH Processor 8-52
S@C914X - Create/Delete System Authorization Facility (SAF) 8-54
S@C9200 - Association Manager Interface Code 8-58
S@C9300 - Root Module (Set and Cancel Timer) 8-62
S@C9310 - Timer Expired Routine 8-64
S@C9UXAM - User Exit Handler 8-68
S@(^MOOO - Initial Message Processing Module 9-4

xvi SUPERLINK for MVS Logic Library Volume 2: Coittrol Functional Unit SI-0182

Diagram 9-2. S@@M010 - Format the Message Variables Module 9-6
Diagram 9-3. S@@M015 - Formatted Message Rctumcd to User Module 9-8
Diagram 9-4. S@@M020 - Write to WTO or WTOR Module 9-10
Diagram 9-5. S@@M030 - Write to LOG Module 9-12
Diagram 10-1. S@CCOSVC - SVC Type 3 Routine (part 1 of 2) 10-4
Diagram 10-2. S@CCOSVC - SVC Type 3 Routine (part 2 of 2) 10-6
Diagram 10-3. S@CCOSVE - ESTAE Exit Routine (part 1 of 3) 10-8
Diagram 10-4. S(^CCOSVE - ESTAE Exit Routine (part 2 of 3) 10-10
Diagram 10-5. S@CCOSVE - ESTAE Exit Routine (part 3 of 3) 10-12
Diagram 10-6. S@CCOSVR - Retry Routine 10-14
Diagram 11-1. S(^CCOURM - User Resource Manager (part 1 of 2) 11-4

Cray Research, Inc. List of Diagrams xvii

1. Introduction

SUPERLINK/MVS is a general purpose, non-station communications product designed to link a
CRAY X-MP or CRAY-1 computer system to an IBM or compatible computer system. The
communications software used to perform this integration is based on the International Standards
Organization/Open Systems Interconnection (ISO/OSI) model.

SUPERLINK/MVS addresses the need for random and sequential data access and distributed
applications processing. It enables user applications running on the Cray mainframe to communicate
with applications running on the IBM computer system. Through subroutine calls and programming
macros, the SUPERLINK Network Access Method (SLNET) provides services that allow users to
develop installation-specific, cross-system applications.

Architecture ofSUPERLINKfMVS
The SUPERLINK/MVS product is composed of three Functional Units; SLCN, SLNET, and
SLAPPL. SLCN utilizes the MVS Subsystem Interface; SLNET is an MVS Functional Subsystem
(FSS) owned by SLCN; and SLAPPL is composed of many Cray-written applications that can use
SUPERLINK/MVS services from within a batch job and/or TSO user address space. Both SLCN and
SLNET are MVS-started task address spaces.

Figure 1 on page 1-2 provides a model of the SUPERLINK/MVS architecture.

Cray Research, Inc. 1. Introduction 1-1

SU\PPL

SLCN

SUPERUNK Subsystem Control

Spun-off
Job.
Data Access

A FTAM Routines

SlilET

Network
Access
Method

V V
ACSE

Presentation Layer

Session Layer

Transport Layer

Network Layer

Data Unk Lc^er

Figure I. SUPERLINK/MVS Architecture

User Job.
Network
Access

AAC Routines

V

SUPERLINK Control Functional Unit (SLCN)
The SUPERLINK Control Functional Unit (SLCN) isan MVS subsystem that is configured usingthe
MVS Subsystem Interface.

SLCN Components

The following components are resident within SLCN:

Component

S@CCOOOO

Description

SUPERLINK Product Management component

The Product Management component is responsible for managing the
Subsystem Interface between SLCN and the MVS operating system.

1-2 SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit SI-0182

Component

S@C1000

S@CFOOOO

s@cooooo

S@C2000

S@C10000

S@C9000

S@@MOOOO

Cray Research, Inc.

Description

SUPERLINK Options Processor component

The Options Processor component interprets initialization OPTIONS in a
parameter library (PARMLIB) from options specified by the customer
instaUation. These parameters specify which Functional Units must be active
and which components, resident within those Functional Units, are to be
supported for this execution of SUPERLINK/MVS. The Options Processor
component also checks the validity of the parameters provided and uses them
to form control blocks applicable to each Functional Unit.

SUPERLINK Functional Subsystem Manager component

The Functional Subsystem Manager component is responsible for the
initialization, termination, and recovery of each SUPERLINK Functional
Subsystem (FSS). This component also provides the means for inter-address
space communication.

SUPERLINK Product Operator component

The Product Operator component supports commands that allow an operator
to control the SUPERLINK/MVS product. The operator commands are
entered from the multiple console support (MCS) console interface and are
processed by this component.

SUPERLINK LOG Processor component

The LOG Processor component allows all other SUPERLINK components to
write messages to the SUPERLINK LOG and/or the MVS system log. These
messages indicate progress status for normal events and provide reports of error
conditions.

SUPERLINK Management Interface component

The Management Interface component provides a permanent connection
between SLCN and the SUPERLINK for COS management function
(management interface responder (SLMIR)). This component uses the services
of the SUPERLINK Network Access Method to convey data between SLCN
and SLMIR.

SUPERLINK Association Manager component

The Association Manager component provides a set of services that support
process creation on the MVS system for either data access requests or
installation-developed cross-system AAC applications.

SUPERLINK Message Processor component

The Message Processor component provides a universal scheme for handling all
the messages from components within the SUPERLINK/MVS product.
Therefore, consistency is maintained between the messages issued by the product
and the message descriptions provided by SUPERLINK/MVS Messages,
publication S1-0179.

1. Introduction 1-3

Component Description

S@CCOSVC SUPERLINK SVC component

The SUPERLINK SVCcomponent enables nonauthorized, problem program
mode users to use Network Access Method services (SLNET) and Association
Manager services (SLCN) through an SVC call. Control is retumed to the caller
in the original processing mode, thus preserving MVS system integrity.
SpecificaUy, this component allows callers from high-level languages (such as
Fortran) or from unauthorized assemblerprograms to make AAC calls.

S@CCOURM SUPERLINK User Resource Manager component

The User Resource Manager component provides a global service for registering
users of SUPERLINK/MVS resources by task and ascending address space
identifier (ASID) order. Currently this global service is only used by the ACSE
component of the SUPERLINK Network Access Method.

Figure 2 showsthe hierarchical structure of components within SLCN.

saccoooo

saciooo sacooooo saczooo

sacioooo saccosvc

Figure 2. ComponentStructure of SLCN

SLCN External Interface

There are two extemal interfaces to SLCN:

• Initialization options validated and formatted by the Options Processor to define configuration
parameters for the SLCN Functional Unit.

• Operator commands resident within the Product Operator component of SLCN. These
commandsallow an operator to do the following:

• Start the SUPERLINK/MVS product
• Display activity during product operation
• Modify the SUPERLINK/MVS product configuration

1"^ SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit SI-0182

- Shut down the SUPERLINK/MVS product

The SUPERLINK/MVS Installation, Tuning, and Customization Guide, publication SI-0180,
provides a complete description of the SLCN initialization options and the supported operator
commands.

SLCN Data Areas

The Options Processor component of SLCN creates control blocks describing the configuration
parameters required for each Functional Unit. This subsection gives a brief description of these control
blocks.

Data Area Description

SC_C10T Control Initialization Options Table

SC_C10T determines the parameters that must be used to configure SLCN. It
maintains pointers to the Initialization Options Tables for the other Functional
Units within SUPERLINK/MVS.

A group of control blocks is necessary to support product management after SLCN is configured.
SLCN maintains the following control blocks to support SUPERLINK/MVS product management:

Data Area

SC SSVT

SC GST

SC SLASVT

Cray Research, Inc.

Description

Subsystem Vector Table

MVS requires this control block because SLCN is configured as an MVS
subsystem. The SC_SSVT functions as the anchor control block for the
SUPERLINK/MVS product and describes the exit points within MVS that are
supported by this subsystem. It is also the anchor for information concerning
the FSSs owned by this MVS subsystem, and it holds information relating to the
management of components within SLCN. SC_SSVT is addressable from any
address space and lies in the common service area (CSA).

Global Ser\'ice Table

SLCN provides global services (for example, message services) for the
SUPERLINK/MVS product. SLCN maintains a table of common storage
locations that allows other address spaces within SUPERLINK/MVS to locate
the routines that will satisfy the global services.

Address Space Vector Table

This table monitors the address spaces and the tasks within those address spaces
that make use of SUPERLINK/MVS resources. SC_SLASVT consists of one
entry per address space, in ascending address space identifier (ASID) order and
a special entry for ASID value 0. A null value in one of these pointers indicates
that the associated address space is not making use of SUPERLINK/MVS
resources. A non-null value is a pointer to a chain of control blocks (one per
Task Control Block (TCB) per association and so on) called User Registration
Elements (SC_UREs). These are used to keep track of resource utilization by
task/ASID.

1. Introduction 1-S

The Subsystem Interface processing routines create the following control block to notify the relevant
component managers of specific events:

Data Area Description

SC_OPCB Operator Command Buffer

The SUPERLINK Subsystem Interface routine for operator command
processing creates an operator command buffer, SC_OPCB. SC_OPCB contains
the operator command and information concerning point of origin. Once the
control block is complete, it is added to a queue of operator command buffers
awaiting processing by the Product Operator component.

"Appendix A. Data Area Descriptions" on page A-1 provides descriptions of the previous control
blocks.

Manual Organization
Each section of this manual describes a component of SLCN. Data area formats and interface macros
are described in appendixes A and B respectively.

1-6 SUPERLINK for MVS Logic Library Volume 2; Control Functional Unit SI-0182

2. SUPERLINK Product Management Component

The Product Management component manages the central point for error handling, initialization, and
termination of SUPERLINK components. It also manages the Subsystem Interface between SLCN
and the MVS operating system.

Product Management Module Structure
The modules described in the following list manage the SUPERLINK Functional Units.

Module Function

S@CCOOOO Root module for SLCN

S@CCORIM Subsystem resource initialization routine, given control during MVS initial
program loader (IPL) sequence

S@CCOSSI Subsystem Interface initialization routine

S@CCOSST Subsystem Interface termination routine

S@CCOEOT Subsystem Interface support routine for end-of-task conditions

S@CCOEOM Subsystem Interface support routine for cnd-of-mcmory conditions

S@CC0S34 Subsystem Interface support routine for SVC34 conditions such as operator
command notification

S@CCOFSS Subsystem Interface support routine for FSS CONNECT/DISCONNECT
requests

S@CCOFSI FSS Interface support routine

Figure 3 on page 2-2 shows the hierarchical structure of the modules within the Product Management
component.

Cray Research, Inc. 2. SUPERLINK Product Management Component 2-1

saccoooo

saccossi saccossT

From MVS IPL Sequenc

1
From MVS FSI

1
SaCCORIM saccoFsi

From MVS Subsystem Interface—i

SaCCOEOT SaCCOEOM SaCC0S34 saccoFss

Figure 3. Module Structure of the Product Management Component

Product Management Services
SLCN is configured as an MVS subsystem. This configuration provides SUPERLINK/MVS with
more than 50 exit points throughout MVS system processing at which SUPERLINK-supplied routines
can gain control.

In addition to using the services provided by the Subsystem Interface, the Product Management
component provides a central point for the initialization and termination of components, and the
handling of failing components at a high level within SLCN. After initialization, this component is idle
unless another SUPERLINK component fails.

Product Management Interfaces
The Product Management component provides services that use the MVS Subsystem Interface.

MVS enforces a control block structure to support a started task as an MVS subsystem. Figure 4 on
page 2-3 is a diagram of the Subsystem Interface control blocks.

2-2 SUPERLINK for MVS Logic Library Volume 2; Control Functional Unit SI-0182

LOC X'lO*
JESCT

CVT

CVTJESCT

SSCVT SSCVT

•SSCT* 'SSCT*

SSCTSCTA _J SSCTSCTA

SSCTSNAM SSCTSNAM

SSCTSSVT SSCTSSVT

SSVT SSVT

—>

SSVTCOD SSVTCGD

SSVTRTN SSVTRTN

•JEST*

JESSSCT

SSCVT

SSCT

SSCTSCTA

SSCTSNAM

SSCTSSVT

SSVT

SSVTCOD

SSVTRTN

Figure 4. Subsystem Interface Control Blocks

Address spaces use Subsystem Interface requests to make requests for FSS connection and
disconnection. MVS provides the control block structure required to satisfy these requests. Figure 5
on page 2-4 shows the control block structure for Subsystem Interface request control blocks.

Cray Research, Inc. 2. SUPERLINK Product Management Component 2-3

REGISTER I

SSOB header

•SSOB*

SSOBLEN SSOBFUNC

SSOBSSIB 1

SSOBINDV

Parameter list

80

SSIB

SSIB'

SSIBLEN

SSIBSNAM

Function-
dependent
area

Function—dependent area
(SSOB extension)

length

Variable area
dependent on type
of function
requested

Figure 5. Control Block Structure for Subsystem Interface Requests

SUPERLINK/MVS provides routines for the following exit points:

DescriptionRoutine

S@CCOEOT

S@CCOEOM

S@CC0S34

S@CCOFSS

Xotlflcation of cnd-of-task - Used specifically to indicate the termination of tasks
with active SUPERLINK/MVS resources. Recovery of active resources is
initiated.

Notification of cnd-of-address space - Used specifically to indicate whether
recovery actions are required. If an address space terminates while using
SUPERLINK/MVS resources, the relevant Functional Unit must be notified.

Notification of an operator command - Used to support the MCS operator
interface. SLCN inspects commands input from an operator console to identify
the commands that must be processed by SUPERLINK/MVS.

ESS connect and disconnect - Used to support SUPERLINK/MVS
multi-address space management

2-4 SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit SI-0182

Product Management Data Areas
The Product Management component makes use of the control blocks described under -- Heading id
'cndarea' unknown Specifically, the following data areas are used:

Data Area Description

SC_SSVT Subsystem Vector Table

SC_GST Global Service Table

SC_SLASVT Address Space Vector Table

SC_OPCB Operator Command Buffer

The Options Processor component creates control blocks describing the configuration parameters
required for each Functional Unit. One of these control blocks, the Control Initialization Options
Table (SC_CIOT), determines the parameters that must be used to configure SLCN. The SC_CIOT
maintains pointers to the Initialization Options Tables for the other Functional Units within
SUPERLINK/MVS.

Product Management Recovery
The Product Management component is notified of the failure of subordinate components within
SLCN. If the failure is irrecoverable (the subordinate component will have made extensive recovery),
the Product Management component brings SUPERLINK/MVS to a controlled halt.

Failures in the Product Management component itself are handled by an ESTAE routine that attempts
to recover the internal error or produces a diagnostic dump if recovery is not possible.

Cray Research, Inc. 2. SUFERLINK Product Management Component 2-5

Diagram 2-1
S@CCOOOO - Root Module of SLCN (part 1 of 4)

Entry from MVS

-Input-

Register 1
=> PLIST

=>Request
type

=>SC_CIOT
=>Member

name

=>Feedback
code

Register 1
=> PLIST

=>SC CIOT

Register 1
=> PLIST

=>SC SSVT

V
-Process-

> 1. Call Options Processor
to validate installation
parameters; if error* return
to MVS.

-> 2. Activate Subsystem
Interface; if error*
to MVS.

return

Allocate the SC_SLASVT. '
The CPGOL from which SC_UREs
will be allocated is built.
If error* return to MVS.

3. Activate SUPERLINK LOG.

-> 4. Activate Product Operator; —
wait for 'opei—init—complete*
signal.

-> continued

2-6 SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit

-Output-

Return code in
Register 15

1.Updated
SC_CIOT
JC_JIOT
NC_NIOT
IC_OIOT
VC_VIOT

2.Feedback
code

Register 15

Return Code

=> SC SSVT

WAIT on
ECB

SI-0182

Extended Description

Explanation

1. The Control module passes a parameter list to the SUPERLINK/MVS
Options Processor component. The parameter list contains the type of
request for initialization. It also contains a pointer to the SC_CIOT and
therefore to JC_JIOT, NC_NIOT, IC_OIOT, and VC_VI0T; which have
all just been allocated, chained, and primed by S@CCOOOO. The list also
contains the name of the member that contains the options parameters; this
name defaults to SLINITOO, but may be overridden in the PARM field in
the startup JCL. It retums the blocks completed from the initialization
parameters with a return code and a feedback code describing any error.

2. Branch to control module S@CCOSSI to initialize the Subsystem Interface.
A pointer to the SC_CIOT is passed so that S@CCOSSI initializes properly.
A return code indicates whether or not initialization has been successful.
The address of the SC_SSVT is returned in the PLIST upon a retum code
of 0 (successful completion) or 4 (successful recovery of an old SC_SSVT).
The other codes represent failure; control is retumed to MVS after releasing
storage.

The SC SLASVT is GETMAINed and chained from SC_SSVT.
SC_SLASVT is an array of fuUword pointers with an index starting at 0 and
ending at the maximum number of address spaces available on the system.
It is initialized by clearing it to binary O's. The pool of buffers for the
SC_URE elements is built using CPOOL and is manipulated by the User
Resource Manager component.

3. The SUPERLINK/MVS LOG Processor component is entered by its root
module S@C2000 as an ATTACIIed task. If the LOG processor task fails
to initialize successfully, SUPERLINK/MVS wiU proceed to terminate.

4. Each component within SLCN must be activated in sequence. The control
module must be ready for shutdown requests at a very early stage. The
operator component (S@COOOOO) is activated as an ATTACIIed task and
is passed a parameter list containing the address of the SC_SSVT that
contains the anchor points for its queues. S@CCOOOO WAITs for an ECB
POSTed by the Product Operator component when it has initialized
successfully.

SLCN cannot be allowed to continue the initialization process until the
Product Operator component has been activated, as this provides the
mechanism for shutdown requests to be issued.

Module Label

S@CCOOOO

s@ccoooo

s@ccoooo

s@ccoooo

Cray Research, Inc. 2. SUPERLINK Product Management Component 2-7

Diagram 2-2
S@CCOOOO - Root Module of SLCN (part 2 of 4)

continued

-Input-

=> PLIST

=>SC SSVT

V
-Process-

> 5. Activate FSS Manager; wait
for *oper—init complete'
signal.

Nait for confirmation that
SLNET is active.

Nait for confirmation that
channel link is active.

-> continued

2-8 SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit

-Output-

MAIT on
ECB

WAIT on
ECB

SI-0182

Extended Description

Explanation

5. The FSS Manager (S@CFOOOO) is activated as an ATTACHed task and is
passed a parameter Ust containing the address of the SC_SSVT. S@CCOOOO
VVAITs on an ECB list until the FSS Manager signals that it has initialized
properly. Shutdown requests are valid from this point. SUPERLINK/MVS
"listens" for possible shutdown requests while waiting for a signal that the
FSS Manager is active.

6. The FSS Manager activates SLNET, the Network Access Method address
space. SLNET must signal that it is initialized before SLCN processing can
continue. S@CCOOOO WAITs for an ECB list until SLNET is initialized,
or else VVAITs for a terminate request.

7. The channel connection to the Cray computer system must be allocated and
active before the SUPERLINK/MVS Management Interface can be
initialized. The MCS console operator requests activation of the channel
connection. SLNET must signal to SLCN that initialization processing can
continue. S@CCOOOO again WAITs for a terminate request.

Module Label

s@ccoooo

s@ccoooo

s@ccoooo

Cray Research, Inc. 2. SUPERLINK Product Management Component 2-9

Diagram 2-3
S@CCOOOO - Root Module of SLCN (part 3 of 4)

continued-

•Input"
V

-Process-

8. Activate SUPERLINK
Management Interface; if
error* prompt operator for
recovery action.

9. Initiate Association
Manager.

10. Indicate to FSS Manager*
"OK to continue."

11. If remote SUPERLINK support
not required* continue at 12

12. Mait for shutdown reqqest. —

-> continued

2-10 SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit

-Output-

POST
ECB

NAIT on
ECB list
ECB

ECB

SI-0182

Extended Description

Explanation

8. The SUPER LINK/MVS Management Interface component is entered by
root module S@CIOOOO.

9. The Association Manager handles all FTAM and AAC requests for
association. Once SLNET is active, the Association Manager must be active
to support session establishment requests. If the Association Manager
cannot initialize successfully, SUPERLINK/MVS will terminate indicating
the reason for failure.

10. The ESS Manager cannot initiate the application FSSs until the
SUPERLINK/MVS Management Interface has been successfully
established. The FSS Manager WAITs for an ECB POSTed by
S@CCOOOO.

11. The SUPERLINK/MVS control initialization options determine the
applicability of remote SUPERLINK/MVS support.

12. SUPERLINK/MVS is now initialized. S@CCOOOO must WAIT for a
shutdown signal for the complete product; an ECB list containing the
termination ECB and ECBs is POSTed when any of the subtasks
ATTACHed in S@CCOOOO terminate prematurely.

Module Label

S^CCGOGO

S@CCGGGG

Sfrt)CCGOGG

S(f^XCOOGG

S@CCGGGG

Cray Research, Inc. 2. SUPERLINK Product Management Component 2-11

Diagram 2-4
S@CCOOOO - Root Module of SLCN (part 4 of 4)

continued

-Input-

POSTed
ECB

ECB POSTed
by FSS

ECB POSTed
by OPER

V
-Process-

13. If a subtask has ended»
handle this problem;
if termination is requested^
then shut down components.

14. Notify Association Manager
of termination; wait for
confirmation.'

15. Notify SUPERLINK Management
Interface of termination;
wait for confirmation.

16. Notify FSS Manager of —
termination; wait for —

—> "Manager has completed".

17. Notify operator component of
termination; wait for

•> confirmation.

18. Shut down SUPERLINK Log.

19. Free the SC_SLASVT storage^
delete the SC_URE CPOOL
storage, then deactivate
Subsystem Interface.

•> Exit to MVS

2-12 SUPERLINK for MVS Logic Library Volume2: Control Functional Unit

-Output-

r—>

n->

POST FSS end
ECB

WAIT on FSS
ECB

POST OPER end
ECB

WAIT on OPER
ECB

SI-0182

Extended Description

Explanation

13. If the ECB POSTed is for termination of one of the subtasks ATTACHed
by this module, recovery action is attempted. If recovery is not possible,
termination proceeds as though the terminate ECB was POSTed. If the ECB
POSTed is Ifor termination of the SUPERLINK/MVS system, the various
components are shut down.

16. Notify the ESS Manager of shutdown by POSTing its terminate ECB.
WAIT until it completes its shutdown processing via the POSTing of its
shutdown-complete ECB.

17. Notify the Product Operator component of the shutdown by POSTing its
terminate ECB. WAIT for it to complete its shutdown processing via the
POSTing of its shutdown-complete ECB. To prevent any additional
operator command from being eligible for SUPERLINK/.MVS subsystem
processing, the SC_SSVT must be updated to indicate that the subsystem
is ending.

18. Branch to routine S@C2000 to shut down the SUPERLINK/MVS Log
component.

19. Free the SC_SLASVT. Any SC URE blocks chained to it are already free,
since they are managed using CASE CPOOL storage management. Branch
to routine S@CCOSST to deactivate the Subsystem Interface.

Module Label

s@ccoooo

s@ccoooo

s@ccoooo

s@ccoooo

s@ccoooo

Cray Research, Inc. 2. SUPERLINK Product Management Component 2-13

Diagram 2-5
S@CCORIM - Sybsystem Resource Initialization Routine

Entry from MVS at IPL time

•Input-

Register 1
==> PLIST

==> SSCVT

-Process-

•> 1. Locate subsystem SSCVT.

2. Set flag to indicate possible
use of primary subsystem
services.

3. Clear SSCTSUSE field in
SSCVT.

4. Issue message.

-> Exit to MVS

2-14 SUPERLINK for MVS Logic Library Volume 2; Control Functional Unit

-Output-

Updated
SSCVT

SI-0182

Extended Description

Explanation

1. On entry at IPL, register 1 points to a parameter list containing a pointer to
the SSCVT for this subsystem.

2. If a subsystem uses primary subsystem services (for example, SYSOUT
processing), an indicator must be set in the SSCVT. The indicator
determines whether or not Subsystem Interface requests are processed by the
Master Scheduler address space.

3. To perform recovery of a SUPERLINK/MVS subsystem, the SSCTSUSE
field in the SSCVT is put to special use. On IPL the field is cleared. When
the subsystem is activated, the pointer to the SC_SSVT is placed in the
SSCTSSVT field, indicating to MVS that the subsystem is active. The
pointer is also placed in the SSCTSUSE field. Upon an abnormal
end-of-address-space event for the subsystem, the SC_SSVT pointer is
cleared from the SSCTSSVT field in the SSCVT, but the SSCTSUSE field
pointer to the SC_SSVT is left unchanged. This enables the
SUPERLINK/MVS subsystem initialization routine to perform recovery of
the subsystem in the event of abnormal termination (for example, if the
operator CANCELs).

4. Issue message to the operator indicating that the subsystem has been defined. S@CCORIM

Module Label

S@CCORIM

S@CCORIM

S@CCORIM

Cray Research, Inc. 2. SUPERLINK Product Management Component 2-15

Diagram 2-6
S@CCOSSI - Sybsystem Interface Initialization Routine (part 1 of 2)

Entry from S9CC0000

-Input-
Register 1
=> PLIST

=> SC CIOT
•> 1

V
-Process-

Ensure that SUPERLINK is an
MVS—started task; if not»
return.

Ensure that started task name
is valid; if not, return.

Locate SSCVT; if none can
be found, return.

4. If SSCVT has SC_SSVT pointer
and subsystem is abending,
effect recovery at step 7.

If an active subsystem has
been found, exit with a
return code.

5. Allocate storage for and
initialize SC SSVT.

Ensure that SSI support
modules are loaded into
common storage; on failure
to load, exit with a return
code.

Otherwise, continue at step
11.

-> continued

-Output-

> Register 15 = 8

> Register 15 = 12

> Register 15 = 16

•> Register 15 = 48

SC SSVT

-> Register 15 = 20

2-16 SUPERLINK for MVS Logic Library Volume2; Control Functional Unit SI-0182

Extended Description

Explanation

1. The MVS Subsystem Interface can only be supported from a started task.
If SUPERLINK/MVS is not a started task, initialization of the subsystem
carmot continue, and an error code is returned to the caller in register 15.

2. An MVS subsystem must have a name between 1 and 4 characters long. If
it is suitable, the started-task name is used for this purpose. Otherwise, an
error code is returned to the caller in register 15.

3. At IPL, MVS builds an SSCVT for each defined subsystem. The chain of
SSCVTs is scanned for one matching the subsystem name.

4. MVS recognizes an inactive subsystem by the SC_SSVT pointer field in the
SSCVT. If this field is non-zero, the subsystem is either already active, or the
previous execution of the subsystem abended. If the SC_SSVT pointer is
zero, but the SSCTSUSE field is non-zero, a previous execution of the
subsystem abended. At the abend, the end-of-memory routine deactivated
the subsystem but left a pointer to the SC_SSVT in the SSCTSUSE field for
recovery.

If the SC_SSVT Subsystem Condition flag (refer to field SC_SSVT_COND
in the SC_SSVT format described in section "Appendix A. I!)ata Area
Descriptions" on page A-1) indicates a "subsystem abending" status,
subsystem recovery is attempted. The SC_SSVT pointer is used to access the
existing SC_SSVT.

If the SC_SSVT Subsystem Condition flag indicates "subsystem active", the
request for initialization is erroneous. An error code is returned to the caller
in register 15, indicating that no further processing is possible.

5. The SC_SSVT control block must reside in CSA (below the 16Mb line).
The function matrix and entry point addresses are initialized, and
information from the SC_C10T is used to complete the initialization.

6. Subsystem Interface support routines must reside in common storage. The
routines can either be loaded permanently in LPA or loaded into global
storage at each subsystem initialization process. If the routines are not
loaded correctly, the routine is exited with a return code after any allocated
control blocks are freed.

Module Label

S@CC0SS1

S@CC0SS1

S@CC0SS1

S@CC0SS1

S@CC0SS1

S@CCOSSI

Cray Research, Inc. 2. SUPERLINK Product Management Component 2-17

Diagram 2-7
S@CCOSSI - Sybsystem Interface Initialization Routine (part 2 of 2)

continued 1

-Input-

SC SSVT

SO SSVT

SC SSVT

V
-Process-

7. Set subsystem recovery
indicator.

8. Ensure that subsystem name in
SC_SSVT is valid; if not
recoverable, exit with a
return code.

> 9. Validate Subsystem Interface
matrix; if not recoverable,
exit with a return code.

Check Subsystem Interface
module entry points; if not
recoverable, exit with a
return code.

If reload of modules was
tried but failed, exit with
a return code.

10. Validate control block
pointers in SC_SSVT; if bad
SC_SSVT in SSCVT chain, exit
with a return code.

If any other control block is
not recoverable, exit with —
a return code.

11. Set SC_SSVT pointer in SSCVT.-
and in SSCTSUSE field.

12. Set "subsystem active"-
indicator; return address of
SC_SSVT to caller
in its PLIST.

Set a return code for caller
as follows: if initialization
was successful, return a
value of 0.

If initialization was
successful in recovering an
old SC_SSVT from an abending
subsystem, return with a
code.

-Output-

SC SSVT

•> Register 15 = 24

-> Register 15 = 36

-> Register 15 = 28

-> Register 15 = 32

-> Register 15 = 40

-> Register 15 = 44

l->

SC SSVT

SC SSVT

PLIST
=>SC SSVT

-> Register 15 = 00

-> Register 15 = 4

•> Exit to saccoooo

2-18 SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit

r^,

SI-0182

Extended Description

Explanation

8. For successful recovery of an existing SC_SSVT, the subsystem name in the
SC SSVT must be the same as that in the SSCVT.

9. The Subsystem Interface matrix in the SC_SSVT must be validated to
ensure that the address of the interface routines are correct. If a routine is
detected as erroneous, it is reloaded into global storage, and the relevant
routine address is updated.

10. All the control block pointers in the SC_SSVT must be validated to ensure
that the relevant control blocks are still available. The ASCB pointer must
be updated. If an error is detected with any other control block field, the
MVS operator is prompted with a WTOR to indicate either that recovery
is to continue (that is, set field in error to 0) or that recovery is to be
abandoned, the existing SC_SSVT deleted, and a new SC_SSVT created and
initialized.

11. An update of the SC_SSVT pointer in the SSCVT control block ensures
that MVS recognizes the subsystem as active. To facilitate recovery, the
SSCVT user field is also updated to point to the SC_SSVT.

Module Label

S@CCOSSI

S@CCOSSI

S(aCCOSSI

S@CCOSSI

Cray Research, Inc. 2. SUPERLINK Product Management Component 2-19

Diagram 2-8
S@CCOSST - Subsystem Interface Termination Routine

Entry from S3CC0000

•Input"
V

-Process-

Register 1 => PLIST|—> 1. Set 'Subsystem Ending'
indicator in SO SSVT.rSO SSVT

2. Issue NTO/ 'Subsystem
Interface dormant'.

3. Clear SC_SSVT pointer and
SSCTSUSE field in SSCVT. -

Free storage used by SC_SSVT

-Output-

SSCVT

•> Exit to S3CC0000

2-20 SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit Sl-0182

Extended Description

Explanation

3. Clearing the SC_SSVT pointer deactivates the Subsystem Interface for
MVS. Clearing the SSCTSUSE field indicates that the subsystem
terminated sucessfully. Recovery processing checks this field when the
subsystem is next initialized.

Module Label

S@CCOSST

Cray Research, Inc. 2. SUPERLINK Product Management Component 2-21

Diagram 2-9
S@CCOEOT - Sybsystem Interface End-of-Task Routine

Entry from MVS-

•Input-

Register 0
= = >

SSCVT

i—>

SO SSVT

Register 1
= = >

•SSOB*
SSOBINDV

SSIB'

EOT SSOB
Extension

SSET

V
-Process-

->1. Locate SO SSVT

2. If SC_SLASVT exists
if Pk
.get work area
.get LOCAL lock
.get CMS lock

.scan SC_UREs

.matching on the

.TCB

.when TCB matched

..take copy

..of SC_URE

..and flag match

.end-when

.free CMS lock

.free LOCAL lock

.if a matched TCB

.had been flagged

..issue A—EOT

.end—if

.free work area
end—if

end-if

3. Return to caller.

-> Exit to MVS

2-22 SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit

-output-

CASE Request

-> A-EOT

SI-0182

Extended Description

Explanation

2. End-of-task processing concerns only tasks designated as
SUPERLINK/MVS service users (that is, only tasks with an SC_URE entry
chained from the appropriate entry in the SC_SLASVT table).

To make best use of the time spent in this exit and under the CMS lock, the
predicate, Pk, is checked:

Pk The full-word pointer at offset 4 * k into the SC_SLASVT is not
null (k is an integer in the range l^k^maximum ASID
available).

In most cases, the predicate is not true and no further action is required. If
it is false, the CMS lock must be OBTAlNed to search the queues of
SC_UREs, and the queues must not be altered by other
SUPERLINK/MVS components.

If a match is made on the ASCB and TCB of the terminating task, then a
CASE AL_ARE request area is built in the module's work area and an
A-EOT CASE local primitive is executed to clean up the resources used by
the task.

3. Retum to caller.

Module Label

S@CCOEOT

S@CCOEOT

Cray Research, Inc. 2. SUPCRLINK Product Management Component 2-23

Diagram 2-10
S@CCEOM - Subsystem Interface End-of-Memory Routine

Entry from MVS

-Input-

Register
==>

SSCVT

SC SSVT

Register 1

'SSOB*
SSOBINDV

SSIB

EDM SSOB
Extension

*—>

SSEN'

-Process-

-> 1. Locate SC_SSVT and end-of—
memory SSOB extension.

2. Handle case of terminating
SLCN address space.

3. Handle case of terminating
address space being a
SUPERLINK FSS.

->Exit to MVS

2-24 SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit

-Output-

Sl-0182

Extended Description

Explanation

1. End-of-memory processing is invoked from within the Master Scheduler
address area. Pointers to the SSCVT and SSOB are provided on entry.

2. If the SC_SSVT pointer in the SSCVT is not null and the ASCB pointer in
the SC_SSVT so chained matches that in the SSOB extension for the
terminating address space, SUPERLINK/MVS is terminating without
having cleaned up the Subsystem Interface. Flag the SC_SSVT as
"abending"; clear the pointer to the SC_SSVT to deactivate the Subsystem
Interface to MVS. This prevents abends, but leaves the SSCVT USER field
pointing to the SC_SSVT. Consequently, recovery processing on a new
initialization may recover the old control blocks.

3. If the SC_SSVT pointer in the SSCVT is not null, and the ASCB pointer
in one of the SC_FSSCB blocks matches that in the SSOB extension for the
terminating address space, an FSS is terminating. If the SC_FSSCB
indicates that the FSS should not terminate, POST the FSS Manager task,
indicating the imexpected termination of the FSS.

Module Label

S@CCOEOM

S@CCOEOiM

S@CCOEOM

Cray Research, Inc. 2. SUPERLINK Product Management Component 2-25

Diagram 2-11
S@CC0S34 - Subsystem Interface Support Routine (part 1 of 2)

Entry from MVS

-Input-

Register 0

SSCVT

SO SSVT

Register 1
= = >

SSOB
SSOBINDV

SSIB

SVC34 SSOB
Extension

i—>

SSCM
SSCMBUFF

Operator
Command Buffer

V
-Process-

> 1. Locate SC_SSVT.

2. If command is not an MVS
STOP command/ continue
at step 6.

3. If MVS STOP command is not
for SLCN/ continue at step
9.

4. If subsystem is able to
process STOP command/ notify
shutdown processor/
indicating shutdown type.

Indicate to MVS that command
has been accepted by
subsystem; return to MVS.

If command is not prefixed by
subsystem command character/
continue at step 8.

•> continued

2-26 SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit

-Output-

POST
shutdown
ECB

SI-0I82

Extended Description

Explanation

1. Upon entry, register 0 points to the SSCVT for this subsystem; the
SC_SSVT is chained from the SSCVT. Register 1 points to the SSOB.

2. The buffer containing the operator command and its length is chained from
the SSOB extension (SSCM) for the Subsystem SVC34 operator command
function call. The command is left-adjusted and padded on the right with
16 blanks.

3. The name of the job being stopped is found by scanning the command
buffer for a matching jobname.

4. A subsystem must be in an active state to process an operator command.
If the subsystem is still initializing or is terminating, the command is
returned to MVS, indicating that it has not been accepted for processing.
The shutdown type is normal, quick, or abort.

5. A return code in the SSOB feedback code area, SSOBRETN, indicates to
MVS that the command has been accepted by the subsystem. (EQUate
SSCMSUBC is used.)

6. The subsystem command character is installation-defmed. The command
character is available from the SC SSVT CMDCHAR field.

Module Label

S@CC0S34

S@CC0S34

S@CC0S34

S@CC0S34

S@CC0S34

S@CC0S34

Cray Research, Inc. 2. SUPERLINK Product .Management Component 2-27

Diagram 2-12
S@CC0S34 - Subsystem Interface Support Routine (part 2 of 2)

S9CC0S34 — Subsystem Interface Operator Command Notify
continued

-Input-

8.

V
-Process-

If subsystem can process
commands create command —
buffer, chain to operator
command queue, and notify
SUPERLINK operator.

If command is a special case
MVS command, continue at
Step 7.

Indicate to MVS that command
has NOT been accepted by the
subsystem.

-> Exit to MVS

2-28 SUPERLINK for MVS Logic Library Volume2: Control Functional Unit

(part 2 of 2)

»->

>—>

-Output-

SC SSVT

n

POST
Product
Operator
component
EGB

SI-0I82

Extended Description

Explanation

1. A subsystem must be in an active state to process an operator command. If
the subsystem is either initializing or terminating and the Product Oj^rator
component is not available, the command is retumed to MVS, indicating
that the command has not been accepted for processing.

The SUPERLINK/MVS Product Operator component manages aU
operator commands controlling SUPERLINK/MVS operation. A queue
of commands to be processed is chained from the SC_SSVT. The operator
processor is POSTed to perform the indicated actions.

8. SUPERLINK/MVS may extend the MVS operator display command to
provide a command interface famili^ to the MVS operator. These
commands are detected by the "Operator Command Notify" routine and
chained to the op)erator command queue. The Product Operator processor
is POSTed to perform the command.

9. A return code in the SSOB feedback code area (SSOBRETN) indicates to
MVS that the command has not been accepted by the subsystem.
(SSCMSCMD is EQUed).

Module Label

S@CC0S34

S@CC0S34

S@CC0S34

Cray Research, Inc. 2. SUPERLINK Product Management Component 2-29

Diagram 2-13
S@CCOFSS - Subsystem Interface FSS CONNECT/DISCONNECT Routine (part
1 of 2)

Entry from MVS

-Input-

Register 0
= = >

> SSCVT

[
SC SSVT

Register 1
= = >

•SSOB'

>

SSIB

V
-Process-

Locate SC_SSVT.

Validate FSS ID.

Locate FSS SC_FSSCB.

If FSS request is invalid/
return to MVS.

If FSS request is CONNECT*
continue at step 7.

Validate DISCONNECT request;
if in error* return to MVS*—
else continue at step 12.

Ensure that FSS request was
solicited by SUPERLINK; if
not* return to MVS.

If FSS is already active*
return to MVS. —'

9. Update SC_FSSCB

-> continued

2-30 SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit

-Output-

SSOB

SSOB

SSOB

SSOB

SC FSSCB

S!-0i82

Extended Description

Explanation

2. The MVS START command which initiates the FSS address space has a
number of parameters. One parameter indicates the FSS ID of this FSS.
The FSS-ID must be equal to or less than the maximum number of FSS
address spaces supported by this FSS. This information is held in the
SC_CIOT. The address spaces are allocated by routine SA@FOOOO. Check
the pointer to see if S@CFOOOO has allocated them.

3. All FSS control blocks are contiguous. The FSS-ID supplied with the
START command locates the relevant SC_FSSCB.

4. Only FSS CONNECT or DISCONNECT requests are valid. Any other
requests are treated as error conditions; in this case, the retum code is set in
the SC_SSOB and control is retumed to MVS.

6. To ensure a valid FSS DISCONNECT request, the relevant FSS must be
active, and the ASCB requested must be the ASCB supported by the
SC_FSSCB. If either of these conditions is not satisfied, a retum code is set
in the SC_SSOB and control is returned to MVS.

7. The MVS START command which initiates the FSS address space also
provides the originating subsystem name as a parameter. That name must
agree with the subsystem name defmed in the SC_SSVT, and the ASCB
address of the subsystem must match the one stored in the SC_SSVT. If
an error is detected, a retum code is set in the SC_SSOB, and control is
retumed to MVS.

9. The subsystem address space and the FSS address space can update an
SC_FSSCB concurrently. Therefore, care must be taken to use irreducible
methods to update the SC_FSSCB whenever possible (for example,
compare and swap logic). Updates to the SC_FSSCB include the ASCB
address of the FSS and the TCB address of the mother task.

Module Label

S@CCOFSS

S@CCOFSS

S@CCOFSS

S@CCOFSS

S@CCOFSS

S@CCOFSS

Cray Research, Inc. 2. SUPERLINK Product Management Component 2-31

Diagram 2-14
S@CCOFSS - Subsystem Interface FSS CONNECT/DISCONNECT Routine (part
2 of 2)

continued

—Input
V

-Process-

10. Load FSS support routine.

11. Update relevant FSS service
table.

12. Branch to FSS support module
via service table.

-Output-

•> Exit to FSS support routine

2-32 SUPERLINK for MVS Logic Library Volume 2; Control Functional Unit SI-0182

Extended Description

Explanation

10. The FSS interface is supported through an FSS support module. Unlikethe
Subsystem Interface support module, which resides in common storage, the
FSS support module resides in the private area of the FSS. The support
module, named in the SC_CIOT, is loaded into LSQA. (The default FSS
interface support module name is S@CCOFSI.)

Be careful to locate and load the correct module, since S@CCOFSS runs in
the FSS address space.

11. The addresses of the subroutines within the FSS support module are added
to the "Common Service Table" for the FSS. Once all table updates have
been made, control is given to the routine supporting either CONNECT or
DISCONNECT processing.

12. The FSS support module completes FSS CONNECT or DISCONNECT
processing.

Module Label

S@CCOFSS

S@CCOFSS

S@CCOFSS

Cray Research, Inc. 2. SUPERLINK Product Management Component 2-33

Diagram 2-15
S@CCOFSI - FSS Interface Support Routine (part 1 of 5)

Entry from S3CC0FSS or SaCFOllO

Input

n
V

Process-

CONNECT entry point.

1. Ensure that entry registers
are saved.

2. Allocate storage for FM_FSVT/
FM_FSCTs, and FM_FSSXB
control blocks; save FM_FSVT
address in ASXB.

3. Set CONNECT return code in
SSOB and inform FSS Manager.

A. If error, return to S3CC0FSS;
otherwise, return to
subsystem requester.

-> continued

2-34 SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit

-Qutput-

SI-0182

Extended Description

Explanation

1. On return from this routine, control is regained not by the calling routine
(S@COFSS), but by the user requesting FSS CONNECT Subsystem
Interface services. If an error condition is detected, control is retumed to the
Subsystem Interface routine, S@CCOFSS.

2. For an FSS CONNECT, the relevant control blocks to describe an FSS
address space, (as determined by MVS), must be created and initialized.
These control blocks are:

• FM_FSVT - FSS Vector Table
• FM_FSCT - FSS Control Table
• FM_FSSXB - FSS extension control block

Section "S(^CFOOOO - Data Areas" on page 4-3 provides a complete
description of these control blocks.

Module Label

S@CCOFSI

S@CCOFSI

Cray Research, Inc. 2. SUPERLINK Product iManagement Component 2-35

Diagram 2-16
S@CCOFSI - FSS Interface Support Routine (part 2 of 5)

continued

—Input
V

-Process-

DISCONNECT entry point.

5. Ensure that FSS is already
connected.

6. Indicate that FSS is in the
disconnection phase.

7. Free storage allocated to FSS
control blocks.

•> continued

2-36 SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit

-Output-

SI-0I82

Extended Description

Explanation

5. If a user makes an FSS DISCONNECT request, the FSS address space must
have previously completed a successful FSS CONNECT. The SC_FSSCB
data area includes a series of indicators describing the status of the relevant
address space.

6. The storage allocated during CONNECT processing to hold the FM_FSVT,
FM FSCTs, and F.M FSSXB can now be released. The pointer to the
FM_FSVT, held in the ASXB, must also be erased.

Module Label

S@CC0FS1

S@CC0FS1

Cray Research, Inc. 2. SUPERLINK Product Management Component 2-37

Diagram 2-17
S@CCOFSI - FSS Interface Support Routine (part 3 of 5)

continued

Input
V

-Process-

8. Set FSS DISCONNECT return —
code into SSOB.

9. Inform FSS Manager that FSS
DISCONNECT was successful.

10. In case of error, return to
S9CC0FSS (Subsystem
Interface support routine).

-> continued

2-38 SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit

-Output-

SSOB

SI-0182

Extended Description

Explanation

10. On entry to this routine, the Subsystem Interface support module registers
were saved, and a pointer was located for the save area created on entry to
the Subsystem Interface support routine. If an error is detected, control is
retumed to S@CCOFSS for further processing. During DISCONNECT,
S@CCOFSI assumes responsibility for deleting the FSS interface routine
from the system.

Module Label

S@CCOFSI

Cray Research, Inc. 2. SUPERLINK Product Management Component 2-39

Diagram 2-18
S@CCOFSI - FSS interface Support Routine (part 4 of 5)

continued

-Input-
V

-Process-

ORDER entry point.

11. Pass command embedded in FSI
ORDER to FSS subcomponent
responsible for processing
it (FSS—dependent, in
general).

•> continued

2-40 SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit

-Qutput-

SI-0I82

Extended Description

Explanation

11. Entry to the ORDER processing portion of the FSI routine is through
routine S@CF0110, which was SCHEDULEd under an SRB from the
control address space. S@CF0110 invoked this routine with a
S@@FIREQ TYPE = ORDER macro call; therefore this code is effectively
running in SRB mode.

The SC_FSIP, from which the command being delivered to this FSS can
be determined, is available to this routine. The actual mechanism of
processing the command depends to a certain extent on the particular FSS;
this routine simply places the command on a queue for processing. Replies
are sent asynchronously from the FSS with the SEND communications
primitive.

Module Label

S@CCOFSI

Cray Research, Inc. 2. SUPERLINK Product Management Component 2-41

Diagram 2-19
S@CCOFSI - FSS Interface Support Routine (part 5 of 5)

continued

•Input- Process

SEND entry point.

12. Use SC_FSIP describing
request from FSS to
build an FM_STAG staging
area containing request.

13. Communicate request to
control address space.

-Output-

-> Exit to FSI or SSI caller

2-42 SUPERLINK for MVS Logic Library Volume 2; Control Functional Unit SI-0182

Extended Description

Explanation

12. Entry is from an FSS-specific routine that issues an S@@FIREQ
TYPE = SEND macro to send data to the control address space.

The FSI parameter list SC_FSIP describing the request is available at this
point.

13. This request is communicatedto the control addressspace by embedding the
request in a staging area in conunon storage (FM_STAG) and POSTing the
"listen" task (S@CF0120) in the control address space.

Module Label

S@CC0FS1

S@CCOFSI

Cray Research, Inc. 2. SL'PERLINK Product Management Component 2-43

Diagram 2-20
S@CCOTRT - Commonly Available ASCII/EBCDIC/ASCII Translate Tables

-Input- -Process-

This is a non executable
module containing two
translate tables which are
available for use throughout
the SUPERLINK/MVS product.

An EBCDIC to ASCII translate
table is located at offset 0
into the the module.

An ASCII to EBCDIC translate
table is located at offset
256 into the module.

2-44 SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit

-Output-

81-0182

Extended Description

Explanation

1. This module resides in common storage, is thus addressable from any
address space and is available for use by any component of
SUPERLINK/MVS which wishes to use ASCII/EBCDIC/ASCII translate
tables.

The address of the module may be found in the field
SC_GST_TRANSLATE of the SC_GST (Global service table), which itself
may be located from the field SC_SSVT_GST of the Subsystem Vector table
(SC_SSVT).

Module Label

S^CCOTRT

Cray Research, Inc. 2. SUPERLINK Product Management Component 2-45

3. SUPERLINK Options Processor Component

The SUPERLINK/MVS product is configured using initialization options supplied by the customer
installation. These initialization optionsdefine the SUPERLINK Functional Unitsthat must be active,
and specify which components, resident in those Functional Units, are to be supported for this
execution of SUPERLINK/MVS. The Options Processorcomponent performsvalidity checks on all
the parameters provided and forms initialization control blocks applicable to each Functional Unit.

This component is similar to the components in MVS and JES2/3 that are concerned with
initialization. The systems programmer specifies the initialization options in a parameter library'
allocated in the SUPERLINK JCL with the DDNAME "SLPARM". These options are processed
and then held in storage using an intemal format.

The Options Processor component has a "backend" that is invoked during SUPERLINK/MVS
termination. The "back-end" releases the Initialization Options Table (lOT) appendages obtained
during this component's operation.

Options Processor Module Structure
The Options Proccosor component consists of the following modules:

Module Function

S@C1000 Control module

S@C1010 Initialization; obtain work areas and validate parameter list.

S@C1020 Termination; release workareas and return diagnostic information.

S@01030 Statement builder

S@01040 Parameter scan; validate and set control block field(s).

S@01050 Tableof valid parameters, value ranges, types, conversions, and so on

S@01GETM Obtain storage for and anchor lOT appendage

S@01DATA Read in-stream data records; store in lOT appendage and lOT list.

S@01 FLAG Set multiple flag values in single byte field

S@01060 Backend; release aU lOT appendages.

Figure 6 on page 3-2 shows the hierarchical structure of the modules within the Options Processor
component.

Cray Research, Inc. 3. SUPERLINK Options Processor Component 3-1

S3C1000

Figure 6. Module Structure of Options Processor Component

Options Processor Services
The Product Management component (S@CCOOOO) invokes the Options Processor component.
S@CCOOOO may request one of two functions: it asks the Options Processor component to provide
either the complete set of options or the options for a specific Functional Unit. A parameter list is
provided; this list gives the parameter requirements as well as the relevant output control blocks (see
"Options Processor Data Ajreas" on page 3-3).

An optional DDNAME of SLLIST may be used to provide printed output of parameters and
messages.

Options Processor Interfaces
The Options Processor component is either CALLed or ATTACHed and receives a parameter list on
entry. The contents of the parameter list are as follows:

• An indication of the function for which options processing is required. An ALL indication must
have been successfully processed before receipt of a specific indication.

• A pointer to the Control Initialization Options Table (SC_CIOT)

• The member name containing the options

This parameter is mandator>' for an ALL indication. For a specific indication, this value replaces
the SC_CIOT value and causes the named member to be read. If this parameter is set to binary
Os or is omitted, the member named in the SC_C10T is reused.

• An area in which to retum error information

3-2 SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit SI-0182

A combination of return codes and feed-back codes describe an error, as shown in Table 1 on page
3-3.

Table 1. Return Codes and Feed-back Codes for the Options Processor

Return
Code

Feed-back
Code Meaning

00 Successful completion

04 Successful completion; LIST output was requested but could not
be produced.

08 Processing terminated due to syntactical errors. For all
feed-back codes/ the address of the statement in error is
returned. For feed-back codes 04 and 08, the address of the start
of the parameter is returned. For feed-back code 12, the current
address within the statement may be returned.

04 Scan error; an obsolete parameter was found.

08 Scan error; an unsupported parameter was found.

12 Scan error; an error was encountered during scan.

12 Processing terminated due to I/O failure. For feed-back code
16, the abend code is also provided; an indication of the
attempted I/O operation is included if appropriate.

04 Member was not found in PARMLIB.

08 Invalid data control block (DCB) for PARMLIB

12 OPEN failed for DDNAME SLPARM (DD statement missing).

16 An abend was intercepted by ESTAE processing.

16 Processing was not performed.

04 The member name was invalid/omitted.

08 The control block address supplied was invalid.

12 A "refresh" request for a specific options table was
received before the complete options were built.

16 Bad parameter list received

The backend (S@C1060) of the Options Processor component is called during SUPERLINK/MVS
termination to release all lOT appendages. It receives the address of the SC_CIOT as a mandatory
parameter.

Options Processor Data Areas
Each SUPERLINK/MVS Functional Unit has an associated data area containing its options. These
data areas are allocated by S@CCOOOO, and their addresses are passed to each Functional Unit. The
following is a list of these data areas:

Data Area

SC_CIOT
SC NIOT

Description
Control Initialization Options Table (anchor for the NIOT)
Network Initialization Options Table

'Appendix A. Data Area Descriptions" on page A-1 provides a description of the previous data areas.

Cray Research, Inc. 3. SUPERLINK Options Processor Component 3-3

Options Processor Recovery
An ESTAE is provided to intercept abends. Retry processing is not performed; rather, diagnostic
information in the form of feed-back codes is retumed to the caller.

3-4 SUPCRLINK for MVS Logic Library Volume 2: Control Functional Unit SI-0I82

This page has been intentionally left blank.

Cray Research, Inc. 3. SUPERLINK Options Processor Component 3-5

Diagram 3-1
S@C1000 - Control Module

Entry from S3CC0000

n
V

—Process--Input-

PLIST 1. Initialize CALL S3C1010.

2. OPEN SLPARM and SLLXST.

3. Find required member.

A. Initialize control block
values.

5. Process member^ CALL S3C1030.

6. Loop back to step 3.

7. Terminate, CALL S3C1020.

-Output-

Updated PLIST,
return code

•> Exit to S3CC0000

3-6 SUPERLINK for MVS Logic Library Volume 2; Control Functional Unit SI-0182

Extended Description

Explanation

1. Module S@C1010 obtains work areas and validates the parameter list
(PLIST). The return code from S@C1010 is checked, and processing is
resumed at step 7 if errors occurred.

2. Tlie parameter library is opened and validated. Any errors result in a branch
to step 7. The LIST dataset is validated and opened. Processing continues
in "NOLIST" mode if there are any errors. Return code 04 is given on
completion.

3. Search the parameter library's directory for the required member name. If it
is not found, branch to step 7.

4. Module S@COOOO allocates the lOTs and places identifiers in them. The
fields in the lOT are set to their starting values. For refresh, S@CCOOOO
may pass the address of the original lOT or may provide a new lOT. The
member read for refresh must contain statements for every OPTION
required (not just those to be amended).

5. Once the required member is found, module S@C1030 is called once to
process all records in the member. The retum code from S@C1030 is
checked, and a branch is made to step 7 if errors occurred.

6. Loopback occurs only when the PLIST requested that a complete set of
options be built. Each set of OPTIONS is contained in a separate member.
The member names are contained in a root member for SLCN OPTIONS.
Exit from the loop is taken when all named members have been processed.

7. Module S@C1020 releases the work areas and updates the parameter list to
reflect the processing done.

Module

S@C1000

S(rt5C1000

S@C1000

S@C1G00

S@C1000

S@C1C00

S@C1000

Label

Cray Research, Inc. 3. SUPERLINK Options Processor Component 3-7

Diagram 3-2
S@C1010 - Initialization; Obtain Work Areas and Validate Parameter List

Entry from SdClOOO-

-Input-

PLIST

V
-Process-

1. Validate parameter list.

2. Obtain storage for work
areas.

3. Return to caller.

-Qutput-

Nork areas>
Return code/
Feedback code

-> Exit to saciooo

3-8 SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit 81-0182

Extended Description

Explanation

1. The parameter list supplied by S@CCOOOO to S@C1000 is passed to this
module. Its contents are validated here. The retum and feedback codes
notify S@C1000 of errors. For more information about retum and
feed-back codes, see the SUPERLINK/MVS Lx)^c Library Volume 1:
Product and Component Descriptions, CRl publication SI-0181.

2. The work areas must be used by S@C1030 and S@C1040. iModule
S@C1040 requires a work area stack of sufficient depth for the most
complex statement syntax. For example, the statement

"START1 PROC = a,PARAM = (b,c)"

requires a depth of three (statement level, parameter level, subparameter
level).

3. Retum and feedback codes indicate the processing done.

Module Label

S@C1010

S@C1010

8^X1010

Cray Research, Inc. 3. SUPERLINK Options Processor Component 3-9

Diagram 3-3
S@C1020 - Termination; Release Work Areas; Return Diagnostic

Information
Entry from SaClOOO

-Input-

PLIST

1
V

Process-

1. Release work areas.

2. Update PLIST.

3. Pick up diagnostic codes.

Output

Feedback and
return codes^
updated PLIST

-> Exit to saciooo

3-10 SUPERLINK for MVS Logic Library Volume 2; Control Functional Unit 81-0182

Extended Description

Explanation

1. The work areas obtained by S@C1010 are released. However, if there are
syntax errors, the offending statement is not freed, since it is required by
S@CCOOOO.

2. The PLIST-suppIied S@CCOOOO is updated with additional diagnostic
information. Return codes for which there is no feedback code, and return
codes for which the PLIST was in error are not updated.

3. The return code and feedback codes are loaded and retumed to the caller.

Module

S@CI020

S@CI020

S@C1020

Label

Cray Research, Inc. 3. SUPERLINK Options Processor Component 3-11

Diagram 3-4
S@C1030 - Statement Builder

Entry from SaClOOO

•Input-

PLIST

V
-Process-

1. Read a record from PARMLIB

2. Build statement.

3. Loop back to step 1.

4. Parse statement
CALL SaClOAO.

5. Produce LIST output.

6. Loop back to step 1.

7. Return to caller.

Output—

feedback and
return codes

-> Exit to saciooo

3-12 SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit SI-0182

Extended Description

Explanation Module

1. PARiMLIB has been OPENcd by S@C1000 and the PDS member found. S(?^C1030
The parameter list contains information (DCB address and so on) to enable
this module to read records.

2. The statement is formed from one or more records as a variable-length S@C1030
string. Leading and/or trailing blanks are stripped. A statement may contain
a comment following the last parameter and may contain a continuation
character in column 72.

3. Loopback to step 1 occurs if the statement is continued onto another record. S@C1030

4. This step is bypassed if the statement is a comment (first b>le = *). Module S@C1030
S@C1040 returns diagnostic information as a result of its processing. If there
are errors, branch to step 7.

5. The statement and any diagnostic information are written to SL2L1ST, if S@C1030
present.

6. Exit from the loop is taken at end-of-file. The dataset is not CLOSEd here S@C1030
since further member(s) may be required.

7. Diagnostic information (feedback and return codes) is provided for the caller. S@C 1030

Label

Cray Research, Inc. 3. SUPERLINK Options Processor Component 3-13

Diagram 3-5
S@C1040 - Parameter Scan, Validate and Set Control Block Field(s)

Entry from 5901030-

-Input-

PLIST,
CIGT

V
-Process-

1. Find parameter.

2. Validate value.

3. Do conversion.

4. Set value in control block.

5. Loop back to step 1.

6. Return to caller.

Output

Updated IDT,
feedbacks and
return codes.

-> Exit to 3901030

3-14 SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit SI-0182

Extended Description

Explanation

1. The PLIST contains the statement to be parsed, the address of the table of
valid parameters, and the address of the current work area in the stack. Work
areas are chained, since this module is recursive for scanning subparameters.
The top of the work area (parent) is pointed to on initial entry from module
S@C1030.

2. The value of the parameter is validated against the table in module
S@C1050. Errors are indicated by a combination of retum and feedback
codes.

3. The parameter is converted from its extemal representation (character, hex
digits, and so on) to its internal representation (binary and so on), as
indicated by module S@C1050.

