
CF90TM Commands and Directives
Reference Manual

SR–3901 3.1

Document Number 004–3901–001

Copyright © 1993, 1998 Silicon Graphics, Inc. All Rights Reserved. This manual or parts thereof may not be reproduced in any
form unless permitted by contract or by written permission of Silicon Graphics, Inc.

The CF90 compiler includes United States software patents 5,247,696, 5,257,372, and 5,361,354.

RESTRICTED RIGHTS LEGEND

Use, duplication, or disclosure of the technical data contained in this document by the Government is subject to restrictions as set
forth in subdivision (c) (1) (ii) of the Rights in Technical Data and Computer Software clause at DFARS 52.227-7013 and/or in
similar or successor clauses in the FAR, or in the DOD or NASA FAR Supplement. Unpublished rights reserved under the
Copyright Laws of the United States. Contractor/manufacturer is Silicon Graphics, Inc., 2011 N. Shoreline Blvd., Mountain View,
CA 94043-1389.

Autotasking, CF77, CRAY, Cray Ada, CraySoft, CRAY Y-MP, CRAY-1, CRInform, CRI/TurboKiva, HSX, LibSci, MPP Apprentice,
SSD, SUPERCLUSTER, UNICOS, and X-MP EA are federally registered trademarks and Because no workstation is an island, CCI,
CCMT, CF90, CFT, CFT2, CFT77, ConCurrent Maintenance Tools, COS, Cray Animation Theater, CRAY APP, CRAY C90,
CRAY C90D, Cray C++ Compiling System, CrayDoc, CRAY EL, CRAY J90, CRAY J90se, CrayLink, Cray NQS,
Cray/REELlibrarian, CRAY S-MP, CRAY SSD-T90, CRAY SV1, CRAY T90, CRAY T3D, CRAY T3E, CrayTutor, CRAY X-MP,
CRAY XMS, CRAY-2, CSIM, CVT, Delivering the power . . ., DGauss, Docview, EMDS, GigaRing, HEXAR, IOS,
ND Series Network Disk Array, Network Queuing Environment, Network Queuing Tools, OLNET, RQS, SEGLDR, SMARTE,
SUPERLINK, System Maintenance and Remote Testing Environment, Trusted UNICOS, UNICOS MAX, and UNICOS/mk are
trademarks of Cray Research, Inc., a wholly owned subsidiary of Silicon Graphics, Inc.

Silicon Graphics is a registered trademark and the Silicon Graphics logo is a trademark of Silicon Graphics, Inc.

SPARC is a trademark of SPARC International, Inc. TotalView is a trademark of Bolt Baranek and Newman Inc. UNIX is a
registered trademark in the United States and other countries, licensed exclusively to X/Open Limited. The X device is a
trademark of The Open Group. X/Open is a registered trademark of X/Open Company Ltd.

Adapted with permission of McGraw-Hill, Inc. from the FORTRAN 90 HANDBOOK, Copyright © 1992 by Walter S. Brainerd,
Jeanne C. Adams, Jeanne T. Martin, Brian T. Smith, and Jerrold L. Wagener. All rights reserved. Cray Research, Inc. is solely
responsible for the content of this work.

The UNICOS operating system is derived from UNIX® System V. The UNICOS operating system is also based in part on the
Fourth Berkeley Software Distribution (BSD) under license from The Regents of the University of California.

New Features

CF90 TM Commands and Directives Reference Manual 004–3901–001

This manual describes the commands and directives supported by the CF90 compiler, release 3.1.

Additions to this manual to support the CF90 3.1 release include the following:

• The CNCALLand PERMUTATIONdirectives have been implemented with !DIR$ prefixes.

• Compiler directives and environment variables to support the OpenMP Fortran API. Note that comments
in your source code may need to be modified. For more information, see Section 2.2.20.27, page 39.

• Documentation that describes the application of certain compiler directives to instructions that involve
array syntax.

• The -G 2 option to the f90 (1) command supports post mortem debugging.

• The -Z option to the f90 (1) command enables recognition of co-array syntax.

• Miscellaneous corrections and additions.

With the implementation of OpenMP features, the terminology surrounding Autotasking has changed
slightly, as follows:

• The Autotasking directives are outmoded. With release 3.1, the compiler honors and recognizes these
directives, but users creating new code are now encouraged to use the standard, portable OpenMP
directives.

• Autotasking refers to the compiler’s ability to generate parallel code automatically.

• Tasking refers to both user tasking, accomplished by inserting directives, and to Autotasking, which is
generated by the compiler.

Change indicators indicate information that has changed since the 3.0.2 revision.

Record of Revision

Version Description

1.0 December 1993
Original Printing. This document supports the CF90 compiler release 1.0 running
on CRAY Y-MP systems.

1.1 June 1994
This document supports the CF90 compiler release 1.0 running on both CRAY Y-MP
systems and on SPARC systems, including those from CRS.

2.0 November 1995
This document supports the CF90 compiler release 2.0 running on Cray PVP
systems, CRAY T3E systems, and SPARC systems. The implementation of features
on CRAY T3E systems is deferred.

3.0 May 1997
This printing supports the CF90 3.0 release running on UNICOS and UNICOS/mk
operating systems.

3.0.1 August 1997
This online revision supports the Cray Research CF90 3.0.1 release, running on
UNICOS and UNICOS/mk operating systems.

3.0.2 March 1998
This online revision supports the Cray Research CF90 3.0.2 release, running on
UNICOS and UNICOS/mk operating systems.

3.1 August 1998
This printing supports the Cray Research CF90 3.1 release running on UNICOS and
UNICOS/mk operating systems.

004–3901–001 i

Contents

Page

About This Manual xiii

Related CF90 Publications . xiii

CF90 Messages . xiv

CF90 Man Pages . xiv

Related Fortran Publications . xiv

Related Publications . xv

Obtaining Publications . xv

Conventions . xvi

Reader Comments . xvi

Introduction [1] 1

Invoking CF90 [2] 5

Setting Up the CF90 Programming Environment 5

The f90 (1) Command . 5

-a alloc . 6

-A module_name[, module_name] 7

-b bin_obj_file . 8

-c . 8

-C cifopts . 8

-d disable and -e enable . 9

-D identifier[= value][, identifier[= value]]... 14

-f source_form . 15

-F . 15

-g . 15

-G debug_lvl . 15

004–3901–001 iii

CF90TM Commands and Directives Reference Manual

Page

-i 32 . 16

-I incldir . 17

-l lib . 17

-L dir . 18

-m msg_lvl . 18

-M msgs . 19

-N col . 19

-o out_file . 20

-O opt[, opt] ... 20

-O 0 . 24

-O 1 . 24

-O 2 . 25

-O 3 . 25

-O aggress , -O noaggress 26

-O bl , -O nobl . 26

-O allfastint , -O fastint , -O nofastint (UNICOS Systems Only) 26

-O fusion , -O nofusion (UNICOS/mk Systems Only) 28

-O ieeeconform , -O noieeeconform 28

-O inline n and -O inlinefrom= source 29

-O jump , -O nojump (UNICOS/mk Systems Only) 32

-O loopalign , -O noloopalign (UNICOS Systems Only) 33

-O modinline , -O nomodinline 33

-O msgs , -O nomsgs . 33

-O negmsgs , -O nonegmsgs 34

-O nointerchange . 34

-O overindex , -O nooverindex 34

-O pattern , -O nopattern 35

-O pipeline n (UNICOS/mk Systems Only) 36

-O recurrence , -O norecurrence 37

iv 004–3901–001

Contents

Page

-O scalar0 . 37

-O scalar1 . 37

-O scalar2 . 38

-O scalar3 . 38

-O split n (UNICOS/mk Systems Only) 38

-O task0 (UNICOS Systems Only) 39

-O task1 (UNICOS Systems Only) 39

-O task2 (UNICOS Systems Only) 40

-O task3 (UNICOS Systems Only) 40

-O taskinner , -O notaskinner (UNICOS Systems Only) 40

-O threshold , -O nothreshold (UNICOS Systems Only) 40

-O unroll n (UNICOS/mk Systems Only) 41

-O vector0 . 41

-O vector1 . 41

-O vector2 . 42

-O vector3 . 42

-O vsearch , -O novsearch 43

-O zeroinc , -O nozeroinc 43

Optimization Values . 44

-p module_site . 45

-r list_opt . 47

-R runchk . 49

-s size . 52

-S asm_file . 54

-t num (UNICOS Systems Only) 54

-T . 54

-U identifier[, identifier] ... 54

-v . 55

-V . 55

004–3901–001 v

CF90TM Commands and Directives Reference Manual

Page

-Wa" assembler_opt" . 55

-Wl" loader_opt" . 55

-Wp" srcpp_opt" . 55

-Wr" ftnlist_opt" . 56

-x dirlist . 56

-X npes (UNICOS/mk Systems Only) 57

-Z (UNICOS/mk Systems Only) 58

- - . 59

file.suffix[90] [file.suffix[90]] ... 59

Environment Variables . 61

AUXBUF(UNICOS Systems Only) 62

AUXPAGE(UNICOS Systems Only) 62

CRI_F90_OPTIONS . 62

LD_OPTIONS(UNICOS/mk Systems Only) 62

LISTIO_PRECISION . 63

LPP . 63

MP_DEDICATED(UNICOS Systems Only) 63

MP_HOLDTIME(UNICOS Systems Only) 63

MP_SAMPLE(UNICOS Systems Only) 64

MP_SLVSIN (UNICOS Systems Only) 64

MP_SLVSSZ(UNICOS Systems Only) 64

NCPUS(UNICOS Systems Only) 64

NLSPATH . 64

NPROC . 65

OMP_DYNAMIC(UNICOS Systems Only) 65

OMP_NESTED(UNICOS Systems Only) 65

OMP_NUM_THREADS(UNICOS Systems Only) 66

OMP_SCHEDULE(UNICOS Systems Only) 66

vi 004–3901–001

Contents

Page

SEGDIR (UNICOS Systems Only) 67

TARGET . 67

TMPDIR . 69

CF90 Directives [3] 71

Using Directives . 73

Directive Lines . 73

Range and Placement of Directives 74

Interaction of Directives with the -x Command Line Option 76

Command Line Options and Directives 77

Vectorization and Tasking Directives 77

Declare Lack of Side Effects: CNCALL 78

Copy Arrays to Temporary Storage: COPY_ASSUMED_SHAPE 78

Ignore Dependencies: IVDEP . 80

Specify Scalar Processing: NEXTSCALAR 81

Request Pattern Matching: PATTERNand NOPATTERN 81

Declare an Array with No Repeated Values: PERMUTATION 82

Designate Nested Loops: PREFERTASK(UNICOS Systems Only) 83

Designate Loop Nest for Vectorization: PREFERVECTOR(UNICOS Systems Only) 83

Designate Reduction Loops: RECURRENCE, NORECURRENCE 84

Using RECURRENCEand NORECURRENCEon UNICOS Systems 84

Using RECURRENCEand NORECURRENCEon UNICOS/mk Systems 85

Designate Loops with Low Trip Counts: SHORTLOOP, SHORTLOOP128 86

Enable and Disable Tasking: TASKand NOTASK(UNICOS Systems Only) 87

Unroll Loops: UNROLLand NOUNROLL 87

Enable and Disable Vectorization: VECTORand NOVECTOR 90

Specify a Vectorizable Function: VFUNCTION(UNICOS Systems Only) 90

Vectorize Search Loops: VSEARCHand NOVSEARCH(UNICOS Systems Only) 92

Inlining Directives . 92

004–3901–001 vii

CF90TM Commands and Directives Reference Manual

Page

Disable or Enable Inlining for a Block of Code: INLINE and NOINLINE 93

Specify Inlining for a Procedure: INLINEALWAYSand INLINENEVER 93

Create Inlinable Templates for Module Procedures: MODINLINE and NOMODINLINE . . . 94

Scalar Optimization Directives . 95

Align Loops on Buffer Boundaries: ALIGN (UNICOS Systems Only) 96

Bottom Load Operands: BL and NOBL 96

Bypass Cache References: CACHE_BYPASS(UNICOS/mk Systems Only) 99

Inhibit Loop Interchanging: NOINTERCHANGE 100

Determine Register Storage: NOSIDEEFFECTS(UNICOS Systems Only) 101

Request Loop Splitting: SPLIT and NOSPLIT (UNICOS/mk Systems Only) 102

Suppress Scalar Optimization: SUPPRESS 103

Local Use of Compiler Features . 104

Check Array Bounds: BOUNDSand NOBOUNDS 105

Specify Source Form: FREEand FIXED 107

Storage Directives . 107

Allocating to SSD: AUXILIARY (UNICOS Systems Only) 108

Restrictions . 109

Auxiliary Arrays and Memory 109

Align on Cache Line Boundaries: CACHE_ALIGN(UNICOS/mk Systems Only) 110

Declare Common Blocks Global to All Tasks: COMMON(UNICOS Systems Only) 110

Request Stack Storage: STACK 111

Declare Local Addressing: SYMMETRIC(UNICOS/mk Systems Only) 112

Declare Common Blocks Local to Each Task: TASKCOMMON(UNICOS Systems Only) . . . 112

Miscellaneous Directives . 113

Specify Array Dependencies: CONCURRENT(UNICOS/mk Systems Only) 113

Flowtracing Directives: FLOWand NOFLOW(UNICOS Systems Only) 114

Create Identification String: ID 115

Disregard Dummy Argument Type, Kind, and Rank: IGNORE_TKR 117

viii 004–3901–001

Contents

Page

External Name Mapping Directive: NAME 117

Reserve E Registers: USES_EREGS(UNICOS/mk Systems Only) 118

OpenMP Fortran API Directives (UNICOS Systems Only) [4] 119

Using Directives . 120

Conditional Compilation . 122

Parallel Region Constructs (PARALLELand END PARALLELDirectives) 123

Work-sharing Constructs . 125

Specify Parallel Execution: DOand END DODirectives 126

Mark Code for Specific Threads: SECTION, SECTIONSand END SECTIONSDirectives . . 129

Request Single–thread Execution: SINGLE and END SINGLEDirectives 130

Combined Parallel Work-sharing Constructs 131

Declare a Parallel Region: PARALLEL DOand END PARALLEL DODirectives 131

Declare Sections within a Parallel Region: PARALLEL SECTIONSand
END PARALLEL SECTIONSDirectives 133

Synchronization Constructs . 135

Request Execution by the Master Thread: MASTERand END MASTERDirectives 135

Request Execution by a Single Thread: CRITICAL and END CRITICAL Directives . . . 135

Synchronize All Threads in a Team: BARRIERDirective 137

Protect a Location from Multiple Updates: ATOMICDirective 137

Read and Write Variables to Memory: FLUSHDirective 138

Request Sequential Ordering: ORDEREDand END ORDEREDDirectives 140

Data Environment Constructs . 141

Declare Common Blocks Private to a Thread: THREADPRIVATEDirective 141

Data Scope Attribute Clauses . 142

PRIVATE Clause . 143

SHAREDClause . 144

DEFAULTClause . 144

FIRSTPRIVATE Clause . 145

004–3901–001 ix

CF90TM Commands and Directives Reference Manual

Page

LASTPRIVATE Clause . 145

REDUCTIONClause . 146

COPYINClause . 149

Data Environment Rules . 149

Directive Binding . 151

Directive Nesting . 153

Analyzing Data Dependencies for Multiprocessing 156

Dependency Analysis Examples 157

Rewriting Data Dependencies . 160

Work Quantum . 165

Source Preprocessing [5] 167

General Rules . 167

Directives . 168

#include Directive . 168

#define Directive . 169

#undef Directive . 171

(Null) Directive . 171

Conditional Directives . 171

#if Directive . 172

#ifdef Directive . 173

#ifndef Directive . 173

#elif Directive . 173

#else Directive . 174

#endif Directive . 174

Predefined Macros . 174

Command Line Options . 176

Appendix A Autotasking Directives (UNICOS systems only) (Outmoded) 177

Using Directives . 178

Directive Lines . 178

x 004–3901–001

Contents

Page

Range and Placement of Directives 179

Interaction of Directives with the -x Command Line Option 180

Command Line Options and Directives 180

Migrating to OpenMP Fortran API Directives. 181

Concurrent Blocks: CASEand ENDCASE 182

Declare Lack of Side Effects: CNCALL 183

Mark Parallel Loop: DOALL . 183

Mark Parallel Loop: DOPARALLELand ENDDO 186

Critical Region: GUARDand ENDGUARD 188

Allocate CPUs: MAXCPUS . 189

Specify Maximum Number of CPUs for a Parallel Region: NUMCPUS 190

Mark Parallel Region: PARALLELand ENDPARALLEL 190

Declare an Array with No Repeated Values: PERMUTATION 191

Declare a Cross-iteration Dependency: WAIT and SEND 191

Autoscoping Rules . 195

User-added Scope Required . 196

Examples . 197

Read-only Variables . 197

Array Indexed by Loop Index 197

Read-then-write Variables . 197

Write-then-read Variables and Arrays 198

Autotasking Restrictions . 198

Glossary 201

Index 211

Figures
Figure 1. f90 (1) command example 2

004–3901–001 xi

CF90TM Commands and Directives Reference Manual

Page

Figure 2. Optimization values . 44

Figure 3. Array storage . 53

Figure 4. Derived type storage . 53

Tables
Table 1. Compiling options . 10

Table 2. -O opt summary . 21

Table 3. Automatic inlining specifications 31

Table 4. Description of source . 32

Table 5. Directives . 71

Table 6. Initialization values . 148

Table 7. Autotasking directive parameter 184

Table 8. Autotasking directive work_distribution 186

xii 004–3901–001

About This Manual

This manual describes the commands and directives for using the Cray
Research CF90 compiler, which is invoked through the f90 (1) command. The
f90 command can also invoke a source preprocessor, a source lister, an
assembler, and the loader.

The CF90 3.1 compiler runs on the following systems:

• CRAY SV1, CRAY C90, CRAY J90, CRAY T90, CRAY Y-MP, and CRAY EL
systems running UNICOS 9.0 or running UNICOS 10.0 or later.

• CRAY T3E systems running UNICOS/mk 2.0.3 or later.

The CF90 compiler was developed to support the Fortran standards adopted by
the American National Standards Institute (ANSI) and the International
Standards Organization (ISO). These standards, commonly referred to as the
Fortran 90 standard, are ANSI X3.198–1992 and ISO/IEC 1539:1991–1. Because
the ANSI Fortran 90 standard is a superset of the FORTRAN 77 standard, the
CF90 compiler will compile code written to the FORTRAN 77 standard.

Note: The Fortran 90 standard is a substantial revision to the FORTRAN 77
language standard. Because of the number and complexity of the features,
the standards organizations are continuing to interpret the Fortran 90
standard for Silicon Graphics and for other vendors. To maintain
conformance to the Fortran 90 standard, Silicon Graphics may need to change
the behavior of certain CF90 features in future releases based upon the
outcome of the outstanding interpretations to the standard.

Related CF90 Publications

This manual is one of a set of manuals that describes the CF90 compiler. The
other manuals in the set are as follows:

• CF90 Ready Reference

• Fortran Language Reference Manual, Volume I

• Fortran Language Reference Manual, Volume II

• Fortran Language Reference Manual, Volume III

• CF90 Co-array Programming Manual

004–3901–001 xiii

CF90TM Commands and Directives Reference Manual

CF90 Messages

You can obtain CF90 compiler message explanations by using the online
explain (1) command.

CF90 Man Pages

In addition to printed and online prose documentation, several online man
pages describe aspects of the CF90 compiler. Man pages exist for the library
routines, the intrinsic procedures, and several programming environment tools.

You can print copies of online man pages by using the pipe symbol with the
man(1), col (1), and lpr (1) commands. In the following example, these
commands are used to print a copy of the explain (1) man page:

% man explain | col -b | lpr

Each man page includes a general description of one or more commands,
routines, system calls, or other topics, and provides details of their usage
(command syntax, routine parameters, system call arguments, and so on). If
more than one topic appears on a page, the entry in the printed manual is
alphabetized under its primary name; online, secondary entry names are linked
to these primary names. For example, egrep is a secondary entry on the page
with a primary entry name of grep . To access grep online, you can type man
grep . To access egrep online, you can type either man grep or man egrep .
Both commands display the grep man page on your terminal.

Related Fortran Publications

The following commercially available reference books are among those that you
should consult for more information on the history of Fortran and the
Fortran 90 language itself:

• Adams, J., W. Brainerd, J. Martin, B. Smith, and J. Wagener. Fortran 90
Handbook — Complete ANSI/ISO Reference. New York, NY: Intertext
Publications/Multiscience Press, Inc., 1990.

• Metcalf, M. and J. Reid. Fortran 90 Explained. Oxford, UK: Oxford University
Press, 1990.

• American National Standards Institute. American National Standard
Programming Language Fortran, ANSI X3.198–1992. New York, 1992.

xiv 004–3901–001

About This Manual

• International Standards Organization. ISO/IEC 1539:1991, Information
technology — Programming languages — Fortran. Geneva, 1991.

The User Publications Catalog, describes the availability and content of all Cray
Research hardware and software manuals that are available to customers.

Related Publications

The following documents contain additional programming environment
publications that may interest you:

• Segment Loader (SEGLDR) and ld Reference Manual

• UNICOS User Commands Reference Manual

• UNICOS Performance Utilities Reference Manual

• Scientific Libraries Reference Manual

• Intrinsic Procedures Reference Manual

• Introducing the Program Browser

• Application Programmer’s Library Reference Manual

• Application Programmer’s I/O Guide

• Guide to Parallel Vector Applications

• Optimizing Code on Cray PVP Systems

• Compiler Information File (CIF) Reference Manual

• Introducing the Cray TotalView Debugger

• Introducing the MPP Apprentice Tool

• CRAY T3E Fortran Optimization Guide

Obtaining Publications

The User Publications Catalog describes the availability and content of all Cray
Research hardware and software documents that are available to customers.
Customers who subscribe to the Cray Inform (CRInform) program can access
this information on the CRInform system.

004–3901–001 xv

CF90TM Commands and Directives Reference Manual

To order a printed copy of this document, either call the Minnesota Distribution
Center at +1–651–683–5907, or send a facsimile of your request to fax number
+1–651–452–0141. Silicon Graphics employees may send electronic mail to
orderdsk@cray.com (UNIX system users).

Silicon Graphics maintains information on publicly available Cray Research
documents at the following URL:

http://www.cray.com/swpubs/

This Web site contains information that allows you to browse documents online
and send feedback to Silicon Graphics.

Customers outside of the United States and Canada should contact their local
service organization for ordering and documentation information.

Conventions

The following conventions are used throughout this document:

Convention Meaning

command This fixed-space font denotes literal items such as
commands, files, routines, path names, signals,
messages, and programming language structures.

variable Italic typeface denotes variable entries and words
or concepts being defined.

user input This bold, fixed-space font denotes literal items
that the user enters in interactive sessions.
Output is shown in nonbold, fixed-space font.

[] Brackets enclose optional portions of a command
or directive line.

... Ellipses indicate that a preceding element can be
repeated.

Reader Comments

If you have comments about the technical accuracy, content, or organization of
this document, please tell us. You can contact us in any of the following ways:

xvi 004–3901–001

About This Manual

• Send us electronic mail at the following address:

techpubs@sgi.com

• Contact your customer service representative and ask that an SPR or PV be
filed. If filing an SPR, use PUBLICATIONS for the group name, PUBSfor the
command, and NO-LICENSE for the release name.

• Call our Software Publications Group in Eagan, Minnesota, through the
Customer Service Call Center, using either of the following numbers:

1–800–950–2729 (toll free from the United States and Canada)

+1–651–683–5600

• Send a facsimile of your comments to the attention of “Software Publications
Group” in Eagan, Minnesota, at fax number +1–651–683–5599.

We value your comments and will respond to them promptly.

004–3901–001 xvii

Introduction [1]

This manual is organized into the following chapters:

• Chapter 1 introduces the content of this manual and provides a general
description of the compiler.

• Chapter 2, page 5, describes the f90 (1) command, which you use to invoke
the compiler. This chapter includes information about the options you can
use on the f90 (1) command line and environment variables that affect the
CF90 compiler.

• Chapter 3, page 71, describes the CF90 directives that the compiler
recognizes.

• Chapter 4, page 119, describes the OpenMP Fortran API directives.

• Chapter 5, page 167, describes the source preprocessor.

• Appendix A, page 177, describes the Autotasking directives, which are
outmoded. Cray Research encourages you to write new codes and to update
existing codes using the OpenMP Fortran API directives described in
Chapter 4, page 119.

The CF90 compiler is invoked through the f90 (1) command. The f90 (1)
command also invokes ftnlint (1), listers, and a loader, as follows:

• If you are running CF90 on a UNICOS system, the f90 (1) command invokes
the loader segldr (1).

• If you are running CF90 on a UNICOS/mk system, the f90 (1) command
invokes the loader cld (1).

In the most basic case, the f90 (1) command invokes the CF90 compiler,
processes the input files named on the command line, and generates a binary
file. The loader loads the binary file and generates an executable output file (the
default output file is a.out). The lister generates the program’s listing file.

In the following simple example, the f90 (1) command is used to invoke the
compiler. Option -r s is specified to generate a source listing. File pgm.f is
the input file. You run the program by entering the output file name as a
command; in this example, the default output file name, a.out , is used. Figure
1, page 2, illustrates this example.

004–3901–001 1

CF90TM Commands and Directives Reference Manual

% f90 -r s pgm.f

% ./a.out

f90

Command

CF90
compiler

pgm.f
Source
code

pgm.T
Lister

pgm.lst

Listing

pgm.o

segldr or cld

(UNICOS) (UNICOS/mk)

stdin
Input
data

a.out

Executable
program

stdout

Output data

a10132

-r s generates a standard listing

Figure 1. f90 (1) command example

You can use the options on the f90 (1) command line to modify the default
actions; for example, you can disable the load step. For more information on
f90 (1) command line options, see Chapter 2, page 5.

The CF90 compiler is one of many software products that form the CF90
programming environment. This environment allows you to develop, debug,
and run Fortran codes on your computer system. It includes the following
products:

2 004–3901–001

Introduction [1]

• Loaders. On UNICOS systems, segldr (1) is your loader. On UNICOS/mk
systems, cld (1) is your loader.

• A lister, ftnlist (1).

• The ftnlint (1) utility, which checks CF90 programs for possible errors.

• A browser, xbrowse (1). For more information on the browser, see
Introducing the Program Browser, publication IN–2140.

• The compiler information file (CIF) tools, which include the cifconv (1)
command and the libraries. For more information on these see the Compiler
Information File (CIF) Reference Manual, publication SR–2401.

• The libraries, which include functions optimized for use on Cray Research
systems. Information on the individual library routines can be found in the
online man pages for each routine. In addition to online man pages, the
following manuals contain printed copies of the library routine man pages
and other library information:

– Application Programmer’s Library Reference Manual, publication SR–2165

– Scientific Libraries Reference Manual, publication SR–2081

The CF90 intrinsic procedures are implemented within the math library
(libm), within libfi , and within the compiler itself. The Intrinsic
Procedures Reference Manual, publication SR–2138, contains copies of the
online man pages for all the intrinsic procedures.

• The performance tools, which can help you analyze program performance.
The performance tools include apprentice (1), atexpert (1), and pat (1).
Information on the individual tools can be found in the online man pages
for each tool. The Guide to Parallel Vector Applications, publication SG–2182,
describes several tools, and more information on the MPP Apprentice tool
can be found in Introducing the MPP Apprentice Tool, publication IN–2511.

• Online documentation utilities. The man(1) command allows you to retrieve
online man pages. Prose reference text, such as this manual, can be retrieved
online through the WWW browser supported at your site. Contact your
support staff for specific information on retrieving information in this
manner.

• A debugger. TotalView includes standard debugging capabilities, such as
allowing you to step through code and set breakpoints. It can be used when
you invoke the CF90 compiler and direct it to produce symbol tables. The -g
and -G debug options to the f90 (1) command line generate symbol tables.

004–3901–001 3

Invoking CF90 [2]

This chapter describes the f90 (1) command, which invokes the CF90 compiler.
This chapter also describes environment variables used to determine shell
characteristics when working with the CF90 compiler. The f90 (1) online man
page contains information from this chapter in an abbreviated form.

2.1 Setting Up the CF90 Programming Environment

The installation and configuration of the CF90 programming environment uses
a utility called modules, which is provided and installed as part of the release
package. File /opt/ctl/doc/README was distributed in the release package.
It contains information on initializing the module (1) command and initializing
the environment.

The default programming environment is available to you after you have
entered the following command:

% module load modules PrgEnv

If you have questions on setting up the programming environment, contact
your system support staff.

2.2 The f90 (1) Command

The f90 (1) command invokes the CF90 compiler. The syntax of the command
is as follows:

f90 [-a alloc] [-A module_name[, module_name] ...] [-b bin_obj_file]
[-c] [-C cifopts] [-d disable]
[-D identifier[=value][, identifier[=value]] ...] [-e enable]
[-f source_form] [-F] [-g] [-G debug_lvl] [-i 32] [-I incldir]
[-l lib] [-L dir] [-m msg_lvl] [-M msgs] [-N col] [-o out_file]
[-O opt[, opt] ...] [-p module_site] [-r list_opt] [-R runchk]
[-s size] [-S asm_file] [-t num] [-T] [-U identifier[, identifier] ...]
[-v] [-V] [-Wa" assembler_opt"] [-Wl" loader_opt"] [-Wp" srcpp_opt"]
[-Wr" ftnlist_opt"] [-x dirlist] [-X npes] [-Z] [--]
file. suffix[90] [file. suffix[90] ...]

004–3901–001 5

CF90TM Commands and Directives Reference Manual

Note: Some options are not available on all platforms. If you specify an
option that is not supported on your platform, a message is issued and, when
possible, compilation continues.

Note: Some default values shown for f90 (1) command options may have
been changed by your site. See your system support staff for further details.

2.2.1 -a alloc

The -a alloc option allows you to specify a storage allocation mechanism.
Enter one of the following for alloc:

alloc Action

pad [n] (UNICOS/mk systems only)

Pads all local static storage and most common blocks. This
option does not pad common blocks that contain data that has
been storage associated with an EQUIVALENCEstatement. This
option adds padding following each element in a common
block. The padding improves single-PE performance by
reducing primary and secondary cache conflict between
elements within the same common block.

If n is not specified, a fixed amount of padding is added after
each common block element. The size of the padding that is
added depends on the size of the preceding element.

If n is specified, padding is added in 8-byte words according to
the value you specify. For example, specifying -a pad1 directs
the system to add one 8-byte word after each element in a
common block.

Specifying -a pad causes the compiler to generate common
blocks that do not follow standard sequence association rules.
Programs that rely on data in different elements of a common
block to be a certain distance apart may behave differently
when compiled with -a pad .

6 004–3901–001

Invoking CF90 [2]

Warning: When the compiler automatically generates
padding, you must ensure that:

• The common blocks are declared identically throughout
the program and all program files are compiled with
-a pad .

• Arrays in common are always referenced within the range
of their declared bounds.

• The same version of the compiler is used to compile all
subroutines and modules using this feature.

Failure to follow the preceding rules can cause incorrect
program behavior. Typically, cld (1) detects these errors. To
ensure that you receive all messages related to this condition,
compile with the -Wl"-D msglevel=CAUTION" option,
which causes the compiler to generate messages that caution
the use of common blocks of different sizes.

taskcommon (UNICOS systems only)

Converts all common blocks in the compilation to taskcommon
blocks. Local variables named in SAVEstatements are stored in
taskcommon, causing each processor (task) to have a private
copy of saved variables. This includes variables initialized in
DATAstatements or data declaration statements. For a given
procedure, a COMMONcompiler directive can override this
command line specification. For more information on the
COMMONcompiler directive, see Section 3.6.3, page 110. This
option is typically used when using the Message Passing
Toolkit (MPT) on UNICOS systems. For more information on
MPT, see the Message Passing Toolkit: PVM Programmer’s Manual,
and the Message Passing Toolkit: MPI Programmer’s Manual.

2.2.2 -A module_name[, module_name] ...

The -A module_name[, module_name ...] option directs the compiler to behave
as if a USE module_name statement were entered in your Fortran source code
for each module_name. The USEstatements are entered in every program unit
and interface body in the source file being compiled.

004–3901–001 7

CF90TM Commands and Directives Reference Manual

2.2.3 -b bin_obj_file

The -b bin_obj_file option disables the load step and saves the binary object file
version of your program in bin_obj_file.

Note: The -c option should not be specified with -b bin_obj_file because -c
specifies that the binary file is to be saved in file.o . The -b bin_obj_file
option specifies that the binary file is to be saved in bin_obj_file.

Only one input file is allowed when the -b option is specified. If you have
more than one input file, use the -c option to disable the load step and save
the binary files to their default file names. If only one input file is processed
and neither the -b nor the -c options are specified, the binary version of your
program is not saved after the load is completed.

By default, the binary file is saved in file.o , where file is the name of the source
file and .o is the suffix used.

2.2.4 -c

The -c option disables the load step and saves the binary object file version of
your program in file.o , where file is the name of the source file and .o is the
suffix used. If there is more than one input file, a file.o is created for each input
file specified.

If only one input file is processed and neither the -b nor the -c options are
specified, the binary version of your program is not saved after the load is
completed.

2.2.5 -C cifopts

The -C cifopts option creates a compiler information file (CIF) and places it in
file.T , where file is the name of the source file and .T is the suffix used. If both
the -r and -C options are specified, -r overrides -C .

By default, the f90 (1) command does not create a CIF. The -C option is used to
create a CIF, which is required by various tools that analyze CF90 programs,
such as ftnlint (1), ftnlist (1), and xbrowse (1). The user interface to the
CIF information is through the CIF library, libcif .

The most common specification is -C a , which writes all CIF information
possible. For information on the cifopts available, see the Compiler Information
File (CIF) Reference Manual.

8 004–3901–001

Invoking CF90 [2]

2.2.6 -d disable and -e enable

The -d disable and -e enable options disable or enable compiling options. To
specify more than one compiling option, enter the options without separators
between them; for example, -e af . Enter one or more of the following args for
disable or enable:

004–3901–001 9

CF90TM Commands and Directives Reference Manual

Table 1. Compiling options

args Action, if enabled Operating system

0 Initializes all undefined local stack variables to 0 (zero). If a user
variable is of type character, it is initialized to NUL. The variables are
initialized upon execution of each procedure. Enabling this option can
help identify problems caused by using uninitialized numeric and
logical variables. Also see the -e i option. A message is generated if
you specify both -e 0 and -e i on the command line; the rightmost
option specified overrides the other. Disabled by default.

UNICOS
UNICOS/mk

a Aborts compilation after encountering the first error. Disabled by
default.

UNICOS
UNICOS/mk

A Generates code necessary to use the MPP Apprentice tool. Disabled by
default.

UNICOS/mk

B Generates binary output. If disabled, inhibits all optimization and
allows only syntactic and semantic checking. Enabled by default.

UNICOS
UNICOS/mk

f Generates an output file during execution that is suitable for processing
by perfview (1) or flowview (1). To use perfview (1), you must also
specify -l perf to ensure that the proper libraries are included at load
time. See flowtrace (7) and perftrace (7) for more information.
Disabled by default.

UNICOS

i Generates a run-time error when an uninitialized local real or integer
variable is used in a floating-point operation or array subscript.
This option causes allocated but uninitialized local stack storage to be set
to an undefined value. When the -e i option is specified, variables are
reset for each invocation of a subprogram. Therefore, a SAVEstatement
is needed to preserve the value of a variable between invocations.
This option does not apply to statically allocated uninitialized variables
(data specified on a COMMON, MODULE, or SAVEstatement), to dummy
arguments, or to ALLOCATABLEarrays. Also see the -e 0 option. A
message is generated if you specify both -e 0 and -e i on the
command line; the rightmost option specified overrides the other. The
loaders offer the -f option for uninitialized statically allocated
variables. The -f loader option is related to this feature in that -e i
and -f both preset uninitialized data to undefined values; -e i applies
to stack data, and -f applies to static data. Also see the -f option on
segldr (1) and the -D preset= option on cld (1). Disabled by default.

UNICOS
UNICOS/mk

10 004–3901–001

Invoking CF90 [2]

args Action, if enabled Operating system

I Treats all variables as if an IMPLICIT NONE statement had been
specified. Does not override any IMPLICIT statements or explicit type
statements. All variables must be typed. Disabled by default.

UNICOS
UNICOS/mk

j Executes DOloops at least once. Disabled by default. UNICOS

n Generates messages to note all nonstandard Fortran 90 usage. Disabled
by default.

UNICOS
UNICOS/mk

p Enables double precision arithmetic.
When disabled, variables declared on a DOUBLE PRECISIONstatement
and constants specified with the D exponent are implicitly converted to
default real type. This causes arithmetic operations and intrinsics
involving these variables to have a default real type rather than a
double-precision real type. Similarly, variables declared on a
DOUBLE COMPLEXstatement and complex constants specified with the D
exponent are implicitly mapped to the complex type in which each part
has a default real type. Specific double precision and double complex
intrinsic procedure names are mapped to their single precision
equivalents. Double precision arithmetic is not supported on
UNICOS/mk systems. Enabled by default.

UNICOS
UNICOS/mk

P Performs source preprocessing on file.f [90] or file.F [90] but does not
compile. When specified, source code is included by #include
directives but not by Fortran 90 INCLUDE lines. Generates file.i , which
contains the source code after the preprocessing has been performed
and the effects applied to the source program. For more information on
source preprocessing, see Chapter 5, page 167. Disabled by default.

UNICOS
UNICOS/mk

q Aborts compilation if 100 or more errors are generated. Enabled by
default.

UNICOS
UNICOS/mk

r Rounds multiplication results. Enabled by default. UNICOS

R Compiles all functions and subroutines as if they contained a
RECURSIVEkeyword. Disabled by default.

UNICOS
UNICOS/mk

S Generates assembly language output and saves it in file.s . When the
-e S option is specified on the command line with the -S asm_file
option, the -S asm_file option overrides the -e S option. Disabled by
default.

UNICOS
UNICOS/mk

004–3901–001 11

CF90TM Commands and Directives Reference Manual

args Action, if enabled Operating system

t Determines the memory allocation method used for automatic variables.
An automatic variable is a variable that is not a dummy argument but
whose declaration depends on a nonconstant expression (array bounds
and/or character length). Storage is allocated for automatic variables
and array temporaries upon entry to a procedure. Storage is deallocated
upon exit from the procedure. When disabled, automatic variables are
allocated memory on the heap. When enabled, the compiler attempts to
limit the amount of memory requested from the heap for automatic
variables; that is, an attempt is made to allocate storage for them on the
stack. Generally, this reduces system call overhead. If not enough stack
memory is available, the heap is used.
By default, the CF90 compiler requests 16,000 words of stack space for
automatic arrays and array temporaries, with a stack increment size of
8,000 words. Initial size may be increased, and increment size may be
increased or decreased through directives passed to the loader. Initial
stack and increment sizes can affect performance because of the number
of stack overflows that might occur. Multitasking can increase the
occurrences of stack overflows and decrease optimal performance. Stack
overflow occurrences can be minimized and performance increased by
tuning initial stack and increment values. Enabled by default.

UNICOS

12 004–3901–001

Invoking CF90 [2]

args Action, if enabled Operating system

u Rounds floating-point division, so quotients are the exact result when
truncated to an integer if the correct quotient was a whole number. Also
see -O ieeeconform and -O noieeconform in Section 2.2.20.9, page
28.
When disabled, faster code sequences are generated for floating-point
divides. This can result in slightly less accurate results because when
results of floating-point divides are later assigned to integer variables,
truncation errors can occur. For example, the following code fragment
may result in the value of i , an integer, being truncated to an
unexpected value:

x = 6.0

r = x/3.0
...

i = r

On UNICOS systems, excluding CRAY T90 systems that support IEEE
floating-point arithmetic, the result of the division may yield a result of
1.99999.... When assigned to i , the value is truncated, which produces a
value of 1 instead of the expected result of 2.
On UNICOS/mk systems and CRAY T90 systems that support IEEE
floating-point arithmetic, floating-point division may not produce
correctly rounded results when disabled because of the faster divide
sequence that is used. This may affect the results when converting to an
integer value or when comparing results with those obtained from
another system that supports IEEE floating-point arithmetic.
When enabled, additional instructions, and thus, slower code, are
generated that produce more accurate results. On systems that support
IEEE floating-point arithmetic, a true IEEE divide sequence is generated
(instead of possibly calculating a reciprocal and multiply sequence). On
UNICOS systems, other than CRAY T90 systems that support IEEE
floating-point arithmetic, results of floating-point divides are rounded
by adding a floating point amount and clearing the lower four bits of
the mantissa. Disabled by default.

UNICOS
UNICOS/mk

004–3901–001 13

CF90TM Commands and Directives Reference Manual

args Action, if enabled Operating system

v Allocates variables to static storage. These variables are treated as if they
had appeared in a SAVEstatement. The following types of variables are
not allocated to static storage: automatic variables, variables declared
with the AUTOMATICattribute, variables allocated in an ALLOCATE
statement, and local variables in explicit recursive procedures. Variables
with the ALLOCATABLEattribute remain allocated upon procedure exit,
unless explicitly deallocated, but they are not allocated in static memory.
Variables in explicit recursive procedures consist of those in functions,
in subroutines, and in internal procedures within functions and
subroutines that have been declared with the RECURSIVEattribute. The
STACKcompiler directive overrides -e v ; for more information on this
compiler directive, see Section 3.6.4, page 111. Disabled by default.

UNICOS
UNICOS/mk

X Generates additional run-time code needed to support the Autotasking
Expert System, ATExpert. To use ATExpert, you must have specified
either -O 3 , -O task2 , or -O task3 on the command line, or you must
have included OpenMP (!$OMP) or Autotasking (!MIC$) directives in
your source code and compiled with -O task1 , -O task2 , or
-O task3 . See atexpert (1) for more information about ATExpert.
Disabled by default.

UNICOS

Z Performs source preprocessing and compilation on file.f [90] or
file.F [90]. When specified, source code is included by #include
directives but not by Fortran 90 INCLUDE lines. Generates file.i , which
contains the source code after the preprocessing has been performed
and the effects applied to the source program. For more information on
source preprocessing, see Chapter 5, page 167. Disabled by default.

UNICOS
UNICOS/mk

2.2.7 -D identifier[= value][, identifier[= value]]...

The -D identifier[=value][, identifier[=value]] ... option defines variables used
for source preprocessing as if they had been defined by a #define source
preprocessing directive. If a value is specified, there can be no spaces on either
side of the equal sign (=). If no value is specified, the default value of 1 is used.

The -U option undefines variables used for source preprocessing. If both -D
and -U are used for the same identifier, in any order, the identifier is undefined.
For more information on the -U option, see Section 2.2.28, page 54.

This option is ignored unless one of the following is true:

• The Fortran input source file is specified as either file.F or file.F90 .

14 004–3901–001

Invoking CF90 [2]

• The -e P or -e Z options have been specified.

For more information on source preprocessing, see Chapter 5, page 167.

2.2.8 -f source_form

The -f source_form option specifies whether the Fortran source file is written in
fixed source form or free source form. For source_form, enter free or fixed .
The source_form specified here overrides any source form implied by the source
file suffix.

The default source form is fixed for input files that end with a .f or .F suffix.
The default source form is free for input files that end with a .f90 or .F90
suffix.

If the file ends in .F or .F90 , the source preprocessor is invoked.

2.2.9 -F

The -F option enables macro expansion throughout the source file. Typically,
macro expansion occurs only on source preprocessing directive lines.

This option is ignored unless one of the following is true:

• The Fortran input source file is specified as either file.F or file.F90 .

• The -e P or -e Z options have been specified.

