
CFT77 Feat-ures Course

Product Sat Training Group

Software Training Department

Cray Research, Inc.

Msndcta Heights, MM.

SPECIAL MODULE: GET AND CFT77 DIFFEPENCES

Terminal Objective: Recognize product differences between the Cray
Fortran compilers, CFT and CFT77, which bear on conversion,
debugging and optimization tasks on CRAY X-MP computer systems.

Both Cray Fortran compilers, CFT and CFT77 are full ANSI 77 compilers. However,
they differ in specific wavs. If you are involved in code conversion between
the two compilers, you should be able to identify these differences. Further
more, where differences may mean that results vary, you need to know how
to prevent possible problems.

This special module addresses those issues as they relate .to:

:omt)ilation

Invocation

Comoiler directives

Extens ions

Error Detection Differences

Special debugging considerations

Optimization

Vectorization

Differences

COMPILATION

CFT and CFT77 differ in compilation goal and process. In general terms
CrT compiles with the primary purpose of detecting vectorizable
structures, whereas CrT77 approaches optimization from a broader
perspective.

Specific differences follow

* Two passes: the first one
classifies statements and
outputs intermediate code,
from which pass two defines
code blocks. Code blocks
(4000 words of intermediate
code, by default) are analvzed
for vectorization-geared
optimization.

* Block: basic optimization
optimization information

^ is retained on a per-block
basis.

* Scalar optimization promotes
constants, eliminates redundant
expressions, hoists and bottom-
loads .

* Compiler occupies approximately
200,000 words in the user field.

Differences 2

CFT77

* "Four phases, each of which updates
intermediate code and symbol tables.
Phases do not share information
directly.

* Dataflow analysis provides the
compiler information about the
program as a whole and , allows it
to distribute this information to

. each block in a flow graph,

* Optimization information retained
for the whole program, although

• program units are optimized
individually.

Scalar optimization is independent
from vectocization; vectorization
can be skipped altogether. Scalar
optimization promotes constants,
simplifies algebraic expressions,
removes dead code, and substitutes
loop induction variables.

* Compiler starts out with 500,000 words
in the user field.

CFT INPUT, PASSES, and OUTPUT

SOURCE INPUT DATASET:

CONTROL STATEMENT OR COMMAND

LINE + SOURCE CODE [+DATA]

OUTPUT

DATASET

PASS 1;. Initialization,

statement read, statement

classification.

SYMBOL

TABLES

Intermediate Code

Pass 2: Define code
block, analyze code

block (mark CIVs, analyze

array reference depend
ences, promote constants

within subscript expres
sions, examine array

and function references,

decide if vector control

is possible), assign
registers, generate

tables —if •"no more

blocks, process"'END state-

BINARY

LOAD

DATASET

To SEGLDR

CFT77 COMPILATION PEASES

SYMBOL

TABLES

(Updated by
subsequent

phases)

SOURCE CODE

SOURCE STATEMENT PROCESSOR

OPTIMIZER

Information gathering: finds
basic blocks, constructs

control.flow graph, finds
loops, orders basic blocks,

computes dataflow equations.

Intermediate text transfor

mations: forward propaga
tion, expression simplifica
tion, invariant code motion,

replacement of variables

with temporaries, strength
reduction, useless code

elimination, reduction of
I/O library call overhead.

VECTORIZER

Analysis for dependence,
vector array references and

possibility of .vector control.

CODE GENERATOR

Further optimizations —

scheduling: load/load,
store/load deletion, unroll

ing; register assignment.

INTERMEDIATE

(Rearranged

and updated

by next '
phases)

INVOCATION

You invo^» Horh the C.T'̂ and CFT77 compilers with the respective CFT and CFT77
control statements under the COS operating system, or with the eft and cft77-

command lines under the UNICOS operating system. However, there are
some differences in formatting and default values between the two co.mpilers.

A specification of the differences follows. (Please note that you need to be
familiar with the meaning of keywords on both statements or commands. For

additional information, consult CRI publications SR-0018, CFT77 Reference
Manual, and SR-0009, CFT Reference Manual.)

The contrast categories i.n this subsection are default values, specification
differences, and compiler options.

Default Values

CFT 1.15

COS CFT,

AIDS = LOOPP.ART,

ALLOC=STATIC,

B= $ 3 LD,

C?U«chars,

3 = 3,,

I=5IN,

INT=64

L=$OUT,

MAX3LOCK=4000,

OFF^ABDFGHIJNOWXZ,

CN=CiL?QRSTUV,

0?T= NOZEROINC

BL;NOBTRSG:CVL.

INVMOViSLOWMD:

KEEPTEMP:

NOIFCON;SAFEIF.

SAFEDOREP,

TRUNC=0,

UNR0LL=3.

CFT7 7

COS CFT77,

No eoxIi^•ale.^C.
ALLOC=ST.ATIC,

B=$BLD,

CPU=CRAY-XMPiNOCIGS,NOEMA:VPOP

E = 3,

1= SIN,

INTEGER=46,

L=50UT,

• No Bquivalent.
• OFF=ACFGHJOSX,

ON=PQR,

0?T=FULL:NOZEROINC,

No eouivalent.

TRUNC'O,
No oquivalonc.

r

• ' r

Default Values (Continued)

OFT 1.15

UNICOS eft UNICOS Cft77

-a static

-b filename-o

-d ADILSacfgjosx
-e Bpqr

-i 46

-m 3

-o full,nozeroinc

1" Wo eauivalent

-a static

-b filename,o

-d ACDEISabdfghijlnowxz
-e BLcepqrstuv

-i 64

-m 3

-o nozeroinc,
bl,btreg,cvl,slowmd,
invmov,keeptemp,

safedorep,noifcon,

safeif

-t 0

-u 3

-A LOOPPART

-M 4000

^ No equivalent
•C Cray-xmp,nocig,noema,

novpop

Specification Differences: Compiler and Operating System

AIDS

* No oquivalonz

OiCferences

Specifies number of vectoriza-
tion inhibition messages..

