CFY71 Featires Course
Product Set Training Group
Software Training Department
Cray Research, Inc.

! Mandotz Heights, MN.,

SPECIAL MODULE: CFT AND C¥FT77 DIFFERENCES

Terminal Objective: Racocnize preoduct differences between the Cray
Fortran compilers, CFT and CFT77, which bear on conversion,
debugging and optimization tasks on CRAY X-MP computer systems.

Both Crav Fortran compilers, CZT and CET77 are full ANSI 77 compilers. However,

they differ in specific ways. If you are involved in code conversion between
the two compilers, you should be able to identify these differences. Further-
more, where differences'ﬁay mean that results vary, you need to know how

to prevent possible prcblems.

This speciazl module addrssses those issues as they relate to:

* Compilation

* Invocation

2 Compiler directives j ‘ :
* Extensions)

* Error Detection Differences

* Special debugging considerations

x Optimization .

* Vectorization

] - Differences

in compilation goal and process.

In general temms,

CFT compiles with the primary purpdse of detecting vectorizable
Structures, whereas CFT77 approaches optimization from a broader

perspective.

Specific differences follow.

CET

* Two passes: the fir-st one
Classifies statements and
outputs intermediate code,
from which pass two defines
code blocks. Code blocks
(4000 words of intermediate
code, by default) zre analvzed
for vectorization-geared
optimization.

* Block: basic optimization

‘unit; optimization information
is retazined on a per-block
basis.

* Scalar optimization promotes
constants, eliminates redundant
-expressions, hoists and bottom-—
loads.

* Compiler occupies approximately
200,000 words in the user field.

CFT77

Four phases, each of which update
intermediate code and svmbol tables.
Phases do not share information
directlv.

Dataflow analysis provides the
compiler information about the
program as a whole éhd_allOws it
to distribute this information ¢t
each block in a floé graph.

o]

Optimization information retained
for the whole program, althouch
program units are optimized
individually.

Scalar optimization is independent
from vectorization; vectorization

can be skipped altogether. Scala-
optimization promotes constants,
simplifies algebraic expressions, .
removes dead code, and substitutes
loop induction variables.

Compiler starts out with 500,000 words
in the user field.

Differences 2

i
i
i
1
1

CFT INPUT, PASSES and OUTPUT

SOURCE ' INPUT DATASET:
CONTROL STATEM=ZNT OR COMMAND
LINE + SOURCZ CODE [+DATA]

QUTPUT

DATASZT

PASS 1: Initialization,
statement read, statement
classification.

Intermediate Cocde

Pass 2: Define code
block, analyze coce
block (mark CIVs, analyze
array reference depend-
ences, promote CONsSTants
within subscript expres-
sions, examine array
and function references,
decide if wvector control
is possible), assign
registers, generate

CODE
LISTINGS
(ON=G OR
-e q)
CAL
DATASET

tables -—if “no more
blocks, process‘END state-
ment .
SYMBOL
TABLES
BINARY
LOAD
K - DATASET
To SEGLDR

3 Differences

CEFT77 COMPILATION PHEASES

A

SYMEOL
TABLES
(Updatad by

subsaguant

phases)

NN

SOURCE CODE

\{

SOURCE STATEMENT PROCESSOR

OPTIMIZER

Information gathering: inds
basic blocks, constructs
control flow graph, finds

loops, orders basic blocks,
computes dataflow equations.

Intermediate text transior-
mations: forward propaga-
tion, expression simplifica-
tion, invariant code motien,
replacement of variables
with temporaries, strength
reduction, useless code
elimination, reduction of

I/0 library call overhead. —_—

VECTORIZER

Analysis for dependence,
vector array references and
possibility of vector control.

CODE GENERATOR

Further optimizations --
scheduling: load/load,
store/load deletion, unroll-—
ing; register assignment.

‘\

TEXT

(Rearranged
and updatad
by naxt’
rhasas)

INTERMEDIATE

Differences 4

g

INVOCATION

You invole harh the CFT and CFT77 compilers with the respective CFT and CFT77
control statements under the COS operating system, or with the cft and cIt77

command lines under the UNICQOS operzting system. _Howevex, there are

some differences in formatting and default ‘values between the two compilers.

A specification of the differences Zcollows. (Please note that you nes=d to ke
familiar with the meaning of kevwords on both statements or commands. o=

acdditional information, consult CRI publications SR-0018, CFT77 Reference
Manual, and SR-000¢, CFT Referencs Manual.)

The rast ries in this subsection are default values, ificazion
The contrast categories in th b on are faul alues, speciii ion

differences, and compiler options.

Defzult Values

crT 1.15 CERTT7

COS CFT, €08 5117,
AIDS=LOQPPART, No equivalent.
ALLOC=STLTIC, ALLOC=STATIC,

3=5BLD,

w
I

n L
o

L—i

||

cpg:ch;:s, CPU=CRAY-XMP :NOCIGS, NOZMA : V20D
E=3, E=3, -
I=SIN, I= S§IN,

INT=5§4 INTEGER=46,

L=50UT, L=50UT,

MAXBLOCK=4000, - No equivalent.

OFT=ABDFGHIJNOWXZ, - 0FF=RCEGEJOSX,

CN=CELPQRSTUV, ON=PQR,

0PT= NOZEROINC OPT=FULL:NCZZROINC,

BL:NOBTREG:CVL:
INVMOV :SLOWMD: }

KEEPTEMP :

No egquivalent.
NOIFCON:SAFEIF:

' SAFEDOREP,
TRUNC=0, TRUNC=0,
UNROLL=3. No equivalent.

