
Cray Research, Inc.

Segment Loader (SEGLDR) and ld
Reference Manual

SR–0066 9.0



__

Copyright  1983, 1995 Cray Research, Inc. All Rights Reserved. This manual or parts
thereof may not be reproduced in any form unless permitted by contract or by written
permission of Cray Research, Inc.
__

Portions of this product may still be in development. The existence of those portions still in
development is not a commitment of actual release or support by Cray Research, Inc. Cray
Research, Inc. assumes no liability for any damages resulting from attempts to use any
functionality or documentation not officially released and supported. If it is released, the final
form and the time of official release and start of support is at the discretion of Cray Research,
Inc.
__

Autotasking, CF77, CRAY, Cray Ada, CraySoft, CRAY Y-MP, CRAY-1, HSX, MPP Apprentice,
SSD, UniChem, UNICOS, and X-MP EA are federally registered trademarks and
Because no workstation is an island, CCI, CCMT, CF90, CFT, CFT2, CFT77,
ConCurrent Maintenance Tools, COS, Cray Animation Theater, CRAY C90, CRAY C90D,
Cray C++ Compiling System, CrayDoc, CRAY EL, CRAY J90, Cray NQS, Cray/REELlibrarian,
CRAY T90, CRAY T3D, CrayTutor, CRAY X-MP, CRAY XMS, CRAY-2, CRInform,
CRI/TurboKiva, CSIM, CVT, Delivering the power . . ., DGauss, Docview, EMDS, HEXAR,
IOS, LibSci, ND Series Network Disk Array, Network Queuing Environment,
Network Queuing Tools, OLNET, RQS, SEGLDR, SMARTE, SUPERCLUSTER, SUPERLINK,
System Maintenance and Remote Testing Environment, Trusted UNICOS, and UNICOS MAX
are trademarks of Cray Research, Inc.
__

UNIX is a registered trademark in the United States and other countries, licensed exclusively
through X/Open Company Limited.
__

The UNICOS operating system is derived from UNIX System V. The UNICOS operating
system is also based in part on the Fourth Berkeley Software Distribution (BSD) under license
from The Regents of the University of California.
__

Requests for copies of Cray Research, Inc. publications should be sent to the following address:

Cray Research, Inc. Order desk +1–612–683–5907
Distribution Center Fax number +1–612–452–0141
2360 Pilot Knob Road
Mendota Heights, MN 55120
USA
__

New Features

Segment Loader (SEGLDR) and ld Reference Manual SR–0066 9.0

The 9.0 version of this manual removes references to CRAY-2 and CRAY X-MP systems. No new
technical information has been added. In addition, the information on the massively parallel
processing (MPP) system loader (MPPLDR) has been removed and is now located in the Cray
MPP Loader User’s Guide, publication SG–2514.

Cray Research Software Documentation Map

10/94

The illustration on the following pages highlights the major body of documentation available for
Cray Research (CRI) customers. The illustration is organized into categories by audience
designation:

Audience Description

End users Those who use the UNICOS operating system, products,
applications, or networking software

Application and Those who write or modify system or application code on a CRI
system programmers system for the purpose of solving computer system, scientific, or

engineering problems

System administrators Those who perform system administration tasks, such as
installation, configuration, and basic troubleshooting

System analysts Those who perform advanced troubleshooting, tuning, and
customization

Operators Those who perform operational functions, such as performing
system dumps, and those who administer an operator workstation

To use the map, find the audience designation closest to your specific needs or role as a CRI
system user. Note that manuals under other audiences may also be of interest to you;
manuals are listed only once, underneath the audience to which they most directly apply.
Some manual titles are abbreviated. The date in the map’s footer tells you when the
information was last revised.

For more information

In addition to the illustration, you can use the following publications to find documentation
specific to your needs:

• Software Documentation Ready Reference, publication SQ–2122, serves as a general index
to the CRI documentation set. The booklet lists documents and man pages according to
topic.

• Software Overview for Users, publication SG–2052, introduces the UNICOS operating system,
its features, and its related products. It directs you to documentation containing user-level
information.

• User Publications Catalog, publication CP–0099, briefly describes all CRI manuals available to
you, including some not shown on the map, such as training workbooks and other
supplementary documentation.

Ordering

To obtain CRI publications, order them by publication number from the Distribution Center:

Cray Research, Inc.
Distribution Center Order desk (612) 683-5907
2360 Pilot Knob Road Fax number (612) 452-0141
Mendota Heights, MN 55120
USA

Introductory
Software Overview for

 Users (SG–2052)��

User’s Guide to Online
Information (SG–2143)��

General
Software Documentation

Ready Reference
(SQ–2122)�

User Commands
 Reference (SR–2011)�

User Commands Ready
 Reference (SQ–2056)�

Korn Shell Ready
Reference (SQ–2115)

UNICOS Shells Ready
Reference (SQ–2116)

UNICOS Environment
Variables Ready
Reference (SQ–2117)

UNICOS Index for Man
Pages (SR–2049)

Visual Interfaces Guide
 (SG–3094)��

Tape Subsystem Guide
(SG–2051)��

Security (MLS) Guide
(SG–2111)�

MPP Software Guide
(SG–2508)��

END USERS

UNIX Link
NQE User’s Guide

(SG–2148)�

NQE Ready Reference
(SQ–2149)

Introducing NQE
(IN–2153)�

MVS Link
RQS User’s Guide

(SG–2405)

CRL
CRL User’s Guide

(SG–2126)�

Networking
NQS Guide (SG–2105)��

TCP/IP and OSI Network
 Guide (SG–2009)��

FTA Guide (SG–2144)��

Text Editing
Text Editors Primer

(SG–2050)

vi Reference Card
(SQ–2054)

ed Reference Card
 (SQ–2055)

VAX/VMS Link
RQS User’s Guide

(SV–3151)

10/94� Available online with CrayDoc
� Available online with Docview
� Man pages available with the man command

APPLICATION AND SYSTEM PROGRAMMERS

Ada
Cray Ada Reference
 (SR–3014)�

Cray Ada Programming
Guide (SR–3082)�

C
Cray Standard C

Reference (SR–2074)��

Cray Standard C Ready
Reference (SQ–2076)

Cray Standard C for
MPP (SR–2506)��

CAL for CRAY Y-MP
and CRAY Y-MP C90
Reference (SR–3108)�

Symbolic Machine
Instructions (SR–3109)

Ready Reference
(SQ–3110)

UNICOS Macros and
Opdefs (SR–2403)�

Cray Assembler
for MPP

CAM Reference
(SR–2510)��

FORTRAN 77
CF77 Ready Reference

(SQ–3770)

CF77 Commands and
 Directives (SG–3771)��

CF77 Fortran Reference
 (SR–3772)��

CF77 Optimization
 Guide (SG–3773)�

CF77 Message Manual
(SR–3774)

Cray MPP Fortran
Reference (SR–2504)��

Fortran 90
CF90 Commands and

Directives (SR–3901)��

CF90 Fortran Language
Reference (SR–3902)��

CF90 Ready Reference
(SQ–3900)

Introducing CF90 SPARC
 Prog. Env. (IN–2155)�

Introducing DPE
(IN–2163)�

Libraries
System Libraries
 (SR–2080)�

System Libraries Ready
 Ref. (SQ–2147)�

Scientific Libraries
(SR–2081)�

Math Library (SR–2138)�

Application Programmer’s
 I/O Guide (SG–2168)�

Application Programmer
 Library Ref. Manual
 (SG–2165)�

Introducing CrayLibs
(IN–2167)�

PVM and HeNCE Ref.
(SR–2501)��

Programming Tools
UNICOS Message

System Programmer’s
Guide (SG–2121)��

Compiler Information
File (CIF) Reference
(SR–2401)��

CDBX Debugger
Reference (SR–2091)��

CDBX Debugger User’s
Guide (SG–2094)��

CDBX Reference Card
(SQ–2110)

Program Browser
(xbrowse) (IN–2140)�

Tuning Guide to Parallel
 Vector Applications
 (SG–2182)�

MPP Apprentice Tool
(IN–2511)�

Introducing Cray TotalView
Debugger (IN–2502)�

Simulators
Cray MPP Simulator Guide

(SG–2503)�

Source Control
USM User’s Guide

(SG–2097)��

System Calls
System Calls (SR–2012)�

X Window System
Reference (SR–2101)��

Ready Reference
(SQ–2123)

PVM Reference Card
(SQ–2512)

Loaders
Loader Reference
 (SR–0066)��

SEGLDR Ready
Reference (SQ–0303)

Loader for MPP
Cray MPP Loader Guide
 (SG–2514)�

Networking
RPC Reference

(SR–2089)��

Kerberos User’s Guide
(SG–2409)��

OWS-E/IOS-E
OWS-E/IOS-E Reference

(SR–3077)�

OWS-E/IOS-E Ready
Reference (SQ–3080)

OWS-E/IOS-E Operator’s
Guide (SG–3078)

OWS-E/IOS-E
Administrator’s Guide
 (SG–3079)

OPERATORS

10/94� Available online with CrayDoc
� Available online with Docview
� Man pages available with the man command

SYSTEM ADMINISTRATORS AND ANALYSTS

MVS Link
RQS Administrator’s

Guide (SG–2406)

VAX/VMS Link
RQS Administrator’s

Guide (SV–3152)

Analysts
File Formats and Special

Files Reference
(SR–2014)�

Data Migration MSP
Writer’s Guide

 (SN–2098)�

UNICOS Tuning Guide
(SR–2099)�

UNICOS nmake Card
(SQ–2146)

Installation and
Configuration Tool
Reference (SR–3090)

USCP
Front-end Protocol
 Internals (SM–0042)�

USCP Optimization
(SN–2103)

UNICOS
UNICOS Installation

Guide (SG–2112)

Installation Ref. Card
(SQ–2411)

UNICOS Installation Tool
Menus and Help Files
(SG–2412)

UNICOS System
 Administration

(SG–2113)��

Administrator Commands
Reference (SR–2022)�

Administrator Commands
Ready Ref. (SQ–2413)�

Networking
fy Driver Administrator’s

Guide (SG–2132)

MPP
CRAY T3D Administrator’s

Guide (SG–2507)�

CRAY EL Series
IOS Commands

Reference (SR–2408)�

IOS Commands Ready
Ref. (SQ–2162)

UNICOS Basic
Administration Guide

(SG–2416)��

UNICOS Installation Guide
for CRAY Y-MP EL
Systems (SG–5201)

IOS Messages (SQ–2402)

CRL
CRL Administrator’s

Guide (SG–2127)�

DMF
DMF Administrator’s

Guide (SG–2135)�

Security and
Licensing
UNICOS System Security

Overview (SG–2141)�

FLEXIm Guide
(SG–2181)��

UNICOS under
UNICOS
UuU Administrator’s

Guide (SG–2156)��

10/94� Available online with CrayDoc
� Available online with Docview
� Man pages available with the man command

UNIX Link
RQS Administrator’s

Guide (SG–2120)

NQE Administration
(SG–2150)�

NQE Installation
(SG–5236)�

Record of Revision

iCray Research, Inc.SR–0066 9.0

The date of printing or software version number is indicated in the footer. Changes in rewrites
are noted by revision bars along the margin of the page.

Version Description

September 1983. Original printing.

01 December 1983. This change packet brings the manual into agreement
with version 1.13 of the Cray operating system COS. New material
includes the ALIGN, HEAP, and STACK directives and related error
messages.

A November 1984. This reprint with revision brings the manual into
agreement with version 1.14 of COS. New material includes the
MLEVEL, LOWHEAP, and SID directives and related error messages. This
reprint obsoletes all previous versions.

B February 1986. This rewrite brings the manual into agreement with
SEGLDR release 2.0 running under COS 1.15 and SEGLDR release 2.1
running under UNICOS 1.0. New material includes the NOECHO and
TRIAL directives and related error messages. The manual has been
reorganized: appendixes A, B, and C have become sections 8, 9, and 10,
respectively; most of the directives in section 4 have been moved to
section 3. This rewrite obsoletes all previous versions.

C September 1986. This reprint with revision brings the manual into
agreement with SEGLDR release 3.1 running under COS version 1.16
and SEGLDR release 3.0 running under UNICOS version 2.0. New
error messages have been added, obsolete ones have been removed, and
the –V option has been added to the UNICOS segldr command line.
Change bars in the left margin indicate technical changes. All
trademarks are now documented in the record of revision. This reprint
obsoletes all previous versions.

D June 1987. This reprint with revision brings the manual into
agreement with SEGLDR release 4.0 running under UNICOS version
3.0. SEGLDR has a new option to its split directive and a new pair of
directives for defining program calling sequences.

Record of Revision Segment Loader (SEGLDR) and ld Reference Manual

ii Cray Research, Inc. SR–0066 9.0

Version Description

E June 1988. This rewrite brings the manual into agreement with
SEGLDR version 5.0, supporting the 4.0 release of UNICOS and the
1.17 release of COS. The UNICOS command line has 19 new options,
and the COS control statement has 25 new parameters. Four new
directives have been added, and parameters available to 6 existing
directives have changed.

F February 1989. This rewrite updates the manual to document
SEGLDR version 5.1, supporting the 5.0 release of UNICOS.
Additionally, the title of the manual has changed to reflect the fact that
it now documents the UNICOS ld (1) command, which is an interface to
the segment loader. SEGLDR 5.1 supports segmented programs on
CRAY-2 systems. The UNICOS command line has two new options;
four new directives have been added; and parameters for the ORDER
directive have changed.

6.0 December 1990. This reprint with revision updates the manual to
document SEGLDR version 6.0, supporting the UNICOS 6.0 release.

COS support has been removed from SEGLDR version 6.0.

7.0 April 1992. This reprint with revision updates the manual to document
SEGLDR version 7.0, supporting the UNICOS 7.0 release. For detailed
descriptions of changes to SEGLDR and this manual, see the New
Features page.

8.0 November 1993. This rewrite updates the manual to document
SEGLDR version 8.0, supporting the UNICOS 8.0 release and the
MPP system 1.0 release. For detailed descriptions of changes to
SEGLDR and this manual, see the New Features page.

9.0 July 1995. This reprint removes references to CRAY-2 and CRAY X-MP,
and the information related to the MPP loader.

Preface

iiiCray Research, Inc.SR–0066 9.0

This publication documents the segment loader (SEGLDR)
release 9.0 on Cray PVP systems running under the Cray
Research UNICOS 9.0 operating system. SEGLDR is a loader
for segmented and nonsegmented programs produced by the
following Cray Research assemblers and compilers:

• Cray Research Fortran CFT77 compiler

• Cray Research Fortran CF90 compiler

• Cray Pascal

• Cray C compiler

• Cray Standard C compiler

• Cray Ada

This reference manual describes the operation of the SEGLDR
loader, method of code execution, common block use, and
common block assignment. The glossary defines SEGLDR
terminology. Readers are assumed to be experienced
programmers who understand overlays and are familiar with
loaders.

Additionally, this manual documents the UNICOS command ld ,
which is an interface to the segment loader in the style of
traditional UNIX system loaders.

Other Cray Research, Inc. (CRI) publications that you may find
useful are as follows:

Language processor documentation:

• Pascal Reference Manual, publication SR–0060

• Cray Standard C Reference Manual, publication SR–2074

• Cray Assembly Language (CAL) for Cray PVP Systems
Reference Manual, publication SR–3108

Related
publications

Preface Segment Loader (SEGLDR) and ld Reference Manual

iv SR–0066 9.0Cray Research, Inc.

• CF77 Fortran Language Reference Manual, publication
SR–3772

• CF90 Fortran Language Reference Manual, publication
SR–3902

Operating system documentation:

• UNICOS User Commands Reference Manual, publication
SR–2011

Library documentation:

• UNICOS System Calls Reference Manual, publication
SR–2012

• UNICOS System Libraries Reference Manual, publication
SR–2080

• Scientific Libraries Reference Manual, publication SR–2081

• Remote Procedure Call (RPC) Reference Manual, publication
SR–2089

• Math Library Reference Manual, publication SR–2138

• Application Programmer’s Library Reference Manual,
publication SR–2165

• Compiler Information File (CIF) Reference Manual,
publication SR–2401

• Kerberos User’s Guide, publication SG–2409

General documentation:

• UNICOS CDBX Symbolic Debugger Reference Manual,
publication SR–2091

• UNICOS Macros and Opdefs Reference Manual, publication
SR–2403

All publications referenced in this manual are Cray Research
publications unless otherwise noted.

The User Publications Catalog, publication CP–0099, lists all
Cray Research hardware and software manuals that are
available to customers.

Segment Loader (SEGLDR) and ld Reference Manual Preface

vCray Research, Inc.SR–0066 9.0

To order a manual, either call the Distribution Center in
Mendota Heights, Minnesota, at (612) 683–5907 or send a
facsimile of your request to fax number (612) 452–0141. Cray
Research employees may choose to send electronic mail to
order.desk (UNIX system users) or order desk (HPDesk
users).

The following conventions are used throughout this manual:

Convention Meaning

UNDERSCORED
UPPERCASE

Underscored uppercase words in
command lines indicate default values.

command This fixed-space font denotes literal
items such as commands, files, routines,
path names, signals, messages, and
programming language structures.

routine () Routine names followed by an empty set
of parentheses designate a library or
kernel routine; for example, ddcntl ().
Kernel routines do not have man pages
associated with them.

variable Italic typeface denotes variable entries
and words or concepts being defined.

user input This bold fixed-space font denotes literal
items that the user enters in interactive
sessions. Output is shown in nonbold,
fixed-space font.

[] Brackets enclose optional portions of a
command line.

... Ellipses indicate that a preceding
command-line element can be repeated.

A|B A vertical bar in a command format
separates two or more possible choices,
one of which you may specify.

Conventions

Preface Segment Loader (SEGLDR) and ld Reference Manual

vi SR–0066 9.0Cray Research, Inc.

Convention Meaning

Case UNICOS commands and file names
can be either in uppercase or
lowercase. The UNICOS operating
system distinguishes between the two:
MYFILE and myfile are two different
files.

Global Global SEGLDR directives affect the
entire program.

Segment Segment SEGLDR directives affect
only the segment in which they are
located.

O’ These characters indicate an octal
number. For example, O’177777
means 177777 octal.

Command-line
equivalents

These are found at the end of some
subsections that describe individual
SEGLDR directives. Command-line
equivalents are the UNICOS segldr
command-line options that perform
the same function as the SEGLDR
directive being described.

The following machine naming conventions may be used
throughout this manual:

Term Definition

Cray PVP systems All configurations of Cray parallel
vector processing (PVP) systems, including
the following:

CRAY C90 series (CRAY C916,
CRAY C92A, CRAY C94, CRAY C94A,
and CRAY C98 systems)

CRAY C90D series (CRAY C92AD,
CRAY C94D, and CRAY C98D systems)

CRAY EL series (CRAY Y-MP EL,
CRAY EL92, CRAY EL94, and CRAY EL98
systems)

CRAY J90 series (CRAY J916 and
CRAY J932 systems)

CRAY T90 series (CRAY T94, CRAY T916,
and CRAY T932 systems)

Segment Loader (SEGLDR) and ld Reference Manual Preface

viiCray Research, Inc.SR–0066 9.0

Term Definition

CRAY Y-MP E series (CRAY Y-MP 2E,
CRAY Y-MP 4E, CRAY Y-MP 8E, and
CRAY Y-MP 8I systems)

CRAY Y-MP M90 series (CRAY Y-MP M92,
CRAY Y-MP M94, and CRAY Y-MP M98
systems)

Cray MPP systems All configurations of Cray massively
parallel processing (MPP) systems,
including the CRAY T3D series
(CRAY T3D MC, CRAY T3D MCA, and
CRAY T3D SC systems)

All Cray Research
systems

All configurations of Cray PVP and
Cray MPP systems that support this
release

SPARC systems All SPARC platforms that run the Solaris
operating system version 2.3 or later

The default shell in the UNICOS 9.0 release, referred to in Cray
Research documentation as the standard shell, is a version of
the Korn shell that conforms to the following standards:

• Institute of Electrical and Electronics Engineers (IEEE)
Portable Operating System Interface (POSIX) Standard
1003.2–1992

• X/Open Company Standard XPG4

The UNICOS 9.0 operating system also supports the optional
use of the C shell.

The POSIX standard uses utilities to refer to executable programs
that Cray Research documentation usually refers to as
commands. Both terms appear in this document.

In this publication, Cray Research, Cray, and CRI refer to Cray
Research, Inc. and/or its products.

Preface Segment Loader (SEGLDR) and ld Reference Manual

viii SR–0066 9.0Cray Research, Inc.

The following types of online information products are available
to Cray Research customers:

• CrayDoc online documentation reader, which lets you see the
text and graphics of a manual online. The CrayDoc reader is
available on workstations. To start the CrayDoc reader at
your workstation, use the cdoc (1) command.

• Docview text-viewer system, which lets you see the text of a
manual online. The Docview system is available on the Cray
Research mainframe. To start the Docview system, use the
docview (1) command.

• Man pages, which describe a particular element of the UNICOS
operating system or a compatible product. To see a detailed
description of a particular command or routine, use the man(1)
command.

• UNICOS message system, which provides explanations of
error messages. To see an explanation of a message, use the
explain (1) command.

• Cray Research online glossary, which explains the terms used
in a manual. To get a definition, use the define (1) command.

• xhelp help facility. This online help system is available
within tools such as the Program Browser (xbrowse) and the
MPP Apprentice tool.

For detailed information on these topics, see the User’s Guide to
Online Information, publication SG–2143.

Online
information

Segment Loader (SEGLDR) and ld Reference Manual Preface

ixCray Research, Inc.SR–0066 9.0

If you have comments about the technical accuracy, content, or
organization of this manual, please tell us. You can contact us in
any of the following ways:

• Send us electronic mail from a UNICOS or UNIX system,
using the following UUCP address:

uunet!cray!publications

• Send us electronic mail from any system connected to Internet,
using the following Internet addresses:

pubs0066@timbuk.cray.com (comments on this
manual)

publications@timbuk.cray.com (general comments)

• Contact your Cray Research representative and ask that a
Software Problem Report (SPR) be filed. Use PUBLICATIONS
for the group name, PUBS for the command, and NO-LICENSE
for the release name.

• Call our Software Publications Group in Eagan, Minnesota,
through the Technical Support Center, using either of the
following numbers:

1–800–950–2729 (toll free from the United States and
Canada)

+1–612–683–5600

• Send a facsimile of your comments to the attention of
“Software Publications Group” in Eagan, Minnesota, at fax
number +1–612–683–5599.

• Use the postage-paid Reader’s Comment Form at the back of
the printed manual.

We value your comments and will respond to them promptly.

Reader comments

Preface Segment Loader (SEGLDR) and ld Reference Manual

x SR–0066 9.0Cray Research, Inc.

Contents

xiCray Research, Inc.SR–0066 9.0

Page Page

Preface iii

Related publications iii

Conventions v

Online information viii

Reader comments ix

Introduction [1] 1

Invoking SEGLDR [2] 3

segldr(1) command line 4

ld(1) command line 10

UNICOS environment variable processing 12

LDDIR variable 12

LPP variable 13

MSG_FORMAT variable 13

NLSPATH variable 13

SEGDIR variable 13

TARGET variable 14

TMPDIR variable 14

Directives processing order 14

Command options and loader directives 15

Differences between segldr and ld 17

Default directives files 19

General Directives [3] 21

Including directives files 22

INCLUDE directive 23

LINCLUDE directive 23

Including object modules 24

BIN directive 26

LBIN directive 26

LIB directive 27

LLIB directive 28

NODEFLIB directive 28

DEFLIB directive 29

FORCE directive 30

MODULES and SMODULES directives 30

COMMONS and SCOMMONS directives 31

DUPORDER directive 32

OMIT directive 34

The executable program 34

ABS directive 35

TRIAL directive 35

Load map control 35

ECHO directive 36

Comments 36

MAP directive 37

TITLE directive 38

Controlling error messages 39

MLEVEL directive 39

USX directive 40

REDEF directive 40

DUPENTRY directive 41

DUPLOAD directive 42

NODUPMSG directive 42

NOUSXMSG directive 43

MSGLEVEL directive 43

Controlling entry points and execution 44

XFER directive 44

EQUIV directive 45

SET directive 46

Contents Segment Loader (SEGLDR) and ld Reference Manual

xii SR–0066 9.0Cray Research, Inc.

Page Page

UNSAT directive 46

Program alignment and initialization 47

ALIGN directive 47

PRESET directive 48

ORG directive 49

Miscellaneous global directives 50

SYMBOLS directive 50

KEEPSYM and HIDESYM directives 50

CASE directive 51

CPUCHECK directive 51

COMPRESS directive 52

LOGFILE directive 53

LOGUSE directive 53

Introduction to Program
Segmentation [4] 55

SEGLDR segment tree concept 55

Loader segment tree design 57

Subroutine calling between segments 59

Using segmentation with multitasked
programs 63

Segmentation Directives [5] 65

Segment tree definition directives 65

Segment description directives 66

SEGMENT and ENDSEG directives 66

MODULES and SMODULES directives 67

COMMONS and SCOMMONS directives 68

BIN directive 69

SAVE directive 70

DUP directive 71

Global directives for segmentation 72

SLT directive 72

SAVE directive 72

COPY directive 73

SEGORDER directive 74

Program Duplication and Block
Assignment [6] 75

Duplication and block assignment in
nonsegmented programs 75

Duplicate module names 75

Duplicate entry-point names 75

Duplicate common blocks 76

Block assignment 76

Duplication in segmented programs 76

Module duplication 76

Entry-point duplication 77

Common block duplication 77

Block assignment in segmented programs 79

FLOAT directive 80

Floating 80

Automatic duplication 80

Example 81

Common block use 83

Data load restrictions 83

Block data routines 84

Referencing data in common blocks 84

Segmented Program
Execution [7] 85

$SEGRES 85

Subroutine call overhead 86

Dynamic Memory
Management [8] 87

Managing global heap memory 87

HEAP directive 87

STACK directives 88

TSTACK directive 89

Segment Loader (SEGLDR) and ld Reference Manual Contents

xiiiCray Research, Inc.SR–0066 9.0

Page Page

ADDBSS directive 90

DYNAMIC directive 90

Using the heap and dynamic common
together 92

Fortran example for acquiring space from
the heap 92

Fortran example for using dynamic
common 93

Central Memory Allocation by
SEGLDR [9] 95

Definitions of terms 96

Executable program organization 96

ORDER directive 97

TEXT,DATA,BSS allocation scheme for
memory allocation 98

Shared-text allocation scheme for memory
allocation 98

Advantages of shared-text programs 99

Disadvantages of shared-text programs 99

Memory allocation for segmented programs 99

ORDER=SS.TDB 100

Soft Externals [10] 103

Soft external references 103

How to declare soft externals 104

How to link soft externals 105

Using soft externals 106

Testing entry-point references with
_loaded 106

Testing entry-point references with flag
words 107

How to convert soft references to hard
references 107

HARDREF directive 108

How to convert hard references to soft
references 108

SOFTREF directive 108

Configuration Directives [11] 109

Specifying default directory search lists 109

DEFDIR directive 109

LIBDIR directive 111

The executable program 112

OUTFORM directive 112

Controlling entry points and execution 113

START directive 113

CALLXFER directive 113

Miscellaneous global directives 114

SYSTEM directive 114

INCFILE directive 114

ZSYMS directive 115

Zero address directives 115

ZEROCOM directive 116

ZERODATA directive 116

ZEROTEXT directive 117

Managing global heap memory 117

DEFHEAP directive 117

DEFSTACK directive 118

FREEHEAP directive 119

Examples [A] 121

Basic case 121

Tree structure examples 121

Tree structure with expandable common
block 122

Segmented load with duplicated modules 125

Comprehensive Fortran program example 126

Fortran source code 126

Loader directives 128

SEGLDR map output 130

Contents Segment Loader (SEGLDR) and ld Reference Manual

xiv SR–0066 9.0Cray Research, Inc.

