
Cray C/C++ Reference Manual

SR–2179 3.1

Document Number 004–2179–001

Copyright © 1996, 1998 Silicon Graphics, Inc. All Rights Reserved. This manual or parts thereof may not be reproduced in any
form unless permitted by contract or by written permission of Silicon Graphics, Inc.

RESTRICTED RIGHTS LEGEND

Use, duplication, or disclosure of the technical data contained in this document by the Government is subject to restrictions as set
forth in subdivision (c) (1) (ii) of the Rights in Technical Data and Computer Software clause at DFARS 52.227-7013 and/or in
similar or successor clauses in the FAR, or in the DOD or NASA FAR Supplement. Unpublished rights reserved under the
Copyright Laws of the United States. Contractor/manufacturer is Silicon Graphics, Inc., 2011 N. Shoreline Blvd., Mountain View,
CA 94043-1389.

Autotasking, CF77, CRAY, Cray Ada, CraySoft, CRAY Y-MP, CRAY-1, CRInform, CRI/TurboKiva, HSX, LibSci, MPP Apprentice,
SSD, SUPERCLUSTER, UNICOS, and X-MP EA are federally registered trademarks and Because no workstation is an island, CCI,
CCMT, CF90, CFT, CFT2, CFT77, ConCurrent Maintenance Tools, COS, Cray Animation Theater, CRAY APP, CRAY C90,
CRAY C90D, Cray C++ Compiling System, CrayDoc, CRAY EL, CRAY J90, CRAY J90se, CrayLink, Cray NQS,
Cray/REELlibrarian, CRAY S-MP, CRAY SSD-T90, CRAY SV1, CRAY T90, CRAY T3D, CRAY T3E, CrayTutor, CRAY X-MP,
CRAY XMS, CRAY-2, CSIM, CVT, Delivering the power . . ., DGauss, Docview, EMDS, GigaRing, HEXAR, IOS,
ND Series Network Disk Array, Network Queuing Environment, Network Queuing Tools, OLNET, RQS, SEGLDR, SMARTE,
SUPERLINK, System Maintenance and Remote Testing Environment, Trusted UNICOS, UNICOS MAX, and UNICOS/mk are
trademarks of Cray Research, Inc., a wholly owned subsidiary of Silicon Graphics, Inc.

Silicon Graphics is a registered trademark and the Silicon Graphics logo is a trademark of Silicon Graphics, Inc.

TotalView is a trademark of Bolt Beranek and Newman Inc. UNIX is a registered trademark in the United States and other
countries, licensed exclusively through X/Open Company Limited. VAX is a trademark of Digital Equipment Corporation.

The UNICOS operating system is derived from UNIX® System V. The UNICOS operating system is also based in part on the
Fourth Berkeley Software Distribution (BSD) under license from The Regents of the University of California.

New Features

Cray C/C++ Reference Manual 004–2179–001

This document supports the 6.1 release of the Cray C compiler and the 3.1 release of the Cray C++
compiler, which are contained within the 3.1 release of the Programming Environment. The following
documentation changes, which are released in online form only, have been made:

• Chapter 3, page 41, contains information on the following new features:

– long long and unsigned long long data types for C and C++. See Section 3.2, page 45, for
details.

– long double complex data type for C. See Section 3.4, page 46, for details. Complex data types
are available in Cray Standard C only. Complex data types are supported in Cray C++ through the
complex class library.

– // comments for C when in extended mode. See Section 3.3, page 46, for details.

• The Cray C/C++ Intrinsic Function table in Appendix D (Table 4, page 162) has been updated to
indicate that _mul , _mld , _mldmx , _mmx, and _mclr intrinsics for C/C++ are supported on
UNICOS/mk operating systems.

• The Supported Features and Unsupported Features sections of Appendix B (Appendix B, page 139) have
been updated appropriately.

Record of Revision

Version Description

2.0 January 1996
Original Printing. This manual supports the C and C++ compilers contained in the
Cray C++ Programming Environment release 2.0. On all Cray Research systems, the
C++ compiler is Cray C++ 2.0. On Cray Research systems with IEEE floating-point
hardware, the C compiler is Cray Standard C 5.0. On Cray Research systems
without IEEE floating-point hardware, the C compiler is Cray Standard C 4.0.

3.0 May 1997
This rewrite supports the C and C++ compilers contained in the Cray C++
Programming Environment release 3.0, which is supported on all systems except
the CRAY T3D system. On all supported Cray Research systems, the C++ compiler
is Cray C++ 3.0 and the C compiler is Cray C 6.0.

3.0.2 March 1998
This revision supports the C and C++ compilers contained in the Cray C++
Programming Environment release 3.0.2, which is supported on all systems except
the CRAY T3D system. On all supported Cray Research systems, the C++ compiler
is Cray C++ 3.0.2 and the C compiler is Cray C 6.0.2.

3.1 August 1998
This revision supports the C and C++ compilers contained in the Cray C++
Programming Environment release 3.1, which is supported on all systems except
the CRAY T3D system. On all supported Cray Research systems, the C++ compiler
is Cray C++ 3.1 and the C compiler is Cray C 6.1.

004–2179–001 i

Contents

Page

About This Guide xv

Related Publications . xv

Obtaining Publications . xvi

Conventions . xvii

Reader Comments . xviii

Introduction [1] 1

Setting up the C/C++ Programming Environment 1

General Compiler Description . 1

Cray C++ Compiler . 2

Cray Standard C Compiler . 2

Standard Template Library (STL) 2

Compiler Commands [2] 3

CCCommand . 4

cc Command . 4

c89 Command . 4

cpp Command . 5

Command-line Options . 5

Language (Standard Conformance) 6

-h [no]conform (CC, cc Commands), -h [no]stdc (cc Command) 6

-h cfront (CCCommand) . 7

-h [no]exceptions (CCCommand) 7

-h [no]anachronisms (CCCommand) 7

-h new_for_init (CCCommand) 7

-h [no]tolerant (cc Command) 8

004–2179–001 iii

Cray C/C++ Reference Manual

Page

Language (Templates) . 8

-h [no]autoinstantiate (CCCommand) 8

-h instantiate= mode (CCCommand) 8

-h [no]implicitinclude (CCCommand) 9

-h remove_instantiation_flags (CCCommand) 9

-h prelink_local_copy (CCCommand) 9

-h prelink_copy_if_nonlocal (CCCommand) 9

Language (Virtual Functions) . 9

-h forcevtbl , -h suppressvtbl (CCCommand) 9

Language (General) . 10

-h keep= file (CCCommand) 10

-h restrict= args (CC, cc Commands) 10

-h [no]calchars (CC, cc Commands) 11

-h [no]signedshifts (CC, cc Commands) 11

-h [no]stack (CC, cc Commands) 12

Optimization (General) . 12

-O [level] (CC, cc , c89 Commands) 12

-h [no]aggress (CC, cc Commands) 13

-h [no]intrinsics (CC, cc Commands) 13

-h [no]pattern (CC, cc Commands) 13

-h [no]overindex (CC, cc Commands) 13

Optimization (Vector) . 14

-h vector n (CC, cc Commands) 14

-h [no]ivdep (CC, cc Commands) 15

-h [no]vsearch (CC, cc Commands) 15

Optimization (Task) . 15

-h task n (CC, cc Commands) 15

-h taskprivate (cc Command) 16

iv 004–2179–001

Contents

Page

-h taskcommon , -h common (CC, cc commands) 16

-h [no]taskinner (CC, cc Commands) 17

-h [no]threshold (CC, cc Commands) 17

Optimization (Inline) . 17

-h inline n (CC, cc Commands) 17

-h inlinefrom= file (CC, cc Commands) 18

Optimization (Scalar) . 18

-h [no]interchange (CC, cc Commands) 18

-h scalar n (CC, cc Commands) 18

-h [no]align (CC, cc Commands) 19

-h [no]bl (CC, cc Commands) 19

-h [no]reduction (CC, cc Commands) 20

-h [no]zeroinc (CC, cc Commands) 20

Optimization (UNICOS/mk Specific) 20

-h pipeline n (CC, cc Commands) 20

-h [no]unroll (CC, cc Commands) 21

-h [no]jump (CC, cc Commands) 21

-h [no]split (CC, cc Commands) 21

Math . 22

-h matherror= method (CC, cc Commands) 22

-h [no]fastmd (CC, cc Commands) 22

-h [no]fastmodulus (CC, cc Commands) 22

-h [no]ieeeconform (CC, cc Commands) 23

-h [no]fastfpdivide (CC, cc Commands) 23

-h [no]rounddiv (CC, cc Commands) 23

-h [no]trunc[= n] (CC, cc Commands) 24

Analysis Tools . 24

-F (CC, cc Commands) . 24

004–2179–001 v

Cray C/C++ Reference Manual

Page

-h [no]atexpert (CC, cc Commands) 25

-h [no]apprentice (CC, cc Commands) 25

-h [no]listing (CC, cc Commands) 25

Debugging . 25

-G level (CC, cc Commands) and -g (CC, cc , c89 Commands) 25

-h [no]bounds (cc Command) 26

-h indef , -h zero (CC, cc Commands) 26

Messages . 27

-h msglevel_ n (CC, cc Commands) 27

-h [no]message= n[: n...] (CC, cc Commands) 27

-h report= args (CC, cc Commands) 27

-h [no]abort (CC, cc Commands) 28

-h errorlimit[= n] (CC, cc Commands) 28

Compilation Phases . 28

-E (CC, cc , c89 , cpp Commands) 28

-P (CC, cc , cpp Commands) . 29

-h feonly (CC, cc Commands) 29

-S (CC, cc Commands) . 29

-c (CC, cc , c89 Commands) . 29

-# , -## , and -### (CC, cc , cpp Commands) 30

-Wphase[" opt..."] (CC, cc Commands) 30

-Y phase, dirname (CC, cc , c89 , cpp Commands) 31

Preprocessing . 31

-I incldir (CC, cc , c89 , cpp Commands) 31

-D macro[= def] (CC, cc , c89 , cpp Commands) 32

-U macro (CC, cc , c89 , cpp Commands) 32

-M (CC, cc , cpp Commands) . 33

-N (cpp Command) . 33

vi 004–2179–001

Contents

Page

-C (CC, cc , cpp Commands) . 33

-h [no]pragma= name[: name...] (CC, cc Commands) 33

Loader . 34

-l libfile (CC, cc , c89 Commands) 34

-L libdir (CC, cc , c89 Commands) 35

-o outfile (CC, cc , c89 Commands) 36

-d string (CC, cc Commands) . 36

-s (CC, cc , c89 Commands) . 36

General . 36

-V (CC, cc , cpp Commands) . 36

-X npes (CC, cc Commands) . 37

-h ident= name (CC, cc Commands) 38

Command-line Examples . 38

Environment Variables . 39

Cray C and C++ Extensions [3] 41

Restricted Pointers . 41

Function Parameters . 42

File Scope . 43

Block Scope . 43

Unrestricted Pointers . 44

Comparison with #pragma ivdep 44

Implementation Limits . 44

long long and unsigned long long Data Types 45

// Comments . 46

Complex Data Types . 46

Complex Usage . 47

Conversion to and from Complex 47

Arithmetic Conversion for Complex 48

004–2179–001 vii

Cray C/C++ Reference Manual

Page

Variable Length Arrays . 48

Declarator Restrictions . 48

Variable Length Array (VLA) Declarators 49

Function Declarators and Variable Length Arrays 50

Variable Length Array Type Definitions 51

sizeof Operator and Variable Length Arrays 52

goto Statements . 53

switch Statement . 53

setjmp and longjmp Functions 54

fortran Keyword . 55

Hexadecimal Floating-point Constants 56

Arithmetic Conversions . 57

#pragma Directives [4] 59

Protecting Directives . 60

Directives in Cray C++ . 60

Loop Directives . 60

Alternative Directive Form: _Pragma 61

General Directives . 61

besu Directive . 61

[no]bounds Directive (C Compiler) 62

duplicate Directive (C Compiler) 63

message Directive . 64

[no]opt Directive . 64

uses_eregs Directive . 64

soft Directive . 65

vfunction Directive . 66

ident Directive . 66

Instantiation Directives . 66

viii 004–2179–001

Contents

Page

Vectorization Directives . 67

ivdep Directive . 67

novector Directive . 68

novsearch Directive . 68

prefervector Directive . 68

shortloop and shortloop128 Directives 69

Tasking Directives . 69

parallel and endparallel Directives 70

taskloop Directive . 70

endloop Directive . 71

case and endcase Directives 71

guard and endguard Directives 72

taskprivate Directive (C Compiler) 72

taskshared Directive (C Compiler) 73

taskcommon Directive . 74

commonDirective . 75

prefertask Directive . 75

Arguments to Tasking Directives 76

Context Arguments . 76

Work Distribution Arguments 76

Miscellaneous Arguments . 77

Scalar Directives . 77

align Directive . 77

cache_align Directive . 78

cache_bypass Directive . 78

concurrent Directive . 79

nointerchange Directive . 80

noreduction Directive . 80

split Directive . 81

004–2179–001 ix

Cray C/C++ Reference Manual

Page

suppress Directive . 82

symmetric Directive . 82

unroll Directive . 83

Inlining Directives . 84

inline Directive . 85

noinline Directive . 85

Template Instantiation [5] 87

Automatic Instantiation . 88

Instantiation Modes . 90

Instantiation #pragma Directives 91

Implicit Inclusion . 93

Predefined Macros [6] 95

Macros Required by the C and C++ Standards 95

Macros Based on the Host Machine 96

Macros Based on the Target Machine 96

Macros Based on the Compiler . 97

Debugging C/C++ Code [7] 99

Cray TotalView Debugger . 99

Compiler Debugging Options . 100

Interlanguage Communication [8] 103

Interlanguage Communication with Cray Standard C and Cray C++ 103

Calling Assembly Language Functions from a C or C++ Function 103

Cray Assembly Language (CAL) Functions on UNICOS Systems 104

Cray Assembler for MPP (CAM) Functions on UNICOS/mk Systems 104

Calling Fortran Functions and Subroutines from a C or C++ Function 104

Requirements . 104

x 004–2179–001

Contents

Page

Argument Passing . 105

Array Storage . 105

Logical and Character Data 107

Accessing Named Common from C/C++ 108

Accessing Blank Common from C/C++ 110

C and Fortran Example . 112

Calling a Fortran Program from a C++ Program 115

Calling a C/C++ Function from an Assembly Language or Fortran Program 116

Calls between C and C++ Functions 119

Implementation-defined Behavior [9] 123

Implementation-defined Behavior 123

Messages . 123

Environment . 123

Identifiers . 124

Types . 124

Characters . 127

Wide Characters . 127

Integers . 128

Floating-point Arithmetic . 129

Arrays and Pointers . 131

Registers . 133

Classes, Structures, Unions, Enumerations, and Bit Fields 133

Qualifiers . 134

Declarators . 134

Statements . 134

Exceptions . 134

System Function Calls . 134

Preprocessing . 134

004–2179–001 xi

Cray C/C++ Reference Manual

Page

Appendix A Libraries and Loaders 137

UNICOS Standard C and C++ Libraries 137

UNICOS Loaders . 137

Loader for UNICOS Systems (SEGLDR) 138

Loader for UNICOS/mk Systems (cld (1)) 138

Appendix B Cray C/C++ Dialects 139

C++ Conformance . 139

Supported Features . 139

Unsupported Features . 142

C++ Anachronisms Accepted . 143

Extensions Accepted in Normal C++ Mode 144

Extensions Accepted in C or C++ Mode 145

C++ Extensions Accepted in cfront Compatibility Mode 147

Appendix C Compiler Messages 155

Expanding Messages with the explain Command 155

Controlling the Use of Messages . 156

Command-line Options . 156

Environment Options for Messages 157

ORIG_CMD_NAMEEnvironment Variable 157

Message Severity . 158

Common System Messages . 159

Appendix D Intrinsic Functions 161

Index 165

xii 004–2179–001

Contents

Page

Figures
Figure 1. Character pointer format 132

Tables
Table 1. -h option descriptions 12

Table 2. -h pragma directive processing 33

Table 3. Cray Research systems data type mapping 125

Table 4. Summary of C/C++ intrinsic functions 162

004–2179–001 xiii

About This Guide

This publication documents the commands, directives, language extensions, and
other details specific to the Cray Research implementation of the Standard C
and C++ languages on the following systems:

• CRAY T3E systems

• CRAY Y-MP systems

• CRAY EL systems

• CRAY C90 systems

• CRAY J90 systems

• CRAY SV1 systems

• CRAY T90 systems

• CRAY T90 IEEE systems

It is assumed that readers of this manual have a working knowledge of the C
and C++ programming languages.

Related Publications

The following documents contain additional information that may be helpful:

• UNICOS User Commands Reference Manual

• UNICOS System Libraries Reference Manual

• Introducing CrayLibs

• Intrinsic Procedures Reference Manual

• Scientific Libraries Reference Manual

• Scientific Libraries User’s Guide

• C++ Language System Release 3.0.1 Library Manual, publication S3–2131

• Cray C/C++ Ready Reference

• C++ Installation Guide

004–2179–001 xv

Cray C/C++ Reference Manual

• Application Programmer’s Library Reference Manual

• Application Programmer’s I/O Guide

• Introducing the Program Browser

• Introducing the Cray TotalView Debugger

• Compiler Information File (CIF) Reference Manual

• Guide to Parallel Vector Applications, publication SG–2182

• Introducing the MPP Apprentice Tool

• Optimizing Code on Cray PVP Systems

• Cray C++ Tools Library Reference Manual, Rogue Wave document, Tools.h++
Introduction and Reference Manual, publication TPD-0005

• Cray C++ Mathpack Class Library Reference Manual by Thomas Keefer and
Allan Vermeulen, publication TPD-0006

• LAPACK.h++ Introduction and Reference Manual, Version 1, by Allan
Vermeulen, publication TPD-0010

• Standard Template Library Programmer’s Guide, Silicon Graphics WWW site:

http://www.sgi.com/Technology/STL

Obtaining Publications

The User Publications Catalog describes the availability and content of all Cray
Research hardware and software documents that are available to customers.
Customers who subscribe to the Cray Inform (CRInform) program can access
this information on the CRInform system.

To order a printed document, either call the Minnesota Distribution Center at
+1–651–683–5907, or send a facsimile of your request to fax number
+1–651–452–0141. Silicon Graphics employees may send electronic mail to
orderdsk@cray.com (UNIX system users).

Silicon Graphics maintains information on publicly available Cray Research
documents at the following URL:

http://www.cray.com/swpubs/

This Web site contains information that allows you to browse documents online
and send feedback to Silicon Graphics.

xvi 004–2179–001

About This Guide

Customers outside of the United States and Canada should contact their local
service organization for ordering and documentation information.

The Standard Template Library Programmer’s Guide (STL documentation) is
available to view or download at the following URL:

http://www.sgi.com/Technology/STL/index.html

Conventions

The following conventions are used throughout this document:

Convention Meaning

command This fixed-space font denotes literal items such as
commands, files, routines, path names, signals,
messages, and programming language structures.

manpage(x) Man page section identifiers appear in
parentheses after man page names. The following
list describes the identifiers:

1 User commands

1B User commands ported from BSD

2 System calls

3 Library routines, macros, and
opdefs

4 Devices (special files)

4P Protocols

5 File formats

7 Miscellaneous topics

7D DWB-related information

8 Administrator commands

Some internal routines (for example, the
_assign_asgcmd_info () routine) do not have
man pages associated with them.

variable Italic typeface denotes variable entries and words
or concepts being defined.

004–2179–001 xvii

Cray C/C++ Reference Manual

user input This bold, fixed-space font denotes literal items
that the user enters in interactive sessions.
Output is shown in nonbold, fixed-space font.

[] Brackets enclose optional portions of a command
or directive line.

... Ellipses indicate that a preceding element can be
repeated.

The following machine naming conventions may be used throughout this
document:

Term Definition

Cray PVP systems All configurations of Cray parallel vector
processing (PVP) systems.

The default shell in the UNICOS and UNICOS/mk operating systems, referred
to in Cray Research documentation as the standard shell, is a version of the Korn
shell that conforms to the following standards:

• Institute of Electrical and Electronics Engineers (IEEE) Portable Operating
System Interface (POSIX) Standard 1003.2–1992

• X/Open Portability Guide, Issue 4 (XPG4)

The UNICOS and UNICOS/mk operating systems also support the optional use
of the C shell.

Reader Comments

If you have comments about the technical accuracy, content, or organization of
this document, please tell us. You can contact us in any of the following ways:

• Send us electronic mail at the following address:

techpubs@sgi.com

• Contact your customer service representative and ask that an SPR or PV be
filed. If filing an SPR, use PUBLICATIONS for the group name, PUBSfor the
command, and NO-LICENSE for the release name.

• Call our Software Publications Group in Eagan, Minnesota, through the
Customer Service Call Center, using either of the following numbers:

xviii 004–2179–001

About This Guide

1–800–950–2729 (toll free from the United States and Canada)

+1–651–683–5600

• Send a facsimile of your comments to the attention of “Software Publications
Group” in Eagan, Minnesota, at fax number +1–651–683–5599.

We value your comments and will respond to them promptly.

004–2179–001 xix

Introduction [1]

The Cray C++ Programming Environment contains both the Cray Standard C
and the Cray C++ compilers. The Cray Standard C compiler conforms with the
International Standards Organization (ISO) standard ISO/IEC 9899:1990 and the
American National Standard Institute (ANSI) X3.159-1989. The Cray C++
compiler conforms with the ISO/ANSI Draft Proposed International Standard -
Programming Language C++ document numbers X3J16/94-0158 and
WG21/n0545.

Note: Throughout this manual, the differences between the Cray Standard C
and the Cray C++ compilers are noted when appropriate. When there is no
difference, the phrases the compiler or the C/C++ compiler refer to both
compilers.

1.1 Setting up the C/C++ Programming Environment

The installation and configuration of the C/C++ programming environment
uses a utility called modules , which is provided and installed as part of the
release package. The /opt/ct1/doc/README file was distributed in the
release package. It contains information on initializing the module command
and initializing the environment.

The default programming environment is available to you after you have
entered the following command:

module load modules PrgEnv

If you have questions on setting up the programming environment, contact
your system support staff.

1.2 General Compiler Description

Because both the Cray Standard C and Cray C++ compilers are contained within
the same programming environment, programmers compiling code written in C
should use the cc (1) or c89 (1) commands to compile their source files, and
programmers compiling code written in C++ should use the CC(1) command.

004–2179–001 1

Cray C/C++ Reference Manual

1.2.1 Cray C++ Compiler

The Cray C++ compiler consists of a preprocessor, a language parser, a prelinker,
an optimizer, and a code generator. The Cray C++ compiler is invoked by a
command called CC(1) in this manual, but may be renamed at individual sites.
The CC(1) command is described in Section 2.1, page 4, and on the CC(1) man
page. Command-line examples are shown in Section 2.22, page 38.

1.2.2 Cray Standard C Compiler

The Cray Standard C compiler consists of a preprocessor, a language parser, an
optimizer, and a code generator. The Cray Standard C compiler is invoked by a
command called cc or c89 in this manual, but may be renamed at individual
sites. The cc and c89 commands are described in Section 2.1, page 4, and on
the CCman page. Command-line examples are shown in Section 2.22, page 38.

1.3 Standard Template Library (STL)

The Standard Template Library (STL) is a C++ library of container classes,
algorithms, and iterators; it provides many of the basic algorithms and data
structures of computer science. The STL is a generic library, meaning that its
components are heavily parameterized: almost every component in the STL is a
template. You should make sure that you understand how templates work in
C++ before you use the STL. The Standard Template Library Programmer’s Guide is
available online only with the Programming Environment 3.1 release. You can
also view the Standard Template Library Programmer’s Guide from the following
World Wide Web site:

http://www.sgi.com/Technology/STL/index.html.

2 004–2179–001

Compiler Commands [2]

This section describes the following commands and the environment variables
necessary to execute the compilers associated with the Cray C++ programming
environment:

• CCcommand invokes the Cray C++ compiler.

• cc command invokes the Cray Standard C compiler.

• c89 command invokes the Cray Standard C compiler. This command is a
subset of the cc command and conforms with the POSIX standard (P1003.2,
Draft 12).

• cpp command explicitly invokes the preprocessor component of the Cray
Standard C compiler.

The compilation process, if successful, creates an absolute binary file, named
a.out by default, that reflects the contents of the source code and any
referenced library functions. This binary file, a.out , can then be executed on
the target system. For example, the following sequence compiles file
mysource.c and executes the resulting executable program:

cc mysource.c

./a.out

With the use of appropriate options, compilation can be terminated to produce
one of several intermediate translations, including relocatable object files (-c
option), assembly source expansions (-S option), or the output of the
preprocessor phase of the compiler (-P or -E option). In general, the
intermediate files can be saved and later resubmitted to the CC, cc , or c89
commands, with other files or libraries included as necessary.

By default, the CC, cc , and c89 commands automatically call the loader, which
creates an executable file. If only one source file is specified, the object file is
deleted. If more than one source file is specified, the object files are retained.
The following example creates object files file1.o , file2.o , and file3.o , and the
executable file a.out :

CC file1.c file2.c file3.c

The following command creates the executable file a.out only:

CC file.c

004–2179–001 3

Cray C/C++ Reference Manual

2.1 CCCommand

The CCcommand invokes the Cray C++ compiler. The CCcommand accepts
C++ source files that have the .c , .C , .i , .c++ , .C++ , .cc , .cxx , .Cxx , .CXX,
.CC , and .cpp suffixes; object files with the .o suffix; library files with the .a
suffix; and assembler source files with the .s suffix.

The CCcommand format is as follows:

CC [-c] [-C] [-d string] [-D macro[= def]] [-E] [-F] [-g]
[-G level] [-h arg] [-I incldir] [-l libfile] [-L libdir] [-M]
[-o outfile] [-O [level]] [-P] [-s] [-S] [-U macro] [-V]
[-W phase,[" opt..."]] [-X npes] [-Y phase, dirname] [-#] [-##]
[-###] files...

2.2 cc Command

The cc command invokes the Cray Standard C compiler. The cc command
accepts C source files that have the .c and .i suffixes; object files with the .o
suffix; library files with the .a suffix; and assembler source files with the .s
suffix.

The cc command format is as follows:

cc [-c] [-C] [-d string] [-D macro[= def]] [-E] [-F] [-g]
[-G level] [-h arg] [-I incldir] [-l libfile] [-L libdir] [-M]
[-o outfile] [-O [level]] [-P] [-s] [-S] [-U macro] [-V]
[-W phase,[" opt..."]] [-X npes] [-Y phase, dirname] [-#] [-##]
[-###] files...

2.2.1 c89 Command

The c89 command invokes the Cray Standard C compiler. This command is a
subset of the cc command and conforms with the POSIX standard (P1003.2,
Draft 12). The c89 command accepts C source files that have the .c and .i
suffixes; object files with the .o suffix; library files with the .a suffix; and
assembler source files with the .s suffix.

The c89 command format is as follows:

4 004–2179–001

Compiler Commands [2]

c89 [-c] [-D macro[= def]] [-E] [-g] [-I incldir] [-l libfile]
[-L libdir] [-o outfile] [-O [level]] [-s] [-U macro]
[-Yp, dirname] files...

2.2.2 cpp Command

The cpp command explicitly invokes the preprocessor component of the Cray
Standard C compiler. Most cpp options are also available from the CC, cc , and
c89 commands.

The cpp command format is as follows:

cpp [-C] [-D macro[= def]] [-E] [-I incldir] [-M] [-N] [-P]
[-U macro] [-V] [-Y phase, dirname] [-#] [-##] [-###]
[infile[outfile]]

The infile and outfile files are, respectively, the input and output for the
preprocessor. If you do not specify these arguments, input is defaulted to
standard input (stdin) and output to standard output (stdout). Specifying -
for infile also indicates standard input.

2.3 Command-line Options

This following subsections describe options for the CC, cc , c89 , and cpp
commands, which are grouped by the following functions:

Language

Optimization

Math

Analysis tools

Debugging

Messages

Compilation phases

Preprocessing

Loader

General

004–2179–001 5

Cray C/C++ Reference Manual

Options other than those described here are passed to the loader; see the
appropriate man page for loader options.

At the beginning of each subsection, information is included about exceptions
to the default option, the systems that use the option, the type of floating-point
representation used (IEEE and/or Cray), and the commands that will accept the
option. Unless otherwise noted, the following default information applies to
each option:

Default option: None

Operating System: UNICOS and UNICOS/mk

Floating-point: IEEE and Cray

If conflicting options are specified, the option specified last on the command
line overrides the previously specified option. Exceptions to this rule are noted
in the individual descriptions of the options.

Most #pragma directives override corresponding command-line options. For
example, #pragma _CRI novsearch overrides the -h vsearch option.
#pragma _CRI novsearch also overrides the -h vsearch option implied
by the -h vector2 or -O2 option. Exceptions to this rule are noted in
descriptions of options or #pragma directives.

2.4 Language (Standard Conformance)

The following sections describe standard conformance language options.

2.4.1 -h [no]conform (CC, cc Commands), -h [no]stdc (cc Command)

Default option: -h noconform , -h nostdc

The -h conform and -h stdc options specify strict conformance to the ISO C
standard or the draft ISO C++ standard. The -h noconform and -h nostdc
options specify partial conformance to the standard. -h exceptions is
enabled by -h conform in C++.

Note: The c89 command does not accept the -h conform or -h stdc
option. It is enabled by default when the command is issued.

6 004–2179–001

Compiler Commands [2]

2.4.2 -h cfront (CCCommand)

The -h cfront option causes the C++ compiler to accept or reject constructs
that were accepted by previous cfront -based compilers (such as Cray C++
1.0), but which are not accepted in the ANSI/ISO draft standard. The
-h anachronisms option is implied when -h cfront is specified.

2.4.3 -h [no]exceptions (CCCommand)

Default option: -h noexceptions

The -h exceptions option enables support for exception handling. The
-h noexceptions option issues an error whenever an exception construct, a
try block, a throw expression, or a throw specification on a function
declaration is encountered. -h exceptions is enabled by -h conform .

2.4.4 -h [no]anachronisms (CCCommand)

Default option: -h noanachronisms

The -h [no]anachronisms option enables or disables anachronisms in Cray
C++. This option is overridden by -h conform .

2.4.5 -h new_for_init (CCCommand)

The -h new_for_init option enables the new scoping rules for a declaration
in a for-init-statement . This means that the new (standard-conforming)
rules are in effect, which means that the entire for statement is wrapped in its
own implicitly generated scope. -h new_for_init is implied by the
-h conform option.

The following is the result of the scoping rule:

{

.

.

.

for (int i = 0; i < n; i++) {
.

.

.

} // scope of i ends here for -h new_for_init

.

.

004–2179–001 7

Cray C/C++ Reference Manual

.

} // scope of i ends here by default

2.4.6 -h [no]tolerant (cc Command)

Default option: -h notolerant

The -h tolerant option allows older, less standard C constructs to facilitate
porting of code written for previous C compilers. Errors involving comparisons
or assignments of pointers and integers become warnings. The compiler
generates casts so that the types agree. With -h notolerant , the compiler is
intolerant of the older constructs.