4. The value is stored in the CIOT, NIOT, or another table, as appropriate for
the OPTIONS being built. S@C1050 holds addressing information, which
enables the lOT field to be located for updating.

5. Loopback occurs if there are more parameters or if there are subparameters.

6. The caller is notified of the processing performed by retum and feedback
code settings.

Module

S@C1040

S@C1040

S@C1040

S@C1040

S@C1040

S@C1040

Label

Cray Research, Inc. 3. SUPERLINK Options Processor Component 3-15

Diagram 3-6
S@C1050 - Table of Valid Parameters, Value Range, Type, Conversion

Accessed by S9C1030 and S9C1040-

-Input- -Process-

1. Definition of PARMLIB
syntax.

-Output-

3-16 SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit

r^,

SI-0182

Extended Description

Explanation

1. This look-up table is a nonexecutable module. There are a number of entries
that define the syntax, validation, conversion, and lOT control block fields
for parameter library statements. Module S@C1030 passes a pointer to this
module to S@C1040. Details are given on the S@C1SYNX macro (see
"Appendix B. SLCN Macros" on page B-1).

An entry for each statement is followed by a list of entries for each
parameter. The parameter entry may be followed by a list of entries for each
subparameter. Parameters may be keyword or positional and may be
subscripted. Parameters that have nonstandard syntax are handled by
specifying an internal exit. (For example, PARAM(a,b) on the START
statement is required as a single variable-length string a,b).

You can mark parameters that are superseded from one software version to
the next as "obsolete." This fact is reported on the LIST dataset;
S@CCOOOO is also informed.

Module Label

S@C1050

Cray Research, Inc. 3. SUPERLINK Options Processor Component 3-17

Diagram 3-7
S@C1GETM - Obtain Storage for and Anchor lOT Appendage

Entry from 59010^0-

-Input-

PLIST,
CIOT

V
-Process-

1. Validate OPTION type.

2. Determine item count.

3. Attempt reuse of appendage.

A. Obtain new storage for
appendage.

-Output-

Updated lOT,
feedback and
return codes

-> Exit to SaClOAO

3-18 SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit 81-0182

Extended Description

Explanation

1. The parameter list consists of two fullwords. The first is a pointer to the
current work area in the stack. The second is a pointer to the following list
of fullwords in S@C1050 (specified via AFT= (S(^C1GETM,label of
params).

• Offset to anchor field in lOT
• Length of an item (< 2**16)

The current work area contains a pointer to the syntax table entry for the
item being processed. The item must be defmed as being numeric
(CONV=NUM on S@C1SYNX) or an error message and return code
result.

2. The value of the parameter is validated against the table in module
S@C1050. Errors are indicated by a combination of retum and feedback
codes. For more information about retum and feedback codes, see CRI
publication SI-0181, SUPERLINK/MVS Logic Library Volume 1: Product
and Component Descriptions.

3. This internal SUPERLINK/MVS Options exit is taken after the item has
been validated and the CIOT updated. The syntax table definition for the
item contains the offset to the item within the lOT. Note that the item may
be 1,2 or 4 bytes long.

4. The anchor field is checked to see if an appendage already exits. If not, then
this step is bypassed. The count of items in the existing appendage is
compared with the current item count. If the current item count is higher,
then the existing appendage is released. Otherwise, the existing appendage
header fields are reset and the next step is bypassed.

5. The length of storage required for the appendage is calculated as follows:
appendage header length + (item count * item length). The storage is
obtained, the appendage header fields updated, and the appendage address
stored in the lOT anchor.

Module Label

S@C1GETM

S(?DC1040

S(gClGETM

S@C1GETM

S@C1GETM

Cray Research, Inc. 3. SUPERLINK Options Processor Component 3-19

Diagram 3-8
S@C1DATA - Read Instream Data Records, Store in lOT/Appendage and

List
Entry from S3C1040-

-Input-

CIOT

V
-Process-

1. Locate S9C1030 work
area.

2. Locate DCBs and save EODAD
address.

3. To list.

4. Read next PARMLIB record.

5. Check for 'end of data'
appendage.

-> SaClOAO

-Output-

Feedback and
Return Codes

3-20 SUPERLINK for MVS Logic Library Volume 2: Control FunctionalUnit 81-0182

Extended Description

Explanation

1. The parameter list consists of two fuUwords. The first is a pointer to the
current work area in the stack. The second is a pointer to the following list
of fullwords in S@C1050 (specified via PRE = (S@C1DATA,label of
params).

• Offset to anchor field in lOT
• Pointer to syntax table entry for the item.

This intcmal exit is called by S@C1040 before the current item on the
Options statement has been processed. It is not known how many times
S@C1040 has been invoked. However, the work area stack is contiguous
with each element of a fixed size with a depth indicator. The S@C1030 work
area is at the top of the stack.

2. The DCB addresses are passed to S@C1030 in its parameter list from
S@C1000. The address of this parameter list is held in S@C1030's work
area. This module must deal with "end of file" during its execution but must
restore the previous BO DAD address on return.

3. The statement/data record which is in the buffer is listed. The first time
through the BEGIN statement that caused this internal exit to be invoke d
is listed. On subsequent passes, the previously read "data record" is listed.

4. The S@C1030 work area contains positioning information for reading
PARMLIB records. This information is used to advance within a block or
read a new block.

5. "End of Data" is reached when the record read is an END statement. The
name on the END statement is matched with the syntax table entry name
for the BEGIN statement. An error message is retumed if the match fails;
otherwise, an exit from the list,'read loop is taken. Reaching end of file
results in the error message "end of file before end of data". The END
statement is left in the buffer to be listed by S@C1030.

6. The appendage header is used to check if there is room for the data record.
If not, an error message is retumed. The offset within the appendage for the
star of the data record is computed using the appendage header fields.

Module Label

S@C1DATA

S@C1DATA

S(^C1DATA

S(^C1DATA

S(aClDATA

S@C1DATA

Cray Research, Inc. 3. SUPERLINK Options Processor Component 3-21

Diagram 3-9
S@C1060 - Back-end, Release All lOT Appendages

Entry from S3CC0000-

-Input-

PLIST

V
-Process-

1. Validate PLIST.

2. Locate appendage.

3. Free appendage.

4. Go to step 2.

5. Set up for next lOT and go to
step 2.

-Output-

Updated IDT/
feed—back and
return codes

-> Exit to saccoooo

3-22 SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit SI-0I82

Extended Description

Explanation Module

1. The parameter list consists of a single fuUword which contains the address S@C1060
of the CIOT. This parameter is mandatory; it is the starting point for
appendage release. If the CIOT address is missing or invalid, retum code
16 results.

2. If the anchor field within the current lOT is non-zero, it contains the address S@C1060
of the appendage user data. If the anchor field is 0, step 3 is bypassed. The
address of the appendage header is computed by decrementing the
appendage user data address.

3. The appendage header contains the length of storage occupied by the S@C1060
appendage.

4. Exit from the loop is taken when all appendages in the current lOT have S@C1060
been released.

5. The CIOT contains pointers to all the other lOTs. These are processed in S@C1060
the following sequence (providing the pointer is nonzero): NIOT, OIOT,
VIOT, JIOT.

Label

Cray Research, Inc. 3. SUPERLINK Options Processor Component 3-23

4. SUPERLINK Functional Subsystem Manager
Component

The FSS Manager component of SLCN is responsible for initialization, termination, and recovery of
SUPERLINK Functional Units, as well as activation of SUPERLINK FSSs such as SLNET. FSSs
can either be started automatically, under the control of SUPERLINK/MVS, or activated by an MCS
operator conunand.

Functional Subsystem Subcomponents
The FSS Manager component consists of the following subcomponents:

Subcomponent Description

S@CFOOOO FSS Manager control subcomponent

S@CF0100 FSS Manager cross-memory communications subcomponent

S@CFOOOO - FSS Manager Control Subcomponent
The FSS Manager control subcomponent is responsible for initiation, termination, and recovery of
SUPERLINK/MVS FSSs.

S@CFOOOO - Module Structure

The FSS Manager control subcomponent consists of the following modules:

Module Function

S@CFOOOO FSS Manager root module

S@CF0010 Cross-memory environment management initialization

S@CF0020 Cross-memory environment management termination

S@CF0030 MVS START command creation and issuance

S@CF0040 FSS Manager ESTAE processing

Figure 7 on page 4-2 shows the hierarchical structure of modules within the FSS Manager control
subcomponent.

Cray Research, Inc. 4. SUPERLINK Functional Subsystem Manager Component 4-1

ESTAE

Figure 7. Module Structure of the FSS Manager Control Subcomponent

S@CFOOOO - Services

The component managers resident within the FSS Manager control subcomponent modules are not
controlled by the FSS Manager component; they are directly controlled from within the associated
Functional Units. The FSS Manager control subcomponent controls the initialization and termination
ofsubordinate Functional Units tl^ough the FSS ORDER/SEND mechanism.

S@CFOOOO - Interfaces

The Functional Subsystem Interface (FSI), as defined by MVS/XA release 2.1.2 and later, is the
standard interface adopted by the FSS Manager component.

Other SUPERLINK components may makerequests of the FSS Manager component by building an
FSS Request Element (FRQE) and adding it to the work queue for the FSS Manager component,
which is anchored in the SUPERLINK SC_SSVT control block.

The FSS Managercomponent provides MVS-required support for configuration of a started task as a
functional subsystem. It also enables the FSI to provide the multi-address spacecommunication
mechanism.

SLCN handles the initialization and termination of subordinate Functional Units with the FSS
ORDER/SEND mechanism. The SUPERLINK/MVS ORDERS include the foUowing:

ORDER

INIT

MSG

STATUS

TERM

Description

Order issued to SLNET requesting allocation of link devices

Order requiring the specified Functional Unit to receive a message from SLCN

Order requesting current status informationfor the specified Functional Unit

Order requesting an FSS to terminate its function. A subparameter of the
TERM ORDER indicates whether the termination sequence is one of the
following:

• Component shutdown; requests termination of a specific component or all
components resident within the specified Functional Unit.

• Abort shutdown; requires termination regardless of session or data loss.

• Quick shutdown; requests normal termination of all active sessions with no
abort processing.

4-2 SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit SI-0182

An INIT ORDER for FSS initialization is unnecessary. The INIT ORDER is implicit in the MVS
START command issued by the controlling subsystem during the initialization sequence for the FSSs.
A Functional Unit issues a subsystem request (FSS CONNEC T/DISCONNECT) during initialization;
this request allows the subsystem to acknowledge the Functional Unit as an FSS.

Note: RESTART is not a SUPERLINK/MVS ORDER. FSS RESTART is performed by a scries
of TER.M ORDERS followed by MVS START commands. The MVS START commands perform
the FSS reinitialization sequence.

S(^CFOOOO - Data Areas

Several data areas are required to support an FSS. These data areas contain a fixed header followed
by component-specific fields. Figure 8 and Figure 9 illustrate the interaction between an FSS, the
Subsystem Interface, and relevant MVS control blocks.

ASCB

ASCBASXB

ASXB

ASXBJSVT

FSVT

•FSVT' ID

FSS FSCT for
owner address
space

FSS FSCT for
FSS address
space

FSCT

•FSCT' ID

Reserved

Full—word
pointers to
processing
routines
for FSI
requests to
owner

address space

FSCT
•>

•FSCT* ID

Reserved

Full—word
pointers to
processing
routines
for FSI
requests to
FSS address
space

Figure 8. MVS-level Control Block Structure

SSVT FSSCB FSSXB

SC_SSVT_FSCQ

Figure 9. Subsystem Interface Level Control Block Structure

Cray Research, Inc. 4. SUPERLINK Functional Subsystem Manager Component 4-3

An SC_FSSCB exists for each FSS address space required and is resident in CSA. The
SC_SSVT_FSCQ isan anchor p^oint for thechain of SC_FSSCBs belon^g to this subsystem. The
FSSXB is an SC_FSSCB extension control block, resident in the FSS private area.

The FSS Manager component also makes use of the FSS Request Element (SC_FRQE), which
describes a request for the performance of some function. It is built by the requester and chained off
the SC_SSVT. "Appendix A. Data Area Descriptions" on page A-1 provides a description of these
data areas.

S@CFOOOO - Recovery

The FSS Manager runs as a subtask of the SLCN job step task. An ESTAE environment is established
to intercept abends of this component.

When invoked by an abend, the ESTAE routine logs the error, gathers diagnostic information, and
determines whether FSS Manager component recovery is possible. If recovery is possible, the SETRP
macro is used to establish a retry routine. The ESTAE routine retums to the MVS Recovery
Termination Manager, which causes resumption of the FSS Manager component at the retry routine.

If recovery is not possible, the environment is cleaned up, and the abend is percolated to the parent task
(the SLCN job step task). The ESTAE detects the abend of the daughter task and determines whether
or not to reestablish the FSS Manager component.

4-4 SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit SI-0182

This page has been intentionally left blank.

Cray Research, Inc. 4. SUPERLINK Functional Subsystem Manager Component 4-S

Diagram 4-1
S@CFOOOO - FSS Manager Root Module (part 1 of 3)

Entry from S3CC0000

Input

SC_SSVT 1

<

SC_C10T

V
-Process-

Calculate SC_FSSCB storage
required.

Establish ESTAE; if fail/
exit with return code.

Call S3CF0010 to establish
cross—memory environment.

Inform SLCN that FSS
Manager is active.

5. If SLNET start is to be
automatic/ continue at step
7.

If SLNET is not defined/
exit with return code.

6. Nait for operator START
command.

7. Call SaCF0030 to issue
START command.

8. Hait for SLNET 'FSS active*.

9. Nait for *SLCN OK to
Continue'.

-> continued

4-6 SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit

-Output-

Register 15

> Return code

Register 15

> Return code

81-0182

Extended Description

Explanation

1. SC_FSSCBs are allocated in CSA in contiguous storage. The number of
FSS address spaces supported by SUPERLINK/MVS is defined in the
Initialization Options Table (SC_CIOT). An SC_FSSCB is located by its
FSS-ID, which acts as an index into the SC_FSSCB storage area.

4. SLCN initialization must be informed that the FSS Manager component is
active so that initialization processing can continue.

5. The FSS definition in SC_CIOT includes a parameter stating whether FSS
initialization is to be automatically activated by SLCN, or is to be requested
by an MVS MCS console operator command.

6. A subsystem START command is necessary before SLNET can be
activated. All other START commands are invalid. The subsystem START
command has the following format:

#START FU = nnnnnn,....

where # denotes the subsystem command character defined in the
SC_CIOT.

8. CONNECT processing of the FSS POSTs this WAIT to indicate that
SLNET is active.

9. Subsequent FSS address spaces cannot be activated untU SLCN has
completed its initialization sequence, which includes establishing the
SUPERLINK/MVS Management Interface session with SLCN resident on
COS.

Module Label

S@CFOOOO

S@CFOOOO

S@CFOOOO

S@CFOOOO

S@CFOOOO

S@CFOOOO

Cray Research, Inc. 4. SUPERLINK Functional Subsystem Manager Component 4-7

Diagram 4-2
S@CFOOOO - FSS Manager Root Module (part 2 of 3)

Continued

•Input-
V

-Process-

10. If remaining FSSs are to be
started automatically^
continue at step 12.

11. Nait for operator START
command.

12. Call SaCFOOSO to issue
START command and wait for
CONNECT processing to
indicate that FSS has
connected.

13. Repeat process from step 10
for all FSSs.

lA. Mait for shutdown or request
start of an FSS or LISTEN
task termination or for
notification by end—of—
memory exit of FSS
termination.

15. If FSS start requested/ call
SaCFOOSO to issue START and
go to step 14.

If LISTEN task is ended/
attempt to reinstate it.

16. If shutdown is requested for
SLNET/ continue at step 18.

•> continued;

4-8 SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit

-Output-

SI-0182

Extended Description

Explanation

10. FSS address spaces can either be started automatically under the control of
SUPERLINK/MVS or activated by MCS operator command.

14. Once all the FSS address spaces have been activated, the FSS Manager is
required to act only under the following conditions:

• Request for shutdown of a specific FSS
• Request for shutdown of all FSSs
• Request to start an FSS
• Notification of FSS address space termination

15. If an FSS start is requested, call S@CF0030 to issue the MVS START S@CFOOOO
command.

If the cross-memory environment has terminated prematurely, attempt to
reinstate it. If the reinstatement fails, POST the FSS Manager terminate
ECB to terminate cleanly. In either case, return via step 14.

Module Label

S@CFOOOO

S@CFOOOO

16. If an operator requests a shutdown of SLNET, all application FSSs must S@CFOOOO
be closed down first.

Cray Research, Inc. 4. SUPERLINK Functional Subsystem Manager Component 4-9

Diagram 4-3
S@CFOOOO - FSS Manager Root Module (part 3 of 3)

continued

Input-
V

-Process-

17. Issue FSS ORDER (TERM) to
relevant FSS; wait for
confirm and return to
step 14.

18. Issue FSS ORDER (TERM) to
all application FSSs.

19. Notify all user applications
(started tasks only) of
termination request.

20. Nait for confirmation that
termination is complete.

21. Hait for 'OK to continue*.

22. Issue FSS ORDER (TERM) to
SLNET; wait for
confirmation.

23. Call SaCF0Q20 to delete
c ross—memo ry envi ronment.

24. Remove ESTAE.

-Output-

•> Exit to SSCCOOOO

4-10 SUPERLINK for MVS Logic Library Volume2: Control Functional Unit SI-0182

Extended Description

Explanation

17. If a specific FSS shutdown has been requested, the FSS Manager issues an
FSS ORDER to indicate that termination is required. This can be achieved
by use of the S@@CSERV macro. A termination parameter deterrnmes
whether the shutdown is to be immediate or sedate.

Note: Immediate shutdown is likely to cause loss ofdata on active sessions.

The relevant FSS response must confirm that FSS DISCONNECT is
complete before the shutdown request can be considered as activated.

18. The processing for shutdown of the entire SUPERLINK/MVS product is
as previously described, except that, initially, only the application FSS
address spaces can be terminated. SLNET must remain active until the
SUFERLINK Management Interface has been disabled.

19. User-written applications can be supported as started tasks. As
SUPERLINK/MVS can initialize these applications, it must inform them
when termination processing is required.

21. SLCN notifies the FSS Manager "OK to continue'
Interface has been disabled.

once the Management

Module Label

S@CFOOOO

S@CFOOOO

S@CFOOOO

S@CFOOOO

Cray Research, Inc. 4. SUPERLINK Functional Subsystem Manager Component 4-11

Diagram 4-4
S@CF00100 - Cross-Memory Environment Management Initialization

Entry from S3CF0000

-Input-

R1 => -> 1

PLIST

V
-Process-

Determine action to be
performed from passed
parameter list.

If required, ATTACH LISTEN
task.

If required, load SRB
receive routine into common
storage; set return code.

-Output-

Register 15

—> Return code

-> Exit to SaCFOOOO

4-12 SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit SI-0182

Extended Description

Explanation

1. ATTACH the "listen" task as a subtask of the FSS Manager (it must be up
before euiy SRBs can be SCHEDULEd to the FSS address spaces).

2. A cross-memory receive routine, which is SCHEDULEd as an SRB in the
target FSS address space, is required. This routine enables FSS ORDERs
to be passed to the FSS Interface routines. These, in turn, invoke the
routines that process the ORDERs.

Module Label

S(«)CF0010

S@CF0010

Cray Research, Inc. 4. SUPERLINK Functional Subsystem Manager Component 4-13

Diagram 4-5
S@CF0020 - Cross-Memory Environment Management - Termination

Entry from S3CF0000

-Input-
V

-Process-

1. Delete SRB receive routine.

2. POST LISTEN task to
terminate^ and DETACH it
once it has done so.

-Output-

-> Exit to SaCFOOOO

4-14 SUPERLINKfor MVS Logic Library Volume 2: Control Functional Unit SI-0182

Extended Description

Explanation

1. FSS termination has completed; therefore, the SRB receive routine used to
move data cross-memory from the SLCN address space is no longer required
and is DELETEd.

Module Label

S@CF0020

2. Stop the "LISTEN" task by POSTing its "terminate" ECB. WAIT for it to S@CF0020
terminate, then DETACH the task.

Cray Research, Inc. 4. SUPERLINK Functional Subsystem Manager Component 4-15

Diagram 4-6
S@CF0030 - MVS START Command Creation and Issuance

Entry from S3CF0000

Input

PLIST
r-' 1.

==>FSSCB 2.

SC_FSSCB
<—

3.

==> SSVT

==>SC CIOT

-Process-

Allocate storage for command
buffer.

procedure name from SC_FSSCB.

Obtain subsystem parameters
from SC_SSVT.

4. Remove embedded blanks from
command.

V SO CIOT

5. Issue START command.

6. Set return code.

SO SSVT
<—J

-Output-

START command

S proc.id//

-> Register 15

•> Exit to SaCFOOOO

4-16 SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit 81-0182

Extended Description

Explanation

1. The command buffer must be allocated in 24-bit addressable storage for the
MGCR macro (it must be GETMAINed BELOW the line).

2. The JCL procedure name for the ESS is installation-defined. The
SC_FSSCB for the FSS in question points to the FSS initialization
parameters in which the JCL procedure name is found.

3. These START parameters must be included:

• The FSS name of the FSS being initiated

• A specification of whether the initialization parameters for this FSS are
to be refreshed or revised from a specified parameter library member

4. The START command is created using fixed-length fields in the command
buffer. These fields are embedded with blanks. Blanks must be removed so
that the MVS START command processor does not ignore any important
parameters. The general syntax of the START command is as follows:

S procAd,„{subsys-name,fss-id)

5. The START command is issued with the MGCR macro.

6. The MGCR SVC indicates whether or not the START command was
processed successfully. A retum code of 8 indicates that the START
command failed; a retum code of 0 indicates that the START command
was processed successfully, and register 15 contains the right-justified ASID
of the started address space.

Module Label

S@CF0030

S@CF0030

S®CF0030

S®CF0030

S@CF0030

S@CF0030

Cray Research, Inc. 4. SUPERLINK Functional Subsystem Manager Component 4-17

Diagram 4-7
S@CF0040 - FSS Manager ESTAE

Entry from MVS RTM

1 nput
V

-Process-

1. Determine type of abend.

2. If abend recurs^ percolate
to next level.

3. If recovery is possible^
exit with retry.

If recovery is not possible^
percolate to next level after
ensuring that LISTEN task
has been DETACHed.

-> Exit to MVS RTM

4-18 SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit

-Output-

81-0182

Extended Description

Explanation

2. To prevent reentry in an abend-type loop, check for recursion. If this is a
recursive abend, use the SDUMP routine to obtain a dump for diagnostic
purposes. Percolate the abend condition to the next level, where the
main-line code S@CCOOOO detects the abend of the daughter task.

3. If recovery is possible, a retry routine can be specified on the SETRP macro.
The routine gains control after this exit has returned control to RTM.

4. If recovery is not possible, use the SDUMP routine to obtain a dump for
diagnostic purposes. Use the SETRP macro again to percolate the abend
condition to the next highest level, where the main-line code S@CCOOOO
detects the abend of the daughter task. DETACH the "LISTEN" task.

Module Label

S®XF0040

S@CF0040

S@CF0040

Cray Research, Inc. 4. SUPERLINK Functional Subsystem Manager Component 4-19

S@CF0100 - Cross-Memory Communications Subcomponent
The cross-memory communications subcomponent of the FSS Manager component is primarily
concerned with the control of communications between SLCN and the FSSs.

The FSS scheme providesthe structure in which one or more address spacesrun as subordinate address
spaces to a controlling address space. This subsection describes how data is sent to a specified address
space and how associated replies are received.

S@CF0100 - Module Structure

The FSS cross-memory communications subcomponent consists of the following modules:

Module Description

S@CF0100 SCHEDULE the SRB receive routine in the target FSS

S@CF0110 The SRB receive routine

S@CF0120 "listen" task in the control address space

S@CF0130 Functional Recovery Routine (FRR) for the SRB receive routine, S@CFOl 10

S@CF0140 ESTAE routine for the "listen" task, S@CF0120

S@CF0100 - Services

The cross-memory communications subcomponent is used for sending commands from SLCN to the
FSSs and returning associated replies to SLCN. This mechanism may also be used to notify SLCN
about asynchronous events occurring in the FSSs.

The following FSS communications subcomponent servicesarc used:

• ORDER enables data, typically commands, to be transferred from SLCN to an FSS.

• SEND enables an FSS to transfer data asynchronously to SLCN; typically this data consists of
replies to commands, but it may also be notification of exceptional events in the FSS.

TTie underlying mechanisms for transferring ORDERs and SENDs between SLCN and the FSI and
between the FSI and the FSS-specific routines differ as follows:

• ORDERs from SLCN to the FSI routines are moved between address spaces by using a service
request block (SRB) routine scheduled in the FSS.

• The SRB receive routine retrieves an ORDER and transfers it to the FSS-specific routinesthrough
the FSI routines set up during FSS initialization.

• Like ORDERs from the FSI, SENDs from the FSS are passed to the FSI via the FSI routines,

• The SENDs passed from the FSS to the FSI are passed to SLCN via the cross-memory POST
of a "listen" task in SLCN.

4-20 SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit SI-0182

S@CF0100 - Interfaces

There are two major interfaces involved in the communication between SLCN and the target FSS:

• SLCN to the FSI routines that are part of the FSS
• FSI routines to the FSS

Figure 10 illustrates these communication interfaces and the mechanisms used to transfer data across
them.

Control Address Space

-ORDER-

FSS Address Space

FSS Manager | | |
SEND

FSI
Routines

ORDER

Specialized
FSS Routines

Figure 10. FSS Communication Channels

The control address space is notified of SENDs via cross-memory POST. ORDERs and SENDs are
transferred via the FSI mechanism.

The following macros provide the interfaces:

• S@@CSERV

This macro handles communications between SLCN and the FSI routines in SLCN. It
SCHEDULES the SRB to the FSS address space upon receipt of an ORDER and cross-memory
POSTs the control address space when a SEND is requested from SLCN.

A retum code indicating the success or failure of the request is passed in register 15.

• S@@FIREQ

This macro handles the communications between the FSI and the FSS-specific routines. It also
allows the FSS to CONNECT and DISCONNECT itself from the controlling address space
through Subsystem Interface function request 53.

"Appendix B. SLCN Macros" on page B-1 describes the syntax for these macros.

S@CF0100 - Data Areas

The following data areas correspond to the two main communication interfaces between SLCN and
the target FSS and to the mechanisms used to carry ORDER and SEND requests:

Cray Research, Inc. 4. SUPERLINK Functional Subsystem Manager Component 4-21

Data Area

SC FSIP

SC SERV

FM STAG

FM_FSWQE

Description

FSI parameter list

This data area describes requests passed over the FSI/FSS interface. Extensions
to this structure are used to map different types of FSI requests. The extensions
are used for CONNECT/DISCONNECT and SEND/ORDER processing;
there are IBM mappings for CONNECT/DISCONNECT requests and for the
fixed headers for ORDER and SEND requests contained in the lAZFSIP
DSECT. Extensions to the ORDER and SEND mappings are provided to
accommodate special SUPERLINK/MVS requirements within the context of
requests passed via the ORDER and SEND primitives.

The parameter list associated with the S@@CSERV macro

This data area is used to pass requests between the requester of a service and the
routine (S@CFOIOO) that SCHEDULES the SRB in the target address space.
SC_SERV is completed by the S@@CSERV macro.

Staging area buffer

This data area is the staging area buffer used to transport requests between two
address spaces. Control information about the SRB used to convey the request
is also maintained here.

FSS work request element

This data area is the cross-memory work request element for the FSS. It is
queued from the SC_FSSCB when an ORDER request is sent to the FSS. The
ORDER request, control information, and chaining pointers are embedded in
the FM_FSWQE. The cross-memory SRB routine allocates FM_FSWQE in
the FSS-private area.

"Appendix A. Data Area Descriptions" on page A-1 provides a format description of these data areas.

S@CF0100 - Recovery

The SRB "receive" routine (S@CFOI 10), which executes under an SRB in the target FSS, is covered
by a Functional Recovery Routine (FRR). This routine traps abends in the FSI routines that are
performing the receive processing of ORDERs.

The "listen" task, which runs in SLCN and waits to be POSTed by one of the FSSs upon SEND
processing, is covered by an ESTAE. The ESTAE traps abends of this task and determines if successful
recovery processing is possible.

4-22 SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit SI-0182

This page has been intentionally left blank.

Cray Research, Inc. 4. SUPERLINK Functional Subsystem Manager Component 4-23

Diagram 4-8
S@CF0100 - SCHEDULE SRB Routine

Entry from service user

•Input-

Register I
==>

SC SERV

1

3.

5.

V
-Process-

Service to be performed is
described in SC_SER\/; if
requested service cannot be
performed, exit with return
code,

Fill in request and build
a staging area (FM_STAG).

Get common storage for SRB

l_Build SRB.

SCHEDULE SaCFOllO under SRB
in target FSS.

If requested, MAIT until
FSS has acknowledged
receipt of request.

7. Set return code for caller.

ESTAE protecting this routine.

8. Free FM_STAG and SRB
if present; purge any
SRBs awaiting dispatch.

RETRY routine.

9. Set return code for caller,
delete ESTAE environment,
and return to caller.

-Output-

•>Register 15

SRB

->Register 15

-> Exit to service user

4-24 SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit 81-0182

Extended Description

Explanation

1. Register 1 points to the parameter list SC_SERV, which was built by the
S@@CSERV macro in response to a cross-memory communications
request. If the requested service is unavailable (for example, the request is
invalid or the requested ESS is not available), an appropriate retum code
must be passed back to the caller.

3. The SRB used to dispatch the receive routine in the target ESS address space
must be built in commonly addressable storage.

5. The SCHEDULE macro is used to place the newly built SRB on the SRB
dispatch queue, which MVS will schedule later. The routine that will be
dispatched is the "receive" routine, S@CE0110. It specifies that an ERR
recovery environment will be established at the time the SRB is entered, and
identifies this task as the associated task for the SRB.

6. The invokcr of the S@@CSERV macro may have requested WAIT = YES
or WAIT = NO on invocation. Eor WAIT = YES, this routine WAITs until
POSTed by the target ESS. Otherwise, no WAIT is performed.

7. A retum code passed in register 15 informs the caller of the success or failure
of the request.

8. This ESTAE environment gains control when the ERR protecting the SRB
routine (S(^CE0130) continues with termination (percolates) rather than
retrying. Any common storage not already freed (EM_STAG, SRB) is freed
at this point, and any outstanding SRBs on the dispatch queue are purged
with the PURGEDQ macro. This ESTAE retries to step 9.

9. The ESTAE in step 8 retries to this point, which sets a retum code for the
caller indicating that the SRB ERR gained control and that the staging area
was not received by the target address space.

Module Label

S@CE0100

S5DXE0100

S@CE0100

S@CE0100

S@CE0100

S(gCE0100

S@CE0100

Cray Research, Inc. 4. SUPERLINK Functional Subsystem Manager Component 4-25

Diagram 4-9
S@CF0110 - SRB Receive Routine

Entry from MVS

Input
V

-Process-

1. Entered with FRR environment
established.

—> 2. Retrieve request from
staging area (FM_STAG).

->

SC_FSSCB

FM_STAG
3. Free SRB.

4. Issue S93FIREQ macro to
request the relevant FSI
service.

5. Cross—memory POST
issuer of SaaCSERV
request.

-Output-

SRB

SO FSIP

POST
ECB

-> Exit to MVS dispatcher

4-26 SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit 81-0182

Extended Description

Explanation

1. To effect recovery in case of an abend, this routine is entered with an FRR
environment already defined. This was done when the SRB was
SCIIEDULEd from S@CF0100, which indicated that S@CF0130 was the
FRR for this routine.

2. The request buUt by S@CF0100 in a staging area (FM_STAG) is retrieved
to determine which request must be acted upon.

4. Once the requested action has been determined, the appropriate FSS
Interface routine must be invoked to execute it. This is achieved by the
F@@FIREQ macro, which finds the appropriate routine from the
FM_FSVT and FM_FSCT and invokes it.

5. The control address space is cross-memory POSTed to notify the issuer of
the S@@CSERV macro in the control address space of the receipt of the
request.

Module Label

S@CF0110

S@CF0110

S@CF0110

S@CF0110

Cray Research, Inc. 4. SUPERLINK Functional Subsystem Manager Component 4-27

Diagram 4-10
S@CF0120 - Listen Task in Control Address Space

Entry from S9CF0000

Input
V

-Process-

POSTed

ECB

SC FSSCB

1. Establish ESTAE environment
and initialize.

2. NAIT to be POSTed by an FSS
or the FSS Manager.

>3. If POSTed by FSS Manager and
if terminate requests continue
at step 7; otherwise^
continue at step 2.

If POSTed by an FSS, continue
at step A; otherwise,
continue at step 2.

> A. Retrieve SEND request
via SC_FSSCB.

5. Process requested action.

6. Continue at step 2.

7. Delete ESTAE environment.

•Output"

NAIT

ECBLIST

•> Exit to SaCFOOOO

4-28 SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit SI-0182

Extended Description

Explanation

1. To trap abends of this task and provide recovery facilities, an ESTAE
environment is established. The ESTAE routine is module S@CF0140.
Any initialization required is also handled at this point.

2. This is the main WAI T point of the whole module. Only two sources of
wakeup are defined:

• Wakeup by the FSS Manager
• Wakeup by an FSS address space with data to pass

3. If a terminate request is received from the FSS Manager, the task should
terminate clezuily. If there is work to be done in receiving data from the FSS,
that unit of work should be processed. Any other source of stimulation
results in the WAIT state being reentered.

4. The request from the FSS is retrieved from the SEND queue anchored from
the SC_SSVT in staging area FM_STAG.

5. The request from the FSS is acted upon by passing the information received
to the appropriate destination within the control address space. For example,
if the request contained output from a previously-entered operator
command, it should be sent to the component responsible for displaying the
reply to the operator.

6. Reenter the WAIT state to wait for the next request.

7. Clear things up and terminate.

Module Label

S@CF0120

S@CF0120

S@CF0120

S@CF0120

S@CF0120

S®CF0120

S@CF0120

Cray Research, Inc. 4. SUPERLINK Functional Subsystem Manager Component 4-29

Diagram 4-11
S@CF0130 - Functional Recovery Routine for S@CF0110

Entry from MVS RTM

-Input-
V

-Process-

1. Determine type of abend.

2. If abend recurs^ percolate
to next level.

3. Indicate that FRR was invoked
for traceback purposes.

Percolate to next level so
that ESTAE in SaCFOlOO
will be entered.

-> Exit to MVS RTM

4-30 SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit

-Output-

SI-0182

Extended Description

Explanation

1. Routines running in SRB mode and requiring protection should be covered
by an FRR. This routine protects SRB receive routine S@CF0110. FRR
routines are always provided with an SDWA by RTM.

2. To prevent reentry in an abend-type loop, check for recursion. If this is a
recursive abend, use the branch entry (since this is an FRR) to the SDUMP
routine to obtain a dump for diagnostic purposes. The abend condition
should be percolated to the next level.

4. Since this is an FRR, use the branch entry to the SDUMP routine to obtain
a dump for diagnostic purposes. The abend condition should then be
percolated to the next level using the SETRP macro. This causes the
EiSTAE in the associated task (S@CF0100) to gain control to perform more
recovery in the originating address space.

Module Label

S@CF0130

S@CF0130

S@CF0130

Cray Research, Inc. 4. SUPERLINK Functional Subsystem iVfanager Component 4-31

Diagram 4-12
S@CF0140 - LISTEN Task ESTAE Routine

Entry from MVS RTM

Input
V

-Process-

1. Determine type of abend.

2. If abend recurs, percolate
to next level.

3. If recovery is possible,
exit with retry.

<*. If recovery is not possible,
percolate to next level.

•> Exit to MVS RTM

4-32 SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit

-Output-

81-0182

Extended Description

Explanation

2. To prevent reentry in an abend-type loop, check for recursion. If this is a
recursive abend, use the SDU.VIP routine to obtain a dump for diagnostic
purposes. Percolate the abend condition to the next level, where the FSS
Manager detects this task's abend.

Module Label

S@CF0140

3. If recovery is possible, a retry routine can be specified on the SETRP macro, S@CF0140
which gains control after this exit has returned control to RTM.

4. If recovery is not possible, use the SDUMP routine to obtain a dump for S@CF0140
diagnostic purposes. Using the SETRP macro again, percolate the abend
condition to the next level, where the FSS Manager detects this task's abend.

Cray Research, Inc. 4. SUPERLINK Functional Subsystem Manager Component 4-33

5. SUPERLINK Product Operator Component

The Product Operator component of SLCN controls the SUPERLINK/MVS product by processing
operator commands entered from the MCS console interface.

Product Operator Module Structure
The Product Operator component consists of the following modules:

Module

s@cooooo

s@coooio

S@C00020

S@C00030

S@C00040

S@C00050

S@C00060

S@C00070

S@COODIS

S@COD010

S@COD020

S@COD030

S@COD040

S@COD050

S@COD060

S@COD070

S@COD080

S@COD090

Cray Research, Inc.

Description

Root module for the Product Operator component

Product Operator initialization

Parsing routine for all operator commands

Parsing routine for all command operands

Syntax graph describing all valid commands and their formats (this is a
nonexecutable module)

MCS console output processing routine

Product Operator termination

Product Operator ESTAE routine

Root module processing routine for the DISPLAY command

Command processing routine for the DISPLAY SLUSERS command

Command processing routine for the DISPLAY NODES command

Command processing routine for the DISPLAY TABLES command

Command processing routine for the DISPLAY OFFERS command

Command processing routine for the DISPLAY LINKS command

Command processing routine for the DISPLAY AM command

Command processing routine for the DISPLAY SESSIONS command

Command processing routine for the DISPLAY STORAGE command

Command processing routine for the DISPLAY MIC command

S. SUPERLINK Product Operator Component S-l

Module

S@COD100

S@COOSVVT

S@COOSET

S@COS010

S@COS020

S@COS030

S@COS040

S@COOSTR

S@COOSTP

S@COOSND

S@COOMSG

Description

Command processing routine for the DISPLAY FSS command

Command processing routine for the SWITCH command

Root module processing routine for the SET command

Command processing routine for the SET SESSION command

Command processing routine for the SET CASE command

Command processing routine for the SET AM command

Command processing routine for the SET MI = XXXX command

Command processing routine for the START command

Command processing routine for the STOP cormnand

Command processing routine for the SEND command

Command processing routine for the MSG command

Figure 11 on page 5-3 shows the hierarchical structure of the modules within the Product Operator
component.

S-2 SUPERLINK for iVfVS Logic Library Volume 2: Control Functional Unit SI-0182

sacooooo
ESTAE

sacooo7o

sacoooio sacooo20 sacooo6o

S3C00030 sac90040

SaCOODIS SaCOOSNT SaCOOSET SaCOOSTR SaCOOSTP SaCOOSND SaCOOMSG

sacoDOlo

sacoooso

sacoDOlo SaCOD020 SaCOD030 SaCODOAO

SaCOD020 SaC0D030 SaCODOAO sacoDoso

SaCOD060 SaCOD070 sacoDoso SaCOD090 sacoDioo

Figure 11. Module Structure of the Product Operator Component

Product Operator Services
The Product Operator component controls the SUPERLINK/MVS product by processing the
following commands:

DISPLAY

MSG
SEND
SET

START

STOP

SWITCH

Cray Research, Inc. 5. SUPERLINK Product Operator Component 5-3

The SUPERLINK/MVS Installation, Customization, and Tuning Guide, publication SI-0180,
provides more detailed information about these commands.

Product Operator Command Definitions
Conunands are defined to the Product Operator component by a syntax table (S@C00040). This table
is generated by a series of macro calls that define the attributes of each command and the syntax of their
operands. The following macros are used:

Macro Description

S@COADEF This macro allows sets of altcmate operands to be available on any command.
Altemate operand entries may point to other alternate operand lists; in this way,
complex syntaxes can be defined.

S@COCDEF This macro defmes the available commands and their attributes to the command
parser and directs the parser to one or more operand entries that defme the
operands available on each commeuid.

S@COKDEF This macro allows definition of keyword operands. The attributes and values
of the keywords are also defined.

S@COLDEF This macro defmes literal operands that can be used on a specific command.

S@COPDEF This macro allows positional operands to be defined. The attributes and values
of the operands are also defmed.

"Appendix B. SLCN Macros" on page B-1 describes the syntax of these macros.

Product Operator Interfaces
The Product Operator component is activated by operator commands entered at an MCS console. The
Subsystem Interface command processing routine, S@CC0S34, interrogates all commands presented
to it by MVS. If a command other than a shutdown request is intended for SLCN, S@CC0S34 creates
an operator command buffer, SC_OPCB, and queues it onto a chain anchored from the SC_SSVT.
The Subsystem Interface cross-memory POSTs the Product Operator component to indicate that there
is an operator command to be processed. The Product Operator component processes the commands
in fust-in-fu'st-out (FIFO) order and continues processing untU the queue is empty.

Product Operator Data Areas
The Product Operator component provides the following data areas:

Data Area Description

SI_OPCT Operator Control Table

This is the major control block of the Product Operator component.

5-4 SUPERLINK for IMVS Logic Library Volume 2: Control Functional Unit SI-0I82

Data Area Description

SC_OPCB Operator Command Buffer

The Subsystem Interface command processing routine, part of the Product
Management component, creates the SC_OPCB control block to be used as
input to the Product Operator component.

S@C00040 The syntax table used to parse commands and their operands

This syntax table consists of a number of entries mapped by the control block
SI_CMD. Entries have slightly different mappings depending on whether they
describe a command or a particular operand format.

The highest-order index in the table consists of a list of command entries that
are searched in linear order for a command verb match. Subordinate to each
conunand entry is a syntax tree of the allowed operands for that conunand.

"Appendix A. Data Area Descriptions" on page A-1 provides format descriptions of these data areas.

Product Operator Recovery
The root module for the Product Operator component is protected by an ESTAE environment that
traps ABENDS within the Product Operator component and attempts to recover from them whenever
possible. If recovery is not possible, notification of the abend is percolated to the next level of the
recovery envirorunent. If an abend occurs during the processing of a command, the command is
flushed.

Cray Research, Inc. 5. SUPERLINK Product Operator Component 5-5

Diagram 5-1
S@COOOOO - SUPERLINK Product Operator Component Root Module

Entry from S9CC0000 1

•Input-
V

-Process-

1. Call sacooolo to
initialize Product
Operator.

2. Enable ESTAE.

3. HAIT to be PGSTed
indicating operator
command to process.

4. If termination is
requested/ continue
at step 9.

5. Remove all command
buffers from queue.

6. Call SaC00020 to
process top—
of—queue command
buffer in FIFO
order.

7. Return to step 6
until all command
buffers have been
processed.

8. Return to step 3
to await next
command.

9. Call operator
termination routine
SaC00060.

10. Disable ESTAE.

-Output-

•> Exit to S3CC0000

5-6 SUPERLINK for MVS Logic Library Volume 2; Control Functional Unit SI-0182

Extended Description

Explanation

5. The command buffer queue, anchored from the SC_SSVT, is in LIFO
order. However, the operator commands must be processed in FIFO order.
The complete queue of outstanding commands is now reorganized in
preparation for processing.

7. The Product Operator component must ensure that all command buffers
removed to form the FIFO queue are processed. These command buffers
are processed before any commands that were chained to the LIFO queue
in the SC_SSVT and ^ter the command buffers were removed from the
LIFO queue.

Module Label

s@cooooo

s@cooooo

Cray Research, Inc. S. SUPERLINK Product Operator Component 5-7

Diagram 5-2
S@C00010 - Product Operator Initialization

Entry from S3COOOOO

-Input-
V

-Process-

1. Allocate and format
SI OPCT.

-Output-

Si OPCT

-> Exit to sacooooo

5-8 SUFERLINK for MVS Logic Library Volume 2; Control Functional Unit SI-0182

This page has been intentionally left blank.

Cray Research, Inc. 5. SUPERLINK Product Operator Component 5-9

Diagram 5-3
S@C00020 - SUPERLINK Product Operator Component Command Parser

Entry from S9COOOOO

SO OPCB

SI OPCT

Process-

>1. Identify issuer of
command.

Validate command
character string.

Validate issuer's
command authority.

Branch to SaC00030
to validate operands.

Branch to command
processing routine.

Output-

-> Exit to SaCGOOOO> Exit to SaCGOOOO

5-10 SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit Si-0182

Extended Description

Explanation

2. A syntax graph of valid operator commands and their operands is available
from module S@C00040. The syntax graph is searched for the relevant
command entry, using the command character string input. If an entry is not
located, the command is invalid, and an error message must be returned to
the point of origin. In this case, an error message is formatted and the
process branches to module S@C00050, the Product Operator MCS
console output processing routine. This routine issues the message to the
appropriate .MCS console.

3. The command issuer's authority must be checked before the command can
be acknowledged as valid. If the issuer is not allowed to issue this command
(authority levels are also defined within the syntax graph command
definitions), an error message is formatted and a call is made to module
S@C00050, which outputs the message to the appropriate MCS console.

5. The syntax graph identifies the command processing module that supports
the command which was requested by the operator. Processing branches to
that routine, where the requested action is performed.

Module Label

S@C00020

S@C00020

S@C00020

Cray Research, Inc. 5. SUFERLINK Product Operator Component 5-11

Diagram 5-4
S@C00030 - Product Operator Operand Parser

Entry from S3C00020

-Input-

SI OPCT

V
-Process-

>1. Validate operand using
S3C00040 syntax
definitions.

2. Return to caller with
return code.

-Output-

•> Exit to 53000020

5-12 SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit SI-0182

Extended Description

Explanation

1. The operands are validated according to their syntax description, that is, as
keywords, positional parameters, or literals. Indicators are set in the
SI_OPCT to direct the command processing routines. If an operand is found
to be invalid, an error message is formatted. A branch to module
S@C00050 causes the message to be output to the MCS console of origin.

Module Label

S@C00030

Cray Research, Inc. 5. SUPERLINK Product Operator Component 5-13

Diagram 5-5
S@C00040 - Product Operator Syntax Graph

Entry from S9C00020
or S3C00030

-Input-

Si OPCT

V

-Process-

>1. Set flags to indicate
presence of specific
operands.

-Output-

-> Exit to sacooozo or sacoooso

5-14 SUPERLINK for MVS Logic Library Volume 2; Control Functional Unit SI-0182

Extended Description

Explanation

1. A binary field is reserved in the S1_0PCT for each possible operand of a
command. This field indicates the presence of the operand and, if necessary,
its value.

Module Label

S@C00040

Cray Research, Inc. 5. SUPERLINK Product Operator Component 5-15

Diagram 5-6
S@C00050 - SUPERLINK Product Operator Component Output Processor

Entry from any Product Operator
component routine requiring
output services 1

Input-

Register 1
PLIST —>

SI OPCT

V

If function code
indicates multi
line output/
continue at step

Issue NTO to point
of origin; return
to caller.

If message is
'end—of—message *
continue at step 6;
if message is not
first line of a
multiline message/
continue at step

Allocate page in
common storage.

Save message line
into common page
buffer and return
to caller.

Add 'end—of—data *
message to page
buffer.

Output multiline
message to point
of origin.

Release common
page buffer.

Output-

> Exit to caller

5-16 SUPERLINK for MVS Logic Library Volume 2; Control Functional Unit SI-0182

Extended Description

Explanation

1. On entry to module S@C00050, register I points to a parameter list that
contains a pointer to the SC_SSVT (and thence to the SI_OPCT) and a
function code. This code indicates which type of processing the routine is to
perform. The output may be a single line of data or part of a multiline
message.

A multiline message includes two types of data line:

• Control line - First line of the message
• Data line - All subsequent lines within the message

To signify that all data has been transferred to the output processing routine,
a further call, indicating "end-of-data", is made to S@C00050. No data line
processing is performed on this call.

2. The SI_OPCT control block holds the information concerning the console
identifier of the console of origin.

5. The message for output may be longer than a 4K page of storage. If so, the
data is displayed to the console 4K at a time. After one 4K page of data has
been displayed, the 4K page is reused for the remainder of the message
output.

6. An "end-of-data" message is appended to the page buffer, indicating to the
operator that all data has been displayed.

7. Each message line from the buffer area is output to the point of origin;
Information concerning command origin is found in the SI_OPCT. The
WTO service is used to output the data.

Module Label

S@C00050

S@C00050

S@C00050

S@C00050

S@C00050

Cray Research, Inc. 5. SUPERLINK Product Operator Component 5-17

Diagram 5-7
S@C00060 - SUPERLINK Product Operator Component Termination

Entry from S9COOOOO

1 nput

1
V

-Process-

1. Remove SI_OPCT pointer
from SC_SSVT.

2. Delete SI OPCT.

-Output-

-> Exit to sacooooo

5-18 SUPERLINK for MVS Logic Library Volume 2; Control Functional Unit SI-0182

This page has been intentionally left blank,

Cray Research, Inc. 5. SUPERLINK Product Operator Component 5-19

Diagram 5-8
S@C00070 - Product Operator ESTAE

Entry from MVS RTM

•Input"
V

-Process-

1. Determine type of
abend.

2. If abend recurs^
percolate to next
level.

3. If recovery is
possible^ exit
with retry.

4. If recovery is not
possible#
percolate to next
level.

-Output-

•> Exit to MVS RTM

5-20 SL'PERLINK for MVS Logic Library Volume 2: Control Functional Unit SI-0182

This page has been intentionally left blank.

Cray Research, Inc. 5. SUPERLINK Product Operator Component 5-19

Diagram 5-8
S@C00070 - Product Operator ESTAE

Entry from MVS RTM

•Input"
V

-Process-

1. Determine type of
abend.

2. If abend recurs,
percolate to next
level.

3. If recovery is
possible, exit
with retry.

4. If recovery is not
possible,
percolate to next
level.

-Output-

•> Exit to MVS RTM

5-20 SL'PERLINK for MVS Logic Library Volume 2: Control Functional Unit Sl-0182

Extended Description

Explanation

1. No retry is attempted on X22-type abends, nor is a dump obtained.

2. To prevent reentry in an abend recursive loop, check for recursion. If this
is a recursive abend, control should simply be percolated to the next level
of recovery, where the SLCN control module detects the termination of the
Product Operator component.

3. If recovery is possible for this abend and an SDWA is present, a retry routine
is specified on the SETRP macro. This routine gains control after the
ESTAE has returned control to RTM. A dump is also obtained for
diagnostic purposes with the SDUMP routine.

The retry routine attempts to recoverthe existing SI OPCT or buildsa new
one if the old one has been lost. The operator task reinitializes itself and
attempts to process the next command on the command queue.

4. If recovery is not possible, use the SDUMP routine to obtain a dump for
diagnostic purposes. Using the SETRP macro again (if an SDWA is
obtained), percolate the abendconditionto the next level of recovery. At this
level, the SLCN root module detects this task's termination.

Module Label

S@C00070

S@C00070

S@C00070

S@C00070

Cray Research, Inc. 5. SUPERLINK Product Operator Component 5-21

Diagram 5-9
S@COODIS - DISPLAY Command Processing Routine

Entry from S3C00020

•Input*

Si OPCT

V
-Process-

•> I. GETMAIN a work area.

2. Determine what type of
DISPLAY command has
been requested.

3. Invoke submodule to
perform the requested
DISPLAY command.

-Output-

Output of requested
Information

-> Exit to DISPLAY submodule

5-22 SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit SI-0182

Extended Description

Explanation

2. As each operand on the DISPLAY command was validated, an indicator
was set in the SI_OPCT control block. This routine must interrogate each
of these indicators in turn to identify which operands have been input by the
operator.

3. The appropriate sub-modules available are as follows:

S@COD010 (DISPLAY SLUSERS) - Display a List of all
SUPERLINK Users (using the SC_SLASVT)

S@COD020 (DISPLAY NODES) - Display a list of network nodes
(using the Link Table)

S@COD030 (DISPLAY TABLES) - Display the address's of some
SUPERLINK control blocks

S@COD040 (DISPLAY OFFERS) - Display a list of aU application
titles on Offer (Using the ATE's)

S@COD050 (DISPLAY LINKS) - Display a list of entries in the Link
Table (Using Link Table entries)

S@COD060 (DISPLAY AM) - Display Association Manager values
and usage (Using AM Tables)

S@COD070 (DISPLAY SESSIONS) - Display a list of connections
(using the ATE's)

S(^COD080 (DISPLAY STOARGE) - Display SLNET buffer usage
(Using the S.MB)

S@COD090 (DISPLAY MIC) - Display Management Interface
connections (Using the .MI_MACB)

S@COD100 (DISPLAY FSS) - Display a list of Functional
Subsystems (Using the FSSCB)

Module Label

S@COODIS

SjeCOODIS

Cray Research, Inc. 5. SUPERLINK Product Operator Component 5-23

Diagram 5-10
S@COOSWT - SWITCH Command Processing Routine

Entry from S9C00020

-Input-

SI OPCT

V
-Process-

•> 1. Notify LOG of new
DDNAME to which
messages should be
logged.

•Output"

•> Exit to sacooozo

5-24 SL'PERLINK for IVIVS Logic Library Volume 2: Control Functional Unit 81-0182

Extended Description

Explanation

1. As each operand on the SWITCH command was validated, an indicator was
set in the SI_OPCT control block. This routine must interrogate each of
these indicators in turn to identify which operands have been input by the
operator.

The DDNA.ME field is extracted. The LOG task is notified of the change
in the logging DDNAME' by completing the command field to be logged in
the SC_SSVT and passing the new DDNAME across this interface.

Module Label

S@COOSWT

Cray Research, Inc. 5. SUPERLINK Product Operator Component 5-25

Diagram 5-11
S@COOSET - SET Command Processing Routine

Entry from S3C00020

-Input-

Si OPCT

V
-Process-

> 1. GETMAIN a work area.

2. Determine what type of
SET command has
been requested.

3. Invoke submodule to
perform the requested
SET command.

-Output-

Response indicating
if request succeeded

-> Exit to SET submodule

S-26 SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit SI-0182

Extended Description

Explanation

2. As each operand on the SET command was validated, an indicator was set
in the SI_OPCT control block. This routine must interrogate each of these
indicators in tum to identify which operands have been input by the
operator.

3. The appropriate sub-modules available are as follows:

S@COS010 (SET SESSION)
options on or off

Set the Sessions layer dump or trace

S@COS020 (SET CASE) - Set the ACSE layer dump or trace options
on or off

S@COS030 (SET AM) - Modify Association Manager variables or set
the dump option on or off

S@COS040 (SET MI = XXXXXX) - Set the Management Interface
trace option on or off for a specific connection

Module Label

S@COOSET

S@COOSET

Cray Research, Inc. 5. SUPERLINK Product Operator Component 5-27

Diagram 5-12
S@COOSTR - START Command Processing Routine

Entry from S3C00020

-Input-

SI_OPCT 1

V
•Process-

1. Branch to sub
routine supporting
specified operand
of START command.

2. To start a Manage
ment Interface
connection/ an
MI_MRQE request
representing an
MI_LOGON request is
built and queued to
the Management
Interface compo
nent .

-Output-

-> Exit to SaC00020

S-28 SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit 81-0182

Extended Description

Explanation

1. As each operand on the START command was validated, an indicator was
set in the SI_OPCT control block. This routine must interrogate each of
these indicators in tum to identify which operands have been input by the
operator.

A subroutine residing within S@COOSTR for each valid operand collects
the relevant information and formats it into a message for output to the
MVS console of origin. Routine S@C00050 performs the output
processing.

Module

S@COOSTR

Label

Cray Research, Inc. 5. SL'PERLINK Product Operator Component 5-29

Diagram 5-13
S@COOSTP - STOP Command Processing Routine

Entry from S3C00020

-Input-

Si OPCT
r

V
-Process-

> 1. Branch to sub
routine supporting
specified operand
of STOP command.

2. To stop a Manage
ment Interface
connection^ an
MI_MRQE request
representing an
MI_LQGOFF request
is built and queued
to the Management
Interface compo
nent .

-Output-

-> Exit to S3C00020

5-30 SLIPERLIISKfor MVS Logic Library Volume 2: Control Functional L'nit 81-0182

Extended Description

Explanation

1. As each operand on the STOP command was validated, an indicator was set
in the SI_OPCT control block. This routine must interrogate each of these
indicators in tum to identify which operands have been input by the
operator.

A subroutine residing within S@COOSTP for each validoperand collectsthe
relevant information and formats it into a message for output to the .MVS
console of origin. Routine S@C00050 performs the output processing.

Module Label

S5i)XOOSTP

Cray Research, Inc. 5. SUPERLINK Product Operator Component 5-31

Diagram 5-14
S@COOSND - SUPERLINK SEND Command Processing Routine

Entry from S3C00020

Input-

SI OPCT

Process-

Build an MI_MRQE
request element
representing an
MI^COMMAND request
for the Management
Interface
component.

Queue the MI_MRQE
onto the work to
do queue of the
Management
Interface
component

POST the
Management
Interface
component to
notify it of the
request

Output-

MI_MRQE

MI-COMMAND

ECB

-> Exit to S3C00020> Exit to 33000020

5-32 SUPERLINK for MVS Logic Library Volume 2; Control Functional Unit SI-0182

Extended Description

Explanation

1. As each operand on the SEND command was validated, an indicator was
set in the SI_OPCT control block. This routine must interrogate each of
these indicators in turn to identify which operands have been input by the
operator.

Since the operands on this command represent a command destined for
sending over the Management Interface component, a request unit for the
Management Interface is built containing the imbedded command for the
target system.

This request unit (MI_MRQE) represents an .MI-COM.MAND request on
the target connection.

2. The MI_MRQE, which is built, is placed on the Management Interface
work to do queue which is anchored oIT the .MI_MICT control block which
in turn is anchored from the SC SSVT.

Module Label

S^COOSND

S@COOSND

Cray Research, Inc. 5. SUPERLINK Product Operator Component 5-33

Diagram 5-15
S@COOMSG - SUPERLINK MSG Command Processing Routine

Entry from S3C00020

Input-

SI OPCT

V

Build an MI_MRQE
request element
representing an
MI-MESSAGE request
for the Management
Interface
component.

Queue the M1_MRQE
onto the work to
do queue of the
Management
Interface
component

POST the
Management
Interface
component to
notify it of the
request

Output-

M1_MRQE

MI-MESSAGE

ECB

-> Exit to S3C00020> Exit to S3C00020

5-34 SUPERLINK for MVS Logic Library Volume 2: Control functional Unit SI-0I82

Extended Description

Explanation

1. As each operand on the MSG command was validated, an indicator was set
in the SI_OPCT control block. This routine must interrogate each of these
indicators in turn to identify which operands have been input by the
operator.

Since the operands on this command represent a command destined for
sending over the Management Interface component, a request unit for the
Management Interface is built containing the. imbedded command for the
target system.

This request unit (MI_MRQE) represents an MI-MESSAGE request on the
target connection.

2. The MI_MRQE, which is built, is placed on the Management Interface
work to do queue which is anchored off the MI_MICT control block which
is in turn anchored from the SC SSVT.

Module Label

S@COOMSG

S@COOMSG

Cray Research, Inc. 5. SUPERLINK Product Operator Component 5-35

6. SUPERLINK LOG Processor Component

SUPIiRLINK components provide progress messages for normal events and indications of error
conditions. These messages are queued by the relevant Functional Unit for subsequent processing by
the LOG Processor component. The LC)G processor component outputs the message data to a
user-defined dataset.

LOG Processor Services

The LOG Processor component allows all other SUPFRLINK components to write mes.sages to the
SUPER LINK LOG and/or the MVS system log. Messages may consist of a single one-line message,
a single multiline message, or a number of messages output as a block. Each line of output is built from
a LOG element (LOGE).

