
Fortran Language Reference Manual,
Volume 3

SR–3905 3.1

Document Number 007–3694–003

Copyright © 1993, 1998 Silicon Graphics, Inc. All Rights Reserved. This manual or parts thereof may not be reproduced in any
form unless permitted by contract or by written permission of Silicon Graphics, Inc.

The CF90 compiler includes United States software patents 5,247,696, 5,257,372, and 5,361,354.

RESTRICTED RIGHTS LEGEND

Use, duplication, or disclosure of the technical data contained in this document by the Government is subject to restrictions as set
forth in subdivision (c) (1) (ii) of the Rights in Technical Data and Computer Software clause at DFARS 52.227-7013 and/or in
similar or successor clauses in the FAR, or in the DOD or NASA FAR Supplement. Unpublished rights reserved under the
Copyright Laws of the United States. Contractor/manufacturer is Silicon Graphics, Inc., 2011 N. Shoreline Blvd., Mountain View,
CA 94043-1389.

Autotasking, CF77, CRAY, Cray Ada, CraySoft, CRAY Y-MP, CRAY-1, CRInform, CRI/TurboKiva, HSX, LibSci, MPP Apprentice,
SSD, SUPERCLUSTER, UNICOS, and X-MP EA are federally registered trademarks and Because no workstation is an island, CCI,
CCMT, CF90, CFT, CFT2, CFT77, ConCurrent Maintenance Tools, COS, Cray Animation Theater, CRAY APP, CRAY C90,
CRAY C90D, Cray C++ Compiling System, CrayDoc, CRAY EL, CRAY J90, CRAY J90se, CrayLink, Cray NQS,
Cray/REELlibrarian, CRAY S-MP, CRAY SSD-T90, CRAY SV1, CRAY T90, CRAY T3D, CRAY T3E, CrayTutor, CRAY X-MP,
CRAY XMS, CRAY-2, CSIM, CVT, Delivering the power . . ., DGauss, Docview, EMDS, GigaRing, HEXAR, IOS,
ND Series Network Disk Array, Network Queuing Environment, Network Queuing Tools, OLNET, RQS, SEGLDR, SMARTE,
SUPERLINK, System Maintenance and Remote Testing Environment, Trusted UNICOS, UNICOS MAX, and UNICOS/mk are
trademarks of Cray Research, Inc., a wholly owned subsidiary of Silicon Graphics, Inc.

IRIS, IRIX, and Silicon Graphics are registered trademarks and the Silicon Graphics logo is a trademark of Silicon Graphics, Inc.

MIPS is a registered trademark and MIPSpro is a trademark of MIPS Technologies, Inc. TotalView is a trademark of Bolt Baranek
and Newman Inc. UNIX is a registered trademark in the United States and other countries, licensed exclusively to X/Open
Limited. UNIX is a registered trademark in the United States and other countries, licensed exclusively through X/Open Company
Limited. X/Open is a registered trademarkof X/Open Company Ltd. The X device is a trademark of The Open Group,

Adapted with permission of McGraw-Hill, Inc. from the FORTRAN 90 HANDBOOK, Copyright © 1992 by Walter S. Brainerd,
Jeanne C. Adams, Jeanne T. Martin, Brian T. Smith, and Jerrold L. Wagener. All rights reserved. Cray Research, Inc. is solely
responsible for the content of this work.

The UNICOS operating system is derived from UNIX® System V. The UNICOS operating system is also based in part on the
Fourth Berkeley Software Distribution (BSD) under license from The Regents of the University of California.

New Features

Fortran Language Reference Manual, Volume 3 007–3694–003

This manual describes the Fortran 90 language as implemented by the Cray Research CF90 compiler, release
3.1, and the MIPSpro 7 Fortran 90 compiler, revision 7.2.1.

Revision 3.1, which is provided in online form only, contains corrections and features to support the CF90
3.1 release and the MIPSpro 7 Fortran 90 7.2.1 release.

Record of Revision

Version Description

2.0 November 1995
Original Printing. The sections in this manuals previously appeared in the CF90
Fortran Language Reference Manual, revision 1.0, publication SR–3902, and the CF90
Commands and Directives Reference Manual.

3.0 May 1997
This printing supports the Cray Research CF90 3.0 release running on UNICOS and
UNICOS/mk operating systems, and the MIPSpro 7 Fortran 90 compiler release 7.2
running on the IRIX operating system. The implementation of features on IRIX
operating system platforms is deferred.

3.0.1 August 1997
This online revision supports the Cray Research CF90 3.0.1 release, running on
UNICOS and UNICOS/mk operating systems, and the MIPSpro 7 Fortran 90
compiler 7.2 release, running on the IRIX operating system. Includes minor updates
and corrections to revision 3.0.

3.0.2 March 1998
This online revision supports the Cray Research CF90 3.0.2 release, running on
UNICOS and UNICOS/mk operating systems, and the MIPSpro 7 Fortran 90
compiler 7.2.1 release, running on the IRIX operating system. Includes minor
updates and corrections to revision 3.0.1.

3.1 August 1998
This online revision supports the Cray Research CF90 3.1 release, running on
UNICOS and UNICOS/mk operating systems, and the MIPSpro 7 Fortran 90
compiler 7.2.1 release, running on the IRIX operating system. Includes minor
updates and corrections to revision 3.0.2.

007–3694–003 i

Contents

Page

About This Manual xiii

Related CF90 and MIPSpro 7 Fortran 90 Compiler Publications xiv

CF90 and MIPSpro 7 Fortran 90 Compiler Messages xiv

CF90 and MIPSpro 7 Fortran 90 Compiler Man Pages xiv

Related Fortran Publications . xv

Related Publications . xv

Obtaining Publications . xvi

Conventions . xvii

BNF Conventions . xviii

Reader Comments . xx

Fortran 90 Syntax [1] 1

Syntax Form . 1

Syntax Rules Expressed in BNF 1

Definition Syntax Symbol: Is . 2

Alternative Syntax Symbol: Or 2

Optional Symbol: [] . 3

Symbol for Repeated Items: []. 3

Syntax Rule Continuation . 3

Assumed Syntax Rules . 4

Example BNF Syntax . 4

Constraints . 5

Identifying Numbers . 5

Syntax Rules and Constraints . 5

Introduction . 6

007–3694–003 iii

Fortran Language Reference Manual, Volume 3

Page

Fortran Terms and Concepts . 6

Characters, Lexical Tokens, and Source Form 10

Intrinsic and Derived Data Types 13

Data Object Declarations and Specifications 18

Use of Data Objects . 29

Expressions and Assignment . 33

Execution Control . 38

Input/Output (I/O) Statements 44

I/O Editing . 51

Program Units . 54

Procedures . 56

Intrinsic Procedures . 61

Scope, Association, and Definition 61

Cross-references . 61

Decremental Features [2] 81

Deleted Features . 81

Obsolescent Features . 81

Alternate Return . 82

PAUSEStatement . 82

ASSIGN and Assigned GO TOStatements 82

Assigned FORMATSpecifiers . 83

H Editing . 83

Character Set [3] 85

Extensions and Differences [4] 91

FORTRAN 77 and Fortran 90 Differences 91

Fortran 90 and End-of-Record Action 92

Fortran 90 and New Intrinsic Procedures 92

Fortran 90 and G Edit Descriptor Output Differences 94

iv 007–3694–003

Contents

Page

Fortran 90 and List-directed Output Differences 95

Incompatibilities with Extensions 95

Namelist I/O . 95

Differences between CF90 and CF77 Namelist Functionality 95

Similarities between CF90 and CF77 Namelist Input 99

Differences between CF90 and CF77 Namelist Output 99

Portability between CF77 and CF90 Namelist 101

List-directed I/O . 102

Delimited and Undelimited Character Strings in List-directed I/O 102

List-directed I/O and Internal Files 103

List-directed I/O and Hollerith Constants 103

List-directed I/O and Floating-point Zero 103

OPENStatement . 103

INQUIRE Statement . 104

READand WRITEStatements . 104

Differences in the G Edit Descriptor 104

Differences in the B, O, and Z Edit Descriptors 105

Implied-DOVariables in an I/O List 105

Common Blocks and I/O . 105

CF90 Restrictions on CF77 I/O Extensions 106

CF90 and CF77 Integrated Environment Differences 106

Loading CF77 and CF90 Program Units 106

The assign (1) Command and the CF77 File Attribute for the CF90 Compiler 107

New I/O Environment . 107

CF90 Extensions to Fortran 90 . 107

Source Forms, Character Sets, and Compiler Directives 108

Data Types and Constants . 108

Declaring Attributes, COMMON, DATA, EQUIVALENCE, SAVE, FUNCTION, and SUBROUTINE
Statements . 111

007–3694–003 v

Fortran Language Reference Manual, Volume 3

Page

Expressions and Assignments . 112

I/O, Including FORMATStatements 113

Flow Control and Other Statements 115

Program Units, Functions, Subroutines, and Statement Functions 115

Call by Value . 115

Intrinsic Procedures . 116

CF90 and CF77 Implementation Differences 116

BMM Intrinsic Function Differences (UNICOS Systems Only) 116

Integer Types . 117

Integer Constants . 117

Vectorization . 117

Miscellaneous Differences . 117

Data Representation and Storage [5] 121

Data Representation for UNICOS Systems 121

Integer Type . 121

Real Type . 122

Normalized Floating-point Numbers 125

Double-precision Type . 125

Single-precision Complex Type 126

Double-precision Complex Type 127

Character Type . 127

Logical Type . 128

Cray Character Pointers . 128

Data Representation for IRIX systems 129

Integer Type . 129

KIND=1 . 129

KIND=2 . 130

KIND=4 . 130

vi 007–3694–003

Contents

Page

KIND=8 . 130

Real Type . 131

KIND=4 . 131

KIND=8 . 133

KIND=16 . 134

Complex Type . 135

KIND=4 . 135

KIND=8 . 136

KIND=16 . 136

Character Type . 138

Logical Type . 138

Cray Character Pointers (Deferred Implementation) 139

Data Representation for UNICOS/mk Systems 139

Integer Type . 139

KIND=1, KIND=2, or KIND=4 139

KIND=8 . 140

Real Type . 140

KIND=4 . 140

KIND=8 . 142

Complex Type . 143

KIND=4 . 143

KIND=8 . 144

Character Type . 145

Logical Type . 145

Cray Character Pointers . 146

Data Representation for CRAY T90 Systems That Support IEEE Floating-point Arithmetic . . 146

Integer Type . 146

KIND=1, KIND=2, or KIND=4 146

KIND=8 . 147

007–3694–003 vii

Fortran Language Reference Manual, Volume 3

Page

Real Type . 147

KIND=4 and KIND=8 . 148

KIND=16 . 148

Complex Type . 149

KIND=4 and KIND=8 . 149

KIND=16 . 150

Character Type . 152

Logical Type . 152

Cray Character Pointers . 153

Storage Issues . 153

Storage Units and Sequences . 154

Static and Stack Storage . 156

Dynamic Memory Allocation (UNICOS Systems Only) 158

Changing Your Code: Standard Method 159

Changing Your Code: Nonstandard Method 160

Outmoded Features [6] 163

Hollerith Type . 164

Hollerith Constants . 164

Hollerith Values . 166

Hollerith Relational Expressions 166

Formatted I/O and Internal Files 167

ENCODEStatement . 167

DECODEStatement . 169

Edit Descriptors . 171

Asterisk Delimiters . 171

Negative-valued X Descriptor . 171

A and R Descriptors for Noncharacter Types 172

Type Declaration with Data Length 173

viii 007–3694–003

Contents

Page

DATAStatement Features . 176

IF Statements . 176

Two-branch Arithmetic IF . 176

Indirect Logical IF . 177

TASK COMMONStatement (UNICOS Systems Only) 177

Nested Loop Termination . 178

DOUBLE COMPLEXStatement (UNICOS Systems Only) 178

Bitwise Logical Expressions . 179

CF90 Defined Externals [7] 183

Conformance Checks . 183

Record Length . 183

Glossary 185

Index 195

Figures
Figure 1. Default 64-bit integers 122

Figure 2. Fast integer operations with INTEGER(KIND=8) , CRAY T90 systems 122

Figure 3. Fast integer operations with INTEGER(KIND=8) , UNICOS systems (except CRAY T90
systems) . 122

Figure 4. Real type . 123

Figure 5. Binary version of 10.0 124

Figure 6. Double-precision type 125

Figure 7. Single-precision complex type 126

Figure 8. Double-precision complex type (real portion) 127

Figure 9. Double-precision complex type (imaginary portion) 127

Figure 10. Character type . 128

Figure 11. 32-bit addressing for UNICOS systems (except CRAY T90 systems) 128

007–3694–003 ix

Fortran Language Reference Manual, Volume 3

Page

Figure 12. 32-bit addressing for CRAY T90 systems 129

Figure 13. INTEGER(KIND=1) on IRIX systems 129

Figure 14. INTEGER(KIND=2) on IRIX systems 130

Figure 15. INTEGER(KIND=4) on IRIX systems 130

Figure 16. INTEGER(KIND=8) on IRIX systems 131

Figure 17. REAL(KIND=4) on IRIX systems 131

Figure 18. Binary version of 10.0 133

Figure 19. REAL(KIND=8) on IRIX systems 133

Figure 20. REAL(KIND=16) on IRIX systems 134

Figure 21. COMPLEX(KIND=4) on IRIX systems (real portion) 135

Figure 22. COMPLEX(KIND=4) on IRIX systems (imaginary portion) 135

Figure 23. COMPLEX(KIND=8) on IRIX systems (real portion) 136

Figure 24. COMPLEX(KIND=8) on IRIX systems (imaginary portion) 136

Figure 25. COMPLEX(KIND=16) on IRIX systems (real portion) 137

Figure 26. COMPLEX(KIND=16) on IRIX systems (imaginary portion) 137

Figure 27. Character type . 138

Figure 28. 32-bit addressing on IRIX systems 139

Figure 29. Integer KIND=1, 2, or 4 on UNICOS/mk systems 139

Figure 30. INTEGER(KIND=8) on UNICOS/mk systems 140

Figure 31. REAL(KIND=4) on UNICOS/mk systems 140

Figure 32. Binary version of 10.0 142

Figure 33. REAL(KIND=8) on UNICOS/mk systems 142

Figure 34. COMPLEX(KIND=4) on UNICOS/mk systems (real portion) 143

Figure 35. COMPLEX(KIND=4) on UNICOS/mk systems (imaginary portion) 143

Figure 36. COMPLEX(KIND=8) on UNICOS/mk systems (real portion) 144

Figure 37. COMPLEX(KIND=8) on UNICOS/mk systems (imaginary portion) 144

Figure 38. Character type . 145

x 007–3694–003

Contents

Page

Figure 39. Cray character pointers on UNICOS/mk systems 146

Figure 40. Integer KIND=1, 2, or 4 on CRAY T90 systems that support IEEE floating-point
arithmetic . 146

Figure 41. Default INTEGER(KIND=8) on CRAY T90 systems that support IEEE floating-point
arithmetic . 147

Figure 42. Fast operations with INTEGER(KIND=8) on CRAY T90 systems that support IEEE
floating-point arithmetic . 147

Figure 43. Real KIND=4 or 8 on CRAY T90 systems that support IEEE floating-point arithmetic 148

Figure 44. REAL(KIND=16) on CRAY T90 systems that support IEEE floating-point arithmetic 149

Figure 45. Complex KIND=8 or 4 on CRAY T90 systems that support IEEE floating-point
arithmetic (real portion) . 150

Figure 46. Complex KIND=8 or 4 on CRAY T90 systems that support IEEE floating-point
arithmetic (imaginary portion) . 150

Figure 47. COMPLEX(KIND=16) on CRAY T90 systems that support IEEE floating-point
arithmetic (real portion) . 151

Figure 48. COMPLEX(KIND=16) on CRAY T90 systems that support IEEE floating-point
arithmetic (imaginary portion) . 151

Figure 49. Character type . 152

Figure 50. Cray character pointer for CRAY T90 systems that support IEEE floating-point
arithmetic . 153

Figure 51. Memory use under UNICOS 159

Tables
Table 1. Syntax metalanguage abbreviations 2

Table 2. Fortran 90 standard nonterminal symbols defined through BNF rules 62

Table 3. Fortran 90 standard nonterminal symbols with no BNF definition 73

Table 4. Fortran 90 standard terminal symbols 74

Table 5. Character set . 85

Table 6. Outmoded features and preferred alternatives 163

Table 7. Data length (UNICOS systems) 174

Table 8. Data length (UNICOS/mk systems) 175

Table 9. Data length (IRIX systems) 175

007–3694–003 xi

Fortran Language Reference Manual, Volume 3

Page

Table 10. Standard alternatives to CF90 double-complex functions 179

Table 11. Standard alternatives to CF90 and MIPSpro 7 Fortran 90 bitwise functions . . . 180

Table 12. Data types in bitwise logical operations 181

xii 007–3694–003

About This Manual

This manual describes the Fortran 90 language as implemented by the Cray
Research CF90 compiler, revision 3.0.2, and by the MIPSpro 7 Fortran 90
compiler, revision 7.2.1. The CF90 and MIPSpro 7 Fortran 90 compilers
implement the Fortran 90 standard.

The CF90 and MIPSpro 7 Fortran 90 compilers run on UNICOS, UNICOS/mk,
and IRIX operating systems. Specific hardware and operating system support
information is as follows:

• The CF90 compiler runs under UNICOS 9.0, or under UNICOS 10.0 or later,
on the following platforms: CRAY SV1, CRAY C90, CRAY J90, CRAY T90,
CRAY Y-MP, and CRAY EL systems.

• The CF90 compiler runs under UNICOS/mk 2.0.3, or later, on CRAY T3E
systems.

• The MIPSpro 7 Fortran 90 compiler runs under IRIX 6.2, or later, on Cray
Research and Silicon Graphics IRIX systems.

Note: This manual describes how the CF90 and MIPSpro 7 Fortran 90
compilers work on Cray Research UNICOS, Cray Research UNICOS/mk,
and Silicon Graphics IRIX systems. Implementation of the MIPSpro 7
Fortran 90 compiler on Silicon Graphics IRIX systems is deferred.

The CF90 and MIPSpro 7 Fortran 90 compilers were developed to support the
Fortran standards adopted by the American National Standards Institute
(ANSI) and the International Standards Organization (ISO). These standards,
commonly referred to as the Fortran 90 standard, are ANSI X3.198–1992 and
ISO/IEC 1539:1991–1. Because the ANSI Fortran 90 standard is a superset of
the FORTRAN 77 standard, the CF90 and MIPSpro 7 Fortran 90 compilers will
compile code written to the FORTRAN 77 standard.

Note: The Fortran 90 standard is a substantial revision to the FORTRAN 77
language standard. Because of the number and complexity of the features, the
standards organizations are continuing to interpret the Fortran 90 standard
for Silicon Graphics and for other vendors. To maintain conformance to the
Fortran 90 standard, Silicon Graphics may need to change the behavior of
certain CF90 and MIPSpro 7 Fortran 90 compiler features in future releases
based upon the outcomes of the outstanding interpretations to the standard.

007–3694–003 xiii

Fortran Language Reference Manual, Volume 3

Related CF90 and MIPSpro 7 Fortran 90 Compiler Publications

This manual is one of a set of manuals that describes the CF90 and the MIPSpro
7 Fortran 90 compilers. The complete set of CF90 and MIPSpro 7 Fortran 90
compiler manuals is as follows:

• Intrinsic Procedures Reference Manual.

• Fortran Language Reference Manual, Volume I. Chapters 1 through 8
correspond to sections 1 through 8 of the Fortran 90 standard.

• Fortran Language Reference Manual, Volume II. Chapters 1 through 6 of this
manual correspond to sections 9 through 14 of the Fortran 90 standard.

• Fortran Language Reference Manual, Volume III. This manual contains CF90
and MIPSpro 7 Fortran 90 compiler information that supplements the
Fortran 90 standard. The standard is the complete, official description of the
language. This manual also contains the complete Fortran 90 syntax in
Backus-Naur form (BNF). The syntax rules are numbered exactly as they are
in the Fortran standard. There is a cross reference that lists, for each
nonterminal syntactic item, the number of the rule in which it is defined and
all rules in which it is referenced.

The following publications contain information specific to the CF90 compiler:

• CF90 Ready Reference

• CF90 Commands and Directives Reference Manual

• CF90 Co-array Programming Manual

The following publication contains information specific to the MIPSpro 7
Fortran 90 compiler:

• MIPSPro Fortran 90 Commands and Directives Reference Manual

CF90 and MIPSpro 7 Fortran 90 Compiler Messages

You can obtain CF90 and MIPSpro 7 Fortran 90 compiler message explanations
by using the online explain (1) command.

CF90 and MIPSpro 7 Fortran 90 Compiler Man Pages

In addition to printed and online prose documentation, several online man
pages describe aspects of the CF90 and MIPSpro 7 Fortran 90 compilers. Man

xiv 007–3694–003

About This Manual

pages exist for the library routines, the intrinsic procedures, and several
programming environment tools.

You can print copies of online man pages by using the pipe symbol with the
man(1), col (1), and lpr (1) commands. In the following example, these
commands are used to print a copy of the explain (1) man page:

% man explain | col -b | lpr

Each man page includes a general description of one or more commands,
routines, system calls, or other topics, and provides details of their usage
(command syntax, routine parameters, system call arguments, and so on). If
more than one topic appears on a page, the entry in the printed manual is
alphabetized under its primary name; online, secondary entry names are linked
to these primary names. For example, egrep is a secondary entry on the page
with a primary entry name of grep . To access egrep online, you can type man
grep or man egrep . Both commands display the grep man page to your
terminal.

Related Fortran Publications

The following commercially available reference books are among those that you
should consult for more information on the history of Fortran and the
Fortran 90 language itself:

• Adams, J., W. Brainerd, J. Martin, B. Smith, and J. Wagener. Fortran 90
Handbook — Complete ANSI/ISO Reference. New York, NY: Intertext
Publications/Multiscience Press, Inc., 1990.

• Metcalf, M. and J. Reid. Fortran 90 Explained. Oxford, UK: Oxford University
Press, 1990.

• American National Standards Institute. American National Standard
Programming Language Fortran, ANSI X3.198–1992. New York, 1992.

• International Standards Organization. ISO/IEC 1539:1991, Information
technology — Programming languages — Fortran. Geneva, 1991.

Related Publications

Certain other publications from Silicon Graphics may also interest you.

On UNICOS and UNICOS/mk systems, the following documents contain
information that may be useful when using the CF90 compiler:

007–3694–003 xv

Fortran Language Reference Manual, Volume 3

• Segment Loader (SEGLDR) and ld Reference Manual

• UNICOS User Commands Reference Manual

• UNICOS Performance Utilities Reference Manual

• Scientific Libraries Reference Manual

• Introducing the Program Browser

• Application Programmer’s Library Reference Manual

• Guide to Parallel Vector Application

• Introducing the Cray TotalView Debugger

• Introducing the MPP Apprentice Tool

• Application Programmer’s I/O Guide

• Optimizing Code on Cray PVP Systems

• Compiler Information File (CIF) Reference Manual

On IRIX systems, the following documents contain information that may be
useful when using the MIPSpro 7 Fortran 90 compiler:

• MIPSpro Compiling and Performance Tuning Guide

• MIPSpro Fortran 77 Programmer’s Guide

• MIPSpro(TM) 64-Bit Porting and Transition Guide

• MIPSpro Assembly Language Programmer’s Guide

Obtaining Publications

Silicon Graphics maintains information about available publications at the
following URL:

http://techpubs.sgi.com/library

This Web site contains information that allows you to browse documents online,
order documents, and send feedback to Silicon Graphics. You can also order a
printed Silicon Graphics document by calling 1-800-627-9307.

The User Publications Catalog, publication CP-0099, describes the availability and
content of all Cray Research hardware and software documents that are

xvi 007–3694–003

About This Manual

available to customers. Customers who subscribe to the Cray Inform
(CRInform) program can access this information on the CRInform system.

To order a printed copy of this document, either call the Minnesota Distribution
Center at +1–651–683–5907, or send a facsimile of your request to fax number
+1–651–452–0141. Silicon Graphics employees may send electronic mail to
orderdsk@cray.com (UNIX system users).

Silicon Graphics maintains information on publicly available Cray Research
documents at the following URL:

http://www.cray.com/swpubs/

This Web site contains information that allows you to browse documents online
and send feedback to Silicon Graphics.

Customers outside of the United States and Canada should contact their local
service organization for ordering information and documentation information.

Conventions

The following conventions are used throughout this document:

Convention Meaning

command This fixed-space font denotes literal items such as
commands, files, routines, path names, signals,
messages, and programming language structures.

variable Italic typeface denotes variable entries and words
or concepts being defined.

user input This bold, fixed-space font denotes literal items
that the user enters in interactive sessions.
Output is shown in nonbold, fixed-space font.

[] Brackets enclose optional portions of a command
or directive line.

... Ellipses indicate that a preceding element can be
repeated.

EXT or EXTENSION The EXT or EXTENSION notation indicates that
the feature being described is an extension to the
Fortran 90 standard.

007–3694–003 xvii

Fortran Language Reference Manual, Volume 3

scalar_ When scalar_ is the first item in a syntax
description, it indicates that the item is a scalar,
not an array, value.

_name When _name is part of a syntax definition, it
indicates that the item is a name with no
qualification. For example, the item must not
have a subscript list, so ARRAYis a name, but
ARRAY(I) is not.

(Rnnnn) Indicates that the Fortran 90 standard has rules
regarding the characteristic of the language being
discussed. All rules are numbered, and the
numbered list appears in the Fortran Language
Reference Manual, Volume III. The numbering of
the rules in this manual matches the numbering
of the rules in the standard. The forms of the
rules in this manual and the BNF syntax class
terms that are used may differ from the rules and
terms used in the standard.

POINTER The term POINTERrefers to the Fortran 90
POINTERattribute.

Cray pointer The term Cray pointer refers to the Cray pointer
data type extension.

BNF Conventions

This section describes some of the commonly used Backus-Naur Form (BNF)
conventions.

Terms such as goto_stmt are called variable entries, nonterminal symbols, or simply,
nonterminals. The metalanguage term goto_stmt, for example, represents the
GO TOstatement, as follows:

goto_stmt is GOTOlabel

The syntax rule defines goto_stmt to be GO TOlabel, which describes the format
of the GO TOstatement. The description of the GO TOstatement is incomplete
until the definition of label is given. label is also a nonterminal symbol. A
further search for label will result in a specification of label and thereby provide

xviii 007–3694–003

About This Manual

the complete statement definition. A terminal part of a syntax rule is one that
does not need further definition. For example, GO TOis a terminal keyword
and is a required part of the statement form. The complete BNF list appears in
the Fortran Language Reference Manual, Volume III.

The following abbreviations are commonly used in naming nonterminal
keywords:

Abbreviation Term

arg argument

attr attribute

char character

decl declaration

def definition

desc descriptor

expr expression

int integer

op operator

spec specifier or specification

stmt statement

The term is separates the syntax class name from its definition. The term or
indicates an alternative definition for the syntactic class being defined. The
following example shows that add_op, the add operator, may be either a plus
sign (+) or a minus sign (-):

add_op is +

or -

Indentation indicates syntax continuation. If a rule does not fit on one line, the
second line is indented. This is shown in the following example:

007–3694–003 xix

Fortran Language Reference Manual, Volume 3

R525 dimension_stmt is DIMENSION [::] array_name (array_spec)
[, array_name (array_spec)] ...

Reader Comments

If you have comments about the technical accuracy, content, or organization of
this document, please tell us. You can contact us in any of the following ways:

• Send us electronic mail at the following address:

techpubs@sgi.com

• Contact your customer service representative and ask that an SPR or PV be
filed. If filing an SPR, use PUBLICATIONS for the group name, PUBSfor the
command, and NO-LICENSE for the release name.

• Call our Software Publications Group in Eagan, Minnesota, through the
Customer Service Call Center, using either of the following numbers:

1–800–950–2729 (toll free from the United States and Canada)

+1–651–683–5600

• Send a facsimile of your comments to the attention of “Software Publications
Group” in Eagan, Minnesota, at fax number +1–651–683–5599.

We value your comments and will respond to them promptly.

xx 007–3694–003

Fortran 90 Syntax [1]

This chapter contains a complete description of the Fortran 90 syntax. Section
1.1 describes the format of the syntax. Section 1.2, page 5, contains the complete
syntax and constraints as they appear in the Fortran 90 standard. Section 1.3,
page 61, provides a cross-reference of each syntax term, the rule in which it is
defined, and the rules in which it is referenced. A high-level summary of the
syntax appears in the Fortran Language Reference Manual, Volume I.

1.1 Syntax Form

The syntax of Fortran programs is described using a variant of the Backus-Naur
Form (BNF).

1.1.1 Syntax Rules Expressed in BNF

The BNF syntax rules are expressed as a definition. The metalanguage class
being defined is first, followed by the symbol is, and finally the syntax
definition, as in the following example:

goto_stmt is GO TOlabel

The term goto_stmt represents the GO TOstatement; such terms are called
nonterminal symbols or simply nonterminals. The syntax rule defines goto_stmt as
GO TOlabel, which describes the form of the GO TOstatement. The description
of the GO TOstatement is not complete until the definition of label is specified;
label is also a nonterminal symbol. A further search for label in the BNF will
result in a specification of label and thereby provide the complete statement
definition. A terminal part of a syntax rule does not need further definition. For
example, GO TOis a terminal and is a required part of the statement form.

In many cases, you can derive information about the metalanguage class from
part of the descriptive term. The part can be a complete word, such as _list, or
a common abbreviation. Some abbreviations used consistently in metalanguage
classes are listed in Table 1, page 2.

007–3694–003 1

Fortran Language Reference Manual, Volume 3

Table 1. Syntax metalanguage abbreviations

Abbreviation Term

arg Argument

attr Attribute

char Character

decl Declaration

def Definition

desc Descriptor

expr Expression

int Integer

op Operator

spec Specifier or specification

stmt Statement

For example, all class definitions that end with _stmt might be used to generate
a complete list of the statements in Fortran 90.

1.1.2 Definition Syntax Symbol: Is

As the following example shows, the symbol is separates the syntax class name
from its definition:

goto_stmt is GO TOlabel

power_op is **

1.1.3 Alternative Syntax Symbol: Or

The symbol or indicates an alternative definition for the syntactic class being
defined. The following example shows that add_op, the add operator, can be
either plus or minus.

2 007–3694–003

Fortran 90 Syntax [1]

add_op is +

or -

1.1.4 Optional Symbol: []

Some syntactic definitions contain optional items, which are enclosed in
brackets. The term sign is optional in the following example:

signed_int_literal_constant is [sign] int_literal_constant

The fact that sign is optional indicates, for example, that both 75 and +75 are
signed_int_literal_constants.

1.1.5 Symbol for Repeated Items: [] . . .

Enclosing an item in brackets followed by an ellipsis indicates that the item can
occur 0 or more times. In the following example, the term digit is repeated as
many times as required to define the int_literal_constant:

int_literal_constant is digit [digit] ...

For example, there are five digits in the integer literal constant 94024 .

1.1.6 Syntax Rule Continuation

If a rule does not fit on one line, the convention is to indent the second line of
the syntax. This is shown in the following example:

allocatable_stmt is ALLOCATABLE[::]
array_name [(deferred_shape_spec_list)]
[, array_name [(deferred_shape_spec_list)]]...

007–3694–003 3

Fortran Language Reference Manual, Volume 3

1.1.7 Assumed Syntax Rules

In order to minimize the number of syntax rules and still convey an appropriate
meaning, some portions of the BNF metaterms have assumed meanings. In the
following example, xyz represents any BNF phrase:

xyz_list means xyz [, xyz] ...

xyz_name is a name

scalar_xyz is an xyz that is a scalar

1.1.8 Example BNF Syntax

Consider the following example:

read_stmt is READ (io_control_spec_list) [input_item_list]

or READ format [, input_item_list]

format is default_char_expr

or label

or *

or scalar_default_int_variable

In this example, there are two alternatives to the READstatement. The first uses
an input/output (I/O) control specification list; the second is a formatted READ
statement where the unit is processor dependent. Both alternatives have an
optional input item list, indicated by []. The syntax class format (a
nonterminal) is further defined as either a default character expression
containing the format specifications, or a statement label referring to a separate
FORMATstatement that contains the format specifications, or an asterisk (*)
indicating that the READstatement is list-directed, or a scalar default integer
variable whose value specifies the label of a FORMATstatement. In the standard,
the last alternative is printed in a smaller font because it is an obsolescent
feature that may be removed in a later revision of the standard, including the
next revision; this convention is not used in this manual.

4 007–3694–003

Fortran 90 Syntax [1]

There are other nonterminal symbols in the description of the READstatement
and further BNF rules need to be examined to determine the complete
description of the READstatement.

1.1.9 Constraints

The BNF forms do not provide a complete description of the syntax; additional
constraints are described with text. The BNF rules and the constraints both
describe the syntax of Fortran. Constraints are restrictions to the syntax rules
that limit the form of the statement described. If present, constraints appear
following a syntax rule.

1.1.10 Identifying Numbers

In the text of the standard, each BNF rule is given an identifying number, R201
for example. The numbering of the rules in the following subsections matches
the numbering of the rules in the standard.

