
CF90TM Co-array Programming
Manual

SR–3908 3.1

Document Number 004–3908–001

Copyright © 1998 Silicon Graphics, Inc. All Rights Reserved. This manual or parts thereof may not be reproduced in any form
unless permitted by contract or by written permission of Silicon Graphics, Inc.

RESTRICTED RIGHTS LEGEND

Use, duplication, or disclosure of the technical data contained in this document by the Government is subject to restrictions as set
forth in subdivision (c) (1) (ii) of the Rights in Technical Data and Computer Software clause at DFARS 52.227-7013 and/or in
similar or successor clauses in the FAR, or in the DOD or NASA FAR Supplement. Unpublished rights reserved under the
Copyright Laws of the United States. Contractor/manufacturer is Silicon Graphics, Inc., 2011 N. Shoreline Blvd., Mountain View,
CA 94043-1389.

Autotasking, CF77, CRAY, Cray Ada, CraySoft, CRAY Y-MP, CRAY-1, CRInform, CRI/TurboKiva, HSX, LibSci, MPP Apprentice,
SSD, SUPERCLUSTER, UNICOS, and X-MP EA are federally registered trademarks and Because no workstation is an island, CCI,
CCMT, CF90, CFT, CFT2, CFT77, ConCurrent Maintenance Tools, COS, Cray Animation Theater, CRAY APP, CRAY C90,
CRAY C90D, Cray C++ Compiling System, CrayDoc, CRAY EL, CRAY J90, CRAY J90se, CrayLink, Cray NQS,
Cray/REELlibrarian, CRAY S-MP, CRAY SSD-T90, CRAY SV1, CRAY T90, CRAY T3D, CRAY T3E, CrayTutor, CRAY X-MP,
CRAY XMS, CRAY-2, CSIM, CVT, Delivering the power . . ., DGauss, Docview, EMDS, GigaRing, HEXAR, IOS,
ND Series Network Disk Array, Network Queuing Environment, Network Queuing Tools, OLNET, RQS, SEGLDR, SMARTE,
SUPERLINK, System Maintenance and Remote Testing Environment, Trusted UNICOS, UNICOS MAX, and UNICOS/mk are
trademarks of Cray Research, Inc., a wholly owned subsidiary of Silicon Graphics, Inc.

Silicon Graphics is a registered trademark and the Silicon Graphics logo is a trademark of Silicon Graphics, Inc.

UNIX is a registered trademark in the United States and other countries, licensed exclusively through X/Open Company Limited.
X/Open is a trademark of X/Open Company Ltd. The X device is a trademark of the Open Group.

The UNICOS operating system is derived from UNIX® System V. The UNICOS operating system is also based in part on the
Fourth Berkeley Software Distribution (BSD) under license from The Regents of the University of California.

Record of Revision

Version Description

3.1 August 1998
Original Printing. This manual supports the Programming Environment 3.1 release.

004–3908–001 i

Contents

Page

About This Manual v

Related CF90 Publications . v

Related Co-array Publications . v

Obtaining Publications . vi

Conventions . vi

Reader Comments . vii

Introduction [1] 1

Writing Programs With Co-arrays [2] 3

Execution Model and Images . 3

Specifying Co-arrays . 3

Referencing Co-arrays . 5

Initializing Co-arrays . 7

Using Co-arrays with Procedure Calls 7

Specifying Co-arrays in COMMONand EQUIVALENCEStatements 8

Specifying Allocatable Co-arrays . 9

Using Pointers in Derived Type Co-arrays 9

Intrinsic Procedures . 10

Ensuring Data Coherence Across Images 10

Controlling Execution Across Images 11

Input and Output (I/O) . 11

Executing Programs with Co-arrays [3] 13

Using the f90 (1) and mpprun (1) Commands 13

Using the CrayTools Tool Set with Co-array Programs 13

004–3908–001 iii

CF90TM Co-array Programming Manual

Page

Debugging Programs Containing Co-arrays 14

Analyzing Co-array Program Performance 14

Interoperating with Other Message Passing and Data Passing Models 14

Optimizing Co-arrays [4] 17

Splitting Co-array References . 17

Vectorizing Co-array References . 18

Using CRAY T3E Data Streams . 18

Appendix A Intrinsic Procedure Man Pages 21

Index 29

iv 004–3908–001

About This Manual

This document describes the co-array extension to the CF90 compiler on
CRAY T3E systems, for the Programming Environments (PE) release 3.1.
Co-arrays can be used to perform data passing in single-program-multiple-data
(SPMD) programs on UNICOS/mk systems.

Related CF90 Publications

The following documents contain additional CF90 compiler information that
may be helpful:

• CF90 Commands and Directives Reference Manual

• Fortran Language Reference Manual, Volume I

• Fortran Language Reference Manual, Volume II

• Fortran Language Reference Manual, Volume III

• Intrinsic Procedures Reference Manual

• Message Passing Toolkit: MPI Programmer’s Manual

• Message Passing Toolkit: PVM Programmer’s Manual

Related Co-array Publications

The following technical papers may be of use to you when implementing
co-arrays:

• R. W. Numrich and J. Reid, Co-array Fortran for Parallel Programming, Silicon
Graphics, Inc., Rutherford Appleton Laboratory, ACM Fortran Forum, 1998.

