
Cray C and C++ Reference Manual
S–2179–51

© 1996-2000, 2002, 2003 Cray Inc. All Rights Reserved. This manual or parts thereof may not be reproduced in any form unless
permitted by contract or by written permission of Cray Inc.

U.S. GOVERNMENT RESTRICTED RIGHTS NOTICE

The Computer Software is delivered as "Commercial Computer Software" as defined in DFARS 48 CFR 252.227-7014.

All Computer Software and Computer Software Documentation acquired by or for the U.S. Government is provided with Restricted
Rights. Use, duplication or disclosure by the U.S. Government is subject to the restrictions described in FAR 48 CFR 52.227-14
or DFARS 48 CFR 252.227-7014, as applicable.

Technical Data acquired by or for the U.S. Government, if any, is provided with Limited Rights. Use, duplication or disclosure by the
U.S. Government is subject to the restrictions described in FAR 48 CFR 52.227-14 or DFARS 48 CFR 252.227-7013, as applicable.

Autotasking, CF77, Cray, Cray Ada, Cray Channels, Cray Chips, CraySoft, Cray Y-MP, Cray-1, CRInform, CRI/TurboKiva,
HSX, LibSci, MPP Apprentice, SSD, SuperCluster, UNICOS, UNICOS/mk, and X-MP EA are federally registered trademarks
and Because no workstation is an island, CCI, CCMT, CF90, CFT, CFT2, CFT77, ConCurrent Maintenance Tools, COS,
Cray Animation Theater, Cray APP, Cray C90, Cray C90D, Cray CF90, Cray C++ Compiling System, CrayDoc, Cray EL, Cray
Fortran Compiler, Cray J90, Cray J90se, Cray J916, Cray J932, CrayLink, Cray MTA, Cray MTA-2, Cray MTX, Cray NQS,
Cray/REELlibrarian, Cray S-MP, Cray SSD-T90, Cray SV1, Cray SV1ex, Cray SV2, Cray SX-5, Cray SX-6, Cray T90,
Cray T94, Cray T916, Cray T932, Cray T3D, Cray T3D MC, Cray T3D MCA, Cray T3D SC, Cray T3E, CrayTutor, Cray X1,
Cray X-MP, Cray XMS, Cray-2, CSIM, CVT, Delivering the power . . ., DGauss, Docview, EMDS, GigaRing, HEXAR, IOS,
ND Series Network Disk Array, Network Queuing Environment, Network Queuing Tools, OLNET, RQS, SEGLDR, SMARTE,
SUPERLINK, System Maintenance and Remote Testing Environment, Trusted UNICOS, UNICOS MAX, and UNICOS/mp
are trademarks of Cray Inc.

Dinkumware and Dinkum are trademarks of Dinkumware, Ltd. Etnus and TotalView are trademarks of Etnus LLC. OpenMP, SGI,
and Silicon Graphics are trademarks of Silicon Graphics, Inc. UNIX, the “X device,” X Window System, and X/Open are trademarks
of The Open Group in the United States and other countries.

The UNICOS, UNICOS/mk, and UNICOS/mp operating systems are derived from UNIX System V. These operating systems
are also based in part on the Fourth Berkeley Software Distribution (BSD) under license from The Regents of the University
of California.

Portions of this document were copied by permission of OpenMP Architecture Review Board from OpenMP C and C++ Application
Program Interface, Version 2.0, March 2002, Copyright © 1997-2002, OpenMP Architecture Review Board.

New Features

Cray C and C++ Reference Manual S–2179–51

Changes were made to this manual to support these features of the Cray C++ 5.1 and Cray C 8.1 releases:

OpenMP Directives The Cray C compiler supports OpenMP directives. The Cray implementation
of OpenMP directives is based on the OpenMP C and C++ Application
Program Interface Version 2.0 March 2002 standard. See Chapter 4, page 101.

OpenMP Compiler
Option

Added support of the -h omp C compiler command option. The -h omp
option enables or disables the compiler recognition of OpenMP directives.
See Section 2.21.4, page 46.

OpenMP Environment
Variable

Added support of the OMP_THREAD_STACK_SIZE environment variable.
OMP_THREAD_STACK_SIZE changes the size of the thread stack from the
default size of 16 MB to the specified size. See Section 2.25.5, page 56.

Tasking in OpenMP
Applications

Added support of the -h taskn C compiler command. Enables tasking in
applications that contain OpenMP directives. See Section 2.21.6, page 46.

Single-streaming
processor (SSP) mode

The -h ssp option causes the compiler to compile the source code and select
the appropriate libraries to create an executable that runs in single-streaming
processor (SSP) mode. See Section 2.10.10, page 22.

UPC (Unified Parallel
C)

Added support of UPC functions and predefined UPC macros. See Chapter 5,
page 133.

Predeclare Intrinsics Added support of the -h predeclare_intrinsics compiler command
option. Simulates the effect of including intrinsics.h at the beginning of a
compilation. See Section 2.21.5, page 46.

Simple Template
Instantiation

Added support of the -h simple_templates compiler command option.
This option provides an alternative to prelinker (automatic) template
instantiation. See Section 2.7.1, page 15.

Record of Revision

Version Description

2.0 January 1996
Original Printing. This manual supports the C and C++ compilers contained in the
Cray C++ Programming Environment release 2.0. On all Cray systems, the C++
compiler is Cray C++ 2.0. On Cray systems with IEEE floating-point hardware, the
C compiler is Cray Standard C 5.0. On Cray systems without IEEE floating-point
hardware, the C compiler is Cray Standard C 4.0.

3.0 May 1997
This rewrite supports the C and C++ compilers contained in the Cray C++
Programming Environment release 3.0, which is supported on all systems except the
Cray T3D system. On all supported Cray systems, the C++ compiler is Cray C++
3.0 and the C compiler is Cray C 6.0.

3.0.2 March 1998
This revision supports the C and C++ compilers contained in the Cray C++
Programming Environment release 3.0.2, which is supported on all systems except
the Cray T3D system. On all supported Cray systems, the C++ compiler is Cray C++
3.0.2 and the C compiler is Cray C 6.0.2.

3.1 August 1998
This revision supports the C and C++ compilers contained in the Cray C++
Programming Environment release 3.1, which is supported on all systems except the
Cray T3D system. On all supported Cray systems, the C++ compiler is Cray C++
3.1 and the C compiler is Cray C 6.1.

3.2 January 1999
This revision supports the C and C++ compilers contained in the Cray C++
Programming Environment release 3.2, which is supported on all systems except the
Cray T3D system. On all supported Cray systems, the C++ compiler is Cray C++
3.2 and the C compiler is Cray C 6.2.

3.3 July 1999
This revision supports the C and C++ compilers contained in the Cray C++
Programming Environment release 3.3, which is supported on the Cray SV1, Cray
C90, Cray J90, and Cray T90 systems running UNICOS 10.0.0.5 and later, and Cray
T3E systems running UNICOS/mk 2.0.4 and later. On all supported Cray systems,
the C++ compiler is Cray C++ 3.3 and the C compiler is Cray C 6.3.

S–2179–51 i

Cray C and C++ Reference Manual

3.4 August 2000
This revision supports the Cray C 6.4 and Cray C++ 3.4 releases running on UNICOS
and UNICOS/mk operating systems. It includes updates to revision 3.3.

3.4 October 2000
This revision supports the Cray C 6.4 and Cray C++ 3.4 releases running on UNICOS
and UNICOS/mk operating systems. This revision supports a new inlining level,
inline4.

3.6 June 2002
This revision supports the Cray Standard C 6.6 and Cray Standard C++ 3.6 releases
running on UNICOS and UNICOS/mk operating systems.

4.1 August 20, 2002
Draft version to support Cray C 7.1 and Cray C++ 4.1 releases running on
UNICOS/mp operating systems.

4.2 December 20, 2002
Draft version to support Cray C 7.2 and Cray C++ 4.2 releases running on
UNICOS/mp operating systems.

4.3 March 31, 2003
Draft version to support Cray C 7.3 and Cray C++ 4.3 releases running on
UNICOS/mp operating systems.

5.0 June 2003
Supports Cray C++ 5.0 and Cray C 8.0 releases running on UNICOS/mp 2.1 or
later operating systems.

5.1 October 2003
Supports Cray C++ 5.1 and Cray C 8.1 releases running on UNICOS/mp 2.2 or
later operating systems.

ii S–2179–51

Contents

Page

Preface xv

Accessing Cray Documentation . xv

Error Message Explanations . xvi

Typographical Conventions . xvii

Ordering Documentation . xvii

Reader Comments . xviii

Introduction [1] 1

The Trigger Environment . 2

Working in the Programming Environment 4

Preparing the Trigger Environment 4

General Compiler Description . 5

Cray C++ Compiler . 5

Cray C Compiler . 5

Related Publications . 5

Compiler Commands [2] 7

CC Command . 8

cc and c99 Commands . 8

c89 Command . 9

cpp Command . 9

Command Line Options . 10

Standard Language Conformance Options 12

-h [no]c99 (cc, c99) . 12

-h [no]conform (CC, cc, c99), -h [no]stdc (cc, c99) 13

-h cfront (CC) . 13

-h [no]parse_templates (CC) 13

S–2179–51 iii

Cray C and C++ Reference Manual

Page

-h [no]dep_name (CC) . 13

-h [no]exceptions (CC) . 14

-h [no]anachronisms (CC) . 14

-h new_for_init (CC) . 14

-h [no]tolerant (cc, c99) . 15

-h [no] const_string_literals (CC) 15

Template Language Options . 15

-h simple_templates (CC) . 15

-h [no]autoinstantiate (CC) 15

-h one_instantiation_per_object (CC) 16

-h instantiation_dir = dirname (CC) 16

-h instantiate=mode (CC) . 16

-h [no]implicitinclude (CC) 16

-h remove_instantiation_flags (CC) 16

-h prelink_local_copy (CC) 17

-h prelink_copy_if_nonlocal (CC) 17

Virtual Function Options (-h forcevtbl, -h suppressvtbl (CC)) 17

General Language Options . 17

-h keep=file (CC) . 17

-h restrict=args (CC, cc, c99) 18

-h [no]calchars (CC, cc, c99) 18

-h [no]signedshifts (CC, cc, c99) 19

General Optimization Options . 19

-h gen_private_callee (CC, cc, c99) 19

-h [no]aggress (CC, cc, c99) 19

-h display_opt . 20

–h [no]fusion (CC, cc, c99) . 20

-h [no]intrinsics (CC, cc, c99) 20

-h list=opt (CC, cc, c99) . 20

-h msp (CC, cc, c99) . 21

iv S–2179–51

Contents

Page

-h [no]pattern (CC, cc, c99) 21

-h [no]overindex (CC, cc, c99) 22

-h ssp (CC, cc, c99) . 22

–h [no]unroll (CC, cc, c99) . 23

-O level (CC, cc, c89, c99) . 23

Multistreaming Processor Optimization Options 24

-h streamn (CC, cc, c99) . 24

Vector Optimization Options . 25

-h [no]infinitevl (CC, cc, c99) 25

-h [no]ivdep (CC, cc, c99) . 25

-h vectorn (CC, cc, c99) . 25

-h [no]vsearch (CC, cc, c99) 26

Inlining Optimization Options . 27

-h inlinen (CC, cc, c99) . 27

Scalar Optimization Options . 27

-h [no]interchange (CC, cc, c99) 27

-h scalarn (CC, cc, c99) . 28

-h [no]reduction (CC, cc, c99) 28

-h [no]zeroinc (CC, cc, c99) 28

Math Options . 29

-h fpn (CC, cc, c99) . 29

-h [no]ieeeconform (CC, cc) 31

-h matherror=method (CC, cc, c99) 32

Debugging Options . 32

-G level (CC, cc, c99) and -g (CC, cc, c89, c99) 32

-h [no]bounds (cc, c99) . 33

-h zero (CC, cc, c99) . 33

Compiler Message Options . 34

-h msglevel_n (CC, cc, c99) 34

-h [no]message=n[:n...] (CC, cc, c99) 34

S–2179–51 v

Cray C and C++ Reference Manual

Page

-h report=args (CC, cc, c99) 34

-h [no]abort (CC, cc, c99) . 35

-h errorlimit[=n] (CC, cc, c99) 35

Compilation Phase Options . 35

-E (CC, cc, c89, c99, cpp) . 35

-P (CC, cc, c99, cpp) . 36

-h feonly (CC, cc, c99) . 36

-S (CC, cc, c99) . 36

-c (CC, cc, c89, c99) . 36

-#, -##, and -### (CC, cc, c99, cpp) 37

-Wphase,"opt..." (CC, cc, c99) 37

-Yphase,dirname (CC, cc, c89, c99, cpp) 38

Preprocessing Options . 38

-C (CC, cc, c99, cpp) . 38

-D macro[=def] (CC, cc, c89, c99 cpp) 38

-h [no]pragma=name[: name...] (CC, cc, c99) 39

-I incldir (CC, cc, c89, c99, cpp) 39

-M (CC, cc, c99, cpp) . 40

-N (cpp) . 41

-nostdinc (CC, cc, c89, c99, cpp) 41

-U macro (CC, cc, c89, c99, cpp) 41

Loader Options . 41

-l libfile (CC, cc, c89, c99) . 41

-L libdir (CC, cc, c89, c99) . 42

-o outfile (CC, cc, c89, c99) . 42

-s (CC, cc, c89, c99) . 43

Miscellaneous Options . 43

-h command (cc, c99) . 43

-h decomp (CC, cc, c99) . 44

-h ident=name (CC, cc, c99) 46

vi S–2179–51

Contents

Page

-h [no]omp (cc) . 46

-h predeclare_intrinsics (CC, cc, c99, cpp) 46

-h taskn (cc) . 46

-h upc . 47

-V (CC, cc, c99, cpp) . 47

-X npes (CC, cc, c99) . 47

Command Line Examples . 48

Compile Time Environment Variables 49

Run Time Environment Variables . 51

OpenMP Environment Variables . 54

OMP_SCHEDULE . 55

OMP_NUM_THREADS . 55

OMP_DYNAMIC . 55

OMP_NESTED . 56

OMP_THREAD_STACK_SIZE . 56

#pragma Directives [3] 59

Protecting Directives . 60

Directives in Cray C++ . 60

Loop Directives . 60

Alternative Directive form: _Pragma 60

General Directives . 61

[no]bounds Directive (Cray C Compiler) 61

duplicate Directive (Cray C Compiler) 62

message Directive . 65

no_cache_alloc Directive . 65

[no]opt Directive . 66

weak Directive . 67

vfunction Directive . 69

ident Directive . 70

Instantiation Directives . 70

S–2179–51 vii

Cray C and C++ Reference Manual

Page

Vectorization Directives . 71

ivdep Directive . 71

nopattern Directive . 72

novector Directive . 72

novsearch Directive . 73

prefervector Directive . 73

safe_address Directive . 74

shortloop and shortloop128 Directives 75

Multistreaming Processor (MSP) Directives 76

ssp_private Directive (cc, c99) 77

nostream Directive . 79

preferstream Directive . 79

Cray Streaming Directives (CSDs) 80

CSD Parallel Regions . 81

parallel Directive . 81

CSD for Directive . 83

parallel for Directive . 85

sync Directive . 86

critical Directive . 87

CSD ordered Directive . 88

Nested CSDs Within Cray Parallel Programming Models 89

CSD Placement . 89

Protection of Shared Data . 90

Dynamic Memory Allocation for CSD Parallel Regions 91

Compiler Options Affecting CSDs 92

Scalar Directives . 92

concurrent Directive . 92

nointerchange Directive . 93

noreduction Directive . 93

suppress Directive . 94

viii S–2179–51

Contents

Page

[no]unroll Directive . 95

Inlining Directives . 97

inline Directive . 98

noinline Directive . 98

OpenMP C API Directives [4] 101

Using Directives . 101

Conditional Compilation . 102

parallel Construct . 102

Work-sharing Constructs . 105

for Construct . 105

sections Construct . 109

single Construct . 110

Combined Parallel Work-sharing Constructs 111

parallel for Construct . 111

parallel sections Construct 111

Master and Synchronization Directives 112

master Construct . 112

critical Construct . 112

barrier Directive . 113

atomic Construct . 114

flush Directive . 115

ordered Construct . 117

Data Environment . 117

threadprivate Directive . 117

Data-Sharing Attribute Clauses 119

private . 120

firstprivate . 121

lastprivate . 122

shared . 122

default . 123

S–2179–51 ix

Cray C and C++ Reference Manual

Page

reduction . 124

copyin . 127

copyprivate . 127

Directive Binding . 128

Directive Nesting . 128

Using the schedule Clause . 129

Compiling Code for OpenMP . 131

Cray Implementation Differences . 131

Cray Unified Parallel C (UPC) [5] 133

Changes to UPC Specification . 134

UPC Functions . 135

Termination of all Threads Function 135

Shared Memory Allocation Functions 135

Pointer-to-shared Manipulation Functions 136

Lock Functions . 136

Shared String Handling Functions 137

Operators . 137

Cray Implementation Differences . 137

upc_forall Statement (Deferred implementation) 138

Compiling and Executing UPC Code 138

Cray C++ Libraries [6] 141

Unsupported Standard C++ Library Features 141

Dinkum C++ Libraries . 141

Cray C++ Template Instantiation [7] 143

Simple Instantiation . 144

Prelinker Instantiation . 145

Instantiation Modes . 147

One Instantiation Per Object File . 148

Instantiation #pragma Directives 149

x S–2179–51

Contents

Page

Implicit Inclusion . 150

Cray C Extensions [8] 153

Complex Data Extensions . 153

fortran Keyword . 154

Hexadecimal Floating-point Constants 154

Predefined Macros [9] 157

Macros Required by the C and C++ Standards 157

Macros Based on the Host Machine 158

Macros Based on the Target Machine 158

Macros Based on the Compiler . 159

UPC Predefined Macros . 159

Debugging Cray C and C++ Code [10] 161

Etnus TotalView Debugger . 161

Compiler Debugging Options . 162

Interlanguage Communication [11] 163

Calls between C and C++ Functions 163

Calling Assembly Language Functions from a C or C++ Function 165

(Deferred implementation) Cray Assembly Language (CAL) Functions 165

Calling Fortran Functions and Subroutines from a C or C++ Function 165

Requirements . 165

Argument Passing . 166

Array Storage . 167

Logical and Character Data . 168

Accessing Named Common from C and C++ 168

Accessing Blank Common from C or C++ 170

Cray C and Fortran Example . 172

Calling a Fortran Program from a Cray C++ Program 175

Calling a C or C++ Function from a Fortran or Assembly Language Program 176

S–2179–51 xi

Cray C and C++ Reference Manual

Page

Implementation-defined Behavior [12] 181

Implementation-defined Behavior 181

Messages . 181

Environment . 181

Identifiers . 182

Types . 182

Characters . 183

Wide Characters . 184

Integers . 184

Arrays and Pointers . 185

Registers . 185

Classes, Structures, Unions, Enumerations, and Bit Fields 186

Qualifiers . 186

Declarators . 186

Statements . 186

Exceptions . 187

System Function Calls . 187

Preprocessing . 187

Appendix A Possible Requirements for non-C99 Code 189

Appendix B Libraries and Loader 191

Cray C and C++ Libraries Current Programming Environments 191

Loader . 191

Appendix C Compatibility with Older C++ Code 193

Use of Nonstandard Cray C++ Header Files 193

When to Update Your C++ Code . 194

Use the Proper Header Files . 194

Add Namespace Declarations . 197

Reconcile Header Definition Differences 198

Recompile All C++ Files . 199

xii S–2179–51

Contents

Page

Appendix D Cray C and C++ Dialects 201

C++ Language Conformance . 201

Unsupported and Supported C++ Language Features 201

C++ Anachronisms Accepted . 205

Extensions Accepted in Normal C++ Mode 206

Extensions Accepted in C or C++ Mode 207

C++ Extensions Accepted in cfront Compatibility Mode 209

Appendix E Compiler Messages 217

Expanding Messages with the explain Command 217

Controlling the Use of Messages . 217

Command Line Options . 218

Environment Options for Messages 218

ORIG_CMD_NAME Environment Variable 218

Message Severity . 219

Common System Messages . 220

Appendix F Intrinsic Functions 223

Atomic Memory Operations . 223

BMM Operations . 224

Bit Operations . 224

Function Operations . 225

Mask Operations . 225

Memory Operations . 226

Miscellaneous Operations . 226

Streaming Operations . 226

S–2179–51 xiii

Cray C and C++ Reference Manual

Page

Glossary 227

Index 237

Tables
Table 1. -h Option Descriptions 23

Table 2. Floating-point Optimization Levels 30

Table 3. -G level Definitions . 33

Table 4. -Wphase Definitions . 37

Table 5. -Yphase Definitions . 38

Table 6. -h pragma Directive Processing 39

Table 7. Compiler-calculated Chunk Size 84

Table 8. schedule clause kind values 108

Table 9. Private Copy Initialization 126

Table 10. Barrier Function Replacements 134

Table 11. Data Type Mapping . 182

Table 12. Packed Characters . 183

Table 13. Unrecognizable Escape Sequences 184

Table 14. Run time Support Library Header Files 195

Table 15. Stream and Class Library Header Files 195

Table 16. Standard Template Library Header Files 196

xiv S–2179–51

Preface

This publication describes the C and C++ languages implemented by the
Cray C++ compiler version 5.1 and the Cray C compiler version 8.1. These
compilers are supported on Cray X1 systems running on UNICOS/mp 2.2 or
later operating systems.

It is assumed that readers of this manual have a working knowledge of the C
and C++ programming languages.

This preface describes how to access Cray documentation and error
message explanations, interpret our typographical conventions, order Cray
documentation, and contact us about this document.

Accessing Cray Documentation

Each software release package includes the CrayDoc documentation system, a
collection of open-source software components that gives you fast, easy access to
and the ability to search all Cray manuals, man pages, and glossary in HTML
and/or PDF format from a web browser at the following locations:

• Locally, using the network path defined by your system administrator

• On the Cray public web site at:

http://www.cray.com/craydoc/

All software release packages include a software release overview that provides
information for users, user services, and system administrators about that release.
An installation guide is also provided with each software release package.
Release overviews and installation guides are supplied in HTML and PDF
formats as well as in printed form. Most software release packages contain
additional reference and task-oriented documentation, like this document, in
HTML and/or PDF formats.

Man pages provide system and programming reference information. Each man
page is referred to by its name followed by a number in parentheses:

manpagename(n)

where n is the man page section identifier:

1 User commands

2 System calls

S–2179–51 xv

Cray C and C++ Reference Manual

3 Library routines

4 Devices (special files) and Protocols

5 File formats

7 Miscellaneous information

8 Administrator commands

Access man pages in any of these ways:

• Enter the man command to view individual man pages in ASCII format; for
example:

man ftn

To print individual man pages in ASCII format, enter, for example:

man ftn | col -b | lpr

• Use a web browser with the CrayDoc system to view, search, and print
individual man pages in HTML format.

• Use Adobe Acrobat Reader with the CrayDoc system to view, search, and
print from collections of formatted man pages provided in PDF format.

If more than one topic appears on a page, the man page has one primary name
(grep, for example) and one or more secondary names (egrep, for example).
Access the ASCII or HTML man page using either name; for example:

• Enter the command man grep or man egrep

• Search in the CrayDoc system for grep or egrep

Error Message Explanations

Access explanations of error messages by entering the explain msgid command,
where msgid is the message ID string in the error message. For more information,
see the explain(1) man page.

xvi S–2179–51

Preface

Typographical Conventions

The following conventions are used throughout this document:

Convention Meaning

command This fixed-space font denotes literal items, such
as file names, pathnames, man page names,
command names, and programming language
elements.

variable Italic typeface indicates an element that you will
replace with a specific value. For instance, you
may replace filename with the name datafile in
your program. It also denotes a word or concept
being defined.

user input This bold, fixed-space font denotes literal items
that the user enters in interactive sessions. Output
is shown in nonbold, fixed-space font.

[] Brackets enclose optional portions of a syntax
representation for a command, library routine,
system call, and so on.

... Ellipses indicate that a preceding element can be
repeated.

Ordering Documentation

To order software documentation, contact the Cray Software Distribution Center
in any of the following ways:

E-mail:
orderdsk@cray.com

Web:
http://www.cray.com/craydoc/

Click on the Cray Publication Order Form link.

Telephone (inside U.S., Canada):
1–800–284–2729 (BUG CRAY), then 605–9100

Telephone (outside U.S., Canada):
Contact your Cray representative, or call +1–651–605–9100

S–2179–51 xvii

Cray C and C++ Reference Manual

Fax:
+1–651–605–9001

Mail:
Software Distribution Center
Cray Inc.
1340 Mendota Heights Road
Mendota Heights, MN 55120–1128
USA

Reader Comments

Contact us with any comments that will help us to improve the accuracy and
usability of this document. Be sure to include the title and number of the
document with your comments. We value your comments and will respond to
them promptly. Contact us in any of the following ways:

E-mail:
swpubs@cray.com

Telephone (inside U.S., Canada):
1–800–950–2729 (Cray Customer Support Center)

Telephone (outside U.S., Canada):
Contact your Cray representative, or call +1–715–726–4993 (Cray Customer
Support Center)

Mail:
Software Publications
Cray Inc.
1340 Mendota Heights Road
Mendota Heights, MN 55120–1128
USA

xviii S–2179–51

Introduction [1]

The Cray C++ Programming Environment contains both the Cray C and C++
compilers. The Cray C compiler conforms to the International Organization of
Standards (ISO) standard ISO/IEC 9899:1999 (C99). The Cray C++ compiler
conforms to the ISO/IEC 14882:1998 standard, with some exceptions. The
exceptions are noted in Appendix D, page 201.

Throughout this manual, the differences between the Cray C and C++ compilers
are noted when appropriate. When there is no difference, the phrase the compiler
refers to both compilers.

The information is presented as follows:

• Chapter 1, page 1 contains introductory information.

• Chapter 2, page 7 contains information on the commands used to invoke the
compilers (CC, cc, c89, and c99) and the precompiler (cpp).

• Chapter 3, page 59 contains information on the #pragma directives supported
by the Cray C and C++ compilers.

• Chapter 4, page 101 contains information about the C and C++ OpenMP API

• Chapter 5, page 133 contains information about Cray Unified Parallel C
(UPC).

• Chapter 6, page 141 contains information about supported and unsupported
standard C++ features and about the Dinkum C++ library.

• Chapter 7, page 143 contains information on Cray C++ template instantiation.

• Chapter 8, page 153 contains information on the extensions to the C and
C++ languages.

• Chapter 9, page 157 contains information on predefined macros.

• Chapter 10, page 161 contains information on debugging Cray C and C++
code.

• Chapter 11, page 163 contains information on interlanguage communication.

• Chapter 12, page 181 contains information on implementation-defined
behavior.

• Appendix A, page 189 contains information on requirements for non-C99
code.

S–2179–51 1

Cray C and C++ Reference Manual

• Appendix B, page 191 contains information on the libraries and the loader.

• Appendix C, page 193 contains information on using C++ code developed
under Cray C++ Programming Environment 3.5 release or earlier.

• Appendix D, page 201 contains information on the Cray C and C++ dialects.

• Appendix E, page 217 contains information on how to extract information on
compiler messages and how to use the message system.

• Appendix F, page 223 contains information on intrinsic functions.

1.1 The Trigger Environment

The user on the Cray X1 system interacts with the system as if all elements of
the Programming Environment are hosted on the Cray X1 mainframe, including
Programming Environment commands hosted on the Cray Programming
Environment Server (CPES). CPES-hosted commands have corresponding
commands on the Cray X1 mainframe that have the same names. These are called
triggers. Triggers are required only for the Programming Environment.

Understanding the trigger environment will aid administrators and end users
in identifying what part of the system a problem occurs when using the trigger
environment.

When a user enters the name of a CPES-hosted command on the command line
of the Cray X1 mainframe, the corresponding trigger executes, which sets up
an environment for the CPES-hosted command. This environment duplicates
the portion of the current working environment on the Cray X1 mainframe
that relates to the Programming Environment. This allows the CPES-hosted
commands to function properly.

To replicate the current working environment, the trigger captures the current
working environment on the Cray X1 system and copies the standard I/O as
follows:

• Copies the standard input of the current working environment to the standard
input of the CPES-hosted command

• Copies the standard output of the CPES-hosted command to standard output
of the current working environment

• Copies the standard error of the CPES-hosted command to the standard error
of the current working environment

2 S–2179–51

Introduction [1]

All catchable interrupts, quit signals, and terminate signals propagate through
the trigger to reach the CPES-hosted command. Upon termination of the
CPES-hosted command, the trigger terminates and returns with the CPES-hosted
commands return code.

Uncatchable signals have a short processing delay before the signal is passed
to the CPES-hosted command. If you execute its trigger again before the
CPES-hosted command has time to process the signal, an indeterministic
behavior may occur.

Because the trigger has the same name, inputs, and outputs as the CPES-hosted
command, user scripts, makefiles, and batch files can function without
modification. That is, running a command in the trigger environment is very
similar to running the command hosted on the Cray X1 system.

The commands that have triggers include:

• ar

• as

• c++filt

• c89

• c99

• cc

• ccp

• CC

• ftn

• ftnlx

• ftnsplit

• ld

• nm

• pat_build

• pat_help

S–2179–51 3

Cray C and C++ Reference Manual

• pat_report

• pat_remps

• remps

1.1.1 Working in the Programming Environment

To use the Programming Environment, you must work on a file system that is
cross-mounted to the CPES. If you attempt to use the Programming Environment
from a directory that is not cross-mounted to the CPES, you will receive this
message:

trigexecd: trigger command cannot access current directory.

[directory] is not properly cross-mounted on host [CPES]

The default files used by the Programming Environment are installed in the
/opt/ctl file system. The default include file directory is /opt/ctl/include.
All Programming Environment products are found in the /opt/ctl file system.

1.1.2 Preparing the Trigger Environment

To prepare the trigger environment for use, you must use the module command
to load the PrgEnv module. This module loads all Programming Environment
products and sets up the environment variables necessary to find the include
files, libraries, and product paths on the CPES and the Cray X1 system.

Enter the following command on the command line to load the Programming
Environment:

module load PrgEnv

Loading the PrgEnv module causes all Programming Environment products to be
loaded and available to the user. A user may swap an individual product in the
product set, but should not unload any one product.

To see the list of products loaded by the PrgEnv module, enter the following on
the command line:

module list

If you have questions on setting up the programming environment, contact
your system support staff.

4 S–2179–51

Introduction [1]

1.2 General Compiler Description

Both the Cray C and C++ compilers are contained within the same Programming
Environment. If you are compiling code written in C, use the cc(1), c89(1), or
c99 command to compile source files. If you are compiling code written in
C++, use the CC(1) command.

1.2.1 Cray C++ Compiler

The Cray C++ compiler consists of a preprocessor, a language parser, a prelinker,
an optimizer, and a code generator. The Cray C++ compiler is invoked by a
command called CC(1) in this manual, but it may be renamed at individual sites.
The CC(1) command is described in Section 2.1, page 8, and on the CC(1) man
page. Command line examples are shown in Section 2.22, page 48.

1.2.2 Cray C Compiler

The Cray C compiler consists of a preprocessor, a language parser, an optimizer,
and a code generator. The Cray C compiler is invoked by a command called
cc(1), c89(1), or c99(1) in this manual, but it may be renamed at individual sites.
The cc(1) and c99(1) commands are discussed in Section 2.2, page 8, the c89(1)
command is described in Section 2.3, page 9. All are also discussed in the CC(1)
man page. Command line examples are shown in Section 2.22, page 48.

Note: C code developed under other C compilers of the Cray C++
Programming Environments that do not conform to the C99 standard may
require modification to successfully compile with the c99 command. Refer
to Appendix A, page 189.

1.3 Related Publications

The following documents contain additional information that may be helpful:

• Man Page Collection: Programmer’s User Commands

• Man Page Collection: C/C++ Library Functions

• Optimizing Applications on the Cray X1 System

• Cray C++ Tools Library Reference Manual, Rogue Wave document, Tools.h++
Introduction and Reference Manual, publication TPD-0005

S–2179–51 5

Cray C and C++ Reference Manual

• Cray C++ Mathpack Class Library Reference Manual by Thomas Keefer and Allan
Vermeulen, publication TPD-0006

• LAPACK.h++ Introduction and Reference Manual, Version 1, by Allan Vermeulen,
publication TPD-0010

6 S–2179–51

Compiler Commands [2]

This chapter describes the compiler commands and the environment variables
necessary to execute the Cray C and C++ compilers. These are the commands for
the compilers:

• CC, which invokes the Cray C++ compiler.

• cc and c99(1), which invoke the Cray C compiler.

• c89, which invokes the Cray C compiler. This command is a subset of the cc
command. It conforms with POSIX standard (P1003.2, Draft 12).

• cpp, which invokes the C language preprocessor. By default, the CC, cc, c89,
and c99(1) commands invoke the preprocessor automatically. The cpp
command provides a way for you to invoke only the preprocessor component
of the Cray C compiler.

A successful compilation creates an absolute binary file, named a.out by
default, that reflects the contents of the source code and any referenced library
functions. This binary file, a.out, can then be executed on the target system. For
example, the following sequence compiles file mysource.c and executes the
resulting executable program:

cc mysource.c

a.out

With the use of appropriate options, compilation can be terminated to
produce one of several intermediate translations, including relocatable object
files (-c option), assembly source expansions (-S option), or the output of
the preprocessor phase of the compiler (-P or -E option). In general, the
intermediate files can be saved and later resubmitted to the CC, cc, c89, or
c99(1) command, with other files or libraries included as necessary.

By default, the CC, cc, c89, and c99(1) commands automatically call the loader,
which creates an executable file. If only one source file is specified, the object file
is deleted. If more than one source file is specified, the object files are retained.
The following example creates object files file1.o, file2.o, and file3.o, and the
executable file a.out:

CC file1.c file2.c file3.c

The following command creates the executable file a.out only:

CC file.c

S–2179–51 7

Cray C and C++ Reference Manual

2.1 CC Command

The CC command invokes the Cray C++ compiler. The CC command accepts C++
source files that have the following suffixes:

.c

.C

.i

.c++

.C++

.cc

.cxx

.Cxx

.CXX

.CC

.cpp

The CC command also accepts object files with the .o suffix; library files with the
.a suffix; and assembler source files with the .s suffix.

The CC command format is as follows:

CC [-c] [-C] [-d string] [-D macro[=def]] [-E] [-g] [-G level]
[-h arg] [-I incldir] [-l libfile] [-L libdir] [-M] [-nostdinc]
[-o outfile] [-O level] [-P] [-s] [-S] [-U macro] [-V]
[-Wphase,"opt..."] [-Xnpes] [-Yphase,dirname] [-#] [-##] [-###]
files ...

See Section 2.5, page 10 for an explanation of the command line options.

2.2 cc and c99 Commands

The cc command invokes the Cray C compiler. The cc and c99 commands
accept C source files that have the .c and .i suffixes; object files with the .o
suffix; library files with the .a suffix; and assembler source files with the .s
suffix.

8 S–2179–51

Compiler Commands [2]

The cc and c99 commands format are as follows:

cc or c99 [-c] [-C] [-d string] [-D macro[=def]] [-E] [-g] [-G level]
[-h arg] [-I incldir] [-l libfile] [-L libdir] [-M] [-nostdinc]
[-o outfile] [-O level] [-P] [-s] [-S] [-U macro] [-V]
[-Wphase,"opt..."] [-Xnpes] [-Yphase,dirname] [-#] [-##] [-###]
files ...

See Section 2.5, page 10 for an explanation of the command line options.

2.3 c89 Command

The c89 command invokes the Cray C compiler. This command is a subset of the
cc command and conforms with the POSIX standard (P1003.2, Draft 12). The
c89 command accepts C source files that have a .c or .i suffix; object files with
the .o suffix; library files with the .a suffix; and assembler source files with the
.s suffix.

The c89 command format is as follows:

c89 [-c] [-D macro[=def]] [-E] [-g] [-I incldir] [-l libfile] [-L libdir]
[-o outfile] [-O level] [-s] [-U macro] [-Yphase,dirname] files ...

See Section 2.5, page 10 for an explanation of the command line options.

2.4 cpp Command

The cpp command explicitly invokes the preprocessor component of the Cray
C compiler. Most cpp options are also available from the CC, cc, c89, and
c99 commands.

The cpp command format is as follows:

cpp [-C] [-D macro[=def]] [-E] [-I incldir] [-M] [-N] [-nostdinc] [-P]
[-U macro] [-V] [-Yphase,dirname] [-#] [-##] [-###] [infile][outfile]

The infile and outfile files are, respectively, the input and output for the
preprocessor. If you do not specify these arguments, input is defaulted to

S–2179–51 9

Cray C and C++ Reference Manual

standard input (stdin) and output to standard output (stdout). Specifying a
minus sign (-) for infile also indicates standard input.

See Section 2.5, page 10 for an explanation of the command line options.

2.5 Command Line Options

The following subsections describe options for the CC, cc, c89, c99, and cpp
commands. These options are grouped according to function, as follows:

• Language options:

– The standard conformance options (Section 2.6, page 12):

Section Option

Section 2.6.1, page 12 -h [no]c99

Section 2.6.2, page 13 -h [no]conform and -h [no]stdc

Section 2.6.3, page 13 -h cfront

Section 2.6.4, page 13 -h [no]parse_templates

Section 2.6.5, page 13 -h [no]dep_name

Section 2.6.6, page 14 -h [no]exceptions

Section 2.6.7, page 14 -h [no]anachronisms

Section 2.6.8, page 14 -h new_for_init

Section 2.6.9, page 15 -h [no]tolerant

– The template options (Section 2.7, page 15):

Section Option

Section 2.7.1, page 15 -h simple_templates

Section 2.7.2, page 15 -h [no]autoinstantiate

Section 2.7.3, page 16 -h one_instantiation_per_object

Section 2.7.4, page 16 -h instantiation_dir = dirname

Section 2.7.5, page 16 -h instantiate=mode

Section 2.7.6, page 16 -h [no]implicitinclude

Section 2.7.7, page 16 -h remove_instantiation_flags

Section 2.7.8, page 17 -h prelink_local_copy

Section 2.7.9, page 17 -h prelink_copy_if_nonlocal

10 S–2179–51

Compiler Commands [2]

– The virtual function options (Section 2.8, page 17): -h forcevtbl and
-h suppressvtbl.

– General language options (Section 2.9, page 17):

Section Options

Section 2.9.1, page 17 -h keep=file

Section 2.9.2, page 18 -h restrict=args

Section 2.9.3, page 18 -h [no]calchars

Section 2.9.4, page 19 -h [no]signedshifts

• Optimization options:

– General optimization options (Section 2.10, page 19)

– Multistreaming Processor (MSP) options (Section 2.11, page 24)

– Vectorization options (Section 2.12, page 25)

– Inlining options (Section 2.13, page 27)

– Scalar optimization options (Section 2.14, page 27)

• Math options (Section 2.15, page 29)

• Debugging options (Section 2.16, page 32)

• Message control options (Section 2.17, page 34)

• Compilation phase control options (Section 2.18, page 35)

• Preprocessing options (Section 2.19, page 38)

• Loader options (Section 2.20, page 41)

• Miscellaneous options (Section 2.21, page 43)

• Command line examples (Section 2.22, page 48)

• Compile-time environment variables (Section 2.23, page 49)

• Run time environment variables (Section 2.24, page 51)

Options other than those described in this manual are passed to the loader. For
more information on the loader, see the ld(1) man page.

There are many options that start with -h. Multiple -h options can be
specified using commas to separate the arguments. For example, the

S–2179–51 11

Cray C and C++ Reference Manual

-h parse_templates and -h fp0 command line options can be specified as
-h parse_templates,fp0.

If conflicting options are specified, the option specified last on the command line
overrides the previously specified option. Exceptions to this rule are noted in the
individual descriptions of the options.

The following examples illustrate the use of conflicting options:

• In this example, -h fp0 overrides -h fp1:

CC -h fp1,fp0 myfile.c

• In this example, -h vector2 overrides the earlier vector optimization level 3
implied by the -O3 option:

CC -O3 -h vector2 myfile.c

Most #pragma directives override corresponding command line options. For
example, #pragma _CRI novsearch overrides the -h vsearch option.
#pragma _CRI novsearch also overrides the -h vsearch option implied by
the -h vector2 or -O2 option. Exceptions to this rule are noted in descriptions
of options or #pragma directives.

2.6 Standard Language Conformance Options

This section describes standard conformance language options. Each subsection
heading shows in parentheses the compiler with which the option can be used.

2.6.1 -h [no]c99 (cc, c99)

Default options: -h noc99 (cc)

-h c99 (c99)

The -h c99 option enables language features new to the C99 standard and Cray
C compiler, while providing support for features that were previously defined as
Cray extensions. If the previous implementation of the Cray extension differed
from the C99 standard, both implementations will be available when the -h c99
option is enabled. The -h c99 option is also required for C99 features not
previously supported as extensions.

When -hnoc99 is used, c99 language features such as VLAs and restricted
pointers that were available as extensions previously to adoption of the c99
standard remain available to the user.

12 S–2179–51

Compiler Commands [2]

2.6.2 -h [no]conform (CC, cc, c99), -h [no]stdc (cc, c99)

Default option: -h [no]conform, -h nostdc

The -h conform and -h stdc options specify strict conformance to the ISO
C standard or the ISO C++ standard. The -h noconform and -h [no]stdc
options specify partial conformance to the standard. The -h exceptions,
-h dep_name, -h parse_templates, and -h const_string_literals
options are enabled by the -h conform option in Cray C++.

Note: The c89 command does not accept the-h conform or -h stdc option.
It is enabled by default when the command is issued.

2.6.3 -h cfront (CC)

The -h cfront option causes the Cray C++ compiler to accept or reject
constructs that were accepted by previous cfront-based compilers (such
as Cray C++ 1.0), but which are not accepted in the C++ standard. The
-h anachronisms option is implied when -h cfront is specified.

2.6.4 -h [no]parse_templates (CC)

Default option: -h noparse_templates

This option allows existing code that defines templates using previous versions
of the Cray STL (before Programming Environment 3.6) to compile successfully
with the -h conform option. Consequently, this allows you to compile
existing code without having to use the Cray C++ STL. To do this, use the
noparse_templates option. Also, the compiler defaults to this mode when the
-h dep_name option is used. To have the compiler verify that your code uses
the Cray C++ STL properly, use the parse_templates option.

2.6.5 -h [no]dep_name (CC)

Default option: -h nodep_name

This option enables or disables dependent name processing (that is, the
separate lookup of names in templates when the template is parsed and when
it is instantiated). The -h dep_name option cannot be used with the -h
noparse_templates option.

S–2179–51 13

Cray C and C++ Reference Manual

2.6.6 -h [no]exceptions (CC)

Default option: The default is -h exceptions; however, if the
CRAYOLDCPPLIB environment variable is set to a
nonzero value, the default is -h noexceptions.

The -h exceptions option enables support for exception handling. The
-h noexceptions option issues an error whenever an exception construct,
a try block, a throw expression, or a throw specification on a function
declaration is encountered. -h exceptions is enabled by -h conform.

2.6.7 -h [no]anachronisms (CC)

Default option: -h noanachronisms

The -h [no]anachronisms option enables or disables anachronisms in Cray
C++. This option is overridden by -h conform.

2.6.8 -h new_for_init (CC)

The -h new_for_init option enables the new scoping rules for a declaration
in a for-init statement. This means that the new (standard-conforming) rules
are in effect, which means that the entire for statement is wrapped in its own
implicitly generated scope. -h new_for_init is implied by the -h conform
option.