For more information on source preprocessing, see Chapter 5, page 167.

2.2.10 -g

The -g option provides debugging support identical to specifying the -G 0
option.

2.2.11 -G debug_lvl

The -G debug_lvl option generates a debug symbol table and establishes a
debugging level. The debugging level determines the points at which
breakpoints can be set. The frequency and position of breakpoints can curtail
optimization partially or totally. At higher debugging levels, fewer breakpoints
can be set, but optimization is increased. Enter one of the following for
debug_lvl:

004–3901–001 15

CF90TM Commands and Directives Reference Manual

debug_lvl Support

0 Default debugging support. Breakpoints can be set at each line.
This level of debugging is supported when optimization is
disabled (when -O 0 , -O scalar0 , -O task0 , and
-O vector0 are in effect).

If -G 0 has been specified on the command line along with an
optimization level other than -O 0 , -O scalar0 , -O task0 , or
-O vector0 , the compiler issues a message and disables most
optimization. On UNICOS systems, array syntax statements
vectorize at this level. This level can also be obtained by
specifying the -g option.

1 Allows block-by-block debugging, with the exception of
innermost loops. You can place breakpoints at statement labels on
executable statements and at the beginning and end of block
constructs (such as IF /THEN/ELSE blocks, DO/END DOblocks,
and at SELECT CASE/END SELECTblocks). This level of
debugging can be specified when -O 0 or -O 1 is specified.
Disables some scalar optimization and all loop nest restructuring.
Only user tasking, enabled through !$OMP or !MIC$ directives, is
performed.

On UNICOS systems, this debug_lvl allows vectorization of some
inner loops and most array syntax statements. Vectorization is
equal to that performed when -O vector1 is in effect.

2 Allows post-mortem debugging. No breakpoints can be set. All
symbol table information is provided in a format suitable for
debugview (1). Local information, such as the value of a loop
index variable, is not necessarily reliable at this level because
such information often is carried in registers in optimized code.

2.2.12 -i 32

The -i 32 option specifies 32-bit integer arithmetic for default integers.
Specifying 32-bit integer arithmetic enables the compiler to generate faster code
for some expressions. For more information on generating faster code, also see
the -O fastint option in Section 2.2.20.7, page 26.

If a module is compiled separately from a program unit that uses the module,
they both must be compiled with -i 32 . If program units are compiled
separately and linked, they must all be compiled with -i 32 .

16 004–3901–001

Invoking CF90 [2]

If specifying -i 32 , see the -s size option, Section 2.2.24, page 52, for
information on conformance to the Fortran 90 standard.

2.2.13 -I incldir

The -I incldir option specifies a directory to be searched for files named in
INCLUDE lines in the Fortran source file and for files named in #include
source preprocessing directives.

You must specify an -I option for each directory you want searched.
Directories can be specified in incldir as full path names or as path names
relative to the working directory.

The following example causes the compiler to search for files included within
earth.f in the directories /usr/local/sun and ../moon :

% f90 -I /usr/local/sun -I ../moon earth.f

If the INCLUDE line or #include directive in the source file specifies an
absolute name, that is, one that begins with a slash (/), that name is used, and
no other directory is searched. If a relative name is used, that is, one that does
not begin with a slash (/), the compiler searches for the file in the directory of
the source file containing the INCLUDE line or #include directive. If this
directory contains no file of that name, the compiler then searches the directories
named by the -I options, as specified on the command line, from left to right.

2.2.14 -l lib

The -l lib option directs the loader to search for the specified object library file
when loading an executable file.

If lib begins with a period (.) or a slash (/), it is assumed to be a full path
name, and the loader uses it as is. Otherwise, the loader searches for a file
named lib lib.a in each directory specified in the library search path. For more
information on library search rules, see Section 2.2.15, page 18.

Example 1: On a UNICOS/mk system, the following command line loads in the
Cray Research library that includes faster, but less accurate, vector versions of
some intrinsic procedures and operations (such as exponentiation):

% f90 -O vector3 -l mfastv gazelle.f

Example 2: On a UNICOS/mk system, the following command line loads in the
library that allows users to capture data for later performance analysis by
pat (1):

004–3901–001 17

CF90TM Commands and Directives Reference Manual

% f90 -l pat camel.f

Example 3: On a UNICOS or UNICOS/mk system, the following command line
loads in the library that allows users to capture data for later performance
analysis by flowview (1) or perfview (1):

% f90 -l perf panther.f

2.2.15 -L dir

The -L dir option directs the loader to search for object library files in the
specified directory before searching in the standard directories. The loader
searches for library files specified by -l options in the directories specified by
preceding -L options.

The dir argument can take the form of a comma-separated list of directories.
The loader searches for library files in directory dir before checking in the
standard directories. The standard system directories are
/opt/ctl/craylibs/craylibs , /lib , and /usr/lib .

For example, if -L ../mylibs,/loclib and -l m are specified on a UNICOS
system, the loader searches for the following files and uses the first one found:

../mylibs/libm.a

/loclib/libm.a

/opt/ctl/craylibs/craylibs/libm.a
/lib/libm.a

/usr/lib/libm.a

See segldr (1) or cld (1) for more information on library searches. Note that
the f90 (1) command or /opt/ctl/bin/segldr adds
/opt/ctl/craylibs/craylibs to your search path.

For information on specifying module locations, see Section 2.2.21, page 45.

2.2.16 -m msg_lvl

The -m msg_lvl option specifies the minimum compiler message levels to
enable. The following list shows the integers to specify in order to enable each
type of message and which messages are generated by default.

msg_lvl Message types enabled

0 Error, warning, caution, note, and comment

18 004–3901–001

Invoking CF90 [2]

1 Error, warning, caution, and note

2 Error, warning, and caution

3 Error and warning (default)

4 Error

Caution and warning messages denote, respectively, possible and probable user
errors.

By default, messages are sent to the standard error file, stderr , and are
displayed on your terminal. If the -r option is specified, messages are also sent
to the listing file.

To see more detailed explanations of messages, use the explain (1) command.
This command retrieves message explanations and displays them online. For
example, to obtain documentation on message 500, enter the following
command:

% explain cf90-500

The default msg_lvl is 3, which suppresses messages at the comment, note, and
caution level. It is not possible to suppress messages at the error level. To
suppress specific comment, note, caution, and warning messages, see Section
2.2.17, page 19.

2.2.17 -M msgs

The -M msgs option suppresses specific messages at the comment, note,
caution, and warning levels. For msgs, specify one or more integer numbers
that correspond to the CF90 messages you want to suppress. If you want to
specify more than one message number, enter a comma (but no spaces) between
the message numbers. For example, to disable messages cf90-100 and
cf90-200 , specify -M 100,200 .

2.2.18 -N col

The -N col option specifies the line width for fixed-format source lines. For col,
enter 72 to specify 72-column lines, enter 80 to specify 80-column lines, and
enter 132 to specify 132-column lines. Characters in columns beyond the col
specification are ignored.

By default, fixed-format source lines are 72 characters wide.

004–3901–001 19

CF90TM Commands and Directives Reference Manual

2.2.19 -o out_file

The -o out_file option overrides the default executable file name, a.out , with
out_file.

2.2.20 -O opt[, opt] ...

The -O opt option specifies optimization features. You can specify more than
one -O option, with accompanying arguments, on the command line. If
specifying more than one argument to -O , separate the individual arguments
with commas and do not include intervening spaces.

The -O 0 , -O 1 , -O 2 , and -O 3 options allow you to specify a general level
of optimization that includes vectorization, scalar optimization, user tasking,
and Autotasking. Generally, as the -O level increases, compilation time
increases and execution time decreases.

The -O 1 , -O 2 , and -O 3 specifications do not directly correspond to the
numeric optimization levels for scalar optimization, vectorization, and tasking.
For example, specifying -O 3 does not necessarily enable scalar3 and
vector3 . Cray Research reserves the right to alter the specific optimizations
performed at these levels from release to release. You can use the ftnlist (1)
to obtain information on the specific optimizations used at compile time.

The other optimization options, such as -O aggress and -O inline , control
bottom loading of loops, pattern matching, zero incrementing, and several other
optimization features. Some of these features can also be controlled through
compiler directives.

Table 2, page 21, summarizes the optimization features enabled when different
opt levels are specified. The optimization specifications available differ
depending on your operating system. If your command line includes an option
that is not supported on your platform, the compiler issues a message and
compilation continues. Default settings are shown in bold print in the leftmost
column.

20 004–3901–001

Invoking CF90 [2]

Table 2. -O opt summary

opt Description Operating system

0
1
2
3

General optimization levels. Optimizations performed are
none; conservative; moderate; and aggressive with moderate
Autotasking.
Note that Autotasking is enabled at -O 3 only on UNICOS
systems.
Default is 2.
For more information, see Section 2.2.20.1, page 24, through
Section 2.2.20.4, page 25.

UNICOS
UNICOS/mk

aggress
noaggress

aggress raises the limits for internal tables, which increases
opportunities for optimization.
Default is noaggress .
For more information, see Section 2.2.20.5, page 26.

UNICOS
UNICOS/mk

bl
nobl

bl enables full bottom loading of scalar operands in loops.
Default is nobl (which performs only safe bottom loading).
For more information, see Section 2.2.20.6, page 26.

UNICOS
UNICOS/mk

allfastint
fastint
nofastint

allfastint performs fast multiplication, division, and
compare sequences for all integer data objects, regardless of
how they are declared.
fastint performs fast multiplication, division, and compare
sequences for integer data objects that are default declared
(with no KIND= or * specification).
Default is fastint .
For more information, see Section 2.2.20.7, page 26.

UNICOS

fusion
nofusion

fusion enables loop fusion, which is an optimization
technique that merges loops.
Default is nofusion .
For more information, see Section 2.2.20.8, page 28.

UNICOS/mk

ieeeconform
noieeeconform

ieeeconform causes the executable code to conform more
closely to the IEEE floating-point standard than the default
mode.
Default is noieeeconform . This option is supported on
UNICOS/mk systems and on CRAY T90 systems that
support IEEE floating-point arithmetic.
For more information, see Section 2.2.20.9, page 28.

UNICOS
UNICOS/mk

004–3901–001 21

CF90TM Commands and Directives Reference Manual

opt Description Operating system

inline0
inline1
inline2
inline3

Specifies various levels of inlining.
Default is inline0 .
For more information, see Section 2.2.20.10, page 29.

UNICOS
UNICOS/mk

inlinefrom= source Specifies a file or directory that contains procedures for inline
code expansion.
For more information, see Section 2.2.20.10, page 29.

UNICOS
UNICOS/mk

jump
nojump

jump generates jumps instead of branches to external
functions.
Default is jump .
For more information, see Section 2.2.20.11, page 32.

UNICOS/mk

loopalign
noloopalign

loopalign causes the compiler to attempt to align DOand
DO WHILEloops on instruction buffer boundaries, comparing
buffer length with the number of generated instructions in
each loop.
Default is noloopalign .
For more information, see Section 2.2.20.12, page 33.

UNICOS

modinline
nomodinline

modinline prepares module procedures so that they can be
inlined.
Default is nomodinline .
For more information, see Section 2.2.20.13, page 33.

UNICOS
UNICOS/mk

msgs
nomsgs

msgs writes optimization messages to stderr .
Default is nomsgs .
For more information, see Section 2.2.20.14, page 33.

UNICOS
UNICOS/mk

negmsgs
nonegmsgs

negmsgs writes messages to stderr that indicate why a
specific optimization did not occur.
Default is nonegmsgs .
For more information, see Section 2.2.20.15, page 34.

UNICOS
UNICOS/mk

nointerchange nointerchange inhibits the compiler’s attempts to
interchange loops.
Default is to perform loop interchange optimizations.
For more information, see Section 2.2.20.16, page 34.

UNICOS
UNICOS/mk

overindex
nooverindex

nooverindex asserts that there are no array subscripts that
index a dimension of an array that are outside the declared
bounds of that dimension.
Default is nooverindex .
For more information, see Section 2.2.20.17, page 34.

UNICOS
UNICOS/mk

22 004–3901–001

Invoking CF90 [2]

opt Description Operating system

pattern
nopattern

pattern enables pattern matching for library substitution.
Default is pattern .
For more information, see Section 2.2.20.18, page 35.

UNICOS
UNICOS/mk

pipeline0
pipeline1
pipeline2
pipeline3

Specifies various levels of software pipelining.
Default is pipeline0 .
For more information, see Section 2.2.20.19, page 36.

UNICOS/mk

recurrence
norecurrence

On UNICOS systems, recurrence enables vectorization of
reduction loops. On UNICOS/mk systems, recurrence
may rewrite some multiplication operations to be a series of
addition operations.
Default is recurrence .
For more information, see Section 2.2.20.20, page 37.

UNICOS
UNICOS/mk

scalar0
scalar1
scalar2
scalar3

Specifies various levels of scalar optimization.
Default is scalar2 .
For more information, see Section 2.2.20.21, page 37, through
Section 2.2.20.24, page 38.

UNICOS
UNICOS/mk

split0
split1
split2

Specifies various levels of loop splitting.
Default is split1 .
For more information, see Section 2.2.20.25, page 38.

UNICOS/mk

task0
task1
task2
task3

Specifies various levels of tasking.
Default is task1 .
For more information, see Section 2.2.20.26, page 39, through
Section 2.2.20.29, page 40.

UNICOS

taskinner
notaskinner

taskinner specifies Autotasking for innermost loops and
requests that a threshold test be performed prior to
Autotasking.
The default is notaskinner .
For more information, see Section 2.2.20.30, page 40.

UNICOS

threshold
nothreshold

threshold performs threshold testing to determine whether
there is sufficient work in a loop nest before Autotasking is
attempted.
The default is threshold .
For more information, see Section 2.2.20.31, page 40.

UNICOS

unroll0
unroll1
unroll2

Specifies various levels of unrolling.
The default is unroll0 .
For more information, see Section 2.2.20.32, page 41.

UNICOS/mk

004–3901–001 23

CF90TM Commands and Directives Reference Manual

opt Description Operating system

vector0
vector1
vector2
vector3

Specifies various levels of vectorization.
Default is vector2 .
For more information, see Section 2.2.20.33, page 41, through
Section 2.2.20.36, page 42.

UNICOS
UNICOS/mk

vsearch
novsearch

vsearch vectorizes search loops.
The default is vsearch .
For more information, see Section 2.2.20.37, page 43. The
implementation of this feature on UNICOS/mk systems is
deferred.

UNICOS
UNICOS/mk

zeroinc
nozeroinc

zeroinc specifies that constant increment variables (CIVs)
can be incremented by zero.
The default is nozeroinc .
For more information, see Section 2.2.20.38, page 43.

UNICOS
UNICOS/mk

For information on the Autotasking directives, see Appendix A, page 177.

The following sections describe the effects of various -O specifications. Some
optimization specifications are not available on all platforms. If your command
line includes an option that is not supported on your platform, the compiler
issues a message and compilation continues.

2.2.20.1 -O 0

The -O 0 option inhibits optimization. This option’s characteristics include low
compile time, small compile size, and no global scalar optimization.

On UNICOS systems, all tasking is disabled. Most array syntax statements are
vectorized, but all other vectorization is disabled.

On UNICOS/mk systems no vectorization occurs at this level.

2.2.20.2 -O 1

The -O 1 option specifies conservative optimization. This option’s
characteristics include moderate compile time and size, global scalar
optimizations, and no loop nest restructuring. Results may differ from the
results obtained when -O 0 is specified because of operator reassociation. No
optimizations will be performed that might create false exceptions.

24 004–3901–001

Invoking CF90 [2]

On UNICOS systems, only array syntax statements and inner loops are
vectorized, and the system does not perform some vector reductions. All
tasking is disabled.

On UNICOS/mk systems, implementation of vectorization at this level is
deferred.

2.2.20.3 -O 2

The -O 2 option specifies moderate optimization. This option’s characteristics
include moderate compile time and size, global scalar optimizations, pattern
matching, and loop nest restructuring. The system does not perform
optimizations that might create false exceptions.

On UNICOS systems, results may differ from results obtained when -O 1 is
specified because of vector reductions. Vectorizations, including outer loop
vectorization, are enabled. User tasking is enabled, so !$OMP directives and
!MIC$ directives are recognized; note that the !MIC$ directives are outmoded.
Only safe bottom loading is performed.

On UNICOS/mk systems, implementation of vectorization at this level is
deferred.

This is the default level of optimization.

2.2.20.4 -O 3

The -O 3 option specifies aggressive optimization and moderate Autotasking.
This option’s characteristics include a potentially larger compile size, longer
compile time, global scalar optimizations, possible loop nest restructuring, and
pattern matching. The optimizations performed might create false exceptions in
rare instances.

On UNICOS systems, results may differ from results obtained when -O 1 is
specified because of vector reductions. Moderate Autotasking is performed, and
autoscoping rules are in effect. For more information on these rules, see Section
A.12, page 195.

On UNICOS/mk systems, some intrinsic procedures and operations are
vectorized. Autotasking is not supported.

004–3901–001 25

CF90TM Commands and Directives Reference Manual

2.2.20.5 -O aggress , -O noaggress

The -O aggress option causes the compiler to treat a program unit (for
example, a subroutine or a function) as a single optimization region. Doing so
can improve the optimization of large program units, but it increases compile
time and size. In particular, specifying both -O aggress and -O inline3
causes increased compile time and space. The default is -O noaggress .

On UNICOS systems, specifying -O aggress can result in better optimized
code for large program units.

On UNICOS/mk systems, specifying -O aggress causes aggressive register
assignment and instruction scheduling to be performed on additional loop code
blocks that are not inner loops.

2.2.20.6 -O bl , -O nobl

The -O bl option enables full bottom loading of scalar operands in loops. The
term bottom loading describes an optimization technique used on some scalar
loops in which operands are prefetched during each loop iteration for use in the
next iteration. The operand is available as soon as the first loop instruction
executes. A prefetch is performed even during the final loop iteration, before
the loop’s final jump test has been performed.

Bottom loading is enabled only when scalar optimization is enabled. -O nobl
specifies safe bottom loading. The default is -O nobl . This feature is also
available through compiler directives; for more information, see Section 3.4.2,
page 96.

2.2.20.7 -O allfastint , -O fastint , -O nofastint (UNICOS Systems Only)

The -O allfastint option performs fast multiplication, division, and
compare sequences for all integer data objects, regardless of how they are
declared.

The -O fastint option performs fast multiplication, division, and compare
sequences for integer data objects that are default declared (with no KIND= or *
specification).

-O nofastint performs full 64-bit integer operations. The default is
-O fastint .

Note: The -O allfastint and -O fastint options do not produce a
result that is precise to a full 64 bits of precision.

26 004–3901–001

Invoking CF90 [2]

Multiply and divide operations on default integers can be done as full 64-bit
operations that yield the largest-magnitude results possible but use slower
hardware instruction sequences. These operations can also be done with faster
hardware instruction sequences that yield only 46-bit accuracy. Similarly,
comparisons of integers can compare 64 bits or 46 bits, but comparisons of
64-bit lengths are slower.

The fast mode option, -O fastint , is the default. The DIGITS (3I), HUGE(3I),
RANGE(3I) intrinsic functions return a smaller value for default integers in fast
mode. When the MAXVAL(3I), MINVAL(3I), MAXLOC(3I), and MINLOC(3I) intrinsic
functions are called with a default integer and a mask of false, they return a
smaller value of plus or minus HUGE(3I).

When comparing the results of the MAXVAL(3I) and MINVAL(3I) intrinsic
functions with the value returned by HUGE(3I), use the same type and kind type
parameter for the argument for HUGE(3I) and these functions to get a correct
comparison. To conform to the Fortran 90 standard, you must ensure that
arguments to the MIN(3I) and MAX(3I) intrinsic functions have the same type
and kind type parameters.

To obtain 64-bit accuracy, perform one of the following tasks:

• Declare integer variables using INTEGER(KIND=8) .

• Compile with -O nofastint . This command line option affects integer
variables that do not have a kind type specifier.

The following program is compiled with two different sets of compiler options:

PROGRAM PRINTFAST

INTEGER :: INTMAX

INTEGER (KIND=8) :: INT8MAX

INT8MAX = HUGE(INT8MAX)
INTMAX = HUGE(INTX)

!

! THE FOLLOWING STATEMENT COMPARES TWO INTEGERS OF THE

! SAME TYPE THAT MAY HAVE DIFFERENT KIND TYPE PARAMETERS.

!
IF (INTMAX .EQ. INT8MAX) THEN

PRINT *,’DEFAULT HUGE(INTX) .EQ. HUGE(INT8MAX)’

ELSE

PRINT *,’DEFAULT HUGE(INTX) .NE. HUGE(INT8MAX)’

ENDIF

END

004–3901–001 27

CF90TM Commands and Directives Reference Manual

The following shows the f90 (1) command line and output with the
-O fastint option:

% f90 -O fastint printfastint.f
% a.out

DEFAULT HUGE(INTX) .NE. HUGE(INT8MAX)

The following shows the f90 (1) command line and output with the
-O nofastint option in effect:

% f90 -O nofastint printfastint.f

% a.out

DEFAULT HUGE(INTX) .EQ. HUGE(INT8MAX)

2.2.20.8 -O fusion , -O nofusion (UNICOS/mk Systems Only)

The -O fusion option enables aggressive loop fusion. Loop fusion is an
optimization process by which two loops are merged into one loop. The loops
to be fused must have identical trip counts.

Loop fusion can lower the number of memory references and improve cache
behavior. Specifying the -O fusion option can lead to lower performance for
some loops due to stream buffer thrashing.

The default is nofusion , which performs only conservative loop fusion.

Note: This option is implemented on UNICOS/mk systems. If -O fusion is
specified on UNICOS systems, unsafe code may be generated.

2.2.20.9 -O ieeeconform , -O noieeeconform

The -O ieeeconform option causes your program’s executable code to
conform more closely to the IEEE floating-point standard than the default mode.
When specified, many identity optimizations are disabled, executable code is
slower, and a scaled complex divide mechanism is enabled that increases the
range of complex values that can be handled without producing an underflow.

The -O noieeeconform option causes the compiler to optimize expressions
such as X.NE.X to false and X/X to 1, where X is a floating-point value. With
-O ieeeconform in effect, these and other similar arithmetic identity
optimizations are not performed.

This option interacts with the -d u and -e u specifications. -O ieeeconform
is compatible with -e u . If both -O ieeeconform and -d u are specified,
however, -e u is set and a warning message is generated.

28 004–3901–001

Invoking CF90 [2]

The default is -O noieeeconform . This option is supported on UNICOS/mk
systems and on CRAY T90 systems that support IEEE floating-point arithmetic.

2.2.20.10 -O inline n and -O inlinefrom= source

Inlining is the process of replacing a user procedure call with the procedure
definition itself. This saves subprogram call overhead and may allow better
optimization of the inlined code. If all calls within a loop are inlined, the loop
becomes a candidate for vectorization or tasking. The CF90 compiler supports
the following command line options for controlling inlining:

• -O inline0 , -O inline1 , -O inline2 , -O inline3

• -O inlinefrom= source

The following conditions inhibit inlining:

• Dummy argument types and kind type parameter values in the called
procedure that differ from corresponding actual argument types and kind
type parameter values.

• The number of dummy arguments being not equal to the number of actual
arguments.

• A call site that is within the range of a NOINLINE directive.

• A procedure being called is specified on an INLINENEVER directive.

• A constant actual argument that has a corresponding dummy argument that
is defined by assignment in the procedure.

• The routine being called is declared RECURSIVE.

• A dummy argument of a host procedure is referenced in an internal
procedure of the host procedure. If this condition exists, the host is not
inlined.

• The compiler determines that the routine is too big to inline. This is
determined by an internal limit of the text size of the routine. You can
override this limit by inserting an INLINEALWAYSdirective. For information
on the INLINEALWAYS directive, see Section 3.3.2, page 93.

• The procedure being called cannot contain any of the following:

– A LOC(3I) of a variable declared in a common block

– Calls to the NUMARG(3I) intrinsic procedure

004–3901–001 29

CF90TM Commands and Directives Reference Manual

– Calls to the PRESENT(3I) intrinsic procedure

– ASSIGN statements

– Alternate RETURNstatements

– Dummy procedures

– Dummy arguments declared with the OPTIONALattribute

– Fortran 90 pointers in static storage (COMMON, MODULE, DATA, or SAVE)

– Dummy arguments that are Cray pointers

The two inlining modes are automatic and explicit. You cannot invoke both
automatic and explicit inlining modes at the same time. These modes can be
characterized as follows:

• Automatic inlining is invoked with the -O inline n option on the command
line. Routines that are potential targets for inline expansion include all the
routines within the input file to the compilation. In automatic mode, you
can choose the level of heuristics to be applied to the input program. The
higher the level, the more aggressive the inlining.

The -O inline n options let you specify the amount of automatic inline
code expansion desired. The -O inline0 option disables all inline code
expansion, and the -O inline3 option specifies aggressive inline code
expansion. Table 3, page 31, explains the levels in more detail.

30 004–3901–001

Invoking CF90 [2]

Table 3. Automatic inlining specifications

Level Description

0 No inlining. All inlining disabled. All inlining compiler directives are ignored. Default.

1 Conservative inlining. Inlining attempted for call sites and routines that are under the control
of a compiler directive. See Chapter 3, page 71, for more information on the inlining directives.

2 Moderate inlining. Inlining attempted on calls described in -O inline1 . In addition, inlining
is attempted for call sites that exist within DOloops.

3 Aggressive inlining. Inlining attempted for all call sites in the input program.

• Explicit inlining is invoked with the -O inlinefrom= source option. All
inlining directives are recognized with explicit inlining. For information on
inlining directives, see Chapter 3, page 71.

The -O inlinefrom= source option lets you explicitly state the routines that
are targets for inline expansion. (Note that blanks are not allowed on either
side of the equal sign.) With this mode of inlining, you must put the
routines to be inlined in source.

Note: Module procedures contained in source must be precompiled with
the -O modinline option. You cannot just use the Fortran source of a
module procedure as input to the -O inlinefrom= option.

Whenever a call is encountered in the input program to a routine that exists
in source, inlining is attempted for that call site.

Note that the routines in source are not actually loaded with the final
program. They are simply templates for the inliner. To have a routine
contained in source loaded with the program, you must include it as an
input file to the compilation. Table 4, page 32, describes source.

004–3901–001 31

CF90TM Commands and Directives Reference Manual

Table 4. Description of source

source Description

file.o Precompiled module. file.o contains templates of module procedures that are precompiled
for inlining. You can save this file.o and use it for inlining at a later time. The
-O modinline command line option creates these templates.See Section 2.2.20.13, page
33, for information on using -O modinline .

file.a Precompiled archive library of modules. file.a is an archive library containing one or
more file.o files.

file.f
file.F
file.f90
file.F90

Fortran source file. These files contain error-free Fortran source code. The routines in
these files are candidates for inline expansion.

Note: Module procedures contained in a Fortran source file must be precompiled using
-O modinline for them to be inlined.

dir A directory. A directory that contains any of the file types described in this table.

Note: You cannot invoke both the automatic and the explicit inlining modes
at the same time.

2.2.20.11 -O jump , -O nojump (UNICOS/mk Systems Only)

The -O jump option causes jumps, instead of branches, to external functions.
By default, jumps are generated instead of branches because this is safer.
Branches are limited in the distance over which they can transfer control; jumps
have no such limitations.

Large programs may benefit when -O jump is in effect. This benefit can be
seen when compiling files that generate calls to functions that are loaded at a
large offset from the position of the call site that is invoking the procedure. A
loader message similar to the following alerts you to the necessity of compiling
with -O jump :

cld-130

The dex expression dex-index in relocatable

object ‘ relo-obj-name’ for symbol ‘ symbol-name’
calculated a relative branch target

too distant.

The default is jump .

32 004–3901–001

Invoking CF90 [2]

2.2.20.12 -O loopalign , -O noloopalign (UNICOS Systems Only)

The -O loopalign option causes the compiler to attempt to align DOand
DO WHILEloops on instruction buffer boundaries, comparing buffer length
with the number of generated instructions in each loop. Loop alignment is
useful when program execution is dominated by specific blocks of code. If such
a block crosses a buffer boundary, the overhead caused by frequent reloading of
instruction buffers degrades program performance.

When -O loopalign is specified, the compiler counts the number of generated
instructions in each DOor DO WHILEloop and compares this to the length of
the instruction buffers. If the loop body fits in the buffers and would otherwise
cross over the buffer boundary, the loop is aligned on a buffer boundary. Short
loops, unwound loops, and loops containing external references are not aligned.

This option does not interact with the ALIGN compiler directive. The default is
-O noloopalign (no attempt to align loops).

2.2.20.13 -O modinline , -O nomodinline

The -O modinline option directs the compiler to create templates for module
procedures encountered in a module. These templates are attached to file.o . The
files that contain these inlinable templates can be saved and used later to inline
call sites within a program being compiled with the -O inlinefrom= source
command line option. When -O modinline is specified, the MODINLINE and
NOMODINLINEdirectives are recognized. Using the -O modinline option
increases the size of file.o . The default is -O nomodinline .

To ensure that file.o is not removed, specify this option in conjunction with the
-c option. For information on the -c option, see Section 2.2.4, page 8.

Note: This option cannot be specified in conjunction with the
-O inlinefrom= source or -O inline n options.

2.2.20.14 -O msgs , -O nomsgs

The -O msgs option causes the compiler to write optimization messages to
stderr . These messages include VECTOR, SCALAR, and TASKmessages.

The default is -O nomsgs . When -O nomsgs is in effect, you may request that
a listing be produced so that you can see the optimization messages in the
listing. For information on obtaining listings, see Section 2.2.22, page 47.

004–3901–001 33

CF90TM Commands and Directives Reference Manual

2.2.20.15 -O negmsgs , -O nonegmsgs

The -O negmsgs option causes the compiler to generate messages that indicate
why optimizations such as vectorization or tasking did not occur in a given
instance. This option must be specified in conjunction with the -O msgs option.

The default is -O nonegmsgs .

2.2.20.16 -O nointerchange

The -O nointerchange option inhibits the compiler’s attempts to interchange
loops. Interchanging loops by having the compiler replace an inner loop with
an outer loop can increase performance. The compiler performs this
optimization by default.

Specifying the -O nointerchange option is equivalent to specifying a
NOINTERCHANGEdirective prior to every loop. To disable loop interchange on
individual loops, use the NOINTERCHANGEdirective. For more information on
the NOINTERCHANGEdirective, see Section 3.4.4, page 100.

2.2.20.17 -O overindex , -O nooverindex

The -O nooverindex option declares that there are no array subscripts that
index a dimension of an array and that are outside the declared bounds of that
dimension. On UNICOS systems, shortloop code generation occurs when the
extent does not exceed the maximum vector length of the machine.

Specifying -O overindex declares that the program contains code that makes
array references with subscripts that exceed the defined extents. This prevents
the compiler from performing the shortloop optimizations described in the
preceding paragraph.

Overindexing is nonstandard, but it compiles correctly as long as data
dependencies are not hidden from the compiler. This technique collapses loops;
that is, it replaces a loop nest with a single loop. An example of this practice is
as follows:

DIMENSION A(20, 20)

DO I = 1, N

A(I, 1) = 0.0

END DO

34 004–3901–001

Invoking CF90 [2]

Assuming that N equals 400 in the previous example, the compiler can generate
more efficient code than a doubly nested loop. However, incorrect results can
occur in this case if -O nooverindex is in effect.

You do not need to specify -O overindex if the overindexed array is a Cray
pointee, has been equivalenced, or if the extent of the overindexed dimension is
declared to be 1 or * . In addition, the -O overindex option is enabled
automatically for the following extension code, where the number of subscripts
in an array reference is less than the declared number:

DIMENSION A(20, 20)

DO I = 1, N

A(I) = 0.0 ! 1-dimension reference;

! 2-dimension array

END DO

Note: The -O overindex option is used by the compiler for detection of
short loops and subsequent code scheduling. This allows manual
overindexing as described in this section, but it may have a negative
performance effect because of fewer recognized short loops and more
restrictive code scheduling. In addition, the compiler continues to assume, by
default, a standard-conforming user program that does not overindex when
doing dependency analysis for other loop nest optimizations.

The default is -O nooverindex .

2.2.20.18 -O pattern , -O nopattern

The -O pattern option enables pattern matching. The pattern matching
feature searches your code for specific code patterns and replaces them with
calls to scientific library routines. The scientific library used is libsci.a .
These routines are highly optimized and may contain multitasked code.

The -O pattern option is enabled only for optimization levels -O 2 ,
-O vector2 or higher; there is no way to force pattern matching for lower
levels.

On UNICOS/mk systems, only PE-private data is supported.

Specifying -O nopattern disables pattern matching and causes the compiler
to ignore the PATTERNand NOPATTERNdirectives. For information on the
PATTERNand NOPATTERNdirectives, see Section 3.2.5, page 81.

The default is -O pattern .

004–3901–001 35

CF90TM Commands and Directives Reference Manual

2.2.20.19 -O pipeline n (UNICOS/mk Systems Only)

The pipelining options specify various levels of software pipelining ranging
from no pipelining, at -O pipeline0 , to a pipelining level that also includes
speculative loads and operations, at -O pipeline3 .

Software pipelining is a compiler code generation technique in which operations
from various loop iterations are overlapped in order to exploit instruction-level
parallelism, increase the instruction issue rate, and better hide memory and
instruction latency. As an optimization technique, software pipelining is similar
to bottom loading, but it includes additional, and more efficient, scheduling
optimizations.

The various software pipelining levels you can specify perform the following
types of operations:

• -O pipeline0 disables pipelining. Default.

• -O pipeline1 specifies conservative pipelining. Compile times at this
level are lower than if -O pipeline2 is specified. At this level, only loops
of the following type are software pipelined:

– Parallel loops (those without data dependencies between iterations).

– Vectorizable loops with an infinite safe vector length.

– Loops marked with a CONCURRENTdirective. For more information on
the CONCURRENTdirective, see Section 3.7.1, page 113.

• -O pipeline2 specifies safe pipelining on inner loops. Safe operator
reassociations are performed. Numeric results obtained at this level do not
differ from results obtained at pipeline0 .

• -O pipeline3 specifies aggressive pipelining. The system performs
software pipelining, speculative loads, and speculative operations. These
optimizations could lead to floating-point exceptions and operand range
errors.

Implementation of features at this level is deferred. Functionality is the
same at that obtained when -O pipeline2 is specified.

At the -O pipeline1 , -O pipeline2 , and -O pipeline3 levels, compile
times may be longer, but execution times are shorter. The aggressive scheduling
that can be obtained with this option increases the instruction issue rate and
hides latency better than the default code generation method.

36 004–3901–001

Invoking CF90 [2]

You can use the CONCURRENTdirective to convey array dependency
information to the compiler. For information on the CONCURRENTdirective, see
Section 3.7.1, page 113.

2.2.20.20 -O recurrence , -O norecurrence

On UNICOS systems, -O recurrence enables vectorization for all reduction
loops. A reduction loop is a loop that contains at least one statement that reduces
an array to a scalar value by doing a cumulative operation on many of the
array elements. This involves including the result of the previous iteration in
the expression of the current iteration.

On UNICOS/mk systems, -O recurrence may rewrite some multiplication
operations to be a series of addition operations.

The default is -O recurrence . This feature is also available through compiler
directives; for more information, see Section 3.2.9, page 84.

2.2.20.21 -O scalar0

The -O scalar0 option disables scalar optimization. Characteristics include
low compile time and size.

On UNICOS systems, -O scalar0 is compatible with -O task0 or -O task1
and with -O vector0 .

On UNICOS/mk systems, -O scalar0 is compatible with -O vector0 .

2.2.20.22 -O scalar1

The -O scalar1 option specifies conservative scalar optimization.
Characteristics include moderate compile time and size. Results can differ from
the results obtained when -O scalar0 is specified because of operator
reassociation. No optimizations are performed that could create false exceptions;
for example, on UNICOS systems, only safe bottom loading is performed.

On UNICOS systems, -O scalar1 is compatible with -O vector0 or
-O vector1 and with -O task0 or -O task1 .

On UNICOS/mk systems, -O scalar1 is compatible with -O vector0 or
-O vector1 .

004–3901–001 37

CF90TM Commands and Directives Reference Manual

2.2.20.23 -O scalar2

The -O scalar2 option specifies moderate scalar optimization. Characteristics
include moderate compile time and size. Results can differ slightly from the
results obtained when -O scalar1 is specified because of possible loop nest
restructuring. Generally, no optimizations are done that could create false
exceptions. For example, only safe bottom loading is performed.

On UNICOS systems, -O scalar2 is compatible with all vectorization and
tasking levels.

On UNICOS/mk systems, -O scalar2 is compatible with all vectorization
levels.

This is the default scalar optimization level.

2.2.20.24 -O scalar3

The -O scalar3 option specifies aggressive scalar optimization. Characteristics
include potentially greater compile time and size. Results can differ from the
results obtained when -O scalar1 is specified because of possible loop nest
restructuring. On UNICOS/mk systems and on CRAY T90 systems that support
IEEE arithmetic, strength reduction of floating-point values is performed.

The optimization techniques used can create false exceptions in rare instances;
for example, full bottom loading is performed. Analysis that determines whether
a variable is used before it is defined is enabled at this level. The -O scalar3
optimization level is never enabled automatically, even when -O 3 is specified.
This scalar optimization level must be requested specifically on the command
line.

On UNICOS systems, -O scalar3 is compatible with all tasking and
vectorization levels.

On UNICOS/mk systems, -O scalar3 is compatible with all vectorization
levels.

2.2.20.25 -O split n (UNICOS/mk Systems Only)

The -O split0 , -O split1 , and -O split2 options specify loop splitting,
as follows:

• -O split0 disables loop splitting and directs the compiler to ignore SPLIT
compiler directives.

38 004–3901–001

Invoking CF90 [2]

• -O split1 causes the compiler to split only the loops that are preceded by
a SPLIT compiler directive. Default.

• -O split2 causes the compiler to evaluate all loops in the compilation as
candidates for splitting except those that are preceded by a NOSPLIT
directive.

Loop splitting is a code optimization technique by which a loop that contains
both vectorizable work and scalar work is split into two loops; one that
vectorizes, and one that does not. On CRAY T3E systems, even if splitting does
not result in a vectorizable loop, the program can benefit by reducing the
number of memory accesses that are not in cache.

The default is -O split1 . This feature is also available through compiler
directives. For more information, see Section 3.4.6, page 102.

2.2.20.26 -O task0 (UNICOS Systems Only)

The -O task0 option disables tasking. Characteristics include low compile
time and size. !$OMP and !MIC$ directives are ignored.

The -O task0 option is compatible with all vectorization and scalar
optimization levels.

2.2.20.27 -O task1 (UNICOS Systems Only)

The -O task1 option specifies user tasking, so !$OMP directives and !MIC$
directives are recognized; note that the !MIC$ directives are outmoded.

Characteristics include low compile time and size. No level for scalar
optimization is enabled automatically. This is the default optimization level for
tasking.

Note: In releases prior to 3.1, lines beginning with !$, C$, or *$ were always
treated as comments. With the introduction of the OpenMP Fortran API,
these lines are now treated as conditional compilation lines and are compiled
as source code when tasking is in effect. To have these lines treated as
comments, remove the dollar sign ($) from these lines or compile with the
-x conditional_omp command line option.

For more information on the -x conditional_omp command line option,
see Section 2.2.35, page 56. For more information OpenMP, see Chapter 4,
page 119.

004–3901–001 39

CF90TM Commands and Directives Reference Manual

The -O task1 option is compatible with all vectorization and scalar
optimization levels.

2.2.20.28 -O task2 (UNICOS Systems Only)

The -O task2 option specifies moderate Autotasking. Characteristics include
moderate compile time and size and possible loop nest restructuring. No
optimizations that can create exceptions or differing results are performed.
Autoscoping rules are in effect. For more information on these rules, see Section
A.12, page 195.

The -O task2 option is compatible with -O scalar2 or -O scalar3 and
with -O vector2 or -O vector3 .

Lines that begin with !$, C$, or *$ may have to be rewritten when tasking is
enabled. For more information on this, see Section 2.2.20.27, page 39.

2.2.20.29 -O task3 (UNICOS Systems Only)

The -O task3 option specifies aggressive Autotasking. Characteristics include
a potentially high compile time and size. Possible loop nest restructuring.
Results can differ slightly from those obtained when -O task2 is specified,
and from run to run, because of parallel reductions and operator reassociations.
Autoscoping rules are in effect. For more information on these rules, see Section
A.12, page 195.

The -O task3 option is compatible with -O scalar2 or -O scalar3 and
with -O vector3 .

Lines that begin with !$, C$, or *$ may have to be rewritten when tasking is
enabled. For more information on this, see Section 2.2.20.27, page 39.

2.2.20.30 -O taskinner , -O notaskinner (UNICOS Systems Only)

The -O taskinner option specifies Autotasking for innermost loops.
Autotasking must be enabled for this directive to take effect. Autotasking is
enabled when -O 3 , -O task2 , or -O task3 is specified.

The default is -O notaskinner .

2.2.20.31 -O threshold , -O nothreshold (UNICOS Systems Only)

The -O threshold option generates a runtime threshold test to determine
whether there is sufficient work in a loop nest before Autotasking is attempted.

40 004–3901–001

Invoking CF90 [2]

Autotasking must be enabled for this directive to take effect. Autotasking is
enabled when -O 3 , -O task2 , or -O task3 is specified.

The default is -O threshold .

2.2.20.32 -O unroll n (UNICOS/mk Systems Only)

The unrolling arguments specify loop unrolling, as follows:

• -O unroll0 disables loop unrolling and directs the compiler to ignore
UNROLLcompiler directives. Default.

• -O unroll1 causes the compiler to unroll only the loops that are preceded
by an UNROLLcompiler directive.

• -O unroll2 causes the compiler to evaluate all loops in the compilation as
candidates for unrolling except those that are preceded by a NOUNROLL
compiler directive.

On UNICOS systems, -O unroll2 is in effect at all times.

The default is -O unroll0 . This feature interacts with the UNROLLcompiler
directive. For more information, see Section 3.2.12, page 87.

2.2.20.33 -O vector0

The -O vector0 option specifies low vectorization. Characteristics include
low compile time and small compile size.

On UNICOS systems, -O vector0 is compatible with all scalar optimization
levels and with task0 or task1 . Vector code is generated for most array
syntax statements but not for user-coded loops.

On UNICOS/mk systems, -O vector0 is compatible with all scalar
optimization levels. Vector versions of intrinsic functions and library-based
operators are not used at this level.

2.2.20.34 -O vector1

The -O vector1 option specifies conservative vectorization. Characteristics
include moderate compile time and size. No loop nests are restructured. Only
inner loops are vectorized. Not all vector reductions are performed, so results
do not differ from results obtained when -O vector0 is specified. No
vectorizations that might create false exceptions are performed.

004–3901–001 41

CF90TM Commands and Directives Reference Manual

On UNICOS systems, -O vector1 is compatible with -O task0 or -O task1
and with -O scalar1 , -O scalar2 , or -O scalar3 .

On UNICOS/mk systems, -O vector1 is compatible with -O scalar1 ,
-O scalar2 , or -O scalar3 . The use of vector versions of intrinsic functions
and library-based operators, such as ** , at this level is deferred.

2.2.20.35 -O vector2

The -O vector2 option specifies moderate vectorization. Characteristics
include moderate compile time and size. Loop nests are restructured. Results
can differ slightly from results obtained when -O vector1 is specified because
of vector reductions. No vectorizations that might create false exceptions will
be performed. Pattern matching is enabled.

On UNICOS systems, -O vector2 is compatible with -O scalar2 or
-O scalar3 and with -O task0 , -O task1 , or -O task2 .