The SUPERLINK LOG is allocated to either a dataset or SYSOUT depending on the SLLOG DD
statement coded in the SUPERLINK Control JCL procedure. Coding SLLOG DD DUMMY or
DSN = NULLFILE results in output to the MVS system log. If the DD statement is absent, the
SUPERLINK LOG is dynamically allocated to SYSOUT, class A. If SLLOG cannot be allocated,
or an I/O failure occurs during processing, an attempt is made to use SYSOUT class A. If this attempt
also fails, the MVS system log is used. The site systems programmer specifies the route code(s) used
when outputting to the MVS system log on a SUPERLINK/MVS options statement.

The SWITCH operator command can be used to specify the DDNAME of a preallocated alternate log.
This command allows the printing of a dataset log while SUPERLINK/MVS is running. When the
SWITCH command is used, SUPERLINK/MVS closes the primary log and opens the alternate log.
MVS utilities or TSO may be used to manipulate the primaiy log after the switch is complete.

The SUPERLINK/.MVS Installation, Customization, and Tuning Guide, publication SI-0180,
provides more detailed information about the SWITCH command.

LOG Processor Subcomponents
The LOG Processor component consists of the following subcomponents:

Subcomponent

S@C2100

S5i::C2200

Cray Research, Inc.

Description

LOGE handler

Output of messages

6. SL'PERLINK LOG Processor Component 6-1

S@C2I00 - LOGE Handler ^
SUPERLINK/MVS components call the LOGE handler subcomponent to obtain storage and chain
together a number of LOGEs. The LOGEs arc formatted and then a call is made to queue the LOGEs.

S@C2100 - Services

The LOGE handler performs the following services:

• Checks to ensure that SUPERLINK/MVS log^ng is active
• Obtains and chains together requested LOGEs for a GET request
• Queues LOGEs for a QUEUE request
• Informs the caller of actions taken

S@C2100 - Interfaces

The addition of queue elements has two phases. The fnst phase returns a number of chained LOGEs.
The second phase places the LOGEs on the queue after they have been formatted. A macro called
S@@LOG is provided as the interface to the second phase.

The sequence of actions required to chain and queue LOGEs is as follows:

1. Call S@C2100 to obtain LOGEs.
2. Format LOGEs (message text, message ID, routing codes, and so on).
3. Call S@C2100 to queue LOGEs.

Components issuing S@@LOG do so in 31-bit addressing mode. Therefore, the address returned by
S@@LOG is a 31-bit address. The message length in all returned LOGEs (after GET) is set to 0. ' >
"Appendix B. SLCN Macros" on page B-1 describes the syntax for the S@@I.X)G macro.

S(gC2100 - Data Areas

The LOGE is the major data area used.

S@C2100 - Recovery

There is no specific ESTy\E for S@C2100. If the caller has an active ESTAE routine when S@C2100
is called, it gains control if an abend occurs.

6-2 SL'PERLINK for MVS Logic Library Volume 2: Control Functional Unit SI-0182

This page has been intentionally left blank.

Cray Research, Inc. 6. SUPERLINK LOG Processor Component 6-3

Diagram 6-1
S@C2100 - LOGE Handler (part 1 of 2)

Entry from any SUPERLINK component via macro S33L0G

-Input- -Process- -Output-

1. Validate parameter list.

2. If SUPERLINK name is given,
obtain SUPERLINK SC_SSVT
address.

3. If GET request, obtain and
chain LOGEs.

Updated SSVT or
chained LOGEs,
return code,
feed-back code

•> continued

6-4 SLPERLINK for MVS Logic Library Volume 2: Control Functional Unit SI-0182

Extended Description

Explanation

1. The parameter list consists of two fullwords. Register 0 describes the
contents of the parameter list. The first fullword is an address, and the area
pointed to is either the SUPERLINK/MVS SC_SSVT or the
SUPERLINK/MVS name.

The second fullword contains either a count of LOGEs to be obtained or
the address of chained LOGEs to be queued. A rctum and feed-back code
(see macro S@@LOG) are given identifying an invalid parameter and a
branch to step 4 is taken. The SC SSVT address may be 0 if the calling
SUPERLINK/MVS component resides in the SLCN address space. In this
case, the SC_SSVT address is found here; otherwise, an error is indicated.

2. The macro S@@SUBSY is used to return the SUPERLINK/MVS
SC_SSVT address given the SUPERLINK/MVS name. In the event of
failure (name not known), a bad parameter indication is given (see step 1).
The SC SSVT is required in order to locate the queue anchor or pool
address.

3. Each LOGE is obtained individually (CPOOL, pool address in SC_SSVT)
and chained to the previous one. The pointer to the next LOGE is set to 0.
The message length is set to 0. On retum to the caller, register 1contains the
address of the first LOGE.

If there is insufficient storage to obtain an LOGE, the actions taken depend
on the point at which the error occurred. If the first I.OGE was obtained, a
warning retum code is set; register 0 is set to the count of LOGEs obtained;
and a branch is taken to step 5. If the first LOGE was not obtained, an error
retum code is set, and a branch is taken to step 5. Control is rctumcd to the
caller.

Module Label

S@C2100

S@C2100

S(gC2I00

Cray Research, Inc. 6. SLPERLINK LOG Processor Component 6-5

Diagram 6-2
S@C2100 - LOGE Handler (part 2 of 2)

continued

-Input-
V

-Process-

If queue requests chain
block of LOG^s onto work
queue.

5. Return to caller.

6-6 SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit

-Output-

81-0182

Extended Description

Explanation

4. The work queue anchor is located in the SUPERLINK SC_SSVT. Using
a compare double and swap instruction, the address of the chained LOGEs
supplied replaces the head of the queue. The address of the previous LOGE
chain is stored in the newlyadded LOGE chain. The work queue is in LIEG
order. The message length in each LOGE is validated and, if outside the
range (0 is valid), is replaced with the maximum length allowed. In the latter
case, a waming retum code is sent to the caller.

5. The caller receives a retum code and, optionally, a feedback code to indicate
the processing performed.

Module Label

S@C2100

S®C2100

Cray Research, Inc. 6. SUPERLINK LOG Processor Component 6-7

S@C2200 - Output of Messages Subcomponent
The output of messages subcomponent takes messages from the queue, writes themto the appropriate
log(s), one at a time, and retums the LOGEs to the pool for reuse. This subcomponent mustcomplete
initialization before components are able to obtain LOGEs. Otherwise, components receive the
following rctum code: SUPERLINK Logging Inactive.

S@C2200 - Module Structure

S@C2200 consists of the following modules:

Module

S@C2200

S@C2210

S@C2220

S@C2230

S@C2240

S@C2250

Description

Output of messages - control module

Output of messages - log file initialization

Output of messages - log file termination

Output of messages - queue swap and reorder

Output of messages - format and output a message from a LOGE

Output of messages - ESTAE

Figure 12 shows the hierarchical structure of modules within the output of messages subcomponent.

ESTAE
sac2200

A
II

II

II

II

II

II

II

V

sac2250

sac2210 sac2220 sac2230 sac22<«0

Figure 12. .Module Structure oFthe Output of Messages Subcomponent

S@C2200 - Services

S@C2200 performs the following ser\'ices:

Informs the Product Management component (S@CCOOOO) of product initialization status
Swaps the request and work queues to allow queuing to continue
Outputs messages from the swapped queue

6-8 SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit Sl-0182

S@C2200 - Interfaces

The LOGE functions as the interface to this subcomponent and describes the messages to be written
to a log. The LOGEs are queued for processing, and this queue is anchored from the SC_SSVT. —
Ileading id 'cndarea' unknown ~ provides a more detailed description of SC_SSVT.

S@C2200 - Data Areas

The major data area is the LOGE, which describes a message and specifies the log where it will be
output. LOGEs are chained together for processing.

The LOG Processor component's queues, built in last-in, first-out (LIFO) order, are anchored in the
SSVT. Each queue anchor is a doubleword. Thus, two queues are maintained: a work queue and a
request queue. The request queue is updated by the addition of LOGEs; the work queue is null. The
queues are swapped, the work queue (previously the request queue) is reversed (FIFO ordered), and
individual LOGEs are written to the log(s) and released to the pool when the LOGF.s are removed.

Storage for the queues is obtained and managed using the .MVS service, CPOOL. The address of the
pool is stored in the SSVT. Each LOGE's contents are mapped by the S@@LOG macro.

"Appendix B. SLCN Macros" on page B-1 describes the syntax of the S@@LOG macro.

S(gC2200 - Recovery

The task that outputs messages has an ES"FAE to intercept abends. In the case of I/O-related abends
(for example, SB37), processing continues with messages written to SYSOUT or the MVS system log,
as appropriate.

For other abends, the system log is closed, and diagnostic information is returned to the caller.
Following LOG closure, users of S@@LOG receive retum code 16, "SUPERLINK logging
inactive".

Cray Research, Inc. 6. SL'PERLINK LOG Processor Component 6-9

Diagram 6-3
S@C2200 - Output of Messages Subcomponent - Control Module

Entry from SaCCOOOO
1

V
Process--Input-

PLIST, POST 1. Activate recovery (ESTAE).

2. Call 3902210.

3. Periodically check work
queue (may go to step 7).

Call 3902230 to obtain data.

5. Call 3902240 to process data.

6. Return to step 3.

7. Call 3902220.

8. Deactivate the ESTAE routine.

9. Return to caller.

Output

POSTed ECB,
updated 3C_33VT,
return code

•> Exit to 39000000

6-10 SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit 81-0182

Extended Description

Explanation

1. The ESTAE is required to switchoutput to SYSOUT or the systemlog for
I/O- related abends in an attempt to allow SUPERLINK/MVS to continue.
For other abends, the LOG is terminated. The MVS operator receives
messages indicating the type of error and proposed action(s) to be taken.

2. Module S@C2210 initializes the LOG file. In the event of failure, control
is returned to the caller with a bad retum code. If initialization is successful,
the caller is POSTed (ECB address in PLIST), and processing continues.

3. This module is the head of a continuously-running task. A STIMER is used
to wait when the work queue is empty. A field in the parameter list is
checked to see if termination has been ordered by the c^er. If ABORT
termination is ordered, or the work queue is empty for NORMAL
termination, a branch to step 7 is taken.

The caller may request that a switch be made to an alternative preallocated
log (DDNAME supplied). This is done by branching to step 7 and then to
step 2 (not terminating).

7. Module S@C2220 is called to terminate the LOG file.

9. The caller receives retum and feedback codes indicating the processing
performed.

Module Label

S@C2200

S5i)C2200

S®C2200

S@C2200

S@C2200

Cray Research, Inc. 6. SL'PERLINK LOG Processor Component 6-11

Diagram 6-4
S@C2210 - Output of Messages Subcomponent - LOG File Initialization

Entry from SaC2200 or 3302250
1

V
Process--Input-

PLIST 1. If reprieve from ESTAE*
skip to step 7.

2. Obtain storage for queues
and initialize queue anchors.

3. If SLLOG DD is absents
allocate SLLOG.

4. If SLLOG DD is DUMMY or
DSN=NULLF1LE,
use MVS system log.

5. If not using MVS system log,
open SLLOG.

6. Skip to step 8.

7. If not logging to SYSOUT,
allocate log to SYSOUT and
open log; otherwise use MVS
system log.

8. Return to caller.

Output-

DCB,
return and
feedback codes

-> Exit to S3C2200 or 3302250

6-12 SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit SI-0182

Extended Description

Explanation Module

1. The PLIST indicates whether normal processing or reprieve processing is S@C2210
required. The PLIST may contain a DDNA.VIE; if so, branch to step 5.

2. Storage is obtained using CPOOL. Each queue anchor consists of a S@C2210
doubleword. There are two queues currently in use: request and work. The
free queue is managed by CPOOL and the anchor points to the pool. The
queue anchors are located in the SC_SSVT.

3. SLLOG DD should be allocated to SYSOUT = A and the caller informed S@C2210
that it was dynamically allocated (S@C2220 requires this information).

5. Upon return to the caller, register 1 contains the address of the DCB for the S@C2210
log. If the system log is in use, register 1 is set to 0.

7. An attempt is made to use a SYSOUT log in place of a dataset log. In the S@C2210
event of failure, or if SYSOUT was already in use, the system log is used.
Allocation and open processing are as described in steps 2 and 4.

8. The caller receives return and feedback codes indicating the processing S@C2210
performed.

Label

Cray Research, Inc. 6. SLTERLINK LOG Processor Component 6-13

Diagram 6-5
S@C2220 - Output of Messages Subcomponent - LOG File Termination

Entry from S9C2200-

-Input-

PLIST

V
-Process-

1. Close LOG file.

2. Release storage obtained
for queues.

3. If LOG file was allocated by
SaC2210/ deallocate it.

4. Return to caller.

-> Exit to 5302220

-Output-

Return and
feedback codes

6-14 SL'PERLINK for MVS Logic Library Volume 2: Control Functional Unit SI-0I82

Extended Description

Explanation

1. If the DCB address contained in the parameter list is 0, (system log in use),
no action is taken by this module. All storage associated with the LOG is
released.

2. The address of the storage obtained is contained in the free queue anchor in
the SC_SSVT. CPOOL is used to release it.

3. The parameter list indicates whether or not module S@C2210 allocated the
LOG. The DDNAML should be obtained from the DCB, since a
system-generated DDNAME may be used following LSI AL reprieve.

4. The caller receives return and feedback codes indicating the processing
performed.

Module

S@C2220

S@C2220

S@C2220

S®C2220

Label

Cray Research, Inc. 6. SLTERLINK LOG Processor Component 6-15

Diagram 6-6
S@C2230 - Output of Messages Subcomponent - Queue Swap and Reorder

Entry from 5902200-

Input
V

-Process-

1. If work queue is empty or
request queue is not empty/
return to caller.

2. Swap work and request
queues.

3. Reorder request queue.

4. Return to caller.

-Output-

Return and
feedback codes

•> Exit to S9C2200

6-16 SLTERLINK for MVS Logic Library Volume 2: Control Functional Unit Sl-0182

Extended Description

Explanation

1. 'I'he queue anchors are held in the SC_SSVT as double words. A queue is
empty if the anchor contains a value of O's. The caller receives a warning
return code if the work queue is empty. The caller receives an error rctum
code and a message is written to the system log if the request queue is not
empty, since module S@C2240 may not have processed the queue.

2. The queues are swapped using a compare double and swap to ensure correct
serialization.

3. The work queue is a LIFO queue, and the request queue must be in FIFO
order. This step is a loop to progress through the backward-chain pointers
building forward-chain pointers to allow FIFO processing. See "Appendix
A. Data Area Descriptions" on page A-1 for a description of the LOGE.

4. The caller receives a return code indicating the processing performed.

Module

S®C2230

S@C2230

S@C2230

S@C2230

Label

Cray Research, Inc. 6. SL'PERLINK LOG Processor Component 6-17

Diagram 6-7
S@C2240 - Output of Messages from LOGEs (part 1 of 2)

Entry from SaC2200-

-Input-

PLIST

V
-Process-

1. If request queue is empty»
return to caller.

2. Obtain address of LOG block.

3. Obtain address of LOGE
within a block.

4. If output to SUPERLINK LOG,
format and write line.

-Output-

Return and
feedback codes

-> continued

6-18 SL'PERLINK for MVS Logic Library Volume 2: Control Functional Unit 81-0182

Extended Description

Explanation Module

1. A warning return code is given. Module S@C2240 is called following S@C2240
reprieve processing by the ESTAE. It should output the line in progress at
the time of error to the new LOG (see steps 2 and 3).

2. 1he request queue anchor block in the SC_SSV F contains the address of the S@C2240
first LOGE block. A LOGE block consists of one or more LOGEs chained
by the user of the S@@LOG macro. For reprieve processing (for example,
following an SB37 abend), the address of the next LOGE block is kept in
the queue anchor head^of-queue pointer.

3. I'^ach LOGE contains the address of the next LOGE in a block; 0 indicates
the last LOGE. The first LOGE address is the same as the LOGE Block
address. For reprieve processing (for example, following an SB37abend), the
address of the current LOGE within a block is stored in the first fullword
of the anchor block.

4. The parameter list contains the address of the DCB (0 if using system log). S@C2240
This step is bypassed if the message length in the LOGE is 0. The LOGE
indicates where the output should be routed (see macro S@@LOG found
under "Appendix B. SLCN Macros" on page B-1). The print line is
described by macro S@C2PLNE and is built by copying from the LOGE.

S@C2240

Label

Cray Research, Inc. 6. SL'PERLINK LOG Processor Component 6-19

Diagram 6-8
S@C2240 - Output of Messages from LOGEs (part 2 of 2)

continued

Input-
V

-Process-

5. If output to MVS system log,
format line.

6. Release LOGE to pool.

7. If not end of block, go to
step 3; otherwise, if output
to system log, write block
to system log.

8. If not last block, go to
step 2; otherwise, update
request queue anchor.

9. Return to caller.

-> Exit to S3C2200

-Output-

6-20 SL'PERLINK for MVS Logic Library Volume 2: Control Functional Unit 81-0182

Extended Description

Explanation

5. The line for the system log output is the same as that for the SUPERLINK
LOG except that the ASA character and time are not required.

6. The LOGE just processed is returned to the pool using CPOOL. It then
becomes available for use by issuers of macro S@@LOG.

7. The chaining performed by macro S@@LOG ensures that message lines
appear as an uninterrupted block. 'ITius, lines for the system log are collected
at step 5 and output as a multiline WTO when the block is complete.

8. The request queue anchor must show that the request queue is empty and
is therefore set to O's.

Module Label

S@C2240

S@C2240

S@C2240

S@C2240

Cray Research, Inc. 6. SUPERLINK LOG Processor Component 6-21

Diagram 6-9
S@C2250 - Output of Messages Subcomponent - ESTAE Routine

Entry from MVS-

-Input-

PLIST

V
-Process-

1. Determine type of abend.

2. If 'out of space' abends
close LOG and retry with
SYSOUT.

3. If 'OPEN'/'CLOSE'/'DCB'
abend, retry with SYSOUT
or MVS system log.

4. If abend recursion or Sx22,
percolate to the next level.

5. For all other abends,
close LOG and retry to exit.

-Output-

-> Exit to SaC2210 or MVS

6-22 SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit SI-0I82

Extended Description

Explanation

2. Typically, the abends are Sx37 abends. The LOG is closed by calling
module S@C2220. The retry address is specified as S@C2210, and the
PLIST specifies "reprieve." .Module S@C2210 effects the LOG switch.

3. Typically, the abends are Sxl3/Sxl4/S002 abends. The retry address is
specified as module S@C2210, and the PLIST specifies "reprieve". ^Module
S@C2210 effects the LOG switch.

5. The LOG is closed by calling module S@C2220. The retry address is set so
that module S@CCOOOO receives retum and feedback codes indicating that
an abend occurred rather than the abend continuing.

Module

S®X2250

S@C2250

S@C2250

Label

Cray Research, Inc. 6. SL'PERLINK LOG Processor Component 6-23

7. SUPERLINK Management Interface Component

Although SUPERLINK for MVS and SUPERLINK for COS must initialize independently, both
MVS and COS management of the SUPERLINK/MVS product must be provided from a central
point. In order to achieve this cooperation between the two systems, a permanent connection is
established between the management functions on MVS (SLCN) and COS (SLMIR).

The Management Interface component, which takes the form of an OSI application, provides the
permanent connection between SLCN and SLMIR. The component uses the services of the
SUPERLINK Network Access Method (SLNET) to convey data between the management functions.

The Management Interface services enable two Management Interface components (typically one on
MVS and one on COS) to interact and exchange "management" type information. This information
typically includes commandsand messages; messages may or may not be replies to commands.

Management Interface Module Structure
The Management Interface component consists of the following modules:

Module Function

S(gCIOOOO Management Interface

S@CIOOIO Management Interface

S(§CI0020 -Management Interface

S(^C10030 Management Interface

S(gCI0040 .Management Interface

S(gCI0050 Management Interface

S@CI0060 Management Interface

S(gCI0070 Management Interface

S@CI0080 Management Interface

Figure 13 on page 7-2 shows the hierarchical structure of modules within the .Management Interface
component.

Cray Research, Inc. 7. SUPERLINK Management Interface Component 7-1

saciooio

S3CIOO<iO

(Subtask —
one per

active
connection)

sacioooo

saciooso

saciooso

ESTAE
< = = = = = = = = = =;=; = = >

ESTAE

sacioo30

sacioozo

sacioo6o

<=========:==;==> saCI0070

Figure 13. Module Structure of the Management Interface Component

Management Interface Services
In order to achieve cooperation between SLCN and SLMIR, a number of Management Interface
component services have been defmed as follows:

• Confirmed services - these services take the form of a two-way exchange of information between
the participating entities

• Nonconfirmed services - these sen'ices take the form of a one-way transfer of information from
one entity to the other

• Provider-initiated services - these services take the form of an indication presented by the service
provider to the participating entities

The following subsections describe the basic ser\'ice primitive types, Management Interface service
primitives, and Management Interface local system primitives.

Service Primitive Types

Table 2 describes the sen'ice primitives that allow a ser\'ice user to interact with a service provider.

Table 2. Basic Senice Primitive Forms

Fopin From To Function

REQUEST Originating
service user

Service
provider

Activation of a particular service

7-2 SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit SI-0182

Table 2. Basic Service Primitive Forms (continued)

Form From To Function

INDICATION Service
provider

Service user Provided at the destination end
system to advise the service user
of the activation of a particular
service

RESPONSE Service user Service
provider

Provided at the destination end
system in response to an
indication

CONFIRM Service
provider

Requesting
service user

Complete a confirmed service

Management Interface Service Primitives

The following primitives are used to establisha Management Interface connection and to exchange data
over that connection:

MI-LOGON
MI-LOGOFF
MI-ABORT
Ml-P-ABORT
MI-COMMAND
MI-MESSAGE

The SUPERLINK Protocol Information Manual, publication SI-0175, provides more detailed
information about these primitives.

Management Interface Local System Primitives

The following local system primitives are supported. The service user implements them to control the
service being used.

• MI-LOGON-OFFER
• MI-RECEIVE

Management Interface Component Interfaces
The Management Interface component is required to convey configuration details between the COS
and MVS Product Management components. The major source of input to this interface is from an
operator's console. The types of commands and command responses flowing across this connection
are typically a subset of the COS DSPLxxr commands.

All commands processed by this mechanism are considered to be MVS Master Console-only requests,
requiring the coordinated control that is achieved through the connection between SUPERLINK for
MVS and SUPERLINK for COS.

Management Interface Data Areas
The Management Interface component has the following main data areas:

Cray Research, Inc. 7. SUPERLINK Management Interfaee Component 7-3

Data Areas

MI MACB

MI MICT

MI_MRQE

Description

Management Interface connection manager control block

Each Management Interface'connection defined in the SUPERLINK/M"VS
initialization options statements is allocated a MI_MACB. This control block
monitors the state of its associated connection for the entire session.

Management Interface control table

This is the major control block of the Management Interface task itself. The
MI MICT is anchored from the SC_SS'VT and monitors information pertaining
to the Management Interface component.

Management Interface request element

Work from other tasks or the operator is queued to the Management Interface
task by a work-to-do queue of MI_MRQEs. The elements are dequeued and
processed one at a time, in FIFO order.

'Appendix A. Data Area Descriptions" on page A-1 provides descriptions of these data areas.

Management Interface Recovery
The Management Interface component runs as a subtask of the main root module of SLCN
(S@CCOOOO). The root module of the Management Interface component (S@C10000) enables an
ESTAE environment to trap abends within the Management Interface subtask and attempts to recover
from them whenever possible. If recovery is not possible, notification of the abend is percolated to the
next level of the recovery environment.

Each Management Interface connection handler subtask is protected by an ESTAE environment which
attempts to recover the connection. The SUPERLINK/MVS configuration options statements
determine whether automatic restart of a connection is possible or operator intervention is necessaiy.

7-4 SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit SI-0182

This page has been intentionally left blank.

Cray Research, Inc. 7. SUPERLINK Management Interface Component 7-5

Diagram 7-1
S@CIOOOO - Root Module of Management Interface Component

Entry from S3CC0000

-Input-

Register 1
==>PLIST

aSC SSVT

V SO SSVT

asc cioT

MI_MRQE

POSTed

ECB

V
-Process-

1. Establish ESTAE.

>2, Initialize Management
Interface; Call —

Interface;
call saciooio.

3. Wait for work
to do.

->5.

If input queue
request present/
call SaCIOOAO;
repeat until input
queue is empty.

If message or/
command waiting
for disposal on
output queue/
call SaCI0060;
repeat until output
queue is empty.

If premature end
of a connection
manager subtask/
try to recover
situation by
calling SaCIOOlO
with reinstate

option.

7. If Termination
Request flag

-> termination/ close
active connections.

When connections/
are all closed/
go to step 9.

8. Go to step 3 and
wait.

9. Terminate
Management-
Interface
component;
call sacioozo.

10. Delete ESTAE.

-Output-

Allocated
MI MACBs

> MI MICT

WAIT

ECBLIST

Deallocated
MI MACBs

> MI MICT

-> Exit to S3CC0QQ0

7-6 SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit SI-0182

Extended Description

Explanation

1. The ESTAE routine is S@CI0030.

2. All the resources required to run the Management Interface component are
obtained during this step. Particulars about the number and characteristics
of the necessary management connections are defined in the
SUPER LINK/MVS startup processor. These definitions are processed by
the Options Processor and formatted into the SC_CIOT control block.
Initialization uses this data to format the MI_.VIICT and MI_MACB
control blocks. All the defined subtasks which arc handled by the
Management Interface connection are ATTACIIed by routine S@CIOOIO.

If initialization completes successfully, POST the main control task in
SLCN; otherwise, branch to step 9 and return to the caller.

3. The Management Interface component waits for work-to-do requests to
arrive from various sources (input queue, output queue, terminate request
POSTed, or subtask termination).

4. Requests from the MVS operator, or other tasks or components of this task
itself which require use of the .Management Interface, arrive as MI_MRQEs
on a queue hung from the SC_SSVT. If any requests are present on this
queue, they are removed and processed, one at a time, by routine
S(^CI0040, until the queue is empty.

These requests may be operator commands or messages to be sent on a
particular management connection.

5. Messages and commands received on Management Interface connections
must be disposed to their correct destinations (for example, messages to the
SUPERUNK LOG or to the operator's console and commands to the
correct component of SUPERLINK/MVS or MVS for execution).
S@CI0060 performs this function on data that has been received and queued
onto the output queue by instances of S@CI0050. S@CI0060 dequeues and
processes each clement until the queue is empty.

6. The premature termination of a connection manager subtask is detected
here, and a decision is made to reinstate the task, to terminate, or to notify
the operator for action.

7. If the main control task in SLCN has POSTed the Management Interface
component to terminate ECB, this task cleans up and exits.

This is done by determining the type of termination requested
(NORMAL/QUICK/ABORT) and flagging all connections to terminate in
that manner. Once all connections have terminated correctly, the routine
branches to step 9 and exits.

9. The Management Interface component cleans up by freeing all the resouces
it has obtained. Each connection manager subtask is DETACIIed, having
completed its own termination.

Module Label

S@CIOOOO

srscioooo

s@cioooo

S(^CIOOOO

S@CIOOOO

s^cioooo

S@CIOOOO

SJiiCIOOOO

Cray Research, Inc. 7. SL'PERLINK Management Interface Component 7-7

Diagram 7-2
S@CI(M)10 - Management Interface Initialization Routine

Entry from S3CI0000

-Input-

Register 1

V
PLIST

aSC SSVT

V SC SSVT

asc cioT

POST

ECB

r—>

V
-Process-

If reinstate of
subtask required^
flag reinstate
request.

Locate SC_CIQT.

Build chain
of MI_MACB blocks
representing
Management Inter
face connections
and main M1_M1CT
control block.

-Output-

Mi MACBs

Ml MICT

WAIT

ECB

POST

ECB

Prime each M1_MACB
according to start
up type specified
in OPTIONS
parameters.

ATTACH each
connection manager
subtask associated
with each M1_MACB.

NAIT for each
M1_MACB to post
initialization
complete.

POST each M1_MACB
to be started auto
matically when it
has work to do.

Set return code
for caller.

Register 15

Return code

-> Exit to sacioooo

7-8 SL'PERLINK for MVS Logic Library Volume 2; Control Functional Unit Sl-0182

Extended Description

Explanation

1. A reinstate request is made after a connection manager subtask has failed
and is being reinitialized. Thus the logic of this module is the same as that
of S@CIOOOO, except that the MI_MICT and the MI_MACBs are already
present, and only one connection manager subtask must be initialized.

2. The SC_CIOT is chained from the SC_SSVT.

3. The SUPERLINK/MVS configuration OPTIONS statements state how
many Management Interface connections are defmed and indicate the
characteristics of each one. One MI_MACB per defmed connection and one
M1_MICT for the whole task are allocated.

Configuration options indicate: whether the connection is to be started
automatically or with an operator command; whether automatic restart is
to take place on a failed connection or whether the operator initiates the
restart sequence; and whether the connection is to come up as a primary end
(issues MI-LOGON requests) or a secondary end (issues
MI-LOGON-OFFER requests).

4. Each coimection to be started automatically has a request queued to its
MI_MACB indicating whether it is to start as a primary or a secondary' end.

5. Each MI_MACB represents a Management Interface connection, and each
is managed by an instance of the connection manager subtask (S@010050).
Each connection defined by an MI_MACB has an instance of this task
ATTACMed, and is passed the address of its own MI_MACB. End-of-task
should be notified by specifying a common exit routine instead of using a list
of ECBs, which proves more difficult to manage.

6. Each connection manager subtask must initialize itself. Processing must
WAIT until each has done so.

7. Those subtasks to be automatically started are POSTcd. The ECB to be
POSTed is the same one the subtask uses as its "external cancel" ECB
during A-RECEIVE processing; the subtasks also WAIT on this after
initialization and before they start to perform any work. POSTing indicates
that the task's .MI MACB has work to do. When dispatched, they find the
MI_MRQE request element on the work queue and perform the initial
action required, for example, MI-LOGON request or MI-LOGON-OFFER
request (for testing).

8. A return code for caller is set indicating the state of initialization as follows:

00 Initialization was successful.
04 Initialization failure; able to proceed with reduced functionality.
08 Initialization failure; unable to proceed.

If reinstate of a subtask was requested, the return codes are as follows:

00 Reinstate was successful.
04 Reinstate failed.

Module Label

S@CI0010

S@CI0010

S@CI0010

S@CI0010

S@CI0010

S@CI0010

S@CI0010

S@CI0010

Cray Research, Inc. 7. SL'PERLINK .Management Interface Component 7-9

Diagram 7-3
S@CI0020 - Management Interface Termination Routine

Entry from S3CI0000

Input-

Register !==>
PLIST

aSC SSVT

MI MICT

V MI MACBs

V

Locate MI_MICT and
MI_MACB queue.

Flush all requests
on MI_MRQE
queues.

DETACH each
connection manager
subtask associated
with each MI MACB.

Free chain of —
MI_MACB control
blocks and
MI_MICT control
block.

Set return code
for caller.

Output-

MI MACBs

MI MICT

>Register 15

> Exit to sacioooo

7-10 SUPERLINK for iVIVS Logic Library Volume 2: Control Functional Unit SI-0182

Extended Description

Explanation

1. The MI_MICT and the MI_MACB queues are anchored from the
SC_SSVT.

2. Both input and output iM_MRQE queues have all their outstanding
MI_MRQE elements flushed (dequeued and FREEMAINed).

3. Each MI_MACB that has an ATTACI lcd connection manager subtask has
that subtask DETACIIcd. The subtask will ha\c already terminated due to
processing performed when a termination request was recognized in the
S@CIOOOO module.

5. The retum codes sent to the caller are defined as follows:

00 Termination was successfully completed.
04 I ermination processing encountered some error.

Module

S@SCI0020

85^X10020

S®SCI0020

S@CI0020

Label

Cray Research, Inc. 7. SL'PERLINK Management Interface Component 7-11

Diagram 7-4
S@CI0030 - Management Interface ESTAE Routine

Entry from MVS RTM

Input

SDHA

Data for
ESTAE

> 1
r

-Process-

Determine type of
abend.

If abend recurs»
percolate to next
level.

If recovery is
possible, exit
with retryi

If recovery is not
possible,
percolate to next
level.

•Output-

-> Exit to MVS RTM

7-12 SL'PERLINK for MVS Logic Library Volume 2: Control Functional Unit SI-0182

Extended Description

Explanation

1. No retry is attempted on X22-type abends, nor is a dump obtained.

2. To prevent reentry in an abend recursive loop, check for recursion. If this
is a recursive abend, control should simply be percolated to the next level
of recovery, where the SLCN root module detects the termination of the
Management Interface component.

3. If recovery is possible for the type of abend encountered, a retry routine is
specified on the SETRP macro (if an SDWAis present). This routine gains
control after the the ESTAE has returned control to RTM. Use the
SDU.VIP routine to obtain a dump for diagnostic purposes.

4. If recovery is not possible, use the SDUMP routine to obtain a dump for
diagnostic purposes. Using the SE TRP macro (if SDVVA is present) again,
percolate the abend condition to the next level of recovery, where the SL.CN
root module detects the termination of this task.

Module Label

S'jeCIOOBO

S@CI0030

s®rioo30

S©CI0030

Cray Research, Inc. 7. SL'PERLINK Management Interface Component 7-13

Diagram 7-5
S@CI0040 - Management Interface Input Queue Server

Entry from S3CI0000

-Input-

Mi MRQE

MI MACBs

V
-Process-

An MI_MRQE element
which has been
dequeued from
input queue is
passed from caller

MiImACB which
represents
connection.

Queue request onto
correct MI MACB.

POST connection
manager task/
indicating
that there is
work to be done.

5. Free MI_MRQE if
necessary and
return to caller
with return code.

-Output-

Mi MACB

POST

ECB

-> Register 15

•> Exit to S3CI0000

7-14 SLPERIJNK for MVS Logic Library Volume 2: Control Functional Unit Sl-0182

Extended Description

Explanation

1. MI MRQE elements queued may be destined for a remote management
component via MI-COMMAND or MI-MESSAGE requests, or for action
on the local system, such as a command to stop or start a particular
connection.

If an MI_MRQE request clement is to be freed, free it; otherwise, do
nothing. The return code set for the caller is as follows:

00

04

08

Request processed successfully; MI_MRQE not freed.
Request processed successfully; MI_MRQE freed.
Request not processed successfully; MI_MRQE freed.

Module Label

S@CI0040

5(0)010040

Cray Research, Inc. 7. SL'PERLINK Management Interface Component 7-15

Diagram 7-6
S@CI0050 - Management Interface Protocol Event Routine (part 1 of 2)

Entry from S3CIOOOO

•Input-

Mi MACB

POST

ECB

Terminate
MI MACB

Event

MIPDU

Event

MI MRQE

4.

V
-Process-

Initialize and
enable ESTAE
environment.

POST ATTACHer
indicating
completion of
initialization.

WAIT until given
go—ahead to
start processing.

If a termination
request has been
flagged/ skip to
step 10.

Handle any
incoming event
from CASE
layer.

Handle any
incoming requests
queued by
Management
Interface user.

-> continued

7-16 SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit

-Output-

POST

ECB

WAIT

ECB

Action plus
new state

Action plus
new state

81-0182

Extended Description

Explanation

1. This module must be reentrant, because there are multiple instances of it
(one per active connection manager subtask).

Enable the ESTAE environment (module S@CI0070) and initialize.

2. Once initialization has completed successfully, POST S@CIOOOO that this
subtask has correctly initialized.

3. WAIT for the ECB that will also be used as the A-RECEIVE "external
cancel" ECB for S@CIOOOO to indicate that the work-to-do queue may now
be processed.

4. If a Terminate Request flag was set in MI_MACB, go to step 10.

5. Handle any incoming events, using the State/Event table to determine the
appropriate action.

If (A-RECEIVE data pending) then do
extract-event-just-received;
perform-action(current-state,received-event);
end-if

6. Handle any requests queued via MI MRQE elements, using the state/event
table to determine the appropriate action.

While (request queue is not empty)
dequeue-MI_MRQE-event;
perform-action(current-state,dequeued-event);
end-while

Module Label

S'?^CI0050

S@CI0050

S@CI0050

S@CI0050

S@CI0050

S@CI0050

Cray Research, Inc. 7. SLPERLINK Management Interface Component 7-17

Diagram 7-7
S@CI0050 - Management Interface Protocol Event Routine (part 2 of 2)

continued

•Input-

Mi MACB

Terminate

V
-Process-

Issue A-RECEIVE
request.

8. On returning from
-> implicit NAIT in

A-RECEIVE, check
for outstanding
terminate request;
if one is
present, skip to
step 10.

9. Go to step 5 to
check other work-
pending action.

10. Free resources
obtained.

11. Delete ESTAE.

12. Return to caller
with return code.-

13. Retry;
Set up MI-P-ABQRT
request if no
other action
possible and
go to step 5.

-Output-

•> Register 15

Return code

MI MRQE

MI-P-ABORT

-> Exit to S3CI0000

7-18 SL'PERLINKfor MVS Logic Library Volume 2: Control Functional Unit Sl-0182

Extended Description

Explanation

7. Issue an A-RECEIVE request (implicit WAIT on "external cancel" ECB).

8. When data is received on the outstanding A-RECEIVE or the "extemal
cancel" ECB is POSTed (indicating that the queue contains work to do),
check whether a termination request has been made. If the Termination
Request flag is set in the MI_MACB, go to step 10.

9. Check what sort of work is to be done by going to step 5.

10. Clean up any resources obtained before terminating.

11. Delete the ESTAE environment.

12. Return to caller with return code indicating success of termination.

13. On retry processing from the ESTAE routine (S@CI0070), this routine is
entered at this point. If there is no way to recover the existing connection,
an MI-P-ABORT request is placed on the work queue of this connection
manager subtask and branches to step 5 so the request can be acted upon
according to the State/Event table.

Module

S@CI0050

8^X10050

S®CI0050

S@CI0050

S@CI0050

S@CI0050

S@CI0050

Label

Cray Research, Inc. 7. SL'PERLINK Management interface Component 7-19

Diagram 7-8
S@CI0060 - Management Interface Output Queue Server

Entry from S3CI0000

•Input"

MI_MRQE r' 1

V
-Process-

An MI_MRQE element
which has been
dequeued from
output queue is
passed from caller.

If element is a
command request,
issue command to
correct component.

If element is a
message request,
send message to
correct
destination.

4. Free MI_MRQE if
required; set
appropriate return
code for caller.

-Output-

Register 15

•> Exit to sacioooo

7-20 SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit S1-0I82

Extended Description

Explanation Module

1. These MI_MRQE elements may have originated from incoming S@CI0060
MI-COMMAND or MI-MESSAGE indications within a connection
manager subtask.

4. If it is necessary to free the MI_MRQE element, do so; otherwise, leave it S@CI0060
as it is. Set a return code for the caller as follows:

00

04

08

Request processed successfully; MI_MRQE not freed.
Request processed successfully; MI_MRQE freed.
Request not processed successfully; MI_MRQE freed.

Label

Cray Research, Inc. 7. SUPERLINK Management Interface Component 7-21

Diagram 7-9
S@CI0070 - Management Interface Connection Protocol Task ESTAE

Entry from MVS RTM

Input

SDMA
> 1

r

V

-Process-

Determine type of
abend.

If abend occurs,
percolate to next
level.

If recovery is
possible, exit
with retry.

If recovery is not
possible,
percolate to next
level.

-Output-

•> Exit to MVS RTM

7-22 SL'PERLINK for MVS Logic Library Volume 2: Control Functional Unit 81-0182

Extended Description

Explanation

1. This routine must be reentrant, since multiple instances (one per
Management Interface coimection) exist at one time. •

No retry is attempted on X22-type abends, nor is a dump obtained.

2. To prevent reentry in an abend recursive loop, check for recursion. If this
is a recursive abend, control should be percolated to the next level of
recovery, where the Management Interface root control module (S@CIOOOO)
detects the termination of the connection management subtask.

3. If recovery is possible for the type of abend encountered, a retry routine is
specified on the SETRP macro (if an SDWA is present). This routine gains
control after the the ESTAE has returned control to RTM. The recoveiy
routine resides in the S@C10050 module. A dump is not obtained at this
level; however, a diagnostic message indicating the source of the problem is
written to the SUPERLINK LOG.

4. If recovery is not possible, the abend condition is percolated to the next level
of recovery using the SETRP macro again (if an SDWA is present). The
Management Interface root control module (S@CIOOOO) detects the
termination of this task. A diagnostic message indicating the source of the
problem is written to the SUPERLINK LOG.

Module Label

S@CI0070

S@CI0070

S@CI0070

S@CI0070

Cray Research, Inc. 7. SL'PERLINK Management Interface Component 7-23

Diagram 7-10
S@CI0080 - Management Interface PDU Encoder/Decoder

Entry from S3CI0050

-Input-

Register 1
==>PLIST

Request

Process

•> 1. Determine whether
encoding or
decoding of an
MIPDU is required.

If decoding is
required^ decode
MIPDU passed in -
PLIST.

-Output-

Decoded
MIPDU

Encoded
MIPDU

3. If encoding is
required/ complete
MIPDU encoding
according to
request passed in
PLIST.

4. Return to caller
with return code —
indicating success
or failure.

-> Register 15

•> Exit to saciooso

7-24 SLPERLINK for MVS Logic Library Volume 2: Control Functional Unit Si-0182

Extended Description

Explanation Module

2. Decoding of PDUs is performed according to the PDU ASN.l definitions S@CI0080
and using the ASN.l Basic Encoding Rules.

3. Encoding of PDUs is performed according to the PDU ASN.l definitions S@CI0080
and using the ASN.l Basic Encoding Rules.

Label

Cray Research, Inc. 7. SUPERLINK Management interface Component 7-25

8. SUPERLINK Association Manager Component

The function of the SUPERLINK/MVS Association Manager is to issue A-OFFER service request
primitives for all specified application titles (using the ATITLE statement within Options) and to
process all incoming A-ASSOCIATE indications for those application titles. The SUPERLINK/MVS
Installation, Tuning, and Customization Guide, publication SI-0180, describes the ATITLE statement.

Association Manager Subcomponents
The Association .Manager component consists of the foUovving subcomponents, which are described
later in this subsection:

Subcomponent Description

S@C9000 Association Manager controller (AM_controller)

S@C9100 Association .Manager processor (A.M^processor)

S@C9200 Association Manager interface (AM_interface)

S@C9300 Association Manager timer services (AM_timer)

S@C9UXAM Association .Manager User Exit Handler (AM_cxits)

Association Manager Subcomponent Flow
Figure 14 on page 8-2 shows the subcomponent flow for the Association Manager component.

Cray Research, Inc. 8. SL'PERLINK Association Manager Component 8-1

start dl required
processors as
donand dictotea.

if there a no
adm^ for some
time, close down
idle processors.

Clean up and
Return.

Pod ECB when time
expires.

Field oil incoming
function requests
from responders.

Network Routines.

Entity responders
started by the
AM_prDcessors.

Figure 14. Association Manager Component Flow of Control

Association Manager Services
The Association Manager component provides the following services:

• Issues an A-OFFER service request primitive for each registered application title defmed by the
AITFLE statement within the SUPERLINK options. As soon as an inbound connection
establishment request is delivered to the Association Manager, another A-OFFER ser\'icc request
primitive is issued.

• Passes connection end points to a responder (if a responder that can take the end point is active)
upon receipt of an incoming A-ASSOCIATE indication

• Initiates a responder to take connection end points (if no responder is currently active) upon
receipt of an incoming A-ASSOCIATE indication. Once the initiated responder becomes active,
the connection end point is transferred to the responder.

• Initiates copies of responders that become congested and passes the work still to be processed to
the new responders.

• Monitors for premature termination of responders. Any unprocessed comiection end points are
either rejected or passed to another responder for processing.

8-2 SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit Sl-0182

Association Manager Services Offered to Application Entity Initiators on COS

When the Association Manager receives an incoming A-ASSOCIATE indication from an initiator on
COS, it attempts to match it to any responder that is already active. The Association Manager uses
the following matching criteria for &A.MTYPE= MULTIPLE:

• MVS user ID
• MVS group ID
• MVS accounting information
• MVS user ID password

The preceding criteria are supplied from the IDENT, AUTH, or TEXT fields within the incoming
A-ASSOCIATE indication. If these fields are not specified, the criteria is supplied by default from the
SUPERLINk/MVS Options.

If the default, &AMTYPE = SINGLE, is specified, the following information is included as part of the
matching criteria:

• PSAP ID (COS job name and JSQ)
• Mainframe ID of the A-ASSOCIATE indication

Once a determination of a match has been made, one of the following occurs:

• If the responder is active and has registered itself with the Association Manager (by performing a
LISTEN call using the Association Manager interface via the S(^(^MREQ macro), the
connection end point is given to the responder and the Association Identifier (AID) is added to
the responder's queue.

• If the responder has been submitted but has not yet performed a LISTEN call, the end point is
held until the responder is ready. The AID is added to the responder's queue.

When a match is not made, the Association Manager initiates a new responder. SUPERLINK/MVS
options and a series of variables are used to complete a JCL template. This JCL is used to submit the
responder companion job. Any variables referred to within the JCL either use default values from the
SUPERLINK options, or override these defaults using values from within the A-ASSOCIATE
indication TEXT, IDENT, and AUTII fields. The variables include REGION, CLASS, PROC, and
so on. For further details, refer to "S@C9100 - Association Manager Processor Subcomponent" on
page 8-18. The SUPERLINK/MVS Installation, Tuning, and Customization Guide, publication
SI-0180, provides more detail about specifying options.

Association Manager component processing is controlled by parameters supplied by the COS
application entity initiator.

The following are the parameters in the incoming A-ASSOCIATE indication:

Parameter Description

ALTHl Level one authorization information (MVS password); overrides default and
TEXT values.

ALTH2 Level two authorization information; not used by Association Manager
component but is passed to AM User exit 4 (Security Validation)

AUTH3 Level three authorization information; not used by Association .Manager
component but is passed to A.M User exit 4 (Security Validation)

IDENT Level one identification information (.MVS user ID); overrides default and
TEXT values.

Cray Research, Inc. 8. SUPERLINK Association Manager Component 8-3

Parameter Description

IDEN2 Level two identification information (MVS accounting information); overrides
default and TEXT values.

IDEN3 Level three identification information (MVS group ID); overrides default and
TEXT values.

TEXT Values for keyword variables; overrides all default values.

MF ID Mainframe identifier (used only for &AMTYPE = SINGLE).

PSAP ID Presentation service access point (PSAP) identifier (used only for
&AMTYPE = SINGLE).

Association Manager Services Offered to Application Entity Responders on MVS

All responders initiated by the Association Manager can use the Association Manager Interface via the
S@@.MREQ macro. Using the interface allows them to do the following:

• LISTEN - The responder is active and ready to receive work.
• NOTIFY - The responder wants to be notified of an event via the POST mechanism.
• PROCESS - The responder wants details of an event, if there is one.
• DELETE-EP - The rcspondcr is not receptive to subsequent events, with the exception of

termination requests.
• DELETE-ANY - The responder is not receptive to any events.

The following inbound or outbound events are valid:

• Connection end point given
• Termination order, defmed as follows:

• Graceful - All outstanding functions arc completed, but new requests for SUPER LINK/MVS
services are denied prior to termination processing.

• Quick - All pending activity is flushed, then orderly termination of all active functions is
performed.

• Abort - All active functions are abruptly terminated.

Association Manager Interfaces
The following subsections describe interfacing to the Network Access Method, interfacing to user c.xits,
interfacing to application entity responders, and the queue management facility for connection end
points.

Interfacing to the Network Access Method

The Association Manager component uses ACSE as an interface to the Network Access Method.

8-4 SUPERLINK for MVS Logic Library Volume 2; Control Functional Unit 81-0182

Interfacing to User Exits

The Association Manager user exit handler, (S@C9UXAM), is invoked whenever a user exit is to be
invoked. This module establishes the environment required for the user exit and also sets up the
parameters that the user exit requires. The Association Manager user exit handler may be called from
anywhere within the Association Manager component by using the S@C9EXIT macro.

Interfacing to Application Entity Responders

Application entity responders interface with the Association Manager component by issuing the
S@@MREQ macro. The expansion of this macroresults in a call to the AM_interface subcomponent
(S@C9200), a reentrant module located in common storage.

The Queue Management Facility for Connection End Points

A queue management facility is used for transferring connection end points from the Association
Manager to initiated respondcrs via the AM interface subcomponent. The items to be queued are
AIDs. The Association Manager issuesan A-ENDPOINT-GIVE service request primitive and queues
the AID for a responder. When a responder becomes active, it calls the S@@MREQ macro and is
given the AID, which is then used to takethe connection by issuing an A-ENDPOINT-TAKE service
request primitive.

The facility consists of the following two queues for each responder:

• Request queue (RQ); AM_processors add AIDs for connections to the queue as required.

• Work queue (WQ); when a responder is ready to accept work, the interface routine switches items
from the request queue to the work queue and then extracts itemsfrom the queueas the responder
requests them.

Each queue contains the following items:

• A queue anchor
Queue elements (chained together)

Queue elements are processed in FIFO order. Therefore, the work queue is double-headed,
double-threaded, and noncircular. To add or remove a queue element, the following operations must
be performed in one action:

• Chain or dechain a queue element
• Update the double-headed queue anchor

To perform this action, the two-queue method has been adopted. The queuesare organized as follows:

• A request queue is organized in FIFO order
• A work queue is organized in FIFO order

When adding an item, a queue element is added to the end of the request queue. WTien removing an
item, the item is taken from the head of the work queue. If the work queue is empty, it is switched
with the request queue. This is done with a "compare double and swap" instruction within a loop to
ensure serialization. Queue elements are reordered from FIFO to FIFO by double-chaining the work
queue prior to its processing.

This queue management facility provides the following features:

• No lock/unlock, eliminating possible contention
• No "bit-spin" loop
• Any number of tasks can simultaneously add elements to a single request queue.

Cray Research, Inc. 8. SUFERLINK Association Manager Component 8-5

All queue elements are aligned on a double-word boundary. Each queue has an associated anchor
which is also aligned on a double-word boundary. The backward chaining is established as elements
are added to the request queue and the forward chaining is established after a request queue has been
switched to a work queue.

The following macros are used for handling the queues:

Macro Description

S@C@QADD Add an item to the request queue.

This macro expansion obtains a queue element from a cell pool, inserts the data
into the element, and chains it in the specified request queue.

S@C@QREM Remove a queue element from the head of the work queue.

This macro expansion dechains a work queue element, copies its contents to the
specified target area, and rctums the queue clement to the cell pool.

S@C@QSWI Switch a request queue to an empty work queue.

This macro expansion switches an empty work queue with a request queue.

"Appendix B. SLCN Macros" on page B-1 provides a description of these macros.

Association Manager User Exits
A number of user exits arc provided within the Association Manager to allow installations to perform
validation and "local" processing. The Association Manager component has the following four
installation exits:

• Variable validation installation exit
• Validation of JCL for submission exit
• Job scheduling installation exit
• Security validation exit

The SUPERLINK/.MVS Installation, Tuning, and Customization Guide, publication 81-0180,
provides more information about these user exits.

The installation exit modules are dynamically loaded at startup and remain until closedown. The exit
module names are specified in the &UXAMrt installation options.

An ESTAE is used to detect abends within user exits. If an abend occurs, an appropriate error message
is output and the exit is disabled.

Normal conventions are followed for the use of registers. Upon entry the registers are as follows:

Register Contents

R1 Pointer to parameter list

R13 Pointer to 72 b>'te register save area

R14 Retum address

8-6 SUFERLINK for MVS Logic Library Volume 2: Control Functional Unit SI-0182

Register

R15

RO, R2-R12

Contents

Base address of User exit

Undefined

The installation exits receive control in problem program state, storage protect key 8 and in the
addressing mode assigned to the load module. The exits must restore the caller's addressjng mode upon
retum (using the BSM assernbler instruction).

S@C9000 - Association Manager Controller Subcomponent
The Association Manager controller subcomponent (AM_controller) is responsible for the overall
control of the Association Manager component under the direction of the SLCN root module
(S@CCOOOO).

The AM_controller starts as many processors as required (up to the maximum specified on the
&AMLIMIT parameter in the initialization options) to meet the demands placed upon it. It initially
starts one processor for each application title specified, using the ATITLE statement in the
SUPERLINK options. Each processor issues an A-OFFER service request primitive to process any
incoming A-ASSOCIATE indications.

S(gC9000 - Module Structure

The AM_controller consists of the following modules:

Module Function

S@C9000 Initialization module

S@C9010 Error recovery (ESTAE) exit routine

S@C9020 State/event machine and termination

S@C9030 Termination request handler

S@C9099 AM Termination module

Figure 15 on page 8-8 shows the hierarchical structure of modules within the AM_controllcr
subcomponent.

Cray Research, Inc. 8. SUPERLINK .Association Manager Component 8-7

ESTAE

S3C9020

Figure 15. Module Structure of the Association Manager Controller Subcomponent

S@C9000 - Services

The AM_controller performs the initialization and termination of the Association Manager component.
During normal running it attaches and controls AM_processor subtasks.

S@C9000 - Initialization phase

Root module S@CCOOOO attaches the AM_controUer during the initialization phase of SLCN. The
AM_controller initializes the data areas that the Association Manager component requires in common
storage. It then starts up one AM_processor subtask. Once initiaUzed, the AM_controller enters the
active state.

S@C9000 - Active state

The AM_controller listens for any of the following events to occur:

• Shutdown request from SLCN

The shutdown signal is issued by the root module, S@CCOOOO. Once the request is accepted, the
AM_controller enters its termination phase.

• "Processor idle" notification from a processor

Once an A.M_processor becomes idle, it is ready for work. If there are any application titles that
do not have an outstanding receptor for an association request (OFFER), the A.M_controller
orders the idle AM_processor to registeran application title by using the A-OFFER service request
primitive. If additional application titles are required, the AM controller attaches more
AM^rocessors. This cycle continues until there is an A-OFFER request pending for all known
application titles.

• "Offer accepted" notification from a processor

When an A-ASSOCIATE indication is received in response to an A-OFFER service request
primitive, an AM_proces.sor subtask notifies the AM_controllcr, which in turn activates a new
A.M_processor subtask to issue another A-OFFER request. However, if an A.M_processor
subtask is already in the idle state, the A.\l_controller will activate the idle processor, by the POST
macro, to indicate that another A-OFFER service request primitive must be issued. Otherwise,
the AM_controllerattaches a new A.\I_processor subtask to perform this operation.

• "Queued connection requests not being accepted" notification from a processor

8-8 SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit 81-0182

This event occurs if an entity responcler usesthe S@@MREQ macro to performa deleteend point
(DELETB-EP) (the rcsponder will not accept any more A-ASSOCIATE indications) while end
points wait for processing on the responder's queue. The AM_controller starts another copy of the
entity responder and gives the queue with the end points to the new job for processing.

• "Time-out" inactivity for at least 10 minutes

The quantity of AM_processors ATTACIledat any one time is determined by the demand placed
upon the Association Manager component. If there is a period of inactivity lasting approximately
10 minutes, one idle AM_processor, if there is one, is terminated.

• Processor termination

If an AM_processor terminates, the AM_controller releases the data areas as required.

S@C9000 - Termination Phase

The following termination sequences are defined:

• Graceful
• Quick
• Abort

The AM_controller reflects the appropriate termination order to its AM_processors, whichin turn issue
termination orders at the same level to all responders defmed in the AM_responder directory. When
all of its AM_processor subtasks have been detached, the AM_controllcr performs clean-up processing
and terminates.

"Association Manager Services Offered to Application Entity Responders on MVS" oh page 8-4
provides a description of these termination sequences.

S@C9000 - Interfaces

The interfaces are described under "Association Manager Interfaces" on page 8-4.

S@C9000 - Data Areas

When the Association Manager component is initiated, it creates its own seriesof tables. The following
reside in common storage until the Association Manager and all of its processors have terminated:

Table Description

AM_APD Association Manager Application Program Directory

AM_APD is a register of all application titles known to the Association
.Manager. An A-OEEER service request is issued for each defmed application
title.

AM_CDT Association Manager Controller Data Table

AM_CDT contains data used by the AM_controller.

AM_GWA Index to the Association .Manager Global Work Area

Cray Research, Inc. 8. SUPERLINK Association Manager Component 8-9

Table Description

AM_PCT Association Manager Processor Control Table

AM_PCT contains a header for each ATTACHed AM_processor. An entry
index is used to find the entries.

AM_RED Association Manager Respondcr Directory

AM_RED has an entry for each application entity responder. An entry index
is used to find the entries.

AM_VT Association Manager Vector Table

AM_VT contains the entry point addresses of Association Manager component
modules, pointers to data areas, and other global information. This is the only
table accessible to modules that are extemal to the Association Manager
component. It contains an ECB that is posted by an extemal module when it
wants to inform the Association Manager component of termination processing.

"Appendix A. Data Area Descriptions" on page A-1 provides format descriptions of these data areas.

S@C9000 - Recovery

An ESTAE is established at initialization. A message is issued to the SUPERLINK LOG and retry
is attempted from the start of the state/event machine processing (S@C9020). The retry routine
proceeds as follows:

Abend during initialization - The initieilization sequence performed prior to the abend is reversed,
and the Association Manager component then terminates.

Abend during normal operation - The main cycle is reentered at the top. The process waits for the
next event before continuing. If the same abend occurs again, the Association Manager component
terminates in as orderly a way as possible.

Abend during termination - The termination sequence that caused the abend is ignored, and the
ESTAE reenters the termination sequence just beyond the section that caused the abend.

8-10 SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit SI-0182

This page has been intentionally left blank.

Cray Research, Inc. 8. SUPERLINK Association Manager Component 8-11

Diagram 8-1
S@C9000 - Root Module

Entry from MVS —
(attached by SaCOOOO)

Input
V

•Process-

1. GETMAIN work area.

2. Create a recovery environment

3. Calculate size of common
storage required.

8.

9.

10

11

12

Acquire common storage.

Load interval timer S3C93Q0.

Load user exit handleh and
user exit modules.

Initialize Common Storage
Tables.

Build required cell pools.

Build Events Table.

Initialize ECBs upon which
controller will WAIT.

Start up first processor
(module S3C9100).

Pass control to
State/Event machine
(module SaC9020).

-Output-

Work area

ESTAE environment

Common Stor;age

Interval Timer

User Exits and
Handler

AMT, GWA, CDT, RED,
PCT, APD

3 cell pools

Events Table

Processor
Attached

•> Exit to S3C9a20

8-12 SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit SI-0182

Extended Description

Explanation

1. The acquired work area starts with the register save area and is followed by
a more general work area. This area is passed from module to module in a
controller context to eliminate the need for further GETMAINs.

2. Module S@C9000 issues an ESTAE macro instmction to establish an
ESTAE recovery environment. The ESTAE routine (S@C9010) traps all
abends scheduled by this module.

3. The following items in the list are totaled to give the required size of
common storage:

Association Manager Vector Table (A.MT) size
Global Work Area (GWA) index size
Controller Data Table (CDT) size
Processor Control Table (PCT) header size
(PCT entry size) x (Number of responders + 2)
Responder Directory (REDE) header size
Application Program Directory (APD) header size
(APD entry size) x (Numberof Application Titles in options)
24 bytes for rounding up to full-word boundaries

5. The Interval Timer is module S@C9300. The entry point for the interval
timer is saved in the initial AMT.

6. The User exit handler is module S@C9UXAM. The entry points for the
user exits are saved in the GWA index.

8. The cell pools required are as follows:

• Cell pool with REDE entry elements. Thequantity setup isdetermined
by the number of respondcrs specified in the ClOT.

