CONCEPTS & FACILITIES

Copyright 1984, by CRAY RESEARCH, INC. This item and information-
contained therein is proprietary to CRAY RESEARCH, INC. Thissitem and
the information contained shall be kept confidential and may not be
reproduced, modified, disclosed, or transferred, except with the:prior+
written consent of CRAY RESEARCH, INC. This item and all copies;, if?

any, are subject to return to CRAY RESEARCH, INC.

P

TABLE OF CONTENTS

Introduction, ji
COS Purpose and Features. 1.1
Hardware Configurations and Characteristics 2.1
Software Components0 uueu.. 3.1
Memory Layout & & . . . i e e e e e e e e e 4.1
Mass Storage Organization 5.1
Job Processing Overview,6.1
Memory Management . e e e e e e e e e e e e, 4. o 7.1
Tasks and Multitasking Concepts 8.1
Exchange Mechanism. 9.1
EXEC Purpose and Function 10.1
‘ STP Purpose and Function. 11.1
gf?System Tasks: Purpose and Function. 12.1
Cngﬁurpose\ggg Function.o 13.1
‘Job Processing gxecution Sequence 14.1

INTRODUCTION

AUDIENCE
The Cray Operating System course is intended to provide technical

knowledge and skills to Cray Site Analysts and other software personnel
who support or maintain COS.

PREREQUISITES

To ensure maximum benefit from this course, the participant should have
previously attended the Cray JCL course and the CAL course, or have
comparable work experience.

It should be understood that a lack of this requisite knowledge or
experience will seriously impair the participant's progress.

ii

COURSE STRUCTURE

The Cray Operating System course is organized into two major parts:

COS I

Concepts
&
Facilities.

Internals.

cos II

Installation
&
Operations.

SKILLS ADDRESSED IN THE COS I COURSE

This two week course is intended for Cray and Customer analysts who are responsible
for maintaining, debugging and modifying COS. It presents an overview of the CRI
software environment and takes the student through the internal interactions of COS.
Dumps are presented to reinforce fundamental COS interactions and to build trouble
shooting skills. Some basic operational skills are also covered. With the skills
developed in this course, the student is ready to move into the COS II course to
develop operational and site management skills.

THESE SKILLS ARE PREREQUISITES FOR THE COS IT COURSE.

CoS I

Skills
At the end of the course the learner is able to:

List the general purpose of the Cray 5. 3/
Operating System and its primary E [/
functions. X H

Identify CRI software functions, ‘ %Q;
characteristics, and components. ~

Describe CRI software external L
interactions. % X3

Describe the CRI software life cycle. i%b}

Identify the CRI software manuals and i /i
the function of each. | 2

Describe COS internal interaction. &/

Describe COS external to internal %&1
interaction. i

Read and interpret COS code. % %Q&

Evaluate system performance and iy,
reliability.

Print formatted and raw dumps.

Analyie COS dumps to isolate system %éJ
malfunctions. '

Given a problem, state 'the recommended g/i
procedure for reporting and recovering 21 ‘
from the problem. g !

Competency Levels 0 {1 1}2 3 4 516 7

EVALUATION METHOD

Evaluation of your progress in gaining expertise in these skills is
accomplished by assigning a competency level to each skill.

Level

0 No knowledge and no experience.

1 Has some knowledge and 1imited experience with this skill,
but not sufficient to contribute in a work environment.

2 Can perform some parts of this skill satisfactorily but
requires instruction and supervision to perform the
entire skill.

3 Can perform some parts of this skill satisfactorily but
requires periodic supervision and/or assistance.

4 Can perform this skill satisfactorily without assistance
and/or supervision.

5 Can perform this skill with proficiency in speed and
quality without supervision or assistance.

6 Can perform this skill with initiative and adaptability .
to special situations without supervision or assistance.

7 Can perform this skill and can lead others in performing

it.

Successfully completing this course should give you a competency level
of at least 3 for most skills. Experience on the job will continue to
increase your competency level. S

Y

LEARNING LOG DESCRIPTION

Progress in your level of competency can be graphed on a learning log.

This is an example of one course participant's learning log.

On the following page is an empty graph for you to use to indicate your current
competency level and your continuing progress.

At the completion of the course this learning log on which you've evaluated yourself
will be annotated by the course instructor and a copy sent to your supervisor.

LEARNING LOG

coS 1 |
Skills |
At the end of the course the learner is able to:
List the general purpose of the Cray é é/ !
Operating System and its primary /ﬁ —*\/Is !
functions. E
Identify CRI software functions, —d
characteristics, and components. éﬁ 915
Describe CRI software external é/ &/
interactions. " I
Describe the CRI software life cycle. 4’“ +6{s
Identify the CRI software manuals and S/ ol &
the function of each. " 14
Describe COS internal interaction. Y | —+—1%¢
Describe COS external to internal & NE%
interaction. " 20
. | &
Read and interpret COS code. §4, é;
Evaluate system performance and € 4
relijability. /a /£|
Print formatted and raw dumps. éﬂ, —b ég‘
Analyze COS dumps to isolate system ¢ 6
malfunctions. i | — /22.
Given a problem, state the recommended £ A»éy
procedure for reporting and recovering /1, 13
from the problem.
No Basis
* For
Competency Levels 01112 3] 4 Judgement

1)
2)
3)
4)
5)
6)
7)
8)
9)
10)
11)
12)
13)
14)

SR-0000
SR-0009
SR-0011
SR-0013
SR-0014
SM-0036
SR-0038
SR-0039
SM-0044
$6-0055
$6-0056
SR-0060
SR-0068
SR-0073

I

oo bt

REFERENCE MANUALS AVAILABLE IN
TERMINAL ROOMS A AND B

CAL Reference Manual

CFT Reference Manual

COS Reference Manual

UPDATE Reference Manual
Library Reference Manual
APML Reference Manual

MVS Station Reference Manual
COS Message Manual

COS Operational Aids Reference Manual
TEDI User's Guide

SID User's Guide

PASCAL Reference Manual

VM Station Reference Manual

CSIM Reference Manual
Stily

If you have any suggestions for additions to this collection, please
mention them to your instructor.

LISTINGS BIN

A bin for printer listings is located in Terminal Room B.

If you remove 1istings from our local printers (TNGA or TNG@)
which are not yours, please be sure to put them into the appropriate
place in the bin.

Listings printed in the Mendota Heights building will be brought

over by van on a daily basis and distributed to the bin.

from the bin.

Every Friday, 1istings more than one week old will be discarded

-de
pry
pur

C0oS I DAILY SCHEDULE
Monday Tuesday Wednesday Thursday Friday
COS OVERYIEW
Task to Task DQM, DEC, FVD
Communication
FIELD SUPPORT EXEC '
COS OVERVIEW
C0S Internals ScP, STG
' €0s - I0S
Interaction
EXEC
STP
Common Routines
Monday Tuesday Wednesday Thursday Friday
Dump Analysis
PDM EXP, CSP, USER TQM
JSH Startup Dump. Analysis Review
Evaluation
Dump Analysis
JCM

MEP, MSG, SPM

SKILLS ADDRESSED IN THE COS II COURSE

This one week course is intended for Cray and Customer analysts who are responsible
for generating, operating and generally managing a COS site. Topics include: System
generation; installation and operation; debugging; permanent file maintenance; and
defining the system operating environment.

THESE SKILLS ARE PREREQUISITES FOR THE IOS COURSE.

COS II

Skills
At the end of the course the learner is able to:

Startup/shutdown/dump a CRI system.

Create and edit parameter files.

Communicate with COS using I0S
station commands. .

Run an interactive COS job using
the I0S.

Select installation parameters.

Build a COS system.

Use CSIM to test a COS system.

Install a COS system.

Establish system security.

Establish system accounting.

Establish a job class structure.

Establish permanent dataset
privacy.

Build the system directory.

Use permanent file procedures to
maintain the permanent file base.

Use the SCP debug facility to aid
in isolating and validating a
system malfunction.

Install and run on-line
diagnostics.

Competency Levels 0 1 2 3 4 5 6 7

COS II Pre-Course Assignment:

The primary focus of COS II is hands-on experience
with the Cray and I0S. Relatively little total time in the

course is allocated to lecture. Because the class takes turns
in small teams to use the lab, lab time is also at a premium.
You will need to do advance preparation in order to get the
maximum value out of lab. Keep the COS II objectives in mind
during COS I so that you will be aware when the COS I material

ties in with them.

Also, please read the following materials in advance,

with a focus on preparing for the COS II objectives:
SM-0043
SM-0044

SG-0051

OUTLINE OF COS OVERVIEW

0S: General Purpose and Primary Features

Functions,

1. C
2. CRI Software:
Components

A. CSP

B. EXEC

C. STP

D. System Tasks

E. Stations

F. 1I0S

G. Libraries,
Processors

H.

Characteristics and

Utilities, and Language

$SYSTXT, $COSTXT, Common Decks

3. A Day in the Life of a Typical Job

4,

5.

CRI Software Life Cycle
(Guest presentation on Field Support)

Overview of CRI User Publications

14

CRAY-1 OPERATING SYSTEM (COS)

MULTIPROGRAMMING OF USER APPLICATIONS
SCHEDULING OF APPLICATIONS BY PRIORITY (JOB CLASS)
MANAGES DISK AND TAPE RESOURCES
MANAGES FRONT-END COMMUNICATIONS
5¢h,
P20
MANAGES FILE MAINTENANCE
\,
/E%ﬁ%

MANAGES PROGRAM MAINTENANCE

CAPABLE OF MODIFICATION AT STARTUP

1.2

CRAY-1 SOFTWARE INVESTMENT IS PRESERVED

WIDE RANGE OF APPLICATION CODES AVAILABLE ON X-MP
SERIES COMPUTERS

COMMON SOFTWARE THROUGHOUT X-MP SERIES

MULTITASKING FEATURES AVAILABLE THROUGH FORTRAN '
LIBRARY ROUTINES

IMPROVED VECTORIZATION OF CONDITIONAL STATEMENTS
ON X-MP/48

DISK STRIPING TECHNIQUES FOR IMPROVED I/0 PERFORMANCE
SSD RESOURCE MANAGEMENT

WIDE VARIETY OF STATION SOFTWARE. INCLUDING NEW
APOLLO STATION. FOR EASY INTEGRATION WITH USER

ENVIRONMENT
f%ﬂﬂ
|

1.3

-/

NEW FEATURES IN COS 1.13 RELEASE

* Multitasking within job steps

* Disk striping

- * On-line tape positioning

1.4,

Multiprogramming

COS provides for the sharing of processor resources among up to 255
independent jobs. With a single-CPU Cray, several processes are
ready to run, and if one process is delayed by I/0, another job is
immediately scheduled to run on the CPU. Jobs are assigned prior-
ities, and each is allocated a CPU time-slice commeasurate with its
priority. In a multi-CPU Cray, each CPU can be shared by several
Jjobs.

High speed communications channels provide for remote users in large
volume environments.

Multitasking

Multitasking allows a single user job to create multiple tasks which
can execute simultaneously in more than one CPU on a multi-CPU CRAY.
Multitasking within job steps provides a higher degree of parallel-
ism within the program, and execution-time performance improvement
for those applications that are appropriate for multitasking.

A COS job that is multitasked can run on the same system with jobs
that are not multitasked.

On-Line Tape Positioning

Users can position a tape dataset at any block on any volume, obtain
the current position information for a tape dataset, and enable
recovery of tape jobs after a system interruption.

Disk Striping (Z”7 ek
chek. v

P D i
Disk striping allows users to dgstribute datasets across several
disks in the I/0 Subsystem, allowing parallel data movement from
each disk. This feature provides vastly improved disk performance
when larger buffer sizes are used.

Disks in the system that will be part of a stripe group will
typically be used as request-by-name devices.

Re-Configure At Start-Up

Configuration changes can be made interactively during start-up.
Devices can be added or deleted, or attributes or status can be
changed without the necessity of a full-scale system re-generation.

1.5

9°7

BASIC CRI SYSTEM |
SOFTWARE COMPONENTS

MANAGER

SYSTEM
PERFVORMANCE
MONITOR

SCHEDULER

MANAGER,

' LUSH
‘OPT') VSL)‘\ATILE
TQM Device

FRONT END

STATIONS

SOFTWARE: NOS, NOSAE,
DES, MVS VM, vAX/uMS,
SPERRY, HONEYwELL

EXEC
REQUESTS

INTERRUPT
HANDLE RS END

\@ DRIVER
v \ =~ 108 DRIVER P
PDisk/s TASK
1>lu/veg:‘z> SCHEDULER, \n

i

/27
(oFm)\

LE

LIBRARILES
' AND
Uur 1S
STP ILT T
COMMON

ROUTIN

CONTROL
STATE MENT
PROCESSOR

(Now . 10P)

DEC

STP TASK NAMES, IDs AND PRIORITIES

Task Name S ' ID (Octal) PRI (Octal)
A Shabyy 1o 2
SCP - Station Call Processor 01 10
EXP - Exchange Processor 02 12
PDM - Permanent Dataset Mgr. 03 14
DEC - Disk Error Correction 04 20
DQM - Disk Queue Manager 05 02
MSG - Message Processor " 06 04
MEP - Exec Message Processor 07 05
SPM - System Perform. Monitor 10 24
JSH - Job Scheduler 11 13
JCM - Job Class Manager 12 11
TQM - Tape Queue Manager 13 03
STG - Stager 14 06
FVD - Flush Volatile Device 15 15

1.9

PRINTER

FRONT-END COMPUTERS

FRONT-END
INTERFACES PERIPHERAL

EXPANDER

DISPLAYS

crPu
1 OR 2 OR 4 MILLION

64-B1T WORDS

BUFFER MEMORY
% TO 8 MILLION

64.BIT WORDS
17O 4 DCU-4 | 2 TO 16 DD-29
CONTROLLERS DISK UNITS
1TO4 DCU4 1TO 16 DD-29
CONTROLLERS DISK UNITS
170 4
BLOCK MULTIPLEXER
CONTROLLERS

/ 1\

17O 16 CHANNELS

1.3

Table 2-1. DD-19, DD-29, and DD-49 DSU capacities
Capacity DD-19 DD-29 DD-49
Words per sector 512 512 512
Sectors per track 18 18 42
Tracks per cylinder 10 10 8
Cylinders per device 411 822 886
Total data sectors 73,980 147,960 297,696
Total data words 38,877,760 75,755,520 152,420,352

2.1.2 CE CYLINDERS

Each DD-49 DSU contains two hardware-protected cylinders, known as J%

cylinders. Data cannot be written to either CE cylinder until the CE

cylinder is write enabled by a diagnostic command. The two

hardware-protected cylinders are called CEl and CE2. DD-49 DSU cylinders

are numbered as follows. (Y

e The data cylinders are numbered 0-885.

e CEl, cylinder 887, contains the Factory Flaw Table described later
in this section.

e CE2, cylinder 889, is the diagnostic scratch cylinder. (Cylinders

886 and 888 are inaccessible.)

By default, the data cylinders ares write enabled while CEl and CE2 ar=
write protected. A diagnostic command is required to write protect the
data cylinders and write =nable the CE cylinders. CE cylinders can be
individually write protected or enabled.

COS also reserves cylinders for CE use by entering them in the operating
system flaw table.

SN-0223 2-2

CRI QOFTWARE * (ANIVERSE”

GONY

Exec 4"

%Tsf;-' 13 Tases.
T0%:
KERNEL

L QBIYSTEMS

STATIONS:
T MYGRS
S oPeR. SYST.

(A\TILITIES:
BUILD

14 QPERATIONAL
AIDS

PDEBIGGERS ¢

SI1D
CSIM

£.9

hNOADERS:
DK
SEGLDR.

CAL
AMPL
PASCAL T

LIBRARIES:
B ARLIB
B YTL1B
A 10118

B 31138
CBSSLIS
2 NTRIB

B PSCLIB

SYSTEM TEXTS

@ DATASETS NAMED BY S= PARAMETER
ON CAL ConTRoL STATEMENT

o CONTAINS DEFVINITION of GrIBAL
- MACROS
- QPDEYS
- MIcROS
- IMBoLS

o B SYSTXT s DeramT
o COSTXT 15 usep v Assemaznve (COS.
o COMMON DECKS
= DEFINGD BY UPPATE Dakective CoMDEK,

— CONTENTS cAN BE CoPI1ed 1o ANY
NHMISeR o% hocATIgNs IN THE

COMPILE DATASET.
- cAN Be CAlLed FROM ANY WHERR
IN A REGWLAR QR COMMON DELL

1.10

CONTENTS (Macvos and Opde{s Manudl)

S

P ACE .

m f§53)4§77X1'

C D in COSTXT

® © @ ° e e © o o & © e o ® ° ° © ° o © o o e o v o o

l . INTRODUCTION e e e e ®© & o & e ©o o o e o ® 8 e e © e & o o o

2. SYSTEM ACTION REQUEST MACROS o o o o o o o o o o o o o o o o

TIME

SR-0012

JOB CONTROL MACROS o« « « o o o o = s o o o o o s o 5 o o s »

ABORT — ADOIrt Program . . « « o o s « o o o o s o o o o
CONTRPV - Continue from reprieve condition
CSECHO - Send statement image to the logfile
DELAY - Delay job Processing . « « « « o « o o o o o &
DUMPJOB - Dump job image . ¢« « « o o « ¢ o o o o o o &
ENDP - ENd PrOgXaQmM o« « o« o o o o o o o o o o o o o o &
ENDRPV - End reprieve processing . « « « ¢« « o o ¢ o &
IOAREA - Control user access to I/O0O area .« « o« o o o o
JTIME - Request accumulated CPU time for job
MEMORY -~ RequeSt MEMOLY « ¢ o o o o o o o o o o o o o o
MESSAGE - Enter message in logfile . « ¢« ¢ ¢ ¢ ¢ ¢ o &
MODE - Set operating mode . « « ¢ o o o o o o o o o o &
NORERUN - Control detection of nonrerunnable functions
RECALL - Recall job upon I/0 request completion
RERUN - Unconditionally set job rerunnability
ROLL - RO11l @ JOD o ¢« ¢ o « o o o o o o s o oa°e o o o o
SETRPV - Set job step reprieve . « « o« ¢ o ¢ ¢ o o & &
SWITCH - Set oOr clear sense switch . . ¢« ¢« ¢ o o o o .

DATASET MANAGEMENT MACROS =« ¢ o o ¢ ¢ o o ¢ s o o ¢ o o o o

CLOSE -~ Close dataset . . ¢ « ¢ o o ¢ ¢ ¢ o ¢ o o o o o
DISPOSE - Dispose dataset « « « ¢ o« o« o ¢ ¢ o ¢ o o o o
DSP - Create dataset parameter table « « « « .
OPEN - Open dataset « o ¢« o ¢ o o ¢ ¢ ¢ o ¢ o o o o o o
RELEASE - Release dataset to system . « « o « o o ¢ o
SUBMIT -~ Submit job dataset . « ¢ ¢ ¢ ¢ ¢ o ¢ o ¢ o o o«
AND DATE REQUEST MACROS « « « o o o o o o o o o o o o o
DATE - Get current date « « « o o o ¢ o ¢ o ¢ o o o o »
DTTS - Date and time to timestamp conversion . . « . .
JDATE - Return Julian date . . ¢ ¢ o ¢« ¢ o ¢ o o ¢ « &
MTTS - Machine time to timestamp conversion . . « « « &
TIME - Get current time . « o« ¢« o ¢ ¢ ¢ 2 o =« o o o o &
TSDT - Timestamp to date and time conversion
TSMT - Timestamp to machine time conversion &

1.1t

NN DN N ? NN DODNDON
HowouguubpdWwwhpon -

iii

N

[I Y T T Y T O R B |
ol i

WwHeOoOo

2-14
2-14
2-14
2-15
2-16
2-18
2-19
2-19
2-19
2-20
2-20
2-21
2-21
2-21
2-22

DEBUGGING AID MACROS e @ o e o o o e e e o s o o o o 0- e o o o

DUMP - Dump selected areas of memory . « « « « ¢ o ¢ o =«
FREAD -~ Read AAt@ « o« o ¢ o ¢ o o o o o o o o o o o o o =
FWRITE - Write data o« ¢« o« o o o ¢ o o ¢ o o o o o o o o =
INPUT -~ Read dat@ « « ¢ o o o o o o o oo o o o o o o o o
LOADREGS -~ Restore all registers . ¢« ¢« o« o o ¢ o o o =« &
OUTPUT - Write data@ « « « ¢ o ¢ o o o o o ¢ o s o o o o =
SAVEREGS - Save all registers . .« « « ¢« ¢« o o o o o « o &
SNAP - Take snapshot of selected registers . « « « « o .
UFREAD ~ Unformatted read « « « « ¢« o o ¢ o o o o o o o o
UFWRITE- Unformatted write . ¢ ¢ ¢ ¢ ¢ ¢ o o o o o o o

MI SCELIANEOUS MACROS L] L] L] . * . L] . . L] L4 - L] - L] L] L] . L] L] L]

GETMODE - Get mode setting . ¢« ¢ ¢ ¢ o o o o o o ¢ ¢ o o
GETSWS - Get switch setting . e o o o o o o o o o o
INSFUN - Call 1nsta11atxon-deflned subfunction . ¢ « « .
SYSID - Request system identification . . « ¢« ¢« « ¢ < .o .

30 LOGICAL I/o MACROS e ®© e e @ ® o ° o o o & ‘o o e o © ©® o e o o

SR-0012

SYNCHRONQUS READ/WRITE MACROS =« « ¢ ¢ ¢ o o o o o o o ¢ o o o

READ/READP — Read WOrdS . « o + o o o o o o s o o o o o o
READC/READCP - Read characters . ¢« « « ¢ o o o o o o = &
WRITE/WRITEP - Write words . « o« o o ¢ o o o o o o o o o
WRITEC/WRITECP - Write characters . « « ¢« ¢« ¢ ¢ ¢ o ¢ ¢ ©
WRITED -~ Write end of data .« ¢« ¢ ¢ ¢ o o o o o o o o o o
WRITEF - Write end of file . . ¢ ¢ o o o ¢ o ¢ o o o o &«

ASYNCHRONOUS READ MRITE MACROS L] L] L L] L] L] L] . Ll L] L] L] - L]
BUFCHECK - Check buffered I/0 completion e s o s o s o o

BUFEOD - Write end of data on dataset . « « « o ¢ ¢ o o &«
BUFEOF - Write end of file on dataset « « ¢« « o o o o o &«
BUFIN/BUFINP - Transfer data from dataset to user record
area o+ o o ..-coooooooooooo'nttooo
BUFOUT/BUFOUTP - Transfer data from user record area

todataset . « ¢« o o o o o o o o o o o o o s e 2 o o o o

UNBLmKED READ/WRITE MACROS L] . * L L] L] - L] L] L] * L d L L] L] Ll L]

READU -~ Transfer data from dataset to user's area
WRITEU - Transfer data from user's area to dataset . . .

POSITIONING MACROS e © ®© ®© & e ® ® o o e & o ° o o o ¢ o o o o

ASETPOS - Asynchronously position dataset . . « « « « <
BKSP ~ Backspace record « « o« « o o o o o o o o o o o o o
BKSPF - Backspace file . ¢« ¢ ¢ ¢ o o o o o s o o o o o o
GETPOS - Get current dataset position . « ¢ « ¢ o ¢ o « &
POSITION - PoSition tape .« « o o o ¢ o ¢ o o o o o o o o
REWIND -~ Rewind dataset « o« ¢ ¢ ¢ ¢ o ¢ o ¢ o o o o ¢ ¢ &
SETPOS - Synchronously position dataset . « « ¢ ¢ o ¢ o ©
SYNCH - Synchronize « « « o ¢ « o o o o o ¢ o o o o o o o
TAPEPOS - Tape position information . . « « ¢ ¢« o ¢ ¢ o &«

vi

1.12

2-22
2-23
2-25
2-26
2-27
2-31
2-31
2-35
2-36
2-38
2-39
2-40
2-40
2-40
2-41
2-41

w
1
)

I
[

[} 11
oUW

‘fww(.;)wuw

ww‘fw
H Y WwoooId
o

w
1
N
o

3-12
3-13
3-13
3-14
3-15
3-15
3-16
3-17
3-18
3-19
3-21
3-21
3-23
3-23

0l

S 4. PERMANENT DATASET MACROS « « o o « o o o « o o o o o « « &+

|

PERMANENT DATASET DEFINITION MACROS . « ¢« o ¢« « o o o « &
LDT - Create label definition table . . ¢« ¢« ¢« ¢« « « &«
PDD - Create permanent dataset definition table . . .
ACCESS - Access permanent dataset . . « ¢ ¢ « ¢ & o o«
ADJUST - Adjust permanent dataset . . .« ¢« « « o « +« &«
DELETE Delete permanent dataset . . « « . « ¢« ¢« . .
PERMIT -~ Explicitly permit dataset « « « « &
SAVE - Save permanent dataset . « ¢« « ¢« « ¢« ¢ ¢ o o o

CFT LINKAGE MACROS e e ©® o ° & e ® & o o e o e e e o o o o

DESIGN OF THE ENTRY BLOCK MACROS ¢« + « « o o o o o o o o« &
DEFARG - Defihe calling parameters . . « « o « o o &
DEFB - Assign names to B registers . « ¢« ¢« ¢ « o « &
DEFT - Assign names to T registers . « « « « o o o &«
ALLOC - Allocate space for local temporary variables
MXCALLEN - Declare maximum calling list length . . .
PROGRAM - Generate mainline CAL routine start point .
ENTER - Generate CFT-callable entry point

RETRIEVE PASSED-IN ARGUMENT LIST INFORMATION MACROS . . .

' ARGADD ~ Fetch argument address « « « « o « o o « o «
NUMARG ~ Get the number of arguments passed in . . .

REFERENCE LOCAL TEMPORARY VARIABLE STORAGE MACROS . « . .

LOAD - Get value from memory into a register

STORE - Store the value from a register into memory .

VARADD -~ Return the address of a memory location . .

CALL EXTERNAL ROUTINES MACROS . ¢ « o ¢« o « o o o o o o o

CALL - Call a routine using call-by-address sequence

CALLV - Call a routine using call-by-value sequence .

EXIT SUBROUTINE MACRO « « o o 2 o o o o o o o o o o o s o

EXIT - Terminate subroutine and return to caller . .

{TABLE AND SEMAPHORE MANIPULATION ¢ « o o « o o o o o o o o

TABLE DEFINITION AND CONSTRUCTION MACROS o « o « o o o o o
NOrmal MACIOS « « « o o o o o o o o o o o o o o o o o
BUILD - Construct a table structure . . . « « &«

REDEFINE ~ Redefine a specified number of words
SUBFIELD - Identify fields within a larger field
TABLE - Define the overall table attributes .« .
Complex macros . . « . . e o o o a s o o o s s e o
CENDTAB - End a complex table structure

SR-0012 vii

1.13

ENDTABLE - Designate the end of a table definition
FIELD - Define a field with current table structure

NEXTWORD - Advance a specified number of words . . .

CFIELD - Define a field in the current complex table
CNXTWORD - Advance a specific number of 64-bit words

>
|
fur

]
HFE WY WH

PO P P X
1

wn
|
]

1
HHEHMHFNanUVUBWwNDND P

> W N

LﬂmUlUl(.ﬂU'lUl('J'lwmelUlUl

1
ol
O N O

5-21
5-23
5-23
5-25
5-26
5-26

(=)
L}
)

I 1
=

o

??\?o\mmmo\mo\m

!
HrRHooOoJgan NbH
(S

N
]
v}
]

6-14

01

SONE

.

nv

n o

oNno

o 0o 0O

7.

Q

Complex macros (continued)
CREDEF - Redefine specific number of 64-bit words
CSBFIELD - Define field entirely within
another field . ¢ &« ¢ ¢ ¢ ¢ o o o ¢ o« o o o o
CTABLE -~ Define overall table attributes
PARTIAL-WORD MANIPULATION OPDEFS « « o o « o o o o« o o o o« &«
Normal Opdefs . o ¢« o o o o o o o o o o o o o o o o o o
GET - Fetch contents of a field . . . « « « « & &
GETF - Fetch contents of a field . . « ¢ « « . .« ©
PUT - Store data from a register into a field . .
SET - Pack field value into a register
SGET -~ Fetch contents of a field . . . « « « « . &
SPUT - Store data from a register into a field . .
Complex Opdefs e o 8 o e o o o s o s & @
CGET - Fetch contents of a field into a register .
CPUT - Store contents of a register into a field .
SEMAPHORE MANIPULATION MACROS &« o « o ¢ o o o o o ¢ o o o o
DEFSM - Define semaphore name . « « « « « o o ¢ o o o« «
CLRSM - Unconditionally clear a semaphore, do not wait
GETSM - Get current status of semaphore bit
SETSM - Unconditionally set a semaphore, do not wait .
TEST$SET - Test semaphore and wait if set, set if clear
CAL EXTENTION MACROS AND OPDEFS ¢ « o o o o o o o o o o o @
DIVIDE OPDEF - Provide a precoded divide routine . . .
PVEC MACRO - Pass elements of vector register to scalar
routine ¢« . . . ¢ e 0 4 e 0 o e o o o B « o o o o
$CYCLES MACRO- Generate timing-related symbols
and constants . . « ¢ « o ¢ o o e o o o o o o o @
$DECMIC MACRO - Convert a positive integer to a
Micro String . o o o ¢ ¢ o ¢ o o 0 o o o 0 o o 0 o o
RECIPCON MACRO - Generate floating-point reciprocals .

Cos DEPENDENT MACROS e @€ ® e © e ® © © o © © & & © ° o s o o

SYSTEM TASK OPDEFS « o o o « o a s o o o o o s o o s o o o &
ERDEF - Generate error processing entries in the
ExXchange PIOCESSOL . o« « o = o s o s o s o o o o o o
GETDA -~ Obtain first DAT page address . « « « « « o & o«
GETNDA - Obtain next DAT page addresSs . « « « o ¢ o ¢ o

¢

VERLAY MANAGER TASK MACROS . 2 o ¢ ¢ o ¢ o o o o o o o o« o
CALLOVL - Request Overlay Manager Task to load
DEFINOVL - Generate a list of modules . « « ¢« o ¢ ¢ o &
DISABLE - Prevent use of current memory-resident copy .
GOTOOVL - Request Overlay Manager Task to load
LOADOVL - Request an initial overlay load . « « « « « &
OVERLAY - Define a module as a system overlay . « « « o«
OVLDEF - Define overlay Name . « « o o ¢ e o o o s o o
RTNOVL - Signal completion of an overlay execution . .

IMESSAGE PROCESSOR MACRO « o o o o o o o o o o o o o o o o o

LOGMSGM - Construct the LGR control word . « « « « o

SR-0012 viii

1.14

6-15

6-16
6-17
6-18
6-19
6-19
6-20
6-21
6-22
6-23
6-24
6-25
6-25
6-26
6-27
6-27
6-28
6-29
6-30
6-30

"6-31

6-31
6-32
6-33

6-34
6-35

7-1
7-2
7-4
7-6

7-7
7-8
7-8
7-9
7-9
7-10
7-11
7-11
7-11

0l

N

nn

VN

COS INTERNAL SUBROUTINE LINKAGE MACRO . ¢ ¢ v o o « o o« &
¢ §SUB - Define a subroutine entry point

DATASET LOCKING MACRO =+ ¢ ¢ o o o o o o o s o o o o o o @
DSPLOCK - Set or clear lock in dataset parameter area

8. STRUCTURED PROGRAMMING MACROS « =« « o o o o o ¢ o o o o @

CONDITIONS . ¢ « o o o o o o o o o o ¢ s o o o o o o s o o
MACRO DESCRIPTIONS ¢ ¢ « ¢ o o o o o o o o o o s o o o o o
$GOTO MACRO - Compute a GOTO statement . « « « o o «
$GOSUB MACRO - Call local subroutine . . « « . . .

¢ $IF, $ELSEIF, 3ELSE, and $ENDIF MACROS - Cond1t10na1

macros] L] L] L] L] L] L] [] L] [] L[] L[] L] L] L] * L] L] L] * L] L]
Cc $JUMP MACRO -~ Accept any $IF or $ELSEIF parameters .
c; . $LOOP, $EXITLP, and $ENDLOOP MACROS -~ Define

Program lOOPS eo o o o s o o o s o s s o o o o o o

$RETURN MACRO - Return from local subroutine
$SUBR MACRO.- Declare local subroutine entry point .