This option can be specified on the same line with -O3 or any combination of
-h scalar3 , -h vector3 , or -h task3 . The combination of -h tolerant
with these options causes the compiler to tolerate accessing an object with one
type through a pointer to an entirely different type. For example, a pointer to
int might be used to access an object declared with type double . Such
references violate the C standard and should be eliminated if possible. They can
reduce the effectiveness of alias analysis and inhibit optimization.

2.5 Language (Templates)

The following sections describe template language options. See Chapter 5, page
87 for more information on template instantiation.

2.5.1 -h [no]autoinstantiate (CCCommand)

Default option: -h autoinstantiate

The -h [no]autoinstantiate option enables or disables automatic
instantiation of templates by the Cray C++ compiler.

2.5.2 -h instantiate= mode (CCCommand)

Default option: -h instantiate=none

Normally, during compilation of a source file, no template entities are
instantiated (except those assigned to the file by automatic instantiation). The
overall instantiation mode can, however, be changed by using the
-h instantiate= mode option. mode is specified as none (the default), used ,
all , or local .

8 004–2179–001

Compiler Commands [2]

2.5.3 -h [no]implicitinclude (CCCommand)

Default option: -h implicitinclude

The -h [no]implicitinclude option enables or disables implicit inclusion
of source files as a method of finding definitions of template entities to be
instantiated.

2.5.4 -h remove_instantiation_flags (CCCommand)

The -h remove_instantiation_flags option causes the prelinker to
recompile all the sources to remove all instantiation flags.

2.5.5 -h prelink_local_copy (CCCommand)

The -h prelink_local_copy indicates that only local files (for example, files
in the current directory) are candidates for assignment of instantiations.

2.5.6 -h prelink_copy_if_nonlocal (CCCommand)

The -h prelink_copy_if_nonlocal option specifies that assignment of an
instantiation to a nonlocal object file will result in the object file being
recompiled in the current directory.

2.6 Language (Virtual Functions)

The following sections describe virtual function options.

2.6.1 -h forcevtbl , -h suppressvtbl (CCCommand)

The -h forcevtbl option forces the definition of virtual function tables in
cases where the heuristic methods used by the compiler to decide on definition
of virtual function tables provide no guidance. The -h suppressvtbl option
suppresses the definition of virtual function tables in these cases.

The virtual function table for a class is defined in a compilation if the
compilation contains a definition of the first noninline, nonpure virtual function
of the class. For classes that contain no such function, the default behavior is to
define the virtual function table (but to define it as a local static entity).

The -h forcevtbl option differs from the default behavior in that it does not
force the definition to be local.

004–2179–001 9

Cray C/C++ Reference Manual

2.7 Language (General)

The following sections describe general language options.

2.7.1 -h keep= file (CCCommand)

When the -h keep= file option is specified, the static constructor/destructor
object (.o) file is retained as file. This option is useful when linking .o files on
a system that does not have a C++ compiler. The use of this option requires
that the main function must be compiled by C++ and the static
constructor/destructor function must be included in the link. With these
precautions, mixed object files (files with .o suffixes) from C and C++
compilations can be linked into executables by using the loader command
instead of the CCcommand.

2.7.2 -h restrict= args (CC, cc Commands)

The -h restrict= args option globally instructs the compiler to treat certain
classes of pointers as restricted pointers. You can use this option to enhance
optimizations. This includes vectorization on Cray PVP systems.

Classes of affected pointers are determined by the value contained in args, as
follows:

args Description

a All pointers to object and incomplete types are to be considered
restricted pointers, regardless of where they appear in the source
code. This includes pointers in class , struct , and union
declarations, type casts, function prototypes, and so on.

f All function parameters that are pointers to objects or incomplete
types can be treated as restricted pointers.

t All this parameters can be treated as restricted pointers (C++
only).

The args arguments instruct the compiler to assume that, in the current
compilation unit, each pointer (=a), or each pointer that is a function parameter
(=f), or each this pointer (=t) points to a unique object. This assumption
eliminates those pointers as sources of potential aliasing, and may allow
additional vectorization or other optimizations. These options cause only data
dependencies from pointer aliasing to be ignored, rather than all data

10 004–2179–001

Compiler Commands [2]

dependencies, so they can be used safely for more programs than the
-h ivdep option.

!
Caution: Like -h ivdep , the arguments make assertions about your
program that, if incorrect, can introduce undefined behavior. You should not
use -h restrict=a if, during the execution of any function, an object is
modified and that object is referenced through either of the following:

• Two different pointers

• The declared name of the object and a pointer

The -h restrict=f and -h restrict=t options are subject to the
analogous restriction, with "function parameter pointer" replacing "pointer."

2.7.3 -h [no]calchars (CC, cc Commands)

Default option: -h nocalchars

The -h calchars option allows the use of the @and $ characters in identifier
names. This option is useful for porting codes in which identifiers include these
characters. With -h nocalchars , these characters are not allowed in identifier
names.

!
Caution: Use this option with extreme care, because identifiers with these
characters are within Cray Research name space and are included in many
Cray Research library identifiers, internal compiler labels, objects, and
functions. You must prevent conflicts between any of these uses, current or
future, and identifier declarations or references in your code; any such
conflict is an error.

2.7.4 -h [no]signedshifts (CC, cc Commands)

Default option: -h signedshifts

(UNICOS/mk systems) The -h [no]signedshifts option affects the result
of the right shift operator. For the expression e1 >> e2 where e1 has a signed
type, when -h signedshifts is in effect, the vacated bits are filled with the
sign bit of e1 . When -h nosignedshifts is in effect, the vacated bits are
filled with zeros, identical to the behavior when e1 has an unsigned type. The
-h nosignedshifts option forces the >> operator to have the same behavior
on UNICOS/mk operating systems as on UNICOS operating systems.

004–2179–001 11

Cray C/C++ Reference Manual

2.7.5 -h [no]stack (CC, cc Commands)

Default option: -h stack

(UNICOS systems) The -h stack option specifies the stack calling sequence.
The -h nostack option specifies the standard UNICOS static calling sequence
and prevents the use of reentrant or recursive functions. The -h nostack
option disables autotasking, all tasking directives, and the -h taskcommon
and -h taskprivate options.

2.8 Optimization (General)

The following sections describe general optimization options.

2.8.1 -O [level] (CC, cc , c89 Commands)

Default option: Equivalent to the appropriate -h option

The -O level option specifies the optimization level for a group of compiler
features. Specifying -O with no arguments is the same as not specifying the -O
option. A value of 0, 1, 2, or 3 sets that level of optimization for the
-h inline , -h scalar , -h task , and -h vector options.

For example, -O2 is equivalent to the following:

-h inline2,scalar2,task2,vector2

Optimization features specified by -O are equivalent to the following -h
options (task n is ignored on UNICOS/mk systems):

Table 1. -h option descriptions

-h option Description location

-h inline n Section 2.11.1, page 17

-h scalar n Section 2.12.2, page 18

-h task n Section 2.10.1, page 15

-h vector n Section 2.9.1, page 14

12 004–2179–001

Compiler Commands [2]

2.8.2 -h [no]aggress (CC, cc Commands)

Default option: -h noaggress

The -h aggress option provides greater opportunity to optimize loops that
would otherwise by inhibited from optimization due to an internal compiler
size limitation. -h noaggress leaves this size limitation in effect.

With -h aggress , internal compiler tables are expanded to accommodate
larger loop bodies. This option can increase the compilation’s time and memory
size. On UNICOS systems, this option also disables the limit on the number of
vector updates in a single loop. On UNICOS/mk systems, this option enables
the compiler to aggressively assign registers and schedule instructions.

2.8.3 -h [no]intrinsics (CC, cc Commands)

Default option: -h intrinsics

The -h intrinsics option allows the use of intrinsic hardware functions,
which allow direct access to some Cray Research hardware instructions or
generate inline code for some functions. This option has no effect on
specially-handled library functions.

Intrinsic functions are described in Appendix D, page 161.

2.8.4 -h [no]pattern (CC, cc Commands)

Default option: -h pattern

The -h [no]pattern option globally enables or disables pattern matching.
Pattern matching is on by default, but takes effect only when -h vector2 or
-h scalar2 or greater are specified.

2.8.5 -h [no]overindex (CC, cc Commands)

Default option: -h nooverindex

The -h overindex option declares that there are array subscripts that index a
dimension of an array that is outside the declared bounds of that array. The
-h nooverindex option declares that there are no array subscripts that index
a dimension of an array that is outside the declared bounds of that array.

004–2179–001 13

Cray C/C++ Reference Manual

2.9 Optimization (Vector)

The following sections describe vector optimization options.

2.9.1 -h vector n (CC, cc Commands)

Default option: -h vector2

The -h vector n option specifies the level of automatic vectorizing to be
performed. Vectorization results in dramatic performance improvements with a
small increase in object code size. Vectorization directives are unaffected by this
option.

On UNICOS/mk systems, the C/C++ compiler can do "vectorization-like"
optimizations on loops that contain calls to certain functions. These
optimizations are enabled/disabled with this option. See Section 4.7, page 67,
for more information on these optimizations.

Argument n can be one of the following:

n Description

0 No automatic vectorization.

1 Conservative automatic vectorization. On UNICOS systems,
automatic vectorization is performed. Search loops and reduction
loops are not vectorized.

2 Moderate automatic vectorization. On UNICOS systems,
automatic vectorization is performed as with vector1 , and
vectorization of search loops and reduction loops is added.

3 Aggressive automatic vectorization. Automatic vectorization is
performed as with vector2 and restructuring of loops is done to
improve vectorization. Also, the aliasing assumptions specified in
the standard are used (for example, it is assumed that no aliasing
will occur between two pointers to different structure types). On
UNICOS/mk systems, "vectorization-like" optimizations are
performed. See Section 4.7, page 67, for more information.

Vectorization directives are described in Section 4.7, page 67.

14 004–2179–001

Compiler Commands [2]

2.9.2 -h [no]ivdep (CC, cc Commands)

Default option: -h noivdep

The -h ivdep option instructs the compiler to ignore vector dependencies for
all loops. This is useful for vectorizing loops that contain pointers. With -h
noivdep , loop dependencies inhibit vectorization. To control loops
individually, use the ivdep directive, as discussed in Section 4.7.1, page 67.

This option can also be used with "vectorization-like" optimizations on
UNICOS/mk systems. See Section 4.7, page 67, for more information.

!
Caution: This option should be used with extreme caution because incorrect
results can occur if there is a vector dependency within a loop. Combining
this option with inlining is dangerous because inlining can introduce vector
dependencies.

2.9.3 -h [no]vsearch (CC, cc Commands)

Default option: -h vsearch

(UNICOS systems) The -h vsearch option enables vectorization of all search
loops. With -h novsearch , the default vectorization level applies. The
novsearch directive is discussed in Section 4.7.3, page 68. This option is
affected by the -h vector n option (see Section 2.9.1, page 14).

2.10 Optimization (Task)

The following sections describe task optimization options.

2.10.1 -h task n (CC, cc Commands)

Default option: -h task0

The -h task n option specifies the level of automatic tasking (Autotasking) to
be performed. Tasking allows segments of code to execute in parallel on
multiple processors. This option has no effect on tasking directives. Tasking
and tasking directives are described in Section 4.8, page 69.

Note: The -h task n option is accepted and ignored on UNICOS/mk
systems.

Argument n can be one of the following:

004–2179–001 15

Cray C/C++ Reference Manual

n Description

0 No Autotasking.

1 Conservative Autotasking. Same as task0 in this release.

2 Moderate Autotasking. Same as task0 in this release.

3 Aggressive Autotasking. This includes loop restructuring for
improved tasking performance. Aliasing assumptions specified in
the standard are also used; for example, it is assumed that no
aliasing will occur between two pointers to different structure
types.

Autotasking is disabled when -h nostack is specified.

2.10.2 -h taskprivate (cc Command)

This option gives task private status to all statically-allocated objects in the
program. It has no effect if -h nostack is specified.

Unlike -h taskcommon , initialized objects can be made private to each task
with the -h taskprivate option. They are initialized at startup for each task
prior to the execution of the main entry point.

For information on tasking and tasking directives, see Section 4.8, page 69.

2.10.3 -h taskcommon , -h common (CC, cc commands)

Default option: -h common

The -h taskcommon option gives task common status to all statically-allocated
objects in the program. It has no effect if -h nostack is specified. The
-h common option gives common (as opposed to taskcommon) status to all
global objects in the program. Tasking and tasking directives are described in
Section 4.8, page 69.

Objects that are initialized will not be marked as task common. The
-h taskprivate option can be used to make these objects private to each
task and be initialized at startup for each task prior to the execution of the main
entry point.

16 004–2179–001

Compiler Commands [2]

2.10.4 -h [no]taskinner (CC, cc Commands)

Default option: -h notaskinner

(UNICOS systems) Autotasking attempts to maximize the amount of parallel
work in a taskable loop by interchanging the loop outwards. Sometimes this
fails and a taskable loop remains innermost. By default, such a remaining
innermost and taskable loop will not task if, at compile time, sufficient parallel
work cannot be found. The -h taskinner option enables tasking of the
innermost loop with a run-time threshold check to ensure that there is sufficient
parallel work in the loop. Aggressive Autotasking (-h task3) must also be
specified for this option to take effect.

2.10.5 -h [no]threshold (CC, cc Commands)

Default option: -h threshold

(UNICOS systems) The -h [no]threshold option enables or disables
generation of run-time threshold testing for autotasked loops. Aggressive
Autotasking (-h task3) must also be specified for this option to take effect.

2.11 Optimization (Inline)

The following sections describe inline optimization options.

2.11.1 -h inline n (CC, cc Commands)

Default option: -h inline1

The -h inline n option specifies the level of inlining to be performed. Inlining
eliminates the overhead of a function call and increases the opportunities for
other optimizations. Inlining can also increase object code size. Inlining
directives and the inline keyword are unaffected by this option.

Following are the values for the n argument:

n Description

0 No inlining is performed.

1 Conservative inlining; performed only on functions implicitly
marked by the inline keyword (C++) or a #pragma _CRI
inline directive (C or C++) or on functions defined inside a
class definition (C++).

004–2179–001 17

Cray C/C++ Reference Manual

2 Moderate automatic inlining; includes level 1 plus some
automatic inlining.

3 Aggressive automatic inlining; all functions are candidates for
inlining except those specifically marked with a
#pragma noinline directive.

2.11.2 -h inlinefrom= file (CC, cc Commands)

The -h inlinefrom= file option specifies inline code expansion of all functions
defined in file by the C++ compiler. For the file argument, enter the name of a
file that contains one or more functions or enter the name of a directory that
contains one or more source files.

Every function defined in the file or directory is inlined unless the call is within
the scope of a #pragma _CRI noinline directive.

2.12 Optimization (Scalar)

The following sections describe scalar optimization options.

2.12.1 -h [no]interchange (CC, cc Commands)

Default option: -h interchange

The -h interchange option instructs the compiler to attempt to interchange
all loops, a technique that is used to gain performance by having the compiler
swap an inner loop with an outer loop. The compiler attempts the interchange
only if the interchange will increase performance. Loop interchange is
performed only at scalar optimization level 2 or higher.

The -h nointerchange option prevents the compiler from attempting to
interchange any loops. To disable interchange of loops individually, use the
#pragma nointerchange directive.

2.12.2 -h scalar n (CC, cc Commands)

Default option: -h scalar2

The -h scalar n option specifies the level of automatic scalar optimization to
be performed. Scalar optimization directives are unaffected by this option (see
Section 4.9, page 77).

18 004–2179–001

Compiler Commands [2]

Argument n can be one of the following:

n Description

0 No automatic scalar optimization. The -h nobl ,
-h nofastfpdivide , -h nofastmd , -h nofastmodulus ,
-h matherror=errno , and -h zeroinc options are implied
by -h scalar0 .

1 Conservative automatic scalar optimization. This level implies
-h fastmd , -h fastfpdivide , -h matherror=abort , and
-h nozeroinc and causes automatic loop alignment to be
performed.

2 Moderate automatic scalar optimization. The scalar optimizations
specified by scalar1 are performed.

3 Aggressive automatic scalar optimization. The scalar
optimizations specified by scalar2 are performed and
-h fastmodulus and -h bl are implied.

2.12.3 -h [no]align (CC, cc Commands)

Default option: -h noalign

(UNICOS systems) The -h align option specifies that all functions defined in
the file are to be automatically aligned on instruction buffer boundaries. This
alignment can significantly improve performance for small, frequently called
functions. With -h noalign , automatic function alignment is not done.

To control alignment of functions individually, use the align directive. For
more information on the align directive and function alignment, see Section
4.9.1, page 77.

2.12.4 -h [no]bl (CC, cc Commands)

Default option: -h nobl

The -h bl option specifies a faster, but potentially unsafe, form of bottom
loading. -h nobl dictates that this technique is not used. This option is
affected by the scalar optimization level (see Section 2.12.2, page 18).

004–2179–001 19

Cray C/C++ Reference Manual

2.12.5 -h [no]reduction (CC, cc Commands)

Default option: -h reduction

On UNICOS systems, the -h reduction option instructs the compiler to
enable vectorization of all reduction loops. On UNICOS/mk systems, the
-h reduction option instructs the compiler to rewrite some multiplication
operations to be a series of addition operations. With -h noreduction , these
optimizations are not done. This option is affected by the -h scalar n option
(see Section 2.12.2, page 18). Reduction loops and the noreduction directive
are discussed in Section 4.9.6, page 80.

2.12.6 -h [no]zeroinc (CC, cc Commands)

Default option: -h nozeroinc

The -h nozeroinc option improves run-time performance by causing the
compiler to assume that constant increment variables (CIVs) in loops are not
incremented by expressions with a value of 0.

The -h zeroinc option causes the compiler to assume that some CIVs in
loops might be incremented by 0 for each pass through the loop, preventing
generation of optimized code. For example, in a loop with index i, the
expression expr in the statement i += expr can evaluate to 0. This rarely happens
in actual code. -h zeroinc is the safer and slower option. This option is
affected by the -h scalar n option (see Section 2.12.2, page 18).

2.13 Optimization (UNICOS/mk Specific)

The following sections describe UNICOS/mk specific compiler options.

2.13.1 -h pipeline n (CC, cc Commands)

Default option: -h pipeline0

(UNICOS/mk systems) The -h pipeline n option specifies two levels of
software pipelining; on and off. The following are the various software
pipelining levels and their types of operations:

20 004–2179–001

Compiler Commands [2]

n Description

0 No pipelining. Default.

1 Conservative pipelining. Only safe operator reassociations are
performed. Numeric results obtained at this level do not differ
from results obtained at level 0.

2 Moderate pipelining. Same as pipeline1 .

3 Aggressive pipelining. Same as pipeline1 .

2.13.2 -h [no]unroll (CC, cc Commands)

Default option: -h nounroll

(UNICOS/mk systems) The -h unroll option instructs the compiler to
attempt to unroll all loops generated by the compiler. This technique is
intended to increase single processor performance at the cost of increasing
compile time and executable size. To control unrolling of loops individually, use
the unroll directive. For more information on this directive and loop
unrolling, see Section 4.9.10, page 83.

Note: On UNICOS systems, -h unroll is enabled at all times.

2.13.3 -h [no]jump (CC, cc Commands)

Default option: -h jump

(UNICOS/mk systems) The -h jump option generates jumps instead of
branches to external functions. Branches provide slightly better performance.
However, branches are limited in the distance to which they can transfer
control; jumps have no such limitation. For large programs you may need to
use -h jump with files that generate calls to functions loaded at too great a
distance.

2.13.4 -h [no]split (CC, cc Commands)

Default option: -h nosplit

(UNICOS/mk systems) The -h split option instructs the compiler to attempt
to split all loops generated by the compiler into sets of smaller loops. This
technique is intended to increase single processor performance on UNICOS/mk
systems by reducing thrashing of CRAY T3E system hardware stream buffers.
To control splitting of loops individually, use the split and nosplit

004–2179–001 21

Cray C/C++ Reference Manual

directives. For more information on these directives and on loop splitting, see
Section 4.9.7, page 81.

2.14 Math

The following sections describe compiler options with regard to math functions.

2.14.1 -h matherror= method (CC, cc Commands)

Default option: -h matherror=abort

The -h matherror= method option specifies the method of error processing
used if a standard math function encounters an error. The method argument can
have one of the following values:

method Description

abort If an error is detected, errno is not set. Instead a message is
issued and the program aborts. On Cray Research systems with
IEEE floating-point hardware, an exception may be raised.

errno If an error is detected, errno is set and the math function returns
to the caller. This method is implied by the -h conform ,
-h scalar0 , -O0 , -Gn , and -g options.

2.14.2 -h [no]fastmd (CC, cc Commands)

Default option: -h fastmd

(UNICOS systems) The -h fastmd option generates shorter code sequences
for int variables when doing multiply, divide, or comparison operations, or
when converting to and from floating-point operations, but allows for only 46
bits of significance. With -h nofastmd , this action is disabled. This option is
affected by the scalar optimization level (see Section 2.12.2, page 18).

2.14.3 -h [no]fastmodulus (CC, cc Commands)

Default option: -h nofastmodulus

(UNICOS systems) The -h fastmodulus option generates shorter code
sequences for int variables used with the modulus operator (%), but allows
only 46 significant bits. This option is affected by the scalar optimization level,
(see Section 2.12.2, page 18).

22 004–2179–001

Compiler Commands [2]

2.14.4 -h [no]ieeeconform (CC, cc Commands)

Default option: -h noieeeconform

Floating-point: IEEE only

The -h ieeeconform option causes the resulting executable code to conform
more closely to the IEEE floating-point standard (ANSI/IEEE Std 754–1985).
Use of this option disables many arithmetic identity optimizations and may
result in significantly slower code.

When -h noieeeconform is in effect, the compiler optimizes expressions
such as x != x to 0 and x/x to 1 (where x has floating type). With the
-h ieeeconform option in effect, these and other similar arithmetic identity
optimizations are not performed. Optimizations on integral types are not
affected by this option.

The -h ieeeconform option also turns on a scaled complex divide, which
increases the range of complex values that can be handled without producing
an underflow or an overflow.

The -h ieeeconform option overrides the -h fastfpdivide option.

2.14.5 -h [no]fastfpdivide (CC, cc Commands)

Default option: -h fastfpdivide

Floating-point: IEEE only

The -h fastfpdivide option decomposes a floating-point divide into a
multiply-by-reciprocal in situations where a performance gain can be realized.
For example, this option is useful in loops that contain divides with a
loop-invariant divisor or sequences of divides with the same divisor. If the
option is enabled, you could see slight numerical differences from compiles for
which the option is not enabled. You could also see numerical differences
between instances of the same computation for the same compile, depending on
the context of the computation.

This option is affected by the scalar optimization level (see Section 2.8.1, page
12).

The -h ieeeconform option overrides the -h fastfpdivide option.

2.14.6 -h [no]rounddiv (CC, cc Commands)

Default option: -h norounddiv

004–2179–001 23

Cray C/C++ Reference Manual

Floating-point: Cray only

The -h [no]rounddiv option enables or disables strong rounding of all
floating-point divide operations to allow the compiler to produce more
symmetric results. Strong rounding ensures that all floating-point divide
operations whose exact result is an integer will have an absolute value slightly
greater than the integer value. This ensures that if these floating-point values
are converted back into integer values they will represent the expected results.
For example, results such as 2.99999..., when converted, will be treated as 3.

2.14.7 -h [no]trunc[= n] (CC, cc Commands)

Default option: -h notrunc

Floating-point: Cray only

The -h trunc[= n] option specifies truncation of the last n bits (range of n: 0 ≤
n ≤ 47) of single-precision floating-point arithmetic. This option has no effect on
double precision operations, function return values, and compile-time constants.

This option is useful for identifying numerically unstable algorithms. -h trunc
with no argument is equivalent to -h trunc=0 ; that is, the assembler
truncation instructions for floating-point arithmetic are generated, and the
results from floating operations are truncated by 0 bits. The -h notrunc
option generates assembler rounding instructions for floating arithmetic.

2.15 Analysis Tools

The following sections describe compiler options that support analysis tools.

2.15.1 -F (CC, cc Commands)

(UNICOS systems) The -F option enables the generation of additional run-time
code that is needed by Flowtrace. Flowtrace is a program analysis tool that
displays the call tree of a program and the amount of time spent in each
function. See the flowtrace (7) man page for more information.

24 004–2179–001

Compiler Commands [2]

2.15.2 -h [no]atexpert (CC, cc Commands)

Default option: -h noatexpert

(UNICOS systems) The -h atexpert option generates additional run-time
code needed to support the ATExpert tool (atexpert). With -h noatexpert ,
this code is not generated.

The ATExpert tool (atexpert) has been developed by Cray Research for
accurately measuring and graphically displaying tasking performance from a
job run on an arbitrarily loaded Cray Research system. For further information
on using ATExpert to analyze your tasked programs, see the atexpert (7) man
page.

2.15.3 -h [no]apprentice (CC, cc Commands)

Default option: -h noapprentice

(UNICOS/mk systems) For each source file compiled, the -h apprentice
option enables or disables the creation of a compiler information file for use by
the MPP Apprentice tool.

The MPP Apprentice tool helps you tune the performance of CRAY T3E
applications. It is documented in Introducing the MPP Apprentice Tool.

2.15.4 -h [no]listing (CC, cc Commands)

Default option: -h nolisting

(UNICOS systems) The -h listing option generates a pseudo assembly
language listing. With -h nolisting , this listing is not produced. The listing
file name is the same as the source file name, with the suffix replaced by a .L .

2.16 Debugging

The following sections describe compiler options used for debugging.

2.16.1 -G level (CC, cc Commands) and -g (CC, cc , c89 Commands)

The -g and -G level options enable the generation of debugging information
that is used by symbolic debuggers such as totalview . These options allow
debugging with breakpoints. For the -G option, level indicates the following:

004–2179–001 25

Cray C/C++ Reference Manual

level Optimization Breakpoints allowed on

f Full Function entry and exit

p Partial Block boundaries

n None Every executable statement

More extensive debugging (such as full) permits greater optimization
opportunities for the compiler. Debugging at any level may inhibit some
optimization techniques, such as inlining.

The -g option is equivalent to -Gn . The -g option is included for compatibility
with earlier versions of the compiler and many other UNIX systems; the -G
option is the preferred specification. The -Gn and -g options disable all
optimizations and imply -O0 .

The debugging options take precedence over any conflicting options that
appear on the command line. If more than one debugging option appears, the
last one specified overrides the others.

2.16.2 -h [no]bounds (cc Command)

Default option: -h nobounds

The -h bounds option provides checking of pointer and array references to
ensure that they are within acceptable boundaries. -h nobounds disables
these checks.

The pointer check verifies that the pointer is greater than 0 and less than the
machine memory limit. The array check verifies that the subscript is greater
than or equal to 0 and is less than the array size, if declared.

2.16.3 -h indef , -h zero (CC, cc Commands)

The -h indef option causes stack-allocated memory to be initialized to
undefined values. These values cause run-time errors to occur when an
uninitialized stack variable is used, such as in a floating-point operation or in
an array subscript. The -h zero option causes stack-allocated memory to be
initialized to all zeros. These options are especially useful for debugging tasked
codes.

26 004–2179–001

Compiler Commands [2]

2.17 Messages

The following sections describe compiler options that affect messages.

2.17.1 -h msglevel_ n (CC, cc Commands)

Default option: -h msglevel_3

The -h msglevel_ n option specifies the lowest level of severity of messages
to be issued. Messages at the specified level and above are issued. Argument n
can be 0 (comment), 1 (note), 2 (caution), 3 (warning), or 4 (error).

2.17.2 -h [no]message= n[: n...] (CC, cc Commands)

Default option: Determined by -h msglevel_ n

The -h [no]message= n[: n...] option enables or disables specified
compiler messages. n is the number of a message to be enabled or disabled.
You can specify more than one message number; multiple numbers must be
separated by a colon with no intervening spaces. For example, to disable
messages CC-174 and CC-9, specify the following:

-h nomessage=174:9

The -h [no]message= n option overrides -h msglevel_ n for the specified
messages. If n is not a valid message number, it is ignored. Any compiler
message except ERROR, INTERNAL, and LIMIT messages can be disabled;
attempts to disable these messages by using the -h nomessage= n option are
ignored.

2.17.3 -h report= args (CC, cc Commands)

The -h report= args option generates report messages specified in args and
lets you direct the specified messages to a file. args can be any combination of
the following:

004–2179–001 27

Cray C/C++ Reference Manual

args Description

i Generates inlining optimization messages

s Generates scalar optimization messages

t Generates tasking optimization messages

v Generates vector optimization messages

f Writes specified messages to file file.V where file is the source file
specified on the command line. If the f option is not specified,
messages are written to stderr .

No spaces are allowed around the equal sign (=) or any of the args codes. For
example, the following example prints inlining and scalar optimization
messages to file, myfile.c :

cc -h report=is myfile.c

2.17.4 -h [no]abort (CC, cc Commands)

Default option: -h noabort

The -h [no]abort option controls whether a compilation aborts if an error is
detected.

2.17.5 -h errorlimit[= n] (CC, cc Commands)

Default option: -h errorlimit=100

The -h errorlimit[= n] option specifies the maximum number of error
messages the compiler prints before it exits. n is a positive integer. Specifying
-h errorlimit=0 disables exiting on the basis of the number of errors.
Specifying -h errorlimit with no qualifier is the same as setting n to 1.

2.18 Compilation Phases

The following sections describe compiler options that affect compilation phases.

2.18.1 -E (CC, cc , c89 , cpp Commands)

If the -E option is specified on the CC, cc , or c89 command lines, it executes
only the preprocessor phase of the compiler. The -E and -P options are
equivalent, except that -E directs output to stdout and inserts appropriate

28 004–2179–001

Compiler Commands [2]

#line preprocessing directives. The -E option takes precedence over the
-h feonly , -S , and -c options.

If the -E option is specified on the cpp command line, it inserts the appropriate
#line directives in the preprocessed output. When both the -P and -E options
are specified, the last one specified takes precedence.

2.18.2 -P (CC, cc , cpp Commands)

When the -P option is specified on the CCor cc command line, it executes only
the preprocessor phase of the compiler for each source file specified. The
preprocessed output for each source file is written to a file with a name that
corresponds to the name of the source file and has .i suffix substituted for the
suffix of the source file. The -P option is similar to the -E option, except that
#line directives are suppressed, and the preprocessed source does not go to
stdout . This option takes precedence over -h feonly , -S , and -c .

When the -P option is specified on the cpp command line, it is ignored. When
both the -P and -E options are specified, the last one specified takes precedence.

2.18.3 -h feonly (CC, cc Commands)

The -h feonly option limits the C and C++ compilers to syntax checking. The
optimizer and code generator are not executed. This option takes precedence
over -S and -c .

2.18.4 -S (CC, cc Commands)

The -S option compiles the named C or C++ source files and leaves their
assembly language output in the corresponding files suffixed with a .s . If this
option is used with -G or -g , debugging information is not generated. This
option takes precedence over -c .

2.18.5 -c (CC, cc , c89 Commands)

The -c option creates a relocatable object file for each named source file, but
does not link the object files. The relocatable object file name corresponds to the
name of the source file. The .o suffix is substituted for the suffix of the source
file.

004–2179–001 29

Cray C/C++ Reference Manual

2.18.6 -# , -## , and -### (CC, cc , cpp Commands)

The -# option produces output indicating each phase of the compilation as it is
executed. Each succeeding output line overwrites the previous line.

