
THE CRAY
OPERATING SYSTEM

UNIT 1

CONCEPTS & FACILITIES

Copyright 1984, by CRAY RESEARCH, INC. This item and informatioor
contained therein is proprietary to CRAY RESEARCH, INC. Thiso:;;tem'and
the information contained sha 11 be keot confidentia 1 and may not be
reproduced, modified, disclosed, or transferred, except with th&:'oriorv'
written consent of CRAY RESEARCH, INC. This item and all cop;es'~~ ;f'f
any" a re subject to return to CRAY RESEARCH, INC.

"/

TABLE OF CONTENTS

Introduction ·
COS Purpose and Features .• ·
Hardware Configurations and Characteristics .

Software Components.

Memory Layout • . . •

Mass Storage Organization .

Job Processing Overview .

Memory Management • . .

.

Tasks and Multitasking Concepts •

Exchange Mechanism •...•
EXEC Purpose and Function .

STP Purpose and Function. . · · · · · . .
/ ... ~ System Tasks: Purpose and Function. · · · · . "

CSP Purpos&-"~nd Function. · · · · ~ .. ~ ~

Job Proees.si.!lg Execution Sequence . · · · ·

i

.

.

ii

• 1.1

• 2.1

· 3.1

• 4.1

· . 5.1

~ 6.1

· . 7.1

·

·

· 8.1

· 9.1

10.1

11.1

12.1

13.1

14.1

INTRODUCTION

AUDIENCE

The Cray Operating System course is intended to provide technical
knowledge and skills to Cray Site Analysts and other software personnel
who support or maintain COS.

PREREQUISITES

To ensure maximum benefit from this course, the participant should have
previous 1 y attended the Cray JCL course and the CAL cour'se, or ha ve
comparable work experience.

It should be understood that a lack of this requisite knowledge or
experience will seriously impair the participant's progress.

ii

COURSE STRUCTURE

The Cray Operating System course is organized into two major parts:

COS I

Concepts
&

Faci 1 i ti es.

Internal s ..

COS II

Installation
&

Opera ti ons.

iii

SKILLS ADDRESSED IN THE COS I COURSE

This two week course is intended for Cray and Customer analysts who are responsible
for maintaining, debugging and modifying COS. It presents an overview of the CRI
software environment and takes the student through the internal interactions of COS.
Dumps are presented to reinforce fundamental COS interactions and to build trouble
shooting skills. Some basic operational skills are also covered. With the skills
developed in this course, the student is ready to move into the COS II course to
develop operational and site management skills.

THESE SKILLS ARE PREREQUISITES FOR THE COS II COURSE.

COS I

Skills
At the end of the course the learner is able to:

List the general purpose of the Cray
Operating System and its primary
functions.
Identify CRI software functions,
characteristics, and components.
Describe CRI software external
interactions.
Describe the CRI software life cycle.

Identify the CRI software manuals and
the function of each.
Describe COS internal interaction.

Describe COS external to internal
interaction.
Read and interpret COS code.

Evaluate system performance and
reliability.
Print formatted and raw dumps.

Analyze COS dumps to isolate system
malfunctions.

. . ;

Given a problem, state 'the recommended
procedure for reporting and recovering
from the problem.

Competency Levels

iv

i

rv
'b/;27

I

\
i
\

I

i

I
'1

J
l
I

I

1
!

I I

2 3 4 5 6 7

EVALUATION METHOD

Evaluation of your progress in gaining expertise in these skills is
accomplished by assigning a competency level to each skill.

Level

o No knowledge and no experience.

1 Has some knowledge and limited experience with this skill,
but not sufficient to contribute in a work environment.

2 Can perform some parts of this skill satisfactorily but
requires instruction and supervision to perform the
ent ire ski 11 •

3 Can perform some parts of this skill satisfactorily but
requires periodic supervision and/or assistance.

4 Can perform this skill satisfactorily without assistance
and/or supervision.

5 Can perform this skill with proficiency in speed and
quality without supervision or assistance.

6 Can perform this skill with initiative and adaptability
to special situations without supervision or assistance.

7 Can perform this skill and can lead others in performing
it.

Successfully completing this course should give you a competency level
of at least 3 for most skills. Experience on the job will continue to
increase your competency 1 eve 1 • "- . :' "\

v

{ .

LEARNING LOG DESCRIPTION

Progress in your level of competency can be graphed on a learning log.

This is an example of one course participant's learning log.

On the following page is an empty graph for you to use to indicate your current
competency level and your continuing progress.

At the completion of the course this learning log on which you've evaluated yourself
will be annotated by the course instructor and a copy sent to your supervisor.

LEARNING LOG

COS I

Skills
At the end of the course the learner is able to:

I J

List the general purpoSe of the Cray
5;1 ~ Operating System and its primary --+ /5

functions.
Identify CRI software functions,

"II
A ~.t characteristics, and components. -

Describe CRI software external 0/" - ~ I interact i.ans. 15

Describe the CRI software life cycle. 0/" .. ·'rs
Identify the CRI software manuals and 0/,1 ---eo ~~ I the function of each.
Describe COS internal interaction. 0/'.1 ~ r,q I I
Describe COS external to internal o/tl ~a ~

interaction.
Read and interpret COS code. Ytl .A 0/. J.tJ
Evaluate system performance and y.\ ~ ~I reliability.
Print formatted and raw dumps. bit' ~~l
Analyze COS dumps to isolate system 0/.1 ~ % malfunctions. ~

Given a problem, state the recommended ~ ---tt ~3 procedure for reporting and recovering ~I
from the problem.

No Basis

I

I
!
I
I
I
i
I

I

I
I

I

I

I

I

* For
Competency Levels a 1 2 3 4 5 6 7 Judgement!

I

• Vl

1) SR-OOOO
2) SR-0009
3) SR-OOll
4) SR-0013
5) SR-0014
6) SM-0036
7) SR-0038
8) SR-0039
9) SM-0044
10) SG-0055
11) 5G-0056
12) SR-0060
13) SR-0068
14) SR-0073

t"'\ .1' ... r-." (ell

REFERENCE MANUALS AVAILABLE IN
TERMINAL ROOMS A AND B

CAL Reference Manual
CFT Reference Manual
COS Reference Manual
UPDATE Reference Manual
Library Reference Manual . .

APML Reference Manual
MVS Station Reference Manual
COS Message Manual
COS Operational Aids Reference Manual
TEDI User's Guide
SID User's Guide
PASCAL Reference Manual
VM Station Reference Manual
C5IM Reference Manual
~U¥:

If you have any suqqestions for additions to this collection, please
mention them to your instructor.

LISTINGS BIN

A bin for printer listings is located in Terminal Room B.

If you remove listings from our local printers (TNGA or TNGB)
which are not yours, please be sure to put them into the appropriate
place in the bin.

Listings printed in the Mendota Heights building will be brought
over by van on a daily basis and distributed to the bin.

Every Friday, listings more than one week old will be discarded
from the bin.

vii

<,

U
f
Y

Monday

COS OVERVIEW

Monday

PDM

JSH

JCM

Tuesday

COS OVERVIEW

FIELD SUPPORT

COS Internals

EXEC

Tuesday

--

EXP. CSP. USER

MEP. MSG, SPM

COS I DAILY SCHEDULE

Wednesday Thursday Friday

Task to Task DQM. DEC. FVD
Conmunication

EXEC

SCP. STG
COS - lOS
Interaction

STP
Corrmon Routines

Wednesday Thursday Friday

Dump Ana lys is
TQM

Startup Dump Ana lys is Review

Evaluation

Dump Analysis

• 1X

SKILLS ADDRESSED IN THE COS II COURSE

This one week course is intended for Cray and Customer analysts who are responsible
for generating, operating and generally managing a COS site. Topics include: System
generation; installation and operation; debugging; permanent file maintenance; and
defining the system operating environment.

THESE SKILLS ARE PREREQUISITES FOR THE IDS COURSE.

COS II

Skills
At the end of the course the learner is able to:

Startup/shutdown/dump a CRI system. !
Create and edit parameter files. I I
Communicate with COS using IDS

. I I I I I station commands.
Run an interactive COS job using

I I I the IDS.
Select installation parameters.
Build a COS system. I
Use CSIM to test a COS system.
Install a COS system. I
Establish system security. I I
Establish system accounting. I I I I
Establish a job class structure. I I I I I I
Establish permanent dataset

I privacy.
Build the system directory. I
Use permanent file procedures to

I I maintain the permanent file base.
Use the SCP debug facility to aid
in isolating and validating a
system malfunction.
Install. and run on-line
diagnostics.

Competency Levels 0 1 2 3 4 5 6 7

•

COS II Pre-Course Assignment:

The primary focus of COS II is hands-on experience

with the Cray and 105. Relatively little total time in the

course is allocated to lecture. Because the class takes turns

in small teams to use the lab, lab time is also at a premium.

You will need to do advance preparation in order to get the

maximum value out of lab. Keep the COS II objectives in mind

during COS I so that you will be aware when the COS I material

ties in with them.

Also, please read the following materials in advance,

with a focus on preparing for the COS II objectives:

SM-0043

SM-0044

SG-0051

• Xl

OUTLINE OF COS OVERVIEW

1. COS: General Purpose and Primary Features

2. CRI Software: Functions, C~aracteristics and
Components

A. CSP

B. EXEC

C. STP

D. System Tasks

E. Stati ons

F. lOS

G. Libraries, Utilities, and Language
Processors

H. $SYSTXT, $COSTXT, Common Decks

3. A Day in the Life of a Typical Job

4. CRI Software Life Cycle
(Guest presentation on Field Support)

5. Overview of CRI User Publications

1.1

CRAY-l OPERATING SYSTEM (COS)

MULTIPROGRAMMING OF USER APPLICATIONS

SCHEDULING OF APPLICATIONS BY PRIORITY (JOB CLASS)

MANAGES DISK AND TAPE RESOURCES

MANAGES FRONT-END COMMUNICATIONS
6~~4c~

4t. MANAGES FILE MAINTENANCE
\
J~~~

MANAGES PROGRAM MAINTENANCE

CAPABLE OF MODIFICATION AT STARTUP

III

X-MP SERIES SOFTWARE

• CRAY-l SOFTWARE INVESTMENT IS PRESERVED

• WIDE RANGE OF APPLICATION CODES AVAILABLE ON X-MP
SERIES COMPUTERS

• COMMON SOFTWARE THROUGHOUT X-MP SERIES

• MULTITASKING FEATURES AVAILABLE THROUGH FORTRAN
LIBRARY ROUTINES

• IMPROVED VECTORIZATION OF CONDITIONAL STATEMENTS
ON X-MP/48

• DISK STRIPING TECHNIQUES FOR IMPROVED I/O PERFORMANCE

• SSD RESOURCE MANAGEMENT

• WIDE VARIETY OF STATION SOFTWARE~ INCLUDING NEW
APOLLO STATION~ FOR EASY INTEGRATION WITH USER
ENVIRONMENT

'--------------J ~;;rr____rl
1.3

NEW FEATURES IN COS 1.13 RELEASE

* Multitasking within job steps

* Disk striping

. * On-line tape positioning

Multiprogramming

COS provides for the sharing of processor resources among up to 255
independent jobs. With a single-CPU Cray, several processes are
ready to run, and if one process is delayed by I/O, another job is
immediately scheduled to run on the CPU. Jobs are assigned prior
ities, and each is allocated a CPU time-slice commeasurate with its
priority. In a multi-CPU Cray, each CPU can be shared by several
jobs.

High speed conmunications·channels provide for remote users in large
vo 1 ume en vi ronments.

Multitasking

Multitasking allows a Single user job to create multiple tasks which
can execute simultaneously in more than one CPU on a multi-CPU CRAY.
Multitasking within job steps provides a higher degree of parallel
ism within the program, and execution-time performance improvement
for those applications that are appropriate for multitasking.

A COS job that is multitasked can run on ·the same system with jobs
that' are not multitasked.

On-Line Tape Positioning

Users can position a tape dataset at any block on any volume, obtain
the current position information for a tape dataset, and enable
recovery of tape jobs after a system interruption.

Disk Striping (, _-4 " ".

Di sk striping a 11 ~ws' u:~~~ (I~i~e ~~tr~~~te datasets across severa 1
disks in the I/O Subsystem, al lowing parallel data movement from
each disk. This feature provides vastly improved disk performance
when larger buffer sizes are used.

Disks in the system that will be part of a stripe group will
typically be used as request-by-name devices.

Re-Configure At Start-Up

Configuration changes can be made interactively during start-up.
Devices can be added or deleted, or attributes or status can be
changed without the necessity of a full-scale system re-generation.

1.5

SSD·

tat4T~()L

~.,. ,t..TE M'~"
P Rac.E S SOlt

BASIC CRI SYSTEM
SOFTWAR·E COMPONENTS

l='ROHT £: Nl>

,S ,4 STATIONS ,

SOfTwARe~ ~OS NO~e
~ ,

"b~S J MVS, VMJ VA'I{vNlS
I

SPE.R~'1i H ONEY~'LL..

STP TASK NAMES, IDs AND PRIORITIES

Task Name ---- 1Q (Octal) PRI (Octal)
.tli" l.i· ! j
Jff')1t'i(\'/' f. It'-

SCP - Station Call Processor 01

E~P - Exchange Processor 02

PDM - Permanent Dataset Mgr. 03

DEC - Disk Error'Correction 04

DQM - Disk Queue Manager 05

MSG - Message Processor - 06

MEP - Exec Message Processor 07

SPM - System Perform. Monitor 10

JSH - Job Scheduler

JCM - Job Class Manager

TQM - Tape Queue Manager

STG - Stager

FVD - Flush Volatile Device

1.'

11

12

13

14

15

10

12

14

20

02

04

05

24

13

11

03

06

15

FRONT·END COMPUTERS

FRONT·ENO

INTERFACES

BUFFER MEMORY _----..
Ya TO 8 MILLION

64·BIT WORDS

SlOP

DIOP

XIOP

PRINTER

PERIPHERAL

EXPANDER

CPU

2 OR 4 MILLION

64·BIT WORDS

, TO 4 DCU-4
CONTROLLERS

1 TO 4 DCU·4
CONTROLLERS

1 TO 4
.... __ --1 BLOCK MULTIPLEXER

CONTROLLERS

, TO 16 CHANNELS

1. !

2 TO 16 00·29
DISK UNITS

1 TO 16 00·29
DISK UNITS

Table 2-1. DD-19, DD-29, and DD-49 DSU capacities

I

I I I
I

Capacity OD-19 DD-29 DO-49
I

I I

I i I

I I I
Words per sector I 512 512 i 512

I
Sectors per track

I
18 18 42

Tracks per cylinder I 10 10 8

Cylinders per device

I
411 822 886

Total data sectors 73,980 147,960 297,696
I

Total data words 38,877,760 75,755,520 152,420,352

2.1.2 CE CYLINDERS

Each DD-49 DSU contains t~o hardware-protected cylinders, known as CE
cyLinders. Data cannot be written to either CE cylinder until the CE
cylinder is write enabled by a diagnostic command. The two
hardware-protected cylinders are called CEI and CE2. DO-49 DSU cylinders
are numbered as follows.

• The data cylinders are numbered 0-885.

• CEI, cylinder 887, contains the Factory Flaw Table described later
in this section.

• CE2, cylinder 889, is the diagnostic scratch cylinder. (Cylinders
886 and 888 are inaccessible.)

By default, the data cylinders are write enabled while CEl and CE2 are
write protected. A diagnostic cowmand is required to write protect the
data cylinders and write enable the CE cylinders. CE cylinders can be
individually write protected or enabled.

COS also reserves cylinders for CE use by entering them in the operating
system flaw table.

SN-0223 2-2

CO~" '4At

EK€C '*~'
<;TP- 13 rA~~
CSl>

rOS e.

K£R-NEL
~ SuJS ~/S TEMS

<; TA1IDNS:
1 M~~(t5
1 oPe~ .. SYSI.

(A11LITIES:
BlA!LD "
1.1 O"'Ar~ _~, fJ'{'J" ;.~. . . W un 'C. i ." 'f,'

f
l

TEll "i':o.r." ,.\,;

\1 O'YE~AT1DNAL
Al7JS

l)EYl/}..(SG €~S :

SI1)
CSIM

._---.--_._-------

kOA))ERS :
~-:D~
SEG-~brz

lit N\rlAAGES :
CAk
"~rL
~fT

/ 1

l /t-.l1) l'~"\L I

lA ScJJ- "'C I'

LIB IZA R. I ES :

$A~S

$ t\Llf3
~ !6hl8

$ ~ClW:B
, $ S'/S ",-lB
~ /AI ~1J5
~ ~S(,~lB

~ Y S Tc fVl TEXTS

• 1) ATASETS N"frttD BY ~ P)'f<AMETE"f(

ON C AL CONTUJL.. STAiEMeNT

• CONTA'INS l)EF1~lTloN Of G~6~

- MA<:ftOS.
.. 01'J)lrS

- MICROS

- ~'fMl301.S .

• Z sYSTXT 15 7JeF"~

• COS txT :IS lAS€b IN AssfMBaN~ COS.
• C.O t\A.MON 1) ECKS

-l)Etl~'D ~ (AeUAT€. 1)2~G"'IV€ CO~f/)Ea

- CON1€.N1S CAN B~ CoPr En If) ANi
N(}.M~EI{.. O~ hLJ<.,AT10IJS IN T~l~
Cb M P I~E: PA1A Sf:, .

- <:AN Sf: CA/,len ~~()M It Ny Wl-lEItC2
IN A Ile:G/,A.kAR. (3~ C6MMON 1)E{;X-

1. to

s

CONTENTS (Mc1c..,O!. c;1~01 Opde.fs Jl/d ~/A. dJ j
S::) '.V\ ~SY$TXT

P

1.

2.

C ~ ~~ eoSTXT
.

INTRODUCTION •

SYSTEM ACTION REQUEST MACROS •

OB CONTROL MACROS • • • • • •
ABORT - Abort program • •
CONTRPV - Continue from reprieve condition
CSECHO - Send statement image to the logfile • • • • • •
DELAY -'Delay job processing •••••
DUMPJOB - Dump job image
ENDP - End program • • • • • •
ENDRPV - End reprieve processing

. . . .
IOAREA - Control user access to I/O area

.
.

JTIME - Request accumulated CPU time for job • • • •
MEMORY - Request memory • • • • • • • • • • • • • • •
MESSAGE - Enter message in logfile ••••
MODE - Set operating mode. '. • • • • • • • •••
NORERUN - Control detection of nonrerunnable functions
RECALL - Recall job upon I/O request completion •
RERUN - Unconditionally set job rerunnability • •
ROLL - Roll a job • • • • • • • • •
SETRPV - Set job step reprieve
SWITCH - Set or clear sense switch

.
.

ATASET MANAGEMENT MACROS
CLOSE - Close dataset • • • • •
DISPOSE - Dispose dataset • • • • • • • • •
DSP - Create dataset parameter table ••••••••• •
OPEN - Open dataset • • • • • • • • •
RELEASE - Release dataset to system • • • • • • • • •
SUBMIT - Submit job dataset • • • • • • • • • • • • •

1MB AND DATE REQUEST MACROS • • • • • • • • • • • • • • •
,DATE - Get current date • • • • • • • • • • • • • • •
DTTS - Date and time to timestamp conversion • • • •
JDATE - Return Julian date ••• • • • • • •
MTTS - Machine time to timestamp conversion •
TIME - Get current time ••••••••••• '.
TSDT - Timestamp to date and time conversion
TSMT - Timestamp to machine time conversion •

. .

SR-0012 v

1. It

iii

1-1

2-1

2-1
2-2
2-2
2-2
2-3
2-3
2-3
2-4
2-4
2-5
2-5
2-7
2-8
2-9
2-9
2-10
2-10
2-11
2-13
2-14
2-14
2-14
2-15
2-16
2-18
2-19
2-19
2-19
2-20
2-20
2-21
2-21
2-21
2-22

s DEBUGGING AID MACROS • • • • • • •
DUMP - Dump selected areas of memory
FREAD - Read data • • • • •
FWRITE - Write data • • • • •
INPUT - Read data • • • • • •
LOADREGS - Restore all registers

. . .
OUTPUT - Wr i te data • • • • • • • • • •
SAVEREGS - Save all registers • • • •

. .

SNAP - Take snapshot of selected registers
UFREAD - Unformatted read • •
UFWRITE- Unformatted write • • • • •

. . . .
. . . .

. . . .
MISCELLANEOUS MACROS • • • • • • • •

GETMODE - Get mode setting ••••••
GETSWS - Get switch setting • • • • • •
INSFUN - Call installation-defined subfunction
SYSID - Request system identification • • • • • •

LOGICAL I/O MACROS • • • • • • • • • . ~. .
SYNCHRONOUS READ/WRITE MACROS

READ/READP - Read words • • • • • •
READC/READCP - Read characters •••
WRITE/WRITEP - Write words •••••••
WRITEC/WRITECP - Write characters • • •
WRlTED - write end of data • • • • • • • •
WRlTEF - write end of file • •

· . . . ·
. . . ·

ASYNCHRONOUS READ/WRITE MACROS • • • • • • • • • • • • • • • •
.BUFCBECK - Check buffered I/O completion
BUFEOD - write end of data on dataset • • • • • • • •
BUFEOF - write end of file on dataset • •
BUFIN/BUFINP - Transfer data from dataset to user record
area •••••• • • • • • • • • • • • • • • • • •
BUFOUT/BUFOUTP - Transfer data from user record area
to dataset ••••• • • • • • • • • • • • • • • • • • •

UNBLOCKED READ/WRITE MACROS • • • • • • • • • • • •
READU - Transfer data from dataset to user's area •
WRITEU - Transfer data from user's area to dataset

POSITIONING MACROS • • • • • • • • • • • • • • • • •
ASETPOS - Asynchronously position dataset • •
BKSP - Backspace record • • • • • • • • • • • •
BKSPF - Backspace file ••••••• • •
GETPOS - Get current dataset position
POSITION - position tape • • •
REWIND - Rewind dataset • • • • • • • • • • • • • •
SETPOS - Synchronously position dataset •
SYNCH - Synchronize • • • • • • • • • • • • • • • •
TAPEPOS - Tape position information • •

SR-0012 vi

1.12..

2-22
2-23
2-25
2-26
2-27
2-31
2-31
2-35
2-36
2-38
2-39
2-40
2-40
2-40
2-41
2-41

3-1

3-1
3-1
3-3
3-5
3-6
3-7
3-7
3-8
3-9
3-9
3-10

3-10

3-12
3-13
3-13
J-14
3-15
3-15
3-16
3-17
3-18
3-19
3-21
3-21
3-23
3-23

01

,S 4.

5.

6.

PERMANENT DATASET MACROS

PERMANENT DATASET DEFINITION MACROS ••••
LDT - Create label definition table
PDD - Create permanent dataset definition table • • • • •
ACCESS - Access permanent dataset • • • • •
ADJUST - Adjust permanent dataset •
DELETE - Delete permanent dataset • • • • • • • • • • • •
PERMIT - Explicitly permit dataset
SAVE - Save permanent dataset • • • • • • • • •

CFT LINKAGE MACROS • • • • • • • •
DESIGN OF THE ENTRY BLOCK MACROS •

DEFARG - Define calling parameters ••••• • • • •
DEFB - Assign names to B registers • • • •
DEFT - Assign names to T registers • • • • • • • • • • •
ALLOC - Allocate space for local temporary variables ••
MXCALLEN - Declare maximum calling list length •••••
PROGRAM - Generate mainline CAL routine start point •
ENTER - Generate CFT-eallable entry point • • • •

RETRIEVE PASSED-IN ARGUMENT LIST INFORMATION MACROS
ARGADD - Fetch argument address • • • • • • • • •
NUMARG - Get the number of arguments passed in

REFERENCE LOCAL TEMPORARY VARIABLE STORAGE MACROS
LOAD - Get value from memory into a register • • • •
STORE - Store the value from a register into memory •
VARADD - Return the address of a memory location

CALL EXTERNAL ROUTINES MACROS •••••• • • • • • • • •
CALL - Call a routine using call-by-address sequence ••
CALLV - Call a routine using call-by-value sequence

EXIT SUBROUTINE MACRO •• • • • • • • • • • • • •
EXIT - Terminate subroutine and return to caller

TABLE AND SEMAPHORE MANIPULATION • •

4-1

4-1
4-1
4-3
4-9
4-9
4-10
4-10
4-11

5-1

5-1
5-2
5-2
5-3
5-5
5-5
5-6
5;....7
5-12
5-13
5-14
5-16
5-16
5-19
5-21
5-23
5-23
5-25
5-26
5-26

6-1

~ TABLE DEFINITION AND CONSTRUCTION MACROS •
Normal Macros • • • • • • • • • • • •

6-1
6-1

SR-0012

BUILD - Construct a table structure •••• 6-2
ENDTABLE - Designate the end of a table definition. 6-6
PIELD - Define a field with current table structure 6-6
NEXTWORD - Advance a specified number of words • 6-7
REDEFINE - Redefine a specified number of words 6-8
SUBPIELD - Identify fields within a larger field •• 6-9
TABLE - Define the overall table attributes • • •• 6-10

Complex macros •• 6-11
CENDTAB - End a complex table structure •••• •• 6-12
CFIELD - Define a field in the current complex table 6-12
CNXTWORD - Advance a specific number of 64-bit words 6-14

vii 01

1.13

------_ .. _-- '---------------

7

?

s
s

7.

c
c
c

c
c:
c

c
c..
c...

Complex macros (continued)
CREDEF - Redefine specific number of 64-bit words
CSBFIELD - Define field entirely within

another field ••• • • • • • • • • •
CTABLE - Define overall table attributes

PARTIAL-WORD MANIPULATION OPDEFS • • • • • • • • • • • • • • •
Normal Opdefs • • • • • • • • • • • • •

GET - Fetch contents of a field
GETF - Fetch contents of a field •
PUT - Store data from a register into a field
SET - Pack field value into a register ••••••
SGET - Fetch contents of a field • • • • • • • •
SPUT - Store data from a register into a field

Complex Opdefs • • • • • • • • • • • • • • • • • • •
CGET - Fetch contents of a field into a register • •
CPUT ~ Store contents of a register into a field • •

SEMAPHORE MANIPULATION MACROS •• • • • • • • • • • • • •
DEFSM - Define semaphore name • • • • • • • • • • • •
CLRSH - Unconditionally clear a semaphore, do not wait
GETSM - Get current status of semaphore bit • • • • • • •
SETSH - Unconditionally set a semaphore, do not wait
TEST$SET - Test semaphore and wait if set, set if clear •

CAL EXTENT ION MACROS AND OPDEFS •••••••••••••••
DIVIDE OPDEF - Provide a precoded divide routine ••••
PVEC MACRO - Pass elements of vector register to scalar

routine •
$CYCLES MACRO- Generate timing-related symbols

and constants • • • • • • • • • • • • • • • • •
$DECMIC MACRO - Convert a positive integer to a

micro string •••••••••••••••••••••
RECIPCON MACRO - Generate floating-point reciprocals

COS DEPENDENT MACROS •
SYSTEM TASK OPDEFS • •

ERDEF - Generate error processing entries in the
Exchange Processor ••••

GETDA - Obtain first DAT page address •
GETNDA - Obtain next DAT page address •

. . . .
-,.-.---+---tUVERLAY MANAGER TASK MACROS

CALLOVL - Request OVerlay Manager Task to load
DEFlNOVL - Generate a list of modules • • • • • •
DISABLE - Prevent use of current memory-resident copy
GOTOOVL - Request OVerlay Manager Task to load
LOADOVL - Request an initial overlay load • •
OVERLAY - Define a module as a system overlay •
OVLDEF - Define overlay name ••••••••••
RTNOVL - Signal completion of an overlay execution • • •

MESSAGE PROCESSOR MACRO • • • • • • • • • • • • • • • • •
LOGMSGM - Construct the LGR control word

SR-OOl2 viii

6-15

6-16
6-17
6-18
6-19
6-19
6-20
6-21
6-22
6-23
6-24
6-25
6-25
6-26
6-27
6-27
6-28
6-29
6-30
6·-30

·6-31
6-31

6-32

6-33

6-34
6-35

7-1

7-1

7-1
7-2
7-4
7-6
7-7
7-7
7-8
7-8
7-9
7-9
7-10
7-11
7-11
7-11

01

s

s
5

COS INTERNAL SUBROUTINE LINKAGE MACRO ••••• e $SUB - Define a subroutine entry point ••••

8.

c
c.
c

DATASET LOCKING MACRO • • • • • • • • • • • • • • • •
DSPLOCK.- Set or clear lock in dataset parameter area ••

STRUCTURED PROGRAMMING MACROS •

CONDITIONS • • • • • • • • •
MACRO DESCRIPTIONS • • • • • • • • • • • • • • •

$GOTO MACRO - Compute a GOTO statement ••••
$GOSUB MACRO - Call local subroutine •••••
$IF, $ELSEIF, $ELSE, and $ENDIF MACROS - Conditional

macros •••••••••• • • • • • • • • • • • • • •
$JUMP MACRO - Accept any $IF or $ELSEIF parameters •••
$ LOOP , $EXITL~, and $ENDLOOP MACROS - Define

program loops •••••••••••••••••••
$RETURN MACRO - Return from local subroutine ••••
$SUBR MACRO.- Declare local subroutine eptry point

APPE IX SECTION

OUTMODED FEATURES • • • • • • • • • • • • • •

TABLES

BREG - Assign names to B registers (obsolete) • • • •
TREG - Assign names to T registers (obsolete) • • • •

8-1 Conditions .

INDEX

SR-0012 ix

i.1S

7-13
7-13
7-14
7-14

8-1

8-1
8-4
8-4
8-4

8-5
8-7

8-8
8-9
8-10

A-l
A-l
A-2

8-1

Co~ te.vtfs o~ ,t Sy SoT txT lA-ot / i-s fe.d

,'", SR..- 00 /~

fl)lf.MP
S€1~TKAT

1=0 R C,(

rJ€WENTRY
r'NsMAC
FTIO
BMERR
(PtA tyPE
SV((EG-S
L..]) (lEGS

ore f'J A
@)JAL~EG
@ \TEN tEW
@ GENTP
t~ew
gTS7~
g 310
f'~M1SYM

P~MASYM
p(t~tMrc

tZEe().~

Sr.fAPSlioT

16 (tE.<iA"D~

~ &:DOLAf3LE
f!sJfI !faR., rIO
i~ "~Al)D~
FE:P~ I'

(.M"c.R.OS Vof<.. CS'I M:)
SIMMsG
Sl MI1)t,t. .

SlMABoR.T
SlMRic
SIMAVA1L
EN~I~
1)ISTJIR
TA~o'N
T A\:'O'ff

C S 1 ER f E I<~t.. CfJ1> f."i)

1JEF k/JeR
~OCKON
lD(J(.OY~

(D\I\ t<!V\1S bf COS~T V\ot J i s -1 (lJ ,'Vl gR-6o/z. :

:DR.1 Cft.P1llJN COM~IJ Y)rC~ : -
E&l ENDr1€Lj) CONfIG@r

~GT"OKEt' -er~ G E1 $""" -f('fJ(J!.ss~ def~dtI-f
CZ:l)OI C,tl ~J EL»~ P CJ r-d Wtc, t dV'5

(ONrlG ;% ~INe: ()MSYM6
,~ <;.ETN lA tit GN - CO ""WI""" ~J sf(!1\ot
rLAW Gal) s1-p"ls
ST«,T~LW (CAL SOo"tAtJ

COS! ~f' E:tJl)~W ~Ptt"SS~O.N~

~SETIf ~ {D~-' - !1I\~dll ati de.pf.J(J~
~ Boo L. #.)(')

l'OSi
pdtdW\a"tt.f's .

,Z ~~EG
\J 1((Acf (oMHD

g h~&
lSKtE8 - H arrJWdtJ'e d<ls('r:pf,-"".

~o"teL-R.J
po rei W'C t ers

lOcl(
SAveCL lASEK1~r
tv'S\:'~

IANLo~t
- S.~~td II. pard ~t4.'"