BNF rules are also used to describe extensions. In the following BNF
description, for example, "EXT" in the leftmost column indicates that the CF90
and MIPSpro 7 Fortran 90 compilers also allow unit_name to be used as an
io_unit:

R901 io_unit is external_file_unit

or *

or internal_file_unit

EXT or unit_name

1.2 Syntax Rules and Constraints

Each of the following sections contains the syntax rules and constraints from a
section of the Fortran 90 standard. The following sections use an underscore,
rather than a hyphen, as a separator; this differs from the Fortran 90 standard.
The rules in the following sections have been amended to include BNF for the
CF90 and MIPSpro 7 Fortran 90 compiler extensions to the Fortran 90 standard,
but the constraints have not been modified to reflect the extensions.

007–3694–003 5

Fortran Language Reference Manual, Volume 3

1.2.1 Introduction

There are no syntax rules described in section 1, "Introduction," of the
Fortran 90 standard.

1.2.2 Fortran Terms and Concepts

The following syntax rules are described in section 2, "Fortran terms and
concepts," of the Fortran 90 standard.

R201 executable_program is program_unit [program_unit] ...

R202 program_unit is main_program

or external_subprogram

or module

or block_data

R1101 main_program is [program_stmt]
[specification_part]
[execution_part]
[internal_subprogram_part]
end_program_stmt

Constraint: An execution_part must not contain an end_function_stmt,
end_program_stmt, or end_subroutine_stmt.

R203 external_subprogram is function_subprogram

or subroutine_subprogram

R1215 function_subprogram is function_stmt
[specification_part]
[execution_part]
[internal_subprogram_part]
end_function_stmt

6 007–3694–003

Fortran 90 Syntax [1]

R1219 subroutine_subprogram is subroutine_stmt
[specification_part]
[execution_part]
[internal_subprogram_part]
end_subroutine_stmt

R1104 module is module_stmt
[specification_part]
[module_subprogram_part]
end_module_stmt

R1110 block_data is block_data_stmt
[specification_part]
end_block_data_stmt

R204 specification_part is [use_stmt] ...

[implicit_part]
[declaration_construct] ...

R205 implicit_part is [implicit_part_stmt] ...

implicit_stmt

R206 implicit_part_stmt is implicit_stmt

or parameter_stmt

or format_stmt

or entry_stmt

R207 declaration_construct is derived_type_def

or interface_block

or type_declaration_stmt

or specification_stmt

or parameter_stmt

or format_stmt

or entry_stmt

or stmt_function_stmt

R208 execution_part is executable_construct
[execution_part_construct] ...

R209 execution_part_construct is executable_construct

or format_stmt

007–3694–003 7

Fortran Language Reference Manual, Volume 3

or data_stmt

or entry_stmt

R210 internal_subprogram_part is contains_stmt
internal_subprogram
[internal_subprogram]...

R211 internal_subprogram is function_subprogram

or subroutine_subprogram

R212 module_subprogram_part is contains_stmt
module_subprogram
[module_subprogram] ...

R213 module_subprogram is function_subprogram

or subroutine_subprogram

R214 specification_stmt is access_stmt

or allocatable_stmt

or automatic_stmt

or common_stmt

or data_stmt

or dimension_stmt

or equivalence_stmt

or external_stmt

or intent_stmt

or intrinsic_stmt

or namelist_stmt

or optional_stmt

or pointer_stmt

or save_stmt

or target_stmt

R215 executable_construct is action_stmt

or case_construct

or do_construct

8 007–3694–003

Fortran 90 Syntax [1]

or if_construct

or where_construct

R216 action_stmt is allocate_stmt

or arithmetic_if_stmt

or assign_stmt

or assigned_goto_stmt

or assignment_stmt

or backspace_stmt

EXT or buffer_in_stmt

EXT or buffer_out_stmt

or call_stmt

or close_stmt

or computed_goto_stmt

or continue_stmt

or cycle_stmt

or deallocate_stmt

or endfile_stmt

or end_function_stmt

or end_program_stmt

or end_subroutine_stmt

or exit_stmt

or goto_stmt

or if_stmt

or inquire_stmt

or nullify_stmt

or open_stmt

or pause_stmt

or pointer_assignment_stmt

or print_stmt

007–3694–003 9

Fortran Language Reference Manual, Volume 3

or read_stmt

or return_stmt

or rewind_stmt

or stop_stmt

or where_stmt

or write_stmt

1.2.3 Characters, Lexical Tokens, and Source Form

The following syntax rules are described in section 3, "Characters, lexical
tokens, and source form," of the Fortran 90 standard.

R301 character is alphanumeric_character

or special_character

R302 alphanumeric_character is letter

or digit

or underscore

EXT or currency_symbol

EXT or at_sign

Note: The MIPSpro 7 Fortran 90 compiler does not support the at_sign (@).

R303 underscore is _

EXT currency_symbol is $

EXT at_sign is @

R304 name is letter [alphanumeric_character] ...

Constraint: The maximum length of a name is 31 characters.

10 007–3694–003

Fortran 90 Syntax [1]

R305 constant is literal_constant

or named_constant

R306 literal_constant is int_literal_constant

or real_literal_constant

or complex_literal_constant

or logical_literal_constant

or char_literal_constant

or boz_literal_constant

R307 named_constant is name

R308 int_constant is constant

Constraint: int_constant must be of type integer.

R309 char_constant is constant

Constraint: char_constant must be of type character.

R310 intrinsic_operator is power_op

or mult_op

or add_op

or concat_op

or rel_op

or not_op

or and_op

or or_op

or equiv_op

R708 power_op is **

R709 mult_op is *

or /

007–3694–003 11

Fortran Language Reference Manual, Volume 3

R710 add_op is +

or -

R712 concat_op is //

R714 rel_op is .EQ.

or .NE.

or .LT.

or .LE.

or .GT.

or .GE.

EXT or .LG.

or ==

or /=

or <

or <=

or >

or >=

EXT or <>

R719 not_op is .NOT.

EXT or .N.

R720 and_op is .AND.

EXT or .A.

R721 or_op is .OR.

EXT or .O.

R722 equiv_op is .EQV.

or .NEQV.

EXT exclusive_disjunct_op is .XOR.

EXT or .X.

R311 defined_operator is defined_unary_op

or defined_binary_op

12 007–3694–003

Fortran 90 Syntax [1]

or extended_intrinsic

R704 defined_unary_op is . letter [letter]

R724 defined_binary_op is . letter [letter]

R312 extended_intrinsic_op is intrinsic_operator

Constraint: A defined_unary_op and a defined_binary_op must not contain more
than 31 letters and must not be the same as any intrinsic_operator or
logical_literal_constant.

R313 label is digit [digit [digit [digit [digit]]]]

Constraint: At least one digit in a label must be nonzero.

1.2.4 Intrinsic and Derived Data Types

The following syntax rules are described in section 4, "Intrinsic and derived
data types," of the Fortran 90 standard.

R401 signed_digit_string is [sign] digit_string

R402 digit_string is digit [digit] ...

R403 signed_int_literal_constant is [sign] int_literal_constant

R404 int_literal_constant is digit_string [_ kind_param]

R405 kind_param is digit_string

or scalar_int_constant_name

Constraint: The value of kind_param must be nonnegative.

Constraint: The value of kind_param must specify a representation method that
the compiler allows.

007–3694–003 13

Fortran Language Reference Manual, Volume 3

R406 sign is +

or -

R407 boz_literal_constant is binary_constant

or octal_constant

or hex_constant

Constraint: A boz_literal_constant may appear only in a DATAstatement.

R408 binary_constant is B ’ digit [digit] ... ’

or B " digit [digit] ... "

Constraint: digit must have one of the values 0 or 1.

R409 octal_constant is O ’ digit [digit] ... ’

or O " digit [digit] ... "

Constraint: digit must have one of the values 0 through 7.

R410 hex_constant is Z ’ hex_digit [hex_digit]... ’

or Z " hex_digit [hex_digit] ... "

R411 hex_digit is digit

or A

or B

or C

or D

or E

or F

R412 signed_real_literal_constant is [sign] real_literal_constant

14 007–3694–003

Fortran 90 Syntax [1]

R413 real_literal_constant is significand [exponent_letter exponent] [_ kind_param]

or digit_string exponent_letter exponent [_ kind_param]

R414 significand is digit_string . [digit_string]

or . digit_string

R415 exponent_letter is E

or D

or Q

R416 exponent is signed_digit_string

Constraint: If both kind_param and exponent_letter are present, exponent_letter
must be E.

Constraint: The value of kind_param must specify an approximation method
that the compiler allows.

R417 complex_literal_constant is (real_part , imag_part)

R418 real_part is signed_int_literal_constant

or signed_real_literal_constant

R419 imag_part is signed_int_literal_constant

or signed_real_literal_constant

R420 char_literal_constant is [kind_param _] ’ [ASCII_char] ... ’

or [kind_param _] " [ASCII_char] ... "

Constraint: The value of kind_param must specify a representation method that
the compiler allows.

R421 logical_literal_constant is .TRUE. [_ kind_param]

or .FALSE. [_ kind_param]

Constraint: The value of kind_param must specify a representation method that
the compiler allows.

007–3694–003 15

Fortran Language Reference Manual, Volume 3

R422 derived_type_def is derived_type_stmt
[private_sequence_stmt] ...
component_def_stmt
[component_def_stmt] ...

end_type_stmt

R423 private_sequence_stmt is PRIVATE

or SEQUENCE

R424 derived_type_stmt is TYPE [[, access_spec] ::] type_name

Constraint: The same private_sequence_stmt must not appear more than once in
a given derived_type_def.

Constraint: If SEQUENCEis present, all derived types specified in component
definitions must be sequence types.

Constraint: An access_spec or a PRIVATE statement within the definition is
permitted only if the type definition is within the specification part of a module.

Constraint: If a component of a derived type is of a type declared to be private,
either the derived type definition must contain the PRIVATE statement or the
derived type must be private.

Constraint: A derived type type_name must not be the same as the name of any
intrinsic type nor the same as any other accessible derived type type_name.

R425 end_type_stmt is END TYPE[type_name]

Constraint: If END TYPEis followed by a type_name, the type_name must be the
same as that in the corresponding derived_type_stmt.

R426 component_def_stmt is type_spec [[, component_attr_spec_list] ::] component_decl_list

R427 component_attr_spec is POINTER

or DIMENSION (component_array_spec)

Constraint: No component_attr_spec may appear more than once in a given
component_def_stmt.

16 007–3694–003

Fortran 90 Syntax [1]

Constraint: If the POINTERattribute is not specified for a component, a
type_spec in the component_def_stmt must specify an intrinsic type or a
previously defined derived type.

Constraint: If the POINTERattribute is specified for a component, a type_spec in
the component_def_stmt must specify an intrinsic type or any accessible derived
type including the type being defined.

R428 component_array_spec is explicit_shape_spec_list

or deferred_shape_spec_list

R429 component_decl is component_name [(component_array_spec)] [* char_length]

Constraint: If the POINTERattribute is not specified, each component_array_spec
must be an explicit_shape_spec_list.

Constraint: If the POINTERattribute is specified, each component_array_spec
must be a deferred_shape_spec_list.

Constraint: The * char_length option is permitted only if the type specified is
character.

Constraint: A char_length in a component_decl or the char_selector in a type_spec
must be a constant specification expression.

Constraint: Each bound in the explicit_shape_spec (R428) must be a constant
specification expression.

R430 structure_constructor is type_name (expr_list)

R431 array_constructor is (/ ac_value_list /)

R432 ac_value is expr

or ac_implied_do

R433 ac_implied_do is (ac_value_list , ac_implied_do_control)

R434 ac_implied_do_control is ac_do_variable = scalar_int_expr, scalar_int_expr [, scalar_int_expr]

R435 ac_do_variable is scalar_int_variable

Constraint: ac_do_variable must be a named variable.

007–3694–003 17

Fortran Language Reference Manual, Volume 3

Constraint: Each ac_value expression in the array_constructor must have the
same type and type parameters.

1.2.5 Data Object Declarations and Specifications

The following syntax rules are described in section 5, "Data object declarations
and specifications," of the Fortran 90 standard.

R501 type_declaration_stmt is type_spec [[, attr_spec] ... ::] entity_decl_list

R502 type_spec is INTEGER [kind_selector]

EXT or INTEGER* length_value

or REAL [kind_selector]

EXT or REAL* length_value

or DOUBLE PRECISION

EXT or DOUBLE PRECISION* length_value

or COMPLEX[kind_selector]

EXT or COMPLEX* length_value

or CHARACTER[char_selector]

or LOGICAL [kind_selector]

EXT or LOGICAL* length_value

or TYPE (type_name)

EXT or POINTER (pointer_name, pointee_name [(array_spec)])

[, (pointer_name, pointee_name [(array_spec)])] ...

R503 attr_spec is PARAMETER

or access_spec

or ALLOCATABLE

EXT or AUTOMATIC

or DIMENSION (array_spec)

or EXTERNAL

or INTENT (intent_spec)

18 007–3694–003

Fortran 90 Syntax [1]

or INTRINSIC

or OPTIONAL

or POINTER

or SAVE

or TARGET

R504 entity_decl is object_name [(array_spec)] [* char_length] [= initialization_expr]

or function_name [* char_length]

R505 kind_selector is ([KIND =] scalar_int_initialization_expr)

Constraint: The same attr_spec must not appear more than once in a given
type_declaration_stmt.

Constraint: The function_name must be the name of an external function, an
intrinsic function, a function dummy procedure, or a statement function.

Constraint: The = initialization_expr must appear if the statement contains a
PARAMETERattribute.

Constraint: If = initialization_expr appears, a double colon separator must
appear before the entity_decl_list.

Constraint: The = initialization_expr must not appear if object_name is a dummy
argument, a function result, an object in a named common block unless the type
declaration is in a block data program unit, an object in blank common, an
allocatable array, a pointer, an external name, an intrinsic name, or an automatic
object.

Constraint: The * char_length option is permitted only if the type specified is
character.

Constraint: The ALLOCATABLEattribute may be used only when declaring an
array that is not a dummy argument or a function result.

Constraint: An array declared with a POINTERor an ALLOCATABLEattribute
must be specified with an array_spec that is a deferred_shape_spec_list.

Constraint: An array_spec for a function_name that does not have the POINTER
attribute must be an explicit_shape_spec_list.

Constraint: An array_spec for a function_name that does have the POINTER
attribute must be a deferred_shape_spec_list.

007–3694–003 19

Fortran Language Reference Manual, Volume 3

Constraint: If the POINTERattribute is specified, the TARGET, INTENT,
EXTERNAL, or INTRINSIC attribute must not be specified.

Constraint: If the TARGETattribute is specified, the POINTER, EXTERNAL,
INTRINSIC , or PARAMETERattribute must not be specified.

Constraint: The PARAMETERattribute must not be specified for dummy
arguments, pointers, allocatable arrays, functions, or objects in a common block.

Constraint: The INTENT and OPTIONALattributes may be specified only for
dummy arguments.

Constraint: An entity must not have the PUBLIC attribute if its type has the
PRIVATE attribute.

Constraint: The SAVEattribute must not be specified for an object that is in a
common block, a dummy argument, a procedure, a function result, or an
automatic data object.

Constraint: An entity must not have the EXTERNALattribute if it has the
INTRINSIC attribute.

Constraint: An entity in a type_declaration_stmt must not have the EXTERNALor
INTRINSIC attribute specified unless it is a function.

Constraint: An array must not have both the ALLOCATABLEattribute and the
POINTERattribute.

Constraint: An entity must not be given explicitly any attribute more than once
in a scoping unit.

Constraint: The value of scalar_int_initialization_expr must be nonnegative and
must specify a representation method that the compiler allows.

R506 char_selector is length_selector

or (LEN = type_param_value, KIND = kind_value)

or (type_param_value, [KIND =] kind_value)

or (KIND = kind_value [, LEN = type_param_value])

R507 length_selector is ([LEN =] type_param_value)

or * char_length [,]

20 007–3694–003

Fortran 90 Syntax [1]

R508 char_length is (type_param_value)

or scalar_int_literal_constant

Constraint: The optional comma in a length_selector is permitted only in a
type_spec in a type_declaration_stmt.

Constraint: The optional comma in a length_selector is permitted only if no
double colon separator appears in the type_declaration_stmt.

Constraint: The value of scalar_int_initialization_expr must be nonnegative and
must specify a representation method that the compiler allows.

Constraint: The scalar_int_literal_constant must not include a kind_param.

R509 type_param_value is specification_expr

or *

Constraint: A function name must not be declared with an * type_param_value if
the function is an internal or module function, array-valued, pointer-valued, or
recursive.

R510 access_spec is PUBLIC

or PRIVATE

Constraint: An access_spec attribute may appear only in the scoping unit of a
module.

R511 intent_spec is IN

or OUT

or INOUT

Constraint: The INTENT attribute must not be specified for a dummy argument
that is a dummy procedure or a dummy pointer.

007–3694–003 21

Fortran Language Reference Manual, Volume 3

R512 array_spec is explicit_shape_spec_list

or assumed_shape_spec_list

or deferred_shape_spec_list

or assumed_size_spec

Constraint: The maximum rank is seven.

R513 explicit_shape_spec is [lower_bound :] upper_bound

R514 lower_bound is specification_expr

R515 upper_bound is specification_expr

Constraint: An explicit-shape array whose bounds depend on the values of
nonconstant expressions must be a dummy argument, a function result, or an
automatic array of a procedure.

R516 assumed_shape_spec is [lower_bound] :

R517 deferred_shape_spec is :

R518 assumed_size_spec is [explicit_shape_spec_list,] [lower_bound :] *

Constraint: The function name of an array-valued function must not be
declared as an assumed-size array.

R519 intent_stmt is INTENT (intent_spec) [::] dummy_arg_name_list

Constraint: An intent_stmt may appear only in the specification_part of a
subprogram or an interface body.

Constraint: dummy_arg_name must not be the name of a dummy procedure or a
dummy pointer.

R520 optional_stmt is OPTIONAL [::] dummy_arg_name_list

22 007–3694–003

Fortran 90 Syntax [1]

Constraint: An optional_stmt may occur only in the scoping unit of a
subprogram or an interface body.

R521 access_stmt is access_spec [[::] access_id_list]

R522 access_id is use_name

or generic_spec

Constraint: An access_stmt may appear only in the scoping unit of a module.
Only one accessibility statement with an omitted access_id_list is permitted in
the scoping unit of a module.

Constraint: Each use_name must be the name of a named variable, procedure,
derived type, named constant, or namelist group.

Constraint: A module procedure that has a dummy argument or function result
of a type that has PRIVATE accessibility must have PRIVATE accessibility and
must not have a generic identifier that has PUBLIC accessibility.

R523 save_stmt is SAVE [[::] saved_entity_list]

R524 saved_entity is object_name

or / common_block_name /

Constraint: An object_name must not be a dummy argument name, a procedure
name, a function result name, an automatic data object name, or the name of an
entity in a common block.

Constraint: If a SAVEstatement with an omitted saved entity list occurs in a
scoping unit, no other explicit occurrence of the SAVEattribute or SAVE
statement is permitted in the same scoping unit.

R525 dimension_stmt is DIMENSION [::] array_name(array_spec)
[, array_name(array_spec)] ...

R526 allocatable_stmt is ALLOCATABLE[::] array_name [(deferred_shape_spec_list)]
[, array_name [(deferred_shape_spec_list)]] ...

007–3694–003 23

Fortran Language Reference Manual, Volume 3

Constraint: The array_name must not be a dummy argument or function result.

Constraint: If the DIMENSIONattribute for an array_name is specified elsewhere
in the scoping unit, the array_spec must be a deferred_shape_spec_list.

R527 pointer_stmt is POINTER [::] object_name [(deferred_shape_spec_list)]
[, object_name [(deferred_shape_spec_list)]] ...

Constraint: The INTENT attribute must not be specified for an object_name.

Constraint: If the DIMENSIONattribute for an object_name is specified elsewhere
in the scoping unit, the array_spec must be a deferred_shape_spec_list.

Constraint: The PARAMETERattribute must not be specified for an object_name.

R528 target_stmt is TARGET [::] object_name [(array_spec)]
[, object_name [(array_spec)]] ...

Constraint: The PARAMETERattribute must not be specified for an object_name.

R529 data_stmt is DATA data_stmt_set [[,] data_stmt_set] ...

R530 data_stmt_set is data_stmt_object_list / data_stmt_value_list /

[[,] data_stmt_object_list / data_stmt_value_list /] ...

R531 data_stmt_object is variable

or data_implied_do

R532 data_stmt_value is [data_stmt_repeat *] data_stmt_constant

R533 data_stmt_constant is scalar_constant

or signed_int_literal_constant

or signed_real_literal_constant

or structure_constructor

or boz_literal_constant

EXT or typeless_constant

24 007–3694–003

Fortran 90 Syntax [1]

R534 data_stmt_repeat is scalar_int_constant

R535 data_implied_do is (data_i_do_object_list,
data_i_do_variable = scalar_int_expr,
scalar_int_expr [, scalar_int_expr])

R536 data_i_do_object is array_element

or scalar_structure_component

or data_implied_do

Constraint: The array_element must not have a constant parent.

Constraint: The scalar_structure_component must not have a constant parent.

R537 data_i_do_variable is scalar_int_variable

Constraint: data_i_do_variable must be a named variable.

Constraint: The DATAstatement repeat factor must be positive or zero. If the
DATAstatement repeat factor is a named constant, it must have been declared
previously in the scoping unit or made accessible by use association or host
association.

Constraint: If a data_stmt_constant is a structure_constructor, each component
must be an initialization expression.

Constraint: In a variable that is a data_stmt_object, any subscript, section
subscript, substring starting point, and substring ending point must be an
initialization expression.

Constraint: A variable whose name or designator is included in a
data_stmt_object_list or a data_i_do_object_list must not be: a dummy argument;
made accessible by use association or host association; in a named common
block unless the DATAstatement is in a block data program unit; in a blank
common block, a function name, a function result name, an automatic object, a
pointer, or an allocatable array.

Constraint: In an array_element or a scalar_structure_component that is a
data_i_do_object, any subscript must be an expression whose primaries are either
constants or DOvariables of the containing data_implied_do elements, and each
operation must be intrinsic.

007–3694–003 25

Fortran Language Reference Manual, Volume 3

Constraint: A scalar_int_expr of a data_implied_do must involve as primaries only
constants or DOvariables of the containing data_implied_dos, and each operation
must be intrinsic.

EXT typeless_constant is octal_typeless_constant

or hexadecimal_typeless_constant

or binary_typeless_constant

EXT octal_typeless_constant is digit [digit] ... B

or O" digit [digit] ... "

or O’ digit [digit] ... ’

or " digit [digit] ... "O

or ’ digit [digit] ... ’O

EXT hexadecimal_typeless_constant is X’ hex_digit [hex_digit] ... ’

or X" hex_digit [hex_digit] ... "

or ’ hex_digit [hex_digit] ... ’X

or " hex_digit [hex_digit] ... "X

or Z’ hex_digit [hex_digit] ... ’

or Z" hex_digit [hex_digit] ... "

EXT binary_typeless_constant is B’ bin_digit [bin_digit] ... ’

or B" bin_digit [bin_digit] ... "

The following notes pertain to the definitions for typeless_constant,
octal_typeless_constant, hexadecimal_typeless_constant, and binary_typeless_constant:

• digit must have one of the values 0 through 7 in octal_typeless_constant

• digit must have a value of 0 or 1 in binary_typeless_constant

• The B, O, X, and Z characters can be in uppercase or lowercase.

26 007–3694–003

Fortran 90 Syntax [1]

R538 parameter_stmt is PARAMETER (named_constant_def_list)

R539 named_constant_def is named_constant = initialization_expr

R540 implicit_stmt is IMPLICIT implicit_spec_list

or IMPLICIT NONE

R541 implicit_spec is type_spec (letter_spec_list)

R542 letter_spec is letter [- letter]

Constraint: If IMPLICIT NONE is specified in a scoping unit, it must precede
any PARAMETERstatements that appear in the scoping unit and there must be
no other IMPLICIT statements in the scoping unit.

Constraint: If the minus and second letter appear, the second letter must follow
the first letter alphabetically.

R543 namelist_stmt is NAMELIST / namelist_group_name / namelist_group_object_list [[,]
/ namelist_group_name / namelist_group_object_list] ...

R544 namelist_group_object is variable_name

Constraint: A namelist_group_object must not be an array dummy argument with
a nonconstant bound, a variable with nonconstant character length, an
automatic object, a pointer, a variable of a type that has an ultimate component
that is a pointer, or an allocatable array.

Constraint: If a namelist_group_name has the PUBLIC attribute, no item in the
namelist_group_object_list may have the PRIVATE attribute.

R545 equivalence_stmt is EQUIVALENCEequivalence_set_list

R546 equivalence_set is (equivalence_object, equivalence_object_list)

R547 equivalence_object is variable_name

or array_element

or substring

Constraint: An equivalence_object must not be a dummy argument, a pointer, an
allocatable array, an object of a nonsequence derived type or of a sequence

007–3694–003 27

Fortran Language Reference Manual, Volume 3

derived type containing a pointer at any level of component selection, an
automatic object, a function name, an entry name, a result name, a named
constant, a structure component, or a subobject of any of the preceding objects.

Constraint: Each subscript or substring range expression in an equivalence_object
must be an integer initialization expression.

Constraint: If an equivalence_object is of type default integer, default real,
double-precision real, default complex, default logical, or numeric sequence
type, all of the objects in the equivalence set must be of these types.

Constraint: If an equivalence_object is of type default character or character
sequence type, all of the objects in the equivalence set must be of these types.

Constraint: If an equivalence_object is of a derived type that is not a numeric
sequence or character sequence type, all of the objects in the equivalence set
must be of the same type.

Constraint: If an equivalence_object is of an intrinsic type other than default
integer, default real, double-precision real, default complex, default logical, or
default character, all of the objects in the equivalence set must be of the same
type with the same kind type parameter value.

R548 common_stmt is COMMON[/ [common_block_name] /] common_block_object_list
[[,] / [common_block_name] / common_block_object_list] ...

R549 common_block_object is variable_name [(explicit_shape_spec_list)]

Constraint: Only one appearance of a given variable_name is permitted in all
common_block_object_lists within a scoping unit. A common_block_object must not
be a dummy argument, an allocatable array, an automatic object, a function
name, an entry name, or a result name.

Constraint: Each bound in the explicit_shape_spec must be a constant
specification expression.

Constraint: If a common_block_object is of a derived type, it must be a sequence
type.

Constraint: If a variable_name appears with an explicit_shape_spec_list, it must not
have the POINTERattribute.

28 007–3694–003

Fortran 90 Syntax [1]

1.2.6 Use of Data Objects

The following syntax rules are described in section 6, "Use of data objects," of
the Fortran 90 standard.

R601 variable is scalar_variable_name

or array_variable_name

or subobject

Constraint: array_variable_name must be the name of a data object that is an
array.

Constraint: array_variable_name must not have the PARAMETERattribute.

Constraint: scalar_variable_name must not have the PARAMETERattribute.

Constraint: subobject must not be a subobject designator (for example, a
substring) whose parent is a constant.

R602 subobject is array_element

or array_section

or structure_component

or substring

R603 logical_variable is variable

Constraint: logical_variable must be of type logical.

R604 default_logical_variable is variable

Constraint: default_logical_variable must be of type default logical.

R605 char_variable is variable

007–3694–003 29

Fortran Language Reference Manual, Volume 3

Constraint: char_variable must be of type character.

R606 default_char_variable is variable

Constraint: default_char_variable must be of type default character.

R607 int_variable is variable

Constraint: int_variable must be of type integer.

R608 default_int_variable is variable

Constraint: default_int_variable must be of type default integer.

R609 substring is parent_string (substring_range)

R610 parent_string is scalar_variable_name

or array_element

or scalar_structure_component

or scalar_constant

R611 substring_range is [scalar_int_expr] : [scalar_int_expr]

Constraint: parent_string must be of type character.

R612 data_ref is part_ref [% part_ref] ...

R613 part_ref is part_name [(section_subscript_list)]

Constraint: In a data_ref, each part_name except the rightmost must be of
derived type.

30 007–3694–003

Fortran 90 Syntax [1]

Constraint: In a data_ref, each part_name except the leftmost must be the name
of a component of the derived type definition of the type of the preceding
part_name.

Constraint: In a part_ref containing a section_subscript_list, the number of
section_subscripts must equal the rank of part_name.

Constraint: In a data_ref, there must not be more than one part_ref with nonzero
rank.

Constraint: A part_name to the right of a part_ref with nonzero rank must not
have the POINTERattribute.

R614 structure_component is data_ref

Constraint: In a structure_component, there must be more than one part_ref and
the rightmost part_ref must be of the form part_name.

R615 array_element is data_ref

Constraint: In an array_element, every part_ref must have rank zero and the last
part_ref must contain a subscript_list.

R616 array_section is data_ref [(substring_range)]

Constraint: In an array_section, exactly one part_ref must have nonzero rank, and
either the final part_ref has a section_subscript_list with nonzero rank or another
part_ref has nonzero rank.

Constraint: In an array_section with a substring_range, the rightmost part_name
must be of type character.

007–3694–003 31

Fortran Language Reference Manual, Volume 3

R617 subscript is scalar_int_exp

R618 section_subscript is subscript

or subscript_triplet

or vector_subscript

R619 subscript_triplet is [subscript] : [subscript] [: stride]

R620 stride is scalar_int_expr

R621 vector_subscript is int_expr

Constraint: A vector_subscript must be an integer array expression of rank one.

Constraint: The second subscript must not be omitted from a subscript_triplet in
the last dimension of an assumed-size array.

R622 allocate_stmt is ALLOCATE (allocation_list [, STAT = stat_variable])

R623 stat_variable is scalar_int_variable

R624 allocation is allocate_object [(allocate_shape_spec_list)]

R625 allocate_object is variable_name

or structure_component

R626 allocate_shape_spec is [allocate_lower_bound :] allocate_upper_bound

R627 allocate_lower_bound is scalar_int_expr

R628 allocate_upper_bound is scalar_int_expr

Constraint: Each allocate_object must be a pointer or an allocatable array.

Constraint: The number of allocate_shape_specs in an allocate_shape_spec_list must
be the same as the rank of the pointer or allocatable array.

R629 nullify_stmt is NULLIFY (pointer_object_list)

R630 pointer_object is variable_name

or structure_component

Constraint: Each pointer_object must have the POINTERattribute.

32 007–3694–003

Fortran 90 Syntax [1]

R631 deallocate_stmt is DEALLOCATE (allocate_object_list [, STAT = stat_variable])

Constraint: Each allocate_object must be a pointer or an allocatable array.

1.2.7 Expressions and Assignment

The following syntax rules are described in section 7, "Expressions and
assignment," of the Fortran 90 standard.

Note: The language of the Fortran 90 standard is presented in this subsection
in its original form. Chapter 7 of the Fortran Language Reference Manual,
Volume I, however, sometimes uses terms that are different from those found
in the standard. The terminology was changed to improve clarity. The
following list shows the terms used in this compiler manual set and the
equivalent term used in the Fortran 90 standard.

Standard Cray Research term

level_1_expr defined_unary_expr

defined_unary_op defined_operator

mult_operand exponentiation_expr

power_op **

add_operand multiplication_expr

mult_op * or /

level_2_expr summation_expr

add_op + or -

level_3_expr concatenation_expr

concat_op //

level_4_expr comparison_expr

rel_op rel_op

and_operand not_expr

not_op .NOT.

007–3694–003 33

Fortran Language Reference Manual, Volume 3

or_operand conjunct_expr

and_op .AND.

or_op .OR.

equiv_operand inclusive_disjunct_expr

level_5_expr equivalence_expr

mask_expr logical_expr

R701 primary is constant

or constant_subobject

or variable

or array_constructor

or structure_constructor

or function_reference

or (expr)

R702 constant_subobject is subobject

Constraint: subobject must be a subobject designator whose parent is a constant.

Constraint: A variable that is a primary must not be an assumed-size array.

R703 level_1_expr is [defined_unary_op] primary

R704 defined_unary_op is . letter [letter]

Constraint: A defined_unary_op must not contain more than 31 letters and must
not be the same as any intrinsic_operator or logical_literal_constant.

R705 mult_operand is level_1_expr [power_op mult_operand]

R706 add_operand is [add_operand mult_op] mult_operand

R707 level_2_expr is [[level_2_expr] add_op] add_operand

34 007–3694–003

Fortran 90 Syntax [1]

R708 power_op is **

R709 mult_op is *

or /

R710 add_op is +

or -

R711 level_3_expr is [level_3_expr concat_op] level_2_expr

R712 concat_op is //

R713 level_4_expr is [level_3_expr rel_op] level_3_expr

R714 rel_op is .EQ.

or .NE.

or .LT.

or .LE.

or .GT.

or .GE.

EXT or .LG.

or ==

or /=

or <

or <=

or >

or >=

EXT or <>

R715 and_operand is [not_op] level_4_expr

R716 or_operand is [or_operand and_op] and_operand

R717 equiv_operand is [equiv_operand or_op] or_operand

R718 level_5_expr is [level_5_expr equiv_op] equiv_operand

R719 not_op is .NOT.

R720 and_op is .AND.

R721 or_op is .OR.

007–3694–003 35

Fortran Language Reference Manual, Volume 3

R722 equiv_op is .EQV.

or .NEQV.

R723 expr is [expr defined_binary_op] level_5_expr

R724 defined_binary_op is . letter [letter]

Constraint: A defined_binary_op must not contain more than 31 letters and must
not be the same as any intrinsic_operator or logical_literal_constant.