• R. W. Numrich, J. L. Steidel, B. H. Johnson, B. D. de Dinechin, G. W.
Elsesser, G. S. Fischer, and T. A. MacDonald, Definition of the F– – Extension to
Fortran 90, Proceedings of the 10th International Workshop on Languages
and Compilers for Parallel Computers, Lectures on Computer Science Series,
Number 1366, Speinger-Verlag, 1998, pages 282–306.

004–3908–001 v

CF90TM Co-array Programming Manual

Obtaining Publications

The User Publications Catalog describes the availability and content of all Cray
Research hardware and software documents that are available to customers.
Customers who subscribe to the Cray Inform (CRInform) program can access
this information on the CRInform system.

To order a printed copy of this document, either call the Minnesota Distribution
Center at +1–651–683–5907, or send a facsimile of your request to fax number
+1–651–452–0141. Silicon Graphics employees may send electronic mail to
orderdsk@cray.com (UNIX system users).

Silicon Graphics maintains information on publicly available Cray Research
documents at the following URL:

http://www.cray.com/swpubs/

This Web site contains information that allows you to browse documents online
and send feedback to Silicon Graphics.

Customers outside of the United States and Canada should contact their local
service organization for ordering and documentation information.

Conventions

The following conventions are used throughout this document:

Convention Meaning

command This fixed-space font denotes literal items such as
commands, files, routines, path names, signals,
messages, and programming language structures.

variable Italic typeface denotes variable entries and words
or concepts being defined.

user input This bold, fixed-space font denotes literal items
that the user enters in interactive sessions.
Output is shown in nonbold, fixed-space font.

... Ellipses indicate that a preceding element can be
repeated.

[] Typically, brackets enclose optional portions of a
command or directive line in UNICOS/mk

vi 004–3908–001

About This Manual

documentation. In this manual, however, brackets
denote the co-dimensions of a co-array.

Reader Comments

If you have comments about the technical accuracy, content, or organization of
this document, please tell us. You can contact us in any of the following ways:

• Send us electronic mail at the following address:

techpubs@sgi.com

• Contact your customer service representative and ask that an SPR or PV be
filed. If filing an SPR, use PUBLICATIONS for the group name, PUBSfor the
command, and NO-LICENSE for the release name.

• Call our Software Publications Group in Eagan, Minnesota, through the
Customer Service Call Center, using either of the following numbers:

1–800–950–2729 (toll free from the United States and Canada)

+1–651–683–5600

• Send a facsimile of your comments to the attention of “Software Publications
Group” in Eagan, Minnesota, at fax number +1–651–683–5599.

We value your comments and will respond to them promptly.

004–3908–001 vii

Introduction [1]

Data passing, also known as one-sided communication, has proven itself to be
an effective method for programming single-program-multiple-data (SPMD)
parallel computations on UNICOS and UNICOS/mk platforms. Its chief
advantage over message passing is lower latency for data transfers, which leads
to better scalability of parallel applications. Co-arrays are a syntactic extension
to the Fortran Language that offers a method for programming data passing.

Data passing can also be accomplished by using the shared memory (SHMEM)
library routines. Using SHMEM, the program transfers data from an object on
one processing element (PE) to an object on another via subroutine calls.

Co-arrays provide an alternative syntax for specifying these transfers. With
co-arrays, the concept of a PE is replaced by the concept of an image. When
data objects are declared as part of a co-array, data on different images can be
read or written in a fashion similar to the way in which arrays are read and
written in Fortran. This is done by adding additional dimensions, or
co-dimensions, within brackets ([]) to an object’s declarations and references.
These extra dimensions express the image upon which the object resides.

Co-arrays offer the following advantages over SHMEM:

• Co-arrays are syntax-based, so programs that use them can be analyzed and
optimized by the compiler. This offers greater opportunity for hiding data
transfer latency.

• Co-array syntax can eliminate the need to create and copy data to local
temporary arrays.

• Co-arrays express data transfer naturally through the syntax of the
language, making the code more readable and maintainable.

• The unique bracket syntax allows you to scan for and to identify
communication in a program easily.

004–3908–001 1

CF90TM Co-array Programming Manual

Consider the following SHMEM code fragment from a finite differencing
algorithm:

CALL SHMEM_REAL_GET(T1, U, NROW, LEFT)
CALL SHMEM_REAL_GET(T2, U, NROW, RIGHT)

NU(1:NROW) = NU(1:NROW) + T1(1:NROW) + T2(1:NROW)

Co-arrays can be used to express this fragment simply as:

NU(1:NROW) = NU(1:NROW) + U(1:NROW)[LEFT] + U(1:NROW)[RIGHT]

Notice that the resulting code is more concise, easier to read, and that the
copies to local temporary objects T1 and T2 are eliminated.

