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This publication documents optimization options for the Cray CF90 Fortran
compiler running on CRAY T3E systems.

The following documents contain additional information that may be helpful:
* CF90 Commands and Directives Reference Manual, publication SR-3901
e Fortran Language Reference Manual, Volume 1, publication SR-3902

e Fortran Language Reference Manual, Volume 2, publication SR-3903

e Fortran Language Reference Manual, Volume 3, publication SR-3905

e CF90 Ready Reference, publication SQ-3900

o Introducing the MPP Apprentice Tool

e Introducing the Cray TotalView Debugger

® Message Passing Toolkit: PVM Programmer’s Manual

® Message Passing Toolkit: MPI Programmer’s Manual

® CRAY T3E and CRAY T3D Programming Environment Differences

o Application Programmer’s Library Reference Manual

o Application Programmer’s I/O Guide

® UNICOS/mk System Calls Reference Manual

The User Publications Catalog describes the availability and content of all Cray
Research hardware and software documents that are available to customers.
Customers who subscribe to the Cray Inform (CRInform) program can access
this information on the CRInform system.

To order a document, call +1 651 683 5907. Silicon Graphics employees may
send electronic mail to orderdsk@sgi.com  (UNIX system users).
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Customers who subscribe to the CRInform program can order software release
packages electronically by using the Order Cray Software option.

Customers outside of the United States and Canada should contact their local
service organization for ordering and documentation information.

The following conventions are used throughout this document:

Conventions
Convention
command
manpage(x)
variable

Xii

Meaning

Denotes a command, library routine or function,
system call, part of an application program,
program output, or anything else that might
appear on your screen.

Man page section identifiers appear in
parentheses after man page names. The following
list describes the identifiers:

1 User commands
1B User commands ported from BSD
System calls

Library routines, macros, and

opdefs
4 Devices (special files)
4P Protocols
5 File formats
7 Miscellaneous topics
7D DWB-related information
8 Administrator commands

Some internal routines (for example, the
_assign _asgcmd_info () routine) do not have
man pages associated with them.

Italic typeface denotes variable entries and words
or concepts being defined.

004-2518-002
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user i nput This bold, fixed-space font denotes literal items
that the user enters in interactive sessions.
Output is shown in nonbold, fixed-space font.

[1] Brackets enclose optional portions of a command
or directive line.

(glossary, number) References the glossary for a definition of the
preceding term.

The following machine naming conventions are used throughout this document:

Term Definition

Cray PVP systems All configurations of Cray parallel vector
processing (PVP) systems.

Cray MPP systems All configurations of the CRAY T3E series.

Reader Comments

If you have comments about the technical accuracy, content, or organization of
this document, please tell us. Be sure to include the title and part number of
the document with your comments.

You can contact us in any of the following ways:
* Send electronic mail to the following address:
techpubs@sgi.com

e Send a facsimile to the attention of “Technical Publications” at fax number
+1 650 932 0801.

* Use the Suggestion Box form on the Technical Publications Library World
Wide Web page:

http://techpubs.sgi.com/library/

¢ (Call the Technical Publications Group, through the Technical Assistance
Center, using one of the following numbers:

For Silicon Graphics IRIX based operating systems: 1 800 800 45GI

For UNICOS or UNICOS/mk based operating systems or CRAY Origin2000
systems: 1 800 950 2729 (toll free from the United States and Canada) or
+1 651 683 5600

004-2518-002 Xiii
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¢ Send mail to the following address:

Technical Publications

Silicon Graphics, Inc.

2011 North Shoreline Boulevard, M/S 535
Mountain View, California 94043-1389

We value your comments and will respond to them promptly.
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Background Information [1]

004-2518-002

Welcome to CRAY T3E optimization. This chapter gives an overview of the
optimization guide and background information on some of its major subjects.
If you want to start optimizing your program right away, just select one of the
following topics. You can always come back later.

The Parallel Virtual Machine (PVM) is a portable message-passing protocol
for programming the CRAY T3E system and other parallel systems. See
Chapter 2, page 23.

SHMEM stands for shared memory protocol. It is not as portable as PVM or
the Message Passing Interface (MPI) but has potentially better performance.
See Chapter 3, page 43.

Single-PE optimizations concern getting the best performance out of each
processing element (PE). See Chapter 4, page 77.

Input/output (I/O) optimizations help you move data between external
devices (such as disk) and memory. See Chapter 5, page 117.

This publication contains a glossary with definitions of terms that might be
unfamiliar to you. If you are reading this document online, you can link to the
glossary as you encounter a term. Here is an example of a link that will point
you to the glossary: PE (glossary, page 148). If you are reading a printed
version of the document, you will see a page number in place of the hyperlink.

For background information, see the following topics in this chapter:

An introduction to two message-passing protocols (see Section 1.1, page 2),
including the following subtopics:

— PVM, see Section 1.1.1, page 2.
- SHMEM, see Section 1.1.2, page 2.

A hardware overview (see Section 1.2, page 3), including the following
subtopics:

— Memory characteristics, see Section 1.2.1, page 4.
— The processing element, or PE, see Section 1.2.2, page 15.
— The network and peripherals, see Section 1.2.3, page 15.

- Memory performance information, see Section 1.2.4, page 19.
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* Measuring the performance of your code, see Section 1.3, page 21.

1.1 Message-passing Protocols

When you are optimizing a program on a CRAY T3E system, you may be faced
with a number of decisions. One of the first will be which, if any, of the
message-passing protocols you should use.

If you want to run the program on more than one vendor’s MPP system,
portability is a major concern, and you may want to choose PVM. (The Message
Passing Interface (MPI) is also available and is widely portable.) If your only
concern is the performance of the program, you may want to include shared
memory access routines, known collectively as SHMEM.

1.1.1 Parallel Virtual Machine (PVM)

The PVM programming style offers a widely used, standardized method of
programming a CRAY T3E system. PVM does not offer the performance of
SHMEM, but it is more portable. PVM runs on both Cray massively parallel
processing (MPP) systems and Cray parallel vector processing (PVP) systems,
as well as on other parallel architectures. It is a message-passing system
(glossary, page 147), meaning it exchanges explicit messages with other PEs.
The messages often contain data, such as array elements.

PVM relieves the programmer of most synchronization concerns. By using
explicit calls to send and receive routines, PVM handles its own
synchronization in most cases.

For more introductory information on PVM, see the pvm_intro (1) man page.

1.1.2 SHMEM

SHMEM is a set of functions and subroutines that pass data in a variety of
ways, provide synchronization, and perform reductions (glossary, page 149).
SHMEM routines are implemented on Cray MPP systems and Cray PVP
systems but not on any other company’s computers.

What SHMEM lacks in portability, it makes up for in performance. SHMEM is
the fastest of the Cray MPP programming styles.

The reason for the speed is SHMEM'’s close-to-the-hardware approach. This
demands more from the programmer in areas such as synchronization (glossary,
page 151), which is provided automatically with some of the other programming

2 004-2518-002
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styles. The following figure shows how the SHMEM routines enhance
performance by dispensing with some of the processes followed by PVM.

On the sending PE On the receiving PE

CALL PVMFINITSEND( ...
CALL PVMPACK( ...

CALL PVYMFSEND( ...
PVM (

CALL PVMFRECV( ...
CALL PVMFUNPACK( ...

CALL SHMEM_PUT( ...
SHMEM € CALL SHMEM_BARRIER_ALL

CALL SHMEM_BARRIER_ALL

a10008

Figure 1. Data transfer comparison

In this example of typical data transfers, PVM requires five steps on the two
PEs involved in the transfer: initialize a send buffer, pack the data, send the
data, receive the data, and unpack the data. SHMEM requires only one step:
send the data. However, one or more synchronization routines are almost
always necessary when using SHMEM. You usually must ensure that the
receiving PE does not try to use the data before it arrives.

SHMEM does a direct memory-to-memory copy, which is the fastest way to
move data on a CRAY T3E system. Adding SHMEM routines to your code, or
replacing the statements of another programming style with SHMEM routines,
will almost always enhance the performance of your program. Replacing only
the major data transfers with SHMEM_PU®r SHMEM_GEdan often give you a
major speedup with minimal effort. For more information on the functionality
available in SHMEM, see the intro_shmem (3) man page.

The CRAY T3E hardware performs at a rate of two to three times that of
CRAY T3D systems. The following sections contain an overview of the memory
system, a brief description of the microprocessor, a look at the network and the

3
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1.2.1 Memory

system’s peripherals, and statistics detailing where the increased performance
comes from.

A memory operation from a PE takes one of two forms:

e A read from, or write to, the PE’s own memory (called local memory). Each
PE has between 64 Mbytes (8 64-bit Mwords) and 2 Gbytes (256 64-bit
Mwords) of memory local to the processor.

e A read from, or write to, remote memory (the memory local to some other
PE).

Note: A word in this document is assumed to be 64-bits in length, unless
otherwise stated.

Operations between the memory of two PEs make use of E registers. E registers
are special hardware components that let one PE read from and write to the
memory of another PE.

E registers are positioned between the PE and the network, as illustrated in the
following figure. They are memory-mapped registers, which means they reside
in noncached memory and have an address associated with them.

004-2518-002



Background Information [1]

004-2518-002

PE

| E registers |

Outgoing Returning
PUT GET
data data

Memory and network interface

al0012

Figure 2. Position of E registers

Operations within a PE, between local memory and the microprocessor, are
always faster than operations to or from remote memory. Data read from local
memory is accessed through two levels of cache: a 96-Kbyte secondary cache
(glossary, page 149) and a high-speed, 8-Kbyte data cache (glossary, page 143).
Data written to local memory passes through a 6-entry write buffer (glossary,
page 153) and secondary cache.

Cache coherence (glossary, page 142), which was a user concern on the
CRAY T3D system, is performed automatically on the CRAY T3E system.

Cache is high-speed memory that helps move data quickly between local
memory and the EV5 microprocessor registers. It is still an important part of
MPP programming. The CACHE_ALIGNdirective aligns each specified variable
on a cache line boundary. This is useful for frequently referenced variables and
for passing arrays in SHMEM (see Section 3.3, page 55). The CACHE_ALIGN
directive can be used with all of the programming styles described in this guide.

Data cache is a direct-mapped cache (glossary, page 144), meaning each local
memory location is mapped to one data cache location. When an array, for
example, is larger than data cache, a location in data cache can have more than
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one of the array addresses mapped to it. Each location is a single, 4-word
(32-byte) line (glossary, page 146).

Secondary cache is three-way set associative, and lines are 8 (64-bit) words long,
for a total of 64 bytes. In a three-way, set-associative cache (glossary, page 149),
each memory location is associated with three lines in secondary cache. Which
of the three lines to which the data is added is chosen at random. Any line can
be selected.

For an example of how data cache and secondary cache work, see Procedure 1,
page 9, which describes data movement between local memory and the
microprocessor. For an illustration of the components of a PE, see Figure 3. The
abbreviations on the figure have the following meanings. Many of these terms
are also used in Chapter 4, page 77.

EV5 The RISC microprocessor

EO, E1 Integer functional units

FA, FM Floating-point functional units

WB Write buffer

MAF Missed address file

ICACHE Instruction cache (not relevant to this discussion)
DCACHE Data cache

SCACHE Secondary cache

SB Stream buffer

6 004-2518-002
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DRAM Local memory
EV5
B0 | EL | FA | FM |
WB
ICACHE DCACHE
MAF
| SCACHE |

SB

al0015

Figure 3. Flow of data on a CRAY T3E node

The size of a local memory page (marked as DRAM in the preceding figure)
depends on the amount of memory in your machine. A memory size of 128
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Mbytes, for example, has a page size of 16 Kbytes. The following figure shows
more detail from the microprocessor part of the data flow.

~

Write data » To support
circuitry
i Write data . .
Write | o Execution units <-Readdata _ | _ prom support
buffer circuitry
‘ .
: Read data | Instructions
[
: |
o Writedata _ | Data | Control Instruction
caches circuitry
A
* A |
| i |
| Missed i Control » To support
| address file | _ circuitr
Read data | | Instructions y
: Control :
[ v [ Read data or
| | i i
< Nstructions | prom support
Write data - circuitr
> Secondary cache Wirite dat y
medala 1 » 1o support

/ circuitry

alo014

Figure 4. Data flow on the EV5 microprocessor

Each PE has four functional units: two for floating-point operations and two for
integer operations. It can handle six concurrent input and output data streams
(glossary, page 150).

For the following loop, a PE will create streams between memory and the
functional units for all of the input operands (B(I) , C(I) , and so on) and one
stream between the functional units, through the write buffer, through
secondary cache, and back to memory for the output operand (A(l) ):

004-2518-002
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DOI = 1, 1000
Al) = B() + C() + D) + E(l) + F()
END DO

By default, as soon as the PE detects two consecutive secondary cache-line
misses, it begins to preload subsequent, consecutive locations and form a
stream. Data streaming is a major optimization on the CRAY T3E system. For
more information on creating streams, see Section 4.4.7, page 105.

The following procedure describes the process of moving data between memory
and the microprocessor. It refers only to the key hardware elements:

e EV5 registers

e Write buffer

e Data cache

* Secondary cache
e Stream buffer

® Local memory

The example assumes the following loop:

DOl = 1N
Al) =B(@) * N
ENDDO

Procedure 1: Moving data from memory

1. An EV5 register requests the value of B(1) from data cache.
2. Data cache does not have B(1) . It requests B(1) from secondary cache.

3. Secondary cache does not have B(1) . This is the first secondary cache miss.
It retrieves a line (8 64-bit words for secondary cache) from local memory.

4. Data cache receives a line (4 64-bit words for data cache) from secondary
cache.

5. The register receives B(1) from data cache. The state of the data at this
point is as illustrated in the following figure.
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B (1) |

Registers

| B@-4 |

Data
cache

| By |

Secondary
cache

B (1-N) |

Local
memory

al0249

Figure 5. First value reaches the microprocessor

6. When other registers need B(2) through B(4) , they find them in data
cache.

7. When a register needs B(5) , data cache does not have it.

10 004-2518-002
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10.

11.

12.

Data cache requests B(5) through B(8) from secondary cache, which has
them and passes them on.

Data cache passes B(5) through B(8) on to the appropriate registers as it
gets requests for them. When the microprocessor finishes with them, it
requests B(9) from data cache.

Data cache requests a new line of data elements from secondary cache,
which does not have them. This is the second secondary cache miss, and it
is the signal to the system to begin streaming data.

Secondary cache requests another 8-word line from local memory and puts
it into another of its three-line buckets. It may end up in any of the three
lines, since the selection process is random.

A 4-word line is passed from secondary cache to data cache, and a single
value is moved to a register. When the value of B(9) gets to the register,
the situation is as illustrated in the following figure.

11
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BO |
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Figure 6. Ninth value reaches the microprocessor
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13. Because streaming has begun, data is now prefetched. A stream buffer
anticipates the microprocessor’s continuing need for consecutive data, and
begins retrieving B(17) through B(24) from memory before it is
requested. As long as the microprocessor continues to request consecutive
elements of B, the data will be ready with a minimum of delay.

14. The process of streaming data between local memory and the registers in
the microprocessor continues until the loop is complete.

These steps describe the input stream only. The values of the A array pass
through the write buffer and secondary cache, as illustrated in the following
figure, on their way back to local memory. Values of A are written to local
memory only when a line in secondary cache is dislodged by a write to the
same line, or when values of A are requested by another PE.

13
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Figure 7. Output stream
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1.2.2 Processing Element

The CRAY T3E processing element contains an EV5 RISC microprocessor
manufactured by Digital Equipment Corporation (DEC). It has the following
characteristics:

e Either a 3.3 nanosecond (glossary, page 147), 300 megahertz clock period (CP)
or a 2.2 ns (nanosecond), 450 megahertz CP, compared to the 6.6 ns clock in
the CRAY T3D system.

¢ Thirty-two integer and thirty-two floating-point registers.

* Separate addition and multiplication functional units, including pipelines
with a 4-CP (13.3 ns for 300 megahertz chip and 8.9 ns for 450 megahertz
chip) execution time. The CRAY T3D system had a single functional unit for
multiplication and addition, and the pipeline required 6 CPs (39.7 ns).

e An interface to the network for each PE.

1.2.3 Network and Peripherals

The network that operates between the CRAY T3E system and external systems
is based on the GigaRing technology (glossary, page 145), which is the Standard
Coherent Interface (SCI) with major Cray Research extensions. Physically, the
GigaRing network is a double ring that passes messages between nodes. Figure
8, page 16, illustrates an external network that includes a CRAY T3E system.
(Early CRAY T3E systems do not support multiple hosts on a single GigaRing
channel. Cray PVP systems, such as CRAY T90 systems, connect to CRAY T3E
systems through standard network interfaces, such as HIPPL)

004-2518-002 15
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1.2.3.1 Disk Support

16

<

7 AN

alo013

Figure 8. An external GigaRing network

The GigaRing channel supports the peripherals and networks described in the
following sections.

CRAY T3E systems support the following disk drives. On all drives, users can
define logical disks. Disk striping (glossary, page 144) and disk mirroring
(glossary, page 144) are also supported.

e MPN-1 SCSI disks:
— SCSI DD-314 disk drives
— SCSI DD-318 disk drives
e FCN-1 Fiber Channel disks:
— DD-308 disk drives.

004-2518-002
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1.2.3.2 Tape Support

004-2518-002

The following tape hardware is supported on CRAY T3E systems.

DD-308 disk drives, RAID-3.
DD-308 disk drives, RAID-5. (Support is not yet available.)

IPI-2 disks:

DD-60 disk drives and DA-60 disk arrays
DD-62 disk drives and DA-62 disk arrays
DD-301 disk drives and DA-301 disk arrays
DD-302 disk drives and DA-302 disk arrays

100 Mbyte/s HIPPI disks. (Support is not yet available.)

ND-12 network disk array
ND-14 network disk array
ND-30 network disk array
ND-40 network disk array

The following models of SCSI tape drives:

SCSI STK 4781/4480 (18 track).
SCSI STK 4791/4490 (36 track).
SCSI DAT HP C1533-A.

SCSI STK 4890 (Twin Peaks).
SCSI STK 9490 (TimberLine).
SCSI STK SD-3 (RedWood).
SCSI IBM 3590 (Magstar).

IBM 3490E.

EXABYTE 8505.

DLT 4000.

17
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1.2.3.3 Network Protocols

18

— DLT 7000. (Support is not yet available.)

- AMPEX DST310. (Support is not yet available.)
Block multiplexer tape drives:

- IBM 3480

- IBM 3490

— STK 4480

— STK 4490

— 3420-compatible, 9-track reel tape drives with a 256-Kbyte block limit
ESN-1 ESCON tapes:

- IBM 3490E.

— STK 9490 (TimberlLine).

— STK SD-3 (RedWood).

- IBM 3590 (Magstar). (Support is not yet available.)
Autoloaders.

- STK 4400

- STK WolfCreek

- IBM 3494

— STK 9710 (Panther)

- IBM 3495

The following networking protocols are supported over the GigaRing channel:

MPN-1 Ethernet (ETN-10).

MPN-1 Ethernet (ETN-11).

MPN-1 FDDI (FDI 10).

HPN-1 100 Mbyte/s HIPPI network, 2 HIPPIs per node.
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e HPN-2 200 Mbyte/s HIPPI network, 1 HIPPI per node.
e MPN-1 ATM OCS3.
e ATM OC12. (Support is not yet available.)

Network protocols, such as TCP/IP, that are supported on other Cray Research
systems are also supported on CRAY T3E systems.

1.2.4 Memory Performance Information

This section presents some of the performance specifications of the CRAY T3E
memory system. The times presented are theoretically the optimal times. In
most cases, you cannot achieve these times in practice for one reason or
another. You may decide at some point in the optimization process that the
time required to approach the optimal times is not worth spending. In the
tables, ns is nanoseconds, CP is clock period (glossary, page 143), and Mbyte/s is
megabytes per second.

e Table 1 shows the time required for a CRAY T3E PE, with the
microprocessor running at 300 megahertz, to load data from and store data
to data cache (glossary, page 143). It compares those figures with the
CRAY T3D system. For information on data cache, see Section 1.2.1, page 4.

¢ Table 2 shows performance when loads and stores miss in cache and must
go to local memory. The statistics reflect a microprocessor running at 300
megahertz. In practice, the peak cacheable load and store bandwidths listed
in this table are not likely to be achieved, because in about 50% of the cases,
old data must be removed from cache before new data can be brought in.
For more realistic peak numbers, reduce the bandwidths by approximately
one-third.
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Table 1. Latencies and bandwidths for data cache access

CRAY T3D latency

CRAY T3D
bandwidth

CRAY T3E latency

CRAY T3E
bandwidth

Data cache load

Secondary cache
load

Data or secondary
cache store

20 ns (3 CP per
load)

N/A

N/A

1200 Mbyte/s (1
word per CP)

N/A

N/A

6.67 ns (2 CP per
load)

26.67 ns (8 CP per

load)
N/A

4800 Mbyte/s (2
words per CP)

4800 Mbyte/s (2
words per CP)

2400 Mbyte/s (1
word per CP)

Table 2. Latencies and bandwidths for access that does not hit cache

CRAY T3D latency

CRAY T3D
bandwidth

CRAY T3E latency

CRAY T3E
bandwidth

Cacheable load
(stream/ read
ahead buffer hit)

Cacheable store
(stream/ read
ahead buffer hit)

Infinite vector
A=B+C through
cacheable loads
and stores (stride
1, stream hit)

Infinite vector
Y-X*s+Y (SAXPY)
through cacheable
loads and stores
(stride 1, stream
hit)

Cacheable load
(local memory
page hit)

20

86 ns (13 CP per
load)

147 ns

320 Mbyte/s (.26
words per CP)

200 Mbyte/s (.16
words per CP)

80 ns (24 CP per
load)

283 ns

960 Mbyte/s (.40
words per CP)

1,200 Mbyte/s (.50
words per CP)

720 Mbyte/s (.30
words per CP)

900 Mbyte/s (.37
words per CP)

630 Mbyte/s (.30
words per CP)
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CRAY T3D latency

CRAY T3D
bandwidth

CRAY T3E latency

CRAY T3E
bandwidth

Cacheable store
(local memory
page hit)
Cacheable load
(local memory
page miss)
Cacheable store

(local memory
page miss)

247 ns

533 Mbytes/s (.50
words per CP)

123 Mbytes/s (.10
words per CP)

209 Mbyte/s (.17
words per CP)

417 ns

355 Mbyte/s (.15
words per CP)

430 Mbyte/s (.20
words per CP)

280 Mbyte/s (.10
words per CP)

1.3 Measuring Performance

004-2518-002

You can use a variety of methods to time your code. The following are the most

popular:

e The Cray MPP Apprentice tool is good for timing a complete program or a
subroutine within a program. It will also give you information on how well
you have parallelized your program and where you can make further
improvement. Because it estimates its own overhead and subtracts that
figure from its timings, MPP Apprentice can be counted on to be accurate to
within at least 5% of the numbers it generates.

e The IRTC intrinsic function returns values from the real-time clock in clock
ticks. It is good for timing blocks of code that are part of a subprogram.The
Fortran routine PXFSYSCONFwhich returns the number of clock ticks in a
second, helps convert an RTCvalue to seconds.

¢ The performance analysis tool (PAT) runs only on the CRAY T3E system. It
gives you information on load balancing across multiple PEs, generates and
lets you view trace files, displays hardware performance counter
information, estimates the amount of time spent in routines, and times
individual calls to routines. See the pat (1) man page for more information.

Caution: Do not use both the Cray MPP Apprentice tool and IRTC on the

same code at the same time. MPP Apprentice introduces a significant amount
of overhead that will be included in the IRTC numbers but not in the
numbers that MPP Apprentice itself reports. Distinguishing between the time
used by your code and the overhead is difficult.
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If your CRAY T3E system has PEs running at different clock rates (for instance,
some at 300 megahertz and others at 450 megahertz), you will have to know
what each PE’s clock rate is in order to time the program correctly. For
information on how your mixed-speed PEs are configured, see your system
administrator. The grmview (1) command shows you at what speed each
physical PE runs, but, when you execute your program, physical PEs numbers
are mapped to logical PE numbers, which are different.
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The Parallel Virtual Machine (PVM) message-passing library passes messages
between PEs to distribute data and to perform other functions necessary for
running programs. (The network version of PVM, which enables message
passing between computer systems, is not described in this publication.) For
background information on PVM, see Section 1.1.1, page 2.

The differences between PVM on a CRAY T3D system and PVM on a

CRAY T3E system are few. The major difference is that the channels feature is
not implemented on the CRAY T3E system. But optimizations that worked on
the CRAY T3D system should still work on the CRAY T3E system.

This chapter describes the following methods of speeding up your PVM
program:

e Saving extra transfers by setting the size of a message properly (see Section
2.1, page 24).

* Allocating the most efficient send buffers, depending on the nature of your
message (see Section 2.2, page 25).

* Realizing the performance advantage of 32-bit data (see Section 2.3, page 26).

¢ Using routines that are optimized for sending and receiving stride-1 data
(see Section 2.4, page 28).

* Making quick improvements by mixing optimized send and receive routines
(see Section 2.5, page 30).

* Avoiding performance pitfalls when initializing and packing data (see
Section 2.6, page 30).

® Accomplishing work while you wait for messages (see Section 2.7, page 31).
* Minimizing wait time by avoiding barriers (see Section 2.8, page 32).

* Using broadcast rather than multicast when sending data to multiple PEs
(see Section 2.9, page 33).

* Minimizing synchronization time and maximizing work time when
receiving data (see Section 2.10, page 36).

¢ Using the reduction functions to execute an operation on multiple PEs (see
Section 2.11, page 37).
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e Distributing data from one PE to multiple PEs and gathering data from
multiple PEs to a single PE (see Section 2.12, page 39).

2.1 Setting the Size of a Message

24

Setting the size of a message properly can save you extra transfers and,
consequently, message-passing overhead. You can control the size of a message
by setting the PVM_DATA_MA¥nvironment variable. The default size for the
first message sent is 4,096 bytes, or 512 64-bit words, which should be large
enough for most messages. If the data in a message is larger than the value of
PVM_DATA_MAXowever, the data will be divided up into parts, and the parts
will be sent in separate messages until all of it has been delivered.

To find the current value of PVYM_DATAMAXwithin your program, use the
PVMFGETOR®3) routine, as follows. The variable MAXmaxwill hold the
maximum message size value, in bytes.

CALL PVMFGETOPT(PVM_DATA_MAXAX)

You cannot, however, change the value within the program by using the
PVMFSETOR®) routine. You must reset the value outside of your program, as
follows. Specify the new value for PVM_DATA_MAk bytes.

% setenv  PVM_DATA MAX8192
% ./a.out

This example changes the value of the maximum message size to 8,192 bytes (or
1,024 64-bit words) for the entire program. The second line executes the
program.

Increasing the size of PVM_DATA_MAJ not always the best solution. If you
have one or two large transfers in your program, but a number of smaller
transfers, you may not want to increase the size of all messages. Adjusting the
size of PVM_DATA_MAXay not help your overall performance. It takes away
from the memory available to the application, and a large message is not
always transferred quickly, especially when it is broadcast to multiple PEs.

Breaking the large messages up into smaller messages may be faster in some
cases. Whether this proves to be faster in your program depends upon the
application. You may have to time the program to find out. For information on
timing your code, see Section 1.3, page 21.

PVM does not handle large amounts of data in the same way as small amounts.
For large transfers (greater than the value of PVM_DATA_MAXthe message
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contains the first chunk of data and the address of the data block on the
sending PE. After the receiving PE unpacks, it uses remote loads to get the
remainder of the data.