APPENDIX SECTION

OUTMODED FEATURES . « « 2 o o o o« o ¢ o o o o o o o o s o
BREG - Assign names to B registers (obsolete)
TREG - Assign names to T registers (obsolete)

TABLES

8-1 Conditions e ® @ e e e e e © o 6 & © ° ° e O & s O o o o+ o

INDEX

SR-0012 ix
1.15

7-13
7-13
7-14
7-14

A-1
A-l
A-2

Counterts of & SYSTEXT ot listed

m SR-o0/2
PDUMP T6 LEGADDR
SETSTKAT T QDOURLE
TYORCE e YoRTTO
NEWENTRY 7¢ ARGADDR
INSMAC ~~ TEDLP
FTIO (MACROS FoR CSTM:)
RASERR SIMMSG
CPUTYPE STMIDLE
SV Krj@ys SIMABORT
SITMRIC
D REGS STIMAVAIL
OFVENA ENDIR
VALREG DISDIR
@ GENReW TAGON
- @ GENTP TAGO¥F
£ Rew (S yERY ERRSR COdES)
S TSTEG
g 810 DET LOCR
PRMLSYM KOC KON
PRMASYM LOCROTY
PRMZ MIC
REC(AR
SNAPSHOT

1.16

Cov\j(evxj(s o% COSTIXT

wol Jisted i SR-80/2:

DR CAPTION
EAT ENDTIELD
FGTTOREN 7 GETSM
EDO0IcH TI1EL@
CONTIG % LINE
% GeTNUM GN
T LAW GP
STRTSLW (CAL BooLEAN
ENDYLW aLPf;ESi““‘
o ov
%%‘SF $02 BooL ;txx)
ViRae 2SR
TSk REQ 3 LR&s
03 LOADCL
Lock SAVE CL
AL OCK MSGQ
ERRAA SW DET
ERRAZ WALT % SET
gzg: (¢ SIM Macros:
ERRAM Sawe ds m)XSYSTXT
ERRSE
EKRSN
€ RRS?P
ERRSM

1.17

commeN PECKS :

- CONTIGEY

~Processor de/omldn‘f

pardme tavs

COMS yMB
- Commm 3 sTam
S'bwpols
COsI @F
- Justall dTim C‘QP_”'J‘"T{
Paramcﬂ'u‘s :

COMHD

- H avdwave daescr; }0{ o
pava welers

[\SERT @F

-~ Snstall. pdrd waater
da {i wityoms '{'FV"

Nsers

COMSYS DP
- zsﬁm de‘FiV\‘J
F r-&m%‘}'erf

CoMSYSER
-Systam g 6%8‘{'&:

[LOWSTP
— Printevs 1w lou
wmd wwr'a -

U1502A

~otaw A;\’V} = % %

VIivALL N 1Y UV UY VRV RV e PP
IDENTIFIERS IN PROGRAM LIBRARY COSPL hddd PLDATE 03/14/84 LASTID PC-ERNST
**AUDBUF #*AUDCFT *##AUDCOM **AUDPAGE **AUDPARAM **AUDSUM #HAUDTABX *¥AUDTM *#COMAC ##COMAE *#COMAER
*#COMAM ##COMAP ##COMAR *#*COMAU *#COMAUX *#COMBA *#COMBG ##COMB 10 *#COMBP ##COMBRT *#COMCB
*#COMCC ##COMCH ##COMCN *#COMCS *##COMCW *#COMCX ##COMDA *##COMDC *#COMDD *#COMDDFC *#COMDFT
#*COMDMP ##COMDN ##COMDP ##COMDPT ##COMDR *#COMDT *#COMDV ##COMDX | *#COMDXT #H#COMEFT ##COMENT
*##COMEP ##COMEQ *HCOMET *##COMEVW ##COMEXERR ##COMEXFC *#COMEXPFC ##COMEXRQ ##COMFER ##COMFH *##COMGR
##COMHD *##COMHS ##COMHTFC **COMIB ##COMI ER ®¥COMIOF . *#*COMJB ##COMJC *#COMJCM *#COMJS *#COMJSH
#HCOMJT *#H#COMJIX ##COMLC ##COMLCK ##COMLD #*COMLF ##COMLG *HCOMLT *##COMLX ##COMMATH *##COMMCT
*#*COMMD *#COMMDW *#COMMEM ##COMMENT *#COMMP **COMMS #HCOMMTQ ##COMOD *#COMOP *##COMPA **COMPC
##COMPD #*COMPDMFC ##COMPDT *##COMPER ##COMPERT **COMP I ##COMPM ##COMPPL ##COMPQ ##COMPR *#*#COMPS
#*COMPT **COMPVC *#COMPW ##COMPX ##COMQC **COMQD ##COMRJ *##*COMRPV *#COMRQ *#COMSB *#COMSC
##COMSCP ##COMSD *#COMSDP ##COMSDR *#COMSEG ##COMSEQ ##COMSM *#COMSMC #H#COMSML *#COMSPM *#COMSR
*#COMSS *#COMSSL ##COMST *##COMSTK ##COMHEAP *H#COMSTP ##COMSW *#COMSYMB ##COMSYSDP #¥COMSYSEQ #*COMTA
*#COMTAPE *##COMTB *#COMTC *#COMTCA *#COMTD *#*COMTE #HCOMTEXT ##COMTK *#COMTIB *##COMTLB ##COMTN
##COMTP ##COMTQM ##COMTR *#*COMTV #H#COMTX *#COMTXT **#COMUER *#COMUP *#COMUTSB ##COMXAT *#COMXF
*HCOMXP #HCOMXRT ##COMXT *#COMZ ##CONF IG@P #¥COPYRIT *#COS 1@P *#CSMAC *#CYCLES ##ENDCOM *HEXFBITTB
#HEXFC+DEF **EXFCMPTM **EXFDBUG ®HEXFFILE *#*EXFHCR *#EXFHCRD HHEXFMFTYP ##EXFPARM #H#EXFREC *HEXFSPEC HHEXFSTF
*HEXFSUBT1 ##EXFSXRAT #¥EXFTEXT *#*GETSRO *#GETVRB *#GLOBALC ## | FTHEN ## OGMAC *#LOWSTP *#MSGCLSS ##POSTMIC
##STARTCOM ##STATSIO #*SYNONYM ##TABMAC ##TABX **USERI@P *ST *CT *uT *E *GLOBAL
#*STPTAB #BGNSTPCM *BFMAN *BTAD *CCOPY *CHAINS #CLEAR *CONFIG *CONVTS *CoPY *CRACKER
*FIXIXPR *GETOWN *GETPARM *GTMEM *FNDJB *L GMSG *GTTCB *GTTXT *JMEM *JTADNT *MSGQUE
*PWENC *QMSG *QUEUES *REQRPLY *RLMEM *RLTXT *SD2PD *STPDATS *STPERR *STPMEM *STPTIME
*#STPUTIL . *ENDSTPCM *sTP *sScp *EXP *C10 *TQM *MSG *JSH *JCM *DQM
*DEC *PDM *MEP *SPM *STG *FVD *STARTUP *J #ACCOUNT *ACCTDEF *ADS
*AUDIT *CD *CF *CHARGES *CM *CR *CU *DBF *DD *DDC *DM
*EXC *EXF *FLOWD *JCC *JCF *PD #pL *PRVDEF *SD *SETOWN *SF
#SR *STATS *UNB *WD KCh4351A KC2281A KC3860A KC3947A KC39478 KC39u8A KC4308A
KCL4312A KCL4320A KCL4352A KCL365A KC4366A KCh379A KCu3798 KCU457A KCU4U63A KCUu77A KCLUL4T8A
KC4369A KCU4520A KCU4536A KCU541A DD10 E015 EXF12 . KC3836A KC38368B KC3836C KC3749A
KC3749B KC3749C KC3300A KC33008 KC3536A KC3767A KC3770A KC3842A KC3856A KC3864A KC386uB
KC386UC KC3938A KCLO68A KCU4OTUA KC4082A KCL091A KCh136A KC4136B KCL4176A KC4197A KCU26L4A
KCh42648B KCu264C KCu264D \ KCU264E KC4284A KCu284B KCu288A KCU319A KCL4354A KCL4355A KC4363A
KCu3638B KCu363C KCL4363D KCU363E KCLU3TUA KC4383A KCL3838 KC4383C KC43830 KC4383E KC4383F
r‘ KCLu383G KCu43831 KC4383J KCL383K KCL383L . KC4383M KCL4383N KCL43830 KCu3s3p KC4383Q KC4383R
4~ KCU3B3AA KCu383AB KC4383AC KCl4383AD KCU383AE KCL4383AF KCL4383AG KC4383AH KCu383Al KC4383AJ KCL4383AK
o KC4383AL KCL383AM KCU4383AN KCU4383A0 KCL4383AP KC4383AQ KCu4383AR KC4383AS KC4383AT KCL4383AU KC4383AV
KCU4383AW KCL383AX KCuU383AY KCU383AZ KCL4383BA KCL4383BB KCL43838C KC4383BD KC4383BE KC4383BF KC43838G
KCh383BH KCu383BI KCL43838BJ KCL4383BK KC4383CA KC4383CB KC4383CC KC4383CD KC4383CE KCL4383DA KC4383DB
KC4383DC KC4383DD KCL4383DE KC4383DF KCL383DG KCL4383DH KC4383D1 KC4383DJ KCL4383DK KCL383DL KCL4383DM
KCu4383DN KC4383D0 KC4383DP KCu383DQ KCL4383DR KC4383DS KCu4383DT KC4383DU KCL4383DV KCL4383DW KCW4383DX
KC4383DY KC4383DZ KCH383EA KCL4383EB KCL4383EC KCU4383ED KCU4383EE KCU4383FA KC4401A KCU532A KCL45328
KCy532C KCu532D KCU532E KC4532F KCL5326G KC4532H KCL5321 KC4382A KC3123A KC3499A KC3528A
KC3528B KC3528C KC3540A KC3695A KC3696A KC3797A KC379178B KC3829A KCLOO01A KCL2L43A KCL357A
KC4391A KC4393A KCU4406A KCLUL460A KCULT2A KCuu728 KC4530A KC4533A KCL4556A KCU557A KCU384A
KC4560A KC2787A KC2787B KC3423A KC3423B KC3423C KC3423D KC3499AA KC3500A KC35008 KC3500C
KC3500D KC3500E KC3500F KC35006 KC3500H KC35001 KC3500J KC3500AA KC3500AB KC3507A KC3780A
KC37808B KC3780C KC3780D KC3780E KC3780F KC3843A KCY205A KCL281A KCL4315A KCU4532AA KCU4532AB
KCu532AC KCU532AD KCU532AE KCY532AF KC4532AG KCu532AH KCU532A1 KC4532AJ KCU4532AK KCL4532AL KCL4532BA
KCU585A KC45858 KCu585C KCu585D KCU585E KCU4585F KCu4585G KCL4585H A008 KC1761A KC2153A
KC3133A KC3133B KC3133C KC3410A KC3500BA KC35008B KC3780AA KC3852A KC38528 KC3854A KCu245A
KCL279A KCL42798 KCL4280A KCU375A KCU4529A KCU532CA KCu532CB KCL532DA Kcu4532DB KCu532DC KCu4532DD
KCL4532DE KCu532DF KCLu5320G KCl532DH KCu532D1 KCl4532DJ KCL4532DK KC4532DL KCU532EA KCU560AA KCU4569A
KCL600A KC4600B KC4625A KC4626A KCu6268 KCU636A KCu6368 KCu636C KCU636D KCU636E KCL636F
KCL636G KCL636H KCL6361 KCL636J KCU636K KC4636L KCL636M KC4636N KCL636AA KCU637A KCh642A
KCU683A KCU4686A KCU4532FA KCy532F8 KCU532FC KC4532FD KCU532FE KC4532GA KC4532GB KCu532HA KCU5321A
KCU5321B KC3780BA CM11 KC3908A KCL4532KA KCU532LA KC4532LB KC4532LC KCL4532MA KCLU532NA KC4532NB
KCL4532NC KCU5320A KCL453208 KC45320C KCL532PA KC4532PB KCh532QA KC4532QB KCU532SA KCu532sB KCU4532TA
KCu4532T8B KCy532TC KCu532TD KCU534A KCU545A KCu624A KC4636BA KC4636BB KCL4636BC " KCu682A KCU736A

EuyncT/on o~ FUTICrAT

T)ﬂ%(///)ég N (77 7708

Ceon CosPL 770
(/’T/L/f/f,ﬁ (r
UTIL AL, THIS Bl
e weep o WS
THE) L1~ ITION S Farn
oty 2 cemme JECE]
N TWO o peEl
CHienelCeuy U TET I
R A=

o S ARE AT

LR 2

©obLovooLn

““Libuvivu

*AMAP *ACOM
*CHNOFF *CHNTST
*DIVIDE *DKDMP
*ERR *ERRDMP
*LISTO #LISTP
*PATCH *PLOTIT
*STARTS *STATS
*TRACE *TRACK
*XPR *XPRINT
*BMXCON *BMXCPU
*CONMAN *DSCGET
*TRCLN *TRCMR
*TRRDB *TRRDF
*SDMPO #SDMP1
*ZSDMP *AFILE
*COPYS *COPY6
*EDDELE *EDINST
*FILDEL *FILGET
*INITO *LINGET
*XFMIO *XFMNIT
*CONCERR *CONCI
*LOGONB #1LLOGONC
*AMPEX *BABEL
*COMMO2 *COMMO3
*COMM13 *CPUGET
*DISPO2 *DKDIS
*{ FRMT *KEYBD
*POST *PROTINIT
*STATCL ®STATINIT
*SYNTAX *¥SYSTAT
*AINTER *| ACMD
*NIDEND *NSC
*DMP *EOF2
365 DECKS

VIV I TR TY RN
#AMSG
#CLOCK
*DKIOEX
*ERRECK
¥MASTER
#PRTAPE
#STOP
#TSTASH
#XPRNTA
#BMXDEM
#TAPEIO
#TRDCK
*TRREDO
#SDMP2
#*CLEAR
#COPY7
#EDIT
*FILNIT
*LINPUT
#XFMPOP
#CONCO
#MSGIN
#BARDAT
#COMMOUY
#CRAY 1O
*ERRDIS
*LCP
*PROTOCOL
#STATION
#*TAPEC
| ACON
#NSCEND
*ACOVL

7 COMMON DECKS

T OL0uLE
#BADDAT
*CONFIG
#DKLOOK
*FDMPDR
*MOSTES
#*REPORT
#SUMDAY
#UBTAPE
#XTAPE
*BMXOPE
#TAPMOV
#*TRDCKO
#TRSET
*SDMP3
*CLEARO
*COPY8
*EDITO
*FILPOP
#XFMACC
*XFMPUT
*CRAYMSG
#MSGIO
*BMGET
*COMMOS
¥DBGET
*ERROR
OGON
*QUEUE
*STI10
*TECU55
] ACON1
#NSCID
*SDMPA

1 CORRECTION SET IDENTIFIERS

CBEMT ST

*BEGIN
#CPSPIN
#DKSET
*FIRECODE
#MSGHND
*SCRUB
*SUMHOW
#UNBLK
*XTAPEA
#BMXSI10
*TDEM
*TRDSE
*TRTELL
*SDMPY
*CLEAR1
*COPY9
*EDIT
*FILPUT
*XFMCLS
#XFMSTR
*ENDCONC
*MSGOUT
*BMAGET
*COMMO6
*DECODE
*FMGET
*LINK
*READ
#STMSG
*TEXT
#]AFUNC
*NSCI0
*SDMPB

MuoliLRk
#BLOCK
#CPTEST
#DKSETO
#F8OM
*MSTNEW
#START
#SUMT IME
#USURP
#XTAPEB
#BMXT PO
*TDEMO
*TREQC
#TRWRT
*SDMPS
#COPY
#COPY10
#EDPRNT
*FILSTT
#XFMCRE
*XFMSTT
*ENTRID
#REMVID
#BXDIS
#COMMO7
#DECOD2
#GRAPH
#MESSAGE
#REPLY
*#STPLOT
#TJOB
*|A10P
#NSCMSG
#SDMPC

u\{ fibihvo
#BTD
#CRAY
H#DKSTAT
*F8OME
#MULT I PLY
#STARTO
*#3YSS
#WATCH
#XTAPEC
*ZBMX
#TDEM1
#TRFUN
*ZTAPE
#SDMP6
#COPYO
#COPY11
*EDREPL
HFLAW
#XFMDEL
*ZFILE
*FEREAD
#SRCHID
#CLI
#*COMMO38
#DELMSG
*HSPGET
¥MSTAT
*SNAP
#STREAMS
#TKSTAT
#|AIOP1
#NSCONC
#SDMPD

i

*BTO
*CRTDEM
*DM3
*HDRPAG
*NOBEAT
*START1
*SYSTEXT
*¥XDISK
*XTAPED
*ATAPE
*TERROR
#TRIDB
*ASDMP
#SOMP7
*COPY1
*DELETE
*EDTYPE
*ESTAT
#*XFMDIR
*ACONC
#FEWRIT
*ZCONC
*CLINIT
*COMMO9
#DESCRIBE
* | CONSL
*MSTDIS
*SOROC
#STSGET
*UPDATE
* | AMSG
*NSCOR
*SDMPE

[SVE I

*BXSET
*DEVICE
*DOM
*HPDATA
*0BIT
*START2
#TCOM
*XD I SKA
*ZKOVL
*BCOM
*TEX
*TRINR
*RSTRTO
*SDMP8
*COPY2
*DELETO
*F1LACC
*FSTATO
*XFMFLW
*CHKSM!
*FREEBUFS
*ASTAT
*CONSL
*COMM10
*DEVDAT
* 1 DEBUG
*NEWDIS
*¥STADIS
*STTAPI
*XFRMT
*1AOUT
*ZNSC
*ZCcovL

*CALL
*D1SK
*DOMP
*HPLOAD
*0TB
*START3
*TDUMP
*XDK
*ABMX
*BUFMAN
*TRBOC
#TRLPT
*RSTRT1
#SDMP9
*COPY3
*DELET1
*FILCLS
¥FSTAT1
*XFMFND
*CHKSMO
*LOGOFF
*ACQTRM
*COMBO
#COMM11
*DI1SPLAY
*IDLGET
*OFRMT
*STAGEIN
*STTAPO
*XMPXP
#ZINTER
*TAPELOAD
REL112

ATANVE

*CDEM
*DISKIO
*DTB
*HSPTES
*QUTCALL
*STARTY
*TIME
#XMT
*BMXAIO
*BYPASS
*TRCER
*TRORN
#RSTRT2
#SDMP10
*COPYY
*DSKI0
*FILCRE
*INIT
*XFMGET
*CONC
*LOGONA
*ACQUIRE
#COMMO1
#COMM12
*DISPO1
*IDRCT
*ONLINE
*STAGEOUT
*STUBPR
#ZSTAT
*ANSC
*DISKLOAD

o%
~1

~

STATIONS (Srampie: MVS Shation)

* TWNCTION

- J0& SUBMISSYN

180 U\SNQV\JW
- hocal hatcl Qv\‘{“rc}
~ Pawmote b atchant,

— OPeRATOR CoNTROL. of SO8 PROCESSING

- TSO nser > -
- MVS statipn comsile
- Mde’&r opcrd‘for séaT:m

o CHARACTERISY ICS

~ Runs UNDER. M MVS
_ ASES JeSL orJESZ
- HAKDWAKE CONNECTIIN Yo CRAY

IS
- rEI bw/f LU CRA &
- HYPCKc,Indvmd éu.r]f b«j NSC
° COMVONENTS

4.20

Table 3-1.

Command availability

Command

Availability codes

!

e d i

0)

.

"R

*

CANCEL
CHANNEL
CLASS
CONFIGURE
DATASET
DEVICE

" DROP

END
ENTER
JOB

KILL
LIMIT
LINK
LOGOFF
LOGON
MESSAGE
OPERATOR
POSTPONE
PRINT
RECOVER
RERUN
RESUME
ROUTE
SET -
SHUTDOWN
STAGE
STATCLASS
STATION
STATUS
STORAGE
STREAM
SUSPEND
SWITCH
TAPE
TJOB
TRACE
TRANSFER

o X X

X

X

x!

o

»
+

)X X
X3

LR T R R I

»

M X M XN »

X X XN

X XX

MK > XN

X

E R I B R -

XX X

X
X

E o

MR XXX

td

M N]

>

=

LR

SG-0037

t Command available only to the MVS operator.

I8M MVS STATION OPEZATORS

3-3

£.21

GnIde

CRCINIT

Control and
monitoring

CRDTREQ

Dataset Transfer
Request processing

CRTRSEL

Transfer selection

CRSMPRC
Station messages
support
CRMINIT
Initialization CRDSTAG
and termination
Dataset Staging

|

CRMLINK

LINKIO

Figure 2-1. 'Station task structure

~ » IRM MVS STATZION INTERNAL REF. WN‘~

| SM-0048 2-3 A

Station

Initialization/

Termination

Dataset
Staging
Processes

MVS Pilebase

MVS station

Cray
Computer [«

System

Cray link
Driver
Process

Transfer

Cray control
and monitoring
Process

MVS operator
console

Figure 1-1.

7’

SR-0038

’M MVS S

Station
Transfer
Request Filfg
A

CRAY Batch
Procedure

i K

SUBDS TSO

Command

CRAYCMD TSO

1-4

| 1.23

Command

MVS TSO
Address
Spaces

r
I

/

TSO
terminal

MVS user's view of the Cray Computer System
through MVS station

ATzON KET. MAN

Mvs
Batch
Address
Spaces

LESSON 2: Hardware Configurations & Characteristics

Objective: Describe the various hardware configur-
ations and characteristics of the computer
systems on which COS executes.

HARDWARE REQUIREMENTS

The Cray Operating System (COS) executes on the basic configurations
of any CRAY-1 or CRAY X-MP Computer System. Each computer system
contains the following components:

* One or two CPUs; a CRAY-1 contains one CPU and the CRAY X-
MP contains two CPUs.

* Central Memory. COS operates with any of four Central
Memory size options: one-half million words, one million,
two million, and four million.

* A minicomputer-based Maintenance Control Unit (MCU) or I/0
Subsystem (I0S). The I/0 Subsystem, if present, performs
all required Maintenance Control Unit functions.

* A Mass Storage Subsystem. The Mass Storage Subsystem may
consist of DD-19 or DD-29 disk drives, a Solid-state
Storage Device (SSD), or Buffer Memory (BMR). BMR storage
can be accessed only through an I/0 Subsystem; disk drives
may be connected either to an I/0 Subsystem or Cray main-
frame. SSDs are connected directly to the CRAY-1 or X-MP
mainframe.

* An optional IBM-compatable tape subsystem. The tape
subsystem requires that an I/0 Subsystem be present.

2.1

CONTROL
SECTION

Instruction
buffers

Control
registers

Exchange
mechanism

Interrupt
system

Real-time
clock

Programmable
clock

COMPUTATION SECTION
® Registers

e Functional units

MEMORY SECTION

1l million, 2 million, or 4
million 64-bit words

I/0 SECTION
e 4 6 Mbytes per second channels

e 1 or 2 100 Mbytes per second
channels

2.7

System Components

CPU

The Cray CPUs are designed for speed and large volume processing.
This is accomplished with large, high-speed channels, fast memory,
large instruction buffers, and a large number of registers and
functional units. The segmented functional units can receive a
different operand every clock period.

With parallel processing, operands can be supplied to different
functional units every clock period, resulting in a processing speed
of up to 105 million instructions per second.

The CRAY 1-S, 1-M and X-MP CPUs have the following characteristics:

1-S 1-M X-MP
CPUs 1 1 2
System Octal Octal Octal
Clock Period 12.5 ns 12.0 ns 9.5 ns
M.I.P.S. 80 80.33 105
Max. Memory 4 Mil. 4 Mil. 4 Mil.
Word size 64 bits 64 bits 64 bits
Columns 8 or 12 6 8 or 12

2.3

FOUR PROCESSOR SYSTEM

FRONT ENDS TAPE
DRIVE

: 2-4 |
... .{consoLEs 1 _
UP TO 3 COMPUTER
PRINTER/
N INTERFACES AND/O PLOTTER /

‘ ' N NSC ADAPTERS
"/ . . N EXPANDER

| -1 cHAssIS

! ~ _
10P-0 N
10P-1
BIOP
> UP TO 16 DISK DRIVES— — — < - § BUFFER
— ’ ‘ MEMORY
. iop-2 /
UP TO 16 DISK DRIVES — — — —{ | . piop .
UP TO 12 CHANNELS - top-3
T e — 4 opiop
OR 16 DISK DRIVES L1 oR
X10P

EXTERNAL CHANNEL

9 —er—er——o+— 8 MBYTE/S CHANNEL PAIR

‘ ‘ 100 MBYTE/S DMA CHANNEL
100 MBYTE/S MEMORY CHANNEL

ACCUMULATOR CHANNEL

2.4

I1/0 Channels

The CRAY computers are equiped with several types of I/0 Channels
designed for communicating with different devices within the system.

Synchronous - 6 Mbytes/sec

Synchronous channel pairs are used for data transfer between the
Cray 1-S or X-MP and the MIOP of the I/0 Subsystem.

Transfers are synchronized blocks of 512-bit words.

Asynchronous - 7.5 Mbytes/sec

Due to the unpredictable nature of transfer between the Front Ends
and the Cray, asynchronous channels are provided for this purpose.

The channels transfer at a rate of up to 7.5 Mbytes per second, and
use a protocol which is sychronized on every 16 bits of message.

An asychronous channel is also used for the communication between
the I0S and MCU (Manintenance Control Unit).

High-Speed Memory - 100 Mbytes/sec

To handle the large volumes of data transfered between the Cray and
the I0S (BIOP/DIOP), 100 MByte channels are used. Several of these
channels could be employed, depending on the Cray computer in use.

Direct-Wired HYPERchannel - 1250 Mbytes/sec

For Cray X-MPs which utilize the SSD (Solid state Storage Device) a
1250 Mbyte per second channel is used for very high speed data
transfer capabilities.

The channel is sychronized on 128-bit blocks.

Cabled HYPERchannel - 10-12 Mbytes/sec

For systems equiped with NSC networking configurations, data is
tranferred between devices within the network via a hyperchannel
cable capable of 10-12 MBytes/sec, depending upon the length of the
cable. The protocol is sychronized on every 16 bits of message.

2.5

FOUR PROCESSOR SYSTEM

-4 FRONT ENDS TAPE \~
f DRIVE
_ . _{consoLEs _ !
UP TO 3 COMPUTER
PRINTER/
< INTERFACES AND/O PLOTTER /
NSC ADAPTERS .
3 EXPANDER
l -] CHAssis
1 ~
. e
10P-0 D
< 10P-1
1 BioP
[UP TO 18 DISK DRIVES— — — - % BUFFER
MEMORY
_ 10p-2 /
UP TO 168 DISK DRIVES — — — — — piop _
UP TO 12 CHANNELS . fop-3
————— -4 pilopP
OR 16 DISK DRIVES - OR
X10P

—————— EXTERNAL CHANNEL
—9—+—+—o—ov—o B8 MBYTE/S CHANNEL PAIR

100 MBYTE/S DMA CHANNEL

RNt e shualll 100 MBYTE/S MEMORY CHANNEL

ACCUMULATOR CHANNEL

e

I/0 Subsystem

The purpose of the I/0 Subsystem is to increase Cray throughput by
providing large volume I/0 capabilities for the system. It can also
act as the system maintenance control unit (MCU) through which the
Cray would be deadstarted and operated.

The I/0 Subsystem consists of two, three, or four I/0 Processors,
Buffer Memory, and required interfaces.

Each IOP-is an independent minicomputer responsible for some portion
of the I/0 requirements of the system. Each has its own memory
(65K), computation, control, and I/0 sections. They are designed
for fast data transfer between front-end computers, mass storage
devices, peripheral devices, Buffer Memory, and the central memory
of the CRAY mainframe.

Buffer Memory sizes can be one-half million, one-million, four
million, or eight million words.

MIOP

The Master I/0 Processor (MIOP) is the first I/0 Processor in the
subsystem to be deadstarted. The MIOP initializes the contents of
Buffer Memory and accumulator channels to the other processors.

The MIOP deadstarts the Cray mainframe and directly handles all
communications with the mainframe over the 6Mbyte channel. This
traffic includes disk and tape requests and station communications.

BIOP

The Buffer I/0 Processor (BIOP) transfers data between Cray central
memory and I0S Buffer Memory and vice versa across a 100 Mbyte
channel. The BIOP performs disk I/0 to and from disk units attached
to its channels. :

DIOP

The optional DIOP moves data from Buffer Memory to disk and vice
versa at the request of packets from the mainframe via the MIOP.

If the optional second 100 Mbyte channel is present, the DIOP
transfers data between Cray central memory and DIOP local memory and
vice versa.

2.7

CRAY-1 MAINFRAME

2 or 4 MILLION
64-BIT WORDS

A 1
/// ’
r
/,
BUFFER MEMORY e
/
s
e
/
eeccesee 50 Mbit/s CRAY-1l I/O channel pair
————— Approximately 850 Mbit/s ‘Memory Channel

=smssems Approximately 850 Mbit/s DMA channel

——— Accumulator channel

I/0 Subsystem communication

2.8

XI10P

The optional XIOP handles data from IBM-compatable tape drives and
buffers the data to Buffer Memory at the request of packets from the
mainframe.

170 Subsystem Communication

The Cray computer system provides communication paths between
central memory and the MIOP and BIOP (and DIOP if a second memory
channel is present); between each IOP and Buffer Memory, and among
all the IOPS.

Data is transferred between Cray memory and the IOPs (BIOP/DIOP)
over one or more 100 Mbyte/sec Memory Channels. The Cray I/0
Channel pairs exchange system control information with the MIOP
at 6 Mbytes/sec.

One 100 Mbyte/sec DMA port for each IOP is connected to Buffer
Memory. Buffer Memory receives data from one IOP and temporarily
stores it until the Buffer IOP or Disk IOP can remove that data and
pass it to Cray central memory. In this way, each IOP communicates
with every other IOP in high-speed data block transfers.

Each IOP is also connected with the other IOPs by slower channels
called accumulator channels. These channels pass one 16-bit parcel
at a time from the accumulator of one IOP to the accumulator of
another IOP and are used primarily for control and status reporting.

2.9

.

Figure 1-6. pp-29 Disk Storage Unit

2.1e

Mass Storage Units

The basic mass storage unit for the Cray is the DD-29 Disk Storage
Unit (DSU). This unit is a 606 Mbyte disk drive with data transfer
rate of 35.3 Mbits per second.
Up to four DD-29 drives can be connected to one DCU-4 Disk
Controller. The disk controller interfaces the four disk drives
with an I/0 Processor through one direct memory access (DMA) port.
With up to 12 controllers per system, up to 48 disk drives can be
connected to the IO0S.
DD-29 operational characteristics include:

Bytes per sector: 4096

. Words per sector: 512 (64-bit words)

Sectors per track: 18

Words per track: 9216

Tracks per cylinder: 10

Words per cylinder: 92,160

Access time: 15-80 msec.
Transfer rate: approx. 34 Mbits per second

Latency : 16.7 ms
(revolution time)

2.11

A1

Magnetic Tape

An I/0 Subsystem can include an Auxiliary I/0 Processor (XIOP) with
the capability of addressing up to 16 block multiplexer channels of

tape units.

Each block multiplexer channel can be attached to IBM-compatable
control units and tape drives in a variety of configurations.

The block multiplexer channels communicate with the control units
and tape units to allow reading and writing data that can also be
read and written on IBM-compatable CPUs.

The physical characteristics of tape devices are summarized below.

The block sizes listed are for transparent-format tape datasets
(described in Lesson 5).

Physical characteristics of 200 ips, 9-track tape devices.

Density Transfer rate Data/2400 ft. $ of reel Block size
(bits/inch) | (kilobytes/sec) | reel (megabytes)| containing (bytes)
data
6250 1170 168 94 32768
1600 300 43 94 16384

2.13

CRAY X-MP mainframe with a Cray I/O Subsystem and an SSD

o Typical interface cabinet

2.4

Solid-state Storage Device

The SSD is a volatile mass storage device which uses MOS memory
chips to hold large volumes of data.

Storage capacities available include 64, 128 or 256 megabytes,
arranged in banks similar to those used in the Cray central memory
layout, although datasets are logically identical to those stored on
a disk.

The SSD avoids the mechanical constraints of conventional disk
drives (rotation, seek times, etc.) which result in significant
performance improvements when accessing datasets.

Data is transferred over four 100 Mbyte/sec channels on the CRAY-1
machines and over the 1250 Mbyte/sec channel on the X-MP.

Interface Cabinet

The CRAY computer system is designed for use with a network of
front-end computers. Front-ends connect to the MIOP of the IQS via
the asynchronous channels discussed earlier.

The front-end interfaces, consisting of electronics and cable
connections, are housed in a stand-alone cabinet.

The hardware performs command translation and protocol conversion
needed to transfer data.

2.15

CRAY 1/M

ECL MEMORY (EMITTER-COLLECTOR
(EMITTER-COLLECTOR LOGIC)

8 OR 12 COLUMNS

[0S OPTIONAL PART

z MILLION WORDS IN 8 BANKS

1 OR 2 MILLION WORDS IN 8 OR
16 BANKS

4 MILLION WORDS IN 16 BANKS

MODULE IN MEMCRY CONTAINS
1 BIT OF A 64- BIT CRAYWGRD

1 BANK/CHASSIS - 2 BANKS/COLUMN
12/5 NSEC CLOCK PERIOD
4 C,P., BANK CYCLE TIME

12 SYNCHRONOUS/ASYNCHRONOUS
CHANNEL PAIRS

li C.P. FOR SCALAR MEMORY REF.
14 C,Ps FOR FETCH ON 16 BANK
18 C.Ps FOR FETCH ON 8 BANK

50 C;PS FOR EXCHANGE SEGUENCE

1/4 & 1/2 SPEED CONTROL FOR
VECTOR REGISTER LCADS/STGRES

A./¢

M0S MEMORY (METAL-CXIDE SEnMI-
(METAL-CXIDE SzMI-CONDUCTOR)

& COLUMNS
[0S INTEGRAL PART

MILLION WCRDS IN 8 BANKS

2 OR 4 MILLION WORDS IN 16 BANK

MODULE IN MEMORY CONTAINS
8 BITS.OF A 8u4-BIT CRAYWCRD

4 BANKS/CHASSIS - 8 BANKS/COLUM:
2.2 NSEC CLOCK PERIOD
8 C.P. BANK CYCLE TIME

4 ASYNCHRONOUS

CHANNEL PAIRS

22 C.Ps FOR FETCH ON 8 BANK
Su C.Ps FOR EXCHANGE SEGUENCE

1/8, 1/4 & 1/2 SPEED CCt FC
VECTCR REGISTER LCADS/STCRES

System Configurations

Several combinations of the basic system components are supported in
the Cray computer series. Central memory is available in several
different sizes, the I/0 Subsystem is available in several different
configurations, and peripheral equipment 1like the SSD are optional.