Co-arrays can interoperate with the other message passing and data passing
models available on UNICOS/mk systems. This interoperability allows you to
introduce co-arrays gradually into codes that presently use the Parallel Virtual
Machine (PVM), the Message Passing Interface (MPI), or SHMEM.

2 004–3908–001

Writing Programs With Co-arrays [2]

This chapter describes the syntax and semantics of the co-array extension to
CF90.

2.1 Execution Model and Images

Programs with CF90 co-arrays use the single-program-multiple-data (SPMD)
execution model. In the SPMD model, the program and all its data are replicated
and executed asynchronously. Each replication of the program is an image.

!
Caution: Like PEs, images are numbered. Unlike PEs, which are numbered
starting with zero, images are numbered starting with one.

The total number of images that are executing can be accessed through the
NUM_IMAGES(3) intrinsic function. An image can access its own image number
through the THIS_IMAGE(3) intrinsic function. Images can synchronize through
the SYNC_IMAGES(3) intrinsic subroutine.

2.2 Specifying Co-arrays

A co-array is a data object that is identically allocated on each image and, more
significantly, can be directly referenced by any other image syntactically.

A co-array specification consists of the local object specification and the
co-dimensions specification. The local object is the data object to be replicated on
each image. The co-dimensions are the dimensions of the co-array. They are
specified within brackets ([]) and appended to the specification for the local
object.

Example 1. The following statements show co-array declarations:

REAL, DIMENSION(20)[8,*] :: A, C
REAL :: B(20)[8,*], D[*], E[0:*]

INTEGER :: IB(10)[*]

Note: Generally, a co-dimension specification in brackets takes the same form
as a dimension specification in parentheses. The exception is that for
co-dimensions, the upper bound of the rightmost co-dimension must be an
asterisk (*). This is because co-array objects are replicated on all images, so
co-size is always equal to NUM_IMAGES(3I).

004–3908–001 3

CF90TM Co-array Programming Manual

Elements of co-arrays on other images can be refererenced by appending square
brackets to the end of a reference to the local object. As Example 2 shows, the
brackets contain subscripts, one for each co-dimension:

Example 2:

A(5)[3,7] = IB(5)[3]

D[11] = E

A(:)[2,3] = C(1)[1,1]

The co-dimension specification of a co-array creates a mapping of subscripts to
images. This mapping is identical to the mapping that parenthesized array
dimensions create between subscripts and elements of an array. For example,
the following table lists the image number for some references of the objects
declared in Example 1:

Reference Image

IB(5)[3] 3

A(5)[3,7] 31

D[11] 11

E[11] 12

The terms local rank, local size, and local shape refer to the rank, size and shape of
the local object of a co-array. The terms co-rank, co-size, and co-shape refer to
those properties implied by the co-dimensions of a co-array. For example, for
co-array A declared in the preceding list, its local rank is 1; its local size is 20; its
co-rank is 2; and its co-size is equal to NUM_IMAGES(3I). The co-rank of a
co-array cannot exceed 7.

The local object of a co-array can be of a derived type, but a co-array can never
be a component within a derived type. For example:

TYPE DTYPE1
REAL :: X

REAL :: Y

END TYPE DTYPE1

TYPE(DTYPE) :: DT(100)[*] ! PERMITTED: CO-ARRAY OF DERIVED TYPE

TYPE DTYPE2

REAL :: X

REAL :: Y[*] ! NOT PERMITTED:

! CO-ARRAY IN DERIVED TYPE

4 004–3908–001

Writing Programs With Co-arrays [2]

END TYPE DTYPE2

Most objects can be the local object of a co-array, but the following list indicates
restrictions on co-array specifications:

• The smallest referenceable element of the local object of a co-array must
have a type such that the size is 64 bits and is aligned on a 64-bit boundary.
For example:

REAL*4 :: X(100)[*] ! NOT SUPPORTED: 32-BIT TYPE

CHARACTER(LEN=80) :: C[*] ! NOT SUPPORTED: 8-BIT TYPE

COMPLEX(KIND=8) :: CX(100)[*] ! NOT SUPPORTED: 32-BIT ALIGNMENT

COMPLEX(KIND=16) :: CX2(100[*]! NOT SUPPORTED: 128-BIT TYPE

• Co-arrays with assumed-size local size are not supported. For example:

REAL :: Y(*)[*] ! NOT SUPPORTED: LOCAL OBJECT ASSUMED SIZE

• Co-arrays with deferred-shape local shape or co-shape are supported, but
the co-array must be allocatable. Co-array pointers are not supported. For
example:

REAL, ALLOCATABLE :: WA(:)[:] ! SUPPORTED: ALLOCATABLE

REAL, POINTER :: WP(:)[:] ! NOT SUPPORTED: POINTER

• Co-arrays with assumed-shape local shape or co-shape are not supported.
For example:

SUBROUTINE S1(Z1, Z2)

REAL :: Z1(:)[*] ! NOT SUPPORTED: ASSUMED-SHAPE LOCAL SHAPE

REAL :: Z2(:)[:] ! NOT SUPPORTED: ASSUMED-SHAPE CO-SHAPE

• Automatic co-arrays are not supported. For example:

SUBROUTINE S2(A, N)

REAL :: A(N)[*] ! SUPPORTED: CO-ARRAY ACTUAL ARGUMENT

REAL :: W(N)[*] ! NOT SUPPORTED: AUTOMATIC LOCAL OBJECT

2.3 Referencing Co-arrays

Co-arrays can be referenced two ways: with brackets and without brackets.

