
Cray Research, Inc.

Cray Assembly Language (CAL) for
Cray PVP Systems Reference

Manual

SR–3108 9.1

__

Copyright  1992, 1995 Cray Research, Inc. All Rights Reserved. This manual or parts
thereof may not be reproduced in any form unless permitted by contract or by written
permission of Cray Research, Inc.
__

Portions of this product may still be in development. The existence of those portions still in
development is not a commitment of actual release or support by Cray Research, Inc. Cray
Research, Inc. assumes no liability for any damages resulting from attempts to use any
functionality or documentation not officially released and supported. If it is released, the final
form and the time of official release and start of support is at the discretion of Cray Research,
Inc.
__

Autotasking, CF77, CRAY, Cray Ada, CraySoft, CRAY Y-MP, CRAY-1, HSX, MPP Apprentice,
SSD, SUPERCLUSTER, SUPERSERVER, UniChem, UNICOS, and X-MP EA are federally
registered trademarks and Because no workstation is an island, CCI, CCMT, CF90, CFT,
CFT2, CFT77, ConCurrent Maintenance Tools, COS, Cray Animation Theater, CRAY APP,
CRAY C90, CRAY C90D, Cray C++ Compiling System, CrayDoc, CRAY EL, CRAY J90,
Cray NQS, Cray/REELlibrarian, CRAY S-MP, CRAY SUPERSERVER 6400, CRAY T90,
CRAY T3D, CrayTutor, CRAY X-MP, CRAY XMS, CRAY-2, CRInform, CRI/TurboKiva,
CS6400, CSIM, CVT, Delivering the power . . ., DGauss, Docview, EMDS, HEXAR, IOS,
LibSci, ND Series Network Disk Array, Network Queuing Environment,
Network Queuing Tools, OLNET, RQS, SEGLDR, SMARTE, SUPERLINK,
System Maintenance and Remote Testing Environment, Trusted UNICOS, and UNICOS MAX
are trademarks of Cray Research, Inc.
__

CDC is a trademark of Control Data Systems, Inc. UNIX is a registered trademark in the
United States and other countries, licensed exclusively through X/Open Company Limited.
X Window System is a trademark of the X Consortium, Inc.
__

The UNICOS operating system is derived from UNIX System V. The UNICOS operating
system is also based in part on the Fourth Berkeley Software Distribution (BSD) under license
from The Regents of the University of California.
__

New Features

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual SR–3108 9.1

This rewrite of the Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual,
publication SR–3108, supports the 9.1 release of CAL. The following additions and
modifications are included:

• Information throughout the manual to support IEEE floating-point hardware on CRAY T90
systems

• New instructions for CRAY T90 systems in appendix E

• Pertinent information from appendix F has been incorporated into the body of the manual and
appendix F has been eliminated

Record of Revision

iCray Research, Inc.SR–3108 9.1

The date of printing or software version number is indicated in the footer. Changes in rewrites
are noted by revision bars along the margin of the page.

Version Description

7.0 September 1992. Original printing.

8.3 January 1995. Updated only online. Revised to support the CAL2 8.3
release.

9.0 August 1995. Rewrite to support the CAL 9.0 release.

9.1 November 1995. Updated to support the CAL 9.1 release for IEEE
floating-point information for CRAY T90 systems.

Preface

iiiCray Research, Inc.SR–3108 9.1

Cray Assembly Language (CAL) symbolically expresses all
hardware functions of Cray Research parallel vector processing
(PVP) systems. This detailed and precise level of programming
is especially helpful for tailoring programs to the architecture of
a Cray PVP system and for writing programs that require code
that is optimized to the hardware.

In addition to the instruction set, CAL also includes a versatile
set of pseudo instructions that provides a variety of options for
generating macro instructions, controlling listing output,
organizing programs, and so on.

With the release of CAL 9.1, IEEE floating-point hardware is
supported on CRAY T90 systems.

This manual is written for experienced programmers. The
following documents contain additional information that may be
helpful:

• Cray Assembly Language (CAL) for Cray PVP Systems Ready
Reference, publication SQ–3110

• Symbolic Machine Instructions Reference Manual, publication
SR–0085

• UNICOS User Commands Reference Manual, publication
SR–2011

• UNICOS Macros and Opdefs Reference Manual, publication
SR–2403

• CF90 Commands and Directives Reference Manual,
publication SR–3901

• CF90 Fortran Language Reference Manual, Volume 1,
publication SR–3902

Related
publications

Preface Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual

iv Cray Research, Inc. SR–3108 9.1

• CF90 Fortran Language Reference Manual, Volume 2,
publication SR–3903

• CF90 Fortran Language Reference Manual, Volume 3,
publication SR–3905

The User Publications Catalog, publication CP–0099, describes
the availability and content of all Cray Research hardware and
software manuals that are available to customers.

The User Publications Catalog, publication CP–0099, describes
the availability and content of all Cray Research hardware and
software documents that are available to customers. Cray
Research customers who subscribe to the Cray Inform
(CRInform) program can access this information on the
CRInform system.

To order a document, either call the Distribution Center in
Mendota Heights, Minnesota, at +1–612–683–5907 or send a
facsimile of your request to fax number +1–612–452–0141. Cray
Research employees may send electronic mail to orderdsk
(UNIX system users).

Customers who subscribe to the CRInform program can order
software release packages electronically by using the Order
Cray Software option.

Customers outside of the United States and Canada should
contact their local service organization for ordering and
documentation information.

Ordering
publications

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual Preface

vCray Research, Inc.SR–3108 9.1

The following conventions are used throughout this document:

Convention Meaning

command This fixed-space font denotes literal
items such as commands, files, routines,
path names, signals, messages, and
programming language structures.

manpage(x) Man page section identifiers appear in
parentheses after man page names. The
following list describes the identifiers:

1 User commands

1B User commands ported from BSD

2 System calls

3 Library routines, macros, and
opdefs

4 Devices (special files)

4P Protocols

5 File formats

7 Miscellaneous topics

7D DWB-related information

8 Administrator commands

Some internal routines (for example, the
ddcntl () routine) do not have man
pages associated with them.

variable Italic typeface denotes variable entries
and words or concepts being defined.

user input This bold fixed-space font denotes literal
items that the user enters in interactive
sessions. Output is shown in nonbold,
fixed-space font.

.

.

.

A vertical ellipsis indicate a continued
sequence of code in the sample program.

[] Brackets enclose optional portions of a
command line.

Conventions

Preface Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual

vi Cray Research, Inc. SR–3108 9.1

The following machine naming conventions may be used
throughout this document:

Term Definition

Cray PVP systems All configurations of Cray parallel
vector processing (PVP) systems, including
the following:

CRAY C90 series (CRAY C916,
CRAY C92A, CRAY C94, CRAY C94A,
and CRAY C98 systems)

CRAY C90D series (CRAY C92AD,
CRAY C94D, and CRAY C98D systems)

CRAY J90 series (CRAY J916 and
CRAY J932 systems)

CRAY T90 series (CRAY T94, CRAY T916,
and CRAY T932 systems)

All Cray Research
systems

All configurations of Cray PVP and
Cray MPP systems that support this
release

The default shell in the UNICOS operating system, referred to
in Cray Research documentation as the standard shell, is a
version of the Korn shell that conforms to the following
standards:

• Institute of Electrical and Electronics Engineers (IEEE)
Portable Operating System Interface (POSIX) Standard
1003.2–1992

• X/Open Portability Guide, Issue 4 (XPG4)

The UNICOS operating system also supports the optional use of
the C shell.

Cray UNICOS Version 9.0 is an X/Open Base 95 branded
product.

The POSIX standard uses utilities to refer to executable
programs that Cray Research documentation usually refers to as
commands. Both terms may appear in this document.

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual Preface

viiCray Research, Inc.SR–3108 9.1

The following types of online information products are available
to Cray Research customers:

• CrayDoc online documentation reader, which lets you see the
text and graphics of a document online. The CrayDoc reader
is available on workstations. To start the CrayDoc reader at
your workstation, use the cdoc (1) command.

• Man pages, which describe a particular element of the
UNICOS operating system or a compatible product. To see a
detailed description of a particular command or routine, use
the man(1) command.

• UNICOS message system, which provides explanations of
error messages. To see an explanation of a message, use the
explain (1) command.

• Cray Research online glossary, which explains the terms used
in a document. To get a definition, use the define (1)
command.

• xhelp help facility. This online help system is available
within tools such as the Program Browser (xbrowse) and the
MPP Apprentice tool.

For detailed information on these topics, see the User’s Guide to
Online Information, publication SG–2143.

If you have comments about the technical accuracy, content, or
organization of this document, please tell us. You can contact us
in any of the following ways:

• Send us electronic mail from a UNICOS or UNIX system,
using the following UUCP address:

uunet!cray!publications

• Send us electronic mail from any system connected to the
Internet, using the following Internet address:

publications@timbuk.cray.com

Online
information

Reader comments

Preface Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual

viii Cray Research, Inc. SR–3108 9.1

• Contact your Cray Research representative and ask that a
Software Problem Report (SPR) be filed. Use PUBLICATIONS
for the group name, PUBS for the command, and NO-LICENSE
for the release name.

• Call our Software Publications Group in Eagan, Minnesota,
through the Customer Service Call Center, using either of the
following numbers:

1–800–950–2729 (toll free from the United States and
Canada)

+1–612–683–5600

• Send a facsimile of your comments to the attention of
“Software Publications Group” in Eagan, Minnesota, at fax
number +1–612–683–5599.

• Use the postage-paid Reader’s Comment Form at the back of
the printed document.

We value your comments and will respond to them promptly.

Contents

ixCray Research, Inc.SR–3108 9.1

Page Page

Preface iii

Related publications iii

Ordering publications iv

Conventions v

Online information vii

Reader comments vii

Introduction [1] 1

Manual organization 1

New features and modifications 2

Capabilities 2

Execution of the CAL assembler 3

Source statement format 3

Assembler listings format 4

Source statement listing format 5

Cross-reference listing format 7

UNICOS System Information [2] 11

as(1) – CAL command line 12

Interactive assembly 19

The UNICOS environment 20

LPP environment variable 20

TMPDIR shell variable 22

MSG_FORMAT error message format 24

TARGET shell variable 24

Binary definition files 25

Defining a binary definition file 26

Symbols 27

Macros 27

Opdefs 27

Opsyns 27

Micros 28

Creating binary definition files 29

Using binary definitions files 30

CPU compatibility checking 30

Multiple references to a definition 30

Symbols 30

Macros 31

Opdefs 31

Opsyn 31

Micros 32

The CAL Program [3] 33

Program segment 33

Program module 33

Global definitions 35

Source statement 36

New format 37

Location field 38

Result field 38

Operand field 39

Comment field 39

Old format 40

Location field 40

Result field 41

Operand field 41

Comment field 41

Statement editing 41

Micro substitution 43

Append 44

Contents Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual

x SR–3108 9.1Cray Research, Inc.

Page Page

Concatenate 44

Continuation 44

Comment 44

Actual statements and edited statements 45

Instructions 46

Assembler-defined instructions 46

Pseudo instructions 47

Machine instructions 47

User-defined instructions 47

Micros 48

Sections 53

Local sections 54

Main sections 54

Literals section 54

Sections defined by the SECTION pseudo
instruction 55

Common sections 55

Section stack buffer 56

Origin counter 58

Location counter 58

Word-bit-position counter 58

Force word boundary 59

Parcel-bit-position counter 59

Force parcel boundary 59

Cray Assembly Language [4] 61

Register designators 61

Vector length register (VL) 65

Vector mask register (VM) 66

Names 67

Symbols 69

Symbol qualification 70

Unqualified symbol 70

Qualified symbols 71

Symbol definition 72

Symbol attributes 73

Address attributes 73

Relative attributes 74

Redefinable attributes 75

Symbol reference 75

Data 76

Constants 76

Floating constant 76

Integer constant 79

Character constants 81

Data items 82

Floating data item 82

Integer data item 83

Character data item 84

Literals 85

Special elements 89

Element prefixes 90

Parcel-address prefix 91

Word-address prefix 93

Expressions 94

Add-operator 94

Terms 95

Prefixed-elements 96

Multiply-operator 97

Term attributes 97

Expression evaluation 100

Evaluating immobile and relocatable terms
with coefficients 104

Expression attributes 110

Relative attributes 111

Address attributes 112

Truncating expression values 112

Pseudo Instructions [5] 117

Program control 119

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual Contents

xiCray Research, Inc.SR–3108 9.1

Page Page

Loader linkage 119

Mode control 119

Section control 120

Message control 121

Listing control 121

Symbol definition 122

Data definition 122

Conditional assembly 123

Micro definition 124

File control 126

Defined Sequences [6] 127

Similarities among defined sequences 128

Editing 128

Definition format 129

Formal parameters 130

Instruction calls 132

Interaction with the INCLUDE pseudo
instruction 134

Macros (MACRO) 134

Macro definition 136

Macro calls 142

Operation definitions (OPDEF) 154

Opdef definition 160

Opdef calls 166

Duplication (DUP) 171

Duplicate with varying argument (ECHO) 174

Ending a macro or operation definition
(ENDM) 177

Premature exit from a macro expansion
(EXITM) 177

Ending duplicated code (ENDDUP) 178

Premature exit of the current iteration of
duplication expansion (NEXTDUP) 179

Stopping duplication (STOPDUP) 180

Specifying local unique character string
replacements (LOCAL) 184

Synonymous operations (OPSYN) 186

Pseudo Instruction
Descriptions [A] 189

User Messages [B] 281

Character Set [C] 353

Symbolic Instruction
Summary [D] 359

Instructions [E] 369

Common instructions 370

CRAY J90 and CRAY Y-MP specific
instructions 384

CRAY C90 specific instructions 386

CRAY J90 specific instructions 389

CRAY T90 specific instructions 390

Bit Matrix multiply instructions 397

Special register values and logical operators 399

Index 401

Figures

Figure 1. Page header format 4

Figure 2. Source statement listing format 5

Figure 3. Cross-reference listing format 7

Figure 4. CAL program structure 28

Figure 5. CAL program organization 34

Figure 6. ASCII character with left-justification
and blank-fill 87

Figure 7. ASCII character with left-justification
and zero-fill 87

Contents Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual

xii SR–3108 9.1Cray Research, Inc.

Page Page

Figure 8. ASCII character with
right-justification and zero-fill 88

Figure 9. ASCII character with
right-justification in 8 bits 88

Figure 10. Word/parcel conversion for 6 words 92

Figure 11. Diagram of an expression 94

Figure 12. Diagram of a term 94

Figure 13. Address attribute assignment
chart 100

Figure 14. 64-bit binary representation of
ASCII abc, left-justified 102

Figure 15. 64-bit binary representation of 1 102

Figure 16. Binary representation of ASCII
abc, right-justified in 9 bits 102

Figure 17. Result of VWD with 9-bit
destination field 103

Figure 18. 64-bit binary representation of
the complement of 1 103

Figure 19. 64-bit binary representation of 1 103

Figure 20. Binary representation of the
complement of 1 stored in the
rightmost bits of a 4-bit field 104

Figure 21. Result of VWD with 4-bit
destination field 104

Figure 22. 64-bit binary representation of –1 113

Figure 23. Truncated value of –1 stored in a
5-bit field 113

Figure 24. 64-bit binary representation of 5 113

Figure 25. Truncated value of 5 stored in a
3-bit field 113

Figure 26. 64-bit binary representation of 5 114

Figure 27. Truncated value of 5 stored in a
2-bit field 114

Figure 28. BITP example – zoning parcel A 195

Figure 29. BITP example – parcel b set by
VWD instruction 195

Figure 30. BITP example – resetting the
pointer 195

Figure 31. BITP example – result of a BITP
followed by a VWD 195

Figure 32. Storage of unlabeled data items 207

Figure 33. Storage of labeled and unlabeled
data items 208

Figure 34. Storage of CDC character data
item 208

Tables

Table 1. Logical and numeric traits 15

Table 2. List options 17

Table 3. Register designations 62

Table 4. Character set 353

Table 5. Register entry instructions 359

Table 6. Interregister transfers 360

Table 7. Memory transfers 361

Table 8. Program jumps and exits 362

Table 9. Bit count instructions 362

Table 10. Shift instructions 363

Table 11. Integer arithmetic operations 363

Table 12. Floating-point operations 364

Table 13. Logical operations 365

Table 14. Bit matrix multiply instructions 366

Table 15. Pass and breakpoint instructions 366

Table 16. Monitor operations 366

Table 17. Common symbolic machine
instructions 370

Table 18. CRAY J90 and CRAY Y-MP
symbolic machine instructions 384

Table 19. CRAY C90 symbolic machine
instructions 386

Table 20. CRAY J90 symbolic machine
instructions 389

Table 21. CRAY T90 symbolic machine
instructions 390

 Table 22. Bit matrix multiply symbolic
machine instructions 397

Table 23. Special register values and logical
operators 399

Introduction [1]

1Cray Research, Inc.SR–3108 9.1

Cray Assembly Language (CAL) is a powerful symbolic language
that generates object code for execution on Cray PVP systems.

Two types of CPUs are available with CRAY T90 systems. The
first type of CPU uses the same type of floating-point format as
all other Cray PVP systems. The second type of CPU conforms
with the Institute of Electrical and Electronics Engineers (IEEE)
standard 754, and except for minor differences, supports all
64-bit numeric representations, arithmetic operations, rounding
modes, and exception handling.

CAL is supported on all Cray PVP systems with somewhat
different instruction sets for each product line. The instruction
sets for each machine are presented in appendix E, page 369.

This publication is organized as follows:

Section Description

2 Describes the CAL invocation statement that
executes under the UNICOS operating system.
Section 2 also describes binary definition files.

3 Describes the organization of a CAL program.

4 Describes the statement syntax of the CAL
program.

5 Describes the use of pseudo instructions.

6 Describes defined sequences available within CAL.

A Lists descriptions of CAL pseudo instructions in
alphabetical order.

B Lists all CAL user messages.

C Lists the character sets that CAL supports.

Manual
organization
1.1

Introduction [1] Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual

2 Cray Research, Inc. SR–3108 9.1

Section Description

D Provides tables of the symbolic machine
instructions for Cray PVP systems.

E Provides a table of all symbolic machine
instructions for Cray PVP systems. The
instructions are listed in numeric order by the
opcode and a brief description of the instruction is
given.

The new instructions necessary to support IEEE floating-point
format on CRAY T90 systems can be found in appendix E, page
369.

CAL provides the following capabilities:

• The free-field source statement format of CAL lets you control
the size and location of source statement fields.

• With some exceptions, you can enter source statements in
uppercase, lowercase, or mixed-case letters.

• You can assign code or data segments to specific areas to
control local and common sections.

• You can use preloaded data by defining data areas during
assembly and loading them with the program.

• You can designate data in integer, floating-point, and
character code notation.

• You can specify addresses as either word or parcel addresses.

• You can control the content of the assembler listing.

• You can define a character string in a program and substitute
the string for each occurrence of its micro name in the
program by using micro coding.

• You can define sequences of code in a program or in a library
and substitute the sequence for each occurrence of its macro
name in the program by using macro coding.

New features and
modifications
1.2

Capabilities
1.3

Introduction [1]Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual

3Cray Research, Inc.SR–3108 9.1

The CAL assembler executes under the control of the UNICOS
operating system. It has no hardware requirements beyond
those required for the minimum system configuration.

When you specify the CAL invocation statement, the assembler
is loaded and begins executing. The parameters used on the
invocation statement specify the characteristics of an assembler
run, such as the file containing source statements or listing
output. For descriptions of the CAL command line, see section 2,
page 11, or the as (1) man page.

The file containing source statements can include more than one
CAL program segment. Each program segment is assembled as
it is encountered in the source code. The CAL assembler makes
two passes for each program segment. During the first pass,
each source language instruction is read, sequences (such as
macro instructions) are expanded, machine function codes are
generated, and memory is assigned. During the second pass,
values are substituted for symbolic operands and addresses;
object code and an associated listing are generated.

The object code must be linked and loaded prior to execution to
resolve references to external symbols. The absolute file that is
created by the link and load process is suitable for execution.

CAL source programs consist of sequences of source statements.
The source statement can be a symbolic machine instruction,
pseudo instruction, macro instruction, or opdef instruction. The
symbolic machine instructions provide a way of symbolically
expressing all functions of a Cray PVP system. Pseudo
instructions control the assembly process. Macros and opdefs
define instruction sequences that can be called later in a
program.

CAL source statements are free-format and can contain any or
all of the following fields:

• Location

• Result

• Operand

• Comment

Execution of the
CAL assembler
1.4

Source statement
format
1.5

Introduction [1] Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual

4 Cray Research, Inc. SR–3108 9.1

The content of each field is dependant upon the format specified
by the –f (new format) or –F (old format) parameters on the as
command line or by using the FORMAT pseudo instruction.
Generally, fields are separated by white space (blanks or tabs).
See subsection 3.2, page 36, for more information on the format
of source statements.

The following is an example of a CAL source statement:

ABC Si Sj+Sk ; Sum

In the preceding example ABC resides in the location field, Si in
the result field, Sj+Sk in the operand filed, and ;Sum in the
comment field.

CAL generates a source statement listing and a cross-reference
listing. You can control the format of these listings by using the
listing control pseudo instructions (see subsection 5.6, page 121)
or by using the –i , –I , –l , –L, –a, –n, –h, and –H options on the
as command line (see subsection 2.1, page 12).

Each page of listing output produced by the CAL assembler
contains three header lines. Figure 1 shows the format of the
page header.

CAL version # Title Global page #

Date and time Subtitle

Section and qualifier Scale (1–72 characters wide) Cray Research
system

Local page #

Figure 1. Page header format

Assembler listings
format
1.6

Introduction [1]Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual

5Cray Research, Inc.SR–3108 9.1

The three lines of the page header are described as follows:

• The first line contains, from left to right, the version number
of CAL, the title of the program, and a page number that is
global over all programs assembled by the current assembly.
If you do not specify a title by using a TITLE pseudo
instruction, the title is taken from the operand field of the
IDENT pseudo instruction.

• The second line contains, from left to right, the date and time
of assembly, a subtitle if specified with a SUBTITLE pseudo
instruction, and a page number that is local for this listing.

• On the third line, the leftmost entry is a local section name if
specified in a SECTION pseudo instruction. To the right of the
local section name is a symbol qualifier name if specified by a
QUAL pseudo instruction. The next field is a horizontal scale
that is 72 characters wide, numbered from 1 through 72. This
scale appears directly over your source code and helps you to
differentiate the four fields of your source statements. On the
far right of the third line is the name of the Cray Research
system for which the code was generated.

The format of the source statement listing, as shown in Figure 2,
appears directly under the page header and contains five
columns of information, as follows:

Location address Octal code Line number Source line or error code Sequence field

Figure 2. Source statement listing format

Source statement listing
format
1.6.1

Introduction [1] Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual

6 Cray Research, Inc. SR–3108 9.1

The five columns of the source statement listing are described as
follows:

• The location address column contains the address of the
current statement at assembly.

If the statement is a machine instruction, it lists the parcel
address with the parcel identifier a, b, c , or d appended to the
word address. Parcels are lettered from left to right within a
word. If the statement is not a machine instruction the
address is listed as a word address.

• The octal code column contains the octal representation of the
current instruction or numeric value.

If the numeric value is an address, the octal code has one of
the following suffixes:

– + (Relocation in program block)

– C (Common section)

– D (Dynamic section)

– S (Stack section)

– T (Task common)

– Z (Zero common)

– : (Immobile attribute)

– X (External symbol)

– None (Absolute address)

The results of several pseudo instructions can also appear in
the octal code column:

– The octal value of symbols defined by the SET, MICSIZE , or
= pseudo instruction

– The octal value of the number of words reserved by the BSS
or BSSZ pseudo instruction

– The octal value of the number of full parcels skipped as a
result of the ALIGN pseudo instruction

– The octal value of the number of characters in a micro
string defined by a MICRO, OCTMIC, or DECMIC pseudo
instruction

• The line number column contains the line number of the
source code.

Introduction [1]Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual

7Cray Research, Inc.SR–3108 9.1

• The source line column is 72 characters wide and holds
columns 1 through 72 of each source line.

• The error code column contains an error message immediately
following a statement that contains an error. Error codes are
described in appendix B, page 281.

• The sequence field column contains either an identifier or
information taken from columns 73 through 90 of the source
line image. It contains an identifier if the line is an expansion
of a macro or opdef, or if the line was edited.

The assembler generates a cross-reference listing in the format
shown in Figure 3. The assembler lists symbols alphabetically
and groups them by qualifier if the QUAL pseudo instruction has
declared qualifiers. If qualifiers were declared, each new
qualifier appears on a fresh page. The qualifier name appears
on the third line of the page header.

The cross-reference listing does not include unreferenced
symbols that are defined between TEXT and ENDTEXT pseudo
instructions and it does not include symbols of the form
%%xxxxxx; x is zero or more identifier characters.

Note: The page header is nearly identical to the page header
of the assembler listing; the difference is that the string
Symbol cross reference is printed out in the middle field of the
third line of the cross-reference listing.

Symbol Value . Symbol references

CAL version # Title Global page #

Date and time

Section and qualifier

Subtitle Local page #

“Symbol cross reference” Cray Research system

Figure 3. Cross-reference listing format

Cross-reference listing
format
1.6.2

Introduction [1] Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual

8 Cray Research, Inc. SR–3108 9.1

The information in each column is described as follows:

• The symbol column contains the symbol name.

• The value column contains the octal value of the symbol.

A symbol with a parcel address attribute has a, b, c , or d
appended to the word address. Parcels go from left to right
within a word. The octal value of the symbol may have one of
the following suffixes:

– + (Relocation in program block)

– C (Common section)

– D (Dynamic section)

– S (Stack section)

– T (Task common)

– Z (Zero common)

– : (Immobile attribute)

– X (External symbol)

– None (Absolute address)

• The period (.) column separates the value reference field from
the symbol reference fields and is called the separator.

• The symbol references column contains one or more references
to the symbol.

The assembler references symbols in the following format:

page : line x

page is the decimal representation of the local page number in
the listing that contains the current reference. The local page
number appears in parentheses at the far right end of the
second line of the header.

line is the decimal representation of the line number that
contains the reference.

x represents the type of reference as follows:

– A blank column means the symbol value is used at this
point.

– D means the symbol is defined in the location field of an
instruction or else by a SET, =, or EXT pseudo instruction.

Introduction [1]Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual

9Cray Research, Inc.SR–3108 9.1

– E means the symbol is an entry name.

– F means the symbol is used in an expression on an IFE ,
IFA , or ERRIF conditional pseudo instruction.