On UNICOS/mk systems, -O vector2 is compatible with -O scalar2 or
-O scalar3 . The use of vector versions of intrinsic functions and
library-based operators, such as ** , at this level is deferred.

This is the default vectorization level.

2.2.20.36 -O vector3

The -O vector3 option specifies aggressive vectorization. Characteristics
include potentially high compile time and size. Loop nests are restructured.
Results can differ slightly from results obtained when -O vector1 is specified
because of vector reductions. Vectorizations that might create false exceptions
in rare cases may be performed. Pattern matching is enabled.

On UNICOS systems, -O vector3 is compatible with -O scalar2 and
-O scalar3 and with all tasking levels.

On UNICOS/mk systems, -O vector3 is compatible with -O scalar2 and
-O scalar3 . Vector versions of the following intrinsic functions and
library-based operators are used when found in a vectorizable loop: ACOS(3M),
ALOG(3M), ALOG10(3M), ASIN(3M), ATAN(3M), ATAN2(3M), the BMM(3I)
routines, COS(3M), COSS(3M), EXP(3M), LOG(3M), LOG10(3M), POPCNT(3I),
RANF(3I), RTOR(3M), SIN (3M), SQRT(3M), SQRTINV(3M), and ** . These vector
routines operate on an array of elements and return an array of results. This
vectorization is performed using the following process:

1. The loop is stripmined. See the glossary for information on stripmining.

42 004–3901–001

Invoking CF90 [2]

2. If necessary, a strip of operands is stored into a temporary array. The vector
version of the intrinsic function is called, which stores the strip of results
into a temporary array.

3. The remainder of the loop is computed using the results from step 2.

See the man pages for these intrinsics for more specific information on how
data sizes affect vectorization.

On UNICOS/mk systems, the vector routines from libm , the default math
library, return results identical to those obtained when scalar routines are used.
For better performance, but slightly less accuracy, specify -l mfastv on the
command line. This option loads a nondefault math library. For more
information on this option, see Section 2.2.14, page 17.

For more information on vectorization on UNICOS/mk systems, see the CRAY
T3E Fortran Optimization Guide.

2.2.20.37 -O vsearch , -O novsearch

The -O vsearch option vectorizes search loops. -O novsearch disables
vectorization of search loops. A search loop is one that can be exited by means of
a GO TOstatement or EXIT statement.

The -O vsearch option is the default when -O vector2 or -O vector3 are
enabled. -O novsearch is the default when -O vector0 or -O vector1 are
enabled. The implementation of this feature on UNICOS/mk systems is
deferred.

This feature is also available through compiler directives; for more information,
see Section 3.2.15, page 92.

2.2.20.38 -O zeroinc , -O nozeroinc

The -O zeroinc option causes the compiler to assume that constant increment
variables (CIVs) can be incremented by zero. A CIV is a variable that is
incremented only by a loop invariant value. For example, in a loop with
variable J , the statement J = J + K , where K can be equal to zero, J is a CIV.
-O zeroinc can cause less strength reduction to occur in loops that have
variable increments.

The default is -O nozeroinc , which means that you must prevent zero
incrementing.

004–3901–001 43

CF90TM Commands and Directives Reference Manual

2.2.20.39 Optimization Values

Figure 2 shows the relationships between some of the -O opt values.

Low compile cost

Moderate compile cost

Potentially high compile cost

No numerical differences from serial
execution

No numerical differences from serial
execution (no vector reductions)

Potential numerical differences from
serial execution (vector reductions)

Potential numerical differences from
serial execution and from run to run
due to parallel reductions

Potential numerical differences from
serial execution (operator
reassociation)

No optimizations that may create
exceptions (safe bottom loading)

No optimizations that may create
exceptions

Optimizations that may create
exceptions (full bottom loading)

Implies at least scalar1

Implies at least scalar2

No loop nest restructuring

Loop nest restructuring

Vectorize array syntax statements

Vectorize only inner loops

No vectorization may create
exceptions

Vectorization that may create
exceptions

All tasking disabled

User tasking enabled

a10133

✘

sc
ala

r0

ve
cto

r0

ta
sk

0
sc

ala
r1

ve
cto

r1

ta
sk

1
sc

ala
r2

ve
cto

r2

ta
sk

2
sc

ala
r3

ve
cto

r3

ta
sk

3

✘ ✘ ✘

✘ ✘ ✘ ✘ ✘

✘ ✘ ✘

✘ ✘

✘ ✘

✘ ✘

✘

✘ ✘ ✘

✘ ✘ ✘

✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘

✘

✘ ✘

✘ ✘ ✘ ✘

✘ ✘ ✘ ✘

✘ ✘ ✘ ✘

✘ ✘ ✘ ✘

✘

✘ ✘ ✘

✘

✘

✘ ✘ ✘

1 Not supported on UNICOS/mk systems

1 1 1 1

Figure 2. Optimization values

44 004–3901–001

Invoking CF90 [2]

2.2.21 -p module_site

The -p module_site option allows you to specify a file or directory that contains
modules.

The module_site specifies the name of a binary file or directory to search for
modules. The module_site specified can be an archive file, build file (bld file), or
binary file.

When searching files, the compiler searches files suffixed with .o (file.o) or
library files suffixed with .a (lib.a) containing one or more modules. When
searching a directory, the compiler searches files in the named directory that are
suffixed with .o or .a . After searching the directory named in module_site, the
compiler searches for modules in the current directory.

The module files are not interchangeable. For example, it is not possible to
create modules for UNICOS systems and read the files on UNICOS/mk systems.

File name substitution (such as *.o) is not allowed. If the path name begins
with a slash (/), the name is assumed to be an absolute path name. Otherwise,
it is assumed to be a path name relative to the working directory. If you need
to specify multiple binary files, library files, or directories, you must specify a
-p option for each module_site. There is no limit on the number of -p options
that you can specify. The compiler searches the binary files, library files, and
directories in the order specified.

A module called FTN_IEEE_DEFINITIONS is provided as part of the CF90
Programming Environment on UNICOS/mk systems and on CRAY T90
systems that support IEEE floating-point arithmetic. On these systems, the
system file that contains this module is searched last. To reference this module,
specify USE FTN_IEEE_DEFINITIONS .

Example 1: Consider the following command line:

% f90 -p steve.o -p mike.o joe.f

Assume that steve.o contains a module called Rock and mike.o contains a
module called Stone . A reference to use Rock in joe.f causes the compiler to
use Rock from steve.o . A reference to Stone in joe.f causes the compiler
to use Stone from mike.o .

Example 2: The following example specifies binary file murphy.o and library
file molly.a :

% f90 -p murphy.o -p molly.a prog.f

004–3901–001 45

CF90TM Commands and Directives Reference Manual

Example 3: In this example, assume that the following directory structure exists
in your home directory:

programs
/ | \

tests one.f two.f

|

use_it.f

The following module is in file programs/one.f , and the compiled version of
it is in programs/one.o :

MODULE one

INTEGER i

END MODULE

The next module is in file programs/two.f , and the compiled version of it is
in programs/two.o :

MODULE two

INTEGER j

END MODULE

The following program is in file programs/tests/use_it.f :

PROGRAM demo
USE one

USE two

. . .

END PROGRAM

To compile use_it.f , enter the following command from your home directory,
which contains the subdirectory programs :

% f90 -p programs programs/tests/use_it.f

Example 4: In the next set of program units, a module is contained within the
first program unit and accessed by more than one program unit. The first file,
progone.f , contains the following code:

MODULE split

INTEGER k

REAL a
END MODULE

PROGRAM demopr

46 004–3901–001

Invoking CF90 [2]

USE split

INTEGER j
j = 3

k = 1

a = 2.0

CALL suba(j)

PRINT *, ’j=’, j

PRINT *, ’k=’, k
PRINT *, ’a=’, a

END

The second file, progtwo.f , contains the following code:

SUBROUTINE suba(l)

USE split

INTEGER l

l = 4

k = 5

CALL subb(l)
RETURN

END

SUBROUTINE subb(m)

USE split
INTEGER m

m = 6

a = 7.0

RETURN

END

Use the following command line to compile the two files with one f90 (1)
command and a relative path name:

% f90 -p progone.o progone.f progtwo.f

2.2.22 -r list_opt

The -r list_opt option produces a listing file. If the -C option is specified along
with the -r list_opt option, the -C option is overridden and a warning message
is generated. If both the -r list_opt option and the -Wr" ftnlist_opt" options are
specified, the listing options specified by all the -r list_opt options are placed
on the ftnlist (1) command line before those specified by the -Wr" ftnlist_opt"
option.

004–3901–001 47

CF90TM Commands and Directives Reference Manual

By default, if only one input file is specified on the f90 (1) command line, the
listing is placed in file.lst . If more than one input file is specified on the
command line, the listing is placed in file ftnlist.out .

The -r list_opt option allows you to generate a listing directly from the f90 (1)
command. The list_opt argument produces listings with commonly needed
information. If you need a customized report, you can use ftnlist (1) directly.

The -r list_opt option accepts only one argument unless you are specifying the
T argument; T can be specified in conjunction with one other argument.

The list_opt values are as follows:

list_opt Listing type

0 Listing includes the standard ftnlist (1) listing information.
Includes global reports when you have more than one
compilation unit.

1 Listing includes the source listing, loop marks, and parallel
marks. Regardless of the number of compilation units, no global
reports are included. This is a minimal listing.

2 Listing includes the source listing, loop marks, parallel marks,
considerata, and compiler messages. Regardless of the number of
compilation units, no global reports are included. Produces a
short, standard listing.

3 Listing includes the source listing, loop marks, parallel marks, an
argument report, a parallelism report, identifier cross-references,
considerata, and compiler messages. Regardless of the number of
compilation units, no global reports are included.

4 Listing includes all subprogram items that can be listed with the
default ftnlist (1) options. Regardless of the number of
compilation units, no global reports are included.

5 Listing includes all subprogram items that can be listed with the
default ftnlist (1) options. If more than one compilation unit is
present, the Global Considerata report is included.

6 Listing includes all items that can appear in a listing. All
ftnlist (1) options are enabled. This option produces the
maximum amount of listing information.

c Listing includes all common blocks and all members of each
common block.

48 004–3901–001

Invoking CF90 [2]

g Saves the generated binary code and its assembly language
equivalent to file.L . Unlike most other -r list_opt arguments,
specifying -r g does not create a CIF.

l Invokes ftnlint (1) with default ftnlint (1) options. You
cannot pass option information directly to ftnlint (1). If you
require a particular ftnlint (1) analysis, you must call it
separately. If more than one source file is listed on the command
line, the output is written to file ftnlint.out .

m Produces a source listing with loopmark information. Loopmark
information will not be displayed if the -d B option has been
specified.

n Suppresses page breaks in the listing.

s Lists source code. Messages are interspersed with the source
lines. Produces 80-column output by default.

w Produces 132-column output, which, when specified in
conjunction with -r s or -r x , overrides the 80-column output
that those options produce by default.

You can specify -r w in conjunction with either the -r s option
or the -r x option. Specifying -r w in conjunction with any
other -r listing option generates an error message.

x Generates a cross-reference listing. Produces 80-column output by
default.

T Retains file.T after processing rather than deleting it. This option
may be specified in addition to any of the other options. For
more information on file.T , see the -C option.

2.2.23 -R runchk

The -R runchk option lets you specify any of a group of run-time checks for
your program. To specify more than one type of checking, specify consecutive
runchk arguments, as follows: -R ab .

The run-time checks available are as follows:

runchk Checking performed

a Compares the number and types of arguments passed to a
procedure with the number and types expected.

004–3901–001 49

CF90TM Commands and Directives Reference Manual

Note: When -R a is specified, some pattern matching may be
lost because some of the library calls typically found in the
generated code may not be present. This occurs when -R a is
specified in conjunction with one of the following other
options: -O 2 (the default optimization level), -O 3 ,
-O inline2 , or -O inline3 .

b Enables checking of array bounds. If a problem is detected at run
time, a message is issued but execution continues. Arrays in
formatted WRITEand READstatements are not checked. The
NOBOUNDSdirective overrides this option. For more information
on NOBOUNDS, see Section 3.5.1, page 105.

Note: Bounds checking behavior differs with the optimization
level. At the default optimization level, -O 2 , some runtime
checking is inhibited. Complete checking is guaranteed only
when optimization is turned off by specifying -O 0 on the
f90 (1) command line.

c Enables conformance checking of array operands in array
expressions. Even without the -R option, such checking is
performed during compilation when the dimensions of array
operands can be determined.

n Compares the number of arguments passed to a procedure with
the number expected. Does not make comparisons with regard to
argument data type (see -R a).

s Enables checking of character substring bounds. Arrays in
formatted WRITEand READstatements are not checked. This
option behaves similarly to option -R a or -R b .

Note: Bounds checking behavior differs with the optimization
level. At the default optimization level, -O 2 , some runtime
checking is inhibited. Complete checking is guaranteed only
when optimization is turned off by specifying -O 0 on the
f90 (1) command line.

C Passes a descriptor for the actual arguments as an extra argument
to the called routine and sets a flag to signal the called routine
that this descriptor is included.

E Creates a descriptor for the dummy arguments at each entry
point and tests the flag from the caller to see if argument

50 004–3901–001

Invoking CF90 [2]

checking should be performed. If the flag is set, the argument
checking is done.

Note: CF90 2.0 binaries compiled with the -R a , -R C, or -R E options must
be recompiled with CF90 3.0 in order to execute correctly with PE 3.0 libraries.
Without the recompilation, the program aborts or generates unexpected
results due to a change in the calling sequence for argument checking.

If argument checking is to be done for a particular call, the calling routine must
have been compiled with either -R a or -R C and the called routine must have
been compiled with either -R a or -R E . -R a is equivalent to -R CE. The
separation of -R a into -R C and -R E allows some control over which calls
are checked.

Libraries can be compiled with -R E . If the program that is calling the libraries
is compiled with either -R a or -R C, library calls are checked. If the calling
routines are not compiled with -R a or -R C, no checking occurs.

Slight overhead is added to each entry sequence compiled with -R E or -R a
and to each call site compiled with -R C or -R a . If a call site passes the extra
information to an entry that is compiled to perform checking, the checking itself
costs a few thousand clock periods per call. This cost depends on the number
of arguments at the call.

Some nonstandard code behaves differently when argument checking is used.
Different behavior can include run-time aborts or changed results. The
following example illustrates this:

CALL SUB1(10,15)
CALL SUB1(10)

END

SUBROUTINE SUB1(I,K)

PRINT *,I,K

END

Without argument checking, if the two calls in this example share the same
stack space for arguments, subroutine SUB1prints the values 10 and 15 for both
calls. However, with argument checking enabled, an extra argument is added to
the argument list, overwriting any previous information that was there. In this
case, the second call to SUB1prints 10, followed by an incorrect value.

If full argument checking is enabled by -R a , a message reporting the
mismatch in the number of arguments is issued. This problem occurs only with

004–3901–001 51

CF90TM Commands and Directives Reference Manual

nonstandard code in which the numbers of actual and dummy arguments do
not match.

2.2.24 -s size

The -s size option allows you to modify the sizes of variables, literal constants,
and intrinsic function results declared as type real, integer, logical, complex,
double complex, or double precision. For size, enter one of the following:

size Action

default32 (UNICOS/mk systems only)

Adjusts the default sizes as follows: real, integer, and logical are
set to 32 bits; complex and double precision are set to 64 bits;
double complex is set to 128 bits.

cf77types
i

Relaxes the strict data typing rules of Fortran 90 when more
than one kind exists for a type. Specifying -s cf77types or
-s i causes data types to map to only the standard intrinsic
FORTRAN 77 types.

The -s i option is effective only for data types declared using
the asterisk (*) format (for example, data items declared as
INTEGER*2). Data types declared with the KIND= syntax are
not affected.

!
Caution: The ability to specify -s i is outmoded. The new option used to
specify this functionality is -s cf77types . The -s i option will be
removed in the CF90 3.3 release.

If you specify -s size in conjunction with data declarations that include size in
your source code, the default size is not used. For example, if you specify
REAL(KIND=n) R or COMPLEX(KIND=n) Z , the values specified in n are used.

When -s default32 or -i 32 is specified, the CF90 compiler does not
comply with Fortran 90 standard requirement for aligning data in a storage
sequence. Numeric sequence derived types might not align properly with the
numeric entities that are equivalenced to them.

Assume that the following example is compiled with -s default32 :

52 004–3901–001

Invoking CF90 [2]

TYPE T

SEQUENCE
REAL :: A(3)

END TYPE

TYPE T1

SEQUENCE

TYPE(T) :: F

TYPE(T) :: S
END TYPE

TYPE(T1) :: X

REAL :: C(6)

EQUIVALENCE (C,X)

In this example, array C would be stored as shown in the following figure:

C(1) C(2) C(3) C(4) C(5) C(6)

Word 4

a11053

Word 1 Word 2 Word 3
(64 bits) (64 bits) (64 bits)

(32 bits) (32 bits) (32 bits) (32 bits) (32 bits) (32 bits)

(64 bits)

Figure 3. Array storage

However, the derived type is stored as shown in the following figure:

X%F%A(1) X%F%A(2) X%F%A(3) X%S%A(1) X%S%A(2) X%S%A(3)

Word 1 Word 2 Word 4

a11054

Word 3

(32 bits)

(64 bits)

(32 bits) (32 bits) (32 bits) (32 bits) (32 bits) (32 bits)

(64 bits) (64 bits) (64 bits)

Figure 4. Derived type storage

004–3901–001 53

CF90TM Commands and Directives Reference Manual

As the preceding figure shows, each component of a derived type that is, itself,
a derived type, is aligned on a word boundary. Consequently, the
EQUIVALENCEstatement in this example probably does not produce the
intended storage association.

2.2.25 -S asm_file

The -S asm_file option specifies the assembly language output file name. When
-S asm_file is specified on the command line with either the -e S or
-b bin_obj_file options, the -e S and -b bin_obj_file options are overridden.

2.2.26 -t num (UNICOS Systems Only)

The -t num option specifies the number of bits to be truncated on
floating-point operations. For num, enter an integer in the range 0 ≤ num ≤ 47.
The default is 0.

This option is not valid on UNICOS/mk systems. If specified, it is ignored, and
a value of 0 is used.

2.2.27 -T

The -T option disables the compiler but displays all options currently in effect.
The CF90 compiler generates information identical to that generated when the
-v option is specified on the command line; when -T is specified, however, no
processing is performed. When this option is specified, output is written to the
standard error file (stderr).

2.2.28 -U identifier[, identifier] ...

The -U identifier[, identifier] ... option undefines variables used for source
preprocessing. This option removes the initial definition of a predefined macro
or sets a user predefined macro to an undefined state.

The -D identifier[=value][, identifier[=value]] ... option defines variables used
for source preprocessing. If both -D and -U are used for the same identifier, in
any order, the identifier is undefined. For more information on the -D option,
see Section 2.2.7, page 14.

This option is ignored unless one of the following is true:

• The Fortran input source file is specified as either file.F or file.F90 .

54 004–3901–001

Invoking CF90 [2]

• The -e P or -e Z options have been specified.

For more information on source preprocessing, see Chapter 5, page 167.

2.2.29 -v

The -v option sends compilation information to the standard error file
(stderr). The information generated indicates the compilation phases, as they
occur, and all options and arguments being passed to each processing phase.

2.2.30 -V

The -V option directs each compilation phase to send a message containing
version information to the standard error file (stderr). Unlike all other
command-line options, you can specify this option without specifying an input
file name; that is, specifying f90 -V is valid.

2.2.31 -Wa" assembler_opt"

The -Wa" assembler_opt" option passes assembler_opt directly to the assembler.
For example, on a UNICOS system, -Wa"-h" passes the -h option directly to
as (1), directing it to enable all pseudos, regardless of location field name. This
option is meaningful to the system only when a file.s is specified as an input
file on the command line. For more information on assembler options, see as (1)
(UNICOS systems) or cam(1) (UNICOS/mk systems).

2.2.32 -Wl" loader_opt"

The -Wl" loader_opt" option passes loader_opt directly to the loader. For
example, specifying -Wl"-D MAP=FULL" passes the argument MAP=FULL
directly to the loader’s -D option. For more information on loader options, see
segldr (1) or cld (1).

2.2.33 -Wp" srcpp_opt"

The -Wp" srcpp_opt" option passes srcpp_opt to the source preprocessor. For
srcpp_opt, enter one of the following:

004–3901–001 55

CF90TM Commands and Directives Reference Manual

srcpp_opt Action

-M Prints the #include file hierarchy to the standard output file,
stdout . This is often used to help create make(1) files. Must be
specified in conjunction with -e P .

-P Suppresses line number information in the output file. Do not
specify -Wp"-P" with any options that create a listing.

The -Wp" srcpp_opt" option is ignored unless one of the following is true:

• The Fortran input source file is specified as either file.F or file.F90 .

• The -e P or -e Z options have been specified.

For more information on source preprocessing, see Chapter 5, page 167.

2.2.34 -Wr" ftnlist_opt"

The -Wr" ftnlist_opt" option passes ftnlist_opt directly to ftnlist (1). For
example, specifying -Wr"-o cfile.o" passes the argument cfile.o directly
to the ftnlist (1) command’s -o option; this directs ftnlist (1) to override
the default output listing and put the output file in cfile.o . If you specify the
-Wr" ftnlist_opt" option, you must specify the -r list_opt option. For more
information on options, see ftnlist (1).

2.2.35 -x dirlist

The -x dirlist option disables specified directives or specified classes of
directives. If specifying a multiword directive, either enclose the directive name
in quotation marks or remove the spaces between the words in the directive’s
name.

For dirlist, enter one of the following:

dirlist Item disabled

all All compiler directives, OpenMP Fortran API
directives, and Autotasking directives. For
descriptions of these directives, see Chapter 3,
page 71.

dir All compiler directives.

directive One or more compiler directives, OpenMP
Fortran API directives, or Autotasking directives.

56 004–3901–001

Invoking CF90 [2]

If specifying more than one, separate them with
commas, as follows: -x INLINEALWAYS,"NO
SIDE EFFECTS",BOUNDS.

mic All Autotasking directives.

omp All OpenMP Fortran API directives.

conditional_omp All C$ and !$ conditional compilation lines.

2.2.36 -X npes (UNICOS/mk Systems Only)

The -X npes option specifies the number of processing elements (PEs) used
during execution. Enter one of the following for npes:

npes PEs

n An integer in the range 1 through 2048.

m Directs the compiler to generate a malleable a.out file.
Specifying -X m allows you to change the number of PEs used
each time the executable a.out file is run. If you specify -X m,
use the mpprun (1) command and its -n option to specify the
number of PEs you want to use. For more information, see
mpprun (1).

You cannot use the -X m option if you have used the N$PESconstant in
declarations in your program. The compiler issues an error message when it
detects N$PESused in a declaration when -X m is specified.

A malleable a.out file is one for which the number of processors used can be
specified at run time. If you do not use mpprun (1) on the a.out file that is
generated when -X m is specified, the operating system executes the file on a
single processor just as if you had invoked mpprun (1) with one processor.

The -X npes option is passed from the command line to both the compiler and
the loader as follows:

• If your command line excludes the loader, the -X npes specification is a
compile-time value and cannot be changed at load time. In the following
example, the -c option specifies that the loader is not to be invoked:

% f90 -X8 -c myfile.f

• If your command line calls the compiler and the loader, the compiler is
called first. In the following example, the -X npes specification is a
compile-time value and cannot be changed at load or run time:

004–3901–001 57

CF90TM Commands and Directives Reference Manual

% f90 -X8 hisfile.f

• If your command line calls the loader and not the compiler, the -X npes
option is a load-time value and cannot be changed at mpprun (1) time.
Example:

% f90 -X8 herfile.o

The N$PESconstant is a special constant that can be used when programming
UNICOS/mk systems. The value of N$PESis equal to the number of PEs, and
thus the number of tasks, available to your program. The number of the first
PE is always 0, and the number of the last PE is N$PES-1.

N$PEScan be used in some of the same places as any named constant. For
example, N$PEScan be used in declaration statements and as an extent for
array dimensions. The following restrictions apply:

• N$PEScannot be used in a CHARACTER, DATA, or FORMATstatement.

• N$PEScannot be used in a complex constant.

• Arrays with bounds that depend on the value of N$PESat load time or run
time cannot be specified in an EQUIVALENCEstatement or in a PARAMETER
statement.

• N$PEScan be used only as an operand in an addition, subtraction,
multiplication, or division process.

One of the many uses for N$PESis illustrated in the following example, which
declares the size of an array within a subroutine to be dependent upon the
number of processors:

SUBROUTINE WORK

DIMENSION A(N$PES-1)

Using N$PESdoes not make a program faster, but it saves time in other ways
by enhancing program portability and maintainability.

2.2.37 -Z (UNICOS/mk Systems Only)

The -Z option enables the compiler to recognize co-array syntax. Co-arrays are a
syntactic extension to the Fortran language that offers a method for performing
data passing.

Data passing is an effective method for programming
single-program-multiple-data (SPMD) parallel computations. Its chief

58 004–3901–001

Invoking CF90 [2]

advantages over message passing are lower latency and higher bandwidth for
data transfers, both of which lead to improved scalability for parallel
applications.

Previously, the sole method for performing data passing on UNICOS/mk
platforms was through the shared memory (SHMEM) library routines. The chief
advantage of using co-arrays, as compared to SHMEM, is enhanced readability
and, thus, increased programmer productivity. As a language extension, the
code can also be conditionally analyzed and optimized by the compiler.

For more information on co-arrays, see the CF90 Co-array Programming Manual.

2.2.38 - -

The -- symbol signifies the end of options. After this symbol, you can specify
files to be processed. This symbol is optional. It may be useful if your input
files begin with one or more dash (-) characters.

2.2.39 file.suffix[90] [file.suffix[90]] ...

This option names the file or files to be processed, where suffix is either an
uppercase F or a lowercase f . The file suffixes indicate the content of each file
and determine whether the compiler, assembler, or loader will be invoked.

If the file ends in .F or .F90 , the source preprocessor is invoked.

Files containing uncompiled Fortran code must be in one of the following forms:

• file.f or file.F , which indicates that this is a fixed source form file.

• file.f90 or file.F90 , which indicates that this is a free source form file.

The source form specified on the -f source_form option overrides the source
form implied by the file suffixes.

By default, several files are created during processing. The CF90 compiler adds
a suffix to the file portion of the file name and places the files it creates into
your working directory.

Assembly language output is sent to file.s . File names ending with .s are
assembled, and the assembled code is written to the corresponding file.o .

The compiled code is written to file.o in the current directory.

004–3901–001 59

CF90TM Commands and Directives Reference Manual

You can specify precompiled .o files as input files. Input file names ending
with .o are passed to the loader.

If your input files include precompiled assembler, CF90, Cray Standard C, or
Cray C++ files, they should be specified as files suffixed with .o on the
command line. Files suffixed with .o , including any .o files written by the
CF90 compiler, are passed to the loader in the order in which they appear on
the f90 (1) command line. If, however, loading has been disabled by specifying
options -c or -b bin_obj_file, no files are passed to the loader.

The loader produces an executable file; by default, a.out . See the -o out_file
option for information on specifying a different executable file. If only one
source file is specified on the command line, the .o file is created and deleted.
To retain the .o file, use the -c option to disable the loader.

The following is a file summary:

File Type

a.out Executable output file.

file.a Library files to be searched for external references.

file.f or file.F Input Fortran source file in fixed source form. If
file ends in .F , the source preprocessor is invoked.

file.f90 or file.F90 Input Fortran source file in free source form. If file
ends in .F90 , the source preprocessor is invoked.

file.i File containing output from the source
preprocessor.

file.lst Listing file.

file.o Relocatable object file.

file.s Assembly language file.

file.L File containing binary code and generated
assembly language output.

file.T CIF output file.

ftnlint.out ftnlint (1) output file created when the -r l
option is specified and there are multiple source
files.

60 004–3901–001

Invoking CF90 [2]

ftnlist.out ftnlist (1) output file created when the -r
option is specified and there are multiple source
files.

The loader allows other file types. See the segldr (1), cld (1), and ld (1) man
pages for more information on these files.

2.3 Environment Variables

Environment variables are predefined shell variables, taken from the execution
environment, that determine some of your shell characteristics. Several
environment variables pertain to the CF90 compiler. The CF90 compiler
recognizes general and multiprocessing environment variables. On UNICOS
systems, it also recognizes a variable for CPU targeting.

The multiprocessing variables in the following sections affect the way your
program will perform on multiple processors. Many of these control the same
keywords as those of the TSKTUNE(3F) multitasking library call. Using
environment variables lets you tune the system for parallel processing without
rebuilding libraries or other system software.

The environment variables apply to all compilations in a session. The following
examples show how to set an environment variable:

• With the standard shell, enter:

TARGET=cpu
export TARGET

• With the C shell, enter:

setenv TARGET cpu

The following sections describe the environment variables recognized by the
CF90 compiler.

Note: Many of the environment variables described in this chapter refer to
the default system locations of programming environment components. If the
CF90 programming environment has been installed in a nondefault location,
see your system support staff for path information.

004–3901–001 61

CF90TM Commands and Directives Reference Manual

2.3.1 AUXBUF(UNICOS Systems Only)

The AUXBUFenvironment variable specifies the number of buffers, for auxiliary
arrays, that are held in memory. The default value is 64 buffers.

2.3.2 AUXPAGE(UNICOS Systems Only)

The AUXPAGEenvironment variable specifies the size of each AUXbuffer. The
size is given in units of 512 words each and must be a power of 2. The default
value is 2, indicating 1024 words per buffer.

2.3.3 CRI_F90_OPTIONS

The CRI_F90_OPTIONS environment variable specifies additional options to be
attached to the command line. These options are added following the options
specified directly on the command line. File names cannot appear. These
options are inserted at the rightmost portion of the command line before the
input files and binary files are listed.

This allows you to set the environment variable once and have the specified set
of options used in all compilations. This is especially useful for adding options
to compilations done with build tools.

For example, assume that this environment variable was set as follows:

setenv CRI_F90_OPTIONS -G0

With the variable set, the following two command line specifications are
equivalent:

% f90 -c t.f
% f90 -c -G0 t.f

2.3.4 LD_OPTIONS(UNICOS/mk Systems Only)

The LD_OPTIONSenvironment variable specifies a default set of options to
cld (1). cld (1) interprets LD_OPTIONSjust as though its value had been placed
on the command line immediately following cld (1). For more information on
other cld (1) environment variables, see cld (1).

62 004–3901–001

Invoking CF90 [2]

2.3.5 LISTIO_PRECISION

The LISTIO_PRECISION environment variable controls the number of digits of
precision printed by list-directed output. The LISTIO_PRECISION
environment variable can be set to FULL or PRECISION.

• FULL prints full precision (default).

• PRECISION prints x or x + 1 decimal digits, where x is value of the
PRECISION intrinsic function for a given real value. This is a smaller
number of digits, which usually ensures that the last decimal digit is
accurate to within 1 unit. This number of digits is usually insufficient to
assure that subsequent input will restore a bit-identical floating-point value.

2.3.6 LPP

The LPP environment variable controls page breaks in listings. Setting LPP to 0
prevents any page breaks from occuring in listings. The -r n option can also
be used to suppress page breaks.

2.3.7 MP_DEDICATED(UNICOS Systems Only)

The MP_DEDICATEDvariable specifies the tasking environment.

If MP_DEDICATEDis set to 1, it specifies that you are the only user on the
system, which allows library scheduling to take advantage of the dedicated
environment.

If MP_DEDICATEDis set to 0 or not set at all, slave processors return to the
operating system after waiting in user space for 50,000 clock periods.

If MP_DEDICATEDis set to a value other than 0 or 1, the behavior is undefined.

2.3.8 MP_HOLDTIME(UNICOS Systems Only)

The MP_HOLDTIMEtasking environment variable specifies the number of clock
periods (CPs) to hold a processor before giving up the CPU when no parallel
work is available.

In nondedicated mode, when MP_HOLDTIMEclock periods have gone by
without there being any parallel work for a processor, that processor yields its
CPU back to the kernel for use by other processes in the system. This yield is
temporary; the processors continue to exist, but they do not use as many

004–3901–001 63

CF90TM Commands and Directives Reference Manual

system resources while yielded. They reacquire a CPU when the next parallel
region occurs in the program.

The default is 50,000 CPs.

2.3.9 MP_SAMPLE(UNICOS Systems Only)

The MP_SAMPLEtasking environment variable specifies the sample rate at
which the ready mask is read when in the hold loop. The default is 150 CPs,
which means that a process checks for a task every 150 CPs while it is waiting
for parallel work.

2.3.10 MP_SLVSIN (UNICOS Systems Only)

The MP_SLVSIN tasking environment variable specifies the stack increment, in
words, for slave processes.

2.3.11 MP_SLVSSZ(UNICOS Systems Only)

The MP_SLVSSZenvironment variable specifies the initial task size, in words,
for slave processes.

2.3.12 NCPUS(UNICOS Systems Only)

The NCPUSenvironment variable specifies the number of CPUs to use when
running parallel code. The default is 4 or the number of physical CPUs,
whichever is less. If the MP_DEDICATEDenvironment variable is set, the default
is the number of physical CPUs.

The value of the NCPUSenvironment variable overrides the value of the
OMP_NUM_THREADSenvironment variable. For information on the
OMP_NUM_THREADSenvironment variable, see Section 2.3.17, page 66.

2.3.13 NLSPATH

The NLSPATHenvironment variable specifies the message system library catalog
path. This environment variable affects compiler interactions with the message
system. For more information on this environment variable, see catopen (3).

64 004–3901–001

Invoking CF90 [2]

2.3.14 NPROC

The NPROCenvironment variable specifies the maximum number of processes
to be run. Setting NPROCto a number other than 1 can speed up a compilation
if machine resources permit.

The effect of NPROCis seen at compilation time, not at execution time. NPROC
requests a number of compilations to be done in parallel. It affects all the
compilers and also make(1).

For example, assume that NPROCis set as follows:

setenv NPROC 2

The following command is entered:

f90 -o t main.f sub.f

In this example, the compilations from .f files to .o files for main.f and
sub.f happen in parallel, and when both are done, the load step is performed.
If NPROCis unset, or set to 1, main.f is compiled to main.o ; sub.f is
compiled to sub.o , and then the link step is performed.

You can set NPROCto any value, but large values can overload the system. For
debugging purposes, NPROCshould be set to 1. By default, NPROCis 1.

2.3.15 OMP_DYNAMIC(UNICOS Systems Only)

The OpenMP Fortran API defines the OMP_DYNAMICenvironment variable as
one that can enable or disable the dynamic adjustment of threads available for
execution of parallel regions. On UNICOS systems, however, the dynamic
adjustment of threads is always enabled and cannot be disabled.

If a program calls the OMP_SET_DYNAMIC(3) library routine with an argument
of .FALSE. , intending to turn off dynamic adjustment of the number of
threads, the library routine is ignored. The OMP_GET_DYNAMIC(3) routine
always returns .TRUE. .

2.3.16 OMP_NESTED(UNICOS Systems Only)

The OpenMP Fortran API defines the OMP_NESTEDenvironment variable as
one that can enable or disable nested parallelism. On UNICOS systems,
however, nested parallelism is not supported.

004–3901–001 65

CF90TM Commands and Directives Reference Manual

If a program calls the OMP_SET_NESTED(3) library routine with an argument of
.TRUE. , intending to turn on nested parallelism, the routine prints a warning
message. The OMP_GET_NESTED(3) routine always returns .FALSE. .

2.3.17 OMP_NUM_THREADS(UNICOS Systems Only)

The OMP_NUM_THREADSenvironment variable can affect the number of threads
used when executing a program that uses the OpenMP Fortran API directives.

When using the OpenMP directives, you can never create more threads than the
number automatically created at the time the program starts. This number is
the value of NCPUS, or if NCPUSis not defined, OMP_NUM_THREADS, or if
OMP_NUM_THREADSis not defined, the system default. That is, the value of the
NCPUSenvironment variable overrides the value of the OMP_NUM_THREADS
environment variable. The default is 4 or the number of CPUs on the system,
whichever is less.

If the value of NCPUSor OMP_NUM_THREADSis greater than the number of
CPUs on the system, the number of threads initially created is the number of
CPUs on the system. After the threads are created, no more than that number
can ever be initiated.

Example 1. Assume that a program that uses OpenMP directives relies on
having 16 threads for correct execution. This program must be run on a system
with 16 or more CPUs, and it must be run with OMP_NUM_THREADSor NCPUS
set to at least 16. This limitation is enforced by the library.

Example 2. Assume that a program calls the OMP_SET_NUM_THREADS(3)
library routine to set the number of threads to 10. If the program is running
with OMP_NUM_THREADSset to 4, a message is generated and the system sets
the number of threads to the highest value possible, which is 4 in this example.

2.3.18 OMP_SCHEDULE(UNICOS Systems Only)

The OMP_SCHEDULEenvironment variable sets the schedule type and
(optionally) the chunk size for DOand PARALLEL DOloops declared with a
schedule of RUNTIME. For these loops, the schedule is set at run time when the
system reads the value of this environment variable. Valid values for this
environment variable are STATIC, DYNAMIC, and GUIDED. The default value
for this environment variable is DYNAMIC.

For DOand PARALLEL DOdirectives that have a schedule type other than
RUNTIME, this environment variable is ignored.

66 004–3901–001

Invoking CF90 [2]

If the optional chunk size is not set, a chunk size of 1 is assumed.

Examples:

setenv OMP_SCHEDULE "GUIDED,4"

setenv OMP_SCHEDULE "dynamic"

2.3.19 SEGDIR(UNICOS Systems Only)

The SEGDIRenvironment variable specifies SEGLDR directives. This variable
contains one or more strings separated by semicolons (;). Each string can be
either a SEGLDR directive or the name of a file containing SEGLDR directives.
For more information, see segldr (1).

2.3.20 TARGET

The TARGETenvironment variable specifies a cross-compiling environment.
Cross-compiling is compiling a program on one system to execute on another.

The TARGETenvironment variable allows you to cross-compile from most
UNICOS systems to other Cray Research UNICOS systems. Cross-compiling
from a CRAY T90 system that supports IEEE floating-point arithmetic to
another type of UNICOS system is not possible. Cross compiling from a
UNICOS/mk system to a UNICOS system, or from a UNICOS system to a
UNICOS/mk system, is not possible.

The target system is the type of machine upon which the code will be executed.
The TARGETenvironment variable recognizes the following values:

Value Generates code for

cray-sv1 CRAY SV1 systems

cray-t3e UNICOS/mk systems

cray-ts CRAY T90 systems without support for IEEE
floating-point arithmetic

cray-ts,ieee CRAY T90 systems with support for IEEE
floating-point arithmetic

cray-c90 CRAY C90 systems

cray-j90 CRAY J90 systems

cray-ymp CRAY Y-MP E and CRAY Y-MP M90 systems

004–3901–001 67

CF90TM Commands and Directives Reference Manual

cray-el CRAY EL systems

See the target (1) man page for more information on setting this environment
variable.

It is recommended that you load your binary program on the target system. If
you load it on the host system, issues over differences between the libraries
needed on the target and host systems may arise. The TARGETsettings do not
automatically cause the correct library to be selected. In many cases, host and
target libraries will be compatible, but there may be incompatibilities between
host and target systems.

The need for a particular set of libraries, as well as the correct specification to
identify the set, must be determined for your particular site. If you need to
specify a set of libraries contained in a directory, use the -L dir option, as
follows:

% f90 -L /lib/ylib pgm.f # For a library directory

The following example shows how to compile a program on a CRAY J90 system
and execute it on a CRAY C90 system.

On the CRAY J90 system:

1. Set the TARGETenvironment variable to cray-c90 using the procedure
described in this section.

2. Compile your program using a command line that includes the -c option,
as follows:

% f90 -c bigfile.f

The -c option disables the load step and returns bigfile.o .

On the CRAY C90 system:

1. Move file bigfile.o from the CRAY J90 system to the CRAY C90 system.

2. Use the f90 (1) command to link bigfile.o with the correct libraries:

% f90 bigfile.o

Note: The TARGETenvironment variable applies until the end of an
interactive session, so it affects other commands that use this
environment variable to modify different CPU types. You must cancel
these settings if you do not want to use them. You can prevent
unexpected effects by setting the environment variable in a script or in a
make file; the setting is effective only within that file.

68 004–3901–001

Invoking CF90 [2]

2.3.21 TMPDIR

The TMPDIRenvironment variable specifies the directory to contain temporary
files. By default, the CF90 compiler creates temporary files in /var/tmp . You
can specify a different location by setting TMPDIRto your chosen directory. If
TMPDIR is not a valid directory, the CF90 compiler uses /var/tmp .

004–3901–001 69

CF90 Directives [3]

Directives are lines inserted into source code that specify actions to be
performed by the compiler. They are not Fortran 90 statements.

This chapter describes the CF90 directives and notes whether particular
directives are supported on specific platforms. If you specify a directive while
running on a system that does not support that particular directive, the
compiler generates a message and continues with the compilation.

Note: The CF90 compiler supports two other classes of directives: the
OpenMP Fortran API directives, and the Autotasking directives. For
information on the OpenMP directives, see Chapter 4, page 119. For
information on the Autotasking directives, which are outmoded, see
Appendix A, page 177.

Table 5 categorizes the CF90 directives according to purpose and platform. It
also indicates the pages that contain the main descriptions of the individual
directives.

Table 5. Directives

Purpose and Name Operating system Description

Vectorization and tasking:

CNCALL UNICOS Section 3.2.1, page 78

COPY_ASSUMED_SHAPE UNICOS, UNICOS/mk Section 3.2.2, page 78

IVDEP UNICOS, UNICOS/mk Section 3.2.3, page 80

NEXTSCALAR UNICOS, UNICOS/mk Section 3.2.4, page 81

PERMUTATION UNICOS Section 3.2.6, page 82

PATTERN, NOPATTERN UNICOS, UNICOS/mk Section 3.2.5, page 81

PREFERTASK UNICOS Section 3.2.7, page 83

PREFERVECTOR UNICOS Section 3.2.8, page 83

RECURRENCE, NORECURRENCE UNICOS, UNICOS/mk Section 3.2.9, page 84

SHORTLOOP, SHORTLOOP128 UNICOS, UNICOS/mk Section 3.2.10, page 86

004–3901–001 71

CF90TM Commands and Directives Reference Manual

Purpose and Name Operating system Description

TASK, NOTASK UNICOS Section 3.2.11, page 87

UNROLL, NOUNROLL UNICOS, UNICOS/mk Section 3.2.12, page 87

VECTOR, NOVECTOR UNICOS, UNICOS/mk Section 3.2.13, page 90

VFUNCTION UNICOS Section 3.2.14, page 90

VSEARCH, NOVSEARCH UNICOS Section 3.2.15, page 92

Inlining:

INLINE , NOINLINE UNICOS, UNICOS/mk Section 3.3.1, page 93

INLINENEVER, INLINEALWAYS UNICOS, UNICOS/mk Section 3.3.2, page 93

MODINLINE, NOMODINLINE UNICOS, UNICOS/mk Section 3.3.3, page 94

Scalar optimization:

ALIGN UNICOS Section 3.4.1, page 96

BL, NOBL UNICOS, UNICOS/mk Section 3.4.2, page 96

CACHE_BYPASS UNICOS/mk Section 3.4.3, page 99

NOINTERCHANGE UNICOS, UNICOS/mk Section 3.4.4, page 100

NOSIDEEFFECTS UNICOS Section 3.4.5, page 101

SPLIT , NOSPLIT UNICOS/mk Section 3.4.7, page 103

SUPPRESS UNICOS, UNICOS/mk Section 3.4.7, page 103

Local use of compiler features:

BOUNDS, NOBOUNDS UNICOS, UNICOS/mk Section 3.5.1, page 105

FREE, FIXED UNICOS, UNICOS/mk Section 3.5.2, page 107

Storage:

AUXILIARY UNICOS Section 3.6.1, page 108

CACHE_ALIGN UNICOS/mk Section 3.6.2, page 110

COMMON UNICOS, UNICOS/mk Section 3.6.3, page 110

STACK UNICOS, UNICOS/mk Section 3.6.4, page 111

SYMMETRIC UNICOS/mk Section 3.6.5, page 112

TASKCOMMON UNICOS Section 3.6.6, page 112

Miscellaneous:

72 004–3901–001

CF90 Directives [3]

Purpose and Name Operating system Description

CONCURRENT UNICOS/mk Section 3.7.1, page 113

FLOW, NOFLOW UNICOS Section 3.7.2, page 114

ID UNICOS, UNICOS/mk Section 3.7.3, page 115

IGNORE_TKR UNICOS, UNICOS/mk Section 3.7.4, page 117

NAME UNICOS, UNICOS/mk Section 3.7.5, page 117

USES_EREGS UNICOS/mk Section 3.7.6, page 118

3.1 Using Directives

The following sections describe how to use directives and the effects they have
on programs.