When brackets are omitted, the object local to the invoking image is referenced;
this is called a local reference. For example:

004–3908–001 5

CF90TM Co-array Programming Manual

REAL, DIMENSION(100)[*] :: A, B, C, D, E

A(I) = B(I) + C(I) ! LOCAL REFERENCES TO A, B, C

D = E ! LOCAL REFERENCES TO D, E

When brackets are specified, the object on the image specified by the subscripts
within the brackets is referenced. This is called a bracket reference. For example:

A(I)[IP] = B(I) + C(I) ! REFERENCE TO A ON IMAGE "IP";

! LOCAL REFERENCES TO B, C

D(:) = E(:)[IP2] ! REFERENCES TO E ON IMAGE "IP2"
! LOCAL REFERENCES TO D

Components of derived type co-arrays are specified by appending the
component specification after the brackets. For example:

TYPE DTYPE3

REAL :: X(100)

INTEGER :: ICNT

END TYPE DTYPE3

TYPE (DTYPE3) :: DT3[*]

DT3%ICNT = DT3[IP]%ICNT ! SUPPORTED: BRACKET IN DERIVED TYPE

DT3%X(J) = DT3[IP]%X(J) ! COMPONENT REFERENCES

The co-subscripts of a co-array reference must translate to an image number
between 1 and NUM_IMAGES(3I), otherwise the behavior of the reference is
undefined.

The following additional restrictions exist for co-array references:

• Specification of subscripts for co-dimensions generally follows the
specification of subscripts within parentheses. However, support for triplet
subscript notation within brackets is not supported. For example:

D(K)[1:N:2] = E(K)[1:N:2] ! NOT SUPPORTED:

! TRIPLET NOTATION IN []S

• While brackets are supported in references to components of derived type
co-arrays, bracket references of derived types are not supported. For
example, consider the declaration for DT3 as stated previously in this
subsection:

6 004–3908–001

Writing Programs With Co-arrays [2]

DT3 = DT3[IP] ! NOT SUPPORTED: DERIVED TYPE

! BRACKET REFERENCES

2.4 Initializing Co-arrays

Co-arrays can be initialized using the DATAstatement, but only the initialization
of the local object of the co-array can be specified. Bracket references are not
allowed in a DATAstatement. For example:

REAL :: AI(100)[*]

DATA AI(3) /1.0/ ! PERMITTED

DATA AI(3)[11] /1.0/ ! NOT PERMITTED

When the program is executed, the co-array local objects on every image are
initialized identically, as specified.

2.5 Using Co-arrays with Procedure Calls

If a procedure with a co-array dummy argument is called, the called procedure
must have an explicit interface, and the actual argument must be a local
reference to a co-array. If the actual argument has subscripts, their values
should be the same across all images, otherwise the program behavior is
undefined. For example:

INTERFACE
SUBROUTINE S3(A, N)

REAL :: A(N)[*]

END INTERFACE

REAL :: X(100,100), Y(100,100)[*]

CALL S3(X(1,K), 100) ! NOT PERMITTED:

! LOCAL ACTUAL, CO-ARRAY DUMMY

CALL S3(Y(1,K), 100) ! PERMITTED: CO-ARRAY ACTUAL AND DUMMY;

! UNDEFINED IF "K" NOT SAME VALUE ON
! ALL IMAGES

Bracket references cannot appear as actual arguments in subroutine calls or
function calls. For example:

CALL S3(Y(1,K)[IP], 100) ! NOT PERMITTED: BRACKET ACTUAL

004–3908–001 7

CF90TM Co-array Programming Manual

Co-array bracket references can appear within an actual argument, but only as
part of an expression that is passed as the actual argument. Parentheses can be
used to turn a bracket reference into an expression. For example:

CALL S3((Y(1,K)[IP]), 100) ! PERMITTED: ACTUAL IS EXPRESSION

The rules of resolving generic procedure references are the same as those in the
Fortran 90 standard.

The following restrictions affect co-arrays used in procedures:

• A function result is not permitted to be a co-array.

• A pure procedure is not permitted to contain any co-arrays.

2.6 Specifying Co-arrays in COMMONand EQUIVALENCEStatements

Co-arrays can be specified in COMMONstatements. For example:

COMMON /CCC/ W1(100)[*], W2(100)[16,*] ! PERMITTED:

! CO-ARRAYS IN COMMON

The layout of the common block on any one image is as if all objects of the
common block were declared without co-dimensions.

Data objects that are not co-array data objects can appear in the same common
block as co-arrays.