– R means the symbol is used in an address expression in a
memory read instruction or as a B or T register symbol in
an instruction that reads the B or T register.

– S means the symbol is used in an address expression in a
memory store instruction or as a B or T register symbol in
an instruction that stores a new value in the B or T register.

If a symbol is defined in text between TEXT and ENDTEXT pseudo
instructions, the cross-reference listing reports the associated
TEXT name on the line below the symbol reference.

If a symbol is defined in a binary definition file, the
cross-reference listing reports the associated file name on the
line below the symbol reference.

UNICOS System Information [2]

11Cray Research, Inc.SR–3108 9.1

CAL, the Cray assembler, supports binary definition files and
interfaces with the UNICOS operating system.

A typical interactive session involves assembling a CAL source
file to create a relocatable object file. A link editor or loader
processes the object file to create an executable file. This process
is accomplished by entering a series of commands at the
command line. (For more information, see subsection 2.2, page
19.)

CAL does not use the standard input file or standard output file
during assembly; however, it does use the standard error file to
report diagnostic and source line messages.

CAL generates listing and diagnostic messages during assembly.
When the –l and –L options are specified on the as (1) command
line and a syntax or semantic error is encountered, the
assembler generates listing messages. A message is printed in
the listing after each source statement flagged by the assembler
and a pointer identifies the location within the source statement
that corresponds to the message. The message also is issued to
the standard error file.

CAL generates diagnostic messages that provide user
information about the assembly (comment, note, and caution)
and CAL assembler errors (warning and error). Diagnostic
messages are classified by level of severity from low to high, as
follows:

• User information about the assembly

– Comment (statistical information)

– Note (possible assembly problems)

– Caution (definite user errors during assembly)

• CAL assembler errors

– Warning (possible error such as truncation of a value)

– Error (fatal assembly error, you should check the message
and source code carefully for possible mistakes)

UNICOS System Information [2] Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual

12 Cray Research, Inc. SR–3108 9.1

Note: To print comment-, note-, and caution-level diagnostic
messages to the standard error file, you must specify the –m
option on the as (1) command line.

The UNICOS as (1) command invokes the CAL assembler. The
format of the as (1) command is as follows:

as [–o objfile] [–l lstfile] [–L msgfile] [–b bdflist] [–B]
 [–c bdfile] [–D micdef] [–g symfile] [–G] [–C cpu] [–h] [–H]
 [–i nlist] [–I options] [–m mlevel] [–M] [–n number] [–f]
 [–F] [–j] [–J] [–U] [–V] file

The as (1) command assembles the specified file. The following
options, each a separate argument, can appear in any order, but
they must precede the file argument:

–o objfile Relocatable assembly output is stored in file
objfile. By default, the relocatable output
file name is formed by removing the path
name and the .s suffix, if they exist, from
the input file and by appending the .o
suffix. A link editor or loader must process
objfile.

–l lstfile Assembly output source listing is stored in
file lstfile. By default, the output source
listing is suppressed.

–L msgfile Assembly output source message listing is
stored in file msgfile. By default, the output
message listing is suppressed.

–b bdflist Reads the binary definition files stored in
one or more files. The files specified in
bdflist can be designated using one of the
following forms:

• List of files separated by a comma

• List of files enclosed in double quotation
marks and separated by a comma and/or one
or more spaces

as (1) – CAL
command line
2.1

UNICOS System Information [2]Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual

13Cray Research, Inc.SR–3108 9.1

The files listed in bdflist are read in the
order specified. By default, the binary
assembler definitions found in file
/lib/asdef are also read unless
suppressed with the –B option.

–B Suppresses /lib/asdef as the default
binary assembler definition file.

–c bdfile Creates the binary definition file bdfile. By
default, the creation of a binary definition
file is suppressed.

–D micdef Defines a globally defined constant micro
mname, as follows:

micdef ::= mname[=[string]]

mname must be a valid identifier. If the =
character is specified, it must immediately
follow mname. The string that immediately
follows the = character, if any, is associated
with mname. If you do not specify string,
mname will be associated with an empty
string.

If mname was defined as a micro by use of a
binary definition file, the mname specified
on the command line overrides the mname
defined within the binary definition file; in
that case, CAL issues a note-level diagnostic
message.

–g symfile Assembly output symbol file is stored in
symfile. symfile is used by the system
debuggers. By default, the output symbol
file is suppressed.

If you specify the same file for both the –o
and –g options, and the last assembler
segment does not contain a module (that is,
it contains only the global part of the
segment), CAL will not generate a
corresponding symbol table for that
assembler segment. For detailed
information about segments, modules, and
global parts, see section 3, page 33.

UNICOS System Information [2] Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual

14 Cray Research, Inc. SR–3108 9.1

–G Forces all symbols to symfile if the –g option
is used. Usually, nonreferenced symbols are
not included.

–C cpu Generates code for the CPU specified. By
default, code is generated for the machine
specified by the TARGET environment
variable. If the TARGET environment is not
set, code is generated for the characteristics
of the host machine. cpu has one of the
following syntaxes:

 cpu ::= primary{“,” [charac]}
or
cpu ::= “,” [charac]{“,” [charac]}

primary primary can be one of the
following Cray Research systems:

cray-c90 CRAY C90 series

cray-j90 CRAY J90 series

cray-ts CRAY T90 series

cray-ymp CRAY Y-MP series

charac Specifies the features of the
primary computer.

Cray PVP systems permit you to
specify the logical and numeric
traits shown in Table 1.

UNICOS System Information [2]Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual

15Cray Research, Inc.SR–3108 9.1

Table 1. Logical and numeric traits

Traits Description

Logical

avl Additional vector logical

noavl No additional vector logical

bdm Bidirectional memory

nobdm No bidirectional memory

bmm Bit matrix multiply (BMM), only on
machines supporting BMM hardware.

nobmm No bit matrix multiply

cigs Compressed index and gather/scatter

nocigs No compressed index and gather/scatter

cori Control operand range interrupts

nocori No control operand range interrupts

ema Extended memory addressing

noema No extended memory addressing

hpm Hardware performance monitor

nohpm No hardware performance monitor

ieee � CRAY T90 system with IEEE
floating-point hardware

pc Programmable clock

nopc No programmable clock

readvl Read vector length

noreadvl Do not read vector length

statrg Status register

nostatrg No status register

vpop Vector pop count

novpop No vector pop count

� The ieee characteristic can be used to specify that code be
generated to run on a CRAY T90 system with IEEE
floating-point hardware; however, generating code that
runs on a Cray PVP system that uses Cray floating-point
arithmetic from a CRAY T90 system with IEEE
floating-point hardware is not supported.

UNICOS System Information [2] Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual

16 Cray Research, Inc. SR–3108 9.1

Table 1. Logical and numeric traits
(continued)

Traits Description

vrecur Vector recursion

novrecur No vector recursion

Numeric

bankbusy= n�� Bank busy time (in clock periods)

banks= n�� Number of memory banks

clocktim= n�� Clock time (in picoseconds)

ibufsize= n�� Instruction buffer size (in words)

memsize= n�� Memory size (in words)

memspeed=n�� Memory speed (in clock periods)

numclstr= n�� Number of cluster registers

numcpus= n�� Number of CPUs

–h Enables all list pseudo instructions
regardless of the location field name.

–H Disables all list pseudo instructions
regardless of the location field name.

–i nlist Restricts list pseudo processing to those
pseudo instructions whose location field
names are given in nlist. The names
specified by nlist can take one of the
following forms:

• List of names separated by a comma

• List of names enclosed in double
quotation marks and separated by a
comma and/or one or more spaces

–I options Specifies a list of options. You can specify a
list of more than one option without
intervening blanks. You cannot specify
conflicting options (for example, the same
character in uppercase and lowercase) in the
same –I list. For valid options, see Table 2.

�� n represents an unsigned decimal number

UNICOS System Information [2]Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual

17Cray Research, Inc.SR–3108 9.1

Table 2. List options

Options Description

b Enables macro, opdef, dup, and echo expansion
(binary only)

B� Disables macro, opdef, dup, and echo expansion
(binary only)

c Enables macro, opdef, dup, and echo expansion
(conditionals)

C� Disables macro, opdef, dup, and echo expansion
(conditionals)

d Enables dup and echo expansion

D� Disables dup and echo expansion

e� Enables edited statement listing

E Disables edited statement listing

l Enables listing control pseudo instructions

L� Disables listing control pseudo instructions

m Enables macro and opdef expansions (binary
only)

M� Disables macro and opdef expansions (binary
only)

n� Enables nonreferenced local symbols included
in the cross-reference

N Disables nonreferenced local symbols included
in the cross-reference

p Enables macro, opdef, dup, and echo expansion
of pre-edited lines

P� Disables macro, opdef, dup, and echo expansion
of pre-edited lines

� Denotes default option

UNICOS System Information [2] Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual

18 Cray Research, Inc. SR–3108 9.1

Table 2. List options
(continued)

Options Description

s� Enables source statement listing

S Disables source statement listing

t Enables text source statement listing

T� Disables text source statement listing

x� Enables cross-reference listing

X Disables cross-reference listing

–m mlevel Specifies the level of the output listing, the
message listing, and the standard error file.
mlevel can be comment, note , caution ,
warning , or error .

If you specify the –m option, it overrides all
MLEVEL pseudo instructions. By default, the
level is warning , and the MLEVEL pseudo
instruction controls the message level
during assembly.

-M Enables flagging of possible CRAY C90
series and CRAY J90 series bidirectional
memory conflicts. Requires –m to be set to
comment, note , or caution .

–n number Maximum number of messages that will be
inserted into the output listing, the message
listing, and the standard error file. number
must be 0 or greater; the default is 100.

–f Enables the new statement format. By
default, the old format is used when
targeting for a CRAY Y-MP system;
otherwise, the new format is used.
Statement format reverts to the format that
is specified on the invocation statement at
the end of each assembler segment.

� Denotes default option

UNICOS System Information [2]Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual

19Cray Research, Inc.SR–3108 9.1

–F Disables the new statement format. By
default, the old format is used when
targeting for a CRAY Y-MP system;
otherwise, the new format is used.
Statement format reverts to the format
specified on the invocation statement at the
end of each assembler segment.

–j Enables editing; the default is enabled.
Editing status reverts to the status specified
on the invocation statement at the end of
each assembler segment.

–J Disables editing; the default is enabled.
Editing status reverts to the status specified
on the invocation statement at the end of
each assembler segment.

–U Forces the conversion of source code to
uppercase. Quoted strings are embedded
micros and are protected. Both new and old
format statement types are supported.

–V Causes the version number of the assembler
being run and other statistical information
(comment-level diagnostic messages) to be
written to the standard error file.

file File that will be assembled; all options must
precede the file name argument.

To assemble and execute a CAL program interactively, enter the
following commands:

as myfile.s

segldr myfile.o

a.out

Interactive
assembly
2.2

UNICOS System Information [2] Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual

20 Cray Research, Inc. SR–3108 9.1

The commands are described as follows:

Command Description

as Assembles file myfile.s and creates file
myfile.o

segldr Links and loads the assembled program found
in myfile.o and creates the executable file
a.out

a.out Executes the executable file a.out

For a description of these and other commands, see the UNICOS
User Commands Reference Manual, publication SR–2011.

The following subsections describe aspects of the UNICOS
environment. How the environment is set depends on the type
of shell being used.

The CAL assembler is affected by the LPP environment variable
in the UNICOS environment. The LPP environment variable
sets the number of lines per page for output listings (page
length). By default, the number of lines per page is 55.

To set the LPP environment variable and assemble multiple
source files when using the C shell, enter the following
commands:

setenv LPP n

as filenamea.s

as filenameb.s

.

.

.

The UNICOS
environment
2.3

LPP environment
variable
2.3.1

UNICOS System Information [2]Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual

21Cray Research, Inc.SR–3108 9.1

To set the LPP environment variable and assemble a source file
with a single command line when using the standard shell, enter
the following command:

LPP=n as filenamex.s

If you specify the LPP shell variable on the same line as the
as (1) command line, the number of lines per page assigned by
the LPP shell variable is restricted to that particular as
instruction.

To set the LPP environment variable and assemble multiple
source files when using the standard shell, enter the following
commands:

LPP=n

export LPP

as filenamea.s

as filenameb.s

.

.

.

If you specify the LPP shell variable as a separate entry and then
export it, all assemblies that follow use the page length specified
by that LPP shell variable for output and message listings.

In the preceding examples, n is a decimal number in a valid
range of 4 through 999 (the default is 55) that represents the
page length used in output listings and filenamea, filenameb...
represent the names of the source files being assembled.

Note: If n is outside of the valid range, the page length is set
to the default.

UNICOS System Information [2] Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual

22 Cray Research, Inc. SR–3108 9.1

In the following example, the number of lines per page in the
output listings for srca.s and srcb.s is 45:

LPP=45

export LPP

as srca.s

as srcb.s

In the following example, the page length for srcd.s is 45.
However, the page length for srce.s reverts to 64 because the
second LPP shell variable is restricted to the assembly of
srcd.s :

LPP=64

export LPP

LPP=45 as srcd.s

as srce.s

The TMPDIR shell variable specifies a directory used by the
assembler for its temporary file. If the directory is not specified
or is specified incorrectly, the assembler uses the system default.
The default is site-specific.

To set the TMPDIR environment variable and assemble a source
file when using the C shell, enter the following commands:

setenv TMPDIR dir_name

as filenamea.s

To set the TMPDIR environment variable and assemble a source
file with a single command line when using the standard shell,
enter the following command:

TMPDIR=p as filenamex.s

If you specify the TMPDIR shell variable on the same line as the
as (1) command line, the temporary directory assigned by the
TMPDIR shell variable affects only that particular as instruction.

TMPDIR shell variable
2.3.2

UNICOS System Information [2]Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual

23Cray Research, Inc.SR–3108 9.1

To set the TMPDIR environment variable and assemble multiple
source files when using the standard shell, enter the following
commands:

TMPDIR=p

export TMPDIR

as filenamea.s

as filenameb.s

.

.

.

If you specify the TMPDIR environment variable as a separate
entry and then export it, all assemblies that follow use the
temporary directory specified by that TMPDIR shell variable for
temporary files.

In the preceding example, p specifies the directory path used for
the assembler’s temporary file and the filenamea, filenameb...
variables represent the names of the UNICOS files that are
being assembled.

In the following example, /tmp is the directory that CAL uses for
its temporary file:

TMPDIR=/tmp

export TMPDIR

as srca.s

as srcb.s

UNICOS System Information [2] Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual

24 Cray Research, Inc. SR–3108 9.1

In the following example, the temporary directory used for
srcd.s is the current working directory (.). The temporary
directory for srce.s , however, reverts to /usr/tmp , which is
used because the second TMPDIR environment variable is
associated only with the assembly of srcd.s :

TMPDIR=/usr/tmp

export TMPDIR

TMPDIR=. as srcd.s

as srce.s

The MSG_FORMAT environment variable controls the format of
error messages received from programs that use the
catmsgfmt (3) message formatting routine. For more
information, see the explain (1) man page.

The TARGET environment variable determines the
characteristics of the machine the code is generated for. To
initialize the TARGET environment variable in the C shell, enter
the following:

setenv TARGET cpuname

To initialize the TARGET environment variable in the standard
shell, enter the following:

export TARGET

The format to set up or change the TARGET environment variable
in the standard shell is as follows:

TARGET=[cpuname] {,[charac] }

If the TARGET environment variable is not set, code is generated
using the characteristics of the host machine. The options for
cpuname and charac may be found in subsection 2.1, page 12.
For more information, see the target (1) man page.

MSG_FORMAT error
message format
2.3.3

TARGET shell variable
2.3.4

UNICOS System Information [2]Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual

25Cray Research, Inc.SR–3108 9.1

Note: Targeting a CRAY T90 with IEEE floating-point
hardware from any other Cray PVP system is supported,
however; targeting a Cray PVP system that uses Cray
floating-point arithmetic from a CRAY T90 with IEEE
floating-point hardware is not supported.

CAL allows the assembler source program access to previously
assembled lines or sequences of code. These preassembled
sequences are stored in files that are called binary definition
files. Binary definition files are analogous to libraries and are
one of the following types:

• System-defined

• User-defined

The system-defined binary definition file is /lib/asdef . CAL
accesses the system-defined binary definition file automatically
unless the assembler is directed otherwise. Binary definition
files contain commonly used symbols, macros, opdefs, opsyns,
and micros. For information about available macros and opdefs,
see the UNICOS Macros and Opdefs Reference Manual,
publication SR–2403.

Note: System- and user-defined binary definition files are
identical in all respects. Both types of files are created and
used in exactly the same manner. In this manual, they are
treated as separate entities to encourage you to define binary
definition files that meet your particular programming
requirements.

You can create user-defined binary definition files by using
either of the following methods:

• Copying the system-defined binary definition files and then
modifying the new file either by adding new definitions or by
redefining existing definitions.

• Disabling the recognition of system-defined binary definition
files and accumulating the defined sequences entirely from an
assembler source program. For more information, see
subsection 2.1, page 12.

Binary definition
files
2.4

UNICOS System Information [2] Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual

26 Cray Research, Inc. SR–3108 9.1

You can specify more than one binary definition file with each
assembly. If more than one binary definition file is specified, the
files are processed from left to right in the order specified by the
–b option.

Lines or sequences of code assembled and stored in a binary
definition file, can be accessed without reassembly. This means
accessing a binary definition file directly saves assembler time.

The following subsections describe defining, creating, and using
binary definition files.

Only certain types of lines or sequences of code are permitted in
a binary definition file. Binary definition files are always
created from the global part of program segments and from any
currently accessed binary definition files. Typically, binary
definition files are created from source programs that include
one segment that contains a global part, but has no program
module (see Figure 4, page 28).

Additions can be made to binary definition files from assembler
source programs that include program modules, however, not all
lines or sequences of code in the global part are added.

Note: Under no circumstance is any line or sequence of code
added to a binary definition file from an assembler program
module. All additions to binary definition files come from the
global part of the segment.

Binary definition files are composed of lines or sequences of code
classified as follows:

• Symbols

• Macros

• Opdefs

• Opsyns

• Micros

Each line or sequence of code added to a binary definition file
must be in one of these classes and must satisfy the
requirements for that particular class.

Defining a binary
definition file
2.4.1

UNICOS System Information [2]Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual

27Cray Research, Inc.SR–3108 9.1

CAL accumulates the symbols to be included in a new binary
definition file from all currently accessed binary definition files
and from all of the global parts of program segments that fit the
following requirements:

• Symbols cannot be redefinable.

To be included in a binary definition file, a symbol must be
defined with the = (equates) pseudo instruction. Symbols
defined with the SET or MICSIZE pseudo instruction are
redefinable; therefore, they are not included in a binary
definition file.

• Symbols cannot be preceded by %%.

This exclusion applies to symbols that are created by the
LOCAL and = pseudo instructions.

CAL identifies all of the symbols in the global part of program
segments that meet the preceding requirements and includes
them in the creation of a binary definition file. In Figure 4, page
28, SYM1, SYM3, and SYM4 meet the requirements and are
included. SYM2 (defined in the module), SYM5 (redefinable), and
%%SYM6 (begins with %%) do not meet the requirements and are
not included.

CAL accumulates the macros to be included in a new binary
definition file from all currently accessed binary definition files
and from all of the global parts of segments within a source
program.

CAL accumulates opdefs (operation definitions) to be included in
a new binary definition file from all currently accessed binary
definition files and from all of the global parts of segments
within a source program.

CAL accumulates opsyns (operation synonyms) to be included in
a new binary definition file from all currently accessed binary
definition files and from all of the global parts of segments
within a source program.

Symbols
2.4.1.1

Macros
2.4.1.2

Opdefs
2.4.1.3

Opsyns
2.4.1.4

UNICOS System Information [2] Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual

28 Cray Research, Inc. SR–3108 9.1

CAL accumulates micros to be included in a new binary
definition file from all currently accessed binary definition files
and from all of the global parts of segments within source
program. Only micros that cannot be redefined are included in a
binary definition file. A micro must be defined using the CMICRO
pseudo instruction to be included in a binary definition file.

Program

Segment A

Global A

SYM1 = 1

Module A

SYM2 = 2

Segment B

Global B

SYM3 = 2

Module B

Segment C

Global C

SYM4 = 4
SYM5 SET 5
%%SYM6 = 1

Figure 4. CAL program structure

Micros
2.4.1.5

UNICOS System Information [2]Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual

29Cray Research, Inc.SR–3108 9.1

You can create your own binary definition files containing
information related to both the UNICOS operating system and
Cray Research hardware. Keep in mind that system
dependencies included in these binary definition files may not be
portable between UNICOS versions or different hardware
platforms.

To create binary definition files under UNICOS, include the –b
and –c options on the as (1) command line. The –b option
accepts a list of files separated by commas or a list of files
enclosed in double quotation marks and separated by spaces or
commas as arguments.

In the following example, the default system-defined binary
definition file /lib/asdef and user-defined binary definition
files ourdeffile and mydeffile are included along with the
accumulated symbols, macros, opdefs, opsyns, and micros from
the global parts of the program segments from the current
source program (prog.s) being assembled. The new binary
definition file called mynewfile is defined and created by
including the –c option.

as –b ourdeffile,mydeffile –c mynewfile prog.s

In CAL, the default binary definition file (/lib/asdef) is
available unless suppressed by including the –B option. If not
suppressed, /lib/asdef is the first binary definition file read.
Any other binary definition files specified following the –b option
are processed in the order specified. The following command line
suppresses /lib/asdef and makes mynewfile the only
available binary definition file:

as –B –b mynewfile prog.s

The following command line suppresses /lib/asdef and takes
only the accumulated symbols, macros, opdefs, opsyns, and
micros from the global parts of the program segments from the
current source program being assembled and enters them into
the binary definition file mynewfile :

as –B –c mynewfile prog.s

To use the system-defined binary definition file and specify the
user-defined binary definition file created using the preceding
options, use the following command line in subsequent
assemblies:

as –b mynewfile prog.s

Creating binary
definition files
2.4.2

UNICOS System Information [2] Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual

30 Cray Research, Inc. SR–3108 9.1

Binary definition files provide access to previously assembled
lines or sequences of code. To access binary definition files,
include the –b option on the as (1) command line. When binary
definition files are accessed, they are checked for the following:

• CPU compatibility

• Multiple references to the same definition

CAL permits access to any previously defined file with one
restriction. Binary definition files are marked with the CPU
type for which they were created. Binary definition files created
on one Cray PVP system is not necessarily compatible with all
Cray PVP systems. If a binary definition file is not compatible
with the system you are using, the binary definition file is not
accepted, and the following message is issued:

Incompatible version of binary definition file ‘file’

This check ensures that the machine on which the binary
definition file was created is compatible with the program trying
to use it. Some CAL pseudo instructions have restricted use
based on hardware and software requirements. The binary
definition file compatibility check prevents the mixing of binary
definition files and ensures that hardware and software
restrictions are not violated.

CAL checks for multiple references to definition names for
macros and opsyns, location field names for symbols and micros,
and syntax for opdefs. The following subsections describe how
multiple references to a definition are resolved.

If a symbol is defined in more than one binary definition file, the
definitions are compared. If the definitions are identical, CAL
disregards the duplicates and makes one entry for the symbol
from the binary definition files. If a symbol is defined more than
once and the definitions are not identical, CAL uses the last
definition associated with the location field name and issues the
following diagnostic message:

Symbol ‘name’ is redefined in file ‘file’

Using binary
definitions files
2.4.3

CPU compatibility
checking
2.4.3.1

Multiple references to a
definition
2.4.3.2

Symbols
2.4.3.2.1

UNICOS System Information [2]Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual

31Cray Research, Inc.SR–3108 9.1

If a macro with the same functional name is defined in more
than one binary definition file, the definitions are compared. If
the definitions associated with the macro’s functional name are
identical character by character, CAL disregards the duplicate
definition and makes one entry for the macro from the binary
definition files. If the functional name of the macro is used more
than once, and the definitions associated with the functional
name are not identical character by character, CAL uses the
definition associated with the last reference to the functional
name and issues the following diagnostic message:

Macro ‘name’ in file ‘file’ replaces previous definition

If a macro is defined with the same functional name as a pseudo
instruction, the macro replaces the pseudo instruction and CAL
issues the same message as shown above.

If an opdef with the same syntax is defined in more than one
binary definition file, the definitions of the opdefs are compared.
If the definitions of the two opdefs are exactly the same, CAL
disregards the duplicate definition and makes one entry for the
opdef from the binary definition files. If the same syntax
appears more than once and the definitions are not exactly the
same, the syntax associated with the last reference to the opdef
is used as its definition and CAL issues the following diagnostic
message:

Opdef ‘name’ in file ‘file’ replaces previous definition

If an opdef is defined with the same syntax as a machine
instruction, the opdef replaces the machine instruction and CAL
issues the message shown above.

If an opsyn with the same functional name is defined in more
than one binary definition file, the definitions are compared. If
the definitions are identical, CAL disregards the duplicate
definition and makes one entry for the opsyn from the binary
definition files. If the functional name for an opsyn is used more
than once and the definitions are not identical, CAL uses the
definition associated with the last reference to the opsyn name
and issues the following diagnostic message:

Opsyn ‘name’ in file ‘file’ replaces previous definition

Macros
2.4.3.2.2

Opdefs
2.4.3.2.3

Opsyn
2.4.3.2.4

UNICOS System Information [2] Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual

32 Cray Research, Inc. SR–3108 9.1

If an opsyn is defined with the same name as a pseudo
instruction, the opsyn replaces the pseudo instruction and CAL
issues the message as shown above. Pseudo instructions have
an internal code that permits CAL to identify them when they
are encountered. When an opsyn is used to redefine an existing
pseudo instruction, CAL copies the predefined internal code of
that pseudo instruction and uses it for identification in the
binary definition file.

If a micro with the same location field name is defined in more
than one binary definition file, the micro strings associated with
the location field names are compared. If the strings are
identical, CAL disregards the duplicate definition and makes one
entry for the micro from the binary definition files. If the micro
is used more than once and the strings associated with the micro
names are not exactly identical, CAL uses the string associated
with the last reference to the micro name and issues the
following diagnostic message:

Micro ‘name’ in file ‘file’ replaces previous definition

Micros
2.4.3.2.5

The CAL Program [3]

33Cray Research, Inc.SR–3108 9.1

This section describes the organization of a CAL program and
how each component functions within the program. A CAL
program can contain any or all of the following components:

• Program segment

• Source statement

• Statement editing

• Instructions

• Micros

• Sections

The following subsections describe each of these components.