3.1.1 Directive Lines

A directive line begins with the characters CDIR$ or !DIR$. How you specify
directives depends on the source form you are using, as follows:

• If you are using fixed source form, indicate a directive line by placing the
characters CDIR$ or !DIR$ in columns 1 through 5. If the compiler
encounters a nonblank character in column 6, the line is assumed to be a
directive continuation line. Columns 7 and beyond can contain one or more
directives. Characters in directives entered in columns beyond the default
column width are ignored.

• If you are using free source form, indicate a directive by the characters
!DIR$, followed by a space, and then one or more directives. If the position
following the !DIR$ contains a character other than a blank, tab, or newline
character, the line is assumed to be a continuation line. The !DIR$ need not
start in column 1, but it must be the first text on a line.

In the following example, an asterisk (*) appears in column 6 to indicate that
the second line is a continuation of the preceding line:

!DIR$ Auxiliary

!DIR$*ab

The FIXED and FREEdirectives must appear alone on a directive line and
cannot be continued.

004–3901–001 73

CF90TM Commands and Directives Reference Manual

If you want to specify more than one directive on a line, separate each directive
with a comma. Some directives require that you specify one or more
arguments; when specifying a directive of this type, no other directive can
appear on the line.

Spaces can precede, follow, or be embedded within a directive, regardless of
source form.

Code portability is maintained despite the use of directives. In the following
example, the ! symbol in column 1 causes other compilers to treat the CF90
directive as a comment:

A=10.

!DIR$ NOVECTOR

DO 10,I=1,10...

Do not use source preprocessor (#) directives within multiline compiler
directives (CDIR$ or !DIR$).

3.1.2 Range and Placement of Directives

The range and placement of directives is as follows:

• The following directives can appear anywhere in your source code:

– CACHE_ALIGN

– FIXED, FREE

All other directives must appear within a program unit.

• The following directives apply only to the program unit in which they
appear:

– COPY_ASSUMED_SHAPE

– FLOW, NOFLOW

– STACK

– USES_EREGS

The directives that are paired do not toggle their respective features within
the program unit. The last directive of each pair encountered within the
program unit applies to the whole program unit.

74 004–3901–001

CF90 Directives [3]

• The following directives toggle a compiler feature on or off at the point at
which the directive appears in the code:

– BL, NOBL

– BOUNDS, NOBOUNDS

– INLINE , NOINLINE

– PATTERN, NOPATTERN

– RECURRENCE, NORECURRENCE

– TASK, NOTASK

– VECTOR, NOVECTOR

These directives are in effect until the opposite directive appears, until the
directive is reset, or until the end of the program unit, at which time the
command line settings become the default for the remainder of the
compilation.

• Similar to the previous grouping the SUPPRESSdirective applies at the
point at which it appears, but it causes no continuing condition that can be
toggled.

• The ID directive does not apply to any particular range of code. It adds
information to the file.o generated from the input program.

• The following directives apply only to the next loop encountered lexically:

– ALIGN

– CACHE_BYPASS

– CNCALL

– CONCURRENT

– IVDEP

– NEXTSCALAR

– NOINTERCHANGE

– PERMUTATION

– PREFERTASK

– PREFERVECTOR

004–3901–001 75

CF90TM Commands and Directives Reference Manual

– SHORTLOOP, SHORTLOOP128

– SPLIT , NOSPLIT

– UNROLL, NOUNROLL

– VSEARCH, NOVSEARCH

• The following directives do not apply to particular ranges of code:

– AUXILIARY

– COMMON

– IGNORE_TKR

– INLINEALWAYS, INLINENEVER

– NAME

– NOSIDEEFFECTS

– SYMMETRIC

– TASKCOMMON

– VFUNCTION

These declarative directives alter the status of entities in ways that affect
compilation.

• The MODINLINE and NOMODINLINEdirectives are in effect for the scope of
the program unit in which they are specified, including all contained
procedures. If one of these directives is specified in a contained procedure,
the contained procedure’s directive overrides the containing procedure’s
directive.

3.1.3 Interaction of Directives with the -x Command Line Option

The -x option on the f90 (1) accepts one or more directives as arguments.
When your input is compiled, the compiler ignores directives named as
arguments to the -x option. If you specify -x all , all directives are ignored. If
you specify -x dir , all directives preceded by !DIR$ or CDIR$ are ignored.

For more information on the -x option, see Section 2.2.35, page 56.

76 004–3901–001

CF90 Directives [3]

3.1.4 Command Line Options and Directives

Some features activated by directives can also be specified on the f90 (1)
command line; a directive applies to parts of programs in which it appears, but
a command line option applies to the entire compilation.

Vectorization, scalar optimization, and tasking can be controlled through both
command line options and directives. If a compiler optimization feature is
disabled by default or is disabled by an argument to the -O option to the
f90 (1), the associated ! prefix$ directives are ignored. The following list shows
CF90 compiler optimization features, related command line options, and related
directives:

• Specifying the -O 0 option on the command line disables all optimization.
All scalar optimization, vectorization, and tasking directives are ignored.

• Specifying the -O scalar0 option disables scalar optimization and causes
the compiler to ignore all scalar optimization and all vectorization directives.

• Specifying the -O vector0 option causes the compiler to ignore all
vectorization directives. Specifying the NOVECTORdirective in a program
unit causes the compiler to ignore subsequent directives in that program
unit that may specify vectorization.

• Specifying the -O task0 option disables tasking and causes the compiler to
ignore tasking directives.

The following sections describe directive syntax and the effects of directives on
CF90 programs.

3.2 Vectorization and Tasking Directives

The following sections describe the directives used to control vectorization and
tasking, which are as follows:

• CNCALL

• COPY_ASSUMED_SHAPE

• IVDEP

• NEXTSCALAR

• PATTERN, NOPATTERN

• PERMUTATION

004–3901–001 77

CF90TM Commands and Directives Reference Manual

• PREFERTASK

• PREFERVECTOR

• RECURRENCE, NORECURRENCE

• SHORTLOOP, SHORTLOOP128

• TASK, NOTASK

• UNROLL, NOUNROLL

• VECTOR, NOVECTOR

• VFUNCTION

• VSEARCH, NOVSEARCH

The -O 0 , -O scalar0 , -O task0 , and -O vector0 options on the f90 (1)
command override these directives.

3.2.1 Declare Lack of Side Effects: CNCALL

The !DIR$ CNCALL directive allows a loop to be Autotasked by asserting that
subroutines called from the loop have no loop-related side effects (that is, they
do not modify data referenced in other iterations of the loop) and therefore can
be called concurrently by separate iterations of the loop. CNCALLis inserted
immediately preceding the loop.

The format for this directive is as follows:

!DIR$ CNCALL

Example:

!DIR$ CNCALL

DO I = 1, N
CALL CRUNCH(A(I), B(I))

END DO

3.2.2 Copy Arrays to Temporary Storage: COPY_ASSUMED_SHAPE

The COPY_ASSUMED_SHAPEdirective copies assumed-shape dummy array
arguments into contiguous local temporary storage upon entry to the procedure

78 004–3901–001

CF90 Directives [3]

in which the directive appears. During execution, it is the temporary storage
that is used when the assumed-shape dummy array argument is referenced or
defined. The format of this directive is as follows:

!DIR$ COPY_ASSUMED_SHAPE[array [, array] ...]

array The name of an array to be copied to temporary storage. If no
array names are specified, all assumed-shape dummy arrays are
copied to temporary contiguous storage upon entry to the
procedure. When the procedure is exited, the arrays in temporary
storage are copied back to the dummy argument arrays. If one or
more arrays are specified, only those arrays specified are copied.
The arrays specified must not have the TARGETattribute.

All arrays specified, or all assumed-shape dummy arrays (if
specified without array arguments), on a single
COPY_ASSUMED_SHAPEdirective must be shape conformant with
each other. Incorrect code may be generated if the arrays are not.
You can use the -R c command line option to verify whether the
arrays are shape conformant.

The COPY_ASSUMED_SHAPEdirective applies only to the program unit in
which it appears.

Assumed-shape dummy array arguments cannot be assumed to be stored in
contiguous storage. In the case of multidimensional arrays, the elements cannot
be assumed to be stored with uniform stride between each element of the array.
These conditions can arise, for example, when an actual array argument
associated with an assumed-shape dummy array is a non-unit strided array
slice or section.

If the compiler cannot determine whether an assumed-shape dummy array is
stored contiguously or with a uniform stride between each element, some
optimizations are inhibited in order to ensure that correct code is generated. If
an assumed-shape dummy array is passed to a procedure and becomes
associated with an explicit-shape dummy array argument, additional copy-in
and copy-out operations may occur at the call site. For multidimensional
assumed-shape arrays, some classes of loop optimizations cannot be performed
when an assumed-shape dummy array is referenced or defined in a loop or an
array assignment statement. The lost optimizations and the additional copy
operations performed can significantly reduce the performance of a procedure
that uses assumed-shape dummy arrays when compared to an equivalent
procedure that uses explicit-shape array dummy arguments.

004–3901–001 79

CF90TM Commands and Directives Reference Manual

The COPY_ASSUMED_SHAPEdirective causes a single copy to occur upon entry
and again on exit. The compiler generates a test at run time to determine
whether the array is contiguous. If the array is contiguous, the array is not
copied. This directive allows the compiler to perform all the optimizations it
would otherwise perform if explicit-shape dummy arrays were used. If there is
sufficient work in the procedure using assumed-shape dummy arrays, the
performance improvements gained by the compiler outweigh the cost of the
copy operations upon entry and exit of the procedure.

3.2.3 Ignore Dependencies: IVDEP

When the IVDEP directive appears before a loop, the compiler ignores vector
dependencies, including explicit dependencies, in any attempt to vectorize the
loop. IVDEP applies to the first DOloop or DO WHILEloop that follows the
directive. The directive applies to only the first loop that appears after the
directive within the same program unit.

For array operations, Fortran 90 requires that the complete right-hand side
(RHS) expression be evaluated before the assignment to the array or array
section on the left-hand side (LHS). If possible dependencies exist between the
RHS expression and the LHS assignment target, the compiler creates temporary
storage to hold the RHS expression result. If an IVDEP directive appears before
an array syntax statement, the compiler ignores potential dependencies and
suppresses the creation and use of array temporaries for that statement. Array
syntax statements are Fortran 90 methods for referencing arrays that are more
compact than FORTRAN 77 methods. Array syntax allows you to use either the
array name, or the array name with a section subscript, to specify actions on all
the elements of an array, or array section, without using DOloops.

Whether or not IVDEP is used, conditions other than vector dependencies can
inhibit vectorization. The format of this directive is as follows:

!DIR$ IVDEP [SAFEVL=vlen]

vlen Specifies a vector length in which no dependency will occur. If
vlen is not specified, the vector length used is the maximum
possible for the target machine.

80 004–3901–001

CF90 Directives [3]

Implementation of the vlen specification is deferred on
UNICOS/mk systems.

If a loop with an IVDEP directive is enclosed within another loop with an
IVDEP directive, the IVDEP directive on the outer loop is ignored.

When the CF90 compiler vectorizes a loop, it may reorder the statements in the
source code to remove vector dependencies. When IVDEP is specified, the
statements in the loop or array syntax statement are assumed to contain no
dependencies as written, and the CF90 compiler does not reorder loop
statements. For information on vector dependencies, see Optimizing Code on
Cray PVP Systems, publication SG–2192.

3.2.4 Specify Scalar Processing: NEXTSCALAR

The NEXTSCALARdirective disables vectorization for the first DOloop or
DO WHILEloop that follows the directive. The directive applies to only one
loop, the first loop that appears after the directive within the same program
unit. NEXTSCALARis ignored if vectorization has been disabled. The format of
this directive is as follows:

!DIR$ NEXTSCALAR

If the NEXTSCALARdirective appears prior to any array syntax statement, it
disables vectorization for the array syntax statement.

3.2.5 Request Pattern Matching: PATTERNand NOPATTERN

By default, the compiler detects coding patterns in source code sequences and
replaces these sequences with calls to optimized library routines. In most cases,
this replacement improves performance. There are cases, however, in which this
substitution degrades performance. This can occur, for example, in loops with
very low trip counts. In such a case, you can use the NOPATTERNdirective to
disable pattern matching and cause the compiler to generate inline code. The
formats of these directives are as follows:

!DIR$ PATTERN

!DIR$ NOPATTERN

004–3901–001 81

CF90TM Commands and Directives Reference Manual

When !DIR$ NOPATTERNhas been encountered, pattern matching is
suspended for the remainder of the program unit or until a !DIR$ PATTERN
directive is encountered. When the -O nopattern command line option is in
effect, the PATTERNand NOPATTERNcompiler directives are ignored. For more
information on -O nopattern , see Section 2.2.20.18, page 35.

The PATTERNand NOPATTERNdirectives should be specified before the
beginning of a pattern.

Example: By default, the compiler would detect that the following loop is a
matrix multiply and replace it with a call to a matrix multiply library routine.
By preceding the loop with a !DIR$ NOPATTERNdirective, however, pattern
matching is inhibited and no replacement is done.

!DIR$ NOPATTERN

DO k= 1,n

DO i= 1,n

DO j= 1,m

A(i,j) = A(i,j) + B(i,k) * C(k,j)
END DO

END DO

END DO

3.2.6 Declare an Array with No Repeated Values: PERMUTATION

The !DIR$ PERMUTATIONdirective declares that an integer array has no
repeated values. This is useful when the integer array is used as a subscript for
another array (vector-valued subscript). The format for this directive is as
follows:

!DIR$ PERMUTATION (ia [, ia] ...)

ia Integer array that has no repeated values for the entire routine.

When an array with a vector-valued subscript appears on both sides of the equal
sign in a loop, many-to-one assignment is possible even when the subscript is
identical. Many-to-one assignment occurs if any repeated elements exist in the
subscripting array. If it is known that the integer array is used merely to
permute the elements of the subscripted array, it can often be determined that
many-to-one assignment does not exist with that array reference.

Sometimes a vector-valued subscript is used as a means of indirect addressing
because the elements of interest in an array are sparsely distributed; in this

82 004–3901–001

CF90 Directives [3]

case, an integer array is used to select only the desired elements, and no
repeated elements exist in the integer array, as in the following example:

!DIR$ PERMUTATION(IPNT) ! IPNT has no repeated values

...

DO I = 1, N

A(IPNT(I)) = A(IPNT(I)) + B(I)

END DO

3.2.7 Designate Nested Loops: PREFERTASK(UNICOS Systems Only)

This directive allows loops with large iteration counts to be considered as
candidates for Autotasking.

The PREFERTASKdirective disables threshold checking. For more information
on threshold checking, see Section 2.2.20.31, page 40.

This directive can be used if there is more than one loop in the nest that can be
Autotasked. -O task2 or -O task3 must be enabled for this directive to take
effect. The format of this directive is as follows:

!DIR$ PREFERTASK

In the following example, both loops can be Autotasked, but the PREFERTASK
directive directs the compiler to Autotask the inner DO J loop. Without the
directive and without any knowledge of N and M, the compiler would task the
outer DO I loop. With the directive, the loops are interchanged, to increase
parallel granularity, and the resulting outer DO J loop is autotasked.

DO I = 1, N
!DIR$ PREFERTASK

DO J = 1, M

E(J,I) = F(J,I) + G(J,I)

END DO

END DO

3.2.8 Designate Loop Nest for Vectorization: PREFERVECTOR(UNICOS Systems Only)

For cases in which the compiler could vectorize more than one loop, the
PREFERVECTORdirective indicates that the loop following the directive should
be vectorized.

004–3901–001 83

CF90TM Commands and Directives Reference Manual

This directive can be used if there is more than one loop in the nest that could
be vectorized. The format of this directive is as follows:

!DIR$ PREFERVECTOR

In the following example, both loops can be vectorized, but the compiler
generates vector code for the outer DO I loop. Note that the DO I loop is
vectorized even though the inner DO J loop was specified with an IVDEP
directive:

!DIR$ PREFERVECTOR

DO I = 1, N
!DIR$ IVDEP

DO J = 1, M

A(I) = A(I) + B(J,I)

END DO

END DO

3.2.9 Designate Reduction Loops: RECURRENCE, NORECURRENCE

The effect of the RECURRENCEand NORECURRENCEdirectives differs depending
on your platform. Regardless of platform, however, the formats of these
directives are as follows:

!DIR$ RECURRENCE

!DIR$ NORECURRENCE

The following sections describe the effects of the RECURRENCEand
NORECURRENCEdirectives on different systems.

3.2.9.1 Using RECURRENCEand NORECURRENCEon UNICOS Systems

The RECURRENCEand NORECURRENCEdirectives control vectorization for all
reduction loops within a program unit and override the -O recurrence
option on the f90 (1) command. The RECURRENCEdirective causes loops that
contain reductions to be vectorized; the NORECURRENCEdirective causes some
loops that contain reductions to go unvectorized. Either directive applies until
the end of a program unit or until the opposite directive is encountered.

84 004–3901–001

CF90 Directives [3]

A reduction loop is a loop that contains at least one statement that reduces an
array to a scalar value by doing a cumulative operation on many of the array
elements. This involves including the result of the previous iteration in the
expression of the current iteration.

The NORECURRENCEdirective disables vectorization of any loop that contains a
reduction in which the order of evaluation is numerically significant. The
specific reductions that are disabled are floating point, double precision,
complex summation and product reductions, and alternating value
computations.

Example 1: The NORECURRENCEdirective disables vectorization of the
following loop:

!DIR$ NORECURRENCE

SUM = 0.0

DO I = 1,1000

SUM = SUM + A(I)
END DO

Example 2: In the following code, an alternating value computation is not
strictly a reduction, but it is included under this heading because the vector
version may generate more precise results than the scalar version. The loop in
this code fragment would vectorize with the CF90 compiler default settings, but
because of the NORECURRENCEdirective, it does not vectorize.

SUM = 0.0

PRODUCT = 1.0

TOGGLE = 5.0
!DIR$ NORECURRENCE

DO I = 1,1000

SUM = SUM + A(I) ! Summation reduction

PRODUCT = PRODUCT * A(I) ! Product reduction

TOGGLE = 5.0 - TOGGLE ! Alternating value
B(I) = TOGGLE ! computation

END DO

Both directives are ignored if vectorization is disabled or if -O norecurrence
is specified on the f90 (1) command line.

3.2.9.2 Using RECURRENCEand NORECURRENCEon UNICOS/mk Systems

The RECURRENCEand NORECURRENCEdirectives convert floating-point
operations that involve multiplication or exponentiation by an induction

004–3901–001 85

CF90TM Commands and Directives Reference Manual

variable to be a series of additions or multiplications of a value. This produces
faster code but can create numeric differences.

These directives apply to all reduction loops within a program unit, and they
override the -O recurrence option on the f90 (1) command. The
RECURRENCEdirective rewrites multiplication operations. Either directive
applies until the end of a program unit or until the opposite directive is
encountered.

The NORECURRENCEdirective stops the compiler from rewriting multiplication
operations for loops in which the order of evaluation is numerically significant.

Both directives are ignored if -O norecurrence is specified on the f90 (1)
command line or if scalar optimization has been disabled.

3.2.10 Designate Loops with Low Trip Counts: SHORTLOOP, SHORTLOOP128

The SHORTLOOPdirective, used before a DOor DO WHILEloop with a low trip
count, allows the compiler to generate code that improves program
performance by eliminating run-time tests for determining whether a vectorized
DOloop has been completed.

The SHORTLOOPdirective is supported on UNICOS and UNICOS/mk systems.
The SHORTLOOP128directive is supported on UNICOS systems only.

The formats of these directives are as follows:

!DIR$ SHORTLOOP

!DIR$ SHORTLOOP 128

You can specify either of the preceding formats, as follows:

• If you specify !DIR$ SHORTLOOP, the loop trip count must be in the range
1 ≤ trip_count ≤ 64. If trip_count equals 0 or exceeds 64, results are
unpredictable.

• If you specify !DIR$ SHORTLOOP 128, the loop trip count must be in the
range 1 ≤ trip_count ≤ 128. If trip_count equals zero or exceeds 128, results
are unpredictable.

SHORTLOOPis ignored in the following cases:

• If vectorization is disabled.

86 004–3901–001

CF90 Directives [3]

• If the code in question is an array syntax assignment statement.

• If the loop trip count is known at compile time and is greater than the target
machine’s vector length. The vector length of CRAY C90 systems and
CRAY T90 systems is 128. The vector length of all other UNICOS systems is
64.

3.2.11 Enable and Disable Tasking: TASKand NOTASK(UNICOS Systems Only)

The NOTASKdirective suppresses compiler attempts to task loops and disables
recognition of !MIC$ (Autotasking) directives. NOTASKtakes effect at the next
statement and applies to the rest of the program unit unless it is superseded by
a TASK directive. These directives are disabled if tasking is disabled. The
formats of these directives are as follows:

!DIR$ TASK

!DIR$ NOTASK

When !DIR$ NOTASK has been used within the same program unit,
!DIR$ TASK causes the compiler to resume its attempts to task loops and array
syntax statements. After a TASK directive is specified, the compiler again
attempts to Autotask loops and array syntax statements and !MIC$
(Autotasking) directives are again recognized.

The TASKdirective affects subsequent loops. The NOTASKdirective also affects
subsequent loops, but if it is specified within the body of a loop, it affects the
loop in which it is contained and all subsequent loops.

The TASKand NOTASKdirectives have no effect on OpenMP Fortran API
directives described in Chapter 4, page 119.

3.2.12 Unroll Loops: UNROLLand NOUNROLL

Loop unrolling can improve program performance by revealing cross-iteration
memory optimization opportunities such as read-after-write and
read-after-read. The effects of loop unrolling also include:

• Improved loop scheduling by increasing basic block size

• Reduced loop overhead

• Improved chances for cache hits

004–3901–001 87

CF90TM Commands and Directives Reference Manual

The formats of these directives are as follows:

!DIR$ UNROLL [n]

!DIR$ NOUNROLL

n Specifies the total number of loop body copies to be generated. n
must be a positive integer.

If you specify a value for n, the compiler does not attempt to
determine the number of copies to generate based on the number
of inner loops in the loop nest.

The subsequent DOloop is not unrolled if you specify UNROLL0,
UNROLL1, or NOUNROLL.

The UNROLLdirective should be placed immediately before the DOstatement of
the loop that should be unrolled.

Warning: If placed prior to a noninnermost loop, the UNROLLdirective
asserts that the following loop has no dependencies across iterations of that
loop. If dependencies exist, incorrect code could be generated.

The UNROLLdirective can be used only on loops whose iteration counts can be
calculated before entering the loop. If UNROLLis specified on loop that is not
the innermost loop in a loop nest, the inner loops must be nested perfectly.
That is, all loops in the nest can contain only 1 loop, and the innermost loop
can contain work.

The NOUNROLLdirective inhibits loop unrolling and overrides a -O unroll2
command line specification.

88 004–3901–001

CF90 Directives [3]

Note: UNROLLdirectives are ignored when -O unroll0 is specified on the
command line.

On UNICOS/mk systems, no unrolling is the default setting, so you must
specify -O unroll1 or -O unroll2 to enable loop unrolling. For more
information on the unrolling options, see Section 2.2.20.32, page 41.

On UNICOS systems, loop unrolling occurs for both vector and scalar loops
automatically. It is usually not necessary to use the unrolling directives. The
UNROLLdirective should be limited to non-inner loops such as Example 1
(following) in which unroll-and-jam conditions can occur. Such loop
unrolling is associated with compiler message cf90-6005 . Using the
UNROLLdirective for inner loops may be detrimental to performance and is
not recommended. Typically, loop unrolling occurs in both vector and scalar
loops without need of the UNROLLdirective. The UNROLLdirective does not
affect unrolling associated with compiler message cf90-8135 .

Example 1: Assume that the outer loop of the following nest will be unrolled
by two:

!DIR$ UNROLL 2

DO I = 1, 10

DO J = 1,100

A(J,I) = B(J,I) + 1

END DO
END DO

With outer loop unrolling, the compiler produces the following nest, in which
the two bodies of the inner loop are adjacent to each other:

DO I = 1, 10, 2
DO J = 1,100

A(J,I) = B(J,I) + 1

END DO

DO J = 1,100

A(J,I+1) = B(J,I+1) + 1
END DO

END DO

The compiler jams, or fuses, the inner two loop bodies together, producing the
following nest:

DO I = 1, 10, 2

DO J = 1,100

A(J,I) = B(J,I) + 1

004–3901–001 89

CF90TM Commands and Directives Reference Manual

A(J,I+1) = B(J,I+1) + 1

END DO
END DO

Example 2: Outer loop unrolling is not always legal because the transformation
can change the semantics of the original program. For example, unrolling the
following loop nest on the outer loop would change the program semantics
because of the dependency between A(...,I) and A(...,I+1) :

!DIR$ UNROLL 2

DO I = 1, 10

DO J = 1,100

A(J,I) = A(J-1,I+1) + 1
END DO

END DO

3.2.13 Enable and Disable Vectorization: VECTORand NOVECTOR

The NOVECTORdirective suppresses compiler attempts to vectorize loops and
array syntax statements. NOVECTORtakes effect at the beginning of the next
loop and applies to the rest of the program unit unless it is superseded by a
VECTORdirective. These directives are ignored if vectorization or scalar
optimization have been disabled. The formats of these directives are as follows:

!DIR$ VECTOR

!DIR$ NOVECTOR

When !DIR$ NOVECTORhas been used within the same program unit,
!DIR$ VECTOR causes the compiler to resume its attempts to vectorize loops
and array syntax statements. After a VECTORdirective is specified,
vectorization is attempted for loops with a trip count of 3 or more, or with an
unknown trip count.

The VECTORdirective affects subsequent loops. The NOVECTORdirective also
affects subsequent loops, but if it is specified within the body of a loop, it
affects the loop in which it is contained and all subsequent loops.

3.2.14 Specify a Vectorizable Function: VFUNCTION(UNICOS Systems Only)

The VFUNCTIONdirective declares that a vector version of an external function
exists. The VFUNCTIONdirective must precede any statement function

90 004–3901–001

CF90 Directives [3]

definitions or executable statements in a program. !DIR$ VFUNCTION cannot
be specified for internal or module procedures. !DIR$ VFUNCTION cannot be
specified for functions within interface blocks. The format of this directive is as
follows:

!DIR$ VFUNCTION f [, f] ...

f Symbolic name of a vector external function. The maximum
length is 29 characters because the %character is added at the
beginning and end of the name as part of the calling sequence.
For example, if the function is named FUNC, the CAL vector
version is spelled %FUNC%. (The scalar version is FUNC%.)

The following rules and recommendations apply to any function f named as an
argument in a VFUNCTIONdirective:

• f cannot be declared in an EXTERNALstatement or have its interface
specified in an interface body.

• f must be written in CAL and must use the call-by-register sequence.

• Arguments to f must be either vectorizable expressions or scalar expressions;
array syntax and array expressions are not allowed.

• A call to f can pass a maximum of seven single-word items or one
four-word item (complex (KIND=KIND(0.0D0))). No structures or character
arguments can be passed. These can be mixed in any order with a
maximum of seven words total.

• f should not change the value of its arguments or variables in common
blocks or modules. Any changed value should be for variables that are
distinct from the arguments.

• f should not reference variables in common blocks or modules that are also
used by a program unit in the calling chain.

• A call to f cannot occur within a WHEREstatement or WHEREblock.

• f must not have side effects or perform I/O.

Arguments to f are sent to the V registers that have numbers that match the
arguments’ ordinal numbers in the argument list: X=VFUNC(v1, v2, v3, v4) .
(The scalar version uses the same convention with the S registers.)

004–3901–001 91

CF90TM Commands and Directives Reference Manual

If the argument list for f contains both scalar and vector arguments in a vector
loop, the scalar arguments are broadcast into the appropriate vector registers. If
all arguments are scalar or the function reference is not in a vector loop, f is
called with all arguments passed in S registers.

3.2.15 Vectorize Search Loops: VSEARCHand NOVSEARCH(UNICOS Systems Only)

The VSEARCHdirective indicates that the compiler should vectorize the search
loop that follows. The NOVSEARCHdirective disables vectorization of search
loops. The formats of these directives are as follows:

!DIR$ VSEARCH

!DIR$ NOVSEARCH

A search loop is one that can be exited by means of a GO TOstatement or EXIT
statement.

The VSEARCHand NOVSEARCHdirectives are enabled only when vectorization
is enabled. These directives override -O vsearch , but they do not override
-O novsearch .

3.3 Inlining Directives

The inlining directives allow you to specify whether the compiler should
attempt to inline certain subprograms or procedures. They are as follows:

• INLINE , NOINLINE

• INLINEALWAYS, INLINENEVER

• MODINLINE, NOMODINLINE

These directives work in conjunction with the following command line options:

• -O inline n and -O inlinefrom , described in Section 2.2.20.10, page 29.

• -O modinline and -O nomodinline , described in Section 2.2.20.13, page
33.

The following sections describe the inlining directives.

92 004–3901–001

CF90 Directives [3]

3.3.1 Disable or Enable Inlining for a Block of Code: INLINE and NOINLINE

The INLINE and NOINLINE directives control whether inlining is attempted
over a range of code. If !DIR INLINE is in effect, inlining is attempted at call
sites. If !DIR NOINLINE is in effect, inlining is not attempted at call sites. The
formats of these directives are as follows:

!DIR$ INLINE

!DIR$ NOINLINE

One of these directives remains in effect until the opposite directive is
encountered or until the end of the program unit. These directives are ignored
if -O inline0 is in effect.

3.3.2 Specify Inlining for a Procedure: INLINEALWAYSand INLINENEVER

The INLINEALWAYS directive forces attempted inlining of specified procedures.
The INLINENEVER directive suppresses inlining of specified procedures. The
formats of these directives are as follows:

!DIR$ INLINEALWAYS name [, name] ...

!DIR$ INLINENEVER name [, name] ...

name The name of a procedure.

The following rules determine the scope of these directives:

• A !DIR INLINENEVER directive suppresses inlining for name. For example,
if !DIR INLINENEVER B appears in routine B, no call to B, within the
entire program, is inlined. If !DIR INLINENEVER B appears in a routine
other than B, no call to B from within that routine is inlined.

• A !DIR INLINEALWAYS directive specifies that inlining should always be
attempted for name. For example, if !DIR INLINEALWAYS C appears in
routine C, inlining is attempted for all calls to C, throughout the entire
program. If !DIR INLINEALWAYS C appears in a routine other than C,
inlining is attempted for all calls to C from within that routine.

An error message is issued if INLINENEVER and INLINEALWAYS are specified
for the same procedure in the same program unit.

004–3901–001 93

CF90TM Commands and Directives Reference Manual

Example: The following file is compiled with -O inline1 :

SUBROUTINE S()
!DIR$ INLINEALWAYS S ! This says attempt

! inlining of S at all calls.

...

END SUBROUTINE

SUBROUTINE T
!DIR$ INLINENEVER S ! Do NOT inline any calls to S

! in subroutine T.

CALL S()

...

END SUBROUTINE
SUBROUTINE V

!DIR$ NOINLINE ! Has higher precedence than INLINEALWAYS.

CALL S() ! Do not inline this call to S.

!DIR$ INLINE

CALL S() ! Attempt inlining of this call to S.

...
END SUBROUTINE

SUBROUTINE W

CALL S() ! Attempt inlining of this call to S.

...

END SUBROUTINE

3.3.3 Create Inlinable Templates for Module Procedures: MODINLINE and NOMODINLINE

The MODINLINE and NOMODINLINEdirectives enable and disable the creation
of inlinable templates for specific module procedures. The formats of these
directives are as follows:

!DIR$ MODINLINE

!DIR$ NOMODINLINE

Note: The MODINLINE and NOMODINLINEdirectives are ignored unless
-O modinline is specified on the f90 (1) command line.

These directives are in effect for the scope of the program unit in which they
are specified, including all contained procedures. If one of these directives is
specified in a contained procedure, the contained procedure’s directive
overrides the containing procedure’s directive.

94 004–3901–001

CF90 Directives [3]

The compiler generates a message if these directives are specified outside of a
module and ignores the directive.

To inline module procedures, the module being use associated must have been
compiled with -O modinline .

Example: The following file is compiled as f90 -O modinline file.f :

MODULE BEGIN

!DIR$ MODINLINE

...

CONTAINS
SUBROUTINE S() ! Uses SUBROUTINE S’s !DIR

!DIR$ NOMODINLINE

...

CONTAINS

SUBROUTINE INSIDE_S() ! Uses SUBROUTINE S’s !DIR

...
END SUBROUTINE INSIDE_S

END SUBROUTINE S

SUBROUTINE T() ! Uses MODULE BEGIN’s !DIR

...

CONTAINS
SUBROUTINE INSIDE_T() ! Uses MODULE BEGIN’s !DIR

...

END SUBROUTINE INSIDE_T

SUBROUTINE MORE_INSIDE_T

!DIR$ NOMODINLINE
...

END SUBROUTINE MORE_INSIDE_T

END SUBROUTINE T

END MODULE BEGIN

In the preceding example, the subroutines are affected as follows:

• Inlining templates are not produced for S, INSIDE_S , or MORE_INSIDE_T.

• Inlining templates are produced for T and INSIDE_T .

3.4 Scalar Optimization Directives

The following directives control aspects of scalar optimization:

• ALIGN

004–3901–001 95

CF90TM Commands and Directives Reference Manual

• BL and NOBL

• CACHE_BYPASS

• NOINTERCHANGE

• NOSIDEEFFECTS

• SPLIT and NOSPLIT

• SUPPRESS

The following sections describe these directives.

3.4.1 Align Loops on Buffer Boundaries: ALIGN (UNICOS Systems Only)

The ALIGN directive causes a block of code to begin on an instruction buffer
boundary, as follows:

• Placing the directive immediately before a DOor DO WHILEstatement
causes the body of the loop to begin on an instruction buffer boundary.

• Placing the directive immediately before a statement containing a referenced
label (for example, the first statement of an IF loop) causes the generated
code for that statement to begin on an instruction buffer boundary.

• Placing the directive immediately before an ENTRYstatement causes the
generated code for the source code following the ENTRYstatement to be
aligned on an instruction buffer boundary.

The format of this directive is as follows:

!DIR$ ALIGN

The ALIGN directive is useful when program execution is dominated by specific
small blocks of code. If such a block crosses a buffer boundary, the overhead
caused by frequent reloading of instruction buffers hurts program performance.
By aligning such a dominant loop on a buffer boundary, the ALIGN directive
can decrease this overhead.

3.4.2 Bottom Load Operands: BL and NOBL

When scalar optimization is enabled, the NOBLdirective causes the use of safe
bottom loading within loops; the BL directive causes the compiler to use full

96 004–3901–001

CF90 Directives [3]

bottom loading. Safe bottom loading involves a small cost in performance but
removes a possible cause of run-time errors (indicated by an Operand Range
Error message). Either directive overrides the -O bl option on the f90 (1)
command. The formats of these directives are as follows:

!DIR$ BL

!DIR$ NOBL

Bottom loading is an optimization technique that improves program
performance and, typically, does not cause an error. This section describes the
purpose of bottom loading and why it can cause an error.

Full bottom loading, which is used only on eligible scalar loops, consists of
prefetching operands during each iteration of a loop for use in the next
iteration, so that the operand is available as soon as the first loop instruction
executes. A prefetch is performed even during the final loop iteration, before
the loop’s final jump test has been performed.

The final prefetch, using the next computed address, can access a location
outside the array. If this address is outside the user program area, your
program can fail, generating an operand range error. An out-of-bounds address
typically is accessed in the following situations:

• A loop with a very large increment, for example:

DO I = 10, 1000000, 100000

... = A(I)

• An array reference with a variant index that is other than the first subscript,
for example:

DIMENSION A(1000,1000)

DO J = 1, 1000

... = A(100,J)

An increment of this size might occur unnoticed when it is defined by a
variable.

Safe bottom loading disables operand prefetching on the final loop iteration. The
run-time test required to detect the final iteration entails a cost in performance
but allows bottom loading to be performed on previous iterations. Despite the
extra cost, safe bottom loading is faster than no bottom loading. You can enable
safe bottom loading by specifying the -O nobl option on the f90 (1) command

004–3901–001 97

CF90TM Commands and Directives Reference Manual

or the NOBLdirective. When the -O scalar0 or -O 0 option is specified on
the f90 (1) command, no bottom loading is performed. When -O scalar1 or
-O scalar2 (the default) is in effect, safe bottom loading is performed. Full
bottom loading is done at -O scalar3 .

Note: When a range error is caused by bottom loading, this does not indicate
either a fault in your source program or a compiling error. The error results
from an attempt to go outside the range of an array address; the problem is
not caused by exceeding the array subscript bounds (as specified in your
source code), so it cannot be detected.

The scope of the BL and NOBLdirectives is a single program unit. Either
directive applies for the remainder of the program unit or until the appearance
of the other directive in the same program unit. Both directives can be specified
in a single program unit, and both are ignored if scalar optimization is disabled
by the -O scalar0 or -O 0 options on the f90 (1) command.

Example:

...
REAL ARRAY(0:M)

...

INC = IRESULT

! Potentially large value

...
DO 10 I = 0, M, INC

...

Y = X*ARRAY(I) + ...

...

! Fetch next operand, ARRAY(I+INC)
10 CONTINUE

98 004–3901–001

CF90 Directives [3]

3.4.3 Bypass Cache References: CACHE_BYPASS(UNICOS/mk Systems Only)

The CACHE_BYPASSdirective specifies that local memory references in a loop
should be passed through E registers.

E registers offer fine-grained access to local memory and a higher bandwidth for
sparse index array accesses such as gather/scatter operations and large-stride
accesses. These operations do not exploit the spatial locality of cache references.
Using this directive can greatly decrease run time for gather/scatter operations.
The benefits of using this directive are higher with random index streams.
Using this directive increases the latency of memory references in return for
greater bandwidth, so this directive may increase runtime for loops with a high
degree of spatial locality that derive benefit from cache references.

E registers can also be used to initialize large arrays that contain data not
immediately needed in cache. This avoids unnecessary reads into cache and
improves memory bandwidth efficiency for the initialization.

The format of this directive is as follows:

!DIR$ CACHE_BYPASS array [, array] ...

array An array name. Only arrays containing data of the following
types can be named in the directive: INTEGER(KIND=8) ,
REAL(KIND=8) , LOGICAL(KIND=8) , and COMPLEX(KIND=16).

array can be either an array or a Fortran 90 pointer to an array.
Cray pointee arrays are permitted, as are allocatable and
deferred-shape arrays. Arrays or Fortran 90 pointers that are
components of objects of derived type cannot be named in the
directive.

This directive should immediately precede the loop that contains arrays to be
accessed through E registers. It applies to the loop that follows the directive,
but it does not affect other loops in the program.

The compiler ignores the CACHE_BYPASSdirective if it determines that it
cannot generate code efficiently. To increase the probability of this directive
being used, the loop it precedes should have the following characteristics:

• The loop must be an inner loop.

• The loop must be vectorizable. You may need to use the IVDEP directive in
conjunction with CACHE_BYPASSto ensure that the loop is processed.

004–3901–001 99

CF90TM Commands and Directives Reference Manual

• The base array or pointer within the loop must be invariant.

Example:

! REFERENCES OF ARRAYS A, B AND C BYPASS CACHE.

! REFERENCES TO IX AND D GO THROUGH CACHE.
SUBROUTINE FOO(A,B,C,D,IX,N)

DIMENSION A(*), B(*), C(*), D(*), IX(*)

!DIR$ CACHE_BYPASS A, B, C

DO I = 1, N

A(IX(I)) = B(IX(I)) + C(IX(I)) * D(I)

END DO
END

To see the most benefit from the CACHE_BYPASSdirective, you may wish to
enable loop unrolling. For information on the command line option to control
unrolling, see Section 2.2.20.32, page 41. For information on the unrolling
compiler directives, see Section 3.2.12, page 87.

This directive may disable the CRAY T3E stream buffer hardware feature for
the entire application. This is done because the compiler cannot guarantee
correctness on some UNICOS/mk platforms in terms of the interaction of the
stream buffers and the E register operations generated by this directive.
Disabling stream buffers can cause considerable performance degradation for
other parts of your program. You can use the set_d_stream (3) library routine
to reenable the stream buffer feature. Consult your system administrator to
determine whether your program could benefit from using this library routine.
See streams_guide (7) for details on how and when streams can be safely
reenabled in the presence of E register operations.

3.4.4 Inhibit Loop Interchanging: NOINTERCHANGE

The NOINTERCHANGEdirective inhibits the compiler’s ability to interchange the
loop that follows the directive with another inner or outer loop. The format of
this directive is as follows:

!DIR$ NOINTERCHANGE

100 004–3901–001

CF90 Directives [3]

3.4.5 Determine Register Storage: NOSIDEEFFECTS(UNICOS Systems Only)

The NOSIDEEFFECTSdirective allows the compiler to keep information in
registers across a single call to a subprogram without reloading the information
from memory after returning from the subprogram. The directive is not needed
for intrinsic functions and VFUNCTIONs.

NOSIDEEFFECTSdeclares that a called subprogram does not redefine any
variables that meet the following conditions:

• Local to the calling program

• Passed as arguments to the subprogram

• Accessible to the calling subprogram through host association

• Declared in a common block or module

• Accessible through USEassociation

The format of this directive is as follows:

!DIR$ NOSIDEEFFECTS f [, f] ...

f Symbolic name of a subprogram that the user ensures to have no
side effects. f must not be the name of a dummy procedure,
module procedure, or internal procedure.

A procedure declared NOSIDEEFFECTSshould not define variables in a
common block or module shared by a program unit in the calling chain. All
arguments should be intent IN ; that is, the procedure must not modify its
arguments. If these conditions are not met, results are unpredictable.

The NOSIDEEFFECTSdirective must appear in the specification part of a
program unit and must appear before the first executable statement.

The compiler may move invocations of a NOSIDEEFFECTSsubprogram from
the body of a DOloop to the loop preamble if the arguments to that function are
invariant in the loop. This may affect the results of the program, particularly if
the NOSIDEEFFECTSsubprogram calls functions such as the random number
generator or the real-time clock.

The effects of the NOSIDEEFFECTSdirective are similar to those that can be
obtained by specifying the PUREprefix on a function or a subroutine
declaration. For more information on the PUREprefix, see Fortran Language
Reference Manual, Volume 2, publication SR–3903.

