
Cray® C and C++ Reference
Manual
S–2179–55

© 1996-2000, 2002-2005 Cray Inc. All Rights Reserved. This manual or parts thereof may not be reproduced in any form unless
permitted by contract or by written permission of Cray Inc.

U.S. GOVERNMENT RESTRICTED RIGHTS NOTICE

The Computer Software is delivered as "Commercial Computer Software" as defined in DFARS 48 CFR 252.227-7014.

All Computer Software and Computer Software Documentation acquired by or for the U.S. Government is provided with Restricted
Rights. Use, duplication or disclosure by the U.S. Government is subject to the restrictions described in FAR 48 CFR 52.227-14
or DFARS 48 CFR 252.227-7014, as applicable.

Technical Data acquired by or for the U.S. Government, if any, is provided with Limited Rights. Use, duplication or disclosure by the
U.S. Government is subject to the restrictions described in FAR 48 CFR 52.227-14 or DFARS 48 CFR 252.227-7013, as applicable.

Autotasking, Cray, Cray Channels, Cray Y-MP, GigaRing, LibSci, UNICOS and UNICOS/mk are federally registered
trademarks and Active Manager, CCI, CCMT, CF77, CF90, CFT, CFT2, CFT77, ConCurrent Maintenance Tools, COS, Cray Ada,
Cray Animation Theater, Cray APP, Cray Apprentice2, Cray C++ Compiling System, Cray C90, Cray C90D, Cray CF90, Cray EL,
Cray Fortran Compiler, Cray J90, Cray J90se, Cray J916, Cray J932, Cray MTA, Cray MTA-2, Cray MTX, Cray NQS, Cray Research,
Cray SeaStar, Cray S-MP, Cray SHMEM, Cray SSD-T90, Cray SuperCluster, Cray SV1, Cray SV1ex, Cray SX-5, Cray SX-6, Cray T3D,
Cray T3D MC, Cray T3D MCA, Cray T3D SC, Cray T3E, Cray T90, Cray T916, Cray T932, Cray UNICOS, Cray X1, Cray X1E,
Cray XD1, Cray X-MP, Cray XMS, Cray XT3, Cray Y-MP EL, Cray-1, Cray-2, Cray-3, CrayDoc, CrayLink, Cray-MP, CrayPacs,
Cray/REELlibrarian, CraySoft, CrayTutor, CRInform, CRI/TurboKiva, CSIM, CVT, Delivering the power..., Dgauss, Docview,
EMDS, HEXAR, HSX, IOS, ISP/Superlink, MPP Apprentice, ND Series Network Disk Array, Network Queuing Environment,
Network Queuing Tools, OLNET, RapidArray, RQS, SEGLDR, SMARTE, SSD, SUPERLINK, System Maintenance and
Remote Testing Environment, Trusted UNICOS, TurboKiva, UNICOS MAX, UNICOS/lc, and UNICOS/mp are trademarks of
Cray Inc.

Dinkumware and Dinkum are trademarks of Dinkumware, Ltd. Edison Design Group is a trademark of Edison Design Group, Inc.
Etnus and TotalView are trademarks of Etnus LLC. GNU is a trademark of The Free Software Foundation. SGI and Silicon Graphics
are trademarks of Silicon Graphics, Inc. UNIX, the “X device,” X Window System, and X/Open are trademarks of The Open Group
in the United States and other countries. All other trademarks are the property of their respective owners.

The UNICOS, UNICOS/mk, and UNICOS/mp operating systems are derived from UNIX System V. These operating systems
are also based in part on the Fourth Berkeley Software Distribution (BSD) under license from The Regents of the University
of California.

Portions of this document were copied by permission of OpenMP Architecture Review Board from OpenMP C and C++ Application
Program Interface, Version 2.0, March 2002, Copyright © 1997-2002, OpenMP Architecture Review Board.

New Features

Cray® C and C++ Reference Manual S–2179–55

This manual was revised to describe the following new features of the Cray C++ 5.5 and Cray C 8.5 releases.

• The CRAY_PE_TARGET environment variable controls compiler targeting (see Section 2.23, page 59).

• The following #pragma directives are new in this release:

– probability, probability_almost_always, and probability_almost_never (see Section
3.5.7, page 78)

– loop_info (see Section 3.7.2, page 84)

– hand_tuned (see Section 3.7.3, page 85)

– permutation (see Section 3.7.7, page 87)

– safe_conditional (see Section 3.7.11, page 91)

Various editing changes and example updates were also made to this document.

Record of Revision

Version Description

2.0 January 1996
Original Printing. This manual supports the C and C++ compilers contained in the
Cray C++ Programming Environment release 2.0. On all Cray systems, the C++
compiler is Cray C++ 2.0. On Cray systems with IEEE floating-point hardware, the
C compiler is Cray Standard C 5.0. On Cray systems without IEEE floating-point
hardware, the C compiler is Cray Standard C 4.0.

3.0 May 1997
This rewrite supports the C and C++ compilers contained in the Cray C++
Programming Environment release 3.0, which is supported on all systems except the
Cray T3D system. On all supported Cray systems, the C++ compiler is Cray C++ 3.0
and the C compiler is Cray C 6.0.

3.0.2 March 1998
This revision supports the C and C++ compilers contained in the Cray C++
Programming Environment release 3.0.2, which is supported on all systems except
the Cray T3D system. On all supported Cray systems, the C++ compiler is Cray C++
3.0.2 and the C compiler is Cray C 6.0.2.

3.1 August 1998
This revision supports the C and C++ compilers contained in the Cray C++
Programming Environment release 3.1, which is supported on all systems except the
Cray T3D system. On all supported Cray systems, the C++ compiler is Cray C++ 3.1
and the C compiler is Cray C 6.1.

3.2 January 1999
This revision supports the C and C++ compilers contained in the Cray C++
Programming Environment release 3.2, which is supported on all systems except the
Cray T3D system. On all supported Cray systems, the C++ compiler is Cray C++ 3.2
and the C compiler is Cray C 6.2.

3.3 July 1999
This revision supports the C and C++ compilers contained in the Cray C++
Programming Environment release 3.3, which is supported on the Cray SV1, Cray
C90, Cray J90, and Cray T90 systems running UNICOS 10.0.0.5 and later, and Cray
T3E systems running UNICOS/mk 2.0.4 and later. On all supported Cray systems,
the C++ compiler is Cray C++ 3.3 and the C compiler is Cray C 6.3.

3.4 August 2000

S–2179–55 i

Cray® C and C++ Reference Manual

This revision supports the Cray C 6.4 and Cray C++ 3.4 releases running on UNICOS
and UNICOS/mk operating systems. It includes updates to revision 3.3.

3.4 October 2000
This revision supports the Cray C 6.4 and Cray C++ 3.4 releases running on UNICOS
and UNICOS/mk operating systems. This revision supports a new inlining level,
inline4.

3.6 June 2002
This revision supports the Cray Standard C 6.6 and Cray Standard C++ 3.6 releases
running on UNICOS and UNICOS/mk operating systems.

4.1 August 20, 2002
Draft version to support Cray C 7.1 and Cray C++ 4.1 releases running on
UNICOS/mp operating systems.

4.2 December 20, 2002
Draft version to support Cray C 7.2 and Cray C++ 4.2 releases running on
UNICOS/mp operating systems.

4.3 March 31, 2003
Draft version to support Cray C 7.3 and Cray C++ 4.3 releases running on
UNICOS/mp operating systems.

5.0 June 2003
Supports Cray C++ 5.0 and Cray C 8.0 releases running on UNICOS/mp 2.1 or later
operating systems.

5.1 October 2003
Supports Cray C++ 5.1 and Cray C 8.1 releases running on UNICOS/mp 2.2 or later
operating systems.

5.2 April 2004
Supports Cray C++ 5.2 and Cray C 8.2 releases running on UNICOS/mp 2.3 or later
operating systems.

5.3 November 2004
Supports Cray C++ 5.3 and Cray C 8.3 releases running on UNICOS/mp 2.5 or later
operating systems.

5.4 March 2005
Supports Cray C++ 5.4 and Cray C 8.4 releases running on UNICOS/mp 3.0 or later
operating systems.

ii S–2179–55

Record of Revision

5.5 December 2005
Supports Cray C++ 5.5 and Cray C 8.5 releases running on UNICOS/mp 3.0 or later
operating systems.

S–2179–55 iii

Contents

Page

Preface xix

Accessing Product Documentation xix

Conventions . xx

Reader Comments . xxi

Introduction [1] 1

The Trigger Environment . 2

Working in the Programming Environment 4

Preparing the Trigger Environment 4

General Compiler Description . 5

Cray C++ Compiler . 5

Cray C Compiler . 5

Related Publications . 5

Compiler Commands [2] 7

CC Command . 8

cc and c99 Commands . 8

c89 Command . 9

cpp Command . 9

Command Line Options . 10

Standard Language Conformance Options 13

-h [no]c99 (cc, c99) . 13

-h [no]conform (CC, cc, c99), -h [no]stdc (cc, c99) 14

-h cfront (CC) . 14

-h [no]parse_templates (CC) 14

-h [no]dep_name (CC) . 14

-h [no]exceptions (CC) . 15

S–2179–55 v

Cray® C and C++ Reference Manual

Page

-h [no]anachronisms (CC) . 15

-h new_for_init (CC) . 15

-h [no]tolerant (cc, c99) . 16

-h [no] const_string_literals (CC) 16

-h [no]gnu (CC, cc) . 16

Template Language Options . 20

-h simple_templates (CC) . 20

-h [no]autoinstantiate (CC) 20

-h one_instantiation_per_object (CC) 20

-h instantiation_dir=dirname (CC) 20

-h instantiate=mode (CC) . 21

-h [no]implicitinclude (CC) 22

-h remove_instantiation_flags (CC) 22

-h prelink_local_copy (CC) 22

-h prelink_copy_if_nonlocal (CC) 22

Virtual Function Options (-h forcevtbl, -h suppressvtbl (CC)) 22

General Language Options . 23

-h keep=file (CC) . 23

-h restrict=args (CC, cc, c99) 23

-h [no]calchars (CC, cc, c99) 24

-h [no]signedshifts (CC, cc, c99) 25

General Optimization Options . 25

-h gen_private_callee (CC, cc, c99) 25

-h [no]aggress (CC, cc, c99) 25

-h display_opt . 26

-h [no]fusion (CC, cc, c99) 26

-h [no]intrinsics (CC, cc, c99) 26

-h list=opt (CC, cc, c99) . 26

-h msp (CC, cc, c99) . 27

-h [no]pattern (CC, cc, c99) 28

vi S–2179–55

Contents

Page

-h [no]overindex (CC, cc, c99) 28

-h ssp (CC, cc, c99) . 28

-h [no]unroll (CC, cc, c99) 29

-O level (CC, cc, c89, c99) . 29

Multistreaming Processor Optimization Options 30

-h streamn (CC, cc, c99) . 30

Vector Optimization Options . 31

-h [no]infinitevl (CC, cc, c99) 31

-h [no]ivdep (CC, cc, c99) . 32

-h vectorn (CC, cc, c99) . 32

-h [no]vsearch (CC, cc, c99) 33

Inlining Optimization Options . 33

-h ipan (CC, cc, c89, c99) . 34

-h ipafrom=source [:source] (CC, cc, c89, c99) 35

Combined Inlining . 36

Scalar Optimization Options . 36

-h [no]interchange (CC, cc, c99) 36

-h scalarn (CC, cc, c99) . 37

-h [no]reduction (CC, cc, c99) 37

-h [no]zeroinc (CC, cc, c99) 37

Math Options . 38

-h fpn (CC, cc, c99) . 38

-h matherror=method (CC, cc, c99) 40

Debugging Options . 40

-G level (CC, cc, c99) and -g (CC, cc, c89, c99) 40

-h [no]bounds (cc, c99) . 41

-h zero (CC, cc, c99) . 41

Compiler Message Options . 42

-h msglevel_n (CC, cc, c99) 42

-h [no]message=n[:n...] (CC, cc, c99) 42

S–2179–55 vii

Cray® C and C++ Reference Manual

Page

-h report=args (CC, cc, c99) 42

-h [no]abort (CC, cc, c99) . 43

-h errorlimit[=n] (CC, cc, c99) 43

Compilation Phase Options . 43

-E (CC, cc, c89, c99, cpp) . 43

-P (CC, cc, c99, cpp) . 44

-h feonly (CC, cc, c99) . 44

-S (CC, cc, c99) . 44

-c (CC, cc, c89, c99) . 44

-#, -##, and -### (CC, cc, c99, cpp) 44

-Wphase,"opt..." (CC, cc, c99) 45

-Yphase,dirname (CC, cc, c89, c99, cpp) 45

Preprocessing Options . 46

-C (CC, cc, c99, cpp) . 46

-D macro[=def] (CC, cc, c89, c99 cpp) 46

-h [no]pragma=name[:name...] (CC, cc, c99) 47

-I incldir (CC, cc, c89, c99, cpp) 47

-M (CC, cc, c99, cpp) . 48

-N (cpp) . 48

-nostdinc (CC, cc, c89, c99, cpp) 49

-U macro (CC, cc, c89, c99, cpp) 49

Loader Options . 49

-l libfile (CC, cc, c89, c99) . 49

-L libdir (CC, cc, c89, c99) . 50

-o outfile (CC, cc, c89, c99) . 50

-s (CC, cc, c89, c99) . 50

Miscellaneous Options . 51

-h command (cc, c99) . 51

-h cpu=target_system (CC, cc, c99) 52

-h decomp (CC, cc, c99) . 52

viii S–2179–55

Contents

Page

-h ident=name (CC, cc, c99) 55

-h keepfiles (CC, cc, c89, c99) 55

-h [no]mpmd (CC, cc) . 55

-h [no]omp (CC, cc) . 56

-h prototype_intrinsics (CC, cc, c99, cpp) 56

-h taskn (CC, cc) . 56

-h [no]threadsafe (CC) . 56

-h upc (cc) . 57

-V (CC, cc, c99, cpp) . 57

-X npes (CC, cc, c99) . 57

Command Line Examples . 58

Compile Time Environment Variables 59

Run Time Environment Variables . 61

OpenMP Environment Variables . 64

OMP_SCHEDULE . 65

OMP_NUM_THREADS . 65

OMP_DYNAMIC . 66

OMP_NESTED . 66

OMP_THREAD_STACK_SIZE . 66

#pragma Directives [3] 69

Protecting Directives . 70

Directives in Cray C++ . 71

Loop Directives . 71

Alternative Directive form: _Pragma 71

General Directives . 72

[no]bounds Directive (Cray C Compiler) 72

duplicate Directive (Cray C Compiler) 73

message Directive . 75

no_cache_alloc Directive . 76

cache_shared Directive . 76

S–2179–55 ix

Cray® C and C++ Reference Manual

Page

[no]opt Directive . 77

Probability Directives . 78

weak Directive . 79

vfunction Directive . 81

ident Directive . 82

Instantiation Directives . 82

Vectorization Directives . 82

ivdep Directive . 83

loop_info Directive . 84

hand_tuned Directive . 85

nopattern Directive . 86

novector Directive . 86

novsearch Directive . 87

permutation Directive . 87

[no]pipeline Directive . 88

prefervector Directive . 89

safe_address Directive . 90

safe_conditional Directive 91

shortloop and shortloop128 Directives 92

Multistreaming Processor (MSP) Directives 93

ssp_private Directive (cc, c99) 93

nostream Directive . 95

preferstream Directive . 96

Scalar Directives . 96

concurrent Directive . 97

nointerchange Directive . 97

noreduction Directive . 98

suppress Directive . 99

[no]unroll Directive . 99

Example 1: Unrolling Outer Loops 100

x S–2179–55

Contents

Page

Example 2: Illegal Unrolling of Outer Loops 101

Inlining Directives . 101

inline_enable, inline_disable, and inline_reset Directives 102

Example 3: Using the inline_enable Directive 103

Example 4: Using the inline_reset Directive 103

inline_always and inline_never Directives 104

Cray Streaming Directives (CSDs) [4] 105

CSD Parallel Regions . 106

parallel Directive . 106

for Directive . 108

parallel for Directive . 110

sync Directive . 111

critical Directive . 112

ordered Directive . 112

Nested CSDs Within Cray Parallel Programming Models 113

CSD Placement . 114

Protection of Shared Data . 114

Dynamic Memory Allocation for CSD Parallel Regions 115

Compiler Options Affecting CSDs 116

OpenMP C and C++ API Directives [5] 117

Deferred OpenMP Features . 117

Cray Implementation Differences . 118

OMP_THREAD_STACK_SIZE . 119

Compiler Options Affecting OpenMP 120

OpenMP Program Execution . 120

Cray Unified Parallel C (UPC) [6] 123

Predefined Identifiers . 124

UPC Expressions . 125

UPC Statements . 125

S–2179–55 xi

Cray® C and C++ Reference Manual

Page

UPC Barrier Statements . 125

UPC Iteration Statements . 127

UPC #pragma Directives . 128

Predefined Macro Names . 128

Standard Headers . 129

UPC Functions . 129

Termination of All Threads Function 129

upc_global_exit . 129

Shared Memory Allocation Functions 130

upc_global_alloc . 130

upc_all_alloc . 130

upc_all_free . 131

upc_alloc . 131

upc_local_alloc . 131

upc_local_free . 132

upc_free . 132

Pointer-to-shared Manipulation Functions 133

upc_threadof . 133

upc_phaseof . 133

upc_resetphase . 133

upc_addrfield . 133

upc_affinitysize . 134

Lock Functions . 134

upc_lock_t . 134

upc_global_lock_alloc 134

upc_all_lock_alloc . 135

upc_all_lock_free . 135

upc_global_lock_free . 135

upc_lock_free . 136

upc_lock . 137

xii S–2179–55

Contents

Page

upc_lock_attempt . 137

upc_unlock . 138

Shared String Handling Functions 138

upc_memcpy . 138

upc_memget . 139

upc_memput . 139

upc_memset . 140

Cray Implementation Differences . 140

Compiling and Executing UPC Code 141

Cray C++ Libraries [7] 143

Unsupported Standard C++ Library Features 143

Dinkum C++ Libraries . 143

Cray C++ Template Instantiation [8] 145

Simple Instantiation . 146

Prelinker Instantiation . 147

Instantiation Modes . 149

One Instantiation Per Object File . 150

Instantiation #pragma Directives 151

Implicit Inclusion . 153

Cray C Extensions [9] 155

Complex Data Extensions . 155

fortran Keyword . 156

Hexadecimal Floating-point Constants 156

Predefined Macros [10] 159

Macros Required by the C and C++ Standards 159

Macros Based on the Host Machine 160

Macros Based on the Target Machine 161

Macros Based on the Compiler . 162

S–2179–55 xiii

Cray® C and C++ Reference Manual

Page

UPC Predefined Macros . 162

Running C and C++ Applications [11] 163

Launching a Single Non-MPI Application 163

Launching a Single MPI Application 163

Multiple Program, Multiple Data (MPMD) Launch 164

Debugging Cray C and C++ Code [12] 165

Etnus TotalView Debugger . 165

Compiler Debugging Options . 166

Interlanguage Communication [13] 167

Calls between C and C++ Functions 167

Calling Assembly Language Functions from a C or C++ Function 169

Calling Fortran Functions and Subroutines from a C or C++ Function 169

Requirements . 170

Argument Passing . 170

Array Storage . 171

Logical and Character Data . 172

Accessing Named Common from C and C++ 172

Accessing Blank Common from C or C++ 174

Cray C and Fortran Example . 176

Calling a Fortran Program from a Cray C++ Program 178

Calling a C or C++ Function from a Fortran or Assembly Language Program 179

Example 5: Calling a C Function from a Fortran Program 180

Implementation-defined Behavior [14] 183

Messages . 183

Environment . 183

Identifiers . 184

Types . 184

Characters . 185

xiv S–2179–55

Contents

Page

Wide Characters . 186

Integers . 187

Arrays and Pointers . 187

Registers . 188

Classes, Structures, Unions, Enumerations, and Bit Fields 188

Qualifiers . 189

Declarators . 189

Statements . 189

Exceptions . 189

System Function Calls . 189

Preprocessing . 189

Appendix A Possible Requirements for non-C99 Code 191

Appendix B Libraries and Loader 193

Cray C and C++ Libraries Current Programming Environments 193

Loader . 193

Appendix C Compatibility with Older C++ Code 195

Use of Nonstandard Cray C++ Header Files 195

When to Update Your C++ Code . 196

Use the Proper Header Files . 196

Add Namespace Declarations . 199

Reconcile Header Definition Differences 200

Recompile All C++ Files . 201

Appendix D Cray C and C++ Dialects 203

C++ Language Conformance . 203

Unsupported and Supported C++ Language Features 203

C++ Anachronisms Accepted . 207

Extensions Accepted in Normal C++ Mode 208

Extensions Accepted in C or C++ Mode 209

S–2179–55 xv

Cray® C and C++ Reference Manual

Page

C++ Extensions Accepted in cfront Compatibility Mode 211

Appendix E Compiler Messages 219

Expanding Messages with the explain Command 219

Controlling the Use of Messages . 219

Command Line Options . 220

Environment Options for Messages 220

ORIG_CMD_NAME Environment Variable 220

Message Severity . 221

Common System Messages . 223

Appendix F Intrinsic Functions 225

Atomic Memory Operations . 225

BMM Operations . 226

Bit Operations . 226

Function Operations . 227

Mask Operations . 227

Memory Operations . 228

Miscellaneous Operations . 228

Streaming Operations . 228

Glossary 229

Index 241

Tables
Table 1. GCC C Language Extensions 16

Table 2. GCC C++ Language Extensions 19

Table 3. Carriage Control Characters 27

Table 4. -h Option Descriptions 30

Table 5. Automatic Inlining Specifications 34

Table 6. Floating-point Optimization Levels 39

xvi S–2179–55

Contents

Page

Table 7. -G level Definitions . 41

Table 8. -Wphase Definitions . 45

Table 9. -Yphase Definitions . 46

Table 10. -h pragma Directive Processing 47

Table 11. Compiler-calculated Chunk Size 109

Table 12. Data Type Mapping . 184

Table 13. Packed Characters . 186

Table 14. Unrecognizable Escape Sequences 186

Table 15. Run time Support Library Header Files 197

Table 16. Stream and Class Library Header Files 197

Table 17. Standard Template Library Header Files 198

S–2179–55 xvii

Preface

The information in this preface is common to Cray documentation provided with
this software release.

Accessing Product Documentation

With each software release, Cray provides books and man pages, and in
some cases, third-party documentation. These documents are provided in the
following ways:

CrayDoc The Cray documentation delivery system that allows you to
quickly access and search Cray books, man pages, and in some
cases, third-party documentation. Access this HTML and PDF
documentation via CrayDoc at the following locations:

• The local network location defined by your system
administrator

• The CrayDoc public website: docs.cray.com

Man pages Access man pages by entering the man command followed by the
name of the man page. For more information about man pages,
see the man(1) man page by entering:

% man man

Third-party documentation

Access third-party documentation not provided through
CrayDoc according to the information provided with the
product.

S–2179–55 xix

http://docs.cray.com/

Cray® C and C++ Reference Manual

Conventions

These conventions are used throughout Cray documentation:

Convention Meaning

command This fixed-space font denotes literal items, such as file
names, pathnames, man page names, command names, and
programming language elements.

variable Italic typeface indicates an element that you will replace with a
specific value. For instance, you may replace filename with the
name datafile in your program. It also denotes a word or
concept being defined.

user input This bold, fixed-space font denotes literal items that the user
enters in interactive sessions. Output is shown in nonbold,
fixed-space font.

[] Brackets enclose optional portions of a syntax representation for
a command, library routine, system call, and so on.

... Ellipses indicate that a preceding element can be repeated.

name(N) Denotes man pages that provide system and programming
reference information. Each man page is referred to by its name
followed by a section number in parentheses.

Enter:

% man man

to see the meaning of each section number for your particular
system.

xx S–2179–55

Preface

Reader Comments

Contact us with any comments that will help us to improve the accuracy and
usability of this document. Be sure to include the title and number of the
document with your comments. We value your comments and will respond to
them promptly. Contact us in any of the following ways:

E-mail:
docs@cray.com

Telephone (inside U.S., Canada):
1–800–950–2729 (Cray Customer Support Center)

Telephone (outside U.S., Canada):
+1–715–726–4993 (Cray Customer Support Center)

Mail:
Customer Documentation
Cray Inc.
1340 Mendota Heights Road
Mendota Heights, MN 55120–1128
USA

S–2179–55 xxi

file:///tmp/mytmp.5174/mailto:docs%40cray.com

Introduction [1]

The Cray C++ Programming Environment contains both the Cray C and C++
compilers. The Cray C compiler conforms to the International Organization of
Standards (ISO) standard ISO/IEC 9899:1999 (C99). The Cray C++ compiler
conforms to the ISO/IEC 14882:1998 standard, with some exceptions. The
exceptions are noted in Appendix D, page 203.

Throughout this manual, the differences between the Cray C and C++ compilers
are noted when appropriate. When there is no difference, the phrase the compiler
refers to both compilers.

The information is presented as follows:

• Chapter 1, page 1 contains introductory information.

• Chapter 2, page 7 contains information on the commands used to invoke the
compilers (CC, cc, c89, and c99) and the precompiler (cpp).

• Chapter 3, page 69 contains information on the #pragma directives supported
by the Cray C and C++ compilers.

• Chapter 4, page 105 describes Cray Streaming directives (CSDs)

• Chapter 5, page 117 contains information about the OpenMP C and C++ API

• Chapter 6, page 123 contains information about Cray Unified Parallel C
(UPC).

• Chapter 7, page 143 contains information about supported and unsupported
standard C++ features and about the Dinkum C++ library.

• Chapter 8, page 145 contains information on Cray C++ template instantiation.

• Chapter 9, page 155 contains information on the extensions to the C and
C++ languages.

• Chapter 10, page 159 contains information on predefined macros.

• Chapter 11, page 163 describes methods for launching applications.

• Chapter 12, page 165 contains information on debugging Cray C and C++
code.

• Chapter 13, page 167 contains information on interlanguage communication.

S–2179–55 1

Cray® C and C++ Reference Manual

• Chapter 14, page 183 contains information on implementation-defined
behavior.

• Appendix A, page 191 contains information on requirements for non-C99
code.

• Appendix B, page 193 contains information on the libraries and the loader.

• Appendix C, page 195 contains information on using C++ code developed
under Cray C++ Programming Environment 3.5 release or earlier.

• Appendix D, page 203 contains information on the Cray C and C++ dialects.

• Appendix E, page 219 contains information on how to extract information on
compiler messages and how to use the message system.

• Appendix F, page 225 contains information on intrinsic functions.

1.1 The Trigger Environment

The user on the Cray X1 series system interacts with the system as if all
elements of the Programming Environment are hosted on the Cray X1 series
mainframe, including Programming Environment commands hosted on the
Cray Programming Environment Server (CPES). CPES-hosted commands have
corresponding commands on the Cray X1 series mainframe that have the same
names. These are called triggers. Triggers are required only for the Programming
Environment.

Understanding the trigger environment will aid administrators and end users in
identifying what part of the system a problem occurs when using the trigger
environment.

When a user enters the name of a CPES-hosted command on the command line
of the Cray X1 series mainframe, the corresponding trigger executes, which sets
up an environment for the CPES-hosted command. This environment duplicates
the portion of the current working environment on the Cray X1 series mainframe
that relates to the Programming Environment. This allows the CPES-hosted
commands to function properly.

To replicate the current working environment, the trigger captures the current
working environment on the Cray X1 series system and copies the standard I/O
as follows:

• Copies the standard input of the current working environment to the standard
input of the CPES-hosted command

2 S–2179–55

Introduction [1]

• Copies the standard output of the CPES-hosted command to standard output
of the current working environment

• Copies the standard error of the CPES-hosted command to the standard error
of the current working environment

All catchable interrupts, quit signals, and terminate signals propagate through
the trigger to reach the CPES-hosted command. Upon termination of the
CPES-hosted command, the trigger terminates and returns with the CPES-hosted
commands return code.

Uncatchable signals have a short processing delay before the signal is passed
to the CPES-hosted command. If you execute its trigger again before the
CPES-hosted command has time to process the signal, an indeterministic
behavior may occur.

Because the trigger has the same name, inputs, and outputs as the CPES-hosted
command, user scripts, makefiles, and batch files can function without
modification. That is, running a command in the trigger environment is very
similar to running the command hosted on the Cray X1 series system.

The commands that have triggers include:

• ar

• as

• c++filt

• c89

• c99

• cc

• ccp

• CC

• ftn

• ftnlx

• ftnsplit

• ld

• nm

S–2179–55 3

Cray® C and C++ Reference Manual

• pat_build

• pat_help

• pat_report

• pat_remps

• remps

1.1.1 Working in the Programming Environment

To use the Programming Environment, you must work on a file system that is
cross-mounted to the CPES. If you attempt to use the Programming Environment
from a directory that is not cross-mounted to the CPES, you will receive this
message:

trigexecd: trigger command cannot access current directory.

[directory] is not properly cross-mounted on host [CPES]

The default files used by the Programming Environment are installed in the
/opt/ctl file system. The default include file directory is /opt/ctl/include.
All Programming Environment products are found in the /opt/ctl file system.

1.1.2 Preparing the Trigger Environment

To prepare the trigger environment for use, you must use the module command
to load the PrgEnv module. This module loads all Programming Environment
products and sets up the environment variables necessary to find the include
files, libraries, and product paths on the CPES and the Cray X1 series system.

Enter the following command on the command line to load the Programming
Environment:

% module load PrgEnv

Loading the PrgEnv module causes all Programming Environment products to be
loaded and available to the user. A user may swap an individual product in the
product set, but should not unload any one product.

To see the list of products loaded by the PrgEnv module, enter the following
on the command line:

% module list

4 S–2179–55

Introduction [1]

If you have questions on setting up the programming environment, contact your
system support staff.

1.2 General Compiler Description

Both the Cray C and C++ compilers are contained within the same Programming
Environment. If you are compiling code written in C, use the cc(1), c89(1), or
c99 command to compile source files. If you are compiling code written in C++,
use the CC(1) command.

1.2.1 Cray C++ Compiler

The Cray C++ compiler consists of a preprocessor, a language parser, a prelinker,
an optimizer, and a code generator. The Cray C++ compiler is invoked by a
command called CC(1) in this manual, but it may be renamed at individual sites.
The CC(1) command is described in Section 2.1, page 8, and on the CC(1) man
page. Command line examples are shown in Section 2.22, page 58.

1.2.2 Cray C Compiler

The Cray C compiler consists of a preprocessor, a language parser, an optimizer,
and a code generator. The Cray C compiler is invoked by a command called
cc(1), c89(1), or c99(1) in this manual, but it may be renamed at individual sites.
The cc(1) and c99(1) commands are discussed in Section 2.2, page 8, the c89(1)
command is described in Section 2.3, page 9. All are also discussed in the CC(1)
man page. Command line examples are shown in Section 2.22, page 58.

Note: C code developed under other C compilers of the Cray Programming
Environments that do not conform to the C99 standard may require
modification to successfully compile with the c99 command. Refer to
Appendix A, page 191.

1.3 Related Publications

The following documents contain additional information that may be helpful:

• CC(1), ld(1), and pat(1) man pages

• Optimizing Applications on Cray X1 Series Systems

• Cray C++ Tools Library Reference Manual, Rogue Wave document, Tools.h++
Introduction and Reference Manual, publication TPD-0005

S–2179–55 5

Cray® C and C++ Reference Manual

• Cray C++ Mathpack Class Library Reference Manual by Thomas Keefer and Allan
Vermeulen, publication TPD-0006

• LAPACK.h++ Introduction and Reference Manual, Version 1, by Allan Vermeulen,
publication TPD-0010

6 S–2179–55

Compiler Commands [2]

This chapter describes the compiler commands and the environment variables
necessary to execute the Cray C and C++ compilers. These are the commands
for the compilers:

• CC, which invokes the Cray C++ compiler.

• cc and c99(1), which invoke the Cray C compiler.

• c89, which invokes the Cray C compiler. This command is a subset of the cc
command. It conforms with POSIX standard (P1003.2, Draft 12).

• cpp, which invokes the C language preprocessor. By default, the CC, cc,
c89, and c99(1) commands invoke the preprocessor automatically. The cpp
command provides a way for you to invoke only the preprocessor component
of the Cray C compiler.

A successful compilation creates an absolute binary file, named a.out by
default, that reflects the contents of the source code and any referenced library
functions. This binary file, a.out, can then be executed on the target system. For
example, the following sequence compiles file mysource.c and executes the
resulting executable program:

% cc mysource.c

% ./a.out

With the use of appropriate options, compilation can be terminated to
produce one of several intermediate translations, including relocatable object
files (-c option), assembly source expansions (-S option), or the output of
the preprocessor phase of the compiler (-P or -E option). In general, the
intermediate files can be saved and later resubmitted to the CC, cc, c89, or
c99(1) command, with other files or libraries included as necessary.

By default, the CC, cc, c89, and c99(1) commands automatically call the loader,
which creates an executable file. If only one source file is specified, the object file
is deleted. If more than one source file is specified, the object files are retained.
The following command creates object files file1.o, file2.o, and file3.o,
and the executable file a.out:

% cc file1.c file2.c file3.c

The following command creates the executable file a.out only:

% cc file.c

S–2179–55 7

Cray® C and C++ Reference Manual

2.1 CC Command

The CC command invokes the Cray C++ compiler. The CC command accepts C++
source files that have the following suffixes:

.c

.C

.i

.c++

.C++

.cc

.cxx

.Cxx

.CXX

.CC

.cpp

The .i files are created when the preprocessing compiler command option (-P)
is used. The CC command also accepts object files with the .o suffix; library files
with the .a suffix; and assembler source files with the .s suffix.

The CC command format is as follows:

CC [-c] [-C] [-d string] [-D macro[=def]] [-E] [-g] [-G level]

[-h arg] [-I incldir] [-l libfile] [-L libdir] [-M] [-nostdinc]

[-o outfile] [-O level] [-P] [-s] [-S] [-U macro] [-V]

[-Wphase,"opt..."] [-Xnpes] [-Yphase,dirname] [-#] [-##] [-###]

files ...

See Section 2.5, page 10 for an explanation of the command line options.

2.2 cc and c99 Commands

The cc command invokes the Cray C compiler. The cc and c99 commands
accept C source files that have the .c and .i suffixes; object files with the .o
suffix; library files with the .a suffix; and assembler source files with the .s
suffix.

8 S–2179–55

Compiler Commands [2]

The cc and c99 commands format are as follows:

cc or c99 [-c] [-C] [-d string] [-D macro[=def]]

[-E] [-g] [-G level]

[-h arg] [-I incldir] [-l libfile] [-L libdir] [-M] [-nostdinc]

[-o outfile] [-O level] [-P] [-s] [-S] [-U macro] [-V]

[-Wphase,"opt..."] [-Xnpes] [-Yphase,dirname] [-#] [-##] [-###]

files ...

See Section 2.5, page 10 for an explanation of the command line options.

2.3 c89 Command

The c89 command invokes the Cray C compiler. This command is a subset of
the cc command and conforms with the POSIX standard (P1003.2, Draft 12).
The c89 command accepts C source files that have a .c or .i suffix; object files
with the .o suffix; library files with the .a suffix; and assembler source files with
the .s suffix.

The c89 command format is as follows:

c89 [-c] [-D macro[=def]] [-E] [-g] [-I incldir]

[-l libfile] [-L libdir]

[-o outfile] [-O level] [-s] [-U macro]

[-Yphase,dirname] files ...

See Section 2.5, page 10 for an explanation of the command line options.

2.4 cpp Command

The cpp command explicitly invokes the preprocessor component of the Cray
C compiler. Most cpp options are also available from the CC, cc, c89, and c99
commands.

The cpp command format is as follows:

cpp [-C] [-D macro[=def]] [-E] [-I incldir] [-M]

[-N] [-nostdinc] [-P]

[-U macro] [-V] [-Yphase,dirname] [-#] [-##] [-###]

[infile] [outfile]

S–2179–55 9

Cray® C and C++ Reference Manual

The infile and outfile files are, respectively, the input and output for the
preprocessor. If you do not specify these arguments, input is defaulted to
standard input (stdin) and output to standard output (stdout). Specifying a
minus sign (-) for infile also indicates standard input.

See Section 2.5, page 10 for an explanation of the command line options.

2.5 Command Line Options

The following subsections describe options for the CC, cc, c89, c99, and cpp
commands. These options are grouped according to function, as follows:

• Language options:

– The standard conformance options (Section 2.6, page 13):

Section Option

Section 2.6.1,
page 13

-h [no]c99

Section 2.6.2,
page 14

-h [no]conform and -h [no]stdc

Section 2.6.3,
page 14

-h cfront

Section 2.6.4,
page 14

-h [no]parse_templates

Section 2.6.5,
page 14

-h [no]dep_name

Section 2.6.6,
page 15

-h [no]exceptions

Section 2.6.7,
page 15

-h [no]anachronisms

Section 2.6.8,
page 15

-h new_for_init

Section 2.6.9,
page 16

-h [no]tolerant

10 S–2179–55

Compiler Commands [2]

Section 2.6.10,
page 16

-h [no] const_string_literals (CC)

Section 2.6.11,
page 16

-h [no]gnu (CC, cc)

– The template options (Section 2.7, page 20):

Section Option

Section 2.7.1,
page 20

-h simple_templates

Section 2.7.2,
page 20

-h [no]autoinstantiate

Section 2.7.3,
page 20

-h one_instantiation_per_object

Section 2.7.4,
page 20

-h instantiation_dir = dirname

Section 2.7.5,
page 21

-h instantiate=mode

Section 2.7.6,
page 22

-h [no]implicitinclude

Section 2.7.7,
page 22

-h remove_instantiation_flags

Section 2.7.8,
page 22

-h prelink_local_copy

Section 2.7.9,
page 22

-h prelink_copy_if_nonlocal

– The virtual function options (Section 2.8, page 22): -h forcevtbl and
-h suppressvtbl.

– General language options (Section 2.9, page 23):

Section Options

Section 2.9.1,
page 23

-h keep=file

Section 2.9.2,
page 23

-h restrict=args

S–2179–55 11

Cray® C and C++ Reference Manual

Section 2.9.3,
page 24

-h [no]calchars

Section 2.9.4,
page 25

-h [no]signedshifts

• Optimization options:

– General optimization options (Section 2.10, page 25)

– Multistreaming Processor (MSP) options (Section 2.11, page 30)

– Vectorization options (Section 2.12, page 31)

– Inlining options (Section 2.13, page 33)

– Scalar optimization options (Section 2.14, page 36)

• Math options (Section 2.15, page 38)

• Debugging options (Section 2.16, page 40)

• Message control options (Section 2.17, page 42)

• Compilation phase control options (Section 2.18, page 43)

• Preprocessing options (Section 2.19, page 46)

• Loader options (Section 2.20, page 49)

• Miscellaneous options (Section 2.21, page 51)

• Command line examples (Section 2.22, page 58)

• Compile-time environment variables (Section 2.23, page 59)

• Run time environment variables (Section 2.24, page 61)

• OpenMP environment variables (Section 2.25, page 64)

Options other than those described in this manual are passed to the loader. For
more information on the loader, see the ld(1) man page.

There are many options that start with -h. Multiple -h options can be
specified using commas to separate the arguments. For example, the
-h parse_templates and -h fp0 command line options can be specified as
-h parse_templates,fp0.

12 S–2179–55

Compiler Commands [2]

If conflicting options are specified, the option specified last on the command line
overrides the previously specified option. Exceptions to this rule are noted in the
individual descriptions of the options.

The following examples illustrate the use of conflicting options:

• In this example, -h fp0 overrides -h fp1:

% CC -h fp1,fp0 myfile.C

• In this example, -h vector2 overrides the earlier vector optimization level 3
implied by the -O3 option:

% CC -O3 -h vector2 myfile.C

Most #pragma directives override corresponding command line options. For
example, #pragma _CRI novsearch overrides the -h vsearch option.
#pragma _CRI novsearch also overrides the -h vsearch option implied by
the -h vector2 or -O2 option. Exceptions to this rule are noted in descriptions
of options or #pragma directives.

2.6 Standard Language Conformance Options

This section describes standard conformance language options. Each subsection
heading shows in parentheses the compiler with which the option can be used.

2.6.1 -h [no]c99 (cc, c99)

Defaults: -h noc99 (cc)

-h c99 (c99)

This option enables/disables language features new to the C99 standard and
Cray C compiler, while providing support for features that were previously
defined as Cray extensions. If the previous implementation of the Cray extension
differed from the C99 standard, both implementations will be available when the
-h c99 option is enabled. The -h c99 option is also required for C99 features
not previously supported as extensions.

When -h noc99 is used, c99 language features such as VLAs and restricted
pointers that were available as extensions previously to adoption of the c99
standard remain available to the user.

S–2179–55 13

Cray® C and C++ Reference Manual

2.6.2 -h [no]conform (CC, cc, c99), -h [no]stdc (cc, c99)

Default: -h [no]conform, -h nostdc

The -h conform and -h stdc options specify strict conformance to the ISO
C standard or the ISO C++ standard. The -h noconform and -h nostdc
options specify partial conformance to the standard. The -h exceptions,
-h dep_name, -h parse_templates, and -h const_string_literals
options are enabled by the -h conform option in Cray C++.

Note: The c89 command does not accept the-h conform or -h stdc option.
It is enabled by default when the command is issued.

2.6.3 -h cfront (CC)

The -h cfront option causes the Cray C++ compiler to accept or reject
constructs that were accepted by previous cfront-based compilers (such
as Cray C++ 1.0), but which are not accepted in the C++ standard. The
-h anachronisms option is implied when -h cfront is specified.

2.6.4 -h [no]parse_templates (CC)

Default: -h noparse_templates

This option allows existing code that defines templates using previous versions
of the Cray STL (before Programming Environment 3.6) to compile successfully
with the -h conform option. Consequently, this allows you to compile
existing code without having to use the Cray C++ STL. To do this, use the
noparse_templates option. Also, the compiler defaults to this mode when the
-h dep_name option is used. To have the compiler verify that your code uses
the Cray C++ STL properly, use the parse_templates option.

2.6.5 -h [no]dep_name (CC)

Default: -h nodep_name

This option enables or disables dependent name processing (that is, the
separate lookup of names in templates when the template is parsed and when
it is instantiated). The -h dep_name option cannot be used with the -h
noparse_templates option.

14 S–2179–55

Compiler Commands [2]

2.6.6 -h [no]exceptions (CC)

Default: The default is -h exceptions; however, if the
CRAYOLDCPPLIB environment variable is set to a nonzero value,
the default is -h noexceptions.

The -h exceptions option enables support for exception handling. The
-h noexceptions option issues an error whenever an exception construct,
a try block, a throw expression, or a throw specification on a function
declaration is encountered. -h exceptions is enabled by -h conform.

2.6.7 -h [no]anachronisms (CC)

Default: -h noanachronisms

The -h [no]anachronisms option enables/disables anachronisms in Cray C++.
This option is overridden by -h conform.

2.6.8 -h new_for_init (CC)

The -h new_for_init option enables the new scoping rules for a declaration
in a for-init statement. This means that the new (standard-conforming) rules
are in effect, which means that the entire for statement is wrapped in its own
implicitly generated scope. -h new_for_init is implied by the -h conform
option.

This is the result of the scoping rule:

{

.

.

.

for (int i = 0; i < n; i++) {

.

.

.

} // scope of i ends here for -h new_for_init

.

.

.

} // scope of i ends here by default

S–2179–55 15

Cray® C and C++ Reference Manual

2.6.9 -h [no]tolerant (cc, c99)

Default: -h notolerant

The -h tolerant option allows older, less standard C constructs to facilitate
porting of code written for previous C compilers. Errors involving comparisons
or assignments of pointers and integers become warnings. The compiler
generates casts so that the types agree. With -h notolerant, the compiler is
intolerant of the older constructs.

The use of the -h tolerant option causes the compiler to tolerate accessing an
object with one type through a pointer to an entirely different type. For example,
a pointer to long might be used to access an object declared with type double.
Such references violate the C standard and should be eliminated if possible. They
can reduce the effectiveness of alias analysis and inhibit optimization.

2.6.10 -h [no] const_string_literals (CC)

Default: -h noconst_string_literals

The -h [no]const_string_literals options controls whether string literals
are const (as required by the standard) or non-const (as was true in earlier
versions of the C++ language).

2.6.11 -h [no]gnu (CC, cc)

Default: -h nognu

The -h gnu option enables the compiler to recognize the subset of the GCC
version 3.3.2 extensions to C listed in Table 1. Table 2 lists the extensions that
apply only to C++.

See http://gcc.gnu.org/onlinedocs/ for detailed descriptions of the GCC
C and C++ language extensions.