Ef<~ SMUE-r cia. ti ~~'hDY\.t fpr-
ERRA~ WA!T,ZSEf

lAse.. r-~

COMSYS"DP
E ftR}.M

.
(~SIM ~~D~: -Sl s14./M (Ie ti'-l4 J

E~f..J\ f SlIWl- ds M ,ZSYS~T)
P "'~),4I\.e.1 (!yS"

Ef.RAM (OMS)'Sc&
ERrtC;'t - $.,3 (4- a ~tMfa.~

EKR.SN l6WS1P
E R.~sr _ P{)ill('(!VS J'k lo~

ER.RSM W\<! W'-Dr; ~

i.17

------,----,-----.-_. ---

U1502A UIVt-\IL.. 1\. loJ U'"tVU,J v~, 'J/v·, I'. __ • ~JI

*** IDENTIFIERS IN PROGRAM LIBRARY COSPL *** PLDATE 03/14/84 LAST I 0 PC-ERNST

**AUDBUF **AUDCFT **AUDCOM **AUDPAGE **AUDPARAM **AUDSUM **AUDTABX **AUDTM **COMAC **COMAE **COMAER
**COMAM **COMAP **COMAR **COMAU **COMAUX **COMBA **COMBG **COMBIO **COMBP **COMBRT **COMCB
**COMCC **COMCH **COMCN **COMCS **COMCW **COMCX **COMDA **COMDC **COMDD **COMDDFC **COMDFT
**COMDMP **COMDN **COMDP **COMDPT **COMDR **COMDT **COMDV **COMDXI **COMDXT **COMEFT **COMENT
**COMEP **COMEQ **COMET **COMEVW **COMEXERR **COMEXFC **COMEXPFC **COMEXRQ **COMFER **COMFH **COMGR
**COMHD **COMHS **COMHTFC **COMIB **COMIER **COMIOF **COMJB **COMJC **COMJCM **COMJS **COMJSH
**COMJT **COMJX **COMLC **COMLCK **COMLD **COMLF . **COMLG **COMLT **COMLX **COMMATH **COMMCT
**COMMD **COMMDW **COMMEM **COMMENT **COMMP **COMMS **COMMTQ **COMOD **COMOP **COMPA **COMPC
**COMPD **COMPDMFC **COMPDT **COMPER **COMPERT **COMPI **COMPM **COMPPL **COMPQ **COMPR **COMPS
**COMPT **COMPVC **COMPW **COMPX **COMQC **COMQD **COMRJ **COMRPV **COMRQ **COMSB **COMSC
**COMSCP **COMSD **COMSDP **COMSDR **COMSEG **COMSEQ **COMSM **COMSMC **COMSML **COMSPM **COMSR
**COMSS **COMSSL **COMST **COMSTK **COMHEAP **COMSTP **COMSW **COMSYMB **COMSYSDP **COMSYSEQ **COMTA
**COMTAPE **COMTB **COMTC **COMTCA **COMTD **COMTE **COMTEXT **COMTK **COMTIB **COMTLB **COMTN
**COMTP **COMTQM **COMTR **COMTV **COMTX **COMTXT **COMUER **COMUP **COMUTSB **COMXAT **COMXF
**COMXP **COMXRT **COMXT **COMZ **CONFIG@P **COPYRIT **COSI@P **CSMAC **CYCLES **ENDCOM **EXFBITTB
**EXFC+DEF **EXFCMPTM **EXFDBUG **EXFFILE **EXFHCR **EXFHCRD **EXFMFTYP **EXFPARM **EXFREC **EXFSPEC **EXFSTF
**EXFSUBT1 **EXFSXRAT **EXFTEXT **GETSRO **GETVRB **GLOBALC **IFTHEN **LOGMAC **LOWSTP **MSGCLSS **POSTMIC
**STARTCOM **STATSIO **SYNONYM **TABMAC **TABX **USERI@P *ST *CT *UT *E *GLOBAL

*STPTAB *BGNSTPCM *BFMAN *BTAD *CCOPY *CHAINS *CLEAR *CONFIG *CONVTS *COPY *CRACKER
*FIXJXPR *GETOWN *GETPARM *GTMEM *FNDJB *LGMSG *GTTCB *GTTXT *JMEM *JTADNT *MSGQUE
*PWENC *QMSG *QUEUES *REQRPLY *RLMEM *RLTXT *SD2PD *STPDATS *STPERR *STPMEM *STPTIME
*STPUT I L *ENDSTPCM *STP *SCP *EXP *CIO *TQM *MSG *JSH *JCM *DQM
*DEC *PDM *MEP *SPM *STG *FVD *STARTUP *J *ACCOUNT *ACCTDEF *ADS
*AUDIT *CD *CF *CHARGES *CM *CR *CU *DBF *00 *DDC *DM
*EXC *EXF *FLOWD *JCC *JCF *PD *PL *PRVDEF *SD *SETOWN *SF
*SR *STATS *UNB *WD KC4351A KC2281A KC3860A KC3947A KC3947B KC3948A KC4308A

KC4312A KC4320A KC4352A KC4365A KC4366A KC4379A KC4379B KC4457A KC4463A KC4477A KC4478A
KC4369A KC4520A KC4536A KC4541A 0010 E015 EXF12 . KC3836A KC3836B KC3836C KC3749A
KC3749B KC3749C KC3300A KC3300B KC3536A KC3767A KC3770A KC3842A KC3856A KC3864A KC3864B
KC3864C KC3938A KC4068A \ KC4074A KC4082A KC4091A KC4136A KC4136B KC4176A KC4197A KC4264A
KC4264B KC4264C KC4264D KC4264E KC4284A KC4284B KC4288A KC4319A KC4354A KC4355A KC4363A

~ KC4363B KC4363C KC4363D KC4363E KC4374A KC4383A KC4383B KC4383C KC4383D KC4383E KC4383F
KC4383G KC4383I KC4383J KC4383K KC4383L KC4383M KC4383N KC43830 KC4383P KC4383Q KC4383R

;.... KC4383AA KCLl383AB KC4383AC KC4383AD KC4383AE KC4383AF KC4383AG KC4383AH KC4383AI KC4383AJ KC4383AK
1)0 KC4383AL KC4383AM KC4383AN KC4383AO KC4383AP KC4383AQ KC4383AR KC4383AS KC4383AT KC4383AU KC4383AV

KC4383AW KC4383AX KC4383AY KC4383AZ KC4383BA KC4383BB KC4383BC KC4383BD KC4383BE KC4383BF KC4383BG
KC4383BH KC4383BI KC4383BJ KC4383BK KC4383CA KC4383CB KC4383CC KC4383CD KC4383CE KC4383DA KC4383DB
KC4383DC KC4383DD KC4383DE KC4383DF KC4383DG KC4383DH KC4383DI KC4383DJ KC4383DK KC4383DL KC4383DM
KC4383DN KC4383DO KC4383DP KC4383DQ KC4383DR KC43830S KC4383DT KC4383DU KC4383DV KC4383DW KC4383DX
KC4383DY KC4383DZ KC4383EA KC4383EB KC4383EC KC4383ED KC4383EE KC4383FA KC4401A KC4532A KC4532B
KC4532C KC4532D KC4532E KC4532F KC4532G KC4532H KC4532I KC4382A KC3123A KC3499A KC3528A
KC3528B KC3528C KC3540A KC3695A KC3696A KC3797A KC3797B KC3829A KC4001A KC4243A KC4357A
KC4391A KC4393A KC4406A KC4460A KC4472A KC4472B KC4530A KC4533A KC4556A KC4557A KC4384A
KC4560A KC2787A KC2787B KC3423A KC3423B KC3423C KC3423D KC3499AA KC3500A KC3500B KC3500C
KC3500D KC3500E KC3500F KC3500G KC3500H KC35001 KC3500J KC3500AA KC3500AB KC3507A KC3780A
KC3780B KC3780C KC3780D KC3780E KC3780F KC3843A KC4205A KC4281A KC4315A KC4532AA KC4532AB
KC4532AC KC4532AD KC4532AE KC4532AF KC4532AG KC4532AH KC4532AI KC4532AJ KC4532AK KC4532AL KC4532BA
KC4585A KC4585B KC4585C KC45850 KC4585E KC4585F KC4585G KC4585H AOO8 KC1761A KC2153A
KC3133A KC3133B KC3133C KC3410A KC3500BA KC3500BB KC3780AA KC3852A KC3852B KC3854A KC4245A
KC4279A KC4279B KC4280A KC4375A KC4529A KC4532CA KC4532CB KC4532DA KC4532DB KC4532DC KC4532DD
KC4532DE KC4532DF KC4532DG KC4532DH KC4532DI KC4532DJ KC4532DK KC4532DL KC4532EA KC4560AA KC4569A
KC4600A KC4600B KC4625A KC4626A KC4626B KC4636A KC4636B KC4636C KC4636D KC4636E KC4636F
KC4636G KC4636H KC4636I KC4636J KC4636K KC4636L KC4636M KC4636N KC4636AA KC4637A KC4642A
KC4683A KC4686A KC4532FA KC4532FB KC4532FC KC4532FD KC4532FE KC4532GA KC4532GB KC4532HA KC45321A
KC45321B KC3780BA CMll KC3908A KC4532KA KC4532LA KC4532LB KC4532LC KC4532MA KC4532NA KC4532NB
KC4532NC KC45320A KC45320B KC45320C KC4532PA KC4532PB KC4532QA KC4532QB KC4532SA KC4532SB KC4532TA
KC4532TB KC4532TC KC4532TD KC4534A KC4545A KC4624A KC4636BA KC4636BB KC4636BC . KC4682A KC4736A

~
~
d
~,

~ ''Z
~

; ')

F UrvcTI0rJ err:: Iv TIL '!--Xl;

/ (f ~ (/i f}6 { OEr:::- (,.J11/tlrv5,

F{t-o<('I C-D~ PL TO

vrlc/il£S (('vI

i~ (\/6-~j) rf/L !+tftl{l'f(.

i tff£ D~r(NITltJN i 'f-f'Url\
! : Cos r)lf J C-tJ r0~,.J JEct- S

\ rJ ,W 0 f (A-c;::-5:., t

H 1>- 'hfz-I (,fU V. U TIL(r(F!)rJ
I

UTI L ! l .wac: (rJ
~ ~.ol '7 p r-;r6tE WI4~ tv' r
L6>- l

,4- ~l..~/tl.

-------,

[: \ \ ~

.... ULuUUULI\ ,,·.'\.Jl:.ouuivv "" uuHi I\Lv.,) , uLOud MfH I J,- Mv ... CU; ... '11W,f"\v ...
"

'"\"VVL

*AMAP *ACOM *AMSG *BADDAT *BEGIN *BLOCK *BTD *BTO *BXSET *CALL *CDEM
*CHNOFF *CHNTST *CLOCK *CONFIG *CPSPI N *CPTEST *CRAY *CRTDEM *DEVICE *DISK *DISKIO
*DIVIDE *DKDMP *DKIOEX *DKLOOK *DKSET *DKSETO *DKSTAT *DM3 *DOM *DOMP *DTB
*ERR *ERRDMP *ERRECK *FDMPDR *FIRECODE *F80M *F80ME *HDRPAG *HPDATA *HPLOAD *HSPTES
*LISTO *LISTP *MASTER *MOSTES *MSGHND *MSTNEW *MULTIPLY *NOBEAT *OBIT *OTB *OUTCALL
*PATCH *PlOTIT *PRTAPE *REPORT *SCRUB *START *STARTO *START1 *START2 *START3 *START4
*START5 *STATS *STOP *SUMDAY *SUMHOW *SUMTIME *SYSS *SYSTEXT *TCOM *TDUMP *TIME
*TRACE *TRACK *TSTASH *UBTAPE *UNBLK *USURP *WATCH *XDISK *XDISKA *XDK *XMT
*XPR *XPRINT *XPRNTA *XTAPE *XTAPEA *XTAPEB *XTAPEC *XTAPED *ZKOVl *ABMX *BMXAIO
*BMXCON *BMXCPU *BMXDEM *BMXOPE *BMXSIO *BMXTPO *ZBMX *ATAPE *BCOM *BUFMAN *BYPASS
*CONMAN *DSCGET *TAPEIO *TAPMOV *TDEM *TDEMO *TDEM1 *TERROR *TEX *TRBOC *TRCER
*TRCLN *TRCMR *TRDCK *TRDCKO *TRDSE *TREQC *TRFUN *TRIDB *TRINR *TRLPT *TRORN
*TRRDB *TRRDF *TRREDO *TRSET *TRTELl *TRWRT *ZTAPE *ASDMP *RSTRTO *RSTRT1 *RSTRT2
*SDMPO *SDMP1 *SDMP2 *SDMP3 *SDMP4 *SDMP5 *SDMP6 *SDMP7 *SDMP8 *SDMP9 *SDMP10
*ZSDMP *AF I LE *CLEAR *CLEARO *CLEAR1 *COPY *COPYO *COPY1 *COPY2 *COPY3 *COPY4
*cOPY5 *COPY6 *COPY7 *COPY8 *COPY9 *COPY10 *COPY11 *DELETE *DELETO *DELET1 *DSKIO
*EDDELE *EDINST *EDIT *EDITO *EDIT1 *EDPRNT *EDREPL *EDTYPE *F I LACC *FILCLS *F I LCRE
*FILDEl *F I LGET *FILNIT *FILPOP *FllPUT *F I LSTT *FLAW *FSTAT *FSTATO *FSTAT1 *INIT
*INITO *LINGET *LI NPUT *XFMACC *XFMCLS *XFMCRE *XFMDEL *XFMDIR *XFMFLW *XFMFND *XFMGET
*XFMIO *XFMNIT *XFMPOP *XFMPUT *XFMSTR *XFMSTT *ZFI LE *ACONC *CHKSMI *CHKSMO *CONC
*CONCERR *CONCI *CONCO *CRAYMSG *ENDCONC *ENTRID *FEREAD *FEWRIT *FREEBUFS *LOGOFF *LOGONA
*LOGONB *LOGONC *MSGIN *MSGIO *MSGOUT *REMVID *SRCHID *ZCONC *ASTAT *ACQTRM *ACQUIRE
*AMPEX *BABEL *BARDAT *BMGET *BMAGET *BXDIS *CLI *CLI NIT *CONSL *COMBO *COMM01
*COMM02 *COMM03 *COMM04 *COMM05 *COMM06 *COMM07 *COMM08 *COMM09 *COMM10 *COMM11 *COMM12
*COMM13 *CPUGET *CRAYIO *DBGET *DECODE *DECOD2 *DELMSG *DESCRIBE *DEVDAT *01 SPLAY *DISPOl
*DISP02 *DKDIS *ERRDIS *ERROR *FMGET *GRAPH *HSPGET *ICONSL *IDEBUG *IDLGET *IDRCT
*IFRMT *KEYBD *LCP *LOGON *LI NK *MESSAGE *MSTAT *MSTDIS *NEWDIS *OFRMT *ONLI NE
*POST *PROTINIT *PROTOCOL *QUEUE *READ *REPLY *SNAP *SOROC *STADIS *STAGEIN *STAGEOUT
*STATCL *STATINIT *STATION *STIO *STMSG *STPLOT *STREAMS *STSGET *STTAP I *STTAPO *STUBPR
*SYNTAX *SYSTAT *TAPEC *TEC455 *TEXT *TJOB *TKSTAT *UPDATE *XFRMT *XMPXP *ZSTAT
*AINTER *IACMD *IACON *IACONl *IAFUNC *IAIOP *IAIOPl *IAMSG *IAOUT *ZINTER *ANSC
*NIDEND *NSC *NSCEND *NSCID *NSCIO *NSCMSG *NSCONC *NSCOR *ZNSC *TAPELOAD *DISKLOAD <r-
*DMP *EOF2 *ACOVL *SDMPA *SDMPB *SDMPC *SDMPD *SDMPE *ZCOVL REL112 ~

*** 365 DECKS 7 COMMON DECKS CORRECTION SET IDENTIFIERS
~

• r-\A,N (, T:IO N
- ~O& ~[,lgM1S5lD~

-jSO lASL'fQ..¥f~V'~
- '-.btCl I ~dt c,"'- ~ t\tr'6
- ~w.ate 10 a+c.IAQ,¥\.1' "'1

- OP~\t~ll)t ClJNTf(bl of S6B PROcr~rNG
- TSO IAse.r- ~t, i.'

_ M VS 'St~ilJ"ll (Ohsp/e . .Ii i ,

_ Mdst~r cpc:rd1o'l'" sfaTJ,"",

• c.f{:A R.AC, T E: R. l~'" J C5

- R.IANs (A,~f\~ M V 5
J ~,~ I"~ .

- fASE~ ~"t. or- 3"ES ~
- H A(Q) WI\ItE CbN)JE<., T1J).N To CltAj

ICS

- FE r :~jlt J.~ C~A(,,, .:

- HvPf~)\~I, ~; IT ~ NSt'
• C ()MP()/J fJJ1S

)

I

Command

CANCEL
CHANNEL
CLASS
CONFIGURE
DATASET
DEVICE

- DROP
END
ENTER
JOB
KILL
LIMIT
LINK
LOGOFF
LOGON
MESSAGE
OPERATOR
POSTpONE
PRINT
RECOVER
RERUN
RESUME
ROUTE
SET·
SHUTDOWN
STAGE
STATCLASS
STATION
STATUS
STORAGE
S TREAM
S USPEND
SW ITCH
T APE

Table 3-1. Command availability

I ~~~~~;-__ Alv~a~il~a~b~l'~llirt:Y~CO~d~e:S;-______ r-___ ~ J
.M ,T T, I I 'oT .. R ,. T -

I, LIN

X
X
X

X

X

X

X
X

X

X

X

X

X
X

X

X

X

X

I
xt

X

X
xt
X

X
X

X
X
X
X
X
xt
X

X

X

X

X
X

X
X
X

X

X
X

X

X
X
X
X

X
X

X

X
X
X

X
X

X
X
X
X

X
X

X

X
X
X

X
X
X
X
X

X
X

I X

I

X
X
X
X
X

X

X

X
X

X
X

X

X

X
X
X
x
X
X

-

X

X

X

I
TRACE X
TJ OB X

X
TRANSFER L I X

t CO I

X

X

X
X

X
X

t~ th I I I
mmand availabl e only e MVS operato r.

SG-0037 3-3

i.21

C

CRMINIT

Initialization
and termination

-

-

-

I

Figure 2-1. ·Stat1·on

-

-

I
I

task structure

CRCINIT

Control and
monitoring

CRDTREQ

-

Dataset Transfer
Request processing

CRTRSEL

Transfer selection

CRSMPRC

Station messages
support

CRDSTAG

Dataset Staging

I

-
I

I

CRMLINK ---
LINKIO

/ .!5M MVS STA-rltJN :INTERNAL REf.
• SM-0048 2-3 A

1.22

Cray
Computer

System

SR-0038

MVS Pilebase

Station
Initialization/
Termination

Station
Transfer
Request Fi!