A CAL program consists of zero or more segments. A CAL
program with zero segments consists of one or more empty files.
A file that contains one blank line is considered a segment. For
example, CAL considers a program with an IDENT/END
sequence that is followed by a blank line to contain two
segments. Ordinarily, each segment consists of global
definitions, a program module, or a combination of global
definitions and a program module. Figure 5, page 34, illustrates
the organization of a CAL program.

A program module is the main body of code and resides between
the IDENT and END pseudo instructions. (For more information
on pseudo instructions, see subsections 3.4.1.2, page 47, and
section 5, page 117.) The IDENT pseudo instruction marks the
beginning of a program module. The END pseudo instruction
marks the end of a module and always terminates a segment.
Any definitions between these two pseudo instructions apply
only to the program module in which the definition resides.

Program segment
3.1

Program module
3.1.1

The CAL Program [3] Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual

34 Cray Research, Inc. SR–3108 9.1

Program

Segment – 1

Global definitions – 1

Program module – 1

Segment – 2

Global definitions – 2

Program module – 2

Segment – n

Global definitions – n

Program module – n

Figure 5. CAL program organization

The CAL Program [3]Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual

35Cray Research, Inc.SR–3108 9.1

Definitions that occur before the first IDENT pseudo instruction
or between the END pseudo instruction that terminates one
program module and the IDENT that begins the next program
module are global definitions. They can be referenced without
redefinition from within any of the program segments that follow
the definition.

CAL recognizes global definitions to be sequences of instructions
that do not generate code. They define and assign values to
symbols, macros, opdef instructions, and micros. (For more
information on opdefs, macros, and micros, see section 5,
page 117.)

Redefinable micros, redefinable symbols, and symbols of the
form %%x; where x is 0 or more identifier-characters are
exceptions. Although they can occur in such sequences, they are
local to the segment in which they are defined, are not known to
the assembler after the next END pseudo instruction (end of the
current segment) is encountered, and they are not included in
the cross-reference listing. Symbols defined within the global
definitions area cannot be qualified (see subsection 4.3.1,
page 70).

Global definitions
3.1.2

The CAL Program [3] Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual

36 Cray Research, Inc. SR–3108 9.1

The following example illustrates global definitions:

SYM1 = 1 ; Begin segment 1 global
; SYM1 cannot be redefined

SYM2 SET 2 ; SYM2 equals 2 for this module
%%SYM3 = 3 ; Gone at the end of the module
%%SYM4 SET 4 ; Gone at the end of the module

IDENT TEST1 ; Beginning of module 1
S1 SYM1 ; Register S1 gets 1
S2 SYM2 ; Register S2 gets 2
S3 %%SYM3 ; Register S3 gets 3
S4 %%SYM4 ; Register S4 gets 4
END ; End of segment 1 and module TEST 1

SYM2 SET 3 ; Beginning of segment 2
%%SYM3 = 5 ; Global definitions

IDENT TEST2 ; Beginning of module TEST 2
S1 SYM1 ; Register S1 gets 1
S2 SYM2 ; Register S2 gets 3
S3 %%SYM3 ; Register S3 gets 5
S4 %%SYM4 ; Error: not defined
END ; End of segment 2 and module TEST 2

IDENT TEST3 ; Beginning of segment 3 and module TEST 3
S1 SYM1 ; Register S1 gets 1
S2 SYM2 ; Error: not defined
S3 %%SYM3 ; Error: not defined
END ; End of segment 3 and module TEST 3

A CAL program consists of a sequence of source statements. A
source statement can be an instruction or a comment. (The
assembler lists comments, but they have no effect on the
executable program.)

Formal parameters, symbols, names, pseudo instructions, and
macro names are case-sensitive. To be recognized, subsequent
references to a previously defined formal parameter, symbol,
name, or functional unit must match the original definition
character-for-character and case-for-case (uppercase or
lowercase).

Source statement
3.2

The CAL Program [3]Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual

37Cray Research, Inc.SR–3108 9.1

The following are examples of case-sensitivity:

Definition Reference Comment

HERE HERE Recognized

HERE Here Not recognized

PARAMl paraml Not recognized

The following rules govern the use of uppercase and lowercase
characters in CAL statements:

• Pseudo instructions and mnemonics are case-sensitive; they
can be uppercase or lowercase, but not mixed case.

• Register names are case-insensitive; they can be uppercase,
lowercase, or mixed case.

• Macro names, opdef mnemonics, symbol names, and other
names are case-sensitive; they are interpreted as coded.

Although CAL source statements are essentially free field,
formatting conventions provide more uniform and readable
listings. CAL supports two formatting conventions, the new
format and the old format. A blank character is used to separate
fields in the old format. In the new format, you can use either a
blank or a tab to separate fields.

The new format is specified by either the FORMAT pseudo
instruction or the –f parameter of the CAL invocation
statement. For more information on the –f parameter, see
subsection 2.1, page 12.

A source statement that uses the new format consists of the
following fields:

• Location

• Result

• Operand

• Comment

New format
3.2.1

The CAL Program [3] Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual

38 Cray Research, Inc. SR–3108 9.1

If the new format is specified, use the following coding
conventions:

Beginning column Field

1 Blank, tab, or asterisk

1 Location field entry

9 Blank or tab

10 Result field entry

19 Blank or tab

20 Operand field entry

34 Blank or tab

35 Semicolon (indicates comment field)

36 Blank

37 Beginning of comment field

The content of the location field depends on the requirements of
the result and/or operand fields of each particular source
statement. The location field of all machine instructions can
optionally contain a symbol. If the location field of a machine
instruction contains a symbol, the symbol is set equal to the
current value of the location counter.

When an instruction uses the location field, it begins in column 1
(new format) and is terminated by a blank or tab character. The
location field also can contain an asterisk (*) to identify a
comment line.

The content of the result field depends on the particular
instruction. The result field of pseudo instructions and macro
instructions must match existing functionals. Machine or opdef
instructions can contain one, two, or three subfields.

The subfield can be empty, contain expressions, or consist of
register designators or operators. (Expressions, register
designators, and operators are described in section 4, page 61.)
The result field begins with the first nonblank or nontab
character following a location field that is not empty and usually

Location field
3.2.1.1

Result field
3.2.1.2

The CAL Program [3]Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual

39Cray Research, Inc.SR–3108 9.1

ends with one or more blanks, one or more tabs, or a semicolon.
If column l is empty, the result field can begin in column 2 or
subsequent columns. A blank result field following a location
field produces a listing message.

Before the operand field can be specified, it must be preceded by
a result field. For functionals (pseudo instructions and macro
names), the operand field depends on the functional specified in
the result field.

If the instruction is a symbolic machine instruction, the operand
field contains the operation being performed. However, it can
contain other information, depending on the particular
instruction. The syntax of the operand field is identical to that
of the result field. Machine or opdef instructions can contain
one, two, or three subfields. A subfield can be empty, contain
zero or more expressions, or consist of register designators and
operators.

Usually, the operand field begins with the first nonblank or
nontab character following a result field that is not empty and
ends with one or more blank characters, one or more tab
characters, or a semicolon.

The comment field contains an explanation of the source
statement and does not generate code. The comment field is
optional and can be specified with an asterisk or a semicolon. A
semicolon comment can be in any column, including column 1. If
an asterisk is used to indicate a comment, it must appear in
column 1. Generally, a comment that begins in column 1 is
specified by using an asterisk and a comment that begins in any
other column is specified by using a semicolon. If a semicolon is
specified with nothing preceding it, the line is treated as a null
instruction followed by a comment. Usually, comment fields are
not edited. For more information about editing comment fields,
see subsection 3.3, page 41.

The following example illustrates the use of the comment field:

ident test1
*Asterisk in column 1 denotes comment line

; Semicolon begins comment
end test1

Operand field
3.2.1.3

Comment field
3.2.1.4

The CAL Program [3] Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual

40 Cray Research, Inc. SR–3108 9.1

The old format is specified by either the FORMAT pseudo
instruction or the –F parameter of the CAL invocation
statement. For more information on the –F parameter, see
subsection 2.1, page 12.

A source statement that uses the old format consists of the
following fields:

• Location

• Result

• Operand

• Comment

If the old format is specified, use the following coding
conventions:

Beginning
column Field

1 Asterisk, or comma

1 Location field entry, left-justified

9 Blank

10 Result field entry, left-justified

19 Blank

20 Operand field entry, left-justified

34 Blank

35 Beginning of comment field

The content of the location field depends on the requirements of
the result and/or operand fields of each particular source
statement. The location field of all machine instructions can
optionally contain a symbol. If the location field of a machine
instruction contains a symbol, the symbol is set equal to the
current value of the location counter.

If the location field contains an asterisk (in column 1 only), that
line is identified as a comment line. The location field is not
used by all instructions. It begins in column 1 or 2 (old format)
and is terminated by a blank character.

A comma can be used for a continuation line. For more
information, see subsection 3.3, page 41.

Old format
3.2.2

Location field
3.2.2.1

The CAL Program [3]Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual

41Cray Research, Inc.SR–3108 9.1

The result field begins with the first nonblank character
following the location field and ends with one or more blanks or
the end of the statement. If the location field terminates before
column 33, the result field must begin before column 35;
otherwise, the field is considered empty. If the location field
extends beyond column 32, however, the result field must begin
after not more than one blank separator and can begin after
column 35.

The operand field begins with the first nonblank character
following a result field that is not empty and ends with one or
more blanks or the end of the statement. If the result field
terminates before column 33, the operand field must begin
before column 35; otherwise, the field is considered empty. If the
result field extends beyond column 32, however, the operand
field must begin after not more than one blank separator and
can begin after column 35.

The comment field is optional and begins with the first nonblank
character following the operand field or, if the operand field is
empty, does not begin before column 35. If the result field
extends beyond column 32 and no operand entry is provided, two
or more blanks must precede the comment field. The comment
field can be the only field supplied in a statement. If editing is
enabled, comments are edited. For more information about
editing, see subsection 3.3, page 41.

The following example illustrates the use of the comment field:

IDENT
* An asterisk comment must begin in column l.

CAL processes source statements sequentially from the source
file. Statement editing is a form of preprocessing in which CAL
deletes or replaces characters before processing the statement as
source code.

Result field
3.2.2.2

Operand field
3.2.2.3

Comment field
3.2.2.4

Statement editing
3.3

The CAL Program [3] Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual

42 Cray Research, Inc. SR–3108 9.1

The assembler performs the following types of statement editing:

• Concatenation

The assembler recursively deletes all underscore characters
and combines the character that preceded the underscore with
the character following the underscore.

• Micro substitution

The assembler replaces a micro name with a predefined
character string. The character string replacement is not
edited a second time.

A macro or opdef definition is not immediately interpreted but is
saved and interpreted each time it is called. Before interpreting
a statement, CAL performs editing operations. CAL does not
perform micro substitution or concatenate lines when editing is
disabled. (Editing is disabled using the EDIT pseudo instruction
or by including the –J parameter in the invocation line of the
assembler.)

The edit invocation statement option does not affect appending,
continuation, and the processing of comments.

The following special characters signal micro substitution,
concatenation, append, continuation, and comments:

Character Edit Description

“ name” Yes Micro; affected by the EDIT pseudo
instruction on the invocation
statement option (new or old format).

_ Yes Concatenate; (underscore) affected by
the EDIT pseudo instruction on the
invocation statement option (new or
old format).

^ No Append; (circumflex) unaffected by
the EDIT pseudo instruction on the
invocation statement option (new
format).

, No Continuation line; (comma)
unaffected by the EDIT pseudo
instruction on the invocation
statement option (old format).

The CAL Program [3]Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual

43Cray Research, Inc.SR–3108 9.1

Character DescriptionEdit

* No Comment line; (asterisk) unaffected
by the EDIT pseudo instruction on the
invocation statement option (new or
old format).

; No Comment line; (semicolon) unaffected
by the EDIT pseudo instruction on the
invocation statement option (new or
old format).

Note: When CAL edits “$CMNT”, “$MIC” , “$CNC” , or
“$APP” , the string name and the pair of double quotation
marks (“ ”) is replaced by a previously defined string. For
example, when CAL edits “$CMNT”, a semicolon is
substituted for the micro name $CMNT and the double
quotation marks (“ ”). After the substitution occurs, the
semicolon is not edited again and editing continues on the
line. Using the predefined “$CMNT” micro permits a comment
to be edited. For example,

 “$CMNT” Cray Research, Inc. “$DATE” – “$TIME”

is edited as follows:

 ; Cray Research, Inc. 12/31/85 – 8:15:45

The characters to the right of the substituted character are
shifted six positions to the left after editing, because the
character string substituted for “$CMNT” (;) is six characters
shorter than the micro name.

You can assign a micro name to a character string. You can refer
to that character string in subsequent statements by its micro
name. The CAL assembler searches for quotation marks (”) that
delimit micro names. The first quotation mark indicates the
beginning of a micro name; the second quotation mark identifies
the end of a micro name. Before a statement is interpreted, CAL
replaces the micro name with the character string that
comprises the micro. For more information on micros, see
subsection 3.5, page 48.

Micro substitution
3.3.1

The CAL Program [3] Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual

44 Cray Research, Inc. SR–3108 9.1

The concatenate feature combines characters connected by the
underscore (_) character. CAL examines each line for the
underscore character and deletes each occurrence of the
underscore. The two adjoining columns are linked before the
statement is interpreted. The concatenate symbol can be in any
column and tells the assembler to concatenate the characters
following the last underscore to the character preceding the first
underscore.

The append feature combines source statements that continue
for more than one line. It is available only when the new format
is specified. The exact number of lines that CAL can append
depends on memory limitations.

The append symbol is a circumflex (^) and appends one line to
another. It can be used in any column on any line. If more than
one circumflex exists, the first instance is used.

When the current line contains a circumflex, CAL appends the
first nonblank or nontab character and all characters that follow
from the next line to the current line. The characters are
appended at the position in the current line that contains the
circumflex; the circumflex and any characters that follow it on
the current line are replaced.

A comma in column 1 indicates a continuation of the previous
line. Columns 2 through 72 become a continuation of the
previous line. Continuation is permitted only when the old
format is specified.

A semicolon (;) in any column (new format only) or an asterisk
(*) in column 1 indicates a comment line. The assembler lists
comment lines, but they have no effect on the program. When a
semicolon or an asterisk has an editing symbol after it, the
symbol is treated as part of the comment and is not used. In the
new format, comment statements with semicolons or asterisks
are not appended.

Concatenate
3.3.2

Append
3.3.3

Continuation
3.3.4

Comment
3.3.5

The CAL Program [3]Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual

45Cray Research, Inc.SR–3108 9.1

Note: Asterisk comment statements are not included in
macro definitions. To include a comment line in a macro
definition, enter an underscore in column 1 of the comment
line followed by an asterisk and then the comment. Because
editing is disabled at definition time, the statement is
inserted. If editing is enabled at expansion time, the
underscore is edited out and the statement is treated as a
comment.

The following example illustrates the use of comment statements
in a macro:

MACRO
EXAMPLE

* This comment is not included in the definition.
_* This comment is included in the definition.
SYM = 1
EXAMPLE ENDM

The macro in the preceding example is expanded as follows:

LIST LIS,MAC
EXAMPLE ;Macro call

* This comment is included in the definition.
SYM = 1

CAL statements can be divided into two categories: actual and
edited. An actual statement is the unedited version of a
statement that includes any appending of lines. It contains all of
the editing symbols rather than the results of the editing. If an
actual statement has a corresponding edited statement, further
processing is done on the edited statement. The following
examples show actual and edited statements.

Actual statements and
edited statements
3.3.6

The CAL Program [3] Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual

46 Cray Research, Inc. SR–3108 9.1

This following example shows an actual statement:

LOC MCALL ARG1,^
ARG2,^
ARG3,^
ARG4,^
ARG5,^

An actual statement can have a corresponding edited statement.
The edited statement displays the statement without any editing
symbols. The following example shows the edited version of the
actual statement in the preceding example:

LOC MCALL ARG1,ARG2,ARG3,ARG4,ARG5

In the following example, the actual statement has no
corresponding edited statement:

ENTER ARG1,ARG2,ARG3 ; Comments

CAL recognizes two types of instructions:

• Assembler-defined

• User-defined

Assembler-defined instructions include machine and pseudo
instructions. User-defined instructions are defined by the user.

Two types of assembler-defined instructions are available in
CAL:

• Machine instructions

• Pseudo instructions

Instructions
3.4

Assembler-defined
instructions
3.4.1

The CAL Program [3]Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual

47Cray Research, Inc.SR–3108 9.1

Machine instructions manipulate data by performing functions
such as arithmetic operations, memory retrieval and storage,
and transfer of control. Each machine instruction can be
represented symbolically in CAL. The assembler identifies a
machine instruction according to its syntax and generates a
binary machine instruction in object code.

The location field of each instruction can contain an optional
symbol. If an optional symbol is included, it is not redefinable,
has a value equal to the value of the current location counter
and an address attribute of parcel, and its relative attribute is
equal to the relative attribute of the current location counter
(that is, absolute, immobile, or relocatable). For more
information about symbols and expression evaluation, see
section 4, page 61.

Machine instruction syntax is uniquely defined by the contents
of the result field alone or the result and operand fields together.
The optional location field represents the logical memory
location of the instruction.

Each Cray Research system has its own set of machine
instructions. Appendix D, page 359, and appendix E, page 369,
contain tables of these machine instructions. For more detailed
descriptions of the instruction sets for each system, see the
system programmers reference manual for the particular
system.

Pseudo instructions direct the assembler in its task of
interpreting the source statements and generating an object
program. CAL has a large complement of pseudo instructions.
Each pseudo instruction has a unique identifier in the result
field. The contents of the location and operand fields depend on
the pseudo instruction.

Section 5, page 117, describes the use of pseudo instructions and
appendix A, page 189, describes individual pseudo instructions
and their formats.

The CAL assembler lets you identify a sequence of instructions
that will be saved for assembly at a later point in the source
program.

Machine instructions
3.4.1.1

Pseudo instructions
3.4.1.2

User-defined
instructions
3.4.2

The CAL Program [3] Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual

48 Cray Research, Inc. SR–3108 9.1

CAL recognizes four types of defined sequences: macro, opdef,
dup, and echo. Defined sequences are classified as either
permanent or temporary.

A permanent-defined sequence (macro or opdef) can be called any
number of times after it has been defined. A temporary-defined
sequence (dup or echo) must be defined before each call.
Permanent-defined sequences are placed in the source program
and assembled when they are called. Temporary-defined
sequences are assembled immediately after they are defined.

Through the use of micros, you can assign a name to a character
string and subsequently refer to the character string by its
name. A reference to a micro results in the character string
being substituted for the name before assembly of the source
statement containing the reference. The CMICRO, MICRO,
OCTMIC, and DECMIC pseudo instructions (described in
subsection 5.10, page 124) assign the name to the character
string.

Refer to a micro by enclosing the micro name in double quotation
marks (“ ”) anywhere in a source statement other than within a
comment. If column 72 of a line is exceeded because of a micro
substitution, the assembler creates additional continuation lines.
No replacement occurs if the micro name is unknown or if one of
the quotation marks is omitted.

When a micro is edited, the source statement that contains the
micro is changed. Each substitution produces one of the
following cases:

• The length of the micro name and the pair of quotation marks
is the same as the predefined substitute string. When the
micro is edited, the length of the source statement is
unchanged.

• The length of the micro name and the double quotation marks
is greater than the predefined substitute string. When the
string is edited, all characters to the right of the edited string
shift left the number of spaces equal to the difference between
the length of the micro name including the double quotation
marks and the predefined substitute string.

Micros
3.5

The CAL Program [3]Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual

49Cray Research, Inc.SR–3108 9.1

• The length of the micro name and the double quotation marks
is less than the predefined substitute string. If column 72 of a
line is exceeded because of a micro substitution, the assembler
creates additional continuation lines. Resulting lines are
processed as if they were one statement.

In the following example, the length of the micro name
(including quotation marks) is equal to the length of the
predefined substitute string. A micro named PFX is defined as
EQUAL. A reference to PFX is in the location field of the
statement, as follows:

“PFX”TAG S0 S1 ; The location of S0 and S1 on the
; source statement is unchanged

When the line is interpreted, CAL substitutes EQUAL for “PFX” ,
producing the following line:

EQUALTAG S0 S1 ; The location of S0 and S1 on the
; source statement is unchanged

In the following example, the length of the micro name
(including quotation marks) is greater than the length of the
predefined substitute string. A micro named PFX is defined as
LESS. A reference to PFX is in the location field of the
statement, as follows:

“PFX”TAG S0 S1 ; Because LESS is one character shorter
; than the micro string name “PFX”, the
; values in the result and operand
; fields are shifted one space to the
; left.

The CAL Program [3] Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual

50 Cray Research, Inc. SR–3108 9.1

Before the line is interpreted, CAL substitutes LESS for “PFX” ,
producing the following line:

LESSTAG S0 S1 ; Because LESS is one character shorter
; than the micro string name “PFX”, the
; values in the result and operand
; fields are shifted one space to the
; left.

In the following example, the length of the micro name
(including quotation marks) is less than the length of the
predefined substitute string. A micro named pfx is defined as
greater . A reference to pfx is in the location field of the
following statement:

“pfx” tag S0 S1 ; Because greater is two characters
; longer than micro string name “pfx”,
; the values in the result and operand
; fields are shifted two spaces to the
; right.

Before the line is interpreted, CAL substitutes the predefined
string greater for “pfx” . Because the predefined substitute
string is 2 characters longer than micro name, the fields to the
right of the substitution are shifted 2 characters to the right,
producing the following statement:

greatertag S0 S1 ; Because greater is two characters
; longer than the micro string name
; “pfx”, the values in the result and
; operand fields are shifted

One or more micro substitutions can occur between the
beginning and ending quotation marks of a micro. These
substitutions create a micro name that is substituted, along with
the surrounding quotation marks, for the corresponding micro
string. Substitutions of this type are embedded micros. An
embedded micro consists of a micro name included between a left
({) and a right brace (}) and is specified as follows:

{ microname}

The CAL Program [3]Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual

51Cray Research, Inc.SR–3108 9.1

When a micro that contains one or more embedded micros is
encountered, CAL edits all embedded micros within the micro
until a micro name is recognized or until the micro name is
determined to be illegal (undefined or exceeding the maximum
allowable string length of 8 characters). When an illegal micro
is encountered, CAL issues an appropriate message and
terminates the editing of the micro. An embedded micro also can
contain one or more embedded micros.

The following example includes valid and not valid defined
embedded micros

index micro \1\ ; Assigns literal value to index
null micro \\ ; Assigns literal value to null

array “index” micro \Some string\
array1 micro \Some string\ �

* “array1” – an explicit reference.
* Some string – an explicit reference �

* “array” “index” – not valid, because “array” was not defined.
* “array”1 – not valid, because “array” was not defined. �

* “array{index}” – This is an example of an embedded micro.
* Some string – This is an example of an embedded micro. �

* “{null}array{index}” – This is an example of two embedded micros.
* Some string – This is an example of two embedded micros. �

� Edited by CAL

The CAL Program [3] Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual

52 Cray Research, Inc. SR–3108 9.1

CAL places no restrictions on the number of recursions that are
necessary to identify a micro name. The following example
demonstrates the unlimited recursive editing capability of CAL
on embedded micros:

index micro \1\ ; Assigns literal value to index
null micro \\ ; Assigns literal value to null

array“index” micro \Some string\
arrayl micro \Some string\ �

* “{nu{n{null}u{null}ll}ll}ar{null{null}}ray{ind{null}ex}” – Micro
* Some string – Micro �

CAL issues a warning- or error-level listing message when an
invalid micro name is specified. If a micro name is recognized as
invalid before editing begins, a warning-level message is issued.
If an embedded micro has been edited and the resulting string is
not a valid micro name, an error-level listing message is issued.

� Edited by CAL

The CAL Program [3]Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual

53Cray Research, Inc.SR–3108 9.1

The following examples demonstrate how CAL assigns levels to
messages when a micro that is not valid is encountered

identity micro \The substitute string for this example\
null micro \\ ; Assigns literal value to null

* “identity{null}” – This is a valid micro.
* The substitute string for this example – This is a valid micro. �

* The following micro is invalid, because the maximum micro name
* length of eight characters is exceeded. When a micro name is
* identified as being invalid before editing occurs, a warning-level
* listing message is issued:
* “identity9{null}” – This is a not valid micro.
* “identity9 – This is a not valid micro. �

* The following micro is not valid, because the maximum micro name
* length of eight characters is exceeded. When a micro name is
* identified as being not valid after editing occurs, an error-level
* listing message is issued:
* “id{null}entity9{null}” – This is a not valid micro.
* “identity9” – This is a not valid micro. �

A CAL program module can be divided into blocks of memory
called sections. By dividing a module into sections, you can
conveniently separate sequences of code from data. As the
assembly of a program progresses, you can explicitly or implicitly
assign code to specific sections or reserve areas of a section. The
assembler assigns locations in a section consecutively as it
encounters instructions or data destined for that particular
memory section.

Use the main and literals sections for implicitly assigned code.
CAL maintains a stack of section names assigned by the
SECTION pseudo instruction. All sections except stack sections
are passed directly to the loader.

� Edited by CAL

Sections
3.6

The CAL Program [3] Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual

54 Cray Research, Inc. SR–3108 9.1

Sections can be local or common. A local section is available to
the CAL program module in which it resides. A common section
is available to another CAL program module.

To assign code explicitly to a section, use the SECTION pseudo
instruction. You can specify the SECTION pseudo instruction for
any Cray PVP system.

A local section is a block of code that is usable only by the
program module in which it resides. CAL uses three types of
local sections:

• Main section

• Literals section

• Sections defined by the SECTION pseudo instruction

When a SECTION pseudo instruction is used, every SECTION
type except COMMON, DYNAMIC, TASKCOM, and ZEROCOM is local.
For more information about SECTION types, see the SECTION
pseudo instruction in subsection 5.4, page 120.

The main section is initiated by the IDENT pseudo instruction
and is always the first section in a program module. This section
is used for all local code other than that generated by the
occurrence of a literal reference or code between two SECTION
pseudo instructions.

Generally, sections may not have names but must be assigned
types and locations. The default name of the main section is
always empty. The defaults for type and location are MIXED and
CM, respectively. For more information about the MIXED and CM
section names, see the SECTION pseudo instruction in subsection
5.4, page 120.

The first use of a literal value in an expression causes the
assembler to store the data item in a literals section. Data is
generated in the literals section implicitly by the occurrence of a
literal. Explicit data generation or memory reservation is not
allowed in the literals section. The assembler supports the
literals section as a constant section. For more information
about literals, see subsection 4.4.3, page 85.