Page Page

Program block maps 131

Program entry-point cross-reference
map 134

Program common block reference map 135

Messages [B] 137

Loader-created Tables [C] 141

_infoblk 141

Segmentation tables 144

$SEGRES table 145

Segment Linkage table 146

Segment Description table 147

Glossary 149

Index 155

Figures

Figure 1. Segment tree 56

Figure 2. Valid segment tree (broad) 57

Figure 3. Valid segment tree (deep) 58

Figure 4. Invalid segment tree (multiple
root segments) 59

Figure 5. Invalid segment tree (multiple
immediate-predecessor
segments) 59

Figure 6. Invalid segment tree (call across
segment tree) 61

Figure 7. Valid and invalid subroutine
references 62

Figure 8. Entry-point duplication
example 78

Figure 9. Segment tree with duplicate
common blocks 79

Figure 10. Segmentation structure before
movable block assignment 82

Figure 11. Soft external usage 104

Figure 12. Example tree structure 123

Figure 13. Tree structure 126

Tables

Table 1. Directives equivalents for segldr
command-line options 15

Table 2. Directives equivalents for ld
command-line options 16

Table 3. segldr and ld differences 17

Table 4. DUPENTRY keywords for
duplicated entry definitions 41

Table 5. Subroutine call overhead 86

Table 6. _infoblk description 142

Table 7. $SEGRES description 145

Table 8. SLT description 146

Table 9. SDT description 148

Introduction [1]

1Cray Research, Inc.SR–0066 9.0

The SEGLDR product is a loader for code produced by the CAL
version 2, CFT77, CF90, Pascal, Ada, and C language processors.
For segmented programs, the SEGLDR product loads program
segments as required, without explicit calls to an overlay
manager. See “Introduction to Program Segmentation,” page 55,
for more information on program segments.

In this manual, segmented programs are programs having
portions of their code not continuously memory-resident, and
nonsegmented programs are those having all of their code
continuously memory-resident.

Executing under the control of the UNICOS operating system on
a Cray Research computer system, the SEGLDR loader produces
both segmented and nonsegmented executable programs.
Despite its name, the SEGLDR loader is an efficient and
full-featured loader for loads that do not require segmentation.

With the SEGLDR loader, you can produce and execute
segmented programs without modifying your code extensively.
The SEGLDR loader detects subroutine calls that require the
loading of new segments into memory. A memory-resident
routine, provided by the system and loaded with the object
module, manages memory overlays.

“Invoking SEGLDR,” page 3, describes the UNICOS invocation
statement.

Segment Loader (SEGLDR) and ld Reference ManualIntroduction [1]

2 Cray Research, Inc. SR–0066 8.0

Invoking SEGLDR [2]

3Cray Research, Inc.SR–0066 9.0

You can control the loader’s operation with the invocation
statement shown in this section, or with the directives explained
in “General Directives,” page 21. “Command options and loader
directives,” page 15, shows the correspondence between
command-line options and the loader directives. “Directives
processing order,” page 14, describes the effects of using both
command-line options and directives.

There are two ways to invoke the loader. The segldr (1)
command provides a simple invocation method in which the
loader handles many of the requirements of loading your
program. The ld (1) command provides a traditional UNIX
interface in which you must provide more information to the
loader to load your program correctly. The cc (1) command uses
the ld interface when invoking the loader, and the cf77 (1)
command uses the segldr interface. “Differences between
segldr and ld ,” page 17, describes how the two invocation
formats differ.

Generally, text in this reference manual refers to “segldr ”
whenever information pertains only to the segldr invocation. It
uses “ld ” whenever information pertains only to the ld
invocation. “SEGLDR” or “the loader” refers to information
pertaining to the loader in general.

Invoking SEGLDR [2] Segment Loader (SEGLDR) and ld Reference Manual

4 Cray Research, Inc. SR–0066 9.0

Execute the loader with the following command line. Options
can be specified in any order, however the order can affect how
the options are interpreted:

segldr [–A incfile] [–a] [–b value] [–e ename] [–f value] [–g] [–H hi[+ he]]

[–i dirfiles] [–j names] [–k] [–l names] [–m] [–n] [–o outfile] [–s] [–t]

[–u unames] [–D dirstring] [–E] [–F] [–L ldirs] [–M arguments] [–N]

[–O keyword] [–S si[+ se]] [–V] [–Z] [–z] [objfiles] files

–A incfile Specifies an existing executable file. segldr
extracts the symbols from incfile and links the
new object modules as a code fragment that
will execute as part of the original program.

–a Aligns all local code and data blocks on
instruction buffer boundaries.

–b value Adds value number of 1024-word blocks of
memory at the end of the loaded program (BSS
space).

–e ename Indicates that program execution should begin
at entry ename. Control is passed from the
system startup routine to the ename entry
point which, under most circumstances, is the
user main routine. The –e option is equivalent
to the XFER directive.

–f value Fills all uninitialized words of the program
with value, which may be one of the following:

zeros Sets uninitialized data words to 0
(default).

ones Sets uninitialized data words to –1.

indef Sets uninitialized data words to
O’0605054000000000000000 ,
which causes a floating-point error if
used in a floating-point operation.

–indef Sets uninitialized data words to
O’1605054000000000000000 ,
which causes a floating-point error if
used in a floating-point operation.

segldr (1)
command line
2.1

Invoking SEGLDR [2]Segment Loader (SEGLDR) and ld Reference Manual

5Cray Research, Inc.SR–0066 9.0

indefa Sets uninitialized data to the sum of
a logical OR operation of
O’0605054000000000000000 and
the address of the word being preset.
This value is the same as that of
indef , except the address of the
word referenced appears in the
low-order bits of the value.

–indefa Sets uninitialized data to the sum of
a logical OR operation of
O’10605054000000000000000 and
the address of the word being preset.
This value is the same as that of
–indef , except the address of the
word referenced appears in the
low-order bits of the value.

A 16-bit octal value
Inserts a 16-bit, user-supplied octal
value into each parcel of
uninitialized data words. The value
must be in the range
0<=value<=O’177777 .

–g Generates the debug symbol tables and
appends them to the executable file. This
option is enabled by default. See the –s option.

–H hi[+he] Assigns the initial heap values. The hi is the
initial heap size; he is the heap expansion
increment.

–i dirfiles Reads and processes the directives in each of
the specified directive files. Separate file
specifications with commas. If the file
specification begins with a period (.) or a slash
(/), the loader assumes that it is a complete
path and uses it without modification. If a
dash (–) is present as one of the file names, the
loader reads the stdin file for directives;
otherwise, the loader looks for the named file
in the current directory.

Invoking SEGLDR [2] Segment Loader (SEGLDR) and ld Reference Manual

6 Cray Research, Inc. SR–0066 9.0

–j names Reads and processes the directives in each of
the specified directive files. Separate file
specifications with commas. If the file
specification begins with a period (.) or a slash
(/), the loader assumes that it is a complete
path and uses it without modification.
Otherwise, the loader looks for the named
file(s) in the segdirs subdirectory in each
search path. See the –L option for the list of
search directories.

–k Redirects all but summary-class error
messages to the load map file. See the –M
option.

–l names Lists library names. If a name begins with a
period (.) or a slash (/), segldr assumes it is a
complete path name and uses it without
modification as the name of a library file.
Otherwise, segldr checks for file lib name.a
in the list of search directories and includes the
first one found as a library file. The list is
separated by commas. See the –L option for
the list of search directories.

–m Generates an address-level load map and
writes it to stdout . Equivalent to
–M ,address .

–n Generates a shared text program on Cray PVP
systems.

–o outfile Writes the executable program to outfile. If the
–o option is not used, the executable program
is written to the file specified by the ABS
directive. If neither the –o option nor ABS is
specified, the executable output is written to
file a.out .

–s Inhibits the generation of debug symbol tables.
Debug symbol tables are generated by default.

–t Executes in trial mode. Scans all object
modules, checks errors, and generates load
maps, but it does not produce an executable
program.

Invoking SEGLDR [2]Segment Loader (SEGLDR) and ld Reference Manual

7Cray Research, Inc.SR–0066 9.0

–u unames Enters unames as undefined symbols. This is
useful for loading from a library, since
undefined symbols are needed to force loading
of the desired routines.

–D dirstrng Specifies a character string composed of
segldr directives. Any global segldr
directive may be provided. Directives must be
separated with semicolons. See “Directives
processing order,” page 14, for the order in
which segldr processes directives.

–E Echoes to the load map file all directives
processed. See the –M option.

–F Enables force mode. All modules from bin and
object files are loaded, whether or not they are
referenced.

–L ldirs Adds one or more directory names to the list of
search directories. segldr uses the list of
search directories to locate files specified with
the –l and –j options, as well as the LBIN ,
LLIB , LINCLUDE, and DEFLIB directives. If the
file cannot be located in any specified search
directory, segldr looks in the directories
specified in the default directory search list.
See “DEFDIR directive,” page 109, for more
information on default directory search lists.
You may specify up to 100 directory names.

–M file
–M , opts
–M file, opts

Selects optional load map file and type of map
to produce. If a file name is present, the loader
writes the load maps to that file in paginated
13 - mn m t i e n me i n t132-column format. If a file name is not
provided, load maps are written to the stdout
file in nonpaginated, 80-column format. If no
load-map options are specified, a block map
th t i te y e i the e t typethat is sorted by address is the default type.
Load-map options (opts) are as follows (you
may specify more than one, separated by
commas):

s or stat Lists only load statistics.

a or address Sorts block map by address; the
default map, if no opt is
specified.

Invoking SEGLDR [2] Segment Loader (SEGLDR) and ld Reference Manual

8 Cray Research, Inc. SR–0066 9.0

al or alpha Sorts block map by name.

b or brief Restricts block map to modules
only from object files.

c or cbxrf Lists common block
cross-references.

e or epxrf Lists entry-point
cross-references.

p or part Lists a combination of address
and alpha .

f or full Lists all load maps.

–N Inhibits inclusion of the default libraries in the
load.

–O keyword Selects the memory allocation order, which
may be as follows:

tdb Allocates all code, followed by
all initialized data, followed by
all uninitialized data (text, data,
BSS).

ema Allocates code to maximize use
of Cray PVP systems extended
memory addressing.

s Allocates code to create a
shared-text program for Cray
PVP systems.

ss.ema Allocates code to create a
split-segment program that
maximizes use of Cray PVP
systems extended memory
addressing.

ss.tdb Allocates code to create a
split-segment program, where
code is followed by initialized
data, which is followed by
uninitialized data (text, data,
BSS).

Invoking SEGLDR [2]Segment Loader (SEGLDR) and ld Reference Manual

9Cray Research, Inc.SR–0066 9.0

–S si[+se] Assigns initial stack values. The si is the
initial stack size; se is the initial stack
expansion increment.

–V Indicates that the loader list its version line to
the stderr file.

–Z Inhibits segldr from reading the default
directives file /lib/segdirs/def_seg . The
default directives file is required to configure
programs correctly for execution under the
UNICOS operating system. The –Z option
should only be used by special-purpose
programs.

–z Specifies an alternative default directives file.
The alternative directives must configure the
program correctly for execution under the
UNICOS operating system.

objfiles Files containing object modules produced by
the compilers or assembler and object module
library files prepared by ar (1) or bld (1) can be
specified. Specifying files on the command line
has the same effect as specifying them in a BIN
directive.

files Files to be loaded. They may contain any of
the following:

• Sequential object modules produced by the
compilers or assembler. Specifying an object file
on the command line has the same effect as
specifying it on a BIN directive.

• Object libraries produced by ar (1) or bld (1).
Specifying a library on the command line has
the same effect as naming it on a BIN directive.

• SEGLDR directives. If you enter a hyphen (-)
instead of file names, SEGLDR will accept
directives from stdin .

Load maps, if selected, are written to the stdout file by default
(see the –M option). Error messages are written to the stderr
file by default (see the –k option).

Any file named in the loader directives or command line may be
described by a full file path name.

Invoking SEGLDR [2] Segment Loader (SEGLDR) and ld Reference Manual

10 Cray Research, Inc. SR–0066 9.0

To invoke the loader with a command-line format and defaults
similar to those of the traditional UNIX ld (1) command, you can
use the ld (1) command.

You can specify options in any order, however the order may
affect how the options are interpreted (see –l and –L). Options
and file arguments may be intermixed on the command line.

ld [–D dirstring] [–e name] [–F] [–g] [–i] [–j names][–l names] [–L ldirs]

[–m] [–n] [–o outfile] [-r] [–s] [–u unames] [–V] [–Z] [–z file] files

–D dirstring Specifies a character string composed of the
loader directives separated with semicolons.
See “Directives processing order,” page 14, for
the order in which the loader processes
directives.

–e name Sets the program entry address to the value of
symbol name. Control is passed from the
system kernel to the name entry point which,
under most circumstances, is the system
startup routine. The –e option is equivalent to
the START directive.

–F Enables default library processing. The
standard system libraries are processed after
any user-supplied libraries. Processing of the
system libraries is disabled by default.

–g Generates the debug symbol tables and
appends them to the executable program. This
option is enabled by default. See the –s option.

–i Generates a shared-text program on Cray PVP
systems. Equivalent to the –n option.

–j names Lists directives file names. The list is
separated by commas. If a name begins with a
period (.) or a slash (/), ld assumes it is a
complete path name and uses it without
modification. Otherwise, ld checks for a
segdirs /name file in the list of search
directories and uses the first one found. See
the –L option for the list of search directories.

ld (1) command
line
2.2

Invoking SEGLDR [2]Segment Loader (SEGLDR) and ld Reference Manual

11Cray Research, Inc.SR–0066 9.0

–l names Lists library names. If a name begins with a
period (.) or a slash (/), ld assumes it is a
complete path name and uses it without
modification as the name of a library file;
otherwise, ld checks for file libname.a in the
list of search directories and includes the first
one found as a library file. The list is
separated by commas. See the –L option for
the list of search directories.

–L ldirs Adds one or more directory names to the list of
search directories. ld uses the list of search
directories to locate files specified with the –l
and –j options, as well as the LBIN , LLIB ,
LINCLUDE, and DEFLIB directives. If the file
cannot be located in any specified search
directory, ld looks first in /lib and then in
/usr/lib . You may specify up to 100
directory names.

–m Generates a load map of the executable
program and writes it to the stdout file.

–n Generates a shared-text program on Cray PVP
systems. Equivalent to the –i option.

–o outfile Writes the executable program to outfile. The
default outfile name is a.out .

-r Produces relocatable output from prior linked
.o files. The output is suitable for use by
another invocation of ld . It is equivalent to
using the following directives:

OUTFORM=REL
USX=NOTE
SYSTEM=STDALONE
ZSYMS=OFF

–s Inhibits generation of debug symbol tables.
Debug symbol tables are generated by default.

–u unames Enters unames as undefined symbols. This is
useful for loading from a library, because
undefined symbols are needed to force loading
of the desired routines.

Invoking SEGLDR [2] Segment Loader (SEGLDR) and ld Reference Manual

12 Cray Research, Inc. SR–0066 9.0

–V Lists the ld (1) version line on stderr .

–Z Inhibits ld from reading the default directives
file /lib/segdirs/def_ld . The default
directives file is required to configure programs
correctly for execution under the UNICOS
operating system. The –Z option should be
used only by special-purpose programs.

–z file Specifies an alternate default directives file.
The alternate directives must configure the
program correctly for execution under the
UNICOS operating system.

files Files to be loaded. They may contain any of
the following items:

• Sequential object modules produced by the
compilers or assembler. Specifying an object file
on the command line has the same effect as
specifying it on a BIN directive.

• Object libraries produced by ar (1) or bld (1).
Specifying a library on the command line has
the same effect as naming it on a LIB directive.

• ld directives

Seven environment variables affect the execution of the loader:
LDDIR, LPP, MSG_FORMAT, NLSPATH, SEGDIR, TARGET, and
TMPDIR.

The LDDIR variable lets you specify ld directives or files of
directives that are included automatically each time that you use
ld . Thus you can set up your own defaults, tailored to the way
you use ld . LDDIR is recognized only when ld is invoked.

Set the LDDIR variable by using the following format:

string;string;string;...

UNICOS
environment
variable
processing
2.3

LDDIR variable
2.3.1

Invoking SEGLDR [2]Segment Loader (SEGLDR) and ld Reference Manual

13Cray Research, Inc.SR–0066 9.0

Each string is either a ld directive or the name of a file
containing ld directives. See “Directives processing order,”
page 14, for a discussion of the order in which directives are
processed.

If LPP is defined, the loader uses the value of the variable as the
number of lines to print on each page for listing output. The LPP
value must be between 15 and 999. If LPP is not present, the
default is 57 lines per page.

The MSG_FORMAT variable describes a printing format similar to
the C library routine, printf , that can be used to alter the
layout of error messages produced by the loader. See the
explain (1) command for a complete description of MSG_FORMAT.

The NLSPATH variable specifies a list of alternative directories
that the loader should search to locate its error message catalog.
The NLSPATH environment variable is used to select alternative
catalogs for debugging purposes, or when different versions of
the loader are operating on the same system. It is not needed for
normal operation.

The SEGDIR variable lets you specify segldr directives or files
of directives that are included automatically each time that you
use segldr . Thus you can set up your own defaults, tailored to
the way you use segldr . SEGDIR is recognized only when
segldr is invoked.

Set the SEGDIR variable by using the following format:

string;string;string;...

Each string is either a segldr directive or the name of a file
containing segldr directives. See “Directives processing order,”
page 14, for a discussion of the order in which directives are
processed.

LPP variable
2.3.2

MSG_FORMAT variable
2.3.3

NLSPATH variable
2.3.4

SEGDIR variable
2.3.5

Invoking SEGLDR [2] Segment Loader (SEGLDR) and ld Reference Manual

14 Cray Research, Inc. SR–0066 9.0

The TARGET variable specifies the machine characteristics of the
system on which the program will execute. The loader generates
the program so that it operates correctly on that system. If the
TARGET variable has not been specified, the program is adapted
to the host system. See target (1) for more information.

The TMPDIR variable specifies the directory that the loader uses
for its temporary file. If the variable is not specified or is not
correct, a site-specific system default is used.

The segldr and ld invocations of the loader process directives
and command-line options in a similar manner. This subsection
describes the order of processing and how directives interact
with command-line options. Directives and command-line
options are processed in the following order:

1. The loader first reads and processes the default directives
file, which provides the loader with the basic information
needed to construct a valid UNICOS executable program.
The contents of the file may be tailored to meet the needs of
each site. The –Z command-line option can be used to inhibit
default processing of this file. The –z command-line option
may be used to provide an alternative default directives file.
The default directives files are:

segldr /lib/segdirs/def_seg
ld /lib/segdirs/def_ld

2. After the default directives file is processed, segldr
interrogates the SEGDIR environment variable; ld
interrogates the LDDIR environment variable. Directives and
directives file names may be specified in the environment
variable. The directives and file contents are processed in the
order encountered.

3. The command line is processed next. Each command-line
option has an equivalent directive that performs the same
function. Table 1 describes the correspondence between
segldr command-line options and directives. Table 2, page
16, provides the correspondence between ld command-line
options and directives. Command-line options and

TARGET variable
2.3.6

TMPDIR variable
2.3.7

Directives
processing order
2.4

Invoking SEGLDR [2]Segment Loader (SEGLDR) and ld Reference Manual

15Cray Research, Inc.SR–0066 9.0

arguments are processed in the order encountered, with one
exception: directives files specified on the command line,
either as arguments or with the segldr –i option, are
processed after all other command-line options.

Because segmentation directives must be evaluated after
global directives, they can be specified only in the user
directives files named on the command line. User directives
files can be specified either as command-line arguments or
with the –i command-line option.

Table 1 and Table 2, page 16, show the correspondence between
segldr and ld command-line options and loader directives.

Table 1. Directives equivalents for segldr command-line
options

Command-line option Directive

a align=modules

b value addbss= value

e entry xfer= entry

f value preset= value

g symbols=on

i file include= file

j name linclude=segdirs/ name

k no directive equivalent

l name lib= libname.a

l / filename lib=/ filename

m map=address

n order=shared

o file abs= file

s symbols=off

t trial

u name unsat= name

Command options
and loader
directives
2.5

Invoking SEGLDR [2] Segment Loader (SEGLDR) and ld Reference Manual

16 Cray Research, Inc. SR–0066 9.0

Table 1. Directives equivalents for segldr command-line
options

(continued)

Command-line option Directive

z no directive equivalent

A file incfile= file

D directive directive

E echo=on

F force=on

H values heap= values

L directory libdir= directory

M , keywords map=keywords

N nodeflib

O keyword order= keyword

S values stack= values

V No directive equivalent

Z No directive equivalent

.o object file argument bin= file

.a library file argument bin= file

Directives file argument include= file

Table 2. Directives equivalents for ld command-line
options

Command-line option Directive

e entry start= entry

g symbols=on

i order=shared

j name linclude=segdirs/ name

l name llib= libname.a

l / filename lib=/ filename

m map=address

Invoking SEGLDR [2]Segment Loader (SEGLDR) and ld Reference Manual

17Cray Research, Inc.SR–0066 9.0

Table 2. Directives equivalents for ld command-line
options

(continued)

Command-line option Directive

n order=shared

o file abs= file

r outform=rel;usx=note;
system=stdalone

s symbols=off

u name unsat= name

z No directive equivalent

D directive directive

F include=ld_Flib

L directory libdir= directory

V No directive equivalent

Z No directive equivalent

.o object file argument bin= file

.a library file argument lib= file

Directives file argument include= file

In addition to differences in command-line invocation formats,
segldr and ld vary in other ways. Table 3 summarizes these
differences.

Table 3. segldr and ld differences

Feature segldr ld

Default directives
file

/lib/segdirs/def_seg /lib/segdirs/def_ld

Environment
variable
processing

SEGDIR LDDIR

Differences
between segldr
and ld
2.6

Invoking SEGLDR [2] Segment Loader (SEGLDR) and ld Reference Manual

18 Cray Research, Inc. SR–0066 9.0

Table 3. segldr and ld differences
(continued)

Feature ldsegldr

Object file
processing

All object file names are included as
bin files.

All .o files (sequential object files)
are included as bin files. All .a files
(library object files) are included as
lib files.

Default setting of
DUPENTRY
directive

DUPENTRY=CAUTION:CAUTION:
NOTE

DUPENTRY=CAUTION:NOTE:NOTE.
Because of the different dupentry
setting, and the practice of including
library object files as lib files, ld
issues fewer diagnostic messages
about duplicated entry point names
than segldr .

Default setting of
DUPORDER
directive

DUPORDER=OFF
The first definition of an entry point
is chosen, regardless of the
definition’s location.

DUPORDER=ON. An ordered search
algorithm is used. The entry point
that ld chooses depends on the order
of definitions and references. See
“DUPORDER directive,” page 32, for
more information.

Default system
libraries

A list of default libraries is included.
Most common system routines are
included in these libraries.

No default libraries are included. You
must specify all libraries required by
your program.

Default setting for
USX directive

USX=CAUTION. A program that
contains unsatisfied external
references is still executable and
segldr exits normally. Calls to
unsatisfied references are intercepted
when the program is run.

USX=WARNING. A program that
contains unsatisfied external
references is not executable and ld
exits with a nonzero error status.

Default setting for
FORCE directive

FORCE=OFF. Modules in bin files
are included in the executable
program only if they are referenced,
contain a main program, or initialize
global data.

FORCE=ON. All modules encountered
in bin files are included in the
executable program, whether or not
the modules are referenced.

Invoking SEGLDR [2]Segment Loader (SEGLDR) and ld Reference Manual

19Cray Research, Inc.SR–0066 9.0

segldr and ld begin processing by reading a file of directives.
The segldr default directives file is /lib/segdirs/def_seg ;
the ld default directives file is /lib/segdirs/def_ld . The
defaults directives files provide the basic information needed for
segldr or ld to create an executable UNICOS program. In
addition, directives can be added to the default files to meet the
loader operations needs of a particular site. Several common
options for modifying the default directives files include the
following:

• Adding or deleting default libraries

• Adding or deleting search directives

• Changing message severities

Defaults for directives are discussed throughout this manual.
These settings reflect the values as released by Cray Research.
The default values you find at your site may differ.

You can suppress default directives file processing by including
the –Z option on your segldr or ld command line. You can
substitute a different directives file by using the –z option. If
you choose to substitute the directives file, you must provide the
necessary directives to cause the loader to correctly build your
program.

Default directives
files
2.7

Invoking SEGLDR [2] Segment Loader (SEGLDR) and ld Reference Manual

20 Cray Research, Inc. SR–0066 9.0

General Directives [3]

21Cray Research, Inc.SR–0066 9.0

The loader directives identify relocatable object files to be
loaded, select various control options, and declare the
segmentation structure. When using the segldr command, you
can specify files of segldr directives with the –i option or you
can specify directives themselves with the –D option.

The loader recognizes the following groups of directives, which
should be specified in the indicated order:

1. Global directives identify relocatable object files to be loaded
and select various options that control the load process. Most
of the global directives are described in this section; global
and segment directives are also discussed in sections 5, 8, 9,
10, 11, and 12. Global directives can be entered in any order,
but all global directives must precede all other directives.

2. Segment tree definition directives should follow the global
directives and are described in, “Segment tree definition
directives,” page 65.

3. Segmentation directives specify the structure of segmented
programs, should follow tree-definition directives, and are
described in, “Segment description directives,” page 66.

Most loader directives have KEYWORD=value syntax.
Exceptions are stated in individual directive descriptions. The
following describes the conventions used in representing loader
directives:

• You can enter directives and keywords in uppercase or
lowercase, but not in mixed case. Files, modules, entry points,
and common blocks can be specified in uppercase, lowercase,
or mixed case; however, under the UNICOS operating system,
the loader treats file names and module names of different
cases as different names. You can use the CASE directive to
change the way in which the loader interprets lowercase
directives.

• Comments can appear anywhere in the input directives. Each
comment must be preceded with an asterisk (*), and all
characters to the right of the asterisk are not processed.

General Directives [3] Segment Loader (SEGLDR) and ld Reference Manual

22 Cray Research, Inc. SR–0066 9.0

• Terminate directives with a semicolon (;), an asterisk (*), or
an end-of-line character.

• More than one directive can appear on a single line, but you
must separate multiple directives on a single line with a
semicolon.

• A directive cannot be longer than 256 characters.

• Separate elements in a list with commas.

• The loader ignores null directives (for example, two successive
semicolons or a blank line).

• Some loader directives can consist of more than one line.
These directives have a comma as the last nonblank character
before the end-of-line character. See individual directive
descriptions for more detail.

• The loader normally uses such special characters as
semicolons (;), commas (,), and others as delimiting
characters when processing directives. If you want to use any
of these characters (except semicolons) in the names of files,
entry points, common blocks, or modules, place the complete
name within single or double quotation marks. For example:
bin=’ abc: def.o’

• Because semicolons are used to separate directives, they
cannot be included in literal strings (strings enclosed in
quotation marks).

The INCLUDE and LINCLUDE directives allow you to specify the
names of files that contain directives for the loader to process.
When an INCLUDE or LINCLUDE directive is encountered, the
loader stops reading the current directives files and begins
reading the file specified with the INCLUDE or LINCLUDE
directive. When the end of the included directives file is
reached, the loader resumes processing the original file, using
the directive that follows the INCLUDE or LINCLUDE directive.
INCLUDE or LINCLUDE directives can appear in included files, up
to a maximum of 10 nesting levels.

Including
directives files
3.1

General Directives [3]Segment Loader (SEGLDR) and ld Reference Manual

23Cray Research, Inc.SR–0066 9.0

The INCLUDE directive specifies a file that should be included in
the load process.

Format:

INCLUDE=file

Example:

MAP=stat
INCLUDE=dirfile1
DUPLOAD=caution

In this example, the loader processes the MAP=stat directive,
then it processes the directives found in dirfile1 , and lastly it
processes the DUPLOAD=caution directive.

The LINCLUDE directive specifies a file that should be included
in the load process. Only the file name component should be
specified. The loader scans the list of search directories to locate
the file. (See “LIBDIR directive,” page 111, for information on
user directory search lists.)

Format:

LINCLUDE=file

Example:

LIBDIR=/mydir/lib
LINCLUDE=dirfile2

In this example, the loader searches for file
/mydir/lib/dirfile2 . If it is found, the directives in
dirfile2 is processed. Otherwise, the loader looks for
/lib/dirfile2 , then /usr/lib/dirfile2 . It uses the first of
these files it finds.