The following is a summary of the various configurations available
with the three Cray computer systems.

2.17

CREY X-MP svstem characteristics

Configuration

tainframe with 2 Central Processing Unite (CPUs)
I1/0 Subsystem with 2, 3, or 4 I1/0 Processors
Optional Solid-state Storage Device (SSD)

CPU speed

9.5 ns CPU clock period
105 million floating-point additions per second per CPU

105 million floating-~point multiplications per second
per CPU

105 million half-precision floating-point divisions per
second per CPU

33 million full-precision floating-point divisions per
second per CPU ' ,

Simultaneous floating-point addition, multiplication,
and reciprocal approximation within each CPU

Memories

Up to 4 million 64-bit worcés in mainframe Central Memory
65,536 16-bit parcels in Local Memory of each 1/0
Processor of the 1/0 Subsysteh

6 direct memory access (DMA) ports to Local Memory (each
I/0 Processor)

l, 4, or 8 million 64-bit words of I/0 Subsystem Buffer
Memory .

8, 16, or 32 million words of SSD memory

Mass storage

600 million byte disk drive
48 disk drives maximum for I/O Subsystem
35.4 Mbits per second disk drive transfer rate

Input/Output - One 1250 Mbytes per seconé Solid-state Storage Device
(SSD) channel on mainframe
- Two 100 Mbytes per second channels between mainframe and
I/0 Subsystem for a system with an SSD
~ Four 100 Mbytes per second channels between mainframe
and I/O Subsystem for a system without an SSD
— Four 6 Mbytes per second channels
- 40 channels; input or output, 24 of which share the six
.DMA ports per I/0 Processor
- Mainframe interfaces to I/O Subsystem
Physical - 45 sqg ft floor space for mainframe

15 sq ft floor space for I/0 Subsystem

15 sq ft floor space for SSD
'5.25 tons, mainframe weight

1.5 tons, I/0 Subsystem weight
1.5 tons, SSD weight

Liquid refrigeration of each chassis

400 Hz power from motor-generators

215

MCU

For systems with an MCU, after the CrayVOperating System has been
initialized and is operational, communication with the MCU is by
software protocol.

The MCU has a software package that enables it to serve as a local
batch station during production hours. As a local station, the MCU
can submit diagnostic routines for execution or can submit other
batch jobs. These diagnostics are typically stored on a local disk
and are submitted to the Cray mainframe by operator command.

2.19

A. 2o

System Startup

The Cray mainframe is deadstarted by loading the operating system
from the 80 Mbyte MCU disk into central memory.

For systems configured with an I/0 Subsystem, the I0S is first
started from the peripheral expander magtape unit, or the 80 MB disk
drive. Once the I0S is started, the Cray can be deadstarted from
the IO0S.

Exchange Mechanism

Since the Cray is a multiprogramming machine, the hardware must be
capable of switching execution from one program to another. This is
called the Exchange Mechanism. A 16-word block of program
parameters is maintained for each program. When another program is
to begin execution, an operation known as an exchange sequence is
initiated.

This sequence causes the program parameters for the next program to
be executed and to be exchanged with the information in the
operating registers.

Operating register contents are saved for the terminating program
and the registers entered with data for the new program.

Exchange sequences are initiated automatically upon occurrence of an
interupt condition, or voluntarily by the user or by the operating
system through normal exit instructions.

The Exchange Mechanism and Exchange Packages for the Cray-1 and X-MP
are discussed in detail later in this course unit.

2.21

STP

222

LESSON 3: Software Components

”
Objective: List the software components of the Cray
system, and their function.
*
CRAY SOFTWARE

The Cray computer requires three types of software:

o * an Operating System
* Language Systems

* Applications Programs
The I/0 Subsystem also requires its own set of software, including:

* An Operating System

* I/0 and Communications software

The CRAY OPERATING SYSTEM

The Cray Operating System (COS) consists of memory resident and mass
storage resident programs that manage resources, supervise job
processing, and perform input/output operations.

COS consists of the following modules that execute on the CPU(s):

* The Executive (EXEC)
* System Task Processor (STP)
* Control Statement Processor (CSP)

* Utility Programs

3.1

INTERRUPT HANDLERS

Mass TCB n
Storage
Resident 4
Ccos
LDR TCB 1
C Idle STP
] 1 Program
P
1
Common
to Routines
current
user task
Interrupt xpr Task
xpf 0
J Xp
EXEC Task
.} Interchange ;/' 1
e
////)f Xp
L Task
Y Scheduler Task
Interrupt Handlers 2
\\ //
Xp
Y
Channel Processors
‘ Y Y A X 5~\\‘ Task
Monitor Front- Disk/ Packet n
Request end SSD I/0
Processor Driver Driver Driver
Y ¥y K’ ' Y

System control

t One Exchange Package per CPU

2.2

EXEC
The system Executive (EXEC) is the control center for the Cray
operating system. It alone accesses all of memory, controls the I/0
channels, and selects the next program to execute. Components of
EXEC include:

* An interchange routine

* - Interrupt handlers

* Channel processors

* A monitor request processor

* A Front-end driver

* A Disk and SSD driver

* A packet I/0 driver

* A Task Scheduler

STP

The System Task Processor (STP) runs in user mode and accesses all
memory other than that occupied by EXEC and is responsible for
processing all user requests.

STP consists of a set of routines called tasks, tables, and some
reentrant routines common to all tasks. It is these tasks that
perform the bulk of the work in job processing.

csP

The Control Statement Processor (CSP) is a system program that
executes in the user field. CSP initiates the job, cracks the
JCL statements, processes system verbs, advances the job step-by-
step, processes errors, and ends the job.

Utilities
Utility programs include the loader, a library generation program
(BUILD), a source language maintenance program (UPDATE), permanent

dataset utility programs, copy, and positioning routines, etc.

3.3

INTERRUPT HANDLERS

STP

Common
Routines

Task

Task

Mass TCB n
Storage
Resident CAL 4
Ccos CFT
|

LDR TCB 1| 4

C Idle

S 1 Program
P
A
to

current
user task

Interrupt xpr

xpr
A
X
EXEC
.| Interchange
,//A;' Xp
= Task
Y Scheduler
Interrupt Handlers ‘\\\
N
Xp

Y
Channel Processors

A Y y ¥

Task

t

Monitor | Front- Disk/ Packet
Request end SSD 1/0
Processor Driver Driver Driver

Y Y Y s Y

System control

t One Exchange Package per CPU

1.4

-

Task

LANGUAGE SYSTEMS
Currently, five language systems developed by Cray Research are
provided for the Cray computer system. They are:

* The FORTRAN compiler (CFT)

* The Cray Assembyy Language program (CAL)

* The PASCAL compiler

* and A Programming Macro Language (APML) for the I0S.

CFT

The Fortran compiler is designed to take advantage of the vector
capability of the Cray computers.

The compiler itself determines the need for vectorizing and
generates the code accordingly. Optimizer routines examine Fortran
source code to see if it can be vectorized. The compiler conforms
to ANSI Fortran 77 standards.

CAL
The CAL assembler provides users with a means of expressing all
hardware functions of the CPU symbolically. Augmenting the
instruction set are pseudo instructions that provide users with
options for generating macros.

Most of the software provided by Cray Research, including the
operating system, is coded in CAL.

Pascal

The Pascal compiler supports the ISO Version 1 Pascal standard and
also provides extensions to that standard.

3.5

3.6

APML Assembler

The APML assembler executes on the Cray mainframe and generates
absolute code that is executable in the Cray I/0 processors of the
I/0 Subsystem.

It is used to generate the I/0 Subsystem software.

LIBRARY ROUTINES

Cray software includes a group of subprograms that are callable from
CAL or FORTRAN programs. These subprograms reside in libraries
named $ARLIB, $FTLIB, $I0LIB, $UTLIB, $SCILIB, $SYSLIB, and $PSCLIB.

They are grouped by UPDATE deck name within each 1ibrary. (UPDATE
is the source maintenance utility.)

$ARLIB contains routines primarily concerned with returning
some numeric result. Mathematical routines intrinsic to
FORTRAN such as SIN and XOR reside here.

$FTLIB contains CFT-specific routines such as LEN (length of
argument)

$I0LIB contains routines that move data from external devices
to main memory or control that movement (WRITEC, COPYR, etc.)

$UTLIB contains special utility programs such as TIMEF which
returns elapsed time in millisecs since last call, and CRAYDUMP
which prints a memory dump to a specified dataset.

$SCILIB routnies perform operations such as matrix multiply or
Fast Fourier transform and must be explicitly called.

$SYSLIB routines usually link directly to the operating system
through a normal exit. These routines are not usually
accessable to a user, but are called by $I0LIB and $UTLIB
routines for specific tasks.

In general, $SYSLIB serves as a 1ink between the general
purpose $I0LIB and $UTLIB routines and the details of COS.
$SYSLIB routines depend on specific COS features.

An example of a $SYSLIB routine is CCS which cracks job control
statements for the Control Statement Processor (CSP).

3.7

I10S SOFTWARE
The major parts of I/0 Subsystem software are:

* The Kernel

* Disk input/output

* Tape Exec

* Block Multiplexer Channel Interface
* The Station

* The Front-End Concentrator

* The Interactive Station

The Kernel

The Kernel serves as the operating system for the I/0 Processors.
A copy of the Kernel runs in each IOP and adapts itself to the
special functions of that processor.

Kernel functions consist of answering interrupts, managing overlays
areas, and handling independent activities running in the I/0 Sub-
system.

Because of the limited size of local memory (65K), the I/0
Processor software uses overlays extensively. An overlay is an
executable program or subroutine that normally resides in Buffer
Memory. It is called into local memory by the Kernel to perform its
specific function.

Disk Input/Qutput

The I/0 Subsystem for the Cray X-MP and Cray 1 models S/1200 through
S/4400 provides for operator station-maintenance functions and also
is a substitute for disk controllers.

The disk software provides I/0 execution times for I/0 requests that
are comparable to times using the disk controller and allows a
greater number of concurrent disk I/0 requests or streams to occur
through the use of buffering in Buffer Memory.

3.8

Tape Exec

The block multiplexer Tape Exec is composed of activities necessary
to route messages, process requests, format and move data, and
recover from errors.

The Tape Exec receives tape requests from the Tape Queue Manager

(an STP system task). Requests are read into the MIOP across the 6
Mbyte channel. Based on the ID, the request is sent to the XIOP for
disposition.

The Block Multiplexer Channel Interface

The block multiplexer channel interface provides an interface
between any block multiplexer device driver (such as the driver for
magnetic tape) and block mulitplexer channel hardware. The
interface performs channel selection and load leveling, channel
error recovery and reporting, and device-independent command and
interrupt sequences.

The Station
The station is a collection of closely associated tasks executing in

the MIOP that provide operator command and display facilities and
dataset staging capabilities independent of any front-end computers.

The Front-End Concentrator

The 1/0 Subsystem Concentrator relieves the mainframe from the
burden of handling the interrupts for each subsegment of messages
transferred between the mainframe and attached front ends.

The concentrator looks like a Cray channel pair from the front-end's
point of view, so no changes are necessary in existing front end
stations. The concentrator can handle data from multiple IDs
through one channel, even though each front-end ID may have a
different segment size.

3.9

The Interactive Station

The interactive station is a set of tasks running in the Master I/0
Processor that permit consoles connected directly to the MIOP to
become attached to mainframe jobs. A job is created in the
mainframe when an interactive console logs on.

This station is composed of two parts, the interactive concentrator
and the interactive console. The interactive concentrator gathers
messages from the consoles, sends them to the mainframe, receives
responses, and distributes them to the console routines. The
interactive console routines handle the input and output from and to
the consoles and prepare messages to be sent to the mainframe via
the interactive concentrator.

3.10

STATION SOFTWARE
Station software provides the interface between the Cray computer
system and the Front-end computers supplied by other manufacturers.
22299 the front-end systems currently being used with Cray computers

* IBM / MVS

* IBM / VM

* CDC NOS

* CDC NOS/BE

* DEC VAX/VMS

* DGC RDOS

IBM /MVS

The Cray/IBM MVS station provides the 1ink between an IBM System/370
or 370 compatable and the Cray computer system.

The station provides for:
* Job submission at TSO terminals
* Local Batch Entry
* Remote Batch Entry
* Transfer of job and data files between MVS magnetic

storage and Cray mass storage.

An operator communicates with the MVS station and the Cray via
commands entered at an MVS station console or a TSO terminal.

3.11

IBM /MVS (continued)

The operator at an MVS station console can query and dynamically
alter the status of jobs and the MVS station. The TSO user can only
query and dynamically alter the status of jobs with a terminal ID
(TID) equal to the user's TSO logon ID.

One station in the Cray system is designated at installation time as
the master operator station. The operator of this master station
has complete control of COS and can manipulate all jobs in the
system, control all mass storage, and set COS system parameters.
A11 other stations in the system can only alter those jobs
pertaining to that station.

CDC NOS & NOS/BE

The CDC NOS station controls the link between a Cray combuter system
and the Control Data Corporation Cyber 70, 170 or 6000 Computer
System. This interface enables:

* Remote and local batch access to the Cray for users of the
CDC system, and

* Job and data file transfer between CDC mass storage or
tape and Cray mass storage.
Job files can be transmitted only from NOS to COS, not vice versa.
The physical connection between the Cray and the CDC computers may
be a channel-to-channel front-end coupler device manufactured by

Cray Research, or via a Hyperchannel network, manufactured by
Network Systems Corp.

3.12

LESSON 4: Memory Layout

Objective: Describe the general organization and
layout of the Cray and I0S main memories.

INTRODUCTION

COS is Toaded into Central memory and activated through a system
startup procedure performed at the MCU or 1/0 Subsystem.

Memory is shared by:

* cos,
* Jjobs running on the Cray mainframe,
* dataset I/0 buffers,

* and system tables associated with those jobs.

COS allocates resources to each job, when needed, as these resources
become available.

As a job progresses, information is transferred between central
memory and mass storage. These transfers can be initiated by either
the job or by COS.

4.1

SYSTEM MEMORY ASSIGNMENTS

EXEC TABLE AREA
EXEC

STP TaBLE AREeA
STP
CSP

UseEr AREA]

User AREA?

User AREA3

User AREAY

User AREAN

CRAY-0S sYSTEM
LOG & STATION
BUFFERS

: JOB TABLE AREA

JOB COMMUNICATION BLK.

' User BA

USER
PROGRAM
AREA

170 TABLES &
DATASET BUFFERS

BA+200g

JCHIM
User LA

MAX1MUM
MeMORY

.2

Memory Resident COS
COS occupies two areas of central memory. The memory-resident
gg:tion of the operating system occupying the lower memory consists
* Exchange Packages
* The System Executive (EXEC)
* The System Task'ProcesSor (STP)

* and optionally, The Control Statement Processor (CSP)

The memory-resident portion of the operating system occupying
extreme upper memory contains:

* Station I/0 buffers
* space for the System Log buffer, and

* Permanent Dataset Catalog (DSC) information & buffers

4.3

SYSTEM MEMORY ASSIGNMENTS

EXEC TaBLE AREA
EXEC

P

STP TABLE AREA

STP

CSP

User ArReAl

User AREA?2

User AREA3

User AREAq

User AREAN

CRAY-0S sYSTEM
LOG & STATION
BUFFERS

: JOB TABLE AREA

JOB COMMUNICATION BLK.,

' User BA

USER
PROGRAM
AREA

1/0 TABLES &
DATASET BUFFERS

BA+200g

JCHLNM
User LA

MAXIMUM
MEMORY

.Y

USER AREA

COS assigns every job a user area in central memory. The user area
consists of a Job Table Area (JTA) and a User Field.

Job Table Area - JTA

For each job, the operating system maintains an area in memory that
contains ‘the parameters and information required for monitoring and
managing the job. This area is called the Job Table Area (JTA).
Each active job has a separate Job Table Area adjacent to the job's
User Field. The Job Table Area is not accessable to the user,
although it can be dumped for analysis.

The JTA contains jobrelated information such as accounting data; Job
Execution Table pointer; areas for saving B, T, and V register
contents; control statement and logfile Dataset Parameters; a
logfile buffer; and a Dataset Name Table area which contains an
entry for each dataset used by the job. In addition, task control
blocks (TCBs) defining attributes of each executable user task are
maintained.

User Field

The user field for a job is a block of memory immediately following
the job's JTA. The user field is always a multiple of 512 words.

The user field, in addition to being used for user-requested
programs such as the compiler, assembler, and application programs,
is also the area where utility programs such as the loader, copy and
positioning routines, and permanent dataset utility programs
execute. CSP also executes in the user field.

The beginning or Base Address (BA) and the end or Limit Address (LA)
are set by the operating system. The maximum user field size is
specified by a parameter on one of the JCL statements that accompany
the job, or by an installation-defined default.

A user can request that the user field size increase during the
course of a job.

The first 128 words of the user field (200 octal) are reserved for
an operating system/job communication area known as the Job Communi-
cation Block (JCB). The JCB contains a copy of the current control
statement for the job as well as other job-related information.

4.5

/1111777777777 7777777777777777/777/7/7/77/7//77777777777//
V/1111777/7/7777/7/
Y /111177]
y////////////////// Job Table Area [///////////////////
/111171177777 7777777777777777777777777//77//7/7777777/7/
LI

Job Communication Block

User code/data

Blank Common

Heapf

//1111717177777777777777777777/7777//77/7//77/77////7777/
/////////////7///////// CUnused [///////////////77/7/77
LI AL L

Logical File Tables

Dataset Parameter Area

I1/0 Buffers

Y. e

| user

field

Programs are loaded starting at BA + 200 (octal) and reside in the
lTower portion of the user field. The user field addressing limit is
equal to LAl.

The upper portion of the user field contains dataset buffers and I/0
tables.

Tables that reside in the user field include:

BAT ~ Binary Audit Table. This table contains an entry for each
permanent dataset that meets requirements specified on the
AUDIT control statement, and for which the user number
matches the job user number.

DDL Dataset Definition List. A DDL in the user field
accompanies each request to create a DNT (Dataset Name
Table) in the user's JTA.

DSP Dataset Parameter Area. A DSP in the user field contains
the status of a particular dataset and the location of the
I/0 buffer of the dataset.

JAC Job Accounting Table. This table defines an area for data
to be returned to the user by an accounting request.

JCB Job Communication Block, residing at the very beginning of
the user area and containing information used by both COS
and library routines. Copies of the more important
pointers are kept in the job's JTA to assist in JCB vali-
dation and recreation.

LFT Logical File Table. This table in the user field contains
an entry for each dataset name and alias referenced by
Fortran users. Each entry points to the DSP for a dataset.

ODN Open Dataset Name Table. A request to open a dataset for
a job contains a pointer to the ODN table in the user field.

PDD Permanent Dataset Definition Table. A PDD is used by CSP
for many permanent dataset requests.

4.7

EXEC constant, data and table areas

EXEC program area

STP table area

STP program area

csp areaf

Available
for
jobs

— —— ——— S— q——

Memory for CRAY-OS
System log and station
buffers

Y. g

COS Residence

As mentioned previously, the lower portion of COS residence
includes:

* The System Executive (EXEC)

* The System Task Processor (STP)

* ° and optionally, The Control Statement Processor (CSP)

EXEC

The EXEC portion of COS has a base address (BA) of 0 and a limit
address which is set by an installation parameter. The EXEC area of
memory consists of the EXEC Constant, Data, and Table Areas, and the
EXEC Program area.

The EXEC Constant area contains all EXEC tonstants. The constants
are functionally grouped, and include:

* Constant memory locations
* Front-end Driver constants
* Packet I/0 Driver constants

The EXEC Data area contains all EXEC data not in the form of tables.
The data in this area is functionally grouped, and includes:

Initial and warm-boot exchange packages (at location 0)
Space reserved for DDC (SYSDUMP utility)
Identification (at location 1400 octal)
Pointers to EXEC Tables

Stop Message Buffer

X-MP cluster register dump area

Disk/SSD Driver data

Packet I/0 Driver data

Front-end Driver data

EXEC Messages

Miscellaneous data

* % % & F ¥ * ¥ * F ¥

4.9

EXEC constant, data and table areas

EXEC program area

STP table area

STP program area

CspP arear

Available
for
jobs

Memory for CRAY-0S
System log and station
buffers

4. /0

The EXEC Table area contains all EXEC tables, alphabetically
ordered. A description of these tables and there function is
discussed in Lesson 10 of this unit.

The EXEC Program area contains interrupt handlers, channel
processors, task scheduler, the drivers (disk, I/0 Subsystem, and
front-end), system interchange, request processors, and debug aids.

EXEC has a base address (BA) of 0 and a 1imit address (LA) equal to
the installation parameter IGMEM.

Explanation of the purpose and function of these EXEC components is
discussed in Lesson 10 of this unit.

4.11

EXEC constant, data and table areas

— e ot — —l — e c— — g —— o—— — - — p—— o— —

EXEC program area

STP table area

— o — —— — — — — — ——— — . —— — — — oy v— —

STP program area

Csp areaf

— — — —

Available
for
jobs

Memory for CRAY-OS
System log and station
buffers

H. 12

System Task Processor

The second major component of COS residence is STP. STP is the
portion of COS which is responsible for processing all user requests.
The STP area consists of tables, a set of programs called tasks, and
some reentrant routines common to all tasks.

STP Program area

The STP program area consists of the system tasks and the reentrant
routines. A System task serves a specific purpose in the job
processing cycle.

The system tasks and their abbreviations are:

Startup (STP)

Disk Queue Manager (DQM)
Station Call Processor (SCP)
Exchange Processor (EXP)

Job Scheduler (JSH)

Permanent Dataset Manager (PDM)
Log Manager (MSG)

Message Processor (MEP)

Disk Error Correction (DEC)
System Performance Monitor (SPM)
Job Class Manager (JCM)

Overlay Manager (OVM)

Tape Queue Manager (TQM)

Stager (STG)

Flush Volatile Device (FVD)

* % % % % % o F % % * * % ¥ %

The detailed function of these system tasks and STP in general is
discussed in Lessons 12 and 13 of this unit.

STP Table area

This area contains 35 different tables accessable to all STP tasks.
The purpose and layout of the individual tables will be discussed
in Lesson 12 of this unit as well as during Unit 3: COS Internals.

4.13

EXEC constant, data and table areas

EXEC program area

STP table area

STP program area

CsSP arear

Available
for
jobs

Memory for CRAY-0S
System log and station
buffers

.14

Control Statement Processor (CSP)

An image of CSP is maintained either in memory following STP or on
mass storage, depending on an installation parameter.

CSP is copied into each user field where it executes each time the
job requires interpretation of a control statement.

CSP is discussed in greater detail in Lesson 18 of this unit.

4.15

65,536

15

Kernel constants and tables

Kernel code

Overlay area

DALs for communication
among the I/O Processors

Free memory for Kernel tables,
small buffers, and data areas

1/0 buffers

Local Memory structure

Y. 16

I1/0 Subsystem

The Kernel

The Kernel is the software package that controls activities running
in each I/0 Processor. Although each I/0 Processor has its own copy
of the Kernel, all copies are basically the same.

Local Memory Usage

Kernel code is stored in local memory apart from the constants and
tables it references. The table area contains configuration maps,
memory allocation tables, activity dispatching parameters, and
information about overlays in buffer memory and local memory.

Overlays

Because of the limited size pf local memory, the I/0 Processor uses
overlays extensively. The overlay is read into loacl memory when
activated to perform some function. Overlay space is allocated
dynamically as new overlays are loaded.

DALs

The DAL area contains a linked 1ist of 32-parcel communications
packets.

Free Memory

The free memory area is used for Kernel tables and small buffers and
is organized as a chain structure. Free memory is allocated in
multiples of four parcels.

I1/0 Buffer area

The I/0 buffer area is allocated in increments of 512 64-bit words.

The relative size of each of these types of areas in local memory is
determined by installation parameters, and depends on the functions
that each IOP performs. For example, an IOP used exclusively for
disk I/0 has a greater share of local memory assigned to I/0 buffers
than an IOP which performs a different function.

4.17

0 63

Deadstart package

System Directory

Message area (For communicating control information)

MIOP ' (Size of area set in AMAP

* BIOP - for each IOP. Each
I0P-2 (DIOP) message area is 40g
IOP-3 (DIOP or XIOP) parcels.)

AMAP - (Units attached to each IOP)

Overlays (Read only, shared by all IOPs)

MIOP Kernel storage:
- Tables and queues
Software stack area (400g each)

I/0 buffers
Trace buffer

Other memory requirements

IOP-2 Kernel stofage (same as MIOP Kernel storage description)

IOP-3 Kernel storage (same as MIOP Kernel storage description)

BIOP Kernel storage (same as MIOP Kernel storage description)

Buffer Memory resident datasets

Buffer Memory organization

.8

Buffer Memory Usage

The I/0 Processors share Buffer Memory.

The first locations are reserved for a deadstart package. During
deadstart, the MIOP initializes common tables and the System
Directory so that all the control information is ready to begin
execution when the other I/0 Processors are deadstarted.

System Directory

The System Directory begins at the first address after the deadstart
package. It contains pointers to other information saved in Buffer
Memory, including message area locations for each processor, and
pointers to Kernel storage reserved for each processor. Al1l the
I0Ps can access the System Directory, but information in the
directory can be changed only by the MIOP during deadstart.

Message Areas

Message areas accessed by senders and receivers of messages follow
the System Directory. The sending I/0 Processor maintains control
of the area and allocates or deallocates memory within it. The
receiving processor signals when the message has been received and
processed. The memory is then released to the pool of message areas
belonging to the sender.

Kernel Area

Each IOP has access to its own reserved Kernel storage area, which
holds temporary information about activities and swapped activity
areas. Reserved areas also provide data buffer storage for disks
and other peripherals. A buffer also is reserved for history trace
information. Each area is solely under the control of its
respective 1/0 Processor.

Buffer Memory Resident Datasets

Part of Buffer Memory can be allocated for COS dataset storage.

4.19

Disk
unit

DCU‘Z r 3
Controller

I1/0 Channel

s

CRAY-1 or
CRAY X-MP CPU

DCU-2, DCU-3 controller configuration

M10P
7 DCU-4
Deu-4
Deu-4 aiop
DCU-4
peu-4
DCU-4 OPTIONAL
DCu-4 bioP
0Cu-4
oCu-&
ocu-4 OPTIONAL
oCU-4 piop
DCu-k
1/0 SUBSYSTEM

n

CRAY-1 or CRAY X-MF
CrPU

DCU-4 controller configuration

Y. 20

LESSON 5: Mass Storage Organization

*
Objective: Describe the organization and layout of
the Mass Storage subsystem, and the types
 S—— and formats of the datasets used within the
system.

DISK STORAGE

Depending on the Cray computer model, mass storage consists of I0S
Buffer Memory, an SSD, and/or up to 48 DD-19 or DD-29 disk drives.

The DD-29 Disk Storage Unit is a 606 Mbyte drive with a data
transfer rate of 35.3 Mbits per second. Each disk storage unit
contains a device label, datasets, and unused space to be allocated
to datasets.

One of the storage units will be designated the Master unit, and
will contain the Dataset Catalog for all the datasets in the system.

5.1

~ _
NG

*—

N2

DATASETS

B

;

MASTER
DEVICE

)

T
DATASETS

DEVICE

5.2

DATASETS

~_

DEVICE

Mass storage organization

Formatting

Before a unit can be introduced into the system, it must be
formatted. Formatting is the process of writing cylinder, head, and
sector addresses onto the disk drive. This process is performed
off-1ine by field engineers, and unless addressing information has
been inadvertantly destroyed, formatting is performed only once.

Device Label

A disk storage unit must be labeled before it can be used by the
system. The Install program writes a Device Label Table (DVL) on
one track of each DSU. The DVLs act as the starting point for
determining the status of mass storage when the system is dead- -
“started or restarted. The location of the DVL is usually, but not
required to be, the first track on the device.

Flaw Information

A Device Label contains a list of flaws (bad tracks) for its disk
storage unit. Initial flaw information is obtained from an
engineering diagnostic run before the Install program. This initial
flaw information is stored on the device in a special table called
the Engineering Flaw Table (EFT).

The EFT is written to sector 17 (decimal) of the first track that
can be successfully reread on the device (no more than 10 tracks are
tried). No EFT is written if no track in the first 10 tracks can be
written and reread successfully. Install reads back each DVL after
writing it to verify the integrity of the DVL. If the Device Label
cannot be read back perfectly, then the track is overwritten with a
test pattern and a different track is tried.

The Device Label is the last track written by Install so that all

flaws, even any discovered while trying to write the DVL itself, are
recorded in the DVL.

5.3

N

~ e
LI
*—

DATASETS

N _L;,//

. BV

MASTER
DEVICE

\

| DATASETS

DEVICE

'DATASETS

DEVICE

Mass storage organization

C.9

Device Label (continued)

Dataset Allocation Table (DAT) for DSC

The Device Lable Table (DVL) for the Master device maps the Dataset
Catalog (DSC) since it contains the complete Dataset Allocation
Table (DAT) for the Dataset Catalog except for DAT page headers.

Dataset Catalog (DSC)

The Device Label Table (DVL) for the Master device states which
tracks comprise the Dataset Catalog (DSC). Similarly, the Data-
set Catalog states which tracks comprise each of the currently
cataloged datasets.

Device Reservation Table

Deadstart and Restart update the Device Reservation Table (DRT) in
STP-resident memory to reserve these dataset tracks so that the
existence of permanent datasets is known to the system when it is
deadstarted or restarted, as opposed to Install which assumes that
all of mass storage is vacant.

Special consideration is given to job input and job output datasets.
Deadstart deletes all input and output datasets, defined by flags in
the Dataset Catalog. Entries for these datasets in the DSC are
zeroed. Restart, on the other hand, recovers the job input and
output datasets.

Mass Storage Management

The system task Disk Queue Manager (DQM) controls the simultaneous
operation of disk storage units on CPU I/0 channels or the I/0
Subsystem. DQM provides allocation and deallocation of mass storage
and other management functions. A detailed discussion of DQM will
occur later in this course unit.

5.5

c.C

DATASETS
Nearly all information maintained by COS is organized into units of

information known as datasets. The following are some of the
important factors to remember about datasets:

* The dataset medium is the type of physical device on which
the dataset resides.

* The dataset structure is the logical organization of the
dataset.

* The dataset longevity is the retention period for the
dataset.

* A dataset must be Tocal to be usable.

* The dataset disposition code tells COS what action to take
when the dataset is no longer local.

* Each dataset is known by its dataset name.

* Datasets are read and written using operating system
requests (user I/0 interfaces).

Dataset Medium

Datasets can be classified by medium, such as:
* Mass Storage datasets
* Memory-resident datasets
* Interactive datasets

* Magnetic Tape datasets

5.7

S

Mass Storage Datasets

Mass storage datasets are of two types:

* LOCAL
* PERMANENT

Local Datasets

A local dataset exists only for the life of the job that created it
and can be accessed only by that job.

Permanent Datasets

A mass storage dataset is permanent if it has an entry in the
Dataset Catalog on disk. A permanent dataset is available to the
system and can survive system deadstarts.

Permanent datasets are of two types:

* User Permanent datasets
(those created with directives), and

* System Permanent datasets
standard job input and output datasets

User Permanent Datasets

User permanent datasets are maintained for as 1ong as the user (or
installation) desires. A user permanent dataset is protected from
unauthorized access through permission control words.

The user can create a permanent dataset by prestaging a dataset from
a front-end computer system or by using the SAVE or ACQUIRE control
statements or macro.

A user accesses a user permanent dataset by using the ACCESS control
statement or macro.

5.9

5.0

User Permanent Datasets (continued)

A dataset can be removed from the system with the DELETE control
statement or macro.

More than one authorized user can access a permanent dataset. A
user wishing to write on, or otherwise alter a permanent dataset,
must have unique access. Multiple users wishing to simply read the
dataset may have multiaccess.

System Permanent Datasets

Some permanent datasets similar to user datasets are created and
maintained by the system. Users cannot delete or access these
datasets, because the system has unique access to them. One such
dataset is the Rolled Job Index Dataset, which is created or
accessed by the Startup task and remains in use throughout the
operation of the system. (more about "rolled job index" later).

System permanent datasets are job related. Each job's input dataset
is made permanent when the job is received by the Cray computer
system. When job processing ends, certain of the job's local
datasets having special names or which were given a disposition
other than scratch by the user, are made permanent and the job's
input dataset is deleted from mass storage. The output datasets
that were made permanent are sent to a fron-end computer system for
processing. They are deleted from mass storage when their receipt
has been acknowledged by the front-end computer system.

5.11

Memory Resident Datasets

Some datasets can be specified by the user to be memory-resident
datasets. A memory-resident dataset is wholly contained within one
buffer and remains in the user's area of memory at all times.

A dataset can be declared memory resident to reduce the number of
I/0 requests and disk blocks transferred. Memory residence is
particularly useful for intermediate datasets not intended to be
saved or disposed to another mainframe.

A11 I/0 performed on a memory-resident dataset takes place in the
dataset buffers in user memory and the contents of the buffers are
not ordinarily written to mass storage. Such a dataset cannot be
made permanent, nor may it be disposed to another mainframe, unless
first copied to mass storage.

A user attempting to write to a memory-resident dataset must have
write permission. However, as long as the buffer is not full, no
actual write to mass storage ever occurs. Therefore, changes made
to an existing dataset declared memory-resident are not reflected on
the mass storage copy of the dataset (if one exists).