Local sections
3.6.1

Main sections
3.6.1.1

Literals section
3.6.1.2

The CAL Program [3]Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual

55Cray Research, Inc.SR–3108 9.1

When a SECTION pseudo instruction is used, all code generated
or memory reserved (other than literals) between occurrences of
SECTION pseudo instructions is assigned to the designated
section.

Until the first SECTION pseudo instruction is specified, the main
section is used. If you specify the ORG pseudo instruction, an
exception to these conditions can occur. Specifying the ORG
pseudo instruction may cause the placement of code or memory
reservations to be different from the currently specified working
section.

The SECTION pseudo instruction is recommended for use with all
Cray PVP systems because it has all of the same capabilities as
the BLOCK and COMMON pseudo instructions.

When a section is released, the type and location of the previous
section is used. When the number of sections released is equal
to or greater than the number specified, CAL uses the defaults of
the main section for type (MIXED) and location (CM).

A section with the same name, type, and location used in
different areas of a program is recognized as the same section.
For more information, see the SECTION pseudo instruction in
appendix A, page 189.

When a SECTION pseudo instruction is used with a type of
COMMON, DYNAMIC, ZEROCOM, or TASKCOM, all code generated
(other than literals) or memory reserved between occurrences of
SECTION pseudo instructions is assigned to the designated
common, dynamic, zero common, or task common section. The
SECTION pseudo instruction replaces the COMMON pseudo
instruction. You can use SECTION in any of the ways that
COMMON was used previously.

At program end, each common section is identified to the loader
by its SECTION name and is available for reference by another
program module. If you specify the ORG pseudo instruction, an
exception to these conditions can occur. Specifying the ORG
pseudo instruction may cause the placement of code or memory
reservations to be different from the currently specified working
section.

Sections defined by the
SECTION pseudo
instruction
3.6.1.3

Common sections
3.6.2

The CAL Program [3] Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual

56 Cray Research, Inc. SR–3108 9.1

If a common section is specified, the identifier in the location
field that names the section must be unique within the module
in which it is defined. When a section is assigned a type
(COMMON, DYNAMIC, ZEROCOM, or TASKCOM) that differs from the
type of a previously defined section, it cannot be assigned the
name of a previously defined section within the same module.

CAL maintains a stack buffer that contains a list of the sections
specified. Each time a SECTION pseudo instruction names a new
section, CAL adds the name of the section to the list and
identifies the new section as the current section. You also can
use the BLOCK and COMMON pseudo instructions to name sections.

CAL remembers the order in which sections are specified. An
entry is deleted from the list each time a SECTION pseudo
instruction contains an asterisk (*) . When an entry is deleted,
the name, location, and type of the previously specified section is
enabled.

The first section on the list is the last section that will be deleted
from the list. If the program contains more SECTION *
instructions than there are entries, the assembler uses the main
section. (The BLOCK * and COMMON * instructions replace the
current section with the most recent previous section that was
specified by the BLOCK and COMMON pseudo instructions.)

For each section used in a program, CAL maintains an origin
counter, a location counter, and a bit position counter. When a
section is first established or its use is resumed, CAL uses the
counters for that section.

The following example illustrates section specification and
deletion and indicates the current section. The example includes
the QUAL pseudo instruction. For a description of the QUAL
pseudo instruction, see appendix A, page 189.

Section stack buffer
3.6.3

The CAL Program [3]Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual

57Cray Research, Inc.SR–3108 9.1

IDENT STACK ; The IDENT statement puts the first entry
; on the list of qualifiers. This entry
; starts the symbol table for unqualified
; symbols.

SYM1 = 1 ; SYM1 is relative to the main section.
QUAL QNAME1 ; Second entry on the list of qualifiers.

SYM2 = 2 ; SYM2 is the first entry in the symbol
; table for QNAME1.

SNAME SECTION MIXED ; SNAME is the second entry on the list of
; sections

MLEVEL ERROR ; Reset message level to error eliminate
; warning level messages.

SYM3 = * ; SYM3 is the second entry in the symbol
; table for QNAME1 and is relative to the
; SNAME section.

MLEVEL * ; Reset message level to default in effect
; before the MLEVEL specification.

SECTION * ; SNAME is deleted from the list of
; sections.

SYM4 = 4 ; SYM4 is the third entry in the symbol
; table for QNAMEl and is relative to the
; main section.

QUAL QNAME2 ; Third entry on the list of qualifiers.
SYM5 = 5 ; SYM5 is the first entry in the symbol

; table for QNAME2.
SYM6 = /QNAME1/SYM2 ; SYM6 gets SYM2 from the symbol table for

; QNAMEl even though QNAME1 is not the
; current qualifier in effect.

QUAL * ; QNAME2 is removed as the current
; qualifier name.

SYM7 = 6 ; SYM7 is the fourth entry in the symbol
; table for QNAME1.

SYM8 = 7 ; Second entry in the symbol table for
; unqualified symbols.

The CAL Program [3] Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual

58 Cray Research, Inc. SR–3108 9.1

The origin counter controls the relative location of the next word
that will be assembled or reserved in the section. You can
reserve blank memory areas by using either the ORG or BSS
pseudo instructions to advance the origin counter.

When the special element *O is used in an expression, the
assembler replaces it with the current parcel-address value of
the origin counter for the section in use. To obtain the
word-address value of the origin counter, use W.*O. For more
information about the special elements and W. prefix, see
subsection 4.5, page 89.

Usually, the location counter is the same value as the origin
counter and the assembler uses it to define symbolic addresses
within a section. The counter is incremented when the origin
counter is incremented. Use the LOC pseudo instruction to
adjust the location counter so that it differs in value from the
origin counter or so that it refers to the address relative to a
section other than the one currently in use. When the special
element * is used in an expression, the assembler replaces it
with the current parcel-address value of the location counter for
the section in use. To obtain the word-address value of the
location counter, Use W.* (see subsection 4.5, page 89).

As instructions and data are assembled and placed into a word,
CAL maintains a pointer that indicates the next available bit
within the word currently being assembled. This pointer is
known as the word-bit-position counter. It is 0 at the beginning
of a new word and is incremented by 1 for each completed bit in
the word. Its maximum value is 63 for the rightmost bit in the
word. When a word is completed, the origin and location
counters are incremented by 1, and the word-bit-position counter
is reset to 0 for the next word.

When the special element *W is used in an expression, the
assembler replaces it with the current value of the
word-bit-position counter. The normal advancement of the
word-bit-position counter is in increments of 16, 32, and 64 as
1-parcel and 2-parcel instructions or words are generated. You
can alter this normal advancement by using the BITW, BITP,
DATA, and VWD pseudo instructions.

Origin counter
3.6.3.1

Location counter
3.6.3.2

Word-bit-position counter
3.6.3.3

The CAL Program [3]Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual

59Cray Research, Inc.SR–3108 9.1

If either of the following conditions are true, the assembler
completes a partial word and sets the word-bit-position and
parcel-bit-position counters to 0:

• The current instruction is an ALIGN, BSS, BSSZ, CON, LOC, or
ORG pseudo instruction.

• The current instruction is a DATA or VWD pseudo instruction
and the instruction has an entry in the location field.

In addition to the word-bit-position counter, CAL also maintains
a counter that points to the next bit to be assembled in the
current parcel. This pointer is the parcel-bit-position counter. It
is 0 at the beginning of a new parcel and advances by 1 for each
completed bit in the parcel. The maximum value is 15 for the
rightmost bit in a parcel. When a parcel is completed, the
parcel-bit-position counter is reset to 0.

When the special element *P is used in an expression, CAL
replaces it with the current value of the parcel-bit-position
counter.

The parcel-bit-position counter is set to 0 following assembly of
most instructions. The pseudo instructions BITW, BITP, DATA,
and VWD can cause the counter to be nonzero.

If the current instruction is a symbolic machine instruction, the
assembler completes a partially filled parcel and sets the
parcel-bit-position counter to 0.

Force word boundary
3.6.3.4

Parcel-bit-position counter
3.6.3.5

Force parcel boundary
3.6.3.6

Cray Assembly Language [4]

61Cray Research, Inc.SR–3108 9.1

This section presents the general rules and statement syntax for
Cray Assembly Language (CAL). This section describes the
following instruction syntax:

• Register designators

• Names

• Symbols

• Data

• Special elements

• Element prefixes for symbols, constants, or special elements

• Expressions

• Expression evaluation

• Expression attributes

Register designators are used in symbolic machine instructions
and opdefs to specify the register to be used for an operation.
CAL accepts register mnemonics specified in uppercase,
lowercase, or mixed case. Each Cray PVP system supports all or
a subset of simple and complex registers.

Complex registers are members of a set of registers that are
identical in function and architecture. The set of registers is
identified by a letter. The specific register within the set is
specified by an octal number up to 4 octal digits in length or a
constant. For example, you specify register S1 from the set of S
registers.

Register
designators
4.1

Cray Assembly Language [4] Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual

62 Cray Research, Inc. SR–3108 9.1

The following example illustrates complex register designation:

A1 SyM ; CAL permits mixed case in any combination
; with the following restriction: matching
; names must be entered in the same manner.

REG = 3
A.REG A1 ; Register A3 gets the contents of A1
S1 s2 ; Register S1 gets the contents of S2.

A simple register has a predefined function that cannot be
redefined. These registers are identified by register names that
are comprised of only letters.

The following example illustrates simple register designation:

S1 RT ; Register S1 gets the contents of the RT
; register

Table 3 lists register designations for CRAY Y-MP, CRAY C90,
CRAY J90, and CRAY T90 series systems. By convention, B and
T registers are written using two octal digits.

Note: A, B, and SB registers are expanded to 64 bits (32 bits
in C90 mode) on CRAY T90 systems. Several new
instructions use the 64-bit A registers for logical and shift
operations. See appendix E, page 369, for more information
on the CRAY T90 instruction set.

Table 3. Register designations

Register type

CRAY Y-MP
Number
Mnemonic
Size (in bits)

CRAY C90
Number
Mnemonic
Size (in bits)

CRAY J90
Number
Mnemonic
Size (in bits)

CRAY T90
Number
Mnemonic
Size (in bits)

Data registers
(A registers)

8
A0 – A7
32

8
A0 – A7
32

8
A0 – A7
32

8
A0 – A7
64

Data registers
(B registers)

64
B00 – B77
32

64
B00 – B77
32

64
B00 – B77
32

64
B00 – B77
64

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual Cray Assembly Language [4]

63Cray Research, Inc.SR–3108 9.1

Table 3. Register designations
(continued)

Register type

CRAY T90
Number
Mnemonic
Size (in bits)

CRAY J90
Number
Mnemonic
Size (in bits)

CRAY C90
Number
Mnemonic
Size (in bits)

CRAY Y-MP
Number
Mnemonic
Size (in bits)

Scalar
registers
(S registers)

8
S0 – S7
64

8
S0 – S7
64

8
S0 – S7
64

8
S0 – S7
64

Transfer
registers
(T registers)

64
T00 – T77
64

64
T00 – T77
64

64
T00 – T77
64

64
T00 – T77
64

Vector
registers
(V registers)

8
V0 – V7
64 (64
elements)

8
V0 – V31
64 (128
elements)

8
V0 – V31
64 (64
elements)

8
V0 – V63
64 (128
elements)

Shared
address
registers
(SB registers)

8/cluster
SB0 – SB7
32

8/cluster
SB0 – SB7
32

8/cluster
SB – SB7
32

16/cluster
SB0 – SB7
64

Semaphore
register
(SM register)

32/cluster
SM0 – SM37
1

32/cluster
SM0 – SM37
1

32/cluster
SM0 – SM37
1

64/cluster
SM0 – SM77
1

Status
registers
(SR registers)

1
SR
32

8
SR0 – SR7
64

1
SR
32

8
SR0 – SR7
64

Shared scalar
registers
(ST registers)

8
ST0 – ST7
64

8
ST0 – ST7
64

8
ST0 – ST7
64

16
ST0 – ST15
64

Channel
address
register
(CA register)

1/channel
CA
32

1/channel
CA
32

1/channel
CA
32

1/channel
CA
64

Channel error
register
(CE register)

1/channel
CE
32

1/channel
CE
32

1/channel
CE
32

1/channel
CE
64

Cray Assembly Language [4] Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual

64 Cray Research, Inc. SR–3108 9.1

Table 3. Register designations
(continued)

Register type

CRAY T90
Number
Mnemonic
Size (in bits)

CRAY J90
Number
Mnemonic
Size (in bits)

CRAY C90
Number
Mnemonic
Size (in bits)

CRAY Y-MP
Number
Mnemonic
Size (in bits)

Channel
interrupt
register
(CI register)

1/channel
CI
32

1
CI
6

1/channel
CI
1

1/channel
CI
32

Channel limit
register
(CL register)

1/channel
CL
32

1/channel
CL
32

1/channel
CL
1

1/channel
CL
32

Master clear
register
(MC register)

1/channel
MC
1

1/channel
MC
1

1/channel
MC
1

1/channel
MC
1

Real-time
clock register
(RT register)

1
RT
64

1
RT
64

1
RT
64

1
RT
64

Vector length
register
(VL register)

1
VL
7

1
VL
8

1
VL
7

1
VL
8

Vector mask
registers
(VM registers)

1
VM
64

2
VM0, VM1
32

1
VM
64

2
VM0, VM1
64

Exchange
address
register
(XA register)

1
XA
8

1
XA
8

1
XA
10

1
XA
16

Program
address
register
(P register)

1
P
24

1
P
32

1
P
24

1
PA
32

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual Cray Assembly Language [4]

65Cray Research, Inc.SR–3108 9.1

On CRAY C90 systems, vector registers have been increased to
128 elements and the vector mask has been increased to 128
bits. On CRAY Y-MP systems and CRAY J90 systems, the VL
register has 7 bits. On CRAY C90 systems and CRAY T90
systems the VL register has 8 bits. To facilitate portable CAL
code, the following symbols are available (UNICOS 7.0 and later)
on all Cray PVP systems:

• MAX$VL (maximum vector length)

• L2MAXVL (log2 of MAX$VL for shift and mask operations)

• AMAXVL (a micro that yields a valid A register operand
equal to MAX$VL)

These symbols can be used in lieu of conditional code. For
example:

C90IFC /”$CPU”/,EQ,/CRAY C90/
S1 <7

C90ELSE
S1 <6

C90ENDIF
S0 S1&S2 ; Vector residual
S2 S1&S2
A2 S2
$IF S0,Zero ; If no residual

C90IFC /”$CPU”/,EQ,/CRAY C90/
A2 D’128 ; First VL = 128

C90ELSE
A2 D’64 ; First VL = 64

C90ENDIF
$ENDIF

can be replaced with:

S1 <L2MAXVL
S0 S1&S2 ; Vector residual
S2 S1&S2
A2 S2
$IF S0,Zero ; If no residual

A2 “AMAXVL” ; First VL
$ENDIF

Vector length register
(VL)
4.1.1

Cray Assembly Language [4] Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual

66 Cray Research, Inc. SR–3108 9.1

The vector mask register on CRAY Y-MP systems and CRAY J90
systems is a 64-bit register, on CRAY C90 systems there are two
32-bit vector mask registers, and on CRAY T90 systems there
are two 64-bit vector mask registers. The vector mask (VM)
register is accessed through the following instructions:

Si VM0 ; Get first half of VM
Si VM1 ; Get second half of VM
VM0 Si ; Set first half of VM
VM1 Si ; Set second half of VM

If the routine does not manipulate the vector mask, no portable
CAL changes are necessary. The changes necessary for a
portable CAL module depend on the types of manipulations
required of the vector mask. A routine that only logically
combines conditions together (through AND and OR operations)
can create opdefs to simulate a two-word VM register on all Cray
PVP systems. For example:

C12XY IFC /”$CPU”/,NE,/CRAY C90/
VM0 OPDEF
S.REG VM0

*
S.REG VM

*
VM0 ENDM
VM0 OPDEF
VM0 S.REG

*
VM S.REG

*
VM0 ENDM
VM1 OPDEF
S.REG VM1

*
VM1 ENDM
VM1 OPDEF
VM1 S.REG

* VM1 ENDM
C12XY ENDIF

Vector mask register
(VM)
4.1.2

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual Cray Assembly Language [4]

67Cray Research, Inc.SR–3108 9.1

Using the above opdefs, a system that has a 64-bit VM register
can be made to look as though it has a 128-bit VM register. A
portable code sequence such as the following could be written:

S1 VM0 ; First half of VM
S2 VM1 ; Possible second half of VM
VM V7,Z ; Test second condition
S3 VM0 ; First half of VM
S4 VM1 ; Possible second half of VM
S1 S1!S3 ; Combine conditions
S2 S2!S4
VM0 S1 ; Set VM
VM1 S2

This code can then assemble on any Cray PVP system. The
instructions that actually reference the second half of the VM
register do not generate code except on CRAY C90 systems. The
only extra code for other systems is the S2 S2!S4 instruction.
The Si VM1 opdef could be modified to set Si to zero if more
sophisticated vector mask operations were to be performed.

Names do not have an associated value or attribute and cannot
be used in expressions. Names that are 1 to 8 characters in
length are used to identify the following types of information:

• Macro instructions

• Micro character strings

• Conditional sequences

• Duplicated sequences

The first character must be one of the following:

• Alphabetic character (A through Z or a through z)

• Dollar sign ($)

• Percent sign (%)

• At sign (@)

Characters 2 through 8 can also be decimal digits (0 through 9).

Names that are 1 to 255 characters in length can be used to
identify the following types of information:

Names
4.2

Cray Assembly Language [4] Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual

68 Cray Research, Inc. SR–3108 9.1

• Program modules

• Sections

The first character must be one of the valid name characters or
the underscore (_) character. Characters 2 through 255 can also
be decimal digits (0 through 9).

Different types of names do not conflict with each other or with
symbols. For example, a micro can have the same name as a
macro and a program module can have the same name as a
section.

Examples of valid and not valid names:

Valid Comment

count Lowercase is permitted

@ADD @ legal beginning character

_SUBTRACT _ beginning character and 9 characters are
legal

ABCDE465 Combinations of letters and digits are legal
if the first character is legal

Not valid Comment

9knt Begins with a numeric character

JOHNJONES Contains more than 8 characters

Y+Z3 Contains an illegal character

+YZ3 Begins with +

Note: UNICOS supports the Source Code Control System
(SCCS) and UNICOS source manager (USM). If you plan to
use SCCS or USM to store your CAL program, avoid using the
3-character string %U%; where U is any uppercase letter.
SCCS and USM replace these strings throughout your source
program with other text. Because this type of string is
allowed within identifiers and long-identifiers, avoid using it
in names, long names, and symbols.

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual Cray Assembly Language [4]

69Cray Research, Inc.SR–3108 9.1

The underscore character (_) also is used as the concatenation
character by CAL (see subsection 3.3, page 41). Usually the
assembler edits this character out of a source line. To insert this
character into a long name, either disable editing or use the
predefined concatenation micro ($CNC). To disable editing, use
either the invocation statement or the EDIT pseudo instruction.

A symbol is an identifier that can be from 1 to 255 characters
long and has an associated value and attributes. You can use
symbols in expressions and in the following ways:

• In the location field of a source statement to define the symbol
for use in the program assign it a value and certain
characteristics called attributes.

• In the operand or result field of a source statement to
reference the symbol.

• In loader linkage

A symbol can be local or global depending on where the symbol
is defined; that is, a symbol used within a single program
module is local and a symbol used by a number of program
segments is global (see subsection 3.1.2, page 35). A symbol also
can be unique to a code sequence (see subsection 4.3.1.2, page
71).

CAL generates symbols of the following form (where n is a
decimal digit):

%%nnnnnn

Symbols that begin with the character sequence %% are
discarded at the end of a program segment regardless of whether
they are redefinable or defined in the global definitions part, and
regardless of whether they are user-defined or generated by
CAL.

For more detailed information about symbols generated by CAL,
see the description of the LOCAL pseudo instruction in subsection
6.11, page 184.

If a symbol is properly identified and defined as one of the
registers reserved by CAL, a warning message is issued.

Symbols
4.3

Cray Assembly Language [4] Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual

70 Cray Research, Inc. SR–3108 9.1

Symbols can be used if they are:

• Specified as unqualified or qualified.

• Defined or associated with a value and attributes.

• Assigned address, relative, and redefinable attributes.

• Referenced by using the value rather than the symbol itself.

Symbols defined within a program module (between IDENT and
END pseudo instructions) can be unqualified or qualified. They
are unqualified unless preceded by the QUAL pseudo instruction
(see the QUAL pseudo instruction in appendix A, page 189, for
more information).

The following statements describe ways in which unqualified
symbols can be referenced:

• Unqualified symbols defined in an unqualified code sequence
can be referenced without qualification from within that
sequence.

• If the symbol has not been redefined within the current
qualifier, unqualified symbols can be referenced without
qualification from within the current qualifier.

• Unqualified symbols can be referenced from within the current
qualifier by using the form // symbol.

Unqualified symbols are defined as follows:

symbol = n ; symbol is equal to n

The following example illustrates unqualified symbol definition:

EDIT OFF
IDENT TEST

SYM_1 = * ; SYM_1 has a value equal to the location
; counter.

A1 SYM_1 ; Register Al gets SYM_1’s value.
SYM_2 SET 2 ; SYM_2 is redefinable
SYM_3 = 3 ; SYM_3 is not redefinable.

Symbol qualification
4.3.1

Unqualified symbol
4.3.1.1

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual Cray Assembly Language [4]

71Cray Research, Inc.SR–3108 9.1

You can make a symbol that is not a global symbol unique to a
code sequence by specifying a symbol qualifier that will be
appended to all symbols defined within the sequence. The QUAL
pseudo instruction qualifies symbols (see the QUAL pseudo
instruction in appendix A, page 189).

Qualified symbols must be defined with respect to the following
rules:

• A qualified symbol cannot be defined with a label that is
reserved for registers.

• Symbols can be qualified only in a program module.

Qualified symbols can be referenced as follows:

• If a qualified symbol defined in a code sequence is referenced
from within that sequence, it can be referenced without
qualification.

• If a qualified symbol is referenced outside of the code sequence
in which it was defined, it must be referenced in the form
/ qualifier/ symbol. The qualifier variable is a 1- to 8-character
identifier defined by the QUAL pseudo instruction and the
symbol variable is a 1- to 255-character identifier.

Qualified symbols are defined as follows:

qualified_symbol = / [identifier]/ symbol

The following example illustrates the use of qualified symbols:

IDENT TEST
SYM1 = 1 ; Assignment

QUAL NAME1 ; Declare qualifier name
SYM1 = 2 ; Qualified symbol SYM1

S1 SYM1 ; Register S1 gets 2 (qualified SYM1)
S1 //SYM1 ; Register S1 gets 1 (unqualified SYM1)
S1 /NAME1/SYM1 ; Register S1 gets 2 (qualified SYM1)
QUAL * ; Pop the top of the qualifier stack
S1 SYM1 ; Register S1 gets 1
S1 //SYM1 ; Register S1 gets 1
S1 /NAME1/SYM1 ; Register S1 gets 2
END

Qualified symbols
4.3.1.2

Cray Assembly Language [4] Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual

72 Cray Research, Inc. SR–3108 9.1

A symbol is defined by assigning it a value and attributes. The
value and attributes of a symbol depend on how the program
uses the symbol. The assignment can occur in the following
three ways:

• When a symbol is used in the location field of a symbolic
machine instruction or certain pseudo instructions, it is
defined as follows:

– It has the address of the current value of the location
counter (for a description of counters, see subsection 3.6.3,
page 56).

– It has parcel-address or word-address attributes.

– It is absolute, immobile, or relocatable.

– It is not redefinable.

• A symbol used in the location field of a symbol-defining pseudo
instruction is defined as having the value and attributes
derived from an expression in the operand field of the
instruction. Some symbol-defining pseudo instructions cause
the symbol to have a redefinable attribute. When a symbol is
redefinable, a redefinable pseudo instruction must be used to
define the symbol the second time. Redefinition of the symbol
causes it to be assigned a new value and attributes.

• A symbol can be defined as external to the current program
module. A symbol is external if it is defined in a program
module other than the module currently being assembled. The
true value of an external symbol is not known within the
current program module.

The following are examples of a symbol:

START = * ; The symbol START has the current value of
; the location counter and cannot be
; redefined.

PARAM SET D’18 ; The symbol PARAM is equal to the decimal
; value 18 and can be redefined.

EXT SECOND ; Identifies SECOND as an external symbol.

Symbol definition
4.3.2

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual Cray Assembly Language [4]

73Cray Research, Inc.SR–3108 9.1

When a symbol is defined, it assumes two or more attributes.
These attributes are in three categories as follows:

• Address

• Relative

• Redefinable

Every symbol is assigned one attribute from each of the first two
categories. Whether a symbol is assigned the redefinable
attribute depends on how the symbol is used. Each symbol has a
value of up to 64 bits associated with it.

Each symbol is assigned one of the following address attributes:

• Word address

A symbol is assigned a word-address attribute if it appears in
the location field of a pseudo instruction (such as a BSS or
BSSZ) that defines words, if it is equated to an expression
having a word-address attribute, or if word is explicitly stated
in the operand field of an EXT pseudo instruction.

• Parcel address

A symbol is assigned a parcel-address attribute if it appears in
the location field of a symbolic machine instruction or certain
pseudo instructions, if it is equated to an expression having a
parcel-address attribute, or if parcel is explicitly stated in the
operand field of an EXT pseudo instruction.

• Value

A symbol has a value attribute if it does not have
word-address or parcel-address attributes, or if value is
explicitly stated in the operand field of an EXT pseudo
instruction. All globally defined symbols have an address
attribute of value.

• Absolute

A symbol is assigned the relative attribute of absolute when
the current location counter is absolute and it appears in the
location field of a machine instruction, BSS pseudo instruction,
or data generation pseudo instruction such as BSSZ or CON or
if it is equated to an expression that is absolute. All globally
defined symbols have a relative attribute of absolute. The
symbol is known only at assembly time.

Symbol attributes
4.3.3

Address attributes
4.3.3.1

Cray Assembly Language [4] Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual

74 Cray Research, Inc. SR–3108 9.1

Each symbol is assigned one of the following relative attributes:

• Immobile

A symbol is assigned the relative attribute of immobile when
the current location counter is immobile and it appears in the
location field of a machine instruction, BSS pseudo instruction,
or data generation pseudo instruction such as BSSZ or CON or
if it is equated to an expression that is immobile. The symbol
is known only at assembly time.

• Relocatable

A symbol is assigned the relative attribute of relocatable when
the current location counter is relocatable and it appears in
the location field of a machine instruction, BSS pseudo
instruction, or data generation pseudo instruction such as
BSSZ or CON. A symbol also is relocatable if it is equated to an
expression that is relocatable.