004–3901–001 101

CF90TM Commands and Directives Reference Manual

3.4.6 Request Loop Splitting: SPLIT and NOSPLIT (UNICOS/mk Systems Only)

Loop splitting improves performance by making best use of the six stream
buffers of UNICOS/mk systems. It achieves this by splitting an inner loop into
a set of smaller loops, each of which allocates no more than six stream buffers,
thus avoiding stream buffer thrashing. The stream buffer feature reduces
memory latency and increases memory bandwidth by prefetching for long,
small-strided sequences of memory references. The formats of these directives
are as follows:

!DIR$ SPLIT

!DIR$ NOSPLIT

The SPLIT directive should be placed immediately before the DOstatement of
the loop that should be split. The SPLIT directive asserts that the loop can
profit by splitting. It will not cause incorrect code.

The compiler splits the loop only if it is safe. Generally, a loop is safe to split
under the same conditions that a loop is vectorizable. The compiler only splits
inner loops. The compiler may not split some loops with conditional code.

The SPLIT directive also causes the original loop to be stripmined. (See the
glossary for a definition of stripmining.) This is done to increase the potential
for cache hits between the resultant smaller loops.

Loop splitting can reduce the execution time of a loop by as much as 40%.
Candidates for loop splitting can have trip counts as low as 40. They must also
contain more than six different memory references with strides less than 16.

Note that there is a slight potential for increasing the execution time of certain
loops. Loop splitting also increases compile time, especially when loop
unrolling is also enabled.

The NOSPLIT directive inhibits loop splitting and overrides a -O split2
command line specification. For more information on the -O loop splitting
options, see Section 2.2.20.25, page 38.

Example:

!DIR$ SPLIT

DO I=1,1000

A(I) = B(I) * C(I)
T = D(I) + A(I)

E(I) = F(I) + T * G(I)

102 004–3901–001

CF90 Directives [3]

H(I) = H(I) + E(I)

END DO

First, the compiler generates the following loop (notice the expansion of the
scalar temporary T into the compiler temporary array TA):

DO I = 1, 1000

A(I) = B(I) * C(I)
TA(I) = D(I) + A(I)

END DO

DO I = 1, 1000

E(I) = F(I) * TA(I) * G(I)

H(I) = H(I) + E(I)
END DO

Finally, the compiler stripmines the loops to increase the potential for cache hits
and reduce the size of arrays created for scalar expansion:

DO I1 = 1, 1000, 256
I2 = MIN(I1+255, 1000)

DO I = I1, I2

A(I) = B(I) * C(I)

TA(I-I1+1) = D(I) + A(I)

END DO

DO I = I1, I2
E(I) = F(I) * TA(I-I1+1) * G(I)

H(I) = H(I) + E(I)

END DO

END DO

3.4.7 Suppress Scalar Optimization: SUPPRESS

The SUPPRESSdirective suppresses scalar optimization for all variables or only
for those specified at the point where the directive appears. This often prevents
or adversely affects vectorization of any loop that contains SUPPRESS. The
format of this directive is as follows:

!DIR$ SUPPRESS [var [, var] ...]

004–3901–001 103

CF90TM Commands and Directives Reference Manual

var Variable that is to be stored to memory. If no variables are listed,
all variables in the program unit are stored. If more than one
variable is specified, use a comma to separate vars.

At the point at which !DIR$ SUPPRESSappears in the source code, variables
in registers are stored to memory (to be read out at their next reference), and
expressions containing any of the affected variables are recomputed at their
next reference after !DIR$ SUPPRESS. The effect on optimization is equivalent
to that of an external subroutine call with an argument list that includes the
variables specified by !DIR$ SUPPRESS (or, if no variable list is included, all
variables in the program unit).

SUPPRESStakes effect only if it is on an execution path. Optimization proceeds
normally if the directive path is not executed because of a GOTOor IF .

Example:

SUBROUTINE SUB (L)

LOGICAL L

A = 1.0 ! A is local
IF (L) THEN

!DIR$ SUPPRESS ! Has no effect if L is false

CALL ROUTINE()

ELSE

PRINT *, A
END IF

END

In this example, optimization replaces the reference to A in the PRINT statement
with the constant 1.0 , even though !DIR$ SUPPRESSappears between A=1.0
and the PRINT statement. The IF statement can cause the execution path to
bypass !DIR$ SUPPRESS. If SUPPRESSappears before the IF statement, A in
PRINT * is not replaced by the constant 1.0 .

3.5 Local Use of Compiler Features

Certain directives provide local control over specific compiler features. They are
as follows:

• BOUNDSand NOBOUNDS

• FREEand FIXED

104 004–3901–001

CF90 Directives [3]

The -f and -i command line options apply to an entire compilation, but these
directives override any command line specifications for source form or integer
length. The following sections describe these directives.

3.5.1 Check Array Bounds: BOUNDSand NOBOUNDS

Array bounds checking provides a check of most array references at both
compile time and run time to ensure that each subscript is within the array’s
declared size.

Note: Bounds checking behavior differs with the optimization level.
Complete checking is guaranteed only when optimization is turned off by
specifying -O 0 on the f90 (1) command line.

The -R command line option controls bounds checking for a whole
compilation. The BOUNDSand NOBOUNDSdirectives toggle the feature on and
off within a program unit. Either directive can specify particular arrays or can
apply to all arrays. The formats of these directives are as follows:

!DIR$ BOUNDS [array [, array] ...]

!DIR$ NOBOUNDS[array [, array] ...]

array The name of an array. The name cannot be a subobject of a
derived type. When no array name is specified, the directive
applies to all arrays.

BOUNDSremains in effect for a given array until the appearance of a NOBOUNDS
directive that applies to that array, or until the end of the program unit. Bounds
checking can be enabled and disabled many times in a single program unit.

Note: To be effective, these directives must follow the declarations for all
affected arrays. It is suggested that they be placed at the end of a program
unit’s specification statements unless they are meant to control particular
ranges of code.

The bounds checking feature detects any reference to an array element whose
subscript exceeds the array’s declared size. For example:

REAL A(10)

C DETECTED AT COMPILE TIME:

A(11) = X
C DETECTED AT RUN TIME IF IFUN(M) EXCEEDS 10:

004–3901–001 105

CF90TM Commands and Directives Reference Manual

A(IFUN(M)) = W

The compiler generates an error message when it detects an out-of-bounds
subscript. If the compiler cannot detect the out-of-bounds subscript (for
example, if the subscript includes a function reference), a message is issued for
out-of-bound subscripts when your program runs, but the program is allowed
to complete execution.

Bounds checking does not inhibit vectorization but typically increases program
run time. If an array’s last dimension declarator is * , checking is not performed
on the last dimension’s upper bound. Arrays in formatted WRITEand READ
statements are not checked.

Note: Array bounds checking does not prevent operand range errors that
result when operand prefetching attempts to access an invalid address
outside an array. See Section 3.4.2, page 96, for information on bottom
loading. On UNICOS systems, bounds checking is needed when very large
values are used to calculate addresses for memory references.

If bounds checking detects an out-of-bounds array reference, a message is
issued for only the first out-of-bounds array reference in the loop. For example:

DIMENSION A(10)

MAX = 20

A(MAX) = 2
DO 10 I = 1, MAX

A(I) = I

10 CONTINUE

CALL TWO(MAX,A)

END
SUBROUTINE TWO(MAX,A)

REAL A(*) ! NO UPPER BOUNDS CHECKING DONE

END

The following messages are issued for the preceding program:

lib-1961 a.out: WARNING

Subscript 20 is of out of range for dimension 1 for
array ’A’ at line 3 in file ’t.f’ with bounds:

Lower bound is 1

Upper bound is 10

lib-1962 a.out: WARNING

Subscript 11:20:1 is of out of range for dimension 1
for array ’A’ at line 5 in file ’t.f’ with bounds:

Lower bound is 1

106 004–3901–001

CF90 Directives [3]

Upper bound is 10

3.5.2 Specify Source Form: FREEand FIXED

The FREEand FIXED directives specify whether the source code in the program
unit is written in free source form or fixed source form. The FREEand FIXED
directives override the -f option, if specified, on the command line. The
formats of these directives are as follows:

!DIR$ FREE

!DIR$ FIXED

These directives apply to the source file in which they appear, and they allow
you to switch source forms within a source file.

You can change source form within an INCLUDE file. After the INCLUDE file
has been processed, the source form reverts back to the source form that was
being used prior to processing of the INCLUDE file.

Note: The source preprocessor does not recognize the FREEand FIXED
directives. These directives must not be specified in a file that is submitted to
the source preprocessor. To specify source form, specify -f fixed or the
-f free option on the f90 (1) command line.

3.6 Storage Directives

The following directives specify aspects of storing common blocks, variables, or
arrays:

• AUXILIARY

• CACHE_ALIGN

• COMMON

• STACK

• SYMMETRIC

• TASKCOMMON

The following sections describe these directives.

004–3901–001 107

CF90TM Commands and Directives Reference Manual

3.6.1 Allocating to SSD: AUXILIARY (UNICOS Systems Only)

The AUXILIARY directive causes the compiler to allocate arrays and common
blocks to the SSD solid-state storage device. This directive is intended for
programs with very large data structures. The SSD, configured as secondary
memory, functions much the same as main memory and considerably faster
than a disk drive. When an entity has been allocated to the SSD, that entity
becomes auxiliary; for example, an auxiliary array.

This directive must appear after the declaration of auxiliary arrays or common
blocks but before the first executable statement in any program unit that
references them.

If you want to specify auxiliary data in the specification part of a module, the
data must also be declared in a common block.

The format of this directive is as follows:

!DIR$ AUXILIARY n [, n] ...

n Symbolic name of an array to be allocated to the SSD.

Note: Any arrays or scalar variables that are in the same common block as
an auxiliary array or are equivalenced to an auxiliary array become auxiliary
variables.

Example 1: In the following code example, arrays A and B reside on the SSD. In
addition, because array T is also specified in !DIR$ AUXILIARY , array U and
variables X, Y, and Z are auxiliary because they appear in common block
COMBLKalong with T. COMBLKcontains a mixture of arrays and scalar
variables; individual variables can be allocated to the SSD only as members of a
common block that contains an auxiliary array.

DIMENSION A(1000000), B(1000000)

COMMON /COMBLK/ T(1000000), U(1000000), X, Y, Z

!DIR$ AUXILIARY A, B, T

Example 2: In the following code example, element A(1,1) is equivalenced to
element X(50,50) of auxiliary array X; therefore, A becomes an auxiliary array.

COMMON /COM_BLK/ X(100,100), Y(1000), Z(100,100)

DIMENSION A(100,100)
EQUIVALENCE (A(1,1), X(50,50))

!DIR$ AUXILIARY X

108 004–3901–001

CF90 Directives [3]

3.6.1.1 Restrictions

The AUXILIARY directive has the following restrictions:

• The name of an auxiliary array or scalar variable must not appear in an I/O,
DATA, or Cray pointer statement.

• If an auxiliary array or scalar variable is passed as an actual argument to a
subprogram, the corresponding dummy argument must also have been
declared auxiliary. This does not apply to intrinsic functions or to functions
declared as VFUNCTIONs.

• The name of an auxiliary array or scalar variable must not appear as an
argument to the LOC(3I) or CLOC(3I) intrinsic functions.

• Arrays in blank common or those declared by TASK COMMONmust not be
declared auxiliary.

• Character arrays and arrays in common blocks containing character scalar
variables or arrays must not be declared auxiliary.

• Auxiliary array elements and vectors should not be used in signal-handling
routines.

• Arrays of structures containing character components or pointer components
must not be declared AUXILIARY .

• An auxiliary array must not have the attributes POINTER, TARGET, or
ALLOCATABLE.

3.6.1.2 Auxiliary Arrays and Memory

Auxiliary arrays or scalar variables are read from the SSD solid-state storage
device and stored in memory in buffers to read and write to the SSD. Two
environment variables, AUXBUFand AUXPAGE, allow you to specify the size and
number of these buffers. Both variables are examined at the beginning of
program execution. For more information on these environment variables, see
Section 2.3.1, page 62, and Section 2.3.2, page 62.

For array syntax statements that need compiler-generated temporary arrays
(called temps), the temps are always allocated on the heap. This means that if
the array syntax involves auxiliary arrays, there may be insufficient space on
the heap to create the temps to perform the assignment. Temps are sometimes
required when the same array appears on both sides of the equal sign or when
a function or subroutine call requires an array temp (either for an argument or
for a function result).

004–3901–001 109

CF90TM Commands and Directives Reference Manual

Example:

DIMENSION A(100000)
!DIR$ AUXILIARY A

A(1:100000) = A(100000:1:-1)

The preceding is processed in the following form, where T is a temp array:

T=A(100000:1:-1)
A = T

3.6.2 Align on Cache Line Boundaries: CACHE_ALIGN(UNICOS/mk Systems Only)

The CACHE_ALIGNdirective aligns each specified variable on a cache line
boundary. This is useful for frequently referenced variables. A cache is storage
that can be accessed more quickly than conventional memory. A cache line is a
division within a cache. When properly used, this directive can minimize cache
conflicts.

The directive’s effect is independent of its position in source code. The format
of this directive is as follows:

!DIR$ CACHE_ALIGN var [, var] ...

var A common block name or a PE-private variable name, separated
from an adjoining var by a comma. If specifying a common block
name, the names of the items in the common block need not be
specified. A common block name must be in the following form:

/ common_block_name /

var cannot have the ALLOCATABLE, POINTER, or TARGET
attributes, and var cannot appear in a Cray POINTERstatement.

3.6.3 Declare Common Blocks Global to All Tasks: COMMON(UNICOS Systems Only)

The COMMONdirective overrides the -a taskcommon command line
specification for a given procedure. This information is not inherited from the
parent scoping unit. All common blocks remain as single-copy common blocks
when this directive appears in a procedure. The format of this directive is as
follows:

110 004–3901–001

CF90 Directives [3]

!DIR$ COMMONb [, b] ...

b Common block name. The name must also appear as a common
block name in a COMMONstatement; for information on the
COMMONstatement, see the Fortran Language Reference Manual,
Volume 1, publication SR–3902.

Common blocks named in this directive cannot also be named in
a TASKCOMMONdirective. All procedures that reference a common
block named in this directive that are compiled with
-a taskcommon must declare the block in a COMMONdirective.

For more information on the -a taskcommon command line specification, see
Section 2.2.1, page 6.

3.6.4 Request Stack Storage: STACK

The STACKdirective causes storage to be allocated to the stack in the program
unit that contains the directive. This directive overrides the -e v command
line option in specific program units of a compilation unit. For more
information on the -e v command line option, see Section 2.2.6, page 9.

The format of this directive is as follows:

!DIR$ STACK

Data specified in the specification part of a module or in a DATAstatement is
always allocated to static storage. This directive has no effect on this static
storage allocation.

All SAVEstatements are honored in program units that also contain a STACK
directive. This directive does not override the SAVEstatement.

If the compiler finds a STACKdirective and a SAVEstatement without any
objects specified in the same program unit, a warning message is issued.

The following rules apply when using this directive:

• It must be specified within the scope of a program unit.

• If it is specified in the specification part of a module, a message is issued.
The STACKdirective is allowed in the scope of a module procedure.

• If it is specified within the scope of an interface body, a message is issued.

004–3901–001 111

CF90TM Commands and Directives Reference Manual

3.6.5 Declare Local Addressing: SYMMETRIC(UNICOS/mk Systems Only)

The SYMMETRICdirective declares that a PE-private stack variable has the same
local address on all PEs. This is useful for global addressing using the SHMEM
library routines. For more information on the SHMEM library routines, see
intro_shmem (3). The format of this directive is as follows:

!DIR$ SYMMETRIC var [, var] ...

var A variable that is PE private. Variables that are specified are
allocated at the same local address on all PEs. There is an implicit
barrier before the first executable statement in the routine.

When specified without the optional var argument, all PE-private stack
variables are declared symmetric. All local variables are allocated at the same
local address on all PEs.

All PEs must participate in the allocation of symmetric stack variables.

3.6.6 Declare Common Blocks Local to Each Task: TASKCOMMON(UNICOS Systems Only)

When multitasking is used, some common blocks may need to be local to a
task. The TASKCOMMONdirective declares all variables in a common block to be
local to a task; the common block is referred to as a task common block. If
multiple tasks execute code containing the same task common block, each task
will have a separate copy of the block.

The TASKCOMMONdirective must appear before the first executable statement of
a program unit. Task common blocks must be named. A task common block is
allocated at task invocation. The format of this directive is as follows:

!DIR$ TASKCOMMONcb [, cb] ...

cb Common block name. Common blocks named in this directive
must not also be named in a COMMONdirective.

If cb is declared as TASKCOMMON, cb must be declared as
TASKCOMMONin all program units that reference cb.

Using !DIR$ TASKCOMMONwith the COMMONstatement is equivalent to using
the TASK COMMONstatement, described in the Fortran Language Reference
Manual, Volume 3, publication SR–3905. This directive is recommended because

112 004–3901–001

CF90 Directives [3]

it increases code portability; a different compiler would recognize the COMMON
statement and ignore the directive, for example:

COMMON /CB1/ A,B /CB2/ C,D

!DIR$ TASKCOMMON CB1, CB2

Arrays in a task common block must not be declared as auxiliary. With these
exceptions, these variables can be used like other variables in common storage.

Task common blocks are always given stack allocation, regardless of the kind of
allocation used for other data. Unlike other stack variables, task common
variables can be initially defined in a DATAstatement or a type declaration
statement. Such initialization of task common variables is supported with the
SEGLDR 9.2, UNICOS 9.2, and libc 9.2 or later releases.

3.7 Miscellaneous Directives

The following directives allow you to use several different compiler features:

• CONCURRENT

• FLOWand NOFLOW

• ID

• IGNORE_TKR

• NAME

• USES_EREGS

3.7.1 Specify Array Dependencies: CONCURRENT(UNICOS/mk Systems Only)

The CONCURRENTdirective conveys array dependency information to the
compiler. This directive is useful when software pipelining is requested on the
command line. The format of this directive is as follows:

!DIR$ CONCURRENT[SAFE_DISTANCE=n]

n An integer number that represents the number of consecutive
loop iterations that can be executed in parallel without danger of
data conflict. The n argument allows you to specify a collision
distance of n or more iterations for all data dependencies.

004–3901–001 113

CF90TM Commands and Directives Reference Manual

If SAFE_DISTANCE=n is not specified, the distance is assumed to
be infinite, and the compiler ignores all cross-iteration data
dependencies.

This directive affects the loop that immediately follows it.

Example. Consider the following code:

!DIR$ CONCURRENT SAFE_DISTANCE=3
DO I = K+1, N

X(I) = A(I) + X(I-K)

ENDDO

The CONCURRENTdirective in this example informs the optimizer that the
relationship K > 3 is true. This allows the compiler to load all of the following
array references safely during the ith loop iteration:

X(I-K)
X(I-K+1)

X(I-K+2)

X(I-K+3)

For more information on software pipelining, see Section 2.2.20.19, page 36.

3.7.2 Flowtracing Directives: FLOWand NOFLOW(UNICOS Systems Only)

The FLOWand NOFLOWdirectives control the flowtrace (1) feature and
override the -e f or -d f options on the f90 (1) command line.
flowtrace (1) monitors your program during execution and generates a
dynamic call tree for your program. It also collects calling and timing
information for each called procedure. These directives also control the
perftrace (1) utility. flowtrace (1) and perftrace (1) are described in the
UNICOS Performance Utilities Reference Manual, publication SR–2040.

If the -e f option is not specified, !DIR$ FLOW activates flowtrace (1) for
the subprogram that contains it. If flowtrace (1) is activated by the presence
of the -e f option on the command line, !DIR$ NOFLOWdeactivates
flowtrace (1) for the subprogram that contains it. The two directives cannot
be used to toggle flowtrace (1) on and off within a program unit. The formats
of these directives are as follows:

!DIR$ FLOW

!DIR$ NOFLOW

114 004–3901–001

CF90 Directives [3]

These directives apply to the entire program unit in which they appear. If both
directives appear in the same program unit, the last one encountered takes
effect for the entire program unit.

3.7.3 Create Identification String: ID

The ID directive inserts a character string into the file.o produced for a Fortran
source file. The format of this directive is as follows:

!DIR$ ID " character_string"

character_ string The character string to be inserted into file.o . The
syntax box shows quotation marks as the
character_string delimiter, but you can use either
apostrophes (’ ’) or quotation marks (" ").

The character_string can be obtained from file.o in one of the following ways:

• Method 1 — Using the what (1) command. To use the what (1) command to
retrieve the character string, begin the character string with the characters
@(#) . For example, assume that id.f contains the following source code:

!DIR$ ID ’@(#)file.f 03 February 1997’

PRINT *, ’Hello, world’

END

The next step is to use file id.o as the argument to the what (1) command,
as follows:

% what id.o

% id.o:
% file.f 03 February 1997

Note that what (1) does not include the special sentinel characters in the
output.

In the following example, character_string does not begin with the characters
@(#) . The output shows that what (1) does not recognize the string.

Input file id2.o contains the following:

!DIR$ ID ’file.f 03 February 1997’

PRINT *, ’Hello, world’

END

004–3901–001 115

CF90TM Commands and Directives Reference Manual

The what (1) command generates the following output:

% what id2.o

% id2.o:

• Method 2 — Using strings (1) or od(1). The following example shows how
to obtain output using the strings (1) command.

Input file id.f contains the following:

!DIR$ ID "File: id.f Date: 03 February 1997"
PRINT *, ’Hello, world’

END

The strings (1) command generates the following output:

% strings id.o

02/03/9713:55:52f90

3.0.0.0.9.0.2cn

CRAY-YMP

$MAIN

@CODE

@DATA

@WHAT

$MAIN

$STKOFEN

f$init

_FWF

$END

*?$F(6(

Hello, world

$MAIN

File: id.f Date: 03 February 1997

% od -tc id.o

... portion of dump deleted

0000000001600 \0 \0 \0 \0 \0 \0 \0 \n F i l e : i d

0000000001620 . f D a t e : 0 3 F e b

0000000001640 r u a r y 1 9 9 7 \0 \0 \0 \0 \0 \0

... portion of dump deleted

116 004–3901–001

CF90 Directives [3]

3.7.4 Disregard Dummy Argument Type, Kind, and Rank: IGNORE_TKR

The IGNORE_TKRdirective directs the compiler to ignore the type, kind, and
rank (TKR) of specified dummy arguments in a procedure interface. For
information on Fortran 90 TKR rules, see chapters 4 and 6 of the Fortran
Language Reference Manual, Volume 2, publication SR–3903.

The format for this directive is as follows:

!DIR$ IGNORE_TKR [darg_name [, darg_name] ...]

darg_name If specified, indicates the dummy arguments for which TKR rules
should be ignored.

If not specified, TKR rules are ignored for all dummy arguments
in the procedure that contains the directive.

The directive causes the compiler to ignore type and kind and rank of the
specified dummy arguments when resolving a generic to a specific call. The
compiler also ignores type and kind and rank on the specified dummy
arguments when checking all the specifics in a generic call for ambiguities.

Example. The following directive instructs the compiler to ignore type, kind,
and rank rules for the dummy arguments supplied for the SHMEM_PUT64(3)
function call:

INTERFACE SHMEM_PUT64

SUBROUTINE SHMEM_PUT64(TARG, SRC, LEN, PE)

!DIR$ IGNORE_TKR TARG, SRC

INTEGER(KIND=4) LEN
INTEGER(KIND=4) PE

END SUBROUTINE SHMEM_PUT64

END INTERFACE

The preceding code specifies that TARGand SRCcan be any data type, but LEN
and PE must be INTEGER(KIND=4) data.

3.7.5 External Name Mapping Directive: NAME

The NAMEdirective allows you to specify a case-sensitive external name, or a
name that contains characters outside of the Fortran character set, in a Fortran
program. The case-sensitive external name is specified on the NAMEdirective, in
the following format:

004–3901–001 117

CF90TM Commands and Directives Reference Manual

!DIR$ NAME (fortran_name=" external_name"
[, fortran_name=" external_name"] ...)

fortran_name The name used for the object throughout the
Fortran program.

external_name The external form of the name.

Rules for Fortran naming do not apply to the external_name string; any character
sequence is valid. You can use this directive, for example, when writing calls to
C routines.

Example:

PROGRAM MAIN

!DIR$ NAME (FOO="XyZ")

CALL FOO ! XyZ is really being called

END PROGRAM

3.7.6 Reserve E Registers: USES_EREGS(UNICOS/mk Systems Only)

The USES_EREGSdirective reserves all E registers for your use. It prevents the
compiler from generating code that would change E register values. The format
of this directive is as follows:

!DIR$ USES_EREGS

USES_EREGSapplies only to the program unit in which it appears. Your code
must comply with E register conventions as described in Cray Assembler for
MPP (CAM) Reference Manual, publication SR–2510.

Note: Use of this directive prevents the CACHE_BYPASSdirective from being
processed because when USES_EREGSis in effect, no E registers are available
to the compiler.

118 004–3901–001

OpenMP Fortran API Directives (UNICOS
Systems Only) [4]

This chapter describes the multiprocessing directives that the CF90 compiler
supports. These directives are based on the OpenMP Fortran application
program interface (API) standard. Programs that use these directives are
portable and can be compiled by other compilers that support the OpenMP
standard.

Note: Programs containing OpenMP directives must be compiled on a
system running UNICOS 10.0.0.3, or later, and must be loaded with
segldr (1) 9.2, or later.

In releases prior to CF90 3.1, lines beginning with !$, C$, or *$ were always
treated as comments. With the introduction of the OpenMP Fortran API,
these lines are now treated as conditional compilation lines and are compiled
as source code when tasking is in effect. To have these lines treated as
comments, remove the dollar sign ($) from these lines or compile with the
-x conditional_omp command line option. For more information on the
-x conditional_omp command line option, see Section 2.2.35, page 56.

In addition to directives, the OpenMP Fortran API describes several library
routines and environment variables. Information on the library routines and
environment variables can be found on the omp_lock (3), omp_nested (3), and
omp_threads (3) man pages. Information on the environment variables can
also be found in Section 2.3, page 61.

The sections in this chapter are as follows:

• Section 4.1, page 120, describes using directives and the directive format.

• Section 4.2, page 122, describes conditional compilation.

• Section 4.3, page 123, describes the parallel region construct.

• Section 4.4, page 125, describes work-sharing constructs.

• Section 4.5, page 131, describes the combined parallel work-sharing
constructs.

• Section 4.6, page 135, describes synchronization constructs.

• Section 4.7, page 141, describes the data environment, which includes
directives and clauses that affect the data environment.

004–3901–001 119

CF90TM Commands and Directives Reference Manual

• Section 4.8, page 151, describes directive binding.

• Section 4.9, page 153, describes directive nesting.

• Section 4.10, page 156 and Section 4.11, page 165 describe optimization.

Note: The Cray Research Autotasking directives are outmoded. Their
preferred alternatives are the OpenMP Fortran API directives described in
this chapter.

The Autotasking directives and OpenMP directives can be mixed in the same
program unit, but they cannot work together. For example, you cannot put an
OpenMP directive inside a !MIC$ parallel region. They must be independent.

For more information on the Autotasking directives, see Appendix A, page
177.

4.1 Using Directives

All multiprocessing directives are case-insensitive and are of the following form:

prefix directive [clause[[,] clause]...]

prefix Each directive begins with a prefix, and the prefixes you can use
depend on your source form, as follows:

• If you are using fixed source form, the following prefixes can
be used: !OMP, COMP, or *$OMP.

Prefixes must start in column one and appear as a single word
with no intervening white space. Fortran fixed form line
length, case sensitivity, white space, continuation, and column
rules apply to the directive line.

• If you are using free source form, the following prefix can be
used: !$OMP.

A prefix can appear in any column as long as it is preceded
only by white space. It must appear as a single word with no
intervening white space. Fortran free form line length, case
sensitivity, white space, and continuation rules apply to the
directive line.

directive The name of the directive.

120 004–3901–001

OpenMP Fortran API Directives (UNICOS Systems Only) [4]

clause One or more directive clauses. Clauses can appear in any order
after the directive name and can be repeated as needed, subject to
the restrictions listed in the description of each clause.

Directives cannot be embedded within continued statements, and statements
cannot be embedded within directives. Comments cannot appear on the same
line as a directive.

In fixed source form, initial directive lines must have a space or zero in column
six, and continuation directive lines must have a character other than a space or
a zero in column six.

In free source form, initial directive lines must have a space after the prefix.
Continued directive lines must have an ampersand as the last nonblank
character on the line. Continuation directive lines can have an ampersand after
the directive prefix with optional white space before and after the ampersand.

Example 1 (fixed source form). The following formats for specifying directives
are equivalent (the first line represents the position of the first 9 columns):

C23456789

!$OMP PARALLEL DO SHARED(A,B,C)

C$OMP PARALLEL DO

C$OMP+SHARED(A,B,C)

C$OMP PARALLELDOSHARED(A,B,C)

Example 2 (free source form). The following formats for specifying directives
are equivalent (the first line represents the position of the first 9 columns):

!23456789

!$OMP PARALLEL DO &
!$OMP SHARED(A,B,C)

!$OMP PARALLEL &

!$OMP&DO SHARED(A,B,C)

!$OMP PARALLEL DO SHARED(A,B,C)

Note: In order to simplify the presentation, the remainder of this chapter
uses the !$OMP prefix in all syntax descriptions and examples.

004–3901–001 121

CF90TM Commands and Directives Reference Manual

4.2 Conditional Compilation

Fortran statements can be compiled conditionally as long as they are preceded
by one of the following conditional compilation prefixes: !$, C$, or *$. The
prefix must be followed by a Fortran 90 statement on the same line. During
compilation, the prefix is replaced by two spaces, and the rest of the line is
treated as a normal Fortran statement.

The !$ prefix is accepted when compiling either fixed source form files or free
source form files. The C$ and *$ prefixes are accepted only when compiling
fixed source form. The source form you are using also dictates the following:

• In fixed source form, the prefixes must start in column one and appear as a
single word with no intervening white space. Fortran fixed form line length,
case sensitivity, white space, continuation, and column rules apply to the
line. Initial lines must have a space or zero in column six, and continuation
lines must have a character other than a space or zero in column six.

Example. The following forms for specifying conditional compilation are
equivalent:

C23456789

!$ 10 IAM = OMP_GET_THREAD_NUM() +
!$ & INDEX

#ifdef _OPENMP

10 IAM = OMP_GET_THREAD_NUM() +

& INDEX

#endif

• In free source form, the !$ prefix can appear in any column as long as it is
preceded only by white space. It must appear as a single word with no
intervening white space. Fortran free source form line length, case sensitivity,
white space, and continuation rules apply to the line. Initial lines must have
a space after the prefix. Continued lines must have an ampersand as the last
nonblank character on the line. Continuation lines can have an ampersand
after the prefix, with optional white space before and after the ampersand.

In addition to the conditional compilation prefixes, a preprocessor macro,
_OPENMP, can be used for conditional compilation. The _OPENMPconditional
compilation macro is predefined whenever tasking is enabled. That is, _OPENMP
is predefined unless one of the following options appears on the f90 (1)
command line: -O 0 , -O task0 , -g , or -G 0 . For more information on source
preprocessing and conditional compilation, see Chapter 5, page 167.

122 004–3901–001

OpenMP Fortran API Directives (UNICOS Systems Only) [4]

Specifying -x conditional_omp on the f90 (1) command line disables all C$
and !$ conditional compilation lines. For more information on the
-x conditional_omp option, see Section 2.2.35, page 56.

Example. The following example illustrates the use of the conditional
compilation prefix. Assuming Fortran 90 fixed source form, the following
statement is invalid when using OpenMP constructs:

C234567890

!$ X(I) = X(I) + XLOCAL

With OpenMP compilation, the conditional compilation prefix !$ is treated as
two spaces. As a result, the statement infringes on the statement label field. To
be valid, the statement should begin after column six, like any other fixed
source form statement:

C234567890

!$ X(I) = X(I) + XLOCAL

In other words, conditionally compiled statements need to meet all applicable
language rules when the prefix is replaced with two spaces.

4.3 Parallel Region Constructs (PARALLELand END PARALLELDirectives)

The PARALLELand END PARALLELdirectives define a parallel region. A parallel
region is a block of code that is to be executed by multiple threads in parallel.
This is the fundamental OpenMP parallel construct that starts parallel
execution. These directives have the following format:

!$OMP PARALLEL [clause[[,] clause]...]

block

!$OMP END PARALLEL

clause clause can be one or more of the following:

• PRIVATE(var[, var] ...)

• SHARED(var[, var] ...)

• DEFAULT(PRIVATE | SHARED | NONE)

• FIRSTPRIVATE(var[, var] ...)

004–3901–001 123

CF90TM Commands and Directives Reference Manual

• REDUCTION ({operator| intrinsic}: var[, var] ...)

• IF(scalar_logical_expression)

• COPYIN(var[, var] ...)

The IF clause is described in this section. For information on the
PRIVATE, SHARED, DEFAULT, FIRSTPRIVATE, REDUCTION, and
COPYINclauses, see Section 4.7.2, page 142.

block block denotes a structured block of Fortran statements. You cannot
branch into or out of the block. The code contained within the
dynamic extent of the parallel region is executed on each thread.

The END PARALLELdirective denotes the end of the parallel region. There is
an implied barrier at this point. Only the master thread of the team continues
execution past the end of a parallel region.

When a thread encounters a parallel region, it creates a team of threads, and it
becomes the master of the team. The master thread is a member of the team
and it has a thread number of 0 within the team. The number of threads in the
team is controlled by environment variables and/or library calls.

The number of physical processors actually hosting the threads at any given
time depends on the number of CPUs available and the system load. Once
created, the number of threads in the team remains constant for the duration of
that parallel region, but it can be changed either explicitly by the user or
automatically by the run-time system from one parallel region to another. The
OMP_SET_DYNAMIC(3) library routine and the OMP_DYNAMICenvironment
variable can be used to enable and disable the automatic adjustment of the
number of threads. For more information on environment variables that affect
OpenMP directives, see Section 2.3, page 61.

OpenMP: The OpenMP Fortran API does not specify the number of physical
processors that can host the threads at any given time.

If a thread in a team executing a parallel region encounters another parallel
region, it creates a new team, and it becomes the master of that new team. By
default, nested parallel regions are serialized; that is, they are executed by a
team composed of one thread. This default behavior can be changed by using
either the OMP_SET_NESTED(3) library routine or the OMP_NESTED
environment variable. For more information on environment variables that
affect OpenMP directives, see Section 2.3, page 61.

124 004–3901–001

OpenMP Fortran API Directives (UNICOS Systems Only) [4]

If an IF clause is present, the enclosed code region is executed in parallel only
if the scalar_logical_expression evaluates to .TRUE. . Otherwise, the parallel
region is serialized. The expression must be a scalar Fortran logical expression.

The following restrictions apply to parallel regions:

• The PARALLEL/END PARALLELdirective pair must appear in the same
routine in the executable section of the code.

• The code contained by these two directives must be a structured block. You
cannot branch into or out of a parallel region.

• Only a single IF clause can appear on the directive.

Example. The PARALLELdirective can be used for exploiting coarse-grained
parallelism. In the following example, each thread in the parallel region decides
what part of the global array X to work on based on the thread number:

!$OMP PARALLEL DEFAULT(PRIVATE) SHARED(X,NPOINTS)
IAM = OMP_GET_THREAD_NUM()

NP = OMP_GET_NUM_THREADS()

IPOINTS = NPOINTS/NP

CALL SUBDOMAIN(X,IAM,IPOINTS)

!$OMP END PARALLEL

4.4 Work-sharing Constructs

A work-sharing construct divides the execution of the enclosed code region
among the members of the team that encounter it. A work-sharing construct
must be enclosed within a parallel region in order for the directive to execute in
parallel. The work-sharing directives do not launch new threads, and there is
no implied barrier on entry to a work-sharing construct.

The following restrictions apply to the work-sharing directives:

• Work-sharing constructs and BARRIERdirectives must be encountered by all
threads in a team or by none at all.

• Work-sharing constructs and BARRIERdirectives must be encountered in the
same order by all threads in a team.

The following sections describe the work-sharing directives:

• Section 4.4.1, page 126, describes the DOand END DOdirectives.

004–3901–001 125

CF90TM Commands and Directives Reference Manual

• Section 4.4.2, page 129, describes the SECTIONS, SECTION, and
END SECTIONSdirectives.

• Section 4.4.3, page 130, describes the SINGLE and END SINGLEdirectives.

4.4.1 Specify Parallel Execution: DOand END DODirectives

The DOdirective specifies that the iterations of the immediately following DO
loop must be divided among the threads in the parallel region. If there is no
enclosing parallel region, the DOloop is executed serially.

The loop that follows a DOdirective cannot be a DO WHILEor a DOloop
without loop control.

The format of this directive is as follows:

!$OMP DO [clause[[,] clause]...]

do_loop

[!$OMP END DO[NOWAIT]]

clause clause can be one of the following:

• PRIVATE(var[, var] ...)

• FIRSTPRIVATE(var[, var] ...)

• LASTPRIVATE(var[, var] ...)

• REDUCTION({operator| intrinsic}: var[, var] ...)

• SCHEDULE(type[, chunk])

• ORDERED

The SCHEDULEand ORDEREDclauses are described in this
section. The PRIVATE, FIRSTPRIVATE, LASTPRIVATE, and
REDUCTIONclauses are described in Section 4.7.2, page 142.

do_loop A DOloop.

If ordered sections are contained in the dynamic extent of the DOdirective, the
ORDEREDclause must be present. The code enclosed within an ordered section
is executed in the order in which it would be executed in a sequential execution

126 004–3901–001

OpenMP Fortran API Directives (UNICOS Systems Only) [4]

of the loop. For more information on ordered sections, see the ORDERED
directive in Section 4.6.6, page 140.

The SCHEDULEclause specifies how iterations of the DOloop are divided
among the threads of the team. Within the SCHEDULE(type[, chunk]) clause
syntax, type can be one of the following:

type Effect

STATIC When SCHEDULE(STATIC,chunk) is specified, iterations are
divided into pieces of a size specified by chunk. The pieces are
statically assigned to threads in the team in a round-robin fashion
in the order of the thread number. chunk must be a scalar integer
expression.

When no chunk is specified, the iterations are divided among
threads in contiguous pieces, and one piece is assigned to each
thread.

Deferred Implementation.

DYNAMIC When SCHEDULE(DYNAMIC,chunk) is specified, the iterations are
broken into pieces of a size specified by chunk. As each thread
finishes its iterations, it dynamically obtains the next set of
iterations.

When no chunk is specified, it defaults to 1. Performance,
however, may be better when chunk is set to a small multiple of
the vector length of your machine. This is particularly true when
the loop body is small. The vector length of CRAY SV1, CRAY J90,
CRAY Y-MP E, CRAY Y-MP M90, and CRAY EL systems is 64.
The vector length of CRAY C90 and CRAY T90 systems is 128.

This is the default SCHEDULEtype.

GUIDED When SCHEDULE(GUIDED,chunk) is specified, each of the
iterations are handed out in pieces of exponentially decreasing
size. chunk specifies the minimum number of iterations to
dispatch each time, except when there are less than chunk number
of iterations, at which point the rest are dispatched.

When no chunk is specified, it defaults to 1.

RUNTIME When SCHEDULE(RUNTIME)is specified, the decision regarding
scheduling is deferred until run time and you cannot specify a
chunk.

004–3901–001 127

CF90TM Commands and Directives Reference Manual

The schedule type and chunk size can be chosen at run time by
setting the OMP_SCHEDULEenvironment variable. If this
environment variable is not set, the resulting schedule is
DYNAMIC.

For more information on the OMP_SCHEDULEenvironment
variable, see Section 2.3, page 61.

OpenMP: The OpenMP Fortran API does not define a default scheduling
mechanism. You should not rely on a particular implementation of a
schedule type for correct execution because it is possible to have variations in
the implementations of the same schedule type across different compilers.

If an END DOdirective is not specified, it is assumed at the end of the DOloop.
If NOWAITis specified on the END DOdirective, threads do not synchronize at
the end of the parallel loop. Threads that finish early proceed straight to the
instructions following the loop without waiting for the other members of the
team to finish the DOdirective.

Example. If there are multiple independent loops within a parallel region, you
can use the NOWAITclause to avoid the implied BARRIERat the end of the DO
directive, as follows:

!$OMP PARALLEL

!$OMP DO

DO I=2,N

B(I) = (A(I) + A(I-1)) / 2.0
ENDDO

!$OMP END DO NOWAIT

!$OMP DO

DO I=1,M

Y(I) = SQRT(Z(I))

ENDDO
!$OMP END DO NOWAIT

!$OMP END PARALLEL

Parallel DOloop control variables are block-level entities within the DOloop. If
the loop control variable also appears in the LASTPRIVATE variable list of the
parallel DO, it is copied out to a variable of the same name in the enclosing
PARALLELregion. The variable in the enclosing PARALLELregion must be
SHAREDif it is specified on the LASTPRIVATE variable list of a DOdirective.

The following restrictions apply to the DOdirectives:

• You cannot branch out of a DOloop associated with a DOdirective.

128 004–3901–001

OpenMP Fortran API Directives (UNICOS Systems Only) [4]

• The values of the loop control parameters of the DOloop associated with a
DOdirective must be the same for all the threads in the team.

• The DOloop iteration variable must be of type integer.

• If used, the END DOdirective must appear immediately after the end of the
loop.

• Only a single SCHEDULEclause can appear on a DOdirective.

• Only a single ORDEREDclause can appear on a DOdirective.

4.4.2 Mark Code for Specific Threads: SECTION, SECTIONSand END SECTIONSDirectives

The SECTIONSdirective specifies that the enclosed sections of code are to be
divided among threads in the team. It is a noniterative work-sharing construct.
Each section is executed once by a thread in the team.

The format of this directive is as follows:

!$OMP SECTIONS [clause[[,] clause]...]

[!$OMP SECTION]

block

[!$OMP SECTION

block]

. . .

!$OMP END SECTIONS[NOWAIT]

clause The clause can be one of the following:

• PRIVATE(var[, var] ...)

• FIRSTPRIVATE(var[, var] ...)

• LASTPRIVATE(var[, var] ...)

• REDUCTION({ operator| intrinsic}: var[, var] ...)

004–3901–001 129

CF90TM Commands and Directives Reference Manual

The PRIVATE, FIRSTPRIVATE, LASTPRIVATE, and REDUCTION
clauses are described in Section 4.7.2, page 142.

block Denotes a structured block of Fortran statements. You cannot
branch into or out of the block.

Each section must be preceded by a SECTIONdirective, though the SECTION
directive is optional for the first section. The SECTIONdirectives must appear
within the lexical extent of the SECTIONS/END SECTIONSdirective pair. The
last section ends at the END SECTIONSdirective. Threads that complete
execution of their sections wait at a barrier at the END SECTIONSdirective
unless a NOWAITis specified.

The following restrictions apply to the SECTIONSdirective:

• The code enclosed in a SECTIONS/END SECTIONSdirective pair must be a
structured block. In addition, each constituent section must also be a
structured block. You cannot branch into or out of the constituent section
blocks.

• You cannot have a SECTIONdirective outside the lexical extent of the
SECTIONS/END SECTIONSdirective pair.

4.4.3 Request Single–thread Execution: SINGLE and END SINGLEDirectives

The SINGLE directive specifies that the enclosed code is to be executed by only
one thread in the team. Threads in the team that are not executing the SINGLE
directive wait at the END SINGLEdirective unless NOWAITis specified.

The format of this directive is as follows:

!$OMP SINGLE [clause[[,] clause]...]

block

!$OMP END SINGLE [NOWAIT]

clause The clause can be one of the following:

• PRIVATE(var[, var] ...)

• FIRSTPRIVATE(var[, var] ...)