CRSUBMIT TSO
COmmand

SUSOS TSO
COmmand

~~~~ ____ ~r1----------__ ~1 CRAYCMD TSO 
COmmand 

MVS operator TSO 
console terminal 

MVS TSO 
Address 
Spaces 

Figure 1-1. MVS user's· view of the Cray Computer System 
through MVS station 

IBM MVS SlATI0N 

1-4 

/ 

MVS 
Batch 
Address 
Spaces 

C 

--------------_._----_ ........ 





LESSON 2: Hardware Configurations & Characteristics --------

Objective: Describe the various hardware configur
ations and characteristics of the computer 
systems on which COS executes. 

HARDWARE REQUIREMENTS 

The Cray Operating System (COS) executes on the basic configurations 
of any CRAY-1 or CRAY X-MP Computer System. Each computer system 
contains the following components: 

* 

* 

* 

* 

* 

One or two CPUs; a CRAY-1 contains one CPU and the CRAY X
MP contains two CPUs. 

Centra 1 Memory. COS operates with any of four Centra 1 
Memory size options: one-half million words, one million, 
two million, and four million. 

A minicomputer-based Maintenance Control Unit (MCU) or I/O 
Subsystem (IDS). The I/O Subsystem, if present, performs 
all required Maintenance Control Unit functions. 

A Mass Storage Subsystem. The Mass Storage Subsystem may 
consist of 00-19 or 00-29 disk drives, a Solid-state 
Storage Device (SSD), or Buffer Memory (BMR). BMR storage 
can be accessed only through an I/O Subsystem; disk drives 
may be connected either to an I/O Subsystem or Cray main
frame. SSOs are connected directly to the CRAY-1 or X-MP 
mainframe . 

An optional IBM-compatable tape subsystem. The tape 
subsystem requires that an I/O Subsystem be present. 

2.1 



CON'l'ROL COMPUTATION SECTION 
SECTION 

• Registers 
• Instruction 

buffers • Functional units 

• Control I registers 

• Exchange MEMORY SECTION 
mechanism 

1 million, 2 million, or 4 
• Interrupt million 64-bit words 

system 

• Real-time I 
clock 

I/O SECTION 
• Programmable 

clock • 4 6 Mbytes per second channels 

• 1 or 2 100 Mbytes per second 
channels 



System Components 

CPU 

The Cray CPUs are designed for speed and large volume processing. 
This is accomplished with large, high-speed channels, fast memory, 
large instruction buffers, and a large number of registers and 
functional units. The segmented functional units can receive a 
different operand every clock period. 

With parallel processing, operands can be supplied to different 
functional units every clock period, resulting in a processing speed 
of up to 105 million instructions per second. 

The CRA Y 1-S, 1-M and X-MP CPUs have the following characteristics: 

I-S I-M X-MP 

CPUs 1 1 2 

# System Octal Octal Octal 

Clock Period 12.5 ns 12.0 ns 9.5 ns 

M.I.P.S. 80 80.33 105 

Max. Memory 4 Mil. 4 Mil. 4 Mil. 

Word size 64 bits 64 bits 64 bits 

Columns 8 or 12 6 8 or 12 

2.3 



FOUR PROCESSOR SYSTEM 

FRONT ENDS 
t 

UP TO 3 COMPUTER 

INTERFACES ANDIO 

- UP TO 16 DISK DRIVES- -
;"-) 

HSC ADAPTERS 

IOP-O 

MIOP 

IOP-1 

SlOP 

IOP-2 

UP TO 16 DISK DRIVES- - - DrOp 

UP TO 12~CHANNELS 

OR 18 DISK DFflVES 

IOP-3 
DIOP 
OR 

XIOP 

/' 
/' 

- - - - - - EXTERNAL CHANNEL 

EXPANDER 

CHASSIS 

• • • • • •• 6 MBVTE/S CHANNEL PAIR 

100 MSVTE/S DMA CHANNEL 

100 MSVTE/S MEMORY CHANNEL 

ACCUMULATOR CHANNEL 



I/O Channels 

The CRAY computers are equiped with several types of I/O Channels 
designed for communicating with different devices within the system. 

Synchronous - 6 Mbytes/sec 

Synchronous channel pairs are used for data transfer between the 
Cray 1-S or X-MP and the MIOP of the I/O Subsystem. 

Transfers are synchronized blocks of 512-bit words. 

Asynchronous - 7.5 Mbytes/sec 

Due to the unpredi cta b 1 e nature of transfer between the Front Ends 
and the Cray, asynchronous channels are provided for this purpose. 

The channels transfer at a rate of up to 7.5 Mbytes per second, and 
use a protocol which is sychronized on every 16 bits of message. 
An asychronous channel is also used for the communication between 
the lOS and MCU (Manintenance Control Unit). 

High-Speed Memory - 100 Mbytes/sec 

To handle the large volumes of data transfered between the Cray and 
the lOS (BIOP/DIOP), 100 MByte channels are used. Several of these 
channels could be employed, depending on the Cray computer in use. 

Direct-Wired HYPERchannel - 1250 Mbytes/sec 

For Cray X-MPs which utilize the SSD (Solid state Storage Device) a 
1250 Mbyte per second channel is used for very high speed data 
transfer capabilities. 

The channel is sychronized on 128-bit blocks. 

Cabled HYPERchannel - 10-12 Mbytes/sec 

For systems equiped with NSC networking configurations, data is 
tranferred between devices within the network via a hyperchannel 
cable capable of 10-12 MBytes/sec, depending upon the length of the 
cable. The protocol is sychronized on every 16 bits of message. 

2.5 



FOUR PROCESSOR SYSTEM 

FRONT ENDS 
I 

UP TO 3 COMPUTER 

INTERFACES ANDIO 

NSC ADAPTERS 

PRINTERI 

PLOTTER 
I 

EXPANDER 

, UP TO 18 DISK DRIVES- - - . 

IOP-O 

MIOP 

IOP-1 

SlOP 

IOP-2 

/' CHASSIS 
,/ 

UP TO 18 DISK DRIVES- - - DIOP 

UP TO 12 CHANNELS 

OR 18 DISK DRIVES 

IOP-3 

DIOP 
OR 

XIOP 

- - - - - - EXTERNAL CHANNEL 

•• '. • • •• 6 MBYTE/S CHANNEL PAIR 

100 MBYTE/S DMA CHANNEL 

..... "* r'*l ~ • __ ~ ... __ • ___ r 
100 MBYTE/S MEMORY CHANNEL 

ACCUMULATOR CHANNEL 



I/O Subsystem 

The purpose of the I/O Subsystem is to increase Cray throughput by 
providing large volume I/O capabilities for the system. It can also 
act as the system maintenance control unit (MCU) through which the 
Cray would be deadstarted and operated. 

The I/O Subsystem consists of two, three, or four I/O Processors, 
Buffer Memory, and required interfaces. 

Each lOP-is an independent minicomputer responsible for some portion 
of the I/O requirements of the system. Each has its own memory 
(65K), computation, control, and I/O sections. They are designed 
for fast data transfer between front-end computers, mass storage 
devices, peripheral devices, Buffer Memory, and the central memory 
of the CRAY mainframe. 

Buffer Memory si zes can be one-ha 1 f mi 11 ion, one-mi 11 ion, four 
mi 11 ion, or eight mi 11 ion words. 

MIOP 

The Master I/O Processor (MIOP) is the first I/O Processor in the 
subsystem to be deadstarted. The MIOP initializes the contents of 
Buffer Memory and accumulator channels to the other processors. 

The MIOP deadstarts the Cray mainframe and directly handles all 
communications with the mainframe over the 6Mbyte channel. This 
traffic includes disk and tape requests and station communications. 

BIOP 

The Buffer I/O Processor (BIOP) transfers data between Cray central 
memory and lOS Buffer Memory and vice versa across a 100 Mbyte 
channel. The BIOP performs disk I/O to and from disk units attached 
to its channels. 

DIOP 

The optional DIOP moves data from Buffer Memory to disk and vice 
versa at the request of packets from the mainframe via the MIOP. 
If the optional second 100 Mbyte channel is present, the DIOP 
transfers data between Cray central memory and DIOP local memory and 
vice versa. 

2.7 



•••••••••••••• 
MIOP 

BUFFER MEMORY BIOP 

•••••••• 

DIOP 

XIOP or 
DIOP 

50 Mbit/s CRAY-l I/O channel pair 

Approximately 850 Mbit/s Memory Channel 

Approximately 850 Mbit/s DMA channel 

Accumulator channel 

CRAY-l MAINFRAME 
1, 2 or 4 MILLION 

64-BIT WORDS 

I/O Subsystem communication 



XlOP 

The optional XIOP handles data from IBM-compatab1e tape drives and 
buffers the data to Buffer Memory at the request of packets from the 
mainframe . 

1/0 Subsystem Communication 

The Cray computer system provides communication paths between 
central memory and the MIOP and BIOP (and DIOP if a second memory 
channel is present); between each rop and Buffer Memory; and among 
a 11 the rops. 

Data is transferred between Cray memory and the lOPs (BIOP/DrOp) 
over one or more 100 Mbyte/sec Memory Channels. The Cray I/O 
Channel pairs exchange system control information with the MIOP 
at 6 Mbytes/sec. 

One 100 Mbyte/sec DMA port for each lOP is connected to Buffer 
Memory. Buffer.Memory receives data from one rop and temporarily 
stores it until the Buffer lOP or Disk lOP can remove that data and 
pass it to Cray centra 1 memory. In this way, each lOP communi cates 
with every other rop in high-speed data block transfers. 

Each lOP is also connected with the other lOPs by slower channels 
called accumulator channels. These channels pass one 16-bit parcel 
at a time from the accumulator of one lOP to the accumulator of 
another rop and are used primarily for control and status reporting. 

2.9 

--------_.--------------



Figure 1-6. D0-29 Disk Storage unit 

:1./ 0 

---_ ... --- -----_ .... _--



Mass Storage Units 

The basic mass storage unit for the Cray is the 00-29 Disk Storage 
Unit (OSU). This unit is a 606 Mbyte disk drive with data transfer 
rate of 35.3 Mbits per second. 

Up to four 00-29 drives can be connected to one OCU-4 Oisk 
Controller. The disk controller interfaces the four disk drives 
with an I/O Processor through one direct memory access (OMA) port. 
With up to 12 contro 11 ers· per system, up to 48 di sk dri ves can be 
connected to the lOS. 

00-29 operational characteristics include: 

Bytes per sector: 4096 

. Words per sector: 512 (64-bit words) 

Sectors per track: 18 

Words per track: 9216 

Tracks per cylinder: 10 

Words per cylinder: 92,160 

Access time: 15-80 msec. 

Transfer rate: approx. 34 Mbits per second 

Latency: 16.7 ms 
(revolution time) 

2.11 





Magnetic Tape 

An I/O Subsystem can include an Auxiliary I/O Processor (XIOP) with 
the capability of addressing up to 16 block multiplexer channels of 
tape units. . 

Each block multiplexer channel can be attached to IBM-compatable 
control units and tape drives in a variety of configurations. 

The block multiplexer channels communicate with the control units 
and tape units to allow reading and writing data that can also be 
read and written on IBM-compatable CPUs. 

The physical characteristics of tape devices are summarized below. 

The block sizes listed are for transparent-format tape datasets 
(described in Lesson 5). 

Physica 1 characteristics of 200 ips, 9-track tape devices. 

Density Transfer rate Data/2400 ft. % of reel Block size 
(bits/inch) (kilobytes/sec) reel (megabytes) containing (bytes) 

data 

6250 1170 168 94 32768 
1600 300 43 94 16384 

2.13 



CRAY X-MP mainframe with a Cray I/O Subsystem and an SSD 

Typical interface cabinet 



Solid-state Storage Device 

The SSD is a volatile mass storage device which uses MOS memory 
chips to hold large volumes of data. 

Storage capacities available include 64, 128 or 256 megabytes, 
arranged in banks similar to those used in the Cray central memory 
layout, although datasets are logically identical to those stored on 
a dis k. 

The SSD avoids the mechanical constraints of conventional disk 
drives (rotation, seek times, etc.) which result in significant 
performance improvements when accessing datasets. 

Data is transferred over four 100 Mbyte/sec channels on, the CRAY-1 
machines and over the 1250 Mbyte/sec channel on the X-MP. 

Interface Cabinet 

The CRAY computer system is designed for use with a network of 
front-end computers. Front-ends connect to the MIOP of the lOS via 
the asynchronous channels discussed earlier. 

The front-end interfaces, consisting of electronics and cable 
connections, are housed in a stand-alone cabinet. 

The hardware performs command translation and protocol conversion 
needed to transfer data. 

2.15 

-----------_ .. 



CRAY liS (RAY 11M 

Eel ~E:/;ORY (Ei'iITTER-COlLE(TO? i'1OS i'1Ei'10RY (j'lETAL-OXIDE SE:"iI-
(EMITTER-COLLECTOR LOGIC) (~ETAL-OXIDE SEMI-CONDUCTOR) 

8 OR 12 COLUMNS 6 COLUMNS 

lOS OPTIONAL PART lOS INTEGRAL PART 

~ MILLION WORDS IN 8 BANKS 1 MILLION WORDS IN 8 BANKS 
1 OR 2 MILLION WORDS IN 8 OR 

16 BANKS 

4 MILLION WORDS IN 16 BANKS 2 OR 4 MILLION WORDS IN 16 BANK 

MODULE IN MEMORY CONTAINS MODULE IN MEMORY CONTAINS 
1 BIT OF A 64-BIT CRAYWORD 8 BITS.OF A 64-BIT CRAYWORD 

1 BANK/CHASSIS - 2 BANKS/COLur'1N 4 BANKS/CHASSIS - 8 BANKS/COLUi<1 

12/5 NSEC CLOCK PERIOD 12.0 NSEC CLOCK PERIOD 

4 C.P. BANK CYCLE TIME 8 C.P. BANK CYCLE TIME 

12 SYNCHRONOUS/ASYNCHRONOUS 4 ASYNCHRONOUS 
CHANNEL PAIRS CHAN~EL PAIRS 

11 C,P. FOR SCALAR MEMORY REF. 13 C,P. FOR SCALAR MEMORY REF, 

14 C. Ps FOR FETCH ON 16 BANK 

18 C.Ps FOR FETCH ON 8 BANK 

50 C.Ps FOR EXCHANGE SEQUENCE 

1/4 & 1/2 SPEED CONTROL FOR 
VECTOR REGISTER LOADS/STORES 

18 C,Ps FOR FETCH ON 16 BANK 

22 C,Ps FOR FETCH ON 8 BANK 

54 C, Ps FOR EXCHANGE SEOUEilCE 

1/8, 1/4 & 1/2 SPEED CONTROL FeR 
VECTOR REGISTER LOADS/STORES 



Syste. Configurations 

Several combinations of the basic system components are supported in 
the Cray computer series. Central memory is available in several 
different sizes, the I/O Subsystem is available in several different 
configurations, and peripheral equipment like the SSD are optional. 

The following is a summary of the various configurations available 
with the three Cray computer systems. 

2.17 



C?~Y X-MP system characteristics 

Configuration - ~~ainframe with 2 Central Processing Units (CPUs) 
- I/O Subsystem with 2, 3, or 4 I/O Processors 

CPU speed 

Nemories 

- Optional Solid-state Storage Device (SSD) 

- 9.5 ns CPU clock period 
- 105 million floating-point additions per second per CPU 
- 105 million floating-point multiplications per second 

per CPU 
- 105 million half-precision floating-point divisions per 

second per CPU 
- 33 million full-precision floating-point divisions per 

second per CPU 
- Simultaneous floating-point addition, multiplication, 

and reciprocal approximation within each CPU 

- Up to 4 million 64-bit wor~s in mainframe Central Memory 
- 65,536 l6-bit parcels in Local Memory of each I/O 

Processor of the I/O Subsystem 
- 6 direct memory access (DMA) ports to Local Memory (each 

I/O Processor) 
- 1, 4, or 8 million 64-bit words of ~/O Subsystem Buffer 

Memory 
- 8, 16, or 32 million words of SSD memory 

Mass storage - 600 million byte disk drive 

Input/Output 

Physical 

-, 
. ~ " . !-' 

- 48 disk drives maximum for I/O Subsystem 
- 35.4 Mbits per second disk drive transfe= rate 

- One 1250 Mbytes per second Solid-state Storage Device 
(SSD) channel on mainframe I 

- Two 100 Mbytes per second channels between mainframe and 
I/O Subsystem for a system with an SSD 

- Four 100 Mbytes per second channels between mainframe 
and I/O Subsystem for a system without an SSD 

- Four 6 Mbytes per second channels 
- 40 channels; input or output, 24 of which share the six 

.DMA ports per I/O Processor 
- Mainframe interfaces to I/O Subsystem 

- 45 sq ft floor space for mainframe 
- 15 sq ft floor space for I/O Subsystem 
.~ 15 sq ft floor space for SSD 
'-·5.25 tons, mainframe weight 

- 1.5 tons, I/O Subsystem weight 
- l.~ tons, SSD weight 
- Liquid refrigeration of each chassis 
- 400 Hz power from'motor-generators 



NCU 

For systems with an MCU, after the Cray Operating System has been 
initialized and is operational, communication with the MCU is by 
software protocol. 

The MCU has a software package that enables it to serve as a local 
batch station during production hours. As a local station, the MCU 
can submit diagnostic routines for execution or can submit other 
batch jobs. These diagnostics are typically stored on a local disk 
and are submitted to the Cray mainframe by operator command. 

2.19 





Syste. Startup 

The Cray mainframe is deadstarted by loading the operating system 
from the 80 Mbyte MCU disk into central memory. 

For systems configured with an I/O Subsystem, the lOS is first 
started from the peripheral expander magtape unit, or the 80 MB disk 
drive. Once the 105 is started, the Cray can be deadstarted from 
the 105. 

Exchange Mechanis. 

Since the Cray is a multiprogramming machine, the hardware must be 
capable of switching execution from one program to another. This is 
called the Exchange Mechanism. A I6-word block of program 
parameters is maintained for each program. When another program is 
to begin execution, an operation known as an exchange sequence is 
initiated. 

This sequence causes the program parameters for the next program to 
be executed and to be exchanged with the information in the 
ope ra t i ng regi sters. 

Operating register contents are saved for the terminating program 
and the regi sters entered wi th data for the new program. 

Exchange sequences are initiated automatically upon occurrence of an 
interupt condition, or voluntarily by the user or by the operating 
system through normal exit instructions. 

The Exchange Mechanism and Exchange Packages for the Cray-1 and X-MP 
are discussed in detail later in this course unit. 

2.21 

---._---------------_. __ .. __ ._--



C'SP - JOBS 

STP 

EXEC 



LESSON 3: Software Components --------

Objective: List the software components of the Cray 
system, and their function. 

CRA Y SOFTWARE 

The Cray computer requires three types of software: 

* 

* 

* 

an Operating System 

Language Systems 

Applications Programs 

The I/O Subsystem also requires its own set of software, including: 

* An Operating System 

* I/O and Communications software 

The CRAY OPERATING SYSTEM 

The Cray Operating System (COS) consists of memory resident and mass 
storage resident programs that manage resources, supervise job 
processing, and perform input/output operations. 

COS consists of the following modules that execute on the CPU(s): 

* 

* 

* 

* 

The Executive (EXEC) 

System Task Processor (STP) 

Control Statement Processor (CSP) 

Utility Programs 

3.1 

---- --------------- ----



INTERRUPT HANDLERS 

Mass 
Storage 

Resident ~---.~_ 
COS ,..&-_~ ... 

LDR 

Interrupt 

Interchange 

Monitor Front-
Request end 

Processor Driver 

1 

EXEC 

Disk/ 
SSD 

Driver 

t One Exchange Package per CPU 

.. 

Idle 
Program 

Packet 
I/O 

Driver 

System control 

STP 

Common 
Routines. 

Task 
o 

Task 
1 

Task 
2 

Task 
n 



EXEC 

The system Executive (EXEC) is the control center for the Cray 
operating system. It alone accesses all of memory, controls the I/O 
channels, and selects the next program to execute. Components of 
EXEC include: 

* An interchange routine 

* Interrupt handlers 

* Channel processors 

* A monitor request processor 

* A Front-end driver 

* A Disk and SSD driver 

* A packet I/O driver 

* A Task Scheduler 

STP 

The System Task Processor (STP) runs in user mode and accesses all 
memory other than that occupied by EXEC and is responsible for 
processing all user requests. 

STP consists of a set of routines called tasks, tables, and some 
reentrant routines common to all tasks. It is these tasks that 
perform the bulk of the work in job processing. 

CSP 

The Control Statement Processor (CSP) is a system program that 
executes in the user field. CSP initiates the job, cracks the 
JCL statements, processes system verbs, advances the job step-by
step, processes errors, and ends the job. 

Utilities 

Utility programs include the loader, a library generation program 
(BUILD), a source language maintenance program (UPDATE), permanent 
dataset utility programs, copy, and positioning routines, etc. 

3.3 



INTERRUPT HANDLERS 

Storage 
Resident .-L-~~ .... 

COS ,......ro.----. 

LOR 

Interrupt 

current 
user task 

EXEC 
Interchange 

Monitor 
Request: 

Processor 

Front
end 

Driver 

Disk/ 
SSO 

Driver 

t One Exchange Package per CPU 

Idle 
Program 

Packet 
I/O 

Driver 

System control 

-S.4 

STP 

Common 
Routines 

Task 
o 

Task 
1 

Task 
2 

Task 
n 



LANGUAGE SYSTEMS 

Currently, five language systems developed by Cray Research are 
provided for the Cray computer system. They are: 

* 

* 

* 

* 

CFT 

The FORTRAN compiler (CFT) 

The Cray Assembly Language program (CAL) 

The PASCAL compiler 

and A Programming Macro Language (APML) for the 105. 

The Fortran compiler is designed to take advantage of the vector 
capability of the Cray computers. 

The compiler itself determines the need for vectorizing and 
generates the code accordingly. Optimizer routines examine Fortran 
source code to see if it can be vectorized. The compiler conforms 
to ANSI Fortran 77 standards. 

CAL 

The CAL assembler provides users with a means of expressing all 
hardware functions of the CPU symbolically. Augmenting the 
instruction set are pseudo instructions that provide users with 
options for generating macros. 

Most of the software provided by Cray Research, including the 
operating system, is coded in CAL. 

Pascal 

The Pascal compiler supports the ISO Version 1 Pascal standard and 
also provides extensions to that standard. 

3.5 

'--"--------------------_. 





APML Assembler 

The APML assembler executes on the Cray mainframe and generates 
absolute code that is executable in the C~ay I/O processors of the 
I/O Subsystem. 

It is used to generate the I/O Subsystem software. 

LIBRARY ROUTINES 

Cray software includes a group of subprograms that are callable from 
CAL or FORTRAN programs. These subprograms reside in libraries 
named $ARLIB, $FTLIB, $IOLIB, $UTLIB, $SCILIB, $SYSLIB, and $PSCLIB. 

They are grouped by UPDATE deck name within each 1 i brary. (UPDATE 
is the source maintenance utility.) 

$ARLIB contains routines primarily concerned with returning 
some numeric result. Mathematical routines intrinsic to 
FORTRAN such as SIN and XOR reside here. 

$FTLIB contains eFT-specific routines such as LEN (length of 
argument) 

$IOLIB contains routines that move data from external devices 
to main memory or control that movement (WRITEC, COPYR, etc.) 

$UTLIB contains special utility programs such as TIMEF which 
returns elapsed time in millisecs since last call, and CRAYDUMP 
which prints a memory dump to a specified dataset. 

$SCILIB routnies perform operations such as matrix multiply or 
Fast Fourier transform and must be explicitly called. 

$SYSLIB routines usually link directly to the operating system 
through a normal exit. These routines are not usually 
accessable to a user, but are cal led by $IOLIB and $UTLIB 
routines for specific tasks. 

In general, $SYSLIB serves as a link between the general 
purpose $IOLIB and $UTLIB routines and the details of COS. 
$SYSLIB routines depend on specific COS features. 

An example of a $SYSLIB routine is CCS which cracks job control 
statements for the Control Statement Processor (CSP). 

3.7 



lOS SOFTWARE 

The major parts of I/O Subsystem software are: 

* The Kernel 

* Disk input/output 

* Tape Exec 

* Block Multiplexer Channel Interface 

* The Station 

* The Front-End Concentrator 

* The Interactive Station 

The ~rnel 

The Kernel serves as the operating system for the I/O Processors. 
A copy of the Kernel runs in each lOP and adapts itself to the 
special functions of that processor. 

Kernel functions consist of answering interrupts, managing overlays 
areas, and handling independent activities running in the I/O Sub
system. 

Because of the limited size of local memory (65K), the I/O 
Processor software uses overlays extensively. An overlay is an 
executable program or subroutine that normally resides in Buffer 
Memory. It is called into local memory by the Kernel to perform its 
specific function. 

Disk Input/Output 

The I/O Subsystem for the Cray X-MP and Cray 1 models S/1200 through 
5/4400 provides for operator station-maintenance functions and also 
is a substitute for disk controllers. 

The disk software provides I/O execution times for I/O requests that 
are comparable to times using the disk controller and allows a 
greater number of concurrent disk I/O requests or streams to occur 
through the use of buffering in Buffer Memory. 

3.8 



Tape Exec 

The block multiplexer Tape Exec is composed of activities necessary 
to route messages, process requests, format and move data, and 
recover from errors. 

The Tape Exec receives tape requests from the Tape Queue Manager 
(an STP system task). Requests are read into the MIOP across the 6 
Mbyte channel. Based on the 10, the request is sent to the XIOP for 
disposition. 

The Block Multiplexer Channel Interface 

The block multiplexer channel interface provides an interface 
between any block multiplexer device driver (such as the driver for 
magnetic tape) and block mulitplexer channel hardware. The 
interface performs channel selection and load leveling, channel 
error recovery and reporting, and device-independent command and 
interrupt sequences. 

The Station 

The station is a collection of closely associated tasks executing in 
the MIOP that provide operator command and display facilities and 
dataset staging capabilities independent of any front-end computers. 

The Front-End Concentrator 

The I/O Subsystem Concentrator relieves the mainframe from the 
burden of handling the interrupts for each subsegment of messages 
transferred between the mainframe and attached front ends. 

The concentrator looks like a Cray channel pair from the front-end's 
point of view, so no changes are necessary in existin.g front end 
stations. The concentrator can handle data from multiple IDs 
through one channel, even though each front-end 10 may have a 
different segment size. 

3.9 



The Interactive Station 

The interactive station is a set of tasks running in the Master I/O 
Processor that permit consoles connected directly to the MIOP to 
become attached to mainframe jobs. A job is created in the 
mainframe when an interactive console logs on. 

This station is composed of two parts, the interactive concentrator 
and the interactive console. The interactive concentrator gathers 
messages _ from the conso 1 es, send·s them to the mainframe, recei ves 
responses, and distributes them to the console routines. The 
interactive console routines handle the input and output from and to 
the consoles and prepare messages to be sent to the mainframe via 
the interactive concentrator. 

3.10 



STATION SOFTWARE 

Station software provides the interface between the Cray computer 
system and the Front-end computers supplied by other manufacturers. 

Among the front-end systems currently being used with Cray computers 
are: 

* 

* 

* 

* 

* 

* 

IBM /MVS 

IBM / MVS 

IBM / VM 

CDC NOS 

CDC NOS/BE 

DEC VAX/VMS 

DGC RDOS 

The Cray/IBM MVS station provides the link between an IBM System/370 
or 370 compatable and the Cray computer system. 

The station provides for: 

* 

* 

* 

* 

Job submission at TSO terminals 

Local Batch Entry 

Remote Batch Entry 

Transfer of job and data files between MVS magnetic 
storage and Cray mass storage. 

An operator communicates with the MVS station and the Cray via 
commands entered at an MVS station console or a TSO terminal. 

3.11 



IBM /MVS (continued) 

The operator at an MVS station console can query and dynamically 
alter the status of jobs and the MVS station. The TSO user can only 
query and dynamically alter the status of jobs with a terminal 10 
(TID) equal to the user.1s TSO logon 10. 

One station in the Cray system is designated at installation time as 
the master operator station. The operator of this master station 
has complete control of COS and can manipulate all jobs in the 
system, control all mass storage, and set COS system parameters. 
All other stations in the system can only alter those jobs 
pertaining to that station. 

CDC NOS & NOS/BE 

The CDC NOS station controls the link between a Cray computer system 
and the Control Data Corporation r.yber 70, 170 or 6000 Computer 
System. This interface enables: 

* 

* 

Remote and local batch access to the Cray for users of the 
CDC system, and 

Job and data file transfer between CDC mass storage or 
tape and Cray mass storage. 

Job files can be transmitted only from NOS to COS, not vice- versa. 

The physical connection between the Cray and the CDC computers may 
be a channe1-to-channe1 front-end coupler device manufactured by 
Cray Research, or via a Hyperchanne1 network, manufactured by 
Network Systems Corp. 

3.12 



LESSON 4: --------

INTRODUCTION 

Describe the general organization and 
layout of the Cray and IDS main memories. 

COS is loaded into Central memory and activated through a system 
startup procedure performed at the MCU or I/O Subsystem. 

Memory is shared by: 

* 
* 

* 

* 

COS, 

jobs running on the Cray mainframe, 

dataset I/O buffers, 

and system tables associated with those jobs. 

COS allocates resources to each job, when needed, as these resources 
become a vai 1 ab 1 e. 

As a job progresses, information ;s transferred between central 
memory and mass storage. These transfers can be initiated by either 
the job or by COS. 

4.1 

.-------.-----~--.. ----.-----------------." .......•. 



SYSTEM MEMORY ASSIGNMENTS 

EXEC TABLE AREA 
I--- - --

EXEC 

STP T A,BlE AREA 
r- - - - - - J 

STP : JOB TABLE AREA I 
I 

CSP USER BA 
JOB COMMUNICATION BLK. 

USER AREAl 

USER AREA2 USER 

BA+200g 

PROGRA-" 
USER AREA3 AREA 

USER AREA4 

, , 
JCHLM 

I 
, I/O TABLES & 

I DATASET BUFFERS USER LA 

CRAY-OS SYSTEM 

LOG & STATION MAXIMUM 
1--.B_UF_F_ER_S _____ MEMORY 



MelllOry Resident COS 

COS occupies two areas of central memory. The memory-resident 
portion of the operating system occupying the lower memory consists 
of: 

* Exchange Packages 

* The System Executive (EXEC) 

* The System Task Processor (STP) 

* and optionally, The Control Statement Processor (CSP) 

The memory-resident portion of the operating system occupying 
extreme upper memory contains: 

* Station I/O buffers 

* space for the System Log buffer, and 

* Permanent Dataset Catalog (DSC) information & buffers 

4.3 



SYSTEM MEMORY ASSIGNMENTS 

EXEC TABLE AREA 
~- --

EXEC 

STP TABLE AREA 
f- - - - - - I 

STP : JOB TABLE AREA I 
I 

CSP USER BA 
JOB COMMUNICATION BLK. 

USER AREAl 

USER AREA2 USER 
BA+200g 

USER AREA3 
PROGRAA", 

AREA 

USER AREA4 

, , 
JCHLM 

I I 'lID TABLES & 

I DATASET. BUFFERS USER LA 

CRAY-OS SYSTEM 

LOG & STATION MAXIMUM 
1--B_UF_F_ER_S ____ ~ MEMORY 



USER AREA 

COS assigns every job a user area in centra 1 memory. The user area 
consists of a Job Table Area (JTA) and a User Field. 

Job Table Area - JTA 

For each job, the operating system maintains an area in memory that 
contains'the parameters and information required for monitoring and 
managing the job. Thi s area is ca 11 ed the Job Tab 1 e Area (JTA). 
Each active job has a separate Job Table Area adjacent to the job's 
User Field. The Job Table Area is not accessable to the user, 
although it can be dumped for analysis. 

The JTA contains jobrelated information such as accounting data; Job 
Execution Table pOinter; areas for saving B, T, and V register 
contents; control statement and logfi1e Dataset Parameters; a 
10gfi1e buffer; and a Dataset Name Table area which contains an 
entry for each dataset used by the job. In addition, task control 
blocks (TCBs) defining attributes of each executable user task are 
maintained. 

User Field 

The user field for a job is a block of memory immediately following 
the job's JTA. The user field is always a multiple of 512 words. 

The user field, in addition to being used for user-requested 
programs such as the compiler, assembler, and application programs, 
is also the area where utility programs such as the loader, copy and 
positioning routines, and permanent dataset utility programs 
execute. CSP also executes in the user field. 

The beginning or Base Address (BA) and the end or Limit Address (LA) 
are set by the operating system. The maximum user field size is 
specified by a parameter on one of the JCL statements that accompany 
the job, or by an installation-defined default. 

A user can request that the user field size increase during the 
course of a job. 

The first 128 words of the user field (200 octal) are reserved for 
an operating system/job communication area known as the Job Communi
cation Block (JCB). The JCB contains a copy of the current control 
statement for the job as well as other job-related information. 

4.5 



1/////////////////////////////////////////////////////// 
1/////////////////////////////////////////////////////// 
//////////////////////////////////////////////////////// 
1////////////////// Job Table Area /////////////////// 
//////////////////////////////////////////////////////// 
1/////////////////////////////////////////////////////// 

Job Communication Block 

User code/data 

Blank Common 

V/////////////////////////////////////////////////////// 
V////////////////////// Unused /////////////////////// 
1/////////////////////1111/////////////////////////////// 

Logical File Tables 

Dataset Parameter Area 

I/O Buffers 

user 

field 



Programs are loaded starting at BA + 200 (octal) and reside in the 
lower portion of the user field. The user field addressing limit is 
equal to LAl. 

The upper portion of the user field contains dataset buffers and I/O 
tables. 

Tables that reside in the user field include: 

BAT Binary Audit TaQle. This table contains an entry for each 
permanent dataset that meets requirements specified on the 
AUDIT control statement, and for which the user number 
matches the job user number. 

DOL Dataset Definition List. A DOL in the user field 
accompanies each request to create a DNT.(Dataset Name 
Table) in the user's JTA. 

DSP Dataset Parameter Area. A DSP in the user field contains 
the status of a particular dataset and the location of the 
I/O buffer of the dataset. 

JAC Job Accounting Table. This table defines an area for data 
to be returned to the user by an accounting request. 

JCB Job Communication Block, residing at the very beginning of 
the user area and containing information used by both COS 
and library routines. Copies of the more important 
pointers are kept in the job's JTA to assist in JCB vali
dation and recreation. 

LFT Logical File Table. This table in the user field contains 
an entry for each dataset name and alias referenced by 
Fortran users. Each entry points to the DSP for a dataset. 

ODN Open Dataset Name Table. A request to open a dataset for 
a job contains a pointer to the aDN table in the user field. 

POD Permanent Dataset Definition Table. A POD is used by CSP 
for many permanent dataset requests. 

4.7 



EXEC constant, data and table areas 

EXEC program area 

STP table area 

- - - - - - - - - - - - - -'- - - - -

STP program area 

CSP areat 

Available 
for 
jobs 

Memory for CRAY-OS 
System l~g and station 

buffers 

I 
I 
I 
I 

. I 



COS Residence 

As mentioned previously, the lower portion of COS residence 
includes: 

* The System Executive (EXEC) 

* The System Task Processor (STP) 

* and optionally, "The Control Statement Processor (CSP) 

EXEC 

The EXEC portion of COS has a base address (BA) of 0 and a limit 
address which is set by an installation parameter. The EXEC area of 
memory consists of the EXEC Constant, Data, and Table Areas, and the 
EXEC Program area. 

The EXEC Constant area contains all EXEC constants. The constants 
are functionally grouped, and include: 

* Constant memory locations 

* Front-end Driver constants 

* Packet I/O Driver constants 

The EXEC Data area contains all EXEC data not in the form of tables. 
The data in this area is functionally grouped, and includes: 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

Initial and warm-boot exchange packages (at location 0) 
Space reserved for DOC (SYSDUMP utility) 
Identification (at location 1400 octal) 
Pointers to EXEC Tables 
Stop Message Buffer 
X-MP cluster register dump area 
Disk/SSD Driver data 
Packet I/O Driver data 
Front-end Driver data 
EXEC Messages 
Miscellaneous data 

4.9 



EXEC constant, data and table areas 

EXEC program area 

STP table area 

STP program area 

CSP areat 

Available 
for 
jobs 

Memory for CRAY-OS 
System lqg and station 

buffers 

'-'/. 10 



The EXEC Table area contains all EXEC tables, alphabetically 
ordered. A description of these tables and there function is 
discussed in Lesson 10 of this unit. 

The EXEC Program area contains interrupt handlers, channel 
processors, task scheduler, the drivers (disk, I/O Subsystem, and 
front-end), system interchange, request processors, and debug aids. 

EXEC has a base address (SA) of 0 and a 1 imit address (LA) equa 1 to 
the installation parameter I@MEM. 

Explanation of the purpose and function of these EXEC components is 
discussed in Lesson 10 of this unit. 

4.11 



EXEC constant, data and table areas 

- - - - - ~ - - '- - - - - - - - - - -
EXEC program area 

STP table area 

STP program area 

CSP areat 

Available 
for 
jobs 

Memory for CRAY-OS 
System l~g and station 

buffers 



Syste. Task Processor 

The second major component of COS residence is STP. STP is the 
portion of COS which is responsible for processing all user requests. 
The STP area consists of tables, a set of programs called tasks, and 
some reentrant routines common to all tasks. 

STP Program area 

The STP program area consists of the system tasks and the reentrant 
routines. A System task serves a specific purpose in the job 
processing cycle. 

The system tasks and their abbreviations are: 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

Startup (STP) 
Disk Queue Manager (DQM) 
Station Call Processor (SCP) 
Exchange Processor (EXP) 
Job Scheduler (JSH) 
Permanent Dataset Manager (PDM) 
Log Manager (MSG) 
Message Processor (MEP) 
Disk Error Correction (DEC) 
System Performance Monitor (SPM) 
Job Class Manager (JCM) 
Overlay Manager (OVM) 
Tape Queue Manager (TQM) 
Stager (STG) 
Flush Volatile Device (FVD) 

The detailed function of these system tasks and STP in general is 
discussed in Lessons 12 and 13 of this unit. 

STP Table area 

This area contains 35 different tables accessable to all STP tasks. 
The purpose and layout of the individual tables will be discussed 
in Lesson 12 of this unit as well as during Unit 3: COS Internals. 

4.13 



EXEC constant, data and table areas 

EXEC program area 

STP t.able area 

STP program area 

CSP areat 

Available 
for 
jobs 

Memory for CRAY-OS 
System l~g and station 

buffers 

1.1.1'1 



Control Statement Processor (eSP) 

An image of CSP is maintained either in memory following STP or on 
mass storage, depending on an installation parameter. 

CSP is copied into each user field where it executes each time the 
job requires interpretation of a control statement. 

CSP is discussed in great~r detail in Lesson l! of this unit. 

4.15 



o 
o 

65,536 

Kernel constants and tables 

Kernel code 

Overlay area 

DALs for communication 
among the I/O Processors 

Free memory for Kernel tables, 
small buffers, and data areas 

I/O buffers 

Local Memory structure 

15 



110 Subsystem 

The Kernel 

The Kernel is the software package that controls activities running 
in each I/O Processor. Although each I/O Processor has its own copy 
of the Kernel, all copies are basically the same. 

Local MelllOry Usage 

Kernel code is stored in local memory apart from the constants and 
tables it ~eferences. The table area contains configuration maps, 
memory allocation tables, activity dispatching parameters, and 
information about overlays in buffer memory and local memory. 

Overlays 

Because of the limited size pf local memory, the I/O Processor uses 
overlays extensively. The overlay is read into loacl memory when 
activated to perform some function. Overlay space is allocated 
dynamically as new overlays are loaded. 

DALs 

The DAL area contains a linked list of 32-parcel communications 
packets. 

Free Memory 

The free memory area is used for Kernel tables and small buffers and 
is organized as a chain structure. Free memory is allocated in 
multiples of four parcels. 

I/O Buffer a rea 

The I/O buffer area is allocated in increments of 512 64-bit words. 

The relative size of each of these types of areas in local memory is 
determined by installation parameters, and depends on the functions 
that each lOP performs. For example, an lOP used exclusively for 
disk I/O has a greater share of local memory assigned to I/O buffers 
than an lOP which performs a different function. 

4.17 



o 63 
o 

Deadstart package 

System Directory 

Message area (For communicating control information) 

MIOP (Size of area set in AMAP 
. BIOP for each lOP. Each 

lOP-2 (OlOP) message area is 408 
lOP-3 (DlOP or XIOP) parcels.) 

AMAP . (Units attached to each lOP) 

Overlays (Read only, shared by all lOPs) 

MIOP Kernel storage: 
- Tables and queues 
- Software stack area (4008 each) 