S Differences

Default Values (Continued)

CET 1.15 : CETT7
UNICOS cft UNICOS cft77
-a static -a static
-b filename.o -b filename.o
-d ACDEISabdichijlnowxz -d ADILSacfgjosx
-e BLcepgrstuv -e Bpgr
-1 64 -i 46
-m 3 -m 3
-0 nozeroinc, -0 full,nozeroinc g
bl,btreg,cvl, slowmd, '
invmov, keeptemp, o } No equivalent
safedorep,noifcon,
safeif
-t 0 -t 0
-u 3
ivalent
_ -A LOOPPART } No equiv
-M 4000 ’
- -C cray-xmp,nocig,noema, il
novpop .] ;j
j
Specification Differences: Compiler and Operating System - i
CET . C®T77
- COMMENTS -
cos UNICOS ‘ : cos UNICOS
AIDS -A Specifies number of vectoriza- * *
tion inhibition messages.. :
ANSI -e A Prints non ANSI messages at STANDARD -e A
compile time. (Disabled by
default.)
* No equivalent
ke

Differences 6

SRUSRE e T

CFT77
COMMENTS
cos UNICOS css GNICTs
CrU= -C Targets for code generation CPU= =&
according to CPU characteristics.
DEBUG -e D Writes sequence number labels DEBUG -e D
at each executable Fortran state-
ment; necessary for the Symbolic
Debugging Package.
E= -—e m Error message level E= =m
EDN= =B Creates an alternate errcor * ®
listing.
INDEF -e I Initializes -all stack variables INDEF -e I
' to an indefinite value in CFT;
in CFT77, initializes all
variables in both static and
stack allocation.
s L4 * Enables all available kinds of LIST -e L
.) output listings. -
= T
LOOPMARK —-v Brackets loops and provides vec- Tk ¥
' torization information on source . ’ i
code listings. ’) i
* * Enables logfile messages. . » -V .
OPT= -0 For CFT77 optimization can be OPT= =0
fully active, completely
disabled, or in scalar mode only.
* No equivalent ¢
™
J '
7 Differences

Compiler Options

There are severzl compiler options available for CFT that CFT77 does not
have. CFT77 recognizes CFT options that are not available for CFT77 when
you'use them, CFT77 issues a warning message. '

Most of the CFT options unavailable from CFT77 are unnecessary due to its
compiling and optimizing process. Some others are specified similarly for
both compilers, but have a different effect, as indicated in the following
summary.

COMPILER OPTIONS

C=T CFT77 | " .
cos UNICOS E
i
B b No egquivalent : ;
D d Not available 1 : ’
E e No eguivalent o !...
I i Not available 3 =

L 1 : No egquivalent |
N n) Not awvailable h
o] o Does NOT inhibit i

vector proce€ssing.

s s Disabled by default
T t No _equivalent‘.

U u N;) equivaiént

v v Not awvailable

W W No équivalent

X x Not available

Z z No equi.valent

Differences 8

s

CEFT provides several compiler directives that are not acplicable to

CET77.

Wien CEFT77 Linds them in source code it issues a warning message

and ignores them.

There are yet other directives that have the same role in both compilers,
but you have to specify them differently. Specific differences are:

You cannot continue compiler directive lines in CET77.

In CfT77 control statement or command line opticns that you

specify explicitly always have precedence over their corresponding
compiler directives. For example, if you specify ON=S5 (-e s)
CET77 ignores CDIRS NOLIST.

Both compilers support CDIRS NOVECTOR, but CFT77 does NOT allow
you to specify NOVECTOR=n.

Both compilers sucport bounds checking when ON=0 (-e o) with
compiler directives. However, when CFT77 processes a BOUNDS
compiler directive it does not disable variables defined in
previous BOUNDS compiler directives. The compiler disables
bounds checking for all wvariables at the end of a program unit.
You can disable bounds checking selectively with NOBOUNDS

directives. -

In CTT each new BOUNDS directives produces bounds checking Zor all
arrays not named in the directive to be disabled. CDIRS$ BOUNDS()
disables array bounds checking for all wvariables.)
CFT77 supports CDIRS SUPPRESS, which suppresses scalar optimiza-)
tion by creating a wall that optimization cannot cross. This
effect makes it similar to CFT CDIRS$ BLOCK. When you use

SUPPRESS variables are not carried in registers across the
directive; they are stored before the SUPPRESS and read f£rom
memcry at their next reference. CFT77 also recomputes expressions
at their next reference after a CDIR$ SUPPRESS.

The table that follows compares directives for both compilers.

9 Differences

COMPILER DIRECTIVE DIFFERENCES
Compilexr
Directives cCET - CPT77 Comments
ALIGN X
ALLOC=STACK/STATIC X
BL/NOBL X
BOUNDS /BOUNDS () % X BOUNDS () becomes
NOBOUNDS in CFT77
CODZ /NOCODE X “
CVL/NOCVL X
5
DESUG/NODEBUG X
DYNZMIC X X
EJECT X X
FASTMD/SLOWMD X
FLOW/NOFLOW . X X
| crr7 TZGER=64
INT24/INT64 X BTe Aalp RS,
INTEGER=46
IvDzEe X X (See previous page.)
IVDMO
X
" LIST/NOLIST
1S3/ B0 X X
NEXTSCALAR
X
NO. SIDE EFFECTS
X 5

Differences 10

g

COMPILER DIRECTIVE DIFFERENCES (CONT.)

Compiler
Directives c=T c=T77 Conmments

NODOREP /RESUMEDOREP X

NOIFCON/RESUMEIZFCON X

NORECURRENC= X

ROLL/UNROLL X

SAFEIF X

SHORTLOOP X X

SUPPRESS X Suppresses optimiza-
tion; see BLOCK and
previous page.

VECTOR/NOVZCTOR X X

VEUNCTION) X X

11

Differences

EXTENSIONS

The CEFT77 compiler supports most of the CFT compiler's extensions to the
ANSI 77 Fortran standard CFT77 also extends the standard with features
of its own. This seciion presents CFT77 extensions that CFT does no:
support and differences between extensions that both compilers provide.

CFT77 Extensicns

1. Longer identifier names: CFT77 allows up to 31 characters for internzl
names; names mav contain underscores.

2 Ar=zay syntax: CFT77 povides a subset of the array syntax proposed
Array syntax allows vou to operate on entire

the next Fortran standazc.
arravs or on large parts of arrays with a single statement; in fac:,
for which

with array syntax you can do the same assignment operations
vou can use DO loops. Array syntax notation is also more reacable.