Table 1. GCC C Language Extensions

GCC C Language Extension Description

Typeof typeof: referring to the type of an expression

Lvalues Using ?:, and casts in lvalues

Conditionals Omitting the middle operand of a ?: expression

16 S–2179–55

http://gcc.gnu.org/onlinedocs/

Compiler Commands [2]

GCC C Language Extension Description

Long Long Double-word integers –long long int

Complex Data types for complex numbers

Statement Exprs Putting statements and declarations inside expressions

Zero Length Zero-length arrays

Variable Length Arrays whose length is computed at run time

Empty Structures Structures with no members; applies to C but not C++

Variadic Macros Macros with a variable number of arguments

Escaped Newlines Slightly looser rules for escaped newlines

Multiline strings String literals with embedded newlines

Initializers Non-constant initializers

Compound Literals Compound literals give structures, unions or arrays as values

Designated Inits Labeling elements of initializers

Cast to Union Casting to union type from any member of the union

Case Ranges c` ase 1 ... 9' and such

Mixed Declarations Mixing declarations and code

Attribute Syntax Formal syntax for attributes

Function Prototypes Prototype declarations and old-style definitions; applies to C
but not C++

C++ Comments C++ comments are recognized

Dollar Signs Dollar sign is allowed in identifiers

Character Escapes \e stands for the character <ESC>

Alignment Inquiring about the alignment of a type or variable

Inline Defining inline functions (as fast as macros)

Alternate Keywords __const__, __asm__, etc., for header files

Incomplete Enums enum foo;, with details to follow

Function Names Printable strings which are the name of the current function

Return Address Getting the return or frame address of a function

Unnamed Fields Unnamed struct/union fields within structs/unions

S–2179–55 17

Cray® C and C++ Reference Manual

GCC C Language Extension Description

Function Attributes:

• nothrow

• format, format_arg

• deprecated

• used

• unused

• alias

• weak

Declaring that functions have no side effects, or that they can
never return

Variable Attributes:

• alias

• deprecated

• unused

• used

• transparent_union

• weak

Specifying attributes of variables

Type Attributes:

• deprecated

• unused

• used

• transparent_union

Specifying attributes of types

18 S–2179–55

Compiler Commands [2]

GCC C Language Extension Description

Asm Labels Specifying the assembler name to use for a C symbol

Other Builtins:

• __builtin_types_compatible_p

• __builtin_choose_expr

• __builtin_constant_p

• __builtin_huge_val

• __builtin_huge_valf

• __builtin_huge_vall

• __builtin_inf

• __builtin_inff

• __builtin_infl

• __builtin_nan

• __builtin_nanf

• __builtin_nanl

• __builtin_nans

• __builtin_nansf

• __builtin_nansl

Other built-in functions

Special files such as /dev/null may be used as source files.

The supported subset of the GCC version 3.3.2 extensions to C++ are listed in
Table 2.

Table 2. GCC C++ Language Extensions

GCC C++ Extensions Description

Min and Max C++ minimum and maximum operators

Restricted Pointers C99 restricted pointers and references

Backwards Compatibility Compatibilities with earlier definitions of C++

S–2179–55 19

Cray® C and C++ Reference Manual

GCC C++ Extensions Description

Strong Using A using-directive with __attribute ((strong))

Explicit template specializations Attributes may be used on explicit template
specializations

2.7 Template Language Options

This section describes template language options. See Chapter 8, page 145 for
more information on template instantiation. Each subsection heading shows in
parentheses the compiler with which the option can be used.

2.7.1 -h simple_templates (CC)

The -h simple_templates option enables simple template instantiation by
the Cray C++ compiler. For more information on template instantiation, see
Chapter 8, page 145. The default is autoinstantiate.

2.7.2 -h [no]autoinstantiate (CC)

Default: -h autoinstantiate

The -h [no]autoinstantiate option enables or disables prelinker (automatic)
instantiation of templates by the Cray C++ compiler. For more information on
template instantiation, see Chapter 8, page 145.

2.7.3 -h one_instantiation_per_object (CC)

The -h one_instantiation_per_object option puts each template
instantiation used in a compilation into a separate object file that has a .int.o
extension. The primary object file will contain everything else that is not an
instantiation. See the -h instantiation_dir option for the location of the
object files.

2.7.4 -h instantiation_dir=dirname (CC)

The -h instantiation_dir = dirname option specifies the instantiation
directory that the -h one_instantiation_per_object option should use.
If directory dirname does not exist, it will be created. The default directory is
./Template.dir.

20 S–2179–55

Compiler Commands [2]

2.7.5 -h instantiate=mode (CC)

Default: -h instantiate=none

Normally, during compilation of a source file, no template entities are
instantiated (except those assigned to the file by automatic instantiation).
However, the overall instantiation mode can be changed by using the
-h instantiate=mode option. mode is specified as none (the default), used,
all, or local. The default is instantiate=none. To change the overall
instantiation mode, specify one of the following for mode:

none Default. Does not automatically create instantiations of any
template entities. This is the most appropriate mode when
prelinker (automatic) instantiation is enabled.

used Instantiates only those template entities that were used in the
compilation. This includes all static data members that have
template definitions.

all Instantiates all template functions declared or referenced in the
compilation unit. For each fully instantiated template class, all
of its member functions and static data members are instantiated
regardless of whether they were used. Nonmember template
functions are instantiated even if the only reference was a
declaration.

local Similar to instantiate=used except that the functions are
given internal linkage. This mode provides a simple mechanism
for those who are not familiar with templates. The compiler
instantiates the functions used in each compilation unit as local
functions, and the program links and runs correctly (barring
problems due to multiple copies of local static variables). This
mode may generate multiple copies of the instantiated functions
and is not suitable for production use. This mode cannot be used
in conjunction with prelinker (automatic) template instantiation.
Automatic template instantiation is disabled by this mode.

If CC is given a single source file to compile and link, all instantiations are done in
the single source file and, by default, the instantiate=used mode is used to
suppress prelinker instantiation.

S–2179–55 21

Cray® C and C++ Reference Manual

2.7.6 -h [no]implicitinclude (CC)

Default: -h implicitinclude

The -h [no]implicitinclude option enables or disables implicit inclusion
of source files as a method of finding definitions of template entities to be
instantiated.

2.7.7 -h remove_instantiation_flags (CC)

The -h remove_instantiation_flags option causes the prelinker to
recompile all the source files to remove all instantiation flags.

2.7.8 -h prelink_local_copy (CC)

The -h prelink_local_copy indicates that only local files (for example, files
in the current directory) are candidates for assignment of instantiations.

2.7.9 -h prelink_copy_if_nonlocal (CC)

The -h prelink_copy_if_nonlocal option specifies that assignment of an
instantiation to a nonlocal object file will result in the object file being recompiled
in the current directory.

2.8 Virtual Function Options (-h forcevtbl, -h suppressvtbl (CC))

The -h forcevtbl option forces the definition of virtual function tables in
cases where the heuristic methods used by the compiler to decide on definition
of virtual function tables provide no guidance. The -h suppressvtbl option
suppresses the definition of virtual function tables in these cases.

The virtual function table for a class is defined in a compilation if the compilation
contains a definition of the first noninline, nonpure virtual function of the class.
For classes that contain no such function, the default behavior is to define the
virtual function table (but to define it as a local static entity).

The -h forcevtbl option differs from the default behavior in that it does not
force the definition to be local.

22 S–2179–55

Compiler Commands [2]

2.9 General Language Options

This section describes general language options. Each subsection heading shows
in parentheses the compiler with which the option can be used.

2.9.1 -h keep=file (CC)

When the -h keep=file option is specified, the static constructor/destructor
object (.o) file is retained as file. This option is useful when linking .o files on a
system that does not have a C++ compiler. The use of this option requires that the
main function must be compiled by C++ and the static constructor/destructor
function must be included in the link. With these precautions, mixed object
files (files with .o suffixes) from C and C++ compilations can be linked into
executables by using the loader command instead of the CC command.

2.9.2 -h restrict=args (CC, cc, c99)

The -h restrict=args option globally tells the compiler to treat certain
classes of pointers as restricted pointers. You can use this option to enhance
optimizations (this includes vectorization).

Classes of affected pointers are determined by the value contained in args, as
follows:

args Description

a All pointers to object and incomplete types are to be considered
restricted pointers, regardless of where they appear in the source
code. This includes pointers in class, struct, and union
declarations, type casts, function prototypes, and so on.

!
Caution: Do not specify restrict=a if, during execution
of any function, an object is modified and that object is
referenced through either two different pointers or through the
declared name of the object and a pointer. Undefined behavior
may result.

f All function parameters that are pointers to objects or incomplete
types can be treated as restricted pointers.

S–2179–55 23

Cray® C and C++ Reference Manual

!
Caution: Do not specify restrict=f if, during execution
of any function, an object is modified and that object is
referenced through either two different pointer function
parameters or through the declared name of the object and a
pointer function parameter. Undefined behavior may result.

t All parameters that are this pointers can be treated as restricted
pointers (Cray C++ only).

!
Caution: Do not specify restrict=t if, during execution
of any function, an object is modified and that object is
referenced through the declared name of the object and a this
pointer. Undefined behavior may result.

The args arguments tell the compiler to assume that, in the current compilation
unit, each pointer (=a), or each pointer that is a function parameter (=f), or each
this pointer (=t) points to a unique object. This assumption eliminates those
pointers as sources of potential aliasing, and may allow additional vectorization
or other optimizations. These options cause only data dependencies from pointer
aliasing to be ignored, rather than all data dependencies, so they can be used
safely for more programs than the -h ivdep option.

!
Caution: Like -h ivdep, the arguments make assertions about your program
that, if incorrect, can introduce undefined behavior. You should not use
-h restrict=a if, during the execution of any function, an object is modified
and that object is referenced through either of the following:

• Two different pointers

• The declared name of the object and a pointer

The -h restrict=f and -h restrict=t options are subject to the
analogous restriction, with "function parameter pointer" replacing "pointer."

2.9.3 -h [no]calchars (CC, cc, c99)

Default: -h nocalchars

The -h calchars option allows the use of the @ and $ characters in identifier
names. This option is useful for porting codes in which identifiers include these
characters. With -h nocalchars, these characters are not allowed in identifier
names.

24 S–2179–55

Compiler Commands [2]

!
Caution: Use this option with extreme care, because identifiers with these
characters are within UNICOS/mp name space and are included in many
library identifiers, internal compiler labels, objects, and functions. You must
prevent conflicts between any of these uses, current or future, and identifier
declarations or references in your code; any such conflict is an error.

2.9.4 -h [no]signedshifts (CC, cc, c99)

Default: -h signedshifts

The -h [no]signedshifts option affects the result of the right shift
operator. For the expression e1 >> e2 where e1 has a signed type, when
-h signedshifts is in effect, the vacated bits are filled with the sign bit of e1.
When -h nosignedshifts is in effect, the vacated bits are filled with zeros,
identical to the behavior when e1 has an unsigned type.

Also refer to Section 14.2.5, page 187 about the effects of this option when shifting
integers.

2.10 General Optimization Options

This section describes general optimization options. Each subsection heading
shows in parentheses the compiler with which the option can be used.

2.10.1 -h gen_private_callee (CC, cc, c99)

The -h gen_private_callee option is used when compiling source
files containing routines that will be called from streamed regions, whether
those streamed regions are created by CSD directives or by the use of the
ssp_private or concurrent directives to cause autostreaming. For more
information about the ssp_private directive, see Section 3.8.1, page 93. For
more information about CSDs, see Chapter 4, page 105.

2.10.2 -h [no]aggress (CC, cc, c99)

Default: -h noaggress

The -h aggress option provides greater opportunity to optimize loops that
would otherwise by inhibited from optimization due to an internal compiler size
limitation. -h noaggress leaves this size limitation in effect.

S–2179–55 25

Cray® C and C++ Reference Manual

With -h aggress, internal compiler tables are expanded to accommodate larger
loop bodies. This option can increase the compilation's time and memory size.

2.10.3 -h display_opt

The -h display_opt option displays the current optimization settings for this
compilation.

2.10.4 -h [no]fusion (CC, cc, c99)

Default: -h fusion

The –h [no]fusion option globally allows or disallows loop fusion. By default,
the compiler attempts to fuse all loops, unless the –h nofusion option is
specified. Fusing loops generally increases single processor performance by
reducing memory traffic and loop overhead. On rare occasions loop fusing may
degrade performance.

Note: Loop fusion is disabled when the vectorization level is set to 0 or 1.

See Optimizing Applications on Cray X1 Series Systems for more information about
loop fusion.

2.10.5 -h [no]intrinsics (CC, cc, c99)

Default: -h intrinsics

The -h intrinsics option allows the use of intrinsic hardware functions,
which allow direct access to some hardware instructions or generate inline
code for some functions. This option has no effect on specially-handled library
functions.

Intrinsic functions are described in Appendix F, page 225.

2.10.6 -h list=opt (CC, cc, c99)

The -h list=opt option allows the creation of a loopmark listing and controls
its format. The listings are written to source_file_name_without_suffix.lst.

For additional information on loopmark listings, see Optimizing Applications on
Cray X1 Series Systems.

26 S–2179–55

Compiler Commands [2]

The values for opt are:

a Use all list options; source_file_name_without_suffix.lst includes
summary report, options report, and source listing

b Add page breaks to listing

e Expand include files

Note: Using this option may result in a very large listing file.
All system include files are also expanded.

i Intersperse optimization messages within the source listing
rather than at the end

m Create loopmark listing; source_file_name_without_suffix.lst
includes summary report and source listing

p Causes the compiler to insert carriage control characters into
column one of each line in the listing. Use this option for line
printers which require the carriage control characters to control
the vertical position of each printed line.

Table 3 shows the carriage control characters used.

Table 3. Carriage Control Characters

Control character Action

1 New page

Blank Single spacing

s Create a complete source listing (include files not expanded)

w Create a wide listing rather than the default of 80 characters

Using -h list=m creates a loopmark listing. The b, e, i, s, and w options
provide additional listing features. Using -h list=a combines all options.

2.10.7 -h msp (CC, cc, c99)

Default: -h msp

The -h msp option causes the compiler to generate code and to select
the appropriate libraries to create an executable that runs on one or more

S–2179–55 27

Cray® C and C++ Reference Manual

multistreaming processors (MSP mode). Any code, including code using
Cray-supported distributed memory models, can use MSP mode.

Executables compiled for MSP mode can contain object files compiled with MSP
or SSP mode. That is, MSP and SSP object files can be specified during the load
step as follows:

cc -h msp -c ... /* Produce MSP object files */

cc -h ssp -c ... /* Produce SSP object files */

/* Link MSP and SSP object files */

/* to create an executable to run on MSPs */

cc sspA.o sspB.o msp.o ...

For more information about MSP mode, refer to Optimizing Applications on
Cray X1 Series Systems. For information on SSP mode, see Section 2.10.10, page 28.

2.10.8 -h [no]pattern (CC, cc, c99)

Default: -h pattern

The -h [no]pattern option globally enables or disables pattern matching.
Pattern matching is on by default. For details on pattern matching, see Optimizing
Applications on Cray X1 Series Systems.

2.10.9 -h [no]overindex (CC, cc, c99)

Default: -h nooverindex

The -h overindex option declares that there are array subscripts that index
a dimension of an array that is outside the declared bounds of that array. The
-h nooverindex option declares that there are no array subscripts that index a
dimension of an array that is outside the declared bounds of that array.

2.10.10 -h ssp (CC, cc, c99)

Default: -h msp

The -h ssp option causes the compiler to compile the code and select the
appropriate libraries to create an executable that runs on one single-streaming
processor (SSP mode). Any code, including code using Cray-supported
distributed memory models, can use SSP mode.

Executables compiled for SSP mode can contain only object files compiled in SSP

28 S–2179–55

Compiler Commands [2]

mode. When loading object files separately from the compile step, the SSP mode
must be specified during the load step as this example shows:

/* Produce SSP object files */

cc -h ssp -c ...

/* Link SSP object files */

/* to create an executable to run on a single SSP */

cc -h ssp sspA.o sspB.o ...

Since SSP mode does not use multistreaming, the -h ssp option also changes
the compiler's behavior in the same way as the -h stream0 option. This option
then causes the compiler to ignore CSDs.

Note: Code explicitly compiled with the -h stream0 option can be linked
with object files compiled with MSP or SSP mode. You can use this option to
create a universal library that can be used in MSP or SSP mode.

For more information about SSP mode, refer to Optimizing Applications on Cray X1
Series Systems. For information about MSP mode, see Section 2.10.7, page 27.

Note: The -h ssp and -h command options both create executables that
run on an SSP. The executable created via the -h ssp option executes on an
application node. The executable created via the -h command option executes
on the support node.

2.10.11 -h [no]unroll (CC, cc, c99)

Default: –h unroll

The –h [no]unroll option globally allows or disallows unrolling of loops.
By default, the compiler attempts to unroll all loops, unless the –h nounroll
option is specified, or the unroll0 or unroll1 pragma (Section 3.9.5, page 99)
is specified for a loop. Loop unrolling generally increases single processor
performance at the cost of increased compile time and code size.

See Optimizing Applications on Cray X1 Series Systems for more information about
loop unrolling.

2.10.12 -O level (CC, cc, c89, c99)

Default: Equivalent to the appropriate -h option

The -O level option specifies the optimization level for a group of compiler

S–2179–55 29

Cray® C and C++ Reference Manual

features. Specifying -O with no argument is the same as not specifying the -O
option; this syntax is supported for compatibility with other vendors.

A value of 0, 1, 2, or 3 sets that level of optimization for each of the
-h scalarn, -h streamn, and -h vectorn options.

For example, -O2 is equivalent to the following:

-h scalar2,stream2,vector2

Optimization features specified by -O are equivalent to the -h options listed in
Table 4.

Table 4. -h Option Descriptions

-h option Description location

-h streamn Section 2.11.1, page 30

-h vectorn Section 2.12.3, page 32

-h scalarn Section 2.14.2, page 37

2.11 Multistreaming Processor Optimization Options

This section describes the multistreaming processor (MSP) options. For
information on MSP #pragma directives, see Section 3.8, page 93. For
information about streaming intrinsics, see Appendix F, page 225. Each
subsection heading shows in parentheses the compiler command with which
the option can be used.

These options cannot be used in SSP mode, which is enabled with the -h ssp
option.

2.11.1 -h streamn (CC, cc, c99)

The -h streamn option specifies the level of automatic MSP optimizations to be
performed. Generally, vectorized applications that execute on a one-processor
system can expect to execute up to four times faster on a processor with
multistreaming enabled.

The default is -h stream2.

30 S–2179–55

Compiler Commands [2]

These can be used for the n argument:

n Description

0 No automatic multistreaming optimizations are performed.

1 Conservative automatic multistreaming optimizations. This level
is compatible with -h vector1, 2, and 3.

2 Moderate automatic multistreaming optimizations. Automatic
multistreaming optimization is performed on loop nests and
appropriate BMM operations.

This option also enables conditional streaming. Conditional
streaming allows runtime selection between streamed and
nonstreamed versions of a loop based on dependence conditions
which cannot be evaluated until runtime. For details, see
Optimizing Applications on Cray X1 Series Systems.

This level is compatible with -h vector2 and 3.

3 Aggressive automatic multistreaming optimizations. Automatic
multistreaming optimization is performed as with stream2.
This level is compatible with -h vector2 and 3.

2.12 Vector Optimization Options

This section describes vector optimization options. Each subsection heading
shows in parentheses the compiler command with which the option can be used.

2.12.1 -h [no]infinitevl (CC, cc, c99)

Default: -h infinitevl

The -h infinitevl option tells the compiler to assume an infinite safe vector
length for all #pragma _CRI ivdep directives. The -h noinfinitevl
option tells the compiler to assume a safe vector length equal to the maximum
supported vector length on the machine for all #pragma _CRI ivdep
directives.

S–2179–55 31

Cray® C and C++ Reference Manual

2.12.2 -h [no]ivdep (CC, cc, c99)

Default: -h noivdep

The -h ivdep option tells the compiler to ignore vector dependencies for
all loops. This is useful for vectorizing loops that contain pointers. With
-h noivdep, loop dependencies inhibit vectorization. To control loops
individually, use the #pragma _CRI ivdep directive, as discussed in Section
3.7.1, page 83.

This option can also be used with "vectorization-like" optimizations found in
Section 3.7, page 82.

!
Caution: This option should be used with extreme caution because incorrect
results can occur if there is a vector dependency within a loop. Combining
this option with inlining is dangerous because inlining can introduce vector
dependencies.

This option severely constrains other loop optimizations and should be
avoided if possible.

2.12.3 -h vectorn (CC, cc, c99)

Default: -h vector2

The -h vectorn option specifies the level of automatic vectorizing to be
performed. Vectorization results in dramatic performance improvements with
a small increase in object code size. Vectorization directives are unaffected by
this option.

Argument n can be one of the following:

n Description

0 No automatic vectorization. Characteristics include low compile
time and small compile size. This option is compatible with all
scalar optimization levels.

1 Specifies conservative vectorization. Characteristics include
moderate compile time and size. No loop nests are restructured;
only inner loops are vectorized. Not all vector reductions are
performed, so results do not differ from results obtained when
the -h vector0 option is specified. No vectorizations that
might create false exceptions are performed.

32 S–2179–55

Compiler Commands [2]

The -h vector1 option is compatible with -h scalar1,
-h scalar2, -h scalar3, or -h stream1.

2 Specifies moderate vectorization. Characteristics include
moderate compile time and size. Loop nests are restructured.
Results can differ slightly from results obtained when
-h vector1 is specified because of vector reductions.

The -h vector2 option is compatible with -h scalar2 or
-h scalar3 and with -h stream0, -h stream1, and -h
stream2.

3 Specifies aggressive vectorization. Characteristics include
potentially high compile time and size. Loop nests are
restructured. Results can differ slightly from results obtained
when -h vector1 is specified because of vector reductions.
Vectorizations that might create false exceptions in rare cases
may be performed.

Vectorization directives are described in Section 3.7, page 82.

2.12.4 -h [no]vsearch (CC, cc, c99)

Default: -h vsearch

The -h vsearch option enables vectorization of all search loops. With
-h novsearch, the default vectorization level applies. The novsearch
directive is discussed in Section 3.7.6, page 87. This option is affected by the
-h vectorn option (see Section 2.12.3, page 32).

2.13 Inlining Optimization Options

Inlining is the process of replacing a user function call with the function definition
itself. This saves call overhead and may allow better optimization of the inlined
code. If all calls within a loop are inlined, the loop becomes a candidate for
vectorization or streaming. Inlining may increase object code size.

Inlining is inhibited if:

• Arguments declared in a function differ in type from arguments in a function
call.

• The number of arguments declared in a function differ from the number of
arguments in a function call.

S–2179–55 33

Cray® C and C++ Reference Manual

• A call site is within the range of a #pragma inline_disable directive. For
a description of the inline_disable directive, see Section 3.10.1, page 102.

• A function being called is specified on a #pragma inline_never directive.
For a description of the inline_never directive, see Section 3.10.2, page 104.

• The compiler determines that the routine is too big to inline. This is
determined by an internal limit of the text (that is, the instruction segment
in the executable) size of the routine. You can override this limit by
inserting a #pragma inline_always directive. For a description of the
inline_always directive, see Section 3.10.2, page 104.

The compiler supports the following inlining modes:

• Automatic inlining (Section 2.13.1)

• Explicit inlining (see Section 2.13.2, page 35)

• Combined inlining (see Section 2.13.3, page 36)

2.13.1 -h ipan (CC, cc, c89, c99)

Default: -h ipa3

The -h ipan option specifies automatic inlining. Automatic inlining allows
the compiler to automatically select, depending on the inlining level n, which
functions to inline. Each n is a different set of heuristics. The candidates for
expansion are all those functions that are present in the input file to the compile
step.Table 5 explains what is inlined at each level.

Table 5. Automatic Inlining Specifications

Inlining level Description

0 All inlining is disabled. All inlining compiler directives are ignored. See
Section 3.10, page 101 for more information about inlining directives.

1 Directive inlining. Inlining is attempted for call sites and routines that
are under the control of an inlining pragma directive.

2 Loop inlining. Inlining is attempted at level 1 plus inlining is attempted
for call sites that exist within for, while, and do-while loops.

34 S–2179–55

Compiler Commands [2]

Inlining level Description

3 Inlining to a depth of three. Inlining is attempted on call sites
containing scalar constant arguments. The inlining must result in
"flat-lined" code (i.e., contain no calls); otherwise, the inlining will not
be performed.

For example, assume main calls function p1, p1 calls p2, p2 calls p3,
p3 calls p4, and p4 calls leaf routine p5. Using -h ipa3 would result
in the inlining of functions p3, p4, and p5.

Leaf node functions do not call any external functions. An external
function is any routine that must be branched to.

-h ipa3 is the default inlining level.

4 All heuristics inlining. This level is the combination of the heuristics
at levels 1, 2, and 3.

5 Aggressive inlining. Inlining is attempted for every call site
encountered.

2.13.2 -h ipafrom=source [:source] (CC, cc, c89, c99)

The -h ipafrom=source [:source] option specifies explicit inlining. The
source arguments identify the files or directories that contain the functions to
consider for inlining. Only those functions present in source are candidates
for inlining. When a call is encountered to a function that resides in source, an
attempt will be made to expand the function in place at that call site.

Note that blanks are not allowed on either side of the equal sign.

All inlining directives are recognized with explicit inlining. For information on
inlining directives, see Section 3.10, page 101.

The functions in source are not actually loaded with the final program. They are
simply templates for the inliner. To have a function contained in source loaded
with the program, you must include it in an input file to the compilation.

S–2179–55 35

Cray® C and C++ Reference Manual

Use one or more of the following objects in the source argument.

Source Description

C or C++ source files The functions in C or C++ source files are candidates for inline
expansion and must contain error-free code.

C files that are acceptable for inlining are files with the .c
extension.

C++ files that are acceptable for inlining are files that have one
of the following extensions: .C, .c++, .C++, .cc, .cxx, .Cxx,
.CXX, .CC, , or .cpp.

dir A directory that contains any of the file types described in this
table.

2.13.3 Combined Inlining

Combined inlining is a combination of automatic inlining and explicit inlining.
It allows you to specify targets for inline expansion, while applying the selected
level of inlining heuristics.

You invoke combined inlining by including both the -h ipan and the -h
ipafrom=source [:source] options on the command line. The only
candidates for expansion are those functions that reside in source. The rules that
apply to deciding whether to inline are defined by the -h ipan setting.

2.14 Scalar Optimization Options

This section describes scalar optimization options. Each subsection heading
shows in parentheses the compiler command with which the option can be used.

2.14.1 -h [no]interchange (CC, cc, c99)

Default: -h interchange

The -h interchange option allows the compiler to attempt to interchange all
loops, a technique that is used to gain performance by having the compiler swap
an inner loop with an outer loop. The compiler attempts the interchange only if
the interchange will increase performance. Loop interchange is performed only at
scalar optimization level 2 or higher.

36 S–2179–55

Compiler Commands [2]

The -h nointerchange option prevents the compiler from attempting to
interchange any loops. To disable interchange of loops individually, use the
#pragma _CRI nointerchange directive.

2.14.2 -h scalarn (CC, cc, c99)

Default: -h scalar1

The -h scalarn option specifies the level of automatic scalar optimization to
be performed. Scalar optimization directives are unaffected by this option (see
Section 3.9, page 96).

Use one of these values for n:

n Description

0 No automatic scalar optimization. The -h matherror=errno
and -h zeroinc options are implied by -h scalar0.

1 Conservative automatic scalar optimization. This level implies
-h matherror=abort and -h nozeroinc.

2 Moderate automatic scalar optimization. The scalar
optimizations specified by scalar1 are performed.

3 Aggressive automatic scalar optimization.

2.14.3 -h [no]reduction (CC, cc, c99)

Default: -h reduction

The -h reduction option tells the compiler to enable vectorization of all
reduction loops. The -h noreduction option disables vectorization of any
loop that contains a reduction in which the order of evaluation is numerically
significant. The specific reductions that are disabled are floating point, double
precision, complex summation and product reductions, and alternating value
computations.

This option is affected by the -h scalarn option (see Section 2.14.2, page 37).
Reduction loops and the noreduction directive are discussed in Section 3.9.3,
page 98.

2.14.4 -h [no]zeroinc (CC, cc, c99)

Default: -h nozeroinc

S–2179–55 37

Cray® C and C++ Reference Manual

The -h nozeroinc option improves run time performance by causing the
compiler to assume that constant increment variables (CIVs) in loops are not
incremented by expressions with a value of 0.

The -h zeroinc option causes the compiler to assume that some CIVs in
loops might be incremented by 0 for each pass through the loop, preventing
generation of optimized code. For example, in a loop with index i, the expression
expr in the statement i += expr can evaluate to 0. This rarely happens in actual
code. -h zeroinc is the safer and slower option. This option is affected by the
-h scalarn option (see Section 2.14.2, page 37).

2.15 Math Options

This section describes compiler options pertaining to math functions. Each
subsection heading shows in parentheses the compiler command with which
the option can be used.

2.15.1 -h fpn (CC, cc, c99)

Default: -h fp2

The -h fp option allows you to control the level of floating-point optimizations.
The n argument controls the level of allowable optimization; 0 gives the compiler
minimum freedom to optimize floating-point operations, while 3 gives it
maximum freedom. The higher the level, the lesser the floating-point operations
conform to the IEEE standard.

This option is useful for code that use unstable algorithms, but which are
optimizable. It is also useful for applications that want aggressive floating-point
optimizations that go beyond what the Fortran standard allows.

Generally, this is the behavior and usage for each -h fp level:

• -h fp0—causes your program's executable code to conform more closely to
the IEEE floating-point standard than the default mode (-h fp2). When this
level is specified, many identity optimizations are disabled, executable code is
slower than higher floating-point optimization levels, and a scaled complex
divide mechanism is enabled that increases the range of complex values that
can be handled without producing an underflow.

The-h fp0 option should never be used, except when your code pushes the
limits of IEEE accuracy, or require strong IEEE standard conformance.

• -h fp1—performs various, generally safe, non-conforming IEEE

38 S–2179–55

Compiler Commands [2]

optimizations, such as folding a == a to true, where a is a floating point
object. At this level, floating-point reassociation1 is greatly limited, which
may affect the performance of your code.

The -h fp1 options should never be used, except when your code pushes the
limits of IEEE accuracy, or requires strong IEEE standard conformance.

• -h fp2—includes optimizations of -h fp1.

• -h fp3—includes optimizations of -h fp2.

The -h fp3 option should be used when performance is more critical than
the level of IEEE standard conformance provided by -h fp2.

Table 6 compares the various optimization levels of the -h fp option (levels 2
and 3 are usually the same). The table lists some of the optimizations performed;
the compiler may perform other optimizations not listed.

Table 6. Floating-point Optimization Levels

Optimization
Type 0 1 2 (default) 3

Inline selected
mathematical
library
functions

N/A N/A N/A Accuracy is slightly
reduced.

Complex
divisions

Accurate and slower Accurate and
slower

Less accurate (less
precision) and faster.

Less accurate (less
precision) and faster.

Exponentiation
rewrite

None None Maximum
performance2

Maximum
performance2, 3

Strength
reduction

Fast Fast Aggressive Aggressive

1 For example, a+b+c is rearranged to b+a+c, where a, b, and c are floating point variables.
2 Rewriting values raised to a constant power into an algebraically equivalent series of multiplications

and/or square roots.
3 Rewriting exponentiations (ab) not previously optimized into the algebraically equivalent form exp(b

* ln(a)).

S–2179–55 39

Cray® C and C++ Reference Manual

Optimization
Type 0 1 2 (default) 3

Rewrite
division as
reciprocal
equivalent 4

None None Yes Yes

Safety Maximum Moderate Moderate Low

If multiple -h fp options are used, the compiler will use only the rightmost
option and will issue a message indicating such.

2.15.2 -h matherror=method (CC, cc, c99)

Default: -h matherror=abort

The -h matherror=method option specifies the method of error processing used
if a standard math function encounters an error. The method argument can have
one of the following values:

method Description

abort If an error is detected, errno is not set. Instead a message is
issued and the program aborts. An exception may be raised.

errno If an error is detected, errno is set and the math function returns
to the caller. This method is implied by the -h conform,
-h scalar0, -O0, -Gn, and -g options.

2.16 Debugging Options

This section describes compiler options used for debugging. Each subsection
heading shows in parentheses the compiler command with which the option
can be used.

2.16.1 -G level (CC, cc, c99) and -g (CC, cc, c89, c99)

The -G level and -g options enable the generation of debugging information
that is used by symbolic debuggers such as TotalView. These options allow
debugging with breakpoints. Table 7 describes the values for the -G option.

4 For example, x/y is transformed to x * 1.0/y.

40 S–2179–55

Compiler Commands [2]

Table 7. -G level Definitions

level Optimization Breakpoints allowed on

f Full Function entry and exit

p Partial Block boundaries

n None Every executable statement

More extensive debugging (such as full) permits greater optimization
opportunities for the compiler. Debugging at any level may inhibit some
optimization techniques, such as inlining.

The -g option is equivalent to -Gn. The -g option is included for compatibility
with earlier versions of the compiler and many other UNIX systems; the
-G option is the preferred specification. The -Gn and -g options disable all
optimizations and imply -O0.

The debugging options take precedence over any conflicting options that appear
on the command line. If more than one debugging option appears, the last one
specified overrides the others.

Debugging is described in more detail in Chapter 12, page 165.

2.16.2 -h [no]bounds (cc, c99)

Default: -h nobounds

The -h bounds option provides checking of pointer and array references to
ensure that they are within acceptable boundaries. -h nobounds disables these
checks.

The pointer check verifies that the pointer is greater than 0 and less than the
machine memory limit. The array check verifies that the subscript is greater than
or equal to 0 and is less than the array size, if declared.

2.16.3 -h zero (CC, cc, c99)

The -h zero option causes stack-allocated memory to be initialized to all zeros.

S–2179–55 41

Cray® C and C++ Reference Manual

2.17 Compiler Message Options

This section describes compiler options that affect messages. Each subsection
heading shows in parentheses the compiler command with which the option
can be used.

2.17.1 -h msglevel_n (CC, cc, c99)

Default: -h msglevel_3

The -h msglevel_n option specifies the lowest level of severity of messages to
be issued. Messages at the specified level and above are issued. Argument n can
be 0 (comment), 1 (note), 2 (caution), 3 (warning), or 4 (error).

2.17.2 -h [no]message=n[:n...] (CC, cc, c99)

Default: Determined by -h msglevel_n

The -h [no]message=n[:n...] option enables or disables specified compiler
messages. n is the number of a message to be enabled or disabled. You can
specify more than one message number; multiple numbers must be separated by
a colon with no intervening spaces. For example, to disable messages CC-174
and CC-9, specify:

-h nomessage=174:9

The -h [no]message=n option overrides -h msglevel_n for the specified
messages. If n is not a valid message number, it is ignored. Any compiler
message except ERROR, INTERNAL, and LIMIT messages can be disabled;
attempts to disable these messages by using the -h nomessage=n option are
ignored.

2.17.3 -h report=args (CC, cc, c99)

The -h report=args option generates report messages specified in args and
lets you direct the specified messages to a file. Use any combination of these
for args:

args Description

i Generates inlining optimization messages

m Generates multistream optimization messages

s Generates scalar optimization messages

42 S–2179–55

Compiler Commands [2]

v Generates vector optimization messages

f Writes specified messages to file file.V where file is the
source file specified on the command line. If the f option is not
specified, messages are written to stderr.

No spaces are allowed around the equal sign (=) or any of the args codes. For
example, the following example prints inlining and scalar optimization messages
for myfile.c:

% cc -h report=is myfile.c

2.17.4 -h [no]abort (CC, cc, c99)

Default: -h noabort

The -h [no]abort option controls whether a compilation aborts if an error is
detected.

2.17.5 -h errorlimit[=n] (CC, cc, c99)

Default: -h errorlimit=100

The -h errorlimit[=n] option specifies the maximum number of error
messages the compiler prints before it exits. n is a positive integer. Specifying
-h errorlimit=0 disables exiting on the basis of the number of errors.
Specifying -h errorlimit with no qualifier is the same as setting n to 1.

2.18 Compilation Phase Options

This section describes compiler options that affect compilation phases. Each
subsection heading shows in parentheses the compiler command with which
the option can be used.

2.18.1 -E (CC, cc, c89, c99, cpp)

If the -E option is specified on the command line (except for cpp), it executes
only the preprocessor phase of the compiler. The -E and -P options are
equivalent, except that -E directs output to stdout and inserts appropriate
#line preprocessing directives. The -E option takes precedence over the
-h feonly, -S, and -c options.

If the -E option is specified on the cpp command line, it inserts the appropriate

S–2179–55 43

Cray® C and C++ Reference Manual

#line directives in the preprocessed output. When both the -P and -E options
are specified, the last one specified takes precedence.

2.18.2 -P (CC, cc, c99, cpp)

When the -P option is specified on the command line (except for cpp), it executes
only the preprocessor phase of the compiler for each source file specified. The
preprocessed output for each source file is written to a file with a name that
corresponds to the name of the source file and has .i suffix substituted for the
suffix of the source file. The -P option is similar to the -E option, except that
#line directives are suppressed, and the preprocessed source does not go to
stdout. This option takes precedence over -h feonly, -S, and -c.

When both the -P and -E options are specified, the last one specified takes
precedence.

When the -P option is specified on the cpp command line, it is ignored.

2.18.3 -h feonly (CC, cc, c99)

The -h feonly option limits the Cray C and C++ compilers to syntax checking.
The optimizer and code generator are not executed. This option takes precedence
over -S and -c.

2.18.4 -S (CC, cc, c99)

The -S option compiles the named C or C++ source files and leaves their
assembly language output in the corresponding files suffixed with a .s. If this
option is used with -G or -g, debugging information is not generated. This
option takes precedence over -c.

2.18.5 -c (CC, cc, c89, c99)

The -c option creates a relocatable object file for each named source file but does
not link the object files. The relocatable object file name corresponds to the name
of the source file. The .o suffix is substituted for the suffix of the source file.

2.18.6 -#, -##, and -### (CC, cc, c99, cpp)

The -# option produces output indicating each phase of the compilation as it is
executed. Each succeeding output line overwrites the previous line.

44 S–2179–55

Compiler Commands [2]

The -## option produces output indicating each phase of the compilation as
it is executed.

The -### option is the same as -##, except the compilation phases are not
executed.

2.18.7 -Wphase,"opt..." (CC, cc, c99)

The -Wphase option passes arguments directly to a phase of the compiling
system. Table 8 shows the system phases that phase can indicate.

Table 8. -Wphase Definitions

phase System phase Command

p Preprocessor cpp

0 Compiler CC, cc, and c99

a Assembler as(1)

l Loader ld

Arguments to be passed to system phases can be entered in either of two
styles. If spaces appear within a string to be passed, the string is enclosed in
double quotes. When double quotes are not used, spaces cannot appear in the
string. Commas can appear wherever spaces normally appear; an option and its
argument can be either separated by a comma or not separated. If a comma is
part of an argument, it must be preceded by the \ character. For example, any of
the following command lines would send -e name and -s to the loader:

% cc -Wl,"-e name -s" file.c

% cc -Wl,-e,name,-s file.c

% cc -Wl,"-ename",-s file.c

Because the preprocessor is built into the compiler, -Wp and -W0 are equivalent.

2.18.8 -Yphase,dirname (CC, cc, c89, c99, cpp)

The -Yphase,dirname option specifies a new directory (dirname) from which
the designated phase should be executed. phase can be one or more of the values
shown in Table 9.

S–2179–55 45

Cray® C and C++ Reference Manual

Table 9. -Yphase Definitions

phase System phase Command

p Preprocessor cpp

0 Compiler CC,cc,c89,c89,cpp

a Assembler as

l Loader ld

Because there is no separate preprocessor, -Yp and -Y0 are equivalent. If you
are using the -Y option on the cpp command line, p is the only argument for
phase that is allowed.

2.19 Preprocessing Options

This section describes compiler options that affect preprocessing. Each subsection
heading shows in parentheses the compiler command with which the option
can be used.

2.19.1 -C (CC, cc, c99, cpp)

The -C option retains all comments in the preprocessed source code, except
those on preprocessor directive lines. By default, the preprocessor phase strips
comments from the source code. This option is useful with cpp or in combination
with the -P or -E option on the CC, cc, and c99 commands.

2.19.2 -D macro[=def] (CC, cc, c89, c99 cpp)

The -D macro[=def] option defines a macro named macro as if it were defined
by a #define directive. If no =def argument is specified, macro is defined as 1.

Predefined macros also exist; these are described in Chapter 10, page 159. Any
predefined macro except those required by the standard (see Section 10.1,
page 159) can be redefined by the -D option. The -U option overrides the -D
option when the same macro name is specified regardless of the order of options
on the command line.

46 S–2179–55

Compiler Commands [2]

2.19.3 -h [no]pragma=name[:name...] (CC, cc, c99)

Default: -h pragma

The [no]pragma=name[:name...] option enables or disables the processing
of specified directives in the source code. name can be the name of a directive
or a word shown in Table 10 to specify a group of directives. More than one
name can be specified. Multiple names must be separated by a colon and have
no intervening spaces.

Table 10. -h pragma Directive Processing

name Group Directives affected

all All All directives

allinline Inlining inline, nolinline

allscalar Scalar optimization concurrent, nointerchange,
noreduction, suppress,
unroll

allvector Vectorization ivdep, novector, novsearch,
prefervector, shortloop

When using this option to enable or disable individual directives, note that
some directives must occur in pairs. For these directives, you must disable both
directives if you want to disable either; otherwise, the disabling of one of the
directives may cause errors when the other directive is (or is not) present in the
compilation unit.

2.19.4 -I incldir (CC, cc, c89, c99, cpp)

The -I incldir option specifies a directory for files named in #include directives
when the #include file names do not have a specified path. Each directory
specified must be specified by a separate -I option.

The order in which directories are searched for files named on #include
directives is determined by enclosing the file name in either quotation marks ("")
or angle brackets (< and >).

Directories for #include "file" are searched in the following order:

1. Directory of the input file.

2. Directories named in -I options, in command line order.

S–2179–55 47

Cray® C and C++ Reference Manual

3. Site-specific and compiler release-specific include files directories.

4. Directory /usr/include.

Directories for #include <file> are searched in the following order:

1. Directories named in -I options, in command line order.

2. Site-specific and compiler release-specific include files directories.

3. Directory /usr/include.

If the -I option specifies a directory name that does not begin with a slash (/),
the directory is interpreted as relative to the current working directory and not
relative to the directory of the input file (if different from the current working
directory). For example:

% cc -I. -I yourdir mydir/b.c

The preceding command line produces the following search order:

1. mydir (#include "file" only).

2. Current working directory, specified by -I.

3. yourdir (relative to the current working directory), specified by -I
yourdir.

4. Site-specific and compiler release-specific include files directories.

5. Directory /usr/include.

2.19.5 -M (CC, cc, c99, cpp)

The -M option provides information about recompilation dependencies that the
source file invokes on #include files and other source files. This information is
printed in the form expected by make. Such dependencies are introduced by the
#include directive. The output is directed to stdout.

2.19.6 -N (cpp)

The -N option specified on the cpp command line enables the old style (referred
to as K & R) preprocessing. If you have problems with preprocessing (especially
non-C source code), use this option.

48 S–2179–55

Compiler Commands [2]

2.19.7 -nostdinc (CC, cc, c89, c99, cpp)

The -nostdinc option stops the preprocessor from searching for include files in
the standard directories (/usr/include/CC and /usr/include).

2.19.8 -U macro (CC, cc, c89, c99, cpp)

The -U option removes any initial definition of macro. Any predefined macro
except those required by the standard (see Section 10.1, page 159) can be
undefined by the -U option. The -U option overrides the -D option when the
same macro name is specified, regardless of the order of options on the command
line.

Predefined macros are described in Chapter 10, page 159. Macros defined in the
system headers are not predefined macros and are not affected by the -U option.

2.20 Loader Options

This section describes compiler options that affect loader tasks. Each subsection
heading shows in parentheses the compiler command with which the option
can be used.

2.20.1 -l libfile (CC, cc, c89, c99)

The -l libfile option identifies a library file. To request more than one library file,
specify multiple -l options.

The loader searches for libraries by prepending ldir/lib on the front of libfile
and appending .a on the end of it, for each ldir that has been specified by
using the -L option. It uses the first file it finds. See also the -L option (Section
2.20.2, page 50).

There is no search order dependency for libraries. Default libraries are shown in
the following list:

libC.a (Cray C++ only)

libu.a

libm.a

libc.a

libsma.a

S–2179–55 49

Cray® C and C++ Reference Manual

libf.a

libfi.a

libsci.a

If you specify personal libraries by using the -l command line option, as in the
following example, those libraries are added to the top of the preceding list. (The
-l option is passed to the loader.)

cc -l mylib target.c

When the previous command line is issued, the loader looks for a library named
libmylib.a (following the naming convention) and adds it to the top of the
list of default libraries.

2.20.2 -L libdir (CC, cc, c89, c99)

The -L libdir option changes the -l option search algorithm to look for library
files in directory ldir. To request more than one library directory, specify
multiple -L options.

The loader searches for library files in the compiler release-specific directories.

Note: Multiple -L options are treated cumulatively as if all libdir arguments
appeared on one -L option preceding all -l options. Therefore, do not attempt
to load functions of the same name from different libraries through the use of
alternating -L and -l options.

2.20.3 -o outfile (CC, cc, c89, c99)

The -o outfile option produces an absolute binary file named outfile. A file named
a.out is produced by default. When this option is used in conjunction with
the -c option and a single C or C++ source file, a relocatable object file named
outfile is produced.