Co-arrays can be specified in EQUIVALENCEstatements, but bracket references
cannot appear in EQUIVALENCEstatements. For example:

REAL :: V1(100)[*], V2(100)[*], V3(100)

EQUIVALENCE (V1(50), V2(1)) ! PERMITTED: CO-ARRAYS

EQUIVALENCE (V1(1)[16], V2(1)[1]) ! NOT PERMITTED:

! SQUARE BRACKETS

Data objects that are not co-array data objects cannot be equivalenced to
co-array data objects. For example:

EQUIVALENCE (V1(50), V3(1)) ! NOT PERMITTED: V3 NOT
! CO-ARRAY OBJECT

8 004–3908–001

Writing Programs With Co-arrays [2]

2.7 Specifying Allocatable Co-arrays

A co-array can be allocatable. Co-dimensions are specified by appending
brackets containing the co-dimension specification to the co-array local
specification in an ALLOCATEstatement. For example:

REAL, ALLOCATABLE :: A1(:)[:], A2(:)[:,:]

ALLOCATE (A1(10)[*]) ! PERMITTED: ALLOCATABLE CO-ARRAY

ALLOCATE (A2(24)[0:7,0:*])

As with the specification of statically allocated co-arrays, the upper bound of
the final co-dimension must be an asterisk (*) and the values of all other
bounds must be identical across all images.

!
Caution: Execution of ALLOCATEand DEALLOCATEstatements containing
co-array objects causes an implicit barrier synchronization of all images. All
images must participate in the execution of these statements, or deadlock can
occur.

2.8 Using Pointers in Derived Type Co-arrays

A pointer cannot be declared as a co-array, but a co-array can be of a derived
type containing a pointer member. This enables construction of irregularly sized
data structures across images. For example:

TYPE DTYPE4

INTEGER :: LEN
REAL, POINTER :: AP(:)

END TYPE DTYPE4

TYPE(DTYPE4) :: D4[*] ! PERMITTED: CO-ARRAY OF DERIVED

! TYPE CONTAINING POINTER

A bracket reference to a pointer in a derived type co-array returns the value
from the object on the specified image. For example, the reference
D4[7]%AP(22) returns the value of D4%AP(22) as evaluated on image 7.

To help prevent the possibility of pointers being assigned invalid data, co-array
bracket references cannot appear in pointer assignment statements. For example:

004–3908–001 9

CF90TM Co-array Programming Manual

REAL :: Q(100)

D4[IP]%AP => Q ! NOT PERMITTED: BRACKET IN

Q => D4[IP]%AP ! POINTER ASSIGNMENT

Note: Pointers in derived type co-arrays cannot appear in pointer assignment
statements. They can be assigned only by using the ALLOCATEstatement.
For example:

ALLOCATE (D4%AP(100)) ! PERMITTED: ALLOCATE OF CO-ARRAY POINTER

! MEMBER

D4%AP => Q ! NOT PERMITTED: POINTER ASSIGNMENT
! INTO CO-ARRAY ELEMENT

2.9 Intrinsic Procedures

The following intrinsic procedures support co-arrays:

• LOG2_IMAGES(3I), which returns the base 2 logarithm of the number of
executing images truncated to an integer

• NUM_IMAGES(3I), which returns the number of executing images

• REM_IMAGES(3I), which returns
MOD(NUM_IMAGES(), 2**LOG2_IMAGES())

• SYNC_IMAGES(3I), which synchronizes images

• THIS_IMAGE(3I), which returns the index of, or co-subscripts related to, the
invoking image

Only NUM_IMAGES(3I), LOG2_IMAGES(3I), and REM_IMAGES(3I) can appear in
specification statements. None of the intrinsics are permitted in initialization
expressions.

For more information on these intrinsic procedures, see the online man pages
for each. Copies of the online man page appear in Appendix A, page 21, of this
manual.

2.10 Ensuring Data Coherence Across Images

An image can guarantee to another image that it has completed all its
references to co-array data by executing and coordinating a SYNC_IMAGES(3I)
intrinsic procedure call with the other image.

10 004–3908–001

Writing Programs With Co-arrays [2]

SYNC_IMAGES(3I) guarantees the completion of references to data executed by
that image within procedures for which the data is declared as part of a
co-array. The reference must either be a direct read or write of the data or a
procedure call that references the data.

For example, consider the following subroutine:

SUBROUTINE TST(A,B,C,D,N,IP)

REAL :: A(N)[*], B(N)[*], C(N)[*], D(N)

A(:) = B(:)[IP]

CALL SUB1(C,N)
D(:) = 0.0

CALL SYNC_IMAGES()

END

When an image executes the SYNC_IMAGES(3I) call in the preceding example, it
guarantees to all images executing a coordinating SYNC_IMAGES(3I) call that its
references to A and B are complete and that all references to C by SUB1are
complete. It does not, however, guarantee that its references to D are complete,
since D is not declared as a co-array. This is true even if the actual argument for
D is a co-array.

Behavior of references to the same data by different images without such
coordinating SYNC_IMAGES(3I) calls is undefined.