If at any time the system I/0 routines are called to write to the
dataset and the buffer appears full, the dataset ceases to be
treated as memory-resident, the buffer is flushed to mass storage,
and all memory-resident indicators for the dataset are cleared.

Magnetic tape, execute-only, and interactive datasets cannot be
declared memory-resident.

Interactive Datasets

A dataset can be specified as interactive by an interactive job,
provided that interactive datasets are supported by the front-end.
Batch users cannot create interactive datasets.

An interactive dataset differs from a local dataset in that a disk
image of the dataset is not maintained. Instead, records are
transmitted to and from a terminal attached to a front-end station.
Record positioning (such as Rewind or Backspace) is not possible.

5.13

Magnetic Tape Datasets

A magnetic tape dataset is available to any job declaring tape
resource requirements on the JOB statement and specifying the
appropriate information on its access request.

A magnetic tape can be unlabeled (NL), ANSI standard labeled (AL),
or IBM standard labeled (SL), and can be recorded or read at either
1600 or 6250 bits per inch (bpi).

COS automatically switches volumes during dataset processing and
returns to the first volume of a multivolume dataset in response to
a REWIND command. If a permanent write error occurs when trying to
write a tape block for the user, COS automatically attempts to close
the current volume and continues to the next volume.

The COS tape system uses Buffer Memory as a tape block buffering
area so that the job's I/0 buffer need not be as large as the tape
block. This technique can result in significant memory savings
whenever large tape blocks are being processed and in increased
transfer rates whenever smaller blocks are being processed. The
advantage in having a large COS buffer is a reduction in the
overhead in the tape subsystem.

With release 1.13, positioning support for tape datasets is
possible. Users can position a tape dataset at any block on any
volume, obtain the current position information for a tape dataset,
and enable recovery of tape jobs after a system interruption.

Also, a MOD parameter has been added to the ACCESS control statement
for use with on-1ine tapes. When MOD is specified on an access of a
tape dataset, any data written to the dataset is appended to the
data already contained in the dataset rather than being written from
the beginning of the dataset.

5.15

Dataset

T

File; File, ce Filen

Record; Record, | ... [Record,

Data hierarchy within a dataset

c/c

Dataset Structures

COS supports several dataset structures:

* Blocked Format
* Interactive Format
* Unblocked Format

* Tape formats (interchange or transparent)

Blocked Format

Blocked format is used by default for external types of datasets,
such as user input and output datasets. Record positioning requires
a blocked format. The blocked format adds control words to the data
to allow for processing of variable-length records and to allow for
delimiting of levels of data within a dataset.

A blocked dataset can be composed of one or more files, which are in
turn, composed of one or more records.

The data in a blocked dataset can be coded and/or binary. Blanks
are normally comoressed in block coded datasets. Each block
consists of 512 words.
Blocked datasets use two types of control words:

* block

* record.

5.17

777777

Dataset R6(null)
I
l
0 772 2 — sew
7/ ' 0 —
F3 (null) ////////// -

FA RS Tz

4

SV]] <
W77/ 0 o 0

Example of dataset control words

5. 18

Block Control Word

The block control word (BCW) is the first word of every 512 word
block.

0 8 16 24 32 40 48 56 63
MI//177777\ N 17777777777777777) BN | FWI
N\ BDF
Field] Description
M Type of control word (BCW=0)
'BDF Bad Data Flag. The following data, up

to the next control word, is bad.
(magtape datasets only)

BN Block Number (first is 0)

FWI Forward Index. The number of words
(starting with 0) to the next record
or block control word.

5.19

T,
7

o 777222 2 ———
2/ T

F3 (null) % //////A ___________ EOF
F4 RS 0 7 3 | Bew
10| 60 2 1 7 EOR
7/ ‘ 0 EOF

Record Control Word

A record control word (RCW) occurs at the end of each record, file
or dataset.

TRig///"‘BDF
8 / 16 24 __32 40 48 56 63

0
Ml usc IViIViy//1 PFI I PRI | FwWI
Field Description
M Type of control word:
10 = EOR
16 = EOQF
17 = EOD
UBC Unused Bit Count
TRAN Transparent record field; used for
interactive output dataset only
BDF Bad Data Flag; the following data, up
to the next control word is bad.
Used for magtape datasets in interchange
format.
PFI Previous File Index. Index (in blocks)
to the beginning of the file.
PRI Previous Record Index. Index to the block
where the current record starts.
FWI Forward Word Index. Points to the next

control word (number of data words up to
the control word)

5.21

g.22

Interactive Format

Interactive format closely resembles blocked format; howéver, each
buffer begins with a block 0 Block Control Word (BCW).

Each record transmitted in an interactive mode to or from COS must
contain a single record consisting of a Block Control Word, data,
and an end-of-record Record Control Word.

Two formats for interactive output can be assigned when the dataset
is created: character blocked and transparent. Character blocked
mode is the default. In this mode, an end-of-record RCW is
interpreted as a line feed or carriage return. In transparent mode,
the end-of-record RCW is ignored and the user must provide carriage
control characters.

Unblocked Format

Dataset I/0 can alos be performed using unblocked datasets. The
data stream for unblocked datasets does not contain RCWs or BCWs.

The stream does not allocate buffers in the job's I/0 buffer area
for unblocked datasets; the user must specify an area for data
transfer.

When a read or write is performed on an unblocked dataset, the data
goes directly to or from the user data area without passing through
an I/0 buffer. The word count of data to be transferred must be in
multiples of 512.

5.23

TAPE DATA AS IT APPEARS IN I/0
BUFFER (IN 512-WORD UNITS)

DATA IN TAPE BLOCKS

VoLl Header Label
Group (if labeled)

HDR1

HDR2

* (Tapemark)

7/ ——

Bw | o ////// N R

block 0
EOR
EOR .

block 1
BCW

block 2
EOR
BCW N ~ last

data

data block
EOR 10| 60 N 1 0 '4 b (Tapema;:ﬂ End of Data
EOF 16 00 N 0 0 EOF1 Label Group
(if labeled)
EOD 17 no 0 0 0
EOF2 OR
End of Volume
unused - Label
Group
* (if labeled)

Interchange-format tape dataset
(octal values shown)

5.24

* (Tapemark)

EOV1

EOV2

Tape Formats

Tape datasets can be read or written using two different formats:
* Interchange

* Transparent

Interchange Format

Interchange format enables reading and writing of tapes that are
also to be read and written on other vendor's systems.

In interchange format, each tape block of data corresponds to a
single logical record in COS blocked format (that is, the data
between record control words).

In interchange format, tape blocks lengths can vary up to an
installation-defined maximum which cannot exceed 1,048,576 bytes
(131,072 64-bit words). It is recommended that the maximum block
size not exceed 100 to 200 Kilobytes. Blocks exceeding these sizes
may require special operational procedures (such as the use of
specially prepared tape volumes having an extended length of tape
following the end-of-tape (EOT) reflective marker) and yield little
increase in transfer rates or storage capacity.

When a dataset is read in interchange mode, physical tape blocks are
represented in the user's I/0 buffer with block control words (BCWs)
and record control words (RCWs) added by C0S. The data in each tape
block is terminated by an RCW. The unused bit count field in the
RCW indicates the amount of data in the last word of the tape block
that is not valid data. A BCW is inserted before every 511 words of
data, including the RCWs. The format of RCWs and BCWs are described
previously in this lesson.

5.25

§.26

Interchange Format (continued)

When a tape dataset is written in interchange format, the data must
be in the I/0 buffer in the user field in COS blocked format. The
data in each logical record is written as a single tape block. BCWs
and RCWs are not recorded on tape. BCWs within a record are
discarded and the unused bits and terminating RCW are also
discarded. The unused bit count must be a multiple of 8. Tape
datasets written in interchange mode must consist of a single file
(single EOF RCW). Multiple-file tape datasets are not supported in
interchange mode.

Transparent Format

In transparent format (disk image), each tape block is a fixed
multiple of 4096 bytes (512 words), generally based on the dataset
density (that is, 16,384 bytes at 1600 bpi and 32,768 bytes at 6250
bpi). The data in the tape block is transferred unaltered between
the tape and the I/0 buffer in the user field; no control words are
added on reading or discarded on writing.

In transparent mode, the data can be in COS blocked format or COS

unblocked format. Transparent format tapes are not generally read
or written by other vendor's equipment.

5.27

1Y

——

.-JCONTROL STATEMENTS
11 [J08,IN=._.

JCL CONTROL STATEMENT
FILE

527

LESSON 6: Job Processing Overview

*
Objective: Trace a user job through the system,
beginning with job preparation at the
R front-end processor, and terminating at
its origin after being processed by the

Cray.

J0B_STRUCTURE

A Job is a unit of work submitted to the Cray computer system.

It consists of one or more files of card images contained in a job
deck dataset. Each job passes through several stages from job entry
through job termination.

The job consists of:

* a Control Statement File
* a Source File

* and a Data File

6.1

'Y

1-{CONTROL STATEMENTS

JOB,JIN=...

JCL CONTROL STATEMENT
FILE

c.2

JOB STRUCTURE (continued)

The first (or only) file of the job deck must contain the job
control language (JCL) control statements that specify the job
processing requirements.

Each job begins with a JOB statement, identifying the job to the
system.

If accouhting is mandatory in thé user's system, the ACCOUNT
statement must immediately follow the JOB statement. Al11 other
control statements follow the JOB statement.

The end of the control statement file is designated by an end-of-
file record (or an end-of-data record if the job consists of a
control statement file only).

Files following the control statement file can contain source code
or data. These files are handled according to instructions given in
the control statement file.

The final card in a job deck must be an end-of-data.

JOB,JN=jn ,MFL=f1,T=t1,P=p,US=us, OLM=1m,CL=jcn,*gn=nr

ACCOUNT ,AC=ac,PW=pw,NPW=npw,US=us ,UPW+upw,NUPW=nupw

6.3

Mass Storage

Tape Storage

) :

—
Printer | Mass Storage
o S
4381 CRAY XMP
MVS Iy ;
ISQ/SP
> Front End”s
: - '_G Printer
Printen () Displays ,
—J ——___ Dpisplays
$CS
L
: JOB FLOH
$IN ,
File 2 FILE CREATED AT TERMINAL CONNECTED TO'F.E.
SUB/B FILENAME - JOB SUBKITTED TO CRAY FOR
SSCIBLY AND EXECUT[ON
File 3
Scp STATION CALL PROCESSGR, STP TASK, MAKES JOB KNOWN
. TO SYSTEM BY MAKING AN ENTRY IN THE INPUT GUEUE OF
k I THE SYSTEM DATASET TABLE (SDT). CALLS JO3 SCHEDULER.

JOB _FLOW

A job passes through the following stages from the time it is read
by the front-end computer system until it completes:

* Entry

* Initiation

* Advancement

* Termination

JOB ENTRY

A job can enter the system in the form of a dataset submitted from a
front-end computer system or a local or remote job entry station.

The Station Call Processor task (SCP) in STP is responsible for
making the job's existance known to the system.

It does this by creating an entry in the System Dataset Table (SDT)
(in the STP Table area of memory), creating a memory pool entry, and
requesting that an entry be made in the Dataset Catalog (DSC) on the
master disk, thereby making the dataset permanent.

The job resides on the disk until it is scheduled to begin processing.

The Station Call Processor (SCP) now readies the Job Scheduler Task
(JSH), in effect, calling attention to the new job in the system.

6.5

Mass Storage

Tape Storage

/)
—
Printer | Mass Storage
IBM
4381 — — 61
MVS ‘:CRAY XMP .

/SPF
' ——> Front End*s

— | o
rinter
Printer () Displays

—_Displays

} 0w

START FILE CREATED AT TERMINAL CONNECTED TO'F.E,

SUB/B FILENAME - JOB SUBHITTED TO CRAY FOR
ACECIBLY AND EXECUTION

sce STAT*ON CALL PROCESSOR, STP TASK, MAKES JOB KNOWN
TO SYSTEM BY MAKING AN ENTRY [N THE INPUT QUELE OF
THE SYSTEM DATASET TABLE (SCT). CALLS JO3 SCHEDULER.

JSH SELECTS JC3 FRON [KPUT QUEUE TO PLACE ON JOB
EXECUTION TABLE (JXT)

JSH SELECTS JOB FGR EXECUTIGN; KOTIFIES EXEC

: ALLOCATES MEFCRY FOR JOB Mo
SETS THE JTA T o
IKITIATES JGB

¢

J0B INITIATION

The Job Scheduler Task (JSH) scans the System Dataset Table looking
for candidates for processing. A job is scheduled to begin
processing (initiated) when:

* An entry for a job of the correct class is available in
the Job Execution Table (JXT) (in the STP Table area of
~ memory),

* No other job in the same class of higher priority is
waiting to begin processing, and

* The requested generic resources (i.e. tape dev1ces) are
available.

The Job Scheduler Task uses an ava11ab1e entry in the Job Execution
Table (JXT) to create an entry for the job being initiated, and
prepares a Job Table Area (JTA) and user field. The Job Scheduler
continues to use the JXT entry during the life of the job to control
CPU use, job ro11 in/rol11 out, and memory allocation.

The Job Scheduler (JSH) also moves the job's System Dataset Table
entry from the input queue to the executing queue, still in the
System Dataset Table.

The Rolled Job Index entry corresponding to the assigned JXT entry
is also initiated at this point.

6.7

r R
$CS File 1
SIN ﬂ |
File 2 : File 2 P $OUT
File 3
L ' $LOG
-

When COS schedules the job for processing, it creates four datasets:

* $CS
* $IN
* $oUT
* $L0G

$cs

$CS is a copy of the job's control statement file from the input
dataset and is used only by the system; the user cannot access $CS
by name. This dataset is used to read the job control statements.

$IN

This is the job input dataset. The job itself can access the input
dataset, with read-only permission, by its local name, $IN, or as
FORTRAN unit 5. The disposition code for $CS is SC (Scratch).

$out

This is the job output dataset. The job can access this dataset by
name, $OUT, or as FORTRAN unit 6. The disposition code for $0UT is
PR (print).

$LOG

The job's logfile contains a history of the job. This dataset is
known only to COS and is not accessable to the user. (User messages

can be added to the logfile however, using the Message system action
request macro or other user Remark subroutines.)

6.9

Mass Storage Tape Storage

C: n
| N
orint | Mass Storage
rinter
18M !
4381 CRAY XMP
MVS \ '
/5P o ' —— Front End's

—C__ ' Printer
i L Displays
Printer . . | | | ——___pisplay

0B FLOW
(" START) FILE CREATED AT TERMINAL CONNECTED TO'F.E.

SUB/B FILENAME - JOB SUBMITTED TO CRAY FOR
ASSCIBLY AND EXECUTION

scp STATION CALL PROCESSOR. STP TASK, MAKES JOB KNOWN
TO SYSTEM BY MAKING AN ENTRY IN THE INPUT QUEUE OF
THE SYSTEM DATASET TABLE (SCT). CALLS JO3 SCHEDULER.

JSH SELECTS JOB FRON IKPUT GUEUE TO PLACE ON JOB
EXECUTION TABLE (JXT)

JSH SELECTS JO3 FGR EXECUTIO&. KOTIFIES EXEC oL
: ALLOCATES MEICRY FOR JOB . o
SETS THE JTA

INITIATES JOB

- H : -
EXP | EXCHANGE PROCESSOR CCPIES C°P ’ATG USER FIELD

—.—a o ——

~.CSP | PROCESSES CONTROL STATEMENTS
.. 0 [ADVANCES JoB . V. ¥E
CREATES FOUR DATASETS -~= .~
. $CS - CONTROL STATEMENT FILE
SIN - SOURCE FILE
S0UT - JOB LISTING

$LGG - PRGGRAM INFORMATICN)

¢./o

JOB ADVANCEMENT

Job advancement is the processing of a job according to the
instructions in the control statement file. The Control Statement
Processor (CSP) advances a job through its program steps. CSP is
first loaded and executed in the user field following job
initiation.

A normal advance causes CSP to interpret the next control statement
in the job's control statement file. An abort advance occurs if COS
detects an error or if the user requests that the job abort.

The Job Scheduler (JSH) gives each job a CPU priority reflecting its
history of CPU usage so that I/0 bound jobs can have a greater
chance of being assigned the CPU. A job requiring a large memory
area is allowed to stay in memory longer to compensate for its
greater roll in/rol1 out time. A job assigned more than average CPU
time for its priority is 1iable to be rolled out sooner as a
consequence. The operator can change a job's priority while a job
is running.

Not all jobs having entries in the Job Execution Table (JXT) are in

memory. Some are rolled out to mass storage when an event occurs
causing other jobs to replace them in memory.

6.11

Printer

Mass Storage

1BM
4381
MVS

Printey

/SPE

(G

(D Displays

¢ 13-

Tape Storage
/)

]

Mass Storage

C:1

‘VCRAY XMP
> Front End's
Printer
"“f:::::)Displéys
File 1
File 2 = $0UT
$LOG
-

JOB TERMINATION

Output from the job is placed on system mass storage. At completion
of the job, COS appends $LOG to $0UT and returns $0UT to its
originating station. $IN, $CS, and $LOG are released. $OUT is
renamed jn (from the JN parameter value of the JOB control statement
and is directed to the output queue for staging to the specified
front-end computer system. When the front-end has received the
entire contents of $0UT, the output dataset is deleted from COS mass
storage.

The front-end computer processes $0UT as specified by the dataset
disposition code. If, for any reason, $OUT does not exist, $LOG is
the only output returned at job termination.

In summary, when a job terminates, the following actions occur:

* A Dataset Catalog (DSC) entry (on the master device) is
created for each of the job's output datasets.

* A System Dataset Table (SDT) entry is created (in memory)
for each of the job's output datasets.

* The user logfile, $LO0G, is copied onto the end of $0UT.

* The Dataset Catalog entry for the input dataset is
deleted.

* The job's System Dataset Table (SDT) entry is deleted from
the executing queue.

* The Job Execution Table (JXT) entry and Task Execution
Table (TXT) entry, and the memory assigned to the job are
released.

* The Rolled Job Index entry is cleared.

* The Station Call Processor (SCP) task is readied at the
next interrupt from a front-end and scans the System
Dataset Table (SDT) for output to send to the front-end
system.

* SCP deletes the corresponding Dataset Catalog and System

Dataset Table entries after each output is successfully
transmitted to the front-end system.

6.13

EXEC constant, data and table areas

e e —— o — — w— o —— — o o— o o — — —

EXEC program area

STP.table area

STP program area

CSP area

Available
for
jobs

— —— (- —

Memory for CRAY-0S
System log and station
buffers

e/4

QOME TABLES RELATED TO 08 PROCESSING

CRAY

. MEMORY

SDT

IKT

STP TARLES
O

2%

STP PROGRAMS

TAT LH::

RIT

JoB TABLE AREA

USER Ti1ELD

!

I @men

SYSTem BUFFERS, ETC.

GOLS

DISK

DsC

LESSON 7: Memory Management

Objective: Describe the ways in which memory is
managed for user and system requirements.

* NOTE: The job of managing memory is accomplished by the Job
Scheduler (JSH) system task. Details of this process are discussed
in Lesson 14: "System Tasks" Our purpose here is simply to provide
an overview of the process.

INTRODUCTION

Central memory is a resource that is allocated to jobs by the
operating system. A job's memory is composed of several distinct
areas. Some of these are managed exclusively by the system for the
user; others are managed by both the system and the user.

Memory is allocated to the system at Startup at both the low-address
and high-address ends of memory. After all system components
(tasks) have been initialized, the remaining 512-word blocks of
memory are allocated for future jobs or for system buffers.

The total job size equals the length of the job's Job Table Area
(JTA) plus user field length. The lined area between JCHLM and
JCLFT is unused space within the job. This area contains enough
memory to guarantee that the job size is always a multiple of 512
words.

7.1

JOB1

JOB2

JOB3

Available

INITIAL MEMORY ALLOCATION

Segments of memory are allocated to jobs using a "first fit" method,
that is, the job is allocated memory from the first (lowest
addressed) segment large enough to contain it. (Segments are
allocated in multiples of 512 words). The last segment is always
allocated to the system.

Jobs that are waiting for memory are jobs that are either already in
memory and need to expand, or they are not in memory and need to be
brought in. Whe allocation is possible, COS looks to see if a job
that is waiting memory can be given memory. Jobs that are waiting
are scanned in descending priority order.

The system gets priority over jobs for memory. When a system
request is made for memory, its requirements are considered first.

A tally is kept of the total amount of memory that will be available
when all currently scheduled roll1s complete. If this tally
indicates that there is enough free memory to satisfy the system
request, the system will be given the memory. If there is not
enough memory available, any jobs that are either suspended or of
lower priority will be rolled out if rolling them out frees up
enough memory for the system request to be satified.

If a job that is in memory cannot expand (that is, not enough jobs
in memory are either suspended or of a lower priority), it will be
considered suspended and will be rolled out if any other job or the
system needs the space.

Expansion Space

A job is brought into memory (initiated or rolled in from disk) only
if there is enough memory to contain the job and leave some room for
expansion.

When the job initiates it is given sufficient memory for the Control
Statement Processor (CSP) to execute. Once the JOB statement is
processed, the job is allowed a field length no larger than the
amount specified by the MFL parameter on the JOB control statement.

7.3

JOBl JOB1l
Available
JOB1
Available JOB2
JOB2 JOB2 JOB2 JOB2
JOB3 JOB3 JOB3 JOB3 JOB3
JOB1
JOB4 . | .
Available Available JOBl
Available Available
System System System System System
{a) (b) (c) (d) (e)
JOB1 JoBl
Available JOB2
JOB2 JOB3
Available JOB4
JOB3 JOB5
JOB4
JOB6
JOBS
JOB6 JOB7
JOB7 JOBS
Available

7.4

Expansion Space (continued)

The first illustration on the facing page shows memory after JOB1
and JOB2 initiate and JOB3 rolls in. JOB4 will not be brought in
because not enough memory is available to contain the job and the
required expansion space. Expansion spaced is required to allow the
jobs that are already in memory to expand.

Allocating, Deallocating, and Compacting Memory

Figure (a) shows memory before any change.

Figure (b) shows memory after JOB4 terminates and JOBl decreases its
field length. The freed memory is marked available. Contiguous
memory segments are merged into one larger available segment but no
memory compaction is done.

Figure (c) shows memory after JOB1 increases its field length. A
job is expanded in place whenever possible.

Figure (d) shows memory after JOBl increases its field length again.
If expansion in place is not possible, the job is moved to the first
(Towest addressed) available segment large enough to contain the
job. If there is enough available space to contain the job but it
is not contiguous, the job will be rolled out and memory will be
compacted.

Figure (e) shows memory after the system requests more space.
Memory is compacted upward and the system slot is increased by the
requested amount.

When a job is being brought into memory and there is enough
available space, but it is not contiquous, memory will be compacted.
Memory is compacted toward the low address end of memory until
enough contiguous space is avilable.

Figure (f) shows memory before any change,

Figure (g) shows memory after memory is compacted and JOB8 is rolled
in.

7.5

Modes of Field Length Reduction

There are two modes of field length reduction: automatic and user
managed. A user can manage the field length of the job by
requesting a specific field Tength by using a MEMORY control
statement in the JCL.

* Automatic

When the job is in automatic field length reduction mode,
the system automatically increases and decreases the job's
field length as the areas within the job increase and
decrease. A job initiates in automatic field length
reduction mode.

* User-Managed

When the job is in user-managed field length reduction
mode, the system continues to increase the job's field
length as before, but-never automatically decreases it.
The job's field length can be decreased onTy by the user
until the job is returned to automatic field reduction
mode .

The field length can be reduced at the beginning of each job step
and during each job step if the job is in automatic field length
reduction mode and any area of the job decreases.

Since increases in field length can result in the job's requiring
more memory than can be immediately provided, which causes the job
to be delayed until sufficient memory can be given to it, the user
may want to manage the job's field length when it is known that the
job will undergo frequent short-lived fluctuations in size.

7.7

User Management of Memory
A user can dynamically manage the user area of the job by requesting

an increase or decrease of memory at the end of the user code/data
area, or by requesting a specific field length.

Management by Control Statement from the Run Stream

A user can use the MEMORY control statement to manage the job's
field length. When the user manages the job's field length, the job
will be placed in user-managed field length reduction mode for the
duration of the next job step. The MEMORY control statement may
also place the job in user-managed field length reduction mode
across job steps or return the job to automatic mode.

Management from within a Program

From within a program, use of the MEMORY macro or MEMORY routine,
respectively, requests user management of the job's user code/data
area and field length. When the user manages the job's field
length, the job is placed in user-managed field length reduction
mode for the duration of the job step. The MEMORY macro or MEMORY
routine may also place the job in user-managed field length
reduction mode across job steps or return the job to automatic mode.

Management Associated with a Program

Use of certain parameters on the LDR control statement causes memory
management to be associated with the binary being loaded.

This association is stored with the binary if the binary is saved on
a dataset. The management can be user code/data area management or
field length management and occurs when the binary is loaded for
execution. If the field length is being managed, the job is placed
in user-managed field length reduction mode for the duration of the
program execution.

7.9

System Management of Memory

The system changes appropriate areas of the job's memory when a job
initiates certain system actions such as advancing to the next job
step, performing I/0 etc.

The Job Table Area (JTA), Logical File Tables, and Dataset Parameter
Area can increase, but will never decrease.

The user code/data and buffer areas may both increase and decrease
in size. If the job is in automatic field length reduction mode,
the system automatically increases and decreases the job's field
Tength when any area in the job increases or decreases.

If the job is in user-managed field length reduction mode, the

system continues to increase the field length when it needs to, but
never automatically decreases the field length. ‘

7.10

LESSON 8: Tasks and Multitasking

*
Objective: Define the various modes of operation
used by the Cray computer system, and the
\m— units of computation and processes.
INTRODUCTION

Various segments of the computer industry utilize terminology which
may differ in meaning and context from segment to segment and
company to company. Since the Cray computer is capable of
multiprogramming, multiprocessing, and multitasking, a clarification
of these terms as they are used in the Cray environment is in order.

PARALLELISM
"Parallel” refers to the manner in which software processes are
executed. Jobs, job steps, programs, and parts of programs are

parallel if they are processed simultaneously (or nearly so) rather
than sequentially.

Levels of parallelism are defined in terms of the types of software
processes that are executed in parallel.

Level 1: Independent jobs, each job having a CPU

Level 2: Job steps: related parts of the same job

Level 3: Routines and subroutines

Level 4: Loops

Level 5: Statements

The higher the number of the level, the smaller the size or
granularity of tasks.

8.1

MULTIPROGRAMMING

Multiprogramming is a mode of operation that provides for sharing of
processor resources among multiple, independent, software processes.

This mode, used by many computing systems, makes most efficient use
of a single CPU. In the multiprogramming mode, when several
processes are ready to run, should one process be delayed by 1/0,
for example, another process can iummediately be switched in to run
on the CPU.

In contrast, a system running in monoprogramming mode has only one
process ready to run and any delays will Teave the CPU idle.

Processor resources could include more than one CPU, and in a
multiprogramming environment, these multiple CPUs would be shared
between multiple, independent software processes.

For example, COS 1.11 is a multiprogramming operating system. The
processor resource is one CPU, and the software processes are jobs.
Sharing is managed by assigning priorities to jobs and allocating
CPU time a slice at a time to different jobs.

8.3

MULTIPROCESSING

Multiprocessing is a mode of operation that provides for parallel
processing by two or more processors. That is, all processors work
at the same time without adversely affecting each other.

Under COS 1.12, two independent jobs can be run in parallel on a
Cray X-MP computer system. This is sometimes referred to as the
processors running separate job streams. The job is the scheduling
unit of the system, and two processors are scheduled in a multi-
programming mode.

Truly independent jobs won't affect each other, but two jobs using
the same dataset can interfere with each other and thus are not
independent.

This example of independent "uniprocessing" exploits parallelism at
level 1 (independent jobs, each with a CPU). System throughput is
enhanced over single processor configurations, but individual jobs
receive no real processing benefits.

Applications of more than one processor to a single job implies that
the job has software processes (parts) that can be executed in
parallel. Such a job can be logically or functionally divided in
such a way that two or more parts of the work can be executed
simultaneously (that is, in parallel).

An example of this could be a weather modeling job where the
northern hemisphere calculation is one part of the job and the
southern hemisphere another part. Distinct code segments need not
be involved. The same code could run on multiple processors at the
same time, with each processor acting on different data.

8.5

TASKS

A Task is a software process. It is a unit of computation that can
be scheduled and whose instructions must be processed in sequential
order.

In a single processor multiprogramming operating system such as COS
1.11, a job is a task. In a multiprocessing environment supported
by COS 1.13, a job is still a task, but it may spin off other tasks
to run in parallel with it.

To take advantage of a multiprocessing operating system, a job must
be divided into two or more tasks. That is, for parts of the job to
run in parallel on more than one processor, the parts must be
scheduled separately. v

User Library Task

A user library task is a uniquely named process that can have code
and data areas in common (or even identical to) other tasks of the
same job. The code executed by a user library task is a subroutine.
The same work can be performed by calling the subroutine or by
starting up a task to execute the subroutine. The difference is
that the call causes the work to be performed immediately; in the
task, the work is cheduled and performed independently and in
parallel with other tasks in the program.

The multitasking library scheduler schedules user library tasks. It
creates, deletes, activates, and deactivates user tasks as required.

System Task

The system tasks are those tasks which make up the System Task
Processor (STP). The function of each system task is described in
Lesson 1& of this unit.

8.7

Task A

Task B
time-->
A
Task C
waits
Task C
Task D —
Task D waits
time~->
—
Task E waits
Task E
Task F
Task F is interrupted
time~--> ’

C

5 %

MULTITASKING

Multitasking is a special case of multiprocessing defining a "task"
to be a job step or subprogram.

Version 1.13 of COS provides for multitasking within job steps. As
always, job steps are executed sequentially. Using the library
subroutines, a program executing in a job step can create additional
tasks, thus bringing about multitasking. A multitasked job is not
complete until all tasks within the job step complete.

In a multitasking environment, the tasks and data structure of a job
must be such that the tasks can run in parallel. However, the
availability of processors, and the order of execution and
completion of tasks are functions of the scheduling policies of the
library scheduler and COS. Consequently, multitasking is -
nondeterministic with respect to time.

Tasks, however, must be made deterministic with respect to results.
The key to a successful multitasked program is to precisely define

and add the necessary communication and synchronization mechanisms

between parallel tasks and to provide for the protection of shared

data. <

Figure A is an example of a two tasks executing without interruption
on two processors.

Figure B illustrates a case in which only one processor is
available, and tasks C and D must share it. Multitasking can be
performed on machines with one processor.

In Figure C, two tasks share two processors. Note that at several
points, only one processor is actually in use by the job, and at one
point, neither is assigned to the job. Note also that there is no
indication of which physical processor is assigned to which task;
this assignment is transparent to the user. However, in a multi-
processor environment, users can specify which CPU is to be
assigned.

8.9

Memary

Vector Registers

Logical
Add

Vector
Sj__JFunctional
Units

Vector
Control

B

High Speed == 10P or SSD
Memory Channels

1

i *Rec{pAppr]
Multiply |
Ve Add

Vi

SJ

[vector mask] S aating-
S j S point
= 10P or 5SSO Real-Time Clock

Prog. Clock Int. E‘I—' 3k Units -

Scalar Registers

Ffunctional

Ak

Exchange
Control

XA

((AR)+jkm)

Scalar
Vector Functional
Control Units
Vector J—

Length

[muitipty |

Add

Address
Functional
Units

—

170 Channels

&./o0

00
“Shared input paths
- np el c1p }ee
Issue
Lip -
17 Instruction Buffers *

LESSON 9: Exchange Mechanism

#
Objective: Describe the method used by the Exchange
Mechanism in managing the execution of

EXCHANGE MECHANISM

The technique employed by Cray computers to switch execution from
one program to another is called the exchange mechanism.

A 16-word block of program parameters is maintained for each
program. When another program is to begin execution, an operation
known as an "exchange sequence" is initiated. This sequence causes
the program parameters for the next program to be executed and to be
exchanged with the information in the operating registers.

Operating register contents are saved for the terminating program
and the registers are entered with the data for the new program.

Exchange sequences are initiated automatically upon occurrence of an
interrupt condition or voluntarily by the user or by the operating
system through normal or error exit conditions.

EXEC is always a partner in the exchange; that is, it is either the

program relinquishing control or receiving control. A11 other
programs must return control to EXEC.

9.1

PN 0 8 16 24 32 40 48 56 63
o [IEl s 17771 P | A0
1 lcs |\ B /77771 IBA IML1 | Al
2 [Y1/WU/7//1117717) ILA IML2 | A2
3 y////////////1F1 XA | VL | F | A3
a ///1111111/1117/7) pDBA PS5 MI/1¥l tn A4
5 V//////7///7//777) DLA \///71 AS
6=7 (////11/1/71177//77/7777/7//77/77/77/7/777) A6 to A7
8-15 ’ S0 to S7
CRAY X-MP Exchange Package
Field Word Bits
Processor number (PN) 0 1
Error type (E) 0 2-3
Syndrome bits (S) 0 4~-11
Program Address register (P) 0 16-39
Read mode (R) 1 0-1
Read address (CSB) 1 2-6 (Cs):; 7-11 (B)
Instruction Base Address (IBA) 1 18-34
Instruction Limit Address (ILA) 2 18-34
Mode register (M) 1-2 35-39
Vector not used (VNU) 2 0
Flag register (F) 3 14-15; 31-39
Exchange Address register (XA) 3 16-23
Vector Length register (VL) 3 24-30
Data Base Address (DBA) 4 18-34
Program State (PS) 4 35
Cluster Number (CLN) 4 38-39
Data Limit Address (DLA) , 5 - 18-34
Current contents of the eight A registers 0-7 40-63
Current contents of the eight S registers 8-15 0-63

9.2

Exchange Package

An Exchange Package is a 16-word block of data in memory that is
associated with a particular computer program. An Exchange Package
contains the basic hardware parameters necessary to provide
continuity from one execution interval for the program to the next.