- I/O buffers 
- Trace buffer 
- Other memory requirements 

IOP-2 Kernel storage (same as MIOP Kernel storage description) 

IOP-3 Kernel storage (same as MIOP Kernel storage description) 

BIOP Kernel storage (same as MIOP Kernel storage description) 

Buffer Memory resident datasets 

Buffer Memory organization 

4. I 8'" 



Buffer MelllOry Usage 

The I/O Processors share Buffer Memory. 

The first locations are reserved for a deadstart package. During 
deadstart, the MIOP initializes common tables and the System 
Directory so that all the control information is ready to begin 
execution when the other I/O Processors are deadstarted. 

System Directory 

The System Directory begins at the first address after the deadstart 
package. It contains pointers to other information saved in Buffer 
Memory, inc1 uding message area ·locations for each processor, and 
pointers to Kernel storage reserved for each processor~ All the 
lOPs can access the System Directory, but information in the 
directory can be changed only by the MIOP during deadstart. 

Message Areas 

Message areas accessed by senders and receivers of messages follow 
the System Directory. The sending I/O Processor maintains control 
of the area and allocates or deal locates memory within it. The 
receiving processor signals when the message has been received and 
processed. The memory is then released to the pool of message areas 
belonging to the sender. 

Kernel Area 

Each lOP has access to its own reserved Kernel storage area, which 
holds temporary information about activities and swapped activity 
areas. Reserved areas also provide data buffer storage for disks 
and other peripherals. A buffer also is reserved for history trace 
information. Each area is solely under the control of its 
respective I/O Processor. 

Buffer Memory Resident Datasets 

Part of Buffer Memory can be allocated for COS dataset storage. 

4.19 



DCU-2,3 
Controller 

I 0 Channel CRAY-l or 
CRAY X-HP CPU 

DCU-2, DCU-3 controller configuration 

HIOP 

Deu-lt 

Deu-lt 

ceu-4 
BIOP 

Deu-I, 

DeU-lt 

DCU-It OPTIONAL 

CCU-I, ClOP 

DCU-lt 

OCU-I, 

DCU-I, OPT! ONAL 

:leu-I, OIOP 

OCU-I, I 
I/O sUeSYSTEM 

DCU-4 controller configuration 

CRAY-l or CRAY X-~F 
CPU 



LESSON 5: -------- Mass Storage Organization 

Objective: 

DISK STORAGE 

Describe the organization and layout of 
the Mass Storage subsystem, and the types 
and formats of the data sets used within the 
system. 

Depending on the Cray computer model, mass storage consists of lOS 
Buffer MemQry, an SSO, and/or up to 48 00-19 or 00-29 disk drives. 

The 00-29 Disk Storage Unit is a 606 Mbyte drive with a data 
transfer rate of 35.3 Mbits per second. Each di sk storage unit 
contains a device label, datasets, and unused space to be allocated 
to data sets. 

One of the storage units will be designated the Master unit, and 
will contain the Dataset Catalog for all the datasets in the system. 

5.1 



DATASETS 

MASTER 
DEVICE 

.~ 

."-. ~ 
, .. ~ 

DEVICE 

~~ 

"-- / I 
.. ~ 

DATASETS 

DEVICE 

Mass storage organization 



Fonnatting 

Before a unit can be introduced into the system, it must be 
formatted. Formatting is the process of writing cylinder, head, and 
sector addresses onto the disk drive. This process is performed 
off-line by field engineers, and unless addressing information has 
been inadvertantly destroyed, formatting is performed only once. 

Devi ce La be 1 

A disk storage unit must be labeled before it can be used by the 
system. The Install program writes a Device Label Table (DVL) on 
one track of each DSU. The DVLs act as the starting point for 
determining the status of mass storage when the system is dead-

. started or restarted. The location of the DVL is usually, but not 
required to be, the first track on the device. 

Flaw Information 

A Device Label contains a list of flaws (bad tracks) for its disk 
storage unit. Initial flaw information is obtained from an 
engineering diagnostic run before the Install p'rogram. This initial 
flaw information is stored on the device in a special table called 
the Engineering Flaw Table (EFT). 

The EFT is written to sector 17 (decimal) of the first track that 
can be successfully reread on the device (no more than 10 tracks are 
tried). No EFT is written if no track in the first 10 tracks can be 
written and reread successfu11 y. Insta 11 reads back each DVL after 
writing it to verify the integrity of the DVL. If the Device Label 
cannot be read back perfectly, then the track is overwritten with a 
test pattern and a different track is tried. 

The Device Label is the last track written by Install so that all 
flaws, even any discovered while trying to write the DVL itself, are 
recorded in the DVL. 

5.3 



DATASETS 

MASTER 
DEVICE 

DATASETS 

DEVICE 

~~ 

"'- / l ... ~. 

DATASETS 

DEVICE 

Mass storage organization 



Device Label (continued) 

Dataset Allocation Table (OAT) for DSC 

The Device Lable Table (DVL) for the Master device maps the Dataset 
Catalog (DSC) since it contains the complete Dataset Allocation 
Table (OAT) for the Dataset Catalog except for OAT page headers. 

Dataset Catalog (DSC) 

The Device Label Table (DVL) for the Master device states which 
tracks comprise the Dataset Catalog (DSC). Similarly, the Data
set Catalog states which tracks 'comprise each of the currently 
cataloged datasets. 

Device Reservation Table 

Deadstart and Restart update the Device Reservation- Table (DRT) in 
STP-resident memory to reserve these dataset tracks so that the 
existence of permanent datasets is known to the system when it is 
deadstarted or restarted, as opposed to Install which assumes that 
all of mass storage is vacant. 

Special consideration is given to job input and job output datasets. 
Deadstart deletes all input and output datasets, defined by flags in 
the Dataset 'Catalog. Entries for these datasets in the DSC are 
zeroed. Restart, on the other hand, recovers the job input and 
output datasets. 

Mass Storage Management 

The system task Di sk Queue Manager (DQM) contro 1 s the simul taneous 
operation of disk storage units on CPU I/O channels or the I/O 
Subsystem. DQM provi des a 11 ocation and dea 11 ocati on of mass storage 
and other management functions. A detailed discussion of DQM will 
occur later in this course unit. 

5.5 





DATASETS 

Nearly all information maintained by COS is organized into units of 
information known as datasets. The following are some of the 
important factors to remember about datasets: 

* 

* 

* 

* 

* 

* 
* 

The dataset mediu. is the type of physical device on which 
the dataset resides. 

The dataset structure is the logical organization of the 
dataset. 

The dataset longevity is the retention period for the 
dataset. 

A dataset must be local to be usable. 

The dataset disposition code tell s COS what action to take 
when the dataset is no longer local. 

Each dataset is known by its dataset name. 

Datasets are read and written using operating system 
requests (user I/O interfaces). 

Dataset MediUII 

Datasets can be classified by medium, such as: 

* 

* 

* 

* 

Mass Storage data sets 

Memory-resident datasets 

Interactive datasets 

Magnetic Tape datasets 

5.7 





Mass Storage Datasets 

Mass storage datasets are of two types: 

* LOCAL 

* PERMANENT 

Local Datasets 

A local dataset exists only for the life of the job that created it 
and can be accessed only by that job. 

Permanent Datasets 

A mass storage dataset is permanent if it has an entry in the 
Dataset Cata 1 og on di sk. A permanent dataset ; s a va ; 1 ab 1 e to the 
system and can survive system deadstarts. 

Permanent datasets are of two types: 

* User Permanent datasets 
(those created with directives), and 

* Syste. Permanent data sets 
standard job input and output datasets 

User Permanent Datasets 

User permanent datasets are maintained for as long as the user (or 
installation) desires. A user permanent dataset is protected from 
unauthorized access through permission control words. 

The user can create a permanent dataset by prestaging a dataset from 
a front-end computer system or by using the SAVE or ACQUIRE contro 1 
statements or macro. 

A user accesses a user permanent dataset by using the ACCESS control 
statement or macro. 

5.9 



~.IO 



User Permanent Datasets (continued) 

A dataset can be removed from the system with the DELETE control 
statement or macro. 

More than one authorized user can access a permanent dataset. A 
user wishing to write on, or otherwise alter a permanent dataset, 
must have unique access. Multiple users wishing to simply read the 
dataset ~ay have multiacc~ss. 

Syste. Permanent Datasets 

·Some permanent datasets simi 1 ar to user datasets are created and 
maintained by the system. Users cannot delete or access these 
datasets, because the system has unique access to them. One such 
dataset is the Rolled Job Index Dataset, which is created or 
accessed by the Startup task and remains in use throughout the 
operation of the system. (more about "rolled job index" later). 

System permanent datasets are job related. Each job's input dataset 
is made permanent when the job is received by the Cray computer 
system. When job processing ends, certain of the job's local 
datasets having special names or which were given a disposition 
other than scratch by the user, are made permanent and the job's 
input dataset is deleted from mass storage. The output datasets 
that were made permanent are sent to a fron-end computer system for 
processing. They are deleted from mass storage when their receipt 
has been acknowledged by the front-end computer system. 

5.11 





Memory Resident Datasets 

Some datasets can be specified by the user to be memory-resident 
datasets. A memory-resident dataset is wholly contained within one 
buffer and remains in the user's area of memory at all times. 

A dataset can be declared memory resident to reduce the number of 
I/O requests and disk blocks transferred. Memory residence is 
particul~rly useful for iotermediate datasets not intended to be 
saved or disposed to another mainframe. 

All I/O performed on a memory-resident dataset takes place in the 
dataset buffers in user memory and the contents of the buffers are 
not ordinarily written to mass storage. Such a dataset cannot be 
made permanent, nor may it be disposed to another mainframe, unless 
first copied to mass storage. 

A user attempting to write to a memory-resident dataset must have 
write permission. However, as long as the buffer is not full, no 
actual write to mass storage ever occurs. Therefore, changes made 
to an existing dataset declared memory-resident are not reflected on 
the mass ·storage copy of the dataset (if one exists). 

If at any time the system I/O routines are called to write to the 
dataset and the buffer appears full, the dataset ceases to be 
treated as memory-resident, the buffer is flushed to mass storage, 
and all memory-resident indicators for the dataset are cleared. 

Magnetic tape, execute-only, and interactive datasets cannot be 
declared memory-resident. 

Interactive Datasets 

A dataset can be specified as interactive by an interactive job, 
provided that interactive datasets are supported by the front-end. 
Batch users cannot create interactive datasets. 

An interactive dataset differs from a local dataset in that a disk 
image of the dataset is not maintained. Instead, records are 
transmitted to and from a terminal attached to a front-end station. 
Record positioning (such as Rewind or Backspace) is not possible. 

5.13 



-JU ~. 7 



Magnet;c Tape Oatasets 

A magnetic tape dataset is available to any job declaring tape 
resource requirements on the JOB statement and specifying the 
appropriate information on its access request. 

A magnetic tape can be unlabeled (NL), ANSI standard labeled (AL), 
or IBM standard labeled (SL), and can be recorded or read at either 
1600 or ~250 bits per inc~ (bpi l. 

COS automatically switches volumes during dataset processing and 
returns to the first volume of a multivolume dataset in response to 
a REWIND command. If a permanent write error occurs when trying to 
write a tape block for the user, COS automatically attempts to close 
the current volume and continues to the next volume. 

The COS tape system uses Buffer Memory as a tape block buffering 
area so that the job's I/O buffer need not be as large as the tape 
block. This technique can result in significant memory savings 
whenever large tape blocks are being processed and in increased 
transfer rates whenever smaller blocks are being processed. The 
advantage in having a large COS buffer is a reduction in the 
overhead in the tape subsystem. 

With release 1.13, positioning support for tape datasets is 
possible. Users can position a tape dataset at any block on any 
volume, obtain the current position information for a tape dataset, 
and enable recovery of tape jobs after a system interruption. 

Also, a MOD parameter has been added to the ACCESS control statement 
for use with on-line tapes. When MOD is specified on an access of a 
tape dataset, any data written to the dataset is appended to the 
data already contained in the dataset rather than being written from 
the beginning of the dataset. 

5.15 



Dataset 

Record l Record 2 Recordn 

Data hierarchy within a dataset 



Dataset Structures 

COS supports several dataset structures: 

* Blocked Format 

* Interactive Format 

* Unblocked Format 

* Tape formats (interchange or transparent) 

Blocked Fonnat 

Blocked format is used by default for external types of datasets, 
such as user input and output datasets. Record positioning requires 
a blocked format. The blocked format adds control words to the data 
to a 11 ow for processi ng of vari ab 1 e-1 ength records and to a 11 ow for 
delimiting of levels of data within a dataset. 

A blocked dataset can be composed of one or more files, which are in 
turn, composed of one or more records. 

The data in a blocked dataset can be coded and/or binary. Blanks 
are normally comoressed in block coded datasets. Each block 
consists of 512 words. 

Blocked datasets use two types of control words: 

* block 

* record. 

5.17 



Bew 

Rl 

L EOR 

I 
R2 

.~ EOR 
Fl 

EOR 

Bew 

~OR 

EOF 

R5 

L EOR 

Dataset R6(nult) EOR 

F2 I 
R7 

L EOR 

Bew 
EOF 

F3 (null) EOF 

IT 
Flt R8 BeW 

11 EaR 

EOF 

EOD 

Example of dataset control words 



Block Control Word 

The block control word (BCW) is the first word of every 512 word 
block. 

o 8 16 24 32 40 48 56 63 

MI////////I 1/////////////////1 BN I FWI 

Field 

M 

BDF 

BN 

FWI 

BDF 
Description 

Type of control word (BCW=O) 

Bad Data F1 ag. The fo 11 owing data, up 
to the next control word, is bad. 
(magtape datasets only) 

Block Number (first is 0) 

Forward Index. The number of words 
(starting with 0) to the next record 
or block control word. 

5.19 

.----. --_.-------------------------



Rt 

r 
R2 

Ft •. ~~~~~~~~ 

Dataset 

F2 



Record Control Word 

A record control word (RCW) occurs at the end of each record, file 
or dataset. 

o 8 

MI usc I 

Field 

M 

UBC 

TRAN 

BDF 

PFI 

PRI 

FWI 

BDF 
24 32 40 48 56 63 

PFI 

Description 

Type of control word: 
10 = EOR 
16 = EOF 
17 = EOD 

Unused Bit Count 

PRI 

Transparent record field; used for 
interactive output dataset only 

EWI 

Bad Data Flag; the following data, up 
to the next control word is bad. 
Used for magtape datasets in interchange 
fonnat. 

Previous File Index. Index (in blocks) 
to the beginning of the file. . 

Previous Record Index. Index to the block 
where the current record starts. 

Forward Word Index. Points to the next 
control word (number of data words up to 
the control word) 

5.21 





Interactive Format 

Interactive format closely resembles blocked format; however, each 
buffer begins with a block 0 Block Control Word (SCW). 

Each record transmitted in an interactive mode to or from COS must 
contain a single record consisting of a Block Control Word, data, 
and an end-of-record Record Control Word. 

Two formats for interactive output can be assigned when the dataset 
is created: character blocked and transparent. Character blocked 
mode is the default. In this mode, an end-of-record RCW is 
interpreted as a line feed or carriage return. In transparent mode, 
the end-of-record RCW is ignored and the user must provide carriage 
control characters. 

Unblocked FOrEt 

Dataset I/O can alos be performed using unblocked datasets. The 
data stream for unblocked datasets does not contain RCWs or SCWs. 

The stream does not allocate buffers in the job's I/O buffer area 
for unblocked datasets; the user must specify an area for data 
transfer. 

When a read or write is performed on an unblocked dataset, the data 
goes directly to or from the user data area without passing through 
an I/O buffer. The word count of data to be transferred must be in 
multiples of 512. 

5.23 



TAPE DATA AS IT APPEARS IN I/O 
BUFFER (IN 5l2-WORD UNITS) 

scw 

EOR 

EOR 

scw 

EOR 

BCI-l 

EOR 10 60 

EOF 16 00 

EOD 17 1'10 

unused 

-

DATA IN TAPE BLOCKS 

VOLI 

HDRI 

HDR2 

* (Tapemark) 

------

---------------------' 

* (TapemarJI:) 

EOFI 

EOF2 

Header Label 
Group (if labeled) 

block 0 

block 1 

block 2 

last 
data 

block 

End of Data 

Label Group 

(if labeled) 

OR 

End of Volume 

Label 

Group 
(if labeled) 

Interchange-format tape dataset 
(octal values shown) 

* (Tapemark) 

EOVI 

EOV2 



Tape Fonnats 

Tape datasets can be read or written using two different formats: 

* 

* 

Interchange 

Transparent 

Interchange Format 

Interchange format enables reading ·and writing of tapes that are 
a 1 so to be read and wri tten on other vendor I s systems. . 

In interchange format, each tape block of data corresponds to a 
single logical record in COS blocked format (that is, the data 
between record control words). 

In interchange format, tape blocks lengths can vary up to an 
installation-defined maximum which cannot exceed 1,048,576 bytes 
(131,072 64-bit words). It is recommended that the maximum block 
size not exceed 100 to 200 Kilobytes. Blocks exceeding these sizes 
may require special operational procedures (such as the use of 
specially prepared tape vol urnes having an extended length of tape 
following the end-of-tape (EOT) reflective marker) and yield little 
increase in transfer rates or storage capacity. 

When a dataset is read in interchange mode, physical tape blocks are 
represented in the user's I/O buffer with block control words (BCWs) 
and record contro 1 words (RCWs) added by COS. The data in each tape 
block is terminated by an RCW. The unused bit count field in the 
RCW indicates the amount of data in the last word of the tape block 
that is not valid data. A BCW is inserted before every 511 words of 
data, including the RCWs. The format' of RCWs and BCWs are described 
previously in this lesson. 

5.25 

._---_ •... _----------------





Interchange Format (continued) 

When a tape dataset is written in interchange format, the data must 
be in the I/O buffer in the user field in COS blocked format. The 
data in each logical record is written as a single tape block. SCWs 
and RCWs are not recorded on tape. sews within a record are 
discarded and the unused bits and terminating RCW are also 
discarded. The unused bit count must be a multiple of 8. Tape 
datasets, written in interchange mode must consist of a single fi le 
(single EOF RCW). Multiple-file tape datasets are not supported in 
interchange mode. 

Transparent Format 

In transparent format (di sk image), each tape block is a fi xed 
multiple of 4096 bytes (512 words), generally based on the dataset 
density (that is, 16,384 bytes at 1600 bpi and 32,768 bytes at 6250 
bpi). The data in the tape block is transferred unaltered between 
the tape and the I/O buffer in the user field; no control words are 
added on reading or discarded on writing. 

In transparent mode, the data can be in COS blocked format or COS 
unblocked format. Transparent format tapes are not generally read 
or written by other vendor's equipment. 

5.27 



• 

<eod> 

<eoi'> 

<eo!> 

i 

" j' --

/ 
.... CONTROL STATEMENTS 
ti JOB ,IN- ••• 

I
~·:; . 
I;' . ~ I JCL CONTROL STATEMENT 

FILE 



LESSON 6: -------- Job Processing Overview 

Objective: 

JOB STRUCTURE 

Trace a user job through the system, 
beginning with job preparation at the 
front-end processor, and terminating at 
its origin after being processed by the 
Cray. 

A Job is a unit of work submitted to the Cray computer system. 
It consists of one or more files of card images contained in a job 
deck dataset. Each job passes through several stages from job entry 
through job termination. 

The job consists of: 

* a Control Statement File 

* a Source File 

* and a Data File 

6.1 



--~--' -------. ------_._----

<eoi'> 

<eo[> 

i 
, I 

DATA FI LE 

J' ~=:~~~~~==~~~~~ 
·1···· CONTROL STATEMENTS 
!;i JOB J IN- ••• 

JCL CONTROL STATEMENT 
FILE 



JOB STRUCTURE (continued) 

The first (or only) file of the job deck must contain the job 
control language (JCL) control statements that specify the job 
processing requirements. 

Each job begins with a JOB statement, identifying the job to the 
system. 

If accounting is mandatory in the user's system, the ACCOUNT 
statement must immediately follow the JOB statement. All other 
control statements follow the JOB statement. 

The end of the control statement file is designated by an end-of
file record (or an end-of-data record if the job consists of a 
control statement file only). 

Files fol lowing the control statement file can contain source code 
or data. These files are handled according to instructions given in 
the control statement file. 

The final card in a job deck must be an end-of-data. 

JOB ,IN=jn "MFl=fl ,T=tl ,P=p ,US=us, OlM=l m,Cl=jcn, *gn=nr 

ACCOUNT,AC=ac,PW=pw,NPW=npw,US=us,UPW+upw,NUPW=nupw 

6.3 



Printer 

Printe 

$IN 

IBM 
4381 

MVS 

$CS 

File 2 

File 3 

Mass Storage 

Displays 

Tape Storage 

Mass Storage 

\--~ Front En~ 

Printer 

____ --' Displays 

FILE CREATED AT TERtHNAL CONNECTED TO· F .E. 

SUBIB FILENA~lE - JOB SUBrilTTED TO CRAY FOR 
AStCi:BL Y AND EXECUT I ON 

SCP S'r1\'r7OM CALL PROCESSOR. STP TASK. f1AKES JOB KNOWN 
TO SYSTEM BY MAKING AN ENTRY IN THE INPUT QUEUE OF 
THE SYSTEM DATASET TABLE (SOT). CALLS JOB SCHEDULER. 



JOB FLOW 

A job passes through the following stages from the time it is read 
by the front-end computer system until it completes: 

* Entry 

* Initiation 

* Advancement 

* Tenllination 

JOB ENTRY 

A job can enter the system in the form of a dataset submitted from a 
front-end computer system or a local or remote job entry station. 

The Station Call Processor task (SCP) in STP is responsible for 
making the job's existance known to the system. 

It does this by creating an entry in the System Dataset Table (SOT) 
(in the STP Table area of memory), creating a memory pool entry, and 
requesting that an entry be made in the Dataset Catalog (DSC) on the 
master disk, thereby making the dataset permanent. 

The job resides on the disk until it is scheduled to begin processing. 

The Station Call Processor (SCP) now readies the Job Scheduler Task 
(JSH), in effect, calling attention to the new job in the system. 

6.5 



Printer 

Printe 

IBM 
4381 

MVS 

Mass Storage 

Displays 

JOB flOW 

FILE CREATED AT TERMINAL CONNECTED TO'F.E. 

SUBIB FILENA~lE - JOB SUBriITTED TO CRAY FOR 
A$~a:SL Y AND EXECUTION 

SCP ST~ON CALL PROCESSOR. STP TASK. r1AKES JOB KNOWN 
TO SYSTEM BY MAKING AN ENTRY IN THE INPUT QUEUE OF 
THE SYSTEM DATASET TABLE (SOT). CALLS JOB SCHEDULER. 

SELECTS JOB FRON INPUT QUEUE TO PLACE ON JOB 
'-----r-- EXECUT ION TABLE {Jxn 

i i . 

JSH I SELECTS JOB FOP. EXECUiION; t:OTIFIE~EXEC~ 
'-----:-_...... AllOCATES MEi'1CRY FOR JOB :.~~ : I' 

SETS THE JTA '. .. 
ItiITIATES JOB 

Tape Storage 

Mass Storage 

t---~ Front End--ts 

Printer 

___ Display~ 



JOB INITIATION 

The Job Scheduler Task (JSH) scans the System Dataset Table looking 
for candidates for processing. A job is scheduled to begin 
processing (initiated) when: 

* 

* 

* 

An entry for a job of the correct class is available in 
the Job Execution Table (JXT) (in the STP Table area of 
memory), 

No other job in the same class of higher priority is 
waiting to begin processing, and 

The requested generic resources (i.e. tape devices) are 
available~ 

The Job Scheduler Task uses an available entry in the Job Execution 
Table (JXT) to create an entry for the job being initiated, and 
prepares a Job Table Area (JTA) and user field. The Job Scheduler 
continues to use the JXT entry during the life of the job to control 
CPU use, job roll in/rollout, and memory allocation. 

The Job Scheduler (JSH) also moves the job's System Dataset Table 
entry from the input queue to the executing queue, still in the 
System Dataset Table. 

The Rolled Job Index entry corresponding to the assigned JXT entry· 
is also initiated at this pOint. 

6.7 



$CS File 1 

File 2 File 2 $OUT 

File 3 SLOG 



When COS schedules the job for processing, it creates four datasets: 

* $CS 

* $IN 

* $OUT 

* $LOG 

$CS is a copy of the job's control statement file from the input 
dataset and is used only by the system; the user cannot access $CS 
by name. This dataset is used to read the job control statements. 

This is the job input dataset. The job itself can access the input 
dataset, with read-only permission, by its local name, $IN, or as 
FORTRAN unit 5. The disposition code for $CS is SC (Scratch). 

This is the job output dataset. The job can access this dataset by 
name, $OUT, or as FORTRAN unit 6. The disposition code for $OUT is 
PR (pri nt) . 

$LOG 

The job's logfile contains a history of the job. This dataset is 
known only to COS and is not accessable to the user. (User messages 
can be added to the logfile however, using the Message system action 
request macro or other user Remark subroutines.) 

6.9 



Printer 

Printe 

IBM 
4381 

MVS 

Mass Storage 

Displays 

JOB flOW 

FILE CREATED AT TERMWAL CONNECTED TO'F.E. 

SUBIB FILENA~i - JOB SUBMITTED TO CRAY FOR 
A$~a".BLY AND EXECUTION 

SCP Sl"lD'%ON'CALL PROCESSOR. STP TASK. ,..,AKES JOB KNOWN 
TO SYSTE~l BY MAKING AN ENTRY IN THE INPUT QUEUE OF 
THE SYSTEM DATASET TABLE (SDT). CALLS JOB SCHEDULER. 

JSH : SELECTS JOB FRO~ INPUT QUEUE TO PLACE ON JOB 
'----...._-' EXECUTION TABLE (Jxn 

i 
JSH I SELECTS JOB FOP. EXECUTION; ~OTIFIES EXEC 

AllOCATES MEiiCRY FOR JOB ..'. 
'----...--' SETS THE JTA 

Itil TI A TES JOB 

! , .. 
EXP ! EXCHANGE PROCESSOR COPIES CSP fKTO USER FIELD 

.... ~-.. ----:.--
. ' 

,," -. CSP I PROCESSES CONTROL STATE.N,ENTS '. ~ 
:' ADVANCES JOB ' " '.~ ":".: 

;~~.\. ~_-....I CREATES FOUR DATASETS ' , ' 

,\";:~I .«~: . ~, ,. :~~ : ~~~!~~L F ~~~ TENENT FILE 

' .. ~ .<.~. ~~.~ . 
.J, .' 

$OUT - JO~ LISTING. ' , , 
SLOG - PROGRAM INFOPY~TICN ~ 

~./o 

.... 
0 ... " 

Tape Storage 

Mass Storage 

\--_~ Front End IS 

Printer 

"----4"-_- 0; s play 



JOB ADVANCEMENT 

Job advancement is the processing of a job according to the 
instructions in the control statement file. The Control Statement 
Processor (CSP) advances a job through its program steps. CSP is 
first loaded and executed in the user field following job 
initiation. 

, . 
A normal advance causes CSP to interpret the next control statement 
in the job's control statement file. An abort advance occurs if COS 
detects an error or if the user requests that the job abort. 

The Job Scheduler (JSH) gives each job a CPU priority reflecting its 
history of CPU usage so that I/O bound jobs can have a greater 
chance of being assigned the CPU. A job requiring a large memory 
area is allowed to stay in memory longer to compensate for its 
greater roll in/rollout time. A job assigned more than average CPU 
time for its priority is liable to be rolled out sooner as a 
consequence. The operator can change a job's priority while a job 
is running. 

Not all jobs having entries in the Job Execution Table (JXT) are in 
memory. Some are rolled out to mass storage when an event occurs 
causing other jobs to replace them in memory. 

6.11 



Printer 

Printe 

IBM 
4381 

MVS 

Mass Storage 

Displays 

File 1 

File 2 

$LOG 

Tape Storage 

Mass Storage 

~~ Front End I s 

Printer 

'--~ __ Display~ 

$OUT 



JOB TERMINATION 

Output from the job is placed on system mass storage. At completion 
of the job, COS appends $LOG to $OUT and returns $OUT to its 
originating station. $IN, $CS, and $LOG are released. $OUT is 
renamed J.!l (from the IN parameter va 1 ue of the JOB contro 1 statement 
and is directed to the output queue for staging to the specified 
front-end computer system. When the front-end has received the 
entire c~ntents of $OUT, ~he output dataset is deleted from COS mass 
storage. 

The front-end computer processes $OUT as specified by the dataset 
disposition code. If, for any reason, $OUT does not exist, $LOG is 
the only output- returned at job termination. 

In summary, when a job terminates, the following actions occur: 

* 

* 

* 

* 

* 

* 

* 

* 

* 

A Dataset Catalog (DSC) entry (on the master device) is 
created for each of the job's output datasets. 

A System Dataset Table (SOT) entry is created (in memory) 
for each of the job's output datasets. 

The user logfile, $LOG, is copied onto the end of $OUT. 

The Dataset Catalog entry for the input dataset is 
deleted. 

The job's System Dataset Table (SOT) entry is deleted from 
the executing queue. 

The Job Execution Table (JXT) entry and Task Execution 
Table (TXT) entry, and the memory assigned to the job are 
re leased. 

The Rolled Job Index entry is cleared. 

The Station Call Processor (SCP) task is readied at the 
next interrupt from a front-end and scans the System 
Dataset Table (SOT) for output to send to the front-end 
system. 

SCP deletes the corresponding Dataset Catalog and System 
Dataset Table entries after each output is successfully 
transmitted to the front-end system. 

6.13 



EXEC constant, data and table areas 

EXEC program area 

STP table area 

------------------.:..... 

STP program area 

CSP area 

Available 
for 
jobs 

Memory for CRAY-OS 
System lqg and station 

buffers 



S1)T 

SO ME. -r A~l-ES RELA Tf}) TO .JOg PROc..€SSl NCr 

C.fA'1 
M£MO~Y 

O~~---------------------

rtlft4£IIW-----------.....1 

6.LS 

1)SC 





LESSON 7: --------- Me_ory Management 

Objective: Describe the ways in which memory is 
managed for user and system requirements. 

* NOTE: _ The job of managing memory is accompl ished by the Job 
Scheduler (JSH) system task. Details of this process are discussed 
in Lesson 14: "System Tasks" Our purpose here is simply to provide 
an overview of the process. 

INTRODUCTION 

Central memory is a resource that is allocated to jobs by the 
operating system. A job's memory is composed of several distinct 
areas. Some of these are managed exclusively by the system for the 
user; others are managed by both the system and the user. 

Memory is allocated to the system at Startup at both the low-address 
and high-address ends of memory. After all system components 
(tasks) have been initialized, the remaining 512-word blocks of 
memory are allocated for future jobs or for system buffers. 

The tota 1 job size equa 1 s the 1 ength of the job's Job Ta b 1 e Area 
(JTA) plus user field length. -The lined area between JCHLM and 
JCLFT is unused space within the job. This area contains enough 
memory to guarantee that the job size is always a multiple of 512 
words. 

7.1 



JOBl 

JOB2 

JOB3 

Available 



INITIAL MEMORY ALLOCATION 

Segments of memory are allocated to jobs using a "first fit" method, 
that is, the job is allocated memory from the first (lowest 
addressed) segment large enough to contain it. (Segments are 
a1 located in multiples of 512 words). The last segment is always 
allocated to the system. 

Jobs that are waiting for memory are jobs that are either already in 
memory aod need to expand, or they are not in memory and need to be 
brought in. Whe allocation is possible, COS looks to see if a job 
that is waiting memory can be given memory. Jobs that are waiting 
are scanned in descending priority ord~r. 

The system gets priority over jobs for memory. When a system 
request is made for me.mory, its requirements are considered first. 

A ta 11 y is kept of the tot a 1 amount of memory that wi 11 be a vai 1 ab 1 e 
when a 11 current 1 y schedu1 ed ro 11 s comp 1 ete. If thi s ta 11 y 
indicates that there is enough free memory to satisfy the system 
request, the system wi 11 be gi ven the memory. If there is not 
enough memory available, any jobs that are either suspended or of 
lower priority wi 11 be rolled out if roll ing them out frees up 
enough memory for the system request to be satified. 

If a job that is in memory cannot expand (that is, not enough jobs 
in memory are either suspended or of a lower priority), it will be 
considered suspended and will be rolled out if any other job or the 
system needs the space. 

Expansion Space 

A job is brought into memory (initiated or rolled in from disk) only 
if there is enough memory to contain the job and leave some room for 
expansion. 

When the job initiates it is given sufficient memory for the Control 
Statement Processor (CSP) to execute. Once the JOB statement is 
processed, the job is allowed a field length no larger than the 
amount specified by the MFL parameter on the JOB control statement. 

7.3 

~>_>'. __ '>N"'_'_~N_'_.' ___ ' _____ ' ____ • ______ _ 



JOBl JOBl 
Available 

JOBl 
Available JOB2 

JOB2 JOB2 JOB2 JOB2 

JOB3 JOB3 JOB3 JOB3 JOB3 

JOB 1 
~OB4 

Available Available JOBl 

Available Available 

Syst~m System System System 

(a) (b) (e) (d) (e) 

JOB 1 JOB 1 

Available JOB2 

JOB 2 JOB3 

Available JOB4 

JOB 3 JOBS 

JOB 4 
JOB 6 

JOBS 

JOB 6 JOB7 

JOB7 JOBS 

Available 

({) 

7.Lf 



Expansion Space (continued) 

The first illustration on the facing page shows memory after JOBl 
and JOB2 initiate and JOB3 rolls in. JOB4 will not be brought in 
because not enough memory is available to contain the job and the 
required expansion space. Expansion spaced is required to allow the 
jobs that are already in memory to expand. 

- . 
Allocating, Deallocating, and Compacting Memory 

Figure (a) shows memory before any change. 

Figure (b) shows m~mory after JOB4 terminates and JOBl decreases its 
field length. The freed memory is marked avai lable~ Contiguous 
memory segments are merged into one larger avai lable segment. but no 
memory compaction is done. 

Figure (c) shows memory after JOBl increases its field length. A 
job is expanded in place whenever possible. 

Figure (d) shows memory after JOBl increases its field length again. 
If expansion in place is not possible, the job is moved to the first 
(lowest addressed) available segment large enough to contain the 
job. If there is enough available space to contain the job but it 
is not contiguous, the job will be rolled out and memory will be 
compacted. 

Figure (e) shows memory after the system requests more space. 
Memory is compacted upward and the system slot is increased by the 
requested amount. 

When a job is being brought into memory and there ;s enough 
available space, but it ;s not contiguous, memory will be compacted. 
Memory is compacted toward the low address end of memory until 
enough contiguous space is avilable. 

Figure (f) shows memory before any change, 

Figure (g) shows memory after memory is compacted and JOB8 is rol led 
in. 

7.5 





Modes of Field Length Reduction 

There are two modes of field length reduction: automatic and user 
managed. A user can manage the field length of the job by 
requesting a specific field length by using a MEMORY control 
statement in the JCL. 

* Automatic 

* 

When the job is in automatic field length reduction mode, 
the system automatically increases and decreases the job's 
field length as the areas within the job increase and 
decrease. A job initiates in automatic field length 
reduction mode. 

User-Managed 

When the job is in user-managed field length reduction 
mode, the system continues to increase the job's field 
length as before, but-never automatically decreases it. 
The job's field length can be decreased only by the user 
until the job is returned to automatic field reduction 
mode. 

The field length can be reduced at the beginning of each job step 
and during each job step if the job is in automatic field length 
reduction mode and any area of the job decreases. 

Since increases in field length can result in the job's requiring 
more memory than can be immediately provided, which causes the job 
to be delayed until sufficient memory can be given to it, the user 
may want to manage the job's field length when it is known that the 
job will undergo frequent short-lived fluctuations in size. 

7.7 





User Management of Memory 

A user can dynamically manage the user area of the job by requesting 
an increase or decrease of memory at the end of the user code/data 
area, or by requesting a specific field length. 

Management by Control Statement from the Run Stream 
, . 

A user can use the MEMORY control statement to manage the job's 
field length. When the user manages the job's field length, the job 
will be placed in user-managed field length reduction mode for the 
duration of the next job step. The MEMORY control statement may 
also place the job in user-managed field length reduction mode 
across job steps or return the job to a,utomati c mode. 

Management from within a Program 

From within a program, use of the MEMORY macro or MEMORY routine, 
respectively, requests user management of the job's user code/data 
area and field length. When the user manages the job's field 
length, the job is placed in user-managed field length reduction 
mode for the duration of the job step. The MEMORY macro or MEMORY 
routine may also place the job in user-managed field length 
reduction mode across job steps or return the job to automatic mode. 

Management Associated with a Program 

Use of certain parameters on the LOR control statement causes memory 
management to be associated with the binary being loaded. 

This association is stored with the binary if the binary is saved on 
a dataset. The management can be user code/data area management or 
field length management and occurs when the binary is loaded for 
execution. If the field length is being managed, the job is placed 
in user-managed field length reduction mode for the duration of the 
program execution. 

7.9 



System Management of MellOry 

The system changes appropriate areas of the job's memory when a job 
initiates certain system actions such as advancing to the next job 
step, performing I/O etc. 

The Job Table Area (JTA), Logical File Tables, and Dataset Parameter 
Area can increase, but will never decrease. 

The user'code/data and buffer areas may both increase and decrease 
in size. If the job is in automatic field length reduction mode, 
the system automatically increases and decreases the job's field 
'length when any area in the job increases or decreases. 

If the job is in user-managed field length reduction mode, the 
system continues to increase the' field length when it needs to, but 
never automatically decreases the field length. . 

7.10 



LESSON 8: -------- Tasks and Multitasking 

Objective: 

INTRODUCTION 

Define the various modes of operation 
used by the Cray computer system, and the 
units of computation and processes. 

Various segments of the computer industry utilize terminology which 
may differ in meaning and context from segment to segment and 
company to company. Since the Cray computer is capable of . 
multiprogramming, multiprocessing, and multitasking, a clarification 
of these terms as they are used in the Cray environment is in order. 

PARALLELISM 

IIPara 11 e 111 refers to the manner in whi ch software processes are 
executed. Jobs, job steps, programs, and parts of programs are 
parallel if they are processed simultaneously (or nearly so) rather 
than sequentially. 

Levels of parallelism are defined in terms of the types of software 
processes that are executed in parallel. 

Levell: Independent jobs, each job having a CPU 

Level 2: Job steps: related parts of the same job 

Level 3: Routines and subroutines 

Level 4: Loops 

Level 5: Statements 