Examples:

DIMENSION A(1000),B(100),C(100),D(100,100)
CHARACTER * 4 CH(10)

A = § ! Each element of A gets the value of the.scalar § W e
A =38+ C ! a(i) = 8(i1) + C(i), i =1 to 100 e
A = D(1, *)! A gets the first row of D
CZ(1:5) (1:3) = 'X¥Z' ! Sets the first five elements of array CEH,
character positions 1 through 3, to 'XYZ'
3. Automatic arrays: Arrays for which storage is allocated when a
subprogram starts executing and released when the subprogram retuxrns,.
which provides temporary arrays whose size is unknown until runtime.
Example:
SUBROUTINE CLOSURE A(N)
DIMENSION A(N,N), NEW (N,N)
C NEW is the same size as A, and is allocated when CLOSURE
C stazxts up. :
NEW = A
DO 10 I = 2, N
CALL SUBRMULT (A,NEW,NEW,N)
10 CONTINUE
A = NEW
RETURN ! Storage for NEW is released. :
END e

Differences 12

=

CFT77 generates explicit calls to the system heap manager

{01 automatic arrays, scme array syntax statements, and scme
character concatenations, even when ALLOC = STATIC. T never
calls the heap manager directly. .

You cazn use POINTERs with both CFT and CFT77, but each compiler
handles POINTERs differently. With CFT77 POINTER is a separate
data type; with CFT a POINTEIR is an integer.

CrT77 does not allow assignme
You can add or subtract integer

from pointers, and
is an integer. With CFT77 typing a variable integer
a pocintser produces a fatal error For the example that
CrT77 issues an error message, whersas CIT does not

INTEGER P
POINTER (

POINTER (P,A)

P=P+1.3 crL . - . .
! Addition of pointer variable and reszi

©T77 allows non integer variables in an array bounds expression.
The type of the expression must be intecer.

IMPLICIT NONZ applies to implied-DO wariables in CZT77, but not
in CFT. Furthermore, with IMPLICIT NONE the CTT77 compiler
requires a function name that is declared extarnal also to be
declared in & type statement; CFT does not raguire this

CFT77 does not allow assignments to a DO variable inside a DO loco.
In CET:

N = 100
DO 10 T = 10, 25, 3
I =1I=m*HN)

10 CONTINUE

the iteration count for the loop will be 6, the final value for
the loop index will be 28, and the value of I set equal to I * N
will be 10030303030300 (100 * 10 + 3, 1003 * 10 + 3, ...). CzT77
flgas this loop as an error.

o

6. CrT77 does not support the IMPLICIT SXOL satement.

7. Character variables in CFT can be no longer than 16383; Zurthec-
more, no more than 511 different lengths of character strings
may appear in a single program unit. ©T77 does not have this
restriction. !

8. Both CFT77 and CEFT allow DATA statements to appear before
specification statements., CFT77 has an additional restziction:
If the tvpe of a variable or array to be defined in a2 DATA
statement is different from the default type, the type must
be declared in & type or IMPLICIT statement, before the
initial value is defined in a DATA statement.

ERROR DETECTION DIFFERENCES

Exzor detection at compiie time is more extensive the CFT77 than with
CFT. The cases summarized in this subsection are errors with both

ompilers, but are either handled differently or remain undiacnosed
uncex CFT.

1. CFT77 gives an error message when extraneous parentheses appear
in PARAMETER statements: '

PARAMETER (list), (list), ...

is an error for CFT77. CFT deces not flag this as an error.
2. CrT77 does not permit extra sets of parentheses around the

I/0 lists in I/O statements or the implied DO list of array element
names in DATA statements. CFT does not detect the error. These
examples all have illegal extra parentheses:

WRITE (6,12) (A,B)

WRITE (6,12) ((A(I),B(I)), I = 1, 10) -
ENCCDE (N,12,a) (B,C) '

DATA ((A(I),B(I)), I =1, 10)

3. CFT77 issues an error message when you use an array as a state-
ment function dummy argument; CFT does not f£lag this use. CET77
will not allow you to use an array name as an actual argument to
a statement function: you must use an array element --CFT does not

Differences 14

11.

12.

13.

14.

15.

have this restriction.

CFT77 does not allow the use of a logical third argument to intrzinsi:
CVMG functions, whereas CFT does.

TT77 issuves an error messdge when you use vazlues other than

real or integer arguments £or CLOCK, JDATE, and DATE functions:

CTT does not £flag this.

CET77 gives an error when you use & name as a Iuanction and later

as a subroutine, and vice versa; CIT does not issue an error messacge.

Althouch both compilers ignore REC= or IOSTAT= specifiers in &
\MELIST I/0 stacement, CIT77 issues & waraing message as well.

Moreove:, CET77 produces an error message i it detects a NaMEL

group name in the EMT= specifier of & read or write contzol itsm

list.

IZ you use & statement label on an ELSE statement in CFT77, you
receive an error message. CTT procduces a warning message and ignorss
the label. .

CrT77 procduces an error if there is no EXTERNAL statement for a dummy
procedure that is passed as an actual argument. - CFT does not detect
this as an error if vou use the name in a CALL statement or as a
function reference before you use the name as an actual argumenc.

CET77 recuires that a dummy argument used in an adjustable array
bou appear in every dummy argument list in the program unit that
contains the arzay name. CIT does not require this.

CFT77 produces an error message for an implied-DO variable in a DATR
statement that is not integer; this is not an erzor for CFT.

CrT77 does not allow an out-of-bounds array reference in an
EQUIVALENCE statement and gives an error message. (&n exception

to this is that CFT77 allows an out-of-bounds reference if the array
has moxe than one dimension, but is subscripted as a one-dimensional
array.) CIT produces a warning message unless the out-of-bounds
subscript expression is less than the lower bound £foxr the dimension,
in which case CFT does issue an error message.

CET77 does not let you attempt to dimension a variable that has
appeared previously as a scalar in a DATA statement. CFT does not
have this restriction.