Prints non ANSI messages at

compile time. (Disabl^ssd by
default.)

STANDARD

UNICOS

DEBUG

INDEF

LOOPMARK

No equivalent

COMMENTS

Targets for code generation
according to CPU characteristics.

Writes sequence number labels
at each executable Fortran state

ment; necessary for the Symbolic
Debugging Package.

Error message level

Creates an alternate error

listing.

Initializes -all stack variables

to an indefinite value in CFT;

in CFT77, initializes all

variables in both static and

stack allocation.

l^ables all available kinds of
output listings.

Brackets loops and provides vec-
torization information on source

code listings.

Enables logfile messages.

For CFT77 optimization can be
fully active, completely
disabled, or in scalar mode only.

CFT77

C?U=

DEBUG -e D

INDEF

LIST

OPT=

Differences

•*rr-

Compiler Options

There are several compiler options available for CFT that CFT77 does not
have. CrT77 recognizes CFT options that are not available for CFT77 when
you use them, CFT77 issues a warning message.

Most^of the CFT options unavailable from CFT77 are unnecessary due to its
compiling^and optimizing process. Some others are specified similarly for
both compilers, but have a different effect, as indicated in the following
summary.

COMPILER OPTIONS

UNICOS

CFT77

No equivalent

Not available

No equivalent

Not available

No equivalent

Not available

Does NOT inhibit

vector processing.

Disabled by default

No equivalent

No ec[uivalent

Not available

No equivalent

Not available

No equivalent

. 5
• • - •

COMPILER DIRECTIVES

CFT provides several compiler directives that are not applicable to
CFT77. Wlicii CrT77 linds them in source code it issues a warning message

and ignores them.

There are yet other directives that have- the same role in both compilers,

but you have to specify them differently. Specific differences are:

You cannot continue compiler directive lines in CFT77.

In CFT77 control statement or command line options that you

specify explicitly always have precedence over their corresponding
compiler directives. For example, if you specify ON=S (-e s)
CFT77 ignores CDIRS NOLIST.

Both compilers support CDIRS NOVECTOR, but CFT77 does NOT allow
you to specify NOVECTOR«n.

Both compilers support bounds checking when 0N=0 (-e o) with
compiler directives. However, when CF777 processes a BOUNDS
compiler directive it does not disable variables defined in
previous BOUNDS compiler directives. The compiler disables
bounds checking for all variables at the end of a program unit.
You can disable bounds checking selectively with NOBOUNDS
directives . --

In CFT each new BOUNDS directives produces bounds checking for all
arrays not named in the directive to be disabled! CDIR? BOUNDS'()
disables array bounds checking for all variables.

CFT77 supports CDIRS SUPPRESS, which suppresses scalar optimiza
tion by creating a wall that optimization cannot cross. This
effect makes it similar to CFT CDIRS BLOCK. When you use

SUPPRESS variables are not carried in registers across the
directive; they are stored before the SUPPRESS and read from
memory at their next reference. CFT77 also recomputes expressions
at their next reference after a CDIRS SUPPRESS.

The table that follows compares directives for both compilers.

Differences

COMPILER DIRECTIVE DIFFERENCES

Directives

ALIGN

ALLCC=STACK/STATIC

BL/NOBL

BOUNDS/BOUNDS()

CODB/NOCODE

CVL/NOCVL

DE3UG/N0DEBUG

DYNAMIC

EJECT

rASTMD/SLOWMD

FLOW/NOFLOW

INT24/INT64

IVDE?

IVDMO

LIST/NOLIST

NEXTSCALAR

NO- SIDE EFFECTS

Corroiler

OFT CrT77 Cornments

BOUNDS{) becomes

N050UNDS in CF777

CFT77: INTEGER=64,

INTZGER=46

(See previous page

Differences 10

•

COMPILER DIRECTIVE DIFFERENCES (CONT .)

1

Directives

Coinpiler

CTT CrT77 Comments

NODOREP/RESUMEDOREP X

NOIrC0N/RE3UMEIFC0N X

NORECURRENCE X

ROLL/UNROLL X

SAFEIF X

SHORTLOOP X X -

SUPPRESS X Suppresses optimiza
tion; see BLOCK and

previous page.

VECTOR/NOVECTOR X X

VFUNCTION X X

11 Differences

) \

EXTENSIONS

The CFT77 compiler supports most of the CFT corroiler's extensions to the
ANSI 77 Fortran standard. CFT77 also extends the standard with features

of its own. This section presents CFT77 extensions that CFT does not
suoDort and differences between extensions that both compilers provide.

GET?? Extensions

1. Longer identifier names: CFT77 allows up to 31 characters for internal
names; names may contain underscores.

2. A.rray syntax: CFT77 povides a subset of the array syntax proposed for
the next Fortran standard. Array syntax allows you to operate on entire
arrays or on large parts of arrays with a single statement; in fact,
with array syntax you can do the same assignment operations for which
you can use DO loops. Array syntax notation is also more readable.

E:<amDles :

DIMENSION A(IOOO),B(100),C(100),D(100,100)

CKARACTEK * 4 CH(IO)

A = S 1 Each element of A gets the value of the-scalar S

A = B + C ! A(i) = B(i) + C(i), i = 1 to 100

A = D(l, *)I A gets the first row of D

CK(1:5) (1:3) = 'XYS' ! Sets the first five elements of array CH,

character positions 1 through 3, to 'XYZ'

Automatic arrays: Arrays for which storage is allocated when a
subprogram starts e:<ecuting and released when the subprogram returns,

which provides temporary arrays whose size is unknown until runtime.

