
c:
. RESEARCH, INC.

CRAY X-MP AND CRAY-1®
COMPUTER SYSTEMS

SEGMENT LOADER
(SEGLDR)

REFERENCE MANUAL

SR-0066

Copyright© 1983, 1984 by CRAY RESEARCH, INC. This manual
or parts thereof may not be reproduced in any form without
permission of CRAY RESEARCH, INC.

RECORD OF REVISION RESEARCH. INC. PUBLICATION NUMBER SR-0066

Each time this manual is revised and reprinted, all chan~es issued against the previous version in the form of change packets are
incorporated into the new version and the new version IS assigned an alphabetic level. Between reprints, changes may be issued
against the current version in the form of change packets. Each change packet is aSSigned a numeric designator, starting with
01 for the first change packet of each revision level.

Every page changed by a reprint or by a change packet has the revision level and change packet number in the lower righthand
corner. Changes to part of a page are noted by a change bar along the margin of the page. A change bar in the margin opposite
the page number indicates that the entire page is new; a dot in the same place indicates that information has been moved from
one page to another, but has not otherwise changed.

Requests for copies of Cray Research, Inc. publications and comments about these publications should be directed to:

CRAY RESEARCH, INC.,
1440 Northland Drive,
Mendota Heights, Minnesota 55120

Revision Description

September, 1983. Original printing.

01 December, 1983. This change packet brings the manual into
agreement with version 1.13 of cos. New material includes the
ALIGN, HEAP, and STACK directives, and related error messages.

A November, 1984. This reprint with revision brings the manual
into agreement with version 1.14 of cos. New material
includes the MLEVEL, LOWHEAP, and SID directives, and related
error messages. All previous versions are obsolete.

SR-0066 ii A

PREFACE

This manual introduces SEGLDR, a Cray Research, Inc., automatic loader
for overlayed or nonoverlayed programs. The manual assumes familiarity
with FORTRAN programs, the function of a loader, and a general
understanding of overlays.

Intended for reference, the manual describes SEGLDR operation and program
segmentation. Appended to this manual is a glossary of terms you will
need to understand in the context of the use and operation of SEGLDR.

For information on SEGLDR tables and subroutines, see the COS Products
Set Internal Reference Manual, publication SM~004l. SEGLDR error
messages are described in Appendix F of this manual and in the CRAY-OS
Message Manual, publication SR-0039.

SR-0066 iii A

CONTENTS

PREFACE

1.

2.

3.

4.

INTRODUCTION

PROGRAM SEGMENTATION

SEGLDR SEGMENT TREE CONCEPT •
SEGLDR SEGMENT TREE DESIGN
SUBROUTINE CALLING BETWEEN SEGMENTS •

SEGLDR JOB FLOW •

INPUT TO SEGLDR •
Global BIN datasets
Segment description BIN datasets •
Library (LIB) datasets •
Dataset processing •

OUTPUT FROM SEGLDR
SEGLDR CONTROL STATEMENT

SEGLDR DIRECTIVES •

SEGLDR SYNTAX •
Conventions
Directive syntax •

GLOBAL DIRECTIVES ~

Global listing directives
COMMENT directive •
ECHO directive
MAP directive •
MLEVEL directive
TITLE directive •

Global input directives
ABS directive •
BIN directive (global)
LIB directive •
NODEFLIB directive

SR-0066 v

iii

1-1

2-1

2-1
2-2
2-5

3-1

3-1
3-3
3-3
3-3
3-3
3-4
3-5

4-1

4-1
4-2
4-2
4-3
4-3
4-3
4-4
4-5
4-6
4-7
4-7
4-8
4-8
4-9
4-10

5.

Global entry point control directives
EQUIV directive •
MODULES directive (global)
USX directive •
XFER directive

Global data description directives •
COMMONS directive (global)
DYNAMIC directive •
SEGLDR directive
PRESET directive
SLT directive •

Global security directives •
GRANT directive •
SECURE directive

Memory management global directives
ALIGN directive •
BCINC directive •
PADINC directive
NORED directive •

Heap Memory management global directives •
HEAP directive
STACK directive •
LOWHEAP directive •

Miscellaneous global directives
ABORT directive •
FORCE directive •
ORG directive •
REDEF directive •
SAVE directive (global)
SID directive •
SYMBOLS directive •

SEGMENT TREE DEFINITION DIRECTIVES
SEGMENT DESCRIPTION DIRECTIVES

Segment description BIN directive
COMMONS directive (local)
DEVICE directive •
DUP directive
MODULES directive (local)
SAVE directive (local)
SEGMENT directive

COMMON BLOCK USE AND ASSIGNMENT •

USER-ASSIGNED COMMON BLOCKS •
SEGLDR-ASSIGNED COMMON BLOCKS •
COMMON BLOCK SIZES
DUPLICATE COMMON BLOCKS •
DATA LOAD RESTRICTIONS

Block data routines
Referencing data in common blocks

SR-0066 vi

4-10
4-11
4-12
4-12
4-13
4-13
4-13
4-14
4-15
4-15
4-16
4-16
4-17
4-17
4-18
4-18
4-19
4-19
4-20
4-20
4-20
4-21
4-22
4-22
4-22
4-23
4-24
4-24
4-25
4-26
4-26
4-27
4-28
4-29
4-30
4-31
4-32
4-33
4-34
4-35

5-1

5-1
5-1
5-2
5-2
5-3
5-3
5-3

01

6. CODE EXECUTION

SUBROUTINE CALL OVERHEAD
I/O PERFORMANCE •
MEMORY MANAGEMENT •

Static memory management •
Dynamic memory management

APPENDIX SECTION

A. DUPLICATE ENTRY POINT HANDLING

B. MOVABLE BLOCK ASSIGNMENT BY SEGLDR

C. REDUNDANT ENTRY POINTS

D. EXTENDED BLOCK RELOCATION •

E. TYPICAL LOADS AND TREE STRUCTURES •

F. MESSAGES

SEGLDR LOGFILE MESSAGES •
LISTING MESSAGES

G. MAPPING •

EXAMPLE FORTRAN PROGRAM •
SEGLDR DIRECTIVES FOR SAMPLE PROGRAM
EXAMPLE SEGLDR MAP OUTPUT FOR SAMPLE PROGRAM
SAMPLE PROGRAM BLOCK MAPS •
SAMPLE PROGRAM ENTRY POINT CROSS-REFERENCE MAP
SAMPLE PROGRAM COMMON BLOCK REFERENCE MAP •

FIGURES

2-1
2-2
2-3
2-4
2-5
2-6
3-1
4-1
4-2
5-1
A-I

A segment tree
Valid segment tree
Valid segment tree
Invalid segment tree (multiple root segments)
Invalid segment tree (multiple immediate predecessor segments)
Subroutine handling •
Data flow •
Segment tree defined by the preceding set of directives •
Tree with duplicate entry points
Segment tree
Sample tree •

SR-0066 vii

6-1

6-2
6-3
6-3
6-3
6-4

A-I

B-1

C-l

D-l

E-l

F-l

F-l
F-4

G-l

G-l
G-2
G-4
G-4
G-7
G-7

2-1
2-3
2-4
2-4
2-5
2-6
3-2
4-28
4-33
5-2
A-2

A

FIGURES (continued)

B-1
E-l
E-2
E-3

Sample segment tree •
Sample tree structure •
Sample tree structure •
Sample tree structure

TABLE

A-I Segment assignments in tree form

GLOSSARY

INDEX

SR-0066 viii

B-1
E-2
E-3
E-S

A-I

A

INTRODUCTION

SEGLDR is an automatic loader for code produced by language processors
such as CAL (Cray Assembly Language) or CFT (Cray FORTRAN). Program
segments (described in section 2) are loaded as required without explicit
calls to an overlay manager.

In this publication, overlayed codes are termed segmented programs and
nonoverlayed codes are termed nonsegmented. Executing under the
control of the Cray Operating System (COS) on all Cray Computer Systems,
SEGLDR can produce segmented or non segmented object modules (executable
binary programs).

With SEGLDR, segmented programs can be produced and executed without
extensive user code modification.

• Since you specify the segment structure and contents, SEGLDR can
detect subroutine calls that require loading new segments into
memory.

• A resident routine loaded with the object module handles program
overlay management.

In addition to automatic segment loading and unloading, major advantages
of SEGLDR include the following.

• You can easily modify code overlay structure by changing SEGLDR
directives, usually without recompilation.

• By altering the input directives to SEGLDR, you can experiment,
overlaying different code without making significant source code
changes.

• Normally you need not specify more than one module (subroutine)
per segment for SEGLDR to assign all contents to a segment.

• You need not group modules for each segment together in a single
dataset for loading. The modules can be scattered among several
binary datasets and libraries.

• SEGLDR can pass arguments between subprograms residing in
different segments.

• SEGLDR can unload segments and any common blocks they contain and
subsequently reload them with their updated image retained.

SR-0066 1-1 A

1

For both segmented and nonsegmented programs, SEGLDR provides
equivalencing of entry point names and control of the common block
loading order. (See the glossary section for a definition of entpy
point as it is used throughout this manual.)

In addition, a common block other than blank common can be specified as
dynamic.

SEGLDR is called into execution using a control statement in a job input
dataset. Job input datasets and the SEGLDR control statement are
described in section 3.

The features provided by SEGLDR are independent of overlay facilities
provided by LDR (see the CRAY-OS Version 1 Reference Manual, publication
SR-OOll).

SR-0066 1-2 A

PROGRAM SEGMENTATION

with SEGLDR, you specify the segment structure and the content of the
segments to be loaded. This section describes the principles of SEGLDR
program segmentation, or tpee design (irrelevant for nonsegmented
programs). Section 3 describes SEGLDR input and output, and section 4
describes directives for specifying tpee shape and segment contents.

SEGLDR SEGMENT TREE CONCEPT

2

With SEGLDR, program segments are arranged in a tree structure, as
illustrated in figure 2-1. (Note that a nonsegmented program consists of
only one segment, the root segment.)

Each segment in a tree contains one or more subprogram modules, and
possibly some common blocks. Subprogram hierarchy helps you determine
the shape of your tree.

A (root)

D E

Figure 2-1. A segment tree

SR-0066 2-1 A

Each segment in the preceding figure is assigned an arbitrary but unique
1- to 8-character segment name.

The apex of the SEGLDR segment tree (segment A in figure 2-1) is called
the poot segment. The remaining segments, B, C, D, and E, are called
bpanoh segments. Within these branch segments, B, C, D, and E are
referred to as su~~essop segments of A. Band C are called immediate
su~oessops of segment A, and segments D and E are immediate successors
of segment C. It follows, then, that C and A are ppede~essop segments
for 0 and E, and A by itself is the predecessor segment for Band C. C
is the immediate ppedeoessop of segments D and E. Note that the root
segment is a predecessor for every branch segment and has no predecessor
segment itself. Predecessor and successor segments lie on a common
branch. Down the tree (or branch) is moving away from the root segment,
and up is moving toward it.

A segment level is the number of immediate successor segments that must
be traversed when proceeding from the root segment to the destination
segment. For example, the root segment is level 0, segments Band Care
levell, and segments D and E are level 2.

During program execution, only one segment from each level can be in
memory at a time. The root segment is always memory resident1 other
segments occupy higher memory addresses when required. In general,
predecessor segments of the executing segment are guaranteed to be memory
resident. In addition, successor segments at higher levels might be
memory resident, depending on recent subroutine calls to successor
segments.

SEGLDR SEGMENT TREE DESIGN

The only restriction on the height or width of the segment tree is that a
maximum of 1000 segments, including the root, can be defined. However,
you must adhere to the following rules for a segment tree to be valid.

• Each segment tree can have only one root segment (a segment with
no predecessor segments) and must.have at least one branch segment.

• Each nonroot segment must have only one immediate predecessor
segment.

Figures 2-2 and 2-3 illustrate valid segment trees.

SR-0066 2-2 A

A

B

c D

E F

G H

I

J

K L

M

Figure 2-2. Valid segment tree

SR-0066 2-3 A

B K

Dl D2

Figure 2-3. Valid segment tree

Figures 2-4 and 2-5 show tree structures that are invalid because of
their multiple root segments or multiple immediate predecessor segments.

A B

D E F

Figure 2-4. Invalid segment tree (multiple root segments)

SR-0066 2-4 A

A

B C D

E

Figure 2-5. Invalid segment tree (multiple immediate predecessor
segments)

I SUBROUTINE CALLING BETWEEN SEGMENTS

I

Calls can be made from any module (subroutine or function) in a segment
to any module in a successor or predecessor segment. Calls across the
segment tree are illegal. That is, subroutine calls can be made both up
and down the tree, as long as the calling and called modules are owned by
segments on a common branch. If a call is made to a subroutine in a
non-immediate successor segment, all segments on the branch are read to
memory. (See section 5 and Appendix A for special rules affecting
duplicate modules and common blocks.)

When a call is made from a subroutine to a subroutine further down the
branch at execution time, SEGLDR intercepts the call, loads the
appropriate segment or segments if not already in memory, passes the
arguments, and jumps to the called entry point (see entpy point in the
glossary). SEGLDR intercepts only the calls to subroutines in successor
segments, because they are the only calls that could cause a segment to
be loaded (all callers of a segment in memory are already in memory).

SR-0066

CAUTION

In CAL, use of the CALL and CALLV macros is strongly
recommended for subroutines calls to other modules.

2-5 A

I

Do not pass an entry point to a subroutine as an argument if the entry
point is not in the same or a predecessor segment. For example:

EXTERNAL JOE
CALL SUB (JOE)

The external reference cannot be detected by SEGLDR at load time and may
not be in memory.

Do not expand memory at the end of a segment that has one or more
successor segments because, if a successor segment is in memory, it is
overwritten; if a successor segment is not in memory but is brought in
later, it overwrites the expanded area. Use of dynamic common blocks is
recommended instead. (See the DYNAMIC directive in section 4.)

SEGLDR handles subroutine calls as shown in the figure 2-6. The numbers
1 through 5 represent modules in segments A through E.

B
(2)

A
(1)

o
(4)

C
(3)

Figure 2-6. Subroutine handling

E
(5)

The subroutine call descriptions following are related to the tree
structure shown in figure 2-6.

SR-0066 2-6 A

From To Comment

l(A) 2,3,4,5 Legal; may need to load some segments.
2 1 Legal; no load needed.
2 3,4,5 Illegal; calls across a branch.
3 2 Illegal; calls across a branch.
3 1,4,5 Legal; may need to load if to modules 4 or 5.
4 5,2 Illegal; calls across a branch.
4 1,3 Legal; no load needed.
5 4,2 Illegal; calls across a branch.
5 3,1 Legal; no load needed.

SR-0066 2-7 A

SEGLDR JOB FLOW

SEGLDR constructs object modules (executable binary programs) in two
phases:

• Input analysis

• Code construction on a segment-by-segment basis

At the conclusion of the first phase, SEGLDR has identified all blocks
required for loading and knows their sources (load datasets) and
destinations (segments). Error discovery, excluding field relocation
overflow errors, is part of the first phase.

During the second phase, address relocation and data loading (see the
glossary at the back of this manual) are performed. At the conclusion of
this phase, mapping options are honored. For more information on SEGLDR
map options, see the MAP directive in section 4.

I Figure 3-1 depicts SEGLDR data flow.

INPUT TO SEGLDR

Input to SEGLDR consists of:

• Directives controlling construction of the object module. (See
section 4 for descriptions and Appendix E for an example of
putting the directives together.)

I • Relocatable binapy input (BIN) and libpary datasets from

I

language processors, such as Cray Assembly Language (CAL) or Cray
FORTRAN (CFT). A binary input dataset consists of one record for
each module (subroutine or function) compiled or assembled.

SEGLDR recognizes three types of binary input datasets. The three types
of binary input datasets are identical; they differ only in their use by
SEGLDR. The three types are the following.

• Global BIN datasets

• Segment description BIN datasets

• Library (LIB) datasets

SR-0066 3-1 A

3

BINI

al & Glob
segm
desc
BIN
data

User
libr
data

ent
ription

sets

BINn

-defined
ary
sets

LIBI

LIEn

em-I Syst
defa
libr
data

ult
ary
sets

$SYSLIB

I

I

SR-0066

SEGLDR
directives

I--- Object
module

I---

-

SEGLDR
If' listings

f-+

- SEGLDR

-

-
$DEBUG

-

Figure 3-1. Data flow

3-2 A

I

I
I

I

GLOBAL BIN DATASETS

A global BIN dataset must consist of at least one relocatable binary
record produced by language processors such as CAL, or CFT. Global BIN
datasets are defined by the global BIN directive as containing the
modules to be loaded (see section 4).

SEGMENT DESCRIPTION BIN DATASETS

Modules in segment description BIN datasets and global BIN datasets are
the same, except that modules in segment description BIN datasets are
assigned to specific segments. The segments to which they are assigned
are defined by the segment description BIN directive (see section 4) •

LIBRARY (LIB) DATASETS

Like the global and segment description BIN datasets, datasets named by a
LIB directive must contain at least one relocatable binary record
produced by language processors such as CAL, or CFT.

Datasets defined by the LIB directive contain modules to be used in
resolving references to unknown entry points called unsatisfied
externals. When all BIN datasets have been examined, any remaining
unsatisfied externals are resolved using LIB datasets, if possible. In
resolving unsatisfied externals, SEGLDR examines the LIB datasets in the
order specified by the LIB directive (see section 4). Not all LIB
datasets are always examined, since SEGLDR stops scanning LIB datasets
once all unsatisfied externals have been resolved.

In the event that an entry point appears in more than one library, the
first occurrence of a relocatable binary record that will satisfy the
external reference is used. Because SEGLDR maintains all pertinent
information about all of the libraries simultaneously, it can resolve
unsatisfied externals without rescanning any libraries.