• Cell pool containing 40-byte elements used as both queue elements and
queue management cells in the REDE

• Cell pool with PRB/PRC buffers which are used with each A-OTFER
issued

9. The following proportions are used to calculate the size of the Events Table:

• 2 per responder (the ECB on the ATTACH and the ECB for
processor-to-controller communication)

• 1 for the termination ECB

• 1 for the interval timer

11. Before the processor is started, an entry in the PCT is acquired. The
processor is then started using the A TTACH macro.

Module Label

S@C9000

S(^C9000

S@C9000

S@C9000

S@C9000

S®C9000

S@C9000

S@C9000

Cray Research, Inc. 8. SL'PERLINK Association .Manager Component 8-13

Diagram 8-2
S@C9010 - ESTAE Exit Routine

Abend Occurs —
(ESTAE exit invoked)

Input

PLIST

-Process- -Output-

Abend message

SVC dump

Retry Attempt

1. If no SDMA/ go to step 3.

2. Perform initial processing
as if an SMDA is present;
then go to step A.

3. Perform initial processing
as if an SNDA is not present

A. Output an abend message
to SUPERLINK LOG.

5. If requested/ produce an
SVC dump.

6. If retry is possible/
attempt to go to retry
entry point S3C9021.

7. If retry is not possible
percolate to next level.

0/P Retry Not Possible
message

•> Exit to retry point at S3C9021
or

Percolate/ letting abend proceed

8-14 SL'PERLINK for MVS Logic Library Volume 2: Control Functional Unit SI-0182

Extended Description

Explanation

1. Register 0 contains F'12' if there is no SDWA.

2. If there is an SDWA, the abend code contained in the SWDA must be saved.

3. If there is no SDWA, the abend code contained in register 1 must be saved,

4. The abend message output contains the system abend code, the user abend
code, and the reason code. It also indicates whether the abend occurred in
the the Association Manager controller subcomponent (S@C9000) or one
of the processors.

6. Retry is not possible in the following conditions:

• The retry-not-allowed flag is set in the SDWA.
• This is a CANCEL.
• This is a step abend.
• This is an STAE error/higher task.

7. If percolation does not occur, another message, is written to the
SUPERLINK LOG indicating that a retry was not possible.

Module

S@C9010

S@C9010

S@C9010

S^-C9010

S@C9010

S@C9010

Label

Cray Research, Inc. 8. SL'PERLINK Association Manager Component 8-15

Diagram 8-3
S@C9020 - State-event Machine and Termination

Entry from S9C9000

Input
V

-Process-

Set interval timer to expire
in 10 minutes.

2. WAIT for an event to occur.-

3. Cancel the interval timer.

A. Process incoming events
using the State/Event
combination to determine
what should be done.

5. Go back to step 2.

-Output-

Interval timer
running

WAIT Event

-> Exit to SaC9020

8-16 SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit SI-0182

Extended Description

Explanation

1. As demand increases, the quantity of ATFACIIed processors increases. The
timer is set to expire after 10 minutes of inactivity to terminate Idle
processors.

2. The program WAITsfor one of the 'event-has-occurred' ECBsto be posted.

3. Since an event has occurred, the inactivity timer is cancelled.

4. As soon as an event occurs, the state/event machine is used to invoke one
of the following actions:

• Graceful termination - Allow no new activity and drain the present
activity. As processors become idle, terminate them. When there are no
more active processors, tenninate the SUPERLINK Association
Manager component.

• Quick termination - Elush all activity from the system. Send
A-ASSOCIATE (negative) for all unprocessed A-ASSOCIATEs.

• Abort termination - Close down without tidying up.

• Processorgone IDLE - If an Idle processor is required to perform some
work then the Idle processor will be POSTed to perform it.

An idle processor could be used to do the following:

• Perform an OEEER that needs to be put out
• Handle association identifiers queued for a processor controlling a

task that is unable to handle them.

• A-OFFER taken up - The A-OFFER needs to be issued again. A
search for an IDL.E processor to do this is performed. If there are no
idle processors available to do this, another processor is AITACI led.

• Timer Expired - The timer has indicated 10 minutes of inactivity.
Search for one idle processor and POS T it to terminate.

• ATTACHED Processor Terminated - The table entries for the
processor are cleaned up. If the processor terminated abnormally,
leaving unprocessed A-ASSOCIATEs, they are handled.

Module

S@C9020

S@C9020

SSC9020

S'aC9020

Label

Cray Research, Inc. 8. SUPERLINK Association Manager Component 8-17

S@C9I00 - Association Manager Processor Subcomponent
Each Association Manager Processor subcomponent (AM_processor) is ATTACMcd and controlled
by the AM_controller. During normal operation, separate processors are active simultaneously as
different tasks.

S@C9100 - Module Structure

The AM_processor consists of the following modules:

Module

S@C9100

S®C9110

S(^X9121

S@C9123

S@C9123B

S@C9124

S@C9I25

S@C9128

S@C91212

S@C914A

S@C914C

S@C914J

S@C914K

S@C914R

S@C914S

S(a)C914T

S@C914X

Description

Root module; main-line routine.

ESTAE exit routine

Action 1: Issue an A-OFFER service request primitive for each defmed
application title.

Action 3, Part 1: Handle incoming association protocol information by trying
to match it to an active responder. If not possible, call Part 2.

Action 3, Part 2: Handle incoming association protocol information by
initiating a responder to process it.

Action 4: Handle interval timer expiration if 'listen" pending

Action 5: Listen has been performed.

Action 8: Duplicate responder entity.

Action 12: Handle interval timer expiration if "delete-any" pending

TEXT and STEXT field parser

Job status/cancel processor

Card images generator

Ke>^vord Table creation

SEND an A-ASSOCIATE (negative response)

Job submission processor

Task attach processor

Create/Delete system access facility (SAF) environment processor

Figure 16on page 8-19 showsthe hierarchical structure of modules within the AM_processor
subcomponent.

8-18 SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit SI-0182

_ ESTAE
sac9ioo sac9iio

Status<-

sac9121 SaC912A

1
Status

sac9123 SaC9123B

sac<

SaC916A

Reject

Reject > SaC914R

S3C9125

Reject

SaC9128 SaC91212

Reject Reject

Status

SaC919J SaC91AS

SaC91<tX

Status > SaC91<«C

Figure 16. Module Structure of the Association Manager Processor Subcomponent

S@C9100 - Services

The AM_processor provides the following services:

• Initially issues an A-OFF12R service request primitive for an Application Title (as requested by the
AM_controller)

• Waits for an incoming A-ASSOCIATE indication

• Processes the connection end point if the Association Manager can locate an appropriate rcspondcr

• Takes the following actions if the Association Manager cannot locate an active responder:

• Initiates a new responder to process the connection end point
• Holds the connection end point until the responder becomes active
• Passes over all queued end points once the responder is active

The AM_proccssor is event-driven and uses a finite-state machine (FSM) strategy to perform all its
functions. The following states are used for the A.M_proccssor FSM:

State

FREE

INIT

IDLE

Cray Research, Inc.

Description

Initial and final state of the FS.M

AM_proccssor initializing; initialization not complete.

Waiting for an order to be given by the AM_controller

8. SUFERLINK Association Manager Component 8-19

State Description

ACTIVE An IDLE processor has been posted but the request has not yet been delivered.

OFFER-PD OFFER pending; waiting for an A-ASSOCIATE indication primitive. The
AM_processor can cancel the pending A-OFFER service request by issuing an
A-RELEASE service request primitive. The A-OFFER service request is also
cancelled if the AM_controUer issues a termination order.

LISTEN-PD LISTEN pending; waiting for a LISTEN indication from the submitted
companion job.

DELETE-PD DELETE pending; waiting for a DELETE TYPE = ANY indication from the
MVS responder.

TERM AM_processor terminating; termination not yet completed.

When an A-ASSOCIA TE indication has been received by an AM_processor, the AM_processor
notifies the A.VI_controller. The AM_controller responds by indicating to another AM_processor task,
through the POST macro, that the AM_processor must issue an A-OFFER service request primitive
for the application title. If necessary, a new AM_processor task is ATTACHed.

For each connection end point, an element is added to the request queue associated with the
application entity responder. When a responder entity is listening, connection end points are handed
over to it.

If a responder is to be initiated in response to an incoming association identifier, the following sequence
of events is followed:

1. A Keyword Table is generated. This table contains all the variables permitted in the companion
job's skelkon JCL, specified by SUPERLINK options. The TEXT, IDEN, and AUTII fields
on the incoming A-ASSOCIATE indication may contain values that override the default values
from the SUPERLINK Options.

2. The Keyword Table is passed to user exit 1 (S@C9UX1 - variable validation user exit).

3. The identification and authentication information is passed to user exit 4 (S@C9UX4 - security
validation).

4. The JCL is resolved by taking the skeleton JCL associated with the application title being
processed and substituting the real values for the variable keywords from the Ke>^"ord Table.

5. The resolved JCL is passed to user exit 2 (S@C9UX2 - pre-JCL submit user exit).

6. The JCL is submitted according to the following sequence:

a. Dynamically allocate the JES internal reader
b. Create environment; call to the SAF using RACINIT via RACROUTE.
c. Open intemal reader
d. Output JCL using VSAM PUT
e. Close the intemal reader
f. Delete environment; call to SAF using RACINIT via RACROLTE.
g. Dynamically deallocate the JES intemal reader

A check is made at regular intervals to determine if the submitted JOB has started execution. This is
done as follows:

8-20 SL'PERLINK for MVS Logic Library Volume 2: Control Functional Unit SI-0182

• Create a Subsystem OPTIONS Block (SSOB) to request the status of the JOB submitted and
chain it off the Subsystem Interface Block (SSIB).

• Make the call to JES, in supervisor mode, using the MVS subsystem interface request macro
(lEFSSREQ).

• Determine JOB status from the return code in the SSOB.

If the companion job is not initiatedwithin an expectedtime period, one of the following events occurs:

• Userexit 3 is called (S@C9UX3 - job scheduling user exit), if it exists. It retums with one of the
following:

• Continue; corrective action taken.
• Please wait.
• Try later.
• Taike action specified in Options.

• The canccl-thc-job option is taken if it was specified via Options; if no option was specified, the
cancel is performed in the same manner as a status request.

• The ask-the-operator option is taken if it was specified via Options. The operator is asked to select
either the continue-to-wait or cancel-job option.

S@C9100 - Interfaces

See "Association Manager Interfaces" on page 8-4 for a complete description of AMjprocessor
interfaces.

S@C9100 - Data Areas

See "S@C9000 - Data Areas" on page 8-9 for a complete description of AM_processor data areas.

S@C9100 - Recovery

In the event that an abend occurs within an A.M_proccssor, AM_processor ESTAE is invoked. This
recovery routine performs the following sequence:

1. Issues a message containing the abend code and reason code.

2. Resets internal flags, indicating the new state of the AM_processor

3. Produces an SVC dump is produced if the option has been selected.

4. Attempts to restart the AM_proccssor, if this is not possible, the abend is percolated.

If percolation occurs, any storage being used for presentation request buffers (PRB) and presentation
request contexts (PRCs) are released. Any jobs pending are also cancelled and all end points held by
the processor are rejected.

If a retr>' is possible, the AM_processor is reentered at the start of the main cycle. Upon retr>', a position
flag is used to determine the appropriate action that is to be taken.

Cray Research, Inc. 8. SLiPERLINK Association Manager Component 8-21

Diagram 8-4
S@C9100 - Root Module and Main-line Code

Entry from MVS
(attached by 3309000)

Input
V

-Process-

PLIST 1. Initialize local work area.

2. Establish ESTAE.

3. Build Events Table for ECBs.

4. Initialize ECBs.

5. WAIT for an event to occur.-

6. Process incoming events
using the State/Event
combination to determine
what should be done.

7. Go back to step 5.

Termination Sequence:

8. Delete storage acquired.

9. Cancel recovery environment.

10. Clean up and return.

•> Exit to MVS.

8-22 SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit

-Output-

Work area

ESTAE environment

Events table

> WAIT Event

ESTAE cancelled

Completion code

Sl-0182

Extended Description

Explanation

2. S@C9100 issues an ESTAE macro instruction to establish an ESTAE
recovery environment. The ESTAE exit routine (S@C9110) traps all abends
scheduled by this module.

3. The EVENTS macro is used to build a table to hold four ECBs.

4. The ECBs in the Events Table are initialized. They are all contained in the
PCT entry associated with the processor.

5. The program WAlTs for one of the ECBs to be POSTed.

6. As soon as an event occurs, the State/Event combination is used to
determine which of the specified actions should be executed. One of the
following actions is performed when an event occurs:

Action 1: Put out an A-OFFER for a specific title, (Module S@C9121
is invoked to perform this action).

Action 2: Cancel the A-OFFER that was put out.

Action 3: Process an incoming A-ASSOCIATE indication, (Modules
S(^C9123 and S(@C9123B are invoked to perform this action).

Action 4: Timer expired when LISTEN pending so determine if
responder is active, (module S(^C9124 is invoked to perform this
action).

Action 5: LISTEN performed by JOB; perform END-POINT GIVES
for all Queued Association Identifiers, (Module S@C9125 is invoked
to perform this action).

Action 6: DELETE-ANY performed by JOB; put processor back into
an IDLE state.

Action 7: Operator replied to a WTOR; analyze his response.

Action 8: Cloning requested; spin off a copy of the requested job and
swap queues, (Module S@C9128 is invoked to perform this action).

Action 9: DELETE-EP performed by JOB; determine whether cloning
is required. If so, set that process in motion.

Action 10: ATTACI Ied task terminated; clean up after the task.

Action 11: Handle a closedown request received while in the
LISTEN-PENDING state.

Action 12: Timer expired when DELETE pending so determine if
responder still active, (module S@C91212 is invoked to perform this
action).

Module Label

S@C9100

S(^C9100

S@C9100

S@C9100

S@C9100

Cray Research, Inc. 8. SUPERLINK Association Manager Component 8-23

Diagram 8-5
S@C9nO - ESTAE Exit Routine

Abend Occurs —
(ESTAE exit invoked)

Input

PLIST

V
-Process- -Output-

abend message

SVC Dump

1. If no SDHA^ go to step 3.

2. Perform initial processing
as if SDHA is present;
then go to step 4.

3. Perform initial processing
as if SDNA is not present.

A. Output an abend message
to SUPERLINK LOG.

5. Perform any required clean up.

6. If requested^ produce an
SVC dump.

7. If retry is possible^
attempt it; go to retry
entry point SaC9101.

8. If retry is not possible,
percolate.

0/P Retry Not Possible
message

-> Exit to retry point at SaC9101
or

Percolate, letting abend proceed

8-24 SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit SI-0182

Extended Description

Explanation

1. Re^ster 0 contains 12 if there is no SDWA.

2. If there is an SDVVA, the abend code contained in it must be saved.

3. If there is no SDWA, the abend code contained in register I must be saved.

4. The abend message output contains the system abend code, the user abend
code, and the reason code. It also indicates if the abend occurred in the
Association Manager controller subcomponent (S@C900) or in one of the
processors.

5. The required clean up actions are as follows:

• Clear out Job-not-knovvn-yet lock.

• Any ENQs on the Responder Directory Header or the responder
Directory entry are DEQed.

7. Retry is not possible under the following conditions:

• The Retry-not-allowed flag is set in the SDWA.
• This is a CANCEL.
• This is a step abend.
• This is an STAE error/higher task.

8. If percolation does not occur the following will occur:

• An appropiate "PERCOLATION HAS OCCURED" message will be
output

• The PRB/PRC cell will be released if obtained for an A-OFFER

• A responder is cancelled using module S@C9I4C if it is pending

• Any outstanding connection end points will be rejected using module
S@C9I4R

Module Label

S@C9II0

S@C9110

S@C9II0

S@C9II0

S@C9II0

S@C9II0

S@C9II0

Cray Research, Inc. 8. SUPERLINK Association Manager Component 8-25

Diagram 8-6
S@C9121 - Action 1, Put Out an A-OFFER

Entry from S9C9100 1

•Input"

PRB/PBC Buffer

V
-Process-

1. Clear out Processors work
area in private storage.

2. Cancel any timers running.

3. Get and format PRB/PRC
buffer.

4. Set up 'OFFER-PENDING* state.

5. PUT out the A-QFFER for the -
application title.

6. Validate response to A—OFFER.

-Output-

New Processor state

> A-OFFER

•> Return to SaC9100 (If failure occured)

-> Exit to S3C9123 (If A—ASSOCIATE indication received)

8-26 SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit 81-0182

Extended Description

Explanation

1. Only the top end of the processor's working storage is cleared out. This
includes the private REDE section and the CASE ARE section.

3. The PRB/PRC buffer is obtained from a cell pool and consists of a section
of ECSA storage. It will be split up as follows:

One PRB
Three PRBEs

Two 4K Inbound buffers
One PRC
The required number of PRCEs (minimum two, maximum three)

Once the CASE call is made to perform the OFFER, it wiU return only
under the following conditions:

• An A-ASSOCIA TE is received.
• A P-ABORT is received.
• An error occurs.

• The Association Manager controller subcomponent posts the Cancel
ECB.

Once a response is received to the A-OFFER the following validation is
carried out:

• If the cancel ECB was posted, return to S(^C9100 to wait for another
event, (Possibly a cancel).

• If an A-ASSOCIATE indication was received, exit to module S(^C9123
to process it.

• If this module is in a termination phase, return to S@C9100 to wait for
the closedown request.

• If the A-OFFER failed because the maximum number of CASE
responders limit has been reached, then set a timer to expire after an
interval. Then exit to S(@C9100 to wait for the timer to expire. When
the timer expires, an attempt is made to re-issue the A-OFFER.

• If an error occurred, output an error message. If this is the 5th
occurrence of the error, mark the Application Title being handled as
'FAILED' and go idle. Otherwise, if its not the 5th occurrence, issue
the A-OFFER again.

Module

S@C9121

S@C9i21

S®C9121

S@C9121

Label

Cray Research, Inc. 8. SL'PERLINK Association Manager Component 8-27

Diagram 8-7
S@C9123 - Action 3 (Part I), Give End-point To Active Responder

Entry from S3C9100

Input

A—ASSOC indication
in ARE area

V
-Process-

Tell AM controller that an
A—ASSOCIATE indication has
been received.

Extract information required
from A—ASSOCIATE indication.

Create Keyword Table and
Invoke AM User Exit 1.

Search for active responder
to take connection end point.

If responder is not found/
exit to SaC9123B to initiate
a new responder

If responder is found/ perforn
an END-POINT GIVE

Put the Association Id into
the responder queue.

Put Processor into an IDLE
state.

Return to S3C9100 to wait for
the next event to occur.

-Output-

Keyword Table

END-POINT
GIVE

AID added to REDE
queue

Processor now in
IDLE state

-> Exit to S9C9100 (To wait for next Event to occur)
or

-> Exit to SaC9123B (To initiate a new Responder)

8-28 SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit SI-0182

Extended Description

Explanation

1. The AM controller's ECB is POSTed. This causes the AM controller to get
another processor to put out an A-OFFER for the particular application
title being handled.

2. The following is extracted from the incoming A-ASSOCIATE indication:

• Identification Fields 1 to 3

• Authentication Fields 1 to 3, (2 and 3 are not used by the Association
Manager itself, only passed to the Security Exit AM user exit 4)

• The contents of the Text Field

• The PSAP id

• The originators .Mainframe Id

3. The Keyword table of variable values is created using module S@C914K.
Module S@C9l4K invokes User Exit 1 (Variable validation) via the
S@C9EXIT macro.

4. The Responder Directory (REDE) is searched for a similar application title.
If one is found, the caller's user ID, password, group ID, and account are
compared with those of the responder initiator; if they match, the responder
is permitted to process the Association Identifier (AID).

For the duration of the search, seralization is ensured by ENQing upon the
Responder Directory Headers address.

5. Steps 6 and 7 are serialized using an ENQ. The address of the responders
entry in the directory will be the minor name for the ENQ.

6. If the responder is in a LISTEN state, then the end point is given to the
responders address space. Otherwise, the end point is given to the
SUPERLINK address space. (SUPERLINK/MVS keeps the end point
until it is told that the responder issued a LISTEN or the responder
terminates)

7. The Association Identifier is inserted into the responders queue using the
S''@C@QADD macro.

Module Label

S@C9123

S@C9123

S@C9123

S®X9123

S@C9123

S@C9123

S®C9123

Cray Research, Inc. 8. SUFERLIN'K Association Manager Component 8-29

Diagram 8-8
S@C9123B - Action 3 (Part II), Start a New Responder

Entry from S9C9123

-Input-

AID in ARE area in
private storage

Skeleton JCL

Formatted JCL
Cards

-Process-

1. Create a new responder
directory entry.

2. Set the processor's state to
LISTEN-PENDING

3. The Association Identifier is
added to the queue in the new
responder directory entry.

A. AM User Exit A (Security
Validation) is invoked.

5. The JCL that will be used to
initiate the new responder is
created by module SaC91AJ.

6. The JCL is submitted to the
JES internal reader by module
S3C91AS.

7. The interval timer is primed
to start running.

8. Return to caller with return
code.

-Output-

> REDE entry

New Processor
state

Additional AID
on REDE queue

JCL Cards

New Responder
Job

Interval timer
running

Register 15

•> Exit to SaC9100

8-30 SL'PERLINK for MVS Logic Library Volume 2: Control Functional Lnit SI-0182

Extended Description

Explanation

1. The new REDE is obtained from a Cell pool. The pointer to it is inserted
into the Responder Directoryheader. A Queue anchor is also obtained from
another cell pool and the pointer to it is inserted into the new REDE entry.
Both the new REDE and its queue anchor are located in ECSA.

Serialization is ensured by ENQing upon the Responder Directory Headers
address.

If an error occurs in any of the following steps right up to step 8 the
A-ASSOCIATE indication being handled will be rejected, the new REDE
and its queue anchor will be released, the processors state will be set to
IDLE, and control will be returned to S@C9100 to wait for the next event.
Appropriate error messages will also be issued during this process.

3. The Association Identifier is inserted into the responder's queue using the
S@C@QADD macro.

4. The user exit is invoked via the S@C9EXIT macro.

7. The interval for the timer is obtained from the SUPERLINK Options deck.

Module Label

Sf®C9123B

S@C9123B

S@C9123B

S@C9123B

Cray Research, Inc. 8. SUPERLINK Association Manager Component 8-31

Diagram 8-9
S@C9124 - Action 4, Timer Expired When LISTEN Was Pending

Entry from SaC9100 1

-Input-

REDE entry

V

-Process-

1. Check status of companion job:

— If Active/ go to step 10.
— If Waiting, go to step 2.
— If on 0/p Q, go to step 8.
— If unknown, go to step 9.

2. If total wait time is not
expired, continue at step 7.

3. Call user exit 3 to ask what
to do. Determine action based
on following answers:

— If no user exit, go to
step A.

— If CONTINUE, go to step 7.
— If WAIT, go to step 7.
— If CANCEL, go to step 5.
— If STANDARD, go to step 4.

4. Take default action specified
through options:

— If CANCEL, go to step 5.
— If operator, go to step 6.

5. Cancel job; go to step 10.

6. Ask operator what to do,
output message, and go to
step 10.

7. Reset interval timer and go to
step 10.

8. Log a message; job terminated.

9. Clean up after failure.

10. Return to caller.

-Output-

Responder Cancelled

Operator message

-> Exit to SaC9100

8-32 SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit SI-0182

Extended Description

Explanation

1. The status of the responder entity is determmed by calling module
S@C914C with re^ster 1 set up to request job status.

3.

4.

9.

User exit 3 may ask the processor to perform one of the following actions
when a job has failed:

Continue; corrective action has been taken.
WAIT for the job to start.
CANCEL the job and send a message (TRY LATER).
Perform the standard default action specified in the options.

The default actions for job failures which may be specified through
SUPERLINK/MVS options are as follows:

CANCEL the job.
Ask the operator what to do.

The responder entity is cancelled by calling module S@C914C with register
1 set up to request a CANCEL.

The messages macro is used to send a message to the operator, specifying
TYPE = WTOR+LOG.

Clean up consists of sending a negative response for the A-ASSOCIATE
received and setting the processor's status to IDLE.

Module

S@C914C

S@C9124

Sr?eC9124

S(gC9124

S@C9124

S(^C9124

Label

Cray Research, Inc. 8. SUPERLINK Association Manager Component 8-33

Diagram S-10
S@C9125 - Action 5, Perform Required END-POINT GIVES Routine
Entry from S9C9100

•Input-

PLIST

V
-Process-

LISTEN has occurred; Cancel
and reset the interval timer.

Set processor state to
DELETE-PENDING.

POST interface code and wait -
for .a LISTEN confirmation.

Set responder into dual state
LISTEN and LISTEN-PENDING.

ENQ upon the REDE.

Perform an END-POINT GIVE for
all connection end points
queued up for the responder.

DEQ upon the REDE.

Revert responder from dual
state to LISTEN.

9. POST the user's EGB if its
'Notify me' flag is set.

10. Return to caller.

-Output-

Processor state
DELETE-PENDING

X—memory Post

Responder in Dual
state

End points
given

Responder State
LISTEN

X—memory Post

•Output-

•> Exit to SaC9100

8-34 SL'PERLINK for MVS Logic Library Volume 2: Control Functional Unit S1-0I82

Extended Description

Explanation

1. The Respondcr is now active and S@C9125 is no longer checking to see if
it is active at intervals. S@C9125 still requires the timer to expire after
intervals. To determine if it is still active, it might terminate without doing
a DELETE-ANY

2. If the STATE is already DELETE-PENDING, this is the second time
through. Therefore, return to the main cycle without doing anything.

3. The Listen notification from the interface code is serialized hence S@C9125
needs to cross-memory post it to confirm that the listen notification has been
received.

4. The respondcr is set into a dual state; LISTEN means that any further
connections added to the rcsponders queue will have an END^POINT
GIVE performed and the LISTEN-PENDING means that the rcspondcr
itself will be inhibited from taking queued items for processing until
S@C9125 changes the state in step 8

5. To ensure serialization occurs, an ENQ is performed. The responders REDE
entry address will be the minor name. (If a DELETE-ANY occurs the
interface code will hold the responder until a DEQ is performed).

6. Both the request queue and work queue are processed. Prior to each
END-POINT GIVE, a flag is checked to see if a DELETE-ANY was
initiated and if so,, any outstanding end points are rejected via module
S@C914R and control is retumed to S(^C9100.

If any of the END-POINT GIVEs fail, then the individual connection end
point will be rejected.

9. The "Notify .Me" flag is set if the responder performs a successful NOTIFY
call. The NOTIFY supplies the address of an ECB that is to be posted when
there is something to pass to it. Since the END-POINT GIVEs have been
performed, the queued items are now ready to be passed.

Module

S@C9125

S@C9125

S@C9125

S@C9125

S@C9125

S@C9125

S@C9125

Label

Cray Research, Inc. 8. SUPERLINK Association Manager Component 8-35

Diagram 8-11
S@C9128 - Action 8, Clone Responder Entity Routine

Entry from S9C9100

-Input-

Old Responders
Private REDE area

Old REDE Queue

Skeleton JCL

JCL cards

1.

2.

3.

4.

5.

6.

7.

8.

9.

10

11

V
-Process-

Access text that was used to
create job to be cloned.

Recreate Keyword Table for
job to be cloned.

Acquire a new entry in REDE.

Swap queue of job to be cloned
with empty queue of new REDE.

Take all the connection
end points back.

Cross—memory confirmation.

Invoke AM User Exit 4
(Security Validation).

Create the JCL to initiate a
new copy of the responder.

Submit the JCL to the JES
internal reader.

Star the interval timer.

Return to caller.

Output

New responders
Private REDE area

Keyword Table

New REDE entry

New REDE queue

END-POINT
TAKES

X—memory POST

JCL cards

New Responder Job

Active Interval
Timer

•> Exit to S3C9100

8-36 SUFERLINK for MVS Logic Library Volume 2: Control Functional Unit SI-0I82

Extended Description

Explanation

1. The text is held in private storage; the resp>onder's entry in the REDE points
to this storage area. It is extracted and copied.

2. Module S@C914K is used to recreate the Keyword Table.

5. All the connection end points on the queue just exchanged the need to be
taken with an END-POINT TAKE from the responder that had them. They
will be given to the new responder when it perform a LISTEN

6. The DELETE-EP that invoked the cloning process is a confirmed service.
S@C9128 needs to cross-memory post the interface code to inform it that
the queue items have now been successfully extractedand willbe processed.

7. User exit 4 is invoked using macro S@C9EXIT.

8. Module S@C914J is used to create the JCL for the initiation of the new
copy of the responder

9. Module S@C914S is used to submit the JCL cards to the JES internal
reader of the responder

10. Now that the job has been started, S@C9128 will need to check at intervals
to determine if the job is active yet or if it has failed. The timer is set to run
for the first interval period.

Module Label

S@C9128

S@C9128

S@C9128

S@C9128

S@C9128

S@C9128

S@C9128

S@C9128

Cray Research, Inc. 8. SUPERLINK Association Manager Component 8-37

Diagram 8-12
S@C91212 - Action 12, Timer Expired When DELETE Was Pending
Entry from 33C9100 —

-Input-

REDE entry

1

>2

3

4

5

6

V
-Process-

Cancel the Interval timer.

Determine if the responder is
active.

If the job is active/ reset
internal timer; go to step 6.

If the job is not active/
output an error message.

Fake a DELETE-ANY.

Return to caller with return
code.

-Output-

Timer now
running

Error message

POST

Register 15

-> Exit to SaC9100

8-38 SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit 81-0182

Extended Description

Explanation

1. To ensure that the interval timer is no longer running, it is cancelled because
it is possible for a timer expiration to be faked to force the invoking of this
module.

2. Module S@C914C is used to determine if the responder is still active

3. If the responder is still active, than everything is OK,. All that needs to be
done is to reset the timer so that a check can be made again later.

4. The responder is no longer there and an appropriate error message is
generated.

5. I'hc entry for the responder in the Rcsponder directory and any outstanding
end points need to be tidied up because a respondcr has terminated without
performing a DELE'1'E-ANY. To do this, a DELETE-ANY is faked using
the POST macro.

Module Label

S@C91212

S@C91212

S@C91212

S@C91212

S®C91212

Cray Research, Inc. 8. SUPERLINK Association iManager Component 8-39

Diagram 8-13
S@C914A - JOBTEXT Field Parser

Entry from S3C914K

-Input-

Text String

Keyword Table

-Process-

1. Search for keyword in TEXT
string; if not founds then
return to caller with return
code.

2. Obtain the entry in the
Keyword Table for the keyword
that was located.

3. Obtain location of keyword
value in TEXT string and its
length.

4. If value in quotes, then strip
out the quotes.

5. Insert into the keyword table
the address of the keyword's
value and its length.

6. Go back to step 1.

-Output-

Register 15

Updated Keyword
table entry

-> Exit to S3C914K

8-40 SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit Sl-0182

Extended Description

Explanation

1. S@C914A scans for the next keyword in the text string supplied by the
caller. When the end of the string is reached, the caUer is returned with an
appropriate return code.

If a syntax error is encountered, then the scan is aborted and a non-zero
return code is given to the caller.

2. The entry that is to be updated in the keywordtable is located. If not found,
(keyword not recognized), the module exits to the callerwith an appropriate
non-zero return code.

3. If the value is enclosed within parenthesis, then everything within the
parenthesis, (including the parenthesis), is considered to be the value.

4. Everything between the quotes, (except the quotes themselves), is considered
to be the value. Double quotes within the quotes are treated as a single
quote.

5. Everytime a keyword table entry is updated, a flag is set to indicate it has
been processed. If a flag is found to be already set, then duplication has
occurred. Another flag is set to indicate that this has happened. Upon retum
to the caller, a non-zero retum code will be set to indicate duplication has
occurred if the duplication flag is set.

Module Label

S@C914A

S(^C914A

S@C914A

S@C914A

S@C914A

Cray Research, Inc. 8. SUPERLINK Association Manager Component 8-41

Diagram 8-14
S@C914C - Job Status/Cancel Processor

Entry from Association Manager
(3309123, S3C9129 or S3C91212)

-Input-

PLIST

V
•Process-

j—> 1. Analyze parameter list.
2. Build SSOB.

3. Issue request to JES.

A. Indicate results to caller.

5. Return to caller with return
code.

•Output-

Register 15

-> Exit to caller

8-42 SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit SI-0I82

Extended Description

Explanation

1. The parameter list (PLIST) is for either a STATUS or a CANCEL request.
It contains such associated information as JOBNAME and JOBID.

2. The Subsystem Interface block (SSOB) is built, then attached to the SSIB.

3. A subsystem request is issued using the lEFSSREQ macro.

4. The results from the subsystem request are returned to the caller as
completion code (register 15) and feedback code (register 0).

Module Label

S@C914C

S@C914C

S@C914C

S@C914C

Cray Research, Inc. 8. SUPERLINK Association Manager Component 8-43

Diagram 8-15
S@C914J - Card Image Generator

Entry from Association Manager
(SaC9123 or SaC9128)

•Input-

JCL Cards

V
-Process-

1. Generate values for the 'N*
keyword, and if required, the
default JOBNAME value.

2. Initialization for JCL
cracking

START OF MAIN LOOP

>3. Obtain a skeleton JCL card

START OF INNER LOOP

A. Scan for variable; if end of
card is reached, go to 8.

5. Locate associated entry in
keyword table for variable.

6.

7.

8.

9.

10

Replace variable with the
value from the keyword table

Go back to step A.

END OF INNER LOOP

Put processed card into
output area.

If there are more cards to
process, go back to step 3.

END OF MAIN LOOP

FREEMAIN any working storage
acquired, then return to
caller with a return code. —

"Output-

Value for N
Keyword

JCL

1
1

-> Register 15

-> Exit to caller (SaC9123 or SaC9128)

8-44 SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit SI-0182

Extended Description

Explanation

1. The 'N' keyword variable value is generated as a unique 4 digit number.

If no JOBNAME value was specified, then the default value generated
consists of the User Id plus a unique character. Ifa JOBNAME default was
provided via the SUPERLINK options deck, then the default generated is
this value padded out to eight bytes using the value of the 'N' keyword to
pad it.

2. Pointers are established to the keyword table and the Skeleton JCL. An
output area for the processed cards in private storage below the line is also
GETMAINed.

3. The card to be processed is moved into a work area.

4. The card is scanned for the variable delimiter which was specified in the
SUPERLINK options deck.

Once all of the card has been processed, then the inner loop is finished.

5. If the variable in the skeleton is not a recognized keyword, then the card will
be output with an appropriate error message.

6. If a length was specified with the variable in the skeleton JCL, then only the
length of the value requested will be inserted into the card. If the length
requested is greater than the length of the value, then it will default to the
actual length of the value.

10. If any errors occurred, then the output area is FREEMAINed and
processing retums to the caller with an appropriate error message.
Otherwise, if no errors occurred, the processing retums to the caller with a
zero retum code.

Module Label

S@C914J

S@C914J

S@C914J

S@C914J

S@C914J

S@C914J

S®X914J

Cray Research, Inc. 8. SUPERLINK Association Manager Component 8-45

Diagram 8-16
S@C914K - Create Keyword Table

Entry from Association Manager
(SaC9123 or SaC9128)

-Input-

Mask > 1

2

3

A

5

V
-Process-

Set up keyword mask.

Insert default values for
parameters specified through
SUPERLINK/MVS OPTIONS.

Generate the value for the
•PARM* keyword.

Insert values from text field
into the Keyword Table.

Insert the IDENT and AUTH
values from the A—ASSOCIATE
into the keyword table.

Invoke AM User Exit 1
(Variable validation).

Validate the length of values.

Return to caller.

-Output-

Value for PARM
Keyword

Keyword Table and
Return code

-> Exit to S3C9123 or SaC9128

8-46 SUPERLINK for iVIVS Logic Library Volume 2: Control Functional Unit Sl-0182

Extended Description

Explanation

1. The keyword mask contains the keywords and null values for the keyword
parameters.

3. The value generatedfor the "PARM" keyword consistsof the SSVTaddress
(8 digits giving a hex repesentation), the index number for the responder (8
digits giving a translation of the binary index number), and "R", which tells
it to run in responder mode.

4. The parse-a-text-string processor (S@C914A) inserts the text values into the
table.

5. The Identification and Authentication information is" saved initially in
private storage by module S@C9123 when an incoming A-ASSOCIATE
indication is being processed. Pointers to those values are then inserted into
the keyword table.

6. The user exit is invoked via macro S@C9EXIT.

7. The length of each value in the keyword table is checked to ensure that it
does not exceed the maximum permitted for its associated keyword.

Module Label

S®C914K

S@C914K

S@C914K

S@C914K

S@C914K

S@C914K

Cray Research, Inc. 8. SUPERLINK Association Manager Component 8-47

Diagram 8-17
S@C914R - Send A-ASSOCIATE (Negative Responses)

Entry from Association Manager
(SaC9100, SaC9123, SaC9123B,

SaC912A, SaC9125 or SaC9128)

•Input"

T ranslate
Table

-Process-

>1. Set up and Translate to ASCII
any EBCDIC text message that
is to be sent with each
A—ASSOCIATE negative response.

2. If a REDE pointer indicates
that there is a queue to the
process/ go to step 6.

3. If there is no A-ASSOCIATE
indication in the ARE area/ go
to step 8.

A. Reject the connection
end point held.

5. Go to step 8.

6. Set the responders status to
FAILURE.

7. Reject all the connection
end points held on the
request queue and work queue.

8. Return to caller.

•> Exit to caller.

8-48 SLPERLINK for MVS Logic Library Volume 2; Control Functional Unit

-Qutput-

A-ASSGCIATE
Neg Response

A-ASSGCIATE
Neg Responses

SI-0182

Extended Description

Explanation

2. Initially, S@C914R will search for a respondcr director)' entry associated
with the processor. If it finds one, S@C914R will reject all the connection
end points on its queue. If it does not findone, it willsearch for a connection
end point in the ARE area in private storage; if found, it will be rejected.

4. S@C914R sends an A-ASSOCIATE response negative. An appropriate
message is output to indicate which connection end point has been rejected.
Finally, the PRB/PRC buffer is released back to its cell pool.

7. Each individual end point on the queues are rejected and then cleaned up in
the same manner as the individual end point in step 4.

The end points are removed from the queues using the S@C@QREM
macro. This has the effect of releasing the queue element as they are released
back to the queue clement cell pool.

Module Label

S@C914R

S@C914R

S@C914R

Cray Research, Inc. 8. SUPERLINK Association Manager Component 8-49

Diagram 8-18
S@C914S - Job Submission Processor

Entry from Association Manager
CSaC9123B or S3C9128)

-Input-

JCL Cards

1

1

V
-Process-

1. Build ACB and RPL.

2. Issue a CREATE call to SAP.

3. Dynamically allocate of JES
internal reader.

4. OPEN internal reader.

5. Invoke AM User Exit Z,
(JCL Validation).

6. Loop PUTing JCL into JES
>interval reader.

8

9

10

11

Find MVS job number from
RPL after ENDREQ macro.

CLOSE internal .reader.

Dynamically de—allocate JES
Internal Reader.

Issue DELETE call to SAP.

Log job submitted if required

12. Return to caller with return
code.

-Output-

New Responder
Job

Register 15

•> Exit to caller

8-50 SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit SI-0182

Extended Description

Explanation

2. The SAF Create is performed via module S@C914X

The parameters passed to SAF are those for RACINIT; TYPE = CREATE,
USER, GROUP, and PASSWORD.

If the 'bypass password checking' flag is set, then PASSCIIK^ NO. will be
used.

6. The cards inserted have been previously set up in an output area by a call
to module S@C914J.

7. An FNDREQ macro is issued to terminate the insertion of the JCL into the
JES internal reader. This puts the job number of the job into the RPL. The
job number will be extracted from the RPL and saved.

Module Label

S@C914S

S@C914S

S@C914S

10. The SAF Delete is performed via module S@C914X. S@C914S

11. If Association Manager tracing is on, then the JCL submitted will be logged S@C914S
in the SUPERLINK LOG. Any occurrences of PASSWORD = on any
card will be suppressed.

Cray Research, Inc. 8. SUPERLINK Association Manager Component 8-51

Diagram 8-19
S@C914T - Task ATTACH Processor

Entry from Association Manager
(SaC9123B or 5309128) 1

-Input-
V

-Process-

1. Issue CREATE call to SAP.

2. ATTACH responder as a Task —
within the SUPERLINK address
space.

3. Issue DELETE call to SAP.

Log the message 'Task
Attached.'

5. Return to caller with return
code.

-Output-

New Responder
Task

Msg in Log

Register 15

-> Exit to caller

8-52 SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit SI-0182

Extended Description

Explanation

1. The SAP Create call is made using module S@C914X.

2. The ATTACH is done with an ECB so that the SUPERLINK Association
Manager component can pick it up in the event of an abnormal termination.

3. The SAP Delete call is made using module S@C914X.

Module

S@C914T

S@C914T

S@C914T

Label

Cray Research, Inc. 8. SUPERLINK Association Manager Component 8-53

Diagram 8-20
S@C914X - Create/Delete System Authorization Facility (SAF)

Environment Processor
Entry from Association Manager

(SaC91AS or SaC91AT)

-Input-

Request type
indicator in R1

-Process-

1. GETMAIN some storage for
RACROUTE parameters.

2. If this is a DELETE requests
go to step 5.

3. Set up RACROUTE parameters.

A. Call RACROUTE, giving it
RACINIT parameters for a
CREATE request; go to step 6

5. Call RACROUTE, giving it
RACINIT parameters for a
DELETE request.

6. FREEMAIN area used for
RACROUTE parameters.

7. Return to caller with return
code.

-Output-

Norking Storage
for RACROUTE

parameters

Register 15

•> Exit to caller

8-54 SUPERLINK for MVS Logic Library Volume 2: Control Functional L'nit SI-0182

Extended Description

Explanation

1. The RACROUTE parameters must be below the line. Since normal
working storage is above the line, another GETMAIN is required.

3. The parameters passed to RACROUTE for the SAP create request are
handled as follows;

• User ID - this is mandatory', it must be resolved.

• Group ID - this is optional, if not resolved a null value will be used.
In this instance the default Group Id for the user will take effect.

• Password - this is mandatory if the "bypass password checking" flag is
not set. If the flag is set, then it will be ignored.

Module

S@C914X

S@C914X

Label

Cray Research, Inc. 8. SUPERLINK Association Manager Component 8-55

S@C9200 - Association Manager Interface
The Association Manager interface subcomponent (AM_interface) enables application entity
responders that have been initiated by the Association Manager to interface with the Association
Manager through the S@@MREQ macro. This subcomponent is loaded by SUPERLINK/MVS and
may be used to perform interface requests.

The AM_interface communicates asynchronously with AM_processor tasks running in SLCN. The
AM_interface routines are event-driven and use an FSM strategy to perform the preceding functions
for the interface caller. The following states are used:

State

IDLE

LISTEN-PENDING

LISTEN

STOP-NEW-DATA

TERM-ABORT

TERM-GRACE

TERM-QUICK

Description

Waiting for a LISTEN request from a responder

A LISTEN request was received from a companion job. The
Association Manager issues A-ENDPOIN T-GIVE service request
primitives to pass the queued connections to the responder.

A LISTEN request was received from a companion job and all
coimection end points have been given to the responder. The
companion job should now be processing queued events in FIFO
order.

A DELE TE TYPE = EP request was received from the companion
job. The companion job may now receive only termination
notifications from the Association Manager component.

The Association Manager component has informed the companion
job that an "abort" is in progress.

The Association Manager component has informed the companion
job that "graceful termination" is in progress; all system activity is
being halted.

The Association Manager component has informed the companion
job that a "quick termination" is in progress.

S@C9200 - Module Structure

The AM_interface consists of only one module, S@C9200.

S@C9200 - Services

The AM intcrface allows application entity rcspondcrs to perform the following services via the
S@@ MREQ macro:

• LISTEN - The responder informs AM it is active and ready.

• NOTIFY -1 he responder requires notification of an event via the POST mechanism.

• PROCESS - The responder requests delivery of inbound data

• DELETE-EP - The responder is not receptive to subsequent events, with the exception of
termination requests.

8-S6 SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit SI-0182

• DBLETE-ANY - The responder is not able to accept subsequent events.

Valid inbound or outbound events are as follows:

• Connection end point given
• Termination order:

• Graceful
• Quick
• Abort
See "Association Manager Services Offered to Application Entity Responders on MVS" on page
8-4 for definition of these termination orders.

S@C9200 - Interfaces

The main external interface to the A.\'I_intcrface is the S@@MREQ macro. "Appendix B. SLCN
Macros" on page B-1 describes the syntax of the S@@MREQ macro.

See the general discussion of interfaces under "Association Manager Interfaces" on page 8-4 for
additional information.

S@C9200 - Data Areas

The Association Manager data areas are discussed under "S@C9000 - Data Areas" on page 8-9.

Cray Research, Inc. 8. SL'PERLINK Association Manager Component 8-57

Diagram 8-21
S@C9200 - Association Manager Interface Code

Entry via SaaMREQ macro

Input

1
V

-Process-

Parameter List >1. Initialization.

2. Validation.

3. Determine state of caller.

4. Use State/Event combination to
perform a specific action.

5. If trace flag is set*
output a diagnostic
message.

6. Return to caller.-

-Output-

Diagnostic
message

Return code
(data in work
is a PROCESS)

•> Exit to SSaMREQ caller

8-38 SL'PERLINK for MVS Logic Library Volume 2: Control Functional Unit 81-0182

Extended Description

Explanation

1. A work area is acquired, and the trace flag is saved for use upon termination.

2. For the call to the interface code to proceed, the following must be true:

• The SSVT address must be valid.
• The SUPERLINK Association Manager component must be active.
• The S@@MREQ macro's parameters must be valid, as follows:

• The ID parameter must be specified for all types (except the initial
LISTEN request), and it must contain the identifier returned to the
caller in re^ster 1 after the initial LISTEN request.

• If the NOTIFY function was requested, the caller must use the
ECB parameter to specify the address of an ECB.

• If the PROCESS function was requested, tho caller must use the
WKAREA parameter to specify the address of a work area.

3. The STATE of the caller is determined by examining the responders status
flags in its entry in the Responder Directory.

4. Upon entry to the state/event machine one of the following action routines
will be performed:

Action-R Invalid state/event combination. Set up a response code indicating
"request rejected" with a qualifier indicating the state.

Action-1 Search for the entry in the REDE; if it is not found, create a new
entry. Then set the state to "LISTEN".

Aclion-2 Set the state from "STOP-NEW-DATA" back to "LISTEN".

Action-3 Post the user's ECB when there is an event for it to process.

Action-4 Insert details of an event (if there is one) into the user's work area.

Action-5 Set the state to STOP-NEW-DATA, inhibiting all events except
termination requests. If there was anything on the queue, pass it
back to the Association Manager controller subcomponent for
handling.

Action-6 Set the state to IDLE and inform the Association Manager
processor subcomponent that a "DELETE ANY" has been
successfully performed.

5. If the Trace flag was specified in options, a diagnostic message is written to
the SUPERLINK LOG.

6. The user is given a retum code in register 15, with a qualifier in register 0.

Module Label

S@C9200

S(^C9200

S@C9200

S@C9200

S®C9200

S®C9200

Cray Research, Inc. 8. SUPERLINK Association .Manager Component 8-59

S@C9300 - Association Manager Interval Timer
The Association Manager interval timer (AM_timer) provides an interface between the Association
Manager and the standard MVS timer facilities. Upon completion of a specified time interval, a
specified ECB will be POSTed. Each Association Manager task may have one active timer.That timer
can be SET and left to expire (POST an ECB), or can be cancelled before it expires. It uses the
STIMER macro intemally.

The timer service can be used only by the Association Managercomponent. It is loaded at initialization
by the AM_controller and is invoked from the the S@C@T1MR macro.

S@C9300 - Module Structure

The AM_interval timer facility consists of the following modules:

Module

S@C9300

S@C9310

Description

Root, module; mainline routine.

Timer expired routine

Figure 17 shows the hierarchical structure for modules within the AM_timcr subcomponent.

Figure 17. .ModuleStructure of the Association .Manager Interval Timer Subcomponent

S@C9300 - Services

The AM_timer performs the following functions:

• Initiates a timing sequence, specifying a real-time interval in seconds (for the calling task only)
• Cancels any timing sequences that are running (for the calling task only)
• Notifies the requester when the real-time interval has expired

S@C9300 - Interfaces

AM_timer scr\ iccs arc provided tlu-ough specification of the S^C@TIMR e.\ccution-timc macro
instruction. "Appendix B. SLCN Macros" on page B-1 describes the syntax of the S@C@T1.\IR
macro.

8-60 SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit 81-0182

This page has been intentionally left blank,

Cray Research, Inc. 8. SUPERLINK Association Manager Component 8-61

Diagram 8-22
S@C9300 - Root Module (Set and Cancel Timer)

Entry from SaCdTIMR macro

Input

1
V

-Process-

PLIST from
sacariMR

-> 1. Initialize.

2. If function = SET* establish
an interval using STIMERM and
specifying S3C9310 as the
exit.

3. If function = CANCEL* use
STIMERN to cancel all timer
intervals for the calling
task.

A. Return to caller.

-Output-

Interval Timer
running

-> Exit to caller

8-62 SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit SI-0182

Extended Description

Explanation

1. No storage is acquired. The caller must provide a work area through register
13. Register 13 should point to the caller's register save area (72 bytes),
which is followed by a 20-word work area for use by the interval timer.

(The register save area is not used).

2. The STIMERM macro is used to establish the S@C9310 routine. It
becomes active when the interval specified has expired and POSTs the user's
ECB.

3. The STI.MERM macro is used to perform a universal CANCEL for all
interval times established by the calling task.

4. The caUcr is given a return code to indicate success or failure.

Module Label

S@C9300

S@C9300

S@C9300

S5&C9300

Cray Research, Inc. 8. SL'PERLINK Association Manager Component 8-63

Diagram 8-23
S@C9310 - Timer Expired Routine

Entry via STIMERM exit
(Time interval expired)

-Input-

Register I
"i>

V
-Process-

1. Initialize.

2. Post user's ECB

3. Exit.

-Output-

> Posted ECB

-> Exit to control program

8-64 SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit SI-0182

Extended Description

Explanation

2. The user's ECB is supplied to the routine through the 8-byte area pointed
to by register 1. The ECB is POSTed with a return code of "20".

3. The address in register 14 is the return address to the control program.

Module

S@C9310

S@C9310

Label

Cray Re.scarch, Inc. 8. SUFCRLINK Association Manager Component 8-6S

S@C9UXAM - Association Manager User Exit Handler
The Association Manager User Exit handler (AM_exit) provides an interface between the Association
Manager and any user supplied exit routines. The objective is to isolate the user exit from Association
Manager processing. The Exit dandier intercepts abends within the user exit and returns control to the
Association Manager with an appropriate return code indicating the nature of the abend.

The User Exit Handler also isolates user exits from the Association Manager's storage by passing the
exit parameters in private storage, (the private storage is obtained by the Exit Handler through the
GETMAIN macro). This prevents a user exit corruption of Association Manager control blocks.

The Exit Handler may only be used by the Association Manager component. It is loaded at
initialization by the AM_controller and is invoked by the S@C9EXIT macro.

S(gC9UXAJVI - Module Structure

The User Exit Handler consists of one module, S@C9UXAM..

S(gC9UXAM - Services

The Association Manager User Exit Handler performs the following functions:

Determines if the user exit has been loaded. If not, control is returned with retum code zero. If
it does exist them it is invoked.

Obtains private storage below the 16 megabyte line and establishes the required parameters for the
exit.

Ensures that the exit is invoked in problem program state

Establishes an ESTAE environment for the duration of the exit call to recover from any abends
within the user exit.

Issues a message if the retum code from the user exit is nonzero. /\ny text message retumed by
the exit is also output to the SUPERLINK LOG.

S(gC9UXAM - Interfaces

The Association Manager User Exit Handler may be invoked from any location within the Association
Manager by using the S@C9EXIT macro. The parameters passed are the user exit required, (1, 2, 3,
or 4) and the type of call being made (1 for initialization, 2 for normal, or 3 for termination).

For each of the Association Manager User Exits an appropriate mapping macro is provided that defmes
the parameter list of each user exit. The relationship between user exits and macros is as follows:

User Exit Macro

AM user exit 1 S@C9UX1
AM user exit 2 S@C9UX2
A.M user exit 3 S@C9UX3
AM user exit 4 S@C9UX4

The SUPERLINK/MVS Installation, Tuning, and Customization Guide, publication SI-0180,
provides more detailed information about the user exits and their respective macros.

8-66 SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit SI-0182

This page has been intentionally left blank,

Cray Research, Inc. 8. SUPERLINK Association Manager Component 8-67

Diagram 8-24
S@C9UXAM - User Exit Handler

Entry from Association Manager
(Invoked via macro S3C9EXIT)

•Input"

PLIST

V
-Process-

1. Determine if required exit
exists.

2. GETMAIN private storage for
exit parameter list.

3. Use MODESET to revert to
problem state.

9. Establish parameter list in
GETMAINed area.

5. Establish ESTAE.

6. Invoke User exit.

Remove ESTAE.

Analysis of result.

Revert back to Supervisor
state.

10. FREEMAIN private storage.

11. Return to caller.

-> Exit to caller

8-68 SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit

•Output-

SI-0182

Extended Description

Explanation

1. The User exits are loaded by the Association Manager component if they
are specified within the SUPERLINK options deck. If they were not loaded,
control is returned to the caller with return code 0.

2. The storage GET.MAINcd is below the line. This will enable user exits to
be in either AMODE 24 or AMODE 31.

4. The contents of the parameter list varies depending upon the exit being
invoked. The type of call being made can also vary the parameter list. If
invoked during Association .Manager component initialization or
termination, some of the parameters wUl not be available; This means that
the pointers to them in the parameter list will be null.

Only AM User Exit 4 (Security Validation) may be invoked during AM
initialization or termination. This enables the exit to establish and remove
any tables or storage it requires for normal validation calls.

5. The ESTAE provided resides at the end of the S@C9UXAM module. If
invoked by an abend, it outputs an appropriate abend message and returns
control to the main section of S@C9UXAM. S@C9UXAM
FREEMAlNs storage and returns control to the caller.

8. If a non-zero return code is received from the exit, an appropriate message
is output to flag the non-zero return code. If the exit also returned a text
message, (if a text area was provided for the exit) then this text message is
also output.

Module Label

S@C9UXA.M

S®X9UXA.M

S@C9UXA.M

S@C9UXAM

S@C9UXAM

Cray Research, Inc. 8. SL'PERLINK Association Manager Component 8-69

9. SUPERLINK Message Processor Component

The Message Processor component of SLCN provides one source for both the documentation of
messages and the generation of macros used to describe the messages within the SUPERLINK/MVS
product. This source is maintained in generalized markup language (GML) format. The .Message
Processor component is designed to maintain consistency between the messages issued by the product
and the message descriptions provided by SUPERLINK/MVS Messages, publication SI-0179.

The macros generated by G.ML processing produce nonexecutable CSECTs containing the message
text available to the SUPERLINK/MVS product.

Message Processor Module Structure
The Message Processor component consists of the following modules:

Module Description

S@@MOOO Initial processing; locate the message.

S@@M010 Format the variables into the message.

S@@M015 Return a formatted message to the user, if requested.

S@@M020 Perform the TYPE = WTO or TVPE = WTOR request.

S@@M030 Perform the TYPE = LOG request.

Figure 18 shows the hierarchical structure of modules within the Message Processor component.

Figure 18. Module Structure of the Message Proces.sor Component

Cray Research, Inc. 9. SL'PERLINK Message Processor Component 9-1

Message Processor Services
The Message Processor provides the following services:

• Returns the address of a message within a message CSECT

• Returns a formatted message to an area provided by the caller

• Formats a message andoutputs it to the MVS system log, the SUPERLINK LOG, or both.

• Formats a message and issues a WTOR for an operator reply, which is returned to an area
provided by the caller.

Message Processor Interfaces
The following macros provide the interface to the Message Processor component.

Macro Description

S@@MDEF This macro is used to create the messages CSECT. The S@@MDEF macros
are generated by DCF/SCRIPT from GML tags.

S@@MSGS This macro is used to locate a particular message within a specified message
table.

S@@MSG This is the major macro of the Message Processor component. It caUs the
Message Processor component to perform various functions, including
formatting a message, outputting it to a specific target, and so on. The
S@@MSG macro has four forms: ordinary, list, format, and execute.

'Appendix B. SLCN Macros" on page B-1 describes the syntax of each of these macros.

Message Processor Data Areas
The following data areas, used by the Message Processor component, are contained within the message
CSECTs:

Data Area

MH_MI

MH_MIE

MH_ME

Mil MPPL

Description

Message index

Message index entry

Message Element

.Message processing parameter list

9-2 SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit SI-0182

Message Processor Recovery
The Message Processor component does not perform its own recovery. All recovery actions are
determined by the recovery environment enabled by the caller of the SUPERLINK/MVS Message
Handler.

Cray Research, Inc. 9. SUPERLINK Message Processor Component 9-3

Diagram 9-1
S@@IVIOOO - Initial Message Processing Module

Entry from -p

Input

PLIST

Message
CSECT

V

Initialize^
validate^ and
perform initial
locate of message.

If TYPE=LQCATE,
return message
address in
register 1 and
skip to step 7.

Call SaaMOlO to
format variables
into message.

If the user return
address is —
specified, call
saaMois.

If TYPE=WTO or
TYPE=NTOR,
call saaMozo.

If TYPE=LGG,
call saanozo.

Return to caller.

Output-

Register 1

Formatted
message in
return area

> Register 1

> Exit to SaaMSG caller

9-4 SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit SI-0182

Extended Description

Explanation

1. The initial validation of the parameters received is carried out at this stage.

If TYPE = LOCATE, proceed to step 2. For all other message types, a
GETMAIN is executed at this stage. The storage acquired is used as a save
area and as working storage; the working storage used follows the save area.
The parameters are set up in this T-storage area, and all work areas to be
used arc initiahzed. As control processes through the various modules, the
address of this area is passed in register 13.

The parameters are now validated. If they are all correct, the message is
located within the Message Table using a binary search. A binary search
jumps to the middle of the index and determines if the message lies above
or below that point. This process is repeated with successively smaller
fractions of the index until a match is made.

2. If TYPE = LOCATE, the TABLE parameter is validated, and the requested
message is located within the Message Table. The address of the message is
set up in re^ster 1, and a return is made to the caller.

3. S@@M010 is now used to format the message. If TYPE = VVTOR or
TYPE = WTOR+ LOG, the message is formatted into a WTOR parameter
list; otherwise, the message is formatted into a WTO parameter list.

4. If the user requested it, S@@M015 now inserts the formatted message into
the user's return area.

5. If TYPE = WTO or WTOR, S@@M020 is called to perform the required
processing.

6. For TYPE= LOG, S@@M030 is called to perform the required processing.
Register 1 contains the address of the message that is to be output.

Module Label

S@@MOOO

S@@MOOO

S@@MOOO

S@@MOOO

Srrt)5i)M000

S@@MOOO

Cray Research, Inc. 9. SL'PERLINK Message Processor Component 9-5

Diagram 9-2
S@@M010 - Format the Message Variables Module

Entry from S33N000

Working
storage

Message
entry

Process-

Initialize working
storage.