Example:

Differences 12

SUBROUTINE CLOSURE A(N)

DIMENSION A(N,N), NEW (N, N)

NEW is the same size as A, and is allocated when CLOSURE

starts up.

NEW = A

DO 10 I = 2, N

CALL SUBRMULT (A, NEW, NEW, N)

CONTINUE

A = NEW

Storage for NEW is released.

Differences in' Handling Extensions

CFT77 generates explicit calls to the system heap manager
loi automatic arrays, scpe array syntax statements, and some
character concatenations, even when ALLOC = STA.TIC. CFT never

calls the heap manager directly.

You can use POINTERS with both CFT and CFT77, but each compiler

handles POINTERS differently. With CFT77 POINTER is a separate
data type; with CFT a POINTER is an integer.

CFT77 does not allow assignments to and from reals with POINTERS
You can add or subtract integers from pointers, and the result

is an i.nteger. With CFT77 typing a variable integer and then as
a pointer produces a fatal error. For the example that follows
CFT77 issues an error message, whereas CFT does not:

INTEGER P

POINTER (?,A)

POINTER (P,A)

P = P -r 1.3

! Variable P is tvoed twice

! Addition of oointer variable and real

CFT77 allows non integer variables in an array bounds expression.
The type of the expression must be integer.

IMPLICIT NONE applies to implied-DO variables in CFT77, but not

in CFT. Furthermore, with IMPLICIT NONE the CFT77 compiler
requires a function name that is declared external also to be

declared in a type statement; CFT does not require this.

CFT77 does not allow assignments to a DO variable inside a DO loop

In CFT:

N = 100

DO 10 I = 10, 25, 3

I = I * N

10 CONTINUE

the iteration count for the loop will be 6, the final value for
the loop index will be 28, and the value of I set equal to I * N
will be 10030303030300 (100 *10+3, 1003 *10+3, ...). CFT77

flgas this loop as an error.

13 Differences

CFT77 does not support the IMPLICIT SKOL satement.

Character variables in CFT can be no longer than 16383; furthe;
more, no more than 511 different lengths of character strings
may appear in a single program unit. CFT77 does not have this
restriction.

Both CFT77 and CFT allow DATA statements to appear before

specification statements. CFT77 has an additional restrrctron:
If the type of a variable or array to be defined in a DAT.A
statement is different from the default type, the type must

be declared in a type or IMPLICIT statement, before the
initial value is defined in a DATA statement.

EKROR DETECTION DIFFERENCES

Error detection at compile time is more extensive the CFT77 than with
CFT. The cases summarized in this subsection are errors with both
comoilers, but are either handled differently or remain undiagnosed
under CFT.

1. CFT77 gives an' error message when extraneous parentheses appea;
in P.\PAMETE?. statements :

PARAMETER (list), (list), ...

is an error for CFT77. CFT does not flag this as an error.

CFT77 does not permit extra "sets of parentheses around the
I/O lists in I/O statements or the implied DO list of array elemen-
names in DATA statements. CFT does not detect the error. These
examples all have illegal extra parentheses:

WRITE (6,12) (A,B)

WRITE (6,12) ((A(I),B(I)), I

ENCODE (N,12,A) (B,C)

DATA ((Ad) ,B(I)) , 1=1, 10)

= 1, 10)

CFT77 issues an error message when you use an array as a state
ment function dummy argument; CFT does not flag thrs.use. CFT77
will not allow you to use an array name as an actual argument to
a statement function; you must use an array element —CFT does not

Differences 14

have this restriction.

4. CFT77 does not allow the use of a logical third argument to intrinsic
CVMG functions/ whereas CFT does.

5. CFT77 issues an error message when you use values other than
real or integer arguments for CLOCK, JDATE, and DATE functions;
CFT does not flag this.

6. CFT77 gives an error when you use a name as a function and later
as a subroutine, and vice versa; CFT does noc issue an error message.

7. Although both compilers ignore REC= or IOSTAT= specifiers in a
N-AMELIST I/O statement, CFT77 issues a warning message as well.
Moreover, CFT77 produces an error message if it detects a NAMELIST
group na.me in the FMT= specifier of a read or write control ite.m
list .

8. If you use a statement label on an ELSE statement in CFT77, you
receive an error message. CFT produces a warning message and ignores
the label.

10

CFT77 produces an error if there is no EXTERNAL statement for a dum.my

procedure that is passed as an actual argument. • CFT does not detect
this as an error if you use the name in a CALL statement or as a
function reference before you use the name as an actual argument.

CFT77 requires that a dummy argument used in an adjustable array
bound appear in every dummy argument list in the program unit that
contains the array name. CFT does not require this.

11. CFT77 produces an error message for an implied-DO variable in a D.AT.A
statement that is not integer; this is not an error for CFT.

12. CFT77 does not allow an out-of-bounds array reference in an
EQUIVA.LENCS Statement and gives an error message. {Aji exception
to this is that CFT77 allows an out-of-bounds reference if the array
has more than one dimension, but is subscripted as a one-dimensional
array.) CFT produces a warning message unless the out-of-bounds
subscript expression is less than the lower bound for the dimension,
in which case CFT does issue an error message.

13. CFT77 does not let you attempt to dimension a variable that has
appeared previously as a scalar in a DATA statement. CFT does not
have this restriction.

14. CFT77 detects PARAMETER, DATA, or FORMAT statements that appear

before a SUBROUTINE or FUNCTION statement in a program unit, whereas
CFT does not detect this.

15. CFT77 detects illegal mixing of logical with other types in masking
expressions or as arguments to logical intrinsics, but CFT does not.

15 Differences

This use is invalid with both compilers, because the bit representa
tion used for logical is not guaranteed and may change between
releases or machines. In fact, the internal representation for
logical is different from the CRAy-2 to the CRAY X-M?.