The hi gher the number of the 1 eve 1, the sma 11 er the si ze or 
granularity of tasks. 

8.1 





MULTIPROGRAMMING 

Multiprogramming is a mode of operation that provides for sharing of 
processor resources among multiple, independent, software processes. 

This mode, used by many computing systems, makes most efficient use 
of a single CPU. In the multiprogramming mode, when several 
processes are ready to run, should one process be delayed by I/O, 
for example, another process can iummediately be switched in to run 
on the CPU. 

In contrast, a system running in monoprogramming mode has only one 
process ready to run and any delays will leave the CPU idle. 

Processor resources could include more than one CPU, and in a 
multiprogramming environment, these multiple CPUs would be shared 
between multiple, independent software processes. 

For example, COS 1.11 is a multiprogramming operating system. The 
processor resource is one CPU, and the software processes are jobs. 
Sharing is managed by assigning priorities to jobs and allocating 
CPU time a slice at a time to different jobs. 

8.3 





KILT I PROCESS ING 

Multiprocessing is a mode of operation that provides for parallel 
processing by two or more processors. That is, all processors work 
at the same time without adversely affecting each other. 

Under COS 1.12, two independent jobs can be run in parallel on a 
Cray X-MP computer system. This is sometimes referred to as the 
processors running separate job streams. The job is the scheduling 
unit of ~he system, and t~ processors are scheduled in a multi
programming mode. 

Truly independent jobs won't affect each other, but two jobs using 
the same dataset can interfere with each other and thus are not 
independent. 

This example of independent "uniprocessing" exploits parallelism at 
level 1 (independent jobs, each with a CPU). System throughput is 
enhanced over single processor configurations, but individual jobs 
receive no real processing benefits. 

Applications of more than one processor to a single job implies that 
the job has software processes (parts) that can be executed in 
para 11 e 1. Such a job can be 1 ogi ca 11 y or functiona 11 y di vided in 
such a way that two or more parts of the work can be executed 
simultaneously (that is, in parallel). 

An example of this could be a weather modeling job where the 
northern hemisphere calculation is one part of the job and the 
southern hemisphere another part. Distinct code segments need not 
be involved. The same code could run on multiple processors at the 
same time, with each processor acting on different data. 

8.5 

----------- -----"-.-~ 





TASKS 

A Task is a software process. It is a unit of computation that can 
be scheduled and whose instructions must be processed in sequential 
order. 

In a single processor multiprogramming operating system such as COS 
1.11, a job is a task. In a multiprocessing environment supported 
by COS 1.13, a job is still a task, but it may spin off other tasks 
to run in parallel with i~. 

To take advantage of a multiprocessing operating system, a job must 
be divided into two or more tasks. That is, for parts of the job to 
run in parallel on more than one processor, the parts must be 
scheduled separately. 

User Library Task 

A user library task is a uniquely named process that can have code 
and data areas in common (or even identical to) other tasks of the 
same job. The code executed by a user library task is a subroutine. 
The same work can be performed by calling the subroutine or by 
starting up a task to execute the subroutine. The difference is 
that the call causes the work to be performed iOll1ediately; in the 
task, the work is cheduled and performed independently and in 
parallel with other tasks in the program. 

The multitasking library scheduler schedules user library tasks. It 
creates, deletes, activates, and deactivates user tasks as required. 

System Task 

The system tasks are those tasks which make up the System Task 
Processor (STP). The function of each system task is de.scribed in 
Lesson 1£ of this unit. 

8.7 



Task A ________________________________ __ 

Task B ______ _ 

time--> 

A ----

Task C 
waits 

Task C 

Task D ______ _ 
Task D waits 

time-> 

---

Task E waits 
Task E 

Task P 
Task P is interrupted 

time--> 

c 



flJLTITASKING 

Multitasking is a special case of multiprocessing defining a "task" 
to be a job step or subprogram. 

Version 1.13 of COS provides for multitasking within job steps. As 
a 1 ways, job steps are executed sequent i all y. Using the 1 i bra ry 
subroutines, a program executing in a job step can create additional 
tasks, thus bringing about multitasking. A mu1titasked job is not 
complete until all tasks within the job step complete. 

In a multitasking environment, the tasks and data structure of a job 
must be such that the tasks can run in parallel. However, the 
availability of processors, and the order of execution and 
completion of tasks are functions of the scheduling policies of the 
library scheduler and COS. Consequently, multitasking is 
nondeterministic with respect to time. 

Tasks, however, must be made deterministic with respect to results. 
The key to a successful multitasked program is to precisely define 
and add the necessary communication and synchronization mechanisms 
between parallel tasks and to provide for the protection of shared 
data. 

Figure A is an example of a two tasks executing without interruption 
on two processors. 

Fi gure Bill ustrates a case in whi ch on 1 y one processor is 
available, and tasks'C and D must share it. Multitasking can be 
performed on machines with one processor. 

In Figure C, two tasks share two processors. Note that at several 
points, only one processor is actually in use by the job, and at one 
point, neither is assigned to the job. Note also that there is no 
indication of which physical processor is assigned to which task; 
this assignment is transparent to the user. However, in a multi
processor environment, users can specify which CPU is to be 
assigned. 

8.9 



1/0 Channe Is 

~.Io 

lar 

ional 

ts 

"Shared input paths 

AI<. 



Exchange Mechanism 

[ Objective: 

EXCHANGE MECHANISM 

Describe the method used by the Exchange 
Mechanism in managing the execution of 
programs. 

The technique employed by Cray computers to switch execution from 
one program to another is called the exchange mechanism. 

A 16-word block of program parameters is maintained for each 
program. When another program is to begin execution, an operation 
known as an "exchange sequence" is initi ated. Thi s sequence causes 
the program parameters for the next program to be executed and to be 
exchanged with the information in the operating registers. 
Operating register contents are saved for the terminating program 
and the registers are entered with the data for the new program. 

Exchange sequences are initiated automatically upon occurrence of an 
interrupt condition or voluntarily by the user or by the operating 
system through normal or error exit conditions. 

EXEC is always a partner in the exchange; that is, it is either the 
program relinquishing control or receiving control. All other 
programs must return control to EXEC. 

9.1 



PN 
o 
1 

2 

3 

4 

5 

6-7 

8-15 

o 8 16 24 32 40 

lEI S I111I P I 

~I CS I B I11111I IBA IML1 I 

~/IIIIIIIIIII ILA IML2 I 

{IIIIIIIIIIIIIFI XA I VL I F I 

111111111111111111 DBA P~I/I "f"CLN 

/1///1//1////1///1 DLA 1///11 

1111111111111111111111111111111111111111 
SO to 57 

48 56 63 

AO 

A1 

A2 

A3 

A4 

AS 

A6 to A7 

CRAY X-MP Exchange Package 

Field 

Processor number (PN) 
Error type (E) 
Syndrome bits (5) 

Program Address register (P) 
Read mode (R) 
Read address (CSB) 
Instruction Base Address (IBA) 
Instruction Limit Address (ILA) 
Mode register (M) 

Vector not used (VNU) 
Flag register (F) 
Exchange Address register (XA) 
Vector Length register (VL) 
Data Base Address (DBA) 
Program State (PS) 
Cluster Number (CLN) 
Data Limit Address (DLA) 
Current contents of the eight A registers 
Current contents of the eight S registers 

9.2 

Word 

o 
o 
o 
o 
1 
1 
1 
2 
1-2 
2 
3 
3 
3 
4 
4 
4 
5 
0-7 
8-15 

1 
2-3 
4-11 
16-39 
0-1 
2-6 (CS); 7-11 (B) 
18-34 
18-34 
35-39 
o 
14-15; 31-39 
16-23 
24-30 
18-34 
35 
38-39 
18-34 
40-63 
0-63 



Exchange Package 

An Exchange Package is a I6-word block of data in memory that is 
associated with a particular computer program. An Exchange Package 
contains the basic hardware parameters necessary to provide 
continuity from one execution interval for the program to the next. 

The Cray-I Exchange Package is shown below. The Cray X-MP Exchange 
Package ~s shown on the fC)cing page (9.2). 

o 8 16 24 32 40 

E I 5 IRI BIIIII P I o 
1 

2 

3 

C 11111 BA 11114"'IMM 

4-7 

8-15 

IIIIIIIIIIIIIRHIIIII LA I M I 

'111/111111111111 XA I VL I F I 

1111111111111111111111111111111111111111 

Er ror type (E) 
Syndrome bits (5) 
Read mode (R) 
Bank error address (B) 
Program register (P) 
Chip error address (C) 
Base address (BA) 

"'50 to 57 

Interrupt Monitor Mode bit (IMM) 
High-order bits of memory error read 
address (RH) 
Limit address (LA) 

Mode bits (M) 
Exchange address (XA) 
Vector length (VL) 

Flag register (F) 
Current contents of the eight A registers 
Current contents of the eight 5 registers 

9.3 

- .•.. __ .. _------_._------------_._-------_. 

o 
o 
o 
o 
o 
1 
1 
1 

2 
2 
2 
3 
3 
3 
0-7 
8-15 

48 

AO 

Al 

A2 

A3 

A4 to A7 

56 

0-1 
2-9 
10-11 
12-15 
18-39 
0-15 
18-35 
39 

14-15 
18-35 
36-39 
.16-23 
24-30 
31-39 
40-63 
0-63 

63 



--
--
--

--
--
--

--
--
--

~ 

EXEC ~ 

STP 

--
USERS --

--
~ 

- -(SA~ - -_ .... , 

-- (p)--

/ 

" 
,I 

" --t-..... ;: 
I 

I 
/ 

/' 
/ EXEC 

XP 

JLA) 
~ Operating Registers 

User XP 

Idle XP 

Error XP 

Task 0 XP 

Task 1 XP 

Task n XP 

Program Areas Exchange Package Areas 

EXEC 

STP 

--
USERS --

--

Program Areas 

EXEC 

STP 

--
USERS --

--

Program Areas 

A_ EXEC IN EXECUTION 

","'" 

". ..... ...-- ..... , 

... _I (SA) l ~I ". .. 
"./ .' 

~ 
_ .'(pt--.'" / 

;' 

, 
t~' 

:-.. 

/ 
,/ 

JLA) 

;' 

" / 

~/ 

L 
;' 

TASK 1 
XP 

Operating Registers 

B. TASK 1 IN EXECUTION 

;' 

(sA) 
I 

" (p) 
I / 

/ 

;' 

, / ' 
,....(LA) 

,/ 

, 

--- - ....... 

J/--~ 
,/ It , , , , 
" 

USER 
XP 

Operating Registers 

C. CURRENT USER IN EXECUTION 

User XP 

Idle XP 

Error XP 

Task 0 XP 

EXEC XP 

Task n XP 

Exchange Package Areas 

EXEC XP 

Idle XP 

Error XP 

Task 0 XP 

Task 1 XP 

Task n XP 

Exchange Package Areas 



Exchange Package Areas 

System hardware requires all Exchange Packages to be located in the 
first 4096 words of memory. In addition, the deadstart function 
expects an Exchange Package to be at address O. This Exchange 
Package initiates execution of EXEC and, consequently, the operating 
system. 

The EXEC. exchange package.is either active or is in one of the other 
Exchange Package areas. 

The exchange packages summarized below are selected by EXEC 
depending on interrupt flags and other conditions as defined later. 

* 

* 

* 

* 

Any of a set of exchange packages in the System Task Table 
(STT). This second portion of the STT is called the 
System Task Exchange Package Table (STX), and contains one 
exchange package for each STP task. 

The active user exchange packages. One user exchange 
package per CPU resides in the Processor Working Storage 
(PWS) entry and is copied from the user's Job Table Area 
(JTA) when the job is connected to the CPU. The exchange 
package is then copied into the user's JTA when the job is 
disconnected from the CPU. 

The idle task exchange packages. One idle exchange 
package per CPU resides in the Processor Working Storage 
(PWS) and is selected when no STP tasks or user jobs are 
scheduled for execution for a particular CPU. 

The Memory Error Correction task Exchange Packages. One 
correction exchange package per CPU resides in PWS and is 
selected when a memory parity error causes an exchange. 

9.5 





a, T, and V Registers 

The A and S registers are stored as part of the exchange packages, 
in the Processor Working Storage, but the B, T and V registers are 
handled differently. 

On any exchange to EXEC, the system task or user program's BOO 
register,is saved because .EXEC uses BOO. 

The active user's BOO is stored during interrupt processing. A 
system task's BOO register value is stored in the System Task Table 
(STT). When EXEC exchanges out, it restores the proper BOO register 
va 1 ue. 

B, T, and V· regi ster va 1 ues a re saved by EXEC on 1 y when the current 
user job is being disconnected from the CPU in favor of some other 
job. A job's B, T, and V regi ster va 1 ues are stored in the job's 
Job Table Area (JTA) and are restored when the job is reconnected to 
the CPU. 

9.7 



INTERRUPT HANDLERS 

Nass 
Storage 

Resident ~~~~ 
COS ,...J-~';;;""';;;'_ 

LOR 

I c 5 P I _____ ....Jl 

Interrupt 

Interchange 

Monitor;lii 
II' .... 

Request I( 
Processorl 

Front
end 

Driver 

EXEC 

Disk/ 
550 

Driver 

t One Exchange Package per CPU 

Idle 
Program 

Packet 
I/O 

Driver 

System control 

STP 

Common 
Rqutines 

Task 
o 

Task 
1 

Task 
2 

Task 
n 



Objective: State the purpose and function of EXEC. 

INTRODUCTION 

The System Executive module (EXEC) is the control center for the 
operating system. It alone accesses all of memory, controls the I/O 
channels, and selects the next program to execute. 

EXEC has a base address (SA) of 0, and a limit address (LA) equal 
to the installation parameter I@MEM. 

Components of EXEC include: 

* An Interchange Routine 

* Interrupt Handlers 

* Channel Processors 

* A Monitor Request Processor 

* A Front-end Driver 

* A Disk and SSD Driver 

* A Packet I/O Driver 

* A Task Scheduler 

These routines are integral to EXEC. Control transfers from routine 
to routine through simple jumps. 

In addition to these routines, the EXEC area of memory also contains: 

* 

* 

* 

EXEC Table Area 

Exchange Packages 

History Trace Table 

10.1 



EXEC constant, data and table areas 

EXEC program area 

STP table area 

STP program area 

CSP areat 

Available 
for 
jobs 

Memory for CRAY-OS 
System l~g and station 

buffers 

/0.'-.. 



EXEC CONSTANT, DATA, and TABLE AREAS 

CONSTANTS 

The EXEC constant area contains all EXEC constants. The constants 
are functionally grouped, and include: 

* 

* 

* 

DATA 

Constant Memory Locations 

Front-end Driver Constants 

Packet I/O Constants 

The EXEC data area contains all EXEC data not in the form of tables. 
The data in this area is functionally grouped, and includes: 

* 

* 
* 

* 

* 

* 
* 
* 

* 

* 

* 

Initial and Warm-boot Exchange Packages (at location 0) 

Space reserved for DDC (SYSDUMP utility) 

System ID (at location 1400 octal) 

Pointers to EXEC Tables 

Stop Message Buffer 

X-MP cluster register dump area 

Disk/SSD Driver Data 

Packet I/O Driver Data 

Front-end Driver Data 

Miscellaneous data 

EXEC Messages 

10.3 



EXEC constant, data and table areas 

. EXEC program area 

STP table area 

STP program area 

CSP areat 

Available 
for 
jobs 

Memory for CRAY-OS 
System l~g and station 

buffers 

10. 'f 



TABLES 

The EXEC Table Area contains all EXEC tables, alphabetically 
ordered. The table descriptions and layouts are addressed in detail 
in pub1 ication SM-0045 "COS Table Descriptions", and wi 11 be 
referenced in Unit 3 of this course - "COS Internals". 

The tables used by EXEC include: 

CAT 

, eBT 

CHT 

en: 
elT 

eXT 

FIQ 

FOQ 

leT 

IHT 

Channel Address Table 

Channel Buffer Table containing one entry of working 
storage for each disk driver channel. 

Channel table containing a lword entry for each side 
(input and output) of a physical channel. An entry 
contains a pOinter to the Channel Processor Table for the 
channe1assigned task ID and the address of the channel 
processor assigned to the side of the channel. Input 
sides.are assigned even numbers, output sides odd numbers. 
c,,,,,-,;,;\.:;:)lIJ<·;'1f I",{j-::,. 

Channel Lim,t Table 

Channel Extension Table is used to communicate with the 
MIOP for front-end I/O. 

Free Input Packet Queue 

Free Output Packet Queue 

Interrupt Count Table 

Interrupt Handler Table 

MeT Monitor Count Table 

MEL Memory Error Log Table 

MRT Monitor Request Table 

PWS Processor Working Storage 

RMS Read Margin Select Table 

SeT Subsystem Control Table 

10.5 



EXEC constant, data and table areas 

EXEC program area 

STP table area 

---------------~---

STP program area 

CSP areat 

Available 
for 
jobs 

Memory for CRAY-oS 
System l~g and station 

buffers 



EXEC Tables (continued) 

STT System Task Table consisting of three parts: a header, a 
task parameter word area, and an exchange package area. 

STX System Task Exchange Package Table 

18T Task Breakpoint.Table 

TET Time Event Table 

XFT History Function Table 

XTT History Trace Table 

10.7 



INTERRUPT HANDLERS 

Hass 
Storage 

Resident ~---.;;..~ ..... 
COS 

........... --..... 

LDR 

Interrupt 

Interchange 

Interrupt Handlers 

Monitor 
Request 

Processor 

Front
end 

Driver 

EXEC 

Disk/ 
SSD 

Driver 

Idle 
Program 

Packet 
I/O 

Driver 

System control 

t One Exchange Package per CPU 

10. ~ 

STP 

Common 
Routines 

Task 
o 

Task 
1 

Task 
2 

Task 
n 



EXEC Overv1 ew 

Interrupts 

After CPU startup, EXEC begins execution whenever a system, user, or 
idle task is interrupted. The interrupt can result from: 

* 

* 

the execution of an exit instruction (EX or ERR), or 

from a variety of hardware-related interrupts. 

Interchange Rout1ne 

Upon receipt of an interrupt, the interachange ana 1 ys.i s routine 
examines: 

* 
* 
* 
* 

the interprocessor communications area, 
the channel interrupt register, 
the real-time clock, and 
the interrupted exchange package 

to determine the cause of the interrupt, and passes control to the 
appropri ate hand 1 ere 

Interrupt Handlers 

Each interrupt handler clears the appropriate flag in the 
interrupted exchange package and, after processing the interrupt 
condition, returns to interchange analysis which checks for 
additional conditions. When all outstanding interrupt conditions 
have been processed, the System Task Scheduler (TSO) is entered. 

System Task Scheduler 

The task scheduler selects the highest priority system task which is 
ready to run and causes it to be executed. 

If no system tasks are ready, the user task scheduler is invoked. 

If no user task is currently connected, the idle task is selected 
for execution. --

After the selection of a task (system, user, or idle), an exchange 
out of EXEC occurs. The cycle begins again when the task is 
interrupted. 

10.9 



INTERRUPT HANDLERS 

Hass 
Storage 

Resident 
r-'----, 

COS 
r-'----, 

LDR 

Monitor 
Request 

Processor 

Interrupt 

Interchange 

Front
end 

Dri~er 

EXEC 

Disk/ 
SSD 

Driver 

Idle 
Program 

Packet 
I/O 

Driver 

System control 

t One Exchange Package per CPU 

10.1 0 

STP 

Common 
Routines 

Task 
o 

Task 
1 

Task 
2 

Task 
n 



INTERCHANGE ROUTINE 

Each time the interchange analysis routine is entered: 

* the interprocessor request queue is checked for an inter-
processor message. If one is there, 

it is processed, 
cleared, and 
control returns to the interachange analysis routine. 

The routine next looks for pending I/O Channel interrupts. When an 
I/O channel is found to have an interrupt pending: 

* control transfers to the I/O Interrupt Handler (101) 
which clears the I/O interrupt bit in the active 
exchange package, 
selects a processing routine based on the channel 
number, and 
enters the routine. 
The channel processor returns control to the 
interchange routine. 

Next, the real-time clock and the time event table are examined. 
If a timer event is pending: 

* Control is passed to the expired event interrupt handler 
(TEl). 

After proceSSing the timer event 
control is returned to the interchange routine. 

Finally, after the interchange routine has processed all of the 
above conditions: 

* 

* 

The flags in the interrupted exchange package are examined 
to determine the cause of the exchange. 

The I/O Interrupt flag is ignored since the 
interchange routine has already processed pending I/O 
interrupts. 

The Interrupt Handler Table maps each flag into a handl ing 
routine. 

When a flag is set, the corresponding interrupt 
handler is entered. 

After a pass through the interchange routine with none of the above 
conditions encountered, the Task Scheduler (TSO) is invoked. 

10.11 



INTERRUPT HANDLERS 

Nass 
Storage 

Resident 
~--..., 

COS ~---.;.~-. 

LOR 

Interrupt 

Interchange 

Monitor Front-
Request end 

Processor Driver 

EXEC 

Disk/ 
SSD 

Driver ,. 

Idle 
Program 

Packet 
I/O 

Driver 

System control 

t One Exchange Package per CPU 

/t). I~ 

STP 

Cornmon 
Routines 

Task 
o 

Task 
1 

Task 
2 

Task 
n 



INTERRUPT HANDLERS 

Each interrupt handler routine can invoke further routines for 
processing. When an interrupt is processed, control returns to the 
interchange routine. 

I/O Interrupt Handler (IOI) 

101 clears the I/O Interrupt flag in the interrupted exchange 
package, increments the interrupt count for the channel, sets the 
next channel processor to RJ (reject), makes a history trace entry, 
and exits to the current channel processor. 

Expired Time Event Interrupt Handler (TEl) 

TEl clears the Programmable Clock Interrupt flag in the interrupted 
exchange package, makes a history trace entry, sets up the next 
scheduled time event for the CPU, and exits to the time event 
processor. 

Programmable Clock Interrupt Handler (PCI) 

PCI clears the Programmable Clock Interrupt flag in the interrupted 
exchange package, makes a history trace entry, and sets up the next 
default time event. 

MCU Interrupt Handler (CII) 

CII clears the MCU Interrupt flag in the interrupted exchange 
package. 

Error Interrupt Handler (EE) 

EE clears the appropriate flag in the interrupted exchange package 
and makes a history trace entry. Interrupts handled by this routine 
are: 

* 
* 
* 
* 

Floating-point error interrupt 
Operand range error interrupt 
Program range error interrupt 
Error exit 

Processing depends on the type and cause of the error. 

10.13 



INTERRUPT HANDLERS 

lvlass 
Storage 

Resident 
,....-"-----, 

COS 
~---, 

LOR 

[~J ________ I 

Interrupt 

EXEC 
Interchange 

n 

Idle 
Program 

Monitor Front- Disk/ Packet 
Request end SSD I/O 

Processor Driver Driver Driver ,.. 

System control 

t One Exchange Package per CPU 

1~·ltf 

STP 

Common 
Routines 

Task 
o 

Task 
1 

Task 
2 

Task 
n 



INTERRUPT HANDLERS (continued) 

Memory Error Interrupt Handler (ME) 

ME clears the Memory Error flag in the interrupted exchange package, 
corrects the error if it is a single-bit error, and logs the error 
by sending a packet to the Message Processor task (MEP). A mu1ti
bit error causes the system to halt if the error occurred in the 
operating system or by a channel read from an I/O buffer. 

Normal Exit Interrupt Handler (NE) 

NE clears the Normal Exit flag in the interrupted exchange package 
and determines whether a system task or user job made the exit. A 
system task exit causes the Monitor Request Processor to be invoked; 
a user job exit causes the Exchange Processor (EXP) task to be 
scheduled. 

Interprocessor Interrupt Handler (IPI) 

IPI clears the interprocessor interrupt flag in the interrupted 
exchange package on a Cray X-MP. 

Deadlock Interrupt Handler (DLI) 

On the Cray X-MP, deadlock interrupts can occur that do not indicate 
that a programming error occurred. For instance, a deadlock 
interrupt occurs whenever a Test and Set Semaphore (0034) instruction 
is executed whi.1 e the semaphore in questi on is a 1 ready set and no 
other CPUs are in the executing CPUls cluster. 

10.15 



/o./r; 



CHANNEL MANAGEMENT 

EXEC manages channels in pairs, with the even-numbered side an input 
channel and the odd-numbered side ~n output channel. A channel pair 
consisting of channels 2 and 3 is referred to as channel pair 1, and 
so on. 

EXEC manages the mainframe's physical I/O channels based on 
parameter settings in the configuration deck CONFIG@P. 

The conflguration deck wi; 1 be discussed in detail in Unit Two of 
this course. 

Typical channel layouts are shown below: 

CHANNEL 

2,3 
4,5 
6,7 
8,9 
10,11 
12,13 
14,15 
16,17 
18,19 
20,21 
22,23 
24,25 

PAIR 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

Cray X-MP Mainframes: 

CHANNEL PAIR 

6,7 3 
8,9 4 
10,11 5 
12,13 6 
14,15 7 

DESCRIPTION 

6 Mbyte channel to MCU (MIOP or DG) 
Depends on configuration 
Depends on configuration 
Depends on configuration 
Depends on configuration 
Depends on configuration 
Depends on configuration 
Depends on configuration 
Depends on configuration 
Depends on configuration 
Depends on configuration 
Depends on configuration 

DESCRIPTION 

SSD 1250 Mbyte channel 
6 Mbyte channel (MIOP) 
6 Mbyte channel 
6 Mbyte channel 
6 Mbyte channel 

10.17 



/0. I Y' 



CHANNEL MANAGEMENT TABLES 

The following tables aid in channel management: 

* 

* 

Channel Suffer Table (CST) 

Channel Table (CHT) 

* Link Interface Table (LIT) 

* 

* 

* 

Subsystem Control Table (SCT) 

System Task Table (STT) 

I/O Service Processor Tables (LIT or CST) 

Channel Ruffer Table (CRT) 

EXEC assings one Channel Suffer Table (CST) entry to each pair of 
Channel Table (CHT) entries during EXEC initialization. The Channel 
Suffer Table is the default processot table for channel activity and 
is used by the Disk/SSD Driver. 

Channel Table (CHT) 

Each site configures one CHT entry per mainframe I/O channel, plus 
enough dummy entries at the beginning, so the physical I/O channel 
number is an index into the Channel Table. (Site configuration 
information is provided in unit 2 of this course.) 

Each entry contains: 

* 

* 
* 

A task parameter block address linking the channel. to an 
STP task, 
A table address, 
and an interrupt handler address. 

10.19 



I()·~O 



Link Interface Table (LIT) 

The Front-end Driver assigns one LIT entry to a pair of Channel 
Table (CHT) entries if the channel pair is to be used for front-end 
I/O. 

Subsystem Control Table (SCT) 

EXEC uses the SCT to select a processor for a packet received from 
the MIOP' in the I/O Subsystem. (The Packet I/O Driver is discussed 
1 ater in thi s unit.) 

System Task Table (STT) 

The STT contains information about each STP task for scheduling a 
task to run if channel activity warrants it. 

1/0 Service Processor tables (LIT or C8T) 

The I/O Service Processor tables contain information for control of 
the channel processor and can contain pointers to other tables. 

Front-end and mass storage channels have different I/O Service 
Processor tables. The service table is the LIT for Front-end Driver 
Requests and the CST for Disk/SSD Driver requests. 

CHANNEL ASSIGNMENTS 

When an STP task makes an I/O request for a specified channel pair, 
EXEC assigns the STP task that channel pair. 

10.21 



INTERRUPT HANDLERS 

Nass 
Storage 

Resident ,....L---...., 
COS ,...L-~_ 

LDR 

Interrupt 

Interchange 

Monitor Front-
Request end 

Processor Driver 

1 

EXEC 

Disk/ 
SSD 

Driver 

t One Exchange Package per CPU 

,.. 

Idle 
Program 

Packet 
I/O 

Driver 

System control 

STP 

Common 
Routines 

Task 
o 

Task 
1 

Task 
2 

Task 
n 



CHANNEL PROCESSORS 

The Channel Table (CHT) has a processor address for each physical 
mainframe channel configured. By default, this channel processor is 
the reject (RJ) processor, which ignores al 1 interrupts on the 
channel. 

If the I/O operation is in progress, each processor address 
indicates the interrupt handler that receives control when an 
interrupt is received on a particular channel. 

EXEC has the following categories of interrupts, and corresponding 
interrupt processors: 

* 

* 

* 

Front-end Driver Interrupts 

Disk/SSD Driver Interrupts 

MIOP Driver interrupts 

10.23 



INTERRUPT HANDLERS 

Hass 
Storage 

Resident .......... ~_ .... 
COS ......... --.::.~_ 

LOR 

Interrupt 

Interchange 

Interrupt Handlers 

Monitor Front-
Request end 

Processor Driver 

1 

EXEC 

Idle 
Program 

Processors 

Disk/ Packet 
SSD I/O 

Driver Driver ,.. 

System control 

t One Exchange Package per CPU 

STP 

Common 
Routines 

Task 
o 

Task 
1 

Task 
2 

Task 
n 



MONITOR REQUEST PROCESSOR 

The Executive (Monitor) Request Processor is initiated by the Normal 
Exit (NE) channel processor when a normal exchange from a task 
implies the presence of a request for the Executive. 

The request is passed to EXEC in registers S6 and S7 of the task's 
exchange package. 

FRONT-END DRIVER 

The Front-end Driver (FED) physically controls I/O between the Cray 
mainframe and the front-end computers attached directly to the Cray. 

In addition, it passes requests to the MIOP for I/O between the Cray 
mainframe and front-end computers attched to the I/O Subsystem. 

The Front-end Driver is invoked by an Executive (monitor) Request. 
The Station Call Processor (discussed in Lesson 13 of this unit) is 
the only task to use FED. 

FED processes task requests for channel control and front-end I/O. 
FED performs hardware-l eve 1 error recovery and some 1 ogi ca 1 error 
recovery. Most 1 ogi ca 1 error recovery is provided by the requesting 
task. 

DISKlSSD DRIVER 

The Disk/SSD Driver controls the following devices connected to a 
mainframe I/O channel: 

* DCU-2 Disk Controller 

* DCU-3 Disk Controller 

* SSD (Solid-state Storage Device) 

DISK 

Each disk controller can drive from one to four disk storage units 
of either the 00-19 or 00-29 type. 

10.25 



INTERRUPT HANDLERS 

Nass 
Storage 

Resident """""--';"_-, 
COS ,....L-~~_ 

LDR 

Interrupt 

Interchange 

Monitor Front-
Request end 

Processor Driver 

1 

EXEC 

Disk/ 
SSD 

Driver 

t One Exchange Package per CPU 

~ 

Idle 
Program 

Packet 
I/O 

Driver 

System control 

STP 

Common 
Routines 

Task 
o 

Task 
1 

Task 
2 

Task 
n 



SSD 

As an option, an SSD can be part of the configuration. 

* 

* 

On the Cray-1 machines, the SSD is contyrol led by a high
speed channel controller (HSC) which connects to a 6-Mbyte 
channel pair. The HSC moves data to and from the SSD over 
a 100-Mbyte channel. 

On the Cray X-MP, the SSD is connected directly to the 
mainframe through a 1250 Mbyte channel. 

PACKET I/O DRIVER 

The Packet I/O Driver consists of two major parts: 

* 

* 

The MIOP driver, which controls the 6-Mbyte channel to the 
Master I/O Processor in the I/O Subsystem, 

Packet Queueing, which routes packets among three areas of 
the system: 

STP Tasks 

EXEC 

I/O Subsystem 

Packets can originate in or be sent to any of these areas. 

10.27 



IO'::l~ 



Packet 1/0 Driver Tables 

The following tables are used by the Packet I/O Driver: 

* 
* 
* 
* 
* 
* 

Any Packet Table (APT) 
Channel Extension Table (CXT) 
Free Input Queue Table (FIQ) 
Free Output Queue Table (FOQ) 
Queue Control Table (QCT) 
Subsystem ContrQ1 Table (SCT) 

Any Packet Table (APT) 

The APT defi nes most of the packet formats and a 11 of the packet 
formats recognized by EXEC. 

Channel Extensionm Table (CXT) 

The CXT controls front-ends connected through the I/O Subsystem. 
Each lOS channel ordinal has one entry for handling one or more of 
the logical front-end lOis. 

Free Input Queue Table (FIQ) 

The FIQ contains input packets. The packet -to be read from the MIOP 
contains "NEXTPACK" in ASCII replicated throughout. 

Free Output Queue Table (FOQ) 

The FOQ contains pointers to queued output packets. 

Queue Control Table (QCT) 

The QCT is a general format for tables manipulated by the EXEC queue 
management subroutines. Specific tables using this format are FIQ, 
FOQ, and SCT. 

10.29 



10·30 



Subsystem Control Table (SCT) 

The SCT contains an entry for each type of packet EXEC can receive 
from the MIOP or send to STP. 

Each entry contains the address of a routine that either processes 
the packet or forwards it to an STP task for processing. 

PACKET DESCRIPTION 

The unit of information passed is known as a packet and is always 
six 64-bit words long. 

The Any Packet Table (APT) describes most of the formats the packet 
can take. The packet always has a 16-bit Destination 10 (DID) and a 
16-bit Source 10 (SID) used by the Packet I/O Driver to route the 
packet to its destination. 

The following ASCII identifiers are valid in the SID and DID fields. 

Identifier 

C1 
EX 
A 
B 
C 
o 
E 
G 
I 
J 
K 
N 
S 

Description 

Cray Mainframe identifier 
EXEC identifier 
Disk I/O 
Front-end I/O 
Error Message 
Tape I/O 
Echo 
Tape Configuration 
Initialization part 1 
Initialization part 2 
Kernel request 
Null request 
Statistics request 

Packet I/O Processors are used by the MIOP driver to process packets 
from the I/O Subsystem and are also used by EXEC to send packets to 
STP tasks. 

10.31 



INTERRUPT HANDLERS 

Nass 
Storage 

Resident ,.....t----y 

COS 
,-1----....;.__. 

LOR 

Interrupt 

1 

current 
user task 

EXEC 
Interchange 

Monitor Front- Disk/ 
Request end SSD 

Processor Driver Driver 

t One Exchange Package per CPU 

". 

Idle 
Program 

Packet 
I/O 

Driver 

System control 

STP 

Common 
Routines 

Task 
o 

Task 
1 

Task 
2 

Task 
n 



TASK SCHEDULER 

Task scheduling is entered when all interrupt conditions are 
processed and the CPU is looking for something to do. 

* 

* 

* 

If one or more system tasks are ready to run, the task 
with the highest priority is selected for exec~tion. 

If no system ta~k is eligible, the user task connected to 
the CPU is selected. 

If no user task (job) is connected, the idle package is 
selected for execution. 

The variables used in system task scheduling are: 

* STAPB, a field in the System Task Table (STT) header that 
contains the STT (System Task Table) address of the 
previously active system task. 

* STPLK, the STP lock indicator. When nonzero, the 
previously-executing STP task has disabled preemptive task 
scheduling, indicating that the task scheduler should 
return to the task. 

* TBIDLE, a field in the Task Breakout Table. When nonzero, 
a system task is stopped at a breakpoint, indicating that 
only the breakpoint processing task (SCP) is a candidate 
for schedu 1 i ng. 

* TPT, the Task Priority Table. This table is indexed by 
priority, and each table entry contains the address of the 
system task with corresponding priority. 

* STPRL, the System Task Priority Ready List, contains a bit 
for each possible task priority. When a bit in STPRL is 
set, the system task with the corresponding priority is 
ready to run, that 1.s, it is not suspended. 

10.33 



INTERRUPT HANDLERS 

Nass 
Storage 

Resident ~ ____ ~ 
COS ,.-1-_"';""";'-, 

LOR 

Interrupt 

Interchange 

Monitor Front-
Request end 

Processor Driver 

1 

EXEC 

Disk/ 
SSD 

Driver 

t One Exchange Package per CPU 

"" 

Idle 
Program 

Packet 
I/O 

Driver 

System control 

STP 

Common 
Routines 

Task 
o 

Task 
1 

Task 
2 

Task 
n 



TASK SCHEDULER (continued) 

The basic decisions of task scheduling, in order, are: 

1. If STPLK is nonzero, return to the previously active 
system task. The STT address of this task is contained in 
STT field STAPS. If any system tasks with a higher 
priority than the selected task are found, set the STP 
Lock Reca 11 f1 a"g (LKRCL) so that the UNLOCK macro wi 11 
exchange to EXEC to allow the higher-priority task to be 
executed when the lock is released. 

2. If a system task ;s at a breakpoint (TSIDLE ;s nonzero), 
select SCP if it has been initialized and is not 
suspended. If SCP has not yet been intitialized, or if it 
is suspended, select the idle package instead. 

3. If any system task is ready to run, select the task with 
the highest priority and cause it to be executed. (The 
tests for ready-to-run and highest-priority are combined 
since STPRL implicitly contains a priority-ordered list of 
ready tasks.) 

4. If no exchange package was selected as a result of the 
above steps, user task scheduling (SCHUSER) is entered. 

10.35 

-------------------------------------.---.... -~---



EXEC RESOURCE ACCOUNTING 

EXEC maintains the following performance information in EXEC tables: 

* Accumulated CPU time for itself (in PWS) 

* Accumulated CPU time for each task (in STT) 

* - Total time given to users (in PWS) 

* 

* 
* 

* 

* 

Count of all channel interrupts for both real and pseudo 
channels. 

Each user's execution time (in TCB) 

Number of normal exits for each task (in STT) 

Number of ready task requests, both from other tasks and 
from external and internal interrupts, for each task (in 
STT) 

Number of each type of EXEC request 

10.36 



LESSON 11: SYSTEM TASK PROCESSOR (STP) 

Objective: State the purpose and function of the 
System Task Processor (STP) and its 
relationship to EXEC and the user's job. 

INTRODUCTION 

The System Task Processor (STP) runs in user mode and accesses all 
memory other than that occupied by EXEC. STP is responsible for 
processing all user requests. 

STP consists of: 

* A set of programs called TASKS 

* A set of Tables used by the tasks 

* and some reentrant routines common to all tasks. 

A system task serves a specific purpose and usually recognizes a set 
of subfunctions that can be requested by other tasks. 

Characteristics of a task are: 

* 

* 

* 

* 

It has its own 10 (a number in the range 0-35 octal) 

It has an assigned priority 

It has its own exchange package area in the System Task 
table (STT), 

It has its own intertask communication control table which 
defines which tasks it is allowed to communicate with. 

Each task will be described in detail in Lesson 12 of this unit. 

11.1 



SYSTEM TASKS 

The 15 system tasks are: 

STARTUP (STP) 

STP handles the process of loading COS into central memory, 
beginning execution, and g~nerating or recovering tables for the 
operating system. 

STATION CALL PROCESSOR (SCP) 

SCP handles functions for one or more front-end computer systems. 

STAGER (STG) 

STS is a subtask of SCP. It separates the disk I/O processing from 
the protocol processing in SCP. STG also initiates input jobs by 
proceSSing the job card, aSSigning a job sequence number, and 
calling the Job Class Manager to assign a job class. 

JOB CLASS MANAGER (JCM) 

Before a job enters the input queue, it must be given a job class. 
JCM assigns a job to a class. 

JOB SCHEDULER (JSH) 

JSH is responsible for initiating the processing of a job, 
initiating processing of user tasks, selecting a user task to be 
active, managing job roll-in/roll-out, terminating user tasks, and 
terminating a job. 

EXCHANGE PROCESSOR (EXP) 

EXP processes all user system action requests and user error exits. 
EXP also handles requests from the Job Scheduler for initiating or 
aborting a job. 

11.2 



PERMANENT DATASET MANAGER (PDM) 

PDM provides a means of creating, accessing, deleting, maintaining, 
and auditing disk-resident permanent datasets. 

DISK QUEUE MANAGER (DQM) 

DQM controls the simu1ataneous operation of disk storage units on 
CPU I/O channels or the I/O Subsystem. 

TAPE QUEUE MANAGER (TQM) 

TQM manages tape I/O between one or more user jobs and the I/O 
Subsystem. 

MESSAGE PROCESSOR (MEP) 

MEP exists so that EXEC and the I/O Subsystem can communicate with 
the system log. 

LOG MANAGER (MSG) 

MSG writes messages in the system and user log files in response to 
requests from other tasks. 

DISK ERROR CORRECTION (DEC) 

DEC is called by DQM, and attempts correction of a disk error by 
applying the CRC algorithm. 

SYSTEM PERFORMANCE MONITOR (SPM) 

SPM is a low-priority task that collects system performance data and 
periodically sends it to the system log. 

OVERLAY MANAGER (OVM) 

OVM handles the loading and executing of system overlays. 

FLUSH VOLATILE DEVICE (FVD) 

FVD performs the backup of information contained on volatile devices 
(Buffer Memory and SSD). 

11.3 



EXEC constant, data and table areas 

EXEC program area 

STP table area 

STP program area 

CSP areat 

Available 
for 
jobs 

Memory for CRAY-OS 
System l~g and station 

buffers 

Iltt.( 



Task Residence 

The addresses in the Base Address (BA) register and the Limit 
Address (LA) register are the same for all tasks; BA is set to the 
beginning of STP and LA is set to I@MEM (an installation-defined 
maximum memory value). 