Often, remote stores used for short messages can occur at the same time as
computation on the receiving PE. But with large messages, remote loads require
the receiving PE to wait until the loads complete. If the same data is being sent
to several PEs, those PEs may all try to do remote loads at the same time,
creating a slowdown as they share the limited memory bandwidth.

2.2 Allocating Send Buffer s

004-2518-002

The PVMFINITSEND3) subroutine lets you choose what PVM will do with the
data it sends. Each of the following three choices can be used to advantage in
certain circumstances:

e PvmDataRaw
e PvmDatalnPlace
e PvmDataDefault

Assuming your application is running only on the CRAY T3E system, the
fastest of the three choices is usually PvmDatalnPlace , as specified in the
following example:

CALL PVMFINITSEND(PvmDatalnPlace, ISTAT)

The PvmDatalnPlace specification has the following advantages and
disadvantages:

¢ It does not copy the data into a send buffer, which is the primary reason for
its speed, unless the data streams feature is turned on. If data streams are
turned on, PvmDatalnPlace is the same as PvmDataRaw. For more
information on data streams, see Section 4.4.7, page 105.

e It requires you to wait until the transfer is complete before accessing the
data, which can slow the program down at times.

* You must either provide your own synchronization or send a short message
from the receiving PE to let the sending PE know the transfer is complete.

e It is optimized for contiguous (stride-1) data. You lose any performance
benefit if your data is not contiguous.

25
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Although it is not always the fastest, the PvmDataRaw specification is often
considered the most useful of the three for the following reasons:

¢ It does not convert the data into another format, thereby saving on encoding
costs.

¢ It ensures that the data is copied into send buffers, meaning the original
data can be reused (for example, changed) immediately.

If you are sending integer data and the data does not need more than 32 bits of
accuracy, you could see a performance benefit using PvmDataDefault

Because this form of packing copies only the low-order 32 bits of integer data,
you can get twice as much data into the same block packed using PvmDataRaw.
This can offer some performance benefit with 32-bit data.

Use of the PvmDataRaw method is recommended for most transfers, but, as is
often the case, which method is best depends on your application.

2.3 the Advantage of 32-bit Data

Passing 32-bit data can be almost twice as fast as sending 64-bit data. If,
however, your data is not aligned on a 64-bit word and you are using
PvmbDatalnPlace for packing, your code will probably slow down.

In the following example, data is sent in the REAL(KIND=4) format:

Example 1: Transferring 32-bit data

1. PROGRAMCOMPARE2

2. C

3. C PVMversion

4. C

5. INCLUDE 'fpvm3.h’

6. INTEGER ME

7. INTEGER ISTAT, SENDER, RECEIVER
8. PARAMETER(N=1000)

9. PARAMETER(SENDER 0)

10. PARAMETER(RECEIVER= 1)

11. PARAMETER(MTAG 2)

12. REAL (KIND=4) D_SEND(N), D _RECV(N)
13. C

14. C Get PE info

15. CALL PVMFMYTID(MYTID)

16. CALL PVMFGETPE(MYTID, ME)
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17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
20.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.

004-2518-002

@]

OO0

@]

OO0

* 1.0

IF (ME .EQ. SENDER) THEN

CALL PVMFINITSEND(PvmDataRaw, ISTAT)

CALL PVMFPACK(REAL4, D_SEND, N, 1, ISTAT)

CALL PVMFSEND(RECEIVER,MTAG, ISTAT)
ELSE IF (ME .EQ. RECEIVER) THEN

CALL PVMFRECV(SENDERMTAG, ISTAT)
CALL PVMFUNPACK(REAL4,D RECV, N, 1, ISTAT)

'Receiver=',ME,’ D_RECV=', D_RECV(1), D_RECV(2)
,D_RECV(3),D _RECV(4),D_RECV(5),D_RECV(6),D_RECV(7)

The program in this example has the following output:
Receiver=1 D RECV=l,, 2., 3., 4., 5., 6., 7.

To move on to the next optimization topic, go to Section 2.4, page 28. For a
brief description of the above program, continue with this section.

Line 5 references the PVM INCLUDE file. See your system administrator for the
actual location of the INCLUDE file on your system. You must also either load
the Message Passing Toolkit (MPT) module with the module (1) command or
specify the location of the INCLUDE file with the -I option on the f90 (1)
command line.

5. INCLUDE 'fpvm3.h’

Lines 9 and 10 define the sending PE as PE 0 and the receiving PE as PE 1.

9. PARAMETER(SENDER 0)
10. PARAMETER(RECEIVER= 1)
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Line 12 defines the sizes of the sending and receiving arrays. The (KIND=4)
specification defines 32-bit data.

12. REAL (KIND=4) D_SEND(N), D_RECV(N)

The fastest of the data encoding arguments to PVMFINITSEND in this case, is
PvmDataRaw because data conversion is not needed. If the program were
transferring 32-bit integer data, PvmDataDefault ~would be faster (see Section
2.2, page 25). Because the sending and receiving arrays both begin with the first
element and use a stride-1 increment, the 32-bit values will be packed and
unpacked two data items per 64-bit word.

Lines 26 through 28 initialize the send buffer, pack the 32-bit data, and send the
data:

26. CALL PVMFINITSEND(PvmDataRaw, ISTAT)
27. CALL PVMFPACK(REAL4, D_SEND, N, 1, ISTAT)
28. CALL PVMFSEND(RECEIVER,MTAG, ISTAT)

Lines 32 and 33 receive and unpack the 32-bit data:

32. CALL PVMFRECV(SENDERMTAG, ISTAT)
33. CALL PVMFUNPACK(REAL4,D_RECV, N, 1, ISTAT)

2.4 Sending and Receiving Stride-1 Data

28

PVMFPSENQ) and PVYMFPRECH) are send and receive routines that transfer
either a single data item or stride-1 data to one PE. You do not have to initialize
a send buffer or pack and unpack the data when you use PYMFPSENRnd
PVMFPRECMor short messages, they run faster than the traditional send and
receive routines, PYMFSENRnd PVMFRECV

The trade-off for the increase in speed is reduced flexibility. Using PVYMFPSEND
you are limited to a single block of contiguous data, and it can be sent to just
one other PE.

You are also limited to receiving a single block of contiguous data with
PVMFPRECMut, after PYMFPRECYompletes, it is done with the message.
Using PVMFRECMone or more unpack calls may follow the PYMFRECVall, and
information about the message must be kept around in case the user calls
PVMFBUFIN@). In both the send and the receive, the PVMFPSENRAnd
PVMFPRECYoutines offer much simpler and faster code.

The speedups from using PYMFPSENRnd PVMFPRECYre most noticeable for
small messages, meaning less than the value of the PVYM_DATAMAX
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environment variable (see Section 2.1, page 24). For large messages (greater
than PVM_DATA_MAXthe performance benefits over PVMFSENRBnd PVMFRECV
are not significant.

The following example shows a program that passes data by using the
PVMFPSENRAnd PVMFPRECYoutines. The SRCPE passes data to the DESTPE,
which in turn passes it back to the SRCPE.

Example 2: PVYMFPSEN@RNd PVMFPRECV

©oNoUk~wNPRE

WWWWWNNNNNNNNNNRRRRRERRR R
PONPOOBNOTRRONPOO®IDO R ®NEO

PROGRAMPSEND_ PRECV
INCLUDE 'fpvm3.h’

INTEGER SRC, DEST
PARAMETER(SRG= 0)
PARAMETER(DEST= 1)
PARAMETER(LEN= 10)
PARAMETER(BACKAND_FORTH= 1000)
REAL ARRAY(LEN)

INTRINSIC MY_PE

ME = MY_PE()
C Initialize data
IF (ME .EQ. SRC) THEN
DOl =1, LEN
ARRAY(l) =1 * 1.0
ENDDO
ENDIF

C Send and receive data BACK_AND_FORTHimes
DOl =1, BACK_AND_FORTH
C Send data to DEST PE
IF(ME .EQ. SRC) THEN
CALL PVMFPSEND(DEST,LEN, ARRAY, LEN, REALS,
$ ISEND)
C Receive data from DEST PE
CALL PVMFPRECV(DEST,LEN, ARRAY, LEN, REALS,
$ IATID, IATAG, IALEN, IRECV)
ELSE
C Receive data from SRC PE
CALL PVMFPRECV(SRC,LEN, ARRAY, LEN, REALS,
$ IATID, IATAG, IALEN, IRECV)
C Send data to SRC PE
CALL PVMFPSEND(SRC,LEN, ARRAY, LEN, REALS,
$ ISEND)
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35. ENDIF
36. ENDDO
37. END

The MY_PEfunction, define in line 9 and referenced in line 11, returns the
number of the PE on which is executes. It is available on the CRAY T3E system
as both an intrinsic and an external library routine. While the intrinsic is
slightly faster, the library version is more portable. Unless you specifically
declare MY_PEas an intrinsic, as in line 9, you will get the external library
version. The same is true for the constant NSPESand the library equivalent
NUM_PESNS$PES:is slightly faster, but NUM_PESs more portable.

2.5 Mixing Send and Receive Routines

The PVYMFPSENQ) and PVYMFPREC®) routines work together with the
PVMFSEND@Nnd PVYMFREC¥end and receive calls. You can incrementally
change your code to use them as appropriate, with some benefit accruing with
each change. For example, if you find a place that is sending a one-word
message using PVMFSENB), you can change it to use PVYMFPSENDBvithout
worrying about finding and changing the matching PYMFREC\all. You can
also continue to use PYVMFBCAS(B) to broadcast a one-word message to all
other PEs, something that can be very efficient (see Section 2.9, page 33), but
change the receives to use the PYMFPRECVYoutine.

2.6 Initializing and Packing Data

You can use PVM in several different ways to send the same message to
multiple targets. Some performance benefit is available by using special
techniques.

If possible, avoid the following code construct, which initializes and packs the
data buffer for each send. (For information on choosing between the more
portable NUM_PESibrary routine and the slightly faster NSPESconstant, see
Section 2.4, page 28, and Section 3.2.1, page 51.)

DOl =1, NUM_PES
CALL PVMFINITSEND(PvmbDataRaw, ISTAT)
CALL PVMFPACK(REALS, ARRAY, N, 1, ISTAT)
CALL PVMFSEND(I, MTAG, ISTAT)

END DO
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In the simplest case, you can remove the initialization and packing steps from
the loop, as follows:

CALL PVMFINITSEND(PvmbDataRaw, ISTAT)
CALL PVMFPACK(REALS, ARRAY, N, 1, ISTAT)
DOl =1, NUM_PES

CALL PVMFSEND(I, MTAG, ISTAT)
END DO

This is more efficient because you pack the data only once. This means you
need only one extra data block (for PvmDataRaw or PvmDataDefault

packing) and one memory copy. Other PVM functions, such as PVMFBCAS(B)
and PVYMFMCAST) (see Section 2.9, page 33), provide alternatives to what
remains of the DOloop.

Some programs may include this inefficient code construct but hide it, as in the
following example:

DOl =1, NUM_PES-1
CALL MYOWNMSEND(I, NSIZE, N, ISTAT)
END DO

In this example, MYOWN_SENPa message-passing envelope that contains PVM
code that might look something like the following. This subroutine makes the
same mistake as the previous example by initializing and packing for each send.

SUBROUTINEMYOWNBEND(I, NSIZE, N, ISTAT)
CALL PVMFINITSEND(PvmbDataRaw, ISTAT)
CALL PVMFPACK(REALS, NSIZE, N, 1, ISTAT)
CALL PVMFSEND(I, MTAG, ISTAT)

RETURN

END

In this case, you are gaining portability but sacrificing performance. You may
want to consider using PVM directly or writing a routine that runs more
efficiently.

2.7 Working While You Wait
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Sometimes you will be able to get some work done while waiting for a message
to arrive. In such cases, the PYMFNREQ®) routine is a good substitute for
PVMFRECE) for receiving a message. PYMFNRECMoes a nonblocking receive
(glossary page 147), meaning it does not wait until the message arrives but
rather returns immediately if there is no message. By checking with
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2.8 Avoiding Barrier s

32

PVMFNRECYeriodically, your program can monitor the arrival of a message
and execute other statements while it waits.

The following example outlines one way in which you can make use of
PVMFNRECV

CALL PVMFNREC\-1, 4, ARRIVED)
IF (ARRIVED .EQ. 0) THEN
C Do something else
ELSE
C Process data in message
ENDIF

Barrier synchronization is appealing because it provides a clear definition of the
status of each PE. Although the hardware barrier mechanism on CRAY T3E
systems is fast, the waiting time may be long. A barrier requires that all PEs
involved arrive at the barrier before any can proceed, so the true speed of a
barrier is the speed of the slowest PE. If your application is not well balanced,
waiting can slow it down dramatically.

PVM provides a simple form of synchronization. When a PE uses a blocking
receive (glossary, page 142) to receive a message from another PE, you know
that the receiving PE will not go beyond that blocking receive until the sending
PE has completed its send. (The PYMFRECYoutine, for instance, uses a
blocking receive.) Yet synchronization is accomplished without involving the
other PEs and is combined with the transfer of data. Further synchronization,
such as using barriers, is usually not needed.

The follow-on to avoiding barriers is to avoid synchronization of any sort, if
possible. Synchronization creates idle PEs, especially when some PEs have
more work than others. Although synchronous communication may be easier
to understand, asynchronous communication provides better performance.

Unlike some message-passing systems, PVM does not have an asynchronous
receive (glossary, page 141), in which a receive is issued in parallel with the
send, and the application later checks the status of this receive. Instead, it
provides a nonblocking receive, the PVMFNRECYoutine (see Section 2.7, page
31). On the CRAY T3E system, PVMFNRECYrovides comparable performance
to the PYMFRECYoutine. If possible, write your code in such a way that it can
use a nonblocking receive, so that if the message has not arrived, the code can
do other work. See the example in the preceding section.
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2.9 Using Broadcast or Multicast

The PVYMFBCAS(B) and PVYMFMCASSJ) routines offer two methods of sending
messages to multiple PEs in a single call. The broadcast (glossary, page 142)
routine, PYMFBCAS]Tsends to all PEs in a group, whether that group consists of
all PEs involved in the job or a predefined subset of all PEs. The multicast
(glossary, page 147) routine, PVMFMCASBends to all PEs with PE numbers that
appear in an array that you define.

Although PYMFMCASProvides more flexibility concerning which PEs will
receive the message, PYMFBCASTs usually faster. If the group name you give
to PYVMFBCASTSs the global name, PVYMALL PVM uses an optimized method to
transfer the data. Instead of the broadcasting PE sending directly to all other
PEs, it sends to half the PEs. When these PEs receive the message, they each
forward it to half the remaining PEs, and so on. (For an illustration, see Figure
9, page 33.) This provides better and more scalable performance in the
following situations:

e If the number of PEs is approximately 32 or larger. There is usually extra
time involved in forwarding such messages, meaning the forwarding
method may not be as efficient with a smaller number of PEs.

e If the data packets are small (less than or equal to PVM_DATA_MAXIf they
are larger, the forwarding method is abandoned, and all the receiving PEs
try to do remote loads from the sending PE at more or less the same time.

‘ = sender O = receiver

Figure 9. Fan-out method used by broadcasting routines

al0004
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If you use a group name representing a subset of the PEs (a name other than
PVMALL, there is no special optimization. PVM simply goes through the list of
PEs in the group and sends to each PE.

The PYMFMCASToutine does not offer special optimizations. PVM goes
through the specified array of PE numbers and sends to each PE.

The following two examples use PVMFBCAShnd PVMFMCASTespectively, to
transfer an array of 10 elements to all other PEs attached to the job:

Example 3: PVMFBCAST

PROGRAMBCAST

INCLUDE 'fpvm3.h’
PARAMETER(LEN=10)
INTEGER MYTID, ME, NPES
DIMENSION ARR(LEN)

C Use PVM method of obtaining task id, PE number, number of PEs
CALL PVMFMYTID(MYTID)
CALL PVMFGETPE(MYTID, ME)
CALL PVMFGSIZE(PVMALL, NPES)

C PE 0 initializes, packs, and sends the array of 10 elements
IF (ME .EQ. 0) THEN
DOl =1, LEN
ARR() =11/ 20
ENDDO
CALL PVMFINITSEND(PvmDataRaw, ISTAT)
CALL PVMFPACK(REALS, ARR, LEN, 1, ISTAT)
CALL PVMFBCAST(PVMALL,LEN, ISTAT)
C All other PEs receive it
ELSE
CALL PVMFRECV(0, LEN, ISTAT)
CALL PVMFUNPACK(REALS8,ARR, LEN, 1, ISTAT)

ENDIF
C A representative PE prints the array
IF (ME .EQ. 2) THEN
WRITE(*,*) 'The array values are: ', ARR
ENDIF
END
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Example 4: PVMFMCAST

C Use

C Set

PROGRAMUCAST

INCLUDE 'fpvm3.h’
PARAMETER(LEN=10)
INTEGER MYTID, ME, NPES
DIMENSION ARR(LEN)
INTEGER PE_ARR(NUM_PES)

PVM method of obtaining task id, PE number,
CALL PVMFMYTID(MYTID)

CALL PVMFGETPE(MYTID, ME)

CALL PVMFGSIZE(PVMALL, NPES)

up array of PE numbers
DOl =1, NPES-1

PE_ARR(l) =1
ENDDO

number of PEs

C PE 0 initializes, packs, and sends the array of 10 elements

C All

IF (ME .EQ. 0) THEN
DOl =1, LEN
ARR() =11/ 20
ENDDO
CALL PVMFINITSEND(PvmDataRaw, ISTAT)
CALL PVMFPACK(REALS, ARR, LEN, 1, IPACK)
CALL PVMFMCAST(NPES,PE_ARR, LEN, ICAST)
other PEs receive it
ELSE
CALL PVMFRECV(0, LEN, IRECV)

CALL PVMFUNPACK(REALS,ARR, LEN, 1, IUPK)

ENDIF

C A representative PE prints the array

IF (ME .EQ. 1) THEN
WRITE(*,*) 'The array values are: ', ARR
ENDIF

END

The output from both programs is as follows:

The array values are: 05, 1., 15, 2, 25, 3,

35



CRAY T3E™ Fortran Optimization Guide

Because the efficient message-passing system used by PVYMFBCASbecomes
more of a factor as the number of PEs increases, the advantage in using
PVMFBCASTs most apparent when more PEs are involved in the job. But even
when using as few as eight PEs, PVMFBCASTtill has better performance than
PVMFMCAST

2.10 Minimizing Synchr onization Time When Receiving Data

36

When a single PE receives data from multiple PEs, use -1 as the task identifier
argument to the PVMFREC) routine to save time receiving the data. The -1
value allows a PE to receive data from any PE. The following example forces
data to be received in the numeric order of the PEs. It assumes that PE 0 is
receiving the data. The first argument to the PVMFRECYoutine specifies the PE
number from which the data is received.

OFFSET= 1

DOl =1, NPES-1
CALL PVMFRECV(l, MSGTAG, IRECV)
CALL PVMFUNPACK(REALS,ARRAY(OFFSET), LENGTH, 1, IUPK)
OFFSET = OFFSET + LENGTH

ENDDO

In the preceding example, regardless of which PE gets its data there first, PE 0
will wait until the data from PE 1 arrives and is received before it can receive

data from any other PE. The following example receives whatever data arrives
first:

DOl =1, NPES-1
CALL PVMFRECV(-1, MSGTAG, IRECV)
CALL PVMFUNPACK(REAL8,X((MSGTAG-1) * LENGTH+ 1), LENGTH, 1, IUPK)
ENDDO

Unless the data in this example can be put into the X array in random order,
you must check the message tag to find out which PE sent a given message.
The example assumes the sending PE has sent its PE number in the message
tag. Remember, the data is likely to arrive in a different order for different
executions of the program.

A loop such as the following offers a second way to order the arriving data in
the receiving array:
DOl =1, NPES-1

CALL PVMFRECV(-1, MSGTAG, IRECV)

CALL PVMFUNPACK(INT4, ISOURCE, 1, 1, IUPK1)
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CALL PVMFUNPACK(REALS,X((ISOURCE-1) * LENGTH+1), LENGTH, 1, IUPK2)
ENDDO

This example assumes that each PE has sent its identifier in ISOURCE which is
the first part of the message.

The following example assumes the sending PEs did not include their
identifiers in the message. Instead, a call to the PVMFBUFINFQroutine retrieves
the value of the task identifier (the fourth argument), converts it to a PE number
using PVMFGETPE), and places it in the variable NEXTPE NEXTPEis then
used in the PYMFUNPACIKoutine to provide the element number in the array X.

DOl =1, NPES-1

CALL PVMFRECV(-1, MSGTAG, IRECV)

CALL PVMFBUFINFO(IBUFID, IBYTES, ITAG, ISOURCE, ISTAT)

CALL PVMFGETPE(ISOURCE,NEXTPE)

CALL PVMFUNPACK(REALS,X((NEXTPE-1) * LENGTH+ 1), LENGTH, 1, IUPK2)
ENDDO

The three preceding methods are approximately equivalent in terms of
performance.

2.11 Using the Reduction Functions

The PVM reduction subroutine, PVMFREDUGBE), performs common functions
across multiple PEs, returning the results to a single PE. For instance, if each PE
contains an array of integers, PVMFREDUCEan find the largest value in any of
the arrays at each location and return those answers to an array on a PE that
you specify. By executing the following call, you will end up with an array of
the largest values on PE 0, as illustrated in Figure 10, page 38:

CALL PVMFREDUCE(PvmMaxARR, 10, INTEGERS8, MTAG, PVMALL, 0, IMAX)

004-2518-002 37



CRAY T3E™ Fortran Optimization Guide

PEO

ARR

31

11

91

18

PE1

ARR

36

17

© 00 N o o0~ W N P
(631

20

36

11

© 00 N o o A~ W N P
=

20

(SN
o

19

(=Y
o

19

Figure 10. A PvmMaxreduction

PE2

© 00 N o o0~ W N P

=
o

ARR

13

91

18

17

12

PE3

© 00 N o o0~ W N P

[E=Y
o

ARR

31

11

14

15

18

1

al0023

Reduction functions are faster than other PVM methods of finding the same
answers. The following example adds the values at each array position for each
instance of the array and returns the sum to that array position on PE 0:

Example 5: PvmSum

PROGRAMREDUCE
INCLUDE 'fpvm3.h’

INTEGER MYTID, ME, NPES, LEN
INTEGER ARR(10),

EXTERNAL PYMSUM

CALL PVMFMYTID(MYTID)

CALL PVMFGETPE(MYTID, ME)
CALL PVMFGSIZE(PVMALL, NPES)

C Initialize the array
LEN = 10
DOI =1, LEN

38

RESULTS(10)
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ARR() = ME* |
ENDDO

C Make sure initialization is complete
CALL BARRIER

C Find the sums at each location
CALL PVMFREDUCE(PvmSum,ARR,LEN,INTEGERS8,LEN,PVMALL,0,IRED)

C Write the answers on PE O
IF (ME .EQ. 0) THEN
WRITE(*,*) 'The array sums are: ', ARR
ENDIF
END

Running the program on eight PEs, the output is as follows:

The array sums are: 28, 56, 84, 112, 140, 168, 196, 224, 252, 280

2.12 Gathering and Scattering Data

An efficient way to process a large array using PVM is to divide its elements up
among multiple PEs, process those elements, and reassemble the array on a
single PE. The PYMFGATHER) and PVMFSCATTER) routines are well suited to
do just that.

The PVYMFSCATTERoutine distributes sections of an array among a group of
PEs, and PVMFGATHERombines arrays from multiple PEs into a single array.
The process is illustrated in Figure 11, page 40.
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Process
PE1
PEO Scatter Gather PEO

1 1
2 2
3 PE2 3
4 4
5 5
6 I 6
7 7
8 8
9 9
10 PE3 10
11 11
12 12

al0025

Figure 11. The gather/scatter process

The following example collects each PE’s SMALL_Carray into the BIG_C array
on the root PE:
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Example 6: Gather operation

PROGRAMSATHER
INCLUDE "fpvm3.h"

C Initialize PEO as the root PE

INTEGER, PARAMETER: ROOT_PE= 0

PARAMETER(IXDIM = 64, IYDIM = 128)
DIMENSION A(IXDIM, 1YDIM)

DIMENSION B(IYDIM)

DIMENSION SMALL_C(IXDIM)

DIMENSION BIG_C(IXDIM*4)  IAssume 4 PEs

CALL PVMFMYTID(MYTID)

CALL PVMFGETPE(MYTID, MYPE)
MSGTAG= 9

A = MYPE

B(LIYDIM-1:2) = -1.2
B(2:IYDIM:2) = 1.0

SMALL C= 0.0

C Perform  matrix-vector multiplication on each PE

DOI =1, IXDIM
DOJ =1, IYDIM

SMALL_C(l) = SMALLC() + A(J) * B()

ENDDO
ENDDO

C Gather each PE's SMALL Cinto ROOT_PE's BIG C

CALL PVMFGATHER(BIGC,SMALL_C,IXDIM,REAL8,MSGTAG,PVMALL,ROOT_PE,IGATHER)

IF (MYPE .EQ. ROOT_PE) THEN

WRITE(6,1) (BIG_C(), | = 1, IXDIM*4)
FORMAT(8(1X, F7.2))

ENDIF

END

The following example scatters the BIG_X array into the smaller SMALL_X

arrays.

Example 7: Scatter operation

PROGRAMSCATTER
INCLUDE "fpvm3.h"

C Initialize PEO as the root

INTEGER, PARAMETER:

004-2518-002

PE
ROOT_PE= 0
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PARAMETER(lY = 128, IX = IY/4) I!Assume 4 PEs
DIMENSION SMALL_X(IX)

DIMENSION BIG_X(lY) IAssume 4 PEs
PARAMETER(MTAGBCAST 10, MTAGSCAT= 11)

CALL PVMFMYTID(MYTID)
CALL PVMFGETPE(MYTID, MYPE)

IF (MYPE.EQ.IROOT_PE)THEN
Initialize BIG_X
I =1
DO J =14 I Assume 4 PEs
DO INDX = 1,IX
BIG_ X() =1. * J
I = I1+1
ENDDO
ENDDO
ENDIF

CALL PVMFSCATTER(SMALLX, BIG_X, IX, REAL8, MTAGSCAT, PVMALL,

IROOT_PE, ISCATTER)
PRINT *’FOR PE 'MYPE,” SMALL XIS ',SMALL _X
END
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You can either use shared memory (SHMEM) routines alone or mix them into a
program that primarily uses PVM (glossary, page 148) or MPI (glossary, page
147), thereby offering opportunities for optimizations beyond what the
message-passing protocols can provide. Be aware, however, that SHMEM is not
a standard protocol and will not be available on machines developed by
companies other than Silicon Graphics and Cray Research. SHMEM is
supported on Cray PVP systems, Cray MPP systems, and on Silicon Graphics
systems.

For background information on SHMEM, see Section 1.1.2, page 2. For an
introduction to the SHMEM routines, see the shmem_intro (3) man page.

This chapter describes the following optimization techniques:

¢ Improving data transfer rates in any CRAY T3E program by using SHMEM
get and put routines (see Section 3.1, page 44). This section provides an
introduction to data transfer, which is the most important capability that
SHMEM offers.

* Improving the performance of a PVM or MPI program by adding SHMEM
data manipulation routines (see Section 3.2, page 48).

e Avoiding performance pitfalls when passing 32-bit data rather than 64-bit
data (see Section 3.3, page 55).