2.20.4 -s (CC, cc, c89, c99)

(Deferred implementation) The -s option produces executable files from which
symbolic and other information not required for proper execution has been
removed. If both the -s and -g (or -G) options are present, -s is ignored.

50 S–2179–55

Compiler Commands [2]

2.21 Miscellaneous Options

This section describes compiler options that affect general tasks. Each subsection
heading shows in parentheses the compiler command with which the option
can be used.

2.21.1 -h command (cc, c99)

The command mode option (-h command) allows you to create commands for
Cray X1 series systems to supplement commands developed by Cray. Such
commands run serially on a single-streaming processor (SSP) within a support
node; they execute immediately without assistance from aprun or psched.

The commands created with the command mode option cannot multistream. If
you want to disable vectorization, add the -h vector0 option to the compiler
command line. The compiled commands will have less debugging information,
unless you specify a debugging option. The debugging information does not
slow execution time, but it does result in a larger executable that may take longer
to load.

For simplicity, you should use the C compiler to load your programs built with
the command mode option, because the required options and libraries are
automatically specified and loaded for you.

If you decide to load the libraries manually, you must use the loader command
(ld) and specify on its command line the -command and -ssp options and
the -L option with the path to the command mode libraries. The command
mode libraries are found in the cmdlibs directory under the path defined by the
CRAYLIBS_SV2 environment variable. These must also be linked:

• Start0.o

• libc library

• libm library

• libu library

The following sample command line illustrates compiling the code for a
command named fierce:

% cc -h command -h vector0 -o fierce fierce.c

S–2179–55 51

Cray® C and C++ Reference Manual

Note: The -h ssp and -h command options both create executables that
run on an SSP. The executable created via the -h ssp option runs on an
application node. The executable created via the -h command option runs
on the support node.

2.21.2 -h cpu=target_system (CC, cc, c99)

The -h cpu=target_system option specifies the Cray X1 series system on which
the absolute binary file is to be executed.

Default: -h cpu=cray-x1

Use one of these values for target_system:

target_system Description

cray-x1 Use this option (default) if the
absolute binary file will be executed
on a Cray X1 system

cray-x1e Use this option if the absolute binary
file will be executed on a Cray X1E
system

Note: Currently, there are no differences in the code produced for the
cray-x1 and cray-x1e targets. This option was created to allow us to
support future changes in optimization or code generation based on our
experience with the Cray X1E hardware. It is possible that compilations with
the -hcpu=cray-x1e option will not be compatible with Cray X1 machines
in the future.

2.21.3 -h decomp (CC, cc, c99)

The -h decomp option decompiles (translates) the intermediate representation
of the compiler into listings that resemble the format of the source code. This
is performed twice, resulting in two output files, at different points during the
optimization process. You can use these files to examine the restructuring and
optimization changes made by the compiler, which can lead to insights about
changes you can make to your C or C++ source to improve its performance. See
Optimizing Applications on Cray X1 Series Systems for further information.

The compiler produces two decompilation listing files, with these extensions,
per source file specified on the command line: .opt and .cg. The compiler

52 S–2179–55

Compiler Commands [2]

generates the .opt file after applying most high level loop nest transformations
to the code. The code structure of this listing most resembles your source code
and is readable by most users. In some cases, because of optimizations, the
structure of the loops and conditionals will be significantly different than the
structure in your source file.

The .cg file contains a much lower level of decompilation. It is still displayed in
a C or C++ like format, but is quite close to what will be produced as assembly
output. This version displays the intermediate text after all multistreaming
translation, vector translation, and other optimizations have been performed.
An intimate knowledge of the hardware architecture of the system is helpful
to understanding this listing.

The .opt and .cg files are intended as a tool for performance analysis and are
not valid C or C++ functions. The format and contents of the files can be expected
to change from release to release.

The following examples show the listings generated when the -h decomp is
applied to this example:

/* Source code, in file example.c */

void

example(double a[restrict], double b[restrict],

double c[restrict], const int n)

{

int i;

for (i = 0; i < n; i++) {

a[i] = b[i] * c[i];

}

}

This is the listing of the example.opt file after loop optimizations are
performed:

2. void

2. example(a, b, c, n)

2. {

6. if (0 < n) {

6. @Induc01_N2 = 0;

6. #pragma ivdep

6. #pragma stream

6. do {

7. a[@Induc01_N2] = c[@Induc01_N2] * b[@Induc01_N2];

6. @Induc01_N2 = 1 + @Induc01_N2;

6. } while (@Induc01_N2 < n);

S–2179–55 53

Cray® C and C++ Reference Manual

6. }

9. return;

9. }

This is the listing of the example.cg file after other optimizations are
performed:

2. void

2. example(a, b, c, n)

2. {

2. _park(1);

2. $MR_a_0 = a;

2. $MR_c_1 = c;

2. $MR_b_2 = b;

2. r_suppress ($SC_n_I3, $ssp_0, $strind_1, $MR_c_1, $MR_b_2);

2. d_suppress ($ssp_0, $strind_1, $MR_a_0);

2. @SB_a_8 = $MR_a_0;

2. @SB_c_9 = $MR_c_1;

2. @SB_b_10 = $MR_b_2;

2. _unpark();

2. $MR_b_2 = @SB_b_10;

2. $MR_c_1 = @SB_c_9;

2. $MR_a_0 = @SB_a_8;

6. $MR_n_3 = n;

6. if (0 < $MR_n_3) {

6. $ssp_0 = _mype();

6. $InvSSP_5 = 3 & ~$ssp_0;

6. $start_2 = $InvSSP_5 * $MR_n_3 >> 2;

6. $psize_4 = ((1 + $InvSSP_5) * $MR_n_3 >> 2) -

6. $start_2;

6. if ($psize_4 > 0) {

6. $VL_1 = _cvl($psize_4);

6. $LC_2 = $psize_4;

6. $SI_4 = 0;

7. $LCS_0 = $start_2 << 3;

7. @LIS_E2 = $LCS_0 + (long) $MR_b_2;

7. @LIS_E1 = $LCS_0 + (long) $MR_c_1;

7. @LIS_E0 = $LCS_0 + (long) $MR_a_0;

7. do {

7. $LCS_1 = $SI_4 << 3;

7. 0[@LIS_E0 + $LCS_1:$VL_1:1].L = 0[@LIS_E1 +

7. $LCS_1:$VL_1:1].L * 0[@LIS_E2 +

7. $LCS_1:$VL_1:1].L;

6. $SI_4 = $VL_1 + $SI_4;

54 S–2179–55

Compiler Commands [2]

6. $LC_2 = $LC_2 - $VL_1;

6. $VL_1 = _cvl($LC_2);

6. } while ($LC_2 > 0);

6. }

6. }

6. r_suppress ($SC_n_I3, $ssp_0, $strind_1, $MR_c_1, $MR_b_2);

6. d_suppress ($ssp_0, $strind_1, $MR_a_0);

9. return;

9. }

2.21.4 -h ident=name (CC, cc, c99)

Default: File name specified on the command line

The -h ident=name option changes the ident name to name. This name is used
as the module name in the object file (.o suffix) and assembler file (.s suffix).
Regardless of whether the ident name is specified or the default name is used,
the following transformations are performed on the ident name:

• All . characters in the ident name are changed to $.

• If the ident name starts with a number, a $ is added to the beginning of the
ident name.

2.21.5 -h keepfiles (CC, cc, c89, c99)

The -h keepfiles option prevents the removal of the object (.o) files after
an executable is created. Normally, the compiler automatically removes these
files after linking them to create an executable. Since the original object files are
required in order to instrument a program for performance analysis, if you plan
to use CrayPat to conduct performance analysis experiments, you can use this
option to preserve the object files.

2.21.6 -h [no]mpmd (CC, cc)

Default: -h nompmd

Used when compiling co-array Fortran (CAF) programs for multiple program,
multiple data (MPMD) launch. For details, see Section 11.3, page 164.

S–2179–55 55

Cray® C and C++ Reference Manual

2.21.7 -h [no]omp (CC, cc)

Default: -h noomp

Enables or disables the C or C++ compiler recognition of OpenMP directives.
For details, see Chapter 5, page 117.

2.21.8 -h prototype_intrinsics (CC, cc, c99, cpp)

Simulates the effect of including intrinsics.h at the beginning of a
compilation. Use this option if the source code does not include the
intrinsics.h statement and you cannot modify the code. This option is off by
default. See Appendix F, page 225 for details.

2.21.9 -h taskn (CC, cc)

This option enables tasking in C or C++ applications that contain OpenMP
directives.

Default: -h task0

n Description

0 Disables tasking. OpenMP directives are ignored. Using this
option can reduce compile time and the size of the executable.
The -h task0 option is compatible with all vectorization and
scalar optimization levels.

1 The -h task1 option specifies user tasking, so OpenMP
directives are recognized. No level for scalar optimization is
enabled automatically. The -h task1 option is compatible with
all vectorization and scalar optimization levels.

2.21.10 -h [no]threadsafe (CC)

Default: -h threadsafe

This option enables or disables the generation of threadsafe code. Code that
is threadsafe can be used with pthreads and OpenMP. This option is not
binary-compatible with code generated by Cray C++ 5.1 and earlier compilers.
Users who need binary compatibility with previously compiled code can use -h
nothreadsafe, which causes the compiler to be compatible with Cray C++ 5.1
and earlier compilers at the expense of not being threadsafe.

56 S–2179–55

Compiler Commands [2]

C++ code compiled with -h threadsafe (the default) cannot be linked with
C++ code compiled with -h nothreadsafe or with code compiled with a Cray
C++ 5.1 or earlier compiler.

2.21.11 -h upc (cc)

The -h upc option enables compilation of Unified Parallel C (UPC) code. UPC
is a C language extension for parallel program development that allows you to
explicitly specify parallel programming through language syntax rather than
through library functions such as are used in MPI or SHMEM.

The Cray X1 series implementation of UPC is discussed in greater detail in
Chapter 6, page 123.

2.21.12 -V (CC, cc, c99, cpp)

The -V option displays compiler version information. If the command line
specifies no source file, no compilation occurs. Version information consists of the
product name, the version number, and the current date and time, as shown in
the following example:

% CC -V

Cray Standard C: Version 5.3.0.0.35 Thu Oct 21, 2004 14:06:15

2.21.13 -X npes (CC, cc, c99)

The -X npes option specifies the number of processing elements to use during
execution. The value for npes ranges from 1 through 4096 inclusive.

Once set, the number of processing elements to use cannot be changed at load
or run time. You must recompile the program with a different value for npes to
change the number of processing elements.

If you use the ld command to manually load a program compiled with the -X
option, you must specify the same value to the loader as was specified at compile
time.

You can execute the compiled program without using the aprun command just
by entering the name of the output file. If you use the command and specify the
number of processing elements on the aprun command line, you must specify
the same number on the aprun command as was specified at compile time.

The _num_pes intrinsic function can be used when programming UNICOS/mp
systems. The value returned by _num_pes is equal to the number processing

S–2179–55 57

Cray® C and C++ Reference Manual

elements available to your program. The number of the first processing element
is always 0, and the number of the last processing element is _num_pes() - 1.
When the -X npes option is specified at compile time, the _num_pes intrinsic
function returns the value specified by the npes argument.

On the Cray X1 series system, the _num_pes intrinsic can be used only in either
of these situations:

• When the -X npes option is specified on the command line

• When the value of the expression containing the _num_pes intrinsic
function is not known until run time (that is, it can only be used in run time
expressions)

One of the many uses for the _num_pes intrinsic is illustrated in the following
example, which declares a variable length array of size equal to the number of
processing elements:

int a[_num_pes()];

Using the _num_pes intrinsic in conjunction with the -X npes option allows the
user to program the number of processing elements into code in places that do
not accept run time values. Specifying the number of processing elements at
compile time can also enhance compiler optimization.

2.22 Command Line Examples

These examples illustrate a variety of command lines for the C and C++ compiler
commands:

• This example compiles myprog.C, fixes the number of processing elements
to 8, and instantiates all template entities declared or referenced in the
compilation unit. Because the program is compiled in default MSP mode,
each processing element is an MSP.

% CC -X8 -h instantiate=all myprog.C

• This example compiles myprog.C. The -h conform option specifies
strict conformance to the ISO C++ standard. No automatic instantiation of
templates is performed.

% CC -h conform -h noautoinstantiate myprog.C

• This example compiles input files myprog.C and subprog.C. The -c option
tells the compiler to create object files myprog.o and subprog.o but not call

58 S–2179–55

Compiler Commands [2]

the loader. Option -h ipa1 tells the compiler to inline function calls marked
with the inline_always pragma.

% CC -c -h ipa1 myprog.C subprog.C

• This example specifies that the compiler search the current working directory,
represented by a period (.), for #include files before searching the default
#include file locations.

% CC -I. disc.C vend.C

• This example specifies that source file newprog.c be preprocessed only.
Compilation and linking are suppressed. In addition, the macro DEBUG is
defined.

% cc -P -D DEBUG newprog.c

• This example compiles mydata1.C, creates object file mydata1.o, and
produces a scalar optimization report to stdout.

% CC -c -h report=s mydata1.C

• This example compiles mydata3.c and produces the executable file
a.out. A 132-column pseudo assembly listing file is also produced in file
mydata3.L.

% cc -h listing mydata3.c

• This example compiles myfile.C and tells the compiler to attempt to
aggressively inline calls to functions defined within myfile.C. An inlining
report is directed to myfile.V.

% CC -h ipa5,report=if myfile.C

2.23 Compile Time Environment Variables

These environment variables are used during compilation.

Variable Description

CRAYOLDCPPLIB

Enables, when set to a nonzero value, C++ code to use these
nonstandard Cray C++ headers files:

• common.h

S–2179–55 59

Cray® C and C++ Reference Manual

• complex.h

• fstream.h

• generic.h

• iomanip.h

• iostream.h

• stdiostream.h

• stream.h

• strstream.h

• vector.h

If you want to use the standard header files, your code may
require modification to compile successfully. Refer to Appendix
C, page 195.

Note: Setting the CRAYOLDCPPLIB environment variable
disables exception handling, unless you compile with the -h
exceptions option.

CRAY_PE_TARGET

Specifies target-system to be applied to all compilations. Specify
-hcpu=target-system to override this variable for individual
compilations. Supported values are cray-x1 and cray-x1e.

CRI_CC_OPTIONS
CRI_cc_OPTIONS
CRI_c89_OPTIONS
CRI_cpp_OPTIONS

Specifies command line options that are applied to all
compilations. Options specified by this environment variable are
added following the options specified directly on the command
line. This is especially useful for adding options to compilations
done with build tools.

LANG

Identifies your requirements for native language, local customs,
and coded character set with regard to compiler messages.

60 S–2179–55

Compiler Commands [2]

MSG_FORMAT

Controls the format in which you receive compiler messages.

NLSPATH

Specifies the message system catalogs that should be used.

NPROC

Specifies the number of processes used for simultaneous
compilations. The default is 1. When more than one source
file is specified on the command line, compilations may be
multiprocessed by setting the environment variable NPROC to a
value greater than 1. You can set NPROC to any value; however,
large values can overload the system.

2.24 Run Time Environment Variables

These environment variables are used during run time.

Variable Description

CRAY_AUTO_APRUN_OPTIONS

The CRAY_AUTO_APRUN_OPTIONS environment variable
specifies options for the aprun command when the command is
called automatically (auto aprun). Calling the aprun command
automatically occurs when only the name of the program and,
where applicable, associated program options are entered on the
command line; this will cause the system to automatically call
aprun to run the program.

The CRAY_AUTO_APRUN_OPTIONS environment variable does
not specify options for the aprun command when you explicitly
specify the command on the command line, nor does it specify
options for your program.

When setting options for the aprun command in the
CRAY_AUTO_APRUN_OPTIONS environment variable, surround
the options within double quotes and separate each option with
a space. Do not use spaces between an option and its associated
value. For example,

setenv CRAY_AUTO_APRUN_OPTIONS "-n10 -m16G"

S–2179–55 61

Cray® C and C++ Reference Manual

If you execute a program compiled with a fixed
number of processing elements (that is, the –X
compiler option was specified at compile time) and the
CRAY_AUTO_APRUN_OPTIONS also specifies the -n option, you
must ensure that the values used for both options are the same.
To do otherwise is an error.

X1_DYNAMIC_COMMON_SIZE

The X1_DYNAMIC_COMMON_SIZE sets the size of the
dynamic COMMON block defined by the loader. Refer to the
-LD_LAYOUT:dynamic= option in the ld(1) man page. Also
refer to Optimizing Applications on Cray X1 Series Systems for more
information about dynamic COMMON blocks.

X1_COMMON_STACK_SIZE
X1_PRIVATE_STACK_SIZE
X1_STACK_SIZE
X1_LOCAL_HEAP_SIZE
X1_SYMMETRIC_HEAP_SIZE
X1_HEAP_SIZE
X1_PRIVATE_STACK_GAP

These environment variables allow you to change the default
size of the application stacks or heaps, or consolidate the private
stacks:

• X1_COMMON_STACK_SIZE, change the common stack size
to the specified value.

• X1_PRIVATE_STACK_SIZE, change the private stack size
to the specified value.

• X1_STACK_SIZE, set the size of the common and private
stack to the specified value.

• X1_LOCAL_HEAP_SIZE, change the local heap size to the
specified value.

• X1_SYMMETRIC_HEAP_SIZE, change the symmetric heap
size to the specified value.

• X1_HEAP_SIZE, change the local and symmetric heap size
to the specified value.

• X1_PRIVATE_STACK_GAP, consolidate, when used with
X1_PRIVATE_STACK_SIZE, the four private stacks within

62 S–2179–55

Compiler Commands [2]

an MSP into one segment, which frees up nontext pages for
application use. The specified value, in bytes, indicates the
gap to separate each stack. This gap serves as a guard region
in case any of the stacks overflow.

The default size of each application stack or heap is 1 GB.

The X1_STACK_SIZE and X1_HEAP_SIZE are termed general
environment variables in that they set the values for multiple
stacks or heaps, respectively. The other variables in this section
are termed specific because they set the value for a particular
stack or heap. A specific variable overrides a general variable if
both are specified as follows:

• The X1_COMMON_STACK_SIZE variable overrides the
X1_STACK_SIZE variable if both are specified.

• The X1_PRIVATE_STACK_SIZE variable overrides the
X1_STACK_SIZE if both are specified.

• The X1_LOCAL_HEAP_SIZE variable overrides the
X1_HEAP_SIZE variable if both are specified.

• The X1_SYMMETRIC_HEAP_SIZE overrides the
X1_HEAP_SIZE variable if both are specified.

The value you specify for a variable sets the size of a stack
or heap in bytes. This number can be expressed as a decimal
number, an octal number with a leading zero, or a hexadecimal
number with a leading "0x".

If you specify a number smaller than the page size you gave
to the aprun or mpirun command, the system will silently
enforce a single-page minimum size. If you do not use the aprun
command or do not specify a page size for aprun, the minimum
page size is set to 64 KB. Refer to the –p text:other option of
the aprun(1) man page for more information about page sizes.

Using the X1_PRIVATE_STACK_GAP and
X1_PRIVATE_STACK_SIZE environment variables
together to consolidate the private stacks may help applications
that have problems obtaining a sufficient number of large
nontext pages via the aprun or mpirun commands. When the
private stacks are consolidated, the pages that would have been
used by the other private stacks are freed so they can be used by
the application.

S–2179–55 63

Cray® C and C++ Reference Manual

Each MSP used by an application uses four private stacks where
each private stack occupies an integral number of pages, but
if the application actually needs a private stack that is much
smaller than the integral number of pages, space is wasted. In
some of these cases, consolidating all four private stacks into
one segment will free up the wasted space so it can be used by
the application. For example, an application uses 256 MB pages,
which means the size of each private stack is a multiple of 256
MB. If the application only needs 60 MB for each private stack,
we can consolidate all four private stacks into a 256 MB page
by setting X1_PRIVATE_STACK_SIZE to 0x3c00000 (60 MB)
and X1_PRIVATE_STACK_GAP to 0x400000 (4 Mb). This packs
the four private stacks into one 256 MB page with a 4 MB guard
region between the stacks. This saves three 256 MB physical
pages on each MSP.

Warning: You should be aware that there is no protection
against overflowing the private stacks; one private stack may
corrupt another with unpredictable results if stack overflow
occurs.

2.25 OpenMP Environment Variables

This section describes the OpenMP C and C++ API environment variables that
control the execution of parallel code. The names of environment variables must
be uppercase. The values assigned to them are case insensitive and may have
leading and trailing white space. Modifications to the values after the program
has started are ignored.

The environment variables are as follows:

• OMP_SCHEDULE sets the run time schedule type and chunk size

• OMP_NUM_THREADS sets the number of threads to use during execution

• OMP_DYNAMIC enables or disables dynamic adjustment of the number of
threads

• OMP_NESTED enables or disables nested parallelism

• OMP_THREAD_STACK_SIZE is a Cray-specific, nonstandard variable used
to change the size of the thread stack from the default size of 16 MB to the
specified size.

64 S–2179–55

Compiler Commands [2]

The examples in this section only demonstrate how these variables might be set
in UNIX C shell (csh) environments:

setenv OMP_SCHEDULE "dynamic"

In Korn shell environments, the actions are similar, as follows:

export OMP_SCHEDULE="dynamic"

2.25.1 OMP_SCHEDULE

OMP_SCHEDULE applies only to for and parallel for directives that have the
schedule type runtime. The schedule type and chunk size for all such loops can
be set at run time by setting this environment variable to any of the recognized
schedule types and to an optional chunk_size.

For for and parallel for directives that have a schedule type other than
runtime, OMP_SCHEDULE is ignored. The default value for this environment
variable is implementation-defined. If the optional chunk_size is set, the value
must be positive. If chunk_size is not set, a value of 1 is assumed, except in the
case of a static schedule. For a static schedule, the default chunk size is set
to the loop iteration space divided by the number of threads applied to the loop.

Example:

setenv OMP_SCHEDULE "guided,4"

setenv OMP_SCHEDULE "dynamic"

2.25.2 OMP_NUM_THREADS

The OMP_NUM_THREADS environment variable sets the default number of threads
to use during execution, unless that number is explicitly changed by calling the
omp_set_num_threads library routine (see the omp_threads(3) man page) or
by an explicit num_threads clause on a parallel directive.

The value of the OMP_NUM_THREADS environment variable must be a positive
integer. Its effect depends upon whether dynamic adjustment of the number
of threads is enabled. For information about the interaction between the
OMP_NUM_THREADS environment variable and dynamic adjustment of threads,
see Section 5.2, page 118.

If no value is specified for the OMP_NUM_THREADS environment variable, or if
the value specified is not a positive integer, or if the value is greater than the
maximum number of threads the system can support, the number of threads to
use is implementation-defined.

S–2179–55 65

Cray® C and C++ Reference Manual

Example:

setenv OMP_NUM_THREADS 16

2.25.3 OMP_DYNAMIC

The OMP_DYNAMIC environment variable enables or disables dynamic
adjustment of the number of threads available for execution of parallel regions
unless dynamic adjustment is explicitly enabled or disabled by calling the
omp_set_dynamic library routine (see the omp_threads(3) man page). Its
value must be TRUE or FALSE. The default condition is FALSE.

If set to TRUE, the number of threads that are used for executing parallel regions
may be adjusted by the run time environment to best utilize system resources.

If set to FALSE, dynamic adjustment is disabled.

Example:

setenv OMP_DYNAMIC TRUE

2.25.4 OMP_NESTED

The OMP_NESTED environment variable enables or disables nested parallelism
unless nested parallelism is enabled or disabled by calling the omp_set_nested
library routine (see the omp_nested(3) man page). If set to TRUE, nested
parallelism is enabled; if it is set to FALSE, nested parallelism is disabled. The
default value is FALSE.

Example:

setenv OMP_NESTED TRUE

2.25.5 OMP_THREAD_STACK_SIZE

The OMP_THREAD_STACK_SIZE environment variable changes the size of the
thread stack from the default size of 16 MB to the specified size. The size of the
thread stack should be increased when thread-private variables may utilize more
than 16 MB of memory.

The requested thread stack space is allocated from the local heap when the
threads are created. The amount of space used by each thread for thread stacks
depend on whether you are using MSP or SSP mode. In MSP mode, the memory
used is five times the specified thread stack size because each SSP is assigned one

66 S–2179–55

Compiler Commands [2]

thread stack and one thread stack is used as the MSP common stack. For SSP
mode, the memory used is one times the specified thread stack size.

This is the format for the OMP_THREAD_STACK_SIZE environment variable:

OMP_THREAD_STACK_SIZE n

where n is a decimal number, an octal number with a leading zero, or a
hexadecimal number with a leading "0x" specifying the amount of memory, in
bytes, to allocate for a thread's stack.

For more information about memory on the Cray X1 series system, see the
memory(7) man page.

Example:

setenv OMP_THREAD_STACK_SIZE 18000000

S–2179–55 67

Cray® C and C++ Reference Manual

68 S–2179–55

#pragma Directives [3]

#pragma directives are used within the source program to request certain kinds
of special processing. #pragma directives are part of the C and C++ languages,
but the meaning of any #pragma directive is defined by the implementation.
#pragma directives are expressed in the following form:

#pragma [_CRI] identifier [arguments]

The _CRI specification is optional and ensures that the compiler will issue a
message concerning any directives that it does not recognize. Diagnostics are not
generated for directives that do not contain the _CRI specification.

These directives are classified according to the following types:

• General (Section 3.5, page 72)

• Instantiation (Cray C++ only) (Section 3.6, page 82)

• Vectorization (Section 3.7, page 82)

• Multistreaming (Section 3.8, page 93)

• Scalar (Section 3.9, page 96)

• Inlining (Section 3.10, page 101)

Macro expansion occurs on the directive line after the directive name. That is,
macro expansion is applied only to arguments.

Note: OpenMP #pragma directives are described in Chapter 5, page 117. UPC
#pragma directives are described in Chapter 6, page 123.

At the beginning of each section that describes a directive, information is
included about the compilers that allow the use of the directive and the scope of
the directive. Unless otherwise noted, the following default information applies
to each directive:

Compiler: Cray C and Cray C++

Scope: Local and global

The scoping list may also indicate that a directive has a lexical block scope. A
lexical block is the scope within which a directive is on or off and is bounded
by the opening curly brace just before the directive was declared and the
corresponding closing curly brace. Only applicable executable statements within
the lexical block are affected as indicated by the directive. The lexical block does

S–2179–55 69

Cray® C and C++ Reference Manual

not include the statements contained within a procedure that is called from the
lexical block.

This example code fragment shows the lexical block for the upc strict and
upc relaxed directives:

void Example(void)

{

#pragma _CRI upc strict // UPC strict state is on

...

{

... // UPC strict state is still on

#pragma _CRI upc relaxed // UPC strict state is now off

...

}

// UPC strict state is back on

...

}

3.1 Protecting Directives

To ensure that your directives are interpreted only by the Cray C and C++
compilers, use the following coding technique in which directive represents the
name of the directive:

#if _CRAYC

#pragma _CRI directive

#endif

This ensures that other compilers used to compile this code will not interpret the
directive. Some compilers diagnose any directives that they do not recognize.
The Cray C and C++ compilers diagnose directives that are not recognized only if
the _CRI specification is used.

70 S–2179–55

#pragma Directives [3]

3.2 Directives in Cray C++

C++ prohibits referencing undeclared objects or functions. Objects and functions
must be declared prior to using them in a #pragma directive. This is not always
the case with C.

Some #pragma directives take function names as arguments (for example:
#pragma _CRI weak, #pragma _CRI suppress, and #pragma _CRI
inline_always name [,name] ...). Member functions and qualified names are
allowed for these directives.

3.3 Loop Directives

Many directives apply to groups. Unless otherwise noted, these directives must
appear before a for, while, or do while loop. These directives may also
appear before a label for if...goto loops. If a loop directive appears before a
label that is not the top of an if...goto loop, it is ignored.

3.4 Alternative Directive form: _Pragma

Compiler directives can also be specified in the following form, which has the
advantage in that it can appear inside macro definitions:

_Pragma("_CRI identifier");

This form has the same effect as using the #pragma form, except that everything
that appeared on the line following the #pragma must now appear inside the
double quotation marks and parentheses. The expression inside the parentheses
must be a single string literal; it cannot be a macro that expands into a string
literal. _Pragma is an extension to the C and C++ standards.

The following is an example using the #pragma form:

#pragma _CRI ivdep

The following is the same example using the alternative form:

_Pragma("_CRI ivdep");

In the following example, the loop automatically vectorizes wherever the macro
is used:

#define SEARCH(A, B, KEY, SIZE, RES)

{

S–2179–55 71

Cray® C and C++ Reference Manual

int i;

_Pragma("_CRI ivdep");

for (i = 0; i < (SIZE); i++)

if ((A)[(B)[i]] == (KEY)) break;

(RES)=i;

}

Macros are expanded in the string literal argument for _Pragma in an identical
fashion to the general specification of a #pragma directive.

3.5 General Directives

General directives specify compiler actions that are specific to the directive and
have no similarities to the other types of directives. The following sections
describe general directives.

3.5.1 [no]bounds Directive (Cray C Compiler)

The bounds directive specifies that pointer and array references are to be
checked. The nobounds directive specifies that this checking is to be disabled.

When bounds checking is in effect, pointer references are checked to ensure that
they are not 0 or are not greater than the machine memory limit. Array references
are checked to ensure that the array subscript is not less than 0 or greater than or
equal to the declared size of the array.

Both directives may be used only within function bodies. They apply until the
end of the function body or until another bounds/nobounds directive appears.
They ignore block boundaries.

These directives have the following format:

#pragma _CRI bounds

#pragma _CRI nobounds

The following example illustrates the use of the bounds directive:

int a[30];

#pragma _CRI bounds

void f(void)

{

int x;

x = a[30];

72 S–2179–55

#pragma Directives [3]

.

.

.

}

3.5.2 duplicate Directive (Cray C Compiler)

Scope: Global

The duplicate directive lets you provide additional, externally visible names
for specified functions. You can specify duplicate names for functions by using a
directive with one of the following forms:

#pragma _CRI duplicate actual as dupname...

#pragma _CRI duplicate actual as (dupname...)

The actual argument is the name of the actual function to which duplicate
names will be assigned. The dupname list contains the duplicate names that
will be assigned to the actual function. The dupname list may be optionally
parenthesized. The word as must appear as shown between the actual argument
and the comma-separated list of dupname arguments.

The duplicate directive can appear anywhere in the source file and it must
appear in global scope. The actual name specified on the directive line must be
defined somewhere in the source as an externally accessible function; the actual
function cannot have a static storage class.

The following example illustrates the use of the duplicate directive:

#include <complex.h>

extern void maxhits(void);

#pragma _CRI duplicate maxhits as count, quantity /* OK */

void maxhits(void)

{

#pragma _CRI duplicate maxhits as tempcount

/* Error: #pragma _CRI duplicate can't appear in local scope */

}

double _Complex minhits;

#pragma _CRI duplicate minhits as lower_limit

S–2179–55 73

Cray® C and C++ Reference Manual

/* Error: minhits is not declared as a function */

extern void derivspeed(void);

#pragma _CRI duplicate derivspeed as accel

/* Error: derivspeed is not defined */

static void endtime(void)

{

}

#pragma _CRI duplicate endtime as limit

/* Error: endtime is defined as a static function */

Because duplicate names are simply additional names for functions and are
not functions themselves, they cannot be declared or defined anywhere in the
compilation unit. To avoid aliasing problems, duplicate names may not be
referenced anywhere within the source file, including appearances on other
directives. In other words, duplicate names may only be referenced from outside
the compilation unit in which they are defined.

The following example references duplicate names:

void converter(void)

{

structured(void);

}

#pragma _CRI duplicate converter as factor, multiplier /* OK */

void remainder(void)

{

}

#pragma _CRI duplicate remainder as factor, structured

/* Error: factor and structured are referenced in this file */

Duplicate names can be used to provide alternate external names for functions,
as shown in the following examples.

main.c:

extern void fctn(void), FCTN(void);

main()

74 S–2179–55

#pragma Directives [3]

{

fctn();

FCTN();

}

fctn.c:

#include <stdio.h>

void fctn(void)

{

printf("Hello world\n");

}

#pragma _CRI duplicate fctn as FCTN

Files main.c and fctn.c are compiled and linked using the following
command line:

% cc main.c fctn.c

When the executable file a.out is run, the program generates the following
output:

Hello world

Hello world

3.5.3 message Directive

The message directive directs the compiler to write the message defined by text
to stderr as a warning message. Unlike the error directive, the compiler
continues after processing a message directive. The format of this directive is as
follows:

#pragma _CRI message "text"

The following example illustrates the use of the message compiler directive:

#define FLAG 1

#ifdef FLAG

#pragma _CRI message "FLAG is Set"

#else

#pragma _CRI message "FLAG is NOT Set"

#endif

S–2179–55 75

Cray® C and C++ Reference Manual

3.5.4 no_cache_alloc Directive

The no_cache_alloc directive is an advisory directive that specifies objects
that should not be placed into the cache. Advisory directives are directives the
compiler will honor if conditions permit it to. When this directive is honored, the
performance of your code may be improved because the cache is not occupied
by objects that have a lower cache hit rate. Theoretically, this makes room for
objects that have a higher cache hit rate.

Here are some guidelines that will help you determine when to use this directive.
This directive works only on objects that are vectorized. That is, other objects
with low cache hit rates can still be placed into the cache. Also, you should use
this directive for objects that should not be placed into the cache.

To use the directive, you must place it only in the specification part, before any
executable statement.

The format of the no_cache_alloc directive is:

#pragma _CRI no_cache_alloc base_name [,base_name] ...

base_name The base name of the object that should not be placed into the
cache. This can be the base name of any object such as an array,
scalar structure, etc., without member references like C[10].
If you specify a pointer in the list, only the references, not the
pointer itself, have the no cache allocate property.

This directive may be locally overidden by use of a loop_info #pragma
directive.

3.5.5 cache_shared Directive

Scope: Declaration

This directive asserts that all vector loads with the specified symbols as the base
are to be made using cache-shared instructions. This an advisory directive; if the
compiler honors it, vector load misses cause the cache line to be allocated in a
shared state, in anticipation of a subsequent load by a different MSP. For vector
store operations, this directive is not meaningful and will be ignored. Scalar loads
and stores also are unaffected. The compiler may override the directive if it
determines the directive is not beneficial. The scope of this directive is the scope
of the declaration of the specified symbol.

The format of the cache_shared directive is:

#pragma _CRI cache_shared symbol [,symbol...]

76 S–2179–55

#pragma Directives [3]

symbol A base symbol (an array or scalar structure, but not a member
reference or array element).

Examples of valid cache_shared symbols are A, B, C. Expressions such as B.E
or C[10] cannot be used as cache_shared symbols.

This directive may be locally overidden by use of a loop_info #pragma
directive.

3.5.6 [no]opt Directive

Scope: Global

The noopt directive disables all automatic optimizations and causes
optimization directives to be ignored in the source code that follows the directive.
Disabling optimization removes various sources of potential confusion in
debugging. The opt directive restores the state specified on the command line
for automatic optimization and directive recognition. These directives have
global scope and override related command line options.

The format of these directives is as follows:

#pragma _CRI opt

#pragma _CRI noopt

The following example illustrates the use of the opt and noopt compiler
directives:

#include <stdio.h>

void sub1(void)

{

printf("In sub1, default optimization\n");

}

#pragma _CRI noopt

void sub2(void)

{

printf("In sub2, optimization disabled\n");

}

#pragma _CRI opt

void sub3(void)

{

S–2179–55 77

Cray® C and C++ Reference Manual

printf("In sub3, optimization enabled\n");

}

main()

{

printf("Start main\n");

sub1();

sub2();

sub3();

}

3.5.7 Probability Directives

The probability, probability_almost_always, and
probability_almost_never directives specify information used
by the IPA and optimizer to produce faster code sequences. The specified
probability is a hint, rather than a statement of fact. You can also specify
almost_never and almost_always by using the values 0.0 and 1.0,
respectively.

These directives have the following format:

#pragma probability <const>

#pragma probability_almost_always

#pragma probability_almost_never

<const> is an expression that evaluates to a floating point constant at compilation
time. 0.0 <= <const> <= 1.0

These directives can appear anywhere executable code is legal.

The directive applies to the block of code where it appears. It is important to
realize that the directive should not be applied to a conditional test directly;
rather, it should be used to indicate the relative probability of a 'then' or 'else'
branch being executed.

Example:

if (a[i] > b[i]) {

#pragma probability 0.3

a[i] = b[i];

}

This example states that the probability of entering the block of code with the

78 S–2179–55

#pragma Directives [3]

assignment statement is 0.3 or 30%. This also means that a[i] is expected to
be greater than b[i] 30% of the time.

Note that the probability directive appears within the conditional block of
code, rather than before it. This removes some of the ambiguity that has plagued
other implementations that tie the directive directly to the conditional code.

This information is used to guide inlining decisions, branch elimination
optimizations, branch hint marking, and the choice of the optimal algorithmic
approach to the vectorization of conditional code.

The following GCC-style intrinsic is also accepted when it appears in a
conditional test:

__builtin_expect(<expr>, <const>)

The following example:

if (__builtin_expect(a[i] > b[i], 0)) {

a[i] = b[i];

}

is roughly equivalent to:

if (a[i] > b[i]) {

#pragma _CRI probability_almost_never

a[i] = b[i];

}

3.5.8 weak Directive

Scope: Global

The weak directive specifies an external identifier that may remain unresolved
throughout the compilation. A weak external reference can be to a function or to
a data object. A weak external does not increase the total memory requirements
of your program.

Declaring an object as a weak external directs the loader to do one of these tasks:

• Link the object only if it is already linked (that is, if a strong reference exists);
otherwise, leave it is as an unsatisfied external. The loader does not display an
unsatisfied external message if weak references are not resolved.

• If a strong reference is specified in the weak directive, resolve all weak
references to it.

S–2179–55 79

Cray® C and C++ Reference Manual

Note: The loader treats weak externals as unsatisfied externals, so they remain
silently unresolved if no strong reference occurs during compilation. Thus, it is
your responsibility to ensure that run time references to weak external names
do not occur unless the loader (using some "strong” reference elsewhere) has
actually loaded the entry point in question.

These are the forms of the weak directive:

#pragma _CRI weak var

#pragma

_CRI weak sym1 = sym2

var The name of an external

sym1 Defines an externally visible weak symbol

sym2 Defines an externally visible strong symbol defined in the current
compilation.

The first form allows you to declare one or more weak references on one line. The
second form allows you to assign a strong reference to a weak reference.

The weak directive must appear at global scope.

The attributes that weak externals must have depend on the form of the weak
directive that you use:

• First form, weak externals must be declared, but not defined or initialized,
in the source file.

• Second form, weak externals may be declared, but not defined or initialized,
in the source file.

• Either form, weak externals cannot be declared with a static storage class.

The following example illustrates these restrictions:

extern long x;

#pragma _CRI weak x /* x is a weak external data object */

extern void f(void);

#pragma _CRI weak f /* f is a weak external function */

extern void g(void);

#pragma _CRI weak g=fun; /* g is a weak external function

with a strong reference to fun */

80 S–2179–55

#pragma Directives [3]

long y = 4;

#pragma _CRI weak y /* ERROR - y is actually defined */

static long z;

#pragma _CRI weak z /* ERROR - z is declared static */

void fctn(void)

{

#pragma _CRI weak a /* ERROR - directive must be at global scope */

}

3.5.9 vfunction Directive

Scope: Global

The vfunction directive lists external functions that use the call-by-register
calling sequence. Such functions can be vectorized but must be written in Cray
Assembly Language. See Cray Assembly Language (CAL) for Cray X1 Systems
Reference Manual.

The format of this directive is as follows:

#pragma _CRI vfunction func

The func variable specifies the name of the external function.

The following example illustrates the use of the vfunction compiler directive:

extern double vf(double);

#pragma _CRI vfunction vf

void f3(int n) {

int i;

for (i = 0; i < n; i++) { /* Vectorized */

b[i] = vf(c[i]);

}

}

S–2179–55 81

Cray® C and C++ Reference Manual

3.5.10 ident Directive

The ident directive directs the compiler to store the string indicated by text
into the object (.o) file. This can be used to place a source identification string
into an object file.

The format of this directive is as follows:

#pragma _CRI ident

text

3.6 Instantiation Directives

The Cray C++ compiler recognizes three instantiation directives. Instantiation
directives can be used to control the instantiation of specific template entities
or sets of template entities. The following directives are described in detail in
Section 8.5, page 151:

• #pragma _CRI instantiate

• #pragma _CRI do_not_instantiate

• #pragma _CRI can_instantiate

• The #pragma _CRI instantiate directive causes a specified entity to be
instantiated.

• The #pragma _CRI do_not_instantiate directive suppresses the
instantiation of a specified entity. It is typically used to suppress the
instantiation of an entity for which a specific definition is supplied.

• The #pragma _CRI can_instantiate directive indicates that a specified
entity can be instantiated in the current compilation, but need not be. It is
used in conjunction with automatic instantiation to indicate potential sites for
instantiation if the template entity is deemed to be required by the compiler.

See Chapter 8, page 145 for more information on template instantiation.

3.7 Vectorization Directives

Because vector operations cannot be expressed directly in Cray C and C++, the
compilers must be capable of vectorization, which means transforming scalar
operations into equivalent vector operations. The candidates for vectorization are

82 S–2179–55

#pragma Directives [3]

operations in loops and assignments of structures. For more information, see
Optimizing Applications on Cray X1 Series Systems.

The subsections that follow describe the compiler directives used to control
vectorization.

3.7.1 ivdep Directive

Scope: Local

The ivdep directive tells the compiler to ignore vector dependencies for the loop
immediately following the directive. Conditions other than vector dependencies
can inhibit vectorization. If these conditions are satisfactory, the loop vectorizes.
This directive is useful for some loops that contain pointers and indirect
addressing. The format of this directive is as follows:

#pragma _CRI ivdep safevl=vlen|infinitevl

vlen Specifies a vector length in which no dependency will occur. vlen
must be an integer between 1 and 1024 inclusive.

infinitevl Specifies an infinite safe vector length. This option asserts that no
data dependency will occur at any vector length.

The following example illustrates the use of the ivdep compiler directive:

p = a; q = b;

#pragma _CRI ivdep

for (i = 0; i < n; i++) { /* Vectorized */

*p++ = *q++;

}

On the Cray X1 series system, the compiler by default assumes an infinite safe
vector length; that is, any vector length can safely be used to vectorize the loop.
You can use the -h noinfinitevl compiler option to change this behavior
for all loops in the compilation unit.

!
Caution: Use the ivdep pragma with caution. Asserting a safe vector length
that proves to be not safe can produce incorrect results. Refer to Optimizing
Applications on Cray X1 Series Systems for further information.

S–2179–55 83

Cray® C and C++ Reference Manual

3.7.2 loop_info Directive

Scope: Local

The loop_info directive allows additional information to be specified about the
behavior of a loop, including run-time trip count and hints on cache allocation
strategy.

In regard to trip count information, the loop_info directive is similar to
the shortloop or shortloop128 directive but provides more information
to the optimizer and can produce faster code sequences. loop_info is used
immediately before a DO or DO WHILE loop to indicate minimum, maximum,
or estimated trip count.

For cache allocation hints, the loop_info directive can be used to override
default settings or to supersede earlier no_cache_alloc or cache_shared
directives. The cache hints are local and apply only to the specified loop nest.

The format of this directive is:

#pragma _CRI loop_info [min_trips(c)] [est_trips(c)]

[max_trips(c)] [cache_ex(symbol [, symbol ...])] [cache_sh(

symbol [, symbol ...])] [cache_na(symbol [, symbol ...])]

c An expression that evaluates to an integer constant at
compilation time.

min_trips Specifies guaranteed minimum number of trips.

est_trips Specifies estimated or average number of trips.

max_trips Specifies guaranteed maximum number of trips.

cache_ex Specifies symbol is to receive the exclusive cache hint; this is
the default if no hint is specified and the NO_CACHE_ALLOC or
CACHE_SHARED directives are not specified.

cache_sh Specifies symbol is to receive the shared cache hint.

cache_na Specifies symbol is to receive the non-allocating cache hint.

symbol The base name of the object that should not be placed into the
cache. This can be the base name of any object such as an array,
scalar structure, etc., without member references like C[10].
If you specify a pointer in the list, only the references, not the
pointer itself, have the no cache allocate property.

84 S–2179–55

#pragma Directives [3]

In the following example, the minimum trip count is 1 and the maximum trip
count is 1000:

void

loop_info(double *restrict a, double *restrict b, double s1, int n)

{

int i;

#pragma _CRI loop_info min_trips(1) max_trips(1000), cache_na(b)

for (i = 0; i< n; i++) {

if(a[i] != 0.0) {

a[i] = a[i] + b [i]*s1;

}

}

}

3.7.3 hand_tuned Directive

The hand_tuned directive applies to the next loop in the same manner as the
concurrent and safe_address directives.

The format of this directive is:

#pragma _CRI hand_tuned

This directive asserts that the code in the loop nest has been arranged by
hand for maximum performance, and the compiler should restrict some of
the more aggressive automatic expression rewrites. The compiler should still
fully optimize, vectorize, and multistream the loop within the constraints of the
directive.

Warning: Use of this directive may severely impede performance. Use
carefully and evaluate before and after performance.