Although a task is loaded into memory during system startup, it does 
not normally become known to the system until an existing task 
issues a~ executive reque~t for the creation of some other task. 

A create task request assigns an 10 and a priority to a task through 
the task's parameter block in the System Task Table (STT). 

Task Execution 

Tasks execute in program mode and are therefore interruptible. An 
interrupt occurs as a result of the task executing an exit 
instruction (ERR or EX) or results from one of the interrupt flags 
being set automatically (for example, an I/O interrupt). 

When a task is created, it is forced into execution. During this 
initial execution, it usually performs some initialization and setup 
operations and then suspends itself. Thereafter, a task is executed 
only if it is readied. 

Task Readying 

Readying of a task occurs automatically or explicitly. Readying 
occurs automatically for tasks assigned to a channel when an 
interrupt pccurs on that channel. 

Readying also occurs as a result of an explicit EXEC request issued 
by one task for the execution of another task. 

A task is also readied or suspended by a master operator station 
request (station debug command). A task remains ready (unless 
breakpointed or stopped) until EXEC receives a request to suspend 
it. 

11.5 

---------------------_._------------------- ._-" .. " .......... . 



Self-suspension 

A task requests self-suspension when it has completed an assigned 
function or posts a request for another task. Note that if the task 
being requested is of lower priority than the task making the 
request, the requesting task must suspend itself to allow the lower 
priority task to execute. 

Subsequent requests to ready a task already readied cause the ready 
request bit in the task's parameter word (5TT) to be set. When this 
bit is set, the next suspend request for the task causes the task to 
be re-readied rather than suspended. The task ready request bit is 
then cleared. 

11.6 



STP TABLES 

The following 35 tables are accessible to all system tasks: 

AUT Active User table containing an entry for each 
logged-on interactive user. 

CMCC Communication Module Chain Control for controlling 
task-to-task communication. It is a contiguous area 
containing an entry for each combination of tasks 
possible within the system. The CMCC is arranged in 
task number sequence. The IDs of the requesting task 
and requested task determine the appropriate CMCC entry. 

CMOO Communications Modules in 6-word groups that form a 
pool from which they are allocated as needed. Two 
words are used as control; two are used as input 
registers; and two are used as output registers. A 
task receives all of its requests and makes all of 
its replies through a CMOD. 

CNT Configuration Table containing information on the 
availability and type of each device known to the 
system (tape). 

CPT Class Parameter Table used by JCM. It contains all 
job statement parameters used to determine job class. 

CSO Class Structure Definition Table containing the job 
class structure. For each class defined in the 
structure, there is a class map; these appear in CSD 
in descending order. A header precedes the class 
maps. Variable length characteristic expressions 
for each class follow the maps. . 

11.7 



OAT Dataset Allocation Table. A OAT exists for each 
dataset known to the system and defines where the 
dataset logically resides on mass storage. 

OCT Device Channel Table serving as a link between a 
physical or logical disk channel and the EQT. It is 
an interface to the EXEC disk driver. The OCT holds 
channel system performance data. 

ORT Device Reservation Table. A DRT exists for each 
logical disk device known to the system. A DRT 
contains a bit map showing available and reserved 
tracks on the device. 

OXI Permanent Dataset Catalog Extension Information Table 
containing information used by the Permanent Dataset 
Manager (PDM) such as the size of the Dataset Catalog 
extension Table (OXT). 

ECT Error Code Table for control 1 ing abort and reprieve 
processing done by EXP. It contains a 1 word entry 
for each system error code. 

EQT Equipment Table containing an entry for each disk 
device known to the system. 

GRT Generic Resource Table containing an entry for each 
generic resource in the system. 

IBT Interactive Buffer Table for managing the Interactive 
Buffer Pool. 

JXT Job Executi on Tab 1 e. The JXT contro 1 s a 11 acti ve 
jobs in the system and can contain as many as 256 
entries. Entry 0 is used to represent the system itself. 

LCT Link Configuration Table containing an entry for each 
CPU channel used for front-end communications. 

11.8 



LIT link Interface Table. SCP assigns an lIT entry at 
startup to each CPU channel used for front-end 
communications. This table is used primarily for 
channe 1 contro 1 . 

LXT link Interface Extension Table. EXEC assigns an lXT 
entry for a front-end station at log-on time and 
releases the entry at log-off. This table is used 
primarily for EXEC-STP communication of information 
on a front~end station. 

MST Memory Segment Table containing an entry for each 
segment of memory allocated by the Job Scheduler 
(JSH) as well as an entry for each free segment. The 
number of entries in the MST is set to twice the 
number of JXT entries plus four words. Each MST 
entry is one word in length. 

ODr Overlay Directory Table. Each overlay defined by a 
DEFINOVl macro contains an entry in the ODT. each 
entry contains addressing information and data on the 
overl ay's use. 

OLL Overlay load Request list holding a backlog of 
requests for overl ays. When an overl ay load is 
requested and the memory pool is full, an entry is 
added to the Oll to be processed when space becomes 
avai lab1e. 

PDI Permanent Dataset Information Table containing 
information used by the Permanent Dataset Manager 
(PDM), such as the number of overflow and hash pages .. 

PDS Permanent Dataset-Table consisting of a one-word 
header followed by a I-word entry for each active 
permanent dataset. The entry indicates how a dataset 
is accessed and if multiple access exists. If so, 
the entry tells how many users are accessing the 
dataset. 

11.9 



PXT Processor Execution Table contains status information 
for each physical processor, including which user 
task is currently connected. 

QDT Queued Dataset Table describing the multitype 
attributes for a disposed dataset. The table is 
managed by the Permanent Dataset Manager (PDM) and 
Exchange Processor (EXP) tasks. The number of 
entries in .the QDT must equal the SOT entry count. 

RJI Rolled Job Index Table containing for each defined 
JXT, an entry describing the job assigned to the JXT 
entry, allowing the ~ecovery of jobs from mass storage. 

RQT Request Table used to queue transfer requests for 
disk management. DQM uses the RQT to manage both 
logical and physical disk requests. RQT entries are 
queued to an EQT entry. 

SBU System Billing Unit Table containing the values 
obtained when system billing units are calculated for 
system resources. 

SOR System Directory containing a Dataset Name Table for 
each of the datasets comprising the system library. 
The SDR is initialized after a system startup. 

SOT System Dataset Table containing an entry for each 
dataset spooled to or from a front-end system. An 
SOT entry can have appendages allocated out of an STP 
memory pool to contain TEXT field and station slot 
information. 

11.10 



SST Stager Stream Table. Eight input stream and eight 
output stream SSTs are contained within each LXT. 

STPD STP Dump Directory containing pointers to task 
origins, buffers, and so on. An entry gives a 
mnemonic in ASCII plus the relative STP address for 
the area. 

TOT Tape Device Table. The Tape Queue Manager task uses 
the Tape Device Table to control online tape devices~ 
The TOT contains an entry for each tape device in the 
system. 

TXT Task Execution Table contains all information to 
control all user tasks within the system. 

UCT User Call Table containing a count of the number of 
times each type of user call is made. This table is 
used by the System Performance Monitor. 

Details of the STP tables are given in the COS Table Descriptions 
Internal Reference Manual, publication SM-0045, and will be 
addressed in Unit 3 of this course. 

11.11 



/1. I~ 



TASK COMMUNICATION 

Tasks communicate with: 

* EXEC 

* Each Other 

* User Jobs 

* the Front-end computer 

EXEC - TASK COMMUNICATION 

A task communicates with EXEC by placing a request and parameters in 
registers 56 and 57 and by executing an EX instruction. 

A reply to the request is returned in registers 56 and 57. 
Executive requests are discussed in detail in section 2.6 of 
publication 5M-0040. 

11.13 



TASK COMMUNICATION SYSTEM TASK PROCESSOR 

Communication Module Chain Control 

Task 0 

----------------
Header 

Task 1 

, 
Task 0 to Task 1 , , , , , , 
Task 1 to Task 1 , , , , , -, ---, 
Task 2 to Task 1 , , , , , 

I I , 
I I , 
I I , , I I 

1 

, , , , 
Task 11 to Task 1 Task 11 , , 

'. 

Communication Modules 

L+ 

CMOO 1 " " Task 2 to Task 1 " 1"'"--- Control --
r-- " " " " Input --" ----

" l+ 
" 0100 2 ,,' 

Task 2 to Task 1 r---- Output --
~ 

~-----------------. 

~ · · 
· ~ 

l+ 
CMOD 11 

Task -2 to Task 1 

Task communication tables 

1/. It{ 



TASK TO TASK COMMUNICATION 

STP contains two areas used for intertask communication: 

* 
* 

CMCC 

Communication Module Chain Control (CMCC) 

Communica~ion Module (CMOO) 

The CMCC is a contiguous area containing an entry for each 
combination of tasks possible within the system. 

The CMCC is arranged in task number sequence, that is, all possible 
task 0 combinations of requests to task 0 are fol lowed by all 
possible combinations of requests of task 1, etc. The task 10 of 
the requesting task and the task 10 of the requested task are the 
values that determine the appropriate CMCC entry. 

CMOD 

CMOOs are allocated from a pool as needed and, therefore, have no 
fixed location within STP. 

A CMOO consists of six words: 

* (2) for Control 

* (2) for Input 

* (2) for Output 

A task receives all of its requests and makes all of its replies 
through a CMOO. 

11.15 



task A ' 

--... TSKREQ . 
....... 
. (' 
.' 

task B 

CMO D=~~ 
~ ,~ 1'--

~:- - '-

- .-
_--_ ~:.::, JJ,~"-( 

GETREQ 

0Y~ 

~equest> 
reply ;~ 

~~PUT 
REPLY 



METHOD OF COMMUNICATION 

One task communicates with another by placing a request in the input 
word of a CMOD. 

The requested task replies by placing the request status in the 
output words of the CMOD. 

Six reentrant routines in ·STP that are common to all tasks facilitate 
intertask communication. They are: 

PUTREQ Put Request routine 

GETREQ Get Request routine 

PUTREPLY Put Task Reply routine 

GETREPLY Request Status routine 

TSKREQ Task Request routine 

REPLIES Queues Unrequested Reply 

Tasks call these routines through return jumps. 

The task placing a request calls PUTREQ to place the request and 
calls GETREPLY to check for a status from the requested task. 

Conversely, the requested task uses GETREQ to locate outstanding 
requests and uses PUTREPLY to return the status. 

TSKREQ is incompatible with PUTREQ and GETREPLY; If TSKREQ is used, 
PUTREQ and GETREPLY must not be used. 

11.17 



--. ....... .. ~ 

task A ' 

TSKREQ 

CMOD 

~equest 

reply 

task B 

GETREQ 



PUTREQ 

PUTREQ places the request in the input registers of a CMOD and links 
the appropriate communications module chain control. 

If the request cannot be chained because no CMODs are available or 
the chain is at its maximum, PUTREQ suspends the calling task or, at 
the caller's discretion, returns control to the requestor with no 
action taken. 

Once PUTREQ has successfuily generated the CMOD and linked it to the 
CMCC, the requested task is readied and control returns to the 
requestor. 

GETREQ 

GETREQ locates any outstanding request for the caller. 

Using the CMCC, GETREQ searches for a CMOD representing a request 
not yet given to the requestor. GETREQ begins the CMCC search with 
the lowest numbered task and returns the first request encountered 
to the caller. 

PUTREPLY 

PUTREPLY places the reply to a request in the first available CMOD. 

Requests and replies are stored in the CMOD in the sequence in which 
they are generated. Therefore, a single CMOD represents an 
unrelated request and reply. PUTREQ readies the task where the 
reply is directed and returns to the requestor. 

GETREPLY 

GETREPLY searches for a reply to the calling task. 

The searches begins with the lowest numbered task and ends with the 
highest numbered task, returning the first reply encountered. 
GETREPLY removes the CMOD from the CMCC and releases it for 
reallocation. 

11.19 



TSKREQ 

TSKREQ makes a request to a task for processing and suspends the 
caller until a reply is received. 

If the request cannot be queued immediately because either the queue 
is at its maximum or because no communication modules are available, 
the caller is suspended until the request is queued. 

Once the,request is queued, the caller is suspended until a reply is 
received. If one task makes a request to another using TSKREQ, all 
requests from the first task to the second must be made using 
TSKREQ. 

Mixed use of TSKREQ and PUTREQ/GETREPLY can ca'use unpredictable 
results. 

REPLIES 

REPLIES queues a reply for which no corresponding request has been 
made. 

The reply is queued at the beginning of the reply queue. A reply 
sent through this subroutine is seen by GETREPLY before any reply 
sent through PUTREPLY. 

11.20 



USER - STP COMMUNICATION 

User tasks initiate user/STP communication. 

A user program request to STP is performed when the user task loads 
register SO (or Sl and S2) and executes the normal exit instruction. 

Most system action requests can be issued through a CAL macro (see 
the Macr~s and Opdefs man~al, SR-0012). 

The user macro also results in a normal exit from the user program. 

EXEC routes all normal exits from a user task to the Exchange 
Processor task (EXP), which is discussed in detail in Lesson 12. 

TASK - FRONT-END COMMUNICATION 

Tasks can issue messages to any logged-on front-end station with a 
message processing capability. 

Messages are either strictly informative or require a response by 
the operator. 

Messages are queued by the common subroutine MSGQUE and processed by 
the Station Call Processor (SCP) task at the first opportunity for 
communication to the front-end. 

11.21 



II.~"-



SiP COMMON ROUTINES 

Certain reentrant routines resident in STP are called by return 
jumps rather than by a call to another tasks. 

These common routines include: 

* 

* 
* 

* 

* 

* 

* 

_ Task Logical I/O Routines (TIO) 

Circular I/O Routines (CIO) 

Memory Management Routines 

Item Chaining/Unchaining Routines 

Interactive Communication Buffer Management Routines 

Password Encryption 

System Buffer Management 

TASK I/O ROUTINES 

Task I/O (TIO) is a set of reentrant common routines in STP 
logically considered part of any system task that calls it. 

TIO interprets only COS blocked format and therefore, only operates 
on blocked datasets. 

It allows a systems programmer to do logical I/O at the system task 
level without being concerned about physical I/O. 

The following COS system tasks call TIO: 

* 

* 
* 

Exchange Processor (EXP) 

Startup 

Log Manager (MSG) 

11.23 



STP CC»MJN ROUTINES 

(A2) - - f - T ask 0 5 

(A3) Data 
Area 

-_L~~--r-~~ 

data:. 

<lata 

I/O BUFFER 

CMCC~===~ 
fo r _______ ____" 

____ .J>QM_ 

mass 
storage 

TIO logical write 

TASK I/O ROUTINES 

TASK I/O 

PHYSICAL I/O 



TIO (continued) 

Primary inputs to TIO consist of: 

* 

* 

* 
* 

a Task Execution Table (TXT) address, 

a Dataset Name Table (DNT) address, 

a Dataset Para~ter Table (DSP) address, 

the address of the system buffer area. 

The logical I/O may be performed on either a dataset related to the 
system or a user task related dataset • 

. TID does not al locate or deal locate any of the control structures 
or buffers for the request, but assumes all control structures and 
buffers are set up correctly before the request by the system task. 

TIO FLOW 

1. System task calls TIO with proper input parameters 

2. TIO blocks or deblocks the user data between the user 
buffer and the system buffer 

3. If necessary, TIO calls CIO to perform a physical 
read/write. rIo exits to the calling task's main 
interrupt loop. 

11.25 



OUT=F I RST+ 

IN+ 

, 
I 

t 

FIRST 

LIMIT+~----~------------~ LIM I T +~-------------' 

A. Filling the buffer B. Emptying the buffer 

FIRST+ 

IN+ 

OUT+ 

"LIMIT+ 

,.-, 
/ I 
I I t : processing 

I flow 
I 
I 
I 

I I 
I , ,_/, 

C. Concurrently filling 
and emptying the buffer 

Physical I/O 

J /. ~ (, 



CIRCULAR I/O ROUTINES (CIO) 

Physical I/O on a dataset uses a circular buffering technique 
initiated by"a set of STP common routines known as CIO. 

CIO routines are directly callable from system tasks. 

The following system tasks directly call CIO within COS: 

* 

* 

* 

Exchange Processor (EXP) 

Log Manager (MSG) 

Permanent Dataset Manager (PDM) 

CIO calls either the: 

* Disk Queue Manager (DQM) or the 

* Tape Queue Manager (TQM) 

to perform physical sector transfers. These calls occur through 
intertask communication (PUTREQ) from CIO. 

These calls are issued by user programs or tasks when data is to be 
transferred between the I/O buffer defined by the DSP and mass 
storage. 

11.27 



Pool Table 

HEADER 

Pool No. 

Pool No. n 

, 

Memory Pool No. n JV\ -- I 7 -;.) .. " - ,e-.,., 

Memory Pool No. 1 

Memory allocation tables 



MEMORY MANAGEMENT ROUTINES 

STP common subroutines provide for allocation an deal location of 
variable size memory areas for temporary use by a task. 

Allocation and deal location are from memory pools. The number and 
size of the pools are determined when the operating system is 
generated. 

The Pool-Table and the header and trailer words are used for 
controlling memory allocation and deal location. 

The Pool Table consists of a header word and one word for each 
memory pool in the system. 

The Pool Table Header defines the maximum valid pool number. 

The word associated with the memory pool provides the base address 
and size of the memory pool. 

11.29 



CHAINING/UNCHAINING SUBROUTINES STP COMMON ROUTINES 

n I __________________ ~ 

Chain tables 

,/. -gO 



CHAINING/UNCHAINING SUBROUTINES 

The CHAIN and UNCHAIN common subroutines provide tasks with a means 
of linking data. 

Each piece of data is termed an item and consists of two words of 
header information followed by the information being added to the 
chain. 

As an example, an item can be the input and output registers used 
for intertask communications. By chaining registers, tasks need not 
be limited to two words of input and two words of output. However, 
the CHAIN/UNCHAIN subroutines are not restricted to use for inter
task communications; the amount of information in an item and its 
type is defined entirely by the task using the subro~tines. 

Chaining is established thro,ugh a chain control word and the first 
two words of each item in the chain. 

Pointers in the chain control word identify the first and last items 
on the chain. The chain control word also contains space for the 
maximum number of items that exist on the chain and a count of the 
number of items on the chain. 

The two words used in the chain item provide a forward link to the 
next item on the chain, a backward link to the preceding item on the 
chain, and the address of the chain control word where this item is 
1 inked. 

11.31 



STP COMMON ROUTINES 

SYSBUF 
after 
2 allocate 
requests 

INCREMENT 
STATE 

PDM 

SYSBUF 

I@BFINCR 

I@BFINCR 

USER 

STP 

EXEC 

() 

PDM etc. 

SYSBUF 

U 
S 

E 
R 

STP 

EXEC 

New SYSBUF 
after one 
allocate 
request 

SYSTEM BUFFER MANAGEMENT 

DECREMENT 
STATE 

PDM 

SYSBUF 

I@BFDECR 

USER 

STP 

EXEC 

I SYSBUF plus 
some number 
of incrementE 

System Buffer memory management 

/1. ~~ 



INTERACTIVE COMMUNICATION BUFFER MANAGEMENT ROUTINES 

The inter"active communication buffer management routines are a set 
of common routines that operate on the Interactive Buffer Table 
(1ST) and queue control words in the Active user Table (AUT). 

They allocate and deallocate buffer space, queue and dequeue 
messages~ and transfer me~sages to and from the buffer area. 

SYSTEM BUFFER MANAGEMENT 

The System Buffe"r or SYSBUF is an a rea of memory between PDM ta b 1 es 
and user memory. This places the buffer area very high in central 
memory. This buffer zone is used by SCP and STG for COS/front-end 
communication buffers. 

The ori gina 1 buffer ;'s allocated by the Job Schedu1 er" (JSH) and is 
the size of the installation parameter I@SYSBUF. 

As more space is needed, the buffer manager, a common subroutine 
cal led BFMAN, requests JSH for an increase in words to be added to 
the buffer. 

Memory is added or removed from the end of the buffer adjacent to 
user space, which means that availability of user space memory space 
is affected by fluctuations in communication load. 

11.33 





LESSON 12: SYSTEM TASKS: Purpose & Function ---------

Objective: State the purpose and function of the 
various System Tasks, and the role they 
play in the user's job. 

INTRODUCTION 

A system .task serves a specific purpose and usually recognizes a set 
of subfunctions that can be requested by other tasks. 

Characteristics of a task are: 

* 

* 

* 

* 

It has its own 10 (a number in the range 0-35 octal) 

It has an assigned priority 

It has its own exchange package area in the System Task 
table (SIT), 

It has its own intertask communication control table which 
defines which tasks··it is allowed to communicate with. 

12.1 



COS STARTUP 

* INSTALL 

* DEADSTART 

* RESTART 

12.2 



COS STARTUP 

System startup is the process of loading COS into central memory, 
beginning execution, and generating or recovering tables for the 
operating system. 

The COS initialization task (Startup) is created by EXEC. Startup 
executes only once ... when the operating system is loaded and 
started ~p. 

Startup leaves messages in memory to notify the operator of failures 
during the COS Startup procedure. 

There are three ways to start the system: 

* INSTALL 

* DEADSTART 

* RESTART 

Most of COS Startup resides in the System Task Processor (STP) so 
that it can conveniently access system tables and facilities. 
However, some Startup logic resides in the station software of the 
station from which startup occurs (such as the I/O Subsystem) and in 
EXEC. 

12.3 



Install Option 

With Install, COS is started as if for the first time. 

All Cray-1 or Cray X-MP mass storage is assumed to be vacant, except 
for areas reserved for Cray Research customer engineers and for the 
Engineering Flaw Table (EFT). 

When the Install option is selected, the Startup task: 

* 
* 

* 

* 

* 

* 

* 

* 

* 

* 

* 

* 

Searches for EFT,s if they exist 

Writes a device label (DVL) on each mass storage unit. 

Accumulates Flaw Information 

Processes Mass Storage Groups 

Creates the Dataset Catalog on the Master Device 

Sets up the DSC and tables in memory 

Reserves space on the master device for system dumps 

Reserves space for the datasets maintained by lOS 

Initializes the Rolled Job Index dataset and enters it 
into the DSC. 

Optionally creates the Dataset Catalog Extension Table on 
the master device and enters it into the DSC 

Initializes the Job Class Structure and System Directory 
datasets and enters them into the OSC. 

Allocates disk space for volatile device backup dataset. 

12.4 



Deadstart Option 

For a Deadstart, COS is started as if after a normal system 
shutdown. 

That is, permanent datasets mentioned in the DSC are preserved 
through proper setup of tables in memory. However, input or output 
queues in the Dataset Catalog are deleted. 

When the" Deadstart option"is selected, the Startup task: 

* 

* 

* 

* 

* 

* 

* 

* 

* 

* 

* 

* 

Searches for the Engineering Flaw Table (EFT) 

Finds device label on each mass storage unit 

Preserves flaw information 

Preserves mass storage groups 

Reserves Dataset Catalog on master device and the disk 
space al located for system dump; initializes DNT and DAT 
for the DSC 

Preseves the allocated space for the datasets maintained 
by the lOS 

Restores all data on volatile devices from the backup 
data sets 

De 1 etes a 11 input and output datasets and reserves all 
other permanent datasets 

Either creates the DXT or recovers and validates the DXT 
if one already exists 

Establishes the Rolled Job Index in memory 

Copies system dump, if one exists, from the preal located 
area to available space and saves the copy as a permanent 
dataset. 

For vo1ati 1e devices, either allocates and saves backup 
datasets, or invalidates information contained on the 
previously existing datasets " 

12.5 



Restart Option 

Restart is an operator option after a system interruption when 
recovery of input and output queues and possibly the jobs in process 
is desirable. 

When the Restart option is selected, the Startup task: 

* 

* 

* 

* 

* 

* 

* 

Attempts to preserve the area reserved for system dumps 

Restores information on volatile devices from their 
associated backup 

Attempts to preserve all permanent datasets and recovers 
input and output queues. 

In memory, builds OAT and System Dataset Table (SOT) for 
each input/output dataset. 

If specified, recovers rolled out jobs through call to 
Recover Rolled Jobs routfne (RRJ) 

Preserves or al locates space for the datasets maintained 
by the lOS 

Copies system dump if necessary and saves the copy as a 
permanent dataset 

12.6 



Input to Startup 

Input to Startup may consist of a parameter file, the Dataset 
Catalog Extension Table, and the SSDR and $ROLL datasets. 

Startup may also receive configuration and status changes to devices 
from the system operator. 

Configuration Changes 

Startup can receive configuration information from any of the 
following sources: 

* 

* 

* 

Information assembled into tables at system genration 
time. 

Information entered through parameter file commands 

Information entered interactively during Startup at the 
configuration change time. 

At these times, devices can be added or deleted, or attributes or 
status can be changed. These devices include any described in the 
Equipment Table (EQT) or Tape Device Table (TDT)/Tape Configuration 
Table (CNT). 

To be able to enter information during the actual Startup 
processing, the master operator station must support the station 
message feature. 

12.7 



Tables used by STARTUP 

The Startup task uses the following tables to initialize the system 
for Install, Deadstart, or Restart. 

AUT Active User Table 
CNT Configuration Table 
DAT Device Allocation Table 
DNT Dataset Name Table 
DRT Device Reservation Table 
DSC Dataset Catalog 
DSP Dataset Parameter Area 
DVL Device Label 
DXT Dataset Catalog Extension 
EFT Engineering Flaw Table 
EQT Equipment Table 
GRT Generic Resource Table 
JTA Job Table Area 
JXT Job Execution Table 
ODT Overlay Directory Table 
PDI Permanent Dataset Information Table 
QDT Queued Dataset Table 
RJI Rolled Job Index Table 
SDT System Dataset Table 
TDT Tape Descriptor Table 

12.8 



STATION CAll PROCESSOR (SCP) 

The Station Call Processor (SCP) handles functions for one or more 
front-end computer systems and provides for: 

* 

* 

* 

* 

Establishing communications with the front-end 

Responding to fr.ont-end requests for functions such as 
stream control, I/O transfer, and status requests 

Multiplexing of streams for each logical station 

Multiplexing of logical stations on the same hardware 
channel 

System Tables used by SCP 

SCP uses the following system tables: 

* AUT Active User Table 
* IBT Interactive Buffer Table 
* LCT Link Configuration Table 
* LIT Link Interface Table 
* LXT Link Extension Table 
* PDD Permanent Dataset Definition Table 
* SDT System Dataset Table 
* SST Stager (STG) Stream Table 

12.9 



PROCESSING FLOW FOR SCP 

Upon receipt of each message from a front-end, SCP checks for illegal 
code or illegal parameters. 

SCP then processes the message code as follows: 

1. Log,on causes SCP to ~ave log on parameters and to initialize 
the buffer pool. 

2. The incoming dataset header causes a System Dataset Table entry 
to be assigned and the header parameters to be saved in the SOT. 

3. A start request is issued to the Stager (STG) task via the 
Stager Stream Table (SST). . 

4. SCP trades the input buffer for the empty buffer pointed to by 
the SST. The STG task is then activated with a process buffer 
code. 

5. Status messages are sent by the front-end and verified by SCP. 

6. Memory pool buffer is aquired 

7. SCP processes the input stream control bytes: 

Request to send from Front-end 

SCP responds with receiving 

Front-end sends data 

STG processes incoming data (mass storage) 

End Data 

SCP responds with Dataset Saved to front-end 

12.10 



STAGER (STG) 

Stager is a subtask of SCPo The purpose of STG is to separate the 
disk I/O processing from the protocol processing in SCPo 

STG: 

* 

* 

STG also: 

* 

* 
* 

Writes data segment buffer contents received from 
front-end syste~s to mass storage. 

and fills data segment buffers destined for front-end 
systems with data from mass storage, 

Initiates input jobs by processing the job card, 

assigning a job sequence number 

and calling the Job Class Manager (JCM) to assign a job 
class 

Tables Used By Stager 

STG uses the following tables: 

* 

* 

* 

POD Permanent Dataset Definition 

SDT System Dataset Table 

SST Stager Stream Table 

12.11 



Permanent Dataset Definition 

STG uses the PDD to create and release permanent datsets. 

System Datset Table 

STG places information in the SDT for datasets being transferred to 
or from a front-end system concerning block size, processing 
direction, etc. 

Stager Stream Table 

The SST is used for communications between STG and SCP. 

12.12 



Overview of STS Processing 

STG is activated for dataset transfers taking olace between the Cray 
and the front-end systems. 

The STG task is dormant when no datasets are being transferred. 

SCP requ~sts STG processi~g for active data streams. 

Input Processing 

The input startup phase is entered when a Start message request code 
is received by STG. 

1. If a dataset already exists, set an End message reply code 
to terminate the transfer and exit. 

2. Allocate an initial segment buffer. If the segment buffer 
cannot be al loctaed, set a Buffer Wait message reply code 
and exit. SCP will re-issue the Start request at a later 
time. 

3. Allocate the initial disk buffer. If no space for the 
buffer can be found, then release the segment buffer also 
to prevent buffer deadlock. 

12.13 



The Input Transfer phase: 

1. Move data from the segment buffer to the disk buffer. 

When the disk buffer is full, a write to disk is 
initiated. 

2. If there is data left in the segment buffer, the status is 
set to busy whiie the disk write completes. 

If no data is left in the buffer, the segment buffer is 
release and reallocated. 

The Input Termination phas~: 

Upon receipt from SCP of an End message code (end-of-data): 

1. Any data in the segment buffer is copied to the disk 
buffer and a write is issued to flush the buffer. 

2. The disk buffer and segment buffer are released. 

3. If the dataset transfer is an ACQUIRE or FETCH, exit. 

4. A Permanent Dataset Definition (POD) entry is allocated. 

5. If the dataset is a job, assign a job sequence number, and 
call the Job Class Manager to assign a class. 

6. If the dataset is a job, PDM saves the input dataset. 

7. When PDM is complete, SCP is notified. 

12.14 



STS Output Processing 

Startup phase 

The output startup phase is initiated by a Start message request 
code from SCPo 

1. Allocate a segment buffer 

2. Set parameters in the SOT for ~eading the dataset 

3. Allocate the disk buffer 

4. Initiate the disk read. 

Transfer phase 

1. Reallocate a segment buffer if the current buffer is 
empty. 

2. Compute the number of words in the disk buffer, and then 
move all the data that will fit into the segment buffer. 

3. If the disk buffer is empty, reallocate it. 

Output Termination phase 

1. Release disk and segment buffers 

2. Allocate a POD 

3. POM deletes the output dataset 

4. Release the POD used to delete the output dataset 

12.15 

'-------------------------------------------"-", .. ,-"", 



JOB CLASS MANAGER (JCM) 

Before a job enters the input queue, it must be given a job class 
assignment. 

The Job Class Manager task (JCM) assigns a job to a class. 

JCM uses ~he job class str~cturecurrently in effect based on 
installation parameters to determine the class assignment. 

The Job Class Manager task is created with all other system tasks by 
the Startup procedure. 

A task can call JCM by setting the appropriate input registers and 
ca·ll ing PUTREQ and TSKREQ. JCM repl ies to each request by setting 
the appropriate output registers. 

Job Class Assignment 

A job can only belong to one class. A job that qualifies for more 
than one class is assigned to the highest ranked class for which it 
qualifies. 

The user can override this assignment to lower the class through the 
use of the CL parameter on the job control statement, but the job 
must still meet the qualifications of the specified class. If the 
job does not qualify for any class, it is assigned to the class 
defined using CHAR=ORPH (orphan). 

See JCSDEF in the COS Operational Aids Reference Manual (SM-0044) 
for a detailed description of a job class structure. 

12.16 



JOB SCHEDULER (JSH) 

The Job Scheduler (JSH) task is responsible for: 

* Initiating processing of a job 

* Initiating processing of a user task 

* Selecting a user task to be acti ve 

* Managing job roll-in and ro ll-out 

* Terminating user tasks 

* Terminating a job 

The staging task (STG) builds a System Dataset Table (SOT) entry 
containing the job card parameters and information to find the 
dataset. 

The Job Scheduler then performs: 

* JXT allocation 

* Initial TXT allocation 

* Memory Allocation 

* CPU connection 

12.17 



JXT allocation 

JSH allocates a Job Execution Table (JXT) entry for each job. 

The information in the JXT contains: 

current status of the job 

location in memory or on a roll file, 

working values of priorities 

TXT allocation 

The TXT contains working values of concerning CPU use. 

The TXT includes: 

The most recent job logfile and 

most recent control statement message 

to enable the operator to determine the current job step. 

Memory allocation 

JSH allocates memory to each job represented by a JXT entry. 

After the memory is allocated, the job is either: 

relocated in memory 

read in from the roll file 

or initialized 

Based on the priority considerations, a memory allocation can be 
taken away from a job, and the job can be written out to the roll 
fi le. 

12.18 



CPU allocation 

JSH allocates the CPU(s) among the user tasks present in memory and 
ready to run. 

A user task is disconnected from the CPU when: 

* 

* 
* 

it suspends itself to wait for a system service, 

when it exhausts its allocated time slice, 

or when it is preempted because another (higher priority) 
user task is made ready to run. 

JSH Design Philosophy 

The Job Scheduler incorporates the following design criteria: 

* 

* 

* 

* 

Equal jobs should share available resources 

Resource use should be balanced between CPU-bound and I/O 
bound jobs. 

Higher priority jobs should be al lowed more resource use 
then lower priority jobs 

Responsiveness should be available to those jobs that 
require it. 

12.19 





EXCHANGE PROCESSOR (EXP) 

The Exchange Processor (EXP) task processes all user system action 
requests and user error exits. 

The Exchange Processor a 1 so handl es requests from the Job Schedul er 
for initiating or aborting a job. 

Exchange Processor Request Word 

Al 1 requests to the Exchange Processor are made through the Exchange 
Processor Request Word (TCEP) in the JTA for the job assi gned to the 
CPU. 

The Exchange Processor is readied by EXEC whenever TCEP is nonzero. 

The format of TCEP is as follows: 

o 2 4 6 16 40 63 

§EICIJIMIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII A 

Field Bits Description 

TCEPN 0 Normal exit 

TCEPE 1 Error exit or execution error 

TCEPC 2 Continuation flag 

TCEPJ 3 Job Scheduler flag 

TCEPM 4 JTA Expansion Request flag 

TCEPA 40-63 Continuation address; EXP address if 
TCEPC=l. 

12.21 



Job Scheduler Requests 

The Job Scheduler (JSH) requests the Exchange Processor to initiate 
(or abort) a job by setting the TCEP word in the job's JTA. 

JSH sets the TeEP field to 1, indicating a JSH request. 

EXEC, recognizing the TCEP field has been set to 1, readies the 
Exchange,Processor, initi~ting the job. 

Syste. Action Requests (Normal Exit) 

Sequence Of Events: 

1. Exit from a user program occurs when the user program 
executes an exchange instruction (004). 

The user issues a system action request on a program exit 
by setting SO to the desired function code. 

(See page 8-3 thru 8-22 in manual SM-0040 for a list of 
system action request codes) 

If an error is encountered, the job normally aborts with 
appropriate messages issued in the logfile. For some 
errors, however, an error code is placed in the user's SO 
and the user is allowed to continued processing. 

2. EXEC sets the TCEPN field in the TCEP word and readies the 
Exchange Processor (EXP). 

3. When EXP is readied, it detects the user request because 
of the TCEPN field being set. 

4. EXP then processes the system action request by using the 
function code in SO as an index into the CALL table 
(discussed later in this lesson) to obtain the address of 
the routine to process this request. 

12.22 



5. After EXP processes a request, it clears TCEP to allow 
EXEC to return to the user job. 

If EXP cannot process a request immediately, it suspends 
itself without clearing TCEP. EXEC then returns control 
to EXP, rather than the user, whenever the user task is 
assigned to the CPU. 

EXP calls JSH to suspend the user task before suspending 
itself when it must wait for completion of a request, such 
as an I/O request to another task. This allows other user 
tasks to be assigned the CPU. 

User Error Exit 

When a user program executes an error exit instruction or encounters 
a hardware error (floating-point error, operand range error, or 
program range error), an exchange to EXEC occurs. 

EXEC readies EXP after setting the fo1 lowing fields in the Task 
Control Block in the job's JTA: 

* 

* 

TCEPX is set to 1 

TCEPF is set to the exchange package flags in the'user 
exchange package. 

EXP either initiates reprieve processing or issues appropriate error 
messages and aborts the job. 

ABORT 

If the job is not reprievab1e, EXP skips through the control 
statements to the one fo1 lowing the next EXIT statement or to the 
end of file. 

If the statement is DUMPJOB, a dataset named $DUMP is created which 
contains the job image, including the JTA and the entire user field. 

12.23 



Reprieve Processing 

Reprieve processing enables a user progra~ to gain control in a 
uniquely identified routine when a job step completes either 
normally or abnormally. 

Reprieve processing is enabled by issuing the SETRPV macro 
instruction in a CAL program, or by calling the SETRPV library 
routine in CFT. 

Sequence 

1. When a job step is terminated, the F$ADV or F$ABT system 
action routine determines if a reprieve request has been 
issued and if the abort condition has been specified as 
reprievable. If so: 

2. The reprieve processing routine clears the current 
reprieve values, 

3. Copies the exchange package, vector mask register, error 
class code, and actual error code contents to the user
specified area, 

4. Sets up the user-specified reprieve routine to receive 
control when the job is selected for execution, by placing 
its address in the P-register of the exchange package. 

12.24 



Irrecoverability of Jobs 

By performing the following functions, a job will be declared 
irrecoverable: 

* 

* 

* 

* 

A random write on any dataset 

A sequential wri"te on any dataset immediately following 