CET77 detects PARAMETER, DATA, or FORMAT statements that appear
before a SUBROUTINE or FUNCTION statement in a program unit, whereas
CFT does not cetect this.

CFT77 detects illegal mixing of logical with other tyvpes in masking
expressions or as arguments to logical intrinsics, but CFT does not.

15 Differences

16.

1 T

18.

13.

20

22.

23.

This use is invalid with both compilers, because the bit representa-
tion used for logical is not guaranteed and may change between
releases or machines. In fact, the internal representation for
logical is different from the CRAY-2 to the CRAY X-MP.

CET77 issues a CAUTION message when you type an intrinsic function
explicitly and that typing differs from the intrinsic's type. C=ZT
issues a CAUTICN message whenver you type an intrinsic function
explicikly.

CEFT77 does not allow vou to assign different lengths to wvariables
in a2 type statement for non character types. CFT allows this.
In CzT77, for example,

COMPLEX * 8X, Y * 16

produces an erzor.

When you dimension a character array in a CHARACTER statement with

"name * length (dimensions)"

CET?7 issues_an error message, while CET does not.

CET77 does not allow an ENTRY name in a2 subroutine to apééa:
in a tvpe statement, but CFT zllows it. E
CET77 only allows integer and Boolean expressions in computad GCTO
stat=ments; the compiler issues an error message if.you use any
other type. CFT allows the use of other arithmetic type and allows
the use of-character and logical ‘types.

CEFT77 does not allow the use of an external name as an argument to
the LOC function, while CFT does not flag this. Making LOC external
lets you work around this restriction if you really need to.

If you specifiy END= on a random access READ statement, CFT77 produces
an error messags. With CFT the library routine ignores the
specifier.

The CET77 optimizer collapses (folds) constant expressions at

compile time to produce constant results. -Therefore, the computation
time for constants takes place at compile time, not at run time. 2as
the compiler collapses the constant expression, it checks to

detects operations that would create hardware or library-call

error conditions. The compiler issues error messages if it detects
any such condition,. such as division by zero, illegal exponentia-
tion arguments to system library routines, and arithmetic operations
for 'REAL constants that would generate hardware floating-point-i == .°°
errors. et T ’ T T

Differences 16

,f%

SPECIAL DEBUGGING CONSIDERATIONS

When you convert code from CFT to CFT77 you may find that results vazy in
some cases. There are some ideas ydu may wish to consider when faced
with these situations. This subsection presen:s-useful reminders and
sources of numerical differences between CFT and CFT77, with examples.

Useful Reminders

The topics under this heading identify specific points you need to keep in
mind when you debug progrzams written for CIT and converted to CIT77.

Symbolic Debugging

A call to the UNICOS or COS operating system postmortam symbolic debugger,
DE3UG, dumps variazbles in memory; a call to the symdbolic debugger SYMDIZUG
interprets the memory of the running program. Additionallly, DRD, the Dynamic

(4]
joe

Runtime Debugger allows vou to debug executing programs either interxactivw
or in batch mode when vou call it on the SEGLDR control statement or segld:s
command line.

The CFTI77 compiler's optimization techknigues, however, include symbol replace-
ment in cases where the compiler detects redundancy and dead code, as well

as heavy use of recister storage where memory references arze not necessary.

It is reasonable to see, for example, only one variable assigned to memory
out of 100 used in progzam. If you dump svmbols in memecry for such a D*oc:ah,
all you can expect to f;nc with the symbolic debugger is the- CLr:eny value

for one variable. ‘

In general, CZT77,0PT=0FF or c£ft77 -o off disables the mechanisms that can
make symbolic debugging ineffective. When you disable optimization for
var

symbolic debugging, iables are more likely to be where the debugger
indicates them to be.

Register Location

s to particular

Some optimizing compilers allow you to assign all variable
ies debucging and

types of registers for the program's life. This simplii
reduces scalar memory references.

. The. CEFT77 compiler follows a different optimization philosophy. Variables

move wherever the program needs them, and their location assignment responds
to whatever is more efficient: your intervention is not required to force the
choice.

With such patterns, value-tracking can become complex for you. Hence, follow-
ing variables on the generated-code listing (from cft77 -e g or CEFT77,0N=G)
may be a challenge. The listing's format for CFT77 is more clearly structurced
than for CFT; its contents, however, require careful analysis.

17 Differences

Binary Searches

A binary search on the whole program or con a subroutine is a viable
debugging technicue with the CFT77 compiler.

However, if vou are used to binary searches under the CTT compiler,

must modify vour search approach. Generally, users who try binary
Searches on CFT programs separate the source code with end-cf-file stz

mencs to force different source files. As of the CET77 compiler's l.
release, its compilation time is close to seven times longer than that fo-

the CFT compiler. Separating the source code into different files in-
Creases that compilation time factor.

w

N

CDIRS SUPPRESS

Some CFT compiler uses rely on compiler directive BLOCK to isolate sec-
tions of code for optimization' and debugging. Since the biock is the
basic compilation unit for the CFT compiler, the user has the option of
expanding .or reducing the size of blocks with CDIRS BLOCX. This
directive creates a "wall" that the optimizer cannot move. Also, CDIRS
BLOCX sets up & barrier in which all variables are stored in memory.

The CEFT77 cowclle* optimizes code d_f:e*entlv It optimizes-modula:ly,
through blocks rather than from block to block (as the CFT compilex
does). Nonetheless, you can force it to look at blocked-oux segments of
code for debugging, -especi ‘ally when the problem mayv be due to c;::e:e::es
in order of evzluaticn.