2.11 Controlling Execution Across Images

The execution of a STOPstatement by any image halts the execution of all
images.

2.12 Input and Output (I/O)

Each image has its own set of independent I/O units. A file can be opened on
one image when it is already open on another, but only the BLANK, DELIM,
PAD, ERR, and IOSTAT specifiers can have values that differ from those in effect
on other images.

004–3908–001 11

CF90TM Co-array Programming Manual

!
Caution: For a unit identified by an asterisk (*) in a READor WRITE
statement, there is a single position for all images. Only one image executes a
statement for such a unit at any one time. The system introduces
synchronization when necessary. Otherwise, each image positions each file
independently. If the access order is important, the program must provide its
own synchronization between images.

12 004–3908–001

Executing Programs with Co-arrays [3]

This chapter describes the relationships between co-array programs and various
commands, tools, and products available in the UNICOS/mk programming
environment.

3.1 Using the f90 (1) and mpprun (1) Commands

The -Z option on the f90 (1) command line must be specified in order for
co-array syntax to be recognized and translated. Otherwise, co-array syntax
generates ERRORmessages.

Upon execution of an a.out file that has been compiled and loaded with the
-Z option, an image is created and executed on every PE assigned to the job.
Images 1 through NUM_IMAGES(3I) are assigned to PEs 0 through N$PES-1,
consecutively.

You can set the number of PEs assigned to a job at either compile time or load
time by specifying the -X option on the f90 (1) command. The number of PEs
can also be set at run time by executing the a.out file by using the mpprun (1)
command with the -n option specified.

Bounds checking is performed by specifying the -Rb option on the f90 (1)
command line. This feature is not implemented for co-dimensions of co-arrays.

For more information on the f90 (1) and mpprun (1) commands, see the f90 (1)
and mpprun (1) man pages.

3.2 Using the CrayTools Tool Set with Co-array Programs

The CrayTools tool set, which includes totalview (1), apprentice (1),
xbrowse (1), and other tools, does not contain special support for co-arrays and
does not support the bracket notation. In most cases, however, these tools can
still be used effectively to analyze programs containing co-arrays.

The following sections discuss issues related to the interaction of these tools
with programs containing co-arrays.

004–3908–001 13

CF90TM Co-array Programming Manual

3.2.1 Debugging Programs Containing Co-arrays

The totalview (1) debugger does not support the bracket notation. Co-arrays
generally appear as their corresponding local object with co-dimensions
stripped off.

Co-array data can be viewed and referenced by switching the totalview (1)
Process window to the PE corresponding to the desired image and accessing
the co-array with local references.

3.2.2 Analyzing Co-array Program Performance

To the CrayTools performance tools, which include apprentice (1), pat (1),
and others, co-arrays generally appear as their corresponding local object with
co-dimensions stripped off.

!
Caution: References to co-arrays on different images appear to the
performance tools as local data references. This may skew the remote
reference statistics of these tools.

3.3 Interoperating with Other Message Passing and Data Passing Models

Co-arrays can interoperate with all other message and data passing models
available on UNICOS/mk systems: MPI, PVM, and SHMEM. This allows you
to introduce co-arrays into existing application codes incrementally.

These models are implemented through procedure calls, so the language
interaction between co-arrays and these models is well defined. For more
information on passing co-arrays to procedure calls, see Section 2.5, page 7.

!
Caution: MPI, PVM, and SHMEM generally use PE numbers, which start at
zero, but the co-array model generally deals with image numbers, which start
at one. For information on the mapping between PE and image numbers, see
Section 3.1, page 13

Co-arrays are symmetric for the purposes of SHMEM programming. Pointers in
co-arrays of derived type, however, may not necessarily point to symmetric
data.

14 004–3908–001

Executing Programs with Co-arrays [3]

For more information on the the other message passing and data passing
models, see one of the following publications:

• The Message Passing Toolkit: PVM Programmer’s Manual

• The Message Passing Toolkit: MPI Programmer’s Manual

• The intro_shmem (3) and man page.

004–3908–001 15

Optimizing Co-arrays [4]

Programs containing co-arrays benefit from all the usual steps you can take to
improve run-time performance of code that runs on one PE. This chapter
describes additional steps you can take to improve the performance of programs
that contain co-array references across images on UNICOS/mk systems.

4.1 Splitting Co-array References

In order to cover the latency and increase the bandwidth of off-image co-array
references on UNICOS/mk systems, the compiler aggressively splits these
references from the original COMPUTEloop into special GETand PUT loops that
precede and follow the COMPUTEloop.

The following example illustrates this:

DO I = 1, N
A(I)[IP1] = B(I)[IP2] + C(I)[IP3]

ENDDO

The compiler restructures the preceding loop into the following three loops:

DO I = 1, N ! GET LOOP

E1(I) = B(I)[IP2]

E2(I) = C(I)[IP3]

ENDDO

DO I = 1, N ! COMPUTE LOOP

E3(I) = E1(I) + E2(I)

ENDDO

DO I = 1, N ! PUT LOOP

A(I)[IP1] = E3(I)

ENDDO

The temporary arrays E1, E2, and E3 are subsequently mapped to CRAY T3E
E-registers, and the reads and writes of the co-arrays are translated to E-register
GETand PUT instructions. This restructuring and translation allows for nearly
optimal overlap of remote references in the execution of the GETand PUT loops.
Some overlap of GETand PUT operations with operations in the compute loop
is also enabled.