Obtain storage
into which message
is formatted.

Insert variables
into message.

Return to caller.

Output-

Working
storage

> Exit to S33M000

9-6 SUPERLINK for MVS Logic Library Volume 2; Control Functional Unit 81-0182

Extended Description

Explanation

1. Initially, register 13 points to the save area, which is followed by the working
storage. The working storage section uses register 11 as a base register, and
register 13 points to the secondary save area.

2. If TYPE = WTO or WTO + LOG, and the message has multiple lines, the
required amount of storage is acquired by a GETMAIN.

For all other types, the message is formatted into an area in working storage
large enough to hold a WTOR parameter list of maximum size.

3. The message is moved from the CSECT into the target area, .and the
variables are inserted into the message text. For TYPE = WTOR and
TYPE = WTOR + LOG, the address of the formatted message in working
storage points to a WTOR parameter list containing the message text. For
all other types, the address points to a WTO parameter list containing the
message text.

4. Control is returned to the caller. The address of the formatted message is
contained in the working storage section used.

Module Label

S@@.M010

S@@M010

S®.(aM010

S@@MOIO

Cray Research, Inc. 9. SUPERLINK Message Processor Component 9-7

Diagram 9-3
S@@M015 - Formatted Message Returned to User Module

Entry from S33M000

Input

Working
storage

V
-Process-

•> 1. Initialize.

2. Move message
into user's return-
area .

3. Return to caller.

-Output-

Message in
user return
area

-> Exit to saaMooo

9-8 SUPERLINK for MVS Logic Library Volume 2; Control Functional Unit SI-0182

Extended Description

Explanation

1. Initially, register 13 points to the save area, which is followed by the working
storage. Register 11 is used as a base re^ster for the working storage section,
and register 13 points to the secondary save area.

If the user's return area address is null, go to step 3.

2. The message is moved into the user's return area. A space is inserted
between each character of a multiline message. If the length of data specified
by the user at the start of the buffer is reached, the process ends, ^ving the
user as much of the message as possible.

3. Control is returned to the caller.

Module Label

S@@.VI015

S@@M015

S@@M015

Cray Research, Inc. 9. SL'PERLINK .Message Processor Component 9-9

Diagram 9-4
S@@M020 - Write to WTO or WTOR Module

Entry from S33M010

Input

Norking
storage

V
-Process-

> 1. Initialize
r

2. Output message
using NTO.

3. Output message
using NTOR.

Return to caller

-Output-

-> Exit to SaaMOOO

9-10 SUPERLIiS'K for MVS Logic Library Volume 2: Control Functional Unit SI-0182

Extended Description

Explanation Module Label

1. Initially, register 13 points to the save area, which is followed by the working S@@M020
storage. Register 11 is used as a base register for the working storage section
and register 13 points to the secondary save area.

2. If TYPE = WTO or WTO + LOG, the execute form of the WTO macro S@@M020
outputs the message using the WTO parameter list that is pointed to.

3. If TYPE = WTOR or WTOR + LOG the execute form of the WTOR S@@M020
macro outputs the message using the WTOR parameter list that is pointed
to.

4. A return is made to the caller, S@@.MOOO. S@@M020

Cray Research, Inc. 9. SL'PERLINK Message Processor Component 9-11

Diagram 9-5
S@@M030 - Write to LOG Module

Entry from S93M000

Norking
storage

Formatted
message

V

> 1. Initialize.

2. Output message.

3. Return to caller.

> Exit to saaMooo

9-12 SLPERLINK for MVS Logic Library Volume 2: Control Functional Unit

Output-

81-0182

Extended Description

Explanation Module Label

1. Initially, register 13 points to the save area, which is followed by the working S@@M030
storage. Register 11 is used as a base register for the working storage section,
and register 13 points to the secondary save area.

2. The required number of LOGEs is acquired. The formatted message is S@@M030
inserted into the LOGEs; the LOGEs are then queued for output.

If TYPE = WTOR or WTOR+LOG, the text in the single-line WTOR
parameter list is split over two LOGEs.

3. A return is made to the caller, S@@MOOO. S@@M030

Cray Research, Inc. 9. SL'PERLINK Message Processor Component 9-13

10. SUPERLINK SVC Component

In order to use the services offered by the SUPERLINK Network Access Method, the calling program
is required to be in supervisor mode. For assembler programmers, this privilege can be assigned by the
systems programmer. However, user programs typically run in problem program mode.

The SUPERLINK SVC component enables nonauthorized, problem program mode users to use
Network Access Method services (SLNET) or Association Manager services (SLCN) of the
SUPERLINK/MVS product. Specifically, this component allows callers from high-level languages
(such as Fortran) to use the AAC interface and allows unauthorized assembler programs to use the
ACSE interface. It docs not allow the user's program to access any other services, and control is
returned to the caller in the original processing mode, thus preserving MVS system integrity.

SVC Module Structure

The SVC component consists of the following modules:

Module

s@ccosvc

S@CCOSVE

S@CCOSVR

S@CCOSVM

Description

SVC routine

ESTAE exit routine

Retry routine

Messages CSECT

Figure 19 shows the hierarchical structure of modules within the SVC component.

saccosvc
ESTAE

Figure 19. .Module Structure of the SVC Component

Cray Research, Inc. 10. SUPERLINK SVC Component lO-l

SVC Services

The following global service routines can be accessed through the SVC component:

• Association Manager interface (SLCN)
• ACSE interface (SLNET)

The SVC component has been designed to satisfy the following requirements:

• Maintain MVS system integrity (IVIVS/XA System Programming Library: System Macros and
Facilities Volume I, GC28-1150, Protecting the System)

• Minimize system overhead; the SVC component uses branch entry services.

Provide a universal interface so that new SUPERLINK services can easily be made accessible via
the SVC component

SVC Interfaces
The S@@SVC macro is used to pass the parameters required by the SVC component. The first
parameter is positional; all others are keyword parameters.

The SC_CIOT (S@C1C10T mapping macro) must be addressable when the S@@SVC macro is
issued. The SVC number is obtained from this control block. "Appendix B. SLCN Macros" on page
B-1 describes the syntax of the S@@SVC macro.

SVC Data Areas

The following data areas arc used by the SVC component:

Data Area Description

SV_ESTVV SVC ESTAE work area

S@CCSVEW Mapping macro

10-2 SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit SI-0182

This page has been intentionally left blank,

Cray Research, Inc. 10. SUPERLINK SVC Component 10-3

Diagram 10-1
S@CCOSVC - SVC Type 3 Routine (part 1 of 2)

Entry from MVS SLIH

Input

Registers 0 to 15

V
-Process-

Get storage for a work area
from subpool 230 in key 0.

If unsuccessful^ go to step 6
with a return code of X'04'.

-> continued

10-4 SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit

-Output-

SI-0182

Extended Description

Explanation

1. The SVC main routine receives control in PSW key 0, in supervisor state,
enabled, and unlocked. Register contents at entry are as follows:

Register Contents •

RO 'Iliis register contains the following bytes:

Byte

0

1

2

3

Description

Index in the SC_GST of the global service routine
to be called

If bjle 3, bit 0 is set, this register contains the offset
of the SC_SSVT in the parameter list pointed to by
Rl.

Reserved

Option byte:

Bit 0 - When this flag is set, the SC_SSVT
pointer is in the entry parameter list. Otherwise
the SC_SSVT pointer is contained in R15.

Bit 1 - When this flag is set, an ESTAE exit is
to be established.

Rl Address of the parameter list to be passed to the global service
routine

R2 Unpredictable

R3 Address of the CYT

R4 TCB address

R5 SVRB address

R6 Address of the SVC routine entry point

R7 ASCB address

R8-R12 Unpredictable

R13 Contents when the SVC instruction was executed

R14 "Return address

• If b^le 3, bit 0 in register 0 is on, content is irrelevant.

• If b>1e 3, bit 0 in register 0 is off, R15 contains the address
of the SC_SSV r.

Storage for a work area is obtained from subpool 230 in key 0. If
GETMAIX failed, processing continues at step 6 with a return code of
X'04'.

Module' Label

s@ccosvc

Cray Research, Inc. 10. SUPERLINK SVC Component 10-5

Diagram 10-2
S@CCOSVC - SVC Type 3 Routine (part 2 of 2)

continued

-Input
V

-Process-

2. Establish an ESTAE exit if
required:

— Initialize ESTAE work
area (SV_ESTN).

— Attempt with FESTAE.

— Branch enter ESTAE
if FESTAE failed.

If unsuccessful/ go to step 6
with a return code of X'08*.

3. Locate SC_SSVT.

If SC__SSVT pointer is invalid,
go to step 6 with a return
code of XUO* .

Locate SC_GST and EPA of
global service routine.

If unsuccessful, go to step 6
with a return code of X'lO'.

5. Call global service routine
with BASSM R1^,R15.

6. Insert SVC return code in
byte 0 in register 15.

Cancel ESTAE if necessary.

Release virtual storage.

Return to caller.

•> Exit to MVS

10-6 SL'PERLINK for MVS Logic Library Volume 2: Control Functional Unit

-Output-

ESTAE environment

Return code

Sl-0182

Extended Description

Explanation

2. On entry, byte 3, bit 1 in register 0 indicates whether or not an ESTAE
environment should be established by the SVC. If an ESTAE is required,
the following actions are required:

• The ESTAE work area, SV_ESTW, is initialized.

• A fast ESTAE (FESTAE) macro instruction is issued first. If FESTAE
fails, the branch entry interface of ESTAE is used.

• If the ESTAE environment cannot be established, processing continues
at step 6 with a return code of X'08'.

3. On entry, byte 3, bit 0 in register 0 indicates whether the SC_SSVT pointer
is contained in register 15 or in the entry parameter list. The contents upon
entry of registers 0, 1, and 15 have been saved in the SVRB.

If the SC_SSVT pointer is not in register 15, the contents of byte 1 in register
0 upon entry contain its offset in the parameter list pointed to by register.

To check the validity of the SC_SSVT pointer, loop through the SSVT
chain until a match is found. If no match is found, or if the corresponding
subsystem is not ready, processing proceeds to step 6 with a retum code of
X'OC.

4. The SC_GST pointer is found in the SC_SSVT. If this pointer is null, or if
the SC_GST does not contain a valid acronym, processing continues at step
6 with a retum code of XTO'.

On entry, the index of the requested service routine in the SC_GST is in the
contents of byte 0 in register 0 (saved in the SVRB). The index is checked
to determine whether it is within bounds and whether or not it identifies a
service routine that can be invoked through the SVC. ITie corresponding
entry point address in the SC_GS T is not valid if it is null.

If no suitable entry point address has been found, processing proceeds at step
6 with a retum code of XTO'.

5. The global service routine, whose entry point was found in step 5, is called
with BASSM registers 14 and 15. Standard linkage conventions are used.
Register 13 points to an 18-word save area with a storage protection key of
0.

The global service routine receives control in PSW key 0, in supervisor state,
enabled and unlocked.

6. The SVC retum code is inserted into byte 0 in register 15. The ESTAE
environment is cancelled if one has been established.

The storage allocated for the work area is released.

Registers 0, 1, 14, and 15 are restored, and control is retumed to MVS.

Module Label

s®ccosvc

S@CCOSVC

S®CCOSVC

S@CCOSVC

S®CCOSVC

Cray Research, Inc. 10. SL'PERLINK SVC Component 10-7

Diagram 10-3
S@CCOSVE - ESTAE Exit Routine (part 1 of 3)

Entry from MVS RTM

-Input-

Registers 0/ 1,2,
13/ 1^/ and 15

V
-Process-

1. Determine whether or not
an SDNA is present.

Find user parameter list.

Save registers.

Save abend completion code.

-> continued

10-8 SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit

-Output-

81-0182

Extended Description

Explanation

1. The ESTAE-type recovery routine receives control from RTM in PSW key
0, in super\'isor state, enabled and unlocked.

Register contents at entry diifer depending on whether or not RTM can
obtain an SDVVA.

If an SDWA was obtained, register contents at entry are as follows:

Register Contents

RO Code indicating the type of I/O processing performed

R1 Address of the SDWA

R13 Save area address (72 bvles)

R14 Retum address

R15 Entry point address of the ESTAE recovery routine

The contents of all other registers are unpredictable.

If no SDWA was obtained, register contents at entry are as follows:

Register Contents

RO Decimal 12 to indicate that an SDWA was not obtained

R1 Abend completion code

R2 Address of user-supplied parameter list

R13 Unpredictable

R14 Retum address

R15 Entry point address of the ESTAE recovery routine

The contents of all other registers are unpredictable.

The code in re^ster 0 is examined first to see if an SDWA was provided.

If there is an SDWA, registers 14 through 12 are saved in the save area
pointed to by register 13. The pointer to the ESTAE work area, SV ES TW,
is found in the SDWAPARM field of the SDWA. ITie abend completion
code is copied from the SDWA into the SV ESTW for later analysis.

If there is no SDWA, register 2 points to the ESTAE work area, SV_ESTW.
Registers 14 through 12 are saved in the SV ESTW SAVE standard save
area. Register 7 is cleared to indicate that there is no SDWA. The abend
completion code contained in register 1 is saved into the SV_ESTW for later
analysis.

The ESTAE routine base register is established, and the save areas are
chained.

Module Label

S^CCOSVE

Cray Research, Inc. 10. SUPERLINK SVC Component 10-9

Diagram 10-4
S@CCOSVE - ESTAE Exit Routine (part 2 of 3)

continued

-Input-
V

-Process-

2. Check for recursion.

If recursion^ go to step 7
(percolation).

-> continued

10-10 SL'PERLINK for MVS Logic Library Volume 2: Control Functional Unit

-Output-

Sl-0182

Extended Description

Explanation

2. If bit SV_ESTW_ERECURS in SV_ESTW_FLAG is set, there is recursion.
In this case, processing continues at step 7 (percolation).

Module Label

S@CCOSVE

Cray Research, Inc. 10. SL'PERLINK SVC Component 10-11

Diagram 10-5
S@CCOSVE - ESTAE Exit Routine (part 3 of 3)

continued

-I nput
V

-Process-

Get system and user completion
codes/ reason code» and
current time.

Issue format form of
S93MSG macro.

Issue execute form of
S93MSG macro.

Issue SDUMP macro if a dump
is required.

Determine if a retry is
possible.

— If a retry is possible^
go to step 6.

— If a retry is not possible^
go to step 7 (percolation).

Request a retry.

Specify continue with
termination (percolation).

•> Exit to MVS RTM

10-12 SLPERLINK for MVS Logic Library Volume 2: Control Functional L'nit

-Output-

81-0182

Extended Description

Explanation

3. The abend completion code was saved in SV_ESTW_ABENDCC in step 1
processing.

The reason code is found in the additional component service data extension
of the SDWA when there is an SDWA.

A TIME macro instruction is issued to get the current time.

The preceding information is converted to printable form. If the SC_SSVT
address is null, no message is issued; otherwise, the fo^at form and the
execute form of the S@@.MSG macro are issued.

4. If there is no SDVVA, a dump is always obtained.

If there is an SDWA, no dump is required if at least one of the following
bits is set:

7.

Bit Description

SDWACTS If the SDWACTS bit is on, another task within the
same jobstep tree has requested a "STEP" abend.

SDWAMABD If the SDWAMABD bit is on, an ancestor of this
task has abended.

SDWAEAS If the SDWAEAS bit is on, a dump has already been
obtained.

If the SDUMP routine executes successfully, the SDWAEAS bit is set to
indicate that a dump has been obtained.

If the retry address in SV_ESTW_ARETRY is null, percolate.

If there is no SDWA, a retry is always attempted.

If there is an SDWA, percolate if the SDWACLUP bit is set.

Reinstate the previous save area and test register 7 to determine whether or
not an SDWA is present.

If there is an SDWA, use the SETRP macro to specify retry.

If there is no SDWA, place retry code 4 in register 15; load register 0 with
the retry routine entry point address; restore registers 1 through 12; and
retum to MVS.

Reinstate previous save area, and test register 7 to determine whether or not
an SDWA is present.

If there is an SDWA, use the SETRP macro to specify percolation.

If there is no SDWA, restore registers 14 through 12; place percolation code
0 in register 15; and retum to R I'M.

Module Label

S@CCOSVE

S@CCOSVE

S(«)CCOSVE

S®CCOSVE

S@CCOSVE

Cray Research, Inc. 10. StPERLINK SVC Component 10-13

Diagram 10-6
S@CCOSVR - Retry Routine

Entry from MVS RTM

-Input-

SV ESTW

V
-Process-

Find ESTAE work area/
SV_ESTW/ which is passed as
a usei—supplied parameter
list.

Restore all registers from
SV_ESTW_RETREGS and return.

-Output-

-> Exit to resume point

10-14 SL'PERLINK for MV'S Logic Library Volume 2: Control Functional Unit Sl-0182

Extended Description

Explanation

1. The retry routine receives control from RTM in PSW key 0, in supervisor
state, enabled and unlocked.

Register contents at entry differ depending on whether or not RTM could
obtain an SDWA and whether or not the SDWA was freed.

If the ESTAE-type recovery routine did not request register update or freeing
of the SDWA, register contents upon entry are as follows:

Register Contents

RO Zero

R1 Address of the SDWA

R14 Address of supervisor-assisted linkage (SVC 3)

R15 Entry point address of the retry routine

The contents of all other registers are unpredictable.

If the ESTAE did not request register update but did request that the SDWA
be freed, or if no SDWA was obtained, register contents at entry are as
follows:

Register Contents

RO A decimal code as follows:

Code Meaning

20 The ESTAE did not request register update but did
request that the SDWA be freed.

12 No SDWA was obtained.

R1 Address of the user-supplied parameter list

R2 A pointer to the PIRL or 0

R14 Address of supervisor-assisted linkage (SVC 3)

R15 Entr>' point address of the retry routine

The contents of all other regsters are unpredictable.

The ESTAE work area, SV_ESTW, is found directly or from the SDWA.

Ail registers arc restored from the SV ESTW RETREGS field, and control
is returned to the resume point tlirough BR register 14.

Module Label

S@CCOSVR

Cray Research, Inc. 10. SL'PERLINK SVC Component 10-15

11. SUPERLINK User Resource Manager Component

The User Resource Manager (URM) component of SLCN is a global service routine that provides
basic functions for the manipulation of User Resource Elements (UREs) which are used to keep track
of the use of SUPERLINK/MVS resources by task and ascending address space identifier (ASID).

Those servicesare invoked by the ACSE component of SLNET. A URE is defined for every
connection end point and contains information that is essential for end-of-task processing: ASCB, task
control block (TCB), and association identifier (AID). The ASCB and TCB identify the task which
owns the end point. ITie AID uniquely identifies the connection end point.

page. User Resource Manager Module Structure
The User Resource Manager component consists of a single module:

Module Description

S@CCOURM User Resource Manager (URM) service routine

User Resource Manager Services
The following functions are provided for the manipulation of UREs:

Locate
Queue
Dequeue
Switch

User Resource Manager Interfaces
The S@CCOURM macro is used to pass the parameters required by the User Resource Manager
component. The S@CCOURM macro is found in the macro library for the SLCN component.

User Resource Manager Data Areas
The following data areas arc used by the User Resource Manager component:

Cray Research, Inc. II. SL'PERLINK User Resource Manager Component 11-1

Data Area

SC SLASVT

SC URE

SC URM

Description

Address Space Vector Table

This table keeps track of the address spaces and the tasks within these address
spaces that arc making use of SUPER LINK/MVS resources. There is one entry
per address space in ascending address space identifier (ASID) order, plus a
special entry for ASID value 0. A null value in one of these pointers indicates
that the associated address space is not making use of SUPERLINK/MVS
resources. A non-null value is a pointer to a chain of control blocks called User
Resource Elements (SC_UREs).

User Resource Element (URE)

The User Resource Element is a control block that is used to keep track of
resource utilization by task and ASID. There is one SC_URE per Task Control
Block (TCB) per connection end point (AID).

User Resource .Manager parameter list (SC_URM)

User Resource Manager Recovery
The User Resource Manager component does not perform its own recovery. All recovery actions are
determined by the recovery environment enabled by the caller of the SUPERLINK/MVS User
Resource Manager component.

11-2 SL'PERLIN'K for .MVS Logic Library Volume 2: Control Functional Unit 81-0182

This page has been intentionally left blank.

Cray Research, Inc. 11. SL'PERLINK User Resource Manager Component 11-3

Diagram 11-1
S@CCOURM - User Resource Manager (part 1 of 2)

Entry from any module

-Input-

SC URM

Model
SC URE

-Processincr

I—> 1. Validate entry parameter list,
analyze request, and branch to
the appropriate subroutine.

Z. If request is LOCATE, then
scan queue for the given ASID
and search for matching TCB
and AID. If URE found,
copy it into model URE.

3. If request is QUEUE, then copy
model URE into URE obtained
from cell, pool and queue it
on queue for given ASID.

5.

If request is DEQUEUE, then
scan queue for the given ASID
and search for matching TCB
and AID. If URE found,
dequeue it and return it to
the cell pool.

If request is SNITCH, then
locate URE with ASID, TCB and
AID matching those of model
URE, update URE, dequeue and
queue URE if new ASID is
different.

Return to caller.

•> Exit to caller

11-4 SUPERLINK for MVS Logic Library Volume 2: Control Functional L'nit

-Output-

Model
SC URE

New

SC URE

SI-0182

Extended Description

Explanation

1.

3.

The entry parameter list (SC_URM)) contains the requested function
and a pointer to a model SC_URE.

code

For a I.OCATE request, first the SC L'RE is cleared out and then the queue
of SC_URE's associated with the ASID specified in the SC_URM is
searched for a matching TCB and AID. If a match is found, the located
SC_URE is copied into the model SC_URE. Both the local and CMS locks
are held while scarming the queue.

For a QUEUE request, a cell is obtained from the cell pool and the content
of the model SC_URE is copied into it. The TCB, ASCB, ASID and AID
fields are copied from the SC_UR.M parameter list. Then, the SC_URE
obtained from the cell pool is queued in the queue associated with the ASID
specified in the SC_URM with both the local and CMS locks held.

For a DEQUEUE request, the queue of SC_UREs associated with the
ASID specified in the SC_URM is searched for a matching TCB and AID.
If a match is found, the located SC_URE is dequeued and its storage is
retumed to the cell pool. Both the local and CMS locks are held while
scanning the queue and dequeuing the SC_URE.

For a SWITCH request, the queue of SC_URE's associated with the ASID
specified in the SC_URM is searched for a matching TCB and AID. If a
match is found, the located SC_URE is updated with the AID, ASID,
ASCB and TCB specified in the SC_URM. If the target ASID is different
from the previous one, the SC_URE is-dequeued and queued into the queue
associated with the target ASID. Both the local and CMS locks are held
while scanning the queue and/or updating, queuing, or dequeuing the
SC URE.

Module Label

S@CCOUR.MMAIN

S@C"COURM LOCATE

S@CCOUR.M QUEUE

S@CCOURM DEQUEUE

S@CCOURM SWITCH

Cray Research, Inc. II. SL'PERLINK L'ser Resource Manager Component 11-5

N0I133SXIQNBddV

Appendix A. Data Area Descriptions

Cray Research, Inc. Appendix A. Data Area Descriptions A-1

AM AMT

Common name:

Macro ID:

DSFXT name:

Created by:

Location:

Pointed to by:

Serialization:

Function:

Offsets

Association Manager Table

S@@AMT

AM_AMT

Association Manager (S@C9000)

ECSA subpool 241 and key 8

SC_SSVT_AMT field in the SSVT control block

None

Contains anchor points for Association Manager cell
contains the termination ECB.

Type Length Name

pools and global routines. It also

Description

0 (0) CHARACTER 4 M AMT ID TABLE ANACRONYM 'AMVT*

4 (4) A-ADDRESS 4 M_AMT_SaC9300 ~> AM INTERVAL TIMER
CODE

8 (8) A-ADDRESS 4 M AMT GMA ~> AM GLOBAL WORK AREA

12 (C) FIXED 4 M_AMT_CPOOL CELL POOL ID FOR
REQUEST QUEUE'S

16 (10) FIXED 4 M_AMT_CP00L_4 CELL POOL ID FOR PRB'S
AND PRC'S

20 (14) FIXED

1

1.

4 M_AMT_ECB

RAIN CODE

LUSH CODE

BORT_CODE

ECB TO BE POSTED IF
TERMINATION

GRACEFUL TERMINATION

QUICK TERMINATION

ABORT

24 (18) CHARACTER 4 M_AMT_ECB_ACRO ECB ANACRONYM 'TERM'

EQUATE

X

1—>
o

M_AMT_SIZE LENGTH OF SC AMT INC
VAR PART

EQUATE 241 M_AMT_SPOOL SUBPOOL TO BE USED ON
GETMAIN

EQUATE X'03* M_AMT_CONTEXTS MAX NUMBER OF CONTEXTS
SUPPORTED

EQUATE X'258' M_AMT_INTERVAL TIMER INTERVAL WHILE
DELETE-ANY

A-2 SUPERLINK for MVS Logic Library Volume 2; Control Functional Unit 81-0182

AM APDE

Common name: AM Application Directory Entry

Macro ID: S@C®GWA

DSECTname: AxVI_APDE

Created by: Association Manager (S@C9000)

Location: ECSA subpool 241 and key 8

Pointed to by: Index value into Application Directory

Serialization: None

Function: Each APDE entry contains information for an application title being handled by the
Association Manager

Offsets Type Length Name Description

0 (0) CHARACTER 4 AM_APDE_ACRO ACRONYM 'APDE'

4 (4) FIXED 4 AM_APDE_QTPDU QUALITY OF SERVICE
TPDU SIZE

8 (8) BITSTRING 1 AM_APDE_ATITLE_L APPLICATION TITLE
LENGTH

9 (9) CHARACTER 32 AM_APDE_ATITLE APPLICATION TITLE

41 (29) CHARACTER 8 AM_APDE_TASK MODULE NAME OF USERS
TASK

49 (31) CHARACTER 8 AM_APDE_CTXT PRESENTATION CONTEXT
NAME

57 (39) CHARACTER 3 Reserved

60 (3C) STRUCTURE 0 (ALIGN ON A HORD
BOUNDRY)

60 (3C) BITSTRING

.1

1

1

1.

1 AM APDE FLAGS

APDE JOB

APDE APPL

APDE OFFER

APDE_FAILURE

APPLICATION STATUS

APPLICATION IS A JOB

APPLICATION IS A TASK

OFFER PENDING

UNABLE TO PUT OUT OFFER

61 (3D) BITSTRING 1 AM_APDE_JCL INDEX t CORRESPONDING
JCL AREA

62 (3E) BITSTRING

1

1.

11

1 AM_APDE_QLVL

APDE QLON

APDE QMED

APDE_QHI

QUALITY OF SERVICE
LEVEL

LOH

MEDIUM

HIGH

63 (3F) CHARACTER 1 Reserved

64 (40) STRUCTURE 0 (ALIGN ON A NORD
BOUNDRY)

EQUATE X'40' AM_APDE_SIZE LENGTH OF ENTRY

Cray Research, Inc. Appendix A. Data Area Descriptions A-3

AM_APDH
Common name: AM Application Directory Header

Macro ID: S@C@GWA

DSFXTname: AM_APDH

Created by: Association Manager (S@C9000)

Location: ECSA subpool 241 and key 8

Pointed to by: AM_G\VA_APD field of the AM_GVVA data area

Seriali/ation: None

Function: Contains a count of the maximum and current number of Application Directory
entries

Offsets Type Length Name Description

0 (0) CHARACTER 4 AM APDH ACRO ANACRONYM 'APDH*

4 (4) FIXED 4 AM_APDH_MAXi MAXIMUM NUMBER OF
ENTRIES

8 (8) FIXED 4 AM_APDH_CURt CURRENT NUMBER OF
ENTRIES

EQUATE X'C« AM_APDH_SIZE LENGTH OF AM_APD ENTRY

A-4 SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit Sl-0182

AMjCDT
Common name: AM Controller Data Table

Macro ID: S@C@GWA

DSFXTname: AM_CDT

Created by: Association Manager (S@C9000)

Location: ECS A Subpool 241 and key 8

Pointed to by: AM GWA CDT field in the AM GWA data area

Serialization: None

Function: Contains general Association Manager Counts and status values used by the
association Manager controller

Offsets Type Length Name Description

0 (0) CHARACTER 4 M_CDT_ACRO AN ACRONYM »CDT »

4 (4) CHARACTER 8 M_CDT_SL_JOBID SLCN JOBID

12 CO BITSTRING 1 M CDT FLAGl UNIVERSAL STATUS FLAGS

1 LAGl DIAG S

.1 LAGI DIAG C

. .1 LAGl DIAG T

. . .1 LAGl SVC DUMP

1. . . LAGl ST ACTIVE

1. . LAGl ST TERM G

.... . . 1. LAGl ST TERM Q

1 LAG1_ST_TERM_A

13 CD) BITSTRING 1 M CDT FLAG2 UNIVERSAL STATUS FLAGS

. . .1 LAG2 TIMER SET

1 LAG2_AIDS_STUCK

14 (E) BITSTRING 1 M CDT FLAGS UNIVERSAL STATUS FLAGS

. . ,1 LAGS ATTACH

1 LAG4 PSAP TEST SET IF AMTYPE=MULTIPLE
' SPECIFIED

.1 LAG4 PASSCHK NO SET IF RACF CALL WITH
PASSCHK=NO

15 CF) BITSTRING 1 M__CDT_.FLAG4 MORE ASSOC MGR STATUS
FLAGS

16 (10) FIXED 4 M__CDT_ ATTACH NUMBER OF PROCESSOR
BEING

20 (14) FIXED 4 M_CDT_.FAILURE THIS FIELD KEEPS A
COUNT OF THE

24 (18) FIXED 4 M__CDT_.OFR_EXT THIS KEEPS A COUNT OF
PRB/PRC

28 (IC) FIXED 4 M_.cdt_.ECB ECB TO BE POSTED IF
TIMEOUT

S2 (20) CHARACTER 4 M_.CDT_.ECB_ACRO ECB ANACRONYM 'TIME*

EQUATE X'24» M__CDT_.SIZE LENGTH OF SC AMT INC
VAR PART

Cray Research, Inc. Appendix A. Data Area Descriptions A-5

AM GWA

Common name:

Macro ID:

DSECT name:

Created by:

Location:

Pointed to by:

Serialization:

Function:

Offsets

Association Manager Global Work Area

S@C@GWA

AM_GWA

Association Manager (S@C9000)

ECS A Subpool 241 and key 8

AM_AMT_GWA field in the AM_AMT data area

None

Contains pointers to all the other Association Manager tables

Type Length Name Description

0 (0) CHARACTER 4 AM_ GNA .ACRO ANACRONYM 'GWA '

4 (4) A-ADDRESS 4 AM..GWA..SSVT ~> SUPERLINK SSVT
ADDRESS

8 (8) A-ADDRESS 4 AM..GWA.1

o
o

H

~> CONTROLLER DATA
TABLE

12 (C) A-ADDRESS 4 AM..GWA._PCT ~> PROCESSOR CONTROL
TABLE

16 (10) A-ADDRESS 4 AM..GWA..RED ~> RESPONDER
DIRECTORY

20 (14) A-ADDRESS 4 AM..GWA..APD —> APPLICATION
PROGRAM DIR

24 (18) A-ADDRESS 4 AM..GWA,.SaC9UXAM GENERAL USER EXIT
INVOCKATION ROUTINE

28 (IC) A-ADDRESS 4 AM..GWA..USERDATA USER DATA FOR EXIT4
(SET BY INIT CALL

32 (20) A-ADDRESS 4 AM..GWA..SaC9UXl FOR SaC9100 - VARIABLE
VALIDATION

36 (24) A-ADDRESS 4 AM..GWA..S3C9UX2 FOR SaC9100 - JCL
VALIDATION

40 (28) A-ADDRESS 4 AM..GWA._SaC9UX3 FOR SaC9100 - JOB
EXECUTION PROBLEMS

44 (2C) A-ADDRESS 4 AM..GWA..SaC9UX4 SECURITY EXIT

48 (30) A-ADDRESS 4 AM. GWA SaC9UX5 (UNDEFINED)

52 (34) A-ADDRESS 4 AM. GWA .SaC9UX6 (UNDEFINED)

EQUATE X»38* AM..GWA..SIZE LENGTH OF SC_GWA INDEX

A-6 SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit SI-0182

AM PCT

Common name: AM Processor Control Table header

Macro ID: S@C®GWA

DSECTnamc: AM_PCT

Created by: Association Manager (S@C9000)

Location: ECSA Subpool 241 and key 8

Pointed to by: AM GVVA PCT field in the AM_GWA data area

Serialization: None

Function: Contains a count of the current and maximum number of entries in the processor
control table.

Offsets Type Length Name Description

0 (0) STRUCTURE 0 AM_PCTH PCT - HEADER

0 (0) CHARACTER 4 AM_PCTH_ACRO ANACRONYM 'PCTH'

4 (4) CHARACTER 4 Reserved

8 (8) STRUCTURE 0 ALIGN ON DOUBLE NORD
BOUNDRY

8 (8) FIXED 4 AM_PCTH_MAXi MAXIMUM NUMBER OF
ENTRIES

12 (C) FIXED 4 AM_PCTH_CURt CURRENT NUMBER OF
ENTRIES IN USE

16 (ID) FIXED 4 AM_PCTH_JOBN UNIQUE JOB NUMBER

20 (14) FIXED

. . .1 I. . .

4 AM_PCTH_JOBI

AM_PCTH_SIZE

INDICATOR OF CHAR FOR
JOBNAME

LENGTH OF AM PCT
HEADER

Cray Research, Inc. Appendix A. Data Area Descriptions A-7

AM_PCTE
Common name:

Macro ID:

DSECT name:

Created by:

Location:

Pointed to by:

Serialization:

Function:

Offsets

Association Manager Processor Control Table Entry

S@C@G\VA

AM_PCTE

Association Manager (S@C9000)

ECSA Subpool 241 and key 8

An Index offset into the PCT data area

AM_REDE_PCTEIX field in an associated REDE entry contains the index value

None

Contains a scries of ECBs used for AM Processor control and information relating to
the work being done by a processor.

Type Length Name Description

0 (0) CHARACTER 4 M PCTE ACRO ACRONYM 'PCTE'

4 (4) FIXED 4 M_PCTE_ECB1 ATTACH ECB FOR
PROCESSOR

8 (8) CHARACTER 4 M_PCTE_ECB1_ ID (ACRONYM 'ECBl*)

12 (C) FIXED 4 M_PCTE_tCB2 POSTED WHEN PROCESSOR
GOES IDLE

16 (10) CHARACTER 4 M PCTE ECB2 ID (ACRONYM •ECB2*)

20 (14) FIXED 4 M_PCTE_ECB3 POSTED WHEN
A-ASSOCIATE RECEIVED

24 (18) CHARACTER 4 M PCTE ECB3 ID (ACRONYM 'ECBS')

28 (IC) FIXED 4 M_PCTE_ECB4 POSTED WHEN CLONING IS
REQUIRED

32 (20) CHARACTER 4 M PCTE ECB4 ID (ACRONYM 'ECBA')

36 (24) FIXED 4 M_PCTE_ECB5 CONTROLLER WANTS AN
A-OFFER DONE

40 (28) CHARACTER 4 M_PCTE_ECB5_.ID (ACRONYM 'ECBS')

44 (2C) FIXED 4 M_PCTE_ECB6 CONTROLLER WANTS CLOSE
DOWN DONE

48 (30) CHARACTER 4 M PCTE ECB6 .ID (ACRONYM •ECB6*)

52 (34) FIXED 4 M_PCTE_ECB7 CONTROLLER WANTS
CLONING DONE

56 (38) CHARACTER 4 M_PCTE_ECB7_.ID (ACRONYM 'ECBT')

60 (3C) FIXED 4 M_PCTE_ECB8 INTERFACE CODE :
LISTEN DONE

64 (40) CHARACTER 4 M PCTE ECB8 .ID (ACRONYM 'ECBB')

68 (44) FIXED 4 M_PCTE_ECB9 INTERFACE CODE :
DELETE-EP DONE

72 (48) CHARACTER 4 M_PCTE_ECB9_.ID (ACRONYM •ECB9*)

76 (4C) FIXED 4 M_PCTE_ECBA INTERFACE CODE :
DELETE-ANY DONE

80 (50) CHARACTER 4 M_PCTE_ECBA_.ID (ACRONYM 'ECBA*)

A-8 SL'PERLINK for MVS Logic Library Volume 2: Control Functional Unit Sl-0182

Offsets Type Length Name Description

84 (54) FIXED 4 M PCTE ECBB INTERVAL TIMER HAS
POPPED

88 (58) CHARACTER 4 M_PCTE_ECBB_ID (ACRONYM 'ECBB')

92 (5C) FIXED 4 M PCTE ECBC OPERATOR RESPONDER TO
A WTOR

96 (60) CHARACTER 4 M_PCTE_ECBC_ID (ACRONYM 'ECBO

100 (64) FIXED 4 M PCTE ECBD ATTACHED TASK HAS
TERMINATED

104 (68) CHARACTER 4 M_PCTE_ECBD_ID (ACRONYM 'ECBD*)

108 (6C) FIXED 4 M_PCTE_CASE ECB FOR CASE

112 (70) FIXED 4 M PCTE ENTRY ENTRY NUMBER FOR THIS
PCT ENTRY

116 (74) A-ADDRESS 4 M PCTE APDE POINTER TO ASSOC PCTE
ENTRY

120 (78) BITSTRING I M PCTE ATITLE L LTH OF APPL TITLE ON
OFFER

121 (79) CHARACTER 32 M PCTE ATITLE APPLICATION TITLE ON
OFFER

153 (99) CHARACTER 3 Reserved

156 (9C) A-ADDRESS 4 M_PCTE_TCB TCB ADDRESS

160 (AO) A-ADDRESS 4 M PCTE SWOP ADDR OF RED ENTRY WITH
STUCK Q

164 (A4) STRUCTURE 0 M_PCTE_RQ

164 (A4) BITSTRING I M PCTE RQ FLAGS STATUS OF PROCESSOR

• ••• CT FREE * PCT ENTRY FR€E

I CT INIT * PCT ENTRY BEING
INITIALISED

I. CT WAIT * WAIT FOR TASK TO
TERMINATE

I. . CT ACTIVE X IDLE BUT HAS BEEN
POSTED

I. . . CT TERM X PCT ENTRY BEING
TERMINATED

. . .1 CT IDLE X PROCESSOR IDLE

. .1 CT OFFER PD X OFFER PENDING

.1 CT LISTEN PD X LISTEN PENDING

I CT_DELETE_PD X DELETE PENDING

165 (A5) BITSTRIHG I M PCTE ACTIONS SECONDARY STATUS
VALUES

I. CT NO CELL X NO PRB/PRC CELL,
UNABLE TO

I. . CT POSTED X IDLE PROCESSOR
REQUESTED

166 (A6) BITSTRING 2 Reserved

168 (A8) FIXED 4 M PCTE REDEIX ASSOCIATED AM RED
ENTRY INDEX

172 (AC) FIXED

EQUATE

Cray Research, Inc.

80 M PCTE MACNORK

X'FC* M PCTE SIZE

WORK AREA FOR THE
ATTACH MACRO

LENGTH OF AM PCT ENTRY

Appendix A. Data Area Descriptions A-9

AM_REDE
Common name:

Macro ID:

DSFXT name:

Created by:

Location:

Pointed to by:

Responder Directory Entry (Common Storage)

S@C@GWA

AM_REDE

Association Manager Processor (S@C9123B or S@C9128)

ECSA subpool 241 and key 8

An index value gives the offset to an address within the REDII data area that contains
a pointer to it.

AM_PCTE_REDEIX field in an associated PCTE data area contains the index value.

Serialization is performed by using ENQ and DEQ. The major name used is
"ASSOCMGR" and the minor name used is the address of the REDE entry.

Contains information that relates to a responder initiated by the Association Manager

Type Length Name Description

Serialization:

Function:

Offsets

0 (0) CHARACTER 4 AM REDE ACRO ANACRONYM 'REDE*

4 (4) FIXED 4 AM_REDE_INDEX INDEX VALUE FOR THIS
ENTRY

8 (8) BITSTRING

.1

1

1 AM REDE_TYPE
REDE_JOB

REDE_TASK

RESPONDER TYPE

:RESPONDER IS A
STARTED JOB

:RESPONDER IS AN
ATTACHED TASK

9 (9) CHARACTER 4 AM REDE SUBSYS SUBSYSTEM NAME

13 CD) CHARACTER 8 AM_REDE_JOBNAME MVS JOBNAME

21 (15) CHARACTER 8 AM_REDE_JOBID MVS JOB Id

13 CD) CHARACTER 8 AM REDE TASK MVS TASK NAME

21 (15) CHARACTER 3 Reserved

24 (18) A-ADDRESS 4 AM_REDE_TASK_TCB MVS TASK TCB ADDRESS

28 (IC) CHARACTER 1 Reserved

29 (ID) CHARACTER 1 AM_REDE_ATITLE_L APPLICATION TITLE
LENGTH

30 (IE) CHARACTER 32 AM_REDE_ATITLE APPLICATION TITLE

62 (3E) CHARACTER 2 Reserved

64 (40) A-ADDRESS 4 AM REDE APDE APD ENTRY

68 (44) A-ADDRESS 4 AM_REDE_POINTER POINTER TO DATA IN
PRIVATE STORE

72 (48) A-ADDRESS 4 AM_REDE_ASCB ASCB ADDRESS FOR
A-ENDPOINT-GIVE

76 (4C) A-ADDRESS 4 AM_REDE_TCB TCB ADDRESS FOR
A-ENDPOINT-GIVE

80 (50) A-ADDRESS 4 AM_REDE_UECB ADDRESS OF USERS ECB
TO BE

84 (54) FIXED 4 AM_REDE_PCTEIX ASSOCIATED AM PCT
ENTRY INDEX

A-IO SL'PERLINK for MVS Logic Library Volume 2; Control Functional Unit SI-0182

Offsets Type

88 (58) A-ADDRESS

EQUATE

Cray Research, Inc.

Length Name

4 AM REDE REDG

X*5C' AM REDE SIZE

Description

ADDRESS OF QUEUE
MANAGEMENT CELL

LENGTH OF AM_REDE
ENTRY

Appendix A. Data Area Deseriptions A-11

AM REDH

Common name: Responder Directory Header

Macro ID: S@C@G\VA

DSlXTname: AM_REDII

Created by: Association Manager (S@C9000)

ECSA Subpool 241 and key 8

AM GWA RED field of the AM GWA data area

Location:

Pointed to by

Serialization:

Function:

Offsets

Serialization is performed using ENQ and DEQ. The major name used is
"ASSOCMGR" and the minor name used is the address of the rcsponder directory
header.

Contains a count of the current and maximum number of REDE entries in the
directory. It also contains an indexed list of pointers to the entries such that an index
value of 1 refers to the first respondcrs pointer, an index value of 2 refers to the second
responders pointer and so" on.

Type Length Name Description

0 (0) CHARACTER 4 AM_ REDH_ ACRO ANACRONYM 'REDH'

4 (4) CHARACTER 4 Reserved

8 (8) STRUCTURE 0 ALIGN ON DOUBLE NORD
BOUNDRY

8 (8) FIXED 4 AM_REDH_ MAX# MAXIMUM NUMBER OF
ENTRIES

12 (C) FIXED 4 AM_REDH_ CUR# CURRENT NUMBER OF
ENTRIES

16 (10) FIXED 4 AM_REDH..LOCK PCTE THAT LAST ENQ'ED
UPON REDH

20 (14) FIXED 4 AM_REDH..CPGOL CELL POOL ID FOR RED
ELEMENTS

24 (18) A-ADDRESS 4 AM_REDH..EBASE START OF LIST OF ENTRY
ADDRESS'S

A-I2 SL'PERLINK for iVIVS Logic Library Volume 2: Control Functional Unit Sl-0182

AM_REDQ
Common name; Responder Directory Entry (Queue Management Cell)

Macro ID: S@C@GWA

DSECTname: AM_REDQ

Created by: Association Manager Processor (S@C9123B or S@C9128)

Location: ECSA subpool 241 and key 8

Pointed to by: AM_REDE_REDG field in the REDE entry that owns the queue

Serialization: Compare Double and Swap (CDS) serialization techniques are used here

Function:

Offsets

Contains the status of the Associated Responder Directory Entry and the headers for
the Request queue and Work queue which are used to contain requests for the
associated responder

Type Length Name Description

0 CO) BITSTRIN6 1 AM_REDQ RQAFLAGS RESPONDER STATUS FLAGS

1 NOTIFY_USER BIT 0 SET IF NOTIFY
REQUIRED

1 FLAG LISTEN PD

1. FLAG LISTEN

1. . FLAG_STOP_DATA BITS 1 ~ 7ARE SET
TO

1. . . FLAG_TERM_G INDICATE THE STATUS
OF

. . .1 FLAG TERM Q THE CONNECTION

. .1 FLAG ABORT

.1 FLAG_FAILURE

1 (1) CHARACTER 1 AM_REDQ_FLAG2 MORE RESPONDER STATUS
FLAGS

1 FLAG2_DELETE_ANY DELETE-ANY REQUEST
PERFORMED

.1 FLAG2_CL0NING RESPONDER BEING
CLONED

2 (2) FIXED 2 AM_REDQ_RQACNT REQUEST QUEUE ;
-

ELEMENT COUNT

4 (4) A-ADDRESS 4 AM_REDQ_RQATAIL REQUEST QUEUE :
BACKWARD LINK

8 (8) A-ADDRESS 4 AM_REDQ_NQAHEAD MORK QUEUE : FORMARD
LINK

12 (C) A-ADDRESS 4 AM_REDQ_NQATAIL HORK QUEUE :
BACKWARD LINK

16 (10) BITSTRING 24 (UNDEFINED)

EQUATE X«28* AM_REDQ_SIZE LENGTH OF AM_REDQ
ENTRY

Cray Research, inc. Appendix A. Data Area Descriptions A-13

AM REDE PRIVATE

Common name;

Macro ID:

DSECT name:

Created by:

Location:

Pointed to by:

Seriali/.ation:

Function:

Offsets

Respondcr Directory Entry (Private Storage)

S@C@GWA

AM_REDE_PRIVATE

Association Manager Processor (S@C9123B and S@C9128)

Private storage subpool 0 and key 8 (below i6M line)

AM_REDE_POINTER

None

Contains identification and authentication information relating to the associated
responder. 'i'his information is in private storage so that access to it is restriced to the
Association Manager's address space.

Type Length Name Description

0 (0) FIXED 2 AM._REDE_.USERL LENGTH OF USER
IDIDENTIFIER

2 (2) CHARACTER 8 AM._REDE_ USER USER IDENTIFIER
(IDENTl)

10 (A) FIXED 2 AM..REDE_.USACL LENGTH OF ACCOUNT
INFORMATION

12 (C) CHARACTER 70 AM..REDE_ USAC ACCOUNT INFORMATION
(IDENT2)

82 (52) FIXED 2 AM._REDE_ GROUPL LENGTH OF GROUP
IDENTIFIER

8^ (54) CHARACTER 8 AM..REDE_ GROUP GROUP IDENTIFIER
(IDENT3)

92 (5C) FIXED 2 AM._REDE_ PASSL LENGTH OF USER
PASSWORD

(5E) CHARACTER 8 AM._REDE_.PASS USER PASSWORD
(AUTHl)

102 (66) BITSTRING 1 AM. REDE AUTH2 L LENGTH OF AUTH2

103 (67) CHARACTER 16 AM._REDE_.AUTH2 KK UNDEFINED **
(AUTH2)

119 (77) BITSTRING 1 AM. REDE AUTH3 L LENGTH OF AUTH3

120 (78) CHARACTER 16 AM._REDE_.AUTH3 ** UNDEFINED **
(AUTH3)

136 (88) BITSTRING 1 AM._REDE_.PSAPL LENGTH OF INITIATORS
PSAP ID

137 (89) CHARACTER 16 AM REDE PSAP INITIATORS PSAP ID

153 (99) CHARACTER 2 AM. REDE MF INITIATORS M/F ID

155 (9B) BITSTRING 1 AM._REDE_.TEXT_L A-ASSOCIATE TEXT
LENGTH

156 (9C) CHARACTER 255 AM._REDE_.TEXT A-ASSOCIATE TEXT (SAVE
AREA)

411 (19B) BITSTRING 1 AM. REDE R TEXT L RESOLVED TEXT LENGTH

412 (19C) CHARACTER 255 AM._REDE_.R_TEXT RESOLVED TEXT (SAVE
AREA)

A-I4 SL'PERLINK for .MVS Logic Library Volume 2: Control Functional Unit SI-0I82

Offsets Type Length Name Description
EQUATE X»29B» AM_REDE_PRIVATE LENGTH OF PRIVATE AREA

LTH

Cray Research, Inc. Appendix A. Data Area Descriptions A-15

LP LOGE

Common name: Log Element

Macro ID: S@@LOGE

DSECT name: LP_LOGE

Created by: Log Processor initialization routine (S@C2210)

Location: Subpool 241, key 8

Pointed to by: SSVT

Serialization: None

Function: Holds information on a log message

Offsets Type Length Name Description

0 CO) A-ADDRESS 4 LP LOGEFND FORHARD CHAIN CLOGE*
- NORK Q)

LP- LOGEID ANACRONYM 'LOGE'

4 (4) A-ADDRESS 4 LP LOGEBND BACKMARD CHAIN

8 (8) A-ADDRESS 4 LP LOGEBLK NEXT MESSAGE IN A BLOCK
(OR 0)

12 (C) STRUCTURE 0 ALIGN FOR WTO

EQUATE X*4A* LP LOGE MSGLENM MAXIMUM VALUE OF
LP LOGE MSGLEN

12 (C) BITSTRING 2 LP LOGE MSGLEN LENGTH OF MESSAGE TEXT
CONTAINED

14 (E) CHARACTER 2 FOR WTO

16 (10) CHARACTER 0 LP LOGEMID SUPERLINK MESSAGE
IDENTIFIER

16 (10) CHARACTER 2 LP LOGEMID GLBL GLOBAL MESSAGE PREFIX
Sa/SL

18 (12) CHARACTER 2 LP LOGEMID COMP COMPONENT ID (EG
UV=0PT10NS)

20 (14) CHARACTER 4 LP LOGEMID NUM MESSAGE NUMBER

24 (18) CHARACTER 1 LP LOGEMID TYPE CLASSIFICATION OF THE
MESSAGE

11. . 1. .1 LP LOGEMID TYPEl '1' - INFORMATION
111. .11. LP LOGEMID TYPEW 'W' - WARNING

11.. .1.1 LP LOGEMID TYPEE 'E' - ERROR

111. ..1. LP LOGEMID TYPES 'S' - SEVERE

11.. .1.. LP LOGEMID TYPED 'D' - DISASTER

25 (19) CHARACTER 1 LP LOGEMID BLK EYE CATCHER FOR
BLOCKED MESSAGES

.1.1 11. . LP LOGEMID BLKC •*' - THIS LOGE IS A
CONTINUATION OF
PREVIOUS LOGE

.1 LP LOGEMID BLKS ' ' - NORMAL SETTING
OF LP LOGEMID BLK

EQUATE 60 LP LOGE MSGTEXTM MAX MSG TEXT

26 (lA) CHARACTER 60 IP- LOGE_MSGTEXT MESSAGE TEXT

86 (56) BITSTRING

A-16 SL'PERLINK for MVS Logic Library Volume 2: Control Functional Unit

SPACE FOR ROUTE AND
DESCRIPTOR

SI-0182

Offsets Type Length Name Description

90 (5A) BITSTRING 1 LP_LOGE_.ROUTCDE AN INDICATION OF TO
NHERE THE

1 LP_LOGE..SLLOG OUTPUT TO SUPERLINK
LOG

1. LP_LOGE_.MVSLOG OUTPUT TO MVS SYSTEM
LOG

91 (5B) CHARACTER 1 Reserved

92 (5C) STRUCTURE 0 ENSURE CPOOL ALIGNS

EQUATE X*5C 1 LP_LOGE_.LEN LENGTH OF LOG ELEMENT

EQUATE 300 LP_LOGE_ COUNT COUNT OF LOG ELEMENTS
IN THE POOL
(TOTAL-SECONDARIES=0)

EQUATE 2A1

Cray Research, Inc.

LP LOGE SPOOL SUBPOOL NUMBER FOR
STORAGE

Appendix A. Data Area Descriptions A-I7

MH ME

Common name: Message Entry

iMacro ID: S@@MOMT

DSiECTname: MII_ME

Loaded by: SLCN root module S@CCOOOO

Location: SLCN private storage

Pointed to by: MH_MIE_MSGADDR field in MH_MIE

Serialization: None

Function: Contains the text for a specific message. It also includes a count of variables and the
offset and length of each

Offsets Type Length Name Description

0 (0) CHARACTER 4 MH_ME_.MSGNUM MESSAGE NUMBER (IN
EBCDIC)

4 (4) CHARACTER 1 MH_ME_.SEVERITY MESSAGE SEVERITY
INDICATOR

5 (5) A-ADDRESS 1 MH_ME_.NOMSGS NUMBER OF LINES IN
MESSAGE

6 (6) A-ADDRESS 2 MH_ME_.MSGLEN LENGTH OF MESSAGE TEXT
IN LINE

8 (8) A-ADDRESS 1 MH_ME_.NOVARS NUMBER OF VARIABLES IN
THIS LINE

9 (9) A-ADDRESS 1 MH_ME_.VAROFF VARIABLE OFFSET WITHIN
MSGTEXT

10 (A) A-ADDRESS 1 MH_ME_.VARLTH LENGTH OF VARIABLE IN
MSGTEXT

11 (B) STRUCTURE 0 MH ME MSGTEXT MESSAGE TEXT STARTS
HERE

.VIS SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit 81-0182

MH MI

Common name: Message Index

Macro ID: S@@MOMT

DSECTname: MH_MI

Loaded by: SLCN root module S@CCOOOO

Location: SLCN private storage

Pointed to by: SC_SSVT_MSGTAB field of the SC_SSVT

Serialization: None

Function: Provides the number of entries in the message index and the size of each index entry.

Offsets Type Length Name Description

0 (0) CHARACTER 2 MH_MI_ID CONTROL BLOCK ACRONYM
- MI

2 (2) CHARACTER 2 Reserved

4 (4) A-ADDRESS 4 MH_MI_NOENTRY NUMBER OF ENTRIES
WITHIN INDEX

8 (8) A-ADDRESS 4 MH_MI_ENTRYLEN LENGTH OF EACH INDEX
ENTRY

EQUATE X'C» MH_MI_SIZE LENGTH OF INDEX HEADER

Cray Research, Inc. .Appendix A. Data Area Descriptions A-19

MH_MIE

Common name: Message Index Entry

Macro ID: S@@MOMT

DSECTname: MH_MIE

Loaded by: SLCN root module S@CCOOOO

Location: SLCN private storage

Pointed to by: An offset within the message index

Serialization: None

Function: Provides a pointer to the message entry for a spxecific message

OffsetsType Length Name Description

0 (0) A-ADDRESS 4 MH_MIE_MSGNUM MESSAGE
BINARY)

NUMBER CIN

4 (4) A-ADDRESS 4 MH_MIE_MSGADDR ADDRESS
ENTRY

OF THE MESSAGE

EQUATE X*8' MH MIE SIZE LENGTH OF INDEX ENTRY

A-20 SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit SI-0182

MI MACB

Common name:

iMacro ID:

DSECT name:

Created by:

Location:

Pointed to by:

Serialization:

Function:

Offsets

Management Interface Association Control Block

S@CIMACB

MI_MACB

S@CIOOOO

SLCN private storage

MI_MICT

None

Contains all the information required by the connection manager subtask to manage
a sinple manappmpnt intprfarp ronnpptinn

Description

a single management interface connection

Type

0 (0) CHARACTER 4 MI _MACB__ID •MACB' ACRONYM

4 (4) CHARACTER 8 MI _MACB..NAME MI CONNECTION NAME

12 (C) A-ADDRESS 4 MI _MACB__SSVT ~> SC_SSVT

16 (10) A-ADDRESS 4 MI _MACB__MICT ~> MI_MICT

20 (14) A-ADDRESS 4 MI _MACB_.IPARMS ~> INIT. PARMS OFF THE
CIOT

24 (18) BITSTRING 1 MI _MACB..TITLELN LENGTH OF TITLE FIELD
CONTENTS

25 (19) CHARACTER. 32 MI _MACB_.TITLE application entity
TITLE FIELD

57 (39) BITSTRING 1 MI _MACB_.MFIDLN CALLED MFID LENGTH
FIELD

58 (3A) CHARACTER 2 MI _MACB._MFID CALLED MFID FIELD

60 (3C) FIXED 2 MI _MACB_.CONNID CONNECTION IDENTIFIER

62 (3E) FIXED 2 MI _MACB_.PDUSIZE MIPDUSIZE IN NORK AREA

64 (40) A-ADDRESS 4 MI._MACB_.ENDSCAN -> END OF MIPDU SCAN
ADDRESS

68 (44) A-ADDRESS 4 MI _MACB..HORKAREA -> WORK BUFFER FOR CASE
DATA

EQUATE X»2000' MI._MACB_.HORKSIZE SIZE OF THE WORK BUFFER

72 (48) A-ADDRESS 4 MI.

MI.

MACB

MACB

.NORKMRQE

.HORKPOOL

-> WORK BUFFER FOR
MIPDU-DECODE

SUBPOOL FOR THE WORK
BUFFER

76 (4C) BITSTRING 1 MI MACB STATUS STATUS OF THIS MI MACB

1 MI._MACB_.ACTIVE MANAGER SUBTASK IS
ACTIVE

.1 MI._MACB_.TERM MANAGER SUBTASK IS
TERMINATING

. .1 MI._MACB_.LOGON CONNECTION IS LOGGED
ON

CONNECTION LOGOFF
PENDING

. . .1 MI._MACB_.LOGOFF

1. . . MI._MACB_.REINS SUBTASK IS TO BE
RE-INSTATED

Cray Research, Inc. Appendix A. Data Area Descriptions A-21

Offsets Type

1..

1.

Length Name

MI_MACB_INAIT

MI MACB CASEDATA

Description
SUBTASK IN INITIAL
OPERATOR WAIT

CASE DATA PRESENT FOR
PROCESSING

77 (AD) BITSTRING 1 MI_MACB_STATUS2 STATUS OF THIS MI MACB
#2

1. . . MI_MACB_NOWAIT NO CENTRAL WAIT
REQUIRED

.1 MI_MACB_NORECV NO CENTRAL RECEIVE
✓ REQUIRED

. .1 MI_MACB_TRACE TRACE ACTIVE FOR THIS
MI MACB

...1 MI_MACB_XECBPOST EXTERNAL ECB WAS
POSTED

1. . . MI_MACB_REQMRQE RE-QUEUE CURRENT
MI_MRQE

78 (AE) BITSTRING 1 MI_MACB_REQUEST REQUEST FOR THIS
MI MACB

1 MI_MACB_RTERM SUBTASK IS TO
TERMINATE

79 (AF) BITSTRING 1 MI_MACB_RTYPE CLARIFICATION OF TERM
REQ. TYPE

MI_MACB_TNORMAL TERMINATE NORMAL
REQUEST

1 MI_MACB_TQUICK TERMINATE QUICK
REQUEST

.1. MI_MACB_TABORT TERMINATE ABORT
REQUEST

80 (50)

81 (51)

BITSTRING 1 MI MACB INEVENT

MI MACB IMILGRQ

. . .1 MI_MACB_IMIOFRQ

. .1. MI MACB ILGRQ

. .11 MI MACB IMILGRSP

.1. . MI MACB IMILGRSN

.1.1 MI_MACB_ILGRSP

.11. MI MACB ILGRSN

.111 MI MACB IMILFRQ
1. . . MI MACB ILFRQ

1. .1 MI MACB IMILFRSP

1.1. MI MACB IMILFRSN

1.11 MI MACB ILFRSP

11. . MI MACB ILFRSN

11.1 MI MACB IMIABRQ

111. MI MACB_IABRT
1111 MI MACB IPBRT

• • • • MI MACB IMICMRQ

. . .1 MI MACB ICMRQ

. .1. MI MACB IMIMGRQ

. .11 MI MACB IMGRQ

. .11 MI MACB MAXINEV

BITSTRING

. .1

.1.