R725 logical_expr is expr

Constraint: logical_expr must be type logical.

R726 char_expr is expr

Constraint: char_expr must be type character.

R727 default_char_expr is expr

Constraint: default_char_expr must be of type default character.

R728 int_expr is expr

Constraint: int_expr must be type integer.

R729 numeric_expr is expr

Constraint: numeric_expr must be of type integer, real, or complex.

36 007–3694–003

Fortran 90 Syntax [1]

R730 initialization_expr is expr

Constraint: An initialization_expr must be an initialization expression.

R731 char_initialization_expr is char_expr

Constraint: A char_initialization_expr must be an initialization expression.

R732 int_initialization_expr is int_expr

Constraint: An int_initialization_expr must be an initialization expression.

R733 logical_initialization_expr is logical_expr

Constraint: A logical_initialization_expr must be an initialization expression.

R734 specification_expr is scalar_int_expr

Constraint: The scalar_int_expr must be a restricted expression.

R735 assignment_stmt is variable = expr

Constraint: A variable in an assignment_stmt must not be an assumed-size array.

R736 pointer_assignment_stmt is pointer_object => target

R737 target is variable

or expr

Constraint: The pointer_object must have the POINTERattribute.

007–3694–003 37

Fortran Language Reference Manual, Volume 3

Constraint: The variable must have the TARGETattribute or be a subobject of an
object with the TARGETattribute, or it must have the POINTERattribute.

Constraint: The target must be of the same type, type parameters, and rank as
the pointer.

Constraint: The target must not be an array section with a vector subscript.

Constraint: The expr must deliver a pointer result.

R738 where_stmt is WHERE (mask_expr) assignment_stmt

R739 where_construct is where_construct_stmt
[assignment_stmt] ...

[elsewhere_stmt
[assignment_stmt] ...]
end_where_stmt

R740 where_construct_stmt is WHERE (mask_expr)

R741 mask_expr is logical_expr

R742 elsewhere_stmt is ELSEWHERE

R743 end_where_stmt is END WHERE

Constraint: In each assignment_stmt, the mask_expr and the variable being
defined must be arrays of the same shape.

Constraint: The assignment_stmt must not be a defined assignment.

1.2.8 Execution Control

The following syntax rules are described in section 8, "Execution control," of the
Fortran 90 standard.

38 007–3694–003

Fortran 90 Syntax [1]

R801 block is [execution_part_construct] ...

R802 if_construct is if_then_stmt
block

[else_if_stmt
block] ...

[else_stmt
block]

end_if_stmt

R803 if_then_stmt is [if_construct_name :] IF (scalar_logical_expr) THEN

R804 else_if_stmt is ELSE IF (scalar_logical_expr)

THEN [if_construct_name]

R805 else_stmt is ELSE [if_construct_name]

R806 end_if_stmt is END IF [if_construct_name]

Constraint: If the if_then_stmt of an if_construct is identified by an
if_construct_name, the corresponding end_if_stmt must specify the same
if_construct_name. If the if_then_stmt of an if_construct is not identified by an
if_construct_name, the corresponding end_if_stmt must not specify an
if_construct_name. If an else_if_stmt or else_stmt is identified by an
if_construct_name, the corresponding if_then_stmt must specify the same
if_construct_name.

R807 if_stmt is IF (scalar_logical_expr) action_stmt

Constraint: The action_stmt in the if_stmt must not be an if_stmt,
end_program_stmt, end_function_stmt, or end_subroutine_stmt.

R808 case_construct is select_case_stmt
[case_stmt

block] ...

end_select_stmt

R809 select_case_stmt is [case_construct_name] : SELECT CASE (case_expr)

R810 case_stmt is CASE case_selector [case_construct_name]

R811 end_select_stmt is END SELECT[case_construct_name]

007–3694–003 39

Fortran Language Reference Manual, Volume 3

Constraint: If the select_case_stmt of a case_construct is identified by a
case_construct_name, the corresponding end_select_stmt must specify the same
case_construct_name. If the select_case_stmt of a case_construct is not identified by
a case_construct_name, the corresponding end_select_stmt must not specify a
case_construct_name. If a case_stmt is identified by a case_construct_name, the
corresponding select_case_stmt must specify the same case_construct_name.

R812 case_expr is scalar_int_expr

or scalar_char_expr

or scalar_logical_expr

R813 case_selector is (case_value_range_list)

or DEFAULT

Constraint: No more than one of the selectors of one of the CASEstatements
may be DEFAULT.

R814 case_value_range is case_value

or case_value :

or : case_value

or case_value : case_value

R815 case_value is scalar_int_initialization_expr

or scalar_char_initialization_expr

or scalar_logical_initialization_expr

Constraint: For a given case_construct, each case_value must be of the same type
as case_expr. For character type, length differences are allowed, but the kind
type parameters must be the same.

Constraint: A case_value_range using a colon must not be used if case_expr is of
type logical.

Constraint: For a given case_construct, the case_value_ranges must not overlap;
that is, there must be no possible value of the case_expr that matches more than
one case_value_range.

40 007–3694–003

Fortran 90 Syntax [1]

R816 do_construct is block_do_construct

or nonblock_do_construct

R817 block_do_construct is do_stmt
do_block
end_do

R818 do_stmt is label_do_stmt

or nonlabel_do_stmt

R819 label_do_stmt is [do_construct_name :] DO label [loop_control]

R820 nonlabel_do_stmt is [do_construct_name :] DO [loop_control]

R821 loop_control is [,] do_variable = scalar_numeric_expr,

or scalar_numeric_expr [, scalar_numeric_expr]

[,] WHILE (scalar_logical_expr)

R822 do_variable is scalar_variable

Constraint: The do_variable must be a named scalar variable of type integer,
default real, or double-precision real.

Constraint: Each scalar_numeric_expr in loop_control must be of type integer,
default real, or double-precision real.

R823 do_block is block

R824 end_do is end_do_stmt

or continue_stmt

R825 end_do_stmt is END DO[do_construct_name]

Constraint: If the do_stmt of a block_do_construct is identified by a
do_construct_name, the corresponding end_do must be an end_do_stmt specifying
the same do_construct_name. If the do_stmt of a block_do_construct is not
identified by a do_construct_name, the corresponding end_do must not specify a
do_construct_name.

007–3694–003 41

Fortran Language Reference Manual, Volume 3

Constraint: If the do_stmt is a nonlabel_do_stmt, the corresponding end_do must
be an end_do_stmt.

Constraint: If the do_stmt is a label_do_stmt, the corresponding end_do must be
identified with the same label.

R826 nonblock_do_construct is action_term_do_construct

or outer_shared_do_construct

R827 action_term_do_construct is label_do_stmt
do_body
do_term_action_stmt

R828 do_body is [execution_part_construct] ...

R829 do_term_action_stmt is action_stmt

Constraint: A do_term_action_stmt must not be a continue_stmt, a goto_stmt, a
return_stmt, a stop_stmt, an exit_stmt, a cycle_stmt, an end_function_stmt, an
end_subroutine_stmt, an end_program_stmt, an arithmetic_if_stmt, or an
assigned_goto_stmt.

Constraint: The do_term_action_stmt must be identified with a label and the
corresponding label_do_stmt must refer to the same label.

R830 outer_shared_do_construct is label_do_stmt
do_body
shared_term_do_construct

R831 shared_term_do_construct is outer_shared_do_construct

or inner_shared_do_construct

R832 inner_shared_do_construct is label_do_stmt
do_body
do_term_shared_stmt

R833 do_term_shared_stmt is action_stmt

Constraint: A do_term_shared_stmt must not be a goto_stmt, a return_stmt, a
stop_stmt, an exit_stmt, a cycle_stmt, an end_function_stmt, an end_subroutine_stmt,
an end_program_stmt, an arithmetic_if_stmt, or an assigned_goto_stmt.

42 007–3694–003

Fortran 90 Syntax [1]

Constraint: The do_term_shared_stmt must be identified with a label, and all of
the label_do_stmts of the shared_term_do_construct must refer to the same label.

R834 cycle_stmt is CYCLE [do_construct_name]

Constraint: If a cycle_stmt refers to a do_construct_name, it must be within the
range of that do_construct; otherwise, it must be within the range of at least one
do_construct.

R835 exit_stmt is EXIT [do_construct_name]

Constraint: If an exit_stmt refers to a do_construct_name, it must be within the
range of that do_construct; otherwise, it must be within the range of at least one
do_construct.

R836 goto_stmt is GO TOlabel

Constraint: The label must be the statement label of a branch target statement
that appears in the same scoping unit as the goto_stmt.

R837 computed_goto_stmt is GO TO (label_list) [,] scalar_int_expr

Constraint: Each label in label_list must be the statement label of a branch target
statement that appears in the same scoping unit as the computed_goto_stmt.

R838 assign_stmt is ASSIGN label TO scalar_int_variable

Constraint: The label must be the statement label of a branch target statement or
format_stmt that appears in the same scoping unit as the assign_stmt.

Constraint: scalar_int_variable must be named and of type default integer.

007–3694–003 43

Fortran Language Reference Manual, Volume 3

R839 assigned_goto_stmt is GO TOscalar_int_variable [[,] (label_list)]

Constraint: Each label in label_list must be the statement label of a branch target
statement that appears in the same scoping unit as the assigned_goto_stmt.

Constraint: scalar_int_variable must be named and of type default integer.

R840 arithmetic_if_stmt is IF (scalar_numeric_expr) label, label, label

Constraint: Each label must be the label of a branch target statement that
appears in the same scoping unit as the arithmetic_if_stmt.

Constraint: The scalar_numeric_expr must not be of type complex.

R841 continue_stmt is CONTINUE

R842 stop_stmt is STOP [stop_code]

R843 stop_code is scalar_char_constant

EXT or digit [digit] . . .

Constraint: scalar_char_constant must be of type default character.

R844 pause_stmt is PAUSE [stop_code]

1.2.9 Input/Output (I/O) Statements

The following syntax rules are described in section 9, "Input/Output
statements," of the Fortran 90 standard.

R901 io_unit is external_file_unit

or *

or internal_file_unit

44 007–3694–003

Fortran 90 Syntax [1]

EXT or unit_name

R902 external_file_unit is scalar_int_expr

R903 internal_file_unit is char_variable

Constraint: The default_char_variable must not be an array section with a vector
subscript.

R904 open_stmt is OPEN (connect_spec_list)

R905 connect_spec is [UNIT =] external_file_unit

or IOSTAT = scalar_default_int_variable

or ERR = label

or FILE = file_name_expr

or STATUS = scalar_char_expr

or ACCESS =scalar_char_expr

or FORM =scalar_char_expr

or RECL = scalar_int_expr

or BLANK = scalar_char_expr

or POSITION = scalar_char_expr

or ACTION = scalar_char_expr

or DELIM = scalar_char_expr

or PAD = scalar_char_expr

R906 file_name_expr is scalar_char_expr

Constraint: If the optional characters UNIT= are omitted from the unit specifier,
the unit specifier must be the first item in the connect_spec_list.

Constraint: Each specifier must not appear more than once in a given open_stmt;
an external_file_unit must be specified.

Constraint: The label used in the ERR=specifier must be the statement label of a
branch target statement that appears in the same scoping unit as the OPEN
statement.

007–3694–003 45

Fortran Language Reference Manual, Volume 3

R907 close_stmt is CLOSE (close_spec_list)

R908 close_spec is [UNIT =] external_file_unit

or IOSTAT = scalar_default_int_variable

or ERR = label

or STATUS = scalar_char_expr

Constraint: If the optional characters UNIT= are omitted from the unit specifier,
the unit specifier must be the first item in the close_spec_list.

Constraint: Each specifier must not appear more than once in a given close_stmt;
an external_file_unit must be specified.

Constraint: The label used in the ERR=specifier must be the statement label of
a branch target statement that appears in the same scoping unit as the CLOSE
statement.

R909 read_stmt is READ (io_control_spec_list) [input_item_list]

EXT or READ format [, input_item_list]

R910 write_stmt is WRITE (io_control_spec_list) [output_item_list]

EXT or WRITE format [, output_item_list]

R911 print_stmt is PRINT format [, output_item_list]

R912 io_control_spec is [UNIT =] io_unit

or [FMT =] format

or [NML =] namelist_group_name

or REC = scalar_int_expr

or IOSTAT = scalar_default_int_variable

or ERR = label

or END = label

or ADVANCE =scalar_char_expr

or SIZE = scalar_default_int_variable

or EOR = label

46 007–3694–003

Fortran 90 Syntax [1]

Constraint: An io_control_spec_list must contain exactly one io_unit and may
contain at most one of each of the other specifiers.

Constraint: An END=, EOR=, or SIZE= specifier must not appear in a write_stmt.

Constraint: The label in the ERR=, EOR=, or END=specifier must be the
statement label of a branch target statement that appears in the same scoping
unit as the data transfer statement.

Constraint: A namelist_group_name must not be present if an input_item_list or
an output_item_list is present in the data transfer statement.

Constraint: An io_control_spec_list must not contain both a format and a
namelist_group_name.

Constraint: If the optional characters UNIT= are omitted from the unit specifier,
the unit specifier must be the first item in the control information list.

Constraint: If the optional characters FMT=are omitted from the format specifier,
the format specifier must be the second item in the control information list and
the first item must be the unit specifier without the optional characters UNIT= .

Constraint: If the optional characters NML=are omitted from the namelist
specifier, the namelist specifier must be the second item in the control
information list and the first item must be the unit specifier without the
optional characters UNIT= .

Constraint: If the unit specifier specifies an internal file, the io_control_spec_list
must not contain a REC=specifier or a namelist_group_name.

Constraint: If the REC=specifier is present, an END=specifier must not appear,
a namelist_group_name must not appear, and the format, if any, must not be an
asterisk specifying list_directed I/O.

Constraint: An ADVANCE=specifier may be present only in a formatted
sequential I/O statement with explicit format specification whose control
information list does not contain an internal file unit specifier.

Constraint: If an EOR=specifier is present, an ADVANCE=specifier also must
appear.

007–3694–003 47

Fortran Language Reference Manual, Volume 3

R913 format is default_char_expr

or label

or *

or scalar_default_int_variable

Constraint: The label must be the label of a FORMATstatement that appears in
the same scoping unit as the statement containing the format specifier.

R914 input_item is variable

or io_implied_do

R915 output_item is expr

or io_implied_do

R916 io_implied_do is (io_implied_do_object_list, io_implied_do_control)

R917 io_implied_do_object is input_item

or output_item

R918 io_implied_do_control is do_variable = scalar_numeric_expr,
scalar_numeric_expr [, scalar_numeric_expr]

Constraint: A variable that is an input_item must not be an assumed-size array.

Constraint: The do_variable must be a scalar of type integer, default real, or
double-precision real.

Constraint: Each scalar_numeric_expr in an io_implied_do_control must be of type
integer, default real, or double-precision real.

Constraint: In an input_item_list, an io_implied_do_object must be an input_item.
In an output_item_list, an io_implied_do_object must be an output_item.

EXT buffer_in_stmt is BUFFER IN (io_unit, mode) (start_loc, end_loc)

EXT buffer_out_stmt is BUFFER OUT (io_unit, mode) (start_loc, end_loc)

EXT io_unit is external_file_unit

or file_name_expr

48 007–3694–003

Fortran 90 Syntax [1]

EXT mode is scalar_integer_expr

EXT start_loc is variable

EXT end_loc is variable

In the preceding definition, the variable specified for start_loc and end_loc cannot
be of a derived type if you are performing implicit data conversion. The data
items between start_loc and end_loc must be of the same type and same kind
type.

R919 backspace_stmt is BACKSPACEexternal_file_unit

or BACKSPACE (position_spec_list)

R920 endfile_stmt is ENDFILE external_file_unit

or ENDFILE (position_spec_list)

R921 rewind_stmt is REWIND external_file_unit

or REWIND (position_spec_list)

R922 position_spec is [UNIT =] scalar_int_expr

or IOSTAT = scalar_default_int_variable

or ERR = label

Constraint: The label in the ERR=specifier must be the statement label of a
branch target statement that appears in the same scoping unit as the file
positioning statement.

Constraint: If the optional characters UNIT= are omitted from the unit specifier;
the unit specifier must be the first item in the position_spec_list.

Constraint: A position_spec_list must contain exactly one external_file_unit and
may contain at most one of each of the other specifiers.

R923 inquire_stmt is INQUIRE (inquire_spec_list)

or INQUIRE (IOLENGTH = scalar_default_int_variable) output_item_list

R924 inquire_spec is [UNIT =] external_file_unit

007–3694–003 49

Fortran Language Reference Manual, Volume 3

or FILE = file_name_expr

or IOSTAT = scalar_default_int_variable

or ERR = label

or EXIST = scalar_default_logical_variable

or OPENED =scalar_default_logical_variable

or NUMBER =scalar_default_int_variable

or NAMED =scalar_default_logical_variable

or NAME = scalar_char_variable

or ACCESS =scalar_char_variable

or SEQUENTIAL = scalar_char_variable

or DIRECT = scalar_char_variable

or FORM =scalar_char_variable

or FORMATTED =scalar_char_variable

or UNFORMATTED =scalar_char_variable

or RECL = scalar_default_int_variable

or NEXTREC =scalar_default_int_variable

or BLANK = scalar_char_variable

or POSITION = scalar_char_variable

or ACTION = scalar_char_variable

or READ = scalar_char_variable

or WRITE = scalar_char_variable

or READWRITE =scalar_char_variable

or DELIM = scalar_char_variable

or PAD = scalar_char_variable

Constraint: An inquire_spec_list must contain one FILE= specifier or one UNIT=
specifier, but not both, and at most one of each of the other specifiers.

Constraint: In the inquire by unit form of the INQUIRE statement, if the
optional characters UNIT= are omitted from the unit specifier, the unit specifier
must be the first item in the inquire_spec_list.

50 007–3694–003

Fortran 90 Syntax [1]

1.2.10 I/O Editing

The following syntax rules are described in section 10, "Input/Output editing,"
of the Fortran 90 standard.

R1001 format_stmt is FORMATformat_specification

R1002 format_specification is ([format_item_list])

Constraint: The format_stmt must be labeled.

Constraint: The comma used to separate format_items in a format_item_list may
be omitted as follows:

• Between a P edit descriptor and an immediately following F, E, EN, ES, D, or
G edit descriptor

• Before a slash edit descriptor when the optional repeat specification is not
present

• After a slash edit descriptor

• Before or after a colon edit descriptor

R1003 format_item is [r] data_edit_desc

or control_edit_desc

or char_string_edit_desc

or [r] (format_item_list)

R1004 r is int_literal_constant

Constraint: r must be positive.

Constraint: r must not have kind parameter specified for it.

007–3694–003 51

Fortran Language Reference Manual, Volume 3

R1005 data_edit_desc is I w [. m]

or B w [. m]

or O w [. m]

or Z w [. m]

or F w . d

or E w . d [E e]

or EN w . d [E e]

or ES w . d [E e]

or G w . d [E e]

or L w

or A [w]

or D w . d

EXT or D w . d E e

EXT or R w

R1006 w is int_literal_constant

R1007 m is int_literal_constant

R1008 d is int_literal_constant

R1009 e is int_literal_constant

Constraint: w and e must be positive.

Constraint: w, m, d, and e must not have kind parameters specified for them.

R1010 control_edit_desc is position_edit_desc

or [r] /

or :

or sign_edit_desc

or k P

or blank_interp_edit_desc

R1011 k is signed_int_literal_constant

52 007–3694–003

Fortran 90 Syntax [1]

Constraint: k must not have a kind parameter specified for it.

R1012 position_edit_desc is T n

or TL n

or TR n

or n X

EXT or $

R1013 n is int_literal_constant

Constraint: n must be positive.

Constraint: n must not have a kind parameter specified for it.

R1014 sign_edit_desc is S

or SP

or SS

R1015 blank_interp_edit_desc is BN

or BZ

R1016 char_string_edit_desc is char_literal_constant

or c H rep_char [rep_char] ...

R1017 c is int_literal_constant

Constraint: c must be positive.

Constraint: c must not have a kind parameter specified for it.

Constraint: The rep_char in the c H form must be of default character type.

Constraint: The char_literal_constant must not have a kind parameter specified
for it.

007–3694–003 53

Fortran Language Reference Manual, Volume 3

1.2.11 Program Units

The following syntax rules are described in section 11, "Program units," of the
Fortran 90 standard.

R1101 main_program is [program_stmt]
[specification_part]
[execution_part]
[internal_subprogram_part]
end_program_stmt

R1102 program_stmt is PROGRAMprogram_name [(args)]

EXT args is Any character in the CF90 character

set. The CF90 compiler ignores any

args specified after program_name.

R1103 end_program_stmt is END [PROGRAM[program_name]]

Constraint: In a main_program, the execution_part must not contain a RETURN
statement or an ENTRYstatement.

Constraint: The program_name may be included in the end_program_stmt only if
the optional program_stmt is used and, if included, must be identical to the
program_name specified in the program_stmt.

Constraint: An automatic object must not appear in the specification_part (R204)
of a main program.

R1104 module is module_stmt
[specification_part]
[module_subprogram_part]
end_module_stmt

R1105 module_stmt is MODULEmodule_name

R1106 end_module_stmt is END [MODULE[module_name]]

Constraint: If the module_name is specified in the end_module_stmt, it must be
identical to the module_name specified in the module_stmt.

54 007–3694–003

Fortran 90 Syntax [1]

Constraint: A module specification_part must not contain a stmt_function_stmt, an
entry_stmt, or a format_stmt.

Constraint: An automatic object must not appear in the specification_part (R204)
of a module.

R1107 use_stmt is USE module_name [, rename_list]

or USE module_name, ONLY : [only_list]

R1108 rename is local_name => use_name

R1109 only is access_id

or [local_name =>] use_name

Constraint: Each access_id must be a public entity in the module.

Constraint: Each use_name must be the name of a public entity in the module.

R1110 block_data is block_data_stmt
[specification_part]
end_block_data_stmt

R1111 block_data_stmt is BLOCK DATA[block_data_name]

R1112 end_block_data_stmt is END [BLOCK DATA[block_data_name]]

Constraint: The block_data_name may be included in the end_block_data_stmt only
if it was provided in the block_data_stmt and, if included, must be identical to
the block_data_name in the block_data_stmt.

Constraint: A block_data specification_part may contain only USEstatements, type
declaration statements, IMPLICIT statements, PARAMETERstatements,
derived-type definitions, and the following specification statements: COMMON,
DATA, DIMENSION, EQUIVALENCE, INTRINSIC , POINTER, SAVE, and TARGET.

Constraint: A type declaration statement in a block_data specification_part must
not contain ALLOCATABLE, EXTERNAL, INTENT, OPTIONAL, PRIVATE, or
PUBLIC attribute specifiers.

007–3694–003 55

Fortran Language Reference Manual, Volume 3

1.2.12 Procedures

The following syntax rules are described in section 12, "Procedures," of the
Fortran 90 standard.

R1201 interface_block is interface_stmt
[interface_body] ...

[module_procedure_stmt] ...

end_interface_stmt

R1202 interface_stmt is INTERFACE [generic_spec]

R1203 end_interface_stmt is END INTERFACE

R1204 interface_body is function_stmt

[specification_part]

end_function_stmt

or subroutine_stmt

[specification_part]

end_subroutine_stmt

R1205 module_procedure_stmt is MODULE PROCEDUREprocedure_name_list

R1206 generic_spec is generic_name

or OPERATOR (defined_operator)

or ASSIGNMENT (=)

Constraint: An interface_body must not contain an entry_stmt, data_stmt,
format_stmt, or stmt_function_stmt.

Constraint: The MODULE PROCEDUREspecification is allowed only if the
interface_block has a generic_spec and has a host that is a module or accesses a
module by use association; each procedure_name must be the name of a module
procedure that is accessible in the host.

Constraint: An interface_block must not appear in a BLOCK DATAprogram unit.

Constraint: An interface_block in a subprogram must not contain an
interface_body for a procedure defined by that subprogram.

Constraint: A procedure_name in a module_procedure_stmt must not be one that
previously had been established to be associated with the generic_spec of the

56 007–3694–003

Fortran 90 Syntax [1]

interface_block in which it appears, either by a previous appearance in an
interface_block or by use or host association.

R1207 external_stmt is EXTERNAL external_name_list

R1208 intrinsic_stmt is INTRINSIC intrinsic_procedure_name_list

Constraint: Each intrinsic_procedure_name must be the name of an intrinsic
procedure.

R1209 function_reference is function_name ([actual_arg_spec_list])

Constraint: The actual_arg_spec_list for a function reference must not contain an
alt_return_spec.

R1210 call_stmt is CALL subroutine_name [([actual_arg_spec_list])]

R1211 actual_arg_spec is [keyword =] actual_arg

R1212 keyword is dummy_arg_name

R1213 actual_arg is expr

or variable

or procedure_name

R1214 alt_return_spec is * label

Constraint: The keyword = must not appear if the interface of the procedure is
implicit in the scoping unit.

Constraint: The keyword = may be omitted from an actual_arg_spec only if the
keyword = has been omitted from each preceding actual_arg_spec in the
argument list.

Constraint: Each keyword must be the name of a dummy argument in the
explicit interface of the procedure.

007–3694–003 57

Fortran Language Reference Manual, Volume 3

Constraint: A procedure_name actual_arg must not be the name of an internal
procedure or of a statement function and must not be the generic name of a
procedure (see subsections 12.3.2.1 and 13.1 of the Fortran 90 standard).

Constraint: The label used in the alt_return_spec must be the statement label of a
branch target statement that appears in the same scoping unit as the call_stmt.

R1215 function_subprogram is function_stmt
[specification_part]
[execution_part]
[internal_subprogram_part]
end_function_stmt

R1216 function_stmt is [prefix] FUNCTION function_name
([dummy_arg_name_list])
[RESULT (result_name)]

Constraint: If RESULTis specified, the function_name must not appear in any
specification statement in the scoping unit of the function subprogram.

R1217 prefix is prefix_spec [prefix_spec] ...

EXT prefix_spec is type_spec

or RECURSIVE

or PURE

or ELEMENTAL

R1218 end_function_stmt is END [FUNCTION [function_name]]

Constraint: If RESULTis specified, result_name must not be the same as
function_name.

Constraint: FUNCTIONmust be present on the end_function_stmt of an internal
or module function.

Constraint: An internal function must not contain an ENTRYstatement.

Constraint: An internal function must not contain an internal_subprogram_part.

58 007–3694–003

Fortran 90 Syntax [1]

Constraint: If a function_name is present on the end_function_stmt, it must be
identical to the function_name specified in the function_stmt.

R1219 subroutine_subprogram is subroutine_stmt
[specification_part]
[execution_part]
[internal_subprogram_part]
end_subroutine_stmt

R1220 subroutine_stmt is [prefix] SUBROUTINEsubroutine_name [([dummy_arg_list])]

EXT prefix is prefix_spec [prefix_spec] ...

EXT prefix_spec is RECURSIVE

or PURE

or ELEMENTAL

R1221 dummy_arg is dummy_arg_name

or *

R1222 end_subroutine_stmt is END [SUBROUTINE[subroutine_name]]

Constraint: SUBROUTINEmust be present on the end_subroutine_stmt of an
internal or module subroutine.

Constraint: An internal subroutine must not contain an ENTRYstatement.

Constraint: An internal subroutine must not contain an internal_subprogram_part.

Constraint: If a subroutine_name is present on the end_subroutine_stmt, it must be
identical to the subroutine_name specified in the subroutine_stmt.

R1223 entry_stmt is ENTRY entry_name [([dummy_arg_list]) [RESULT (result_name)]]

Constraint: If RESULTis specified, the entry_name must not appear in any
specification statement in the scoping unit of the function program.

Constraint: An entry_stmt may appear only in an external_subprogram or
module_subprogram.

Constraint: An entry_stmt must not appear within an executable_construct.

007–3694–003 59

Fortran Language Reference Manual, Volume 3

Constraint: RESULTmay be present only if the entry_stmt is contained in a
function subprogram.

Constraint: Within the subprogram containing the entry_stmt, the entry_name
must not appear as a dummy argument in the FUNCTIONor SUBROUTINE
statement or in another ENTRYstatement and it must not appear in an
EXTERNALor INTRINSIC statement.

Constraint: A dummy_arg may be an alternate return indicator only if the
ENTRYstatement is contained in a subroutine subprogram.

Constraint: If RESULTis specified, result_name must not be the same as
entry_name.

R1224 return_stmt is RETURN[scalar_int_expr]

Constraint: The return_stmt must be contained in the scoping unit of a function
or subroutine subprogram.

Constraint: The scalar_int_expr is allowed only in the scoping unit of a
subroutine subprogram.

R1225 contains_stmt is CONTAINS

R1226 stmt_function_stmt is function_name ([dummy_arg_name_list]) = scalar_expr

Constraint: The scalar_expr may be composed only of constants (literal and
named), references to scalar variables and array elements, references to
functions and function dummy procedures, and intrinsic operators. If a
reference to a statement function appears in scalar_expr, its definition must have
been provided earlier in the scoping unit and must not be the name of the
statement function being defined.

Constraint: Named constants in scalar_expr must have been declared earlier in
the scoping unit or made accessible by use or host association. If array elements
appear in scalar_expr, the parent array must have been declared as an array
earlier in the scoping unit or made accessible by use or host association. If a
scalar variable, array element, function reference, or dummy function reference
is typed by the implicit typing rules, its appearance in any subsequent type
declaration statement must confirm this implied type and the values of any
implied type parameters.

60 007–3694–003

Fortran 90 Syntax [1]

Constraint: The function_name and each dummy_arg_name must be specified,
explicitly or implicitly, to be scalar data objects.

Constraint: A given dummy_arg_name may appear only once in any
dummy_arg_name_list.

Constraint: Each scalar variable reference in scalar_expr may be either a
reference to a dummy argument of the statement function or a reference to a
variable local to the same scoping unit as the statement function statement.

1.2.13 Intrinsic Procedures

There are no syntax rules described in section 13, "Intrinsic procedures," of the
Fortran 90 standard.

1.2.14 Scope, Association, and Definition

There are no syntax rules described in section 14, "Scope, association, and
definition," of the Fortran 90 standard.

1.3 Cross-references

Table 2 provides a cross-reference of all Fortran 90 standard syntactic symbols
used in the BNF, showing the rule in which they are defined and all rules in
which they are referenced.

The symbols are sorted alphabetically within three categories: nonterminal
symbols that are defined, nonterminal symbols that are not defined in the BNF
(but are defined by other means), and terminal symbols. Except for those
ending with _name, the only undefined nonterminal symbols are letter, digit,
special_character, and rep_char; these nonterminal symbols are defined in the
Fortran Language Reference Manual, Volume I. Symbols ending with _name are
defined by the following rule:

xyz_name is a name

All occurrences of _list and scalar_ in the symbol names have been removed.