CFT77 issues a CAUTION message when you type an intrinsic function
explicitly and that typing differs from the intrinsic*s type. CRT
issues a C.AUTION message whenver you type an intrinsic function
explicitly.

CFT77 does not allow you to assign different lengths to variables
in a type statement for non character types. CFT allows this.
In CFT77, for e.xample,

CO.MPLZX * 8X, Y * 16

produces an error.

When you dimension a character array in a CH.ARACTER statement with

"name * lengph (dimensions)"

CFT77 issues an error message, while CFT does not.

CFT77 does not allow an ENTRY name in a subroutine to appear
in a type statement, but CFT allows it.

CFT77 only allows integer and Boolean expressions in computed GOTO
statements; the compiler issues an error message if-you use any
other type. CFT allows the use of other arithmetic type and allows
the use of character and logical •types.

CFT77 does not allow the use of an external name as an argument to

the LOC function, while CFT does not flag this. Making LOC external
lets you work around this restriction if you really need to.

If you specify END= on a random access READ statement, CFT77 produces
an error message. With CFT the library routine ignores the -
specifier.

The CFT77 optimizer collapses (folds) constant expressions at
compile time .to produce constant results. 'Therefore, the computal
time for constants takes place at compile time, not at run time,
the compiler collapses the constant expression, it checks to
detects operations that would create hardware or library-call
error conditions. The compiler issues error messages if it deted
any such condition, , such as division by zero, illegal' exponentia
tion arguments to system library routines, and arithmetic operati<
for.'REAL constants that would generate hardware floating-point_--:
errors. •

Differences 16

SP'ECIAL DEBUGGING CONSIDERATIONS

When you convert cooe from CFT to CFT77 you may ri.nci that resuius vary _n
some cases. There are some ideas ydu may wish to consider when faced
with these situations. This subsection presents- useful reminders and
sources of numerical differences between CFT and CFT77, with examples.

Useful Reminders

The topics under this heading identify specific points you need to keep in
mind when you debug progra.ms written for CFT and converted to CFT77 .

Symbolic Debugging

A call to the UlsICOS or COS operating system postmortem symbolic debugger,
DE3UG, dumps variables in memory; a call to the symbolic debugger SYMDE5UG
interprets the memory of the running program. Additionallly, DRD, the Dynamrc
Runtime Debugger allows you to d.ebug executing programs either interactrvely
or in batch mode when you call it on the SEGLDR control statement or segldr
command line .

The CFT77 compiler's optimization techniques, however, include symbol replace
ment in cases where the compiler detects redundancy and dead code, as well
as heavy use of register storage where memory references are not necessary.
It is reasonable to see, for example, only one variable assigned to memory
out of 100 used in program. If you dump symbols in memory for such a program,
all you can expect to find with the symbolic debugger is the•current value
for one- variable.

In general, CFT77,0?T=0FF or cft77 -o off disables the'mechanisms that can
make symbolic debugging ineffective. When you disable optimization for
symbolic debugging, variables are more likely to be where the debugger
indicates them to be.

Register Location

Some optimizing compilers allow you to assign all variables to particular
types of registers for the program's life. This simplifies debugging and
reduces scalar memory references.

The. CFT77 compiler follows a different optimization philosophy. Variables
move wherever the program needs them, and their location assignment responds
to whatever is more efficient: your intervention is not required to force the
choice.

With such patterns, value-tracking can become complex for you. Hence, follow
ing variables on the generated-code listing (from cft77 -e g or CFT77,ON=G)
may be a challenge. The listing's format for CFT77 is more clearly structured
than for CFT; its contents, however, require careful analysis.

17 Differences

Binairy Searches

A binary search on the whole program or on a subroutine is a viable
debugging technique with the crT77 compiler.

However, rr you are used to binary searches under the CFT conroiler, you
must modify your search approach. Generally, users who try binary
searches on CFT programs separate the source code with end-of-file state
ments to force different source files. As of the CFT77 compiler's 1.3 •
release, its^compilation time is close to seven times longer than that fc;
the CrT compiler. Separating the source code into different files in
creases that compilation time factor.

CDrR$ SUPPRESS

Some CrT compiler uses rely on compiler directive BLOCK to isolate sec
tions of code for optimisation'and debugging. Since the block is the
basic ^compilation unit for the^ CFT compiler, the user has the option of
expanding ,or reducing the size of blocks with CDIR? BLOCK. This
directive creates a "wall" that the optimizer cannot move. Also, CDIRS
BiOCK sets up a barrier in which all variables are stored in memory.

The CFT77 compiler optimizes code differently.' It optimizes m.odularly,
through blocks rather than from block to block {as the CFT compiler
aoes). Nonetheless, you can force it to look at blocked-out segments of
code for debugging, -especially when the problem may be due to differences
in order of evaluation.

The CrT77 compiler provides a functional alternative with CDIRS SUPPRESS.
This directive suppresses optimization by fooling the compiler into
interpreting that values could have been redefined. SUPPRESS forces
variables in registers to go to memory, from where the variables are read
out the ne.xt time there is a ^reference to them. To the CFT77 compiler
CDIRS SUPPRESS is equivalent to a subroutine call with an. argument list
which contains every variable in"the calling program.