S–2179–55 85

Cray® C and C++ Reference Manual

3.7.4 nopattern Directive

Scope: Local

The nopattern directive disables pattern matching for the loop immediately
following the directive.

The format of this directive is as follows:

#pragma _CRI nopattern

By default, the compiler detects coding patterns in source code sequences and
replaces these sequences with calls to optimized library functions. In most cases,
this replacement improves performance. There are cases, however, in which this
substitution degrades performance. This can occur, for example, in loops with
very low trip counts. In such a case, you can use the nopattern directive to
disable pattern matching and cause the compiler to generate inline code.

In the following example, placing the nopattern directive in front of the outer
loop of a nested loop turns off pattern matching for the matrix multiply that takes
place inside the inner loop:

double a[100][100], b[100][100], c[100][100];

void nopat(int n)

{

int i, j, k;

#pragma _CRI nopattern

for (i=0; i < n; ++i) {

for (j = 0; j < n; ++j) {

for (k = 0; k < n; ++k) {

c[i][j] += a[i][k] * b[k][j];

}

}

}

}

3.7.5 novector Directive

Scope: Local

The novector directive directs the compiler to not vectorize the loop that
immediately follows the directive. It overrides any other vectorization-related

86 S–2179–55

#pragma Directives [3]

directives, as well as the -h vector and -h ivdep command line options. The
format of this directive is as follows:

#pragma _CRI novector

The following example illustrates the use of the novector compiler directive:

#pragma _CRI novector

for (i = 0; i < h; i++) { /* Loop not vectorized */

a[i] = b[i] + c[i];

}

3.7.6 novsearch Directive

Scope: Local

The novsearch directive directs the compiler to not vectorize the search loop
that immediately follows the directive. A search loop is a loop with one or more
early exit statements. It overrides any other vectorization-related directives as
well as the -h vector and -h ivdep command line options. The format of this
directive is as follows:

#pragma _CRI novsearch

The following example illustrates the use of the novsearch compiler directive:

#pragma _CRI novsearch

for (i = 0; i < h; i++) { /* Loop not vectorized */

if (a[i] < b[i]) break;

a[i] = b[i];

}

3.7.7 permutation Directive

The permutation directive specifies that an integer array has no repeated
values. This directive is useful when the integer array is used as a subscript
for another array (vector-valued subscript). This directive may improve code
performance.

This directive has the following format:

#pragma _CRI permutation symbol [, symbol] ...

In a sequence of array accesses that read array element values from the specified

S–2179–55 87

Cray® C and C++ Reference Manual

symbols with no intervening accesses that modify the array element values, each
of the accessed elements will have a distinct value.

When an array with a vector-valued subscript appears on the left side of
the equal sign in a loop, many-to-one assignment is possible. Many-to-one
assignment occurs if any repeated elements exist in the subscripting array. If it
is known that the integer array is used merely to permute the elements of the
subscripted array, it can often be determined that many-to-one assignment does
not exist with that array reference.

Sometimes a vector-valued subscript is used as a means of indirect addressing
because the elements of interest in an array are sparsely distributed; in this case,
an integer array is used to select only the desired elements, and no repeated
elements exist in the integer array, as in the following example:

int *ipnt;

#pragma permutation ipnt

...

for (i = 0; i < N; i++) {

a[ipnt[i]] = b[i] + c[i];

}

The permutation directive does not apply to the array a, rather it applies to the
pointer used to index into it, ipnt. By knowing that ipnt is a permutation, the
compiler can safely generate an unordered scatter for the write to a.

3.7.8 [no]pipeline Directive

Software-based vector pipelining (software vector pipelining) provides
additional optimization beyond the normal hardware-based vector pipelining.
In software vector pipelining, the compiler analyzes all vector loops and
automatically attempts to pipeline a loop if doing so can be expected to produce
a significant performance gain. This optimization also performs any necessary
loop unrolling.

In some cases the compiler either does not pipeline a loop that could be pipelined
or pipelines a loop without producing performance gains. In these situations,
you can use the pipeline or nopipeline directive to advise the compiler to
pipeline or not pipeline the loop immediately following the directive.

Software vector pipelining is valid only for the innermost loop of a loop nest.

The pipeline and nopipeline directives are advisory only. While you can use
the nopipeline directive to inhibit automatic pipelining, and you can use the

88 S–2179–55

#pragma Directives [3]

pipeline directive to attempt to override the compiler's decision not to pipeline
a loop, you cannot force the compiler to pipeline a loop that cannot be pipelined.

Loops that have been pipelined are so noted in loopmark listing messages.

The formats of the pipelining directives are as follows:

#pragma _CRI pipeline

#pragma _CRI nopipeline

For more information about software vector pipelining, see Optimizing
Applications on Cray X1 Series Systems.

3.7.9 prefervector Directive

Scope: Local

The prefervector directive tells the compiler to vectorize the loop that
immediately follows the directive if the loop contains more than one loop in the
nest that can be vectorized. The directive states a vectorization preference and
does not guarantee that the loop has no memory dependence hazard.

The format of this directive is as follows:

#pragma _CRI prefervector

The following example illustrates the use of the prefervector directive:

#pragma _CRI prefervector

for (i = 0; i < n; i++) {

#pragma _CRI ivdep

for (j = 0; j < m; j++)

a[i] += b[j][i];

}

In the preceding example, both loops can be vectorized, but the directive directs
the compiler to vectorize the outer for loop. Without the directive and without
any knowledge of n and m, the compiler vectorizes the inner for loop. In this
example, the outer for loop is vectorized even though the inner for loop had an
ivdep directive.

S–2179–55 89

Cray® C and C++ Reference Manual

3.7.10 safe_address Directive

Scope: Local

The format of this directive is as follows:

#pragma _CRI safe_address

The safe_address directive specifies that it is safe to speculatively execute
memory references within all conditional branches of a loop. In other words, you
know that these memory references can be safely executed in each iteration of
the loop.

For most code, the safe_address directive can improve performance
significantly by preloading vector expressions. However, most loops do not
require this directive to have preloading performed. The directive is required
only when the safety of the operation cannot be determined or index expressions
are very complicated.

The safe_address directive is an advisory directive. That is, the compiler may
override the directive if it determines the directive is not beneficial.

If you do not use the directive on a loop and the compiler determines that
it would benefit from the directive, it issues a message indicating such. The
message is similar to this:

CC-6375 cc: VECTOR File = ctest.c, Line = 6

A loop would benefit from "#pragma safe_address".

If you use the directive on a loop and the compiler determines that it does
not benefit from the directive, it issues a message that states the directive is
superfluous and can be removed.

To see the messages, you must use the -hreport=v option.

!
Caution: Incorrect use of the directive can result in segmentation faults, bus
errors, or excessive page faulting. However, it should not result in incorrect
answers. Incorrect usage can result in very severe performance degradations
or program aborts.

In the example below, the compiler will not preload vector expressions, because
the value of j is unknown. However, if you know that references to b[i][j] is
safe to evaluate for all iterations of the loop, regardless of the condition, we can
use the safe_address directive for this loop as shown below:

void x3(double a[restrict 1000], int j)

{

90 S–2179–55

#pragma Directives [3]

int i;

#pragma _CRI safe_address

for (i = 0; i < 1000; i++) {

if (a[i] != 0.0) {

b[j][i] = 0.0;

}

}

}

With the directive, the compiler can load b[i][j] with a full vector mask, merge
0.0 where the condition is true, and store the resulting vector using a full mask.

3.7.11 safe_conditional Directive

The safe_conditional directive specifies that it is safe to execute all
references and operations within all conditional branches of a loop. In other
words, you know that these memory references can be safely executed in each
iteration of the loop. This directive specifies that memory and arithmetic
operations are safe.

This directive applies to scalar, vector, and multistreamed loop nests. It can
improve performance by allowing the hoisting of invariant expressions from
conditional code and by allowing prefetching of memory references.

The safe_conditional directive is an advisory directive. That is, the compiler
may override the directive if it determines the directive is not beneficial.

!
Caution: Incorrect use of the directive can result in segmentation faults, bus
errors, excessive page faulting, or arithmetic aborts. However, it should not
result in incorrect answers. Incorrect usage can result in severe performance
degradations or program aborts.

The safe_conditional directive has the following format:

#pragma _CRI safe_conditional

In the following example, without the safe_conditional directive, the
compiler cannot precompute the invariant expression s1*s2 because their values
are unknown and may cause an arithmetic trap if executed unconditionally.
However, if you know that the condition is true at least once, then s1*s2 is safe to
speculatively execute. The safe_conditional compiler directive can be used
to imply the safety of the operation. With the directive, the compiler evaluates
s1*s2 outside of the loop, rather than under control of the conditional code. In
addition, all control flow is removed from the body of the vector loop, because
s1*s2 no longer poses a safety risk.

S–2179–55 91

Cray® C and C++ Reference Manual

void

safe_cond(double a[restrict 1000], double s1, double s2)

{

int i;

#pragma _CRI safe_conditional

for (i = 0; i< 1000; i++) {

if(a[i] != 0.0) {

a[i] = a[i] + s1*s2;

}

}

}

3.7.12 shortloop and shortloop128 Directives

Scope: Local

The shortloop and shortloop128 directives improve performance of a
vectorized loop by allowing the compiler to omit the run time test to determine
whether it has been completed. The shortloop compiler directive identifies
vector loops that execute with a maximum iteration count of 64 and a minimum
iteration count of 1. The shortloop128 compiler directive identifies vector
loops that execute with a maximum iteration count of 128 and a minimum
iteration count of 1. If the iteration count is outside the range for the directive,
results are unpredictable.

These directives are ignored if the loop trip count is known at compile time and is
greater than the target machine's vector length. The maximum hardware vector
length is 64.

The syntax of these directives are as follows:

#pragma _CRI shortloop

#pragma _CRI shortloop128

The following examples illustrate the use of the shortloop and shortloop128
directives:

#pragma _CRI shortloop

for (i = 0; i < n; i++) { /* 0 < = n < = 63 */

a[i] = b[i] + c[i];

}

92 S–2179–55

#pragma Directives [3]

#pragma _CRI shortloop128

for (i = 0; i < n; i++) { /* 0 < = n < = 127 */

a[i] = b[i] + c[i];

}

3.8 Multistreaming Processor (MSP) Directives

This section describes the multistreaming processor (MSP) optimization
directives. MSPs are advisory directives; the compiler is not obligated to honor
them. For information about MSP compiler options, refer to Section 2.11, page 30
and for streaming intrinsics, refer to Appendix F, page 225. For details on Cray
Streaming Directives, see Chapter 4, page 105.

The MSP directives work with the -h streamn command line option to
determine whether parts of your program are optimized for the MSP. The level
of multistreaming must be greater than 0 in order for these directives to be
recognized. For more information on the -h streamn command line option, see
Section 2.11.1, page 30.

The MSP #pragma directives are as follows:

• #pragma _CRI ssp_private (see Section 3.8.1, page 93)

• #pragma _CRI nostream (see Section 3.8.2, page 95)

• #pragma _CRI preferstream (see Section 3.8.3, page 96)

3.8.1 ssp_private Directive (cc, c99)

The ssp_private directive allows the compiler to multistream loops that
contain function calls. By default, the compiler does not multistream loops
containing function calls, because the function may cause side effects that
interfere with correct parallel execution. The ssp_private directive asserts that
the specified function is free of side effects that inhibit parallelism and that the
specified function, and all functions it calls, will run on an SSP.

An implied condition for multistreaming a loop containing a call to a function
specified with the ssp_private directive is that the loop body must not contain
any data reference patterns that prevent parallelism. The compiler can disregard
an ssp_private directive if it detects possible loop-carried dependencies that
are not directly related to a call inside the loop.

Note: The ssp_private directive affects only whether or not loops are
multistreamed. It has no effect on loops within CSD parallel regions.

S–2179–55 93

Cray® C and C++ Reference Manual

When using the ssp_private directive, you must ensure that the function
called within the body of the loop follows these criteria:

• The function does not modify an object in one iteration and reference this
same data in another iteration of the multistreamed loop.

• The function does not reference data in one iteration that is defined in another
iteration.

• If the function modifies data, the iterations cannot modify data at the same
storage location, unless these variables are scoped as PRIVATE. Following the
multistreamed loop, the content of private variables are undefined.

The ssp_private directive does not force the master thread to execute the
last iteration of the multistreamed loop.

• If the function uses shared data that can be written to and read, you must
protect it with a guard (such as the CSD critical directive or the lock
command) or have the SSPs access the data disjointedly (where access does
not overlap).

• The function calls only other routines that are capable of being called
privately.

• The function calls I/O properly.

Note: The preceding list assumes that you have a working knowledge of race
conditions.

To use the ssp_private directive, it must placed in the specification part, before
any executable statements. This is the syntax of the ssp_private directive:

#pragma _CRI ssp_private PROC_NAME[,PROC_NAME] ...

PROC_NAME The name of a function. Any number of ssp_private
directives may be specified in a function. If a function is
specified with the ssp_private directive, the function retains
this attribute throughout the entire program unit. Also, the
ssp_private directive is considered a declarative directive and
must be specified before the start of any executable statements.

The following example demonstrates use of the ssp_private pragma:

/* Code in example.c */

extern void poly_eval(float *y, float x, int m, float p[m]);

#pragma _CRI ssp_private poly_eval

94 S–2179–55

#pragma Directives [3]

void example(int n, int m, float x[n], float y[n], float p[])

{

int i;

for (i = 0; i < n; ++i) {

poly_eval(&y[i], x[i], m, p);

}

}

/* Code in example poly_eval.c */

void poly_eval(float *y, float x, int m, float p[])

{

float result = p[m];

int i;

for (i = m-1; m >= 0; --m) {

result = x * result + p[i];

}

*y = result;

}

This example compiles the code:

% cc -c example.c

% cc -c -h gen_private_callee poly_eval.c

% cc -o example example.o poly_eval.o

Now run the code:

% aprun -L1 ./example

SSP private routines are appropriate for user-specified math support functions.
Intrinsic math functions, like COS are effectively SSP private routines.

3.8.2 nostream Directive

Scope: Local

The #pragma _CRI nostream directive directs the compiler to not perform
MSP optimizations on the loop that immediately follows the directive. It
overrides any other MSP-related directives as well as the -h streamn command
line option.

S–2179–55 95

Cray® C and C++ Reference Manual

The format of this directive is as follows:

#pragma _CRI nostream

The following example illustrates the use of the nostream directive:

#pragma _CRI nostream

for (i = 0; i < n1; i++) {

x[i] = y[i] + z[i];

}

3.8.3 preferstream Directive

Scope: Local

The preferstream directive tells the compiler to multistream the following
loop. It can be used when one of these conditions apply:

• The compiler issues a message saying there are too few iterations in the loop
to make multistreaming worthwhile.

• The compiler multistreams a loop in a loop nest, and you want it to
multistream a different eligible loop in the same nest.

The format of this directive is as follows:

#pragma _CRI preferstream

The following example illustrates the use of the preferstream directive:

for (j = 0; j< n2; j++) {

#pragma _CRI preferstream

for (i = 0; i < n1; i++) {

a[j][i] = b[j][i] + c[j][i];

}

}

3.9 Scalar Directives

This section describes the scalar optimization directives, which control aspects of
code generation, register storage, and other scalar operations.

96 S–2179–55

#pragma Directives [3]

3.9.1 concurrent Directive

Scope: Local

The concurrent directive indicates that no data dependence exists between
array references in different iterations of the loop that follows the directive. This
can be useful for vectorization and multistreaming optimizations.

The format of the concurrent directive is as follows:

#pragma _CRI concurrent [safe_distance=n]

n An integer that represents the number of additional consecutive
loop iterations that can be executed in parallel without danger of
data conflict. n must be an integral constant > 0.

The concurrent directive is ignored if the safe_distance
clause is used and MSP optimizations, multistreaming, or
vectorization is requested on the command line.

In the following example, the concurrent directive indicates that the
relationship k>3 is true. The compiler will safely load all the array references
x[i-k], x[i-k+1], x[i-k+2], and x[i-k+3] during i-th loop iteration.

#pragma _CRI concurrent safe_distance=3

for (i = k + 1; i < n;i++) {

x[i] = a[i] + x[i-k];

}

3.9.2 nointerchange Directive

Scope: Local

The nointerchange directive inhibits the compiler's ability to interchange the
loop that follows the directive with another inner or outer loop.

The format of this directive is as follows:

#pragma _CRI nointerchange

In the following example, the nointerchange directive prevents the iv loop
from being interchanged by the compiler with either the jv loop or the kv loop:

for (jv = 0; jv < 128; jv++) {

#pragma _CRI nointerchange

for (iv = 0; iv < m; iv++) {

S–2179–55 97

Cray® C and C++ Reference Manual

for (kv = 0; kv < n; kv++) {

p1[iv][jv][kv] = pw[iv][jv][kv] * s;

}

}

}

3.9.3 noreduction Directive

Scope: Local

The noreduction compiler directive tells the compiler to not optimize the
loop that immediately follows the directive. If the loop is not a reduction loop,
the directive is ignored.

A reduction loop is a loop that contains at least one statement that reduces an array
to a scalar value by doing a cumulative operation on many of the array elements.
This involves including the result of the previous iteration in the expression of
the current iteration.

You may choose to use this directive when the loop iteration count is small
or when the order of evaluation is numerically significant. It overrides any
vectorization-related directives as well as the -h vector and -h ivdep
command line options.

The noreduction directive disables vectorization of any loop that contains a
reduction. The specific reductions that are disabled are summation and product
reductions, and alternating value computations. The directive also prevents the
compiler from rewriting loops involving multiplication or exponentiation by an
induction variable to be a series of additions or multiplications of a value.

Regardless of platform, however, the format of this directive is as follows:

#pragma _CRI noreduction

The following example illustrates the use of the noreduction compiler
directive:

sum = 0;

#pragma _CRI noreduction

for (i = 0; i < n; i++) {

sum += a[i];

}

98 S–2179–55

#pragma Directives [3]

3.9.4 suppress Directive

The suppress directive suppresses optimization in two ways, determined by its
use with either global or local scope.

The global scope suppress directive specifies that all associated local variables
are to be written to memory before a call to the specified function. This ensures
that the value of the variables will always be current. The global suppress
directive takes the following form:

#pragma _CRI suppress func...

The local scope suppress directive stores current values of the specified
variables in memory. If the directive lists no variables, all variables are stored
to memory. This directive causes the values of these variables to be reloaded
from memory at the first reference following the directive. The local suppress
directive has the following format:

#pragma _CRI suppress [var] ...

The net effect of the local suppress directive is similar to declaring the affected
variables to be volatile except that the volatile qualifier affects the entire
program whereas the local suppress directive affects only the block of code in
which it resides.

3.9.5 [no]unroll Directive

Scope: Local

The unroll directive allows the user to control unrolling for individual loops
or to specify no unrolling of a loop. Loop unrolling can improve program
performance by revealing cross-iteration memory optimization opportunities
such as read-after-write and read-after-read. The effects of loop unrolling also
include:

• Improved loop scheduling by increasing basic block size

• Reduced loop overhead

• Improved chances for cache hits

The format for this compiler directive is as follows:

#pragma _CRI [no]unroll[n]

The nounroll directive disables loop unrolling for the next loop and does not

S–2179–55 99

Cray® C and C++ Reference Manual

accept the integer argument n. The nounroll directive is equivalent to the
unroll0 and unroll1 directives.

The n argument applies only to the unroll directive and specifies no loop
unrolling (n = 0 or 1) or the total number of loop body copies to be generated
(2 ≤ n ≤ 63).

If you do not specify a value for n, the compiler will determine the number of
copies to generate based on the number of statements in the loop nest.

Note: The compiler cannot always safely unroll non-innermost loops due to
data dependencies. In these cases, the directive is ignored (see Example 2,
page 101).

The unroll directive can be used only on loops with iteration counts that can
be calculated before entering the loop. If unroll is specified on a loop that is
not the innermost loop in a loop nest, the inner loops must be nested perfectly.
That is, all loops in the nest can contain only one loop, and the innermost loop
can contain work.

Example 1: Unrolling Outer Loops

In the following example, assume that the outer loop of the following nest will
be unrolled by 2:

#pragma _CRI unroll2

for (i = 0; i < 10; i++) {

for (j = 0; j < 100; j++) {

a[i][j] = b[i][j] + 1;

}

}

With outer loop unrolling, the compiler produces the following nest, in which the
two bodies of the inner loop are adjacent:

for (i = 0; i < 10; i += 2) {

for (j = 0; j < 100; j++) {

a[i][j] = b[i][j] + 1;

}

for (j = 0; j < 100; j++) {

a[i+1][j] = b[i+1][j] + 1;

}

}

100 S–2179–55

#pragma Directives [3]

The compiler then jams, or fuses, the inner two loop bodies, producing the
following nest:

for (i = 0; i < 10; i += 2) {

for (j = 0; j < 100; j++) {

a[i][j] = b[i][j] + 1;

a[i+1][j] = b[i+1][j] + 1;

}

}

Example 2: Illegal Unrolling of Outer Loops

Outer loop unrolling is not always legal because the transformation can change
the semantics of the original program. For example, unrolling the following
loop nest on the outer loop would change the program semantics because of the
dependency between a[i][...] and a[i+1][...]:

/* directive will cause incorrect code due to dependencies! */

#pragma _CRI unroll2

for (i = 0; i < 10; i++) {

for (j = 1; j < 100; j++) {

a[i][j] = a[i+1][j-1] + 1;

}

}

3.10 Inlining Directives

Inlining replaces calls to user-defined functions with the code in the calling
process that represents the function. This can improve performance by saving
the expense of the function call overhead. It also enhances the possibility of
additional code optimization and vectorization, especially if the function call was
an inhibiting factor. Inlining may increase object code size.

Inlining is invoked in the following ways:

• Automatic inlining of functions in an entire compilation unit is enabled by the
-h ipan option, as described in Section 2.13, page 33. Automatic inlining of
portions of code is enabled by the inline_enable directive and disabled by
the inline_disable directive (Section 3.10.1, page 102).

• Explicit inlining of particular function calls in portions of code is enabled by
the #pragma _CRI inline_always name [,name] directive and disabled
by the #pragma _CRI inline_never name [,name] directive (Section
3.10.2, page 104). Explicit inlining of particular function calls within an entire

S–2179–55 101

Cray® C and C++ Reference Manual

compilation unit is enabled by the -h ipafrom=source [:source] option
described in Section 2.13.2, page 35.

• Combined inlining by the use of both the -h ipan and -h ipafrom=source
[:source] options (see Section 2.13.3, page 36).

Inlining directives can appear in global scope (that is, not inside a function
definition). Global inlining directives specify whether all calls to the specified
functions should be inlined.

Inlining directives can also appear in local scope; that is, inside a function
definition. A local inlining directive applies only to the next call to the function
specified on the directive. Although the function specified on an inlining
directive does not need to appear in the next statement, a call to the function
must occur before the end of the function definition.

Inlining directives always take precedence over the automatic inlining requested
on the command line. This means that function calls that are associated with
inlining directives are inlined before any function calls selected to be inlined
by automatic inlining.

Note: A function that contains a variable length array argument is not
currently inlined.

The -h report=i option writes messages identifying where functions are
inlined or briefly explains why functions are not inlined.

3.10.1 inline_enable, inline_disable, and inline_reset Directives

The inline_enable directive tells the compiler to attempt to inline functions at
call sites. It has the following format:

#pragma _CRI inline_enable

The inline_disable directive tells the compiler to not inline functions at call
sites. It has the following format:

#pragma _CRI inline_disable

The inline_reset directive returns the inlining state to the default state. It has
the following format:

#pragma _CRI inline_reset

The following examples illustrate the use of the inline_enable and
inline_reset directives.

102 S–2179–55

#pragma Directives [3]

Example 3: Using the inline_enable Directive

Source code:

#include <stdio.h>

int f(int a)

{

return a*a;

}

main()

{

#pragma _CRI inline_enable /* Direct the compiler to inline

calls. */

int b = 5;

printf("%d\n", f(b)); /* f is inlined here */

}

Compiler command:

% cc -h report=i -o ipaex3 ipaex3.c

Report:

CC-3001 cc: INLINE File = ipaex3.c, Line = 14

The call to f was textually inlined.

Program execution:

% ./ipaex3

25

Example 4: Using the inline_reset Directive

The following code fragment shows how the #pragma _CRI inline_reset
directive would affect code compiled with the -h ipa3 option:

...

#pragma _CRI inline_disable /* From here to inline_reset,

no inlining will be done */

S–2179–55 103

Cray® C and C++ Reference Manual

void f1()

{

...

}

#pragma _CRI inline_reset /* From here forward, the

inlining state is -h ipa3 */

void f2()

{

...

}

3.10.2 inline_always and inline_never Directives

The inline_always directive specifies functions that the compiler should
always attempt to inline. The format of the inline_always directive is as
follows:

#pragma _CRI inline_always name [,name] ...

The inline_never directive specifies functions that are never to be inlined. The
format of the inline_never directive is as follows:

#pragma _CRI inline_never name [,name] ...

The name argument is the name of a function.

104 S–2179–55

Cray Streaming Directives (CSDs) [4]

The Cray streaming directives (CSDs) consist of six non-advisory directives
which allow you to more closely control multistreaming for key loops in C
and C++ programs. Non-advisory means that the compiler must honor these
directives. The intention of these directives is not to create an additional parallel
programming style or demand large effort in code development. They are
meant to assist the compiler in multistreaming your program. On its own, the
compiler should perform multistreaming correctly in most cases. However, if
multistreaming for key loops is not occurring as you desire, then use the CSDs to
override the compiler.

CSDs are modeled after the OpenMP directives and are compatible with Pthreads
and all distributed-memory parallel programming models on Cray X1 series
systems. Multistreaming advisory directives (MSP directives) and CSDs cannot
be mixed within the same block of code. For information on MSPs, see Section
3.8, page 93.

Before explaining guidelines and other issues, you need an understanding of
these CSD items:

• CSD parallel regions

• CSD parallel (defines a CSD parallel region)

• CSD for (multistreams a for loop)

• CSD parallel for (combines the CSD parallel and for directives into
one directive)

• CSD sync (synchronizes all SSPs within an MSP)

• CSD critical (defines a critical section of code)

• CSD ordered (specifies that SSPs execute in order)

When you are familiar with the directives, these topics will be beneficial to you:

• Using CSDs with Cray programming models

• CSD Placement

• Protection of shared data

• Dynamic memory allocation for CSD parallel regions

• Compiler options affecting CSDs

S–2179–55 105

Cray® C and C++ Reference Manual

Note: Refer to Optimizing Applications on Cray X1 Series Systems for information
about how to use the CSDs to optimize your code.

4.1 CSD Parallel Regions

CSDs are applied to a block of code (for example a loop), which will be referred
to as the CSD parallel region. All CSDs must be used within this region. You
must not branch into or out of the region.

Multiple CSD parallel regions can exist within a program; however, only one
parallel region will be active at any given time. For example, if a parallel region
calls a function containing a parallel region, the function will execute as if it did
not contain a parallel region.

The CSD parallel region can contain loops and nonloop constructs, but only loops
preceded by a for directive are partitioned. Parallel execution of other loops
and nonloop constructs, such as initializing variables for the targeted loop, are
performed redundantly on all SSPs. Functions called from the region will be
executed redundantly, and loops within them can be partitioned with the for
directive. Parallel execution of the function is independent on all SSPs, except for
code blocks containing standalone CSDs. Refer to Section 4.9, page 114.

4.2 parallel Directive

The parallel directive defines the CSD parallel region, tells the compiler to
multistream the region, and specifies private data objects. All other CSDs must be
used within the region. You cannot place the parallel directive in the middle
of a construct.

This is the form of the parallel directives:

#pragma _CRI csd parallel [private(list)] [ordered]

{

structured_block

} /* End of CSD parallel region */

The private clause allows you to specify data objects that are private to each
SSP within the CSD parallel region; that is, each SSP has its own copy of that
object and is not shared with other SSPs. The main reason for having private
objects is because updating them within the CSD parallel region could cause
incorrect updates because of race conditions on their addresses. The list argument
specifies a comma separated list of objects to make private.

106 S–2179–55

Cray Streaming Directives (CSDs) [4]

By default, the variables used for loop indexing are assumed to be private.
Variables declared in the inner scope of a parallel region are implicitly private.
Other variables, unless specified in the private clause, are assumed to be shared.

You may need to take special steps when using private variables. If a data object
existed before the parallel region is entered and the object is made private, the
object may not have the same contents inside of the region as it did outside
the region. The same is true when exiting the parallel region. This same
object may not have the same content outside the region as it did within the
region. Therefore, if you desire that a private object keep the same value when
transitioning in and out of the parallel region, copy its value to a protected shared
object so you can copy it back into the private object later.

The ordered clause is needed if there is within the parallel region, but outside
the loops within the region, any call to a function containing a CSD ordered
directive. That is, if only the loops contain calls to functions that contain the CSD
ordered directive, the clause is not needed. If the clause is used and there are no
called functions containing a CSD ordered directive, the results produced by the
code encapsulated by the directive will be correct, but performance of that code
will be slightly degraded. If the ordered clause is missing and there is a called
function containing a CSD ordered directive, your results will be incorrect. The
following example shows when the ordered clause is needed:

#pragma _CRI csd parallel ordered

{

fun(); /* fun contains ordered directive */

for_loop_block

. . .

}

The end of the CSD parallel region has an implicit barrier synchronization. The
implicit barrier protects an SSP from prematurely accessing shared data.

Note: At the point of the parallel directive, all SSPs are enabled and are
disabled at the end of the CSD parallel region.

This example shows how to use the parallel directive:

#pragma _CRI csd parallel private(jx)

{

x = 2 * PI; /* This line is computed on all SSPs */

for(i=1; i<n; i++)

{

jx = y[i] * z[i] * x; /* jx is private to each SSP */

S–2179–55 107

Cray® C and C++ Reference Manual

...

}

} /* End of CSD parallel region */

4.3 for Directive

The compiler distributes among the SSPs the iteration of for loops modified by
the CSD for directive. Iterations of for loops not modified by the CSD for
directives are not distributed among the SSPs, but are all redundantly executed
on all SSPs.

Refer to Section 4.9, page 114 for placement restrictions of the CSD for directive.

This is the syntax of the CSD for directive:

#pragma _CRI csd for [schedule(static [, chunk_size])]

[nowait] [ordered]

for_statement {

...

} /* End of for loop and CSD for region */

The schedule clause specifies how the loop iterations are distributed among the
SSPs. This iteration distribution is fixed (static) at compile time and cannot be
changed by run time events.

The iteration distribution is calculated by you or the compiler. You or the
compiler will divide the number of iterations into groups or chunks. The compiler
will then statically assign the chunks to the 4 SSPs in a round-robin fashion
according to iteration order (in other words, from the first iteration to the last
iteration). Therefore, an SSP could have one or more chunks. The number
of iterations in each chunk is called the chunk size which is specified by the
chunk_size argument.

You can use these tips to calculate the chunk size:

• Balance the parallel work load across all 4 SSPs (the number of SSPs in an
MSP) by dividing the number of iterations by 4. If you have a remainder,
add one to the chunk size. Using 4 chunks gives you the best performance,
because less overhead is incurred when using fewer chunks per SSP.

• The work load distribution among the SSPs will be imbalanced if the chunk
size is greater than 1/4th of the total number of iterations.

• If the chunk size is greater than the total number of iterations, the first SSP
(SSP0) will do all the work.

108 S–2179–55

Cray Streaming Directives (CSDs) [4]

The compiler calculates the iteration distribution (chunk_size) if the schedule
clause or chunk_size argument is not specified. The value used is dependent on
the conditions shown in Table 11.

Table 11. Compiler-calculated Chunk Size

Calculated chunk
size Condition

1 When a sync, critical, or ordered CSD directive or
a function call appears in the loop.

Iterations / 4 The number of iterations are divided as evenly as
possible into four chunks if these are not present in the
CSD parallel region: sync, critical, or ordered
directive or a function call.

An implicit barrier synchronization occurs at the end of the for region, unless
the nowait clause is also specified. The implicit barrier protects an SSP from
prematurely accessing shared data. The nowait clause assumes that you are
guaranteeing that consumption-before-production cannot occur.

The ordered clause is needed if the for loop encapsulated by the CSD for
directive calls any function containing a CSD ordered directive. If the clause is
used and there are no called functions containing a CSD ordered directive, the
results produced by the code encapsulated by the directive will be correct, but
performance of that code will be slightly degraded. If the ordered clause is
missing and there is a called function containing a CSD ordered directive, the
results produced by the code encapsulated by the directive will be incorrect. The
following example shows when the ORDERED clause is needed:

#pragma _CRI csd parallel

{

...

#pragma csd for ordered

for(i=1, i<n; i++)

fun(i) /* fun contains ordered directive */

}

The following examples illustrate compiler and user calculated chunk sizes. For
this example, the compiler calculates the chunk size as 1, because of the function
call (a chunk size of 1 causes SSP0 to perform iterations 1, 5, 9, ... , SSP1 to
perform iterations 2, 6, 10, ...):

S–2179–55 109

Cray® C and C++ Reference Manual

#pragma _CRI csd for

for(i=1; i<num_samples; i++)

{

process_sample(sample[i]);

} /* End of CSD for region */

For this example, because there are no sync, critical, or ordered
directives, or subprogram calls, the compiler calculates the chunk size as
(arraySize + 3) / 4):

#pragma _CRI csd for

for(i=1; i<arraySize; i++) {

product[i] = operand[i] * operand[i];

} /* End of CSD for region */

Adding 3 to the array size produces an optimal chunk size by grouping the
maximum number of iterations into 4 chunks.

This example specifies the schedule clause and a chunk size of 128:

#pragma _CRI csd for schedule(static,128)

for(i=1; i<array_size; i++) {

product[i] = operand[i] * operand[i];

} /* End of CSD for region */

In the above example, the compiler will use the chunk size based on this
statement min(array_size, 128). If the chunk size is larger than the array
size, the compiler will use the array as the chunk size. If this is the case, then all
the work will be done by SSP0.

4.4 parallel for Directive

The parallel for directive combines most of the functionality of the CSD
parallel and for directives into one directive. The parallel for directive is
used on a single for loop that contains or does not contain nested loops and is
the equivalent to the following statements:

#pragma _CRI csd parallel [private(list)]

{

#pragma _CRI csd for [schedule(static [,chunk])]

for_loop_block

} /* End of CSD parallel for region */

The differences between the parallel for and its counter parts include the
lack of the nowait clause, because it is not needed.

110 S–2179–55

Cray Streaming Directives (CSDs) [4]

This is the form of the parallel for directive:

#pragma _CRI csd parallel for [private(list)]

[schedule(static [, chunk_size])]

for_statement {

loop_block

} /* End of CSD parallel for region */

For a description the parallel for directive, refer to the parallel and for
directives at Section 4.2, page 106 and Section 4.3, page 108.

4.5 sync Directive

The sync directive synchronizes all SSPs within a multistreaming processor
(MSP) and may under certain conditions synchronize memory with physical
storage by calling msync. The sync directive is normally used where additional
intra-MSP synchronization is needed to prevent race conditions caused by forced
multistreaming.

The sync directive can appear anywhere within the CSD parallel region, even
within the CSD for and parallel for directives. If the sync directive
appears within a CSD parallel region, but outside of an enclosed CSD for
directive, then it performs an msync on all four SSPs.

This example shows how to use the sync directive:

#pragma _CRI csd parallel for private(j)

{

for(i=1; i<4; i++) {

for(j=1; j<100000; j++) {

x[j][i] = ... ; /* Produce x */

}

#pragma _CRI csd sync

for(j=1; j<100000; j++) {

... = x[j][5-i]; * ... /* Consume x */

}

}

}

The two inner loops provide a producer and consumer pair for array x. The
sync directive prevents the use of the array by the second inner loop before it is
completely populated.

S–2179–55 111

Cray® C and C++ Reference Manual

4.6 critical Directive

The critical directive specifies a critical region where only one SSP at a time
will execute the enclosed region.

This is the form of the critical directive:

#pragma _CRI csd critical

{

block_of_code

} /* End of critical region */

This example performs a multistreamed sum reduction of array a and uses the
critical directive to calculate the complete sum:

sum = 0; /* Shared variable */

#pragma _CRI csd parallel private(private_sum)

{

private_sum = 0;

#pragma _CRI csd for

for(i=1; i<a_size; i++) {

private_sum = private_sum + a(i);

}

#pragma _CRI csd critical

{

sum = sum + private_sum;

}

}

4.7 ordered Directive

The ordered directive allows you to have loops with particular dependencies
on other loops in the parallel region by ensuring the execution order of the SSPs.
That is, SSP0 completes execution of its block of code in the ordered region before
SSP1 executes that same block of code; SSP1 completes execution of that block
of code before SSP2 can execute it, etc.

If the CSD ordered directive is placed in a function that is called from a parallel
region, the CSD parallel, parallel for, or for directives that encapsulate
the call may also need the ordered clause to ensure correct results. See the
appropriate CSD directive for more information.

112 S–2179–55

Cray Streaming Directives (CSDs) [4]

This is the format of the ordered directive:

#pragma _CRI csd ordered

{

block_of_code

} /* End of ordered region */

In following example, successive iterations of the loop depend upon previous
iterations, because of a[i-1] and a[i-2] on the right side of the first
assignment statement. The ordered directive ensures that each computation of
a[i] is complete before the next iteration (which occurs on the next SSP) uses
this value as its a[i-1] and similarly for a[i-2]:

#pragma _CRI csd parallel for schedule(static,1)

for(i=3; i<a_size; i++) {

#pragma _CRI csd ordered

{

a[i] = a[i-1] + a[i-2];

}

... /* other processing */

}

If the execution time for the code indicated by the other processing
comment is larger than the time to compute the assignment within the ordered
directive, then the loop will mostly run concurrently on the 4 SSPs, even if the
ordered directive is used.

4.8 Nested CSDs Within Cray Parallel Programming Models

CSDs can be mixed with all parallel programming models within the same
program on Cray X1 series systems. If you nest them, the CSDs must be at the
inner most level. These are the nesting levels:

1. Distributed memory models (MPI, SHMEM, UPC, and CAF)

2. Shared memory models (OpenMP and Pthreads)

3. CSDs

If the shared or distributed memory model is used, then you can nest the CSDs
within either one. These models cannot be nested within the CSDs. If both
memory models are used, then the CSDs must be nested within the shared
memory model, and the shared memory model nested within the distributed
memory model.

S–2179–55 113

Cray® C and C++ Reference Manual

4.9 CSD Placement

CSDs must be used within the CSD parallel region as defined by the parallel
directive. Some must be used where the parallel directives are used; that is,
used within the same block of code. Other CSDs can be used in the same block
of code or be placed in a function and called from the parallel region (in effect,
appearing as if they were within the parallel region). These CSDs will be referred
to as standalone CSDs.

The CSD for directive is the only one that must be used within the same block of
code as this example shows:

#pragma _CRI csd parallel

{

...

#pragma _CRI csd for

for_loop_block

...

}

The standalone CSDs are sync, critical, and ordered. If standalone CSDs
are placed in a function and the function is not called from a parallel region, the
code will execute as if no CSD code exists.

4.10 Protection of Shared Data

Updates to shared data, both directly in a CSD parallel region and within
functions called from a CSD parallel region, must be protected against
simultaneous execution by SSPs used for the CSD parallel region. Shared data
include statically allocated data objects (such as file scope variables or variables
declared with the static storage class), dynamically allocated data objects pointed
to by more than one SSP, and function parameters that point to shared objects.
Protecting your shared data includes using the private list of the parallel
and parallel for directives, the critical directive, or for loop indices.

Accesses to shared arrays made within a CSD for loop are in effect private and
therefore need no synchronization if the accesses use indices that involve the
loop control variable of the for loop.

114 S–2179–55

Cray Streaming Directives (CSDs) [4]

This example shows access to the sum shared array using loop control variable i:

#pragma csd parallel for

for(i=0; i<n; i++) {

initialize (&a[i]);

}

The critical directive can protect updates to shared data by ensuring that
only one SSP at any one time can execute the enclosed code that accesses the
shared data.

4.11 Dynamic Memory Allocation for CSD Parallel Regions

There are certain precautions you should remember as you allocate or free
dynamic memory that is accessed through private or shared pointers.

Calls to the libc dynamic memory allocation routines (malloc, free, etc.)
within CSD parallel regions must be made by only one SSP at a time. In general,
this will require that they be made from within CSD critical regions. This
requirement may be relaxed in future releases.

Dynamic memory for pointers specified in the private list of the parallel
directive must be allocated and freed within the CSD parallel region. Dynamic
memory cannot be allocated for private objects before entering the CSD parallel
region and made private when within the region simply by specifying a pointer
to that object in the private list of the parallel directive.

Dynamic memory can be allocated for shared pointers outside or within the CSD
parallel region. If memory for the shared pointer is allocated or freed within the
CSD parallel region, you must ensure that it is allocated or freed by only one SSP.

This example shows how to ensure that only one SSP deallocates the memory
for private variable a:

...

double *a;

...

#pragma csd parallel private(a)

S–2179–55 115

Cray® C and C++ Reference Manual

{

#pragma critical

a = malloc(SIZE * sizeof(double));

...

#pragma critical

free(a);

}

4.12 Compiler Options Affecting CSDs

To enable CSDs, compile your code with the -h streamn option with n set to
1 or greater. Also, specify the -h gen_private_callee option to compile
procedures called from the CSD parallel region. To disable CSDs, specify the
-h stream0 option.

116 S–2179–55

OpenMP C and C++ API Directives [5]

This chapter describes the OpenMP directives that the Cray C and C++
Compilers support. These directives are based on the OpenMP C and C++
Application Program Interface Version 2.0 March 2002 standard. Copyright ©
1997–2002 OpenMP Architecture Review Board.

In addition to directives, the OpenMP C and C++ API describes several run
time library routines and environment variables. For information on the library
routines, see the OpenMP man pages. For information on the environment
variables, see Section 2.25, page 64.

The sections in this chapter are as follows:

• OpenMP Feature Restriction (Section 5.1, page 117)

• Cray implementation differences (Section 5.2, page 118)

• OMP_THREAD_STACK_SIZE environment variable (Section 5.3, page 119)

• Compiler options affecting OpenMP (Section 5.4, page 120)

• OpenMP program execution (Section 5.5, page 120)

5.1 Deferred OpenMP Features

The following OpenMP Fortran features are not yet supported by the Cray C
and Cray C++ compilers:

• An object of a class with a nontrivial default constructor, a nontrivial copy
constructor, a nontrivial destructor, or a nontrivial copy assignment operator
can be used in a scoping clause. Currently, these objects can be used only
in a shared scope.

In C++, an object of a class with a nontrivial constructor, a nontrivial copy
constructor, a nontrivial destructor, or a nontrivial copy assignment operator
cannot be used in a scoping clause for any scope except shared. This
restriction will be lifted in a future release.

• The appearance of array names in the REDUCTION clause.

• The reprivatization of variables.

S–2179–55 117

Cray® C and C++ Reference Manual

5.2 Cray Implementation Differences

The OpenMP C and C++ Application Program Interface specification defines
areas of implementation that have vendor-specific behaviors. Those areas are
described in the following list:

Note: The following information was created by copying from the OpenMP
specification the text surrounding the phrase "implementation-dependent"
and replacing that phrase with the Cray specific implementation information
(shown in bold).

• Implementation-dependent areas of the parallel construct:

– If none of the methods1 above were used, then the number of threads
requested is defined by the depth value you define through the aprun -d
depth option. If this option is not set, the aprun command defaults the
depth to one.

– If a parallel region is encountered while dynamic adjustment of the
number of threads is disabled, and the number of threads requested for
the parallel region exceeds the number that the runtime system can supply,
the program will terminate.

– The number of physical processors actually hosting the threads at any
given time is fixed at program startup and is specified by the aprun -d
depth option.

– The number of threads in a team that execute a nested parallel region is
one because all nested parallel regions are serialized.

• Implementation-dependent areas of the for construct:

– When schedule(runtime) is specified, the decision regarding
scheduling is deferred until runtime. The schedule kind and size of the
chunks can be chosen at run time by setting the environment variable
OMP_SCHEDULE. If this environment variable is not set, the schedule
type and chunk size default to GUIDED and 1, respectively. When
schedule(runtime) is specified, chunk_size must not be specified.

– In the absence of an explicitly defined schedule clause, the default
schedule is STATIC and the default chunk size is roughly the number of
iterations divided by the number of threads..

1 Methods that explicitly specify the number of threads were not used. In other words, the number of
threads was not explicitly specified through the num_threads clause of the parallel region and was not
specified by a call to omp_set_num_threads or by the OMP_NUM_THREADS environment variable.

118 S–2179–55

OpenMP C and C++ API Directives [5]

• Implementation-dependent area of the ATOMIC construct—The ATOMIC
directive is replaced with a critical section that encloses the statement.

• Implementation-dependent areas in the OpenMP library functions:

– omp_get_nested—This procedure always returns 0 because nested
parallel regions are always serialized.

– omp_get_num_threads—If the number of threads has not been
explicitly set by the user, the default is the depth value defined through the
aprun -d depth option. If this option is not set, the aprun command
defaults depth to one, which sets the number of threads to one, which
value omp_get_num_threads returns.

– omp_set_dynamic—The default for the dynamic adjustment of threads
is on.