The -## option produces output indicating each phase of the compilation, as
well as all options and arguments being passed to each phase, as they are
executed.

The -### option is the same as -## , except the compilation phases are not
executed.

2.18.7 -Wphase[" opt..."] (CC, cc Commands)

The -W phase option passes arguments directly to a phase of the compiling
system. The -W option appears with argument phase to indicate system phases
as follows:

phase System phase Command

p Preprocessor

0 Compiler

a Assembler as on Cray PVP systems, cam on Cray
MPP systems

l Loader System-specific; ld or cld .

Arguments to be passed to system phases can be entered in either of two styles.
If spaces appear within a string to be passed, the string is enclosed in double
quotes. When double quotes are not used, spaces cannot appear in the string.
Commas can appear wherever spaces normally appear; an option and its
argument can be either separated by a comma or not separated. If a comma is
part of an argument, it must be preceded by the \ character. For example, any
of the following command lines would send -e name and -s to the loader:

cc -Wl,"-e name -s" file.c

cc -Wl,-e,name,-s file.c

cc -Wl,"-ename",-s file.c

Because the preprocessor is built into the compiler, -Wp and -W0 are equivalent.

30 004–2179–001

Compiler Commands [2]

2.18.8 -Y phase, dirname (CC, cc , c89 , cpp Commands)

The -Y phase, dirname option specifies a new directory (dirname) from which the
designated phase should be executed. phase can be one or more of the following
values:

phase System phase Command

p Preprocessor

0 Compiler

a Assembler as on Cray PVP systems, cam on Cray
MPP systems

l Loader System-specific; ld or cld

Because there is no separate preprocessor, -Yp and -Y0 are equivalent. If you
are using the -Y option on the cpp command line, p is the only argument for
phase that is allowed.

2.19 Preprocessing

The following sections describe compiler options that affect preprocessing.

2.19.1 -I incldir (CC, cc , c89 , cpp Commands)

The -I incldir option specifies a directory for files named in #include
directives when the #include file names do not have a specified path. Each
directory specified must be specified by a separate -I option.

The order in which directories are searched for files named on #include
directives is determined by enclosing the file name in either quotation marks
("") or angle brackets (<>).

Directories for #include " file" are searched in the following order:

1. Directory of the input file.

2. Directories named in -I options, in command-line order.

3. Site- and compiler release-specific include files directories.

4. Directory /usr/include .

004–2179–001 31

Cray C/C++ Reference Manual

Directories for #include < file> are searched in the following order:

1. Directories named in -I options, in command-line order.

2. Site-specific and compiler release-specific include files directories.

3. Directory /usr/include .

If the -I option specifies a directory name that does not begin with a backslash
(/), the directory is interpreted as relative to the current working directory and
not relative to the directory of the input file (if different from the current
working directory). For example:

cc -I. -I yourdir mydir/b.c

The preceding command line produces the following search order:

1. mydir (#include " file" only).

2. Current working directory, specified by -I .

3. yourdir (relative to the current working directory), specified by -I
yourdir .

4. Site-specific and compiler release-specific include files directories.

5. Directory /usr/include .

2.19.2 -D macro[= def] (CC, cc , c89 , cpp Commands)

The -D macro[= def] option defines a macro named macro as if it were defined
by a #define directive. If no =def argument is specified, macro is defined as 1.

Predefined macros also exist; these are described in Chapter 6, page 95. Any
predefined macro except those required by the standard (see Section 6.1, page
95) can be redefined by the -D option. The -U option overrides the -D option
when the same macro name is specified regardless of the order of options on
the command line.

2.19.3 -U macro (CC, cc , c89 , cpp Commands)

The -U option removes any initial definition of macro. Any predefined macro
except those required by the standard (see Section 6.1, page 95) can be undefined
by the -U option. The -U option overrides the -D option when the same macro
name is specified, regardless of the order of options on the command line.

32 004–2179–001

Compiler Commands [2]

Predefined macros are described in Chapter 6, page 95. Macros defined in the
system headers are not predefined macros and are not affected by the -U option.

2.19.4 -M (CC, cc , cpp Commands)

The -M option provides information about recompilation dependencies that the
source file invokes on #include files and other source files. This information
is printed in the form expected by make(1). Such dependencies are introduced
by the #include directive. The output is directed to stdout .

2.19.5 -N (cpp Command)

The -N option specified on the cpp command line enables the old style
(referred to as K & R) preprocessing. If you have problems with preprocessing
(especially non-C source code), use this option.

2.19.6 -C (CC, cc , cpp Commands)

The -C option retains all comments in the preprocessed source code, except
those on preprocessor directive lines. By default, the preprocessor phase strips
comments from the source code. This option is useful with cpp or in
combination with the -P or -E option on the CCand cc commands.

2.19.7 -h [no]pragma= name[: name...] (CC, cc Commands)

Default option: -h pragma

The [no]pragma= name[: name...] option enables or disables the processing
of specified directives in the source code. name can be the name of a directive
or a word shown in Table 2 to specify a group of directives. More than one
name can be specified. Multiple names must be separated by a colon and have
no intervening spaces.

Table 2. -h pragma directive processing

name Group Directives affected

all All All directives

allinline Inlining inline , noinline

004–2179–001 33

Cray C/C++ Reference Manual

name Group Directives affected

allscalar Scalar optimization align , cache_align ,
cache_bypass , concurrent ,
nointerchange ,
noreduction , split ,
suppress , unroll

alltask Tasking case , endcase , guard ,
endguard , taskloop ,
endloop , parallel ,
endparallel , prefertask ,
taskcommon , common,
taskprivate , taskshared

allvector Vectorization ivdep , novector , novsearch ,
prefervector , shortloop

When using this option to enable or disable individual directives, note that some
directives must occur in pairs (for example, parallel and endparallel). For
these directives, you must disable both directives if you want to disable either;
otherwise, the disabling of one of the directives may cause errors when the
other directive is (or is not) present in the compilation unit.

2.20 Loader

The following sections describe compiler options that affect loader tasks.

2.20.1 -l libfile (CC, cc , c89 Commands)

The -l libfile option identifies library files to be loaded. If libfile begins with a
period (.) or slash (/), it is assumed to be a path name and is used without
modification. An initial . (or ..) is interpreted as the current working
directory (or its parent directory). It is not relative to the input file’s directory if
that differs from the current working directory.

There is no search order dependency for libraries. Default libraries are shown
in the following list.

34 004–2179–001

Compiler Commands [2]

libC.a (C++ only)

libu.a

libm.a

libc.a

libsma.a (UNICOS/mk systems only)

libf.a

libfi.a

libsci.a

If you specify personal libraries by using the -l command-line option, as in the
following example, those libraries are added to the top of the preceding list.
(The -l option is passed to the loader.)

cc -l mylib target.c

When the previous command line is issued, the loader looks for a library
named libmylib.a (following the naming convention) and adds it to the top
of the list of default libraries.

2.20.2 -L libdir (CC, cc , c89 Commands)

The -L libdir option changes the -l option algorithm to search directory libdir
before searching the default directories. If libdir does not begin with a slash (/),
it is interpreted as relative to the current working directory.

The loader searches for library files in the default directories in the following
order:

1. Site-specific and compiler release-specific library directories

2. /lib

3. /usr/lib

Note: Multiple -L options are treated cumulatively as if all libdir arguments
appeared on one -L option preceding all -l options. Therefore, do not
attempt to load functions of the same name from different libraries through
the use of alternating -L and -l options.

If the -F loader option is used to include the system default directories, the
loader searches directory libdir for those libraries before searching the default
directories.

004–2179–001 35

Cray C/C++ Reference Manual

2.20.3 -o outfile (CC, cc , c89 Commands)

The -o outfile option produces an absolute binary file named outfile. A file
named a.out is produced by default. When this option is used in conjunction
with the -c option and a single C or C++ source file, a relocatable object file
named outfile is produced.

2.20.4 -d string (CC, cc Commands)

The -d string option specifies a character string comprised of directive names
separated by semicolons that is sent to the loader to be inserted into the loader
directives file and processed as though the -D dirstring option had been
specified on the loader command. This allows you to manipulate the loader
while using the compiler command.

2.20.5 -s (CC, cc , c89 Commands)

The -s option produces executable files from which symbolic and other
information not required for proper execution has been removed. If both the -s
and -g (or -G) options are present, -s is ignored.

2.21 General

The following sections describe compiler options that affect general tasks.

2.21.1 -V (CC, cc , cpp Commands)

The -V option displays compiler version information. If the command line
specifies no source file, no compilation occurs. Version information consists of
the product name, the version number, and the current date and time, as shown
in the following example:

% CC -V

Cray C++ Version 3.1.0 07/25/98 18:31:43

If a file is specified, information about the compilation is displayed in addition
to the version information. The additional information includes the compiler
generation date, the compilation execution time, the maximum memory used
by the compiler (in decimal words), and the resulting number of words used
for code and data.

36 004–2179–001

Compiler Commands [2]

2.21.2 -X npes (CC, cc Commands)

(UNICOS/mk systems) The -X npes option specifies how many processing
elements (PEs) are to be used on CRAY T3E systems. The npes argument
specifies the number of PEs and has no default value, it must be explicitly set.
For the npes argument, specify either an integer from 1 through 2048 or m. A
value of mdirects the compiler to generate a malleable a.out file. Specifying
-X m allows you to change the number of PEs used each time the executable
a.out file is run. If you specify -X m, use the mpprun (1) command and its -n
option to specify the number of PEs you want to use. For more information, see
mpprun (1). If you do not use mpprun (1) on the a.out file that is generated
when -X m is specified, the operating system executes the file on a single
processor just as if you had invoked mpprun (1) with one processor.

The option is passed from the command to both the compiler and the loader. If
the compiler recognizes the option, it becomes a compile-time value and cannot
be changed at load time. If the loader recognizes the option, it is a load-time
value and cannot be changed at mppexec (1) time. For example:

cc -X8 -c file.c

cc -X8 file.c

In these cases, the value 8 is set at compile time only. In the first line, the loader
is not called (specified by the -c option) and the option is passed only to the
compiler. In the second line, the option is passed to both the compiler and the
loader, but since it is first recognized by the compiler it is a compile-time
constant, not a load-time constant.

In the following case, the value 8 is used at load time only. The compiler is not
called because no source file is specified and the option is passed only to the
loader.

cc -X8 file.o

The -W option can also be used to specify which phase of compilation gets the
-X option. For example:

cc -W0,-X8 file.c

cc -Wl,-X8 file.c

In the first line, the -X option is passed only to the compiler, and the number of
PEs is set to 8 at compile time. In the second line, the -X option is passed only
to the loader and the number of PEs is set to 8 at load time.

004–2179–001 37

Cray C/C++ Reference Manual

If the number of PEs is specified at both compile and load time, the
compile-time constant overrides the load-time constant. If the two values
disagree, the loader issues a message.

2.21.3 -h ident= name (CC, cc Commands)

Default option: File name specified on the command line

The -h ident= name option changes the ident name to name. This name is
used as the module name in the object file (.o suffix) and assembler file (.s
suffix). Regardless of whether the ident name is specified or the default name
is used, the following transformations are performed on the ident name:

• All . characters in the ident name are changed to $.

• If the ident name starts with a number, a $ is added to the beginning of
the ident name.

2.22 Command-line Examples

The following examples illustrate a variety of CCand cc command lines.

• The following example compiles myprog.C on UNICOS/mk systems, fixing
the number of processing elements (PEs) to 8 and instantiating all template
entities that are declared or referenced in the compilation unit.

CC -X8 -h instantiate=all myprog.C

• The following example compiles myprog.C . The -h conform option
specifies strict conformance to the draft ISO C++ standard. No automatic
instantiation of templates is performed.

CC -h conform -h noautoinstantiate myprog.C

• The following example compiles input files myprog.C and subprog.C .
Option -c specifies that object files myprog.o and subprog.o are
produced and that the loader is not called. Option -h inline1 instructs
the compiler to inline function calls.

CC -c -h inline1 myprog.C subprog.C

38 004–2179–001

Compiler Commands [2]

• The following example specifies that the compiler search the current
working directory (represented by a period (.)) for #include files before
searching the default #include file locations.

CC -I. disc.C vend.C

• The following example specifies that source file newprog.c be preprocessed
only. Compilation and linking are suppressed. In addition, the macro DEBUG
is defined.

cc -P -D DEBUG newprog.c

• The following example compiles mydata1.C , writes object file mydata1.o ,
and produces a scalar optimization report to stdout .

CC -c -h report=s mydata1.C

• The following example compiles mydata3.c and produces the executable
file a.out . A 132-column pseudo assembly listing file is also produced in
file mydata3.L .

cc -h listing mydata3.c

• The following example compiles myfile.c and passes an option to the
loader (-Dalign=modules) that causes blocks of code to be aligned.

cc -Wl,"-Dalign=modules" myfile.c

• The following example compiles myfile.c and instructs the compiler to
generate additional run-time code needed to support use of the ATExpert
system. A tasking report is directed to stdout .

cc -h atexpert,report=t myfile.c

• The following example compiles myfile.C and instructs the compiler to
attempt to inline calls aggressively to functions defined within myfile.C .
An inlining report is directed to myfile.V .

CC -h inline3,report=if myfile.C

2.23 Environment Variables

The environment variables listed below are used during compilation.

Variable Description

CRI_CC_OPTIONS,
CRI_cc_OPTIONS,
CRI_c89_OPTIONS,
CRI_cpp_OPTIONS

Specifies command-line options that are applied
to all compilations. Options specified by this

004–2179–001 39

Cray C/C++ Reference Manual

environment variable are added following the
options specified directly on the command line.
This is especially useful for adding options to
compilations done with build tools.

LANG Identifies your requirements for native language,
local customs, and coded character set with
regard to compiler messages.

MSG_FORMAT Controls the format in which you receive
compiler messages.

NLSPATH Specifies the message system catalogs that should
be used.

NPROC Specifies the number of processes used for
simultaneous compilations. The default is 1.
When more than one source file is specified on
the command line, compilations may be
multiprocessed by setting the environment
variable NPROCto a value greater than 1. You can
set NPROCto any value; however, large values
can overload the system.

TARGET Specifies type and characteristics of the hardware
on which you are running. You can also set the
TARGETenvironment variable to the
characteristics of another Cray Research system to
cross-compile source code for that system. See the
target and sh man pages for more information.

40 004–2179–001

Cray C and C++ Extensions [3]

This chapter describes the Cray Standard C and Cray C++ extensions to their
respective standards. A program that uses one or more extensions does not
strictly conform to the standard. These extensions are not available in strict
conformance mode.

Extensions to both the C and C++ standards include the following:

• Restricted pointers (Section 3.1, page 41)

• long long types (Section 3.2, page 45)

Except for // comments, the following extensions apply only to the C standard:

• // comments (Section 3.3, page 46)

• Complex data types (Section 3.4, page 46)

• Variable length arrays (Section 3.5, page 48)

• fortran keyword (Section 3.6, page 55)

• Hexadecimal floating-point constants (Section 3.7, page 56)

3.1 Restricted Pointers

In extended mode, the identifier restrict is treated as a keyword that
specifies a third type qualifier (in addition to const and volatile). A pointer
with restrict -qualified type is termed a restricted pointer.

Restricted pointers are a language extension offered by Cray Standard C and
Cray C++ for asserting the absence of aliasing through pointers. One advantage
of using restricted pointers on UNICOS systems is that they can increase the
number of loops that the compiler can vectorize. On UNICOS/mk systems,
they can improve instruction scheduling and memory hierarchy analysis.

When it is inconvenient to modify the source code so that the restrict
qualifier appears explicitly in pointer declarations, use the -h restrict=
command-line option (for more information, see Section 2.7.2, page 10).

A program that uses the restrict qualifier can easily be ported to a system
that does not support the qualifier by defining the identifier restrict to be an
empty preprocessor macro. You can do this with the -D restrict= option or
by using the following code:

004–2179–001 41

Cray C/C++ Reference Manual

#ifndef _CRAYC #define restrict #endif

If the preceding directives are included in a program, a declaration of the
following form expands into a declaration of a restricted pointer with Cray
Research compilers and into a declaration of an ordinary pointer with other
compilers:

int * restrict p;

On UNICOS systems, the compiler ignores some uses of restrict that it
currently cannot vectorize. Some cases that are ignored are discussed in Section
3.1.6, page 44.

3.1.1 Function Parameters

If a function has pointer parameters that point into disjoint (array or non-array)
objects in each call, the use of these parameters can be asserted to the compiler
by declaring the pointer parameters to be restrict -qualified. This eliminates
potential aliasing through those pointers as an obstacle to vectorization of the
loops in the function, and also allows improved scheduling of scalar code.

The following example illustrates the use of restrict -qualified pointer
parameters:

void f1 (int n, int * restrict p, int * restrict q) {

int i;

/* Compiler may analyze dependences */

/* as if the following two lines */

/* were present: */

/* p = malloc(n * sizeof(int)); */

/* q = malloc(n * sizeof(int)); */

for (i = 0; i < n; i++) { /* Vectorized */

p[i] = q[i];

}

}

42 004–2179–001

Cray C and C++ Extensions [3]

This operation will also vectorize if the restricted pointers are incremented as in
the following example:

void f2 (int n, int * restrict p, int * restrict q) {

int i;

for (i = 0; i < n; i++) { /* Vectorized */

*p++ = *q++;

}
}

3.1.2 File Scope

Restricted pointers are also useful when declared at file scope. In the next
example, restrict is used to assert that the global pointer p points into a
unique array object, which in this case is obtained from a malloc call.

#include <stdlib.h>

int * restrict p;

void alloc_p(int n) {

p = malloc(n * sizeof p[0]);
}

3.1.3 Block Scope

Similarly, a restricted pointer declared in the outermost block of a function can
be used to point to an array allocated for use within the function. Continuing
the example shown in the previous subsection:

004–2179–001 43

Cray C/C++ Reference Manual

extern int * restrict p;

void modify_p(int n) {

int * restrict q = malloc(n * sizeof q[0]);

int i;

for (i = 0; i < n; i++) { /* Vectorized */

q[i] = p[i];

}
for (i = 0; i < n-1; i+=2) { /* Vectorized */

p[i] = q[i+1] + q[i];

p[i+1] = q[i+1] - q[i];

}

free(q);
}

3.1.4 Unrestricted Pointers

Like array names, restricted pointers are not immune from aliasing through
unrestricted pointers. At the point of its declaration, a restricted pointer may be
assumed to provide the only means of designating an array object that is disjoint
from any other object, but a restricted pointer’s value can be assigned to one or
more unrestricted pointers. Such an assignment may occur in an assignment
expression or in the assignment of an argument value to a parameter in a
function call. Although permitted, the use of restricted and unrestricted
pointers together should be avoided, since such use often inhibits vectorization.

3.1.5 Comparison with #pragma ivdep

Restricted pointers and the #pragma ivdep directive both provide a means of
promoting vectorization. Because they convey different information to the
compiler, they can give different results. One may be effective in causing a
particular loop to vectorize when the other is not. For loops that will vectorize
either way, restricted pointers may give better performance.

3.1.6 Implementation Limits

At default vectorization level, the current implementation only takes advantage
of the qualifier for simple identifiers declared with file scope, as function
parameters, or in the outermost block of a function. In other contexts, uses of
the qualifier are checked only for syntactic correctness. The -h vector3

44 004–2179–001

Cray C and C++ Extensions [3]

option enables a more detailed analysis that can take advantage of restricted
pointers that are members of structures or elements of arrays.

Inlining a function with restricted pointer parameters can cause a loss of
vectorization.

3.2 long long and unsigned long long Data Types

Cray Standard C and Cray C++ provide long long and
unsigned long long data types, which are supported on all Cray Research
systems. long long and unsigned long long are new, 64-bit integral types
that are identical in format to long and unsigned long , respectively, and are
provided for compatibility with C and C++ compilers supplied by other
vendors. These types are not available if you are compiling in strict
conformance mode.

Note: long long and unsigned long long were available prior to the
6.1 release of the Cray Standard C compiler, but they were a synonym for
long and unsigned long , respectively. In the 6.1 release, long long and
unsigned long long are separate integral types.

A long long constant is represented like a long constant, except the suffix is
ll . An unsigned long long constant is represented like an
unsigned long constant, except the suffix is llu or ull .

Adding long long and unsigned long long types to the C language
affects the usual arithmetic conversions as specified in the standard. See Section
3.8, page 57, for information on how these types affect the performance of usual
arithmetic conversions on Cray machines.

The following changes have also been made to the Standard C library and
header files to support the long long and unsigned long long types.
These changes are supported on the UNICOS 10.0.2 and UNICOS/mk 2.4 and
later operating systems.

• The LLONG_MAX, LLONG_MIN, and ULLONG_MAXmacros have been added to
limits.h .

• The llabs , lldiv , strtoll , atoll , strtoull functions have been
added to the C library and are declared in stdlib.h .

• The wcstoll and wcstoull functions have been added to the C library
and are declared in wchar.h .

004–2179–001 45

Cray C/C++ Reference Manual

• The printf family of functions allow an ll which specifies that a
following d, i , o, u, x , or X conversion specifier applies to a long long or
unsigned long long argument. They also allow an ll which specifyies
that a following n conversion specifier applies to a pointer to a long long
argument. Similarly, the scanf family of functions allow an ll which
specifies that a following d, i , or n conversion specifier applies to a pointer
to long long .

3.3 // Comments

In extended mode, Cray Standard C allows C++ style // comment lines. The //
characters start a comment, which terminates with the next newline character.

If there is a form-feed or a vertical-tab character in this type of comment, only
white space characters can appear between it and the newline character that
terminates the comment. The // , /* , and */ comment characters have no
special meaning within a // comment, and they are treated like other
characters. Similarly, the // and /* comment characters have no special
meaning within a /* comment.

3.4 Complex Data Types

Note: Complex data types are available in Cray Standard C only. Complex
data types are supported in Cray C++ through the complex class library.

Cray Standard C provides float complex , double complex , and
long double complex data types for use on all Cray systems. These data
types are available only if the nonstandard header <complex.h> is included in
your source. These data types are available even if you are compiling in strict
conformance mode, as long as header <complex.h> is included. Complex
arithmetic can be performed in much the same way as with real data types
(either integral or floating type). Complex variables can be declared and
initialized. Most arithmetic operators can be used with one or two complex
operands to yield a complex result. Many standard math functions have
corresponding functions that take complex arguments and return complex
values.

The complex data types are represented in memory with two contiguous parts,
the real part and the imaginary part. The characteristics of the imaginary part
agree with those of the corresponding real types. For example, the imaginary
part of a float complex type has the same characteristics as a float .

46 004–2179–001

Cray C and C++ Extensions [3]

An imaginary constant has the following form:

Ri

R is either a floating-constant or an integer-constant; no space or other character
can appear between R and i . If you are compiling in strict conformance mode
(-h conform), imaginary constants are not available.

3.4.1 Complex Usage

A complex variable is initialized by using an expression that may contain an
imaginary constant. For example:

#include <complex.h>

double complex z1 = 1.2 + 3.4i;

double complex z2 = 5i;

When the ++ operator is used to increment a complex variable, only the real
part is incremented.

Printing a complex value requires the use of two %f specifications and any
formatting needed for legibility must be specified as shown in the following
example:

double complex z = 0.5 + 1.5i;

printf("<.2f,%.2f>\n ", creal(z), cimag(z));

The output from the preceding example is as follows:

<0.50,1.50>

3.4.2 Conversion to and from Complex

A binary operator with one complex operand and one real operand causes the
real operand to be promoted to a complex type before the operation is
performed. When a real value is promoted to a complex value, the new
complex value’s real part gets the same value as if the promotion were to the
corresponding floating type, and its imaginary part is zero. When a complex
value is demoted to a real type, the value of its imaginary part is discarded,
and its real part is demoted according to the demotion rules for the
corresponding floating type.

A complex type is not valid as an operand for any operator that requires an
integral data type. A complex type is not valid as an operand for any of the

004–2179–001 47

Cray C/C++ Reference Manual

relational operators, but it is valid for the equality and inequality operators. It
is valid as an operand for any other operator that allows floating data types.

Math functions that take complex arguments are declared in the complex.h
header and described in the UNICOS System Libraries Reference Manual.

3.4.3 Arithmetic Conversion for Complex

Adding complex types to the C language affects the usual arithmetic
conversions as specified in the standard. See Section 3.8, page 57 for
information on how complex types affect how the usual arithmetic conversions
are performed on Cray machines.

3.5 Variable Length Arrays

Note: Variable length arrays are not supported in Cray C++.

In extended mode, you can declare variable length arrays. A variable length
array (VLA) is an array that has a size (at least one dimension) that is
determined at run time. The ability to use variable length arrays enhances the
compiler’s range of use for numerical programming.

3.5.1 Declarator Restrictions

An array type with a size specifier (dimension) that must be evaluated at
program execution time is said to be a variable length array type.

Use of this variable type is restricted to only block and function prototype
scopes. An object type that contains one or more derived declarator types of
variable length array type is said to be variably modified. For example, a “pointer
to a VLA” is a pointer (not a VLA) but it is still variably modified. Members of
structure and union types are not allowed to have variably modified type.

Function parameters can be declared with variable length array type. For
example, the following matrix_mult function declaration can be used to
define a function that performs a matrix multiply of an n by mand an mby n
matrix to yield an n by n result:

void matrix_mult(int n, int m, double a[n][n],

double b[n][m], double c[m][n]);

In the previous example, the array sizes are computed each time the function is
called. In addition, the conventional workaround of maintaining a table of

48 004–2179–001

Cray C and C++ Extensions [3]

pointers to each of the rows in the matrices is avoided because variable array
addressing is done automatically.

C variable length arrays are similar to Fortran automatic and adjustable arrays.
Variable length arrays can also be used as local (auto) variables. Previously, a
call to the malloc (3) library function was required to allocate such dynamic
arrays, and a call to the free (3) library function was required to deallocate
them.

3.5.2 Variable Length Array (VLA) Declarators

The size of a variable length array (VLA) dimension must be of integer type
and is not a constant expression. The only storage class specifiers that can be
explicitly given are auto (for block scope arrays) and register (for parameter
array declarators). Using an expression that produces side effects (for example,
function calls) to specify the size of an array is permitted, however, the order of
evaluation of two or more such expressions within a single declaration is
undefined.

A variable length array declaration cannot have an initializer.

For two array types to be compatible, both must have compatible element
types, and if both size specifiers are present and are integer constant
expressions, then both sizes must have the same value. A VLA is always
compatible with another array type if they both have the same element type. If
the two array types are used in a context that requires them to be compatible, it
is undefined behavior if the dimension sizes are unequal at run time.

The following example illustrates arrays that are incompatible and arrays that
are compatible but have undefined results unless certain criteria are met:

004–2179–001 49

Cray C/C++ Reference Manual

extern int n;

extern int m;
void func(void)

{

int a[n][6][m];

int (*p)[4][n]; /* pointer to VLA */

int c[n][n][6][m];

int (*r)[n][n][n+1]; /* pointer to VLA */

p = a;/* error - not compatible because 4 != 6 */

r = c; /* compatible - but undefined behavior

unless n==6 and m==n+1 */
}

The following example illustrates arrays that are compatible, but have
undefined behavior at execution time:

int dim4 = 4;
int dim6 = 6;

main()

{

int (*q)[dim4][8][dim6]; /* pointer to VLA */

int (*r)[dim6][8][1]; /* pointer to VLA */

r = q; /* compatible, but undefined behavior at

execution time */

}

3.5.3 Function Declarators and Variable Length Arrays

For each parameter declared with variable length array type, the type used for
compatibility comparisons is the one that results from conversion to a pointer
type, as for fixed length arrays.

All identifiers used in VLA size expressions must be declared prior to use (as is
the case with the usage of all variables). Thus, the order in which function
parameters are declared is important when VLAs are used. For example:

void f1(int n1, double a1[n1]) {} /* Correct */

void f2(int a2[n2], int n2) {} /* Error: n2 not declared before VLA */

50 004–2179–001

Cray C and C++ Extensions [3]

int n3;

void f3(int a3[n3], int n3) {} /* Correct, but file scope n3 is used in VLA
size expression */

The manner in which a function declaration with variably modified parameters
is handled depends on whether the function definition is found, as follows:

• If the function definition is found, all size expressions of the variably
modified parameters are evaluated on entry to the function.

• If no function definition is found, the array modifier types affected do not
need to be completed, and the associated dimension size specifier
expressions are not evaluated. If the associated size specifier expressions are
present, however, any identifier used to specify the size of these variable
length array types needs to be visible. For example:

void f(double a[x][y]); /* Error: x and y are not declared */

For prototype declarators that are not definitions, an alternative method of
specifying a variable length array modifier is to use the [*] syntax notation
to indicate that the array modifier type does not need to be completed. For
example:

void f(int, int, int[*][*]);

The following example shows compatible function declarators used as
prototypes:

void matrix_mult(int n, int m, double a[n][m],

double b[m][n],double c[n][n]);

void matrix_mult(int n, int m, double a[*][*],

double b[*][*], double c[*][*]);

void matrix_mult(int n, int m, double a[][*],

double b[][*], double c[][*]);

3.5.4 Variable Length Array Type Definitions

Type definition declarations (that is, typedef names) that specify a variable
length array (VLA) type must have block scope. The size of the VLA is
determined at the time that the type definition is declared and not at the time it
is invoked for use in an actual declarator.

The following example shows the use of a VLA type definition:

004–2179–001 51

Cray C/C++ Reference Manual

void func(int n)

{
typedef int A[n]; /* Correct; declared in block scope */

A a;

A *p = &a;

}

The following example shows an invalid VLA type definition:

int n;

typedef int A[n]; /* not valid; declared in file scope */

The following example declares VLAs at different scopes:

void func(int n)

{

typedef int A[n]; /* A is n ints; current value of n */

n += 1;

{
A a; /* a is n ints; n without += 1 */

int b[n];/* a and b are different sizes */

for (i = 1; i < n; i++)

a[i-1] = b[i];

}

}

3.5.5 sizeof Operator and Variable Length Arrays

When the sizeof operator is applied to an operand that has variable length
array type, the result is not a constant expression (unlike other sizeof
expressions) and is computed at program execution time. For example:

int func(int n) {
char b[n];

return sizeof(b);

}

main() {
printf("%d\n", func(10));

}

The output from the preceding example is 10 .

52 004–2179–001

Cray C and C++ Extensions [3]

3.5.6 goto Statements

Use of a goto statement to jump into a block scope level where a variably
qualified object has been declared is not allowed. For example:

void func(int n)

{

int j = 4;

goto lab3; /* error - going INTO scope of VLA */

{
double a[n];

a[j] = 4.4;

lab3:

a[j] = 3.3;

goto lab4; /* OK - going WITHIN scope of VLA */

a[j] = 5.5;
lab4:

a[j] = 6.6;

}

goto lab4; /* error - going INTO scope of VLA */

return;
}

3.5.7 switch Statement

When using the switch statement, the controlling expression must not cause
control to jump into a block where a variably qualified object has been declared.

004–2179–001 53

Cray C/C++ Reference Manual

int i, j = 30;

main() {
int n = 10;

int m = 20;

switch (n) {

int a[n]; /*error; switch bypasses declaration of a[n] */

case 10:

a[0] = 1;
break

case 20:

a[0] = 2;

break;

}
switch (i) {

case 0:

{

int b[n]; /*OK; declaration of b[n] not bypassed */

b[2] = 4;
}

break;

case 1:

break;

}

}

3.5.8 setjmp and longjmp Functions

If the longjmp function returns control back to the point of the setjmp
invocation, the memory associated with a variable length array object could be
squandered.