* Copying strided (glossary, page 150) data while maintaining maximum
performance. The strided data routines enable you, for example, to divide
the elements of an array among a set of processing elements (PEs) or pull
elements from arrays on multiple PEs into a single array on one PE (see
Section 3.4, page 58).

* Gathering and scattering data and reordering it in the process (see Section
3.5, page 62).

® Broadcasting (glossary, page 142) data from one PE to all PEs (see Section 3.6,
page 66).

e Merging arrays from each PE into a single array on all PEs (see Section 3.7,
page 68).

e Executing an atomic memory operation (glossary, page 141) to read and
update a remote value in a single process (see Section 3.8, page 70).
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* Using reduction (glossary, page 149) routines to execute a variety of
operations across multiple PEs (see Section 3.9, page 71).

3.1 Using SHMEM_GET64nd SHMEM_PUT64or data transfer

44

In general, avoiding communications between PEs (including data transfer)
improves performance. The fewer the number of communications, the faster
your program can execute. Data transfer is, however, often necessary. Finding
the fastest method of passing data is an important optimization, and the
SHMEM routines are usually the fastest method available.

The SHMEM_PUT64nd SHMEMGETG64 routines avoid the extra overhead
(glossary, page 147) sometimes associated with message passing routines by
moving data directly between the user-specified memory locations on local and
remote PEs.

For both small and large transfers, the SHMEM_PUTG64outine, which moves
data from the local PE to a remote PE, and the SHMEM_GET64outine, which
moves data from a remote PE to the local PE, are virtually the same in terms of
performance. At times, SHMEM_PUTG64nay be the better choice because it lets
the calling PE perform other work while the data is in the network. Because
SHMEM_PUT64s asynchronous, it may allow statements that follow it to
execute while the data is in the process of being copied to the memory of the
receiving PE. SHMEM_GET6#orces the calling PE to wait until the data is in
local memory (glossary, page 146), meaning that no early work can be done.

Passing data in large chunks is always faster than passing it in small chunks
because it saves subroutine overhead. Whenever possible, put all of your data
(such as an array) into a single SHMEM_PUT64r SHMEM_GET64all rather than
calling the routine iteratively.

In the following example, eight 64-bit words are transferred from PE 1 to PE 0
by using SHMEM_PUTG4PE numbering always begins with 0.

Example 8: Example of a SHMEM_PUT64#ransfer

1. INCLUDE "mpp/shmem.fh"
INTEGER SOURCE(8), DEST(8)
INTRINSIC MY_PE
SAVE DEST

C On the sending PE
IF (MY_PE() .EQ. 1) THEN

DOl = 1,8
SOURCE(l) =1

©No g A~wWN
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9. ENDDO

10. C PE 1 sends the data to PE O.

11. CALL SHMEMPUT64(DEST, SOURCE,38, 0)
12. ENDIF

13.

14. C Make sure the transfer is complete.

15. CALL SHMEMBARRIER_ALL()

16.

17. C On the receiving PE

18. IF (MY_PE() .EQ. 0) THEN

19. PRINT *, 'DEST ONPE 0: ', DEST
20. ENDIF

21.

22. END

See the following figure for an illustration of the transfer.

PEO PE1

Dest Source
1 1| +———| 1 1
2 2 | 4——| 2 2
3| 3| 4—| 3| 3
4 4 | 44— | 4 4
5 5| «—— | 5 5
6| 6| «—| 6| 6
7 7T | *+————— | 7 7
8| 8| «———| 8| 8

al0009

Figure 12. SHMEM_PUTG64lata transfer
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The output from the example is as follows:

DESTONPEO: 1, 2, 3, 4, 5 6, 7, 8

Defining the number of PEs in a program and the number in an active set
(glossary, page 141) as powers of 2 (that is, 2, 4, 8, 16, 32, and so on) helped
performance on CRAY T3D systems. Also, declaring arrays as powers of 2 was
necessary if you were using Cray Research Adaptive Fortran (CRAFT) on
CRAY T3D systems. Both have changed as follows on CRAY T3E systems:

® Declaring arrays such as SOURCEnd DESTas multiples of 8 helps SHMEM
speed things up somewhat, since 8 is the vector length of a key component
of the PE remote data transfer hardware. Declaring the number of elements
as a power of 2 does not affect performance unless that number is also a
multiple of 8.

e Defining the number of PEs, whether you are referring to all PEs in a
program or to the number involved in an active set, as a power of 2 does
not usually enhance performance in a significant way on the CRAY T3E
system. Some SHMEM routines, notably SHMEM_BROADCASHll do benefit
somewhat from having the number of PEs defined as a power of 2.

For information on optimizing existing PVM and MPI programs using
SHMEMGET64 and SHMEM_PUTG4ee Section 3.2, page 48. For a complete
description of the MPP-specific statements in the preceding example, continue
on with this section.

In the SHMEM_PUTG64xample (see Example 8, page 44), line 1 imports the
SHMEM INCLUDE file, which defines parameters needed by many of the
routines. The location of the file may be different on your system. Check with
your system administrator if you do not know the correct path.

1. INCLUDE "mpp/shmem.fh"

Line 3 declares the intrinsic function MY_PE which returns the number of the
PE on which it executes. Two versions of MY_PEfunction exist on the CRAY T3E
system, one in the external library and one as an intrinsic. The intrinsic version
is marginally faster than external library version, but the external library version
is now, and will be in the future, on more Cray Research and Silicon Graphics
supercomputer systems. Declaring MY_PEas an intrinsic is not necessary, but it
will ensure you of getting the slightly faster version of the routine.

3. INTRINSIC MY_PE
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The defined constant N$PES which returns the number of PEs in a program, is
also slightly faster than the more portable external library routine NUM_PES
Like MY_PE both versions return the same information.

The intrinsic function MY_PEand the constant NSPESare also faster than using
equivalent message-passing routines, such as SHMEM_MY_P&nd
SHMEM_N_PESoth methods return the same information and are available on
Cray PVP systems as well as Cray MPP systems.

Line 4 ensures that the remote array (DEST) is symmetric (glossary, page 150),
which means that it has the same address on remote PEs as on the local PE.

4. SAVE DEST

You can make sure DESTis symmetric in any of the following ways. (None of
these methods is significantly faster than the others.)

¢ Name it in a SAVEstatement, as in the example.

¢ Include it in a common block.

e Ifitis an array, allocate it by using shpalloc (3).

e Ifitis a stack variable, declare it by using the |CDIR$ SYMMETRIGlirective.

In line 6, the MY_PEfunction is called. The function returns the number of the
calling PE, meaning only PE 1 will execute the THENclause. As a result, the
array SOURCEs initialized only on PE 1.

5. C On the sending PE

6. IF (MY_PE() .EQ. 1) THEN
7. DOl =18

8. SOURCE(l) = |

9. ENDDO

In line 11, PE 1 executes the SHMEM_PUT64outine call that sends the data.
SHMEM_PUT64s the variant of SHMEM_PUT64hat transfers 64-bit (KIND=8)
data. It sends eight array elements from its SOURCErray to the DESTarray on
PE 0.

11. SHMEM_PUT64(DEST, SOURCE, 8, 0)
12. ENDIF

Line 15 is a barrier (glossary, page 141), which provides a synchronization point
(glossary, page 151). No PE proceeds beyond this point in the program until all
PEs have arrived. The effect in this case is to wait until the transfer has finished.
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Without the barrier, PE 0 could print the DESTarray before receiving the data.
Calling SHMEM_BARRIER_ALIs as fast as calling the BARRIERroutine directly.

15. CALL SHMEM_BARRIER_ALL()

Line 18 selects PE 0, which is passively receiving the data. Because
SHMEM_PUT64laces the data directly into PE 0’s local memory, PE 0 is not
involved in the transfer operation. After being released from the barrier, PE 0
prints DEST, and the program exits.

18. IF (MY_PE() .EQ. 0) THEN
19. PRINT * 'DEST ONPE 0: ', DEST
20. ENDIF

3.2 Optimizing Existing MPI and PVM Programs by Using SHMEM

48

The following sections show two methods of optimizing a PVM program by
using SHMEM routine calls. SHMEM data-transfer routines have lower latencies
(glossary, page 146) and higher bandwidth (glossary, page 141) than comparable
message-passing routines. The PVM version of the program is as follows.

Note: The following programs implement a global summation around a ring.
They are intended to compare equivalent SHMEM and PVM versions of a
program, not to provide an optimal implementation of a global summation.
For a faster version of a global summation, see the reduction routines on
page 74.

Example 9: PVM version of the ring program

1. PROGRAMING_SUM1

2. INCLUDE ’'fpvma3.h’

3. INTEGER ME, NPES, NEXT, PREV, ISTAT
4, C

5. C Get PE info

6. CALL PVMFMYTID(MYTID)

7. CALL PVMFGSIZE(PVMALL, NPES)

8. CALL PVMFGETPE(MYTID, ME)

9. C

10. C Define the ring

11. NEXT = ME + 1

12. IF (NEXT .GE. NPES) NEXT = NEXT - NPES
13. PREV= ME- 1

14. IF (PREV .LT. 0) PREV = PREV + NPES
15. C
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16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
20.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.

This program simply passes messages around a ring of PEs. All of the PEs

C Initialize data

C And begin loop

C
I_SEND ME
|_TOTAL ME
DO I=2, NPES

C
C Send data to next PE
CALL PVMFINITSEND(PvmDataRaw, ISTAT)
CALL PVMFPACK(INTEGER4, |_SEND, 1, 1, ISTAT)
CALL PVMFSEND(NEXT,I, ISTAT)
C
C Receive data from previous PE
CALL PVMFRECV(PREV,I, ISTAT)
CALL PVMFUNPACK(INTEGER4,I_RECV, 1, 1, ISTAT)

C
C Perform  work
| TOTAL = | TOTAL + | _RECV
| SEND = 1|_RECV
ENDDO
WRITE(**) ' PE ="' ME, ' Result ="' [ _TOTAL,
$ ' Expect ="', (NPES-1)*NPES*.5
END

execute all of the statements. Each passes its PE number around and adds the

number it receives to the variable |_TOTAL. When each PE has seen the PE
number of every other PE, each prints out its own PE number and the total it

has calculated.

The output from the program, reflecting the random order in which the PEs

finish, is as follows:

PE

PE =
PE =
PE =
PE =

PE
PE
PE

Result = 28 Expect = 28.
Result = 28 Expect = 28
Result = 28 Expect = 28
Result = 28 Expect = 28
Result = 28 Expect = 28
Result = 28 Expect = 28
Result = 28 Expect = 28
Result = 28 Expect = 28

|
OO0 ~ANNWOA R
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50

For the SHMEM_GETG6#ersion of the same program, see Section 3.2.1, page 51;
otherwise, see the remainder of this section for a more detailed description of
the PVM version.

Line 2 references the PVM INCLUDE file. Line 3 declares some necessary
variables.

2. INCLUDE 'fpvm3.h’
3. INTEGER ME, NPES, NEXT, PREV, ISTAT

The next few statements define a PE’s neighbors. The variables NEXTand PREV
defined in lines 11 through 14, specify which of its neighbors a PE will be
passing to and which it will be receiving from, respectively. Lines 12 and 14
define neighbors for the PEs on the end, namely PE and PE 7 in an 8-PE
configuration. Line 12 causes PE 7 to pass to PE 0, and line 14 causes PE to
receive from PE 7.

10. C Define the ring

11. NEXT = ME+ 1

12. IF (NEXT .GE. NPES) NEXT = NEXT - NPES
13. PREV= ME- 1

14. IF (PREV .LT. 0) PREV= PREV + NPES

The values for NEXTand PREVin each PE are as illustrated in the following
figure.

PEO PE1 PE2 PE3 | PE4 PES PEG PE7

NEXT=1 NEXT=2 NEXT=3 NEXT=4 NEXT=5 NEXT=6 NEXT=7 NEXT=0
PREV=7 PREV=0 PREV=1 PREV=2 PREV=3 PREV=4 PREV=5 PREV=6

al0003

Figure 13. Identification of neighbors in the ring program.

Line 19 initializes the variable that each PE will pass on to NEXT, and line 20
initializes the variable that will hold the running total in each PE. Both
variables at first contain the number of the respective PE.

19. I_SEND = ME
20. I_TOTAL = ME
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3.2.1 Optimizing by Using
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Next comes the DOloop, within which the PVM statements pass and receive the
data. It executes once for every PE except ME since the value of MEis already in
the running total. In line 24, the PVMFINITSENDroutine initializes a buffer
(glossary, page 142) for each PE to be used to send the data. In line 25, the
PVMFPACKoutine puts the data (I_SEND) into the buffer, and in line 26,
PVMFSENDBends the buffer on to the next PE. Each PVM routine is described in
more detail on its man page.

21. DO I1=2, NPES

22. C

23. C Send data to next PE

24. CALL PVMFINITSEND(PmvDataRaw, ISTAT)

25. CALL PVMFPACK(REALS, |_SEND, 1, 1, ISTAT)
26. CALL PVMFSEND(NEXT,I, ISTAT)

Lines 28 and 29 receive the data from the PE that is defined in PREV The
PVMFRECYoutine receives the buffer, and, in line 30, the PVMFUNPACIoutine
takes the data from the buffer and puts it into the variable |_RECV.

28. C Receive data from previous PE
29. CALL PVMFRECV(PREV,I, ISTAT)
30. CALL PVMFUNPACK(REALS,I_RECV, 1, 1, ISTAT)

At the end of the DOloop, each PE updates its running total and moves the
number it received into the |_SEND variable, preparing to pass it on to NEXTin
the next iteration of the loop.

32. C Perform work

33. | TOTAL = | _TOTAL + |_RECV
34. |_SEND = | RECV
35. ENDDO

SHMEM_GET64

To optimize the PVM version of the ring program shown in Example 9, page 48,
you can replace the PVM message passing statements with SHMEM statements.
You also need explicit synchronization points, in the form of barriers, to replace
the implicit synchronization provided by the PVM send and receive routines.
The optimization described in this section and shown in the following example
uses a form of the SHMEM_GET64outine; in Example 11, page 54, PVM is
replaced by SHMEM_PUTG4
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Example 10: SHMEM_GET6x4ersion of the ring program

©oNOORr~LONE
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PROGRAMING_SUM_2

INCLUDE 'mpp/shmem.fh’

INTEGER ME, NPES, NEXT, PREV, ISTAT
COMMOND _DATA/ D_SEND

INTRINSIC MY_PE, N$PES

C
ME = MY_PE()
NPES = N$PES()
C
C Define the ring
NEXT = ME + 1
IF (NEXT .GE. NPES) NEXT = NEXT - NPES
PREV= ME- 1
IF (PREV .LT. 0) PREV = PREV + NPES
C
C Initialize data
D_ME= ME
C
D_SEND = D ME
D_TOTAL = D_ME
DO I=2, NPES
C
C Synchronize - Make sure data is ready on other PE
C
CALL SHMEMBARRIER_ALL()
C Get data from previous PE

Perform

$

CALL SHMEM_GET64(D_RECV,D _SEND, 1, PREV)
CALL SHMEM_BARRIER_ALL()

work
D TOTAL = D_TOTAL + D RECV
D _SEND = D RECV
ENDDO
WRITE(**) ' PE ="' ME, ' RESULT="' D_TOTAL,
' EXPECT= "', (NPES-1.)*NPES*.5
END

Line 2 references the SHMEM INCLUDE file. Line 4 puts the value D_SENDinto
a common block to ensure that the remote and local arrays are symmetric
(glossary, page 150). The addresses must be the same for all of the PEs involved
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in the program, and using named common guarantees that. Ensuring that the
arrays are symmetric is not a requirement for PVM.

2. INCLUDE 'mpp/shmem.fh’
4, COMMOND_DATA/ D_SEND

Lines 7 and 8 use SHMEM functions that get the same information (the number
of the calling PE and the number of PEs involved in the job) as the PVM calls in
lines 6 through 8 of the PVM version of the program (see Example 9, page 48).
As mentioned before, the intrinsic MY_PEand the constant NSPESare slightly
faster than the SHMEM equivalents and the external library versions, MY_PE
and NUM_PESFor more information, see page 46.

7. ME = MY_PE()
8. NPES = N$PES()

The SHMEM version of the program defines the ring, initializes the data,
updates the running total, and writes the output exactly as in the MPI version
of the program. Only the method of passing data differs.

Lines 25 and 28, which set barriers, are necessary when using the
SHMEM_GET64outine. Synchronization is implicit in the PVM version because
of the PVM mode of operation: each send is matched by a receive. You must
provide your own synchronization when using SHMEM. The
SHMEMBARRIER_ALL routine takes advantage of the fast hardware barrier
mechanism, making these calls relatively inexpensive. The implicit
synchronization in PVM can be replaced by this faster synchronization method
when you are converting between PVYM and SHMEM.

25. CALL SHMEM_BARRIERLL

26. C Get data from previous pe

27. CALL SHMEM_GET64(D_RECVD_SEND, 1, PREV)
28. CALL SHMEMBARRIER_ALL

Other performance improvements that you will see when converting to
SHMEM data passing are as follows. They apply whether you are using
SHMEM_PUT64r SHMEM_GET64outines.

e SHMEM does not require separate calls to routines to initialize, to send the
data, and to receive the data.

e SHMEM does not require the remote PE to be involved while doing
transfers. That means the remote PE is free to do other work, although it
does not do so in this example.
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If you have written programs for the CRAY T3D system or for Cray PVP
systems, you are probably accustomed to flushing data cache (glossary, page 145)
on the PE receiving the data in order to preserve cache coherence (glossary, page
142). That is no longer necessary on the CRAY T3E system. For portability
purposes, however, you can leave cache flushing routine calls in your program.
They are essentially ignored on CRAY T3E systems, so they do not affect
performance, but they are required by CRAY T90 systems and may be required
by future systems.

3.2.2 Optimizing by Using SHMEM_PUT64

The SHMEM_PUT64outines can deliver the answers from the ring program as
fast as the SHMEM_GET64#outines. The following example shows the
SHMEM_PUT64ersion of the ring program.

Example 11: SHMEM_PUT6#4ersion of the ring program

1. PROGRAMING_SUM_3

2. INCLUDE 'mpp/shmem.fh’

3. INTEGER ME, NPES, NEXT, PREV, ISTAT

4, COMMOND _DATA/ D_RECV

5. C

6. C Get PE info

7. ME = MY_PE()

8. NPES = N$PES()

9. C

10. C Define the ring

11. NEXT = ME + 1

12. IF (NEXT .GE. NPES) NEXT = NEXT - NPES
13. PREV= ME- 1

14. IF (PREV .LT. 0) PREV = PREV + NPES
15. C

16. C Initialize data

17. D_ME= ME

18. C

19. D_SEND = D ME

20. D_TOTAL = D_ME

21. DO I=2, NPES

22. C

23. C Send data to next PE

24, CALL SHMEM_PUT64(D_RECV,D_SEND, 1, NEXT)
25. C

26. C Synchronize - Ensure all have valid data in D_RECV
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27.
28.
20.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.

CALL SHMEM_BARRIER_ALL
C
C Perform  work

D_TOTAL = D_TOTAL + D_RECV
D_SEND = D_RECV
C
C Synchronize - Ensure all have accessed D_RECV
CALL SHMEMBARRIER_ALL
ENDDO
WRITE(**) ' PE ="' ME, ' RESULT="' D_TOTAL,
$ " EXPECT= "', (NPES-1.)*NPES*.5
END

The first half of the program is the same as the SHMEM_GETG6#ersion (see
Example 10, page 52), except that the remote variable declared in the common
block is now D_RECV which is the target of the data transfer.

In line 24, each PE passes the data to the next PE. Lines 27 and 34 both contain
synchronization routines, and both are needed to guarantee that the transfers
are complete.

24.
25.
26.
27.
28.
20.
30.
31.
32.
33.
34.

3.3 Passing 32-bit Data

Two variants of SHMEM_GET64nd SHMEM_PUTG4SHMEM_GET32nd
SHMEM_PUT32are designed and optimized specifically for passing 32-bit data.
When used properly, they can pass 32-bit data faster than SHMEM_GET64nd
SHMEM_PUTG4

004-2518-002

CALL SHMEM_PUT64(D_RECV,D_SEND, 1, NEXT)
C
C Synchronize - Make sure everyone has data
CALL SHMEM_BARRIER_ALL
C
C Perform  work
D_TOTAL = D TOTAL + D_RECV
D SEND = D_RECV
C
C Synchronize - Ensure everyone is ready to continue
CALL SHMEM_BARRIERLL
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When you use the 32-bit routines, align either both or neither of the destination
array and the source array on a 64-bit boundary. Performance slips significantly
when the two are not so aligned, as in the following call:

CALL SHMEM_PUT32(DEST(1), SOURCE(6), NLONG, PE)
Instead, cache-align the two arrays and begin the transfer either on two

even-numbered or two odd-numbered array elements. The CF90 compiler
directive CACHE_ALIGNserves the purpose of aligning cache.

IDIR$ CACHE_ALIGNDEST, SOURCE
SHMEM_PUT32(DEST, SOURCE, NLONG, PE)

The following 32-bit version of the ring program uses the SHMEM_PUT32
routine:

Example 12: 32-bit version of ring program

1. PROGRAMING_NSUM_3_4

2. C

3. C Summing around a ring

4. C SHMEMPUT64 version

5. C

6. INCLUDE 'mpp/shmem.fh’

7. INTEGER ME, NPES, NEXT, PREV

8. INTEGER ISTAT

9. C Pass arrays of size N

10. PARAMETER(N=100000)

11. REAL(KIND=4) D_SEND(N), D RECV(N), D_TOTAL(N)
12. COMMOND_DATA/ D_RECV

13. C

14. C Get PE info

15. ME = MY_PE()

16. NPES = N$PES()

17. C

18. C Define the ring

19. C

20. NEXT = ME + 1

21. IF (NEXT .GE. NPES) NEXT = NEXT - NPES
22. PREV= ME- 1

23. IF (PREV .LT. 0) PREV = PREV+ NPES
24. C

25. C Initialize data

26. C
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27.
28.
20.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44.
45.
46.
47.
48.
49.
50.
51.
52.
53.
54.
55.
56.
57.
58.
59.
60.

OO0

O00O0

OO0

@]

@]

D _ ME= ME
D_SEND(1:N) = D_ME
D _TOTAL(1:N) = D_ME
DO I1=2, NPES

Send data to next PE

Synchronize

Wait

CALL SHMEMPUT32(D_RECV, D_SEND, N, NEXT)

for

data

to arrive at other PE (implicit

SHMEMQUIET)

and make sure everyone has data
CALL SHMEM_BARRIER_ALL

Flush

cache
CALL SHMEM_UDCFLUSH()

Perform  work
CALL WORK(N, D_TOTAL, D_SEND, D_RECV)

Synchronize

if on a

PVP system

- Make sure everyone is ready to continue
CALL SHMEM_BARRIERLL

ENDDO
WRITE(**) ' PE ="' ME, ' Result =’ D _TOTAL(L),
$ ' Expect = ', (NPES-1.)*NPES*5
END

SUBROUTINEWORK(N, D TOTAL, D_SEND, D_RECV)
REAL(KIND=4) D_SEND(N), D RECV(N), D_TOTAL(N)
D TOTAL(LN) =
D_SEND(LN) =
RETURN
END

D_TOTAL(L:N) + D_RECV(L:N)
D_RECV(LN)

The output from the program is as follows:

PE
PE
PE
PE
PE
PE

N O P W

Result
Result
Result
Result
Result
Result

28.
28.
28.
28.
28.
28.

Expect
Expect
Expect
Expect
Expect
Expect

= 28.
= 28.
= 28.
= 28.
= 28.
= 28.
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PE = 4 Result = 28. Expect = 28.
PE = 5 Result = 28. Expect 28.

3.4 Copying Strided Data

©ONOTORrLDE

NNNNNNRPRRRPRERRRRERRR
ARONP OO0 A WREO

a1
oo

The strided-data (glossary, page 150) copy operation, using the
SHMEM_REAL_IPURnd SHMENMREAL_IGET routines, takes data from an array
on one PE and delivers it to an array on another PE. You control the stride for
both the source and target arrays through arguments in the routine calls. Speed
and the ability to reorder the elements separate the SHMEM versions of the
strided copy operation from their PVM equivalent. (For information on
reordering data, see Section 3.5, page 62.) The following examples take
elements from an array on PE and move them to an array on PE 1. Both
examples, one using SHMEM_REALUGET and the other SHMEMREAL_IPUT,
use strides other than 1.

Example 13: Passing strided data using SHMEM_REAL_IGET

PROGRAMTRIDED

C

C SHMEM_REAL_IGETversion

C The sending array

is accessed with stride 2

C The receiving array is accessed with stride 3

C

INCLUDE 'mpp/shmem.fh’

INTEGER ME

INTEGER ISTAT, SENDER, RECEIVER
PARAMETER(N=100)
PARAMETER(SENDER 0)
PARAMETER(RECEIVER: 1)

REAL D_SEND(2*N), D_RECV(3*N)
INTRINSIC MY_PE
COMMOND_DATA/ D_SEND

C

C Get PE info
ME = MY_PE()

C

C Initialize data
DO I=1,2*N
D_SEND(l) =
ENDDO
D _RECV= 0.0

+ ME
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26.
27.
28.
20.
30. C
31.
32.
33.
34.
35.
36. C
37.
38.
39. C
40.
41.
42. 1
43.

44.

OO0

@]

Note:

@] OO0

@]

Print
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IF (ME .EQ. SENDER) THEN

Synchronize

Sender

Synchronize

Get data

- Make sure data is ready
CALL SHMEM_BARRIER_ALL

does nothing but synchronize,
ELSE IF (ME .EQ. RECEIVER) THEN

- Make sure data is ready on other PE
CALL SHMEM_BARRIER_ALL

CALL SHMEM_REAL_IGET(DRECV, D_SEND, 3, 2, N, SENDER)

results
WRITE(*,*)

'Receiver=",ME,’ d_recv=, D RECV(1),

D_RECV(2),D RECV(3),D_RECV(4),D_RECV(5),D_RECV(6),D_RECV (7)

ENDIF

END

Example 14: Passing strided data using SHMEM_REAL_IPUT

©CoOoNOTORr~LDE
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PROGRAMTRIDED_2
cC
C SHMEM_REAL_IPUTversion
C The sending array is accessed with stride 2
C The receiving array is accessed with stride 3
C
INCLUDE 'mpp/shmem.fh’
INTEGER ME
INTEGER ISTAT, SENDER, RECEIVER
PARAMETER(N=100)
PARAMETER(SENDER 0)
PARAMETER(RECEIVER= 1)
REAL D_SEND(2*N), D_RECV(3*N)

INTRINSIC MY_PE
COMMOND_DATA/ D_RECV
C
C Get PE info
ME = MY _PE()
C
C Initialize data
DO I=1,2*N
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22. D _SEND(l) =1 + ME

23. ENDDO

24, D_RECV= 0.0

25. C

26. C Synchronize - Make sure all arrays are initialized
27. CALL SHMEMBARRIER_ALL

28. IF (ME .EQ. SENDER) THEN

29. C

30. C Send data

31. CALL SHMEM_REAL_IPUT(D_RECV,D_SEND, 3, 2, N, RECEIVER)
32. C

33. C Synchronize - Make sure data has arrived

34. CALL SHMEM_BARRIER_ALL

35. ELSE IF (ME .EQ. RECEIVER) THEN

36. C

37. C Synchronize - Make sure data has arrived

38. CALL SHMEMBARRIER_ALL

39. C

40. C Cache update not required on

41. C CRAY T3E system (nho-op)

42. CALL SHMEM_UDCFLUSH()

43. C

44. C Print  results

45. WRITE(**)  'Receiver=",ME,'D_RECV=",D _RECV(1),D_RECV(2)
46. 1 ,D_RECV(3),D_RECV(4),D_RECV(5),D_RECV(6),D_RECV (7)

47. ENDIF

48. END

Whether SHMEM_REAL_IPUDBr SHMEMREAL_IGET is faster depends on the
stride, but SHMENMREAL_IPUT is usually the best choice. For one thing,
SHMEM_REAL_IPUTeturns before all the data is delivered to the remote PE, but
SHMEM_REAL_IGEHoes not return until the data is delivered to the local PE.