INCLUDE directive
3.1.1

LINCLUDE directive
3.1.2

General Directives [3] Segment Loader (SEGLDR) and ld Reference Manual

24 Cray Research, Inc. SR–0066 9.0

The BIN , LBIN , LIB , and LLIB directives let you identify the
relocatable modules that you want the loader to include in your
program. The DUPORDER directive lets you determine how to
select the modules to be retrieved from libraries. The NODEFLIB
and OMIT directives provide control over the system default
libraries. The FORCE, MODULES, and COMMONS directives provide
you with additional control over the loading process.

Files specified in BIN or LBIN directives or specified as
command-line arguments by the loader are all considered to be
bin files. Segmented object files specified as arguments on the
ld command line are also considered to be bin files. By
convention, bin files should be the portion of your program that
you have written. Files specified in LIB , LLIB or DEFLIB
directives, or specified with the –l option on the segldr or ld
command line, are all lib files. Library files built by bld and
specified as arguments on the ld command line are also
considered lib files. By convention, lib files are libraries of
previously written routines that the loader includes in your
program as needed. The loader processes bin and lib files in a
very similar manner: it scans all modules from both bin and
lib files, and it establishes and retains the calling relationships
between all modules. After processing all files in this way, the
loader determines which modules must be loaded. It begins at
the module containing the transfer entry address and scans the
calling relationships, retaining all modules that are called and
deleting all others. Exceptions and differences between bin and
lib file processing are as follows:

• All bin files are processed before all lib files. If modules
containing duplicate entry points are discovered, the loader
uses the first occurrence. See “DUPORDER directive,” page 32.

• The FORCE directive causes the loader to include all modules
from bin files, even if they are not referenced. FORCE does not
affect modules from lib files. See “FORCE directive,” page 30.

• The BRIEF option to the MAP directive limits load maps to
modules derived from bin files. Modules from lib files are
not listed. See “MAP directive,” page 37.

• The DUPORDER directive affects the selection of modules from
library files. See “DUPORDER directive,” page 32.

• The DUPENTRY directive controls messages concerning
duplicate definitions of the same entry point. It differentiates
between entry points from bin files and those from lib files.
See “DUPENTRY directive,” page 41.

Including object
modules
3.2

General Directives [3]Segment Loader (SEGLDR) and ld Reference Manual

25Cray Research, Inc.SR–0066 9.0

• Fortran BLOCKDATA subprograms encountered in bin files are
always included in the program. BLOCKDATA subprograms
encountered in lib files are included only if they are
referenced.

• The loader always includes a module written in C and
encountered in a bin file if the module initializes global data.
C modules from lib files that initialize global data are
included only if they are referenced.

In addition to the files you provide, the loader also scans a set of
default system libraries. You can use the NODEFLIB directive to
inhibit default library processing.

The default libraries that segldr and ld scan and the order of
scanning are specified in the default directives files. The default
directives files as released by Cray Research specify processing
the libraries in the order listed:

libc.a

libu.a

libm.a

libf.a

libfi.a

libsci.a

libp.a

Some of the default libraries listed above may be released
separately from the UNICOS operating system; therefore, they
may not be present on your system. Missing libraries are
silently ignored.

The loader uses a directory search algorithm to locate each
default lib file. If you have provided a list of search directory
names by using the –L option or LIBDIR directive, the loader
searches the directories specified to locate the default libraries.
If the libraries cannot be located in those directories, the loader
searches the directories specified in the default directory search
list. (See “DEFDIR directive,” page 109, for information on the
default directory search list.)

General Directives [3] Segment Loader (SEGLDR) and ld Reference Manual

26 Cray Research, Inc. SR–0066 9.0

The BIN directive names the relocatable object input files to be
searched. Multiple BIN directives have a cumulative effect. If
you specify multiple files with BIN , the loader processes them in
the order specified.

If a module is present in more than one file, the loader loads the
first module encountered. However, if you use the MODULES
directive and specify a particular file, this rule may not apply.

Format:

BIN= file1[, file2, file3,..., filen]

filei Names of relocatable input files to be included. If
no bin files are specified, the default is a.o .

If you continue this directive beyond one line, end each
continued line with a comma.

Examples:

bin=myfile,../group/ourfile.o,
 ../sue/herfile.a,/u/steve/anyfile.o

bin=newfile.a,oldfile.a

Modules contained in global BIN files (as opposed to segmented
BIN files) are not assumed to be in any particular segment,
unless the module is specified in a segmented MODULES directive.

Command-line equivalent: objfiles argument

The LBIN directive, in a manner similar to the BIN directive,
names relocatable object input files for the loader to search.
With LBIN , however, only the file name component is specified.
The LIBDIR directory search applies to names on the LBIN
directive. Each LIBDIR directory is searched for the files
specified. The first file found is included in the program.

BIN directive
3.2.1

LBIN directive
3.2.2

General Directives [3]Segment Loader (SEGLDR) and ld Reference Manual

27Cray Research, Inc.SR–0066 9.0

Format:

LBIN= file1[, file2, file3,..., filen]

filei Names of the files you provide.

The LIB directive names the relocatable object library files for
the loader to search when the loader is trying to find entry
points that are referenced in BIN files but are not defined in any
BIN files or previously searched LIB files.

Use the LIB directive to specify lib files in addition to those in
the loader’s default list of libraries. Library files specified with
the LIB directive are searched in the order specified and before
any default libraries.

The effect of multiple LIB directives is cumulative.

If you continue this directive beyond one line, end each
continued line with a comma. The LIBDIR directory search does
not apply to files specified in LIB directives. Each name should
be a complete path name.

Format:

LIB= lib1[, lib2, lib3,..., libn]

libi Names of the libraries you provide.

Examples:

lib=/u/lib/lib7.a,/u/lib/libarf.a,
/lib/lib3A.a,mytmplib.a,mylibY.a

lib=mylibs.o,/lib/libc.a

These examples each specify seven libraries that the loader
should search before searching the default libraries. The
libraries are searched in the order given.

LIB directive
3.2.3

General Directives [3] Segment Loader (SEGLDR) and ld Reference Manual

28 Cray Research, Inc. SR–0066 9.0

The LLIB directive, in a manner similar to the LIB directive,
specifies relocatable object libraries for the loader to search.
With LLIB , however, only the file name component is specified.
The LIBDIR directory search applies to what is specified on the
LLIB directive. Each LIBDIR directory is searched for the files
specified. The first file found is included in the program.

Format:

LLIB= name[, name,...]

Command-line equivalent: –l option

Example:

LIBDIR=/lib/xlib
LLIB=libscan.a

First, the loader looks for file /lib/xlib/libscan.a , then
/lib/libscan.a , and finally /usr/lib/libscan.a . It uses
the first of these files it finds.

The segldr default directives file contains a set of DEFLIB
directives. NODEFLIB instructs the loader to ignore some or all
of the libraries that have been specified by DEFLIB directives. If
all default libraries are to be ignored, only modules found in files
declared as BIN or LIB files are considered for loading.

Format:

NODEFLIB

NODEFLIB=deflib1[, deflib2,..., deflibn]

If the first format is used, all default libraries are ignored. If the
second format is used, only the specified default libraries are
ignored.

Note: For a segmented load, you must specify the library
containing the loader run-time routine $SEGRES.

LLIB directive
3.2.4

NODEFLIB directive
3.2.5

General Directives [3]Segment Loader (SEGLDR) and ld Reference Manual

29Cray Research, Inc.SR–0066 9.0

Example:

NODEFLIB
LIB=/lib/libio.a,/lib/libc.a

The preceding example tells the loader to search the libraries
specified by the LIB directive (in the order specified) for
unsatisfied externals. The loader does not search the default
libraries for entry points not found in the specified libraries.

Example:

NODEFLIB=libp.a

This example directs the loader to ignore the Pascal library, and
to process the other default libraries as usual.

Command-line equivalent: –N option

The DEFLIB directive instructs the loader to add libraries to its
list of default libraries. Each library specified in the DEFLIB
directive is added to the end of the list of default libraries. If
DEFLIB specifies a library that is already part of the default
library list, the loader moves that library name to the end of the
list. You may use NODEFLIB and DEFLIB together to replace
some or all of the default system libraries (See “Including object
modules,” page 24). All libraries specified by the DEFLIB
directive are processed after all libraries that are specified by
the LIB directive are processed.

Format:

DEFLIB=deflib1[, deflib2,..., deflibn]

deflibi Name of one library to add.

Example:

DEFLIB=libmylib.a

This example directs the loader to add the user’s library to the
end of the default library list.

DEFLIB directive
3.2.6

General Directives [3] Segment Loader (SEGLDR) and ld Reference Manual

30 Cray Research, Inc. SR–0066 9.0

Example:

NODEFLIB; DEFLIB=libuser.a

This example suppresses all normal default system libraries,
replacing them with one user library.

The loader gathers all modules in all files specified with global
BIN and LIB directives. It then discards all modules with entry
points that are never called. FORCE specifies that subprograms
not called by other subprograms are to be loaded anyway
(force-loaded). This can be helpful in debugging, letting you
force-load a debug routine not actually called by the program.

Format:

FORCE=ON|OFF

ON Enables force-loading; when FORCE=ON, the loader
loads all modules specified in MODULES directives
and in all bin files.

OFF Disables force-loading; when FORCE=OFF, the
loader discards modules to which no references
have been made (except the XFER directive’s
module and the BLOCKDATA subprograms found in
bin files) (default).

Command-line equivalent: –F option

The MODULES and SMODULES directives specify modules to load.
Normally, if more than one module with a particular name
exists, the loader chooses the first such module it encounters. If
modules of the same name are encountered in different files, you
can use the MODULES directive to specify the files from which the
modules are obtained.

FORCE directive
3.2.7

MODULES and SMODULES
directives
3.2.8

General Directives [3]Segment Loader (SEGLDR) and ld Reference Manual

31Cray Research, Inc.SR–0066 9.0

Additionally, you can use MODULES to specify the loading order in
a nonsegmented load. Loading order can be affected by other
considerations such as the current memory ordering algorithm.
See “Executable program organization,” page 96. If you use the
MODULES directive, an error message will be issued if the
modules specified cannot be located in any included file. Error
messages are not issued if SMODULES is used.

Format:

MODULES=modname1[:file1][, modname2[:file2],..., modnamen[:filen]]

SMODULES=modname1[:file1][, modname2[:file2],..., modnamen[:filen]]

modnamei Name of the module to be loaded.

filei Name of the file from which to obtain the
module.

Example:

MODULES=SUBA,SUBB:myfile.o,SUBC
MODULES=SUBD:lib1.a

In the preceding example, the MODULES directive tells the loader
to obtain SUBB from file myfile . o and to obtain SUBD from file
lib1.a ; modules SUBA and SUBC are obtained from the first file
in which each is encountered.

In an unsegmented program, COMMONS and SCOMMONS cause the
listed common blocks to be loaded in the indicated order. In a
segmented load, however, the COMMONS directive serves only to
order and/or set the size of common blocks. Loading order can be
affected by other considerations such as the current memory
ordering algorithm. See “Executable program organization,”
page 96.

If you continue this directive beyond one line, end each
continued line with a comma.

If you use the COMMONS directive, an error message will be
issued if the indicated common blocks cannot be located in any
included file. No error messages are issued if SCOMMONS is used.

COMMONS and SCOMMONS
directives
3.2.9

General Directives [3] Segment Loader (SEGLDR) and ld Reference Manual

32 Cray Research, Inc. SR–0066 9.0

Format:

COMMONS=blkname1[:size1][, blkname2[:size2],..., blknamen[: sizen]]

SCOMMONS=blkname1[:size1][, blkname2[:size2],..., blknamen[:sizen]]

blknamei Name of the common block to be loaded.

sizei Decimal number indicating the size of the
common block. If present, it overrides any
common block sizes declared in your code. If the
size specified is 0, the first common block size
encountered in your code (for this common
block) is used. By default, the loader uses the
longest common block definition it encounters in
those modules of your code that are actually
referenced and loaded.

The DUPORDER directive selects the method the loader uses to
process duplicated entry points found in libraries. When
processing BIN files, the loader always chooses the first
occurrence of a duplicated entry point. If the duplicated symbol
appears in both a BIN and a LIB file, the loader always chooses
the one in the BIN file. If the duplicated symbol appears only in
library files, the loader has two methods of selecting the
occurrence of the symbol to use: if the DUPORDER directive is
not enabled (OFF, default for segldr), the loader uses the first
occurrence of the symbol. If the DUPORDER directive is enabled
(ON, default for ld), the loader uses ordered duplicate selection,
which means that the loader locates the first module that
references the duplicated symbol and then looks for a definition
of the symbol in succeeding modules. The first definition found
in a succeeding module is the one used. If the loader finds no
succeeding definition, the first definition encountered anywhere
is used.

DUPORDER directive
3.2.10

General Directives [3]Segment Loader (SEGLDR) and ld Reference Manual

33Cray Research, Inc.SR–0066 9.0

Format:

DUPORDER=ON|OFF

ON The loader uses ordered duplicate selection to
choose the entry point to use (default for ld).

OFF The loader uses the first occurrence of the
duplicated entry point (default for segldr).

The following example, in which a partial Fortran program is
loaded, contrasts the ON and OFF settings of the DUPORDER
directive.

module 1: PROGRAM DUPEXAMP
 . . .
CALL REFMOD
 . . .
END

module 2: SUBROUTINE DUPLICAT
 . . .
END

module 3: SUBROUTINE REFMOD
CALL DUPLICAT
END

module 4: SUBROUTINE DUPLICAT
 . . .
END

Module 1 contains the main program and is included in the load
in a binary file. Modules 2, 3, and 4 occur, in the order shown, in
library files. If the DUPORDER directive is disabled (OFF, or not
used), the loader selects the DUPLICAT symbol in module 2 to
satisfy the reference in module 3, because it is the first
occurrence of the symbol. If the DUPORDER directive is enabled
(ON), the loader selects the DUPLICAT symbol from module 4
because this is the first definition for DUPLICAT that occurs after
the reference in module 3.

General Directives [3] Segment Loader (SEGLDR) and ld Reference Manual

34 Cray Research, Inc. SR–0066 9.0

The OMIT directive specifies modules that should be bypassed by
the loader when processing object or library files.

Format:

OMIT=module1[:file1][, module2[:file2],...]

Modules specified on the OMIT directive are not included in the
program, even if referenced from other modules. If file is not
present, all modules with the indicated name are omitted,
regardless of the file in which they are found. If file is specified,
only module from that file is omitted. Modules with the same
name, but in different files, are included.

If a module is omitted, and the program makes references to
symbols within that module (that cannot be satisfied by any
other module), the reference is treated in the same manner as
any other unsatisfied reference.

Example:

omit=printf$c:/lib/libc.a,mymodule

In this example, the printf$c module, from file /lib/libc.a
and from any module with the name mymodule , is bypassed in
the load process.

The ABS and TRIAL directives give you a measure of control over
the executable program that the loader produces. You can tell
the loader where to write the executable file, or whether the
loader should produce the executable file or only a load map and
error messages.

OMIT directive
3.2.11

The executable
program
3.3

General Directives [3]Segment Loader (SEGLDR) and ld Reference Manual

35Cray Research, Inc.SR–0066 9.0

The ABS directive specifies the file to receive the executable
program constructed by the loader.

Format:

ABS=file

file The file parameter specifies the file to receive the
executable program. The default is a.out .

Command-line equivalent: –o option

The TRIAL directive lets you make a sample of the loader run
without creating any executable output. You can therefore print
a load map and most error messages without using a lot of
memory to build the executable output. Making test runs with
TRIAL also lets you determine optimal memory use for data
areas or identify total memory requirements for a particular
application.

Format:

TRIAL

Command-line equivalent: –t option

The ECHO, COMMENT, MAP, and TITLE directives control the
information that the loader writes to the listing output file. The
default listing output file is stdout . You can change these
defaults by using the –M option.

ABS directive
3.3.1

TRIAL directive
3.3.2

Load map control
3.4

General Directives [3] Segment Loader (SEGLDR) and ld Reference Manual

36 Cray Research, Inc. SR–0066 9.0

The ECHO directive resumes or suppresses the printing of input
directives.

Format:

ECHO=ON|OFF

ON Resumes the listing of input directives.

OFF Suppresses directive listing. If ECHO=OFF, the
loader automatically echoes erroneous directive
lines, followed by the error message (default).

Comments annotate the loader directives. They are echoed to
the listing file but are otherwise ignored. All characters to the
right of the asterisk are considered part of the comment string.

The asterisk character begins a comment. You can use
comments in either the global or the segment description
directives, but you cannot embed comments within directives.

Format:

* comment string

ECHO directive
3.4.1

Comments
3.4.2

General Directives [3]Segment Loader (SEGLDR) and ld Reference Manual

37Cray Research, Inc.SR–0066 9.0

Example:

TITLE=GLOBAL DIRECTIVES
**
* Global directives
**
BIN=X
TITLE=TREE DIRECTIVES
**
*Tree directives
**
TREE
 ROOT(A,B)
ENDTREE
TITLE=SEG.DESCR.DIR.
**
SEGMENT=ROOT
* Segment Description Directives follow

The MAP directive controls the loader map output generation.
Besides memory mapping, MAP provides the time and date of
load, the length of the longest branch and the last segment, and
the transfer address. Map output is written to the listing file.
See “Examples,” page 123, for more information on map output.

Format:

MAP=[keyword1, ..., keywordn]

NONE Writes no map output to the listing file (default).

STAT Writes statistics for the load (such as date and
time), length of longest branch, last segment,
transfer entry point, and stack and heap
information.

ALPHA Writes the STAT information plus the block map
for each segment, listing the modules in
alphabetical order.

ADDRESS Writes the ALPHA information, but it lists
modules by ascending load address.

PART Writes both ALPHA and ADDRESS information.

MAP directive
3.4.3

General Directives [3] Segment Loader (SEGLDR) and ld Reference Manual

38 Cray Research, Inc. SR–0066 9.0

EPXRF Writes the STAT information plus the Entry
Point Cross-reference table.

CBXRF Writes the STAT information plus the Common
Block Cross-reference table.

FULL Writes all PART, EPXRF, and CBXRF information.

BRIEF Limits information in the ADDRESS and ALPHA
output to modules from bin files.

The effects of multiple keywords are cumulative.

Command-line equivalents: –m and –M options.

The TITLE directive places an arbitrary, user-defined character
string in the second line of each page header. TITLE forces a
page eject and then writes the header lines at the top of the new
page.

The title line is initially clear, and it can be reset by TITLE
directives in either the global or the segment description
directives portion of the input. An end-of-line or a semicolon (;)
signals the end of the TITLE string.

Format:

TITLE[=title string]

title string User-defined character string; maximum
length is 74 characters. If no title string is
specified, the title line is cleared.

Example:

TITLE=Place this in the page header, please.

This TITLE directive copies the string “Place this in the
page header, please. ” to the page header.

TITLE directive
3.4.4

General Directives [3]Segment Loader (SEGLDR) and ld Reference Manual

39Cray Research, Inc.SR–0066 9.0

The MLEVEL, USX, REDEF, DUPENTRY, DUPLOAD, NODUPMSG,
NOUSXMSG and MSGLEVEL directives let you control the printing
of error messages. Error messages are written to stderr by
default, although you can redirect them to other files by using
standard I/O redirection or with the loader –k command-line
option.

The MLEVEL directive controls the loader messages on the listing
output. The keyword indicates the lowest-priority message to be
printed. If you do not use the MLEVEL directive,
MLEVEL=CAUTION is assumed.

Format:

MLEVEL=keyword

FATAL Prints only FATAL-level messages. When a
message with this severity level is issued, the
loader is terminated immediately, and no
executable output is written.

WARNING Prints FATAL- and WARNING-level messages. A
WARNING-level message indicates that the
executable output may not be written; if the
output is written, it is not executable.
Processing continues so that additional
messages may be printed.

CAUTION Prints FATAL-, WARNING-, and CAUTION-level
messages. A CAUTION-level message indicates
that an error may have occurred, but it is not
severe enough to prohibit generation of
executable output (default).

NOTE Prints FATAL-, WARNING-, CAUTION-, and
NOTE-level messages. A NOTE-level message
indicates that the loader may have been misused
or used inefficiently; it has no effect on execution
validity.

COMMENT Prints all levels of messages. A COMMENT-level
message does not affect execution.

Controlling error
messages
3.5

MLEVEL directive
3.5.1

General Directives [3] Segment Loader (SEGLDR) and ld Reference Manual

40 Cray Research, Inc. SR–0066 9.0

The USX directive lets you determine the severity level of
unsatisfied external symbols. CAUTION is the default.

Format:

USX=keyword

FATAL, WARNING, CAUTION, NOTE, COMMENT

See the descriptions for these in “MLEVEL
directive,” page 39.

IGNORE This is the same as COMMENT.

The loader generates an error message if you redefine common
blocks with varying lengths in different modules.

REDEF lets you control the severity level of the loader’s messages
when common blocks are defined with varying sizes. The loader
always takes the longest definition, regardless of the REDEF
value. The severity level you select applies to cases in which the
common block is redefined with a larger size. The severity level
is one level lower for cases in which the common block is
redefined with a smaller size.

Format:

REDEF=keyword

FATAL, WARNING, CAUTION, NOTE, COMMENT

See the descriptions for these in “MLEVEL
directive,” page 39.

IGNORE This is the same as COMMENT.

USX directive
3.5.2

REDEF directive
3.5.3

General Directives [3]Segment Loader (SEGLDR) and ld Reference Manual

41Cray Research, Inc.SR–0066 9.0

The DUPENTRY directive controls the severity of the message
generated when the loader encounters a duplicated entry point;
the default is CAUTION. The loader generates the duplicate
entry error message with the severity level you specify. See
“Program Duplication and Block Assignment,” page 75, for more
information on duplicated entry points.

Format:

DUPENTRY=keyword1[, keyword2[, keyword3]]

FATAL, WARNING, CAUTION, NOTE, COMMENT

See the descriptions for these in “MLEVEL
directive,” page 39.

IGNORE This is the same as COMMENT.

The default for segldr is DUPENTRY=CAUTION,CAUTION,NOTE.
The default for ld is DUPENTRY=CAUTION,NOTE,NOTE.

The first keyword controls the severity level of messages issued
for cases in which both duplicated entry points are in a bin file.
The second keyword controls the severity level of messages
issued for cases in which one duplicated entry point is in a bin
file and the other is in a lib file. The third keyword controls the
message severity level for cases in which both duplicated entry
points occur in a lib file. Table 4 shows this correspondence.

Table 4. DUPENTRY keywords for duplicated entry definitions

Keyword bin file lib file

keyword1 both entries N/A

keyword2 one entry one entry

keyword3 N/A both entries

If the second or third keyword is not provided, the value of the
last keyword present is used.

DUPENTRY directive
3.5.4

General Directives [3] Segment Loader (SEGLDR) and ld Reference Manual

42 Cray Research, Inc. SR–0066 9.0

The DUPLOAD directive lets you control the severity of messages
that the loader generates when a common block is initialized by
two or more modules. The loader generates messages with the
severity level you specify with DUPLOAD. This level applies to
common blocks referenced by C language modules. The level of
messages generated for multiple common block initialization by
Fortran modules is one severity level lower than the level you
specify. Subsequent initializations of a common block overwrite
any preceding ones.

Format:

DUPLOAD=keyword

FATAL, WARNING, CAUTION, NOTE, COMMENT

See the descriptions for these in “MLEVEL
directive,” page 39.

IGNORE This is the same as COMMENT.

The NODUPMSG directive suppresses messages about duplicated
entry points. If you know that one or more particular entry
points are duplicated, and do not want the loader to issue
messages about those symbols, use NODUPMSG to suppress the
messages.

Format:

NODUPMSG=epname[, epname,...]

epname Name of an entry point for which no message
should be issued.

DUPLOAD directive
3.5.5

NODUPMSG directive
3.5.6

General Directives [3]Segment Loader (SEGLDR) and ld Reference Manual

43Cray Research, Inc.SR–0066 9.0

The NOUSXMSG directive suppresses messages concerning
unsatisfied external references. If you know that one or more
specific external references will not be satisfied in your program,
and you do not want the loader to issue messages about those
references, use NOUSXMSG to suppress the messages.

Format:

NOUSXMSG=epname[, epname,...]

epname Name of an entry point for which no unsatisfied
references are present and for which no messages
should be issued.

The MSGLEVEL directive lets you set the severity level for any
message that the loader issues. For instance, you can increase
the severity for certain cases and decrease the severity for
others. If you increase the severity to equal to or greater than
the WARNING level for a particular error, the loader will not make
your program executable if that error occurs. If you decrease the
severity to equal to or below the NOTE level for a particular error,
the loader will not print a message if that error occurs.

Format:

MSGLEVEL=number:keyword[, number:keyword...]

number Number of message for which the severity level
should be changed.

keyword FATAL, WARNING, CAUTION, NOTE, COMMENT

See the descriptions for these in “MLEVEL
directive,” page 39.

Example:

MSGLEVEL=268:NOTE,114:WARNING

In this example, the severity level of message number 268 is set
to NOTE; the severity level of message number 114 is set to
WARNING.

NOUSXMSG directive
3.5.7

MSGLEVEL directive
3.5.8

General Directives [3] Segment Loader (SEGLDR) and ld Reference Manual

44 Cray Research, Inc. SR–0066 9.0

Message numbers are displayed as part of every error message
that is issued. They are appended to the ldr message group
identifier. In the following message example, the message
number is 112 :

ldr–112 sldr: WARNING
File ’a.out’ is not executable due to
previous errors.

The XFER, EQUIV, and SET directives let you control the point at
which your program begins executing, and they also intercept
definitions of entry points at load time.

The XFER directive specifies the transfer entry point for your
program. Control is passed from the system start-up routine to
the XFER entry point. If you do not use the XFER directive, the
loader uses the first primary entry point it encounters as the
transfer entry point. A primary entry point can be specified by
the Fortran language PROGRAM statement, by the CAL START
pseudo instruction, or by the C language procedure name of
main .

The XFER directive can also be used to identify which primary
entry point to use as the transfer entry when the loader
encounters more than one primary entry point.

Format:

XFER=entry

entry Entry point name.

Controlling entry
points and
execution
3.6

XFER directive
3.6.1

General Directives [3]Segment Loader (SEGLDR) and ld Reference Manual

45Cray Research, Inc.SR–0066 9.0

The EQUIV directive lets the loader substitute a call or reference
to one entry point for a call or reference to another entry point.

Format:

EQUIV=epname(syn1[, syn2,..., synn])

epname Name of a target entry point.

syni Name of the entry point to be linked to epname.

If you continue this directive beyond one line, end each
continued line with a comma.

Example:

.

.

.
CALL A
.
.
.
CALL B
.
.
.

In the preceding code sequence, the calls to A and B are linked to
C by the following specification:

EQUIV=C(A,B)

The module containing entry point C is loaded, but the module
or modules containing A and B might not be loaded. The module
or modules containing A and B are loaded if they are needed to
satisfy other references to other entry points within those
modules.

In this example, EQUIV has the same effect as using a text editor
to replace all occurrences of CALL A and CALL B with CALL C,
except that you do not have to recompile or change the source
code.

EQUIV directive
3.6.2

General Directives [3] Segment Loader (SEGLDR) and ld Reference Manual

46 Cray Research, Inc. SR–0066 9.0

The SET directive assigns a value to an external entry point. A
SET value for the specified entry point takes precedence over a
value encountered in the relocatable modules.

Format:

SET=epname:value[:mod]

epname Specifies the entry point to be given a value.

value Decimal value associated with epname.

mod Alignment modifier. mod may be one of the
following:

W Represents a word address (default)

P Represents a parcel address

V Represents a constant

The UNSAT directive specifies the names of one or more
unsatisfied external references that are placed in the loader
symbol tables before loading any object files. UNSAT is useful if
all files to be loaded are lib files. Modules from lib files are
included in the executable program only if an entry point in the
module satisfies a reference to the lib file. With the UNSAT
directive, you can specify the entry points that will cause
modules to be included from library files.