1 MI_MACB_OUTEVENT

MI_MACB_OLGRQ
MI_MACB_OAOFFRQ
MI MACB OMILGCNP

A-22 SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit

CURRENT INPUT EVENT IN
PROCESS

MAXIMUM INPUT EVENT
NUMBER

CURRENT OUTPUT EVENT
IN PROCESS

81-0182

Offsets Length Name DescriptionType

. .11 MI MACB OMILGCNN

.1.. MI_MACB_OLFRQ

.1.1 MI MACB OMILFIN

.11. MI MACB OMILFCNP

.111 MI MACB OMILFCNN

1... MI MACB OABRT

1. .1 MI MACB OMIABIN

1.1. MI MACB OMIPAIN

1.11 MI_MACB_OLFRSP
11.. MI MACB OLFRSN

11.1 MI MACB OMILGIN

111. MI MACB OLGRSP

1111 MI MACB OLGRSN

.. .1 • • • • MI MACB OCMRQ

.. .1 • • • X MI MACB OMICMIN

.. .1 . .1. MI MACB OMGRQ

.. .1 . .11 MI MACB OMIMGIN

82 (52)

83 (53)

84 (54)

Cray Research, Inc.

BITSTRING

BITSTRING

. .1

. .11

.1.

.1.

.11

.11

BITSTRING

. .1

. .11

.1.

.1.

.11

.111

1. .

1. .

1.1

I.11

II.

11.

Ill

1111

1

1

1

1

1

1

1

I

II

1.

1.

11

1 .111

1 .111

1 MI MACB STATE

1 MI MACB OLDSTATE

MI

MI

MI

MI

MI

MI

MI

MI

MI

MI

MI

MI

MI

MI

MI

MI

MI

MI

MI

MI

MI

MI

MI

MI

MI

MI

MI

MI

MI

MI

MI

MACB

MACB

MACB

MACB

MACB

MACB

MACB.
MACB

MACB

MACB

MACB

MACB

MACB

MACB

MACB

MACB

MACB

MACB

.MACB.
MACB

MACB

MACB

MACB

MACB

MACB

MACB.
MACB

MACB

MACB

MACB

MACB

STATE_0
STATE_1
STATE_2
STATE_3
STATE_A
STATE_5
STATE_6
MAXSTATE

ACT

ACT_U1
ACT_U2
ACT_U3
ACT_U4
ACT_U5
ACT_U6
ACT_U7
ACT_U8
ACT_U9
ACT_U10
ACT_U11
ACT_A1
ACT_A2
ACT_A3
ACT_A4
ACT_A5
ACT_A6
ACT_A7
ACT_A8
ACT_A9
ACT_A10
ACT II

MI_MACB_ACT_I2

MI MACB MAXACT

CURRENT STATE OF THIS
MI MACB

OLD STATE FOR
TRACEBACK

STATE NUMBER STAO

STATE NUMBER STAl

STATE NUMBER STA2

STATE NUMBER STA3

STATE NUMBER STA4

STATE NUMBER STA5

STATE NUMBER STA6

MAXIMUM STATE NUMBER

ACTION TO BE PERFORMED

ACTION NUMBER U1

ACTION NUMBER U2

ACTION NUMBER U3

ACTION NUMBER U4

ACTION NUMBER U5

ACTION NUMBER U6

ACTION NUMBER U7

ACTION NUMBER U8

ACTION NUMBER U9

ACTION NUMBER UIO

ACTION NUMBER Ull

ACTION NUMBER A1

ACTION NUMBER A2

ACTION NUMBER A3

ACTION NUMBER A4

ACTION NUMBER A5

ACTION NUMBER A6

ACTION NUMBER A7

ACTION NUMBER A8

ACTION NUMBER A9

ACTION NUMBER AlO
XKINTERNAL** ACTION
NUMBER II

XXINTERNAL** ACTION
NUMBER 12

MAXIMUM ACTION NUMBER

Appendix A. Data Area Descriptions A-23

Offsets

85 (55)

86 (56)

Type

BITSTRING

FIXED

1.1

Length Name Description

RESERVED FOR LATER USE

2 Ml MACB_iBADCASE i CONSECUTIVE BAD
A-RECEIVES

Ml MACB_MAXRECVt MAXIMUM SUCH NUMBER
ALLOWED

88 (58) A-ADDRESS 4 Ml._MACB_JCB ~> TCB OF MANAGER
SUBTASK

92 (5C) FIXED 4 Ml._MACB_.EXTECB EXTERNAL ECB FOR THIS
CONNECTION

96 (60) FIXED 4 Ml._MACB._PECB ECB POSTED - SUBTASK
ENDED

100 (64) FIXED 4 Ml._MACB__1ECB ECB POSTED SUBTASK
INITIALISED

104 (68) STRUCTURE 8 Ml._MACB..PARMLIST IMBEDDED PARAMETER
LIST

112 (70) STRUCTURE 136 MI _MACB_.ARE IMBEDDED APPLICATION
REQ ELT

248 (F8) STRUCTURE 24 Ml._MACB..PRB IMBEDDED PRES. REQ
BUFFERS

272 (110) STRUCTURE 36 Ml._MACB..PRBEMIF IMBEDDED PRES. BUFF
EL(M 1/F)

308 (134) STRUCTURE 36 IMBEDDED PRES. BUFF
EL(CASE)

1. Ml MACB tPRBE # OF PRBE

.11 Ml._MACB__PRB_LEN LENGTH OF PRB/PRBE
DEFN.

344 (158) STRUCTURE 24 Ml MACB PRBABRT IMBEDDED ABORT PRB

368 (170) STRUCTURE 36 Ml._MACB..PRBEABRT IMBEDDED ABORT PRBE
EL(M 1/F)

ADA (194) STRUCTURE 36 IMBEDDED ABORT PRBE
EL(CASE)

.... ..1. Ml MACB iPRBEAB i OF PRBE ELTS

.11 Ml._MACB_PRBA_LEN LENGTH OF PRB/PRBE
ABORT DEFN

A40 (1B8) STRUCTURE 20 Ml._MACB_PRC IMBEDDED PRES. CONTEXT
DATA

A6 0 (ICC) STRUCTURE 12 Ml._MACB_PRCEM1F IMBEDDED PRES. CTXT
EL(M 1/F)

472 (1D8) STRUCTURE 12 IMBEDDED PRES. CTXT
EL(CASE)

1. Ml MACB tPRCE t OF PRCE

..1. 11.. Ml._MACB_PRC_LEN LENGTH OF PRC/PRCE
DEFN.

484 (1E4) A-ADDRESS 4 . MI _MACB^WORKQ_F FIFO ORDERED REQUEST
QUEUE

488 (1E8) A-ADDRESS 4 MI _MACB_WORKQ_L LIFO ORDERED REQUEST
QUEUE

492 (lEC) Y-ADDRESS 2 MI _MACB_SESSREQ SESSION REQUEST
PARAMETERS

494 (lEE) BITSTRING 1 Ml,_MACB_PRESREQ PRESENTATION REQUEST
PARAMETERS

495 (lEF) BITSTRING 1 RESERVED FOR LATER USE

^96 (IFO) CHARACTER 8 Ml MACB CNTXNAME CONTEXT NAME TO BE USED

A-24 SUPERLINK for MVS Logic Library Volume 2; Control Functional Unit SI-0182

Offsets Type Length Name Description

504 (1F8) FIXED 4 MI_MACB_ TIMER TIMER INTERVAL FOR
STIMERM

508 (IFC) FIXED 4 MI_MACB_ TIMERECB ECB POSTED BY INTERVAL
TIMER

512 (200) FIXED 4 MI_MACB_.QOS QUALITY OF SERVICE
PARAMETERS

516 (204) FIXED 4 RESERVED FOR LATER USE

EQUATE X*208* MI_MACB_.SIZE LENGTH OF MI_MACB

EQUATE 0 MI_MACB_.SPOOL SUBPOOL TO USE

Cray Research, Inc. Appendix A. Data Area Descriptions A-2S

MI MICT

A-26

Common name: Management Interface Control Table

Macro ID:

DSECT name;

Created by:

Location:

Pointed to by:

Serialisation:

Function:

Offsets

S@CIMICT

MI_MICT

S@CIOOOO

SLCN private storage

SC_SSVT

None

This is the major control block of the management interface component. It describes
the state of the comoonent as a whole.
1 IU5 15 IIIUJUI UUlIlIUi UiUClk U1 lliC J

the state of the component as a whole.

Type Length Name

0 (0) CHARACTER 4 MI MICT ID •MICT' ACRONYM

4 (4) A-ADDRESS 4 MI MICT SSVT ~> SC_SSVT

8 (8) BITSTRING I MI MICT TITLELN LENGTH OF TITLE FIELD
CONTENTS

9 (9) CHARACTER 32 MI MICT TITLE APPLICATION ENTITY
TITLE FIELD

41 (29) BITSTRING 1 MI MICT STATUS STATUS OF THIS MI MICT

1 MI MICT TREND M I/F TERMINATION
PENDING

.1 MI MICT STILLACT M I/F SUBTASKS STILL
ACTIVE

. .1 MI MICT NODEFS NO MICOND
DEFINITINIONS EXIST

. . .1 MI MICT NONMIC NO MICON STATEMENT
PRESENT

1. .. MI MICT DETACHED SUBTASK ABORTIVE
DETACH DONE

42 (2A) BITSTRING 2 RESERVED FOR LATER USE

44 (2C) FIXED 4 MI MICT ELST MANAGEMENT INTERFACE

1. . MI MICT ELEN LENGTH OF A SINGLE
ENTRY

48 (30) FIXED 20 2ND AND SUBSEQUENT
ENTRIES

. . .1 1. . . MI MICT LEN LENGTH OF TOTAL LIST

11. MI_MICT_ENUM NUMBER OF ENTRIES

68 (44) FIXED 12 MI MICT BXLESCAN FARMS FOR BXLE SCAN OF
MI MACBS

80 (50) FIXED 4 MI MICT TERMECB M I/F TO TERMINATE ECB

MI MICT TERM N TERMINATE

NORMAL

1 MI MICT TERM Q TERMINATE

QUICK
1. MI MICT TERM A TERMINATE

ABORT

84 (54) FIXED 4 MI_MICT_WORKECB M I/F NORK-TO-DO-ECB

88 (58) FIXED 4 MI MICT SUBTECB CONN. MGR. SUBTASK
TERMINATED

SL'PERLINK for MVS Logic Library Volume 2: Control Functional Unit SI-0182

Offsets Type Length Name Description

92 (5C) FIXED 4 MI_MICT_CONNECB A CONNECTION HAS
LOGGED ON ECB

96 (60) A-ADDRESS 4 MI_MICT_MACBQ -> MI_MACB TABLE

100 (64) FIXED 4 MI_MICT_MACBN t MI_MACBS IN THE TABLE

104 (68) FIXED 4 MI_MICT_MACBL LENGTH OF MHOLE
MI_MACB TABLE

108 (6C) A-ADDRESS 4 MI_MICT_MIFIQ_L INPUT QUEUE (LIFO
ORDER)

112 (70) A-ADDRESS 4 MI_MICT_MIF,IQ_F INPUT QUEUE (FIFO
ORDER)

116 (74) A-ADDRESS 4 MI_MICT_MIFOQ_L OUTPUT QUEUE (LIFO
ORDER)

120 (78) A-ADDRESS 4 MI_MICT_MIFOQ_F OUTPUT QUEUE (FIFO
ORDER)

124 (7C) BITSTRING 4 RESERVED FOR LATER USE

128 (80) STRUCTURE 0 ENSURE NE'RE MULTIPLE
OF DNORD

EQUATE X»80' MI_MICT_SI2E LENGTH OF MI_MICT

EQUATE 0 MI_MICT_SPOOL SUBPOOL TO USE

Cray Research, Inc. Appendix A. Data Area Descriptions A-27

MI_MRQE
Common name: Management Interface Request Element

Macro ID: S@CIMRQE

DSI-XTname: MI_MRQE

Created by:

Location:

Pointed to by:

Serialization:

Function:

Components of SLCN wishing to communicate with the management interface
component (such as the Product Operator component)

SLCN private storage

Request block chained from a queue anchored to MI_MICT or MI_MACB

None

Conveys requests from components of SLCN to the Management Interface
component.

Offsets Type Length Name Description

0 (0) CHARACTER A MI_MRQE_ID •MRQE* ACRONYM

A (A) A-ADDRESS A MI_MRQE_NEXT —> NEXT MI MRQE ON
CHAIN

8 (8) FIXED A MI_MRQE_SIZE SIZE OF MI.MRQE

12 (C) FIXED 4 MI_MRQE_SUBPOOL SUBPOOL CONTAINING THE
MI_MRQE

16 (10) CHARACTER 8 MI_MRQE_CONAME TARGET/SOURCE
CONNECTION NAME

2A (18) BITSTRING 1 MI_MRQE_REQUEST REQUEST TO BE
PERFORMED

MI_MRQE_RLQGON LOGON REQUEST
MI_MRQE_RLOGOFF LOGOFF REQUEST
MI_MRQE_RLOFFER LOGON OFFER REQUEST
MI_MRQE_RCOMMAND COMMAND REQUEST
MI_MRQE_RMESSAGE MESSAGE REQUEST
MI_MRQE_ICOMMAND COMMAND INDICATION
MI_MRQE_IMESSAGE MESSAGE INDICATION
MI_MRQE_RSTART START REQUEST
MI_MRQE_ILOGOFF LOGOFF INDICATION
MI_MRQE_CLOGOFF LOGOFF CONFIRMATION
MI_MRQE_ILOGON LOGON . INDICATION
MI_MRQE_CLOGON LOGON CONFIRMATION
MI_MRQE_IABORT ABORT INDICATION
MI_MRQE_IPBORT P-ABORT INDICATION
MI_MRQE_SLOGON LOGON RESPONSE
MI_MRQE_SLOGOFF LOGOFF RESPONSE
MI_MRQE_RABORT ABORT REQUEST
MI_MRQE_MAXREQ MAXIMUM PRESENTLY

ALLOCATED

25 (19)

26 CIA)

. .1

.1.

.11

1..

I.1

II.

Ill

1...

1. .1

1.1.

I.11

II..

II.1

III.

1111

BITSTRING

1

BITSTRING

MI_MRQE_RESULT
MI_MRQE_ACCEPTED
MI_MRQE_REJECTED

1 MI_MRQE_REASON
MI_MRQE_LGRSNORM

A-28 SL'PERLINK for MVS Logic Library Volume 2: Control Functional Unit

RESULT OF REQUEST
ACCEPTED

REJECTED

REASON FOR REJECTION

LOGON REQ NORMAL
LOGON

SI-0182

OffsetsType

.1

1.

.1

1.

.1

1.

LengthName

MI_MRQE

MI_MRQE

MI_MRQE.

MI_MRQE.

MI^MRQE

MI_MRQE.

MI_MRQE:

MI_MRQE

.LGRSUNSP

.LGRSPNSP

.LFRQNORM

.LFRQURGT

.LFRQUNSP

.LFRSNORM

.LFRSNCOM

LFRSUNSP

Description

UNSPECIFIEDREASON
nPROTOCOL

NOTSUPPORTED

LOGOFFREQNORMAL
LOGOFF

IfURGENT

LOGOFF

UNSPECIFIEDREASON

LOGOFFRESP.NORMAL
LOGOFF

Ifnot

COMPLETED

UNSPECIFIEDREASON

27(IB)BITSTRING1RESERVEDFORLATERUSE

28(IC)FIXEDAMI_MRQE_DATALENLENGTHOFDATAFIELD

EQUATEX'20'MI_MRQE_HLENLENGTHOFMIMRQE
FIXEDHEADER

EQUATE0MI_MRQE_SPOOLsuBPooLTOuse

32(20)STRUCTURE0MI_MRQE_DATASTARTOFDATAFIELD

Extensiontorequestelementforlogonrequest

32(20)BITSTRING1t1I_MRQEL0G0N_PV

MI_MRQELOGON_PVO

LOGONREQUEST
VERSION

LOGONREQUEST
VERSION-0

PROTOCOL

PROTOCOL

33(21)CHARACTER1Reserved

3A(22)FIXED2MI_MRQELOGON_UDLLOGONREQUEST
DATALENGTH

USER

36(2A)CHARACTER0MI_MRQELOGON_UDLOGONREQUEST
DATA

USER

EQUATEX*20*MI_MRQELOGON_XLNLENGTHOFFIXEDPART

EQUATEX*24'MI_MRQELOGON_LENLOGONREQUEST
HEADLENGTH

FIXED

EQUATEX'OA'MI_MRQELOGON_DLENLOGONRQEUEST
FIXEDLEN

DATA

Extensiontorequestelementforlogonoffer

32(20)STRUCTURE36SAMEASFORLOGONREQ

EQUATEX'20*MI_MRQELOFFR_XLNLENGTHOFFIXEDPART

EQUATEX*A4*MI_MRQELOFFR_LENLOGONOFFERFIXEDHEAD
LENGTH

EQUATEX*04'MI_MRQELOFFR_DLENLOGONOFFERDATAFIXED
LEN

CrayResearch,Inc.AppendixA.DataAreaDescriptionsA-29

Offsets Type Length Name Description

Extension to request element for logoff request

32 (20) BITSTRING 1 MI MRQELOGOF TYP LOGOFF REQUEST TYPE
MI MRQELOGQF TNO — NORMAL LOGOFF

REQUEST

1 MI MRQELQGOF TUR ~ URGENT LOGOFF
REQUEST

1. MI MRQELOGOF TUS — UNSPECIFIED LOGOFF
REQUEST

33 (21) CHARACTER 1 Reserved

34 (22) FIXED 2 MI MRQELOGOF UDL LOGOFF REQUEST USER
DATA LENGTH

36 (24) CHARACTER 0 MI MRQELOGOF UD LOGOFF REQUEST USER
DATA

EQUATE X»20» MI_MRQELOGOF_XLN LENGTH OF FIXED PART

EQUATE X'44» MI MRQELOGOF LEN LOGOFF REQUEST FIXED
HEAD LENGTH

EQUATE MI_MRQELOGOF_DLEN

Extension to request element for command request

LOGOFF REQUEST DATA
FIXED LEN

32 (20) BITSTRING 1 MI MRQECMD TYP COMMAND REQUEST TYPE
MI MRQECMD TFO ~ FORMATTED CMD

REQUEST

1 MI MRQECMD TUF — UNFORMATTED CMD
REQUEST

33 (21) BITSTRING 1 MI MRQECMD DST COMMAND DESTINATION

MI MRQECMD DOP ~ LOCAL OPERATING
SYSTEM

1 MI_MRQECMD_DSL ~ SUPERLINK

34 (22) BITSTRING 1 MI MRQECMD_SRF SOURCE TYPE FLAG FIELD

MI MRQECMD SRFNP SOURCE FIELD NOT
PRESENT

1 MI MRQECMD SRFTU SOURCE USER FIELD
PRESENT

1. MI MRQECMD SRFCN MCS CONSOLE ID FIELD
PRESENT

11 MI MRQECMD SRFRF REMOTE SYSTEM FORMAT
PRESENT

35 (23) CHARACTER 1 Reserved

36 (24) FIXED 0 MI_MRQECMDSOURCE START OF SOURCE FIELD

36 (24) BITSTRING 1 MI MRQECMD SRCC CONSOLE ID IF OPERATOR
ISSUED

36 (24) CHARACTER 8 MI_MRQECMD_SRC COMMAND SOURCE USER ID

36 (24) BITSTRING 1 MI MRQECMD SRRFL REMOTE FORMAT LENGTH
FIELD

37 (25) BITSTRING 20 MI MRQECMD SRRFD REMOTE FORMAT SOURCE
FIELD

A-30 SL'PERLINK for MVS Logic Library Volume 2: Control Functional L'nit 81-0182

OffsetsTypeLengthNameDescription

EQUATEX'17"MI_MRQECMDSRCLENLENGTHOFHHOLESRC
FIELD

57(39)CHARACTER1Reserved

68(A4)FIXED2MI_MRQECMD_UDLCMDREQUESTUSERDATA
LENGTH

70(A6)CHARACTER0MI_MRQECMD_UDCMDREQUESTUSERDATA

EQUATEX'20»MI_MRQECMD_XLNLENGTHOFFIXEDPART

EQUATEX'A6'MI_MRQECMD_LENCMDREQUESTFIXEDHEAD
LENGTH

EQUATEX'lCMI_MRQECMD_DLENCMDREQUESTDATAFIXED
LEN

Extensiontorequestelementforcommandrequest

32(20)BITSTRING1MIMRQEMSGTYPMESSAGEREQUESTTYPE

MIMRQEMSGTFO~FORMATTEDMSG
REQUEST

1MIMRQEMSGTUF~UNFORMATTEDMSG
REQUEST

33(21)BITSTRING1MIMRQEMSGDSTMESSAGEDESTINATION

MIMRQEMSGDSL~SUPERLINKLOG

1MIMRQEMSG_DMC~MASTERCONSOLE

1.MIMRQEMSGDML~MASTERCONSOLEAND
LOG

11MI_MRQEMSG_DOR~POINTOFORIGIN

3A(22)BITSTRING1MIMRQEMSGSRFSOURCETYPEFLAGFIELD

MIMRQEMSGSRFNPSOURCEFIELDNOT
PRESENT

1MIMRQEMSGSRFTUSOURCEUSERFIELD
PRESENT

1.MIMRQEMSGSRFCNMCSCONSOLEIDFIELD
PRESENT

11MIMRQEMSGSRFRFREMOTESYSTEMFORMAT
PRESENT

35(23)CHARACTER1Reserved

36(2A)FIXED0MI_MRQEMSGSOURCESTARTOFSOURCEFIELD

36(2A)BITSTRING1MIMRQEMSGSRCCCONSOLEIDIFOPERATOR
ISSUED

36(2A)CHARACTER8MI_MRQEMSG_SRCCOMMANDSOURCEUSERID

36(2A)BITSTRING1MIMRQEMSGSRRFLREMOTEFORMATLENGTH
FIELD

37(25)BITSTRING20MIMRQEMSGSRRFDREMOTEFORMATSOURCE
FIELD

EQUATEX»1A'MIMRQEMSGSRCLENLENGTHOFNHOLESRC
FIELD

57(39)CHARACTER3Reserved

70(A6)FIXED2MIMRQEMSGUDLMSG.REQUESTUSERDATA
LENGTH

72(A8)CHARACTER0MI_MRQEMSG_UDMSGREQUESTUSERDATA

EQUATEX'20*MI_MRQEMSG_XLNLENGTHOFFIXEDPART

CrayResearch,Inc.AppendixA.DataAreaDescriptionsA-31

OffsetsType

EQUATE

LengthNameDescription

MIMRQEMSG_LENMSGREQUESTFIXEDHEAD
LENGTH

EQUATEX'lE*MIMRQEMSG_DLENMSGREQUESTDATAFIXED
LEN

Extensiontorequestelementforabortrequest

32(20)FIXED2MI_MRQEABORT_UDLABORTREQUEST
DATALENG

USER

34(22)CHARACTER0MI_MRQEABORT_UDABORTREQUEST
DATA

USER

EQUATEX'48*MI_MRQEABORT_LENABORTREQUEST
HEADLENGTH

FIXED

EQUATEX'02*MIMRQEABORTDIE
N

ABORTRQEUEST
FIXEDLEN

DATA

A-32SUPERLINKforMVSLogicLibraryVolume2:ControlFunctionalUnit81-0182

SC CIOT

Common name: SUPERLINK Control Initialization Options Table

Macro ID: S@ClCIOT

DSECT name: SC_CIOT

Created by: S@CCOOOO

Location: Common service area

Pointed to by: SC_SSVT

Serialization: None

Function: Contains a digest of the contents of the SUPERLINK subsystem's parameter library
member.

Offsets Length Name DescriptionType

0 (0) CHARACTER 4 SC_.CIGTID CONTROL BLOCK ACRONYM
•ClOT*

EQUATE 241 SC._C10T_SPQQL SUBPOOL FOR lOTS,
INDIRECT AREAS

4 (4) CHARACTER

.11. ...1

1 SC.

SC.

.ClOTCHAR

C10TCHAR DFLT

SUBSYSTEM COMMAND
CHARACTER

DEFAULT FOR
SC_C10TCHAR

5 (5) CHARACTER 4 SC..ClOTSSM SUBSYSTEM SUPPORT
MODULE PREFIX

9 (9) CHARACTER 3 Reserved

12 (C) A-ADDRESS 4 SC..ClOTNlOT ~> SLNET OPTIONS
TABLE (NIOT)

16 (10) A-ADDRESS 4 SC..CIOTJIOT —> SLJP OPTIONS TABLE
(JIOT)

20 (14) A-ADDRESS 4 SC..CIGTVIOT ~> SLVT OPTIONS TABLE
(VIOT)

24 (18) A-ADDRESS 4 SC..CIGTGIGT ~> SLOP OPTIONS TABLE
(OlOT)

28 (IC) A-ADDRESS 4 SC..CIGTPFSS ~> AREA CONTAINING
FSS DETAILS

32 (20) A-ADDRESS 4 SC..CIGTPMIC ~> AREA CONTAINING
MIC DETAILS

36 (24) A-ADDRESS 4 SC..ClGTPATl ~> AREA CONTAINING
APPLICATION

EQUATE 10 SC..ClGTfJCL NUMBER OF JCL AREAS

40 (28) STRUCTURE 0 SC..CIGTPJCL START ~>S TO AREAS
CONTAINING

40 (28) FIXED 4 sc..CIGTPJCL. «01 ~> 1ST AREA
CONTAINING JCL

44 (2C) FIXED 4 sc..CIGTPJCL. #02 —> 2ND AREA
CONTAINING JCL

48 (30) FIXED 4 sc..CIGTPJCL. #03 ~> 3RD AREA
CONTAINING JCL

52 (3<i) FIXED

Cray Research, Inc.

4 SC CIOTPJCL i04 ~> 4TH AREA
CONTAINING JCL

Appendix A. Data Area Descriptions A-33

Offsets Type Length Name Description

56 (38) fixe6 4 SC_CIOTPJCL_ #05 ~> 5TH AREA
CONTAINING JCL

60 (3C) FIXED 4 SC_CIOTPJCL_.t06 ~> 6TH AREA
CONTAINING JCL

64 (40) FIXED 4 SC_CIOTPJCL_ *07 ~> 7TH AREA
CONTAINING JCL

68 (44) FIXED 4 SC_CIOTPJCL_.t08 --> 8TH AREA
CONTAINING JCL

72 (48) FIXED 4 SC_CIOTPJCL_ #09 ~> 9TH AREA
CONTAINING JCL

76 (4C) FIXED 4 SC_CIOTPJCL_ *10 —> lOTH AREA
CONTAINING JCL

80 (50) BITSTRING 1 SC_CIOTNOFS # SUPERLINK FSS
ADDRESS SPACES

81 (51) BITSTRING 1 SC_CIOTNMIC # SUPERLINK MI CONNECT
DETAILS

82 (52) BITSTRING 1 SC_CIOTNATI # SUPERLINK
APPLICATION TITLE

83 (53) STRUCTURE 0 SC_CIOTNJCL START JCL STATEMENT
COUNTS

83 (53) BITSTRING 1 SC_CIOTNJCL_ *01 # JCL STATEMENTS
AREA 01

IN

84 (54) BITSTRING 1 SC_CIOTNJCL_ #02 # JCL STATEMENTS
AREA 02

IN

85 (55) BITSTRING 1 SC_CIOTNJCL_ #03 # JCL STATEMENTS
AREA 03

IN

86 (56) BITSTRING 1 SC_CIOTNJCL_ #04 # JCL STATEMENTS
AREA 04

IN

87 (57) BITSTRING 1 SC_CIOTNJCL_ #05 # JCL STATEMENTS
AKEA 05

IN

88 (58) BITSTRING 1 SC_CIOTNJCL_ #06 # JCL STATEMENTS
AREA 06

IN

89 (59) BITSTRING 1 SC_CIOTNJCL_ *07 # JCL STATEMENTS
AREA 07

IN

90 (5A) BITSTRING 1 SC_CIOTNJCL_ #08 # JCL. STATEMENTS
AREA 08

IN

91 (5B) BITSTRING 1 SC_CIOTNJCL_ #09 # JCL STATEMENTS
AREA 09

IN

92 (5C) BITSTRING 1 SC_CIOTNJCL_ *10 # JCL STATEMENTS
AREA 10

IN

93 (5D) BITSTRING

1

1 SC_CIOTSLRM

SC_CIOTSLRM_ NR

FLAG BYTE - REMOTE
SERVICES

REMOTE SERVICES NOT
REQUIRED

94 (5E) CHARACTER 8 SC CIOT SRB FSS SRB

102 (66) CHARACTER 8 SC CIOT FRR FSS SRB FRR

110 (6E) CHARACTER 8 SC CIOT LTASK FSS LISTENER.TASK

118 (76) CHARACTER 8 SC_CIOTNMN SLNET OPTIONS MEMBER
NAME

126 (7E) CHARACTER 8 SC_CIOTJMN SLJP OPTIONS MEMBER
NAME

A-34 SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit 81-0182

Offsets Type Length Name Description

134 (86) CHARACTER 8 SC_CIOTVMN SLVT OPTIONS MEMBER
NAME

142 (8E) CHARACTER 8 SC_CIOTOMN SLOP OPTIONS MEMBER
NAME

150 (96) FIXED 2 SC_CIOTtS COUNT OF SITE MVS START
CMOS

152 (98) A-ADDRESS 4 SC_CIOTPS ~> AREA MVS START CMD
DETAILS

156 (9C) CHARACTER 8 SC_CIOTNAM SUPERLINK SUBSYSTEM
NAME

164 (A4) CHARACTER 50 SC_CIOT_SITE SITE NAME

214 (D6) BITSTRING 0 SC_CIOT_LOGRCDE LOG ROUTE CODES

214 (D6) BITSTRING 1 SC_CI0T_L0GRCDE1 1ST BYTE LOG ROUTE
CODES

215 (D7) BITSTRING 1 SC_CI0T_L0GRCDE2 2ND BYTE LOG ROUTE
CODES

216 (08) CHARACTER 8 SC_CIOT_CNMSGNME SUB-SYSTEM MESSAGE
TABLE NAME

224 (EO) CHARACTER 8 SC_CIOT_DAMSGNME DATA ACCESS MESSAGE
TABLE NAME

232 (E8) BITSTRING

1.1.

1 SC_CIOT_#CDTKS

SC_CIOT_#CDTKSD

MAX NUMBER OF DATA
ACCESS TASKS

DEFAULT FOR
SC_CIOT_#CDTKSD

233 (E9) BITSTRING 0 SC_CIOT_ROUTCDE WTO/WTOR ROUTE CODES

233 (E9) BITSTRING 1 SC_CI0T_R0UTCDE1 1ST BYTE WTO/WTOR
ROUTE CODES

234 (EA) BITSTRING 1 SC_CI0T_R0UTCDE2 2ND BYTE WTO/WTOR
ROUTE CODES

EQUATE X»8000» SC_CIOT_ROUTCDED DEFAULT ROUTCDES

235 (EB) BITSTRING

111. .11.

1 SC CIOT SVC#

SC_CIOT_SVC#D
SUPERLINK SVC NUMBER

DEFAULT SUPERLINK SVC
NUMBER

236 (EC) CHARACTER 1 SC_CIOT_MICATL LENGTH OF
SC_CIOT_MICAT

237 (ED) CHARACTER 32 SC_CIOT_MICAT APPLICATION ENTITY
TITLE (LOCAL)

269 (lOD) CHARACTER 1 Reserved

270 (lOE) STRUCTURE 0 SC_CIOT_PROCVECS Association Manager
vectors

270 (lOE) FIXED

1.1.

2 SC CIOT PROCINIT

SC_CIOT_PROCINID
MAX i INITIATORS

DEFAULT MAX #
INITIATORS

272 (110) FIXED

1.1.

2 SC CIOT PROCRESP

SC_CIOT_PROCRESD
. MAX # RESPONDERS

DEFAULT MAX #
RESPONDERS

274 (112) FIXED 2 SC_CIOT_PROCCELL MAX « CELLS

276 (ll'i)

Cray Research, Inc.

BITSTRING

1

1 SC_CIOT_PROCTRCE

SC_CI0T_TRACE1
SC CIOT TRACE2

ASSOC MGR TRACING AND
FLAGS

BASIC AM-TRACE TO WTO

BASIC AM-TRACE TO WTO
+ LOG

Appendix A. Data Area Descriptions A-35

Offsets Type

1...

.1.

1..

Length Name

SC_CI0T_TRACE3
SC_CI0T_TRACE4

SC_CIOT_MULTIPLE

SC CIOT SINGLE

Description

FULL AM-TRACE TO WTO

FULL AM-TRACE TO WTO
+ LOG

SKIP PSAP ID
VERIFICATION

DONT SKIP PSAP ID
VERIFICATION

277 (115) CHARACTER 0 SC.

1

I-
o

M
o

1

.CJUEXITS COMPANION JOB
EXITS

USER

277 (115) CHARACTER 8 SC..CIOT..DYNEXIT DYNAMIC ALLOCATION
EXIT

285 (IID) CHARACTER 8 SC CIOT FTAMEXIT PRE/POST FTAM EXIT

293 (125) CHARACTER 3 Reserved

296 (128) FIXED 4 SC CIOT OUTLIM SYSOUT OUTPUT LIMIT

EQUATE X*7A120 1

SC CIOT OUTLIMD
DEFAULT SYSOUT
LIMIT

OUTPUT

300 (12C) FIXED 2 SC CIOT PRBLK PRINT BLKSIZE

EQUATE X'lOOO' SC CIOT PRBLKD DEFAULT PRINT BLKSIZE

302 (12E) FIXED 2 SC CIOT PRLRECL PRINT LRECL

1... 1..1 SC CIOT PRLRECLD DEFAULT PRINT LRECL

304 (130) BITSTRING 1 SC CIOT PRRECFM PRINT RECFM

.1.1 .1.. sc..CIOT..PRRECFMD DEFAULT PRINT
(VBA)

RECFM

305 (131) CHARACTER 1 SC CIOT PRCLASS PRINT CLASS

11 1 SC CIOT PRCLASSD PRINT CLASS

306 (132) FIXED 2 SC CIOT PUBLK PUNCH BLKSIZE

308 (134) FIXED 2 SC ClbT PULRECL PUNCH LRECL

310 (136) BITSTRING 1 SC CIOT PURECFM PUNCH RECFM

311 (137) CHARACTER 1 SC CIOT PUCLASS PUNCH CLASS

312 (138) FIXED 2 SC CIOT PLBLK PLOT BLKSIZE

314 (13A) FIXED 2 SC CIOT PLLRECL PLOT LRECL

316 (13C) BITSTRING 1 SC CIOT PLRECFM PLOT RECFM

317 (13D) CHARACTER 1 SC CIOT PLCLASS PLOT CLASS

318 (13E) CHARACTER 0 sc..CIOT..AMUEXITS ASSOCIATION MANAGER
USER EXITS

318 (13E) CHARACTER 8 sc..CIOT..AMUXl VARIABLE VALIDATION
1

326 (146) CHARACTER 8 sc..CIOT..AMUX2 JCL VALIDATION
2

334 (14E) CHARACTER 8 sc..CIOT..AMUX3 JOB PROBLEM RESOLUTION
3

342 (156) CHARACTER 8 sc..CIOT..AMUX4 SECURITY
4

350 (15E) CHARACTER 8 sc..CIOT..AMUX5 (UNDEFINED)
5

358 (166) CHARACTER 8 sc..CIOT..AMUX6 (UNDEFINED)
6

366 (16E) BITSTRING 1 SC CIOT .SAFPARML

367 (16F) BITSTRiNG 60 sc..CIOT..SAFPARM INSTALLATION DATA FOR
S.A.F.

A-36 SL'PERLINK for MVS Logic Library Volume 2: Control Functional Unit Si-0182

Offsets Type Length Name Description

^27 (lAB) CHARACTER 0 SC_CIOT_DELIM JCL PARM DELIMITERS

<h27 ClAB) CHARACTER

11

1 SC CIOT DELIMS

SC_CIOT_DELIMSD
START

START DEFAULT

428 (lAC) CHARACTER

11.1

1 SC CIQT DELIME

SC_CIOT_DELIMED
END

END DEFAULT

429 (IAD) CHARACTER 1 Reserved

430 (lAE) STRUCTURE 0 SC_CIOT_JQBSVECS Association Manager
job scheduling vectors

430 (lAE) FIXED 2 SC_CIOT_AMTTIME ASSOCMGR TOTAL TIME
(SECS)

432 (IBO) FIXED 2 SC_CIOT_AMITIME ASSOC MGR INTERVAL
TIME (SECS)

434 (1B2) BITSTRING

1

.1

1 SC CIOT JACTION

SC CIOT JACT 0

SC_CIOT_JACT_C

ACTION TO BE TAKEN

PROMPT THE OPERATOR

CANCEL THE JOB

435 C1B3) BITSTRING 1 SC_CIOT_ACCOUNTL

436 (1B4) CHARACTER 70 SC_CIOT_ACCOUNT ACCOUNT

506 CIFA) BITSTRING 1 SC_CIOT_MSGLEVLL

507 (IFB) CHARACTER 5 SC_CIOT_MSGLEVL MSGLEVEL

512 (200) BITSTRING 1 SC_CIOT_PASSWRDL

513 (201) CHARACTER 8 SC_CIOT_PASSWRD PASSNORD

521 (209) BITSTRING 1 SC_CIOT_PROGNMEL

522 (20A) CHARACTER 20 SC_CIOT_PROGNME PROGRAMMER NAME

542 (21E) BITSTRING 1 SC_CIOT_NOTIFYL

543 (21F) CHARACTER 7 SC_CIOT_NOTIFY NOTIFY

550 (226) BITSTRING 1 SC_CIOT_PROCL

551 (227) CHARACTER 8 SC_CIOT_PROC PROC

559 (22F) BITSTRING 1 SC_CIOT_CLASSL

560 (230) CHARACTER 8 SC_CIOT_CLASS CLASS

568 (238) BITSTRING 1 SC_CIOT_USERL

569 (239) CHARACTER 7 SC_CIOT_USER USER

576 (240) BITSTRING 1 SC_CIOT_GROUPL

577 (241) CHARACTER 8 SC_CIOT_GROUP GROUP

585 (249) BITSTRING 1 SC_CIOT_REGIONL

586 (24A) CHARACTER 8 SC_CIOT_REGION REGION

594 (252) BITSTRING 1 SC_CIOT_MSGCLSSL

595 (253) CHARACTER 1 SC_CIOT_MSGCLSS MSGCLASS

596 (254) BITSTRING 1 SC_CI0T_DATA1L

597 (255) CHARACTER 70 SC_CI0T_DATA1 SITE DATA 1

667 (29B) BITSTRING 1 SC_CI0T_DATA2L

668 (29C) CHARACTER " 70 SC_CI0T_DATA2 SITE DATA 2

738 (2E2) BITSTRING 1 SC_CI0T_DATA3L

739 (2E3) CHARACTER 70 SC_CI0T_DATA3 SITE DATA 3

809 (329) BITSTRING 1 SC_CIOT_TIMEL

810 (32A) CHARACTER 7 SC CIOT TIME TIME

Cray Research, Inc. Appendix A. Data Area Descriptions A-37

Offsets Type Length Name Description

817 (331) BITSTRING 1 SC_CIOT_JOBNAMEL

818 (332) CHARACTER 8 SC_CIOT_JOBNAME JOBNAME

EQUATE X«33A» SC_CIOT_LEN LENGTH OF DSECT

A-38 SUPERLINK for IMVS Logic Library Volume 2; Control Functional Unit SI-0182

SC CWTATI

Common name: Application Titles Details

Macro ID: S@C1CI0T

DSECT name: SC_CIOTATI

Created by: Options Processor (S@C1000)

Location: CSA

Pointed to by: SC_CIOTPATI

Serialization: None

Function: Association Manager offer processing.

Offsets Type Length Name Description

0 (0) FIXED 4 SC_.CIOTATJ._QTPDU QUALITY OF SERVICE
TPDU SIZE

4 (4) BITSTRING 1 SC_.CIOTATI _ATL LENGTH OF SC CIOT AT

5 (5) CHARACTER 32 SC_.CIOTATI _AT APPLICATION ENTITY
TITLE (LOCAL)

37 (25) CHARACTER 8 SC..CIOTATI _MOD MODULE NAME

45 (2D) CHARACTER 8 SC..CIGTATI _CTXT PRESENTATION CONTEXT
NAME

53 (35) BITSTRING 1 SC..CIOTATI _QLVL QUALITY OF SERVICE
LEVEL

54 (36) BITSTRING 1 SC..CIOTATI._T FLAG BYTE - TYPE OF
APPLICATION

1 SC CIOTATI TT TASK

.1 SC..CIOTATI._TJ JOB

55 (37) BITSTRING 1 SC..CIOTATI._JCL INDEX t CORRESPONDING
JCL AREA

EQUATE X*38* SC..CIOTATI._LEN LENGTH OF DSECT

Cray Research, Inc. Appendix .A. Data Area Descriptions A-39

SC CIOTFSS

Common name: Functional S.ubsystcm E>etails

Macro ID: S@ClCIOT

DSECTname: SC_CIOTFSS

Created by: Options Processor

Location: CSA

Pointed to by: SC_CIOTPFSS

Serialization: None

Function: Functional subsystem management

Offsets Type Length Name Description

0 (0) CHARACTER 8 SC_CIOTFSSN NAME OF FSS (SLNET,
SLJP, SLOP

8 (8) CHARACTER 8 SC_CIOTFSSP PROCNANE OF FSS (ABS
EQU FSSN)

16 (10) CHARACTER 8 SC.CIDTFSSS NAME OF FSS SUPPORT
MODULE

24 (18) BITSTRING

1

.1

1 SC_CIOTFSSA

SC_CIOTFSSA_A

SC CIOTFSSA 0

FLAG BYTE - METHOD OF
FSS START

AUTOMATICALLY 3
SUPERLINK INIT

BY OPERATOR COMMAND

EQUATE X»19» SC_CIOTFSS_LEN LENGTH OF DSECT

A-40 SUPERLINK for MVS Logic Library Volume 2; Control Functional Unit SI-0182

SC C/OTMfC

Common name: Management interface connection details

Macro ID: S@C1CI0T

DSECT name: SC_CIOTMIC

Created by: Options Processor.

Location: CSA

Pointed to by: SC_CIOTPMIC

Serialization: None

Function: Management interface connection management

Offsets Type Length Name Description

0 (0) CHARACTER 8 SC_CIOTMICN NAME OF CONNECTION

8 (8) BITSTRING I SC_CIOTMIC_ATL LENGTH OF SC_CIOT_AT

9 (9) CHARACTER 32 SC CIOTMIC AT APPLICATION ENTITY
TITLE(REMOTE)

41 (29) BITSTRING I SC CIOTMICA FLAG BYTE - TYPE AND
METHOD OF

I SC CIGTMICS A AUTOMATICALLY 9
SUPERLINK INIT

.1 SC CIOTMICS 0 BY OPERATOR COMMAND

. .1 SC CIOTMICR A AUTOMATICALLY BY
SUPERLINK

. . .1 SC CIOTMICR 0 BY OPERATOR COMMAND

•••• !••• SC CIOTMICM P PRIMARY

• ••• al** SC CIOTMICM S SECONDARY

I. SC CIOTMICT ON TRACE=ON (IF NEITHER
SET

I SC CIOTMICT OFF TRACE=OFF TRACE=
OMITTED/NULL)

42 C2A) CHARACTER 2 SC_CIOTMIC_MF MAINFRAME ID

44 (2C) FIXED 4 SC CIOTMICI RETRY INTERVAL (I/IOO
SECS)

48 (30) CHARACTER 8 SC_CIOTMICC CONTEXT NAME

EQUATE X*38' SC_CIOTMIC_LEN LENGTH OF DSECT

Cray Research, Inc. Appendix A. Data Area Descriptions A-4I

SC CIOTS

Common liamc: MVS START command details

Macro ID: S@C1CI0T

DSECTname: SC_CIOTS

Created by: Options Processor (S@C1000)

Location: CSA

Pointed to by: SC_CIO'i PS

Seriali/ation: None

Function:

Offsets

Contains information for the automatic starting of site programs by the SUPERLINK
subsystem.

Type Length Name Description

0 (0) CHARACTER 8 SC_CIOTSPRC JCL PROCEDURE NAME FOR
START CMD

8 (8) FIXED 2 SC_CIOTSPLN LEN OF PARAM TEXT FOR
START CMD

EQUATE X*80' SC_CIOTSPLN_MAX MAX VALUE FOR
SC CIOTSPLN

10 (A) STRUCTURE D SC_CIOTSPS START OF PARAMS FOR
START CMD

EQUATE X»8A* SC_CIOTS_LENM MAX LEN OF DSECT

A-42 SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit SI-0182

SC_FRQE
Common name: FSS xVIanagcr Work-to-do Request Elennent

Macro ID: S®CFFRQE

DSECTname: SC_FRQE

Created by: Components wishing to communicate with the Functional Subsystem Manager
component

Location: Common service area

Pointed to by: Request block chained from queue anchored from SC_SSVT

Serialization: None

Function: Contains requests from components of SUPERLINK to the Functional Subsystem
Manager.

Offsets Type Length Name Description

0 (0) CHARACTER A SC FRQE ID ACRONYM FOR FSSM
REQUEST ELEMENT

4 (4) A-ADDRESS 4 SC FRQE NEXT ~> NEXT REQUEST
ELEMENT

8 (8) FIXED 4 SC_FRQE_ORIGIN REQUEST ORIGIN

12 (C) CHARACTER 8 SC_FRQE_FSSNAME TARGET FSS FOR REQUEST

20 (I'i) BITSTRING 1 SC FRQE REQ REQUESTED FUNCTION
1 SC_FRQE_REQ_INIT START THE NAMED FSS

.1 SC_FRQE_REQ_STOP STOP THE NAMED FSS
X

. .1 SC_FRQE_REQ_SALL STOP ALL FSS»S
X

21 (15) BITSTRING 1 SC FRQE QUAL QUALIFIER FIELD FOR
FUNCTION

1 SC FRQE QUAL N NORMAL TYPE STOP (IE
" DRAIN)

.1 SC_FRQE_QUAL_Q QUICK TYPE STOP

. .1 SC_FRQE_QUAL_A ABORT TYPE STOP
X

EQUATE 2^1 SC_FRQE_SPOOL SUBPOOL USED FOR FRQE

EQUATE X*16 1 SC_FRQE_SIZE LENGTH OF SC_FRQE

Cray Research, Inc. Appendix A. Data Area Descriptions A-43

SC FSSCB

Common name:

Macro ID:

DSIXT name:

Created by:

Location:

Pointed to by:

Scriali/atlon:

Function:

Offsets

Functional Subsystem Control Block

S@CFSSCB

SC_FSSCB

S@CFOOOO

Common senice area

SC_SSVT

Compare and swap logic should be used to manipulate fields.

Describes an individual functional subsystem of SLCN.

Type Length Name Description

0 CD) CHARACTER A SC FSSCB ID •FSCB* ACRONYM

(A) CHARACTER 8 SC_.FSSCB_.NAME FUNCTIONAL SUBSYSTEM
NAME

12 (C) A-ADDRESS A SC FSSCB SSVT ~> SC SSVT

16 (10) CHARACTER A SC_ FSSCB..SNAM NAME OF ONNING
SUBSYSTEM

20 (lA) A-ADDRESS A SC FSSCB ASCB ~> ASCB FOR FSS

2<i (18) A-ADDRESS A SC_ FSSCB..IPARMS ~> INITIALISATION
TABLE FOR FSS

28 (IC) FIXED A SC_ FSSCB..RCONF FSS ORDER RECEIPT
CONFIRMED ECB

32 (20) FIXED A SC FSSCB NTDECB FSS WORK TO DO ECB

36 (2A) A-ADDRESS A SC_.FSSCB..LISAECB —> ECB POSTED BY
LISTEN TASK

AO (28) FIXED A SC_.FSSCB..CDECB ECB POSTED BY
(CONN/DISCONN)ECT

AA (2C) FIXED 2 SC_.FSSCB..FSSID FUNCTIONAL SUBSYSTEM
ID

^6 (2E) BITSTRING

1. . .

I .

. 1

. .1

. . .1

1 SC FSSCB STATUS

SC_FSSCB
SC_FSSCB
SFAIL

SC_FSSCB
CONCT

SC_FSSCB
TERM

SC_FSSCB
TFAIL

SC_FSSCB
DISC

SC_FSSCB
CTING

SC_FSSCB
DTING

SC_FSSCB
ACTIV

STATUS

STATUS.

STATUS.

STATUS.

STATUS.

STATUS.

STATUS.

STATUS.

STATUS

A-44 SL'PERLINK for MVS Logic Library Volume 2: Control Functional Unit

FSS STATUS INDICATORS
«0

S71AS3" HAS BEEN STARTED

FSS START COMMAND
FAILED

FSS CONNECTED
SUCCESSFULLY

FSS TERM ORDER
OUTSTANDING

FSS TERM ORDER FAILED

FSS DISCONNECTED
SUCCESSFULLY

FSS BEING CONNECTED

FSS BEING DISCONNECTED

FSS is active (STARTED
and CONNECTED)

81-0182

Offsets Type

1111 1.1.

1111 1111

Length Name

SC_FSSCB_STATUS
RESET

SC_FSSCB_STATUS
ALL

Description

Reset all but
DISCONNECTED and
DICONNECTING

ALL BITS ON - USED FOR
CLEARING

A7 (2F) BITSTRING 1 SC_ FSSCB..STATUSl FSS STATUS INDICATORS
»1

FSS FLAGGED AS
TERMINATED BY EOM

RESET ALL BITS FIELD

1

1111 1111

sc
EOF
sc
ALL

FSSCB
i
.FSSCB.

STATUS1

STATUS1

AS (30) BITSTRING 2 RESERVED

50 (32) CHARACTER 2 Reserved

52 (34) A-ADDRESS 4 SC_.FSSCB..FSSXB ~> FM_FSSXB

56 (38) A-ADDRESS 4 SC_.FSSCB..SERVTAB ~> SERVICE TABLE FOR
FSS

60 (3C) A-ADDRESS 4 SC_.FSSCB..TCB ~> CURRENT TCB

6A (40) A-ADDRESS 4 SC_.FSSCB..AFSSM —> FSS SUPPORT MODULE

68 (44) FIXED 4 SC_.FSSCB..FSSML , LENGTH OF FSS SUPPORT
NODULE

72 (48) A-ADDRESS 4 sc_.FSSCB..MSGTAB ~> MSG TABLE CSECT

76 (4C) CHARACTER 4 Reserved

80 (50) STRUCTURE 0 sc_.FSSCB..NORKQ ANCHOR FOR WORK AREA Q

80 (50) A-ADDRESS 4 sc_.FSSCB..WORKQ_F - WORK AREA Q (FIFO)

84 (54) A-ADDRESS 4 sc_.FSSCB..WORKQ_L - WORK AREA Q (LIFO)

88 (58) BITSTRING 16 sc_.FSSCB..FUAREA FUNCTIONAL UNIT AREA

104 (68) STRUCTURE 0 ENSURE WE'RE MULTIPLE
OF DWORD

EQUATE X*68 1 sc_ FSSCB..SIZE LENGTH OF SC_FSSCB

EQUATE 241 sc_.FSSCB..SPOOL SUBPOOL TO USE

EQUATE X»00 1 sc_ FSSCB..ACRONYM KEPT FOR COMPATIBILITY

88 (58) A-ADDRESS 4 sc_ FSSCB..1ST INTERNAL SERVICE TABLE

92 (5C) A-ADDRESS 4 sc_ FSSCB..NST NETWORK SERVICE TABLE

96 (60) A-ADDRESS 4 sc_ FSSCB..NSP NETWORK STORAGE POOL

100 (64) A-ADDRESS 4 RESERVED

Cray Research, Inc. Appendix A. Data Area Descriptions A-45

SC_GST
Common name: Global Service Table

Macro ID: S@CCOGST

DSECT name: SC GST

Created by:

Location:

Pointed to by: SC_SSVT

Serialization: None

Function:

Offsets

S@CCOOOO

Common service area

Provides a vector

Type

table for global SUPERLINK services.

Length Name Description

0 (0) CHARACTER 4 SC_ GST _ID •GST • CONSTANT

4 (4) A-ADDRESS 4 sc_ GST _SSVT ~> SC_SSVT

8 (8) A-ADDRESS 4 sc_.GST. SBY ~> SLSUBSYS SERVICE

12 (C) A-ADDRESS 4 sc_.GST._LOGQ ~> LOG QUEUE SERVICE

16 (10) A-ADDRESS 4 sc_.GST._AMGR ~> ASSOC. MANAGER
SERVICE

20 (14) A-ADDRESS 4 sc..GST..MSG —> MESSAGE PROCESSOR

24 (18) A-ADDRESS 4 sc..GST..SCHEDSRB ~> S3CF0100 TO
SCHEDULE SRB

28 (IC) A-ADDRESS 4 SC GST CASE ~> CASE SERVICE

32 (20) A-ADDRESS 4 sc..GST..TRANSLATE —> GLOBAL TRANSLATE
TABLES

36 (24) A-ADDRESS 4 sc..GST..RESMAN —> S3CC0URM RESOURCE
MANAGER

40 (28) A-ADDRESS 8 sc..GST..RESERVED RESERVED FIELDS FOR
LATER USE

EQUATE X»30 1 sc. GST SIZE LENGTH OF SC_GST

EQUATE 241 sc..GST..SPOOL SUBPOOL WHERE HE LIVES

A-46 SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit SI-0182

SC OPCB

Common name; Operator Command Buffer

Macro ID: S@CCOPCB

DSECTname: SC_OPCB

Created by: Any component wishing to communicate with the Product Operator component

Location: Common service area

Pointed to by: Chained from a queue anchored from SC_SSVT

Serialization: None

Function:

Offsets

Conveys requests from SUPERLINK components to the Operator component of
SLCN.

Type Length Name Description

0 (0) CHARACTER 9 SC_.OPCB_-ID 'OPCB' CONSTANT

(9) A-ADDRESS 9 SC_.OPCB_.SPOOL SUBPOOL NHERE COMMAND

8 (8) A-ADDRESS 9 SC_ OPCB_.NXTC ~> NEXT COMMAND
BUFFER IN Q

12 (C) BITSTRING

1

1 SC

sc_
OPCB

.OPCB_
FLAGS

.FLAGSMIC
SOME FLAG FIELDS

ORIGIN IS MANGMT. I/F
CONNECTN.

13 (D) BITSTRING 3 RESERVED FOR LATER USE

16 (10) STRUCTURE 0 sc_.GPCB..ORIGIN COMMAND ORIGIN - MVS
FORM

16 (10) BITSTRING 3 sc_.GPCB..CONSFLAG ZERO IF ORIGIN IS
CONSOLE

19 (13) BITSTRING 1 sc_.GPCB_.CONSOLID CONSOLE ID IF FLAG = 0

16 (10) BITSTRING 2 sc_ OPCBl.TSOASID ASID IF ORIGIN IS TSO
USER

18 (12) BITSTRING

1

1 sc_

sc_

OPCB.

OPCB.

.TSOFLAG

JSOAUTH

AUTHORISATION IF
TSOUSER

AUTH FLAG IN TSOFLAG
FIELD

16 (10) CHARACTER 8 sc_ OPCB..MIFID MANAGEMENT I/F
CONNECTION ID

29 (18) BITSTRING 1 sc_ OPCB..MIFSULN LENGTH OF SOURCE USER
DATA FIELD

25 (19) BITSTRING 20 sc_ OPCB..MIFSUD SOURCE USER DATA FIELD

95 (2D) CHARACTER 1 Reserved

96 (2E) FIXED 2 sc_ OPCB..LEN LENGTH OF OPERATOR
COMMAND

98 (30) CHARACTER 136 sc_ OPCB..COMMAND OPERATOR COMMAND

EQUATE X»B8' sc_ OPCB..SIZE LENGTH OF SC OPCB

EQUATE X'88* sc_ OPCB..CMDSIZE LEN OF SC OPCB COMMAND
(MAX)

EQUATE 291 sc_ OPCB..POOL SUBPOOL USED FOR OPCB

Cray Research, Inc. Appendix A. Data Area Descriptions A-47

SC SSVT

Common name: SUPERLINK Subsystem Vector Table

Macro ID: S@CCSSVT

DSECTname: SC_SSVT

Created by: S@CCOSSI

Location: Common service area

Pointed to by: SSCVT (IBM subsystem control block)

Serialization: Compare and swap logic is used to manipulate fields.

Function: This is the main control block of the SUPHRLINK product, identifying it as an MVS
subsystem.

Offsets Type Length Name Description

0 (0) FIXED 2 SC SSVT RSVl RESERVED

2 (2) FIXED 2 SC_SSVT_.FNUM # FUNCTIONS SUPPORTED
BY SUBSYS

4 (4) BITSTRING 256 SC SSVT MATRIX FUNCTION CODE MATRIX

EQUATE X»104' SC_SSVT_.FSIZE LENGTH OF SC SSVT
FIXED PART

260 (104) A-ADDRESS 4 SC_SSVT_.ADDRS FIRST ADDRESS ENTRY IN
TABLE

264 (108) A-ADDRESS 102D Rest of table

EQUATE X'504' SC SSVT MAX SIZE MAXIMUM SIZE OF SSVT
HEADER

SUPERLINK supported functions header

(2) Y-ADDRESS

SUPERLINK supported functions matrix

7 (7) A-ADDRESS 1 Address offset
End of task

#04 -

11 (B) A-ADDRESS 1 Address offset
End of memory

#08 -

13 (D) A-ADDRESS 1 Address offset
SVC 34

#10 -

56 (38) A-ADDRESS 1 Address offset #53 -
FSS processing

SUPERLINK supported functions vector table

EQUATE XUOO* SC SSVT ORIGIN MATRIX BASE OFFSET

A-48 SL'PERLINK for .MVS Logic Library Volume 2: Control Functional Unit SI-0I82

Offsets Type Length Name Description

260 (104) A-ADDRESS 4 SO_SSVT_SaoO0E0T END OF TASK PROCESSING

264 (108) A-ADDRESS 4 SO SSVT SaOOOEOM END OF MEMORY
PROCESSING

268 (IOC) A-ADDRESS 4 so SSVT SaOOOS34 SVS34 - OPERATOR
COMMAND PROO.