The SHMEM_REAL_IGE®&nd SHMEM_REAL_IPUToutines are faster than the
SHMEM_IXGEBnd SHMEM_IXPUToutines, but SHMEM_IXGE®&nd
SHMEMXPUT let you reorder the array. To provide the same functionality, use
non-unit strides with the PVM packing and unpacking routine. The relevant
lines from a PVM strided copy are as follows:

C Send data
CALL PVMFINITSEND(PvmDataRaw, ISTAT)
CALL PVMFPACK(REALS8, D_SEND, N, 2, ISTAT)
CALL PVMFSEND(RECEIVER,MTAG, ISTAT)
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C Receive data
CALL PVMFRECV(SENDERMTAG, ISTAT)
CALL PVMFUNPACK(REAL8,D_RECV, N, 3, ISTAT)

For a description of how to efficiently collect data from all PEs and distribute it
to all PEs, see Section 3.5, page 62. Or continue on with the remainder of this
section for a brief description of the two SHMEM strided data programs.

In line 15 of the programs in Example 13, page 58, and Example 14, page 59,
both routines name the remote arrays in a COMMOBMtatement, which ensures
that the remote address will be the same as the local address. This is a
requirement for these routines.

SHMEM_REAL_IGEVersion:
15. COMMOND _DATA/ D_SEND

SHMEM_REAL_IPUTFersion:
15. COMMOND_DATA/ D_RECV

The data is transferred from within IF statements, beginning on line 26 in the
SHMEM_REAL_IGEVersion and on line 28 in the SHMEMREAL _IPUT version.

The structures of the IF statements are identical in that the sender (PE 0)
executes the IF clause and the receiver (PE 1) executes the ELSE IF clause, but
the placement of the data transfer routines differs. The SHMEM_REAL_IGET
routine, executing on PE 1, retrieves the data from PE 0. The
SHMEM_REAL_IPUToutine, executing on PE 0, copies the data to PE 1.

SHMEM_REAL_IGE¥ersion:
38. CALL SHMEM_REAL_IGET(D_RECV,D_SEND, 3, 2, N, SENDER)

SHMEM_REAL_IPUFersion:
31. CALL SHMEM_REALPUT(D_RECV, D_SEND, 3, 2, N, RECEIVER)

As the third and fourth arguments of the routine calls specify, both routines
take every second array element from the source array (D_SEND and place
them in every third element of the target array (D_RECY. The arguments to the
two routines are the same. See the following figure for an illustration of the
transfers:

61



CRAY T3E™ Fortran Optimization Guide

PEO PE1

D_SEND D _RECV

—
.
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al0010

Figure 14. SHMEM_REAL_IGE®Gnd SHMEMREAL_IPUT transfers

As mentioned earlier (see page 54), the following SHMEM_UDCFLUSHIII is
ignored on CRAY T3E systems. It is left in the program for compatibility
reasons.

41. C CRAY T3E system (nho-op)

42. CALL SHMEMUDCFLUSHY()

The output, which is the same for both programs, identifies the PE that received
the data and the values of the first seven elements of the D_RECVarray:

Receiver=1 D _RECV=l., 0, 0., 3., 0., 0., 5.

3.5 Gathering and Scattering Data

62

The routines SHMEM_IXGE'.nd SHMEMXPUT copy data (such as arrays) from
one PE to another. An index array, specified as an argument, gives the SHMEM
routines the additional capability of reordering the array elements that are
being passed. SHMEM is faster than PVM because, in order to provide

004-2518-002



SHMEM [3]

equivalent functionality, PVM must reorder the elements during the pack (for
gather) or unpack (for scatter).

The following example shows the SHMEM version of a reordered scatter
operation using SHMEM_IXPUT

Example 15: SHMEM_IXPUMersion of a reordered scatter

1. PROGRAMSCATTER_2A

2. C

3. C SHMEM_IXPUTversion

4. C Use the index array for the receiving array  (scatter)
5. C

6. INCLUDE 'mpp/shmem.fh’

7. INTEGER ME

8. INTEGER ISTAT, SENDER, RECEIVER

9. PARAMETER(NN=100)

10. PARAMETER(N=10)

11. PARAMETER(SENDER 0)

12. PARAMETER(RECEIVER= 1)

13. REAL D_SEND(N), D_RECV(NN)

14. INTRINSIC MY_PE

15. COMMOND_DATA/ D_RECV

16. INTEGER INDEX(N)

17. DATA INDEX / 99, 19, 28, 91, 82, 37, 73, 46, 64, 55/
18. C

19. C Get PE info

20. ME = MY_PE()

21. C

22. C Initialize data

23. DO I=1,N

24, D SEND() =1 + ME

25. ENDDO

26. D_RECV(1:NN) = 0.0

27. C

28. C Synchronize - Make sure data arrays are initialized
29. CALL SHMEM_BARRIER_ALL

30. IF (ME .EQ. SENDER) THEN

31. C

32. C Send data

33. CALL SHMEM_IXPUT(DRECV, D_SEND, INDEX, N, RECEIVER)
34. C

35. C Synchronize - Make sure data has arrived

36. CALL SHMEMBARRIER_ALL
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37.
38.
39.
40.
41.
42.
43.
44.
45.
46.
47.
48.
49.

35.
36.
37.

64

C Synchronize

C Make sure cache

ELSE IF (ME .EQ. RECEIVER) THEN

Make sure data has arrived
CALL SHMEM_BARRIER_ALL

is up to date
CALL SHMEM_UDCFLUSH()

'Receiver=',ME,’ D_RECV=', D_RECV(100), D_RECV(20)
,D_RECV(29),D _RECV(92),D_RECV(83),D_RECV(38)

The following lines reorder the data in a PVM version of the same program:

CALL PVMFUNPACK(REALS,D_RECV(1+INDEX(l)), 1, 1, ISTAT)

In the following lines of the SHMEM program, the INDEX array (defined in line
17) is referenced in the call to the SHMEM_IXPUToutine, which reorders the
array itself.

17. DATA INDEX / 99, 19, 28, 91, 82, 37, 73, 46, 64, 55/
33. CALL SHMEM_IXPUT(D_RECV,D_SEND, INDEX, N, RECEIVER)

Because the INDEX array is zero-based, the respective data element will wind
up in the position specified by the INDEX array plus one. For instance, the first
value of the D_SENDarray will transfer to D_RECV(100) , not D_RECV(99).
The output from the SHMEM version on a 2-PE configuration is as follows:

Receiver=1 D _RECV=l., 2, 3., 4., 5., 6.

For an illustration of the three arrays involved in the SHMEM_IXPUTprogram,
see the following figure.
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PEO PE1
D_SEND D_RECV INDEX
1] 1 01 9 | 1
2| 2 0|2 19| 2
3| 3 0|3 28| 3
4| a : 91| 4
5|5 - 82| s
20
6| 6 : 37| 6
7| 7 73| 7
g| 8 29 46| 8
9| 9 64 | 9
10| 10 55 | 10

38

47

=

-H--....H-.H'-H-

0. 56

65

74

-H-

83

92

-H'-.H-

100

al0011

Figure 15. Reordering elements during a scatter operation
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A program using the SHMEM_IXGEToutine would be almost identical to the
preceding SHMEM_IXPUTprogram, except that the RECEIVERwould call the
following data transfer statement:

CALL SHMEM_IXGET(D_RECV,D SEND, INDEX, N, SENDER)

3.6 Broadcasting Data to Multiple PEs

66

The SHMEMBROADCAS(B) routine copies an array on a single PE to a target
array on each of the other PEs. It uses the fan-out (glossary, page 145) method
of copying the data, which makes it the most efficient routine for copying from
one PE to all other PEs. With 32 or more PEs and relatively little data, the
fan-out process will enhance program performance. For an illustration of how
fan-out operates on an 8-PE configuration, see Figure 9, page 33.
SHMEM_BROADCAS§ives you significant performance advantages when
compared to the PYMFBCAS(B) routine.

The following program copies an 8-element array named SOURCEbn PE 0 to an
array named DESTon the three other PEs in a 4-PE active set (glossary, page

141). Be sure to use the PSYNCarray for synchronization when you use
SHMEM_BROADCASemember that the sixth argument to SHMEM_BROADCAST
the stride, is specified in base 2. If you specify 0, the stride will be 1. Also, the
fourth argument, the sending PE, is a number relative to the active set; if you
have defined PE 4 through PE 7 as an active set, a 0 will select PE 4.

Example 16: One-to-all broadcasting

1. INCLUDE 'mpp/shmem.fh’

2. INTEGER DEST(8), SOURCE(8)

3. C Declare the PSYNCarray

4, INTEGER PSYNC(SHMEM_BCAST_SYNC_SIZE)
5. INTRINSIC MY_PE

6.

7. C Use the DATA statement to initialize PSYNC
8. DATA PSYNC/SHMEM_BCAST_SYNC_SIZE*SHMEBYNC_VALUE/
9. SAVE DEST, SOURCE

10.

11. C Initialize the SOURCEarray

12. IF (MY_PE().EQ.0) THEN

13. DOl =1, 8

14, SOURCE(l) =1 * |

15, ENDDO
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16. PRINT *, 'THE ORIGINAL ARRAY VALUES ARE’, SOURCE
17. ENDIF

18.

19. C Broadcast an 8-element array from PE O

20. CALL SHMEM_BROADCAST(DESTSOURCE, 8, 0, 0, 0, 4, PSYNC)
21. C Don't forget the PSYNCargument

22.

23. C Print the DEST array on all PEs

24, PRINT *, 'PE °’, MY_PE(), ' HAS’, DEST

25.

26. END

The output from this program is as follows. Notice that the broadcast did not
include the DESTarray on PE 0.

THE ORIGINAL ARRAYVALUESARE 1, 4, 9, 16, 25, 36, 49, 64
PE 0 HAS 8*0
PE 1 HAS1, 4, 9, 16, 25, 36, 49, 64
PE 2 HAS1, 4, 9, 16, 25, 36, 49, 64
PE 3 HAS1, 4, 9, 16, 25, 36, 49, 64

The following figure illustrates the contents of the arrays after the
SHMEM_BROADCA$fogram has executed.
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3.7 Merging Arrays

68

PEO
SOURCE DEST
1|1 01
8 | 64 0| 8
PE1 PE 2 PE 3
DEST DEST DEST
1(1 1)1 1|1
8 | 64 8 | 64 8 | 64

al0006

Figure 16. The broadcast operation

The SHMEM_FCOLLEQ@J) routine quickly combines blocks of data, such as
arrays, from multiple PEs into a single array on all PEs. You can consider it a
many-to-many broadcast. The following example merges four copies of the
array MYVALSInto a single array, ALLVALS, which is present on all of the PEs.
As in the previous example, be sure to include the PSYNCarray.
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Example 17: SHMEM_FCOLLECT

1. PROGRAMSHARE_ARRAY

2. INCLUDE 'mpp/shmem.fh’

3. INTEGER MYVALS(N$PES), ALLVALS(16)

4. INTRINSIC MY_PE

5. INTEGER PSYNC(SHMEM_COLLECT_SYNC_SIZE)

6. DATA PSYNC/SHMEM_COLLECTSYNC_SIZE*SHMEM_SYNC_VALUE/
7.

8. C Assume 4 PEs

9. NPES = 4

10.

11. C The values to be passed will be based on PEs numbers
12. N = NPES* MY_PE()

13. DOl =1, NPES

14. N=N+1

15. MYVALS(l) = N

16. END DO

17.

18. C Wait until all  PEs are initialized

19. CALL SHMEM_BARRIER_ALL

20.

21. CALL SHMEM_FCOLLECT(ALLVALS,MYVALS, 4, 0, 0, NPES, PSYNC)
22.

23. PRINT *, 'PE ', MY_PE(), ' HAS'’, ALLVALS

24. END

The output from the program is as follows. Notice that, unlike
SHMEM_BROADCASSHMEM_FCOLLEGC:Sends its data to all of the PEs,
including itself.

PE 3 HAS1, 2, 3, 4, 5 6, 7, 8 9, 10, 11, 12, 13, 14, 15, 16
PEO HAS1, 2, 3, 4, 5 6, 7, 8 9, 10, 11, 12, 13, 14, 15, 16
PE1 HAS1, 2, 3, 4, 5 6, 7, 8 9, 10, 11, 12 13 14, 15, 16
PE 2 HAS1, 2, 3, 4, 5 6, 7, 8 9, 10, 11, 12, 13, 14, 15, 16

The following figure illustrates the contents of both the MYVALSand the
ALLVALS arrays on each PE after the example is run. A call to PVMFGATHER
followed by a call to PYMFBCASTwould produce the same result as one call to
SHMEM_FCOLLECHut the call to SHMEM_FCOLLECGE faster.
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PEO

PE1 PE2 PE3

MYVALS ALLVALS MYVALS ALLVALS MYVALS ALLVALS MYVALS ALLVALS

1
2
3
4

1

AlW|DN

© | 0| N | 0| bdwW|DN

=
o

=
=

[EnN
N

=
w

'—\
S

[N
(6}

[N
(o)

1 115 111 1(9 111 1113 1|1
2 216 212 2110 212 2114 212
3 317 313 3|11 313 3115 313
4 4| 8 41 4 4112 41 4 4116 41 4
5 515 515 515
6 6|6 6|6 6|6
7 717 717 717
8 818 8| 8 8| 8
9 919 919 919
10 10| 10 10| 10 10| 10
11 1111 11|11 11|11
12 12| 12 12| 12 12| 12
13 131 13 13] 13 13| 13
14 14 | 14 14| 14 141 14
15 15|15 15( 15 15| 15
16 16| 16 16| 16 16| 16

al10005

Figure 17. An example of SHMEM_FCOLLECT

3.8 Reading and Updating in One Operation

70

The SHMEM_SWAF, SHMEM_INT4_FING3), and SHMEMNT4_FADD(3)
functions give you the ability to read and change a remote memory address in a
single, atomic operation (glossary, page 141). An atomic operation cannot be
interrupted by another operation. No other PE can access the same data
location while an atomic operation is accessing it. In the following example, the
SHMEMNT4_FINC function reads and toggles a value. One possible use of the

004-2518-002



SHMEM [3]

SHMEM_INT4_FINCfunction is to implement your own locks, as shown in the
following example.

Example 18: Remote fetch and increment

1. C

2. C These LOCK/UNLOCKTroutines implement a take-a-number lock
3. C using an array of 2, assumed to be initialized to 0.
4, C

5. SUBROUTINELOCK(LCK)

6. INTEGER(KIND=4) LCK(2), NOW_SERVING

7. INTEGER(KIND=4) SHMEMNT4_FINC

8.

9. C Take the next number.

10.

11. MYNO= SHMEM_INT4_FINC(LCK(1), 0)

12.

13. C Wait untii  my number comes up.

14.

15. CALL SHMEM_GET4(NOW_SERVING,CK(2), 1, 0)

16. DO WHILE (NOW_SERVING.NE. MYNO)

17. CALL SHMEM_GET4(NOWERVING, LCK(2), 1, 0)
18. ENDDO

19. END

Using the SHMEM_BARRIER_ALkoutine is faster than writing your own
synchronization routine on CRAY T3E systems, but there are instances in which
you may prefer an atomic read and update function. Synchronizing between
two PEs is just one example.

3.9 Using Reduction routines

The reduction (glossary, page 149) routines combine array elements from each
active PE to yield an array of results, which are distributed to all PEs. For
example, one routine adds the values at each array location for an array spread
across multiple PEs and distributes an array of those sums to each PE. The
result is that each PE has an array of answers when the routine completes. In
its simplest form, a reduction routine is a collective (glossary, page 143)
operation that involves all PEs.

The SHMEM reduction routines are usually faster than those of PVM and MPI
because of the difference in overhead, but they are only marginally faster. They
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are faster than other means of executing operations across PEs (such as
SHMEM_PUTG64SHMEM_GET6G4nd standard compiler or library operations).

The reduction routines perform the following operations on arrays:

® Return the smallest value for each array location (see Example 19, page 72)
® Return the largest value for each array location

® Return the product of each array location

® Return the sum of each array location (see Example 20, page 74)

¢ Return the logical OR of each array location

e Return the logical exclusive OR (XOR) of each array location

e Return the logical product (AND) of each array location

The following example finds the smallest value at each position in four arrays,
sends those values to arrays on all PEs, and has PE 0 print the values from its
array.

Example 19: Minimum value reduction routine

PROGRAMJINVAL
INCLUDE 'mpp/shmem.fh’
INTRINSIC MY_PE, RANF, RANSET

INTEGER PSYNC(SHMEM_REDUCEYNC_SIZE), NR, SEED
DATA PSYNC/SHMEM_REDUCE_SYNC_SIZE*SHMEBYNC_VALUE/

C Make the number of results a constant
PARAMETER(NR=4)
REAL FOO(NR), FOOMIN(NR), PWRK(SHMEM_REDUGHN_WRKDATA_SIZE)
COMMONCOM/ FOO, FOOMIN, PWRK

C Put some values into the FOO arrays
DOI =1, 4
SEED = RANSET((MY_PE(Q+l) * (I*I)
FOO(I) = RANF()

END DO

C Print  the preliminary numbers on each PE
PRINT 100, MY_PE(), FOO

100 FORMAT(At first, PE’, 12, ' has ’, 4F8.5)
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22.

23. CALL SHMEM_BARRIERLL

24. PRINT *

25.

26. CALL SHMEM_REAL8_MIN_TO_ALL(FOOMIN,FOO,NR,0,0,4,PWRK,PSYNC)
27.

28. C All the values should be the same
FOOMIN

20. PRINT 200, MY_PE(),

30. 200 FORMAT(Result
31.
32. END

004-2518-002

on PE

12,

s, 4F8.5)

The output from the program is as follows:

At first,
At first,
At first,
At first,

Result
Result
Result
Result

on
on
on
on

PE
PE
PE
PE

PE
PE
PE
PE

0

3
1
2

W N PO

has 0.15804
has 0.79022
has 0.47413
has 0.47413

0.15804
0.15804
0.15804
0.15804

0.05458
0.05458
0.05458
0.05458

0.42240
0.31894
0.05458
0.68676

0.11202
0.11202
0.11202
0.11202

0.26721 0.27292
0.69247 0.85908
0.84766 0.80164
0.11202 0.33036

0.27292
0.27292
0.27292
0.27292

The following figure illustrates the contents of the two arrays on each PE at the
end of the program.
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PEO

FOO FOOMIN

1 |o0.15804 | | 0.15804

2 | 042240 | |0.05458

3 | 0.26721| |0.11202

4 | 027292 | |0.27292
PE2

FOO FOOMIN

1 |0.47413| |0.15804

2 | 0.68676 | | 0.05458

3 | 011202 | |0.11202

4 |0.33036 | |0.27292

PE1

FOO FOOMIN

1 |0.47413| | 0.15804

2 | 0.05458 | | 0.05458

3 | 0.84766 | | 0.11202

4 |0.80164 [ | 0.27292
PE3

FOO FOOMIN

1 [0.79022 | | 0.15804

2 |0.31892 | |0.05458

3 | 0.69247 | |0.11202

4 |0.85908| |0.27292

al0007

Figure 18. The SHMEM_REAL8_MIN_TO_ALexample

In the next example, the summation performed by the ring program is
implemented by using the SHMEM_INT4_SUM_TO_AI(B) reduction routine.
The reduction is faster than using either SHMEM_GET64r SHMEM_PUT64which
would pass data 15 times on a 16-PE configuration. It is a valid optimization
technique that replaces a slower algorithm with a more efficient algorithm.

Example 20: Summation using a reduction routine

C

C

aprpwDdPRE

PROGRAMING_NSUM_4
C SHMEM_INT4SUM_TO_ALL version

INCLUDE 'mpp/shmem.fh’

of ring nsum
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INTEGER ME, NPES, NEXT, PREV
INTEGER ISTAT

INTRINSIC MY_PE, N$PES

PARAMETER(N=100000)

INTEGER(KIND=4) SEND(N), TOTAL(N)

COMMONDATA/SEND, TOTAL

REAL PWRK(MAX(N/2+1, SHMEM_REDUCE_MIN_WRKDATA_SIZE))
INTEGER PSYNC(SHMEM_REDUCE_SYNC_SIZE)

DATA PSYNC/SHMEM_REDUCE_SYMIZE*SHMEM_SYNC_VALUE/

Get PE info
ME = MY_PE()
NPES = N$PES

Initialize data
SEND = ME
Synchronize - make sure data is ready on all PEs

CALL SHMEM_BARRIERLL

Perform  work
CALL SHMEMNT4_SUM_TO_ALL(TOTAL, SEND,
* N, 0, 0, NPES, PWRK, PSYNC)

WRITE(**) ' PE ="', ME, ' Result =’ TOTAL(L),
$ ' Expect = ', (NPES-1.)*NPES*5
END

The output from running the program on 16 PEs is as follows. As with most
programs involving output from multiple PEs, the order in which the PEs finish

is random.
PE = 5 Result = 120 Expect = 120.
PE = 12 Result = 120 Expect = 120.
PE = 13 Result = 120 Expect = 120.
PE = 2 Result = 120 Expect = 120.
PE = 11 Result = 120 Expect = 120.
PE = 10 Result = 120 Expect = 120.
PE = 14 Result = 120 Expect = 120.
PE = 8 Result = 120 Expect = 120.
PE = 7 Result = 120 Expect = 120.
PE = 15 Result = 120 Expect = 120.
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PE
PE

PE =

PE

PE =
PE =

= A WOOO

Result
Result
Result
Result
Result
Result

120
120
120
120
120
120

Expect
Expect
Expect
Expect
Expect
Expect

120.
120.
120.
120.
120.
120.

Comparing this to the PVM, SHMEM_GET64nd SHMEMPUTG64 versions of the
ring program, SHMEM_INT4_SUMIO_ALL delivers the best performance of the

four.
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4.1 Unrolling Loops

004-2518-002

Some of the most significant improvements you can make to your program are
not linked to parallelism. They fall into the category of single-PE optimizations.
This chapter describes what you can do to get each processing element (PE)
running at as close to peak performance as possible.

This chapter makes frequent reference to the hardware, especially the path
between local memory and the functional units. For background information on
CRAY T3E hardware, see Section 1.2.1, page 4.

To identify the parts on your program that take the most time and to get
feedback on performance improvements, use a performance analyzer such as
pat (1) or the MPP Apprentice tool. For more information, see Section 1.3, page
21.

This chapter addresses the following optimization topics:

¢ Unrolling loops (see Section 4.1, page 77).

e Using pipelining for loop optimization (see Section 4.2, page 78).
e Making the best use of cache (see Section 4.3, page 85).

¢ Optimizing stream buffers, which are key to many of the single-PE
optimizations (see Section 4.4, page 95).

* Optimizing division operations (see Section 4.5, page 106).
* Vectorizing some math operations within a loop (see Section 4.6, page 109).

* Bypassing cache (see Section 4.7, page 113).

Loop unrolling is a technique that is beneficial on many computer systems, not
just the CRAY T3E system. It can provide the following performance benefits:

* Increasing the basic block size, thus increasing the potential for
instruction-level parallelism and covering the latency of memory references.

¢ Reducing loop overhead, thus potentially increasing the instruction issue
rate.

¢ Eliminating redundant memory references.
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¢ Increasing merging in the missed address file (MAF) of the EV5 processor.
For an illustration of where the MAF fits in, see Figure 3, page 7, and Figure
4, page 8.

Although the compiler does unroll loops for you, unrolling is not done by
default on CRAY T3E systems. You can enable unrolling on important loops by
including the -O unrolll  option on the f90 (1) command line and placing the
UNROLLdirective immediately in front of a loop, as follows:

IDIR$ UNROLL
DOI =1, N

Specifying the -O unroll2 ~ command-line option instructs the compiler to
make all loops in a program candidates for unrolling. You can instruct the
compiler not to unroll a loop by placing the NOUNROLMirective in front of it.

The UNROLLdirective can be applied to any loop of a loop nest, not just the
innermost loop. For loops that are not the innermost loop, a technique called
unroll and jam is performed. A loop must meet special criteria, however, to
ensure that correct behavior is maintained. In particular, the loop must have no
data dependencies across its iterations. Also, the compiler will perform unroll
and jam only on nests in which each loop (except the innermost) contains only
one loop. If these criteria are not met, the compiler does not take the risk of
performing the optimization.

4.2 Software Pipelining

Software pipelining is an advanced scheduling technique performed by the
compiler that overlaps the execution of successive loop iterations in an attempt
to optimize utilization of the processor’s scheduled resources (such as
floating-point functional units, integer functional units, and cache bandwidth).

Software pipelining applies to innermost DOloops, DO WHILE loops, and
WHILE loops, provided that the loops contain no conditional code or subroutine
calls. Software pipelining is often effective when used in conjunction with the
-O3 or -Ovector3  option to vectorize intrinsic functions. For information on
vectorization, see Section 4.6, page 109.

4.2.1 Optimizing a Program with Software Pipelining

Before you run your program you can select the level of automatic pipelining
with a command-line option. Currently, pipelining can only be turned on or off,
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but more options are planned for future releases. Along with the command-line
option, you can provide the compiler with additional information on selected
loops with a directive.

4.2.1.1 Selecting the Level of Pipelining

The -O pipeline 7 option specifies the level of pipelining in effect for the
program. The levels are as follows:

pipeline0 Disables pipelining (the default).

pipelinel Enables standard pipelining. Numeric results
obtained at this level do not differ from results
obtained at the pipeline0  level.

pipeline2 Currently equivalent to pipelinel
pipeline3 Currently equivalent to pipelinel
Enabling pipelining increases compile times, but execution times are often

shorter. Timing your program will tell you if the payoff in faster execution is
worth the slower compile time.

4.2.1.2 Using the CONCURRENANd IVDEP Directives

004-2518-002

The CONCURRENdirective gives the compiler information about dependencies
between different array references. Sometimes the compiler cannot understand
ambiguous array references, forcing it to assume a dependency exists (for safety
reasons) where there are none. Using the CONCURRENdirective allows the
compiler to assume no dependencies exist. This information is used by the
software pipeliner to more aggressively schedule memory references into
preceding iterations.

Using the CONCURRENdirective with the optional SAFE_DISTANCE=
argument allows the compiler to assume no dependencies exist between the
current iteration of the loop and n preceding or subsequent iterations.

The directive should immediately precede the loop that benefits from it, as in
the following example:

IDIR$ CONCURRENBAFE_DISTANCE=3

DOI = K+1, N
X() = A(l) + X(-K)
ENDDO
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The CONCURRENdirective in this example informs the software pipeliner that
the relationship K>=3 is true. This allows the pipeliner, for example, to safely
load any of the array references X(I-K) , X(I-K+1) , X(I-K+2) , and

X(I-K+3)  during the | -th loop iteration.