DATASET PROCESSING

SEGLDR examines only the first file of binary input datasets. All
datasets must be local to the job or must reside in the system directory
(SDR). A dataset local to the job is used in preference to an
identically named dataset in the system directory.

Modules need not be grouped in a single dataset for each segment in order
I to be loaded. They can be scattered among several binary input datasets.

SR-0066 3-3 A

All modules within binary input datasets are initially assumed to be
required for the load. SEGLDR gathers the entry points of all modules in
all datasets specified with global BIN and LIB directives, and then
discards all modules that are never calledt , except for the module
containing the load transfer entry point and BLOCKDATA subprograms. See
the FORTRAN (CFT) Reference Manual, CRI publication SR-0009, for further
information on BLOCKDATA.

OUTPUT FROM SEGLDR

Output from SEGLDR is:

• The object module

• Listing output

I • Symbol table dataset

I

I
I

The object module (the executable binary program produced by SEGDLR) is
formatted so that it can be loaded by COS for execution. Segmented codes
have one record per segment. The root segment is written to the first
record. Within the root is a resident routine (see section 5) that
handles intersegment subroutine calls.

SEGLDR writes the object module to the first file of the ABS dataset (see
the ABS directive in section 4). For nonsegmented programs, only the
first record of the ABS dataset is used.

SEGLDR can echo all input directives to the listing dataset. (Appendix E
contains an example input directive listing.) A block map supplied by
the MAP directive (see section 4), an entry-point cross-reference, a
common block/module reference and a summary of unsatisfied externals can
also be requested. Appendix G contains map examples. The user has
control over the severity of error messages that should be written to the
listing dataset.

SEGLDR generates a symbol table dataset suitable for input to SID, the
CRI symbolic interactive debugger. For more information, see the
Symbolic Interactive Debugger (SID) User's Guide, CRI publication SG-0056.

I t The process of discarding modules is refered to as tpee tpimming
in this manual.

I
SR-0066 3-4 A

SEGLDR CONTROL STATEMENT

I Execute SEGLDR with the following control statement.

I

I
I

I

FOrmat:

SEGLDR,I=idn,L=ldn,DW=d~,CMD='dipBtP'.

Parameters:

I=idn

L=ldn

DW~W

Name of input dataset containing SEGLDR directives. If you
omit this parameter, 1=0, indicating there are no input
directives. If I is specified without idn, idn assumes
its default value: $IN.

Name of dataset for printable output. If you omit this
parameter or if you specify L without ldn, ldn=$OUT.
L=O suppresses all listable output (including error
messages) •

Data width for input directives, that is, the number of
significant columns in each input line. DW=72 , for
example, allows SEGLDR to ignore UPDATE sequence numbers
(columns 73-96). (For more information on UPDATE see the

UPDATE Reference Manual, CRI publication SR-00l3.) If you
omit this parameter or you specify it as DW or DW= only,
SEGLDR assumes DW=80. The data width must be in the range
0< width <81.

CMD='diPBtp'

SR-0066

Global directives to be processed by SEGLDR as if the
string is the first image read from the input dataset
(I=idn). Separate the directives with semicolons. The
directive string is processed even if you specify 1=0.

Example:

SEGLDR,CMD='BIN=BINl,BIN2,LIB=MYLIB,MAP=PART'.

3-5 A

SEGLDR DIRECTIVES 4

Three types of directives convey information to SEGLDR:

• Global directives

• Segment tree definition directives

• Segment description directives

Global directives identify binary datasets to be loaded and select
control options. Segment tree definition directives convey the tree
shape. Segment description directives specify the contents of individual
segments that make up the tree. Appendix E includes an example of all
three directives types in use together.

Global directives apply to both segmented and nonsegmented codes. For
nonsegmented loading you can only specify global directives. For
segmented loading you must specify both segment tree definition and
segment description directives.

In this section, the three types of directives are discussed separately
and arranged alphabetically by type. Only the global directives are

I broken into groups according to subtype. Error messages related to
directive use are included with the other SEGLDR error messages in
Appendix F. See the glossary for a definition of entry point as it is
used throughout this section.

SEGLDR SYNTAX

Most SEGLDR directives have KEYWORD=vatue syntax. Exceptions are
stated in individual directive descriptions. The following paragraphs
describe the conventions used in representing SEGLDR directives and the
actual syntax of SEGLDR directives.

SR-0066 4-1 A

CONVENTIONS

This manual uses the following conventions.

• Variable names are represented in italicsl actual names are shown
in uppercase.

• Spaces are insignificant and are used in this manual only for
clarity.

• Default values are underlined.

• Brackets [] enclose a list of optional elements.

• Braces {} enclose two or more elements when one of them must be
chosen.

DIRECTIVE SYNTAX

The directive syntax is as follows:

• SEGLDR directives can be entered as uppercase, lowercase or
mixed-case input, since SEGLDR converts the directive string to
uppercase before evaluation.

• Comments are preceded by an asterisk and can appear anywhere in
the input. All characters to the right of an asterisk are ignored.

• Each directive is terminated by a semicolon, an asterisk, or an
end of line.

• Multiple directives on a single line are individually terminated
with a semicolon.

• Elements in a list are separated by commas.

• SEGLDR ignores null directives (for example, two successive
semicolons) •

• You can continue some SEGLDR directives on following lines. These
directives have a comma as the last nonblank character before the
end of line. See individual directive descriptions for more
detail.

SR-0066 4-2 A

GLOBAL DIRECTIVES

Global directives identify binary datasets to be loaded and select
I various control options. Global directives can be entered in any order.

The global directives are grouped in this manual according to function:
listing, input, entry point control, data description, security, memory
management, and miscellaneous. Note that all the directives included in
the examples are described in this section.

GlOBAL LISTING DIRECTIVES

The following global directives control and provide options for listed
output.

• COMMENT
• ECHO

• MAP I • MLEVEL
• TITLE

COMMENT, ECHO, and TITLE directives can be included as either global or
segment description directives.

COMMENT directive

The COMMENT directive, which annotates SEGLDR directives, is echoed to
the listing dataset but is otherwise ignored. All characters to the
right of the asterisk are part of the comment string.

Continuation beyond one line is not allowed.

You can use the COMMENT directive in either the global or the segment
description directives portion of the input.

Format:

* comment string

SR-0066 4-3 A

Example:

TITLE=GLOBAL DIRECTIVES

* Global directives

BIN=X
TITLE=TREE DIRECTIVES

*
*Tree directives

TREE

ROOT (A,B)
ENDTREE
TITLE=SEG.DESCR.DIR.

SEGMENT=ROOT

ECHO directive

The ECHO directive resumes or suppresses printing of input directives.
You can use it in either the global or the segment description directives

I portion of the input. If you do not use the ECHO directive, ECHO=OFF.

I

Format:

ECHO={ON }
OFF

Parameters:

ON Resumes listing of input directives

OFF Suppresses directive listing. The use of ECHO=OFF does not
prevent printing of error diagnostics. SEGLDR
automatically echoes erroneous directive lines followed by
an error message.

ECHO has no effect if L=O is specified on the SEGLDR control statement.

You may not continue this directive on a second line.

SR-0066 4-4 A

MAP directive

The MAP directive controlsSEGLDR map output generation. Besides memory
mapping, the MAP directive provides time and date of load, length of

I longest branch and last segment, and transfer address. Map output is
written to the listing dataset. See the examples in Appendix D.

Format:

NONE
STAT
ALPHA

MAP= ADDRES S
PART
EPXRF
CBXRF
FULL

Parameters:

NONE writes no map output to the listing file. If you do not
use the MAP directive, MAP=NONE.

STAT Writes statistics for the load such as date and time,
length of longest branch, last segment, transfer entry
point, and stack and heap information.

ALPHA writes the STAT information plus the block map for each
segment, listing the modules in alphabetical order.

ADDRESS Writes the ALPHA information but lists modules by ascending
load address.

PART Writes both ALPHA and ADDRESS information.

EPXRF Writes the Entry Point Cross Reference Table.

CBXRF Writes the Common Block Cross Reference Table.

FULL Writes all PART, EPXRF, and CBXRF information.

You may not continue this directive on a second line.

SR-0066 4-5 A

I

MLEVEL directive

The MLEVEL directive controls SEGLDR message printing on the listing
output. The keyword indicates the lowest priority error message to be
printed. If you do not use the MLEVEL directive, MLEVEL=CAUTION.

Format:

WARNING I
ERROR

MLEVEL= CAUTION
NOTE
COMMENT

Parameters:

ERROR Prints only the most severe error messages. This level of
severity immediately terminates SEGLDR and no executable
output is written. You can suppress ERROR level messages
by specifying L=O on the SEGLDR control statement.

WARNING Prints ERROR and WARNING levels of error messages. A
WARNING level message indicates that the executable output
is not written but proccessing continues so that additional
messages may be printed.

CAUTION Prints ERROR, WARNING, and CAUTION levels of error
messages. A CAUTION level message indicates that an error
possibly occurred, but is not severe enough to prohibit
generation of executable output.

NOTE Prints ERROR, WARNING, CAUTION, and NOTE levels of error
messages. A NOTE level message indicates that SEGLDR may
have been misused or used inefficiently. This level of
messages has no effect on execution validity.

COMMENT Prints all levels of error messages. A COMMENT level error
message does not effect execution.

MLEVEL has no effect if you specify L=O on the SEGLDR control statement.

You cannot continue this directive on a second line.

SR-0066 4-6 A

TITLE directive

The TITLE directive places an arbitrary, user-defined character string in
the second line of each page header. A page eject is forced so that
following directive records are written to a new page. The title line is
initially clear and can be reset by TITLE directives in either the global
or the segment description directives portion of the input. If you
specify the directive as TITLE or TITLE= only, the title line is cleared.

Format:

TITLE[=titLe string]

Parameter:

titLe string
User-defined character string; maximum length is 74
characters.

You cannot continue this directive on a second line.

Example:

TITLE=Place this in the page header, please.

The TITLE directive copies the string nPlace this in the page header,
please. n verbatim to the page header. It performs no character editing
(for example, blank suppression or uppercase shifting). An end-of-record
or a semicolon signals the end-of-the-title string.

GLOBAL INPUT DIRECTIVES

I The following global directives provide dataset information to SEGLDR.

• ~S
• BIN
• LIB
• NODEFLIB

SR-0066 4-7 A

I

I

I

I

I

ABS directive

ABS specifies the dataset to receive the object module constructed by
SEGLDR. If you do not use the ABS directive, SEGLDR assumes dataset name
$ABD.

Format:

ABS={~~D}

Parameter:

dn Names the dataset to receive the object module

The ABS dataset is rewound before and after being written.

You cannot continue this directive on a second line.

BIN directive (global)

The global BIN directive names binary input datasets to be searched.
Only the first file of each dataset is processed. Remaining files are
ignored without comment.

The effect of multiple global BIN directives is cumulative.

The global BIN directive functions differently from the segment
description BIN directive in that modules appearing in global BIN
datasets are not assigned to a specific segment. Using both BIN and
MODULES directives to name the same module causes a fatal error.

If the directive lists multiple binary input datasets, SEGLDR proccesses
them in the order specified. Consequently, if an entry point is present
in more than one dataset, SEGLDR loads the first module encountered
containing the entry point. Note that if you use the MODULES directive,
this rule may not apply. That is, it is not true for modules named by
the MODULES directive that specify an input dataset.

SEGLDR assumes that all modules within global BIN datasets are movable
(not assigned to any segment) and that, initially, all modules are
required in the load. After SEGLDR examines all binary files and
libraries, it discards the modules that are never called (unless you
specify the FORCE directive option ON). The only exceptions are the
module containing the initial transfer address and BLOCKDATA subprograms.

SR-0066 4-8 A

Format:

Parameters:

dni Names of binary input datasets to be loaded. If no dataset
is named by a global BIN directive, the default is $BLD.

If you continue this directive beyond one line, end each line to be
continued with a comma.

Example:

BIN=JOE,SALLY,HARRY,
WILLIAM

LIB directive

The LIB directive is used to augment the default list of libraries for
the load. Library datasets specified with the LIB directive are searched
before any default libraries.

The effect of multiple LIB directives is cumulative.

This directive is the same as the BIN directive, except that only
previously unsatisfied externals are loaded. An unsatisfied external
is a reference (for example, a subroutine call) to an unknown entry point.

Format:

Parameters:

libi Names of libraries you provide

Example:

The following example defines seven user libraries to be searched before
default libraries when SEGLDR processes subprogram linkages (matches
callees with callers). The search order is LIBl, LIB2, ••• LIB6, LIB7.

SR-0066 4-9 A

I

I

LIB=LIBl,LIB2,LIB3,LIB4,
LIBS

LIB=LIB6,LIB7

If you continue this directive beyond one line, end each line to be
continued with a comma.

NODEFLIB directive

NODEFLIB instructs SEGLDR to ignore all default libraries. Only modules
found in datasets declared by BIN and LIB directives are considered for
loading. with NODEFLIB, you are responsible for providing all modules
required for code execution. For a segmented load, include $SEGRES, the
SEGLDR runtime resident routine (see section 6).

Format:

I NODEFLIB I
You cannot continue this directive on a second line.

Example:

The following example tells SEGLDR to search libraries MYLIBl, MYLIB2,
$ARLIB, $MYSYS, and $MYSCI to match callers with callees. SEGLDR does
not revert to default libraries for entry points located in unspecified
libraries.

NODEFLIB; LIB=MYLIBl,MYLIB2,
$ARLIB,$MYSYS,
$MYSCI

GLOBAL ENTRY POINT CONTROL DIRECTIVES

The following global directives name entry points.

• EQUIV
• MODULES
• USX
• XFER

SR-0066 4-10 A

•

I

I
I

EQUIV directive

By assigning synonyms to an entry point name, EQUIV sUbstitutes a call to
one entry point for a call to another.

Format:

Parameters:

epname Names a target entry point

Names entry points to be linked to epname

If you continue this directive beyond one line, end each line to be
continued with a comma.

Example:

Consider the following code sequence.

~LA

~LB

The calls to A and B are linked to C as follows:

EQUIV=C(A,B)

Note that the module containing entry point C is loaded, but the module
or modules containing A and B may not be loaded. The module or modules
containing A and B may be loaded if needed to satisfy other references to
other entry points. The process is similar to using a text editor to
replace all occurrences of CALL A and CALL B with CALL C.

SR-0066 4-11 A

I

I

I

MODULES directive (global)

The MODULES directive names modules to be loaded. The global MODULES
directive specifies the dataset from which to obtain a module if modules
of the same name are in different datasets.

Format:

Parameters:

modnamei Name of module to be loaded

Name of the dataset from which to obtain the module

Example:

I MODULES=SUBB:LIB1,SUBD:DTASETl

I In this example, the MODULES directive obtains SUBB from library LIBl and
SUBD from binary input dataset DTASET1.

I

I

USX directive

USX controls whether unsatisfied external symbols are treated as loading
errors. If you do not use the USX directive, USX=CAUTION.

Format:

{
WARNING}

USX= CAUTION
IGNORE

Parameters:

WARNING SEGLDR treats an unsatisfied external symbol as a warning
message and does not write executable output.

CAUTION SEGLDR treats an unsatisfied external symbol as a caution
message and writes the executable output.

SR-0066 4-12 A

I

I

IGNORE If SEGLDR encounters an unsatisfied external symbol, it
writes the executable output but does not write the message.

You cannot continue this directive on a second line.

XFER directive

The XFER directive names the entry point SEGLDR transfers control to when
execution begins. If you do not use the XFER directive SEGLDR uses the
first primary entry point discovered as the transfer entry point.

Format:

XFER=ent'PY

Parameter:

Entry point name

You cannot continue this directive on a second line.

GLOBAL DATA DESCRIPTION DIRECTIVES

The following global directives describe data handling.

• COMMONS
• DYNAMIC
• PRESET
• SLT

COMMONS directive (global)

The global COMMONS directive causes the listed common blocks to be loaded
in the indicated order. However, with a segmented load, the global form
of this directive has no effect.

Format:

SR-0066 4-13 A

Parameter:

Names the common blocks to be loaded and specifies the
loading order

If you continue this directive beyond one line, end each line to be
continued with a comma.

DYNAMIC directive

The common block named by the DYNAMIC directive occupies memory following
the largest code segment. (And after the heap if it is present.) The
common block can expand or contract under user control.

All segments have access to dynamic common at any time during program
execution.

The dynamic common block program space is not physically allocated during
code construction by SEGLDR, and so may not be data loaded (see the
glossary). All references to variables in the dynamic common block,
however, are properly relocated.

Format:

Parameters:

oomblk

II

Relocates named common block to the first word following
the longest segment branch. Only one common block can be
named.

Specifies blank common as dynamic

There is no default dynamic common block.

You cannot continue this directive on a second line.

The ORDER directive has no effect on DYNAMIC common block placement. For
example, ORDER=LBC1 DYNAMIC=SPACE places all labeled common blocks except
ISPACEI first, then blank common, .then all code blocks, and finally
ISPACE/.

SR-0066 4-14 A

Example:

CFT program

PROGRAM X
COMMON /DYNCOM/ SPACE(l}

DO 100 1=1,10000
SPACE (I) =0

100 CONTINUE

SEGLDR directive

User requests 9999 additional words of memory.
COS adds memory to the end of SPACE array.

Zeros out 10,000 words, but only one word is
actually pre-allocated by SEGLDR.

DYNAMIC=DYNCOM identifies /DYNCOM/ as the dynamic common block.

PRESET directive

The PRESET directive specifies a value that SEGLDR uses to preset
uninitialized data areas within the object module (for example, variables
in labeled common blocks with no DATA statements). If you do not use the
PRESET directive, PRESET=ZEROS.