The CFT77 compiler provides a func;lonal alternztive with CD;RS SUBPRESS. -
This directive suppresses optimization by fooling the compiler into
interpreting that values could have been redefined. SUPPRESS forces

_ variables in rsgisters to go to memory, from where the variables are read
out the next time there is a reference to them. To the CFT77 compiler
CDIRS SUPPRESS is ecuivalent to a2 subroutine call with an. arcunent list

which contains every variable in the calling program

Consider, for example, the effect of CDIRS SUPPRESS in the following
subroutine:;

SUBROUTINE ORIGBUG (X,Y) [. ‘ i ¥ e
COMMON /PRRA/ 0CT30,PCT10,PCTS50, ALFA, TON, s :
* XBAR,VRAR, SDEV,CURT, SKEW, X16,X50, X84
DIMENSION P(2), X(Y)
M = (Y+1) / 2
N2 =Y / 2 " ,
IF(M.EQ.N2) GO TO 10 . -
PCT50 = X(N2 + 1)
GO TO 20

Differences 18

i PCTSO = (X{N2) + X(N2) + 1)) / 2.00
20 XN = Y)
X10 = 0.10 * XN
DO 30 I = 1, 2
M = X10 ‘
Y = X10 - FLOAT (M)
P(I) = X(M) + (X(M + 1) - X(M))
: X10 = 9.0 * X10
30 CONTINUE

CDIRS SUPPRESS

PCT10 = P(1)
PCT90 = P(2)

ALFA = (PCTS0 * PCTS50 - PCT10 * PCT90) /
* PCT10 + PCT90 - 2.0 * PCTS0
C -
cC Do NOT use SUPPRESS if IF ox GOTO
o secuences such as:
C
I¥ ((X(1) + ALFA).GT.0.00) RETURN
ALFA = -0.998 * X (1)
RETURN - - ’
END ’ .
Pl
SUPPRESS looks liek a call to the calling program. The otpimizer

assumes that all varzizkles are stored to memory before SUPPRESS,

because they are in the
every variable, because
might be looking at it,

argument list. The compiler has to dumg
it must assume that the referenced routine
and after the call the compiler has to reifiresh

~all-of-its copies in memory (Fortran standards specify that the called

routine may have altered the values in the common block). -

To use SUPPRESS,
appears, but does not go further than that point.

remember that it is enabled at the point
Also,

where it
the direc-

tive must be on an execution path; including it in a conditional
sequence of code cancels out its effect.

Sources of Numerical Differences

This subsection presents five potential sources of numerxical differences

in results from

CET77 and CFT:

cancellation, rounding, strength reduc-

tion in exponentiation, order of evaluation and truncation.

19 Differences

Cancellation

Numeric differences in results can he a symptom of cancellation in operz-
tions on approximate values. These differences occur in subtraction of
"nearly" equal values or in addition of values with opposite signs and
nearly egqual absolute values.

Consider, for example, the following subtractions with & nine-digit
mantissa and a two-digit exponent on a decimal machine:

1.2345678%2+42 1.23456789E+42
- 1.23456788E+42 - 1.23456787E+42
The least The least . for
significan significan
digit’ is . digit is
off by 1. off by 2.
When you subtract these, what was a difference in the least significant digic

becomes a differsncs in the most significant digit:

1.23456789E+42 1.23456789E+42 o
- 1.23456788E+42 —.1.234567872+42.
1.00000000E+34 2.00000000E+34

A difference such as the one the preceding examples-create

leave you with one or two bits of precision. However, the rest of the
program concinues to assume it has 48 bits of precision to work with,
and proceeds to compute with nonsense.

Similarly, consider the following common loop:

Do 10 I = 1, N

10 DIFFSQ(I) = (X(1) - ¥ (I)) ** 2 2

'Pssumn_the loop to be in a subroutine_ that _has a vector X of known_data

points.: There is an algorithm which tries to comaute some paramete*s,"_
the parameters will zllow prediction of values from the value of T.

The program comes up with a vector of actual and predicted data

Differences 20

S’

values. Let's say that the goal is to compute an error function on i=.
‘The loop subtracts the prediction from the actual values and squares

the results. £ the curve fits at all, these numbers should be almost
identical. There is nothing uncommon about the computation that produces
the valucs in DIFTSY; the use of the values in the small array else-
where, however, can cause problems if other computations build on those
values' assumed precision --which machine arithmetic cannot provide.

The slight difference between the values is what causes problems.

The program could assume 48 bits if precision, whereas precision actually
could be of two bits.

Rounding

The way in which CRAY X-MP computer svstems handle division influences
"strong rounding." Real division in an integer context is particularliy
sensitive to this process.

In a case such as the following:

I=X/%Y

because CRAY machines do nct have divide functional units, X/Y evaluation
is as X*(1.0/Y). The reciprocal approximation tends to be too small;
therefore, X/Y tends to be too small. Real division in an integer
context, such as in I = X/Y, presents situations of concern to CFT77

users converting from C=T. S

CFT computes X/Y in an integer context as:

X * (1.000 ... 010) * (1.0 / V¥)
2

CET multiplies whenever it finds a real. division in a calculation such as

I = X/Y (assuming implicit tvoing). CFT multiplies the numerator bv a2 bese
2 factor of 1.000.010, with 10 at the rightmost end, to make the
numerator a little larger. Therefore, it attempts to compute a value that

is high for the division, instead of a value that tuzns out too low.

The CFT77 compiler, on the other hand, handles the division as:

X* (1.0 /Y

CZT77 takes the reciprocal approximation of the denominator, multiplies it
by the numerator, and produces the answer.: ‘ :

Assume, for instance, that X = 6.0 and ¥ = 3.0. By multiplying 6.0 by the

reciprocal approximation of 3.0 you get a mantissa of one bit, which in ...

decimal is 1.9999... (or 1.111 .. 1115), not 2. In CFT77.this means

21 Differences

I=Xx/Y

PRINT *, I

CEFT77 prints 1 (fortran does not allow conversion to "aTmos“" 2): .

Assuming you have a segquence such as:

X 6.0
Y = 3.0
DO 10 J = 1, 59
T = XY
K =3I+ J
A(J) = A(K)
10 CONTINUE

ny
&)
-
Q
O
(]
[

under CFT77, K goes from 2 to 60, and I on exit is 1. Under C

from 3 to 61 and I is 2 on exit.

The best way to handle this under the CFT77 compiler is with a call to
function NINT, which rounds to the nearest integer. For I on I=X/Y
above, the result of NINT(X/Y) is 2. ’

Whenever the problem is pessible, a compiler message Warns you.