– omp_set_nested—Calls to this function are ignored since nested parallel
regions are always serialized and executed by a team of one thread.

• Implementation-dependent areas of the OpenMP environment variables:

– OMP_DYNAMIC—The default value is TRUE.

– OMP_NUM_THREADS—If no value is specified for the OMP_NUM_THREADS
environment variable, it defaults to depth as defined by the aprun -d
depth option or to 1 if the option is not specified.

If the value specified for the OMP_NUM_THREADS environment variable
is not a positive integer, a warning message is printed and the program
behaves as if no value was specified.

If the value specified for the OMP_NUM_THREADS environment variable is
greater than the maximum number of threads the system can support,
the behavior of the program depends on the value of the OMP_DYNAMIC
environment variable. If OMP_DYNAMIC is FALSE, the program terminates,
otherwise it uses as many threads as possible.

– OMP_SCHEDULE—The default values for this environment variable are
GUIDED for schedule and 1 for chunk size.

5.3 OMP_THREAD_STACK_SIZE

OMP_THREAD_STACK_SIZE is a Cray specific OpenMP environment variable
that changes the size of the thread stack from the default size of 16 MB to

S–2179–55 119

Cray® C and C++ Reference Manual

the specified size. The size of the thread stack should be increased when
thread-private variables may utilize more than 16 MB of memory.

The requested thread stack space is allocated from the local heap when the
threads are created. The amount of space used by each thread for thread stacks
depend on whether you are using MSP or SSP mode. In MSP mode, the memory
used is five times the specified thread stack size because each SSP is assigned one
thread stack and one thread stack is used as the MSP common stack. For SSP
mode, the memory used equals the specified thread stack size.

This is the format for the OMP_THREAD_STACK_SIZE environment variable:

OMP_THREAD_STACK_SIZE n

where n is a decimal number, an octal number with a leading zero, or a
hexadecimal number with a leading "0x" specifying the amount of memory, in
bytes, to allocate for a thread's stack.

For more information about memory on the Cray X1 series system, see the
memory(7) man page.

Example:

setenv OMP_THREAD_STACK_SIZE 18000000

5.4 Compiler Options Affecting OpenMP

These Cray C and C++ Compiler options enable or disable the compiler
recognition of OpenMP directives:

• Enable OpenMP directive recognition: -h omp

• Disable OpenMP directive recognition: -h noomp

5.5 OpenMP Program Execution

The aprun command can be used to define the default thread count to use for
OpenMP parallel regions for programs that do not explicitly define the number
of threads to use (that is, you do not use the OMP_NUM_THREADS environment
variable or the program does not use the omp_set_num_threads library
procedure). If these programs do not use aprun to set the number of threads, all
OpenMP directives are ignored.

120 S–2179–55

OpenMP C and C++ API Directives [5]

Use this command line to set the default thread count:

aprun -d depth

where depth is the number of threads to run. For programs that do not specify the
number of threads, you must set depth to either 4 when using MSP mode or 16
when using SSP mode.

Using the -d option causes your OpenMP program to run as if the
OMP_NUM_THREADS environment variable was set.

These options of the aprun command do not affect the number of OpenMP
threads: -n (define number of processors) and -N (define number of processors
per node).

S–2179–55 121

Cray® C and C++ Reference Manual

122 S–2179–55

Cray Unified Parallel C (UPC) [6]

Unified Parallel C (UPC) is a C language extension for parallel program
development. UPC allows you to explicitly specify parallel programming
through language syntax rather than library functions such as those used in MPI
and SHMEM by allowing you to read and write memory of other processes
with simple assignment statements. Program synchronization occurs only when
explicitly programmed; there is no implied synchronization. These methods
map very well onto the Cray X1 series systems and enable users to achieve high
performance.

Note: UPC is a dialect of the C language. It is not available in C++.

UPC allows you to maintain a view of your program as a collection of threads
operating in a common global address space without burdening you with details
of how parallelism is implemented on the machine (for example, as shared
memory or as a collection of physically distributed memories).

UPC data objects are private to a single thread or shared among all threads of
execution. Each thread has a unique memory space that holds its private data
objects, and access to a globally shared memory space that is distributed across
the threads. Thus, every part of a shared data object has an affinity to a single
thread.

Cray UPC is compatible with MPI, SHMEM, and CAF.

Note: Currently, the UPC model does not define an I/O model. Therefore, you
must supply the controls as needed to remove race conditions. File I/O under
UPC is very similar to standard C because one thread opens a file and shares
the file handle, and multiple threads may read or write to the same file.

We assume that you are familiar with UPC and understand the differences
between the published UPC Introduction and Language Specification paper and
the current UPC specification.

If you are not familiar with UPC, refer to the UPC home page at
http://upc.gwu.edu/. Under the Publications link, select the Introduction to
UPC and Language Specification paper. This paper is slightly outdated but contains
valuable information about understanding and using UPC.

The UPC home page also contains, under the Documentation link, the UPC
Language Specification 1.1.1 paper, which is up to date.

Cray supports the UPC Language Specification 1.1.1 and adds Cray-specific
functions as noted in the following sections.

S–2179–55 123

http://upc.gwu.edu/

Cray® C and C++ Reference Manual

Note: Because of changes made to the Cray UPC libraries to support the UPC
1.1.1 specification, UPC binaries produced by earlier Cray C++ Programming
Environment releases are not compatible with UPC binaries produced by the
Cray C++ Programming Environment 5.2 release. They must be recompiled by
the 5.2 compiler. If you link incompatible binaries, the linker displays an error
message explaining the presence of incompatible UPC object files and does
not create an executable file.

After familiarizing yourself with UPC, refer to the following sections for details:

• Predefined identifiers (Section 6.1, page 124)

• UPC expressions (Section 6.2, page 125)

• UPC statements (Section 6.3, page 125)

• UPC #pragma directives (Section 6.4, page 128)

• Predefined macro names (Section 6.5, page 128)

• Standard headers (Section 6.6, page 129)

• UPC functions (Section 6.7, page 129)

• Cray implementation differences (Section 6.8, page 140)

• Compiling and executing UPC code (Section 6.9, page 141)

For details, see the UPC man pages.

For a description of the -h upc command line option see Section 2.21.11,
page 57.

Note: Some UPC constructs perform more efficiently than others. For
more information about UPC optimization guidelines, refer to Optimizing
Applications on Cray X1 Series Systems.

6.1 Predefined Identifiers

UPC recognizes the following predefined identifiers:

THREADS THREADS is a value of type int; it specifies the number of
independent computational units and has the same value on
every thread. Under the static THREADS translation environment,
THREADS is an integer constant suitable for use in #if
preprocessing directives.

124 S–2179–55

Cray Unified Parallel C (UPC) [6]

MYTHREAD MYTHREAD is a value of type int; it specifies the unique thread
index. The range of possible values is 0...THREADS-1.

UPC_MAX_BLOCK_SIZE

UPC_MAX_BLOCK_SIZE is a predefined integer constant value.
It indicates the maximum value allowed in a layout qualifier for
shared data. It is suitable for use in #if preprocessing directives.

6.2 UPC Expressions

Cray supports the following expressions:

• upc_localsizeof returns the size, in bytes, of the local portion of its
operand, which may be a shared object or a shared-qualified type

• upc_blocksizeof returns the block size of the operand, which may be a
shared object or a shared-qualified type

• upc_elemsizeof returns the size, in bytes, of the highest-level (leftmost)
type that is not an array; for non-array objects, upc_elemsizeof returns the
same value as sizeof

6.3 UPC Statements

Cray supports UPC barrier statements and the iteration statements.

6.3.1 UPC Barrier Statements

Cray supports the following UPC barrier statements:

• upc_notify

The syntax is:

upc_notify [exp];

• upc_wait

The syntax is:

upc_wait [exp];

• upc_barrier

S–2179–55 125

Cray® C and C++ Reference Manual

The syntax is:

upc_barrier [exp];

• upc_fence

The syntax is:

upc_fence;

where exp is an integer expression.

Each thread must execute an alternating sequence of upc notify and upc
wait statements, starting with a upc notify and ending with a upc wait
statement. A synchronization phase consists of the execution of all statements
between the completion of one upc wait and the start of the next.

A upc wait statement completes and the thread enters the next synchronization
phase only after all threads have completed the upc notify statement in the
current synchronization phase. upc wait and upc notify are collective
operations.

The upc fence statement is equivalent to a null strict reference. This insures
that all shared references issued before the fence are complete before any after
it are issued.

A null strict reference is implied before a upc notify statement and after a
upc wait statement.

The upc wait statement will generate a runtime error if the value of its
expression does not equal the value of the expression by the upc notify
statement for the current synchronization phase. No error will be generated if
either statement does not have an expression.

The upc wait statement will generate a runtime error if the value of its
expression differs from any expression in the upc wait and upc notify
statements issued by any thread in the current synchronization phase. No error
will be generated from a difference involving a statement for which no expression
is given.

The barrier operations at thread startup and termination have a value of
expression which is not in the range of user expressible values.

126 S–2179–55

Cray Unified Parallel C (UPC) [6]

6.3.2 UPC Iteration Statements

Cray supports the forall statement.

The syntax is:

upc_forall ([exp][;exp][;exp][affinity]) statement

The expression for affinity has pointer-to-shared type or integer type.

upc_forall is a collective operation in which, for each execution of the loop
body, the controlling expression and affinity expression are single-valued.

The affinity field specifies the executions of the loop body which are to be
performed by a thread.

When affinity is of pointer-to-shared type, the loop body of the upc_forall
statement is executed for each iteration in which the value of MYTHREAD equals
the value of upc_threadof(affinity). Each iteration of the loop body is
executed by precisely one thread.

When affinity is an integer expression, the loop body of the upc_forall
statement is executed for each iteration in which the value of MYTHREAD equals
the value affinity mod THREADS.

When affinity is continue or not specified, each loop body of the upc_forall
statement is performed by every thread.

If the loop body of a upc_forall statement contains one or more upc_forall
statements, either directly or through one or more function calls, the construct is
called a nested upc_forall statement. In a nested upc_forall, the outermost
upc_forall statement that has an affinity expression which is not continue
is called the controlling upc_forall statement. All upc_forall statements
which are not controlling in a nested upc_forall behave as if their affinity
expressions were continue.

If the execution of any loop body of a upc_forall statement produces a
side-effect which affects the execution of another loop body of the same
upc_forall statement which is executed by a different thread, the behavior
is undefined.

If any thread terminates or executes a upc_barrier, upc_notify, or
upc_wait statement within the dynamic scope of a upc_forall statement, the
result is undefined. If any thread terminates a upc_forall statement using
a break, goto, or return statement, the result is undefined. If any thread
enters the body of a upc_forall statement using a goto statement, the result
is undefined.

S–2179–55 127

Cray® C and C++ Reference Manual

6.4 UPC #pragma Directives

Cray supports the UPC strict and relaxed pragma directives. The syntax is:

#pragma _CRI upc strict

#pragma _CRI upc relaxed

These pragmas affect the strict or relaxed categorization of references to shared
objects where the referenced type is neither strict-qualified nor relaxed-qualified.
Such references are strict if a strict pragma is in effect or relaxed if a relaxed
pragma is in effect.

Shared references which are not categorized by either referenced type or by
these pragmas behave in an implementation-defined manner in which either all
such references are strict or all are relaxed. Users wishing portable programs
are strongly encouraged to categorize all shared references either by using
type qualifiers, these directives, or by including a upc strict.h or upc
relaxed.h header file.

The pragmas must occur either outside external declarations (i.e., not within
a function body) or preceding all explicit declarations and statements inside a
compound statement (i.e., a block). When upc strict or upc relaxed is
outside a function body, the directive applies to everything from that point on
in the source file and any #include files, unless another file-scope directive
appears and overrides it. When inside a compound statement, the directives
follow the scoping rules; their applicability ends at the }, which ends the
compound statement. If these pragmas are used in any other context, their
behavior is undefined.

6.5 Predefined Macro Names

The following macro names are defined as follows:

• __UPC__

The integer constant 1, indicating a conforming implementation.

• __UPC_VERSION__

The integer constant 200310L.

• __UPC_DYNAMIC_THREADS__

The integer constant 1 in the dynamic THREADS translation environment,
otherwise undefined.

128 S–2179–55

Cray Unified Parallel C (UPC) [6]

• __UPC_STATIC_THREADS__

The integer constant 1 in the static THREADS translation environment,
otherwise undefined.

6.6 Standard Headers

The standard headers are:

<upc_strict.h>

<upc_relaxed.h>

<upc.h>

upc_strict.h must contain at least:

#pragma _CRI upc strict

#include <upc.h>

upc relaxed.h must contain at least:

#pragma _CRI upc relaxed

#include <upc.h>

6.7 UPC Functions

Cray supports the following UPC functions. Cray-specific functions are noted in
the function descriptions. See the UPC man pages for further information.

6.7.1 Termination of All Threads Function

6.7.1.1 upc_global_exit

The synopsis is:

upc_global_exit(int status);

upc_global_exit flushes all I/O, releases all memory, and terminates the
execution for all active threads

S–2179–55 129

Cray® C and C++ Reference Manual

6.7.2 Shared Memory Allocation Functions

The following sections describe the shared memory allocation functions.

6.7.2.1 upc_global_alloc

The synopsis is:

#include <upc.h>

shared void *upc_global_alloc(size_t nblocks, size_t nbytes);

where nblocks is the number of blocks and nbytes is the block size in bytes.

upc_global_alloc allocates shared space compatible with the declaration:

shared [nbytes] char[nblocks * nbytes]

The upc_global_alloc function is not a collective function. If
upc_global_alloc is called by multiple threads, all threads which make the
call get different allocations. If nblocks*nbytes is zero, the result is a null
pointer-to-shared.

!
Caution: upc_global_alloc must be used with MPT 2.3.0.1 and
UNICOS/mp 2.4 to work correctly. If upc_global_alloc is executed with a
previous version of MPT or UNICOS/mp, the function will issue a descriptive
message and abort the application.

6.7.2.2 upc_all_alloc

The synopsis is:

#include <upc.h>

shared void *upc_all_alloc(size_t nblocks, size_t nbytes);

upc_all_alloc is a collective function with single-valued arguments.
upc_all_alloc allocates shared space compatible with the following
declaration:

shared [nbytes] char[nblocks * nbytes]

The upc_all_alloc function returns the same pointer value on all threads. If
nblocks*nbytes is zero, the result is a null pointer-to-shared value.

130 S–2179–55

Cray Unified Parallel C (UPC) [6]

The dynamic lifetime of an allocated object extends from the time any thread
completes the call to upc_all_alloc until any thread has deallocated the
object.

6.7.2.3 upc_all_free

The synopsis is:

#include <upc.h>

void upc_all_free(shared void *ptr);

upc_all_free deallocates memory allocated by the upc_all_alloc function.

Note: This is a Cray-specific function.

6.7.2.4 upc_alloc

The synopsis is:

#include <upc.h>

shared void *upc_alloc(size_t nbytes);

where nbytes is the total number of bytes to allocate.

The upc_alloc function allocates shared space of at least nbytes bytes with
affinity to the calling thread.

upc_alloc is similar to malloc() except that it returns a pointer-to-shared
value. It is not a collective function. If nbytes is zero, the result is a null
pointer-to-shared.

6.7.2.5 upc_local_alloc

upc_local_alloc

The synopsis is:

#include <upc.h>

shared void *upc_local_alloc(size_t nblocks, size_t nbytes);

The upc_local_alloc function is deprecated and should not be used. UPC
programs should use the upc_alloc function instead. Support may be removed
in future versions of the UPC specification.

S–2179–55 131

Cray® C and C++ Reference Manual

upc_local_alloc allocates shared space of at least nblocks * nbytes with affinity
to the calling thread. If nblocks*nbytes is zero, the result is a null pointer-to-shared
value.

upc_local_alloc is similar to malloc() except that it returns a pointer-to
shared value. It is not a collective function.

6.7.2.6 upc_local_free

The synopsis is:

#include <upc.h>

void upc_local_free(shared void *ptr);

The upc_local_free function deallocates shared memory allocated by a call
to either upc_alloc or upc_local_alloc. If the ptr argument does not point
to memory that was allocated by either upc_alloc or upc_local_alloc or
points to memory that was already deallocated, the behavior of the function is
undefined. If the ptr argument is NULL, no action occurs.

Note that program termination does not imply that shared data allocated
dynamically is freed.

Note: This is a Cray-specific function.

6.7.2.7 upc_free

The synopsis is:

#include <upc.h>

void upc_free(shared void *ptr;

upc_free frees the dynamically allocated shared storage pointed to by ptr.
If ptr is a null pointer, no action occurs. Otherwise, if the argument does not
match a pointer earlier returned by the upc_alloc, upc_global_alloc,
upc_all_alloc, or upc_local_alloc function, or if the space has been
deallocated by a previous call by any thread to upc_free, the behavior is
undefined.

!
Caution: upc_free must be used with MPT 2.3.0.1 and UNICOS/mp 2.4
to work correctly. If upc_free is executed with a previous version of MPT
or UNICOS/mp, the function will issue a descriptive message and abort the
application.

132 S–2179–55

Cray Unified Parallel C (UPC) [6]

6.7.3 Pointer-to-shared Manipulation Functions

The following sections describe the pointer-to-shared manipulation functions.

6.7.3.1 upc_threadof

The synopsis is:

#include <upc.h>

size_t upc_threadof(shared void *ptr);

upc_threadof returns the number of the thread that has affinity to the shared
object pointed to by ptr

6.7.3.2 upc_phaseof

The synopsis is:

#include <upc.h>

size_t upc_phaseof(shared void *ptr);

upc_phaseof returns the phase component of the pointer-to-shared argument.

6.7.3.3 upc_resetphase

The synopsis is:

#include <upc.h>

shared void *upc_resetphase(shared void *ptr);

upc_resetphase returns a pointer-to-shared value which is identical to its
input except that it has zero phase.

6.7.3.4 upc_addrfield

The synopsis is:

#include <upc.h>

size_t upc_addrfield(shared void *ptr);

upc_addrfield returns an implementation-defined value reflecting the local
address of the object pointed to by the pointer-to-shared argument.

S–2179–55 133

Cray® C and C++ Reference Manual

6.7.3.5 upc_affinitysize

The synopsis is:

#include <upc.h>

size_t upc_affinitysize(size_t totalsize, size_t nbytes,

size_t threadid);

where totalsize is the total size of the allocation in bytes, nbytes is the number of
bytes in a block, and threadid is the thread whose affinity size is to be evaluated.

upc_affinitysize is a convenience function which calculates the exact size of
the local portion of the data in a shared object with affinity to a given thread.

In the case of a dynamically allocated shared object, the totalsize argument is
nbytes*nblocks and the nbytes argument is nbytes, where nblocks and nbytes are
exactly as passed to upc_global_alloc or upc_all_alloc when the object
was allocated.

In the case of a statically allocated shared object with declaration:

shared [b] t d[s];

the totalsize argument is s * sizeof (t) and the nbytes argument must be b
* sizeof (t). If block size is unspecified, nbytes must be 1. If the block size
is indefinite, nbytes must be 0.

threadid must be a value in 0..(THREADS-1).

6.7.4 Lock Functions

The following sections describe the lock functions.

6.7.4.1 upc_lock_t

upc_lock_t is an opaque UPC type. upc_lock_t is a shared datatype with
incomplete type. Objects of type upc_lock_t may therefore be manipulated
only through pointers.

6.7.4.2 upc_global_lock_alloc

The synopsis is:

#include <upc.h>

upc_lock_t *upc_global_lock_alloc(void);

134 S–2179–55

Cray Unified Parallel C (UPC) [6]

upc_global_lock_alloc dynamically allocates a lock and returns a pointer to
it. The lock is created in an unlocked state.

The upc_global_lock_alloc function is not a collective function. If called by
multiple threads, all threads which make the call get different allocations.

!
Caution: upc_global_lock_alloc must be used with MPT 2.3.0.1 and
UNICOS/mp 2.4 to work correctly. If upc_global_lock_alloc is executed
with a previous version of MPT or UNICOS/mp, the function will issue a
descriptive message and abort the application.

6.7.4.3 upc_all_lock_alloc

The synopsis is:

#include <upc.h

upc_lock_t *upc_all_lock_alloc(void);

upc_all_lock_alloc dynamically allocates a lock and returns a pointer to it.
The lock is created in an unlocked state.

The upc_all_lock_alloc function is a collective function. The return value on
every thread points to the same lock object.

6.7.4.4 upc_all_lock_free

The synopsis is:

#include <upc.h>

void upc_all_lock_free(upc_lock_t *ptr);

upc_all_lock_free frees a lock allocated by the upc_all_lock_alloc
function.

Note: This is a Cray-specific function.

6.7.4.5 upc_global_lock_free

The synopsis is:

#include <upc.h>

void upc_global_lock_free(upc_lock_t *ptr);

S–2179–55 135

Cray® C and C++ Reference Manual

upc_global_lock_free frees a lock allocated by the
upc_global_lock_alloc function.

The upc_global_lock_free function frees all resources associated
with lock ptr, which was allocated by upc_global_lock_alloc. The
upc_global_lock_free function will free ptr whether it is unlocked or locked
by any thread. After ptr is freed, passing it to any locking functions in any thread
will cause undefined behavior.

Only the thread that allocated lock ptr should free it. Be cautious when freeing
the lock, because there is no implied synchronization with other threads.

If the ptr argument is a NULL pointer, the function does nothing. If ptr was not
allocated by the upc_global_lock_alloc function or if it was freed earlier,
the behavior of upc_global_lock_free will be undefined.

Note: This is a Cray-specific function.

6.7.4.6 upc_lock_free

The synopsis is:

#include <upc.h>

void upc_lock_free(upc_lock_t *ptr);

upc_lock_free frees all resources associated with the dynamically allocated
upc_lock_t pointed to by ptr. If ptr is a null pointer, no action occurs.
Otherwise, if the argument does not match a pointer earlier returned by the
upc_global_lock_alloc or upc_all_lock_alloc function, or if the lock
has been deallocated by a previous call to upc_lock_free, the behavior is
undefined.

upc_lock_free succeeds regardless of whether the referenced lock is currently
unlocked or currently locked (by any thread).

Any subsequent calls to locking functions from any threads using ptr have
undefined effects.

!
Caution: upc_lock_free must be used with MPT 2.3.0.1 and UNICOS/mp
2.4 to work correctly. If upc_lock_free is executed with a previous version
of MPT or UNICOS/mp, the function will issue a descriptive message and
abort the application.

136 S–2179–55

Cray Unified Parallel C (UPC) [6]

6.7.4.7 upc_lock

The synopsis is:

#include <upc.h>

void upc_lock(upc_lock_t *ptr);

upc_lock locks a shared variable, of type upc_lock_t, pointed to by the
pointer given as argument.

If the lock is not used by another thread, then the thread making the call gets
the lock and the function returns. Otherwise, the function keeps trying to get
access to the lock.

A null strict reference is implied after a call to upc_lock().

If the calling thread is already holding the lock referenced by ptr (i.e., it has
previously locked it using upc_lock() or upc_lock_attempt(), but not
unlocked it), the result is undefined.

6.7.4.8 upc_lock_attempt

The synopsis is:

#include <upc.h>

int upc_lock_attempt(upc_lock_t *ptr);

upc_lock_attempt tries to lock a shared variable, of type upc_lock_t,
pointed to by the pointer given as argument.

If the lock is not used by another thread, then the thread making the call gets the
lock and the function returns 1. Otherwise, the function returns 0.

A null strict reference is implied after a call to upc_lock_attempt() that
returns 1.

If the calling thread is already holding the lock referenced by ptr (i.e., it has
previously locked it using upc_lock() or upc_lock_attempt(), but not
unlocked it), the result is undefined.

S–2179–55 137

Cray® C and C++ Reference Manual

6.7.4.9 upc_unlock

The synopsis is:

#include <upc.h>

void upc_unlock(upc_lock_t *ptr);

upc_unlock frees the lock and does not return any value.

A null strict reference is implied before a call to upc_unlock().

6.7.5 Shared String Handling Functions

The following sections describe the shared string handling functions.

6.7.5.1 upc_memcpy

The synopsis is:

#include <upc.h>

void upc_memcpy(shared void *dst,

shared const void *src,

size_t n);

upc_memcpy copies n characters from a shared object having affinity with one
thread to a shared object having affinity with the same or another thread. If
copying takes place between objects that overlap, the behavior is undefined.

The upc_memcpy function treats the dst and src pointers as if they had type:

shared [] char[n]

The effect is equivalent to copying the entire contents from one shared array
object with this type (the src array) to another shared array object with this type
(the dst array).

138 S–2179–55

Cray Unified Parallel C (UPC) [6]

6.7.5.2 upc_memget

The synopsis is:

#include <upc.h>

void upc_memget(void *dst,

shared const void *src,

size_t n);

upc_memget copies n characters from a shared object with affinity to any single
thread to a private object on the calling thread. If copying takes place between
objects that overlap, the behavior is undefined.

The upc_memget function treats the src pointer as if it had type:

shared [] char[n]

The effect is equivalent to copying the entire contents from one shared array
object with this type (the src array) to a private array object (the dst array)
declared with the type:

char[n]

6.7.5.3 upc_memput

The synopsis is:

#include <upc.h>

void upc_memput(shared void *dst,

const void *src,

size_t n);

upc_memput copies n characters from the private object on the calling thread to a
shared object with affinity to any single thread. If copying takes place between
objects that overlap, the behavior is undefined.

The upc_memput function is equivalent to copying the entire contents from a
private array object (the src array) declared with the type:

char[n]

to a shared array object (the dst array) with the type:

shared [] char[n]

S–2179–55 139

Cray® C and C++ Reference Manual

6.7.5.4 upc_memset

The synopsis is:

#include <upc.h>

void upc_memset(shared void *dst,

int c, size_t n);

upc_memset copies the value of c, converted to an unsigned char, to a shared
memory object with affinity to any single thread. The number of bytes set is n.

The upc_memset function treats the dst pointer as if had type:

shared [] char[n]

The effect is equivalent to setting the entire contents of a shared array object with
this type (the dst array) to the value c.

6.8 Cray Implementation Differences

There is a false sharing hazard when referencing shared char and short
integers on Cray X1 series systems.

On Cray X1 series systems, if two PEs store a char or short to the same 32-bit
word in memory without synchronization, incorrect results can occur. This is
because these stores are implemented by reading the entire 32-bit word, inserting
the char or short value and writing the entire word back to memory.

In the situation described above, it is possible for one PE's store to be lost.
Imagine two PEs writing two different characters into the same word in memory
without synchronization:

Register Memory

Initial Value 0x0000

PE 0 Reads 0x0000 0x0000

PE 1 Reads 0x0000 0x0000

PE 0 Inserts 3 0x3000 0x0000

PE 1 Inserts 7 0x0700 0x0000

PE 0 Writes 0x3000 0x3000

PE 1 Writes 0x0700 0x0700

Notice that the value stored by PE 0 has been lost. The final value intended was
0x3700. This situation is referred to as false sharing. It is the result of supporting
data types that are smaller than the smallest type that can be individually read or

140 S–2179–55

Cray Unified Parallel C (UPC) [6]

written by the hardware. On Cray X1 series systems, UPC programmers must
take care when storing to shared char and short data that this situation does
not occur.

6.9 Compiling and Executing UPC Code

In order to compile UPC code, you must load the programming environment
module (PrgEnv) and specify the -h upc option on the cc, c89, or c99
command line.

The -X npes option can optionally be used to define the number of threads to
use and statically set the value of the THREADS constant.

This example enables UPC and allows the THREADS symbol to be defined
dynamically for the examp1 application:

% cc -h upc -o multupc examp1.c

This example enables UPC and statically defines the THREADS symbol as 15 for
the examp1 application:

% cc -h upc 50-X 15 -o multupc examp1.c

The processing elements specified by npes are either MSPs or SSPs. To run
programs on SSPs, you must specify the -h ssp compiler option. The default is
to run on MSPs. See Section 2.10.10, page 28 for more information about using
UPC in SSP mode.

After compiling the UPC code, you run the program using the aprun command
when the code contains UPC code only, or a mixture of UPC and SHMEM,
and/or CAF code. If the code has a mixture of UPC and MPI code, use the
mpirun command.

If you use the –X npes compiler option, you must specify the same number of
threads in the aprun command.

Note: For more information about improving UPC code performance, refer to
Optimizing Applications on Cray X1 Series Systems.

S–2179–55 141

Cray® C and C++ Reference Manual

142 S–2179–55

Cray C++ Libraries [7]

The Cray C++ compiler together with the Dinkum C++ Libraries support the
C++ 98 standard (ISO/IEC FDIS 14882) and continues to support existing Cray
extensions. Most of the standard C++ features are supported, except for the few
mentioned in Section 7.1. The Dinkum C++ Library is described in Section 7.2.

For information about C++ language conformance and exceptions, refer to
Appendix D, page 203.

7.1 Unsupported Standard C++ Library Features

The Cray C++ compiler supports the C++ standard except for wide characters
and multiple locales as follows:

• String classes using basic string class templates with wide character types or
that use the wstring standard template class

• I/O streams using wide character objects

• File-based streams using file streams with wide character types (wfilebuf,
wifstream, wofstream, and wfstream)

• Multiple localization libraries; Cray C++ supports only one locale

Note: The C++ standard provides a standard naming convention for library
routines. Therefore, classes or routines that use wide characters are named
appropriately. For example, the fscanf and sprintf functions do not use
wide characters, but the fwscanf and swprintf function do.

7.2 Dinkum C++ Libraries

The Cray C++ compiler uses the Dinkum C++ libraries, which support standard
C++. The Dinkum C++ Library documentation is provided in HTML through
CrayDoc. You can also find other references to tutorials and advanced user
materials for the standard C++ library in the preface of this document.

S–2179–55 143

Cray® C and C++ Reference Manual

144 S–2179–55

Cray C++ Template Instantiation [8]

A template describes a class or function that is a model for a family of related
classes or functions. The act of generating a class or function from a template
is called template instantiation.

For example, a template can be created for a stack class, and then a stack of
integers, a stack of floats, and a stack of some user-defined type can be used.
In source code, these might be written as Stack<int>, Stack<float>, and
Stack<X>. From a single source description of the template for a stack, the
compiler can create instantiations of the template for each of the types required.

The instantiation of a class template is always done as soon as it is needed during
a compilation. However, the instantiations of template functions, member
functions of template classes, and static data members of template classes
(template entities) are not necessarily done immediately for the following
reasons:

• The preferred end result is one copy of each instantiated entity across all
object files in a program. This applies to entities with external linkage.

• A specialization of a template entity is allowed. For example, a specific
version of Stack<int>, or of just Stack<int>::push could be written
to replace the template-generated version and to provide a more efficient
representation for a particular data type.

• If a template function is not referenced, it should not be compiled because
such functions could contain semantic errors that would prevent compilation.
Therefore, a reference to a template class should not automatically instantiate
all the member functions of that class.

The goal of an instantiation mode is to provide trouble-free instantiation. The
programmer should be able to compile source files to object code, link them and
run the resulting program, without questioning how the necessary instantiations
are done.

In practice, this is difficult for a compiler to do, and different compilers use
different instantiation schemes with different strengths and weaknesses.

S–2179–55 145

Cray® C and C++ Reference Manual

The Cray C++ compiler requires a normal, top-level, explicitly compiled source
file that contains the definition of both the template entity and of any types
required for the particular instantiation. This requirement is met in one of the
following ways:

• Each .h file that declares a template entity also contains either the definition
of the entity or includes another file containing the definition.

• When the compiler sees a template declaration in a .h file and discovers a
need to instantiate that entity, implicit inclusion gives the compiler permission
to search for an associated definition file having the same base name and a
different suffix and implicitly include that file at the end of the compilation
(see Section 8.6, page 153).

• The programmer makes sure that the files that define template entities also
have the definitions of all the available types and adds code or directives in
those files to request instantiation of those entities.

The Cray C++ compiler provides two instantiation mechanisms—simple
instantiation and prelinker instantiation. These mechanisms perform template
instantiation and provide command line options and #pragma directives that
give the programmer more explicit control over instantiation.

8.1 Simple Instantiation

The goal of the simple instantiation mode is to provide a method of instantiating
templates without the need to create and manage intermediate (*.ti and *.ii)
files.

The Cray C++ compilers accomplishes simple instantiation as follows:

1. When the source files of a program are compiled using the -h
simple_templates option, each of the *.o files contains a copy of all of
the template instantiations it uses.

2. When the object files are linked together, the resulting executable file contains
multiple copies of the template function.

Unlike in prelinker instantiation, no *.ti or *.ii files are created. The
programmer is not required to manage the naming and location of the
intermediate files.

The simple template instantiation process creates slightly larger object files and a
slightly larger executable file than is the case for prelinker instantiation.

146 S–2179–55

Cray C++ Template Instantiation [8]

For example, you have three C++ source files, x.C, y.C, and z.C. The source files
reference a template sortall that sorts int, float, and char array elements:

template <class X> void sortall(X a[])

{

... code to sort int, float, char elements ...

}

Entering the command CC -c -h simple_templates x.C y.C z.C
produces object files x.o, y.o, and z.o. Each *.o file has three copies of
sortall, one for ints, one for floats, and one for chars.

Then, entering the command CC x.o y.o z.o links the files and any needed
library routines, creating a.out.

Because the -h simple_templates option enables the -h
instantiate=used option, all needed template entities are instantiated.
The programmer can use the #pragma do_not_instantiate directive in
programs compiled using the -h simple_templates option. See Section 3.6,
page 82.

8.2 Prelinker Instantiation

In prelinker mode, automatic instantiation is accomplished by the Cray C++
compiler as follows:

1. If the compiler is responsible for doing all instantiations automatically, it
can only do so for the entire program. That is, the compiler cannot make
decisions about instantiation of template entities until all source files of the
complete program have been read.

2. The first time the source files of a program are compiled, no template entities
are instantiated. However, the generated object files contain information
about things that could have been instantiated in each compilation. For any
source file that makes use of a template instantiation, an associated .ti file is
created, if one does not already exist (for example, the compilation of abc.C
results in the creation of abc.ti).

3. When the object files are linked together, a program called the prelinker is
run. It examines the object files, looking for references and definitions of
template entities and for any additional information about entities that could
be instantiated.

S–2179–55 147

Cray® C and C++ Reference Manual

!
Caution: The prelinker examines the object files in a library (.a) file
but, because it does not modify them, is not able to assign template
instantiations to them.

4. If the prelinker finds a reference to a template entity for which there is no
definition in the set of object files, it looks for a file that indicates that it could
instantiate that template entity. Upon discovery of such a file, it assigns the
instantiation to that file. The set of instantiations assigned to a given file (for
example, abc.C) is recorded in an associated file that has a .ii suffix (for
example, abc.ii).

5. The prelinker then executes the compiler to again recompile each file for
which the .ii was changed.

6. During compilation, the compiler obeys the instantiation requests contained
in the associated .ii file and produces a new object file that contains the
requested template entities and the other things that were already in the
object file.

7. The prelinker repeats steps 3 through 5 until there are no more instantiations
to be adjusted.

8. The object files are linked together.

Once the program has been linked correctly, the .ii files contain a complete
set of instantiation assignments. If source files are recompiled, the compiler
consults the .ii files and does the indicated instantiations as it does the
normal compilations. That means that, except in cases where the set of required
instantiations changes, the prelink step from then on will find that all the
necessary instantiations are present in the object files and no instantiation
assignment adjustments need be done. This is true even if the entire program is
recompiled. Because the .ii file contains information on how to recompile when
instantiating, it is important that the .o and .ii files are not moved between the
first compilation and linkage.

The prelinker cannot instantiate into and from library files (.a), so if a library is
to be shared by many applications its templates should be expanded. You may
find that creating a directory of objects with corresponding .ii files and the use
of -h prelink_copy_if_nonlocal (see Section 2.7.9, page 22) will work as if
you created a library (.a) that is shared.

148 S–2179–55

Cray C++ Template Instantiation [8]

The -h prelink_local_copy option indicates that only local files (for
example, files in the current directory) are candidates for assignment of
instantiations. This option is useful when you are sharing some common
relocatables but do not want them updated. Another way to ensure that shared
.o files are not updated is to use the -h remove_instantiation_flags
option when compiling the shared .o files. This also makes smaller resulting
shared .o files.

An easy way to create a library that instantiates all references of templates within
the library is to create an empty main function and link it with the library, as
shown in the following example. The prelinker will instantiate those template
references that are within the library to one of the relocatables without generating
duplicates. The empty dummy_main.o file is removed prior to creating the .a
file.

% CC a.C b.C c.C dummy_main.C

% ar cr mylib.a a.o b.o c.o

Another alternative to creating a library that instantiates all references of
templates is to use the -h one_instantiation_per_object option. This
option directs the prelinker to instantiate each template referenced within a
library in its own object file. The following example shows how to use the option:

% CC -h one_instantiation_per_object a.C b.C c.C dummy_main.C

% ar cr mylib.a a.o b.o c.o myInstantiationsDir/*.int.o

For more information about this alternative see Section 8.4, page 150 and Section
2.7.3, page 20.

Prelinker instantiation can coexist with partial explicit control of instantiation
by the programmer through the use of #pragma directives or the
-h instantiate=mode option.

Prelinker instantiation mode can be disabled by issuing the
-h noautoinstantiate command line option. If prelinker
instantiation is disabled, the information about template entities that could be
instantiated in a file is not included in the object file.

8.3 Instantiation Modes

Normally, during compilation of a source file, no template entities are
instantiated (except those assigned to the file by prelinker instantiation).
However, the overall instantiation mode can be changed by issuing the

S–2179–55 149

Cray® C and C++ Reference Manual

-h instantiate=mode command line option. The mode argument can be
specified as follows:

mode Description

none Do not automatically create instantiations of any template
entities. This is the most appropriate mode when prelinker
instantiation is enabled. This is the default instantiation mode.

used Instantiate those template entities that were used in the
compilation. This includes all static data members that have
template definitions.

all Instantiate all template entities declared or referenced in the
compilation unit. For each fully instantiated template class, all of
its member functions and static data members are instantiated,
regardless of whether they were used. Nonmember template
functions are instantiated even if the only reference was a
declaration.

local Similar to used mode, except that the functions are given
internal linkage. This mode provides a simple mechanism
for those who are not familiar with templates. The compiler
instantiates the functions used in each compilation unit as local
functions, and the program links and runs correctly (barring
problems due to multiple copies of local static variables). This
mode may generate multiple copies of the instantiated functions
and is not suitable for production use. This mode cannot be used
in conjunction with prelinker template instantiation. Prelinker
instantiation is disabled by this mode.

In the case where the CC(1) command is given a single source file to compile and
link, all instantiations are done in the single source file and, by default, the used
mode is used and prelinker instantiation is suppressed.

8.4 One Instantiation Per Object File

You can direct the prelinker to instantiate each template referenced in the source
into its own object file. This method is preferred over other template instantiation
object file generation options because:

• The user of a library pulls in only the instantiations that are needed.

• Multiple libraries with the same template can link. If each instantiation is not

150 S–2179–55

Cray C++ Template Instantiation [8]

placed in its own object file, linking a library with another library that also
contains the same instantiations will generate warnings on some platforms.

Use the -h one_instantiation_per_object option to generate one object
file per instantiation. For more information about this option, see Section 2.7.3,
page 20.

8.5 Instantiation #pragma Directives

Instantiation #pragma directives can be used in source code to control the
instantiation of specific template entities or sets of template entities. There are
three instantiation #pragma directives:

• The #pragma _CRI instantiate directive causes a specified entity to be
instantiated.

• The #pragma _CRI do_not_instantiate directive suppresses the
instantiation of a specified entity. It is typically used to suppress the
instantiation of an entity for which a specific definition is supplied.

• The #pragma _CRI can_instantiate directive indicates that a specified
entity can be instantiated in the current compilation, but need not be. It is
used in conjunction with prelinker instantiation to indicate potential sites for
instantiation if the template entity is deemed to be required by the compiler.

The argument to the #pragma _CRI instantiate directive can be any of
the following:

• A template class name. For example: A<int>

• A template class declaration. For example: class A<int>

• A member function name. For example: A<int>::f

• A static data member name. For example: A<int>::i

• A static data declaration. For example: int A<int>::i

• A member function declaration. For example: void A<int>::f(int,
char)

• A template function declaration. For example: char* f(int, float)

A #pragma directive in which the argument is a template class name (for
example, A<int> or class A<int>) is equivalent to repeating the directive
for each member function and static data member declared in the class. When

S–2179–55 151

Cray® C and C++ Reference Manual

instantiating an entire class, a given member function or static data member may
be excluded using the #pragma _CRI do_not_instantiate directive. For
example:

#pragma _CRI instantiate A<int>

#pragma _CRI do_not_instantiate A<int>::f

The template definition of a template entity must be present in the compilation
for an instantiation to occur. If an instantiation is explicitly requested by use
of the #pragma _CRI instantiate directive and no template definition is
available or a specific definition is provided, an error is issued.

The following example illustrates the use of the #pragma _CRI instantiate
directive:

template <class T> void f1(T); // No body provided

template <class T> void g1(T); // No body provided

void f1(int) {} // Specific definition

void main()

{

int i;

double d;

f1(i);

f1(d);

g1(i);

g1(d);

}

#pragma _CRI instantiate void f1(int) // error-specific definition

#pragma _CRI instantiate void g1(int) // error-no body provided

In the preceding example, f1(double) and g1(double) are not instantiated
because no bodies are supplied, but no errors will be produced during the
compilation. If no bodies are supplied at link time, a linker error is issued.

A member function name (such as A<int>::f) can be used as a #pragma
directive argument only if it refers to a single, user-defined member function
(that is, not an overloaded function). Compiler-generated functions are
not considered, so a name can refer to a user-defined constructor even if a
compiler-generated copy constructor of the same name exists. Overloaded
member functions can be instantiated by providing the complete member
function declaration, as in the following example:

#pragma _CRI instantiate char* A<int>::f(int, char*)

The argument to an instantiation directive cannot be a compiler-generated
function, an inline function, or a pure virtual function.

152 S–2179–55

Cray C++ Template Instantiation [8]

8.6 Implicit Inclusion

The implicit inclusion feature implies that if the compiler needs a definition to
instantiate a template entity declared in a .h file, it can implicitly include the
corresponding .C file to get the source code for the definition. For example, if a
template entity ABC::f is declared in file xyz.h, and an instantiation of ABC::f
is required in a compilation, but no definition of ABC::f appears in the source
code processed by the compilation, the compiler will look to see if a file xyz.C
exists and, if so, process it as if it were included at the end of the main source file.

To find the template definition file for a given template entity, the Cray C++
compiler must know the full path name to the file in which the template
was declared and whether the file was included using the system include
syntax (such as #include <file.h>). This information is not available for
preprocessed source code containing #line directives. Consequently, the Cray
C++ compiler does not attempt implicit inclusion for source code that contains
#line directives.

The set of definition-file suffixes that are tried by default, is .c, .C, .cpp, .CPP,
.cxx, .CXX, and .cc.

Implicit inclusion works well with prelinker instantiation; however, they are
independent. They can be enabled or disabled independently, and implicit
inclusion is still useful without prelinker instantiation.

S–2179–55 153

Cray® C and C++ Reference Manual

154 S–2179–55

Cray C Extensions [9]

The Cray C compiler supports these extensions, developed by Cray, to the C
standard:

• Complex data extensions (Section 9.1, page 155)

• fortran keyword (Section 9.2, page 156)

• Hexadecimal floating-point constants (Section 9.3, page 156)

A program that uses one or more extensions does not strictly conform to the
standard. These extensions are not available in strict conformance mode.

9.1 Complex Data Extensions

Cray C extends the complex data facilities defined by standard C with these
extensions:

• Imaginary constants

• Incrementing or decrementing _Complex data

The Cray C compiler supports the Cray imaginary constant extension and is
defined in the <complex.h> header file. This imaginary constant has the
following form:

Ri

R is either a floating constant or an integer constant; no space or other character
can appear between R and i. If you are compiling in strict conformance mode
(-h conform), the Cray imaginary constants are not available.

The following example illustrates imaginary constants:

#include <complex.h>

double complex z1 = 1.2 + 3.4i;

double complex z2 = 5i;

The other extension to the complex data facility allows the prefix– and postfix-
increment and decrement operators to be applied to the _Complex data type.
The operations affect only the real portion of a complex number.

S–2179–55 155

Cray® C and C++ Reference Manual

9.2 fortran Keyword

In extended mode, the identifier fortran is treated as a keyword. It specifies a
storage class that can be used to declare a Fortran-coded external function. The
use of the fortran keyword when declaring a function causes the compiler to
verify that the arguments used in each call to the function are pass by addresses;
any arguments that are not addresses are converted to addresses.

As in any function declaration, an optional type-specifier declares the type
returned, if any. Type int is the default; type void can be used if no value is
returned (by a Fortran subroutine). The fortran storage class causes conversion
of lowercase function names to uppercase, and, if the function name ends with
an underscore character, the trailing underscore character is stripped from the
function name. (Stripping the trailing underscore character is in keeping with
UNIX practice.)

Functions specified with a fortran storage class must not be declared elsewhere
in the file with a static storage class.

Note: The fortran keyword is not allowed in Cray C++.

An example using the fortran keyword is shown in Section 13.3.7, page 176.