In the following example, the function h causes storage to be lost for the
variable length array object a which is declared in function g, because its
existence is unknown to h. Additional storage would be lost for variable length
array object b, which is declared in function h.

54 004–2179–001

Cray C and C++ Extensions [3]

#include <setjmp.h>

void g(int n);
void h(int n);

int n = 6;

jmp_buf buf;

void f(void) {

int x[n];
setjmp(buf);

g(n);

}

void g(int n) {
int a[n];

h(n);

}

void h(int n) {
int b[n];

longjmp(buf,2);

}

3.6 fortran Keyword

Note: The fortran keyword is not allowed in Cray C++.

In extended mode, the identifier fortran is treated as a keyword. It specifies a
storage class that can be used to declare a Fortran-coded external function. The
use of the fortran keyword when declaring a function causes the compiler to
verify that the arguments used in each call to the function are pass-by-address;
any arguments that are not addresses are converted to addresses.

As in any function declaration, an optional type-specifier declares the type
returned, if any. Type int is the default; type void can be used if no value is
returned (by a Fortran subroutine). The fortran storage class causes
conversion of lowercase function names to uppercase, and, if the function name
ends with an underscore character, the trailing underscore character is stripped
from the function name. (Stripping the trailing underscore character is in
keeping with UNIX practice.)

Functions specified with a fortran storage class must not be declared
elsewhere in the file with a static storage class.

004–2179–001 55

Cray C/C++ Reference Manual

An example using the fortran keyword is shown in Section 8.1.2.7, page 112.

3.7 Hexadecimal Floating-point Constants

Note: Hexadecimal floating-point constants are not available in Cray C++.

Floating constants can be represented in hexadecimal format. This feature is not
portable, because identical hexadecimal floating constants can have different
meanings on different systems.

A hexadecimal floating constant can be used whenever traditional
floating-point constants are allowed.

The hexadecimal constant has the usual syntax: 0x (or 0X) followed by
hexadecimal characters. The optional floating suffix has the same form as for
normal floating constants: f or F (for float), l or L (for long), optionally
followed by an i (imaginary).

The constant must represent the same number of bits as its type, which is
determined by the suffix (or the default of double). The constant’s bit length is
four times the number of hexadecimal digits, including leading zeros.

The following example illustrates hexadecimal constant representation:

0x7f7fffff.f 32-bit float

0x0123456789012345. 64-bit double

The value of a hexadecimal floating constant is interpreted as a value in the
specified floating type. This uses an unsigned integral type of the same size as
the floating type, regardless of whether an object can be explicitly declared with
such a type. No conversion or range checking is performed. The resulting
floating value is defined in the same way as the result of accessing a member of
floating type in a union after a value has been stored in a different member of
integral type.

The following example illustrates hexadecimal floating-point constant
representation on UNICOS systems that use Cray floating-point format:

float f=0x3ffe800000000000.f;
double g=0xffffffffffffffff.;

main()

{

printf("f = 0x%16x.f == %g\n", f, f);

printf("g = 0x%16x. == %g\n", g, g);

}

56 004–2179–001

Cray C and C++ Extensions [3]

The output from the preceding code is as follows:

f = 0x3ffe800000000000.f == 0.125

g = 0xffffffffffffffff. == *.00000

3.8 Arithmetic Conversions

Adding complex and long long types to the C and C++ languages affects
the usual arithmetic conversions as specified in the standard. As a result,
conversions are performed as follows on Cray Research machines:

1. If one operand is long double complex , the other operand is converted
to long double complex , and the result is long double complex .

2. Else, if one operand is float complex or double complex and the
other is long double , both are converted to long double complex and
the result is long double complex .

3. Else, if either operand is double complex , the other operand is converted
to double complex , and the result is double complex .

4. Else, if one operand is float complex and the other is double , both
operands are converted to double complex , and the result is
double complex .

5. Else, if either operand is float complex , the other operand is converted
to float complex , and the result is float complex .

6. Else, if either operand is long double , the other is converted to
long double , and the result is long double .

7. Else, if either operand is double , both are converted to double , and the
result is double .

8. Else, if either operand is float , both are converted to float , and the
result is float .

9. Else, if the integral promotions are performed on both operands. Then:

a. If either operand has type unsigned long long int , the other
operand is converted to unsigned long long int , and the result is
unsigned long long int .

b. Else, if one operand has type long long int and the other has type
unsigned long int , both operands are converted to

004–2179–001 57

Cray C/C++ Reference Manual

unsigned long long int and the result is
unsigned long long int .

c. Else, if one operand has type long long int and the other has type
unsigned int , both operands are converted to
unsigned long long int and the result is
unsigned long long int .

d. Else, if either operand has type long long int , the other operand is
converted to long long int , and the result is long long int .

e. Else, if either operand is unsigned long , both are converted to
unsigned long , and the result is unsigned long .

f. Else, if one operand has type long int , and the other has type
unsigned int , both operands are converted to unsigned long and
the result is unsigned long .

g. Else, if either operand is long , the other is converted to long , and the
result is long .

h. Else, if either operand is unsigned int , the other is converted to
unsigned int and the result is unsigned int .

i. Else, both operands must be int , and the result is int .

58 004–2179–001

#pragma Directives [4]

#pragma directives are used within the source program to request certain kinds
of special processing. #pragma directives are part of the C and C++ languages,
but the meaning of any #pragma directive is defined by the implementation.
#pragma directives are expressed in the following form:

#pragma [_CRI] identifier [arguments]

The _CRI specification is optional and ensures that the compiler will issue a
message concerning any directives that it does not recognize. Diagnostics are
not generated for directives that do not contain the _CRI specification.

These directives are classified according to the following types:

• Loop

• General

• Instantiation (C++ only)

• Vectorization

• Scalar

• Tasking

• Inlining

Macro expansion occurs on the directive line after the directive name. (That is,
macro expansion is applied only to arguments.) For example, if NUM_CHUNKSis
a macro defined as the value 8, the original code is as follows:

#pragma _CRI taskloop numchunks(NUM_CHUNKS)

The expanded code is equivalent to the following:

#pragma _CRI taskloop numchunks(8)

At the beginning of each section that describes a directive, information is
included about the compilers and systems that allow the use of the directive,
and the scope of the directive. Unless otherwise noted, the following default
information applies to each directive:

004–2179–001 59

Cray C/C++ Reference Manual

Compiler: C and C++

Operating System: UNICOS and UNICOS/mk

Scope: Local and global

4.1 Protecting Directives

To ensure that your directives are interpreted only by Cray Research compilers,
you should use the following coding technique, where identifier represents the
name of the directive:

#if _CRAYC

#pragma _CRI identifier
#endif

This ensures that other compilers used to compile this code will not interpret
the directive. Some compilers diagnose any directives that they do not
recognize. The Cray Research compilers diagnose directives that are not
recognized only if the _CRI specification is used.

4.2 Directives in Cray C++

C++ prohibits referencing undeclared objects or functions. Objects and
functions must be declared prior to using them in a #pragma directive. This is
not always the case with C.

Some #pragma directives take function names as arguments (for example:
#pragma align , #pragma soft , #pragma suppress , #pragma inline ,
and #pragma noinline). No overloaded or member functions (no qualified
names) are allowed for these directives. This limitation does not apply to the
#pragma directives for template instantiation.

4.3 Loop Directives

Many directives apply to groups. Unless otherwise noted, these directives must
appear before a for , while , or do...while loop. These directives may also
appear before a label for if...goto loops. If a loop directive appears before a
label that is not the top of an if...goto loop, it is ignored.

60 004–2179–001

#pragma Directives [4]

4.4 Alternative Directive Form: _Pragma

Compiler directives can also be specified in the following form, which has the
advantage in that it can appear inside macro definitions:

_Pragma("_CRI identifier");

This form has the same effect as using the #pragma form, except that
everything that appeared on the line following the #pragma must now appear
inside the double quotation marks and parentheses. The expression inside the
parentheses must be a single string literal, but it cannot be a macro that expands
into a string literal. _Pragma is a Cray extension to the C and C++ standards.

The following is an example using the #pragma form:

#pragma _CRI ivdep

#pragma _CRI parallel private(i, j, k) \

shared(a, b, c) \
valude(x, y, z)

The following is the same example using the alternative form:

_Pragma("_CRI ivdep");

_Pragma("_CRI parallel private(i, j, k) \

shared(a, b, c) \

value(x, y, z)");

Macros are expanded in the string literal argument for _Pragma in an identical
fashion to the general specification of a #pragma directive:

#define NUM_CHUNKS 8

_Pragma("_CRI parallel numchunks(NUM_CHUNKS)")

4.5 General Directives

General directives specify compiler actions that are specific to the directive and
have no similarities to the other types of directives. The following sections
describe general directives.

4.5.1 besu Directive

The besu directive indicates that n BESUs (barrier/eureka synchronization
units) should be allocated for use in the compilation unit. The format of this
directive is as follows:

004–2179–001 61

Cray C/C++ Reference Manual

#pragma _CRI besu n

The sum of the BESU counts specified with directives in a program is recorded
at link time and placed in the a.out header. The operating system allocates the
specified number to the application team at program startup. As a special case,
the operating system does not allocate a BESU if the BESU count in the a.out
header is 1 and the program used one PE.

For more information on accessing BESUs, see Barrier and Eureka Synchronization
(CRAY T3E Systems), publication HMM-141–0. (A nondisclosure agreement
must be signed with Cray Research before you can obtain this document.) For a
convenient source of BESU state codes, see header file mpp/mpphw_t3e.h .

This directive is not required when accessing BESUs through the following
barrier and eureka event routines: barrier (3), pvm_barrier (3),
shmem_barrier_all (3), set_event (3), wait_event (3), test_event (3),
clear_event (3). However, this directive is required when programming
BESUs directly through the techniques described in the Barrier and Eureka
Synchronization (CRAY T3E Systems), publication HMM-141–0.

4.5.2 [no]bounds Directive (C Compiler)

The bounds directive specifies that pointer and array references are to be
checked. The nobounds directive specifies that this checking is to be disabled.

When bounds checking is in effect, pointer references are checked to ensure that
they are not 0 or are not greater than the machine memory limit. Array
references are checked to ensure that the array subscript is not less than 0 or
greater than or equal to the declared size of the array. Both directives take effect
starting with the next program statement in the compilation unit, and stay in
effect until the next bounds or nobounds directive, or until the end of the
compilation unit.

These directives have the following format:

#pragma _CRI bounds

#pragma _CRI nobounds

The following example illustrates the use of the bounds directive:

62 004–2179–001

#pragma Directives [4]

int a[30];

#pragma _CRI bounds
void f(void)

{

int x;

x = a[30];

.

.

.

}

4.5.3 duplicate Directive (C Compiler)

Scope: Global

The duplicate directive lets you provide additional, externally visible names
for specified functions. You can specify duplicate names for functions by using
a directive with one of the following forms:

#pragma _CRI duplicate actual as dupname...

#pragma _CRI duplicate actual as (dupname...)

The actual argument is the name of the actual function to which duplicate
names will be assigned. The dupname list contains the duplicate names that will
be assigned to the actual function. The dupname list may be optionally
parenthesized. The word, as , must appear as shown between the actual
argument and the comma-separated list of dupname arguments.

The duplicate directive can appear anywhere in the source file and it must
appear in global scope. The actual name specified on the directive line must be
defined somewhere in the source as an externally accessible function; the actual
function cannot have a static storage class.

Because duplicate names are simply additional names for functions and are not
functions themselves, they cannot be declared or defined anywhere in the
compilation unit. To avoid aliasing problems, duplicate names may not be
referenced anywhere within the source file, including appearances on other
directives. In other words, duplicate names may only be referenced from
outside the compilation unit in which they are defined.

004–2179–001 63

Cray C/C++ Reference Manual

4.5.4 message Directive

The message directive directs the compiler to write the message defined by
text to stderr as a warning message. Unlike the error directive, the compiler
continues after processing a message directive. The format of this directive is
as follows:

#pragma _CRI message " text"

4.5.5 [no]opt Directive

Scope: Global

The noopt directive disables all automatic optimizations and causes
optimization directives to be ignored in the source code that follows the
directive. Disabling optimization removes various sources of potential
confusion in debugging. The opt directive restores the state specified on the
command line for automatic optimization and directive recognition. These
directives have global scope and override related command-line options.

The format of these directives is as follows:

#pragma _CRI opt

#pragma _CRI noopt

4.5.6 uses_eregs Directive

Scope: Local

(UNICOS/mk systems) The uses_eregs directive reserves all E registers for
your use in the function in which the directive appears. It prevents the
compiler from generating code that would change E register values. The format
of this directive is as follows:

#pragma _CRI uses_eregs

The uses_eregs directive applies only to the function in which it appears.
Your code must comply with E register conventions as described in the Cray
Assembler for MPP (CAM) Reference Manual.

64 004–2179–001

#pragma Directives [4]

Note: Use of this directive prevents the cache_bypass directive from being
processed because when uses_eregs is in effect, no E registers are available
to the compiler.

4.5.7 soft Directive

Scope: Global

The soft directive specifies external identifiers with references that are to be
considered soft. Soft external references can be to a function or to a data object.
Soft externals do not increase your program’s total memory requirements.

The format of this directive is as follows:

#pragma _CRI soft [var...]

var List of one or more soft externals, separated by commas (,) and
optionally enclosed in parentheses.

Declaring a soft external directs the linker to link the object or function only if it
is already linked (that is, if it has been referenced without soft externals in
another code file); otherwise, it is left as an unsatisfied external. If you declare a
soft external, you also direct the linker to inhibit an unsatisfied external
message if it is left unsatisfied.

Note: The loader treats soft externals as unsatisfied externals, so they remain
silently unsatisfied if all references are under the influence of a soft directive.
Thus, it is your responsibility to ensure that run-time references to soft
external names do not occur unless the loader (using some "hard" reference
elsewhere) has actually loaded the entry point in question. You can
determine whether a soft external has been loaded by calling the loaded (3)
library function.

The soft directive must appear at global scope. Soft externals must have the
following attributes:

• They must be declared, but not defined or initialized, in the source file.

• They cannot be declared with a static storage class.

• They cannot be declared as task common.

004–2179–001 65

Cray C/C++ Reference Manual

4.5.8 vfunction Directive

Scope: Global

(UNICOS systems) The vfunction directive lists external functions that use the
call-by-register calling sequence. Such functions can be vectorized but must be
written either in Cray Assembly Language (CAL) or in Fortran using the Fortran
vfunction compiler directive. The format of this directive is as follows:

#pragma _CRI vfunction func

The func variable specifies the name of the external function.

4.5.9 ident Directive

The ident directive directs the compiler to store the string indicated by text
into the object (.o) file. This can be used to place a source identification string
into an object file.

The format of this directive is as follows:

#pragma _CRI ident " text"

4.6 Instantiation Directives

The Cray C++ compiler recognizes three instantiation directives. Instantiation
directives can be used to control the instantiation of specific template entities or
sets of template entities.

• The #pragma _CRI instantiate directive causes a specified entity to be
instantiated.

• The #pragma _CRI do_not_instantiate directive suppresses the
instantiation of a specified entity. It is typically used to suppress the
instantiation of an entity for which a specific definition is supplied.

• The #pragma _CRI can_instantiate directive indicates that a specified
entity can be instantiated in the current compilation, but need not be. It is
used in conjunction with automatic instantiation to indicate potential sites for
instantiation if the template entity is deemed to be required by the compiler.

See Chapter 5, page 87 for more information on template instantiation.

66 004–2179–001

#pragma Directives [4]

4.7 Vectorization Directives

Because vector operations cannot be expressed directly in Cray Standard C or
Cray C++, the compilers must be capable of vectorization, which means
transforming scalar operations into equivalent vector operations. The
candidates for vectorization are operations in loops and assignments of
structures. For more information, see Optimizing Code on Cray PVP Systems.

On UNICOS/mk systems, the compiler can perform "vectorization-like"
optimizations on certain loops. Vector versions of the following functions are
used when the function appears in a vectorizable loop on UNICOS/mk
systems: alog (3M), exp (3M), sqrt (3M), ranf (3M), sin (3M), cos (3M),
coss (3M), pow(3C), and _popcnt (3I). This “vectorization” is performed using
the following process:

1. The loop is stripmined. Stripmining is a single-processor optimization
technique in which arrays and the program loops that reference them are
split into optimally-sized blocks, termed strips. The original loop is
transformed into two nested loops. The inner loop references all data
elements within a single strip, and the outer loop selects the strip to be
addressed in the inner loop. This technique is often performed by the
compiler to maximize the usage of cache memory or as part of vector code
generation.

2. If necessary, a strip of operands is stored in a temporary array. The vector
version of the function is called, which stores the strip of results in a
temporary array.

3. The remainder of the loop is computed using the results from step 2.

The subsections that follow describe the compiler directives used to control
vectorization on UNICOS systems and "vectorization-like" optimizations on
UNICOS/mk systems.

4.7.1 ivdep Directive

Scope: Local

The ivdep directive tells the compiler to ignore vector dependencies for the
loop immediately following the directive. Conditions other than vector
dependencies can inhibit vectorization. If these conditions are satisfactory, the
loop vectorizes. This directive is useful for some loops that contain pointers
and indirect addressing. The format of this directive is as follows:

004–2179–001 67

Cray C/C++ Reference Manual

#pragma _CRI ivdep

4.7.2 novector Directive

Scope: Local

The novector directive directs the compiler to not vectorize the loop that
immediately follows the directive. It overrides any other vectorization-related
directives, as well as the -h vector and -h ivdep command-line options.
The format of this directive is as follows:

#pragma _CRI novector

4.7.3 novsearch Directive

Scope: Local

(UNICOS systems) The novsearch directive directs the compiler to not
vectorize the search loop that immediately follows the directive. A search loop
is a loop with one or more early exit statements. It overrides any other
vectorization-related directives as well as the -h vector and -h ivdep
command-line options. The format of this directive is as follows:

#pragma _CRI novsearch

4.7.4 prefervector Directive

Scope: Local

(UNICOS systems) The prefervector directive tells the compiler to vectorize
the loop that immediately follows the directive if the loop contains more than
one loop in the nest that can be vectorized. The directive states a vectorization
preference and does not guarantee that the loop has no memory dependence
hazard.

The format of this directive is as follows:

#pragma _CRI prefervector

68 004–2179–001

#pragma Directives [4]

4.7.5 shortloop and shortloop128 Directives

Scope: Local

The shortloop (all systems) and shortloop128 (UNICOS systems only)
directives improve performance of a vectorized loop by allowing the compiler
to omit the run-time test to determine whether it has been completed. The
shortloop compiler directive identifies vector loops that execute with a
maximum iteration count of 64 (504 for character arrays) and a minimum
iteration count of 1. The shortloop128 compiler directive identifies vector
loops that execute with a maximum iteration count of 128 (1016 for character
arrays) and a minimum iteration count of 1. If the iteration count is outside the
range for the directive, results are unpredictable.

These directives are ignored if the loop trip count is known at compile time and
is greater than the target machine’s vector length. The vector length of
CRAY C90 systems and CRAY T90 systems is 128. The vector length of all other
UNICOS systems is 64.

The formats of these directives are as follows:

#pragma _CRI shortloop
#pragma _CRI shortloop128

4.8 Tasking Directives

The Cray Standard C compiler and Cray C++ compiler support parallel
processing using multiple processors on UNICOS systems. Parallel processing
is a technique that breaks a computational task into a set of subtasks and then
performs each subtask simultaneously. This allows many jobs to run faster by
spreading a computational task across multiple processors. The increase in
speed of execution depends on the degree of parallelism that is inherent in the
program. See Optimizing Code on Cray PVP Systems, for more information.

Tasking can be performed automatically by the compiler (Autotasking) or it can
be directed by the user (user-directed tasking). The methods that can be used to
accomplish tasking are defined as follows:

• Autotasking is performed automatically by the compiler based on its
analysis of the code.

Autotasking is enabled by specifying the -h task n option on the command
line. For more information on the -h task n option, see Section 2.10.1, page
15.

004–2179–001 69

Cray C/C++ Reference Manual

• User-directed tasking, sometimes called microtasking or simply tasking, is
controlled by the directives you add to your code. This requires that you
understand the requirements for tasking and perform your own analysis.

To direct tasking manually, you must identify the regions of your program
that are to run in parallel; then insert tasking directives to specify these
regions to the compiler.

4.8.1 parallel and endparallel Directives

Scope: Local

(UNICOS systems) The parallel directive marks the start of a parallel region.
The endparallel directive marks the end of a parallel region. Parallel regions
are combinations of redundant code blocks (executed by all processors) and
partitioned code blocks (portions executed by each processor, such as the
iterations of a tasked loop). The parallel directive indicates where multiple
processors enter execution, which may be different from where they
demonstrate a direct benefit (partitioned code block). The format of these
directives is as follows:

#pragma _CRI parallel [shared(var...)] [private(var...)]
[value(var...)] [defaults] [if (exp)] [maxcpus (exp)]

#pragma _CRI endparallel

Arguments to tasking directives are described in Section 4.8.11, page 76.

4.8.2 taskloop Directive

Scope: Local

(UNICOS systems) The taskloop directive indicates that the following for
loop can be executed in parallel by multiple processors. Although no directive
is needed to end a taskloop loop, the endloop directive (see Section 4.8.3,
page 71) can be used to explicitly do so. Unlike other loop-based directives, the
taskloop directive must appear before a for loop.

The taskloop directive can be used either inside or outside of a parallel
region. When the directive is used inside a parallel region, the private ,
shared , value , defaults , if , and maxcpus arguments are not allowed.
These arguments, if specified, must be specified on the parallel directive that
precedes the taskloop directive. When a taskloop directive is used outside

70 004–2179–001

#pragma Directives [4]

a parallel region, the loop is referred to as a stand-alone task loop. The savelast
argument can be specified only on stand-alone task loops.

For task loops outside of a parallel region, the format of the taskloop
directive is as follows:

#pragma _CRI taskloop [shared(var)...)] [private(var...)]
[value(var...)] [defaults] [if (exp)] [maxcpus(exp)]
[savelast] [dist]

For task loops inside a parallel region, the format of the taskloop directive is
as follows:

#pragma _CRI taskloop [dist]

Arguments to tasking directives are described in Section 4.8.11, page 76.

4.8.3 endloop Directive

Scope: Local

(UNICOS systems) By default, a directive is not needed to end a taskloop
loop. The endloop directive is a special terminator for the taskloop directive
inside a parallel region. The endloop directive extends the range of the control
structure that contains the taskloop loop. This allows a mechanism to exploit
parallelism in loops that contain reduction computations. The endloop
directive can appear only in a parallel region. The format of the endloop
directive is as follows:

#pragma _CRI endloop

4.8.4 case and endcase Directives

Scope: Local

(UNICOS systems) The case directive serves as a separator between adjacent
code blocks that are concurrently executable. The case directive can appear
only in a parallel region. The endcase directive serves as the terminator for a
group of one or more parallel cases.

The format of the case and endcase directives is as follows:

004–2179–001 71

Cray C/C++ Reference Manual

#pragma _CRI case

#pragma _CRI endcase

4.8.5 guard and endguard Directives

Scope: Local

(UNICOS systems) The guard and endguard directive pair delimit a guarded
region and provide the necessary synchronization to protect (or guard) the code
inside the guarded region. A guarded region is a code block that is to be
executed by only one processor at a time, although all processors in the parallel
region execute it.

The format of the guard and endguard directives is as follows:

#pragma _CRI guard [exp]

#pragma _CRI endguard [exp]

Unnumbered guards do not use the optional parameter exp on the guard and
endguard directives. Only one processor is allowed to execute in an
unnumbered guarded region at a time. If a processor is executing in an
unnumbered guarded region, and a second processor wants to enter an
unnumbered guarded region, the second processor must wait until the first
processor exits the region.

Numbered guards are indicated by the use of the optional parameter exp. The
expression exp must be an integral expression. Only the low-order 6 bits of exp
are used, thereby allowing up to 64 distinct numbered guards (0 through 63).
For optimal performance, exp should be an integer constant; the general
expression capability is provided only for the unusual case that the guarded
region number must be passed to a lower-level function.

4.8.6 taskprivate Directive (C Compiler)

The taskprivate directive specifies the task private storage class for
variables. The format of this directive is as follows (the comma-separated list of
variables can be enclosed in parentheses):

#pragma _CRI taskprivate variable,...

72 004–2179–001

#pragma Directives [4]

Variables that are given a task private storage class are placed in storage so that
each task has a separate copy of the variables; all functions within a task can
access the same copy of the task private variable, but no task can access any
task private variables belonging to another task.

A primary use for task private variables is efficient porting of macrotasked
programs from a shared-memory system (that is, a system, such as VAX, on
which independently executing programs can access the other program’s
memory). On Cray systems, independently executing programs cannot access
memory belonging to other programs.

This directive can appear in both global and local scopes and applies only to
the following types of variables:

• Global scope variables, in which case the directive must appear at global
scope.

• Local scope variables with static storage class, in which case the directive
must appear within the same scope as the variable declaration.

When a variable is designated as task private, subsequent declarations of that
variable in the same source file inherit the task private storage class.

The taskprivate directive takes precedence over the -h common and the
-h taskcommon command-line options.

The following restrictions apply to the taskprivate variable:

• A taskprivate variable cannot also be a soft external.

• The address of a taskprivate variable cannot be taken in a constant
expression (for example, an initializer).

4.8.7 taskshared Directive (C Compiler)

The taskshared directive ensures that specified variables are accessible to all
tasks (not stored as task private). For example, you can use this directive with
the -h taskprivate option, to exempt certain variables that would otherwise
be task private. The taskshared directive overrides the -h taskprivate
and -h taskcommon command-line options.

The format of this directive is as follows (the comma-separated list of variables
can be placed in parentheses):

#pragma _CRI taskshared variable,...

004–2179–001 73

Cray C/C++ Reference Manual

The taskshared directive can appear in both global and local scopes and
applies only to the following types of variables:

• Global scope variables, in which case the directive must appear at global
scope.

• Local scope variables with static storage class, in which case the directive
must appear within the same scope as the variable declaration.

When a variable is designated as task shared, subsequent declarations of that
variable in the same source file inherit the task shared storage class.

4.8.8 taskcommon Directive

The taskcommon directive specifies the task common storage class for
variables. The format of this directive is as follows (the comma-separated list of
variables can be placed in parentheses):

#pragma _CRI taskcommon variable, ...

Variables that are given a task common storage class are placed in storage so
that each task has a separate copy of the variables; all functions within a task
can access the same copy of the task common variable, but no task can access
any task common variables belonging to another task.

A primary use for task common variables is efficient porting of macrotasked
programs from a shared-memory system (that is, a system, such as VAX, on
which independently executing programs can access the other program’s
memory). On Cray systems, independently executing programs cannot access
memory belonging to other programs.

This directive can appear in both global and local scopes and applies only to
the following types of variables:

• Global scope variables, in which case the directive must appear at global
scope.

• Local scope variables with static storage class, in which case the directive
must appear within the same scope as the variable declaration.

When a variable is designated as task common, subsequent declarations of that
variable in the same source file inherit the task common storage class.

74 004–2179–001

#pragma Directives [4]

The taskcommon directive takes precedence over the -h common and
-h taskprivate command-line options.

The following restrictions apply to taskcommon variables:

• A taskcommon variable cannot be initialized. (A taskprivate variable
can be initialized, see Section 4.8.6, page 72.) By default, a taskcommon
variable is initialized to 0.

• A taskcommon variable cannot also be a soft external.

• The address of a taskcommon variable cannot be taken in a constant
expression (for example, an initializer).

4.8.9 commonDirective

A commondirective ensures that specified variables are accessible to all tasks
(not stored as taskcommon). Use this directive, for example, with the
-h taskcommon option, to exempt certain variables that would otherwise be
taskcommon . The commondirective overrides the -h taskcommon and
-h taskprivate command-line options. The format of the commondirective
is as follows (the comma-separated list of variables can be placed in
parentheses):

#pragma _CRI common variable,...

The commondirective can appear in both global and local scopes and applies
only to the following types of variables:

• Global scope variables, in which case the directive must appear at global
scope.

• Local scope variables with static storage class, in which case the directive
must appear within the same scope as the variable declaration.

When a variable is designated as common, subsequent declarations of that
variable in the same source file inherit the common storage class.

4.8.10 prefertask Directive

Scope: Local

(UNICOS systems) The prefertask directive tells the compiler to generate
tasked code for the loop that immediately follows it if that loop contains more

004–2179–001 75

Cray C/C++ Reference Manual

than one loop in the nest that can be tasked. The directive states a tasking
preference but does not guarantee that the loop has no memory dependence
hazard. Aggressive tasking (enabled by the -h task3 command-line option)
must be enabled for this directive to take effect. Threshold testing for the loop
specified by using the prefertask directive is suppressed. The format of the
prefertask directive is as follows:

#pragma _CRI prefertask

4.8.11 Arguments to Tasking Directives

The tasking directive arguments are categorized as context arguments, work
distribution arguments, or miscellaneous arguments. Arguments can appear in
any order in the directive. See the Cray C/C++ Reference Manual, for a detailed
description of these arguments.

4.8.11.1 Context Arguments

The following tasking directive arguments are used to indicate the tasking
context for variables referenced in the parallel region. Tasking context is an
attribute that determines how the different processors access a variable in a
parallel region.

If the private , shared , or value argument is used, at least one variable must
be declared in the corresponding list. For these arguments, variable names
follow the argument in a comma-separated list enclosed in parentheses.

• private

• shared

• value

• defaults

4.8.11.2 Work Distribution Arguments

The following arguments specify the work distribution policy for the iterations
of a tasked loop and can be used only with the taskloop directive. By default,
the iterations are handed out to the available processors in parallel, one iteration
per processor, one at a time (this is the single work distribution). Only one of
the following work distribution arguments can be specified for a given loop.

76 004–2179–001

#pragma Directives [4]

For all work distribution arguments except single , each chunk of iterations
can be vectorized, subject to the normal rules for vectorization.

• single

• chunksize (exp)

• numchunks (exp)

• guided

• vector

4.8.11.3 Miscellaneous Arguments

The following arguments specify miscellaneous arguments that do not fit either
of the previous categories.

• if (exp)

• maxcpus (exp)

• savelast

4.9 Scalar Directives

The following subsections describe the scalar optimization directives, which
control aspects of code generation, register storage, and so on.

4.9.1 align Directive

(UNICOS systems) The align directive causes functions, loops, or labels to be
aligned on instruction buffer boundaries. This increases the size of the
compiled program but improves loop performance. When used in global scope,
the align directive specifies that functions be aligned on instruction buffer
boundaries. When used in local scope, this directive lets you specify that the
loop or label following the directive is to be aligned on an instruction buffer
boundary.

To determine the number and size of the instruction buffers on your system,
use the target (1) command described in the UNICOS User Commands Reference
Manual.

004–2179–001 77

Cray C/C++ Reference Manual

4.9.2 cache_align Directive

Systems:

(UNICOS/mk systems) The cache_align directive aligns each specified
variable on a cache line boundary. This is useful for frequently referenced
variables. A cache is storage that can be accessed more quickly than
conventional memory. A cache line is a division within a cache. Properly used,
the cache_align directive lets you prevent cache conflicts.