• External

A symbol is assigned the relative attribute of external when it
is defined by an EXT pseudo instruction. An external symbol
defined in this manner is entered in the symbol table with a
value of 0. The address attribute of an external symbol is
specified as value (V), parcel (P), or word (W); the default is
value.

A symbol is also assigned the relative attribute of external if it
is equated to an expression that is external. Such a symbol
assumes the value of the expression and can have an attribute
of parcel address, word address, or value.

Note: The assignment of an unknown variable with a
register at assembly time is made by using a symbol with a
relative attribute of external.

Relative attributes
4.3.3.2

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual Cray Assembly Language [4]

75Cray Research, Inc.SR–3108 9.1

In the following example, register s1 is loaded with variable
ext1 at assembly time:

ext test1 ; Variable extl is defined as an external
; variable

s1 ext1 ; ext1 transmits value to register s1
end
ident test2
entry ext1

ext1 = 3 ; When the two modules are linked, register
; S1 gets 3.

end

In addition to its other attributes, a symbol is assigned the
attribute of redefinable if it is defined by the SET or MICSIZE
pseudo instructions. A redefinable symbol can be defined more
than once in a program segment and can have different values
and attributes at various times during an assembly. When such
a symbol is referenced, its most recent definition is used by the
assembler. All redefinable symbols are discarded at the end of a
program segment without regard to whether they were defined
in the global definitions.

The following example illustrates the redefinable attribute:

IDENT TEST
SYM1 = 1 ; Not redefinable
SYM2 SET 2 ; Redefinable
SYM1 SET 2 ; Error: SYM1 previously defined as 1
SYM2 SET 3 ; Redefinable

END

When a symbol is in a field other than the location field, the
symbol is being referenced. Reference to a symbol within an
expression causes the value and attributes of the symbol to be
used in place of the symbol. Symbols can be found in the
operand fields of pseudo instructions.

Redefinable attributes
4.3.3.3

Symbol reference
4.3.4

Cray Assembly Language [4] Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual

76 Cray Research, Inc. SR–3108 9.1

A symbol reference within an expression can contain a prefix
that causes the value and attributes associated with the symbol
to be altered. The prefix affects only the specific reference in
which it occurs. For details, see subsection 4.6, page 90.

The following example illustrates a symbol reference:

S1 SYM1+1 ; Register Sl gets the value of SYMl+1.
; SYMl+1 is an example of a symbol in an
; operand field used as an expression.

IFA DEF,SYM1 ; Symbols can also be used outside of an
; expression. In this instance, SYMl is
; not used within an expression; it is a
; symbol.

Some instructions manipulate data. CAL instructions use data
of the following types:

• Constants

• Data items

• Literals

The subsections that follow describe these types of data.

Constants can be defined as floating, integer, or character.

A floating constant is evaluated as a one- or two-word quantity,
depending on the precision specified. (See the floating-point
data format figures in the appropriate symbolic machine
instruction manual.)

Data
4.4

Constants
4.4.1

Floating constant
4.4.1.1

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual Cray Assembly Language [4]

77Cray Research, Inc.SR–3108 9.1

The floating constant is defined as follows:

[decimal-prefix] floating-decimal [binary-scale decimal-integer]

In the preceding definition, variables are defined as follows:

• decimal-prefix

This variable specifies the numeric base for the
floating-decimal and/or the decimal-integer variables. D’ or
d’ specifies a decimal-prefix and is the only prefix available
for a floating constant.

• floating-decimal

The floating-decimal variable can include the decimal-integer,
decimal-fraction and/or decimal-exponent variables. A
decimal-integer is a nonempty string of decimal digits. A
decimal-integer or a decimal-fraction is a nonempty string of
decimal digits representing a whole number, a mixed number,
or a fraction.

A floating-decimal can be defined as follows:

– A decimal-integer followed by a decimal-fraction with an
optional decimal-exponent and decimal-integer. For
example:

n. n or n. nEn or n. nE+n or n. nDn or n. nD+n

– A decimal-integer followed by a period (.) with a
decimal-exponent and decimal-integer. For example:

n. or n.E n or n. E+n or n. nDn or n. nD+n

– A decimal-integer followed by a decimal-exponent and
decimal-integer. For example:

nEn or nE+n or nDn or nD+n

– A decimal-fraction followed by an optional decimal-exponent
and decimal-integer. For example:

. n or . nEn or . nE+n or . nDn or . nD+n

Cray Assembly Language [4] Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual

78 Cray Research, Inc. SR–3108 9.1

• decimal-exponent

The power of 10 by which the integer and/or fraction will be
multiplied; indicates whether the constant will be single
precision (E or e; one 64-bit word) or double precision (D or d;
two 64-bit words). n is an integer in the base specified by
prefix.

If no decimal-exponent is provided, the constant occupies one
word. decimal-exponents are defined as follows:

– En (Positive decimal exponent, single precision)

– E+n (Positive decimal exponent, single precision)

– E–n (Negative decimal exponent, single precision)

– Dn (Positive decimal exponent, double precision)

– D+n (Positive decimal exponent, double precision)

– D–n (Negative decimal exponent, double precision)

• binary-scale decimal-integer

The integer and/or fraction will be multiplied by a power of 2.
Binary scale is specified with S or s and an optional
add-operator (+ or –). n is an integer in the base specified by
the decimal-prefix. For example:

Sn or S+ n Positive binary exponent

sn or s+n Positive binary exponent

S–n or s– n Negative binary exponent

Note: Double-precision floating-point numbers are truncated
to single-precision floating-point numbers if pseudo
instructions, which can reserve only one memory word (such
as the CON pseudo instruction) are used.

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual Cray Assembly Language [4]

79Cray Research, Inc.SR–3108 9.1

The following examples illustrate floating constants:

CON D’1.5 ; Mixed decimal of the form n.n .
CON 4.5E+10 ; Single-precision floating constant of

; the form n. nE+n.
CON 4.D+15 ; Double-precision floating constant of

; the form n.D+ n.
CON D’1.0E–6 ; Negative floating constant of the form

; n.n E–n.
CON 1000e2 ; Single precision floating constant of

; the form nD+n.
SYM = 1777752d+l0 ; Double-precision floating constant of

; the form nD+n.

An integer constant is evaluated as a 64-bit twos complement
integer. The integer constant is defined as follows:

base-integer [binary-scale base-integer]
octal-prefix octal-integer [binary-scale octal-integer]
decimal-prefix decimal-integer [binary-scale decimal-integer]
hex-prefix hex-integer [binary-scale hex-integer]

Integer constant
4.4.1.2

Cray Assembly Language [4] Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual

80 Cray Research, Inc. SR–3108 9.1

In the preceding definition, variables are defined as follows:

• base-integer

A string of decimal digits (0, 1, 2, 3, 4, 5, 6, 7, 8, 9) of any
length

• binary-scale

The integer and/or fraction that will be multiplied by a power
of 2. binary-scale is specified with S or s and an optional
add-operator (+ or –). n is an integer in the base specified by
the decimal-prefix. For example:

Sn or S+n (positive binary exponent)

sn or s+n (positive binary exponent)

s– n or S–n (negative binary exponent)

• base-integer, octal-prefix, decimal-prefix, or hex-prefix

Numeric base used for the integer. If no prefix is used,
base-integer is determined by the default mode of the
assembler or by the BASE pseudo instruction. A prefix can be
one of the following:

D’ or d’ Decimal (default mode)

O’ or o’ Octal

X’ or x’ Hexadecimal

• octal-integer

A string of octal integers (0, 1, 2, 3, 4, 5, 6, 7) of any length

• decimal-integer

A string of decimal integers (0, 1, 2, 3, 4, 5, 6, 7, 8, 9) of any
length

• hex-integer

A string of hexadecimal integers (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A or
a, B or b, C or c , D or d, E or e, F or f) of any length

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual Cray Assembly Language [4]

81Cray Research, Inc.SR–3108 9.1

The following examples illustrate integer constants:

S1 O’1234567 ; Octal-prefix followed by octal-integer.
A4 D’50 ; Integer-constant of the form

; decimal-prefix followed by
; decimal-integer.

SYM = x’ffffffa ; Integer-constant of the form hex-prefix
; followed by hex-integer.

The character constant is defined as follows:

[character-prefix] character-string [character-suffix]

In the preceding definition, variables are defined as follows:

• character-prefix

The character set used for the stored constant:

A or a ASCII character set (default)

C or c Control Data display code

E or e EBCDIC character set

• character-string

The default is a string of zero or more characters (enclosed in
apostrophes) from the ASCII character set. Two consecutive
apostrophes (excluding the delimiting apostrophes) indicate
one apostrophe.

• character-suffix

The justification and fill of a character string:

H or h Left-justified, blank-filled (default)

L or l Left-justified, zero-filled

R or r Right-justified, zero-filled

Z or z Left-justified, zero-filled, at least one
trailing binary zero character guaranteed

Character constants
4.4.1.3

Cray Assembly Language [4] Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual

82 Cray Research, Inc. SR–3108 9.1

The following examples illustrate character constants:

S3 ‘*’R ; ASCII character set (default) right
; justified, zero filled.

CON A’ABC’L ; ASCII character set left justified, zero
; filled.

S1 E’XYZ’H ; EBCDIC character set left justified, blank
; filled.

CON C’OUT ; CDC character set left justified, blank
; filled (default).

VWD 32/’EFG’ ; ASCII character set left justified, blank
; filled within a 32–bit field (all default).

A character or data item can be used in the operand field of the
DATA pseudo instruction and in literals. The length of the data
field occupied by a data item is determined by its type and size.
Data items can be floating, integer, or character. The
subsections that follow describe these types of data items.

Single-precision floating data items occupy one word and
double-precision floating data items occupy two words. A
floating data item is defined as follows:

[sign] floating-constant

In the preceding definition, the sign variable is defined as
follows:

• sign

The sign variable determines how the floating data item will
be stored. The sign variable can be specified as follows:

+ or omitted Uncomplemented

– Negated (twos complemented)

Ones complemented

Data items
4.4.2

Floating data item
4.4.2.1

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual Cray Assembly Language [4]

83Cray Research, Inc.SR–3108 9.1

Note: Although syntactically correct, # is not permitted; a
semantic error is generated with floating data.

• floating-constant

The syntax for a floating data item is the same as the syntax
for floating constants. Floating constants are described in
subsection 4.4.1.1, page 76.

The following example illustrates floating constants for data
items:

DATA D’1345.567 ; Decimal floating data item of the form
; n.n.

DATA 1345.E+1 ; Decimal floating data item of the form
; n. E+n.

DATA 4.5E+1O ; Single-precision floating constant of
; the form n. nE+n.

DATA 4.D+15 ; Double-precision floating constant of
; the form n.D+ n.

DATA D’1.0E–6 ; Negative floating constant of the form
; n. nE–n.

DATA 1000e2 ; Single-precision floating constant of
; the form nen.

DATA 1.5S2 ; Floating binary scale data item of the
; form n. nSn.

An integer data item occupies one 64-bit word and is defined as
follows:

[sign] integer-constant

In the preceding definition the sign variable defines the form of a
data item to be stored. The sign variable can be replaced in the
integer data item definition with any of the following:

+ or omitted Uncomplemented

– Negated (twos complemented)

Ones complemented

Integer data item
4.4.2.2

Cray Assembly Language [4] Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual

84 Cray Research, Inc. SR–3108 9.1

The syntax for integer-constant is described in subsection 4.4.1.2,
page 79.

The following example illustrates integer constants for data:

DATA +o’20 ; Octal integer
VWD 40/0,24/O’200

The character data item is as follows:

[character-prefix] character-string [character-count] [character suffix]

In the preceding definition, variables are defined as follows:

• character-prefix

This variable specifies the character set used for the stored
constant. It is specified as follows:

A or a ASCII character set (default)

C or c Control Data display code

E or e EBCDIC character set

• character-string

The default is a string of zero or more characters (enclosed in
apostrophes) from the ASCII character set. Two consecutive
apostrophes (excluding the delimiting apostrophes) indicate
one apostrophe.

• character-count

The length of the field, in number of characters, into which the
data item will be placed. If count is not supplied, the length is
the number of words needed to hold the character string. If a
count field is present, the length is the character count times
the character width; therefore, length is not necessarily an
integral number of words. The character width is 8 bits for
ASCII or EBCDIC, and 6 bits for control data display code.

Character data item
4.4.2.3

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual Cray Assembly Language [4]

85Cray Research, Inc.SR–3108 9.1

If an asterisk is in the count field, the actual number of
characters in the string is used as the count. Two apostrophes
that are used to represent one apostrophe are counted as one
character.

If the base is mixed, CAL assumes that the count is decimal.
See appendix A, page, 189 for information on the base pseudo
instructions.

• character-suffix

This variable specifies justification and fill of the character
string as follows:

H or h Left-justified, blank-filled (default)

L or l Left-justified, zero-filled

R or r Right-justified, zero-filled

Z or z Left-justified, zero-filled, at least one
trailing zero character guaranteed

The following example illustrates character data items:

DATA A’ERROR IN DSN’ ; ASCII character set left justified and
; blank fill by default; two words

DATA E’error in dsn’R ; EBCDIC character set right justified,
; zero filled; stored in two words.

DATA ‘Error’ ; Default ASCII character set left
; justified and blank filled by default
; stored in one word.

Literals are read-only data items whose storage is controlled by
CAL. Specifying a literal lets you implicitly insert a constant
value into memory. The actual storage of the literal value is the
responsibility of the assembler. Literals can be used only in
expressions because the address of a literal, rather than its
value, is used.

The first use of a literal value in an expression causes the
assembler to store the data item in one or more words in a
special local block of memory known as the literals section.
Subsequent references to a literal value do not produce multiple
copies of the same literal.

Literals
4.4.3

Cray Assembly Language [4] Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual

86 Cray Research, Inc. SR–3108 9.1

Because literals can map into the same location in the literals
section, CAL checks for the presence of matching literals before
new entries are added. This check is made bit by bit. If the
current string is identical to any string currently stored in the
literals section, CAL maps that string to the location of the
matching string. If the current string is not identical to any of
the strings currently stored, the current string is considered to
be unique, and is assigned a location in the literals section.

The following special syntaxes are in effect for literals:

• Literals always have the following attributes:

– Relocatable (relative) to a constant section

– Word (address)

• Literals cannot be specified as character strings of zero bits.
The actual constant within a literal must have a bit length
greater than 0. In actual use, you must specify at least one
6-bit character for the CDC character set or one 8-bit
character for the ASCII (default) and EDCDIC character sets.

• By default, literals always fall on full-word boundaries.
Trailing blanks are added to fill the word to the next word
boundary.

When used as an element of an expression, a literal is defined as
follows:

=data-item

A data item for literals is the same as data items for constants.
Data items for constants are described in subsection 4.4.2, page
82.

Single-precision literals are stored in one 64-bit word (default).
Double-precision literals are stored in two 64-bit words. The
following example shows how literals can be specified with single
or double precision:

CON =1.5 ; Single-precision literal
CON =1.sD1 ; Double-precision literal

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual Cray Assembly Language [4]

87Cray Research, Inc.SR–3108 9.1

Figure 6 illustrates how the ASCII character a is stored by
either of the following instructions (^ represents a blank
character):

CON =‘a’H

CON =‘a’

01100001 ^^^^^^^^ ^^^^^^^^ ^^^^^^^^ ^^^^^^^^ ^^^^^^^^ ^^^^^^^^ ^^^^^^^^

Figure 6. ASCII character with left-justification and blank-fill

Figure 7 illustrates how the ASCII character a is stored by any
of the following instructions (^ represents a blank character):

CON =‘a’L

CON ‘a’R

CON –‘a’S

01100001 00000000 00000000 00000000 00000000 00000000 00000000 00000000

Figure 7. ASCII character with left-justification and zero-fill

Figure 8 illustrates how the ASCII character a is stored by the
following instruction (^ represents a blank character):

CON =‘a’R

Cray Assembly Language [4] Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual

88 Cray Research, Inc. SR–3108 9.1

This example illustrates how the ASCII character a is stored
when =‘a’R is specified.

00000000 00000000 00000000 00000000 00000000 00000000 00000000 01100001

Figure 8. ASCII character with right-justification and zero-fill

Figure 9 illustrates how the ASCII character a is stored by the
following instruction (^ represents a blank character):

CON =‘a’*R

01100001 00000000 00000000 00000000 00000000 00000000 00000000 00000000

Figure 9. ASCII character with right-justification in 8 bits

The three character sets available to CAL are declared as
follows:

CON =‘A’ ; 8-bit ASCII character.

CON =A‘A’ ; 8-bit ASCII character.

CON =C‘A’ ; 6-bit CDC character.

CON =E‘A’ ; 8-bit EBCDIC character.

The following example illustrates the use of the H, L, R, or Z
options when specifying literals:

CON =‘AB’3 ; Left–justified with one blank–padded on the
; right (default).

CON =‘AB’3H ; Left–justified with one blank–padded on the
; right (default).

CON =‘AB’6R ; Right–justified, filled with four leading
; zeros.

CON =‘AB’6Z ; Left–justified, padded with four trailing
; zeros

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual Cray Assembly Language [4]

89Cray Research, Inc.SR–3108 9.1

Special elements are used to obtain the current value of the
location counter, the origin counter, the word pointer, and the
parcel pointer. Special elements can occur as elements of
expressions. For a description of expression elements, see
subsection 4.7, page 94. The origin, location, word-bit-position,
and parcel-bit-position counters are described in section 3, page
33.

Elements that have special meanings to the assembler are
described as follows:

• * . Location counter.

The asterisk (*) denotes a value equal to the current value of
the location counter with parcel-address attribute and
absolute, immobile, or relocatable attributes. The location
counter is absolute if the LOC pseudo instruction modified it by
using an expression that has a relative attribute of absolute.
The location counter is immobile if it is relative to either a
STACK or TASKCOM section. The location counter is relocatable
in all other cases.

• *A or *a . Absolute location counter.

The *A or *a denotes a value equal to the current value of the
location counter with parcel-address and absolute attributes.

• *B or *b . Absolute origin counter.

The *B or *b denotes a value equal to the current value of the
origin counter relative to the beginning of the section with
parcel-address and absolute attributes.

• *O or *o . Origin counter.

The *O or *o denotes a value equal to the current value of the
origin counter relative to the beginning of the current section.
The origin counter has an address attribute of parcel. If the
current section is a section with a type of STACK or TASKCOM,
it has an immobile attribute. In all other cases, it has a
relative attribute of relocatable.

Special elements
4.5

Cray Assembly Language [4] Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual

90 Cray Research, Inc. SR–3108 9.1

• *W or *w. Word pointer.

The *W or *w denotes a value equal to the current value of the
word-bit position counter with absolute and value attributes.
*W is relative to the word and the word-bit-position counter is
almost always equal to 0, 16, 32, or 48. CAL issues a warning
message when the word-bit-position counter has a value other
than 0 (not pointing at a word boundary) and is used in an
expression.

• *P or *p . Parcel pointer.

The *P or *p denotes a value equal to the current value of the
parcel-bit-position counter with absolute and value attributes.
The range of possible values for *P is 0 through 15. CAL
issues a warning message when the parcel-bit-position counter
has a value other than 0 (not pointing at a parcel boundary)
and is used in an expression. The following statement defines
where you are within a parcel, and it is almost always 0:

 SYM1 = *P

A symbol, constant, or special element can be prefixed by an
element prefix (P. or p. for parcel or W. or w. for word) causing
the value to assume parcel-address or word-address attributes,
respectively, in the expression in which the reference appears.

A prefix does not permanently alter the attribute of a symbol. A
prefix only effects the current reference.

Element prefixes
4.6

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual Cray Assembly Language [4]

91Cray Research, Inc.SR–3108 9.1

A symbol, special element, or constant can be prefixed by P. or
p. to specify the attribute of parcel address. If a symbol (sym)
has the attribute of word address, the value of P. sym or p. sym
is the value of sym multiplied by 4. Each Cray word is divided
into 4 parcels that are designated as a, b, c , and d. Each parcel
has a 2-bit value associated with it; 002 for a, 012 for b, 102 for
c , and 112 for d. To find the exact parcel being addressed,
multiply the word address by 4. For example, the following
word-address attributes are translated into parcel-address
attributes:

Word Equation Value Parcel representation

2 2x4 O’10 2a

4 4x4 O’20 4a

0 0x4 O’0 0a

A P. or p. specified for an element with value-address attribute
does not cause the value to be multiplied by 4; however, the P. or
p. prefix can be used to assign the parcel-address attribute to
the element.

A P. or p. specified for an element with parcel-address attribute
does not alter its characteristics.

Figure 10, page 92, shows the octal numbering of parcels a, b, c ,
and d in a 6-word block.

Parcel-address prefix
4.6.1

Cray Assembly Language [4] Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual

92 Cray Research, Inc. SR–3108 9.1

0 1 2 3

4 5 6 7

10 11 12 13

14 15 16 17

20 21 22 23

24 25 26 27

Parcel a Parcel b Parcel c Parcel d

Word 0

Word 1

Word 2

Word 3

Word 4

Word 5

Figure 10. Word/parcel conversion for 6 words

The following example illustrates the use of the parcel-address
prefix:

SYM1 = * ; SYM1 is equal to the location counter with
; parcel and relocatable attributes.

S1 SYM1 ; Register S1 gets the relocatable parcel
; address of SYM1.

S1 P.SYM1 ; The same value that was generated by the
; last statement is produced.

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual Cray Assembly Language [4]

93Cray Research, Inc.SR–3108 9.1

A symbol, special element, or constant can be prefixed by W. or
w. to specify the attribute of word address. If a symbol (sym) has
the attribute of parcel address, the value of W.sym or w. sym is
the value of sym divided by 4. When converting from
parcel-address attribute to a word-address attribute, divide the
parcel address by 4. When the conversion is completed, the
result is always understood to be pointing at parcel a.

If the parcel address is not pointing at a word boundary, CAL
issues a warning message and truncates the division to a word
boundary. For example, the following parcel address attributes
are converted into word-address attributes:

Parcel representation Value Equation Word Truncation warning

0c 2 2/4 0 Yes

3a 14 14/4 3 No

5c 26 26/4 5 Yes

0a 0 0/4 0 No

6a 30 30/4 0 No

A W. or w. prefix specified for an element with a value-address
attribute does not cause the value to be divided by 4. However,
the W. or w. prefix can be used to assign the word-address
attribute to the element.

A W. or w. prefix specified for an element with a word-address
attribute does not alter its characteristics.

The following example illustrates the use of a word-address
prefix:

SYM2 = W.* ; Word and relocatable attributes.
A0 W.ADDR
A4 W.BUFF+0’100

Word-address prefix
4.6.2

Cray Assembly Language [4] Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual

94 Cray Research, Inc. SR–3108 9.1

The result and operand fields for many source statements
contain expressions. An expression consists of one or more terms
joined by special characters referred to as adding operators
(add-operator). A term consists of one or more special elements,
constants, symbols, or literals (prefixed-element) joined by
multiplying operators (multiply-operator). Figure 11 diagrams
an expression and Figure 12 diagrams a term.

Add-operator1
(optional)

term1 Add-operator2 term2 . . . Add-operatorn

Figure 11. Diagram of an expression

prefixed-element1 multiply-operator1 prefixed-element2 multiply-operatorn prefixed-elementn

Figure 12. Diagram of a term

An expression is defined as follows:

embedded-argument or [add-operator] term { add-operator term }

The variables listed in the previous definition are defined in the
subsections that follow.

An add-operator joins two terms in an expression or precedes the
first term of an expression. Add-operators include the plus sign
(+) and the minus sign (–) and perform addition and subtraction.

Expressions
4.7

Add-operator
4.7.1

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual Cray Assembly Language [4]

95Cray Research, Inc.SR–3108 9.1

A term consists of one or more prefixed-elements joined by
special characters referred to as multiply-operators. The
multiply-operators complete all multiplication (*) and division (/)
before the add-operators complete addition or subtraction.

A term is defined as follows:

prefixed-element { multiply-operator prefixed-element }

The following general rules apply:

• Only one prefixed-element within a term can have a relative
attribute of immobile or relocatable. All other
prefixed-elements in that term must have relative attributes of
absolute.

• A prefixed-element with a relative attribute of external must
be the only prefixed-element of the term. If preceded by an
add-operator, that operator must be a +.

• The prefixed-element to the right of a slash (/) must have a
relative attribute of absolute.

• A term that contains a slash (/) must have an attribute of
absolute up to the point at which the / is encountered (see
subsection 4.7.2.3, page 97).

• Division by 0 produces an error.

The following example illustrates the use of terms:

SYM = * ; Relocatable and parcel attributes.
S1 SYM1 ; One term within an expression.
S2 SYM*1+1 ; Two terms within an expression.
S3 1*2*3/4 ; Every prefixed-element preceding a / must

; have the attribute of absolute and the
; prefixed-element following the / must have
; an attribute of absolute.

Terms
4.7.2

Cray Assembly Language [4] Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual

96 Cray Research, Inc. SR–3108 9.1

The following are examples of terms:

Term Description

SIGMA*5 Two elements, SIGMA and 5, are joined by a
multiplying operator.

DELTA A single-element term.

A prefixed-element is defined as follows:

[#] [element-prefix] element

The variables in the previous definition are defined as follows:

• complement character (#)

If an element is prefixed with the complement character (#),
the element itself must have a relative attribute of absolute.

• element-prefix

If an element is prefixed with an element-prefix, the attribute
of the element is as follows:

P. or p. Parcel-address attribute

W. or w. Word-address attributes

For more information about element-prefixes, see subsection
4.6, page 90.

• element

An element can be a special element, constant, symbol, or
literal. Elements can be optionally preceded by a complement
character (#) or an element-prefix (P. or W.). For more
information about element, see subsection 4.5, page 89.

Prefixed-elements
4.7.2.1

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual Cray Assembly Language [4]

97Cray Research, Inc.SR–3108 9.1

The following are examples of elements:

SIGMA Symbol

* Special element

*W Special element

O’77S3 Numeric constant

A’ABC’R Character constant

=A’ABC’ Literal

A multiply-operator joins two prefixed-elements.
Multiply-operators are the asterisk (*) which specifies
multiplication and the slash (/) which specifies division.

Each prefixed-element in a term has a relative and an address
attribute associated with it. CAL assigns relative and address
attributes to the entire term by evaluating each prefixed-element
in the term.

The relative and address attributes for a term vary as CAL
evaluates each prefixed-element in the term. The final attribute
of the term is the attribute in effect when the final (rightmost)
element of the term is evaluated. As CAL encounters each
prefixed-element in the left-to-right scan of a term, it assigns an
attribute to the term based on the multiply-operator (if any)
preceding the prefixed-element, the attribute of any previous
partial term, and the attribute of the prefixed-element currently
being evaluated.