9.3 Hexadecimal Floating-point Constants

The Cray C compiler supports the standard hexadecimal floating constant
notations and the Cray hexadecimal floating constant notation. The standard
hexadecimal floating constants are portable and have sizes that are dependent
upon the hardware. The remainder of this section discusses the Cray
hexadecimal floating constant.

The Cray hexadecimal floating constant feature is not portable, because identical
hexadecimal floating constants can have different meanings on different systems.
It can be used whenever traditional floating-point constants are allowed.

The hexadecimal constant has the usual syntax: 0x (or 0X) followed by
hexadecimal characters. The optional floating suffix has the same form as for
normal floating constants: f or F (for float), l or L (for long), optionally followed
by an i (imaginary).

The constant must represent the same number of bits as its type, which is
determined by the suffix (or the default of double). The constant's bit length is
four times the number of hexadecimal digits, including leading zeros.

156 S–2179–55

Cray C Extensions [9]

The following example illustrates hexadecimal constant representation:

0x7f7fffff.f

32-bit float

0x0123456789012345.

64-bit double

The value of a hexadecimal floating constant is interpreted as a value in the
specified floating type. This uses an unsigned integral type of the same size
as the floating type, regardless of whether an object can be explicitly declared
with such a type. No conversion or range checking is performed. The resulting
floating value is defined in the same way as the result of accessing a member of
floating type in a union after a value has been stored in a different member of
integral type.

The following example illustrates hexadecimal floating-point constant
representation that use Cray floating-point format:

int main(void)

{

float f1, f2;

double g1, g2;

f1 = 0x3ec00000.f;

f2 = 0x3fc00000.f;

g1 = 0x40fa400100000000.;

g2 = 0x40fa400200000000.;

printf("f1 = %8.8g\n", f1);

printf("f2 = %8.8g\n", f2);

printf("g1 = %16.16g\n", g1);

printf("g2 = %16.16g\n", g2);

return 1;

}

This is the output for the previous example:

f1 = 0.375

f2 = 1.5

g1 = 107520.0625

g2 = 107520.125

S–2179–55 157

Cray® C and C++ Reference Manual

158 S–2179–55

Predefined Macros [10]

Predefined macros can be divided into the following categories:

• Macros required by the C and C++ standards (Section 10.1, page 159)

• Macros based on the host machine (Section 10.2, page 160)

• Macros based on the target machine (Section 10.3, page 161)

• Macros based on the compiler (Section 10.4, page 162)

• UPC macros (Section 10.5, page 162)

Predefined macros provide information about the compilation environment. In
this chapter, only those macros that begin with the underscore (_) character
are defined when running in strict-conformance mode (see the -h conform
command line option in Section 2.6.2, page 14).

Note: Any of the predefined macros except those required by the standard (see
Section 10.1, page 159) can be undefined by using the -U command line option;
they can also be redefined by using the -D command line option.

A large set of macros is also defined in the standard header files.

10.1 Macros Required by the C and C++ Standards

The following macros are required by the C and C++ standards:

Macro Description

__TIME__

Time of translation of the source file.

__DATE__

Date of translation of the source file.

__LINE__

Line number of the current line in your source file.

__FILE__

Name of the source file being compiled.

S–2179–55 159

Cray® C and C++ Reference Manual

__STDC__

Defined as the decimal constant 1 if compilation is in strict
conformance mode; defined as the decimal constant 2 if the
compilation is in extended mode. This macro is defined for Cray
C and C++ compilations.

__cplusplus

Defined as 1 when compiling Cray C++ code and undefined
when compiling Cray C code. The __cplusplus macro is
required by the ISO C++ standard, but not the ISO C standard.

10.2 Macros Based on the Host Machine

The following macros provide information about the environment running on
the host machine:

Macro Description

__unix

Defined as 1 if the machine uses the UNIX OS.

unix

Defined as 1 if the machine uses the UNIX OS. This macro is not
defined in strict-conformance mode.

_UNICOSMP

Defined as 1 if the operating system is UNICOS/mp. This macro
is not defined in strict-conformance mode.

160 S–2179–55

Predefined Macros [10]

10.3 Macros Based on the Target Machine

The following macros provide information about the characteristics of the target
machine:

Macro Description

_ADDR64

Defined as 1 if the targeted CPU has 64-bit address registers;
if the targeted CPU does not have 64-bit address registers, the
macro is not defined.

__sv

Defined as 1 on all Cray X1 series systems.

__sv2

Defined as 1 and indicates that the current system is a
Cray X1 series system.

_CRAY

Defined as 1 on UNICOS/mp systems.

_CRAYIEEE

Defined as 1 if the targeted CPU type uses IEEE floating-point
format.

_CRAYSV2

Defined as 1 and indicates that the current system is a
Cray X1 series system.

__crayx1 Defined as 1 and indicates that the current system is a
Cray X1 series system.

_MAXVL

Defined as the maximum hardware vector length, which is 64.

cray

Defined as 1 on UNICOS/mp. This macro is not defined in
strict-conformance mode.

S–2179–55 161

Cray® C and C++ Reference Manual

CRAY

Defined as 1 on UNICOS/mp systems. This macro is not defined
in strict-conformance mode.

10.4 Macros Based on the Compiler

The following macros provide information about compiler features:

Macro Description

_RELEASE

Defined as the major release level of the compiler.

_RELEASE_MINOR

Defined as the minor release level of the compiler.

_RELEASE_STRING

Defined as a string that describes the version of the compiler.

_CRAYC

Defined as 1 to identify the Cray C and C++ compilers.

10.5 UPC Predefined Macros

The following macros provide information about UPC functions:

Macro Description

__UPC__ The integer constant 1, indicating a conforming implementation.

__UPC_DYNAMIC_THREADS__

The integer constant 1 in the dynamic THREADS translation
environment.

__UPC_STATIC_THREADS__

The integer constant 1 in the static THREADS translation
environment.

162 S–2179–55

Running C and C++ Applications [11]

Cray X1 series systems provide the following options for launching applications:

• Launching a single non-MPI application

• Launching a single MPI application

• Launching multiple interrelated applications

11.1 Launching a Single Non-MPI Application

Cray X1 series systems provide two methods of launching single, non-MPI
applications. You can use the aprun command or the auto aprun method.

To launch an application via aprun, you enter the name of the executable and
any other desired command line options. Refer to the aprun(1) man page for
details.

For example, if you want to compile and run programs prog1, prog2, and
prog3 as application trio, you would enter the following command sequence:

% CC -c prog1.C prog2.C prog3.C

% CC -o trio prog1.o prog2.o prog3.o

% aprun ./trio

You could use the auto aprun feature to perform the same functions:

% CC -c prog1.C prog2.C prog3.C

% CC -o trio prog1.o prog2.o prog3.o

% ./trio

The CRAY_AUTO_APRUN_OPTIONS environment variable specifies options for
the aprun command when the command is called automatically. See Section
2.24, page 61.

11.2 Launching a Single MPI Application

The process for launching a single MPI application is the same as for non-MPI
applications except that you use the mpirun command instead of aprun. The
aprun(1) man page also describes mpirun options.

For example, if you want to compile and run programs mpiprog1, mpiprog2,

S–2179–55 163

Cray® C and C++ Reference Manual

and mpiprog3 as application mpitrio, you would enter the following
command sequence:

% CC -c mpiprog1.C mpiprog2.C mpiprog3.C

% CC -o mpitrio mpiprog1.o mpiprog2.o mpiprog3.o

% mpirun ./trio

11.3 Multiple Program, Multiple Data (MPMD) Launch

Cray X1 series enable you to launch multiple interrelated applications with a
single aprun or mpirun command. The applications must have the following
characteristics:

• The applications can use MPI, SHMEM, or CAF to perform
application-to-application communications. Using UPC for
application-to-application communication is not supported.

• Within each application, the supported programming models are MPI,
SHMEM, CAF, pthreads, and OpenMP.

• All applications must be of the same mode; that is, they must all be
MSP-mode applications or all SSP-mode applications.

• If one or more of the applications in an MPMD job use a shared memory
model (OpenMP or pthreads) and need a depth greater than the default of 1,
then all of the applications will have the depth specified by the aprun or
mpirun -d option, whether they need it or not.

To launch multiple applications with one command, you use aprun or mpirun.

For example, suppose you have created three MPI applications which contain
CAF statements:

% CC -o multiabc a.o b.o c.o

% CC -o multijkl j.o k.o l.o

% CC -o multixyz x.o y.o z.o

and the number of processing elements required are 128 for multiabc, 16 for
multijkl, and 4 for multixyz.

To launch all three applications simultaneously, you would enter:

% mpirun -np 128 multiabc : -np 16 multijkl : -np 4 multixyz

164 S–2179–55

Debugging Cray C and C++ Code [12]

The Etnus TotalView symbolic debugger is available to help you debug C and
C++ codes (refer to Etnus TotalView Users Guide). In addition, the Cray C and C++
compilers provide the following features to help you in debugging codes:

• The -G and -g compiler options provide symbol information about your
source code for use by the Etnus TotalView debugger. For more information
on these compiler options, see Section 2.16.1, page 40.

• The -h [no]bounds option and the #pragma _CRI [no]bounds directive
let you check pointer and array references. The -h [no]bounds option is
described in Section 2.16.2, page 41. The #pragma _CRI [no]bounds
directive is described in Section 3.5.1, page 72.

• The #pragma _CRI message directive lets you add warning messages to
sections of code where you suspect problems. The #pragma _CRI message
directive is described in Section 3.5.3, page 75.

• The #pragma _CRI [no]opt directive lets you selectively isolate portions
of your code to optimize, or to toggle optimization on and off in selected
portions of your code. The #pragma _CRI [no]opt directive is described
in Section 3.5.6, page 77.

12.1 Etnus TotalView Debugger

Some of the functions available in the TotalView debugger allow you to perform
the following actions:

• Set and clear breakpoints, which can be conditional, at both the source code
level and the assembly code level

• Examine core files

• Step through a program, including across function calls

• Reattach to the executable file after editing and recompiling

• Edit values of variables and memory locations

• Evaluate code fragments

S–2179–55 165

Cray® C and C++ Reference Manual

12.2 Compiler Debugging Options

To use the TotalView debugger in debugging your code, you must first compile
your code using one of the debugging options (-g or -G). These options are
specified as follows:

• -Gf

If you specify the -Gf debugging option, the TotalView debugger allows you
to set breakpoints at function entry and exit and at labels.

• -Gp

If you specify the -Gp debugging option, the TotalView debugger allows
you to set breakpoints at function entry and exit, labels, and at places where
execution control flow changes (for example, loops, switch, and if...else
statements).

• -Gn or -g

If you specify the -Gn or -g debugging option, the TotalView debugger
allows you to set breakpoints at function entry and exit, labels, and executable
statements. These options force all compiler optimizations to be disabled as if
you had specified -O0.

Users of the Cray C and C++ compilers do not have to sacrifice run time
performance to debug codes. Many compiler optimizations are inhibited by
breakpoints generated for debugging. By specifying a higher debugging level,
fewer breakpoints are generated and better optimization occurs.

However, consider the following cases in which optimization is affected by the
-Gp and -Gf debugging options:

• Vectorization can be inhibited if a label exists within the vectorizable loop.

• Vectorization can be inhibited if the loop contains a nested block and the -Gp
option is specified.

• When the -Gp option is specified, setting a breakpoint at the first statement
in a vectorized loop allows you to stop and display at each vector iteration.
However, setting a breakpoint at the first statement in an unrolled loop may
not allow you to stop at each vector iteration.

166 S–2179–55

Interlanguage Communication [13]

In some situations, it is necessary or advantageous to make calls to assembly
or Fortran functions from C or C++ programs. This chapter describes how to
make such calls. It also discusses calls to C and C++ functions from Fortran and
assembly language. For additional information on interlanguage communication,
see Interlanguage Programming Conventions. The calling sequence is described in
detail on the callseq(3) man page.

The C and C++ compilers provide a mechanism for declaring external functions
that are written in other languages. This allows you to write portions of an
application in C, C++, Fortran, or assembly language. This can be useful in cases
where the other languages provide performance advantages or utilities that are
not available in C or C++.

This chapter describes how to call assembly language and Fortran programs
from a C or C++ program. It also discusses the issues related to calling C or C++
programs from other languages.

13.1 Calls between C and C++ Functions

The following requirements must be considered when making calls between
functions written in C and C++:

• In Cray C++, the extern "C" linkage is required when declaring an external
function that is written in Cray C or when declaring a Cray C++ function
that is to be called from Cray C. Normally the compiler will mangle function
names to encode information about the function's prototype in the external
name. This prevents direct access to these function names from a C function.
The extern "C" keyword will prevent the compiler from performing name
mangling.

• The program must be linked using the CC command.

• The program's main routine must be C or C++ code compiled with the CC
command.

Objects can be shared between C and C++. There are some Cray C++ objects
that are not accessible to Cray C functions (such as classes). The following object
types can be shared directly:

• Integral and floating types.

S–2179–55 167

Cray® C and C++ Reference Manual

• Structures and unions that are declared identically in C and C++. In order
for structures and unions to be shared, they must be declared with identical
members in the identical order.

• Arrays and pointers to the above types.

In the following example, a Cray C function (C_add_func) is called by the Cray
C++ main program:

#include <iostream.h>

extern "C" int C_add_func(int, int);

int global_int = 123;

main()

{

int res, i;

cout << "Start C++ main" << endl;

/* Call C function to add two integers and return result. */

cout << "Call C C_add_func" << endl;

res = C_add_func(10, 20);

cout << "Result of C_add_func = " << res << endl;

cout << "End C++ main << endl;

}

The Cray C function (C_add_func) is as follows:

#include <stdio.h>

extern int global_int;

int C_add_func(int p1, int p2)

{

printf("\tStart C function C_add_func.\n");

printf("\t\tp1 = %d\n", p1);

printf("\t\tp2 = %d\n", p2);

printf("\t\tglobal_int = %d\n", global_int);

return p1 + p2;

}

168 S–2179–55

Interlanguage Communication [13]

The output from the execution of the calling sequence illustrated in the preceding
example is as follows:

Start C++ main

Call C C_add_func

Start C function C_add_func.

p1 = 10

p2 = 20

global_int = 123

Result of C_add_func = 30

End C++ main

13.2 Calling Assembly Language Functions from a C or C++ Function

You can sometimes avoid bottlenecks in programs by rewriting parts of
the program in assembly language, maximizing performance by selecting
instructions to reduce machine cycles. When writing assembly language
functions that will be called by C or C++ functions, use the standard
UNICOS/mp program linkage macros. When using these macros, you do not
need to know the specific registers used by the C or C++ program or by the
calling sequence of the assembly coded routine.

In Cray C++, use extern "C" to declare the assembly language function.

(Deferred implementation) Support of Cray Assembly Language (CAL)
Functions is deferred.The use of Cray Assembly Language (CAL) is described in
the Cray Assembly Language (CAL) for Cray X1 Systems Reference Manual.

The ALLOC, DEFA, DEFS, ENTER, EXIT, and MXCALLEN macros can be used to
define the calling list, A and S register use, temporary storage, and entry and
exit points.

13.3 Calling Fortran Functions and Subroutines from a C or C++ Function

This subsection describes the following aspects of calling Fortran from C or
C++. Topics include requirements and guidelines, argument passing, array
storage, logical and character data, accessing named common, and accessing
blank common.

S–2179–55 169

Cray® C and C++ Reference Manual

13.3.1 Requirements

Keep the following points in mind when calling Fortran functions from C or C++:

• Fortran uses the call-by-address convention. C and C++ use the call-by-value
convention, which means that only pointers should be passed to Fortran
subprograms. See Section 13.3.2, page 170.

• Fortran arrays are in column-major order. C and C++ arrays are in row-major
order. This indicates which dimension is indicated by the first value in an
array element subscript. See Section 13.3.3, page 171.

• Single-dimension arrays of signed 32-bit integers and single dimension arrays
of 32-bit floating-point numbers are the only aggregates that can be passed as
parameters without changing the arrays.

• Fortran character pointers and character pointers from Cray C and C++ are
incompatible. See Section 13.3.4, page 172.

• Fortran logical values and the Boolean values from C and C++ are not fully
compatible. See Section 13.3.4, page 172.

• External C and C++ variables are stored in common blocks of the same
name, making them readily accessible from Fortran programs if the C or C++
variable is in uppercase.

• When declaring Fortran functions or objects in C or C++, the name must be
specified in all uppercase letters, digits, or underscore characters and consist
of 31 or fewer characters.

• In Cray C, Fortran functions can be declared using the fortran keyword (see
Section 9.2, page 156). The fortran keyword is not available in Cray C++.
Instead, Fortran functions must be declared by specifying extern "C".

13.3.2 Argument Passing

Because Fortran subroutines expect arguments to be passed by pointers rather
than by value, C and C++ functions called from Fortran subroutines must pass
pointers rather than values.

All argument passing in Cray C is strictly by value. To prepare for a function
call between two Cray C functions, a copy is made of each actual argument.
A function can change the values of its formal parameters, but these changes
cannot affect the values of the actual arguments. It is possible, however, to pass
a pointer. (All array arguments are passed by this method.) This capability is
analogous to the Fortran method of passing arguments.

170 S–2179–55

Interlanguage Communication [13]

In addition to passing by value, Cray C++ also provides passing by reference.

13.3.3 Array Storage

C and C++ arrays are stored in memory in row-major order. Fortran arrays
are stored in memory in column-major order. For example, the C or C++ array
declaration int A[3][2] is stored in memory as:

A[0][0] A[0][1]

A[1][0] A[1][1]

A[2][0] A[2][1]

The previously defined array is viewed linearly in memory as:

A[0][0] A[0][1] A[1][0] A[1][1] A[2][0] A[2][1]

The Fortran array declaration INTEGER A(3,2) is stored in memory as:

A(1,1) A(2,1) A(3,1)

A(1,2) A(2,2) A(3,2)

The previously defined array is viewed linearly in memory as:

A(1,1) A(2,1) A(3,1) A(1,2) A(2,2) A(3,2)

When an array is shared between Cray C, C++, and Fortran, its dimensions are
declared and referenced in C and C++ in the opposite order in which they are
declared and referenced in Fortran. Arrays are zero-based in C and C++ and
are one-based in Fortran, so in C and C++ you should subtract 1 from the array
subscripts that you would normally use in Fortran.

For example, using the Fortran declaration of array A in the preceding example,
the equivalent declaration in C or C++ is:

int a[2][3];

S–2179–55 171

Cray® C and C++ Reference Manual

The following list shows how to access elements of the array from Fortran and
from C or C++:

Fortran C or C++

A(1,1) A[0][0]

A(2,1) A[0][1]

A(3,1) A[0][2]

A(1,2) A[1][0]

A(2,2) A[1][1]

A(3,2) A[1][2]

13.3.4 Logical and Character Data

Logical and character data need special treatment for calls between C or C++ and
Fortran. Fortran has a character descriptor that is incompatible with a character
pointer in C and C++. The techniques used to represent logical (Boolean) values
also differ between Cray C, C++, and Fortran.

Mechanisms you can use to convert one type to the other are provided by the
fortran.h header file and conversion macros shown in the following list:

Macro Description

_btol

Conversion utility that converts a 0 to a Fortran logical .FALSE.
and a nonzero value to a Fortran logical .TRUE.

_ltob

Conversion utility that converts a Fortran logical .FALSE. to a 0
and a Fortran logical .TRUE. to a 1.

13.3.5 Accessing Named Common from C and C++

The following example demonstrates how external C and C++ variables are
accessible in Fortran named common blocks. It shows a C or C++ C function
calling a Fortran subprogram, the associated Fortran subprogram, and the
associated input and output.

In this example, the C or C++ structure ST is accessed in the Fortran subprogram

172 S–2179–55

Interlanguage Communication [13]

as common block ST. The name of the structure and the Fortran common block
must match. Note that this requires that the structure name be uppercase. The
C and C++ C structure member names and the Fortran common block member
names do not have to match, as is shown in this example.

The following Cray C main program calls the Fortran subprogram FCTN:

#include <stdio.h>

struct

{

int i;

double a[10];

long double d;

} ST;

main()

{

int i;

/* initialize struct ST */

ST.i = 12345;

for (i = 0; i < 10; i++)

ST.a[i] = i;

ST.d = 1234567890.1234567890L;

/* print out the members of struct ST */

printf("In C: ST.i = %d, ST.d = %20.10Lf\n", ST.i, ST.d);

printf("In C: ST.a = ");

for (i = 0; i < 10; i++)

printf("%4.1f", ST.a[i]);

printf("\n\n");

/* call the fortran function */

FCTN();

}

The following example is the Fortran subprogram FCTN called by the previous
Cray C main program:

C *********** Fortran subprogram (f.f): ***********

SUBROUTINE FCTN

S–2179–55 173

Cray® C and C++ Reference Manual

COMMON /ST/STI, STA(10), STD

INTEGER STI

REAL STA

DOUBLE PRECISION STD

INTEGER I

WRITE(6,100) STI, STD

100 FORMAT ('IN FORTRAN: STI = ', I5, ', STD = ', D25.20)

WRITE(6,200) (STA(I), I = 1,10)

200 FORMAT ('IN FORTRAN: STA =', 10F4.1)

END

The previous Cray C and Fortran examples are executed by the following
commands, and they produce the output shown:

% cc -c c.c

% ftn -c f.f

% ftn c.o f.o

% ./a.out

ST.i = 12345, ST.d = 1234567890.1234567890

In C: ST.a = 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0

IN FORTRAN: STI = 12345, STD = .12345678901234567889D+10

IN FORTRAN: STA = 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0

13.3.6 Accessing Blank Common from C or C++

Fortran includes the concept of a common block. A common block is an area of
memory that can be referenced by any program unit in a program. A named
common block has a name specified in names of variables or arrays stored in the
block. A blank common block, sometimes referred to as blank common, is declared
in the same way, but without a name.

There is no way to access blank common from C or C++ similar to accessing a
named common block. However, you can write a simple Fortran function to
return the address of the first word in blank common to the C or C++ program
and then use that as a pointer value to access blank common.

174 S–2179–55

Interlanguage Communication [13]

The following example shows how Fortran blank common can be accessed using
C or C++ source code:

#include <stdio.h>

struct st

{

float a;

float b[10];

} *ST;

#ifdef __cplusplus

extern "C" struct st *MYCOMMON(void);

extern "C" void FCTN(void);

#else

fortran struct st *MYCOMMON(void);

fortran void FCTN(void);

#endif

main()

{

int i;

ST = MYCOMMON();

ST->a = 1.0;

for (i = 0; i < 10; i++)

ST->b[i] = i+2;

printf("\n In C and C++\n");

printf(" a = %5.1f\n", ST->a);

printf(" b = ");

for (i = 0; i < 10; i++)

printf("%5.1f ", ST->b[i]);

printf("\n\n");

FCTN();

}

This Fortran source code accesses blank common and is accessed from the C or
C++ source code in the preceding example:

SUBROUTINE FCTN

COMMON // STA,STB(10)

PRINT *, "IN FORTRAN"

PRINT *, " STA = ",STA

S–2179–55 175

Cray® C and C++ Reference Manual

PRINT *, " STB = ",STB

STOP

END

FUNCTION MYCOMMON()

COMMON // A

MYCOMMON = LOC(A)

RETURN

END

This is the output of the previous C or C++ source code:

a = 1.0

b = 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0

This is the output of the previous Fortran source code:

STA = 1.

STB = 2., 3., 4., 5., 6., 7., 8., 9., 10., 11.

13.3.7 Cray C and Fortran Example

Here is an example of a Cray C function that calls a Fortran subprogram. The
Fortran subprogram example follows the Cray C function example, and the input
and output from this sequence follows the Fortran subprogram example.

Note: This example assumes that the Cray Fortran function is compiled with
the -s default32 option enabled. The examples will not work if the -s
default64 option is enabled.

/* C program (main.c): */

#include <stdio.h>

#include <string.h>

#include <fortran.h>

/* Declare prototype of the Fortran function. Note the last */

/* argument passes the length of the first argument. */

fortran double FTNFCTN (char *, int *, int);

double FLOAT1 = 1.6;

double FLOAT2; /* Initialized in FTNFCTN */

main()

{

176 S–2179–55

Interlanguage Communication [13]

int clogical, ftnlogical, cstringlen;

double rtnval;

char *cstring = "C Character String";

/* Convert clogical to its Fortran equivalent */

clogical = 1;

ftnlogical = _btol(clogical);

/* Print values of variables before call to Fortran function */

printf(" In main: FLOAT1 = %g; FLOAT2 = %g\n",

FLOAT1, FLOAT2);

printf(" Calling FTNFCTN with arguments:\n");

printf(" string = \"%s\"; logical = %d\n\n", cstring, clogical);

cstringlen = strlen(cstring);

rtnval = FTNFCTN(cstring, &ftnlogical, cstringlen);

/* Convert ftnlogical to its C equivalent */

clogical = _ltob(&ftnlogical);

/* Print values of variables after call to Fortran function */

printf(" Back in main: FTNFCTN returned %g\n", rtnval);

printf(" and changed the two arguments:\n");

printf(" string = \"%.*s\"; logical = %d\n",

cstringlen, cstring, clogical);

}

C Fortran subprogram (ftnfctn.f):

FUNCTION FTNFCTN(STR, LOG)

REAL FTNFCTN

CHARACTER*(*) STR

LOGICAL LOG

COMMON /FLOAT1/FLOAT1

COMMON /FLOAT2/FLOAT2

REAL FLOAT1, FLOAT2

DATA FLOAT2/2.4/ ! FLOAT1 INITIALIZED IN MAIN

C PRINT CURRENT STATE OF VARIABLES

PRINT*, ' IN FTNFCTN: FLOAT1 = ', FLOAT1,

S–2179–55 177

Cray® C and C++ Reference Manual

1 ';FLOAT2 = ', FLOAT2

PRINT*, ' ARGUMENTS: STR = "', STR, '"; LOG = ', LOG

C CHANGE THE VALUES FOR STR(ING) AND LOG(ICAL)

STR = 'New Fortran String'

LOG = .FALSE.

FTNFCTN = 123.4

PRINT*, ' RETURNING FROM FTNFCTN WITH ', FTNFCTN

PRINT*

RETURN

END

The previous Cray C function and Fortran subprogram are executed by the
following commands and produce the following output:

% cc -c main.c

% ftn -c ftnfctn.f

% ftn main.o ftnfctn.o

% ./a.out

In main: FLOAT1 = 1.6; FLOAT2 = 2.4

Calling FTNFCTN with arguments:

string = "C Character String"; logical = 1

IN FTNFCTN: FLOAT1 = 1.6; FLOAT2 = 2.4

ARGUMENTS: STR = "C Character String"; LOG = T

RETURNING FROM FTNFCTN WITH 123.4

Back in main: FTNFCTN returned 123.4

and changed the two arguments:

string = "New Fortran String"; logical = 0

13.3.8 Calling a Fortran Program from a Cray C++ Program

The following example illustrates how a Fortran program can be called from
a Cray C++ program:

#include <iostream.h>

extern "C" int FORTRAN_ADD_INTS(int *arg1, int &arg2);

main()

{

int num1, num2, res;

cout << "Start C++ main" << endl << endl;

178 S–2179–55

Interlanguage Communication [13]

//Call FORTRAN function to add two integers and return result.

//Note that the second argument is a reference parameter so

//it is not necessary to take the address of the

//variable num2.

num1 = 10;

num2 = 20;

cout << "Before Call to FORTRAN_ADD_INTS" << endl;

res = FORTRAN_ADD_INTS(&num1, num2);

cout << "Result of FORTRAN Add = " << res << endl << endl;

cout << "End C++ main" << endl;

}

The Fortran program that is called from the Cray C++ main function in the
preceding example is as follows:

INTEGER FUNCTION FORTRAN_ADD_INTS(Arg1, Arg2)

INTEGER Arg1, Arg2

PRINT *," FORTRAN_ADD_INTS, Arg1,Arg2 = ", Arg1, Arg2

FORTRAN_ADD_INTS = Arg1 + Arg2

END

The output from the execution of the preceding example is as follows:

Start C++ main

Before Call to FORTRAN_ADD_INTS

FORTRAN_ADD_INTS, Arg1,Arg2 = 10, 20

Result of FORTRAN Add = 30

End C++ main

13.4 Calling a C or C++ Function from a Fortran or Assembly Language Program

A C or C++ function can be called from a Fortran or (Deferred implementation)
assembly language program. One of two methods can be used to call C functions
from Fortran: the C interoperability feature provided by the Fortran 2000
facility or the method documented in this section. C interoperability provides a
standard portable interoperability mechanism for Fortran and C programs. Refer
to Fortran Language Reference Manual, Volume 2 for more information about C

S–2179–55 179

Cray® C and C++ Reference Manual

interoperability. If you are using the method documented in this section to call C
functions from Fortran, keep in mind the information in Section 13.3, page 169.

When calling a Cray C++ function from a Fortran or (Deferred implementation)
assembly language program, observe the following rules:

• The Cray C++ function must be declared with extern "C" linkage.

• The program must be linked with the CC(1) command.

• The program's main routine must be C or C++ code compiled with the CC
command.

The example that follows illustrates a Fortran program, main.f, that calls a Cray
C function, ctctn.c. The Cray C function being called, the commands required,
and the associated input and output are also included.

Note: This example assumes that the Cray Fortran program is compiled with
the -s default32 option enabled. The examples will not work if the -s
default64 option is enabled.

Example 5: Calling a C Function from a Fortran Program

Fortran program main.f source code:

C Fortran program (main.f):

PROGRAM MAIN

REAL CFCTN

COMMON /FLOAT1/FLOAT1

COMMON /FLOAT2/FLOAT2

REAL FLOAT1, FLOAT2

DATA FLOAT1/1.6/ ! FLOAT2 INITIALIZED IN cfctn.c

LOGICAL LOG

CHARACTER*24 STR

REAL RTNVAL

C INITIALIZE VARIABLES STR(ING) AND LOG(ICAL)

STR = 'Fortran Character String'

LOG = .TRUE.

C PRINT VALUES OF VARIABLES BEFORE CALL TO C FUNCTION

PRINT*, 'In main.f: FLOAT1 = ', FLOAT1,

1 '; FLOAT2 = ', FLOAT2

PRINT*, 'Calling cfctn.c with these arguments: '

180 S–2179–55

Interlanguage Communication [13]

PRINT*, 'LOG = ', LOG

PRINT*, 'STR = ', STR

RTNVAL = CFCTN(STR, LOG)

C PRINT VALUES OF VARIABLES AFTER CALL TO C FUNCTION

PRINT*, 'Back in main.f:: cfctn.c returned ', RTNVAL

PRINT*, 'and changed the two arguments to: '

PRINT*, 'LOG = ', LOG

PRINT*, 'STR = ', STR

END PROGRAM

Compile main.f, creating main.o:

> ftn -c main.f

C function cfctn.c source code:

/* C function (cfctn.c) */

#include <fortran.h>

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

float FLOAT1; /* Initialized in MAIN */

float FLOAT2 = 2.4;

/* The slen argument passes the length of string in str */

float cfctn_(char * str, int *log, int slen)

{

int clog;

float rtnval;

char *cstring;

/* Convert log passed from Fortran MAIN */

/* into its C equivalent */

cstring = malloc(slen+1);

strncpy(cstring, str, slen);

cstring[slen] = '\0';

clog = _ltob(log);

/* Print the current state of the variables */

printf(" In CFCTN: FLOAT1 = %.1f; FLOAT2 = %.1f\n",

S–2179–55 181

Cray® C and C++ Reference Manual

FLOAT1, FLOAT2);

printf(" Arguments: str = '%s'; log = %d\n",

cstring, clog);

/* Change the values for str and log */

strncpy(str, "C Character String ", 24);

*log = 0;

rtnval = 123.4;

printf(" Returning from CFCTN with %.1f\n\n", rtnval);

return(rtnval);

}

Compile cfctn.c, creating cfctn.o:

> cc -c cfctn.c

Link main.o and cfctn.o, creating executable interlang1:

> ftn -o interlang1 main.o cfctn.o

Run program interlang1:

> ./interlang1

Program output:

In main.f: FLOAT1 = 1.60000002 ; FLOAT2 = 2.4000001

Calling cfctn.c with these arguments:

LOG = T

STR = Fortran Character String

In CFCTN: FLOAT1 = 1.6; FLOAT2 = 2.4

Arguments: str = 'Fortran Character String'; log = 1

Returning from CFCTN with 123.4

Back in main.f:: cfctn.c returned 123.400002

and changed the two arguments to:

LOG = F

STR = C Character String

182 S–2179–55

Implementation-defined Behavior [14]

This chapter describes compiler behavior that is defined by the implementation
according to the C and/or C++ standards. The standards require that the
behavior of each particular implementation be documented.

The C and C++ standards define implementation-defined behavior as
behavior, for a correct program construct and correct data, that depends on the
characteristics of the implementation. The behavior of the Cray C and C++
compilers for these cases is summarized in this section.

14.1 Messages

All diagnostic messages issued by the compilers are reported through the
UNICOS/mp message system. For information on messages issued by the
compilers and for information about the UNICOS/mp message system, see
Appendix E, page 219.

14.2 Environment

When argc and argv are used as parameters to the main function, the array
members argv[0] through argv[argc-1] contain pointers to strings that are
set by the command shell. The shell sets these arguments to the list of words
on the command line used to invoke the compiler (the argument list). For
further information on how the words in the argument list are formed, refer to
the documentation on the shell in which you are running. For information on
UNICOS/mp shells, see the sh(1) or csh(1) man page.

A third parameter, char **envp, provides access to environment variables.
The value of the parameter is a pointer to the first element of an array of
null-terminated strings, that matches the output of the env(1) command. The
array of pointers is terminated by a null pointer.

The compiler does not distinguish between interactive devices and other,
noninteractive devices. The library, however, may determine that stdin,
stdout, and stderr (cin, cout, and cerr in Cray C++) refer to interactive
devices and buffer them accordingly.

S–2179–55 183

Cray® C and C++ Reference Manual

14.2.1 Identifiers

The identifier (as defined by the standards) is merely a sequence of letters and
digits. Specific uses of identifiers are called names.

The Cray C compiler treats the first 255 characters of a name as significant,
regardless of whether it is an internal or external name. The case of names,
including external names, is significant. In Cray C++, all characters of a name
are significant.

14.2.2 Types

Table 12 summarizes Cray C and C++ types and the characteristics of each type.
Representation is the number of bits used to represent an object of that type.
Memory is the number of storage bits that an object of that type occupies.

In the Cray C and C++ compilers, size, in the context of the sizeof operator,
refers to the size allocated to store the operand in memory; it does not refer to
representation, as specified in Table 12. Thus, the sizeof operator will return a
size that is equal to the value in the Memory column of Table 12, page 184 divided
by 8 (the number of bits in a byte).

Table 12. Data Type Mapping

Type Representation Size and Memory Storage Size (bits)

bool (C++) 8

_Bool (C) 8

char 8

wchar_t 32

short 16

int 32

long 64

long long 64

float 32

double 64

long double 128

float complex 64 (each part is 32 bits)

184 S–2179–55

Implementation-defined Behavior [14]

Type Representation Size and Memory Storage Size (bits)

double complex 128 (each part is 64 bits)

long double complex 256 (each part is 128 bits)

Pointers 64

Variables with 8-bit char or 16-bit short data types are fully vectorizable when
used in one of the following operations within a vector context:

• Reads of 8-bit chars and 16-bit shorts

• Writes to 8-bit chars and 16-bit shorts, except arrays

• Use of 8- and 16-bit variables as targets in a reduction loop. For example, c is
a 16-bit object in this program fragment:

int i;

short c;

int a[100];

c=0;

for (i=0;i<100;i++) {

c = c + a[i];

}

Cray discourages the use of 8-bit chars and 16-bit shorts in contexts other than
those listed above because of performance penalties.

14.2.3 Characters

The full 8-bit ASCII code set can be used in source files. Characters not in
the character set defined in the standard are permitted only within character
constants, string literals, and comments. The -h [no]calchars option allows
the use of the @ sign and $ sign in identifier names. For more information on the
-h [no]calchars option, see Section 2.9.3, page 24.

A character consists of 8 bits. Up to 8 characters can be packed into a 64-bit
word. A plain char type, one that is declared without a signed or unsigned
keyword, is treated as an unsigned type.

Character constants and string literals can contain any characters defined in the
8-bit ASCII code set. The characters are represented in their full 8-bit form. A
character constant can contain up to 8 characters. The integer value of a character

S–2179–55 185

Cray® C and C++ Reference Manual

constant is the value of the characters packed into a word from left to right, with
the result right-justified, as shown in the following table:

Table 13. Packed Characters

Character constant Integer value

'a' 0x61

'ab' 0x6162

In a character constant or string literal, if an escape sequence is not recognized,
the \ character that initiates the escape sequence is ignored, as shown in the
following table:

Table 14. Unrecognizable Escape Sequences

Character constant Integer value Explanation

'\a' 0x7 Recognized as the ASCII BEL
character

'\8' 0x38 Not recognized; ASCII value for 8

'\[' 0x5b Not recognized; ASCII value for [

'\c' 0x63 Not recognized; ASCII value for c

14.2.4 Wide Characters

Wide characters are treated as signed 64-bit integer types. Wide character
constants cannot contain more than one multibyte character. Multibyte characters
in wide character constants and wide string literals are converted to wide
characters in the compiler by calling the mbtowc(3) function. The current locale
in effect at the time of compilation determines the method by which mbtowc(3)
converts multibyte characters to wide characters, and the shift states required
for the encoding of multibyte characters in the source code. If a wide character,
as converted from a multibyte character or as specified by an escape sequence,
cannot be represented in the extended execution character set, it is truncated.

186 S–2179–55

Implementation-defined Behavior [14]

14.2.5 Integers

All integral values are represented in a twos complement format. For
representation and memory storage requirements for integral types, see Table
12, page 184.

When an integer is converted to a shorter signed integer, and the value
cannot be represented, the result is the truncated representation treated as a
signed quantity. When an unsigned integer is converted to a signed integer
of equal length, and the value cannot be represented, the result is the original
representation treated as a signed quantity.

The bitwise operators (unary operator ~ and binary operators <<, >>, &, ^, and
|) operate on signed integers in the same manner in which they operate on
unsigned integers. The result of E1 >> E2, where E1 is a negative-valued signed
integral value, is E1 right-shifted E2 bit positions; vacated bits are filled with
1s. This behavior can be modified by using the -h nosignedshifts option
(see Section 2.9.4, page 25). Bits higher than the sixth bit are not ignored. Values
higher than 31 cause the result to be 0 or all 1s for right shifts.

The result of the / operator is the largest integer less than or equal to
the algebraic quotient when either operand is negative and the result is a
nonnegative value. If the result is a negative value, it is the smallest integer
greater than or equal to the algebraic quotient. The / operator behaves the same
way in C and C++ as in Fortran.

The sign of the result of the percent (%) operator is the sign of the first operand.

Integer overflow is ignored. Because some integer arithmetic uses the
floating-point instructions, floating-point overflow can occur during integer
operations. Division by 0 and all floating-point exceptions, if not detected as an
error by the compiler, can cause a run time abort.

14.2.6 Arrays and Pointers

An unsigned int value can hold the maximum size of an array. The type
size_t is defined to be a typedef name for unsigned long in the headers:
malloc.h, stddef.h, stdio.h, stdlib.h, string.h, and time.h. If more
than one of these headers is included, only the first defines size_t.

A type int can hold the difference between two pointers to elements of the
same array. The type ptrdiff_t is defined to be a typedef name for long in
the header stddef.h.

S–2179–55 187

Cray® C and C++ Reference Manual

If a pointer type's value is cast to a signed or unsigned long int, and then cast
back to the original type's value, the two pointer values will compare equal.

Pointers on UNICOS/mp systems are byte pointers. Byte pointers use the same
internal representation as integers; a byte pointer counts the numbers of bytes
from the first address.

A pointer can be explicitly converted to any integral type large enough to hold
it. The result will have the same bit pattern as the original pointer. Similarly,
any value of integral type can be explicitly converted to a pointer. The resulting
pointer will have the same bit pattern as the original integral type.

14.2.7 Registers

Use of the register storage class in the declaration of an object has no effect
on whether the object is placed in a register. The compiler performs register
assignment aggressively; that is, it automatically attempts to place as many
variables as possible into registers.

14.2.8 Classes, Structures, Unions, Enumerations, and Bit Fields

Accessing a member of a union by using a member of a different type results in
an attempt to interpret, without conversion, the representation of the value of the
member as the representation of a value in the different type.

Members of a class or structure are packed into words from left to right. Padding
is appended to a member to correctly align the following member, if necessary.
Member alignment is based on the size of the member:

• For a member bit field of any size, alignment is any bit position that allows
the member to fit entirely within a 64–bit word.

• For a member with a size less than 64 bits, alignment is the same as the size.
For example, a char has a size and alignment of 8 bits; a float has a size
and alignment of 32 bits.

• For a member with a size equal to or greater than 64 bits, alignment is 64 bits.

• For a member with array type, alignment is equal to the alignment of the
element type.

A plain int type bit field is treated as an signed int bit field.

The values of an enumeration type are represented in the type signed int
in C; they are a separate type in C++.

188 S–2179–55

Implementation-defined Behavior [14]

14.2.9 Qualifiers

When an object that has volatile-qualified type is accessed, it is simply a
reference to the value of the object. If the value is not used, the reference need not
result in a load of the value from memory.

14.2.10 Declarators

A maximum of 12 pointer, array, and/or function declarators are allowed to
modify an arithmetic, structure, or union type.

14.2.11 Statements

The compiler has no fixed limit on the maximum number of case values allowed
in a switch statement.

The Cray C++ compiler parses asm statements for correct syntax, but otherwise
ignores them.

14.2.12 Exceptions

In Cray C++, when an exception is thrown, the memory for the temporary
copy of the exception being thrown is allocated on the stack and a pointer to
the allocated space is returned.

14.2.13 System Function Calls

See the exit(3) man page for a description of the form of the unsuccessful
termination status that is returned from a call to exit(3).

14.3 Preprocessing

The value of a single-character constant in a constant expression that controls
conditional inclusion matches the value of the same character in the execution
character set. No such character constant has a negative value. For each, 'a'
has the same value in the two contexts:

#if 'a' == 97

if ('a' == 97)

The -I option and the method for locating included source files is described in
Section 2.19.4, page 47.

S–2179–55 189

Cray® C and C++ Reference Manual

The source file character sequence in a #include directive must be a valid
UNICOS/mp file name or path name. A #include directive may specify a
file name by means of a macro, provided the macro expands into a source file
character sequence delimited by double quotes or < and > delimiters, as follows:

#define myheader "./myheader.h"

#include myheader

#define STDIO <stdio.h>

#include STDIO

The macros __DATE__ and __TIME__ contain the date and time of the beginning
of translation. For more information, see the description of the predefined macros
in Chapter 10, page 159.

The #pragma directives are described in Chapter 3, page 69.

190 S–2179–55

Possible Requirements for non-C99 Code [A]

In order to use C code, developed under previous C compilers of the Cray C++
Programming Environment, with the c99 command, your code may require one
or more of the following modifications:

• Include necessary header files for complete function prototyping.

• Add return statements to all non-void functions.

• Ensure that all strings in any macro that begins with an underscore are
literals. These macros cannot contain other types of strings.

• Follow C99 conventions

Previous Cray C compilers did not require you to explicitly include header files
in many situations because they allowed functions to be implicitly declared. In
C99, functions cannot be implicitly declared.

S–2179–55 191

Cray® C and C++ Reference Manual

192 S–2179–55

Libraries and Loader [B]

This appendix describes the libraries that are available with the Cray C and C++
compilers and the loader (ld).

B.1 Cray C and C++ Libraries Current Programming Environments

Libraries that support Cray C and C++ are automatically available when you
use the CC, cc, c89, or c99 command to compile your programs. These
commands automatically issue the appropriate directives to load the program
with the appropriate functions. If your program strictly conforms to the C or
C++ standards, you do not need to know library names and locations. If your
program requires other libraries or if you want direct control over the loading
process, more knowledge of the loader and libraries is necessary.

The Standard Template Library (STL) is a C++ library of container classes,
algorithms, and iterators; it provides many of the basic algorithms and data
structures of computer science. The STL is a generic library, meaning that its
components are heavily parameterized: almost every component in the STL is
a template. Be sure you have a complete understanding of templates and how
they work before using them.

B.2 Loader

When you issue the cc(1), CC, c89, or c99 command to invoke the compiler,
and the program compiles without errors, the loader is called. Specifying the -c
option on the command line produces relocatable object files without calling
the loader. These relocatable object files can then be used as input to the loader
command by specifying the file names on the appropriate loader command line.

For example, the following command line compiles a file called target.c and
produces the relocatable object file called target.o in your current working
directory:

cc -c target.c

You can then use file target.o as input to the loader or save the file to use
with other relocatable object files to compile and create a linked executable file
(a.out by default).

Because of the special code needed to handle templates, constructors, destructors,

S–2179–55 193

Cray® C and C++ Reference Manual

and other C++ language features, object files generated by using the CC(1)
command should be linked using the CC command. To link C++ object files using
the loader command (ld), the -h keep=files option (see Section 2.9.1, page 23)
must be specified on the command line when compiling source files.

The ld command can be accessed by using one of the following methods:

• You can access the loader directly by using the ld command.