The directive’s effect is independent of its position in source. It can appear in
global or local scope. The format of the cache_align directive is as follows:

#pragma _CRI cache_align var_list

In the preceding format, var_list represents a list of variable names separated by
commas.

4.9.3 cache_bypass Directive

Scope: Local

(UNICOS/mk systems) The cache_bypass directive specifies that local
memory references in a loop should be passed through E registers.

E registers offer fine-grained access to local memory and a higher bandwidth for
sparse index array accesses such as gather/scatter operations and large-stride
accesses. These operations do not exploit the spatial locality of cache references.
Using this directive can greatly decrease run time for gather/scatter operations.
The benefits of using this directive are higher with random index streams.
Using this directive increases the latency of memory references in return for
greater bandwidth, so this directive may increase runtime for loops with a high
degree of spatial locality that derive benefit from cache references.

E registers can also be used to initialize large arrays that contain data not
immediately needed in cache. This avoids unnecessary reads into cache and
improves memory bandwidth efficiency for the initialization.

The format of the cache_bypass directive is as follows:

#pragma _CRI cache_bypass var,...

78 004–2179–001

#pragma Directives [4]

var,... One or more variable names. The variable must have type array
of or pointer to (array of or pointer to...) a 64–bit scalar type.

This directive precedes the loop that contains data to be accessed through E
registers. If both a cache_bypass and a novector directive are applied to the
same loop, the novector directive is ignored,

The compiler ignores the cache_bypass directive if it determines that it
cannot generate code efficiently. To increase the probability of this directive
being used, the loop should have the following characteristics:

• The loop must be an inner loop (it must not contain other loops).

• The loop must be vectorizable. You may need to use the ivdep directive in
conjunction with cache_bypass to ensure that the loop is processed.

• The base array or pointer within the loop must be invariant.

To see the most benefit from the cache_bypass directive, you may want to
enable loop unrolling. For information on the command-line option to control
unrolling, see Chapter 2, page 3.

This feature may disable the UNICOS/mk system stream buffer hardware
feature for the entire program. This is done on certain CRAY T3E platforms
because the compiler cannot guarantee correctness in terms of the interaction of
the stream buffers and the E register operations generated by this directive.
Disabling stream buffers can cause considerable performance degradation for
other parts of your program. The stream buffer features can be reenabled by
using the set_d_stream (3) library function. Consult with your system
administrator to determine whether your CRAY T3E system falls into this
category. If so, see the streams_guide (7) man page for details on how and
when streams can be safely reenabled in the presence of E register operations.

4.9.4 concurrent Directive

Scope: Local

(UNICOS/mk systems) concurrent directive indicates that no dependencies
exist between different array references. When the compiler cannot
disambiguate between different array references, it is assumed that a
dependency exists (for safety), when none may exist.

Specifying the optional safe_distance= n argument indicates that no
dependencies exist between the current iteration of the loop and n subsequent
iterations. n must be an integral constant greater than zero.

004–2179–001 79

Cray C/C++ Reference Manual

The format of the concurrent directive is as follows:

#pragma _CRI concurrent [safe_distance= n]

This directive should immediately precede the loop that will benefit from the
directive.

4.9.5 nointerchange Directive

Scope: Local

The nointerchange directive inhibits the compiler’s ability to interchange the
loop that follows the directive with another inner or outer loop.

The format of this directive is as follows:

#pragma _CRI nointerchange

4.9.6 noreduction Directive

Scope: Local

The noreduction compiler directive tells the compiler to not optimize the
loop that immediately follows the directive as a reduction loop. If the loop is
not a reduction loop, the directive is ignored.

A reduction loop is a loop that contains at least one statement that reduces an
array to a scalar value by doing a cumulative operation on many of the array
elements. This involves including the result of the previous iteration in the
expression of the current iteration.

You may choose to use this directive when the loop iteration count is small or
when the order of evaluation is numerically significant. It overrides any
vectorization-related directives as well as the -h vector and -h ivdep
command-line options. The effect of the noreduction directive differs
depending on your platform.

On UNICOS systems, the noreduction directive disables vectorization of any
loop that contains a reduction. The specific reductions that are disabled are
summation and product reductions, and alternating value computations. On
UNICOS/mk systems, the noreduction directive prevents the compiler from
rewriting loops involving multiplication or exponentiation by an induction
variable to be a series of additions or multiplications of a value.

80 004–2179–001

#pragma Directives [4]

Regardless of platform, however, the format of this directive is as follows:

#pragma _CRI noreduction

4.9.7 split Directive

Scope: Local

(UNICOS/mk systems) The split directive instructs the compiler to attempt
to split the following loop into a set of smaller loops.

Such loop splitting attempts to improve single processor performance by making
best use of the six stream buffers of the UNICOS/mk system. It achieves this
by splitting an inner loop into a set of smaller loops, each of which allocates no
more than six stream buffers, thus avoiding stream buffer thrashing. The stream
buffer feature reduces memory latency and increases memory bandwidth by
prefetching for long, small-strided sequences of memory references.

The split directive has the following format:

#pragma _CRI split

The split directive merely asserts that the loop can profit by splitting. It will
not cause incorrect code.

The compiler splits the loop only if it is safe. Generally, a loop is safe to split
under the same conditions that a loop is vectorizable. The compiler only splits
inner loops. The compiler may not split some loops with conditional code.

The split directive also causes the original loop to be stripmined. This is done
to increase the potential for cache hits between the resultant smaller loops.

Loop splitting can reduce the execution time of a loop by as much as 40%.
Candidates for loop splitting can have trip counts as low as 40. They must also
contain more than six different memory references with strides less than 16.

Note that there is a slight potential for increasing the execution time of certain
loops. Loop splitting also increases compile time, especially when loop
unrolling is also enabled.

If both a split and a novector directive are applied to the same loop, the
novector directive is ignored.

004–2179–001 81

Cray C/C++ Reference Manual

4.9.8 suppress Directive

The suppress directive suppresses optimization in two ways, determined by
its use with either global or local scope.

The global scope suppress directive specifies that all associated local and task
common variables are to be written to memory before a call to the specified
function. This ensures that the value of the variables will always be current.
The global suppress directive takes the following form:

#pragma _CRI suppress func...

The local scope suppress directive stores current values of the specified
variables in memory. If the directive lists no variables, all variables are stored to
memory. This directive causes the values of these variables to be reloaded from
memory at the first reference following the directive. The local suppress
directive has the following format:

#pragma _CRI suppress [var...]

The net effect of the local suppress directive is similar to declaring the
affected variables to be volatile except that the volatile qualifier affects
the entire program whereas the local suppress directive affects only the block
of code in which it resides.

On UNICOS/mk systems, suppress , with no arguments specified, invalidates
the entire cache or forces all entities in the cache to be read from memory. This
gives suppress a higher performance cost than it has on other architectures, so
specifying particular variables can be more efficient.

4.9.9 symmetric Directive

Scope: Local

(UNICOS/mk systems) The symmetric directive declares that an auto or
register variable has the same local address on all processing elements (PEs).
This is useful for global addressing using the shmemlibrary functions. For
information on the shmemlibrary functions, see the intro_shmem (3) man
page. The format for this compiler directive is as follows:

#pragma _CRI symmetric var...

82 004–2179–001

#pragma Directives [4]

The symmetric directive must appear in local scope. Each variable listed on
the directive must:

• Be declared in the same scope as the directive.

• Have auto or register storage class.

• Not be a function parameter.

Because all PEs must participate in the allocation of symmetric stack variables,
there is an implicit barrier before the first executable statement in a block
containing symmetric variables.

If a goto statement jumps into a block where a symmetric variable has been
declared, the behavior is undefined. If a block is exited by means of a goto ,
longjmp , and so on, the memory associated with any symmetric variables
declared in that block will be squandered. Neither of these conditions are
detected by the compiler.

4.9.10 unroll Directive

Scope: Local

The unrolling directive allows the user to control unrolling for individual loops.

Loop unrolling can improve program performance by revealing cross-iteration
memory optimization opportunities such as read-after-write and
read-after-read. The effects of loop unrolling also include:

• Improved loop scheduling by increasing basic block size

• Reduced loop overhead

• Improved chances for cache hits

The format for this compiler directive is as follows:

#pragma _CRI unroll [n]

The n argument specifies the total number of loop body copies to be generated.
n must be in the range of 2 through 63.

If you do not specify a value for n, the compiler attempts to determine the
number of copies to generate based on the number of statements in the loop
nest.

004–2179–001 83

Cray C/C++ Reference Manual

!
Caution: If placed prior to a noninnermost loop, the unroll directive asserts
that the following loop has no dependencies across iterations of that loop. If
dependencies exist, incorrect code could be generated.

The unroll compiler directive can be used only on loops with iteration counts
that can be calculated before entering the loop. If unroll is specified on a loop
that is not the innermost loop in a loop nest, the inner loops must be nested
perfectly. That is, all loops in the nest can contain only one loop, and the
innermost loop can contain work.

The compiler can be directed to attempt to unroll all loops generated for the
program with the -h unroll command-line option.

On UNICOS/mk systems, the amount of unrolling specified on the unroll
directive overrides those chosen by the compiler when the -h unroll
command-line option is specified. On UNICOS systems, the compiler may do
additional unrolling over the amount requested by the user.

Outer loop unrolling is not always legal because the transformation can change
the semantics of the original program.

4.10 Inlining Directives

Inlining replaces calls to user-defined functions with the code representing the
function. This can improve performance by saving the expense of the function
call overhead. It also enhances the possibility of additional code optimization
and vectorization, especially if the function call was an inhibiting factor.

Inlining is invoked in the following ways:

• Automatic inlining of an entire compilation is enabled by issuing the
-h inline command-line option, as described in Section 2.11.1, page 17.

• Inlining of particular function calls is specified by the inline directive, as
discussed in the following sections.

Inlining directives can appear in global scope (that is, not inside a function
definition). Global inlining directives specify whether all calls to the specified
functions should be inlined (inline or noinline).

Inlining directives can also appear in local scope; that is, inside a function
definition. A local inlining directive applies only to the next call to the function
specified on the directive. Although the function specified on an inlining

84 004–2179–001

#pragma Directives [4]

directive does not need to appear in the next statement, a call to the function
must occur before the end of the function definition.

Inlining directives always take precedence over the automatic inlining
requested on the command line. This means that function calls that are
associated with inlining directives are inlined before any function calls selected
to be inlined by automatic inlining.

The -h report=i option writes messages identifying where functions are
inlined or briefly explains why functions are not inlined.

4.10.1 inline Directive

The inline directive specifies functions that are to be inlined. The inline
directive has the following format:

#pragma _CRI inline func,...

The func,... argument represents the function or functions to be inlined. The list
can be enclosed in parentheses. Listed functions must be defined in the
compilation unit. You cannot specify objects of type pointer-to-function.

4.10.2 noinline Directive

The noinline directive specifies functions that are not to be inlined. The
format of the noinline directive is as follows:

#pragma _CRI noinline func,...

The func,... argument represents the function or functions that are not to be
inlined. The list can be enclosed in parentheses. Listed functions must be
defined in the compilation unit. You cannot specify objects of type
pointer-to-function.

004–2179–001 85

Template Instantiation [5]

A template describes a class or function that is a model for a family of related
classes or functions. The act of generating a class or function from a template is
called template instantiation.

For example, a template can be created for a stack class, and then a stack of
integers, a stack of floats, and a stack of some user-defined type can be used. In
source code, these might be written as Stack<int> , Stack<float> , and
Stack<X> . From a single source description of the template for a stack, the
compiler can create instantiations of the template for each of the types required.

The instantiation of a class template is always done as soon as it is needed
during a compilation. However, the instantiations of template functions,
member functions of template classes, and static data members of template
classes (template entities) are not necessarily done immediately for the
following reasons:

• The preferred end result is one copy of each instantiated entity across all
object files in a program. This applies to entities with external linkage.

• A specialization of a template entity is allowed. For example, a specific
version of Stack<int> , or of just Stack<int>::push could be written to
replace the template-generated version and to provide a more efficient
representation for a particular data type.

Because the compiler does not know about specializations of entities
provided in future compilations when compiling a reference to a template
entity, it cannot automatically instantiate the template in source files that
contain references to the template.

• If a template function is not referenced, it should not be compiled because
such functions could contain semantic errors that would prevent
compilation. Therefore, a reference to a template class should not
automatically instantiate all the member functions of that class.

Note: Certain template entities, such as inline functions, are always
instantiated when they are used.

If the compiler is responsible for doing all instantiations automatically, it can
only do so for the entire program. That is, the compiler cannot make decisions
about instantiation of template entities until all source files of the complete
program have been read.

004–2179–001 87

Cray C/C++ Reference Manual

The Cray C++ compiler provides an instantiation mechanism that does
automatic instantiation at linkage and provides command-line options and
#pragma directives that give the programmer more explicit control over
instantiation.

5.1 Automatic Instantiation

The goal of an automatic instantiation mode is to provide trouble-free
instantiation. The programmer should be able to compile source files to object
code, link them and run the resulting program, without questioning how the
necessary instantiations are done.

In practice, this is difficult for a compiler to do, and different compilers use
different automatic instantiation schemes with different strengths and
weaknesses.

The Cray C++ compiler requires a normal, top-level, explicitly compiled source
file that contains the definition of both the template entity and of any types
required for the particular instantiation. This requirement is met in one of the
following ways:

• Each .h file that declares a template entity also contains either the definition
of the entity or includes another file containing the definition.

• When the compiler sees a template declaration in a .h file and discovers a
need to instantiate that entity, implicit inclusion gives the compiler
permission to search for an associated definition file having the same base
name and a different suffix and implicitly include that file at the end of the
compilation (see Section 5.4, page 93).

• The programmer makes sure that the files that define template entities also
have the definitions of all the available types and adds code or directives in
those files to request instantiation of those entities.

Automatic instantiation is accomplished by the Cray C++ compiler as follows:

1. The first time the source files of a program are compiled, no template
entities are instantiated. However, the generated object files contain
information about things that could have been instantiated in each
compilation. For any source file that makes use of a template instantiation,
an associated .ii file is created, if one does not already exist (for example,
the compilation of abc.C results in the creation of abc.ii).

2. When the object files are linked together, a program called the prelinker is
run. It examines the object files, looking for references and definitions of

88 004–2179–001

Template Instantiation [5]

template entities and for any additional information about entities that
could be instantiated.

!
Caution: The prelinker does not examine the object files in a library (.a)
file.

3. If the prelinker finds a reference to a template entity for which there is no
definition in the set of object files, it looks for a file that indicates that it
could instantiate that template entity. Upon discovery of such a file, it
assigns the instantiation to that file. The set of instantiations assigned to a
given file (for example, abc.C) is recorded in an associated file that has a
.ii suffix (for example, abc.ii).

4. The prelinker then executes the compiler to again recompile each file for
which the .ii was changed.

5. During compilation, the compiler obeys the instantiation requests contained
in the associated .ii file and produces a new object file that contains the
requested template entities and the other things that were already in the
object file.

6. The prelinker repeats steps 3 through 5 until there are no more
instantiations to be adjusted.

7. The object files are linked together.

Once the program has been linked correctly, the .ii files contain a complete set
of instantiation assignments. If source files are recompiled, the compiler
consults the .ii files and does the indicated instantiations as it does the
normal compilations. That means that, except in cases where the set of required
instantiations changes, the prelink step from then on will find that all the
necessary instantiations are present in the object files and no instantiation
assignment adjustments need be done. This is true even if the entire program is
recompiled. Because the .ii file contains information on how to recompile
when instantiating, it is important that the .o and .ii files are not moved
between the first compilation and linkage.

The prelinker cannot instantiate into and from library files (.a), so if a library is
to be shared by many applications its templates should be expanded. You may
find that creating a directory of objects with corresponding .ii files and the
use of -h prelink_copy_if_nonlocal (see Section 2.5.6, page 9) will work
as if you created a library (.a) that is shared.

The -h prelink_local_copy option indicates that only local files (for
example, files in the current directory) are candidates for assignment of
instantiations. This option is useful when you are sharing some common

004–2179–001 89

Cray C/C++ Reference Manual

relocatables but do not want them updated. Another way to ensure that shared
.o files are not updated is to use the -h remove_instantiation_flags
option when compiling the shared .o files. This also makes smaller resulting
shared .o files.

An easy way to create a library that instantiates all references of templates
within the library is to create an empty main function and link it with the
library, as shown in the following example. The prelinker will instantiate those
template references that are within the library to one of the relocatables without
generating duplicates. The empty dummy_main.o file is removed prior to
creating the .a file.

CC a.C b.C c.C dummy_main.C

bld -q mylib.a a.o b.o c.o

If a specialization of a template entity is provided somewhere in the program,
the specialization is seen as a definition by the prelinker. Because that definition
satisfies the references to that entity, the prelinker will not request an
instantiation of the entity. If a specialization of a template is added to a
previously compiled program, the prelinker removes the assignment of the
instantiation from the proper .ii file.

The .ii files do not, in general, require any manual intervention. The exception
occurs when a definition is changed in such a way that some instantiation no
longer compiles (it receives errors) and at the same time a specialization is
added to another file and the first file is recompiled before the specialization file.
If this exception occurs, the .ii file that corresponds to the file that generated
the errors must be deleted manually to allow the prelinker to regenerate it.

Automatic instantiation can coexist with partial explicit control of instantiation
by the programmer through the use of #pragma directives or the
-h instantiate= mode option.

Automatic instantiation mode can be disabled by issuing the
-h noautoinstantiate command-line option. If automatic instantiation is
disabled, the information about template entities that could be instantiated in a
file is not included in the object file.

5.2 Instantiation Modes

Normally, during compilation of a source file, no template entities are
instantiated (except those assigned to the file by automatic instantiation). The
overall instantiation mode can, however, be changed by issuing the

90 004–2179–001

Template Instantiation [5]

-h instantiate= mode command-line option. The mode argument can be
specified as follows:

mode Description

none Do not automatically create instantiations of any template entities.
This is the most appropriate mode when automatic instantiation
is enabled. This is the default instantiation mode.

used Instantiate those template entities that were used in the
compilation. This includes all static data members that have
template definitions.

all Instantiate all template entities declared or referenced in the
compilation unit. For each fully instantiated template class, all of
its member functions and static data members are instantiated,
regardless of whether they were used. Nonmember template
functions are instantiated even if the only reference was a
declaration.

local Similar to used mode, except that the functions are given internal
linkage. This mode provides a simple mechanism for those who
are not familiar with templates. The compiler instantiates the
functions used in each compilation unit as local functions, and
the program links and runs correctly (barring problems due to
multiple copies of local static variables). This mode may generate
multiple copies of the instantiated functions and is not suitable
for production use. This mode cannot be used in conjunction
with automatic template instantiation. Automatic instantiation is
disabled by this mode.

In the case where the CC(1) command is given a single source file to compile
and link, all instantiations are done in the single source file and, by default, the
used mode is used and automatic instantiation is suppressed.

5.3 Instantiation #pragma Directives

Instantiation #pragma directives can be used in source code to control the
instantiation of specific template entities or sets of template entities. There are
three instantiation #pragma directives:

• The #pragma _CRI instantiate directive causes a specified entity to be
instantiated.

004–2179–001 91

Cray C/C++ Reference Manual

• The #pragma _CRI do_not_instantiate directive suppresses the
instantiation of a specified entity. It is typically used to suppress the
instantiation of an entity for which a specific definition is supplied.

• The #pragma _CRI can_instantiate directive indicates that a specified
entity can be instantiated in the current compilation, but need not be. It is
used in conjunction with automatic instantiation to indicate potential sites for
instantiation if the template entity is deemed to be required by the compiler.

The argument to the #pragma _CRI instantiate directive can be any of the
following:

• A template class name. For example: A<int>

• A template class declaration. For example: class A<int>

• A member function name. For example: A<int>::f

• A static data member name. For example: A<int>::i

• A static data declaration. For example: int A<int>::i

• A member function declaration. For example: void A<int>::f(int,
char)

• A template function declaration. For example: char* f(int, float)

A #pragma directive in which the argument is a template class name (for
example, A<int> or class A<int>) is equivalent to repeating the directive
for each member function and static data member declared in the class. When
instantiating an entire class, a given member function or static data member
may be excluded using the #pragma _CRI do_not_instantiate directive.
For example:

#pragma _CRI instantiate A<int>

#pragma _CRI do_not_instantiate A<int>::f

The template definition of a template entity must be present in the compilation
for an instantiation to occur. If an instantiation is explicitly requested by use of
the #pragma instantiate directive and no template definition is available or
a specific definition is provided, an error is issued.

The following example illustrates the use of the #pragma _CRI instantiate
directive:

92 004–2179–001

Template Instantiation [5]

template <class T> void f1(T); // No body provided

template <class T> void g1(T); // No body provided
void f1(int) {} // Specific definition

void main()

{

int i;

double d;

f1(i);
f1(d);

g1(i);

g1(d);

}

#pragma _CRI instantiate void f1(int) // error-specific definition
#pragma _CRI instantiate void g1(int) // error-no body provided

In the preceding example, f1(double) and g1(double) are not instantiated
because no bodies are supplied, but no errors will be produced during the
compilation. If no bodies are supplied at link time, a linker error is issued.

A member function name (such as A<int>::f) can be used as a #pragma
directive argument only if it refers to a single, user-defined member function
(that is, not an overloaded function). Compiler-generated functions are not
considered, so a name can refer to a user-defined constructor even if a
compiler-generated copy constructor of the same name exists. Overloaded
member functions can be instantiated by providing the complete member
function declaration, as in the following example:

#pragma _CRI instantiate char* A<int>::f(int, char*)

The argument to an instantiation directive cannot be a compiler-generated
function, an inline function, or a pure virtual function.

5.4 Implicit Inclusion

The implicit inclusion feature implies that if the compiler needs a definition to
instantiate a template entity declared in a .h file, it can implicitly include the
corresponding .C file to get the source code for the definition. For example, if a
template entity ABC::f is declared in file xyz.h , and an instantiation of
ABC::f is required in a compilation, but no definition of ABC::f appears in
the source code processed by the compilation, the compiler will look to see if a
file xyz.C exists and, if so, it processes it as if it were included at the end of the
main source file.

004–2179–001 93

Cray C/C++ Reference Manual

To find the template definition file for a given template entity, the Cray C++
compiler must know the full path name to the file in which the template was
declared and whether the file was included using the system include syntax
(such as #include <file.h>). This information is not available for
preprocessed source code containing #line directives. Consequently, the Cray
C++ compiler does not attempt implicit inclusion for source code that contains
#line directives.

The set of definition-file suffixes that are tried by default, is .c , .C , .cpp ,
.CPP, .cxx , .CXX, and .cc .

Implicit inclusion works well with automatic instantiation, however, they are
independent. They can be enabled or disabled independently, and implicit
inclusion is still useful without automatic instantiation.

94 004–2179–001

Predefined Macros [6]

Predefined macros can be divided into the following categories:

• Macros required by the C and C++ standards

• Macros based on the host machine

• Macros based on the target machine

• Macros based on the compiler

Predefined macros provide information about the compilation environment. In
the subsections that follow, only those macros that begin with the underscore
(_) character are defined when running in strict-conformance mode (see the
-h conform command-line option in Section 2.4.1, page 6).

Note: Any of the predefined macros except those required by the standard
(see Section 6.1, page 95) can be undefined by using the -U option; they can
also be redefined by using the -D option.

A large set of macros is also defined in the standard header files. These macros
are described in the UNICOS System Libraries Reference Manual.

6.1 Macros Required by the C and C++ Standards

The following macros are required by the C and C++ standards:

Macro Description

__TIME__ Time of translation of the source file.

__DATE__ Date of translation of the source file.

__LINE __ Line number of the current line in your source
file.

__FILE __ Name of the source file being compiled.

__STDC__ Defined as the decimal constant 1 if compilation
is in strict conformance mode; defined as the
decimal constant 2 if the compilation is in

004–2179–001 95

Cray C/C++ Reference Manual

extended mode. This macro is defined for C and
C++ compilations.

__cplusplus Defined as 1 when compiling C++ code and
undefined when compiling C code. The
__cplusplus macro is required by the ISO C++
draft standard, but not the ISO C standard.

6.2 Macros Based on the Host Machine

The following macros provide information about the environment running on
the host machine:

Macro Description

__unix Defined as 1 if the operating system is UNIX.

unix Defined as 1 if the operating system is UNIX. This
macro is not defined in strict-conformance mode.

_UNICOS Defined as the integer portion of the major
release level of the current UNICOS release (for
example, 9).

6.3 Macros Based on the Target Machine

The following macros provide information about the characteristics of the target
machine:

Macro Description

cray Defined as 1 on all Cray Research systems. This
macro is not defined in strict-conformance mode.

CRAY Defined as 1 on all Cray Research systems. This
macro is not defined in strict-conformance mode.

_CRAY Defined as 1 on all Cray Research systems.

CRAY1 Defined as 1 on all UNICOS systems; if the
hardware is any other machine type, the macro is

96 004–2179–001

Predefined Macros [6]

not defined. This macro is not defined in
strict-conformance mode.

_CRAY1 Defined as 1 on all UNICOS systems; if the
hardware is any other machine type, the macro is
not defined.

_CRAYMPP Defined as 1 on all Cray MPP systems
(UNICOS/mk systems); if the hardware is any
other machine type, the macro is not defined.

_CRAYT3E Defined as 1 on CRAY T3E systems; if the
hardware is any other machine type, the macro is
not defined.

_CRAYIEEE Defined as 1 if the targeted CPU type uses IEEE
floating-point format; if Cray format is used, the
macro is not defined.

_ADDR32 Defined as 1 if the targeted CPU has 32-bit
address registers; if the targeted CPU does not
have 32–bit address registers, the macro is not
defined.

_ADDR64 Defined as 1 if the targeted CPU has 64-bit
address registers; if the targeted CPU does not
have 64–bit address registers, the macro is not
defined.

_LD64 Defined as 1 if the long double basic type has
64 bits of precision; if 128-bit precision is used,
the macro is not defined.

_FASTMD Defined as 1 if the fast multiply/divide sequence
is enabled; if the machine type is CRAY T3E or if
fast multiply/divide is not used, the macro is not
defined.

_MAXVL Defined as the maximum hardware vector length
(64 or 128); if the machine type is CRAY T3E, the
macro is not defined.

6.4 Macros Based on the Compiler

The following macros provide information about compiler features:

004–2179–001 97

Cray C/C++ Reference Manual

Macro Description

_RELEASE Defined as the major release level of the compiler.

_CRAYC Defined as 1 to identify the Cray Standard C
compiler.

98 004–2179–001

Debugging C/C++ Code [7]

The Cray TotalView symbolic debugger is available to help you debug C and
C++ codes. In addition, the Cray C and C++ compilers provide the following
features to help you in debugging codes:

• The -G and -g compiler options provide symbol information about your
source code for use by the Cray TotalView debugger. For more information
on these compiler options, see Section 2.16.1, page 25.

• The -h [no]trunc option helps identify numerically unstable algorithms.
For more information, see Section 2.14.7, page 24.

• The -h [no]bounds option and the #pragma _CRI [no]bounds
directive let you check pointer and array references. The -h [no]bounds
option is described in Section 2.16.2, page 26. The
#pragma _CRI [no]bounds directive is described in Section 4.5.2, page
62.

• The #pragma _CRI message directive lets you add warning messages to
sections of code where you suspect problems. The
#pragma _CRI message directive is described in Section 4.5.4, page 64.

• The #pragma _CRI [no]opt directive lets you selectively isolate portions
of your code to optimize, or to toggle optimization on and off in selected
portions of your code. The #pragma _CRI [no]opt directive is described
in Section 4.5.5, page 64.

7.1 Cray TotalView Debugger

The Cray TotalView debugger is designed for use with C, C++, or Fortran
source code and is available on all Cray Research systems. The TotalView
debugger is documented in Introducing the Cray TotalView Debugger.

Some of the functions available in the Cray TotalView debugger allow you to
perform the following actions:

• Set and clear breakpoints, which can be conditional, at both the source code
level and the assembly code level

• Examine core files

• Step through a program, including across function calls

004–2179–001 99

Cray C/C++ Reference Manual

• Reattach to the executable file after editing and recompiling

• Edit values of variables and memory locations

• Evaluate code fragments

7.2 Compiler Debugging Options

To use the Cray TotalView debugger in debugging your code, you must first
compile your code using one of the debugging options (-g or -G). These
options are specified as follows:

• -Gf

If you specify the -Gf debugging option, the Cray TotalView debugger
allows you to set breakpoints at function entry and exit and at labels.

• -Gp

If you specify the -Gp debugging option, the Cray TotalView debugger
allows you to set breakpoints at function entry and exit, labels, and at places
where execution control flow changes (for example, loops, switch , and
if...else statements).

• -Gn or -g

If you specify the -Gn or -g debugging option, the Cray TotalView
debugger allows you to set breakpoints at function entry and exit, labels,
and executable statements. These options force all compiler optimizations to
be disabled as if you had specified -O0 .

Users of the Cray C and C++ compilers do not have to sacrifice run-time
performance to debug codes. Many compiler optimizations are inhibited by
breakpoints generated for debugging. By specifying a higher debugging level,
fewer breakpoints are generated and better optimization occurs.

However, consider the following cases in which optimization is affected by the
-Gp and -Gf debugging options:

• Vectorization can be inhibited if a label exists within the vectorizable loop.

• Vectorization can be inhibited if the loop contains a nested block and the
-Gp option is specified.

• When the -Gp option is specified, setting a breakpoint at the first statement
in a vectorized loop allows you to stop and display at each vector iteration.

100 004–2179–001

Debugging C/C++ Code [7]

However, setting a breakpoint at the first statement in an unrolled loop may
not allow you to stop at each vector iteration.

004–2179–001 101

Interlanguage Communication [8]

In some situations, it is necessary or advantageous to make calls to assembly or
Fortran functions from C or C++ programs. This section describes how to make
such calls. It also discusses calls to C and C++ functions from Fortran and
assembly language. For additional information on interlanguage
communication, see Interlanguage Programming Conventions. The calling
sequence is described in detail on the callseq (3) man page, which is included
in the Application Programmer’s Library Reference Manual.

8.1 Interlanguage Communication with Cray Standard C and Cray C++

Cray Standard C and Cray C++ provide a mechanism for declaring external
functions that are written in other languages. This allows the C/C++
programmer to write portions of an application in C, C++, Fortran, or assembly
language. This can be useful in cases where these other languages provide
performance advantages or utilities that are not available in C or C++.

This section describes how to call assembly language and Fortran programs
from a C or C++ program. It also discusses the issues related to calling C or
C++ programs from other languages. These calls apply to UNICOS and
UNICOS/mk systems unless stated otherwise.

8.1.1 Calling Assembly Language Functions from a C or C++ Function

You can sometimes avoid bottlenecks in programs by rewriting parts of the
program in assembly language, maximizing performance by selecting
instructions to reduce machine cycles. When writing assembly language
functions that will be called by C or C++ functions, use the standard UNICOS
program linkage macros. When using these macros, you do not need to know
the specific registers used by the C or C++ program or by the calling sequence
of the assembly coded routine. UNICOS program linkage macros are described
in the UNICOS Macros and Opdefs Reference Manual.