Format:

UNSAT=epname1[, epname2...]

epnamei Name of an unsatisfied entry point.

Example:

UNSAT=blocktwo
LIB=mylib.a

SET directive
3.6.3

UNSAT directive
3.6.4

General Directives [3]Segment Loader (SEGLDR) and ld Reference Manual

47Cray Research, Inc.SR–0066 9.0

An unsatisfied external reference to blocktwo is generated,
causing the module in mylib.a that contains the blocktwo
entry point to be included in the program.

Command-line equivalent: –u option

The ALIGN, PRESET, and ORG directives let you initialize
uninitialized data areas and control the loading of some modules
or common blocks.

The ALIGN directive controls the starting locations of modules
and common blocks. The loader recognizes an align bit for each
relocatable module and common block containing an ALIGN
pseudo-op. See the Cray Assembly Language (CAL) for Cray
PVP Systems Reference Manual, publication SR–3108.

Format:

ALIGN=keyword

IGNORE Allocates the local blocks of each module and
each common block at the beginning of the word
following the previous local block or common
block. The align bit is ignored.

MODULES Allocates the local blocks of each module
containing code to an instruction buffer boundary
according to the instruction buffer size of the
machine. The instruction buffer size is 32 words
for Cray PVP systems. Common blocks are
forced to instruction buffer boundaries only when
the align bit is set.

Program
alignment and
initialization
3.7

ALIGN directive
3.7.1

General Directives [3] Segment Loader (SEGLDR) and ld Reference Manual

48 Cray Research, Inc. SR–0066 9.0

NORMAL Allocates the local blocks of each module and
each common block with the align bit set to an
instruction buffer boundary, according to the
machine’s instruction buffer size. The
instruction buffer size is 32 words for Cray PVP
systems.

If the align bit is not set for a local or common
block, that local or common block is allocated at
the word following the previous local or common
block (default).

Command-line equivalent: –a option

The PRESET directive specifies a value that the loader uses to
preset uninitialized data areas within the object module (for
example, variables in labeled Fortran common blocks with no
DATA statements).

Stack-allocated data is not part of the program image. As a
result, the loader cannot preset variables that reside on the
stack.

Format:

PRESET=keyword

ONES Sets uninitialized data words to –1.

ZEROS Sets uninitialized data words to 0 (default).

INDEF Sets uninitialized data to
O’0605054000000000000000 . This value
generates a floating-point error if used as an
operand in a floating-point operation.

–INDEF Sets uninitialized data to
O’1605054000000000000000 . This value is the
same as that of INDEF, except that it is negative.

PRESET directive
3.7.2

General Directives [3]Segment Loader (SEGLDR) and ld Reference Manual

49Cray Research, Inc.SR–0066 9.0

INDEFA Sets uninitialized data to the sum of a logical OR
operation of O’0605054000000000000000 and
the address of the word being preset. This value
is the same as that of INDEF, except the address of
the word referenced appears in the low-order bits
of the value.

–INDEFA Sets uninitialized data to the sum of a logical OR
operation of O’10605054000000000000000 and
the address of the word being preset. This value
is the same as that of –INDEF , except the address
of the word referenced appears in the low-order
bits of the value.

value Inserts a 16-bit, user-supplied octal value into
each parcel of uninitialized data words. The value
must be in the range 0 <= value <= O’177777

Command-line equivalent: –f option

The ORG directive sets the initial addresses for different portions
of your program. Normal programs must have ORG values of 0.
The ORG directive should be used only for special-purpose
programs.

Format:

ORG=corg: dorg: lorg

corg Specifies an octal value between 0 and 77777777.
The default is 0, which is the initial address for
the code portion of the program.

dorg Specifies an octal value between 0 and 77777777.
The default is 0, which is used for initial data for
the program.

lorg Specifies an octal value between 0 and 177777.
The default value is 0.

ORG directive
3.7.3

General Directives [3] Segment Loader (SEGLDR) and ld Reference Manual

50 Cray Research, Inc. SR–0066 9.0

The SYMBOLS directive determines whether the debug symbol
table should be constructed. The KEEPSYM and HIDESYM
directives determines the visibility of externals in the relocatable
module. The CASE and CPUCHECK directives control case
conversions and machine characteristic checking, respectively.
The COMPRESS directive controls compression of executable files.
The LOGFILE directive specifies the name of the file to which
the loader writes log messages. The LOGUSE directive specifies
the names of the object or library files for which log messages
should be generated.

The SYMBOLS directives determines whether the loader
constructs the debug symbol table for the executable program.

Format:

SYMBOLS=ON|OFF

ON The loader writes symbol table information to the
executable file, following the executable program
(default).

OFF Instructs the loader to ignore all symbol table
information.

Command-line equivalent: –g and –s options

The KEEPSYM and HIDESYM directives determine the visibility of
externals in the relocatable module. By default, global symbols
are visible. The HIDESYM directive hides selected symbols. The
KEEPSYM directive hides all symbols except the selected symbols.
A directive is needed for each symbol affected.

The KEEPSYM and HIDESYM directives are mutually exclusive.

Miscellaneous
global directives
3.8

SYMBOLS directive
3.8.1

KEEPSYM and HIDESYM
directives
3.8.2

General Directives [3]Segment Loader (SEGLDR) and ld Reference Manual

51Cray Research, Inc.SR–0066 9.0

Format:

HIDESYM=symbol:type

KEEPSYM=symbol:type

symbol Name of a symbol.

type The type of symbol, which is one of the following:

C Common block symbol

E External symbol

B Both types of symbols (a C language
 external)

The CASE directive controls whether characters in the directives
file are converted to uppercase before they are processed.

Format:

CASE=keyword

UPPER Directs the loader to convert all module, entry
point, and common block names in the directives
to uppercase. Usually this is desirable when no
relocatable modules with lowercase names are
encountered.

MIXED Specifies that no translation is done, and names
must match exactly (default).

The CPUCHECK directive controls whether machine characteristic
checking is done within the loader. Turning off checking allows
a slight increase in the execution speed of the loader, but it also
allows the loading and execution of modules that have
incompatible characteristics.

CASE directive
3.8.3

CPUCHECK directive
3.8.4

General Directives [3] Segment Loader (SEGLDR) and ld Reference Manual

52 Cray Research, Inc. SR–0066 9.0

Format:

CPUCHECK=keyword

ON Enables machine characteristic type checking
(default).

OFF Disables machine characteristic type checking.

The COMPRESS directive enables or disables compression of
executable files, and it specifies the size of blocks the loader
should consider for compression. As the loader loads your
program, it scans for large areas of the program in which each
word contains the same value. When it finds a block of words
with the same value, it generates a compression entry rather
than the actual code. The system start-up routine expands the
compression entry into actual code at run time. To be eligible for
compression, a block must satisfy the following requirements:

• It must contain only data

• It must contain repetitively initialized values

• It must have a block size larger than the compression
threshold

Executable programs that have been compressed require less
memory to link, as well as less storage space. Execution time of
the system start-up routine increases for compressed programs,
but file transfer time is decreased.

Format:

COMPRESS=keyword

OFF Disables all compression.

number Sets compression block size to number. The
default is 1000.

COMPRESS directive
3.8.5

General Directives [3]Segment Loader (SEGLDR) and ld Reference Manual

53Cray Research, Inc.SR–0066 9.0

The LOGFILE directive specifies the name of the file to which the
loader writes log messages. (See “LOGUSE directive,” page 53, for
information on log messages.) Normally, this directive should
be used in the default def_seg and def_ld directives files to
identify the log file for all users.

Format:

LOGFILE=file

file Name of a file to which the loader writes log
messages.

The log file must be created prior to loader execution, and it
must have write permission enabled for all users. On systems
with multilevel security (MLS), the log file must be created in
the most restrictive partition of the file system, so that all users
can write to the file. The loader appends log messages to the end
of the file; it does not initialize, summarize, or report on the
contents of the log file. If the log file is not present, or the loader
cannot write to it, the loader suppresses all log messages
without issuing an error message.

Command-line equivalent: none

The LOGUSE directive specifies the names of object or library
files for which log messages should be generated. Normally, this
directive should be used in the default directives files def_seg
and def_ld to log the usage of specific object or library files by
all users. If the specified library is not a default library (even if
it is in a default search path) you should specify the full path
name of the library.

Format:

LOGUSE=file1[, file2,...]

file Name of an object or library file whose usage
should be logged.

LOGFILE directive
3.8.6

LOGUSE directive
3.8.7

General Directives [3] Segment Loader (SEGLDR) and ld Reference Manual

54 Cray Research, Inc. SR–0066 9.0

Whenever the file specified on the LOGUSE directive is processed
by the loader, a log message is appended to the log file (specified
by the LOGFILE directive).

The generated message is in ASCII characters, and it is
terminated by new-line characters (“\n ”). Individual fields
within the message are separated by a vertical bar (“| ”). The
message format is as follows:

loguse| filename| date| time| uid| code\n

filename Name of file.

date Date of reference to the file; format is mm/dd/yy.

time Time of reference to the file; format is hh:mm:ss.

uid User ID of user referencing the file.

Character indicating the type of reference.

s The file was scanned, but no modules
 were included.

i The file was scanned, and modules were
 included.

Command-line equivalent: none.

Introduction to Program Segmentation [4]

55Cray Research, Inc.SR–0066 9.0

When using the loader, you specify the segment structure and
the contents of the segments to be loaded. This section describes
the principles of the loader program segmentation. The
information in this section does not apply to nonsegmented
programs. “Examples,” page 123, contains an example of a
segmented program.

In addition to automatic segment loading and unloading, the
loader lets you do the following:

• Modify the segmentation structure, usually without
recompilation.

• Overlay different modules (subroutines) without making
significant source code changes.

• Define the contents of a segment by specifying only one
module per segment.

• Pass arguments between subprograms residing in different
segments.

• Unload segments and any contained data blocks. The loader
then reloads the blocks with their updated images.

The loader arranges program segments in a tree structure, as
shown in Figure 1, page 56. A nonsegmented program consists
of only the root segment.

Each segment in a tree contains one or more subprogram
modules, and possibly some common blocks. Subprogram
hierarchy helps you determine the shape of your tree.

The root segment of a tree is the predecessor for every branch
segment and has no predecessor segment itself. Predecessor and
successor segments lie on a common branch. Down the tree (or
branch) means moving away from the root segment, and up the
tree or branch means moving toward the root segment.

SEGLDR segment
tree concept
4.1

Introduction to Program Segmentation [4] Segment Loader (SEGLDR) and ld Reference Manual

56 Cray Research, Inc. SR–0066 9.0

During program execution, only one immediate successor
segment of each segment can be in memory at one time. The
root segment is always memory-resident; other segments occupy
higher memory addresses when required. Predecessor segments
of the executing segment are guaranteed to be memory-resident.
In addition, successor segments might be memory-resident,
depending on recent subroutine calls to successor segments.

(root)A

B (branch) C

D E

Figure 1. Segment tree

Each segment in Figure 1 is assigned an arbitrary but unique
1- to 8-character segment name.

The apex of the loader segment tree (segment A in Figure 1) is
the root segment. The remaining segments (B, C, D, and E) are
the branch segments.

Within these branch segments, B, C, D, and E are successor
segments of A. B and C are immediate successor segments of A,
and D and E are immediate successor segments of C. It follows,
then, that C and A are predecessor segments for D and E, and A
alone is the predecessor segment for B and C. C is the
immediate predecessor segment of D and E.

Introduction to Program Segmentation [4]Segment Loader (SEGLDR) and ld Reference Manual

57Cray Research, Inc.SR–0066 9.0

The only restriction on the height or width of the segment tree is
that no more than 1000 segments, including the root, can be
defined. A valid segment tree, however, must adhere to the
following rules:

• Each segment tree can have only one root segment (a segment
with no predecessor segments) and must have at least one
branch segment.

• Each nonroot segment can have only one immediate
predecessor segment.

Figure 2 and Figure 3 show valid segment trees.

A

B C D E F G H I J K

D1 D2

Figure 2. Valid segment tree (broad)

Loader segment
tree design
4.2

Introduction to Program Segmentation [4] Segment Loader (SEGLDR) and ld Reference Manual

58 Cray Research, Inc. SR–0066 9.0

A

B

C D

E F

G H

I

J

K L

M

Figure 3. Valid segment tree (deep)

Figure 4 and Figure 5 show tree structures that are invalid
because of their multiple root segments or multiple
immediate-predecessor segments.

Introduction to Program Segmentation [4]Segment Loader (SEGLDR) and ld Reference Manual

59Cray Research, Inc.SR–0066 9.0

A B

C

D E F

Figure 4. Invalid segment tree (multiple root segments)

A

CB D

E

Figure 5. Invalid segment tree (multiple immediate-predecessor
segments)

Calls can be made from any module in a segment to any module
(subroutine or function) in a successor or predecessor segment.
Calls across the segment tree are invalid (see Figure 6, page 61).
That is, subroutine calls can be made both up and down the tree
if the calling and called modules are owned by segments on a
common branch. If a call is made to a subroutine from a
segment that is not an immediate predecessor to the segment

Subroutine calling
between segments
4.3

Introduction to Program Segmentation [4] Segment Loader (SEGLDR) and ld Reference Manual

60 Cray Research, Inc. SR–0066 9.0

containing the subroutine, all intermediate segments on the
branch are read into memory. In Figure 3, for example, if a line
of code in segment I makes a call to a subroutine in segment M,
segments J, L, and M are all read into memory.

When a call is made from a subroutine to a subroutine further
down the branch at execution time, the loader does the following:

1. Intercepts the call

2. Loads the appropriate segment or segments (if not already in
memory)

3. Jumps to the called entry point

The loader intercepts only calls to subroutines in successor
segments because they are the only calls that can cause a
segment to be loaded (if a segment is in memory, all of its
predecessors (callers) are already in memory).

Caution: In CAL, it is strongly recommended that you use
the CALL and CALLV macros for subroutine calls to other
modules. If you do not do this, the calls between segments
may fail, with unpredictable results.

Do not pass an entry point to a subroutine as an argument if the
entry point is not in the same segment or a predecessor segment.
In Fortran, for example, the following two statements can
produce calls to segments not in memory:

EXTERNAL SUB1
CALL SUB (SUB1)

The segment SUB1 may not be in memory when this call is made
because the loader cannot detect runtime references.

You should not use the segment structure shown in Figure 6,
because it generates an execution error (explanation following).

�

Introduction to Program Segmentation [4]Segment Loader (SEGLDR) and ld Reference Manual

61Cray Research, Inc.SR–0066 9.0

(Segment ROOT)

PROGRAM MAIN
CALL SUB1
END

SUBROUTINE SUBMAIN
CALL SUB2
END

SUBROUTINE SUB1
CALL SUBMAIN
END

SUBROUTINE SUB2
. . .
END

(Segment SEG1) (Segment SEG2)

Figure 6. Invalid segment tree (call across segment tree)

Figure 6 shows an invalid segment structure that results in the
following sequence of actions:

1. When SUB1 is called, segment SEG1 is read into memory.

2. When SUB2 is called, segment SEG2 is read into memory,
overwriting SEG1.

3. On the return to SUB1 from SUBMAIN, SEG1 is no longer in
memory; therefore, control cannot return to SUB1.

4. $SEGRES terminates the program at this point, displaying an
error message.

The loader handles subroutine calls as shown in Figure 7.

Introduction to Program Segmentation [4] Segment Loader (SEGLDR) and ld Reference Manual

62 Cray Research, Inc. SR–0066 9.0

 A
(1)

 B
(2)

 C
(3)

 D
(4)

 E
(5)

Figure 7. Valid and invalid subroutine references

The following subroutine call descriptions are related to the tree
structure shown in Figure 7. Numbers 1 through 5 represent
modules in segments A through E.

From To Head

1(A) 2,3,4,5 Valid; may need to load some segments.

2 1 Valid; no load needed.

2 3,4,5 Invalid; calls across a branch.

3 2 Invalid; calls across a branch.

3 1,4,5 Valid; may need to load a segment if the
call is to module 4 or 5.

4 5,2 Invalid; calls across a branch.

4 1,3 Valid; no load needed.

5 4,2 Invalid; calls across a branch.

5 3,1 Valid; no load needed.

Introduction to Program Segmentation [4]Segment Loader (SEGLDR) and ld Reference Manual

63Cray Research, Inc.SR–0066 9.0

You must be careful when combining segmentation and
multitasking in the same executable program, because there is a
significant risk of program failure. If a program is multitasked,
it is possible for one task to call a subroutine that initiates a
segment change, while another task is actively executing in that
segment. To avoid this situation, it is necessary to restrict
multitasking activity to areas of the program in which segment
changes will not occur.

Macrotasking involves partitioning large areas of a program into
tasks, so that the tasks can run on several CPUs simultaneously.
Because the program tasks contain many subroutines, it is more
likely that a segment change will be initiated somewhere within
a tasked region of the program. The use of macrotasking in a
segmented program is strongly discouraged.

Usually, the tasking activity for an autotasked program is
contained within a particular subroutine, although references to
other routines are possible. Segment changes are unlikely to
occur within tasked regions of the program. If references to
other routines are made, you should ensure that all routines
within the multitasked region are contained within a single
segment.

For more information on multitasking, see the CF77
Optimization Guide, publication SG–3773.

Using
segmentation with
multitasked
programs
4.4

Introduction to Program Segmentation [4] Segment Loader (SEGLDR) and ld Reference Manual

64 Cray Research, Inc. SR–0066 9.0

Segmentation Directives [5]

65Cray Research, Inc.SR–0066 9.0

This section describes the directives you need for defining the
memory tree structure of your program and for assigning
modules and common blocks to specific segments. All of the
directives in “Segment tree definition directives” and “Segment
description directives,” page 66, are segment directives, and they
must be placed after all global directives. “Examples,” page 123,
contains an example of a segmented program.

Use the TREE and ENDTREE segment tree definition directives to
tell the loader the shape of the tree that represents the memory
layout of your code. Tree structures can be of any width or
depth, but they must contain no more than 1000 segments. Only
one set of TREE and ENDTREE directives is allowed in a program
load.

The TREE directive signals the end of the group of global
directives (described in “General Directives,” page 21) and the
beginning of the segment tree definition directives. The set of
directives specifying the tree structure follows TREE.

The ENDTREE directive terminates the segment tree definition
directives; it signals the end of the tree description. The
ordering of segment tree definition directives between TREE and
ENDTREE is unimportant. The segment description directives
immediately follow ENDTREE.

Tree definition directives apply only to segmented programs.

Format:

TREE

segname(segname1[, segname2, segname3,..., segnamen])

ENDTREE

Segment tree
definition
directives
5.1

Segmentation Directives [5] Segment Loader (SEGLDR) and ld Reference Manual

66 Cray Research, Inc. SR–0066 9.0

segname Name of a segment.

segnamei Names of all immediate successor segments of
segname.

If the description of a segment continues beyond one line, end
each continued line with a comma.

Example:

 A

 B C

 D E F G H

 I J

TREE
A(B,C)
B(D,E,F)
C(G,H)
G(I,J)
ENDTREE

Segment description directives apply only to segmented
programs and specify the contents of the segments. At least one
module or common block must be assigned to each segment.

In addition to the directives described in this subsection, the
COMMENT, ECHO, and TITLE directives discussed in “General
Directives,” page 21, can also be used within the segment
description directives.

The SEGMENT directive specifies the segment being described by
the segment description directives. SEGMENT is always the first
of the segment description directives, except when you are using
the DUP directive.

Segment
description
directives
5.2

SEGMENT and ENDSEG
directives
5.2.1

Segmentation Directives [5]Segment Loader (SEGLDR) and ld Reference Manual

67Cray Research, Inc.SR–0066 9.0

The ENDSEG directive terminates the segment description. Any
of the segment description directives may appear between
SEGMENT and ENDSEG in any order.

Format:

SEGMENT=segname
seg descr dirs

ENDSEG

segname 1- to 8-character segment name.

seg descr dirs One or more segment description directives.

Example (the // indicates blank common):

SEGMENT=SAM
 MODULES=A,B,C
 COMMONS=//,SAMCOM
ENDSEG

The MODULES and SMODULES directives let you assign modules to
the segment specified by the SEGMENT directive. The MODULES
and SMODULES directives also order the modules within the
segment.

You must assign at least one module to each segment, and you
may assign as many as needed. You do not need to assign all
modules to segments. “Program Duplication and Block
Assignment,” page 75, describes the way the loader handles
modules that you have not explicitly assigned to segments.
Modules that should be assigned explicitly include those that
should reside in the segment specified by the SEGMENT directive
but are called by modules in predecessor segments.

If you use the MODULES directive, an error message is issued if
the modules specified cannot be located in any included file.
Error messages are not issued if SMODULES is used.

MODULES and SMODULES
directives
5.2.2

Segmentation Directives [5] Segment Loader (SEGLDR) and ld Reference Manual

68 Cray Research, Inc. SR–0066 9.0

Format:

MODULES=modname1[, modname2,..., modnamen]

modnamei Names of the modules to be loaded.

You may specify argument modnamei as either modname or
modname:name. Use the second form to specify a module to be
loaded from a specific file.

If your list of modules is greater than one line, you may use more
MODULES directives or end the line with a comma and continue
the list on the next line.

Example:

MODULES=SUBA,SUBB:lib1.a,SUBC
MODULES=SUBD:FILE.o

The loader obtains modules SUBA and SUBC from the first file in
which each is encountered. It obtains SUBB from file lib1.a
and SUBD from file file.o .

The COMMONS and SCOMMONS directives specify common blocks to
be loaded into the segment specified by the SEGMENT directive.
Common block specification is optional unless common blocks
are to be duplicated or loaded in a specific order.

Common blocks with the same name that are loaded into two or
more segments are considered unique. They occupy different
memory locations, and the program can reference their contents
unambiguously.

You may not include the dynamic common block in a COMMONS
directive, because it is not assigned to a segment. See “Common
block use,” page 83, for more information on common blocks.

If you use the COMMONS directive, an error message is issued if
the indicated common blocks cannot be located in any included
file. No error messages are issued if SCOMMONS is used.

COMMONS and SCOMMONS
directives
5.2.3

Segmentation Directives [5]Segment Loader (SEGLDR) and ld Reference Manual

69Cray Research, Inc.SR–0066 9.0

Format:

COMMONS=blkname1[:size1][, blkname2[:size2],..., blknamen[:sizen]]

blknamei Name of the common blocks to be loaded.

sizei Decimal number indicating the size of the
common block. If present, it overrides any
common block sizes declared in your code. If the
size specified is 0, the first common block size
encountered in your code (for this common
block) is used. By default, the loader uses the
longest common block definition it encounters in
your code as the size of the common block.

Common blocks are loaded in the order in which they are
specified. The effect of multiple COMMONS or SCOMMONS
directives is cumulative.

If you continue this directive beyond one line, end each
continued line with a comma.

The BIN directive specifies files containing relocatable modules.
The loader loads all modules within the specified bin files into
the segment specified by the SEGMENT directive.

Format:

BIN= bin1[, bin2, bin3,..., binn]

bini Names of files containing relocatable object
modules.

The loader processes the files in the order presented. The effect
of multiple BIN directives is cumulative.

If you continue this directive beyond one line, end each
continued line with a comma.

BIN directive
5.2.4

Segmentation Directives [5] Segment Loader (SEGLDR) and ld Reference Manual

70 Cray Research, Inc. SR–0066 9.0

Example:

SEGMENT=SEG1
BIN=seg1a.o,seg1b.o
BIN=seg1c.o
seg1d.o,seg1e.o
ENDSEG

In this example, all modules in files seg1a.o,seg1b.o,
seg1c.o, seg1d.o, and seg1e.o are loaded into segment
SEG1.

The SAVE directive specifies whether the current segment state
is written to mass storage before the loader overlays it with
another segment. This directive overrides the effect of the global
SAVE directive for individual segments.

Caution: If you do not use the segmented SAVE directive and
if you have not specified SAVE=ON as a global directive,
SAVE=OFF is assumed. If the SAVE directive is OFF when a
segment is loaded into the same memory area as the current
segment, the updated values in the current segment are lost.

If you specify SAVE=ON, however, the loader writes the updated
image of the overlaid segment to mass storage before the new
segment is loaded. Subsequent execution of a saved segment
starts from its saved image. This lets you overlay data areas
whose updated values are required in subsequent executions of
the saved segment.

Format:

SAVE=ON|OFF

ON Enables segment saving.

OFF Suppresses segment saving (default).

For an example of the use of this directive, see “SAVE directive,”
page 72.

SAVE directive
5.2.5

�

Segmentation Directives [5]Segment Loader (SEGLDR) and ld Reference Manual

71Cray Research, Inc.SR–0066 9.0

Use the DUP directive if you want modules with the same name
to be loaded into different segments. The DUP directive must
precede all SEGMENT directives when duplicate module names
are to be loaded.

You can duplicate the modules by using the DUP directive or by
using the MODULES directive and assigning the same module
name to more than one segment. “Program Duplication and
Block Assignment,” page 75, discusses the handling of duplicate
modules and entry points in detail.

Format:

DUP=modname(seg1[, seg2,..., segn])

modname Name of a module to be loaded into more than
one segment.

segi Names of the segments in which modname is to
be loaded.

Example:

DUP=SUBX(SEG1,SEG2)
SEGMENT=SEG1
MODULES=SUBY
COMMONS=COMBLK1
ENDSEG
SEGMENT=SEG2
MODULES=SUBZ
COMMONS=COMBLK1
ENDSEG

root

 SEG1

COMBLK1
 SUBY
 SUBX

 SEG2

COMBLK1
 SUBZ
 SUBX

In this example, assume that the module name and entry-point
name are the same. Module SUBX is duplicated in segments
SEG1 and SEG2. If SUBY is to call SUBX in segment SEG1, SUBY
must be assigned to segment SEG1. If SUBZ is to call SUBX in
segment SEG2, SUBZ must be assigned to segment SEG2. If SUBY
or SUBZ were to go into root , the call would be ambiguous.

DUP directive
5.2.6

Segmentation Directives [5] Segment Loader (SEGLDR) and ld Reference Manual

72 Cray Research, Inc. SR–0066 9.0

The directives in this subsection are global directives; that is,
they must be specified before the TREE directive and they affect
the entire program. These directives apply only to segmented
loads.

The SLT directive specifies the size of the Segment Linkage
table (SLT). The loader’s resident run-time routine uses the SLT
to service intersegment subroutine calls. The loader writes the
actual SLT requirement to the listing file upon load completion.
If SLT specifies a size less than the actual requirement, an error
message specifies the actual requirement.

Format:

SLT=nnn

nnn Size (decimal word count) to be reserved for the SLT.

By default, the loader computes the size of the SLT according to
the following formula: SLT=40*NBRNCH; NBRNCH is the number
of nonterminal segments (segments having at least one
successor segment). Calls to predecessor segments need no
resident loader intervention.

The global SAVE directive determines whether the current
segment states are written to mass storage before they are
overlaid with another segment. The global SAVE directive
suppresses or enables saving of all segments, but the local SAVE
directive can override the global SAVE directive for individual
segments.

When SAVE=ON, the loader writes the updated image of the
overlaid segment to mass storage before the new segment is
loaded. Subsequent execution of a saved segment starts from its
saved image; this lets you overlay data areas whose updated
values you require in subsequent executions of the saved
segment.

If the SAVE directive is OFF when a segment is loaded into the
same memory area as the current segment, the updated values
in the current segment are lost.

Global directives
for segmentation
5.3

SLT directive
5.3.1

SAVE directive
5.3.2

Segmentation Directives [5]Segment Loader (SEGLDR) and ld Reference Manual

73Cray Research, Inc.SR–0066 9.0

Format:

SAVE=ON|OFF

ON Enables segment saving.

OFF Suppresses segment saving (default).

Example:

A

B CXX YY

MAINSAVE=ON
TREE
A(B,C)
ENDTREE
SEGMENT=A
MODULES=MAIN
SEGMENT=B
MODULES=XX
SEGMENT=C
MODULES=YY
ENDSEG

The preceding example program performs calculations on two
large data arrays, X(100000) and Y(100000) , contained in
subroutines XX and YY, respectively. It completes part of the
calculations on one array, then on the other, then returns to the
first, and so on, alternating between them. Because the arrays
are in two separate subroutines that are never active at the
same time, the two arrays can be overlaid rather than forced to
the root segment (A).