272 (110) A-ADDRESS 4 so SSVT SaOOOFSS FSS OONNEOT/DISOONNEOT
PROOING

EQUATE XUlO' SO_SSVT_LAST LAST FUNCTION DEFINED

276 (114) A-ADDRESS 40 SOME SPARE LOCATIONS

316 (130) CHARACTER 4 so SSVT ID SO SSVT CONTROL BLOCK
ACRONYM

320 (140) A-ADDRESS 4 SO SSVT SSOT ~> SSOVT FOR
SUBSYSTEM

324 (144) A-ADDRESS 4 SO_SSVT_ASOB ~> ASOB FOR SUBSYSTEM

328 (148) A-ADDRESS 4 SO_SSVT_OIOT ~> SO c:iOT

332 (140) A-ADDRESS 4 SO_SSVT_GST ~> SO GST

336 (150) A-ADDRESS 4 SO_SSVT_OPOT —> SI_OPOT

340 (154) A-ADDRESS 4 SO SSVT AMT —> ASSOCIATION
MANAGER TABLE

344 (158) FIXED 4 SO SSVT OOND CONDITION OF SUBSYSTEM

SO_SSVT_OOND_UP SUBSYSTEM ACTIVE

EQUATE X*800000D0* n ABENDED OR

SO_SSVT_OOND_AB ABENDING

EQUATE X'40000000* n RECOVERY IN

SO_SSVT_OQND_RP PROGRESS

EQUATE X'OFFFFFFF* n SL TERM.

SO_SSVT_OOND_TR REQUESTED

348 (150) STRUCTURE 0 SO SSVT STATUS SUBSYSTEM STATUS
INDICATORS

348 (150) BITSTRING 1 SO SSVT STATUSl *1 STATUS 1ST BYTE
(SUBSYSTEM)

1 SO SSVT STATUSl SUBSYS IN
INIT INITIALISATION PHASE

.1 SO SSVT STATUSl SUBSYS IN TERMINATION
TERM PHASE

. .1 SO SSVT STATUSl SUBSYS IN READY STATE
REDY

349 (15D) BITSTRING 1 SO SSVT STATUS2 *2 STATUS 2ND BYTE
(GENERAL)

1 SO SSVT STATUS2 GENERAL DUMP ON ERROR
DUMP ENABLED

350 (15E) BITSTRING 1 SO SSVT STATUS3 *3 STATUS 3RD BYTE (FSS
SUPPORT)

1 SO SSVT STATUS3 FSS OONNEOT/DISOONNEOT
ODF FAILURE

.1 SO SSVT STATUS3 FSS MANAGER TO
FMT TERMINATE FLAG

. .1 SO SSVT STATUS3 FSS MANAGER IS ACTIVE
FAO

. . .1 SO SSVT STATUS3 LOG MANAGER IS ACTIVE
LAO

1. . . S0_SSVT_STATUS3_ OPR MANAGER IS ACTIVE
OAC

Cray Research, Inc. Appendix A. Data Area Descriptions A-49

Offsets Type Length Name Description

1.. SC SSVT STATUS3
AAC

ASSOC. MANAGER IS
ACTIVE

1. SC SSVT STATUS3
MAC

MANAGEMENT I/F IS
ACTIVE

351 (15F) BITSTRING 1 SC_SSVT_STATUS4 *4 STATUS 4TH BYTE
(RESERVED)

352 (160) CHARACTER 1 SC_SSVT_CMDCHAR SUBSYSTEM COMMAND
CHARACTER

353 (161) BITSTRING

.... ...1

1.

1 SC SSVT TERMTYPE

SC SSVT NORMAL

SC SSVT QUICK
SC SSVT ABORT

TERMINATION TYPE

NORMAL TERMINATION

QUICK TERMINATION
ABORT TERMINATION

35^ (162) BITSTRING 6 RESERVED

360 (168) STRUCTURE 0 SC_SSVT_CMDQ ANCHORS FOR OP COMMAND
QUEUES

360 (168) A-ADDRESS 4 SC_SSVT_CMDQ_LI -> OP CMD QUEUE (LIFO)

364 (16C) A-ADDRESS 4 SC_SSVT_CMDQ_FI -> RE-ORDERED CMD
QUEUE (FIFO)

368 (170) STRUCTURE 0 SC_SSVT_FSMQ ANCHORS FOR FSS
MNGR.REQ. QUEUES

368 (170) A-ADDRESS 4 SC_SSVT_FSMQ_LI -> REQ. QUEUE (LIFO)

372 (174) A-ADDRESS 4 SC_SSVT_FSMQ_FI -> RE-ORDERED REQ.
QUEUE (FIFO)

376 (178) STRUCTURE 0 SC_SSVT_SNDQ ANCHORS FOR 'SEND*
NORK QUEUES

376 (178) A-ADDRESS 4 SC_SSVT_SNDQ_LI -> SEND REQ. QUEUE
(LIFO)

380 (17C) A-ADDRESS 4 SC_SSVT_SNDQ_FI -> RE-ORDERED REQ.
QUEUE (FIFO)

384 (180) BITSTRING

1

8 SC_SSVT_LOGQ_F

SC_SSVT_LOGQ_T

ANCHOR FOR SUBSYS LOG
FREE Q

LOG PROCESSOR
TERMINATING

392 (188) BITSTRING 8 SC_SSVT_LOGQ_R ANCHOR FOR SUBSYS LOG
REQ Q

400 (190) BITSTRING 8 SC_SSVT_LOGQ_N ANCHOR FOR SUBSYS LOG
HORK Q

408 (198) A-ADDRESS

1. .

4 SC SSVT ECB LIST

SC SSVT ECB EL EN

MAIN WAIT ECB LIST

AN ENTRY LENGTH

412 (19C) A-ADDRESS

.1.1 .1. .

. . .1 .1.1

80

SC SSVT ECB LEN

SC SSVT ECB SIZE

ECBLIST POINTERS

SIZE OF LIST IN BYTES

IN LIST

492 (lEC) FIXED 4 SC SSVT PECB SUBSYS TERMINATION ECB

496 (IFO) FIXED 4 SC_SSVT_OPR_PECB OPERATOR COMPONENT
TASK END ECB

500 (1F4) FIXED 4 SC_SSVT_OPR_WECB OPERATOR COMPT. WORK
TO DO ECB

504 (1F8) FIXED 4 SC_SSVT_OPR_IECB OPERATOR INIT.
COMPLETE ECB

508 (IFC) A-ADDRESS 4 SC_SSVT_OPR_TCB -> TCB OF OPERATOR
COMPONENT

A-50 SUPERLINK for MVS Logic Library Volume 2; Control Functional Unit 81-0182

Cray Research, Inc.

Offsets Type Length Name Description

512 (200) FIXED 4 SC_.SSVT..LOG.PECB LOG COMPONENT TASK
ENDED ECB

516 (204) FIXED 4 SC..SSVT..LOG_IECB LOG COMPONENT
INITIALISED ECB

520 (208) A-ADDRESS 4 SC..SSVT..LOG_TCB -> TCB OF LOG COMPONENT

52<4 (20C) STRUCTURE 0 SC..SSVT..LOG_ORDR LOG COMPONENT ORDER
FIELD

52^# (20C) BITSTRING 3 RESERVED FOR LOG
COMPONENT

527 (20F) BITSTRING 1 SC..SSVT..LOG_CMND LOG COMPONENT REQUEST
FIELD

528 (210) A-ADDRESS 4 SC..SSVT..LOG.ADDN LOG COMPONENT ->
SNITCH DDNAME

532 (214) CHARACTER 8 SC..SSVT..LOG.SWDD LOG SNITCH NEN DDNAME

5^0 (21C) FIXED 4 SC..SSVT..FSS_PECB FSS MANAGER TASK ENDED
ECB

5<44 (220) FIXED 4 SC. SSVT..FSS_IECB FSS MANAGER
INIT.COMPLETE ECB

548 (224) FIXED 4 SC. SSVT..FSS_CECB FSS CONTINUE ECB - SLCN
POSTS

552 (228) FIXED 4 SC. SSVT..FSS_RECB FSS MANAGER REQUEST
TERM. ECB

556 (22C) FIXED 4 sc. SSVT..FSS_WECB FSS MANAGER NORK TO DO
ECB

560 (230) FIXED 4 sc. SSVT..FSS_FECB FSS MANAGER FSS
TERMINATED ECB

564 (234) FIXED 4 sc. SSVT. NET.IECB SLNET COMPNT.
INIT.COMPLETE ECB

568 (238) A-ADDRESS 4 sc. SSVT..LIST_TCB -> TCB OF LISTEN TASK

572 (23C) A-ADDRESS 4 sc. SSVT..LIST_ECB -> TERM. REQUEST ECB
FOR LISTEN

576 (240) A-ADDRESS 4 sc. SSVT. SND_ECB -> 'SEND* REQUEST
ARRIVED ECB

580 (244) A-ADDRESS 4 sc. SSVT. RECSRBEP -> ENTRY POINT FOR
RECEIVE SRB

584 (248) A-ADDRESS 4 sc. SSVT. RECFRREP -> EP FOR RECEIVE SRB
FRR

588 (24C) A-ADDRESS 4 sc. SSVT. OPT_EP -> EP FOR OPTIONS
PROCESSOR

592 (250) A-ADDRESS 4 sc. SSVT. FSSM_TCB -> TCB OF FSS MANAGER
TASK

596 (254) CHARACTER 4 sc. SSVT. SNAM SUBSYS NAME AS KNONN
TO MVS

600 (258) CHARACTER 8 sc. SSVT. ANAM SUBSYS NAME AS KNON TO
APPL PROG

608 (260) A-ADDRESS 4 sc. SSVT. FSCQ ANCHOR FOR FSS CONTROL
BLOCKS

612 (264) FIXED 4 sc. SSVT. FSCL TOTAL LENGTH OF
SC.FSSCB TABLE

616 (268) FIXED 4 sc. SSVT. FSCN # FSSCB'S IN CHAIN

620 (26C) A-ADDRESS 4 sc. SSVT. FSCELIST ~> ECBLIST FOR FSS
TERMINATION

Appendix A. Data Area Descriptions A-51

Offsets Type Length Name Description

624 (270) A-ADDRESS 4 SC_ SSVT _SBUF ~> FSS START COMMAND
BUFFER

628 (274) A-ADDRESS 4 SC_ SSVT _MSGTAB ~> MESSAGE TABLE
CSECT

632 (278) A-ADDRESS 4 SC_ SSVT..XMEMTECB ~> X-MEMORY PREMATURE
TERM ECB

636 (27C) A-ADDRESS 4 SC_ SSVT._XMEMCECB ~> X-MEMORY CONTINUE
ECB

640 (280) FIXED 4 SC_ SSVT..SLASVTLN LENGTH OF SC SLASVT
TABLE

644 (284) A-ADDRESS 4 SC_ SSVT..ASLASVT ~> SC SLASVT CONTROL
BLOCK

648 (288) FIXED 20 RESERVED FOR LATER USE

668 (29C) FIXED 4 SC_ SSVT._ASM_PECB ASSOC. MGR. TASK ENDED
ECB

672 (2A0) FIXED 4 SC_ SSVT._ASM_IECB ASSOC. MGR.
INITIALISED ECB

676 (2A4) A-ADDRESS 4 SC_ SSVT._ASM_TCB -> TCB OF ASSOC. MGR.
TASK

680 (2A8) FIXED 4 SC_ SSVT._MIF_PECB MANAGMENT I/F TASK
ENDED ECB

684 (2AC) FIXED 4 SC_ SSVT._MIF_IECB MANAGEMENT I/F
INITIALISED ECB

688 (2B0) A-ADDRESS 4 SC_ SSVT..MIF_TCB -> TCB OF MANAGEMENT
I/F TASK

692 (2B4) A-ADDRESS 4 SC_ SSVT..MICT -> MANAGEMENT I/F
CONTROL TABLE

696 (2B8) FIXED 4 sc_ SSVT._FSS_TECB FSS TERMINATE CONTINUE
ECB

700 (2BC) A-ADDRESS 4 sc_ SSVT..CPOOLID CPOOL ID FOR SC URE
CPOOL GETS

704 (2C0) FIXED 4 sc_ SSVT..NAMAVAIL NAM AVAILABLE FOR USE
ECB

708 (2C4) FIXED 32 sc_ SSVT..RESERVED RESERVED FOR EXPANSION

740 (2E4) CHARACTER 4 Reserved

744 (2E8) STRUCTURE 0 JUST ALIGN

EQUATE X'504' sc_.SSVT..SIZE LENGTH OF SC SSVT INC
VAR PART

EQUATE 241 sc_.SSVT..SPOOL SUBPOOL TO BE USED ON
GETMAIN

A-52 SUPERLINK for MVS Logic Library Volume2: Control Functional Unit SI-0182

SC SLASVT

Common name: SUPERLINK Address Space Vector Table

Macro ID: S@CCASVT

DSECTname: SC_SLASVT

Created by: S@CCOOOO

Location: Common service area

Pointed to by: SC_SSVT

Serlall/atlon: The CMS lock must be held when manipulating this control block.

Function:

Offsets

(0)

Cray Research, Inc.

Provides a list of the SUPERLINK resources used by address spaces, on an address
space basis.

Type

STRUCTURE

EQUATE

Length Name Description

241

0 SC SLASVT START START OF THE VECTOR
TABLE

SC_SLASVT_SPQOL SUBPGOL USED FOR TABLE

Appendix A. Data Area Descriptions A-53

SC URE

Common name:

Macro ID:

DSECT name:

Created by:

Location:

Pointed to by:

Serialization:

Function:

User Resource Element

S@CCOURE

SC_URE

S@CCOURM

Common service area

SC_SLASVT

The CMS lock must be held when manipulating the SC_URE queues and when
updating the SC_URE.

Represents a task, in a particular address space, using SUPERLINK resources.

Offsets Type Length Name Description

0 (0) CHARACTER 4 SC URE ID 'URE • EYECATCHER

4 (4) A-ADDRESS 4 SC_URE_.FPTR ~> NEXT SC URE ON THE
QUEUE

8 (8) A-ADDRESS 4 SC_URE_.BPTR ~> PREVIOUS SC URE ON
THE QUEUE

12 (C) A-ADDRESS 4 SC_URE_ ATCB —> TCB ASSOC. NITH
THIS ENTRY

16 (10) FIXED 4 SC_URE_ AID ASSOCIATION IDENTIFIER

20 (14) BITSTRING

1

1 SC_URE_

SC_URE_

.FLAG

.FLAG_EOT

STATUS FLAGS FOR THIS
SC URE

END OF TASK FLAGGED FOR
THIS URE

21 (15) BITSTRING 1 RESERVED FOR LATER USE

22 (16) FIXED 2 SC_URE..AS ID ADDRESS SPACE ID FOR
THIS ENTRY

24 (18) A-ADDRESS 4 SC_URE_.ASCB -> ASCB FOR
THIS ENTRY

28 (IC) FIXED 4 RESERVED FOR LATER USE

32 (20) STRUCTURE 0 ROUND UP TO A DOUBLE
NORD

EQUATE X*20* SC_URE..SIZE LENGTH OF SC_URE

EQUATE 241 SC_URE_.SPOOL SUBPOOL OF CPOOL FOR
SC URE

A-54 SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit SI-0182

SC URM

Common name: User Resource Manager Entry Parameter List and Feedback Area

Macro ID: S@CCOURM

DSECTname: SC_URM

Created by: ACSE

Location: Private storage

Pointed to by: Register 1 on entry

Serialization: None

Function:

Offsets

Provides the parameter list for requesting services from the User Resource Manager
and is used to hold the return code.

Type Length Name Description

0 (0) CHARACTER 9 SC_URM_ID •URM » EYECATCHER

(9) A-ADDRESS 9 SC_URM_SSVT ~> SC SSVT

8 (8) BITSTRING 1 SC URM RFC REQUESTED FUNCTION
CODE

SC URM RFC LOC LOCATE

1 SC URM RFC Q QUEUE

1. SC_URM_RFC DEQ DEQUEUE
11 SC_URM_RFC_SNI SWITCH

9 (9) BITSTRING 1 RESERVED

10 (A) FIXED 2 SC URM ASID ADDRESS SPACE ID FOR
THIS ENTRY

12 (C) A-ADDRESS 9 SC URM ASCB ~> ASCB FOR
THIS ENTRY

16 (10) A-ADDRESS 9 SC URM TCB ~> TCB ASSOC. WITH
THIS ENTRY

20 (19) A-ADDRESS 9 SC_URM_AID ASSOCIATION IDENTIFIER

29 (18) A-ADDRESS 9 SC_URM_URE —> MODEL URE

28 (IC)

29 (ID)

Cray Research, Inc.

BITSTRING

1

11

.1

1.

11

BITSTRING

EQUATE

SC_URM_RC
SC_URM_RC_SSVT
SC_URM_RC_SLASVT
SC_URM_RC_URM
SC_URM_RC_RFC
SC_URM_RC_LOC
SC_URM_RC_URE
SC URM RC GETM

X»20' SC URM SIZE

RETURN CODE

SC_SSVT NOT FOUND
SC_SLASVT NOT FOUND
INVALID SC_URM
INVALID RFC

NO SC_URE LOCATED
INVALID SC_URE
GETMAIN FAILURE
AC000071

RESERVED

LENGTH OF SC URM

Appendix A. Data Area Descriptions A-S5

sr CMD

Common name:

Macro ID:

DSKCT name:

Created by:

Location:

Link-edited into

Serialization:

Function:

Offsets

Command Definition Table

S@COCMAP

SI_CMD

Built at assembly time

SLCN private area

the Product operator component. Not available

None

Maps operator command definitions built at assembly time

Type Length Name Description

0 (0) FIXED 2 SI_CMD_LENGTH LENGTH OF AN ENTRY

2 (2) BITSTRING 1 SI CMD FORMAT FORMAT OF THIS ENTRY

1 SI CMD POSITION POSITIONAL PARAMETER

.1 SI CMD KEYHORD KEYHORD PARAMETER

. .1 SI CMD LITERAL LITERAL OPERAND

. . .1 SI CMD ALTERNATE ALTERNATE OPERAND LIST

1. . . SI CMD COMMAND COMMAND DEFINITION

3 (3) BITSTRING 1 SI CMD FLAGS FLAG BYTE

1 SI CMD TSOUSER MAY BE ISSUED BY TSO
USER

.1 SI CMD OPERATOR MAY BE ISSUED BY
OPERATOR

4 C'*) STRUCTURE 0 SI CMD HEAD END END OF COMMON FIXED
HEADER

EQUATE SI 'CMD HEAD SIZE LENGTH OF SI CMD FIXED
HEADER

Extension to SI_CMD for command table entries themselves

4 (A) FIXED 2 SI _CMD_.C_.OPERNUM NUMBER OF OPERAND
TABLES PRESENT

6 (6) FIXED 2 SI _CMD_.C_.MAXLEN LENGTH OF COMMAND NAME

8 (8) FIXED 2 SI _CMD_.C_.MINLEN LENGTH OF MINIMUM
ABREVIATION

10 (A) CHARACTER

1. .

20 SI

SI

CMD

CMD
C

.C_
NAME

.OFFSET
COMMAND NAME ITSELF

30 (IE) CHARACTER 2 R-eserved

32 (20) A-ADDRESS A SI._CMD_.C_.MODULE -> PROCESSING MODULE
FOR COMMAND

36 (2A) A-ADDRESS 0 SI _CMD__C_.OPANDS START OF OPERAND TABLE
ADDRESSES

A-56 SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit 81-0182

Offsets Type Length Name Description

Extension to SI_CMD for alternate operand list table entries

4 (4) FIXED 2 SI,_CMD__A__ALTNUM NUMBER OF ALTERNATE
LISTS

6 (6) FIXED 2 SI._CMD__A__DESCLEN LENGTH OF DESCRIPTION

8 (8) FIXED 2 RESERVED

10 (A) CHARACTER 28 SI _CMD__A__DESC DESCRIPTION

38 (26) CHARACTER 2 Reserved

<<0 (28) STRUCTURE 0 ALIGN ON MORD BOUNDARY

40 (28) FIXED 2 SI._CMD_.A_.OPERLEN LENGTH OF OPERAND LIST

42 (2A) FIXED 2 SI._CMD_.A_.QPERNUM NUMBER OF OPERANDS IN
LIST

44 (2C) A-ADDRESS 0 SI._CMD_.A_.OPERAND START OF OPERAND TABLE
ADDRESSES

Extension to SI_CMD for keyword operand definition entries

4 (4) CHARACTER 4 SI _CMD__K..TYPE KEYWORD OPERAND TYPE

8 (8) FIXED 2 SI _CMD__K..MAXLEN MAX LENGTH OF KEYWORD

10 (A) FIXED 2 SI._CMD__K_.MINLEN MIN LENGTH OF KEYWORD

12 (C) CHARACTER 20 SI._CMD_.K..NAME NAME OF KEYWORD

32 (20) FIXED 2 SI._CMD..K_.DESCLEN LENGTH OF DESCRIPTION
TEXT

34 (22) FIXED 2 RESERVED

36 (24) CHARACTER 28 SI._CMD_.K_.DESC DESCRIPTION TEXT
ITSELF

64 (40) BITSTRING 8 SI._CMD_.K..OINST INSTRUCTION TO
INDICATE KEYWORD

72 (48) FIXED 4 SI._CMD_.K_.XVALUE X-value: For
..^K_TYPE='N» this is
minimum value

76 (4C) FIXED 4 SI._CMD_.K_.YVALUE Y-value: For
._K_TYPE=*N' this is
maximum value,
otherwise this is
maximum string length

80 (50) BITSTRING 8 SI._CMD_ K_.INST INST. TO MOVE VALUE TO
SYM TAB

88 (58) FIXED 2 SI._CMD_.K_.DEFLEN LENGTH OF DEFAULT
VALUE

90 (5A) CHARACTER 2 Reserved

92 (5C) STRUCTURE 0 ENSURE ALIGNMENT OF
DEFVAL

92 (5C) CHARACTER 28 SI..CMD_ K_.DEFVAL DEFAULT OPERAND VALUE

120 (78) A-ADDRESS 0 si__CMD_.K_.ENTEND END OF KEYWORD ENTRY

Cray Research, Inc. Appendix A. Data Area Descriptions A-57

Offsets Type Length Name Description

Extension to SI_CMD for positional operand definition entries

(4) CHARACTER 4 SI _CMD..P..TYPE POSITIONAL OPERAND
TYPE

8 (8) FIXED 2 SI -CMP..P_.DESCLEN LENGTH OF DESCRIPTION
TEXT

10 (A) FIXED 2 RESERVED

12 (C) CHARACTER 28 SI _CMD_.P__DESC DESCRIPTION TEXT
ITSELF

40 (28) BITSTRING 8 SI _CMD__P_.OINST INSTRUCTION TO
INDICATE PRESENCE

48 (30) FIXED 4 SI CMD P XVALUE X-VALUE

52 (34) FIXED 4 SI CMD P YVALUE Y-VALUE

56 (38) BITSTRING 8 SI._CMD_.P_.INST INST. TO MOVE VALUE TO
SYM TAB

64 (40) FIXED 2 SI _CMD_.P_.DEFLEN LENGTH OF DEFAULT
VALUE

66 (42) CHARACTER ^ 2 Reserved

68 (44) STRUCTURE 0 ENSURE ALIGNMENT OF
DEFVAL

68 (44) CHARACTER 28 SI._CMD_.P_.DEFVAL DEFAULT OPERAND VALUE

96 (60) A-ADDRESS 0 SI _CMD_.P_.ENTEND END OF POSITIONAL
ENTRY

Extension to SI_CMD for literal operand definition entries

4 (4) CHARACTER 4 SI CMD L TYPE LITERAL OPERAND TYPE

8 (8) FIXED 2 SI CMD L MAXLEN MAXIMUM LITERAL LENGTH

10 (A) FIXED 2 SI CMD L MINLEN MINIMUM LITERAL LENGTH

12 (C) CHARACTER 20 SI CMD L NAME LITERAL NAME

32 (20) BITSTRING 8 SI_CMD_L_OINST INSTRUCTION TO
INDICATE LITERAL

40 (28) A-ADDRESS 0 SI CMD L ENTEND END OF LITERAL ENTRY

EQUATE X*78' SI_CMD_MAXLENGTH MAXIMUM LENGTH OF A
TABLE

A-58 SUPERLINK for MVS Logic Library Volume 2: Control Functional L'nit SI-0182

1^^

sr OPCT

Common name:

Macro ID:

DSECT name:

Created by:

Lf)cation:

Pointed to by:

Serialization:

Function:

Offsets

Operator Control Table

S@COOPCT

SI_OPCT

S@COOOOO

SLCN private storage

SC_SSVT_OPCT

None

Controls the processing of an individual
component.

Type Length Name

command by the Product Operator

Description

0 (0) CHARACTER 4 SI OPCT ID •OPCT» CONSTANT
ACRONYN

4 (4) FIXED 4 SI OPCT TERM ECB FOR TERMINATION OF
OPERATOR

1. . . SI OPCT CLEAR CLEAR FROM HERE ON
RESET

8 (8) A-ADDRESS 4 SI_OPCT_CMDBUF ~> COMMAND BUFFER

12 (C) A-ADDRESS 4 SI OPCT BUFP ~> INTO COMMAND
BUFFER DATA

16 (10) FIXED 4 SI OPCT CHARS # CHARS REMAINING IN
BUFFER

20 (14) FIXED 4 SI OPCT MSGNUM MESSAGE NUMBER TO
BUILD MSG TEXT

24 (18) A-ADDRESS 4 SI OPCT DESCP ~> CURRENT
DESCRIPTION DATA

28 (IC) BITSTRING 1 SI_OPCT NHO ISSUER OF COMMAND
1 SI_OPCT NHO OPER OPERATOR
.1 SI_OPCT NHO AUSR AUTHORISED USER
. ,1 SI OPCT NHO TSOU TSO USER
. . .1 SI_OPCT NHO MICN MANAGEMENT INTERFACE

CONNECTION

29 (ID) BITSTRING 1 SI_OPCT FLAG SOME FLAGS
1 SI OPCT FLAGTEXT FLAG LAST OPERAND AS

•TEXT' TYPE
.1 SI OPCT FLAGKMAT FLAG LAST OPERAND AS

KNORD TYPE
. .1 SI OPCT FLAGCMNT FLAG COMMENT PRESENT

ON COMMAND

30 (IE) CHARACTER 2 Reserved

32 (20) FIXED 4 SI_OPCT CONSOLE CONSOLE ID OF COMMAND
ORIGIN

36 (24) CHARACTER 8 SI_OPCT TSOUSER TSO ID OF COMMAND
ORIGIN.

44 (2C) CHARACTER 8 SI_OPCT_TERMID TERMINAL ID OF ORIGIN

52 (34) CHARACTER 8 SI_OPCT MICONID MANAGEMENT I/F
CONNECTION

Cray Research, Inc. Appendix A. Data Area Descriptions A-59

Offsets Type Length Name Description

60 (3C) BITSTRING 1 SI._GPCT_ MICGNUL MGMT. I/F SGURCE USER
DATA LEN.

61 (3D) BITSTRING 20 SI._OPCT_.MICGNUD MGMT. I/F SGURCE USER
DATA

81 (51) CHARACTER 3 Reserved

84 (54) A-ADDRESS 4 SI._OPCT_.SYNTX ~> SYNTAX GRAPH GF
THIS COMMAND

88 (58) A-ADDRESS 4 SI._OPCT_.GPLIST —> CURRENT OPERAND
LIST

92 (5C) FIXED 2 SI._GPCT_.GPLEFT « OPERANDS LEFT TO
PROCESS

94 (5E) FIXED 2 SI._GPCT_ CGMMENTL LENGTH GF COMMENT IF
ANY

96 (60) A-ADDRESS 4 SI._GPCT_ CGMMENTP ~> COMMENT IN COMMEND
IF ANY

100 (64) A-ADDRESS 4 SI._GPCT_.HEADSTAK ~> HEAD GF SI STAK
STACK

104 (68) A-ADDRESS 4 SI._GPCT_ CURRSTAK ~> CURRENT STACK
ENTRY

108 (6C) A-ADDRESS 4 SI._GPCT_.FREESTAK ~> NEXT FREE STACK
ELEMENT

112 (70) BITSTRING 8 SI. GPCT .PACKWGRK WORK AREA FOR PACK

120 (78) A-ADDRESS 4 SI._GPCT_.MSGPTR -> MESSAGE FOR
S3CG0050

124 (7C) A-ADDRESS 4 SI._GPCT_.PAGBUF -> PAGE BUFFER FOR
MULTILINE MSG

128 (80) A-ADDRESS 4 SI._GPCT_.PAGBUFP -> CURRENT LOCATION IN
BUFFER

132 (84) FIXED 4 SI._GPCT_.GLDEST OLDEST DISPLAY AREA
TIME

136 (88) FIXED 4 SI._GPCT_.LINECNT CURRENT COUNT OF LINES
IN MSG

140 (8C) FIXED 4 SI._GPCT_.NTGMNUM WTO RETURNED MULT-LINE
MSG t

144 (90) FIXED 0 SI._GPCT_.MSG FORMATTED MESSAGE
BUFFER

144 (90) FIXED 2 SI._GPCT_.MSGTLEN LENGTH FIELD FOR
MESSAGE TEXT

146 (92) CHARACTER 125 SI._GPCT_.MSGTEXT FORMATTED MESSAGE
FIELD

271 (lOF) BITSTRING 1 SI _GPCT__FUNC FUNCTION CODE FOR
SaC00050

272 (110) BITSTRING 1 SI _GPCT_.DISPLAY DISPLAY AREA
IDENTIFIER

273 (111) CHARACTER 1 Reserved

274 (112) FIXED 0 SI _GPCT._WTGPARM ALIGN PARM BUFFER

274 (112) CHARACTER 125 SI._GPCT._WTGBUF BUFFER FOR WTO PARM
LIST

399 (18F) CHARACTER 1 Reserved

400 (190) STRUCTURE 0 SI GPCT _SYM START OF SYMBOL TABLE

400 (190) STRUCTURE 0 SI _GPCT._P_XXXXXX POSITIONAL OPERANDS

SL'PERLINK for MVS Logic Library Volume 2: Control Functional Unit SI-0I82

DescriptionOffsets Type Length Name

400 (190) CHARACTER 8 SI._OPCT_.P_.MICON SEND MICON PARAMETER

408 (198) BITSTRING 0 SI._OPCT_.Q..XXXXXX POSITIONAL FLAGS

EQUATE X'lO' SI._OPCT_.Q..MICON 'MICON' PRESENT

408 (198) STRUCTURE 0 SI._OPCT_.K_

1

X
X

X
X

X
X

KEYWORD OPERANDS

408 (198) CHARACTER 8 SI._OPCT_.K_.FU FU NAME VALUE

416 (lAO) CHARACTER 8 SI
s

OPCT.K_.OPTION OPTIONS NAME VALUE

424 (1A8) CHARACTER 8 SI._OPCT_.K_.APL APL NAME VALUE

432 (IBO) CHARACTER 8 SI._OPCT_.K_.MI MI NAME VALUE

440 (1B8) CHARACTER 8 SI _OPCT_.K_.JOB JOBNAME VALUE

448 (ICO) CHARACTER 8 SI _OPCT_.K_.DDNAME DDNAME NAME .VALUE

EQUATE X'lCl' SI._OPCT_.K_.DD ALIAS FOR DDNANE
KEYWORD

456 (1C8) CHARACTER 22 SI._OPCT_.K_.JOBS JOBS=(NNNNN,NNNNN,XXXXX:

478 (IDE) CHARACTER 15 SI
T •

DPCT.K_.AMLIMI AMLIMIT=(NNN,NNN,NNN,N)

493 (lED)

494 (lEE)

495 (lEF)

Cray Research, Inc.

BITSTRING

1

BITSTRING

BITSTRING

1 SI

SI.

SI
s •

SI.

SI.

SI.

SI.

SI.

SI.

SI
T •

1 SI

SI
H •
SI.

SI.

SI.

SI.

SI.

SI

OPCT_F_XXXXXX
.OPCT_F_FU

OPCT F OPTION

OPCT_F_APL

OPCT_F_DDNAME

OPCT_F_DD

OPCT_F_MI

OPCT_F_JOB

OPCT_F_JOBS

OPCT F AMLIMI

OPCT_L
.OPCT_L.

OPCT_L.

OPCT_L.

OPCT_L.

.OPCT_L.

.OPCT_L.

OPCT L

XXXXXX

.REFRES

.QUICK

.ABORT

.ALL

.LINKS

.OFFERS

AM

KEYNORD

»FU=»
PRESENT

VALUE=40*
•OPTIONS='
PRESENT

VALUE=20». »APL=»
KEYWORD PRESENT

VALUE=10». •DDNAME=
KEYWORD PRESENT

VALUE=10'. •DDNAME=
KEYWORD PRESENT

VALUE=08'. •MI=*
KEYWORD PRESENT

VALUE=04*. •JOB='
KEYWORD PRESENT

VALUE=02'. •JOBS='
KEYWORD PRESENT

VALUE=01».
•AMLIMIT=» KEYWORD
PRESENT

FLAGS

KEYHORD

KEYNORD

WHERE FLAGS LIVE

LITERAL

VALUE=
LITERAL

VALUE=
LITERAL

VALUE=
LITERAL

VALUE=
LITERAL

VALUE=
LITERAL

VALUE=
LITERAL

VALUE=
LITERAL

FLAGS BYTE 1

80*. 'REFRESH
PRESENT

40'. 'QUICK*
PRESENT

20'. 'ABORT'
PRESENT

10'. 'ALL'
PRESENT

08'. 'LINKS'
PRESENT

04'. 'OFFERS'
PRESENT

02'. 'AM'
PRESENT

Appendix A. Data Area Descriptions A-61

OffsetsType

<♦96(IFO)BITSTRING

497(IFl)BITSTRING

498(1F2)BITSTRING

LengthNameDescription

SI_OPCT_L_SESSIOVALUE=01'.
NS'SESSIONS*LITERAL

PRESENT

SI.

SI
E•
SI.

SI.

SI.

SI.

SI.

SI
s•

SI.

SI
E"
SI.

SI.

SI.

SI.

SI
N"
SI

SI.

SI.

SI

OPCT.

OPCT.

OPCT.

OPCT.

OPCT.

OPCT.

OPCT.

OPCT

OPCT

OPCT

OPCT

OPCT

OPCT

OPCT

.OPCT

OPCT

OPCT.

OPCT.

OPCT

.L_NULL

L_STORAG

L_STATUS

.L_PROCS

.L_RESP

.L_MIC

.L_FSS

LSLUSER

.L_TRACE

.L_NOTRAC

.L_DUMP

.L_NODUMP

.L_SNAP

.L_NOSNAP

.L_SESSIO

LCASE

.L_ECB

.L_NODES

LTABLES

LITERAL

VALUE=
LITERAL

VALUE=
LITERAL

VALUE=
LITERAL

VALUE=
LITERAL

VALUE=
LITERAL

VALUE=
LITERAL

VALUE=
LITERAL

VALUE=
LITERAL

FLAGSBYTE2

80NULL
PRESENT

40STORAGE'
PRESENT

20STATUS'
PRESENT

10PROCS
PRESENT

08RESP
PRESENT

04MIC
PRESENT

02FSS'
PRESENT

01SLUSERS
PRESENT

LITERAL

VALUE=
LITERAL

VALUE=
LITERAL

VALUE=
LITERAL

VALUE=
LITERAL

VALUE=
LITERAL

VALUE=
LITERAL

VALUE=
LITERAL

VALUE=
LITERAL

FLAGS

80*.
PRESE

40'
PRESE

20*
PRESEN

10'
PRESE

08'
PRESEN

04*
PRESEN

02
PRESE

01'
PRESE

LITERALFLAGS

VALUE=80'.

BYTE3

TRACE*
NT

NOTRACE*
NT

DUMP*
T

NODUMP*
NT

SNAP*
T

NOSNAP*
T

SESSION*
NT

CASE*
NT

BYTE4

ECB*

LITERALPRESENT

VALUE=40'.NODES

LITERALPRESENT

VALUE=20'.TABLES*
LITERALPRESENT

EQUATEX*63*SIOPCTSYMSIZESIZEOFSYMBOLTABLE

EQUATEX*1F3*SI_OPCT_SIZESIZEOFSIOPCT
CONTROLBLOCK

EQUATEX'lEB*SI._OPCT_CLEARLENAMOUNTTOCLEARFOR
RESET

EQUATE0SI._OPCT_SPOOLSUBPOOLTOUSEFOR
SI_OPCT

A-62SUPERLINKforMVSLogicLibraryVolume2:ControlFunctionalUnitSI-0182

Sf_STAK
Common name: Alternate Operand Stack Element

Macro ID: S@COSTAK

DSFXT name: SI_STAK

Created by: S@C00030

Location: SLCN private storage

Pointed to by: SI_OPCT

Serialization: None

Function: Provides a recursive work element within the Product Operator component.

Offsets Type Length Name Description

0 (0) A-ADDRESS 4 SI_STAK_.NEXT -> NEXT SI STAK ON THE
STACK

4 C^) A-ADDRESS 4 SI_STAK_.AOPAND -> ALTERNATE OPERAND
TABLE

8 C8) A-ADDRESS 4 SI_STAK_.AOPLIST -> ALTERNATE OPERAND
LIST

12 (C) A-ADDRESS 4 SI_STAK_.AOP ENTRY -> ALTERNATE OPERAND
LIST ENTRY

16 (10) FIXED 2 SI_STAK_.LISTNUM i LISTS LEFT TO PROCESS

18 (12) FIXED 2 SI_STAK_.ENTRYNUM i ENTRIES LEFT IN LIST

20 (14) A-ADDRESS 4 SI_STAK_.RETURN RETURN ADDRESS FROM
PROCESSOR

EQUATE X*18' SI_STAK_.SIZE LENGTH OF SI_STAK

Cray Research, Inc. Appendix A. Data Area Descriptions A-63

SV ESTW

Common name: SVC ESTAE Work Area

Macro ID:

DSECT name: SV ESTW

S@CCSVEW

Created by: S@CCOSVC

Location: Private area

Serialization: None

Function: Work area for the ESTAE recovery routine.

Offsets Type Length Name Description

0 CO) STRUCTURE 0 ALIGN PARAMETER LIST

0 (0) FIXED 72 SV_ESTW_REG STANDARD 18-NORD SAVE
AREA

72 (48) FIXED 72 SV_ESTW_SAVE STANDARD 18-NORD SAVE
AREA

144 (90) BITSTRING 8 SV ESTN ZPACK DOUBLE NORD FOR PACK

152 (98) A-ADDRESS 4 SV_ESTN_ARETRY RETRY ROUTINE ENTRY
POINT ADDRESS

156 (9C) FIXED 64 SV_ESTN_RETREGS REGISTERS FOR RESUME
POINT

156 (9C) FIXED 4 SV ESTN RETRO RO

160 (AO) FIXED 4 SV ESTN RETRl R1

164 (A4) FIXED 4 SV ESTN RETR2 R2

168 (A8) FIXED 4 SV ESTN RETR3 R3

172 (AC) FIXED 4 SV ESTN RETR4 R4

176 (BO) FIXED 4 SV ESTN RETR5 R5

180 (B4) FIXED 4 SV ESTN RETR6 R6

184 (B8) FIXED 4 SV ESTN RETR7 R7

188 (BC) FIXED 4 SV ESTN RETR8 R8

192 (CO) FIXED 4 SV ESTN RETR9 R9

196 (C4) FIXED 4 SV ESTN RETRl0 RIO

200 (C8) FIXED 4 SV ESTN RETRl1 Rll

204 (CO FIXED 4 SV_ESTN_RETR12 R12

208 (DO) FIXED 4 SV_ESTN_RETR13 (R13) ~> STANDARD
SAVE AREA

212 (D4) FIXED 4 SV ESTN RETR14 (R14) —> RESUME POINT

216 (D8) FIXED 4 SV_ESTN_RETR15 (R15) = RETURN CODE
FROM RETRY

220 (DC) A-ADDRESS 4 SV_ESTN_SSVTa SC_SSVT ADDRESS

224 (EO) FIXED 4 SV ESTN ABENDCC ABEND COMPLETION CODE

228 (E4) FIXED 4 SV ESTN SYSTEMCC SYSTEM COMPLETION CODE

232 (E8) FIXED 4 SV_ESTN_USERCC USER COMPLETION CODE

236 (EC) CHARACTER

A-64 SL'PERLINK for MVS Logic Library Volume 2: Control Functional Unit SI-0182

Offsets Length Name DescriptionType

237 (ED) CHARACTER 3 SV_.ESTW_.see SYSTEM COMPLETION
CODE, HEX •XXX•

240 (FO) CHARACTER 4 SV_ ESTW_.UCC USER COMPLETION CODE,
DECIMAL 'DDDD'

244 (F4) CHARACTER 8 SV_.ESTW_.REASON REASON CODE

252 (FC) CHARACTER

1111 11..

1111 1111

8 SV

SV

SV_

ESTW

ESTW_
ESTW_

TIME

.HH

.MM

TIME HH.MM.SS
HH

MM

EQUATE X'102» SV_ ESTN_.SS SS

260 (104) BITSTRING

1. . ^

1 SV

SV_
ESTN

ESTN_
FLAG

ERECURS

FLAG BYTE

1 = RECURSION

261 (105) CHARACTER 1 Reserved

262 (106) FIXED 0 SV_ ESTN_.DMSGL HALFNORD LENGTH FIELD
FOR saaMSG

262 (106) BITSTRING 1 FILLER - SHOULD
CONTAIN ZERO

263 (107) BITSTRING 1 SV_ ESTW_.DDUMPHDR LENGTH OF THE DUMP
TITLE IN BYTtS

264 (108) CHARACTER 100 sv_.ESTW_.DDUMPTIT DUMP TITLE (MAXIMUM
100 CHARACTERS)

364 (16C) STRUCTURE 0 sv_ ESTN_.DSDUMP SDUMP PARAMETER LIST

364 (16C) A-ADDRESS 1 FLAG BYTE

365 (16D) A-ADDRESS 1 FLAG BYTE

366 (16E) A-ADDRESS 1 FLAG BYTE

367 (16F) A-ADDRESS 1 FLAG BYTE

368 (170) A-ADDRESS 4 ADDRESS OF DCB

372 (174) A-ADDRESS 4 ADDRESS OF STORAGE
LIST

376 (178) A-ADDRESS 4 ADDRESS OF USER DATA

380 (17C) A-ADDRESS 4 ADDRESS OF ECB

384 (180) A-ADDRESS 2 CURRENT ASID

386 (182) A-ADDRESS 2 OTHER ASID

388 (184) A-ADDRESS 4 ADDRESS OF ASID LIST

392 (188) A-ADDRESS 4 ADDRESS OF
SUMLIST/SUMLSTA LIST
aG38

396 (18C) A-ADDRESS 4 RESERVED
aG33VPHD

400 (190) A-ADDRESS 4 RESERVED
aG33VPHD

404 (194) STRUCTURE 0 sv_ ESTW..DMSG ALIGN

404 (194) A-ADDRESS 4 MESSAGE NUMBER

408 (198) CHARACTER 2 COMPONENT IDENTIFIER

410 (19A) CHARACTER 1 TYPE OF PROCESSING
REQUIRED

411 (19B) A-ADDRESS 1 WTORLTH LENGTH OF
WTORPLY

412 (19C) A-ADDRESS 4 WTORPLY POINTER

416 (lAO) A-ADDRESS 4 WTORECB POINTER

Cray Research, Inc. Appendix A. Data Area Descriptions A-65

Offsets Type Length Name Description

420 (1A4) A-ADDRESS 4 SSVT POINTER

424 (1A8) A-ADDRESS 4 MESSAGE TABLE POINTER

428 (lAC) A-ADDRESS 4 RETURN MESSAGE AREA

432 (IBO) BITSTRING I ROUTING CODES

433 (IBl) CHARACTER 1 Reserved

434 (1B2) BITSTRING 1 DESCRIPTOR CODES

435 (1B3) CHARACTER 1 Reserved

436 (1B4) A-ADDRESS 1 NUMBER OF VARIABLES

437 (1B5) CHARACTER 3 Reserved

440 (1B8) A-ADDRESS 4 ADDR OF A MESSAGE
VARIABLE

444 (IBC) A-ADDRESS 4 ADDR OF A MESSAGE
VARIABLE

EQUATE XUCO' SV_ESTW_SIZE

A-66 SUPERLINK for MVS Logic Library Volume 2; Control Functional L'nit SI-0182

Appendix B. SLCN Macros

Command Syntax Macros

S@COADEF Macro

The S@COADEF macro allows sets ofalternate operands to beavaUable on any command. Alternate
operand entries may themselves point to other alternate operand lists so that complex syntaxes may
be defined.

S@COADEF

b

desc

jjaram group(s)

name: symbol. Begin name in column I.

One or more blanks must precede S@COADEF.

One or more blanks must follow S@COADEF.

desc: character string. Enclose the string in quotes.

param groupis): One or more groups separated by commas. Each group
consists of one or more RX-type addresses; if more than one address is coded,
the addresses must be enclosed in parentheses and separated by commas.

The parameters are explained as follows:

desc
Specifies a textual description which can be included in error messages generated by the parser
while it is processing this operand definition.

param group(s)
Specifies one or more addresses of operand definitions generated by otheroperand definition
macros.

Each group of addresses represents one valid operand group for a command, from a choice of
operand groups.

S@COCDEF Macro

The S@COCDEF macro defines each of the commands available to. the command parser and its
attributes. Tliis macro also directs the parser to one or more operand entrieswhich dcfmc the operands
that are available on the command.

Cray Research, Inc. .Appendix B. SLCN Macros B-I

name name: symbol. Begin name in column 1.

b One or more blanks must precede S@COCDEF.

S@COCDEF

b One or more blanks must follow S@COCDEF.

cmd cmd: character siring.

,minlen minlen: decimal digit.

fiplist oplist: RX-type address or list of RX-type addresses enclosed in parentheses
and separated by commas.

,TSO = NO Default: TSO = NO
,TSO = YES

,OPER = NO Default: OPER = VF.S
,OPER = YES

.MODULE = module name module name: character string.

If this is the first S@COCDEF macro in the syntax table:

.OPCTREG = opct register opct register: decimal digits.

The parameters are explained as follows:

cmd
Specifies the name of the command being defmed.

minlen ^
Specifies the minimum length of the command name which will be recognized by the command
parser.

oplist
Specifies the address or addresses of operand definitions, generated by the operand definition
macros, which defme valid operands for this command.

TSO = NO

TSO = YES
Specifies whether or not the command is available for use by TSO users.

OPER = NO

OPER = YES

Specifies whether or not the command is available for use by an operator via an MCS console
or by an authorized TSO user.

MODULE = module name
Specifies the name of the module to be entered to process the command once the command has
been correctly parsed.

OPCTREG = opct register
Specifies a register. This register must be the same as the one used to address the SI_OPCT in
the command and operand parsing routines.

It is used to generate the instructions which will be executed in the syntax table from the parsing
routines to move data to the symbol table in the SI_OPCT. It must be present on the first and
only on the first S@COCDEF macro in the syntax table.

B-2 SUPERLINK for MVS Logic Library Volume 2; Control Functional Unit SI.0IS2

S@COKDEF Macro

The S@COKDEF macro allows definitions of keyword operands to be made. The attributes of the
keyworditselfand the values that the keyword may take are also capable of beingdefined.

name

b

S@COKDEF

b

name: symbol. Begin name in column 1.

One or more blanks must precede S@COKDEF.

One or more blanks must follow S@COKI)EF.

keyword keyword: character string.

/ninlen minlen: decimal digit.

,desc desc: a character string enclosed in quotes.

.type type: one of the following values;
N AN ALL TEXT

.lower bound lower bound: decimal digits.

.upper bound upper bound: decimal digits.

.default value default value: depends on the type value or may be specified as one of the
following values:
NONE NULL

,TSO = NO Default: TSO = NO

,TSO = YES

,OPER=NO Default: OPER = YES

,OPER = YES

The parameters are explained as follows:

keyword
Specifies the name of the keyword being dcfmed.

minlen

desc

type

Specifies the minimum length of the keyword name that will be recognized by the operand parser.

Gives a short description of the operand. This may be used in error messages when the operand
parser encounters an error while processing this operand.

Specifies the type of value which may be coded with this operand; the valid types are listed below:

N This operand will accept only numeric values. Conversion to binary will be done by the
parser after checking the validity of the value presented.

AN This operand will accept only alphanumeric strings of characters. Validity checking is
done by the parser.

ALL This operand will accept strings including "national" characters. Validity checking is
done by the parser.

Cray Research, Inc. Appendix B. SLCN Macros B-3

TEXT This operand will accept strings containing arbitrary characters (including blanks),
provided that the text is enclosed in quotes. Validity checking is done by the parser.

lower bound

Specifies the lower bound of the value allowed in the case of numeric operand values.

upper bound
Specifies the upper bound of the value allowed in the case of numeric operands. The maximum
string length allowed in the case of the other operand types.

default value
Specifies the default value to be used if this operand is not specified on the command line.

This may be an actual value or one of the following literals:

NONE No default value is to be generated if this operand is not specified on the command line.

NULL A null (X'FFFF....FF') default value is to be generated if this operand is not specified
on the command line.

TSO = NO
TSO = YES

Specifies whether the command is available for use by TSO users.

OPER = NO
OPER = VES

Specifics whether or not the command is available for use by an operator via an MCS console
or by an authorized TSO user.

S(gCOLDEF Macro

The S@COLDEF macro defmes literal operands that may be used on a specific command.

name

b

S@COLDEF

b

name: symbol. Begin name in column 1.

One or more blanks must precede S@COLDEF.

One or more blanks must follow S@COLDEF.

literal literal: character string.

/ninlen minten: decimal digit.

,TSO =• .NO Default: TSO = NO
JSC = YES

,OPER=NO Default: OPER = YES
,OPER = YES

The parameters are e.xplained as follows:

literal
Specifies the name of the key\vord being defined.

mlnlen

B-4 SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit SI-0182

Spccifieis the minimum length of the keyword name that will be recognized by the operand parser.

TSO = NO
TSO = YES

Specifies whether or not the command is available for use by TSO users.

OPER = NO

OPER = YES
Specifies whether or not the command is available for use by an operator via an MCS console
or by an authorized TSO user.

S@COPDEF Macro

The S@COPDEF macro allows positional operands to be defmed. The attributes of the operand itself
and the values that the operand may take are also capable of being defmed.

name name: symbol. Begin name in column 1.

b One or more blanks must precede S@COPDEF.

S@COPDEF

b One or more blanks must follow S@COPDEF.

desc desc: A character string enclosed in quotes.

.type type: one of the following values:
N AN ALL TEXT

Jower bound lower bound: decimal digits.

.upper bound upper bound: decimal digits.

.default value default value: Depends on the type value or may be specified as one of the
following values:
NONE NULL

,TSO = NO
,TSO = YES

Default: TSO = NO

,OPER = NO
,OPER = VES

Default: OPER = YES

The parameters are explained as follows:

desc
Gives a short description of the operand. This may be used in error messages when the operand
parser encounters an error while processing this operand.

type
Specifies the type of value which may be coded with this operand; the valid types are listed below:

N This operand will accept only numeric values. Conversion to binary will be done by the
parser after checking the validity of the value presented.

AN This operand will accept only alphanumeric strings of characters. Validity checking is
done by the parser.

Cray Research, Inc. Appendix B. SLCN Macros B-5

ALL '["his operand will accept strings including "national" characters. Validity checking is
done by the parser.

TEXT This operand will accept strings containing arbitrary characters including blanks provided
the text is enclosed in quotes. Validity checking is done by the parser.

lower bound
Specifies the lower bound of the value allowed in the case of numeric operand Vcilues.

upper bound
Specifies the upper bound of the value allowed in the case of numeric operands. The maximum
string length allowed in the case of the other operand types.

default value
Specifies the default value to be used if this operand is not specified on the command line.

This may be an actual value or one of the following literals:

NONE No default value is to be generated if this operand is not specified on the command line.

NULL A null (X'EFFF....FF') default value is to be generated should this operand not be
specified on the command line.

TSO = NO
TSO = YES

Specifies whether or not the command is available for use by TSO users.

OPER = NO

OPER = YES
Specifies whether or not the command is available for use by an operator via an MCS console
or by an authorized TSO user.

S@C1SYNX Macro

name name: symbol. Begin name in column 1.

b One or more blanks must precede S@C1SYN,X.

S@C1SYNX

b One or more blanks must follow S@C1SYNX.

DSECT = YES keyword name: character string.
TABLE=START

TABLE=END

NAM E = keyword name

For NAME requests:

,CONV = conversion conversion: Type one of the following:
NUM HEX CHARxxxx FLAG SUBSCAN VECTOR ALIAS

.SUBENT = table entry table entry: symbol.

,CB = control block name or reference control block name or reference: Type one of the following:
CIOT NIOT JIOT VIOT or PARENT

.FIELD = {name offteld,name of length name offield: symbol.

B-6 SUPERLINK for IVIVS Logic Library Volume 2: Control Functional Unit 81-0182

field) name of length field: symbol.

,RANGE = (tower limitjupper limit) lowerlimit: symbol or decimal digits, 0-4294967295.
upper limit: symbol or decimal digits, 0-4294967295.

,VALUE= {value,value) value: character string.

,PRE = pre-scan exit name pre-scan exit name: symbol.

.AFT = post-scan exit name post-scan exit name: symbol.

,OBS = YES Default: OBS = NO
,OBS = NO

.SUBSCRP = {lowersubscript,upper lower subscript: character string. A-Z,0-9
subscript,anchor name,total length) upper subscript:character string. A-Z,0-9

anchor name: symbol.
total length: symbol or decimal digits, 1-32767.

.VCOUNT = count of vectors count of vectors: symbol or decimal digits, 1-255.
Default: I

The parameters are explained as follows:

DSECT = YES
specifies that a mapping of the data areas be'generated and not a look-up table.

TABLE=START
specifies that a new table is to be begun. The name field on the macro call is mandatory and is
used to identify the table in a SUBENT parameter or on an assembler ENTRY statement.

TABLE = END
fy specifies that the current table is finished.

NAiME = keyword name
specifies the name of the keyword being defined in the table.

CONV = conversion
specifies the conversion required for the parameter. The following possible alternatives available:

• NUM - numeric stored as binary

• HEX - hexadecimal stored as binary

• CHARxxxx - value stored in character form and must conform to gjven character sct(s) x
or explicit values. Possible character set(s) x are:

• A - Alphabetic

• N - Numeric

• J - JCL rules (first character must be alphabetic or national)

• S - Special national @%§

• F - First must be alphabetic

Note: Explicit values follow the CHARxxxx parameter as additional subparameters of
CONV= eg CONV = (CHAR,%,6B). The explicit values arc denoted by either a single
character or two hex digits.

• FLAG - value is represented by flag bits in a flag b>1e

• SUBSCAN - kc>avord requires further subscanning using other table entries

Cray Research, Inc. Appendix B. SLCN Macros B-7

• VECTOR - keyword requires vector subscaiining using further table entries

• ALIAS - keyword is an ALIAS of another keyword

SUBENT = table entry
specifies the name of a further table entry to be used for scanning.

CB = control block name or reference
specifics the name of the control block to be updated or refers to a previous table entry.

HELD = {name offield,name of length field)

• Name of field specifies the name of the control block field to be updated.

• Name of length field" specifies the name of the.control block field to contain the length of
input in bytes for CONY = CHAR.

RANGE = {lower limit,upper limit)

• Lower limit specifies a minimum acceptable value except when CONY = CHAR, when it
specifies a minimum length in bytes.

• Upper limit specifies a maximum acceptable value except when CO NY = CHAR, when it
specifies a maximum length in bytes.

Note: RANGE = and VALUE = are mutually exclusive.

VALUE = {value,value)
specifies a list of acceptable values unless CONY = FLAG. For CONY = FLAG specifies a series
of triples as follows:

• Keyword name or null

• Value to OR

• Value to AND

Note: RANGE = and VALUE = are mutually exclusive.

PRE = pre-scan exit name
specifics the name of an internal routine which may perform specialized syntax analysis and
control block updating.

AFT=post-scan exit name
specifies the name of an internal routine which performs specialized functions once the value of
a parameter is known, for example obtaining storage for sub-scripted items after the maximum
has been defined.

OBS=VES
OBS = NO

specifies whether a parameter is obsolete or current.

SUBSCRP = {lower subscript,upper subscript,anchor name,total length)

• Lower subscript specifies the first sub-script in a series, normal EBCDIC collating sequence.

• Upper subscript specifies the last sub-script in a series, normal EBCDIC collating sequence.

B-8 SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit SI-0182

Anchor name specifics the name of the control block field containing the addressof the
appendage to hold the subscripted item(s). This sub parameter is omittedfor inline
subscripted items.

Total length specifies the length of each subscripted itemto be used when obtaining storage,
etc. It is particularly useful when the subscripted item is a complex data structure and the
length of the symbol given in FIELD = is inappropriate.

Cross Memory Communications Macros

S@@CSERV Macro

The S@@CSERV macro handlescommunicationsbetween the control address space(SLCN) and the
Functional Subsystem Interface (FSI) routines in the FSI part of the Functional Subsystem (FSS)
address space. The macro SCHEDULES the SRB to the FSS address space upon an ORDER-type
communication, and cross memory POSTs the control address space when a SEND type
communication from the FSS address space is requested.

S@@CSERV

b

TARGirr = FSS
TARGET = SI.CN

.TYPE = ORDER

.TYPE = SEND

.FUNC = (TER.Vl./er/n type)

.FUNC = STATUS

.FUNC = MSG

.FUNC = IN IT

.FARM =piist addr

.FS1D=/SJ W

.WAIT = YES

.WAIT = NO

,ECB = ECB addr

.DATA = data addr

.LDATA = data length

,SS\/T = SSyTaddr

name: symbol. Begin name in column 1.

One or more blanks must precede S@@CSERV.

One or more blanks must Follow S@@CSERV.

Default: TARGET = SLCN

Default: TYPE = SEND

term type: One of the following values:
QUICK NORMAL ABORT

plist addr: RX-type address or register (2)-(12).

fss id: RX-type address, register (2)-(12) or decimal digit.

Default: WAIT = YES

ECB addr: RX-type address or register (2)-(12).

data addr: RX-type address or register (2)-(12).

data length: RX-type address or register (2)-(12).

SSVT addr: RX-type address or register (2)-(12).

The parameters are explained as follows:

TARGET = FSS
TARGET = SLCN

Specifies the subsystem that is the target of this request. Two values are possible:

Cray Research, Inc. Appendix B. SLCN Macros B-9

SLCN. The control address space (SLCN) is the target of this request. This is the default if
TARGET is not specified.

FSS The Functional Subsystem (FSS) address space is the target of this request and is
identified by the FSID parameter.

TYPE = ORDER
TYPE=SEND

Specifies the type of request. One of the following may be coded:

ORDER The type of request carried by the parameter list is a Functional Subsystem ORDER
primitive. This must be accompanied by TARGET = FSS

SEND The type of request carried by the parameter list is a Functional Subsystem SEND
primitive. This is the default if TYPE is not specified. This must be accompanied by
TARGET = SLCN (default value).

FUNG = (TERM,/er/72 type)
FUNG = STATUS

FUNG = MSG
FUNC = IMT

Indicates the type of ORDER or SEND request to perform as follows:

(TERM,QUICK) This is a TERMINATE ORDER request for a QUICK shutdown.

(TERM,NORMAL) This is a TERMINATE ORDER request for a NORMAL shutdown.

(TERM,ABORT) This is a TERMINATE ORDER request for an ABORT shutdown.

STATUS This is a STATUS type ORDER request.

MSG This is a MSG type ORDER request.

INIT This is an INIT type ORDER request.

PAR.M=p//j/ addr
Specifies the address of the parameter list (SG_SERV) which contains data relevant to the service
requested. If this parameter is not specified, the address of the SG_SERV must have been placed
previously in register 1.