Consider, for exa.mple, the effect of CDIRS SUPPRESS in the following
subroutine:

Differences

SUBROUTINE ORIGBUG .(X,Y)
COMMON /PARA/ OCTSO,PCTl0,PCT50,ALFA,TON,

* XBAR,VAR,SDEV, CURT,SKEW,X16,X50,X84
DI.MENSION P(2>, X(Y)
M = (Y+1) / 2

N2 = Y / 2

IF(M.EQ.N2) GO TO 10 . .
PCT50 = X(N2 + 1)
GO TO 20

' >y

)

IC PCTSO = {X(N2) + X(N2)

20 XN = Y

XIO = 0.10 * XN

DO 30 I = 1, 2

M = XIO

Y = XIO - FLOAT (M)

P(I) = X{M) -i- {X(M + 1) - X(M))

XIO = 9.0 * XIO

30 CONTINUE

CDIR$ SUPPRESS

PCTIO = P(l)

PCT90 = P(2)

ALr.i = (PCT50 * POT50

* PCTIO + PCT90 - 2.0

+ 1)) / 2.00

- PCTIO * PCT90) /

* PCT50

Do NOT use SUPPRESS if IF or GOTO

secuences such as:

IF ((X{1)

ALFA = -0

RETURN

END

+ ALFA).GT

998 * X(l)

0.0 0) RETUPuN

SUPPRESS looks liek a call to the calling program. The otpimizer
assumes that all variables are stored, to memory before SUPPRESS,
because they are in the argument list. The compiler has to dump
every variable, because it must assume that the referenced roucine
might be looking at it, and after the call the compiler has to refresh
ail'of'its copies in memory (Fortran standards specify that the called
routine may have altered the values in the common block). •

To use SUPPRESS, remember that it is enabled at the point where it
appears, but does not go further than that point. Also, the direc
tive must be on an execution path; including it in a conditional
seoruence of code cancels out its effect.

Sources of Numerical Differences

This subsection presents five potential sources of ntimerical differences
in results from CFT77 and CFT: cancellation, rounding, strength reduc
tion in exponentiation, order of evaluation and truncation.

19 Dif fere.nces

Cancellation

Numeric differences in results can Ije a symptom of cancellation in opera
tions on approximate values. These differences occur in subtraction of
"nearly" equal values or in addition of values with opposite signs and
nearly equal absolute values.

Consider, for example, the following subtractions with a nine-digit
mantissa and a two-digit exoonent on a decimal machine;

1 .23456789E-^42

- 1.23456788E-r42

The least

significan

digit' is
off by 1

1.23456789E^42

- 1.234567a7E+42

The least

significan

digit is
off bv 2.-^

When you subtract these, what was a difference in the least significant dtc:
becomes a difference in the most significant digit:

1.23456789E4-42 1.23456789E-i-42

- 1,234567881+42 - 1.23456787E+42

l.OOOOOOOOE+34 2.00000000E+34

A difference such as the one the preceding examples•create
leave you with one or two bits of precision. However, the rest of the
program continues to assume it has 48 bits of precision to work with,
and proceeds to compute with nonsense.

Similarly, consider the following common loop:

DO 10 I = 1, N

10 DIFFSQ(I) = (X(l) - Y(I)) **2

Assume.^the..loop .to be 'in a subroutine that ^has a vector _X of, known__.data_^_-^
points,- There is an.algorithm which tries to compute some parameters;—,
the parameters will allow prediction of values from the value of I.

The program comes up with a vector of actual and predicted data

Differences 20

values. Let's say that the goal is to compute an error function on it.
loop subtracts the predLictron from the actual values and. squares

the results. If the curve fits at all, txhese numbers should be almost
identical. There is nothing uncommon about the computation that oroduces
the values in DIFFSQ; the use of the values in the small array else
where, however, can cause problems if other computations build on those
values assumed precision which machine arithmetic cannot provide.
The slight difrerence between the values is what causes problems.
The program could assume 48 bits if precision, whereas precision actuallv
could be of two bits.

Roxinding

The way in which CRAY X-M? computer systems handle division influences
strong rounding." Real division in an integer context is particularlv

sensitive to this process.

In a case such as the following:

I = X / Y

because CRAY machines do not have divide functional units, X/Y evaluatior
is as X*(1.0/Y). The reciprocal approximation tends to be too small;
therefore, X/Y tends to be too small. Real division in an integer
context, such as in I = X/Y, presents situations of concern to CFT77
users converting from CFT.

CrT computes X/Y in .an integer context as:

X * (1.000 010) * (1.0 / Y)
2

CrT multiplies whenever it finds a real, division in a calculation such as
1 = X/Y (assuming implicit typing). CFT multiplies the numerator bv a base
2 factor of 1.000.010, with 10 at the rightmost end, to make the
numerator a little larger. Therefore, it attempts to compute a value that
is high for the division, instead of a value that turns out too low.

The CFT77 compiler, on the other hand, handles the" division as:

X * (1.0 / Y)

CrT77 takes the reciprocal approximation of the denominator, multiplies it
by the numerator, and produces the answer.

Assize, for instance, that x = 6.0 and Y = 3.0. By multiplying 6.0 by the
reciprocal approximation of 3.0 you get a mantissa of one bit, which in . -
decimal is 1.9999... (or 1.111 .. Illj), not 2. In CFT77 this means

21 Differences

. r v.. ..

that for:

I = X / Y

PRINT *, I

CcT77 prints 1 (Fortran does not allow conversion to "almost" 2)

Assuming you have a sequence such as:

X = 6.0

Y = 3 . 0

DO 10 J = 1, 59

I = X/Y

K = I + J

A(J) = A(K)

10 CONTINUZ

under CFT77, K goes from 2 to 60, and I on exit is 1. Under CFT, K goes
from 3 to 61 and I is 2 on exit.

The best way to handle this under the CFT77 compiler is with a call i_o
function NINT, which rounds to the nearest integer. For I on I=X/Y
above, the result of NINT(X/Y) is 2.

Whenever the problem is possible, a compiler message warns you.

Strength Reduction

Strength reduction in exponentiation can produce numerrcal diirerences unde.
the CFT77 compiler.

In a case such as:

•DO 10 -I = 1, N

10 X = 1.1 ** I

CFT77 recognizes the operation as a multiplication. It sets up a temporary
register for values and substitutes the temporary for the multiplication
within the loop. CFT carries out the operation through calls to exponen
tiation library routines.