In C++, use extern "C" to declare the assembly language function. In C++,
the main function must be written in C++.

004–2179–001 103

Cray C/C++ Reference Manual

8.1.1.1 Cray Assembly Language (CAL) Functions on UNICOS Systems

The use of Cray Assembly Language (CAL) on UNICOS systems is described in
the Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual.

On UNICOS systems, the ALLOC, DEFARG, DEFB, DEFT, ENTER, EXIT ,
MXCALLEN, and PROGRAMmacros can be used to define the calling list; B and T
register use; temporary storage; and entry and exit points.

8.1.1.2 Cray Assembler for MPP (CAM) Functions on UNICOS/mk Systems

The use of the Cray Assembler for MPP (CAM) on UNICOS/mk systems is
described in the Cray Assembler for MPP (CAM) Reference Manual.

On UNICOS/mk systems, the ALLOC, LOAD, STOREand DEFARG, ENTER, EXIT ,
ADDRESS, VALUEmacros can be used to define local (temporary) storage; entry
or exit points; argument processing; and calls to other functions.

8.1.2 Calling Fortran Functions and Subroutines from a C or C++ Function

This subsection describes the following aspects of calling Fortran from C or
C++: requirements and guidelines, MPP considerations, argument passing,
array storage, logical and character data, and accessing blank common from C
and C++ programs.

8.1.2.1 Requirements

Keep the following points in mind when calling Fortran functions from C/C++:

• Fortran uses the call-by-address convention, and C/C++ uses the
call-by-value convention, which means that only pointers should be passed
to Fortran subprograms. See Section 8.1.2.2, page 105.

• Fortran arrays are in column-major order, and C/C++ arrays are in
row-major order. This indicates which dimension is indicated by the first
value in an array element subscript. See Section 8.1.2.3, page 105.

• Single-dimension arrays of integers and single-precision floating-point
numbers are the only aggregates that can be passed as parameters without
changing the arrays.

• Fortran character pointers and C/C++ character pointers are incompatible.
See Section 8.1.2.4, page 107.

104 004–2179–001

Interlanguage Communication [8]

• Fortran logical values and C/C++ Boolean values are not fully compatible.
See Section 8.1.2.4, page 107.

• External C/C++ variables are stored in common blocks of the same name,
making them readily accessible from Fortran programs if the C/C++
variable is uppercase.

• When declaring Fortran functions or objects in C/C++, the name must be
specified in all uppercase letters, digits, or underscore characters and consist
of 31 or fewer characters.

• In C, Fortran functions can be declared using the fortran keyword (see
Section 3.6, page 55). The fortran keyword is not available in C++.
Instead, fortran functions must be declared by specifying extern "C" .

• In C++, the main function must be written in C++.

• On UNICOS/mk systems, the C/C++ language float type does not match
the Fortran REAL type. The float type is 32 bits for C/C++ on
UNICOS/mk systems; the Fortran REAL type is 64 bits. However, Fortran
includes the REAL*4 type that matches the C language float type.

8.1.2.2 Argument Passing

Because Fortran subroutines expect arguments to be passed by pointers rather
than by value, C and C++ functions called from Fortran subroutines must pass
pointers rather than values.

All argument passing in C is strictly by value. To prepare for a function call
between two C functions, a copy is made of each actual argument. A function
can change the values of its formal parameters, but these changes cannot affect
the values of the actual arguments. It is possible, however, to pass a pointer.
(All array arguments are passed by this method.) This capability is analogous
to the Fortran method of passing arguments.

In addition to passing by value, C++ also provides passing by reference.

8.1.2.3 Array Storage

C and C++ arrays are stored in memory in row-major order; and Fortran arrays
are stored in memory in column-major order. For example, the C/C++ array
declaration int A[3][2] is stored in memory as:

004–2179–001 105

Cray C/C++ Reference Manual

A[0][0] A[0][1]

A[1][0] A[1][1]

A[2][0] A[2][1]

The previously defined array is viewed linearly in memory as:

A[0][0] A[0][1] A[1][0] A[1][1] A[2][0] A[2][1]

The Fortran array declaration INTEGER A(3,2) is stored in memory as:

A(1,1) A(2,1) A(3,1)

A(1,2) A(2,2) A(3,2)

The previously defined array is viewed linearly in memory as:

A(1,1) A(2,1) A(3,1) A(1,2) A(2,2) A(3,2)

When an array is shared between C/C++ and Fortran, its dimensions are
declared and referenced in C/C++ in the opposite order in which they are
declared and referenced in Fortran. Since arrays are zero-based in C/C++ and
one-based in Fortran, in C/C++ you should subtract 1 from the array subscripts
that you would normally use in Fortran.

For example, using the Fortran declaration of array A in the preceding example,
the equivalent declaration in C/C++ would be:

int a[2][3];

The following table shows how to access elements of the array from Fortran
and C/C++:

106 004–2179–001

Interlanguage Communication [8]

Fortran C/C++

A(1,1) A[0][0]

A(2,1) A[0][1]

A(3,1) A[0][2]

A(1,1) A[1][0]

A(2,2) A[1][1]

A(3,2) A[1][2]

8.1.2.4 Logical and Character Data

Logical and character data need special treatment for calls between C/C++ and
Fortran. Fortran has a character descriptor that is incompatible with a character
pointer in C/C++. The techniques used to represent logical (Boolean) values
also differ between C/C++ and Fortran.

Mechanisms you can use to convert one type to the other are provided by the
standard header file and conversion utilities shown in the following list.

Header file or utility Description

<fortran.h> Header file that defines the
type _fcd , which maps to the
Fortran character descriptor
and defines or declares the
macros or functions contained
in this list.

_cptofcd Conversion utility that
converts a C/C++ character
pointer to a Fortran character
descriptor.

_fcdtocp Conversion utility that
converts a Fortran character
descriptor to a C/C++
character pointer.

_fcdlen Conversion utility that
extracts the byte length from
the Fortran character
descriptor. Because Fortran
does not terminate character

004–2179–001 107

Cray C/C++ Reference Manual

strings with a null character,
_fcdlen can be used to
determine the last character
in the string.

_btol Conversion utility that
converts a 0 to a Fortran
logical .FALSE. and a
nonzero value to a Fortran
logical .TRUE.

_ltob Conversion utility that
converts a Fortran logical
.FALSE. to a 0 and a Fortran
logical .TRUE. to a 1.

For more information on these utilities, see the description of the _cptofcd (3)
function in the UNICOS System Libraries Reference Manual.

8.1.2.5 Accessing Named Common from C/C++

The following example demonstrates how external C variables are accessible in
Fortran named common blocks. It shows a C function calling a Fortran
subprogram, the associated Fortran subprogram, and the associated input and
output.

In this example, the C structure ST is accessed in the Fortran subprogram as
common block ST. The name of the C structure and the Fortran common block
must match. Note that this requires that the C structure name be uppercase.
The C structure member names and the Fortran common block member names
do not have to match, as is shown in this example.

The following C main program calls the Fortran subprogram FCTN:

108 004–2179–001

Interlanguage Communication [8]

#include <stdio.h>

struct
{

int i;

double a[10];

long double d;

} ST;

main()

{

int i;

/* initialize struct ST */
ST.i = 12345;

for (i = 0; i < 10; i++)

ST.a[i] = i;

ST.d = 1234567890.1234567890L;

/* print out the members of struct ST */

printf("In C: ST.i = %d, ST.d = %20.10Lf\n", ST.i, ST.d);

printf("In C: ST.a = ");

for (i = 0; i < 10; i++)
printf("%4.1f", ST.a[i]);

printf("\n\n");

/* call the fortran function */

FCTN();
}

The following example is the Fortran subprogram FCTNcalled by the previous
C main program:

C *********** Fortran subprogram (f.f): ***********

SUBROUTINE FCTN

COMMON /ST/STI, STA(10), STD

INTEGER STI
REAL STA

DOUBLE PRECISION STD

004–2179–001 109

Cray C/C++ Reference Manual

INTEGER I

WRITE(6,100) STI, STD

100 FORMAT (’IN FORTRAN: STI = ’, I5, ’, STD = ’, D25.20)

WRITE(6,200) (STA(I), I = 1,10)

200 FORMAT (’IN FORTRAN: STA =’, 10F4.1)

END

The previous C and Fortran examples are executed by the following commands
and produce the output shown:

$ cc -c c.c
$ f90 -c f.f

$ segldr c.o f.o

$ a.out

ST.i = 12345, ST.d = 1234567890.1234567890

In C: ST.a = 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0

IN FORTRAN: STI = 12345, STD = .12345678901234567889D+10

IN FORTRAN: STA = 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0

$

8.1.2.6 Accessing Blank Common from C/C++

Fortran includes the concept of a common block. A common block is an area of
memory that can be referenced by any program unit in a program. A named
common block has a name specified in a Fortran COMMONor TASKCOMMON
statement, along with the names of variables or arrays stored in the block. A
blank common block, sometimes referred to as blank common, is declared in the
same way, but without a name.

There is no way to access blank common from C/C++ similar to accessing a
named common block. However, you can write a simple Fortran function to
return the address of the first word in blank common to the C/C++ program
and then use that as a pointer value to access blank common.

The following example shows how Fortran blank common can be accessed
using C/C++ source code:

110 004–2179–001

Interlanguage Communication [8]

#include <stdio.h>

struct st

{

float a;

float b[10];

} *ST;

#ifdef __cplusplus

extern "C" struct st *MYCOMMON(void);

extern "C" void FCTN(void);

#else

fortran struct st *MYCOMMON(void);
fortran void FCTN(void);

#endif

main()

{
int i;

ST = MYCOMMON();

ST->a = 1.0;

for (i = 0; i < 10; i++)

ST->b[i] = i+2;
printf("\n In C/C++\n");

printf(" a = %5.1f\n", ST->a);

printf(" b = ");

for (i = 0; i < 10; i++)

printf("%5.1f ", ST->b[i]);
printf("\n\n");

FCTN();

}

The following Fortran source code accesses blank common and is accessed from
the C/C++ source code in the previous example:

004–2179–001 111

Cray C/C++ Reference Manual

SUBROUTINE FCTN

COMMON // STA,STB(10)
PRINT *, "IN FORTRAN"

PRINT *, " STA = ",STA

PRINT *, " STB = ",STB

STOP

END

FUNCTION MYCOMMON()

COMMON // A

MYCOMMON = LOC(A)

RETURN

END

The output of the previous C/C++ source code is as follows:

In C
a = 1.0

b = 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0

The output of the previous Fortran source code is as follows:

IN FORTRAN

STA = 1.

STB = 2., 3., 4., 5., 6., 7., 8., 9., 10., 11.

8.1.2.7 C and Fortran Example

The following example illustrates a C function that calls a Fortran subprogram.
The Fortran subprogram follows the C function and the input and output from
this sequence follows the Fortran subprogram.

112 004–2179–001

Interlanguage Communication [8]

/* C program (main.c): */

#include <stdio.h>

#include <string.h>

#include <fortran.h>

fortran double FTNFCTN (_fcd, int *);

double FLOAT1 = 1.6;

double FLOAT2; /* Initialized in FTNFCTN */

main()

{

int clogical, ftnlogical, cstringlen;

double rtnval;

char *cstring = "C Character String";

_fcd ftnstring;

/* Convert cstring and clogical to their Fortran equivalents */

ftnstring = _cptofcd(cstring, strlen(cstring));

clogical = 1;

ftnlogical = _btol(clogical);

/* Print values of variables before call to Fortran function */

printf(" In main: FLOAT1 = %g; FLOAT2 = %g\n",

FLOAT1, FLOAT2);

printf(" Calling FTNFCTN with arguments:\n");

printf(" string = \"%s\"; logical = %d\n\n", cstring, clogical);

rtnval = FTNFCTN(ftnstring, &ftnlogical);

/* Convert ftnstring and ftnlogical to their C equivalents */

cstring = _fcdtocp(ftnstring);

cstringlen = _fcdlen(ftnstring);

clogical = _ltob(&ftnlogical);

/* Print values of variables after call to Fortran function */

printf(" Back in main: FTNFCTN returned %g\n", rtnval);

printf(" and changed the two arguments:\n");

printf(" string = \"%.*s\"; logical = %d\n",

cstringlen, cstring, clogical);

}

004–2179–001 113

Cray C/C++ Reference Manual

C Fortran subprogram (ftnfctn.f):

FUNCTION FTNFCTN(STR, LOG)

REAL FTNFCTN

CHARACTER*(*) STR

LOGICAL LOG

COMMON /FLOAT1/FLOAT1

COMMON /FLOAT2/FLOAT2

REAL FLOAT1, FLOAT2

DATA FLOAT2/2.4/ ! FLOAT1 INITIALIZED IN MAIN

C PRINT CURRENT STATE OF VARIABLES

PRINT*, ’ IN FTNFCTN: FLOAT1 = ’, FLOAT1,

1 ’;FLOAT2 = ’, FLOAT2

PRINT*, ’ ARGUMENTS: STR = "’, STR, ’"; LOG = ’, LOG

C CHANGE THE VALUES FOR STR(ING) AND LOG(ICAL)

STR = ’New Fortran String’

LOG = .FALSE.

FTNFCTN = 123.4

PRINT*, ’ RETURNING FROM FTNFCTN WITH ’, FTNFCTN

PRINT*

RETURN

END

The previous C function and Fortran subprogram are executed by the following
commands and produce the following output:

114 004–2179–001

Interlanguage Communication [8]

$ cc -c main.c

$ f90 -c ftnfctn.f
$ segldr main.o ftnfctn.o

$ a.out

$

In main: FLOAT1 = 1.6; FLOAT2 = 2.4

Calling FTNFCTN with arguments:

string = "C Character String"; logical = 1

IN FTNFCTN: FLOAT1 = 1.6; FLOAT2 = 2.4

ARGUMENTS: STR = "C Character String"; LOG = T

RETURNING FROM FTNFCTN WITH 123.4

Back in main: FTNFCTN returned 123.4

and changed the two arguments:

string = "New Fortran String"; logical = 0

$

8.1.2.8 Calling a Fortran Program from a C++ Program

The following example illustrates how a Fortran program can be called from a
C++ program:

#include <iostream.h>

extern "C" int FORTRAN_ADD_INTS(int *arg1, int &arg2);

main()

{

int num1, num2, res;

cout << "Start C++ main" << endl << endl;

//Call FORTRAN function to add two integers and return result.
//Note that the second argument is a reference parameter so

//it is not necessary to take the address of the

//variable num2.

num1 = 10;
num2 = 20;

cout << "Before Call to FORTRAN_ADD_INTS" << endl;

res = FORTRAN_ADD_INTS(&num1, num2);

cout << "Result of FORTRAN Add = " << res << endl << endl;

cout << "End C++ main" << endl;
}

004–2179–001 115

Cray C/C++ Reference Manual

The Fortran program that is called from the C++ main function in the
preceding example is as follows:

INTEGER FUNCTION FORTRAN_ADD_INTS(Arg1, Arg2)

INTEGER Arg1, Arg2

PRINT *," FORTRAN_ADD_INTS, Arg1,Arg2 = ", Arg1, Arg2

FORTRAN_ADD_INTS = Arg1 + Arg2
END

The output from the execution of the preceding example is as follows:

Start C++ main

Before Call to FORTRAN_ADD_INTS

FORTRAN_ADD_INTS, Arg1,Arg2 = 10, 20

Result of FORTRAN Add = 30

End C++ main

8.1.3 Calling a C/C++ Function from an Assembly Language or Fortran Program

A C/C++ function can be called from Fortran or assembly language. When
calling from Fortran, keep in mind the information in Section 8.1.2, page 104.

When calling a C++ function from Fortran or assembly language, the C++
function must be declared with extern "C" storage class, the main function
must be written in C++, and the program must be linked with the CCcommand.
C++ main is responsible for initializing the static constructors for C++ functions.

The example that follows illustrates a Fortran program that calls a C function.
The C function being called, the commands required, and the associated input
and output are also included.

116 004–2179–001

Interlanguage Communication [8]

C Fortran program (main.f):

PROGRAM MAIN

REAL CFCTN

COMMON /FLOAT1/FLOAT1

COMMON /FLOAT2/FLOAT2

REAL FLOAT1, FLOAT2
DATA FLOAT1/1.6/ ! FLOAT2 INITIALIZED IN cfctn

LOGICAL LOG

CHARACTER*24 STR

REAL RTNVAL

C INITIALIZE VARIABLES STR(ING) AND LOG(ICAL)

STR = ’Fortran Character String’

LOG = .TRUE.

C PRINT VALUES OF VARIABLES BEFORE CALL TO C FUNCTION
PRINT*, ’ IN MAIN: FLOAT1 = ’, FLOAT1,

1 ’; FLOAT2 = ’, FLOAT2

PRINT*, ’ CALLING CFCTN WITH ARGUMENTS: ’

PRINT*, ’ STR = "’, STR, ’"; LOG = ’, LOG

PRINT*

RTNVAL = CFCTN(STR, LOG)

C PRINT VALUES OF VARIABLES AFTER CALL TO C FUNCTION

PRINT*, ’ BACK IN MAIN: CFCTN RETURNED ’, RTNVAL

PRINT*, ’ AND CHANGED THE TWO ARGUMENTS: ’
PRINT*, ’ STR = "’, STR, ’"; LOG = ’, LOG

END

The following example illustrates the associated C function that is being called:

004–2179–001 117

Cray C/C++ Reference Manual

/* C function (cfctn.c): */

#include <fortran.h>

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

double FLOAT1; /* Initialized in MAIN */

double FLOAT2 = 2.4;

double CFCTN(_fcd str, int *log)

{

int slen;

int clog;

float returnval;

char *cstring;

char newstr[25];

/* Convert str and log passed from Fortran MAIN */

/* into C equivalents */

slen = _fcdlen(str);

cstring = malloc(slen+1);

strncpy(cstring, _fcdtocp(str), slen);

cstring[slen] = ’\0’;

clog = _ltob(log);

/* Print the current state of the variables */

printf(" In CFCTN: FLOAT1 = %.1f; FLOAT2 = %.1f\n",

FLOAT1, FLOAT2);

printf(" Arguments: str = "%s"; log = %d\n",

cstring, clog);

/* Change the values for str and log */

strncpy(_fcdtocp(str), "C Character String ", 24);

*log = 0;

returnval = 123.4;

printf(" Returning from CFCTN with %.1f\n\n", returnval);

return(returnval);

}

The previous Fortran program and C function are executed by the following
commands and produce the following output:

118 004–2179–001

Interlanguage Communication [8]

$ cc -c cfctn.c

$ f90 -c main.f
$ f90 cfctn.o main.o

$ a.out

$

IN MAIN: FLOAT1 = 1.6; FLOAT2 = 2.4

CALLING CFCTN WITH ARGUMENTS:

STR = "Fortran Character String"; LOG = T

In CFCTN: FLOAT1 = 1.6; FLOAT2 = 2.4

Arguments: str = "Fortran Character String"; log = 1

Returning from CFCTN with 123.4

BACK IN MAIN: CFCTN RETURNED 123.4

AND CHANGED THE TWO ARGUMENTS:

STR = "C Character String "; LOG = F

$

8.1.4 Calls between C and C++ Functions

The following requirements must be considered when making calls between
functions written in C and C++:

• In C++, the extern "C" storage class is required when declaring an
external function that is written in C or when declaring a C++ function that
is to be called from C. Normally the C++ compiler will mangle function
names to encode information about the function’s prototype in the external
name. This prevents direct access to these function names from a C function.
The extern "C" keyword will prevent the C++ compiler from performing
name mangling.

• The main function must be a C++ program.

• The program must be linked using the CCcommand.

Objects can be shared between C and C++. There are some C++ objects that are
not accessible to C functions (such as classes). The following object types can be
shared directly:

• Integral and floating types.

• Structures and unions that are declared identically in C and C++. In order
for structures and unions to be shared, they must be declared with identical
members in the identical order.

004–2179–001 119

Cray C/C++ Reference Manual

• Arrays and pointers to the above types.

In the following example, a C function (C_add_func) is called by the C++
main function:

C++ Main Program

#include <iostream.h>

extern "C" int C_add_func(int, int);
int global_int = 123;

main()

{

int res, i;

cout << "Start C++ main" << endl;

// Call C function to add two integers and return result.

cout << "Call C C_add_func" << endl;
res = C_add_func(10, 20);

cout << "Result of C_add_func = " << res << endl;

cout << "End C++ main << endl;

}

The C function (C_add_func) is as follows:

#include <stdio.h>

extern int global_int;

int C_add_func(int p1, int p2)

{

printf("\tStart C function C_add_func.\n");

printf("\t\tp1 = %d\n", p1);

printf("\t\tp2 = %d\n", p2);
printf("\t\tglobal_int = %d\n", global_int);

return p1 + p2;

}

The output from the execution of the calling sequence illustrated in the
preceding example is as follows:

120 004–2179–001

Interlanguage Communication [8]

Start C++ main

Call C C_add_func
Start C function C_add_func.

p1 = 10

p2 = 20

global_int = 123

Result of C_add_func = 30

End C++ main

004–2179–001 121

Implementation-defined Behavior [9]

This section describes compiler behavior that is defined by the implementation
according to the C and/or C++ standards. The standards require that the
behavior of each particular implementation be documented.

9.1 Implementation-defined Behavior

The C and C++ standards define implementation-defined behavior as behavior,
for a correct program construct and correct data, that depends on the
characteristics of the implementation. The behavior of the Cray Standard C and
Cray C++ compilers for these cases is summarized in this section.

9.1.1 Messages

All diagnostic messages issued by the Cray compilers are reported through the
UNICOS message system. For information on messages issued by the compilers
and for information about the UNICOS message system, see Appendix C, page
155.

9.1.2 Environment

When argc and argv are used as parameters to the main function, the array
members argv[0] through argv[argc-1] contain pointers to strings that are
set by the command shell. The shell sets these arguments to the list of words on
the command line used to invoke the compiler (the argument list). For further
information on how the words in the argument list are formed, refer to the
documentation on the shell in which you are running. For information on
UNICOS shells, see the sh (1), csh (1), or ksh (1) man pages.

A third parameter, char **envp , provides access to environment variables.
The value of the parameter is a pointer to the first element of an array of
null-terminated strings, that matches the output of the env (1) command. The
array of pointers is terminated by a null pointer.

The compiler does not distinguish between interactive devices and other,
noninteractive devices. The library, however, may determine that stdin ,
stdout , and stderr (cin , cout , and cerr in C++) refer to interactive devices
and buffer them accordingly. For further information, see the description of I/O
in the UNICOS System Libraries Reference Manual.

004–2179–001 123

Cray C/C++ Reference Manual

9.1.2.1 Identifiers

The identifier (as defined by the standards) is merely a sequence of letters and
digits. Specific uses of identifiers are called names.

In C, the compiler treats the first 255 characters of a name as significant,
regardless of whether it is an internal or external name. The case of names,
including external names, is significant. In C++, all characters of a name are
significant.

9.1.2.2 Types

Table 3 summarizes data types supported on Cray Research systems and the
characteristics of each type. Representation is the number of bits used to
represent values for each data type. Memory is the number of storage bits that
the data type occupies.

For the Cray Research implementation, size, in the context of the sizeof
operator, refers to the size allocated to store the operands in memory; it does
not refer to representation, as specified in Table 3. Thus, the sizeof operator
will return a size that is equal to the value in the Memory column of Table 3
divided by 8 (the number of bits in a byte).

124 004–2179–001

Implementation-defined Behavior [9]

Table 3. Cray Research systems data type mapping

Cray PVP systems Cray MPP systems

Type Representation (bits) Memory (bits) Representation
(bits)

Memory (bits)

bool
(C++ only)

8 8 8 8

char 8 8 8 8

wchar_t
(C++ only)

64 64 64 64

short 32
CRAY T90: 46/64
(See Footnote 1)

64 32 32

int 46/64
(See Footnote 1)

64 64 64

long 64 64 64 64

long long
(See Footnote 2)

64 64 64 64

float 64 64 32 32

double 64 64 64 64

long double 128 128 64 64

float complex
(See Footnote 3)

128
(64 each part)

128 64
(32 each part)

64

double complex
(See Footnote 3)

128
(64 each part)

128 128
(64 each part)

128

long double
complex (See
Footnote 3)

256
(128 each part)

256 128
(64 each part)

128

void and char
pointers

64 64 64 64

004–2179–001 125

Cray C/C++ Reference Manual

Cray PVP systems Cray MPP systems

Type Representation (bits) Memory (bits) Representation
(bits)

Memory (bits)

Other pointers 32
CRAY T90: 64

64 64 64

Footnote 1: Depends on use of the -h [no]fastmd option. This option is described in Section 2.14.2, page 22.
Footnote 2: Available in extended mode only.
Footnote 3: Cray Research extension (Cray Standard C only).

126 004–2179–001

Implementation-defined Behavior [9]

9.1.2.3 Characters

The full 8-bit ASCII code set can be used in source files. Characters not in the
character set defined in the standard are permitted only within character
constants, string literals, and comments. The -h [no]calchars option allows
the use of the @sign and $ sign in identifier names. For more information on
the -h [no]calchars option, see Section 2.7.3, page 11.

A character consists of 8 bits. Up to 8 characters can be packed into a Cray
word. A plain char type, one that is declared without a signed or unsigned
keyword, is treated as an unsigned type.

Character constants and string literals can contain any characters defined in the
8-bit ASCII code set. The characters are represented in their full 8-bit form. A
character constant can contain up to 8 characters. The integer value of a
character constant is the value of the characters packed into a word from left to
right, with the result right-justified, as shown in the following table:

Character constant Integer value

’a’ 0x61

’ab’ 0x6162

In a character constant or string literal, if an escape sequence is not recognized,
the \ character that initiates the escape sequence is ignored, as shown in the
following table:

Character constant Integer value Explanation

’\a’ 0x7 Recognized as the ASCII BEL
character

’\8’ 0x38 Not recognized; ASCII value for 8

’\[’ 0x5b Not recognized; ASCII value for [

’\c’ 0x63 Not recognized; ASCII value for c

9.1.2.4 Wide Characters

Wide characters are treated as signed 64-bit integer types. Wide character
constants cannot contain more than one multibyte character. Multibyte
characters in wide character constants and wide string literals are converted to

004–2179–001 127

Cray C/C++ Reference Manual

wide characters in the compiler by calling the mbtowc (3) function. The current
locale in effect at the time of compilation determines the method by which
mbtowc converts multibyte characters to wide characters, and the shift states
required for the encoding of multibyte characters in the source code. If a wide
character, as converted from a multibyte character or as specified by an escape
sequence, cannot be represented in the extended execution character set, it is
truncated.

9.1.2.5 Integers

All integral values are represented in a twos complement format. For
representation and memory storage requirements for integral types on Cray
Research systems, see Table 3, page 125.

When an integer is converted to a shorter signed integer, and the value cannot
be represented, the result is the truncated representation treated as a signed
quantity. When an unsigned integer is converted to a signed integer of equal
length, and the value cannot be represented, the result is the original
representation treated as a signed quantity.

The bitwise operators (unary operator ~ and binary operators <<, >>, &, ^ , and
|) operate on signed integers in the same manner in which they operate on
unsigned integers. The result of E1 >> E2, where E1 is a negative-valued
signed integral value, is E1 right-shifted E2 bit positions; vacated bits are filled
with 0’s on UNICOS systems and 1’s on UNICOS/mk systems. On
UNICOS/mk systems, this behavior can be modified by using the
-h nosignedshifts option (see Section 2.7.4, page 11).

On UNICOS/mk systems, the shift operators (>> and <<) use only the
rightmost six bits of the second operand. For example, shifting by 65 is the
same as shifting by 1. On CRAY Y-MP systems, bits higher than the sixth bit
are not ignored. Values higher than 63 cause the result to be 0.

The result of the / operator is the largest integer less than or equal to the
algebraic quotient when either operand is negative and the result is a
nonnegative value. If the result is a negative value, it is the smallest integer
greater than or equal to the algebraic quotient. The / operator behaves the
same way in C/C++ as in Fortran.

The sign of the result of the %operator is the sign of the first operand.

Integer overflow is ignored. Because some integer arithmetic uses the
floating-point instructions on UNICOS systems, floating-point overflow can
occur during integer operations. Division by 0 and all floating-point exceptions,
if not detected as an error by the compiler, can cause a run-time abort.

128 004–2179–001

Implementation-defined Behavior [9]

9.1.2.6 Floating-point Arithmetic

Cray Research systems use either Cray floating-point arithmetic or IEEE
floating-point arithmetic. These types of floating-point representation are
described in the sections that follow.

9.1.2.6.1 Cray Floating-point Representation

Types float and double represent Cray single-precision (64-bit) floating-point
values; long double represents Cray double-precision (128-bit) floating-point
values.

An integral number that is converted to a floating-point number that cannot
exactly represent the original value is truncated toward 0. A floating-point
number that is converted to a narrower floating-point number is also truncated
toward 0.

Floating-point arithmetic depends on implementation-defined ranges for types
of data. The values of the minimums and maximums for these ranges are
defined by macros in the standard header file float.h . All floating-point
operations on operands that are within the defined range yield results that are
also in this range if the true mathematical result is in the range. The results are
accurate to within the ability of the hardware to represent the true value.

The maximum positive value for types float , double , and long double is
approximately as follows:

2.7 � 102456

Several math functions return this upper limit if the true value equals or
exceeds it.

The minimum positive value for types float , double , and long double is
approximately as follows:

3.67 � 10-2466

These numbers define a range that is slightly smaller than the value that can be
represented by Cray Research hardware, but use of numbers outside this range
may not yield predictable results. For exact values, use the values defined in
the header file, float.h .

A floating-point value, when rounded off, can be accurately represented to
approximately 14 decimal places for types float and double , and to
approximately 28 decimal places for type long double as determined by the
following equation:

004–2179–001 129

Cray C/C++ Reference Manual

number of decimal digits =
number of bits

log210:0

(9.1)

Digits beyond these precisions may not be accurate. It is safest to assume only
14 or 28 decimal places of accuracy.

Epsilon, the difference between 1.0 and the smallest value greater than 1.0 that is
representable in the given floating-point type, is approximately 7.1 � 10-15 for
types float and double , and approximately 2.5 � 10-29 for type long
double .

9.1.2.6.2 IEEE Floating-point Representation

On UNICOS/mk systems, float represents IEEE single-precision (32-bit)
floating-point values; double and long double represent double-precision
(64-bit) floating-point values. IEEE extended double precision (128–bit) is not
available on UNICOS/mk systems.

On UNICOS systems with IEEE floating-point hardware, float and double
represent IEEE double-precision (64-bit) floating-point values. The
long double represents IEEE extended double-precision (128-bit)
floating-point values. IEEE single-precision (32-bit) is not available on UNICOS
systems.

An integral number that is converted to a floating-point number that cannot
exactly represent the original value is rounded according to the current
rounding mode. A floating-point number that is converted to a floating-point
number with fewer significant digits also is rounded according to the current
rounding mode on UNICOS/mk systems; on UNICOS systems, the number is
rounded to closest, but not in an IEEE round-to-nearest fashion.

Floating-point arithmetic depends on implementation-defined ranges for types
of data. The values of the minimums and maximums for these ranges are
defined by macros in the standard header file, float.h . All floating-point
operations on operands that are within the defined range yield results that are
also in this range if the true mathematical result is in the range. The results are
accurate to within the ability of the hardware to represent the true value.