Format:

J

ONES
ZEROS

PRESET= INDEF
-INDEF
value

Parameters:

ZEROS

ONES

INDEF

SR-0066

Sets uninitialized data to 0 (default)

Sets uninitialized data to -1

Sets uninitialized data to a value that generates a
floating-point error if used as an operand in a
floating-point operation (0605054000000000000000)8

4-15 A

-INDEF

va7,ue

Same as INDEF except the preset value is negative
(1605054000000000000000)8

Inserts a l6-bit octal value into each parcel of
uninitialized data, where 0 < bits < 1777778

You cannot continue this directive on a second line.

SLT directive

The SLT directive specifies the size of the Segment Linkage Table (SLT).
I SEGLDR writes the SLT to the root segment for servicing intersegment

subroutine calls. SEGLDR writes the actual SLT requirement to the
listing dataset upon load completion. If SLT specifies a size less than
the actual requirement, an error message specifies the actual requirement.

Format:

I SLT-nnn I

Parameter:

nnn Size (decimal word count) to be reserved for the Segment
Linkage Table

By default, SEGDLR computes the size of the SLT according to the
following formula: SLT=40*NBRNCH, where NBRNCH is the number of
nonterminal segments (segments having at least one successor segment).
This formula allows for an average maximum of 40 intersegment subroutine
calls to successor segments. Calls to predecessor segments need no
resident loader intervention.

You cannot continue this directive on a second line.

GLOBAL SECURITY DIRECTIVES

Global security directives are the following.

• GRANT
• SECURE

SR-0066 4-16 A

GRANT directive

This directive indicates which privileges to grant when SEGLDR loads the
absolute module (the dataset specified by the ABS directive) from the
System Directory (SDR). You may specify any or all of the parameters in
a single GRANT directive. In producing the absolute module, SEGLDR
merges these privileges with existing privileges.

Format:

Parameters:

SCRDSC
SCSPOL
SCLUSR
SCDTIM
SCQSDT
SCUPDD
SCACES
SCQDXT
SCENTR
SCNVOK
SCDUMP
SCPRIV

Read DSC/DXT page
SAVE/ACCESS/DELETE/LOAD/DUMP/spooled dataset
Load user dataset
Dump time request
Dequeue/queue SDT requests
Access user dataset for PDSDUMP
Access user-saved dataset without passwords
LINK/MODIFY DXT requests
ENTER option on ACCESS
Invoke job class structure
Allow F$DJA requests any time
Allow special system requests

If you continue this directive beyond one line, end each line to be
continued with a comma.

These privileges are discussed in the CRAY-OS Version 1 Reference Manual,
publication SR-OOll.

SECURE directive

The SECURE directive defines the absolute module (the dataset specified
by the ABS directive) to be secure. That is, the SECURE directive
specifies that this dataset is to be released during job advancement,
unless automatic release is specifically overridden with an F$DSD
operating system request. (See section 6 for information about how
segment datasets can be released.) If you do not use the SECURE
directive, SECURE=OFF.

SR-0066 4-17 A

Format:

SECURE={ON }
OFF

Parameters:

ON Specifies secure absolute module

OFF Specifies nonsecure absolute module

Continuation on next line is not allowed.

MEMORY MANAGEMENT GLOBAL DIRECTIVES

Memory management directives are the following:

• ALIGN
• BCINC
• PADINC
• NORED

ALIGN directive

The ALIGN directive controls the starting locations of modules and cornman
blocks. SEGLDR sets an align bit for each relocatable module and cornmon
block that contains the ALIGN pseudo-op (see the CAL Assembler Version I
Reference Manual, CRI publication SR-OOOO) or ALIGN compiler directive
(see the FORTRAN (CFT) Reference Manual, CRI publication SR-0009).

Format:

{
IGNORE }

ALIGN= NORMAL
MODULES

Parameters:

IGNORE

SR-0066

Allocates each module and cornmon block to begin at the word
following the previous module or cornman block, ignoring the
align bit

4-18 A

NORMAL Allocates each module and common block with the align bit
set to an instruction buffer boundary.t If the align
bit is not set for a module or common block, that module or
common block is allocated at the word following the
previous module or common block. ALIGN=NORMAL is assumed
if no ALIGN directive is specified.

MODULES Allocates every module to an instruction buffer boundary.t
Common blocks are forced to instruction buffer boundaries
only if the align bit is set.

BCINC directive

The BCINC directive specifies the blank common increment value. This
value is a decimal count of the number of words by which the size of
blank common is to be increased when the program is loaded for execution.

Format:

Parameter:

nnn Size (decimal word count) of blank common increment

By default, the value of the blank common increment is o.

You cannot continue this directive on a second line.

PADINC directive

The PADINC directive specifies the pad increment. This value is a
decimal count of the number of words of unused space to be made available
to the job when the program is loaded for execution. After the program
is loaded with its requested extra space, the job is placed in
user-managed field length reduction mode (see the MEMORY control
statement and the memory management section in the CRAY-OS Version 1
Reference Manual, publication SR-OOll) for the duration of the job step.

t Instruction buffer sizes are the following.
CRAY-l 16 words
CRAY X-MP 32 words

SR-0066 4-19 A

I

Format:

Parameter:

nnn Size (decimal word count) of pad increment

By default, the value of the pad increment is o.

You cannot continue this directive on a second line.

NORED directive

The NORED directive specifies no field length reduction. Before the
program is loaded, the job is placed in user-managed field length
reduction mode for the duration of the job step. If you do not use the
NORED directive, NORED=OFF.

Format:

NORED={~l

Parameters:

ON Disables memory reduction

OFF Allows memory reduction

HEAP MEMORY MANAGEMENT GLOBAL DIRECTIVES

The HEAP and STACK directives manage heap memory. (For more information
on heap memory management, see the CRAY-OS Version I Reference Manual,
publication SR-OOII.)

HEAP directive

The HEAP directive allocates memory that the heap manager can dynamically
manage. All memory managers share a common heap. The HEAP directive
allows their memory use within a job to increase. The heap is physically

SR-0066 4-20 A

located in memory after the segment tree occupying the largest amount of
I memory unless the LOWHEAP directive is used. If the DYNAMIC directive is

specified, dynamic common is located after the heap, and the heap has a
fixed size.

I

Format:

HEAP [=init [+inc] [>min]]

Parameters:

init Initial number of decimal words available to the heap
manager. The default is an installation parameter.

inc Increment size, in decimal words, of a request to the
operating system for additional memory if the heap
overflows. A value of 0 indicates that heap size is
fixed. If you specify the DYNAMIC directive, SEGLDR
ignores an increment size other than O. The default is
defined by an installation parameter.

min Size, in decimal words, of the smallest block that can be
left on the list of available space on the heap. min
must be at least 2. The default is defined by an
installation parameter.

You cannot continue this directive on a second line.

STACK directive

The STACK directive allocates heap memory to a stack for use by
re-entrant CFT and CAL programs. The HEAP directive is not needed except
to change the default heap values.

Format:

STACK [=init [+inc]]

Parameters:

init Initial size, in decimal words, of a stack. If init<128
or is absent, an installation parameter is used.

SR-0066 4-21 A

I

I

inc Size, in decimal words, of additional increments to a stack
if the stack overflows. Zero implies that overflow is
prohibited. An installation parameter defines the default
increment value.

You cannot continue this directive on a second line.

LOWHEAP directive

The LOWHEAP directive causes SEGLDR to physically allocate the Heap
Memory in memory before the code, rather that after the largest segment.
LOWHEAP implies that the heap has a fixed size (cannot be expanded). The
initial size of the heap and minimum size of a block in the heap, can
still be specified with the HEAP directive.

You cannot continue this directive on a second line

Format:

MISCELLANEOUS GLOBAL DIRECTIVES

The following global directives apply to either the object module or the
binary input modules.

• ABORT

• FORCE

• ORG

• REDEF

• SAVE

• SID

• SYMBOLS

ABORT directive

The ABORT directive controls whether SEGLDR issues a job step abort for
certain error conditions. The ABORT directive controls only whether the
job step aborts when execution is complete. If loading errors are found,
an object module is not created. If you do not use the ABORT directive,
ABORT=ON.

SR-0066 4-22 A

I

I

Format:

ABORT={ON }
OFF

Parameters:

ON Causes SEGLDR to abort if there are errors

OFF Causes SEGLDR to terminate normally even if there are errors

You cannot continue this directive on a second line.

FORCE directive

SEGLDR gathers the entry points of all modules in all datasets specified
with global BIN and LIB directives. It then discards all modules that
are never called. The FORCE directive allows subprograms not called by
other subprograms to be loaded anyway (force loaded). Only subprograms
appearing in segment BIN datasets can be force loaded. If you turn on
this option, SEGLDR loads all modules in segment BIN files. If you turn
off this option, SEGLDR discards any module appearing in a file specified
on a BIN directive, if there are no references to the module (except
anything on a XFER directive and BLOCKDATA subprograms). If you do not
use the FORCE directive, FORCE=OFF.

Format:

FORCE={ON }
OFF

Parameters:

ON Enables segment force-loading

OFF Disables segment force-loading

You cannot continue this directive on a second line.

SR-0066 4-23 A

I

I

I

I

ORG directive

The ORG directive sets the load address of the first word of the root
segment. This directive is used for debugging purposes; modules being
built for use under COS should typically have ORG set to 200. If you do
not use the ORG directive, ORG=200.

Format:

ORG={200}
oPg

Parameter:

oPg Octal value between 0 and 77777777

You cannot continue this directive on a second line.

REDEF directive

REDEF controls whether common blocks redefined with different lengths by
different modules are treated as loading errors. SEGLDR always takes the
longest definition regardless of the REDEF value. If you do not use the
REDEF directive, REDEF=CAUTION.

Format:

REDEF= CAUTION {
WARNING}

IGNORE

Parameters:

WARNING Redefinition of common block size produces a warning
message.

CAUTION Redefinition of common block size produces a caution
message but is otherwise ignored.

IGNORE SEGLDR ignores the redefinition of common block size and
does not issue a message.

You cannot continue this directive on a second line.

SR-0066 4-24 A

I

I

SAVE directive (global)

The global SAVE directive determines whether the current segment states
are written to mass storage before they are overlayed with another
segment. The global SAVE directive suppresses or enables saving of all
segments.

If you do not use the SAVE directive, SAVE=OFF.

In all other respects it follows the conventions of the local SAVE
directive described later in this section.

Format:

SAVE={ON }
OFF

Parameters:

ON Enables segment saving

OFF Suppresses segment saving

You cannot continue this directive on a second line.

Example:

Consider a program that performs calculations on two large data arrays
(X(lOOOOO) and Y(lOOOOO». It completes part of the calculations on one
array, then on the other, back to the first, and so on.

In this example, arrays X and Y are in subroutines XX and YY
respectively. The program is structured as follows:

TREE
A(B,C)
ENDTREE
SEGMENT=A
MODULES =MAI N
SEGMENT=BJSAVE=ON
MODULES=XX
SEGMENT=CiSAVE=ON
MODULES=YY
ENDSEG

SR-0066

B

A MAIN

xx C

4-25

YY

A

I

I

The two arrays can then be overlaid, rather than forced to the root
segment (A).

SID directive

The SID directive indicates that this load is for debugging and should
include all modules needed for the COS Symbolic Interactive Debugger
(SID) to execute. In addition, all symbol table information needed by
SID will be written to the dataset $DEBUG. If the SYMBOLS=dn directive
is used, the symbol table information for SID is written to the dataset
dn.

Format:

You cannot continue this directive on a second line.

SYMBOLS directive

The SYMBOLS directive determines whether SEGLDR ignores program symbol
table information that might appear in binary input modules or constructs
a debug symbol table dataset. If you do not use the SYMBOLS directive,
SYMBOLS=ON.

Format:

Parameters:

ON Writes symbol table information to the $DEBUG dataset

OFF Instructs SEGLDR to ignore all symbol table information.

dn Writes symbol table information to the dataset with the
name dn. ON or OFF cannot be used as dataset names.

You cannot continue this directive on a second line.

SR-0066 4-26 A

SEGMENT TREE DEFINITION DIRECTIVES

You use the segment tree definition directives to convey to SEGLDR the
shape of the tree that represents the memory layout of your code.

Tree structures can be any width or depth but must be fewer than 1000
segments.

Tree definition directives apply only to segmented codes. The segment
tree definition directives are as follows:

• T~E

• EOOT~E

The TREE directive signals the end of the global directive group and the
beginning of the segment tree definition group of directives. TREE is
followed by the set of directives that specify the tree structure.

The ENDT~E directive terminates this group of directives. Ordering of
segment tree definition directives between TREE and ENDTREE is
unimportant. The ENDTREE directive signals the end of the tree
description and is immediately followed by the segment description
directives.

Format:

Parameters:

segname Names a segment

segnamei Names all immediate successor segments

If you continue this directive beyond one line, end each line to be
continued with a comma.

SR-0066 4-27 A

I

Example:

Figure 4-1 is the segment tree that corresponds to these directives.

D

T~E

A(B,C)
B(D,E,F)
C(G,H)
G(I,J)
E~T~E

E F

A

I

C

G H

J

Figure 4-1. Segment tree defined by the preceding
set of directives

SEGMENT DESCRIPTION DI~CTIVES

Segment description directives apply only to segmented codes. Use them
to specify the contents of the segments. Assign at least one module
per segment.

Assign segment contents (modules) to specific segments using the segment
description directives. SEGLDR discards modules that you assign to a
segment if there are no calls to them. (To override discarding, use the
FORCE directive.)

SR-0066 4-28 A

I

The segment description directives are the following.

• BIN
• COMMENT
• COMMONS
• DEVICE
• DUP
• ECHO
• ENDSEG
• MODULES
• SAVE
• SEGMENT
• TITLE

NOTE

The DUP directive must precede all SEGMENT directives
when duplicate entry point names are to be loaded.

This SUbsection does not describe the COMMENT, ECHO, and TITLE
directives. See the global directives for their descriptions.

I SEGMENT DESCRIPTION BIN DIRECTIVE

The segment description BIN directive names binary input datasets
containing modules to be loaded into a specific segment. SEGLDR loads
all modules within the specified BIN datasets into the segment named by
the accompanying SEGMENT directive. This directive is the same as global
BIN except that modules specified by this directive are fixed (assigned
to a segment). Using both BIN and MODULES directives to name the same
entry points causes a fatal error.

SEGLDR processes datasets in the order presented. It processes only the
first file of each dataset and ignores remaining files without comment.

The effect of multiple BIN directives is cumulative.

SR-0066 4-29 A

I

Format:

Parameter:

bin' 1, Names a relocatable binary dataset or a BUILD library
dataset

If you continue this directive beyond one line, end each line to be
continued with a comma.

Example:

In the following example, all modules in datasets SEGIA, SEGIB, and SEGIC
are loaded into segment SEGI.

SEGMENT=SEGI
BIN=SEGIA,SEGIB
BIN=SEGIC
ENDSEG

COMMONS DIRECTIVE (LOCAL)

The COMMONS directive names common blocks to be loaded into the segment
named by the accompanying SEGMENT directive. Common block specification
is optional, except if common blocks are to be duplicated or loaded in a
specific order.

This directive overrides the common block floating algorithm (see
Appendix B). You may use the PRESET directive to override presetting of
common blocks to O.

Common blocks loaded into two or more segments are considered unique.
They occupy different memory locations and the program can reference
their contents unambiguously. You may not include the dynamic common
block in a COMMONS directive, since it is not assigned to a segment. See
section 5 for more detail on common blocks.

Format:

SR-0066 4-30 A

Parameter:

Names common blocks to be loaded in the segment named by
the accompanying SEGMENT directive

Common blocks are loaded in the order they are specified.

Common blocks are also loaded according to type; the default loading
order is as follows: labeled common, code block, and finally blank
common. This order can be overridden by the ORDER directive, as shown in
the following example.

If you continue this directive beyond one line, end each line to be
continued with a comma.

Example:

ORDER=BCL; COMMONS=A,B,II,c

The resulting order would be blank common (II), the code block, and
finally labeled common blocks A,B,C.

DEVICE DIRECTIVE

SEGLDR assigns one segment to one dataset at execution time. Use the
DEVICE directive to name the logical device on which the dataset begins.
If you do not use the DEVICE directive, COS chooses a logical device.
Consult Cray site operations for possible logical device names.

Execution of a segmented program produces temporary datasets called
segment datasets, each of which contains a single segment. See section
6 for more information about segment datasets and code execution.

Format:

DEVICE=devioe

Parameter:

devioe Device name; 1- to a-character string (for example,
DEVICE=DD-19-21).

See your CRI site analyst for valid device names.

SR-0066 4-31 A

I

DUP DIRECTIVE

Use the DUP directive if you require duplicate entry point names. You
use it to load several copies of the same module or more than one module
with the same entry point name. Duplicate entry point handling is
discussed in detail in Appendix A.

Format:

Parameters:

entname Name of an entry point to be loaded in more than one segment

Names of the segments where entname is to be loaded

Example 1:

The following is an example of a segment description directive grouping
that includes the DUP directive.

DUP=SUBX(SEGl,SEG2)
SEGMENT=SEGl
MODULES=SUBY
COMMONS=COMBLKl
ENDSEG
SEGMENT=SEG2
MODULES=SUBZ
COMMONS =COMBLK 1
ENDSEG

The following figure is an example of the above tree with duplicate entry
point assignment. It assumes that the module name and entry point name
are the same. Entry point SUBX is duplicated in segments SEGl and SEG2.

Note that if SUBY is to call SUBX in segment SEG1, SUBY must be assigned
to segment SEGl. If SUBY is to call SUBX in segment SEG2, SUBY must be
assigned to segment SEG2. If SUBY were to go into the root, the call
would be ambiguous.

SR-0066 4-32 A

I

I

SEGI

COMBLKI
SUBY
SUBX

Figure 4-2.

root

SEG2

COMBLKI
SUBZ
SUBX

Tree with duplicate entry points

Also note that common blocks are duplicated in different segments by the
use of the COMMONS directive. If you do not want exactly one copy of a
common block you must use the COMMONS directive to place the common
blocks in the segments desired.