The IVDEP directive can also be used on the CRAY T3E system to communicate
the absence of data dependence to the pipeliner, but the information it provides
is more limited than that of the CONCURREN(directive, and thus it does not
allow as much optimization. The IVDEP directive only provides information on
vector dependencies, which are data dependencies between a memory reference
and those memory references that lexically precede it in the loop.

The SAFE VL clause of the IVDEP directive is currently not available on the
CRAY T3E system. The IVDEP directive on the CRAY T3E system assumes an
infinite vector length. For more information on the IVDEP directive, see Section
4.6.1, page 112.

4.2.2 ldentifying Loops for Pipelining

80

Theoretically, the software pipeliner is guaranteed to optimize utilization for
one of the functional units only when there are no recurrences (glossary, page
149) in the loop. (Updates of induction variables do not count as recurrences.)
This means that parallel loops and vector loops should provide the best
candidates for pipelining.

In practice, traditional instruction scheduling will already optimize the use of
functional units whenever the loop body contains enough parallel instructions.
But if either of the following cases applies to your loop, it is likely that
pipelining will significantly increase the performance of a parallel or vector loop:

* The loop body is not too large. (An approximate definition for large is a loop
that translates to more than 64 assembly instructions.) On large loop bodies
with many parallel instructions, the pipeliner will exhaust the available
registers sooner than the default scheduler.

¢ The loop body is not memory bound. Since most memory events are
difficult to predict at compile time, the pipeliner cannot manage the memory
bandwidth resource accurately.

Sometimes unrolling loops, either manually or by letting the compiler do it,
results in loops with large bodies and too many parallel instructions. Pipelining
such unrolled loops yields minimal, if any, performance improvement.

Because it relies on overlapping loop iterations to increase performance,
anything that decreases the amount of overlap makes it harder for the pipeliner
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to increase performance. One or more recurrences within the loop can fall into
that category. However, you can still get significant performance increases if
one or more of the following conditions are satisfied:

® The recurrence can be ignored because it applies to iterations that are too
distant to be overlapped. In the following example, if P has a value larger
than about 3, the loop will be translated into a high-performance software
pipeline, provided the compiler knows about the lower bound of P. That
information can be provided by using the CONCURRENdirective.

DOl = P+1, N
Xy =A@l + X(-P)
END DO

If P is a constant known at compile time, the compiler will eliminate the
load instructions to carry the value across iterations in registers. In that case
the CONCURRENdirective is no longer required or useful.

* The loop body contains enough instructions that are not involved in a
recurrence cycle. In that case, the loop initiation interval is probably
constrained more by functional unit availability than by the recurrence itself.
A typical example might look like the following:

DOI =2, N
XM = A + X(-1) ! Recurrence
Y1) = B(+1)*R + B(l-1)*S ! Unrelated  work
Z(y =z - Y@rcQ ! Unrelated  work
I More work

END DO

Combining parallel and vector loops with recurrent loops before pipelining
is worthwhile provided the resulting loop body does not grow too large and
does not become memory bound.

4.2.3 How Pipelining Works
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The way pipelining attempts to optimize utilization of the scheduled processor
resources is best understood through an example:

DO11 =1, N
Y() = X
END DO
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When this loop is compiled, it is translated into assembly instructions, which
are then block-scheduled. The resulting code appears as pseudo code in the
next example, in which each line corresponds to one clock period (CP). The T
identifier represents a register.

I =1
DO
T = X(I)

YOy =T

| = 1+1

IF (LGT.N) EXIT
END DO

Without software pipelining, the processor issues an average of less than one
instruction per CP. The execution of successive loop iterations is sequential, as
opposed to overlapped. A given iteration does not begin until the previous
iteration completes. This loop takes 5 CPs per iteration (assuming hits in data
cache, which has a latency of 2 CPs).

However, by overlapping the execution of successive iterations and by creating
a new loop body, pipelining produces an average throughput of one iteration
every 2 CPs. The initiation interval (the time required to start each iteration) of
2 CPs, along with the fact that every iteration now takes 6 CPs to complete,
proves that an overlap of 3 (6+2) has been achieved.

The new loop (see the following figure) has parts of multiple iterations
executing at the same time, has multiple exits, uses twice as much register
space, and reorders the update to the loop induction variable (I=I+1 ) relative
to its use in the store to Y. But the throughput has increased by a factor of 2.5,
and the two integer functional units of the EV5 processor are kept 100% busy
within the loop.
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I=1
T1=X(l)
I=I+1

DO

Y(-1)=T1
IF(LGT.N)

END DO

Figure 20, page 84, illustrates the overlap of iterations for the following loop:

DO I=1,N

END DO

EXIT

* B())
* D(l)

T2=X(1)
I=I+1
T1=X(l)
Y(I-1)=T2 I=1+1
IFI.GT.N)  EXIT T2=X(1)

Figure 19. Overlapped iterations
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Iterations

Iteration |
Initiation
interval
Iteration | + 1
A(l) + B(l)
Time — —
Iteration | + 2
oy I _
Al+1)*B(+1)
Multiply %
\ pipeline J SOMEO | I
is 100%
busy A(l+2)*B(1+2)
1 —
|
1
i C(l+1)*D(I+1)

C(l+2)*D(I+2)

all329

Figure 20. Pipelining a loop with multiplications

The multiplication functional unit has nine stages, each requiring 1 CP to
complete its task. But stages 0 through 3 of each pipeline are for instruction
decode and issue, and bypasses between the pipelines give you latencies less
than the total pipeline length once the instruction is issued. A snapshot of the
functional unit when it is completely busy (see the following table) shows
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multiplication operations from three separate iterations of the loop, each at a
different stage.

Table 3. Functional unit

C(+1) * D(I+1)
A(+2) * B(I+2)
cly * D(l)
A(+1) * B(I+1)

4.3 Optimizing for Cache

Like CRAY T3D systems, the CRAY T3E system has an 8-Kbyte primary data
cache that is direct mapped (glossary, page 144). But it also has a 96-Kbyte
secondary cache that is three-way set associative (glossary, page 149). Although
this makes optimizing for cache use less critical on the CRAY T3E system,
programming for cache is still an important source of potential performance
improvement.

The following sections describe how to rearrange array dimensions (see the
next section) and add pad arrays (see Section 4.3.2, page 88). For background
information on how data cache and secondary cache work, see Procedure 1,
page 9, and the associated figures.

4.3.1 Rearranging Array Dimensions for Cache Reuse

004-2518-002

You can decrease the execution time for your code by increasing the number of
times a piece of data is used while it is resident in cache. One way to increase
cache reuse is by making reused array dimensions the fastest-moving, or
leftmost, dimensions of an array.

The array dimensions in the following example can be rearranged to increase
reuse.

Example 21: Unoptimized code

COMMOM(N,3,3), B(N,3,3), C(N,3,3)
DO I1=1,3
DO K=1,3
DO L=1,N
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CLIK) = ALLL) * BLLK)
& +AL12)  * B(L2K)
& +AL13)  * B(L3K)
ENDDO
ENDDO
ENDDO

One way to detect potential cache reuse in a loop nest is by looking for array
references that do not contain all of the loop nest’s loop control variables.
Dimensions that have references without a loop control variable, or that have
loop control variables that differ from reference to reference, are generally
candidates for reuse.

In the preceding example, the second and third dimensions have reuse potential
because they each have references in which the subscript is not a loop control
variable. These dimensions should be made the fastest running, leftmost
dimensions. The dimension declarations can be changed as follows:

COMMOM(3,3,N),  B(3,3N), C(3,3,N)

Rearranging a dimension should be accompanied by changing the order of the
nested DOloops. This optimization maximizes the number of loop invariant
(glossary, page 146) references in the inner loop. Maximizing the proportion of
stride-1 reference streams is also important and often easier to do. In the loop
from the preceding example, the number of invariant references is the same for
both the Kand | loops. The Kand | loops have more invariant references than
the L loop. The | loop gives more stride-1 references, thus the loop nest should
be changed in the following way:

DO L=1,N
DO K=1,3
DO I1=1,3
CUKL) = A(LL)  * B(LKL)
& +A(2L)  * B(2K,L)
& +A(I3L)  * B(3KL)
ENDDO
ENDDO
ENDDO

For an illustration of how the internal ordering of array A changes as a result of
the optimization, see the following figure. The array is now processed in the
same order it is stored. The illustration assumes that N has a value of 6.

86 004-2518-002



Single-PE Optimization [4]

A(6,3,3) A(3,3,6)
1 AL, 1,1) 1 AL, 1,1)
2 A@2,1,1) 2 AQ2,1,1)
3 AGB1,1) 3 A@B 1,1)
4 A(4,1,1) 4 A(l,21)
5 AG,1,1) 5 AQ2,2,1)
6 A6, 1,1) 6 A@B,21)
7 AL,2,1) 7 A(1L,3,1)
8 A@2,2,1) 8 A(2,3,1)
9 A@B 2,1 9 A@3,3,1)
10 A@4,2,1) 10 A(l,12)
11 A(5,21) 11 A(2,1,2)
12 A6,2,1) 12 A 1,2
13 A(L,31) 13 AL 2,2
14 A(2,3,1) 14 A(2,2,2)
15 A(3,3,1) 15 A 22
16 A4,3,1) 16 A(L,3,2)
17 AG5,3,1) 17 A(2,3,2)
18 A(6,3,1) 18 A(3,3,2)
19 A(1,1,2) 19 A(L,13)
20 A, 1,2 20 A(2,1,3)
21 A(3.1,2) 21 A(3,1,3)
22 A(4,1,2) 22 A(L,23)
23 A(, 1,2 23 A(2,2,3)
24 A6, 1,2 24 A@3,2,3)
25 A(L,2,2) 25 A(1,3,3)
26 A(2,2,2) 26 A(2,3,3)
27 A, 2,2 27 A(3,3,3)
28 A4,2,2) 28 AL 1,4)
29 A5, 2,2) 29 A2 1,4)
30 A6,2,2) 30 A@31,4)
31 A(L,3,2) 31 A(L,2,4)
32 A2,3,2) 32 A2 2, 4)
33 A3,3,2) 33 A(3,2,4)
34 A4,3,2) 34 A(L,3,4)
35 A5,3,2) 35 A(2,3,4)
36 A(6,3,2) 36 A3,3,4)
37 A(L,1,3) 37 A(l,1,5)
38 A2,1,3) 38 A2,1,5)
39 A(3,1,3) 39 A3,1,5)
40 A4, 1,3) 40 A(L,2,5)
41 A5, 1,3) 41 A(2,2,5)
42 A6, 1,3) 42 A3,2,5)
43 A(L,2,3) 43 A(L,3,5)
44 A(2,2,3) 44 A(2,3,5)
45 A3,2,3) 45 A(3,3,5)
46 A@4,2,3) 46 AL, 1,6)
47 A5,2,3) a7 A(2,1,6)
48 A(6,2,3) 48 A3, 1,6)
49 A(L,3,3) 49 A(1,2,6)
50 A(2,3,3) 50 A(2,2,6)
51 A3,3,3) 51 A(3,2,6)
52 A(4,3,3) 52 A(1,3,6)
53 A(5,3,3) 53 A(2,3,6)
54 A(6,3,3) 54 A(3,3,6)

a10179

Figure 21. Before and after array A has been optimized

Of course, loop interchange can only be done if it does not violate data
dependencies. The compiler will usually perform interchange under default
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optimization if it detects that doing so is both profitable in terms of
performance and does not cause incorrect behavior.

Cache reuse in loops such as the one in the preceding example can be further
increased by tiling (glossary, page 152). Tiling involves further stripmining
(glossary, page 150) the inner loops and interchanging loops. This is especially
profitable when the fastest-moving dimensions are large and less likely to stay
entirely in cache. Tiling is currently not performed by the compiler. You must
do it manually. For an example of stripmining, see Example 26, page 98.

4.3.2 Padding Common Bloc ks and Arrays to Reduce Cache Conflict

Reducing cache conflict is another method of increasing cache reuse. Reducing
data cache conflict between arrays accessed in the same loop can reduce the run
time of loops by up to 66%. Reducing secondary cache conflict can reduce the
run time of loops by up to 85%.

Due to the addition of a 96-Kbyte secondary cache on CRAY T3E systems, data
cache misses are not as costly as they were for CRAY T3D systems. When a
value needed by the microprocessor is not in data cache, it is often in secondary
cache. Accessing either data cache or secondary cache is faster than accessing
local memory. Maximizing the number of data references to cache can
effectively decrease the execution time of your program, and adding pad arrays
is one way to do that.

You can either pad arrays yourself, or you can specify the command-line option
-a pad and have the compiler do the padding. Because the compiler does not
do extensive analysis of the data or any analysis of data reference patterns in
your code, you may be able to get better results adding your own pad arrays.
This section concentrates on how to add your own padding arrays. Information
on instructing the compiler to add them automatically is included in Section
4.3.3, page 93.

Cache conflict in common blocks is a function of the declaration of the common
block, the code that references it, and the size of the cache. Such conflict often
happens when a common block’s arrays have sizes that are powers of two, as
in the following code fragment:

COMMONAAA/ A(1024), B(1024), C(1024)

DO 1=1,1024
Al) = B(l) + C)
ENDDO
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Data cache is 8 Kbytes, or 1,024 words, in size. Each of the arrays in this
example is the same size as data cache. Every word in the B array is mapped to
a line in data cache, element B(1) to the first cache line and B(1024) to the
last cache line. Then the next data item in memory, in this case C(1) , is
mapped to the first line of data cache. (See the following figure.)

Local memory

B(1)

B(2)

Size of data cache < .

.

B(1024)

N\

C(1)

C(2)

Size of data cache < :

.

.

C(1024)

all3ls

Figure 22. Arrays B and Cin local memory

Because of the array sizes, all references to B(I) and C(I) for the same value
of I will map to the same line in data cache. Data cache is direct mapped,
meaning it can contain only one of the two, either B(I) or C(I) . Usually
B(1-4) will be loaded and, after B(1) is moved to a register, overwritten by
C(1-4) . (See Figure 23, page 90.) When B(2) is needed, it will have to be
loaded into data cache a second time. Subsequent references to B and C may
mean reloading the same cache line in the same manner for each array element.
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Such data cache thrashing (glossary, page 151) can be avoided by adding pad
arrays of at least 4 words between the arrays in conflict.

Data cache
B(1-4) C(1-4)
B(5-8) — C(5-8)
B(1021- Nz C(1021-
1024) > 1024)

all3l2

Figure 23. Cache conflict between arrays B and C

Adding a CACHE_ALIGNdirective as well guarantees that the common block
starts at the beginning of an 8-word line, implying that 4 words of padding are
sufficient to avoid conflict in this case.

COMMONAAA/ A(1024), B(1024), P(4), C(1024)
IDIR $ CACHE_ALIGN/AAA/

Now the layout in memory looks different. The P array, placed as it is between
the B and the C arrays, causes the mappings of the two arrays to change. (See
Figure 24, page 91.)
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Local memory

B(1)

B(2)

Size of data cache < .

.

B(1024)

N\

P(1)

P2

P(3)

P4

Size of data cache < C@)

.

.

.

.

C(1020)

\Va

C(1021)

C(1022)

Size of data cache < C(1023)

C(1024)

Next data item

all31s

Figure 24. Arrays B and Cin local memory after padding
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The first elements of C now map to the second line of data cache, and the
conflicts have disappeared. C(1-4) will not be replaced by B(5-8) until they
are no longer needed. (See the following figure.)

Data cache
B(1-4) >
B(5-8) > < C(1-4)
B(9-12) —f——» < C(5-8)
B(13-16) —1+——» -< C(9-12)
B(1021- —+—»
1024)

all316

Figure 25. Data cache after padding

The preceding example contains no conflict in secondary cache either. Although
secondary cache is larger than data cache, keep in mind the need to maximize
its performance, especially when you are dealing with large arrays. The
following example is a similar code fragment but with larger arrays. This time
the size of the arrays match the size of secondary cache. Any multiple of that
size causes conflicts.

COMMONAAA/ A(4096), B(4096), C(4096)
IDIR$ CACHEALIGN /AAA/

DO 1=1,4096
Ay = B() + C()
ENDDO
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4.3.3 Automatic Padding
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Output values and input values are both written to secondary cache, meaning
you must be concerned about conflict with A as well as B and C. (For an
example, see Procedure 1, page 9.) The values A(l) , B(l) , and C(I) will all
map to the same line in secondary cache for the same values of | .

Although secondary cache is three-way, set-associative (three 8-word values can
be held in each line), its random replacement strategy creates the potential for
cache thrashing. Because its lines are 8 words, a pad array of 8 words (as
opposed to 4 words for data cache) is necessary to eliminate conflicts in
secondary cache. The P1 and P2 arrays are pad arrays in the following example:

COMMONAAA/ A(4096), Pi(8), B(4096), P2(8), C(4096)

Padding individual dimensions within the same array may also reduce cache
conflict, as in the following code fragment:

COMMONAAA/ A(1024,64),  B(1024,64)
IDIR$ CACHE_ALIGN/AAA/

DO J=1,64
DO 1=1,1024
A(J) = B(J) - B(l,J+1)
ENDDO
ENDDO

Not only do the A(I,J) and B(l,J) references conflict in both data cache and
secondary cache, but the two B references conflict with each other in data cache.
Extending the first dimensions of both A and B by 8 words avoids any conflict
in either cache. You need not use the extra words defined by the pad array. The
loop bounds will remain the same using the following arrays:

COMMONAAA/ A(1032,64),  B(1032,64)

This technique will work for all arrays, not just for those in common blocks.

Note: Use caution when applying these padding techniques yourself.
Because they change the sequence association and storage association of the
data that is padded, they can change the behavior of a program.

The compiler adds padding automatically after every array in a common block
and after local static data when you specify the -a pad option on the f90
command line. The compiler computes a padding value for each array. It pads
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static arrays and common blocks if the arrays do not appear in an
EQUIVALENCEstatement.

You can specify your own pad size by adding a value to the -a pad option.
The compiler adds padding after every array if you execute one of the
following command line options:

% f90 -a pad ..
% f90 -a pad 64 ..

Using the first option, the compiler adds padding that depends on the size of
the array, as follows:

e For large arrays of 1,024 words or more, it adds up to 264 words of padding
for every 4,096 words in the array to reduce secondary cache conflict. A pad
of 264 words reflects the following:

— Loop splitting is stripmined by 256.
— Secondary cache lines are 8 words long.

e For smaller arrays, between 128 and 1,023 words, it adds 8 words to reduce
data cache and secondary cache conflict. Arrays with fewer than 128 words
are not padded.

Automatic padding also adds words so that the next array starts on a secondary
cache line (8-word) boundary. It assumes that the preceding array also starts on
an 8-word boundary. You can ensure that it does by using either the
CACHE_ALIGNdirective or the following compiler/loader option:

-W1"-D allocate(alignsz)=64b

For the pad 64 argument, the compiler adds a pad of 64 words after all arrays.
Using a large pad value on small arrays is not recommended.

Note: Automatic padding by the compiler could potentially slow some
programs down or cause results to change, since the option breaks standard
Fortran sequence association and storage association specifications for
padded data. For restrictions that apply to automatic padding, see the CF90
Commands and Directives Reference Manual, publication SR-3901.

In the application that defined the following common block, every array is
aligned with two other arrays in cache:
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Example 22: Automatic padding

COMMOM(1024), B(1024), C(1024), D(1024), E(1024), F(1024),
% G(1024), H(1024), R(1024), S(1024), T(1024), U(1024)

The compiler automatically pads the arrays as follows if the -a pad option is

specified:

COMMOM(1024), PAD1(72), B(1024), PAD2(72), C(1024), PAD3(72),
& D(1024), PAD4(72), [E(1024), PAD5(72), F(1024), PAD6(72),
& G(1024), PAD7(72), H(1024), PADS(72), R(1024), PAD9(72),
& S(1024), PAD10(72), T(1024), PAD11(72), U(1024), PAD12(72)

Now none of the arrays start at the same location in cache. The pad at the end
of the common block is added to potentially improve effects across common
blocks in the same way that it improves things within common blocks.

A common block of smaller arrays such as the following can be saved from
data cache conflicts:

Example 23: Automatic padding for smaller arrays
COMMOM(256), B(256), C(256), D(256), E(256), F(256),
& G(256), H(256), R(256), S(256), T(256), U(256)

The compiler automatically pads these arrays as follows:

COMMOM(256), PADI1(8), B(256), PAD2(8), C(256), PAD3(8),

& D(256), PADA4(8), E(256), PAD5(8), F(256), PADS6(8),
& G(256), PAD7(8), H(256), PADS(8), R(256), PADY(8),
& S(256), PAD10(8), T(256), PAD11(8), U(256), PAD12(8)

4.4 Optimizing for Stream Buffer s

Each CRAY T3E PE has six stream (glossary, page 150) buffers located between
secondary cache and local memory (see Figure 3, page 7). When allocated, the
stream buffers prefetch data from local memory before it is actually requested,
increasing memory bandwidth (glossary, page 141) and decreasing latency
(glossary, page 146). A new stream buffer is allocated when the hardware
detects two secondary cache (glossary, page 149) line misses that are consecutive
in memory. (For an example, see Procedure 1, page 9.)

If an inner loop contains references that allocate more than six different streams,
stream buffer thrashing (glossary, page 151) occurs, and the stream buffers are
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4.4.1 Splitting Loops

96

ineffective. The following programming techniques will let your program make
the best use of stream buffers.

* Letting the Cray Research compiler enhance the performance of your
program by splitting loops (see the following section).

e Padding common blocks and arrays for loop splitting (see Section 4.4.2, page
100).

* Avoiding undesirable side effects from loop splitting (see Section 4.4.3, page
101).

* Getting the most out of a stream by maximizing the inner loop trip count
(see Section 4.4.4, page 101).

* Rearranging the dimensions of an array in order to cut down on the number
of streams (see Section 4.4.5, page 102).

* Reducing overhead by grouping statements that use the same stream (see
Section 4.4.6, page 103).

* Enabling or disabling stream buffers to get the most benefit from the
hardware (see Section 4.4.7, page 105).

Splitting an inner loop that allocates more than six stream buffers into a
sequence of smaller inner loops that each allocate six or fewer stream buffers is
a profitable optimization in many cases. It eliminates stream buffer thrashing
and can reduce the execution time of a loop that is making stride-1 references to
an array in local memory by up to 40%.

Because splitting loops by hand is tedious and will not always be a performance
improvement on other systems, the Cray Research CF90 compiler provides a
command-line option (-O split #) and source directives (SPLIT and
NOSPLIT) to split loops. The compiler does not split loops without direction
from you, because it can degrade performance in some cases, and the compiler
cannot currently detect all such cases. For more information on problems with
loop splitting and how to detect them, see Section 4.4.3, page 101.

Place the SPLIT compiler directive immediately before the DOstatement of the
loop to be split. Good candidates for loop splitting are loops with all of the
following characteristics:

¢ Trip counts are higher than 24.

004-2518-002



Single-PE Optimization [4]

004-2518-002

® Performance is bound by memory bandwidth or latency.

* Most references in the loop cause sequences of consecutive cache lines to be
read from local memory:.

¢ There are few, if any, IF statements. Loops with IF statements can be split
profitably but not as profitably as those without IF statements.

When you place the SPLIT directive in front of a loop, you are telling the
compiler only that the performance of the loop will profit from splitting. You
are not telling it that the loop is safe for splitting. The compiler decides on its
own if the loop can be safely split; it splits the loop only if it can be done
without changing the results of the computation. It will not cause incorrect
behavior in codes that conform to the Fortran standard. Usually, a loop is safe
to split under the same conditions that a loop is vectorizable for Cray PVP
systems. The compiler splits only inner loops.

The SPLIT directive also causes the original loop to be stripmined (glossary,
page 150). Stripmining increases the potential for cache hits between the
resulting smaller loops. On the negative side, stripmining can reduce the
average stream length for a loop nest, thus reducing the effectiveness of the
streams. A strip length of 256 represents a good balance between cache reuse
and stream effectiveness.

Loop splitting should also be used in conjunction with loop unrolling (see
Section 4.1, page 77). The -Ounroll2 ~ command-line option has been shown to
improve performance when used with the SPLIT directive.

The following examples show optimizations based on splitting loops:

Example 24: Original loop

IDIR$ SPLIT
DO 1=1,4000
Ay = B() * c)
T =D() + A()
E() =F(1) + T* G(I)
H() = H() + E()
ENDDO

First, the compiler generates the following loops. Notice the expansion of the

scalar temporary T into the compiler temporary array TA in the following
example.
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Example 25: Splitting loops

DO [=1,4000
Al) = B() * C(l
TA() = D) + A(l)
ENDDO
DO [=1,1000
EN) = FQO) * TAQ) * G()
H(I) = H() + EQ)
ENDDO

Finally, in the following example, the compiler stripmines the loops by 256 to
increase the potential for cache hits and reduce the size of arrays created for
scalar expansion. Stripmining itself does not provide a performance benefit, but
in combination with other optimizations (especially loop splitting, unrolling,
and vectorization), it can speed up your program.

Example 26: Stripmining

DO 11=1,4000,256
12 = MIN(I1+255,  1000)

DO I=I1,12
Al) = B(@) * C(l)
TA(-I1+1) = D(I) + A(l)
ENDDO
DO I=I1,12

E() = F(I) * TA(-I1+#1)  * G(l)
H(I) = H() + EQ)
ENDDO
ENDDO

In the following example, the compiler splits a loop that includes an IF
statement. The result is two loops, each with an IF statement.

Example 27: Splitting loops across | F statements

IDIR $ SPLIT
DO 1=1,4000
IF (A() .LT. 0.0)
B() =C@ * DO
ELSE
EM) =F0O * &)
ENDIF
ENDDO
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The preceding loop is split as follows:

DO [=1,4000
L) = A) .LT. 0.0
IF (L))
B() = C() * D(l)
ENDIF
ENDDO
DO [=1,1000

IF (NOT. L(I)
EN) = F(I) * G(l)
ENDIF
ENDDO

The compiler does not split up IF statements that are nested within other IF
statements. Nested IF statements remain intact at the end of the splitting
process.

The compiler also splits individual statements that would allocate more than six
stream buffers, as in the following example.

Example 28: Splitting individual statements

IDIR$ SPLIT
DO 1=1,4000
Al) =B() * Cc(l) + D) * El) +FQl * G(I)
ENDDO

The preceding loop would be split as follows and then stripmined:

DO 1=1,4000

TN =B * C(Ul) + DI * E()
ENDDO
DO 1=1,1000

Ay =T0 + KN * G(»)
ENDDO

Statements such as those in the preceding example are split only on add,
subtract, and multiply operations.

The -O split2  command-line option to the f90 (1) command can be used to
apply the SPLIT directive to all loops in a file. The -O splitl  option, which
is the default, splits only loops preceded by the SPLIT directive.
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Note: There is potential for increasing the execution time of certain loops by
splitting them. Loop splitting also increases compile time, especially when
loop unrolling is also enabled. The NOSPLIT compiler directive inhibits loop
splitting and overrides a -O split2  command-line specification. The -O
split0  directive disables all loop splitting.

For more information on loop splitting options and directives, see the CF90
Commands and Directives Reference Manual.

4.4.2 Padding Common Bloc ks and Arrays for Loop Splitting

In addition to decreasing cache conflict, padding common blocks and arrays can
improve the performance of loop splitting, especially in the case of array reuse
within a loop.