Strength Reduction

- Strength reduction in exponentiation can produce numerical differences uncex
the CFT77 compiler. -

In a case such as:

D0 102 =1, N
10 X = 1.1 ** I

CFT77 recognizes the operation as a multiplication. It sets up 2 temporary
register for values and substitutes the temporary for the multiplication
within the loop. CET carries out the operation through calls to exponen-
tiation library routines.

Where CFT77 handles exponentiation through its strength reduction optimiza-
tion process, it issues a message to warn you that results could vary from
those of the CFT compiler's.

Differences 22

’:'4?". .

Numerical differences can result from order ‘of evaluation of operands under
the CFT77 compiler. Since machine arithmetic is not associative, the way
you group values for calculation, from left to right or £rom right to

left, can influence results. -

For example, where any of the operands is a variable, for machine
arithmetic:

(A * B) *C

is not necessarily equal to A * (3 * C).

Hence, it is important that you remember the role of parentheses in Fortran
and standard order of evaluation as specified by ANSI 77 Fortran.

The effect of non-associative order of evaluation is limited to multiplica-
tion and to the last bit or two; this generally does not affec: numezically-
stable algorithms, however. 1In mﬁltiplication the differences are
usually in the range of a bit or two in the least significant position.
For addition and subtraction, nonetheless, cancellation differences may
complicate differences from order of evaluation if the values added

or subtracted are close.

Optimization also can influence order of evaluation when the compiler's

analysis detects that a computation involves invariants. In a case
such as:

X=1.0-A-B

the value of X can depend on whether or not A and B are invariant values.
. With OPT=FULL or -o full, if the CFT77 compiler finds that it is more .
efficient to group operands from right to left: o)

X=1.0 - (A + B)
Othexwise, evaluation of operands could proceed as if grouped:

X= (1.0 - aA) - B

In the following loop:

23 Differences

DO 100 I = W M

TEMP1 = SIN(X(I,J))

TEMP2 = COS (X(I,J))

SUM(I) = SUM(I) + TEMP1 * 4.0 * WEIGET + TEMP2 * 3.0 * WEIGET
100 CONTINUE -

assume that 4.0*WEIGET and 3.0*WEIGHT are loop-invariant. Wicth Zull
optimization enabled, the CIT77 compiler removes them from the 1
means that their evaluation for multiplication is from right to lsai
from left to right. If you need evaluation for a different groupin
still receive the full benefits of optimization, associate calculzticons by
enclosing them in parentheses. For example:

DO 100 I = N ,M
TEMP1 SIN(X(I,J))
TEMP2 = COS (X(I,J))
STM(I) = SUM(I) + (TEMP1 * 4.0) * WEIGET + (TEMP2 * 3.0) * WEIGET
100 CONTINUE i

I}

Numerical differences can result from truncation; again, the fact that
machine arithmetic is not associative influences truncation. Use:r grouping
cf values for calculation is extremely important to avoid the prchlems
truncation can produce and propagate throughout the code.

=)
3

uncation errors occur when you compute an intermedizte rasult
quires more bits of precision than the machine can give vou to =

A
[{!

=
ct

Assume thaﬁ in: =
_l.‘@"?.\.fB
A =1. 0 and B = 1.0E-27.
1) . If you group the calculztion from the left:
(L.0 - A) - B = (1.0 - 1.0) - 1.0E-27 = -1.0E-27

2) If you group the calculation from the right:

1.0- (a+8B) =1.0 - (L.0+41.0E-27) = 1.0 =1.0 =0

In example 2 above, adding 1.0 - (1.0 + 1.0E-27) requires about 28 decimal

Differences 24

digits of precision. A CRAY X-MP computer system provides you about
15; therefore, the 1.0E-27 part is lost .completely and what remains is
1l --which, subtracted from 1 gives you 0.

Az with order of evaluation, numerical differences from tzuncation ace
good reminders that you need to consider the use of parentheses. It is
the best resource Fortran provides you to force calculations the way
you need them. :

To test if truncation is causing numerical differences in your code,
run your program uncdexr CFT77, TRUNC=0 or cit77 -t 0 (defaults) and
then under CZT77, TRUNC=3 or cft77 -t 3. Differences in results cue
to truncation problems show up under TRUNC=3 (-t 3) because usually
the last two oxr three bits are the origin c¢f the differences in
truncation problems.

OPTIMIZATION ' -

The CFT and CFT77 compilers are both optimizing compilers. They bcth share

optimizing technicues such as constant hoisting and replacement of redunda
expressions.

However, each of the Fortran compilers approaches optimization.different
(see the section titled "Compilation" in this module). CFT77, for exampl
goes further in algebraic simplification. This compiler also eliminates
dead variables (a Variable is live in a program if its value can be used
later on; otherwise, it is dead at that point and CFT77 removes it from
the code).)) C o

As stated under “Compilation," the CFT77 compiler opt i. izes on the basis
of data-flow analysis, whereas the CIT coompiler optimizes

according to coce block analysis. In data-flow ana‘vs*s the compilerxr
collects information about the program as a whole and then distribuctes
this information to each block in the flow graph --but CFT77 looks at
blocks as regions of closely interrelated code and which may consist

of nonsequentizlly coded statements, not as groups of up to 4000 woxds

of intermediate code the way CFT would. As part of data-flow analysis
and live-equation detection, the CFT77 compiler also examines loop induc-
tion variables to determine if replacement of user-induced operations on
such variables is also possible. These differences are generally
transparent to the user; when they cause differences that require
debugging efforts, the reminders and techniques under the section titled’
"Special Debugging Considerations™ are effective in dealing with them.

Three additional areas in which the two compilers differ deserve
specific attention: constant- increment variables and loop 1nducylon o
variables, unrolling, and IF statement optimization.

25 . Differences

Constant Increment Variables and Loop Induction Variables

Censtant increment variables (CIV) in CET are real or integer variables which
are decremented or incremented by an invariant expressicn once on each cass
t T compiler's 1.15 release, vou can look &t

hrough the DO-loop. 2As of the C

a CIV more realistically as a variable which increments ¢r decrements

since the CFT compiler sometimes can manipulate a stride even when

constantly,
The restrictions on CIVs in CET are:

the stride seems nonlinear.