MODULES DIRECTIVE (LOCAL)

A MODULES directive allows you to specify modules to be assigned to the
segment named by the SEGMENT directive.

Format:

Parameter:

modnamei Name of modules to be loaded

You may specify the parameter modnamei as either modname or
modname:dsname. Use the second form to name a module to be loaded
when also specifying the binary dataset or library from which to obtain
the module.

SR-0066 4-33 A

I

Example:

MODULES=SUBA, SUBB:LIBl,SUBC,SUBD:DTASETl

SEGLDR obtains modules SUBA and SUBC according to the normal loading
order. It obtains SUBB from library LIBl and SUBD from binary input
dataset DTASETl.

SAVE DIRECTIVE (LOCAL)

The local SAVE directive specifies whether the current segment state is
written to mass storage before SEGLDR overlays it with another segment.
This directive overrides the effect of the global SAVE directive on
individual segments.

If you do not use the SAVE directive, SAVE=OFF. If the SAVE directive is
OFF when a segment is loaded into the same memory area as the current
segment, the updated values in the current segment are lost.

If the SAVE directive is ON, however, SEGLDR writes the updated image of
the overlayed segment to mass storage before the new segment is loaded.

Subsequent execution of a saved segment starts from it's image. This
enables you to overlay large data arrays whose updated values you require
in subsequent executions.

Format:

SAVE={ON }
OFF

Parameters:

ON Enables segment saving

OFF Suppresses segment saving

You cannot continue this directive on a second line.

For an example of the use of this directive, see global SAVE in this
section.

SR-0066 4-34 A

SEGMENT DIRECTIVE

The SEGMENT directive names the segment being described by the segment
description directives.

SEGMENT is always the first of the segment description directives, except
when using the DUP directive, which must precede SEGMENT. ENDSEG
terminates the segment description. Between SEGMENT and ENDSEG are any of
the rest of the segment description directives, in any order. Note that a
MODULES or BIN segment description directive must always be associated
with a SEGMENT directive, since you must assign at least one module to
each segment.

Format:

SEGMENT=segname

seg descp dips

ENDSEG

Parameter:

segname Segment name; 1-8 characters.

Example:

SEGMENT=SAM
SAVE=OFF
MODULES=A,B,C; COMMONS=/ / ,SAMCOM
ENDSEG

SR-0066 4-35 A

I

COMMON BLOCK USE
AND ASSIGNMENT

Common blocks can be assigned to segments either by you or by SEGLDR.

USER-ASSIGNED COMMON BLOCKS

You specify the segment in which to load a common block with the COMMONS
segment description directive. All common blocks named in a single
COMMONS directive are assigned to the same segment. This segment is
named by the SEGMENT directive. The common blocks named are loaded in
the indicated order.

You can cause more than one common block of the same name to be
allocated. The blocks must be in different segments, and references to
them must be unique (each requires its own COMMONS segment description
directive).t You cannot assign two copies of a common block to two
segments on a common branch. Also, if copies of a common block are
specified in two segments on different branches, they cannot have a
common caller. For example, if common block IABCI were included in
segments Band C in the segment tree in figure 5-1, a reference to IABCI
from a module in segment A would be ambiguous. (The table in Appendix A
further illustrates this restriction.)

In figure 5-1, assume a copy of IABCI has been included in both segments
Band C. References from segments C, 0, and E would be relocated to the
IABCI common block in segment C. References to IABCI from segment B
would be relocated to the IABCI common block in segment B.

SEGLDR-ASSIGNED COMMON BLOCKS

5

All common blocks without a user-assigned location are considered movable
blocks. They are assigned to segments according to the following
algorithm: a common block is assigned to a segment that is the nearest

t All subprograms referencing the duplicated common blocks must be
assigned by you rather than by SEGLDR.

SR-0066 5-1 A

A

B X2 C X3

D X4 E X5

Figure 5-1. Segment tree

common predecessor of all the segments that reference that common block.
For example, if, in the preceding figure X2 and X4 reference IABCI,
SEGLDR assigns it to segment A. If X4 and X5 reference IABCI, SEGLDR
assigns it to segment C.

Movable block assignment is further discussed in Appendix B.

COMMON BLOCK SIZES

You may redefine the length of any common block at any time. SEGLDR uses
the longest common block found from all modules encountered for each
named or blank common block loaded. SEGLDR generates a message if a
conflicting common block size is encountered. You may control the
severity of this message with the REDEF directive. REDEF also allows
supression of the message (see section 4) •

DUPLICATE COMMON BLOCKS

Common blocks loaded into two or more segments are considered unique,
since they occupy different memory locations. Modules that reference a
duplicated common block must be assigned to ensure that the program
contains no ambiguous references to common block data. (See the COMMONS
segment description directive in section 4.)

SR-0066 5-2 A

DATA LOAD RESTRICTIONS

Data loads (see the glossary) from segments other than the segment where
the common block resides are not processed. SEGLDR issues warning
messages for data loads from other segments and skips the data. Dynamic
common and blank common cannot be data loaded.

CAUTION

SEGLDR does not permit you to do everything with common
blocks that you can do within CAL. Relocation of
values within common blocks is not permitted. SEGLDR
treats such cases as loading errors. Entry points,
however, can be declared in common blocks.

BLOCK DATA ROUTINES

If a module in a BIN dataset is a block data routine, SEGLDR always loads
it.

If block data in LIB routines is to be loaded, it must be referenced by a
previously loaded program or in a MODULES directive.

If you have a subroutine (not block data) that is never called but
contains data loads, use the FORCE directive (see section 4), or the
EXTERNAL statement (see the FORTRAN (CFT) Reference Manual, CRI
publication SR-0009), to be sure it is loaded.

REFERENCING DATA IN COMMON BLOCKS

Data in a common block can be referenced by any module that is in either
the same or a predecessor segment. For data in a common block to be
referenced by a module in a successor segment, however, all of the
following conditions must be true to avoid getting an error. Note that
these conditions cannot be verified at load time.

1. The COMMONS directive must be used in the successor segment to
fix the common block with the data being referenced.

2. A call must be made to the successor segment before the data
reference is made.

3. No subsequent calls can be made to other segments that would
cause the original successor segment to be overlayed.

SR-0066 5-3 A

CODE EXECUTION 6

A segmented program is called into execution by a COS control statement
using the local dataset name of the absolute binary dataset as the verb.
Additional control statement parameters can also be provided, the same as
for nonsegmented programs.

Execution of a segmented program produces temporary datasets called
segment datasets. These datasets are created by the resident routine
($SEGRES) as part of its initialization. Segment datasets are named
$SEGOOl, $SEG002, ••• ,$SEGnnn, where nnn is the number of branch
segments.

Each segment dataset consists of a single record containing a segment.
Segment datasets are read and written with COS-buffered I/O requests made
by $SEGRES. You can name the physical device to which a segment is to be
assigned with the segment description DEVICE directive.

At the beginning of execution, COS transfers control to the
SEGLDR-resident routine, $SEGRES, at entry point $SEGRES. $SEGRES is a
system routine loaded with the object module. $SEGRES is designed to
efficiently read segments to memory for execution and write segments to
mass storage to allow saving current segment states.

$SEGRES contains only two entry points, $SEGRES and $SEGCALL, and a
single common block--/$SEGRES/.

$SEGRES accepts control from the COS Control Statement Processor (CSP)
when execution begins and is responsible for some initialization
functions. $SEGRES begins by initializing the segment datasets: Each
nonroot segment is copied from the absolute binary dataset to its own
segment dataset. Using one dataset per segment has two advantages:

• Individual segments can be most efficiently read and written at
run time because the amount of I/O is at a minimum.

• You can control the logical device assignment at run time,
assigning different segments to different devices. See the ASSIGN
control statement in the CRAY-OS Version 1 Reference Manual,
publication SR-OOll. (Note that you do not use this method of
assigning a segment to a device if you are using the DEVICE
directive.)

Following the copy operations, control transfers to the entry point you
specify.

SR-0066 6-1 A

$SEGCALL intercepts subroutine calls that might require segments to be
loaded to memory. $SEGCALL also saves memory-resident segments, so they
are not overwritten, if SAVE=ON for those segments.

$SEGRES is small in size, approximately 120008 words, including two
4000ij I/O buffers. Other special features of $SEGRES described in this
sect10n are:

• Minimal overhead for subroutine calls

• I/O streams for loading and unloading segments (user-specified
devices for individual segments)

• Two modes for segmented program memory management

With termination of the segmented program, the segment datasets can be
released all at once by invoking the SEGRLS utility. SEGRLS is executed
by the following COS control statement:

SUBROUTINE CALL OVERHEAD

With SEGLDR, four levels of subroutine call overhead are possible. In
order of increasing run time, they are:

1. No $SEGRES intervention: Callers and callees are in the same
segment. In addition, no intervention is required for subroutine
calls with the callee in a predecessor segment (the callee is
memory resident at the time of the call).

2. The callee is in a successor segment that is memory resident.
$SEGRES immediately notes that the callee is in memory and passes
control to the callee.

3. The callee is in a successor segment that is not in memory; one
or more successor segments are read to memory.

4. The callee is in a successor segment that is not in memory and
SAVE=ON is specified; one or more currently resident segments
are written to disk so they are not overwritten when the called
segment is written to memory.

SR-0066 6-2 A

I/O PERFORMANCE

Individual segments are copied from the object module dataset to
individual datasets ($SEGOOI, $SEG002, •••) as part of $SEGRES
initialization, allowing you to assign I/O streams to individual segments.

$SEGRES initiates two read or two write streams, allowing concurrent
loading or saving of two segments. Only a single-buffered I/O request is
required to initiate transfer of segments to or from mass storage once a
stream assignment is made.

Separate datasets for each code segment allow you to assign specific
devices to individual segments, optimizing the I/O performance of $SEGRES.

MEMORY MANAGEMENT

$SEGRES provides for two memory management modes: static and dynamic.

STATIC MEMORY MANAGEMENT

Static memory management is in use when you declare a dynamic common
block (see the DYNAMIC directive in section 4). $SEGRES sets HLM (high
limit memory) to the end of the dynamic common block. $SEGRES never
resets HLM following initialization. However, HLM may be altered by the
execution of your code.

$SEGRES neither requests additional memory nor releases excess memory.
Memory field length is completely under the control of your program. If
the field length is reduced by COS calls in your program, the program
must ensure that field length is large enough to read segments for
execution when necessary.

The following example illustrates static memory management (you declare a
dynamic common block):

DYNAMIC=DYN
TREE
ROOT (ONE, TWO)
ONE (ONEA,ONEB)
TWO (TWOA)
TWOA(TWOB)
ENDTREE

SR-0066 6-3 A

Time
Period

I ROOT
I __ ~-------------
I ONE TWO ONE TWO ONE I
I I I
IONEA I I TWOA 11111111111111 TWOA 1111111111 ONEA I
I I I 11111111111111 1111111/11 I
11111111 ONEB 1111111111 111
11111111 1111111111 111
11111111 1111111111 111
I 11111111111111111111111 TWOB I 1111111111111111111111111 I 1111111111111111
111111111111111111111111 111
111111111111111111111111 111
111111111111111111111111 111
1----------------------1----1--
I IDYNI I
I I
I I
I Field Length I
I I
I I
I I

User requests memory
from COS

User releases memory;
IDYNI disappears.

DYNAMIC MEMORY MANAGEMENT

HLM (high limit
memory) end of

program space

11111 Unused memory

Maximum extent of
segment chain

Dynamic memory management is used when no dynamic common block is
present. HLM is set by SEGLDR to the end of the terminal segment of the
segment tree branch in memory. Segment loading and unloading activity
causes $SEGCALL to request memory from or relinquish memory to COS as
required.

SR-0066 6-4 A

The following example illustrates dynamic memory management ($SEGRES
manages field length) :

TREE
ROOT (ONE, TWO)
ONE (ONEA, ONEB)
TWO (TWOA)
TWOA ('!WOB)
ENDTREE

Time
Period

ONE

ONEA

ONEB

SR-0066

TWO

TWOA

ROOT

ONE TWO ONE

I TWOA ONEA
I
I
I

I I
ITWOB/
/ I
I I
/ I
/ /

6-5 A

APPENDIX SECTION

DUPLICATE ENTRY POINT
HANDLING

You can cause multiple copies of the same entry point or more than one
I entry point of the same name in different modules to be loaded in

different segments.

SEGLDR must know where to place all duplicate entry point names before
encountering modules that call them, so that it can link to the proper

I entry point. You then, rather than SEGLDR, must assign all duplicated
entry points and their callers, and all modules that refer to duplicated
common blocks.

I

I

Avoid assigning two copies of an entry point or common block to two
segments on a common branch. If you specify copies of an entry point or
common block in two segments on different branches, ensure that they 00
not have a common caller. Table A-I illustrates the restrictions.

Table A-I. Segment assignments in tree form

Duplicated module
X in segments
in figure A-I

Module X
Called From Comments

A

B,D B,C Calls from B are linked to the copy
in B. Calls from C are linked to the
copy in D.

I

C,E Anywhere

B,C B,C,D,E

B,C A

B,B Anywhere

Illegal. All calls would be
ambiguous.

Calls from B are linked to the copy
in B. All others are linked to the
copy in C.

Illegal. Reference is ambiguous.

Illegal. Cannot have two copies in
the same segment.

You must include the entry point and all secondary entry points of any
duplicated module in a DUP directive (see section 4 for more information
on the DUP directive).

SR-0066 A-I A

I Consider the following tree:

I

I

I

A

D E

Figure A-I. Sample tree

In figure A-I, suppose that entry point X in segment B is in dataset BINI
and that another X in segment E is in BIN2. Assume that W calls the X in
segment Band Y calls the X in segment E. Further, assume that the X in
segment B has a secondary entry point, Xl. The directives required to
obtain this description are the following.

TREE
A(B,C)
C(D,E)

ENDTREE
DUP=X(B,E)
DUP=XI(B)
SEGMENT=A

BIN=BIN3
ENDSEG
SEGMENT=B

MODULES=X:BINI,W
ENDSEG
SEGMENT C

MODULES=Y
ENDSEG
SEGMENT=D

MODULES=XYZ
ENDSEG
SEGMENT=E

MODULES=X:BIN2
ENDSEG

SR-0066 A-2 A

MOVABLE BLOCK ASSIGNMENT
BY SEGLDR

with SEGLDR, a movable block is a module or common block not assigned to
a specific segment in a segment description directive. SEGLDR treats as
movable all blocks whose locations (segments) you do not specify, and
assigns movable modules or common blocks to segments based on all
subprograms that reference them. SEGLDR floats movable blocks to the
highest-level segment preceding all callers.

B

In figure B-1, for example, if movable module X is called by X4 and X5,
it is assigned to segment C. If movable module X is called by X2 and X4,
it is assigned to segment A. If X is called by Xl, it is assigned to
segment A. If X has no callers, it is assigned to segment A.

A

B X2 C X3

D X4 E X5

Figure B-1. Sample segment tree

A call to a movable module cannot cause a segment to be loaded. (If it
could, a large number of loads could occur at execution time, incurring a
large I/O charge.)

A movable common block is assigned to the nearest common predecessor of
all segmemts containing references to it. Common blocks without
references to them are not loaded. Such a common block might be one
appearing in a library routine that was discarded during call tree
trimming. (For more information on common blocks, see section 5.)

SR-0066 B-1 A

REDUNDANT ENTRY POINTS c

To satisfy external references from more than one binary file or library,
two or more modules may be loaded, resulting in redundant entry points.
For example, assume there are external references to entry points A and
B. Assume there is a module A in datasets BINI and BIN2 as follows:

A in BINI has no secondary entry points.

A in BIN2 has secondary entry point B.

Further assume that BIN=BINI,BIN2 appeared as a global directive. SEGLDR
loads module A from BINI because of the external reference to A and
because BINI is considered first. Module A in BIN2 is also required
because of the external reference to B (a secondary entry in A).

In this and other similar circumstances, SEGLDR loads both versions of
module A. The second occurrence of the entry point A (in BIN2) is
considered inactive.

An informative diagnostic in the load map reports all inactive entry
points. If the FULL option in the load map is specified (see the MAP
directive in section 4), the redundant entry points appear in the entry
point cross-reference map with the notation ninactiven• See Appendix G
for load map information.

SR-0066 C-I A

EXTENDED BLOCK RELOCATION D

Extended block relocation is the adjustment of a 1- to 64-bit field
within a module. The field need not begin on a parcel or word boundary.
SEGLDR checks to ensure that the relocation quantity to be added will not
overflow the defined field. As an example, consider the following CAL
code sequences.

Example 1: Relocation of the jkm field of an 020 instruction

IDENT ALEX

HERE = *

AO HERE

END

SEGLDR processes the AO HERE instruction's jkm field as an extended
block relocation since HERE is a label local to module ALEX. If the
relocation quantity to be added (the base address of module ALEX as
assigned by SEGLDR) results in a value exceeding the reserved 22-bit
field, SEGLDR issues an error.

Example 2: Relocation of a negative quantity within a 10-bit field

IDENT SALLIE

HERE BSS 1

VWD D'8/0,D'lO/HERE-O'1000,D'46/0

END

SR-0066 D-l A

Suppose that CAL assigns HERE a relocatable value of 0'700. Then the
expression HERE-O'lOOO has the relocatable value of -0'100. If the base
of module SALLIE is assigned location 0'10000, the adjusted value of the
expression is 0'7000, which exceeds 10 bits, generating a SEGLDR error.
If SALLIE is assigned to location 0'2077, however, the expression value
will be 0'1777, which occupies 10 bits.

SR-0066

NOTE

CAL truncates relocatable values that overflow their
assigned fields at assembly time.