The PRIVATE and FIRSTPRIVATE clauses are described in
Section 4.7.2, page 142.

130 004–3901–001

OpenMP Fortran API Directives (UNICOS Systems Only) [4]

block Denotes a structured block of Fortran statements. You cannot
branch into or out of the block.

Example. In the following code fragment, the first thread that encounters the
SINGLE directive executes subroutines OUTPUTand INPUT. You must not make
any assumptions as to which thread will execute the SINGLE section. All other
threads will skip the SINGLE section and stop at the barrier at the END SINGLE
construct. If other threads can proceed without waiting for the thread executing
the SINGLE section, a NOWAITclause can be specified on the END SINGLE
directive.

!$OMP PARALLEL DEFAULT(SHARED)

CALL WORK(X)

!$OMP BARRIER

!$OMP SINGLE
CALL OUTPUT(X)

CALL INPUT(Y)

!$OMP END SINGLE

CALL WORK(Y)

!$OMP END PARALLEL

4.5 Combined Parallel Work-sharing Constructs

The combined parallel work-sharing constructs are shortcuts for specifying a
parallel region that contains only one work-sharing construct. The semantics of
these directives are identical to that of explicitly specifying a PARALLEL
directive followed by a single work-sharing construct.

The following sections describe the combined parallel work-sharing directives:

• Section 4.5.1, page 131, describes the PARALLEL DOand END PARALLEL DO
directives.

• Section 4.5.2, page 133, describes the PARALLEL SECTIONSand
END PARALLEL SECTIONSdirectives.

4.5.1 Declare a Parallel Region: PARALLEL DOand END PARALLEL DODirectives

The PARALLEL DOdirective provides a shortcut form for specifying a parallel
region that contains a single DOdirective.

The format of this directive is as follows:

004–3901–001 131

CF90TM Commands and Directives Reference Manual

!$OMP PARALLEL DO[clause[[,] clause]...]

do_loop

[!$OMP END PARALLEL DO]

clause clause can be one or more of the clauses accepted by the
PARALLELdirective or the DOdirective. These clauses are as
follows:

• PRIVATE(var[, var] ...)

• FIRSTPRIVATE(var[, var] ...)

• LASTPRIVATE(var[, var] ...)

• REDUCTION({operator| intrinsic}: var[, var] ...)

• SCHEDULE(type[, chunk])

• ORDERED

• SHARED(var[, var] ...)

• DEFAULT(PRIVATE | SHARED | NONE)

• IF(scalar_logical_expression)

• COPYIN(var[, var] ...)

The SCHEDULEand ORDEREDclauses are described in Section
4.4.1, page 126. The IF clause is described in Section 4.3, page
123. The SHARED, DEFAULT, COPYIN, PRIVATE, FIRSTPRIVATE,
LASTPRIVATE, and REDUCTIONclauses are described in Section
4.7.2, page 142.

For information on the PARALLELdirective, see Section 4.3, page
123. For information on the DOdirective, see Section 4.4.1, page
126.

do_loop A DOloop.

If the END PARALLEL DOdirective is not specified, the PARALLEL DOis
assumed to end with the DOloop that immediately follows the PARALLEL DO
directive. If used, the END PARALLEL DOdirective must appear immediately
after the end of the DOloop.

132 004–3901–001

OpenMP Fortran API Directives (UNICOS Systems Only) [4]

The semantics are identical to explicitly specifying a PARALLELdirective
immediately followed by a DOdirective.

Example. The following example shows how to parallelize a simple loop:

!$OMP PARALLEL DO

DO I=1,N

B(I) = (A(I) + A(I-1)) / 2.0

ENDDO

!$OMP END PARALLEL DO

In the preceding code, the loop iteration variable is private by default, so it is not
necessary to declare it explicitly. The END PARALLEL DOdirective is optional.

Note: Localized ALLOCATABLEor POINTERarrays are not supported on the
DO, PARALLEL, or PARALLEL DOdirectives.

4.5.2 Declare Sections within a Parallel Region: PARALLEL SECTIONSand END PARALLEL SECTIONS
Directives

The PARALLEL SECTIONSdirective provides a shortcut form for specifying a
parallel region that contains a single SECTIONSdirective. The semantics are
identical to explicitly specifying a PARALLELdirective immediately followed by
a SECTIONSdirective.

The format of this directive is as follows:

!$OMP PARALLEL SECTIONS[clause[[,] clause]...]

[!$OMP SECTION]

block

[!$OMP SECTION

block]

. . .

!$OMP END PARALLEL SECTIONS

004–3901–001 133

CF90TM Commands and Directives Reference Manual

clause clause can be one or more of the clauses accepted by the
PARALLELdirective or the SECTIONSdirective. These clauses are
as follows:

• PRIVATE(var[, var] ...)

• FIRSTPRIVATE(var[, var] ...)

• LASTPRIVATE(var[, var] ...)

• REDUCTION({ operator| intrinsic}: var[, var] ...)

• SHARED(var[, var] ...)

• DEFAULT(PRIVATE | SHARED | NONE)

• IF(scalar_logical_expression)

• COPYIN(var[, var] ...)

The IF clause is described in Section 4.3, page 123. The SHARED,
DEFAULT, FIRSTPRIVATE, REDUCTION, COPYIN, PRIVATE,
FIRSTPRIVATE, LASTPRIVATE, and REDUCTIONclauses are
described in Section 4.7.2, page 142.

For more information on the PARALLELdirective, see Section 4.3,
page 123. For more information on the SECTIONSdirective, see
Section 4.4.2, page 129.

block Denotes a structured block of Fortran statements. You cannot
branch into or out of the block.

The last section ends at the END PARALLEL SECTIONSdirective.

Example. In the following code fragment, subroutines XAXIS, YAXIS, and
ZAXIS can be executed concurrently. The first SECTIONdirective is optional.
All the SECTIONdirectives need to appear in the lexical extent of the
PARALLEL SECTIONS/END PARALLEL SECTIONSconstruct.

!$OMP PARALLEL SECTIONS

!$OMP SECTION
CALL XAXIS

!$OMP SECTION

CALL YAXIS

!$OMP SECTION

CALL ZAXIS
!$OMP END PARALLEL SECTIONS

134 004–3901–001

OpenMP Fortran API Directives (UNICOS Systems Only) [4]

4.6 Synchronization Constructs

The following sections describe the synchronization constructs:

• Section 4.6.1, page 135, describes the MASTERand END MASTERdirectives.

• Section 4.6.2, page 135, describes the CRITICAL and END CRITICAL
directives.

• Section 4.6.3, page 137, describes the BARRIERdirective.

• Section 4.6.4, page 137, describes the ATOMICdirective.

• Section 4.6.5, page 138, describes the FLUSHdirective.

• Section 4.6.6, page 140, describes the ORDEREDand END ORDEREDdirectives.

4.6.1 Request Execution by the Master Thread: MASTERand END MASTERDirectives

The code enclosed within MASTERand END MASTERdirectives is executed by
the master thread.

These directives have the following format:

!$OMP MASTER

block

!$OMP END MASTER

block Denotes a structured block of Fortran statements. You cannot
branch into or out of the block.

The other threads in the team skip the enclosed section of code and continue
execution. There is no implied barrier either on entry to or exit from the master
section.

4.6.2 Request Execution by a Single Thread: CRITICAL and END CRITICAL Directives

The CRITICAL and END CRITICAL directives restrict access to the enclosed
code to one thread at a time.

These directives have the following format:

004–3901–001 135

CF90TM Commands and Directives Reference Manual

!$OMP CRITICAL [(name)]

block

!$OMP END CRITICAL [(name)]

name Identifies the critical section.

If a name is specified on a CRITICAL directive, the same name
must also be specified on the END CRITICAL directive. If no
name appears on the CRITICAL directive, no name can appear on
the END CRITICAL directive.

block Denotes a structured block of Fortran statements. You cannot
branch into or out of the block.

A thread waits at the beginning of a critical section until no other thread in the
team is executing a critical section with the same name. All unnamed
CRITICAL directives map to the same name. Critical section names are global
entities of the program. If a name conflicts with any other entity, the behavior
of the program is undefined.

Example. The following code fragment includes several CRITICAL directives.
The example illustrates a queuing model in which a task is dequeued and
worked on. To guard against multiple threads dequeuing the same task, the
dequeuing operation must be in a critical section. Because there are two
independent queues in this example, each queue is protected by CRITICAL
directives with different names, XAXIS and YAXIS, respectively.

!$OMP PARALLEL DEFAULT(PRIVATE) SHARED(X,Y)

!$OMP CRITICAL(XAXIS)

CALL DEQUEUE(IX_NEXT, X)

!$OMP END CRITICAL(XAXIS)
CALL WORK(IX_NEXT, X)

!$OMP CRITICAL(YAXIS)

CALL DEQUEUE(IY_NEXT,Y)

!$OMP END CRITICAL(YAXIS)

CALL WORK(IY_NEXT, Y)

!$OMP END PARALLEL

136 004–3901–001

OpenMP Fortran API Directives (UNICOS Systems Only) [4]

4.6.3 Synchronize All Threads in a Team: BARRIERDirective

The BARRIERdirective synchronizes all the threads in a team. When it
encounters a barrier, a thread waits until all other threads in that team have
reached the same point.

This directive has the following format:

!$OMP BARRIER

4.6.4 Protect a Location from Multiple Updates: ATOMICDirective

The ATOMICdirective ensures that a specific memory location is updated
atomically, rather than exposing it to the possibility of multiple, simultaneous
writing threads.

This directive has the following format:

!$OMP ATOMIC

This directive applies only to the immediately following statement, which must
have one of the following forms:

x = x operator expr

x = expr operator x

x = intrinsic (x, expr)

x = intrinsic (expr, x)

In the preceding statements:

• x is a scalar variable of intrinsic type. All references to storage location x
must have the same type and type parameters.

• expr is a scalar expression that does not reference x.

• intrinsic is one of MAX, MIN, IAND, IOR, or IEOR.

• operator is one of +, * , - , / , .AND. , .OR. , .EQV. , or .NEQV. .

004–3901–001 137

CF90TM Commands and Directives Reference Manual

Only the load and store of x are atomic; the evaluation of expr is not atomic. To
avoid race conditions, all updates of the location in parallel must be protected
with the ATOMICdirective, except those that are known to be free of race
conditions.

Example 1. The following code fragment uses the ATOMICdirective:

!$OMP ATOMIC

X(INDEX(I)) = Y(INDEX(I)) + B

Example 2. The following code fragment avoids race conditions by protecting
all simultaneous updates of the location, by multiple threads, with the ATOMIC
directive:

!$OMP PARALLEL DO DEFAULT(PRIVATE) SHARED(X,Y,INDEX,N)

DO I=1,N
CALL WORK(XLOCAL, YLOCAL)

!$OMP ATOMIC

X(INDEX(I)) = X(INDEX(I)) + XLOCAL

Y(I) = Y(I) + YLOCAL

ENDDO

Note that the ATOMICdirective applies only to the Fortran 90 statement that
immediately follows it. As a result, Y is not updated atomically in the
preceding code.

4.6.5 Read and Write Variables to Memory: FLUSHDirective

The FLUSHdirective identifies synchronization points at which thread-visible
variables are written back to memory. This directive must appear at the precise
point in the code at which the synchronization is required.

Thread-visible variables include the following data items:

• Globally visible variables (common blocks and modules)

• Local variables that do not have the SAVEattribute but have had their
address taken and saved or have had their address passed to another
subprogram

• Local variables that do not have the SAVEattribute that are declared shared
in a parallel region within the subprogram

• Dummy arguments

• All pointer dereferences

138 004–3901–001

OpenMP Fortran API Directives (UNICOS Systems Only) [4]

This directive has the following format:

!$OMP FLUSH [(var[, var] ...)]

var Variables to be flushed.

An implicit FLUSHdirective is assumed for the following directives:

• BARRIER

• CRITICAL and END CRITICAL

• END DO

• END PARALLEL

• END SECTIONS

• END SINGLE

• ORDEREDand END ORDERED

The directive is not implied if a NOWAITclause is present.

Example. The following example uses the FLUSHdirective for point-to-point
synchronization between pairs of threads:

!$OMP PARALLEL DEFAULT(PRIVATE) SHARED(ISYNC)
IAM = OMP_GET_THREAD_NUM()

ISYNC(IAM) = 0

!$OMP BARRIER

CALL WORK()

!

!I AM DONE WITH MY WORK, SYNCHRONIZE WITH MY NEIGHBOR
!

ISYNC(IAM) = 1

!$OMP FLUSH(ISYNC)

!

!WAIT TILL NEIGHBOR IS DONE
!

DO WHILE (ISYNC(NEIGH) .EQ. 0)

!$OMP FLUSH(ISYNC)

END DO

!$OMP END PARALLEL

004–3901–001 139

CF90TM Commands and Directives Reference Manual

4.6.6 Request Sequential Ordering: ORDEREDand END ORDEREDDirectives

The code enclosed within ORDEREDand END ORDEREDdirectives is executed in
the order in which it would be executed in a sequential execution of an
enclosing parallel loop.

These directives have the following format:

!$OMP ORDERED

block

!$OMP END ORDERED

block Denotes a structured block of Fortran statements. You cannot
branch into or out of the block.

An ORDEREDdirective can appear only in the dynamic extent of a DOor
PARALLEL DOdirective. This DOdirective must have the ORDEREDclause
specified. For more information on the DOdirective, see Section 4.4.1, page 126.
For information on directive binding, see Section 4.8, page 151.

Only one thread is allowed in an ordered section at a time. Threads are allowed
to enter in the order of the loop iterations. No thread can enter an ordered
section until it is guaranteed that all previous iterations have completed or will
never execute an ordered section. This sequentializes and orders code within
ordered sections while allowing code outside the section to run in parallel.
ORDEREDsections that bind to different DOdirectives are independent of each
other.

The following restrictions apply to the ORDEREDdirective:

• An ORDEREDdirective cannot bind to a DOdirective that does not have the
ORDEREDclause specified.

• An iteration of a loop with a DOdirective must not execute the same
ORDEREDdirective more than once, and it must not execute more than one
ORDEREDdirective.

Example. Ordered sections are useful for sequentially ordering the output from
work that is done in parallel. Assuming that a reentrant I/O library exists, the
following program prints out the indexes in sequential order:

!$OMP DO ORDERED SCHEDULE(DYNAMIC)

DO I=LB,UB,ST

140 004–3901–001

OpenMP Fortran API Directives (UNICOS Systems Only) [4]

CALL WORK(I)

END DO

SUBROUTINE WORK(K)

!$OMP ORDERED

WRITE(*,*) K

!$OMP END ORDERED

END

4.7 Data Environment Constructs

The following subsections present constructs for controlling the data
environment during the execution of parallel constructs. Section 4.7.1, page 141,
describes the THREADPRIVATEdirective, which makes common blocks local to
a thread. Section 4.7.2, page 142, describes directive clauses that affect the data
environment.

4.7.1 Declare Common Blocks Private to a Thread: THREADPRIVATEDirective

The THREADPRIVATEdirective makes named common blocks private to a
thread but global within the thread. In other words, each thread executing a
THREADPRIVATEdirective receives its own private copy of the named common
blocks, which are then available to it in any routine within the scope of an
application.

This directive must appear in the declaration section of the routine after the
declaration of the listed common blocks. Each thread gets its own copy of the
common block, so data written to the common block by one thread is not
directly visible to other threads. During serial portions and MASTERsections of
the program, accesses are to the master thread’s copy of the common block.

On entry to the first parallel region, data in the THREADPRIVATEcommon
blocks should be assumed to be undefined unless a COPYINclause is specified
on the PARALLELdirective. When a common block that is initialized using
DATAstatements appears in a THREADPRIVATEdirective, each thread’s copy is
initialized once prior to its first use. For subsequent parallel regions, the data in
the THREADPRIVATEcommon blocks are guaranteed to persist only if the
dynamic threads mechanism has been disabled and if the number of threads are
the same for all the parallel regions.

For more information on dynamic threads, see the OMP_SET_DYNAMIC(3)
library routine.

004–3901–001 141

CF90TM Commands and Directives Reference Manual

The format of this directive is as follows:

!$OMP THREADPRIVATE(/cb/ [,/ cb/]...)

cb The name of the common block to be made private to a thread.
Only named common blocks can be made thread private.

The following restrictions apply to the THREADPRIVATEdirective:

• The THREADPRIVATEdirective must appear after every declaration of a
thread private common block.

• You cannot use a THREADPRIVATEcommon block or its constituent
variables in any clause other than a COPYINclause. As a result, they are not
permitted in a PRIVATE, FIRSTPRIVATE, LASTPRIVATE, SHARED, or
REDUCTIONclause. They are not affected by the DEFAULTclause.

4.7.2 Data Scope Attribute Clauses

Several directives accept clauses that allow a user to control the scope attributes
of variables for the duration of the construct. Not all of the clauses in this
section are allowed on all directives, but the clauses that are valid on a
particular directive are included with the description of the directive. Usually, if
no data scope clauses are specified for a directive, the default scope for
variables affected by the directive is SHARED. Exceptions to this are described in
Section 4.7.3, page 149.

The following sections describe the data scope attribute clauses:

• Section 4.7.2.1, page 143, describes the PRIVATE clause.

• Section 4.7.2.2, page 144, describes the SHAREDclause.

• Section 4.7.2.3, page 144, describes the DEFAULTclause.

• Section 4.7.2.4, page 145, describes the FIRSTPRIVATE clause.

• Section 4.7.2.5, page 145, describes the LASTPRIVATE clause.

• Section 4.7.2.6, page 146, describes the REDUCTIONclause.

• Section 4.7.2.7, page 149, describes the COPYINclause.

142 004–3901–001

OpenMP Fortran API Directives (UNICOS Systems Only) [4]

4.7.2.1 PRIVATE Clause

The PRIVATE clause declares variables to be private to each thread in a team.

This clause has the following format:

PRIVATE(var[, var] ...)

var A named variable or named common block that is accessible in
the scoping unit. Subobjects cannot be specified. If a named
common block is specified, its name must appear between slashes.

The behavior of a variable declared in a PRIVATE clause is as follows:

• A new object of the same type is declared once for each thread in the team.
The new object is no longer storage associated with the storage location of
the original object.

• All references to the original object in the lexical extent of the directive
construct are replaced with references to the private object.

• Variables defined as PRIVATE are undefined for each thread on entering the
construct and the corresponding shared variable is undefined on exit from a
parallel construct.

• Contents, allocation state, and association status of variables defined as
PRIVATE are undefined when they are referenced outside the lexical extent
(but inside the dynamic extent) of the construct, unless they are passed as
actual arguments to called routines.

Example. The following example shows how to scope variables with the
PRIVATE clause:

INTEGER I,J

I = 1
J = 2

!$OMP PARALLEL PRIVATE(I) FIRSTPRIVATE(J)

I = 3

J = J+ 2

!$OMP END PARALLEL
PRINT *, I, J

In the preceding code, the values of I and J are undefined on exit from the
parallel region.

004–3901–001 143

CF90TM Commands and Directives Reference Manual

4.7.2.2 SHAREDClause

The SHAREDclause makes variables shared among all the threads in a team. All
threads within a team access the same storage area for SHAREDdata.

This clause has the following format:

SHARED(var[, var] ...)

var A named variable or named common block that is accessible in
the scoping unit. Subobjects cannot be specified. If a named
common block is specified, its name must appear between slashes.

4.7.2.3 DEFAULTClause

The DEFAULTclause allows the user to specify a PRIVATE, SHARED, or NONE
default scope attribute for all variables in the lexical extent of any parallel
region. Variables in THREADPRIVATEcommon blocks are not affected by this
clause.

This clause has the following format:

DEFAULT(PRIVATE | SHARED| NONE)

The PRIVATE, SHARED, and NONEspecifications have the following effects:

• Specifying DEFAULT(PRIVATE) makes all named objects in the lexical
extent of the parallel region, including common block variables but
excluding THREADPRIVATEvariables, private to a thread as if each variable
were listed explicitly in a PRIVATE clause.

• Specifying DEFAULT(SHARED)makes all named objects in the lexical extent
of the parallel region shared among the threads in a team, as if each variable
were listed explicitly in a SHAREDclause. In the absence of an explicit
DEFAULTclause, the default behavior is the same as if DEFAULT(SHARED)
were specified.

• Specifying DEFAULT(NONE)declares that there is no implicit default as to
whether variables are PRIVATE or SHARED. In this case, the PRIVATE,
SHARED, FIRSTPRIVATE, LASTPRIVATE, or REDUCTIONattribute of each
variable used in the lexical extent of the parallel region must be specified.

Only one DEFAULTclause can be specified on a PARALLELdirective.

144 004–3901–001

OpenMP Fortran API Directives (UNICOS Systems Only) [4]

Variables can be exempted from a defined default using the PRIVATE, SHARED,
FIRSTPRIVATE, LASTPRIVATE, and REDUCTIONclauses. As a result, the
following example is valid:

!$OMP PARALLEL DO DEFAULT(PRIVATE), FIRSTPRIVATE(I),SHARED(X),

!$OMP& SHARED(R) LASTPRIVATE(I)

4.7.2.4 FIRSTPRIVATE Clause

The FIRSTPRIVATE clause provides a superset of the functionality provided by
the PRIVATE clause.

This clause has the following format:

FIRSTPRIVATE(var[, var] ...)

var A named variable or named common block that is accessible in
the scoping unit. Subobjects cannot be specified. If a named
common block is specified, its name must appear between slashes.

Variables specified are subject to PRIVATE clause semantics
described in Section 4.7.2.1, page 143. In addition, private copies
of the variables are initialized from the original object existing
before the construct.

4.7.2.5 LASTPRIVATE Clause

The LASTPRIVATE clause provides a superset of the functionality provided by
the PRIVATE clause.

When the LASTPRIVATE clause appears on a DOdirective, the thread that
executes the sequentially last iteration updates the version of the object it had
before the construct. When the LASTPRIVATE clause appears in a SECTIONS
directive, the thread that executes the lexically last SECTIONupdates the
version of the object it had before the construct. Subobjects that are not
assigned a value by the last iteration of the DOor the lexically last SECTIONof
the SECTIONSdirective are undefined after the construct.

This clause has the following format:

LASTPRIVATE(var[, var] ...)

004–3901–001 145

CF90TM Commands and Directives Reference Manual

var A named variable or named common block that is accessible in
the scoping unit. Subobjects cannot be specified. If a named
common block is specified, its name must appear between slashes.

Each var is subject to the PRIVATE clause semantics described in
Section 4.7.2.1, page 143.

Example. Correct execution sometimes depends on the value that the last
iteration of a loop assigns to a variable. Such programs must list all such
variables as arguments to a LASTPRIVATE clause so that the values of the
variables are the same as when the loop is executed sequentially.

!$OMP PARALLEL

!$OMP DO LASTPRIVATE(I)

DO I=1,N

A(I) = B(I) + C(I)

ENDDO

!$OMP END PARALLEL
CALL REVERSE(I)

In the preceding code fragment, the value of I at the end of the parallel region
will equal N+1, as in the sequential case.

4.7.2.6 REDUCTIONClause

This clause performs a reduction on the variables specified, with the operator or
the intrinsic specified.

This clause has the following format:

REDUCTION({operator| intrinsic}: var[, var] ...)

operator Specify one of the following: +, * , - , .AND. , .OR. , .EQV. , or
.NEQV.

intrinsic Specify one of the following: MAX, MIN, IAND, IOR, or IEOR.

var A named variable or named common block that is accessible in
the scoping unit. Subobjects cannot be specified. Each var must
be a named scalar variable of intrinsic type.

Variables that appear in a REDUCTIONclause must be SHAREDin
the enclosing context. A private copy of each var is created for
each thread as if the PRIVATE clause had been used. The private

146 004–3901–001

OpenMP Fortran API Directives (UNICOS Systems Only) [4]

copy is initialized according to the operator. For more
information, see Table 6, page 148.

If a named common block is specified, its name must appear
between slashes.

At the end of the REDUCTION, the shared variable is updated to reflect the
result of combining the original value of the (shared) reduction variable with
the final value of each of the private copies using the operator specified. The
reduction operators are all associative (except for subtraction), and the compiler
can freely reassociate the computation of the final value (the partial results of a
subtraction reduction are added to form the final value).

The value of the shared variable becomes undefined when the first thread
reaches the containing clause, and it remains so until the reduction computation
is complete. Normally, the computation is complete at the end of the
REDUCTIONconstruct; however, if the REDUCTIONclause is used on a construct
to which NOWAITis also applied, the shared variable remains undefined until a
barrier synchronization has been performed to ensure that all the threads have
completed the REDUCTIONclause.

The REDUCTIONclause is intended to be used on a region or work-sharing
construct in which the reduction variable is used only in reduction statements
with one of the following forms:

x = x operator expr

x = expr operator x (except for subtraction)

x = intrinsic (x, expr)

x = intrinsic (expr, x)

Some reductions can be expressed in other forms. For instance, a MAXreduction
might be expressed as follows:

IF (x .LT. expr) x = expr

Alternatively, the reduction might be hidden inside a subroutine call. You must
ensure that the operator specified in the REDUCTIONclause matches the
reduction operation.

004–3901–001 147

CF90TM Commands and Directives Reference Manual

The following table lists the operators and intrinsics that are valid and their
canonical initialization values. The actual initialization value will be consistent
with the data type of the reduction variable.

Table 6. Initialization values

Operator/Intrinsic Initialization

+ 0

* 1

- 0

.AND. .TRUE.

.OR. .FALSE.

.EQV. .TRUE.

.NEQV. .FALSE.

MAX Smallest representable number

MIN Largest representable number

IAND All bits on

IOR 0

IEOR 0

Any number of reduction clauses can be specified on the directive, but a
variable can appear only once in a REDUCTIONclause for that directive.

Example 1. The following directive line shows use of the REDUCTIONclause:

!$OMP DO REDUCTION(+: A, Y) REDUCTION(.OR.: AM)

Example 2. The following code fragment shows how to use the REDUCTION
clause:

!$OMP PARALLEL DO DEFAULT(PRIVATE) REDUCTION(+: A,B)
DO I=1,N

CALL WORK(ALOCAL,BLOCAL)

A = A + ALOCAL

B = B + BLOCAL

ENDDO
!$OMP END PARALLEL DO

148 004–3901–001

OpenMP Fortran API Directives (UNICOS Systems Only) [4]

4.7.2.7 COPYINClause

The COPYINclause applies only to common blocks that are declared
THREADPRIVATE. A COPYINclause on a parallel region specifies that the data
in the master thread of the team be copied to the thread private copies of the
common block at the beginning of the parallel region.

This clause has the following format:

COPYIN(var[, var] ...)

var A named variable or named common block that is accessible in
the scoping unit. Subobjects cannot be specified. If a named
common block is specified, its name must appear between slashes.

It is not necessary to specify a whole common block to be copied in.

Example. In the following example, the common blocks BLK1 and FIELDS are
specified as thread private, but only one of the variables in common block
FIELDS is specified to be copied in:

COMMON /BLK1/ SCRATCH

COMMON /FIELDS/ XFIELD, YFIELD, ZFIELD

!$OMP THREADPRIVATE(/BLK1/, /FIELDS/)

!$OMP PARALLEL DEFAULT(PRIVATE) COPYIN(/BLK1/,ZFIELD)

4.7.3 Data Environment Rules

The following rules and restrictions apply with respect to data scope:

1. Sequential DOloop control variables in the lexical extent of a PARALLEL
region that would otherwise be SHAREDbased on default rules are
automatically made private on the PARALLELdirective. Sequential DOloop
control variables with no enclosing PARALLELregion are not classified
automatically. You must guarantee that these indexes are private if the
containing procedures are called from a PARALLELregion.

All implied DOloop control variables are automatically made private at the
enclosing implied DOconstruct.

2. Variables that are made private in a parallel region cannot be made private
again on an enclosed work-sharing directive. As a result, variables that
appear in the PRIVATE, FIRSTPRIVATE, LASTPRIVATE, and REDUCTION

004–3901–001 149

CF90TM Commands and Directives Reference Manual

clauses on a work-sharing directive have shared scope in the enclosing
parallel region.

3. A variable that appears in a PRIVATE, FIRSTPRIVATE, LASTPRIVATE, or
REDUCTIONclause must be definable.

4. Assumed-size and assumed-shape arrays cannot be specified as PRIVATE,
FIRSTPRIVATE, or LASTPRIVATE. Array dummy arguments that are
explicitly shaped (including variably dimensioned) can be declared in any
scoping clause.

5. Fortran pointers and allocatable arrays can be declared as PRIVATE or
SHAREDbut not as FIRSTPRIVATE or LASTPRIVATE.

Within a parallel region, the initial status of a private pointer is undefined.
Private pointers that become allocated during the execution of a parallel
region should be explicitly deallocated by the program prior to the end of
the parallel region to avoid memory leaks.

The association status of a SHAREDpointer becomes undefined upon entry
to and on exit from the parallel construct if it is associated with a target or a
subobject of a target that is PRIVATE, FIRSTPRIVATE, LASTPRIVATE, or
REDUCTIONinside the parallel construct. An allocatable array declared
PRIVATE has an allocation status of not currently allocated on entry to and
on exit from the construct.

6. PRIVATE or SHAREDattributes can be declared for a Cray pointer but not
for the pointee. The scope attribute for the pointee is determined at the
point of pointer definition. You cannot declare a scope attribute for a
pointee. Cray pointers cannot be specified in FIRSTPRIVATE or
LASTPRIVATE clauses.

7. Scope clauses apply only to variables in the static extent of the directive on
which the clause appears, with the exception of variables passed as actual
arguments. Local variables in called routines that do not have the SAVE
attribute are PRIVATE. Common blocks and modules in called routines in
the dynamic extent of a parallel region always have an implicit SHARED
attribute, unless they are THREADPRIVATEcommon blocks.

8. When a named common block is declared as PRIVATE, FIRSTPRIVATE, or
LASTPRIVATE, none of its constituent elements may be declared in another
scope attribute. When individual members of a common block are
privatized, the storage of the specified variables is no longer associated
with the storage of the common block itself.

150 004–3901–001

OpenMP Fortran API Directives (UNICOS Systems Only) [4]

9. Variables that are not allowed in the PRIVATE and SHAREDclauses are not
affected by DEFAULT(PRIVATE) or DEFAULT(SHARED)clauses,
respectively.

10. Clauses can be repeated as needed, but each variable can appear explicitly
in only one clause per directive, with the following exceptions:

• A variable can be specified as both FIRSTPRIVATE and LASTPRIVATE.

• Variables affected by the DEFAULTclause can be listed explicitly in a
clause to override the default specification.

4.8 Directive Binding

Some directives are bound to other directives. A binding specifies the way in
which one directive is related to another. For instance, a directive is bound to a
second directive if it can appear in the dynamic extent of that second directive.
The following rules apply with respect to the dynamic binding of directives:

• The DO, SECTIONS, SINGLE, MASTER, and BARRIERdirectives bind to the
dynamically enclosing PARALLELdirective, if one exists.

• The ORDEREDdirective binds to the dynamically enclosing DOdirective.

• The ATOMICdirective enforces exclusive access with respect to ATOMIC
directives in all threads, not just the current team.

• The CRITICAL directive enforces exclusive access with respect to CRITICAL
directives in all threads, not just the current team.

• A directive can never bind to any directive outside the closest enclosing
PARALLEL.

Example 1. The directive binding rules call for a BARRIERdirective to bind to
the closest enclosing PARALLELdirective.

In the following example, the call from MAIN to SUB2 is valid because the
BARRIER(in SUB3) binds to the PARALLELregion in SUB2. The call from MAIN
to SUB1 is valid because the BARRIERbinds to the PARALLELregion in
subroutine SUB2.

PROGRAM MAIN

CALL SUB1(2)
CALL SUB2(2)

END

004–3901–001 151

CF90TM Commands and Directives Reference Manual

SUBROUTINE SUB1(N)

!$OMP PARALLEL PRIVATE(I) SHARED(N)
!$OMP DO

DO I = 1, N

CALL SUB2(I)

END DO

!$OMP END PARALLEL

END

SUBROUTINE SUB2(K)

!$OMP PARALLEL SHARED(K)

CALL SUB3(K)

!$OMP END PARALLEL
END

SUBROUTINE SUB3(N)

CALL WORK(N)

!$OMP BARRIER
CALL WORK(N)

END

Example 2. The following program shows inner and outer DOdirectives that
bind to different PARALLELregions:

!$OMP PARALLEL DEFAULT(SHARED)

!$OMP DO

DO I = 1, N

!$OMP PARALLEL SHARED(I,N)

!$OMP DO
DO J = 1, N

CALL WORK(I,J)

END DO

!$OMP END PARALLEL

END DO

!$OMP END PARALLEL

A following variation of the preceding example also shows correct binding:

!$OMP PARALLEL DEFAULT(SHARED)

!$OMP DO

DO I = 1, N
CALL SOME_WORK(I,N)

END DO

!$OMP END PARALLEL

152 004–3901–001

OpenMP Fortran API Directives (UNICOS Systems Only) [4]

SUBROUTINE SOME_WORK(I,N)
!$OMP PARALLEL DEFAULT(SHARED)

!$OMP DO

DO J = 1, N

CALL WORK(I,J)

END DO

!$OMP END PARALLEL
RETURN

END

4.9 Directive Nesting

The following rules apply to the dynamic nesting of directives:

• A PARALLELdirective dynamically inside another PARALLELdirective
logically establishes a new team, which is composed of only the current
thread unless nested parallelism is enabled.

• DO, SECTIONS, and SINGLE directives that bind to the same PARALLEL
directive cannot be nested one inside the other.

• DO, SECTIONS, and SINGLE directives are not permitted in the dynamic
extent of CRITICAL and MASTERdirectives.

• BARRIERdirectives are not permitted in the dynamic extent of DO,
SECTIONS, SINGLE, MASTER, and CRITICAL directives.

• MASTERdirectives are not permitted in the dynamic extent of DO,
SECTIONS, and SINGLE directives.

• ORDEREDsections are not allowed in the dynamic extent of CRITICAL
sections.

• Any directive set that is legal when executed dynamically inside a PARALLEL
region is also legal when executed outside a parallel region. When executed
dynamically outside a user-specified parallel region, the directive is executed
with respect to a team composed of only the master thread.

Example 1. The following example is incorrect because the inner and outer DO
directives are nested and bind to the same PARALLELdirective:

PROGRAM WRONG1

!$OMP PARALLEL DEFAULT(SHARED)
!$OMP DO

004–3901–001 153

CF90TM Commands and Directives Reference Manual

DO I = 1, N

!$OMP DO
DO J = 1, N

CALL WORK(I,J)

END DO

END DO

!$OMP END PARALLEL

END

The following dynamically nested version of the preceding code is also
incorrect:

PROGRAM WRONG2
!$OMP PARALLEL DEFAULT(SHARED)

!$OMP DO

DO I = 1, N

CALL SOME_WORK(I,N)

END DO

!$OMP END PARALLEL

SUBROUTINE SOME_WORK(I,N)

!$OMP DO

DO J = 1, N

CALL WORK(I,J)
END DO

RETURN

END

Example 2. The following example is incorrect because the DOand SINGLE
directives are nested, and they bind to the same PARALLELregion:

PROGRAM WRONG3

!$OMP PARALLEL DEFAULT(SHARED)

!$OMP DO

DO I = 1, N
!$OMP SINGLE

CALL WORK(I)

!$OMP END SINGLE

END DO

!$OMP END PARALLEL

END

Example 3. The following example is incorrect because a BARRIERdirective
inside a SINGLE or a DOdirective can result in deadlock:

154 004–3901–001

OpenMP Fortran API Directives (UNICOS Systems Only) [4]

PROGRAM WRONG3

!$OMP PARALLEL DEFAULT(SHARED)
!$OMP DO

DO I = 1, N

CALL WORK(I)

!$OMP BARRIER

CALL MORE_WORK(I)

END DO
!$OMP END PARALLEL

END

Example 4. The following example is incorrect because the BARRIERresults in
deadlock due to the fact that only one thread at a time can enter the critical
section:

PROGRAM WRONG4

!$OMP PARALLEL DEFAULT(SHARED)

!$OMP CRITICAL

CALL WORK(N,1)
!$OMP BARRIER

CALL MORE_WORK(N,2)

!$OMP END CRITICAL

!$OMP END PARALLEL

END

Example 5. The following example is incorrect because the BARRIERresults in
deadlock due to the fact that only one thread executes the SINGLE section:

PROGRAM WRONG5

!$OMP PARALLEL DEFAULT(SHARED)
CALL SETUP(N)

!$OMP SINGLE

CALL WORK(N,1)

!$OMP BARRIER

CALL MORE_WORK(N,2)
!$OMP END SINGLE

CALL FINISH(N)

!$OMP END PARALLEL

END

004–3901–001 155

CF90TM Commands and Directives Reference Manual

4.10 Analyzing Data Dependencies for Multiprocessing

The essential condition required to parallelize a loop correctly is that each
iteration of the loop must be independent of all other iterations. If a loop meets
this condition, then the order in which the iterations of the loop execute is not
important. They can be executed backward or at the same time, and the answer
is still the same. This property is captured by the notion of data independence.

For a loop to be data independent, no iterations of the loop can write a value
into a memory location that is read or written by any other iteration of that
loop. It is all right if the same iteration reads and/or writes a memory location
repeatedly as long as no others do; it is all right if many iterations read the
same location as long as none of them write to it.

In a Fortran program, memory locations are represented by variable names. So,
to determine if a particular loop can be run in parallel, examine the way
variables are used in the loop. Because data dependence occurs only when
memory locations are modified, pay particular attention to variables that appear
on the left-hand side of assignment statements. If a variable is neither modified
nor passed to a function or subroutine, there is no data dependence associated
with it.

The Fortran compiler supports four kinds of variable usage within a parallel
loop: SHARED, PRIVATE, LASTPRIVATE, and REDUCTION. If a variable is
declared as SHARED, all iterations of the loop use the same copy. If a variable is
declared as PRIVATE, each iteration is given its own uninitialized copy. A
variable is declared SHAREDif it is only read (not written) within the loop or if
it is an array where each iteration of the loop uses a different element of the
array. A variable can be PRIVATE if its value does not depend on any other
iteration and if its value is used only within a single iteration. The PRIVATE
variable is essentially temporary; a new copy can be created in each loop
iteration without changing the final answer. As a special case, if only the last
value of a variable computed on the last iteration is used outside the loop (but
would otherwise qualify as a PRIVATE variable), the loop can be
multiprocessed by declaring the variable to be LASTPRIVATE.

It is often difficult to analyze loops for data dependence information. Each use
of each variable must be examined to determine if it fulfills the criteria for
PRIVATE, LASTPRIVATE, SHARED, or REDUCTION. If all of the uses conform,
the loop can be parallelized. If not, the loop cannot be parallelized as written,
but can possibly be rewritten into an equivalent parallel form.

When -O task3 is specified in the f90 (1) command line, the compiler
analyzes loops for data dependence. If the compiler determines that a loop is
data-independent, it automatically inserts the required compiler directives. You

156 004–3901–001

OpenMP Fortran API Directives (UNICOS Systems Only) [4]

can specify the -O msgs or -O negmsgs options to obtain messages from the
compiler that indicate why certain loops were candidates for tasking and why
certain others were not. For more information on these compiler options, see
Section 2.2.20, page 20.

4.10.1 Dependency Analysis Examples

This section contains examples that show dependency analysis.

Example 1. Simple independence. In this example, each iteration writes to a
different location in A, and none of the variables appearing on the right-hand
side are ever written to; they are only read from. This loop can be correctly run
in parallel. All the variables are SHAREDexcept for I , which is either PRIVATE
or LASTPRIVATE, depending on whether the last value of I is used later in the
code.

DO I = 1,N

A(I) = X + B(I)*C(I)
END DO

Example 2. Data dependence. The following code fragment contains A(I) on
the left-hand side and A(I-1) on the right. This means that one iteration of the
loop writes to a location in A and the next iteration reads from that same
location. Because different iterations of the loop read and write the same
memory location, this loop cannot be run in parallel.

DO I = 2,N

A(I) = B(I) - A(I-1)

END DO

Example 3. Stride not 1. This example is similar to the previous example. The
difference is that the stride of the DOloop is now 2 rather than 1. A(I) now
references every other element of A, and A(I-1) references exactly those
elements of A that are not referenced by A(I) . None of the data locations on
the right-hand side is ever the same as any of the data locations written to on
the left-hand side. The data are disjoint, so there is no dependence. The loop
can be run in parallel. Arrays A and B can be declared SHARED, while variable
I should be declared PRIVATE or LASTPRIVATE.

DO I = 2,N,2
A(I) = B(I) - A(I-1)

END DO

004–3901–001 157

CF90TM Commands and Directives Reference Manual

Example 4. Local variable. In the following loop, each iteration of the loop
reads and writes the variable X. However, no loop iteration ever needs the
value of X from any other iteration. X is used as a temporary variable; its value
does not survive from one iteration to the next.

This loop can be parallelized by declaring X to be a PRIVATE variable within
the loop. Note that B(I) is both read and written by the loop. This is not a
problem because each iteration has a different value for I , so each iteration uses
a different B(I) . The same B(I) is allowed to be read and written as long as it
is done by the same iteration of the loop. The loop can be run in parallel.
Arrays A and B can be declared SHARED, while variable I should be declared
PRIVATE or LASTPRIVATE.

DO I = 1, N

X = A(I)*A(I) + B(I)
B(I) = X + B(I)*X

END DO

Example 5. Function call. The value of X in any iteration of the following loop
is independent of the value of X in any other iteration, so X can be made a
PRIVATE variable. The loop can be run in parallel. Arrays A, B, C, and D can be
declared SHARED, while variable I should be declared PRIVATE or
LASTPRIVATE.

DO I = 1, N

X = SQRT(A(I))

B(I) = X*C(I) + X*D(I)
END DO

This loop invokes an intrinsic function, SQRT. It is possible to use functions
and/or subroutines (intrinsic or user defined) within a parallel loop. However,
verify that the parallel invocations of the routine do not interfere with one
another. In particular, SQRTreturns a value that depends only on its input
argument, does not modify global data, and does not use static storage (it has
no side effects).

The Fortran 90 intrinsic functions have no side effects. The intrinsic functions
can be used safely within a parallel loop. The intrinsic subroutines, however,
can have side effects. Most Fortran library functions cannot be included in a
parallel loop. In particular, rand is not safe for multiprocessing. For
user-written routines, it is your responsibility to ensure that the routines can be
correctly multiprocessed.

!
Caution: Do not use the -e v option on the f90 (1) command line when
compiling routines called within a parallel loop.

158 004–3901–001

OpenMP Fortran API Directives (UNICOS Systems Only) [4]

Example 6. Rewritable data dependence. Here, the value of INDX survives the
loop iteration and is carried into the next iteration. This loop cannot be
parallelized as it is written. Making INDX a PRIVATE variable does not work;
you need the value of INDX computed in the previous iteration. It is possible to
rewrite this loop to make it parallel. See Section 4.10.2, page 160, for an example.

INDX = 0

DO I = 1, N
INDX = INDX + I

A(I) = B(I) + C(INDX)

END DO

Example 7. Exit branch. The following loop contains an exit branch; that is,
under certain conditions the flow of control suddenly exits the loop. The
compiler cannot parallelize loops containing exit branches.

DO I = 1, N

IF (A(I) .LT. EPSILON) EXIT

A(I) = A(I) * B(I)
END DO

Example 8. Complicated independence. Initially, it appears that the following
loop cannot be run in parallel because it uses both W(I) and W(I-K) .
However, because the value of I varies between K+1 and 2*K , then I-K goes
from 1 to K. This means that the W(I-K) term varies from W(1) to W(K) , while
the W(I) term varies from W(K+1) to W(2*K) . Therefore, W(I-K) in any
iteration of the loop is never the same memory location as W(I) in any other
iterations. Because there is no data overlap, there are no data dependencies.
This loop can be run in parallel. Elements W, B, and K can be declared SHARED,
but variable I should be declared PRIVATE or LASTPRIVATE.