This is the result of the scoping rule:

{

.

.

.

for (int i = 0; i < n; i++) {

.

.

.

} // scope of i ends here for -h new_for_init

.

.

.

} // scope of i ends here by default

14 S–2179–51

Compiler Commands [2]

2.6.9 -h [no]tolerant (cc, c99)

Default option: -h notolerant

The -h tolerant option allows older, less standard C constructs to facilitate
porting of code written for previous C compilers. Errors involving comparisons
or assignments of pointers and integers become warnings. The compiler
generates casts so that the types agree. With -h notolerant, the compiler
is intolerant of the older constructs.

The use of the -h tolerant option causes the compiler to tolerate accessing an
object with one type through a pointer to an entirely different type. For example,
a pointer to long might be used to access an object declared with type double.
Such references violate the C standard and should be eliminated if possible. They
can reduce the effectiveness of alias analysis and inhibit optimization.

2.6.10 -h [no] const_string_literals (CC)

Default option: -h noconst_string_literals

The -h [no] const_string_literals options controls whether string
literals are const (as required by the standard) or non-const (as was true in
earlier versions of the C++ language).

2.7 Template Language Options

This section describes template language options. See Chapter 7, page 143 for
more information on template instantiation. Each subsection heading shows in
parentheses the compiler with which the option can be used.

2.7.1 -h simple_templates (CC)

The -h simple_templates option enables simple template instantiation by
the Cray C++ compiler. For more information on template instantiation, see
Chapter 7, page 143. The default is autoinstantiate.

2.7.2 -h [no]autoinstantiate (CC)

Default option: -h autoinstantiate

The -h [no]autoinstantiate option enables or disables prelinker (automatic)
instantiation of templates by the Cray C++ compiler. For more information on
template instantiation, see Chapter 7, page 143.

S–2179–51 15

Cray C and C++ Reference Manual

2.7.3 -h one_instantiation_per_object (CC)

The -h one_instantiation_per_object option puts each template
instantiation used in a compilation into a separate object file that has a .int.o
extension. The primary object file will contain everything else that is not an
instantiation. See the —h instantiation_dir option for the location of the
object files.

2.7.4 -h instantiation_dir = dirname (CC)

Default option: ./Template.dir

The -h instantiation_dir = dirname option, specifies the instantiation
directory that the -h one_instantiation_per_object option should use.
If directory dirname does not exist, it will be created. The default directory is
./Template.dir.

2.7.5 -h instantiate=mode (CC)

Default option: -h instantiate=none

Normally, during compilation of a source file, no template entities are
instantiated (except those assigned to the file by automatic instantiation).
The overall instantiation mode can, however, be changed by using the
-h instantiate=mode option. mode is specified as none (the default), used,
all, or local.

2.7.6 -h [no]implicitinclude (CC)

Default option: -h implicitinclude

The -h [no]implicitinclude option enables or disables implicit inclusion
of source files as a method of finding definitions of template entities to be
instantiated.

2.7.7 -h remove_instantiation_flags (CC)

The -h remove_instantiation_flags option causes the prelinker to
recompile all the sources to remove all instantiation flags.

16 S–2179–51

Compiler Commands [2]

2.7.8 -h prelink_local_copy (CC)

The -h prelink_local_copy indicates that only local files (for example, files
in the current directory) are candidates for assignment of instantiations.

2.7.9 -h prelink_copy_if_nonlocal (CC)

The -h prelink_copy_if_nonlocal option specifies that assignment of an
instantiation to a nonlocal object file will result in the object file being recompiled
in the current directory.

2.8 Virtual Function Options (-h forcevtbl, -h suppressvtbl (CC))

The -h forcevtbl option forces the definition of virtual function tables in
cases where the heuristic methods used by the compiler to decide on definition
of virtual function tables provide no guidance. The -h suppressvtbl option
suppresses the definition of virtual function tables in these cases.

The virtual function table for a class is defined in a compilation if the compilation
contains a definition of the first noninline, nonpure virtual function of the class.
For classes that contain no such function, the default behavior is to define the
virtual function table (but to define it as a local static entity).

The -h forcevtbl option differs from the default behavior in that it does
not force the definition to be local.

2.9 General Language Options

This section describes general language options. Each subsection heading shows
in parentheses the compiler with which the option can be used.

2.9.1 -h keep=file (CC)

When the -h keep=file option is specified, the static constructor/destructor
object (.o) file is retained as file. This option is useful when linking .o files on a
system that does not have a C++ compiler. The use of this option requires that the
main function must be compiled by C++ and the static constructor/destructor
function must be included in the link. With these precautions, mixed object
files (files with .o suffixes) from C and C++ compilations can be linked into
executables by using the loader command instead of the CC command.

S–2179–51 17

Cray C and C++ Reference Manual

2.9.2 -h restrict=args (CC, cc, c99)

The -h restrict=args option globally instructs the compiler to treat certain
classes of pointers as restricted pointers. You can use this option to enhance
optimizations (this includes vectorization).

Classes of affected pointers are determined by the value contained in args,
as follows:

args Description

a All pointers to object and incomplete types are to be considered
restricted pointers, regardless of where they appear in the source
code. This includes pointers in class, struct, and union
declarations, type casts, function prototypes, and so on.

f All function parameters that are pointers to objects or incomplete
types can be treated as restricted pointers.

t All parameters that are this pointers can be treated as restricted
pointers (Cray C++ only).

The args arguments instruct the compiler to assume that, in the current
compilation unit, each pointer (=a), or each pointer that is a function parameter
(=f), or each this pointer (=t) points to a unique object. This assumption
eliminates those pointers as sources of potential aliasing, and may allow
additional vectorization or other optimizations. These options cause only
data dependencies from pointer aliasing to be ignored, rather than all data
dependencies, so they can be used safely for more programs than the -h ivdep
option.

!
Caution: Like -h ivdep, the arguments make assertions about your program
that, if incorrect, can introduce undefined behavior. You should not use
-h restrict=a if, during the execution of any function, an object is modified
and that object is referenced through either of the following:

• Two different pointers

• The declared name of the object and a pointer

The -h restrict=f and -h restrict=t options are subject to the
analogous restriction, with "function parameter pointer" replacing "pointer."

2.9.3 -h [no]calchars (CC, cc, c99)

Default option: -h nocalchars

18 S–2179–51

Compiler Commands [2]

The -h calchars option allows the use of the @ and $ characters in identifier
names. This option is useful for porting codes in which identifiers include these
characters. With -h nocalchars, these characters are not allowed in identifier
names.

!
Caution: Use this option with extreme care, because identifiers with these
characters are within UNICOS/mp name space and are included in many
library identifiers, internal compiler labels, objects, and functions. You must
prevent conflicts between any of these uses, current or future, and identifier
declarations or references in your code; any such conflict is an error.

2.9.4 -h [no]signedshifts (CC, cc, c99)

Default option: -h signedshifts

The -h [no]signedshifts option affects the result of the right shift
operator. For the expression e1 >> e2 where e1 has a signed type, when
-h signedshifts is in effect, the vacated bits are filled with the sign bit of e1.
When -h nosignedshifts is in effect, the vacated bits are filled with zeros,
identical to the behavior when e1 has an unsigned type.

Also refer to Section 12.1.2.5, page 184 about the effects of this option when
shifting integers.

2.10 General Optimization Options

This section describes general optimization options. Each subsection heading
shows in parentheses the compiler with which the option can be used.

2.10.1 -h gen_private_callee (CC, cc, c99)

The -h gen_private_callee option is used when compiling source
files containing routines that will be called from streamed regions, whether
those streamed regions are created by CSD directives or by the use of the
ssp_private or concurrent directives to cause autostreaming. Refer to
Section 3.8.1, page 77 for more information about the ssp_private directive or
to Section 3.9, page 80 about CSDs.

2.10.2 -h [no]aggress (CC, cc, c99)

Default option: -h noaggress

S–2179–51 19

Cray C and C++ Reference Manual

The -h aggress option provides greater opportunity to optimize loops that
would otherwise by inhibited from optimization due to an internal compiler size
limitation. -h noaggress leaves this size limitation in effect.

With -h aggress, internal compiler tables are expanded to accommodate larger
loop bodies. This option can increase the compilation’s time and memory size.

2.10.3 -h display_opt

The -h display_opt option displays the current optimization settings for
this compilation.

2.10.4 –h [no]fusion (CC, cc, c99)

Default option: -h fusion

The –h [no]fusion option globally allows or disallows loop fusion. By default,
the compiler attempts to fuse all loops, unless the –h nofusion option is
specified. Fusing loops generally increases single processor performance by
reducing memory traffic and loop overhead. On rare occasions loop fusing
may degrade performance.

Note: Loop fusion is disabled when the vectorization level is set to 0 or 1.

Refer to Optimizing Applications on the Cray X1 System for more information
about loop fusion.

2.10.5 -h [no]intrinsics (CC, cc, c99)

Default option: -h intrinsics

The -h intrinsics option allows the use of intrinsic hardware functions,
which allow direct access to some hardware instructions or generate inline
code for some functions. This option has no effect on specially-handled library
functions.

Intrinsic functions are described in Appendix F, page 223.

2.10.6 -h list=opt (CC, cc, c99)

The -h list=opt option allows the creation of loopmark listings. The listings
are written to source_file_name_without_suffix.lst.

20 S–2179–51

Compiler Commands [2]

For additional information on loopmark listings, see Optimizing Applications on
the Cray X1 System.

The values for opt are:

a Use all list options

b Add page breaks to listing

e Expand include files

i Intersperse optimization messages within the source listing rather
than at the end

m Create loopmark listing

s Create a complete source listing (include files not expanded)

w Create a wide listing rather than the default of 80 characters

Using -h list=m creates a loopmark listing. The b, e, i, s, and w options
provide additional listing features. Using -h list=a combines all options.

2.10.7 -h msp (CC, cc, c99)

Default option: -h msp

The -h msp option causes the compiler to generate code and to select
the appropriate libraries to create an executable that runs on one or more
multistreaming processors (MSP mode). Any code, including code using
Cray-supported distributed memory models, can use MSP mode.

Executables compiled for MSP mode can contain object files compiled with
MSP or SSP mode. That is, MSP and SSP object files can be specified during the
load step as follows:

cc -h msp -c ... /* Produce MSP object files */

cc -h ssp -c ... /* Produce SSP object files */

/* Link MSP and SSP object files */

/* to create an executable to run on MSPs */

cc sspA.o sspB.o msp.o ...

For more information about MSP mode, refer to Optimizing Applications on the
Cray X1 System. For information on SSP mode, see Section 2.10.10, page 22.

2.10.8 -h [no]pattern (CC, cc, c99)

Default option: -h pattern

S–2179–51 21

Cray C and C++ Reference Manual

The -h [no]pattern option globally enables or disables pattern matching.
Pattern matching is on by default.

2.10.9 -h [no]overindex (CC, cc, c99)

Default option: -h nooverindex

The -h overindex option declares that there are array subscripts that index
a dimension of an array that is outside the declared bounds of that array. The
-h nooverindex option declares that there are no array subscripts that index a
dimension of an array that is outside the declared bounds of that array.

2.10.10 -h ssp (CC, cc, c99)

Default option: -h msp

The -h ssp option causes the compiler to compile the code and select the
appropriate libraries to create an executable that runs on one single-streaming
processor (SSP mode). Any code, including code using Cray-supported
distributed memory models, can use SSP mode.

Executables compiled for SSP mode can contain only object files compiled in SSP
mode. When loading object files separately from the compile step, the SSP mode
must be specified during the load step as this example shows:

/* Produce SSP object files */

cc -h ssp -c ...

/* Link SSP object files */

/* to create an executable to run on a single SSP */

cc -h ssp sspA.o sspB.o ...

Since SSP mode does not use streaming, the compiler automatically specifies the
-h stream0 option. This option then causes the compiler to ignore CSDs.

Note: Code explicitly compiled with the -h stream0 option can be linked
with object files compiled with MSP or SSP mode. You can use this option to
create a universal library that can be used in MSP or SSP mode.

For more information about SSP mode, refer to Optimizing Applications on the Cray
X1 System. For information about MSP mode, see Section 2.10.7, page 21.

22 S–2179–51

Compiler Commands [2]

Note: The -h ssp and -h command options both create executables that run
on an SSP. The executable created via the -h ssp option executes on an
application node. The executable created via the -h command option executes
on the support node.

2.10.11 –h [no]unroll (CC, cc, c99)

Default option: –h unroll

The –h nounroll option globally allows or disallows unrolling of loops. By
default, the compiler attempts to unroll all loops, unless the –h nounroll
option is specified, or the unroll 0 or unroll 1 pragma is specified for a loop.
Loop unrolling generally increases single processor performance at the cost of
increased compile time and code size.

Refer to Optimizing Applications on the Cray X1 System for more information
about loop unrolling.

2.10.12 -O level (CC, cc, c89, c99)

Default option: Equivalent to the appropriate -h option

The -O level option specifies the optimization level for a group of compiler
features. Specifying -O with no argument is the same as not specifying the -O
option; this syntax is supported for compatibility with other vendors.

A value of 0, 1, 2, or 3 sets that level of optimization for each of the
-h inlinen, -h scalarn, -h streamn, and -h vectorn options.

For example, -O2 is equivalent to the following:

-h inline2,scalar2,stream2,vector2

Optimization features specified by -O are equivalent to the -h options listed
in Table 1.

Table 1. -h Option Descriptions

-h option Description location

-h streamn Section 2.11.1, page 24

-h vectorn Section 2.12.3, page 25

S–2179–51 23

Cray C and C++ Reference Manual

-h option Description location

-h inlinen Section 2.13.1, page 27

-h scalarn Section 2.14.2, page 28

2.11 Multistreaming Processor Optimization Options

This section describes the multistreaming processor (MSP) options. For
information on MSP #pragma directives, see Section 3.8, page 76. For
information about streaming intrinsics, see Appendix F, page 223. Each
subsection heading shows in parentheses the compiler command with which the
option can be used.

2.11.1 -h streamn (CC, cc, c99)

The -h streamn option specifies the level of automatic MSP optimizations to be
performed. Generally, vectorized applications that execute on a one-processor
system can expect to execute up to four times faster on a processor with
multistreaming enabled.

These can be used for the n argument:

n Description

0 No automatic multistreaming optimizations are performed.

1 Conservative automatic multistreaming optimizations. Automatic
multistreaming optimization is limited to inner vectorized loops
and some bit matrix multiplication (BMM) operations. MSP
operations performed generate the same results that would be
obtained from scalar optimizations; for example, no floating-point
reductions are performed. This level is compatible with -h
vector1, 2, and 3.

2 Moderate automatic multistreaming optimizations. Automatic
multistreaming optimization is performed on loop nests and
appropriate BMM operations. This level is compatible with -h
vector2 and 3.

3 Aggressive automatic multistreaming optimizations. Automatic
multistreaming optimization is performed as with stream2. This
level is compatible with -h vector2 and 3.

24 S–2179–51

Compiler Commands [2]

2.12 Vector Optimization Options

This section describes vector optimization options. Each subsection heading
shows in parentheses the compiler command with which the option can be used.

2.12.1 -h [no]infinitevl (CC, cc, c99)

Default option: -h infinitevl

The -h infinitevl option instructs the compiler to assume an infinite safe
vector length for all #pragma ivdep directives. The -h noinfinitevl option
instructs the compiler to assume a safe vector length equal to the maximum
supported vector length on the machine for all #pragma ivdep directives.

2.12.2 -h [no]ivdep (CC, cc, c99)

Default option: -h noivdep

The -h ivdep option instructs the compiler to ignore vector dependencies
for all loops. This is useful for vectorizing loops that contain pointers. With
-h noivdep, loop dependencies inhibit vectorization. To control loops
individually, use the #pragma ivdep directive, as discussed in Section 3.7.1,
page 71.

This option can also be used with "vectorization-like" optimizations found in
Section 3.7, page 71.

!
Caution: This option should be used with extreme caution because incorrect
results can occur if there is a vector dependency within a loop. Combining
this option with inlining is dangerous because inlining can introduce vector
dependencies.

!
Caution: This option severely constrains other loop optimizations and should
be avoided if possible.

2.12.3 -h vectorn (CC, cc, c99)

Default option: -h vector2

The -h vectorn option specifies the level of automatic vectorizing to be
performed. Vectorization results in dramatic performance improvements with
a small increase in object code size. Vectorization directives are unaffected by
this option.

Argument n can be one of the following:

S–2179–51 25

Cray C and C++ Reference Manual

n Description

0 No automatic vectorization. Characteristics include low compile
time and small compile size. This option is compatible with all
scalar optimization levels.

1 Specifies conservative vectorization. Characteristics include
moderate compile time and size. No loop nests are restructured;
only inner loops are vectorized. Not all vector reductions are
performed, so results do not differ from results obtained when the
-h vector0 option is specified. No vectorizations that might
create false exceptions are performed.

The -h vector1 option is compatible with -h scalar1,
-h scalar2, -h scalar3, or -h stream1.

2 Specifies moderate vectorization. Characteristics include moderate
compile time and size. Loop nests are restructured. Results
can differ slightly from results obtained when -h vector1 is
specified because of vector reductions.

The -h vector2 option is compatible with -h scalar2 or
-h scalar3 and with -h stream0, -h stream1, and -h
stream2.

3 Specifies aggressive vectorization. Characteristics include
potentially high compile time and size. Loop nests are
restructured. Results can differ slightly from results obtained
when -h vector1 is specified because of vector reductions.
Vectorizations that might create false exceptions in rare cases may
be performed.

Vectorization directives are described in Section 3.7, page 71.

2.12.4 -h [no]vsearch (CC, cc, c99)

Default option: -h vsearch

The -h vsearch option enables vectorization of all search loops. With
-h novsearch, the default vectorization level applies. The novsearch
directive is discussed in Section 3.7.4, page 73. This option is affected by the
-h vectorn option (see Section 2.12.3, page 25).

26 S–2179–51

Compiler Commands [2]

2.13 Inlining Optimization Options

This section describes inlining options. Each subsection heading shows in
parentheses the compiler command with which the option can be used.

2.13.1 -h inlinen (CC, cc, c99)

Default option: -h inline2

The -h inlinen option specifies the level of inlining to be performed. Inlining
eliminates the overhead of a function call and increases the opportunities for
other optimizations. Inlining can also increase object code size. Inlining directives
and the inline keyword are unaffected when n is not zero. They are ignored
when n is zero.

Use one of these values for n:

n Description

0 No inlining is performed.

1 Conservative inlining. Inlining is performed on functions explicitly
marked by either:

• The inline keyword

• A #pragma _CRI inline directive

• (C++) implicit inline applied to member functions

2 Same function as inline1 except larger routines are loaded.

3 Aggressive automatic inlining. All functions are candidates
for inlining except those specifically marked with a
#pragma noinline directive.

4 More aggressive automatic inlining. The inline4 optimization
level is the same as inline3 but may inline larger routines.

2.14 Scalar Optimization Options

This section describes scalar optimization options. Each subsection heading
shows in parentheses the compiler command with which the option can be used.

2.14.1 -h [no]interchange (CC, cc, c99)

Default option: -h interchange

S–2179–51 27

Cray C and C++ Reference Manual

The -h interchange option allows the compiler to attempt to interchange all
loops, a technique that is used to gain performance by having the compiler swap
an inner loop with an outer loop. The compiler attempts the interchange only if
the interchange will increase performance. Loop interchange is performed only at
scalar optimization level 2 or higher.

The -h nointerchange option prevents the compiler from attempting to
interchange any loops. To disable interchange of loops individually, use the
#pragma nointerchange directive.

2.14.2 -h scalarn (CC, cc, c99)

Default option: -h scalar1

The -h scalarn option specifies the level of automatic scalar optimization to
be performed. Scalar optimization directives are unaffected by this option (see
Section 3.10, page 92).

Use one of these values for n:

n Description

0 No automatic scalar optimization. The -h matherror=errno
and -h zeroinc options are implied by -h scalar0.

1 Conservative automatic scalar optimization. This level implies
-h matherror=abort and -h nozeroinc.

2 Moderate automatic scalar optimization. The scalar optimizations
specified by scalar1 are performed.

3 Aggressive automatic scalar optimization.

2.14.3 -h [no]reduction (CC, cc, c99)

Default option: -h reduction

The -h reduction option instructs the compiler to enable vectorization of
all reduction loops. The -h noreduction option disables vectorization of
all reduction loops. This option is affected by the -h scalarn option (see
Section 2.14.2, page 28). Reduction loops and the noreduction directive are
discussed in Section 3.10.3, page 93.

2.14.4 -h [no]zeroinc (CC, cc, c99)

Default option: -h nozeroinc

28 S–2179–51

Compiler Commands [2]

The -h nozeroinc option improves run time performance by causing the
compiler to assume that constant increment variables (CIVs) in loops are not
incremented by expressions with a value of 0.

The -h zeroinc option causes the compiler to assume that some CIVs in
loops might be incremented by 0 for each pass through the loop, preventing
generation of optimized code. For example, in a loop with index i, the expression
expr in the statement i += expr can evaluate to 0. This rarely happens in actual
code. -h zeroinc is the safer and slower option. This option is affected by the
-h scalarn option (see Section 2.14.2, page 28).

2.15 Math Options

This section describes compiler options pertaining to math functions. Each
subsection heading shows in parentheses the compiler command with which the
option can be used.

2.15.1 -h fpn (CC, cc, c99)

The –h fp option offers finer control over floating-point optimizations than the
-h [no]ieeeconform option. The n argument controls the level of optimization;
0 indicates minimum freedom to optimize floating-point operations, while
3 indicates maximum. The higher the optimization level, the lesser the
conformance to the IEEE standard for floating point.

This option is useful for code that use unstable algorithms, but which are
optimizable. It is also useful for applications that want aggressive floating-point
optimizations that go beyond what the IEEE standard allows.

The -h [no]ieeeconform and -h fp options can be specified on the same
compiler command line, but the compiler will use only the rightmost option.
If this is the case or multiple -h fp are used, the compiler issues a message
indicating such.

Table 2 compares the various optimization levels of the -h fp option (levels 2
and 3 are usually the same). The table lists some of the optimizations performed;
the compiler may perform other optimizations not listed.

S–2179–51 29

Cray C and C++ Reference Manual

Table 2. Floating-point Optimization Levels

Optimization Type 0 1 2 3

Inline selected mathematical
library functions

N/A N/A N/A Accuracy is
slightly reduced

Complex divisions accuracy
and calculation speed

Accurate and
slower

Accurate and
slower

Less accurate
(less precision)
and faster

Less accurate
(less precision)
and faster

Exponentiation rewrite None Fast Maximum
performance

Maximum
performance

Strength reduction Fast Fast Aggressive Aggressive

Rewrite division as reciprocal
equivalent1

None None Yes Yes

Safety Maximum Moderate Moderate Low

1 For example, x/y is transformed to x * 1.0/y.

30 S–2179–51

Compiler Commands [2]

Optimization Type 0 1 2 3

Optimizations Same effect
as -h
ieeeconform.
The -h fp0
option causes
your program’s
executable code
to conform
more closely
to the IEEE
floating-point
standard than
the default
mode.2

Performs
various,
generally safe,
non-conforming
IEEE
optimizations,
such as folding
A == A to
.TRUE..
where A is a
floating-point
object.

Includes
optimizations
of –h fp1.

Includes
optimizations
of –h fp1.
Equivalent
to the –h
noieeeconform
option.

When to use The-h fp0 and
-h fp1 options
should never
be used, except
when your
code pushes
the limits of
IEEE accuracy,
or require strong
IEEE standard
conformance.

The-h fp0 and
-h fp1 options
should never
be used, except
when your
code pushes
the limits of
IEEE accuracy,
or require strong
IEEE standard
conformance.

The -h fp3
option should
be used when
performance
is more critical
than the level of
IEEE standard
conformance
provided by -h
fp2.

The default is –h fp2.

2.15.2 -h [no]ieeeconform (CC, cc)

Default option: -h noieeeconform (equivalent to -h fp0)

The -h ieeeconform option causes the resulting executable code to conform
more closely to the IEEE floating-point standard (ANSI/IEEE Std 754-1985). Use
of this option disables many arithmetic identity optimizations and may result
in significantly slower code.

2 When specified, many identity optimizations are disabled, executable code is slower than higher floating-point
optimization levels, and a scaled complex divide mechanism is enabled that increases the range of complex values
that can be handled without producing an underflow.

S–2179–51 31

Cray C and C++ Reference Manual

When -h noieeeconform is in effect, the compiler optimizes expressions
such as x != x to 0 and x/x to 1 (where x has floating type). With the
-h ieeeconform option in effect, these and other similar arithmetic identity
optimizations are not performed. Optimizations on integral types are not affected
by this option.

The -h ieeeconform option also turns on a scaled complex divide, which
increases the range of complex values that can be handled without producing an
underflow or an overflow.

2.15.3 -h matherror=method (CC, cc, c99)

Default option: -h matherror=abort

The -h matherror=method option specifies the method of error processing used
if a standard math function encounters an error. The method argument can have
one of the following values:

method Description

abort If an error is detected, errno is not set. Instead a message is issued
and the program aborts. An exception may be raised.

errno If an error is detected, errno is set and the math function
returns to the caller. This method is implied by the -h conform,
-h scalar0, -O0, -Gn, and -g options.

2.16 Debugging Options

This section describes compiler options used for debugging. Each subsection
heading shows in parentheses the compiler command with which the option
can be used.

2.16.1 -G level (CC, cc, c99) and -g (CC, cc, c89, c99)

The -G level and -g options enable the generation of debugging information
that is used by symbolic debuggers such as TotalView. These options allow
debugging with breakpoints. Table 3 describes the values for the -G option.

32 S–2179–51

Compiler Commands [2]

Table 3. -G level Definitions

level Optimization Breakpoints allowed on

f Full Function entry and exit

p Partial Block boundaries

n None Every executable statement

Less extensive debugging (such as full) permits greater optimization
opportunities for the compiler. Debugging at any level may inhibit some
optimization techniques, such as inlining.

The -g option is equivalent to -Gn. The -g option is included for compatibility
with earlier versions of the compiler and many other UNIX systems; the
-G option is the preferred specification. The -Gn and -g options disable all
optimizations and imply -O0.

The debugging options take precedence over any conflicting options that appear
on the command line. If more than one debugging option appears, the last
one specified overrides the others.

Debugging is described in more detail in Chapter 10, page 161.

2.16.2 -h [no]bounds (cc, c99)

Default option: -h nobounds

The -h bounds option provides checking of pointer and array references to
ensure that they are within acceptable boundaries. -h nobounds disables
these checks.

The pointer check verifies that the pointer is greater than 0 and less than the
machine memory limit. The array check verifies that the subscript is greater than
or equal to 0 and is less than the array size, if declared.

2.16.3 -h zero (CC, cc, c99)

The -h zero option causes stack-allocated memory to be initialized to all zeros.

S–2179–51 33

Cray C and C++ Reference Manual

2.17 Compiler Message Options

This section describes compiler options that affect messages. Each subsection
heading shows in parentheses the compiler command with which the option
can be used.

2.17.1 -h msglevel_n (CC, cc, c99)

Default option: -h msglevel_3

The -h msglevel_n option specifies the lowest level of severity of messages to
be issued. Messages at the specified level and above are issued. Argument n can
be 0 (comment), 1 (note), 2 (caution), 3 (warning), or 4 (error).

2.17.2 -h [no]message=n[:n...] (CC, cc, c99)

Default option: Determined by -h msglevel_n

The -h [no]message=n[:n...] option enables or disables specified compiler
messages. n is the number of a message to be enabled or disabled. You can
specify more than one message number; multiple numbers must be separated by
a colon with no intervening spaces. For example, to disable messages CC-174
and CC-9, specify:

-h nomessage=174:9

The -h [no]message=n option overrides -h msglevel_n for the specified
messages. If n is not a valid message number, it is ignored. Any compiler
message except ERROR, INTERNAL, and LIMIT messages can be disabled;
attempts to disable these messages by using the -h nomessage=n option are
ignored.

2.17.3 -h report=args (CC, cc, c99)

The -h report=args option generates report messages specified in args and lets
you direct the specified messages to a file. Use any combination of these for args:

34 S–2179–51

Compiler Commands [2]

args Description

i Generates inlining optimization messages

m Generates multistream optimization messages

s Generates scalar optimization messages

v Generates vector optimization messages

f Writes specified messages to file file.V where file is the source file
specified on the command line. If the f option is not specified,
messages are written to stderr.

No spaces are allowed around the equal sign (=) or any of the args codes. For
example, the following example prints inlining and scalar optimization messages
to file, myfile.c:

cc -h report=is myfile.c

2.17.4 -h [no]abort (CC, cc, c99)

Default option: -h noabort

The -h [no]abort option controls whether a compilation aborts if an error is
detected.

2.17.5 -h errorlimit[=n] (CC, cc, c99)

Default option: -h errorlimit=100

The -h errorlimit[=n] option specifies the maximum number of error
messages the compiler prints before it exits. n is a positive integer. Specifying
-h errorlimit=0 disables exiting on the basis of the number of errors.
Specifying -h errorlimit with no qualifier is the same as setting n to 1.

2.18 Compilation Phase Options

This section describes compiler options that affect compilation phases. Each
subsection heading shows in parentheses the compiler command with which the
option can be used.

2.18.1 -E (CC, cc, c89, c99, cpp)

If the -E option is specified on the command line (except for cpp), it executes
only the preprocessor phase of the compiler. The -E and -P options are

S–2179–51 35

Cray C and C++ Reference Manual

equivalent, except that -E directs output to stdout and inserts appropriate
#line preprocessing directives. The -E option takes precedence over the
-h feonly, -S, and -c options.

If the -E option is specified on the cpp command line, it inserts the appropriate
#line directives in the preprocessed output. When both the -P and -E options
are specified, the last one specified takes precedence.

2.18.2 -P (CC, cc, c99, cpp)

When the -P option is specified on the command line (except for cpp), it executes
only the preprocessor phase of the compiler for each source file specified. The
preprocessed output for each source file is written to a file with a name that
corresponds to the name of the source file and has .i suffix substituted for the
suffix of the source file. The -P option is similar to the -E option, except that
#line directives are suppressed, and the preprocessed source does not go to
stdout. This option takes precedence over -h feonly, -S, and -c.

When the -P option is specified on the cpp command line, it is ignored. When
both the -P and -E options are specified, the last one specified takes precedence.

2.18.3 -h feonly (CC, cc, c99)

The -h feonly option limits the Cray C and C++ compilers to syntax checking.
The optimizer and code generator are not executed. This option takes precedence
over -S and -c.

2.18.4 -S (CC, cc, c99)

The -S option compiles the named C or C++ source files and leaves their
assembly language output in the corresponding files suffixed with a .s. If this
option is used with -G or -g, debugging information is not generated. This
option takes precedence over -c.

2.18.5 -c (CC, cc, c89, c99)

The -c option creates a relocatable object file for each named source file, but does
not link the object files. The relocatable object file name corresponds to the name
of the source file. The .o suffix is substituted for the suffix of the source file.

36 S–2179–51

Compiler Commands [2]

2.18.6 -#, -##, and -### (CC, cc, c99, cpp)

The -# option produces output indicating each phase of the compilation as it is
executed. Each succeeding output line overwrites the previous line.

The -## option produces output indicating each phase of the compilation, as
well as all options and arguments being passed to each phase, as they are
executed.

The -### option is the same as -##, except the compilation phases are not
executed.

2.18.7 -Wphase,"opt..." (CC, cc, c99)

The -Wphase option passes arguments directly to a phase of the compiling system.
Table 4 shows the system phases that phase can indicate.

Table 4. -Wphase Definitions

phase System phase Command

p Preprocessor cpp

0 Compiler CC,cc,c99

a Assembler as

l Loader ld

Arguments to be passed to system phases can be entered in either of two styles. If
spaces appear within a string to be passed, the string is enclosed in double
quotes. When double quotes are not used, spaces cannot appear in the string.
Commas can appear wherever spaces normally appear; an option and its
argument can be either separated by a comma or not separated. If a comma is
part of an argument, it must be preceded by the \ character. For example, any of
the following command lines would send -e name and -s to the loader:

cc -Wl,"-e name -s" file.c

cc -Wl,-e,name,-s file.c

cc -Wl,"-ename",-s file.c

Because the preprocessor is built into the compiler, -Wp and -W0 are equivalent.

S–2179–51 37

Cray C and C++ Reference Manual

2.18.8 -Yphase,dirname (CC, cc, c89, c99, cpp)

The -Yphase,dirname option specifies a new directory (dirname) from which the
designated phase should be executed. phase can be one or more of the values
shown in Table 5.

Table 5. -Yphase Definitions

phase System phase Command

p Preprocessor cpp

0 Compiler CC,cc,c89,c89,cpp

a Assembler as

l Loader ld

Because there is no separate preprocessor, -Yp and -Y0 are equivalent. If you
are using the -Y option on the cpp command line, p is the only argument for
phase that is allowed.

2.19 Preprocessing Options

This section describes compiler options that affect preprocessing. Each subsection
heading shows in parentheses the compiler command with which the option
can be used in.

2.19.1 -C (CC, cc, c99, cpp)

The -C option retains all comments in the preprocessed source code, except
those on preprocessor directive lines. By default, the preprocessor phase strips
comments from the source code. This option is useful with cpp or in combination
with the -P or -E option on the CC, cc, and c99 commands.

2.19.2 -D macro[=def] (CC, cc, c89, c99 cpp)

The -D macro[=def] option defines a macro named macro as if it were defined by
a#define directive. If no =def argument is specified, macro is defined as 1.

Predefined macros also exist; these are described in Chapter 9, page 157. Any
predefined macro except those required by the standard (see Section 9.1, page
157) can be redefined by the -D option. The -U option overrides the -D option

38 S–2179–51

Compiler Commands [2]

when the same macro name is specified regardless of the order of options on
the command line.

2.19.3 -h [no]pragma=name[: name...] (CC, cc, c99)

Default option: -h pragma

The [no]pragma=name[:name...] option enables or disables the processing of
specified directives in the source code. name can be the name of a directive or
a word shown in Table 6 to specify a group of directives. More than one name
can be specified. Multiple names must be separated by a colon and have no
intervening spaces.

Table 6. -h pragma Directive Processing

name Group Directives affected

all All All directives

allinline Inlining inline, noinline

allscalar Scalar optimization concurrent, nointerchange,
noreduction, suppress,
unroll

allvector Vectorization ivdep, novector, novsearch,
prefervector, shortloop

When using this option to enable or disable individual directives, note that
some directives must occur in pairs. For these directives, you must disable
both directives if you want to disable either; otherwise, the disabling of one of
the directives may cause errors when the other directive is (or is not) present in
the compilation unit.

2.19.4 -I incldir (CC, cc, c89, c99, cpp)

The -I incldir option specifies a directory for files named in #include directives
when the #include file names do not have a specified path. Each directory
specified must be specified by a separate -I option.

The order in which directories are searched for files named on #include
directives is determined by enclosing the file name in either quotation marks
("") or angle brackets (< and >).

Directories for #include "file" are searched in the following order:

S–2179–51 39

Cray C and C++ Reference Manual

1. Directory of the input file.

2. Directories named in -I options, in command line order.

3. Site- and compiler release-specific include files directories.

4. Directory /usr/include.

Directories for #include file are searched in the following order:

1. Directories named in -I options, in command line order.

2. Site-specific and compiler release-specific include files directories.

3. Directory /usr/include.

If the -I option specifies a directory name that does not begin with a slash (/),
the directory is interpreted as relative to the current working directory and not
relative to the directory of the input file (if different from the current working
directory). For example:

cc -I. -I yourdir mydir/b.c

The preceding command line produces the following search order:

1. mydir (#include "file" only).

2. Current working directory, specified by -I.

3. yourdir (relative to the current working directory), specified by -I
yourdir.

4. Site-specific and compiler release-specific include files directories.

5. Directory /usr/include.

2.19.5 -M (CC, cc, c99, cpp)

The -M option provides information about recompilation dependencies that the
source file invokes on #include files and other source files. This information is
printed in the form expected by make. Such dependencies are introduced by the
#include directive. The output is directed to stdout.

40 S–2179–51

Compiler Commands [2]

2.19.6 -N (cpp)

The -N option specified on the cpp command line enables the old style (referred
to as K & R) preprocessing. If you have problems with preprocessing (especially
non-C source code), use this option.

2.19.7 -nostdinc (CC, cc, c89, c99, cpp)

The -nostdinc option stops the preprocessor from searching for include files in
the standard directories (/usr/include/CC and /usr/include).

2.19.8 -U macro (CC, cc, c89, c99, cpp)

The -U option removes any initial definition of macro. Any predefined macro
except those required by the standard (see Section 9.1, page 157) can be
undefined by the -U option. The -U option overrides the -D option when
the same macro name is specified, regardless of the order of options on the
command line.

Predefined macros are described in Chapter 9, page 157. Macros defined in the
system headers are not predefined macros and are not affected by the -U option.

2.20 Loader Options

This section describes compiler options that affect loader tasks. Each subsection
heading shows in parentheses the compiler command with which the option
can be used.

2.20.1 -l libfile (CC, cc, c89, c99)

The -l libfile option identifies library files to be loaded. The given libfile is
processed by searching for a file named /liblibfile.a for each different -L library
dir. For example, if the command line includes -Ldir1 -Ldir2/subdir -lxyz,
then the loader will search for libxyz.a, first in dir1, then in dir2/subdir,
and then in the remaining standard library directories.

There is no search order dependency for libraries. Default libraries are shown
in the following list:

S–2179–51 41

Cray C and C++ Reference Manual

libC.a (Cray C++ only)

libu.a

libm.a

libc.a

libsma.a

libf.a

libfi.a

libsci.a

If you specify personal libraries by using the -l command line option, as in the
following example, those libraries are added to the top of the preceding list.
(The -l option is passed to the loader.)

cc -l mylib target.c

When the previous command line is issued, the loader looks for a library named
libmylib.a (following the naming convention) and adds it to the top of the list
of default libraries.

2.20.2 -L libdir (CC, cc, c89, c99)

The -L libdir option changes the -l option algorithm to search directory libdir
before searching the default directories. If libdir does not begin with a slash (/), it
is interpreted as relative to the current working directory.

The loader searches for library files in the compiler release-specific directories.

Note: Multiple -L options are treated cumulatively as if all libdir arguments
appeared on one -L option preceding all -l options. Therefore, do not attempt
to load functions of the same name from different libraries through the use
of alternating -L and -l options.

2.20.3 -o outfile (CC, cc, c89, c99)

The -o outfile option produces an absolute binary file named outfile. A file named
a.out is produced by default. When this option is used in conjunction with the
-c option and a single C or C++ source file, a relocatable object file named
outfile is produced.

42 S–2179–51

Compiler Commands [2]

2.20.4 -s (CC, cc, c89, c99)

(Deferred implementation) The -s option produces executable files from which
symbolic and other information not required for proper execution has been
removed. If both the -s and -g (or -G) options are present, -s is ignored.

2.21 Miscellaneous Options

This section describes compiler options that affect general tasks. Each subsection
heading shows in parentheses the compiler command with which the option
can be used.

2.21.1 -h command (cc, c99)

The command mode option (-h command) allows you to create commands for
Cray X1 systems to supplement commands developed by Cray. Such commands
run serially on a single-streaming processor (SSP) within a system node; they
execute immediately without assistance from aprun or psched.

The commands created with the command mode option cannot multistream. If
you want to disable vectorization, add the -h vector0 option to the compiler
command line. The compiled commands will have less debugging information,
unless you specify a debugging option. The debugging information does not
slow execution time, but it does result in a larger executable that may take
longer to load.

For simplicity, you should use the C compiler to load your programs built with
the command mode option, because the required options and libraries are
automatically specified and loaded for you.

If you decide to load the libraries manually, you must use the loader command
(ld) and specify on its command line the -command and -ssp options and the
-L option with the path to the command mode libraries. The command mode
libraries are found in the cmdlibs directory under the path defined by the
CRAYLIBS_SV2 environment variable. These must also be linked:

• Start0.o

• libc library

• libm library

• libu library

S–2179–51 43

Cray C and C++ Reference Manual

The following sample command line illustrates compiling the code for a
command named fierce:

% cc -h command -h vector0 -o fierce fierce.c

Note: The -h ssp and -h command options both create executables that
run on an SSP. The executable created via the -h ssp option runs on an
application node. The executable created via the -h command option runs on
the support node.

2.21.2 -h decomp (CC, cc, c99)

The -h decomp option decompiles (translates) the intermediate representation
of the compiler into listings that resemble the format of the source code. This
is performed twice, resulting in two output files, at different points during the
optimization process. You can use these files to examine the restructuring and
optimization changes made by the compiler, which can lead to insights about
changes you can make to your C or C++ source to improve its performance.

The compiler produces two decompilation listing files, with these extensions,
per source file specified on the command line: .opt and .cg. The compiler
generates the .opt file after applying most high level loop nest transformations
to the code. The code structure of this listing most resembles your source code
and is readable by most users. In some cases, because of optimizations, the
structure of the loops and conditionals will be significantly different than the
structure in your source file.

The .cg file contains a much lower level of decompilation. It is still displayed in
a C or C++ like format, but is quite close to what will be produced as assembly
output. This version displays the intermediate text after all multistreaming
translation, vector translation, and other optimizations have been performed.
An intimate knowledge of the hardware architecture of the system is helpful to
understanding this listing.

The .opt and .cg files are intended as a tool for performance analysis, and are
not valid C or C++ functions. The format and contents of the files can be expected
to change from release to release.

The following examples show the listings generated when the -h decomp
is applied to this example:

/* Source code, in file example.c */

double a[64], b[64], c[64];

44 S–2179–51

Compiler Commands [2]

void

example(void)

{

long i;

for (i = 0; i < 64; i++)

{

if (a[i] > 0.0)

{

b[i] = c[i];

}

}

return;

}

This is the listing of the example.opt file after loop optimizations are
performed:

4. void

4. example(void)

4. {

6. @Induc01_N0 = 0;

6. #pragma ivdep

6. do {

7. if (a[@Induc01_N0] > 0.0) {

8. b[@Induc01_N0] = c[@Induc01_N0];

8. }

6. @Induc01_N0 = 1 + @Induc01_N0;

6. } while (@Induc01_N0 < 64);

12. return;

12. }

This is the listing of the example.cg file after other optimizations are
performed:

4. void

4. example(void)

4. {

6. vinfo(Begin_Short_Loop);

7. $VMT_2 = _vm_gt(0[&a:64:1].L, 0.0);

8. 0[&b:64:1#$VMT_2].L = 0[&c:64:1#$VMT_2].L;

6. vinfo(End_Short_Loop);

12. return;

12.}

S–2179–51 45

Cray C and C++ Reference Manual

2.21.3 -h ident=name (CC, cc, c99)

Default option: File name specified on the command line

The -h ident=name option changes the ident name to name. This name is used
as the module name in the object file (.o suffix) and assembler file (.s suffix).
Regardless of whether the ident name is specified or the default name is used,
the following transformations are performed on the ident name:

• All . characters in the ident name are changed to $.

• If the ident name starts with a number, a $ is added to the beginning of the
ident name.

2.21.4 -h [no]omp (cc)

The –h [no]omp options enable or disable the C compiler recognition of
OpenMP directives. For details, see Chapter 4, page 101.

2.21.5 -h predeclare_intrinsics (CC, cc, c99, cpp)

Simulates the effect of including intrinsics.h at the beginning of
a compilation. Use this option if the source code does not include the
intrinsics.h statement and you cannot modify the code. This option is off by
default. See Appendix F, page 223 for details.