Where CFT77 handles exponentiation through its strength reduction optimiza
tion process, it issues a message to warn you that results could vary from
those of the CFT compiler's.

Differences 22

Order of Evaluation

Numerical differences can result from order of evaluation of operands under
the CFT77 compiler. Since machine arithmetic is not associative, the way
you group values for calculation, from left to right or from right to
left, can influence results.

For example, where any of the operands is. a variable, for machine
arithmetic:

(A * B) * C

is not necessarily equal to A * (B * C).

Kence, it is important that you remember the role of parentheses in Fortran
and standard order of evaluation as specified by ANSI 77 Fortran.

The effect of non-associative order of evaluation is limited to multiplica
tion and to the last bit or two; this generally does not affect numerically-
stable algorithms, however. In multiplication the differences are
usually in the range of a bit or two in the least significant position.
For addition and subtraction, nonetheless, cancellation differences may
complicate differences from order of evaluation if the values added
or subtracted are close.

Optimization also can influence order of evaluation when the compiler's
analysis detects that a computation involves invariants. In a case
such as:

X = 1.0 - A - B

the value of X can depend on whether or not A and B are invariant values
With OPT=FULL or -o full, if the CFT77 compiler finds that it is more
efficient to group operands from right to left;

X = 1.0 - (A + B)

Otherwise, evaluation of operands could proceed as if grouped:

X= (1.0 - A) - B

In the following loop:

23 Differences

DO 100 I " V ,V.

TEMPI = SIN{X(I, J))

TEMP2 » COS (X(I. J))

SOM(I) = SUH(I) + TEMPI * 4.0 * WEIGHT + TEMP2 * 3.0 * WEIGHT

100 CONTINUE

assume that 4.0*WEIGHT and 3.0*WEIGHT are loop-invariant. With full
optimization enabled, the CFT77 compiler removes them from the loop. This
means that their evaluation for multiplication is from right to left, not
from left to right. If you need evaluation for a different grouping and
still receive the full benefits of optimization, associate calculations by
enclosing them in parentheses. For example:

DO 100 I = N ,M

TEMPI = SIN(X(I.J))

TEKP2 = COS (X(I, J))

SUM(I) = SUM(I) + (TEMPI * 4.0) • WEIGHT + (TEMP2 * 3.0} • WEIGHT

100 CONTIiTOE

Truncation

Numerical differences can result from truncation; again, the fact that
machine arithmetic is not associative influences truncation. User grouping
of values for calculation is extre.mely important to avoid the problems
truncarion can produce and propagate throughout the code.

Truncation errors occur when you compute an intermediate result .than
requires more bits of precision than the machine can give you to represent

Assume that in:

1.-0 - A - B

A = 1. 0 and B = l.OE-27.

1) .If you group the calculation from the left:

(1.0 - A) - B = (1.0 - 1.0) - l,0E-27 = -l.OE-27

2) If you group the calculation from the right:

1.0 - (A + B) = 1.0 - (1.0+1.OE-27) = 1.0 = 1,0 = 0

In example 2 above, adding 1.0 - (1.0 + l.OE-27) requires about 28 decimal

digits of precision. A CRAY X-MP computer system provides you about
15; therefore, the l.OE-27 part is lost .completely and what remains is
1 —which, subtracted from 1 gives you 0.

As- with order of evaluation, numerical differences from truncation are

good reminders that you need to consider the use of parentheses. It is
the best resource Fortran provides you to force calculations the way
you need them.

To test if truncation is causing numerical differences in your code,
run your program under CFT77, TRUNC=0 or cft77 -t 0 (defaults) and

then under CFT77, TRUNC=3 or cft77 -t 3. Differences in results due

to truncation problems show up under TRUNC=3 (-t 3) because usually
the last two or three bits are the origin of the differences in
truncation oroblems.

OPTIMIZATION

The CFT and CFT77 compilers are both optimizing compilers. They both share
optimizing techniques such as constant hoisting and replacement of redundan:
expressions.

However, each of the Fortran compilers approaches optimization-differently
(see the section titled "Compilation" in this module). CFT77, for example,
goes further in algebraic simplification. This compiler also eliminates
dead variables (a variable is live in a program if its value can be used
later on; otherwise, it is dead at that point and CFT77 removes it from
the code) . . •

As stated under "Compilation," the CFT77 compiler optimizes on the basis
of data-flow analysis, whereas the CFT coompiler optimizes
according to code block analysis. In data-flow analysis the compiler
collects information about the program as a whole and then distributes
this information to each block in the flow graph —but CFT77 looks at
blocks as regio.ns of closely interrelated code and which may consist
of nonsequentially coded statements, not as group's of up to 4000 words
of intermediate code the way CFT would. A.s part of data-flow analysis
and live-ecruation detection, the CFT77 compiler also examines loop induc
tion variables to determine if replacement of user-induced operations on
such variables is also possible. These differences are generally
transparent to the user; when they cause differences that require
debugging efforts, the reminders and techniques under the section titled
"Special Debugging Considerations" are effective in dealing with them.

Three additional areas in which the two compilers differ deserve
specific attention: constant"'increment variables and loop induction
variables, unrolling, and IF statement optimization.