A

TYPICAL LOADS AND
TREE STRUCTURES

This appendix presents examples of some typical loads and segment tree
structures with their corresponding sets of directives.

Example 1:

E

The FORTRAN program in this example is compiled, loaded, and executed
beginning at entry point START. The program produces a full load map. Its
source is in the dataset SOURCE. The object module is nonsegmented.

CFT,I=SOURCE,B=BINS.
SEGLDR.
TEST.
IEOF
BIN=BINS
ABS=TEST
MAP=FULL
XFER=START

Example 2:

This example is based on the tree structure in figure E-l. Given this
tree structure, assume that all entry points in binary dataset BINl are
to be loaded in segment C and all entry points in BIN2 in segment E. All
other entry points are to be obtained from global binary datasets BIN3
and BIN4 and.the default libraries. Entry points Y, W, and Z are in
segments A, B, and D, respectively. Also assume that segments Band C
contain large data arrays whose updated values are needed each time they
are executed. Assume that version 1 of entry point X (in BIN3) is needed
in segment D and version 2 (in BIN4) in segment F. All calls to entry
points Yl, Y2, and Y3 are to be linked to entry point Y.

The control statement and directives included are:

SEGLDR,I=INPTS.

SR-0066

INPTS contains the following directives:

BIN=BIN3, BIN4; EQUIV=Y (Yl,Y2,Y3)
TREE
A(B,C)
C(D,E,F)

E-l A

Example 3:

ENDTREE
DUP=X(D,F)
SEGMENT=A
MODULES=Y
ENDSEG
SEGMENT=B~SAVE=ON

MODULES=W
ENDSEG
SEGMENT=C~SAVE=ON

BIN=BINl
ENDSEG
SEGMENT=D
MODULES=Z,X:BIN3
ENDSEG
SEGMENT=E
BIN=BIN2
ENDSEG
SEGMENT=F
MODULES=X:BIN4
ENDSEG

B

D E

Figure E-l. Sample tree structure

F

This example is based on the tree structure in figure E-2. Given this
tree structure, the tree definition directives are:

TREE

B(E,F)
H(I,J,K)
A(B,C,D)
F (G,H)
ENDTREE

SR-0066 E-2 A

E F

I J K

Figure E-2. Sample tree structure

Example 4:

Given the tree structure illustrated in example 3 (figure E-2) , assume
that a dynamic common block /DYN/ is used and expanded at execution
time. All entry points are obtained from a global binary dataset MYBIN,
and BLIB and BASELIB. The load order is changed to: blank, labeled, and
code. Common block /AA/ is to be assigned to segment J. A full load map
on dataset MAP is desired.

The control statement and directives required are:

SEGLDR,I=INS,L=MAP.

INS contains the following directives:

BIN=MYBINiLIB=BLIB,BASELIBiMAP=FULL

SR-0066 E-3 A

Example 5:

DYNAMIC=DYN;ORDER=BLC
TREE
A(B,C,D)
B(E,F)
F(G,H)
H(I,J,K)
ENDTREE
SEGMENT=A
MODULES=MAIN
ENDSEG
SEGMENT=B
MODULES=SUBB
ENDSEG
SEGMENT=C
MODULES=SUBC
ENDSEG
SEGMENT=D
MODULES=SUBD
ENDSEG
SEGMENT=E
MODULES=SUBE
ENDSEG
SEGMENT=F
MODULES=SUBF
ENDSEG
SEGMENT=G
MODULES=SUBG
ENDSEG
SEGMENT=H
MODULES=SUBH
ENDSEG
SEGMENT=I
MODULES=SUBI
ENDSEG
SEGMENT=J
COMMONS=AA;MODULES=SUBJ
ENDSEG
SEGMENT=K
MODULES=SUBK
ENDSEG

The tree definition directives for the following tree structure
(figure E-3) are:

TREE
A(B,C,D,E,F,G,H)
ENDTREE

SR-0066 E-4 A

B c D E F G H

Figure E-3. Sample tree structure

SR-0066 E-S A

MESSAGES F

Two types of messages are associated with SEGLDR: the logfile messages
and the listing messages.

SEGLDR LOGFILE MESSAGES

Following is a list of all SEGLDR logfile messages sorted by message 10.
SEGLDR messages are prefixed by SG followed by a 3-digit number.

SGOOO - SEGLDR VERSION x.nn - mm/dd/yy
This logfile message identifies the copy of SEGLDR being used by
version number and generation date.

SGOIO - ILLEGAL INPUT DATASET NAME- dn
SGOll - ILLEGAL LIST DATASET NAME- dn

The two messages above flag illegal input and list dataset names.
The SEGLDR control statement I or L keyword is equated to an
inappropriate dataset name.

SG012 - INPUT DATASET NOT LOCAL- dn
This message indicates that the dataset containing SEGLDR directives
is nonexistent. The cause is probably a misspelled value for the I
control statement parameter or failure to access the input dataset.

SG013 - ILLEGAL DW PARAMETER VALUE - value
The width of input directives must be specified as a number greater
than 0 and less than 81.

SG015 - GLOBAL DIRECTIVE ERRORS
The SEGLDR global directives contain one or more fatal errors.
Examine the listing dataset for specific fatal error diagnostics.

SG017 - SEGMENT TREE STRUCTURE ERROR
The segment tree is faulty. Examine the listing dataset for specific
fatal error diagnostics.

SG019 - SEGMENT DESCRIPTION ERRORS
One or more segments are improperly described by a SEGMENT/ENDSEG
directive group. Examine the listing dataset for specific fatal
error diagnostics.

SR-0066 F-l A

I

SG020 - LOAD ERRORS, DN=dn
SEGLDR detected one or more loading errors while processing the
indicated load dataset. Examine the listing dataset for specific
fatal error diagnostics.

SG021 - SEGLDR RESIDENT ROUTINE MISSING
The routine that handles intersegment subroutine calls was not
located. Normally this subroutine appears in one of the default
libraries. possible causes of this error are the following.

• The NODEFLIB directive was used and a SEGLDR resident routine is
not provided by the user.

• The resident routine is not provided in a system-supplied
library (see the Cray Research site analyst).

SG024 - NO TRANSFER ENTRY POINT
The entry point named in the XFER directive is not located in any
binary input dataset, or no XFER directive was issued and no primary
entry point exists. Be sure to specify the binary input dataset
containing the desired transfer entry point.

SG025 - MODULE ASSIGNMENT ERRORS
One or more subroutine linkages between user-fixed modules are
improper. Subroutine calls must not call across segment tree
branches. A subroutine can call routines in the same segment,
predecessor segments, or successor segments. Examine the listing
dataset for specific fatal error diagnostics.

SG026 - TRANSFER ENTRY NOT IN ROOT SEGMENT
The entry point specified by the XFER directive is not located in the
root segment. Either change the transfer entry point to an entry
point in the root segment or include the binary input dataset
containing the specified entry point in the root segment.

SG027 - DYNAMIC COMMON BLOCK NOT LOADED
The common block named by the DYNAMIC directive was not found or was
discarded by the call tree trimming process.

SG028 - POSSIBLE CALLING SEQUENCE MISMATCH, DN= dn
Some included routines may have been compiled with different calling
sequence versions. Make sure that all routines are compiled with the
same calling sequence version.

SGl63 - NULL INPUT FILE
The input dataset from which directives are read contains no SEGLDR
directives. Check the spelling of the input dataset name and the
contents of the specified dataset.

SR-0066 F-2 A

I

I

SG200 - nnn UNSATISFIED EXTERNALS
The program that was loaded contains one or more unsatisfied
externals. A complete report of unsatisfied external references is
contained in the listing generated by SEGLDR for the load.

SG300 - AVAILABLE MEMORY EXHAUSTED
SEGLDR is unable to load the program in the available memory field.
Increase the maximum memory field size (the COS JOB control statement
MFL parameter).

The following messages (SG80l-SG804) are issued by the resident routine
$SEGRES at run time.

SG801 - SDT LOOKUP FAILURE
SG802 - SLT LOOKUP FAILURE

Both messages indicate an internal failure of SEGLDR routine
$SEGRES. Give the failing job to a Cray Research analyst.

SG803 - /$SEGRES/ DESTROYED
The user's program wrote over the $SEGRES common block. Use the
COS-supplied trace-back information or dump information to isolate
the code that caused the problem.

SG804 - BUFFER I/O ERROR, DSN = dn
A disk malfunction occurred as segments were read to or written from
memory during program execution (dn identifies the dataset.)

The following logfile messages are issued in response to faulty binary
input datasets (both LIB and BIN). dn is a dataset name, n is an
octal number corresponding to the dataset word address where the error
was detected, ii is a 2-digit octal number between 00 and 17, and mod
is the name of the bad module if known. One possible cause of these
conditions is nonbinary input (a dataset containing textual data) •

SG900 - UNEXPECTED READ STATUS, DATASET dn POS=n
SG901 - FIRST TABLE NOT A PDT, DATASET dn POS=n
SG902 BAD READ STATUS OR PDT WC, DATASET dn POS=n
SG903 UNEXPECTED READ STATUS, DATASET dn MODULE mod
SG904 UNEXPECTED TBL=ii DATASET dn MODULE mod
SG90S UNKNOWN TBL=ii DATASET dn MODULE mod

The following messages result from a faulty binary module. The cause is
an internal error in the assembler or compiler that created the module.
SEGLDR does not try to recover from these errors; abort is immediate.
Refer the binary input to a Cray Research site analyst.

SG906 - BAD BI FOR MODULE mod IN DATASET dn
SG907 - PWT REFERENCES IRB, MODULE mod DATASET dn
SG908 - BAD BI IN DUP. TBL, MODULE mod
SG9 0 9 - DPT REFERENCES IRB, MODULE mod
SG9l0 - BAD BI IN PWT, MODULE mod

SR-0066 F-3 A

I

SG9ll - PWT REFERENCES IRB, MODULE mod
SG9l2 - BAD XI, MODULE mod
SG9l3
SG9l4
SG9l5
SG9l6
SG9l7
SG9l8

- BAD XI IN XRT, MODULE mod
XRT REFERENCES IRB, MODULE mod
BAD BIO IN BRT, MODULE mod
BRT BIO REFERENCES IRB, MODULE mod
BAD BI IN BRT, MODULE mod
BAD BI IN XBRT, MODULE mod

SG9l9 - ERROR RE-READING ROOT SEGMENT
An error was encountered while reading from the output dataset during
creation of the executable dataset.

LISTING MESSAGES

SEGLDR produces five types of load-time messages that you may specify to
be printed on the listing file. From least severe to most severe, they
are the following.

COMMENT Prints an informational message that has no effect on the
execution of the object module

NOTE Prints a message that indicates that SEGLDR may have been
misused or used inefficiently. This error has no effect on
the execution of the object module.

CAUTION Prints a message that indicates a possible error has been
detected but it is not severe enough to prohibit
execution. The object module is written and will execute
as desired

WARNING Prints a message that indicates an error that probably
invalidates the object module. The output is not written,
but processing continues so that additional messages may be
printed.

ERROR A fatal error has been detected and processing cannot
continue. No object module is written.

These messages are listed in alphabetical order without regard to
severity.

* WARNING * '=' EXPECTED AFTER- symbol
The keyword symbol is not followed by -. Use the correct directive
syntax.

SR-0066 F-4 A

I

WARNING '(' EXPECTED AFTER- symboL
Missing or misplaced open parenthesis. Lists must be enclosed in
parentheses. Put an open parenthesis in the correct place.

WARNING ')' OR ',' EXPECTED AFTER- symboL
While processing a list of names, an end of line was encountered
before a comma or right parenthesis. List names must be separated by
a comma and enclosed by parentheses. If a line continuation is
desired, put a comma after the last name on the line.

WARNING ',' or ':' EXPECTED AFTER - modname
While processing the MODULES directive an unknown delimitor was found
after the module named. Use the desired terminator.

CAUTION ABSOLUTE MODULE - modname IN LOAD DATASET- dn; MODULE
SKIPPED

An absolute binary module was encountered when a relocatable module
was expected. Remove the absolute binary module or do not specify
dn.

CAUTION ADDRESS RELOCATION IN COMMON BLOCK ebname BY MODULE modname
The common block ebname contains code or other data which is preset
to a relocatable address. If code is present in a CAL common block,
it should be removed and placed in a code module. If data is preset
to a relocatable value, the data should be preset with a
nonrelocatable value or initialized to the relocatable value desired
at execution time.

WARNING AMBIGUOUS REFERENCE TO DUPLICATED COMMON BLOCK- ebname FROM
MODULE- modname

Two or more links exist between ebname and modname. Redesign the
segment structure and module assignments to resolve ambiguity or
remove a copy of ebname.

WARNING AMBIGUOUS REFERENCE TO DUPLICATED COMMON BLOCK- ebname FROM
MODULE- modname IN SEGMENT- segname

Two or more links exist between ebname and modname. Redesign the
segment structure and module assignments to resolve ambiguity or
remove a copy of ebname.

WARNING AMBIGUOUS REFERENCE TO DUPLICATED ENTRY - epname FROM MODULE
- moduLe

Two or more links exist between epname and modname. Design the
segment structure and module DUP assignments to resolve the ambiguity.

WARNING 'BIN' FILE- dn IS A GLOBAL BINARY INPUT FILE
You have designated the binary input file dn to be both local and
global. Correct the file to be just one or the other.

SR-0066 F-S A

I

ERROR 'BIN' FILE- dn IS FORCE-LOADED INTO SEGMENT- segname
You have previously assigned dataset dn to segment segname.
Assign dn to at most one segment.

ERROR BINARY DATASET dn DOES NOT BEGIN WITH A 'PDT'
Dataset dn contains invalid data. Check for incorrect spelling of
the dataset name or ensure that the dataset was generated correctly.

CAUTION BLANK COMMON BLOCK DATA-LOAD BY MODULE- modname
DATA-LOADING SKIPPED

The user code attempts to preload the blank common block, which is
illegal. Remove initialization presets for data in blank common.

WARNING CANNOT FIX TASK COMMON BLOCK - obname TO NON-ROOT SEGMENT -
segname

The common block obname is a task common block and was assign to a
segment. Remove the task common block name from the COMMONS
directive, or make obname not a task common block.

CAUTION CODE OR LOCAL DATA LOADED AT ADDRESS GREATER THAN 4MWD
The program has a module loaded at an address greater than 4 million
words. Code cannot execute correctly if loaded above this address.
Data can only be accessed correctly if special coding instructions
have been used. You should move data to common blocks or make the
size of local data areas smaller.

WARNING COMMON BLOCK - obname REDEFINED AS A TASK COMMON BY MODULE -
modname

The common block obname was encountered in another module and was a
regular common block, while in module modname the common block was
a task common. Change the code so that all references to the same
common block are consistant.

CAUTION COMMON BLOCK- obname NOT REFERENCED, DISCARDED
No references are made to obname and it is discarded. If you
intend to reference obname, check the spelling.

WARNING COMPILATION ERRORS IN MODULE- modname IN DATASET- dn
The user code contains compilation errors. Locate and correct the
errors.

ERROR DATASET - dn CANNOT BE FOUND
SEGLDR cannot find dataset dn. Access or create dataset dn and
rerun.

CAUTION DUPLICATE ENTRY- epname DISCOVERED IN FILE- dn; IGNORED
Two or more copies of epname exist. Any subsequent occurrences
found are ignored.

SR-0066 F-6 A

I

CAUTION DUPLICATE MODULE- modname IN DATASET dn ENCOUNTERED AND
IGNORED

This message means that modname appears more than once in datasets
specified by the BIN directive. The extra copies are ignored.

CAUTION DYNAMIC COMMON BLOCK- cbname DATA-LOADED BY MODULE- modname
DATA-LOADING SKIPPED

The user code attempts to preload the dynamic common block cbname,
which is illegal. Remove initialization presets for data in common
block cbname.

ERROR DYNAMIC COMMON BLOCR- cbname NOT LOADED
The common block named by the DYNAMIC directive is not found in any
user code. Include the common block in the code or remove the
directive.

NOTE 'ENDSEG' DIRECTIVE MISSING, ASSUMED
Two SEGMENT directives were found without an intervening ENDSEG
directive or an end-of-file was read while reading a segment
descrption. Insert the ENDSEG directive before beginning a new set
of segment descriptions.

WARNING ENTRY epnamel IS A SYNONYM OF- epname2
epnamel is redefined in an EQUIV directive and is also included in
MODULES directive. Remove epnamel from either the EQUIV directive
or the MODULES directive.

CAUTION ENTRY- epname IS IN FORCE-LOAD FILE- dn BUT WILL BE LOADED
FROM FILE- dn

epname appears in the BIN load file dn and in a file specified in
a MODULES directive. epname is loaded from the file named on the
MODULES directive.

CAUTION ENTRY- epname UNUSED; DISCARDED
Because no references are made to epname, it is discarded. If you
intend to reference epname, check the spelling.

WARNING ENTRY- epname DUPLICATED BUT NOT NAMED IN A 'DUP' DIRECTIVE
FOR SEGMENT- segname

More than one entry of epname exists. Use the DUP directive to
specify epname in all segments where epname is required.

WARNING ENTRY- epname HAS BEEN PREVIOUSLY DEFINED
epname is already the target entry point of the synonym list in
another EQUIV directive. EQUIV redefinitions cannot be nested.
Remove epname from this synonym list or correct the earlier EQUIV
directive's target entry.

SR-0066 F-7 A

I

WARNING ENTRY- epname PREVIOUSLY REDEFINED AS A SYNONYM
epname is already used as a synonym in an earlier EQUIV directive.
EQUIV redefinitions cannot be nested. Remove epname from earlier
synonym list or change this EQUIV directive's target entry point.