The COPY directive forces your program to execute from a
scratch file. This enables $SEGRES to use a faster form of I/O,
which may speed program execution, but increase program
start-up time. Programs in which the same segments are loaded
and executed many times may improve their performance.

COPY has no effect if SAVE=ON for any segment, because SAVE
also forces the use of a scratch file.

COPY directive
5.3.3

Segmentation Directives [5] Segment Loader (SEGLDR) and ld Reference Manual

74 Cray Research, Inc. SR–0066 9.0

Format:

COPY=ON|OFF

ON Program executes from scratch file, using a
faster I/O method.

OFF Disables execution from scratch file (default).

The SEGORDER directive lets you determine the order of the
segments in an executable file. Ordering the segments can
speed up program execution, particularly when part of the file
can be contained in buffer memory.

Format:

SEGORDER=seg1, seg2,..., segn

segi Name of a program segment.

The loader writes the segments to the executable file in the order
specified. The root segment is always first, regardless of the
SEGORDER specification. You do not need to specify all program
segments in the SEGORDER directive; segments not specified
follow the specified segments in the order in which they are
specified in the directives.

SEGORDER directive
5.3.4

Program Duplication and
Block Assignment [6]

75Cray Research, Inc.SR–0066 9.0

This section describes two related topics, duplication and block
assignment. Duplication occurs when more than one module,
entry point, or common block has the same name. The loader
handles duplication differently for segmented and nonsegmented
programs. Block assignment refers to the process the loader
uses to position all modules and common blocks that you have
not explicitly assigned.

In a nonsegmented program, there is no duplication of modules,
entry points, or common blocks.

In a nonsegmented load, you can load modules with duplicate
names, although this is not recommended because it may result
in misleading entry-point definitions, load maps, and debugging.

You can use the MODULES directive with a file specifier to make
the loader load a module from a particular file.

In a nonsegmented load, each entry point (external definition)
must have a unique name. The loader uses the entry point
defined in the first module loaded and ignores all subsequent
entry points with the same name except to issue a warning
message (see “DUPORDER directive,” page 32). You can control
the printing of duplicated entry-point messages by using the
DUPENTRY directive.

Some of a module’s entry points can be used in the load while
others are ignored. The EPXRF parameter in the MAP directive
causes the loader to print the Entry Point Cross-reference table,
which notes all active and ignored (inactive) entry points.

Duplication and
block assignment
in nonsegmented
programs
6.1

Duplicate module
names
6.1.1

Duplicate entry-point
names
6.1.2

Program Duplication and Block Assignment [6] Segment Loader (SEGLDR) and ld Reference Manual

76 Cray Research, Inc. SR–0066 9.0

Only one common block with a particular name is loaded in a
nonsegmented load. The loader assumes that all common blocks
with the same name are the same common block (this includes
common blocks specified in modules that are never called and,
thus, are not loaded).

The loader considers a common block’s size to be the largest size
encountered in the relocatable modules actually included in the
program. You can override this size limit by using the COMMONS
directive.

All modules and common blocks in a nonsegmented program are
assigned to the single segment that makes up the program.

In segmented programs, each segment may contain a module, an
entry point, and a common block, each with the same name.
Duplication can arise from your use of the DUP, MODULES, and
COMMONS directives, or it can arise automatically, as a side effect
of using the FLOAT directive.

You can manually load copies of the same module or different
modules with the same name into different segments. Each
segment may have only one module of a particular name.

Duplicate a module by using the DUP directive or by using the
MODULES directive to place the duplicated modules in the desired
segments. The loader handles duplicated entry-point names
automatically, provided that you have duplicated the modules in
your directives.

The loader must know where to put all duplicate module names
before encountering the modules. Therefore, you must use the
MODULES directive to assign all duplicate modules and their
callers to the appropriate segment.

Duplicate common
blocks
6.1.3

Block assignment
6.1.4

Duplication in
segmented
programs
6.2

Module duplication
6.2.1

Program Duplication and Block Assignment [6]Segment Loader (SEGLDR) and ld Reference Manual

77Cray Research, Inc.SR–0066 9.0

Every active entry point in each segment must have a unique
name. You must assign all modules containing duplicated entry
points and all modules referencing duplicated entry points.

A module referencing a duplicated entry point is linked to the
entry point in the same segment. If no entry point with the
requested name is in the same segment as the calling module,
there can be only one entry point with the duplicated name on
the branch.

For example, assume that module X in segment B is in dataset
BIN1 and that another module X in segment E is in BIN2 . Also
assume that the module name and the entry-point name are the
same, and that W calls the X in segment B, and Y calls the X in
segment E.

In a segmented load, you can load common blocks with the same
name into different segments. Use the COMMONS directive to
place the duplicated common blocks in the desired segments.
You must also use the MODULES directive to assign every module
that references a duplicated common block to the module you
desire.

A module referencing a duplicated common block is linked to the
common block in the same segment. If there is no common block
with the requested name in the same segment as the referencing
module, there can be only one common block with the duplicated
name on the branch.

Rules for references to duplicated common blocks are the same
as the rules for duplicated entry points.

Figure 8 shows the directives required to obtain this description.

Entry-point duplication
6.2.2

Common block
duplication
6.2.3

Program Duplication and Block Assignment [6] Segment Loader (SEGLDR) and ld Reference Manual

78 Cray Research, Inc. SR–0066 9.0

A

B C

D E

 W
X:BIN1

Y

 XYZ X:BIN2

TREE
A(B,C)
C(D,E)

ENDTREE
SEGMENT=A

BIN=BIN3
ENDSEG
SEGMENT=B

MODULES=X:BIN1,W
ENDSEG
SEGMENT=C

MODULES=Y
ENDSEG
SEGMENT=D

MODULES=XYZ
ENDSEG
SEGMENT=E

MODULES=X:BIN2
ENDSEG

Segment assignments:

Segment
containing
duplicated
entry point

Segment
calling
duplicated
entry point Comments

B,D B,C Calls from B are linked to the copy in B.
Calls from C are linked to the copy in D.

C,E C,E Calls from C are linked to the copy in C.
Calls from E are linked to the copy in E.

D,E A,C Illegal; both calls are ambiguous.

B,C B,C,D,E Calls from B are linked to the copy in B.
All others are linked to the copy in C.

B,C A Illegal; reference is ambiguous.

B,B Anywhere Illegal; cannot have two copies in the same segment.

Figure 8. Entry-point duplication example

Program Duplication and Block Assignment [6]Segment Loader (SEGLDR) and ld Reference Manual

79Cray Research, Inc.SR–0066 9.0

Common blocks loaded into different segments are considered
unique because they occupy different memory locations.
Modules that reference duplicated common blocks must be
assigned to different segments to ensure that the program
contains no ambiguous references to common block data. (See
“COMMONS and SCOMMONS directives,” page 31.)

For example, if common block /ABC/ were included in segments
B and C in the segment tree in Figure 9, a reference to /ABC/
from a module in segment A would be ambiguous.

In Figure 9, assume that a copy of /ABC/ has been included in
both segments B and C. References from segments C, D, and E
would be relocated to the /ABC/ common block in segment C.
References to /ABC/ from segment B would be relocated to the
/ABC/ common block in segment B.

A

B C

D E

Figure 9. Segment tree with duplicate common blocks

After you have indicated the segmentation structure and
assigned certain modules and common blocks to segments, the
loader assigns any remaining movable blocks to segments. A
movable block is any module or common block that you have not
explicitly assigned to a segment. The loader uses one of two
methods to assign movable blocks: floating or automatic
duplication. The FLOAT directive lets you choose which of these
two methods the loader uses.

Block assignment
in segmented
programs
6.3

Program Duplication and Block Assignment [6] Segment Loader (SEGLDR) and ld Reference Manual

80 Cray Research, Inc. SR–0066 9.0

FLOAT is a global directive. It selects the method the loader uses
to handle movable blocks.

Format:

FLOAT=ANY|NONE

ANY Enables movable block floating (default).

NONE Disables movable block floating and enables
automatic duplication of movable blocks.

When floating is enabled, the loader “floats” each movable block
up the tree structure to the lowest segment (the one farthest
from the root segment) that is a predecessor common to all
segments in which the movable block is referenced. The block is
thus resident in memory when any segment references it. If the
movable block is a common block, all modules that reference it
access the same memory space. Floating is the faster of the two
methods for loading, and it yields the smallest overall program.

When automatic duplication is enabled, the loader assigns a
copy of each movable block to each segment that references it,
unless a copy of the block has been assigned to a predecessor
segment of that block. The block is duplicated automatically in
the target segment as if a MODULES or COMMONS directive had
positioned it there. References to a block access unique copies of
the block unless it has been assigned to a common predecessor of
the modules referencing it. Automatic duplication takes longer
to load than floating, and it generates a larger overall program,
but it may generate a program that requires less memory to
execute. It also allows access to a unique copy of automatically
duplicated common blocks.

FLOAT directive
6.3.1

Floating
6.3.2

Automatic duplication
6.3.3

Program Duplication and Block Assignment [6]Segment Loader (SEGLDR) and ld Reference Manual

81Cray Research, Inc.SR–0066 9.0

The following examples show the assignment of movable blocks
by floating and automatic duplication. Consider the following
partial Fortran program and associated loader directives:

PROGRAM EXAMPLE
CALL SUB1
CALL SUB2
CALL ASUB
END

SUBROUTINE SUB1
COMMON /ACOM/ J(200)
CALL BSUB
CALL ASUB
END

SUBROUTINE SUB2
CALL BSUB
CALL SUB2A
CALL SUB2B
END

SUBROUTINE SUB2A
COMMON /BCOM/ I(100)
END

SUBROUTINE SUB2B
COMMON /ACOM/ J(200)
COMMON /BCOM/ I(100)
END

Example
6.3.4

Program Duplication and Block Assignment [6] Segment Loader (SEGLDR) and ld Reference Manual

82 Cray Research, Inc. SR–0066 9.0

Along with this program are the following segmentation
directives:

TREE
A(B,C)
C(D,E)
ENDTREE
SEGMENT=A
 MODULES=EXAMPLE
ENDSEG
SEGMENT=B
 MODULES=SUB1
ENDSEG
SEGMENT=C
 MODULES=SUB2
ENDSEG
SEGMENT=D
 MODULES=SUB2A
ENDSEG
SEGMENT=E
 MODULES=SUB2B
ENDSEG

Figure 10 shows the segmentation structure before movable
block assignment.

A

B C

D E

EXAMPLE

SUB1 SUB2

SUB2A SUB2B

Figure 10. Segmentation structure before movable block
assignment

Program Duplication and Block Assignment [6]Segment Loader (SEGLDR) and ld Reference Manual

83Cray Research, Inc.SR–0066 9.0

If floating is enabled, the loader makes the following movable
block assignments:

• ASUB is assigned to segment A because it is referenced in
EXAMPLE.

• BSUB is assigned to segment A to move it to a common
predecessor of segments B and C, enabling both SUB1 and
SUB2 to reference BSUB.

• ACOM is assigned to segment A to accommodate references to it
from SUB1 in segment B and SUB2B in segment E.

• BCOM is assigned to segment C to accommodate references to it
from SUB2A in segment D and SUB2B in segment E.

If automatic duplication is enabled, the loader makes the
following movable block assignments:

• ASUB is assigned to segment A because it is referenced in
EXAMPLE. It is not duplicated in segment B, because ASUB is
present in predecessor segment A.

• BSUB is duplicated in segments B and C.

• ACOM is duplicated in segments B and E.

• BCOM is duplicated in segments D and E.

This subsection describes some restrictions that apply to
common blocks in segmented programs.

Data loads from modules in segments other than the segment in
which the common block resides are not processed. The loader
issues warning messages for data loads from other segments and
skips the data.

The dynamic common, blank common, and task common blocks
cannot be data loaded.

Common block use
6.4

Data load restrictions
6.4.1

Program Duplication and Block Assignment [6] Segment Loader (SEGLDR) and ld Reference Manual

84 Cray Research, Inc. SR–0066 9.0

The loader always loads modules in BIN files that are block data
routines. If block data in LIB routines is to be loaded, it must be
referenced by a previously loaded program (using an EXTERNAL
statement in Fortran) or by the loader’s MODULES directive.

If you have a subroutine (not block data) that is never called but
contains data loads, you can use the MODULES and FORCE
directives to ensure that it is loaded.

Data in a common block can be referenced by any module in
either the same or a predecessor segment.

Caution: Referencing a common block that is in a successor
segment is not recommended, because it is not guaranteed
that the successor segment is memory resident at the time of
the reference. This can cause unpredictable and incorrect
program results.

Block data routines
6.4.2

Referencing data in
common blocks
6.4.3

�

Segmented Program Execution [7]

85Cray Research, Inc.SR–0066 9.0

Segmented programs are called into execution in the same
manner as are nonsegmented programs. Additional control
statement parameters can be provided.

On execution, the operating system transfers control to the
$SEGRES routine. $SEGRES is a system routine that resides in
the loader and is loaded with the object module. It reads
segments into memory for execution and writes segments to
mass storage to save current segment states.

$SEGRES accepts control from the operating system when
execution begins, and it is responsible for some initialization
functions. $SEGRES first determines whether the executable
binary code can be read from the executable file every time a
segment needs to be loaded. If you specified SAVE=ON, all
segments are copied to a scratch file in which all reading and
saving are done. You can control the scratch file location by
using the TMPDIR environment variable. Control transfers to
the main entry point in your program after the copy operation to
the scratch file.

$SEGCALL intercepts subroutine calls that might require the
loading of called segments into memory. $SEGCALL also saves
memory-resident segments if SAVE=ON for those segments; this
ensures that they are not overwritten.

At execution time, common block /$SEGRES/ conveys
information collected by the loader during the load process to
$SEGRES. The information that is passed includes segment sizes
and addresses, and addresses of intercepted calls between
segments.

$SEGRES
7.1

Segmented Program Execution [7] Segment Loader (SEGLDR) and ld Reference Manual

86 Cray Research, Inc. SR–0066 9.0

In a segmented load, there are five types of calls to subroutines.
Table 5 describes the overhead needed for each type of
subroutine call.

Table 5. Subroutine call overhead

Segment containing
called routine Action taken by $SEGRES

Same segment as calling
routine

The call is not intercepted.

Predecessor segment of calling
routine

The call is not intercepted.

Successor segment in memory After determining that
the segment is resident,
control transfers to the
called routine.

Successor segment not in
memory

One or more successor
segments are read into
memory; then control is
transferred to the called
routine.

Successor segment not in
memory and SAVE=ON

One or more
currently-resident
segments are written to a
scratch file so that they
are not overwritten when
the called segment is read
into memory. After the
needed segments are read
into memory, control
transfers to the called
routine.

Subroutine call
overhead
7.2

Dynamic Memory Management [8]

87Cray Research, Inc.SR–0066 9.0

The loader supports the following two types of dynamic memory
management:

• The HEAP, STACK, and TSTACK directives let you use dynamic
memory managed by the system heap routines. The ADDBSS
directive lets you expand the initial size of your program and
reserve space for later memory expansion.

• The DYNAMIC directive lets you specify a common block that
can be expanded or contracted at your discretion.

You can use either one or both of these schemes in a single
program.

All directives in this section are global directives.

The HEAP, STACK, and TSTACK directives let you control the size
and location of the system-managed heap and stack. Memory
space can be acquired from the heap by use of the system heap
routines. Under the UNICOS operating system, the heap is
always present and resides after the longest segment branch of
your program. Heap space is available to all segments of your
program.

The HEAP directive allocates memory that the heap manager can
manage dynamically. All memory requests are satisfied with
space from a common heap. The HEAP directive allows the
memory use within a job to increase.

The heap is located in memory following the segment tree
branch that occupies the largest amount of memory. HEAP has
the same effect on both segmented and nonsegmented programs.

Managing global
heap memory
8.1

HEAP directive
8.1.1

Dynamic Memory Management [8] Segment Loader (SEGLDR) and ld Reference Manual

88 Cray Research, Inc. SR–0066 9.0

Format:

HEAP=[init][+inc]

init Initial number of decimal words available to the
heap manager; the default is specific to each
system.

inc Increment size, in decimal words, of a request to
the operating system for additional memory if the
heap overflows.

A value of 0 indicates that heap size is fixed. If
you specify the DYNAMIC directive, the loader
ignores an increment size other than 0. The
default is specific to each system.

Command-line equivalent: –H option

The STACK directive allocate part of heap memory to a stack for
use by re-entrant programs. When you use STACK, the HEAP
directive is not needed unless you want to change the default
heap values.

The STACK directive is intended for use by individual users to set
the stack size for their programs. The following paragraphs
outline the steps the loader takes in determining a program’s
stack size:

1. If a STACK directive has been used, the initial value specified
with the STACK directive becomes the program’s initial stack
size.

2. If no STACK directive is present, the loader analyzes the
module calling structure of the program. It estimates what
the stack requirements of the program will be. Run-time
characteristics of the program, such as regression or
indirectly invoked procedures, can cause the estimate to be
inaccurate. The loader may underestimate the stack
requirements needed for execution. The loader rarely
overestimates program stack requirements.

STACK directives
8.1.2

Dynamic Memory Management [8]Segment Loader (SEGLDR) and ld Reference Manual

89Cray Research, Inc.SR–0066 9.0

3. If a DEFSTACK directive, see page 118, has been encountered,
the loader will compare the estimated size with the initial
value specified with the DEFSTACK directive. The larger of
the two values will be used as the initial stack size of the
program.

4. If no DEFSTACK directive is present, the loader will use the
estimated value as the initial stack size.

Format:

STACK=[init][+inc]

init Initial size, in decimal words, of a stack. If init is
less than or equal to 128 words or is absent, an
installation-defined value is used.

inc Size, in decimal words, of additional increments to
a stack if the stack overflows. A value of zero (0)
implies that stack overflow is prohibited. An
installation-defined value defines the default
increment value.

Command-line equivalent: –S option

The use of more than one of the STACK, HEAP, and FREEHEAP
directives can easily result in an inconsistent specification. If
this occurs, the maximum size heap is used.

Multitasked programs often have more extensive stack
requirements than unitasked programs. Slave tasks often
require a different amount of stack space than the main program
task. The TSTACK directive allows you to specify a stack size to
be used whenever slave tasks are initiated. In the absence of a
TSTACK directive, the loader estimates the amount of stack space
required for the slave tasks by using the same algorithm that is
used to estimate main program stack size.

TSTACK directive
8.1.3

Dynamic Memory Management [8] Segment Loader (SEGLDR) and ld Reference Manual

90 Cray Research, Inc. SR–0066 9.0

Format:

TSTACK=init[+inc]

init Initial size, in decimal words, of the stack space
assigned to each slave task when the slave task
begins execution.

inc Size, in decimal words, of additional increments to
a stack if the stack overflows. A value of zero (0)
implies that stack overflow is prohibited. An
installation-defined value defines the default
increment value.

The ADDBSS directive tells the loader to expand the initial size of
your program. This provides preallocated space for later
requests of the program to expand its heap space.

Format:

ADDBSS=value

value The number of 1024-word blocks of space to add to
the uninitialized data area of your program.

Command-line equivalent: –b option

The DYNAMIC directive specifies the common block that can
expand or contract under your control. You must call the system
routines to expand your program size before referencing the
portions of the dynamic common block not initially allocated to
your program. The common block occupies memory following
the largest segment, and all segments have access to it at any
time during program execution. The contents of the dynamic
common block may not be declared at load or compile time (data
loaded).

ADDBSS directive
8.1.4

DYNAMIC directive
8.1.5

Dynamic Memory Management [8]Segment Loader (SEGLDR) and ld Reference Manual

91Cray Research, Inc.SR–0066 9.0

Format:

DYNAMIC=comblk|//

comblk Allocates the specified common block to the first
word following the longest segment branch. Only
one common block can be specified.

// Specifies the blank common block as dynamic.

If no HEAP is required, blank common is always dynamic
(default); otherwise, there is no default dynamic common block.

If you expand a common block that is not the dynamic common
block, you may overwrite a segment in memory, or, when the
loader brings in the successor segment, the loader may overwrite
the common block. Use the dynamic common block instead.

Example:

CFT program

PROGRAM X
COMMON /DYNCOM/ SPACE(1)
. In this user-supplied code, the
. user requests 9999 additional
. words of memory.
DO 100 I=1,10000
 SPACE(I)=0 This code zeroes out 10,000 words,
. but only 1 word is actually
. preallocated by the loader.
100 CONTINUE

SEGLDR directive

DYNAMIC=DYNCOM Identifies /DYNCOM/ as the dynamic
common block.

Dynamic Memory Management [8] Segment Loader (SEGLDR) and ld Reference Manual

92 Cray Research, Inc. SR–0066 9.0

You can use the heap and dynamic common together in a
program if you are careful to adhere to the following guidelines:
When both the heap and dynamic common are used, the heap
begins immediately after the longest segment branch of your
program, and it has a fixed size. No expansion of the heap is
allowed. The dynamic common block begins after the heap, and
it can expand.

Because the heap cannot expand, the initial size assigned to it
must be large enough to accommodate all requests for heap
space. This is critically important under the UNICOS operating
system because many system library routines request heap
space to perform their functions. In general, the initial size of
the heap should be at least 5000 words.

The following examples use several system routines for memory
management. Additional memory management routines are also
available. If you require further information about any of the
library routines used in these examples, consult the library
manual appropriate to the language and operating system.

The following is an example of a Fortran program that acquires
a 1-Mword block of heap space. You do not need loader
directives, but you may use some to set heap values to something
other than their defaults.

PROGRAM USEHEAP
INTEGER SPACE(0:0), ERRCODE, INDEX
POINTER (SPTR,SPACE)

CALL HPALLOC (SPTR, 1000000, ERRCODE, 0)
IF (ERRCODE .EQ. 0) THEN
 DO 1 INDEX = 0, 999999
 SPACE(INDEX) = INDEX

1 CONTINUE
 ENDIF
 END

Using the heap
and dynamic
common together
8.2

Fortran example for
acquiring space from
the heap
8.2.1

Dynamic Memory Management [8]Segment Loader (SEGLDR) and ld Reference Manual

93Cray Research, Inc.SR–0066 9.0

The following is an example of a Fortran program that runs
under the UNICOS operating system and sets up a dynamic
common block of 1 million words. The example requires the use
of SBREAK, a Fortran interface to the system library routine
sbreak , documented in the UNICOS System Calls Reference
Manual, publication SR–2012. SBREAK expands the field length
of the program for the additional space. For this example, you
also need the two loader directives: DYNAMIC=DYNCOM, to
identify the dynamic common block, and HEAP=10000+0 , to set
up a heap size large enough and to indicate that it cannot
expand. Both of these directives are described in this manual.

PROGRAM USEDYN
COMMON /DYNCOM/ SPACE(1)
INTEGER SBREAK, ERRCODE
. Only one word of space is preallocated to the program.
. The user must call the system library routine SBREAK to
. expand the program’s field length and to acquire the
. additional space.
ERRCODE=SBREAK(1000000)
IF (ERRCODE .GE. 0) THEN

DO 100 I=1,1000000
SPACE(I) = 0.0

100 CONTINUE
 ENDIF
 END

Fortran example for
using dynamic common
8.2.2

Dynamic Memory Management [8] Segment Loader (SEGLDR) and ld Reference Manual

94 Cray Research, Inc. SR–0066 9.0

Central Memory Allocation by SEGLDR [9]

95Cray Research, Inc.SR–0066 9.0

This section describes the different techniques that the loader
uses to allocate user code and data into central memory on
various Cray Research systems. Generally, you do not need to
know about the techniques that the loader uses, because the
default for your system is selected to work for most applications.
For some applications, you may need to override the loader
defaults, and this can be done using the directives described in
“Program alignment and initialization,” page 47.

If your application depends on any particular memory allocation
scheme, it is recommended that you generalize the program to
remove this dependency. Such code is nonstandard, and such
dependencies can hinder maintenance of the code over time as
systems change.

You can use the ORDER directive to specify the memory allocation
scheme you desire. This works as long as you do not try to run
your code on a different Cray Research system that does not
support the specific option. Cray Research has changed and
added memory allocation algorithms in the past, and will
continue to do so, with the aim of improving the ease-of-use,
system throughput, and performance of Cray Research systems.
Applications that depend on specific memory allocation schemes
will likely not be stable over time.

Central Memory Allocation by SEGLDR [9] Segment Loader (SEGLDR) and ld Reference Manual

96 Cray Research, Inc. SR–0066 9.0

The following terms are used in this section:

Term Definition

Block The unit in which compilers and
assemblers generate code and data
for the loader to load. The actual
memory size of a block is
determined by the program.

Code block A block containing nothing but
instructions.

Common block A block equivalent to the entity
defined by a Fortran COMMON
statement or C global data item.

Initialized ... block A local data or common block that
has initial values assigned by the
program (as with the Fortran DATA
statement).

Local data block A block containing statically
allocated local data.

Mixed block A block containing both instructions
and local data.

Uninitialized ... block A local data or common block with
no initial values assigned by the
program.

Every UNICOS executable program is organized in three
sections: the text section, the data section, and the BSS section.
Normally, the text section contains instructions, the data section
contains initialized static data, and the BSS section contains
uninitialized static data. Only the text and data sections are
written into the executable file. The BSS section of the program
is allocated at execution time. The various allocation methods

Definitions of
terms
9.1

Executable
program
organization
9.2

Central Memory Allocation by SEGLDR [9]Segment Loader (SEGLDR) and ld Reference Manual

97Cray Research, Inc.SR–0066 9.0

attempt to maximize placing uninitialized blocks into the BSS
section whenever allowed by the hardware and the constraints of
the allocation scheme. The placement of blocks into either the
text or data section is critical only for shared text programs.

ORDER is a global directive. It lets you control the central
memory allocation method used by the loader.

Format:

TEXT,DATA,BSS

SHARED

SS.TDB

ORDER=

The operation of each allocation scheme is described in the
following paragraphs.

SHARED Separates the program code and data into two distinct
address spaces and collates each one. ORDER=SHARED
is used to create shared text programs that execute on
Cray PVP systems under the UNICOS operating
system, but ORDER=SHARED is not allowed on other
systems. The program cannot contain any blocks of
mixed code and data if this option is to be effective.

TEXT,DATA,BSS
Allocates code (TEXT) blocks, followed by initialized
data (DATA) blocks, followed by uninitialized data
(BSS) blocks. This is the default.

SS.TDB Creates a split-segment program and allocates code
(TEXT) blocks, followed by initialized data (DATA)
blocks, followed by uninitialized data (BSS) blocks.
See “Memory allocation for segmented programs,”
page 99, for more information.

ORDER directive
9.3

Central Memory Allocation by SEGLDR [9] Segment Loader (SEGLDR) and ld Reference Manual

98 Cray Research, Inc. SR–0066 9.0

Note: ORDER=SHARED cannot be used with segmented
applications. ORDER=SS.TDB cannot be used with
nonsegmented applications.

Command-line equivalents: –n and –O options

The TEXT,DATA,BSS allocation scheme is the default on Cray
PVP systems. The TEXT,DATA,BSS scheme allocates memory in
the following order:

1. Code blocks

2. Initialized local data blocks

3. Initialized common blocks

4. Uninitialized local data blocks

5. Uninitialized common blocks

The TEXT,DATA,BSS scheme assigns as many uninitialized blocks
as possible to the BSS section of the program.

The SHARED allocation scheme can be used to create shared text
programs. In order to create a shared-text program, all object
modules used in the program must be split into fully-separated
code and data blocks. All Cray Research compilers generate
separate code and data blocks and all Cray Research libraries
contain separated modules. If you include your own assembly
language routines, however, you must ensure that the generated
code is separated from other modules in your program by
including CODE and DATA attributes in any SECTION
pseudo-instructions. If all modules are separated, the loader
loads all the code sections of the program into one address space,
and then loads the DATA and BSS sections into a separate
address space.

TEXT,DATA,BSS
allocation scheme
for memory
allocation
9.4

Shared-text
allocation scheme
for memory
allocation
9.5

Central Memory Allocation by SEGLDR [9]Segment Loader (SEGLDR) and ld Reference Manual

99Cray Research, Inc.SR–0066 9.0

A shared-text program has two major advantages:

• Multiple processes using the same application can share code,
while keeping separate data areas. Thus, process demands on
central memory are reduced.