007–3694–003 61

Fortran Language Reference Manual, Volume 3

Table 2. Fortran 90 standard nonterminal symbols defined through BNF rules

Symbol Definition References

ac_do_variable R435 R434

ac_implied_do R433 R432

ac_implied_do_control R434 R433

ac_value R432 R431, R433

access_id R522 R521, R1109

access_spec R510 R424, R503, R521

access_stmt R521 R214

action_stmt R216 R215, R807, R829, R833

action_term_do_construct R827 R826

actual_arg R1213 R1211

actual_arg_spec R1211 R1209, R1210

add_op R710 R310, R707

add_operand R706 R706, R707

allocatable_stmt R526 R214

allocate_lower_bound R627 R626

allocate_object R625 R624, R631

allocate_shape_spec R626 R624

allocate_stmt R622 R216

allocate_upper_bound R628 R626

allocation R624 R622

alphanumeric_character R302 R301, R304

alt_return_spec R1214 R1213

and_op R720 R310, R716

and_operand R715 R716

arithmetic_if_stmt R840 R216

array_constructor R431 R701

62 007–3694–003

Fortran 90 Syntax [1]

Symbol Definition References

array_element R615 R536, R547, R602, R610

array_section R616 R602

array_spec R512 R503, R504, R525, R528

assign_stmt R838 R216

assigned_goto_stmt R839 R216

assignment_stmt R735 R216, R738, R739

assumed_shape_spec R516 R512

assumed_size_spec R518 R512

attr_spec R503 R501

backspace_stmt R919 R216

binary_constant R408 R407

blank_interp_edit_desc R1015 R1010

block R801 R802, R808, R823

block_data R1110 R202

block_data_stmt R1111 R1110

block_do_construct R817 R816

boz_literal_constant R407 R306, R533

c R1017 R1016

call_stmt R1210 R216

case_construct R808 R215

case_expr R812 R809

case_selector R813 R810

case_stmt R810 R808

case_value R815 R814

case_value_range R814 R813

char_constant R309 R843

char_expr R726 R731, R812

char_initialization_expr R731 R815

007–3694–003 63

Fortran Language Reference Manual, Volume 3

Symbol Definition References

char_length R508 R429, R504, R507

char_literal_constant R420 R306, R1016

char_selector R506 R502

char_string_edit_desc R1016 R1003

char_variable R605 R216

character R301

close_spec R908 R907

close_stmt R907 R216

common_block_object R549 R548

common_stmt R548 R214

complex_literal_constant R417 R306

component_array_spec R428 R427, R429

component_attr_spec R427 R426

component_decl R429 R426

component_def_stmt R426 R422

computed_goto_stmt R837

concat_op R712 R310, R711

connect_spec R905 R904

constant R305 R308, R309, R533, R610, R701

constant_subobject R702 R701

contains_stmt R1225 R210, R212

continue_stmt R841 R216, R824

control_edit_desc R1010 R1003

cycle_stmt R834 R216

d R1008 R1005

data_edit_desc R1005 R1003

data_i_do_object R536 R535

data_i_do_variable R537 R535

64 007–3694–003

Fortran 90 Syntax [1]

Symbol Definition References

data_implied_do R535 R531, R536

data_ref R612 R614, R615, R616

data_stmt R529 R209, R214

data_stmt_constant R533 R532

data_stmt_object R531 R530

data_stmt_repeat R534 R532

data_stmt_set R530 R529

data_stmt_value R532 R530

deallocate_stmt R631 R216

declaration_construct R207 R204

default_char_expr R727 R905, R906, R908, R912, R913

default_char_variable R606 R903, R924

default_int_variable R608 R905, R908, R912, R913, R922, R923, R924

default_logical_variable R604 R924

deferred_shape_spec R517 R428, R512, R526, R527

defined_binary_op R724 R311, R723

defined_operator R311 R1206

defined_unary_op R704 R311, R703

derived_type_def R422 R207

derived_type_stmt R424 R422

digit_string R402 R401, R404, R405, R413, R414

dimension_stmt R525 R214

do_block R823 R817

do_body R828 R827, R830, R832

do_construct R816 R215

do_stmt R818 R817

do_term_action_stmt R829 R827

do_term_shared_stmt R833 R832

007–3694–003 65

Fortran Language Reference Manual, Volume 3

Symbol Definition References

do_variable R822 R821, R918

dummy_arg R1221 R1220, R1223

e R1009 R1005

else_if_stmt R804 R802

else_stmt R805 R802

elsewhere_stmt R742 R739

end_block_data_stmt R1112 R1110

end_do R824 R817

end_do_stmt R825 R824

end_function_stmt R1218 R216, R1204, R1215

end_if_stmt R806 R802

end_interface_stmt R1203 R1201

end_module_stmt R1106 R1104

end_program_stmt R1103 R216, R1101

end_select_stmt R811 R808

end_subroutine_stmt R1222 R216, R1204, R1219

end_type_stmt R425 R422

end_where_stmt R743 R739

endfile_stmt R920 R216

entity_decl R504 R501

entry_stmt R1223 R206, R207, R209

equiv_op R722 R310, R718

equiv_operand R717 R717, R718

equivalence_object R547 R546

equivalence_set R546 R545

equivalence_stmt R545 R214

executable_construct R215 R208, R209

executable_program R201

66 007–3694–003

Fortran 90 Syntax [1]

Symbol Definition References

execution_part R208 R1101, R1215, R1219

execution_part_construct R209 R208, R801, R828

exit_stmt R835 R216

explicit_shape_spec R513 R428, R512, R518, R549

exponent R416 R413

exponent_letter R415 R413

expr R723 R430, R432, R701, R723, R725, R726, R727, R728,
R729, R730, R735, R737, R915, R1213, R1226

extended_intrinsic_op R312 R311

external_file_unit R902 R901, R905, R908, R919, R920, R921, R922, R924

external_stmt R1207 R214

external_subprogram R203 R202

file_name_expr R906 R905, R924

format R913 R909, R911, R912

format_item R1003 R1002, R1003

format_specification R1002 R1001

format_stmt R1001 R206, R207, R209

function_reference R1209 R701

function_stmt R1216 R1204, R1215

function_subprogram R1215 R203, R211, R213

generic_spec R1206 R522, R1202

goto_stmt R836 R216

hex_constant R410 R407

hex_digit R411 R410

if_construct R802 R215

if_stmt R807 R216

if_then_stmt R803 R802

imag_part R419 R417

007–3694–003 67

Fortran Language Reference Manual, Volume 3

Symbol Definition References

implicit_part R205 R204

implicit_part_stmt R206 R205

implicit_spec R541 R540

implicit_stmt R540 R205, R206

initialization_expr R730 R504, R539

inner_shared_do_construct R832 R831

input_item R914 R909, R917

inquire_spec R924 R923

inquire_stmt R923 R216

int_constant R308 R534

int_expr R728 R434, R535, R611, R617, R620, R621, R627, R628,
R732, R734, R812, R837, R902, R905, R912, R1224

int_initialization_expr R732 R505, R506, R815

int_literal_constant R404 R306, R403, R508, R1004, R1006, R1007, R1008,
R1009, R1013, R1017

int_variable R607 R435, R537, R623, R838, R839

intent_spec R511 R503, R519

intent_stmt R519 R214

interface_block R1201 R207

interface_body R1204 R1201

interface_stmt R1202 R1201

internal_file_unit R903 R901

internal_subprogram R211 R210

internal_subprogram_part R210 R1101, R1215, R1219

intrinsic_operator R310 R312

intrinsic_stmt R1208 R214

io_control_spec R912 R909, R910

io_implied_do R916 R914, R915

68 007–3694–003

Fortran 90 Syntax [1]

Symbol Definition References

io_implied_do_control R918 R916

io_implied_do_object R917 R916

io_unit R901 R912

k R1011 R1010

keyword R1212 R1211

kind_param R405 R404, R413, R420, R421

kind_selector R505 R502

label R313 R819, R836, R837, R838, R839, R840, R905, R908,
R912, R913, R922, R924, R1214

label_do_stmt R819 R818, R827, R830, R832

length_selector R507 R506

letter_spec R542 R541

defined_unary_expr R703 R705

summation_expr R707 R707, R711

concatenation_expr R711 R711, R713

comparison_expr R713 R715

equivalence_expr R718 R718, R723

literal_constant R306 R305

logical_expr R725 R733, R741, R803, R804, R807, R812, R821

logical_initialization_expr R733 R815

logical_literal_constant R421 R306

logical_variable R603

loop_control R821 R819, R820

lower_bound R514 R513, R516, R518

m R1007 R1005

main_program R1101 R202

mask_expr R741 R738, R740

module R1104 R202

007–3694–003 69

Fortran Language Reference Manual, Volume 3

Symbol Definition References

module_procedure_stmt R1205 R1201

module_stmt R1105 R1104

module_subprogram R213 R212

module_subprogram_part R212 R1104

mult_op R709 R310, R706

mult_operand R705 R705, R706

n R1013 R1012

name R304 R307

named_constant R307 R305, R539

named_constant_def R539 R538

namelist_group_object R544 R543

namelist_stmt R543 R214

nonblock_do_construct R826 R816

nonlabel_do_stmt R820 R818

not_op R719 R310, R715

nullify_stmt R629 R216

numeric_expr R729 R821, R840, R918

octal_constant R409 R407

only R1109 R1107

open_stmt R904 R216

optional_stmt R520 R214

or_op R721 R310, R717

or_operand R716 R716, R717

outer_shared_do_construct R830 R826, R831

output_item R915 R910, R911, R917, R923

parameter_stmt R538 R206, R207

parent_string R610 R609

part_ref R613 R612

70 007–3694–003

Fortran 90 Syntax [1]

Symbol Definition References

pause_stmt R844 R216

pointer_assignment_stmt R736 R216

pointer_object R630 R629, R736

pointer_stmt R527 R214

position_edit_desc R1012 R1010

position_spec R922 R919, R920, R921

power_op R708 R310, R705

prefix R1217 R1216

primary R701 R703

print_stmt R911 R216

private_sequence_stmt R423 R422

program_stmt R1102 R1101

program_unit R202 R201

r R1004 R1003, R1010

read_stmt R909 R216

real_literal_constant R413 R306, R412

real_part R418 R417

rel_op R714 R310, R713

rename R1108 R1107

return_stmt R1224 R216

rewind_stmt R921 R216

save_stmt R523 R214

saved_entity R524 R523

section_subscript R618 R613

select_case_stmt R809 R808

shared_term_do_construct R831 R830

sign R406 R401, R403, R412

sign_edit_desc R1014 R1010

007–3694–003 71

Fortran Language Reference Manual, Volume 3

Symbol Definition References

signed_digit_string R401 R416

signed_int_literal_constant R403 R418, R419, R533, R1011

signed_real_literal_constant R412 R418, R419, R533

significand R414 R413

specification_expr R734 R509, R514, R515

specification_part R204 R1101, R1104, R1110, R1204, R1215, R1219

specification_stmt R214 R207

stat_variable R623 R622, R631

stmt_function_stmt R1226 R207

stop_code R843 R842, R844

stop_stmt R842 R216

stride R620 R619

structure_component R614 R536, R602, R610, R625, R630

structure_constructor R430 R533, R701, R430, R533, R701

subobject R602 R601, R702

subroutine_stmt R1220 R1204, R1219

subroutine_subprogram R1219 R203, R211, R213

subscript R617 R618, R619

subscript_triplet R619 R618

substring R609 R547, R602

substring_range R611 R609, R616

target R737 R736

target_stmt R528 R214

type_declaration_stmt R501 R207

type_param_value R509 R506, R507, R508

type_spec R502 R426, R501, R541, R1217

underscore R303 R302

upper_bound R515 R513

72 007–3694–003

Fortran 90 Syntax [1]

Symbol Definition References

use_stmt R1107 R204

variable R601 R531, R603, R604, R605, R606, R607, R608, R701,
R735, R737, R822, R914, R1213

vector_subscript R621 R618

w R1006 R1005

where_construct R739 R215

where_construct_stmt R740 R739

where_stmt R738 R216

write_stmt R910 R216

Table 3 shows terms that are referenced in BNF definitions.

Table 3. Fortran 90 standard nonterminal symbols with no BNF definition

Symbol References

array_name R525, R526

array_variable_name R601

block_data_name R1111, R1112

case_construct_name R809, R810, R811

common_block_name R524, R548

component_name R429

digit R302, R313, R402, R408, R409, R411, R843

do_construct_name R819, R820, R825, R834, R835

dummy_arg_name R519, R520, R1212, R1216, R1221, R1226

entry_name R1223

external_name R1207

function_name R504, R1209, R1216, R1218, R1226

generic_name R1206

if_construct_name R803, R804, R805, R806

007–3694–003 73

Fortran Language Reference Manual, Volume 3

Symbol References

int_constant_name R405

intrinsic_procedure_name R1208

letter R302, R304, R542, R704, R724

local_name R1108, R1109

module_name R1105, R1106, R1107

namelist_group_name R543, R912

object_name R504, R524, R527, R528

part_name R613

procedure_name R1205, R1213

program_name R1102, R1103

rep_char R420, R1016

result_name R1216, R1223

special_character R301

subroutine_name R1210, R1220, R1222

type_name R424, R425, R430, R502

use_name R522, R1108, R1109

variable_name R544, R547, R549, R601, R610, R625, R630

Table 4 shows symbols that are referenced in BNF definitions.

Table 4. Fortran 90 standard terminal symbols

Symbol References

% R612

* R429, R504, R507, R509, R518, R532, R709, R901, R913, R1214, R1221

** R708

+ R406, R710

- (hyphen) R406, R542, R710

74 007–3694–003

Fortran 90 Syntax [1]

Symbol References

. (period) R414, R704, R724, R1005

.AND. R720

.EQ. R714

.EQV. R722

.FALSE. R421

.GE. R714

.GT. R714

.LE. R714

.LT. R714

.NE. R714

.NEQV. R722

.NOT. R719

.OR. R721

.TRUE. R421

/ R524, R530, R543, R548, R709, R1010

// R712

/= R714

< R714

<= R714

= R434, R504, R505, R506, R507, R535, R539, R622, R631, R735, R821, R905, R908, R912,
R918, R922, R923, R924, R1206, R1211, R1226

== R714

=> R736, R1108, R1109

> R714

>= R714

A R1005

ACCESS R905, R924

ACTION R905, R924

007–3694–003 75

Fortran Language Reference Manual, Volume 3

Symbol References

ADVANCE R912

ALLOCATABLE R503, R526

ALLOCATE R622

ASSIGN R838

ASSIGNMENT R1206

AUTOMATIC R503

B R408, R1005

BACKSPACE R919

BLANK R905, R924

BLOCK R1111, R1112

BN R1015

BZ R1015

CALL R1210

CASE R809, R810

CHARACTER R502

CLOSE R907

COMMON R548

COMPLEX R502

CONTAINS R1225

CONTINUE R841

CYCLE R834

D R415, R1005

DATA R529, R1111, R1112

DEALLOCATE R631

DEFAULT R813

DELIM R905, R924

DIMENSION R427, R503, R525

DIRECT R924

76 007–3694–003

Fortran 90 Syntax [1]

Symbol References

DO R819, R820, R825

DOUBLE R502

E R415, R1005

ELSE R804, R805

ELSEWHERE R742

EN R1005

END R425, R743, R806, R811, R825, R912, R1103, R1106, R1112, R1203, R1218, R1222

ENDFILE R920

ENTRY R1223

EOR R912

EQUIVALENCE R545

ERR R905, R908, R912, R922, R924

ES R1005

EXIST R924

EXIT R835

EXTERNAL R503, R1207

F R1005

FILE R905, R924

FMT R912

FORM R905, R924

FORMAT R1001

FORMATTED R924

FUNCTION R1216, R1218

G R1005

GO R836, R837, R839

H R1016

I R1005

IF R803, R804, R806, R807, R840

007–3694–003 77

Fortran Language Reference Manual, Volume 3

Symbol References

IMPLICIT R540

IN R511

INOUT R511

INQUIRE R923

INTEGER R502

INTENT R503, R519

INTERFACE R1202, R1203

INTRINSIC R503, R1208

IOLENGTH R923

IOSTAT R905, R908, R912, R922, R924

KIND R505, R506

L R1005

LEN R506, R507

LOGICAL R502

MODULE R1105, R1106, R1205

NAME R924

NAMED R924

NAMELIST R543

NEXTREC R924

NML R912

NONE R540

NULLIFY R629

NUMBER R924

O R409, R1005

ONLY R1107

OPEN R904

OPENED R924

OPERATOR R1206

78 007–3694–003

Fortran 90 Syntax [1]

Symbol References

OPTIONAL R503, R520

OUT R511

P R1010

PAD R905, R924

PARAMETER R503, R538

PAUSE R844

POINTER R427, R503, R527

POSITION R905, R924

PRECISION R502

PRINT R911

PRIVATE R423, R510

PROCEDURE R1205

PROGRAM R1102, R1103

PUBLIC R510

READ R909, R924

READWRITE R924

REAL R502

REC R912

RECL R905, R924

RECURSIVE R1217, R1220

RESULT R1216, R1223

RETURN R1224

REWIND R921

S R1014

SAVE R503, R523

SELECT R809, R811

SEQUENCE R423

SEQUENTIAL R924

007–3694–003 79

Fortran Language Reference Manual, Volume 3

Symbol References

SIZE R912

SP R1014

SS R1014

STAT R622, R631

STATUS R905, R908

STOP R842

SUBROUTINE R1220, R1222

T R1012

TARGET R503, R528

THEN R803, R804

TL R1012

TO R836, R837, R838, R839

TR R1012

TYPE R424, R425, R502

UNFORMATTED R924

UNIT R905, R908, R912, R922, R924

USE R1107

WHERE R738, R740, R743

WHILE R821

WRITE R910, R924

X R1012

Z R410, R1005

80 007–3694–003

Decremental Features [2]

This chapter describes deleted and obsolescent Fortran features.

2.1 Deleted Features

The deleted features are those features of FORTRAN 77 that are considered by
the Fortran 90 standard to be redundant and considered largely unused. The
list of deleted features for Fortran 90 is empty; there are none.

2.2 Obsolescent Features

The obsolescent features are those features of FORTRAN 77 that are considered
by the Fortran 90 standard to be redundant. The Fortran 90 standard states that
these features are obsolescent and provides preferred alternatives.

The obsolescent features and the preferred alternatives are as follows:

Obsolescent feature Preferred alternative

Arithmetic IF IF statement or IF construct

Real and double precision type DOcontrol
variables and DOloop control expressions

Integer type

Shared DOtermination and termination
on a statement other than END DOor
CONTINUEstatements

An END DOor a CONTINUE
statement for each DO
statement

Branching to an END IF statement from
outside its IF construct

Branch to the statement
following the END IF

Alternate return See topic discussed in Section
2.2.1, page 82

PAUSEstatement See topic discussed in Section
2.2.2, page 82

ASSIGN and assigned GO TOstatements See topic discussed in Section
2.2.3, page 82

Assigned FORMATspecifiers See topic discussed in Section
2.2.4, page 83

007–3694–003 81

Fortran Language Reference Manual, Volume 3

H edit descriptor See topic discussed in Section
2.2.5, page 83

2.2.1 Alternate Return

An alternate return introduces labels into an argument list to allow the called
procedure to direct the execution of the caller upon return. The same effect can
be achieved with a return code that is used in a computed GO TOstatement or
CASEconstruct on return. This avoids an irregularity in the syntax and
semantics of argument association. Consider the following statement:

CALL SUBR_NAME (X, Y, Z, *100, *200, *300)

The preceding statement can be replaced by the following code:

CALL SUBR_NAME (X, Y, Z, RETURN_CODE)
SELECT CASE (RETURN_CODE)

CASE (1)

...

CASE (2)

...

CASE (3)
...

CASE DEFAULT

...

END SELECT

2.2.2 PAUSEStatement

Execution of a PAUSEstatement requires operator or system-specific
intervention to resume execution. In most cases, the same functionality can be
achieved as effectively and in a more portable way with the use of an
appropriate READstatement that awaits some input data.

2.2.3 ASSIGN and Assigned GO TOStatements

The ASSIGN statement allows a label to be dynamically assigned to an integer
variable, and the assigned GO TOstatement allows indirect branching through
this variable. This hinders the readability of the program flow, especially if the
integer variable also is used in arithmetic operations. The two totally different
usages of the integer variable can be an obscure source of error.

82 007–3694–003

Decremental Features [2]

These statements have been commonly used to simulate internal procedures,
which now can be coded directly.

2.2.4 Assigned FORMATSpecifiers

The ASSIGN statement also allows the label of a FORMATstatement to be
dynamically assigned to an integer variable, which can later be used as a format
specifier in READ, WRITE, or PRINT statements. This hinders readability, permits
inconsistent usage of the integer variable, and can be an obscure source of error.

This functionality is available through character variables, arrays, and constants.

2.2.5 H Editing

This edit descriptor can be a source of error because the number of characters
following the descriptor can be miscounted easily. The same functionality is
available using the character constant edit descriptor, for which no count is
required.

007–3694–003 83

Character Set [3]

The ASCII character set contains the control and graphic characters shown in
the following table. Numbers, letters, and special characters in the character set
are identified by the letter "C" in the Notes column. All other characters are
members of the auxiliary character set. The letter "A" identifies the characters
that belong to the Fortran character set as defined by the standard. Letters in
parentheses following the descriptions in the Description column indicate the
following control character usage:

• "CC" stands for Communication Control

• "FE" stands for Format Effector

• "IS" stands for Information Separator

Table 5. Character set

Character Octal Decimal Hex Notes Description

NUL 000 000 00 Null

SOH 001 001 01 Start of heading (CC)

STX 002 002 02 Start of text (CC)

ETX 003 003 03 End of text (CC)

EOT 004 004 04 End of transmission (CC)

ENQ 005 005 05 Enquiry (CC)

ACK 006 006 06 Acknowledge (CC)

BEL 007 007 07 Bell (audible signal)

BS 010 008 08 Backspace (FE)

HT 011 009 09 C Horizontal tabulation (FE)

LF 012 010 0A Line feed (FE)

VT 013 011 0B Vertical tabulation (FE)

FF 014 012 0C Form feed (FE)

CR 015 013 0D Carriage return (FE)

007–3694–003 85

Fortran Language Reference Manual, Volume 3

Character Octal Decimal Hex Notes Description

SO 016 014 0E Shift out

SI 017 015 0F Shift in

DLE 020 016 10 Data link escape (CC)

DC1 021 017 11 Device control 1

DC2 022 018 12 Device control 2

DC3 023 019 13 Device control 3

DC4 024 020 14 Device control 4 (stop)

NAK 025 021 15 Negative acknowledge (CC)

SYN 026 022 16 Synchronous idle (CC)

ETB 027 023 17 End of transmission block (CC)

CAN 030 024 18 Cancel

EM 031 025 19 End of medium

SUB 032 026 1A Substitute

ESC 033 027 1B Escape

FS 034 028 1C File separator (IS)

GS 035 029 1D Group separator (IS)

RS 036 030 1E Record separator (IS)

US 037 031 1F Unit separator (IS)

space 040 032 20 A, C (blank)

! 041 033 21 A, C Exclamation point

" 042 034 22 A, C Quotation mark

043 035 23 Number sign

$ 044 036 24 A, C Dollar sign (currency symbol)

% 045 037 25 A, C Percent

& 046 038 26 A, C Ampersand

’ 047 039 27 A, C Apostrophe (single quote)

(050 040 28 A, C Opening (left) parenthesis

) 051 041 29 A, C Closing (right) parenthesis

86 007–3694–003

Character Set [3]

Character Octal Decimal Hex Notes Description

* 052 042 2A A, C Asterisk

+ 053 043 2B A, C Plus

, 054 044 2C A, C Comma (cedilla)

- 055 045 2D A, C Minus (hyphen)

. 056 046 2E A, C Period (decimal point)

/ 057 047 2F A, C Slant (slash, virgule)

0 060 048 30 A, C Zero

1 061 049 31 A, C One

2 062 050 32 A, C Two

3 063 051 33 A, C Three

4 064 052 34 A, C Four

5 065 053 35 A, C Five

6 066 054 36 A, C Six

7 067 055 37 A, C Seven

8 070 056 38 A, C Eight

9 071 057 39 A, C Nine

: 072 058 3A A, C Colon

; 073 059 3B A, C Semicolon

< 074 060 3C A, C Less than

= 075 061 3D A, C Equal

> 076 062 3E A, C Greater than

? 077 063 3F A, C Question mark

@ 100 064 40 C "At" sign. Reserved for Cray Research
internal use. Not a valid character on
IRIX systems.

A 101 065 41 A, C Uppercase letter

B 102 066 42 A, C Uppercase letter

C 103 067 43 A, C Uppercase letter

D 104 068 44 A, C Uppercase letter

007–3694–003 87

Fortran Language Reference Manual, Volume 3

Character Octal Decimal Hex Notes Description

E 105 069 45 A, C Uppercase letter

F 106 070 46 A, C Uppercase letter

G 107 071 47 A, C Uppercase letter

H 110 072 48 A, C Uppercase letter

I 111 073 49 A, C Uppercase letter

J 112 074 4A A, C Uppercase letter

K 113 075 4B A, C Uppercase letter

L 114 076 4C A, C Uppercase letter

M 115 077 4D A, C Uppercase letter

N 116 078 4E A, C Uppercase letter

O 117 079 4F A, C Uppercase letter

P 120 080 50 A, C Uppercase letter

Q 121 081 51 A, C Uppercase letter

R 122 082 52 A, C Uppercase letter

S 123 083 53 A, C Uppercase letter

T 124 084 54 A, C Uppercase letter

U 125 085 55 A, C Uppercase letter

V 126 086 56 A, C Uppercase letter

W 127 087 57 A, C Uppercase letter

X 130 088 58 A, C Uppercase letter

Y 131 089 59 A, C Uppercase letter

Z 132 090 5A A, C Uppercase letter

{ 133 091 5B Opening (left) brace

\ 134 092 5C Reverse slant (backslash)

} 135 093 5D Closing (right) brace

^ 136 094 5E Caret (circumflex)

_ 137 095 5F A, C Underline

‘ 140 096 60 Grave accent

88 007–3694–003

Character Set [3]

Character Octal Decimal Hex Notes Description

a 141 097 61 A, C Lowercase letter

b 142 098 62 A, C Lowercase letter

c 143 099 63 A, C Lowercase letter

d 144 100 64 A, C Lowercase letter

e 145 101 65 A, C Lowercase letter

f 146 102 66 A, C Lowercase letter

g 147 103 67 A, C Lowercase letter

h 150 104 68 A, C Lowercase letter

i 151 105 69 A, C Lowercase letter

j 152 106 6A A, C Lowercase letter

k 153 107 6B A, C Lowercase letter

l 154 108 6C A, C Lowercase letter

m 155 109 6D A, C Lowercase letter

n 156 110 6E A, C Lowercase letter

o 157 111 6F A, C Lowercase letter

p 160 112 70 A, C Lowercase letter

q 161 113 71 A, C Lowercase letter

r 162 114 72 A, C Lowercase letter

s 163 115 73 A, C Lowercase letter

t 164 116 74 A, C Lowercase letter

u 165 117 75 A, C Lowercase letter

v 166 118 76 A, C Lowercase letter

w 167 119 77 A, C Lowercase letter

x 170 120 78 A, C Lowercase letter

y 171 121 79 A, C Lowercase letter

z 172 122 7A A, C Lowercase letter

[173 123 7B Opening (left) bracket

| 174 124 7C Vertical line

007–3694–003 89

Fortran Language Reference Manual, Volume 3

Character Octal Decimal Hex Notes Description

] 175 125 7D Closing (right) bracket

~ 176 126 7E Overline (tilde, general accent)

DEL 177 127 7F Delete

90 007–3694–003

Extensions and Differences [4]

This chapter describes the differences between the FORTRAN 77 and Fortran 90
languages. It also describes the differences between the Cray Research CF77
compiling system, the Cray Research CF90 compiler, and the run-time libraries
that support them. Many extensions that exist in the CF77 compiling system are
retained in the CF90 compiler.

Note: The Cray Research CF77 compiling system is in maintenance mode.
Information pertaining to that compiler is included in this chapter for
transitional purposes.

The terms FORTRAN 77 and Fortran 90 are used to designate the ANSI and ISO
standards for Fortran. The terms CF77 compiling system and CF90 compiler apply
to the Cray Research products that implement the standards.

This chapter is divided into the following sections:

• FORTRAN 77 and Fortran 90 differences

• Fortran 90 standard differences and incompatibilities with the Cray Research
extensions to the CF77 compiling system

• CF90 restrictions on CF77 input/output (I/O) extensions

• CF90 and CF77 integrated environment differences

• CF90 extensions to Fortran 90

• CF90 and CF77 implementation differences

Note: The information in this chapter that describes the CF90 and CF77
compilers pertains only to programs being run on a UNICOS or UNICOS/mk
system. Information describing differences that pertain to IRIX systems and
the MIPSpro 7 Fortran 90 compiler is under development and will appear in
the MIPSPro Fortran 90 Commands and Directives Reference Manual.

4.1 FORTRAN 77 and Fortran 90 Differences

The following sections describe the main areas of differences between
Fortran 90 and FORTRAN 77.

007–3694–003 91

Fortran Language Reference Manual, Volume 3

4.1.1 Fortran 90 and End-of-Record Action

FORTRAN 77 requires that the number of characters required by the input list
be less than or equal to the number of characters in the record during formatted
input. Fortran 90 specifies that unless the PAD=NOoption is specified in an
appropriate OPENstatement, the input record is logically padded with blanks if
there are not enough characters in the record.

FORTRAN 77 effectively defaulted to PAD=NO. Fortran 90 defaults to PAD=YES.

4.1.2 Fortran 90 and New Intrinsic Procedures

Fortran 90 has more intrinsic functions than FORTRAN 77, and it adds intrinsic
subroutines. Therefore, a program that conforms to the FORTRAN 77 standard
can have a different interpretation under Fortran 90 if it invokes a procedure
that has the same name as one of the new standard intrinsic procedures. This
problem is avoided if the procedure is specified in an EXTERNALstatement.

The CF90 compiler accepts the following intrinsic functions, which are included
in the Fortran 90 standard:

• ADJUSTL(3I)

• ADJUSTR(3I)

• ALL(3I)

• ALLOCATED(3I)

• ANY(3I)

• ASSOCIATED(3I)

• BIT_SIZE (3I)

• COUNT(3I)

• CSHIFT(3I)

• DIGITS (3I)

• DOT_PRODUCT(3I)

• EOSHIFT(3I)

• EPSILON(3I)

• EXPONENT(3I)

92 007–3694–003

Extensions and Differences [4]

• FRACTION(3I)

• HUGE(3I)

• KIND(3I)

• LBOUND(3I)

• LEN_TRIM(3I)

• MATMUL(3I)

• MAXEXPONENT(3I)

• MAXLOC(3I)

• MAXVAL(3I)

• MERGE(3I)

• MINEXPONENT(3I)

• MINLOC(3I)

• MINVAL(3I)

• NEAREST(3I)

• PACK(3I)

• PRECISION(3I)

• PRESENT(3I)

• PRODUCT(3I)

• RADIX(3I)

• RANGE(3I)

• REPEAT(3I)

• RESHAPE(3I)

• RRSPACING(3I)

• SCALE(3I)

• SCAN(3I)

• SELECTED_INT_KIND(3I)

007–3694–003 93

Fortran Language Reference Manual, Volume 3

• SELECTED_REAL_KIND(3I)

• SET_EXPONENT(3I)

• SHAPE(3I)

• SIZE (3I)

• SPACING(3I)

• SPREAD(3I)

• SUM(3I)

• TINY (3I)

• TRANSFER(3I)

• TRANSPOSE(3I)

• TRIM(3I)

• UBOUND(3I)

• UNPACK(3I)

• VERIFY(3I)

The CF77 compiling system does not accept the intrinsic subroutines introduced
in the Fortran 90 standard. These are as follows:

• DATE_AND_TIME(3I)

• RANDOM_NUMBER(3I)

• RANDOM_SEED(3I)

• SYSTEM_CLOCK(3I)

4.1.3 Fortran 90 and G Edit Descriptor Output Differences

The format of a floating-point zero written with a G edit descriptor is different
in Fortran 90. The floating-point zero was written with an Ew. d edit descriptor
in FORTRAN 77, but it is written with an Fw. d edit descriptor in the CF90
compiler.

For more information on this topic, see Section 4.2.5.1, page 104.

94 007–3694–003

Extensions and Differences [4]

4.1.4 Fortran 90 and List-directed Output Differences

Fortran 90 requires a separator between noncharacter data and character data in
list-directed output. FORTRAN 77 disallows a separator in this instance.

Consider the following example output list:

’This is a one(’,1,’)’

This output list generates different output under the two standards:

• Fortran 90 output:

>This is a one(1)

• FORTRAN 77 output:

>This is a one(1)

4.2 Incompatibilities with Extensions

Some Fortran 90 features differ in syntax and defaults in comparison to CF77
extensions. The following sections describe these differences.

4.2.1 Namelist I/O

The CF77 compiling system provided a namelist extension to handle the creation
or acceptance of a wide variety of namelist records. Namelist I/O was not part
of the FORTRAN 77 standard, but it is included in the Fortran 90 standard.

4.2.1.1 Differences between CF90 and CF77 Namelist Functionality

The CF77 namelist extension is different from the namelist feature provided in
the Fortran 90 standard. Some of these extensions conflict with the new
standard.

4.2.1.1.1 Format of the Namelist Data Transfer Statement

The formats of the namelist data transfer statement for the CF77 compiling
system and the CF90 compiler differ. The CF77 compiling system uses the
following formats:

007–3694–003 95

Fortran Language Reference Manual, Volume 3

READ (unit, group [, ERR=sn] [, END=sn])

READ group

PRINT group

Fortran 90 permits the following format:

READ (unit, [NML=] group [, ERR=sn] [,END= sn] [, IOSTAT= ios])

The CF90 compiler accepts all these formats.

4.2.1.1.2 Format of the Namelist Name and Namelist Termination Specification

The CF77 namelist and Fortran 90 specify that the format of the namelist group
name in a namelist record be as follows:

&namelist_group_name

The CF77 extension accepts a dollar sign ($) in place of the ampersand (&) on
input, but it writes only the ampersand (&) by default as the prefix to the
namelist group name. As described later in this section, these defaults can be
changed.

The Fortran 90 language uses the slash to terminate the namelist record. The
CF77 extension uses the following form to terminate the namelist record:

&END

The CF90 extension recognizes both forms of termination of a namelist record.

The CF77 extension allows you to use other characters in place of the
ampersand (&) or dollar sign ($) on input, and the ampersand on output, as a
prefix for the namelist group name and the ENDtermination sequence. You can
use the WNLDELM(3) subroutine to specify the replacement character on output,
and you can use the RNLDELM(3) subroutine to specify the replacement
character on input. This replacement feature is allowed in the CF90
implementation only if the file was opened as a CF77 file. A file is interpreted
as a CF77 file if a program compiled with the CF77 compiling system is used to

96 007–3694–003

Extensions and Differences [4]

open a file or if the file is assigned as a CF77 file through the assign (1)
command. For more information, see the assign (1) man page.

The CF77 extension recognizes the slash as a termination of the namelist input
but does not replace the &ENDform on output with the slash.

4.2.1.1.3 Echoing and Carriage Control Characters in the First Namelist Record

The CF77 compiling system allows you to echo input records to the standard
output file, stdout , during a namelist READstatement. The RNLFLAG(3F)
subroutine enables this feature before executing the namelist READstatement. If
this feature is not enabled, the READstatement skips the first character. The E is
the default character for the echoing feature.

The WNLFLAG(3F) subroutine can be invoked before a namelist WRITEstatement
to indicate the character to be placed in the first column of the first namelist
output record. The WNLFLAG(3F) subroutine can also be used to specify the
carriage control character to be used in the output record. The default character
used by the CF77 extension in column one of a namelist output record is a
blank.