• You can let the cc, CC, c89, or c99 command choose the loader. This method
has the following advantages:

– You do not need to know the loader command line interface.

– You do not need to worry about the details of which libraries to load, or
the order in which to load them.

– When using CC, you need not worry about template instantiation
requirements or about loading the compiler-generated static constructors
and destructors.

You can control the operation of the loader with the ld command line options.
Refer to the ld(1) man page.

194 S–2179–55

Compatibility with Older C++ Code [C]

A key feature of the Cray C++ Programming Environment 5.x is the Standard
C++ Library. C++ code developed under the C++ Programming Environment 4.2
release or earlier can still be used with Programming Environment release 5.x.
If your code uses nonstandard Cray C++ header files, you can continue to use
your code without modification by using the CRAYOLDCPPLIB environment
variable. Another way to use your pre-4.x code with the current Programming
Environment release is to make changes to your existing code. The following
sections explain how to use either of these methods.

Note: Other changes to your existing C++ code may be required because of
differences between the Cray SV1 or Cray T3E systems and the Cray X1 series
systems. Refer to the Cray X1 User Environment Differences.

C.1 Use of Nonstandard Cray C++ Header Files

The Cray C++ Programming Environment release continues to support some of
the nonstandard Cray C++ header files. This allows pre-5.0 code that use these
header files to be compiled without modification. These header files are available
in the Standard C++ Library at the same location as they were in previous
releases.

Here are the Cray nonstandard header files that can be used in Programming
Environment 5.x:

• common.h

• complex.h

• fstream.h

• generic.h

• iomanip.h

• iostream.h

• stdiostream.h

• stream.h

• strstream.h

• vector.h

S–2179–55 195

Cray® C and C++ Reference Manual

The nonstandard header files can be used when you set the CRAYOLDCPPLIB
environment variable to a nonzero value. How to set the variable depends on the
shell you are using. If you are using ksh or sh, set the variable as this example
shows:

% export CRAYOLDCPPLIB=1

If you are using csh, set the variable as this example shows:

% setenv CRAYOLDCPPLIB 1

C.2 When to Update Your C++ Code

You are not required to modify your existing C++ codes in order to compile it
with the Cray C++ compiler version 5.x, unless you wish to use the Standard C++
Library. One reason for migrating your code to the Standard C++ Library is that
the nonstandard Cray C++ header files of Programming Environment 3.5 may
not be supported by future versions of the Cray C++ compiler. Another reason
for migrating is your C++ code may already contain support for the Standard
C++ Library. Often, third-party code contains a configuration script that tests the
features of the compiler and system before building a makefile. This script can
determine whether the C++ compiler supports the Standard C++ Library.

You can use the following steps to migrate your C++ code:

1. Use the proper header files

2. Add namespace declarations

3. Reconcile header definition differences

4. Recompile all C++ files

C.2.1 Use the Proper Header Files

The first step in migrating your C++ code to use the Standard C++ Library is to
ensure that it uses the correct Standard C++ Library header files. The following
tables show each header file used by the C++ library version 3.5 and its likely
corresponding header file in the current Standard C++ Library. The older header
files do not always map directly to the new files. For example, most of the
definitions of the Cray C++ version 3.5 STL alloc.h header file are contained in
the Standard C++ Library header files memory and xmemory. Anomalies, such
as this are noted in the tables.

196 S–2179–55

Compatibility with Older C++ Code [C]

The tables divide the header files into three groups:

• Run time support library header files

• Stream and class library header files

• Standard Template Library header files

The older header file used by the run time support library originated from Edison
Design Group and perform functions such as exception handling and memory
allocation and deallocation. Table 15 shows the old and new header files.

Table 15. Run time Support Library Header Files

Cray C++ 3.5 header file Standard C++ library header file

exception.h exception

new.h new

stdexcept.h stdexcept

typeinfo.h typeinfo

The header files in the stream and class library originate from AT&T and define
the I/O stream classes along the string, complex, and vector classes. Table 16
shows the old and new header files.

Table 16. Stream and Class Library Header Files

Cray C++ 3.5 header file Standard C++ Library header file

common.h No equivalent header file

complex.h complex

fstream.h fstream

iomanip.h iomanip

iostream.h iostream

stdiostream.h iosfwd

stream.h Not available

strstream.h strstream

vector.h vector

S–2179–55 197

Cray® C and C++ Reference Manual

Note: The use of any of the stream and class library header files from Cray
C++ Programming Environment 3.5 requires that you set the CRAYOLDCPPLIB
environment variable. Refer to Section C.1, page 195.

Table 17 shows the old and new Standard Template Library (STL) header files.

Note: The older STL originated from Silicon Graphics Inc.

Table 17. Standard Template Library Header Files

Cray C++ 3.5 Header File Standard C++ Header File

algo.h algorithm

algobase.h algorightm

alloc.h memory

bvector.h vector

defalloc.h1 Not available

deque.h deque

function.h functional

hash_map.h hash_map

hash_set.h hash_set

hashtable.h xhash

heap.h algorithm

iterator.h iterator

list.h list

map.h map

mstring.h string

multimap.h map

multiset.h set

pair.h pair

pthread_alloc.h No equivalent header file

rope.h rope

ropeimpl.h rope

1 This header file was deprecated in the Cray C++ Programming Environment 3.5 release.

198 S–2179–55

Compatibility with Older C++ Code [C]

Cray C++ 3.5 Header File Standard C++ Header File

set.h set

slist.h slist

stack.h stack

stl_config.h The Standard C++ Library does not
need the STL configuration file.

tempbuf.h memory

tree.h xtree

vector.h vector

C.2.2 Add Namespace Declarations

The second step in migrating to the Standard C++ Library is adding namespace
declarations. Most classes of the Standard C++ Library are declared under the
std namespace, so this usually requires that you add this statement to the
existing code: using namespace std. For example, the following program
returns an error when it is compiled with previous versions of the Standard C++
Library:

% cat hello.C

#include <iostream>

main() { cout << "hello world\n"; }

% CC hello.C

CC-20 CC: ERROR File = hello.C, line = 2

The identifier "cout" is undefined.

main() { cout <<"hello world\n" ; }

^

Total errors detected in hello.C: 1

When you add using namespace std; to the example program, it compiles
without error:

% cat hello.C

#include <iostream>

using namespace std;

main() { cout << "hello world\n"; }

S–2179–55 199

Cray® C and C++ Reference Manual

% CC hello.C

% ./a.out

hello world

C.2.3 Reconcile Header Definition Differences

The most difficult process of migrating to the Standard C++ Library is reconciling
the differences between the definitions of the Cray C++ version 3.5 header files
and the Standard Cray C++ library header files. For example, the definitions for
the complex class differs. In Cray C++ version 3.5, the complex class has real
and imaginary components of type double. The Standard C++ Library defines
the complex class as a template class, where the user defines the data type of
the real and imaginary components.

For example, here is a program written with the Cray C++ version 3.5 header
files:

% cat complex.C

#include <iostream.h>

#include <complex.h>

main() {

complex C(1.0, 2.0);

cout << "C = " << C << endl;

}

#env CRAYOLDCPPLIB=1 CC complex.C

#a.out

C = (1, 2)

An equivalent program that uses the Standard C++ Library appears as:

% cat complex.C

#include <iostream>

#include <complex.h>

using namespace std;

main() {

complex<double> C(1.0, 2.0);

cout << "C = " << C << endl;

}

200 S–2179–55

Compatibility with Older C++ Code [C]

% CC complex.C

% a.out

C = (1,2)

C.2.4 Recompile All C++ Files

Finally, when all of the source files that use the Standard C++ Library header files
can be built, you must recompile all C++ source files that belong to the program
using only the Standard C++ Library.

S–2179–55 201

Cray® C and C++ Reference Manual

202 S–2179–55

Cray C and C++ Dialects [D]

This appendix details the features of the C and C++ languages that are accepted
by the Cray C and C++ compilers, including certain language dialects and
anachronisms. Users should be aware of these details, especially users who are
porting codes from other environments.

D.1 C++ Language Conformance

The Cray C++ compiler accepts the C++ language as defined by the ISO/IEC
14882:1998 standard, with the exceptions listed in Section D.1.1, page 203.

The Cray C++ compiler also has a cfront compatibility mode, which duplicates
a number of features and bugs of cfront. Complete compatibility is not
guaranteed or intended. The mode allows programmers who have used cfront
features to continue to compile their existing code (see Section 3.5, page 72).
Command line options are also available to enable and disable anachronisms (see
Section D.2, page 207) and strict standard-conformance checking (see Section D.3,
page 208, and Section D.4, page 209). The command line options are described in
Chapter 2, page 7.

D.1.1 Unsupported and Supported C++ Language Features

The export keyword for templates is not supported. It is defined in the ISO/IEC
14882:1998 standard, but is not in traditional C++.

The following features, which are in the ISO/IEC 14882:1998 standard but not in
traditional C++1, are supported:

• The dependent statement of an if, while, do-while, or for is considered
to be a scope, and the restriction on having such a dependent statement be a
declaration is removed.

• The expression tested in an if, while, do-while, or for, as the first
operand of a ? operator, or as an operand of the &&, ||, or ! operators may
have a pointer-to-member type or a class type that can be converted to a
pointer-to-member type in addition to the scalar cases permitted by the ARM.

• Qualified names are allowed in elaborated type specifiers.

1 As defined in The Annotated C++ Reference Manual (ARM), by Ellis and Stroustrup, Addison Wesley, 1990.

S–2179–55 203

Cray® C and C++ Reference Manual

• A global-scope qualifier is allowed in member references of the form
x.::A::B and p->::A::B.

• The precedence of the third operand of the ? operator is changed.

• If control reaches the end of the main() routine, and the main() routine
has an integral return type, it is treated as if a return 0; statement was
executed.

• Pointers to arrays with unknown bounds as parameter types are diagnosed
as errors.

• A functional-notation cast of the form A() can be used even if A is a class
without a (nontrivial) constructor. The temporary that is created gets the same
default initialization to zero as a static object of the class type.

• A cast can be used to select one out of a set of overloaded functions when
taking the address of a function.

• Template friend declarations and definitions are permitted in class definitions
and class template definitions.

• Type template parameters are permitted to have default arguments.

• Function templates may have nontype template parameters.

• A reference to const volatile cannot be bound to an rvalue.

• Qualification conversions such as conversion from T** to
T const * const are allowed.

• Digraphs are recognized.

• Operator keywords (for example, and or bitand) are recognized.

• Static data member declarations can be used to declare member constants.

• wchar_t is recognized as a keyword and a distinct type.

• bool is recognized.

• RTTI (run time type identification), including dynamic_cast and the
typeid operator, is implemented.

• Declarations in tested conditions (within if, switch, for, and while
statements) are supported.

• Array new and delete are implemented.

204 S–2179–55

Cray C and C++ Dialects [D]

• New-style casts (static_cast, reinterpret_cast, and const_cast)
are implemented.

• Definition of a nested class outside its enclosing class is allowed.

• mutable is accepted on nonstatic data member declarations.

• Namespaces are implemented, including using declarations and directives.
Access declarations are broadened to match the corresponding using
declarations.

• Explicit instantiation of templates is implemented.

• The typename keyword is recognized.

• explicit is accepted to declare nonconverting constructors.

• The scope of a variable declared in the for-init-statement of a for loop
is the scope of the loop (not the surrounding scope).

• Member templates are implemented.

• The new specialization syntax (using template <>) is implemented.

• Cv qualifiers are retained on rvalues (in particular, on function return
values).

• The distinction between trivial and nontrivial constructors has been
implemented, as has the distinction between process overlay directives
(PODs) and non-PODs with trivial constructors.

• The linkage specification is treated as part of the function type (affecting
function overloading and implicit conversions).

• A typedef name can be used in an explicit destructor call.

• Placement delete is supported.

• An array allocated via a placement new can be deallocated via delete.

• enum types are considered to be nonintegral types.

• Partial specification of class templates is implemented.

• Partial ordering of function templates is implemented.

• Function declarations that match a function template are regarded as
independent functions, not as “guiding declarations” that are instances of
the template.

S–2179–55 205

Cray® C and C++ Reference Manual

• It is possible to overload operators using functions that take enum types and
no class types.

• Explicit specification of function template arguments is supported.

• Unnamed template parameters are supported.

• The new lookup rules for member references of the form x.A::B and
p->A::B are supported.

• The notation :: template (and –>template, etc.) is supported.

• In a reference of the form f()->g(), with g a static member function, f() is
evaluated. Likewise for a similar reference to a static data member. The ARM
specifies that the left operand is not evaluated in such cases.

• enum types can contain values larger than can be contained in an int.

• Default arguments of function templates and member functions of class
templates are instantiated only when the default argument is used in a call.

• String literals and wide string literals have const type.

• Class name injection is implemented.

• Argument-dependent (Koenig) lookup of function names is implemented.

• Class and function names declared only in unqualified friend declarations are
not visible except for functions found by argument-dependent lookup.

• A void expression can be specified on a return statement in a void function.

• reinterpret_cast allows casting a pointer to a member of one class to a
pointer to a member of another class even when the classes are unrelated.

• Two-phase name binding in templates as described in the Working Paper is
implemented.

• Putting a try/catch around the initializers and body of a constructor is
implemented.

• Template template parameters are implemented.

• Universal character set escapes (e.g., \uabcd) are implemented.

• extern inline functions are supported.

• Covariant return types on overriding virtual functions are supported.

206 S–2179–55

Cray C and C++ Dialects [D]

D.2 C++ Anachronisms Accepted

C++ anachronisms are enabled by using the -h anachronisms command
line option (see Section 2.6.7, page 15). When anachronisms are enabled, the
following anachronisms are accepted:

• overload is allowed in function declarations. It is accepted and ignored.

• Definitions are not required for static data members that can be initialized by
using the default initialization. The anachronism does not apply to static data
members of template classes; they must always be defined.

• The number of elements in an array can be specified in an array delete
operation. The value is ignored.

• A single operator++() and operator--() function can be used to
overload both prefix and postfix operations.

• The base class name can be omitted in a base class initializer if there is only
one immediate base class.

• Assignment to the this pointer in constructors and destructors is allowed.
This is only allowed if anachronisms are enabled and the assignment to
this configuration parameter is enabled.

• A bound function pointer (a pointer to a member function for a given object)
can be cast to a pointer to a function.

• A nested class name may be used as a nonnested class name if no other class
of that name has been declared. The anachronism is not applied to template
classes.

• A reference to a non-const type may be initialized from a value of a different
type. A temporary is created, it is initialized from the (converted) initial value,
and the reference is set to the temporary.

• A reference to a non-const class type may be initialized from an rvalue of
the class type or a derived class thereof. No (additional) temporary is used.

S–2179–55 207

Cray® C and C++ Reference Manual

• A function with old-style parameter declarations is allowed and can
participate in function overloading as though it were prototyped. Default
argument promotion is not applied to parameter types of such functions
when checking for compatibility, therefore, the following statements declare
the overloading of two functions named f:

int f(int);

int f(x) char x; { return x; }

Note: In C, this code is legal, but has a different meaning. A tentative
declaration of f is followed by its definition.

D.3 Extensions Accepted in Normal C++ Mode

The following C++ extensions are accepted (except when strict standard
conformance mode is enabled, in which case a warning or caution message may
be issued):

• A friend declaration for a class can omit the class keyword, as shown in
the following example:

class B;

class A {

friend B; // Should be "friend class B"

};

• Constants of scalar type can be defined within classes, as shown in the
following example:

class A {

const int size=10;

int a[size];

};

• In the declaration of a class member, a qualified name can be used, as shown
in the following example:

struct A {

int A::f(); // Should be int f();

}

• An assignment operator declared in a derived class with a parameter type
matching one of its base classes is treated as a “default” assignment operator;
that is, such a declaration blocks the implicit generation of a copy assignment

208 S–2179–55

Cray C and C++ Dialects [D]

operator. This is cfront behavior that is known to be relied upon in at least
one widely used library. Here is an example:

struct A { };

struct B : public A {

B& operator=(A&);

};

By default, as well as in cfront compatibility mode, there will be no
implicit declaration of B::operator=(const B&), whereas in strict-ANSI
mode, B::operator=(A&) is not a copy assignment operator and
B::operator=(const B&) is implicitly declared.

• Implicit type conversion between a pointer to an extern "C" function and
a pointer to an extern "C++" function is permitted. The following is an
example:

extern "C" void f(); // f's type has extern "C" linkage

void (*pf)() // pf points to an extern "C++" function

= &f; // error unless implicit conversion allowed

• The ? operator, for which the second and third operands are string literals or
wide string literals, can be implicitly converted to one of the following:

char *

wchar_t *

In C++ string literals are const. There is a deprecated implicit conversion
that allows conversion of a string literal to char *, dropping the const. That
conversion, however, applies only to simple string literals. Allowing it for the
result of a ? operation is an extension:

char *p = x ? "abc" : "def";

D.4 Extensions Accepted in C or C++ Mode

The following extensions are accepted in C or C++ mode except when strict
standard conformance modes is enabled, in which case a warning or caution
message may be issued.

• The special lint comments /*ARGSUSED*/, /*VARARGS*/ (with or without
a count of nonvarying arguments), and /*NOTREACHED*/ are recognized.

• A translation unit (input file) can contain no declarations.

• Comment text can appear at the ends of preprocessing directives.

S–2179–55 209

Cray® C and C++ Reference Manual

• Bit fields can have base types that are enum or integral types in addition to
int and unsigned int. This corresponds to A.6.5.8 in the ANSI Common
Extensions appendix.

• enum tags can be incomplete as long as the tag name is defined and resolved
by specifying the brace-enclosed list later.

• An extra comma is allowed at the end of an enum list.

• The final semicolon preceding the closing of a struct or union type
specifier can be omitted.

• A label definition can be immediately followed by a right brace (}).
(Normally, a statement must follow a label definition.)

• An empty declaration (a semicolon preceded by nothing) is allowed.

• An initializer expression that is a single value and is used to initialize an
entire static array, struct, or union does not need to be enclosed in braces.
ANSI C requires braces.

• In an initializer, a pointer constant value can be cast to an integral type if the
integral type is large enough to contain it.

• The address of a variable with register storage class may be taken.

• In an integral constant expression, an integer constant can be cast to a pointer
type and then back to an integral type.

• In duplicate size and sign specifiers (for example, short short or
unsigned unsigned) the redundancy is ignored.

• Benign redeclarations of typedef names are allowed. That is, a typedef
name can be redeclared in the same scope with the same type.

• Dollar sign ($) and at sign (@) characters can be accepted in identifiers by
using the -h calchars command line option. This is not allowed by
default.

• Numbers are scanned according to the syntax for numbers rather than the
pp-number syntax. Thus, 0x123e+1 is scanned as three tokens instead of one
token that is not valid. If the -h conform option is specified, the pp-number
syntax is used.

• Assignment and pointer differences are allowed between pointers to types
that are interchangeable but not identical, for example, unsigned char *
and char *. This includes pointers to integral types of the same size (for

210 S–2179–55

Cray C and C++ Dialects [D]

example, int * and long *). Assignment of a string constant to a pointer to
any kind of character is allowed without a warning.

• Assignment of pointer types is allowed in cases where the destination type
has added type qualifiers that are not at the top level (for example, int **
to const int **). Comparisons and pointer difference of such pairs of
pointer types are also allowed.

• In operations on pointers, a pointer to void is always implicitly converted
to another type if necessary, and a null pointer constant is always implicitly
converted to a null pointer of the right type if necessary. In ANSI C, these are
allowed by some operators, and not by others (generally, where it does not
make sense).

• Pointers to different function types may be assigned or compared for equality
(==) or inequality (!=) without an explicit type cast. This extension is not
allowed in C++ mode.

• A pointer to void can be implicitly converted to or from a pointer to a
function type.

• External entities declared in other scopes are visible:

void f1(void) { extern void f(); }

void f2() { f(); /* Using out of scope declaration */ }

• In C mode, end-of-line comments (//) are supported.

• A non-lvalue array expression is converted to a pointer to the first element of
the array when it is subscripted or similarly used.

• The fortran keyword. For more information, see Section 9.2, page 156.

• Cray hexadecimal floating point constants. For more information, see Section
9.3, page 156.

D.5 C++ Extensions Accepted in cfront Compatibility Mode

The cfront compatibility mode is enabled by the -h cfront command-line
option. The following extensions are accepted in cfront compatibility mode:

S–2179–55 211

Cray® C and C++ Reference Manual

• Type qualifiers on the this parameter are dropped in contexts such as in
the following example:

struct A {

void f() const;

};

void (A::*fp)() = &A::f;

This is a safe operation. A pointer to a const function can be put into a
pointer to non-const, because a call using the pointer is permitted to modify
the object and the function pointed to will not modify the object. The opposite
assignment would not be safe.

• Conversion operators that specify a conversion to void are allowed.

• A nonstandard friend declaration can introduce a new type. A friend
declaration that omits the elaborated type specifier is allowed in default
mode, however, in cfront mode the declaration can also introduce a new
type name. An example follows:

struct A {

friend B;

};

• The third operator of the ? operator is a conditional expression instead of an
assignment expression.

• A reference to a pointer type may be initialized from a pointer value without
use of a temporary even when the reference pointer type has additional type
qualifiers above those present in the pointer value. For example:

int *p;

const int *&r = p; // No temporary used

• A reference can be initialized to NULL.

• Because cfront does not check the accessibility of types, access errors for
types are issued as warnings instead of errors.

• When matching arguments of an overloaded function, a const variable
with a value of 0 is not considered to be a null pointer constant. In general,
in overload resolution, a null pointer constant must be spelled “0” to be
considered a null pointer constant (e.g., '\0' is not considered a null pointer
constant).

212 S–2179–55

Cray C and C++ Dialects [D]

• An alternate form of declaring pointer-to-member-function variables is
supported, as shown in the following example:

struct A {

void f(int);

static void sf(int);

typedef void A::T3(int); // nonstd typedef decl

typedef void T2(int); // std typedef

};

typedef void A::T(int); // nonstd typedef decl

T* pmf = &A::f; // nonstd ptr-to-member decl

A::T2* pf = A::sf; // std ptr to static mem decl

A::T3* pmf2 = &A::f; // nonstd ptr-to-member decl

In this example, T is construed to name a function type for a nonstatic
member function of class A that takes an int argument and returns void; the
use of such types is restricted to nonstandard pointer-to-member declarations.
The declarations of T and pmf in combination are equivalent to the following
single standard pointer-to-member declaration:

void (A::* pmf)(int) = &A::f;

A nonstandard pointer-to-member declaration that appears outside of a class
declaration, such as the declaration of T, is normally not valid and would
cause an error to be issued. However, for declarations that appear within a
class declaration, such as A::T3, this feature changes the meaning of a valid
declaration. cfront version 2.1 accepts declarations, such as T, even when A
is an incomplete type; so this case is also accepted.

• Protected member access checking is not done when the address of a
protected member is taken. For example:

class B { protected: int i; };

class D : public B { void mf()};

void D::mf() {

int B::* pmi1 = &B::i; // error, OK in cfront mode

int D::* pmi2 = &D::i; // OK

}

Note: Protected member access checking for other operations (such as
everything except taking a pointer-to-member address) is done normally.

S–2179–55 213

Cray® C and C++ Reference Manual

• The destructor of a derived class can implicitly call the private destructor of a
base class. In default mode, this is an error but in cfront mode it is reduced
to a warning. For example:

class A {

~A();

};

class B : public A {

~B();

};

B::~B(){} // Error except in cfront mode

• When disambiguation requires deciding whether something is
a parameter declaration or an argument expression, the pattern
type-name-or-keyword(identifier ...) is treated as an argument. For example:

class A { A(); };

double d;

A x(int(d));

A(x2);

By default, int(d) is interpreted as a parameter declaration (with redundant
parentheses), and so x is a function; but in cfront compatibility mode
int(d) is an argument and x is a variable.

The declaration A(x2) is also misinterpreted by cfront. It should be
interpreted as the declaration of an object named x2, but in cfront mode it is
interpreted as a function style cast of x2 to the type A.

Similarly, the following declaration declares a function named xzy, that
takes a parameter of type function taking no arguments and returning an
int. In cfront mode, this is interpreted as a declaration of an object that is
initialized with the value int(), which evaluates to 0.

int xyz(int());

• A named bit field can have a size of 0. The declaration is treated as though
no name had been declared.

• Plain bit fields (such as bit fields declared with a type of int) are always
signed.

• The name given in an elaborated type specifier can be a typedef name that is
the synonym for a class name. For example:

typedef class A T;

class T *pa; // No error in cfront mode

214 S–2179–55

Cray C and C++ Dialects [D]

• No warning is issued on duplicate size and sign specifiers, as shown in the
following example:

short short int i; // No warning in cfront mode

• Virtual function table pointer-update code is not generated in destructors for
base classes of classes without virtual functions, even if the base class virtual
functions might be overridden in a further derived class. For example:

struct A {

virtual void f() {}

A() {}

~A() {}

};

struct B : public A {

B() {}

~B() {f();} // Should call A::f according to ARM 12.7

};

struct C : public B {

void f() {}

} c;

In cfront compatibility mode, B::~B calls C::f.

• An extra comma is allowed after the last argument in an argument list. For
example:

f(1, 2,);

• A constant pointer-to-member function can be cast to a pointer-to-function,
as in the following example. A warning is issued.

struct A {int f();};

main () {

int (*p)();

p = (int (*)())A::f; // Okay, with warning

}

• Arguments of class types that allow bitwise copy construction but also
have destructors are passed by value like C structures, and the destructor
is not called on the copy. In normal mode, the class object is copied into a
temporary, the address of the temporary is passed as the argument, and
the destructor is called on the temporary after the call returns. Because the
argument is passed by value instead of by address, code like this compiled
in cfront mode is not calling-sequence compatible with the same code

S–2179–55 215

Cray® C and C++ Reference Manual

compiled in normal mode. In practice, this is not much of a problem, since
classes that allow bitwise copying usually do not have destructors.

• A union member may be declared to have the type of a class for which
the user has defined an assignment operator (as long as the class has no
constructor or destructor). A warning is issued.

• When an unnamed class appears in a typedef declaration, the typedef
name may appear as the class name in an elaborated type specifier. For
example:

typedef struct { int i, j; } S;

struct S x; // No error in cfront mode

• Two member functions may be declared with the same parameter types when
one is static and the other is nonstatic with a function qualifier. For example:

class A {

void f(int) const;

static void f(int); // No error in cfront mode

};

• The scope of a variable declared in the for-init-statement is the scope
to which the for statement belongs. For example:

int f(int i) {

for (int j = 0; j < i; ++j) { /* ... */ }

return j; // No error in cfront mode

}

• Function types differing only in that one is declared extern "C" and the
other extern "C++" can be treated as identical:

typedef void (*PF)();

extern "C" typedef void (*PCF)();

void f(PF);

void f(PCF);

By contrast, in standard C++, PF and PCF are different and incompatible
types; PF is a pointer to an extern "C++" function whereas PCF is a pointer
to an extern "C" function; and the two declarations of f create an overload
set.

• Functions declared inline have internal linkage.

• enum types are regarded as integral types.

216 S–2179–55

Cray C and C++ Dialects [D]

• An uninitialized const object of non-POD class type is allowed even if its
default constructor is implicitly declared as in the following example:

struct A { virtual void f(); int i; };

const A a;

• A function parameter type is allowed to involve a pointer or reference to array
of unknown bounds.

• If the user declares an operator= function in a class, but not one that can
serve as the default operator=, and bitwise assignment could be done
on the class, a default operator= is not generated. Only the user-written
operator= functions are considered for assignments, so bitwise assignment
is not done.

S–2179–55 217

Cray® C and C++ Reference Manual

218 S–2179–55

Compiler Messages [E]

This appendix describes how to use the message system to control and use
messages issued by the compiler. Explanatory texts for messages can be
displayed online through the use of the explain command.

E.1 Expanding Messages with the explain Command

You can use the explain command to display an explanation of any message
issued by the compiler. The command takes as an argument, the message
number, including the number's prefix. The prefix for Cray C and C++ is CC.

In the following sample dialog, the cc(1) command invokes the compiler on
source file bug.c. Message CC-24 is displayed. The explain command
displays the expanded explanation for this message.

% cc bug.c

CC-24 cc: ERROR File = bug.c, Line = 1

An invalid octal constant is used.

int i = 018;

^

1 error detected in the compilation of "bug.c".

% explain CC-24

An invalid octal constant is used.

Each digit of an octal constant must be between 0 and 7,

inclusive. One or more digits in the octal constant on the

indicated line are outside of this range. To avoid issuing

an error for each erroneous digit, the constant will be treated

as a decimal constant. Change each digit in the octal constant

to be within the valid range.

E.2 Controlling the Use of Messages

This section summarizes the command line options that affect the issuing of
messages from the compiler.

S–2179–55 219

Cray® C and C++ Reference Manual

E.2.1 Command Line Options

Option Description

-h errorlimit[=n]

Specifies the maximum number of error messages the compiler
prints before it exits.

-h [no]message=n[:...]

Enables or disables the specified compiler messages, overriding
-h msglevel.

-h msglevel_n

Specifies the lowest severity level of messages to be issued.

-h report=args

Generates optimization report messages.

E.2.2 Environment Options for Messages

The following environment variables are used by the message system.

Variable Description

NLSPATH

Specifies the default value of the message system search path
environment variable.

LANG

Identifies your requirements for native language, local customs,
and coded character set with regard to the message system.

MSG_FORMAT

Controls the format in which you receive error messages.

E.2.3 ORIG_CMD_NAME Environment Variable

You can override the command name printed in the message. If the environment
variable ORIG_CMD_NAME is set, the value of ORIG_CMD_NAME is used as the
command name in the message. This functionality is provided for use with shell

220 S–2179–55

Compiler Messages [E]

scripts that invoke the compiler. By setting ORIG_CMD_NAME to the name of the
script, any message printed by the compiler appears as though it was generated
by the script. For example, the following C shell script is named newcc:

#

setenv ORIG_CMD_NAME 'basename $0'

cc $*

A message generated by invoking newcc resembles the following:

CC-8 newcc: ERROR File = x.c, Line = 1

A new-line character appears inside a string literal.

Because the environment variable ORIG_CMD_NAME is set to newcc, this appears
as the command name instead of cc(1) in this message.

!
Caution: The ORIG_CMD_NAME environment variable is not part of the
message system. It is supported by the Cray C and C++ compilers as an aid
to programmers. Other products, such as the Fortran compiler and the loader,
may support this variable. However, you should not rely on support for this
variable in any other product.

You must be careful when setting the environment variable ORIG_CMD_NAME.
If you set ORIG_CMD_NAME inadvertently, the compiler may generate messages
with an incorrect command name. This may be particularly confusing if, for
example, ORIG_CMD_NAME is set to newcc when the Fortran compiler prints a
message. The Fortran message will look as though it came from newcc.

E.3 Message Severity

Each message issued by the compiler falls into one of the following categories of
messages, depending on the severity of the error condition encountered or the
type of information being reported.

Category Meaning

COMMENT

Inefficient programming practices.

NOTE

Unusual programming style or the use of outmoded statements.

S–2179–55 221

Cray® C and C++ Reference Manual

CAUTION

Possible user error. Cautions are issued when the compiler
detects a condition that may cause the program to abort or
behave unpredictably.

WARNING

Probable user error. Indicates that the program will probably
abort or behave unpredictably.

ERROR

Fatal error; that is, a serious error in the source code. No binary
output is produced.

INTERNAL

Problems in the compilation process. Please report internal
errors immediately to the system support staff, so a Software
Problem Report (SPR) can be filed.

LIMIT

Compiler limits have been exceeded. Normally you can modify
the source code or environment to avoid these errors. If limit
errors cannot be resolved by such modifications, please report
these errors to the system support staff, so that an SPR can be
filed.

INFO

Useful additional information about the compiled program.

INLINE

Information about inline code expansion performed on the
compiled code.

SCALAR

Information about scalar optimizations performed on the
compiled code.

VECTOR

Information about vectorization optimizations performed on the
compiled code.

222 S–2179–55

Compiler Messages [E]

STREAM Information about the MSP optimizations performed on the
compiled code.

OPTIMIZATION

Information about general optimizations.

E.4 Common System Messages

The errors in the following list can occur during the execution of a user program.
The operating system detects them and issues the appropriate message. These
errors are not detected by the compiler and are not unique to C and C++
programs; they may occur in any application program written in any language.

• Operand Range Error

An operand range error occurs when a program attempts to load or store in
an area of memory that is not part of the user's area. This usually occurs when
an invalid pointer is dereferenced.

• Program Range Error

A program range error occurs when a program attempts to jump into an area
of memory that is not part of the user's area. This may occur, for example,
when a function in the program mistakenly overwrites the internal program
stack. When this happens, the address of the function from which the
function was called is lost. When the function attempts to return to the calling
function, it jumps elsewhere instead.

• Error Exit

An error exit occurs when a program attempts to execute an invalid
instruction. This error usually occurs when the program's code area has been
mistakenly overwritten with words of data (for example, when the program
stores in a location pointed to by an invalid pointer).

S–2179–55 223

Cray® C and C++ Reference Manual

224 S–2179–55

Intrinsic Functions [F]

The C and C++ intrinsic functions either allow for direct access to some hardware
instructions or result in generation of inline code to perform some specialized
functions. These intrinsic functions are processed completely by the compiler.
In many cases, the generated code is one or two instructions. These are called
functions because they are invoked with the syntax of function calls.

To get access to the intrinsic functions, the Cray C++ compiler requires that
either the intrinsics.h file be included or that the intrinsic functions that
you want to call be explicitly declared. If the source code does not have an
intrinsics.h statement and you cannot modify the code, you can use the -h
prototype_intrinsics option instead. If you explicitly declare an intrinsic
function, the declaration must agree with the documentation or the compiler
treats the call as a call to a normal function, not the intrinsic function. The
-h nointrinsics command line option causes the compiler to treat these calls
as regular function calls and not as intrinsic function calls.

The types of the arguments to intrinsic functions are checked by the compiler,
and if any of the arguments do not have the correct type, a warning message is
issued and the call is treated as a normal call to an external function. If your
intention was to call an external function with the same name as an intrinsic
function, you should change the external function name. The names used for the
Cray C intrinsic functions are in the name space reserved for the implementation.

Note: Several of these intrinsic functions have both a vector and a scalar
version. If a vector version of an intrinsic function exists and the intrinsic
is called within a vectorized loop, the compiler uses the vector version of
the intrinsic. See the appropriate intrinsic function man page for details on
whether it has a vector version.

The following sections groups the C and C++ intrinsics according to function and
provides a brief description of each intrinsic in that group. See the corresponding
man page for more information.

F.1 Atomic Memory Operations

The following intrinsics perform various atomic memory operations:

Note: In this discussion, an object is an entity that is referred to by a pointer. A
value is an actual number, bit mask, etc. that is not referred to by a pointer.

S–2179–55 225

Cray® C and C++ Reference Manual

Intrinsic Description

_amo_aadd Adds a value to an object that is referred to by a pointer and
stores the results in the object.

_amo_aax ANDs a value and an object that is referred to by a pointer, XORs
the result with a third value, and stores the results in the object.

_amo_afadd Adds a value to an object that is referred to by a pointer and
stores the result in the object. The intrinsic returns the original
value of the object.

_amo_afax ANDs a value with an object that is referred to by a pointer, XORs
the result with a second value, and stores the result in the object.
The intrinsic returns the original value of the object.

_amo_acswap

(Compare and swap) Compares an object that is referenced by a
pointer against a value. If equal, a specified value is stored in the
object. The intrinsic returns the original value of object.

F.2 BMM Operations

The following intrinsics perform operations on the BMM:

_mtilt Inverts a bit matrix

_mclr Logically undefines the BMM unit.

_mld Loads the BMM functional unit with a matrix vector in
transposed form.

_mldmx Combines the load and multiply functions.

_mmx Performs a bit matrix multiply.

_mul Unloads the bit matrix function unit.

F.3 Bit Operations

The following intrinsics copy, count, or shift bits or computes the parity bit:

_dshiftl Move the left most n bits of an integer into the right side of
another integer, and return that integer.

226 S–2179–55

Intrinsic Functions [F]

_dshiftr Move the right most n bits of an integer into the left side of
another integer and return that integer.

_pbit Copies the rightmost bit of a word to the nth bit, from the right,
of another word.

_pbits Copies the rightmost m bits of a word to another word beginning
at bit n.

_poppar Computes the parity bit for a variable.

_popcnt
_popcnt32
_popcnt64 Counts the number of set bits in 32-bit and 64-bit integer words.

_leadz
_leadz32
_leadz64 Counts the number of leading 0 bits in 32-bit and 64-bit integer

words.

_gbit _gbit returns the value of the nth bit from the right.

_gbits Returns a value consisting of m bits extracted from a variable,
beginning at nth bit from the right.

F.4 Function Operations

These intrinsics return information about function arguments:

_argcount Returns the number of arguments explicitly passed to a function,
excluding any "hidden" arguments added by the compiler.

_numargs Returns the total number of words in the argument list passed to
the function including any "hidden" arguments added by the
compiler.

F.5 Mask Operations

These intrinsics create bit masks:

_mask Creates a left-justified or right-justified bit mask with all bits set
to 1.

_maskl Returns a left-justified bit mask with i bits set to 1.

S–2179–55 227

Cray® C and C++ Reference Manual

_maskr Returns a right-justified bit mask with i bits set to 1.

F.6 Memory Operations

This intrinsic assures that memory references synchronize memory:

_gsync Performs global synchronization of all memory.

F.7 Miscellaneous Operations

The following intrinsics perform various functions:

_int_mult_upper

Multiplies integers and returns the uppermost bits. Refer to the
int_mult_upper(3i) man page.

_ranf _ranf, compute a pseudo-random floating-point number
ranging from 0.0 through 1.0.

_rtc Return a real-time clock value expressed in clock ticks.

F.8 Streaming Operations

These intrinsics return streaming information:

__sspid Indicates which SSP is being used by the code. This intrinsic
applies to MSP-mode applications, not SSP-mode applications.

__streaming

Indicates whether the code is capable of multistreaming.

228 S–2179–55

Glossary

application node

For UNICOS/mp systems, a node that is used to run user applications.
Application nodes are best suited for executing parallel applications and are
managed by the strong application placement scheduling and gang scheduling
mechanism Psched. See also node; node flavor.

barrier

An obstacle within a program that provides a mechanism for synchronizing
tasks. When a task encounters a barrier, it must wait until all specified tasks
reach the barrier.

barrier synchronization

1. An event initiated by software that prevents cooperating tasks from continuing
to issue new program instructions until all of the tasks have reached the same
point in the program. 2. A feature that uses a barrier to synchronize the
processors within a partition. All processors must reach the barrier before they
can continue the program.

basic block

A section of a program that does not cross any conditional branches, loop
boundaries, or other transfers of control. There is a single entry point and a single
exit point. Many compiler optimizations occur within basic blocks.

binding

The way in which one component in a resource specification is related to another
component.

breakpoint

A point in a program that, when reached, triggers some special behavior useful
to the process of debugging; generally, breakpoints are used to either pause
program execution and/or dump the values of some or all of the program
variables. Breakpoints may be part of the program itself, or they may be set
by the programmer as part of an interactive session with a debugging tool for
scrutinizing the execution of the program.

S–2179–55 229

Cray® C and C++ Reference Manual

C interoperability

A Fortran feature that allows Fortran programs to call C functions and access C
global objects and also allows C programs to call Fortran procedures and access
Fortran global objects.

cache line

A division of cache. Each cache line can hold multiple data items. For Cray
X1 systems, a cache line is 32 bytes, which is the maximum size of a hardware
message.

co-array

A syntactic extension to Fortran that offers a method for programming data
passing; a data object that is identically allocated on each image and can be
directly referenced syntactically by any other image.

common block

An area of memory, or block, that can be referenced by any program unit. In
Fortran, a named common block has a name specified in a Fortran COMMON
or TASKCOMMON statement, along with specified names of variables or arrays
stored in the block. A blank common block, sometimes referred to as blank
common, is declared in the same way but without a name.

compute module

For a Cray X1 series mainframe, the physical, configurable, scalable building
block. Each compute module contains either one node with 4 MCMs/4MSPs
(Cray X1 modules) or two nodes with 4 MCMs/8MSPs (Cray X1E modules).
Sometimes referred to as a node module. See also node.

construct

A sequence of statements in Fortran that starts with a SELECT CASE, DO, IF, or
WHERE statement and ends with the corresponding terminal statement.

Cray Programming Environment Server (CPES)

A server for the Cray X1 series system that runs the Programming Environment
software.

230 S–2179–55

Glossary

Cray streaming directives (CSDs)

Nonadvisory directives that allow you to more closely control multistreaming
for key loops.

Cray X1 series system

The Cray system that combines the single-processor performance and
single-shared address space of Cray parallel vector processor (PVP) systems with
the highly scalable microprocessor-based architecture that is used in Cray T3E
systems. Cray X1 and Cray X1E systems utilize powerful vector processors,
shared memory, and a modernized vector instruction set in a highly scalable
configuration that provides the computational power required for advanced
scientific and engineering applications.

CrayDoc

Cray's documentation system for accessing and searching Cray books, man
pages, and glossary terms from a web browser.

CrayPat

For Cray X1 series systems, the primary high-level tool for identifying
opportunities for optimization. CrayPat allows you to perform profiling,
sampling, and tracing experiments on an instrumented application and to
analyze the results of those experiments; no recompilation is needed to produce
the instrumented program. In addition, the CrayPat tool provides access to all
hardware performance counters.

deferred implementation

The label used to introduce information about a feature that will not be
implemented until a later release.

distributed memory

The kind of memory in a parallel processor where each processor has fast access
to its own local memory and where to access another processor's memory it must
send a message via the interprocessor network.

dynamic extent

In OpenMP, an extent that includes both the statements of a lexical extent and the
statements of a function that is called from the lexical extent. A dynamic extent is
an instance of a region.

S–2179–55 231

Cray® C and C++ Reference Manual

entry point

A location in a program or routine at which execution begins. A routine may
have several entry points, each serving a different purpose. Linkage between
program modules is performed when the linkage editor binds the external
references of one group of modules to the entry points of another module.

environment variable

A variable that stores a string of characters for use by your shell and the
processes that execute under the shell. Some environment variables are
predefined by the shell, and others are defined by an application or user.
Shell-level environment variables let you specify the search path that the shell
uses to locate executable files, the shell prompt, and many other characteristics
of the operation of your shell. Most environment variables are described in the
ENVIRONMENT VARIABLES section of the man page for the affected command.

Etnus TotalView

A symbolic source-level debugger designed for debugging the multiple processes
of parallel Fortran, C, or C++ programs.

invariant

A rule, such as the ordering of an ordered list or heap, that applies throughout
the life of a data structure or procedure. Each change to the data structure must
maintain the correctness of the invariant.

kind

Data representation (for example, single precision, double precision). The kind
of a type is referred to as a kind parameter or kind type parameter of the type.
The kind type parameter KIND indicates the decimal range for the integer type,
the decimal precision and exponent range for the real and complex types, and the
machine representation method for the character and logical types.

lexical block

The scope within which a C or C++ directive is on or off and is bounded by
the opening curly brace just before the declaration of the directive and the
corresponding closing curly brace. Only applicable executable statements within
the lexical block are affected as indicated by the directive. The lexical block does
not include the statements contained within a procedure that is called from the
lexical block.

232 S–2179–55

Glossary

This example code shows the lexical block for the inline directive:

void Example(void)

{

#pragma inline // inline state is active

...

{

// inline state is

still on?

}

{

#pragma noinline // inline state is now off

...

}

// inline state

is back on

...

}

locale

For UNICOS/mp systems, a collection of culture-dependent information used by
an application to interact with a user.

lock

1. Any device or algorithm that is used to ensure that only one process will
perform some action or use some resource at a time. 2. A synchronization
mechanism that, by convention, forces some data to be accessed by tasks in a
serial fashion. Locks have two states: locked and unlocked. 3. A facility that
monitors critical regions of code.

loop fusion

An optimization that takes the bodies of loops with identical iteration counts and
fuses them into a single loop with the same iteration count.

S–2179–55 233

Cray® C and C++ Reference Manual

loop interchange

An optimization that changes the order of loops within a loop nest, to achieve
stride minimization or eliminate data dependencies.

loop unrolling

An optimization that increases the step of a loop and duplicates the expressions
within a loop to reflect the increase in the step. This can improve instruction
scheduling and reduce memory access time.

loopmark listing

A listing that is generated by invoking the Cray Fortran Compiler with the -rm
option. The loopmark listing displays what optimizations were performed by
the compiler and tells you which loops were vectorized, streamed, unrolled,
interchanged, and so on.

master thread

The thread that creates a team of threads when an OpenMP parallel region is
entered.

multistreaming processor (MSP)

For UNICOS/mp systems, a basic programmable computational unit. Each MSP
is analogous to a traditional processor and is composed of four single-streaming
processors (SSPs) and E-cache that is shared by the SSPs. See also node; SSP;
MSP mode; SSP mode.