• When the UNICOS operating system allocates memory for a
process, it must find sufficient contiguous memory to allow the
process to execute. With split code and data, the amount of
memory required for the process is the same, except it is
divided into two smaller pieces. Therefore, the UNICOS
operating system can search for two small sections of memory
rather than a single large one.

A shared-text program has two major drawbacks:

• The CDBX debugger cannot operate on shared-text programs.
You should not use the shared-text scheme while debugging
the program.

• Shared-text programs cannot be segmented.

The allocation orders specified by the ORDER directive allocate
each segment as a contiguous area of memory. Each segment is
allocated separately; the modules and common blocks assigned
to the segment are allocated in the specified order. Each
segment begins where its predecessor ends.

On Cray PVP systems, code must reside in the first 4 Mwords of
memory. Large data areas in the root segment may occupy
enough memory below these limits to force code in later
segments above these limits. To successfully load programs that
encounter this problem, you can use the SS.TDB value for the
ORDER directive.

The SS.TDB allocation order creates split-segment programs.
Each program segment is separated into a data section and a
code section, which are allocated separately. Any modules and
common blocks assigned to a segment are still allocated in the
specified order. The code section of each segment is allocated in
memory starting where the code section of the segment’s
predecessor ends. The data portion of each segment (except the

Advantages of
shared-text programs
9.5.1

Disadvantages of
shared-text programs
9.5.2

Memory allocation
for segmented
programs
9.6

Central Memory Allocation by SEGLDR [9] Segment Loader (SEGLDR) and ld Reference Manual

100 Cray Research, Inc. SR–0066 9.0

root segment) is allocated in memory following the data section
of the segment’s predecessor. The data section for the root
segment is allocated after the highest address used to store code
from the segments.

The following segment tree directives describe a program with a
root segment and two successor segments:

TREE
ROOT(SEG1, SEG2)
ENDTREE

The MODULES,COMMONS, COMMONS,MODULES, and TEXT,DATA,BSS
allocation orders create a program having the following
structure in memory:

(high address)0

ROOT code
 and
 data

SEG1 code and data

SEG2 code and data

The SS.TDB allocation order creates a program with the
following structure in memory:

(high address)0

SEG1 code

SEG2 code

ROOT

code

ROOT

data

SEG1 data

SEG2 data

You should use the SS.TDB allocation order on Cray PVP
systems when large data areas in the root segment of a program
force code in successive segments above the 4-Mword memory
boundary. The SS.TDB allocation scheme creates a
split-segment program, allocating blocks to the code and data
sections within each segment, as follows:

Code section:

• Code and mixed blocks

ORDER=SS.TDB
9.6.1

Central Memory Allocation by SEGLDR [9]Segment Loader (SEGLDR) and ld Reference Manual

101Cray Research, Inc.SR–0066 9.0

Data sections:

• Initialized local data blocks

• Initialized common blocks

• Uninitialized local data blocks

• Uninitialized common blocks

Central Memory Allocation by SEGLDR [9] Segment Loader (SEGLDR) and ld Reference Manual

102 Cray Research, Inc. SR–0066 9.0

Soft Externals [10]

103Cray Research, Inc.SR–0066 9.0

This section describes the special handling that the loader
performs when processing “soft” references to an external
symbol, or “soft externals.”

Soft externals let the user control whether modules containing
entry points to external functions or data objects are linked to
the user’s program. If the user program declares a reference to
an external function as “soft,” that reference is not sufficient to
ensure that the external function will be included in the
program. The function will be included only when referenced
elsewhere in the program.

For example, Figure 11 contains two user programs, flowpgm
and noflwpgm. flowpgm calls flowtrace , performs several
functions, and then calls exit . noflwpgm does not call
flowtrace , but it performs several functions, and then calls
exit . The exit routine is called by both user programs; it
processes exit calls for programs that call flowtrace and for
programs that do not call flowtrace . Therefore, exit contains
conditional calls to flowexit , which is an entry point within the
flowtrace module. If flowexit is declared as a “hard,” or
normal external reference in exit , all of the flowtrace module
must be loaded with each user program that calls exit ,
regardless of whether the user program calls flowtrace . If
flowexit is declared as a soft external, then the flowtrace
module is linked to the user program only when flowtrace is
referenced. In Figure 11, the flowtrace module will be loaded
with flowpgm, but it will not be loaded with noflwpgm.

Soft external
references
10.1

Soft Externals [10]

103Cray Research, Inc.SR–0066 9.0

This section describes the special handling that the loader
performs when processing “soft” references to an external
symbol, or “soft externals.”

Soft externals let the user control whether modules containing
entry points to external functions or data objects are linked to
the user’s program. If the user program declares a reference to
an external function as “soft,” that reference is not sufficient to
ensure that the external function will be included in the
program. The function will be included only when referenced
elsewhere in the program.

For example, Figure 11 contains two user programs, flowpgm
and noflwpgm. flowpgm calls flowtrace , performs several
functions, and then calls exit . noflwpgm does not call
flowtrace , but it performs several functions, and then calls
exit . The exit routine is called by both user programs; it
processes exit calls for programs that call flowtrace and for
programs that do not call flowtrace . Therefore, exit contains
conditional calls to flowexit , which is an entry point within the
flowtrace module. If flowexit is declared as a “hard,” or
normal external reference in exit , all of the flowtrace module
must be loaded with each user program that calls exit ,
regardless of whether the user program calls flowtrace . If
flowexit is declared as a soft external, then the flowtrace
module is linked to the user program only when flowtrace is
referenced. In Figure 11, the flowtrace module will be loaded
with flowpgm, but it will not be loaded with noflwpgm.

Soft external
references
10.1

Soft Externals [10] Segment Loader (SEGLDR) and ld Reference Manual

104 Cray Research, Inc. SR–0066 9.0

User programs

flowpgm()
{
flowtrace();
 .
 .
 .

exit();
}

noflwpgm() {

junk();
 .
 .
 .

exit();
}

#pragma soft flowexit

exit flowtrace

 if (_loaded(flowexit)){
 flowexit()
 }
 .
 .
}

flowtrace() {
 .
 .
 .
}

flowexit() {
 .
 .
 .
}

exit(){
 .
 .
 .

Figure 11. Soft external usage

References made to entry points located outside a compilation
unit are usually “hard,” or normal references. The assembler
(as (1)) and C compiler (Cray C compiler version 5.0 and on and
Cray Standard C compiler version 2.0 and on) allow you to
declare a reference to be soft.

A soft external in assembly language is declared by using the
soft modifier on the ext directive. For example:

 ext getmsg:soft

This statement declares that all references in this module to the
external symbol getmsg will be soft references.

To declare a soft external in C, use the #pragma directive, as
follows:

 #pragma soft getmsg
 extern int getmsg();

How to declare
soft externals
10.2

Soft Externals [10]Segment Loader (SEGLDR) and ld Reference Manual

105Cray Research, Inc.SR–0066 9.0

The #pragma directive should appear before any references to
the external entry point. The directive affects the entire source
file.

The loader handles hard and soft references in different ways. If
the definition has been found by the loader, hard references to
an external entry point are always satisfied by the symbol
definition. A hard reference to a library entry point will cause
the module containing that entry point to be included in the
executable program.

A soft reference is not automatically satisfied by the symbol
definition. To satisfy the soft reference, the entry point must be
included in the program for some other reason. A soft reference
to a library entry point is not sufficient to cause the module
containing that entry point to be included in the executable
program.

You can cause the library entry point to be included in the
program by including one of the following in your program:

• Include hard references to the entry point in the program.

• Include hard references to other entry points in the same
module so that the module will be included in the program.

• Force-load the object module. See “Including object modules,”
page 24, for a discussion of object module inclusion and
force-loading.

As is the case with hard references, if the entry point is included
in the program, the soft reference is satisfied by the entry point.
If the entry point is not included in the program, the soft
reference is converted into an unsatisfied external reference. If
the reference has not been satisfied, no error message will be
generated indicating that the reference is unsatisfied. If the
entry point is referenced during program execution, an
appropriate error message will be issued and program execution
will terminate.

How to link soft
externals
10.3

Soft Externals [10] Segment Loader (SEGLDR) and ld Reference Manual

106 Cray Research, Inc. SR–0066 9.0

At load time, the loader determines if a soft reference should be
linked to the corresponding entry point. An execution-time test
is needed to determine whether the reference is satisfied and can
be called. You can either use the library routine _loaded , or use
a flag word, to perform the test.

If the input argument to the library routine _loaded is an entry
point that has been included in the program, the library routine
_loaded returns a nonzero value.

The following example is a simplified version of the program exit
processing, and it illustrates the use of _loaded . The exit
routine is called at the end of every program. It needs to call the
flowexit routine if flowtrace processing has been enabled;
flowexit is contained in the same module as the entry point
flowtrace . The flowtrace entry point will be called if the
flowtrace processing is enabled; therefore the soft reference to
flowexit from exit will be satisfied. If flowtrace is not
called, the soft reference to flowexit from exit will not be
satisfied. The code in exit.c that calls flowexit takes the
following form:

#pragma soft flowexit
extern int flowexit();
extern int _loaded();
exit () {
...
 if (_loaded(flowexit))
 flowexit();
}

Using soft
externals
10.4

Testing entry-point
references with
_loaded
10.4.1

Soft Externals [10]Segment Loader (SEGLDR) and ld Reference Manual

107Cray Research, Inc.SR–0066 9.0

The second test method uses a flag word rather than the
_loaded routine. The following code uses the same example to
illustrate how a flag word is used:

/* flowtrace.c */

int flowflag = 1;
flowtrace () {
 ...
}
flowexit () {
 ...
}

/* exit.c */

int flowflag;
exit () {
...
if (flowflag)
 flowexit();
}

If the module from flowtrace.c is included, flowflag will
have a value of 1, and flowexit will be called. If flowtrace.c
is not included, flowflag will be 0 and flowexit will not be
called.

The HARDREF loader directive can be used to force the loader to
treat all soft references to one or more entry points as hard
references. The loader treats all soft references to the
specialized entry points as hard references, and it will satisfy the
reference if the definition is found. You can use the HARDREF
directive to force the satisfaction of a reference even when no
other condition would cause it to be satisfied.

Testing entry-point
references with flag
words
10.4.2

How to convert
soft references to
hard references
10.5

Soft Externals [10] Segment Loader (SEGLDR) and ld Reference Manual

108 Cray Research, Inc. SR–0066 9.0

The HARDREF directive specifies one or more entry points that
should be included in the load process. Any soft references made
to these entry points are converted into hard references.

Format:

HARDREF=epname1[, epname2...]

epnamei Name of entry point from which all soft
references will be converted to hard references.

The SOFTREF directive can be used to force the loader to treat all
hard references to one or more entry points as soft references.
The loader treats all hard references to a symbol name as soft
references. The module containing the indicated entry point is
included in the program only when some other factor causes the
inclusion. (See subsection “How to link soft externals,” page 105,
for information.)

The SOFTREF directive specifies one or more entry points that
should not be included in the load process.

The SOFTREF directive should be used with caution, because it
can cause references to symbols to remain unsatisfied, for which
no loader error message will be issued. If a program does not
make a run-time test to determine whether the reference has
been satisfied, and the reference is executed at run time, the
program terminates in error.

Format:

SOFTREF=epname1[, epname2...]

epnamei Name of entry point from which all hard
references will be converted to soft references.

HARDREF directive
10.5.1

How to convert
hard references to
soft references
10.6

SOFTREF directive
10.6.1

Configuration Directives [11]

109Cray Research, Inc.SR–0066 9.0

This section describes the directives you use for defining the
configuration you want for the SEGLDR environment. These
directives are not used in day-to-day activities.

The DEFDIR directive allows you to specify default directory
search lists. The LIBDIR directive allows you to add directory
names to user directory search lists.

The DEFDIR directive specifies default directory search lists.
You can specify separate directory search lists for different
machine characteristics.

The loader uses the default search list to find files specified on
the –l and –j command-line options, and on the LBIN , LLIB ,
LINCLUDE, and DEFLIB directives. To find the specified files, the
loader searches the directories listed in the user directory search
list (specified with the –L command-line option or with the
LIBDIR directive). If no user search list has been specified, or if
the file is not found in any of the user directories, the loader
searches the appropriate default directory search list.

Normally, the DEFDIR directive should be used in the default
directive files def_seg and def_ld to establish the default
search lists for all targeted machines.

Specifying default
directory search
lists
11.1

DEFDIR directive
11.1.1

Configuration Directives [11] Segment Loader (SEGLDR) and ld Reference Manual

110 Cray Research, Inc. SR–0066 9.0

Format:

DEFDIR[(chars)]= dirname1[, dirname2, .. .]

chars Specifies a set of machine characteristics,
including the primary machine name, logical
name, and numeric characteristics. See the
target (1) command for information on the
characteristics that can be specified in chars.

dirname Specifies a UNICOS file system directory name.

When a set of machine characteristics is specified on a DEFDIR
directive, the characteristics are associated with the list of
search directories to create a targeted search list. If no
characteristics are specified, the DEFDIR directive creates an
untargeted search list. You can specify up to 10 DEFDIR
directives, each with a different set of characteristics. DEFDIR
directives are not cumulative. If more than one DEFDIR
directive with the same characteristics has been specified, the
directories specified on the latter directive replace those
specified on the former. If more than one untargeted search list
is specified, the latter directive replaces the former.

The loader determines the target environment of a program from
the TARGET environment variable (see subsection 2.3.6, page 14,
for more information on the TARGET variable), or, if TARGET is
not set, from the main routine of the program. The loader scans
the DEFDIR targeted search lists in the order specified. If a set
of DEFDIR machine characteristics does not conflict with the
characteristics of the target environment, the associated search
list is used as the default search list for the program. If none of
the DEFDIR characteristics sets matches the target environment,
or if no targeted search lists have been specified, the untargeted
search list is used.

Initially, DEFDIR specifies the /lib and /usr/lib directories
in the untargeted search list and does not specify any directories
in the targeted search list.

Configuration Directives [11]Segment Loader (SEGLDR) and ld Reference Manual

111Cray Research, Inc.SR–0066 9.0

Example:

defdir(cray–ymp)=/lib/xlib,/usr/lib/xlib
defdir=/lib,/usr/lib,/usr/local/lib

When the target environment of a program is cray–ymp , the
/lib/xlib and /usr/lib/xlib directories are searched.
When any other target environment is used, the /lib ,
/usr/lib , and /usr/local/lib directories are searched.

Command-line equivalent: none

The LIBDIR directive adds directory names to the loader’s user
directory search list, which is used to find files specified on the
–l and –j command-line options, as well as files specified on the
LBIN , LLIB , LINCLUDE, and DEFLIB directives. The loader first
searches each directory in the user search list. If directories
have not been specified, or if the file cannot be located in any of
the specified search directories, the loader searches the default
directory search list for the file. (See “DEFDIR directive,” page
109, for information on the default directory search list.)

Format:

LIBDIR= dirname1[, dirname2,...]

dirname UNICOS file system directory name.

You may specify up to 20 directory names. If this directive
continues beyond one line, end each continued line with a
comma. Multiple LIBDIR directives are cumulative. Each
directive adds directory names until the limit of 20 is reached.

Example:

LIBDIR=/mydir/lib,locallib

The loader adds /mydir/lib and locallib (relative to the
current directory) to the list of user search directories.

Command-line equivalent: –L option

LIBDIR directive
11.1.2

Configuration Directives [11] Segment Loader (SEGLDR) and ld Reference Manual

112 Cray Research, Inc. SR–0066 9.0

The OUTFORM directive give you a measure of control over the
executable program that the loader produces. You can tell the
loader the type of output file to produce.

The OUTFORM directive specifies the type of the output file of the
loader. This directive essentially allows you to build a prelinked
collection of files with a .o extension. Within this collection of
files all internal references have been resolved. This feature
helps reduce application link time.

Format:

OUTFORM=[ABS|REL]

ABS The output file will have all internal references
resolved (default).

REL The output file will have internal references
resolved at link time.

ld command-line equivalent: –r (the executable program will
have the relative attribute).

It is assumed that the relocatable output will be invoked only
with the ld command. If you invoke the relocatable output with
the segldr command, be certain to include the
SYSTEM=STDALONE directive.

The executable
program
11.2

OUTFORM directive
11.2.1

Configuration Directives [11]Segment Loader (SEGLDR) and ld Reference Manual

113Cray Research, Inc.SR–0066 9.0

The START and CALLXFER directives let you control the point at
which your program begins executing, and they also intercept
definitions of entry points at load time.

The START directive specifies the entry point that receives
control from the operating system when the program begins
execution. For normal programs executing under the UNICOS
operating system, the entry point is the system start-up routine.
The default directives file specifies the correct entry point for
your system. You should use the START directive only when
building a special-purpose program.

Format:

START=epname

epname Name of entry point at which program execution
begins.

The CALLXFER directive specifies the entry-point name used by
the system start-up routine to call your main program. The
loader links references to the CALLXFER entry point to the
transfer entry point defined by the XFER directive. The default
directives file specifies the correct name for your system. You
should use the CALLXFER directive only when building a
special-purpose program.

Format:

CALLXFER=epname

epname Symbol name used by the system start-up
routine to call the XFER entry point.

Controlling entry
points and
execution
11.3

START directive
11.3.1

CALLXFER directive
11.3.2

Configuration Directives [11] Segment Loader (SEGLDR) and ld Reference Manual

114 Cray Research, Inc. SR–0066 9.0

The SYSTEM directive specifies under which operating system
your program will execute. The INCFILE directive specifies the
name of a previously built executable program. The ZSYMS
directive controls whether the loader will include the special
zzzzzz?? symbols in the load module.

The SYSTEM directive selects the target operating system on
which your program will execute. The default directives file
specifies a SYSTEM value of UNICOS.

Format:

SYSTEM=keyword

UNICOS Sets the target operating system to UNICOS.
When SYSTEM=UNICOS is specified, the loader
requires that the START and CALLXFER
directives are specified, and enables heap and
stack processing, enable task common block
processing, and adds the _infoblk
information block to your program (default).

STDALONE Sets the target operating system to be
undefined. The loader does not require any
directive settings and does not perform any
special processing. The STDALONE directive
should be used only for special-purpose
programs.

The INCFILE directive specifies the name of a previously-built
executable program. The loader extracts the symbol information
from the file specified with the INCFILE directive. The extracted
symbol information is used to satisfy external references and to
allocate common blocks for object modules loaded during this
invocation of the loader. When used in conjunction with the ORG,
SYSTEM=STDALONE, and other directives, a program fragment is
built that can execute in the address space of the original
program. The original program must do the following actions:
call the loader to create the program fragment, provide the
memory space, to read the program fragment into its address

Miscellaneous
global directives
11.4

SYSTEM directive
11.4.1

INCFILE directive
11.4.2

Configuration Directives [11]Segment Loader (SEGLDR) and ld Reference Manual

115Cray Research, Inc.SR–0066 9.0

space, and pass control to it. The executable output produced
when INCFILE is used cannot be executed independently. The
INCFILE directive should be used only for special-purpose
programs.

Format:

INCFILE= file

file Name of a file containing a previously linked
executable program.

This directive controls whether the loader will include the
special zzzzzz?? symbols in the load module. The default is
OFF.

ZSYMS=[ON|OFF]

ON Include the zzzzzz?? symbols in the load
module.

OFF Do not include the zzzzzz?? symbols in the load
module.

Command-line equivalent: none.

Zero address directives specify a block that is to occupy address
zero. When these directives are used the value zero is no longer
a valid pointer value. The ZEROCOM directive specifies the name
of the common block that is to be placed at the zero address of
the data space if common blocks precede local blocks; otherwise
all three directives and their corresponding assembly modules
are to be provided. The ZERODATA directive specifies the name
of the module that is to be placed at the zero address of the data
space. The ZEROTEXT directive specifies the name of the module
that is to be placed at the zero address of the text space.

ZSYMS directive
11.4.3

Zero address
directives
11.5

Configuration Directives [11] Segment Loader (SEGLDR) and ld Reference Manual

116 Cray Research, Inc. SR–0066 9.0

The ZEROCOM directive specifies the name of the common block
that is to be placed at the zero address of the data space (if the
load order is COMMONS, MODULES; otherwise this directive has no
effect). The named module must contain only one common data
block. If the directive is not present, or if the named module is
not found, no special processing for address 0 is done.

The last ZEROCOM directive encountered is the one used; the
earlier ZEROCOM directives are ignored.

This directive should only be used in the default directives file.

Format:

ZEROCOM=blkname

blkname Name of the common block to be loaded.

The ZERODATA directive specifies the name of the module that is
to be placed at the zero address of the data space. The named
module must contain only one local data block. If the directive is
not present, or if the named module is not found, no special
processing for address 0 is done.

The last ZERODATA directive encountered is the one processed;
the earlier ZERODATA directives are ignored.

This directive should only be used in the default directives file.

Format:

ZERODATA=modname

modname Name of the module to be loaded.

ZEROCOM directive
11.5.1

ZERODATA directive
11.5.2

Configuration Directives [11]Segment Loader (SEGLDR) and ld Reference Manual

117Cray Research, Inc.SR–0066 9.0

The ZEROTEXT directive specifies the name of the module that is
to be placed at the zero address of the text space. The named
module must contain only one local code block. If the directive is
not present, or if the named module is not found, no special
processing for address 0 is done.

The last ZEROTEXT directive encountered is the one processed;
the earlier ZEROTEXT directives are ignored.

This directive should only be used in the default directives file.

Format:

ZEROTEXT=modname

modname Name of the module to be loaded.

The DEFHEAP, DEFSTACK, and FREEHEAP directives let you
control the size and location of the system-managed heap and
stack. Memory space can be acquired from the heap by using
the system heap routines. Under the UNICOS operating
system, the heap is always present and resides after the longest
segment branch of your program. Heap space is available to all
segments of your program.

These directives should only be used in the default directives
file.

The DEFHEAP directive allocates memory that the heap manager
can manage dynamically. When you use DEFHEAP, the HEAP
directive is not needed unless you want to change the default
heap values.

The DEFHEAP directive is intended for use in the default
directives file to establish a minimum heap size for all programs.
See the “HEAP directive,” page 87.

ZEROTEXT directive
11.5.3

Managing global
heap memory
11.6

DEFHEAP directive
11.6.1

Configuration Directives [11] Segment Loader (SEGLDR) and ld Reference Manual

118 Cray Research, Inc. SR–0066 9.0

Format:

DEFHEAP=[init][+inc]

init Initial number of decimal words available to the
heap manager. If init is less than or equal to 128
words or is absent, a value defined when the
system is installed is used.

inc Increment size, in decimal words, of a request to
the operating system for additional memory if
the heap overflows. A value of zero implies that
heap overflow is prohibited. A value defined
when the system is installed determines the
default increment value.

The DEFSTACK directive allocates part of heap memory to a stack
for use by re-entrant programs. When you use DEFSTACK, the
HEAP directive is not needed unless you want to change the
default heap values.

The DEFSTACK directive is intended for use in the default
directives file to establish a minimum stack size for all
programs. See the “STACK directive,” page 88, for an outline of
the steps the loader takes in determining a program’s stack size.

Format:

DEFSTACK=[init][+inc]

init Initial size, in decimal words, of a stack. If init is
less than or equal to 128 words or is absent, a
value defined when the system is installed is
used.

inc Size, in decimal words, of additional increments
to a stack if the stack overflows. A value of zero
(0) implies that stack overflow is prohibited. A
value defined when the system is installed
determines the default increment value.

DEFSTACK directive
11.6.2

Configuration Directives [11]Segment Loader (SEGLDR) and ld Reference Manual

119Cray Research, Inc.SR–0066 9.0

The FREEHEAP directive specifies the minimum amount of free
memory available in the heap after the initial stack allocation.
The initial heap size will be the sum of the initial stack size and
the value specified by this directive.

Format:

FREEHEAP=value

value The number of words of space to be left free in
the heap after allocation of the stack.

The use of more than one of the STACK, HEAP, and FREEHEAP
directives can easily result in an inconsistent specification. If
this occurs, the maximum size heap is used.

FREEHEAP directive
11.6.3

Configuration Directives [11] Segment Loader (SEGLDR) and ld Reference Manual

120 Cray Research, Inc. SR–0066 9.0

Scanning Directives [12]

121Cray Research, Inc.SR–0066 9.0

When the target machine is a CRAY EL98 or CRAY J90 system,
the loader invokes a special scanner to detect and correct
potential problems in the program. The problems result from
specific instruction sequences that generate unexpected results
when the program uses multitasking on a CRAY EL98 system or
enables cache memory on a CRAY J90 system. The loader
provides two directives that work in conjuction with the scanner.

The SCANNER directive lets you turn the scanner off or on. The
default condition is on when the target system is a CRAY EL or
CRAY J90 system. If you are targetting your program for one of
these systems and do not want your program scanned, add the
SCANNER=OFF directive to your load step. If the target is a
CRAY J90 system, your program will execute with cache memory
disabled. If the target is a CRAY EL98 system and performs
multitasking, you may encounter unexpected results.

Format:

SCANNER = [ON | OFF]

When processing a segmented program, the scanner will
occasionally be unable to locate enough unused memory areas to
apply the necessary corrections. Use the SCANPAD directive to
add additional unused memory to your program.

SCANNER directive
12.1

SCANPAD directive
12.2

Scanning Directives [12] Segment Loader (SEGLDR) and ld Reference Manual

122 Cray Research, Inc. SR–0066 9.0

Format:

SCANPAD = nnnnnn

nnnnnn Additional number of words, in decimal, to add to
the program.

Examples [A]

123Cray Research, Inc.SR–0066 9.0

This appendix presents examples of some typical loads and
segment tree structures with their corresponding sets of
directives.

The Fortran program in this example is compiled, loaded, and
executed beginning at entry point START. The loader produces a
full load map. Its source is in file source.f . The loaded
program is nonsegmented.

cft77 source.f
segldr –o ftest –M,f –e START source.o > mapfile
ftest

The following two examples show two legal tree structures
generated by the loader.

Example 1:

TREE
A(B,C,D,E,F,G,H)
ENDTREE A

B C D E F G H

Basic case
A.1

Tree structure
examples
A.2

Examples [A] Segment Loader (SEGLDR) and ld Reference Manual

124 Cray Research, Inc. SR–0066 9.0

Example 2:

A
TREE
B(E,F)
H(I,J,K)
A(B,C,D)
F(G,H)
ENDTREE

B C D

E F

G H

JI K

Given the tree structure shown in Figure 12, assume that
dynamic common block /DYN/ is used and expanded at execution
time. All modules are obtained from mybin.o , blib.a , and
baselib.a . Common block /AA/ is to be assigned to segment
J. A full load map on file map is desired.

Tree structure
with expandable
common block
A.3

Examples [A]Segment Loader (SEGLDR) and ld Reference Manual

125Cray Research, Inc.SR–0066 9.0

A

B C D

E F

G H

JI K

 Y
MAIN

 W
SUBB

SUBC
BIN1

 Z
SUBD

 BIN2

COMMONS=AA

Figure 12. Example tree structure

Examples [A] Segment Loader (SEGLDR) and ld Reference Manual

126 Cray Research, Inc. SR–0066 9.0

The control statement and directives required are as follows:

segldr –i ins –M map,full –l./blib.a –l./baselib.a mybin.o

The following directives are used:

DYNAMIC=DYN
TREE
A(B,C,D)
B(E,F)
F(G,H)
H(I,J,K)
ENDTREE
SEGMENT=A
MODULES=MAIN
ENDSEG
SEGMENT=B
MODULES=SUBB
ENDSEG SEGMENT=C
MODULES=SUBC ENDSEG
SEGMENT=D
MODULES=SUBD
ENDSEG
SEGMENT=E
MODULES=SUBE
ENDSEG
SEGMENT=F
MODULES=SUBF
ENDSEG
SEGMENT=G
MODULES=SUBG
ENDSEG
SEGMENT=H
MODULES=SUBH
ENDSEG
SEGMENT=I
MODULES=SUBI
ENDSEG
SEGMENT=J
COMMONS=AA;MODULES=SUBJ
ENDSEG
SEGMENT=K
MODULES=SUBK
ENDSEG

Examples [A]Segment Loader (SEGLDR) and ld Reference Manual

127Cray Research, Inc.SR–0066 9.0

This example is based on the tree structure in Figure 13. Given
this tree structure, assume that all modules in object file bin1.o
are to be loaded in segment C and all modules in bin2.o in
segment E. All other modules are to be obtained from global bin
files bin3.o and bin4.o , and the default libraries. Modules Y,
W, and Z are in segments A, B, and D, respectively. Also assume
that segments B and C contain large data arrays whose updated
values are needed each time they are executed. Assume that
version 1 of module X (in bin3.o) is needed in segment D, and
version 2 (in bin4.o) is needed in segment F. All calls to entry
points Y1, Y2, and Y3 are to be linked to entry point Y. Also
assume that the module name and the entry name in a
subroutine are the same.