The Cray-1 Exchange Package is shown below. The Cray X-MP Exchange
Package is shown on the facing page (9.2).

0 8 16 24 32 40 48 56 63

0 E|l s |IR] Bl///] P l A0

1 c 1///1 BA /714 M a1

2 ////////////\RB1///) LA I M| A2

3 V////1/77///7//8 kA | VL | F [A3

4=7 /111111717777 7777/7/777/7/7/7//7777/777) A4 to A7

8-15 'S0 to S§7

Field Word Bits
Error type (E) 0 0-1
Syndrome bits (S) 0 2-9
Read mode (R)] 10-11
Bank error address (B) 0 12-15
Program register (P) 0 18-39
Chip error address (C) 1 0-15
Base address (BA) 1 18-35
Interrupt Monitor Mode bit (IMM) 1 39
High-order bits of memory error read
address (RH) 2 14-15
Limit address (LA) 2 18-35
Mode bits (M) 2 36-39
Exchange address (XA) 3 16-23
Vector length (VL) 3 24-30
Flag register (F) 3 31-39
Current contents of the eight A registers 0-7 40-63
Current contents of the eight S registers 8-15 0-63

9.3

>3

Program Areas

EXEC
[~~~ (p)-f 1o
[4
STP /
‘/
- /,
) Exec
-~ USERS e XP
/7
= - 5LA)

o - (BAY -

~
~

\

Operating Registers

| User XP |

[1diexp |

l Error XP AJ

Task 0 XP
Task 1 XP

Task n XP

Exchange Package Areas

Program Areas

C. CURRENT USER IN EXECUTION

A. EXEC IN EXECUTION
[7 User XP l
EXEC Rt L dlexr |
_(a)| |-
- Pre ’»
STP ____(PT" L L Error XP |
I/
/
- . L’ Task 0 XP
e TASK 1
k-~ USERS -~ // XP EXE(.: XP
be- -4 {LA) :
’ Operating Registers Task n XP
Program Areas Exchange Package Areas
B. TASK 1 IN EXECUTION
| Exec xp]
EXEC s L 1diexp |
i
(BA) | ~
STP P 1,’ ,,/ [Error XP J
/l (P)/ .
/ ’) .’
- USERS el - XP Task.l XP
Operating Registers Task n XP

Exchange Package Areas

7.4

Exchange Package Areas

System hardware requires all Exchange Packages to be located in the
first 4096 words of memory. In addition, the deadstart function
expects an Exchange Package to be at address 0. This Exchange
Package initiates execution of EXEC and, consequently, the operating
system.

The EXEC exchange package is either active or is in one of the other
Exchange Package areas.

The exchange packages summarized below are selected by EXEC
depending on interrupt flags and other conditions as defined later.

* Any of a set of exchange packages in the System Task Table
(STT). This second portion of the STT is called the
System Task Exchange Package Table (STX), and contains one
exchange package for each STP task.

* The active user exchange packages. One user exchange
package per CPU resides in the Processor Working Storage
(PWS) entry and is copied from the user's Job Table Area
(JTA) when the job is connected to the CPU. The exchange
package is then copied into the user's JTA when the job is
disconnected from the CPU.

* The idle task exchange packages. One idle exchange
package per CPU resides in the Processor Working Storage
(PWS) and is selected when no STP tasks or user jobs are
scheduled for execution for a particular CPU.

* The Memory Error Correction task Exchange Packages. One
correction exchange package per CPU resides in PWS and is
selected when a memory parity error causes an exchange.

9.5

B, T, and V Registers

The A and S registers are stored as part of the exchange packages,
in the Processor Working Storage, but the B, T and V registers are
handled differently.

On any exchange to EXEC, the system task or user program's B0O
register is saved because EXEC uses B0O.

The active user's B0O is stored during interrupt processing. A
system task's BOO register value is stored in the System Task Table
(STT). When EXEC exchanges out, it restores the proper B0O register
value. :

B, T, and V register values are saved by EXEC only when the current
user job is being disconnected from the CPU in favor of some other
Jjob. A job's B, T, and V register values are stored in the job's
Job Table Area (JTA) and are restored when the job is reconnected to
the CPU.

9.7

INTERRUPT HANDLERS

STP

Common
Routines

Task

Task

Task

Mass Util- TCB n
Storage ities
Resident CAL
cos CFT
LDR
C Idle
S Program
P
A
to
current
user task
Interrupt xpf
xpf
A
X
EXEC
.| Interchange
I///;' Xp
_ Task
A Scheduler
Interrupt Handlers \\\\
N
Xp
Y
Channel Processors
Y A Y \ Xp
Monitord.. Front- Disk/ Packet
Request - end SSD I/0
Processor! Driver Driver Driver
2)
Y Y Y Y

7 One Exchange Package per CPU

Sy

Pl

¢

,L"

7.

System control

Task

LESSON 10: EXEC

—

Objective: State the purpose and function of EXEC.

*

INTRODUCTION

The System Executive module (EXEC) is the control center for the
operating system. It alone accesses all of memory, controls the I/0
channels, and selects the next program to execute.

EXEC has a base address (BA) of 0, and a limit address (LA) equal
to the installation parameter IG@MEM.

Components of EXEC include:
* An Interchange Routine
* Interrupt Handlers
* Channel Processors
* A Monitor Request Processor
* A Front-end Driver
* A Disk and SSD Driver
* A Packet 1/0 Driver
* A Task Scheduler
These routines are integral to EXEC. Control transfers from routine
to routine through simple jumps.
In addition to these routines, the EXEC area of memory also contains:
* EXEC Table Area
* Exchange Packages

* History Trace Table

10.1

EXEC constant, data and table areas

— — — — - —— o wm— o —— v — —— a— o — — -

' EXEC program area

STP table area

— mm Gan e Gmme o b nmt e o— a—t o Gt — gu— —— o —

STP program area

Csp areaf

Available
for
jobs

Memory for CRAY-0OS
System log and station
buffers

l10.

EXEC CONSTANT, DATA, and TABLE AREAS
CONSTANTS

The EXEC constant area contains all EXEC constants. The constants
are functionally grouped, and include:

* Constant Memory Locations
* Front-end Driver Constants

* Packet 1/0 Constants

DATA

The EXEC data area contains all EXEC data not in the form of tables.
The data in this area is functionally grouped, and includes:

* Initial and Warm-boot Exchange Packages (at location 0)
* Space reserved for DDC (SYSDUMP utility)

* System ID (at location 1400 octal)

* Pointers to EXEC Tables

* Stop Message Buffer

* X-MP cluster register dump area

* Disk/SSD Driver Data

* Packet I/0 Driver Data

* Front-end Driver Data

* Miscellaneous data

hd EXEC Messages

10.3

EXEC constant, data and table areas

— o — — o— — ——— ot —) G — —— — — — — o—

. EXEC program area

STP table area

STP program area

Csp arear

Available
for
jobs

Memory for CRAY-0S
System log and station
buffers

10.4

TABLES

The EXEC Table Area contains all EXEC tables, alphabetically

ordered.

The table descriptions and layouts are addressed in detail

in publication SM-0045 "COS Table Descriptions”, and will be
referenced in Unit 3 of this course - "COS Internals".

The tables used by EXEC include:

CAT
' CBT

CHT

EIT7
CLT

CXT

FIQ
FOQ
IcT
IHT
MCT
MEL
MRT
PWS

SCT

Channel Address Table

Channel Buffer Table containing one entry of working
storage for each disk driver channel.

Channel table containing a lword entry for each side
(input and output) of a physical channel. An entry
contains a pointer to the Channel Processor Table for the
channelassigned task ID and the address of the channel
processor assigned to the side of the channel. Input
sidesiareiassigned even numbers, output sides odd numbers.
(g iz ir‘ vl E(J«"):L.

Channel Limit Table

Channel Extension Table is used to communicate with the
MIOP for front-end 1/0.

Free Input Packet Queue

Free Qutput Packet Queue

Interrupt Count Table B QC%?;
Lo 7/
o
Interrupt Handler Table 7.
Monitor Count Table | ‘s
et
Memory Error Log Table o

Monitor Request Table
Processor Working Storage
Read Margin Select Table

Subsystem Control Table

10.5

EXEC constant, data and table areas

EXEC program area

STP table area

— an e e mm — o — o o — - gmme Wman man o - a—

STP program area

Csp arear

Available
for
jobs

Memory for CRAY-0S
System log and station
buffers

106

EXEC Tables (continued)

STT

STX
TBT
TET
XFT
XTT

System Task Table consisting of three parts:

a header, a

task parameter word area, and an exchange package area.

System Task Exchange Package Table
~ Task Breakpoint Table

Time Event Table
History Function Table

History Trace Table

10.7

INTERRUPT HANDLERS

Mass
Storage
Resident
cos
LDR
C Idle STP
S Program
P
y
Common
to Routines
current g
user task
Interrupt xpf Task
xpr 0]
A
Xp
EXEC Task
Interchange 1
////27 Xp
_ Task
\ 4 Scheduler Task
Interrupt Handlers \\\\ 2
eV
Xp
Y
Channel Processors
y Xp Task
Monitor Front- Disk/ Packet n
Request end SSD I/0
Processor Driver Driver Driver
Y Y Y > y

System contro

t One Exchange Package per CPU

1

EXEC Overview

Interrupts
After CPU startup, EXEC begins execution whenever a system, user, or
idle task is interrupted. The interrupt can result from:

* the execution of an exit instruction (EX or ERR), or

* from a variety of hardware-related interrupts.

Interchange Routine

Upon receipt of an interrupt, the interachange analysis routine
examines: '

the interprocessor communications area,
the channel interrupt register,

the real-time clock, and

the interrupted exchange package

* o * %

to determine the cause of the interrupt, and passes control to the
appropriate handler.

Interrupt Handlers

Each interrupt handler clears the appropriate flag in the
interrupted exchange package and, after processing the interrupt
condition, returns to interchange analysis which checks for
additional conditions. When all outstanding interrupt conditions
have been processed, the System Task Scheduler (TS0) is entered.
System Task Scheduler

The task scheduler selects the highest priority system task which is
ready to run and causes it to be executed.

If no system tasks are ready, the user task scheduler is invoked.

If no user task is currently connected, the idle task is selected
for execution.

After the selection of a task (system, user, or idle), an exchange

out of EXEC occurs. The cycle begins again when the task is
interrupted.

10.9

Mass

INTERRUPT HANDLERS

One Exchange Package per CPU

System control

(O.)©0

Storage
Resident
Cos
LDR
C Idle STP
S Program
P
A
Common
to Routines
current
user task
Interrupt xpf Task
xpf 0
A
Xp
EXEC Task
.| Interchange 1
/;r* Xp
Task
\ Scheduler Task
Interrupt Handlers \\\~ 2
N
Xp
Y
Channel Processors
Y A Y : Xp Task
Monitor Front- Disk/ Packet n
Request end SSD I1/0
Processor Driver Driver Driver
kY
Y Y Y Y

INTERCHANGE ROUTINE
Each time the interchange analysis routine is entered:

* the interprocessor request queue is checked for an inter-
processor message. If one is there,
- it is processed,

cleared, and

control returns to the interachange analysis routine.

The routine next looks for pending I/0 Channel interrupts. When an
I/0 channel is found to have an interrupt pending:

* contro] transfers to the I/0 Interrupt Handler (I0I)
which clears the I/0 interrupt bit in the active
exchange package,

- selects a processing routine based on the channel
number, and

- enters the routine.

- The channel processor returns control to the
interchange routine.

Next, the real-time clock and the time event table are examined.
If a timer event is pending:

* Control is passed to the expired event interrupt handler
(TEI).
- After processing the timer event
- control is returned to the interchange routine.

Finally, after the interchange routine has processed all of the
above conditions:

* The flags in the interrupted exchange package are examined
to determine the cause of the exchange.
- The I/0 Interrupt flag is ignored since the
interchange routine has already processed pending I/0
interrupts.

* The Interrupt Handler Table maps each flag into a handling
routine.
- When a flag is set, the corresponding interrupt
handler is entered.

After a pass through the interchange routine with none of the above
conditions encountered, the Task Scheduler (TS0) is invoked.

10.11

INTERRUPT HANDLERS

Mass

Storage
Resident
COs
LDR
C Idle STP
S Program
P
A
Common
to Routines
current
user task
Interrupt xpr Task
xpr 0
y
X
EXEC Task
-] Interchange 1
////;r Xp
o Task
A Scheduler Task
Interrupt Handlers \\\N 2
N
Xp
Y
Channel Processors
3 y 4 Xp Task
Monitor Front- Disk/ Packet n
Request end SSD I1/0
Processor Driver Driver Driver
Y ¥ Y " Y

7 One Exchange Package per CPU

System control

/0. 15~

INTERRUPT HANDLERS

Each in@errupt handler routine can invoke further routines for
processing. When an interrupt is processed, control returns to the
interchange routine.

I1/0 Interrupt Handler (I0I)

I0I clears the I/0 Interrupt flag in the interrupted exchange
package, increments the interrupt count for the channel, sets the
next channel processor to RJ (reject), makes a history trace entry,
and exits to the current channel processor.

Expired Time Event Interrupt Handler (TEI)

TEI clears the Programmable Clock Interrupt flag in the interrupted
exchange package, makes a history trace entry, sets up the next
scheduled time event for the CPU, and exits to the time event
processor.

Programmable Clock Interrupt Handler (PCI)

PCI clears the Programmable Clock Interrupt flag in the interrupted
exchange package, makes a history trace entry, and sets up the next
default time event.

MCU Interrupt Handler (CII)

CII clears the MCU Interrupt flag in the interrupted exchange
package.

Error Interrupt Handler (EE)

EE clears the appropriate flag in the interrupted exchange package
and makes a h1story trace entry. Interrupts handled by this routine
are: ‘

Floating-point error interrupt
Operand range error interrupt
Program range error interrupt
Error exit

* * * *

Processing depends on the type and cause of the error.

10.13

INTERRUPT HANDLERS

STP

Common
Routines

Task

Task

Mass Util-
Storage ities
Resident CAL
Ccos CFT
-
LDR
C Idle
S Program
P
A
to
current
user task
Interrupt xpf
xpf
A
SR
EXEC
.| Interchange
////;r Xp
_ Task
Scheduler
Interrupt Handlers \\\\
N
Xp

A

Channel Processors

{ Y

Y

Task

Xp

Monitor Front- Disk/ Packet
Request end SSD I/0
Processor Driver Driver Driver

Y Y Y s Y

One Exchange Package per CPU

System control

lo. 14

Task

INTERRUPT HANDLERS (continued)

Memory Error Interrupt Handler (ME)

ME clears the Memory Error flag in the interrupted exchange package,
corrects the error if it is a single-bit error, and logs the error
by sending a packet to the Message Processor task (MEP). A multi-
bit error causes the system to halt if the error occurred in the
operating system or by a channel read from an I/0 buffer.

Normal Exit Interrupt Handler (NE)

NE clears the Normal Exit flag in the interrupted exchange package
and determines whether a system task or user job made the exit. A
system task exit causes the Monitor Request Processor to be invoked;
a user job exit causes the Exchange Processor (EXP) task to be
scheduled.

Interprocessor Interrupt Handler (IPI)

IPI clears the interprocessor interrupt flag in the interrupted
exchange package on a Cray X-MP.

Deadlock Interrupt Handler (DLI)

On the Cray X-MP, deadlock interrupts can occur that do not indicate
that a programming error occurred. For instance, a deadlock
interrupt occurs whenever a Test and Set Semaphore (0034) instruction
is executed while the semaphore in question is already set and no
other CPUs are in the executing CPU's cluster.

10.15

[0./1¢C

CHANNEL MANAGEMENT

EXEC manages channels in pairs, with the even-numbered side an input
channel and the odd-numbered side an output channel. A channel pair
consisting of channels 2 and 3 is referred to as channel pair 1, and
so on.

EXEC manages the mainframe's physical I/0 channels based on
parameter settings in the configuration deck CONFIG@P.

The configuration deck will be discussed in detail in Unit Two of
this course.

Typical channel layouts are shown below:

CHANNEL PAIR DESCRIPTION

2,3 1 6 Mbyte channel to MCU (MIOP or DG)
4,5 2 Depends on configuration
6,7 3 Depends on configuration
8,9 4 Depends on configuration
10,11 5 Depends on configuration
12,13 6 Depends on configuration
14,15 7 Depends on configuration
16,17 8 Depends on configuration
18,19 9 Depends on configuration
20,21 10 Depends on configuration
22,23 11 Depends on configuration
24,25 12 Depends on configuration

Cray X-MP Mainframes:

CHANNEL PAIR DESCRIPTION

6,7 3 SSD 1250 Mbyte channel
8,9 4 6 Mbyte channel (MIOP)
10,11 5 6 Mbyte channel

12,13 6 6 Mbyte channel

14,15 7 6 Mbyte channel

10.17

16.1 %

CHANNEL MANAGEMENT TABLES
The following tables aid in channel management:

* Channel Buffer Table (CBT)

* Channel Table (CHT)

* Link Interface Table (LIT)

* Subsystem Control Table (SCT)

* System Task Table (STT)

* I/0 Service Processor Tables (LIT or CBT)

Channel Buffer Table (CBT)

EXEC assings one Channel Buffer Table (CBT) entry to each pair of
Channel Table (CHT) entries during EXEC initialization. The Channel
Buffer Table is the default processot table for channel activity and
is used by the Disk/SSD Driver.

Channel Table (CHT)

Each site configures one CHT entry per mainframe I/0 channel, plus
enough dummy entries at the beginning, so the physical I/0 channel
number is an index into the Channel Table. (Site configuration
information is provided in unit 2 of this course.)

Each entry contains:
* A task parameter block address 1inking the channel to an
STP task,

* A table address,
* and an interrupt handler address.

10.19

Link Interface Table (LIT)

The Front-end Driver assigns one LIT entry to a pair of Channel
Table (CHT) entries if the channel pair is to be used for front-end
I/0.

Subsystem Control Table (SCT)

EXEC uses the SCT to select a processor for a packet received from
the MIOP in the I/0 Subsystem. (The Packet I/0 Driver is discussed
later in this unit.)

System Task Table (STT)

The STT contains information about each STP task for scheduling a
task to run if channel activity warrants it.

1/0 Service Processor tables (LIT or CBT)

The I/0 Service Processor tables contain information for control of
the channel processor and can contain pointers to other tables.

Front-end and mass storage channels have different I/0 Service

Processor tables. The service table is the LIT for Front-end Driver
Requests and the CBT for Disk/SSD Driver requests.

CHANNEL ASSIGNMENTS

When an STP task makes an I/0 request for a specified channel pair,
EXEC assigns the STP task that channel pair.

10.21

INTERRUPT HANDLERS

Mass

Storage
Resident
Ccos
LDR
C Idle STP
S Program
P
A
Common
to Routines
current '
user task
Interrupt xpr Task
xpr 0
1
Xp
EXEC Task
.| Interchange 1
////;f Xp
= Task
A Scheduler Task
Interrupt Handlers \\\q 2
Y
Xp
y
Channel Processors
A Y Y X Task
Monitor Front- Disk/ Packet n
Request end SSD I1/0
Processor Driver Driver Driver
»
Y Y Y Y

t One Exchange Package per CPU

System control

/622

CHANNEL PROCESSORS

The Channel Table (CHT) has a processor address for each physical
mainframe channel configured. By default, this channel processor is
the reject (RJ) processor, which ignores all interrupts on the
channel.
If the I/0 operation is in progress, each processor address
indicates the interrupt handler that receives control when an
interrupt is received on a particular channel.
EXEC has the following categories of interrupts, and corresponding
interrupt processors:

* Front-end Driver Interrupts

* Disk/SSD Driver Interrupts

* MIOP Driver interrupts

10.23

INTERRUPT HANDLERS

STP

Common
Routines

Task

Task

Task

Mass
Storage
Resident CAL
COos CFT
LDR
C Idle
S Program
P
A
to
current
user task
Interrupt xpr
xpr
3
X
EXEC
.| Interchange
1///;f XpP
_ Task
v Scheduler
Interrupt Handlers
|
Xp
Y
Channel Processors
\ Y Y Y XpP
Monitor Front- Disk/ Packet
Request end SSD 1/0
Processor Driver Driver Driver
»
¥ Y Y Y

t One Exchange Package per CPU

System control

16.24

Task

MONITOR REQUEST PROCESSOR

The Executive (Monitor) Request Processor is initiated by the Normal
Exit (NE) channel processor when a normal exchange from a task
implies the presence of a request for the Executive.

The request is passed to EXEC in registers S6 and S7 of the task's
exchange package.

FRONT-END DRIVER

The Front-end Driver (FED) physically controls I/0 between the Cray
mainframe and the front-end computers attached directly to the Cray.

In addition, it passes requests to the MIOP for I/0 between the Cray
mainframe and front-end computers attched to the I1/0 Subsystem.

The Front-end Driver is invoked by an Executive (monitor) Request.
The Station Call Processor (discussed in Lesson 13 of this unit) is
the only task to use FED.

FED processes task requests for channel control and front-end I/0.
FED performs hardware-level error recovery and some logical error

recovery. Most logical error recovery is provided by the requesting
task.

DISK/SSD DRIVER

The Disk/SSD Driver controls the following devices connected to a
mainframe I/0 channel:

* DCU-2 Disk Controller
* DCU-3 Disk Controller

* SSD (Solid-state Storage Device)

DISK

Each disk controller can drive from one to four disk storage units
of either the DD-19 or DD-29 type.

10.25

INTERRUPT HANDLERS

Mass

STP

Common
Routines

Task

Task

Task

Storage
Resident
cOos
LDR
(o] Idle
S Program
P
A
to
current
user task
Interrupt xpf
xpf
K
X
EXEC
.} Interchange
1///27 Xp
_ Task
. Y Scheduler
Interrupt Handlers V\\\
N
Xp
Y
Channel Processors
) \ Y A Xp
Monitor Front- Disk/ Packet
Request end SSD 1/0
Processor Driver Driver Driver
»
Y Y Y Y

System control

t One Exchange Package per CPU

10- 26

Task

)

As an option, an SSD can be part of the configuration.
* On the Cray-1 machines, the SSD is contyrolled by a high-
speed channel controller (HSC) which connects to a 6-Mbyte

channel pair. The HSC moves data to and from the SSD over
-a 100-Mbyte channel.

" On the Cray X-MP, the SSD is connected directly to the
mainframe through a 1250 Mbyte channel.

PACKET I/0 DRIVER

The Packet I/0 Driver consists of two major parts:

* The MIOP driver, which controls the 6-Mbyte channel to the

Master I/0 Processor in the I/0 Subsystem,

Packet Queueing, which routes packets among three areas of
the system:

- STP Tasks
EXEC

I/0 Subsystem

Packets can originate in or be sent to any of these areas.

10.27

/0. 2¢

Packet I/0 Driver Tables

The following tables are used by the Packet I/0 Driver:

Any Packet Table (APT)
Channel Extension Table (CXT)
Free Input Queue Table (FIQ)
Free Output Queue Table (FOQ)
Queue Control Table (QCT)

~ Subsystem Control Table (SCT)

* % o % * *

Any Packet Table (APT)

The APT defines most of the packet formats and all of the packet
formats recognized by EXEC.

Channel Extensionm Table (CXT)

The CXT controls front-ends connected through the I/0 Subsystem.
Each I0S channel ordinal has one entry for handling one or more of
the logical front-end ID's.

Free Input Queue Table (FIQ)

The FIQ contains input packets. The packet to be read from the MIOP
contains "NEXTPACK" in ASCII replicated throughout.

Free Output Queue Table (F0Q)

The FOQ contains pointers to queued output packets.

Queue Control Table (QCT)

The QCT is a general format for tables manipulated by the EXEC queue
management subroutines. Specific tables using this format are FIQ,
FOQ, and SCT.

10.29

1030

Subsystem Control Table (SCT)

The SCT contains an entry for each type of packet EXEC can receive
from the MIOP or send to STP.

Each entry contains the address of a routine that either processes
the packet or forwards it to an STP task for processing.

PACKET DESCRIPTION

The unit of information passed is known as a packet and is always
six 64-bit words long.

The Any Packet Table (APT) describes most of the formats the packet
can take. The packet always has a 16-bit Destination ID (DID) and a
16-bit Source ID (SID) used by the Packet 1/0 Driver to route the
packet to its destination.

The following ASCII identifiers are valid in the SID and DID fields.
Identifier Description

Cl1 Cray Mainframe identifier
EX EXEC identifier

Disk I/0

Front-end 1/0

Error Message

Tape I1/0

Echo

Tape Configuration
Initialization part 1
Initialization part 2
Kernel request

Null request
Statistics request

NZ2XRL-OMOOmP>

Packet 1/0 Processors are used by the MIOP driver to process packets
from the I/0 Subsystem and are also used by EXEC to send packets to
STP tasks.

10.31

INTERRUPT HANDLERS

STP

Common
Routines

Task

Task

Task

Mass
Storage
Resident CAL
Cos CFT
|
LDR
C Idle
S Program
P
A
to
current
user task
Interrupt xpf
xpr '
y
X
EXEC
Interchange
A///;V Xp
R Task
Y Scheduler
Interrupt Handlers ‘\\\
Y
X
Y
Channel Processors
Y Y i Y Xp
Monitor Front- Disk/ Packet
Request end SSD 1/0
Processor Driver Driver Driver
Y Y Y R

t One Exchange Package per CPU

System control

/0-32

Task

TASK SCHEDULER

Task scheduling is entered when all interrupt conditions are
processed and the CPU is looking for something to do.

*

If one or more system tasks are ready to run, the task
with the highest priority is selected for execution.

If no system task is eligible, the user task connected to

~ the CPU is selected.

If no user task (job) is connected, the idle package is
selected for execution.

The variables used in system task scheduling are:

STAPB, a field in the System Task Table (STT) header that
contains the STT (System Task Table) address of the
previously active system task.

STPLK, the STP lock indicator. When nonzero, the
previously-executing STP task has disabled preemptive task
scheduling, indicating that the task scheduler should
return to the task.

TBIDLE, a field in the Task Breakout Table. When nonzero,
a system task is stopped at a breakpoint, indicating that
only the breakpoint processing task (SCP) is a candidate
for scheduling.

TPT, the Task Priority Table. This table is indexed by
priority, and each table entry contains the address of the
system task with corresponding priority.

STPRL, the System Task Priority Ready List, contains a bit
for each possible task priority. When a bit in STPRL is
set, the system task with the corresponding priority is
ready to run, that is, it is not suspended.

10.33

INTERRUPT HANDLERS

STP

Common
Routines

Task

Task

Mass
Storage
Resident CAL
Ccos CFT
.
LDR
Cc Idle
S Program
P
A
to
current
user task
Interrupt xpr
xpr
A
/f X
EXEC
{4 Interchange
1///27 Xp
R Task
Y Scheduler

Interrupt Handlers

N

Task

Xp
Y
Channel Processors
Y 1 v Xp
Monitor Front- Disk/ Packet
Request end SSD 1/0
Processor Dr{;gr Dr%:er R Drinr
Y

t One Exchange Package per CPU

System control

Jo- 34

Task

TASK SCHEDULER (continued)

The basic decisions of task scheduling, in order, are:

If STPLK is nonzero, return to the previously active
system task. The STT address of this task is contained in
STT field STAPB. If any system tasks with a higher
priority than the selected task are found, set the STP

~ Lock Recall flag (LKRCL) so that the UNLOCK macro will

exchange to EXEC to allow the higher-priority task to be
executed when the lock is released.

If a system task is at a breakpoint (TBIDLE is nonzero),
select SCP if it has been initialized and is not
suspended. If SCP has not yet been intitialized, or if it
is suspended, select the idle package instead.

If any system task is ready to run, select the task with
the highest priority and cause it to be executed. (The
tests for ready-to-run and highest-priority are combined
since STPRL implicitly contains a priority-ordered 1ist of
ready tasks.)

If no exchange package was selected as a result of the
above steps, user task scheduling (SCHUSER) is entered.

10.35

EXEC RESQURCE ACCOUNTING

EXEC maintains the following performance information in EXEC tables:

* Accumulated CPU time for itself (in PWS)
* Accumulated CPU time for each task (in STT)
* Total time given to users (in PWS)

* Count of all channel interrupts for both real and pseudo
channels.

* Each user's execution time (in TCB)

* Number of normal exits for each task (in STT)

* Number of ready task requests, both from other tasks and
fro? external and internal interrupts, for each task (in
STT

* Number of each type of EXEC request

10.36

LESSON 11: SYSTEM TASK PROCESSOR (STP)

Objective: State the purpose and function of the
System Task Processor (STP) and its
relationship to EXEC and the user's job.

INTRODUCTION

The System Task Processor (STP) runs in user mode and accesses all
memory other than that occupied by EXEC. STP is responsible for
processing all user requests.

STP consists of:

* A set of programs called TASKS
* A set of Tables used by the tasks

* and some reentrant routines common to all tasks.

A system task serves a specific purpose and usually recognizes a set
of subfunctions that can be requested by other tasks.

Characteristics of a task are:

* It has its own ID (a number in the range 0-35 octal)
* It has an assigned priority

* It has its own exchange package area in the System Task
table (STT), :

* It has its own intertask communication control table which
defines which tasks it is allowed to communicate with.

Each task will be described in detail in Lesson 12 of this unit.

11.1

SYSTEM TASKS
The 15 system tasks are:

STARTUP (STP)

STP handles the process of loading COS into central memory,
beginning execution, and generating or recovering tables for the
operating system.

STATION CALL PROCESSOR (SCP)

SCP handles functions for one or more front-end computer systems.

STAGER (STG)

STG is a subtask of SCP. It separates the disk I/0 processing from
the protocol processing in SCP. STG also initiates input jobs by
processing the job card, assigning a job sequence number, and
calling the Job Class Manager to assign a job class.

JOB CLASS MANAGER (JCM)

Before a job enters the input queue, it must be given a job class.
JCM assigns a job to a class.

JOB SCHEDULER (JSH)

JSH is responsible for initiating the processing of a job,
initiating processing of user tasks, selecting a user task to be
active, managing job rol1-in/rol1-out, terminating user tasks, and
terminating a job.

EXCHANGE PROCESSOR (EXP)

EXP processes all user system action requests and user error exits.

EXP also handles requests from the Job Scheduler for initiating or
aborting a job.

11.2

PERMANENT DATASET MANAGER (PDM)

PDM provides a means of creating, accessing, deleting, maintaining,
and auditing disk-resident permanent datasets.

DISK QUEUE MANAGER (DQM)

DQM controls the simulataneous operation of disk storage units on
CPU I/0 channels or the I/0 Subsystem.

TAPE QUEUE MANAGER (TQM)

TQM manages tape I/0 between one or more user jobs and the 1/0
Subsystem. :

MESSAGE PROCESSOR (MEP)

MEP exists so that EXEC and the I/0 Subsystem can communicate with
the system log.

LOG MANAGER (MSG)

MSG writes messages in the system and user log files in response to
requests from other tasks.

DISK ERROR CORRECTION (DEC)

DEC is called by DQM, and attempts correction of a disk error by
applying the CRC algorithm.

SYSTEM PERFORMANCE MONITOR (SPM)

SPM is a low-priority task that collects system performance data and
periodically sends it to the system log.

OVERLAY MANAGER (OVM)

OVM handles the loading and executing of system overlays.

FLUSH VOLATILE DEVICE (FVD)

FVD performs the backup of information contained on volatile devices
(Buffer Memory and SSD).

11.3

EXEC constant, data and table areas

— . —— o mm —— c— o a— —— G— o —— — g— o— o m— —

EXEC program area

‘STP table area

— —— e — o — e om— w— S o om—n G et o o —

STP program area

Csp arear

Available
for
jobs

— . S— ou—

Memory for CRAY-0OS
System log and station
buffers

1.4

Task Residence

The addresses in the Base Address (BA) register and the Limit
Address (LA) register are the same for all tasks; BA is set to the
beginning of STP and LA is set to I@GMEM (an installation-defined
maximum memory value).

Although a task is loaded into memory during system startup, it does
not normally become known to the system until an existing task
issues an executive request for the creation of some other task.

A create task request assigns an ID and a priority to a task through
the task's parameter block in the System Task Table (STT).

Task Execution

Tasks execute in program mode and are therefore interruptible. An
interrupt occurs as a result of the task executing an exit
instruction (ERR or EX) or results from one of the interrupt flags
being set automatically (for example, an I/0 interrupt).

When a task is created, it is forced into execution. During this
initial execution, it usually performs some initialization and setup
operations and then suspends itself. Thereafter, a task is executed
only if it is readied.

Task Readying

Readying of a task occurs automatically or explicitly. Readying
occurs automatically for tasks assigned to a channel when an
interrupt occurs on that channel.

Readying also occurs as a result of an explicit EXEC request issued
by one task for the execution of another task.

A task is also readied or suspended by a master operator station
request (station debug command). A task remains ready (unless
breakpointed or stopped) until EXEC receives a request to suspend
it.

11.5

Self-suspension

A task requests self-suspension when it has completed an assigned
function or posts a request for another task. Note that if the task
being requested is of lower priority than the task making the
request, the requesting task must suspend itself to allow the lower
priority task to execute.

Subsequent requests to ready a task already readied cause the ready

request bit in the task's parameter word (STT) to be set. When this
bit is set, the next suspend request for the task causes the task to
be re-readied rather than suspended. The task ready request bit is

then cleared.