* you can use parentheses only on or surrounding an invariant
calculation included in an expression which calculates z CIV In loco 1
below, K is not & CIV; in loop 2, however, K is a CIV:
J = 10 J = 10
DO 1 I =1, N DO 2 I =1, N
K= (K+J - 4) K=K+ (J - 4)
1 DIFF (I) = DELTA(X) * Y¥ 2 DIFF(I) = DELTA(X) * ¥v¥

* another variable cannot define the CIV recursively in the_szme
loop. L is not a CIV in loop 1 below, but is one in loop -2:
DO 1 I =1, N Do 2 I =1, N
L = L + 34 L =L + 34
L2 = I + J 12 = I + J
1 L =12 + I 2 L3 =12 + I
result

I

H

the CIV defines itself in the course of the DO loop, its

must be positive. In loop 1 below, M is not a CIV, while it is one

in loocp 2:

DO 1I=1, N
M =3 -M

1 CONTINUE 2 CONTINUE

Differences 26

16

Additionally, CIVs must follow the formats specified and
illustrated as follows:

Format Co. Example
CIVa = CIVa % Invariant I =14+ (39 * INV)
CIva = = CIVb % Invariant - I = (39 * INV) - I2
CIVa = CIVa + CIVa J=J + J
CIVa = CIva £ CIVb Jg=J-1I

where INV is invariant. and I2 is a CIV.

-Official documentation for CFT77 also alludes to constant -increment
variables. However, restrictions on their use and formatting in
source code are difierent for CFT77: the compiler also.uses these for
prevectorization analysis and replacements, whereas the CFT compiler
need only use these variables for the purpose of setting vector lengths
and in determining loop count and stride. o .
In CFT77 a2 constant increment variable is also a variable which is
incremented or decremented by an invariant expression on each pass through
a loop. The invariant expression that defines the constant increment
variable must be type integer. Additionally,- the only operators allowed
on the expression that defines the variable are plus (+) and minus (-);
like CIVs in CFT, if the variable defines ‘itself in the course of the "' -
loop, the sign of the increment must not alternate (e.g., i = 2 - i is
not allowed).

The CFT77 compiler, however, does NOT restrict the use of the constant
increment variable to only one appearance on the left side of the equal
sign within the same loop. For example, J. in loop 1 below is NOT a CIV -
under CFT, while it is acceptable as an analogous variable under CFT77:

DO

I~
H R

1 M, N
J + K’
J + L

"1 CONTINUE . o ‘

27 Differences

.

The usefulness of constant increment variables for CFT77 lies in their
potential as loop induction variables. The compiler uses these loop inducticn
variables (LIV) to determine if it czn replace or convert some types of
operations tc vector equivalents. LIVs are computed from CIVs in Fortran
source. When CFT77 cannot execute transformations of LIVs to linear
equivalents for vectorization, it preoduces messages to indicate that
vectorization is inhibited.

CEFT77, for example, takes the following source:

DO 10 J = 2, 25
K =K + 1
L =J + 2
A(K) = B(K) * P
A(L) = A(K)

10 CONTINUZ

H

and, after several levels of variable transformations, generates a

sequence equivalent to:

DO 10 j = 2, 25
A((3 * 1) - 1) =B(3) *pP .
A(j + 2) = R((j * 1) - 1) -
10 CONTINUE : Ny

where CFT77 replzces auxiliary CIVs K znd L with linear egquivalents in terms of
J. Through these transformations the CFT77 compiler can detect that

a2 dependence due to rescurrence inhibits the generation of vector code

for the loop. '

Unrolling

Unrolling consists of the expansion of an innermost loop into the next
higher level of loop nesting, with the purpose of making more efficient
use of CPU resources. This process in general is limited to relatively
short loops, since past a given point unrolling the loop would not yield
time improvements.

The CFT compiler conducts analysis to determine if a loop can be unrolled

by default, for loops whose iteration count goes from 3 to 9. You can
request that the compiler not do the analysis or unroll the loop by
specifying UNROLL=0 on the CFT control statement or -u 0 on the cft

command line. For most cases, however, this process is advantageous for

code optimization. When this option is enabled, if the vectorizable innermosct
loop is too short to warrant use of vector resources the compiler expands

the loop into the next higher level and, unless something in it inhibits
vectorization, generates vector code for the next level.

Differences 28

o

“vector code’ for IF-THEN-ELSEZ sequences as jumps to 2 _block of

The CFT compiler unzolls the innermost loop horizontally when such is
possible, by default.

Whereas for CFT this user-independent optimization technique is effected
for wvectorizaticn purpesas, the CFT77 compiler analyzes loops that can

be unrolled during the code generation phase. For CFT77 the decisicn

to unroll an innermost loop does not depend on whether or not vectoriza-
tion could provide an improvement on the loop. The CFT77 compiler unreolls
a loop if scheduling is improved by it for code generation. The process
itself, and the code sequences generated for "unrolling® under the two

.compilers, are different. Hence, when documentation for both compilers

{8

allude to unrolling, you can assume that the reference is to diff arenc
processes that share a name.

With both compilers you gain from forcing specific calculations to taks
place through loops unrolled vertically into the outer lcop,

as well as from vertically and horizontally unrolled outer loops into
innermost loops. These user-induced optimization technigues foxce bcth
compilers to make better use of registers and reduce the razio of .
memory references per floating-point operation.)

I¥ Statement Optimization

The CFT and CFT77 compilers optimize IT statements by using different ==-
sources. Both compilers also differ in relation to the level of z
involvement allowed to control how optimization takes place.

The CFT compiler optimizes:. IF statements through conversion of MAX/MIN
calls and conditional vector merge calls to vectorizable ecuivalents.
Additionally, CFT also uses hardware compress—index and- gather-scatter
resources to vectorize specific types of IF statements.