The control statements and directives included are as follows:

segldr –i inpts

INPTS contains the following directives:

BIN=bin3.o, bin4.o; EQUIV=Y (Y1,Y2,Y3)
TREE
A(B,C)
C(D,E,F)
ENDTREE
DUP=X(D,F)
SEGMENT=A
MODULES=Y
ENDSEG
SEGMENT=B;SAVE=ON
MODULES=W
ENDSEG
SEGMENT=C;SAVE=ON
BIN=bin1.o
ENDSEG
SEGMENT=D
MODULES=Z,X: bin3.o
ENDSEG
SEGMENT=E
BIN=bin2.o
ENDSEG
SEGMENT=F
MODULES=X:bin4.o
ENDSEG

Segmented load
with duplicated
modules
A.4

Examples [A] Segment Loader (SEGLDR) and ld Reference Manual

128 Cray Research, Inc. SR–0066 9.0

A

B C

D E F Z
X:BIN3

X:BIN4

Y

W

Figure 13. Tree structure

This example provides a set of loader directives, block maps and
associated output, and related entry point and common block
reference maps for the sample Fortran program that follows.

The following Fortran program consists of 10 subroutines. The
loader directives described in the following subsection load the
10 separate modules of this program into separate segments.

PROGRAM EXAMPLE
DATA I /0/
CALL SUBR1(I)
CALL SUBR2(I)
PRINT *,’ VALUE OF I IS ’,I
END

SUBROUTINE SUBR1(I)
COMMON /SPACE/ SPACE(100)
COMMON COMMON
I=I+1
CALL SUBR1A(I)
CALL SUBR1B(I)
CALL SUBR1C(I)
RETURN
END

Comprehensive
Fortran program
example
A.5

Fortran source code
A.5.1

Examples [A]Segment Loader (SEGLDR) and ld Reference Manual

129Cray Research, Inc.SR–0066 9.0

SUBROUTINE SUBR1A(I)
COMMON COMMON
PRINT *,’ EXECUTION OF SUBR1A’ I=I+1
RETURN
END

SUBROUTINE SUBR1B(I)
COMMON /STATUS/ STATUS
COMMON COMMON
PRINT *,’ EXECUTION OF SUBR1B’
I=I+1
RETURN
END

SUBROUTINE SUBR1C(I)
COMMON /STATUS/ STATUS
PRINT *,’ EXECUTION OF SUBR1C’
I=I+1
RETURN
END

SUBROUTINE SUBR2(I)
COMMON /SPACE/ SPACE(100)
I=I+1
CALL SUBR2A(I)
RETURN
END

SUBROUTINE SUBR2A(I)
PRINT *,’ EXECUTION OF SUBR2A’
I=I+1
CALL SUBR2B(I)
RETURN
END

SUBROUTINE SUBR2B(I)
PRINT *,’ EXECUTION OF SUBR2B’
I=I+1
CALL SUBR2C(I)
RETURN
END

SUBROUTINE SUBR2C(I)
PRINT *,’ EXECUTION OF SUBR2C’
I=I+1
CALL SUBR2D(I)
RETURN
END

Examples [A] Segment Loader (SEGLDR) and ld Reference Manual

130 Cray Research, Inc. SR–0066 9.0

SUBROUTINE SUBR2D(I)
PRINT *,’ EXECUTION OF SUBR2D’
I=I+1
RETURN
END

The following loader directive input sample specifies and
diagrams the construction of the segmented object module.

ECHO=ON
MAP=FULL
HEAP=5000+0

ROOT

SEG1 SEG2

SEG1A SEG1B SEG1C

SEG2A

SEG2B

SEG2C

SEG2D

TREE
ROOT(SEG1,SEG2)
SEG1(SEG1A,SEG1B,SEG1C)
SEG2(SEG2A)
SEG2A(SEG2B)
SEG2B(SEG2C)
SEG2C(SEG2D)

ENDTREE
SEGMENT=ROOT

MODULES=EXAMPLE
ENDSEG
*
* Left-hand segment tree branch

Loader directives
A.5.2

Examples [A]Segment Loader (SEGLDR) and ld Reference Manual

131Cray Research, Inc.SR–0066 9.0

*
SEGMENT=SEG1

MODULES=SUBR1
ENDSEG
SEGMENT=SEG1A

MODULES=SUBR1A
ENDSEG
SEGMENT=SEG1B

MODULES=SUBR1B
ENDSEG
SEGMENT=SEG1C

MODULES=SUBR1C
ENDSEG
*
* Right-hand segment tree branch
*
SEGMENT=SEG2

MODULES=SUBR2
ENDSEG
SEGMENT=SEG2A

MODULES=SUBR2A
ENDSEG SEGMENT=SEG2B

MODULES=SUBR2B
ENDSEG
SEGMENT=SEG2C

MODULES=SUBR2C
ENDSEG
SEGMENT=SEG2D
 MODULES=SUBR2D
ENDSEG

Examples [A] Segment Loader (SEGLDR) and ld Reference Manual

132 Cray Research, Inc. SR–0066 9.0

The following SEGLDR output sample is an example of the
general information preceding the block maps. Word addresses
and block lengths are in octal.

Program statistics
Segmented object module written to– a.out
Allocation order– XMP.EMA
Movable block positioning– ANY
Actual SLT requirement– 16
Program origin– 0 octal 0 decimal
Program length– 110403 octal 37123 decimal
Dynamic common block– //

Origin– 110402 octal 37122 decimal
Length– 1 octal 1 decimal

Maximum segment chain address– 110402 octal 37122 decimal
ending with segment– SEG2D
Transfer is to entry point– EXAMPLE at address– 340a

Managed Memory Statistics
 Initial stack size– 4000 octal 2048 decimal
 Stack increment size– 400 octal 256 decimal
 Initial managed memory size– 11610 octal 5000 decimal
 Managed memory increment size– 0 octal 0 decimal
 Managed memory epsilon– 0 octal 0 decimal
 Base address of managed memory/stack– 76572
 Base address of pad area– 76367
Segment numbers
 0– ROOT 1– SEG1 2– SEG1A 3– SEG1B
 4– SEG1C 5– SEG2 6– SEG2A 7– SEG2B
 8– SEG2C 9– SEG2D

SEGLDR map output
A.5.3

Examples [A]Segment Loader (SEGLDR) and ld Reference Manual

133Cray Research, Inc.SR–0066 9.0

The segment summary is followed by two block maps for each
segment in this example; one sorted by address, and another
sorted by block name. This is an abbreviated sample. Library
routines have been omitted, and block maps for only the first
three segments are present.

Segment Summary
Segment Address Length Save Histogram (bar =– 884 words decimal)

ROOT 0 75763 –––––––––––––––––––––––––––––––––––––
SEG1 7576 46 –
SEG1A 76031 67 –
SEG1B 76031 67 –
SEG1C 76031 6 –
SEG2 7576 34 –
SEG2A 76017 73 –
SEG2B 76112 73 ––
SEG2C 76205 73 –
SEG2D 76300 67 –

Segment ’ROOT’ Block Map – sorted by address
Module Block Address Length Source Date
$START 0 22 /lib/libc.o 02/16/88 07:43

TRBK 22 7
$SEGRES 31 73 /lib/libu.o 02/16/88 07:46

124 57
CALLIST 203 115
CALLIST 320 1
TRBK 321 16

$EXAMPLE 337 27 t/example.o 01/22/87 16:16
#TB 366 7
#CL 375 22
$TRBK 417 7
/SPACE/ 74365 144
/WAVARS/ 74531 1232 (continued)

Program block maps
A.5.4

Examples [A] Segment Loader (SEGLDR) and ld Reference Manual

134 Cray Research, Inc. SR–0066 9.0

Segment ’ROOT’ Block Map – sorted by block name
Module Block Address Length Source Date

$SEGRES CALLIST 320 1 /lib/libu.o 02/16/88 07:46
124 57

/$SEGRES/ 20633 462
21357 363

CALLIST 203 115
TRBK 321 16

31 73
$START 21317 40 /lib/libc.o 02/16/88 07:43
 0 22
 TRBK 22 7
$EXAMPLE 337 27 t/example.o 01/22/87 16:16
 $TRBK 417 7

#CL 375 22
#TB 366 7

 #DA 61303 7

Segment ’SEG1’ Block Map – sorted by address
Module Block Address Length Source Date

SUBR1 75763 17 t/example.o 01/22/87 16:16
 #TB 76002 6
 #CL 76010 6
 $TRBK 76016 7
 #DA 76025 3
 /STATUS/ 76030 1

 Segment ’SEG1’ Block Map – sorted by block name
 Module Block Address Length Source Date

 /STATUS/ 76030 1
SUBR1 #CL 76010 6 t/example.o 01/22/87 16:16
 $TRBK 76016 7
 #DA 76025 3
 #TB 76002 6

 75763 17 (continued)

Examples [A]Segment Loader (SEGLDR) and ld Reference Manual

135Cray Research, Inc.SR–0066 9.0

 Segment ’SEG1A’ Block Map – sorted by address
 Module Block Address Length Source Date
 SUBR1A 76031 25 t/example.o 01/22/87 16:16
 #TB 76056 10

#CL 76066 14
 $TRBK 76102 7
 #DA 76111 7

 Segment ’SEG1A’ Block Map – sorted by block name
Module Block Address Length Source Date

 SUBR1A #CL 76066 14 t/example.o 01/22/87 16:16
 #TB 76056 10
 $TRBK 76102 7
 #DA 76111 7
 76031 25

Examples [A] Segment Loader (SEGLDR) and ld Reference Manual

136 Cray Research, Inc. SR–0066 9.0

This sample entry-point cross-reference map shows entry-point
values, segments to which modules are assigned, and the
segment tree in caller/callee form.

When you specify MAP=FULL or MAP=EPXRF, this is the resulting
output. (This sample is abbreviated for readability.)

Entry point references
EXAMPLE from t/example.o in ROOT calls... SUBR1 SUBR2 $WLI $WLA

$WLV% $WLF $END
$SEGCALL

EXAMPLE 340a

 SUBR1 from t/example.o in SEG1 calls... SUBR1A SUBR1B SUBR1C
SUBR1 75764a called by...EXAMPLE

SUBR1A from t/example.o in SEG1A calls... $WLI $WLA $WLF
SUBR1A 76032a called by... SUBR1

SUBR1B from t/example.o in SEG1B calls... $WLI $WLA $WLF
SUBR1B 76032a called by...SUBR1

SUBR1C from t/example.o in SEG1C calls... $WLI $WLA $WLF
SUBR1C 76032a called by...SUBR1

SUBR2 from t/example.o in SEG2 calls... SUBR2A
SUBR2 75764a called by...EXAMPLE

SUBR2A from t/example.o in SEG2A calls... $WLI $WLA $WLF SUBR2B
SUBR2A 76020a called by...SUBR2

SUBR2B from t/example.o in SEG2B calls... $WLI $WLA $WLF SUBR2C
SUBR2B 76113a called by...SUBR2A

SUBR2C from t/example.o in SEG2C calls... $WLI $WLA $WLF SUBR2C
SUBR2C 76206a called by...SUBR2B

SUBR2D from t/example.o in SEG2D calls... $WLI $WLA $WLF
SUBR2D 76301a called by...SUBR2C

Program entry-point
cross-reference map
A.5.5

Examples [A]Segment Loader (SEGLDR) and ld Reference Manual

137Cray Research, Inc.SR–0066 9.0

When you specify MAP=FULL or MAP=CBXRF, the output contains
the common block cross-reference.

Common Block References
Block Segment Address Length Module references
$SEGRES ROOT 20633 462 $SEGRES

// 110402 1 SUBR1 SUBR1A SUBR1B

SPACE ROOT 74365 144 SUBR1 SUBR2
STATUS SEG1 76030 1 SUBR1B SUBR1C

Program common block
reference map
A.5.6

Examples [A] Segment Loader (SEGLDR) and ld Reference Manual

138 Cray Research, Inc. SR–0066 9.0

Messages [B]

139Cray Research, Inc.SR–0066 9.0

SEGLDR produces many messages describing problems it
detects during the load process. The loader divides messages
into two categories:

• Load-time messages produced during the load process. These
messages are written to the standard error (stderr) file. By
specifying the –k option on the segldr command line, the
messages can be forced to the standard output (stdout) file.

• Run-time messages issued when the program executes. the
run-time messages are issued by library routines that the
loader builds into the load. These messages are always
written to the standard error (stderr) file.

The loader produces six classes of load-time messages, five of
which can be controlled by users through the use of the MLEVEL
directive. From least severe to most severe, the five user
controllable message classes are as follows:

Class Description

COMMENT Informational messages that have no affect
on the execution of the object module.

NOTE Messages indicate the possible misuse or
inefficient use of the loader. These errors
have no affect on the execution of the object
module.

CAUTION Messages indicate the possible detection of
an error not severe enough to prohibit
execution of the object module.

Messages [B] Segment Loader (SEGLDR) and ld Reference Manual

140 Cray Research, Inc. SR–0066 8.0

Class Description

WARNING Messages indicate an error severe enough to
invalidate the object module. The object
module may not be written, but processing
continues so that additional error checking
occurs. In most cases, the executable
program will still be generated, but
execution mode will not be enabled.

FATAL Messages indicate a fatal error was detected
and processing cannot continue. No object
module is written, the loader terminates
immediately.

In addition to these message classes, segldr produces SUMMARY
messages when the –k option is specified on the command-line.
Unlike the other message classes, SUMMARY messages are always
written to the standard error (stderr) file; they cannot be
redirected to the standard output (stdout) file or a file through
the use of the –k option.

SUMMARY messages serve as immediate notification that you
have errors in your load process.

The loader prepends the type of message onto all messages.

You can get detailed descriptions for any loader error messages
through the use of the explain (1) command. The loader
message ID string for use with the explain command is ldr .

The following is an example using the explain command to
generate a message description for the loader message number
ldr-101, “The initial managed memory size is too
small. It has been increased to ’ nnn ’ words :”

Messages [B]Segment Loader (SEGLDR) and ld Reference Manual

141Cray Research, Inc.SR–0066 9.0

mjc% explain mppldr101

The initial managed memory size is too small.
It has been increased to ’ nnn ’
words.

The size specified on the HEAP directive as
the initial managed memory size
is below the minimum value allowed. The
amount of managed memory has been
set to the minimum size allowed.

You can control the format of messages by using the
MSG_FORMAT environment variable. For a complete description
of the MSG_FORMAT environment variable, see the explain (1)
command.

Messages [B] Segment Loader (SEGLDR) and ld Reference Manual

142 Cray Research, Inc. SR–0066 8.0

Loader-created Tables [C]

143Cray Research, Inc.SR–0066 9.0

The loader can create and initialize the contents of several tables
in the generated program. Four of these loader-created tables,
the _infoblk , $SEGRES, Segment Linkage, and Segment
Description tables, are described in this appendix.

The _infoblk table is created whenever the SYSTEM=UNICOS
directive is used. This directive is normally found in the default
directives file, and _infoblk is normally created for all
UNICOS programs. The table contains general information,
such as the size of various program sections, time and date of
program creation, and version of the loader. _infoblk is
structured as follows:

 0 32 63
 Word

0: vers //// a len

1: n a m e

2: c k s u m

3: d a t e

4: t i m e

5: p i d

6: p v r

7: o s v r

8: u d t

9: f i l l

10: tbase dbase

11: tlen dlen

12: blen zlen

13: cdatalen lmlen

14: amlen mbase

15: hinit hinc

_infoblk
C.1

Loader-created Tables [C] Segment Loader (SEGLDR) and ld Reference Manual

144 Cray Research, Inc. SR–0066 9.0

 0 32 63
 Word

16: sinit sinc

17: usxf usxl

18: mtptr cmptr

19: / / / / / / / / / /

20: sgptr ////

21: taskstk taskincr

22: u s e r 1

23: u s e r 2

Table 6. _infoblk description

Field Word Bits Description

vers 0 0–6 infoblk table version (currently equals 1).

a 0 31 fill Address Generation flag (used by the system startup
routine to insert address in filled words).

len 0 32–63 Number of words in _infoblk (currently 24).

name 1 0–63 ASCII _infoblk table name (“infoblk”). Null-terminated.

cksum 2 0–63 Check sum of _infoblk contents.

date 3 0–63 Date of program creation in ASCII mm/dd/yy format.

time 4 0–63 Time of program creation in ASCII hh:mm:ss format.

pid 5 0–63 ASCII name of loader that created program.
Null-terminated if name is less than 8 characters.

pvr 6 0–63 ASCII version of loader that created program.
Null-terminated if name is less than 8 characters.

osvr 7 0–63 ASCII operating system active when program was created.
Null-terminated if name is less than 8 characters.

udt 8 0–63 Date and time of program creation in UNICOS time-stamp
format.

Loader-created Tables [C]Segment Loader (SEGLDR) and ld Reference Manual

145Cray Research, Inc.SR–0066 9.0

Table 6. _infoblk description
(continued)

Field DescriptionBitsWord

fill 9 0–63 Value used by system startup routine to fill uninitialized
areas of memory.

tbase 10 0–31 Base address of program text address space.

dbase 10 32–63 Base address of program data address space.

tlen 11 0–31 Number of words in text section.

dlen 11 32–63 Number of words in initialized data section.

blen 12 0–31 Number of words in uninitialized data section.

zlen 12 32–63 Number of words in zeroset data section.

cdatalen 13 0–31 Number of words in initialized data section prior to
compressed data expansion.

amlen 14 0–31 Number of words of auxiliary memory used.

mbase 14 32–63 Base address of managed memory area.

hinit 15 0–31 Initial size of program heap.

hinc 15 32–63 Heap expansion increment value.

sinit 16 0–31 Initial size of program stack.

sinc 16 32–63 Stack expansion increment value.

usxf 17 0–31 First address of $USXMSG jump table.

usxl 17 32–63 Last address of $USXMSG jump table.

mtptr 18 0–31 Address of machine targeting information block.

cmptr 18 32–63 Address of first entry in data compression entry list.

sgptr 20 0–31 Address of $SEGRES segmentation information block.

taskstk 21 0–31 Initial size of slave task stack.

taskincr 21 32–63 Task stack expansion increment.

Loader-created Tables [C] Segment Loader (SEGLDR) and ld Reference Manual

146 Cray Research, Inc. SR–0066 9.0

Table 6. _infoblk description
(continued)

Field DescriptionBitsWord

user1 22 0–63 Reserved for users.

user2 23 0–63 Reserved for users.

The contents of the _infoblk table may be accessed from a
C language routine by including the following statements:

#include <infoblk.h>
extern struct infoblk _infoblk;

The loader builds several tables into each segmented program.
These tables are used by the segmentation routines included in
the program to manage the segments in memory. The $SEGRES
table contains general segmentation information, including the
addresses of the other segmentation tables. The Segment
Description table (SDT) contains one entry for each segment in
the program. Each SDT entry describes the size, location, and
residency status of each segment. The Segment Linkage table
(SLT) contains one entry for each intercepted subroutine call
that may result in loading a new segment. Each SLT entry
describes the target segment and address needed to complete the
subroutine reference.

Segmentation
tables
C.2

Loader-created Tables [C]Segment Loader (SEGLDR) and ld Reference Manual

147Cray Research, Inc.SR–0066 9.0

The $SEGRES table can be accessed through the common block
/$SEGRES/ . The other tables must be located through the
addresses contained in $SEGRES. The $SEGRES format is as
follows:

 0 32 63
 Word

0: l e n g t h

1: d c s vers

2: x f e r

3: f i l l

4: numslt bslt

5: numsdt bsdt

6: numjtbl bjtbl

Table 7. $SEGRES description

Field Word Bits Description

length 0 0–63 Number of words in $SEGRES table.

d 1 0–0 Flag indicating segmentation debug mode.

c 1 1–1 Flag indicating that segments should be copied to a scratch
file.

s 1 2–2 Flag indicating that split segment mode is active.

vers 1 58–63 $SEGRES table version (currently equals 2).

xfer 2 0–63 Address of user main entry point.

fill 3 0–63 Fill value used to preset the uninitialized data section of
each segment.

numslt 4 0–31 Number of entries in Segment Linkage table.

bslt 4 32–63 Base address of Segment Linkage table.

numsdt 5 0–31 Number of entries in Segment Description table.

bslt 5 32–63 Base address of Segment Description table.

$SEGRES table
A.1.1

Loader-created Tables [C] Segment Loader (SEGLDR) and ld Reference Manual

148 Cray Research, Inc. SR–0066 9.0

Table 7. $SEGRES description
(continued)

Field DescriptionBitsWord

numjtbl 6 0–31 Number of entries in interception jump table.

bjtbl 6 32–63 Base address of interception jump table.

The Segment Linkage table (SLT) is included in every
segmented program. The SLT describes the inter-segment
linkages in the program. The Segment Linkage table entry
format is as follows:

0 32 63
sdtp iaddr

Table 8. SLT description

Field Word Bits Description

sdtp 0 0–31 Address of SDT entry for target segment.

iaddr 0 32–63 Parcel address of target routine.

Segment Linkage table
C.2.1

Loader-created Tables [C]Segment Loader (SEGLDR) and ld Reference Manual

149Cray Research, Inc.SR–0066 9.0

The Segment Description table is included in every segmented
program. It describes each segment included in the program.
The Segment Description table entry format is as follows:

 0 32 63
Word

0: n a m e

1: r s level acount

2: s u c c p p r e d p

3: t l e n t l a

4: d l e n d l a

5: z l e n b l e n

6: / / / / / / / /

7: t p o s

Segment Description
table
C.2.2

Loader-created Tables [C] Segment Loader (SEGLDR) and ld Reference Manual

150 Cray Research, Inc. SR–0066 9.0

Table 9. SDT description

Field Word Bits Description

name 0 0–63 ASCII name of segment. Null-terminated if name is less
than 8 characters.

r 1 0–0 Flag indicating memory residency status of segment.

s 1 1–1 Flag indicating segment contents should be written to
scratch file before overwriting with another segment.

level 1 32–47 Level of segment within segment tree.

acount 1 48–63 Number of active calls to routines within segment.

succp 2 0–31 SDT entry address of memory-resident successor segment.

predp 2 32–63 SDT entry address of predecessor segment.

tlen 3 0–31 Number of words in segment text section.

tla 3 32–63 Base address of segment text section.

dlen 4 0–31 Number of words in segment data section.

dla 4 32–63 Base address of segment data section.

blen 5 0–31 Number of words in segment uninitialized data section.

zlen 5 32–63 Number of words in segment zeroset data section.

tpos 7 0–63 Byte position within file of segment contents.

Glossary

151Cray Research, Inc.SR–0066 9.0

A binary module that the linkage editor has bound. All relative
addresses within the bound object modules have been resolved.
Also, all external and entry points in these modules have been
resolved satisfactorily. This module is considered executable.
The name for this module comes from COS where it was
referenced as $ABS.

In macrotasking, a mechanism to synchronize tasks.
Encountering a barrier causes a task to wait until all tasks have
reached the barrier.

Files specified in BIN directives, which are specified as
segldr (1) command-line option-arguments. By convention, bin
files should be the portion of your program that you have
written. See also object module.

(1) The smallest allocation unit in a file system; a group of
contiguous characters recorded on and read from magnetic tape
as a unit. Blocks are separated by record gaps. A block and a
physical record are synonymous on magnetic tape. Usually, a
block is the size of one physical disk sector. (2) A logical term
denoting an arbitrary amount of data; generally a synonym for a
4096-byte hardware sector. See also sector. (3) A structure
defined by each language processor that represents a contiguous
area of memory. Blocks can be local to the defining object
module (local blocks) or shared between modules (common
blocks). A block can contain instructions, data, or both.

Any segment in a segment program that is not the root segment.
Branch segments are brought into memory when required, and
they may be overwritten by other branch segments.

The part of a program containing uninitialized data. Space for
the area is allocated at execution time.

A BSS area that is initialized to zero.

absolute binary module

barrier

bin file

block

branch segment

BSS

BSSZ

Glossary Segment Loader (SEGLDR) and ld Reference Manual

152 Cray Research, Inc. SR–0066 9.0

Cray Assembly Language

An interactive, symbolic debugger that can be used to perform
source-level debugging while executing programs running under
UNICOS.

A block of memory that will be shared by more than one object
module. (1) A Fortran data area that contains data that is
accessible to multiple parts of a program. COMMON is a type of
scope declaration in Fortran that makes variables accessible to
multiple parts of a program. More than one program module can
specify data for a common block, but if a conflict occurs,
information from later programs is loaded on top of previously
loaded information. A program may declare 0 to 125 common
blocks, which can be either labeled or blank. (2) The C language
global data items generate both a common block and an entry
point.

The process by which a loader inserts data into object module
blocks. Occurs explicitly in response to program statements,
such as the Fortran DATA statement or C language data
initialization operation. Implicit data loading of locations within
a subprogram code block can also occur if the compiler or
assembler so dictates.

Distributed EXpression table. A DEX contains many
expressions that are evaluated at load time. These expressions
are used for many purposes. A prominent use is relocation logic.

In PVM message passing, distributed mode handles
communications between a Cray MPP system and a Cray PVP
host system.

A location in a program or routine at which execution begins. A
routine may have several entry points, each serving a different
purpose. Linkage between program modules is performed when
the linkage editor binds the external references of one group of
modules to the entry points of another module. See also absolute
binary module, object module, and loader.

Events record the state of a program’s execution (for instance,
whether or not it has accessed data yet) and communicate that
state to other tasks.

CAL

CDBX

common block

data loading

DEX

distributed mode

entry point

events

GlossarySegment Loader (SEGLDR) and ld Reference Manual

153Cray Research, Inc.SR–0066 9.0

The result of the load process. The executable program is a
memory image built from the submitted object files and libraries
that can be loaded into memory and executed. The default file
name for the executable program is a.out .

A reference to an entry point defined outside the referencing
module. Fortran CALL statements and function calls generate
external references. The CAL EXT pseudo instruction indicates
an external reference. C procedure calls and extern statements
generate external references.

The process by which the loader assigns movable blocks to
segments.

The inclusion of a module that has no callers (for example,
force-loading is performed on BLOCKDATA modules). The FORCE
directive enables the force-loading of all uncalled entry points.

The Global Symbol table is appended to the executable program,
and contains information describing the modules, local blocks,
common blocks, and entry points included in the program.

A section of memory within the user job area that provides a
capability for dynamic allocation. See “HEAP directive,” page 87,
or see the heap memory management routines in the Application
Programmer’s Library Reference Manual, publication SR–2165.

To make an object module encountered in an object file or library
a part of the executable program.

The entry point at which your program begins execution.

executable program

external reference

floating

force-loading

Global Symbol table

heap

include

initial transfer address

Glossary Segment Loader (SEGLDR) and ld Reference Manual

154 Cray Research, Inc. SR–0066 9.0

A collection of functions, or routines, that are functionally
related, are called from within programs, and perform commonly
used tasks. They are not operating system functions. Library
functions let you use code that is already written (you do not
have to reinvent wheels), make programs less complicated, and
make changing programs easier. The loader includes any
module in the library in the executable program only if one of
the entry points in the module satisfies an external reference
from another module included in the executable program. A
library usually is built by a library maintenance tool, such as
bld (1) or ar (1). The file name typically ends with .a , and the
library is sometimes referred to as a .a file.