11.6

STP TABLES

The following 35 tables are accessible to all system tasks:

AUT Active User table containing an entry for each
logged-on interactive user.

CMCC Communication Module Chain Control for controlling
task-to-task communication. It is a contiguous area
containing an entry for each combination of tasks
possible within the system. The CMCC is arranged in
task number sequence. The IDs of the requesting task
and requested task determine the appropriate CMCC entry.

CMOD Communications Modules in 6-word groups that form a
pool from which they are allocated as needed. Two
words are used as control; two are used as input
registers; and two are used as output registers. A
task receives all of its requests and makes all of
its replies through a CMOD.

CNT Configuration Table containing information on the
availability and type of each device known to the
system (tape).

CPT Class Parameter Table used by JCM. It contains all
job statement parameters used to determine job class.

CSD Class Structure Definition Table containing the job
class structure. For each class defined in the
structure, there is a class map; these appear in CSD
in descending order. A header precedes the class
maps. Variable length characteristic expressions
for each class follow the maps. '

11.7

DAT Dataset Allocation Table. A DAT exists for each
dataset known to the system and defines where the
dataset logically resides on mass storage.

DCT Device Channel Table serving as a 1ink between a
physical or logical disk channel and the EQT. It is
an interface to the EXEC disk driver. The DCT holds
channel system performance data.

DRT Device Reservation Table. A DRT exists for each
logical disk device known to the system. A DRT
contains a bit map showing available and reserved
tracks on the device.

DXI Permanent Dataset Catalog Extension Information Table
containing information used by the Permanent Dataset
Manager (PDM) such as the size of the Dataset Catalog
extension Table (DXT).

ECT Error Code Table for controlling abort and reprieve
processing done by EXP. It contains a 1 word entry
for each system error code.

EQT Equipment Table containing an entry for each disk
device known to the system.

GRT Generic Resource Table containing an entry for each
generic resource in the system.

IBT Interactive Buffer Table for managing the Interactive
Buffer Pool.

- JXT Job Execution Table. The JXT controls all active
jobs in the system and can contain as many as 256
entries. Entry 0 is used to represent the system itself.

LCT Link Configuration Table containing an entry for each
CPU channel used for front-end communications.

11.8

LIT

LXT

MST

0DT

OoLL

PDI

PDS

Link Interface Table. SCP assigns an LIT entry at
startup to each CPU channel used for front-end
communications. This table is used primarily for
channel control.

Link Interface Extension Table. EXEC assigns an LXT
entry for a front-end station at log-on time and
releases the entry at log-off. This table is used
primarily for EXEC-STP communication of information
on a front-end station.

Memory Segment Table containing an entry for each
segment of memory allocated by the Job Scheduler
(JSH) as well as an entry for each free segment. The
number of entries in the MST is set to twice the
number of JXT entries plus four words. Each MST
entry is one word in length.

Overlay Directory Table. Each overlay defined by a
DEFINOVL macro contains an entry in the ODT. each
entry contains addressing information and data on the
overlay's use.

Overlay Load Request List holding a backlog of
requests for overlays. When an overlay load is
requested and the memory pool is full, an entry is
added to the OLL to be processed when space becomes
available.

Permanent Dataset Information Table containing
information used by the Permanent Dataset Manager .
(PDM), such as the number of overflow and hash pages.

Permanent Dataset Table consisting of a one-word
header followed by a 1-word entry for each active
permanent dataset. The entry indicates how a dataset
is accessed and if multiple access exists. If so,
the entry tells how many users are accessing the
dataset.

11.9

PXT Processor Execution Table contains status information
for each physical processor, including which user
task is currently connected.

QDT Queued Dataset Table describing the multitype
attributes for a disposed dataset. The table is
managed by the Permanent Dataset Manager (PDM) and
Exchange Processor (EXP) tasks. The number of
entries in the QDT must equal the SDT entry count.

RJI Rolled Job Index Table containing for each defined
JXT, an entry describing the job assigned to the JXT
entry, allowing the recovery of jobs from mass storage.

RQT Request Table used to queue transfer requests for
disk management. DQM uses the RQT to manage both
logical and physical disk requests. RQT entries are
queued to an EQT entry.

SBU System Billing Unit Table containing the values
obtained when system billing units are calculated for
system resources.

SDR System Directory containing a Dataset Name Table for
each of the datasets comprising the system library.
The SDR is initialized after a system startup.

SDT System Dataset Table containing an entry for each
dataset spooled to or from a front-end system. An
SDT entry can have appendages allocated out of an STP
memory pool to contain TEXT field and station slot
information.

11.10

SST

STPD

T

xT

UucT

Stager Stream Table. Eight input stream and eight
output stream SSTs are contained within each LXT.

STP Dump Directory containing pointers to task
origins, buffers, and so on. An entry gives a
mnemonic in ASCII plus the relative STP address for
the area.

Tape Device Table. The Tape Queue Manager task uses
the Tape Device Table to control online tape devices.
The TDT contains an entry for each tape device in the
system.

‘Task Execution Table contains all information to

control all user tasks within the system.

User Call Table containing a count of the number of
times each type of user call is made. This table is
used by the System Performance Monitor.

Details of the STP tables are given in the COS Table Descriptions
Internal Reference Manual, publication SM-0045, and will be
addressed in Unit 3 of this course.

11.11

1/ 19

TASK COMMUNICATION

Tasks communicate with:

* EXEC

* Each Other

* User Jobs

* the Front-end computer

EXEC - TASK COMMUNICATION

A task communicates with EXEC by placing a request and parameters in
registers S6 and S7 and by executing an EX instruction.

A reply to the request is returned in registers S6 and S7.

Executive requests are discussed in detail in section 2.6 of
publication SM-0040.

11.13

TASK COMMUNICATION

SYSTEM TASK PROCESSOR

Communication Module Chain Control

Task 0
Header
Task 1
' l\ Task 0 to Task 1
]] \\
) 1N
1 | AN
: : “ Task 1 to Task 1
i : “\
! 3
! ' \ Task 2 to Task 1 [
: :
1 1 *\
i i \
\
‘\
Task n \\ Task n to Task 1
\)
Communication Modules
-
CMOD 1 'I'
_J Task 2 to Task 1 ’,' o Control =—---
l"
’I
’O
g o= Input =
o] -~
4
CMOD 2 of
Task 2 to Task 1 ~==- Output -—--
r—- hreoceoseceooeseeeew s aey
L. .
L3
CMOD n
Task 2 to Task 1

Task communication tables

TASK TO TASK COMMUNICATION
STP contains two areas used for intertask communication:

* Communication Module Chain Control (CMCC)

* Communication Module (CMOD)

CMCC

The CMCC is a contiguous area containing an entry for each
combination of tasks possible within the system.

The CMCC is arranged in task number sequence, that is, all possible
task O combinations of requests to task 0 are followed by all
possible combinations of requests of task 1, etc. The task ID of
the requesting task and the task ID of the requested task are the
values that determine the appropriate CMCC entry.

CMOD

CMODs are allocated from a pool as needed and, therefore, have no
fixed location within STP.

A CMOD consists of six words:

* (2) for Control
* (2) for Input
* (2) for Output

A task receives all of its requests and makes all of its replies
through a CMOD.

11.15

CYRL

task A

TSKREQ

task B

GETREQ

request.;

fog?

reply

METHOD OF COMMUNICATION

One task communicates with another by placing a request in the input
word of a CMOD.

The requested task replies by placing the request status in the

output words of the CMOD.

Six reentrant routines in STP that are common to all tasks facilitate
intertask communication. They are:

PUTREQ Put Request routine

GETREQ Get Request routine

PUTREPLY Put Task Reply routine

GETREPLY Request Status routine

TSKREQ Task Request routine

REPLIES Queues Unrequested Reply

Tasks call these routines through return jumps.

The task placing a request calls PUTREQ to place the request and
calls GETREPLY to check for a status from the requested task.

Conversely, the requested task uses GETREQ to locate outstanding
requests and uses PUTREPLY to return the status.

TSKREQ is incompatible with PUTREQ and GETREPLY; If TSKREQ is used,
PUTREQ and GETREPLY must not be used.

11.17

31

tack A

CMOD

TSKREQ

request

| reply

C:£§§§E:Z:::::::::= PUT

task B

| GETREQ

REPLY

PUTREQ

PUTREQ places the request in the input registers of a CMOD and 1inks
the appropriate communications module chain control.

If the request cannot be chained because no CMODs are available or
the chain is at its maximum, PUTREQ suspends the calling task or, at
the caller's discretion, returns control to the requestor with no
action taken.

Once PUTREQ has successfully generated the CMOD and linked it to the
CMCC, the requested task is readied and control returns to the
requestor.

GETREQ

GETREQ locates any outstanding request for the caller.

Using the CMCC, GETREQ searches for a CMOD representing a request
not yet given to the requestor. GETREQ begins the CMCC search with
the Towest numbered task and returns the first request encountered
to the caller.

PUTREPLY

PUTREPLY places the reply to a request in the first available CMOD.
Requests and replies are stored in the CMOD in the sequence in which
they are generated. Therefore, a single CMOD represents an

unrelated request and reply. PUTREQ readies the task where the
reply is directed and returns to the requestor. ‘

GETREPLY

GETREPLY searches for a reply to the calling task.

The searches begins with the lowest numbered task and ends with the
highest numbered task, returning the first reply encountered.

GETREPLY removes the CMOD from the CMCC and releases it for
reallocation.

11.19

TSKREQ

TSKREQ makes a request to a task for processing and suspends the
caller until a reply is received.

If the request cannot be queued immediately because either the queue
is at its maximum or because no communication modules are available,
the caller is suspended until the request is queued.

Once the request is queued, the caller is suspended until a reply is
received. If one task makes a request to another using TSKREQ, all
requests from the first task to the second must be made using
TSKREQ.

Mixed use of TSKREQ and PUTREQ/GETREPLY can cause unpredictable
results. ‘

REPLIES

REPLIES queues a reply for which no corresponding request has been
made. :

The reply is queued at the beginning of the reply queue. A reply

sent through this subroutine is seen by GETREPLY before any reply
sent through PUTREPLY.

11.20

USER - STP COMMUNICATION

User tasks initiate user/STP communication.

A user program request to STP is performed when the user task loads
register SO (or S1 and S2) and executes the normal exit instruction.

Most system action requests can be issued through a CAL macro (see
the Macros and Opdefs manual, SR-0012).

The user macro also results in a normal exit from the user program.

EXEC routes all normal exits from a user task to the Exchange
Processor task (EXP), which is discussed in detail in Lesson 12.

TASK - FRONT-END COMMUNICATION
Tasks can issue messages to any logged-on front-end station with a
message processing capability.

Messages are either strictly informative or require a response by
the operator.

Messages are queued by the common subroutine MSGQUE and processed by

the Station Call Processor (SCP) task at the first opportunity for
communication to the front-end.

11.21

.22

STP_COMMON ROUTINES

Certain reentrant routines resident in STP are called by return
jumps rather than by a call to another tasks.

These common routines include:

* Task Logical I/0 Routines (TIO)

* Circular I/0 Routines (CIO)

* Memory Management Routines

* Item Chaining/Unchaining Routines

* Interactive Communication Buffer Management Routines
* Password Encryption

* System Buffer Management

TASK 1/0 ROUTINES
Task 1/0 (TIO) is a set of reentrant common routines in STP
logically considered part of any system task that calls it.

TIO interprets only COS blocked format and therefore, only operates
on blocked datasets.

It allows a systems programmer to do logical I/0 at the system task
level without being concerned about physical 1/0.

The following COS system tasks call TIO:

* Exchange Processor (EXP)
* Startup

* Log Manager (MSG)

11.23

STP COMMON ROUTINES TASK I/O ROUTINES

(A6) dn VA
0
V7 A data:
"",,___—————{EEE:‘ IN A
(DNT '
A1)
N ——>0uT
osP o dea
ALIMIT —
1/0 BUFFER
CMCC
oo TASK 1/0

PHYSICAL 1/0

TIO logical write

1. 24

TI0O (continued)

Primary inputs to TIO consist of:

* a Task Execution Table (TXT) address,

* a Dataset Name Table (DNT) address,

* a Dataset Parameter Table (DSP) address,

* the address of the system buffer area.
The logical I/0 may be performed on either a dataset related to the
system or a user task related dataset.
"TIO does not allocate or deallocate any of the control structures

or buffers for the request, but assumes all control structures and
buffers are set up correctly before the request by the system task.

TIO FLOW
1. System task calls TIO with proper input parameters

2. TIO blocks or deblocks the user data between the user
buffer and the system buffer

3. If necessary, TIO calls CIO to perform a physical
read/write. fIo exits to the calling task's main
interrupt Tloop.

11.25

OUT=F [RST~»>

A s o o o e

IN->

LIMIT L LIMIT »

A. Filling the buffer B. Emptying the buffer

FIRST -+

IN >
processing
flow

ouT >

LIMIT >

C. Concurrently filling
and emptying the buffer

Physical 1/0

CIRCULAR I/0 ROUTINES (CIO)

Physical I/0 on a dataset uses a circular buffering technique
initiated by a set of STP common routines known as CIO.

CIO routines are directly callable from system tasks.

The following system tasks directly call CIO within COS:

* Exchange Processor (EXP)
* Log Manager (MSG)

* Permanent Dataset Manager (PDM)

CIO calls either the:
* Disk Queue Manager (DQM) or the
* Tape Queue Manéger (TQM)

to perform physical sector transfers. These calls occur through
intertask communication (PUTREQ) from CIO.

These calls are issued by user programs or tasks when data is to be

transferred between the I/0 buffer defined by the DSP and mass
storage.

11.27

Pool Table

HEADER
Pool No. 1 >
: ﬂemer Pool No. 1
Pool No. n
Y
Memory Pool No. n =107

Memory allocation tables

nag

MEMORY MANAGEMENT ROUTINES

STP common subroutines provide for allocation an deallocation of
variable size memory areas for temporary use by a task.
Allocation and deallocation are from memory pools. The number and
size of the pools are determined when the operating system is
generated.

The Pool Table and the header and trailer words are used for
controlling memory allocation and deallocation.

The Pool Table consists of a header word and one word for each
memory pool in the system. :

The Pool Table Header defines the maximum valid pool number.

The word associated with the memory pool provides the base address
and size of the memory pool.

11.29

STP COMMON ROUTINES

CHAINING/UNCHAINING SUBROUTINES

CHAIN CONTROL

HEAD ¢ | TAIL/

/

S N~

“= -

o =

{J[TO

[1 18]
-

[

e ™

<X

==

O e

O

['

- ——

-~ —

Chain tables

)1. 30

CHAINING/UNCHAINING SUBROUTINES

The CHAIN and UNCHAIN common subroutines provide tasks with a means
of linking data.

Each piece of data is termed an item and consists of two words of
header information followed by the information being added to the
chain.

As an example, an item can be the input and output registers used
for intertask communications. By chaining registers, tasks need not
be limited to two words of input and two words of output. However,
the CHAIN/UNCHAIN subroutines are not restricted to use for inter-
task communications; the amount of information in an item and its
type is defined entirely by the task using the subroutines.

Chaining is established through a chain control word and the first
two words of each item in the chain.

Pointers in the chain control word identify the first and last items
on the chain. The c¢hain control word also contains space for the
maximum number of items that exist on the chain and a count of the
number of items on the chain. .

The two words used in the chain item provide a forward link to the
next item on the chain, a backward link to the preceding item on the
chain, and the address of the chain control word where this item is
Tinked.

11.31

STP COMMON ROUTINES

SYSBUF
after

2 allocate /!

requests

PDM etc.
SYSBUF
U
S
E
R
STp
EXEC
INCREMENT
STATE
PDM
SYSBUF New SYSBUF
after one
I@BFINCR - allocate
request
I@BFINCR
USER
STP
EXEC

DECREMENT
STATE

PDM

SYSBUF

I@BFDECR

USER

STP
EXEC

System Buffer memory management

1.3

SYSTEM BUFFER MANAGEMENT

SYSBUF plus
some number
of increments

INTERACTIVE COMMUNICATION BUFFER MANAGEMENT ROUTINES

The interactive communication buffer management routines are a set
of common routines that operate on the Interactive Buffer Table
(IBT) and queue control words in the Active user Table (AUT).

They allocate and deallocate buffer space, queue and dequeue
messages, and transfer messages to and from the buffer area.

SYSTEM BUFFER MANAGEMENT

The System Buffer or SYSBUF is an area of memory between PDM tables
and user memory. This places the buffer area very high in central
memory. This buffer zone is used by SCP and STG for C0S/front-end
communication buffers.

The original buffer is allocated by the Job Scheduler (JSH) and is
the size of the installation parameter I@SYSBUF.

As more space is needed, the buffer manager, a common subroutine
called BFMAN, requests JSH for an increase in words to be added to
the buffer.

Memory is added or removed from the end of the buffer adjacent to

user space, which means that availability of user space memory space
is affected by fluctuations in communication load.

11.33

LESSON_12: SYSTEM TASKS: Purpose & Function

Objective: State the purpose and function of the
various System Tasks, and the role they
play in the user's job.

INTRODUCTION

A system task serves a specific purpose and usually recognizes a set
of subfunctions that can be requested by other tasks.

Characteristics of a task are:

* It has its own ID (a number in the range 0-35 octal)

* It has an assigned priority

* It has its own exchange package area in the System Task
table (STT),

* It has its own intertask communication control table which
defines which tasks it is allowed to communicate with.

12.1

*

*

*

COS STARTUP
INSTALL

DEADSTART
RESTART

12.2

COS STARTUP

System startup is the process of loading COS into central memory,
beginning execution, and generating or recovering tables for the
operating system.

The COS initialization task (Startup) is created by EXEC. Startup
executes only once ... when the operating system is loaded and
started up.

Startup leaves messages in memory to notify the operator of failures
during the COS Startup procedure.

There are three ways to start the system:

* INSTALL
* DEADSTART
* RESTART

Most of COS Startup resides in the System Task Processor (STP) so

that it can conveniently access system tables and facilities.
However, some Startup logic resides in the station software of the
Etation from which startup occurs (such as the I/0 Subsystem) and in
XEC.

12.3

Install Option
With Install, COS is started as if for the first time.
A11 Cray-1 or Cray X-MP mass storage is assumed to be vacant, except

for areas reserved for Cray Research customer engineers and for the
Engineering Flaw Table (EFT).

When the Install option is selected, the Startup task:

* Searches for EFT,s if they exist

* Writes a device label (DVL) on each mass storage unit.
* Accumulates Flaw Information

* Processes Mass Storage Groups

* Creates the Dataset Catalog on the Master Device

* Sets up the DSC and tables in memory

* Reserves space on the‘master device for system dumps
* Reserves space for the datasets maintained by IO0S

* Initializes the Rolled Job Index dataset and enters it
into the DSC.

* Optionally creates the Dataset Catalog Extension Table on
the master device and enters it into the DSC

* Initializes the Job Class Structure and System Directory
datasets and enters them into the DSC.

* Allocates disk space for volatile device backup dataset.

12.4

Deadstart Option

For a Deadstart, COS is started as if after a normal system

shutdown.

That is, permanent datasets mentioned in the DSC are preserved
through proper setup of tables in memory. However, input or output
queues in the Dataset Catalog are deleted.

When the Deadstart option is selected, the Startup task:

*

%*

Searches for the Engineering Flaw Table (EFT)

Finds device label on each mass storage unit

Preserves flaw information

Preserves mass storage groups

Reserves Dataset Catalog on master device and the disk
space allocated for system dump; initializes DNT and DAT
for the DSC :

Preseves the allocated space for the datasets maintained
by the I0S

Restores all data on volatile devices from the backup
datasets

Deletes all input and output datasets and reserves all
other permanent datasets

Either creates the DXT or recovers and validates the DXT
if one already exists

Establishes the Rolled Job Index in memory

Copies system dump, if one exists, from the preallocated
area to available space and saves the copy as a permanent
dataset.

For volatile devices, either allocates and saves backup

datasets, or invalidates information contained on the
previously existing datasets

12.5

Restart Option

Restart is an operator option after a system interruption when
recovery of input and output queues and possibly the jobs in process
is desirable.

When the Restart option is selected, the Startup task:

* ° Attempts to preserve the area reserved for system dumps

* Restores information on volatile devices from their
associated backup

* Attempts to preserve all permanent datasets and recovers
input and output queues.

* In memory, builds DAT and System Dataset Table (SDT) for
each input/output dataset.

* If specified, recovers rolled out jobs through call to
Recover Rolled Jobs routine (RRJ)

* Preserves or allocates space for the datasets maintained
by the I0S

* Copies system dump if necessary and saves the copy as a
permanent dataset

12.6

Input to Startup

Input to Startup may consist of a parameter file, the Dataset
Catalog Extension Table, and the $SDR and $ROLL datasets.

Startup may also receive configuration and status changes to devices
from the system operator.

Configuration Changes

Startup can receive confiquration information from any of the
following sources:

* Information assembled into tables at system genration
time.

* Information entered through parameter file commands

* Information entered interactively during Startup at the
configuration change time.

At these times, devices can be added or deleted, or attributes or
status can be changed. These devices include any described in the
Equipment Table (EQT) or Tape Device Table (TDT)/Tape Configuration
Table (CNT).

To be able to enter information during the actual Startup

processing, the master operator station must support the station
message feature.

12.7

Tables used by STARTUP

The Startup task uses the following tables to initialize the system
for Install, Deadstart, or Restart.

AUT Active User Table

CNT Configuration Table

DAT Device Allocation Table
DNT Dataset Name Table

DRT Device Reservation Table
DSC Dataset Catalog

psP Dataset Parameter Area
DVL Device Label

DXT Dataset Catalog Extension
EFT Engineering Flaw Table
EQT Equipment Table

GRT Generic Resource Table
JTA Job Table Area

JXT Job Execution Table

oDT Overlay Directory Table
PDI Permanent Dataset Information Table
QDT Queued Dataset Table

RJI Rolled Job Index Table
SDT System Dataset Table

0T Tape Descriptor Table

12.8

STATION CALL PROCESSOR (SCP)

The Station Call Processor (SCP) handles functions for one or more
front-end computer systems and provides for:

* Establishing communications with the front-end

* . Responding to front-end requests for functions such as
stream control, I/0 transfer, and status requests

* Multiplexing of streams for each logical station

%*

Multiplexing of Togical stations on the same hardware
channel -

System Tables used by SCP

SCP uses the following system tables:

* AUT Active User Table

* IBT Interactive Buffer Table

* LCT Link Configuration Table

* LIT Link Interface Table

* LXT Link Extension Table

* PDD Permanent Dataset Definition Table
* SDT System Dataset Table

* SST Stager (STG) Stream Table

12.9

PROCESSING FLOW FOR SCP

Upon receipt of each message from a front-end, SCP checks for illegal

code or illegal parameters.

SCP then processes the message code as follows:

1. Log on causes SCP to save log on parameters and to initialize
the buffer pool.

2. The incoming dataset header causes a System Dataset Table entry
to be assigned and the header parameters to be saved in the SDT.

3. A start request is issued to the Stéger (STG) task via the
Stager Stream Table (SST). -

4, SCP trades the input buffer for the empty buffer pointed to by
the SST. The STG task is then activated with a process buffer
code.

5. Status messages are sent by the front-end and verified by SCP.

6. Memory pool buffer is aquired

7. SCP processes the input stream control bytes:

- Request to send from Front-end

- SCP responds with receiving

- Front-end sends data

- STG processes incoming data (mass storage)

- End Data

- SCP responds with Dataset Saved to front-end

12.10

STAGER (STG)

Stager is a subtask of SCP. The purpose of STG is to separate the
disk I/0 processing from the protocol processing in SCP.

STG:

* Writes data segment buffer contents received from
~ front-end systems to mass storage.

* and fills data segment buffers destined for front-end
systems with data from mass storage,

STG also:
* Initiates input jobs by processing the job card,
* assigning a job sequence number

* and calling the Job Class Manager (JCM) to assign a job
class
Tables Used By Stager
STG uses the following tables:

* PDD Permanent Dataset Definition
* SDT System Dataset Table

* SST Stager Stream Table

12.11

Permanent Dataset Definition

STG uses the PDD to create and release permanent datsets.

System Datset Table

STG places information in the SDT for datasets being transferred to
or from a front-end system concerning block size, processing
direction, etc.

Stager Stream Table

The SST is used for communications between STG and SCP.

12.12

Overview of STG Processing

STG is activated for dataset transfers taking place between the Cray
and the front-end systems.

The STG task is dormant when no datasets are being transferred.

SCP requests STG processing for active data streams.

Input Processing

The input startup phase is entered when a Start message request code
is received by SIG.

1. If a dataset already exists, set an End message reply code
to terminate the transfer and exit.

2. Allocate an initial segment buffer. If the segment buffer
cannot be alloctaed, set a Buffer Wait message reply code
and exit. SCP will re-issue the Start request at a later
time.

3. Allocate the initial disk buffer. If no space for the
buffer can be found, then release the segment buffer also
to prevent buffer deadlock.

12.13

The Input Transfer phase:
1. Move data from the segment buffer to the disk buffer.
When the disk buffer is full, a write to disk is
initiated.
2. If there is data left in the segment buffer, the status is
set to busy while the disk write completes.
If no data is left in the buffer, the segment buffer is

release and reallocated.

The Input Termination phase:

Upon receipt from SCP of an End message code (end-of-data):

1. Any data in the segment buffer is copied to the disk
buffer and a write is issued to flush the buffer.

2. The disk buffer and segment buffer are released.
3. If the dataset transfer is an ACQUIRE or FETCH, exit.
4, A Permanent Dataset Definition (PDD) entry is allocated.

5. If the dataset is a job, assign a job sequence number, and
call the Job Class Manager to assign a class.

6. If the dataset is a job, PDM saves the input dataset.

7. When PDM is complete, SCP is notified.

12.14

STé Output Processing

Startup phase

The output startup phase is initiated by a Start message request
code from SCP.

Allocate a segment buffer
Set parameters in the SDT for reading the dataset
Allocate the disk buffer

Initiate the disk read.

Transfer phase

Reallocate a segment buffer if the current buffer is
empty.

Compute the number of words in the disk buffer, and then
move all the data that will fit into the segment buffer.

If the disk buffer is empty, reallocate it.

Qutput Termination phase

0w N

Release disk and segment buffers
Allocate a PDD
PDM deletes the output dataset

Release the PDD used to delete the output dataset

12.15

JOB CLASS MANAGER (JCM)

Before a job enters the input queue, it must be given a job class
assignment.

The Job Class Manager task (JCM) assigns a job to a class.

JCM uses the job class structure currently in effect based on
installation parameters to determine the class assignment.

The Job Class Manager task is created with all other system tasks by
the Startup procedure.

A task can call JCM by setting the appropriate input regiﬁters and
calling PUTREQ and TSKREQ. JCM replies to each request by setting
the appropriate output registers. ’

Job Class Assignment

A job can only belong to one class. A job that qualifies for more
than one class is assigned to the highest ranked class for which it
qualifies.

The user can override this assignment to lower the class through the
use of the CL parameter on the job control statement, but the job
must still meet the qualifications of the specified class. If the
job does not qualify for any class, it is assigned to the class
defined using CHAR=0RPH (orphan).

See JCSDEF in the COS Operational Aids Reference Manual (SM-0044)
for a detailed description of a job class structure.

12.16

JOB SCHEDULER (JSH)
The Job Scheduler (JSH) task is responsible for:

* Initiating processing of a job

* Initiating processing of a user task
x Selecting a use; task to be active

* Managing job roll-in and roll-out

* Terminating user tasks

* Terminating a job

The staging task (STG) builds a System Dataset Table (SDT) entry
containing the job card parameters and information to find the
dataset.
The Job Scheduler then performs:

* JXT allocation

* Initial TXT allocation

* Memory Allocation

* CPU connection

12.17

JXT allocation

JSH allocates a Job Execution Table (JXT) entry for each job.
The information in the JXT contains:

- current status of the job

- - location in memory or on a roll file,

- working values of priorities

TXT allocation

The TXT contains working values of concerning CPU use.
The TXT includes:
- The most recent job logfile and

- most recent control statement message

to enable the operator to determine the current job step.

Memory allocation

JSH allocates memory to each job represented by a JXT entry.
After the memory is allocated, the job is either:

- relocated in memory

- read in from the roll file

- or initialized
Based on the priority considerations, a memory allocation can be

taken away from a job, and the job can be written out to the roll
file.

12.18

CPU allocation
JSH allocates the CPU(s) among the user tasks present in memory and
ready to run.

A user task is disconnected from the CPU when:

* . it suspends itself to wait for a system service,
* when it exhausts its allocated time slice,

* or when it is preempted because another (higher priority)
~user task is made ready to run.
JSH Design Philosophy
The Job Scheduler incorporates the following design criteria:
* Equal jobs should share available resources

* Resource use should be balanced between CPU-bound and I/0
bound jobs.

* Higher priority jobs should be allowed more resource use
then lower priority jobs

* Responsiveness should be available to those jobs that
require it.

12.19

EXCHANGE PROCESSOR (EXP)

The Exchange Processor (EXP) task processes all user system action
requests and user error exits.

The Exchange Processor also handles requests from the Job Scheduler
for initiating or aborting a job.

Exchange Processor Request Word

A11 requests to the Exchénge Processor are made through the Exchange
Processor Request Word (TCEP) in the JTA for the job assigned to the
CPU.

The Exchange Processor is readied by EXEC whenever TCEP is nonzero.

The format of TCEP is as follows:

0 2 4 6 16 40 63
NEICITIMI///////1////77/77777///7/777771 A

Field Bits Description

TCEPN 0 Normal exit

TCEPE 1 Error exit or execution error

TCEPC 2 Continuation flag

TCEPJ 3 Job Scheduler flag

TCEPM 4 JTA Expansion Request flag

TCEPA 40-63 Continuation address; EXP address if

TCEPC=1.

12.21

Job Scheduler Requests

The Job Scheduler (JSH) requests the Exchange Processor to initiate
(or abort) a job by setting the TCEP word in the job's JTA.
JSH sets the TCEP field to 1, indicating a JSH request.

EXEC, recognizing the TCEP field has been set to 1, readies the
Exchange Processor, initiating the job.

System Action Requests (Normal Exit)

Sequence Of Events:

1. Exit from a user program occurs when the user program
executes an exchange instruction (004).

The user issues a system action request on a program exit
by setting SO to the desired function code.

(See page 8-3 thru 8-22 in manual SM-0040 for a list of
system action request codes)

If an error is encountered, the job normally aborts with
appropriate messages issued in the logfile. For some
errors, however, an error code is placed in the user's SO
and the user is allowed to continued processing.

2. EXEC sets the TCEPN field in the TCEP word and readies the
Exchange Processor (EXP).

3. When EXP is readied, it detects the user request because
of the TCEPN field being set.

4, EXP then processes the system action request by using the
function code in SO as an index into the CALL table
(discussed later in this lesson) to obtain the address of
the routine to process this request.

12.22

5. After EXP processes a request, it clears TCEP to allow
EXEC to return to the user job.

If EXP cannot process a request immediately, it suspends
itself without clearing TCEP. EXEC then returns control
to EXP, rather than the user, whenever the user task is
assigned to the CPU.

EXP calls JSH to suspend the user task before suspending
itself when it must wait for completion of a request, such
as an I/0 request to another task. This allows other user
tasks to be assigned the CPU.

User Error Exit

When a user program executes an error exit instruction or encounters
a hardware error (floating-point error, operand range error, or
program range error), an exchange to EXEC occurs.

EXEC readies EXP after setting the following fields in the Task
Control Block in the job's JTA:

* TCEPX is set to 1

* TCEPF is set to the exchange package flags in the user

exchange package.

EXP either initiates reprieve processing or issues appropriate error
messages and aborts the job.
ABORT
If the job is not reprievable, EXP skips through the control
statements to the one following the next EXIT statement or to the

end of file.

If the statement is DUMPJOB, a dataset named $DUMP is created which
contains the job image, including the JTA and the entire user field.

12.23

Reprieve Processing

Reprieve processing enables a user program to gain control in a
uniquely identified routine when a job step completes either
normally or abnormally.

Reprieve processing is enabled by issuing the SETRPV macro
instruction in a CAL program, or by calling the SETRPV library
routine in CFT.

Sequence

1. When a job step is terminated, the F$ADV or F$ABT system
action routine determines if a reprieve request has been
issued and if the abort condition has been specified as
reprievable. If so:

2. The reprieve processing routine clears the current
reprieve values, -

3. Copies the exchange package, vector mask register, error
class code, and actual error code contents to the user-
specified area,

4, Sets up the user-specified reprieve routine to receive
control when the job is selected for execution, by placing
its address in the P-register of the exchange package.

12.24

Irrecoverability of Jobs

By performing the following functions, a job will be declared
irrecoverable:

* A random write on any dataset

" A sequential write on any dataset immediately following
any forward positioning, rewind, or read on that dataset.

The position of the end of data is changed, which could
cause the job to behave differently if started from a
previous roll image.

* A SAVE, DELETE, ADJUST, PERMIT, or MODIFY of a permanent
dataset, and

* A release of a local dataset, returning disk space to the
system.

The job will become recoverable as soon as the Job Scheduler rolls
the job out to disk again.

A job is declared irrecoverable by a call from EXP to the Job
Scheduler. If the job is already marked irrecoverable, JSH returns
without further action.

If the job is not already marked irrecoverable, JSH suspends the
job, changes the Rol1led Job Index Table, and writes the modified
index to disk.