2.21.6 -h taskn (cc)

Enables tasking in C applications that contain OpenMP directives. The default
is -h task0.

n Description

0 Disables tasking. Characteristics include low compile time and
size. OpenMP directives are ignored. The -h task0 option is
compatible with all vectorization and scalar optimization levels.

1 The -h task1 option specifies user tasking, so OpenMP directives
are recognized. Characteristics include low compile time and
size. No level for scalar optimization is enabled automatically.
The -h task1 option is compatible with all vectorization and
scalar optimization levels.

46 S–2179–51

Compiler Commands [2]

2.21.7 -h upc

The -h upc option enables compilation of Unified Parallel C (UPC) code. UPC
is a C language extension for parallel program development that allows you to
explicitly specify parallel programming through language syntax rather than
through library functions such as are used in MPI or SHMEM.

The Cray X1 implementation of UPC is discussed in greater detail in Chapter 5,
page 133.

2.21.8 -V (CC, cc, c99, cpp)

The -V option displays compiler version information. If the command line
specifies no source file, no compilation occurs. Version information consists of the
product name, the version number, and the current date and time, as shown in
the following example:

% CC -V

Cray C++ Version 4.1.0.0 (u10c42004p44047s61a22e38)

08/15/02 08:53:51

2.21.9 -X npes (CC, cc, c99)

The -X npes option specifies the number of processing elements to use during
execution. The value for npes ranges from 1 through 4096 inclusive..

Once set, the number of processing elements to use cannot be changed at load
or run time. You must recompile the program with a different value for npes to
change the number of processing elements.

If you use the ld command to manually load a program compiled with the
-X option, you must specify the same value to the loader as was specified at
compile time.

You can execute the compiled program without using the aprun command just
by entering the name of the output file. If you use the command and specify the
number of processing elements on the aprun command line, you must specify
the same number to the command as was specified at compile time.

The _num_pes intrinsic function can be used when programming UNICOS/mp
systems. The value returned by _num_pes is equal to the number processing
elements available to your program. The number of the first processing element
is always 0, and the number of the last processing element is _num_pes() - 1.

S–2179–51 47

Cray C and C++ Reference Manual

When the -X npes option is specified at compile time, the _num_pes intrinsic
function returns the value specified by the npes argument.

On the Cray X1 system, the _num_pes intrinsic can be used only in either
of these situations:

• When the -X npes option is specified on the command line, or

• When the value of the expression containing the _num_pes intrinsic
function is not known until run time (that is, it can only be used in run time
expressions)

One of the many uses for the _num_pes intrinsic is illustrated in the following
example, which declares a variable length array of size equal to the number of
processing elements:

int a[_num_pes()];

Using the _num_pes intrinsic in conjunction with the -X npes option allows the
programmer to program the number of processing elements into a program in
places that do not accept run time values. Specifying the number of processing
elements at compile time can also enhance compiler optimization.

2.22 Command Line Examples

These examples illustrate a variety of command lines for the C and C++ compiler
commands:

• This example compiles myprog.C, fixes the number of processing elements
to 8, and instantiates all template entities declared or referenced in the
compilation unit. Because the program is compiled in default MSP mode,
each processing element is an MSP.

CC -X8 -h instantiate=all myprog.C

• This example compiles myprog.C. The -h conform option specifies
strict conformance to the ISO C++ standard. No automatic instantiation
of templates is performed.

CC -h conform -h noautoinstantiate myprog.C

• This example compiles input files myprog.C and subprog.C. Option -c
specifies that object files myprog.o and subprog.o are produced and that
the loader is not called. Option -h inline1 instructs the compiler to inline

48 S–2179–51

Compiler Commands [2]

function calls declared with the inline keyword or those declared within
a class declaration.

CC -c -h inline1 myprog.C subprog.C

• This example specifies that the compiler search the current working directory
(represented by a period (.)) for #include files before searching the default
#include file locations.

CC -I. disc.C vend.C

• This example specifies that source file newprog.c be preprocessed only.
Compilation and linking are suppressed. In addition, the macro DEBUG
is defined.

cc -P -D DEBUG newprog.c

• This example compiles mydata1.C, writes object file mydata1.o, and
produces a scalar optimization report to stdout.

CC -c -h report=s mydata1.C

• This example compiles mydata3.c and produces the executable file
a.out. A 132-column pseudo assembly listing file is also produced in file
mydata3.L.

cc -h listing mydata3.c

• This example compiles myfile.C and instructs the compiler to attempt to
inline calls aggressively to functions defined within myfile.C. An inlining
report is directed to myfile.V.

CC -h inline3,report=if myfile.C

2.23 Compile Time Environment Variables

These environment variables are used during compilation.

Variable Description

CRAYOLDCPPLIB Enables, when set to a nonzero value, C++ code to
use these nonstandard Cray C++ headers files:

• common.h

• complex.h

• fstream.h

S–2179–51 49

Cray C and C++ Reference Manual

• generic.h

• iomanip.h

• iostream.h

• stdiostream.h

• stream.h

• strstream.h

• vector.h

If you want to use the standard header files,
your code may require modification to compile
successfully. Refer to Appendix C, page 193.

Note: Setting the CRAYOLDCPPLIB
environment variable disables exception
handling, unless you compile with the -h
exceptions option.

CRI_CC_OPTIONS,
CRI_cc_OPTIONS,
CRI_c89_OPTIONS,
CRI_cpp_OPTIONS

Specifies command line options that are applied
to all compilations. Options specified by this
environment variable are added following the
options specified directly on the command line.
This is especially useful for adding options to
compilations done with build tools.

LANG Identifies your requirements for native language,
local customs, and coded character set with regard
to compiler messages.

MSG_FORMAT Controls the format in which you receive compiler
messages.

NLSPATH Specifies the message system catalogs that should
be used.

NPROC Specifies the number of processes used for
simultaneous compilations. The default is 1.
When more than one source file is specified
on the command line, compilations may be
multiprocessed by setting the environment
variable NPROC to a value greater than 1. You can
set NPROC to any value; however, large values can
overload the system.

50 S–2179–51

Compiler Commands [2]

TARGET (Deferred implementation) Specifies the type
and characteristics of the hardware on which
you are running. You can also set the TARGET
environment variable to the characteristics of
another system to cross-compile source code
for that system.

2.24 Run Time Environment Variables

These environment variables are used during run time.

Variable Description

CRAY_AUTO_APRUN_OPTIONS

The CRAY_AUTO_APRUN_OPTIONS environment variable
specifies options for the aprun command when the command is
called automatically (auto aprun). Calling the aprun command
automatically occurs when only the name of the program and,
where applicable, associated program options are entered on the
command line; this will cause the system to automatically call
aprun to run the program.

The CRAY_AUTO_APRUN_OPTIONS environment variable does
not specify options for the aprun command when you explicitly
specify the command on the command line, nor does it specify
options for your program.

When setting options for the aprun command in the
CRAY_AUTO_APRUN_OPTIONS environment variable, surround
the options within double quotes and separate each option with
a space. Do not use spaces between an option and its associated
value. For example,

setenv CRAY_AUTO_APRUN_OPTIONS "-n10 -m16G"

If you execute a program compiled with a fixed
number of processing elements (that is, the –X
compiler option was specified at compile time) and the
CRAY_AUTO_APRUN_OPTIONS also specifies the -n option, you
must ensure that the values used for both options are the same.
To do otherwise is an error.

S–2179–51 51

Cray C and C++ Reference Manual

X1_DYNAMIC_COMMON_SIZE

The X1_DYNAMIC_COMMON_SIZE sets the size of the
dynamic COMMON block defined by the loader. Refer to the
-LD_LAYOUT:dynamic= option in the ld(1) man page. Also
refer to Optimizing Applications on the Cray X1 System for more
information about dynamic COMMON blocks.

X1_COMMON_STACK_SIZE
X1_PRIVATE_STACK_SIZE
X1_STACK_SIZE
X1_LOCAL_HEAP_SIZE
X1_SYMMETRIC_HEAP_SIZE
X1_HEAP_SIZE
X1_PRIVATE_STACK_GAP

These environment variables allow you to change the default
size of the application stacks or heaps, or consolidate the private
stacks:

• X1_COMMON_STACK_SIZE, change the common stack size to
the specified value.

• X1_PRIVATE_STACK_SIZE, change the private stack size to
the specified value.

• X1_STACK_SIZE, set the size of the common and private
stack to the specified value.

• X1_LOCAL_HEAP_SIZE, change the local heap size to the
specified value.

• X1_SYMMETRIC_HEAP_SIZE, change the symmetric heap
size to the specified value.

• X1_HEAP_SIZE, change the local and symmetric heap size to
the specified value.

• X1_PRIVATE_STACK_GAP, consolidate, when used with
X1_PRIVATE_STACK_SIZE, the four private stacks within
an MSP into one segment, which frees up nontext pages for
application use. The specified value, in bytes, indicates the
gap to separate each stack. This gap serves as a guard region
in case any of the stacks overflow.

The default size of each application stack or heap is 1 GB.

52 S–2179–51

Compiler Commands [2]

The X1_STACK_SIZE and X1_HEAP_SIZE are termed general
environment variables in that they set the values for multiple
stacks or heaps, respectively. The other variables in this section
are termed specific because they set the value for a particular
stack or heap. A specific variable overrides a general variable if
both are specified as follows:

• The X1_COMMON_STACK_SIZE variable overrides the
X1_STACK_SIZE variable if both are specified.

• The X1_PRIVATE_STACK_SIZE variable overrides the
X1_STACK_SIZE if both are specified.

• The X1_LOCAL_HEAP_SIZE variable overrides the
X1_HEAP_SIZE variable if both are specified.

• The X1_SYMMETRIC_HEAP_SIZE overrides the
X1_HEAP_SIZE variable if both are specified.

The value you specify for a variable sets the size of a stack
or heap in bytes. This number can be expressed as a decimal
number, an octal number with a leading zero, or a hexadecimal
number with a leading "0x".

If you specify a number smaller than the page size you gave
to the aprun or mpirun command, the system will silently
enforce a single-page minimum size. If you do not use the aprun
command or do not specify a page size for aprun, the minimum
page size is set to 64 KB. Refer to the –p text:other option of
the aprun(1) man page for more information about page sizes.

Using the X1_PRIVATE_STACK_GAP and
X1_PRIVATE_STACK_SIZE environment variables together
to consolidate the private stacks may help applications that
have problems obtaining a sufficient number of large nontext
pages via the aprun or mpirun commands. When the private
stacks are consolidated, the pages that would have been used
by the other private stacks are freed so they can be used by
the application.

Each MSP used by an application uses four private stacks where
each private stack occupies an integral number of pages, but
if the application actually needs a private stack that is much
smaller than the integral number of pages, space is wasted. In
some of these cases, consolidating all four private stacks into
one segment will free up the wasted space so it can be used by

S–2179–51 53

Cray C and C++ Reference Manual

the application. For example, an application uses 256MB pages,
which means the size of each private stack is a multiple of 256
MB. If the application only needs 60MB for each private stack,
we can consolidate all four private stacks into a 256 MB page by
setting X1_PRIVATE_STACK_SIZE to 0x3c00000 (60MB) and
X1_PRIVATE_STACK_GAP to 0x400000 (4Mb). This packs the
four private stacks into one 256MB page with a 4MB guard
region between the stacks. This saves three 256MB physical
pages on each MSP.

Warning: You should be aware that there is no protection
against overflowing the private stacks; one private stack may
corrupt another with unpredictable results if stack overflow
occurs.

2.25 OpenMP Environment Variables

This section describes the OpenMP C API environment variables that control
the execution of parallel code. The names of environment variables must be
uppercase. The values assigned to them are case insensitive and may have
leading and trailing white space. Modifications to the values after the program
has started are ignored.

The environment variables are as follows:

• OMP_SCHEDULE sets the run time schedule type and chunk size

• OMP_NUM_THREADS sets the number of threads to use during execution

• OMP_DYNAMIC enables or disables dynamic adjustment of the number
of threads

• OMP_NESTED enables or disables nested parallelism

• OMP_THREAD_STACK_SIZE changes the size of the thread stack from the
default size of 16 MB to the specified size

The examples in this section only demonstrate how these variables might be set
in UNIX C shell (csh) environments:

setenv OMP_SCHEDULE "dynamic"

In Korn shell environments, the actions are similar, as follows:

export OMP_SCHEDULE="dynamic"

54 S–2179–51

Compiler Commands [2]

2.25.1 OMP_SCHEDULE

OMP_SCHEDULE applies only to for and parallel for directives that have the
schedule type runtime. The schedule type and chunk size for all such loops can
be set at run time by setting this environment variable to any of the recognized
schedule types and to an optional chunk_size.

For for and parallel for directives that have a schedule type other than
runtime, OMP_SCHEDULE is ignored. The default value for this environment
variable is implementation-defined. If the optional chunk_size is set, the value
must be positive. If chunk_size is not set, a value of 1 is assumed, except in the
case of a static schedule. For a static schedule, the default chunk size is set
to the loop iteration space divided by the number of threads applied to the loop.

Example:

setenv OMP_SCHEDULE "guided,4"

setenv OMP_SCHEDULE "dynamic"

2.25.2 OMP_NUM_THREADS

The OMP_NUM_THREADS environment variable sets the default number of threads
to use during execution, unless that number is explicitly changed by calling the
omp_set_num_threads library routine (see the omp_threads(3) man page) or
by an explicit num_threads clause on a parallel directive.

The value of the OMP_NUM_THREADS environment variable must be a positive
integer. Its effect depends upon whether dynamic adjustment of the number
of threads is enabled. For a comprehensive set of rules about the interaction
between the OMP_NUM_THREADS environment variable and dynamic adjustment
of threads, see Section 4.3, page 102.

If no value is specified for the OMP_NUM_THREADS environment variable, or if
the value specified is not a positive integer, or if the value is greater than the
maximum number of threads the system can support, the number of threads to
use is implementation-defined.

Example:

setenv OMP_NUM_THREADS 16

2.25.3 OMP_DYNAMIC

The OMP_DYNAMIC environment variable enables or disables dynamic
adjustment of the number of threads available for execution of parallel regions

S–2179–51 55

Cray C and C++ Reference Manual

unless dynamic adjustment is explicitly enabled or disabled by calling the
omp_set_dynamic library routine (see the omp_threads(3) man page). Its
value must be TRUE or FALSE. The default condition is FALSE.

If set to TRUE, the number of threads that are used for executing parallel regions
may be adjusted by the run time environment to best utilize system resources.

If set to FALSE, dynamic adjustment is disabled.

Example:

setenv OMP_DYNAMIC TRUE

2.25.4 OMP_NESTED

The OMP_NESTED environment variable enables or disables nested parallelism
unless nested parallelism is enabled or disabled by calling the omp_set_nested
library routine (see the omp_nested(3) man page). If set to TRUE, nested
parallelism is enabled; if it is set to FALSE, nested parallelism is disabled. The
default value is FALSE.

Example:

setenv OMP_NESTED TRUE

2.25.5 OMP_THREAD_STACK_SIZE

The OMP_THREAD_STACK_SIZE environment variable changes the size of the
thread stack from the default size of 16 MB to the specified size. The size of the
thread stack should be increased when thread-private variables may utilize
more than 16 MB of memory.

The requested thread stack space is allocated from the local heap when the
threads are created. The amount of space used by each thread for thread stacks
depend on whether you are using MSP or SSP mode. In MSP mode, the memory
used is five times the specified thread stack size because each SSP is assigned one
thread stack and one thread stack is used as the MSP common stack. For SSP
mode, the memory used is one times the specified thread stack size.

This is the format for the OMP_THREAD_STACK_SIZE environment variable:

OMP_THREAD_STACK_SIZE n

56 S–2179–51

Compiler Commands [2]

where n is a decimal number, an octal number with a leading zero, or a
hexadecimal number with a leading "0x" specifying the amount of memory, in
bytes, to allocate for a thread’s stack.

For more information about memory on the Cray X1 system, see the memory(7)
man page.

Example:

setenv OMP_THREAD_STACK_SIZE 18000000

S–2179–51 57

Cray C and C++ Reference Manual

58 S–2179–51

#pragma Directives [3]

#pragma directives are used within the source program to request certain kinds
of special processing. #pragma directives are part of the C and C++ languages,
but the meaning of any #pragma directive is defined by the implementation.
#pragma directives are expressed in the following form:

#pragma [_CRI] identifier [arguments]

The _CRI specification is optional and ensures that the compiler will issue a
message concerning any directives that it does not recognize. Diagnostics are not
generated for directives that do not contain the _CRI specification.

These directives are classified according to the following types:

• General

• Instantiation (Cray C++ only)

• Vectorization

• Scalar

• Inlining

• Multistreaming

Macro expansion occurs on the directive line after the directive name. That is,
macro expansion is applied only to arguments.

At the beginning of each section that describes a directive, information is
included about the compilers that allow the use of the directive, and the scope
of the directive. Unless otherwise noted, the following default information
applies to each directive:

Compiler: Cray C and Cray C++

Scope: Local and global

S–2179–51 59

Cray C and C++ Reference Manual

3.1 Protecting Directives

To ensure that your directives are interpreted only by the Cray C and C++
compilers, use the following coding technique in which directive represents the
name of the directive:

#if _CRAYC

#pragma _CRI directive
#endif

This ensures that other compilers used to compile this code will not interpret the
directive. Some compilers diagnose any directives that they do not recognize.
The Cray C and C++ compilers diagnose directives that are not recognized
only if the _CRI specification is used.

3.2 Directives in Cray C++

C++ prohibits referencing undeclared objects or functions. Objects and functions
must be declared prior to using them in a #pragma directive. This is not always
the case with C.

Some #pragma directives take function names as arguments (for
example: #pragma weak, #pragma suppress, #pragma inline, and
#pragma noinline). No overloaded or member functions (no qualified names)
are allowed for these directives. This limitation does not apply to the #pragma
directives for template instantiation. This is described in Section 7.5, page 149.

3.3 Loop Directives

Many directives apply to groups. Unless otherwise noted, these directives must
appear before a for, while, or do...while loop. These directives may also
appear before a label for if...goto loops. If a loop directive appears before a
label that is not the top of an if...goto loop, it is ignored.

3.4 Alternative Directive form: _Pragma

Compiler directives can also be specified in the following form, which has the
advantage in that it can appear inside macro definitions:

_Pragma("_CRI identifier");

60 S–2179–51

#pragma Directives [3]

This form has the same effect as using the #pragma form, except that everything
that appeared on the line following the #pragma must now appear inside the
double quotation marks and parentheses. The expression inside the parentheses
must be a single string literal, but it cannot be a macro that expands into a string
literal. _Pragma is an extension to the C and C++ standards.

The following is an example using the #pragma form:

#pragma _CRI ivdep

The following is the same example using the alternative form:

_Pragma("_CRI ivdep");

In the following example, the loop automatically vectorizes wherever the macro
is used:

#define SEARCH(A, B, KEY, SIZE, RES) \

{ \

int i; \

_Pragma("_CRI ivdep"); \

for (i = 0; i < (SIZE); i++) \

if ((A)[(B)[i]] == (KEY)) break; \

(RES)=i;

}

Macros are expanded in the string literal argument for _Pragma in an identical
fashion to the general specification of a #pragma directive.

3.5 General Directives

General directives specify compiler actions that are specific to the directive and
have no similarities to the other types of directives. The following sections
describe general directives.

3.5.1 [no]bounds Directive (Cray C Compiler)

The bounds directive specifies that pointer and array references are to be
checked. The nobounds directive specifies that this checking is to be disabled.

When bounds checking is in effect, pointer references are checked to ensure that
they are not 0 or are not greater than the machine memory limit. Array references
are checked to ensure that the array subscript is not less than 0 or greater than or
equal to the declared size of the array. Both directives take effect starting with the

S–2179–51 61

Cray C and C++ Reference Manual

next program statement in the compilation unit, and stay in effect until the next
bounds or nobounds directive, or until the end of the compilation unit.

These directives have the following format:

#pragma _CRI bounds

#pragma _CRI nobounds

The following example illustrates the use of the bounds directive:

int a[30];

#pragma _CRI bounds

void f(void)

{

int x;

x = a[30];

.

.

.

}

3.5.2 duplicate Directive (Cray C Compiler)

Scope: Global

The duplicate directive lets you provide additional, externally visible names
for specified functions. You can specify duplicate names for functions by using a
directive with one of the following forms:

#pragma _CRI duplicate actual as dupname...

#pragma _CRI duplicate actual as (dupname...)

The actual argument is the name of the actual function to which duplicate
names will be assigned. The dupname list contains the duplicate names that
will be assigned to the actual function. The dupname list may be optionally
parenthesized. The word as must appear as shown between the actual argument
and the comma-separated list of dupname arguments.

The duplicate directive can appear anywhere in the source file and it must
appear in global scope. The actual name specified on the directive line must be

62 S–2179–51

#pragma Directives [3]

defined somewhere in the source as an externally accessible function; the actual
function cannot have a static storage class.

The following example illustrates the use of the duplicate directive:

#include <complex.h>

extern void maxhits(void);

#pragma _CRI duplicate maxhits as count, quantity /* OK */

void maxhits(void)

{

#pragma _CRI duplicate maxhits as tempcount

/* Error: #pragma _CRI duplicate can’t appear in local scope */

}

double _Complex minhits;

#pragma _CRI duplicate minhits as lower_limit

/* Error: minhits is not declared as a function */

extern void derivspeed(void);

#pragma _CRI duplicate derivspeed as accel

/* Error: derivspeed is not defined */

static void endtime(void)

{

}

#pragma _CRI duplicate endtime as limit

/* Error: endtime is defined as a static function */

Because duplicate names are simply additional names for functions and are
not functions themselves, they cannot be declared or defined anywhere in the
compilation unit. To avoid aliasing problems, duplicate names may not be
referenced anywhere within the source file, including appearances on other
directives. In other words, duplicate names may only be referenced from outside
the compilation unit in which they are defined.

The following example references duplicate names:

S–2179–51 63

Cray C and C++ Reference Manual

void converter(void)

{

structured(void);

}

#pragma _CRI duplicate converter as factor, multiplier /* OK */

void remainder(void)

{

}

#pragma _CRI duplicate remainder as factor, structured

/* Error: factor and structured are referenced in this file */

Duplicate names can be used to provide alternate external names for functions,
as shown in the following examples.

main.c:

extern void fctn(void), FCTN(void);

main()

{

fctn();

FCTN();

}

fctn.c:

#include <stdio.h>

void fctn(void)

{

printf("Hello world\n");

}

#pragma _CRI duplicate fctn as FCTN

Files main.c and fctn.c are compiled and linked using the following
command line:

cc main.c fctn.c

64 S–2179–51

#pragma Directives [3]

When the executable file a.out is run, the program generates the following
output:

Hello world

Hello world

3.5.3 message Directive

The message directive directs the compiler to write the message defined by text
to stderr as a warning message. Unlike the error directive, the compiler
continues after processing a message directive. The format of this directive is
as follows:

#pragma _CRI message "text"

The following example illustrates the use of the message compiler directive:

#define FLAG 1

#ifdef FLAG

#pragma _CRI message "FLAG is Set"

#else

#pragma _CRI message "FLAG is NOT Set"

#endif

3.5.4 no_cache_alloc Directive

The no_cache_alloc directive is an advisory directive that specifies objects
that should not be placed into the cache. Advisory directives are directives the
compiler will honor if conditions permit it to. When this directive is honored, the
performance of your code may be improved because the cache is not occupied
by objects that have a lower cache hit rate. Theoretically, this makes room for
objects that have a higher cache hit rate.

Here are some guidelines that will help you determine when to use this directive.
This directive works only on objects that are vectorized. That is, other objects
with low cache hit rates can still be placed into the cache. Also, you should use
this directive for objects you feel should not be placed into the cache.

To use the directive, you must place it only in the specification part, before
any executable statement.

S–2179–51 65

Cray C and C++ Reference Manual

This is the form of the directive:

#pragma no_cache_alloc base_name [, base_name] ...

base_name specifies the base name of the object that should not be placed
into the cache. This can be the base name of any object such as an array, scalar
structure, etc., without member references like C[10]. If you specify a pointer
in the list, only the references, not the pointer itself, have the no cache allocate
property.

3.5.5 [no]opt Directive

Scope: Global

The noopt directive disables all automatic optimizations and causes
optimization directives to be ignored in the source code that follows the directive.
Disabling optimization removes various sources of potential confusion in
debugging. The opt directive restores the state specified on the command line
for automatic optimization and directive recognition. These directives have
global scope and override related command line options.

The format of these directives is as follows:

#pragma _CRI opt

#pragma _CRI noopt

66 S–2179–51

#pragma Directives [3]

The following example illustrates the use of the opt and noopt compiler
directives:

#include <stdio.h>

void sub1(void)

{

printf("In sub1, default optimization\n");

}

#pragma _CRI noopt

void sub2(void)

{

printf("In sub2, optimization disabled\n");

}

#pragma _CRI opt

void sub3(void)

{

printf("In sub3, optimization enabled\n");

}

main()

{

printf("Start main\n");

sub1();

sub2();

sub3();

}

3.5.6 weak Directive

Scope: Global

The weak directive specifies an external identifier that may remain unresolved
throughout the compilation. A weak external reference can be to a function or to
a data object. A weak external does not increase the total memory requirements
of your program.

Declaring an object as a weak external directs the loader to do one of these tasks:

• Link the object only if it is already linked (that is, if a strong reference exists);
otherwise, leave it is as an unsatisfied external. The loader does not display
an unsatisfied external message if weak references are not resolved.

S–2179–51 67

Cray C and C++ Reference Manual

• If a strong reference is specified in the weak directive, resolve all weak
references to it.

Note: The loader treats weak externals as unsatisfied externals, so they remain
silently unresolved if no strong reference occurs during compilation. Thus, it is
your responsibility to ensure that run time references to weak external names
do not occur unless the loader (using some "strong” reference elsewhere) has
actually loaded the entry point in question.

These are the forms of the weak directive:

#pragma _CRI weak var

#pragma
_CRI weak sym1 = sym2

var The name of an external

sym1 Defines an externally visible weak symbol

sym2 Defines an externally visible strong symbol defined in the current
compilation.

The first form allows you to declare one or more weak references on one line. The
second form allows you to assign a strong reference to a weak reference.

The weak directive must appear at global scope.

The attributes that weak externals must have depend on the form of the weak
directive that you use:

• First form, weak externals must be declared, but not defined or initialized, in
the source file.

• Second form, weak externals may be declared, but not defined or initialized,
in the source file.

• Either form, weak externals cannot be declared with a static storage class.

The following example illustrates these restrictions:

68 S–2179–51

#pragma Directives [3]

extern long x;

#pragma _CRI weak x /* x is a weak external data object */

extern void f(void);

#pragma _CRI weak f /* f is a weak external function */

extern void g(void);

#pragma _CRI weak g=fun; /* g is a weak external function

with a strong reference to fun */

long y = 4;

#pragma _CRI weak y /* ERROR - y is actually defined */

static long z;

#pragma _CRI weak z /* ERROR - z is declared static */

void fctn(void)

{

#pragma _CRI weak a /* ERROR - directive must be at global scope */

}

3.5.7 vfunction Directive

Scope: Global

The vfunction directive lists external functions that use the call-by-register
calling sequence. Such functions can be vectorized but must be written in Cray
Assembly Language (CAL). The format of this directive is as follows:

#pragma _CRI vfunction func

The func variable specifies the name of the external function.

The following example illustrates the use of the vfunction compiler directive:

S–2179–51 69

Cray C and C++ Reference Manual

extern double vf(double);

#pragma _CRI vfunction vf

void f3(int n) {

int i;

for (i = 0; i < n; i++) { /* Vectorized */

b[i] = vf(c[i]);

}

}

3.5.8 ident Directive

The ident directive directs the compiler to store the string indicated by text
into the object (.o) file. This can be used to place a source identification string
into an object file.

The format of this directive is as follows:

#pragma _CRI ident
text

3.6 Instantiation Directives

The Cray C++ compiler recognizes three instantiation directives. Instantiation
directives can be used to control the instantiation of specific template entities
or sets of template entities. The following directives are described in detail in
Section 7.5, page 149:

• #pragma _CRI instantiate

• #pragma _CRI do_not_instantiate

• #pragma _CRI can_instantiate

• The #pragma _CRI instantiate directive causes a specified entity to
be instantiated.

• The #pragma _CRI do_not_instantiate directive suppresses the
instantiation of a specified entity. It is typically used to suppress the
instantiation of an entity for which a specific definition is supplied.

70 S–2179–51

#pragma Directives [3]

• The #pragma _CRI can_instantiate directive indicates that a specified
entity can be instantiated in the current compilation, but need not be. It is
used in conjunction with automatic instantiation to indicate potential sites for
instantiation if the template entity is deemed to be required by the compiler.

See Chapter 7, page 143 for more information on template instantiation.

3.7 Vectorization Directives

Because vector operations cannot be expressed directly in Cray C and C++, the
compilers must be capable of vectorization, which means transforming scalar
operations into equivalent vector operations. The candidates for vectorization
are operations in loops and assignments of structures. For more information,
see Optimizing Applications on the Cray X1 System.

The subsections that follow describe the compiler directives used to control
vectorization.

3.7.1 ivdep Directive

Scope: Local

The ivdep directive tells the compiler to ignore vector dependencies for
the loop immediately following the directive. Conditions other than vector
dependencies can inhibit vectorization. If these conditions are satisfactory, the
loop vectorizes. This directive is useful for some loops that contain pointers and
indirect addressing. The format of this directive is as follows:

#pragma _CRI ivdep

The following example illustrates the use of the ivdep compiler directive:

p = a; q = b;

#pragma _CRI ivdep

for (i = 0; i < n; i++) { /* Vectorized */

*p++ = *q++;

}

On the Cray X1 system, the compiler assumes an infinite safe vector length; that
is, any vector length can safely be used to vectorize the loop. You can use the -h
[no]infinitevl compiler option to change this behavior.

S–2179–51 71

Cray C and C++ Reference Manual

3.7.2 nopattern Directive

Scope: Local

The nopattern directive disables pattern matching for the loop immediately
following the directive.

The format of this directive is as follows:

#pragma _CRI nopattern

By default, the compiler detects coding patterns in source code sequences and
replaces these sequences with calls to optimized library functions. In most cases,
this replacement improves performance. There are cases, however, in which this
substitution degrades performance. This can occur, for example, in loops with
very low trip counts. In such a case, you can use the nopattern directive to
disable pattern matching and cause the compiler to generate inline code.

In the following example, placing the nopattern directive in front of the outer
loop of a nested loop turns off pattern matching for the matrix multiply that takes
place inside the inner loop:

double a[100][100], b[100][100], c[100][100];

void

nopat(int n)

{

int i, j, k;

#pragma _CRI nopattern

for (i=0; i < n; ++i) {

for (j = 0; j < n; ++j) {

for (k = 0; k < n; ++k) {

c[i][j] += a[i][k] * b[k][j]

}

}

}

}

3.7.3 novector Directive

Scope: Local

72 S–2179–51

#pragma Directives [3]

The novector directive directs the compiler to not vectorize the loop that
immediately follows the directive. It overrides any other vectorization-related
directives, as well as the -h vector and -h ivdep command line options. The
format of this directive is as follows:

#pragma _CRI novector

The following example illustrates the use of the novector compiler directive:

#pragma _CRI novector

for (i = 0; i < h; i++) { /* Loop not vectorized */

a[i] = b[i] + c[i];

}

3.7.4 novsearch Directive

Scope: Local

The novsearch directive directs the compiler to not vectorize the search loop
that immediately follows the directive. A search loop is a loop with one or more
early exit statements. It overrides any other vectorization-related directives as
well as the -h vector and -h ivdep command line options. The format of
this directive is as follows:

#pragma _CRI novsearch

The following example illustrates the use of the novsearch compiler directive:

#pragma _CRI novsearch

for (i = 0; i < h; i++) { /* Loop not vectorized */

if (a[i] < b[i]) break;

a[i] = b[i];

}

3.7.5 prefervector Directive

Scope: Local

The prefervector directive tells the compiler to vectorize the loop that
immediately follows the directive if the loop contains more than one loop in the
nest that can be vectorized. The directive states a vectorization preference and
does not guarantee that the loop has no memory dependence hazard.

S–2179–51 73

Cray C and C++ Reference Manual

The format of this directive is as follows:

#pragma _CRI prefervector

The following example illustrates the use of the prefervector directive:

#pragma _CRI prefervector

for (i = 0; i < n; i++) {

#pragma _CRI ivdep

for (j = 0; j < m; j++)

a[i] += b[j][i];

}

In the preceding example, both loops can be vectorized, but the directive directs
the compiler to vectorize the outer for loop. Without the directive and without
any knowledge of n and m, the compiler vectorizes the inner for loop. In this
example, the outer for loop is vectorized even though the inner for loop had
an ivdep directive.

3.7.6 safe_address Directive

Scope: Local

The safe_address directive allows you to tell the compiler that it is safe to
speculatively execute memory references within all conditional branches of a
loop. In other words, you know that these memory references can be safely
executed in each iteration of the loop.

For most code, the safe_address directive can improve performance
significantly by preloading vector expressions. However, most loops do not
require this directive to have preloading performed. The directive is only
required when the safety of the operation cannot be determined or index
expressions are very complicated.

The safe_address directive is an advisory directive. That is, the compiler may
override the directive if it determines the directive is not beneficial.

If you do not use the directive on a loop and the compiler determines that it
would benefit from the directive, it issues a message indicating such. The
message is similar to this:

CC-6375 cc: VECTOR File = ctest.c, Line = 6

A loop would benefit from "#pragma safe_address".

74 S–2179–51

#pragma Directives [3]

If you use the directive on a loop and the compiler determines that it does
not benefit from the directive, it issues a message that states the directive is
superfluous and can be removed.

To see the messages you must use the -hreport=v option.

Incorrect use of the directive can result in segmentation faults, bus errors, or
excessive page faulting. However, it should not result in incorrect answers.
Incorrect usage can result in very severe performance degradations or program
aborts.

This is the syntax of the safe_address directive:

#pragma safe_address

In the example below, the compiler will not preload vector expressions, because
the value of j is unknown. However, if you know that references to b[i][j] is
safe to evaluate for all iterations of the loop, regardless of the condition, we can
use the SAFE_ADDRESS directive for this loop as shown below:

void x3(double a[restrict 1000], int j)

{

int i;

#pragma safe_address

for (i = 0; i < 1000; i++) {

if (a[i] != 0.0) {

b[j][i] = 0.0;

}

}

}

With the directive, the compiler can load b[i][j] with a full vector mask, merge
0.0 where the condition is true, and store the resulting vector using a full mask.

3.7.7 shortloop and shortloop128 Directives

Scope: Local

The shortloop and shortloop128 directives improve performance of a
vectorized loop by allowing the compiler to omit the run time test to determine
whether it has been completed. The shortloop compiler directive identifies
vector loops that execute with a maximum iteration count of 64 and a minimum
iteration count of 1. The shortloop128 compiler directive identifies vector

S–2179–51 75

Cray C and C++ Reference Manual

loops that execute with a maximum iteration count of 128 and a minimum
iteration count of 1. If the iteration count is outside the range for the directive,
results are unpredictable.

These directives are ignored if the loop trip count is known at compile time and
is greater than the target machine’s vector length. The maximum hardware
vector length is 64.

The formats of these directives are as follows:

#pragma _CRI shortloop

#pragma _CRI shortloop128

The following examples illustrate the use of the shortloop and shortloop128
directives:

#pragma _CRI shortloop

for (i = 0; i < n; i++) { /* 1< = n < = 64 */

a[i] = b[i] + c[i];

}

#pragma _CRI shortloop128

for (i = 0; i < n; i++) { /* 1 < = n < = 128 */

a[i] = b[i] + c[i];

}

3.8 Multistreaming Processor (MSP) Directives

This section describes the multistreaming processor (MSP) optimization
directives. For information about MSP compiler option, refer to Section 2.11, page
24 and for streaming intrinsics, refer to Appendix F, page 223.

The MSP directives work with the -h streamn command line option to
determine whether parts of your program are optimized for the MSP. The
level of streaming must be greater than 0 in order for these directives to be
recognized. For more information on the -h streamn command line option,
see Section 2.11.1, page 24.

The MSP #pragma directives are as follows:

• #pragma nostream (see the following section)

• #pragma preferstream (see Section 3.8.3, page 79)

76 S–2179–51

#pragma Directives [3]

3.8.1 ssp_private Directive (cc, c99)

The ssp_private directive allows the compiler to stream loops that contain
function calls. By default, the compiler does not stream loops containing function
calls, because the function may cause side effects that interfere with correct
parallel execution. The ssp_private directive asserts that the specified function
is free of side effects that inhibit parallelism and that the specified function, and
all functions it calls, will run on an SSP.

An implied condition for streaming a loop containing a call to a function
specified with the ssp_private directive is that the loop body must not contain
any data reference patterns that prevent parallelism. The compiler can disregard
an ssp_private directive if it detects possible loop-carried dependencies that
are not directly related to a call inside the loop.

Note: The ssp_private directive affects only whether or not loops are
automatically streamed. It has no effect on loops within CSD parallel regions.

When using the ssp_private directive, you must ensure that the function
called within the body of the loop follows these criteria:

• The function does not modify an object in one iteration and reference this
same data in another iteration of the streamed loop.

• The function does not reference data in one iteration that is defined in another
iteration.

• If the function modifies data, the iterations cannot modify data at the same
storage location, unless these variables are scoped as PRIVATE. Following the
streamed loop, the content of private variables are undefined.

The ssp_private directive does not force the master thread to execute the
last iteration of the streamed loop.

• If the function uses shared data that can be written to and read, you must
protect it with a guard (such as the CSD critical directive or the lock
command) or have the SSPs access the data disjointedly (where access does
not overlap).

• The function calls only other routines that are capable of being called
privately.

• The function calls I/O properly.

Note: The preceding list assumes that you have a working knowledge of
race conditions.

S–2179–51 77

Cray C and C++ Reference Manual

To use the ssp_private directive, it must placed in the specification part, before
any executable statements. This is the syntax of the ssp_private directive:

#pragma ssp_private PROC_NAME[, PROC_NAME] ...

PROC_NAME is the name of a function. Any number of ssp_private
directives may be specified in a function. If a function is specified with the
ssp_private directive, the function retains this attribute throughout the entire
program unit. Also, the ssp_private directive is considered a declarative
directive and must be specified before the start of any executable statements.

The following example demonstrates use of the ssp_private pragma:

/* Code in example.c */

extern void poly_eval(float *y, float x, int m, float p[m]);

#pragma _CRI ssp_private poly_eval

void example(int n, int m, float x[n], float y[n], float p[])

{

int i;

for (i = 0; i < n; ++i) {

poly_eval(&y[i], x[i], m, p);

}

}

/* Code in example poly_eval.c */

void poly_eval(float *y, float x, int m, float p[])

{

float result = p[m];

int i;

for (i = m-1; m >= 0; --m) {

result = x * result + p[i];

}

*y = result;

}

This example compiles the code:

cc -c example.c

cc -c -h gen_private_callee poly_eval.c

cc example.o poly_eval.o -o example

78 S–2179–51

#pragma Directives [3]

Now run the code:

% aprun -L1 example

SSP private routines are appropriate for user-specified math support functions.
Intrinsic math functions, like COS are effectively SSP private routines.

3.8.2 nostream Directive

Scope: Local

The #pragma nostream directive directs the compiler to not perform MSP
optimizations on the loop that immediately follows the directive. It overrides any
other MSP-related directives as well as the -h streamn command line option.

The format of this directive is as follows:

#pragma _CRI nostream

The following example illustrates the use of the nostream directive:

#pragma _CRI nostream

for (i = 0; i < n1; i++) {

x[i] = y[i] + z[i]

}

3.8.3 preferstream Directive

Scope: Local

The preferstream directive tells the compiler to multistream the following
loop. It can be used when one of these conditions apply:

• The compiler issues a message saying there are too few iterations in the loop
to make multistreaming worthwhile.

• The compiler streams a loop in a loop nest, and you want it to stream a
different eligible loop in the same nest.

The format of this directive is as follows:

#pragma _CRI preferstream

S–2179–51 79

Cray C and C++ Reference Manual

The following example illustrates the use of the preferstream directive:

for (j = 0; j< n2; j++) {

#pragma _CRI preferstream

for (i = 0; i < n1; i++) {

a[j][i] = b[j][i] + c[j][i]

}

}

3.9 Cray Streaming Directives (CSDs)

The Cray streaming directives (CSDs) consist of six non-advisory directives
which allow you to more closely control multistreaming for key loops in C
and C++ programs. Non-advisory means that the compiler must honor these
directives. The intention of these directives is not to create an additional parallel
programming style or demand large effort in code development. They are meant
to assist the compiler in multistreaming your program. On its own, the compiler
should perform multistreaming correctly in most cases. However, if you feel
that multistreaming for key loops is not occurring as you desire, then use the
CSDs to override the compiler.

CSDs are modeled after the OpenMP directives and are compatible with Pthreads
and all distributed-memory parallel programming models on Cray X1 systems.
Multistreaming advisory directives (MSP directives) and CSDs cannot be mixed
within the same block of code.

Before explaining guidelines and other issues, you need an understanding of
these CSD items:

• CSD parallel regions

• CSD parallel defines a CSD parallel region.

• CSD for multistreams a for loop

• CSD parallel for, combines the CSD parallel and for directives
into one directive.

• CSD sync, synchronizes all SSPs within an MSP

• CSD critical, defines a critical section of code.

• ordered, specifies SSPs execute in order

When you are familiar with the directives, these topics will be beneficial to you:

80 S–2179–51

#pragma Directives [3]

• Using CSDs with Cray programming models

• CSD Placement

• Protection of shared data

• Dynamic memory allocation for CSD parallel regions

• Compiler options affecting CSDs

Note: Refer to Optimizing Applications on the Cray X1 System for information
about how to use the CSDs to optimize your code.

3.9.1 CSD Parallel Regions

CSDs are applied to a block of code (for example a loop), which will be referred
to as the CSD parallel region. All CSDs must be used within this region. You
must not branch into or out of the region.

Multiple CSD parallel regions can exist within a program, however, only one
parallel region will be active at any given time. For example, if a parallel region
calls a function containing a parallel region, the function will execute as if it did
not contain a parallel region.

The CSD parallel region can contain loops and nonloop constructs, but only loops
are multistreamed. Parallel execution of nonloop constructs, such as initializing
variables for the targeted loop, are performed redundantly on all SSPs. Functions
called from the region will be multistreamed, however you must guarantee that
the function does not cause any side effects. Parallel execution of the function
is independent and redundant on all SSPs, except for code blocks containing
standalone CSDs. Refer to Section 3.9.9, page 89.

3.9.2 parallel Directive

The parallel directive defines the CSD parallel region, tells the compiler to
multistream the region, and specifies private data objects. All other CSDs must
be used within the region. You cannot place the parallel directive in the
middle of a construct.

This is the form of the parallel directives:

#pragma csd parallel [private(list)] [ordered]
{

structured_block

} /* End of CSD parallel region */

S–2179–51 81

Cray C and C++ Reference Manual

The private clause allows you to specify data objects that are private to each
SSP within the CSD parallel region; that is, each SSP has its own copy of that
object and is not shared with other SSPs. The main reason for having private
objects is because updating them within the CSD parallel region could cause
incorrect updates because of race conditions on their addresses. The list argument
specifies a comma separated list of objects to make private.

By default the variables used for loop indexing are assumed to be private. Other
variables, unless specified in the private clause, are assumed to be shared.

You may need to take special steps when using private variables. If a data object
existed before the parallel region is entered and the object is made private, the
object may not have the same contents inside of the region as it did outside the
region. The same is true when exiting the parallel region. This same object
may not have the same content outside of the region as it did within the
region. Therefore, if you desire that a private object keep the same value when
transitioning in and out of the parallel region, copy its value to a protected shared
object so you can copy it back into the private object later.