Generic term for the system software product that loads a
compiled or assembled program into memory and prepares it for
execution.

A number UNICOS uses to identify the type of a file.

(1) A hardware module is the basic building block of Cray
Research systems; modules are made of cold plates and printed
circuit boards, and fit into the mainframe chassis. (2) A
software module is the basic building block of the IOS-E
operating system. (3) A Fortran 90 program module is a
program (or function) that contains or accesses definitions to be
accessed by other program units.

A module or common block not assigned by a segment
description directive to a specific segment but assigned by
SEGLDR to the highest-level segment that precedes all callers.

The executable binary program that SEGDLR produces.

A method of selecting one of several duplicated entry points
found in libraries. SEGLDR locates the first module that
references the duplicated entry point and then looks for a
definition of the symbol in succeeding modules. The first
definition found in a succeeding module is the one used. If
SEGLDR finds no succeeding definition, the first definition
encountered anywhere is used.

library

loader

magic number

module

movable block

object module

ordered duplicate
selection

GlossarySegment Loader (SEGLDR) and ld Reference Manual

155Cray Research, Inc.SR–0066 9.0

(1) A contiguous set of blocks on a logical device that holds a file
system. A partition of a logical device corresponds to a slice on a
physical device. In file allocation, partitions permit the
distribution of files across the physical devices underlying the
logical device on which a file system is mounted. (2) A whole or
partial disk unit that consists of an arbitrary number of
consecutive tracks on a physical disk device.

An entry point specified by the Fortran or Pascal PROGRAM
statement, the CAL START pseudo-op, or the C main function; it
serves as the default transfer address for the program. The first
primary entry point encountered is the default transfer address.

Parallel virtual machine. The message-passing model used by
the Cray MPP system. It supports message passing between
PEs working on the same application on the Cray MPP system,
between the Cray PVP system and the Cray MPP system, and
among other combinations of systems (including workstations).

A binary module that cannot be executed because absolute
machine addresses have not yet been set by the loader/linker;
addresses are still only relative to others in the module and
therefore, they can be relocated to anywhere in hardware
memory.

The segment that occupies the root node of the segment tree;
always resides in memory during program execution.

Segment Description table. The table is constructed by the
loader and is included in every segmented program. It describes
each segment included in the program.

A unit of disk storage space equal to 4096 bytes (a physical disk
area that can store 512 Cray words). It is the smallest unit of
transfer to or from a disk drive. The term block is often used
rather than sector when discussing the concept at a high level.
However, when disk storage space is meant, the term sector is
used. See also block.

partition

primary entry point

PVM

relocatable binary
module

root segment

SDT

sector

Glossary Segment Loader (SEGLDR) and ld Reference Manual

156 Cray Research, Inc. SR–0066 9.0

(1) A single node in the tree structure of a segmented program.
(2) A 512-word (minimally) piece of the channel buffer that is
allocated by a system’s getseg code, at the request of the
MUXIOP; used for system service requests such as central
memory peek or poke executed from the OWS-E. (3) A part of a
TCP data stream sent from TCP on one host to TCP on another
host. Segments include control fields that identify the segment’s
location in the data stream and a checksum to validate the
received data.

See SDT.

See SLT.

Segment Linkage table. The table is constructed by the loader,
and is included in every segmented program. The SLT describes
the inter-segment linkages in the program.

A program that will not run under control of the UNICOS
operating system. Examples of special-purpose programs
include the operating system kernel, or stand-alone diagnostics
programs.

(1) A data structure providing a dynamic, sequential data list
that can be accessed from one end or the other; a last-in,
first-out (push down, pop up) stack is accessed from just one end.
(2) A dynamic area of memory used to hold information
temporarily; a push/pop method of adding and retrieving
information is used.

Memory that is not on the stack or not in the heap.

The primary entry point that will receive control from the
system initialization routine when the program begins
execution.

The process by which SEGLDR eliminates modules that are not
referenced in the executable program.

An external reference for which no entry point of that name can
be found in any of the object modules scanned by the loader.

segment

Segment Description
table

Segment Linkage table

SLT

special purpose
program

stack

static memory

transfer entry point

tree trimming

unsatisfied external
reference

Index

157Cray Research, Inc.SR–0066 9.0

#pragma directive, 104
$SEGCALL, 85
$SEGRES, 85

description, 145
_infoblk table, description, 141
_loaded , and soft externals, 106

A

ABS directive, overview, 35
Absolute binary module, definition, 149
ADA, 1
ADDBSS directive, 90
ALIGN

directive, overview, 47
pseudo-op, 47

Allocating Central Memory
Cray PVP system, 99, 100
default allocation scheme, 98
definitions of terms, 96
overview, 95
segmented programs, overview, 99
shared-text allocation scheme, 98
TEXT, DATA, BSS allocation scheme, 98

Assigning modules to segments, 67
Assignment, block & program duplication

nonsegmented programs, 75
overview, 75
segmented programs, 76

Automatic duplicaiton of movable blocks using FLOAT

directive, 80

B

Barrier, definition, 149
bin and lib files, exceptions and differences, 24
BIN directive

example, 125
with DUPORDER directive, 32
with FORCE directive, 30
with NODEFLIB directive, 28

BIN directive (global)
example, 26
overview, 26

BIN directive (segment)
example, 70
overview, 69

Bin file, definition, 149
Block

assignment
and program duplication, 75
definition, 75
nonsegmented, 76

definition, 149
movable, handling using FLOAT directive, 80

BLOCKDATA subprograms, 25, 30
Branch segment, definition, 55, 56, 149
BSS sections, and shared-text memory allocation, 98

C

C, 1
CAL

definition, 149
version 2, 1

Calling tree, precautions for design, 57
CALLXFER directive, overview, 113
Case conversion

controlling, 51
convention, vi

CASE directive, overview, 51
CAUTION message, definition, 137
CDBX, definition, 150
Central Memory, allocation of, 95
CF90, 1
CFT77, 1
CODE attributes, and shared-text memory allocation, 98
Command line

ld(1) , 10
options, –k , 137
segldr(1) , 4

Command line options
ld(1) , 10
segldr(1) , 4

Index Segment Loader (SEGLDR) and ld Reference Manual

Cray Research, Inc.158 SR–0066 9.0

Command options, 15
Commands, explain (1), 138
COMMENT directive, as segment description directive, 66
COMMENT message, definition, 137
Comments

example, 37
overview, 36
using in SEGLDR, 21

Common block
allocation, ORDER directive, 97
assignment

overview, 76
segmented block, 79

definition, 150
duplication in nonsegmented loads, 76
names, duplication in segmented loads, 76
naming, directives for

COMMONS, 31
FORCE, 30
MODULES, 30

reference map, 135
use and assignment, 75, 79, 83

block data routines, 84
data load restrictions, 83
duplicate common blocks, 77
referencing data in common blocks, 84

Common block use and assignment, user-assigned
common blocks, 83

COMMONS directive (global)
and duplicated common blocks, 76
overview, 31

COMMONS directive (segment)
in segmented loads, 76
overview, 68

COMPRESS directive, overview, 52
Control, load map, 35
Controlling entry points and execution, 44–47, 113
Controlling entry points and execution, directives for

CALLXFER, 113
EQUIV, 45
overview, 44, 113
SET, 46
START, 113
UNSAT, 46
XFER, 44

Controlling error messages, 39
Controlling error messages, directives for

DUPENTRY, 41
DUPLOAD, 42

MLEVEL, 39
MSGLEVEL, 43
NODUPMSG, 42
NOUSXMSG, 43
overview, 39
REDEF, 40
USX, 40

Controlling listings, directives for
Comments, 36
ECHO, 36
MAP, 37
TITLE , 38
TRIAL , 35

Controlling loading, 47
Conventions, for loader directives, 21
COPY directive, overview, 73
CPUCHECK directive, overview, 51

D

DATA attributes, and shared-text memory allocation, 98
Data loading, definition, 150
Data loads

and FORCE directive, 80
and MODULES directive, 80
restrictions, 83

block data routines, 84
referencing data in common blocks, 84

Debug symbol table, 50
Debugging, symbolic

CDBX definition, 150
overview, 50, 114
SYMBOLS directive, 50

Default, directives file, 17
Default directives files, 19
Default libraries, 25
Default system libraries, 18
DEFDIR directive

example, 111
overview, 109

DEFHEAP directive, overview, 117
DEFLIB directive

example, 29
overview, 29

DEFSTACK directive, 118
DEX, definition, 150
Differences between segldr and ld , 17
Directive termination, 22

Segment Loader (SEGLDR) and ld Reference Manual Index

159Cray Research, Inc.SR–0066 9.0

Directives
ABS, 35
ADDBSS, 90
ALIGN, 47
BIN (global), 26
BIN (segment), 69
CALLXFER, 113
CASE, 51
comments, 36
COMMONS (global), 31
COMMONS (segment), 68
COMPRESS, 52
conventions, 21
COPY, 73
CPUCHECK, 51
DEFDIR, 109
DEFHEAP, 117
DEFLIB , 29
DEFSTACK, 118
DUP, 71
DUPENTRY, 41
DUPLOAD, 42
DUPORDER, 32
DYNAMIC, 90, 91
ECHO, 36
ENDSEG, 66
EQUIV, 45
FORCE, 30
FREEHEAP, 119
HARDREF, 108
HEAP, 87
INCFILE , 114
INCLUDE, 23
LBIN , 26
LIB , 27
LIBDIR , 111
LINCLUDE, 23
LLIB , 28
LOGFILE, 53
LOGUSE, 53
MAP, 37
MLEVEL, 39
MODULES (global), 30
MODULES (segment), 67
MSGLEVEL, 43
NODEFLIB, 28
NODUPMSG, 42
NOUSXMSG, 43
OMIT, 34

ORDER, 97
ORG, 49
OUTFORM, 112
PRESET, 48
REDEF, 40
SAVE (global), 72
SAVE (segment), 70
SCOMMONS (global), 31
SCOMMONS (segment), 68
SEGMENT, 66
SEGORDER, 74
SET, 46
SLT, 72
SMODULES (global), 30
SMODULES (segment), 67
SOFTREF, 108
specification order, 21
STACK, 88
START, 113
SYMBOLS, 50
SYSTEM, 114
TITLE , 38
TRIAL , 35
TSTACK, 89
UNSAT, 46
USX, 40
XFER, 44
ZEROCOM, 116, 117
ZSYMS, 115

Directives file, default, 17, 19
Directives processing order, 14
Directives, miscellaneous global, 50, 114
Directives, segment

ENDSEG directive, 66
segment description, 66
SEGMENT directive, 66
tree definition, 65

Directives, zero address, 115
Distributed EXpression table, definition, 150
Distributed mode, definition, 150
DUP directive

example, 71, 125
in nonsegmented loads, 75
in segmented loads, 76, 77
overview, 71

DUPENTRY directive
default setting, 18
keywords, 41
overview, 41

Index Segment Loader (SEGLDR) and ld Reference Manual

Cray Research, Inc.160 SR–0066 9.0

Duplicate names
entry point, 75
module, 75

Duplicated
common blocks and COMMONS directive, 76
entry point errors, controlling, 32

Duplication
definition, 75
in nonsegmented loads, 75

common blocks, 76
entry point names, 75
module names, 75

in segmented loads, 76
common blocks, 77
entry point names, 77
module names, 76

program and block assignment, 75
using DUP, 71
using MODULES, 67

DUPLOAD directive, overview, 42
DUPORDER directive

default setting, 18
example, 33
overview, 32

Dynamic common block
allocation, 90
and heap memory, 87

DYNAMIC directive
example, 91, 124
overview, 90
with the heap, 92

Dynamic memory management, 87

E

ECHO directive
as segment description directive, 66
example, 128
overview, 36

ENDSEG directive
example, 67, 124, 125, 128
overview, 66

ENDTREE directive
example, 66, 121, 122, 124, 125, 128
overview, 65

Entry point
control and execution, 44, 113
definition, 75, 150

duplicate names, 75
duplication

error message control, 41, 42
figure, 78
in nonsegmented loads, 75
in segmented loads, 77
processing order, 32

names, duplication in segmented loads, 75
value assignment, 46

Entry point references
testing with _loaded , 106
testing with flag words, 107

Entry points, to external functions, 103
Environment variable processing, 12, 17
Environment variables

LDDIR, 12
LPP, 13
MSG_FORMAT, 13
NLSPATH, 13
SEGDIR, 13
TARGET, 14
TMPDIR, 14

EQUIV directive
example, 45
overview, 45

Error, messages, 137
descriptions, 138
format, 139
load–time, 137
run–time, 137

Error messages
controlling, directives for

DUPENTRY, 41
DUPLOAD, 42
MLEVEL, 39
MSGLEVEL, 43
NODUPMSG, 42
NOUSXMSG, 43
REDEF, 40
USX, 40

overview, 39
printing according to severity, 39

Events, definition, 150
Examples

basic loader invocation, 121
BIN directive, 26, 125
BIN directive (segment), 70
block maps, 131
Comments, 37

Segment Loader (SEGLDR) and ld Reference Manual Index

161Cray Research, Inc.SR–0066 9.0

common block reference map, 135
DEFDIR directive, 111
DEFLIB directive, 29
DUP directive, 71, 125
DUPORDER directive, 33
DYNAMIC directive, 91, 124
ECHO directive, 128
ENDSEG directive, 67, 124, 125, 128
ENDTREE directive, 66, 121, 122, 124, 125, 128
entry point cross-reference map, 134
entry point duplication, 78
EQUIV directive, 45
HEAP directive, 128
INCLUDE directive, 23
LIB directive, 27
LIBDIR directive, 111
LINCLUDE directive, 23
LLIB directive, 28
MAP directive, 128
map output, 130
MODULES directive, 31, 68, 124, 125, 129
MSGLEVEL directive, 43
NODEFLIB directive, 29
OMIT directive, 34
SAVE directive, 73
SEGMENT directive, 67, 124, 125, 128
segmented load with duplicated modules, 125
TREE directive, 66, 121, 122, 124, 125, 128
tree structure, 121, 122

figure, 123, 126
tree structure with expandable common block, 122
UNSAT directive, 46

Executable program, definition, 151
Executable program control, 34–35, 112
explain (1) command, 138
ext directive, 104
External functions, references to, 103
External reference, definition, 151
External symbols, 104

F

FATAL message, definition, 138
File attribute directive, OUTFORM, 112
File naming directives

ABS, 35
BIN , global, 26
LBIN , 26

LIB , 27
LLIB , 28
NODEFLIB, 28

Flag word usage, 107
Flag words, testing entry point references with, 107
FLOAT directive, 80

using automatic duplication, 80
using floating, 80

Floating, 80
definition, 151

FORCE directive
and data loads, 84
default setting, 18
overview, 30

Force-loading, definition, 151
Force-loading, definition, 30
Fortran program examples

acquiring space from the heap, 92
basic, 121
comprehensive

block maps, 131
common block reference map, 135
entry point cross-reference map, 134
Fortran program, 126
loader directives, 128
loader map output, 130
source code, 126

using dynamic common blocks, 93
FREEHEAP directive, 119

G

General directives, 21
Global directives

for segmentation, 72
miscellaneous

CASE, 51
COMPRESS, 52
CPUCHECK, 51
FLOAT, 80
INCFILE , 114
LOGFILE, 53
LOGUSE, 53
ORDER, 97
overview, 50, 114
SYMBOLS, 50
SYSTEM, 114
ZSYMS, 115

Index Segment Loader (SEGLDR) and ld Reference Manual

Cray Research, Inc.162 SR–0066 9.0

segmentation
COPY, 73
overview, 72
SAVE, 72
SEGORDER, 74
SLT, 72

Global heap memory, managing, 87, 117
Global segmentation directives, 72

COPY, 73
SAVE, 72
SEGORDER, 74
SLT, 72

Global symbol table, definition, 151

H

Hard references, converting to, 107
HARDREF directive, overview, 108
Header

creating, 38
example, 38

HEAP directive
example, 128
overview, 87
with DEFSTACK directive, 118
with DYNAMIC directive, 91
with STACK directive, 88

Heap memory
and Dynamic Common Block, 90
and the stack, 88, 118
global managing, 87, 117

Heap memory management directives
ADDBSS, 90
DEFHEAP, 117
DEFSTACK, 118
FREEHEAP, 119
HEAP, 87
STACK, 88
TSTACK, 89

I

INCFILE directive, overview, 114
Include, definition, 151
INCLUDE directive

example, 23
overview, 23

Including directives files, 22–23
Including object modules, 24–34
Initial transfer address, definition, 151
Initialization & alignment, program, 47
Initializing data areas, 47
Introduction, 1
Invoking SEGLDR, 3

ld command line, 10
segldr command line, 4

L

Languages supported, 1
LBIN directive, overview, 26
ld(1) , command line, 10
LDDIR environment variable, 12
lib and bin files, exceptions and differences, 24
LIB directive

and BIN files, 27
example, 27
overview, 27
with DEFLIB directive, 29
with DUPORDER directive, 32
with FORCE directive, 30
with NODEFLIB directive, 28

LIBDIR directive
example, 111
overview, 111

Library, definition, 152
LINCLUDE directive

example, 23
overview, 23

LLIB directive
example, 28
overview, 28

Load map control, 35–38
Load–time messages, 137
Loader

definition, 152
invocation, 3

Loader directives, 15
conventions, 21
specification order, 21

Loader messages, 137
Loader resident routine ($SEGRES), 85
Loader-created tables, overview, 141
Loading

control of, 37

Segment Loader (SEGLDR) and ld Reference Manual Index

163Cray Research, Inc.SR–0066 9.0

program segments, 1
LOGFILE directive, overview, 53
LOGUSE directive, overview, 53
LPP environment variable, 13

M

Machine characteristic checking, controlling, 51
Magic number, definition, 152
Managing global heap memory directives

ADDBSS, 90
DEFHEAP, 117
DEFSTACK, 118
FREEHEAP, 119
HEAP, 87
overview, 87, 117
STACK, 88
TSTACK, 89

Map control, load, 37
MAP directive

example, 128
overview, 37

Map output
example, 130
generation, 37

Mass storage, writing segment state to, 70, 72
Memory, overlays, 1
Message

descriptions, 138
format, 139
log file, format, 54
numbers, 138

Messages
controlling error, 39
directives for

DUPENTRY, 41
DUPLOAD, 42
MLEVEL, 39
MSGLEVEL, 43
NODUPMSG, 42
NOUSXMSG, 43
REDEF, 40
USX, 40

Miscellaneous global directives, 50, 114
MLEVEL directive, overview, 39
Module

assigning to segments, 66
definition, 152

duplication
in nonsegmented loads, 75
in segmented loads, 76
using DUP, 71
using MODULES, 67
using SMODULES, 67

names, duplication in nonsegmented loads, 75
names, duplication in segmented loads, 76
naming directives

FORCE, 30
MODULE (segment), 67
MODULES, (global), 30
SMODULE (segment), 67
SMODULES, (global), 30

zero address, 115
MODULES directive

and data loads, 84
example, 124, 125
in segmented loads, 76

MODULES directive (global)
example, 30
overview, 30

MODULES directive (segment)
example, 68
overview, 67

Movable block, definition, 152
MSG_FORMAT, 139
MSG_FORMAT environment variable, 13
MSGLEVEL directive

example, 43
overview, 43

N

Naming files
ABS directive, 35
BIN directive, (global), 26
LBIN directive, (global), 26
LIB directive, 27
LLIB directive, 28
NODEFLIB directive, 28

NLSPATH environment variable, 13
NODEFLIB directive

example, 29
overview, 28

NODUPMSG directive, overview, 42
Nonsegmented program, definition, 1
NOTE message, definition, 137

Index Segment Loader (SEGLDR) and ld Reference Manual

Cray Research, Inc.164 SR–0066 9.0

NOUSXMSG directive, overview, 43

O

Object module
definition, 152
including, 34

OMIT directive
example, 34
overview, 34

ORDER directive, overview, 97
Ordered duplicate selection, definition, 152
ORG directive, overview, 49
OUTFORM directive, overview, 112
Output file attributes, OUTFORM directive, 112

P

Parallel virtual machine, definition, 153
Partition, definition, 153
Pascal, 1
PRESET directive, overview, 48
Primary entry point, definition, 153
Program alignment and initialization, 47–49

directives
ALIGN, 47
ORG, 49
PRESET, 48

overview, 47
Program duplication & block assignment, 75
Program execution, segmented, 85
Program segmentation, introduction, 55
Program segments, loading, 1
Pseudo instructions and shared-text memory allocation,

98
PVM, definition, 153

R

REDEF directive, overview, 40
Relocatable binary module, definition, 153
Restrictions, data load, 83
Root segment, definition, 153
Root segment, definition, 55
Routines, block data, 84
Run-time messages, 137

S

SAVE directive
example, 73
with COPY directive, 73

SAVE directive (global), overview, 72
SAVE directive (segment), overview, 70
SCOMMONS directive (global), overview, 31
SCOMMONS directive (segment), overview, 68
Scratch file

controlling position of, 85
execution from, 73

SDT, description, 147
SDT, definition, 153
SECTION pseudo instructions, and shared-text memory

allocation, 98
Sector, definition, 153
SEGDIR environment variable, 13
SEGLDR, invocation statements, 3
segldr(1) , command line, 4
Segment

convention, 1
definition, 154
definition directives, 65–66
description directives, 66–71
description, termination, 65
linkage table (SLT), 72
naming, 66
predecessor, function, 55
root, definition, 55
subroutine calling between, 59
successor, function, 55
tree

definition directives, 65
design and restrictions, 57
figures, 56, 57, 58, 59, 61, 62
structure, 55

Segment branch, definition, 56
Segment description directives

BIN , 69
COMMONS, 68
DUP, 71
ENDSEG, 66
MODULES, 67
SAVE, 70
SCOMMONS, 68
SEGMENT, 66
SMODULES, 67
ZEROCOM, 116, 117

Segment Loader (SEGLDR) and ld Reference Manual Index

165Cray Research, Inc.SR–0066 9.0

Segment Description table, definition, 153
Segment Description Table (SDT), description, 147
SEGMENT directive

and DUP directive, 71
example, 67, 124, 125, 128
overview, 66

Segment Linkage Table, definition, 154
Segment Linkage Table (SLT), 72

description, 146
Segment tree

definition directives, 65–66
restrictions, 57

Segment tree concept, 55
Segment tree definition, 55
Segment tree design, 57
Segmentation

features, 55
global directives, 72

Segmentation tables
$SEGRES, 145
overview, 144
SDT, 147
SLT, 146

Segmented load
and COMMONS directive, 31
and SCOMMONS directive, 31
program, definition, 1
with duplicated modules, 125

example, 125
Segmented program, definition, 1
SEGORDER directive, overview, 74
SET directive, overview, 46
SHARED allocation scheme, overview, 98
Shared text program, 97

creation, 97
generation, 6

Shared-text allocation scheme
advantages, 99
disadvantages, 99

SLT, description, 146
SLT, definition, 154
SLT directive, overview, 72
SMODULES directive (global), overview, 30
SMODULES directive (segment), overview, 67
Soft externals

how to convert to, 108
how to convert to hard references, 107
how to declare, 104–105
how to link, 105

overview, 103
references, 103
usage, 106–107
usage (figure), 104

Soft references, 103
Soft references, converting to, 108
SOFTREF directive, overview, 108
Special purpose program, definition, 154
Stack and heap memory, 87, 117
STACK directive, 88
START directive

command line equivalent for, 10, 16
overview, 113

Subroutine
call overhead, overview, 86
calling between segments, 59
illegal references, diagram, 61

SUMMARY message, definition, 138
Supported languages, 1
Symbolic debugging directives

overview, 50, 114
SYMBOLS, 50

SYMBOLS directive, overview, 50
SYSTEM directive, overview, 114
System libraries, default, 18

T

Tables
$SEGRES, 145
_infoblk , 141
Segment Description Table (SDT), 147
Segment Linkage Table (SLT), 146

TARGET environment variable, 14
Termination, of segment description, 65
TEXT, DATA, BSS , allocation scheme for memory

allocation, 98
TITLE directive

as segment description directive, 66
example, 38
overview, 38

TMPDIR environment variable, 14
Transfer entry point, definition, 154
TREE directive, example, 66, 121, 122, 124, 125, 128
TREE segment definition directive

example, 66
overview, 65

Index Segment Loader (SEGLDR) and ld Reference Manual

Cray Research, Inc.166 SR–0066 9.0

Tree structure
basic example, 121
figure, 126
figures, 121, 122
with expandable common block example, 123

Tree structure, example (figure), 123
Tree trimming, definition, 154
TRIAL directive, overview, 35
TSTACK directive, 89

U

UNICOS
environment variable processing, 12
ld (1) command line, 10
segldr (1) command line, 4

UNSAT directive
example, 46
overview, 46

Unsatisfied external reference, definition, 154
Unsatisfied external references, 105
USX directive

default setting, 18
overview, 40

W

WARNING message, definition, 138

X

XFER directive
command line equivalent for, 4, 15
overview, 44

Z

Zero address, description directives, 115–117
ZEROCOM directive, overview, 116, 117
ZSYMS directive, overview, 115

Reader’s Comment Form

Segment Loader (SEGLDR) and ld Reference Manual SR–0066 9.0

Your reactions to this manual will help us provide you with better documentation. Please take a moment to
complete the following items, and use the blank space for additional comments.

List the operating systems and programming languages you have used and the years of experience with each.

Your experience with Cray Research computer systems: _____0-1 year _____1-5 year _____5+years

How did you use this manual: _____in a class _____as a tutorial or introduction _____as a procedural guide
_____as a reference _____for troubleshooting _____other

Please rate this manual on the following criteria:

Excellent Poor
Accuracy 4 3 2 1
Appropriateness (correct technical level) 4 3 2 1
Accessibility (ease of finding information) 4 3 2 1
Physical qualities (binding, printing, illustrations) 4 3 2 1
Terminology (correct, consistent, and clear) 4 3 2 1
Number of examples 4 3 2 1
Quality of examples 4 3 2 1
Index 4 3 2 1

Please use the space below for your comments about this manual. Please include general comments about
the usefulness of this manual. If you have discovered inaccuracies or omissions, please specify the number
of the page on which the problem occurred.

Name Address
Title City
Company State/Country
Telephone Zip code
Today’s date Electronic mail address

BUSINESS REPLY MAIL

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

C
u

t alon
g th

is lin
e

ATTN: Software Publications Group
655 LONE OAK DR BLDG F
EAGAN MN 55121-9957

POSTAGE WILL BE PAID BY ADDRESSEE

Fold

Fold

FIRST CLASS MAIL PERMIT NO. 6184 ST. PAUL, MN

Reader’s Comment Form

Segment Loader (SEGLDR) and ld Reference Manual SR–0066 9.0

Your reactions to this manual will help us provide you with better documentation. Please take a moment to
complete the following items, and use the blank space for additional comments.

List the operating systems and programming languages you have used and the years of experience with each.

Your experience with Cray Research computer systems: _____0-1 year _____1-5 year _____5+years

How did you use this manual: _____in a class _____as a tutorial or introduction _____as a procedural guide
_____as a reference _____for troubleshooting _____other

Please rate this manual on the following criteria:

Excellent Poor
Accuracy 4 3 2 1
Appropriateness (correct technical level) 4 3 2 1
Accessibility (ease of finding information) 4 3 2 1
Physical qualities (binding, printing, illustrations) 4 3 2 1
Terminology (correct, consistent, and clear) 4 3 2 1
Number of examples 4 3 2 1
Quality of examples 4 3 2 1
Index 4 3 2 1

Please use the space below for your comments about this manual. Please include general comments about
the usefulness of this manual. If you have discovered inaccuracies or omissions, please specify the number
of the page on which the problem occurred.

Name Address
Title City
Company State/Country
Telephone Zip code
Today’s date Electronic mail address

BUSINESS REPLY MAIL

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

C
u

t alon
g th

is lin
e

ATTN: Software Publications Group
655 LONE OAK DR BLDG F
EAGAN MN 55121-9957

POSTAGE WILL BE PAID BY ADDRESSEE

Fold

Fold

FIRST CLASS MAIL PERMIT NO. 6184 ST. PAUL, MN