Fortran 90 namelist input may begin in column one of the first namelist input
record. The CF90 implementation does not support an echo or carriage control
character in column one of the first namelist record unless the file is opened as
a CF77 file.

4.2.1.1.4 Format of the Namelist name=value Sequence

A CF77 extension allows you to change the equal sign (=) in the name=value
sequence in a namelist record. You can use the WNLREP(3F) subroutine to
indicate the replacement character to be used by a namelist WRITEstatement.
You can use the RNLREP(3F) subroutine to indicate the replacement character to
be used during a namelist READstatement.

Fortran 90 does not provide the ability to change the equal sign in the
name=value sequence. The CF90 implementation does not support a
replacement character for the equal sign in the name=value sequence unless the
file is opened as a CF77 file.

The size of the value written by a CF90 namelist WRITEstatement is the same
size as a value written by a CF90 list-directed WRITEstatement. The size differs
from that in the CF77 extension. The size of a double-precision floating-point
value in CF77 namelist output can be only 27 characters, but it can be 34
characters in CF90 namelist output.

007–3694–003 97

Fortran Language Reference Manual, Volume 3

4.2.1.1.5 Value Separators in Namelist Records

Fortran 90 allows the blank, comma, or the slash as value separators. A CF77
extension allows the comma as the default value separator but allows a
replacement character to be specified for the comma through the WNLSEP(3F)
subroutine for a namelist WRITEstatement or the RNLSEP(3F) subroutine for a
namelist READstatement. The CF90 implementation does not provide the
ability to change the value separator in namelist I/O unless the file was opened
as a CF77 file.

4.2.1.1.6 Character Data Format in a Namelist Record

A CF77 extension supports both delimited and undelimited character string
input. Fortran 90 states that namelist character input must be delimited by
apostrophes or quotation marks. Character constants produced by Fortran 90
namelist output statements are not delimited by apostrophes or quotation
marks unless the DELIM= specifier was present on the OPENstatement for the
file in the namelist output statement. The CF77 extension delimits a character
string with apostrophes on output.

The CF90 implementation does not support undelimited character input unless
the file is opened as a CF77 file. The CF90 implementation delimits character
string output with apostrophes or quotation marks only if the DELIM specifier
for the file indicates that apostrophes or quotation marks are to be written on
output.

4.2.1.1.7 Comments in Namelist Input Records

The CF77 extension allows comments in namelist input records. These
comments are indicated by the use of the semicolon (;). You can use the
RNLCOMM(3F) subroutine to allow a different character to indicate the presence
of a comment in the namelist input record. If the specified comment character
is detected within a namelist record, the rest of the namelist record is skipped.

Fortran 90 does not provide for comments in namelist input records. The CF90
compiler supports this feature when the namelist input file is opened as a CF77
file.

4.2.1.1.8 RNLSKIP(3F) and Namelist Records

A CF77 extension provides the RNLSKIP(3F) subroutine, which takes a specific
action when a namelist group object name does not match the namelist group
object name in the namelist record. Fortran 90 does not provide this option.

98 007–3694–003

Extensions and Differences [4]

The CF90 implementation supports this feature for input files opened as CF77
files only.

4.2.1.1.9 Structures and Namelist Records

The CF77 compiling system does not support derived data types and structures.
Fortran 90 allows structures in namelist I/O.

The format of the namelist output of a structure is the structure name, followed
by an equal sign, and then followed by the value of each component of that
structure. The values are separated by commas. None of the individual
component names is written by the namelist write of a structure. Because the
CF77 extension does not accept structures, the CF90 implementation issues an
error if it detects that the type of the namelist item is a structure and if the
namelist file was opened as a CF77 file.

4.2.1.1.10 Array Sections and Namelist Records

The CF77 compiling system does not accept the presence of array section
notation, such as x(3:4)= , in a namelist input record. Fortran 90 and the CF90
implementation allow section notation in a namelist input record.

4.2.1.2 Similarities between CF90 and CF77 Namelist Input

Both the CF77 compiling system and the CF90 compiler accept the ampersand
(&) preceding the namelist name. The CF77 extension and the CF90
implementation accept the slash (/) as the end of the namelist input. The CF77
extension and the CF90 implementation accept the &ENDas the end of the
namelist input. The following is an example of namelist input data:

&TODAY I = 12345, X(1)=12345, X(3:4) = 2*1.5, I=6,P = "data"/

The CF90 implementation accepts Hollerith constants in namelist input records.
Note that Hollerith data is an outmoded feature. See Chapter 6, page 163, for
information on outmoded features and preferred alternatives.

4.2.1.3 Differences between CF90 and CF77 Namelist Output

The following sections describe the differences in namelist output between the
CF90 compiler and the CF77 compiling system.

007–3694–003 99

Fortran Language Reference Manual, Volume 3

4.2.1.3.1 CF90 Features Not in CF77 Namelist

The CF90 compiler contains the following features that were not in the CF77
compiling system:

• The CF90 record length for a namelist output record is obtained from a
RECL=specifier on the OPENstatement for this file or from a default size.

• The CF90 compiler provides structures and a double complex data type.

4.2.1.3.2 CF77 Namelist Features and CF90 Namelist

The CF77 compiling system provides several user output control subroutines
that can be called to provide portable namelist output. These were provided
before the addition of namelist I/O to the Fortran standard. The facilities
provided by these routines are only available through the CF90 compiler when
the -f 77 option is used on the assign (1) command for a specific file or if
you open a file with a procedure compiled with the CF77 compiling system.
This facility allows you to use a file containing namelist data with either the
CF77 compiling system or with the CF90 compiler. Errors are generated if any
new CF90 features are in a namelist that is written to this CF77 file.

CF77 routine Description

CALL WNLLONG(len) Sets the output line length to len. For the CF77
compiling system, the minimum is 8 and the
maximum is 196. If len is too short, the program
aborts. If len is equal to –1, the line length defaults
to 267. For the CF90 compiler, the RECL=specifier
is used, if present. Otherwise, it defaults to 267.

CALL WNLDELM(char) Sets the character preceding the group name and
the ENDterminator. An ampersand (&) is the
default char.

CALL WNLSEP(char) Changes the separator character immediately
following each value from a comma (,) to char.

CALL WNLREP(char) Changes the assignment operator between the
namelist output variable name and the values
from an equal sign (=) to char.

CALL WNLFLAG(char) Changes the character written in column 1 during
a namelist output statement from a blank to char.
The char is used for carriage control if the output

100 007–3694–003

Extensions and Differences [4]

is printed or to force echoing if the output is used
as input for a namelist READstatement.

CALL WNLLINE(value) Begins each namelist variable name on a new line.
If value is 0, no new line is generated. If value is 1,
a new line is generated for each variable.

4.2.1.4 Portability between CF77 and CF90 Namelist

The CF77 compiling system does not accept structures or the double complex
data type. The CF90 compiler accepts the user output control subroutines for
namelist output, but you must indicate that the file is to be treated as a CF77
file. Zero-length entities are not accepted from and are not written to files that
are compatible with the CF77 compiling system.

To choose the CF77 format of namelist output with its additional subroutine
choices, you can do one of two things:

• Open the file with a procedure that was compiled with the CF77 compiling
system.

• Assign the file with the -f 77 option on the assign (1) command, as
shown in the following example:

INTEGER i(2), j(2,2)

NAMELIST /abc/ i, j

i(1) = 1

i(2) = 3

j = 22

WRITE(6,abc,IOSTAT=ios1)
IF(ios1 .NE. 0) THEN

PRINT *, ’write iostat = ’, ios1

IF (ios1 .EQ. 1328) PRINT *, ’expected iostat = 1328’

ENDIF

PRINT *, ’end of f90 namelist output’
WRITE(7,abc,IOSTAT=ios1)

IF (ios1 .NE. 0) THEN

PRINT *, ’write iostat = ’, ios1

IF (ios1 .EQ. 1328) PRINT *, ’expected iostat = 1328’

ENDIF
PRINT *, ’end of CF77 namelist output’

PRINT *, ’end of program’

END

007–3694–003 101

Fortran Language Reference Manual, Volume 3

The output of the program for a conventional CF90 compilation and
execution is as follows:

% assign -R
% a.out

&ABC I = 1, 3, J = 4*22 /

end of f90 namelist output

end of CF77 namelist output

end of program

% more fort.7
&ABC I = 1, 3, J = 4*22 /

The output of the program when specifying the -f 77 option on the
assign (1) command is as follows:

% assign -R

% assign -f 77 u:6

% assign -f 77 u:7

% rm fort.7
% a.out

&ABC I = 1, 3, J = 4*22 &END

end of f90 namelist output

end of CF77 namelist output

end of program

% more fort.7
&ABC I = 1, 3, J = 4*22 &END

The namelist library routine for CF77 namelist accepts the slash as the
terminator in both UNICOS 7.0 and UNICOS 8.0.

4.2.2 List-directed I/O

Fortran 90 provides two new additions to list-directed I/O. These are the ability
to write delimited character strings during list-directed output and the ability to
use an internal file in a list-directed I/O statement.

4.2.2.1 Delimited and Undelimited Character Strings in List-directed I/O

The CF77 compiling system supports only delimited character string input to a
list-directed item that will be stored to a list item of type character. The CF77
compiling system writes only undelimited character strings from a list-directed
output list item of type character.

102 007–3694–003

Extensions and Differences [4]

4.2.2.2 List-directed I/O and Internal Files

An internal file on CF77 compiling systems can be a positive, nonzero-length
character variable or array. It cannot be a character array section.

4.2.2.3 List-directed I/O and Hollerith Constants

Fortran 90 does not support Hollerith constants in list-directed input files, but
the CF90 system provides this as an extension. Note that Hollerith data is an
outmoded feature. See Chapter 6, page 163, for information on outmoded
features and preferred alternatives.

4.2.2.4 List-directed I/O and Floating-point Zero

Fortran 90 specifies a different form of output constant for a floating-point zero
in list-directed output records. Consider the following program:

PRINT *,0.0

PRINT 1, 0.0

1 FORMAT(1X,G12.2)
END

The preceding code generates the following output under CF77 6.0:

% cft77 tt.f

% segldr tt.o

% a.out

0.
0.00E+00

It generates different output for the CF90 compiler:

% f90 tt.f

% a.out

0.E+0

0.0

4.2.3 OPENStatement

Fortran 90 provides several new specifiers for the OPENstatement and
additional values for existing specifiers. The POSITION, PAD, and ACTION
specifiers are new specifers. The RECL, STATUS, and DELIM specifiers may
have additional values. Neither the new specifiers nor the additional values to
the existing specifiers are accepted by the CF77 compiling system.

007–3694–003 103

Fortran Language Reference Manual, Volume 3

4.2.4 INQUIRE Statement

There are several new specifiers for the INQUIRE statement and additions to
existing specifiers. The new specifiers are IOLENGTH, POSITION, ACTION,
READ, WRITE, READWRITE, DELIM, and PAD. The NUMBER, RECL, and BLANK
specifiers are existing FORTRAN 77 specifiers that have some additions in
Fortran 90. Neither the new specifiers nor the additional values to the existing
specifiers are accepted by the CF77 compiling system.

4.2.5 READand WRITEStatements

The following sections explain the differences and similarities between the READ
and WRITEstatements in the CF77 compiling system and the CF90 compiler.

4.2.5.1 Differences in the G Edit Descriptor

The G edit descriptor has been expanded to be a general edit descriptor that can
read or write any data type including character, integer, and logical data.
FORTRAN 77 allows only floating-point data types.

Fortran 90 is specific about the rounding of floating-point values with the G
format. The change in rules may cause asterisks in the output field for some
floating-point values. Other values will be written as an Fw. d-formatted value
by the CF77 compiling system and as an Ew. d-formatted value by the CF90
compiler.

Consider the following code fragment:

DOUBLE PRECISION AVD, BVD, CVD

AVD = 0.0D0
WRITE(6, 1) AVD

1 FORMAT(G28.2)

END

The preceding code generates the following output under CF77 6.0:

0.00E+00

It generates different output under CF90:

0.0

104 007–3694–003

Extensions and Differences [4]

4.2.5.2 Differences in the B, O, and Z Edit Descriptors

The B, O, and Z edit descriptors are available in Fortran 90. They are limited to
integer I/O list items. The CF77 compiling system allows real and other data
types to be described with these edit descriptors. The B edit descriptor from
Fortran 90 is implemented in the CF77 compiling system.

The CF77 compiling system allows the use of signed octal and hexadecimal
values with Ow and Zw, but signed octal and hexadecimal values are not
allowed in Fortran 90. The CF90 compiler allows signed input values, but it
writes only unsigned values.

If the size of the value is less than w in Ow or Zw on output, the CF77 compiling
system pads on the left with zeros. Fortran 90 requires blank padding on the
left. If the edit descriptor Ow. m or Zw. m is used, the field must contain at least
m digits. The . m form is one way to get leading zeros with Fortran 90. If the
size of the value is greater than w in Ow or Zw on output, the CF77 compiling
system truncates the values while Fortran 90 fills the field with asterisks. The
CF90 compiler provides the Fortran 90 form of Ow and Zw output unless the file
was opened as a CF77 file.

4.2.5.3 Implied-DOVariables in an I/O List

Values of implied-DOvariables may not be relied upon when the END=, ERR=,
or IOSTAT= values indicate that the statement was not completed. Both
FORTRAN 77 and Fortran 90 indicate that these values are undefined. Some
CF77 programs may be relying on the values in these variables but these
variables may not contain the same values in a CF90 program.

4.2.6 Common Blocks and I/O

Some programs using common blocks might rely on the order of the allocation
of common blocks by the compiler and segldr (1). This order might not be the
same in the CF90 system. This affects programs using BUFFER INand
BUFFER OUTthat transfer data across multiple common blocks in a single
statement. The order of separate common blocks may not be used in a CF90
program. The SEGLDR COMMONSdirective can be used to specify an order of
common blocks for testing. Such programs should be changed to use one
common block rather than several common blocks to ensure the order and size
of a common block.

007–3694–003 105

Fortran Language Reference Manual, Volume 3

4.3 CF90 Restrictions on CF77 I/O Extensions

The ENCODE, DECODE, BUFFER IN, and BUFFER OUTstatements are CF77 I/O
extensions. The CF90 compiler does not allow array sections in ENCODEand
DECODEstatements as the source or target.

ENCODEand DECODEstatements are restricted to formatted I/O. The addition
of list-directed I/O on an internal file is not extended to these statements.

Note that ENCODEand DECODEstatements are supported as outmoded features.
See Chapter 6, page 163, for information on outmoded features and preferred
alternatives.

Array sections are not allowed in BUFFER IN and BUFFER OUTstatements in a
CF90 compilation.

4.4 CF90 and CF77 Integrated Environment Differences

The following sections describe differences in loading program units, the
assign (1) command, and the I/O environment.

4.4.1 Loading CF77 and CF90 Program Units

The f90 (1) command line allows you to do the following:

• Link .o files produced by the CF77 compiling system with the new libraries

• Compile and link FORTRAN 77 codes with the CF90 compiler

• Compile and link Fortran 90 codes

• Compile Fortran 90 code and link with .o files produced by the CF77
compiling system

When linking .o files produced by both the CF77 compiling system and the
CF90 compiler, the interaction of I/O on the following types of files can result
in some differences in format of output values for formatted I/O or in the form
of namelist output:

• A file opened by a .o file produced by the CF77 compiling system but
updated by a .o file produced by the CF90 compiler

• A file opened by a .o file produced by the CF90 compiler but updated by a
.o file produced by the CF77 compiling system

106 007–3694–003

Extensions and Differences [4]

The .o files produced by the CF90 compiler must not be loaded with default
UNICOS 7.0 libraries.

4.4.2 The assign (1) Command and the CF77 File Attribute for the CF90 Compiler

The -f 77 option on the assign (1) command allows you to specify a CF77
attribute on a per-file basis for a CF90 program unit. With this facility, a
program unit compiled with the CF90 compiler can specify that a file is to be
treated as a CF77 file. A separate program unit that is compiled by the CF77
compiling system is not needed to open the file as a CF77 file.

The following example shows the format of the option:

% assign -f 77 u:8

This form is allowed for units 5 and 6 but is ignored for the default units
attached to the asterisk unit on input and output; that is, READ(*, GROUP).

4.4.3 New I/O Environment

More data typing information is provided to the library for foreign dataset
conversion using flexible file I/O (FFIO). This information is not available for
program units compiled with the CF77 compiling system.

4.5 CF90 Extensions to Fortran 90

The following sections summarize the CF90 extensions to the Fortran 90
standard. These extensions consist, primarily, of CF77 extensions to the
FORTRAN 77 standard that are also CF90 extensions to Fortran 90. The topics
discussed are as follows:

• Source forms, character sets, and compiler directives

• Data types and constants

• DATA, COMMON, and EQUIVALENCEstatements

• Expressions and assignment

• I/O, including FORMATstatements

• Flow control and other statements

• Program units, functions, subroutines, and statement functions

007–3694–003 107

Fortran Language Reference Manual, Volume 3

• Intrinsic procedures

4.5.1 Source Forms, Character Sets, and Compiler Directives

The CF90 compiler allows the following:

• $ in identifiers but not as the first character.

• TAB character in both free and fixed forms. The Fortran Language Reference
Manual, Volume I, describes the fixed form rules for expanding TAB
characters. In free form, TAB characters are treated as blank characters.

• Fixed source form lines greater than 72 characters. By default, columns 73
through 132 are ignored. The -N col command line option extends the
source line. When -N 80 is specified, columns 1 through 80 are used. When
-N 132 is specified, columns 1 through 132 are used. Fortran 90 restricts
fixed source form lines to 72 characters.

• 99 continuation lines in fixed source form (100 total lines) and 99
continuation lines in free source form (100 total lines). Fortran 90 limits
continuation lines to 19 in fixed form and 39 in free source form.

• CDIR$ or CDIR@starting in column 1 of fixed source form to indicate
compiler directives. The CF90 compiler allows !DIR$ or !DIR@ as the first
nonblank character of a free or fixed source form line to indicate compiler
directives.

4.5.2 Data Types and Constants

The CF90 compiler allows the following Boolean (typeless) constants:

Notation Form

ddddddB Octal, where d is an octal digit

’ ddd’O and " ddd"O Octal, where d is an octal digit

X’ ddd’ and X" ddd" Hexadecimal, where d is a hexadecimal digit

’ ddd’X and " ddd"X Hexadecimal, where d is a hexadecimal digit

nH... , nL... , nR... ,
’...’H , ’...’L ,
’...’R , "..."H ,
"..."L , and "..."R

Hollerith constant. Note that Hollerith data is an
outmoded feature. See Chapter 6, page 163, for
information on outmoded features and preferred
alternatives.

Variables cannot be declared to be Boolean (typeless) type.

108 007–3694–003

Extensions and Differences [4]

The CF90 compiler allows the following BOZconstants in places other than DATA
statements. The CF77 compiling system treated these as integer constants. The
CF90 compiler treats these as typeless constants. If they are assigned to a real
variable in the CF77 compiling system, type conversion will occur. If they are
assigned to a real variable in the CF90 compiler, no type conversion will occur.

• B’ bbb’

• O’ ooo’

• Z’ zzz’

• B" bbb"

• O"ooo"

• Z" zzz"

The CF90 compiler supports Cray pointer and Cray character pointer types, as
well as Fortran 90 pointers. Cray pointers and Cray character pointer types
cannot be components of derived data types. Cray pointers cannot have
derived types as pointees.

The CF90 compiler supports the following data type declaration forms in type
declaration statements, FUNCTIONstatements, and IMPLICIT statements:

• Integer data type declaration forms:

– INTEGER*1

– INTEGER*2

– INTEGER*4

– INTEGER*8

• Real data type declaration forms:

– REAL*4

– REAL*8

• Complex data type declaration forms:

– COMPLEX*8

– COMPLEX*16

• Logical data type declaration forms:

007–3694–003 109

Fortran Language Reference Manual, Volume 3

– LOGICAL*1

– LOGICAL*2

– LOGICAL*4

– LOGICAL*8

Note that the * form for declaration statements is supported as an outmoded
feature. See Chapter 6, page 163, for information on outmoded features and
preferred alternatives. For more information on the type declaration forms, see
the Fortran Language Reference Manual, Volume I.

The CF90 compiler allows .T. and .F. as alternate forms for logical constants
.TRUE. and .FALSE. , respectively. This is true only if .T. and .F. have not
been defined as defined operators.

The CF90 compiler allows the DOUBLE COMPLEXstatement. For information on
the DOUBLE COMPLEXstatement when -d p is specified on the f90 (1)
command line, see Section 6.9, page 178, and the f90 (1) man page. Note that the
DOUBLE COMPLEXstatement is supported as an outmoded feature. See Chapter
6, page 163, for information on outmoded features and preferred alternatives.

The CF90 compiler allows named constants in a complex constant.

The CF90 compiler allows double-precision data items to be treated as real
through use of the -d p command line option. This allows double-precision
objects to map to real and double complex objects to map to complex. This also
causes double precision and double complex intrinsics to map to their
corresponding real and complex intrinsics. When -d p was used with the CF77
compiling system, objects declared as REAL*16 or DOUBLE PRECISION*16
became single precision reals. They remain double precision with the CF90
compiler. Note that the DOUBLE PRECISIONkeyword is supported as an
outmoded feature. See Chapter 6, page 163, for information on outmoded
features and preferred alternatives.

The CF90 compiler allows a character constant or Hollerith to be used in a
context in which character constants are not allowed. Character and Hollerith
constants are allowed in arithmetic and logical expressions, and in assignment
statements where the left side of the equal sign is an entity of type integer or
real. Note that Hollerith data is an outmoded feature. See Chapter 6, page 163,
for information on outmoded features and preferred alternatives.

110 007–3694–003

Extensions and Differences [4]

4.5.3 Declaring Attributes, COMMON, DATA, EQUIVALENCE, SAVE, FUNCTION, and SUBROUTINE
Statements

The CF90 compiler allows the following:

• The SUBROUTINEand FUNCTIONstatements accept the PUREand
ELEMENTALprefixes.

• More than one SAVEstatement in a scoping unit when a SAVEstatement
without an entity list appears.

• Multiple initialization of entities in DATAstatements. It is indeterminate as
to which of the values assigned to the variable is the final value.

• A noncharacter array to be filled with character data in a DATAstatement.

• Objects in common can be initialized with DATAstatements in program units
other than BLOCK DATAprogram units. It is recommended that you use
BLOCK DATAprogram units to initialize common blocks. It is acceptable to
initialize common blocks in a single compilation unit.

• The same named common block can be specified in more than one
BLOCK DATAprogram unit.

• A single Hollerith or character constant value can be used to initialize
multiple elements of an integer or single-precision real array in a DATA
statement.

• An array in a DATAstatement can be partially initialized if it is the last
variable in the variable list. (Fortran 90 requires the number of entities in
the variable list to match the number of constants in the constant list.)

• Character and noncharacter data objects can be equivalenced.

• The TASK COMMONstatement. This statement is not allowed in modules,
contained procedures, or interface bodies.

• Common blocks with the same name can be different sizes. Fortran 90
requires the size of named common blocks with the same name to be the
same size in all scoping units of the executable program.

• The CF90 compiler treats all common block variables as having the SAVE
attribute, which results in such variables remaining defined at execution of a
RETURNor END. Fortran 90 specifies that variables in a named common
block become undefined at execution of a RETURNor ENDstatement, unless
the named common block is in at least one scoping unit making a direct or
indirect reference to the subprogram.

007–3694–003 111

Fortran Language Reference Manual, Volume 3

• The CF90 compiler does not enforce the requirement that a named common
block must appear in a SAVEstatement in each scoping unit in which it
appears, if it is in a SAVEstatement in any scoping unit.

• User-defined external functions can be used in dimension bounds
expressions for variably dimensioned arrays and for automatic arrays.
Module procedure (function) references and internal function references are
not allowed in dimension bounds expressions.

• A local variable that does not have the SAVEattribute can be given the
AUTOMATICattribute in a type specification statement or in an AUTOMATIC
statement.

4.5.4 Expressions and Assignments

The CF90 compiler allows the following with regard to expressions and
assignment:

• An array reference with fewer subscript expressions than the rank of the
array. The lower bound is assumed for each missing subscript. Fortran 90
requires that the number of subscript expressions match the rank of the array.

• Masking expressions in which a bitwise logical operator operates on bits
within an integer, single-precision real, Cray pointer, or Boolean value and
generates a Boolean result type. If a user-defined interface defines one of
these operators for these data types, the intrinsic definition is overridden for
those types.

• .N. , .A. , .O. , .X. , and .XOR. logical operators as alternate forms for
.NOT. , .AND. , .OR. , and .NEQV. , respectively, when these forms have not
been defined as a defined operator.

If you declare a dot operator or logical literal constant to be a defined
operator, the extension is not allowed.

Example:

INTERFACE OPERATOR(.A.)

FUNCTION a_op(l, r)

LOGICAL a_op

INTEGER, INTENT(IN) :: l
REAL, INTENT(IN) :: r

END FUNCTION

END INTERFACE

112 007–3694–003

Extensions and Differences [4]

.A. is a defined operator, so it cannot be used as an abbreviation for .AND. .

• The functional forms COMPL(a) , AND(a, b) , OR(a, b) , XOR(a, b) ,
NEQV(a, b) , and EQV(a, b) as replacements for logical operators. Fortran 90
does not recognize these forms as intrinsic functions. Note that the COMPL
and ANDforms are supported as outmoded features. See Chapter 6, page
163, for information on outmoded features and preferred alternatives.

• Complex and double-precision types to be mixed in exponentiation
operations.

• The intrinsic functions LLE(3I), LLT(3I), LGE(3I), and LGT(3I) to be passed as
actual arguments.

• Redundant parentheses in expressions.

4.5.5 I/O, Including FORMATStatements

The CF90 compiler allows the following with regard to FORMATstatements and
I/O:

• The BUFFER IN and BUFFER OUTI/O statements.

• The ENCODEand DECODEI/O statements. Note that the ENCODEand
DECODEstatements are supported as outmoded features. See Chapter 6,
page 163, for information on outmoded features and preferred alternatives.

• A repeat count before the slash (/) edit descriptor. Fortran 90 classifies the
slash edit descriptor as nonrepeatable.

• The Dw. dEe form of edit descriptor D.

• The asterisk (*) characters to delimit character strings in a format. Note that
this practice is supported as an outmoded feature. See Chapter 6, page 163,
for information on outmoded features and preferred alternatives.

• Empty parentheses groups in a format descriptor.

• The Rw and $ edit descriptors. Note that the Rw edit descriptor is supported
as an outmoded feature. See Chapter 6, page 163, for information on
outmoded features and preferred alternatives.

• A negative n in the nX edit descriptor.

• A comma to precede a right parenthesis in a format descriptor.

007–3694–003 113

Fortran Language Reference Manual, Volume 3

• A file identifier in a control information list on an I/O statement to be a
Hollerith string of characters enclosed in single quote or quotation marks.
Fortran 90 does not provide for external file identifiers. The CF90 compiler
allows file identifiers to be used in place of unit identifiers.

• A format identifier on an I/O statement to be the name of an array of type
integer, real, or logical.

• An I/O statement to contain a specifier that is a character expression
involving concatenation of a character entity with length declared (*).

• An assumed-size array to be an internal file.

• A WRITEstatement with no unit specifier. The syntax for a WRITEstatement
can look like that of the PRINT statement.

• NAMELIST statements to be mixed in with executable statements. All
references to the NAMELISTgroup name must follow all definitions of the
NAMELISTgroup name.

The CF90 compiler requires commas in a format list only between two adjacent
digits belonging to different list items, between two adjacent quotes or
apostrophes of separate edit descriptors, and after a D, E, or G descriptor that
precedes an E descriptor. Fortran 90 allows the comma to be optional only in
the following cases: before or after a slash or colon descriptor and immediately
following an F, E, D, or G edit descriptor.

Example. The following program shows the use of - n X, the quoted string, and
the use of asterisks to delimit a string in a format:

A = 1.0

B = 2.0

C = 3.0

WRITE(6,1) A,B,C
1 FORMAT(2X,-1X,"QUOTESTRING",F8.2,1/,* ASTERSTRING*,

+ F8.2,2/,10X,-5X,’APOSTSTRING’,F8.2)

END

The output is as follows:

> QUOTESTRING 1.00
> ASTERSTRING 2.00

>

>

> APOSTSTRING 3.00

114 007–3694–003

Extensions and Differences [4]

In this example, note that the use of - n X is supported as an outmoded feature.
See Chapter 6, page 163, for information on outmoded features and preferred
alternatives.

4.5.6 Flow Control and Other Statements

The CF90 compiler allows the STOPstatement and PAUSEstatement stop code
to be an unsigned integer, character constant (the maximum is 80 characters), a
character variable, a character array element, or a character function. Fortran 90
requires the stop code to be a scalar_char_constant or 1 to 5 digits.

The CF90 compiler allows transfer of control into a DOor IF block; this allows
for extended-range DOloops. The CF90 compiler also supports a command line
option that forces at least one execution of DOloops.

4.5.7 Program Units, Functions, Subroutines, and Statement Functions

The CF90 compiler allows a parenthesized list following the program name in a
PROGRAMstatement. The list is ignored.

The CF90 compiler allows up to 26 unnamed BLOCK DATAprogram units in an
executable program. Fortran 90 allows only one such program unit.

The CF90 compiler accepts the PUREand ELEMENTALprefixes as attributes on
the SUBROUTINEand FUNCTIONstatements.

Fortran 90 provides a RESULTvariable specifier for direct recursive functions to
distinguish between a reference to the function result variable and a reference
to the function. The CF90 compiler allows use of the same name for references
to the function result variable and the function itself, and distinguishes between
them by the form of reference. This is allowed only for a function with a scalar
result of type real, logical, integer, double precision, complex, or character. The
RECURSIVEattribute must also be specified for the function name.

4.5.8 Call by Value

The CF90 compiler allows the %VALintrinsic function for passing arguments by
value. Typically, the CF90 compiler passes arguments by passing the address of
the argument instead of the value of the argument. %VALtells the compiler to
pass the value instead of the address.

The %VALintrinsic can be used only within an actual argument list of a function
or subroutine call. It cannot be used as an argument to an overloaded operator.

007–3694–003 115

Fortran Language Reference Manual, Volume 3

Because of the ambiguity of the %character, %VALis not recognized outside of
its allowed context.

The format for this intrinsic function is as follows:

i = c_function(%VAL(k))

The %VALintrinsic function cannot be used as an argument to a Fortran 90
procedure.

4.5.9 Intrinsic Procedures

The CF90 compiler supports several intrinsic procedures, all of which are
functions, as extensions to the Fortran 90 standard. Some of these are
outmoded. Some do not work on all platforms supported by the CF90 compiler.
Chapter 6, page 163, lists the outmoded intrinsics and the recommended
standard alternatives.

The Fortran Language Reference Manual, Volume II, and the Intrinsic Procedures
Reference Manual, describe the intrinsic procedures in more detail. The Intrinsic
Procedures Reference Manual, also contains copies of the online man pages that
describe each intrinsic procedure. See the man pages in that manual for more
information on the intrinsic procedures implemented as extensions to the
Fortran 90 standard.

The MAX(3) and MIN(3) intrinsics, as implemented by the CF90 and MIPSpro 7
Fortran 90 compilers, accept arguments that must be of the same data type but
can have differing kind types.

4.6 CF90 and CF77 Implementation Differences

The following sections describe implementation differences with regard to the
bit matrix multiply (BMM) intrinsic functions and between various other
miscellaneous features.

4.6.1 BMM Intrinsic Function Differences (UNICOS Systems Only)

The following sections describe aspects of using the BMM intrinsics with regard
to integer types, integer constants, and vectorization.

116 007–3694–003

Extensions and Differences [4]

4.6.1.1 Integer Types

The CF90 compiler is more restrictive than the CF77 compiling system when it
comes to integer types. Because of this, some programs written for BMM
operations using the CF77 compiling system either do not compile cleanly or do
not run identically with the CF90 compiler due to the stricter integer precision
requirements.

To force 64-bit precision with the CF90 compiler, declare bit matrix arrays to be
INTEGER(KIND=8) . Alternatively, you can use the f90 (1) command line’s
-s default64 option to force all integer arithmetic to be performed using 64
bits, but this is discouraged because it is a global change and can degrade
performance significantly.

4.6.1.2 Integer Constants

Default-sized integer constants used in logical operations do not guarantee a
full 64 bits of precision because -O fastint is on by default on the f90 (1)
command line. To make integer constants 64-bits wide, you have to convert
them to the proper type. There are two ways to do this:

• With the two-argument form of the INT (3) intrinsic:
ISHFT(INT(-1,8),AMOUNT)

• By including the kind value in the constant itself: ISHFT(-1_8,AMOUNT)

Without this conversion, you receive only the lower 46 bits of the expression in
the result by default.

4.6.1.3 Vectorization

The CF90 compiler does not require vectorization to be enabled for most simple
array syntax statements to have vector code generated for them. Applications
that use array syntax statements for BMM operations exclusively can usually be
compiled with optimization disabled. However, vectorization of array syntax
with optimization disabled is neither guaranteed or optimal.

4.6.2 Miscellaneous Differences

The following paragraphs describe miscellaneous differences between using the
CF77 compiling system and the CF90 compiler.