The ordered clause is needed if there is within the parallel region, but outside
the loops within the region, any call to a function containing a CSD ordered
directive. That is, if only the loops contain calls to functions that contain the CSD
ordered directive, the clause is not needed. If the clause is used and there are no
called functions containing a CSD ordered directive, the results produced by the
code encapsulated by the directive will be correct, but performance of that code
will be slightly degraded. If the ordered clause is missing and there is a called
function containing a CSD ordered directive, your results will be incorrect. The
following example shows when the ordered clause is needed:

#pragma csd parallel ordered

{

fun(); /* fun contains ordered directive */

for_loop_block

. . .

}

The end of the CSD parallel region has an implicit barrier synchronization. The
implicit barrier protects an SSP from prematurely accessing shared data.

Note: At the point of the parallel directive, all SSPs are enabled and are
disabled at the end of the CSD parallel region.

This example shows how to use the parallel directive:

#pragma csd parallel private(jx)

82 S–2179–51

#pragma Directives [3]

{

x = 2 * PI; /* This line is computed on all SSPs */

for(i=1; NN; i++)

{

jx = y[i] * z[i] * x; /* jx is private to each SSP */

...

}

} /* End of CSD parallel region */

3.9.3 CSD for Directive

The compiler distributes among the SSPs the iteration of for loops modified
by the CSD for directive. Iterations of for loops not modified by the CSD for
directives are not distributed among the SSPs, but are all redundantly executed
on all SSPs.

Refer to Section 3.9.9, page 89 for placement restrictions of the CSD for directive.

This is the syntax of the CSD for directive:

#pragma csd for [schedule(static [, chunk_size])] [nowait] [ordered]
for_statement

{

...

} /* End of for loop and CSD for region */

The schedule clause specifies how the loop iterations are distributed among the
SSPs. This iteration distribution is fixed (static) at compile time and cannot be
changed by run time events.

The iteration distribution is calculated by you or the compiler. You or the
compiler will divide the number of iterations into groups or chunks. The compiler
will then statically assign the chunks to the 4 SSPs in a round-robin fashion
according to iteration order (in other words, from the first iteration to the last
iteration). Therefore, an SSP could have one or more chunks. The number
of iterations in each chunk is called the chunk size which is specified by the
chunk_size argument.

You can use these tips to calculate the chunk size:

• Balance the parallel work load across all 4 SSPs (the number of SSPs in an
MSP) by dividing the number of iterations by 4. If you have a remainder,
add one to the chunk size. Using 4 chunks gives you the best performance,
because less overhead is incurred when using fewer chunks per SSP.

S–2179–51 83

Cray C and C++ Reference Manual

• The work load distribution among the SSPs will be imbalanced if the chunk
size is greater than 1/4th of the total number of iterations.

• If the chunk size is greater than the total number of iterations, the first SSP
(SSP0) will do all the work.

The compiler calculates the iteration distribution (chunk_size) if the schedule
clause or chunk_size argument is not specified. The value used is dependent
on the conditions shown in Table 7.

Table 7. Compiler-calculated Chunk Size

Calculated chunk
size Condition

1 When a sync, critical, or ordered CSD directive or
a function call appears in the loop.

Iterations / 4 The number of iterations are divided as evenly as
possible into four chunks if these are not present in the
CSD parallel region: sync, critical, or ordered
directive or a function call.

An implicit barrier synchronization occurs at the end of the for region, unless
the nowait clause is also specified. The implicit barrier protects an SSP from
prematurely accessing shared data. The nowait clause assumes that you are
guaranteeing that consumption-before-production cannot occur.

The ordered clause is needed if the for loop encapsulated by the CSD for
directive calls any function containing a CSD ordered directive. If the clause
is used and there are no called functions containing a CSD ordered directive,
the results produced by the code encapsulated by the directive will be correct,
but performance of that code will be slightly degraded. If the ordered clause is
missing and there is a called function containing a CSD ordered directive, the
results produced by the code encapsulated by the directive will be incorrect. The
following example shows when the ORDERED clause is needed:

#pragma csd parallel

{

...

#pragma csd for ordered

for(i=1, i<n; i++)

fun(i) /* fun contains ordered directive */

}

84 S–2179–51

#pragma Directives [3]

The following examples illustrate compiler and user calculated chunk sizes.
For this example, the compiler calculates the chunk size as 1, because of the
function call (a chunk size of 1 causes SSP0 to perform iterations 1, 5, 9, ... ,
SSP1 to perform iterations 2, 6, 10, ...):

#pragma csd for

for(i=1; num_samples; i++)

{

process_sample(sample[i]);

} /* End of CSD for region */

For this example, because there are no sync, critical, or ordered
directives, or subprogram calls, the compiler calculates the chunk size as
(arraySize + 3) / 4):

#pragma csd for

for(i=1; arraySize; i++)

{

product[i] = operand[i] * operand[i];

} /* End of CSD for region */

Adding 3 to the array size produces an optimal chunk size by grouping the
maximum number of iterations into 4 chunks.

This example specifies the schedule clause and a chunk size of 128:

#pragma csd for schedule(static, 128)

for(i=1; array_size; i++)

{

product[i] = operand[i] * operand[i];

} /* End of CSD for region */

In the above example, the compiler will use the chunk size based on this
statement min(array_size, 128). If the chunk size is larger than the array
size, the compiler will use the array as the chunk size. If this is the case, then
all the work will be done by SSP0.

3.9.4 parallel for Directive

The parallel for directive combines most of the functionality of the CSD
parallel and for directives into one directive. The parallel for directive is
used on a single for loop that contains or does not contain nested loops and is
the equivalent to the following statements:

#pragma csd parallel [private(list)]

S–2179–51 85

Cray C and C++ Reference Manual

{

#pragma csd for [schedule(static [, chunk])]
for_loop_block

} /* End of CSD parallel for region */

The differences between the parallel for and its counter parts include the
lack of the nowait clause, because it is not needed.

This is the form of the parallel for directive:

#pragma csd parallel for [private(list)] [schedule(static
[, chunk_size])]
for_statement

{

loop_block

} /* End of CSD parallel for region */

For a description the parallel for directive, refer to the parallel and for
directives at Section 3.9.2, page 81 and Section 3.9.3, page 83.

3.9.5 sync Directive

The sync directive synchronizes all SSPs within a multistreaming processor
(MSP) and may under certain conditions synchronize memory with physical
storage by calling msync. The sync directive is normally used where additional
intra-MSP synchronization is needed to prevent race conditions caused by forced
multistreaming.

The sync directive can appear anywhere within the CSD parallel region, even
within the CSD for and parallel for directives. If the sync directive
appears within a CSD parallel region, but outside of an enclosed CSD for
directive, then it performs an msync on all four SSPs.

This example shows how to use the sync directive:

#pragma csd parallel for private(j)

{

for(i=1; 4; i++)

{

for(j=1; 100000; j++)

{

x[j][i] = ... /* Produce x */

}

#pragma csd sync

86 S–2179–51

#pragma Directives [3]

for(j=1; 100000; j++)

{

... = x[j][5-i] * ... /* Consume x */

}

}

}

The two inner loops provide a producer and consumer pair for array x. The
sync directive prevents the use of the array by the second inner loop before
it is completely populated.

3.9.6 critical Directive

The critical directive specifies a critical region where only one SSP at a time
will execute the enclosed region.

This is the form of the critical directive:

#pragma csd critical

{

block_of_code
} /* End of critical region */

This example performs a streamed sum reduction of a and uses the critical
directive to calculate the complete sum:

sum = 0 /* Shared variable */

#pragma csd parallel private(private_sum)

{

private_sum = 0;

#pragma csd for

for(i=1; a_size; i++)

{

private_sum = private_sum + a(i);

}

#pragma csd critical

{

sum = sum + private_sum;

}

}

S–2179–51 87

Cray C and C++ Reference Manual

3.9.7 CSD ordered Directive

The ordered directive allows you to have loops with particular dependencies on
other loops in the parallel region by ensuring the execution order of the SSPs.
That is, SSP0 completes execution of its block of code in the ordered region before
SSP1 executes that same block of code; SSP1 completes execution of that block of
code before SSP2 can execute it, etc.

If the CSD ordered directive is placed in a function that is called from a parallel
region, the CSD parallel, parallel for, or for directives that encapsulate
the call may also need the ordered clause to ensure correct results. See the
appropriate CSD directive for more information.

This is the format of the ordered directive:

#pragma csd ordered

{

block_of_code
} /* End of ordered region */

In following example, successive iterations of the loop depend upon previous
iterations, because of a[i-1] and a[i-2] on the right side of the first
assignment statement. The ordered directive ensures that each computation of
a[i] is complete before the next iteration (which occurs on the next SSP) uses
this value as its a[i-1] and similarly for a[i-2]:

#pragma csd parallel for schedule(static, 1)

for(i=3; a_size; i++)

{

#pragma csd ordered

{

a[i] = a[i-1] + a[i-2];

}

... /* other processing */

}

If the execution time for the code indicated by the other processing
comment is larger than the time to compute the assignment within the ordered
directive, then the loop will mostly run concurrently on the 4 SSPs, even if the
ordered directive is used.

88 S–2179–51

#pragma Directives [3]

3.9.8 Nested CSDs Within Cray Parallel Programming Models

CSDs can be mixed with all parallel programming models within the same
program on Cray X1 systems. If you nest them, the CSDs must be at the inner
most level. These are the nesting levels:

1. Distributed memory models (MPI, SHMEM, UPC, and Fortran co-arrays)

2. Shared memory models (OpenMP and Pthreads)

3. Nonadvisory directives (CSDs)

If the shared or distributed memory model is used, then you can nest the CSDs
within either one. These models cannot be nested within the CSDs. If both
memory models are used, then the CSDs must be nested within the shared
memory model, and the shared memory model nested within the distributed
memory model.

3.9.9 CSD Placement

CSDs must be used within the CSD parallel region as defined by the parallel
directive. Some must be used where the parallel directives are used; that is,
used within the same block of code. Other CSDs can be used in the same block
of code or be placed in a function and called from the parallel region (in effect,
appearing as if they were within the parallel region). These CSDs will be referred
to as standalone CSDs.

The CSD for directive is the only one that must be used within the same block of
code as this example shows:

#pragma csd parallel

{

...

#pragma csd for

for_loop_block

...

}

The standalone CSDs are sync, critical, and ordered. If standalone CSDs
are placed in a function and the function is not called from a parallel region, the
code will execute as if no CSD code exists.

S–2179–51 89

Cray C and C++ Reference Manual

3.9.10 Protection of Shared Data

Updates to shared data by functions called from a CSD parallel region, must be
protected against simultaneous access by SSPs used for the CSD parallel region.
Shared data are statically allocated data objects (such as globals or data defined in
a static files), dynamically allocated data objects pointed to by more than one SSP,
and subprogram formal arguments where corresponding actual arguments are
shared. Protecting your shared data includes using the private list of these CSD
items: parallel directive, critical directive, or for loop indices.

Accesses to shared arrays made within a CSD for loop are implicitly private
and therefore protected if the accesses use indices that involve the loop control
variable of the for loop.

This example shows access to the sum shared array using loop control variable i:

...

for(i=1; array_size; i++)

{

sum[i] = sum[i] + 1

}

The critical directive can protect writes to shared data by ensuring that only
one SSP at any one time can execute the enclosed code that accesses the shared
data.

Using the for loop indices when accessing array elements is another way to
protect your shared data. Within a CSD parallel region, iterations of a for loop
are distributed among the SSPs. This distribution can be used to divide the array
among the SSPs, if the iteration of the for loop are used to access the array. If
each SSP accesses only its portion of the array, then in a sense, that portion of the
array is private to the SSP.

The following example illustrates this principle. The example performs a sum
reduction on the entire shared a array by doing an intermediate sum reduction
on all SSPs to the shared inter_sum vector and a final reduction on a single SSP
to the sum scalar. The inter_sum array is the shared array to consider.

int a[SIZE1, SIZE2];

int inter_sum[SIZE2];

int sum;

#pragma csd parallel for private(inter_sum)

for(i=1; SIZE2; i++)

{

inter_sum[i] = 0;

90 S–2179–51

#pragma Directives [3]

for(j=i; SIZE1; j++)

{

inter_sum[i] = inter_sum[i] + a[j][i];

}

}

sum = 0;

for(i=1; SIZE2; i++)

{

sum = sum + inter_sum[i];

}

Although the inter_sum array is shared within the parallel region, the accesses
to it are private, because all accesses are indexed by the loop control variable of
the loop to which the CSD for was applied.

3.9.11 Dynamic Memory Allocation for CSD Parallel Regions

There are certain precautions you should remember as you allocate or deallocate
dynamic memory for private or shared data objects.

Calls to the libc dynamic memory allocation routines (malloc, free, etc.)
within CSD parallel regions must be made by only one SSP at a time. In general,
this will require that they be made from within CSD critical regions. This
requirement may be relaxed in future releases.

Dynamic memory for private data objects specified by the private list of the
parallel directive must be allocated and deallocated within the CSD parallel
region. Dynamic memory cannot be allocated for private objects before entering
the CSD parallel region and made private when within the region.

Dynamic memory can be allocated for shared data objects outside or within the
CSD parallel region. If memory for the shared object is allocated or deallocated
within the CSD parallel region, you must ensure that it is allocated or deallocated
by only one SSP.

This example shows how to ensure that only one SSP deallocates the memory
for private variable a:

...

real *a;

...

S–2179–51 91

Cray C and C++ Reference Manual

#pragma csd parallel private(a)

{

malloc(a SIZE1);

...

free(a);

}

3.9.12 Compiler Options Affecting CSDs

To enable CSDs, compile your code with the -h streamn option with n set to 1
or greater. Also, specify the -h gen_private_callee option to compile
procedures called from the CSD parallel region. To disable CSDs, specify the
-h stream0 option.

3.10 Scalar Directives

This section describes the scalar optimization directives, which control aspects of
code generation, register storage, and so on.

3.10.1 concurrent Directive

Scope: Local

The concurrent directive indicates that no data dependence exists between
array references in different iterations of the loop that follows the directive. This
can be useful for vectorization and multistreaming optimizations.

The format of the concurrent directive is as follows:

#pragma _CRI concurrent [safe_distance=n]

n An integer constant between 1 and 63, specifying that no
dependencies exist between any iteration of the loop and n
subsequent iterations. The concurrent directive is not ignored if
the safe_distance clause is used and MSP optimizations,
streaming, or vectorization is requested on the command line.

In the following example, the concurrent directive indicates that the
relationship, k>=3, is true. The compiler will safely load all the array references
x[i-k], x[i-k+1], x[i-k+2], and x[i-k+3] during i-th loop iteration.

92 S–2179–51

#pragma Directives [3]

#pragma _CRI concurrent safe_distance=3

for (i = k + 1; i < n;i++) {

x[i] = a[i] + x[i-k]

}

3.10.2 nointerchange Directive

Scope: Local

The nointerchange directive inhibits the compiler’s ability to interchange the
loop that follows the directive with another inner or outer loop.

The format of this directive is as follows:

#pragma _CRI nointerchange

In the following example, the nointerchange directive prevents the iv loop
from being interchanged by the compiler with either the jv loop or the kv loop:

for (jv = 0; jm < 128; jv++) {

#pragma nointerchange

for (iv = 0; iv < m; iv++) {

for (kv = 0; kv < n; kv++) {

p1[iv][jv][kv] = pw[iv][jv][kv] * s;

}

}

}

3.10.3 noreduction Directive

Scope: Local

The noreduction compiler directive tells the compiler to not optimize the loop
that immediately follows the directive as a reduction loop. If the loop is not a
reduction loop, the directive is ignored.

A reduction loop is a loop that contains at least one statement that reduces an
array to a scalar value by doing a cumulative operation on many of the array
elements. This involves including the result of the previous iteration in the
expression of the current iteration.

S–2179–51 93

Cray C and C++ Reference Manual

You may choose to use this directive when the loop iteration count is small
or when the order of evaluation is numerically significant. It overrides any
vectorization-related directives as well as the -h vector and -h ivdep
command line options.

The noreduction directive disables vectorization of any loop that contains a
reduction. The specific reductions that are disabled are summation and product
reductions, and alternating value computations. The directive also prevents the
compiler from rewriting loops involving multiplication or exponentiation by an
induction variable to be a series of additions or multiplications of a value.

Regardless of platform, however, the format of this directive is as follows:

#pragma _CRI noreduction

The following example illustrates the use of the noreduction compiler
directive:

sum = 0;

#pragma _CRI noreduction

for (i = 0; i < n; i++) {

sum += a[i];

}

3.10.4 suppress Directive

The suppress directive suppresses optimization in two ways, determined by its
use with either global or local scope.

The global scope suppress directive specifies that all associated local variables
are to be written to memory before a call to the specified function. This ensures
that the value of the variables will always be current. The global suppress
directive takes the following form:

#pragma _CRI suppress func...

The local scope suppress directive stores current values of the specified
variables in memory. If the directive lists no variables, all variables are stored
to memory. This directive causes the values of these variables to be reloaded
from memory at the first reference following the directive. The local suppress
directive has the following format:

94 S–2179–51

#pragma Directives [3]

#pragma _CRI suppress [var] ...

The net effect of the local suppress directive is similar to declaring the affected
variables to be volatile except that the volatile qualifier affects the entire
program whereas the local suppress directive affects only the block of code
in which it resides.

3.10.5 [no]unroll Directive

Scope: Local

The unrolling directive allows the user to control unrolling for individual loops
or to specify no unrolling of a loop. Loop unrolling can improve program
performance by revealing cross-iteration memory optimization opportunities
such as read-after-write and read-after-read. The effects of loop unrolling also
include:

• Improved loop scheduling by increasing basic block size

• Reduced loop overhead

• Improved chances for cache hits

The format for this compiler directive is as follows:

#pragma _CRI [no]unroll [[n]]

The nounroll directive disables loop unrolling for the next loop and does not
accept the integer argument n. The nounroll directive is equivalent to the
unroll 0 and unroll 1 directives.

The n argument applies only to the unroll directive and specifies no loop
unrolling (n = 0 or 1) or the total number of loop body copies to be generated (2
≤ n ≤ 63).

If you do not specify a value for n, the compiler will determine the number of
copies to generate based on the number of statements in the loop nest.

!
Caution: If placed prior to a noninnermost loop, the unroll directive asserts
that the following loop has no dependencies across iterations of that loop. If
dependencies exist, incorrect code could be generated.

The unroll compiler directive can be used only on loops with iteration counts
that can be calculated before entering the loop. If unroll is specified on a

S–2179–51 95

Cray C and C++ Reference Manual

loop that is not the innermost loop in a loop nest, the inner loops must be
nested perfectly. That is, all loops in the nest can contain only one loop, and
the innermost loop can contain work.

The compiler may do additional unrolling over the amount requested by the user.

In the following example, assume that the outer loop of the following nest will be
unrolled by 2:

#pragma _CRI unroll 2

for (i = 0; i < 10; i++) {

for (j = 0; j < 100; j++) {

a[i][j] = b[i][j] + 1;

}

}

With outer loop unrolling, the compiler produces the following nest, in which the
two bodies of the inner loop are adjacent to each other:

for (i = 0; i < 10; i += 2) {

for (j = 0; j < 100; j++) {

a[i][j] = b[i][j] + 1;

}

for (j = 0; j < 100; j++) {

a[i+1][j] = b[i+1][j] + 1;

}

}

The compiler then jams, or fuses, the inner two loop bodies, producing the
following nest:

for (i = 0; i < 10; i += 2) {

for (j = 0; j < 100; j++) {

a[i][j] = b[i][j] + 1;

a[i+1][j] = b[i+1][j] + 1;

}

}

Outer loop unrolling is not always legal because the transformation can change
the semantics of the original program.

For example, unrolling the following loop nest on the outer loop would change
the program semantics because of the dependency between a[i][...] and
a[i+1][...]:

96 S–2179–51

#pragma Directives [3]

/* directive will cause incorrect code due to dependencies! */

#pragma _CRI unroll 2

for (i = 0; i < 10; i++) {

for (j = 1; j < 100; j++) {

a[i][j] = a[i+1][j-1] + 1;

}

}

3.11 Inlining Directives

Inlining replaces calls to user-defined functions with the code in the calling
process that represents the function. This can improve performance by saving
the expense of the function call overhead. It also enhances the possibility of
additional code optimization and vectorization, especially if the function call was
an inhibiting factor.

Inlining is invoked in the following ways:

• Automatic inlining of an entire compilation is enabled by issuing the
-h inline command line option, as described in Section 2.13.1, page 27.

• Inlining of particular function calls is specified by the inline directive, as
discussed in the following sections.

Inlining directives can appear in global scope (that is, not inside a function
definition). Global inlining directives specify whether all calls to the specified
functions should be inlined (inline or noinline).

Inlining directives can also appear in local scope; that is, inside a function
definition. A local inlining directive applies only to the next call to the function
specified on the directive. Although the function specified on an inlining
directive does not need to appear in the next statement, a call to the function
must occur before the end of the function definition.

Inlining directives always take precedence over the automatic inlining requested
on the command line. This means that function calls that are associated with
inlining directives are inlined before any function calls selected to be inlined by
automatic inlining.

Note: A function that contains a variable length array argument is not
currently inlined.

The -h report=i option writes messages identifying where functions are
inlined or briefly explains why functions are not inlined.

S–2179–51 97

Cray C and C++ Reference Manual

3.11.1 inline Directive

The inline directive specifies functions that are to be inlined. The inline
directive has the following format:

#pragma _CRI inline func,...

The func,... argument represents the function or functions to be inlined. The
list can be enclosed in parentheses. Listed functions must be defined in the
compilation unit. You cannot specify objects of type pointer-to-function.

The following example illustrates the use of the inline directive:

#include <stdio.h>

int f(int a) {

return a*a;

}

#pragma _CRI inline f /* Direct the compiler to inline */

/* calls to f. */

main() {

int b = 5;

printf("%d\n", f(b)); /* f is inlined here */

}

3.11.2 noinline Directive

The noinline directive specifies functions that are not to be inlined. The format
of the noinline directive is as follows:

#pragma _CRI noinline func,...

The func,... argument represents the function or functions that are not to be
inlined. The list can be enclosed in parentheses. Listed functions must be defined
in the compilation unit. You cannot specify objects of type pointer-to-function.

The following example illustrates the use of the noinline directive:

98 S–2179–51

#pragma Directives [3]

#include <stdio.h>

int f(int a) {

return a*a;

}

#pragma _CRI noinline f /* Direct the compiler not to */

/* inline calls to f. */

main() {

int b = 5;

printf("%d\n", f(b)); /* f is not inlined here */

}

S–2179–51 99

Cray C and C++ Reference Manual

100 S–2179–51

OpenMP C API Directives [4]

This chapter describes the OpenMP directives that the Cray C Compiler supports.
These directives are based on the OpenMP C and C++ Application Program Interface
Version 2.0 March 2002 standard. Copyright © 1997–2002 OpenMP Architecture
Review Board.

In addition to directives, the OpenMP C API describes several run time library
routines and environment variables. For information on the library routines, see
the omp_lock(3), omp_nested(3), omp_threads(3), and omp_timing(3) man
pages. For information on the environment variables, see Section 2.25, page 54.

The sections in this chapter are as follows:

• Using directives (Section 4.1, page 101)

• Conditional compilation (Section 4.2, page 102)

• parallel construct (Section 4.3, page 102)

• Work-sharing constructs (Section 4.4, page 105)

• Combined parallel work-sharing constructs (Section 4.5, page 111)

• Master and synchronization directives (Section 4.6, page 112)

• Data environment (Section 4.7, page 117)

• Directive binding (Section 4.8, page 128)

• Directive nesting (Section 4.9, page 128)

• Using the schedule clause (Section 4.10, page 129)

4.1 Using Directives

OpenMP directives are based on #pragma directives. Directives are
case-insensitive and are of the following form:

#pragma omp directive-name [clause[[,] clause]...] new-line

Each directive starts with #pragma omp. The remainder of the directive follows
the conventions of the C standard for compiler directives. In particular, white
space can be used before and after the #, and sometimes white space must be

S–2179–51 101

Cray C and C++ Reference Manual

used to separate the words in a directive. Preprocessing tokens following the
#pragma omp are subject to macro replacement.

Directives are case sensitive. The order in which clauses appear in directives is
not significant. Clauses in directives may be repeated as needed, subject to the
restrictions listed in the description of each clause. If variable-list appears in a
clause, it must specify only variables. Only one directive-name can be specified per
directive. For example, the following directive is not allowed:

/* ERROR - multiple directive names not allowed */

#pragma omp parallel barrier

An OpenMP directive applies to at most one succeeding statement, which must
be a structured block.

4.2 Conditional Compilation

The _OPENMP macro is defined with value 200203 when -h omp is specified.
This macro must not be the subject of a #define or a #undef preprocessing
directive.

#ifdef _OPENMP

iam = omp_get_thread_num() + index;

#endif

For details on the omp_get_thread_num routine, see the omp_threads(3)
man page.

4.3 parallel Construct

The following directive defines a parallel region, which is a region of the program
that is to be executed by multiple threads in parallel. This is the fundamental
construct that starts parallel execution.

#pragma omp parallel [clause[[,]clause] ...] new-line
structured-block

The clause is one of the following:

• if(scalar-expression)

• private(variable-list)

102 S–2179–51

OpenMP C API Directives [4]

• firstprivate(variable-list)

• default(shared | none)

• shared(variable-list)

• copyin(variable-list)

• reduction(operator: variable-list)

• num_threads(integer-expression)

When a thread encounters a parallel construct, a team of threads is created
if one of the following cases is true:

• No if clause is present.

• The if expression evaluates to a nonzero value.

This thread becomes the master thread of the team, with a thread number of 0,
and all threads in the team, including the master thread, execute the region in
parallel. If the value of the if expression is zero, the region is serialized.

To determine the number of threads that are requested, the following rules will
be considered in order. The first rule whose condition is met will be applied:

1. If the num_threads clause is present, then the value of the integer expression is
the number of threads requested.

2. If the omp_set_num_threads library function has been called, then the
value of the argument in the most recently executed call is the number of
threads requested.

3. If the environment variable OMP_NUM_THREADS is defined, then the value of
this environment variable is the number of threads requested.

4. If none of the methods above were used, then the number of threads
requested is implementation-defined.

If the num_threads clause is present, then it supersedes the number of
threads requested by the omp_set_num_threads library function or the
OMP_NUM_THREADS environment variable only for the parallel region it is
applied to. Subsequent parallel regions are not affected by it.

The number of threads that execute the parallel region also depends upon
whether or not dynamic adjustment of the number of threads is enabled. If
dynamic adjustment is disabled, then the requested number of threads will
execute the parallel region. If dynamic adjustment is enabled, then the requested

S–2179–51 103

Cray C and C++ Reference Manual

number of threads is the maximum number of threads that may execute the
parallel region.

If a parallel region is encountered while dynamic adjustment of the number of
threads is disabled, and the number of threads requested for the parallel region
exceeds the number that the run time system can supply, the behavior of the
program is implementation defined. An implementation may, for example,
interrupt the execution of the program, or it may serialize the parallel region.

The omp_set_dynamic library function and the OMP_DYNAMIC environment
variable can be used to enable and disable dynamic adjustment of the number
of threads.

The number of physical processors actually hosting the threads at any given time
is implementation-defined. Once created, the number of threads in the team
remains constant for the duration of that parallel region. It can be changed
either explicitly by the user or automatically by the run time system from one
parallel region to another.

The statements contained within the dynamic extent of the parallel region are
executed by each thread, and each thread can execute a path of statements that is
different from the other threads. Directives encountered outside the lexical extent
of a parallel region are referred to as orphaned directives.

There is an implied barrier at the end of a parallel region. Only the master thread
of the team continues execution at the end of a parallel region.

If a thread in a team executing a parallel region encounters another parallel
construct, it creates a new team, and it becomes the master of that new team.
Nested parallel regions are serialized by default. As a result, by default, a
nested parallel region is executed by a team composed of one thread. The
default behavior may be changed by using either the run time library function
omp_set_nested or the environment variable OMP_NESTED. However,
the number of threads in a team that execute a nested parallel region is
implementation defined.

Restrictions to the parallel directive are as follows:

• At most one if clause can appear on the directive.

• It is unspecified whether any side effects inside the if expression or
num_threads expression occur.

• A throw executed inside a parallel region must cause execution to resume
within the dynamic extent of the same structured block, and it must be caught

104 S–2179–51

OpenMP C API Directives [4]

by the same thread that threw the exception. Throw statements are currently
not supported with parallel regions.

• Only a single num_threads clause can appear on the directive. The
num_threads expression is evaluated outside the context of the parallel
region, and must evaluate to a positive integer value.

• The order of evaluation of the if and num_threads clauses is unspecified.

4.4 Work-sharing Constructs

A work-sharing construct distributes the execution of the associated statement
among the members of the team that encounter it. The work-sharing directives
do not launch new threads, and there is no implied barrier on entry to a
work-sharing construct.

The sequence of work-sharing constructs and barrier directives encountered
must be the same for every thread in a team.

OpenMP defines the following work-sharing constructs, and these are described
in the sections that follow:

• for directive

• sections directive

• single directive

4.4.1 for Construct

The for directive identifies an iterative work-sharing construct that specifies
that the iterations of the associated loop will be executed in parallel. The
iterations of the for loop are distributed across threads that already exist in
the team executing the parallel construct to which it binds. The syntax of the
for construct is as follows:

#pragma omp for [clause[[,] clause] ...] new-line
for-loop

The clause is one of the following:

• private(variable-list)

S–2179–51 105

Cray C and C++ Reference Manual

• firstprivate(variable-list)

• lastprivate(variable-list)

• reduction(operator:variable-list)

• ordered

• schedule(kind[,chunk_size])

• nowait

The for directive places restrictions on the structure of the corresponding for
loop. Specifically, the corresponding for loop must have canonical shape:

for (init-expr;var logical-op b;incr-expr)

Where:

init-expr One of the following:

• var = lb

• integer-type var = lb

incr-expr One of the following:

• ++var

• var++

• –var

• var–

• var += incr

• var -= incr

• var = var + incr

• var = incr + var

• var = var - incr

var A signed integer variable. If this variable would
otherwise be shared, it is implicitly made private
for the duration of the for. This variable must not
be modified within the body of the for statement.

106 S–2179–51

OpenMP C API Directives [4]

Unless the variable is specified lastprivate, its
value after the loop is indeterminate.

logical-op One of the following:

• <

• <=

• >

• >=

lb, b, and incr Loop invariant integer expressions. There is no
synchronization during the evaluation of these
expressions. Thus, any evaluated side effects
produce indeterminate results.

Note that the canonical form allows the number of loop iterations to be computed
on entry to the loop. This computation is performed with values in the type of
var, after integral promotions. In particular, if the value of b - lb + incr cannot
be represented in that type, the result is indeterminate. Further, if logical-op
is < or <=, then incr-expr must cause var to increase on each iteration of the
loop. If logical-op is > or >=, then incr-expr must cause var to decrease on each
iteration of the loop.

The schedule clause specifies how iterations of the for loop are divided among
threads of the team. The correctness of a program must not depend on which
thread executes a particular iteration. The value of chunk_size, if specified,
must be a loop invariant integer expression with a positive value. There is no
synchronization during the evaluation of this expression. Thus, any evaluated
side effects produce indeterminate results. The schedule kind can be one of
the following:

S–2179–51 107

Cray C and C++ Reference Manual

Table 8. schedule clause kind values

static When schedule(static,chunk_size) is specified, iterations are divided into chunks of a
size specified by chunk_size. The chunks are statically assigned to threads in the team in a
round-robin fashion in the order of the thread number. When no chunk_size is specified,
the iteration space is divided into chunks that are approximately equal in size, with one
chunk assigned to each thread.

dynamic When schedule(dynamic, chunk_size) is specified, the iterations are divided into a
series of chunks, each containing chunk_size iterations. Each chunk is assigned to a thread
that is waiting for an assignment. The thread executes the chunk of iterations and then
waits for its next assignment, until no chunks remain to be assigned. Note that the last
chunk to be assigned may have a smaller number of iterations. When no chunk_size is
specified, it defaults to 1.

guided When schedule(guided, chunk_size) is specified, the iterations are assigned to threads
in chunks with decreasing sizes. When a thread finishes its assigned chunk of iterations,
it is dynamically assigned another chunk, until none remain. For a chunk_size of 1, the
size of each chunk is approximately the number of unassigned iterations divided by
the number of threads. These sizes decrease approximately exponentially to 1. For a
chunk_size with value k greater than 1, the sizes decrease approximately exponentially
to k, except that the last chunk may have fewer than k iterations. When no chunk_size is
specified, it defaults to 1.

runtime When schedule(runtime) is specified, the decision regarding scheduling is deferred
until run time. The schedule kind and size of the chunks can be chosen at run time by
setting the environment variable OMP_SCHEDULE. If this environment variable is not
set, the resulting schedule is implementation-defined. When schedule(runtime) is
specified, chunk_size must not be specified.

In the absence of an explicitly defined schedule clause, the default schedule
is implementation defined.

An OpenMP-compliant program should not rely on a particular schedule for
correct execution. A program should not rely on a schedule kind conforming
precisely to the description given above, because it is possible to have variations
in the implementations of the same schedule kind across different compilers.
The descriptions can be used to select the schedule that is appropriate for a
particular situation.

The ordered clause must be present when ordered directives bind to the
for construct.

There is an implicit barrier at the end of a for construct unless a nowait clause
is specified.

108 S–2179–51

OpenMP C API Directives [4]

Restrictions to the for directive are as follows:

• The for loop must be a structured block, and, in addition, its execution must
not be terminated by a break statement.

• The values of the loop control expressions of the for loop associated with a
for directive must be the same for all the threads in the team.

• The for loop iteration variable must have a signed integer type.

• Only a single schedule clause can appear on a for directive.

• Only a single ordered clause can appear on a for directive.

• Only a single nowait clause can appear on a for directive.

• It is unspecified if or how often any side effects within the chunk_size, lb, b,
or incr expressions occur.

• The value of the chunk_size expression must be the same for all threads in
the team.

4.4.2 sections Construct

The sections directive identifies a noniterative work-sharing construct that
specifies a set of constructs that are to be divided among threads in a team. Each
section is executed once by a thread in the team. The syntax of the sections
directive is as follows:

#pragma omp sections [clause[[,] clause]...] new-line

{

[#pragma omp section new-line]
structured-block

[#pragma omp section new-line
structured-block]

...
}

The clause is one of the following:

• private(variable-list)

• firstprivate(variable-list)

S–2179–51 109

Cray C and C++ Reference Manual

• lastprivate(variable-list)

• reduction(operator: variable-list)

• nowait

Each section is preceded by a section directive, although the section directive
is optional for the first section. The section directives must appear within the
lexical extent of the sections directive. There is an implicit barrier at the end of
a sections construct, unless a nowait is specified.

Restrictions to the sections directive are as follows:

• A section directive must not appear outside the lexical extent of the
sections directive.

• Only a single nowait clause can appear on a sections directive.

4.4.3 single Construct

The single directive identifies a construct that specifies that the associated
structured block is executed by only one thread in the team (not necessarily the
master thread). The syntax of the single directive is as follows:

#pragma omp single [clause[[,] clause] ...] new-line
structured-block

The clause is one of the following:

• private(variable-list)

• firstprivate(variable-list)

• nowait

There is an implicit barrier after the single construct unless a nowait clause is
specified.

Restrictions to the single directive are as follows:

• Only a single nowait clause can appear on a single directive.

110 S–2179–51

OpenMP C API Directives [4]

4.5 Combined Parallel Work-sharing Constructs

Combined parallel work-sharing constructs are shortcuts for specifying a parallel
region that contains only one work-sharing construct. The semantics of these
directives are identical to that of explicitly specifying a parallel directive
followed by a single work-sharing construct.

The following sections describe the combined parallel work-sharing constructs:

• The parallel for directive

• The parallel sections directive

4.5.1 parallel for Construct

The parallel for directive is a shortcut for a parallel region that contains only
a single for directive. The syntax of the parallel for directive is as follows:

#pragma omp parallel for [clause[[,] clause] ...] new-line
for-loop

This directive allows all the clauses of the parallel directive and the for
directive, except the nowait clause, with identical meanings and restrictions.
The semantics are identical to explicitly specifying a parallel directive
immediately followed by a for directive.

4.5.2 parallel sections Construct

The parallel sections directive provides a shortcut form for specifying a
parallel region containing only a single sections directive. The semantics are
identical to explicitly specifying a parallel directive immediately followed
by a sections directive. The syntax of the parallel sections directive is
as follows:

#pragma omp parallel sections [clause[[,] clause] ...] new-line
{
[#pragma omp section new-line]

structured-block
[#pragma omp section new-line

structured-block]
...
}

S–2179–51 111

Cray C and C++ Reference Manual

The clause can be one of the clauses accepted by the parallel and sections
directives, except the nowait clause.

4.6 Master and Synchronization Directives

The following sections describe the:

• master construct

• critical construct

• barrier directive

• atomic construct

• flush directive

• ordered construct

4.6.1 master Construct

The master directive identifies a construct that specifies a structured block
that is executed by the master thread of the team. The syntax of the master
directive is as follows:

#pragma omp master new-line
structured-block

Other threads in the team do not execute the associated structured block. There is
no implied barrier either on entry to or exit from the master construct.

4.6.2 critical Construct

The critical directive identifies a construct that restricts execution of the
associated structured block to a single thread at a time. The syntax of the
critical directive is as follows:

#pragma omp critical [(name)] new-line
structured-block

112 S–2179–51

OpenMP C API Directives [4]

An optional name may be used to identify the critical region. Identifiers used to
identify a critical region have external linkage and are in a name space which
is separate from the name spaces used by labels, tags, members, and ordinary
identifiers.

A thread waits at the beginning of a critical region until no other thread is
executing a critical region (anywhere in the program) with the same name. All
unnamed critical directives map to the same unspecified name.

4.6.3 barrier Directive

The barrier directive synchronizes all the threads in a team. When
encountered, each thread in the team waits until all of the others have reached
this point. The syntax of the barrier directive is as follows:

#pragma omp barrier new-line

After all threads in the team have encountered the barrier, each thread in the
team begins executing the statements after the barrier directive in parallel.

Note that because the barrier directive does not have a C language statement
as part of its syntax, there are some restrictions on its placement within a
program. The example below illustrates these restrictions.

/* ERROR - The barrier directive cannot be the immediate

* substatement of an if statement

*/

if (x!=0)

#pragma omp barrier

...

/* OK - The barrier directive is enclosed in a

* compound statement.

*/

if (x!=0) {

#pragma omp barrier

}

S–2179–51 113

Cray C and C++ Reference Manual

4.6.4 atomic Construct

The atomic directive ensures that a specific memory location is updated
atomically, rather than exposing it to the possibility of multiple, simultaneous
writing threads. The syntax of the atomic directive is as follows:

#pragma omp atomic new-line
expression-stmt

The expression statement must have one of the following forms:

• x binop= expr

• x++

• ++x

• x–

• –x

In the preceding expressions:

• x is an lvalue expression with scalar type

• expr is an expression with scalar type, and it does not reference the object
designated by x

• binop is not an overloaded operator and is one of +, *, -, /, &, ^, |, <<, or >>

Although it is implementation-defined whether an implementation replaces all
atomic directives with critical directives that have the same unique name,
the atomic directive permits better optimization. Often hardware instructions
are available that can perform the atomic update with the least overhead.

Only the load and store of the object designated by x are atomic; the evaluation of
expr is not atomic. To avoid race conditions, all updates of the location in parallel
should be protected with the atomic directive, except those that are known to
be free of race conditions.

Restrictions to the atomic directive are as follows:

• All atomic references to the storage location x throughout the program are
required to have a compatible type

Examples:

114 S–2179–51

OpenMP C API Directives [4]

extern float a[], *p = a, b;

/* Protect against races among multiple updates. */

#pragma omp atomic

a[index[i]] += b;

/* Protect against races with updates through a. */

#pragma omp atomic

p[i] -= 1.0f;

extern union {int n; float x;} u;

/* ERROR - References through incompatible types. */

#pragma omp atomic

u.n++;

#pragma omp atomic

u.x -= 1.0f;

4.6.5 flush Directive

The flush directive, whether explicit or implied, specifies a cross-thread sequence
point at which the implementation is required to ensure that all threads in a team
have a consistent view of certain objects (specified below) in memory. This
means that previous evaluations of expressions that reference those objects
are complete and subsequent evaluations have not yet begun. For example,
compilers must restore the values of the objects from registers to memory, and
hardware may need to flush write buffers to memory and reload the values
of the objects from memory.

The syntax of the flush directive is as follows:

#pragma omp flush [(variable-list)]] new-line

If the objects that require synchronization can all be designated by variables, then
those variables can be specified in the optional variable-list. If a pointer is present
in the variable-list, the pointer itself is flushed, not the object the pointer refers to.

A flush directive without a variable-list synchronizes all shared objects except
inaccessible objects with automatic storage duration. (This is likely to have
more overhead than a flush with a variable-list.) A flush directive without a
variable-list is implied for the following directives:

• barrier

• At entry to and exit from critical

S–2179–51 115

Cray C and C++ Reference Manual

• At entry to and exit from ordered

• At entry to and exit from parallel

• At exit from for

• At exit from sections

• At exit from single

• At entry to and exit from parallel for

• At entry to and exit from parallel sections

The directive is not implied if a nowait clause is present. It should be noted that
the flush directive is not implied for any of the following:

• At entry to for

• At entry to or exit from master

• At entry to sections

• At entry to single

A reference that accesses the value of an object with a volatile-qualified
type behaves as if there were a flush directive specifying that object at the
previous sequence point. A reference that modifies the value of an object with a
volatile-qualified type behaves as if there were a flush directive specifying that
object at the subsequent sequence point.

Note that because the flush directive does not have a C language statement as
part of its syntax, there are some restrictions on its placement within a program.
The example below illustrates these restrictions.

/* ERROR - The flush directive cannot be the immediate

* substatement of an if statement.

*/

if (x!=0)

#pragma omp flush (x)

...

/* OK - The flush directive is enclosed in a

* compound statement

*/

if (x!=0) {

#pragma omp flush (x)

}

116 S–2179–51

OpenMP C API Directives [4]

Restrictions to the flush directive are as follows:

• A variable specified in a flush directive must not have a reference type.

4.6.6 ordered Construct

The structured block following an ordered directive is executed in the order
in which iterations would be executed in a sequential loop. The syntax of the
ordered directive is as follows:

#pragma omp ordered new-line
structured-block

An ordered directive must be within the dynamic extent of a for or parallel
for construct. The for or parallel for directive to which the ordered
construct binds must have an ordered clause specified as described in Section
4.4.1, page 105. In the execution of a for or parallel for construct with an
ordered clause, ordered constructs are executed strictly in the order in which
they would be executed in a sequential execution of the loop.

There is one restriction to the ordered directive. An iteration of a loop with a
for construct must not execute the same ordered directive more than once, and
it must not execute more than one ordered directive.

4.7 Data Environment

This section presents a directive and several clauses for controlling the data
environment during the execution of parallel regions, as follows:

• A threadprivate directive (see Section 4.7.1, page 117) is provided to make
filescope, namespace-scope, or static block-scope variables local to a thread.

• Clauses that may be specified on the directives to control the sharing
attributes of variables for the duration of the parallel or work-sharing
constructs are described in Section 4.7.2, page 119.