DO I = K+1, 2*K

W(I) = W(I) + B(I,K) * W(I-K)

END DO

The preceding code illustrates a general rule: the more complex the expression
used to index an array, the harder it is to analyze. If the arrays in a loop are
indexed only by the loop index variable, the analysis is usually straightforward.

Example 9. Inconsequential data dependence. The data dependence in the
following loop is present because it is possible that at some point that I will be
the same as INDEX, so there will be a data location that is being read and
written by different iterations of the loop. In this special case, you can simply
ignore it. You know that when I and INDEX are equal, the value written into
A(I) is exactly the same as the value that is already there. The fact that some

004–3901–001 159

CF90TM Commands and Directives Reference Manual

iterations of the loop read the value before it is written and some after it is
written is not important because they all get the same value. Therefore, this
loop can be parallelized. Array A can be declared SHARED, but variable I
should be declared PRIVATE or LASTPRIVATE.

INDEX = SELECT(N)

DO I = 1, N

A(I) = A(INDEX)
END DO

Example 10. Local array. In the following code fragment, each iteration of the
loop uses the same locations in array D. However, closer inspection reveals that
array D is being used as a temporary. This can be multiprocessed by declaring D
to be PRIVATE. The Fortran compiler allows arrays (even multidimensional
arrays) to be PRIVATE variables, with the following restrictions: the size of the
array must be either a constant or an expression; the dimension bounds must
be specified; the PRIVATE array cannot have been declared using a variable or
the asterisk (*) syntax; and assumed-shape, deferred-shape, and pointer arrays
are not permitted.

DO I = 1, N

D(1) = A(I,1) - A(J,1)

D(2) = A(I,2) - A(J,2)

D(3) = A(I,3) - A(J,3)

TOTAL_DISTANCE(I,J) = SQRT(D(1)**2 + D(2)**2 + D(3)**2)
END DO

The preceding loop can be parallelized. Arrays TOTAL_DISTANCEand A can be
declared SHARED, and array D and variable I can be declared PRIVATE or
LASTPRIVATE.

4.10.2 Rewriting Data Dependencies

Many loops that have data dependencies can be rewritten so that some or all of
the loop can be run in parallel. You must first locate the statement(s) in the
loop that cannot be made parallel and try to find another way to express it that
does not depend on any other iteration of the loop. If this fails, try to pull the
statements out of the loop and into a separate loop, allowing the remainder of
the original loop to be run in parallel.

After you identify data dependencies, you can use various techniques to rewrite
the code to break the dependence. Sometimes the dependencies in a loop
cannot be broken, and you must either accept the serial execution rate or try to
find a new parallel method of solving the problem. The following examples

160 004–3901–001

OpenMP Fortran API Directives (UNICOS Systems Only) [4]

show how to deal with commonly occurring situations. These are by no means
exhaustive but cover many situations that happen in practice.

Example 1. Loop-carried value. The following code segment is the same as the
rewritable data dependence example in the previous section. INDX has its value
carried from iteration to iteration. However, you can compute the appropriate
value for INDX without making reference to any previous value.

INDX = 0

DO I = 1, N
INDX = INDX + I

A(I) = B(I) + C(INDX)

END DO

For example, consider the following code:

!$OMP PARALLEL DO PRIVATE (I, INDX)

DO I = 1, N
INDX = (I*(I+1))/2

A(I) = B(I) + C(INDX)

END DO

In this loop, the value of INDX is computed without using any values computed
on any other iteration. INDX can correctly be made a PRIVATE variable, and
the loop can now be multiprocessed.

Example 2. Indirect indexing. Consider the following code:

DO I = 1, N
IX = INDEXX(I)

IY = INDEXY(I)

XFORCE(I) = XFORCE(I) + NEWXFORCE(IX)

YFORCE(I) = YFORCE(I) + NEWYFORCE(IY)

IXX = IXOFFSET(IX)

IYY = IYOFFSET(IY)
TOTAL(IXX, IYY) = TOTAL(IXX, IYY) + EPSILON

END DO

It is the final statement that causes problems. The indexes IXX and IYY are
computed in a complex way and depend on the values from the IXOFFSET and
IYOFFSET arrays. It is not known if TOTAL(IXX,IYY) in one iteration of the
loop will always be different from TOTAL(IXX,IYY) in every other iteration of
the loop.

You can pull the statement out into its own separate loop by expanding IXX
and IYY into arrays to hold intermediate values, as follows:

004–3901–001 161

CF90TM Commands and Directives Reference Manual

!$OMP PARALLEL DO PRIVATE(IX, IY, I)

DO I = 1, N
IX = INDEXX(I)

IY = INDEXY(I)

XFORCE(I) = XFORCE(I) + NEWXFORCE(IX)

YFORCE(I) = YFORCE(I) + NEWYFORCE(IY)

IXX(I) = IXOFFSET(IX)

IYY(I) = IYOFFSET(IY)
END DO

DO I = 1, N

TOTAL(IXX(I),IYY(I)) = TOTAL(IXX(I), IYY(I)) + EPSILON

END DO

Here, IXX and IYY have been turned into arrays to hold all the values
computed by the first loop. The first loop (containing most of the work) can
now be run in parallel. Only the second loop must still be run serially. This is
true if IXOFFSET or IYOFFSET are permutation vectors.

If you were certain that the value for IXX was always different in every
iteration of the loop, then the original loop could be run in parallel. It could
also be run in parallel if IYY was always different. If IXX (or IYY) is always
different in every iteration, then TOTAL(IXX,IYY) is never the same location
in any iteration of the loop, and so there is no data conflict.

This sort of knowledge is program-specific and should always be used with
great care. It may be true for a particular data set, but to run the original code
in parallel as it stands, you need to be sure it will always be true for all possible
input data sets.

Example 3. Recurrence. The following example shows a recurrence, which exists
when a value computed in one iteration is immediately used by another
iteration. There is no good way of running this loop in parallel. If this type of
construct appears in a critical loop, try pulling the statement(s) out of the loop
as in the previous example. Sometimes another loop encloses the recurrence; in
that case, try to parallelize the outer loop.

DO I = 1,N

X(I) = X(I-1) + Y(I)

END DO

Example 4. Sum reduction. The following example shows an operation known
as a reduction. Reductions occur when an array of values is combined and
reduced into a single value.

162 004–3901–001

OpenMP Fortran API Directives (UNICOS Systems Only) [4]

SUM = 0.0

DO I = 1,N
SUM = SUM + A(I)

END DO

This example is a sum reduction because the combining operation is addition.
Here, the value of SUMis carried from one loop iteration to the next, so this
loop cannot be multiprocessed. However, because this loop simply sums the
elements of A(I) , you can rewrite the loop to accumulate multiple,
independent subtotals and do much of the work in parallel, as follows:

NUM_THREADS = OMP_GET_NUM_THREADS()
!

! IPIECE_SIZE = N/NUM_THREADS ROUNDED UP

!

IPIECE_SIZE = (N + (NUM_THREADS-1)) / NUM_THREADS

DO K = 1, NUM_THREADS
PARTIAL_SUM(K) = 0.0

!

! THE FIRST THREAD DOES 1 THROUGH IPIECE_SIZE, THE

! SECOND DOES IPIECE_SIZE + 1 THROUGH 2*IPIECE_SIZE,

! ETC. IF N IS NOT EVENLY DIVISIBLE BY NUM_THREADS,
! THE LAST PIECE NEEDS TO TAKE THIS INTO ACCOUNT,

! HENCE THE "MIN" EXPRESSION.

!

DO I = K*IPIECE_SIZE - IPIECE_SIZE + 1, MIN(K*IPIECE_SIZE,N)

PARTIAL_SUM(K) = PARTIAL_SUM(K) + A(I)

END DO
END DO

!

! NOW ADD UP THE PARTIAL SUMS

SUM = 0.0

DO I = 1, NUM_THREADS
SUM = SUM + PARTIAL_SUM(I)

END DO

The outer loop K can be run in parallel. In this method, the array pieces for the
partial sums are contiguous, resulting in good cache utilization and
performance.

Because this is an important and common transformation, automatic support is
provided by the REDUCTIONclause:

004–3901–001 163

CF90TM Commands and Directives Reference Manual

SUM = 0.0

!$OMP PARALLEL DO PRIVATE (I), REDUCTION (+:SUM)
DO 10 I = 1, N

SUM = SUM + A(I)

10 CONTINUE

The previous code has essentially the same meaning as the much longer and
more confusing code above. Adding an extra dimension to an array to permit
parallel computation and then combining the partial results is an important
technique for trying to break data dependencies. This technique is often useful.

Reduction transformations such as this do not produce the same results as the
original code. Because computer arithmetic has limited precision, when you
sum the values together in a different order, as was done here, the round-off
errors accumulate slightly differently. It is probable that the final answer will be
slightly different from the original loop. Both answers are equally correct. The
difference is usually irrelevant, but sometimes it can be significant. If the
difference is significant, neither answer is really trustworthy.

This example is a sum reduction because the operator is plus (+). The Fortran
compiler supports the following types of reduction operations:

• sum: p = p+a(i)

• product: p = p*a(i)

• min: m = MIN(m,a(i))

• max: m = MAX(m,a(i))

For example,

!$OMP PARALLEL DO PRIVATE (I), REDUCTION(+:BG_SUM),

!$OMP+REDUCTION(*:BG_PROD), REDUCTION(MIN:BG_MIN), REDUCTION(MAX:BG_MAX)

DO I = 1,N

BG_SUM = BG_SUM + A(I)

BG_PROD = BG_PROD * A(I)
BG_MIN = MIN(BG_MIN, A(I))

BG_MAX = MAX(BG_MAX, A(I))

END DO

The following is another example of a reduction transformation:

DO I = 1, N

TOTAL = 0.0

DO J = 1, M

164 004–3901–001

OpenMP Fortran API Directives (UNICOS Systems Only) [4]

TOTAL = TOTAL + A(J)

END DO
B(I) = C(I) * TOTAL

END DO

Initially, it might look as if the inner loop should be parallelized with a
REDUCTIONclause. However, consider the outer I loop. Although TOTAL
cannot be made a PRIVATE variable in the inner loop, it fulfills the criteria for a
PRIVATE variable in the outer loop: the value of TOTAL in each iteration of the
outer loop does not depend on the value of TOTAL in any other iteration of the
outer loop. Thus, you do not have to rewrite the loop; you can parallelize this
reduction on the outer I loop, making TOTALand J local variables.

4.11 Work Quantum

A certain amount of overhead is associated with multiprocessing a loop. If the
work occurring in the loop is small, the loop can actually run slower by
multiprocessing than by single processing. To avoid this, make the amount of
work inside the multiprocessed region as large as possible, as is shown in the
following examples.

Example 1. Loop interchange. Consider the following code:

DO K = 1, N

DO I = 1, N

DO J = 1, N

A(I,J) = A(I,J) + B(I,K) * C(K,J)

END DO
END DO

END DO

For the preceding code fragment, you can parallelize the J loop or the I loop.
You cannot parallelize the K loop because different iterations of the K loop read
and write the same values of A(I,J) . Try to parallelize the outermost DOloop
if possible, because it encloses the most work. In this example, that is the I
loop. For this example, use the technique called loop interchange. Although the
parallelizable loops are not the outermost ones, you can reorder the loops to
make one of them outermost.

Thus, loop interchange would produce the following code fragment:

!$OMP PARALLEL DO PRIVATE(I, J, K)

DO I = 1, N
DO K = 1, N

004–3901–001 165

CF90TM Commands and Directives Reference Manual

DO J = 1, N

A(I,J) = A(I,J) + B(I,K) * C(K,J)
END DO

END DO

END DO

Now the parallelizable loop encloses more work and shows better performance.
In practice, relatively few loops can be reordered in this way. However, it does
occasionally happen that several loops in a nest of loops are candidates for
parallelization. In such a case, it is usually best to parallelize the outermost one.

Occasionally, the only loop available to be parallelized has a fairly small
amount of work. It may be worthwhile to force certain loops to run without
parallelism or to select between a parallel version and a serial version, on the
basis of the length of the loop.

Example 2. Conditional parallelism. The loop is worth parallelizing if N is
sufficiently large. To overcome the parallel loop overhead, N needs to be around
1000, depending on the specific hardware and the context of the program. The
optimized version would uses an IF clause on the PARALLEL DOdirective:

!$OMP PARALLEL DO IF (N .GE. 1000), PRIVATE(I)

DO I = 1, N
A(I) = A(I) + X*B(I)

END DO

166 004–3901–001

Source Preprocessing [5]

Source preprocessing can help you port a program from one platform to
another by allowing you to specify source text that is platform-specific.

For a source file to be preprocessed automatically, it must have an uppercase
extension, either .F (for a file in fixed source form) or .F90 (for a file in free
source form). To specify preprocessing of source files with other extensions,
including lowercase ones, use the -e P or -e Z options described in Section
5.4, page 176.

5.1 General Rules

You can alter the source code through source preprocessing directives. These
directives are fully explained in Section 5.2, page 168. The directives must be
used according to the following rules:

• Do not use source preprocessor (#) directives within multiline compiler
directives (CDIR$, !DIR$, CMIC$, !MIC$, C$OMP, or !$OMP).

• You cannot include a source file that contains an #if directive without a
balancing #endif directive within the same file.

The #if directive includes the #ifdef and #ifndef directives.

• If a directive is too long for one source line, the backslash character (\) is
used to continue the directive on successive lines. Successive lines of the
directive can begin in any column.

The backslash character (\) can appear in any location within a directive in
which whitespace can occur. A backslash character (\) in a comment is
treated as a comment character. It is not recognized as signaling
continuation.

• Every directive begins with the pound character (#), and the pound
character (#) must be in column 1.

• Blank and tab (HT) characters can appear between the pound character (#)
and the directive keyword.

• You cannot write form feed (FF) or vertical tab (VT) characters to separate
tokens on a directive line. That is, a source preprocessing line must be
continued, by using a backslash character (\), if it spans source lines.

004–3901–001 167

CF90TM Commands and Directives Reference Manual

• Blanks are significant, so the use of spaces within a source preprocessing
directive is independent of the source form of the file. The fields of a source
preprocessing directive must be separated by blank or tab (HT) characters.

• Any user-specified identifier that is used in a directive must follow
Fortran 90 rules for identifier formation. The exceptions to this rule are as
follows:

– The first character in a source preprocessing name (a macro name) can be
an underscore character (_).

– Source preprocessing names are significant in their first 132 characters
whereas a typical Fortran identifier is significant only in its first 31
characters.

• Source preprocessing identifier names are case sensitive.

• Numeric literal constants must be integer literal constants or real literal
constants, as defined for Fortran 90.

• Comments written in the style of the C language, beginning with /* and
ending with */ , can appear anywhere within a source preprocessing
directive in which blanks or tabs can appear. The comment, however, must
begin and end on a single source line.

5.2 Directives

The blanks shown in the syntax descriptions of the source preprocessing
directives are significant. The tab character (HT) can be used in place of a
blank. Multiple blanks can appear wherever a single blank appears in a syntax
description.

5.2.1 #include Directive

The #include directive directs the system to use the content of a file. Just as
with the INCLUDE line path processing defined by the Fortran 90 standard, an
#include directive effectively replaces that directive line by the content of
filename. This directive has the following formats:

#include " filename"

#include < filename>

168 004–3901–001

Source Preprocessing [5]

filename A file or directory to be used.

In the first form, if filename does not begin with a slash (/)
character, the system searches for the named file, first in the
directory of the file containing the #include directive, then in
the sequence of directories specified by the -I option(s) on the
f90 (1) command line, and then the standard (default) sequence.
If filename begins with a slash (/) character, it is used as is and is
assumed to be the full path to the file.

The second form directs the search to begin in the sequence of
directories specified by the -I option(s) on the f90 (1) command
line and then search the standard (default) sequence.

The Fortran 90 standard prohibits recursion in INCLUDE files, so recursion is
also prohibited in the #include form.

The #include directives can be nested.

When the compiler is invoked to do only source preprocessing, not compilation,
text will be included by #include directives but not by Fortran 90 INCLUDE
lines. For information on the source preprocessing command line options, see
Section 5.4, page 176.

5.2.2 #define Directive

The #define directive lets you declare a variable and assign a value to the
variable. It also allows you to define a function-like macro. This directive has
the following format:

#define identifier value

#define identifier(dummy_arg_list) value

The first format defines an object-like macro (also called a source preprocessing
variable), and the second defines a function-like macro. In the second format,
the left parenthesis that begins the dummy_arg_list must immediately follow the
identifier, with no intervening white space.

identifier The name of the variable or macro being defined.

Rules for Fortran variable names apply; that is,
the name cannot have a leading underscore

004–3901–001 169

CF90TM Commands and Directives Reference Manual

character (_). For example, ORIG is a valid name,
but _ORIG is invalid.

dummy_arg_list A list of dummy argument identifiers.

value The value is a sequence of tokens. The value can
be continued onto more than one line using
backslash (\) characters.

If a preprocessor identifier appears in a subsequent #define directive without
being the subject of an intervening #undef directive, and the value in the
second #define directive is different from the value in the first #define
directive, then the preprocessor issues a warning message about the
redefinition. The second directive’s value is used. For more information on the
#undef directive, see Section 5.2.3, page 171.

When an object-like macro’s identifier is encountered as a token in the source
file, it is replaced with the value specified in the macro’s definition. This is
referred to as an invocation of the macro.

The invocation of a function-like macro is more complicated. It consists of the
macro’s identifier, immediately followed by a left parenthesis with no
intervening white space, then a list of actual arguments separated by commas,
and finally a terminating right parenthesis. There must be the same number of
actual arguments in the invocation as there are dummy arguments in the
#define directive. Each actual argument must be balanced in terms of any
internal parentheses. The invocation is replaced with the value given in the
macro’s definition, with each occurrence of any dummy argument in the
definition replaced with the corresponding actual argument in the invocation.

For example, the following program prints Hello, world. when compiled
with the -F option and then run:

PROGRAM P

#define GREETING ’Hello, world.’

PRINT *, GREETING

END PROGRAM P

The following program prints Hello, Hello, world. when compiled with
the -F option and then run:

PROGRAM P
#define GREETING(str1, str2) str1, str1, str2

PRINT *, GREETING(’Hello, ’, ’world.’)

END PROGRAM P

170 004–3901–001

Source Preprocessing [5]

5.2.3 #undef Directive

The #undef directive sets the definition state of identifier to an undefined value.
If identifier is not currently defined, the #undef directive has no effect. This
directive has the following format:

#undef identifier

identifier The name of the variable or macro being undefined.

5.2.4 # (Null) Directive

The null directive simply consists of the pound character (#) in column 1 with
no significant characters following it. That is, the remainder of the line is
typically blank or is a source preprocessing comment. This directive is
generally used for spacing out other directive lines.

5.2.5 Conditional Directives

Conditional directives cause lines of code to either be produced by the source
preprocessor or to be skipped. The conditional directives within a source file
form if-groups. An if-group begins with an #if , #ifdef , or #ifndef directive,
followed by lines of source code that you may or may not want skipped.
Several similarities exist between the Fortran 90 IF construct and if-groups:

• The #elif directive corresponds to the ELSE IF statement.

• The #else directive corresponds to the ELSE statement.

• Just as an IF construct must be terminated with an END IF statement, an
if-group must be terminated with an #endif directive.

• Just as with an IF construct, any of the blocks of source statements in an
if-group can be empty.

For example, you can write the following directives:

#if MIN_VALUE == 1

#else

...

#endif

004–3901–001 171

CF90TM Commands and Directives Reference Manual

Determining which group of source lines (if any) to compile in an if-group is
essentially the same as the Fortran 90 determination of which block of an IF
construct should be executed.

5.2.5.1 #if Directive

The #if directive has the following format:

#if expression

expression An expression. The values in expression must be integer literal
constants or previously defined preprocessor variables. The
expression is an integer constant expression as defined by the C
language standard. All the operators in the expression are C
operators, not Fortran 90 operators. The expression is evaluated
according to C language rules, not Fortran 90 expression
evaluation rules.

Note that unlike the Fortran 90 IF construct and IF statement
logical expressions, expression in an #if directive need not be
enclosed in parentheses.

The #if expression can also contain the unary defined operator, which can be
used in either of the following formats:

defined identifier

defined(identifier)

When the defined subexpression is evaluated, the value is 1 if identifier is
currently defined, and 0 if it is not.

All currently defined source preprocessing variables in expression, except those
that are operands of defined unary operators, are replaced with their values.
During this evaluation, all source preprocessing variables that are undefined
evaluate to 0.

Note that the following two directive forms are not equivalent:

• #if X

• #if defined(X)

172 004–3901–001

Source Preprocessing [5]

In the first case, the condition is true if X has a nonzero value. In the second
case, the condition is true only if X has been defined (has been given a value
that could be 0).

5.2.5.2 #ifdef Directive

The #ifdef directive is used to determine if identifier is predefined by the
source preprocessor, has been named in a #define directive, or has been
named in a f90 -D command line option. For more information on the -D
option, see Section 5.4, page 176. This directive has the following format:

#ifdef identifier

The #ifdef directive is equivalent to either of the following two directives:

• #if defined identifier

• #if defined(identifier)

5.2.5.3 #ifndef Directive

The #ifndef directive tests for the presence of an identifier that is not defined.
This directive has the following format:

#ifndef identifier

This directive is equivalent to either of the following two directives:

• #if ! defined identifier

• #if ! defined(identifier)

5.2.5.4 #elif Directive

The #elif directive serves the same purpose in an if-group as does the ELSE
IF statement of a Fortran 90 IF construct. This directive has the following
format:

#elif expression

004–3901–001 173

CF90TM Commands and Directives Reference Manual

expression The expression follows all the rules of the integer constant
expression in an #if directive.

5.2.5.5 #else Directive

The #else directive serves the same purpose in an if-group as does the ELSE
statement of a Fortran 90 IF construct. This directive has the following format:

#else

5.2.5.6 #endif Directive

The #endif directive serves the same purpose in an if-group as does the
END IF statement of a Fortran 90 IF construct. This directive has the following
format:

#endif

5.3 Predefined Macros

CF90 source preprocessing supports a number of Cray Research predefined
macros. They are divided into groups as follows:

• Macros that are based on the host machine

• Macros that are based on Cray system targets

The following predefined macros are based on the host system (the system
upon which the compilation is being done):

Macro Description

unix , ___unix Always defined. (The leading characters in the
second form consist of 2 consecutive underscores.)

_UNICOS Defined only when the compilation is being done
on a UNICOS system. Its value is the major
release level of UNICOS installed on the system.

The following predefined macros are based on Cray systems as targets:

174 004–3901–001

Source Preprocessing [5]

Macro Description

cray , CRAY, _CRAY These macros are defined for UNICOS and
UNICOS/mk systems as targets.

CRAY1, _CRAY1 These macros are defined for UNICOS systems as
targets.

YMP Defined if the addr32 component of the TARGET
environment variable is set.

_CRAYC90 Defined if the target machine is a CRAY C90
system.

_CRAYT90 Defined if the target machine is a CRAY T90
system.

_CRAYT3E, _CRAYMPP Defined if the target machine is a CRAY T3E
system.

Note: If you were using the _CRAYMPPmacro,
in releases prior to CF90 3.0, to differentiate the
CRAY T3D system from other systems, you
need to change that macro to either _CRAYT3D
(for CRAY T3D systems) or _CRAYT3E(for
CRAY T3E systems).

_CRAYIEEE Defined if the target machine uses IEEE
floating-point format real values. Undefined if the
target machine uses Cray floating-point format.

_MEMSIZE The value is obtained from the memsize
component of the TARGETenvironment variable.

_MAXVL Defined as the hardware vector register length (64
or 128). Defined only when the target machine
has vector registers.

_ADDR32 Defined for UNICOS systems as targets. The
target system must have 32–bit address registers.

004–3901–001 175

CF90TM Commands and Directives Reference Manual

_ADDR64 Defined for UNICOS and UNICOS/mk systems
as targets. The target system must have 64–bit
address registers.

5.4 Command Line Options

Several f90 (1) command line options affect source preprocessing. They are as
follows:

• The -D identifier[=value] [, identifier[=value]] ... option, which defines
variables used for source preprocessing. For more information on this
option, see Section 2.2.7, page 14.

• The -e P option, which performs source preprocessing on file.f [90] or
file.F [90] but does not compile. The -e P option produces file.i . For more
information on this option, see Section 2.2.6, page 9.

• The -e Z option, which performs source preprocessing and compilation on
file.f [90] or file.F [90]. The -e Z option produces file.i . For more
information on this option, see Section 2.2.6, page 9.

• The -F option, which enables macro expansion throughout the source file.
For more information on this option, see Section 2.2.9, page 15.

• The -U identifier [, identifier] ... option, which undefines variables used
for source preprocessing. For more information on this option, see Section
2.2.28, page 54.

• The -Wp" srcpp_opt" option, which passes srcpp_opt to the source
preprocessor. For more information on this option, see Section 2.2.33, page
55.

The -D identifier[=value] [, identifier[=value]] ... , -F ,
-U identifier [, identifier] ... , and -Wp" srcpp_opt" options are ignored unless
one of the following is true:

• The Fortran input source file is specified as either file.F or file.F90 .

• The -e P or -e Z options have been specified.

176 004–3901–001

Autotasking Directives (UNICOS systems
only) (Outmoded) [A]

If your system includes multiple central processing units (CPUs), your program
may be able to make use of multitasking, or running simultaneously on more
than one CPU. This technology speeds up program execution by decreasing
elapsed time. You can determine the number of CPUs on your system by
entering the (1) command.

Note: The directives in this appendix are outmoded. They are supported for
older codes that require this functionality. Cray Research ecourages you to
write new codes using the OpenMP Fortran API directives described in
Chapter 4, page 119.

The Autotasking directives are not available on UNICOS/mk systems.

You can mix Autotasking directives and OpenMP Fortran API directives in
the same compilation unit.

The CF90 compiler automatically recognizes many parallel coding constructs,
and it compiles them for multitasking without requiring additional user input;
this capability is called Autotasking.

To benefit from the Autotasking software, your program must be suitable for
dividing into separate tasks. If you are uncertain whether you can make use of
this capability, you can compare execution times of different Autotasked
versions of your program by using ATExpert to analyze performance gains. To
use ATExpert, specify -e X on the f90 (1) command line.

Autotasking directives let you specify the level of parallelism desired. You can
start and end parallel processing at any number of suitable points within a
subprogram. These directives are useful when the compiler fails to recognize
parallelism that you know exists. This can occur, for example, when you have
subroutine calls that can be executed in parallel.

This section provides an overview of the Autotasking directives recognized by
the CF90 compiler. For more information on the tasking capabilities available
through the command line, see Section 2.2.20, page 20.

004–3901–001 177

CF90TM Commands and Directives Reference Manual

!
Caution: The ability to use Autotasking directives in a subprogram that host
associates a variable can result in undefined behavior. This note applies only
to Autotasking directives; it does not apply to parallelism detected by the
compiler. For more information on host association, see the Fortran Language
Reference Manual, Volume 1, publication SR–3902.

Autotasking directives control the way the CF90 compiler multitasks your
program. You can insert tasking directive lines directly into your source code.
The CF90 compiler supports the following Autotasking directives:

• CASE, ENDCASE

• CNCALL

• DOALL

• DOPARALLEL, ENDDO

• GUARD, ENDGUARD

• MAXCPUS

• NUMCPUS

• PARALLEL, ENDPARALLEL

• PERMUTATION

• WAIT, SEND

The following sections describe the use and syntax of the Autotasking directives.

A.1 Using Directives

The following sections describe how to use directives and the effects they have
on programs.

A.1.1 Directive Lines

An Autotasking directive line begins with the characters CMIC$ or !MIC$. How
you specify directives depends on the source form you are using, as follows:

• If you are using fixed source form, indicate a directive line by placing the
characters CMIC$ or !MIC$ in columns 1 through 5. If the compiler
encounters a nonblank character in column 6, the line is assumed to be a

178 004–3901–001

Autotasking Directives (UNICOS systems only) (Outmoded) [A]

directive continuation line. Columns 7 and beyond can contain one or more
directives. Characters in directives entered in columns beyond the default
column width are ignored.

• If you are using free source form, indicate a directive by the characters
!MIC$, followed by a space, and then one or more directives. If the position
following the !MIC$ contains a character other than a blank, tab, or newline
character, the line is assumed to be a continuation line. The !MIC$ need not
start in column 1, but it must be the first text on a line.

In the following example, an asterisk (*) appears in column 6 to indicate that
the second line is a continuation of the preceding line:

!MIC$ CN

!MIC$*CALL

If you want to specify more than one directive on a line, separate each directive
with a comma. Some directives require that you specify one or more
arguments; when specifying a directive of this type, no other directive can
appear on the line.

Spaces can precede, follow, or be embedded within a directive, regardless of
source form.

Code portability is maintained despite the use of directives. In the following
example, the ! symbol in column 1 causes other compilers to treat the CF90
directive as a comment:

A=10.

!DIR$ DOPARALLEL

DO 10,I=1,10...

Do not use source preprocessor (#) directives within multiline compiler
directives (CMIC$ or !MIC$).

A.1.2 Range and Placement of Directives

The range and placement of directives is as follows:

• The MAXCPUSdirective can appear anywhere in your source code. All other
directives must appear within a program unit.

• The NUMCPUSdirective toggles a compiler feature at the point at which the
directive appears in the code. This directive is in effect until it is reset or

004–3901–001 179

CF90TM Commands and Directives Reference Manual

until the end of the program unit, at which time the command line settings
become the default for the remainder of the compilation.

• The ENDDOdirective must appear after the loop body of a DOPARALLELloop,
if it appears. The corresponding DOPARALLELdirective must be present.

• The following directives apply only to the next loop encountered lexically:

– CNCALL

– DOALL

– DOPARALLEL

– PERMUTATION

– PREFERTASK

• The following Autotasking directives must appear as pairs within a program
unit:

– CASE, ENDCASE

– GUARD, ENDGUARD

– PARALLEL, ENDPARALLEL

A.1.3 Interaction of Directives with the -x Command Line Option

The -x option on the f90 (1) accepts one or more directives as arguments.
When your input is compiled, the compiler ignores directives named as
arguments to the -x option. If you specify -x all , all directives are ignored. If
you specify -x mic , all directives preceded by !MIC$ or CMIC$ are ignored.

For more information on the -x option, see Section 2.2.35, page 56.

A.1.4 Command Line Options and Directives

Some features activated by directives can also be specified on the f90 (1)
command line; a directive applies to parts of programs in which it appears, but
a command line option applies to the entire compilation.

Vectorization, scalar optimization, and tasking can be controlled through both
command line options and directives. If a compiler optimization feature is
disabled by default or is disabled by an argument to the -O option to the
f90 (1), the associated ! prefix$ directives are ignored. The following list shows

180 004–3901–001

Autotasking Directives (UNICOS systems only) (Outmoded) [A]

CF90 compiler optimization features, related command line options, and related
directives:

• Specifying the -O 0 option on the command line disables all optimization.
All scalar optimization, vectorization, and tasking directives are ignored.

• Specifying the -O task0 option disables tasking and causes the compiler to
ignore tasking directives and Autotasking directives.

The following sections describe directive syntax and the effects of the
Autotasking directives on CF90 programs.

A.1.5 Migrating to OpenMP Fortran API Directives.

The OpenMP Fortran API is a standard that consists of a set of compiler
directives, library routines, and environment variables that can be used to
specify shared memory parallelism in Fortran programs. OpenMP allows you
to create and manage parallel programs while ensuring portablilty.

The following table compares the Cray Autotasking directives to the OpenMP
Fortran API constructs with the same functionality.

Autotasking
directive

OpenMP Construct

CASE SECTIONS

ENDCASE END SECTIONS

DOALL PARALLEL DO

DOPARALLEL DO

ENDDO END DO

GUARD CRITICAL

ENDGUARD END CRITICAL

PARALLEL PARALLEL

ENDPARALLEL END PARALLEL

Note: Prior to the CF90 3.1 release, the CNCALL, MAXCPUS, NUMCPUS, and
PERMUTATIONdirectives were supported as !MIC$ Autotasking directives.
These directives are now accepted with both the !MIC$ and a !DIR$ prefix.
This flexibility allows you to disable the Autotasking directives (by specifying
-x mic) but still allow the compiler to recognize the OpenMP directives and
the CNCALL, MAXCPUS, NUMCPUS, and PERMUTATIONdirectives.

004–3901–001 181

CF90TM Commands and Directives Reference Manual

A.2 Concurrent Blocks: CASEand ENDCASE

The !MIC$ CASE directive serves as a separator between adjacent code blocks
that can be executed concurrently. It marks the beginning of a control structure
and signals that the code following it will be executed on a single processor.

!MIC$ ENDCASEserves as the terminator for a group of one or more parallel
CASEdirectives. All work within the control structure must complete before
execution continues with the code below the ENDCASE. The compiler does not
automatically generate CASEdirectives.

The formats for these directives are as follows:

!MIC$ CASE

!MIC$ ENDCASE

Example 1. The following example shows how the CASEdirective is most often
used:

!MIC$ PARALLEL MAXCPUS(3)

!MIC$ CASE

CALL ABC

!MIC$ CASE
CALL DEF

!MIC$ CASE

CALL GHI

!MIC$ ENDCASE

!MIC$ ENDPARALLEL

In the preceding code, the MAXCPUSparameter on the PARALLELdirective
indicates that only three processors are necessary for this parallel region
because it contains only three control structures. The CASEdirectives indicate
that the subroutine calls in this example are concurrently executable. The code
within each control structure is executed on a single processor. The work in the
subroutine calls completes before execution continues with the code following
the ENDCASE.

Example 2. A single CASE/ENDCASEdirective pair can also be used within a
parallel region to allow only one processor to execute a code block, as follows:

!MIC$ PARALLEL

!MIC$ CASE
CALL XYZ

182 004–3901–001

Autotasking Directives (UNICOS systems only) (Outmoded) [A]

!MIC$ ENDCASE

:
!MIC$ DOPARALLEL

DO I = 1, IMAX

:

END DO

!MIC$ ENDPARALLEL

In the preceding code, only one processor calls XYZ, and then all available
processors execute the code following the ENDCASE. The MAXCPUSparameter is
not used in this example because all available processors are required for the
code following the ENDCASEdirective.

A.3 Declare Lack of Side Effects: CNCALL

The format for this directive is as follows:

!MIC$ CNCALL

This directive is also implemented with a !DIR$ prefix. For detailed
information on this directive, see Section 3.2.1, page 78.

A.4 Mark Parallel Loop: DOALL

The !MIC$ DOALL directive indicates that the DOloop beginning on the next
line may be executed in parallel by multiple processors. No directive is needed
to end a DOALLloop, (that is, the DOALLinitiates a parallel region that contains
only a DOloop with independent iterations). The loop index variable for a
DOALLmust be specified as a PRIVATE variable.

Every variable in a parallel region must be declared as PRIVATE or SHARED
unless the AUTOSCOPEparameter appears on the directive.

The format of this directive is as follows:

!MIC$ DOALL parameter [[,] parameter] ... [[,] work_distribution]

parameter Table 7, page 184, describes parameters for the
DOALLdirective. More than one parameter can

004–3901–001 183

CF90TM Commands and Directives Reference Manual

appear on the directive, but they must be
separated by commas or blanks.

work_distribution Parameters that specify the work distribution
policy for iterations of the parallel DOloop. Only
one can be used for a given DOloop.

By default, iterations are distributed one at a time
(SINGLE). Table 8, page 186, describes the work
distribution parameters.

Note that the specifications for parameter do not have to precede the
specifications for work_distribution. The parameter and the work_distribution items
can be in any order, and they can be intermixed. Table 7, page 184, and Table 8,
page 186, describe the parameter and work_distribution arguments.

Table 7. Autotasking directive parameter

parameter Description

AUTOSCOPE Specifies that all unscoped variables that have not been explicitly scoped
with a PRIVATE or SHAREDdeclaration are scoped according to the
default rules for scoping variables. For more information on the default
rules for scoping variables, see Section A.12, page 195.

IF(expr) Performs a run-time test to choose between uniprocessing and
multiprocessing. When not specified, multiprocessing is chosen if the
loop is not in a routine that was called from within a parallel region. The
logical expression (expr) determines (at run time) whether
multiprocessing will occur. When expr is true, multiprocessing is enabled.

MAXCPUS(n) Specifies the maximum number of CPUs that the parallel region can use
effectively. Does not ensure that n processors will be assigned. This is the
optimal maximum. The n argument must be of type integer. Argument n
can be a constant, a variable, or an expression. Both of the following are
valid specifications:

MAXCPUS (2)

MAXCPUS (NUM)

For information on the MAXCPUSdirective, see Section A.7, page 189.

PRIVATE(var[, var] ...)

184 004–3901–001

Autotasking Directives (UNICOS systems only) (Outmoded) [A]

parameter Description

Specifies that the variables listed will have private scope; that is, each task
(original or helper) will have its own private copy of these variables. The
PRIVATE clause identifies those variables that are not shared between
parallel processes. One variable cannot be declared both PRIVATE and
SHARED. The loop control variable of the DOALLloop cannot be specified
as SHARED; it must be specified as PRIVATE. Variables cannot be
subobjects (that is, array elements or components of derived types).

SAVELAST Specifies that the values of private variables, from the final iteration of a
DOALLdirective, will continue in the original task after execution of the
iterations of the DOALL. By default, private variables are not guaranteed
to retain the last iteration values. SAVELASTcan be used only with
DOALL, and if the full iteration set is not completed (for example, if the
loop is exited early), the values of private variables are indeterminate.

SHARED(var[, var] ...)

Specifies that the variables listed will have shared scope; that is, they are
accessible to both the original task and all helper tasks. The SHARED
clause identifies those variables that are shared between parallel
processes. One variable cannot be declared both PRIVATE and SHARED.
The loop control variable of the DOALLloop cannot be specified as
SHARED; it must be specified as PRIVATE. Variables cannot be subobjects
(that is, array elements or components of derived types).

004–3901–001 185

CF90TM Commands and Directives Reference Manual

Table 8. Autotasking directive work_distribution

work_ distribution Description

CHUNKSIZE(n) Specifies the number of iterations to distribute to an available processor. n
is an integer expression. For best performance, n should be an integer
constant. For example, given 100 iterations and CHUNKSIZE(4) , 4 iterations
at a time are distributed to each available processor until the 100 iterations
are complete.

GUIDED[(vl)] Specifies the use of guided self-scheduling to distribute the iterations to
available processors. This mechanism minimizes synchronization overhead
while providing acceptable dynamic load balancing.
The vl argument is the vector length. vl must be of type integer and can be
either a constant or a variable.
The default vl is 1.

NUMCHUNKS(m) Specifies that the iterations are divided into m chunks of equal size (with a
possible smaller residual chunk) and distribute these chunks to available
processors. The m argument must be an integer constant. For example,
given 100 iterations and NUMCHUNKS(4), 25 iterations at a time are
distributed to each available processor until the 100 iterations are complete.

SINGLE Specifies that iterations should be distributed one at a time to available
processors. This is the default distribution policy.

VECTOR Distributes the maximum vector length (either 64 or 128 iterations at a time)
to each processor. In addition, this work_distribution specification has the
same effect as if you had specified an IVDEP directive. For information on
the IVDEP directive, see Section 3.2.3, page 80.

A.5 Mark Parallel Loop: DOPARALLELand ENDDO

The !MIC$ DOPARALLELdirective indicates that the DOloop beginning on the
next line may be executed in parallel by multiple processors. No directive is
needed to end a DOPARALLELloop.

The !MIC$ ENDDOdirective extends a control structure beyond the DOloop.
Without a !MIC$ ENDDOdirective, all of the CPUs will synchronize
immediately after the loop, so that no processors can continue executing until
all of the iterations are done. A !MIC$ ENDDOdirective moves this point of
synchronization from the end of the loop to the line of the !MIC$ ENDDO
directive.

186 004–3901–001

Autotasking Directives (UNICOS systems only) (Outmoded) [A]

This lets the CF90 compiler use parallelism in loops containing some forms of
reduction computations. These directives can be used only within a parallel
region bounded by the PARALLELand ENDPARALLELdirectives.

Every variable in a parallel region must be declared as PRIVATE or SHARED.

The formats for these directives are as follows:

!MIC$ DOPARALLEL [work_distribution]

!MIC$ ENDDO

The work_distribution parameters are described in Table 8, page 186. Only one
work_distribution parameter can be used for a given DOloop.

In the following example, a parallel region is defined by PARALLELand
ENDPARALLEL. A reduction computation is implemented by a
DOPARALLEL/ENDDOpair, which ensures that all contributions to SUMand BIG
are included, and GUARD/ENDGUARD, which protects the updating of shared
variables SUMand BIG .

SUM = 0.0

BIG = -1.0

!MIC$ PARALLEL PRIVATE(XSUM,XBIG,I)
!MIC$1 SHARED(SUM,BIG,AA,BB,CC)

XSUM = 0.0

XBIG = -1.0

!MIC$ DOPARALLEL

DO I = 1, 2000
:

XSUM = XSUM + (AA(I)*(BB(I)-CC(AA(I))))

XBIG = MAX(ABS(AA(I)*BB(I)), XBIG)

:

ENDDO

!MIC$ GUARD
SUM = SUM + XSUM

BIG = MAX(XBIG,BIG)

!MIC$ ENDGUARD

!MIC$ ENDDO

!MIC$ ENDPARALLEL

004–3901–001 187

CF90TM Commands and Directives Reference Manual

A.6 Critical Region: GUARDand ENDGUARD

The !MIC$ GUARDand !MIC$ ENDGUARDdirectives delimit a critical region,
providing the necessary synchronization to protect or guard the code inside the
critical region. A critical region is a code block that is to be executed by only one
processor at a time, although all processors that enter a parallel region will
execute it.

The formats for these directives are as follows:

!MIC$ GUARD [n]

!MIC$ ENDGUARD[n]

n Mutual exclusion flag; two regions with the same flag cannot be
active concurrently. n must be of type integer and can be a
variable or an expression, from which the low-order 6 bits are
used. For example, GUARD 1and GUARD 2can be active
concurrently, but two GUARD 7directives cannot.

For optimal performance, no flag should be specified. Otherwise, n should be
an integer constant; a general expression can be used for the unusual case that
the critical region number must be passed to a lower-level routine. When n is
not provided, the critical region blocks only other instances of itself, but no
other critical regions. Critical regions may appear anywhere in a program. That
is, they are not limited to parallel regions.

You may receive incorrect results from your program if a routine being inlined
has a dummy argument (under control of a !MIC GUARDdirective) that is a
scalar and the actual argument associated with that dummy argument is an
array element reference. Inlining should be disabled for the following:

• A routine that contains a GUARDdirective.

• A routine that is in the calling chain to a routine containing a GUARD
directive.

The following example program may produce unexpected results if compiled
with inlining enabled:

PROGRAM IMMEDIATE_DANGER

! PROGRAMS OF THIS TYPE MAY PRODUCE UNEXPECTED

! RESULTS IF COMPILED WITH INLINING ENABLED

DIMENSION IA(10)

188 004–3901–001

Autotasking Directives (UNICOS systems only) (Outmoded) [A]

IA = 0

!MIC$ DOALL SHARED(IA) PRIVATE(I)
DO I = 1, 10000

CALL INC(IA(1))

END DO

PRINT *, IA(1)

END

SUBROUTINE INC(J)
!MIC$ GUARD

J = J + 1

!MIC$ ENDGUARD

END

A.7 Allocate CPUs: MAXCPUS

The !MIC$ MAXCPUSdirective indicates the maximum number of CPUs that a
section of code can use effectively. It does not guarantee that this number of
processors will actually be assigned. The MAXCPUSdirective is in effect until a
subsequent MAXCPUSdirective is encountered or the program unit is ended.
The MAXCPUSdirective is only in effect for the current program unit; it does not
extend to subroutines called from that program unit. This directive affects only
user-declared parallel regions.