The maximum positive values are approximately as follows:

3.4 � 1038 Single (32 bits)

1.8 � 10308 Double (64 bits)

130 004–2179–001

Implementation-defined Behavior [9]

1.2 � 104932 Extended double (128 bits)

The minimum positive values are approximately as follows:

1.8 � 10–38 Single (32 bits)

2.2 � 10–308 Double (64 bits)

3.4 � 10–4932 Extended double (128 bits)

For exact values, use the macros defined in the header file, float.h .

Rounding of 32 and 64 bit floating-point arithmetic is determined by the current
rounding mode. The 128 bit floating-point arithmetic is rounded to the closest,
without regard to the rounding mode. A floating-point value, when rounded
off, can be accurately represented to approximately 7 decimal places for
single-precision types, approximately 16 decimal places for double-precision
types, and approximately 34 decimal places for extended double-precision types
as determined by the following equation:

number of decimal digits =
number of bits

log210:0

(9.2)

Digits beyond these precisions may not be accurate.

Epsilon, the difference between 1.0 and the smallest value greater than 1.0 that is
representable in the given floating-point type, is approximately as follows:

1.2 � 10–7 Single (32 bits)

2.2 � 10–16 Double (64 bits)

1.9 � 10–34 Extended double (128 bits)

Upon entering the main function at the beginning of the program execution,
the rounding mode is set to round to nearest, all floating-point exception status
flags are cleared, and traps are enabled for overflow, invalid operation, and
division-by-zero exceptions. Traps are disabled for all other exceptions. On
CRAY T90 systems with IEEE floating-point hardware the default rounding
mode and the trap modes can be specified at program startup by using the
cpu (8) command (see the cpu man page for more information).

9.1.2.7 Arrays and Pointers

An unsigned int value can hold the maximum size of an array. The type
size_t is defined to be a typedef name for unsigned int in the headers:

004–2179–001 131

Cray C/C++ Reference Manual

malloc.h , stddef.h , stdio.h , stdlib.h , string.h , and time.h . If more
than one of these headers is included, only the first defines size_t .

A type int can hold the difference between two pointers to elements of the
same array. The type ptrdiff_t is defined to be a typedef name for int in
the header stddef.h .

On all Cray Research systems, if a pointer type’s value is cast to a signed or
unsigned int or long int , and then cast back to the original type’s value, the
two pointer values will compare equal.

Pointers on UNICOS systems differ from pointers on UNICOS/mk systems. The
sections that follow describe pointer implementation on each type of system.

9.1.2.7.1 Pointers on UNICOS Systems

Although a pointer value can be stored in an object of integer type, an
operation may give different results when performed on the same value treated
as an integer or as a pointer. An integer result should not be used as a pointer.
For example, do not assume that adding 5 to an integer is the same as adding 5
to a pointer, because the result is affected by the kind of pointer used in the
operation. In particular, results may differ from those on a system using a
simpler representation of pointers, such as UNICOS/mk systems.

Pointers other than character pointers are internally represented just like
integers: as a single 64-bit field. Character pointers use one of the formats
shown in Figure 1, depending on the size of A registers.

63 58 57 0

Offset Address

32 31 0

Unused (zeros) Address

63 58 57

Offset

a10856

CRAY T90 systems

All other Cray PVP systems

Figure 1. Character pointer format

132 004–2179–001

Implementation-defined Behavior [9]

Converting a 64-bit integer to a character pointer type results in a pointer to the
byte specified by the value in the offset field of the word specified in the
address field.

9.1.2.7.2 Pointers on UNICOS/mk systems

Pointers on UNICOS/mk systems are byte pointers. Byte pointers use the same
internal representation as integers; a byte pointer counts the numbers of bytes
from the first address.

A pointer can be explicitly converted to any integral type large enough to hold
it. The result will have the same bit pattern as the original pointer. Similarly,
any value of integral type can be explicitly converted to a pointer. The resulting
pointer will have the same bit pattern as the original integral type.

9.1.2.8 Registers

Use of the register storage class in the declaration of an object has no effect on
whether the object is placed in a register. The compiler performs register
assignment aggressively; that is, it automatically attempts to place as many
variables as possible into registers.

9.1.2.9 Classes, Structures, Unions, Enumerations, and Bit Fields

Accessing a member of a union by using a member of a different type results in
an attempt to interpret, without conversion, the representation of the value of
the member as the representation of a value in the different type.

Members of a class or structure are packed into Cray words from left to right.
Padding is appended to a member to correctly align the following member, if
necessary. Member alignment is based on the size of the member:

• For a member bitfield of any size, alignment is any bit position that allows
the member to fit entirely within a 64–bit word.

• For a member with a size less than 64 bits, alignment is the same as the size.
For example, a char has a size and alignment of 8 bits; a float or short
on UNICOS/mk systems has a size and alignment of 32 bits.

• For a member with a size equal to or greater than 64 bits, alignment is 64
bits.

• For a member with array type, alignment is equal to the alignment of the
element type.

004–2179–001 133

Cray C/C++ Reference Manual

A plain int type bit field is treated as an unsigned int bit field.

The values of an enumeration type are represented in the type signed int for
C; they are a separate type in C++.

9.1.2.10 Qualifiers

When an object that has volatile -qualified type is accessed, it is simply a
reference to the value of the object. If the value is not used, the reference need
not result in a load of the value from memory.

9.1.2.11 Declarators

A maximum of 12 pointer, array, and/or function declarators are allowed to
modify an arithmetic, structure, or union type.

9.1.2.12 Statements

The compiler has no fixed limit on the maximum number of case values
allowed in a switch statement.

The C++ compiler parses asm statements for correct syntax, but otherwise
ignores them.

9.1.2.13 Exceptions

In C++, when an exception is thrown, the memory for the temporary copy of
the exception being thrown is allocated on the stack and a pointer to the
allocated space is returned.

9.1.2.14 System Function Calls

See the exit (3) man page for a description of the form of the unsuccessful
termination status that is returned from a call to exit .

9.1.3 Preprocessing

The value of a single-character constant in a constant expression that controls
conditional inclusion matches the value of the same character in the execution

134 004–2179–001

Implementation-defined Behavior [9]

character set. No such character constant has a negative value. For each, ’a’
has the same value in the two contexts:

#if ’a’ == 97
if (’a’ == 97)

The -I option and the method for locating included source files is described in
Section 2.19.1, page 31.

The source file character sequence in a #include directive must be a valid
UNICOS file name or path name. A #include directive may specify a file
name by means of a macro, provided the macro expands into a source file
character sequence delimited by double quotes or < and > delimiters, as follows:

#define myheader "./myheader.h"

#include myheader

#define STDIO <stdio.h>

#include STDIO

The macros __DATE__ and __TIME__ contain the date and time of the
beginning of translation. For more information, see the description of the
predefined macros in Chapter 6, page 95.

The #pragma directives are described in section Chapter 4, page 59.

004–2179–001 135

Libraries and Loaders [A]

This appendix describes the libraries that are available with the Cray C/C++
Programming Environment and the UNICOS loaders, ld and cld .

A.1 UNICOS Standard C and C++ Libraries

UNICOS libraries to support Cray Standard C and Cray C++ are automatically
available on all Cray Research systems when you use the CC(1), cc (1), or c89 (1)
commands to compile your programs. These commands automatically issue the
appropriate directives to load the program with the appropriate functions. If
your program strictly conforms to the C or C++ standards, you do not need to
know library names and locations. If your program requires other libraries or if
you want direct control over the loading process, more knowledge of loaders
and libraries is necessary.

A.2 UNICOS Loaders

When you issue the cc , CC, or c89 commands to invoke the compiler and the
program compiles without errors, the loader is called. Specifying the -c option
on the command line produces relocatable object files without calling the
loader. These relocatable object files can then be used as input to the loader
command by specifying the file names on the appropriate loader command line.

For example, the following command line compiles a file called target.c and
produces the relocatable object file called target.o in your current working
directory.

cc -c target.c

You can then use file target.o as input to the loader or save the file to use
with other relocatable object files to compile and create a linked executable file
(a.out by default).

Because of the special code needed to handle templates, constructors,
destructors, and other C++ language features, object files generated by using
the CCcommand should be linked using the CCcommand. To link C++ object
files using one of the loader commands (ld or cld), the -h keep= files option
(see Section 2.7.1, page 10) must be specified on the command line when
compiling source files.

004–2179–001 137

Cray C/C++ Reference Manual

The UNICOS loaders, ld and cld , can be accessed by using one of the
following methods:

• You can access the loader directly by using the ld or cld command. You
can also use the segldr command to access ld .

• You can let the cc , CC, or c89 command choose the loader. This method
may cause slower loading and use more memory, but it also has the
following advantages:

– You do not need to know the loader command-line interface.

– You do need to know which loader to call for the targeted machine.

– You do not need to worry about the details of which libraries to load, or
the order in which to load them.

– In C++, you do not need to worry about template instantiation
requirements or about loading the compiler-generated static constructors
and destructors.

A.2.1 Loader for UNICOS Systems (SEGLDR)

The default loader on all UNICOS systems is SEGLDR. The CC, cc , and c89
commands call SEGLDR by using the ld (1) command. Because SEGLDR was
designed specifically for use with Cray language processors and UNICOS
systems, it offers several advantages. Despite its name, SEGLDR produces both
segmented and nonsegmented executable programs and is an efficient and
full-featured loader for all types of programs. You can control SEGLDR
operations with options on the segldr command line or directives in a
directives file. For more information, see the segldr (1) man page in the
UNICOS User Commands Reference Manual, and the Segment Loader (SEGLDR)
and ld Reference Manual.

A.2.2 Loader for UNICOS/mk Systems (cld (1))

The default loader on UNICOS/mk systems is cld . The CC, cc , and c89
commands call cld by using the cld command. Because cld was designed
specifically for use with Cray language processors and UNICOS/mk systems, it
offers several advantages. You can control cld operations with options on the
cld command line or directives in a directives file. For more information, see
the cld (1) man page.

138 004–2179–001

Cray C/C++ Dialects [B]

This appendix details the features of the C and C++ languages that are accepted
by the Cray Standard C and Cray C++ compilers, including certain language
dialects and anachronisms. Users should be aware of these details, especially
users who are porting codes from other environments.

B.1 C++ Conformance

The Cray C++ compiler accepts the C++ language as defined by The Annotated
C++ Reference Manual (ARM) by Ellis and Stroustrup, Addison-Wesley, 1990,
including templates, exceptions, and the anachronisms of Chapter 18. Many
features have been updated to match the specification in the X3J16/WG21
Working Paper.

The Cray C++ compiler also has a cfront compatibility mode, which
duplicates a number of features and bugs of cfront (Cray C++ 1.0 is based on
cfront). Complete compatibility is not guaranteed or intended. The mode
allows programmers who have used cfront features to continue to compile
their existing code. Command-line options are also available to enable and
disable anachronisms and strict standard-conformance checking. The
command-line options are described in Chapter 2, page 3.

B.1.1 Supported Features

The following features, which are in the X3J16/WG21 Working Paper (but are not
in The Annotated C++ Reference Manual), are supported:

• The dependent statement of an if , while , do-while , or for is considered
to be a scope, and the restriction on having such a dependent statement be a
declaration is removed.

• The expression tested in an if , while , do-while , or for , as the first
operand of a ? operator, or as an operand of the &&, || , or ! operators may
have a pointer-to-member type or a class type that can be converted to a
pointer-to-member type in addition to the scalar cases permitted by the
ARM.

• Qualified names are allowed in elaborated type specifiers.

• A global-scope qualifier is allowed in member references of the form
x.::A::B and p->::A::B .

004–2179–001 139

Cray C/C++ Reference Manual

• The precedence of the third operand of the ? operator is changed.

• If control reaches the end of the main() routine, and the main() routine
has an integral return type, it is treated as if a return 0; statement was
executed.

• Pointers to arrays with unknown bounds as parameter types are diagnosed
as errors.

• A functional-notation cast of the form A() can be used even if A is a class
without a (nontrivial) constructor. The temporary that is created gets the
same default initialization to zero as a static object of the class type.

• A cast can be used to select one out of a set of overloaded functions when
taking the address of a function.

• Template friend declarations and definitions are permitted in class
definitions and class template definitions.

• Type template parameters are permitted to have default arguments.

• Function templates may have nontype template parameters.

• A reference to const volatile cannot be bound to an rvalue .

• Qualification conversions such as conversion from T** to
T const * const are allowed.

• Digraphs are recognized.

• Operator keywords (for example, and or bitand) are recognized.

• Static data member declarations can be used to declare member constants.

• wchar_t is recognized as a keyword and a distinct type.

• bool is recognized.

• RTTI (run-time type identification), including dynamic_cast and the
typeid operator, is implemented.

• Declarations in tested conditions (within if , switch , for , and while
statements) are supported.

• Array new and delete are implemented.

• New-style casts (static_cast , reinterpret_cast , and const_cast)
are implemented.

140 004–2179–001

Cray C/C++ Dialects [B]

• Definition of a nested class outside its enclosing class is allowed.

• mutable is accepted on nonstatic data member declarations.

• Namespaces are implemented, including using declarations and directives.
Access declarations are broadened to match the corresponding using
declarations.

• Explicit instantiation of templates is implemented.

• The typename keyword is recognized.

• explicit is accepted to declare nonconverting constructors.

• The scope of a variable declared in the for-init-statement of a for
loop is the scope of the loop (not the surrounding scope).

• Member templates are implemented.

• The new specialization syntax (using template <>) is implemented.

• Cv-qualifiers are retained on rvalues (in particular, on function return
values).

• The distinction between trivial and nontrivial constructors has been
implemented, as has the distinction between process overlay directives
(PODs) and non-PODs with trivial constructors.

• The linkage specification is treated as part of the function type (affecting
funcation overloading and implicit conversions).

• A typedef name can be used in an explicit destructor call.

• Placement delete is supported.

• An array allocated via a placement new can be deallocated via delete.

• enum types are considered to be nonintegral types.

• Partial specification of class templates is implemented.

• Partial ordering of function templates is implemented.

• Function declarations that match a function template are regarded as
independent functions, not as “guiding declarations” that are instances of
the template.

• It is possible to overload operators using functions that take enum types and
no class types.

004–2179–001 141

Cray C/C++ Reference Manual

• Explicit specification of function template arguments is supported.

• Unnamed template parameters are supported.

• The new lookup rules for member references of the form x.A::B and
p->A::B are supported.

• The notation :: template (and -->template , etc.) is supported.

B.1.2 Unsupported Features

The following features, which are in the X3J16/WG21 Working Paper (but are not
in The Annotated C++ Reference Manual), are not supported:

• extern inline functions are not supported.

• Covariant return types on overriding virtual functions are not supported.

• enum types cannot contain values larger than can be contained in an int
type.

• reinterpret_cast does not allow casting a pointer to a member of one
class to a pointer to a member of another class if the classes are unrelated.

• Two-phase name binding in templates as described in the Working Paper, is
not implemented.

• In a reference of the form f()->g() , with g being a static member function,
f() is not evaluated. The Working Paper requires that f() be evaluated.

• Class name injection is not implemented.

• Putting a try/catch around the initializers and body of a constructor is
not implemented.

• Template template parameters are not implemented.

• Koenig lookup of function names on all calls is not implemented.

• Finding friend functions of the argument class types on name lookup on the
function name in calls is not implemented.

• String literals do not have const type.

• Universal character set escapes (e.g., \uabcd) are not implemented.

• The export keyword for templates is not implemented.

142 004–2179–001

Cray C/C++ Dialects [B]

B.2 C++ Anachronisms Accepted

C++ anachronisms are enabled by using the -h anachronisms command-line
option (see Section 2.4.4, page 7). When anachronisms are enabled, the
following anachronisms are accepted:

• overload is allowed in function declarations. It is accepted and ignored.

• Definitions are not required for static data members that can be initialized
by using the default initialization. The anachronism does not apply to static
data members of template classes; they must always be defined.

• The number of elements in an array can be specified in an array delete
operation. The value is ignored.

• A single operator++() and operator--() function can be used to
overload both prefix and postfix operations.

• The base class name can be omitted in a base class initializer if there is only
one immediate base class.

• Assignment to the this pointer in constructors and destructors is allowed.
This is only allowed if anachronisms are enabled and the assignment to
this configuration parameter is enabled.

• A bound function pointer (a pointer to a member function for a given
object) can be cast to a pointer to a function.

• A nested class name may be used as a nonnested class name if no other
class of that name has been declared. The anachronism is not applied to
template classes.

• A reference to a non-const type may be initialized from a value of a
different type. A temporary is created, it is initialized from the (converted)
initial value, and the reference is set to the temporary.

• A reference to a non-const class type may be initialized from an rvalue of
the class type or a derived class thereof. No (additional) temporary is used.

• A function with old-style parameter declarations is allowed and can
participate in function overloading as though it were prototyped. Default
argument promotion is not applied to parameter types of such functions
when checking for compatibility, therefore, the following statements declare
the overloading of two functions named f :

004–2179–001 143

Cray C/C++ Reference Manual

int f(int);

int f(x) char x; { return x; }

Note: In C this code is legal, but has a different meaning. A tentative
declaration of f is followed by its definition.

B.3 Extensions Accepted in Normal C++ Mode

The following C++ extensions are accepted (except when strict standard
conformance mode is enabled, in which case a warning or caution message may
be issued):

• A friend declaration for a class can omit the class keyword, as shown in
the following example:

class B;

class A {

friend B; // Should be "friend class B"

};

• Constants of scalar type can be defined within classes, as shown in the
following example:

class A {

const int size = 10;

int a[size];
};

• In the declaration of a class member, a qualified name can be used, as
shown in the following example:

struct A {

int A::f(); // Should be int f();

}

• The restrict type qualifier for pointer, reference, and pointer-to-member
types is allowed. See Section 3.1, page 41, for more information on restricted
pointers.

• An assignment operator declared in a derived class with a parameter type
matching one of its base classes is treated as a “default” assignment
coperator; that is, such a declaration blocks the implicit generation of a copy

144 004–2179–001

Cray C/C++ Dialects [B]

assignment operator. (This is cfront behavior that is known to be relied
upon in at least one widely used library.) The following is an example:

struct A { };

struct B : public A {

B& operator=(A&);

};

By default, as well as in cfront -compatibility mode, there will be no
implicit declaration of B::operator=(const B&) , whereas in strict-ANSI
mode, B::operator=(A&) is not a copy assignment operator and
B::operator=(const B&) is implicitly declared.

• Implicit type conversion between a pointer to an extern "C" function and
a pointer to an extern "C++" function is permitted. The following is an
example:

extern "C" void f(); // f’s type has extern "C" linkage

void (*pf)() // pf points to an extern "C++" function

= &f; // error unless implicit conversion allowed

B.4 Extensions Accepted in C or C++ Mode

The following extensions are accepted in C or C++ mode except when strict
standard conformance modes is enabled, in which case a warning or caution
message may be issued.

• The special lint comments /*ARGSUSED*/ , /*VARARGS*/ (with or without
a count of nonvarying arguments), and /*NOTREACHED*/ are recognized.

• A translation unit (input file) can contain no declarations.

• Comment text can appear at the ends of preprocessing directives.

• Bit fields can have base types that are enum or integral types in addition to
int and unsigned int . This corresponds to A.6.5.8 in the ANSI Common
Extensions appendix.

• Static functions can be declared in function and block scopes. Their
declarations are moved to the file scope.

• enum tags can be incomplete as long as the tag name is defined and
resolved by specifying the brace-enclosed list later.

• An extra comma is allowed at the end of an enum list.

004–2179–001 145

Cray C/C++ Reference Manual

• The final semicolon preceding the closing of a struct or union type
specifier can be omitted.

• A label definition can be immediately followed by a right brace (]).
(Normally, a statement must follow a label definition.)

• An empty declaration (a semicolon preceded by nothing) is allowed.

• An initializer expression that is a single value and is used to initialize an
entire static array, struct, or union does not need to be enclosed in braces.
ANSI C requires braces.

• In an initializer, a pointer constant value can be cast to an integral type if the
integral type is large enough to contain it.

• The address of a variable with register storage class may be taken.

• In an integral constant expression, an integer constant can be cast to a
pointer type and then back to an integral type.

• In duplicate size and sign specifiers (for example, short short or
unsigned unsigned) the redundancy is ignored.

• Benign redeclarations of typedef names are allowed. That is, a typedef
name can be redeclared in the same scope with the same type.

• Dollar sign ($) and at sign (@) characters can be accepted in identifiers by
using the -h calchars command-line option. This is not allowed by
default.

• Numbers are scanned according to the syntax for numbers rather than the
pp-number syntax. Thus, 0x123e+1 is scanned as three tokens instead of
one token that is not valid. If the -h conform option is specified, the
pp-number syntax is used.

• Assignment and pointer differences are allowed between pointers to types
that are interchangeable but not identical, for example, unsigned char *
and char * . This includes pointers to integral types of the same size (for
example, int * and long *). Assignment of a string constant to a pointer
to any kind of character is allowed without a warning.

• Assignment of pointer types is allowed in cases where the destination type
has added type qualifiers that are not at the top level (for example, int **
to const int **). Comparisons and pointer difference of such pairs of
pointer types are also allowed.

146 004–2179–001

Cray C/C++ Dialects [B]

• In operations on pointers, a pointer to void is always implicitly converted
to another type if necessary, and a null pointer constant is always implicitly
converted to a null pointer of the right type if necessary. In ANSI C, these
are allowed by some operators, and not by others (generally, where it does
not make sense).

• Pointers to different function types may be assigned or compared for
equality (==) or inequality (!=) without an explicit type cast. This extension
is not allowed in C++ mode.

• A pointer to void can be implicitly converted to or from a pointer to a
function type.

• Restricted pointers are allowed. For more information, see Section 3.1, page
41.

• External entities declared in other scopes are visible:

void f1(void) { extern void f(); }

void f2() { f(); /* Using out of scope declaration */ }

• In C mode, end-of-line comments (//) are supported.

• The long long and unsigned long long types are accepted.

• Variable length arrays (VLAs) are supported in C mode.

• A non-lvalue array expression is converted to a pointer to the first element
of the array when it is subscripted or similarly used.

B.5 C++ Extensions Accepted in cfront Compatibility Mode

The cfront compatibility mode is enabled by the -h cfront command-line
option (Cray C++ 1.0 is based on cfront). The following extensions are
accepted in cfront compatibility mode:

• Type qualifiers on the this parameter are dropped in contexts such as in
the following example:

struct A {

void f() const;

};

void (A::*fp)() = &A::f;

This is a safe operation. A pointer to a const function can be put into a
pointer to non-const , because a call using the pointer is permitted to

004–2179–001 147

Cray C/C++ Reference Manual

modify the object and the function pointed to will not modify the object.
The opposite assignment would not be safe.

• Conversion operators that specify a conversion to void are allowed.

• A nonstandard friend declaration can introduce a new type. A friend
declaration that omits the elaborated type specifier is allowed in default
mode, however, in cfront mode the declaration can also introduce a new
type name. An example follows:

struct A {

friend B;
};

• The third operator of the ? operator is a conditional expression instead of an
assignment expression as it is in the current X3J16/WG21 Working Paper.

• A reference to a pointer type may be initialized from a pointer value without
use of a temporary even when the reference pointer type has additional type
qualifiers above those present in the pointer value. For example:

int *p;

const int *&r = p; // No temporary used

• A reference can be initialized to NULL.

• Because cfront does not check the accessibility of types, access errors for
types are issued as warnings instead of errors.

• When matching arguments of an overloaded function, a const variable
with a value of 0 is not considered to be a null pointer constant. In general,
in overload resolution, a null pointer constant must be spelled “0” to be
considered a null pointer constant (e.g., ’\0’ is not considered a null pointer
constant).

• An alternate form of declaring pointer-to-member-function variables is
supported, as shown in the following example:

148 004–2179–001

Cray C/C++ Dialects [B]

struct A {

void f(int);
static void f(int);

typedef void A::T3(int); // nonstd typedef decl

typedef void T2(int); // std typedef

};

typedef void A::T(int); // nonstd typedef decl

T* pmf = &A::f; // nonstd ptr-to-member decl
A::T2* pf = A::sf; // std ptr to static mem decl

A::T3* pmf2 = &A::f; // nonstd ptr-to-member decl

In this example, T is construed to name a routine type for a nonstatic
member function of class A that takes an int argument and returns void ;
the use of such types is restricted to nonstandard pointer-to-member
declarations. The declarations of T and pmf in combination are equivalent to
the following single standard pointer-to-member declaration:

void (A::* pmf)(int) = &A::f;

A nonstandard pointer-to-member declaration that appears outside of a class
declaration, such as the declaration of T, is normally not valid and would
cause an error to be issued. However, for declarations that appear within a
class declaration, such as A::T3 , this feature changes the meaning of a valid
declaration. cfront version 2.1 accepts declarations, such as T, even when
A is an incomplete type; so this case is also accepted.

• Protected member access checking is not done when the address of a
protected member is taken. For example:

class B { protected: int i; };

class D : public B { void mf()};

void D::mf() {

int B::* pmi1 = &B::i; // error, OK in cfront mode

int D::* pmi2 = &D::i; // OK

}

Note: Protected member access checking for other operations (such as
everything except taking a pointer-to-member address) is done normally.

• The destructor of a derived class can implicitly call the private destructor of
a base class. In default mode, this is an error but in cfront mode it is
reduced to a warning. For example:

004–2179–001 149

Cray C/C++ Reference Manual

class A {

~A();
};

class B : public A {

~B();

};

B::~B(){} // Error except in cfront mode

• When disambiguation requires deciding whether something is a parameter
declaration or an argument expression, the pattern
type-name-or-keyword(identifier...) is treated as an argument. For
example:

class A { A(); };

double d;

A x(int(d));

A(x2);

By default, int(d) is interpreted as a parameter declaration (with
redundant parentheses), and so x is a function; but in cfront compatibility
mode int(d) is an argument and x is a variable.

The declaration A(x2) is also misinterpreted by cfront . It should be
interpreted as the declaration of an object named x2 , but in cfront mode it
is interpreted as a function style cast of x2 to the type A.

Similarly, the following declaration declares a function named xzy , that
takes a parameter of type function taking no arguments and returning an
int . In cfront mode, this is interpreted as a declaration of an object that is
initialized with the value int() , which evaluates to 0.

int xyz(int());

• A named bit field can have a size of 0. The declaration is treated as though
no name had been declared.

• Plain bit fields (such as bit fields declared with a type of int) are always
unsigned.

• The name given in an elaborated type specifier can be a typedef name that
is the synonym for a class name. For example:

typedef class A T;

class T *pa; // No error in cfront mode

150 004–2179–001

Cray C/C++ Dialects [B]

• No warning is issued on duplicate size and sign specifiers, as shown in the
following example:

short short int i; // No warning in cfront mode

• Virtual function table pointer-update code is not generated in destructors for
base classes of classes without virtual functions, even if the base class virtual
functions might be overridden in a further derived class. For example:

struct A {

virtual void f() {}

A() {}
~A() {}

};

struct B : public A {

B() {}

~B() {f();} // Should call A::f according to ARM 12.7

};
struct C : public B {

void f() {}

} c;

In cfront compatibility mode, B::~B calls C::f .

• An extra comma is allowed after the last argument in an argument list. For
example:

f(1, 2,);

• A constant pointer-to-member function can be cast to a pointer-to-function,
as in the following example. A warning is issued.

struct A {int f();};

main () {

int (*p)();
p = (int (*)())A::f; // Okay, with warning

}

• Arguments of class types that allow bitwise copy construction but also have
destructors are passed by value like C structures, and the destructor is not
called on the copy. In normal mode, the class object is copied into a
temporary, the address of the temporary is passed as the argument, and the
destructor is called on the temporary after the call returns. Because the
argument is passed by value instead of by address, code like this compiled
in cfront mode is not calling-sequence compatible with the same code

004–2179–001 151

Cray C/C++ Reference Manual

compiled in normal mode. In practice, this is not much of a problem, since
classes that allow bitwise copying usually do not have destructors.

• A union member may be declared to have the type of a class for which the
user has defined an assignment operator (as long as the class has no
constructor or destructor). A warning is issued.

• When an unnamed class appears in a typedef declaration, the typedef
name may appear as the class name in an elaborated type specifier. For
example:

typedef struct { int i, j; } S;
struct S x; // No error in cfront mode

• Two member functions may be declared with the same parameter types
when one is static and the other is nonstatic with a function qualifier. For
example:

class A {

void f(int) const;

static void f(int); // No error in cfront mode

};

• The scope of a variable declared in the for-init-statement is the scope
to which the for statement belongs. For example:

int f(int i) {

for (int j = 0; j < i; ++j) { /* ... */ }

return j; // No error in cfront mode
}

• Function types differing only in that one is declared extern "C" and the
other extern "C++" can be treated as identical:

typedef void (*PF)();
extern "C" typedef void (*PCF)();

void f(PF);

void f(PCF);

By contrast, in standard C++, PF and PCF are different and incompatible
types; PF is a pointer to an extern "C++" function whereas PCF is a
pointer to an extern "C" function; and the two declaractions of f create
an overload set.

• Functions declared inline have internal linkage.

152 004–2179–001

Cray C/C++ Dialects [B]

• enum types are regarded as integral types.

• An uninitialized const object of non-POD class type is allowed even if its
default constructor is implicitly declared as in the following example:

struct A { virtual void f(); int i; };
const A a;

• A function parameter type is allowed to involve a pointer or reference to
array of unknown bounds.

004–2179–001 153

Compiler Messages [C]

This appendix describes how to use the message system to control and use
messages issued by the compiler. Explanatory texts for messages can be
displayed online through the use of the explain (1) command, described in the
following section.

Messages and explanations are contained in message catalogs that can be
locally modified and printed. If your use of a Cray system is normally through
batch access, contact your site administrator to obtain a hard copy listing of
messages and explanations.

For further information about the message system, see the Cray Message System
Programmer’s Guide, or the message system section of the UNICOS System
Libraries Reference Manual. The introduction to that section can be viewed online
as the message (3) man page.

C.1 Expanding Messages with the explain Command

If you are using a Cray Research system interactively, use the explain (1)
command to display an explanation of any message issued by the compiler.
The command takes as an argument the message number, including the
number’s prefix. The prefix for Cray Standard C and Cray C++ is CC.

In the following sample dialog, the cc command invokes the compiler on
source file bug.c . Message CC-24 is displayed. The explain (1) command
displays the expanded explanation for this message.

004–2179–001 155

Cray C/C++ Reference Manual

> cc bug.c

CC-24 cc: ERROR File = bug.c, Line = 1
An invalid octal constant is used.

int i = 018;

^

1 error detected in the compilation of "bug.c".
> explain CC-24

An invalid octal constant is used.

Each digit of an octal constant must be between 0 and 7,
inclusive. One or more digits in the octal constant on the

indicated line are outside of this range. To avoid issuing

an error for each erroneous digit, the constant will be treated

as a decimal constant. Change each digit in the octal constant

to be within the valid range.

C.2 Controlling the Use of Messages

The following sections summarize the command-line options that affect the
issuing of messages from the compiler.

C.2.1 Command-line Options

Option Description

-h errorlimit[= n] Specifies the maximum
number of error messages the
compiler prints before it exits.