4.7.1 threadprivate Directive

The threadprivate directive makes the named file-scope, namespace-scope,
or static block-scope variables specified in the variable-list private to a thread.
variable-list is a comma-separated list of variables that do not have an incomplete
type. The syntax of the threadprivate directive is as follows:

S–2179–51 117

Cray C and C++ Reference Manual

#pragma omp threadprivate(variable-list) new-line

Each copy of a threadprivate variable is initialized once, at an unspecified
point in the program prior to the first reference to that copy, and in the usual
manner (that is, as the master copy would be initialized in a serial execution of
the program). Note that if an object is referenced in an explicit initializer of a
threadprivate variable, and the value of the object is modified prior to the
first reference to a copy of the variable, then the behavior is unspecified.

As with any private variable, a thread must not reference another thread’s copy
of a threadprivate object. During serial regions and master regions of the
program, references will be to the master thread’s copy of the object.

After the first parallel region executes, the data in the threadprivate objects is
guaranteed to persist only if the dynamic threads mechanism has been disabled
and if the number of threads remains unchanged for all parallel regions.

The restrictions to the threadprivate directive are as follows:

• A threadprivate directive for file-scope or namespace-scope variables
must appear outside any definition or declaration, and must lexically precede
all references to any of the variables in its list.

• Each variable in the variable-list of a threadprivate directive at file or
namespace scope must refer to a variable declaration at file or namespace
scope that lexically precedes the directive.

• A threadprivate directive for static block-scope variables must appear
in the scope of the variable and not in a nested scope. The directive must
lexically precede all references to any of the variables in its list.

• Each variable in the variable-list of a threadprivate directive in block scope
must refer to a variable declaration in the same scope that lexically precedes
the directive. The variable declaration must use the static storage-class
specifier.

• If a variable is specified in a threadprivate directive in one translation
unit, it must be specified in a threadprivate directive in every translation
unit in which it is declared.

• A threadprivate variable must not appear in any clause except the
copyin, schedule, num_threads, or the if clause.

• The address of a threadprivate variable is not an address constant.

118 S–2179–51

OpenMP C API Directives [4]

• A threadprivate variable must not have an incomplete type or a reference
type.

• A threadprivate variable with non-POD class type must have an
accessible, unambiguous copy constructor if it is declared with an explicit
initializer.

The following example illustrates how modifying a variable that appears in an
initializer can cause unspecified behavior, and also how to avoid this problem
by using an auxiliary object and a copy-constructor.

int x = 1;

T a(x);

const T b_aux(x); /* Capture value of x = 1 */

T b(b_aux);

#pragma omp threadprivate(a, b)

void f(int n) {

x++;

#pragma omp parallel for

/* In each thread:

* Object a is constructed from x (with value 1 or 2?)

* Object b is copy-constructed from b_aux

*/

for (int i=0; i<n; i++) {

g(a, b); /* Value of a is unspecified. */

}

}

4.7.2 Data-Sharing Attribute Clauses

Several directives accept clauses that allow a user to control the sharing attributes
of variables for the duration of the region. Sharing attribute clauses apply only to
variables in the lexical extent of the directive on which the clause appears. Not all
of the following clauses are allowed on all directives. The list of clauses that are
valid on a particular directive are described with the directive.

If a variable is visible when a parallel or work-sharing construct is encountered,
and the variable is not specified in a sharing attribute clause or threadprivate
directive, then the variable is shared. Static variables declared within the
dynamic extent of a parallel region are shared. Heap allocated memory (for
example, using malloc() in C) is shared. (The pointer to this memory, however,
can be either private or shared.) Variables with automatic storage duration
declared within the dynamic extent of a parallel region are private.

S–2179–51 119

Cray C and C++ Reference Manual

Most of the clauses accept a variable-list argument, which is a comma-separated
list of variables that are visible. If a variable referenced in a data-sharing attribute
clause has a type derived from a template, and there are no other references to
that variable in the program, the behavior is undefined.

All variables that appear within directive clauses must be visible. Clauses may
be repeated as needed, but no variable may be specified in more than one
clause, except that a variable can be specified in both a firstprivate and a
lastprivate clause.

The following sections describe the data-sharing attribute clauses:

• private, (Section 4.7.2.1, page 120)

• firstprivate, (Section 4.7.2.2, page 121)

• lastprivate, (Section 4.7.2.3, page 122)

• shared, (Section 4.7.2.4, page 122)

• default, (Section 4.7.2.5, page 123)

• reduction, (Section 4.7.2.6, page 124)

• copyin, (Section 4.7.2.7, page 127)

4.7.2.1 private

The private clause declares the variables in variable-list to be private to each
thread in a team. The syntax of the private clause is as follows:

private(variable-list)

The behavior of a variable specified in a private clause is as follows. A
new object with automatic storage duration is allocated for the construct.
The size and alignment of the new object are determined by the type of the
variable. This allocation occurs once for each thread in the team, and a default
constructor is invoked for a class object if necessary; otherwise the initial
value is indeterminate. The original object referenced by the variable has an
indeterminate value upon entry to the construct, must not be modified within
the dynamic extent of the construct, and has an indeterminate value upon exit
from the construct.

In the lexical extent of the directive construct, the variable references the new
private object allocated by the thread.

120 S–2179–51

OpenMP C API Directives [4]

The restrictions to the private clause are as follows:

• A variable with a class type that is specified in a private clause must have
an accessible, unambiguous default constructor.

• A variable specified in a private clause must not have a const-qualified
type unless it has a class type with a mutable member.

• A variable specified in a private clause must not have an incomplete type
or a reference type.

• Variables that appear in the reduction clause of a parallel directive
cannot be specified in a private clause on a work-sharing directive that
binds to the parallel construct.

4.7.2.2 firstprivate

The firstprivate clause provides a superset of the functionality provided by
the private clause. The syntax of the firstprivate clause is as follows:

firstprivate(variable-list)

Variables specified in variable-list have private clause semantics, as described
in Section 4.7.2.1, page 120. The initialization or construction happens as if
it were done once per thread, prior to the thread’s execution of the construct.
For a firstprivate clause on a parallel construct, the initial value of the new
private object is the value of the original object that exists immediately prior to
the parallel construct for the thread that encounters it. For a firstprivate
clause on a work-sharing construct, the initial value of the new private object for
each thread that executes the work-sharing construct is the value of the original
object that exists prior to the point in time that the same thread encounters
the work-sharing construct.

The restrictions to the firstprivate clause are as follows:

• A variable specified in a firstprivate clause must not have an incomplete
type or a reference type.

• A variable with a class type that is specified as firstprivate must have an
accessible, unambiguous copy constructor.

• Variables that are private within a parallel region or that appear in the
reduction clause of a parallel directive cannot be specified in a

S–2179–51 121

Cray C and C++ Reference Manual

firstprivate clause on a work-sharing directive that binds to the parallel
construct.

4.7.2.3 lastprivate

The lastprivate clause provides a superset of the functionality provided by
the private clause. The syntax of the lastprivate clause is as follows:

lastprivate(variable-list)

Variables specified in the variable-list have private clause semantics. When a
lastprivate clause appears on the directive that identifies a work-sharing
construct, the value of each lastprivate variable from the sequentially last
iteration of the associated loop, or the lexically last section directive, is assigned
to the variable’s original object. Variables that are not assigned a value by the
last iteration of the for or parallel for, or by the lexically last section of
the sections or parallel sections directive, have indeterminate values
after the construct. Unassigned subobjects also have an indeterminate value
after the construct.

The restrictions to the lastprivate clause are as follows:

• All restrictions for private apply

• A variable with a class type that is specified as lastprivate must have an
accessible, unambiguous copy assignment operator

• Variables that are private within a parallel region or that appear in the
reduction clause of a parallel directive cannot be specified in a
lastprivate clause on a work-sharing directive that binds to the parallel
construct

4.7.2.4 shared

This clause shares variables that appear in the variable-list among all the threads
in a team. All threads within a team access the same storage area for shared
variables. The syntax of the shared clause is as follows:

shared(variable-list)

122 S–2179–51

OpenMP C API Directives [4]

4.7.2.5 default

The default clause allows the user to affect the data-sharing attributes of
variables. The syntax of the default clause is as follows:

default(shared | none)

Specifying default(shared) is equivalent to explicitly listing each
currently visible variable in a shared clause, unless it is threadprivate or
const-qualified. In the absence of an explicit default clause, the default
behavior is the same as if default(shared) were specified.

Specifying default(none) requires that at least one of the following must be
true for every reference to a variable in the lexical extent of the parallel construct:

• The variable is explicitly listed in a data-sharing attribute clause of a construct
that contains the reference

• The variable is declared within the parallel construct

• The variable is threadprivate

• The variable has a const-qualified type

• The variable is the loop control variable for a for loop that immediately
follows a for or parallel for directive, and the variable reference appears
inside the loop

Specifying a variable on a firstprivate, lastprivate, or reduction
clause of an enclosed directive causes an implicit reference to the variable in the
enclosing context. Such implicit references are also subject to the requirements
listed above.

Only a single default clause may be specified on a parallel directive.

A variable’s default data-sharing attribute can be overridden by using the
private, firstprivate, lastprivate, reduction, and shared clauses, as
demonstrated by the following example:

#pragma omp parallel for default(shared)
firstprivate(i) private(x) private(r) lastprivate(i)

S–2179–51 123

Cray C and C++ Reference Manual

4.7.2.6 reduction

This clause performs a reduction on the scalar variables that appear in
variable-list, with the operator op. The syntax of the reduction clause is as
follows:

reduction(op:variable-list)

A reduction is typically specified for a statement with one of the following forms:

x = x op expr
x binop= expr
x = expr op x (except for subtraction)

x++
++x
x–
–x

where:

x One of the reduction variables specified in the list

variable-list A comma-separated list of scalar reduction
variables

expr An expression with scalar type that does not
reference x

op Not an overloaded operator but one of +, *, -,
&, ^, |, &&, or ||

binop Not an overloaded operator but one of +, *,
-, &, ^, or |

The following is an example of the reduction clause:

#pragma omp parallel for reduction(+: a, y) reduction(||: am)

for (i=0; i<n; i++) {

a += b[i];

y = sum(y, c[i]);

am = am || b[i] == c[i];

}

As shown in the example, an operator may be hidden inside a function call. The
user should be careful that the operator specified in the reduction clause
matches the reduction operation.

124 S–2179–51

OpenMP C API Directives [4]

Although the right operand of the || operator has no side effects in this example,
they are permitted, but should be used with care. In this context, a side effect
that is guaranteed not to occur during sequential execution of the loop may
occur during parallel execution. This difference can occur because the order of
execution of the iterations is indeterminate.

The operator is used to determine the initial value of any private variables used
by the compiler for the reduction and to determine the finalization operator.
Specifying the operator explicitly allows the reduction statement to be outside
the lexical extent of the construct. Any number of reduction clauses may be
specified on the directive, but a variable may appear in at most one reduction
clause for that directive.

A private copy of each variable in variable-list is created, one for each thread, as if
the private clause had been used. The private copy is initialized according to
the operator (see Table 9, page 126).

At the end of the region for which the reduction clause was specified, the
original object is updated to reflect the result of combining its original value with
the final value of each of the private copies using the operator specified. The
reduction operators are all associative (except for subtraction), and the compiler
may freely reassociate the computation of the final value. (The partial results of a
subtraction reduction are added to form the final value.)

The value of the original object becomes indeterminate when the first thread
reaches the containing clause and remains so until the reduction computation is
complete. Normally, the computation will be complete at the end of the construct;
however, if the reduction clause is used on a construct to which nowait is also
applied, the value of the original object remains indeterminate until a barrier
synchronization has been performed to ensure that all threads have completed
the reduction clause.

The following table lists the operators that are valid and their canonical
initialization values. The actual initialization value will be consistent with the
data type of the reduction variable.

S–2179–51 125

Cray C and C++ Reference Manual

Table 9. Private Copy Initialization

Operator Initialization

+ 0

* 1

– 0

& –0

| 0

^ 0

&& 1

|| 0

The restrictions to the reduction clause are as follows:

• The type of the variables in the reduction clause must be valid for the
reduction operator except that pointer types and reference types are never
permitted.

• A variable that is specified in the reduction clause must not be
const-qualified.

• Variables that are private within a parallel region or that appear in the
reduction clause of a parallel directive cannot be specified in a
reduction clause on a work-sharing directive that binds to the parallel
construct.

#pragma omp parallel private(y)

{ /* ERROR - private variable y cannot be specified

in a reduction clause */

#pragma omp for reduction(+: y)

for (i=0; i<n; i++)

y += b[i];

}

/* ERROR - variable x cannot be specified in both

a shared and a reduction clause */

#pragma omp parallel for shared(x) reduction(+: x)

126 S–2179–51

OpenMP C API Directives [4]

4.7.2.7 copyin

The copyin clause provides a mechanism to assign the same value to
threadprivate variables for each thread in the team executing the parallel
region. For each variable specified in a copyin clause, the value of the
variable in the master thread of the team is copied, as if by assignment, to the
thread-private copies at the beginning of the parallel region. The syntax of the
copyin clause is as follows:

copyin(variable-list)

The restrictions to the copyin clause are as follows:

• A variable that is specified in the copyin clause must have an accessible,
unambiguous copy assignment operator.

• A variable that is specified in the copyin clause must be a threadprivate
variable.

4.7.2.8 copyprivate

The copyprivate clause provides a mechanism to use a private variable to
broadcast a value from one member of a team to the other members. It is
an alternative to using a shared variable for the value when providing such
a shared variable would be difficult (for example, in a recursion requiring a
different variable at each level). The copyprivate clause can appear only on
the single directive.

The syntax of the copyprivate clause is as follows:

copyprivate(variable-list)

The effect of the copyprivate clause on the variables in its variable-list occurs
after the execution of the structured block associated with the single construct,
and before any of the threads in the team have left the barrier at the end of
the construct. Then, in all other threads in the team, for each variable in the
variable-list, that variable becomes defined (as if by assignment) with the value of
the corresponding variable in the thread that executed the construct’s structured
block.

Restrictions to the copyprivate clause are as follows:

S–2179–51 127

Cray C and C++ Reference Manual

• A variable that is specified in the copyprivate clause must not appear in a
private or firstprivate clause for the same single directive.

• If a single directive with a copyprivate clause is encountered in
the dynamic extent of a parallel region, all variables specified in the
copyprivate clause must be private in the enclosing context.

• A variable that is specified in the copyprivate clause must have an
accessible unambiguous copy assignment operator.

4.8 Directive Binding

Dynamic binding of directives must adhere to the following rules:

• The for, sections, single, master, and barrier directives bind to the
dynamically enclosing parallel, if one exists, regardless of the value of
any if clause that may be present on that directive. If no parallel region is
currently being executed, the directives are executed by a team composed
of only the master thread.

• The ordered directive binds to the dynamically enclosing for.

• The atomic directive enforces exclusive access with respect to atomic
directives in all threads, not just the current team.

• The critical directive enforces exclusive access with respect to critical
directives in all threads, not just the current team.

• A directive can never bind to any directive outside the closest dynamically
enclosing parallel.

4.9 Directive Nesting

Dynamic nesting of directives must adhere to the following rules:

• A parallel directive dynamically inside another parallel logically
establishes a new team, which is composed of only the current thread, unless
nested parallelism is enabled.

• for, sections, and single directives that bind to the same parallel are
not allowed to be nested inside each other.

• critical directives with the same name are not allowed to be nested inside
each other. Note this restriction is not sufficient to prevent deadlock.

128 S–2179–51

OpenMP C API Directives [4]

• for, sections, and single directives are not permitted in the dynamic
extent of critical, ordered, and master regions if the directives bind to
the same parallel as the regions.

• barrier directives are not permitted in the dynamic extent of for,
ordered, sections, single, master, and critical regions if the
directives bind to the same parallel as the regions.

• master directives are not permitted in the dynamic extent of for,
sections, and single directives if the master directives bind to the same
parallel as the work-sharing directives.

• ordered directives are not allowed in the dynamic extent of critical
regions if the directives bind to the same parallel as the regions.

• Any directive that is permitted when executed dynamically inside a parallel
region is also permitted when executed outside a parallel region. When
executed dynamically outside a user-specified parallel region, the directive is
executed by a team composed of only the master thread.

4.10 Using the schedule Clause

A parallel region has at least one barrier, at its end, and may have additional
barriers within it. At each barrier, the other members of the team must wait for
the last thread to arrive. To minimize this wait time, shared work should be
distributed so that all threads arrive at the barrier at about the same time. If
some of that shared work is contained in for constructs, the schedule clause
can be used for this purpose.

When there are repeated references to the same objects, the choice of schedule for
a for construct may be determined primarily by characteristics of the memory
system, such as the presence and size of caches and whether memory access
times are uniform or nonuniform. Such considerations may make it preferable to
have each thread consistently refer to the same set of elements of an array in a
series of loops, even if some threads are assigned relatively less work in some
of the loops. This can be done by using the static schedule with the same
bounds for all the loops. In the following example, note that zero is used as the
lower bound in the second loop, even though k would be more natural if the
schedule were not important.

#pragma omp parallel

{

#pragma omp for schedule(static)

for(i=0; i<n,i++)

S–2179–51 129

Cray C and C++ Reference Manual

a[i] = work1(i);

#pragma omp for schedule(static)

for(i=0; i<n, i++)

if(i>=k) a[i] += work2(i);

}

In the remaining examples, it is assumed that memory access is not the dominant
consideration, and, unless otherwise stated, that all threads receive comparable
computational resources. In these cases, the choice of schedule for a for
construct depends on all the shared work that is to be performed between the
nearest preceding barrier and either the implied closing barrier or the nearest
subsequent barrier, if there is a nowait clause. For each kind of schedule, a
short example shows how that schedule kind is likely to be the best choice. A
brief discussion follows each example.

The static schedule is also appropriate for the simplest case, a parallel region
containing a single for construct, with each iteration requiring the same amount
of work.

#pragma omp parallel for schedule(static)

for(i=0; i>n; i++){

invariant_amount_of_work(i);

}

The static schedule is characterized by the properties that each thread gets
approximately the same number of iterations as any other thread, and each
thread can independently determine the iterations assigned to it. Thus no
synchronization is required to distribute the work, and, under the assumption
that each iteration requires the same amount of work, all threads should finish at
about the same time.

For a team of p threads, let ceiling(n/p) be the integer q, which satisfies n = p*q - r
with 0 <= r < p. One implementation of the static schedule for this example
would assign q iterations to the first p–1 threads, and q-r iterations to the last
thread. Another acceptable implementation would assign q iterations to the first
p-r threads, and q-1 iterations to the remaining r threads. This illustrates why a
program should not rely on the details of a particular implementation.

The dynamic schedule is appropriate for the case of a for construct with the
iterations requiring varying, or even unpredictable, amounts of work.

130 S–2179–51

OpenMP C API Directives [4]

#pragma omp parallel for schedule(dynamic)

for(i=0; i>n; i++) {

unpredictable_amount_of_work(i);

}

The dynamic schedule is characterized by the property that no thread waits at
the barrier for longer than it takes another thread to execute its final iteration.
This requires that iterations be assigned one at a time to threads as they become
available, with synchronization for each assignment. The synchronization
overhead can be reduced by specifying a minimum chunk size k greater than 1, so
that threads are assigned k at a time until fewer than k remain. This guarantees
that no thread waits at the barrier longer than it takes another thread to execute
its final chunk of (at most) k iterations.

4.11 Compiling Code for OpenMP

These Cray C Compiler options enable or disable the compiler recognition of
OpenMP directives:

• Enable OpenMP directive recognition: -h omp

• Disable OpenMP directive recognition: -h noomp

4.12 Cray Implementation Differences

The Cray C implementation of OpenMP differs slightly from the OpenMP C and
C++ Application Program Interface Version 2.0 March 2002 in the following areas:

• The use of throw statements in parallel regions is not supported.

• Threadprivate variables may not have static storage class.

• Nesting of parallel regions is not supported. Nested parallel directives will
result in the inner directive being ignored and that code being executed
in serial.

S–2179–51 131

Cray C and C++ Reference Manual

132 S–2179–51

Cray Unified Parallel C (UPC) [5]

Unified Parallel C (UPC) is a C language extension for parallel program
development. UPC allows you to explicitly specify parallel programming
through language syntax rather than library functions such as used in MPI and
SHMEM by allowing you to read and write memory of other processes with
simple assignment statements. Program synchronization occurs only when you
say so, because there is no implied synchronization. These methods map very
well onto the Cray X1 systems and enable users to achieve high performance.

Note: The C++ compiler does not support UPC.

UPC allows you to maintain a view of your program as a collection of threads
operating in a common global address space without burdening you with details
of how parallelism is implemented on the machine (for example, as shared
memory or as a collection of physically distributed memories).

UPC data objects are private to a single thread or shared among all threads
of execution. Each thread has a unique memory space that holds its private
data objects, and access to a globally shared memory space that is distributed
across the threads. Thus, every part of a shared data object has an affinity to a
single thread.

Cray UPC is compatible with SHMEM, Cray Fortran co-arrays, and MPI.

Note: Currently, the UPC model does not define an I/O model. Therefore, you
must supply the controls as needed to remove race conditions. File I/O under
UPC is very similar to standard C because one thread opens a file and shares
the file handle, and multiple threads may read or write to the same file.

We assume that you are familiar with UPC and understand the differences
between the published UPC Introduction and Language Specification paper
and the current UPC specification.

If you are not familiar with UPC, refer to the UPC home page at
http://upc.gwu.edu/. Under the Publications link, select the Introduction to
UPC and Language Specification paper. This paper is slightly outdated but contains
valuable information about understanding and using UPC.

The UPC home page also contains, under the Documentation link, the UPC
Language Specification paper, which is up to date. For your convenience, we
have documented the differences between the Introduction to UPC and Language
Specification and the UPC Language Specification here.

After familiarizing yourself with UPC, read this chapter to get details on:

S–2179–51 133

Cray C and C++ Reference Manual

• Changes to the UPC specification (Section 5.1, page 134)

• UPC Functions (Section 5.2, page 135)

• Cray implementation differences (Section 5.3, page 137)

• Compiling and executing UPC code Section 5.4, page 138

For a description of predefined UPC macros, see Section 9.5, page 159.

For more information about improving UPC code performance, refer to
Optimizing Applications on the Cray X1 System.

5.1 Changes to UPC Specification

Since the publication of the UPC Introduction and Language Specification paper in
1999, the UPC working group altered or added to the UPC specifications. These
modifications are reflected in the UPC Language Specification paper version 1.0.
These components of UPC were changed or added:

• Changed the memory consistency pragmas:

– Replaced #pragma upc strict global and #pragma upc relaxed
global with #pragma upc strict and #pragma upc relaxed,
respectively. No change in functionality

– #pragma upc strict next and #pragma upc relaxed next
were removed

• Replaced barrier functions with barrier statements of the same name, as
Table 10 shows.

Table 10. Barrier Function Replacements

Barrier function Corresponding barrier statement

upc_barrier(); upc_barrier;

upc_notify(); upc_notify;

upc_wait(); upc_wait;

upc_fence(); upc_fence;

• Added a new blocking factor specifier [*], which distributes a shared array
among all threads so that each thread has only one block.

134 S–2179–51

Cray Unified Parallel C (UPC) [5]

• Added new functions:

– upc_global_exit

– upc_phaseof

– upc_addrfield

– upc_all_lock_alloc

– upc_memcpy

– upc_memget

– upc_memput

5.2 UPC Functions

Cray supports the following UPC functions. Cray-specific functions are noted in
the function descriptions. See the UPC man pages for further information.

5.2.1 Termination of all Threads Function

• upc_global_exit flushes all I/O, releases all memory, and terminates
the execution for all active threads

5.2.2 Shared Memory Allocation Functions

• upc_all_alloc allocates shared space. The dynamic lifetime of an
allocated object extends from the time any thread completes the call to
upc_all_alloc until any thread has deallocated the object.

• upc_all_free deallocates memory allocated by the upc_all_alloc
function.

Note: This is a Cray-specific function.

• upc_alloc allocates shared space with affinity to the calling thread.
The upc_alloc function is similar to malloc() except that it returns
a pointer-to-shared value.

• upc_local_alloc allocates shared space of at least nblocks * nbytes with
affinity to the calling thread

S–2179–51 135

Cray C and C++ Reference Manual

• upc_local_free deallocates memory allocated by the upc_local_alloc
function.

Note: This is a Cray-specific function.

5.2.3 Pointer-to-shared Manipulation Functions

• upc_threadof returns the number of the thread that has affinity to the
shared object pointed to by ptr

• upc_phaseof returns the phase field of the pointer-to-shared argument

• upc_addrfield returns an implementation-defined value reflecting the
"local address" of the object pointed to by the pointer-to-shared argument

• upc_affinitysize calculates the exact size of the local portion of the data
in a shared object with affinity to a given thread

5.2.4 Lock Functions

• upc_global_lock_alloc dynamically allocates a lock and returns a
pointer to it. The upc_global_lock_alloc function is not a collective
function.

• upc_all_lock_alloc dynamically allocates a lock and returns a pointer to
it. The upc_all_lock_alloc function is a collective function.

• upc_all_lock_free frees a lock allocated by the upc_all_lock_alloc
function.

Note: This is a Cray_specific function.

• upc_global_lock_free frees a lock allocated by the
upc_all_lock_alloc function.

Note: This is a Cray-specific function.

• upc_lock locks a shared variable, of type upc_lock_t, pointed to by
the pointer given as argument ptr

• upc_lock_attempt tries to lock a shared variable, of type upc_lock_t,
pointed to by the pointer given as argument ptr

• upc_unlock frees the lock and does not return any value

136 S–2179–51

Cray Unified Parallel C (UPC) [5]

5.2.5 Shared String Handling Functions

• upc_memcpy copies a block of memory from one shared memory area to
another shared memory area

• upc_memget copies a block of memory from a shared memory area to a
private memory area on the calling thread

• upc_memput copies a block of memory from the calling thread’s private
memory area to a shared memory area

• upc_memset copies the value of c, converted to an unsigned char, to a
shared memory area

5.2.6 Operators

• upc_blocksizeof returns the block size of the operand, which may be a
shared object or a shared-qualified type

• upc_elemsizeof returns the size, in bytes, of the highest-level (leftmost)
type that is not an array; for non-array objects, upc_elemsizeof returns
the same value as sizeof

• upc_localsizeof returns the size, in bytes, of the local portion of its
operand, which may be a shared object or a shared-qualified type

5.3 Cray Implementation Differences

Implementation, by Cray, of the UPC specification as described by the UPC
Language Specification paper differs slightly in the following areas:

• Declaration of shared array dimensions and blocking sizes must follow
Cray-defined requirements

• Declaration of pointers to shared types have a maximum blocking size of 1

• (Deferred implementation) Cray supports the upc_forall statement.
Previous restrictions have been removed. If an inefficient form of the
statement is used, the compiler will issue a caution message.

S–2179–51 137

Cray C and C++ Reference Manual

5.3.1 upc_forall Statement (Deferred implementation)

The implementation of the upc_forall statement is currently deferred. In the
meantime, you can rewrite upc_forall statements as the following examples
show. Consider this upc_forall statement:

upc_forall(expr1; expr2; expr3; affinity) {

code;

}

If affinity is an address of a shared object, the statement can be rewritten
as follows:

for(expr1; expr2; expr3) {

if (upc_threadof(affinity) == MY_THREAD) {

code;

}

}

If affinity is an integer expression, the statement can be rewritten as follows:

for(expr1; expr2; expr3) {

if (pmod(affinity, THREADS) == MY_THREAD) {

code;

}

}

where pmod(a,b) is evaluated as (a>=0)?(a%b):(((a%b)+b)%b).

The previous code construct will not perform at optimal efficiency. When the
upc_forall statement is implemented, you should change your code back
to the original form.

5.4 Compiling and Executing UPC Code

In order to compile UPC code, you must load the programming environment
module (PrgEnv) and specify the -h upc option to the cc, c89, or c99
command. To execute your compiled code you can use the aprun or mpirun
command depending on whether SHMEM, Cray Fortran co-arrays, or MPI is
used with your UPC code.

The -X npes option can optionally be used to define the number of threads to use
and statically set the value of the THREADS constant.

138 S–2179–51

Cray Unified Parallel C (UPC) [5]

This example enables UPC and allows the THREADS symbol to be defined
dynamically for the examp1 application:

cc -h upc -o multupc examp1.c

This example enables UPC and statically defines the THREADS symbol as 15
for the examp1 application:

cc -h upc -X 15 -o multupc examp1.c

The processing elements in npes (number of processing elements) are either MSPs
or SSPs. To run programs on SSPs, you must specify the -h ssp compiler option.
The default is to run on MSPs. See Section 2.10.10, page 22 for more information
about using UPC in SSP mode.

After compiling the UPC code, you can run the program using the aprun
command when the code contains UPC code only, or a mixture of UPC and
SHMEM, and/or Cray Fortran Co-array code. If the code has a mixture of UPC
and MPI code, use the mpirun command.

If you use the –X npes compiler option, you must specify the same number
of threads in the aprun command.

Note: For more information about improving UPC code performance, refer
to Optimizing Applications on the Cray X1 System.

S–2179–51 139

Cray C and C++ Reference Manual

140 S–2179–51

Cray C++ Libraries [6]

The Cray C++ compiler together with the Dinkum C++ Libraries support the
C++ 98 standard (ISO/IEC FDIS 14882) and continues to support existing Cray
extensions. Most of the standard C++ features are supported, except for the few
mentioned in Section 6.1. The Dinkum C++ Library is described in Section 6.2.

For information about C++ language conformance and exceptions, refer to
Appendix D, page 201.

6.1 Unsupported Standard C++ Library Features

The Cray C++ compiler supports the C++ standard except for wide characters
and multiple locales as follows:

• String classes using basic string class templates with wide character types
or that use the wstring standard template class

• I/O streams using wide character objects

• File-based streams using file streams with wide character types (wfilebuf,
wifstream, wofstream, and wfstream)

• Multiple localization libraries; Cray C++ supports only one locale

Note: The C++ standard provides a standard naming convention for library
routines. Therefore, classes or routines that use wide characters are named
appropriately. For example, the fscanf and sprintf functions do not use
wide characters, but the fwscanf and swprintf function do.

6.2 Dinkum C++ Libraries

The Cray C++ compiler uses the Dinkum C++ libraries, which support standard
C++. The Dinkum C++ Library documentation is provided in HTML through
CrayDoc. You can also find other references to tutorials and advanced user
materials for the standard C++ library in the preface of this document.

S–2179–51 141

Cray C and C++ Reference Manual

142 S–2179–51

Cray C++ Template Instantiation [7]

A template describes a class or function that is a model for a family of related
classes or functions. The act of generating a class or function from a template is
called template instantiation.

For example, a template can be created for a stack class, and then a stack of
integers, a stack of floats, and a stack of some user-defined type can be used. In
source code, these might be written as Stack<int>, Stack<float>, and
Stack<X>. From a single source description of the template for a stack, the
compiler can create instantiations of the template for each of the types required.

The instantiation of a class template is always done as soon as it is needed during
a compilation. However, the instantiations of template functions, member
functions of template classes, and static data members of template classes
(template entities) are not necessarily done immediately for the following
reasons:

• The preferred end result is one copy of each instantiated entity across all
object files in a program. This applies to entities with external linkage.

• A specialization of a template entity is allowed. For example, a specific
version of Stack<int>, or of just Stack<int>::push could be written
to replace the template-generated version and to provide a more efficient
representation for a particular data type.

• If a template function is not referenced, it should not be compiled because
such functions could contain semantic errors that would prevent compilation.
Therefore, a reference to a template class should not automatically instantiate
all the member functions of that class.

The goal of an instantiation mode is to provide trouble-free instantiation. The
programmer should be able to compile source files to object code, link them and
run the resulting program, without questioning how the necessary instantiations
are done.

In practice, this is difficult for a compiler to do, and different compilers use
different instantiation schemes with different strengths and weaknesses.

The Cray C++ compiler requires a normal, top-level, explicitly compiled source
file that contains the definition of both the template entity and of any types
required for the particular instantiation. This requirement is met in one of the
following ways:

S–2179–51 143

Cray C and C++ Reference Manual

• Each .h file that declares a template entity also contains either the definition
of the entity or includes another file containing the definition.

• When the compiler sees a template declaration in a .h file and discovers a
need to instantiate that entity, implicit inclusion gives the compiler permission
to search for an associated definition file having the same base name and a
different suffix and implicitly include that file at the end of the compilation
(see Section 7.6, page 150).

• The programmer makes sure that the files that define template entities also
have the definitions of all the available types and adds code or directives in
those files to request instantiation of those entities.

The Cray C++ compiler provides two instantiation mechanisms–simple
instantiation and prelinker instantiation. These mechanisms perform template
instantiation and provide command line options and #pragma directives that
give the programmer more explicit control over instantiation.

7.1 Simple Instantiation

The goal of the simple instantiation mode is to provide a method of instantiating
templates without the need to create and manage intermediate (*.ti and *.ii)
files.

The Cray C++ compilers accomplishes simple instantiation as follows:

1. When the source files of a program are compiled using the -h
simple_templates option, each of the *.o files contains a copy of all of
the template instantiations it uses..

2. When the object files are linked together, the resulting executable file contains
multiple copies of the template function.

Unlike in prelinker instantiation, no *.ti or *.ii files are created. The
programmer is not required to manage the naming and location of the
intermediate files.

The simple template instantiation process creates slightly larger object files and a
slightly larger executable file than is the case for prelinker instantiation.

For example, you have three C++ source files, x.C, y.C, and z.C. The source
files reference a template sortall that sorts int, float, and char array
elements:

144 S–2179–51

Cray C++ Template Instantiation [7]

template <class X> void sortall(X a[])

{

... code to sort int, float, char elements ...

}

Entering the command CC -c -h simple_templates x.C y.C z.C
produces object files x.o, y.o, and z.o. Each *.o file has three copies of
sortall, one for ints, one for floats, and one for chars.

Then, entering the command CC x.o y.o z.o links the files and any needed
library routines, creating a.out.

Because the -h simple_templates option enables the -h
instantiate=used, all needed template entities are instantiated. The
programmer can use the #pragma do_not_instantiate directive in
programs compiled using the -h simple_templates option. See Section
3.6, page 70.

7.2 Prelinker Instantiation

In prelinker mode, automatic instantiation is accomplished by the Cray C++
compiler as follows:

1. If the compiler is responsible for doing all instantiations automatically,
it can only do so for the entire program. That is, the compiler cannot make
decisions about instantiation of template entities until all source files of the
complete program have been read.

2. The first time the source files of a program are compiled, no template entities
are instantiated. However, the generated object files contain information
about things that could have been instantiated in each compilation. For any
source file that makes use of a template instantiation, an associated .ti file is
created, if one does not already exist (for example, the compilation of abc.C
results in the creation of abc.ti).

3. When the object files are linked together, a program called the prelinker is
run. It examines the object files, looking for references and definitions of
template entities and for any additional information about entities that
could be instantiated.

!
Caution: The prelinker examines the object files in a library (.a) file
but, because it does not modify them, is not able to assign template
instantiations to them.

S–2179–51 145

Cray C and C++ Reference Manual

4. If the prelinker finds a reference to a template entity for which there is no
definition in the set of object files, it looks for a file that indicates that it could
instantiate that template entity. Upon discovery of such a file, it assigns the
instantiation to that file. The set of instantiations assigned to a given file (for
example, abc.C) is recorded in an associated file that has a .ii suffix (for
example, abc.ii).

5. The prelinker then executes the compiler to again recompile each file for
which the .ii was changed.

6. During compilation, the compiler obeys the instantiation requests contained
in the associated .ii file and produces a new object file that contains the
requested template entities and the other things that were already in the
object file.

7. The prelinker repeats steps 3 through 5 until there are no more instantiations
to be adjusted.

8. The object files are linked together.

Once the program has been linked correctly, the .ii files contain a complete
set of instantiation assignments. If source files are recompiled, the compiler
consults the .ii files and does the indicated instantiations as it does the normal
compilations. That means that, except in cases where the set of required
instantiations changes, the prelink step from then on will find that all the
necessary instantiations are present in the object files and no instantiation
assignment adjustments need be done. This is true even if the entire program
is recompiled. Because the .ii file contains information on how to recompile
when instantiating, it is important that the .o and .ii files are not moved
between the first compilation and linkage.

The prelinker cannot instantiate into and from library files (.a), so if a library is
to be shared by many applications its templates should be expanded. You may
find that creating a directory of objects with corresponding .ii files and the use
of -h prelink_copy_if_nonlocal (see Section 2.7.9, page 17) will work as if
you created a library (.a) that is shared.

The -h prelink_local_copy option indicates that only local files (for
example, files in the current directory) are candidates for assignment of
instantiations. This option is useful when you are sharing some common
relocatables but do not want them updated. Another way to ensure that shared
.o files are not updated is to use the -h remove_instantiation_flags
option when compiling the shared .o files. This also makes smaller resulting
shared .o files.

146 S–2179–51

Cray C++ Template Instantiation [7]

An easy way to create a library that instantiates all references of templates within
the library is to create an empty main function and link it with the library, as
shown in the following example. The prelinker will instantiate those template
references that are within the library to one of the relocatables without generating
duplicates. The empty dummy_main.o file is removed prior to creating the
.a file.

CC a.C b.C c.C dummy_main.C

ar cr mylib.a a.o b.o c.o

Another alternative to creating a library that instantiates all references of
templates, is to use the -h one_instantiation_per_object option. This
option directs the prelinker to instantiate each template referenced within a
library in its own object file. The following example shows how to use the option:

CC -h one_instantiation_per_object a.C b.C c.C dummy_main.C

ar cr mylib.a a.o b.o c.o myInstantiationsDir/*.int.o

For more information about this alternative see Section 7.4, page 148 and Section
2.7.3, page 16.

Prelinker instantiation can coexist with partial explicit control of instantiation
by the programmer through the use of #pragma directives or the
-h instantiate=mode option.

Prelinker instantiation mode can be disabled by issuing the
-h noautoinstantiate command line option. If prelinker instantiation is
disabled, the information about template entities that could be instantiated in a
file is not included in the object file.

7.3 Instantiation Modes

Normally, during compilation of a source file, no template entities are
instantiated (except those assigned to the file by prelinker instantiation).
The overall instantiation mode can, however, be changed by issuing the
-h instantiate=mode command line option. The mode argument can be
specified as follows:

mode Description

none Do not automatically create instantiations of any template entities.
This is the most appropriate mode when prelinker instantiation is
enabled. This is the default instantiation mode.

S–2179–51 147

Cray C and C++ Reference Manual

used Instantiate those template entities that were used in the
compilation. This includes all static data members that have
template definitions.

all Instantiate all template entities declared or referenced in the
compilation unit. For each fully instantiated template class, all of
its member functions and static data members are instantiated,
regardless of whether they were used. Nonmember template
functions are instantiated even if the only reference was a
declaration.

local Similar to used mode, except that the functions are given internal
linkage. This mode provides a simple mechanism for those who
are not familiar with templates. The compiler instantiates the
functions used in each compilation unit as local functions, and
the program links and runs correctly (barring problems due to
multiple copies of local static variables). This mode may generate
multiple copies of the instantiated functions and is not suitable
for production use. This mode cannot be used in conjunction
with prelinker template instantiation. Prelinker instantiation is
disabled by this mode.

In the case where the CC(1) command is given a single source file to compile and
link, all instantiations are done in the single source file and, by default, the used
mode is used and prelinker instantiation is suppressed.

7.4 One Instantiation Per Object File

You can direct the prelinker to instantiate each template referenced in the source
into its own object file. This method is preferred over other template instantiation
object file generation options because:

• The user of a library pulls in only the instantiations that are needed.

• Multiple libraries with the same template can link. If each instantiation is not
placed in its own object file, linking a library with another library that also
contains the same instantiations will generate warnings on some platforms.

Use the -h one_instantiation_per_object option to generate one object
file per instantiation. For more information about this option, see Section 2.7.3,
page 16.

148 S–2179–51

Cray C++ Template Instantiation [7]

7.5 Instantiation #pragma Directives

Instantiation #pragma directives can be used in source code to control the
instantiation of specific template entities or sets of template entities. There are
three instantiation #pragma directives:

• The #pragma _CRI instantiate directive causes a specified entity to
be instantiated.

• The #pragma _CRI do_not_instantiate directive suppresses the
instantiation of a specified entity. It is typically used to suppress the
instantiation of an entity for which a specific definition is supplied.

• The #pragma _CRI can_instantiate directive indicates that a specified
entity can be instantiated in the current compilation, but need not be. It is
used in conjunction with prelinker instantiation to indicate potential sites for
instantiation if the template entity is deemed to be required by the compiler.

The argument to the #pragma _CRI instantiate directive can be any of
the following:

• A template class name. For example: A<int>

• A template class declaration. For example: class A<int>

• A member function name. For example: A<int>::f

• A static data member name. For example: A<int>::i

• A static data declaration. For example: int A<int>::i

• A member function declaration. For example: void A<int>::f(int,
char)

• A template function declaration. For example: char* f(int, float)

A #pragma directive in which the argument is a template class name (for
example, A<int> or class A<int>) is equivalent to repeating the directive
for each member function and static data member declared in the class. When
instantiating an entire class, a given member function or static data member may
be excluded using the #pragma _CRI do_not_instantiate directive. For
example:

#pragma _CRI instantiate A<int>

#pragma _CRI do_not_instantiate A<int>::f

The template definition of a template entity must be present in the compilation
for an instantiation to occur. If an instantiation is explicitly requested by use of

S–2179–51 149

Cray C and C++ Reference Manual

the #pragma instantiate directive and no template definition is available or
a specific definition is provided, an error is issued.

The following example illustrates the use of the #pragma _CRI instantiate
directive:

template <class T> void f1(T); // No body provided

template <class T> void g1(T); // No body provided

void f1(int) {} // Specific definition

void main()

{

int i;

double d;

f1(i);

f1(d);

g1(i);

g1(d);

}

#pragma _CRI instantiate void f1(int) // error-specific definition

#pragma _CRI instantiate void g1(int) // error-no body provided

In the preceding example, f1(double) and g1(double) are not instantiated
because no bodies are supplied, but no errors will be produced during the
compilation. If no bodies are supplied at link time, a linker error is issued.

A member function name (such as A<int>::f) can be used as a #pragma
directive argument only if it refers to a single, user-defined member function
(that is, not an overloaded function). Compiler-generated functions are
not considered, so a name can refer to a user-defined constructor even if a
compiler-generated copy constructor of the same name exists. Overloaded
member functions can be instantiated by providing the complete member
function declaration, as in the following example:

#pragma _CRI instantiate char* A<int>::f(int, char*)

The argument to an instantiation directive cannot be a compiler-generated
function, an inline function, or a pure virtual function.

7.6 Implicit Inclusion

The implicit inclusion feature implies that if the compiler needs a definition to
instantiate a template entity declared in a .h file, it can implicitly include the
corresponding .C file to get the source code for the definition. For example,
if a template entity ABC::f is declared in file xyz.h, and an instantiation of

150 S–2179–51

Cray C++ Template Instantiation [7]

ABC::f is required in a compilation, but no definition of ABC::f appears in
the source code processed by the compilation, the compiler will look to see if
a file xyz.C exists and, if so, it processes it as if it were included at the end of
the main source file.

To find the template definition file for a given template entity, the Cray C++
compiler must know the full path name to the file in which the template
was declared and whether the file was included using the system include
syntax (such as #include <file.h>). This information is not available for
preprocessed source code containing #line directives. Consequently, the Cray
C++ compiler does not attempt implicit inclusion for source code that contains
#line directives.

The set of definition-file suffixes that are tried by default, is .c, .C, .cpp, .CPP,
.cxx, .CXX, and .cc.