You have no cont=ol over the optimization of MAX/MIN calls such as:

IF(A(I).GT.¥(I)) A(I) = Y(I)

under CFT. This conversion takes place even with CZT,OPT=NCIFCON and
cft -o noifcon (default).

CET optimizes IF-THEN/ELSE sequences in one of two ways. If the
sequence includes NO conditional division or function. calls, the ... wiiwiws oo
compiler optimizes by making calls to conditional vector merge libraries. . -
which evaluate all possible right-hand sides of the IF first and then

goes on to run the conditional test. However, when the-right-hand ---— -~ .« s
side contains division or function calls, the compiler”interprets- - ==% [.1
them as potentially unsafe. In these cases the C:T complle: generates, .

cecde inside the innermost looo, that is, the block may or may not ST e

29 Differences

execute depending on the outcome of the test. For this the compiler uses
hardware compress-index/gather scatter (CIGS) instructions: the left-hanid
side of the IF is evaluated first. The compress-index instruction loacds

only the wvalues neecded by using a GATHER (e.g., A(I(J)), where I is an
index into J), instezd of computing d11 possible right-hand sides of ths
IE . :

Examples:

CVMG by default for: IF((A(I).GT.D(I)).OR(A(I).LT.C(I))) A(I) = ABS(C(I)*D(I}}

Hy
o]
o

CIGS bv default

DO 10 I = 1, N
IF (MOD(I,2).EQ.Q) TEEN
A(I) = B(I) * 2.
ELSE
A(I) = C(I) * 2.
ENDIF
10 CONTINUE

You have control over which of these resources the CET compiler uses
through optimization options PARTIALIFCON and FULLIFCON.

Like CFT, the CFT77 compiler can generate optimized code for conditiocnal
are NOT three-branch IFs, assigned GOTOs,
d-branching GOTCs. Whenever the CEFT77 compilerz

sequences &s long as t
computed GOTOs cr backwa
finds these, sues a message such as: "... was not vectorized

it
because there are multiple entries into the loop"™.)

= g
m
g

Unlike CFT, however, the CEFT77 compiler does NOT use compress-=index
instructions to generate optimized code. Consider the following Fortran
sequence:

DO 10 I = 1, 100
IF (A(I).GT.B(I) .AND.C(I) .GT.C) A(I) = B(I)
10 CONTINUE

DO 50 I = 1, N
IF (XX(I).GT.P) GO TO 25
XX(I) = AA(I)

GO TO 50
25 XX (I) = BB(I * 2)

50 CONTINUE

DO 75 I¥ = 1, 15
IF (UG(IY) .NE.2) UA(IY) = UB(IY) / 2
75 CONTINUE

Differences 30

)

The fsllowing table extracts part of the instruction sequences
which both compilers would generate for the IF tests in the loops

on the opposite page.

Loop ' Instructions
CET c=277
10 173754 v7 vVS-FV4 003070 VM S7)
§
141367 v3 vVe&v7 146710 v7 S1IVCev M

175237 Vv2,VM V3, M
073000 SO VM i

50
175677 V6,VM V7,M 003010 VM Si
073000 SO0 wvM 147132 Vi V3I1v2aVvM
75 170667 V& SG+EV7T 003060 VM S§
175565 VS,VM V6,N 146172 vl STIVZz i i
073006 SO0 WM :

164071 Vo ST*XV1
003010 VM sl .
147507 V5 VO !IvVTe ™

The CFT compiler generates compress-index instructions .(175ijn), which use

a2 vector mask to set up a2 dense vector length of cases which tested true for
the condition. This in itself is different in CFT77, which uses a :
vectozr mask for cases on which operations need to be carried out:; however,
CEFT77 does not use a different vector length. Instead, it does a
full-vector merge on the cases in the mask.

" An additional difference is that, in all three cases, the CFT77 compilaz

pulls the test and vector-mask setup out of the loop.

The CFT77 compiler does not allow you partial control over its choice of
resources to use. Besides the fact that it does not use compress-index
resources, you can disable this tyoe of optimization only by specifying
CZT77, OPT=NOVECTOR or OPT=0FF (cft77. ~o novector or -0 off). ... =~ ...

31 Differences

VECTORIZATION

The vectorization process, naturally, is the same for both Fortran
compilers. However, there are specific differences in the way either
compiler handles dependencs identification.

Dependence Identification

CFT77 analyzes £ data dependences produced by the differences
between scalar a ocessing and, although the process i
different betwesn th omzilers, the result is similar. Both compilers,
for example, identi: srrence situations and inhibit vector cocde.

ces in what the two compilers interpret as a

]
\
m

However, there are Ci:if
recurrence problem.

The following secuences illustrate differences.

Vactorization

Sequence CrT CrT77 Comments
1) DO 1 J = 100,1,-1| No Yes ‘CFT77 processes this loop
X(J) = ¥(J+4) using shorter vector
X(J-4) = Z(J) lengths (4).
1 CCONTINUZ
2) bo 2z 1 =1, 1C Yes . No Subsequent-plus data
A(I) = X(I) dependence. CET77
. ¥(I) = a(I+1) inhibits vector processing
2 CONTINUE - ' because in scalar mode

by the time RA(I) needs
A(I+1) its old value is
available, whereas in
vector processing the
old value has been
updated and destroyed:
"CFT77 could not dezal
with the loop's expre-
ssion order."”

3) KO = 200 - Yes = . Wo CFT77‘xnterDz£ES this as
DO 3 J = 201,2:=1 . a case ¢f overlap between
SAVE (J) = SAVE (X0) the ranges cf J and KO.

KO = KO - 1
3 CONTINUE

Differences 32

Secuence CET BT Comments [
4) EQUIVALENCE (J, X) Yes No CET77 cdoes not vectorizs
DC 4 J = N,2,-1 this beczauses o©of the
F(X) = H(K) scalar store --this
G(K) = F(XK-4) applies only to ecuiv-
4 CONTINUE glenced array indi az
not to a::avg.

3)

]

PRINT 101
X,

{QT (T

Ly

IX=1,J%

No

33 Differences