The following code fragment contains a loop that has already been split and
stripmined:

COMMONAAA/ A(4096), B(4096), C(4096), D(4096),
& X(4096),  Y(4096),  Z(4096)

DO 11=1,4096,256
12 = MIN(I1+255,  4096)
DO I=I1,12
Al) =B() * C(l) + D(l)
ENDDO
DO I=I1,12
X(1) =YW * z() - D)
ENDDO
ENDDO

Notice the reuse of D between the two inner loops. All of the array references
conflict in both data cache and secondary cache. Adding pad arrays of 8 words
between each array will eliminate data cache conflict within a single loop,
however much of the strip of D will likely have been thrown out of both data
cache and secondary cache before the second loop begins. Adding padding
arrays of 264 words before and after D will ensure that the strip of D is still in
secondary cache when the second loop begins. Arrays P3 and P4 serve that
purpose in the following example:

COMMONAAA/ A(4096), Pi1(8), B(4096), P2(8), C(4096), P3(264),
& D(4096), P4(264), X(4096), P5(8), Y(4096), P6(8), Z(4096)
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The compiler has a command-line option that adds such pad arrays
automatically. See Section 4.3.3, page 93.

4.4.3 Changed Behavior from Loop Splitting

Enabling loop splitting on CRAY T3E systems may cause previously working,
but nonstandard, codes to change behavior.

Loop splitting assumes that all arrays are referenced with subscripts that are
within the array’s declared bounds. If a code indexes an array with a subscript
that is outside of the declared bounds (a nonstandard practice), loop splitting
may change the behavior of the code. The change in behavior may result in
different numerical results, or it might cause an exception, such as an operand
range error or a floating-point exception.

To find the source of the problem, first try to isolate the loop that is causing the
change in behavior. Try adding the -O overindex option to the compiler
command line. It disables some assumptions made by the compiler that
overindexing (glossary, page 148) is not done. Depending on the nature of the
overindexing, this option may cause the program to behave correctly and still
give most of the benefit of loop splitting.

If correct behavior cannot be restored, you may have to disable loop splitting
for the offending loop by using the NOSPLIT directive.

4.4.4 Maximizing Inner Loop Trip Count

004-2518-002

Once a stream is allocated, it is usually most advantageous to maximize the
number of references that go through the stream in order to recover the startup
time and increase performance. Reducing the number of streams also reduces
the number of stream startups.

One technique for increasing the references to a stream is to rearrange array
dimensions in order to maximize inner loop trip counts. The technique is also
used on Cray PVP systems to increase performance through increased vector
length. Because split loops are stripmined by 256, 256 is the largest inner loop
count possible for loops that are split by the compiler.

Currently, this technique is not performed automatically by the compiler. You
must do it manually.

The loop in the following example processes the arrays in streams of 32
elements:
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Example 29: Rearranging array dimensions

DIMENSION X(32, 1000), Y(32, 1000), Z(32, 1000)
DIMENSION S(32, 1000), T(32, 1000), W(32, 1000), U(32, 1000)

DO J=1,N1000
DO I1=1,N32
X(1,J) = Y0+ z(,d)
wW(J) = X(J)  * T0I) - S(,I) * U@
ENDDO
ENDDO

By switching dimensions, as in the following code, the loop is processed in
streams of 256 elements (the stripmine length), which reduces the aggregate
stream startup count by 88%:

DIMENSION X(1000, 32), Y(1000, 32), Z(1000, 32)
DIMENSION S(1000, 32), T(1000, 32), W(1000, 32), U(1000,32)

DO J=1,N32
DO I1=1,N1000
X(1,J) = Y0+ z(,d)
wW@J) = X@J)  * T0I) - S(,I) * U@
ENDDO
ENDDO

4.4.5 Minimizing Stream Count

Minimizing the number of different streams in a loop reduces the amount of
loop splitting required.

One technique is to rearrange the dimensions of an array to make short
dimensions (usually between 2 and 20 elements) the fastest running (or
leftmost) dimension. This is the opposite of the technique described in Section
4.4.4, page 101, and it is only profitable if all the array’s references are unwound
along the short dimension and grouped within the loop so as to allocate only
one stream. Such array dimensions and references are more common in older
Fortran codes in which the programmer is simulating functionality now
provided by derived types in Fortran 90.

Currently, this technique is not performed automatically by the compiler. You
must do it manually.
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Although the loop in the following example makes the best use of vectors on
Cray PVP systems, it will allocate 12 streams on CRAY T3E systems:

Example 30: Minimizing streams

DIMENSION X(1000, 6)
DIMENSION Y(1000, 6)
DO 1=1,1000

X(1,1)
X(1,2)
X(1,3)
X(1,4)
X(1,5)
X(1,6)
ENDDO

Y(,1)

= Y(1,2)

Y(1,3)
Y(1,4)
Y(1,5)
Y(1,6)

The loop in the following example allocates only two streams on CRAY T3E

systems:

Example 31: Reduced streams version

DIMENSION X(6,
DIMENSION Y(6,
DO 1=1,1000

X(1,1)
X(2,1)
X(3,1)
X(4,1)
X(5,1)
X(6.1)
ENDDO

Y(1,1)
Y(2.0)
Y(3.1)
Y(4,)
Y(5.1)

= Y(6,)

1000)
1000)

4.4.6 Grouping Statements That Use the Same Streams
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Although loop splitting is beneficial to program performance, it does introduce
some overhead. The fewer times a loop is split, the less overhead you will
have. As the compiler splits loops, it creates new loops by processing
statements in the order in which they occur in the original loop. It is beneficial
to group statements that use the same streams.

Currently, this technique is not performed automatically by the compiler. You
must do it manually.

The compiler would split the loop in the following example into four loops:
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Example 32: Original code

DIMENSION X(2,1000),  Y(2,1000),  Z(2,1000)
DIMENSION S(2,1000),  T(2,1000),  W(2,1000),  U(2,1000)

DO 1=1,1000
X)) = Y@ + zZ@)
W) = X@h) * T - S@h)  * U@
X2 = Y@l o+ z@)
W) = X@l)  * TRl - S@)  * U@l
ENDDO

If the statements using the same streams are grouped together, the loop only
needs to be split into two loops, as shown in the following example:

Example 33: Grouping statements within the loop

DO 1=1,1000
X)) = Y@ + z@)
X@I) =Yl o+ z@)
W) = X@h) * T - S@)  * U@
W) = X@l) * TRl - S@)  * U@l
ENDDO

The situation in the preceding example is most likely to occur in older Fortran
codes that contain arrays with small dimensions (between 2 and 20 elements)
that simulate Fortran 90 derived types. But it can also be found in codes that
contain loops that have been unrolled manually. These loops should either have
their statements grouped, or the loops should be rerolled. The following loop,
unrolled manually, will be split into four different loops:

Example 34: Loop that will be split into four

DIMENSION X(1000), ~ Y(1000),  Z(1000)
DIMENSION S(1000), ~ T(1000), W(1000), U(1000)

DO 1=1,1000,2

XM =YW + zZ»)

W) = X0 * TI) - s * u®

X(+1) = Y(+1) + Z(1+1)

W(I+1) X(+1) * T(@+1) - S(+1) * U(I+1)
ENDDO

As in Example 32, page 104, and Example 33, page 104, the first and third lines
of the loop access the same streams, as do the second and fourth lines. By
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grouping the first and third lines and second and fourth lines, the loop in the
following example, which was unrolled manually, will be split into two loops.
(Rerolling this loop would probably be best, but the intent of the example is to
demonstrate grouping.)

Example 35: Loop that will be split into two

DO 1=1,1000,2

XM =YW + zZ»)

X(1+1) = Y(+1) + Z(1+1)

w() =X = T - s * U

W(+1) = X(I+1) * T(+1) - S(+1) * U(I+1)
ENDDO

4.4.7 Enabling and Disabling Stream Buffer s
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There are two levels for the stream buffers, and 1. Level 1 enables stream
buffers and is usually the default.

At level 1, stream buffers are allocated when two secondary cache misses on
consecutive local memory locations are detected. The allocation occurs only if
the second miss occurs within eight memory locations of the first miss. Once a
stream is activated, it reads memory in paging mode. This causes memory
reads to be done in blocks of four cache lines, optimizing memory bandwidth.
For an example of starting a stream, see Procedure 1, page 9.

At level 0, no stream buffers are allocated. Level 0 may be needed for certain
rare loops with references that activate stream buffers but never access them,
causing unused memory traffic.

Currently, the stream buffer level is not adjusted for an individual loop by the
compiler. You must change the level manually before each loop if you want a
setting other than the default of 1. The stream buffer level can be set at run
time by using the SET_D_STREAR8) library call. The stream buffer level is
changed to in the following example:

CALL SET_D_STREAM(0)

The GET_D_STREAMoutine saves the current stream buffer level in order to
restore it later.

For certain versions of the CRAY T3E system, stream buffers are disabled by
default for the following classes of programs:

* A program that calls subroutines from the SHMEM library.
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* A program that uses high performance Fortran (HPF) or PGHPF/CRAFT
language features.

* A program that uses the CACHE_BYPASSirective (see Section 4.7, page 113).

The document CRAY T3E Programming with Coherent Memory Streams outlines
conditions under which you can safely enable streams for programs in these
categories. The document is available online at the following URL:

http://www.sgi.com/t3e/guidelines.html

Once you ensure that your program is safe, you can enable streams for these
programs using the SET_D_STREAMibrary routine or by setting the
SCACHE_D_STREAMSwironment variable to 1.

4.5 Optimizing Division Operations
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The division operation is relatively expensive in terms of performance.
Depending on how many bits need to be generated (that is, 1.0 divided by 2.0
is quicker than 1.0 divided by 3.0), the operation varies between 22 and 60 CPs
for a 64-bit divide and between 15 and 31 CPs for a 32-bit divide. Division
operations are not pipelined, so a second divide cannot be issued while the first
is in progress.

The best strategy for division is to avoid it whenever possible. Changing a
division operation into a reciprocal multiplication operation, which the CF90
compiler does by default, can improve performance dramatically. In the
following example, A, B, C, and D are all cache-resident arrays:

IDIR$ UNROLL
DOl =1, 256
Al) = (B() + 20 * C() + DI [/ X
ENDDO

Because the divide is loop invariant (glossary, page 146), the divide can be
changed to a multiply by the reciprocal, as shown in the following example.

XINV = 1.0/X
IDIR$ UNROLL
DOl =1, 256
Al) = (B() + 20 * C() + D) * XINV
ENDDO
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By default, the CF90 compiler changes a divide into a reciprocal multiply for
you. You do not have to change the code at all. Unless you enable IEEE
division by specifying the -e u option on the f90 (1) command line, the
compiler will use the faster reciprocal multiply at every opportunity.

Other operations can proceed when a divide operation is in progress. If moving
a divide operation outside of a loop is not possible, you can sometimes
preschedule it from within your source code. The following inner loop has a
divide operation in line 7 that causes a wait of about 60 CPs, and the result is
immediately used.

Example 36: Original code

©oNoOORr~LNE

NNNNNNNNRPRRPRRRRRERRRRR
NOTRONPOO®IDARMWNEO

DO 1300 JN = 1,LPR

J = IAR2(JN+LPAIR)

IC = ICO(IACI _IAC(J))

XW1 = TMP1-X(1,J)

XW2 = TMP2-X(2,J)

RWTMP=  TMP3-X(3,J)

R2INV = 1.0E0/(XW1*2+XW2**2+RWTMP**2)

C The problem is here. The result of divide is used
in next calculation.

DF2 = CGICG(J)*R2INV

EELT = EELT+DF2

R6 = R2INV**3

F1 = CN12(1,IC)*(R6*R6)

F2 = CN12(2,IC)*R6

ENBT = ENBT + (F2-F1)

DF = (DF2+6.0E0%((F2-F1)-F1))*R2INV
FW1 = XWI1*DF

FW2 = XW2*DF

FW3 = RWTMP*DF

F(1J) = F@ALJ)  +Fwil
FJ) = F@2J)  +Fw2
FBJ) = F@BJ)  +Fws

TMP4 = TMP4 -FW1
TMP5 = TMP5 -FW2
TMP6 = TMP6 -FW3

CONTINUE

Using a technique similar to bottom loading (glossary, page 142), the division
required for the next iteration of the loop is computed in advance. The divide
operation itself is in line 14 of the following example. The result of the divide is
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not needed until the next pass of the loop, so the floating-point operations
following the divide can overlap with the 60 CPs, assuming a 64-bit divide.
This kind of division is unconventional, but it increases the performance of the
code. The compiler does not make the following changes automatically.

Example 37: Modified code

1
2
3
4.
5.
6
7
8
9

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
20.
30.
31.
32.
33.
34.
35.
36.

C First
J

divide  computed
= |AR2(1+LPAIR)

XW1 = TMP1-X(1,J)
XW2 = TMP2-X(2,J)
RWTMP=  TMP3-X(3,J)
R2INV = 1.0E0/(XW1*2+XW2**2+RWTMP**2)

DO 1300 JN = 1,LPR
C Compute the divide needed for next pass

C Juggle

J_NEXT = IAR2((JN+1)+LPAIR)

XW1 NEXT = TMP1-X(1,J _NEXT)
XW2_NEXT = TMP2-X(2,J _NEXT)
RWTMP_NEXE TMP3-X(3,J_NEXT)
R2INV_NEXT = 1.0E0/(XW1_NEXT*2+XW2_NEXT*2+RWTMP_NEXT**2)
IC = ICO(IACI+IAC(J))

DF2 = CGICG(J)*R2INV

EELT = EELT+DF2

R6 = R2INV**3

F1 = CN12(1,IC)*(R6*R6)

F2 = CN12(2,IC)*R6

ENBT = ENBT + (F2-F1)

DF = (DF2+6.0E0*((F2-F1)-F1))*R2INV
FW1 = XWI1*DF

FW2 = XW2*DF

FW3 = RWTMP*DF

F(LJ) = F(LJ)  +Fwil
FJ) = F@J)  +Fw2
FGBJ) = F@BJ)  +Fws

TMP4 = TMP4 -FW1
TMP5 = TMP5 -FW2
TMP6 = TMP6 -FW3
the values for the next pass.
J = J_NEXT
XW1 = XWI1_NEXT
XW2 = XW2_NEXT
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4.6 Vectorization
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37. RWTMP= RWTMP_NEXT

38. C The result of divide not needed until here. All  the work
39. C above this can proceed concurrently with  the divide.

40. R2INV = R2INV_NEXT

41. 1300 CONTINUE

The early divide for the last iteration in the preceding example is potentially
unsafe because it may go out of bounds. You may have to provide a special
case for the last iteration.

The CRAY T3E compiler offers a method to vectorize select math operations
inside loops. This is not the same kind of vectorization available on a Cray PVP
systems On a CRAY T3E system, the compiler restructures loops containing
scalar operations and generates calls to specially coded vector versions of the
underlying math routines. The vector versions are between two and four times
faster than the scalar versions. The compiler uses the following process:

1. Stripmine the loop. (For more information on stripmining, see Example 26,
page 98.)

2. Split vectorizable operations into separate loops, if necessary. (For more
information on loop splitting, see Example 26, page 98.)

3. Replace loops containing vectorizable operations with calls to vectorized
intrinsics.

Vectorizing reduces execution time in the following ways:

* By reducing aggregate call overhead, including the subroutine linkage and
the latency to bring scalar values into registers needed by the intrinsic
routine.

¢ By improving functional unit utilization. It provides better instruction
scheduling by processing a vector of operands rather than a single operand.

* By producing loops that can be pipelined by the software. (For more
information on pipelining, see Section 4.2, page 78.)

The programming environment also offers the libmfastv  library of faster, but
less accurate, vector versions of the libm routines. These routines deliver
results that are usually one-to-two bits less accurate than the results given by
the libm routines. Less accurate scalar versions of the library routines are also
used to provide identical results between vector and non-vector invocations
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within the same program. The libmfastv  routines reduce execution time
spent in math intrinsics by 50 to 70%.

Because the vector routines may not provide a performance improvement in all
cases (due to necessary loop splitting), vectorization is not turned on by default.
It is enabled through the compiler command-line option -O vector3 . The
default is vector2 , which currently does not do intrinsic vectorization. The
vectorl and vector0 options have their own meanings on Cray PVP
systems, but on the CRAY T3E system, they are the same as vector2 : they
turn vectorization off.

If you have selected -O vector3 , you can further control vectorization by
using the following:

¢ Vector directives NEXTSCALARind [NQVECTORThey allow you to turn
vectorization on and off for selected parts of your program.

* In the case of ambiguous data dependences within the loop, you can express
a loop’s vectorization potential by including the IVDEP directive (see Section
4.6.1, page 112). IVDEP tells the compiler to proceed with vectorization and
ignore vector dependencies in the loop that follows.

e Access to the libmfastv routines can be controlled with the -I compiler
option. For example, the following command line links in the faster, but less
accurate math routines rather than the slower, default routines in libm :

% f90 -Ovector3 -Infastv test.f

Transformation from scalar to vector is implemented by splitting loops. This
may cause extra memory traffic due to the expansion of scalars into arrays and
reduce the opportunity for other scalar optimizations. This could negatively
impact the profitability of the vectorization.

The less accurate version offered through libmfastv  varies from default libm
results generally within 2 ulps (glossary, page 152), although some results could
differ by larger amounts. Exceptions may also differ from the libm versions,
where some calls to libmfastv ~ may generate only a NaN (glossary page 147)
for a particular operand rather than an exception, causing exceptions later in
the program.

Vectorization is only performed on loops that the compiler judges to be
vectorizable. This determination is based on perceived data dependencies and
the regularity of the loop control. These loops will likely be a significant subset
of those seen as vectorizable by the Cray PVP compiler. Vectorization of
conditionally executed operators is deferred. Vectorization of loops that contain
potentially early exits from the loop is also deferred.
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Vectorization will be performed on the following intrinsics and operators. The
first set supports both 32-bit and 64-bit floating-point data:

SQRT3)

1/SQRT (replaced by a call to SQRTINW3)
LOG3)
EXR?3)
SIN(3)
C0OSs3)

COS$3) (replaced by a combined call to SIN(3) and COg3)
The following support 64-bit floating-point only:

RANK3)

X**Y

POPCN®)

Note: Early versions of the Programming Environment 3.0 release may not
vectorize loops with multiple RANK3) calls. The IVDEP directive enables
RANFvectorization, but the values returned may be different than those
returned without vectorization.

The vector intrinsic routines are designed to read an arbitrary number of
operands from memory and write their results to memory. They can also
handle operands and results that do not have a stride of one.

The compiler stripmines and splits (if necessary) any loop for which intrinsic
vectorization is indicated by the programmer. The stripmine factor is currently
256. The loop is stripmined to limit the size of scalar expansion arrays and to
decrease the likelihood of cache conflict.

The following example illustrates the kind of loop to which the vectorization
optimization can be applied:

Example 38: Transforming a loop for vectorization

DOI =1, N
A(l) =B() * SQRT(C() + D) )
ENDDO
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The loop in this example will be transformed into the following loop. The vector
version of the square root function is called after the first ENDDGstatement.

DOIl =1, N, 256
NN = MIN( 114255, N)
DOl =1, NN
T(-+1) = c() + D(l)
ENDDO
SQRT.V(NN- Il +1, T, T2, 1, 1)
DOl =1, NN
Ay = B() * T2(-lI+1)
ENDDO
ENDDO

4.6.1 Using the | VDEP Directive

Use the IVDEP directive to tell the compiler that the following loop can be
vectorized, despite the presence of what might appear to be vector
dependencies.

Placing the IVDEP directive in front of a loop enables the compiler to perform
the following optimizations:

¢ Loop splitting

¢ Using the vectorizing intrinsic routines and operators listed in Section 4.6,
page 109

* Speeding up memory access with the CACHE_BYPASSirective (see Section
4.7, page 113)

¢ Improving pipelining

Vector dependencies prevent the compiler from vectorizing a loop because of
the unknown value of array indices at the time the program is executed. In
particular, the first statement in the loop may be trying to read a value that was
written by the second statement in an earlier iteration:

DO I=1,N

X = A(I-K)
Al) =B(@I) *Cl) - W
ENDDO
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4.7 Bypassing Cache
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In this example, there may be a dependence, depending on the value of K. If K
is positive, there is a dependence, because the first statement is trying to access
a value written by a later statement. If K is negative, there is no dependence.
The compiler cannot know the value of K ahead of time. It will not vectorize
the loop unless you place an IVDEP directive immediately before it.

In the following example, there may be a dependence, depending on the values
of IX.

DO I=1,N

BU) = AUX())

AXD) = WOt X0+ Z0)
ENBDO

If there are duplicate values in IX, there is a dependence. If there are no
duplicates in IX, there is no dependence. Again, the compiler will not vectorize
the loop unless it is preceded by an IVDEP directive.

The CACHE_BYPASSirective offers a semi-automatic method for speeding up
certain memory references. The execution time for some loops can be reduced
by up to 45%; others can be even faster.

Local memory references specified by the CACHEBYPASSdirective are routed
through E registers rather than through cache. Because E registers offer a finer
granularity of access to local memory, they give you higher bandwidth for
sparse index array accesses, such as gather/scatter and large stride accesses that
do not take advantage of multiple accesses from the same cache load.

The following example illustrates a large stride access; it strides through the B
array by incrementing the rightmost dimension. (For an illustration of how an
array is stored in Fortran, see Figure 21, page 87.)

IDIR $ CACHE_BYPASSB
DO I=1,N

Al) = B(L))
ENDDO
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The next example shows a gather/scatter loop. The references to the A and B
arrays are drawn from a third array, IX . Both the following loop and the
preceding loop will benefit from bypassing cache.

IDIR$ CACHE_BYPASSA, B
DO I=1,N
AQX() = B(X(M) + C
ENDDO

Note: The CACHE_BYPASSirective makes no guarantees about the state of
the cache before or after the specified loop. In particular, it does not do the
following:

* Guarantee that the specified variables are not in cache before the loop.
* Guarantee that the specified variables are not in cache after the loop.
¢ Invalidate cache.
e Affect program results in any way.

The directive is strictly a performance hint to the compiler.

CACHE_BYPASSan also be used to initialize large arrays if the contents are not
immediately needed in cache, avoiding unnecessary reads into cache and
improving the memory bandwidth.

The directive precedes a DOloop and affects all of the named arrays within the
scope of that loop.l  In the following loop, array X is initialized through E
registers rather than through cache:

IDIR$ CACHEBYPASS X

DOl = 1N
X(l) = 1.0
ENDDO

Even if you include a CACHE_BYPASGSirective before a loop, the compiler
ignores it if it determines it cannot generate code efficiently. The loop must
meet the following requirements before the compiler uses E registers:

1 Only types whose base types are 64 bits INTEGER(KIND=8) , REAL(KIND=8) , LOGICAL(KIND=8) , and
pointers to these types) can be named in the directive. Cray pointer pointee arrays, as well as allocatable and
deferred-shape arrays, can be named. Arrays or pointers that are components of objects of derived types cannot be
named in the directive. Specification of unsupported arrays is ignored and will cause a warning to be issued.
Support for 32-bit base types is deferred.
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® The loop must be an inner loop, if nesting is involved.

* The loop must be vectorizable. Use the IVDEP directive in cases where
ambiguous data dependencies are preventing the loop from vectorizing.
(For more information on the IVDEP directive, see Section 4.6.1, page 112.
For more information on vectorization, see Section 4.6, page 109.)

You will probably have to enable loop unrolling to realize the full benefit from
this feature. For information on the unrolling command-line option and
directive, see Section 4.1, page 77.

This technique can reduce the execution time of certain gather/scatter codes by
up to 45%. The benefit is greater the more random the index stream, however,
benefit has been seen from index streams with secondary cache hit rates as high
as 50%.

The following example loads only array A through E registers:

IDIR$ CACHE_BYPASHA,IB
DO I=1,N
C(y = AUBIXMH)
ENDDO
The following example does not bypass cache for stores to the CAarray:

POINTER (CP,CA)

IDIR$ CACHE_BYPASSCA

DO I=1,N
CP = LOC(A(IX()))
CA() = B()

ENDDO

Bypassing cache does generate more code for candidate loops, potentially
increasing the compile time slightly. It also increases the latency of memory
references in return for greater bandwidth. Applying the CACHE_BYPASS
directive may increase the execution time for loops that would otherwise
benefit from cache references.
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Caution: For some CRAY T3E installations, this feature causes the stream
buffer hardware feature to be disabled by default for the entire application.
Streaming is disabled if the compiler cannot guarantee correctness in the
interaction of the stream buffers and the E register operations generated by
this feature. Disabling stream buffers can cause considerable performance
degradation for other sections of the program. The stream buffer feature can
be reenabled using the SET_D_STREARS) library routine. Consult your
system administrator to determine if your CRAY T3E installation falls into
this category.

For background information on streaming, see Figure 4, page 8, and the
example that follows. See the document CRAY T3E Programming with
Coherent Memory Streams for details on how and when streams can be safely
reenabled in the presence of E-register operations. For the online address of
the document, plus information on enabling and disabling stream buffers, see
Section 4.4.7, page 105.
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5.1 Strategies for 1/O
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Optimizing I/O on the CRAY T3E system is not, for the most part, very
different from optimizing I/O on Cray PVP systems. If you are already
acquainted with Cray PVP I/0, much of this chapter should be familiar to you.

As on other Cray Research systems, there are a few optimizations that apply
regardless of the kind of I/O your program is performing. For instance, using
binary (or unformatted) data rather than ASCII data is a good idea that should
be used whenever possible. To reduce redundancy, it is not listed as an
optimization in every section of this chapter.

The following optimization topics are covered:

¢ Choosing a strategy for doing I/O in a parallel programming environment
(see Section 5.1, page 117).

¢ Using unformatted I/O whenever possible (see Section 5.2, page 122).
¢ Coping with formatted I/O when necessary (see Section 5.3, page 126).

* Making use of the performance-enhancing FFIO layers in your program (see
Section 5.4, page 128 ).

* Optimizing random access 1/O (see Section 5.5, page 134).

e Striping a file over disk partitions (see Section 5.6, page 134).

One of the first questions to answer when optimizing on a parallel system is
what your I/0 strategy will be. Should you do all of your I/O from a single
PE? Should each PE perform its own I/O? Should you work with a single data
file or multiple files?

If you want to write data from multiple PEs to one file, you must choose one of
the following methods:

¢ Have all of the PEs open one or more shared files. A shared file can be on a
single disk or striped (glossary, page 144) over many disks. This method
requires you to synchronize carefully when you are writing to the file (see
Section 5.1.1, page 118).
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* Have each PE involved in I/O, perhaps all of them, open a separate file.
This method often requires you to divide data up into multiple files before
reading and to merge files after writing. You can do the dividing and
merging outside the scope of the program. Each file can be read from and
written to different disks (see Section 5.1.2, page 120).

* Have one PE do all of the I/O. The PE performing the read shares the data
with the rest of the PEs and collects it again before writing the output. This
method can be very fast when you make use of disk striping (see Section
5.1.3, page 121).

The following sections describe the performance benefits and detriments of
these three methods.

5.1.1 Using a Single, Shared File

PEs can read the same file at the same time. They can also, if you are careful,
write to the same file at the same time. For an illustration of this process, see
the following figure.

PEO PE 1 PE 3
w® [} 4
\\ \ //
\ \\ /
A \ / Synchronization
\\ \ mechanism for write
\ \\
\\ \
\
D_ata Read d——-—
file
Write ——p»

all300

Figure 26. Multiple PEs using a single file

Having many PEs reading from the same file can cause a slowdown due to I/O
contention. Reading or writing to a single file is most effective under the
following circumstances:
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* Your program is doing distributed I/O, which automatically spreads an
input file across the memory of multiple PEs. This is a supported and
optimized method of doing shared file I/O, and it is the recommended
approach. For more information on this method, see Section 5.4.2, page 130.