Relative attributes (the prefixed-elements and multiply-operators
that compose a term) determine the relative attributes of the
term.

CAL assigns every term a relative attribute determined by the
following rules:

• A term assumes the attributes of absolute if every
prefixed-element is absolute. For example:

 2*4/3*4

In the above example, absolute (2) * absolute (4) is evaluated
as absolute. Absolute (2*4) / absolute (3) is evaluated as
absolute. Absolute (2*4/3) * absolute (4) is evaluated as
absolute.

Multiply-operator
4.7.2.2

Term attributes
4.7.2.3

Cray Assembly Language [4] Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual

98 Cray Research, Inc. SR–3108 9.1

• A term assumes an attribute of immobile if it contains one
prefixed-element with immobile attributes, zero or more
prefixed-elements with absolute attributes, and no
prefixed-elements with relocatable or external attributes.
Thus, an immobile term can contain one immobile
prefixed-element with the remaining prefixed-elements being
absolute. For example:

 STKSYM*3

In the above example, immobile (STKSYM) * absolute (3) is
evaluated as immobile.

• A term assumes an attribute of relocatable if it contains one
prefixed-element with relocatable attributes, zero or more
prefixed-elements with absolute attributes, and no
prefixed-elements with immobile or external attributes. Thus,
a relocatable term can contain one relocatable prefixed-element
with the remaining prefixed-elements being absolute.

 2*SYM1*2

In the above example, absolute (2) * relocatable (SYM1) is
evaluated as relocatable. Relocatable (2*SYM1) * absolute (2)
is evaluated as relocatable.

• A term assumes the attribute of external if it consists of one
prefixed-element and the prefixed-element is external. For
example:

 EXT1

In the above example, one external (EXT1) element is
evaluated as external.

 EXT2*SYM1

In the above example, external (EXT2) * relocatable (SYM1)
produces an error.

In the following example, Absolute (4) * relocatable (SYM1) is
evaluated as relocatable; relocatable (4*SYM1) / 4 produces an
error:

 4*SYM1/4

All prefixed-elements to the left of the / must have a relative
attribute of absolute. See general rules for terms in subsection
4.7.2, page 95.

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual Cray Assembly Language [4]

99Cray Research, Inc.SR–3108 9.1

CAL assigns one of the following address attributes to every
term:

• Parcel-address

• Word-address

• Value

Figure 13, page 100, indicates how address attributes are
assigned to terms and partial terms. Vterm, Pterm, and Wterm
denote the attribute of the partial term resulting from all
elements evaluated before the current element. In Figure 13, P,
W, and V denote an element being incorporated into the term and
having an attribute of parcel-address, word-address, or value,
respectively.

If a partial term has the address attribute of the left column and
is multiplied or divided by a prefixed-element with the address
attribute of the top horizontal row, the resulting attribute is
determined at the intersection of the column and row by the
arithmetic operator position in the upper-left corner of the table.

The results for multiplication and division are given in the top
(*) and bottom (/) halves of each box on the chart, respectively.
For example, if partial term Vterm is multiplied by a
prefixed-element with an address attribute of word, the address
attribute for the new partial term is word.

A 2-digit value following an address attribute indicates that
although a result is specified, a warning message is issued that
corresponds to the 2-digit superscript. For example, if the
partial term interm is divided by a prefixed-element with an
address attribute of parcel, the result is value and message 84 is
issued as follows:

Partial term with value address is divided by parcel element

See appendix B, page 281, for the text associated with messages.

Cray Assembly Language [4] Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual

100 Cray Research, Inc. SR–3108 9.1

*

/
V P W

Vterm

Pterm

Wterm

V

V

P

P

W

W

P

V84

P80

V

V81

V85

W

V86

V82

V87

V83

V

2nd term

Partial
term

V – Value
P – Parcel
W – Word
nn – Warning message number

Figure 13. Address attribute assignment chart

Expressions are evaluated from left to right. Each term is
evaluated from left to right with CAL performing 64-bit integer
multiplication or division as each multiply-operator is
encountered. Expressions are defined as follows:

embedded-argument |[add-operator] term { add-operator term }

Note: The embedded-argument is intended for use with
macros and opdefs and should not be included in expressions.
Although the embedded-argument is syntactically correct, the
CAL expression evaluator cannot evaluate expressions that
contain embedded-arguments. See the following examples.

sym1 = 1 ; Valid expression
sym2 = (1) ; Syntactically correct, but CAL issues

; error message.

Expression
evaluation
4.8

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual Cray Assembly Language [4]

101Cray Research, Inc.SR–3108 9.1

An embedded-argument can be any argument-character that is
enclosed in parentheses. For example:

MACRO
FRED p1,p2

ABC = p1
S1 ABC*p2

FRED ENDM
FRED (1+2),3 ; (1+2) is the embedded argument

When a complete term is evaluated, it is added or subtracted
from the sum of the previous terms. CAL does not check for
overflow and underflow.

The assembler treats each element as a 64-bit twos complement
integer. Character constants are left- or right-justified within a
field width equal to the destination field. If the field width is
shorter than the length of the character constant, a warning
message is issued. Elements are complemented in the rightmost
bits of a field width equal to the destination field.

Note: CAL processes floating-constants as expected when
they are specified as one uncomplemented prefixed-element
within an expression. If floating-constants are used in any
other way, an appropriate warning message is issued and
integer arithmetic is used to evaluate the expression. CAL
processes the floating-constants within the expressions of the
following examples as expected:

A CON 1.0
B CON –1.0
C CON 4.5
D CON .3
E CON –.75

Cray Assembly Language [4] Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual

102 Cray Research, Inc. SR–3108 9.1

CAL issues an appropriate warning message and evaluates the
floating-constants within the expressions of the following
examples by using integer arithmetic:

G CON 1.0+2.0
H CON –1*3.4
I CON –#1.0

This example demonstrates how the result of a VWD with a 9-bit
destination field is stored; ^ represents a blank space.

VWD D’9/’abc’+1 ; The terms of the expression ‘abc’ and 1

Figure 14 and Figure 15 contain the binary representations of
the ASCII character strings “abc” and 1, respectively.

01100001 01100010 01100011 ^^^^^^^^ ^^^^^^^^ ^^^^^^^^ ^^^^^^^^ ^^^^^^^^

Figure 14. 64-bit binary representation of ASCII abc, left-justified

00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000001

Figure 15. 64-bit binary representation of 1

Because the character constant is left-justified by default within
a field width equal to the 9 bits specified in the example, the
64-bit representation of “abc” is actually as in Figure 16.

00000000 00000000 00000000 00000000 00000000 00000000 00000000 11000010

Figure 16. Binary representation of ASCII abc, right-justified in 9 bits

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual Cray Assembly Language [4]

103Cray Research, Inc.SR–3108 9.1

CAL adds the value 1 (Figure 15, page 102) to the value shown in
Figure 16, page 102 (011000010), and stores it in the destination
field (see Figure 17). CAL issues a warning message stating
that the character string “abc” has been truncated. The
destination field contains a value of 303 (011000011).

011000011

Figure 17. Result of VWD with 9-bit destination field

The following example demonstrates that elements are
complemented in the rightmost bits of a field width equal to the
destination field:

VWD D’4/#1+1 ; The terms of the expression are the
; complement of 1 and the value 1. The
; destination field is 4–bits wide.

Figure 18 and Figure 19 contain the complement of 1 and the
binary representation of the value 1 (0001), respectively.

11111111 11111111 11111111 11111111 11111111 11111111 11111111 11111110

Figure 18. 64-bit binary representation of the complement of 1

00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000001

Figure 19. 64-bit binary representation of 1

Cray Assembly Language [4] Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual

104 Cray Research, Inc. SR–3108 9.1

Figure 20 shows that the actual value of the complement of 1 is
stored in the rightmost bits of a word in memory.

00000000 00000000 00000000 00000000 00000000 00000000 00000000 00001110

Figure 20. Binary representation of the complement of 1 stored in the rightmost bits of a 4-bit
field

The binary value 1110 (Figure 20) is stored in the destination
field, and CAL adds the value 1 to the destination field; the
result (1111) is shown as the rightmost 4 bits as in Figure 20 and
is stored as shown in Figure 21.

1111

Figure 21. Result of VWD with 4-bit destination field

An immobile term has one immobile prefixed-element, no
relocatable or external prefixed-elements, and zero or more
absolute prefixed-elements. A relocatable term has one
relocatable prefixed-element, no immobile or external
prefixed-elements, and zero or more absolute prefixed-elements.

An immobile term has an associated 64-bit integer coefficient
equal to the value of the term obtained when a 1 is substituted
for the immobile element. The value of an immobile term is the
value of the immobile element multiplied by the coefficient.

A relocatable term has an associated 64-bit integer coefficient
equal to the value of the term obtained when a 1 is substituted
for the relocatable element. The value of a relocatable term is
the value of the relocatable element multiplied by the coefficient.

Each section has two relative section coefficients, one represents
an immobile relative attribute and one represents a relocatable
relative attribute. These relative section coefficients are
initialized to 0 before the evaluation of each expression. As each
term is evaluated within an expression, the coefficient of the
term is either added to or subtracted from the corresponding

Evaluating immobile
and relocatable terms
with coefficients
4.8.1

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual Cray Assembly Language [4]

105Cray Research, Inc.SR–3108 9.1

coefficient of the corresponding section depending on the sign
immediately preceding the term. When each term within an
expression has been evaluated, the expression is assigned a
relative attribute as follows:

• Absolute; if the expression contains no external terms and all
of the coefficients for all of the sections are 0.

• Immobile; if the expression contains no external terms and all
of the coefficients for all of the sections are 0, except for one
immobile coefficient that must have a value of 1. The
expression is immobile relative to the section with the
coefficient of 1.

• Relocatable; if the expression contains no external terms and
all of the coefficients for all of the sections are 0 except for one
relocatable coefficient that must have a value of 1. The
expression is relocatable relative to the section with the
coefficient of 1.

• External; if the expression contains one external term and all
of the coefficients for all of the sections are 0.

• Not valid; all other cases.

For example, if SYMBOL is assumed to be relocatable,
SYMBOL*2+1–SYMBOL is considered a valid expression when
evaluated by CAL. Because SYMBOL is relocatable, substituting
1 for SYMBOL generates three terms (1*2 , +1, and –1). The first
term (1*2) includes the relocatable term SYMBOL. A value of 2 is
stored with the coefficient maintained by CAL for the relocatable
section to which SYMBOL is relative. The second term (+1) is
absolute and does not affect the evaluation of the relocatable
coefficient. The third term (–1) includes the relocatable term
SYMBOL. A 1 is subtracted from the coefficient maintained by
CAL for the relocatable section SYMBOL.

When the entire term is evaluated, the coefficient associated
with the relocatable term SYMBOL equals 1. Because all
relocatable terms within the expression are relative to one
section and the final coefficient of the section is 1, the expression
is relocatable relative to that section.

Every relocatable symbol is relative to a section. All sections
contain an initial coefficient of 0 before expression evaluation.
The operator immediately preceding a relocatable term is the
operator associated with that term. For example, the coefficient
for SYMBOL is maintained as –1. When the sign of a coefficient is

Cray Assembly Language [4] Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual

106 Cray Research, Inc. SR–3108 9.1

not indicated, it is assumed to be positive. The coefficient for
SYMBOL*1 is maintained as +1*1 . If 1a (100) is substituted for
SYMBOL in the following expression; the binary that will be
evaluated is 100*010+001–100 :

SYMBOL*2+1–SYMBOL

CAL evaluates the string from left to right. The following
partial results are obtained:

100*010=1000
1000+0001=1001
1001–0100=0101=1b

The final result (1b) is the result that you would expect to be
generated. The following example demonstrates the correct and
incorrect use of a relocatable term:

IDENT
SYMBOL = * ; SYMBOL is given a value equal to the

; current location counter.
S1 SYMBOL*2+1–SYMBOL ; When evaluated, this expression

; produces a value equal to the current
; location counter plus 1. The value is
; relocatable.

S1 SYMBOL*2+1 ; When evaluated, this expression
; produces a value equal to twice the
; current location counter plus 1. The
; value is not relocatable. CAL
; produces an error message.

END

In the preceding example, the term SYMBOL*2+1 is not
relocatable because the results generated depend on the location
of the module by the loader. If the loader puts the module at
400, SYMBOL*2+1=801 . If the loader puts the module at 200,
SYMBOL*2+1=401 . If a term is evaluated and found to be not
relocatable, CAL issues an error-level diagnostic message.

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual Cray Assembly Language [4]

107Cray Research, Inc.SR–3108 9.1

The following example illustrates the use of relocatable terms:

IDENT TEST
SNAME1 SECTION
SYMBOL1 BSS 4
SYMBOL2 = w.*

BSS 5
SNAME2 SECTION
SYMBOL3 BSS 3

SECTION *
SYMBOL4 = 3*SYMBOL2+SYMBOL3–1SYMBOL2–2*SYMBOL1

END

In the previous example, the expression
3*SYMBOL2+SYMBOL3–1–SYMBOL2–2*SYMBOL1 contains five
terms, four of which are relocatable; it is evaluated as follows:

Term
Value of
coefficient Attribute

3*SYMBOL2 3*1 Relocatable (relative to
SNAME1)

+SYMBOL3 +1 Relocatable (relative to
SNAME2)

–1 Absolute

–SYMBOL2 –1 Relocatable (relative to
SNAME1)

2*SYMBOL1 –2*1 Relocatable (relative to
SNAME1)

The coefficients for the SNAME1 and SNAME2 sections were
initialized to 0 before the expression was evaluated. The main
section has a coefficient of 0. When the coefficients for the
relocatable terms relative to SNAME1 are evaluated, the result is
0 (+3–1–2). When the coefficients for the relocatable terms for
SNAME2 are evaluated, the result (+1) is 1.

SYMBOL4 obtains a relative attribute of relocatable because one
section in the expression has a coefficient of 1 (SNAME2) and all
other sections (SNAME1) maintained for the expression have
coefficients of 0. The final expression is relocatable relative to
SNAME2, because SNAME2 is the section with the coefficient of 1.

Cray Assembly Language [4] Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual

108 Cray Research, Inc. SR–3108 9.1

The address attribute of the expression is evaluated, as follows:

Term Partial term Attribute

3*SYMBOL2 Value*word Word (see Figure 13, page 100)

+SYMBOL3 Word Word (see Figure 13, page 100)

–1 Value Value (see Figure 13, page 100)

–SYMBOL2 Word Word (see Figure 13, page 100)

2*SYMBOL1 Value*word Word (see Figure 13, page 100)

The address attribute for the entire expression is word . For a
description of the manner in which parcel-address,
word-address, and value attributes are assigned to entire
expressions, see subsection 4.9, page 110.

The value of the expression
3*SYMBOL2+SYMBOL3–1–SYMBOL2–2*SYMBOL1 = O’7 . It is
calculated as follows:

Term Result Description

3*SYMBOL2 3*4=0’14 SYMBOL2 begins with word 4 in
section SNAME1; 4 is substituted
for SYMBOL2.

SYMBOL3 0 SYMBOL3 begins with word 0 in
section SNAME2; 0 is substituted
for SYMBOL3.

–1 –1 Term 3 is absolute; no
substitution.

–SYMBOL2 –4 SYMBOL2 begins with word 4 in
section SNAME1; 4 is substituted
for SYMBOL2.

2*SYMBOL1 –2*0=0 SYMBOL1 begins with word 0 in
section SNAME1; 0 is substituted
for SYMBOL1.

When the values for the terms (O’14+0–1–4–0) are substituted
for the (3*SYMBOL2+SYMBOL3–1–SYMBOL2–2*SYMBOL1)
expression, the result is 7.

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual Cray Assembly Language [4]

109Cray Research, Inc.SR–3108 9.1

The following example illustrates the use of immobile terms:

ident test
taskc section taskcom
tcsym bss 4

section *
symbol = taskc+tcsym–taskc

In the preceding example, the taskc+tcsym–taskc expression
contains three terms, two that are relocatable and one that is
immobile. The expression is evaluated as follows:

Term
Value of
coefficient Attribute

taskc +1 Relocatable (relative to taskc)

+tcsym +1 Immobile (relative to taskc)

–taskc –1 Relocatable (relative to taskc)

The relative section coefficients for relocatable taskc and
immobile tcsym were initialized to 0 before the expression was
evaluated. When the coefficients for the relocatable terms
relative to taskc are evaluated, the result (+1–1=0) is 0. When
the coefficient for the immobile term (tcsym) is evaluated, the
result (+1) is 1. Because the term with the relative attribute of
immobile has the coefficient of 1, the entire expression is
assigned a relative attribute of immobile.

The address attribute of the expression is evaluated as follows:

Term Partial term Attribute

* taskc Word word (see Figure 13, page 100)

+tcsym Word word (see Figure 13, page 100)

–taskc Word word (see Figure 13, page 100)

The address attribute for the entire expression is word. For a
description of the manner in which parcel-address,
word-address, and value attributes are assigned to entire
expressions, see subsection 4.9, page 110.

Cray Assembly Language [4] Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual

110 Cray Research, Inc. SR–3108 9.1

The value of the expression taskc+tcsym–taskc is calculated
as follows:

Term Result Description

taskc 0 taskc is assigned a value of 0 relative
to the task common section taskc ; 0 is
substituted for taskc .

+tcsym 0 tcsym begins with word 0 in taskcom
section taskc ; 0 is substituted for
tcsym .

–taskc 0 taskc is assigned a value of 0 relative
to the task common section taskc ; 0 is
substituted for taskc .

When the values for the terms (0+0–0) are substituted for the
expression (taskc+tcsym–taskc), the result is 0.

To determine the expression attributes for a full expression,
evaluate the terms within an expression. The assembler can
assign the following attributes to an expression:

• Relative

Relative attributes are classified as follows:

– Absolute

– Immobile

– Relocatable

– External

• Address

Address attributes are classified as follows:

– Parcel-address

– Word-address

– Value

Expression
attributes
4.9

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual Cray Assembly Language [4]

111Cray Research, Inc.SR–3108 9.1

Every expression assumes one of the relative attributes as
follows:

• An expression is absolute if no external terms are present and
the coefficients of all other sections are 0.

• An expression is immobile if the coefficient is 0 for each
section within the current module represented in the
expression. The exception is when one section has a coefficient
of +1 (positive relocation) and is immobile with respect to that
expression.

• An expression is relocatable if the coefficient for every section
within the current module represented in the expression is 0.
The exception is when one section has a coefficient of +1
(positive relocation) and is relocatably associated with that
expression. An expression error occurs if a coefficient does not
equal 0 or +1, or if more than one coefficient is nonzero.

• An expression is external if it contains one external term and if
the coefficients of all sections are 0. An expression error
occurs if more than one external term is present. All external
terms defined with the EXT pseudo instruction have a value of
0 associated with them.

The following are examples of relative attributes (see section 3,
page 33, for a description of sections):

IDENT TEST
EXT EXT1

SNAME1 SECTION
SYM1 BSS 4
SYM2 = W.*

BSS 5
SYM4 EXT1+SYM1 ; Illegal external term and relocatable

; terms with coefficients of 1 in the
; same expression.

SYM5 EXTl+SYMl–SYM2 ; Legal; SYMl (+1) and SYM2 (–1) cancel
; each other and produce a coefficient
; of 0 for the expression. The value of
; the expression EXTl+SYMl–SYM2 is 4
; (0+0–4).

END

Relative attributes
4.9.1

Cray Assembly Language [4] Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual

112 Cray Research, Inc. SR–3108 9.1

Each expression assumes an address attribute as follows:

• An expression has a parcel-address attribute if at least one
term has a parcel-address attribute and all other terms have
value or parcel-address attributes.

• An expression has a word-address attribute if at least one
term has a word-address attribute and all other terms have
value or word-address attributes.

• All other expressions have value attributes. A warning
message is issued if an expression has terms with both
parcel-address and word-address attributes.

An expression value is truncated to the field size of the
expression destination.

The following example illustrates expression value truncation:

SYM1 BSS 4
SYM2 = –1 ; 64 bits

VWD 5/–1 ; 5 bits
VWD 3/5 ; 3-bit destination field, value of 5
VWD 2/5 ; 2-bit destination field, value of 5,

; truncation message issued.
VWD 3/exp ; 3-bit destination field, the range of

; values is as follows: –4 < exp > 7.

A warning message is issued if the leftmost bits lost in
truncation are not all 0’s or all 1’s with the leftmost remaining
bit also 1 (that is, a negative quantity).

In the preceding example, truncation occurs in statement VWD
5/–1 (see Figure 22), but an error message is not generated
because the part that was truncated included all 1’s and the
leftmost bit of the 5-bit field is also a 1.

Address attributes
4.9.2

Truncating expression
values
4.9.3

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual Cray Assembly Language [4]

113Cray Research, Inc.SR–3108 9.1

11111111 11111111 11111111 11111111 11111111 11111111 11111111 11111111

Truncated Result

Figure 22. 64-bit binary representation of –1

11111

Figure 23. Truncated value of –1 stored in a 5-bit field

Truncation occurs in statement VWD 3/5 . An error message is
not generated, because the truncated part was all 0’s. The result
is truncated and stored as shown in Figure 24.

00000000

Truncated

00000000 00000000 00000000 00000000 00000000 00000000 00000101

Figure 24. 64-bit binary representation of 5

101

Figure 25. Truncated value of 5 stored in a 3-bit field

Truncation occurs in statement VWD 2/5 . CAL generates a
warning message, because a combination of 1’s and 0’s is
truncated. The result is truncated and stored as shown in
Figure 26.

Cray Assembly Language [4] Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual

114 Cray Research, Inc. SR–3108 9.1

00000000

Truncated

00000000 00000000 00000000 00000000 00000000 00000000 00000101

Figure 26. 64-bit binary representation of 5

01

Figure 27. Truncated value of 5 stored in a 2-bit field

If the values generated by the statement in VWD 3/ exp are in
the range from –4 through 7, a warning message is not
generated.

If a message of error-level is issued for an expression it causes
the expression to have a relative attribute of absolute, an
address attribute of value, and a value of 0.

The following are examples of expressions:

Expression Description

ALPHA An expression consisting of one term.

*W+BETA Two terms; *W and BETA.

GAMMA/4+DELTA*5 Two terms; each consisting of two
elements.

MU–NU*2+* Three terms; the first consisting only
of MU, the second consisting of NU*2,
and the third consisting only of the
special element * .

O’l00+=O’100 Two terms; a constant and the
address of a literal.

In the following examples, P and Q are immobile symbols in the
same section, R and S are relocatable symbols in the same
section, COM is relocatable in a common section, X and Y are
external, and A and B are absolute. The location counter is
currently in the section containing R and S.

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual Cray Assembly Language [4]

115Cray Research, Inc.SR–3108 9.1

The following expressions are absolute:

A+B

’A’R–1

2*R–S–* All relocation of terms cancel.

1/2*R Equivalent to 0*R .

A*(R–S) Error; parentheses not allowed.

The following expressions are immobile:

P+B

Q+3

COM+P–Q P and Q cancel.

X+P Error; external and immobile.

R+P Error; relocatable and immobile.

P+Q Error; immobile coefficient of 2.

Q/16*16 Error; division of immobile element is illegal.

The following expressions are relocatable:

*

w.*+B

R+2

COM+R–S R and S cancel.

3**–R–S 3** cancels –R and –S.

X+R Error; external and relocatable.

R+S Error; relocation coefficient of 2.

Q+S Error; immobile and relocatable.

R/16*16 Error; division of relocatable element is
illegal.

Cray Assembly Language [4] Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual

116 Cray Research, Inc. SR–3108 9.1

The following expressions are external:

X+2

Y–100

X+R–* R, –* cancel relocation.

X+2**–R–S Relocatable terms 2** , –R, –S cancel each
other.

–X+2 Error; external cannot be negated.

x+Y Error; more than one external.

X/Z Error; division of an external element is
illegal.

Pseudo Instructions [5]

117Cray Research, Inc.SR–3108 9.1

Pseudo instructions direct the assembler in its task of
interpreting source statements and generating an object
program.

Note: A detailed description of the pseudo instructions
presented in this section are listed in alphabetical order in
appendix A, page 189.

Each program module begins with an IDENT pseudo instruction
and ends with an END pseudo instruction. Symbol, micro, macro,
and opdef definitions that occur within the program module are
cleared before assembling the next program module.

Definitions of symbols, micros, macros, or opdefs included before
the first IDENT pseudo instruction or between an END and a
subsequent IDENT pseudo instruction are global and can be
referenced in any subsequent program module (see subsection
3.1.2, page 35).

Redefinable micros and symbols can only be defined locally. If
they appear before the first IDENT or between an END and
subsequent IDENT pseudo instruction they are cleared after
assembling the next program module.

Symbolic machine instructions and the following pseudo
instructions must appear within a program module. They are
allowed outside of an IDENT to END sequence only within opdef
or macro definitions.

ALIGN BSS CON LOC START
BITP BSSZ DATA ORG VWD
BITW COMMENT ENTRY QUAL
BLOCK COMMON EXT SECTION

The LOCAL pseudo instruction must occur immediately after a
macro or opdef prototype statement or after a DUP or ECHO
pseudo instruction. Comment statements can intervene. All
other pseudo instructions, macro definitions, and opdef
definitions can appear anywhere in a CAL program.

Pseudo Instructions [5] Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual

118 Cray Research, Inc. SR–3108 9.1

Pseudo instructions are classified and described according to
their applications, as follows:

Class Pseudo instructions

Program control IDENT, END, COMMENT

Loader linkage ENTRY, EXT, START

Mode control BASE, QUAL, EDIT, FORMAT

Section control SECTION, BLOCK, COMMON,
STACK, ORG, LOC, BITW, BITP,
BSS, ALIGN

Message control ERROR, ERRIF, MLEVEL, DMSG

Listing control LIST , SPACE, EJECT, TITLE ,
SUBTITLE, TEXT, ENDTEXT

Symbol definition =, SET, MICSIZE , DBSM

Data definition CON, BSSZ, DATA, VWD

Conditional assembly IFA , IFC , IFE , IFM, SKIP, ENDIF,
ELSE

Micro definition CMICRO, MICRO, OCTMIC, DECMIC

File control INCLUDE

Defined sequences MACRO, OPDEF, DUP, ECHO, ENDM,
ENDDUP, STOPDUP, LOCAL, OPSYN,
EXITM, NEXTDUP

Note: You can specify pseudo instructions in uppercase or
lowercase, but not in mixed case.

Pseudo Instructions [5]Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual

119Cray Research, Inc.SR–3108 9.1

The program control pseudo instructions define the limits of a
program module and include the following:

Pseudo Description

IDENT Marks the beginning of a program module.