25 • Differences

Constant Increment Variables and Loop Induction Variables

Constant increment variables (CIV) in CFT are real or integer variables whicn
are decremented or incremented by an invariant expression once on each oass
through the DO-loop. As of the CFT compiler's 1.15 release, you can look at
a CIV more realistically as a variable which increments or decrements
constantly, since the CFT compiler sometimes can manipulate a stride even whe
the stride seems nonlinear. The restrictions on CIVs in CFT are:

* you can use parentheses only on or surrounding an invariant
calculation included in an expression which calculates a CIV. In loop
below, K is not a CIV; in loop 2, however, K is a CIV:

J = 10

DO 1 I = 1, N

K = (K -f- J - 4)

DIFF(I) = DELTA(K) * YY

J = 10

DO 2 I = 1, N

K = K + (J - 4)

DIFE(I) = DELTA (K) * YY

another variable cannot define the CIV recursively in the._same
loop. L is not a CIV in loop 1 below, but is one in loop-2:

DO 1 I = 1, N

. L = L + 34

L2 = I + J

1 L = L2 + I

DO 2 I = 1, N

L = L + 34

L2 = I + J

L3 = L2 + I

* if the CIV defines itself in the course of the DO loop, its result
must be positive. In loop 1 below, M is not a CIV, while it is one
in looo 2:

DO 1 I = 1, N

M = 3 - M

1 CONTINUE

Differences 26

DO 2 I = 1, N

K = 3 - M

CONTINUE

, Additionally, CIVs must follow the formats specified and
illustrated as follows:

Format:

CIVa = C3rVa ± Invariant

CIVa = ± CIVb ± Invariant

CIVa = CIVa + CIVa

CIVa = CIVa ± CIVb

Examole

1 = 1+ (39 * INV)

I = (39 * INV) - 12

J = J + J

J = J - I

where INV is invariant, and 12 is a CIV.

Official documentation for CFT77 also alludes to constant "increment

variables. However, restrictions on their use and formatting in
source code are different for CFT77; the compiler also.uses these for
prevectorization analysis and replacements, -whereas the CFT compiler
need only use these variables for the purpose of setting vector lengths
and in determining loop count and stride.

In CFT77 a constant increment variable is also a variable which is

incremented or decremented by an invariant expression on each pass through
a loop. The invariant expression that defines the constant increment
variable must be type integer. Additionally,- the only operators allowed
on the expression that defines the variable are plus (+) and minus (-);
like CIVs in CFT, if the variable defines itself in the course of the*'
loop, the sign of the increment must not alternate (e.g., i = 2 - i is
not allowed).

The CFT77 compiler, however, does NOT restrict the use of the constant

increment•variable to only one appearance on the left side of the equal
sign within the same loop. For example, J- in loop 1 below is NOT a CIV
under CFT, while it is acceptable as an analogous variable under CFT77:

27 Differences

Vi

The usefulness of constant increment variables for CrT77 lies in their

potential as loop induction variables. The compiler uses these loop inductic
variables (LIV) to determine if it can replace or convert some types of
operations to vector equivalents. LIVs are computed from CIVs in Fortran
source. When CFT77 cannot execute transformations of LIVs to linear

equivalents for vectorization, it produces messages to indicate that
vectorization is inhibited.

CFT77, for example, takes the following source:

DO 10 J = 2, 25

K = K + 1

L = J + 2

A(K) = 3(K) * P

A(L) = A{K)

10 CONTINUE

and, after several levels of variable transformations, generates a
sequence equivalent to:

DO 10 j = 2, 25
A((j * 1) - 1)
A(j + 2) = A((j

CONTINUE

B{j) * P

^ 1) - 1)

where CFT77 replaces auxiliary CIVs K and L with linear equivalents in term.s o;
J. Through these transformations the CFT77 compiler can detect that
a dependence due to recurrence inhibits the generation of vector code
for the looo.

Unrolling

Unrolling consists of the expansion of an innermost loop into the next
higher level of loop nesting, with the purpose of making more efficient "
use of CPU resources. This process in general is limited to relatively
short loops, since past a given point unrolling the loop would not yield
time improvements.

The CFT compiler conducts analysis to determine if a loop can be unrolled
by derault, for loops whose iteration count goes from 3 to 9. You can
request that the compiler not do the analysis or unroll the loop by
specifying UNROLL=0 on the CFT control statement or -u 0 on the eft
command line. For most cases, however, this process is advantageous for
code optimization. When this option is enabled, if the vectorizable innermost
loop is too short to warrant use of vector resources the compiler expands
the loop into the next higher level and, unless something in it inhibits
vectorization, generates vector code for the next level.

Differences

. Vi •.

1

F: I

The CFT compiler unrolls the innermost loop horizontally when such is
possible, by default.

Whereas for CFT this user-independent optimization technique is effected
for vectcrrzatron purpcses, the .CFT77 compiler analyzes loops that can
be unrolled during the code generation phase. For CFT77 the decision
to unroll an innermost loop does not depend on whether or not vectoriza-
tion could provide an improvement on the loop. The CFT77 compiler unrolls
a loop if scheduling is improved by it for code generation. The process
itself, and the code sequences generated for "unrolling" under the two
compilers, are different. Hence, when documentation for both compilers
allude to unrolling, you can assume that the reference is to different
processes that share a name.

With both compilers you gain from forcing specific calculations to take
place through loops unrolled vertically into the outer loop,
as well as from vertically and horizontally unrolled outer looos into
innermost loops. These user-induced optimization techniques force both
compilers to ma.ke better use of registers and reduce the ratio of
memory references per floating-point operation.

IF Statement Optimization

The CrT and CrT77 compilers optimize IF statements bv usinc different
. Both compilers also differ in relation to the level of user

involvement allowed to control how optimization takes place.

The CFT compiler optimizes- IF statements through conversion of MAX/MIN
calls and conditional vector merge calls to vectorizable equivalents.
Additionally, Cz± also uses hardware compress-index and- gather-scatter
resources to vectorize specific types of IF statements.

You have no control over the optimization of MAX/MIN calls such as:

IF(A(I) .GT.Y(I)) A(I) = y(I)

under CFT. This conversion takes place even with CFT,OPT=NOIFCON and
eft -o noifcon (default).