* Your program is doing random access 1/0O.

* The number of PEs involved is not greater than the number of I/O channels
on your CRAY T3E system. This need not be a restriction unless your
program is I/O bound. If your program is not I/O bound, you can overlap
computation with I/O. Choosing an asynchronous I/O mechanism, such as
either the bufa or cachea FFIO layer, lets you continue to execute
statements in your program while I/O is taking place. For information on
asynchronous I/0, see Section 5.4.3, page 133, and Section 5.4.4, page 133.

* Your file is striped over multiple disk drives. For information on disk
striping, see Section 5.6, page 134.

If each PE reads its own part of the input file, use an offset into the file based
on each PE’s number. If all PEs need the same data, reading from one PE and
broadcasting the data to the others might be faster than having each PE read

from the same file, especially if a large number of PEs are involved in the job.

The following example demonstrates how multiple PEs can share the job of
reading and writing a single random-access file. In the example, the function
findnext  returns a record number based on the PE that invokes it and the
number of PEs participating in the I/O. This example will run fast whether the
shared file is on a single disk or striped over many disks.

OPEN(UNIT=9,ACCESS=DIRECT,ACTION=READ,RECL=40960)
OPEN(UNIT=11,ACCESS=DIRECT,ACTION=WRITE,RECL=40960)
DOl =1, NUMTODO

NEXT = FINDNEXT(NEXT, MY_PE, N$PES)

READ(9, REC=NEXT) Z

I Process the record

WRITE(11,REC=NEXT) Z

ENDDO

All of the PEs execute all of the statements. The input file is opened for random
access (DIRECT) and sets the record length to 40,960 bytes. Setting the ACTION
argument to READ(rather than READWRITEfor instance) allows the I/O
libraries to optimize the read operation.

A separate OPENstatement opens the output unit, which is also random access.
Each PE writes its own record from Z each time through the loop.
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5.1.2 Using Multiple Files
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Before the program that includes this code is run, execute the assign
command twice, as follows:

% assign -F cachea: 10 u:9 f:datadir/input
% assign -F cachea: 10 -mon u: 11 f: datadir/ out put

The assign command sets up a cache of 10 blocks, each containing 512 words.
In the program, that size is matched in bytes by the RECLargument to the
OPENSstatements. Matching the record length with the cache size is crucial
when writing in random access mode to avoid overwriting data. The -m on
argument to the assign command prevents the PEs from truncating the end of
the file, each in a different place, as they complete their output.

Caution: For a sequential, unformatted file, the I/O library normally adds a
blocked file structure that contains control information to delimit records.
This adds extra time to a program. However, if you want to do positioning
in the file (such as backspacing), you must use the control information.
Neither of the preceding assign statements specify control information.

and Multiple PEs

Reading from and writing to multiple files may be the easiest and fastest I/O
strategy, given a number of PEs less than or equal to the number of data
streams on your CRAY T3E system. The I/O library routines, the I/O hardware
paths between local memory and disk, and the disk devices themselves can all
operate in parallel.

Use conditional OPENstatements, as in the following example, to read from and
write to four files in a 4-PE program. You may be able to optimize this example
further by performing I/O to different file systems located on different
GigaRings. See your system administrator for information on how file systems
are partitioned across GigaRings.

IF(MY_PE() .EQ. 0) THEN
OPEN(9,ACTION=READWRITE,FILE=File0’)
IF(MY_PE() .EQ. 1)
OPEN(9,ACTION=READWRITE,FILE="File1’)
IF(MY_PE() .EQ. 2)
OPEN(9,ACTION=READWRITE,FILE="File2’)
IF(MY_PE() .EQ. 3)
OPEN(9,ACTION=READWRITE,FILE="File3')

READ(9,¥) ARRAY
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I Perform calculations
WRITE(9,*) ARRAY
In this example, each PE opens its own file for reading and writing. The READ

and WRITEstatements are executed by all PEs. For an illustration of this
process, see Figure 27.

PEO PE 1 PE 2 PE 3
s ) s )
| | | |
| | | |
| | | |
| | | |
| | | |
| l Y Y
FileO Filel File2 File3
Read d——-—
Write ——p»

all301

Figure 27. Multiple PEs and multiple files

5.1.3 Using a Single PE

When a single PE performs the I/O, you will usually have to share the data
with other PEs. For an illustration, see the following figure.
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PE 1
PE O PE 2
* PE 3
|
|
|
|
|
|
|
v . <—— - Read
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Data file

An array put routine

An array get routine
all302

Figure 28. I/0O to and from a single PE

You can share the data using one of the following methods:

You can a message-passing system to pass on the data. PVM, MPI, and
SHMEM all have broadcast routines that pass data to other PEs. If every PE
needs all the data, the SHMEM_BROADCAS) routine is the fastest of the
three, but it is not portable to other vendors’ systems. For examples of
SHMEM_BROADCAS®e Section 3.6, page 66. For information on
PVMFBCAS(B), see Section 2.9, page 33.

If each PE only needs part of the data, use array-handling get and put
routines. SHMEM_IXPU®B) and SHMEM_IXGE(B) are the fastest. For
information on using SHMEM_IXPUTand SHMEM_IXGETsee Section 3.5,
page 62. If portability is a concern, both PVM and MPI have put and get
routines that can pass arrays, but they are slower.

Because formatted I/O requires data conversion, it will add overhead to your
program. Avoid formatted I/O whenever practical.
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For example, if you are moving data between machines, you can send the
binary (unformatted) version instead of ASCIIL. You can best convert the data as
follows:

¢ Use the assign (1) command before running your program to convert to
other formats automatically. The following command converts to CRAY T3E
format:

% assign -N t3e f:nyfilel

¢ Remove FORMABtatements from your program and modify your OPEN
statement as follows:

OPEN (9, FORM='UNFORMATTED)

By default, the system always accesses the next record automatically during a
read or a write. That means sequential I/O will be fast. When you are also
manipulating unformatted data, you have the potential for very fast data
transfers. The following section describes how to get the most out of a good
combination.

5.2.1 Sequential, Unformatted Requests

004-2518-002

This section describes how best to optimize I/O when you are reading or
writing sequential, unformatted data.

A permanent file exists on an external device, such as a disk. Instead of reading
from the disk every time, you can save time by moving your file into memory
and reading from there. The file in memory is temporary, since you will
probably write it out at some point in the program.

Reading from or writing to a disk involves accessing system calls, which move
the data between disk and system buffers. Once data has been read into the
system buffer, the I/O library moves it from there to its own set of buffers or
into cache, both of which are in the memory of another PE on a CRAY T3E
system.

If the whole file does not fit in memory, you can read in parts of it at a time,
possibly getting work done on the current data while waiting for the next
chunk to be read. The following figure illustrates the data flow for an array
named A in PE 4.
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PE 3 PE 4 PE5
[ X N ] [ X N ]
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Library Library
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Library 4‘ ‘4
layer | |
\ A \ A
System System
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System \ \
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Write -w———
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Figure 29. Data paths between disk and an array

To move the data between disk and the system buffers, use the following
optimizations:

Choose system call I/O. System call I/O is specified on an assign
command either explicitly, by selecting the system or syscall ~ FFIO layer,
or implicitly; if it is not specified, it is added automatically. (For more
information on FFIO, see Section 5.4, page 128.) The following example
selects syscall  for unit 9:

% assign -F syscall u: 9

Make I/0 requests that begin and end on disk sector boundaries. Most disk
sectors are the same as a block size, 512 words (or 4,096 bytes). Check with
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your system administrator to make sure of the size of a disk sector on your
CRAY T3E system.

The following command preallocates an area that is 80 512-word blocks in
size:

% assign -n 80

Optimizations such as double buffering (or even triple and quadruple
buffering) and disk striping are performed by the operating system. User
striping can still gain you performance improvements, but it is more labor
intensive than other optimizations described in this chapter. (For an example of
user striping, see Section 5.6, page 134.)

By adjusting the arguments to the cachea and bufa layers of FFIO, you can
have double buffering done automatically. The following assign command
creates two buffers, each 50 blocks in size:

& assign -F bufa:50: 2

To optimize the process of moving data between the system buffers and an
array in your program, use the following techniques:

e Take advantage of asynchronous I/0O if you can accomplish other work
while the I/0 is taking place. If sequential, unformatted I/O requests take
most of your program’s time, you can probably improve performance by
combining computation with the inherent asynchronous capability of 1/O.
First, select an asynchronous FFIO layer by running assign commands
such as the following before executing your program:

% assign -F cachea:80:7 f:indata
% assign -F bufa:100: 12 f:indata

The preceding examples take advantage of library caching and buffering,
respectively. The bufa and cachea layers have read-ahead (glossary, page
148) and write-behind (glossary, page 152) capabilities that can improve
performance significantly.

o If the file is small enough to fit entirely into the memory of a PE, or if a
certain part of the file is heavily accessed, use the memory-resident layer in
FFIO. The memory-resident layer involves less overhead than, for example,
the cachea layer. For more information, see Section 5.4.1, page 128.
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5.3 Formatted

If using formatted I/O cannot be avoided, you can use some of the
optimization techniques described in the following sections to speed it up.

5.3.1 Reduce Formatted 1/O

You can create incremental speedups to your program by reducing the amount
of the formatted I/O as follows:

e If you are not going to use all of the output, print only a sample.

e Do not format intermediate results.

5.3.2 Make Large 1/0O Requests
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Rather than reading an array an element at a time, read multiple data items in a
single statement. This will reduce overhead and speed up your program.

For example, the following code makes many small I/O requests by reading an
array within a loop, element-by-element:

REAL A(1,J,K)

DOK =1, N
DOJ =1, M
DOl =1, L
READ* A(1,J.K)
ENDDO
ENDDO
ENDDO

Instead, read the entire array with a single statement. Doing so will replace
many library I/O requests with a single request, meaning fewer calls to the I/O
library and ultimately fewer calls to the system. The following example reads
the entire array in array-element order. For an illustration of the order in which
array elements are stored, see Figure 21, page 87.

REAL A(1,J,K)
READ* A
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5.3.3 Minimize Data ltems

5.3.4 Use Longer Records

5.3.5 Format Manually
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The compiler reduces data items automatically when it detects an I/O
statement with an excessive number. You, however, could speed up the
compilation by minimizing data items. Without optimization, the following
example could make up to 22 calls to the WRITE statement: up to 20 for the X
array and one each for the Z array and M

DIMENSION X(20),  Y(10), Z(5,30)
WRITE (6,101) M, (X(I), 1=1,20),  Z(M,J)
The following example calls WRITEjust three times:
WRITE (6,101) M, X, Z(M,J)

Because reading and writing a record requires some processing, handling a few
large records is more efficient than many smaller records. The following
example writes one record at a time:

WRITE (42, 100) X
100 FORMAT(E25.15)

The following example processes five records per write, meaning it will handle
80% fewer records than the previous example:

WRITE (42, 101) X
101 FORMAT(5E25.15)

You can save some overhead by reducing the number of edit descriptors. For
instance, if you are writing integers that fit into four digits (between 9999 and
9999), either of the following statements work, but the second is more efficient:

200 FORMAT(16(X,14))
201 FORMAT(1614)

The following lines of output generated from the two formats are identical.
(Some data items are removed from the following because of line width
restrictions):

9911 9912 9913 9914 9915 9916 9917 9918 9919 9920 9921 9922 ..
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9911 9912 9913 9914 9915 9916 9917 9918 9919 9920 9921 9922 ..

5.3.6 Change Edit Descriptor s for Character Data

5.4 FFIO

Use edit descriptors that specify the same width as the character variable when
transferring character data. For CHARACTERf data, use the A or An edit
descriptor. The following example assumes that MYNAMEs 12 characters long:

READ (*, '(A12))  MYNAME

The bufa and cachea layers of flexible file I/O (FFIO) do asynchronous
buffering and caching internally. Those two, along with global , which
distributes a data file across multiple PEs, and mr, which stores part or all of a
data file in the memory of a single PE, are the high performance FFIO layers.
The following sections describe how to improve the performance of your
program by using them.

5.4.1 Memory-resident Data Files
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You can keep part or all of a data file in the local memory of the PE performing
the I/O by using the memory-resident layer of FFIO. This technique can speed
up data access dramatically for a small, frequently accessed file or for a large
file with most of the I/O activity occurring at the beginning of the file.

Memory is a more precious commodity on a CRAY T3E PE than on a Cray PVP
system. Creating a memory-resident file that is too large could take up memory
space necessary to your application. To determine how much space you have
for data, you first must know how much memory is available on each PE. A
CRAY T3E system comes with between 64 Mbytes and 2 Gbytes of local
memory per PE. If you do not know how much your system has, you can find
out by entering the grmview -l command. The following example shows the
first part of the output, with several columns that are irrelevant to this subject
removed:
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PE Map: 20 PEs configured
Ap. Size  Number Aps.

Type PE min max running limit X y z Clock UsrMem FreMem
+ APP 0 2 10 0 1 0O 0O 0 300 119 119
+ APP 1 2 10 0 1 1 0 0 300 119 119
+ APP 2 2 10 1 1 0 1 0 300 119 116
+ APP 3 2 10 1 1 1 1 0 300 119 116
+ APP 4 2 10 1 1 0 2 0 300 119 116
+ APP 5 2 10 1 1 1 2 0 300 119 116
+ APP 6 2 10 1 1 0 3 0 300 119 117
+ APP 7 2 10 1 1 1 3 0 300 119 116
+ APP 8 2 10 0 1 1 0 1 300 119 119
+ APP 9 2 10 0 1 0 1 1 300 119 119
+ CMD 10 1 1 4 unlim 1 1 1 300 114 52
+ CMD 11 1 1 5 unlim 0 2 1 300 111 78
+ CMD 12 1 1 2 unlim 1 2 1 300 113 57
+ CMD 13 1 1 2 unlim 0 3 1 300 115 57
+ CMD 14 1 1 2 unlim 1 3 1 300 113 52
+ CMD 15 1 1 3 unlim 0O 0O 2 300 115 55
+ CMD 16 1 1 2 unlim 1 0 2 300 106 50
+ CMD 17 1 1 1 unlim 0 1 2 300 107 45
+ OS 18 0 0 0 0 1 1 2 300 95 67
+ 0S 19 0 0 0 0 0O 0 1 300 75 0

The application PEs (APPunder the Type column) are the ones to look at. The
UsrMem column shows 119 Mbytes available to a user program, meaning each
PE probably has 128 Mbytes of local memory. If the combined size of your data
and your executable file do not approach 119 Mbytes, you may be able to move
the entire data file into the memory of a single PE. To enable the
memory-resident layer of FFIO, enter an assign command such as the
following before executing your program. This example allocates 10 512-word
blocks (about .4 Mbytes) of memory for the data coming from the file myfile

% assign -F mr:10 f:nyfile
The data is automatically read into the memory-resident area when the file
myfile is opened and written back out when myfile is closed. If the data

area proves to be too small, the data file is split automatically between local
memory and disk.
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5.4.2 Distrib uted 1/O
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The distributed FFIO layer distributes input data across the PEs involved in a
job. One PE makes an I/O request that reads the data and automatically
divides it among the local memories of the PEs involved in the job.

When executing your program, a read retrieves the data from the right PE,
using the SHMEM_GHE3) routine.You do not need to know where the data is
stored or how it is retrieved. The performance is not as fast as using
memory-resident (mr) data, but it is approximately equivalent to using bufa . A
sample assign command looks as follows:

% assign -F global:5:1 f:filea

This example allocates 50 blocks for each page, with each block capable of
containing 512 64-bit words of data. For a 10-PE program, it allocates 1 page for
each PE, meaning there are 50 blocks on each of the 10 PEs, for a total of 500
blocks. The distribution for an array of 500 blocks would place the first 50 on
the first PE to access a file page, the second 50 on the next PE to access a file
page, and so on. The following figure represents the layout of the words of data
on each PE. It does not reflect the random order in which the PEs access the file.
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Figure 30. Data layout for distributed 1/0
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If you use distributed I/O during an operation in which all of the PEs were
involved, each PE would hold data for every other PE. Although this might

seem like a confusing arrangement, it is a good use of memory for most

applications.

The advantages of using distributed I/O are as follows:

* You get more buffer space without severely impacting the memory of any

single PE.
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* The data becomes essentially a globally accessible file. You do not have to
know on which PE any particular data element is stored.

The following are disadvantages:
* You are using memory that might be needed by a PE.

e DPEs might need a large amount of data residing in the memory of other PEs,
creating many remote transfers.

The following example uses distributed I/O. Each processor simultaneously
writes out to a different record of a direct access file spread across all of the
PEs. The file is closed and PE 0 reads it to ensure that is was written correctly.

Example 39: Distrib uted I/O

PROGRAMSLOBAL
Compile like this:
fo0 -VVv -0 global global.f
Run on any number of PEs >1
This is private data different on each PE
REAL GLOBOUT(512),GLOBIN(512)
Clean up the assign environment
CALL assign("assign -R")
C Define unit 20 as a global /O file with each PE having its
C own private  position in the file.
CALL assign("assign -F global.privpos:1:1 u:20")
C OPENs and CLOSEs are "collective " they must be done by all PEs
OPEN (20,FILE= "GLOBDAT",ACCESS="DIRECT",RECL=4096)
CALL BARRIER()
C Put unique data in the array on each PE
GLOBOUT=REAL(MYE())
IREC=MY_PE()+1

C
C
C
C

@]

PRINT *"PE#' .MY_PE()," WRITING TO RECORD',IREC

C Each PE will write out to a different record simultaneously
WRITE(20,REC=IREC) GLOBOUT
CLOSE(20)

CALL BARRIER()
C Verify that this worked by having PE O read all the data back.
IF (MY_PE().EQ.0) THEN
PRINT *"READING THE GLOBALFILE ON PE#0"
OPEN (30,FILE= "GLOBDAT",ACCESS="DIRECT",RECL=4096)
DO I=0,N$PES-1
IREC=I+1
READ(30,REC=IREC) GLOBIN
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PRINT *"RECORD ",IREC,"= " INT(GLOBIN(1))
ENDDO
CLOSE(30)
ENDIF
CALL BARRIER()
STOP
END

5.4.3 Using the Cache Layer

Using the cache layer is especially productive on random access files when
many requests are made for data that has already been read into cache, though
it is also effective on sequential data.

Be sure to choose the asynchronous FFIO cache layer (cachea ) for your I/0.
The following command, executed before you run your program, will set up a
cache in the local memory of all PEs involved in the job:

% assign -F cachea: 100:40: 2 f:indata

This example sets up a cache of 40 pages, each page of which is 100 blocks of
512 64-bit words (51,200 words). If the I/O libraries detect sequential access,
they perform either asynchronous read-ahead or asynchronous write-behind.
The third parameter to cachea , which is 2 in the example, tells the libraries
how many pages you want to be read ahead. Setting the third parameter is
important to the performance for a program using sequential I1/0O, since the
default is no read ahead.

Using cache is similar to using library buffers (see the following section); both
have an asynchronous capability and both are stored in the memory of PEs.
There are differences between the two, however.

Cache contains an indexing system for the data in an active cache. You can
choose any indexed data in cache and quickly move it into a register.

A buffer does not have an indexing scheme; it knows only the file position at
the top of the buffer. A buffer is designed for sequential access. If you
reposition within a buffer, the current buffer is flushed and a new set of data is
read from disk.

5.4.4 Using Library Buffers
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When you are dealing with sequential access data, create large buffers. Set the
buffer size to the size of the entire data file if possible, or to a fraction of the

133



CRAY T3E™ Fortran Optimization Guide

5.5 Random Access

5.6 Striping
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data size that keeps transfers to a minimum. Use the assign (1) statement as
follows:

% assign -F bufa:40:1 f:filel

This allocates one buffer of 40 512-word blocks, or about 164 Kbytes. The
buffers are allocated during program execution. Each PE opening a file receives
a buffer.

Random access (also called direct access) does not read or write files in
sequential order. Because there is no pattern, the I/O libraries cannot optimize
random I/O in the same way as sequential I/O. But there are some things you
can do to speed up random access:

e Use binary files that bypass the system cache by entering the assign -l
none command before executing your program. Because random access
usually involves small reads and writes, going through system cache creates
extra overhead. Also, name the array in a CACHE_ALIGNdirective to align
the array in secondary cache and further speed up processing. If you do
have large reads or writes, system cache may benefit your program.

* Do not use formatted or blocked file formats. Converting or unblocking data
takes extra time.

e If your data file fits in local memory, consider using the memory-resident
layer of FFIO. For more information, see Section 5.4.1, page 128.

e [fit is practical, rearrange your data so that you can process it sequentially.

Striping a file over disk partitions adds a level of parallel processing to the
slowest part of I/O: the physical reading data from and writing data to disk.
You can specify automatic striping by entering an assign (1) statement such as
the following before executing your program:

% assign -p 0-3 -n 8400 -q 21 -s u f:nydata
This command stripes over four partitions (0, 1, 2, and 3), putting 21 sectors on
each partition.
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You can also call the assign (3F) routine to stripe a disk file from within a
program. The following program writes out a 64-Mbyte array to /usr/tmp
striping it one more level with each write up to the maximum number of
partitions on the disk. It starts with the partition with the most free space and
works towards the partition with the least space. It times each write and prints
out the best rate at the end of the program. The program is long, but it should
be general enough to run on any CRAY T3E system on which the /usr/tmp
directory is striped.

Example 40: Disk striping from within a program

PROGRAMTRIPEX
C
IMPLICIT NONE
C Compile with "fo90 -O stripex -VVv stripex.f’, AND RUN ON ANY
C Number of PEs
INTEGER NBLOCK,|,IPART,IERR,ILEN,ISHELL,NPART,PART1,MY  _PE
INTEGER IPARTMIN,LENDAT
C Secondary partitions sorted by free space
INTEGER IFREE(100)
C Size of the array to write out
PARAMETER(NBLOCK=16*1024)
PARAMETER(LENDAT=NBLOCK*512)
REAL A(LENDAT),T1,T2,DUR,SECONDR,RATE,DURMIN,RATEMAX

C This will be the string that does shell commands
CHARACTER*80SHELARG

C This will be the string that does the various assigns
CHARACTER*360ASGARG

C These strings  will hold file  names.
CHARACTER*50STRIPEFILE

C This will be the string that removes the stripe file
CHARACTER*80RMSTRIPE

C This will  hold your user name
CHARACTER*16 MYNAME

C This will  hold the partition portion  of the assign argment

CHARACTER*3PARTARG(100)
C Do your work on 1 PE. You might want to run it as a 2 PE
C application, so that you don't get interrupted. All  the
C PEs except for O spend all their time at a barrier.

IF (MY_PE().EQ.0) THEN
C Find the wuser name associated with  this  process

CALL PXFGETLOGIN(MYNAME|LEN, IERR)

IF (IERR.NE.O) THEN
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PRINT *"PXFGETLOGIN ERROR="IERR," EXITING"
GOTO999
ENDIF

C Get reasonably unique names for the striped data file

500

WRITE(STRIPEFILE,500) MYNAME
FORMAT("/USR/TMP/STRIPE. ",A16)

C Clean up any old files lying  around.

520

C Fill

540

WRITE(RMSTRIPE,520) STRIPEFILE
FORMAT("RM-F " ,A50)
PRINT *,RMSTRIPE
IERR=ISHELL(RMSTRIPE)
IF (IERR.NE.O) THEN
PRINT *"ERROR DELETING OLD STRIPED FILE=",IERR
GOT0999
ENDIF
up array with consecutive REAL (integers)
DO I=1,LENDAT
A(l)=REAL(I)
ENDDO
WRITE(SHELARG,540) STRIPEFILE
FORMAT{WRITING OUT DATA TO ",A50)
PRINT * SHELARG
CALL DFREAD(MYNAME,NPART,PARTL,IFREE,IERR)
IF (IERR.NE.O) THEN
GOT0999
ENDIF
IF (NPART.EQ.0) THEN
PRINT *"/USR/TMP IS NOT STRIPED ON THIS SYSTEM
GOTO0999
ENDIF

C STRIPE THE FILE ON ALL THE SECONDARYARTITIONS

DO I=PART1,PART1+NPART-1
IPART=I-PART1+1

C Wewill use assign/FFIO to do the striping. Call assign
C from the program so that you can change the environment.
C Clean up the old assign.

CALL assign("assign -R")
C This routine  will format the partition argument for the
C assign command.