Implicit inclusion works well with prelinker instantiation; however, they are
independent. They can be enabled or disabled independently, and implicit
inclusion is still useful without prelinker instantiation.

S–2179–51 151

Cray C and C++ Reference Manual

152 S–2179–51

Cray C Extensions [8]

The Cray C compiler supports these extensions, developed by Cray, to the C
standard:

• Complex data extensions (Section 8.1, page 153)

• fortran keyword (Section 8.2, page 154)

• Hexadecimal floating-point constants (Section 8.3, page 154)

A program that uses one or more extensions does not strictly conform to the
standard. These extensions are not available in strict conformance mode.

8.1 Complex Data Extensions

Cray C extends the complex data facilities defined by standard C with these
extensions:

• Imaginary constants

• Incrementing or decrementing _Complex data

The Cray C compiler supports the Cray imaginary constant extension and is
defined in the <complex.h> header file. This imaginary constant has the
following form:

Ri

R is either a floating constant or an integer constant; no space or other character
can appear between R and i. If you are compiling in strict conformance mode
(-h conform), the Cray imaginary constants are not available.

The following example illustrates imaginary constants:

#include <complex.h>

double complex z1 = 1.2 + 3.4i;

double complex z2 = 5i;

The other extension to the complex data facility allows the prefix– and postfix-
increment and decrement operators to be applied to the _Complex data type.
The operations affect only the real portion of a complex number.

S–2179–51 153

Cray C and C++ Reference Manual

8.2 fortran Keyword

In extended mode, the identifier fortran is treated as a keyword. It specifies a
storage class that can be used to declare a Fortran-coded external function. The
use of the fortran keyword when declaring a function causes the compiler to
verify that the arguments used in each call to the function are pass by addresses;
any arguments that are not addresses are converted to addresses.

As in any function declaration, an optional type-specifier declares the type
returned, if any. Type int is the default; type void can be used if no value is
returned (by a Fortran subroutine). The fortran storage class causes conversion
of lowercase function names to uppercase, and, if the function name ends with
an underscore character, the trailing underscore character is stripped from the
function name. (Stripping the trailing underscore character is in keeping with
UNIX practice.)

Functions specified with a fortran storage class must not be declared elsewhere
in the file with a static storage class.

Note: The fortran keyword is not allowed in Cray C++.

An example using the fortran keyword is shown in Section 11.3.7, page 172.

8.3 Hexadecimal Floating-point Constants

The Cray C compiler supports the standard hexadecimal floating constant
notations and the Cray hexadecimal floating constant notation. The standard
hexadecimal floating constants are portable and have sizes that are dependent
upon the hardware. The remainder of this section discusses the Cray
hexadecimal floating constant.

The Cray hexadecimal floating constant feature is not portable, because identical
hexadecimal floating constants can have different meanings on different systems.
It can be used whenever traditional floating-point constants are allowed.

The hexadecimal constant has the usual syntax: 0x (or 0X) followed by
hexadecimal characters. The optional floating suffix has the same form as for
normal floating constants: f or F (for float), l or L (for long), optionally followed
by an i (imaginary).

The constant must represent the same number of bits as its type, which is
determined by the suffix (or the default of double). The constant’s bit length is
four times the number of hexadecimal digits, including leading zeros.

The following example illustrates hexadecimal constant representation:

154 S–2179–51

Cray C Extensions [8]

0x7f7fffff.f 32-bit float

0x0123456789012345. 64-bit double

The value of a hexadecimal floating constant is interpreted as a value in the
specified floating type. This uses an unsigned integral type of the same size as
the floating type, regardless of whether an object can be explicitly declared
with such a type. No conversion or range checking is performed. The resulting
floating value is defined in the same way as the result of accessing a member
of floating type in a union after a value has been stored in a different member
of integral type.

The following example illustrates hexadecimal floating-point constant
representation that use Cray floating-point format:

int main(void)

{

float f1, f2;

double g1, g2;

f1 = 0x3ec00000.f;

f2 = 0x3fc00000.f;

g1 = 0x40fa400100000000.;

g2 = 0x40fa400200000000.;

printf("f1 = %8.8g\n", f1);

printf("f2 = %8.8g\n", f2);

printf("g1 = %16.16g\n", g1);

printf("g2 = %16.16g\n", g2);

return 1;

}

This is the output for the previous example:

f1 = 0.375

f2 = 1.5

g1 = 107520.0625

g2 = 107520.125

S–2179–51 155

Cray C and C++ Reference Manual

156 S–2179–51

Predefined Macros [9]

Predefined macros can be divided into the following categories:

• Macros required by the C and C++ standards

• Macros based on the host machine

• Macros based on the target machine

• Macros based on the compiler

• UPC macros

Predefined macros provide information about the compilation environment. In
this chapter, only those macros that begin with the underscore (_) character
are defined when running in strict-conformance mode (see the -h conform
command line option in Section 2.6.2, page 13).

Note: Any of the predefined macros except those required by the standard (see
Section 9.1, page 157) can be undefined by using the -U command line option;
they can also be redefined by using the -D command line option.

A large set of macros is also defined in the standard header files.

9.1 Macros Required by the C and C++ Standards

The following macros are required by the C and C++ standards:

Macro Description

__TIME__ Time of translation of the source file.

__DATE__ Date of translation of the source file.

__LINE__ Line number of the current line in your source file.

__FILE__ Name of the source file being compiled.

__STDC__ Defined as the decimal constant 1 if compilation is
in strict conformance mode; defined as the decimal
constant 2 if the compilation is in extended
mode. This macro is defined for Cray C and C++
compilations.

S–2179–51 157

Cray C and C++ Reference Manual

__cplusplus Defined as 1 when compiling Cray C++ code and
undefined when compiling Cray C code. The
__cplusplus macro is required by the ISO C++
standard, but not the ISO C standard.

9.2 Macros Based on the Host Machine

The following macros provide information about the environment running
on the host machine:

Macro Description

__unix Defined as 1 if the machine uses the UNIX OS.

unix Defined as 1 if the machine uses the UNIX OS.
This macro is not defined in strict-conformance
mode.

_UNICOSMP Defined as 1 if the operating system is
UNICOS/mp. This macro is not defined in
strict-conformance mode.

9.3 Macros Based on the Target Machine

The following macros provide information about the characteristics of the target
machine:

Macro Description

_ADDR64 Defined as 1 if the targeted CPU has 64-bit address
registers; if the targeted CPU does not have 64-bit
address registers, the macro is not defined.

__sv Defined as 1 on all Cray X1 systems.

__sv2 Defined as 1 and indicates that the current system
is a Cray X1 system.

_CRAY Defined as 1 on UNICOS/mp systems.

_CRAYIEEE Defined as 1 if the targeted CPU type uses IEEE
floating-point format.

_CRAYSV2 Defined as 1 and indicates that the current system
is a Cray X1 system.

__crayx1 Defined as 1 and indicates that the current system
is a Cray X1 system.

158 S–2179–51

Predefined Macros [9]

_MAXVL Defined as the maximum hardware vector length,
which is 64.

cray Defined as 1 on UNICOS/mp. This macro is not
defined in strict-conformance mode.

CRAY Defined as 1 on UNICOS/mp systems. This macro
is not defined in strict-conformance mode.

9.4 Macros Based on the Compiler

The following macros provide information about compiler features:

Macro Description

_RELEASE Defined as the major release level of the compiler.

_RELEASE_MINOR Defined as the minor release level of the compiler.

_RELEASE_STRING Defined as a string that describes the version
of the compiler.

_CRAYC Defined as 1 to identify the Cray C and C++
compilers.

9.5 UPC Predefined Macros

The following macros provide information about UPC functions:

Macro Description

__UPC__

The integer constant 1, indicating a conforming implementation.

__UPC_DYNAMIC_THREADS__

The integer constant 1 in the dynamic THREADS translation
environment.

__UPC_STATIC_THREADS__

The integer constant 1 in the static THREADS translation
environment.

S–2179–51 159

Cray C and C++ Reference Manual

160 S–2179–51

Debugging Cray C and C++ Code [10]

The Etnus TotalView symbolic debugger is available to help you debug C and
C++ codes (refer to Etnus TotalView Users Guide). In addition, the Cray C and C++
compilers provide the following features to help you in debugging codes:

• The -G and -g compiler options provide symbol information about your
source code for use by the Etnus TotalView debugger. For more information
on these compiler options, see Section 2.16.1, page 32.

• The -h [no]bounds option and the #pragma _CRI [no]bounds directive
let you check pointer and array references. The -h [no]bounds option
is described in Section 2.16.2, page 33. The #pragma _CRI [no]bounds
directive is described in Section 3.5.1, page 61.

• The #pragma _CRI message directive lets you add warning messages to
sections of code where you suspect problems. The #pragma _CRI message
directive is described in Section 3.5.3, page 65.

• The #pragma _CRI [no]opt directive lets you selectively isolate portions
of your code to optimize, or to toggle optimization on and off in selected
portions of your code. The #pragma _CRI [no]opt directive is described
in Section 3.5.5, page 66.

10.1 Etnus TotalView Debugger

Some of the functions available in the TotalView debugger allow you to perform
the following actions:

• Set and clear breakpoints, which can be conditional, at both the source code
level and the assembly code level

• Examine core files

• Step through a program, including across function calls

• Reattach to the executable file after editing and recompiling

• Edit values of variables and memory locations

• Evaluate code fragments

S–2179–51 161

Cray C and C++ Reference Manual

10.2 Compiler Debugging Options

To use the TotalView debugger in debugging your code, you must first compile
your code using one of the debugging options (-g or -G). These options are
specified as follows:

• -Gf

If you specify the -Gf debugging option, the TotalView debugger allows you
to set breakpoints at function entry and exit and at labels.

• -Gp

If you specify the -Gp debugging option, the TotalView debugger allows you
to set breakpoints at function entry and exit, labels, and at places where
execution control flow changes (for example, loops, switch, and if...else
statements).

• -Gn or -g

If you specify the -Gn or -g debugging option, the TotalView debugger
allows you to set breakpoints at function entry and exit, labels, and executable
statements. These options force all compiler optimizations to be disabled as
if you had specified -O0.

Users of the Cray C and C++ compilers do not have to sacrifice run time
performance to debug codes. Many compiler optimizations are inhibited by
breakpoints generated for debugging. By specifying a higher debugging level,
fewer breakpoints are generated and better optimization occurs.

However, consider the following cases in which optimization is affected by
the -Gp and -Gf debugging options:

• Vectorization can be inhibited if a label exists within the vectorizable loop.

• Vectorization can be inhibited if the loop contains a nested block and the -Gp
option is specified.

• When the -Gp option is specified, setting a breakpoint at the first statement
in a vectorized loop allows you to stop and display at each vector iteration.
However, setting a breakpoint at the first statement in an unrolled loop may
not allow you to stop at each vector iteration.

162 S–2179–51

Interlanguage Communication [11]

In some situations, it is necessary or advantageous to make calls to assembly
or Fortran functions from C or C++ programs. This chapter describes how to
make such calls. It also discusses calls to C and C++ functions from Fortran and
assembly language. For additional information on interlanguage communication,
see Interlanguage Programming Conventions. The calling sequence is described in
detail on the callseq(3) man page.

The C and C++ compilers provide a mechanism for declaring external functions
that are written in other languages. This allows you to write portions of an
application in C, C++, Fortran, or assembly language. This can be useful in
cases where the other languages provide performance advantages or utilities
that are not available in C or C++.

This section describes how to call assembly language and Fortran programs
from a C or C++ program. It also discusses the issues related to calling C or
C++ programs from other languages.

11.1 Calls between C and C++ Functions

The following requirements must be considered when making calls between
functions written in C and C++:

• In Cray C++, the extern "C" linkage is required when declaring an external
function that is written in Cray C or when declaring a Cray C++ function that
is to be called from Cray C. Normally the compiler will mangle function
names to encode information about the function’s prototype in the external
name. This prevents direct access to these function names from a C function.
The extern "C" keyword will prevent the compiler from performing name
mangling.

• The program must be linked using the CC(1) command.

Objects can be shared between C and C++. There are some Cray C++ objects that
are not accessible to Cray C functions (such as classes). The following object
types can be shared directly:

• Integral and floating types.

• Structures and unions that are declared identically in C and C++. In order
for structures and unions to be shared, they must be declared with identical
members in the identical order.

S–2179–51 163

Cray C and C++ Reference Manual

• Arrays and pointers to the above types.

In the following example, a Cray C function (C_add_func) is called by the Cray
C++ main program:

#include <iostream.h>

extern "C" int C_add_func(int, int);

int global_int = 123;

main()

{

int res, i;

cout << "Start C++ main" << endl;

// Call C function to add two integers and return result.

cout << "Call C C_add_func" << endl;

res = C_add_func(10, 20);

cout << "Result of C_add_func = " << res << endl;

cout << "End C++ main << endl;

}

The Cray C function (C_add_func) is as follows:

#include <stdio.h>

extern int global_int;

int C_add_func(int p1, int p2)

{

printf("\tStart C function C_add_func.\n");

printf("\t\tp1 = %d\n", p1);

printf("\t\tp2 = %d\n", p2);

printf("\t\tglobal_int = %d\n", global_int);

return p1 + p2;

}

The output from the execution of the calling sequence illustrated in the preceding
example is as follows:

164 S–2179–51

Interlanguage Communication [11]

Start C++ main

Call C C_add_func

Start C function C_add_func.

p1 = 10

p2 = 20

global_int = 123

Result of C_add_func = 30

End C++ main

11.2 Calling Assembly Language Functions from a C or C++ Function

You can sometimes avoid bottlenecks in programs by rewriting parts of
the program in assembly language, maximizing performance by selecting
instructions to reduce machine cycles. When writing assembly language
functions that will be called by C or C++ functions, use the standard
UNICOS/mp program linkage macros. When using these macros, you do not
need to know the specific registers used by the C or C++ program or by the
calling sequence of the assembly coded routine.

In Cray C++, use extern "C" to declare the assembly language function.

11.2.1 (Deferred implementation) Cray Assembly Language (CAL) Functions

The use of Cray Assembly Language (CAL) is described in the Cray Assembly
Language (CAL) for Cray X1 Systems Reference Manual.

The ALLOC, DEFA, DEFS, ENTER, EXIT, and MXCALLEN macros can be used to
define the calling list, A and S register use, temporary storage, and entry and
exit points.

11.3 Calling Fortran Functions and Subroutines from a C or C++ Function

This subsection describes the following aspects of calling Fortran from C or
C++. Topics include requirements and guidelines, argument passing, array
storage, logical and character data, accessing named common, and accessing
blank common.

11.3.1 Requirements

Keep the following points in mind when calling Fortran functions from C or C++:

S–2179–51 165

Cray C and C++ Reference Manual

• Fortran uses the call-by-address convention. C and C++ use the call-by-value
convention, which means that only pointers should be passed to Fortran
subprograms. See Section 11.3.2, page 166.

• Fortran arrays are in column-major order. C and C++ arrays are in row-major
order. This indicates which dimension is indicated by the first value in an
array element subscript. See Section 11.3.3, page 167.

• Single-dimension arrays of signed 32-bit integers and single dimension arrays
of 32-bit floating-point numbers are the only aggregates that can be passed as
parameters without changing the arrays.

• Fortran character pointers and character pointers from Cray C and C++ are
incompatible. See Section 11.3.4, page 168.

• Fortran logical values and the Boolean values from C and C++ are not fully
compatible. See Section 11.3.4, page 168.

• External C and C++ variables are stored in common blocks of the same
name, making them readily accessible from Fortran programs if the C or
C++ variable is in uppercase.

• When declaring Fortran functions or objects in C or C++, the name must be
specified in all uppercase letters, digits, or underscore characters and consist
of 31 or fewer characters.

• In Cray C, Fortran functions can be declared using the fortran keyword (see
Section 8.2, page 154). The fortran keyword is not available in Cray C++.
Instead, Fortran functions must be declared by specifying extern "C".

11.3.2 Argument Passing

Because Fortran subroutines expect arguments to be passed by pointers rather
than by value, C and C++ functions called from Fortran subroutines must pass
pointers rather than values.

All argument passing in Cray C is strictly by value. To prepare for a function
call between two Cray C functions, a copy is made of each actual argument.
A function can change the values of its formal parameters, but these changes
cannot affect the values of the actual arguments. It is possible, however, to pass
a pointer. (All array arguments are passed by this method.) This capability is
analogous to the Fortran method of passing arguments.

In addition to passing by value, Cray C++ also provides passing by reference.

166 S–2179–51

Interlanguage Communication [11]

11.3.3 Array Storage

C and C++ arrays are stored in memory in row-major order. Fortran arrays are
stored in memory in column-major order. For example, the C or C++ array
declaration int A[3][2] is stored in memory as:

A[0][0] A[0][1]

A[1][0] A[1][1]

A[2][0] A[2][1]

The previously defined array is viewed linearly in memory as:

A[0][0] A[0][1] A[1][0] A[1][1] A[2][0] A[2][1]

The Fortran array declaration INTEGER A(3,2) is stored in memory as:

A(1,1) A(2,1) A(3,1)

A(1,2) A(2,2) A(3,2)

The previously defined array is viewed linearly in memory as:

A(1,1) A(2,1) A(3,1) A(1,2) A(2,2) A(3,2)

When an array is shared between Cray C, C++, and Fortran, its dimensions are
declared and referenced in C and C++ in the opposite order in which they are
declared and referenced in Fortran. Arrays are zero-based in C and C++ and are
one-based in Fortran, so in C and C++ you should subtract 1 from the array
subscripts that you would normally use in Fortran.

For example, using the Fortran declaration of array A in the preceding example,
the equivalent declaration in C or C++ is:

int a[2][3];

The following list shows how to access elements of the array from Fortran and
from C or C++:

S–2179–51 167

Cray C and C++ Reference Manual

Fortran C or C++

A(1,1) A[0][0]

A(2,1) A[0][1]

A(3,1) A[0][2]

A(1,2) A[1][0]

A(2,2) A[1][1]

A(3,2) A[1][2]

11.3.4 Logical and Character Data

Logical and character data need special treatment for calls between C or C++ and
Fortran. Fortran has a character descriptor that is incompatible with a character
pointer in C and C++. The techniques used to represent logical (Boolean) values
also differ between Cray C, C++, and Fortran.

Mechanisms you can use to convert one type to the other are provided by the
standard header file and conversion utilities shown in the following list:

Header file or
utility

Description

_btol Conversion utility that converts a 0 to a Fortran
logical .FALSE. and a nonzero value to a Fortran
logical .TRUE.

_ltob Conversion utility that converts a Fortran logical
.FALSE. to a 0 and a Fortran logical .TRUE.
to a 1.

11.3.5 Accessing Named Common from C and C++

The following example demonstrates how external C and C++ variables are
accessible in Fortran named common blocks. It shows a C or C++ C function
calling a Fortran subprogram, the associated Fortran subprogram, and the
associated input and output.

In this example, the C or C++ structure ST is accessed in the Fortran subprogram
as common block ST. The name of the structure and the Fortran common block
must match. Note that this requires that the structure name be uppercase. The C
and C++ C structure member names and the Fortran common block member
names do not have to match, as is shown in this example.

168 S–2179–51

Interlanguage Communication [11]

The following Cray C main program calls the Fortran subprogram FCTN:

#include <stdio.h>

struct

{

int i;

double a[10];

long double d;

} ST;

main()

{

int i;

/* initialize struct ST */

ST.i = 12345;

for (i = 0; i < 10; i++)

ST.a[i] = i;

ST.d = 1234567890.1234567890L;

/* print out the members of struct ST */

printf("In C: ST.i = %d, ST.d = %20.10Lf\n", ST.i, ST.d);

printf("In C: ST.a = ");

for (i = 0; i < 10; i++)

printf("%4.1f", ST.a[i]);

printf("\n\n");

/* call the fortran function */

FCTN();

}

The following example is the Fortran subprogram FCTN called by the previous
Cray C main program:

C *********** Fortran subprogram (f.f): ***********

SUBROUTINE FCTN

COMMON /ST/STI, STA(10), STD

INTEGER STI

REAL STA

DOUBLE PRECISION STD

S–2179–51 169

Cray C and C++ Reference Manual

INTEGER I

WRITE(6,100) STI, STD

100 FORMAT (’IN FORTRAN: STI = ’, I5, ’, STD = ’, D25.20)

WRITE(6,200) (STA(I), I = 1,10)

200 FORMAT (’IN FORTRAN: STA =’, 10F4.1)

END

The previous Cray C and Fortran examples are executed by the following
commands, and they produce the output shown:

%cc -c c.c

%ftn -c f.f

%ld c.o f.o

%a.out

ST.i = 12345, ST.d = 1234567890.1234567890

In C: ST.a = 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0

IN FORTRAN: STI = 12345, STD = .12345678901234567889D+10

IN FORTRAN: STA = 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0

11.3.6 Accessing Blank Common from C or C++

Fortran includes the concept of a common block. A common block is an area of
memory that can be referenced by any program unit in a program. A named
common block has a name specified in names of variables or arrays stored in the
block. A blank common block, sometimes referred to as blank common, is declared
in the same way, but without a name.

There is no way to access blank common from C or C++ similar to accessing a
named common block. However, you can write a simple Fortran function to
return the address of the first word in blank common to the C or C++ program
and then use that as a pointer value to access blank common.

The following example shows how Fortran blank common can be accessed
using C or C++ source code:

170 S–2179–51

Interlanguage Communication [11]

#include <stdio.h>

struct st

{

float a;

float b[10];

} *ST;

#ifdef __cplusplus

extern "C" struct st *MYCOMMON(void);

extern "C" void FCTN(void);

#else

fortran struct st *MYCOMMON(void);

fortran void FCTN(void);

#endif

main()

{

int i;

ST = MYCOMMON();

ST->a = 1.0;

for (i = 0; i < 10; i++)

ST->b[i] = i+2;

printf("\n In C and C++\n");

printf(" a = %5.1f\n", ST->a);

printf(" b = ");

for (i = 0; i < 10; i++)

printf("%5.1f ", ST->b[i]);

printf("\n\n");

FCTN();

}

This Fortran source code accesses blank common and is accessed from the C or
C++ source code in the preceding example:

S–2179–51 171

Cray C and C++ Reference Manual

SUBROUTINE FCTN

COMMON // STA,STB(10)

PRINT *, "IN FORTRAN"

PRINT *, " STA = ",STA

PRINT *, " STB = ",STB

STOP

END

FUNCTION MYCOMMON()

COMMON // A

MYCOMMON = LOC(A)

RETURN

END

This is the output of the previous C or C++ source code:

a = 1.0

b = 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0

This is the output of the previous Fortran source code:

STA = 1.

STB = 2., 3., 4., 5., 6., 7., 8., 9., 10., 11.

11.3.7 Cray C and Fortran Example

Here is an example of a Cray C function that calls a Fortran subprogram. The
Fortran subprogram example follows the Cray C function example, and the input
and output from this sequence follows the Fortran subprogram example.

Note: This example assumes that the Cray Fortran function is compiled with
the -s default32 option enabled. The examples will not work if the -s
default64 option is enabled.

172 S–2179–51

Interlanguage Communication [11]

/* C program (main.c): */

#include <stdio.h>

#include <string.h>

#include <fortran.h>

/* Declare prototype of the Fortran function. Note the last */

/* argument passes the length of the first argument. */

fortran double FTNFCTN (char *, int *, int);

double FLOAT1 = 1.6;

double FLOAT2; /* Initialized in FTNFCTN */

main()

{

int clogical, ftnlogical, cstringlen;

double rtnval;

char *cstring = "C Character String";

/* Convert clogical to its Fortran equivalent */

clogical = 1;

ftnlogical = _btol(clogical);

/* Print values of variables before call to Fortran function */

printf(" In main: FLOAT1 = %g; FLOAT2 = %g\n",

FLOAT1, FLOAT2);

printf(" Calling FTNFCTN with arguments:\n");

printf(" string = \"%s\"; logical = %d\n\n", cstring, clogical);

cstringlen = strlen(cstring);

rtnval = FTNFCTN(cstring, &ftnlogical, cstringlen);

/* Convert ftnlogical to its C equivalent */

clogical = _ltob(&ftnlogical);

/* Print values of variables after call to Fortran function */

printf(" Back in main: FTNFCTN returned %g\n", rtnval);

printf(" and changed the two arguments:\n");

printf(" string = \"%.*s\"; logical = %d\n",

cstringlen, cstring, clogical);

}

S–2179–51 173

Cray C and C++ Reference Manual

C Fortran subprogram (ftnfctn.f):

FUNCTION FTNFCTN(STR, LOG)

REAL FTNFCTN

CHARACTER*(*) STR

LOGICAL LOG

COMMON /FLOAT1/FLOAT1

COMMON /FLOAT2/FLOAT2

REAL FLOAT1, FLOAT2

DATA FLOAT2/2.4/ ! FLOAT1 INITIALIZED IN MAIN

C PRINT CURRENT STATE OF VARIABLES

PRINT*, ’ IN FTNFCTN: FLOAT1 = ’, FLOAT1,

1 ’;FLOAT2 = ’, FLOAT2

PRINT*, ’ ARGUMENTS: STR = "’, STR, ’"; LOG = ’, LOG

C CHANGE THE VALUES FOR STR(ING) AND LOG(ICAL)

STR = ’New Fortran String’

LOG = .FALSE.

FTNFCTN = 123.4

PRINT*, ’ RETURNING FROM FTNFCTN WITH ’, FTNFCTN

PRINT*

RETURN

END

The previous Cray C function and Fortran subprogram are executed by the
following commands and produce the following output:

174 S–2179–51

Interlanguage Communication [11]

$cc -c main.c

$ftn -c ftnfctn.f

$ld main.o ftnfctn.o

$a.out

In main: FLOAT1 = 1.6; FLOAT2 = 2.4

Calling FTNFCTN with arguments:

string = "C Character String"; logical = 1

IN FTNFCTN: FLOAT1 = 1.6; FLOAT2 = 2.4

ARGUMENTS: STR = "C Character String"; LOG = T

RETURNING FROM FTNFCTN WITH 123.4

Back in main: FTNFCTN returned 123.4

and changed the two arguments:

string = "New Fortran String"; logical = 0

11.3.8 Calling a Fortran Program from a Cray C++ Program

The following example illustrates how a Fortran program can be called from a
Cray C++ program:

#include <iostream.h>

extern "C" int FORTRAN_ADD_INTS(int *arg1, int &arg2);

main()

{

int num1, num2, res;

cout << "Start C++ main" << endl << endl;

//Call FORTRAN function to add two integers and return result.

//Note that the second argument is a reference parameter so

//it is not necessary to take the address of the

//variable num2.

num1 = 10;

num2 = 20;

cout << "Before Call to FORTRAN_ADD_INTS" << endl;

res = FORTRAN_ADD_INTS(&num1, num2);

cout << "Result of FORTRAN Add = " << res << endl << endl;

cout << "End C++ main" << endl;

}

S–2179–51 175

Cray C and C++ Reference Manual

The Fortran program that is called from the Cray C++ main function in the
preceding example is as follows:

INTEGER FUNCTION FORTRAN_ADD_INTS(Arg1, Arg2)

INTEGER Arg1, Arg2

PRINT *," FORTRAN_ADD_INTS, Arg1,Arg2 = ", Arg1, Arg2

FORTRAN_ADD_INTS = Arg1 + Arg2

END

The output from the execution of the preceding example is as follows:

Start C++ main

Before Call to FORTRAN_ADD_INTS

FORTRAN_ADD_INTS, Arg1,Arg2 = 10, 20

Result of FORTRAN Add = 30

End C++ main

11.4 Calling a C or C++ Function from a Fortran or Assembly Language Program

A C or C++ function can be called from a Fortran or (Deferred implementation)
assembly language program. One of two methods can be used to call C functions
from Fortran: the C interoperability feature provided by the Fortran 2000 facility
or the method documented in this section. C interoperability provides a standard
portable interoperability mechanism for Fortran and C programs. Refer to
Fortran Language Reference Manual, Volume 2 for more information about C
interoperability. If you are using the method documented in this section to call C
functions from Fortran, keep in mind the information in Section 11.3, page 165.

When calling a Cray C++ function from a Fortran or (Deferred implementation)
assembly language program, observe the following rules:

• The Cray C++ function must be declared with extern "C" linkage.

• The program must be linked with the CC(1) command.

The example that follows illustrates a Fortran program that calls a Cray C
function. The Cray C function being called, the commands required, and the
associated input and output are also included.

Note: This example assumes that the Cray Fortran program is compiled
with the -s default32 option enabled. The examples will not work if the
-s default64 option is enabled.

176 S–2179–51

Interlanguage Communication [11]

C Fortran program (main.f):

PROGRAM MAIN

REAL CFCTN

COMMON /FLOAT1/FLOAT1

COMMON /FLOAT2/FLOAT2

REAL FLOAT1, FLOAT2

DATA FLOAT1/1.6/ ! FLOAT2 INITIALIZED IN cfctn

LOGICAL LOG

CHARACTER*24 STR

REAL RTNVAL

C INITIALIZE VARIABLES STR(ING) AND LOG(ICAL)

STR = ’Fortran Character String’

LOG = .TRUE.

C PRINT VALUES OF VARIABLES BEFORE CALL TO C FUNCTION

PRINT*, ’ IN MAIN: FLOAT1 = ’, FLOAT1,

1 ’; FLOAT2 = ’, FLOAT2

PRINT*, ’ CALLING CFCTN WITH ARGUMENTS: ’

PRINT*, ’ STR = "’, STR, ’"; LOG = ’, LOG

PRINT*

RTNVAL = CFCTN(STR, LOG)

C PRINT VALUES OF VARIABLES AFTER CALL TO C FUNCTION

PRINT*, ’ BACK IN MAIN: CFCTN RETURNED ’, RTNVAL

PRINT*, ’ AND CHANGED THE TWO ARGUMENTS: ’

PRINT*, ’ STR = "’, STR, ’"; LOG = ’, LOG

END

The following example illustrates the associated Cray C function that is being
called:

S–2179–51 177

Cray C and C++ Reference Manual

/* C function (cfctn.c): */

#include <fortran.h>

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

double FLOAT1; /* Initialized in MAIN */

double FLOAT2 = 2.4;

/* The slen argument passes the length of string in str */

double CFCTN(char * str, int *log, int slen)

{

int clog;

float returnval;

char *cstring;

/* Convert log passed from Fortran MAIN */

/* into its C equivalent */

cstring = malloc(slen+1);

strncpy(cstring, str, slen);

cstring[slen] = ’\0’;

clog = _ltob(log);

/* Print the current state of the variables */

printf(" In CFCTN: FLOAT1 = %.1f; FLOAT2 = %.1f\n",

FLOAT1, FLOAT2);

printf(" Arguments: str = "%s"; log = %d\n",

cstring, clog);

/* Change the values for str and log */

strncpy(str, "C Character String ", 24);

*log = 0;

returnval = 123.4;

printf(" Returning from CFCTN with %.1f\n\n", returnval);

return(returnval);

}

178 S–2179–51

Interlanguage Communication [11]

The previous Fortran program and Cray C function are executed by the following
commands and produce the following output:

%cc -c cfctn.c

% ftn -c main.f

%ftn cfctn.o main.o

%a.out

IN MAIN: FLOAT1 = 1.6; FLOAT2 = 2.4

CALLING CFCTN WITH ARGUMENTS:

STR = "Fortran Character String"; LOG = T

In CFCTN: FLOAT1 = 1.6; FLOAT2 = 2.4

Arguments: str = "Fortran Character String"; log = 1

Returning from CFCTN with 123.4

BACK IN MAIN: CFCTN RETURNED 123.4

AND CHANGED THE TWO ARGUMENTS:

STR = "C Character String "; LOG = F

S–2179–51 179

Cray C and C++ Reference Manual

180 S–2179–51

Implementation-defined Behavior [12]

This chapter describes compiler behavior that is defined by the implementation
according to the C and/or C++ standards. The standards require that the
behavior of each particular implementation be documented.

12.1 Implementation-defined Behavior

The C and C++ standards define implementation-defined behavior as
behavior, for a correct program construct and correct data, that depends on the
characteristics of the implementation. The behavior of the Cray C and C++
compilers for these cases is summarized in this section.

12.1.1 Messages

All diagnostic messages issued by the compilers are reported through the
UNICOS/mp message system. For information on messages issued by the
compilers and for information about the UNICOS/mp message system, see
Appendix E, page 217.

12.1.2 Environment

When argc and argv are used as parameters to the main function, the array
members argv[0] through argv[argc-1] contain pointers to strings that are
set by the command shell. The shell sets these arguments to the list of words on
the command line used to invoke the compiler (the argument list). For further
information on how the words in the argument list are formed, refer to the
documentation on the shell in which you are running. For information on
UNICOS/mp shells, see the sh(1) or csh(1) man page.

A third parameter, char **envp, provides access to environment variables.
The value of the parameter is a pointer to the first element of an array of
null-terminated strings, that matches the output of the env(1) command. The
array of pointers is terminated by a null pointer.

The compiler does not distinguish between interactive devices and other,
noninteractive devices. The library, however, may determine that stdin,
stdout, and stderr (cin, cout, and cerr in Cray C++) refer to interactive
devices and buffer them accordingly.

S–2179–51 181

Cray C and C++ Reference Manual

12.1.2.1 Identifiers

The identifier (as defined by the standards) is merely a sequence of letters and
digits. Specific uses of identifiers are called names.

The Cray C compiler treats the first 255 characters of a name as significant,
regardless of whether it is an internal or external name. The case of names,
including external names, is significant. In Cray C++, all characters of a name
are significant.

12.1.2.2 Types

Table 11, page 182 summarizes Cray C and C++ types and the characteristics of
each type. Representation is the number of bits used to represent an object of that
type. Memory is the number of storage bits that an object of that type occupies.

In the Cray C and C++ compilers, size, in the context of the sizeof operator,
refers to the size allocated to store the operand in memory; it does not refer to
representation, as specified in Table 11, page 182. Thus, the sizeof operator
will return a size that is equal to the value in the Memory column of Table 11,
page 182 divided by 8 (the number of bits in a byte).

Table 11. Data Type Mapping

UNICOS/mp

Type Representation (bits) Memory (bits)

bool (C++)

_Bool (C)

8 8

char 8 8

wchar_t 32 32

short1 16 16

int 32 32

long 64 64

long long 64 64

float 32 32

1 We do not recommend using shorts because of performance penalties.

182 S–2179–51

Implementation-defined Behavior [12]

UNICOS/mp

Type Representation (bits) Memory (bits)

double 64 64

long double 128 128

float complex 64 (each part is 32 bits) 64

double complex 128 (each part is 64
bits)

128

long double complex 256 (each part is 128
bits)

256

Pointers 64 64

12.1.2.3 Characters

The full 8-bit ASCII code set can be used in source files. Characters not in
the character set defined in the standard are permitted only within character
constants, string literals, and comments. The -h [no]calchars option allows
the use of the @ sign and $ sign in identifier names. For more information on the
-h [no]calchars option, see Section 2.9.3, page 18.

A character consists of 8 bits. Up to 8 characters can be packed into a 64-bit
word. A plain char type, one that is declared without a signed or unsigned
keyword, is treated as an unsigned type.

Character constants and string literals can contain any characters defined in the
8-bit ASCII code set. The characters are represented in their full 8-bit form. A
character constant can contain up to 8 characters. The integer value of a character
constant is the value of the characters packed into a word from left to right, with
the result right-justified, as shown in the following table:

Table 12. Packed Characters

Character constant Integer value

’a’ 0x61

’ab’ 0x6162

In a character constant or string literal, if an escape sequence is not recognized,
the \ character that initiates the escape sequence is ignored, as shown in the
following table:

S–2179–51 183

Cray C and C++ Reference Manual

Table 13. Unrecognizable Escape Sequences

Character constant Integer value Explanation

’\a’ 0x7 Recognized as the ASCII BEL
character

’\8’ 0x38 Not recognized; ASCII value for 8

’\[’ 0x5b Not recognized; ASCII value for [

’\c’ 0x63 Not recognized; ASCII value for c

12.1.2.4 Wide Characters

Wide characters are treated as signed 64-bit integer types. Wide character
constants cannot contain more than one multibyte character. Multibyte characters
in wide character constants and wide string literals are converted to wide
characters in the compiler by calling the mbtowc(3) function. The current locale
in effect at the time of compilation determines the method by which mbtowc(3)
converts multibyte characters to wide characters, and the shift states required
for the encoding of multibyte characters in the source code. If a wide character,
as converted from a multibyte character or as specified by an escape sequence,
cannot be represented in the extended execution character set, it is truncated.

12.1.2.5 Integers

All integral values are represented in a twos complement format. For
representation and memory storage requirements for integral types, see Table 11,
page 182.

When an integer is converted to a shorter signed integer, and the value cannot
be represented, the result is the truncated representation treated as a signed
quantity. When an unsigned integer is converted to a signed integer of
equal length, and the value cannot be represented, the result is the original
representation treated as a signed quantity.

The bitwise operators (unary operator ~ and binary operators <<, >>, &, ^, and
|) operate on signed integers in the same manner in which they operate on
unsigned integers. The result of E1 >> E2, where E1 is a negative-valued signed
integral value, is E1 right-shifted E2 bit positions; vacated bits are filled with
1s. This behavior can be modified by using the -h nosignedshifts option
(see Section 2.9.4, page 19). Bits higher than the sixth bit are not ignored. Values
higher than 31 cause the result to be 0 or all 1s for right shifts.

184 S–2179–51

Implementation-defined Behavior [12]

The result of the / operator is the largest integer less than or equal to the
algebraic quotient when either operand is negative and the result is a
nonnegative value. If the result is a negative value, it is the smallest integer
greater than or equal to the algebraic quotient. The / operator behaves the
same way in C and C++ as in Fortran.

The sign of the result of the percent (%) operator is the sign of the first operand.

Integer overflow is ignored. Because some integer arithmetic uses the
floating-point instructions, floating-point overflow can occur during integer
operations. Division by 0 and all floating-point exceptions, if not detected as an
error by the compiler, can cause a run time abort.

12.1.2.6 Arrays and Pointers

An unsigned int value can hold the maximum size of an array. The type
size_t is defined to be a typedef name for unsigned long in the headers:
malloc.h, stddef.h, stdio.h, stdlib.h, string.h, and time.h. If more
than one of these headers is included, only the first defines size_t.

A type int can hold the difference between two pointers to elements of the same
array. The type ptrdiff_t is defined to be a typedef name for long in the
header stddef.h.

If a pointer type’s value is cast to a signed or unsigned long int, and then cast
back to the original type’s value, the two pointer values will compare equal.

Pointers on UNICOS/mp systems are byte pointers. Byte pointers use the same
internal representation as integers; a byte pointer counts the numbers of bytes
from the first address.

A pointer can be explicitly converted to any integral type large enough to hold it.
The result will have the same bit pattern as the original pointer. Similarly, any
value of integral type can be explicitly converted to a pointer. The resulting
pointer will have the same bit pattern as the original integral type.

12.1.2.7 Registers

Use of the register storage class in the declaration of an object has no effect
on whether the object is placed in a register. The compiler performs register
assignment aggressively; that is, it automatically attempts to place as many
variables as possible into registers.

S–2179–51 185

Cray C and C++ Reference Manual

12.1.2.8 Classes, Structures, Unions, Enumerations, and Bit Fields

Accessing a member of a union by using a member of a different type results in
an attempt to interpret, without conversion, the representation of the value of the
member as the representation of a value in the different type.

Members of a class or structure are packed into words from left to right. Padding
is appended to a member to correctly align the following member, if necessary.
Member alignment is based on the size of the member:

• For a member bit field of any size, alignment is any bit position that allows
the member to fit entirely within a 64–bit word.

• For a member with a size less than 64 bits, alignment is the same as the size.
For example, a char has a size and alignment of 8 bits; a float has a size
and alignment of 32 bits.

• For a member with a size equal to or greater than 64 bits, alignment is 64 bits.

• For a member with array type, alignment is equal to the alignment of the
element type.

A plain int type bit field is treated as an signed int bit field.

The values of an enumeration type are represented in the type signed int in
C; they are a separate type in C++.

12.1.2.9 Qualifiers

When an object that has volatile-qualified type is accessed, it is simply a
reference to the value of the object. If the value is not used, the reference need not
result in a load of the value from memory.

12.1.2.10 Declarators

A maximum of 12 pointer, array, and/or function declarators are allowed to
modify an arithmetic, structure, or union type.

12.1.2.11 Statements

The compiler has no fixed limit on the maximum number of case values allowed
in a switch statement.

The Cray C++ compiler parses asm statements for correct syntax, but otherwise
ignores them.

186 S–2179–51

Implementation-defined Behavior [12]

12.1.2.12 Exceptions

In Cray C++, when an exception is thrown, the memory for the temporary copy
of the exception being thrown is allocated on the stack and a pointer to the
allocated space is returned.

12.1.2.13 System Function Calls

See the exit(3) man page for a description of the form of the unsuccessful
termination status that is returned from a call to exit(3).

12.1.3 Preprocessing

The value of a single-character constant in a constant expression that controls
conditional inclusion matches the value of the same character in the execution
character set. No such character constant has a negative value. For each, ’a’ has
the same value in the two contexts:

#if ’a’ == 97

if (’a’ == 97)

The -I option and the method for locating included source files is described in
Section 2.19.4, page 39.

The source file character sequence in a #include directive must be a valid
UNICOS/mp file name or path name. A #include directive may specify a
file name by means of a macro, provided the macro expands into a source file
character sequence delimited by double quotes or < and > delimiters, as follows:

#define myheader "./myheader.h"

#include myheader

#define STDIO <stdio.h>

#include STDIO

The macros __DATE__ and __TIME__ contain the date and time of the beginning
of translation. For more information, see the description of the predefined macros
in Chapter 9, page 157.

The #pragma directives are described in Chapter 3, page 59.

S–2179–51 187

Cray C and C++ Reference Manual

188 S–2179–51

Possible Requirements for non-C99 Code [A]

In order to use C code, developed under previous C compilers of the Cray C++
Programming Environment, with the c99 command, your code may require one
or more of the following modifications:

• Include necessary header files for complete function prototyping.

• Add return statements to all non-void functions.

• Ensure that all strings in any macro that begins with an underscore are
literals. These macros cannot contain other types of strings.

• Follow C99 conventions

Previous Cray C compilers did not require you to explicitly include header files
in many situations because they allowed functions to be implicitly declared. In
C99, functions cannot be implicitly declared.

S–2179–51 189

Cray C and C++ Reference Manual

190 S–2179–51

Libraries and Loader [B]

This appendix describes the libraries that are available with the Cray C and
C++ compilers and the loader (ld).

B.1 Cray C and C++ Libraries Current Programming Environments

Libraries that support Cray C and C++ are automatically available when you
use the CC, cc, c89, or c99 command to compile your programs. These
commands automatically issue the appropriate directives to load the program
with the appropriate functions. If your program strictly conforms to the C or
C++ standards, you do not need to know library names and locations. If your
program requires other libraries or if you want direct control over the loading
process, more knowledge of the loader and libraries is necessary.

The Standard Template Library (STL) is a C++ library of container classes,
algorithms, and iterators; it provides many of the basic algorithms and data
structures of computer science. The STL is a generic library, meaning that its
components are heavily parameterized: almost every component in the STL is
a template. Be sure you have a complete understanding of templates and how
they work before using them.

B.2 Loader

When you issue the cc(1), CC, c89, or c99 command to invoke the compiler,
and the program compiles without errors, the loader is called. Specifying the
-c option on the command line produces relocatable object files without calling
the loader. These relocatable object files can then be used as input to the loader
command by specifying the file names on the appropriate loader command line.