any forward positioning, rewind, or read on that dataset. 

The position of the end of data is changed, which could 
cause the job to behave differently if started from a 
pre vi ous ro 11 image. 

A SAVE, DELETE, ADJUST, PERMIT, or MODIFY of a permanent 
dataset, and 

A release of a local dataset, returning disk space to the 
system. 

The job will become recoverable as soon as the Job Scheduler rolls 
the job out to disk again. 

A job is declared irrecoverable by a call from EXP to the Job 
Scheduler. If the job is already marked irrecoverable, JSH returns 
without further action. 

If the job is not already marked irrecoverable, JSH suspends the 
job, changes the Ro 11 ed Job Index Tab 1 e, and wri tes the modi fi ed 
index to disk. 

When the modified index is successfully written, JSH resumes the 
job. 

12.25 



Job Rerun 

Under certain conditions, termination of job processing and 
returning to the input queue for reprocessing at some later time is 
desirable or necessary. 

This is known as rerunning a job, and can be requested using the 
RERUN macro or RERUN control statement. 

When a job is rerun, the results should be the same as those 
obtained if the original execution had continued to a normal 
termination. 

However, after a job has performed certain functions, the system is 
unable to guarantee the same results for the rerun job. 

Norma 11 y, when EXP re"cogn i zes that the user is performi.ng one of 
these functions, the job is declared ineligible for rerun. 

The following functions on a permanent dataset cause a job to be 
declared ineligible for rerun: 

* 

* 

* 

* 

* 

SAVE 

DELETE 

MODIFY 

ADJUST 

Any write operation involving a permanent dataset 

If the job is ineligible for rerun, it aborts with an informative 
message when the Job Scheduler attempts to reinitiate the job. 

12.26 



System Tables used by EXP 

All EXP functions are job related. Consequently, most of the tables 
used by EXP are either in the user field or in the Job Table Area 
(JTA) . 

System t~bles usually acc~ssed by the Exchange Processor are: 

* 

* 

* 

* 

Call Table 

CALL 

JXT 

QDT 

SDT 

Call Table 

Job Execution Table 

Queued Dataset Table 

System Dataset Table 

The CALL table is composed of a I-word entry for each user system 
action request. The contents of the user's register SO serves as an 
index into the call table to obtain the address of the routine that 
processes the request. 

Job Execution Table 

The Job Execution Table contains an entry for each job that has been 
initiated. The JXT contains job parameters "and statistics that may 
be required while the job is rolled out to disk. 

Queued Dataset Table 

EXP modifies the QOT when a job releases a local scratch dataset 
having related disposes. 

12.27 



System Dataset Table 

The System Dataset Table contains an entry for the job dataset for 
each job in execution. 

EXP creates an entry in the SOT for each output dataset. 

It also al locates an SOT if a dataset is submitted to the inout 
queue. 

Task Control Block 

The TCB contains all execution-point related information 
(corresponding to a user task) including the exchange package, B, T, 
and V registers, EXP save areas, EXP internal use tables, and CPU 
timimg information. 

12.28 



PERMANENT DATASET MANAGER 

The Permanent Dataset Manager task (PDM) provides a means of 
creating, accessing, deleting, maintaining, and auditing disk
resident permanent datasets. 

The Permanent Dataset Man~ger is called by the Exchange Processor 
(EXP) for: 

* 

* 

* 

* 

* 

* 

* 

* 

SAVE 

ACCESS 

DISPOSE 

RELEASE 

DELETE 

ADJUST 

MODIFY 

PERMIT 

Creates user permanent dataset 

Associates a user permanent dataset with a 
job. 

Stages a CRAY permanent dataset to a front
end computer system 

Relinquishes access to the named dataset 
for the job 

Removes a user permanent dataset from the 
system 

Changes the size of an existing permanent 
dataset 

Changes information for an existing 
permanent dataset 

Grants explicit permission to access a 
dataset 

and to perform functions for PDSDUMP, PDSLOAD, and AUDIT. 

PDSDUMP 

PDSLOAD 

AUDIT 

Dumps permanent data sets to a dataset 

Loads permanent datasets that have been dumped 
by PDSDUMP 

Produces a report containing status information 
for each permanent dataset 

12.29 



PDM is also called by SCP to: 

* 

* 

* 

* 

create Dataset Catalog entries for spooled input 
datasets, 

delete DSC entries for spooled output datasets, 

perform permanent dataset name (PDN) requests, 

SAVE data sets staged from front-end stations 

PDM is called by EXP to: 

* 

* 

* 

create DSC entries for splooed output datasets, 

delete DSC entries for spooled input datasets, 

rewrite spooled input dataset entries 

PDM is called by STARTUP to: 

* rebuild Active Permanent Dataset Table (PDS) entries 
for permanent datasets associated with jobs being 
recovered or to access/save system datasets such as 
$ROLL and $SDR 

Job termination must check to see if a dataset is permanent before 
releasing the dataset from the system. 

12.30 



The following tables are used in permanent dataset management: 

CSD Class Structure Definition Table 
OAT Dataset Allocation Table 
DNT Dataset Name Table 
DRT Device Reservation Table 
DSC Dataset Catalog 
DSP Dataset Parameter Area 
DXT Dataset Catalog Extension 
EQT Equipment Table 
JCB Job Communication Block 
JTA Job Table Area 
JXT Job Execution Table 
POD Permanent Dataset Definition Table 
POI Permanent Dataset Information Table 
PDS Permanent Dataset Table 
QDT Queued Dataset Table 
SOT System Dataset Table 
XAT DXT Allocation Table 

12.31 



Functions 

A task calls the Permanent Dataset Manager by placing a message in 
the PDM CMCC. 

The layout of tbe,.CMCC is shown below: 
f~' ~\l\! .... ~ t'iJ'l ~h-A) ',' :"j ",',n' 

, rE--=j' 
o 8 '16 - 24.... 32 

INPUT+O VIIIIIIIIIIIIIII Return 

INPUT+1 I~II pYS 111//11 
"-'" 

Field Word Bits 

DNT or DAT 

Description 

40 48 56 

PDD 

JTA 

Return INPUT+O 16-39 A 24-bit value that remains unchanged 
and is normally used a return address 

PDD INPUT+O 40-63 Base address of the PDD relative to 
STP 

SYS INPUT+1 0 If set, this flag identifies the call 

63 

as having been initiated by the system 

DNT INPUT+1 16-39 Dataset Name Table address, if user 
ca 11 

DAT INPUT+1 16-39 Dataset Allocation Table, if system 
call 

JTA INPUT+1 40-63 Base address of the associated job's 
JTA. If the system flag is not set, 
the JTA must be specified. 

The FC field of the PDD indicates the function to be performed. 

12.32 



The function codes processed by PDM are: 

PMFCSU=lOs 
PMFCSI=l2S 
PMFCSO=l4S 
PMFCAU= 20S 
PMFCAI=26s 
PMFCAO=26s 
PMFCDU=30S 
P~1FCDI=36s 

PMFCDO=36S 
PMFCPG=40s 
PMFCPX=4lS 
PMFCLU=SOS 
PMFCLI=S2S 
PMFCLO=S4s 
PMFCRL=60S 

PMFCPN= 70S 
PMFCDT=lOOS 
PMFCDQ=llOS 
PMFCEA=l20S 

PMFCEI=l22S 
PMFCEO=l24s 
PMFCAD=l30s 
PMFCMD=l40S 
PMFCRSDT=lSOs 
PMFCPSAC=l60S 
PMFCPU=170s 
PMFCPO=176S 
Pl-1FCPI=l76s 
PMFCPE= 200S 

Description 

Save user dataset 
Save input dataset 
Save output dataset 
Access user dataset 
Access spooled dataset 
Access spooled dataset 
Delete user dataset . 
Delete spooled dataset 
Delete spooled dataset 
Dataset Catalog (DSC) page request 
Dataset Catalog Extension Table (DXT) page request 
Load user dataset 
Load input dataset 
Load output dataset 
Update Active Permanent Dataset Table (PDS)/Release 
request 
Permanent dataset name (PDN) request 
Dump time request 
Dequeue System Dataset Table (SDT) entry 
Queue System Dataset Table (SDT) entry to available 
queue 
Queue System Dataset Table (SDT) entry to input queue 
Queue System Dataset Table (SDT) entry to output queue 
Adjust user dataset 
Modify user dataset 
Rewrite job's input System Dataset Table (SDT) entry 
Pseudo access for Rolled Job Recovery (RRJ) 

Access user-saved dataset for PDSDUMP 
Access output dataset for PDSDUMP 
Access input dataset for PDSDUMP 
Permit alternate user dataset access 

12.33 





eRA Y OPERATING SYSTEM 

INTERNALS 

----------.--- "'---"---'--"-



C 05 I./tJTERNA LS 
;as 

- EXEC. 

- 5 Y s'c /VI TAs/( 'Pko, ESS6Jf!. 
. - . 

. --- ~-rYo/ STJlt£~£A.J-; 
PI? ()(, e S5{)1(. 

- lASER c!: ~ Cas 
/ /VTERA c.. T I ();() 



SECTI·ON 2 

SYSTEM EXECUTIVE 





£. X£C FUNCTIoNS 

+ IAJTE.!e!a<Pr HAMl>LINfr 

+ PHYSICAL rio 
+ SYSTEM TASK SC.HE1>ttLiAl6-

+ excC/;tTIVE.· RefJ(L,(€ST~ 

. -t- MEMoRY £Il.R7Jfl.. CO~re.ec. T/ON 

-t- 1: DLe 

;- R £ SOl(RCe A cc.OfA.IUTi~6-

+- C)(CHAAJrE MA~/iG-cME,u( 



• EXCf/AN6c Pie 0 (.,ESSGTi!... 

• IAlTcRCH,l/N~E 

• rNtERRLt 'PT HANbt£1!!S 

• CIIAAJAJ£L P,eOC,ES 501<.5 

• I/o PTe I f)€R 5 

• DISK . 
• S S pfJfti. /1,1 

• F1<6N( cAlI) 

• I/O St.tBSYJTcM 
~)Jlf~~ 

• £X£C f(EQlA.eST FROc.es.soR. 

• TASK S CHel>('('-E~ 

• I'1EM~Ry c~R(J/l. C()IlJ2~C.TI()1V 

• r.DL~ Loop 



EXCHANGE MECHANISM INTRODUCTION 

--
--
--

--
--
--

r--

--
--

SM-0040 

EXEC 

STP 

--
USERS --

--

6'" 

~ 

- -(SA).. - -_ .. 

-- (p).- --t-,..;) 

/' 

I 
I 

/ 

/ EXEC / I XP 

.A: 

) LA) '-_____ ---' 

/ . Operating Registers 

User XP 

Idle XP 

Error XP 

Task 0 XP 

Task 1 XP 

: 

Task n XP 

Program Areas Exchange Package Areas 

EXEC 

STP 

--
USERS --

--

Program Areas 

EXEC 

STP 

-
USERS --

--

~ 

~ 

/ 
/ 

A. EXEC IN EXECUTION 

/ 
" ,. 

1-/ 
/ 

TASK 1 
XP 

)LA) 
~. Operating Registers 

~ 
f+ 

B. TASK 1 IN EXECUTION 

/ 

(sA) 
I 

" (p) 
I / 

/ 

I 

/ / ' 
/.(LA) 

/ 

J""~ / 

'" , , , , 

USER 
XP 

Operating Registers 

User XP 

Idle XP 

Error XP 

Task 0 XP 

EXEC XP 

: 

Task n XP 

Exchange Package Areas 

EXEC XP 

Idle XP 

Error XP 

Task 0 XP 

Task 1 XP 

Task n XP 

Program Areas Exchange Package Areas 
C. CURRENT USER IN EXECUTION 

Figure 1-8. Exchange Package management 

1-20 c 



I 

INTERRUPT HANDLERS 

Mass 
Storage 

Resident ,..---..,. 
COS .-'-~~ 

LDR 

Interrupt 

Monitor 
Request 

Processor 

Interchange 

Front
end 

Driver 

1 

EXEC 

Disk/ 
SSD 

Driver 

Idle 
Program 

Packet 
I/O 

Driver 

Figure 2-2. System control 

t One Exchange Package per CPU 

SM-0040 2-4 

STP 

Common 
Routines 

Task 
o 

Task 
1 

Task 
2 

Task 
n 

EXEC 

C 



SYS 
WAIT 

TEl 

EVENT 
~ANDLEI 

XPROC 

IPRQ 

" I" 

EN EX 
~ 
I 

I 
ENA 

JHT 

NE PCI 

t1RT 

RO-R43 

EXEC REQUEST PROC 

I 

J J 

TSO - ,-:r,S1. f- SCHUSER 

STT 
TPT 
TBT 

CII DLI 

I 

~~9_5 

FRONT END DRIVER , 

IPI 101 

CHT 

ROll ] EQT 
.oJ SK/SSD DRIVER 
'-------T----

I 

EXEC 

IDLE 

XMEME EE 

MEL I '---------------- -- - ---

R022 
SCT 

MIOP PACKET DRIVER 

t 

I 
- ( 



EX CHA/IIfrE Pf(()(£55CJ R 

F W A,Jt.,-r /fJIV " €" 1&;/ ry ,qA-l/.) E J( /.,

R()IA-rIItlE Foi~ cKE'C. 

evrre.y: 
- EAI;ER.Gb oltJ AIVt E)c(HAA.I~e ,0 eXEc. 

- ASS lt~E.s rHNT OA.JL Y lePtA. 
I~ /AJ THe OPElt.IfT/1f,J6 SYST€J 

-- UPDl/1€ 5 STRT/jTt'C~ 

- C/lE(J(j FDIt.. ros tee~. HAti 

EXIT: 
- £x iT iAlHEA.J A£.L €kGC 

WD~I< IS FII£IIJHE7:. 

- CNECJ<.j Fo/l. I/O X",TERSZ('(rTJ 

- SEIJ XA 
- EX 



INTEl< CHIJA)f£ 
IlUrE R.1~.1A. rr A AJ'I l Y s I ~ 

- E~-r£IZE J> F",.oH1 £J(cHAA.I~E FIle 
cw A AJ Ex CIIAJJfr~ 

A A,;I>F YOM :r.N7ER.Rv. pi 'f:..c,eJ.5 I. 

~OtA-t/N-el 

- DETE~/Ne~ w},,,, ~auSeD rJ,,,, 
E J( c ,.,,, iU&- -e... 

, 
&.,-IifNC.H€J Te» AfPYG p~f4 t~ 

IJU/lJl.12w f T HAAJDL£~ 



£ XEC. - IJJT£~RL.iPT HliA/1>LERS 

• rOI - I/a INTERRlAPT5 

• N ~ - NORMI'fL cXCHAIV6-€S 

• C I r - /VI '- U I NT E 1f~ I,i P T 5 

• P c.r. P/tOG-RIlt1~~ 5LE c.L..Ocl< INT. 

• rE:r: --. ,IME1>c lJeNTS> 

• £ e - ER~O~ EXCMJlAJ6-E/l:JU1-. 

• XMEME - M £~~RY E~RoRS 

• IPRc~ST - r/VTER - PRocESSoR 1<E"~L(es""s 

• IPL - I ,vTER.- PROc:. /UO -cp$. 

• DLr - DE A t> LOcI< I }IrE R R'-1 PT S 



z SCP STG OQM POM llCM JSH EXP TQM NEP MSG SP~·1 GVM FVO DEC 

AUT -AUT POD -OAT OAT -CSD CSO -CAll CNT -AEM AUT CSD -OOT EOT EQT 
CNT -IBT SOT OCT CSO SOT -JXT (DOL) -DEX DSP OCT -OCS' DRT 
OAT -lCT -SST ONT (ONT) -MST -ONT (ONT) JTA -OCT 

(ONT) -lIT -ORT ORT -RJI -OSP (OSP) JXT o~iCT -Oll 
ORT -lXT OSP -OSC SOT JXT -DUX -lGJ °STT 

-osc POD -EQT osp -TXT -lFT -FSH POD ° I C 
(OSP) -SOT GRT OXT JTA -~ON GRT SOT 
-OVl -SST JXT EQT (POD) JXT 

OXT -RQT JXT QOT -lOT 
-EFT °SCT POD SOT -SM 

EQT -POI -SvJT -TOT 
GRT -POS TXB -VAX 
JTA -QOT -UPT -VU'X 
JXT SOT -KTA JTA 

(DDT) -XAT -TXT .... 
POI 
QOT 

N -RJ I 
~ SOT 

TOT 

SSO/ RO- o Exec 
MIOP FED DISK R43 USER CSP ) User Ori ver Driver Driver 

°MRT (BAT) (OSP) - Task Controlled 
°SCT °CHT -OCT °MCT (DOL) th is tab 1 e ~ 

°FIQ °CXT EQT (OSP) (lFT) 
°FOQ lIT °CHT (DNT) (ONT) 
°CHT lXT °STT (JAC) 
°CAT lCT °CAT (JCB) 
°ClT °CHT °ClT (lFT) 
°CIT °CAT °CIT (OON) 

°ClT °CBT (POD) 
°CIT (JTA) 
°STT 

AUT 
IBT 





o 

o 

o 

o 

o 

EXECUTIVE REQUEST PROCESSOR 
"'-

(M 0"'; ITO R. ) 

PROCESSES REQUESTS FROM STP TASKS 

TO MAKE AN EXEC REQUEST, A TASK PUTS THE REQUEST INTO ITS S6 
AND -S7 REGISTERS AND DOES A NORMAL EXIT 

THE NOR~1AL EXIT rNTERRLAfT !1:A~rDLt.·? DETECTS THAT IT vIAS A TASK 
THAT DID THE NORMAL EXIT AND JUMPS TO THE EXECUTIVE REQUEST 
PROCESSOR 

, \v , ./ 
.... . 

S7 CONTAINS A FUNCTION CODE THAI IS USED TO INDEX INTO THE 
MONITOR ~£Q TABLE TO OBTAIN THE ADDRESS OF THE ROUTINE TO 
PROCESS THE REQUEST 

FOR A LIST OF EXECUTIVE REQUESTS SEE SM-0040, PAGE 2 -/~ 

i 'f 

2.25 

------------------- --------



EXEC - PHY51CA LI/O DR'VER~ 

• FffONT END DR 1 UER 

• DISK/SSD DRIVER 

• TOS PACKET DRIVER 



TASK SCHEDULER 

IF STRTS IS SET 

ELSE 

THE TASK SCHEDULER FINDS THE HIGHEST PRIORITY TASK THAT IS 
READY TO EXECUTE AND SELECTS ITS EXCHANGE PACKAGE 

THE EXCHANGE PACKAGE OF THE CURRENTLY EXECUTING TASK IS 
SELECTED 

IF NO TASK IS READY SELECT THE EXCHANGE PACKAGE OF THE CURRENT 
USER JOB 

IF NO JOB IS READY SELECT THE EXCHANGE PACKAGE OF THE IDLE LOOP 

STPLOCK - ALLOWS A TASK TO RUN IN NON PRE-EMPTIVE MODE 

2.19 



SYSTEM TASK TABLE 

FUNCTION - FOR SCHEDULING AND CONTROLLING STP TASKS 

STT HEADER 

- STRTS BIT - REQUEST TASK SCHEDULER FLAG 
- ACTIVE TASK ID 
- ACTIVE TASK EXCHANGE PACKAGE ADDRESS 
- ACTIVE TASK PARAMETER BLOCK ADDRESS 

STT PART A - TPB's 

- ONE ENTRY FOR EACH TASK 
- READY BIT 
- SUSPEND BIT 
- TASK ID 

STX 

- ONE ENTRY FOR EACH TASK 
- CONTAINS THE EXCHANGE PACKAGE FOR THE TASK 
- LOCATED IN THE LOW MEMORY XP AREA 

STV-0842 2.17 



IDLE LOOP 

EXECUTES WHEN THERE IS NOTHING ELSE TO DO 

SCANS EXEC'S MEMORY IN INTERRUPTIBLE MODE - ATTEMPTS TO 
DETECT MEMORY ERRORS IN EXEC 

2.23 

--------------------- .--~---.-----.--.-.. ----« ........ " 



HISTORY TRACE TABLE 

XTT 

I 
I Newest 
I 

I \' I 
POINTS TO NEXT ENTRY 

DMEM,fWA=0,lWA=100000. 

, ,~ 
Q 

l' 
,. ~ lk.) 

,,~ 
~ 

I, 

U ~.-+ ----------- - - ---- -
J 

\. ~t e.k,· 
! 

'~'8: t Oldest 

I 
I 

Q 

I"~ • ""I"e 
1024 ENTRIES 

RAW DUMP 

I ,{ 
.~ -----_. -

.I 

,~ 

-
-\ ') ( r 

¥,.{. ~ 

fOUMP 1.13 
SYSDUMP 

05/08/84 
04/20/84 

0005750 0501032220000000000000 0541202060000000000000 0431052220000000000000 0515032200000000000000 PCI 
1005751, 0421112360000000000000 0445242320000000000000 0425052220000000000000 0431052360000000000000 010 
~005760 0515052160000000000000 0515032220000000000000 0431052120000000000000 0515032360000000000000 SEG 
0005761, 0521232600000000000000 0451112500000000000000 0451222120000000000000 01151232060000000000000 TSX 
0005770 0435052500000000000000 0461112040000000000000 0415202520000000000000 0451232200000000000000 GET 
0005774 0515232100000000000000 0465052320000000000000 0465032520000000000000 04L'5202220000000000000 SSO 
0006000 0421142220000000000000 0515312460000000000000 0471272500000000000000 0445202440000000000000 Dli 
0006004 0445202020000000000000 0405232060000000000000 0465052060000000000000 0000000000000000000000 IPA 
0006010 036117517236475100441 I I 051524236511311 0052122 0405032122012112024 I I 14 Oll2440 172364 751723647RD-== 
0006014,0541242500000000000000 0002052743124445574460 OOOOOOOOOOOOOOOOOOQ21O 000000000000000000000 TT 
006'6Q2li/ 003 I 250000362530005360 0036250600000000003050 0000000000000000161410 000000000000000 I 2211020 
0006024 0241250000362530005360 0036250600000000000273 0534000000000000026476 0540000000000000000005 (U 
0006030 0041250000362530405360 0036250600000000000711 0000000000000025047472 0451232200000000000000 U 
0006034 0031250000353530605360 0035363620000000002426 0451232202652325251520 0000000000000000000003 U I 
0006040 0041250001005254604400 0100622060000000001372 0000000000000025047472 0525232125100000161436 U * 
00060411 0021250001005254604400 0100622060000000003211 0000000000000000000005 0000000000000001713500 U * 
0006050 00412500002525L,3605200 0025254460000000001364 0000000000000025047472 0425302400000000000000 U U 
00U6054 U031250000231733005200 0027544620000000020073 0000000000000000000011 100U000000000000000014 U 
0006060 0121250000231733005200 0027544620000000001003 0026622040000000054005 0000000000000000000005 U 
0006064 0421250000231733005200 0027544620000000000276 0511042622012325251440 0425302402647622451510 DU 
0006070 0041250000353531205360 0035363620000000000676 0000000000000025047472 Oll51232200000000000000 U 
0006074 0031250000356470205360 0035641040000000004720 1000000000000000161436 0000000000000000000017 U 
0006100 0041250000356470605360 0035641040000000001637 0000000000000025047472 0451232200000000000000 U 
0006104 0031250000362530005360 0036250600000000002252 0000000000000000161436 0000000000000001224020 U 
0006110 0241250000362530005360 0036250600000000000265 0540000000000000026476 0444000000000000000005 (U 
0006114 OU41250000362530405360 0036250600000000000677 0000000000000025047472 0451232200000000000000 U 
0006120 11031250000232222605360 0035353640000000002323 0000000000000000000002 1000000000000000000002 U K 
0006124 11121250000232222605360 0035353640000000000525 0000000000000000000000 0026622040000000054005 U K 
0006130 11421250000232222605360 0035353640000000000334 0511052024213110020040 0451232202647621254120 DU K 
0006134 rW41250000231733405200 0027544620000000000704 0000000000000025047472 0425302400000000000000 U 
0006 I 40 "03 I 250000252543205200 0025254460000000005503 04253021102652325251520 0000000000000000000003 U U 
0006144 'W41250000232223205360 0035353640000000001107 0000000000000025047472 0451232200000000000000 U M 
0006150 "011250000353617005360 0521172400000000003661 0000100000 l,47100103315 OLI146100011200100000000 U < 
0006154 -W41250000307440605420 0031427540000000003401 0000000000000025047472 0521212320000000000000 U < 
0006160 'W31250000307450605420 0030744220000000003230 0000000000000000335540 0000000000000000002022 U < 
0006164 'W41250000307451205420 0030744220000000003517 0000000000000025047472 0521212320000000000000 U < 
0006170 "031250000332770605420 0033276740000000063134 0000000000000000335540 0000000000000000001022 U 
0006174 'W41250000332771205420 0033276740000000005117 0000000000000025047472 0521212320000000000000 U 
0006200 '~11250000332774405420 0521172400000000001225 0000110000447100102660 0001042063040100000000 U 
0006204 -1031250000332774405420 0521172400000000001251 0002052743124437654465 0000000000000000000006 U 
0006210 "051250000332775005420 0000000000000000003203 0000000000004300117541 0521112324252621247124 U 
0006214 11041250000332775005420 0033276740000000001071 0000000000000025047472 0521212320000000000000 U 
0006220 11031250000307440205420 0031427540000000004604 0002052743127546027037 0000000000000000000006 U ~ 
0006224 11041250000353617005360 0035360600000000001627 0000000000000025047472 0451232200000000000000 U < 
0006230 11031250000353530605360 0035363620000000003141 0451232202652325251520 0000000000000000000003 U I 
0006234 IW41250000017663204420 0000000000000000001165 0000000000000025047472 0445042304244010020040 U 
0006240 IW11250000017664404420 0521172400000000260310 0000100000447100103315 0414610004200100000000 U 

006244 11041250000307440605420 0031427540000000003445 0000000000000025047472 0521212320000000000000 U c 
)006250 0031250000307450605420 0030744220000000003332 0000000000000000335540 0000000000000000002022 U < 
0006254 0041250000307451205420 0030744220000000003570 0000000000000025047472 0521212320000000000000 U c 
0006260 0031250000232222605420 0033176640000000033046 0000000000000000000002 1000000000000000000002 U K 
0006264 0121250000232222605420 0033176640000000000535 0000000000614400000000 0000000000000000022001 lJ K 
0006270 0421250000232222605420 0033176640000000000335 0511052024213110020040 0521212322647621254120 DU K 
0006274 0041250000232223205420 0033176640000000000702 0000000000000025047472 0521212320000000000000 U M 
0006300 0031250000307440205420 0031427540000000004527 0002052743127546372041 0000000000000000000006 U < 
0006304 0041250000252543605200 0025254460000000001572 0000000000000025047472 0425302400000000000000 U U 
0006310 0031250000252543205200 0025254460000000010457 0425302402652325251520 0000000000000000000003 U U 

16:38:50 
15: 13: 59 

XPC 
Inl 
SCI 
JIT 
LIB 
NEI·l 
SYS 
ASC 

HISTORY 
-2 

2C 
2C 
U 

U 
I 

TOP 

< 
< 

TOP 
TOP 

TOP. 

< 
< 

U 
U 

fEI 
EEl 
FEE 
JRE 
CPU 
r.1CU 
NWT 
r.1EC 

PAGE 

" 
1 
1 

TRACE 
o 

TABLE 
X 

( 

U 

W ->>' 
TO:" 

JSH-SUSP 
TO: L 

TO:E 

B X 
ROY SUS E 

TO:v 

TO:~ 

X ->1 
TO:v 

REAOY ~ 
TO: E 

CEXP-SUSP 
G TO: v 

0 
\ 
0 

9 

-2 

-2 

9 C 
TO:T 

TO: T 

TO: T 
9 

Y5 
/I T 

TO: T 

TO:", 
JSH-SUSP 

TO: 1 

9 c 
% TO: T 

TO:T 
6&: 

I 
READY -;-

TO: 1 
W -2 J 

TO:E 
/EXP-SUSP 



SECTION 3 

COMMON SUBROUTINES 





STP COMMON ROUTINES 

1) Common routines are used by STP tasks to perform 
certain utility functions. 

2) The common routine can be considered to be logically 
part of the task which is executing it (it uses the task's 
A- and S-registers). 

3) Some common routines are re-entrant (more than one 
task may be executing the same common routine 
simultaneously). 

3.1 



RE-ENTRANCY CONSIDERATIONS 

1) The task's A- and S-registers are preserved
while executing co"mmon routine code (except 
output registers). 

2) Local storage is not used (provided by the caller). 

3) If global data must be changed, STP is LOCKED. 

/i, 

3.3 



STP COMMON ROUTINES 

MODULE ENTRY POINTS PURPOSE 

STPUTIL BTO, $OTB, $DTB, utility routines 
SFN,$NOCV 

STPDATS GETDAT, RELDAT DAT management 

JMEM JMEMAL,JMEMDE JT A memory pool 
management 

JTADNT GETDNT, GETLFT, 
RELDNT JT A DNT management 

FIXJXPR FIXJXO, FIXPRI job pri. calculations 

CRACKER IND JOB control stmt. 
cracker 

. 
GETPARM GETPARM parameter cracker 

CON FIG CON FIG configuration changes 

3.5 

--------------------------... --.~.--.. - ...•. 



STP COMMON ROUTINES 

MODULE ENTRY POINTS PURPOSE 

ERROR ERRORO, ERROR1 hang the system 

REQRPLY TSKREQ, PUTREQ., task-to-task 
GETREQ, 'PUTREPL Y, communications 
REPLIES, GETREPL Y 

STPMEM MEMAL, MEMDE, memory pool 
PMEMDE, SSLDE management 

CH'AINS CHAIN, CHAINF, chain management 
UNCHAIN, JCHAIN,'" 
JCHAINF, JUNCHAIN 

STPTIME RQST2, RT2JD,JD2RT date/time 
calculations 

QUEUES DQSD2, EQSD2 SDT queue 
management 

QMSG NXTMSG, FREEMSG, interactive station 
ENQMSG message management 

MSGQUE MSGQUE SCP/operator 
message processing 

3.7 



MEMORY POOLS 

• memory pools provide temporary data areas for tasks 

• memory is allocated from a pool when needed and_ 
returned when the task is finished with it 

• memory areas are variable-sized 

• currently, 4 memory pools are defined: ~ 3 IAI I, 13 

POOL 1 - miscellaneous 

POOL 2- task to task communication modules (CMODS) 

POOL 3 - TQM storage 

POOL 4 - OVM storage - EL,M.NATED IIV 1.13 

3.11 



POOL TABLE 

Header: 

o 8 16 24 32 40 48 56 63 
o 11//lllllllllill///IIIII//III////II/I/I//II/I/II////11////1 

Figure 1.PT-l. Pool Table (PT) header 

Field Description 

PTMAX o 58-63 Maximum valid memory pool number in 

system ~ ¥F:':Jv../,:d:J 

Entry: 

o 8 16 24 32 40 48 56 63 

1 ///11//////1//11 SIZE 1 BASE 

1111111111/11/11 1 

1/1/1111/1//1/111 1 

1///////////////1 1 

1111111111/111/1 1 

11/11111/11111/1 1 

/11111/111111111 1 

n VIIIIIIIIII/IIII 1 

Figure 1.PT-2. Pool Table (PT) 

Field DescriPtion 

PTSIZE 1- n 16-39 Size of the memory pool 

PTBASE 1- n 40-63 Base address of the memory pool 

3.13 



MEMORY POOL 
o 8 16 24 32 40 48 56 63 

o JIIIIIIIIIIIIIII ID I SIZE 

'sT 

ST 
I 

n ~IIIIIIIIIIIIIII ID I SIZE 

n+l JI II I II I I I I II I II ID I SIZE 

i'sT 

1
ST 

m ~IIIIIIIII/IIIII ID I SIZE 

Figure 1.MP-l. Memory Pool 

Field Word Bits Description 

MPST O,n , etc. 0 Status of the memory area: 

0 Available 
1 In use 

MPID O,n ,etc. 16-39 Memory pool identification: 

010101018 Pool 1 
OxOxOxOx8 Pool x. Current values 
are 1, 2, 3, or 7. 

MPSIZE O,n ,etc. 40-63 Size of the memory area 

3.15 



MEMAL - memory allocation 

• example: allocate memory from the TXTPOOL (POOL 1) 

A? 
AS 
A7 
AS 
R 

Sl NUMBER OF TEXT BLOCKS 
LE@DAT-L@OATPH LE!"K;TH IN AORDS OF EAa; TE'><T BLOCK 
A7*A6 
TXTPOOL 
M:::MAL 

A0 
ERR.1M 

AS 

ZMOVTXT2 - * 
ZlXTFST,0 A7 Sf1VE FWA OF TEXT BUXK IN POOL 

• inputs-

(A6) is pool number 

(A 7) is number of words to allocate 
--

• outputs-

(A6) is return status: 
o - OK 

1 - invalid pool number 
2 - invalid word count 
3 - memory not available 

(A7) is fwa of area allocateo if (A6) is 0 

• allocated memory is zeroed for the caller 

3.17 



MEMDE - memory deallocation 

• example: deallocate memory from TXTPOOL 

A7 
A6 
R 
A0 
ERR-=tN 

• inputs-

ZTXTFST,0 
l><TPOOL 
MEMDE 
f"-\:3 

REI'1OlJE THE Rt::.SERI..JATION ON THAT MEM)R'y 

(A6) is pool number 

(A 7) is fwa to deallocate 

• outputs-

(A6) is return status: 

0- OK 

1 - invalid fwa 
2 - area not allocated 
3 - invalid pool number 

(A7) is fwa of memory deallocated if (A6) is 0 

3.19 



ITEM CHAINING/UNCHAINING 

tt PROVIDES MEANS FOR TASKS TO LINK DATA 

e AMOUNT 'OF DATA TO LIN"K IS DEFINED BY THE TASKS 

4t ~~y BE USED TO LINK REGISTER DATA OR POOL DATA 

e DATA IS CONSIDERED AN ITEM 

3.21 



CHA IN5 
I \-leA l) T A- I L 1;- ~ H-A IJJ LOJJT~OL 

WORD ~--"-----L--\-J/ _--L-___ -J /,.s /_ 
, / I ' .I, 

L: "I 

FC)~WMt> BAC.KWA~'D 
LI/J~ LIN~ CHAIN ITEM 

PATA 

FcR~ARP SA'KWAR.'D 
L/IVI'. L..IIJK CHAIN ITEM 

DATA 

/ 

3.23 



4t CHAIN/CHAINF PLACE AN ITEM ON A CHAIN. CHAIN WILL PLACE 
AN ITEM ON THE END WHEREAS CHAINF WILL PLACE AN ITEM ON 
THE FRONT OF A CHAIN. CHAIN/CHAINF ARE CALLED VIA A 
RETURN JUMP WITH THE CALLER PROVIDING THE FOLLOWING: 

INPUT REGISTERS: (A6) = Address of chain control word 
(A7) = Address of the item to be chained 

OUTPUT REGISTERS: (A6) = Unchanged from input 
(A7) = Unchanged from input 

C~AIJ ~_ In (ft v,~ 

CH:Al~\~ -'"'/ltdc L',.'\l 

3.25 



'. 

e UNCHAIN REMOVES AN ITEM FROM ANYWHERE ON THE CHAIN. 
THE CALLER MUST UPDATE THE COUNT OF THE NUMBER OF ITEMS 
REMAINING ON THE CHAIN. UNCHAIN IS CALLED VIA A RETURN 
JUMP WITH THE CALLER PROVIDING THE FOLLO\'lING: - . 

. INPUT REGISTER: (AT) = Address of item to be unchained 

OUTPUT REGISTER: (A7) = Unchanged from input 

3.27 



EQS02 - enqueue SOT entry 

• re-entrant common routine 

• entry parameter -

86:. 1(EQSEQ, 15/-, 24/EQSQH, 24/EQSEA 

EQSEQ: 0 - FIFO enqueuing .-

1 - priority enqueuing 
Q 

EQS'0H: SOT queue header address, 

EQSEA: . SOT entry address 

• returns to (BO) plus 2 if no error, else to (BO) 

with (AO) error status 

• priority enqueuing: 

1. job class rank 

2. job priority 

3. time of job submission 

3.29 



OQS02 - dequeue SOT entry 

re-entrant common routine 

entry parameter -

S6: 1/0QSOQ, 15/-, 24/0QSQH, 24/0QSEA 

.OQSOQ: 0 - FIFO dequeuing 

1 - entry deq"ueuing 

DQSQH: SOT queue header address 

OQSEA: SOT entry address (for entry 
dequeuing) 

returns to (BO) plus 2 with (S6) SOT entry address if 
FIFO dequeuing 

error return to (BO) with (S6) error status 

3.31 



SOT queue manipulation 

• Example: Move SOT entry from INPUT queue 

to EXECUTE queue 
, . 

56 O!!INPUT 
57 RJSDT,0 
56 SS<DJ 24 
56 S3~S7 

58 S3!SB 
R D:1SD2 DEQUEUE SOT ENTR'-,.. 
R E~OR0 

56 Q·~EX(UTE 

57 RJSDT!,0 
56 S3<U"Z4 
56 55!S? 
56' SS!SB F'RIOR I TY EI'{QUEUE 
R EQSD2 ENOUEUE SnT ENTRY 
R E~OR0 

,"/ 

3.33 



';3i'~.chronous II::; 

CAL 3UFFERED 

I/O MACROS 

BUF IN BUFOUT BUFEOF 

BUF lliP BUFOUTP BUFEOD 

BUFCrlECK 

CFT SUFFEilED I/O 
STATEMENTS 

BUFFER IN 

BUFFER OUT 

CAL UNBLOCKED 

I/O MACROS 

READU 

WR ITEU 

Synchronous I/O 

CFT FORMATTED/ 
UNFORMATTE D STA TEMEN TS 

READ 

PR INT 

PUNCH 

wRITE CAL 3LOCKE:J 1/0 MACROS 

ilEAD "RITE WRITEF 

READP WRlTEP WR liED 

READC .R I TEC BKSP 

REAOCP IoIR !TECP BKSPF 

GETPOS 

SETPOS 

REW [NO 

---- ---- -- --- - - -- -- --- -- --- ---- ----- ------- ------

CAL BuFFERED 1/0 
INTERFACE 

SCBIO 

F$BIO 

, 
T 10 

$RW~ $ .... ~ $WEOF 

$RWDP $WWDP $IoIEOD 

SioiWDS $REwa 

" " lJ.brar, 

UNBLOCKED DATASETS 

$RLB 

$WLB 

TQM 

,/ 
PACKET DR I VER 

I I/O SUBSYSTEM J 

.. -

F$RDC 

F$WDC 

Ir 

CIO 

RDCS 

WDCS 

CIOS 

D~ 

l DISK DRIVER I 
'/ / If \ \ 

Di s k Contro 11 er Func t ions 

Overview of COS I/O 

3.35 

, " 
LOG; ::':'L ~ E COR D lIO 

SRIi~ $ ..... ~ S"EOF SGPi.iS 

$RIoiJP S"WDP $\OEOD sspus 
$RCriR S"CHR SI(EIoiO 

SRCHP SIoICHP SBK:';P 

$ .... D5 SBf ,PF 

:W ... i- C [0 

s,s~em 

calls 

L:SER 

(Z, SCP, dnd JSH) 

I 
I 
I 

-----~ 

S TP 

£,lEe 



._L/U U Vl:.f\ V { t. W 

DNT 

DS P 
FIRST 

,AJ 
o,",T 

LAST 

TASK 
D~\A 
AREA 

LOG\c.AL 
:1:./0 

I/O 
Bl\FFER 

TASK 

TIO 

CIO 

oqM 

DISK DRIVER 
P'\YSICAL 

X/O 
~ ___ ~ oR 

:coS D~\V£R 

DISK 

3.37 



TASK LOGICAL I/O (TIO) 

ALLOWS A SYSTEM PROGRAMMER TO DO LOGICAL I/O AT THE TASK 
LEVEL. 

TIO :{OUTINES ARE: 
$RWDP/$RWDR-READ WORDS PARTIAL/FULL RECORD 
$WHDP /$\~fi~DR-WR I TE \~ORDS PART IAL/FULL RECORD 

- $WEOF-WRITE END OF FILE 
$WEOD-WRITE END OF DATA 
$REWD-REWIND A DATASET 
$w\~DS-WRITE WORDS--UNUSED BIT COUNT 

4t TASKS 'CALL TID BY PLACING REQUIRED PARAMETERS IN 'A' 
REGISTERS AND EXECUTING A RETURN JUMP TO THE ROUTINE. 

3.39 



CIRCULAR I/O 

PERFORMS PHYSICAL I/O ON A DATASET 

ACCESSIBLE TO TASKS THROUGH TID AND DIRECT CALLS. 

CIO ROUTINES ARE: 

RDCS-READ CIRCULAR REQUEST 

WDCS-WRITE CIRCULAR REQUEST 

e TASKS CALL CIO BY PLACING REQUIRED PARAMETERS IN I A I 

REGISTERS AND EXECUTING A RETURN JUMP TO THE ROUTINE. 

CIO READS/WRITES 512 WORD BLOCKS. THE CALLER HAS THE 
RESPONSIBILITY OF MAINTAINING THE BUFFER IN/OUT POINTER 
IN THE DSP. AS SHOWN IN THE PREVIOUS $WWD FLOW DIAGRAM. 

THE CALLER SENSES COMPLETION OF PHYSICAL I/O BY CALLING 
GETREPLY. IF A REPLY IS FOUND THE CALLER SHD-ULD CALL ROUTINE 
REPCIO WITH S1 AND S2 INTACT FROM GETREPLY. 

3.41 



(A2)--f- Task's 

(A3) Data 
Area 

--'-~--,.--,..~~ 
\ 

$vJEOD /\ 
, ~, 

) 

IN~~) 

I/O BUFFER 

CMCC====~ 
for~ ___ __ 

___ _ .J>QM_ TASK I/O 

PHYSICAL I/O 

IIQ_logical write 
----------- ----

3.43 



OUT=F I RST-+ FIRST -+ 

LIMIT-+~----------------~ LIMIT-+~----------------~ 

A. Filling the buffer B. Emptying the buffer 

FIRST -+ 

IN -+ 

OUT-+ 

.... -, 
I 
I 

• processing 
flow 

I 
I ,_/ 

LIM IT-+-~ ......... ;;;;.......;;,;~----------:..., 

C. Concurrently filling 
and emptying the buffer 

3.45 







SECTION 4 

TASK TO TASK COMMUNICATIONS 





task A 

PUTREQ 

GET 
REPLY 

CMOD 

request 
reply 

task B 

GETREQ 

~~PUT 
REPLY 



TASK TO TASK COMMUNICATI'ON 

e THERE ARE 2 AREAS FOR INTERTASK CO~t ;UNICATION 

1. COMMUNICATION MODULE CHAIN CONTROL (CMCC). 
CONTIGUOUS AREA 
ENTRY FOR EACH POSSIBLE TASK COMBINATION 
ARRANGED IN TASK NUMBER SEQUENCE 
POINT TO THE COMMUNICATION MODULES (CMOD's) 

2 • COMMUNICATION MODULE (CMOD> --'> 10 ~t..1\ 

ALLOCATED AS NEEDED FROM A poot 
ALL TASK REQUESTS ARE THROUGH A CMOD. 
ALL TASK REPLIES ARE TH&OUGH A CMOD. 

2 WORDS FOR SYSTEM 'CONTROL 
2 WORDS AS TASK INPUT REGISTERS 
2 WORDS AS TASK OUTPUT REGISTERS 

4t TASKS PLACE REQUESTS IN THE INPUT WORDS OF A CMOD. 

4t TASKS RECEIVE REPLIES IN THE OUTPUT WORDS OF THEIR CMOD 

4t FORMAT OF A REQUEST IS DEFINED BY THE CALLED TASK 

4.3 



I 
I 
I 

TASK a 
~.; 

TASK 1 

~ 
1\ 
I \ 

1 
I 

TASK N 

COMMUNICATION MODULES 

CM)D If 1 
TASK 2 TO 1 

OIOD # 2 
TASK 2 TO 1 

COMMUNICATION MODULE CHAIN CONTROL 

.". 
. ./ HEADER 

/ 

\ 
\ 

\ I 

\ I 
\ 

TASK a TO 1 

TASK 1 TO 1 

TASK 2 TO 1 

TASK 3 TO 1 
TASK 4 TO 1 

TASK 5 TO 1 

TASK N TO 1 \~ 
'---~----'" 

.-
1-- CHAIN 

ITer.., 

1-0- INPUT 

- - OUTPUT 

--
- -

--
-...-----.-.. - - --- - --

ClOD N 

TASK 2 TO 1 

4.5 

('\' 

\ 
\ 

, . 



CMCC t\EA DE ~ 

Field 

CCTM 

CCTL 

o 8 16 24 32 40 48 56 

o I TM I TL I ;\lOT u.SE D 

Figure 1.CC-2. Chain Control Word header format 

0-7 

8-15 

Description 

Maximum number of items to be queued to a 
particular taskt 

Number of items queued to a particular taskt 

63 

CMCC.. C.HAIW COf.JTROL WORt) 

o 8 16 24 32 40 48 56 63 

o I QM I QL I HEAD TAIL 

Figure 1.CC-3. Chain Control Wo.rd entry format 

Field Bits Description 

CCQM 0-7 Maximum num,ber of items\ to be queued from one 
task to another" ~'fr\ i 

! 

CCQL 8-15 Number of items 
to anothel 

currently queued from one task 

CCHEAD 16-39 Address of first item on the chain 

CCTAIL 40-63 Address of last item on the chain 

4.7 



CMOD 
PODL 

- - --1 
I 

\~ 

lAJoRv I 
~--------------------------~ 

o J--CHAltJ lit"" Hf.ADER----,---
I 

,) 

I 

I SI LN~T+O 2-
--- --- REQUEST - - - - - i--

52 IF~~ IIV PLAT --to I 
~-------------------------~~ 

3 

Lf SI DtA\?~T~CJ 

S 
~-----f\EPLy------- ---

52.. OvtT P4T+1 

I POOL TRA ILE~ I L _________________ J 

4.9 



o 

o 

o 

o 

A TASK CALLS EXEC TO ACTIVATE ANOTHER TASK 

THE TASK SCHEDULER IN EXEC EXAMINES THE SYSTEM TASK TABLE TO 
DETERMINE THE HIGHEST PRIORITY TASK READY TO EXECUTE. 

THE RE-ENTRANT ROUTINES: 

PUTRE~ 

GETREGt ASYNCHRONOUS 
PUTREPLY 
GETREPLY 
TASKRE~ - SYNCHRONOUS 

ARE USED FOR INTERTASK COMMUNICATION 

THE REQUEST FOR INTERTASK COMMUNICATION IS PASSED IN 
REGISTERS Sl AND S2 

STV-0842 4.11 



Gt PUTREQ PLACES THE REQUEST IN THE INPUT REGISTERS OF 
A ~10D AND LINKS THE CMOD TO THE APPROPRIATE eMCC. 
PUTREQ IS CALLED VIA A RETURN JUMP WITH THE CALLER 
PROVIDING THE FOLLOWING: 

INPUT REGiSTERS: 

OUTPUT REGISTERS: 

(AI)· = IIThrow-away" indicator. If (AI) is positive, 
control is not returned to caller until request 
is queued. If (AI) is negative, control returns 
with no action taken if the request cannot be 
queued without suspending the caller. 

(A2) = Requested task's 10 
(51) = INPUT+Q 
(52) = INPUT+l 

None 

4.13 

} request 



PUTREQ 

ALLOCATES A C~10D 

PUTS REQUEST (Sl AND S2) IN CMOD 

LINKS CMOD TO CMCC 

INCREMENTS COUNTS IN HEADER 

MAKES AN EXECUTIVE REQUEST TO READY THE REQUESTED TASK 

4.15 



..I!'L.CC 
ct GETREQ SEARCHES FOR AN ACTIVE REQUEST FOR THE GAttER. 

GETREQ IS CALLED VIA A RETURN JUMP AND REPLIES WITH 
THE FOLLOWING: 

INPUT REGISTERS: None 

OUTPUT REGISTERS: (AD) = "Found" indicator. If (AO) = 0, no outstanding 
requests exist. If (AO) 1 0, a request is 
being returned. 

(A2) = 10 of task that generated the request. 

(51) = INPUT+O }·request 
(52) = INPUT+l 

4.17 



GETREQ 

SEARCHES EACH CMCC FOR A REQUEST 

SETS EXECUTING BIT IN CMOD 

GIVES THE REQUEST FROM THE CMOD TO THE TASK IN Sl AND S2 

4.19 



PUTREPLY 

PUTREPLY PLACES THE REPLY IN THE OUTPUT REGISTERS OF A CMOD. 
PUTREPLY IS CALLED VIA A RETURN JUMP WITH THE CALLER PROVIDING 
THE FOLLOWING: 

I ~IPUT REG I STERS: (A2) = ID OF TASK TO RECEIVE THE REPLY 

(Sl) = OUTPUT+O 
REPLY 

(S2) = OUTPUT+1 

OUTPUT REGISTERS: NONE 

STV-0842 4.20 



PUTREPLY 

THE REPLY GOES ON THE SAME CHAIN AS THE REQUEST 

PUTREPLY LOOKS FO~ THE FIRST AVAILABLE CMOD ON THE CHAIN 

THE REPLY (Sl AND S2) IS PUT INTO THE CMOD 

COUNTS ARE DECREMENTED 

AN EXEC REQUEST IS MADE TO READY THE TASK THAT IS TO RECEIVE 
THE REPLY 

4.21 



Gt GETREPLY SEARCHES FOR A REPLY TO THE CALLING TASK. 
GETREPLY ALSO RELEASES THE APPROPRIATE CMOD HHEN A 
REPLY IS FOUND. GETREPLY IS CALLED VIA A RETURN 
JUMP AND REPLIES WITH THE FOLLOWING: 

INPUT REGISTERS: 

OUTPUT REGISTERS: 

None 

(AO) = Find indicator. If (AO) = O~ no reply was 
located; if (AD) ~ 0, a reply is being returned 
to the caller. 

(A2) = 10 of replying task 

v(51) = OUTPUT+Q } Reply 
(52) = OUTPUT+l 

4.23 



GETREPLY 

THE REPLY FROM THE CMOD IS PLACED INTO Sl AND S2 

THE CMOD .IS UNCHAINED AND DEALLOCATED. 

4.25 



task A 

TSKREQ 

I 
! : 

.\';. 

I . 
I 

CMOD 

request 
reply 

( " \ .' 

~ .!,"~ ./ \:\.. 
. . \ 

task B 

GETREQ 

------...:::::::d PUT 
REPLY 



TSKREQ 

SYNCHRONOUS EQUIVALENT OF PUTREQ AND GETREPLY 

ALLOCATES A CMOD . 

PUTS Sl AND S2 INTO CMOD 

ACTIVATES REQUESTED TASK AND SELF SUSPENDS 

AWAKENED BY REPLYING ROUTINE 
-Pl/ffiji 
~J 
~ 

4.29 



4t TSKREQ QUEUES A REQUEST TO ANOTHER TASK. 

4t TSKREQ IS CALLED VIA A RETURN JUMP WITH THE CALLER 
PROVIDING THE FOLLOWING: 

INPUT REGISTERS: 

OUTPUT REGISTERS: 

(A2) = ID OF REQUESTED TASK 
(51) = INPUT+O 
(S2) = INPUT+l } REQUEST 

(51) = OUTPUT+O } 
(52) = OUTPUT+l . REPLY 

4t ONCE THE REQUEST HAS BEEN PROCESSED~ THE CALLER MAY 
EXAMINE ITS Sl~S2 REGISTERS FOR A REPLY. CONVENTIONALLY~ 
Sl=ZERO WHEN THERE IS NO ERROR) OTHERWISE Sl=ERR CODE. 
S2=THE CALLING TASKS INPUT+O REGISTER (Sl) INFORMATION. 

4.31 



REPLIES 

I .' A.lA·~" 
QUEUES A REPLY FOR WHICH NO REQUEST WAS MADE ~ 1u

;. 
, ,!. 

1<.1;/'. . 
'il ,~/ 

r~~~' 
i 

f" . ) t,. I 

USED BY DQM ONLY . 

ALLOCATES A CMOD 

SETS EXECUTING BIT SO IT IS NOT TAKEN AS A REQUEST 

PUTS REPLY ON BEGINNING OF CHAIN (CHAIN F) 

4.33 



SECTION 5 

SYSTEM TASK PROCESSOR - TASKS 





, 

r 
SYSTEM TASKS 

A .ystem taak Is a COS ,aystem program which perform. one or more 

specific function. 

T •• k., hay. the following characterlatlcs: 

- Taak. are memory-r.sldentfollowlng EXEC 

- Each taak la • s.parate program module and ha. It'. own 

XP In EXEC 

- .SA la ~h. end of EXEC, LA Is the end of machln.'. memory 

- Taake op~rate In us.r mode 

77 
. - Each task ha •• priority (0-" octal) 

- Each task h~a a unique ID (0- _ ~, 
· 13 d;;; . . l, 

I 
5.1 



1.13 STP TASK IDs and Priorities - (defined in startup) 

SCP 
EXP 
POM 
DEC 
DQM 
MSG 
MEP 
SPM 
JSH 
JCM 
TQM· 
STG 
FVD 

I TASK 
I TASK 
I TASK 
I TASK 
I TASK 
I TASK 
I TASK 
I TASK 
I TASK 
I TASK 
I TASK 
I TASK 
I TASK 

ID=0'01,PRI=0'10,PREG=SCPINIT 
ID=D ' 02,PRI=O'12,PREG=EPTK 
IO=D ' 03,PRI=0'14,PREG=PDMGR 
IO=D ' 04,PRI=0'20,PREG=DEC 
I D= 0 1 05 , P R I = 0 1 O_Z, PRE G= 0 I S 
10=0 1 06 ,PRI=O 'r04,PREG=LOG INIT 
IO=D ' 07,PR1=0'105,PREG=MEP 
10=0 1 08 ,PRI=O '\.24,PREG=SPM 
I D=D 109 ,PRI=O 'i13 ,PREG=JSH 
10=0 1 10 ,PRI=0'11 ,PREG=JCM 
10=0 1 11,PRI=O'03,PREG=TQM 
10=0 1 12,PR1=O'06,PREG=STG 
10=01 13,PRI=0'15,PREG=FVD 

\ 
SiARTIA.f" :1:1>:: 0 ) P~I ~ 0 77 

! 



r 

I 

TASK STATES 

SUSPENDED - not ready to execute 

READY - ready to execute 

w.ltll?g - waiting for CPU 

running - actually executing 

Each taak'a atatela known to EXEC, but not to Individual taaka 

A task Is READIED (moved from SUSPENDED to READY state) by EXEC. 

This can occur 2 ways: 

"1) EXE"C .~eadl.8 tasks based on certain events 
'-

2) One ta.k can requeat that another taak be readied 

A taak I. auapended by EXEC request. One task may not suspend another 

task, only It.elf. 

5.5 



r 

I 

TASK PREEMPTION 

Taak. are preemptable (tilL! 

Task preemption can occur anytime EXEC execute. 

Exceptlona: 

A laak may become temporarily non-preemptab'. 

Ta.k break pointing 

5.7 



J 

, 

TASK CREATION 

A taak may create another task with an EXEC request 

The STARTUP taak I. responsible for creating the other system tasks 

The created task I. readied by EXEC and forced to execute 

regard Ie •• ·of relative taak priorities. This allows the taak to perform 

Ii·. Initialization. 

5.9 

• 





SECTION 6 

STATION CALL PROCESSOR (SCP) 

STAGER (STG) 

--------------------- --





GENERAL INTERFACE PROTOCOL 

4D EACH MESSAGE IS HEADED BY A LINK CONTROL PACKAGE 

tt SUBSEGMENT SIZE VARIES WITH FRONT-END 

TRANSMISSIONl LCP 

TRANSMISSION2 SUBSEGMENTl 

TRANSMISSION3 SUBSEGMENT2 
MESSAGE 

TRANSMISSION4 SUBSEGMENT3 SEG~lEr!T 

· . 
• 

TRANSMISSIONN SUBSEGMENTN_l 

• 
• 
• 

TRANSMISSION 1 L T P 1- --OPTIONAL 

6.3 



HYPERCHANNEL PROTOCOL 

TRANSMISSION 1 

TRANSMISSION2 

o LTP IS NOT SUPPORTED 

LI}JI;;; 
LCPE " 

SEGMENT 

o ONLY 1 SUBSEGMENT PER SEGMENT 

STV-0842 6.4 

MESSAGE 



LINK CONTROL PACKAGE 

EACH LCP CONSISTS OF SIX 54-BIT HORDS 

LCP CONTAINS: 

o 

SOURCE MAINFRAME ID (SID) 
DESTINATION MAINFRAME ID (DID) 
NO. OF SUBSEG~ENTS (NSSG) 
MESSAGE NUMBER (MN) 
MESSAGE CODE (MC) 
MESSAGE SUB CODE (MSC) 
STREAM NO. (STN) 
SEGMENT NUMBER (SGN) 
SEGMENT LENGTH (SGBC) 
STREAM CONTROL BYTES (ISCB, OSCB) 

o 15 32 40 

SID NSSG 
56 63 

MSC 
r---~~----~--------~----~----~----~----~ 

1~~~~~~~~~~~~~~~~~~~~~~~ 
2 
~~~~~~~~~~~~~~~~~~~~~~~~ 