• The CF77 compiling system allows assumed-size character dummy
procedures. The CF90 compiler does not allow this.

007–3694–003 117

Fortran Language Reference Manual, Volume 3

• Because of the Fortran 90 rules of type conformance, the CF90 compiler
might be more restrictive than the CF77 compiling system with regard to
intrinsic assignment.

• The CF77 compiling system allowed COMPLEX*4. No other vendor appears
to allow this. The CF90 compiler does not allow it, but it allows
COMPLEX(KIND=4), which is equivalent to COMPLEX*8. Note that the *
form for declaration statements is supported as an outmoded feature. See
Chapter 6, page 163, for information on outmoded features and preferred
alternatives.

• The CF90 compiler requires the RECURSIVEkeyword for recursive routines.
The following code compiles without error with the CF77 compiling system,
but an error is generated when compiled with the CF90 compiler. The CF90
treatment of this code complies with the Fortran 90 standard, and it allows
the compiler to diagnose accidental causes of recursion:

INTEGER FUNCTION I()
I = I() + 1

END

• Unlike the CF77 compiling system, the CF90 compiler generates a
compile-time error when an IMPLICIT statement follows a PARAMETER
statement if the information on the IMPLICIT statement contradicts the type
of the named constant, as in the following example:

PARAMETER(A=1)

IMPLICIT INTEGER(A-Z)

PRINT *, A
END

The CF90 treatment of this code is consistent with the Fortran 90 standard,
and it avoids potential ambiguities.

• Treatment of BOZ and typeless constants is different between the CF77
compiling system and the CF90 compiler in DATAstatements. Consider the
following code fragment:

COMPLEX C1, C2

REAL R1, R2

DATA C1 /O’77’/
DATA C2 /Z’10’/

DATA R1 /X’77’/

DATA R2 /77B/

118 007–3694–003

Extensions and Differences [4]

PRINT *, C1, C2, R1, R2
END

The CF77 compiler produces no diagnostic messages at compile time for the
preceding code. Execution results in the following:

% a.out

(63.,0.), (16.,0.), 0.E+0, 0.E+0

The CF90 compiler generates a compile-time message for each DATA
statement. The CF90 treatment of this code is consistent with the Fortran 90
standard and is more consistent than the CF77 compiling system in handling
constants.

• When the value of an expression depends on the order of evaluation, and
the order of evaluation is processor dependent, the CF90 compiler and the
CF77 compiling system may evaluate the items in a different order. This can
lead to differences in the generated output. The following example code
contains such expressions:

PROGRAM CPROP

RBIG = 1.2E+83

! Use of variable in expression
R20 = RBIG - 1.2E+83 + 20

PRINT *, "Expected: 20"

PRINT *, "Received: ", R20

! Use of all constants in expression

R20 = 1.2E+83 - 1.2E+83 + 20
PRINT *, "Expected: 20"

PRINT *, "Received: ", R20

END

The expression 1.2E+83 - 1.2E+83 + 20 can yield different answers
depending on whether the - or + operation is evaluated first. This is due to
the large difference in magnitude of the operands and the fixed precision of
the machine. The order of evaluation in these expressions is processor
dependent, according to the Fortran 90 standard. The CF90 compiler
evaluates the operators of the first expression in a different order from the
CF77 compiling system. It also evaluates the operators of the second
expression in a different order from the order it evaluates the first
expression due to the different syntax.

007–3694–003 119

Fortran Language Reference Manual, Volume 3

• FORTRAN 77 provided one precision of integer, complex and logical data
and two precisions of real data. Fortran 90 allows an implementation to
have any number of precisions for these data types. Many vendors provided
additional precisions as an extension to their FORTRAN 77 implementations
through the type* byte_count form of declaration. The CF77 compiling system
accepted these extensions, but it mapped them onto the basic types required
by the FORTRAN 77 standard. The CF90 compiler, like the CF77 compiling
system, accepts this syntax but treats these additional data types as distinct
types. This is done to allow for unambiguous resolution of procedure
interfaces, overloaded operators, and user defined generics. Because of this
difference between the CF77 compiling system and the CF90 compiler, some
CF77 programs that employ the type* byte_count syntax may not be accepted
by the CF90 compiler. These differences occur in the definition and use of
statement functions. For example:

REAL*4 X

STMT_FUNC(R) = R + 1.0 ! Statement function

! definition. . .

X = STMT_FUNC(X)

The preceding program fragment would compile without error with the
CF77 compiling system. On a platform where the default real kind is 8, the
CF90 compiler issues an error for the statement function use because the
statement function is defined with a default real argument but is passed a
nondefault real actual argument. You can use the -s cf77types option on
the f90 (1) command line to avoid receiving this error message. Note that
the * form for declaration statements is supported as an outmoded feature.
See Chapter 6, page 163, for information on outmoded features and
preferred alternatives.

• The CF77 compiling system and the CF90 compiler differ in the way
overindexed code is handled.

The CF77 compiling system permitted constructs such as the following:

SUBROUTINE (A, N)

DIMENSION A(20, 400)

DO I = 1,N
A(I) = . . .

END DO

The CF90 compiler does not overindex if the leading dimension is known.
Use the -O overindex option on the f90 (1) command if you want to
overindex an array. For more information on the f90 (1) command, see the
CF90 Commands and Directives Reference Manual.

120 007–3694–003

Data Representation and Storage [5]

This chapter shows how different data types are represented in storage and
describes how the CF90 and MIPSpro 7 Fortran 90 compilers use storage.

Numbers shown on the formats are bit positions, which represent powers of 2
in binary notation. Code that depends on internal representation is not portable
and might not conform with the Fortran 90 standard.

Note: Storage words are represented here with bits counted from the right,
making bit 0 the low-order bit and bit 31 or 63 the high-order bit. This agrees
with the convention used in the integer-type bit functions as well as the
convention used in Cray Research hardware documentation. It does not agree
with some conventions used in other Cray Research software documentation.

This chapter describes the machine representation of data. The last sections in
this chapter describe storage issues, including overindexing.

5.1 Data Representation for UNICOS Systems

The following sections describe the representation of data on UNICOS systems,
including CRAY T90 systems that support Cray floating-point arithmetic. These
subsections do not describe data representation on CRAY T90 systems that
support IEEE floating-point arithmetic. For information pertaining to CRAY T90
systems that support IEEE floating-point arithmetic, see Section 5.4, page 146.

5.1.1 Integer Type

All integer data is 64 bits (KIND=8), 2’s complement.

When slower integer operations (f90 -O nofastint) are in effect, the range
for INTEGER(KIND=8) operations is –263 < I < 263 or approximately
–1018 < I < 1018.

When fast integer operations (f90 -O fastint) are in effect, which is the
default, the range for INTEGER(KIND=8) operations is –246 < I < 246 or
approximately –1013 < I < 1013.

007–3694–003 121

Fortran Language Reference Manual, Volume 3

63

Sign Integer

0

a10773

Figure 1. Default 64-bit integers

63

SignIgnored

05253

a10774

Figure 2. Fast integer operations with INTEGER(KIND=8) , CRAY T90 systems

63 04647

a11339

Figure 3. Fast integer operations with INTEGER(KIND=8) , UNICOS systems
(except CRAY T90 systems)

To declare an entity to be of type integer, specify one of the following:

• KIND=1, KIND=2, KIND=4, or KIND=8.

• KIND=KIND(kind_expr) , where kind_expr is a scalar initialization expression
with a kind type parameter that evaluates to 1, 2, 4, or 8.

5.1.2 Real Type

Real (floating-point) numbers are represented in a packed representation of a
binary mantissa and an exponent (power of 2). The bits in a Cray word are
used to represent a real number as follows:

122 007–3694–003

Data Representation and Storage [5]

63 48 47 0Exponent Mantissa

Exponent sign

Mantissa sign

Assumed binary point

a10775

Figure 4. Real type

Notes on real data type representation:

The exponent is a power of 2, represented by a number that is 400008 higher
than the actual value; this is called a bias. The effect of the bias is that the
second bit in the word serves as the exponent’s sign bit. This bit’s usage is the
inverse of the mantissa’s sign bit, as follows:

Bit Applies to 1 value indicates

63 Mantissa Negative

62 Exponent Positive

The exponent is represented by the second through sixth digits in an octal
printout; these digits have the range 40000 through 577768 for a positive
exponent, and 37777 through 200038 for a negative exponent.

When the bias is accounted for, the range of all exponents is as follows (notice
the negative range is one smaller):

• 2–17775 to 217776 (octal)

or

• 2–8189 to 28190 (decimal)

The mantissa is a 48-bit signed fraction. The sign of the mantissa is separated
from the rest of the mantissa as shown in the preceding diagram. The mantissa
is not complemented for negative values. That is, the mantissa for –10.0 is the
same as for +10.0.

In terms of decimal values, the floating-point format of the CPU allows
representation of numbers to about 15 significant decimal digits in the
following approximate decimal range:

007–3694–003 123

Fortran Language Reference Manual, Volume 3

.367 � 10–2465 < R < .273 � 10 2466

A zero value is not biased and is represented as a word of all zeros.

Following are some sample numbers as represented within memory:

Decimal Octal Hexadecimal

10.0 040004500000000000000 4004A00000000000

–10.0 140004500000000000000 C004A00000000000

0.1 0377756314631463146315 3FFDCCCCCCCCCCCD

–0.1 1377756314631463146315 BFFDCCCCCCCCCCCD

0100000000000100101000

Bit 47 a10776

Figure 5. Binary version of 10.0

The leftmost bit, with a 0 value, indicates a positive mantissa; that is, the real
value is positive. The next bit, set to 1, is the sign bit of the exponent,
indicating a positive exponent value; that is, the absolute value of the number is
1.0 or greater. The value 4 in the exponent (100 appearing to the left of bit 47)
means that the binary fraction in the mantissa is multiplied by 24 (or, to express
it another way, the binary point is moved 4 bits to the right from the highest bit
of the mantissa.) Interpreted in this way, the first 4 digits of the mantissa, 1010,
indicate the real decimal value 10.0. You can display other values by printing
them with formats O22, Z16 , or B64.

To declare an entity to be of type real, specify one of the following:

• KIND=4, KIND=8

• KIND=KIND(kind_expr) , where kind_expr is a scalar initialization expression
with a kind type parameter that evaluates to 4 or 8

Note that a real data object with KIND=4 has the same internal representation
as a real data object with KIND=8. Numeric inquiry functions on a real data
object with KIND=4 return different values than on a real data object with

124 007–3694–003

Data Representation and Storage [5]

KIND=8 . A numeric operation on a real data object with KIND=4 returns the
same result as the same numeric operation on a real data object with KIND=8.

5.1.2.1 Normalized Floating-point Numbers

A nonzero, floating-point number is normalized if the most significant bit of the
mantissa is nonzero. This condition implies that the mantissa has been shifted
as far left as possible and the exponent adjusted accordingly. Therefore, the
floating-point number has no leading zeros in the mantissa. The exception is
that a normalized floating-point zero is all zeros.

When your program creates a floating-point number by inserting an exponent
of 400608 into a KIND=8 integer word, you should normalize the result before
using it in a floating-point operation. To do this, add the unnormalized
floating-point operand to 0. Compiler optimization suppresses an operation
such as X=X+0. You can perform it with code such as the following:

DATA REALZERO /0./

X = X + REALZERO

5.1.3 Double-precision Type

A double-precision value is represented by 2 words. The first has the same
format as the real type. The second word uses bits 0 through 47 as 48
additional bits of the mantissa. The other 16 bits of the second word must be
zeros. Double-precision numbers can be in the following range:

• 2–8188 ≤ R < 28189

or approximately

• .367 � 10–2465 < R < .273 � 102466

63 48 47 0Exponent Mantissa, high-order bits

Exponent sign

Mantissa sign

0000000000000000000

Mantissa, low-order bits

a10777

Figure 6. Double-precision type

007–3694–003 125

Fortran Language Reference Manual, Volume 3

To declare an entity to be of type double precision, specify one of the following:

• REAL(KIND=16) .

• REAL(KIND=KIND(kind_expr)) , where kind_expr is a scalar initialization
expression with a kind type parameter that evaluates to 16.

5.1.4 Single-precision Complex Type

A single-precision complex value is represented by 2 words, each of which has
the same format as the real type. The first word represents the real part, and
the second represents the imaginary part. Each word has the same range as a
real value.

63 48 47 0Exponent Mantissa

Exponent sign

Mantissa sign

Real

Exponent sign

Mantissa sign

Imaginary

a10778

Figure 7. Single-precision complex type

To declare an entity to be of single-precision complex type, specify one of the
following:

• KIND=4 or KIND=8.

• KIND=KIND(kind_expr) , where kind_expr is a scalar initialization expression
that evaluates to 4 or 8.

Note that a complex data object with KIND=4 has the same internal
representation as a complex data object with KIND=8. Note that a complex data
object with KIND=4 has the same internal representation as a complex data
object with KIND=8. Numeric inquiry functions on a complex data object with
KIND=4 return different values than on a complex data object with KIND=8. A
numeric operation on a complex data object with KIND=4 returns the same
result as the same numeric operation on a complex data object with KIND=8.

126 007–3694–003

Data Representation and Storage [5]

5.1.5 Double-precision Complex Type

Values of double precision complex type are represented by 4 words. The first 2
words are the real part, and the last 2 words are the imaginary part. The real
part and the imaginary part each have the same range as a double precision
value.

63 48 47 0Exponent

Exponent sign

Mantissa sign

000000000000000000

Mantissa, high-order bits

Mantissa, low-order bits

a10779

Figure 8. Double-precision complex type (real portion)

63 48 47 0Exponent

Exponent sign

Mantissa sign

000000000000000000

Mantissa, high-order bits

Mantissa, low-order bits

a10780

Figure 9. Double-precision complex type (imaginary portion)

To declare an entity to be of double-precision complex type, specify one of the
following:

• KIND=16 .

• KIND=KIND(kind_expr) , where kind_expr is a scalar initialization expression
with a kind type parameter that evaluates to 16.

5.1.6 Character Type

Characters are represented by 8-bit ASCII codes packed eight per word.

007–3694–003 127

Fortran Language Reference Manual, Volume 3

63 55 47 39 31 23 15 7 0

a10781

Figure 10. Character type

The CF90 compiler does not support a nondefault character type. The only kind
value supported is 1.

5.1.7 Logical Type

A logical variable uses one 64-bit Cray Research word. Its value is true if the
numeric value in the word is negative (typically, –1), and it is false if the
numeric value in the word is nonnegative (typically, 0).

Note: Cray Research does not guarantee a particular internal representation
of logical values on any machine or system; the CF90 compiler is designed on
the assumption that logical values will be used only as described in the
Fortran 90 standard. Therefore, it is not good programming practice to
exploit gaps in type checking, such as between a function reference and its
function value, to use logical values as numbers or vice versa.

To declare an entity to be of logical type, you can specify one of the following:

• KIND=1, KIND=2, KIND=4, or KIND=8.

• KIND=KIND(kind_expr) , where kind_expr is a scalar initialization expression
with a kind type parameter that evaluates to 1, 2, 4, or 8.

Note that logical entities with KIND=1, KIND=2, KIND=4, and KIND=8 all
occupy 64 bits.

5.1.8 Cray Character Pointers

Cray character pointers include a word address, bit offset, and bit length field.

63 32 31

Length Address

058 57

Offset
a10782

Figure 11. 32-bit addressing for UNICOS systems (except CRAY T90 systems)

128 007–3694–003

Data Representation and Storage [5]

31

Address

026 25

Offset

31

Length

0

a10783

Figure 12. 32-bit addressing for CRAY T90 systems

5.2 Data Representation for IRIX systems

The following sections describe the representation of data on IRIX systems.

Note: On IRIX systems, KIND=4 values are stored in 32 bits and can be
packed two per word.

5.2.1 Integer Type

The following sections describe integer data representation of KIND=1, 2, 4, and
8 on IRIX systems.

5.2.1.1 KIND=1

Range: –27 < I < 27 or approximately –102 < I < 102

067

a11340

Figure 13. INTEGER(KIND=1) on IRIX systems

To declare 8-bit integers, specify one of the following:

• KIND=1.

• KIND=KIND(kind_expr) , where kind_expr is a scalar initialization expression
with a kind type parameter that evaluates to 1.

007–3694–003 129

Fortran Language Reference Manual, Volume 3

5.2.1.2 KIND=2

Range: –215 < I < 215 or approximately –104 < I < 104

01415

a11341

Figure 14. INTEGER(KIND=2) on IRIX systems

To declare 16-bit integers, specify one of the following:

• KIND=2.

• KIND=KIND(kind_expr) , where kind_expr is a scalar initialization expression
with a kind type parameter that evaluates to 2.

5.2.1.3 KIND=4

Range: –231 < I < 231 or approximately –109 < I < 109

31 30

Sign Integer

0

a10784

Figure 15. INTEGER(KIND=4) on IRIX systems

To declare 32-bit integers, specify one of the following:

• KIND=4.

• KIND=KIND(kind_expr) , where kind_expr is a scalar initialization expression
with a kind type parameter that evaluates to 4.

5.2.1.4 KIND=8

Range: –263 < I < 263 or approximately –1018 < I < 1018

130 007–3694–003

Data Representation and Storage [5]

31

Sign Integer

0310

Word 1 Word 2
a10785

Figure 16. INTEGER(KIND=8) on IRIX systems

To declare 64-bit integers, specify one of the following:

• KIND=8.

• KIND=KIND(kind_expr) , where kind_expr is a scalar initialization expression
with a kind type parameter that evaluates to 8.

5.2.2 Real Type

The following sections describe real data representation of KIND= 4, 8, and 16
on IRIX systems. Real (floating-point) numbers are represented in a packed
representation of a sign, an exponent (power of 2), and a binary mantissa.

5.2.2.1 KIND=4

Range: –2–125 ≤ I < 2128 or approximately –10–38 ≤ I < 1038

31 30 23 22 0Exponent Mantissa

Mantissa sign Assumed binary point
a10786

Figure 17. REAL(KIND=4) on IRIX systems

To declare 32-bit reals, specify one of the following:

• KIND=4.

• KIND=KIND(kind_expr) , where kind_expr is a scalar initialization expression
with a kind type parameter that evaluates to 4.

Notes on real data type representation:

007–3694–003 131

Fortran Language Reference Manual, Volume 3

The exponent is a power of 2, represented by a number that is 1778 higher than
the actual value; this is called a bias. The effect of the bias is that the second bit
in the word serves as the exponent’s sign bit. This bit’s usage is the inverse of
the mantissa’s sign bit, as follows:

Bit Applies to 1 value indicates

31 Mantissa Negative

30 Exponent Positive (> 0)

The exponent is represented by the second through ninth digits in a binary
printout; these digits have the range 011111112 through 111111102 for a positive
exponent, and 000000002 through 011111102 for a negative exponent.

When the bias is accounted for, the range of all exponents is as follows:

• 2–177 to 2177 (octal)

or

• 2–127 to 2127 (decimal)

The mantissa is a 24-bit fraction with an assumed leading 1; that is, the leading
1 is not stored. The only exception is for the value 0, which has an assumed
leading 0. The sign of the mantissa is separated from the rest of the mantissa as
shown in the preceding diagram. The mantissa is not complemented for
negative values. That is, the mantissa for –10.0 is the same as for +10.0.

In terms of decimal values, the 32-bit floating-point format allows
representation of numbers to about 7 significant decimal digits in the following
approximate decimal range:

1.18 � 10–38 < R < 3.4 � 1038

A zero value is not biased and is represented as a word of all zeros.

The following are some sample numbers as represented within memory:

Decimal Octal Hexadecimal

10.0 010110000000 41200000

–10.0 030110000000 C1200000

132 007–3694–003

Data Representation and Storage [5]

Decimal Octal Hexadecimal

0.1 007563146315 3DCCCCCD

–0.1 027563146315 BDCCCCCD

01000001001000000000000000000000

Bit 22
a10787

Figure 18. Binary version of 10.0

The leftmost bit, with a 0 value, indicates a positive mantissa; that is, the real
value is positive. The next 8 bits (10000010, or decimal 130) are the exponent.
Subtracting the bias of 127 yields an exponent of 3, meaning that the binary
fraction in the mantissa is multiplied by 23. To express it another way, the binary
point is moved 3 bits to the right from the mantissa’s highest bit. Interpreted
this way, the first 4 bits of the mantissa, [1]010, indicate the real decimal value
10.0 (remember that there is an assumed 1 to the left of the mantissa in the
IEEE floating-point format with a binary point to its immediate right). You can
display other values by printing them with formats O11, Z8, or B32.

5.2.2.2 KIND=8

Double precision, REAL(KIND=8) , values are represented in 2 words on IRIX
systems.

Range: –2–1021 ≤ I < 21024 or approximately –10–308 ≤ I < 10308

31 30 20 19 0 31 0

0Mantissa (52)

Mantissa sign (1)

Exponent (11)

Word 1 Word 2
a10788

Figure 19. REAL(KIND=8) on IRIX systems

007–3694–003 133

Fortran Language Reference Manual, Volume 3

To declare 64-bit reals, specify one of the following:

• KIND=8.

• KIND=KIND(kind_expr) , where kind_expr is a scalar initialization expression
with a kind type parameter that evaluates to 8.

5.2.2.3 KIND=16

Quad precision, REAL(KIND=16) , values are represented in 4 words on IRIX
systems. For more information on quad precision representation IRIX systems,
see math (3M).

Range: –2–967 ≤ I < 21023 or approximately –10–292 ≤ I < 10308

31 30 20 19 0 31 0

0Mantissa (52)

Mantissa sign (1)

Exponent (11)

Word 1 Word 2

31 0 31 0

0Mantissa (52)

Word 3 Word 4
a10789

30 20 19

Figure 20. REAL(KIND=16) on IRIX systems

To declare 128-bit reals, specify one of the following:

• KIND=16 .

• KIND=KIND(kind_expr) , where kind_expr is a scalar initialization expression
with a kind type parameter that evaluates to 16.

134 007–3694–003

Data Representation and Storage [5]

5.2.3 Complex Type

The following sections describe complex data representation of KIND=4, 8, and
16 on IRIX systems. A complex value has two parts. The first part represents
the real part, and the second represents the imaginary part. Each word has the
same range as a real value.

5.2.3.1 KIND=4

A single-precision, KIND=4, complex value is represented by 2 words. The first
word represents the real part, and the second represents the imaginary part.
Each word has the same range as a real value.

Range: –2–125 ≤ I < 2128 or approximately –1038 ≤ I < 1038

31 30 23 22 0Exponent Mantissa

Mantissa sign Assumed binary point
a10790

Figure 21. COMPLEX(KIND=4) on IRIX systems (real portion)

31 30 23 22 0Exponent Mantissa

Mantissa sign Assumed binary point
a10791

Figure 22. COMPLEX(KIND=4) on IRIX systems (imaginary portion)

To declare an entity to be of single-precision, complex type, specify one of the
following:

• KIND=4.

• KIND=KIND(kind_expr) , where kind_expr is a scalar initialization expression
with a kind type parameter that evaluates to 4.

007–3694–003 135

Fortran Language Reference Manual, Volume 3

5.2.3.2 KIND=8

A double-precision, KIND=8, complex value is represented by 4 words. The first
2 words represent the real part, and the second 2 words represent the imaginary
part. Each word has the same range as a real value.

Range: –2–1021 ≤ I < 21024 or approximately –10308 ≤ I < 10308

31 30 20 19 0 31 0

0Mantissa (52)

Mantissa sign (1)

Exponent (11)

Word 1 Word 2
a10792

Figure 23. COMPLEX(KIND=8) on IRIX systems (real portion)

31 30 20 19 0 13 0

0Mantissa (52)

Mantissa sign (1)

Exponent (11)

Word 3 Word 4
a10793

Figure 24. COMPLEX(KIND=8) on IRIX systems (imaginary portion)

To declare an entity to be of double-precision, complex type, specify one of the
following:

• KIND=8.

• KIND=KIND(kind_expr) , where kind_expr is a scalar initialization expression
with a kind type parameter that evaluates to 8.

5.2.3.3 KIND=16

A quad precision, KIND=16 , complex value is represented by 8 words. The first
4 words represent the real part, and the second 4 words represent the imaginary
part. Each word has the same range as a real value.

136 007–3694–003

Data Representation and Storage [5]

Range: –2–967 ≤ I < 21023 or approximately –10–292 ≤ I < 10308

31 30 20 19 0 31 0

0Mantissa (52)

Mantissa sign (1)

Exponent (11)

Word 1 Word 2

31 0 31 0

0Mantissa (52)

Word 3 Word 4
a10794

30 20 19

Figure 25. COMPLEX(KIND=16) on IRIX systems (real portion)

31 30 20 19 0 31 0

0Mantissa (52)

Mantissa sign (1)

Exponent (11)

Word 1 Word 2

31 0 31 0

0Mantissa (52)

Word 3 Word 4
a10795

 30 20 19

Figure 26. COMPLEX(KIND=16) on IRIX systems (imaginary portion)

To declare an entity to be of quad precision, complex type, specify one of the
following:

• KIND=16 .

007–3694–003 137

Fortran Language Reference Manual, Volume 3

• KIND=KIND(kind_expr) , where kind_expr is a scalar initialization expression
with a kind type parameter that evaluates to 16.

5.2.4 Character Type

Characters are represented by 8-bit ASCII codes. On IRIX systems, the codes
are stored in 1 byte.

31 23 15 7 0

a10796

Figure 27. Character type

The MIPSpro 7 Fortran 90 compiler does not support a nondefault character
type. The only kind value supported is 1.

5.2.5 Logical Type

Logical entities specified as KIND=1, KIND=2, and KIND=4 occupy 32 bits on
IRIX systems. Logical entities specified as KIND=8 occupy 64 bits on IRIX
systems. Its value is true if the numeric value in the word is one (1). Its value is
false if the numeric value in the word is zero (0).

Note: Cray Research and Silicon Graphics do not guarantee a particular
internal representation of logical values on any machine or system; the
MIPSpro 7 Fortran 90 compiler is designed on the assumption that logical
values will be used only as described in the Fortran 90 standard. Therefore, it
is not good programming practice to use logical values as numbers or vice
versa.

To declare an entity to be of logical type, you can specify one of the following:

• KIND=1, KIND=2, KIND=4, or KIND=8.

• KIND=KIND(kind_expr) , where kind_expr is a scalar initialization expression
with a kind type parameter that evaluates to 1, 2, 4, or 8.

138 007–3694–003

Data Representation and Storage [5]

5.2.6 Cray Character Pointers (Deferred Implementation)

Cray character pointers include a byte address and a byte length field.

31

Length (bytes)

0

Address

a10797

Figure 28. 32-bit addressing on IRIX systems

5.3 Data Representation for UNICOS/mk Systems

The following sections describe the representation of data on UNICOS/mk
systems.

Note: On UNICOS/mk systems, KIND=4 values are stored in 32 bits and can
be packed two per word.

5.3.1 Integer Type

The following subsections describe integer data representation of KIND=1, 2, 4,
and 8 on UNICOS/mk systems.

5.3.1.1 KIND=1, KIND=2, or KIND=4

Range: –231 < I < 231 or approximately –109 < I < 109

31 30

Sign Integer

0

a10798

Figure 29. Integer KIND=1, 2, or 4 on UNICOS/mk systems

To declare 32-bit integers, specify one of the following:

• KIND=1, KIND=2, or KIND=4.

007–3694–003 139

Fortran Language Reference Manual, Volume 3

• KIND=KIND(kind_expr) , where kind_expr is a scalar initialization expression
with a kind type parameter that evaluates to 1, 2, or 4.

5.3.1.2 KIND=8

Range: –263 < I < 263 or approximately –1018 < I < 1018

63

Sign Integer

0

a10799

Figure 30. INTEGER(KIND=8) on UNICOS/mk systems

To declare 64-bit integers, specify one of the following:

• KIND=8.

• KIND=KIND(kind_expr) , where kind_expr is a scalar initialization expression
with a kind type parameter that evaluates to 8.

5.3.2 Real Type

The following sections describe real data representation of KIND=4 and 8. Real
(floating-point) numbers are represented in a packed representation of a sign,
an exponent (power of 2), and a binary mantissa.

5.3.2.1 KIND=4

Range: –2–125 ≤ I < 2128 or approximately –10–38 ≤ I < 1038

31 30 23 22 0Exponent Mantissa

Mantissa sign Assumed binary point
a10800

Figure 31. REAL(KIND=4) on UNICOS/mk systems

140 007–3694–003

Data Representation and Storage [5]

To declare 32-bit reals, specify one of the following:

• KIND=4.

• KIND=KIND(kind_expr) , where kind_expr is a scalar initialization expression
with a kind type parameter that evaluates to 4.

Notes on real data type representation:

The exponent is a power of 2, represented by a number that is 1778 higher than
the actual value; this is called a bias. The effect of the bias is that the second bit
in the word serves as the exponent’s sign bit. This bit’s usage is the inverse of
the mantissa’s sign bit, as follows:

Bit Applies to 1 value indicates

31 Mantissa Negative

30 Exponent Positive (> 0)

The exponent is represented by the second through ninth digits in a binary
printout; these digits have the range 011111112 through 111111102 for a positive
exponent, and 000000002 through 011111102 for a negative exponent.

When the bias is accounted for, the range of all exponents is as follows:

• 2–177 to 2177 (octal)

or

• 2–127 to 2127 (decimal)

The mantissa is a 24-bit fraction with an assumed leading 1; that is, the leading
1 is not stored. The only exception is for the value 0, which has an assumed
leading 0. The sign of the mantissa is separated from the rest of the mantissa as
shown in the preceding diagram. The mantissa is not complemented for
negative values. That is, the mantissa for –10.0 is the same as for +10.0.

In terms of decimal values, the 32-bit floating-point format allows
representation of numbers to about 7 significant decimal digits in the following
approximate decimal range:

1.18 � 10–38 < R < 3.4 � 1038

A zero value is not biased and is represented as a word of all zeros.

The following are some sample numbers as represented within memory:

007–3694–003 141

Fortran Language Reference Manual, Volume 3

Decimal Octal Hexadecimal

10.0 010110000000 41200000

–10.0 030110000000 C1200000

0.1 007563146315 3DCCCCCD

–0.1 027563146315 BDCCCCCD

01000001001000000000000000000000

Bit 22
a10801

Figure 32. Binary version of 10.0

The leftmost bit, with a 0 value, indicates a positive mantissa; that is, the real
value is positive. The next 8 bits (10000010, or decimal 130) are the exponent.
Subtracting the bias of 127 yields an exponent of 3, meaning that the binary
fraction in the mantissa is multiplied by 23; to express it another way, the binary
point is moved 3 bits to the right from the mantissa’s highest bit. Interpreted
this way, the first 4 bits of the mantissa, [1]010, indicate the real decimal value
10.0; remember that there is an assumed 1 to the left of the mantissa in the IEEE
floating-point format with a binary point to its immediate right. You can
display other values by printing them with formats O11, Z8, or B32.

5.3.2.2 KIND=8

Range: –2–1021 ≤ I < 21024 or approximately –10–308 ≤ I < 10308

63 52 51 0Exponent Mantissa

Exponent sign

Mantissa sign

Assumed binary point

a10802

Figure 33. REAL(KIND=8) on UNICOS/mk systems

142 007–3694–003

Data Representation and Storage [5]

To declare 64-bit reals, specify one of the following:

• KIND=8.

• KIND=KIND(kind_expr) , where kind_expr is a scalar initialization expression
with a kind type parameter that evaluates to 8.

5.3.3 Complex Type

The following sections describe complex data representation of KIND=4 and
KIND=8 on UNICOS/mk systems. A complex value has two parts. The first
part represents the real part, and the second represents the imaginary part.
Each word has the same range as a real value.

5.3.3.1 KIND=4

A KIND=4 complex value consists of 2 parts. The first part represents the real
portion, and the second represents the imaginary portion. Each part has the
same range as a 32-bit (or KIND=4) real value.

Range: –2–125 ≤ I < 2128 or approximately –10–38 ≤ I <1038

31 30 23 22 0Exponent Mantissa

Mantissa sign Assumed binary point
a10803

Figure 34. COMPLEX(KIND=4) on UNICOS/mk systems (real portion)

31 30 23 22 0Exponent Mantissa

Mantissa sign Assumed binary point
a10804

Figure 35. COMPLEX(KIND=4) on UNICOS/mk systems (imaginary portion)

007–3694–003 143

Fortran Language Reference Manual, Volume 3

To declare an entity to be of complex type with a total length of 64 bits, specify
one of the following:

• KIND=4.

• KIND=KIND(kind_expr) , where kind_expr is a scalar initialization expression
with a kind type parameter that evaluates to 4.

5.3.3.2 KIND=8

A single-precision, KIND=8, complex value is represented by 2 words. The first
word represents the real part, and the second represents the imaginary part.
Each word has the same range as a 64-bit (or KIND=8) real value.

Range: –2–1021 ≤ I < 21024 or approximately –10–308 ≤ I < 10308

63 62 61 52 51 0

0Mantissa (52)

Mantissa sign (1)

Exponent (11)

Word 1
a10805

Figure 36. COMPLEX(KIND=8) on UNICOS/mk systems (real portion)

63 62 61 52 51 0

0Mantissa (52)

Mantissa sign (1)

Exponent (11)

Word 2 a10806

Figure 37. COMPLEX(KIND=8) on UNICOS/mk systems (imaginary portion)

To declare an entity to be of single-precision, complex type, specify one of the
following:

• KIND=8.