CALL PARTFMT(PARTARG,IPART,IFREE)
C Create the FORMATstatement that creates the assign
C ARGUMENT

WRITE(SHELARG,501) IPART
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501 FORMAT(("assign  -p ", 'I2A3;,
1 ™ -N "I, " -Q 128 -F BUFA:128:",12.2," u:20"))
WRITE(ASGARG,SHELARG)PARTARG(1:IPART),NBLOCK,IPART
PRINT * ASGARG
CALL assign(asgarg)
OPEN (20,FILE=STRIPEFILE,
1 FORM2UNFORMATTED")
C Time the striped file  write. I've included a close in the timing
C to make sure that the file was actually written out to disk.
T1=SECONDR()
WRITE (20) A
CLOSE(20)
T2=SECONDR()
DUR=T2-T1
RATE=(8*(NBLOCK*512))/(DUR*(10**6))
PRINT 555,IPART,DUR,RATE

555 FORMAT("WRITING FILE TO "2, " PARTITIONS TOOK"F6.3,

1 " SECONDSRATE="F7.3, " MBYTES/SEC")
C This command will  actually show you how the file is laid out if
C you uncomment it. It produces a lot of output to the screen!
C CALL ISHELL("/ETC/FCK -B /USR/TMP/STRIPE.OUT")

C Record the maximum I/O rate
IF(IPART.EQ.1) THEN
DURMIN=DUR
RATEMAX=RATE
IPARTMIN=IPART
ELSE
IF (RATE.GT.RATEMAX) THEN
DURMIN=DUR
RATEMAX=RATE
IPARTMIN=IPART
ENDIF
ENDIF
IERR=ISHELL(RMSTRIPE)
IF (IERR.NE.O) THEN
PRINT *"ERROR DELETING STRIPED FILE=",IERR
ENDIF
END DO
PRINT 565,RATEMAX,IPARTMIN
565 FORMAT("*** MAXIMUMRATE WAS"F7.3," MBYTES/SEC",
1 "ACHIEVED ON",I2" PARTITIONS")
999 CONTINUE
ENDIF
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CALL BARRIER()
STOP
END

SUBROUTINEDFREAD(MYNAME,NPART,PARTL,IFREE,IRET)
C This routine  finds out how many secondary partitions there are in
C /usr/itmp on this system and sorts them by the amount of free space
IMPLICIT NONE
INTEGER IERR,IRET,NPART,ISHELL,PARTL,l,ITEMP,FTEMP,J

C IFREE will contain the partition numbers ordered by amount of
C free space, with the partition with the greatest free space
C first

INTEGER IFREE(100)
REAL FREE(100)
C This will be the string that removes the DF file
CHARACTER*80RMDF
CHARACTER*80SHELARG
CHARACTER*80DFREC
CHARACTER*50DFFILE
CHARACTER*16 MYNAME
CHARACTER*1SECOND
IRET=0
NPART=0
PART1=0
C Get reasonably unique names for the striped data and DF files
WRITE(DFFILE,510) MYNAME
510 FORMAT("/USR/TMP/DFLOG.",A16)
WRITE(RMDF,530) DFFILE
530 FORMAT(RM -F " /A50)
PRINT *,RMDF
IERR=ISHELL(RMDF)
IF (IERR.NE.O) THEN
PRINT *"ERROR DELETING OLD DF FILE="IERR
IRET=IERR
GOTO0999
ENDIF
WRITE(SHELARG,550) DFFILE
550 FORMAT("DF -P /USR/TMP > " A50)
PRINT * SHELARG
IERR=ISHELL(SHELARG)
IF (IERR.NE.O) THEN
PRINT * "ERROR CREATING DF LOG="IERR, " EXITING"
IRET=IERR
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100

600

610

620

900

999

GOTO0999
ENDIF
OPEN(30,FILE=DFFILE)
CONTINUE
READ(30,600,END=999,ERR=900) DFREC
FORMAT(A80)
READ(DFREC,610) SECOND
FORMAT(12X,A1)
IF (SECOND.EQ."S") THEN
NPART=NPART+1
READ(DFREC,620) IFREE(NPART),FREE(NPART)
FORMAT(10X,12,32X,F5.1)
PRINT*"PART# "IFREE(NPART),"  FREE=",FREE(NPART)
IF(PART1.EQ.0) THEN
PART1=IFREE(NPART)
ELSE
DO I=1,NPART-1
IF(FREE(NPART).GT.FREE(l)) ~ THEN
FTEMP=FREE(I)
ITEMP=IFREE(l)
FREE()=FREE(NPART)
IFREE(I)=IFREE(NPART)
DO J=NPART,1+2,-1
FREE(J)=FREE(J-1)
IFREE(J)=IFREE(J-1)
ENDDO
FREE(1+1)=FTEMP
IFREE(1+1)=ITEMP
ENDIF
ENDDO
ENDIF
ENDIF
GOTO100
CONTINUE
PRINT *"ERROR READING ",DFFILE
IRET=-1
CONTINUE
PRINT *NPART," TOTAL SECONDARYARTITIONS"
DO I=1,NPART
PRINT*"ORDERED PART#,IFREE(I)," FREE=",FREE(l)
ENDDO
IERR=ISHELL(RMDF)
IF (IERR.NE.O) THEN
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PRINT *"ERROR DELETING DF FILE=",IERR
ENDIF
RETURN
END

SUBROUTINEPARTFMT(PARTARG,IPART,IFREE)
C This routine  will write a string  containing the IPART secondary
C partitions with the most space suitable for an assign command.
IMPLICIT NONE
CHARACTER*3PARTARG(IPART)
INTEGER IPART,|
INTEGER IFREE(IPART)
DO I=1,IPART-1
WRITE(PARTARG(I),500) IFREE(I)
500 FORMAT(12.2,":")
ENDDO
WRITE(PARTARG(IPART),510) IFREE(IPART)
510 FORMAT(12.2," ")
RETURN
END
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active set

In SHMEM, a set of PEs defined to participate in a collective
operation, such as sending a value from one PE to multiple PEs.
See also group for the PVM equivalent, page 145, and
communicator for the MPI equivalent, page 143.

application team

A group of one or more processes, running on one or more PEs,
that have capabilities that are extensions to standard UNIX.
Members of a team can work on the same or different parts of a
program in parallel.

asynchronous receive

A receive operation that proceeds in parallel with other
operations on the receiving PE. The send process must check
later to find out if the receive has completed.

atomic operation

atomic swap

bandwidth

barrier

An operation that cannot be interrupted.

An atomic read-and-update operation on a remote or local data
object. The value read is guaranteed to be the value of the data
object at the time of the update.

The amount of data that can be moved from one place to
another in a given period of time; it is usually expressed in
megabytes per second.

A location in a program at which all PEs (or tasks) must stop
until the final PE arrives. A barrier synchronizes the PEs and
prevents situations such as having one PE reading a memory
location that does not have the correct data yet.
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blocking receive

A message receiving operation that waits until a message has
arrived. Only after the message is received will the next
instruction be executed.

bottom loading

A single-PE optimization technique used on some scalar loops
in which operands are prefetched during each loop iteration for
use in the next iteration. The operand is available as soon as
the first loop instruction executes. A prefetch is performed even
during the final loop iteration, before the loop’s final jump test
has been performed.

broadcast operation

Sending data from a single PE to all other PEs.
buffer

A block of memory used to store data temporarily before
transferring it somewhere else.

cache-aligned data

Data stored at the beginning of a cache line. The CF90 IDIR$
CACHE_ALIGNdirective aligns data in cache.

cache coherence

All processors see the same value for any memory location,
regardless of which cache the actual data is in, or which
processor most recently changed the data. On the CRAY T3E
system, only local memory references can be cached (all remote
memory references use external E registers). Hardware on each
CRAY T3E processor maintains cache coherence with the local
memory, including when data is modified by a remote
processor.

cache hit

A memory reference to a data object already in primary or
secondary cache. Such references are closer and faster than
references to data objects in local memory.
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clock period

The time it takes an instruction to complete (sometimes called
the cycle time) on the EV5 microprocessor. This is the smallest
measurable unit of time used by the computer hardware. The
length of a clock period varies from machine to machine. On
the CRAY T3E system, the clock period is 3.3 nanoseconds (or
3.3 billionths of a second), and on a CRAY T3E-900 system, the
clock period is 2.2 nanoseconds.

collective routine

commit

communicator

data cache

dependency

derived type

A SHMEM routine that must be called by all PEs
simultaneously. Such a routine requires the cooperation of all
participating PEs. See also individual routine, page 146.

In MPI, saving the formal description of a newly defined data
type so that it can be used again.

In MPI, a group of processes that can send messages to each
other. See also group, page 145, for the PVM equivalent and
active set, page 141, for the SHMEM equivalent.

In each PE, a high-speed, random-access memory that
temporarily stores frequently or recently accessed data. For an
illustration showing where data cache fits in, see Figure 4, page
8. See also secondary cache, page 149.

When data from one section of code relies on a value from an
earlier section of code.

In Fortran, a user-defined type, not an intrinsic type. It requires
a type definition to name the type and specify its components.
The components may be of intrinsic or user-defined types.
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direct-mapped cache

Method of relating areas of local memory to areas of data cache.
Each line in memory is mapped to a bucket, which is a specific
area in data cache. If a line in local memory is read, the data is
moved into its bucket in data cache. Each bucket holds just one
line. See also set-associative cache, page 149.

disk mirroring

A logical disk device composed of two or more physical disk
slices. Mirroring is used to provide data redundancy when data
integrity is important. It is implemented by using two to eight
slices, usually on as many different physical disks, each of the
same size. A write operation to a mirrored device causes
separate write operations to be performed on each of the
components. A read operation can be performed on any of the
component devices.

disk striping
Splitting a disk file across two or more disk drives to enhance

I/0 performance. The performance gain is a function of the
number of drives and channels used.

envelope

In MPI, message information used to identify and selectively
receive messages. The four parts of the envelope are as follows:

e The rank of the receiver
e The rank of the sender
* A message tag

e A communicator

eureka
Hardware search mechanism. A eureka is like a barrier. When
all of the PEs are searching for something, the one that finds it

posts an eureka that is visible to all of the other PEs. The
posting of the eureka stops the search.
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fan-out

flushing cache

An optimized method of passing messages when a single PE is
sending a message to multiple PEs. Rather than the sending PE
sending the message to every PE, it sends the message to a
subset of the PEs. Then the PEs that received the message in
turn send it to a subset of the remaining PEs, and so on. See
Figure 9, page 33, for an illustration of the process.

Clearing cache of its contents and storing the data of a
write-back cache, such as data cache. On CRAY T3E systems,
cache is automatically flushed.

gather operation

GigaRing

group

GSEG

Collecting arrays from multiple remote PEs into a single array
on the local PE. Also, collecting scattered elements of one array
on one PE to consecutive elements on another PE. See also
scatter operation, page 149.

The networking protocol that connects the CRAY T3E system to
other resources (such as I/O devices and other computer
systems). For an example of a GigaRing, see Figure 8, page 16.

In PVM, a defined set of tasks (or PEs) that participate in the
same synchronization and communication processes. A group
can either be all the tasks defined for a job or a user-defined
subset of all the tasks. The predefined variable PVMALL
represents all of the tasks. See also active set for the SHMEM
equivalent, page 141, and communicator for the MPI equivalent,
page 143.

A global segment is used by the operating system to map a
remote virtual address to a remote physical address.
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individual routine

A SHMEM routine that must be called by a single PE,
regardless of how many PEs are involved in the same
operation. See also collective routine, page 143.

instance number

In PVM, if you specify the global group, the instance number is
the same as the PE number. If you specify a group other than
the global group, you can find the instance number from the
PVMFGETINST3) routine or the return value from the
PVMFJOINGROUB) routine.

latency of memory

line

local memory

loop invariant

The startup time. The period of time between when a PE
requests data and when it can use the data.

A division of cache memory. Every location in local memory is
mapped to an area of both data cache and secondary cache.
This area in data cache contains one line, which is 4 64-bit
words long. Each area in secondary cache contains three lines,
each of which are 8 words long.

The memory available to a microprocessor on its own PE.
Although any PE can access the memory of any other PE, the
most efficient method is always a PE accessing its own memory.
In some publications, memory is also called DRAM (for direct
random access memory).

A value that does not change between iterations of a loop. In
the following loop, 2.0 , VAL, C(J) , and J are loop invariant:

DOl = 1N
Al) =B() * 20 + VAL * C(J)
ENDDO
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message-passing system

A software system that transfers explicit messages between PEs.
The messages often contain data, such as array elements.

MFLOPS (or megaflops)

A timing measurement indicating how many millions of
floating-point operations execute each second. A loop, for
instance, that runs at 24 MFLOPS executes 24 million
floating-point operations each second.

MPI, or Message Passing Interface

A message passing library that conforms to the Message
Passing Interface Standard. It offers portability to other Cray
Research computer systems and to computer systems
developed by other vendors.

multicast operation

In PVM, the multicast operation sends a message to each PE
that has its task identifier number in an array.

multithreaded program

NaN

nanosecond

A program that is executed by multiple threads in parallel.

A value that is not a number but rather a symbolic entity
encoded in floating-point format.

A measurement of time equal to one billionth of a second. A
clock period on a CRAY T3E system running at 300 megahertz
is equal to 3.3 nanoseconds.

nonblocking receive

overhead

A message receiving operation that will receive a message if
one is present but will return immediately if one is not present.

In the context of this publication, time spent doing something
other than the actual work of a program. For instance, the time

147



CRAY T3E™ Fortran Optimization Guide

148

overindexing

pad array

required to move data, as opposed to the time spent processing
data, is viewed as overhead.

When a program attempts to access an array element that is
outside the declared bounds of that array.

An unused array that aligns arrays containing data in cache in
an optimal way.

PEs, or processing elements

process

protocol

The microprocessors that execute code on the CRAY T3E system.
The CRAY T3E system can have up to 2,048 PEs configured.

In MPI, an independent, parallel code that runs on a PE. It is
equivalent to a PVM task. See also task, page 151.

A standardized set of rules for transmitting data that allows
communication between various entities.

PVM, or Parallel Virtual Machine

rank

read ahead

A message-passing library used when programming Cray MPP
systems, Cray PVP systems, or certain other vendors’ products.
The principle virtues of PVM are portability and flexibility.

In MPI, the number identifying a process. This is equivalent to
a PE number.

Reading data from local memory before it is needed. First, a
block of memory is read from local memory and sent to the
microprocessor. Then, the following block in memory is read,
anticipating that it will be needed next. See also, write behind,
page 152.
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recurrence

reduction

A computation in a loop in which the values produced in the
current iteration depend on values produced in previous
iterations. A typical example is:

DO I=1,N
X()=X(-1)  + A()
END DO

A loop or operation that reduces an array to a scalar value by
doing a cumulative operation on many of the array elements.
For example, a summation is a reduction that adds all the
elements of an array together to yield one number.

scatter operation

Distributing data from a single array on a single PE to multiple
arrays on multiple PEs. Also, distributing consecutive data
from one PE to nonconsecutive elements on another PE. See
also gather operation, page 145.

secondary cache

A 96-Kbyte data cache, located between local memory and data
cache, that optimizes memory access. See also set-associative
cache, page 149, and data cache, page 143.

set-associative cache

SHMEM

A method of associating locations in local memory with
locations in secondary cache. Each location in local memory is
associated with a 3-line area of secondary cache. When a line is
moved from local memory to secondary cache, it is moved into
one of the three lines. CRAY T3E systems use a three-way
associative cache, meaning each area in secondary cache can
hold three lines at a time. See also direct-mapped cache, page 144.

A library of optimized subroutines that take advantage of
shared memory. The most frequently used routines move data
between the memory of a remote PE and the local PE, but a
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SM pool

number of other facilities are available. The routines can either
be used by themselves or in conjunction with another
programming style, such as PVM. The principle virtue of
SHMEM is its performance.

In PVM, the shared memory (SM) pool lets a receiving PE
continue to compute while receiving data.

software pipelining

stream

stride

stripmining

symmetric

150

A loop scheduling technique in which the execution of
successive loop iterations are overlapped. Overlapping loop
iterations exposes more instruction-level parallelism to the
processor, usually resulting in 100% utilization of one of its
scheduled resources (such as functional units, cache bandwidth
or memory bandwidth).

On CRAY T3E systems, a stream is a series of data items
between memory and the functional units of a PE. Similar to a
pipeline on Cray PVP systems, a stream feeds data to the
functional units in optimal fashion. For more information on
streams, see Section 1.2.1, page 4. For information on how to
make use of streams in your program, see Chapter 4, page 77.

A term derived from the concept of walking through the data,
from one location to the next. For instance, if every other
element of an array were to be transferred, the stride through
the array would be two.

A single-PE optimization technique in which an array is broken
down into chunks of convenient size (on the CRAY T3E system,
the size of the cache) to allow optimal use of computational
hardware.

A data object is said to be symmetric if it has an address
mapping across PEs that allows remote memory access. On
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CRAY T3E systems, a data object is symmetric if it has the same
address on all PEs.

synchronization

task

thrashing

Timing the actions of PEs to avoid problems. For instance, the
BARRIER function might be used to prevent one PE from
accessing a data location before another PE has updated that
location.

In PVM, an independent, parallel process that executes on a PE.
There is a one-to-one relationship between a task and a PE. See
also process, page 148, for the MPI equivalent.

A phenomenon that occurs when you have a fixed quantity of a
reusable resource, the resource is allocated on a
least-recently-used basis, and the cycle length of the reuse is
larger than the quantity of the resource. A common example of
thrashing involves pages in a paging operating system. Assume
that there is only room for two pages in main memory,
allocated on a least-recently-used basis, but a loop is referencing
three arrays, each on a different page. The following code
fragment suggests the situation:

DO I=1,N

= A(l)

= B())

.= C(l)
ENDDO

After the references to A(1) and B(1) , the page for A and the
page for B are in memory. When C(1) is referenced, the
operating system removes A’'s page, because it has room for
only two pages, and A’s page was least recently used. Next
A(2) is referenced, but A’s page is now out of memory, so the
operating system removes B’s page. Likewise, the reference to
B(2) ends up removing C’s page. Because more pages are
referenced than there are room for in memory, because they are
referenced cyclically, and because they are allocated in a
least-recently-used basis, reuse never occurs, and the paging
mechanism gives no benefit.
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thread

tiling

ulp

unrolling

virtual address

word

write behind

152

The activity entity of execution. A sequence of instructions
together with machine context (CPU registers) and a stack.

An optimization technique that combines stripmining and loop
interchange. It operates on inner loops to increase cache reuse.
Tiling is not done automatically by the compiler. See also,
stripmining page 150.

Unit of least precision. It is used to discuss the accuracy of
floating-point data. It represents the minimum step between
representable values near a desired number: the true result to
infinite precision, assuming the argument is exact. For instance,
the ulp of 1.977436582E+22 is 1.0E+13, since the least significant
(leftmost) digit of the mantissa is in the 1013 place. Within 0.5
ulp is the best approximation representable.

A single-PE optimization technique that lets the compiler
exploit parallelism at the functional unit level and take
maximum advantage of data in cache.

A normal user address that starts at 0 or some other consistent
value in every program. The hardware translates a virtual
address to a physical address, which is the true location in a
machine’s memory.

A data item that is 64 bits, or 8 bytes, long on Cray Research
systems.

An I/0 operation in which a block of data is written to disk,
and the next block of data is buffered, anticipating that it will be
written sequentially to disk next. See also read ahead, page 148.
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write buffer

A 6-entry buffer through which a write operation passes on its
way to, first, secondary cache, and eventually to local memory.

write through
When a data item is being written from a microprocessor to

local memory, it makes a brief stopover in data cache. No
memory is allocated in data cache for a write-through operation.
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SHMEM, 2

topics, 1
background information, 1
bandwidth

data and secondary cache, 19

definition, 141
barrier

definition, 141

example, SHMEM, 47

in SHMEM program, 51
barriers

avoiding in PVM, 32
benefits of unrolling, 77
block multiplexer tape drives, 18
blocking receive

definition, 142
blocking receive, PVM, 32
bottom loading

definition, 142
broadcast operation

definition, 142
broadcast vs. multicast, PVM, 33
broadcast, SHMEM, 66
buffer

definition, 142
buffering, double, 125
buffers

setting size for sequential I/O, 133
buffers, send

allocating in PVM, 25
buffers, stream, optimizing, 95
bypassing cache, 113

C

cache
bypassing, 113
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coherence, 5

conflict, reducing, 88

data and secondary, 5

data, pad example, 88

how it works, 9

load and store timings, 19

miss, 9, 11

optimization, 85

reuse, 85

secondary, pad example, 92
cache coherence

definition, 142
cache conflict

illustration, 89
cache hit

definition, 142
cache layer, FFIO

with random access I/0, 133
cache, system

bypassing, 134
cache-aligned data

definition, 142
CACHE_ALIGN directive, 5, 90
CACHE_ALIGN directive, SHMEM, 56
CACHE_BYPASS directive, 113
channels feature not available, 23
clock period

definition, 143
clock, real time, 21
collective routine

definition, 143
commit

definition, 143
common block padding, 88
common blocks

padding for loop splitting, 100
communicator

definition, 143
compile time

increases with loop splitting, 100
CONCURRENT directive, 79
conditional OPEN statements, 120
converting data, 123
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converting data, PVM, 26

D

dangers of loop splitting, 101
data
32-bit in SHMEM, 55
32-bit optimization, PVM, 26
32-bit packing, PVM, 26
broadcast with SHMEM, 66
conversion, 123
dependencies, 87
gather/scatter, PVM, 39
gather/scatter, SHMEM, 62

initializing and packing, PVM, 30

movement, 9
reuse, 26
streams, 8
stride-1, PVM, 28
strided, SHMEM, 58
transfer, SHMEM, 44
data cache, 5
definition, 143
data conversion, PVM, 26
data flow, 7
data items
minimizing, 127
data transfer
comparing PVM and SHMEM, 3
derived type
definition, 143

differences, to PVM on CRAY T3D systems, 23

dimensions, padding, 93
dimensions, rearranging, 101, 102
direct access I/0, 134
direct-mapped cache

definition, 144
directive

pipelining, 79
disk mirroring

definition, 144
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E

disk sector boundaries

for I/0 requests, 124
disk striping

automatic, 134

definition, 144
disk support, 16
distributed I/0, 130
division operations, 106
division outside of loop, 106
division, how to avoid it, 106
division, IEEE, 107
double buffering, 125

DRAM, same as local memory, 7

E registers, 4
edit descriptors

for character data, 128
envelope

definition, 144
ESCON tapes, 18
EtherNet, 18
eureka

definition, 144

fan-out

definition, 145
fan-out distribution, PVM, 33
FDDI network, 18
FFIO

description, 128
Fiber Channel disks, 16
Flexible File I/O

description, 128
flow of data, 7
flushing cache

definition, 145
formatted 1/0
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optimizations, 126

reducing, 126
formatting manually, 127
functional unit

and pipelining, 84
functional units, 8

G

gather data, SHMEM, 62
gather operation

definition, 145
gathering data, PVM, 39
GET_D_STREAM routine, 105
GigaRing

definition, 145
GigaRing network, 15
global 1/0, 130
glossary

description, 1
grmview example, 128
group

definition, 145
grouping statements, 103
GSEG

definition, 145

H

hardware

illustration, 7, 8
hardware overview, 3
HIPPT disks, 17
HIPPI network, 19

1/0, 117
I/0 from a single PE, 121
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I/0 requests
using large, 126
I/0 strategies, 117
IEEE division, 107
IF statement, splitting loop with, 98
individual routine
definition, 146
initializing data, PVM, 30
inner loop trip count, maximizing, 101
instance number, 146
intrinsic routines
vectorized, 111
invariant references, maximizing, 86
IPI-2 disks, 17
IRTC timing tool, 21
IVDEP directive, 112
and pipelining, 80
and vectorization, 110

L

large transfers

how handled by PVM, 24
latencies

data and secondary cache, 19
latency, memory

definition, 146
libfastmvvectorized math routines, 109
line

definition, 146
local memory

checking your system for, 128

definition, 146
local memory optimization, 113
logical PE number, 22
loop

overlapping

examples, 81

loop invariant

definition, 146
loop iterations

overlapping, 78
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loop splitting
can change program, 101
examples, 97
loops
identifying for pipelining, 80
loops, splitting, 96
loops, unrolling, 77

M

memory
checking your system for, 128
performance information, 19
memory overview, 4
memory-resident FFIO layer
with random access 1/0, 134
memory-resident I/O
description, 128
merging arrays, SHMEM, 68
Message Passing Interface
definition, 147
message size

finding and changing with PVM, 24

message size, PVM, 24
message-passing system
definition, 147
PVM, 2
Mflops, or megaflops
definition, 147
microprocessor, description, 15
mirroring, disk, 16

mixing send and receive routines, PVM, 30

MPI

definition, 147
multicast operation

definition, 147
multicast vs. broadcast, PVM, 33
multiple file, multiple PE 1/0O, 120
multiply operation

and splitting loops, 99
MY_PE
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two versions of, 46

N

N$PES

versus NUM_PES and SHMEM_N_PES, 47
NaN

definition, 147
nanosecond

definition, 147
network illustration, 16
network overview, 15
network protocols, 18
NEXTSCALAR directive, 110
nonblocking receive

definition, 147
nonblocking receive, PVM, 31
nonstandard, SHMEM, 43
NOSPLIT directive, 96

o

organization of manual, 1
output stream, 13
overhead
by grouping statements, 103
definition, 147
SHMEM, 44
overindex command-line option, 101
overindexing
dangerous with loop splitting, 101
definition, 148
overlapping loop iterations, 78

P
packing data, PVM, 30
pad array
definition, 148
padding, 88
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done by compiler, 93

illustration, 90
padding for loop splitting, 100
Parallel Virtual Machine (PVM), 23
PE, 15

logical number, 22

physical number, 22
performance

SHMEM, 2
peripherals overview, 15
PEs

definition, 148
physical PE number, 22
pipelined, division is not, 106
pipelining, 78

command-line options, 79

definition, 150

directive, 79

how it works, 81
portability

PVM, 2

SHMEM, 2
portability, SHMEM, 43
powers of 2, 46
prescheduling division, 107
process

definition, 148
processing element (PE), 15
processing elements

definition, 148
programming styles

background, 2
protocol

definition, 148
PVM, 23

background, 2
PVM, or Parallel Virtual Machine

definition, 148
PVM, switching to SHMEM, 48
PVM_DATA_MAX environment variable, 24
PvmDataDefault, 25
PvmDatalnPlace, 25
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PvmDataRaw, 25, 28
PVMFGATHER routine, 39
PVMEFEGETOPT, use of, 24
PVMEFINITSEND routine, 25
PVMFEMCAST routine, 33, 34
PVMENRECYV routine, 31
PVMFPRECYV routine, 28
PVMFPSEND routine, 28
PVMFREDUCE routine, 37
PVMFSCATTER routine, 39

R

random access I/0, 134
rank

definition, 148
read ahead

definition, 148
real-time clock, 21
rearranging array dimensions, 85
receiving stride-1 data, PVM, 28
reciprocal multiplication, 106
reduction

definition, 149
reduction routines, SHMEM, 71
reductions, PVM, 37
remote memory, 4
reorder an array, SHMEM, 62
reusing data, 26

scatter data, SHMEM, 62
scatter operation
definition, 149
scattering data, PVM, 39
SCSI disks, 16
SCSI tape drives, 17
search, eureka, 144
secondary cache, 5
definition, 149
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send buffers

allocating in PVM, 25
sending stride-1 data, PVM, 28
sequential I/0, 123
set-associative cache

definition, 149
SET_D_STREAM routine, 105
shared memory (SHMEM), 43
SHMEM, 43

background, 2

definition, 149
SHMEM_BROADCAST routine, 66
SHMEM_FCOLLECT routine, 68
SHMEM_GET32 routine, 55
SHMEM_GET64 routine, 44
SHMEM_INT4_FADD function, 70
SHMEM_INT4_FINC function, 70
SHMEM_INT4_SUM_TO_ALL routine, 74
SHMEM_IXGET routine, 62
SHMEM_IXPUT and SHMEM_IXGET

for passing arrays, 122
SHMEM_IXPUT routine, 62
SHMEM_MY_PE routine, 47
SHMEM_N_PES routine, 47
SHMEM_PUT32 routine, 55
SHMEM_PUT64 routine, 44
SHMEM_REALS_MIN_TO_ALL routine, 72
SHMEM_REAL_IGET routine, 58
SHMEM_REAL_IPUT routine, 58
SHMEM_SWAP function, 70
shpalloc routine, 47
single file, multiple PE I/O, 118
single-PE optimizations, 77
size of memory, 4
size of message

finding and changing with PVM, 24
size of message, PVM, 24
SM pool

definition, 150
software pipelining, 78

definition, 150
split command-line option, 96
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SPLIT directive, 96
splitting loop with IF statement, 98
splitting loops, 96
stack variable, 47
statistics
memory performance, 19
strategies for I/O, 117
stream
definition, 150
reducing startup costs, 102
stream buffers
setting aggressiveness level, 105
stream buffers, optimizing, 95
stream references, maximizing, 101
streams
example of, 8
reducing number, 102
stride
definition, 150
stride-1
streams, maximizing, 86
stride-1 data, PVM, 28
strided data, SHMEM, 58
striping, disk, 16
automatic, 134
stripmining
definition, 150
stripmining example, 98
subtract operation
and splitting loops, 99
swap, atomic, SHMEM, 70
symmetric
definition, 150
symmetric array, SHMEM, 47
SYMMETRIC directive, SHMEM, 47
synchronization
avoiding in PVM, 32
definition, 151
minimizing with receive, PVM, 36
PSYNC array, SHMEM, 66
PVM, 2,32
SHMEM, 2
synchronization, SHMEM, 51
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system cache
bypassing, 134
system call I/O, 124

T

tapes supported, 17
task

definition, 151
task identifier, PVM, 36
TCP/IP network, 19
thrashing

definition, 151
tiling

definition, 152
time to compile

increases with loop splitting, 100
timing your code, 21
timings

memory operations, 19
transfer

32-bit data, PVM, 26

of data, SHMEM, 44
transfer of data

comparing PVM and SHMEM, 3
transfer, large

how handled by PVM, 24

U

ulp

definition, 152
unformatted 1/0, 122
UNROLL directive, 78
unrolling

by the compiler, 78

command-line option, 78

definition, 152

outer loops, 78
unrolling loops, 77
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\% W

variable work while waiting
stack, 47 PVM, 31

VECTOR directive, 110 write behind

vectorization, 109 definition, 152

command-line options, 110
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