END Marks the end of a program module.

COMMENT Enters comment, generally a copyright, into
the generated binary load module.

The loader linkage pseudo instructions provide for the loading of
multiple object program modules, linking them into one
executable program (ENTRY and EXT), and specifying the main
program entry (START).

The loader linkage pseudo instructions include the following:

Pseudo Description

ENTRY Specifies symbols, defined as addresses or
values, so that they can be used by other
program modules linked by a loader.

EXT Specifies linkage to addresses or values defined
as entry symbols in other program modules.

START Specifies symbolic address at which execution
begins.

Mode control pseudo instructions define the characteristics of an
assembly. The BASE pseudo instruction determines whether
notation for numeric data is assumed to be octal or decimal. The
QUAL pseudo instruction permits symbols to be defined as
qualified or unqualified. The EDIT pseudo instruction controls
the editing of assembler statements. The FORMAT pseudo
instruction controls the format that is used for interpreting
assembly source statements.

Program control
5.1

Loader linkage
5.2

Mode control
5.3

Pseudo Instructions [5] Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual

120 Cray Research, Inc. SR–3108 9.1

The mode control pseudo instructions include the following:

Pseudo Description

BASE Specifies data as being octal, decimal, or a
mixture of both.

QUAL Designates a sequence of code where symbols
may be defined with a qualifier, such as a
common routine with its own labels.

EDIT Turns editing on or off.

FORMAT Changes the format to old or new.

Section control pseudo instructions control the use of sections
and counters in a CAL program.

The section control pseudo instructions include the following:

Pseudo Description

SECTION Defines specific program sections and replaces
the BLOCK and COMMON pseudo instructions.
The SECTION pseudo instruction is
recommended for use with all Cray PVP
systems because it includes all of the
capabilities of BLOCK and COMMON pseudo
instructions.

BLOCK Defines local sections.

COMMON Defines common sections that can be
referenced by another program module.

STACK Increments the size of the stack.

ORG Resets location and origin counters.

LOC Resets location counter.

BITW Sets the current bit position relative to the
current word.

BITP Sets the current bit position relative to the
current parcel.

Section control
5.4

Pseudo Instructions [5]Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual

121Cray Research, Inc.SR–3108 9.1

Pseudo Description

BSS Reserves memory.

ALIGN Aligns code on an instruction buffer boundary.

Two pseudo instructions, ERROR and ERRIF, let you generate an
assembly error condition. The MLEVEL pseudo instruction lets
you change the level of messages you receive in your source
program.

Pseudo Description

ERROR Sets an assembly error flag

ERRIF Sets an assembly error flag according to the
conditions being tested

MLEVEL Sets the level at which messages are reported
in the source listing

DMSG Issues a comment-level message containing the
string found in the operand field

Listing control pseudo instructions control the content and
format of the listing produced by the assembler. These pseudo
instructions are not listed unless the LIST pseudo instruction is
specified by using the LIS option.

The listing control pseudo instructions are as follows:

Pseudo Description

LIST Controls listing by specifying particular listing
features that will be enabled or disabled

SPACE Inserts blank lines in listing

EJECT Begins new page

TITLE Prints main title on each page of listing

SUBTITLE Prints subtitle on each page of listing

Message control
5.5

Listing control
5.6

Pseudo Instructions [5] Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual

122 Cray Research, Inc. SR–3108 9.1

Pseudo Description

TEXT Declares beginning of global text source

ENDTEXT Terminates global text source

The =, SET, and MICSIZE pseudo instructions define symbols
used in the program. Requirements for symbols are specified in
subsection 4.3, page 69. The symbol definition pseudo
instructions are as follows:

Pseudo Description

= Equates a symbol to a value; not redefinable.

SET Sets a symbol to a value; redefinable.

MICSIZE Equates a symbol to a value equal to the
number of characters in micro string;
redefinable.

DBSM Generates a named label entry in the debug
symbol tables with a specific type specified.

Data definition pseudo instructions are the only pseudo
instructions that generate object binary. The only other
instructions that are translated into object binary are the
symbolic machine instructions. An instruction that generates
binary cannot be used with a section that does not allow
instructions, data, or both.

The data definition pseudo instructions are as follows:

Pseudo Description

CON Places an expression value into one or more
words

BSSZ Generates words that have been initialized to 0

DATA Generates one or more words of numeric or
character data

Symbol definition
5.7

Data definition
5.8

Pseudo Instructions [5]Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual

123Cray Research, Inc.SR–3108 9.1

Pseudo Description

VWD Generates a variable-width field of
word-oriented data

The conditional assembly pseudo instructions permit the
optional assembly or skipping of source code. The conditional
pseudo instructions IFA , IFC , or IFE determine whether the
sequence of instructions following the test will be skipped or
assembled. The end of the conditional sequence is determined
by a count of instructions provided in the test instruction or by
an ENDIF pseudo instruction with a matching location field
name.

The ELSE pseudo instruction provides a means of reversing the
effect of a previous IFA , IFE , IFC , SKIP, or ELSE instruction.
The SKIP pseudo instruction unconditionally skips the
statements that follow it.

When skipping under the control of a statement count, comment
statements (denoted by an asterisk (*) in column 1) and
continued lines are not included in the statement count.

When an IFA , IFE , IFC , SKIP, or ELSE pseudo instruction
initiates skipping, editing is disabled. When the skip sequence
is completed, the assembler returns to the editing mode in effect
before skipping was initiated.

To specify a conditional assembly, use the following pseudo
instructions:

Pseudo Description

IFA Tests expression attributes; address and relative
attributes.

IFE Tests two expressions for some assembly
condition; less than, greater than, and equal to.

IFC Tests two character strings for assembly
condition; less than, greater than, and equal to.

IFM Test for machine characteristics.

SKIP Unconditionally skip subsequent statements.

Conditional
assembly
5.9

Pseudo Instructions [5] Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual

124 Cray Research, Inc. SR–3108 9.1

Pseudo Description

ENDIF Terminates conditional code sequence.

ELSE Reverses assembly condition.

Through the use of micros, programmers can assign a name to a
character string and subsequently refer to the character string
by its name. A reference to a micro results in the character
string being substituted for the name before assembly of the
source statement containing the reference.

The following pseudo instructions specify micro definition:

Pseudo Description

CMICRO Constant micro; assigns a name to a character
string.

MICRO Redefinable micro; assigns a name to a character
string.

OCTMIC Converts the octal value of an expression to a
character string and assigns it a redefinable
name.

DECMIC Converts the decimal value of an expression to a
character string and assigns it a redefinable
micro name.

In addition to the micros previously listed, the CAL assembler
provides predefined micros. They can be specified in all
uppercase or all lowercase, but not mixed case. CAL provides
the following predefined micros:

Micro Description

$DATE Current date – ‘ mm/ dd/ yy’

$JDATE Julian date – ‘ yyddd’

$TIME Time of day – ‘ hh: mm: ss’

$MIC Micro character – double quotation mark (”)

Micro definition
5.10

Pseudo Instructions [5]Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual

125Cray Research, Inc.SR–3108 9.1

Micro Description

$CNC Concatenation character – underscore (_).

$QUAL Name of qualifier in effect; if none, null string.

$CPU Target machine: ‘CRAY YMP’ , ‘CRAY C90’ ,
‘CRAY J90’ , or ‘CRAY TS’ .

$CMNT Comment character used with the new format –
semicolon (;).

$APP Append character used with the new format –
circumflex (^).

AREGSIZE Number of bits in an A register of the current
target machine. For CRAY C90, CRAY J90, or
CRAY Y-MP systems, AREGSIZE = 32. For
CRAY T90 systems, AREGSIZE = 64.

PREGSIZE Number of bits in the Program register of the
current target machine. For CRAY J90 and
CRAY Y-MP systems, PREGSIZE = 24. For
CRAY C90 systems, PREGSIZE = 32. For
CRAY T90 systems, PREGSIZE = 32

The following example illustrates the use of a predefined micro
($DATE):

DATA ’THE DATE IS “$DATE”’
DATA ’THE DATE IS 06/23/94’ �

You can reference micro definitions anywhere in a source
statement, except in a comment, by enclosing the micro name in
quotation marks. If column 72 of a line is exceeded because of a
micro substitution, the assembler creates additional
continuation lines. No replacement occurs if the micro name is
unknown or if one of the micro marks was omitted.

Pseudo Instructions [5] Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual

126 Cray Research, Inc. SR–3108 9.1

In the following example, a micro called PFX is defined as the
character string ID . A reference to PFX is in the location field of
a line.

“PFX”TAG S0 S1 ; Left-shifted three spaces when edited.

In the following example, before the line is interpreted, CAL
substitutes the definition for PFX producing the following line:

IDTAG S0 S1 ; Left-shifted three spaces when edited.

The following example shows the use of the predefined micros,
AREGSIZE and PREGSIZE:

A = ”AREGSIZE” ; Size of the A registers.
CON A ; Store value in memory.

B = ”PREGSIZE” ; Size of the Program register.
CON B ; Store value in memory.

The file control psuedo instruction, INCLUDE, inserts a file at the
current source position. The INCLUDE pseudo instruction always
prepares the file for reading by opening it and positioning the
pointer at the beginning.

You can use this pseudo instruction to include the same file more
than once within a particular file.

You can also nest INCLUDE instructions. Because you cannot use
INCLUDE recursively, you should review nested INCLUDE
instructions for recursive calls to a file that you have already
opened.

File control
5.11

Defined Sequences [6]

Cray Research, Inc. 127SR–3108 9.1

Defined sequences are sequences of instructions that can be
saved for assembly later in the source program. Defined
sequences have several functional similarities.

The four types of defined sequences are specified by the MACRO,
OPDEF, DUP, and ECHO pseudo instructions. The ENDM, ENDDUP,
and STOPDUP pseudo instructions terminate defined sequences.
The LOCAL and OPSYN pseudo instructions are associated with
definitions and are included in this section.

The defined sequence pseudo instructions are as follows:

Pseudo Description

MACRO A sequence of source program instructions
saved by the assembler for inclusion in a
program when called for by the macro name.
The macro call resembles a pseudo
instruction.

OPDEF A sequence of source program instructions
saved by the assembler for inclusion in a
program called for by the OPDEF pseudo
instruction. The opdef resembles a symbolic
machine instruction.

DUP Introduces a sequence of code that is
assembled repetitively a specified number of
times; the duplicated code immediately
follows the DUP pseudo instruction.

ECHO Introduces a sequence of code that is
assembled repetitively until an argument
list is exhausted.

ENDM Ends a macro or opdef definition.

ENDDUP Terminates a DUP or ECHO sequence of code.

STOPDUP Stops the duplication of a code sequence by
overriding the repetition condition.

Defined Sequences [6] Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual

Cray Research, Inc.128 SR–3108 9.1

Pseudo Description

LOCAL Specifies unique strings that are usually
used as symbols within a MACRO, OPDEF,
DUP, or ECHO pseudo instruction.

OPSYN Defines a location field functional that is the
same as a specified operation in the operand
field functional.

EXITM Terminates the innermost nested MACRO or
OPDEF expansion.

For more information on macros and opdefs see the UNICOS
Macros and Opdefs Reference Manual, publication SR–2403.

Defined sequences have the following functional similarities:

• Editing

• Definition format

• Formal parameters

• Instruction calls

• Interact with the INCLUDE pseudo instruction

Assembler editing is disabled at definition time. The body of the
definition (see subsection 6.1.2, page 129) is saved before micros
and concatenation marks are edited.

If editing is enabled, editing of the definition occurs during
assembly each time it is called. The ENDDUP, ENDM, END,
INCLUDE, and LOCAL pseudo instructions and prototype
statements should not contain micros or concatenation
characters because they may not be recognized at definition
time.

Similarities among
defined sequences
6.1

Editing
6.1.1

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual Defined Sequences [6]

Cray Research, Inc. 129SR–3108 9.1

When a sequence is defined, editing is disabled and cannot be
explicitly enabled. When a sequence is called, CAL performs the
following operations:

• Checks all parameter substitutions marked at definition time

• Edits the statement if editing is enabled

• Processes the statement

By disabling editing at definition time (default) and specifying
the INCLUDE pseudo instruction with embedded underscores, a
saving in program overhead is achieved. Because editing is
disabled at definition time, concatenation does not occur until
the macro is called. If editing is enabled when the macro is
called, the file is included at that time. This technique is
demonstrated in the following example:

MACRO
INC
.
.
.
IN_CLUDE MYFILE ; INCLUDE pseudo instruction with an embedded
. ; underscore
.
.
ENDM

Embedding underscores in an INCLUDE pseudo instruction
becomes desirable when the INCLUDE pseudo instruction
identifies large files. Because files are included when the macro
is called and not at definition time, embedding underscores in
the INCLUDE pseudo instruction can reduce the overhead
required for a program.

MACRO, OPDEF, DUP, and ECHO pseudo instructions use the same
definition format. The format consists of a header, body, and
end.

The header consists of a MACRO, OPDEF, DUP, or ECHO pseudo
instruction, a prototype statement for a MACRO or OPDEF
definition, and, optionally, LOCAL pseudo instructions. For a
macro, the prototype statement provides a macro functional

Definition format
6.1.2

Defined Sequences [6] Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual

Cray Research, Inc.130 SR–3108 9.1

definition and a list of formal parameters. For an opdef, the
prototype statement supplies the syntax and the formal
parameters.

LOCAL pseudo instructions identify parameter names that CAL
must make unique to the assembly each time the definition
sequence is placed in a program segment. Asterisk comments
can be placed in the header and do not affect the way CAL scans
the header. Asterisk comments are dropped from the definition.
To force asterisk comments into a definition, see subsection
3.3.5, page 44.

The body of the definition begins with the first statement
following the header. The body can consist of a series of CAL
instructions other than an END pseudo instruction. The body of
a definition can be empty, or it can include other definitions and
calls. A definition used within another definition is not
recognized, however, until the definition in which it is contained
is called; therefore, an inner definition cannot be called before
the outer definition is called for the first time.

A comment statement identified by an asterisk in column l is
ignored in the definition header and the definition body. Such
comments are not saved as a part of the definition sequence.
Comment fields on other statements in the body of a definition
are saved.

An ENDM pseudo instruction with the proper name in the location
field ends a macro or opdef definition. A statement count or an
ENDDUP pseudo instruction with the proper name in the location
field ends a dup definition. An ENDDUP pseudo instruction with
the proper name in the location field ends an echo definition.

Formal parameters are defined in the definition header and
recognized in the definition body. Four types of formal
parameters are recognized as follows:

• Positional

• Keyword

• Echo

• Local

Formal parameters
6.1.3

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual Defined Sequences [6]

Cray Research, Inc. 131SR–3108 9.1

The characters that identify positional, keyword, echo, and local
parameters must all have unique names within a given
definition. Positional, keyword, and echo parameters are also
case-sensitive. To be recognized, you must specify these
parameters in the body of the definition exactly as specified in
the definition header. Parameter names must meet the
requirements for identifiers as described in subsection 4.2, page
67.

You can embed a formal parameter name within the definition
body; however, embedded parameters must satisfy the following
requirements:

• The first character of an embedded parameter must begin with
a legal initial-identifier-character.

• An embedded parameter cannot be preceded by an
initial-identifier-character (for example, PARAM is a legally
embedded parameter within the ABC_PARAM_DEF string
because it is preceded by an underscore character). PARAM is
not a legally embedded character within the string
ABCPARAMDEF because it is preceded by an
initial-identifier-character (C).

• An embedded parameter must not be followed by an
identifier-character.

In the following example, the embedded parameter is legal
because it is followed by an element separator (blank
character):

PARAM678

In the following example, the embedded parameter is illegal
because it is followed by the identifier-character 9:

PARAM6789

• Embedded parameters must contain 8 or less characters.
PARAM6789 is illegal because it contains 9 characters. The
character that follows an embedded parameter (9) cannot be
an identifier-character.

• If and only if the new format is specified, an embedded
parameter must occur before the first comment character (;) of
each statement within the body.

• An embedded parameter must have a matching formal
parameter name in the definition header.

Defined Sequences [6] Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual

Cray Research, Inc.132 SR–3108 9.1

• Formal parameter names should not be END, ENDM, ENDDUP,
LOCAL, or INCLUDE pseudo instructions. If any of these are
used as parameter names, substitution of actual arguments
occurs when these names are contained in any inner definition
reference.

Note: If the file is included at expansion time, arguments are
not substituted for formal parameters into statements within
included files.

Each time a definition sequence of code is called, an entry is
added to a list of currently active defined sequences within the
assembler. The most recent entry indicates the current source of
statements to be assembled. When a definition is called within a
definition sequence that is being assembled, another entry is
made to the list of defined sequences, and assembly continues
with the new definition sequence belonging to the inner, or
nested, call.

At the end of a definition sequence, the most recent list entry is
removed and assembly continues with the previous list entry.
When the list of defined sequences is exhausted, assembly
continues with statements from the source file.

An inner nested call can be recursive; that is, it can reference
the same definition that is referenced by an outer call. The
depth of nested calls permitted by CAL is limited only by the
amount of memory available.

The sequence field in the right margin of the listing shows the
definition name and nesting depth for defined sequences being
assembled. Nesting depth numbers begin in column 89 and can
be one of the following: :1 , :2 , :3 , :4 , :5 , :6 , :7 , :8 , :9 , :* .

If the nesting depth is greater than 9, CAL keeps track of the
current nesting level and an asterisk represents nesting depths
of 10 or more. Nesting depth numbers are restricted to two
characters so that only the two rightmost character positions are
overwritten.

Instruction calls
6.1.4

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual Defined Sequences [6]

Cray Research, Inc. 133SR–3108 9.1

If the sequence field (columns 73 through 90) of the source file is
not empty, CAL copies the existing field for a call into every
statement expanded by the call reserving columns 89 and 90 for
the nesting level. For example, if the sequence field for MCALL
was LQ5992A.112 , the sequence field for a statement expanded
from MCALL would read as follows:

LQ5992A.1l2 :l

Additional nested calls within MCALL would change the nesting
level, but the sequence field would be unchanged during MCALL.
For example:

LQ5992A.112 :2
LQ5992A.l12 :2
LQ5992A.112 :2
LQ5992A.112 :3
LQ5992A.112 :*
LQ5992A.112 :l

If the sequence field (columns 73 through 90) of the source file is
empty, CAL inserts the name of the definition, as follows:

Name Description

Macro The inserted name in the sequence field is the
functional found in the result field of the macro
prototype statement.

Opdef The inserted name in the sequence field is the
name used in the location field of the OPDEF
pseudo instruction itself.

Dup The inserted name in the sequence field is the
name used in the location field of the DUP pseudo
instruction, or if the count is specified and name
is not, the name is *Dup .

Echo The inserted name in the sequence field is the
name used in the location field of the ECHO
pseudo instruction.

In all cases, the first two columns of the sequence field contain
asterisks (**) to indicate CAL has generated the sequence field.
Columns 89 and 90 of the sequence field are reserved for the
nesting level. If, for example, the sequence field is missing for
MCALL, it would read as follows:

** MCALL :1

Defined Sequences [6] Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual

Cray Research, Inc.134 SR–3108 9.1

Additional nested calls within MCALL would change the nesting
level, but the sequence field number would be unchanged for the
duration of MCALL.

The following example illustrates how CAL tracks the nesting
sequence:

*MCALL :1
*MCALL :2
*MCALL :2
*MCALL :2
*MCALL :3
** MCALL :*
** MCALL :1

The INCLUDE pseudo instruction operates with defined
sequences, as follows:

Sequence Description

MACRO INCLUDE pseudo instructions are expanded
at definition time.

OPDEF INCLUDE pseudo instructions are expanded
at definition time.

DUP INCLUDE pseudo instructions are expanded
at definition time. If count is specified, the
INCLUDE pseudo instruction statement itself
is not included in the statements being
counted.

ECHO INCLUDE pseudo instructions are expanded
at definition time.

A macro definition identifies a sequence of statements. This
sequence of statements is saved by the assembler for inclusion
elsewhere in a program. A macro is referenced later in the
source program by the macro call. Each time the macro call
occurs, the definition sequence is placed into the source program.

Interaction with the
INCLUDE pseudo
instruction
6.1.5

Macros (MACRO)
6.2

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual Defined Sequences [6]

Cray Research, Inc. 135SR–3108 9.1

You can specify the MACRO pseudo instruction anywhere within a
program segment. If the MACRO pseudo instruction is found
within a definition, it is defined. If the MACRO pseudo instruction
is found within a skipping sequence, it is skipped and is not
recognized as a pseudo instruction.

If a macro definition occurs within the global definitions part of
a program segment, it is defined as global. If macro definitions
occur within a program module (an IDENT, END sequence), they
are local. A global definition can be redefined locally, however,
at the end of the program module, it is reenabled and the local
definition is discarded. A global definition can be referenced
from anywhere within the assembler program following the
definition.

The following example illustrates a macro definition:

MACRO
GLOBAL ; Globally defined.

* GLOBAL DEFINITION IS USED.
GLOBAL ENDM

LIST MAC
GLOBAL ; Call to global definition.

* GLOBAL DEFINITION IS USED.
IDENT TEST
GLOBAL ; Call to global definition.

* GLOBAL DEFINITION IS USED.
MACRO ; Locally defined.
GLOBAL ; Attempted global definition.

* Redefinition warning message is issued
* LOCAL DEFINITION IS USED.
GLOBAL ENDM

GLOBAL ; Call to local definition.
* LOCAL DEFINITION IS USED.

END ; Local definitions discarded
IDENT TEST2
GLOBAL ; Call to global definition.

* GLOBAL DEFINITION IS USED.
END

Defined Sequences [6] Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual

Cray Research, Inc.136 SR–3108 9.1

The macro definition header consists of the MACRO pseudo
instruction, a prototype statement, and optional LOCAL pseudo
instructions. The prototype statement provides a name for the
macro and a list of formal parameters and default arguments.

A comment statement, identified by an asterisk in column 1, is
ignored in the definition header or definition body. Such
comments are not saved as a part of the definition sequence.
Comment fields on other statements in the body of a definition
are saved.

The end of a macro definition is signaled by an ENDM pseudo
instruction with a functional name that matches the functional
name in the result field of the macro prototype statement. For a
description of the ENDM pseudo instruction, see subsection 6.6,
page 177.

The following macro definition transfers an integer from an A
register to an S register and converts it to a normalized
floating-point number:

macro
intconv p1,p2 ; pl=A reg, p2=S reg.
p2 +f_pl ; Transfer with special exp and sign

; extension.
p2 +f_p1 ; Normalize the S register.

intconv endm ; End of macro definition.

As with every macro, INTCONV begins with the MACRO pseudo
instruction. The second statement is the prototype statement,
which names the macro and defines the parameters. The next
three statements are definition statements that identify what
the macro does. The ENDM pseudo instruction ends the macro
definition.

Macro definition
6.2.1

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual Defined Sequences [6]

Cray Research, Inc. 137SR–3108 9.1

The format of the macro definition is as follows:

ignored MACRO ignored
[location] functional parameters
 LOCAL [name][,[name]]
 .
 .
 .
functional ENDM

The variables in the above macro definition are described as
follows:

• location

The location variable specifies an optional location field
parameter. It must be terminated by a space and it must meet
the requirements for names as described in subsection 4.2,
page 67.

• functional

The functional variable specifies the name of the macro. It
must be a valid identifier or the equal sign. If functional is the
same as a currently defined pseudo instruction or macro, this
definition redefines the operation associated with functional,
and a message is issued.

• parameters

The parameters variable specifies positional and/or keyword
parameters. Positional parameters must be entered before
keyword parameters. Keyword parameters do not have to
follow positional parameters. The syntax of the parameter
variable is as follows:

positional-parameters[, [keyword-parameters]]

Defined Sequences [6] Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual

Cray Research, Inc.138 SR–3108 9.1

The syntax for positional-parameters is described as follows:

[[!] [*] name] [, positional-parameters]

The variables that comprise the positional parameter are
described as follows:

– !/*

The exclamation point (!) is optional. If it is not included,
the positional-parameter’s argument can be an embedded
argument, character string, or null string. If the
exclamation point (!) is included, the parameter can be a
syntactically valid expression or a null string.

A left parenthesis signals the beginning of an embedded
argument and must be terminated by a matching right
parenthesis. An embedded argument can contain an
argument or pairs of matching left and right parentheses. If
an asterisk precedes the positional parameter name, the
embedded argument is used in its entirety. If an asterisk
does not precede the positional parameter name, the
outermost parentheses are stripped from the embedded
argument and the remaining string is used as the
argument.

A character string can be any character up to but not
including a legal terminator (space, tab, or semicolon for
new format) or an element separator (comma). If CAL finds
an open parenthesis (character string) with no closing
parenthesis (which would make it an embedded-argument),
the following warning-level message is issued:

 Embedded argument was not found.

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual Defined Sequences [6]

Cray Research, Inc. 139SR–3108 9.1

A syntactically valid expression can include a legal
terminator (space, tab, or semicolon for new format) or an
element separator (comma). The syntactically valid
expression satisfies the requirements for an expression, but
it is used only as an argument and is not evaluated in the
macro call itself. If the syntactically valid expression is an
embedded argument, then, as long as an asterisk precedes
the positional-parameter name, the embedded argument is
used in its entirety. If an asterisk does not precede the
positional-parameter name, the outermost parentheses are
stripped from the embedded argument and the remaining
string is used as the argument. Use of the syntactically
valid expression permits you to enter a string (=‘, ’R) of
characters that may contain one or more spaces or a comma.

The null string is an empty string.

– positional-parameters

positional-parameters must be specified with valid and
unique names and they must meet the requirements for
names as described in subsection 4.2, page 67. There can be
none, one, or more positional parameters. The default
argument for a positional-parameter is an empty string.

The positional parameters defined in the macro definition
are case-sensitive. Positional parameters that are specified
in the definition body must identically match positional
parameters defined by the macro prototype statement.

The syntax for keyword-parameters can be any of the
following:

[*] name=[expression-argument-value]
[,[keyword-parameters]]

[*] ! name=[expression-argument-value]

[,[keyword-parameters]]

[*] name=[string-argument-value]

[,[keyword-parameters]]

Defined Sequences [6] Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual

Cray Research, Inc.140 SR–3108 9.1

The elements of keyword-parameters are described as follows:

– keyword-parameters

keyword-parameters must be specified with valid and
unique names. Names within keyword-parameter must
meet the requirements for names as described in subsection
4.2, page 67.

There can be zero, one, or more keyword-parameters. You
can enter names within keyword-parameters in any order.
Default arguments can be provided for each
keyword-parameter at definition time, and they are used if
the keyword is not specified at call time.