004–3908–001 17

CF90TM Co-array Programming Manual

The compiler splits co-array references only when it can detect, through classic
data dependence analysis, that the behavior of the original loop can be
preserved. More precisely, a co-array reference is split only if the compiler can
determine that its result does not depend on any other co-array reference
within that loop.

In addition, the compiler splits co-array references only when it can split all
references within a loop. For all co-array references that cannot be split, less
optimal, straight-line E-register instructions are generated.

Only inner loops are considered for co-array reference splitting. The compiler
issues an optimization-level message when a loop’s co-array references are split.

4.2 Vectorizing Co-array References

Once split, certain co-array references are eligible for further optimization. In
particular, vector versions of the E-register GETand PUT operations can be
generated. Eight elements can be referenced with one vector E-register
instruction, so bandwidth is increased by reducing the number of E-register
instructions issued.

A co-array reference can be vectorized only if its co-subscripts are invariant
with respect to the inner loop; in other words, all references during execution of
the loop are to the same image. In addition, the stride of the reference on that
image must be an invariant with respect to the loop.

Furthermore, a GEToperation can only be vectorized if it is the only GET in its
loop. This restriction applies to PUToperations as well. Likewise, a PUT
operation can only be vectorized if it is the only PUT in its loop.

Finally, in order for vector E-register operations to be generated, unrolling must
be enabled by specifying the -O unroll2 option on the f90 (1) command line.

The compiler issues an optimization-level message when co-array references in
a loop are vectorized.

4.3 Using CRAY T3E Data Streams

On some UNICOS/mk systems (other than the CRAY T3E 900 and
CRAY T3E 1200E system models), the default behavior of programs that contain
E-register code (which is generated for co-array references) is that the hardware
feature called data stream buffers is not enabled. Enabling data stream buffers can

18 004–3908–001

Optimizing Co-arrays [4]

improve run-time performance of on-image memory references. You can enable
data streams for these programs by using the set_d_stream (3) library routine.

Contact your site representative to see whether your system exhibits this
behavior. The streams_guide (7) man page contains a pointer to information
on CRAY T3E programming with coherent memory streams. The information
there explains how data streams can be safely enabled in your program.

004–3908–001 19

Intrinsic Procedure Man Pages [A]

This appendix contains copies of the following man pages:

• LOG2_IMAGES(3I)

• NUM_IMAGES(3I)

• REM_IMAGES(3I)

• SYNC_IMAGES(3I)

• THIS_IMAGE(3I)

Note: The following man pages are designed for online use. In certain cases,
the text of the man pages online may be more readable than the text that
appears in this appendix.

004–3908–001 21

CF90TM Co-array Programming Manual

LOG2_IMAGES(3I)

NAME

LOG2_IMAGES - Returns the base 2 logarithm of the number of executing

images truncated to an integer

SYNOPSIS

LOG2_IMAGES()

IMPLEMENTATION

UNICOS/mk systems

STANDARDS
CF90 compiler extension to Fortran 90

DESCRIPTION

LOG2_IMAGES is a CF90 intrinsic procedure that returns the base 2

logarithm of the number of executing images, truncated to an integer.
It is an inquiry function.

RETURN VALUES

The LOG2_IMAGES intrinsic function returns a scalar value of type

default integer.

SEE ALSO

CF90 Co-array Programming Manual

22 004–3908–001

Intrinsic Procedure Man Pages [A]

NUM_IMAGES(3I)

NAME

NUM_IMAGES - Retrieves the total number of images that are executing

SYNOPSIS

NUM_IMAGES()

IMPLEMENTATION

UNICOS/mk systems

STANDARDS

CF90 compiler extension to Fortran 90

DESCRIPTION

NUM_IMAGES is a CF90 intrinsic procedure that retrieves the total

number of images that are executing. It is an inquiry function.

RETURN VALUES

The NUM_IMAGES intrinsic function returns a scalar value of type

default integer.

SEE ALSO

CF90 Co-array Programming Manual

004–3908–001 23

CF90TM Co-array Programming Manual

REM_IMAGES(3I)

NAME

REM_IMAGES - Returns MOD(NUM_IMAGES(), 2**LOG2_IMAGES())

SYNOPSIS

REM_IMAGES()

IMPLEMENTATION

UNICOS/mk systems

STANDARDS

CF90 compiler extension to Fortran 90

DESCRIPTION

REM_IMAGES is a CF90 intrinsic procedure that returns

MOD(NUM_IMAGES(), 2**LOG2_IMAGES()). It is an inquiry function.

RETURN VALUES

The REM_IMAGES intrinsic function returns a scalar value of type

default integer.