NaN

An IEEE floating-point representation for the result of a numerical operation that
cannot return a valid number value; that is, not a number, NaN.

nested parallel region

An OpenMP parallel region that appears within a dynamic extent of an OpenMP
PARALLEL construct that does not have an if clause or has an if clause that
evaluates to true. See also dynamic extent.

node

For UNICOS/mp systems, the logical group of four multistreaming processors
(MSPs), cache-coherent shared local memory, high-speed interconnections, and

234 S–2179–55

Glossary

system I/O ports. A Cray X1 system has one node with 4 MSPs per compute
module. A Cray X1E system has two nodes of 4 MSPs per node, providing a total
of 8 MSPs on its compute module. Software controls how a node is used: as an
OS node, application node, or support node. See also compute module; MCM;
MSP, node flavor; SSP.

node

In networking, a processing location. A node can be a computer (host) or some
other device, such as a printer. Every node has a unique network address.

node flavor

For UNICOS/mp systems, software controls how a node is used. A node's
software-assigned flavor dictates the kind of processes and threads that can use
its resources. The three assignable node flavors are application, OS, and support.
See also application node; OS node; support node; system node.

OpenMP

An industry-standard, portable model for shared memory parallel programming.

OS node

For UNICOS/mp systems, the node that provides kernel-level services, such as
system calls, to all support nodes and application nodes. See also node; node flavor.

overindexing

The nonstandard practice of referencing an array with a subscript not contained
between the declared lower and upper bounds of the corresponding dimension
for that array. This practice sometimes, but not always, leads to referencing a
storage location outside of the entire array.

page size

The unit of memory addressable through the Translation Lookaside Buffer (TLB).
For a UNICOS/mp system, the base page size is 65,536 bytes, but larger page
sizes (up to 4,294,967,296 bytes) are also available.

parallel region

See serial region.

S–2179–55 235

Cray® C and C++ Reference Manual

pointer

A data item that consists of the address of a desired item.

private variable

A variable that is accessible to only one thread in a team of an OpenMP parallel
region.

Psched

The UNICOS/mp application placement scheduling tool. The psched command
can provide job placement, load balancing, and gang scheduling for all
applications placed on application nodes.

reduction

The process of transforming an expression according to certain reduction rules.
The most important forms are beta reduction (application of a lambda abstraction
to one or more argument expressions) and delta reduction (application of a
mathematical function to the required number of arguments). An evaluation
strategy (or reduction strategy) determines which part of an expression to reduce
first. There are many such strategies. Also called contraction.

reduction loop

A loop that contains at least one statement that reduces an array to a scalar value
by doing a cumulative operation on many of the array elements. This involves
including the result of the previous iteration in the expression of the current
iteration.

search loop

An array-processing loop used to perform a table lookup or to find exceptional
values within an array.

serial region

An area within a program in which only the master task is executing. Its opposite
is a parallel region.

SHMEM

A library of optimized functions and subroutines that take advantage of shared
memory to move data between the memories of processors. The routines can

236 S–2179–55

Glossary

either be used by themselves or in conjunction with another programming style
such as Message Passing Interface. SHMEM routines can be called from Fortran,
C, and C++ programs.

shortloop

A loop that is vectorized but that has been determined by the compiler to have
trips less than or equal to the maximum vector length. In this case, the compiler
deletes the loop to the top of the loop. If the shortloop directive is used or the
trip count is constant, the top test for number of trips is deleted. A shortloop is
more efficient than a conventional loop.

side effects

The result of modifying shared data or performing I/O by concurrent streams
without the use of an appropriate synchronization mechanism. Modifying shared
data (where multiple streams write to the same location or write/read the same
location) without appropriate synchronization can cause unreliable data and
race conditions. Performing I/O without appropriate synchronization can cause
an I/O deadlock. Shared data, in this context, occurs when any object may be
referenced by two or more single-streaming processors. This includes globally
visible objects (for example, COMMON, MODULE data), statically allocated objects
(SAVE, C static), dummy arguments that refer to SHARED data and objects in
the SHARED heap.

single-streaming processor (SSP)

For UNICOS/mp systems, a basic programmable computational unit. See also
node; MSP; MSP mode; SSP mode.

Software Problem Report (SPR)

A Cray customer service form and process that tracks software problems from
first report to resolution. SPR resolution results either from a written reply, the
release of software containing the fix to the problem, or the implementation of
the requested design change.

structured block

In Fortran OpenMP, a collection of one or more executable statements with a
single point of entry at the top and a single point of exit at the bottom. Execution
must always proceed with entry at the top of the block and exit at the bottom
with only one exception: the block is allowed to have a STOP statement inside

S–2179–55 237

Cray® C and C++ Reference Manual

a structured block. This statement has the well-defined behavior of terminating
the entire program.

support node

For UNICOS/mp systems, the node that is used to run serial commands, such
as shells, editors, and other user commands (ls, for example). See also node;
node flavor.

system node

For UNICOS/mp systems, the node that is designated as both an OS node and a
support node; this node is often called a system node; however, there is no node
flavor of "system." See also node; node flavor.

thread

The active entity of execution. A sequence of instructions together with machine
context (processor registers) and a stack. On a parallel system, multiple threads
can be executing parts of a program at the same time.

trigger

A command that a user logged into a Cray X1 series system uses to launch
Programming Environment components residing on the CPES. Examples of
trigger commands are ftn, CC, and pat_build.

type

A means for categorizing data. Each intrinsic and user-defined data type has
four characteristics: a name, a set of values, a set of operators, and a means to
represent constant values of the type in a program.

UNICOS/mp

The operating system for Cray X1 series (Cray X1 and Cray X1E) systems.

Unified Parallel C (UPC)

An extension of the C programming language designed for high performance
computing on large-scale parallel processing machines. UPC provides a uniform
programming model for both shared and distributed memory hardware. Other
parallel programming models include Message Passing Interface, SHMEM,
Co-array Fortran, and OpenMP.

238 S–2179–55

Glossary

unrolling

A single-processing-element optimization technique in which the statements
within a loop are copied. For example, if a loop has two statements, unrolling
might copy those statements four times, resulting in eight statements. The loop
control variable would be incremented for each copy, and the stride through the
array would also be increased by the number of copies. This technique is often
performed directly by the compiler, and the number of copies is usually between
two and four.

vector

A series of values on which instructions operate; this can be an array or any
subset of an array such as row, column, or diagonal. Applying arithmetic,
logical, or memory operations to vectors is called vector processing. See also
vector processing.

vector length

The number of elements in a vector.

vector processing

A form of instruction-level parallelism in which the vector registers are used to
perform iterative operations in parallel on the elements of an array, with each
iteration producing up to 64 simultaneous results. See also vector.

vectorization

The process, performed by the compiler, of analyzing code to determine whether
it contains vectorizable expressions and then producing object code that uses the
vector unit to perform vector processing.

S–2179–55 239

Cray® C and C++ Reference Manual

240 S–2179–55

Index

-#, 44
-##, 44
-###, 44

A
Advisory directives defined, 76
Affinity, 127
_amo_aadd, 226
_amo_aax, 226
_amo_acswap, 226
_amo_afadd, 226
_amo_afax, 226
Anachronisms

C++, 207
aprun, 163
_argcount, 227
Argument passing, 170
Arithmetic

See math
Array storage, 171
Arrays, 187

dependencies, 97
asm statements, 189
Assembly language

functions, 169
output, 44

Assembly source expansions, 7
Auto aprun (see
CRAY_AUTO_APRUN_OPTIONS), 61

B
Bit fields, 188
Blank common block, 174
bounds directive, 72
btol conversion utility, 172

C
-c, 193

C extensions, 155
See also Cray C extensions

C interoperability, 179
C libraries, 193
-c option, 44
-C option, 46
C++

libraries, 143
templates, 145

Calls, 167
can_instantiate directive, 82, 151
Cfront, 211

compatibility mode, 203
compilers, 14
option, 14

Character data, 172
Character set, 185
Characters

wide, 186
CIV

See Constant increment variables
Classes, 188
Command line options
-# option, 44
-## option, 45
-### option, 45
-c option, 7, 44
-C option, 46
compiler version, 57
conflicting with directives, 13
conflicting with other options, 13
-D macro[=def], 46
defaults, 10
-E option, 7, 43
examples, 58
-g option, 40, 165–166
-G option, 40, 165–166
-h [no] conform, 14

S–2179–55 241

Cray® C and C++ Reference Manual

-h [no]abort, 43
-h [no]aggress, 25
-h [no]anachronisms, 15
-h [no]autoinstantiate, 20
-h [no]bounds, 41, 165
-h [no]c99, 13
-h [no]calchars, 24
-h [no]exceptions, 15
–h [no]fusion, 26
-h [no]implicitinclude, 22
-h [no]interchange, 36
-h [no]intrinsics, 26
-h [no]ivdep, 32
-h [no]message=n, 42
-h [no]overindex, 28
-h [no]pattern, 28
-h [no]pragma=name[:name...], 47
-h [no]reduction, 37
-h [no]signedshifts, 25
-h [no]tolerant, 16
–h [no]unroll, 29
-h [no]vsearch, 33
-h [no]zeroinc, 38
-h anachronisms, 207
-h cfront, 14, 211
-h display_opt, 26
-h errorlimit[=n], 43
-h feonly, 44
-h forcevtble, 22
-h ident=name, 55
-h instantiate=mode, 21
-h instantiation_dir, 20
-h keep=file, 23
-h matherror=method, 40
-h msglevel_n, 42
-h new_for_init, 15
-h one_instantiation_per_object, 20
-h options
errorlimit, 219

-h prelink_local_copy, 22
-h remove_instantiation_flags, 22
-h report=args, 42

-h restrict=args, 23
-h scalarn, 37
-h simple_templates, 20
-h suppressvtble, 22
-h vectorn, 32
-h zero, 41
-I option, 47
-L libdir option, 50
-l libfile option, 49
-M option, 48
macro definition, 46
-N option, 48
-nostdinc option, 49
-O level, 29
-o option, 50
-P option, 7, 44
prelink_copy_if_nonlocal, 22
preprocessor options, 43
remove macro definition, 49
-s option, 50
-S option, 7, 44
-U macro option, 49
-V option, 57
-W option, 45
-Y option, 45

Command mode
-h command, 51

Commands
c89, 5, 7

files, 9
format, 9

c99, 5
files, 8
format, 8

cc, 5, 7
files, 8
format, 8

CC, 5, 7
files, 8
format, 8

compiler, 7
cpp, 7

242 S–2179–55

Index

format, 9
ld, 23
options, 10

Comments
preprocessed, 46

Common block, 174
Common blocks, dynamic, 62
Common system messages, 223
Compilation phases
-#, 44
-##, 44
-###, 44
-c option, 44
-E option, 43
-h feonly, 44
-P option, 44
-S option, 44
-Wphase,"opt...", 45
-Yphase,dirname, 45

Compiler
Cray C, 5
Cray C++, 5

Compiler messages, 219
_Complex

incrementing or decrementing, 155
concurrent directive, 97
Conformance

C++, 203
Constant increment variables (CIVs), 38
Constructs

accepted and rejected, 14
old, 16

Conversion utility
_btol, 172
_ltob, 172

Cray Assembly Language (CAL), 169
Cray C Compiler, 5
Cray C extensions, 155, 209

See also extensions
Imaginary constants, 155
incrementing or decrementing _Complex

data, 155

_Pragma, 71
Cray C++ Compiler, 5
Cray streaming directives

See CSDs
Cray X1E system, 52
CRAY_AUTO_APRUN_OPTIONS, 61
CRAY_PE_TARGET, 60
CRAYOLDCPPLIB, 59
CRI_c89_OPTIONS, 60
CRI_cc_OPTIONS, 60
CRI_CC_OPTIONS, 60
CRI_cpp_OPTIONS, 60
critical directive, 112
CSDs, 105

chunk size, optimal, 108
chunk_size, 108
chunks, defined, 108
compatibility, 105
critical, 112
CSD parallel region, defined, 106
for, 108
functions called from parallel regions, 106
functions in, 106
options to enable, compiler, 116
ordered, 112
parallel, 106
parallel directive, 114
parallel directives, 106
parallel for, 110
parallel region, 106
parallel regions, multiple, 106
placement of, 114
private data, precautions for, 107
stand-alone CSD directives defined, 114
sync, 111

D
-D macro[=def], 46
Data types, 184

logical data, 172
mapping (table), 184

__DATE__ , 190

S–2179–55 243

Cray® C and C++ Reference Manual

Debugging, 40
features, 165
-G level, 40
-g option, 40
-h [no]bounds, 41
-h zero, 41
options, 166

Declarators, 189
Declared bounds, 28
Decompiling
-h decomp, 52

Defaults
-h fp2, 38

Dialects, 203
Directives

advisory, defined, 76
C++, 71
conflicts with options, 13
#define, 46
diagnostic messages, 70
disabling, 47
general, 72
#include, 47, 49
inlining, 101
instantiation, 82
loop, 71
macro expansion, 69
MSP, 95

examples, 96
#pragma, 69

alternative form, 71
arguments to instantiate, 151
can_instantiate, 82, 151
concurrent, 97
critical, 112
do_not_instantiate, 82, 151
duplicate, 73
for, 108
format, 69
ident, 82
in C++, 71
instantiate, 82, 151

ivdep, 83
loop_info, 84
message, 75, 165
[no]bounds, 72
[no]bounds directive, 165
no_cache_alloc, 76
[no]opt, 77, 165
nointerchange, 97
nopattern, 86
noreduction, 98
nostream, 95
[nounroll], 99
novector, 86
novsearch, 87
ordered, 112
parallel, 106
parallel for, 110
permutation, 87
preferstream, 96
prefervector, 89
safe_address, 90
shortloop, 92
shortloop128, 92
ssp_private, 93
suppress, 99
sync, 111
[unroll], 99
usage, 69
vfunction, 81
weak, 79

preprocessing, 189
protecting, 70
scalar, 96
vectorization, 82

Directories
#include files, 47, 49
library files, 49–50
phase execution, 45

do_not_instantiate directive, 82, 151
_dshiftl, 226
_dshiftr, 227
duplicate directive, 73

244 S–2179–55

Index

Dynamic common blocks, 62

E
-E option, 43
Enumerations, 188
Environment, 183
environment variables

OpenMP, 64
Environment variables

compile time, 59
CRAY_PE_TARGET, 60
CRAYOLDCPPLIB, 59
CRI_c89_OPTIONS, 60
CRI_cc_OPTIONS, 60
CRI_CC_OPTIONS, 60
CRI_cpp_OPTIONS, 60
LANG, 60, 220
MSG_FORMAT, 61, 220
NLSPATH, 61, 220
NPROC, 61
OMP_DYNAMIC, 66
OMP_NESTED, 66
OMP_NUM_THREADS, 65
OMP_SCHEDULE, 65
ORIG_CMD_NAME, 220
run time, 61

Error Exit, 223
Error messages, 219
Examples

command line, 58
Exception construct, 15
Exception handling, 15
Exceptions, 189
explain, 219
Extensions

C++ mode, 208
Cfront compatibility mode, 211
Cray C, 155
_Pragma, 71
#pragma directives, 69

extern "C" keyword, 167
External functions

declaring, 167

F
Features

C++, 203
Cfront compatibility, 203

Files
a.out, 7
constructor/destructor, 23
default library, 49
dependencies, 48
.ii file, 148
intrinsics.h, 225
library directory, 50
linking, 23
output, 50
personal libraries, 50

Floating constants, 156
Floating-point

constants, 156
overflow, 187

for directive, 108
Fortran common block, 175
fortran keyword, 156
Freeing up memory, 63
friend declaration, 212
Functions, 225
mbtowc, 186

G
-G level, 40
-g option, 165–166
-G option, 165–166
_gbit, 227
_gbits, 227
GCC language extensions

C and C++, 16
C++ only, 19

General command functions
-h ident=name, 55
-V option, 57

gnu

S–2179–55 245

Cray® C and C++ Reference Manual

GCC language extensions, 16
_gsync, 228

H
-h [no]conform, 14
–h [no]fusion, 26
-h [no]implicitinclude, 22
-h [no]message=n[:...], 220
-h [no]message=n[:n...], 42
-h [no]mpmd, 55
-h [no]pragma=name[:name...], 47
-h [no]unroll, 29
-h abort, 43
-h aggress, 25
-h anachronisms, 15, 207
-h autoinstantiate, 20
-h bounds, 41, 165
-h c99, 13
-h calchars, 24
-h cfront, 14
-h command, 51
-h conform, 14
-h const_string_literals, 16
-h cpu=target_system, 52
-h decomp, 52
-h display_opt, 26
-h errorlimit, 219
-h errorlimit[=n], 43, 220
-h exceptions, 15
-h feonly, 44
-h forcevtbl, 22
-h gen_private_callee, 25
-h gnu, 16
-h ident=name, 55
-h ieeeconform, 38
-h implicitinclude, 22
-h infinitevl, 31
-h instantiate=mode, 21
-h instantiation_dir, 20
–h interchange, 36
-h intrinsics, 26
-h ipafrom=source[:source], 35

-h ipan, 34
-h ivdep, 32
-h keep=file, 23
-h list, 26
-h matherror=method, 40
-h mpmd, 55
-h msglevel_n, 42, 220
-h msp, 27
-h new_for_init, 15
-h noabort, 43
-h noaggress, 25
-h noanachronisms, 15
-h noautoinstantiate, 20
-h nobounds, 41, 165
-h noc99, 13
-h nocalchars, 24
-h noconst_string_literals >>, 16
-h noexceptions, 15
-h nognu, 16
-h noieeeconform, 38
-h noinfinitevl, 31
–h nointerchange, 36
-h nointrinsics, 26, 225
-h noivdep, 32
-h noomp, 56
-h nooverindex, 28
-h nopattern, 28
-h noreduction, 37
-h nosearch, 33
-h nosignedshifts, 25
-h notolerant, 16
-h nozeroincn, 38
-h omp, 56
-h one_instantiation_per_object, 20
-h overindex, 28
-h pattern, 28
-h prelink_copy_if_nonlocal, 22
-h prelink_local_copy, 22
-h prototype intrinsics, 56
-h prototype_intrinsics, 225
-h reduction, 37
-h remove_instantiation_flags, 22

246 S–2179–55

Index

-h report=args, 42, 220
-h restrict=args, 23
-h scalarn, 37
-h search, 33
-h signedshifts, 25
-h simple_templates, 20
-h stream, 30
-h streamn, 93
-h suppressvtbl, 22
-h taskn, 56
-h tolerant, 16
-h upc, 57
-h vectorn, 32
-h zero, 41
-h zeroincn, 38
Hardware

intrinsic functions, 26
Hexadecimal floating constant, 156

I
-I incldir, 47
ident directive, 82
Identifier names

allowable, 24
Identifiers, 184
Imaginary constants, 155
Implementation-defined behavior, 183
Implicit inclusion, 22, 153
inline_always directive, 104
inline_disable directive, 102
inline_enable directive, 102
inline_never directive, 104
inline_reset directive, 102
Inlining directives, 101
Inlining options, 33
instantiate directive, 82, 151
Instantiation

directives, 82, 151
directory for template instantiation object

files, 20
enable or disable automatic, 20
local files, 22

modes, 21, 149
nonlocal object file recompiled, 22
one per object file, 20, 149–150
prelinker, 145
remove flags, 22
simple, 20, 146
template, 145

_int_mult_upper, 228
Integers

overflow, 187
representation, 187

Interchange loops, 36
Interlanguage communication, 167

argument passing, 170
array storage, 171
assembly language functions, 169
blank common block, 174
CAL functions, 169
calling a C and C++ function from Fortran, 179
calling a C program from C++, 167
calling a Fortran program from C++, 178
calling Fortran routines, 169
logical and character data, 172

Intermediate translations, 7
Intrinsic functions

argument types, 225
summary, 225

Intrinsics, 26
intrinsics.h, 225
ivdep directive, 83

K
K & R preprocessing, 48
Keywords
extern "C", 167
fortran, 156

L
-L libdir, 50
-l libfile, 49
LANG, 60, 220
Language

S–2179–55 247

Cray® C and C++ Reference Manual

general
-h [no]calchars, 24
-h keep=file, 23
-h restrict=args, 23

standard conformance
-h [no] conform, 14
-h [no]anachronisms, 15
-h [no]c99, 13
-h [no]exceptions, 15
-h [no]tolerant, 16
-h cfront, 14
-h new_for_init, 15

templates
-h [no]autoinstantiate, 20
-h [no]implicitinclude, 22
-h instantiate=mode, 21
-h instantiation_dir, 20
-h one_instantiation_per_object, 20
-h prelink_copy_if_nonlocal, 22
-h prelink_local_copy, 22
-h remove_instantiation_flags, 22
-h simple_templates, 20

virtual functions
-h forcevtbl, 22
-h suppressvtbl, 22

Launching applications, 163
ld, 7
_leadz, 227
Lexcial block, defined, 69
Libraries

default, 49
Standard C, 193

Library, Standard Template, 193
Limits, 183
Linking

files, 23
Loader

default, 193
-L libdir, 50
-l libfile, 49
ld, 7
-o outfile, 50

-s option, 50
Logical data, 172
Loop

directives, 71
fusion, 101
no unrolling, 99
unrolling, 99

Loop optimization
–h [no]unroll, 29
safe_address, 90

loop_info directive, 84
Loopmark listings, 26
_ltob conversion utility, 172

M
-M option, 48
Macros, 169

expansion in directives, 69
removing definition, 49

Macros, predefined, 159
_ADDR64, 161
__cplusplus, 160
cray, 161
CRAY, 162
_CRAY, 161
_CRAYC, 162
_CRAYIEEE, 161
_CRAYSV2, 161
__DATE__, 159
__FILE__, 159
__LINE__, 159
_MAXVL, 161
_RELEASE, 162
_RELEASE_MINOR, 162
_RELEASE_STRING, 162
__STDC__, 160
__sv, 161
__sv2, 161
__TIME__, 159
_UNICOSMP, 160
unix, 160
_unix, 160

248 S–2179–55

Index

_mask, 227
_maskl, 227
_maskr, 228
Math
-h matherror=method, 40

mbtowc, 186
_mclr, 226
Memory, freeing up, 63
message directive, 75, 165
Messages, 183, 219

common system, 223
Error Exit, 223
Operand Range Error, 223
Program Range Error, 223

for _CRI directives, 70
-h [no]abort, 43
-h [no]message=n[:n...], 42
-h errorlimit[=n], 43
-h msglevel_n, 42
-h report=args, 42
option summary, 219
severity, 221
CAUTION, 222
COMMENT, 221
ERROR, 222
INFO, 222
INLINE, 222
INTERNAL, 222
LIMIT, 222
NOTE, 221
SCALAR, 222
VECTOR, 222
WARNING, 222

_mld, 226
_mldmx, 226
_mmx, 226
mpirun, 163
MPMD, 55, 164
MSG_FORMAT, 61, 220
MSP, 93

directives, 95–96
-h streamn, 93

MSP-mode
-h msp, 27

_mtilt, 226
_mul, 226
Multiple Program, Multiple Data
-h [no]mpmd, 55

Multiple Program, Multiple Data (MPMD), 164
Multistreaming, 30
-h stream, 30

Multistreaming processor
See MSP

N
-N option, 48
Names, 184
NLSPATH, 61, 220
No unrolling

See unrolling
nobounds directive, 72
nointerchange directive, 97
noopt directive, 77, 165
nopattern directive, 86
noreduction directive, 98
-nostdinc, 49
nostream directive, 95
novector directive, 86
novsearch directive, 87
NPROC, 61
_numargs, 227

O
-o outfile, 50
-Olevel, 29
OpenMP

directives, 117
disable directive recognition, 56, 120
enable directive recognition, 56, 120
environment variables, 64
memory considerations, 66, 119
OMP_DYNAMIC environment variable, 66
OMP_NESTED environment variable, 66
OMP_NUM_THREADS environment variable, 65

S–2179–55 249

Cray® C and C++ Reference Manual

OMP_SCHEDULE environment variable, 65
Operand Range Error, 223
Operators

bitwise and integers, 187
opt directive, 77, 165
Optimization

automatic scalar, 37
general
–h [no] unroll, 29
-h [no]aggress, 25
–h [no]fusion, 26
-h [no]intrinsics, 26
-h [no]overindex, 28
-h [no]pattern, 28
-O level, 29

–h [no]unroll, 29
-h ipan, 34
-h list, 26
inlining, 34
interchange loops, 36
level, 29
limitations, 25
loopmark listings, 26
MSP, 93
[no]fusion, 26
scalar
-h [no]interchange, 36
-h [no]reduction, 37
-h scalarn, 37

vector
-h [no]ivdep, 32
-h [no]vsearchn, 33
-h [no]zeroincn, 38
-h vectorn, 32

Options
See Command line
See Command line options

conflicts, 13
vectorization, 31

ordered directive, 112
ORIG_CMD_NAME, 220
Overindexing, 28

P
-P option, 44
parallel directive, 106
parallel for directive, 110
Parallel programming models

UPC, 123
Pattern matching

enable or disable, 28
_pbit, 227
_pbits, 227
Performance

improvement, 32
permutation directive, 87
Pointers, 187–188

function parameter, 24
restricted, 23

_popcnt, 227
_poppar, 227
Porting code, 16, 203
#pragma directives

See Directives
Pragma directives

OpenMP, 117
_Pragma directives, 71
Predefined macros, 159
preferstream directive, 96
prefervector directive, 89
Prelinker, 147
Prelinker instantiation, 145
Preprocessing, 189
-C option, 46
-D macro[=def], 46
-h [no]pragma=name[:name...] , 47
-I incldir, 47
-M, 48
-N option, 48
-nostdinc, 49
old style (K & R), 48
retain comments, 46
-U macro, 49

Preprocessor, 44
passing arguments to, 45

250 S–2179–55

Index

Preprocessor phase, 7
Processing elements, 57
Program Range Error, 223
Programming environment

description, 1
Protected member access checking, 213

Q
Qualifiers, 189

R
_ranf, 228
Reduction loop, 98
Reduction loops, 37
Registers, 188
Relocatable object file, 7, 44
Restricted pointers, 23
_rtc, 228
Running applications, 163

S
-s option, 50
-S option, 44
safe_address directive, 90
Scalar directives, 96
Search

library files, 50
loops, 33

Shift operator, 187
shortloop directive, 92
shortloop128 directive, 92
Simple instantiation, 146
Single-streaming Processor (see ssp mode), 28
sizeof, 184
ssp mode, 28
ssp_private directive, 93
__sspid, 228
Standard Template Library, 193
Standards, 183

arrays and pointers, 187
bit fields, 188
C violation, 16

character set, 185
example, 186

classes, 188
conformance to, 14
conformance to C99, 13
data types, 184

mapping, 184
declarators, 189
enumerations, 188
environment, 183
exceptions, 189
extensions, 155
identifiers, 184
implementation-defined behavior, 183
integers, 187
messages, 183
pointers, 188
preprocessing, 189
qualifiers, 189
register storage class, 188
statements, 189
structures, 188
system function calls, 189
unions, 188
wide characters, 186

Statements, 189
STL

See Standard Template Library
Storage class, 156
__streaming, 228
Streaming intrinsics, 228
String literals, 16
Structures, 188
suppress directive, 99
Symbolic information, 50
sync directive, 111
Syntax checking, 44
System function calls, 189

T
Target system, 52
Template instantiation, 145

S–2179–55 251

Cray® C and C++ Reference Manual

directives, 151
implicit inclusion, 153
modes, 149
one per object file, 149–150
prelinker, 145
simple, 146

Templates, 145
Throw expression, 15
Throw specification, 15
__TIME__, 190
TotalView debugger, 166
Try block, 15
Types, 184

U
-U macro, 49
Unified Parallel C (UPC), 123
Unions, 188
unrolling

no unrolling, 99
[no] directive, 99

UPC, 123
expressions, 125
forall, 127
-h upc, 57, 141
header, 129
macro names, 128
#pragma directives, 128
predefined identifiers, 124
relaxed, 128
strict, 128
upc_addrfield, 133
upc_affinitysize, 134
upc_all_alloc, 130
upc_all_free, 131
upc_all_lock_alloc, 135
upc_all_lock_free, 135
upc_alloc, 131
upc_barrier, 125
upc_blocksizeof, 125
upc_elemsizeof, 125

upc_fence, 126
upc_free, 132
upc_global_alloc, 130
upc_global_exit, 129
upc_global_lock_alloc, 134
upc_global_lock_free, 135
upc_local_alloc, 131
upc_local_free, 132
upc_localsizeof, 125
upc_lock, 137
upc_lock_attempt, 137
upc_lock_free, 136
upc_lock_t, 134
upc_memcpy, 138
upc_memget, 139
upc_memput, 139
upc_memset, 140
upc_notify, 125
upc_phaseof, 133
upc_resetphase, 133
upc_threadof, 133
upc_unlock, 138
upc_wait, 125

V
-V option, 57
Vectorization, 31

automatic, 32
dependency analysis, 32
directives, 83
level, 32
search loops, 33

Vectorization options, 31
vfunction directive, 81
Virtual function table, 22
volatile qualifier, 99

W
weak directive, 79
Weak externals, 79
-Wphase,"opt...", 45

252 S–2179–55

Index

X
-X npes option, 57
X1_COMMON_STACK_SIZE, 62
X1_DYNAMIC_COMMON_SIZE environment

variable, 62
X1_HEAP_SIZE, 62
X1_LOCAL_HEAP_SIZE, 62

X1_PRIVATE_STACK_GAP, 62
X1_PRIVATE_STACK_SIZE, 62
X1_STACK_SIZE, 62
X1_SYMMETRIC_HEAP_SIZE, 62

Y
-Yphase,dirname, 45

S–2179–55 253

	Cray® C and C++ Reference Manual
	New Features
	Preface
	Accessing Product Documentation
	Conventions
	Reader Comments

	Introduction [1]
	1.1 The Trigger Environment
	1.1.1 Working in the Programming Environment
	1.1.2 Preparing the Trigger Environment

	1.2 General Compiler Description
	1.2.1 Cray C++ Compiler
	1.2.2 Cray C Compiler

	1.3 Related Publications

	Compiler Commands [2]
	2.1 CC Command
	2.2 cc and c99 Commands
	2.3 c89 Command
	2.4 cpp Command
	2.5 Command Line Options
	2.6 Standard Language Conformance Options
	2.6.1 -h [no] c99 (cc, c99)
	2.6.2 -h [no] conform (CC, cc, c99), -h [no] stdc (cc, c9
	2.6.3 -h cfront (CC)
	2.6.4 -h [no] parse_templates (CC)
	2.6.5 -h [no] dep_name (CC)
	2.6.6 -h [no] exceptions (CC)
	2.6.7 -h [no] anachronisms (CC)
	2.6.8 -h new_for_init (CC)
	2.6.9 -h [no] tolerant (cc, c99)
	2.6.10 -h [no] const_string_literals (CC)
	2.6.11 -h [no] gnu (CC, cc)

	2.7 Template Language Options
	2.7.1 -h simple_templates (CC)
	2.7.2 -h [no] autoinstantiate (CC)
	2.7.3 -h one_instantiation_per_object (CC)
	2.7.4 -h instantiation_dir= dirname (CC)
	2.7.5 -h instantiate= mode (CC)
	2.7.6 -h [no] implicitinclude (CC)
	2.7.7 -h remove_instantiation_flags (CC)
	2.7.8 -h prelink_local_copy (CC)
	2.7.9 -h prelink_copy_if_nonlocal (CC)

	2.8 Virtual Function Options (-h forcevtbl, -h suppressvtbl (C
	2.9 General Language Options
	2.9.1 -h keep= file (CC)
	2.9.2 -h restrict= args (CC, cc, c99)
	2.9.3 -h [no] calchars (CC, cc, c99)
	2.9.4 -h [no] signedshifts (CC, cc, c99)

	2.10 General Optimization Options
	2.10.1 -h gen_private_callee (CC, cc, c99)
	2.10.2 -h [no] aggress (CC, cc, c99)
	2.10.3 -h display_opt
	2.10.4 -h [no] fusion (CC, cc, c99)
	2.10.5 -h [no] intrinsics (CC, cc, c99)
	2.10.6 -h list= opt (CC, cc, c99)
	2.10.7 -h msp (CC, cc, c99)
	2.10.8 -h [no] pattern (CC, cc, c99)
	2.10.9 -h [no] overindex (CC, cc, c99)
	2.10.10 -h ssp (CC, cc, c99)
	2.10.11 -h [no] unroll (CC, cc, c99)
	2.10.12 -O level (CC, cc, c89, c99)

	2.11 Multistreaming Processor Optimization Options
	2.11.1 -h stream n (CC, cc, c99)

	2.12 Vector Optimization Options
	2.12.1 -h [no] infinitevl (CC, cc, c99)
	2.12.2 -h [no] ivdep (CC, cc, c99)
	2.12.3 -h vector n (CC, cc, c99)
	2.12.4 -h [no] vsearch (CC, cc, c99)

	2.13 Inlining Optimization Options
	2.13.1 -h ipa n (CC, cc, c89, c99)
	2.13.2 -h ipafrom= source [: source] (CC, cc, c89, c99)
	2.13.3 Combined Inlining

	2.14 Scalar Optimization Options
	2.14.1 -h [no] interchange (CC, cc, c99)
	2.14.2 -h scalar n (CC, cc, c99)
	2.14.3 -h [no] reduction (CC, cc, c99)
	2.14.4 -h [no] zeroinc (CC, cc, c99)

	2.15 Math Options
	2.15.1 -h fp n (CC, cc, c99)
	2.15.2 -h matherror= method (CC, cc, c99)

	2.16 Debugging Options
	2.16.1 -G level (CC, cc, c99) and -g (CC, cc, c89, c99)
	2.16.2 -h [no] bounds (cc, c99)
	2.16.3 -h zero (CC, cc, c99)

	2.17 Compiler Message Options
	2.17.1 -h msglevel_ n (CC, cc, c99)
	2.17.2 -h [no] message= n [: n ...] (CC, cc, c99)
	2.17.3 -h report= args (CC, cc, c99)
	2.17.4 -h [no] abort (CC, cc, c99)
	2.17.5 -h errorlimit [= n] (CC, cc, c99)

	2.18 Compilation Phase Options
	2.18.1 -E (CC, cc, c89, c99, cpp)
	2.18.2 -P (CC, cc, c99, cpp)
	2.18.3 -h feonly (CC, cc, c99)
	2.18.4 -S (CC, cc, c99)
	2.18.5 -c (CC, cc, c89, c99)
	2.18.6 -#, -##, and -### (CC, cc, c99, cpp)

	2.18.7 -W phase," opt ..." (CC, cc, c99)
	2.18.8 -Y phase, dirname (CC, cc, c89, c99, cpp)
	2.19 Preprocessing Options
	2.19.1 -C (CC, cc, c99, cpp)
	2.19.2 -D macro [= def] (CC, cc, c89, c99 cpp)
	2.19.3 -h [no] pragma= name [: name ...] (CC, cc, c99)
	2.19.4 -I incldir (CC, cc, c89, c99, cpp)
	2.19.5 -M (CC, cc, c99, cpp)
	2.19.6 -N (cpp)
	2.19.7 -nostdinc (CC, cc, c89, c99, cpp)
	2.19.8 -U macro (CC, cc, c89, c99, cpp)

	2.20 Loader Options
	2.20.1 -l libfile (CC, cc, c89, c99)
	2.20.2 -L libdir (CC, cc, c89, c99)
	2.20.3 -o outfile (CC, cc, c89, c99)
	2.20.4 -s (CC, cc, c89, c99)

	2.21 Miscellaneous Options
	2.21.1 -h command (cc, c99)
	2.21.2 -h cpu= target_system (CC, cc, c99)
	2.21.3 -h decomp (CC, cc, c99)
	2.21.4 -h ident= name (CC, cc, c99)
	2.21.5 -h keepfiles (CC, cc, c89, c99)
	2.21.6 -h [no] mpmd (CC, cc)
	2.21.7 -h [no] omp (CC, cc)
	2.21.8 -h prototype_intrinsics (CC, cc, c99, cpp)
	2.21.9 -h task n (CC, cc)
	2.21.10 -h [no] threadsafe (CC)
	2.21.11 -h upc (cc)
	2.21.12 -V (CC, cc, c99, cpp)
	2.21.13 -X npes (CC, cc, c99)

	2.22 Command Line Examples
	2.23 Compile Time Environment Variables

	2.24 Run Time Environment Variables
	2.25 OpenMP Environment Variables
	2.25.1 OMP_SCHEDULE
	2.25.2 OMP_NUM_THREADS
	2.25.3 OMP_DYNAMIC
	2.25.4 OMP_NESTED
	2.25.5 OMP_THREAD_STACK_SIZE

	#pragma Directives [3]
	3.1 Protecting Directives
	3.2 Directives in Cray C++
	3.3 Loop Directives
	3.4 Alternative Directive form: _Pragma

	3.5 General Directives
	3.5.1 [no] bounds Directive (Cray C Compiler)
	3.5.2 duplicate Directive (Cray C Compiler)
	3.5.3 message Directive
	3.5.4 no_cache_alloc Directive
	3.5.5 cache_shared Directive
	3.5.6 [no] opt Directive
	3.5.7 Probability Directives
	3.5.8 weak Directive
	3.5.9 vfunction Directive
	3.5.10 ident Directive

	3.6 Instantiation Directives
	3.7 Vectorization Directives
	3.7.1 ivdep Directive
	3.7.2 loop_info Directive
	3.7.3 hand_tuned Directive
	3.7.4 nopattern Directive
	3.7.5 novector Directive
	3.7.6 novsearch Directive
	3.7.7 permutation Directive
	3.7.8 [no] pipeline Directive
	3.7.9 prefervector Directive
	3.7.10 safe_address Directive
	3.7.11 safe_conditional Directive
	3.7.12 shortloop and shortloop128 Directives

	3.8 Multistreaming Processor (MSP) Directives
	3.8.1 ssp_private Directive (cc, c99)
	3.8.2 nostream Directive
	3.8.3 preferstream Directive

	3.9 Scalar Directives
	3.9.1 concurrent Directive
	3.9.2 nointerchange Directive
	3.9.3 noreduction Directive
	3.9.4 suppress Directive
	3.9.5 [no] unroll Directive

	3.10 Inlining Directives
	3.10.1 inline_enable, inline_disable, and inline_reset Directive
	3.10.2 inline_always and inline_never Directives

	Cray Streaming Directives (CSDs) [4]
	4.1 CSD Parallel Regions
	4.2 parallel Directive
	4.3 for Directive
	4.4 parallel for Directive
	4.5 sync Directive
	4.6 critical Directive
	4.7 ordered Directive
	4.8 Nested CSDs Within Cray Parallel Programming Models
	4.9 CSD Placement
	4.10 Protection of Shared Data
	4.11 Dynamic Memory Allocation for CSD Parallel Regions
	4.12 Compiler Options Affecting CSDs

	OpenMP C and C++ API Directives [5]
	5.1 Deferred OpenMP Features
	5.2 Cray Implementation Differences
	5.3 OMP_THREAD_STACK_SIZE
	5.4 Compiler Options Affecting OpenMP
	5.5 OpenMP Program Execution

	Cray Unified Parallel C (UPC) [6]
	6.1 Predefined Identifiers
	6.2 UPC Expressions
	6.3 UPC Statements
	6.3.1 UPC Barrier Statements
	6.3.2 UPC Iteration Statements

	6.4 UPC #pragma Directives
	6.5 Predefined Macro Names
	6.6 Standard Headers
	6.7 UPC Functions
	6.7.1 Termination of All Threads Function
	6.7.1.1 upc_global_exit

	6.7.2 Shared Memory Allocation Functions
	6.7.2.1 upc_global_alloc
	6.7.2.2 upc_all_alloc
	6.7.2.3 upc_all_free
	6.7.2.4 upc_alloc
	6.7.2.5 upc_local_alloc
	6.7.2.6 upc_local_free
	6.7.2.7 upc_free

	6.7.3 Pointer-to-shared Manipulation Functions
	6.7.3.1 upc_threadof
	6.7.3.2 upc_phaseof
	6.7.3.3 upc_resetphase
	6.7.3.4 upc_addrfield
	6.7.3.5 upc_affinitysize

	6.7.4 Lock Functions
	6.7.4.1 upc_lock_t
	6.7.4.2 upc_global_lock_alloc
	6.7.4.3 upc_all_lock_alloc
	6.7.4.4 upc_all_lock_free
	6.7.4.5 upc_global_lock_free
	6.7.4.6 upc_lock_free
	6.7.4.7 upc_lock
	6.7.4.8 upc_lock_attempt
	6.7.4.9 upc_unlock

	6.7.5 Shared String Handling Functions
	6.7.5.1 upc_memcpy
	6.7.5.2 upc_memget
	6.7.5.3 upc_memput
	6.7.5.4 upc_memset

	6.8 Cray Implementation Differences

	6.9 Compiling and Executing UPC Code
	Cray C++ Libraries [7]
	7.1 Unsupported Standard C++ Library Features
	7.2 Dinkum C++ Libraries

	Cray C++ Template Instantiation [8]
	8.1 Simple Instantiation
	8.2 Prelinker Instantiation
	8.3 Instantiation Modes
	8.4 One Instantiation Per Object File
	8.5 Instantiation #pragma Directives

	8.6 Implicit Inclusion
	Cray C Extensions [9]
	9.1 Complex Data Extensions
	9.2 fortran Keyword
	9.3 Hexadecimal Floating-point Constants

	Predefined Macros [10]
	10.1 Macros Required by the C and C++ Standards
	10.2 Macros Based on the Host Machine
	10.3 Macros Based on the Target Machine
	10.4 Macros Based on the Compiler
	10.5 UPC Predefined Macros

	Running C and C++ Applications [11]
	11.1 Launching a Single Non-MPI Application
	11.2 Launching a Single MPI Application
	11.3 Multiple Program, Multiple Data (MPMD) Launch

	Debugging Cray C and C++ Code [12]
	12.1 Etnus TotalView Debugger
	12.2 Compiler Debugging Options

	Interlanguage Communication [13]
	13.1 Calls between C and C++ Functions
	13.2 Calling Assembly Language Functions from a C or C++ Functio
	13.3 Calling Fortran Functions and Subroutines from a C or C++ F
	13.3.1 Requirements
	13.3.2 Argument Passing
	13.3.3 Array Storage
	13.3.4 Logical and Character Data
	13.3.5 Accessing Named Common from C and C++
	13.3.6 Accessing Blank Common from C or C++
	13.3.7 Cray C and Fortran Example
	13.3.8 Calling a Fortran Program from a Cray C++ Program

	13.4 Calling a C or C++ Function from a Fortran or Assembly Lang

	Implementation-defined Behavior [14]
	14.1 Messages
	14.2 Environment
	14.2.1 Identifiers
	14.2.2 Types
	14.2.3 Characters
	14.2.4 Wide Characters
	14.2.5 Integers
	14.2.6 Arrays and Pointers
	14.2.7 Registers
	14.2.8 Classes, Structures, Unions, Enumerations, and Bit Fields
	14.2.9 Qualifiers
	14.2.10 Declarators
	14.2.11 Statements
	14.2.12 Exceptions
	14.2.13 System Function Calls

	14.3 Preprocessing

	Possible Requirements for non-C99 Code [A]
	Libraries and Loader [B]
	B.1 Cray C and C++ Libraries Current Programming Environments
	B.2 Loader

	Compatibility with Older C++ Code [C]
	C.1 Use of Nonstandard Cray C++ Header Files
	C.2 When to Update Your C++ Code
	C.2.1 Use the Proper Header Files
	C.2.2 Add Namespace Declarations
	C.2.3 Reconcile Header Definition Differences
	C.2.4 Recompile All C++ Files

	Cray C and C++ Dialects [D]
	D.1 C++ Language Conformance
	D.1.1 Unsupported and Supported C++ Language Features

	D.2 C++ Anachronisms Accepted
	D.3 Extensions Accepted in Normal C++ Mode
	D.4 Extensions Accepted in C or C++ Mode
	D.5 C++ Extensions Accepted in cfront Compatibility Mode

	Compiler Messages [E]
	E.1 Expanding Messages with the explain Command
	E.2 Controlling the Use of Messages
	E.2.1 Command Line Options
	E.2.2 Environment Options for Messages
	E.2.3 ORIG_CMD_NAME Environment Variable

	E.3 Message Severity
	E.4 Common System Messages

	Intrinsic Functions [F]
	F.1 Atomic Memory Operations
	F.2 BMM Operations
	F.3 Bit Operations
	F.4 Function Operations
	F.5 Mask Operations
	F.6 Memory Operations
	F.7 Miscellaneous Operations
	F.8 Streaming Operations

	Glossary
	Index
	List of Tables
	Table 1. GCC C Language Extensions
	Table 2. GCC C++ Language Extensions
	Table 3. Carriage Control Characters
	Table 4. -h Option Descriptions
	Table 5. Automatic Inlining Specifications
	Table 6. Floating-point Optimization Levels
	Table 7. -G level Definitions
	Table 8. -W phase Definitions
	Table 9. -Y phase Definitions
	Table 10. -h pragma Directive Processing
	Table 11. Compiler-calculated Chunk Size
	Table 12. Data Type Mapping
	Table 13. Packed Characters
	Table 14. Unrecognizable Escape Sequences
	Table 15. Run time Support Library Header Files
	Table 16. Stream and Class Library Header Files
	Table 17. Standard Template Library Header Files

	List of Examples
	Example 1: Unrolling Outer Loops
	Example 2: Illegal Unrolling of Outer Loops
	Example 3: Using the inline_enable Directive
	Example 4: Using the inline_reset Directive
	Example 5: Calling a C Function from a Fortran Program