CFT optimizes IF-THEN/ELSE sequences in one of two ways. If the
sequence includes NO conditional division or function calls, the v; ..t.
compiler optimizes by making calls to conditional vector merge libraries
which evaluate all possible right-hand sides of the IF first and then
goes on to run the conditional test. However, when the-right-hand •
side contains division or function calls, the compiler 'interprets -
them as potentially unsafe. In these cases the CFT compiler generates,
vector code for IF-TKEN-ELSE sequences as jumps td aTiflo^^
code inside the innermost loop; that•is,-the block may or may not

29 Differences

Vi

execute depending on the outcome of the test. For this the compiler uses

hardware compress-index/gather scatter (CIGS) instructions: the left-han
side of the IF is evaluated first. The compress-index instruction loads
only the values needed by using a GATHER (e.g., A(I(J)), where I is an
index into J), instead of computing 311 possible right-hand sides of the
IF.

E:':amDles:

CVMG bv default for:

CIGS by default for:

ir{ (A{I) .GT.D(I)) .0R(A(1) .LT.Cd))) A(I) = ABS (C (I) *D (I)

DO 10 I - 1. N

ir{M0D(1.2) .EQ.O) TEZN

A{I) = B(I) * 2.

ELSE

A(I) « C{I) * 2.

ENDIE

10 CONTINUE

You have control over which of these resources the CFT compiler uses
through optimization options PARTIALIFCON and FULLIFCON.

Like CFT, the CFT77 compiler can generate optimized code for conditional
sequences as long as they are NOT three-branch IFs, assicned GOTOs,
computed GOTOs or backward—branching GOTOs. (Whenever the CFT77 comoile
rinds these, it issues a message such as: "... was not vectorized
because there are multiple entries into the loop".)

Unlike CFT, however, the CFT77 compiler does NOT use compress-index
instructions to generate optimized code. Consider the following Fortran
sequence:

DO 10 I = 1, 100

IF(A(I) .GT,B(I) .AND.0(1) .GT.C) A{I)

CONTINUE

DO 50 I = 1, N

IF(XX(I) .GT.P) GO TO 25

XX{I) = AA(I)

GO TO SO

XX(I) = BB(I * 2)

CONTINUE

DO 75 lY = 1, 15

IF(UG(IY) .NE.2) UA(IY) = UB(IY) / 2
CONTINUE

The following table extracts part of the instruction sequences
which both compilers would generate for the IF tests in the loops
on the opposite page.

Loop

10

50

75

173754

141367

175237

073000

175577

073000

Instructions

CFT

V7 V5-FV4

V3 V6&V7

V2, VM V3, M

SO VM

V6, VM

SO VM

V7,M

003070

146710

003010

147132

CFT77

VM

VI

VM

VI

S7

i X i :k

S 1

V3!V2SVM

170667 V6 S6+FV7 003060 VM S 5

175565 V5,VM V6,N 146172 VI 57!Vii/M

073000 SO VM • . •

164071 VO S7*RV1

003010 VM SI

147507 V5 VO ! V7S

The CFT compiler generates compress-index instructions .{175ijn), which use
a vector mask to set up a dense vector length of cases which tested true for
the condition. This in itself is different in CFT77, which uses a
vector mask for cases on which operations need to be carried out; however,
CFT77 does not use a different vector length. Instead, it does a
full-vector merge on the cases in the mask.

An additional difference is that, in all three cases, the CFT77 compiler
pulls the test and vector-mask setup out of the loop.

The CFT77 compiler does not allow you partial control over its choice of
resources to use. Besides the fact that it does not use compress-index
resources, you can disable this type of optimization only by specifying
CFT77, OPT=NOVECTOR or OPT=OFF (cft77.. —o novector or —o off)

31 Differences

The vectorization process, naturally, is the same for both Fortran
compilers. However, there are specific differences in the way eithe.
compiler handles dependence identification.

Dependence Identi.fication

CFT77 analyzes for possible data dependences produced by the differences
between scalar and vector processing and, although the process is
different between the compilers, the result is similar. Both corr.piu.ers,
for example, identify recurrence situations and inhibit vector code.
However, there are differences in what the two compilers interpret as a
recurrence problem.

The following sequences illustrate differences.

Vectoriration

Sequence CFT CFT77 Comments

1) DO 1 J = 100,1,-1 No Yes 'CFT77 processes this loop
X{J) = YCJ-i-4) using shorter vector

X(J-4) = Z(J) - lengths (4),

1- CONTINUE

2) DO 2 I = 1, 10 Yes . No Subsequent-plus daca
A(I) = X(I) dependence. CFT77
y(i) = A(i+i) inhibits vector processing

2 CONTINUE because in scalar mode

by the time A(I) needs
A(I+1) its old value is

available, whereas in

vector processing the
old va'lue has been

updated and destroyed:
"CFT77 could not deal

with the loop's expre

ssion order."

3) KO = 200 . Yes • . Wo CFT77 interpcs-ts this as

DO 3 J = 201,231 a case .cf"overlap between

SAVE(J) = SAVECKO) the x'anges of J and KO.

KO = KO - 1

3 CONTINUE

Differences

• \ . S'fj'.i . -

Vectorization differences, cont

Secuence

EQUIVALENCE(J,K)

DO 4 J = N, 2, -i

F(K) = H{K)

G(K) = F{K-4}

CONTINUE

PRINT 101, XL,

* (OT(IX),IX=1,JX

Voctorization

CFT CrT77

Yes No

Cornments

CFT77 does noc vecco;

this because of the

•scalar store —this

applies only to ec^.i-
alenced array ind:.-.-».
not to arravs.

crT77 handles i~plie-c.

DO loops in forrr.aczed |
PRINT stacerrients through

a vectorized replace

ment operation, provided
that the implied loop
handle one entitv onlv.

Differences