SEE ALSO

CF90 Co-array Programming Manual

24 004–3908–001

Intrinsic Procedure Man Pages [A]

SYNC_IMAGES(3I)

NAME

SYNC_IMAGES - Synchronizes images

SYNOPSIS

SYNC_IMAGES([[IMAGE=]image])

IMPLEMENTATION

UNICOS/mk systems

STANDARDS

CF90 compiler extension to Fortran 90

DESCRIPTION

SYNC_IMAGES is a CF90 intrinsic procedure that synchronizes images.

It is an intrinsic subroutine. SYNC_IMAGES accepts the following

argument:

image A scalar integer or an integer array. The behavior of

SYNC_IMAGES differs, as follows, depending on whether image

is specified and whether it is a scalar or an array:

* If image is absent, the image waits for all other images
to call SYNC_IMAGES with no argument.

* If image is a scalar and the invoking image has index i,

the invoking image waits for the image with index image to

execute a SYNC_IMAGES call with a scalar argument with
value i. After both calls are made, execution proceeds.

If image is i, the call has no effect. If image has a

value that is less than 1 or greater than NUM_IMAGES(3I),

the behavior is undefined.

* If image is an array, the invoking image has index i and

array image contains the value i, the invoking image waits

for those images whose values are contained in array image

to execute a SYNC_IMAGES call with an array argument that

contains the value i. Any values in array images that are

outside the range 1 through NUM_IMAGES are ignored. If
image does not contain the value i, the behavior is

undefined.

004–3908–001 25

CF90TM Co-array Programming Manual

SEE ALSO

CF90 Co-array Programming Manual

26 004–3908–001

Intrinsic Procedure Man Pages [A]

THIS_IMAGE(3I)

NAME

THIS_IMAGE - Retrieves an image number

SYNOPSIS

THIS_IMAGE([[ARRAY=]array[,[DIM=]dim]])

IMPLEMENTATION

UNICOS/mk systems

STANDARDS

CF90 compiler extension to Fortran 90

DESCRIPTION

THIS_IMAGE is a CF90 intrinsic procedure that allows an image to

retrieve its own image number. It returns the index of, or

co-subscripts related to, the invoking image. It is an inquiry
function. THIS_IMAGE accepts the following arguments:

array The name of a co-array.

dim An integer value.

RETURN VALUES

The results differ, as follows, depending on the optional arguments

specified:

* If array is absent, the result is a default integer scalar with a
value equal to the index of the invoking image.

* If array is present with a co-rank of one and dim is absent, the

result is a default integer scalar with a value equal to the co-

subscript of the elements of array that resides on the invoking
image.

* If array is present with a co-rank greater than one and dim is

absent, the result is a rank one default integer array of a size

equal to the co-rank of array. Element k of the result has a value

equal to the co-subscript k of the elements of array that reside on
the invoking image.

* If array and dim are present, the result is a default integer scalar

004–3908–001 27

CF90TM Co-array Programming Manual

with value equal to co-subscript dim of the elements of array that

reside on the invoking image.

EXAMPLES

Assume that the following declaration exists in a program:

REAL :: A(100)[8,4]

The following table lists various THIS_IMAGE calls and the values they

return on images 3 and 13:

Call Image 3 Image 13

---- ------- --------
THIS_IMAGE() 3 13

THIS_IMAGE(A) / 3, 1 / / 5, 2 /

THIS_IMAGE(A,1) 3 5

THIS_IMAGE(A,2) 1 2

SEE ALSO

CF90 Co-array Programming Manual

28 004–3908–001

Index

A

ALLOCATE statement, 9, 10
apprentice, 13

B

Barrier, 9
Bounds checking, 13
Bracket reference, 6, 7, 9

C

Co-dimension, 8, 9
Co-rank, 4
Co-shape, 4
Co-size, 4
CrayTools tool set, 13

D

Data passing, 1
DATA statement, 7
Data stream buffers, 18

E

EQUIVALENCE statement, 8

F

f90 command, 13

I

I/O specifiers, 11
Intrinsic procedures, 10

L

Local rank, 4
Local reference, 5
Local shape, 4
Local size, 4
LOG2_IMAGES, 10

M

Message Passing Interface (See also MPI), 2
MPI, 2, 14
mpprun command, 13

N

N$PES-1, 13
NUM_IMAGES, 3, 10, 13

P

Parallel Virtual Machine (See also PVM), 2
Pointers, 9
PVM, 2, 14

R

READ statement, 12

004–3908–001 29

CF90TM Co-array Programming Manual

References, splitting, 17
REM_IMAGES, 10
Restrictions, 5, 6, 8, 10

S

Shared memory (See also SHMEM), 1
SHMEM, 1, 2, 14
Single-program-multiple-data (Also see SPMD), 1
SPMD, 1, 3
STOP statement, 11
Streams, 18
Symmetric, 14
SYNC_IMAGES, 3, 10
Synchronization, 9

T

THIS_IMAGE, 3, 10

totalview, 13

V

Vectorization, 18

W

WRITE statement, 12

X

xbrowse, 13

30 004–3908–001