3~ __ ~ ____ ~ ____ -+ ____ ~ ____ ~ ____ +-____ ~ ____ 1

4~~~~~~~~~~~~~~~~~~~~~~~~
5 __ ~ __ .. __ ~~~~~~~~~~~~~~~~~~~

6.5

I

Table 4-1. Message codes

Sender
Code Function Segment Stream Synchronous

Station COS Required Request

001 Logon X X
003 Logoff X
004 Start X X
005 Restart X
006 Dataset header X X X X

Table 4-1. Message codes (continued)

Sender
Code Function Segment Stream Synchronous

Station COS Required Request

007 Dataset segment X X X X

01.1 Control X X
012 Message error X X
013 Dataset transfer request X X
014 Da~aset transfer reply X X

015 Enter logfile request xt X X
016 Enter logfile reply X X
021 Job status request xt X X
022 System status request xt X X
023 Dataset status requestSS xt X X
024 Link status request xt X X
025 Mass storage status request xt X X
026 Operator function request xt X X
027 Debug function request xt X X
031 Job status reply X X
032 System status reply X X
033 Dataset status replyS§ X X
034 Link status reply X X

035 Mass storage status reply X X
036 Operator function reply X X
037 Debug function reply X X
040 Diagnostic echo request xt X
041 Diagnostic echo reply X X

042 Interactive request xt X X
043 Interactive reply X X

044 Statclass request xt X X
045 Statclass reply X X
046 Station message tt X X
047 Station reply xt X
050 Tape configuration request xt X X
051 Tape configuration reply X X

052 Tape job status request xt X X
053 Tape job status reply X x
054 Configure request xt X X
055 Configure reply X X

056 Dataset status request xt X X
(ownership)§~

057 Dataset status reply X X
(ownership)§§

060 Job information request xt X X
061 Job information reply X X
062 Stream status request xS X X
063 Stream status reply X X
064 Generic Resource xt X

Status Request
065 Generic Resource X X

Status Reply
070-
077 Reserved for site use ttt

t Optional; the front-end station is not required to send.
tt COS does not send if the front-end station logged on with message

receive disabled (Logon field MRE=O) •
ttt Message codes 070-077 are reserved for site use, and are maintained

exclusively by the site. cos prevents cos products from using these
codes, but is otherwise unaffected by them.

I § Reserved for CRI
§§ Codes 056 and 057 replace codes 023 and 033 for implementation of

the security features introduced in cos 1.12. Codes 023 and 033 are
still supported. b~ b

STREAM~ .

A STREAM \$ 1\ LL THE MES5~G-E~ R£ '-At lIVe

TO A '"fA RT (C.L1 LA R DATA SET

8 I NPUT AND 8 OUTPUT STREAMS -- M A X 1 M IA IVl

ALTHOUGH EACH MESSAGE IS ASSIGNED TO ONLY ONE STREAM)
THE LCP MUST CARRY STREAM CONTROL BYTES FOR ALL 16 STREAMS.

(/ J i L/"· .

STR£AM C.OtJTROL B YT£ 5

Octal Mnemonic Request/Response Sender Receiver Code

00 IDL Idle x x

01 RTS Request to send x

02 PTR Preparing to receive x

03 SND Sending x

04 ReV Receiving x

05 SUS Suspend x

06 END End dataset x

07 SVG Saving dataset x

10 SVD Dataset saved x

11 PPN Postpone x x

12 CAN Cancel x x

13 MCl Master clear x x

6.9

I
Z
L&J
(J')

CD
(.)
(J')

a::
L&J
o
Z
L&J
(J')

RECEIVER sea RESPONSE

IOL PTR RCV SUS SVG SVD PPN

IOL N

RTS N e e A

SND N N A

END N e A

.~

PPN e ,-

CAN C

N = Normal receiver seB response

C = Normal receiver sea response which requires
change in sender SeB

A = Abnormal receiver seB response

I
Z
UJ
(J')

ttl
(.)
(J')

a::
LoU
>
LU
(.)
L&J
0:::

SENDER SCB RESPONSE •

IOL RTS SND END PPN

IOL N c

PTR N

ReV N e A

sus N e A

SVG N

SVD C

PPN C

CAN C

N c Normal sender SCB response

C c Normal sender SCB response which
requires change in receiver seB

A = Abnormal sender SeB response

CAN

A

A
'}

CAN

I

A

A

6.11

BASIC STREAM FLOW

e FRONT-END IS LOGGED ON

tt COMMUNICATIONS IN AN IDLE STATE

4t FRONT-END SENDS RTS(Ol) TO THE CRAY-l

4t CRAY-l SENDS RCV (04) TO THE FRONT END. - .

4t FRONT-END SENDS SND (03) TO THE CRAY-I.ALONG WITH
THE JOB DATASET

4t CRAY-l SENDS RCV (04) TO THE FRONT-END WHILE DECODING.
THE MESSAGE AND SAVING THE JOB DATASET

4t FRONT-END SENDS END (06) TO THE CRAY-I UNTIL CRAY-l
HAS SAVED THE DATASET.

e CRAY-l SENDS SVD (10) TO THE FRONT-END ONCE DATASET
HAS BEEN SAVED.

4t FRONT-END AND CRAY-l THEN KEEP COMMUNICATIONS OPEN
BY ALTERNATELY SENDING AND RECEIVING IDL(OO).

6.13

CRAY
1\" \

I FRONT END

OOIOl --.-~

OOIDl ~--.

OOIDl

01RTS -~~

6--+--- PPM 11 02PTR

o 4RCVt
~O 5 susf ~--t--

---t~ }CAN1 2
PPN11

03SND

o 6END ----.~_~-----------._.
. SVD f,10

11 PPN 1 ~-I--
CAN

07SVG

----.) SENDER

1 3 \' 8 1 ~, (R E eEl 'I E R
A ~.G.J.l. SCB6' I S A lEGAL REQUEST OR RESPONSE AT ANY TIME. NOTE:
THE/ONLY lEGAL REPLY TO Mel IS IDLe 6.15

MA~~~ STREAM CONTROL BYTE FLOW

INTERACTIVE MESSAGE

LCP

Segment ••••

Message betwe~n
COS and front-end
station

Terminal
message

Terminal
. message

Segment ~"'i th
two ter:ninal
:nessages

5.25

Header

'rex t

Header and taxt
in one tar:::ti~a!.

message

o

o

o

LINK TABLES

LINK CONFIGURATION TABLE - LCT

DEFINES THE CONFIGURATION OF EACH PHYSICAL CHANNEL
PAIR USED FOR FRONT END COMMUNICATION

LINK INTERFACE TABLE - LIT

ONE ENTRY FOR EACH PHYSICAL CHANNEL
I",PlAT

HOLDS LINK CONTROL PACKAGE FOR PHYSICAL CHANNEL

POINTS TO SEGMENT BUFFERS

LINK INTERFACE EXTENSION TABLE - LXT

ONE ENTRY FOR EACH LOGICAL ID

HOLDS LINK CONTROL PACKAGE FOR THE LOGICAL ID

CONTAINS STAGER STREAM TABLE (SST) ENTRle.S

6.17

a

.V-

DISK

DISK
BUFFER

EXECUTIVE

STP

i"'/
SST

~ V7

SEGMENT
BUFFER
""'\~

SCP MEMORY POOL ~

6.11

-

J"""" J

FED

FRONl
END

o

o

o

SYSTEM DATASET TABLE - SDT

CONTAINS INFORMATION ON ALL DATASETS THAT ARE SENT BACK AND
FORTH FROM THE FRONT END

SEVEN QUEUES

AN ENTRY ON A QUEUE REPRESENTS ONE DATASET

snT QUEUES

o

o

o

o

o

o

o

AVAILABLE QUEUE - CONTAINS AVAILABLE MEMORY FOR ALL SnT
QUEUES

INPUT QUEUE - JOBS WAITING TO BE I~ITIATED
I C to.'>,) .» I -1 . J i

., ;Ji··· \ '\"V' "c, "n ' Q-U0j.

EXECUTE QUEUE - JOBS ALREADY INITIATED

OUTPUT QUEUE - DATASETS WAITING TO BE SENT TO FRONT END

SENDING QUEUE - DATASETS IN PROCESS OF BEING SENT

RECEIVING QUEUE - DATASETS IN PROCESS OF BEING RECEIVED

REQUEST QUEUE - FOR DATASET ACQUIRE REQUEST

6.21

via F'UTl~EQ:

INTER-TASI< CAL.LS
SCP CI~LLS

1)
2)

!I(»: »:

SCP/ ans t .. ask

SCP/D(~r1

WT"i tolE' Ret..' d.::Jt.,::I!::.~~t.·::J t ... c:a Ina E·'::) st.en".;:]!.::;,;'!!
read SND dat.a·::;·Ed:.r:; f'r'Dn, 1"112-'::;~; ~:::tD''''a:::te

:40;{»: SCF' doe'::; noi:. UE·,= CIO t"c"" DOi"i +.. r' ·:"11"1"::) f12r' "'I::!(:~!UE"::; t:,~.;.) :~~Oi;
1£....1-\) ," f l\,i ,)

DEf~LLOCI!'-l TE :

ALLOCATE:

.via RTSI< t

1) cancel SND Dr ReV datasets
2) dE'.:lllclI:.!c:;i:,E· ,job input. r::i.::Jta~: . .:~t

- .job i:'f~rITJ:i.n,:3t.iDC'

- OF-~2r' at·Of' I{:ILL
3) idle' activl~ LXT entr"d

1)

- T"ele~se all ReV dstsset SF-ace

ir,t.er'.::H::·t .. l.VE' job input, d.::lt..:3~;:.I~t.

- allocate s dumffi~ dataset

SCP/.JSH

1) not.i fad .JSH i:.hat. 8 n~2l,J job in on input. Q

Z) chanse PRl o~ executins Jab
3) r'ewT·i t€~ CSO r.:iat.a~:.~t. whE'n .job cld!::.~;, i=:. 'l.I_II·nE·.j ON/DFF
.. ,.) a 1 t.l::! r' nUlnb €~l' at' JX T "::; a v a :i. 1 i:::j',) l,~ wit. h I...T l'fI T

1) Job debus~ins from operator cor~ole
2) or-e'" a "1:. 0 ... · cont.l' () 1 (DI:;:DP, ~CIL.L, F~ESUI1E, e'!;'c of :.

3) int.E!l".3C"i~i ve ,job C''::Jnt,r'ol
_. at:t..e'nt.i(:Jf'I
-- .~bor'+"

4) AC(~UIF:E!' DISI-'OSE f·c::ilur'I::~=. (abor't .jc.i.t;.

6.22

via TS~(REQ t

INTER-TASK CALLS
SCP Ct~LLS

:I(:I(*

SCF'/.JCN

1) 2:-::is. i sn -jc)b to c:: c 1 m:-::.E-
- Job ir~ut dataset has "arrived

2) reass.isn Job clas.s; operato~ ch~nged •••
- 'fr' a r.-i:.--er-"j ID a TID (ENTER l:Jr ROUTE c-Qmlll(F.:nd)
- priorit~, time limit (ENTER command)

3) assiSn class to a Job
- ENTER CLASS command

1) .. 'ee-uf'd I:JF"EH'.:d:,or' -t'::ll:'e-ins (~.·::J!:::f:.E'nl a d I_I~:"I::n' lO!::;-;;j)

Z) e.,.-r'(:n"' ITII:?~:.·::;a~:.t(~ t":JT' D:IBF'OSE disk r-E'ad f'.::J:i.l,-,'{"·e
3) lo~ datdset transmission and rec~tion messa~es

SCP/PD~1

via F'UTI~EC~ t

1) see i~ dataset to ACQUIR~ is on CRAY
2) C'PE·'("'a·t,.()'" D .. ~TI~~:iET Cc:rfhll'Iand ;::.r()c·.::-!~;~-:;:i_n~

3) save sPooled inp~~ datasets
4) delete sPooled Q~~put datasets

:::iCP/T(~M

6.23

SECTION 7

DISK QUEUE MANAGER (DQM)

,--------------------- --~-------------,.-

DD-19, DD-29 CISKS

1 SECTOR = 512 WORDS

1 TRACK = 18 SECTORS

1 CYLINDER = 10 TRACKS

1 DD-19 = 411 CYLINDERS

1 DD-29 = 823 CYLINDERS

7.3

o

o

o

DATASET ALLOCATION

ALLOCATION MODES

- PRE-ALLOCATION
- DYNAMIC ALLOCATION

ALLOCATION UNITS (ALLOCATION STYLE) .

-DISK SPACE IS ALLOCATED BY TRACK

DEVICE ALLOCATION

- IF SPECIFIED BY REQUEST, THE. LOGICAL DEVICE NAME FROM
THE DNT IS USED

- OTHERWISE IT ROTATES AMONG THE CONTROLLERS AND DISKS
AS SPEC I F I ED BY THE ORDER OF THE EQU I P~lENT TABLE (EQT)

STV-0842 7.5

DISK QUEUE MANAGER (DQM)

tt MANAGES ALLOCATION/DEALLOCATION OF MASS STORAGE (DISKS)

4t MANAGES r1ASS STORAGE REQUEST QUEUES

4t MANAGES MASS STORAGE CHANNELS) CONTROLLERS AND DISK UNITS.

DQM REQUES'S
-

• PRE-ALLOCA1E DISK SPACE

• l¥~ElAE. I./O REtVL(£5T.5

• DE-AlLf}CATE DISI< 5 PACE

7.1

o

o

o

DEVICE RESERVATION TABLE - DRT

\) -,,)(

ONE DRT FOR EACH DEVICE (DISK, SSD, BMR)

CONTAINS A BIT MAP INDICATING WHICH TRACKS ARE ALLOCATED

BIT POSITIONS IN THE DRT CORRESPOND TO THE ·ALLOCATION INDEX
(LOG I CAL TRA,CK A~DRESS) ,\

\, ,t\, \\\ 'I, l \" ,

STV-0842 7.7

DAT - Dataset Allocation Table

* * *

A Dataset Allocation Table defines the mass storage logical
location of a dataset.

DAT format:

DAT entry header

DAT entry

The OAT entry header contains general information about the
dataset, such as dataset size and the DSC entry pointer. The DAT
entry is divided into partitions. Each DAT partition describes a
portion of the dataset for a single logical device. That is, if
a dataset is spread over two logical devices, it has two DAT
partitions.

I A.

fro J -j\.

7.9

OAT - Dataset Allocation Table

* * *

OAT partition format:

OAT entry header

OAT partition 1 header

OAT partition 1 entry

OAT partition 2 header

OAT partition 2 entry

parti tion ~.

partition 2

The OAT partition headers contain general information concerning
the partitions, such as the logical device name. The partition
entries are a list of logical track addresses referred to as
allocation indicies (Als). Each AI is a bit index into the oisk
Reservation Table (ORT).

7.10

DAT - Dataset Allocation Table

* * *

OAT partition format:

DAT partition header

---~;~--T---~;;---l---~;;---T--~;~---
AI5 •••

partition

A DAT is a segmented table. It actually consists of one or more
fixed-size DAT pages, which are not necessarily contiguous in
memory. Each OAT page is 16 words long. The first word of each
page is the DAT page header. The remaining 15 words contain the
OAT itself. OAT pages are numbered consecutively from 1, and
each OAT page header contains a pointer to the next page.

7.11

DAT - Dataset Allocation Table

* * *

OAT page format:

DAT page 1 header

DAT

--------------~------------------------
DAT page 2 header

OAT (cont'd)

OAT page 3 header

DAT (cont'd)

(unused)

7.12

DAT - Dataset Allocation Table

* * *

DAT pages are allocated from the STP DAT area for' system datasets
(user dataset DATs are allocated from the dynamic portion of the
job's JTA). The STP OAT area consists of a OAT page space and a
space header.

- I

,t \

7.13

il

'~k, t

I /

DAT - Dataset Allocation Table

* * *

STP DAT area format:

DAT space header

OAT page space

The OAT space header contains a counter
pages available for allocation and a
currently allocated OAT pages.

7.15

for the number of OAT
bit map for flagging

OCT

HEADER

1 entry/disk
channel

DSP

,
t, .t:

"'."""

I'

,tl

--,-,-"I' .. -1\:

DQ~l TABLE LHJKAGE

EQT ORT

HEADER

1 entry/device 1 entry/device

--->1 DNT -L~
.--__ ~--: BUF \ - ~ [:]

7.16

OCT - points to current active EQT entry for each channel.

EQT - contains current request from request queue. Has a chain control
word for the request chain. Also points to the ORT entry for the
device.

RQT - request queue. Entries are a doubly linked list. Points to the ONT
for the dataset.

7.17

A DQM TRANSFER REQUEST

;~ ***** **:iol;**** +:*~~:~**:++***********:'+E~'!E"ft+ **~n.:**~.*¥******,t ~*****ot.:+; ***
** * ._--._-------------------* ~;tJBROUTn4E ROLLJI)B -, ---:,

* * * P;JRPOSE:

* * * * * E '-rrF:~Y:

* * * * * * EXIT:

* *

TO MAKE '=t ~:EQUEST or THE DISK OU:::UE f"lAtoolA:;ER, EITHER TO C:)PY
~ JOB OUT ONTO ITS ROU_OJT DATA'3~T OR TO READ TH::: JOB'S IMfiG
BACK IHTO MEMORY.

,~4 = J><T '-EN1 RY f;ODF.:ESS.
o~5 = JTA ADDRESS.
DNP (PRO:E~;Sn~G OIRECTIO'4 IN TH[ROLLFILt:' S DNT) IS ALRE"~DY

SLT -- TO 0 IF ROLLING IN, OR TO 1 IF ROLL 1:'-1(; OUT °

I/O IS r'~ F'ROGREo:;S.

* REGISTERS: * (AI21-A2) 1 (fl6'-A'?), (50-52), (56--S?) ARE D:::5TROYED °

** **;K+ ******:¥:* ******¥f: +:*+~::,.olE:~o*******t:* ***************-* ******** ***~i**~* ***
ROLL JOB

A7
A6
5.1
PUT,Sl
52
52
PUT,S2
Sl
51
S2
51
Al
A2

J

* 1··J ~.J>-~DNT 0' t'i4
I,.t.j~IJXCJS, A4
f1'3
S3&S7, D~~B-'F , A7

S2)D'9
S.3&:=;7, nf-lt'l ElK, A7
ti4
S1<D'40
A7
51 !S2
J o3HID,0
D-JMID,0
T:~ANsrLR

Pdf"'EQ

SE T UP THf:~ Dt'IT:
BUFFER t'lODRESS .ITA ADD~ESS,
1'lur'1BER 0;- BLOO<S = JOB 512[/512 °

SUBMIT THE I/O REQ;JEST:
LEFT-ADJ'-'ST THE TXT ADDR~SS.

n~SERT THE DNT ADDRESS.

LET PUTR[Q RETURN TO THE C~LLER.

7.19

DATASET

o

1

2

3

4

5

I

flags

NBK

6

7

8

~

9

10

11

12

13

!
i ,
I

~

i

:
:
! r

Field

FLAGS:

DNP

DNDAT

DNNBK

DNSBK

DNBUF

Word

1

1

2

2

2

I

I

NAME

I DAT

SBK I BUF

"-

Bits Description

0-15

3 Type of processing; used by Disk
Queue Manager:

0 Read
1 Write

40-63 Dataset allocation table address:

=0 No DAT assigned
>0 DAT in STP
<0 DAT in job's JTA

0-15 " Number of blocks to be read or
written; number of words in last block
to be written if (DNEND)=l.

16-39 Starting block number

40-63 I/O buffer address

7.20

EQUIPMENT TABLE - EQT

- ONE ENTRY FOR EACH DISK

- CONTAINS STATUS AND ERR.OR INFORr1ATIO~l

- POINTS TO DRT AND liD REUQEST QUEUE

REQUEST TABLE - ROT

- ONE QUEUE FOR EACH DISK
(QUEUE HEADER IS IN EQT ENTRY)

- CONTAINS PHYSICAL liD REQUESTS

- USER REQUESTS PLACED ON END OF QUEUE

- SYSTEM REQUESTS PLACED SECOND ON QUEUE
-.'

FOR 1/0 REQUEST FLOW SEE SM-0040

7.21

c:
RESEARCH J INC.

TECHNICAL TRAINING & DEVELOPMENT

Cray Research, Inc.
Software Training
2520 Pilot Knob Road, Suite 300
Mendota Heights, MN 55120

Cray Research, Inc.
Hardware Training
21 East Grand Avenue
Chippewa Falls, WI 54729