WARNING ENTRY- epnamel IS ALREADY A SYNONYM OF ENTRY- epname2
You have used the EQUIV directive to define epnamel as a synonym
when epnamel has already been defined as a synonym of epname2.
Rewrite EQUIV directives so that epnamel is a synonym for at most
one other symbol.

CAUTION GARBAGE AFTER ENDSEG IGNORED
Extraneous characters follow the ENDSEG directive. Remove the
extraneous characters.

WARNING GARBAGE AFTER NODEFLIB- symbol
An unexpected symbol follows the keyword NODEFLIB. Change the symbol
to a semicolon (i) or remove extra characters.

WARNING ILLEGAL 'dirt VALUE - value
The dir directive has a value containing a non-numeric character,
or the value is not valid for the directive. Correct the directive's
value.

WARNING ILLEGAL REFERENCE TO COMMON BLOCK- cbname IN SEGMENT
segname FROM MODULE- modname IN SEGMENT segment

Module modname references common block cbname but the segments
containing each are not able to be in memory at the same time.
Design the segment structure or module assignments or specify a copy
of cbname as a segment accessible to the module.

WARNING ILLEGAL REFERENCE TO ENTRY - epname IN SEGMENT - segnamel
FROM MODULE - modname IN SEGMENT - segname2

MODULE modname references entry point epname but the segments
containing each are not able to be in memory at the same time.
Design the segment structure or module assignments of use the DUP
directive to provide an accessible entry point to the module.

CAUTION INITIAL MANAGED MEMORY TOO SMALL-INCREASED TO MINIMUM
The initial size of managed memory is not large enough to include the
stack and necessary overhead, and it cannot expand. Specify a larger
initial heap size or do not fix the heap size.

CAUTION INTER-SEGMENT DATA-LOAD TO COMMON BLOCK- cbname FROM MODULE
modname DATA LOADING SKIPPED

An attempt was made to preset common variables with a DATA statement
in a module that is in a different segment than the one in which the
common block is assigned. If data loading is needed, put the DATA
statement in a module in the same segment as cbname.

SR-0066 F-8 A

•

CAUTION LENGTH OF COMMON BLOCK - obname REDEFINED BY MODULE - modname
The user code in modname defines obname as using more or less
memory than was originally allocated to obname. Make all
references to obname consistent (see the REDEF directive).

WARNING LENGTH OF COMMON BLOCK- obname REDEFINED BY MODULE- modname
The user code in modname defines obname as using less or more
memory than was originally allocated to obname. Make all
references to obname consistent (see the REDEF directive).

CAUTION MEMORY EPSILON VALUE TOO SMALL-INCREASED TO MINIMUM
The value specified as the heap epsiton value was below the minimum
acceptable. Specify a value of 2 or greater.

WARNING MISPLACED 'dip' DIRECTIVE
The dip directive appears outside SEGMENT/ENDSEG directive group.
Place the dip directive inside the appropriate SEGMENT/ENDSEG
directive group or groups.

NOTE MODULE - modname AT ADDRESS addp CONTAINS A RELOCATABLE
FIELD 22 BITS LONG -- CANNOT RUN IN EMA MODE

The reference at address addp is exactly 22 bits long. If the
program were to be run with EMA mode enabled, the hardware would
treat this large address as a negative number. If you wish to run
with EMA mode enabled, you must change these reverences. See a Cray
Research site analyst.

CAUTION MODULE- modname IN DATASET - dn HAS NO ENTRIES; MODULE SKIPPED
modname has no entry points. If you want to include modname,
place an entry point in the code and reference it in an included
module.

CAUTION MODULE- modname IN DATASET - dn IS A RELOCATABLE OVERLAY;
MODULE SKIPPED

modname is an operating system relocatable overlay. modname
cannot be loaded and is skipped. Remove modname from dataset, or
do not include dataset dn.

WARNING MODULE- modname IS ALREADY FIXED AND IS A SYNONYM
modname appears in an EQUIV directive, but is assigned to a segment
by the MODULES directive. Remove modname from either the EQUIV or
MODULES directives.

WARNING MORE DIRECTIVES EXPECTED - LOOK FOR EMBEDDED EOF
The end of the directive file was encountered before the ENDTREE
directive and/or segment descriptions were found. Include the
ENDTREE directive and the segment description in the segment tree
definition directives. Check for end-of-file record embedded within
the directive file •

SR-0066 F-9 A

I

WARNING MORE THAN ONE ROOT SEGMENT IN TREE - segname
segname is one of two or more segments with no predecessor. Define
a tree with exactly one root.

WARNING MULTI-TASKING LIBRARIES NOT USED
Ther is at lest one task common block reference in the load, but the
routine which allocates task common blocks at execution time was not
loaded. Be sure that the libraries are available. See a Cray site
analyst.

WARNING NO LEGAL LINK FROM MODULE- modname TO DUPLICATED COMMON
BLOCK- obname

No copy of common block obname is accessible to modname. Rewrite
the module assignments or provide another copy of obname to provide
a valid link.

WARNING NO LEGAL LINK FROM MODULE- modname TO DUPLICATED ENTRY - epname
No copy of the module containing epname is accessible to
modname. Rewrite the module assignments to provide a valid link.

CAUTION NO SYMBOL TABLE INFOMATION FOR USE WITH SID
Both the SID and SYMBOLS=OFF directives were specified. No symbol
table information will be written for use with SID. Remove either
the SID or SYMBOLS=OFF directive.

WARNING NO ROOT SEGMENT IN TREE
(1) Every segment in the tree description has a predecessor. Correct
the segment tree description. (2) No tree description occurs between
the TREE and ENDTREE -directives. Insert the segment tree description.

ERROR NO TRANSFER ENTRY POINT
No transfer entry point was specified with the XFER directive and no
primary entry point exists to which control can be given to begin
execution. Use the XFER directive to specify the desired initial
entry point of the program.

WARNING NO VALUE ASSIGNED TO- symbot
Nothing follows the '=' after the keyword symbot. Insert the
desired value after the '='.

CAUTION NON-NUMERIC MANAGED MEMORY INCREMENT-DEFAULT USED
The heap increment value contains a non-numeric character. Specify a
numeric value.

CAUTION NON-NUMERIC MANAGED MEMORY SIZE-DEFAULT USED
The heap size value contains a non-numeric character. Specify a
numeric value.

SR-0066 F-10 A

I

CAUTION NON-NUMERIC MEMORY EPSILON VALUE-DEFAULT USED
The heap min value contains a non-numeric character. Specify a
numeric value.

CAUTION NON-NUMERIC STACK INCREMENT-DEFAULT USED
The stack increment value contains a non-numeric character. Specify
a numeric value.

CAUTION NON-NUMERIC STACK SIZE-DEFAULT USED
The stack size value contains a non-numeric character. Specify a
numeric value.

WARNING PREMATURE END OF 'dirt DIRECTIVE
A comma at the end of a line is followed by an end-of-file instead of
a record. Use the correct form of the dip directive, complete the
list to be processed or remove the trailing comma. Check for an
embedded end-of-file record.

WARNING PREMATURE END OF SUCCESSOR LIST- segname
An end of line appears immediately after a left parenthesis or the
successor list is not completed with a right parenthesis. Complete
the successor list on one line or end the line with a comma to
continue the list on the next line.

WARNING 'PRESET' PATTERN value EXCEEDS 16 BITS
The PRESET directive names a value too large to be represented by 16
binary digits. Change the value so that it is within range.

CAUTION PROGRAM CANNOT RUN IN EM MODE BECAUSE MODULE - modname
REFERENCES number ADDRESSES BETWEEN 2MWD AND 4MWD

The module named ahs references that would not be made correctly if
run with EMA mode enabled on a machine with greater than 4 million
words. Changing the MLEVEL print level to NOTE will cause all
occurances of these reference types to be listed. See a Cray
Research analyst to get a complete discussion of EMA usages.

ERROR READING BINARY FILE- dn RECORD NUMBER- value
A read error occurred in the dataset dn. Rerun the job. Recreate
the dataset and run the job again. If the job still fails, see a
Cray Research site analyst.

CAUTION REFERENCE AT ADDRESS- addr IN MODULE- modname HAS PARCEL
ATTRIBUTE
ENTRY- epname HAS WORD ATTRIBUTE
EXTERNAL REFERENCE LINKED TO PARCEL ZERO

The entry point epname is a data word, but the reference in module
modname treats the entry like an instruction. Change the code to
ensure that epname is used consistently.

SR-0066 F-ll A

I

CAUTION REFERENCE AT ADDRESS- addr IN MODULE- name HAS WORD
ATTRIBUTE ENTRY- epname HAS PARCEL ATTRIBUTE
EXTERNAL REFERENCE LINKED AS A WORD ADDRESS

The entry point epname is an instruction, but module modname
refers to epname as a data word. Change the code to ensure that
epname is used consistently.

CAUTION REFERENCE TO COMMON BLOCK- ebname IN SEGMENT- segname FROM
MODULE- modname IN SEGMENT- segname IS UNSAFE

ebname may not be in memory when module modname is executed.
Verify that ebname would be in memory when referenced. If it is
not, rewrite the module qr common block assignments.

WARNING RELOCATION FIELD OVERFLOW IN MODULE- modname AT ADDRESS
address

The value to be loaded at address address is too large or too small
to fit into the field. Check the expression calculation.

WARNING RESERVED OR ILLEGAL 'dir' DATASET NAME- dn
Dataset name dn on the dir directive does not follow COS naming
conventions or is reserved by SEGLDR. Change dn to a valid name.

WARNING SECONDARY ENTRY- epname IN MODULE- modname NOT DECLARED BY
A 'DUP' DIRECTIVE

A secondary entry point in a duplicated module is not declared as a
duplicate. Include epname in a DUP directive.

WARNING SEGLDR RESIDENT ROUTINE NOT FOUND
The routine that handles intersegment subroutine calls was not
located. Normally, this subroutine appears in one of the default
libraries. Possible causes of this error are the following:

• The NODEFLIB directive was used and a SEGLDR resident routine is
not provided by the user.

• The resident routine is not provided in a system-supplied
library (see the Cray Research site analyst) •

WARNING SEGMENT- segname HAS BEEN PREVIOUSLY DEFINED
The segment tree description directives already defined segname's
successor segments or defined segname as a successor of another
segment. Correct or remove those directives that cause multiple
definitions.

WARNING SEGMENT- segname IS EMPTY
segname has no modules named by MODULES or BIN directives, or the
modules named were not referenced and were trimmed. Every segment
must contain at least one module. Provide segname with at least
one module or remove the segment.

SR-0066 F-12 A

•

WARNING SEGMENT- segname IS UNDEFINED
A segment in a DUP list is not defined in the segment tree. Include
segname in the segment tree description directives or remove it
from the DUP list.

WARNING SEGMENT- segname WAS NOT DESCRIBED BY A 'SEGMENT' DIRECTIVE
An end-of-file was reached before a SEGMENT/ENDSEG group describing
segname was found. Include a SEGMENT/ENDSEG group describing
segname or remove all references to segname.

WARNING SEGMENT-segname NOT INCLUDED IN TREE DESCRIPTION
segname is not defined in the segment tree. Include segname in
the segment tree description directives, or remove segname's
segment description.

WARNING SEPARATOR EXPECTED AFTER- symbol
Remove the extra There are unexpected characters after symbol.

characters or insert the directive separator ';'.

CAUTION STACK TOO SMALL-INCREASED TO MINIMUM
The value specified as the initial stack size was below the minimum
acceptable. Specify a value of 128 or greater.

WARNING SUCCESSOR=PREDECESSOR
A directive caused a segment in the segment tree to be defined as its
own successor. Correct the segment tree description directive.

CAUTION TASK COMMON BLOCK - cbname DATA-LOADED BY MODULE - modname
The user code attempts to preload the task common block, which is
illegal. Remove initialization presets for data in common block
named.

WARNING TASK COMMON BLOCK - cbname REDEFINED AS A REGULAR COMMON BY
MODULE - modname

The common block name was encountered in another module and was a
task common block; while in module modname, the common block was a
regular common. Change code so that all references to the same
common block are consistant.

WARNING TOO MANY SEGMENT CALLS-- INCREASE SLT ACTUAL SLT
REQUIREMENT- value

Too little space exists in the Segment Linkage Entry Table for
callers and callees. Use the SLT directive to increase the Segment
Linkage Entry Table to the required size as stated.

WARNING TOO MANY SEGMENTS
The lOOO-segment limit was exceeded. Reduce the number of segments •

SR-0066 F-13 A

I

ERROR TRANSFER ENTRY POINT - epname IS NOT THE ROOT SEGMENT
The entry point epname is not in the root segment and is specified
as the entry point for beginning execution. Put the transfer entry
point in the root segment or specify another entry point within the
root segment as the transfer entry point using the XFER directive.

* WARNING * UNFIXED MODULE- modname REFERENCES DUPLICATED COMMON BLOCK
cbname

Duplicate common blocks were specified but not all modules which
reference them are fixed. Fix the modules that reference duplicate
common blocks.

WARNING UNFIXED MODULE modname REFERENCES DUPLICATED ENTRY - epname
The module is not assigned to a module and references the duplicate
entry point epname. Use the MODULES directive to fix the module in
the segment desired.

WARNING UNKNOWN 'dirt KEYWORD - value
The value named is not a valid keyword for the 'dirt directive.
Use the correct keyword.

WARNING UNKNOWN OR MISPLACED DIRECTIVE - symbol
The symbol directive is not recognized as a SEGLDR directive or is
not valid at this point in the directives. Check spelling and
delimiters or move the directive to the correct place in directive
sequence.

ERROR 'XFER' ENTRY POINT - epname NOT FOUND
epname was not found. Include epname in the code. Check the
spelling.

SR-0066 F-14 A

MAPPING G

This section provides a set of SEGLDR directives, block maps and
associated output, and related entry point and common block reference
maps, for the example FORTRAN program given below. The following FORTRAN
program consists of ten subroutines. Each module is loaded into a
separate segment.

EXAMPLE FORTRAN PROGRAM

PROGRAM EXAMPLE
DATA I /0/
CALL SUBRl (I)
CALL SUBR2 (I)
PRINT *,' VALUE OF I IS ',I
END

SUBROUTINE SUBR1(I)
COMMON /SPACE/ SPACE(lOO)
COMMON COMMON
1=1+1
CALL SUBRlA (I)
CALL SUBR1B (I)
CALL SUBR1C (I)
RETURN
END

SUBROUTINE SUBRlA(I)
COMMON COMMON
PRINT *,' EXECUTION OF SUBRlA'
1=1+1
RETURN
END

SUBROUTINE SUBR1B(I)
COMMON /STATUS/ STATUS
COMMON COMMON
PRINT *,' EXECUTION OF SUBR1B'
1=1+1
RETURN
END

SR-0066 G-l A

SUBROUTINE SUBRIC(I)
COMMON /STATUS/ STATUS
PRINT *,' EXECUTION OF SUBRIC'
1=1+1
RETURN
END

SUBROUTINE SUBR2(I)
COMMON /SPACE/ SPACE(lOO)
1=1+1
CALL SUBR2A (I)
RETURN
END

SUBROUTINE SUBR2A(I)
PRINT *,' EXECUTION OF SUBR2A'
1=1+1
CALL SUBR2B (I)
RETURN
END

SUBROUTINE SUBR2B(I)
PRINT *,' EXECUTION OF SUBR2B'

1=1+1
CALL SUBR2C (I)
RETURN
END

SUBROUTINE SUBR2C(I)
PRINT *,' EXECUTION OF SUBR2C'
1=1+1
CALL SUBR2D (I)
RETURN
END

SUBROUTINE SUBR2D(I)
PRINT *,' EXECUTION OF SUBR2D'
1=1+1
RETURN
END

SEGLDR DIRECTIVES FOR SAMPLE PROGRAM

The following sample SEGLDR directive input is used to specify and
diagram the construction of the segmented object module.

SR-0066 G-2 A

MAP=FULL
DYNAMIC=//
ABS=EXAMPLE
**
* *
* ROOT *
* / *
* / *
* / *
* / *
* / *
* SEGI SEG2 *
* / I I *
* / I I *
* / I SEG2A *
* / I I *
* SEGIA SEGIB SEGIC I *
* SEG2B *
* I *
* I *
* SEG2C *
* I *
* I *
* SEG2D *
* *
**
TREE

ROOT (SEGI ,SEG~)
SEGl(SEGlA,SEGlB,SEGlC)
SEG2(SEG2A)
SEG2A(SEG2B)
SEG2B(SEG2C)
SEG2C(SEG2D)

ENDTREE
SEGMENT=RooT

MODULES=EXAMPLE
ENDSEG

*
*
*

Left-hand segment tree branch

SEGMENT=SEGI
MODULES=SUBRI

ENDSEG
SEGMENT=SEGlA

MODULES=SUBRlA
ENDSEG
SEGMENT=SEGIB

MODULES=SUBRIB
ENDSEG

SR-0066 G-3 A

SEGMENT=SEGIC
MODULES=SUBRIC

ENDSEG

*
*
*

Right-hand segment tree branch

SEGMENT=SEG2
MODULES=SUBR2

ENDSEG
SEGMENT=SEG2A

MODULES=SUBR2A
ENDSEG
SEGMENT=SEG2B

MODULES=SUBR2B
ENDSEG
SEGMENT=SEG2C

MODULES=SUBR2C
ENDSEG
SEGMENT=SEG2D

MODULES=SUBR2D
ENDSEG

EXAMPLE SEGLDR MAP OUTPUT FOR SAMPLE PROGRAM

The sample SEGLDR output following is an example of the general
information preceding the block maps. Note that word addresses and block
lengths are in octal.