FSID =fss id
Identifies the FSS that is the target of this request.

WAIT = YES

WAIT = NO

Specifies whether or not the the macro will be exited before the target FSS address space has
notified the control address space via a cross memory post of the successful receipt of the request.
YES is the default option if this parameter is not specified.

If YES is coded, control will not be retumed until the notification has been received.

If NO is coded, the macro will schedule the SRB, but will not wait for notification of successful
receipt. Gare should be exercised when specifying this option, because the invoker is responsible
for recovery processing should the SRB fail or ABEND.

FCB= ECB addr
Specifies the address of the EGB to be POSTcd as specified by the WAIT= parameter.

D.AT.A = data addr
Specifies the address of data associated with the specific request.

B-IO SUPERLINK for MVS Logic Library Volume 2: Control Functional L'nit 81-0182

LDATA = data length
Specifies the length of data identified by the DATA= parameter.

This length is specified in a fullword or in a general register.

SSW1 SSVT addr
Specifies the address of the SC_SSVTcontrol block.

Return Codes

Notes

A return code passed in register 15indicatesthe success or failure of the request. This return code is the
same as that returned from routine S@CF0100.

All parameters on the S@@CSERV macro are optional; however, if all of the parameters are omitted,
the addressof the SC_SERV must be specified in register 1, and the SC_SERV data area must be
formatted with all the relevant information required to complete the request.

S@@FIREQ Macro

The S@@FIREQ macro handles the communications between the FSl component of the FSS address
space and the FSS-specific routines. It also allows the FSS to CONNECT and DISCONNECT itself
from the controlling address space (SLCN) via Subsystem Interface function request 53.

name name: symbol. Begin name in column 1.

b One or more blanks must precede S@@F1REQ.

S@@F1REQ

b One or more blanks must follow S@@FIREQ.

REQUEST = /-e<7««/erf semce requested service: register (2)-(12). Alternatively, one of the following values
may be coded;
FSICON FSIDCON FSISEND FSIORDER

,TARGET = SLCN Default: TARGETfSLCN
.TARGET = FSS

,PARM =p/tr/ addr pllst addr: RX-type address or register (2)-(12).

,FS1D =/js id fss id: RX-type address, register (2)-(12) or decimal digit.

,FSSCB = FSSCB addr FSSCB addr: RX-type address or register (2)-(12).

.WORK = work area work area: RX-type address or register (2)-(12).

The parameters are explained as follows:

REQUEST = requested service
Specifies the requested ser\'ice.

Valid services are:

FSICON CONNECT notifies the SLCN that the FSS has initialized and is available.

Cray Research, Inc. .Appendix B. SLCN Macros B-l 1

Notes

FSIDCON DISCONNECT notifies SLCN that the FSS is terminating and is no longer available.

FSISEND SEND enables the FSS to send a response to the SLCN.

FSIORDER ORDER enables the SLCN to send a command or order to the FSS address space.

If this parameter is not specified, one of the EQUated values for the required service must have
been stored previously in the SC_FSIP_FUNC field of the SC_FSIP parameter list. For
CONNECT and DISCONNECT requests, the REQUEST parameter must be specified.

TARGET = SLCN
TARGET = FSS

Specifies the target of this request. Two values are possible:

SLCN SLCN is the target of this request. This is the default if TARGET is not specified.

FSS The FSS address space identified by the FSID parameter is the target of this request.

PARM=/7//j/ addr
Specifies the address of the parameter list (SC_FSIP) which contains data relevant to the service
requested.

If this parameter is not specified, the address of the SC_FSIP must be in register 1.

FSID=/w id
Identifies the FSS that is the target of this request.

If this parameter is not specified, the FSS-identifier must be in the SC_FSIP_FSID field in the
SC_FSIP.

¥SSCB = FSSCB addr
Specifies the address of the SC_FSSCB of the FSS identified by the FSID parameter.

This parameter is required only on ORDER and SEND requests. It is not required on
CONNECT or DISCONNECT requests.

WORK = work area
Specifies the address of a 100-byte work area for use by the FSI routines.

This parameter is required only on ORDER and SEND requests. It is not required on
CONNECT or DISCONNECT requests.

All parameters on the S@@FIREQ macro are optional, however if all of the parameters are omitted,
the address of the SC_FSIP must be specified in register 1, and the SC_FSIP must be formatted with
all the relevant information required to process the request.

S@@LOG Macro

name: symbol. Begin name in column 1.

One or more blanks musi precede S@@LOG.

B-12 SUPERLINK for iVlVS Logic Library Volume 2: Control Functional Unit SI-0I82

One or more blanks must follow S@@LOG.

GET

QUEUE

For GET requests:

.COUNT = number of LOGEs number of LOGEs: decimal digits, 0-10 or register (2)-(12).

,SLNAME = su6jywe/n name subsystem name: RX-type address or register (2)-(12).
,SSVT= jjvr address ssvt address: RX-type address or register (2)-(12).

Default: SSVT = 0

For QUEUE requests:

.LEAD = (Rn) n. decimaldigits. 2-12.

.SLNAME = su65>'srem name subsystem name: RX-iype address or register (2)-(12).

.SSVT = jsvr address ssvt address: RX-lype address or register (2)-(I2).
Default: SSVT = 0

The parameters are explained as follows:

GET

QUEUE
Specifies the type of request.

GET signifies a request for Lx)g Elements (LOGEs) to be allocated and chained. On return from
a successful GET request, register 1 points to the first LOGE of the chain.

QUEUE signifies a request for the LOGEs obtained through a GET request to be queued for
processing.

COUNT = number of LOGEs
Specifies the number of LOGEs required.

LEAD = (R/2)
Specifics a register which contains the address of the LOGEs as returned by a GET request.

SLNAiME = name

SSVT = ssvt address
Identifies which SUPERLINK subsystem is to perform the processing:

SLNAME This option specifies the address of an area containing the name of the subsystem.

SSVT This option specifies the address of the subsystem's SSVT control block.
Components within the SLCN address space may specify SSVT= 0.

Return Codes

Code Description

00 Successful completion

04 CjET multiple request was only partially satisfied; register 0 contains a count of the LOGEs
returned (at least 1; see retum code 08).

QUEUE message length(s) outside range, using ma.ximum

08 Insufficient storage

Cray Research, Inc. Appendix B. SLCN Macros B-13

Notes

12 Bad parameter; register 0indicates the relevant parameter: f """ >
0 SLNAMI2 or SSVT

4 COUNT
8 LEAD

16 SUPERLINK logging is inactive.

Components issuing S@@LOG do so in 31-bit addressing mode. S@,^LOG returns a 31-bit address.

The message length in all returned LOGEs (after processing GET) is set to zero.

S@@SVBS\ Macro

name name: symbol. Begin name in column 1.

b One or more blanks must precede S@@SUBSY.

S@@SUBSY

b One or more blanks must follow S@@SUBSY.

SLf<AWU.= superltnk name superlink name: character string. Length must be I to 8 characters.

,VERS = version id version id: two EBCDIC characters. These must be in quotes if a blank is _
included.
Default: VERS = ' ' (two blanks, hexadecimal '4040')

The parameters arc e.xplained as follows:

SLNAME = superlink name
Specifies the name of the SUPERLINK subsystem that is to provide the requested service.

This name is not necessarily the MVS subsystem name. It is the name known to the application
program and provided to SUPERLINK by the installation as a parameter in the initialization
options.

VERS = version id
Specifies a particular version of the SUPERLINK subsystem.

'ITie specified characters are appended to the string "SL" to form the full string which identifies
a subsystem as a SUPERLINK subsystem. The full string is compared with the user field in the
SSCYT.

Association Manager Macros

B-14 SL'PERLINK for MVS Logic Library Volume 2: Control Functional Unit SI-0182

S@@MREQ Macro

The Association Manager interface code is invoked by external modules using the S@@MREQ macro
to request a function. The S@@MREQ macro format is as follows:

S@@MRtQ

b

FUNC = LISTEN

FU.NC = PROCESS
FUNG = NOTIFY

FUNG = DELETE

FUNG =function

,SLNAME = jyjrem name
,SS VT = ssvl addr

,EGB = ecb addr

,TVPE=EP
.TYPE = ANY
,TYPE = (ype

,ID = identifier

.WKAREA - work area

.MF = L
,MF = (E,c/f/ai/^r)

.BRANCH = YES

.BRANCH = NO

name: symbol. Begin name In column 1.

One or more blanks must precede S@@MREQ.

One or more blanks must follow S@@MREQ.

function: register (2)-(12).

system name: RX-type address or register (2)-(12).
ssvt addr: RX-type address or register (2)-(12).

ecb addr: RX-type address or register (2)-(12).

type: register (2)-(12).

identifier: RX-type address or register (2)-(12).

work area: RX-type address or register (2)-(12).

work area: RX-type address or register (2)-(12).

type: SVG or branch entry
Default: BRA.\GH = NO.

The parameters are explained as follows:

FUNC = LISTEN
FUNC = PROCESS
FLNC = NOTIFY

FUNG = DELETE

FUNG =function
Specifies the type of function that the caller requires.

LISTEN specifies that events may be queued for the address space of the requester. It sets the
user from either STATE = IDLE or STATE = STOP-NEW-DATA into STATE = LISTEN.
Initially, when the STATE = IDLE and LISTEN is invoked, register 1 (upon return) will contain
an identifier that the Association Manager component assigned to the address space of the
requester. This ID should be quoted on all other function requests that use the ID parameter.

PROCESS requests processing of the furst queued event, if any.

NOTIFY requests the Association Manager component to post an ECB when an event occurs.
Notification is immediate if one or more e\'ents are already queued. The ECB must be
reinitialized and the NOTIFY function reinvoked in order to be notified again.

DELETE deletes the LISTEN request for one of the following:

Cray Research, Inc. Appendix B. SLCN Macros B-IS

• Everything but termination requests (TYPE = EP; the state is set from STAl'E = LISl'EN
to S TATE= S rop-NEW-DA I A)

• Everything (TYPE = ANY; the state is set from STATE = LISTEN to STATE = IDLE)

V\}'^C=function may be used to specify the function from a code within a register. This code
must be contained in the low-order byte of the register. The following codes are valid:

• X'Or - LISTEN
• X'02' - PROCESS

• X'04' - NOTIFY

• X'08' - DELE I E

SLNAME = system name
SSVT = ssvt addr

Identifies the SUPERLINK system that is to process the request.

SLNAME specifies the address of an 8-character area in storage containing the SUPERLINK
name. In-line code generated by the macro and stored in the parameter list resolves this into an
SSVT address.

SSVT specifies a fullword containing the address of the SUPERLINK SSVT address.

ECB = ecb addr
Specifies the address of the full-word event control block to be posted when an event pertaining
to association management occurs. This ECB must be initialized before the NOTIFY function
is invoked. This parameter is only required when FUNC= NOTIFY is requested.

TYPE=EP
TYPE = ANY

TYPE = type
Specifies the type of DELETE being requested. This parameter is required only when
FUNC= DELETE is coded.

EP specifies the end-point given event.

ANY specifies any event.

TYPE = type may be used to specify the type from a code within a register. This event type must
be contained in the low-order b>"tc of the register. The following types are valid:

• X'Or - Connection end point given
• X'02' - Any

ID = identifier
Specifies the address of a full-word containing the identifier associated with the address space of
the requester. This identifier is assigned by the Association Manager and is used as an index in
a table to locate the correct entry. 'ITie JOBNAME and JOB ID of the requester are checked
against those contained in the entiy for validity.

VVKAREA = work area
Specifies the address of a 2-word work area to be used when a PROCESS request is made. The
low-order b)le of the first word contains an event code. The previous byte may contain a
subcode as follows:

Hex Code Description

00 No event was queued.

01 Connection end point was given; the second word contains the AID.

B-16 SUPERLINK for MVS Logic Library Volume2: Control Functional Unit 81-0182

02 Termination requested; the subcode specifies the type of termination:

• X'OO' - 'Graceful'
• X'Or - Quick
• X'02' - Abort

BRANCII=Vi:S

BRANCH = NO
Specifies that an SVC entry is to be performed (NO) or that a branch entry is to be performed
(YES) to the interface code.

Return Codes

The following is a list of return codes generated by the Association Manager Interface when it is called
by the S@@MREQ macro. The retum code is returned in re^ster 15; the qualifier is returned in
register 0:

Code Description

GO Successful completion

04 Missing parameter

Qualifier:

Code Meaning
04 ECB address required for FUNG = NOTIFY
08 TYPE required for FUNG = DELETE
OG ID required
10 WKAREA required for FUNG = PROCESS
14 SLNAME/SSVT required

08 Invalid parameter

Qualifier:

04 Invalid code specified on FUNG
08 Invalid code specified on TYPE
OG Invalid identifier specified on ID
10 Invalid SSVT address
14 Invalid Association Manager Vector Table address in SSVT

OG Function requested has been rejected

Qualifier:

00 STATE is not recognized
04 STATE = IDLE

08 STATE = STOP-NEW-DATA
OC Association Manager component is terminating
10 STATE = LISTEN
14 STATE = LISTEN-PENDING

10 Association .Manager failed or is inactive

Qualifier:

Code Meaning
00 Null address found when trying to link to Association .Manager Interface

Cray Research, Inc. Appendix B. SLCN Macros B-17

04 Association Manager STATE = INACTIVE
08 Association Manager GWA address in Association Managervector table is null
OC Resp Dir header address in GWA is null
10 Resp Dir pointer base address in header is null
14 Resp Dir entries queue cell address is null
18 Responder not initiated by Association Manager

14 Insufllcient space available for Association Manager

Qualifier:

Code Meaning
00 All entries in responder directory in use
04 No more elements for queue management cells
08 No more elements for RED entries

S@C@QADD Macro

S@C@QADD

b

CPID = cpW

,DATA = </a/a

,QUEUE = ^Meue

name: symbol. Begin name in column 1.

One or more blanks must precede S@C@QADD.

One or more blanks must follow S@C@QADD.

cpid: RX-type address or register (2)-(12).

data: RX-type address or register (2)-(12).

queue: RX-type address or register (2)-(12).

The parameters are explained as follows:

CV\D = cpid
Specifies the address of a 4-b>te area containing the cell pool identifier of the queue element cell
pool. A queue element will be obtained from this cell pool to hold the data in the request queue.

DATA =

Specified the address of the area that contains the queue element that is to be added to the queue.
Its layout is defined by the S@C@QUE macro.

QUEUE = queue
Specifies the address of the request queue anchor. The data specified is inserted into a new cell
pool element. The cell pool element is then chained onto the request queue.

S@C@QREM Macro

name

b

S@C@QREV1

name: symbol. Begin name in column 1.

One or more blanks must precede S@C@QRE.\I.

B-18 SUPERLINKfor MVS Logic Library Volume 2: Control Functional Unit 81-0182

C?\D = cpid

.TARGET = target

,QUEUE =

One or more blanks must fbilow S@C@QRIiM.

cpid: RX-lype address or register (2)-(12).

target: RX-type address or register (2)-(12).

queue: RX-type address or register (2)-(12).

The parameters are explained as follows:

CVID = cpid
Specifies the address of a 4-byte area containing the cell pool identifier of the queue element cell
pool. The queue element is returned to this cell pool once the data has been inserted into the
target area.

TARGET = target
Specifies the address of the the area that is to contain the element removed off the queue. The
layout of queue elements is defined by the S@C@QUE macro.

QUEUE = queue
Specifies the address of the work queue anchor.

S@C@QSWI Macro

S@C@QSWI

b

RQ U EL!E = request queue

,\V'QU EU E = work queue

name: symbol. Begin name in column 1.

One or more blanks must precede S@C@QSWI.

One or more blanks must follow S@C@QSWl.

request queue: RX-iype address or register (2)-(12).

work queue: R.X-type address or register (2)-(12).

The parameters arc explained as follows:

RQUEUE = request queue
Specifies the address of the request queue anchor.

WQUEUE = work queue
Specifies the address of the work queue anchor.

S@C@TIMR Macro

Cray Research, Inc.

name: symbol. Begin name in column 1.

One or more blanks must precede S@S@TIMR.

.Appendix B. SLCN Macros B-19

S@S@TI.V1R

b One or more blanks must rollow S@S@'riMR.

FUNC = SET function: register (0)-(10).
FUNC = CA.\CEL
FUNC =function

,ECB = timer ecb timer ecb: RX-type address or register (2)-(12).

,TI M E = m/ervfl/ interval: RX-lype address or register (2)-(12).

,SLNAME = 5yj/em name system name: RX-lyf)e address or register (2)-(12).
,SSVT = ssvt address ssvt address: RX-type address or register (2)-(12).

..Ml'- L Ctrl addr: RX-type address or register (2)-(l2).
,M F = (E.c/r/ addr)

The parameters are explained as follows:

FUNC = SET

FL7SC = CANCEL

FUNC =function
Specifies the time interval is to be set or cancelled.

If SET is requested, the specified ECB is posted when the specified TIME has expired if it is not
cancelled. If a register is specified, the function code must be contained in the low-order byte of
the register. The following codes are valid;

• C'S' - SET
• CC - CANCEL ' >

ECB = timer ecb
Specifies the address of the ECB that is to be posted when the time interval expires. This
parameter is only required when FUNG = SET is coded.

TIME = interval
Specifies the time interval in seconds that is to expire before the user's ECB is posted. This
parameter is only required when FUNC = SET is coded.

SLN.AME = system name
SSVT = ssvt address

Identifies the SUPERLINK system that is to process the request.

SLNAME specifies the address of an 8 character area in storage that contains the SUPERLINK
name. In-line code generated by the macro and stored in the parameter list resolves this into an
SSVT address.

SSVT specifies a fuUword containing the address of the SUPERLINK SSVT address.

.MF=L

M¥ = (E,Ctrl addr)
Specifies altemative forms of the macro.

L is used to specify the list form and (E,ctrl addr) specifics the execute form.

B-20 SUPERLINK for IVIVS Logic Library Volume 2; Control Functional Unit SI-0182

Message Processor Macros

S@@MDEF Macro

When the GML-encoded messages are formatted by DCF/SCRIPT they are converted to specifications
of S@@MDEF macros. All macro parameters are positional.

The S@@MDEF macro instruction is specified as follows:

name name: symbol. Begin name in column 1.

b One or more blanks must precede S@@MDEF.

S@@MDEF

b One or more blanks must follow S@@NH)EF.

msg number msg number: decimal digits.
Range: 1 to 9999

severity severity: Single character

.message line message line: This is of the form (lext.var), where textis a quoted character
string and var is a decimal integer enclosed in parentheses. The var
subparameter may be omitted.

Note: The two subparameters, as well as this parameter, may be repeated.

The parameters are explained as follows:

msg number
Specifies a unique 4-digit identifier for the message.

severity
Specifies a I-digit severity indicator associated with the message. It is recommended that the
traditional values (1, W, E, and so on) be used.

message line
Specifies a message line in terms of literal text and variable portions.

Each complete parameter enclosed in parentheses represents a complete line of the message. If
a message linecontains variable parts, the whole line is defined by one or more fixed text portions
separated by subparameters specifying the length of a variable part. The position of the variable
lengths in the macro identifies the position of the variable text in the message relative to the
surrounding fixed text.

If a message consistsof more than one line, more than one parameter is coded.

Notes

The S@@^^E)EF macro expands to a message data structure; the message structure consists of an
index section and a data section. The two sections are generated as two CSECTS. The name of the
CSECT that contains the index section is the label used on the first S@@MDEF macro encountered
in the list. If the first macro has no label, a default label of SLNDEX is used.

Cray Research, Inc. Appendix B. SLCN Macros B-21

Restrictions

'ITie following is a list of restrictions that apply when using the S@@MDEF macro:

• The messages formatted by DCF/SCRIPT should be contained in sequential order within the
members in the "Messages" library.

• Each line of text is restricted to 60 bytes. This applies to both single and multi-line messages.

• There is a limit of 50 variables per message.

Example

The following example shows a two line message with a variable in the first line of the message:

SaaMDEF 1234,1,
(•THE VARIABLE IS •,(3),» THREE BYTES LONG'),
(•THIS IS THE SECOND LINE OF THE MESSAGE')

S@@MSG Macro

The S@@MSG macro is available to all components within the SUPERLINK/MVS product and is
used to invoke the message processing service. During initializationprocessing within SLCN, the
message processing service routines are loaded and anchored from the Global Service Table (GST).
There are four different forms of this macro: standard, list, format and execute. Each of these formats
is described in detail in the following subsections.

S@@MSG (Standard Form)

The standard form of.the S@@MSG macro instruction is specified as follows:

S@@MSG

b

message number

,CO.VI PID = component id

,TABLE = message table

,S LN AM E = system name
,SS VT = ssvt address

,TYPE= LOCATE
,TYPE=FORM.\T
,TYPE=\VTO
.TYPE = WTOLOG
.TYPE= WTOR
,TYPE = \VTOR- LOG
.TYPE = LOG

.VAR = [variable text)

,RO\JTCDE = [routing code)

name: symbol. Begin name in column 1.

One or more blanks musl precede S@@MSG.

One or more blanks musl follow S@@MSG.

message number: register (2)-(12).

component id: character string of length 2

message table: RX-type address or register (2)-(l2).

system name: RX-type address or register (2)-(l2).
ssvt address: RX-type address or register (2)-(12).

Default: TYPE = WTO + LOG

variable text: R.X-type address or register (2)-(12). One or more values may
be coded, separated by commas.

routing code: decimal digits. 1-16 or register (2)-tI2). A list of integers may

B-22 SL'PERLINKfor MVS Logic Library Volume 2: Control Functional Unit 81-0182

,ROUVCDE=roulcdeaddrbespecified,separatedbycommas.
routcdeaddr:RX-lypeaddress.

X>\^SC~{desccode)rfesmpWfco<fe.;decimaldigits,1-16orregister(2)-(12).Alistofintegersmay
descaddrbespecified,separatedbycommas.

descaddr:RX-typeaddress.

IfTYPE=WTORorTYPE-WTOR-LOGiscoded;

,VYrORPLY=r«p/yareareplyarea:RX-typeaddressorregister(2)-(12).

,\VTORi;rH=fep/ylengthreplylength:A-typcaddrc.ssorregister(2)-(12).
Default:L'replyarea

.WTORECB=replyecbreplyecb:RX-typeaddressorregister(2)-(12).

IfTYPE=FORMATiscoded:

,RETAREA=msgareamsgarea:RX-typeaddressorregister(2H12).

IftheTYPEparametervalueisnotl-ORM.ATorLOCATE:

,REn"AREA=msgareamsgarea:RX-typeaddressorregister(2)-(12).

Theparametersareexplainedasfollows:

messagenumber
Specifiesaunique1-to4-digjtdecimalnumberorspecifiesare^sterthatcontainsthemessage
numberinbinar>'.Themessagenumbermustidentifyamessageinthemessagetable.

COMPID=componentid
Specifiesa2-di^tidentifierofthecomponentthatisusingthismessagemacro.(If
TYPE=LOCATEisspecified,thisparameterisignored).

TYPE=LOCATE
TYPE=FORMAT
TYPE=\\TO

TYPE=WTO+LOG
TYPE=WTOR

TYPE=WTOR+LOG
TYPE=LOG

Specifiesthetypeofprocessingtobecarriedout.

LOCATEretumstheaddressofthemessageentryinregisterI.Fortherestoftheoptions,the
messageisformattedandoutputtotherequestedtarget.

FORMA'I'specifiesthattheuser'sreturnareaistherequestedtarget.

LOGspecificsthattheSUPERLINKLOGistherequestedtarget.

WTOandWTORspecifythataWTOorWTORistobeissuedusingtheroutingcodesspecified
ontheROUTCDEparameter.

TABLE=messagetable
Specificsafull-wordcontainingtheaddressofthemessagetablethatcontainsthemessage
identifiedbythemessagenumberparameter.

SLN.AME=y'Stemname
SSVT=ssvtaddress

IdentifiestheSUPERLINKsystemthatistoprocesstherequest.

CrayResearch,Inc.AppendixB.SLCNMacrosB-23

SLNAME specifies the address of an 8-character area in storage that contains the SUPERLINK
name. In-line code generated by the macro and stored in the parameter list resolves this into an
SSVT address.

SSVT specifies a full-word containing the address of the SUPERLINK SSVT address.

V^AR = {variable text)
Specifics the addresses of message variables that are to be inserted into the message.

The values coded on the parameter are positional; each variable represents the corresponding
variable field within the message text. The user's variable data may be preceded by a halfword
containing the length of the variable data. If the data length is zero, the parameter area in the
message is padded with spaces. If the data length is not specified, the default length is the
maximum permissible size of the variable defined in the message table entry. The maximum
number of variables permitted is 50.

ROLTCDE = {routing code)
ROL TCDE = routcde addr

Specifies the routing code or codes to be used for the WTO or WTOR.

This parameter may be specified in one of three ways:

• A list of decimal integers (each between 1 and 16) enclosed in parentheses; the list may
contain only one integer.

• An RX-type address which points to a halfword containing a routing code.

• A registercontaining the address of a halfword; the halfword contains the routing code.

The routing codes are as follows:

1 Master console action 9 System security
2 Master console information 10 System error/maintenance
3 Tape pool 11 Programmer information
4 Direct access pool 12 Emulators
5 Tape library 13 Reserved for customer use
6 Disk library 14 Reserved for customer use
7 Unit record pool 15 Reserved for custorer use
8 Teleprocessing control 16 Reserved for future expansion

DESC = {desc code)
DESC = desc addr

Specifics the descriptor code or codes to be used for the WTO.

This parameter may be specified in one of three ways:

• A list of decimal integers (each between 1 and 16) enclosed in parentheses; the list may
contain only one integer.

• An RX-type address which points to a halfword containing a descriptor code.

• A registercontaining the address of a halfword; the halfword contains the descriptor code.

The descriptor codes are as follows:

1 System failure 7 Appllication program/processor
2 Immediate action required 8 Out-of-line message
3 Eventual action required 9 Operator request
4 System status 10 Dynamic status requests

B-24 SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit 81-0182

5 Immediate command response 11 Critical eventual action required
6 Job status 12-16 Reserved for furure use

Note: Descriptor codes 1through 6 and code 11 are mutually exclusive. Codes 7 through 10 can
be assigned in combination with any other code.

WTORPLY = reply area
Specifies the address of an area into which the control program is to place the reply to the
WTOR.

WTORLTII = reply length
Specifies the length of the area pointed to by VVTORPLY. Valid values are 1through 115.

VVTORECB = re/i/j; ecZ>
Specifies the address of the ECB that the control program is to use to indicate the completion
of the reply and the ID of the replying console. After the control program receives the reply, the
KGB is updated as follows:

Length
(in

Offset bytes) Contents
•l-O 1 Completion code
+1 2 Reserved
•f3 1 Console ID in hexadecimal

RKTAREA = mjg area
Specifies the address of an area in which the formatted message will be retumed to the user. The
area must begin with a halfword containing the maximum length of the user's return area. Upon
return, the halfword contains the actual length of the message within the buffer. It the halfword
contains zero, no data has been retumed. This parameter is ignored if TYPE = LOCATIv and
is mandatory if TYPE = EORMAT. Eor all other types, this parameter is optional.

The macro will create a parameter list and call the message processing service to perform the necessar>'
action.

Return Codes

The following is a list of return codes that will be generated by the message processing service when it
is called by the S@@\ISG macro. The return code is set in register 15 and the qualifier is set in register
0. (If a \VrO/WTOR call is to be made, register 1 wiU contain the WTO/W'fOR identification
number.)

Code Description

00 Successful completion

04 Partial completion

Qualifiers:

Code Meaning
04 .Message to LOG was tmncated
08 .Message to W'fOR was tmncated
12 .Message to WTOR+ LOG was tmncated
16 Logging is inactive (where TYPE = \VTO+ LOG, the WTO was perfonned but

the logging was not)

Cray Research, Ine. Appendix B. SLCN Macros B-25

08 'I*he requested processing failed; re^ster 0 indicates reason

Qualifiers:

00 Unable to locate the specified message number
12 S@@LOG GET caU failed
16 S@@LOG QUEUE call failed
20 Logging is inactive (TYPE = LOG only)

12 Bad parameter; register 0 indicates parameters in error

Qualifiers:

Code Meaning
00 EUID
04 COM PI D
08 VAR
12 ROUrCDE

16 WIORPLV
20 WrORLTII
24 WrORl-CB
28 SLNAME / SSVT
32 TABLE

16 Bad return code from WTO/WTOR; re^ster 0 contains the WTO/WTOR return code.

S(i^@MSG Restrictions

The following restrictions apply when using the S@@MSG macro.

• Each line of text is restricted to 60 b>^es. This applies to both single and multi-line messages. ^

• Each text message has a maximum of 50 variables.

• For TYPE = WTOR and TYPE = WTOR + LOG, the total text permitted is 112bytes. .Multi-line
messages are compressed into a single-line W'POR. When text is being compressed and the- limit
is reached, the rest of the text is truncated and an appropriate return code is set. (If
TYPE = W rOR + LOG and te.xt for W TOR is truncated, the te.xt in the log is also truncated).

• For TYPE = WTO and T^TE = WTO + l.OG (also T^'PE = LOG and TYPE = WTOR + LOG,
if log output is going to the console), there is a limit of 10 lines of text in multi-line messages for
all unauthorized programs. For authorized programs (supervisor state, protection key 0-7, or APF
authorized), the limit is 255 lines of text.

S@@MSG (List Form)

ITie list form of the S@@MSG macro instruction is used to construct a control program parameter
list.

The list form of the S@@MSG macro instruction is specified as follows:

name name: symbol. Ucgin name in column 1.

b One or more blanks musi precede S@@MSG.

One or more blanks musl follow S® ffiMSG.

B-26 SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit 81-0182

message number

,COM PI D = component id

.TYPE = LOCATE
,TYPE = FORMAT
.TYPE= WTO
.TYPE =\YrO+LOG
.TYPE= VVTOR
,TYPE= WTOR+LOG
.TYPE=LOG

,VAR = (,...)

.ROUTCDE = (foutt'/ig code)

.DESC - [desc code)

.M F = L

The parameters are described under
the standard form of the macro
instruction, with the following
exception:

MF = L

Specifies the list form of the
S@@MSG macro instruction.

message number: rcgislcr (2)-(12).

component id: character string of length 2

Default: TYPE-WTO^ LOG

Note: This parameter is used to reserve space for one or more parameter
values.

routing code: decimal digits, 1-16. A list of integers, separated by commas,
may be specified.

descriptor code: decimal digits, 1-16 or register (2)-(12). A list of integers may
be specified, separated by commas.
desc addr: RX-type address.

S@@MSG (Format Form)

The format form of the S@@MSG macro instruction is used to insert fixed run-time parameters, such
as SSVT or TABLE, into a control program parameter list generated by the list form of the macros.

The format form of the S@@MSG macro instruction is specified as follows:

S@@MSG

b

message number

,COM PI D = component id

,TABLE- message table

,SLN.AM E = system name
,SS\'T = ssvi address

.TYPE- LOC.ATE

.TYPE-FORMAT

.TYPE - WTO

.TYPE-WTO-LOG

.TYPE-WTOR

.TYPE-WTOR^ LOG

Cray Research, Inc.

name: symbol. Begin name in column 1.

One or more blanks must precede S@@MSG.

One or more blanks must follow S®®.\ISG.

message number: register (2)-(l2).

component ID: character string of length 2

message table: R.X-type address or register (2)-(12).

system name: RX-type address or register (2)-(12).
ssvt address: RX-type address or register (2)-{12).

Default: TYPE - WTO - LOG

Appendix B. SLCN Macros B-27

;rYPE=LOG

,VAR = (variable text)

,ROUTCDE = (rottZ/ng code)
•ROLTCDE = roulcde addr

,DESC = (desc code)
,DESC = desc addr

.WTORPLY = reply area

.Wn ORLTH length

,VVTORECIJ = fep/y ecb

,RE'i"AREA = msg area

.M I* = (F.czr/ addr)

variable text: RX-typc address or register (2)-(12). One or more values,
separated by commas, may be specified.

routing code: decimal digits, 1-16 or register (2)-(I2). A list of integers,
separated by commas, may be specified. A list of registers may not be
specified.

descriptor code: decimal digits, 1-16 or register (2)-(12). A list of integers may
be specified, separated by commas. A list of registers may not be specified.
desc addr: RX-type address.
rouicde addr: RX-type address.

reply area: RX-type address or register (2)-(12).

reply length: A-type address or register (2)-(12).
Default: L'reply area

reply ecb: RX-type address or register (2)-(12).

msg area: RX-type address or register (2)-(12).

Ctrlarea: R.X-type address or register (2)-(l2).

The parameters arc described under the standard form of the macro instructioti with the following
exception:

MF = {F,Ctrl addr)
Specifics the format form of the S@@MSG macro instruction using a remote control program
parameter list.

S@@MSG (Execute Form)

The execute form of the S@@.MSG macro instruction uses a remote control program parameter list.
The parameter list can be generated by the list form of the macro and modified by the tormat form of
the macro. 'I'he parameter list may also be modified by the execute macro form.

The execute form of the S@@MSG macro instruction is specified as follows:

S@@.\1SG

b

message number

,COMPID = component id

.TABLE = message table

,S1.NA M E = system name
,SS\T = wvr address

,TYPE= LOC.ATE
.TYPE - FORM.AT
.TYPE - WTO
T^ PE - WTO - LOG
.TYPE - WTOR
,TYPE = WTOR- LOG
.TYPE = LOG

name: symbol. Uegin name in column 1.

One or more blanks must precede S@@.\1SG.

message number: register (2)-(12).

component ID: character string of length 2

message table: RX-type address or register (2)-(12).

system name: R.X-typc address or register (2)-{12).
ssYt address: R.X-type address or register (2)-(12).

Default: TYPE - WTO - LOG

B-28 SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit SI-0182

,VAR = [variable lexl)

,RO UTCDFi = [routing code)
,ROUTCDn = rowfcrfe addr

.DBSC - [desc code)
,DESC - desc addr

.WTORPLY = reply area

(WTORLTH = reply length

.WTORF-CEi = reply ecb

,R in*A R EA = msg area

,'S\V ^ [E,ctrl addr)

variable text: RX-type address or register (2)-(12). One or more values,
separated by commas, may be specified.

routing code: decimal digits, 1-16 or register (2)-{12). A list of integers,
separatedby commas, may be specified. A list of registers may not be
specified.

descriptorcode: decimal digits, 1-16 or register (2)-(12). A list of integers may
be specified, separated by commas. A list of registers may not be specified.
desc addr: RX-type address.
routcde addr: RX-type address.

reply area: RX-type address or register (2)-(12).

reply length: A-lype address or register (2)-(12).
Default: L'reply area

reply ecb: RX-type address or register (2)-(12).

msg area: RX-iype address or register (2)-(12).

Ctrl area: RX-type address or register (2)-(12).

The parameters are explained under the standard form of the macro instruction with the following
exception:

iMF = (EjCtrl addr)
Specifies the execute form of the S@@MSG macro instruction using a remote control program
parameter list.

S@@IVISGS Macro

The S@@MSGS macro is available to all components within the SL'PP.RI.INKMVS product and is
u.scd to locate a specified message entr>' within a message table. It generates in-line code to locate the
entry', using only registers (14) through (1), and it docs not require a save area. Upon return, registers
(2) through (13) remain unchanged.

The S@@MSGS macro instruction is specified as follows:

S@@MSGS

b

message number

.message table

name: symbol. Begin name in column 1.

One or more blanks must precede S@@.\ISGS.

One or more blanks must follow S®®.\1SGS.

message number: decimal digits or register (2)-(12).

message table: RX-type address or register (2)-(12).

The parameters are explained as follows:

message number
Specifies a unique 4-digit identifier of the message contained within the specified message table.

message table

Cray Research, Inc. Appendix B. SLCN Maeros B-29

Specifies a full-word containing the address of the message table that is to be searched for the
message.

Return Codes

The following is a list of return codes that are returned upon exit from this macro call. The return code
is set in rc^ster 15.

Code Description

00 Successful completion, the address of the located message is in register 1

08 bailed to locate the message within the table

16 Invalid table address

S@@SVC Macro

This macro is used to pass the pznameters required by the SVC. The first parameter is positional. The
others are keyword parameters.

The SC_CIOT (S@C1CI0T mapping macro) must be addressable when the S@@SVC macro is
issued because the SVC number is obtained from this control block.

The S@@SVC macro in.struction is specified as follows:

name name: symbol. Begin name in column 1.

b One or more blanks must precede S@@SVC.

S@@SVC

b One or more blanks musl follow S®ffiSVC.

p

R

.SliRV = service

,SS VT = ssvi address

,0 FFS ET = plist offset

,ESTAE= YES
.ESTAE = .NO

service: symbol.

ssvt address: register (0)-(15).
nefault: SSVT = (15)

Note: This parameter is only relevant if R is also coded.

plisi offset: symbol or decimal digits.
Range: 0 to 255.

Note: This parameter is valid only if P is also coded.

Default: ES I AE^VES

The parameters are explained as follows:

Indicates the location of the SC SSVT address.

B-30 SLPERLINK for MVS Logic Library Volume 2: Control Functional Unit Si-0182

Coding "R" specifics that the SC_SSVT address is contained in a register.

Coding "P" specifies that the SC_SSV'r address is contained within a parameter list.

SERV = service
Specifies the service name. The following names are currently defined:

AMGR

CASE

SSVT = ssvt address
Specifies the register which contains the SC_SSV T address.

OFFSET = plist offset
Specifies the offset in the entry parameter list of the SC_SSV T pointer.

ESTAE = YES
ESTAE = NO

Specifics whether or not an ESl'AE environment should be established by the SVC.

Note: The S@@SVC macro expands into in-line code that loads a one-word parameter list into
register 0. Optionally, register 15 is also loaded with the address of the SC_SSVT. Register 1 is left
unchanged.

Return Codes

When control returns to the program that issued the SVC, byte 0 in register 15 contains one of the
following return codes:

Code Meaning

0 Successful completion

4 SVC routine unable to obtain virtual storage for its work area. B>-te 3 in R15 contains the
return code from GE T.MAIN.

8 SVC routine unable to establish an ESTAE environment. BnIc 3 in Register 15 contains
the return code from ES TAE.

C The SC_SSVT control block could not be located.

10 The entr>' point of the global service routine could not be located.

14 The ES TAE routine has successfully recovered an abnonnal termination.

Cray Research, Ine. .Vppendi.x B. SLCN Maeros B-3I

INDEX

A-ASSOCIATE indication paramters 8-3
-3

8-3

8-3

8-3

8-3

8-4
8-4

AUTHl

ALTII2

ALTIB

IDENl

IDEN2

IDEN3

TEXT
Address Space Vector Table (SC_SLASVT) 1-5
AM_APD

See Association Manager application program
directory (AM_APD)

AM_CDT
See Association Manager Controller Data Table

(AM_CDT)
AM_controller

See Association Manager controller
subcomponent (AM_controller)

AMexit
See Association Manager L'scr Exit Handler

(AM_exit)
AM_GWA

See Association Manager Global Work Area
Index (AM_GWA)

AMJND
See Association Manager initiator directory

(AM_IND)
AM_intcrfacc

See Association Manager Interface (AM_interface)
AM_PCT

See Association Manager Processor Control Table
(AM_PCT)

AM_processor
See Association Manager Processor

subcomponent (AM_processor)
AM_RED

See Association Manager Responder Directory
(AM_RED)

AMtimer

Sec Association Manager Interval Timer
(AMtimer)

AM_VT
See Association Manager Veetor Table (AM_VT)

Applications Functional Unit (SLAPPL)
description 1-1

Cray Research, Inc.

Index

Association Manager application program directory
(AM_APD) 8-9

Association Manager component 8-1
description 1-3, 8-1
services 8-2

offered to application entity initiators on
COS 8-3

offered to application entity responders on
MVS 8-4

subcomponent flow 8-1
subcomponents 8-1

Association Manager controller subcomponent
(AM_controller) 8-7

Association Manager Interface
(AMinterface) 8-56

Association Manager Interval Timer
(AM_timer) 8-60

Association Manager Processor subcomponent
(A M_processor) 8-18

Association Manager Controller Data Table
(AM_CDT) 8-9

Association Manager controller subcomponent
(AM_controller)

data areas 8-9
Association Manager application program
dircctoty (AMAPD) 8-9

Association Manager Controller Data Table
(AM_CDT) 8-9

Association \Ianagcr Global Work Area Index
(AM_GWA) 8-9

Association Manager Initiator Directory
(AM_IND) 8-9

Association Manager Processor Control Table
(AM_PCT) 8-9

Association Manager Responder Directory
(AM_RED) 8-10

Association NIanager Vector Table
(AM_VT) 8-10

description 8-7
interfaces 8-9
module structure 8-7
recovery 8-10
scrxices 8-8

Association Manager Global Work Area Index
(AM_GWA) 8-9

Association Manager initiator directorv^
(AM_IND) 8-9^

Association Manager Interface (AM_intcrface)

Index X-I

data areas 8-57
description 8-56
interfaces 8-57
module structure 8-56

Association Manager Interval Timer (AM_timer)
description 8-60
interfaces 8-60
module structure 8-60, 8-66
services 8-60

Association Manager Processor Control Table
(AM_PCr) 8-9

Association Manager Processor subcomponent
(AMjprocessor)

data areas 8-21
description 8-18
interfaces 8-21
module structure 8-18
recovery 8-21
services 8-19

Association Manager Responder Directory
(AM_RED) 8-10

Association Manager User Exit Handler (AM_exit)
description 8-66
interfaces 8-66
services 8-66

Association Manager Vector Table (AM_V T) 8-10

Command parser syntax table (S@C00040) 5-5
Common service area (CSA)

description 1-5
CONFIRM service primitive 7-3

data areas 7-3
Management Interface Control Table
(MI_M1CT) 7-4

Management Interface Request Element
(MI_MRQE) 7-4

Managment Interface Connection Manager
Control Block (MI_MACB) 7-4

interfaces 7-3
Confirmed services 7-2
Control Functional UNIT (SLCN)

components 1-2
Association Manager component 8-1
Functional Subsystem Manager
component 4-1

LOG Processor component 6-1
Management Interface component 7-1
Message Processor component 9-1
Options Processor component 3-1
Product Management component 2-1
Product Operator component 5-1
SVC component 10-1

User Resource Manager component 11-1
data areas 1-5

Address Space Vector Table
(SC_SLASVT) 1-5

Control Initialization Options Table
(SC_CIOr) 1-5

Global Service Table (SC_GST) 1-5
Operator command bufier (SC_OPCB) 1-6
Subsystem Vector Table (SC_^SVT) 1-5

description 1-2
Control Initialization Options Table
(SC_CIOT) 1-5

Cross-memory communications subcomponent
See Functional Subsystem cross-memory
communications subcomponent (S@CF0100)

CSA

See Common ser\'ice area (CSA)

D

D@C912S 8-18
DISPLAY conunand 5-3

Exit points
S@CCOEOM 2-4
S@CCOEOr 2-4
S@CCOFSS 2-4
S@CC0S34 2-4

Finite-state machine (FSM)
AM_interface 8-56
AMjprocessor 8-19

FM_FS\VQE
See FSS work request element (FM_FSVVQE)

FM_STAG
See Staging area buffer (FM_STAG)

FSI
See Functional Subsystem Interface (FSI)

FSI parater list (FSI) 4-22
FSM

See Finite-state machine (FSM)
F'SS Manauer component

See?

FSS Manager control subcomponent
See Functional Subsystem Manager control

subcomponent (S^CFOOGO)
FSS work request element (FM_FS\VQE) 4-22

X-2 SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit 81-0182

Functional Subsystem cross-memory
communications subcomponent
(S@CF0100) 4-20

data areas 4-21
FSI parameter list (SC_FSIP) 4-22
FSS work request element
(I M_l-S\VQIi) 4-22

S@@CSFRV parameter list
SFRVi 4-22

Stagmg area buffer (FM_S'1AG) 4-22
interfaces 4-21

S@@CSFRV macro 4-21
S@@FIREQ 4-21

module structure 4-20
recovery 4-22
services 4-20

Functional Subsystem Interface (I Sl) 4-2
Functional Subsystem Manager component

description 1-3
Functional Subsystem Manager control
subcomponent (S@CFOOOO) 4-1

data areas 4-3

interfaces 4-2
module structure 4-1
recovery 4-4
services 4-2

Global Service Table (SC_GST) 1-5

I

INDICATION scr\'ice primitive
INIT order 4-2

Initialization
Association Manager component
components 2-2
Functional Units 4-1

Initialization options 3-1
Initialization Options Table (lOT) appendages
Initialization Options Table (SC_C10 T) 3-3
Intialization control blocks (formation) 3-1
Introduction 1-1

lOT

See also Initialization Options Table (lOT)
appendages

module structure 3-1

Cray Research, Inc.

7-2

8-8

3-1

LOG element (LOGE) 6-1, 6-9
LOG Processor component

description 1-3
LOGE

See also LOG element (LOGE)
subcomponents 6-1

LOCiE Handler subcomponent 6-2
Output of messages subcomponent 6-

LOGE Handler subcomponent 6-2
data areas 6-2

interfaces 6-2
recovery 6-2
services 6-2

M

Macros

data areas 5-4

Command parser syntax table
(S@C00040) 5-5

Operator command buffer (SC_OPCB) 5-4
Operator Control Table (SI_OPCT) 5-4

interfaces 5-4

4-21

4-21

-2, 6-9
9-2

8-5

9-2

9-2

10-2

S@C(?^TIMR 8-60
10-2
11-1

5-4

5-4

5-4

5-4

5-4

10-2

8-66
8-66

8-66

8-66

8-66

Management Interface component
description 1-3, 7-1
module structure 7-1

Manasement Interface Connection Manager Control
Block (M1_MACB) 7-4

Management Interface Control Table

(MIJVIICT) 7-4

S@(^CSERV
S@@FIREQ
S@(r^LOG 6-
S@@MDEF
S@@MREQ
S@@MSG
S@@MSGS
S@@SVC

S@CCSVEW
S@CC0LRM
S@COADEF
SgCOCDEF
S@COKDEF
S^COLDEF
S@COPDEF
S@C1CI0T
S@C9EXIT
S@C9LX1
S@C9UX2
S@C9LX3
S@C9LX4

Index X-3

Management Interface Request I'lcment
(MI_MRQi:) 7-4

Message Klement (MII_ME) 9-2
message index (MII_MI) 9-2
message index entry (MII_MIE) 9-2
Message processing parameter list (MII_MPPL)
Message Processor component

data areas 9-2
Message Element (MII ME) 9-2
message index (MI I_MI) 9-2
message index entry (MII_MIE) 9-2
message processing parameter list
(MII_MPPL) 9-2

description 1-3, 9-1
interfaces 9-2
module structure 9-1
recovery 9-3, 11-2
services 9-2

MII_ME
See Message Element (MII_ME)

MII_MI
See message index (MH_MI)

MH_MIB
See message index entry (MH MIE)

MII_MPPL
See Message processing parameter list

(MII_MPPL)
MIjMACB

See Management Interface Connection Manager
Control Block (MI_MACB)

MI_MICT
See Management Interface Control Table
(MI_MICr)

MI_MRQE
See Management Interface Request Element
(MI_MRQE)

MSG command 5-3
MSG order 4-2

N

o

Operator command buffer (SC_OPCB) 1-6, 5-4
Operator commands

9.2 DISPLAY 5-3
MSG 5-3
SEND 5-3
SET 5-3
START 5-3

STOP 5-3
SWITCH 5-3

Operator Control Table (SI_OPCT) 5-4
Options Processor component

description 1-2, 3-1
Options validity checks 3-1
Output of messages subcomponent (S@C2200)

data areas 6-9
interfaces 6-9
module structure 6-8
recovery 6-9
services 6-8

Parameter library 1-3
Problem program mode 10-1
Product Management component

description 1-2, 2-1
module structure 2-1

Product Operator component
description 1-3, 5-1
module structure 5-1

Provider-initiated ser\'ices 7-2

Network Access Method Functional Unit (SLNET)
description 1-1

Network Initialization Options Table
(SC_NTOT) 3-3

recovery 3-4
Nonconfirmed services 7-2

Queue anchors 8-5
Queue elements 8-5

User Exits 8-6
Queue management facility 8-5

R

Recovery
components 2-2
Functional Units 4-1

interfaces 2-2
S:5CCOEOM 2-4
SgCCOEOT 2-4
S@CCOFSS 2-4
SJ?CC0S34 2-4

6-8

X-4 SUPERLINK for MVS Logic Library Volume 2: Control Functional Unit 81-0182

subcomponents4-1
cross-memorycommunications

subcomponent4-20
FSSManagercontrolsubcomponent

Requestqueue(RQ)8-5
REQUESTserviceprimitive7-2
RESPONSEserviceprimitive7-3

4-1

S@@CSERV4-21

S@@CSERVparameterlist(SC_SERV)
S@@FIREQ4-21
S@@LOGmacro6-2,6-9
S@@MDEFmacro9-2
S@@MREQmacro8-5
S@@MSGmacro
S@@MSGSmacro

4-22

S@@MOOO
S@@M010
S@@M015
S@@M020
S@@M030

S@CCOEOT
S@CCOErE
S@CCOFSI

services.
S@CCOFSS

dataareas
S@CCORI.M
S@CC0SS1
s@ccossr
s@ccosvc
S@CCOSVE
S@CCOSVM
S@CCOSVR
S@CC0S34
S@CCOTRT
S@CCOURM

S@CF0010
S®CF0030

CrayResearch,Inc.

9-2

9-2

9-1,9-4
9-1,9-6
9-1,9-8
9-1,9-10
9-1,9-12

S@@SVCmacro10-2
S@C@TIMRmacro8-60
S@CCSVEWmacro10-2
SCCOEOM2-1,2-4,2-24

2-1,2-4,2-22
2-5

2-1,2-34,2-36,2-38,2-40,2-42
2-2

2-1,2-4,2-30,2-32
2-5

2-1,2-14
2-1,2-16,2-18
2-1,2-20
10-1,10-4,10-6
10-1,10-8,10-10,10-12
10-1

10-1,10-14
2-1,2-4,2-26,2-28

2-44

11-1,11-4
S@CCOURMmacro11-1
S@CCOOOO2-1,2-6,2-8,2-10,2-12
S@CF00004-1

SecalsoFunctionalSubsystemManagercontrol
subcomponent(S@CFOOOO)

4-1

4-1

S;^CF00404-1
S@CF01004-20,4-24

SeealsoFunctionalSubsystemcross-mcmor>-
communicationssubcomponent(S@CF0100)

S@CF01104-20,4-26

S@CF0120
S@CF0130
S@CF0140
S@C1000
S@CIOOOO
S@C10010

4-20,4-28
4-20,4-30
4-20,4-32

7-6

S®C10020
S@CI0030
S@CI0040
S@CI0050
S@CI0060
S@CI0070
S@C10080

services

S@COD010
S@COD020
S@COD030
S@COD040
S@COD050
S@COD060
S®COD070
S@COD080
S@COD090
S@COD100
S@COKDEF
S@COUDEF
S®COPDEF
S@COS010
S®COS020
S®COS030
S@COS040
S@COODIS
SgCOOMSG

description
services5-

SgCOOSET
S@COOSND
S®COOSTP
S@COOSTR

S®COOOOO
s®coooio
S®C00020
S®C00030
S®;C00040

S®C00050

S®C00070

10

12

14

7-16,7-18
7-20

7-1,7-22
7-1,7-24
7-2

confirmedservices7-2
nonconfirmedservices7-2
provider-initiatedser\ices7-2
serviceprimitivetypes7-2

S@COADEFmacro5-4
SJ^.COCDEF5-4

5-1

5-1

5-1

5-1

5-1

5-1

5-1

5-1

5-1

5-4

5-4

5-4
2

2

2

2

5-1,5-22
5-2,5-34
6-1

3,6-1
5-26

5-32

5-30

5-28

5-2,5-24
5-1,5-6
5-1,5-8
5-1,5-10
5-1,5-12
5-1,5-14

SeealsoCommandparsersyntaxtable
(S®C00040)

recovery'5-5
5-1,5-16

S@C000605-1,5-18
5-1,5-20

5-2,
5-^

5-2,
5-2,

IndexX-5

S@CICIOT macro 10-2
S@C1DATA 3-1,3-20
S@C1FLAG 3-1
S@C1GETM 3-1,3-18
S''f;C1000 3-1,3-6
S^CIOIO 3-1,3-8
S@C1020 3-1,3-10
S@C1030 3-1,3-12
S@C1040 3-1, 3-14
S@C1050 3-1, 3-16
S@C1060 3-1, 3-22

(Jala areas 3-3
description 4-1
interfaces 3-2

feed-back codes 3-3
return codes 3-3

services 3-2

S@C2100 6-4,6-6
S@C:2200 6-8, 6-10
S@C2210 6-8,6-12
S@C2220 6-8,6-14
S@C2230 6-8,6-16
S@C2240 6-8, 6-18, 6-20
S@C2250 6-8, 6-22
S@C9nxrr macro 8-66
S@C9UXAM 8-66, 8-68
S@C9UXn macros 8-66
S@C9000 8-7,8-12
S@C9010 8-7,8-14
S@C9020 8-7,8-16
S@C9100 8-18,8-22
S@C9110 8-18,8-24
S@C9121 8-18,8-26
S@C91212 8-18, 8-38
S@C9123 8-18,8-28
S@C9123B 8-30
S@C9124 8-18, 8-32
S@C9125 8-34
S@C9128 8-18, 8-36
S:^:C914A 8-18, 8-40
S^i;C914C 8-18, 8-42
S@C914J 8-18,8-44
S@C914K 8-18,8-46
S@C914R 8-18, 8-48
S@C914S 8-18,8-50
S@C914T 8-18,8-52
S@C914X 8-18,8-54
S@C9200 8-56
S@C9300 8-60, 8-62
S@C9310 8-60,8-64
SC_CIOT

See Control Initialization Options Table
(sc_cior)

SC_1SIP
See FSI parater list (FSI)

SC_GST
See Global Ser\ ice Table (SC_GS T)

SC_OPCB
See Operator command buffer (SC_OPCB)

SC SFRV
^ee S@@CSERV parameter list (SC_SERV)

SC SSVT
See Subsystem Vector Table (SC_SSVT)

SC_URE
See User registration elements (SC_URE)

SEND command 5-3
Service primitive types 7-2

CONFIRM 7-2, 7-3
INDICATION 7-2
REQUEST 7-2
RESPONSE 7-3

SE T command 5-3
SI_OPCT

See Operator Control Table (SI_OPCT)
SLAPPL-

See Applications Functional Unit (SLAPPL)
SLASVr

See Address Space Vector Table (SC_SLASVT)
SLCN

See Control Functional UNIT (SLCN)
SLNET

See Network Access Method Functional Unit
(SLNET)

Staging area buffer (FM_STAG) 4-22
START command 5-3
STATUS order 4-2

S TOP command 5-3
Subsystem Vector Table (SC_SSVT) 1-5
SUPERLINK/MVS

Applications 1-1
Architecture 1-1

Control Functional UNIT (SLCN) 1-1, 1-2
Network Access Method (SI.NET) 1-1
SVC component 1-3, 10-1
User Resource Manaiier component 11-1

SUPERLINK/MVS (Defmition) 1-1
sv_Esrw

See SVC ES TAE work area (SV_EST\V)
SVC component

data areas 10-2

SVC ESTAE work area (SV_ESTVV) 10-2
SVCCSVEW mapping macro 10-2

description 1-3, 10-1
interfaces 10-2
module structure 10-1
services 10-2

SVC ES TAE work area (SV_ESTW) 10-2
SWITCH command 5-3

command definitions 5-4
ST^COADFF 5-4
S@COCDEF 5-4
S^COKDEF 5-4
S®COLDEF 5-4
SJ^COPDEF 5-4

X-6 SLPERLINK for MVS Logic Library Volume 2: Control Functional Unit 81-0182

TERM order 4-2
Termination

Association Manager component
components 2-2
Functional Units 4-1
interfaces 8-4
termination order 8-4

abort 8-4, 8-9, 8-57
graceful 8-4, 8-9, 8-57
quick 8-4, 8-9, 8-57

8-8

u

User exits (Association Manager) 8-6
User registration elements (SC_URlv)
User Resource Manager component

data areas 11-1
Address Space Vector Table

(SC_SLASVT 11-2

Cray Research, Inc.

1-5

User Resource Element (SC_URE) 1i-2
User Resource Manager parameter list
(SC_URM) 11-2

description 1-4, 11-1
interfaces 11-1
module structure 11-1

sen'ices II-1

Validity checks (of Initialization options) 3-1

w

Work Queue (WQ) 8-5

Index X-7

READER'S COMMENT FORM

SUPERLINK/MVS Logic Library Volume 2: Control Functional Unit SI-0182

Your reactions to this manual will help us provide you with better documentation. Please take a moment to
check the spaces below, and use the blank space for additional comments.

1) Your experience with computers: 0-1 year 1-5 years ^5+ years
2) Your experience with Cray computer systems: ^0-1 year 1-5 years ^5+ years
3) Your occupation: computer programmer non-computer professional

other (please specify):
4) How you used this manual: in a class ^as a tutorialor introduction as a reference guide

for troubleshooting

Usinga scale from 1 (poor) to 10 (excellent), please rate this manual on the following criteria:

5) Accuracy 8) Physical qualities (binding, printing)
6) Completeness 9) Readability
7) Organization 10) Amount and quality of examples

Please use the space below, and an additional sheet if necessary, for your other comments about this
manual. If you have discovered any inaccuracies or omissions, please give us the page number on which
the problem occurred. We promise a quick reply to your comments and questions.

Name Address
Title City
Company State/ Country
Telephone Zip Code
Today's Date

FOLD

FOLD

BUSINESS REPLY CARD
FIEIST CLASS PERMIT NO 6184 ST PAUL MN

POSTAGE WILLBE PAIO BY AOORESSEE

RESEARCH, INC.

Attention: PUBLICATIONS
1345 Northland Drive
Mendota Heights, MN 55120

STAPLE

NO POSTAGE

NECESSARY

IF MAILEO

IN THE

UNITEO STATES

.j

READER'S COMMENT FORM

SUPERLINK/MVS Logic Library Volume 2: Control Functional Unit SI-0182

Your reactions to this manual will help us provide you with better documentation. Please take a moment to
check the spaces below, and use the blank space for additional comments.

1) Yourexperience with computers: 0-1 year 1-5 years ^5+ years
2) Yourexperience with Cray computer systems: 0-1 year 1-5 years ^5+years
3) Youroccupation: computer programmer non-computer professional

other (please specify):
4) How you used this manual: in a class as a tutorial or introduction as a referenceguide

fortroubleshooting

Using a scale from 1 (poor) to 10 (excellent), please rate this manualon the following criteria:

5) Accuracy 8) Physical qualities (binding, printing)
6) Completeness 9) Readability
7) Organization 10) Amount and quality of examples

Please use the space below, and an additional sheet if necessary, for yourother comments about this
manual. If you have discovered any inaccuracies or omissions, please give us the page number on which
the problem occurred. We promise a quick reply to your comments and questions.

Name Address
Title City
Company State/ Country
Telephone Zip Code
Today's Date

FOLD

FOLD

BUSINESS REPLY CARD
FIRSTCLASS PERMIT NO 6184 ST PAUL MN

POSTAGE WILLBE PAID BY ADDRESSEE

RESEARCH, INC.

Attention: PUBLICATIONS
1345 Northland Drive
Mendota Heights, MN 55120

STAPLE

NO POSTAGE

NECESSARY

IF MAILED

IN THE

UNITED STATES

-I

.j