144 007–3694–003

Data Representation and Storage [5]

• KIND=KIND(kind_expr) , where kind_expr is a scalar initialization expression
with a kind type parameter that evaluates to 8.

5.3.4 Character Type

Characters are represented by 8-bit ASCII codes. On UNICOS/mk systems, the
codes are packed 8 per word.

63 47 31 15 0

a10807

55 39 23 7

Figure 38. Character type

The CF90 compiler does not support a nondefault character type. The only kind
value supported is 1.

5.3.5 Logical Type

A logical variable uses one word. Its value is true if the numeric value in the
word is nonzero, and it is false if the numeric value in the word is zero.

Note: Cray Research does not guarantee a particular internal representation
of logical values on any machine or system; the CF90 compiler is designed on
the assumption that logical values will be used only as described in the
Fortran 90 standard. Therefore, it is not good programming practice to use
logical values as numbers or vice versa.

To declare an entity to be of logical type, you can specify one of the following:

• KIND=1, KIND=2, KIND=4, or KIND=8.

• KIND=KIND(kind_expr) , where kind_expr is a scalar initialization expression
with a kind type parameter that evaluates to 1, 2, 4, or 8.

On UNICOS/mk systems, all KIND=1, 2, and 4 occupy 32 bits. The KIND=8
specification occupies 64 bits.

007–3694–003 145

Fortran Language Reference Manual, Volume 3

5.3.6 Cray Character Pointers

Cray character pointers include a byte address and a byte length field. On
UNICOS/mk systems, character pointers are 128-bit objects, as follows:

63

Length (bytes)

0

Address

a10808

Figure 39. Cray character pointers on UNICOS/mk systems

5.4 Data Representation for CRAY T90 Systems That Support IEEE Floating-point
Arithmetic

The following sections describe the representation of data on CRAY T90 systems
that support IEEE floating-point arithmetic.

5.4.1 Integer Type

The following sections describe integer data representation of KIND=1, 2, 4, and
8 on CRAY T90 systems that support IEEE floating-point arithmetic.

5.4.1.1 KIND=1, KIND=2, or KIND=4

Range: –231 < I < 231 or approximately –109 < I < 109

63

Sign Propagation of sign bit

03132

a10809

Figure 40. Integer KIND=1, 2, or 4 on CRAY T90 systems that support IEEE
floating-point arithmetic

To declare 32-bit integers, specify one of the following:

• KIND=1, KIND=2, or KIND=4.

146 007–3694–003

Data Representation and Storage [5]

• KIND=KIND(kind_expr) , where kind_expr is a scalar initialization expression
with a kind type parameter that evaluates to 1, 2, or 4.

5.4.1.2 KIND=8

By default, the range for INTEGER(KIND=8) operations is –263 < I < 263 or
approximately –1018 < I < 1018. When fast integer operations are specified on
the f90 (1) command line, the range for INTEGER(KIND=8) operations is
–250 < I < 250 or approximately –1015 < I < 1015.

63

Sign Integer

0

a10811

Figure 41. Default INTEGER(KIND=8) on CRAY T90 systems that support IEEE
floating-point arithmetic

63

SignIgnored

05051

a10812

Figure 42. Fast operations with INTEGER(KIND=8) on CRAY T90 systems that
support IEEE floating-point arithmetic

To declare 64-bit integers, specify one of the following:

• KIND=8.

• KIND=KIND(kind_expr) , where kind_expr is a scalar initialization expression
with a kind type parameter that evaluates to 8.

5.4.2 Real Type

The following sections describe real data representation of KIND=4, 8, and 16
on CRAY T90 systems that support IEEE floating-point arithmetic. Real
(floating-point) numbers are represented in a packed representation of a sign,
an exponent (power of 2), and a binary mantissa.

007–3694–003 147

Fortran Language Reference Manual, Volume 3

5.4.2.1 KIND=4 and KIND=8

Range: –2–1021 ≤ I < 21024 or approximately –10–308 ≤ I < 10308

63 62 52 51 0

0Mantissa (52)

Mantissa sign (1)

Exponent (11)

a10813

Figure 43. Real KIND=4 or 8 on CRAY T90 systems that support IEEE
floating-point arithmetic

To declare 64-bit reals, specify one of the following:

• KIND=4 or KIND=8.

• KIND=KIND(kind_expr) , where kind_expr is a scalar initialization expression
with a kind type parameter that evaluates to 4 or 8.

For additional information on how real data is represented on CRAY T90
systems that support IEEE floating-point arithmetic, see "Notes on real data type
representation" in Section 5.3.2.1, page 140. The information presented there for
UNICOS/mk systems applies to CRAY T90 systems that support IEEE
floating-point arithmetic.

Note that a real data object with KIND=4 has the same internal representation
as a real data object with KIND=8. Numeric inquiry functions on a real data
object with KIND=4 return different values than on a real data object with
KIND=8. A numeric operation on a real data object with KIND=4 returns the
same result as the same numeric operation on a real data object with KIND=8.

5.4.2.2 KIND=16

Double precision, REAL(KIND=16) , values are represented in 2 words on
CRAY T90 systems that support IEEE floating-point arithmetic.

Range: –2–16381 ≤ I < 216384 or approximately –10–4932 ≤ I < 104932

148 007–3694–003

Data Representation and Storage [5]

63 62 52 51 0

0Mantissa (52)

Mantissa sign (1)

Exponent (11)

Word 1

63 0

0Mantissa (64)

Word 2 a10814

Figure 44. REAL(KIND=16) on CRAY T90 systems that support IEEE
floating-point arithmetic

To declare 64-bit reals, specify one of the following:

• KIND=16 .

• KIND=KIND(kind_expr) , where kind_expr is a scalar initialization expression
with a kind type parameter that evaluates to 16.

5.4.3 Complex Type

The following sections describe complex data representation of KIND=4, 8, and
16 on CRAY T90 systems that support IEEE floating-point arithmetic. A
complex value has two parts. The first part represents the real part, and the
second represents the imaginary part. Each word has the same range as a real
value.

5.4.3.1 KIND=4 and KIND=8

A single-precision, KIND=4 or KIND=8, complex value is represented by 2
words. The first word represents the real part, and the second represents the
imaginary part. Each word has the same range as a real value.

Range: –2–1021 ≤ I < 21024 or approximately –10–308 ≤ I < 10308

007–3694–003 149

Fortran Language Reference Manual, Volume 3

63 62 61 52 51 0

0Mantissa (52)

Mantissa sign (1)

Exponent (11)

Word 1 a10815

Figure 45. Complex KIND=8 or 4 on CRAY T90 systems that support IEEE
floating-point arithmetic (real portion)

63 62 61 52 51 0

0Mantissa (52)

Mantissa sign (1)

Exponent (11)

Word 2 a10816

Figure 46. Complex KIND=8 or 4 on CRAY T90 systems that support IEEE
floating-point arithmetic (imaginary portion)

To declare an entity to be of single-precision, complex type, specify one of the
following:

• KIND=4 or KIND=8.

• KIND=KIND(kind_expr) , where kind_expr is a scalar initialization expression
with a kind type parameter that evaluates to 4 or 8.

Note that a complex data object with KIND=4 has the same internal
representation as a complex data object with KIND=8. Numeric inquiry
functions on a complex data object with KIND=4 return different values than on
a complex data object with KIND=8. A numeric operation on a complex data
object with KIND=4 returns the same result as the same numeric operation on a
complex data object with KIND=8.

5.4.3.2 KIND=16

A double-precision, KIND=16 , complex value is represented by 4 words. The
first two words represent the real part, and the second two words represent the
imaginary part. Each word has the same range as a real value.

150 007–3694–003

Data Representation and Storage [5]

Range: –2–16381 ≤ I < 216384 or approximately –10–4932 ≤ I < 104932

63 62 52 51 0

0Mantissa (52)

Mantissa sign (1)

Exponent (11)

Word 1

63 0

0Mantissa (64)

Word 2 a10817

Figure 47. COMPLEX(KIND=16) on CRAY T90 systems that support IEEE
floating-point arithmetic (real portion)

63 62 52 51 0

0Mantissa (52)

Mantissa sign (1)

Exponent (11)

Word 1

63 0

0Mantissa (64)

Word 2
a10818

Figure 48. COMPLEX(KIND=16) on CRAY T90 systems that support IEEE
floating-point arithmetic (imaginary portion)

To declare an entity to be of double-precision, complex type, specify one of the
following:

007–3694–003 151

Fortran Language Reference Manual, Volume 3

• KIND=16 .

• KIND=KIND(kind_expr) , where kind_expr is a scalar initialization expression
with a kind type parameter that evaluates to 16.

5.4.4 Character Type

Characters are represented by 8-bit ASCII codes. The codes are packed 8 per
word.

63 55 47 39 31 23 15 7 0

a10819

Figure 49. Character type

The CF90 compiler does not support a nondefault character type. The only kind
value supported is 1.

5.4.5 Logical Type

A logical variable uses one word. Its value is true if the numeric value in the
word is nonzero, and it is false if the numeric value in the word is zero.

Note: Cray Research does not guarantee a particular internal representation
of logical values on any machine or system; the CF90 compiler is designed on
the assumption that logical values will be used only as described in the
Fortran 90 standard. Therefore, it is not good programming practice to use
logical values as numbers or vice versa.

To declare an entity to be of logical type, you can specify one of the following:

• KIND=1, KIND=2, KIND=4, or KIND=8.

• KIND=KIND(kind_expr) , where kind_expr is a scalar initialization expression
with a kind type parameter that evaluates to 1, 2, 4, or 8.

On CRAY T90 systems that support IEEE floating-point arithmetic, all KIND=1,
KIND=2, and KIND=4 specifications occupy 32 bits. The KIND=8 specification
occupies 64 bits.

152 007–3694–003

Data Representation and Storage [5]

5.4.6 Cray Character Pointers

Cray character pointers are two words in length. The first word includes an
offset and an address. The second word includes the byte length field.

63

Address

058 57

Offset

63

Length

0

a10820

Figure 50. Cray character pointer for CRAY T90 systems that support IEEE
floating-point arithmetic

5.5 Storage Issues

This section describes how the CF90 and MIPSpro 7 Fortran 90 compilers use
storage, including how these compilers accommodate programs that use
overindexing.

007–3694–003 153

Fortran Language Reference Manual, Volume 3

Note: The information in this section assumes that you are using the default
data representations.

On UNICOS/mk systems, specifying -i 32 , -s float64 , -s default64 ,
or -s default32 on the f90 (1) command line changes the storage and data
representation of all noncharacter data types. This affects data that is storage
sequence-associated. Mixing data types is not recommended when these
command line options are used.

On IRIX systems, the following options to the f90 (1) command affect storage
and data representation:

• -d16 changes default double precision and double complex to 128 bits

• -i4 changes default integer and logical to 32 bits

• -i8 changes default integer and logical to 64 bits

• -n32 and -64 change pointer sizes and the maximum amount of
addressable memory

• -r4 changes default real and complex to 32 bits/64 bits

• -r8 changes default real and complex to 64 bits/128 bits

5.5.1 Storage Units and Sequences

A numeric storage unit can be one of the following:

• A Cray Research word of 64 bits, for UNICOS and UNICOS/mk systems.

• A word on IRIX systems of 32 bits.

A character storage unit is an 8-bit byte.

A storage sequence is a contiguous group of storage units with a consecutive
series of addresses. Each array and each common block is stored in a storage
sequence. The size of a storage sequence is the number of storage units it
contains. Two storage sequences are associated if they share at least one storage
unit.

All nondefault types have an unspecified storage unit. The -s default32 and
-s default64 options on the f90 (1) command line change the number of bits
in a numeric storage unit for UNICOS/mk systems. There is no longer a
relationship between storage units after these command line options are used.

154 007–3694–003

Data Representation and Storage [5]

The following list shows the storage units for the default types on UNICOS
systems:

Type Storage units

Integer 1

Real (single precision) 1

Real (double precision) 2

Complex 2

Logical 1

Complex values occupy twice the storage of real values. The real portion of the
complex value occupies the first half of the total storage; the imaginary portion
of the complex value occupies the second half of the total storage, as follows:

• On UNICOS and UNICOS/mk systems, a double precision or complex
value (KIND=4 or KIND=8) uses a storage sequence of two numeric storage
units. The first storage unit contains the most significant bits of a
double-precision value or the real part of a complex value. The second
storage unit contains the least significant bits of a double-precision value or
the imaginary part of a complex value. Double precision and double
complex data types are not supported on UNICOS/mk systems.

On IRIX systems, a double-precision value uses a storage sequence of 8 or
16 bytes. Depending on the KIND= specification, a complex value uses 8, 16,
or 32 bytes. The first half of the bytes used contains the most significant bits
of a double-precision value or the real part of a complex value. The last half
of the bytes used contains the least significant bits of a double-precision
value or the imaginary part of a complex value.

• On UNICOS and UNICOS/mk systems, a double-complex value occupies 4
words of storage; the first 2 words contain the real part of the complex
value, and the second 2 words contain the imaginary part.

On IRIX systems, a double-complex value occupies 16 bytes of storage; the
first 8 bytes contain the real part of the complex value, and the second 8
bytes contain the imaginary part.

On IRIX systems, a quad precision complex value occupies 32 bytes of
storage; the first 16 bytes contain the real part of the complex value, and the
second 16 bytes contain the imaginary part.

007–3694–003 155

Fortran Language Reference Manual, Volume 3

A character value is represented as an 8-bit ASCII code, packed 8 characters per
word on UNICOS and UNICOS/mk systems; this value is packed 4 characters
per byte on IRIX systems. The storage size depends on the length specification
of the value.

ANSI/ISO: The Fortran 90 standard does not specify the relationship
between storage units and computer words, and it does not specify any
relation between default numeric and character storage units.

5.5.2 Static and Stack Storage

With static storage, any variable that is allocated memory occupies the same
address throughout program execution. Allocation is determined before
program execution.

Code using static storage can be used with Autotasking, multitasking, and
macrotasking if variables in static storage conform to the following guidelines:

• Loops are Autotasked regardless of the presence of variables in static or
stack storage. Scoping is controlled by the presence of PRIVATE or SHARED
parameters on the DOALLAutotasking directive. If a subroutine that
contains static data is called from within an autotasked loop, static data is
treated as shared data, which means that the static data must be protected
by GUARDand ENDGUARDAutotasking directives.

• Variables in static storage can be read when loops are multitasked and
macrotasked. If a loop modifies variables in static storage, you must use
guards (GUARDand ENDGUARDAutotasking directives) or locks (LOCKON()
and LOCKOFF() calls) to protect the variables.

For more information on Autotasking directives, see the CF90 Commands and
Directives Reference Manual, or the MIPSPro Fortran 90 Commands and Directives
Reference Manual. For more information on locks, see the LOCKON(3F) or
LOCKOFF(3F) man pages.

Stack storage is the default storage allocation for the CF90 compiler on UNICOS
and UNICOS/mk systems. On IRIX systems, stack storage is the MIPSpro 7
Fortran 90 default for all subprograms, but static storage is the default for items
that require 256 bits of storage in a main program. The stack is an area of
memory where storage for variables is allocated when a subprogram or
procedure begins execution. These variables are released when execution
completes. The stack expands and contracts as procedures are entered and
exited. Autotasking and recursion require a stack.

156 007–3694–003

Data Representation and Storage [5]

When stack storage is used, the value of a variable is not saved between
invocations of a subprogram unless it is specified in a SAVEor DATAstatement.
When f90 -e v (UNICOS and UNICOS/mk systems) or f90 -static (IRIX
systems) is specified, all user variables are treated as if they appeared in a SAVE
statement. When -e v or -static is in effect, compiler-generated temporary
variables and the calling sequence are still allocated to the stack.

Note: If f90 -e i is specified, variables are reset for each invocation of a
subprogram, even in static storage. Therefore, the SAVEor DATAstatement is
necessary to preserve the value of a variable between invocations. This
information applies only to UNICOS and UNICOS/mk systems.

The way in which the amount of memory available for the stack is determined
depends on your platform. On UNICOS and UNICOS/mk systems, it is
determined by the STACKdirective, available with the segldr (1) or cld (1)
loaders; see the segldr (1) or cld (1) man pages for more information. On IRIX
systems, you can use the limit (1) command to change the amount of stack
space that a program is allowed; see the limit (1) man page for more
information.

A heap is memory that, like a stack, is dynamically allocated; it is used internally.

The CF90 and MIPSpro 7 Fortran 90 compilers allocate variables to storage
according to the following criteria:

• Variables in common blocks are always allocated in the order in which they
appear in COMMONstatements.

• Data in modules are statically allocated.

• User variables that are defined or referenced in a program unit, and that
also appear in SAVEor DATAstatements, are allocated to static storage, but
not necessarily in the order shown in your source program.

• Other referenced user variables are assigned to the stack. If -e v (UNICOS
and UNICOS/mk systems) or -static (IRIX systems) is specified on the
f90 (1) command line, referenced variables are allocated to static storage.
This allocation does not necessarily depend on the order in which the
variables appear in your source program.

• Compiler-generated variables are assigned to a register or to memory (to the
stack or heap), depending on how the variable is used. Compiler-generated
variables include DO-loop trip counts, dummy argument addresses,
temporaries used in expression evaluation, argument lists, and variables
storing adjustable dimension bounds at entries.

007–3694–003 157

Fortran Language Reference Manual, Volume 3

• Automatic objects may be allocated to either the stack or to the heap,
depending on how much stack space is available when the objects are
allocated.

• Heap or stack allocation can be used for TASK COMMONvariables and some
compiler-generated temporary data such as automatic arrays and array
temporaries.

Note: Unreferenced user variables not appearing in COMMONstatements
are not allocated.

5.5.3 Dynamic Memory Allocation (UNICOS Systems Only)

Many FORTRAN 77 programs contain a memory allocation scheme that
expands an array in a common block located in central memory at the end of
the program. This practice of expanding a blank common block or expanding a
dynamic common block (sometimes referred to as overindexing) causes conflicts
between user management of memory and the dynamic memory requirements
of UNICOS libraries. It is recommended that you modify programs rather than
expand blank common blocks, particularly when migrating from other
environments.

Figure 51, page 159, shows the structure of a program under the UNICOS
operating system in relation to expanding a blank common block. In both
figures, the user area includes code, data, and common blocks.

158 007–3694–003

Data Representation and Storage [5]

Heap

User
area

Without an expandable
common block:

Heap

User
area

With an expandable
common block:

Dynamic
area

Address 0
a10821

Figure 51. Memory use under UNICOS

There are two ways to change your code. The standard method, shown in
Section 5.5.3.1 is preferred.

5.5.3.1 Changing Your Code: Standard Method

You can use the ALLOCATEstatement to dynamically allocate an array. Use the
following three-step process:

1. For arrays that expand in a common block, define Fortran 90 allocatable
arrays in a Fortran 90 module.

2. Replace the common block definition in all source files that use the global
array with a USEstatement.

3. Use the ALLOCATEstatement in place of any calls to the MEMORYroutine.

Original code:

PROGRAM TEST
C Puts array X in blank common:

007–3694–003 159

Fortran Language Reference Manual, Volume 3

COMMON X(1)

...
C Adds 100000 words to blank common:

CALL MEMORY (’UC’,100000)

...

DO 10, I=1,100000

X(I) = RANF()

10 CONTINUE
...

Converted code (after steps 1 and 2):

MODULE GLOBAL_DATA ! STEP 1
REAL, SAVE, ALLOCATABLE :: X(:)

END MODULE

...

PROGRAM TEST

USE GLOBAL_DATA ! STEP 2

LIMIT = 100000
ALLOCATE (X(LIMIT)) ! STEP 3

...

DO 10 I = 1,LIMIT

X(I) = RANF()

10 CONTINUE
...

END

5.5.3.2 Changing Your Code: Nonstandard Method

The nonstandard way to change your program is by using the following
two-step process:

1. For arrays that expand in a common block, define Cray Research pointers
that will point to the first address in each array.

2. Change any calls to memory to calls to library routine HPALLOC(3).

Original code:

PROGRAM TEST

C Puts array X in blank common:

COMMON X(1)

...

C Adds 100000 words to blank common:
CALL MEMORY (’UC’,100000)

160 007–3694–003

Data Representation and Storage [5]

...

DO 10, I=1,100000
X(I) = RANF()

10 CONTINUE

...

Converted code (after steps 1 and 2):

PROGRAM TEST

COMMON /WORK/ IPTR

...

C Establish array location at runtime:

POINTER (IPTR,X(1))
...

C Effective common block size:

CALL HPALLOC (IPTR,100000,ERRCODE,0)

...

DO 10 I=1,100000

X(I) = RANF()
10 CONTINUE

...

007–3694–003 161

Outmoded Features [6]

This chapter describes outmoded Cray Research Fortran features that the CF90
and MIPSpro 7 Fortran 90 compilers support. These features have been
replaced by alternatives that enhance the portability of CF90 and MIPSpro 7
Fortran 90 programs. None of the outmoded features described in this chapter
were part of any Fortran standard; they were Cray Research extensions
supported in older Cray Research compilers. The outmoded features and their
preferred alternatives are listed in Table 6.

Table 6. Outmoded features and preferred alternatives

Outmoded feature Preferred alternative

Hollerith data Character data.

ENCODEand DECODE Internal files.

Asterisk character constant delimiters in formats Apostrophe or quotation mark delimiters.

[- b]X edit descriptor TL edit descriptor, 1X.

A descriptor used for noncharacter data and R
descriptor

Character type and other conventional matchings
of data with descriptors.

EOF, IEOF, and IOSTAT functions End-of-file specifier (END=) or status specifier
(IOSTAT=).

Initialization using long strings Replace the numeric target with a character item.
Replace a Hollerith constant with a character
constant.

Type statements with * n Standard type statements (KIND=).

Two-branch arithmetic IF IF construct or IF statement.

TASK COMMONstatement TASKCOMMONcompiler directive.

Indirect logical IF IF construct or IF statement.

Nested loops ending with a single, labeled END DO One END DOstatement for each loop.

DOUBLE COMPLEXstatement and related specific
intrinsic function names

COMPLEX (KIND=) statement and standard
intrinsic functions. See Section 6.9, page 178, for
more information.

007–3694–003 163

Fortran Language Reference Manual, Volume 3

Outmoded feature Preferred alternative

Bitwise intrinsic functions Standard intrinsic functions. See Section 6.10, page
179, for more information.

CLOCK(3I), DATE(3I), and JDATE(3I) intrinsic
functions

DATE_AND_TIME(3I) intrinsic subroutine.

DCOT(3M) intrinsic function COT(3M) intrinsic function.

DFLOAT(3M) and DREAL(3M) intrinsic functions REAL(3M) intrinsic function.

I24MULT(3I) intrinsic function Declare integers with KIND=1, KIND=2, or KIND=4.

INT24 (3I) and LINT (3I) intrinsic functions INT (3I) intrinsic function.

NUMARG(3I) intrinsic function PRESENT(3I) intrinsic function for optional
arguments.

RANF(3I) and RANGET(3I) intrinsic functions RANDOM_NUMBER(3I) intrinsic subroutine.

RANSET(3I) intrinsic function RANDOM_SEED(3I) intrinsic subroutine.

RTC(3I) intrinsic function SYSTEM_CLOCK(3I) intrinsic subroutine.

Note: The following outmoded intrinsic functions will be removed in the
CF90 3.2 release: I24MULT(3I) and LINT (3I).

6.1 Hollerith Type

Hollerith data is a sequence of any characters capable of internal representation
as specified in Table 5, page 85. Its length is the number of characters in the
sequence, including blank characters. Each character occupies a position within
the storage sequence identified by one of the numbers 1, 2, 3, . . . indicating its
placement from the left (position 1). Hollerith data must contain at least one
character.

6.1.1 Hollerith Constants

A Hollerith constant is expressed in one of three forms. The first of these is
specified as a nonzero integer constant followed by the letter H, L, or R and as
many characters as equal the value of the integer constant. The second form of
Hollerith constant specification delimits the character sequence between a pair

164 007–3694–003

Outmoded Features [6]

of apostrophes followed by the letter H, L, or R. The third form is like the
second, except that quotation marks replace apostrophes. For example:

Character sequence: ABC 12
Form 1: 6HABC 12

Form 2: ’ABC 12’H

Form 3: "ABC 12"H

Two adjacent apostrophes or quotation marks appearing between delimiting
apostrophes or quotation marks are interpreted and counted by the compiler as
a single apostrophe or quotation mark within the sequence. Thus, the sequence
DON’T USE "*" would be specified with apostrophe delimiters as ’DON’’T
USE "*"’H , and with quotation mark delimiters as "DON’T USE ""*"""H .

Each character of a Hollerith constant is represented internally by an 8-bit code,
with up to 32 such codes allowed. This limit corresponds to the size of the
largest numeric type, COMPLEX(KIND = 16). The ultimate size and makeup of
the Hollerith data depends on the context. If the Hollerith constant is larger
than the size of the type implied by context, the constant is truncated to the
appropriate size. If the Hollerith constant is smaller than the size of the type
implied by context, the constant is padded with a character dependent on the
Hollerith indicator. When an H Hollerith indicator is used, the truncation and
padding is done on the right end of the constant. The pad character is the
blank character code (20).

Null codes can be produced in place of blank codes by substituting the letter L
for the letter H in the Hollerith forms described above. The truncation and
padding is also done on the right end of the constant, with the null character
code (00) as the pad character.

Using the letter R instead of the letter H as the Hollerith indicator means
truncation and padding is done on the left end of the constant with the null
character code (00) used as the pad character.

All of the following Hollerith constants yield the same Hollerith constant and
differ only in specifying the content and placement of the unused portion of the
single 64-bit entity containing the constant:

007–3694–003 165

Fortran Language Reference Manual, Volume 3

Hollerith Internal byte, beginning on bit:

constant 0 8 16 24 32 40 48 56

6HABCDEF A B C D E F 2016 2016

’ABCDEF’H A B C D E F 2016 2016

"ABCDEF" H A B C D E F 2016 2016

6LABCDEF A B C D E F 00 00

’ABCDEF’L A B C D E F 00 00

"ABCDEF"L A B C D E F 00 00

6RABCDEF 00 00 A B C D E F

’ABCDEF’R 00 00 A B C D E F

"ABCDEF"R 00 00 A B C D E F

A Hollerith constant is limited to 32 characters except when specified in a CALL
statement, a function argument list, or a DATAstatement. An all-zero computer
word follows the last word containing a Hollerith constant specified as an
actual argument in an argument list.

A character constant of 32 or fewer characters is treated as if it were a Hollerith
constant in situations where a character constant is not allowed by the standard
but a Hollerith constant is allowed by the CF90 and MIPSpro 7 Fortran 90
compilers. If the character constant appears in a DATAstatement value list, it
can be longer than 32 characters.

6.1.2 Hollerith Values

A Hollerith value is a Hollerith constant or a variable that contains Hollerith
data. A Hollerith value is limited to 32 characters.

A Hollerith value can be used in any operation in which a numeric constant
can be used. It can also appear on the right-hand side of an assignment
statement in which a numeric constant can be used. It is truncated or padded
to be the correct size for the type implied by the context.

6.1.3 Hollerith Relational Expressions

Used with a relational operator, the Hollerith value e1 is less than e2 if its value
precedes the value of e2 in the collating sequence and is greater if its value
follows the value of e2 in the collating sequence.

166 007–3694–003

Outmoded Features [6]

The following examples are evaluated as true if the integer variable LOCK
contains the Hollerith characters K, E, and Y in that order and left-justified with
five trailing blank character codes:

3HKEY.EQ.LOCK

’KEY’.EQ.LOCK

LOCK.EQ.LOCK

’KEY1’.GT.LOCK

’KEY0’H.GT.LOCK

6.2 Formatted I/O and Internal Files

A formatted I/O operation defines entities by transferring data between I/O list
items and records of a file. The file can be on an external media or in internal
storage.

The Fortran 90 standard provides READand WRITEstatements for both
formatted external and internal file I/O. This is the preferred method for
formatted internal file I/O. It is the only method for list-directed internal file
I/O.

The ENCODEand DECODEstatements are an alternative to standard Fortran
READand WRITEstatements for formatted internal file I/O.

An internal file in standard Fortran I/O must be declared as character, while
the internal file in ENCODEand DECODEstatements can be any data type. A
record in an internal file in standard Fortran I/O is either a scalar character
variable or an array element of a character array. The record size in an internal
file in an ENCODEor DECODEstatement is independent of the storage size of the
variable used as the internal file. If the internal file is a character array in
standard Fortran I/O, multiple records can be read or written with internal file
I/O. The alternative form does not provide the multiple record capability.

6.2.1 ENCODEStatement

The ENCODEstatement provides a method of converting or encoding the
internal representation of the entities in the output list to a character
representation. The format of the ENCODEstatement is as follows:

ENCODE (n, f, dest) [elist]

007–3694–003 167

Fortran Language Reference Manual, Volume 3

n Number of characters to be processed. Nonzero integer
expression not to exceed the maximum record length for
formatted records. This is the record size for the internal file.

f Format identifier. It cannot be an asterisk.

dest Name of internal file. It can be a variable or array of any data
type. It cannot be an array section, a zero-sized array, or a
zero-sized character variable.

elist Output list to be converted to character during the ENCODE
statement.

The output list items are converted using format f to produce a sequence of n
characters that are stored in the internal file dest. The n characters are packed 8
characters per word on UNICOS and UNICOS/mk systems. The n characters
are packed 4 characters per word on IRIX systems.

An ENCODEstatement transfers one record of length n to the internal file dest. If
format f attempts to write a second record, ENCODEprocessing repositions the
current record position to the beginning of the internal file and begins writing
at that position.

An error is issued when the ENCODEstatement attempts to write more than n
characters to the record of the internal file. If dest is a noncharacter entity and n
is not a multiple of 8 (for UNICOS and UNICOS/mk systems) or 4 (for IRIX
systems), the last word of the record is padded with blanks to a word
boundary. If dest is a character entity, the last word of the record is not padded
with blanks to a word boundary.

Example 1: The following example assumes a machine word length of 64 bits
and uses the underscore character (_) as a blank:

INTEGER ZD(5), ZE(3)

ZD(1)=’THIS____’

ZD(2)=’MUST____’
ZD(3)=’HAVE____’

ZD(4)=’FOUR____’

ZD(5)=’CHAR____’

1 FORMAT(5A4)

ENCODE(20,1,ZE)ZD
DO 10 I=1,3

PRINT 2,’ZE(’,I,’)="’,ZE(I),’"’

10 CONTINUE

2 FORMAT(A,I2,A,A8,A)

END

168 007–3694–003

Outmoded Features [6]

On UNICOS systems, the output is as follows:

>ZE(1)="THISMUST"

>ZE(2)="HAVEFOUR"
>ZE(3)="CHAR____"

Example 2: On IRIX systems, the comparable example would be as follows:

INTEGER ZD(5), ZE(3)

ZD(1)=’TH__’

ZD(2)=’IS__’

ZD(3)=’=4__’
ZD(4)=’CH__’

ZD(5)=’AR__’

1 FORMAT(5A2)

ENCODE(10,1,ZE)ZD

DO 10 I=1,3

PRINT 2,’ZE(’,I,’)="’,ZE(I),’"’
10 CONTINUE

2 FORMAT(A,I2,A,A4,A)

END

The output is as follows:

>ZE(1)="THIS"
>ZE(2)="=4CH"

>ZE(3)="AR__"

6.2.2 DECODEStatement

The DECODEstatement provides a method of converting or decoding from a
character representation to the internal representation of the entities in the input
list. The format of the DECODEstatement is as follows:

DECODE (n, f, source) [dlist]

n Number of characters to be processed. Nonzero integer
expression not to exceed the maximum record length for
formatted records. This is the record size for the internal file.

f Format identifier. It cannot be an asterisk.

007–3694–003 169

Fortran Language Reference Manual, Volume 3

source Name of internal file. It can be a variable or array of any data
type. It cannot be an array section or a zero-sized array or a
zero-sized character variable.

dlist Input list to be converted from character during the DECODE
statement.

The input list items are converted using format f from a sequence of n
characters in the internal file source to an internal representation and stored in
the input list entities. If the internal file source is noncharacter, the internal file is
assumed to be a multiple of 8 characters (for UNICOS and UNICOS/mk
systems) or 4 characters (for IRIX systems).

Example 1: On UNICOS systems, an example of a DECODEstatement is as
follows:

INTEGER ZD(4), ZE(3)

ZE(1)=’WHILETHI’

ZE(2)=’S HAS F’

ZE(3)=’IVE ’

3 FORMAT(4A5)
DECODE(20,3,ZE)ZD

DO 10 I=1,4

PRINT 2,’ZD(’,I,’)="’,ZD(I),’"’

10 CONTINUE

2 FORMAT(A,I2,A,A8,A)
END

The output is as follows:

>ZD(1)="WHILE "

>ZD(2)="THIS "

>ZD(3)="HAS "

>ZD(4)="FIVE "

Example 2: On IRIX systems, an example of a DECODEstatement is as follows:

INTEGER ZD(5), ZE(4)

ZE(1)=’WHIL’

ZE(2)=’E_IT’

ZE(3)=’=4CH’

ZE(4)=’ARS_’
ZE(5)=’RS.+’

3 FORMAT(5A3)

DECODE(16,3,ZE)ZD

DO 10 I=1,4

170 007–3694–003

Outmoded Features [6]

PRINT 2,’ZD(’,I,’)="’,ZD(I),’"’

10 CONTINUE
2 FORMAT(A,I2,A,A4,A)

END

The output is as follows:

>ZD(1)="WHI_"

>ZD(2)="LE__"

>ZD(3)="IT=_"
>ZD(4)="4CH_"

>ZD(5)="ARS_"

6.3 Edit Descriptors

The following sections show obsolete edit descriptors and outmoded uses of
current descriptors.