PROGRAM STATISTICS

SEGMENTED OBJECT MODULE WRITTEN TO- EXAMPLE
PROGRAM ORIGIN- 200
MAXIMUM SEGMENT CHAIN LENGTH- 22647 WORDS, ENDING WITH SEGMENT- SEG2D
TRANSFER IS TO ENTRY POINT- EXAMPLE AT ADDRESS- 12613a
DYNAMIC COMMON BLOCK- / /

ORIGIN- 22647
LENGTH- I

ACTUAL SLT REQUlREMENT- 16

SAMPLE PROGRAM BLOCK MAPS

There is one block map for each segment of the program in this example.
Block map I is an abrreviated sample because some library routines were
ommitted for readability.

SR-0066 G-4 A

BLOCK MAP 1

SEGMENT- ROOT ORIGIN- 200 LENGTH- 22213 SAVE=OFF
ROOT SEGMENT
SORTED BY ASCENDING BLOCK ORIGIN ADDRESS

NAME ADDRESS LENGTH SOURCE DATE OS REV

/$SEGRES / 200 445
/SPACE / 645 144
$SEGRES 1011 11700 $UTLIB 09/13/82 08:42 COS 1.12
EXAMPLE 12711 67 $BLD 09/16/82 08: 53 COS 1.12
USX 13000 134 09/16/82 08: 53 COS 1.12
$MEMUC20 13134 276 $SYSLIB 09/15/82 02:48 COS 1.12

SORTED BY BLOCK NAME

NAME ADDRESS LENGTH SOURCE DATE OS REV

$MEMUC20 13134 276 $SYSLIB 09/15/82 02:48 COS 1.12
$SEGRES 1011 11700 $UTLIB 09/13/82 08:42 COS 1.12
/$SEGRES / 200 445
USX 13000 134 09/16/82 08:53 COS 1.12
EXAMPLE 12711 67 $BLD 09/16/82 08:53 COS 1.12
/SPACE / 645 144

BLOCK MAP 2

SEGMENT- SEG1 ORIGIN- 13432 LENGTH- 36 SAVE=OFF
IMMEDIATE PREDECESSOR SEGMENT- ROOT
SORTED BY ASCENDING BLOCK ORIGIN ADDRESS

PROCESSOR COMMENT

CAL 1.12 09/04/82
CFT 1.11 09/04/82

SEGLDR 1.12
CAL 1.12 09/04/82

PROCESSOR COMMENT

CAL 1.12 09/04/82
CAL 1.12 09/04/82

SEGLDR 1.12
CFT 1.11 09/04/82

NAME ADDRESS LENGTH SOURCE DATE OS REV PROCESSOR COMMENT
/STATUS / 13432 1

SUBR1 13433 35 $BLD 09/16/82 08:53 COS 1.12 CFT 1.11 09/04/82
SORTED BY BLOCK NAME

NAME ADDRESS LENGTH SOURCE DATE OS REV PROCESSOR COMMENT
/STATUS / 13432 1

SUBR1 13433 35 $BLD 09/16/82 08:53 COS 1.12 CFT 1.11 09/04/82

BLOCK MAP 3

SEGMENT- SEG2 ORIGIN- 13432 LENGTH- 24 SAVE=OFF
IMMEDIATE PREDECESSOR SEGMENT- ROOT
SORTED BY ASCENDING BLOCK ORIGIN ADDRESS

NAME ADDRESS LENGTH SOURCE DATE OS REV PROCESSOR COMMENT
SUBR2 13432 24 $BLD 09/16/82 08:53 COS 1.12 CFT 1.11 09/04/82

BLOCK MAP 4

SEGMENT- SEGlA ORIGIN- 13470 LENGTH- 57 SAVE=OFF
IMMEDIATE PREDECESSOR SEGMENT- SEG1
SORTED BY ASCENDING BLOCK ORIGIN ADDRESS

NAME ADDRESS LENGTH SOURCE DATE OS REV PROCESSOR COMMENT
SUBRlA 13470 57 $BLD 09/16/82 08:53 COS 1.12 CFT 1.11 09/04/82

SR-0066 G-5 A

BLOCK MAP 5

SEGMENT- SEG1B O~IGIN- 13470 LENGTH-
IMMEDIATE PREDECESSOR SEGMENT- SEG1
SORTED BY ASCENDING BLOCK ORIGIN ADDRESS

57 SAVE-OFF

NAME
SUBR1B

ADDRESS LENGTH SOURCE DATE OS REV PROCESSOR COMMENT
13470 57 $BLD 09/16/82 08:53 COS 1.12 CFT 1.11 09/04/82

BLOCK MAP 6

SEGMENT- SEG1C ORIGIN- 13470 LENGTH- 57 SAVE=OFF
IMMEDIATE PREDECESSOR SEGMENT- SEG1
SORTED BY ASCENDING BLOCK ORIGIN ADDRESS

NAME ADDRESS LENGTH SOURCE DATE OS REV PROCESSOR COMMENT
SUBR1C 13470 57 $BLD 09/16/82 08:53 COS 1.12 CFT 1.11 09/04/82

BLOCK MAP 7

SEGMENT- SEG2A ORIGIN- 13456 LENGTH- 63 SAVE=OFF
IMMEDIATE PREDECESSOR SEGMENT- SEG2
SORTED BY ASCENDING BLOCK ORIGIN ADDRESS

NAME ADDRESS LENGTH SOURCE DATE OS REV PROCESSOR COMMENT
SUBR2A 13456 63 $BLD 09/16/82 08:53 COS 1.12 CFT 1.11 09/04/82

BLOCK MAP 8

SEGMENT- SEG2B ORIGIN- 13541 LENGTH-
IMMEDIATE PREDECESSOR SEGMENT- SEG2A
SORTED BY ASCENDING BLOCK ORIGIN ADDRESS

63 SAVE=OFF

NAME ADDRESS LENGTH SOURCE DATE OS REV PROCESSOR COMMENT
SUBR2B 13541 63 $BLD 09/16/82 08:53 COS 1.12 CFT 1.11 09/04/82

BLOCK MAP 9

SEGMENT- SEG2C ORIGIN- 13624 LENGTH- 63 SAVE=OFF
IMMEDIATE PREDECESSOR SEGMENT- SEG2B
SORTED BY ASCENDING BLOCK ORIGIN ADDRESS

NAME ADDRESS LENGTH SOURCE DATE OS REV PROCESSOR COMMENT
SUBR2C 13624 63 $BLD 09/16/82 08:53 COS 1.12 CFT 1.11 09/04/82

BLOCK MAP 10

SEGMENT- SEG2D ORIGIN- 13707 LENGTH- 57 SAVE=OFF
IMMEDIATE PREDECESSOR SEGMENT- SEG2C
SORTED BY ASCENDING BLOCK ORIGIN ADDRESS

NAME ADDRESS LENGTH SOURCE DATE OS REV PROCESSOR COMMENT
SUBR2D 13707 57 $BLD 09/16/82 08:53 COS 1.12 CFT 1.11 09/04/82

SR-0066 G-6 A

SAMPLE PROGRAM ENTRY POINT CROSS-REFERENCE MAP

This sample entry point cross-reference map shows entry point values
(addresses assigned), segments to which modules are assigned, and the
segment tree in caller/callee form. As for block map 1, this sample is
abbreviated for readability.

MODULE BNTRY VALUB SBGMBNT

$MBMUC20 5MBMUC20 13347a ROOT
CALLBD BY ••• $SBGRBS

5MBMUC50 13357a CALLBD BY •••
$SBGRBS $SBGRBS 1011a ROOT CALLS ••• $MBMUC20

CALLBD BY ••• EXAMPLE

'SBGCALL 2234&

USX $1fLI 13100a ROOT

CALLED BY ••• EXAMPLE SUBRlA SUBRlB SUBRlC SUBR2A
SUBR2B SUBR2C SUBR2D

SWLA 1310la CALLBD BY ••• EXAMPLE SUBRlA SUBRIB SUBRIC SUBR2A

SUBR2B SUBR2C SUBR2D
SWI.v, 13102a CALLBD BY ••• EXAMPLE
$1fLF 13103a CALLED BY ••• EXAMPLE SUBRlA SUBRlB SUBRlC SUBR2A

SUBR2B SUBR2C SUBR2D

'END 13104& CALLBD BY ••• EXAMPLE

'BTD 13105a CALLED BY •••

'&TO 13106a CALLBD BY •••

BXAMPLB BXAMPLB 12721a ROOT CALLS ••• SUBRl SUBR2 $WLI SWLA SWLV,

SWLP' ,END 'SBGRES

SUBRl SUBRl 13437a SBGl CALLS ••• SUBR1A SUBRIB SUBRIC
CALLED BY ••• EXAMPLE

SUBRlA SUBR1A 13500a SBG1A CALLS ••• SWLI SWLA SWLF
CALLED BY ••• SUBRl

SUBRlB SUBRlB 13500a SBGIB CALLS ••• SWLI SWLA SWLF
CALLED BY ••• SUBRl

SUBRlC SUBRlC 13500a SBG1C CALLS ••• SWLI SWLA SWLF
CALLED BY ••• SUBRl

SUBR2 SUBR2 13436a SBG2 CALLS ••• SUBR2A
CALLED BY ••• EXAMPLE

SUBR2A SUBR2A 13466a SBG2A CALLS ••• SWL! SWLA SWLF SUBR2B

CALLED BY ••• SUBR2

SUBR2B SUBR2B 13551a SBG2B CALLS ••• SWL! SWLA SWLF SUBR2C

CALLED BY ••• SUBR2A
SUBR2C SUBR2C 13634a SEG2C CALLS ••• SWL! SWLA SWLF SUBR2D

CALLED BY ••• SUBR2B

SUBR2D SUBR2D 13717a SBG2D CALLS ••• SWL! SWLA SWLF
CALLED BY ••• SUBR2C

SAMPLE PROGRAM COMMON BLOCK REFERENCE MAP

Like the other maps in this appendix, this sample output is based on the
example FORTRAN program included at the start of this section.

COMMON BLOCK REFERENCES

BLOCK SEGMENT ADDRESS LENGTH MODULE REFERENCES

$SEGRES ROOT 200 445 $SEGRES
II SEGl 27420 1 SUBRl SUBRlA SUBRIB
SPACE ROOT 645 144 SUBRl SUBR2
STATUS SEGl 13432 1 SUBRlB SUBRlC

SR-0066 G-7 A

GLOSSARY

GLOSSARY

B

Binary input dataset - A dataset consisting of relocatable modules
produced by a language processor. Each relocatable module is contained
in a single record. Only the first file of binary input datasets is
examined by SEGLDR. There are three types of binary input datasets:
Global BIN datasets, segment description BIN datasets, and library
datasets.

Block - A general term describing either a module or common block.

Branch segment - Any nonroot segment.

D

Data loading - The process by which SEGLDR inserts data into object
module blocks. Data loading occurs explicitly in response to program
DATA statements that name common block variables. Implicit data loading
of locations within a subprogram code block can also occur if the
compiler or assembler so dictate.

E

Entry point - A symbolic name defined by a language processor to be a
starting address for execution within a module. CFT PROGRAM, FUNCTION,
ENTRY and SUBROUTINE statements name entry points. CAL allows entry
point names to be absolute values and data items as well. The following
CAL code fragment identifies entry point VALUE as an absolute value and
entry point DATA as a data item.

VALUE
DATA

F

ENTRY
=
DATA

VALUE ,DATA
D'64
'STRING'

Fixed - Assigned to a particular segment of the tree.

SR-0066 Glossary-l A

Force-loading - Inclusion of an entry point that has no callers.
Force-loading is performed on BLOCKDATA modules, for example.
Force-loading of all uncalled entry points can be enabled by the FORCE
directive.

M

Module - A subprogram. For CFT, a module name is defined by the PROGRAM,
BLOCKDATA, FUNCTION, or SUBROUTINE statement. CAL modules are named by
the IDENT pseudo-oPe

Movable block - A module or common block not assigned by a segment
description directive to a specific segment but assigned by SEGLDR to the
highest-level segment preceding all callers.

o

Object module - The executable binary program produced by SEGDLR.
Formatted so that it can be read to memory by COS for execution, it is
written to the first file of the ABS dataset.

P

Primary entry point - An entry point named by the CFT PROGRAM statement
or the CAL START pseudo-op which serves as the default transfer address
for the program. (If there is no PROGRAM, SUBROUTINE, FUNCTION, or
BLOCKDATA statement, CFT SUbstitutes PROGRAM $MAIN.) The first primary
entry point encountered is the default transfer address.

R

Root segment - The single segment occupying the root node of the segment
tree. The root segment is always memory-resident during program
execution.

S

Segment - A portion of code which may be overlayed during execution.
Segments differ from traditional overlays in that no explicit call must
be made to an overlay manager in order to read code segments to memory.

Segment datasets - Temporary datasets created by the resident routine
($SEGRES) as part of its initialization. Each segment dataset consists
of a single record containing a segment.

SR-0066 Glossary-2 A

T

Transfer address - The location within a module at which program
execution begins. The transfer address is symbolically identified by an
entry point name. If a transfer address is not named by the XFER
directive, a ppimapy entpy point is required (see ppimapy entpy point
in this glossary).

Tree trimming - The process by which SEGLDR eliminates uncalled entry
points from the object module.

U

Unsatisfied external - A reference (for example, a subroutine call) to an
unknown entry point. SEGLDR searches all user-specified BIN and LIB
datasets and default libraries for a subprogram to which a linkage can be
made. Should the search fail, the calling module is said to contain an
unsatisfied extepnat.

SR-0066 Glossary-3 A

INDEX

INDEX

ABORT directive, 4-22
ABS

dataset file, Glossary-2
datasets, 3-4
directive, 4-8, 4-17

Absolute binary
dataset, 6-1
module, 4-17, 4-18

Absolute values, Glossary-l
Additional memory request, 6-3
Address relocation, 3-1
Addresses assigned, G-8
Adjusted value, D-2
ALIGN directive, 4-18
Allocation of program space, 4-14
Arguments, 1-1, 2-5, 2-6
Arrays, data, 4-25,
Assembled module, 3-1
Assembly, 3 -1
ASSIGN control statement, 6-1
Assigned location, 0-2

Base address, D-l, 0-2
BCINC directive, 4-18
BIN directive, 3-3, 3-4, 4-7, 4-8,

4-12, 4-23, 4-29
Binary dataset, 1-1, 4-1, 4-3, 4-33,

E-l, E-3
Binary file, C-l, 4-23
Binary input (BIN) datasets, 2-5, 3-1, 3-3,

3-4, 3-2, 4-8, 4-12, 4-23, 4-29, 5-3,
Glossary-I, Glossary-3

Binary input dataset, multiple, 4-8
Binary input modules, 4-22, 4-26
Binary programs, executable, 1-1
Blank common, 1-2, 4-14, 4-19, 4-31,

5-1, 5-3, E-3
Block

data routine, 5-3
lengths, G-4
map, 3-4, 4-5, G-l, G-4, G-8

BLOCKOATA
modules, Glossary-2
statement, Glossary-2
subprograms, 3-4, 4-8

Braces, 4-2
Brackets[], 4-2
Branch segment, 2-2, Glossary-I, 6-1

CAL, see Cray Assembly Language
Calculations, 4-25
Call

substitution, 4-11
illegal, 2-5, 2-6, 2-7
legal, 2-7
return jump, 2-5
subroutine, 2-2, 4-16
to entry points, E-l
to a movable module, B-1

Called
modules, 2-5
segment, 6-2

Callee, 4-9, 4-10, 6-21, G-8
Caller, 2-5, 4-9, 4-10, 6-2, B-1, Glossary-2
Calling module, 2-5, Glossary-3
CFT, see Cray FORTRAN
Code

block, 4-14, 4-31, E-3
construction, 3-1
execution, 4-31, 6-1, 6-3, Glossary-2
execution time, 4-31
modification, 1-1
nonoverlayed, 1-1
nonsegmented, 4-1
overlayed, 1-1
segment, 6-3, Glossary-2
segmented, 4-1

COMMENT directive, 4-3, 4-29
Common block(s)

allocation, 4-19
assignment, 5-1, E-3,
data, 5-3, 5-4
definition, Glossary-2
duplicate, 4-30, 5-1,
dynamic, 1-2, 4-30
expansion, 4-14
floating algorithm, 4-30
labeled, 4-15, 5-1
length, 4-24,
load order, 4-13, 4-31, 5-1, E-3
memory assignment, 4-14
naming, 4-31
redefinition, 4-24,
reference map, G-9, G-l
references, 5-1, 5-2,
SEGLOR-assigned, 5-2
/$SEGRES/, 6-1
sizes, 4-24, 5-2
starting location, 4-18
type, 4-31
updated, 1-1

SR-0066 Index-l A

Common block{s) (continued)
unassigned, B-1
use and assignment, 5-1
variables, Glossary-l

Common block/module reference, 3-4, 4-5
Common branch, 5-1, A-I
Common caller, 5-1, A-I
Common predecessor, 5-2, A-I
COMMONS directive, 4-13, 4-29, 4-30, 4-33,

5-1,5-2, 5-4
Compilation, 3-1
Compiled module 3-1
Control options, 4-1, 4-3
Control statement

example, E-l, E-3
parameters, 6-1
SEGLDR, 1-2, 3-5

Conventions, 4-2
Copies of entry point, A-I
Copy operations, 6-1
COS Control Statement Processor (CSP), 6-1
COS Symbolic Interactive

Debugger (SID), 4-26
COS, see Cray Operating System
Cray Assembly Language (CAL)

SEGLDR limitations, 5-3
overflow handling, D-2
code fragment, Glossary-l
code sequence, D-1
modules, Glossary-2
START pseudo-op, Glossary-2

Cray FORTRAN (CFT)
rentrant programs, 4-21
example program, 4-15
PROGRAM statement, Glossary-2
subprograms (see subprograms, CFT)

Cray Operating System (COS)
memory requests, 6-4
calls, 6-3
Control Statement Processor (CSP), 6-1
control statement, 6-1, 6-2
execution, 3-4
Symbolic Interactive