-h [no]message= n[:...] Enables or disables the
specified compiler messages,
overriding -h msglevel .

-h msglevel_ n Specifies the lowest severity
level of messages to be
issued.

156 004–2179–001

Compiler Messages [C]

-h report= args Generates optimization report
messages.

C.2.2 Environment Options for Messages

The following environment variables are used by the message system. For more
information, see the Cray Message System Programmer’s Guide.

Variable Description

NLSPATH Specifies the default value of the message system
search path environment variable.

LANG Identifies your requirements for native language,
local customs, and coded character set with
regard to the message system.

MSG_FORMAT Controls the format in which you receive error
messages.

C.2.3 ORIG_CMD_NAMEEnvironment Variable

You can override the command name printed in the message. If the
environment variable ORIG_CMD_NAMEis set, the value of ORIG_CMD_NAMEis
used as the command name in the message. This functionality is provided for
use with shell scripts that invoke the compiler. By setting ORIG_CMD_NAMEto
the name of the script, any message printed by the compiler appears as though
it was generated by the script. For example, the following C shell script is
named newcc :

#

setenv ORIG_CMD_NAME ’basename $0’

cc $*

A message generated by invoking newcc resembles the following:

CC-8 newcc: ERROR File = x.c, Line = 1
A new-line character appears inside a string literal.

Because the environment variable ORIG_CMD_NAMEis set to newcc , this
appears as the command name instead of cc in this message.

004–2179–001 157

Cray C/C++ Reference Manual

!
Caution: The ORIG_CMD_NAMEenvironment variable is not part of the
message system. It is supported by the C/C++ compiler as an aid to
programmers. Other products, such as the Fortran compiler and the loader,
may support this variable. However, you should not rely on support for this
variable in any other product.

You must be careful when setting the environment variable ORIG_CMD_NAME. If
you set ORIG_CMD_NAMEinadvertently, the compiler may generate messages
with an incorrect command name. This may be particularly confusing if, for
example, ORIG_CMD_NAMEis set to newcc when the CF90 compiler prints a
message. The Fortran message will look as though it came from newcc .

C.3 Message Severity

Each message issued by the compiler falls into one of the following categories
of messages, depending on the severity of the error condition encountered or
the type of information being reported.

Category Meaning

COMMENT Inefficient programming practices.

NOTE Unusual programming style or the use of
outmoded statements.

CAUTION Possible user error. Cautions are issued when the
compiler detects a condition that may cause the
program to abort or behave unpredictably.

WARNING Probable user error. Indicates that the program
will probably abort or behave unpredictably.

ERROR Fatal error; that is, a serious error in the source
code. No binary output is produced.

INTERNAL Problems in the compilation process. Please
report internal errors immediately to the system
support staff, so that the problem can be
forwarded to CRI Software Development for
resolution.

LIMIT Compiler limits have been exceeded. Normally
you can modify the source code or environment
to avoid these errors. If limit errors cannot be
resolved by such modifications, please report

158 004–2179–001

Compiler Messages [C]

these errors to the system support staff, so that
the problem can be forwarded to CRI Software
Development for resolution.

INFO Useful additional information about the compiled
program.

TASKING Information about tasking optimizations
performed on the compiled code.

INLINE Information about inline code expansion
performed on the compiled code.

SCALAR Information about scalar optimizations performed
on the compiled code.

VECTOR Information about vectorization optimizations
performed on the compiled code.

C.4 Common System Messages

The four errors in the following list can occur during the execution of a user
program. The operating system detects them and issues the appropriate
message. These errors are not detected by the compiler and are not unique to C
or C++; they may occur in any application program written in any language.

• Operand Range Error

An operand range error occurs when a program attempts to load or store in
an area of memory that is not part of the user’s area. This usually occurs
when an invalid pointer is dereferenced.

• Program Range Error

A program range error occurs when a program attempts to jump into an
area of memory that is not part of the user’s area. This may occur, for
example, when a function in the program mistakenly overwrites the internal
program stack. When this happens, the address of the function from which
the function was called is lost. When the function attempts to return to the
calling function, it jumps elsewhere instead.

• Error Exit

An error exit occurs when a program attempts to execute an invalid
instruction. This error usually occurs when the program’s code area has

004–2179–001 159

Cray C/C++ Reference Manual

been mistakenly overwritten with words of data (for example, when the
program stores in a location pointed to by an invalid pointer).

• Floating-point Exception

A floating-point exception occurs when a program attempts to perform a
floating-point operation that is not valid. On UNICOS systems, this error
can occur in integer arithmetic because some integer operations are
performed with floating-point arithmetic.

160 004–2179–001

Intrinsic Functions [D]

The Cray C/C++ intrinsic functions either allow for direct access to some Cray
Research hardware instructions or result in generation of inline code to perform
some specialized functions. These intrinsic functions are processed completely
by the compiler. In many cases, the generated code is one or two instructions.
These are called functions because they are invoked with the syntax of function
calls.

To get access to the intrinsic functions, the Cray C++ compiler requires that
either the intrinsics.h file be included or that the intrinsic functions that you
want to call be explicitly declared. If you explicitly declare an intrinsic function,
the declaration must agree with the documentation or the compiler treats the
call as a call to a normal function, not the intrinsic function. When using the
Cray Standard C compiler, it is not necessary to declare intrinsic functions. In
either case, the -h nointrinsics command-line option causes the compiler
to treat these calls as regular function calls and not as intrinsic function calls.

The types of the arguments to intrinsic functions are checked by the compiler,
and if any of the arguments do not have the correct type, a warning message is
issued and the call is treated as a normal call to an external function. If your
intention was to call an external function with the same name as an intrinsic
function, you should change the external function name. The names used for
the Cray Standard C intrinsic functions are in the name space reserved for the
implementation.

For detailed descriptions of appropriate Cray Research hardware instructions,
see the Symbolic Machine Instructions Reference Manual.

Note: Several of these intrinsic functions have both a vector and a scalar
version on UNICOS systems. If a vector version of an intrinsic function exists
and the intrinsic is called within a vectorized loop, the compiler uses the
vector version of the intrinsic. See the appropriate intrinsic function man
page for details on whether it has a vector version.

The following table provides a summary of all C/C++ intrinsic functions and
indicates their availability on Cray Research computer systems. See the
appropriate man page for more information.

004–2179–001 161

Cray C/C++ Reference Manual

Table 4. Summary of C/C++ intrinsic functions

Function UNICOS systems UNICOS/mk systems

_argcount
(See Footnote 1)

X X

_cmr X

_dshiftl X X

_dshiftr X X

_EX X

_gbit X X

_gbits X X

_getvm X

_int_mult_upper
(See Footnote 2)

X X

_leadz X X

_mask X X

_maskl X X

_maskr X X

_mclr
(See Footnote 3)

X X

_mld
(See Footnote 3)

X X

_memory_barrier X

_mldmx
(See Footnote 3)

X X

_mmx
(See Footnote 3)

X X

_mul
(See Footnote 3)

X X

_my_pe X

_numargs X X

_num_pes X

162 004–2179–001

Intrinsic Functions [D]

Function UNICOS systems UNICOS/mk systems

_pbit X X

_pbits X X

_popcnt X X

_poppar X X

_ranf X X

_readSB X

_readSR X

_readST X

_remote_write_barrier X

_rtc X X

_semclr X

_semget X

_semput X

_semset X

_semts X

_setvm X

_write_memory_barrier X

_writeSB X

_writeST X

Footnote 1: Available only on CRAY T90 systems.
Footnote 2: Available only on Cray Research systems with IEEE floating-point
hardware.
Footnote 3: This function is not available on some CRAY Y-MP systems.

004–2179–001 163

Index

-#, 30
-##, 30
-###, 30
// comments, 46

A

align directive, 77
Anachronisms

C++, 143
Analysis tools

-F option, 24
-h [no]apprentice, 25
-h [no]atexpert, 25
-h [no]listing, 25

Apprentice, 25
_argcount, 162
Argument passing, 105
Arithmetic

See "Math", 22, 23
Arithmetic conversion, 48
Arithmetic conversions, 57
Array storage, 105
Arrays, 131

dependencies, 79
variable length, 48

declarator restrictions, 48
declarators, 49
function declarators, 50
goto statement, 53
longjmp function, 54
setjmp function, 54
sizeof operator, 52
switch statement, 53
type definitions, 51

asm statements, 134
Assembly language

output, 29

Assembly language functions, 103
Assembly source expansions, 3
ATExpert, 25
Automatic instantiation, 88
Autotasking, 17, 69

level, 15

B

Barrier/eureka synchronization units, 61
besu directive, 61
Bit fields, 133
Blank common block, 110
Block scope, 43
Bottom loading, 19
bounds directive, 62
Branches

vs. jumps, 21
btol conversion utility, 108

C

C extensions, 41
conversions of complex type, 57
variable length arrays, 48

-c, 137
-C option, 33
-c option, 29
cache_align directive, 78
cache_bypass directive, 78
Calls, 103
can_instantiate directive, 66, 92
case directive, 71
cfront, 147

compatibility mode, 139
cfront compilers, 7

004–2179–001 165

Cray C/C++ Reference Manual

Character data, 107
Character pointers, 132
Character set, 127
Characters

wide, 127
CIV

See "Constant increment variables", 20
Classes, 133
_cmr, 162
Command-line options

-# option, 30
-## option, 30
-### option, 30
-C option, 33
-c option, 3, 29
compiler version, 36
conflicting with directives, 6
conflicting with other options, 6
-D macro[=def], 32
-d string option, 36
defaults, 5
-E option, 3, 28
examples, 38
-F option, 24, 35
-G option, 25, 99, 100
-g option, 25, 99, 100
-h [no]abort, 28
-h [no]aggress, 13
-h [no]align, 19
-h [no]anachronisms, 7
-h [no]apprentice, 25
-h [no]atexpert, 25
-h [no]autoinstantiate, 8
-h [no]bl, 19
-h [no]bounds, 26, 99
-h [no]calchars, 11
-h [no]conform, 6
-h [no]exceptions, 7
-h [no]fastfpdivide, 23
-h [no]fastmd, 22
-h [no]fastmodulus, 22
-h [no]ieeeconform, 23
-h [no]implicitinclude, 9

-h [no]interchange, 18
-h [no]intrinsics, 13
-h [no]ivdep, 15
-h [no]jump, 21
-h [no]listing, 25
-h [no]message=n, 27
-h [no]overindex, 13
-h [no]pattern, 13
-h [no]pragma=name[:name...], 33
-h [no]reduction, 20
-h [no]rounddiv, 24
-h [no]signedshifts, 11
-h [no]split, 21
-h [no]stack, 12
-h [no]taskinner, 17
-h [no]threshold, 17
-h [no]tolerant, 8
-h [no]trunc, 99
-h [no]trunc[=n], 24
-h [no]unroll, 21
-h [no]vsearch, 15
-h [no]zeroinc, 20
-h anachronisms, 143
-h cfront, 7, 147
-h common, 16
-h errorlimit[=n], 28
-h feonly, 29
-h forcevtble, 9
-h ident=name, 38
-h indef, 26
-h inlinefrom=file, 18
-h inlinen, 17
-h instantiate=mode, 8
-h keep=file, 10
-h matherror=method, 22
-h msglevel_n, 27
-h new_for_init, 7
-h options

errorlimit, 156
-h pipelinen, 20
-h prelink_local_copy, 9
-h remove_instantiation_flags, 9

166 004–2179–001

Index

-h report=args, 27
-h restrict=args, 10
-h scalarn, 18
-h suppressvtble, 9
-h taskcommon, 16
-h taskn, 15
-h taskprivate, 16
-h vectorn, 14
-h zero, 26
-I option, 31
-L libdir option, 35
-l libfile option, 34
-M option, 33
macro definition, 32
-N option, 33
-O level, 12
-o option, 36
-P option, 3, 29
prelink_copy_if_nonlocal, 9
preprocessor options, 28
remove macro definition, 32
-S option, 3, 29
-s option, 36
-U macro option, 32
-V option, 36
-W option, 30
-X npes option, 37
-Y option, 31

Commands
c89, 1, 3

files, 4
format, 4

CC, 1, 3
files, 4
format, 4

cc, 1, 3
files, 4
format, 4

compiler, 3
cpp, 3

format, 5
ld, 10
options, 5

Comments
in code, 46
preprocessed, 33

Common block, 110
common directive, 75
Common system messages, 159
Compilation phases

-#, 30
-##, 30
-###, 30
-c option, 29
-E option, 28
-h feonly, 29
-P option, 29
-S option, 29
-Wphase["opt..."], 30
-Yphase,dirname, 31

Compiler
Cray C++, 2
Cray Standard C, 2

Compiler messages, 155
Complex

adding types, 57
arithmetic conversion, 48
conversion to and from, 47
data types, 46
usage, 47
value

printing, 47
variable, 47

complex types, 48
concurrent directive, 79
Conformance

C++, 139
Constant increment variables (CIVs), 20
Constructs

accepted and rejected, 7
old, 8

Conversion utility
_btol, 108
_cptofcd, 107
_fcdlen, 107

004–2179–001 167

Cray C/C++ Reference Manual

_fcdtocp, 107
_ltob, 108

_cptofcd conversion utility, 107
Cray Assembler for MPP (CAM), 104
Cray Assembly Language (CAL), 104
Cray C++ Compiler, 2
Cray Standard C Compiler, 2
Cray TotalView debugger, 99
CRI_c89_OPTIONS, 39
CRI_CC_OPTIONS, 39
CRI_cc_OPTIONS, 39
CRI_cpp_OPTIONS, 39

D

-D macro[=def], 32
-d string, 36
Data types, 124

complex, 46
long long, 45
mapping (table), , 125
unsigned long long, 45

__DATE__ , 135
Debugger, 99
Debugging, 25

features, 99
-G level, 25
-g option, 25
-h [no]bounds, 26
-h indef, 26
-h zero, 26

Debugging options, 100
Declarators, 134

function, 50
restrictions, 48
VLA, 49

Declared bounds, 13
Dialects, 139
Directives

arguments to tasking, 76
C++, 60
conflicts with options, 6

#define, 32
diagnostic messages, 60
disabling, 34
general, 61
#include, 31
inlining, 84
instantiation, 66
loop, 60
macro expansion, 59
#pragma , 59

align, 77
alternative form, 61
arguments to instantiate, 92
besu, 61
cache_align, 78
cache_bypass, 78
can_instantiate, 66, 92
case, 71
common, 75
concurrent, 79
do_not_instantiate, 66, 92
duplicate, 63
endcase, 71
endguard, 72
endloop, 71
endparallel, 70
format, 59
guard, 72
ident, 66
in C++, 60
inline, 85
instantiate, 66, 91
ivdep, 44, 67
message, 64, 99
[no]bounds, 62
[no]bounds directive, 99
[no]opt, 64, 99
noinline, 85
nointerchange, 80
noreduction, 80
novector, 68
novsearch, 68

168 004–2179–001

Index

parallel, 70
prefertask, 75
prefervector, 68
shortloop, 69
shortloop128, 69
soft, 65
split, 81
suppress, 82
symmetric, 82
taskcommon, 74
taskloop, 70
taskprivate, 72
taskshared, 73
unroll, 83
usage, 59
uses_eregs, 64
vfunction, 66

preprocessing, 134
protecting, 60
scalar, 77
tasking, 69
vectorization, 67
work distribution, 76

Directories
#include files, 31
library files, 34, 35
phase execution, 31

do_not_instantiate directive, 66, 92
double, 129
double complex, 46
_dshiftl, 162
_dshiftr, 162
duplicate directive, 63

E

E register, 79
E registers, 64
-E option, 28
E-registers

cache_bypass, 78
endcase directive, 71

endguard directive, 72
endloop directive, 71
endparallel directive, 70
–h interchange, 18
–h nointerchange, 18
Enumerations, 133
Environment, 123
Environment variables, 39

CRI_c89_OPTIONS, 39
CRI_CC_OPTIONS, 39
CRI_cc_OPTIONS, 39
CRI_cpp_OPTIONS, 39
LANG, 40, 157
MSG_FORMAT, 40, 157
NLSPATH, 40, 157
NPROC, 40
ORIG_CMD_NAME, 157
TARGET, 40

Epsilon value, 130, 131
Error Exit, 159
Error messages, 155
_EX, 162
Examples

command-line, 38
Exception construct, 7
Exception handling, 7
Exceptions, 134
explain, 155
Extensions, 41

C++ mode, 144
cfront compatibility mode, 147
#pragma directives, 59

extern "C" keyword, 119
External functions

declaring, 103

F

-F option, 24
_fcdlen conversion utility, 107
_fcdtocp conversion utility, 107

004–2179–001 169

Cray C/C++ Reference Manual

Features
C++, 139

cfront compatibility, 139
Files

a.out, 3
compiler information file (CIF), 25
constructor/destructor, 10
default library, 34
dependencies, 33
.ii file, 89
inlining, 18
intrinsics.h, 161
library directory, 35
linking, 10
listing, 25
output, 36
personal libraries, 35

float, 129
float complex, 46
Floating constants, 56
Floating-point

arithmetic, 129
overflow, 128

Floating-point arithmetic
IEEE, 130
rounding, 129, 131

Floating-point constants, 56
Floating-point Exception, 160
Flowtrace, 24
Fortran common block, 110
fortran keyword, 55
fortran.h header, 107
friend declaration, 148
Function parameters, 42
Functions, 161

and variable length arrays, 50
mbtowc, 128

G

-G level, 25
-G option, 99, 100

-g option, 99, 100
_gbit, 162
_gbits, 162
General command functions

-h ident=name, 38
-V option, 36
-Xnpes, 37

_getvm, 162
goto statement, 53
guard directive, 72
Guarded region, 72
Guards

numbered, 72
unnumbered, 72

H

-h [no]implicitinclude, 9
-h [no]message=n[:...], 156
-h [no]message=n[:n...], 27
-h [no]pragma=name[:name...], 33
-h abort, 28
-h aggress, 13
-h align, 19
-h anachronisms, 7, 143
-h apprentice, 25
-h atexpert, 25
-h autoinstantiate, 8
-h bl, 19
-h bounds, 26, 99
-h calchars, 11
-h cfront, 7
-h common, 16
-h conform, 6
-h errorlimit, 156
-h errorlimit[=n], 28, 156
-h exceptions, 7
-h fastfpdivide, 23
-h fastmd, 22
-h fastmodulus, 22
-h feonly, 29

170 004–2179–001

Index

-h forcevtbl, 9
-h ident=name, 38
-h ieeeconform, 23
-h implicitinclude, 9
-h indef, 26
-h inlinefrom=file, 18
-h inlinen, 17
-h instantiate=mode, 8
-h intrinsics, 13
-h ivdep, 15
-h jump, 21
-h keep=file, 10
-h listing, 25
-h matherror=method, 22
-h msglevel_n, 27, 156
-h new_for_init, 7
-h noabort, 28
-h noaggress, 13
-h noalign, 19
-h noanachronisms, 7
-h noapprentice, 25
-h noatexpert, 25
-h noautoinstantiate, 8
-h nobl, 19
-h nobounds, 26, 99
-h nocalchars, 11
-h noconform, 6
-h noexceptions, 7
-h nofastfpdivide, 23
-h nofastmd, 22
-h nofastmodulus, 22
-h noieeeconform, 23
-h nointrinsics, 13, 161
-h noivdep, 15
-h nojump, 21
-h nolisting, 25
-h nooverindex, 13
-h nopattern, 13
-h noreduction, 20
-h norounddiv, 24
-h nosearch, 15
-h nosignedshifts, 11
-h nosplitn, 21

-h nostack, 12
-h notaskinner, 17
-h nothreshold, 17
-h notolerant, 8
-h notrunc, 99
-h notrunc[=n], 24
-h nounroll, 21
-h nozeroincn, 20
-h overindex, 13
-h pattern, 13
-h pipelinen, 20
-h prelink_copy_if_nonlocal, 9
-h prelink_local_copy, 9
-h reduction, 20
-h remove_instantiation_flags, 9
-h report=args, 27, 157
-h restrict=args, 10
-h rounddiv, 24
-h scalarn, 18
-h search, 15
-h signedshifts, 11
-h splitn, 21
-h stack, 12
-h suppressvtbl, 9
-h taskcommon, 16
-h taskinner, 17
-h taskn, 15
-h taskprivate, 16
-h threshold, 17
-h tolerant, 8
-h trunc, 99
-h trunc[=n], 24
-h unroll, 21
-h vectorn, 14
-h zero, 26
-h zeroincn, 20
Hardware

intrinsic functions, 13
Hexadecimal floating constant, 56

004–2179–001 171

Cray C/C++ Reference Manual

I

-I incldir, 31
ident directive, 66
Identifier names

allowable, 11
Identifiers, 124
IEEE floating-point representation, 130
IEEE floating-point standard conformance, 23
Implementation-defined behavior, 123
Implicit inclusion, 9, 93
inline directive, 85
Inlining, 84

level, 17
instantiate directive, 66, 91
Instantiation

enable or disable, 8
local files, 9
modes, 8
nonlocal object file recompiled, 9
remove flags, 9
template, 87

Instantiation directives, 66, 91
Instantiation modes

all, 91
local, 91
none, 91
used, 91

_int_mult_upper, 162
Integers

overflow, 128
representation, 128

Interchange loops, 18
Interlanguage communication, 103

argument passing, 105
array storage, 105
assembly language functions, 103
blank common block, 110
CAL functions, 104
calling a C program from C++, 119
calling a C/C++ function from Fortran, 116
calling a Fortran program from C++, 115
calling Fortran routines, 104

CAM functions, 104
logical and character data, 107

Intermediate translations, 3
Intrinsic function

alog, 67
cos, 67
coss, 67
exp, 67
_popcnt, 67
pow, 67
ranf, 67
sin, 67
sqrt, 67

Intrinsic functions
argument types, 161
summary, 161

Intrinsics, 13
intrinsics.h, 161
ivdep, 79
ivdep directive, 67

J

Jumps
vs. branches, 21

K

K & R preprocessing, 33
Keywords

extern "C", 119
fortran, 55
restrict, 41

L

-L libdir, 35
-l libfile, 34
LANG, 40, 157

172 004–2179–001

Index

Language
general

-h [no]calchars, 11
-h [no]calsignedshifts, 11
-h [no]stack, 12
-h keep=file, 10
-h restrict=args, 10

standard conformance
-h [no]anachronisms, 7
-h [no]conform, 6
-h [no]exceptions, 7
-h [no]tolerant, 8
-h cfront, 7
-h new_for_init, 7

templates
-h [no]autoinstantiate, 8
-h [no]implicitude, 9
-h instantiate=mode, 8
-h prelink_copy_if_nonlocal, 9
-h prelink_local_copy, 9
-h remove_instantiation_flags, 9

virtual functions
-h forcevtbl, 9
-h suppressvtbl, 9

_leadz, 162
Libraries

default, 34
Standard C, 137

Library, Standard Template, 2
Limits, 123

implementation, 44
Linking

files, 10
Loader

cld, 138
-d string, 36
default, 137
-L libdir, 35
-l libfile, 34
-o outfile, 36
-s option, 36
segldr, 138

Loaders

-## option, 36
ld, 3, 36
mppld, 3, 36

Local memory references, 78
Logical data, 107
long double, 129
long double complex, 46
long long, 57
long long data types, 45
longjmp function, 54
Loop directives, 60
Loop splitting, 81
Loop unrolling, 83
Loops

split, 21
unrolling, 21

_ltob conversion utility, 108

M

-M option, 33
Macros, 104

expansion in directives, 59
removing definition, 32

Macros, predefined, 95
_ADDR32, 97
_ADDR64, 97
__cplusplus, 96
CRAY, 96
cray, 96
CRAY1, 96
_CRAY1, 97
_CRAY, 96
_CRAYC, 98
_CRAYIEEE, 97
_CRAYMPP, 97
_CRAYT3E, 97
__DATE__, 95
_FASTMD, 97
__FILE__, 95
_LD64, 97

004–2179–001 173

Cray C/C++ Reference Manual

__LINE__, 95
_MAXVL, 97
_RELEASE, 98
__STDC__, 95
__TIME__, 95
_UNICOS, 96
unix, 96
__unix, 96

_mask, 162
_maskl, 162
_maskr, 162
Math

functions
arithmetic conversions, 48
double complex arguments, 48

-h [no]fastfpdivide, 23
-h [no]fastmd, 22
-h [no]fastmodulus, 22
-h [no]ieeeconform, 23
-h [no]rounddiv, 24
-h [no]trunc[=n], 24
-h matherror=method, 22

mbtowc, 128
_mclr, 162
_memory_barrier, 162
message directive, 64, 99
Messages, 123, 155

common system, 159
Error Exit, 159
Floating-point Exception, 160
Operand Range Error, 159
Program Range Error, 159

for _CRI directives, 60
-h [no]abort, 28
-h [no]message=n[:n...], 27
-h errorlimit[=n], 28
-h msglevel_n, 27
-h report=args, 27
option summary, 156
severity, 158

CAUTION, 158
COMMENT, 158
ERROR, 158

INFO, 159
INLINE, 159
INTERNAL, 158
LIMIT, 158
NOTE, 158
SCALAR, 159
TASKING, 159
VECTOR, 159
WARNING, 158

Microtasking, 70
_mld, 162
_mldmx, 162
_mmx, 162
modules, 1
MSG_FORMAT, 40, 157
_mul, 162
_my_pe, 162

N

-N option, 33
Names, 124
NLSPATH, 40, 157
nobounds directive, 62
noinline directive, 85
nointerchange directive, 80
noopt directive, 64, 99
noreduction directive, 80
novector directive, 68
novsearch directive, 68
NPROC, 40
_num_pes, 162
_numargs, 162
Numbered guards, 72

O

-o outfile, 36
-O[level], 12
Operand Range Error, 159

174 004–2179–001

Index

Operators
bitwise and integers, 128

opt directive, 64, 99
Optimization

automatic scalar, 18
general

-h [no]aggress, 13
-h [no]intrinsics, 13
-h [no]overindex, 13
-h [no]pattern, 13
-O level, 12

inline
-h inlinefrom=file, 18
-h inlinen, 17

interchange loops, 18
limitations, 13
scalar

-h [no]align, 19
-h [no]bl, 19
-h [no]interchange, 18
-h [no]reduction, 20
-h scalarn, 18

task
-h [no]taskinner, 17
-h [no]threshold, 17
-h taskcommon, 16
-h taskn, 15
-h taskprivate, 16

UNICOS/mk specific
-h [no]jumpn, 21
-h [no]splitn, 21
-h [no]unrolln, 21
-h pipelinen, 20

vector
-h [no]ivdep, 15
-h [no]vsearchn, 15
-h [no]zeroincn, 20
-h vectorn, 14

Optimization level, 12
Options

conflicts, 6
See "Command-line options", 6

ORIG_CMD_NAME, 157

Overindexing, 13

P

-P option, 29
parallel directive, 70
Parallel processing

tasking directives, 69
Parallel region, 70
Pattern matching

enable or disable, 13
_pbit, 163
_pbits, 163
Performance

improvement, 14
Pipelining

levels, 20
Pointer parameters, 42
Pointers, 131, 132

function parameter, 10
restricted, 10

See "Restricted pointers", 41
this, 10
UNICOS systems, 132
UNICOS/mk systems, 133

_popcnt, 163
_poppar, 163
Porting code, 8, 139
#pragma directives

See "Directives", 59
_Pragma directives, 61
Predefined macros, 95
prefertask directive, 75
prefervector directive, 68
Prelinker, 88
Preprocessing, 134

-C option, 33
-D macro[=def], 32
-h [no]pragma=name[:name...] , 33
-I incldir, 31
-M, 33

004–2179–001 175

Cray C/C++ Reference Manual

-N option, 33
old style (K & R), 33
retain comments, 33
-U macro, 32

Preprocessor, 29
passing arguments to, 30

Preprocessor phase, 3
Processing elements (PEs), 37
Program Range Error, 159
Programming environment

description, 1
setup, 1

Protected member access checking, 149

Q

Qualifiers, 134

R

_ranf, 163
_readSB, 163
_readSR, 163
_readST, 163
Reduction loop, 80
Reduction loops, 20
Registers, 133
Relocatable object file, 29
Relocatable object files, 3
_remote_write_barrier, 163
Restricted pointers, 10, 41

block scope, 43
compared to ivdep, 44
file scope, 43
function parameters, 42
implementation limits, 44
unrestricted, 44

Rounding, 24
floating-point, 131

_rtc, 163

S

-S option, 29
-s option, 36
Scalar directives, 77
Search

library files, 35
Search loops, 15
SEGLDR, 137

accessing, 138
_semclr, 163
_semget, 163
_semput, 163
_semset, 163
_semts, 163
setjmp function, 54
Setting up environment, 1
_setvm, 163
Shift operator, 128
shortloop directive, 69
shortloop128 directive, 69
sizeof, 124
sizeof operator, 52
soft directive, 65
Soft externals, 65
split directive, 81
Standard Template Library, 2
Standards, 123

arrays and pointers, 131
bit fields, 133
C violation, 8
character set, 127

example, 127
classes, 133
conformance to, 6
Cray floating-point representation, 129
data types, 124

mapping, , 125
declarators, 134
enumerations, 133
environment, 123
exceptions, 134

176 004–2179–001

Index

extensions, 41
floating-point arithmetic, 129

double, 129
epsilon value, 130
float, 129
long double, 129
maximum positive value, 129

identifiers, 124
IEEE floating-point representation, 130

maximum positive value, 130
implementation-defined behavior, 123
integers, 128
messages, 123
pointers

UNICOS systems, 132
UNICOS/mk systems, 133

preprocessing, 134
qualifiers, 134
register storage class, 133
statements, 134
structures, 133
system function calls, 134
unions, 133
wide characters, 127

Statements, 134
STL

See "Standard Template Library", 2
Storage class, 55
Stream buffer, 79
Stripmining, 81
Structures, 133
suppress directive, 82
switch statement, 53
Symbolic information, 36
symmetric directive, 82
Syntax checking, 29
System function calls, 134

T

TARGET, 40
taskcommon directive, 74

Tasking
autotasking, 69
context arguments, 76
directive arguments, 76
miscellaneous arguments, 77
status, 16
user-directed, 70

Tasking level, 15
taskloop directive, 70
taskprivate directive, 72
taskshared directive, 73
Template, 87
Template instantiation, 87

automatic, 88
directives, 91
implicit inclusion, 93
modes, 90

Throw expression, 7
Throw specification, 7
__TIME__, 135
TotalView debugger, 100
Try block, 7
Types, 124

U

-U macro, 32
UNICOS

C libraries, 137
loader, 137

UNICOS message system, 155
Unions, 133
Unnumbered guards, 72
Unrestricted pointers, 44
unroll directive, 83
unsigned long long data types, 45
uses_eregs directive, 64

004–2179–001 177

Cray C/C++ Reference Manual

V

-V option, 36
Variable

complex, 47
Variable length arrays

See "Arrays", 48
Variables, 39

context arguments, 76
Vectorization

automatic, 14
dependency analysis, 15
directives, 67
level, 14
search loops, 15

vfunction directive, 66
Virtual function table, 9
VLA

See "Arrays", 48
volatile qualifier, 82

W

Work distribution, 76
-Wphase["opt..."], 30
_write_memory_barrier, 163
_writeSB, 163
_writeST, 163

X

-X npes, 37

Y

-Yphase,dirname, 31

178 004–2179–001