When the modified index is successfully written, JSH resumes the
job. '

12.25

Job Rerun

Under certain conditions, termination of job processing and
returning to the input queue for reprocessing at some later time is
desirable or necessary.

This is known as rerunning a job, and can be requested using the
RERUN macro or RERUN control statement.

When a job is rerun, the results should be the same as those
obtained if the original execution had continued to a normal
termination.

However, after a job has performed certain functions, the system is
unable to guarantee the same results for the rerun job.

Normally, when EXP recoghizes that the user is performing one of
these functions, the job is declared ineligible for rerun.

The following functions on a permanent dataset cause a job to be
declared ineligible for rerun:

* SAVE

* DELETE
* MODIFY
* ADJUST

* Any write operation involving a permanent dataset

If the job is ineligible for rerun, it aborts with an informative
message when the Job Scheduler attempts to reinitiate the job.

12.26

System Tables used by EXP

A11 EXP functions are job related. Consequently, most of the tables
%sed by EXP are either in the user field or in the Job Table Area
JTA).

System tables usually accessed by the Exchange Processor are:

* CALL Call Table

* JIXT Job Execution Table

* QDT Queued Dataset Table

* SDT System Dataset Table
Call Table

The CALL table is composed of a l-word entry for each user system
action request. The contents of the user's register SO serves as an
index into the call table to obtain the address of the routine that
processes the request.

Job Execution Table

The Job Execution Table contains an entry for each job that has been
initiated. The JXT contains job parameters and statistics that may
be required while the job is rolled out to disk.

Queued Dataset Table

EXP modifies the QDT when a job releases a local scratch dataset
having related disposes.

12.27

System Dataset Table

The System Dataset Table contains an entry for the job dataset for
each job in execution.

EXP creates an entry in the SDT for each output dataset.

It also allocates an SDT if a dataset is submitted to the input
queue.

Task Control Block

The TCB contains all execution-point related information
(corresponding to a user task) including the exchange package, B, T,
and V registers, EXP save areas, EXP internal use tables, and CPU
timimg information.

12.28

PERMANENT DATASET MANAGER

The Permanent Dataset Manager task (PDM) provides a means of
creating, accessing, deleting, maintaining, and auditing disk-
resident permanent datasets.

The Permanent Dataset Manager is called by the Exchange Processor

(EXP) for:

* SAVE

* ACCESS

* DISPOSE
* RELEASE
* DELETE

* ADJUST

* MODIFY

* PERMIT

Creates user permanent dataset

Associates a user permanent dataset with a
job.

Stages a CRAY permanent dataset to a front-
end computer system

Relinquishes access to the named dataset
for the job

Removes a user permanent dataset from the
system

Changes the size of an existing permanent
dataset

Changes information for an existing
permanent dataset

Grants explicit permission to access a
dataset

and to perform functions for PDSDUMP, PDSLOAD, and AUDIT.

PDSDU

AUDIT

MP

PDSLOAD

Dumps permanent datasets to a dataset

Loads permanent datasets that have been dumped
by PDSDUMP

Produces a report containing status information
for each permanent dataset

12.29

PDM is also called by SCP to:

* create Dataset Catalog entries for spooled input
datasets,

* delete DSC entries for spooled output datasets,
* perform permanent dataset name (PDN) requests,

* SAVE datasets staged from front-end stations

PDM is called by EXP to:

* create DSC entries for splooed output datasets,
* delete DSC entries for spooled input datasets,

* rewrite spooled input dataset entries

PDM is called by STARTUP to:

* rebuild Active Permanent Dataset Table (PDS) entries
for permanent datasets associated with jobs being
recovered or to access/save system datasets such as
$ROLL and $SDR

Job termination must check to see if a dataset is permanent before
releasing the dataset from the system.

12.30

The following tables are used in permanent dataset management:

CcSD Class Structure Definition Table

DAT Dataset Allocation Table

DNT Dataset Name Table

DRT Device Reservation Table

DSC Dataset Catalog

DSP Dataset Parameter Area

DXT Dataset Catalog Extension

EQT Equipment Table

JCB Job Communication Block

JTA Job Table Area

JXT Job Execution Table

PDD Permanent Dataset Definition Table
PDI Permanent Dataset Information Table
PDS Permanent Dataset Table

QDT Queued Dataset Table

SDT System Dataset Table

XAT DXT Allocation Table

12.31

Functions

A task calls the Permanent Dataset Manager by placing a message in
the PDM CMCC.

The layout of the CMCC is shown below:

oo P dia ks weka iy A

. -
0 8 1 24 7 32 40 48 56 63
INPUTHO |[//////////////7) Return | PDD
INPUT+L | |/ SYS //////| DNT or DAT | JTA
: g
Field Word Bits Description
Return INPUT+0 16-39 A 24-bit value that remains unchanged
and is normally used a return address
PDD INPUT+0 40-63 Base address of the PDD relative to
STP
SYS INPUT+L O If set, this flag identifies the call
as having been initiated by the system
DNT INPUT+1 16-39 Dataset Name Table address, if user
call
DAT INPUT+1 16-39 Dataset Allocation Table, if system
call
JTA INPUT+1 40-63 Base address of the associated job's

JTA. If the system flag is not set,
the JTA must be specified.

The FC field of the PDD indicates the function to be performed.

12.32

The function codes processed by PDM are:

Code

PMFCSU=108
PMFCSI=12g
PMFCSO=14g
PMFCAU=208
PMFCAI=26g
PMFCAO=268
PMFCDU=30g
PMFCDI=36g
PMFCDO=36g
PMFCPG=40g
PMFCPX=41g
PMFCLU=50g
PMFCLI=52g
PMFCLO=544
PMFCRL=608

PMFCPN=70g

PMFCDT=100g
PMFCDQ=110g
PMFCEA=120g

PMFCEI=122g
PMFCEO=1248

PMFCAD=130g
PMFCMD=140g

PMFCRSDT=150g
PMFCPSAC=160g

PMFCPU=170g
PMFCPO=176g
PMFCPI=176g
PMFCPE=200g

Description

Save user dataset

Save input dataset

Save output dataset

Access user dataset

Access spooled dataset

Access spooled dataset

Delete user dataset

Delete spooled dataset

Delete spooled dataset

Dataset Catalog (DSC) page request

Dataset Catalog Extension Table (DXT) page redquest
Load user dataset

Load input dataset

Load output dataset

Update Active Permanent Dataset Table (PDS)/Release
request

Permanent dataset name (PDN) request

Dump time request

Dequeue System Dataset Table (SDT) entry

Queue System Dataset Table (SDT) entry to available
queue

Queue System Dataset Table (SDT) entry to input queue
Queue System Dataset Table (SDT) entry to output queue
Adjust user dataset

Modify user dataset

Rewrite job's input System Dataset Table (SDT) entry
Pseudo access for Rolled Job Recovery (RRJ)

Access user-saved dataset for PDSDUMP

Access output dataset for PDSDUMP

Access input dataset for PDSDUMP

Permit alternate user dataset access

12.33

CRAY OPERATING SYSTEM

INTERNALS

COS INTERNMNALS
— EXEC

— SystTem Task HPeocessor

| — COIUTVO/ S TﬂfEMENT'
FProcessse.

— USER «— Co0S
JNVTERACT /O

— Pump Aracys/s

SECTION 2

SYSTEM EXECUTIVE

EXEC FUuncTiIonsS

+ L nTerruPt HAnvDLING

+ Puysicar T/p

+ System Task ScHeDucjwe
+ Executive Re@uesTs

N + ME/VWRY gﬂflbll COKZEC.T/O/U
+ IDLE

+ Resource AccounTing

+ E xcoavee Marpsemert

EXEC COMPINENTS

® EXCHANGE Pkocesso&

o TNTERCHANGE

e ITNTERRUPT HANDLERS
o CHAMWEL FPROCESSORS
o L/O DRIVERS

Pt SSD .

o FROWT EAD

o T/o SuBSYSTEM
o EXEC FReEQuesT ProcessoRr
o TASK ScHEDUcLER
o MEMORY E RROR CoRRecT1ON

o I DLe Lloop

EXCHANGE MECHANISM - INTRODUCTION

| User xp

I

o --(BAY oo

-~ : /:,
N tdle XP “/
EXEC - — L i
= (P)—f—1- ;—’
TP ll I Error XP 4],
./
//, Task 0 XP
o i EXEC
: A Task 1 X
F-- USERS - xp ast P
7
- - jLA)
_ P Operating Registers Task n XP
Program Areas Exchange Package Areas
A. EXEC IN EXECUTION
L‘, User XP i]
ExeC TN | idiexp |
. (8A) L~ :'
-~ e !
STP 1__,(PT" L/ L, Error XP :]
1/
/
L; - / Task 0 XP
Ve TASK 1
- UseRs -/ XP EXEC XP
-- -4 {LA) :
’ Operating Registers Task n XP
Program Areas Exchange Package Areas
B. TASK 1 IN EXECUTION
| execxe |
P Idle XP
EXEC // //:/. [I
(BA) L
TP / /,/ v L, Error XP]
r (PYL 2
a Task 0 XP
B TE "y Task 1 XP
t-= USERS -t - 2=
. --d -
Operating Registers Task n XP

Program Areas

Exchange Package Areas

C. CURRENT USER IN EXECUTION

Figure 1-8. Exchange Package management

SM-0040

INTERRUPT HANDLERS

EXEC

Mass TCB n
Storage
. Resident CAL 4
cos CFT
LDR TCB 1|4
C Idle STP
S 1 Program
P
1
Common
to Routines
current
user task
Interrupt xpf Task
xpf 0
J Xp
EXEC Task
Interchange 1l
1///;ﬂ Xp
Task
y Scheduler Task
Interrupt Handlers 2
N\
Xp
Y
Channel Processors
) 4 y pr Task
Monitor Front- Disk/ Packet n
Request end SSD 1/0
Processor Driver Driver Driver
Y Y Y y
Figure 2-2. System control

t One Exchange Package per CPU

1 SM-0040

EXEC
| .
XPROC EN
£X | []
SYS
WAIT
150 Tsa. SCHUSER IoLE
ENA
IHT STT
TPT
TBT
ScH
TEL IPRQ NE PCI CII DLI 1P1 101 XMEME EE ExP
MRT CHT ’ MEL
|
EVENT]
LANDLE
- ROQS RO11 R022
RO-R43 LCY EQT SCT

EXEC REQUEST PROC

FRONT END DRIVER

DISK/SSD DRIVER

T

l

MIOP PACKET DRIVER

EXCHANGE PROCESSOR

Fuuctiov ; € Try Aep ExiT
RouTivE FoR E xXEC

EMRY .
— ENTERED oM ANy EXCHAMGE
- To Exec

— ASSURES THAT onlY | CPy
15 10 THE OFERRTIMG SYSTE/

— UPDATES STRTIST/ICS
- CHEWKS For. T°0S Req. HACT

EXIT.‘

— EXIT WHEL ALL EXEC
WORK 1S FIV/SHET

— CHECKS FoR I/b INTERRuPTS

- Set1s XA
- E X

TNTERCHANEE

- ITrTerruer Aarntysis

— EntTerep From ExcyAree Peo
o AL EXCHANMGE
Arp From IwaterrupT Trocess:.

'Rou‘hbes

— DeTermines what causen 1he
EXCHARG €

~ Bramcues To AppropriaTe
TATERRUPT HANMDLER.

E xec — TnTerRruPT Havpeers

e TOI - I/0 TNTERRUPTS

e NE - NORMAL EXCHAMNEES

o CIT - MU TMNTERRUPTS

. PE-I - PK@G—RHM”MBLE CLock AT,
e TETL o T/MED Euszvfs

e EE - ERROR EXCHAVGE /T nt,

e XMEME - MEMORY ERRORS
o TPREQST - T-MTER - PROCESSOR REQUESTS

e TPL - INMTER-PROC MNo-oPs

e DLT - DEADLOCK I NTERRUPTS

6°¢

MIOP
Driver

°SCT
°FIQ
°FOQ
°CHT
°CAT
°CLT
°CIT

FED
Driv

°CHT
°CXT
LIT
LXT
LCT

SCP

-AUT
-IBT
-LCT
-LIT
-LXT

PDD
-S0T
-SST

er

°CHT |

°CAT
°CLT
°CIT
°STT
AUT
IBT

STG

PDD
SOT
-SST

DQM

-DAT
DCT
DNT

~DRT
DSP

-EQT
GRT
JIXT

-RQT

°SCT

SSD/
DISK
Driver

-DCT

EQT
°CHT
°sTT
°CAT
°CLT
°CIT
°CBT

PDM JCM

DAT -CSD
CSD SDT
(DNT)
DRT
-DSC
DSP
DXT
EQT
JXT
PDD
-PDI
-PDS
-QDT
SDT
-XAT

JSH

CSD
-JXT
-MST
-RJI

SDT
~TXT

JTA

EXP

-CALL
(DDL)
-DNT
-DSP
JXT
-LFT
-0DN
(PDD)
QDT
SDT
-SWT
TXB
-UPT
-KTA
-TXT

RO-
R43

°MRT
°MCT

TQM

CNT
-DEX
(DNT)
(DSP)
-DUX
~FSH

GRT

IXT
-LDT
~SM
-TOT
~VAX
-VUYX

JTA

MEP
-AEM

CSp
(DSP)

(LFT)
(DNT)

MSG

AUT
DSP
JTA
JXT
-LGJ
PDD
SDT

SPM OVM FVD

csD -0DT EQT
DCT -0CS DRT
-0CT
°MCT -OLL
°STT
° IC

o Exec
() User

- Task Controlled
this table

DEC
EQT

EXECUTIVE BEQUEST PRCCESSOR
(Mow1ToR]

PROCESSES REQUESTS FROM STP TASKS

TO MAKE AN EXEC REQUEST, A TASK PUTS THE REQUEST INTO ITS S6
AND -S7 REGISTERS AND DOES A NORMAL EXIT

THE NORMAL EXIT I_NTERRUPT RanpLe DETECTS THAT IT WAS A TASK
THAT DID THE NORMAL EXIT AND JUMPS TO THE EXECUTIVE REQUEST
PROCESSOR

s
B O
S7 CONTAINS A FUNCTION CODE THAT 1S USED TO INDEX INTO THE
MONITOR REQ TABLE TO OBTAIN THE ADDRESS OF THE ROUTINE TO

PROCESS THE REQUEST ‘ g

FOR A LIST OF EXECUTIVE REQUESTS SEE SM-0040, PAGE 2 -

7 oWy

2,25

EXEC - PHysicAL T/ DRIVERS

o FronvT Ewp DRIVER

o D/SK/SSD Driver

-

» TOS Packer DRIVER

TASK SCHEDULER

IF STRTS IS SET

THE TASK SCHEDULER FINDS THE HIGHEST PRIORITY TASK THAT IS
READY TO EXECUTE AND SELECTS ITS EXCHANGE PACKAGE

ELSE

THE EXCHANGE PACKAGE OF THE CURRENTLY EXECUTING TASK IS
SELECTED |

IF NO TASK IS READY SELECT THE EXCHANGE PACKAGE OF THE CURRENT
USER JOB

IF NO JOB IS READY SELECT THE EXCHANGE PACKAGE OF THE IDLE LOOP

STPLOCK - ALLOWS A TASK TO RUMN IN NOMN PRE-EMPTIVE MODE

2,19

SYSTEM TASK TABLE
FUNCTION - FOR SCHEDULING AND CONTROLLING STP TASKS

STT HEADER

STRTS BIT - REQUEST TASK SCHEDULER FLAG
ACTIVE TASK 1D

ACTIVE TASK EXCHANGE PACKAGE ADDRESS
ACTIVE TASK PARAMETER BLOCK ADDRESS

STT PART A - TPB's

- ONE ENTRY FOR EACH TASK
- READY BIT

- SUSPEND BIT

- TASK ID

STX
- ONE ENTRY FOR EACH TASK

- CONTAINS THE EXCHANGE PACKAGE FOR THE TASK
- LOCATED IN THE LOW MEMORY XP AREA

STV-0842 2,17

IDLE LOGP

-- EXECUTES WHEN THERE IS NOTHING ELSE TO DO

-- SCANS EXEC’S MEMORY IN INTERRUPTIBLE MODE - ATTEMPTS TO
DETECT MEMORY ERRORS IN EXEC

2,23

OMEM, FWA=0, LWA=100000.

0005750
7005754
~005760
0005764
0005770
0005774
0006000
0006004
0006610

0006014
Q020 0031250000362530005360

000&0Q
0006024
0006030
0006034
0006040
0006044
0006050
0006054
0006060
0006064
0006070
0006074
0006100
0006104
0006110
0006114
0006120
0006124
0006130
0006134
0006140
00061144
0006150
0006154
0006160
0006164
0006170
0006174
0006200
0006204
0006210
0006214
0006220
0006224
0006230
0006234
0006240

0062u4
4006250
0006254
0006260
000626Uu
0006270
0006274
0006300
0006304
0006310

0501032220000000000000
0421112360000000000000
0515052160000000000000
0521232600000000000000
0435052500000000000000
0515232100000000000000
0421142220000000000000
0445202020000000000000
0364751723647510044111
0541242500000000000000

0241250000362530005360
0041250000362530405360
0031250000353530605360
0041250001005254604400
0021250001005254604400
0041250000252543605200
0031250000231733005200
0121250000231733005200
0421250000231733005200
0041250000353531205360
0031250000356470205360
0041250000356470605360
0031250000362530005360
0241250000362530005360
0041250000362530405360
10031250000232222605360
1121250000232222605360
0421250000232222605360
n041250000231733405200
1031250000252543205200
n041250000232223205360
11011250000353617005360
11041250000307440605420
1031250000307450605u420
11041250000307451205420
1031250000332770605420
1041250000332771205420
1011250000332774405420
+1031250000332774405420
1051250000332775005420
1041250000332775005420
11031250000307440205420
1041250000353617005360
0031250000353530605360
0041250000017663204420
0011250000017664404420
0041250000307440605420
0031250000307450605420
0041250000307451205420
0031250000232222605420
0121250000232222605420
0421250000232222605420
0041250000232223205420
0031250000307440205420
0041250000252543605200
0031250000252543205200

HISTORY TRACE TABLE

\J [S P

A

RAW DUMP

0541202060000000000000
0445242320000000000000

'0515032220000000000000

0451112500000000000000
0461112040000000000000
0465052320000000000000
0515312460000000000000
0405232060000000000000
0515242365113110052122
00020527431244455T74460
0036250600000000003050
0036250600000000000273
0036250600000000000711
0035363620000000002426
0100622060000000001372
0100622060000000003211
0025254460000000001 364
0027544620000000020073
0027544620000000001003
0027544620000000000276
0035363620000000000676
0035641040000000004720
0035641040000000001637
0036250600000000002252
0036250600000000000265
0036250600000000000677
0035353640000000002323
0035353640000000000525
0035353640000000000334
0027544620000000000704
0025254460000000005503
0035353640000000001107
0521172400000000003661
0031427540000000003401
0030744220000000003230
0030744220000000003517
0033276740000000063134
0033276740000000005117
0521172400000000001225
0521172400000000001251
0000000000000000003203
0033276740000000001071
0031427540000000004604
0035360600000000001627
0035363620000000003141
0000000000000000001165
0521172400000000260310
0031427540000000003445
0030744220000000003332
0030744220000000003570
0033176640000000033046
0033176640000000000535
0033176640000000000335
0033176640000000000702
0031427540000000004527
0025254460000000001572
0025254460000000010457

B ‘/
1024 ENTRIES

FOUMP 1,13
SYSDuMP

0431052220000000000000
0425052220000000000000
0431052120000000000000
0451222120000000000000
0415202520000000000000
0465032520000000000000
0471272500000000000000
0465052060000000000000
0u05032122012420241114
00000000000000000005

00000000000000001614

0534000000000000026476
0000000000000025047472
0451232202652325251520
0000000000000025047472
0000000000000000000005
0000000000000025047472
0000000000000000000011
0026622040000000054005
0511042622012325251440
0000000000000025047472
1000000000000000161436
0000000000000025047472
0000000000000000161436
0540000000000000026476
0000000000000025047472
0000000000000000000002
0000000000000000000000
0511052024213110020040
0000000000000025047472
04253021102652325251520
0000000000000025047472
0000100000447100103315
0000000000000025047472
0000000000000000335540
0000000000000025047472
0000000000000000335540
0000000000000025047472
0000110000447100102660
000205274312L4437654465
0000000000004300117541
0000000000000025047472
0002052743127546027037
0000000000000025047472
0451232202652325251520
0000000000000025047472
0000100000447100103315
0000000000000035047472
0000000000000000335540
0000000000000025047472
0000000000000000000002
00000000006 14400000000
0511052024213110020040
0000000000000025047472
0002052743127546372041
0000000000000025047472
0425302402652325251520

irc

0515032200000000000000
0431052360000000000000
0515032360000000000000
0451232060000000000000
0451232200000000000000
0445202220000000000000
0445202440000000000000
0000000000000000000000

05/08/84
04/20/84

PCl
Dio
SEG
TSX
GET
SSD
DL
t PA

0L24401723647517236475 ===
000000000000000000000! 1T
0000000000000001224020

0540000000000000000005
0451232200000000000000
0000000000000000000003
0525232125100000161436
0000000000000001713500
0425302400000000000000
1000000000000000000014
0000000000000000000005
0425302402647622451510
0451232200000000000000
0000000000000000000017
0%451232200000000000000
0000000000000001224020
0444000000000000000005
0451232200000000000000
1000000000000000000002
0026622040000000054005
0451232202647621254120
0425302400000000000000
0000000000000000000003
0451232200000000000000
0414610004200100000000
0521212320000000000000
0000000000000000002022
0521212320000000000000
0000000000000000001022
0521212320000000000000
0001042063040100000000
0000000000000000000006
052111232425262124712Y4
0521212320000000000000
0000000000000000000006
0451232200000000000000
0000000000000000000003
0L4504230L4244010020040
0414610004200100000000
0521212320000000000000
0000000000000000002022
0521212320000000006000
1000000000000000000002
0000000000000000022001
0521212322647621254120
0521212320000000000000
00000000000000600000006
0425302400000000000000
0000000000000000000003

(U

D

cccccccocccoccoccacca

(U
U
u
u

DU

cCocccocococococaocaoccocccccoccococaccocacacca

bu
u
u
u
u

C ¥ ¥

AAAN

T XXX

<
U
u

POINTS TO NEXT ENTRY

16:38:50
15:13:59

XPC
1T™
SC!
JIT
Lis
MEM
SYS
ASC

PAGE

FEI
EEl
FEE
JRE
CPU
MCU
NWT
MEC

—_ = (. tnnn

H1STORY TRACE TABLE
"2

TOP.

AA

cac

0

(
W ->¥
TO: o
JSH=-SUSP
TO:L

TO:E
B X
ROY SUS ¢
TO:.
TO:.
X ->1
TO:.
V)
REAODY .
TO: £
CEXP-SuUSP
G TO: .
9 C
T0:7
[0] TO:7
\
o] T0:1
9
"2 Ys
T
9 TO: 7
2.
TO:o.
JSH=-SUSP
TO:!
9 C
% T0:7
TO:7
6&
)
READY T
T0:1
W "2]
T0:E
/EXP-SUSP

SECTION 3

COMMON SUBROUTINES

1)

2)

3)

STP COMMON ROUTINES

Common routines are used by STP tasks to perform

certain utility functions.

The common routine can be considered to be logically
part of the task which is executing it (it uses the task’s
A- and S-registers). '

Some common routines are re—entrant (more than one

task may be executing the same common routine
simultaneously).

3.1

RE-ENTRANCY CONSIDERATIONS

1) The task’s A- and S-registers are preserved"

while executing common routine code (except
output registers).

2) Local storage is notused (provided by the caller).

3) If global data must be changed, STP is LOCKED.

v s ”/ P
. P
y T‘)
C ~—
s //-;
s L
e //
b \k\

3.3

STP COMMON ROUTINES

MODULE ENTRY POINTS PURPOSE
STPUTIL BTO, $0TB, $DTB, utility routines

SFN, $NOCV
STPDATS GETDAT, RELDAT DAT management

-~ JMEM JMEMAL, JMEMDE JTA memory pool
: , management

JTADNT GETDNT, GETLFT,

RELDNT JTA DNT management
FIXJXPR FIXJXO, FIXPRI - job pri. calculations
CRACKER IND JOB control stmt.

cracker

GETPARM GETPARM parameter cracker
CONFIG CONFIG configuration changes

3.5

STP COMMON ROUTINES

MODULE ENTRY POINTS
ERROR ERRORO, ERROR1
REQRPLY TSKREQ, PUTREQ,
GETREQ, PUTREPLY,
REPLIES, GETREPLY
STPMEM MEMAL, MEMDE,
~ PMEMDE, SSLDE
- CHAINS CHAIN, CHAINF,
UNCHAIN, JCHAIN,
JCHAINF, JUNCHAIN
STPTIME RQST2, RT2JD, JD2RT
QUEUES DQSD2, EQSD2
QMSG NXTMSG, FREEMSG,
ENQMSG
MSGQUE MSGQUE

3,7

PURPOSE

hang the system

task—-to—task
communicatio‘ns

memory pool
management

chain management

date/time
calculations

SDT queue
management

interactive station
message management

SCP/operator
message processing

MEMORY POOLS

memory pools provide temporary data areas for tasks

memory is allocated from a pool whenAneede'd and
returned when the task is finished with it

memory areas are variable—sized

currently, 4 memory pools are defined: M- 3,0 1,13

POOL 1 - miscellaneous

POOL 2 - task to task communication modules (CMODS)

POOL 3 - TQM storage

POOL 4 - OVM storage — ElLimwaten iv I3

3.11

Header:

Field

Entry:

Field
PTSIZE

PTBASE

POOL TABLE

0 8 16 24 32 40 48 56 63
/1177777777 771 MAX
Figure 1.PT-1. Pool Table (PT) header

Word Bits Description

0 58-63 Maximum valid memoryrpooi number in

system \§%WMWf“k
0 8 16 24 32 40 48 56 63
/1777177777777 7) SIZE | BASE
/1171717777777 |
/1117777777777 |
/1777777777771 |
/1117717777777 |
/1777777777777 I
/1777777777777 I
/1717777777777 |
Figure 1.PT-2. Pool Table (PT)

Word Bits Description

l1-n 16-39 Size of the memory pool

l-n 40-63 Base address of the memory pool

3.13

MEMORY POOL

0 8 16 24 32 40 48 56 63
0 U\//////////////I ID | SIZE
ST
ST
L
n M/I1177777777770 1D | STZE
n+l {l//////////////) 1D I SIZE
K
/ST
m 1111117110777/ D | SIZE

Figure 1.MP-1. Memory Pool

Field Word Bits Description
MPST 0N ,etc. 0 Status of the memory area:

0 Available
1l 1In use

MPID 0, ,etc. 16-39 Memory pool identification:
01010101g Pool 1
0x0x0x0x8 Pool x. Current values

are 1, 2, 3, or 7.

MPSIZE 0n,etc. 40-63 Size of the memory area

3.15

MEMAL - memory allocation

® example: allocate memory from the TXTPOOL (POOL 1)

A7 S1 NUMBER OF TEXT BLOCTKS
AB LECDAT-LEDATPH LENGTH IN WORDS OF EACH TEXT BLOCK
A7 A7¥AE
AE TATROOL
R MZMAL
(21%] fas
ERRAN .
ZMOUTXTZ = *
ZIXTFST, 8 A7 SAVE FWAR OF TEXT B_.OCK IN POOL

® inputs -
(A6) is pool number
(A7) is number of words to allocate

© outputs -

(A6) is return status:
0 - 0K
1 - invalid pool number
2 - invalid word count
3 - memory not available

(A7) is fwa of area allocated if (A6) is O

® allocated memory is zeroed for the caller

3.17

MEMDE - memory deallocation

® example: deallocate memory from TXTPOOL \\
. }\\\‘\
A7 ZTXTFST, @ FW3 OF TEXT “**/,
A TXTPOOL A
R MEMDE REMOVE THE RESERUATION ON THAT MEMORY T
A AS : ”
ERRAN _ ///
, .
® inputs -

(A6) is pool number
(A7) is fwa to deallocate

® outputs -

(A6) is return status:
0 - 0K
1 - invalid fwa

2 — area not allocated
3 - invalid pool number

(A7) is fwa of memory deallocated if (A6) is O

3.19

ITEM CHAINING/UNCHAINING

@ PROVIDES MEANS FOR TASKS TO LINK DATA
@ AMOUNT OF DATA TO LINK IS DEFINED BY THE TASKS
@ MAY BE USED TO LINK REGISTER DATA OR POOL DATA

® DATA IS CONSIDERED AN ITEM

3.21

CHAINS

HeAD o
R y
TORWARD | BACKOARD
LINK A
cC
ADﬁR ESS

DATA

N TN

FORWA RD

LIVK

ccC

ADDRESS

DATA

Y

3,23

CHAIN COMNTROL

CJ*AJA/ ‘1:71;A4

CHAIN TTEM

K/'jﬂ AN KPS '\ B

® CHAIN/CHAINF PLACE AN ITEM ON A CHAIN. CHAIN WILL PLACE
AN ITEM ON THE END WHEREAS CHAINF WILL PLACE AN ITEM ON
THE FRONT OF A CHAIN. CHAIN/CHAINF ARE CALLED VIA A
RETURN JUMP WITH THE CALLER PROVIDING THE FOLLOWING:

INPUT REGISTERS: (A6) = Address of chain control word
(A7) = Address of the item to be chained

OUTPUT REGISTERS: (A6) = Unchanged from input
(A7) = Unchanged from input

| CH l\h\\ YRS / 1 P’)\

Chnle ol {Ltn)

3.25

® UNCHAIN REMOVES AN ITEM FROM ANYWHERE ON THE CHAIN,
THE CALLER MUST UPDATE THE COUNT OF THE NUMBER OF ITEMS
REMAINING ON THE CHAIN. UNCHAIN IS CALLED VIA A RETURN
JUMP WITH THE CALLER PROVIDING THE FOLLOWING:

"~ INPUT REGISTER: (A7) = Address of item to be unchained

OUTPUT REGISTER: (A7) = Unchanged from input

3.27

EQSD2 - enqueue SDT entry

® re-entrant common routine
® entry parameter- -
S6: 1/EQSEQ 15/- 24IEQSQH 24/EQSEA

EQSEQ o - FIFO enqueuing .
1- prlorlty enqueumg

&
EQS‘EH SDT queue header address
EQSEA SDT entry address
® returns to (BO) plus 2 if no error, else to (BO)
with (AOQ) error status

® priority enqueuing:
1. job class rank
2. job priority
3. time of job submission

3.29

DQSD2 - dequeue SDT entry

re—entrant common routine
entry parameter -

S6: 1/DQSDQ, 15/-, 24/DQSQH, 24/DQSEA

.DQSDQ: 0 - FIFO dequeuing
1 - entry dequeuing

DQSQH: SDT queue header address

DQSEA: SDT entry address (for entry
dequeuing)

returns to (BO) plus 2 W|th (S6) SDT entry address if
FIFO dequeuing

error return to (BO) with (S6) error status

3.31

| SDT queue manipulation

® Example: Move SDT entry from INPUT queue
to‘EXECUTE queue

S6
S7

Se
S

s7
S6

SB

56

O2INPUT

RISDT, @

SECD 24

S3157

SS15B

Dasnz DEQUEUE SDT ENTRY
EQROFD

QIEXCUTE

RISDT, @

53U 24

55157

SS1SE FRIORITY ENQUELE

E2SD2 ENGUELE SDT ENTRY
EQRORQ

3,33

Asynchronous 1/ Synchronous I/0

user

CFT SUFFERED 1/0 CFT FORMATTED/ interface

STATEMENTS UNFORMATTED STATEMENTS
BUFFER IN READ PUNCH
BUFFER OUT PRINT WRITE CAL BLOCKED 1/0 MACROS
READ WRITE WRITEF
READP WRITEP WRITED
CAL 3UFFERED
/0 WAGROS READC wRITEC BKSP
CAL UNBLOCKED READCP WRITECP BKSPF
BUFIN BUFOUT BUFEOF 1/0 MACROS GETPOS
8UF INP BUFOUTP BUFEOD READU SETPOS
BUFCHECK WRITEY REWIND
_____ S g g S
' ' library
routires
BUFFERED 1/0 SRFI $WF1 SRUI $WUI
SRFA SWFA SRUA $WUA
) I . SRV $WFV SRUV $WLV
$W8 SRFF $WFF SRUF $WUF
CAL BUFFERED 1/0
INTERFACE
$CBIO {
UNBLOCKED DATASETS | _LUGicAL RECCRO 1/0
SRAR SWwR 3aCOF 3GPUS
SRLB $RWOP $wWDP SWEGD $SPUS
$WLB SRCAR $WCHR SREWD
JRCHP IWCHP $EKSP
SwWlS §8¢ SPF
system
‘ calls
F3$810
SER
110 Cl0
SRWOR $wNOR SWEOF o RDCS HoN-clo
SRDP SWHOP $WEQD > WDCS (2, 5CP, and JSH)
$wWW0S SREWD clos i
i
y |
. I
TQ DQM - — —— — — _
STP
\ Y
l PACKET DRIVER] [DISK DRIVER —l
Disk Controller Functions
i £4EC

[/0 SUBSYSTEM

Overview of COS 1I/0

3.35

/0 UVER

VieEW

DNT
= J o
D / guffer
SF‘TRST - /7 foivters
IN @ /
ouv o /_9
LAST &

TASK
DATA TASK
AREA
LOGICAL
Z. :/o
< TIO
T/0 cIO
BMFFER
DQM
PHYSICAL -
, /o DISKO?’\RNER
N T OS DRWER
DISK
N

3.37

TASK LOGICAL I/0 (T10)

ALLOWS A SYSTEM PROGRAMMER TO DO LOGICAL I/0 AT THE TASK
LEVEL,

TI0O <0UTINES ARE:
$RWDP/$RWDR-READ WORDS PARTIAL/FULL RECORD
$WLDP/$WWDR-WRITE WORDS PARTIAL/FULL RECORD
- $WEOF-WRITE END OF FILE
$WEOD-WRITE END OF DATA
$REWD-REWIND A DATASET
SWWDS-WRITE WORDS--UNUSED BIT COUNT

TASKS:CALL TI0 BY PLACING REQUIRED PARAMETERS IN ‘A’
REGISTERS AND EXECUTING A RETURN JUMP TO THE ROUTINE.