Debugger (SID), 4-26
Current

segment, 4-25, 4-34, 6-2
segment saving, 6-1

Data Load Restrictions 5-3
DATA statement, Glossary-l
Data

areas, 4-15
arrays, 4-25, 4-34, E-l
description directives, 4-13
items, Glossary-l
load, 3-1, 5-3
loading, 4-14, 5-3, Glossary-l
reference, 5-4
uninitialized, 4-16

Dataset
information, 4-7
input, 1-2
local, 3-3, 6-1

SR-0066 Index-2

Dataset (continued)
loading order, 4-8
privacy, 4-17
processing, 3-3, 4-30
security, 4-17
user-saved, 4-17

Debug symbol table dataset, 4-26
Debugging, 4-24
Default libraries, 4-9, 4-10, E-l,
Device assignment, 6-3
DEVICE directive, 4-29, 4-31, 6-1
Directive

global, 4-1
input,3-5, A-3, E-l, G-2
null, 4-2
sample program, G-2
segment description, 4-1
segment tree definition, 4-1
syntax, 4-2

Discarded entry point, 4-28
Discarded modules, 3-4, 4-23, 4-8
Dump time request, 4-17
DUP directive, 4-29, 4-33, A-I, 4-30
Duplicate common blocks, 5-1, A-I
Duplicate entry point

handling, 4-33, A-I
names, 4-33, A-I

Duplicate module, 2-5, A-I, 4-29
Dynamic common program space

allocation, 4-14
Dynamic common, 1-2, 2-6, 4-14, 4-30,

5-3, 6-3, 6-4, E-3
DYNAMIC directive, 4-13, 4-14, 4-21,

4-21, 6-3,
Dynamic memory management, 6-3, 6-4, 6-5

ECHO directive, 4-3, 4-4, 4-29
ENDSEG directive, 4-29, 4-35
ENDTREE directive, 4-27, 4-27
Entry point

assignment, 4-8
calls, 4-28, 2-5
common blocks, 5-3
control directives, 4-10
copies, 4-33, A-I
cross-reference, 3-4, C-l, G-7, 4-5
discarded, 4-28
duplicate, 4-29, 4-33, A-I
external, 2-5
loading, 4-29
name, 1-2, 4-12, 4-13, 4-33, Glossary-I,

Glossary-2, Glossary-3
synonyms, 4-11
uncalled, Glossary-l
unknown, Glossary-3
values, G-8

Entry point $SEGCALL and $SEGRES, 6-1
ENTRY statement, Glossary-l
EQUIV directive, 4-11
Error

conditions, 4-23
diagnostics

printing, 4-4

A

Error (continued)
discovery, 3-1
loading, 4-12
message, 4-1, 4-6, 4-12, 4-16, 4-4,

3-4, 3-5
level, 4-6

severity, 4-6
Examples

FORTRAN program, G-l
loads and tree structures, E-l
SEGLOR map output for sample

program, G-4
Executable binary program (object module),

1-1, 3-1, 3-4, Glossary-2
Execution time, 2-5
Expanded dynamic common block, E-3
Explicit call, Glossary-2
Extended

block relocation, 0-1
entry point, 2-5
reference, 2-6, 3-3, C-l

EXTERNAL statement, 5-3

F$OSO request, 4-17
Fatal error, 4-8, 4-29
Field

adjustment, 0-1
length, 6-4, 6-5
reduction, 4-19, 4-20
overflow, 0-2
relocation overflow erros, 3-1

File, ABS dataset, Glossary-2
First primary entry point, 4-13
Fixed modules, 4-28, 4-29
FORCE directive, 4-22, 4-23, 4-28, 4-8,

5-3, Glossary-2
Force-loading, 4-23, Glossary-2
Format, Glossary-2
FORTRAN program example, E-l, G-l, G-8
FUNCTION statement, Glossary-I, Glossary-2

Global
data description directives, 4-13
directive, 3-5, 4-1, 4-3, 4-3, 4-22
directive subtypes, 4-3
input, 4-4, 4-8
security directives, 4-16

GRANT directive, 4-16

HEAP directive, 4-20, 4-21
Heap memory management directives, 4-20
High limit memory (HLM), 6-3, 6-4

I/O, 6-1, 6-2, 6-3
IOENT pseudo-op, Glossary-2
IGNORE parameter, 4-18
Immediate predecessor segment, 2-2, 2-4,

2-5, 4-27
Inactive entry points, C-l

SR-0066 Index-3

Initialization
functions, 6-1
$SEGRES, 6-1

Input
analysis, 3-1
dataset, 1-2, 3-5

information, 4-7
directives, 3-4, 3-5, 4-7, 1-1, 4-4,

4-5, 3-1
Input, A-3, E-l, E-3, G-2
Intersegment subroutine calls, 2-5,

3-4, 4-16
Invalid segment tree, 2-4, 2-5

Job
advancement, 4-17
class, 4-17
flow, 3-1, 3-4, 3-2
step, 4-19, 4-20, 4-22

Labeled common block, 4-31, E-3, 4-15,
5-1,

Language proccessors, 3-3
Last segment, 4-5
LOR, 1-2
LIB

system-default, 3-2
user-defined, 3-2
directive, 3-3, 3-4, 4-7, 4-9, 4-23
routines, 5-3

Libraries
default, 4-9, 4-10
user, 4-9
routine, B-1, G-4

Libraries, 1-1, 3-4, 4-7
Library dataset (LIB), 2-5, 3-1, 3-3,

Glossary-I, Glossary-3
Linkage, Glossary-3
Listable output (see Printable output)
Listing

Load

dataset, 3-4, 4-3, 4-5, 4-16
directives, 4-3
output, 3-4

address, 4-24
datasets, 3-1
map, C-l, E-l, E-3
order, E-3
time and date, 4-5, 5-4
transfer entry point, 3-4

Loading
data, 3-1
errors, 4-12, 4-22, 4-24, 5-3
modules, C-l
nonsegmented, 4-1
order, 4-12, 4-34, 5-1
segmented, 4-1
segments, 6-2, 6-3

Loading, 1-1, 3-1, 6-4, E-l
Loads and tree structures, E-l

A

Local
dataset, 3-3, 6-1
BIN directive, 4-29
MODULES directive, 4-33
SAVE directive, 4-34, 4-34

Logical device, 4-31, 6-1
LOWHEAP directive, 4-21, 4-22

MAP directive, 4-3, 4-5
Map output, 3-1, 3-4, 4-5, 4-22, G-l,

G-4, G-8
Mass storage, 4-34, 6-1, 6-3
Memory

addition, 4-15
addresses, 2-2
assignment, 4-24
expansion, 2-6
field length, 6-3
heap, 4-20
layout, 4-27
locations, 4-30, 5-2
management

directives, 4-20
modes, 6-2, 6-3

mapping, 4-5
pre-allocation, 4-15
reduction, 4-20
release, 6-3, 6-4
unused, 6-4

Memory-resident, 2-2
segment, 6-2, Glossary-2

Messages error, 4-1, 4-6, 4-12, 4-16, 4-4,
3-4, 3-5

SEGLDR logfile, F-l
severity 4-6
level, 4-6

listing, F-4
Miscellaneous global directives, 4-22
MLEVEL directive, 4-3, 4-6
Module (subroutine or function)

assembled, 3-1
assignment, 3-3, 4-28, 4-29, 4-33, G-8
called, 2-5
calling, 2-5
compiled, 3-1
discarded, 4-7, 4-23
discarding, 3-4
duplicate, 2-5, A-I
fixed, 4-28, 4-29
grouping, 3-4
loading, 3-3, 3-4, 4-11, 4-12, 4-23,

5-3, C-l
movable, 4-8
name (primary entry point),4-29,

Glossary-2
relocatable, 4-18,

Glossary-l
subprogram, 2-1
unassigned, B-1

Module discarding, 3-4, B-1, Glossary-l
MODULES directive, 4-7, 4-10, 4-12,

4-29, 4-35, 4-33, 5-3

SR-0066 Index-4

MODULES parameter, 4-18
Movable block assignment, 5-2, B-1
Movable block, B-1, Glossary-2, 5-1
Movable modules, 4-7, B-1

NODEFLIB directive, 4-7, 4-10
Nonroot segment, 2-2, 6-1, Glossary-l
Nonsecure, 4-18
Nonsegmented

codes, 4-1
loading, 4-1
object modules, 1-1
program, 1-1, 2-1, 3-4, 6-1

NORED directive, 4-18, 4-20
NORMAL parameter, 4-19
Null directives, 4-2

Object module (executable binary program),
1-1, 3-1, 3-4, 3-2, 4-15, 4-22, 4-22,
6-1, E-l, Glossary-I, Glossary-2

Object module (executable binary program) ,
blocks, Glossary-l
construction, 3-1, G-2
dataset, 6-3
nonsegmented, 1-1
segmented, 1-1, G-2

ORG directive, 4-22, 4-24
Output dataset, 3-5
Output, 3-4, G-l
Overflow of assigned fields, D-2
Overhead, 6-2
Overlay

management, 1-1, Glossary-2
structure modification, 1-1

Overlayed
code, 1-1, Glossary-2
segment, 4-25, 4-34

Overlaying data arrays, 4-25, 4-26
Overlays, Glossary-2
Overwritten segment, 4-25

Pad increment, 4-19, 4-20
PADINC directive, 4-20
Page, 4-7
Parcel boundary, D-l
Passing control, 6-2
Passwords, 4-17
Physical device, 6-1
Predecessor

common, 5-2
segment, 2-2, 2-5, 2-6, 4-16,

5-4, 6-2
PRESET directive, 4-13, 4-15, 4-30
Primary entry point (module name)

default, 4-13
Printable output, 3-5, 4-4
Privilege, 4-17
Program

assembly, E-l
compilation, E-l

A

Program (continued)
execution, 2-2, 4-13, 4-15,

Glossary-2, Glossary-3
loading, E-l
nonsegmented, 1-1, 2-1, 3-4
overlay management, 1-1
segmentation, 2-1
segmented, 1-1
segments, 2-1
space, 6-4
symbol table information, 4-26

PROGRAM $MAIN, Glossary-2

Recompilation, 1-1
Record, 3-1, 3-4, 6-1,

Glossary-I, Glossary-3
REDEF directive, 4-22, 4-24, 5-2
Redundant entry points, C-l
Reference, illegal, A-I
Reloading segments, 1-1
Relocatable

binary input datasets, 3-1
binary record, 3-3
module, 4-18, Glossary-l
value, D-2

Relocation
of values, 5-3
quantity, D-l

Requests, 4-17
Resident

loader routine, 4-16
routine ($SEGRES), 1-1, 2-6, 3-4, 4-31,

6-1, Glossary-3
Return jump (call), 2-5
Root

node, Glossary-2
segment, 2-1, 2-2, 2-4, 3-4, 4-16,

4-24, Glossary-2

SAVE directive, 4-22, 4-29, 4-34, 4-25
SDR (System Directory), 3-3, 4-17
SDT requests, 4-17
Secondary entry point, A-I, A-2, C-l
SECURE directive, 4-17
Secure, 4-17
Security directives, 4-16
$SEGCALL, 6-2, 6-4
SEGLDR control statement, 1-2, 3-5, E-l,

E-3 (also see Control statement)
SEGLDR output, 3-4
Segment description BIN directive, 4-29
SEGMENT directive, 4-25, 4-29, 4-29,

4-35, 4-29, 4-30, 4-31, 4-33, 5-1
Segmented

codes, 3-4, 4-1, 4-27, 4-28
loading, 4-1
object modules, 1-1, G-2
program, 1-1, 4-31, 6-1

Segments
assignment, 6-1, A-I
block map, 4-5
chain, 6-4

SR-0066 Index-S

Segments (continued)
contents, 1-1, 2-1, 4-1, 4-28, 4-30
current, 4-34
datasets, 4-31, 6-1, 6-2, Glossary-3

release of, 6-2
description

BIN datasets, 3-1, 3-3, 3-2, 4-23,
4-29 ,Glossary-l

directive, 4-1, 4-3, 4-4, 4-8, 4-27,
4-28, 4-33, 4-35, B-1,
Glossary-2

destination, 4-12
execution, 2-2, 4-34
force-loading, 4-23, Glossary-2
immediate,

predecessor, 2-2
successor, 2-2

level, 2-2
linkage Table (SLT), 4-16
loading and unloading, 4-33, 6-2, 6-3,

6-4
memory resident, 2-2, Glossary-2
multiple immediate predecessor, 2-4, 2-5
name, 2-2, 4-35, 5-1
non-immediate successor, 2-5
nonroot, 2-2
overlayed, 4-34
predecessor, 2-2, 2-5, 2-6
program memory management modes, 6-2
root, 2-1, 2-2
saving, 4-25, 4-34, 6-2, 6-3
specification, 5-1
structure, 1-1, 2-1
successor, 2-2, 2-5, 2-6
transfer, 6-3
tree, see Tree
unloading, 1-1, 6-2, 6-4

SEGRLS utility, 6-2
$SEGRES (resident routine) ,

features, 6-2
initialization, 4-31, 6-1,

6-3, Glossary-3
intervention, 6-2

SID directive, 4-22, 4-26
SID, see Symbolic Interactive Debugger
Single-buffered I/O request, 6-3
Size, segment tree, 2 -2
SLT (Segment Linkage Table), 4-16
SLT directive, 4-13, 4-16
Source code changes, 1-1
Spooled dataset, 4-17
STACK directive, 4-21
Starting address, Glossary-l
Static memory management, 6-3
Stream assignment, 6-3
Subprogram, 1-1, 4-23, 5-1, B-1, Glossary-2,

Glossary-3
code block, Glossary-l
hierarchy, 2-1
linkages, 4-9
modules, 2-1

A

Subroutine or function (module)
assembly, 3-1
calls, 1-1, 2-2, 2-6, 2-7, 4-9,

Glossary-3
between segments, 2-5
interception, 6-2
intersegment, 3-4, 4-16
overhead, 6-2

compilation, 3-1
examples, 4-25, G-l
handling, 2-6, 2-7
referencing a common block, 5-3

SUBROUTINE statement, Glossary-I, Glossary-2
Successor

segment, 2-2, 2-5, 2-6, 4-16, 5-4, 6-2
Symbol table

dataset, 3-4
information, 4-26

Symbolic name, Glossary-l
SYMBOLS directive, 4-22, 4-26
Syntax, 4-1
System directory (SOR), 3-3
System requests, 4-17
System-default library datasets, 3-2

Temporary datasets, 4-31, 6-1, Glossary-3
Terminal segment, 6-4
Time and date of load, 4-5, 5-4
TITLE directive, 4-3, 4-7, 4-29
Title line, 4-7
Transfer

address, 4-5, Glossary-3
entry point, 4-5, 4-13
of segments, 6-3

TREE directive, 4-27
Tree trimming, 3-4, B-1, Glossary-l
Tree, segment

branch, 2-2, 4-14, 6-4
concept, 2-1
definition directives, 4-1, 4-27
design, 2-1, 2-2
example, 4-28
invalid, 2-4, 2-5
size, 2-2
shape, 4-1, 4-27
size, 4-27
structure, 2-1, 4-27, E-l, E-2,

E-4, E-5
valid, 2-2, 2-3, 2-4
unloading, 6-4

Typical loads and tree structures, E-l

Unsatisfied external, 3-3, 3-4, 4-9,
4-12, Glossary-3

Unused space, 4-19
User

dataset, 4-17
libraries, 4-9
memory request, 6-4

SR-0066 Index-6

User-specified
BIN datasets, Glossary-3
common blocks, 5-1
devices, 6-2
LIB datasets, Glossary-3
location, 5-1

USX directive, 4-10, 4-12

Value relocation, 5-3
Variable name, 4-2

Warning messages, 5-3
Warnings, 3-4
Word address, G-4
Word boundary, 0-1

XFER directive, 4-10, 4-13, Glossary-3

A

READERS COMMENT FORM

Segment Loader (SEGLDR) Reference Manual SR-0066 A

Your comments help us to improve the quality and usefulness of our publications. Please use the space provided
below to share with us your comments. When possible, please give specific page and paragraph references.

NAME ______________________ ----__ --------------______________________ __

JOB TITLE __________________ _

FIRM ____ ---____________ ------_--- RESEARCH, INC.
ADDRESS __________________________________ _

CITY_---------STATE _--- ZIP ___ _

- -- - - - --~

Attention:
PUBLICATIONS

111111

BUSINESS REPLY CARD
fiRST CLASS PERMIT NO 6184 ST PAUL. MN

POSTAGE Will BE f.>AIO BY Ar'lORESSEE

Cli -.", 0 :"Y'
RESEARCH, INC.

1440 Northland Drive
Mendota Heights, MN 55120
U.S.A.

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

I
I
I

------------------------------------~

STAPl':

(")
c
~

> r o z
C')

~
J:
en
!:
z
m

READERS COMMENT FORM .
Segment Loader (SEGLDR) Reference Manual SR-0066 A

Your comments help us to improve the quality and usefulness of our publications. Please use the space provided
below to share with us your comments. When possible, please give specific page and paragraph references.

NAME __________ --__________________________ __

JOBTITLE ________________________________ __

FIRM __________________________ ------------__
RESEARCH. INC.

ADDRESS __________________________________ _

CITY_---------STATE _____ ZIP ____ _

----------------------------------~

Attention:
PUBLICATIONS

"""

BUSINESS REPLY CARD
fiRST CLASS PERMIT NO 6184 ST PAUl. MN

POST AGE Will BE PAID BY Ar>ORESSEE

RESEARCH, INC.

1440 Northland Drive
Mendota Heights, MN 55120
U.S.A.

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

------------------------------------,

n
c
-4'

> r o z
C')

-4
Z
en
c
Z
m

Cray Research, Inc.
Publications Department
1440 Northland Drive
Mendota Heights, MN 55120
612-452-6650
TLX 298444