For example, the following command line compiles a file called target.c and
produces the relocatable object file called target.o in your current working
directory:

cc -c target.c

You can then use file target.o as input to the loader or save the file to use
with other relocatable object files to compile and create a linked executable file
(a.out by default).

S–2179–51 191

Cray C and C++ Reference Manual

Because of the special code needed to handle templates, constructors, destructors,
and other C++ language features, object files generated by using the CC(1)
command should be linked using the CC command. To link C++ object files using
the loader command (ld), the -h keep=files option (see Section 2.9.1, page 17)
must be specified on the command line when compiling source files.

The ld command can be accessed by using one of the following methods:

• You can access the loader directly by using the ld command.

• You can let the cc, CC, c89, or c99 command choose the loader. This method
has the following advantages:

– You do not need to know the loader command line interface.

– You do not need to worry about the details of which libraries to load, or
the order in which to load them.

– When using CC, you need not worry about template instantiation
requirements or about loading the compiler-generated static constructors
and destructors.

You can control the operation of the loader with the ld command line options.
Refer to the ld(1) man page.

192 S–2179–51

Compatibility with Older C++ Code [C]

A key feature of the Cray C++ Programming Environment 5.x is the Standard
C++ Library. C++ code developed under the C++ Programming Environment
4.2 release or earlier can still be used with Programming Environment release
5.x. If your code uses nonstandard Cray C++ header files, you can continue to
use your code without modification by using the CRAYOLDCPPLIB environment
variable. Another way to use your pre-4.x code with the current Programming
Environment release is to make changes to your existing code. The following
sections explain how to use either of these methods.

Note: Other changes to your existing C++ code may be required because
of differences between the Cray SV1 or Cray T3E systems and the Cray X1
systems. Refer to the Cray X1 User Environment Differences.

C.1 Use of Nonstandard Cray C++ Header Files

The Cray C++ Programming Environment release continues to support some
of the nonstandard Cray C++ header files. This allows pre-5.0 code that use
these header files to be compiled without modification. These header files
are available in the Standard C++ Library at the same location as they were
in previous releases.

Here are the Cray nonstandard header files that can be used in Programming
Environment 5.x:

• common.h

• complex.h

• fstream.h

• generic.h

• iomanip.h

• iostream.h

• stdiostream.h

• stream.h

• strstream.h

• vector.h

S–2179–51 193

Cray C and C++ Reference Manual

The nonstandard header files can be used when you set the CRAYOLDCPPLIB
environment variable to a nonzero value. How to set the variable depends
on the shell you are using. If you are using ksh or sh, set the variable as this
example shows:

%export CRAYOLDCPPLIB=1

If you are using csh, set the variable as this example shows:

%setenv CRAYOLDCPPLIB 1

C.2 When to Update Your C++ Code

You are not required to modify your existing C++ codes in order to compile it
with the Cray C++ compiler version 5.x, unless you wish to use the Standard C++
Library. One reason for migrating your code to the Standard C++ Library is that
the nonstandard Cray C++ header files of Programming Environment 3.5 may
not be supported by future versions of the Cray C++ compiler. Another reason
for migrating is your C++ code may already contain support for the Standard
C++ Library. Often, third-party code contains a configuration script that tests the
features of the compiler and system before building a makefile. This script can
determine whether the C++ compiler supports the Standard C++ Library.

You can use the following steps to migrate your C++ code:

1. Use the proper header files

2. Add namespace declarations

3. Reconcile header definition differences

4. Recompile all C++ files

C.2.1 Use the Proper Header Files

The first step in migrating your C++ code to use the Standard C++ Library is to
ensure that it uses the correct Standard C++ Library header files. The following
tables show each header file used by the C++ library version 3.5 and its likely
corresponding header file in the current Standard C++ Library. The older header
files do not always map directly to the new files. For example, most of the
definitions of the Cray C++ version 3.5 STL alloc.h header file are contained
in the Standard C++ Library header files memory and xmemory. Anomalies,
such as this are noted in the tables.

The tables divide the header files into three groups:

194 S–2179–51

Compatibility with Older C++ Code [C]

• Run time support library header files

• Stream and class library header files

• Standard Template Library header files

The older header file used by the run time support library originated from Edison
Design Group and perform functions such as exception handling and memory
allocation and deallocation. Table 14 shows the old and new header files.

Table 14. Run time Support Library Header Files

Cray C++ 3.5 header file Standard C++ library header file

exception.h exception

new.h new

stdexcept.h stdexcept

typeinfo.h typeinfo

The header files in the stream and class library originate from AT&T and define
the I/O stream classes along the string, complex, and vector classes. Table 15
shows the old and new header files.

Table 15. Stream and Class Library Header Files

Cray C++ 3.5 header file Standard C++ Library header file

common.h No equivalent header file

complex.h complex

fstream.h fstream

iomanip.h iomanip

iostream.h iostream

stdiostream.h iosfwd

stream.h Not available

strstream.h strstream

vector.h vector

S–2179–51 195

Cray C and C++ Reference Manual

Note: The use of any of the stream and class library header files from Cray
C++ Programming Environment 3.5 requires that you set the CRAYOLDCPPLIB
environment variable. Refer to Section C.1, page 193.

Table 16 shows the old and new Standard Template Library (STL) header files.

Note: The older STL originated from Silicon Graphics Inc.

Table 16. Standard Template Library Header Files

Cray C++ 3.5 header file Standard C++ header file

algo.h algorithm

algobase.h algorightm

alloc.h memory

bvector.h vector

defalloc.h1 Not available

deque.h deque

function.h functional

hash_map.h hash_map

hash_set.h hash_set

hashtable.h xhash

heap.h algorithm

iterator.h iterator

list.h list

map.h map

mstring.h string

multimap.h map

multiset.h set

pair.h pair

pthread_alloc.h No equivalent header file

rope.h rope

1 This header file was deprecated in the Cray C++ Programming Environment 3.5 release.

196 S–2179–51

Compatibility with Older C++ Code [C]

Cray C++ 3.5 header file Standard C++ header file

ropeimpl.h rope

set.h set

slist.h slist

stack.h stack

stl_config.h The Standard C++ Library does not
need the STL configuration file.

tempbuf.h memory

tree.h xtree

vector.h vector

C.2.2 Add Namespace Declarations

The second step in migrating to the Standard C++ Library is adding namespace
declarations. Most classes of the Standard C++ Library are declared under the
std namespace, so this usually requires that you add this statement to the
existing code: using namespace std. For example, the following program
returns an error when it is compiled with previous versions of the Standard
C++ Library:

%cat hello.C

#include <iostream>

main() { cout << "hello world\n"; }

%CC hello.C

CC-20 CC: ERROR File = hello.C, line = 2

The identifier "cout" is undefined.

main() { cout <<"hello world\n" ; }

^

Total errors detected in hello.C: 1

%

When you add using namespace std; to the example program, it compiles
without error:

%cat hello.C

#include <iostream>

S–2179–51 197

Cray C and C++ Reference Manual

using namespace std;

main() { cout << "hello world\n"; }

%CC hello.C

%a.out

hello world

%

C.2.3 Reconcile Header Definition Differences

The most difficult process of migrating to the Standard C++ Library is reconciling
the differences between the definitions of the Cray C++ version 3.5 header files
and the Standard Cray C++ library header files. For example, the definitions for
the complex class differs. In Cray C++ version 3.5, the complex class has real
and imaginary components of type double. The Standard C++ Library defines
the complex class as a template class, where the user defines the data type of
the real and imaginary components.

For example, here is a program written with the Cray C++ version 3.5 header
files:

%cat complex.C

#include <iostream.h>

#include <complex.h>

main() {

complex C(1.0, 2.0);

cout << "C = " << C << endl;

}

%env CRAYOLDCPPLIB=1 CC complex.C

%a.out

C = (1, 2)

An equivalent program that uses the Standard C++ Library appears as:

%cat complex.C

#include <iostream>

#include <complex.h>

using namespace std;

main() {

complex<double> C(1.0, 2.0);

198 S–2179–51

Compatibility with Older C++ Code [C]

cout << "C = " << C << endl;

}

%CC complex.C

%a.out

C = (1,2)

C.2.4 Recompile All C++ Files

Finally, when all of the source files that use the Standard C++ Library header files
can be built, you must recompile all C++ source files that belong to the program
using only the Standard C++ Library.

S–2179–51 199

Cray C and C++ Reference Manual

200 S–2179–51

Cray C and C++ Dialects [D]

This appendix details the features of the C and C++ languages that are accepted
by the Cray C and C++ compilers, including certain language dialects and
anachronisms. Users should be aware of these details, especially users who are
porting codes from other environments.

D.1 C++ Language Conformance

The Cray C++ compiler accepts the C++ language as defined by the ISO/IEC
14882:1998 standard, with the exceptions listed in Section D.1.1, page 201.

The Cray C++ compiler also has a cfront compatibility mode, which duplicates
a number of features and bugs of cfront. Complete compatibility is not
guaranteed or intended. The mode allows programmers who have used cfront
features to continue to compile their existing code (see Section 3.5, page 61).
Command line options are also available to enable and disable anachronisms
(see Section D.2, page 205) and strict standard-conformance checking (see
Section D.3, page 206, and Section D.4, page 207). The command line options
are described in Chapter 2, page 7.

D.1.1 Unsupported and Supported C++ Language Features

The export keyword for templates is not supported. It is defined in the ISO/IEC
14882:1998 standard, but is not in traditional C++.

The following features, which are in the ISO/IEC 14882:1998 standard but not
in traditional C++1, are supported:

• The dependent statement of an if, while, do-while, or for is considered
to be a scope, and the restriction on having such a dependent statement be
a declaration is removed.

• The expression tested in an if, while, do-while, or for, as the first
operand of a ? operator, or as an operand of the &&, ||, or ! operators may
have a pointer-to-member type or a class type that can be converted to a
pointer-to-member type in addition to the scalar cases permitted by the ARM.

• Qualified names are allowed in elaborated type specifiers.

1 As defined in The Annotated C++ Reference Manual (ARM), by Ellis and Stroustrup, Addison Wesley, 1990.

S–2179–51 201

Cray C and C++ Reference Manual

• A global-scope qualifier is allowed in member references of the form
x.::A::B and p->::A::B.

• The precedence of the third operand of the ? operator is changed.

• If control reaches the end of the main() routine, and the main() routine
has an integral return type, it is treated as if a return 0; statement was
executed.

• Pointers to arrays with unknown bounds as parameter types are diagnosed
as errors.

• A functional-notation cast of the form A() can be used even if A is a class
without a (nontrivial) constructor. The temporary that is created gets the same
default initialization to zero as a static object of the class type.

• A cast can be used to select one out of a set of overloaded functions when
taking the address of a function.

• Template friend declarations and definitions are permitted in class definitions
and class template definitions.

• Type template parameters are permitted to have default arguments.

• Function templates may have nontype template parameters.

• A reference to const volatile cannot be bound to an rvalue.

• Qualification conversions such as conversion from T** to
T const * const are allowed.

• Digraphs are recognized.

• Operator keywords (for example, and or bitand) are recognized.

• Static data member declarations can be used to declare member constants.

• wchar_t is recognized as a keyword and a distinct type.

• bool is recognized.

• RTTI (run time type identification), including dynamic_cast and the
typeid operator, is implemented.

• Declarations in tested conditions (within if, switch, for, and while
statements) are supported.

• Array new and delete are implemented.

202 S–2179–51

Cray C and C++ Dialects [D]

• New-style casts (static_cast, reinterpret_cast, and const_cast)
are implemented.

• Definition of a nested class outside its enclosing class is allowed.

• mutable is accepted on nonstatic data member declarations.

• Namespaces are implemented, including using declarations and directives.
Access declarations are broadened to match the corresponding using
declarations.

• Explicit instantiation of templates is implemented.

• The typename keyword is recognized.

• explicit is accepted to declare nonconverting constructors.

• The scope of a variable declared in the for-init-statement of a for loop
is the scope of the loop (not the surrounding scope).

• Member templates are implemented.

• The new specialization syntax (using template <>) is implemented.

• Cv qualifiers are retained on rvalues (in particular, on function return
values).

• The distinction between trivial and nontrivial constructors has been
implemented, as has the distinction between process overlay directives
(PODs) and non-PODs with trivial constructors.

• The linkage specification is treated as part of the function type (affecting
function overloading and implicit conversions).

• A typedef name can be used in an explicit destructor call.

• Placement delete is supported.

• An array allocated via a placement new can be deallocated via delete.

• enum types are considered to be nonintegral types.

• Partial specification of class templates is implemented.

• Partial ordering of function templates is implemented.

• Function declarations that match a function template are regarded as
independent functions, not as “guiding declarations” that are instances of
the template.

S–2179–51 203

Cray C and C++ Reference Manual

• It is possible to overload operators using functions that take enum types
and no class types.

• Explicit specification of function template arguments is supported.

• Unnamed template parameters are supported.

• The new lookup rules for member references of the form x.A::B and
p->A::B are supported.

• The notation :: template (and –>template, etc.) is supported.

• In a reference of the form f()->g(), with g a static member function, f() is
evaluated. Likewise for a similar reference to a static data member. The ARM
specifies that the left operand is not evaluated in such cases.

• enum types can contain values larger than can be contained in an int.

• Default arguments of function templates and member functions of class
templates are instantiated only when the default argument is used in a call.

• String literals and wide string literals have const type.

• Class name injection is implemented.

• Argument-dependent (Koenig) lookup of function names is implemented.

• Class and function names declared only in unqualified friend declarations are
not visible except for functions found by argument-dependent lookup.

• A void expression can be specified on a return statement in a void function.

• reinterpret_cast allows casting a pointer to a member of one class to a
pointer to a member of another class even when the classes are unrelated.

• Two-phase name binding in templates as described in the Working Paper is
implemented.

• Putting a try/catch around the initializers and body of a constructor is
implemented.

• Template template parameters are implemented.

• Universal character set escapes (e.g., \uabcd) are implemented.

• extern inline functions are supported.

• Covariant return types on overriding virtual functions are supported.

204 S–2179–51

Cray C and C++ Dialects [D]

D.2 C++ Anachronisms Accepted

C++ anachronisms are enabled by using the -h anachronisms command
line option (see Section 2.6.7, page 14). When anachronisms are enabled, the
following anachronisms are accepted:

• overload is allowed in function declarations. It is accepted and ignored.

• Definitions are not required for static data members that can be initialized by
using the default initialization. The anachronism does not apply to static data
members of template classes; they must always be defined.

• The number of elements in an array can be specified in an array delete
operation. The value is ignored.

• A single operator++() and operator--() function can be used to
overload both prefix and postfix operations.

• The base class name can be omitted in a base class initializer if there is only
one immediate base class.

• Assignment to the this pointer in constructors and destructors is allowed.
This is only allowed if anachronisms are enabled and the assignment to
this configuration parameter is enabled.

• A bound function pointer (a pointer to a member function for a given object)
can be cast to a pointer to a function.

• A nested class name may be used as a nonnested class name if no other
class of that name has been declared. The anachronism is not applied to
template classes.

• A reference to a non-const type may be initialized from a value of a different
type. A temporary is created, it is initialized from the (converted) initial value,
and the reference is set to the temporary.

• A reference to a non-const class type may be initialized from an rvalue of
the class type or a derived class thereof. No (additional) temporary is used.

• A function with old-style parameter declarations is allowed and can
participate in function overloading as though it were prototyped. Default
argument promotion is not applied to parameter types of such functions
when checking for compatibility, therefore, the following statements declare
the overloading of two functions named f:

S–2179–51 205

Cray C and C++ Reference Manual

int f(int);

int f(x) char x; { return x; }

Note: In C, this code is legal, but has a different meaning. A tentative
declaration of f is followed by its definition.

D.3 Extensions Accepted in Normal C++ Mode

The following C++ extensions are accepted (except when strict standard
conformance mode is enabled, in which case a warning or caution message
may be issued):

• A friend declaration for a class can omit the class keyword, as shown
in the following example:

class B;

class A {

friend B; // Should be "friend class B"

};

• Constants of scalar type can be defined within classes, as shown in the
following example:

class A {

const int size=10;

int a[size];

};

• In the declaration of a class member, a qualified name can be used, as shown
in the following example:

struct A {

int A::f(); // Should be int f();

}

• An assignment operator declared in a derived class with a parameter type
matching one of its base classes is treated as a “default” assignment operator;
that is, such a declaration blocks the implicit generation of a copy assignment
operator. This is cfront behavior that is known to be relied upon in at least
one widely used library. Here is an example:

206 S–2179–51

Cray C and C++ Dialects [D]

struct A { };

struct B : public A {

B& operator=(A&);

};

By default, as well as in cfront compatibility mode, there will be no
implicit declaration of B::operator=(const B&), whereas in strict-ANSI
mode, B::operator=(A&) is not a copy assignment operator and
B::operator=(const B&) is implicitly declared.

• Implicit type conversion between a pointer to an extern "C" function and
a pointer to an extern "C++" function is permitted. The following is an
example:

extern "C" void f(); // f’s type has extern "C" linkage

void (*pf)() // pf points to an extern "C++" function

= &f; // error unless implicit conversion allowed

• The ? operator, for which the second and third operands are string literals or
wide string literals, can be implicitly converted to one of the following:

char *

wchar_t *

In C++ string literals are const. There is a deprecated implicit conversion
that allows conversion of a string literal to char *, dropping the const. That
conversion, however, applies only to simple string literals. Allowing it for the
result of a ? operation is an extension:

char *p = x ? "abc" : "def";

D.4 Extensions Accepted in C or C++ Mode

The following extensions are accepted in C or C++ mode except when strict
standard conformance modes is enabled, in which case a warning or caution
message may be issued.

• The special lint comments /*ARGSUSED*/, /*VARARGS*/ (with or without
a count of nonvarying arguments), and /*NOTREACHED*/ are recognized.

• A translation unit (input file) can contain no declarations.

• Comment text can appear at the ends of preprocessing directives.

• Bit fields can have base types that are enum or integral types in addition to
int and unsigned int. This corresponds to A.6.5.8 in the ANSI Common
Extensions appendix.

S–2179–51 207

Cray C and C++ Reference Manual

• enum tags can be incomplete as long as the tag name is defined and resolved
by specifying the brace-enclosed list later.

• An extra comma is allowed at the end of an enum list.

• The final semicolon preceding the closing of a struct or union type
specifier can be omitted.

• A label definition can be immediately followed by a right brace (}).
(Normally, a statement must follow a label definition.)

• An empty declaration (a semicolon preceded by nothing) is allowed.

• An initializer expression that is a single value and is used to initialize an
entire static array, struct, or union does not need to be enclosed in braces.
ANSI C requires braces.

• In an initializer, a pointer constant value can be cast to an integral type if the
integral type is large enough to contain it.

• The address of a variable with register storage class may be taken.

• In an integral constant expression, an integer constant can be cast to a pointer
type and then back to an integral type.

• In duplicate size and sign specifiers (for example, short short or
unsigned unsigned) the redundancy is ignored.

• Benign redeclarations of typedef names are allowed. That is, a typedef
name can be redeclared in the same scope with the same type.

• Dollar sign ($) and at sign (@) characters can be accepted in identifiers
by using the -h calchars command line option. This is not allowed by
default.

• Numbers are scanned according to the syntax for numbers rather than the
pp-number syntax. Thus, 0x123e+1 is scanned as three tokens instead
of one token that is not valid. If the -h conform option is specified, the
pp-number syntax is used.

• Assignment and pointer differences are allowed between pointers to types
that are interchangeable but not identical, for example, unsigned char *
and char *. This includes pointers to integral types of the same size (for
example, int * and long *). Assignment of a string constant to a pointer to
any kind of character is allowed without a warning.

• Assignment of pointer types is allowed in cases where the destination type
has added type qualifiers that are not at the top level (for example, int **

208 S–2179–51

Cray C and C++ Dialects [D]

to const int **). Comparisons and pointer difference of such pairs of
pointer types are also allowed.

• In operations on pointers, a pointer to void is always implicitly converted
to another type if necessary, and a null pointer constant is always implicitly
converted to a null pointer of the right type if necessary. In ANSI C, these are
allowed by some operators, and not by others (generally, where it does not
make sense).

• Pointers to different function types may be assigned or compared for equality
(==) or inequality (!=) without an explicit type cast. This extension is not
allowed in C++ mode.

• A pointer to void can be implicitly converted to or from a pointer to a
function type.

• External entities declared in other scopes are visible:

void f1(void) { extern void f(); }

void f2() { f(); /* Using out of scope declaration */ }

• In C mode, end-of-line comments (//) are supported.

• A non-lvalue array expression is converted to a pointer to the first element of
the array when it is subscripted or similarly used.

• The fortran keyword. For more information, see Section 8.2, page 154.

• Cray hexadecimal floating point constants. For more information, see Section
8.3, page 154.

D.5 C++ Extensions Accepted in cfront Compatibility Mode

The cfront compatibility mode is enabled by the -h cfront command-line
option. The following extensions are accepted in cfront compatibility mode:

• Type qualifiers on the this parameter are dropped in contexts such as in the
following example:

struct A {

void f() const;

};

void (A::*fp)() = &A::f;

This is a safe operation. A pointer to a const function can be put into a
pointer to non-const, because a call using the pointer is permitted to modify

S–2179–51 209

Cray C and C++ Reference Manual

the object and the function pointed to will not modify the object. The opposite
assignment would not be safe.

• Conversion operators that specify a conversion to void are allowed.

• A nonstandard friend declaration can introduce a new type. A friend
declaration that omits the elaborated type specifier is allowed in default
mode, however, in cfront mode the declaration can also introduce a new
type name. An example follows:

struct A {

friend B;

};

• The third operator of the ? operator is a conditional expression instead of
an assignment expression.

• A reference to a pointer type may be initialized from a pointer value without
use of a temporary even when the reference pointer type has additional type
qualifiers above those present in the pointer value. For example:

int *p;

const int *&r = p; // No temporary used

• A reference can be initialized to NULL.

• Because cfront does not check the accessibility of types, access errors for
types are issued as warnings instead of errors.

• When matching arguments of an overloaded function, a const variable
with a value of 0 is not considered to be a null pointer constant. In general,
in overload resolution, a null pointer constant must be spelled “0” to be
considered a null pointer constant (e.g., ’\0’ is not considered a null pointer
constant).

• An alternate form of declaring pointer-to-member-function variables is
supported, as shown in the following example:

210 S–2179–51

Cray C and C++ Dialects [D]

struct A {

void f(int);

static void sf(int);

typedef void A::T3(int); // nonstd typedef decl

typedef void T2(int); // std typedef

};

typedef void A::T(int); // nonstd typedef decl

T* pmf = &A::f; // nonstd ptr-to-member decl

A::T2* pf = A::sf; // std ptr to static mem decl

A::T3* pmf2 = &A::f; // nonstd ptr-to-member decl

In this example, T is construed to name a function type for a nonstatic
member function of class A that takes an int argument and returns void; the
use of such types is restricted to nonstandard pointer-to-member declarations.
The declarations of T and pmf in combination are equivalent to the following
single standard pointer-to-member declaration:

void (A::* pmf)(int) = &A::f;

A nonstandard pointer-to-member declaration that appears outside of a class
declaration, such as the declaration of T, is normally not valid and would
cause an error to be issued. However, for declarations that appear within a
class declaration, such as A::T3, this feature changes the meaning of a valid
declaration. cfront version 2.1 accepts declarations, such as T, even when A
is an incomplete type; so this case is also accepted.

• Protected member access checking is not done when the address of a
protected member is taken. For example:

class B { protected: int i; };

class D : public B { void mf()};

void D::mf() {

int B::* pmi1 = &B::i; // error, OK in cfront mode

int D::* pmi2 = &D::i; // OK

}

Note: Protected member access checking for other operations (such as
everything except taking a pointer-to-member address) is done normally.

• The destructor of a derived class can implicitly call the private destructor of a
base class. In default mode, this is an error but in cfront mode it is reduced
to a warning. For example:

S–2179–51 211

Cray C and C++ Reference Manual

class A {

~A();

};

class B : public A {

~B();

};

B::~B(){} // Error except in cfront mode

• When disambiguation requires deciding whether something is
a parameter declaration or an argument expression, the pattern
type-name-or-keyword(identifier ...) is treated as an argument. For example:

class A { A(); };

double d;

A x(int(d));

A(x2);

By default, int(d) is interpreted as a parameter declaration (with redundant
parentheses), and so x is a function; but in cfront compatibility mode
int(d) is an argument and x is a variable.

The declaration A(x2) is also misinterpreted by cfront. It should be
interpreted as the declaration of an object named x2, but in cfront mode it is
interpreted as a function style cast of x2 to the type A.

Similarly, the following declaration declares a function named xzy, that
takes a parameter of type function taking no arguments and returning an
int. In cfront mode, this is interpreted as a declaration of an object that is
initialized with the value int(), which evaluates to 0.

int xyz(int());

• A named bit field can have a size of 0. The declaration is treated as though no
name had been declared.

• Plain bit fields (such as bit fields declared with a type of int) are always
signed.

• The name given in an elaborated type specifier can be a typedef name that is
the synonym for a class name. For example:

typedef class A T;

class T *pa; // No error in cfront mode

212 S–2179–51

Cray C and C++ Dialects [D]

• No warning is issued on duplicate size and sign specifiers, as shown in the
following example:

short short int i; // No warning in cfront mode

• Virtual function table pointer-update code is not generated in destructors for
base classes of classes without virtual functions, even if the base class virtual
functions might be overridden in a further derived class. For example:

struct A {

virtual void f() {}

A() {}

~A() {}

};

struct B : public A {

B() {}

~B() {f();} // Should call A::f according to ARM 12.7

};

struct C : public B {

void f() {}

} c;

In cfront compatibility mode, B::~B calls C::f.

• An extra comma is allowed after the last argument in an argument list. For
example:

f(1, 2,);

• A constant pointer-to-member function can be cast to a pointer-to-function, as
in the following example. A warning is issued.

struct A {int f();};

main () {

int (*p)();

p = (int (*)())A::f; // Okay, with warning

}

• Arguments of class types that allow bitwise copy construction but also
have destructors are passed by value like C structures, and the destructor
is not called on the copy. In normal mode, the class object is copied into a
temporary, the address of the temporary is passed as the argument, and
the destructor is called on the temporary after the call returns. Because the
argument is passed by value instead of by address, code like this compiled
in cfront mode is not calling-sequence compatible with the same code

S–2179–51 213

Cray C and C++ Reference Manual

compiled in normal mode. In practice, this is not much of a problem, since
classes that allow bitwise copying usually do not have destructors.

• A union member may be declared to have the type of a class for which
the user has defined an assignment operator (as long as the class has no
constructor or destructor). A warning is issued.

• When an unnamed class appears in a typedef declaration, the typedef
name may appear as the class name in an elaborated type specifier. For
example:

typedef struct { int i, j; } S;

struct S x; // No error in cfront mode

• Two member functions may be declared with the same parameter types when
one is static and the other is nonstatic with a function qualifier. For example:

class A {

void f(int) const;

static void f(int); // No error in cfront mode

};

• The scope of a variable declared in the for-init-statement is the scope to
which the for statement belongs. For example:

int f(int i) {

for (int j = 0; j < i; ++j) { /* ... */ }

return j; // No error in cfront mode

}

• Function types differing only in that one is declared extern "C" and the
other extern "C++" can be treated as identical:

typedef void (*PF)();

extern "C" typedef void (*PCF)();

void f(PF);

void f(PCF);

By contrast, in standard C++, PF and PCF are different and incompatible
types; PF is a pointer to an extern "C++" function whereas PCF is a
pointer to an extern "C" function; and the two declarations of f create an
overload set.

• Functions declared inline have internal linkage.

• enum types are regarded as integral types.

214 S–2179–51

Cray C and C++ Dialects [D]

• An uninitialized const object of non-POD class type is allowed even if its
default constructor is implicitly declared as in the following example:

struct A { virtual void f(); int i; };

const A a;

• A function parameter type is allowed to involve a pointer or reference to
array of unknown bounds.

• If the user declares an operator= function in a class, but not one that can
serve as the default operator=, and bitwise assignment could be done
on the class, a default operator= is not generated. Only the user-written
operator= functions are considered for assignments, so bitwise assignment
is not done.

S–2179–51 215

Cray C and C++ Reference Manual

216 S–2179–51

Compiler Messages [E]

This appendix describes how to use the message system to control and use
messages issued by the compiler. Explanatory texts for messages can be
displayed online through the use of the explain command.

E.1 Expanding Messages with the explain Command

You can use the explain command to display an explanation of any message
issued by the compiler. The command takes as an argument, the message
number, including the number’s prefix. The prefix for Cray C and C++ is CC.

In the following sample dialog, the cc(1) command invokes the compiler on
source file bug.c. Message CC-24 is displayed. The explain command
displays the expanded explanation for this message.

> cc bug.c

CC-24 cc: ERROR File = bug.c, Line = 1

An invalid octal constant is used.

int i = 018;

^

1 error detected in the compilation of "bug.c".

> explain CC-24

An invalid octal constant is used.

Each digit of an octal constant must be between 0 and 7,

inclusive. One or more digits in the octal constant on the

indicated line are outside of this range. To avoid issuing

an error for each erroneous digit, the constant will be treated

as a decimal constant. Change each digit in the octal constant

to be within the valid range.

E.2 Controlling the Use of Messages

This section summarizes the command line options that affect the issuing of
messages from the compiler.

S–2179–51 217

Cray C and C++ Reference Manual

E.2.1 Command Line Options

Option Description

-h errorlimit[=n]

Specifies the maximum number of error messages the compiler
prints before it exits.

-h [no]message=n[:...]

Enables or disables the specified compiler messages, overriding
-h msglevel.

-h msglevel_n

Specifies the lowest severity level of messages to be issued.

-h report=args

Generates optimization report messages.

E.2.2 Environment Options for Messages

The following environment variables are used by the message system.

Variable Description

NLSPATH Specifies the default value of the message system
search path environment variable.

LANG Identifies your requirements for native language,
local customs, and coded character set with regard
to the message system.

MSG_FORMAT Controls the format in which you receive error
messages.

E.2.3 ORIG_CMD_NAME Environment Variable

You can override the command name printed in the message. If the environment
variable ORIG_CMD_NAME is set, the value of ORIG_CMD_NAME is used as the
command name in the message. This functionality is provided for use with shell
scripts that invoke the compiler. By setting ORIG_CMD_NAME to the name of the

218 S–2179–51

Compiler Messages [E]

script, any message printed by the compiler appears as though it was generated
by the script. For example, the following C shell script is named newcc:

#

setenv ORIG_CMD_NAME ’basename $0’

cc $*

A message generated by invoking newcc resembles the following:

CC-8 newcc: ERROR File = x.c, Line = 1

A new-line character appears inside a string literal.

Because the environment variable ORIG_CMD_NAME is set to newcc, this appears
as the command name instead of cc(1) in this message.

!
Caution: The ORIG_CMD_NAME environment variable is not part of the
message system. It is supported by the Cray C and C++ compilers as an aid to
programmers. Other products, such as the Fortran compiler and the loader,
may support this variable. However, you should not rely on support for
this variable in any other product.

You must be careful when setting the environment variable ORIG_CMD_NAME. If
you set ORIG_CMD_NAME inadvertently, the compiler may generate messages
with an incorrect command name. This may be particularly confusing if, for
example, ORIG_CMD_NAME is set to newcc when the Fortran compiler prints a
message. The Fortran message will look as though it came from newcc.

E.3 Message Severity

Each message issued by the compiler falls into one of the following categories of
messages, depending on the severity of the error condition encountered or the
type of information being reported.

Category Meaning

COMMENT Inefficient programming practices.

NOTE Unusual programming style or the use of
outmoded statements.

CAUTION Possible user error. Cautions are issued when the
compiler detects a condition that may cause the
program to abort or behave unpredictably.

WARNING Probable user error. Indicates that the program
will probably abort or behave unpredictably.

S–2179–51 219

Cray C and C++ Reference Manual

ERROR Fatal error; that is, a serious error in the source
code. No binary output is produced.

INTERNAL Problems in the compilation process. Please
report internal errors immediately to the system
support staff, so a Software Problem Report (SPR)
can be filed.

LIMIT Compiler limits have been exceeded. Normally
you can modify the source code or environment
to avoid these errors. If limit errors cannot be
resolved by such modifications, please report
these errors to the system support staff, so that
an SPR can be filed.

INFO Useful additional information about the compiled
program.

INLINE Information about inline code expansion
performed on the compiled code.

SCALAR Information about scalar optimizations performed
on the compiled code.

VECTOR Information about vectorization optimizations
performed on the compiled code.

STREAM Information about the MSP optimizations
performed on the compiled code.

OPTIMIZATION Information about general optimizations.

E.4 Common System Messages

The errors in the following list can occur during the execution of a user program.
The operating system detects them and issues the appropriate message. These
errors are not detected by the compiler and are not unique to C and C++
programs; they may occur in any application program written in any language.

• Operand Range Error

An operand range error occurs when a program attempts to load or store in
an area of memory that is not part of the user’s area. This usually occurs
when an invalid pointer is dereferenced.

• Program Range Error

A program range error occurs when a program attempts to jump into an area
of memory that is not part of the user’s area. This may occur, for example,

220 S–2179–51

Compiler Messages [E]

when a function in the program mistakenly overwrites the internal program
stack. When this happens, the address of the function from which the function
was called is lost. When the function attempts to return to the calling
function, it jumps elsewhere instead.

• Error Exit

An error exit occurs when a program attempts to execute an invalid
instruction. This error usually occurs when the program’s code area has been
mistakenly overwritten with words of data (for example, when the program
stores in a location pointed to by an invalid pointer).

S–2179–51 221

Cray C and C++ Reference Manual

222 S–2179–51

Intrinsic Functions [F]

The C and C++ intrinsic functions either allow for direct access to some hardware
instructions or result in generation of inline code to perform some specialized
functions. These intrinsic functions are processed completely by the compiler.
In many cases, the generated code is one or two instructions. These are called
functions because they are invoked with the syntax of function calls.

To get access to the intrinsic functions, the Cray C++ compiler requires that
either the intrinsics.h file be included or that the intrinsic functions that
you want to call be explicitly declared. If the source code does not have an
intrinsics.h statement and you cannot modify the code, you can use the -h
prefefine_intrinsics option instead. If you explicitly declare an intrinsic
function, the declaration must agree with the documentation or the compiler
treats the call as a call to a normal function, not the intrinsic function. The
-h nointrinsics command line option causes the compiler to treat these calls
as regular function calls and not as intrinsic function calls.

The types of the arguments to intrinsic functions are checked by the compiler,
and if any of the arguments do not have the correct type, a warning message is
issued and the call is treated as a normal call to an external function. If your
intention was to call an external function with the same name as an intrinsic
function, you should change the external function name. The names used for the
Cray C intrinsic functions are in the name space reserved for the implementation.

Note: Several of these intrinsic functions have both a vector and a scalar
version. If a vector version of an intrinsic function exists and the intrinsic
is called within a vectorized loop, the compiler uses the vector version of
the intrinsic. See the appropriate intrinsic function man page for details on
whether it has a vector version.

The following sections groups the C and C++ intrinsics according to function and
provides a brief description of each intrinsic in that group. See the corresponding
man page for more information.

F.1 Atomic Memory Operations

The following intrinsics perform various atomic memory operations:

Note: In this discussion, an object is an entity that is referred to by a pointer. A
value is an actual number, bit mask, etc. that is not referred to by a pointer.

S–2179–51 223

Cray C and C++ Reference Manual

Intrinsic Description

_amo_aadd Adds a value to an object that is referred to by a
pointer and stores the results in the object.

_amo_aax ANDs a value and an object that is referred to by a
pointer, XORs the result with a third value, and
stores the results in the object.

_amo_afadd Adds a value to an object that is referred to by
a pointer and stores the result in the object. The
intrinsic returns the original value of the object.

_amo_afax ANDs a value with an object that is referred to by a
pointer, XORs the result with a second value, and
stores the result in the object. The intrinsic returns
the original value of the object.

_amo_acswap (Compare and swap) Compares an object that is
referenced by a pointer against a value. If equal, a
specified value is stored in the object. The intrinsic
returns the original value of object.

F.2 BMM Operations

The following intrinsics perform operations on the BMM:

_mtilt Inverts a bit matrix

_mclr Logically undefines the BMM unit.

_mld Loads the BMM functional unit with a matrix
vector in transposed form.

_mldmx Combines the load and multiply functions.

_mmx Performs a bit matrix multiply.

_mul Unloads the bit matrix function unit.

F.3 Bit Operations

The following intrinsics copy, count, or shift bits or computes the parity bit:

_dshiftl Move the left most n bits of an integer into the
right side of another integer, and return that
integer.

224 S–2179–51

Intrinsic Functions [F]

_dshiftr Move the right most n bits of an integer into the
left side of another integer and return that integer.

_pbit Copies the rightmost bit of a word to the nth bit,
from the right, of another word.

_pbits Copies the rightmost m bits of a word to another
word beginning at bit n.

_poppar Computes the parity bit for a variable.

_popcnt
_popcnt32
_popcnt64 Counts the number of set bits in 32-bit and 64-bit

integer words.

_leadz
_leadz32
_leadz64 Counts the number of leading 0 bits in 32-bit and

64-bit integer words.

_gbit _gbit returns the value of the nth bit from the
right.

_gbits Returns a value consisting of m bits extracted from
a variable, beginning at nth bit from the right.

F.4 Function Operations

These intrinsics return information about function arguments:

_argcount Returns the number of arguments explicitly
passed to a function, excluding any "hidden"
arguments added by the compiler.

_numargs Returns the total number of words in the
argument list passed to the function including any
"hidden" arguments added by the compiler.

F.5 Mask Operations

These intrinsics create bit masks:

_mask Creates a left-justified or right-justified bit mask
with all bits set to 1.

_maskl Returns a left-justified bit mask with i bits set to 1.

S–2179–51 225

Cray C and C++ Reference Manual

_maskr Returns a right-justified bit mask with i bits
set to 1.

F.6 Memory Operations

This intrinsic assures that memory references synchronize memory:

_gsync Performs global synchronization of all memory.

F.7 Miscellaneous Operations

The following intrinsics perform various functions:

_EX Exits normally.

_int_mult_upper Multiplies integers and returns the uppermost bits.
Refer to the int_mult_upper(3i) man page.

_ranf _ranf, compute a pseudo-random floating-point
number ranging from 0.0 through 1.0.

_rtc Return a real-time clock value expressed in clock
ticks.

F.8 Streaming Operations

These intrinsics return streaming information:

__sspid Indicates which SSP is being used by the code.
This intrinsic applies to MSP-mode applications,
not SSP-mode appplications.

__streaming Indicates whether the code is capable of
multistreaming.

226 S–2179–51

Glossary

application node

For Cray X1 systems, a node that is used to run user applications. Application
nodes are best suited for executing parallel applications and are managed by
the strong application placement scheduling and gang scheduling mechanism
psched. See also node; OS node; support node.

barrier

An obstacle within a program that provides a mechanism for synchronizing
tasks. When a task encounters a barrier, it must wait until all specified tasks
reach the barrier.

barrier synchronization

1. An event initiated by software that prevents cooperating tasks from continuing
to issue new program instructions until all of the tasks have reached the
same point in the program. 2. A feature that uses a barrier to synchronize the
processors within a partition. All processors must reach the barrier before they
can continue the program.

basic block

A section of a program that does not cross any conditional branches, loop
boundaries, or other transfers of control. There is a single entry point and a single
exit point. Many compiler optimizations occur within basic blocks.

binding

The way in which one component in a resource specification is related to another
component.

blocking

An optimization that involves changing the iteration order of loops that access
large arrays so that groups of array elements are processed as many times as
possible while they reside in cache.

breakpoint

A point in a program that, when reached, triggers some special behavior useful
to the process of debugging; generally, breakpoints are used to either pause

S–2179–51 227

Cray C and C++ Reference Manual

program execution and/or dump the values of some or all of the program
variables. Breakpoints may be part of the program itself, or they may be set by
the programmer as part of an interactive session with a debugging tool for
scrutinizing the execution of the program.

C interoperability

A Fortran 2003 feature that allows Fortran programs to call C functions and
access C global objects and also allows C programs to call Fortran procedures and
access Fortran global objects.

Cray Programming Environment Server (CPES)

A server for the Cray X1 system that runs the Programming Environment
software.

Cray streaming directives (CSDs)

Nonadvisory directives that allow you to more closely control multistreaming
for key loops.

CrayDoc

Cray’s documentation system for accessing and searching Cray books, man
pages, and glossary terms in HTML and/or PDF format from a web browser.
CrayDoc runs on any operating system based on a UNIX or Linux operating
system.

CrayPat

For Cray X1 systems, the primary high-level tool for identifying opportunities for
optimization. CrayPat allows you to perform profiling, sampling, and tracing
experiments on an instrumented application and to analyze the results of those
experiments; no recompilation is needed to produce the instrumented program.
In addition, the CrayPat tool provides access to all hardware performance
counters.

CRInform

An online technical-assistance and problem-reporting service for subscribing
Cray customers.

228 S–2179–51

Glossary

distributed memory

1. Memory in which each processor has a separate share of the total memory. 2.
Memory that is physically distributed among several modules.

dynamic extent

In OpenMP, an extent that includes both the statements of a lexical extent and
the statements of a function that is called from the lexical extent. A dynamic
extent is an instance of a region.

entry point

A location in a program or routine at which execution begins. A routine may
have several entry points, each serving a different purpose. Linkage between
program modules is performed when the linkage editor binds the external
references of one group of modules to the entry points of another module.

environment variable

A variable that stores a string of characters for use by your shell and the
processes that execute under the shell. Some environment variables are
predefined by the shell, and others are defined by an application or user.
Shell-level environment variables let you specify the search path that the shell
uses to locate executable files, the shell prompt, and many other characteristics
of the operation of your shell. Most environment variables are described in the
ENVIRONMENT VARIABLES section of the man page for the affected command.

Etnus TotalView

For Cray X1 systems, a symbolic source-level debugger designed for debugging
the multiple processes of parallel Fortran, C, or C++ programs.

folding

A basic compiler optimization that converts operations on constants to simpler
forms as these examples show: Operation to fold Folded operation 1 + 2 3 5.0/3.0
+ 1.7 3.366... (if the -O fp1 (Fortran) or -h fp1 (C/C++) or greater is used.) sin(1.3
) 0.96355818... 3 + n - 4 n - 1

invariant

A rule, such as the ordering of an ordered list or heap, that applies throughout
the life of a data structure or procedure. Each change to the data structure must
maintain the correctness of the invariant.

S–2179–51 229

Cray C and C++ Reference Manual

IRIX

A version of the UNIX System V operating system that is produced by Silicon
Graphics, Inc.

lexical extent

In OpenMP, statements that reside within a structured block. See also structured
block.

locale

For Cray X1 systems, a collection of culture-dependent information used by an
application to interact with a user.

lock

1. Any device or algorithm that is used to ensure that only one process will
perform some action or use some resource at a time. 2. A synchronization
mechanism that, by convention, forces some data to be accessed by tasks in a
serial fashion. Locks have two states: locked and unlocked. 3. A facility that
monitors critical regions of code.

loop fusion

An optimization that takes the bodies of loops with identical iteration counts and
fuses them into a single loop with the same iteration count.

loop interchange

An optimization that changes the order of loops within a loop nest, to achieve
stride minimization or eliminate data dependencies.

loop invariant

A value that does not change between iterations of a loop.

loop unrolling

An optimization that increases the step of a loop and duplicates the expressions
within a loop to reflect the increase in the step. This can improve instruction
scheduling and reduce memory access time.