3.39

CIRCULAR 1/0

PERFORMS PHYSICAL 1/0 ON A DATASET
ACCESSIBLE TO TASKS THROUGH TIO AND DIRECT CALLS.
CIO ROUTINES ARE:
RDCS-READ CIRCULAR REQUEST
WDCS-WRITE CIRCULAR REQUEST

TASKS CALL CIO BY PLACING REQUIRED PARAMETERS IN ‘A’
REGISTERS AND EXECUTING A RETURN JUMP TO THE ROUTINE,

CIO READS/WRITES 512 WORD BLOCKS. THE CALLER HAS THE
RESPONSIBILITY OF MAINTAINING THE BUFFER IN/OUT POINTER
IN THE DSP, AS SHOWN IN THE PREVIOUS $MWD FLOW DIAGRAM,

THE CALLER SENSES COMPLETION OF PHYSICAL I/0 BY CALLING
GETREPLY, IF A REPLY IS FOUND THE CALLER SHOULD CALL ROUTINE
REPCIO WITH S1 AND S2 INTACT FROM GETREPLY.

3.41

(A6) dn .)

BUF

<:z,/’ DNT
A1)

A DSP g i
‘‘‘‘‘ LIM'T e B T
1/0 BUFFER
cMee

for|
TASK I/0

PHYSICAL I/0

disk
queue
manager

mass
storage

TI0 1ogical write

3.43

OUT=FIRST~+ 1 FIRST »
’ !
i ouT »F
i
N> v N+
LIMIT» ‘ : LIMIT »
A. Filling the buffer B. Emptying the buffer

FIRST »

, 5 BN
IN~> (o
¥ | processing
I flow
|
ouT » | !
_

LIMIT >

C. Concurrently filling
and emptying the buffer

' Physical I/0 {,_<1fg§>

/u(){!f\"/;,’z,x,(Lj/‘(?/{»d{ 14 et S §

3.5

(—-_— - ——— ——— - ——— o

SECTION 4

TASK TO TASK COMMUNICATIONS

I'h

task A

| | PUTREQ

CMOD

task B

request

S

GET
REPLY

reply

GETREQ

N

z\\ \‘\;i ' \‘i

PUT
REPLY

TASK TO TASK COMMUNICATION

@ THERE ARE 2 AREAS FOR INTERTASK COV. UNICATION

1. COMMUNICATION MODULE CHAIN CONTROL (CMCO).

CONTIGUOUS AREA

ENTRY FOR EACH POSSIBLE TASK COMBINATION
ARRANGED IN TASK NUMBER SEQUENCE

POINT TO THE COMMUNICATION MODULES (CMOD’s)

2, COMMUNICATION MODULE (CMOD) > (, who loy,-

ALLOCATED AS NEEDED FROM A PO

ALL TASK REQUESTS ARE THROUGH A CMQD.

ALL TASK REPLIES ARE THROUGH A CMOD.
2 WORDS FOR SYSTEM CONTROL
2 WORDS AS TASK INPUT REGISTERS
2 WORDS AS TASK OUTPUT REGISTERS

® TASKS PLACE REQUESTS IN THE INPUT WORDS OF A CMOD.
@® TASKS RECEIVE REPLIES IN THE OUTPUT WORDS OF THEIR CMOD

@® FORMAT OF A REQUEST IS DEFINED BY THE CALLED TASK

4.3

COMMUNICATION MODULE CHAIN CONTROL

HEADER
TASK O P ~

_ TASKk 0 10 1

Task 1 TASK 1 70 1
TASK 2 T0 1

\ TAsk 3101

I—

I
A TASK 4 70 1
l | : \ TASK 570 1

[

TASK N \

\
\[TASK N TO 1

COMMUNICATION MODULES

| _ CHAIN
TASK 2 To 1 — | chal)

-
//
- ~ - INPUT
cmoD # 2 : —
TASK 2 70 1 - — QUTPUT

CMOD N
TASK 2 T0 1

4.5

CMCC HREADER

0 8 16 24 32 40 48 56 63
0 T™ | TL | AMNOT WUSED

Figure 1.CC-2. Chain Control Word header format

Field Bits Description
CCT™ 0-7 Maximum number of items to be queued to a

particular task

CCTL 8-15 Number of items queued to a particular task’

'CMCC CHAIN CONTRoL WORD

0 8 16 24 32 40 48 56 63
0 oM] oL | HEAD | TAIL

Figure 1.CC-3. Chain Control Word entry format

Field Bits Description
ccoM 0-7 Maximum number of items to be queued from one

task to another £ [|

CCQL 8-15 Number of items currently queued from one task
to anotherf
CCHEAD 16-39 Address of first item on the chain

CCTAIL 40-63 Address of last item on the chain

4.7

— — — — —— . — . e o, i e v s e

WoRD | Fool Heavee |

O

/ JF-—- CHAIN \1TEM HEADER - ——~ —-

2. : - S TNPUT +0
—————— REQMEST——-———--—— |

3 S2 lr TNPUT + |

Y REPL— Si OUT PUT +O

5 | 7 52 oUTPUT+1

ot i " s — — — it e e, s, S w——— an— .

4.9

° A TASK CALLS EXEC TO ACTIVATE ANCTHER TASK

° THE TASK SCHEDULER IN EXEC EXAMINES THE SYSTEM TASK TABLE TC
DETERMINE THE HIGHEST PRIORITY TASK READY TO EXECUTE.

° THE RE-ENTRANT ROUTINES:

PUTRE®, |
GETREGY ASYNCHRONOUS

PUTREPLY ¥ REPLIES
GETREPLY

TASKREQ — SYNCHRONOUS

ARE USED FOR INTERTASK COMMUNICATION

° THE REQUEST FOR INTERTASK COMMUNICATION IS PASSED IN
REGISTERS S1 AND S2

STV-0842 4,11

@ PUTREQ PLACES THE REQUEST IN THE INPUT REGISTERS OF
A CMOD AND LINKS THE CMOD TO THE APPROPRIATE CMCC,
PUTREQ IS CALLED VIA A RETURN JUMP WITH THE CALLER
PROVIDING THE FOLLOWING:

INPUT REGISTERS: (A1) = "Throw-away" indicator. If (Al) is positive,
control is not returned to caller until request
is queued. If (A1) is negative, control returns
with no action taken if the request cannot be
queued without suspending the caller.

(A2) = Requested task's ID
(S1) = INPUT+O
(S2) = INPUT+1

OUTPUT REGISTERS: None

} request

4.13

PUTREQ

ALLOCATES A CMCD

PUTS REQUEST (S1 anp S2) IN CMOD

LINKS CMOD TO CMCC

INCREMENTS COUNTS IN HEADER

MAKES AN EXECUTIVE REQUEST TO READY ThE REQUESTED TASK

4,15

PLLEC
@ GETREQ SEARCHES FOR AN ACTIVE REQUEST FOR THE é%tt%R.
GETREQ IS CALLED VIA A RETURN JUMP AND REPLIES WITH
THE FOLLOWING:

INPUT REGISTERS: None

OUTPUT REGISTERS: (A0)

"Found" indicator. If (AO) = 0, no outstanding
requests exist. If (AQ) # 0, a request is
being returned.

(A2) = ID of task that generated the request.
(S1) = INPUT+0 }‘request
(S2) = INPUT+1

4,17

GETREEG

-- SEARCHES EACH CMCC FOR A REQUEST

-~ SETS EXECUTING BIT IN CMOD

- GIVES THE REQUEST FROM THE CMOD TO THE TASK IN S1 AND S2

4,19

PUTREPLY

PUTREPLY PLACES THE REPLY IN THE OUTPUT REGISTERS OF A CMGD,
PUTREPLY IS CALLED VIA A RETURN JUMP WITH THE CALLER PROVIDING
THE FOLLOWING:

ID OF TASK TO RECEIVE THE REPLY

IMNPUT REGISTERS: (A2)

(S1) = OUTPUT+O
REPLY

(S2)

OUTPUT+1

OUTPUT REGISTERS: NONE

STV-0842 4,20

PUTREPLY

THE REPLY GOES ON THE SAME CHAIM AS THE REQUEST

PUTREPLY LOOKS FOR THE FIRST AVAILABLE CMOD ON THE CHAIN

THE REPLY (S1 AND S2) IS PUT INTO THE CMOD

COUNTS ARE DECREMENTED

AN EXEC REQUEST IS MADE TO READY THE TASK THAT IS TO RECEIVE
THE REPLY

@ GETREPLY SEARCHES FOR A REPLY TO THE CALLING TASK.
GETREPLY ALSO RELEASES THE APPROPRIATE CMOD WHEN A

REPLY IS FOUND. GETREPLY IS CALLED VIA A RETURN
JUMP AND REPLIES WITH THE FOLLOWING:

INPUT REGISTERS: None

OUTPUT REGISTERS: (A0) = Find indicator. If (AO) = 0, no reply was

located; if (AQ) # 0, a reply is being returned
to the caller.

(A2) = ID of replying task

»(S1) = OUTPUT+0 } Reply
(S2) = OUTPUT+1

4.23

GETREPLY

THE REPLY FROM THE CMOD IS PLACED INTO S1 AND S2

THE CMOD IS UNCHAINED AND DEALLOCATED.

VAARI

task A

TSKREQ

CMOD

task B

GETREQ

request

reply

PUT
REPLY

TSKREQ

SYNCHRONOUS EQUIVALENT OF PUTREG AND GETREPLY

ALLOCATES A CMOD

PUTS S1 AND S2 INTO CMOD

ACTIVATES REQUESTED TASK AND SELF SUSPENDS

AWAKENED BY REPLYINGﬂROUTINE
Perie

</

4.29

@ TSKREQ QUEUES A REQUEST TO ANOTHER TASK.

@ TSKREQ IS CALLED VIA A RETURN JUMP WITH THE CALLER
PROVIDING THE FOLLOWING:

INPUT REGISTERS: (A2) = ID OF REQUESTED TASK
‘ | (sl) = inPuTH0
(S2) = 1NPUT+] } REQUEST
OUTPUT REGISTERS: (sl) = outPut+0 R
(s2) = outPuT+l } EPLY

® ONCE THE REQUEST HAS BEEN PROCESSED, THE CALLER MAY
EXAMINE ITS S1,S2 REGISTERS FOR A REPLY. CONVENTIONALLY,
S1=ZERO WHEN THERE IS NO ERROR, OTHERWISE S1=ERR CODE.
$2=THE CALLING TASKS INPUT+0 REGISTER (S1) INFORMATION.

4,31

REPLIES

. f/Lj%M
QUEUES A REPLY FOR WHICH NO REQUEST WAS MADE ;ﬂ"yui
“an

USED BY D@GM ONLY

ALLOCATES A CMOD

SETS EXECUTING BIT SO IT IS NOT TAKEN AS A REQUEST

PUTS REPLY ON BEGINNING OF CHAIN (CHAIN F)

4,33

<o
" .

SECTION 5

SYSTEM TASK PROCESSOR - TASKS

SYSTEM TASKS

A system task Is a COS system program which performs one or more

specific functions

Tasks have the following characteristics:
- Tasks are memory-resident following EXEC

- Each task Is a separate program module and has it’s own

XP In EXEC
- BA Is the end of EXEC, LA Is the end of machine’s memory
- Tasks operate In user mode
77 :

. = Each task has a priority (O-8&@F octal)

- Each task has a unique ID (O-88B o

5.1 ' \

1.13 STP TASK IDs and Priorities - (defined in startup)

SCP ITASK ID=D'01,PRI=0'10,PREG=SCPINIT
EXP ITASK ID=D'02,PRI=0'12,PREG=EPTK
PDM ITASK 1D=D'03,PRI=0'14,PREG=PDMGR
DEC ITASK ID=D'04,PRI=0'20,PREG=DEC

DQM ITASK ID=D'05,PRI=0'02,PREG=DIS

MSG I TASK 1D=D'06,PRI=0'04,PREG=LOGINIT
MEP ITASK ID=D'07,PRI=0w05,PREG=MEP

SPM ITASK 1D=D'08,PRI=0"24 ,PREG=SPM

JSH I TASK 1D=D'09,PRI=0"'13,PREG=JSH

JCM ITASK 1D=D'10,PRI=0"11,PREG=JCM
TQM- - ITASK ID=D'11,PRI=0'03,PREG=TQM

STG I TASK ID=D'12,PRI=0'06,PREG=STG

FVD ITASK ID=D'13,PRI=0'15,PREG=FVD

\
STARTUP ITb=0, PRI =077
[

/
1’11’ 7//

/
/

TASK STATES

SUSPENDED - not ready to execute

READY - ready to execute
waliting - waiting for CPU

running - actually executing
Each task’s state Is known to EXEC, but not to lndlvld‘ual taske

A task is READIED (moved from SUSPENDED to READY state) by EXEC.

This can occur 2 ways:

1) EXEC _;éadles tasks based on certain events

2) One task can request that another task be readled

A task Is suspended by EXEC request. One task may not suspend another
task, only itself. |

5,5 ' \

TASK PREEMPTION

. gy av \)
TR
Tasks are preemptable (1

Task preemption can occur anytime EXEC executes

Exceptions: _
A task may become temporarily non-preemptable

Task bfeakpolntlng

5.7

184

- TASK CREATION

A task may create another task with an EXEC request
The STARTUP task Is responsible for creating the other system tasks

The creatqd task Is readled by EXEC and forced to execute
regardiess ‘of relative task priorities. This allows the task to perform

it’s Initialization.

SECTION 6

STATION CALL PROCESSOR (SCP)
STAGER (sT6)

GENERAL INTERFACE PROTOCOL

® EacH Messace 1s HEADED BY A LINK CONTROL PACKAGE

@ SUBSEGMENT SIZE VARIES WITH FRONT-END

TRANSMISSIONl

TRANSMISSIONZ

TRANSMISSION3

TRANSMISSIONq

TRANSMISSIONN

TRANSMISSION

LCP

SUBSEGMENTl

SUBSEGMENT2

SUBSEGMENT3

SUBSEGMENTN_l

LTP

6.3

> SEGME!NT

— —=0PTIONAL

> MESSAGE

HYPERCHANNEL PROTGCOL

TRANSMISSION,
] ut
LCPE ~
Lep
' MESSAGE
TRANSMISSION,,
SEGMENT

° LTP IS NOT SUPPORTED

° ONLY 1 SUBSEGMENT PER SEGMENT

STV-0842 6.4

LCP CONTAINS:

LINK CONTROL PACKAGE

SOURCE MAINFRAME 1D (SID)

EACH LCP CONSISTS OF SIX 64-BIT WORDS

DESTINATION MAINFRAME ID (DID)

~ NO. OF SUBSEGMENTS (NSSG)

g AW N = O

MESSAGE NUMBER (MN)

MESSAGE cobpe (M()

MESSAGE sus copE (MSC)

STREAM No, (STN)

SEGMENT NUMBER (SGN)

SEGMENT LENGTH (SGBC)

STREAM CONTROL BYTES (ISCB, 0SCB)

W////////////W/

Gz

6.5

Table 4-1. Message codes

Sender
Code Function Segment Stream Synchronous
Station cos Required Request
001 |Logon X X
003 Logoff X
004 Start X X
005 Restart X
006 Dataset header X X X X
Table 4-1. Message codes (continued)
Sender
Code Function Segment Stream - Synchronous
Station cos Required Request
007 Dataset segment X X X X
0l1 |Control X X
012 | Message error X X
013 Dataset transfer request X X
014 Dataset transfer reply - X X
015 |Enter logfile request x? X X
016 |Enter logfile reply X X
021 Job status request x7 X X
022 | System status request x7 X X
023 Dataset status request§§ x’ X X
024 Link status request xt X X
025 | Mass storage status request x? X X
026 | Operator function request x’ X X
027 Debug function request : x’ X X
031 Job status reply X X
032 | system status reply X X
033 Dataset status :ep1y5§ X X
034 Link status reply X X
035 | Mass storage status reply X X
036 |Operator function reply X X
037 | Debug function reply X X
040 Diagnostic echo request x’ X
041 Diagnostic echo reply X X
042 Interactive request x? X X
043 Interactive reply X X
044 Statclass request x’ X X
045 Statclass reply X X
046 Station messagerr X X
047 Station reply x! X
050 | Tape configuration request x? X X
051 |Tape configuration reply X X
052 | Tape job status request x? X X
053 |[Tape job status reply X X
054 Configure request x? X X
055 Configure reply X X
056 Dataset status request x’ X X
(ownership)ss N
u57 Dataset status reply X X
(ownership) §9
060 Job information request x? X X
061 |Job information reply X X
062 Stream status request x$ X X
063 |Stream status reply X X
064 Generic Resource x' X
Status Request
065 |[Generic Resource X X
Status Reply
070~
077 |Reserved for site use’’’
t Optional; the front-end station is not required to send.
t+ COS does not send if the front-end station logged on with message
receive disabled (Logon field MRE=0).
t+t+ Message codes 070-077 are reserved for site use, and are maintained
exclusively by the site. COS prevents COS products from using these
codes, but is otherwise unaffected by them.
§ Reserved for CRI
§S Codes 056 and 057 replace codes 023 and 033 for implementation of

the security features introduced in COS 1.12. Codes 023 and 033 are
still supported. é é

OSIREAMS

@ A STREAM S ALl THE MESSAHAGES FRELATINE
TO0 A PARTICUWLAR DFTA SET

@ 8 INPUT AND 8 OUTPUT STREAMS — MAXimum

@ ALTHOUGH EACH MESSAGE IS ASSIGNED TO ONLY ONE STREAM,

THE LCP MUST CARRY STREAM CONTROL BYTES FOR ALL(,‘16 STREAMS,
T

STREAM CONTROL BYTES

0852; Mnemonic Request/Response Sender Receiver
- 00 IDL Idle X X
01 RTS Request to send X
02 PTR Preparing to receive X
03 SND Sending X
04 RCV Receiving X
05 SUS Suspend X
06 END End dataset X
07 SVG Saving datéset X
10 SVD Dataset saved X
11 PPN Postpone X X
12 CAN Cancel x P
13 MCL Master clear X X

6.9

RECEIVER SCB RESPONSE

A = Abnormal sender SCB response

IDL PTR RCV | SUS SVG | SVD PPN CAN
IDL
RTS
— N c c A
=z
wi
o | SND
a N A A
(2]
&
9 END A A
wi
(75]
PPN 7
CAN
N = Normal receiver SCB response
C = Normal receiver SCB response which requires
change in sender SCB
A = Abnormal receiver SCB response
SENDER SCB RESPONSE
IDL | RTS | SND | END PPN | CAN
IDL N c
PTR N
RCV N c A
[,
=
w
@ | sus N c A
@
5}
(2]
& | sve N
=
[TV
2
@ | SVD c
PPN c
CAN C
l
N = Normal sender SCB response
C = Normal sender SCB response which
requires change in receiver 5CB
6.11

FRONT-END IS LOGGED ON

COMMUNICATIONS IN AN IDLE STATE
FRONT-END SENDS RTS(01) TO THE CRAY-1
CRAY-1 SENDS RCV (04) TO THE FRONT END.

FRONT-END SENDS SND (03) TO THE CRAY-1 ALONG WITH
THE JOB DATASET

CRAY-1 SENDS RCV (04) TO THE FRONT-END WHILE DECODING.

THE MESSAGE AND SAVING THE JOB DATASET

FRONT-END SENDS END (06) TO THE CRAY-1 UNTIL CRAY-1
HAS SAVED THE DATASET.

CRAY-1 SENDS SVD’(lO) TO THE FRONT-END ONCE DATASET
HAS BEEN SAVED.

FRONT-END AND CRAY-1 THEN KEEP COMMUNICATIONS OPEN
BY ALTERNATELY SENDING AND RECEIVING IDL(00).

6.13

h 4

CRAY P FRONT END
S @&
001nL
00inL
O 0IpL
O1rTs »
< PPN 02°TR
| O 4rev
@ 05 sus} "_r"
— can12 0O3snp
6 }PPN11 PPN
B CANIMD
A
O 7svs fﬁ
——> SENDER
13 . &—— RECEIVER

NOTE: A MCL SCB&IS A LEGAL REQUEST OR RESPONSE AT AMNY TIME,
THE/ONLY LEGAL REPLY TO MCL IS IDL.

Mwva

STREAM CONTROL BYTE FLOW

6.15

INTERACTIVE MESSAGE

LCP
Terminal
o message
Segment cesne ceee
Header
Terminal
-message :
Text
LTP
{(if anv)
Message between Segment with Header and taxt
COS and front-end two terminal in one tarminal
station messages message

5.25

LINK TABLES

° LINK CONFIGURATION TABLE - LCT

- DEFINES THE CONFIGURATION CF EACH PHYSICAL CHANNEL
PAIR USED FOR FRONT END COMMUMICATION

° LINK INTERFACE TABLE - LIT

- ONE ENTRY FOR EACH PHYSICAL CHANNEL
INPUT
- HOLDS LINK CONTROL PACKAGE FOR PHYSICAL CHAMMEL

- POINTS TO SEGMENT BUFFERS

° LINK INTERFACE EXTENSION TABLE - LXT
- ONE ENTRY FOR EACH LOGICAL ID
- HOLDS LINK CONTROL PACKAGE FOR THE LOGICAL ID

- CONTAINS STAGER STREAM TABLE (SST) E~TRIES

6.17

DM

DISK

[aMEM

EXECUTIVE

STP
j/
il
n"
— FED
Te— V7 —» / |)
FRONT
END
DISK
BUFFER SEGVENT
BUFFER
Y

SCP MEMORY POOL -

6.11

SYSTEM DATASET TAZLE - SDT
CONTAINS INFORMATION ON ALL DATASETS THAT ARE SENT BACK AND
FORTH FROM THE FRONT END
SEVEN QUEUES

AN ENTRY ON A GQUEUE REPRESENTS ONE DATASET

SDT QUEUES

©

AVAILABLE QUEUE CONTAINS AVAILABLE MEMORY FOR ALL SDT

QUEUES

INPUY QUEUE

Class - [
= [5,&. T\

EXECUTE QUEUE

JOBS WAITING TO BE INITIATED
JOBS ALREADY INITIATED

OUTPUT GUEUE DATASETS WAITING TO BE SENT TO FROMT END

SENDING QUEUE DATASETS IN PROCESS OF BEING SENT

RECEIVING QUEUE DATASETS IN PROCESS OF BEING RECEIVED

REQUEST QUEUE FOR DATASET ACQUIRE REQUEST

6.21

~ via RTSK?

1)

- wviae PUTREQS

INTER-TAREK CALLS
SCF CaLLs
E S S 4

GOF/znwe tashk

LMIT m ararator commars (resbask, dds

SCP/D0M

TRANSFERS 1) write RCY datasels Lo mass storashs

#aaA SCF does mob

DEAILLOCATE S 1) cancal SHD or KOV detesebls

2y resd SHND detasels from mess shboradte
wer CIU for DOM brarsfer recoesbs SH08
T (owm e TN - b gt U

23 deallocste dob dreot dataset
- Joon Lermination
- orwerator FKILL
3) idle active LXT aernbrd
- relessa all ROV detssel seace

ALLOCATES 1) interactive Job ineot datsset

- vis RTSH:
1)
Z)
3)
4)

- wis THSKREEQS
1)

-
&)
3D

4)

- allocsbe & cumme: castasst

SCHF/JEH

robife JEH Lhaet & rew dob odo on dneot O

chaznga FPRE of execobing Jdob

rewTite S0 dataset when dob olasss is Lboened ONSOFF
elter ramber of JXTs availsbhle with LTMIT

Jdotr debusEginsg from orsrator cormsole
prersbor control (DROP, KILLy RESUME, eblc.d
imteractive Jdob corntrol ’
- athtercbion
- abort
ACOUYREs DISFOSE failures (aborh oo

6.22

- via TSKREQC

Vies

via

vis

1)

3)

AU

TSHREG:
1)
£)

3)

FUTREQ®S
1)
&)
3)

4)

FUTREQ?S

12

INTER-TASK CALLS
SCE CAalLs
H oK XK

SCF/JCM

gusisn Jon to 8 claess
—~ Jdoi drnesgt deteset hes arrived
resnsisEn Job clases orersbor charmsiesd o ..
= fromt-arnd ID & TID (ENTER or ROUTE commerd)
= #riorditues bLime Llimit (ENTER commarts
aseign olass Lo & Job
- ENTER CLASS commard

JOM ds csllad OMLY for Jobs o bLhe dreooh G K
SR/ MGG
vecord ararator btyre-ins (sushem ard vsee loss)

error messsHe for DISFOSE disk read failuore
log dataset trensmission and recetion messastes

SCFAFDM
eee 1T debsset Lo AUCUIRE is am CRAY
orerahor DATASET command srocessing

sapes sronled drnsol detesetbe

gelete srooled oubesot datasets

HOFSTEM

process orerator CONMFIC commsrd for STOF teses

6.23

SECTION 7

DISK QUEUE MANAGER (DQM)

DD-19, DD-29 LISKS

1 SECTOR = 512 WORDS

1 TRACK = 18 SECTORS

1 CYLINDER = 10 TRACKS

1 DD-19 = 411 CYLINDERS

1 DD-29

823 CYLINDERS

7.3

DATASET ALLOCATION

° ALLOCATION MODES

- PRE-ALLOCATION
- DYNAMIC ALLOCATION

° ALLOCATION UNITS (ALLOCATION STYLE)

- DISK SPACE IS ALLOCATED BY TRACK

° DEVICE ALLOCATION

- IF SPECIFIED BY REGUEST, THE LOGICAL DEVICE NAME FROM
THE DNT IS USED

- OTHERWISE IT ROTATES AMONG THE CONTROLLERS AND DISKS
AS SPECIFIED BY THE ORDER OF THE EQUIPMENT TABLE (EQGT)

STV-0842 7.5

DISK QUEUE MANAGER (DQM)

@ MANAGES ALLOCATION/DEALLOCATION OF MASS STORAGE (DISKS)

® MANAGES MASS STORAGE REQUEST QUEUES

@ MANAGES MASS STORAGE CHANNELS, CONTROLLERS AND DISK UNITS,

DOM REQMESTSﬁ

® PRE-ALLOCATE DISK SPACE
® QUEUE T./0 REQUESTS

o DEALLOCATE DISK SPACE

7.1

DEVICE RESERVATION TABLE - DRT

° ONE DRT FOR EACH DEVICE (DISK, SSD, éMﬁ)

° CONTAINS A BIT MAP INDICATING WHICH TRACKS ARE ALLCCATED

° BIT POSITIONS IN THE DRT CORRESPOND TO THE -ALLOCATIOM INDEX
(LOGICAL TRACK ADDRESS{_ A\

b z\,"r\i

\'4

STv-0842 7.7

DAT - Dataset Allocation Table
* % %

A Dataset Allocation Table defines the mass storage 1logical
location of a dataset.

DAT format:

DAT entry

The DAT entry header contains dgeneral information about the
dataset, such as dataset size and the DSC entry pointer. The DAT
entry is divided into partitions. Each DAT partition describes a
portion of the dataset for a single logical device. That is, if
a dataset 1is spread over two logical devices, it has two DAT
partitions.

7.9

DAT - Dataset Allocation Table
d % *

DAT partition format:

DAT entry header

+ - - ———d -

DAT partition 1 header

partition
DAT partition 1 entry

1
]
|
|
1
[}
1
]
]
1
1
|
]
|
de
y
|
]
{

DAT partition 2 header

—_— R §

°s o0 o0 0+ s

partition 2
DAT partition 2 entry

s o8 g0 oo

R - — =

The DAT partition headers contain general information concerning
the partitions, such as the logical device name. The partition
entries are a list of logical track addresses referred to as
allocation indicies (Als). Each AI is a bit index into the Disk
Reservation Table (DRT).

7.10

DAT - Dataset Allocation Table
* % %

DAT partition format:

______________________ + ---

> P
- H
S Bt
[}
|
oy'
« H
« N}
|
|
|
|
hl
o
W |
[}
]
—
i
>y
H
N
]
]
!

partition

-
k___
e
[S
fes BN

AIn-3 L» AIn-2] AIn-

J_

/s o . ‘
A DAT is a segmented table. It actually consists of one or more
fixed-size DAT pages, which are not necessarily contiguous in
memory. Each DAT page is 16 words long. The first word of each
page is the DAT page header. The remaining 15 words contain the
DAT itself. DAT pages are numbered consecutively from 1, and
each DAT page header contains a pointer to the next page.

7.11

DAT - Dataset Allocation Table

* %k %

DAT page format:

DAT

DAT page 2 header

DAT (cont'd)

DAT page 3 header

DAT (cont'd)

+-

(unused)

-—-.*,

—

DAT - Dataset Allocation Table
* % %

DAT pages are allocated from the STP DAT area for' system datasets
(user dataset DATs are allocated from the dynamic portion of the
job's JTA). The STP DAT area consists of a DAT page space and a

space header.

/.13

DAT - Dataset Allocation Table
* k *

STp DAT area format:

DAT space header

DAT page space

+ - — - ——

The DAT space header contaihs a counter for the number of DAT
Pages available for allocation and a bit map for £flagging
currently allocated DAT pages.

/.15

DQM TABLE LINKAGE

DRT

EQT

DCT

HEADER

HEADER

g —
1 entry/disk
channel
>
¢ 1 entry/device 1 entry/device
74
"1 ~
- s
G=D
rs >
\
SN
/ 7 oAt
~ BUF
DSP 5 N
—

/.16

DCT - points to current active EQT entry for each channel.

EQT - contains current request from request queue. Has a chain control
word for the request chain. Also points to the DRT entry for the
device.

RQT - request queue. Entries are a doubly linked 1ist. Points to the DNT
for the dataset. '

7.17

A DQM TRANSFER REQUEST

A F AN F AR AN AR NI RO ORI ORISR AR OOk

¥k

¥k

SUBROUTIHE ROLLIOR ——%
FURPOSE:
TO MAKE 3 REQUEST OF THE DISK QUILE MAMAGER, EITHER TO COPY
3 TOB OUT OMTO ITS ROLLOJT DATASET OR TO READ THT JOB'S IMAG
BACK IMTD MEMORY.
ENTRY:
: A4 = JLT-ENTRY RNDRESS.
35 = JTA ANDRESS.
DNP (PROZESSING DIRECTION IN THE ROLLFILE' S DNT) IS ALREADY
SET —— TO @ IF ROLLING IN, OR TO 1 IF ROLLING OQUT.
EXIT:
I/0 IS I4 FROGRESS.
REGISTERS:
(AB-AZ), (AB-AT), (SB-52), (56-57) ARE DISTROYED.

FAGKA AR ARACK A AR FRAHIRACE R A F AR AR A RO N AR A RO R IOk KKK

ROLLIOB = ¥
A7 WRIXINT, A4
AB WRIXCTS, A4

! 51 AS SET UP THE DNT:

PUT,51 S3%G7,DNEJF,A7 BUFFER NODRESS = JTA ADDRESS,
sz A3 NUMBER GF BLOCKS = JOB SIZE./51Z.
52 5250 9
PUT,S2 S3S7, DNNEK, A7
51 A4 SUBMIT THE I-0 REQUEST:
S1 SIKDY 49 CEFT-ANJUST THE TXT ADDRISS.
s2 A7
51 51162 INSERT THE DNT AODRESS.
Al J3HID, @
A2 DoMID, B
=2 TRANSFER
J PUTREQ LET PUTREQ RETURN TO THE CALLER.

7.19

DATASET MNAME TABLE

0
1 flags | DAT
2 NBK SBK | BUF
3
4
5
6
7
i
8
9 P
10
11
12
13 |
Field Word Bits Description
FLAGS: 1l 0-15
DNP 3 Type of processing; used by Disk
Queue Manager:
0 Read
1l Write
DNDAT 1 40-63 Dataset allocation table address:
=0 No DAT assigned
>0 DAT in STP
<0 DAT in job's JTA
DNNBK 2 0-15 Number of blocks to be read or
written; number of words in last block
to be written if (DNEND)=1.
DNSBK 2 16-39 Starting block number
DNBUF 2 40-63 I/0 buffer address

7.20

EGUIPMENT TABLE - EQT
- ONE ENTRY FOR EACH DISK
- CONTAINS STATUS AND ERROR IMNFORMATIOM

- POINTS TO DRT AND I/0 REUGEST GUEUE

REQUEST TABLE - RQT

ONE QUEUE FOR EACH DISK
(QUEUE HEADER IS IN EQT ENTRY)

CONTAINS PHYSICAL I/C REGUESTS

USER REQUESTS PLACED ON END OF QUEUE

SYSTEM REQUESTS PLACED SECOND CN QUEUE

FOR I/0 REQUEST FLOW SEE SM-0040

7.21

o R A

TECHNICAL TRAINING & DEVELOPMENT

Cray Research, Inc. Cray Research, Inc.
Software Training Hardware Training
2520 Pilot Knob Road, Suite 300 21 East Grand Avenue

Mendota Heights, MN 55120 Chippewa Falls, WI 54729