6.3.1 Asterisk Delimiters

The asterisk was allowed to delimit a literal character constant. It has been
replaced by the apostrophe and quotation mark.

* h1 h2 ... hn*

* Delimiter for a literal character string

h Any ASCII character indicated by a C in Table 5, page 85 (that is,
capable of internal representation)

Example:

AN ASTERISK EDIT DESCRIPTOR

6.3.2 Negative-valued X Descriptor

A negative value could be used with the X descriptor to indicate a move to the
left. This has been replaced by the TL descriptor.

[- b]X

007–3694–003 171

Fortran Language Reference Manual, Volume 3

b Any nonzero, unsigned integer constant

X Indicates a move of as many positions as indicated by b

Example:

-55X ! Moves current position 55 spaces left

6.3.3 A and R Descriptors for Noncharacter Types

The Rw descriptor and the use of the Aw descriptor for noncharacter data are
available primarily for programs that were written before a true character type
was available. Other uses include adding labels to binary files and the transfer
of data whose type is not known in advance.

List items can be of type real, integer, complex, or logical. For character use, the
binary form of the data is converted to or from ASCII codes. The numeric list
item is assumed to contain ASCII characters when used with these edit
descriptors.

Complex items use two storage units and require two A descriptors, for the first
and second storage units respectively.

The Aw descriptor works with noncharacter list items containing character data
in essentially the same way as described in the Fortran Language Reference
Manual, Volume I. The Rw descriptor works like Aw with the following
exceptions:

• Characters in an incompletely filled input list item are right-justified with
the remainder of that list item containing binary zeros.

• Partial output of an output list item is from its rightmost character positions.

The following example shows the Aw and Rw edit descriptors for noncharacter
data types:

INTEGER IA

LOGICAL LA

REAL RA
DOUBLE PRECISION DA

COMPLEX CA

CHARACTER*52 CHC

CHC=’ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz’

READ(CHC,3) IA, LA, RA, DA, CA
3 FORMAT(A4,A8,A10,A17,A7,A6)

PRINT 4, IA, LA, RA, DA, CA

172 007–3694–003

Outmoded Features [6]

4 FORMAT(1x,3(A8,’-’),A16,’-’,2A8)

READ(CHC,5) IA, LA, RA
5 FORMAT(R2,R8,R9)

PRINT 4, IA, LA, RA

END

On UNICOS and UNICOS/mk systems, the output of this program would be
as follows:

> ABCD -EFGHIJKL-OPQRSTUV-XYZabcdefghijklm-nopqrst uvwxyz
^^^^

> ooooooAB-CDEFGHIJ-LMNOPQRS-

The carat (^) indicates leading blanks in the use of the A edit descriptor. The
lowercase letter o is used to indicate where binary zeros have been written with
the R edit descriptor.

On IRIX systems, the output of this program would be as follows:

> ABCD- IJKL- STUV- fghijklm- qrst wxyz

^^^^^ ^^^^ ^^^^ ^^^^^^^^ ^^^^ ^^^^
> AB- GHIJ- PQRS-

^^^^^ ^^^^ ^^^^

The binary zeros are not printable characters, so the printed output simply
contains the characters without the binary zeros.

6.4 Type Declaration with Data Length

Data type declarations that include the data length are outmoded. The CF90
and MIPSpro 7 Fortran 90 compilers recognize this usage in type statements,
IMPLICIT statements, and FUNCTIONstatements, mapping these numbers onto
lengths appropriate for the target machine.

Format:

type [* n] v [, v] ...

IMPLICIT type [* n] (a1 [- a2] [, a1 [- a2]] ...)
[, type ...] ...

[type [* n]] FUNCTION fun ([d [, d] ...])

007–3694–003 173

Fortran Language Reference Manual, Volume 3

type Can be INTEGER, REAL, DOUBLE PRECISION, COMPLEX, or
LOGICAL.

* n Data length as shown in Table 7, Table 8, page 175, and Table 9,
page 175. Any other data length generates an error.

v Name of a constant, variable, or array declarator.

an A letter. A range of letters is denoted by the first and last letters
of the range separated by a hyphen. A range (a1 – an) has the
same effect as a list of the letters (a1, a2, ... an).

fun Name of the function subprogram.

d Dummy argument representing a variable, array, or dummy
procedure name.

The following tables show the data lengths for UNICOS, UNICOS/mk, and
IRIX systems.

Note: On UNICOS systems, a 32-bit item or a 46-bit item is contained in a
64-bit word.

Table 7. Data length (UNICOS systems)

type n: *1 *2 *4 *8 *16 *32

INTEGER 64-bit 64-bit 64-bit 64-bit Error Error

REAL Error Error 64-bit single
precision

64-bit
single
precision

128-bit
double
precision

Error

COMPLEX Error Error Error 128-bit
single
precision

128-bit
single
precision

256-bit
double
precision

LOGICAL 64-bit 64-bit 64-bit 64-bit Error Error

DOUBLE
PRECISION

Error Error Error Error 128-bit
double
precision

Error

174 007–3694–003

Outmoded Features [6]

Table 8. Data length (UNICOS/mk systems)

type n: *1 *2 *4 *8 *16 *32

INTEGER 32-bit 32-bit 32-bit 64-bit Error Error

REAL Error Error 32-bit single
precision1

64-bit
double
precision2

64-bit
double
precision3

Error

COMPLEX Error Error Error 64-bit single
precision4

64-bit single
precision5

64-bit single
precision6

LOGICAL 32-bit 32-bit 32-bit 64-bit Error Error

DOUBLE
PRECISION

Error Error Error Error 64-bit single
precision7

Error

Table 9. Data length (IRIX systems)

type n: *1 *2 *4 *8 *16 *32

INTEGER 8-bit 16-bit 32-bit 64-bit Error Error

LOGICAL 8-bit 16-bit 32-bit 64-bit Error Error

REAL Error Error 32-bit 64-bit 128-bit Error

COMPLEX Error Error 32-bit 64-bit 128-bit Error

DOUBLE
PRECISION

Error Error Error 64-bit Error Error

1 This is an additional precision on a UNICOS/mk system.
2 This is a single precision on a UNICOS/mk system.
3 128-bit precision is not supported on UNICOS/mk systems.
4 This is an additional precision on a UNICOS/mk system.
5 128-bit precision is not supported on UNICOS/mk systems.
6 128-bit precision is not supported on UNICOS/mk systems.
7 128-bit precision is not supported on UNICOS/mk systems.

007–3694–003 175

Fortran Language Reference Manual, Volume 3

6.5 DATAStatement Features

The DATAstatement has the following outmoded features:

• A constant need not exist for each element of a whole array named in a
data_stmt_object_list if the array is the last item in the list.

• A Hollerith or character constant can initialize more than one element of an
integer or single-precision real array if the array is specified without
subscripts.

Example 1: On a machine with 64-bit words, if an array is declared by
INTEGER A(2) , the following DATAstatements have the same effect:

DATA A /’1234567890123456’/

DATA A /’12345678’,’90123456’/

Example 2: On a machine with 32-bit words, if an array is declared by
INTEGER A(2) , the following DATAstatements have the same effect:

DATA A /’12345678’/

DATA A /’1234’,’5678’/

An integer or single-precision real array can be defined in the same way in a
DATAimplied-DOstatement.

6.6 IF Statements

Outmoded IF statements are the two-branch arithmetic IF and the indirect
logical IF .

6.6.1 Two-branch Arithmetic IF

A two-branch arithmetic IF statement transfers control to statement s1 if
expression e is evaluated as nonzero or to statement s2 if e is zero. The
arithmetic expression should be replaced with a relational expression, and the
statement should be changed to an IF statement or an IF construct. This
format is as follows:

IF (e) s1, s2

e Integer, real, or double-precision expression

176 007–3694–003

Outmoded Features [6]

s Label of an executable statement in the same program unit

Example:

IF (I+J*K) 100,101

6.6.2 Indirect Logical IF

An indirect logical IF statement transfers control to statement st if logical
expression le is true and to statement sf if le is false. An IF construct or an IF
statement should be used in place of this outmoded statement. This format is
as follows:

IF (le) st, sf

le Logical expression

st, sf Labels of executable statements in the same program unit

Example:

IF(X.GE.Y)148,9999

6.7 TASK COMMONStatement (UNICOS Systems Only)

When multitasking is used, some common blocks might need to be local to a
task. The TASK COMMONstatement declares all variables in a common block to
be local to a task. If multiple tasks execute code containing the same task
common block, each task will have a separate copy of the block. A common
block cannot be declared both local common and task common. If a common
block is declared local common in one routine and task common in another
routine, the loader will generate an error.

A task common block can also be declared by the use of a COMMONstatement
with the TASKCOMMONcompiler directive. The compiler directives are described
in CF90 Commands and Directives Reference Manual. The directive is
recommended over the TASK COMMONstatement for better portability.

The keyword TASKmust precede the keyword COMMONto establish a task
common block. Task common blocks must be named. A task common block is
allocated at task invocation.

The TASK COMMONstatement has the following format:

007–3694–003 177

Fortran Language Reference Manual, Volume 3

TASK COMMON /cb / member_list [, / cb / member_list] ...

cb Task common block name.

member_list A variable name, array name, or array declarator.
A member name must not be a subprogram
dummy argument name.

Variables in member_list may appear in a DATAstatement.

On UNICOS systems, to perform data initialization of TASK COMMONrequires
SEGLDR version 9.2 or higher. For information on using the -a alloc option to
allocate storage from the f90 (1) command line, see the f90 (1) man page or the
CF90 Commands and Directives Reference Manual.

6.8 Nested Loop Termination

Older Cray Research Fortran compilers allowed nested DOloops to terminate on
a single END DOstatement if the END DOstatement had a statement label. The
END DOstatement is included in the Fortran 90 standard. The Fortran 90
standard specifies that a separate END DOstatement must be used to terminate
each DOloop, so allowing nested DOloops to end on a single, labeled END DO
statement is an outmoded feature.

6.9 DOUBLE COMPLEXStatement (UNICOS Systems Only)

The DOUBLE COMPLEXstatement is used to declare an item to be of type
double complex. The format for the DOUBLE COMPLEXstatement is as follows:

DOUBLE COMPLEX[, attribute_list ::] entity_list

Items declared as DOUBLE COMPLEXcontain two double-precision entities.

When the -d p option is in effect, double complex entities are affected as
follows:

• The nonstandard DOUBLE COMPLEXdeclaration is treated as a
single-precision complex type.

• Double-precision intrinsic procedures are changed to the corresponding
single-precision intrinsic procedures.

178 007–3694–003

Outmoded Features [6]

The -e p or -d p specification is used for all source files compiled with a
single invocation of the f90 (1) command. If a module is compiled separately
from a program unit that uses the module, they both must be compiled with
the same -e p or -d p specification.

Table 10 shows the CF90 double complex intrinsic functions and the preferred
standard alternatives:

Table 10. Standard alternatives to CF90 double-complex functions

Double complex function Fortran 90 standard alternative

CDABS ABS(3)

CDCOS COS(3)

CDEXP EXP(3)

CDLOG LOG(3)

CDSIN SIN (3)

CDSQRT SQRT(3)

6.10 Bitwise Logical Expressions

A bitwise logical expression (also called a masking expression) is an expression in
which a logical operator operates on individual bits within integer, real, Cray
pointer, or Boolean operands, giving a result of type Boolean. Each operand is
treated as a single storage unit. This storage unit is a 64-bit word on UNICOS
and UNICOS/mk systems; it is a 32-bit word on IRIX systems. The result is a
single storage unit. Boolean values and bitwise logical expressions are
contrasted to logical values and expressions.

Bitwise logical operators can also be written as functions; for example A.AND.B
can be written as AND(A,B) and .NOT.A can be written as COMPL(A).

The CF90 and MIPSpro 7 Fortran 90 compiler intrinsic functions that operate on
Boolean values in bitwise fashion, such as shifting, parity count, and tallying 1’s
or leading 0’s, are extensions to the Fortran 90 standard. Generally, these
bitwise functions have equivalent Fortran 90 standard intrinsic procedures.
Table 11 shows the bitwise functions and, where possible, their equivalent
Fortran 90 standard intrinsic procedures:

007–3694–003 179

Fortran Language Reference Manual, Volume 3

Table 11. Standard alternatives to CF90 and MIPSpro 7 Fortran 90 bitwise
functions

Bitwise function Fortran 90 standard alternative

AND(3M) IAND(3I)

COMPL(3I) NOT(3I)

CSMG(3I) MERGE(3I)

CVMGM(3I) MERGE(3I)

CVMGN(3I) MERGE(3I)

CVMGP(3I) MERGE(3I)

CVMGT(3I) MERGE(3I)

CVMGZ(3I) MERGE(3I)

EQV(3M) IEOR(3I)

MASK(3I) IBSET (3I)

OR(3M) IOR(3I)

NEQV(3M) IEOR(3I)

SHIFT (3I) ISHFT (3I), ISHFTC(3I)

SHIFTL (3I) ISHFT (3I), ISHFTC(3I)

SHIFTR(3I) ISHFT (3I), ISHFTC(3I)

XOR(3M) IEOR(3I)

If one operand is of type logical, then both operands must be of type logical;
the operation performed, then, is a logical operation (not a masking operation).
In a logical or masking operation, neither operand can be of type double
precision or of type double complex.

Table 12, page 181, shows which data types can be used together in bitwise
logical operations.

180 007–3694–003

Outmoded Features [6]

Table 12. Data types in bitwise logical operations

x1 x2 Integer Real Boolean Pointer Logical Character

Integer Masking
operation,
Boolean
result.

Masking
operation,
Boolean
result.

Masking
operation,
Boolean
result.

Masking
operation,
Boolean
result.

Not valid Not valid1

Real Masking
operation,
Boolean
result.

Masking
operation,
Boolean
result.

Masking
operation,
Boolean
result.

Masking
operation,
Boolean
result.

Not valid Not valid1

Boolean Masking
operation,
Boolean
result.

Masking
operation,
Boolean
result.

Masking
operation,
Boolean
result.

Masking
operation,
Boolean
result.

Not valid Not valid1

Pointer Masking
operation,
Boolean
result.

Masking
operation,
Boolean
result.

Masking
operation,
Boolean
result.

Masking
operation,
Boolean
result.

Not valid Not valid1

Logical Not valid Not valid Not valid Not valid Logical
operation
logical result

Not valid

Character Not valid1 Not valid1 Not valid1 Not valid1 Not valid Not valid

Notes:

1. x1 and x2 represent operands for a logical or bitwise expression, using
operators .NOT. , .AND. , .OR. , .XOR. , .NEQV. , and .EQV. .

2. The entry “Not valid1” indicates that if the operand is a character
operand of 32 or fewer characters, the operand is treated as a Hollerith
constant and is allowed.

Bitwise logical expressions can be combined with expressions of Boolean or
other types by using arithmetic, relational, and logical operators. Evaluation of
an arithmetic or relational operator processes a bitwise logical expression with
no type conversion. Boolean data is never automatically converted to another
type.

A bitwise logical expression performs the indicated logical operation separately
on each bit. The interpretation of individual bits in bitwise multiplication_exprs,

007–3694–003 181

Fortran Language Reference Manual, Volume 3

summation_exprs, and general expressions is the same as for logical expressions.
The results of binary 1 and 0 correspond to the logical results TRUEand FALSE,
respectively, in each of the bit positions. These values are summarized as
follows:

.NOT. 1100 1100 1100 1100 1100

=0011 .AND. 1010 .OR. 1010 .XOR. 1010 .EQV. 1010

---- ---- ---- ----

1000 1110 0110 1001

182 007–3694–003

CF90 Defined Externals [7]

This chapter describes global variables used by the CF90 compiler on UNICOS
and UNICOS/mk systems

7.1 Conformance Checks

Additional segldr (1) and cld (1) directives for load time optimization and
activating library features are described in the Application Programmer’s I/O
Guide.

Several segldr (1) directives are used to provide strict, intermediate, and
minimal error checking of edit descriptors with input/output (I/O) list items
during formatted READand WRITEstatements. The NOCHKversions provide the
least error checking.

The version of NOCHKfor formatted output is as follows:

% segldr -D EQUIV=$WNOCHK($WCHK)

The version of NOCHKfor a formatted input is as follows:

% segldr -D EQUIV=$RNOCHK($RCHK)

For strict conformance to editing in FORTRAN 77, use the CHK77versions,
which are as follows:

% segldr -D EQUIV=$WCHK77($WCHK)

% segldr -D EQUIV=$RCHK77($RCHK)

For strict conformance to editing in Fortran 90, use the CHK90versions, which
are as follows:

% segldr -D EQUIV=$WCHK90($WCHK)

% segldr -D EQUIV=$RCHK90($RCHK)

The default checking is somewhat stricter than the NOCHKversions but is not as
strict as the CHK77and CHK90versions.

7.2 Record Length

The RECLspecifier in an OPENstatement can be used to specify the maximum
record size for a file declared with sequential access. An alternate method is

007–3694–003 183

Fortran Language Reference Manual, Volume 3

provided through segldr (1) directives. If RECLis present, the values provided
by these directives are ignored. The use of RECLfor sequential access files is
recommended.

To set the maximum output record length X for a file opened as a sequential
formatted file, use the following specification:

SET=$WBUFLN:X

COMMONS=$WFDCOM:X+9

The default size is 267.

To set the maximum input record length X for a file opened as a sequential
formatted file, use the following specification:

SET=$RBUFLN:X

COMMONS=$RFDCOM:X+9

The default size is 267.

184 007–3694–003

Glossary

argument keyword

The name of a dummy (or formal) argument. This name is used in the
subprogram definition; it also may be used when the subprogram is invoked to
associate an actual argument with a dummy argument. Using argument
keywords allows the actual arguments to appear in any order. The Fortran 90
standard specifies argument keywords for all intrinsic procedures. Argument
keywords for user-supplied external procedures may be specified in a
procedure interface block.

array

(1) A data structure that contains a series of related data items arranged in rows
and columns for convenient access. The C shell and the awk(1) command can
store and process arrays. (2) In Fortran 90, an object with the DIMENSION
attribute. It is a set of scalar data, all of the same type and type parameters.
The rank of an array is at least 1, and at most 7. Arrays may be used as
expression operands, procedure arguments, and function results, and they may
appear in input/output (I/O) lists.

association

An association permits an entity to be referenced by different names in a scoping
unit or by the same or different names in different scoping units. Several kinds
of association exist. The principal kinds of association are pointer association,
argument association, host association, use association, and storage association.

automatic variable

A variable that is not a dummy argument but whose declaration depends on a
nonconstant expression (array bounds and/or character length).

Autotasking

A trademarked process of Cray Research that automatically divides a program
into individual tasks and organizes them to make the most efficient use of the
computer hardware.

007–3694–003 185

Fortran Language Reference Manual, Volume 3

bottom loading

An optimization technique used on some scalar loops in which operands are
prefetched during each loop iteration for use in the next iteration. The operand
is available as soon as the first loop instruction executes. A prefetch is
performed even during the final loop iteration, before the loop’s final jump test
has been performed.

cache

In a processing unit, a high-speed buffer storage that is continually updated to
contain recently accessed contents of main storage. Its purpose is to reduce
access time. In disk subsystems, a method the channel buffers use to buffer disk
data during transfer between the devices and memory.

cache line

On Cray MPP systems, a cache line consists of four quad words, which is the
maximum size of a hardware message.

CIV

A constant increment variable is a variable that is incremented only by a loop
invariant value (for example, in a loop with index J, the statement J = J + K, in
which K can be equal to 0, J is a CIV).

constant

A data object whose value cannot be changed. A named entity with the
PARAMETERattribute is called a named constant. A constant without a name is
called a literal constant.

construct

A sequence of statements that starts with a SELECT CASE, DO, IF , or WHERE
statement and ends with the corresponding terminal statement.

control construct

An action statement that can change the normal execution sequence (such as a
GO TO, STOP, or RETURNstatement) or a CASE, DO, or IF construct.

186 007–3694–003

Glossary

critical region

On Cray MPP systems, a synchronization mechanism that enforces serial access
to a piece of code. Only one PE may execute in a critical region at a time.

data entity

A data object, the result of the evaluation of an expression, or the result of the
execution of a function reference (also called the function result). A data entity
always has a type.

data object

A constant, a variable, or a part of a constant or variable.

declaration

A nonexecutable statement that specifies the attributes of a data object (for
example, it may be used to specify the type of a variable or function result or
the shape of an array).

definition

This term is used in two ways. (1) A data object is said to be defined when it
has a valid or predictable value; otherwise, it is undefined. It may be given a
valid value by execution of statements such as assignment or input. Under
certain circumstances, it may subsequently become undefined. (2) Procedures
and derived types are said to be defined when their descriptions have been
supplied by the programmer and are available in a program unit.

derived type

A type that is not intrinsic (a user-defined type); it requires a type definition to
name the type and specify its components. The components may be of intrinsic
or user-defined types. An object of derived type is called a structure. For each
derived type, a structure constructor is available to specify values. Operations
on objects of derived type must be defined by a function with an interface and
the generic specifier OPERATOR. Assignment for derived type objects is defined
intrinsically, but it may be redefined by a subroutine with the ASSIGNMENT
generic specifier. Data objects of derived type may be used as procedure
arguments and function results, and they may appear in input/output (I/O)
lists.

007–3694–003 187

Fortran Language Reference Manual, Volume 3

designator

Sometimes it is convenient to reference only part of an object, such as an
element or section of an array, a substring of a character string, or a component
of a structure. This requires the use of the name of the object followed by a
selector that selects a part of the object. A name followed by a selector is called
a designator .

entity

(1) In Open Systems Interconnection (OSI) terminology, a layered protocol
machine. An entity in a layer performs the functions of the layer in one
computer system, accessing the layer entity below and providing services to the
layer entity above at local service access points. (2) In Fortran 90, a general
term used to refer to any Fortran 90 concept (for example, a program unit, a
common block, a variable, an expression value, a constant, a statement label, a
construct, an operator, an interface block, a derived type, an input/output (I/O)
unit, a name list group, and so on).

executable construct

A statement (such as a GO TOstatement) or a construct (such as a DOor CASE
construct).

expression

A set of operands, which may be function invocations, and operators that
produce a value.

extent

A structure that defines a starting block and number of blocks for an element of
file data.

function

Usually a type of operating-system-related function written outside a program
and called in to do a specific function. Smaller and more limited in capability
than a utility. In a programming language, a function is usually defined as a
closed subroutine that performs some defined task and returns with an answer,
or identifiable return value.

The word "function" has a more specific meaning in Fortran than it has in C. In
C, it is refers to any called code; in Fortran, it refers to a subprogram that
returns a value.

188 007–3694–003

Glossary

generic specifier

An optional component of the INTERFACEstatement. It can take the form of an
identifier, an OPERATOR (defined_operator) clause, or an ASSIGNMENT (=)
clause.

heap

A section of memory within the user job area that provides a capability for
dynamic allocation. See the HEAPdirective in SR-0066.

inlining

The process of replacing a user subroutine or function call with the definition
itself. This saves subprogram call overhead and may allow better optimization
of the inlined code. If all calls within a loop are inlined, the loop becomes a
candidate for vectorization and/or tasking.

intrinsic

Anything that the language defines is intrinsic. There are intrinsic data types,
procedures, and operators. You may use these freely in any scoping unit.
Fortran programmers may define types, procedures, and operators; these
entities are not intrinsic.

local

(1) A type of scope in which variables are accessible only to a particular part of
a program (usually one module). (2) The system initiating the request for
service. This term is relative to the perspective of the user.

multitasking

(1) The parallel execution of two or more parts of a program on different CPUs;
these parts share an area of memory. (2) A method in multiuser systems that
incorporates multiple interconnected CPUs; these CPUs run their programs
simultaneously (in parallel) and shares resources such as memory, storage
devices, and printers. This term can often be used interchangeably with
parallel processing .

name

A term that identifies many different entities of a program such as a program
unit, a variable, a common block, a construct, a formal argument of a

007–3694–003 189

Fortran Language Reference Manual, Volume 3

subprogram (dummy argument), or a user-defined type (derived type). A name
may be associated with a specific constant (named constant).

operator

(1) A symbolic expression that indicates the action to be performed in an
expression; operator types include arithmetic, relational, and logical. (2) In
Fortran 90, an operator indicates a computation that involves one or two
operands. Fortran 90 defines several intrinsic operators (for example, +, -, *, /, **
are numeric operators, and .NOT., .AND., and .OR. are logical operators). Users
also may define operators for use with operands of intrinsic or derived types.

overindexing

The nonstandard practice of referencing an array with a subscript not contained
between the declared lower and upper bounds of the corresponding dimension
for that array. This practice sometimes, but not necessarily, leads to referencing
a storage location outside of the entire array.

parallel processing

Processing in which multiple processors work on a single application
simultaneously.

pointer

(1) A data item that consists of the address of a desired item. (2) A symbol that
moves around a computer screen under the control of the user.

procedure

(1) A named sequence of control statements and/or data that is saved in a
library for processing at a later time, when a calling statement activates it; it
provides the capability to replace values within the procedure. (2) In Fortran 90,
procedure is defined by a sequence of statements that expresses a computation
that may be invoked as a subroutine or function during program execution. It
may be an intrinsic procedure, an external procedure, an internal procedure, a
module procedure, a dummy procedure, or a statement function. If a
subprogram contains an ENTRYstatement, it defines more than one procedure.

procedure interface

In Fortran 90, a sequence of statements that specifies the name and
characteristics of one or more procedures, the name and attributes of each

190 007–3694–003

Glossary

dummy argument, and the generic specifier by which it may be referenced if
any. See generic specifier .

In FORTRAN 77 and Fortran 90, a generic function is one whose output
value data type is determined by the data type of its input arguments. In
FORTRAN 77, the only generic functions allowed are those that the standard
defines. In Fortran 90, programmers may construct their own generic function
by creating "generic interface," which is like a regular procedure interface,
except that it has a "generic specifier" (the name of the generic function) after
the keyword INTERFACE.

reduction loop

A loop that contains at least one statement that reduces an array to a scalar
value by doing a cumulative operation on many of the array elements. This
involves including the result of the previous iteration in the expression of the
current iteration.

reference

A data object reference is the appearance of a name, designator, or associated
pointer in an executable statement that requires the value of the object. A
procedure reference is the appearance of the procedure name, operator symbol,
or assignment symbol in an executable program that requires execution of the
procedure. A module reference is the appearance of the module name in a USE
statement.

scalar

(1) In Fortran 90, a single object of any intrinsic or derived type. A structure is
scalar even if it has a component that is an array. The rank of a scalar is 0. (2)
A nonvectorized, single numerical value that represents one aspect of a physical
quantity and may be represented on a scale as a point. This term often refers to
a floating-point or integer computation that is not vectorized; more generally, it
also refers to logical and conditional (jump) computation.

scope

The region of a program in which a variable is defined and can be referenced.

scoping unit

Part of a program in which a name has a fixed meaning. A program unit or
subprogram generally defines a scoping unit. Type definitions and procedure

007–3694–003 191

Fortran Language Reference Manual, Volume 3

interface bodies also constitute scoping units. Scoping units do not overlap,
although one scoping unit may contain another in the sense that it surrounds it.
If a scoping unit contains another scoping unit, the outer scoping unit is
referred to as the host scoping unit of the inner scoping unit.

search loop

A loop that can be exited by means of an IF statement.

sequence

A set ordered by a one-to-one correspondence with the numbers 1, 2, through
n. The number of elements in the sequence is n. A sequence may be empty, in
which case, it contains no elements.

shared

Accessible by multiple parts of a program. Shared is a type of scope.

shell variable

A name representing a string value. Variables that are usually set only on a
command line are called parameters (positional parameters and keyword
parameters). Other variables are simply names to which a user (user-defined
variables) or the shell itself may assign string values. The shell has predefined
shell variables (for example, HOME). Variables are referenced by prefixing the
variable name by a $ (for example, $HOME).

software pipelining

Software pipelining is a compiler code generation technique in which
operations from various loop iterations are overlapped in order to exploit
instruction-level parallelism, increase instruction issue rate, and better hide
memory and instruction latency. As an optimization technique, software
pipelining is similar to bottom loading, but it includes additional, and more
efficient, scheduling optimizations.

Cray compilers perform safe bottom loading by default. Under these
conditions, code generated for a loop contains operations and stores associated
with the present loop iteration and contains loads associated with the next loop
iteration. Loads for the first iteration are generated in the loop preamble.

When software pipelining is performed, code generated for the loop contains
loads, operations, and stores associated with various iterations of the loop.
Loads and operations for first iterations are generated in the preamble to the

192 007–3694–003

Glossary

loop. Operations and stores for last iterations of loop are generated in the
postamble to the loop.

statement keyword

A keyword that is part of the syntax of a statement. Each statement, other than
an assignment statement and a statement function definition, begins with a
statement keyword. Examples of these keywords are IF , READ, and INTEGER.
Statement keywords are not reserved words; you may use them as names to
identify program elements.

stripmining

A single-processor optimization technique in which arrays, and the program
loops that reference them, are split into optimally-sized blocks, termed strips.
The original loop is transformed into two nested loops. The inner loop
references all data elements within a single strip, and the outer loop selects the
strip to be addressed in the inner loop. This technique is often performed by
the compiler to maximize the usage of cache memory or as part of vector code
generation.

structure

A language construct that declares a collection of one or more variables
grouped together under one name for convenient handling. In C and C++, a
structure is defined with the struct keyword. In Fortran 90, a derived type is
defined first and various structures of that type are subsequently declared.

subobject

Parts of a data object may be referenced and defined separately from other
parts of the object. Portions of arrays are array elements and array sections.
Portions of character strings are substrings. Portions of structures are structure
components. Subobjects are referenced by designators and are considered to be
data objects themselves.

subroutine

A series of instructions that accomplishes a specific task for many other routines.
(A subsection of a user-written program of varying size and, therefore, function.
It is written within the program. It is not a subsection of a routine.) It differs
from a main routine in that one of its parameters must specify the location to
which to return in the main program after the function has been accomplished.

007–3694–003 193

Fortran Language Reference Manual, Volume 3

TKR

An acronym that represents attributes for argument association. It represents
the data type, kind type parameter, and rank of the argument.

type parameter

Two type parameters exist for intrinsic types: kind and length. The kind type
parameter KIND indicates the decimal range for the integer type, the decimal
precision and exponent range for the real and complex types, and the machine
representation method for the character and logical types. The length type
parameter LEN indicates the length of a character string.

variable

(1) A name that represents a string value. Variables that usually are set only on
a command line are called parameters. Other variables are simply names to
which the user or the shell may assign string values. (2) In Fortran 90, data
object whose value can be defined and redefined. A variable may be a scalar or
an array. (3) In the shell command language, a named parameter. See also
shell variable .

194 007–3694–003

Index

A

ASCII character set, 85

B

Backus-Naur Form, 1
Bitwise logical expressions, 179
BNF syntax summary, 1

C

CF77 compiling system, 91
Character

Hollerith, 164
Character data representation

CRAY T90 (IEEE) systems, 152
IRIX systems, 138
UNICOS systems, 127
UNICOS/mk systems, 145

Character set, 85
Complex data representation

CRAY T90 (IEEE) systems, 149
IRIX systems, 135
UNICOS/mk systems, 143

Complex type (single precision), internal
representation, 135

Constraints, 5
Cray character pointer data representation

CRAY T90 (IEEE) systems, 153
IRIX systems, 139
UNICOS systems, 128
UNICOS/mk systems, 146

D

Data
type

Hollerith, 164
DATA statement, 176
DECODE statement, 169
Decremental features, 81
Defined externals, 183
Differences (from CF77 compiling system), 91
DOUBLE COMPLEX statement, 178
Double-precision complex data representation

UNICOS systems, 127
Double-precision data representation

UNICOS systems, 125
Dynamic memory allocation, 158

E

Edit descriptors
outmoded, 171

ENCODE statement, 167
Extensions, 91
Externals (defined), 183

F

Formatted
I/O and internal files, 167

Fortran
keywords, 1

G

Global variables, 183

007–3694–003 195

Fortran Language Reference Manual, Volume 3

H

Hollerith type, 164

I

I/O
formatted, 167

IF statement, 176
Integer data representation

CRAY T90 (IEEE) systems, 146
IRIX systems, 129
UNICOS systems, 121
UNICOS/mk systems, 139

IRIX system data representation, 129

K

Keywords, 1

L

Logical data representation
CRAY T90 (IEEE) systems, 152
IRIX systems, 138
UNICOS systems, 128
UNICOS/mk systems, 145

M

Memory allocation, 158

O

Obsolescent features, 81
Outmoded features, 163

R

Real data representation
CRAY T90 (IEEE) systems, 147
IRIX systems, 131
UNICOS systems, 122
UNICOS/mk systems, 140

Real type, internal representation, 131

S

Single-precision complex data representation
UNICOS systems, 126

Stack storage, 156
Static storage, 156
Storage, 153
Syntax summary (in BNF), 1

T

TASKCOMMON statement, 177

U

UNICOS data representation, 121

196 007–3694–003