230 S–2179–51

Glossary

loopmark listing

A listing that is generated by invoking the Cray Fortran Compiler with the -rm
option. The loopmark listing displays what optimizations were performed by
the compiler and tells you which loops were vectorized, streamed, unrolled,
interchanged, and so on.

master thread

The thread that creates a team of threads when an OpenMP parallel region
is entered.

Message Passing Interface (MPI)

A widely accepted standard for communication among nodes that run a parallel
program on a distributed-memory system. MPI is a library of routines that can be
called from Fortran and C programs.

MSP mode (multistreaming mode)

One of two types of application modes. Programs are compiled either as
MSP-mode applications (default) or SSP-mode applications. MSP-mode
applications run on one or more MSPs. For MSP-mode applications, each MSP
coordinates the interactions of its associated four SSPs. See also command mode;
SSP mode.

multichip module (MCM)

For Cray X1 systems, the packaging that contains a multistreaming processor
(MSP) and resides on a node module assembly. The MCM contains four
processor chips (P-chips), four cache chips (E-chips), and I/O connections (two
I-chips).

multistreaming processor (MSP)

For Cray X1 systems, a basic programmable computational unit. Each MSP is
analogous to a traditional processor and is composed of four single-streaming
processors (SSPs) and E-cache that is shared by the SSPs. See also node; SSP;
MSP mode; SSP mode.

nested parallel region

An OpenMP parallel region that appears within a dynamic extent of an OpenMP
PARALLEL construct that does not have an if clause or has an if clause that
evaluates to true. See also dynamic extent.

S–2179–51 231

Cray C and C++ Reference Manual

node

For Cray X1 systems, the hardware that comprises four multichip modules
(MCMs) with one multistreaming module (MSP) per MCM; shared local memory
that can be thought of as a cache domain; high-speed node interconnections; and
system I/O ports. Physically, all nodes are the same; software controls how
a node is used: as an OS node, application node, or support node. See also
application node; MCM, MSP, OS node; SSP; support node.

node flavor

All Cray X1 nodes are physically the same; software controls how a node is used.
A node’s software-assigned flavor dictates the kind of processes and threads that
can use its resources. The three assignable node flavors are application, OS, and
support. See also application node; OS node; and support node.

OpenMP

An industry-standard, portable model for shared memory parallel programming.

OS node

For Cray X1 systems, the node that provides kernel-level services, such as system
calls, to all support nodes and application nodes. See also application node; node;
support node.

overindexing

The nonstandard practice of referencing an array with a subscript not contained
between the declared lower and upper bounds of the corresponding dimension
for that array. This practice sometimes, but not always, leads to referencing a
storage location outside of the entire array.

page size

The unit of memory addressable through the Translation Lookaside Buffer (TLB).
For Cray X1 systems, the base page size is 65,536 bytes, but larger page sizes (up
to 4,294,967,296 bytes) are also available.

parallel region

See serial region.

232 S–2179–51

Glossary

partitioning

Configuring a Cray X1 system into logical systems (partitions). Each partition
is independently operated, booted, dumped, and so on without impact on
other running partitions. Hardware and software failures in one partition do
not affect other partitions.

pointer

A data item that consists of the address of a desired item.

private variable

A variable that is accessible to only one thread in a team of an OpenMP parallel
region.

Psched

The Cray X1 application placement scheduling tool. The psched command can
provide job placement, load balancing, and gang scheduling for all applications
placed on application nodes.

reduction

The process of transforming an expression according to certain reduction rules.
The most important forms are beta reduction (application of a lambda abstraction
to one or more argument expressions) and delta reduction (application of a
mathematical function to the required number of arguments). An evaluation
strategy (or reduction strategy) determines which part of an expression to reduce
first. There are many such strategies. Also called contraction.

reduction loop

A loop that contains at least one statement that reduces an array to a scalar
value by doing a cumulative operation on many of the array elements. This
involves including the result of the previous iteration in the expression of the
current iteration.

search loop

An array-processing loop used to perform a table lookup or to find exceptional
values within an array.

S–2179–51 233

Cray C and C++ Reference Manual

serial region

An area within a program in which only the master task is executing. Its opposite
is a parallel region.

serialize

To cause only one thread to execute an OpenMP parallel region. A parallel region
is said to be serialized if and only if at least one of the following statements is
true: (1) the logical expression in an if clause attached to the parallel directive
evaluates to false; (2) the parallel region is a nested parallel region and nested
parallelism is disabled; and (3) the parallel region is a nested parallel region and
the implementation chooses to serialize nested parallel regions.

SHMEM

A library of optimized functions and subroutines that take advantage of shared
memory to move data between the memories of processors. The routines can
either be used by themselves or in conjunction with another programming style
such as Message Passing Interface.

shortloop

A loop that is vectorized but that has been determined by the compiler to have
trips less than or equal to the maximum vector length. In this case, the compiler
deletes the loop to the top of the loop. If the shortloop directive is used or the trip
count is constant, the top test for number of trips is deleted. A shortloop is more
efficient than a conventional loop.

side effects

The result of modifying shared data or performing I/O by concurrent streams
without the use of an appropriate synchronization mechanism. Modifying shared
data (where multiple streams write to the same location or write/read the same
location) without appropriate synchronization can cause unreliable data and race
conditions. Performing I/O without appropriate synchronization can cause an
I/O deadlock. Shared data, in this context, occurs when any object may be
referenced by two or more single-streaming processors. This includes globally
visible objects (for example, COMMON, MODULE data), statically allocated
objects (SAVE, C static), dummy arguments that refer to SHARED data and
objects in the SHARED heap.

234 S–2179–51

Glossary

single-streaming processor (SSP)

For Cray X1 systems, a basic programmable computational unit. See also node;
MSP; MSP mode; SSP mode.

Software Problem Report (SPR)

A Cray customer service form and process that tracks software problems from
first report to resolution. SPR resolution results either from a written reply, the
release of software containing the fix to the problem, or the implementation of
the requested design change.

SSP mode (single-streaming mode)

One of two types of application modes. Programs are compiled either as
MSP-mode applications (default) or SSP-mode applications. SSP-mode
applications run on one or more SSPs. Each SSP runs independently of the others,
executing its own stream of instructions. In contrast, compiler options enable the
programmer to develop command-mode programs that run on an SSP on the
support node. See also command mode; MSP mode.

structured block

In Fortran OpenMP, a collection of one or more executable statements with a
single point of entry at the top and a single point of exit at the bottom. Execution
must always proceed with entry at the top of the block and exit at the bottom
with only one exception: the block is allowed to have a STOP statement inside a
structured block. This statement has the well-defined behavior of terminating
the entire program.

support node

For Cray X1 systems, the node that is used to run serial commands, such as
shells, editors, and other user commands (ls, for example). See also application
node; OS node; node.

system node

A Cray X1 system requires a minimum of two nodes. Each system typically uses
at least one node that is designated as both an OS node and a support node; this
node is often called a system node; however, there is no node flavor of "system."
See also application node; OS node; support node; and node flavor.

S–2179–51 235

Cray C and C++ Reference Manual

thread

The active entity of execution. A sequence of instructions together with machine
context (processor registers) and a stack. On a parallel system, multiple threads
can be executing parts of a program at the same time.

UNICOS/mp

The operating system for Cray X1 systems.

unrolling

A single-processing-element optimization technique in which the statements
within a loop are copied. For example, if a loop has two statements, unrolling
might copy those statements four times, resulting in eight statements. The loop
control variable would be incremented for each copy, and the stride through
the array would also be increased by the number of copies. This technique is
often performed directly by the compiler, and the number of copies is usually
between two and four.

vector

A series of values on which instructions operate; this can be an array or any
subset of an array such as row, column, or diagonal. Applying arithmetic, logical,
or memory operations to vectors is called vector processing.

vector length

The number of elements in a vector.

vectorization

The process, performed by the compiler, of analyzing code to determine whether
it contains vectorizable expressions and then producing object code that uses the
vector unit to perform vector processing.

236 S–2179–51

Index

-#, 37
-##, 37
-###, 37

A
Advisory directives defined, 65
_amo_aadd, 224
_amo_aax, 224
_amo_acswap, 224
_amo_afadd, 224
_amo_afax, 224
Anachronisms

C++, 205
_argcount, 225
Argument passing, 166
Arithmetic

See math
Array storage, 167
Arrays, 185

dependencies, 92
asm statements, 186
Assembly language

functions, 165
output, 36

Assembly source expansions, 7
Auto aprun (see
CRAY_AUTO_APRUN_OPTIONS.), 51

B
Bit fields, 186
Blank common block, 170
bounds directive, 61
btol conversion utility, 168

C
-c, 191
C extensions, 153

See also Cray C extensions

C interoperability, 176
C libraries, 191
-c option, 36
-C option, 38
Calls, 163
can_instantiate directive, 71, 149
Cfront, 209

compatibility mode, 201
compilers, 13
option, 13

Character data, 168
Character set, 183
Characters

wide, 184
CIV

See Constant increment variables
Classes, 186
Command line options
-# option, 37
-## option, 37
-### option, 37
-c option, 7, 36
-C option, 38
compiler version, 47
conflicting with directives, 12
conflicting with other options, 12
-D macro[=def], 38
defaults, 10
-E option, 7, 35
examples, 48
-g option, 32, 161–162
-G option, 32, 161–162
-h anachronisms, 205
-h cfront, 13, 209
-h errorlimit[=n], 35
-h feonly, 36
-h forcevtble, 17
-h ident=name, 46

S–2179–51 237

Cray C and C++ Reference Manual

-h inlinen, 27
-h instantiate=mode, 16
-h instantiation_dir, 16
-h keep=file, 17
-h matherror=method, 32
-h msglevel_n, 34
-h new_for_init, 14
-h [no]abort, 35
-h [no]aggress, 20
-h [no]anachronisms, 14
-h [no]autoinstantiate, 15
-h [no]bounds, 33, 161
-h [no]c99, 12
-h [no]calchars, 19
-h [no]conform, 13
-h [no]exceptions, 14
–h [no]fusion, 20
-h [no]ieeeconform, 31
-h [no]implicitinclude, 16
-h [no]interchange, 28
-h [no]intrinsics, 20
-h [no]ivdep, 25
-h [no]message=n, 34
-h [no]overindex, 22
-h [no]pattern, 22
-h [no]pragma=name[:name...], 39
-h [no]reduction, 28
-h [no]signedshifts, 19
-h [no]tolerant, 15
–h [no]unroll, 23
-h [no]vsearch, 26
-h [no]zeroinc, 29
-h one_instantiation_per_object, 16
-h options
errorlimit, 217

-h prelink_local_copy, 17
-h remove_instantiation_flags, 16
-h report=args, 34
-h restrict=args, 18
-h scalarn, 28
-h simple_templates, 15
-h suppressvtble, 17

-h vectorn, 25
-h zero, 33
-I option, 39
-L libdir option, 42
-l libfile option, 41
-M option, 40
macro definition, 38
-N option, 41
-nostdinc option, 41
-O level, 23
-o option, 42
-P option, 7, 36
prelink_copy_if_nonlocal, 17
preprocessor options, 35
remove macro definition, 41
-s option, 43
-S option, 7, 36
-U macro option, 41
-V option, 47
-W option, 37
-Y option, 38

Commands
c89, 5, 7

files, 9
format, 9

c99, 5
files, 8
format, 8

cc, 5, 7
files, 8
format, 8

CC, 5, 7
files, 8
format, 8

compiler, 7
cpp, 7

format, 9
ld, 17
options, 10

Comments
preprocessed, 38

Common block, 170

238 S–2179–51

Index

Common blocks, dynamic, 52
Common system messages, 220
Compilation phases
-#, 37
-##, 37
-###, 37
-c option, 36
-E option, 35
-h feonly, 36
-P option, 36
-S option, 36
-Wphase,"opt...", 37
-Yphase,dirname, 38

Compiler
Cray C, 5
Cray C++, 5

Compiler messages, 217
_Complex

incrementing or decrementing, 153
concurrent directive, 92
Conformance

C++, 201
Constant increment variables (CIVs), 29
Constructs

accepted and rejected, 13
old, 15

Conversion utility
_btol, 168
_ltob, 168

Cray Assembly Language (CAL), 165
Cray C Compiler, 5
Cray C extensions, 153, 207

See also extensions
Imaginary constants, 153
incrementing or decrementing _Complex

data, 153
_Pragma, 60

Cray C++ Compiler, 5
Cray streaming directives

See CSDs
CRAY_AUTO_APRUN_OPTIONS, 51
CRAYOLDCPPLIB, 49

CRI_c89_OPTIONS, 50
CRI_cc_OPTIONS, 50
CRI_CC_OPTIONS, 50
CRI_cpp_OPTIONS, 50
critical directive, 87
CSDs, 80

chunk size, optimal, 83
chunk_size, 83
chunks, defined, 83
compatibility, 80
critical, 87
CSD parallel region, defined, 81
for, 83
functions called from parallel regions, 81
functions in, 81
options to enable, compiler, 92
ordered, 88
parallel, 81
parallel directive, 89
parallel directives, 81
parallel for, 85
parallel region, 81
parallel regions, multiple, 81
placement of, 89
private data, precautions for, 82
stand-alone CSD directives defined, 89
sync, 86

D
-D macro[=def], 38
Data types, 182

logical data, 168
mapping (table), , 182

__DATE__ , 187
Debugging, 32

features, 161
-G level, 32
-g option, 32
-h [no]bounds, 33
-h zero, 33
options, 162

Declarators, 186

S–2179–51 239

Cray C and C++ Reference Manual

Declared bounds, 22
Defaults
-O hp2, 29

Dialects, 201
Directives

advisory, defined, 65
C++, 60
conflicts with options, 12
#define, 38
diagnostic messages, 60
disabling, 39
general, 61
#include, 39, 41
inlining, 97
instantiation, 70
loop, 60
macro expansion, 59
MSP, 79

examples, 79
#pragma, 59

alternative form, 60
arguments to instantiate, 149
can_instantiate, 71, 149
concurrent, 92
critical, 87
do_not_instantiate, 70, 149
duplicate, 62
for, 83
format, 59
ident, 70
in C++, 60
inline, 98
instantiate, 70, 149
ivdep, 71
message, 65, 161
no_cache_alloc, 65
[no]bounds, 61
[no]bounds directive, 161
noinline, 98
nointerchange, 93
[no]opt, 66, 161
nopattern, 72

noreduction, 93
nostream, 79
[no]unroll, 95
novector, 73
novsearch, 73
ordered, 88
parallel, 81
parallel for, 85
preferstream, 79
prefervector, 73
safe_address, 74
shortloop, 75
shortloop128, 75
ssp_private, 77
suppress, 94
sync, 86
usage, 59
vfunction, 69
weak, 67

preprocessing, 187
protecting, 60
scalar, 92
vectorization, 71

Directories
#include files, 39, 41
library files, 41–42
phase execution, 38

do_not_instantiate directive, 70, 149
_dshiftl, 224
_dshiftr, 225
duplicate directive, 62
Dynamic common blocks, 52

E
-E option, 35
Enumerations, 186
Environment, 181
environment variables

OpenMP, 54
Environment variables

compile time, 49
CRAYOLDCPPLIB, 49

240 S–2179–51

Index

CRI_c89_OPTIONS, 50
CRI_cc_OPTIONS, 50
CRI_CC_OPTIONS, 50
CRI_cpp_OPTIONS, 50
LANG, 50, 218
MSG_FORMAT, 50, 218
NLSPATH, 50, 218
NPROC, 50
OMP_DYNAMIC, 55
OMP_NESTED, 56
OMP_NUM_THREADS, 55
OMP_SCHEDULE, 55
ORIG_CMD_NAME, 218
run time, 51
TARGET, 51

Error Exit, 221
Error messages, 217
_EX, 226
Examples

command line, 48
Exception construct, 14
Exception handling, 14
Exceptions, 187
explain, 217
Extensions

C++ mode, 206
Cfront compatibility mode, 209
Cray C, 153
_Pragma, 60
#pragma directives, 59

extern "C" keyword, 163
External functions

declaring, 163

F
Features

C++, 201
Cfront compatibility, 201

Files
a.out, 7
constructor/destructor, 17
default library, 41

dependencies, 40
.ii file, 146
intrinsics.h, 223
library directory, 42
linking, 17
output, 42
personal libraries, 42

Floating constants, 154
Floating-point

constants, 154
overflow, 185

for directive, 83
Fortran common block, 170
fortran keyword, 154
Freeing up memory, 53
friend declaration, 210
Functions, 223
mbtowc, 184

G
-G level, 32
-g option, 161–162
-G option, 161–162
_gbit, 225
_gbits, 225
General command functions
-h ident=name, 46
-V option, 47

_gsync, 226

H
-h abort, 35
-h aggress, 20
-h anachronisms, 14, 205
-h autoinstantiate, 15
-h bounds, 33, 161
-h c99, 12
-h calchars, 19
-h cfront, 13
-h conform, 13
-h const_string_literals, 15
-h errorlimit, 217

S–2179–51 241

Cray C and C++ Reference Manual

-h errorlimit[=n], 35, 218
-h exceptions, 14
-h feonly, 36
-h forcevtbl, 17
-h gen_private_callee, 19
-h ident=name, 46
-h ieeeconform, 31
-h implicitinclude, 16
-h inlinen, 27
-h instantiate=mode, 16
-h instantiation_dir, 16
–h interchange, 28
-h intrinsics, 20
-h ivdep, 25
-h keep=file, 17
-h list, 20
-h matherror=method, 32
-h msglevel_n, 34, 218
-h new_for_init, 14
-h noabort, 35
-h noaggress, 20
-h noanachronisms, 14
-h noautoinstantiate, 15
-h nobounds, 33, 161
-h noc99, 12
-h nocalchars, 19
-h [no]conform, 13
-h noconst_string_literals >>, 15
-h noexceptions, 14
–h [no]fusion, 20
-h noieeeconform, 31
-h [no]implicitinclude, 16
–h nointerchange, 28
-h nointrinsics, 20, 223
-h noivdep, 25
-h [no]message=n[:...], 218
-h [no]message=n[:n...], 34
-h noopm, 46
-h nooverindex, 22
-h nopattern, 22
-h [no]pragma=name[:name...], 39
-h noreduction, 28

-h nosearch, 26
-h nosignedshifts, 19
-h notolerant, 15
-h [no]unroll, 23
-h nozeroincn, 29
-h omp, 46
-h one_instantiation_per_object, 16
-h overindex, 22
-h pattern, 22
-h predeclare intrinsics, 46
-h prelink_copy_if_nonlocal, 17
-h prelink_local_copy, 17
-h reduction, 28
-h remove_instantiation_flags, 16
-h report=args, 34, 218
-h restrict=args, 18
-h scalarn, 28
-h search, 26
-h signedshifts, 19
-h simple_templates, 15
-h streamn, 76
-h suppressvtbl, 17
-h taskn, 46
-h tolerant, 15
-h vectorn, 25
-h zero, 33
-h zeroincn, 29
Hardware

intrinsic functions, 20
Hexadecimal floating constant, 154

I
-I incldir, 39
ident directive, 70
Identifier names

allowable, 19
Identifiers, 182
IEEE floating-point standard conformance, 31
Imaginary constants, 153
Implementation-defined behavior, 181
Implicit inclusion, 16, 150
inline directive, 98

242 S–2179–51

Index

Inlining, 97
level, 27

instantiate directive, 70, 149
Instantiation

directives, 70, 149
directory for template instantiation object

files, 16
enable or disable automatic, 15
local files, 17
modes, 16, 147
nonlocal object file recompiled, 17
one per object file, 16, 147–148
prelinker, 143
remove flags, 16
simple, 15, 144
template, 143

_int_mult_upper, 226
Integers

overflow, 185
representation, 184

Interchange loops, 28
Interlanguage communication, 163

argument passing, 166
array storage, 167
assembly language functions, 165
blank common block, 170
CAL functions, 165
calling a C and C++ function from Fortran, 176
calling a C program from C++, 163
calling a Fortran program from C++, 175
calling Fortran routines, 165
logical and character data, 168

Intermediate translations, 7
Intrinsic functions

argument types, 223
summary, 223

Intrinsics, 20
intrinsics.h, 223
ivdep directive, 71

K
K & R preprocessing, 41

Keywords
extern "C", 163
fortran, 154

L
-L libdir, 42
-l libfile, 41
LANG, 50, 218
Language

general
-h keep=file, 17
-h [no]calchars, 19
-h restrict=args, 18

standard conformance
-h cfront, 13
-h new_for_init, 14
-h [no] conform, 13
-h [no]anachronisms, 14
-h [no]c99, 12
-h [no]exceptions, 14
-h [no]tolerant, 15

templates
-h instantiate=mode, 16
-h instantiation_dir, 16
-h [no]autoinstantiate, 15
-h [no]implicitinclude, 16
-h one_instantiation_per_object, 16
-h prelink_copy_if_nonlocal, 17
-h prelink_local_copy, 17
-h remove_instantiation_flags, 16
-h simple_templates, 15

virtual functions
-h forcevtbl, 17
-h suppressvtbl, 17

ld, 7
_leadz, 225
Libraries

default, 41
Standard C, 191

Library, Standard Template, 191
Limits, 181
Linking

S–2179–51 243

Cray C and C++ Reference Manual

files, 17
Loader

default, 191
-L libdir, 42
-l libfile, 41
ld, 7
-o outfile, 42
-s option, 43

Logical data, 168
Loop

directives, 60
fusion, 96
no unrolling, 95
unrolling, 95

Loop optimization
–h [no]unroll, 23
safe_address, 74

Loopmark listings, 20
_ltob conversion utility, 168

M
-M option, 40
Macros, 165

expansion in directives, 59
removing definition, 41

Macros, predefined, 157
_ADDR64, 158
__cplusplus, 158
cray, 159
CRAY, 159
_CRAY, 158
_CRAYC, 159
_CRAYIEEE, 158
_CRAYSV2, 158
__DATE__, 157
__FILE__, 157
__LINE__, 157
_MAXVL, 159
_RELEASE, 159
_RELEASE_MINOR, 159
_RELEASE_STRING, 159
__STDC__, 157

__sv, 158
__sv2, 158
__TIME__, 157
_UNICOSMP, 158
unix, 158
_unix, 158

_mask, 225
_maskl, 225
_maskr, 226
math
-h [no]ieeeconform, 31

Math
-h matherror=method, 32

mbtowc, 184
_mclr, 224
Memory, freeing up, 53
message directive, 65, 161
Messages, 181, 217

common system, 220
Error Exit, 221
Operand Range Error, 220
Program Range Error, 220

for _CRI directives, 60
-h errorlimit[=n], 35
-h msglevel_n, 34
-h [no]abort, 35
-h [no]message=n[:n...], 34
-h report=args, 34
option summary, 217
severity, 219
CAUTION, 219
COMMENT, 219
ERROR, 220
INFO, 220
INLINE, 220
INTERNAL, 220
LIMIT, 220
NOTE, 219
SCALAR, 220
VECTOR, 220
WARNING, 219

_mld, 224

244 S–2179–51

Index

_mldmx, 224
_mmx, 224
MSG_FORMAT, 50, 218
MSP, 76

directives, 79
-h streamn, 76

_mtilt, 224
_mul, 224
Multistreaming, 24
Multistreaming processor

See MSP

N
-N option, 41
Names, 182
NLSPATH, 50, 218
No unrolling

See Unrolling
nobounds directive, 61
noinline directive, 98
nointerchange directive, 93
noopt directive, 66, 161
nopattern directive, 72
noreduction directive, 93
-nostdinc, 41
nostream directive, 79
novector directive, 73
novsearch directive, 73
NPROC, 50
_numargs, 225

O
-o outfile, 42
-Olevel, 23
OpenMP
atomic directive, 114
barrier directive, 113
combined parallel work-sharing constructs, 111
conditional compilation, 102
copyin clause, 127
copyprivate clause, 127
critical directive, 112

data environment, 117
data-sharing attribute clausesthreadprivate

directive, 119
default clause, 123
directive binding, 128
directive nesting, 128
directives, 101
disable directive recognition, 46, 131
enable directive recognition, 46, 131
environment variables, 54
firstprivate clause, 121
flush directive, 115
for construct, 105
lastprivate clause, 122
master and synchronization directives, 112
master directive, 112
memory considerations, 56
OMP_DYNAMIC environment variable, 55
OMP_NESTED environment variable, 56
OMP_NUM_THREADS environment variable, 55
OMP_SCHEDULE environment variable, 55
ordered directive, 117
parallel construct, 102
parallel for construct, 111
parallel sections construct, 111
private clause, 120
reduction clause, 124
schedule clause, 129
sections construct, 109
shared clause, 122
single construct, 110
threadprivate directive, 117
using directives, 101
work-sharing constructs, 105

Operand Range Error, 220
Operators

bitwise and integers, 184
opt directive, 66, 161
Optimization

automatic scalar, 28
general
–h [no] unroll, 23

S–2179–51 245

Cray C and C++ Reference Manual

-h [no]aggress, 20
–h [no]fusion, 20
-h [no]intrinsics, 20
-h [no]overindex, 22
-h [no]pattern, 22
-O level, 23

-h list, 20
–h [no]unroll, 23
inline
-h inlinen, 27

interchange loops, 28
level, 23
limitations, 20
loopmark listings, 20
MSP, 76
[no]fusion, 20
scalar
-h [no]interchange, 28
-h [no]reduction, 28
-h scalarn, 28

vector
-h [no]ivdep, 25
-h [no]vsearchn, 26
-h [no]zeroincn, 29
-h vectorn, 25

Options
See Command line
See Command line options

conflicts, 12
vectorization, 25

ordered directive, 88
ORIG_CMD_NAME, 218
Overindexing, 22

P
-P option, 36
parallel directive, 81
parallel for directive, 85
Pattern matching

enable or disable, 22
_pbit, 225
_pbits, 225

Performance
improvement, 25

Pointers, 185
function parameter, 18
restricted, 18

_popcnt, 225
_poppar, 225
Porting code, 15, 201
#pragma directives

See Directives
Pragma directives

OpenMP, 101
_Pragma directives, 60
Predefined macros, 157
preferstream directive, 79
prefervector directive, 73
Prelinker, 145
Prelinker instantiation, 143
Preprocessing, 187
-C option, 38
-D macro[=def], 38
-h [no]pragma=name[:name...] , 39
-I incldir, 39
-M, 40
-N option, 41
-nostdinc, 41
old style (K & R), 41
retain comments, 38
-U macro, 41

Preprocessor, 36
passing arguments to, 37

Preprocessor phase, 7
Program Range Error, 220
Programming environment

description, 1
Protected member access checking, 211

Q
Qualifiers, 186

R
_ranf, 226

246 S–2179–51

Index

Reduction loop, 93
Reduction loops, 28
Registers, 185
Relocatable object file, 7, 36
Restricted pointers, 18
_rtc, 226

S
-s option, 43
-S option, 36
safe_address directive, 74
Scalar directives, 92
Search

library files, 42
loops, 26

Shift operator, 184
shortloop directive, 75
shortloop128 directive, 75
Simple instantiation, 144
Single-streaming Processor (see ssp mode), 22
sizeof, 182
ssp mode, 22
ssp_private directive, 77
__sspid, 226
Standard Template Library, 191
Standards, 181

arrays and pointers, 185
bit fields, 186
C violation, 15
character set, 183

example, 183
classes, 186
conformance to, 13
conformance to C99, 12
data types, 182

mapping, , 182
declarators, 186
enumerations, 186
environment, 181
exceptions, 187
extensions, 153
identifiers, 182

implementation-defined behavior, 181
integers, 184
messages, 181
pointers, 185
preprocessing, 187
qualifiers, 186
register storage class, 185
statements, 186
structures, 186
system function calls, 187
unions, 186
wide characters, 184

Statements, 186
STL

See Standard Template Library
Storage class, 154
__streaming, 226
Streaming, 24
Streaming intrinsics, 226
String literals, 15
Structures, 186
suppress directive, 94
Symbolic information, 43
sync directive, 86
Syntax checking, 36
System function calls, 187

T
TARGET, 51
Template, 143
Template instantiation, 143

directives, 149
implicit inclusion, 150
modes, 147
one per object file, 147–148
prelinker, 143
simple, 144

Throw expression, 14
Throw specification, 14
__TIME__, 187
TotalView debugger, 162
Try block, 14

S–2179–51 247

Cray C and C++ Reference Manual

Types, 182

U
-U macro, 41
Unions, 186
Unrolling

no unrolling, 95
[no]unroll directive, 95

V
-V option, 47
Vectorization

automatic, 25
dependency analysis, 25
directives, 71
level, 25
search loops, 26

Vectorization options, 25
vfunction directive, 69
Virtual function table, 17
volatile qualifier, 95

W
weak directive, 67
Weak externals, 67
-Wphase,"opt...", 37

X
-X npes option, 47
X1_DYNAMIC_COMMON_SIZE environment

variable, 52

Y
-Yphase,dirname, 38

248 S–2179–51

	toc
	Cray C and C++ Reference Manual
	New Features
	Preface
	Accessing Cray Documentation
	Error Message Explanations
	Typographical Conventions
	Ordering Documentation
	Reader Comments

	Introduction [1]
	1.1 The Trigger Environment
	1.1.1 Working in the Programming Environment
	1.1.2 Preparing the Trigger Environment

	1.2 General Compiler Description
	1.2.1 Cray C++ Compiler
	1.2.2 Cray C Compiler

	1.3 Related Publications

	Compiler Commands [2]
	2.1 CC Command
	2.2 cc and c99 Commands
	2.3 c89 Command
	2.4 cpp Command
	2.5 Command Line Options
	2.6 Standard Language Conformance Options
	2.6.1 -h [no] c99 (cc, c99)
	2.6.2 -h [no] conform (CC, cc, c99), -h [no] stdc (cc, c9
	2.6.3 -h cfront (CC)
	2.6.4 -h [no] parse_templates (CC)
	2.6.5 -h [no] dep_name (CC)
	2.6.6 -h [no] exceptions (CC)
	2.6.7 -h€ [no] anachronisms (CC)
	2.6.8 -h€new_for_init (CC)
	2.6.9 -h€ [no] tolerant (cc, c99)
	2.6.10 -h [no] const_string_literals (CC)

	2.7 Template Language Options
	2.7.1 -h simple_templates (CC)
	2.7.2 -h [no] autoinstantiate (CC)
	2.7.3 -h one_instantiation_per_object (CC)
	2.7.4 -h instantiation_dir = dirname (CC)
	2.7.5 -h instantiate= mode (CC)
	2.7.6 -h [no] implicitinclude (CC)
	2.7.7 -h remove_instantiation_flags (CC)
	2.7.8 -h prelink_local_copy (CC)
	2.7.9 -h prelink_copy_if_nonlocal (CC)

	2.8 Virtual Function Options (-h forcevtbl, -h suppressvtbl (C
	2.9 General Language Options
	2.9.1 -h keep= file (CC)
	2.9.2 -h restrict= args (CC, cc, c99)
	2.9.3 -h [no] calchars (CC, cc, c99)
	2.9.4 -h [no] signedshifts (CC, cc, c99)

	2.10 General Optimization Options
	2.10.1 -h gen_private_callee (CC, cc, c99)
	2.10.2 -h [no] aggress (CC, cc, c99)
	2.10.3 -h display_opt
	2.10.4 h [no] fusion (CC, cc, c99)
	2.10.5 -h [no] intrinsics (CC, cc, c99)
	2.10.6 -h list= opt (CC, cc, c99)
	2.10.7 -h msp (CC, cc, c99)
	2.10.8 -h [no] pattern (CC, cc, c99)
	2.10.9 -h [no] overindex (CC, cc, c99)
	2.10.10 -h ssp (CC, cc, c99)
	2.10.11 h [no] unroll (CC, cc, c99)
	2.10.12 -O level (CC, cc, c89, c99)

	2.11 Multistreaming Processor Optimization Options
	2.11.1 -h stream n (CC, cc, c99)

	2.12 Vector Optimization Options
	2.12.1 -h [no] infinitevl (CC, cc, c99)
	2.12.2 -h [no] ivdep (CC, cc, c99)
	2.12.3 -h vector n (CC, cc, c99)
	2.12.4 -h [no] vsearch (CC, cc, c99)

	2.13 Inlining Optimization Options
	2.13.1 -h inline n (CC, cc, c99)

	2.14 Scalar Optimization Options
	2.14.1 -h [no] interchange (CC, cc, c99)
	2.14.2 -h scalar n (CC, cc, c99)
	2.14.3 -h [no] reduction (CC, cc, c99)
	2.14.4 -h [no] zeroinc (CC, cc, c99)

	2.15 Math Options
	2.15.1 -h fp n (CC, cc, c99)
	2.15.2 -h [no] ieeeconform (CC, cc)
	2.15.3 -h matherror= method (CC, cc, c99)

	2.16 Debugging Options
	2.16.1 -G level (CC, cc, c99) and -g (CC, cc, c89, c99)
	2.16.2 -h [no] bounds (cc, c99)
	2.16.3 -h zero (CC, cc, c99)

	2.17 Compiler Message Options
	2.17.1 -h msglevel_ n (CC, cc, c99)
	2.17.2 -h [no] message= n [: n ...] (CC, cc, c99)
	2.17.3 -h report= args (CC, cc, c99)
	2.17.4 -h [no] abort (CC, cc, c99)
	2.17.5 -h errorlimit [= n] (CC, cc, c99)

	2.18 Compilation Phase Options
	2.18.1 -E (CC, cc, c89, c99, cpp)
	2.18.2 -P (CC, cc, c99, cpp)
	2.18.3 -h feonly (CC, cc, c99)
	2.18.4 -S (CC, cc, c99)
	2.18.5 -c (CC, cc, c89, c99)
	2.18.6 -##, -####, and -###### (CC, cc, c99, cpp)
	2.18.7 -W phase,
	2.18.8 -Y phase, dirname (CC, cc, c89, c99, cpp)

	2.19 Preprocessing Options
	2.19.1 -C (CC, cc, c99, cpp)
	2.19.2 -D macro [= def] (CC, cc, c89, c99 cpp)
	2.19.3 -h [no] pragma= name [: name ...] (CC, cc, c99)
	2.19.4 -I incldir (CC, cc, c89, c99, cpp)
	2.19.5 -M (CC, cc, c99, cpp)
	2.19.6 -N (cpp)
	2.19.7 -nostdinc (CC, cc, c89, c99, cpp)
	2.19.8 -U macro (CC, cc, c89, c99, cpp)

	2.20 Loader Options
	2.20.1 -l libfile (CC, cc, c89, c99)
	2.20.2 -L libdir (CC, cc, c89, c99)
	2.20.3 -o outfile (CC, cc, c89, c99)
	2.20.4 -s (CC, cc, c89, c99)

	2.21 Miscellaneous Options
	2.21.1 -h command (cc, c99)
	2.21.2 -h decomp (CC, cc, c99)
	2.21.3 -h ident= name (CC, cc, c99)
	2.21.4 -h [no] omp (cc)
	2.21.5 -h predeclare_intrinsics (CC, cc, c99, cpp)
	2.21.6 -h task n (cc)
	2.21.7 -h upc
	2.21.8 -V (CC, cc, c99, cpp)
	2.21.9 -X npes (CC, cc, c99)

	2.22 Command Line Examples
	2.23 Compile Time Environment Variables
	2.24 Run Time Environment Variables
	2.25 OpenMP Environment Variables
	2.25.1 OMP_SCHEDULE
	2.25.2 OMP_NUM_THREADS
	2.25.3 OMP_DYNAMIC
	2.25.4 OMP_NESTED
	2.25.5 OMP_THREAD_STACK_SIZE

	##pragma Directives [3]
	3.1 Protecting Directives
	3.2 Directives in Cray C++
	3.3 Loop Directives
	3.4 Alternative Directive form: _Pragma
	3.5 General Directives
	3.5.1 [no] bounds Directive (Cray C Compiler)
	3.5.2 duplicate Directive (Cray C Compiler)
	3.5.3 message Directive
	3.5.4 no_cache_alloc Directive
	3.5.5 [no] opt Directive
	3.5.6 weak Directive
	3.5.7 vfunction Directive
	3.5.8 ident Directive

	3.6 Instantiation Directives
	3.7 Vectorization Directives
	3.7.1 ivdep Directive
	3.7.2 nopattern Directive
	3.7.3 novector Directive
	3.7.4 novsearch Directive
	3.7.5 prefervector Directive
	3.7.6 safe_address Directive
	3.7.7 shortloop and shortloop128 Directives

	3.8 Multistreaming Processor (MSP) Directives
	3.8.1 ssp_private Directive (cc, c99)
	3.8.2 nostream Directive
	3.8.3 preferstream Directive

	3.9 Cray Streaming Directives (CSDs)
	3.9.1 CSD Parallel Regions
	3.9.2 parallel Directive
	3.9.3 CSD for Directive
	3.9.4 parallel for Directive
	3.9.5 sync Directive
	3.9.6 critical Directive
	3.9.7 CSD ordered Directive
	3.9.8 Nested CSDs Within Cray Parallel Programming Models
	3.9.9 CSD Placement
	3.9.10 Protection of Shared Data
	3.9.11 Dynamic Memory Allocation for CSD Parallel Regions
	3.9.12 Compiler Options Affecting CSDs

	3.10 Scalar Directives
	3.10.1 concurrent Directive
	3.10.2 nointerchange Directive
	3.10.3 noreduction Directive
	3.10.4 suppress Directive
	3.10.5 [no] unroll Directive

	3.11 Inlining Directives
	3.11.1 inline Directive
	3.11.2 noinline Directive

	OpenMP C API Directives [4]
	4.1 Using Directives
	4.2 Conditional Compilation
	4.3 parallel Construct
	4.4 Work-sharing Constructs
	4.4.1 for Construct
	4.4.2 sections Construct
	4.4.3 single Construct

	4.5 Combined Parallel Work-sharing Constructs
	4.5.1 parallel for Construct
	4.5.2 parallel sections Construct

	4.6 Master and Synchronization Directives
	4.6.1 master Construct
	4.6.2 critical Construct
	4.6.3 barrier Directive
	4.6.4 atomic Construct
	4.6.5 flush Directive
	4.6.6 ordered Construct

	4.7 Data Environment
	4.7.1 threadprivate Directive
	4.7.2 Data-Sharing Attribute Clauses
	4.7.2.1 private
	4.7.2.2 firstprivate
	4.7.2.3 lastprivate
	4.7.2.4 shared
	4.7.2.5 default
	4.7.2.6 reduction
	4.7.2.7 copyin
	4.7.2.8 copyprivate

	4.8 Directive Binding
	4.9 Directive Nesting
	4.10 Using the schedule Clause
	4.11 Compiling Code for OpenMP
	4.12 Cray Implementation Differences

	Cray Unified Parallel C (UPC) [5]
	5.1 Changes to UPC Specification
	5.2 UPC Functions
	5.2.1 Termination of all Threads Function
	5.2.2 Shared Memory Allocation Functions
	5.2.3 Pointer-to-shared Manipulation Functions
	5.2.4 Lock Functions
	5.2.5 Shared String Handling Functions
	5.2.6 Operators

	5.3 Cray Implementation Differences
	5.3.1 upc_forall Statement (Deferred implementation)

	5.4 Compiling and Executing UPC Code

	Cray C++ Libraries [6]
	6.1 Unsupported Standard C++ Library Features
	6.2 Dinkum C++ Libraries

	Cray C++ Template Instantiation [7]
	7.1 Simple Instantiation
	7.2 Prelinker Instantiation
	7.3 Instantiation Modes
	7.4 One Instantiation Per Object File
	7.5 Instantiation ##pragma Directives
	7.6 Implicit Inclusion

	Cray C Extensions [8]
	8.1 Complex Data Extensions
	8.2 fortran Keyword
	8.3 Hexadecimal Floating-point Constants

	Predefined Macros [9]
	9.1 Macros Required by the C and C++ Standards
	9.2 Macros Based on the Host Machine
	9.3 Macros Based on the Target Machine
	9.4 Macros Based on the Compiler
	9.5 UPC Predefined Macros

	Debugging Cray C and C++ Code [10]
	10.1 Etnus TotalView Debugger
	10.2 Compiler Debugging Options

	Interlanguage Communication [11]
	11.1 Calls between C and C++ Functions
	11.2 Calling Assembly Language Functions from a C or C++ Functio
	11.2.1 (Deferred implementation) Cray Assembly Language (CAL) Fu

	11.3 Calling Fortran Functions and Subroutines from a C or C++ F
	11.3.1 Requirements
	11.3.2 Argument Passing
	11.3.3 Array Storage
	11.3.4 Logical and Character Data
	11.3.5 Accessing Named Common from C and C++
	11.3.6 Accessing Blank Common from C or C++
	11.3.7 Cray C and Fortran Example
	11.3.8 Calling a Fortran Program from a Cray C++ Program

	11.4 Calling a C or C++ Function from a Fortran or Assembly Lang

	Implementation-defined Behavior [12]
	12.1 Implementation-defined Behavior
	12.1.1 Messages
	12.1.2 Environment
	12.1.2.1 Identifiers
	12.1.2.2 Types
	12.1.2.3 Characters
	12.1.2.4 Wide Characters
	12.1.2.5 Integers
	12.1.2.6 Arrays and Pointers
	12.1.2.7 Registers
	12.1.2.8 Classes, Structures, Unions, Enumerations, and Bit Fiel
	12.1.2.9 Qualifiers
	12.1.2.10 Declarators
	12.1.2.11 Statements
	12.1.2.12 Exceptions
	12.1.2.13 System Function Calls

	12.1.3 Preprocessing

	Possible Requirements for non-C99 Code [A]
	Libraries and Loader [B]
	B.1 Cray C and C++ Libraries Current Programming Environments
	B.2 Loader

	Compatibility with Older C++ Code [C]
	C.1 Use of Nonstandard Cray C++ Header Files
	C.2 When to Update Your C++ Code
	C.2.1 Use the Proper Header Files
	C.2.2 Add Namespace Declarations
	C.2.3 Reconcile Header Definition Differences
	C.2.4 Recompile All C++ Files

	Cray C and C++ Dialects [D]
	D.1 C++ Language Conformance
	D.1.1 Unsupported and Supported C++ Language Features

	D.2 C++ Anachronisms Accepted
	D.3 Extensions Accepted in Normal C++ Mode
	D.4 Extensions Accepted in C or C++ Mode
	D.5 C++ Extensions Accepted in cfront Compatibility Mode

	Compiler Messages [E]
	E.1 Expanding Messages with the explain Command
	E.2 Controlling the Use of Messages
	E.2.1 Command Line Options
	E.2.2 Environment Options for Messages
	E.2.3 ORIG_CMD_NAME Environment Variable

	E.3 Message Severity
	E.4 Common System Messages

	Intrinsic Functions [F]
	F.1 Atomic Memory Operations
	F.2 BMM Operations
	F.3 Bit Operations
	F.4 Function Operations
	F.5 Mask Operations
	F.6 Memory Operations
	F.7 Miscellaneous Operations
	F.8 Streaming Operations

	Glossary

	tables
	Table 1. -h Option Descriptions
	Table 2. Floating-point Optimization Levels
	Table 3. -G level Definitions
	Table 4. -W phase Definitions
	Table 5. -Y phase Definitions
	Table 6. -h pragma Directive Processing
	Table 7. Compiler-calculated Chunk Size
	Table 8. schedule clause kind values
	Table 9. Private Copy Initialization
	Table 10. Barrier Function Replacements
	Table 11. Data Type Mapping
	Table 12. Packed Characters
	Table 13. Unrecognizable Escape Sequences
	Table 14. Run time Support Library Header Files
	Table 15. Stream and Class Library Header Files
	Table 16. Standard Template Library Header Files