The format for this directive is as follows:

!MIC$ MAXCPUS (ncpus)

ncpus Specifies the maximum number of CPUs that a section of code
can use effectively. ncpus must be of type integer and can be a
constant, variable, or expression.

When the MAXCPUSdirective is used, it has the effect of adding the MAXCPUS
parameter with the specified value to each subsequent !MIC$ DOALL or
!MIC$ PARALLEL directive in the program unit. Without this directive, CPUs
are allocated based on the NCPUSenvironment variable and workload.

The number of CPUs specified with this directive (ncpus) must be equal to or
less than the number of CPUs specified by the NCPUSenvironment variable. If
the number requested with the MAXCPUSdirective is greater than the number
specified by the NCPUSenvironment variable, no error is issued, but the
directive has no effect.

004–3901–001 189

CF90TM Commands and Directives Reference Manual

Warning: The MAXCPUSdirective will be removed in the CF90 3.2 release. In
its place, use the MAXCPUSparameter on the DOALLor PARALLELdirective.
For more information on the MAXCPUSparameter, see Table 7, page 184.

A.8 Specify Maximum Number of CPUs for a Parallel Region: NUMCPUS

The !MIC$ NUMCPUSdirective globally indicates the maximum number of
CPUs that a section of code can use effectively. It does not guarantee that this
number of processors will actually be assigned. The NUMCPUSdirective is in
effect until a subsequent NUMCPUSdirective is encountered. The NUMCPUS
directive differs from the MAXCPUSdirective in that it stays in effect across
program units. The NUMCPUSdirective remains in effect for all subsequently
called subroutines. Without this directive, CPUs are allocated based on the
NCPUSenvironment variable and workload.

The format for this directive is as follows:

!MIC$ NUMCPUS (ncpus)

ncpus Globally specifies the maximum number of CPUs that a code can
use effectively. ncpus must be of type integer and can be a
constant, variable, or expression.

The number of CPUs specified with this directive should be equal to or less
than the number of CPUs specified by the NCPUSenvironment variable. If the
number requested with the NUMCPUSdirective is greater than the number
specified by the NCPUSenvironment variable, no error is issued, but the
directive has no effect.

A.9 Mark Parallel Region: PARALLELand ENDPARALLEL

The !MIC$ PARALLEL and !MIC$ ENDPARALLELdirectives mark,
respectively, the beginning and end of a parallel region. Parallel regions are
combinations of redundant code blocks and partitioned code blocks. The
formats for these directives are as follows:

!MIC$ PARALLEL [parameter [[,] parameter] ...]

!MIC$ ENDPARALLEL

190 004–3901–001

Autotasking Directives (UNICOS systems only) (Outmoded) [A]

The parameters are described in Table 7, page 184.

The PARALLELdirective indicates where multiple processors enter execution.
The portion of code that all processors execute until reaching a DOPARALLEL
directive is called a redundant code block. Because the iterations of the DOloop
within a DOPARALLELdirective are distributed across available processors, this
portion of code is called the partitioned code block. The scope of a variable in a
parallel region is either shared or private. Shared variables are used by all
processors; private variables are unique to a processor.

A.10 Declare an Array with No Repeated Values: PERMUTATION

The format for this directive is as follows:

!MIC$ PERMUTATION (ia [, ia] ...)

This directive is also implemented with a !DIR$ prefix. For detailed
information on this directive, see Section 3.2.6, page 82.

A.11 Declare a Cross-iteration Dependency: WAIT and SEND

The !MIC$ WAIT and !MIC$ SEND directives allow tasking of a loop by
delimiting code that must be executed sequentially. This is useful for loops in
which a substantial portion of code can be executed in parallel.

The WAIT and SENDdirectives must be contained within loops controlled by
!MIC$ DO ALL or !MIC$ DO PARALLELdirectives. The WAIT and SEND
directives use the loop control variable to ensure sequential execution of the
delimited code. The block that requires sequential execution must begin with a
WAIT directive and end with a SENDdirective. The formats for these directives
are as follows:

!MIC$ WAIT [POINT(n)] [SPAN(m)]

!MIC$ SEND [POINT(n)] [IF(condition)]

POINT(n) For n, specify an integer constant or a variable
that can be used to identify a WAIT/SENDpair
within a loop. Within a loop that contains more

004–3901–001 191

CF90TM Commands and Directives Reference Manual

than one section of dependent code, all
WAIT/SENDpairs except one must be numbered.
The value of n must be unique for each
WAIT/SENDpair.

SPAN(m) For m, specify an integer constant between 1 and
64, inclusive, that indicates the dependency span.
The default is 1.

The dependency span is the number of iterations
across which the dependency exists. For most
loops with dependencies across iterations, the
dependency span is 1. When it exceeds 1, you
must use the SPANoption.

Multiple spans within a parallel region are not
allowed.

All of the WAIT directives within a given DO ALL
or DO PARALLELloop must be specified either
without any SPAN(m) value or with the same
SPAN(m) value.

IF(condition) Specifies a condition that must be met before
execution can proceed past the SENDdirective.

Note: The atexpert (1) utility adds the overhead from WAIT and SEND
directives to the iteration overhead. Because the iteration overhead is typically
small, a high value for this overhead often indicates WAIT/SENDoverhead.

If the execution flow reaches a WAIT directive, it must also reach a
corresponding SENDdirective at some time during execution of the loop. If
execution flow reaches a WAIT directive without also reaching a corresponding
SENDdirective, the loop may never complete because it is possible for a task to
stop at the WAIT directive. Conversely, if execution flow reaches a SEND
directive without also reaching the corresponding WAIT directive, the directives
are not being used properly and the results may be incorrect.

The number of WAIT/SENDpairs that can be executed depends on the presence
of a SPANparameter, as follows:

• If no SPANis specified, the maximum number of WAIT/SENDpairs allowed
is 65. This includes one unnumbered WAIT/SENDpair and 64 WAIT/SEND
pairs uniquely numbered from 1 to 64, inclusive. (In other words, one of the
WAIT/SENDpairs can be specified without a POINT clause and the rest must

192 004–3901–001

Autotasking Directives (UNICOS systems only) (Outmoded) [A]

have POINT values in the range 1 through (64/m) – 1, where m is the SPAN
value.)

• If the SPAN(m) parameter is specified, the maximum number of spanned
WAIT/SENDpairs that can be specified is 64 divided by m, where m is the
SPANvalue.

Example 1. If SPAN(4) is specified, no more than 16 WAIT/SENDpairs can
be specified. This includes one unnumbered WAIT/SENDpair and 15
WAIT/SENDpairs uniquely numbered from 1 to 15, inclusive.

Example 2. If SPAN(10) is specified, no more than 6 WAIT/SENDpairs can
be specified (one unnumbered pair and numbered pairs from 1 to 5,
inclusive).

Example 3. The following program’s flow is incorrect because the SEND
directive is never executed when the ELSE branch is taken:

PROGRAM WRONG1

!MIC$ WAIT

IF . . .

. . .

!MIC$ SEND

. . .

ELSE

. . .

ENDIF

Example 4. The following program’s flow is incorrect because there are 100
SENDdirectives for 1 WAIT directive:

PROGRAM WRONG2

!MIC$ WAIT

DO I=1,100

. . .

!MIC$ SEND

. . .

ENDDO

Example 5. In the following loop, iteration I waits at the WAIT directive until
iteration I-1 executes past the SENDdirective.

004–3901–001 193

CF90TM Commands and Directives Reference Manual

!MIC$ DO ALL SHARED(...) PRIVATE(...)

DO 10 I=2,N
parallel work

!MIC$ WAIT

F(I) = F(I-1)

!MIC$ SEND

more parallel work
10 CONTINUE

Example 6. A WAIT/SENDpair must be executed only once during each
iteration of the DO ALLor DO PARALLELloop. For the following loop, the
SENDdirective would be executed Mtimes for each loop iteration. This is an
incorrect use of the directives:

PROGRAM WRONG

!MIC$ DO ALL SHARED(...) PRIVATE(...)

DO 10 I=2,N
parallel work

!MIC$ WAIT

dependent work
DO 20 J=1,M

work
!MIC$ SEND

work
20 CONTINUE

more parallel work
10 CONTINUE

Correct use of SEND:

PROGRAM RIGHT

!MIC$ DO ALL SHARED(...) PRIVATE(...)
DO 10 I=2,N

parallel work
!MIC$ WAIT

dependent work
DO 20 J=1,M

work
20 CONTINUE

!MIC$ SEND

more parallel work
10 CONTINUE

194 004–3901–001

Autotasking Directives (UNICOS systems only) (Outmoded) [A]

Example 7. The following example shows that the SENDdirective is executed
only once for each iteration of the DO 10 loop:

!MIC$ DO ALL SHARED(...) PRIVATE(...)
DO 10 I=2,N

parallel work
!MIC$ WAIT

dependent work
DO 20 J=1,M

more dependent work
!MIC$ SEND IF (J.EQ.M)

a large amount of work that is not dependent
across iterations of the DO 10 loop

20 CONTINUE

10 CONTINUE

Without the IF option, the SENDdirective would have to be placed after the
20 CONTINUEstatement and only a small amount of parallelism could be
exploited.

A.12 Autoscoping Rules

When the CF90 compiler generates code for a !MIC$ DOALL or a
!MIC$ PARALLEL directive, one of the following must be true:

• All the variables and arrays in the region must be defined in a SHAREDor
PRIVATE parameter.

• The AUTOSCOPEparameter must be specified.

A shared variable or array is one that all the processors use. A private variable or
array is one for which each of the processors has it own storage. If the
AUTOSCOPEparameter is specified, the compiler analyzes a variable or array to
determine whether it is shared or private. The following characteristics apply to
private variables and arrays:

• The variable or array is written to and read from. The write operation must
occur first. For more information, see Section A.12.2.4, page 198

• The loop control variable of the task loop does not appear in the subscript
expression.

If the preceding conditions are not true, the variable is treated as a shared
variable.

004–3901–001 195

CF90TM Commands and Directives Reference Manual

Example. Because of the suppress of J caused by subsequent directives,
autoscoping determines that the loop index of the inner serial loop is shared:

!MIC$ DOALL AUTOSCOPE
DO I = 1, N

DO J = 1, M

A(J, I) = I+J

END DO

END DO

!MIC$ DOALL ... ! IMPLICIT SUPPRESS OF J
!DIR$ SUPPRESS J ! EXPLICIT SUPPRESS OF J

If the compiler determines that the value of J should be retained upon exit
from the parallel loop, it stores the last value of J in shared memory. In these
cases, J is treated as a shared variable. The intermediate J index values in the
parallel region are not stored and do not use this shared memory location.

The SHAREDand PRIVATE parameters on a !MIC$ DOALL or a
!MIC$ PARALLEL statement override the autoscope determination.

For more information on the AUTOSCOPE, SHARED, and PRIVATE parameters,
see Table 7, page 184.

A.12.1 User-added Scope Required

If you want the scope of arguments to subroutine calls to be private, you must
explicitly declare them as private. To be certain of correct scope, all variables or
arrays that occur in a function or subroutine call should be specified as shared
or private.

The following example shows use of a subroutine call:

!MIC$ DOALL AUTOSCOPE

DO I = N1, N2

CALL MMP(A(I), B, C)

END DO

It is indeterminate whether A(I) , B, or C is read or written. The CF90 compiler
assigns A as shared because it is indexed by the control variable. The compiler
assumes that B and C are read; therefore, it designates them as shared variables.
The compiler prints a message stating that such variables as A, B, and C require
a PRIVATE or SHAREDdeclaration, but the compiler treats them as shared.

196 004–3901–001

Autotasking Directives (UNICOS systems only) (Outmoded) [A]

A.12.2 Examples

The following examples show shared and private variables and arrays.

A.12.2.1 Read-only Variables

The following examples show read-only variables:

!MIC$ DOALL PRIVATE(I) SHARED(N1,N2,A)

DO I = N1, N2

...= A

END DO

A is a shared variable because it is a read-only variable. All processors share the
same location for A.

!MIC$ DOALL SHARED(N1,N2,M1,M2,V) PRIVATE(I,J)

DO 10 I = N1, N2
DO 10 J = M1, M2

... = V(J)

10 CONTINUE

V is shared because it is a read-only array. N1, N2, M1, and M2 are also shared
because they are read-only variables. I and J are written and then read, so they
are private variables.

A.12.2.2 Array Indexed by Loop Index

The following example shows an array indexed by the loop index:

!MIC$ DOALL SHARED(N1,N2,V,U,J) PRIVATE(I,T)

DO I = N1, N2
T = V(I)

U(I,J) = T

END DO

U and V are shared arrays because they are indexed by the loop index. All
processors share the same location for V and U. T is written and then read, so it
is a private variable. J is shared because it is a read-only variable.

A.12.2.3 Read-then-write Variables

The following example shows read-then-write variables:

004–3901–001 197

CF90TM Commands and Directives Reference Manual

SUM = 0.0

!MIC$ DOALL SHARED(N1,N2,V,SUM) PRIVATE(I,T)
DO I = N1, N2

T = V(I)

!MIC$ GUARD

SUM = SUM + T

!MIC$ ENDGUARD

END DO

SUMis a shared variable because it is read before it is written. Special care is
needed in writing into a shared variable that is not indexed by the loop control
variable.

A.12.2.4 Write-then-read Variables and Arrays

The following example shows write-then-read variables and arrays:

!MIC$ DOALL SHARED(N1,N2,M1,M2) PRIVATE(I,J,V)

DO 10 I = N1, N2

DO 10 J = M1, M2

V(J) = ...
... = V(J)

10 CONTINUE

V is written to and then read. It must be a private array.

A.13 Autotasking Restrictions

The following are some general Autotasking restrictions:

• Subprograms that contain an assigned GOTOstatement cannot contain
Autotasking directives.

• Branches out of a parallel region are not permitted and can produce
incorrect results.

• A GUARDregion must be obey the same nesting rules that apply to
well-formed code blocks such as blocked IF or DOloop constructs. A GUARD
region cannot begin in one code block and end in a different code block.

• Incorrect results may be produced, depending on how data items are stored
in memory, when the following three conditions are all present:

198 004–3901–001

Autotasking Directives (UNICOS systems only) (Outmoded) [A]

– Two or more data objects appear on a SHAREDparameter list of a
microtasking PARALLELor DOALLdirective.

– The objects themselves, or components of the objects, are written by
different processors.

– All or part of two such objects are stored in the same word of memory.

If the object is scoped SHAREDby the AUTOSCOPEdirective, the object is
treated as if it appeared in an explicit SHAREDparameter list. For example:

CHARACTER*(9) B(1000)

!MIC$ DOALL SHARED(B) PRIVATE(I)

DO I = 1, 1000
B(I) = ’ABCDEFGHI’

END DO

Incorrect results may be produced because the hardware requires all load
and storage operations to be performed on aligned 64-bit words. When two
processors attempt to update parts of the same work without the benefit of
synchronization (that is, without using GUARDand ENDGUARDdirectives),
the following events may take place:

– Processor 1 loads word Winto register 1.

– Processor 2 loads word Winto register 2.

– Processors 1 and 2 update registers 1 and 2, respectively.

– Processor 1 stores register 1 to word W.

– Processor 2 stores register 2 to word W.

At the end, the effect of processor 1 is lost. To prevent the preceding race
conditions (related to false sharing) from occuring, do the following:

– Ensure that objects updated by different processors do not occupy part of
a single word in memory. This is the preferred remedy because the
additional storage costs are small and the overhead for critical sections is
high.

– Prevent update race conditions by inserting GUARDand ENDGUARD
directives.

004–3901–001 199

Glossary

argument keyword

The name of a dummy (or formal) argument. This name is used in the
subprogram definition; it also may be used when the subprogram is invoked to
associate an actual argument with a dummy argument. Using argument
keywords allows the actual arguments to appear in any order. The Fortran 90
standard specifies argument keywords for all intrinsic procedures. Argument
keywords for user-supplied external procedures may be specified in a
procedure interface block.

array

(1) A data structure that contains a series of related data items arranged in rows
and columns for convenient access. The C shell and the awk(1) command can
store and process arrays. (2) In Fortran 90, an object with the DIMENSION
attribute. It is a set of scalar data, all of the same type and type parameters.
The rank of an array is at least 1, and at most 7. Arrays may be used as
expression operands, procedure arguments, and function results, and they may
appear in input/output (I/O) lists.

association

An association permits an entity to be referenced by different names in a scoping
unit or by the same or different names in different scoping units. Several kinds
of association exist. The principal kinds of association are pointer association,
argument association, host association, use association, and storage association.

automatic variable

A variable that is not a dummy argument but whose declaration depends on a
nonconstant expression (array bounds and/or character length).

Autotasking

A trademarked process of Cray Research that automatically divides a program
into individual tasks and organizes them to make the most efficient use of the
computer hardware.

004–3901–001 201

CF90TM Commands and Directives Reference Manual

bottom loading

An optimization technique used on some scalar loops in which operands are
prefetched during each loop iteration for use in the next iteration. The operand
is available as soon as the first loop instruction executes. A prefetch is
performed even during the final loop iteration, before the loop’s final jump test
has been performed.

cache

In a processing unit, a high-speed buffer storage that is continually updated to
contain recently accessed contents of main storage. Its purpose is to reduce
access time. In disk subsystems, a method the channel buffers use to buffer disk
data during transfer between the devices and memory.

cache line

On Cray MPP systems, a cache line consists of four quad words, which is the
maximum size of a hardware message.

CIV

A constant increment variable is a variable that is incremented only by a loop
invariant value (for example, in a loop with index J, the statement J = J + K, in
which K can be equal to 0, J is a CIV).

constant

A data object whose value cannot be changed. A named entity with the
PARAMETERattribute is called a named constant. A constant without a name is
called a literal constant.

construct

A sequence of statements that starts with a SELECT CASE, DO, IF , or WHERE
statement and ends with the corresponding terminal statement.

control construct

An action statement that can change the normal execution sequence (such as a
GO TO, STOP, or RETURNstatement) or a CASE, DO, or IF construct.

202 004–3901–001

Glossary

critical region

On Cray MPP systems, a synchronization mechanism that enforces serial access
to a piece of code. Only one PE may execute in a critical region at a time.

data entity

A data object, the result of the evaluation of an expression, or the result of the
execution of a function reference (also called the function result). A data entity
always has a type.

data object

A constant, a variable, or a part of a constant or variable.

declaration

A nonexecutable statement that specifies the attributes of a data object (for
example, it may be used to specify the type of a variable or function result or
the shape of an array).

definition

This term is used in two ways. (1) A data object is said to be defined when it
has a valid or predictable value; otherwise, it is undefined. It may be given a
valid value by execution of statements such as assignment or input. Under
certain circumstances, it may subsequently become undefined. (2) Procedures
and derived types are said to be defined when their descriptions have been
supplied by the programmer and are available in a program unit.

derived type

A type that is not intrinsic (a user-defined type); it requires a type definition to
name the type and specify its components. The components may be of intrinsic
or user-defined types. An object of derived type is called a structure. For each
derived type, a structure constructor is available to specify values. Operations
on objects of derived type must be defined by a function with an interface and
the generic specifier OPERATOR. Assignment for derived type objects is defined
intrinsically, but it may be redefined by a subroutine with the ASSIGNMENT
generic specifier. Data objects of derived type may be used as procedure
arguments and function results, and they may appear in input/output (I/O)
lists.

004–3901–001 203

CF90TM Commands and Directives Reference Manual

designator

Sometimes it is convenient to reference only part of an object, such as an
element or section of an array, a substring of a character string, or a component
of a structure. This requires the use of the name of the object followed by a
selector that selects a part of the object. A name followed by a selector is called
a designator .

entity

(1) In Open Systems Interconnection (OSI) terminology, a layered protocol
machine. An entity in a layer performs the functions of the layer in one
computer system, accessing the layer entity below and providing services to the
layer entity above at local service access points. (2) In Fortran 90, a general
term used to refer to any Fortran 90 concept (for example, a program unit, a
common block, a variable, an expression value, a constant, a statement label, a
construct, an operator, an interface block, a derived type, an input/output (I/O)
unit, a name list group, and so on).

executable construct

A statement (such as a GO TOstatement) or a construct (such as a DOor CASE
construct).

expression

A set of operands, which may be function invocations, and operators that
produce a value.

extent

A structure that defines a starting block and number of blocks for an element of
file data.

function

Usually a type of operating-system-related function written outside a program
and called in to do a specific function. Smaller and more limited in capability
than a utility. In a programming language, a function is usually defined as a
closed subroutine that performs some defined task and returns with an answer,
or identifiable return value.

The word "function" has a more specific meaning in Fortran than it has in C. In
C, it is refers to any called code; in Fortran, it refers to a subprogram that
returns a value.

204 004–3901–001

Glossary

generic specifier

An optional component of the INTERFACEstatement. It can take the form of an
identifier, an OPERATOR (defined_operator) clause, or an ASSIGNMENT (=)
clause.

heap

A section of memory within the user job area that provides a capability for
dynamic allocation. See the HEAPdirective in SR-0066.

inlining

The process of replacing a user subroutine or function call with the definition
itself. This saves subprogram call overhead and may allow better optimization
of the inlined code. If all calls within a loop are inlined, the loop becomes a
candidate for vectorization and/or tasking.

intrinsic

Anything that the language defines is intrinsic. There are intrinsic data types,
procedures, and operators. You may use these freely in any scoping unit.
Fortran programmers may define types, procedures, and operators; these
entities are not intrinsic.

local

(1) A type of scope in which variables are accessible only to a particular part of
a program (usually one module). (2) The system initiating the request for
service. This term is relative to the perspective of the user.

multitasking

(1) The parallel execution of two or more parts of a program on different CPUs;
these parts share an area of memory. (2) A method in multiuser systems that
incorporates multiple interconnected CPUs; these CPUs run their programs
simultaneously (in parallel) and shares resources such as memory, storage
devices, and printers. This term can often be used interchangeably with
parallel processing .

name

A term that identifies many different entities of a program such as a program
unit, a variable, a common block, a construct, a formal argument of a

004–3901–001 205

CF90TM Commands and Directives Reference Manual

subprogram (dummy argument), or a user-defined type (derived type). A name
may be associated with a specific constant (named constant).

operator

(1) A symbolic expression that indicates the action to be performed in an
expression; operator types include arithmetic, relational, and logical. (2) In
Fortran 90, an operator indicates a computation that involves one or two
operands. Fortran 90 defines several intrinsic operators (for example, +, -, *, /, **
are numeric operators, and .NOT., .AND., and .OR. are logical operators). Users
also may define operators for use with operands of intrinsic or derived types.

overindexing

The nonstandard practice of referencing an array with a subscript not contained
between the declared lower and upper bounds of the corresponding dimension
for that array. This practice sometimes, but not necessarily, leads to referencing
a storage location outside of the entire array.

parallel processing

Processing in which multiple processors work on a single application
simultaneously.

pointer

(1) A data item that consists of the address of a desired item. (2) A symbol that
moves around a computer screen under the control of the user.

procedure

(1) A named sequence of control statements and/or data that is saved in a
library for processing at a later time, when a calling statement activates it; it
provides the capability to replace values within the procedure. (2) In Fortran 90,
procedure is defined by a sequence of statements that expresses a computation
that may be invoked as a subroutine or function during program execution. It
may be an intrinsic procedure, an external procedure, an internal procedure, a
module procedure, a dummy procedure, or a statement function. If a
subprogram contains an ENTRYstatement, it defines more than one procedure.

procedure interface

In Fortran 90, a sequence of statements that specifies the name and
characteristics of one or more procedures, the name and attributes of each

206 004–3901–001

Glossary

dummy argument, and the generic specifier by which it may be referenced if
any. See generic specifier .

In FORTRAN 77 and Fortran 90, a generic function is one whose output
value data type is determined by the data type of its input arguments. In
FORTRAN 77, the only generic functions allowed are those that the standard
defines. In Fortran 90, programmers may construct their own generic function
by creating "generic interface," which is like a regular procedure interface,
except that it has a "generic specifier" (the name of the generic function) after
the keyword INTERFACE.

reduction loop

A loop that contains at least one statement that reduces an array to a scalar
value by doing a cumulative operation on many of the array elements. This
involves including the result of the previous iteration in the expression of the
current iteration.

reference

A data object reference is the appearance of a name, designator, or associated
pointer in an executable statement that requires the value of the object. A
procedure reference is the appearance of the procedure name, operator symbol,
or assignment symbol in an executable program that requires execution of the
procedure. A module reference is the appearance of the module name in a USE
statement.

scalar

(1) In Fortran 90, a single object of any intrinsic or derived type. A structure is
scalar even if it has a component that is an array. The rank of a scalar is 0. (2)
A nonvectorized, single numerical value that represents one aspect of a physical
quantity and may be represented on a scale as a point. This term often refers to
a floating-point or integer computation that is not vectorized; more generally, it
also refers to logical and conditional (jump) computation.

scope

The region of a program in which a variable is defined and can be referenced.

scoping unit

Part of a program in which a name has a fixed meaning. A program unit or
subprogram generally defines a scoping unit. Type definitions and procedure

004–3901–001 207

CF90TM Commands and Directives Reference Manual

interface bodies also constitute scoping units. Scoping units do not overlap,
although one scoping unit may contain another in the sense that it surrounds it.
If a scoping unit contains another scoping unit, the outer scoping unit is
referred to as the host scoping unit of the inner scoping unit.

search loop

A loop that can be exited by means of an IF statement.

sequence

A set ordered by a one-to-one correspondence with the numbers 1, 2, through
n. The number of elements in the sequence is n. A sequence may be empty, in
which case, it contains no elements.

shared

Accessible by multiple parts of a program. Shared is a type of scope.

shell variable

A name representing a string value. Variables that are usually set only on a
command line are called parameters (positional parameters and keyword
parameters). Other variables are simply names to which a user (user-defined
variables) or the shell itself may assign string values. The shell has predefined
shell variables (for example, HOME). Variables are referenced by prefixing the
variable name by a $ (for example, $HOME).

software pipelining

Software pipelining is a compiler code generation technique in which
operations from various loop iterations are overlapped in order to exploit
instruction-level parallelism, increase instruction issue rate, and better hide
memory and instruction latency. As an optimization technique, software
pipelining is similar to bottom loading, but it includes additional, and more
efficient, scheduling optimizations.

Cray compilers perform safe bottom loading by default. Under these
conditions, code generated for a loop contains operations and stores associated
with the present loop iteration and contains loads associated with the next loop
iteration. Loads for the first iteration are generated in the loop preamble.

When software pipelining is performed, code generated for the loop contains
loads, operations, and stores associated with various iterations of the loop.
Loads and operations for first iterations are generated in the preamble to the

208 004–3901–001

Glossary

loop. Operations and stores for last iterations of loop are generated in the
postamble to the loop.

statement keyword

A keyword that is part of the syntax of a statement. Each statement, other than
an assignment statement and a statement function definition, begins with a
statement keyword. Examples of these keywords are IF , READ, and INTEGER.
Statement keywords are not reserved words; you may use them as names to
identify program elements.

stripmining

A single-processor optimization technique in which arrays, and the program
loops that reference them, are split into optimally-sized blocks, termed strips.
The original loop is transformed into two nested loops. The inner loop
references all data elements within a single strip, and the outer loop selects the
strip to be addressed in the inner loop. This technique is often performed by
the compiler to maximize the usage of cache memory or as part of vector code
generation.

structure

A language construct that declares a collection of one or more variables
grouped together under one name for convenient handling. In C and C++, a
structure is defined with the struct keyword. In Fortran 90, a derived type is
defined first and various structures of that type are subsequently declared.

subobject

Parts of a data object may be referenced and defined separately from other
parts of the object. Portions of arrays are array elements and array sections.
Portions of character strings are substrings. Portions of structures are structure
components. Subobjects are referenced by designators and are considered to be
data objects themselves.

subroutine

A series of instructions that accomplishes a specific task for many other routines.
(A subsection of a user-written program of varying size and, therefore, function.
It is written within the program. It is not a subsection of a routine.) It differs
from a main routine in that one of its parameters must specify the location to
which to return in the main program after the function has been accomplished.

004–3901–001 209

CF90TM Commands and Directives Reference Manual

TKR

An acronym that represents attributes for argument association. It represents
the data type, kind type parameter, and rank of the argument.

type parameter

Two type parameters exist for intrinsic types: kind and length. The kind type
parameter KIND indicates the decimal range for the integer type, the decimal
precision and exponent range for the real and complex types, and the machine
representation method for the character and logical types. The length type
parameter LEN indicates the length of a character string.

variable

(1) A name that represents a string value. Variables that usually are set only on
a command line are called parameters. Other variables are simply names to
which the user or the shell may assign string values. (2) In Fortran 90, data
object whose value can be defined and redefined. A variable may be a scalar or
an array. (3) In the shell command language, a named parameter. See also
shell variable .

210 004–3901–001

Index

– option, 59

A

-a alloc option, 6
a.out, 20, 60
ALIGN directive, 75, 96
ALLOCATE statement, 14
American National Standards Institute (ANSI), 1
ANSI, 1
apprentice(1), 3
as(1), 55
Assembly language

file.s, 60
output, 11, 59
output file, 60

ATExpert, 14
atexpert(1), 3
ATOMIC directive, 137
Automatic variables, 12
AUTOSCOPE parameter, 184
Autoscoping rules, 195
Autotasking

command line option, 40
interaction with (no)taskinner, 40
interaction with (no)threshold, 40
restrictions, 198

Autotasking directives
overview, 177, 178

Autotasking Expert System (ATExpert), 14
AUXBUF

environment variable, 62
AUXILIARY directive, 76, 108
AUXPAGE

environment variable, 62

B

-b bin_file option, 8
-b bin_obj_file option, 8, 11, 54, 60
BARRIER directive, 137
Binary file, creating, 8
BL directive, 75, 96
Bottom loading, 26
BOUNDS directive, 75, 105

C

C$OMP, 120
-C cifopts option, 8
-c option, 8, 20, 60
CACHE_ALIGN directive, 74, 110
CACHE_BYPASS directive, 75, 99
CAL, 11
cam(1), 55
CASE Autotasking directive, 182
CASE directive, 180
CDIR$, 71, 73
CHUNKSIZE work distribution, 186
CIF, 3, 8, 60
Clauses

COPYIN, 149
DEFAULT, 144
FIRSTPRIVATE, 145
LASTPRIVATE, 145
PRIVATE, 143
REDUCTION, 146
SHARED, 144

cld(1), 3, 55, 61
CMIC!, 178
CMIC$, 71
CNCALL Autotasking directive, 183
CNCALL directive, 75, 78, 180

004–3901–001 211

CF90TM Commands and Directives Reference Manual

Co-array syntax, 58
Column widths, 19
COMMON directive, 76, 110
Compiler Information File (CIF), 8
CONCURRENT directive, 75, 113
Conditional compilation, 54

directives, 168
overview, 167

Configuration, 5
COPY_ASSUMED_SHAPE directive, 74, 78
COPYIN clause, 149
Cray Ada, 60
Cray C++, 60
Cray Pascal, 60
Cray Standard C, 60
CRI_F90_OPTIONS environment variable, 62
CRITICAL directive, 135
Cross compiling, 67

D

-d disable option, 9
-D identifier[=value][,identifier[=value]]

option, 14
Data dependence

examples, 157
rewriting, 160

Data dependencies, 156
Debugging support, 3, 15
DEFAULT clause, 144
#define conditional compilation directive, 169
Dependency analysis

examples, 157
!DIR$, 71, 73
Directives

ATOMIC, 137
BARRIER, 137
continuing, 74, 179
CRITICAL, 135
disabling, 56
DO, 126
END CRITICAL, 135

END DO, 126
END MASTER, 135
END ORDERED, 140
END PARALLEL, 123
END PARALLEL DO, 131
END PARALLEL SECTIONS, 133
END SECTIONS, 129
END SINGLE, 130
FLUSH, 138
for Autotasking, 177
for flowtracing, 114
for inlining, 92
for local use of compiler features, 104
for scalar optimization, 95
for storage, 107
for vectorization and tasking, 77
interaction with command line, 77, 180
MASTER, 135
OpenMP Fortran API, 119
ORDERED, 140
overview, 71
PARALLEL, 123
PARALLEL DO, 131
PARALLEL SECTIONS, 133
range and placement, 74, 179
SECTION, 129
SECTIONS, 129
SINGLE, 130
THREADPRIVATE, 141

directives
interaction with -x dirlist option, 76, 180
interaction with optimization options, 77, 180

DO directive, 126
DO PARALLEL Autotasking directive, 186
DOALL Autotasking directive, 183
DOALL directive, 180
DOPARALLEL directive, 180
DOUBLE COMPLEX statement, 11
Double precision, enabling/disabling, 11
DYNAMIC scheduling, 127

212 004–3901–001

Index

E

#e (null) conditional compilation directive, 171
-e enable option, 9
-e v option

Caution, 158
#elif conditional compilation directive, 173
#else conditional compilation directive, 174
END CASE Autotasking directive, 182
END CRITICAL directive, 135
END DO directive, 126
END MASTER directive, 135
END ORDERED directive, 140
END PARALLEL directive, 123
END PARALLEL DO directive, 131
END PARALLEL SECTIONS directive, 133
END SECTIONS directive, 129
END SINGLE directive, 130
ENDCASE directive, 180
ENDDO Autotasking directive, 186
ENDDO directive, 180
ENDGUARD Autotasking directive, 188
ENDGUARD directive, 180
#endif conditional compilation directive, 174
ENDPARALLEL Autotasking directive, 190
ENDPARALLEL directive, 180
—F option, 15
—O pipelinen option, 36
—O splitn option, 38
—X npes option, 57
—Z option, 58
Environment variables, 61
Executable output file, 60

F

-f source_form option, 15
.F suffix, 15
.f suffix, 15
f90 command

options
-e v, 158

f90(1)
command example, 2
command line and options, 5

.F90 sufix, 15

.f90 sufix, 15
File suffixes for input files, 15
file.a, 60
file.F, 60
file.f, 60
file.F90, 60
file.f90, 60
file.i, 60
file.L, 49, 60
file.lst, 60
file.M, 45
file.o, 8, 59, 60
file.s, 59, 60
file.suffix option, 59
file.T, 8, 49, 60
FIRSTPRIVATE clause, 145
FIXED directive, 74, 107
Fixed source form, 15, 19, 59, 73, 178
Floating-point division, 13
FLOW directive, 74, 114
FLUSH directive, 138
FORTRAN 77 standard, 1
Fortran 90 standard, 1
FREE directive, 74, 107
Free source form, 15, 59, 73, 179
ftnlint(1)

as part of programming environment, 3
interaction with -r list_opt option, 49
output file, 60

ftnlint.out, 60
ftnlist(1), 3

interaction with -r list_opt option, 47
interaction with -Wr "ftnlist_opt, 56
output file, 61

ftnlist.out, 61

004–3901–001 213

CF90TM Commands and Directives Reference Manual

G

-G debug_lvl option, 15
-g option, 15
GUARD Autotasking directive, 188
GUARD directive, 180
GUIDED scheduling, 127
GUIDED work distribution, 186

I

-i 32 option, 16
-I incldir option, 17
ID directive, 75, 115
IF parameter, 184
#if conditional compilation directive, 172
#ifdef conditional compilation directive, 173
#ifndef conditional compilation directive, 173
IMPLICIT NONE statement, 11
INCLUDE lines, 17
#include conditional compilation directive, 168
INLINE ALWAYS directive, 93
INLINE directive, 75, 93
INLINE NEVER directive, 93
INLINEALWAYS directive, 76
INLINENEVER directive, 76
Inlining

command line options, 29
directives, 92
main discussion, 29

Installation, 5
International Standards Organization (ISO), 1
ISO, 1
IVDEP directive, 75, 80

L

-L dir option, 18
-l lib option, 17
LASTPRIVATE clause, 145
LASTPRIVATE variable, 156

ld(1), 3, 61
LD_OPTIONS environment variable, 62
libm, 3
Library files, 3, 17, 18
libsci, 3, 35
Listing, producing, 47
LISTIO_PRECISION environment variable, 63
Loader, 61
Loop splitting, 38
Loop unrolling, 41
LPP environment variable, 63

M

-m msg_lvl option, 18
-M msgs option, 19
man(1), 3
MASTER directive, 135
MAXCPUS Autotasking directive, 189
MAXCPUS directive, 179
MAXCPUS parameter, 184
Memory allocation, determining, 12
Messages, suppressing, 18, 19
!MIC$, 71, 178
MODINLINE directive, 76, 94
Modules, 5
MP_DEDICATED tasking variable, 63
MP_HOLDTIME tasking variable, 63
MP_SAMPLE tasking variable, 64
MP_SLVSIN tasking variable, 64
MP_SLVSSZ tasking variable, 64
MPP Apprentice Tool, 10
Multiprocessing

analyzing data dependencies, 156
work quantum, 165

Multiprocessing variables, 61
Multitasking, 177

214 004–3901–001

Index

N

-N col option, 19
NAME directive, 76, 117
NCPUS multiprocessing variable, 64
NEXTSCALAR directive, 75, 81
NLSPATH environment variable, 64
NOBL directive, 75, 96
NOBOUNDS directive, 75, 105
NOFLOW directive, 74, 114
NOINLINE directive, 75, 93
NOINTERCHANGE directive, 75, 100
NOMODINLINE directive, 76, 94
NOPATTERN, 75
NOPATTERN directive, 81
NORECURRENCE directive, 75, 84
NOSIDEEFFECTS directive, 76, 101
NOSPLIT directive, 75, 102
NOTASK directive, 75, 87
NOUNROLL directive, 75, 87
NOVECTOR directive, 75, 90
NOVSEARCH directive, 75, 92
NPROC environment variable, 65
NUMCHUNKS work distribution, 186
NUMCPUS Autotasking directive, 190
NUMCPUS directive, 179

O

-O 0 option, 24
-O 1 option, 24
-O 2 option, 25
-O 3 option, 25
-O aggress option, 26
-O allfastint option, 26
-O bl option, 26
-O fastint option, 26
-O ieeeconform option, 28
-O inlinen option, 29
-O jump option, 32
-O loopalign option, 33
-O msgs option, 33

-O negmsgs option, 34
-O noaggress option, 26
-O nobl option, 26
-O nofastint option, 26
-O noieeeconform option, 28
-O nojump option, 32
-O noloopalign option, 33
-O nomsgs option, 33
-O nonegmsgs option, 34
-O nooverindex option, 34
-O nopattern option, 35
-O norecurrence option, 37
-O notaskinner option, 40
-O nothreshold option, 40
-O novsearch option, 43
-O nozeroinc option, 43
-O opt [, opt] option, 77, 180
-O opt[,opt] option, 20
-o out_file option, 20, 60
-O overindex option, 34
-O pattern option, 35
-O recurrence option, 37
-O scalar0 option, 37
-O scalar1 option, 37
-O scalar2 option, 38
-O scalar3 option, 38
-O task0 option, 39
-O task1 option, 39
-O task2 option, 40
-O task3 option, 40
-O taskinner option, 40
-O threshold option, 40
-O unrolln option, 41
-O vector0 option, 41
-O vector1 option, 41
-O vector2 option, 42
-O vector3 option, 42
-O vsearch option, 43
-O zeroinc option, 43
!$OMP, 120
OpenMP clauses

COPYIN, 149

004–3901–001 215

CF90TM Commands and Directives Reference Manual

DEFAULT, 144
FIRSTPRIVATE, 145
LASTPRIVATE, 145
PRIVATE, 143
REDUCTION, 146
SHARED, 144

OpenMP directives
ATOMIC, 137
BARRIER, 137
CRITICAL, 135
DO, 126
END CRITICAL, 135
END DO, 126
END MASTER, 135
END ORDERED, 140
END PARALLEL, 123
END PARALLEL DO, 131
END PARALLEL SECTIONS, 133
END SINGLE, 130
ENS SECTIONS, 129
FLUSH, 138
MASTER, 135
ORDERED, 140
PARALLEL, 123
PARALLEL DO, 131
PARALLEL SECTIONS, 133
SECTION, 129
SECTIONS, 129
SINGLE, 130
THREADPRIVATE, 141

OpenMP Fortran API directives, 119
Optimization

messages, 34
options, 20
scalar, 37, 38
tasking, 39, 40
vectorization, 41, 42
with debugging, 15

ORDERED directive, 140
Output file, 60
Overindexing, 34

P

-p module_site option, 45
PARALLEL Autotasking directive, 190
PARALLEL directive, 123, 180
PARALLEL DO directive, 131
PARALLEL SECTIONS directive, 133
Parallelism

conditional, 166
pat(1), 3
PATTERN directive, 81
Pattern matching, 35
PERMUTATION Autotasking directive, 82, 191
PERMUTATION directive, 75, 180
Pipelining, software, 36
Predefined macros for conditional

compilation, 174
PREFERTASK directive, 75, 83
PREFERVECTOR directive, 75, 83
Preprocessing, 167
Preprocessing of source code, 11, 14
Preprocessor, 55
PRIVATE clause, 143, 144
PRIVATE parameter, 185
PRIVATE variable, 156

R

-r list_opt option, 47
-R runchk option, 49
RECURRENCE directive, 75, 84
REDUCTION clause, 146
REDUCTION variable, 156
Run-time checking, 49
RUNTIME scheduling, 127

S

-s size option, 52
-S source_file option, 11, 54

216 004–3901–001

Index

SAVELAST parameter, 185
Scalar optimization, 37, 38
Scalar optimization directives, 95
SECTION directive, 129
SECTIONS directive, 129
SEGDIR environment variable, 67
segldr(1), 3, 55, 61
SHARED parameter, 185
SHARED variable, 156
Shell variables, 61
SHORTLOOP directive, 75, 86
SHORTLOOP128 directive, 75, 86
SINGLE directive, 130
SINGLE work distribution, 186
Software pipelining, 36
Source forms, 15, 59
Source preprocessing, 11, 14, 167
Source preprocessor, 55
SPLIT directive, 75, 102
STACK directive, 74, 111
Standards, 1
STATIC scheduling, 127
Storage allocation, specifying, 6
Storage directives, 107
SUPPRESS directive, 75, 103
SYMMETRIC directive, 76, 112

T

-t num option, 54
-T option, 54
TARGET environment variable, 67
TASK directive, 75, 87
TASKCOMMON directive, 76, 112
Tasking, 39, 40
Tasking directives, 177
THREADPRIVATE directive, 141
TMPDIR environment variable, 69
TotalView, 3
totalview(1), 3

TSKTUNE(3), 61

U

-U identifier[, identifier] option, 54
#undef conditional compilation directive, 171
UNROLL directive, 75, 87
Unrolling, 41
User tasking, 39
USES_EREGS directive, 74, 118

V

-V option, 55
-v option, 55
Variables, environment, 61
VECTOR directive, 75, 90
VECTOR work distribution, 186
Vectorization, 41, 42
Vectorization and tasking directives, 77
VFUNCTION directive, 76, 90
VSEARCH directive, 75, 92

W

-Wa"assembler_opt, 55
-Wl "loader_opt, 55
Work quantum, 165
-Wp "srcpp_opt, 55
-Wr "ftnlist_opt, 56

X

-x dirlist option, 56, 76, 180
xbrowse(1), 3

004–3901–001 217