The keyword-parameters defined in a macro definition are
case-sensitive. The keyword-parameters specified in the
macro body must match the positional-parameters specified
in the macro prototype statement.

The ! is optional. If the ! is not included, the –s option
argument can be an embedded argument, a character
string, or a null string. If the ! is included, the parameter
be either a syntactically valid expression or a null string.

Embedded argument. A left parenthesis signals the
beginning of an embedded argument and it must be
matched by a right parenthesis. An embedded argument
can also contain pairs of matching left and right
parentheses. If an asterisk precedes the positional
parameter name, the embedded argument is used in its
entirety; otherwise, the outermost parentheses are stripped
from the embedded argument and the remaining string is
used as the argument.

Character string. Any character up to but not including a
legal terminator (space, tab, or semicolon for new format) or
an element separator. If CAL finds an open parenthesis
(character string) with no closing parenthesis (which would
make it an embedded argument), the following
warning-level listing message is issued:

 Embedded argument was not found.

The null argument is an empty string.

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual Defined Sequences [6]

Cray Research, Inc. 141SR–3108 9.1

Syntactically valid expression. An expression can include a
legal terminator (space, tab, or semicolon for new format) or
an element separator (comma). The syntactically valid
expression is a legal expression, but it is used only as an
argument and is not evaluated in the macro call itself.

If the syntactically valid expression is an embedded
argument and if an asterisk precedes the positional
parameter name, the embedded argument is used in its
entirety. If an asterisk does not precede the
positional-parameter name, the outermost parentheses are
stripped from the embedded argument and the remaining
string is used as the argument.

If a default is provided for a keyword-parameter, it must
meet the preceding requirements.

The following example illustrates the use of positional
parameters:

MACRO
JUSTIFY !PARAM
. ; Macro prototype.
.
.

JUSTIFY ENDM
JUSTIFY ‘,’R ; Macro call
JUSTIFY ‘ ’R; Macro call

When the following macro is called, the positional parameter p1
receives a value of v1 because an asterisk does not precede the
parameter on the prototype statement. The positional
parameter p2, however, receives a value of (v2) because an
asterisk precedes the parameter on the prototype statement.

macro
paren p1,p2 ; Macro prototype.
.
.
.

paren endm
paren (v1),(v2) ; Macro call.

Defined Sequences [6] Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual

Cray Research, Inc.142 SR–3108 9.1

An instruction of the following format can call a macro
definition:

[locarg] functional positional-arguments [“,” [keyword-arguments]]
[locarg] functional keyword-arguments

The elements of the macro call are described as follows:

• locarg

The locarg element specifies an optional location field
argument. locarg must be terminated by a space or a tab (new
format only). locarg can be any character up to but not
including a space. If a location field parameter is specified on
the macro definition, you can specify a matching location field
parameter on the macro call. locarg is substituted wherever
the location field parameter occurs in the definition. If no
location field parameter is specified in the definition, this field
must be empty.

• functional

The functional element specifies the macro functional name. It
must be an identifier or an equal sign. functional must match
the functional specified in the macro definition.

• positional-arguments

Positional-arguments specify an actual argument string that
corresponds to a positional-parameter that is specified in the
definition prototype statement. The requirements for
positional-arguments are specified by the corresponding
positional-parameter in the macro definition prototype
statement. Positional-arguments are not case-sensitive to
positional-parameters on the macro call.

The first positional-argument is substituted for the first
positional-parameter in the prototype operand field, the second
positional-argument string is substituted for the second
positional-parameter in the prototype operand field, and so on.
If the number of positional-arguments is less than the number
of positional-parameters in the prototype operand field, null
argument strings are used for the missing
positional-arguments.

Macro calls
6.2.2

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual Defined Sequences [6]

Cray Research, Inc. 143SR–3108 9.1

Two consecutive commas indicate a null (empty)
positional-argument string.

• keyword-arguments

keyword-arguments are an actual argument string that
corresponds to a keyword-parameter specified in the macro
definition prototype statement. The requirements for
keyword-arguments are specified by the corresponding
keyword-parameter in the macro definition prototype
statement.

keyword-arguments are not recognized until after n subfields
(n commas); n is the number of positional parameters in the
operand field of the macro definition.

You can list keyword-arguments in any order; matching the
order in which keyword-parameters are listed on the macro
prototype statement is unnecessary. However, because the
keyword-parameter is case-sensitive, it must be specified in the
macro call exactly as specified in the macro prototype
statement to be recognized.

The default keyword-parameters specified in the macro
prototype statement are used as the actual
keyword-arguments for missing keyword-arguments.

All arguments must meet the requirements of the corresponding
parameters as specified in the macro definition prototype
statement.

Note: The ! and * are not permitted on the macro call
statement. These characters specified in the prototype
statement for positional-parameters or keyword-parameters
are remembered by CAL when the macro is called.

Defined Sequences [6] Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual

Cray Research, Inc.144 SR–3108 9.1

To call a macro, use its name in a code sequence. The INTCONV
macro is called as follows:

MACRO
INTCONV P1,P2 ; P1=A reg, P2=Sreg
P2 +F_P1 ; Transfer with special expression and

; sign extension.
P2 +F_P2 ; Normalize the S register.

INTCO ENDM ; End of macro definition.
LIST MAC

Call and expansion of the INTCONV macro:

INTCONV A1,S3 ; Macro call.
S2 +FA1 ; Transfer with special expression and

; sign extension.
S2 +FS2 ; Normalize the S register.

Note: Comments preceded by an underscore and an asterisk
are included in the definition bodies of the following macro
examples. These comments are included to illustrate the way
in which parameters are passed from the macro call to the
macro definition. Because comments are not assembled, _*
comments allow arguments to be shown without regard to
hardware differences or available machine instructions.

The following examples show the use of positional-parameters
and keyword-parameters.

The macro table contains positional and keyword parameters.

macro
table tabn,val1=#0,val2=,val3=0

tables section data
tabn con ‘tabn’1

con val1
con val2
con val3
section * : Resume use of previous section.

table endm
list mac

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual Defined Sequences [6]

Cray Research, Inc. 145SR–3108 9.1

The following shows the call and expansion of the table macro:

table taba,val3=4,val2=a ; Macro call.
tables section data
taba con ‘taba’1

con #0
con a
con 4
section * : Resume use of previous section.

Macro noorder demonstrates that keyword-parameters are not
order dependent.

macro
noorder param1,param2,param3=,param4=b
s1 param1
s2 param2
s3 param3
s4 param4

noorderendm
list mac

The call and expansion of the noorder macro is as follows:

noorder (1),2,param4=dog,param3=d
s1 1
s2 2
s3 d
s4 dog

Defined Sequences [6] Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual

Cray Research, Inc.146 SR–3108 9.1

Macros ONE, two , and THREE demonstrate that the number of
parameters specified in the macro call may form the number of
parameters specified in the macro definition.

MACRO
ONE PARAM1,PARAM2,PARAM3

_*PARAMETER1: PARAM1
; SYM1 corresponds to PARAM1.

_*PARAMETER2: PARAM2
; Null string.

_*PARAMETER3: PARAM3
; Null string.

ONE ENDM
LIST MAC

The call and expansion of the ONE macro using one parameter is
as follows:

ONE SYM1 ; Call using one parameter.
* PARAMETER 1: SYM1 ; SYM1 corresponds to PARAM1.
* PARAMETER 2: ; Null string.
* PARAMETER 3: ; Null string.

macro
two param1,param2,param3

_* Parameter 1: param1
; SYM1 corresponds to param1.

_* Parameter 2: param2
; SYM2 corresponds to param2.

_* Parameter 3: param3
; Null string.

two endm
list mac

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual Defined Sequences [6]

Cray Research, Inc. 147SR–3108 9.1

The call and expansion of the two macro using two parameters
is as follows:

two sym1,sym2 ; Call using two parameters.
* Parameter 1: sym1 ; sym1 corresponds to param1.
* Parameter 2: sym2 ; sym2 corresponds to param2.
* Parameter 3: ; Null string.

MACRO
THREE PARAM1,PARAM2,PARAM3

_*PARAMETER 1: PARAM1
;SYM1 corresponds to PARAM1.

_*PARAMETER 2: PARAM2
;SYM2 corresponds to PARAM2.

_*PARAMETER 3: PARAM3
;SYM3 corresponds to PARAM3.

THREE ENDM
LIST MAC

The call and expansion of the THREE macro using prototype
parameters is as follows:

THREE SYM1,SYM2,SYM3 ; Call matching prototype.
* PARAMETER 1: SYM1 ; SYM1 corresponds to PARAM1.
* PARAMETER 2: SYM2 ; SYM2 corresponds to PARAM2.
* PARAMETER 3: SYM3 ; SYM3 corresponds to PARAM3.

Defined Sequences [6] Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual

Cray Research, Inc.148 SR–3108 9.1

The following examples demonstrate the use of the optional ! .

Macro BANG demonstrates the use of the embedded argument
(1,2), syntactically valid expressions for positional-parameters
(‘abc,def’), keyword-parameters (PARAM3=1+2), and the null
string.

MACRO
BANG PARAMl,!PARAM2,!PARAM3=,PARAM4=

_* PARAMETER 1: PARAM1
; Embedded argument.

_* PARAMETER 2: PARAM2
; Syntactically valid expression

_* PARAMETER 3: PARAM3
; Syntactically valid expression

_* PARAMETER 4: PARAM4
; Null string.

BANG ENDM
LIST MAC

The call and expansion of the BANG macro is as follows:

BANG (1,2),‘abc,def’,PARAM3=1+2
; Macro call.

* PARAMETER 1: 1,2 ; Embedded argument.
* PARAMETER 2: ‘abc,def’

; Syntactically valid expression.
* PARAMETER 3: 1+2 ; Syntactically valid expression.
* PARAMETER 4: ; Null string.

In the previous example:

• If the argument for PARAM1 had been (((1,2))), S1 would
have received ((1,2)) at expansion.

• The ! specified on PARAM2 and PARAM3 permits commas
and spaces to be embedded within strings ’abc,def’ and
allows expressions to be expanded without evaluation
1+2 .

• PARAM4 passes a null string. A space or comma following
the equal sign specifies a null or empty character string as
the default argument.

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual Defined Sequences [6]

Cray Research, Inc. 149SR–3108 9.1

In the following macro, called remem, the ! is remembered from
the macro definition when it is called:

macro
remem !param1=’ ’r ; Prototype statement includes !
s1 param1

remem endm
list mac

The call and expansion of the remem macro is as follows:

remem param1=‘,’r ; Macro call does not include !
s1 ‘,’r

The NULL and nullparm macros that follow demonstrate the
effect of null strings when parameters are passed.

NULL demonstrates the effect of a null string on macro
expansions. P2 is passed a null string. When NULL is expanded,
the resulting line is left-shifted two spaces, which is the
difference between the length of the parameter (P2) and the null
string.

MACRO
NULL P1,P2,P3
S1 P1
S2 P2 ; Left shifted two places.
S3 P3

NULL ENDM
LIST MAC

The call and expansion of the NULL macro is as follows:

NULL 1,,3 ; Macro call.
S1 1

* S2 ; Left shifted two places.
S3 3

Defined Sequences [6] Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual

Cray Research, Inc.150 SR–3108 9.1

Macro nullparm demonstrates how a macro is expanded when
the macro call does not include the location field name specified
on the macro definition.

macro
nullparm longparm

; Prototype statement.
longparm = 1
nullparm endm

list mac

The call and expansion of the nulparm macro is as follows:

nullparm
= 1

Note: The location field parameter was omitted on the macro
call in the previous example. The result and operand fields of
the first line of the expansion were shifted left 8 character
positions because a null argument was substituted for the
8-character parameter, LONGPARM.

If the old format is used, only one space appears between the
location field parameter and result field in the macro
definition. If a null argument is substituted for the location
parameter, the result field is shifted into the location field in
column 2. Therefore, at least two spaces should always
appear between a parameter in the location field and the first
character in the result field in a definition.

If the new format is used, the result field is never shifted into
the location field.

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual Defined Sequences [6]

Cray Research, Inc. 151SR–3108 9.1

The following macro, DEFAULT, illustrates how defaults are
assigned for keywords when the macro is expanded:

MACRO
DEFAULT PARAM1=(ABC DEF,GHI),PARAM2=ABC,PARAM3=

_* PARAM 1
_* PARAM 2
_* PARAM 3
DEFAULT ENDM

LIST MAC

The following illustrates calls and expansions of the DEFAULT
macro:

DEFAULT PARAM1=ARG1,PARAM2=ARG2,PARAM3=ARG3
; Macro call.

*ARG1
*ARG2
*ARG3

DEFAULT PARAM1=,PARAM2=(ARG2),PARAM3=ARG3
*ARG2
*ARG3

DEFAULT PARAM1=((ARG1)),PARAM2=,PARAM3=ARG3
; Macro call.

* (*ARG1)
* ARG3

The following examples illustrate the correct and incorrect way
to specify a literal string in a macro definition.

Macro WRONG shows the incorrect way to specify a literal string
in a macro definition. The comments in the expansion are writer
comments and are not part of the expansion.

MACRO
WRONG PARAM1=’ ’R ; Prototype statement.

_* PARAM1
WRONG ENDM ; End of macro definition.

LIST MAC ; List expansion.

Defined Sequences [6] Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual

Cray Research, Inc.152 SR–3108 9.1

The call and expansion of WRONG is as follows (CAL erroneously
expands WRONG; ’ ’R was intended):

WRONG ; Macro call
* ’

Macro right shows the correct way to specify a literal string in
a macro definition.

macro
right !param1=’ ’r ; Prototype statement.

* param1
right endm ; End of macro definition.

list mac ; List expansion.

The expansion of right is as follows (CAL expands right as
intended because of the !):

right ; Macro call.
* ’ ’r

The following macros demonstrate the wrong and right methods
for replacing parameters on the prototype statement with
parameters on the macro call statement.

Macro BAD demonstrates the wrong method of replacing
parameters.

MACRO
BAD PARAM1,PARAM2,PARAM3=JJJ

* PARAMETER 1: PARAM1
* PARAMETER 2: PARAM2
* PARAMETER 3: PARAM3
BAD ENDM ; End of macro definition.

LIST MAC ; Listing expansion.

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual Defined Sequences [6]

Cray Research, Inc. 153SR–3108 9.1

The call and expansion of the BAD macro is as follows:

BAD PARAM3=XKK ; Macro call.
* PARAMETER 1: PARAM3=KKK
* PARAMETER 2:
* PARAMETER 3: JJJ

Macro good demonstrates the correct method for replacing
parameters.

macro
good param1,param2,param3=jjj

_* parameter 1: param1
; Null string.

_* parameter 2: param2
; Null string.

_* parameter 3: param3
good endm ; End of macro definition.

list mac ; Listing expansion.

The call and expansion of the good macro is as follows:

good ,,param3=kkk ; Macro call.
* parameter 1: ; Null string.
* parameter 2: ; Null string.
* parameter 3: kkk

Macro ALPHA demonstrates the specification of an embedded
parameter.

MACRO ; EDIT=ON
ALPHA !PARAM ; Appending a string.

_* FORMAL PARM: PARAM
_* EMBEDDED PARM: ABC_PARAM_DEFG

; Concatenation off at call time.
ALPHA ENDM ; End of macro definition.

LIST MAC ; List expansion.

Defined Sequences [6] Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual

Cray Research, Inc.154 SR–3108 9.1

The call and expansion of the ALPHA macro is as follows:

ALPHA 1 ; Macro call.
* FORMAL PARM: 1
* EMBEDDED PARM: ABC1DEFG

CAL processes the embedded parameter in macro ALPHA, as
follows:

1. CAL scans the string to identify the parameter. ABC_ cannot
be a parameter because the underscore character is not
defined as an identifier character for a parameter.

2. CAL identifies PARAM as the parameter when the second
underscore character is encountered.

3. 1 is substituted for PARAM, producing string ABC_1_DEFG.

4. If editing is enabled, the underscore characters are removed
and the resulting string is ABClDEFG.

If editing is disabled, the string is ABC_1_DEFG.

5. CAL processes the statement.

An operation definition (OPDEF) identifies a sequence of
statements to be called later in the source program by an opdef
call. Each time the opdef call occurs, the definition sequence is
placed into the source program.

Opdefs resemble machine instructions and can be used to define
new machine instructions or to redefine current machine
instructions. Machine instructions map into opcodes that
represent some hardware operation. When an operation is
required that is not available through the hardware, an opdef
can be written to perform that operation. When the opdef is
called, the opdef maps into the opdef definition body and the
operation is performed by the defined sequence specified in the
definition body.

Operation
definitions (OPDEF)
6.3

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual Defined Sequences [6]

Cray Research, Inc. 155SR–3108 9.1

You can replace any existing CAL machine instruction with an
opdef. Although opdef definitions should conform to meaningful
operations that are supported by the hardware, they are not
restricted to such operations.

The opdef definition sets up the parameters into which the
arguments specified in the opdef call are substituted. Opdef
parameters are always expressed in terms of registers or
expressions. The opdef call passes arguments to the parameters
in the opdef definition. The syntax for the opdef definition and
the opdef call are identical with two exceptions:

• The complex register has been redefined for the opdef
definition prototype statement as follows:

register_mnemonic. register_parameter

• Expressions have been redefined for the opdef definition
prototype statement, as follows:

@[expression_parameter]

These two exceptions allow you to specify parameters in the
place of registers and expressions for an opdef definition.

The syntax defining a register_parameter and an
expression_parameter is case-sensitive. Every character that
identifies the parameter in the opdef prototype statement must
be identical to every character in the body of the opdef definition.
This includes the case (uppercase, lowercase, or mixed case) of
each character.

Because the opdef can accept arguments in many forms, it can
be more flexible than a macro. Opdefs place a greater
responsibility for parsing arguments on the assembler. When a
macro is specified, the responsibility for parsing arguments is
placed on the user in many cases. Parsing a macro argument
can involve numerous micro substitutions, which greatly
increase the number of statements required to perform a similar
operation with an opdef.

Defined Sequences [6] Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual

Cray Research, Inc.156 SR–3108 9.1

Defined sequences (macros, opdefs, dups, and echos) are costly in
terms of assembler efficiency. As the number of statements in a
defined sequence increases, the speed of the assembler
decreases. This decrease in speed is directly related to the
number of statements expanded and the number of times a
defined sequence is called.

Limiting the number of statements in a defined sequence
improves the performance of the assembler. In some cases, an
opdef can perform the same operation as a macro and use fewer
statements in the process.

The following example illustrates that an opdef can accept many
different kinds of arguments from the opdef call:

MANYCALL OPDEF
A.REG1 A.REG2!A.REG3

; Opdef prototype statement.
S1 A.REG2
S2 A.REG3
S3 S1!S2
A.REG1 S3 ; OR of registers S1 and S2.

MANYCALL ENDM ; End of opdef definition.

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual Defined Sequences [6]

Cray Research, Inc. 157SR–3108 9.1

The following example illustrates the calls and expansions of the
previous example:

A1 A2!A3 ; First call to opdef MANYCALL.
S1 A.2
S2 A.3
S3 S1!S2
A.1 S3 ; OR of registers S1 and S2.
A.1 A.2!A.3 ; Second call to opdef MANYCALL.
S1 A.2
S2 A.3
S3 S1!S2
A.1 S3 ; OR of registers S1 and S2.

ONE = 1 ; Define symbols.
TWO = 2
THREE = 3

A.ONE A.TWO!A.THREE ; Third call to opdef MANYCALL.
S1 A.2
S2 A.3
S3 S1!S2
A.ONE S3 ; OR of registers S1 and S2.
A1 A.2!A.THREE ; Fourth call to opdef MANYCALL.
S1 A.2
S2 A.3
S3 S1!S2
A.1 s3 ; OR of registers S1 and S2.

In the first and second calls to opdef MANYCALL, the arguments
passed to REG1, REG2, and REG3 are 1, 2, and 3, respectively. In
the third call to opdef MANYCALL, the arguments passed to
REG1, REG2, and REG3 are ONE, TWO, and THREE, respectively.
The fourth call to opdef MANYCALL demonstrates that the form
of the arguments can vary within one call to an opdef if they
take a valid form. The arguments passed to REG1, REG2, and
REG3 in the fourth call are 1, 2, and THREE, respectively.

Defined Sequences [6] Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual

Cray Research, Inc.158 SR–3108 9.1

The following example illustrates how to use an opdef to limit
the number of statements required in a defined sequence:

MACRO
$IF REG1,COND,REG2 ; Macro prototype statement.
.
.
.

$IF ENDM ; End of macro definition.
.
.
.
$IF S6,EQ,S.3 ; Macro call.
.
.
.
$ELSE
.
.
.
$ENDIF

Parsing the parameters (S6,EQ,S3) passed to the definition
requires many micro substitutions within the definition body.
These micros increase the number of statements within the
definition body.

The same function is performed in the following example, but an
opdef is specified instead of a macro. In this instance, specifying
an opdef rather than a macro reduces the number of statements
required for the function.

Because an opdef is called by its form, it is more flexible than a
macro in accepting arguments. The opdef expects to be passed
two S registers and the EQ mnemonic. You can specify the
arguments for the registers in a number of ways and still be
recognized as S register arguments by the opdef.

opdef
example $if s.reg1,eq,s.reg2; Opdef definition statement.
_* Register1: reg1
_* Register2: reg2
example endm ; End of opdef definition.

list mac ; Listing expansion.

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual Defined Sequences [6]

Cray Research, Inc. 159SR–3108 9.1

The following are the calls and expansions of the preceding
example:

$if s6,eq,s.3
* Register1: 6
* Register2: 3

If an opdef occurs within the global definitions part of a program
segment, it is defined as global. Opdef definitions are local if
they occur within a program module (an IDENT, END sequence).
A global definition can be redefined locally, but the global
definition is reenabled and the local definition is discarded at the
end of the program module. You can reference a global definition
anywhere within an assembler program after it has been
defined.

You can specify the OPDEF pseudo instruction anywhere within a
program segment. If the OPDEF pseudo instruction is found
within a definition, it is defined. If the OPDEF pseudo instruction
is found within a skipping sequence, it is skipped and is not
recognized as a pseudo instruction.

In the following example, the operand and comment fields of the
expanded line are shifted two positions to the left (difference
between reg and 1):

example opdef
s.reg @exp ; Prototype statement.
a.reg @exp ; New machine instruction.

example endm ; End of opdef definition.
list mac ; Listing expansion.

The following are the calls and expansions of the preceding
example:

s1 2 ; Opdef call.
a.1 2 ; New machine instruction.

Defined Sequences [6] Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual

Cray Research, Inc.160 SR–3108 9.1

The OPDEF pseudo instruction is the first statement of an opdef
definition. Although an opdef is constructed much like a macro,
an opdef is defined by an opdef statement, not by a functional
name.

Opdef syntax is uniquely defined on the result field alone, in
which case, the operand field is not specified or on the result and
operand fields. The OPDEF prototype permits up to three
subfields within the result and operand fields. At least one field
must be present within the result field. No fields are required in
the operand field.

The syntax for each of the subfields within the result and
operand fields of the opdef prototype statement is identical. No
special syntax forms exist for any of the subfields. The rules
that apply for the first subfield in the result field apply to the
remainder of the subfields within the result field and to all
subfields within the operand field.

The format of the opdef definition is as follows:

name OPDEF

[loc] defsynres defsynop
 LOCAL [name][,[name]]
 .

 .

 .

name ENDM

The variables in the opdef definition are described as follows:

• name

name identifies the opdef definition and has no association
with functionals that appear in the result field of instructions.
name must match the name in the location field of the ENDM
pseudo instruction, which ends the definition.

• loc

loc specifies an optional location field parameter. loc must
meet the requirements for names as described in subsection
4.2, page 67.

Opdef definition
6.3.1

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual Defined Sequences [6]

Cray Research, Inc. 161SR–3108 9.1

• defsynres

defsynres specifies the definition syntax for the result field. It
can be one, two, or three subfields specifying a valid result
field syntax. The result field must be a symbolic.

Valid result subfields for opdefs can be one of the following:

– Initial register

– Mnemonic

– Initial expression

To specify an initial register on the opdef prototype statement,
use one of the following four syntax forms for initial-registers:

[prefix] [register–prefix] register[register-separator[register-ending]]
[prefix] [register-prefix] register[register-expression-separator [register-ending]]
[prefix] [register-prefix] register[register-expression-separator [expression-ending]]
[prefix] [register-prefix] register[special-register-separator [register-ending]]

The elements of an initial register definition are as follows:

– prefix

prefix is optional and can be either a right parenthesis (() or
a right bracket ([).

Defined Sequences [6] Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual

Cray Research, Inc.162 SR–3108 9.1

– register-prefix

register-prefix is optional and case-sensitive. When a
register-prefix is specified on an opdef call, it is recognized
by the opdef definition without regard to the case
(uppercase or lowercase) in which it was entered. It can be
specified as any of the following characters:

< > #< #> # #F #f #H

#h #I #i #P #p #Q #q #R

#r #Z #z + +F +f +H +h

+I +i +P +p +Q +q +R +r

+Z +z – –F –f –H –h –I

–i –P –p” –Q –q –R –r –Z

–z * *F *f *H *h *I *i

*P *p *Q *q *R *r *Z *z

/ /F /f /H /h /I /i /P

/p /Q /q /R /r /Z /z F

f H h I i P p Q

q R r Z z

– register

register is required. It can be any simple or complex
register. Simple registers are any of the following:

 CA , CE, CI , CL, MC, RT, SB, SM, VL, VM or XA

The complex registers are designated in the opdef definition
in the form: register_designator.register_parameter. The
register_designator for complex registers can be any of the
following:

 A , B, SB, SM, SR, ST, S, T or V

The register-parameter is a 1- to 8-character identifier
composed of identifier characters.

When you specify a simple register or a complex register
mnemonic on an opdef call, it is recognized by the opdef
definition without regard to the case (uppercase, lowercase,
or mixed case) in which it was entered.

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual Defined Sequences [6]

Cray Research, Inc. 163SR–3108 9.1

– register-separator

register-separator is optional and case-sensitive. It can be
one of the following (when a register separator is specified
on an opdef call, it is recognized by the opdef definition
without regard to the case):

+F +f +H +h +I +i +P +p

+Q +q +R +r +Z +z

–F –f –H –h –I –i –P –p

–Q –q –R –r –Z –z

*F *f *H *h *I *i *P *p

*Q *q *R *r *Z *z

/F /f /H /h /I /i /P /p

/Q /q /R /r /Z /z

– register-expression-separator

The optional register-expression-separator can be designated
by any of the following:

) ,] , &, ! , \ , #<, #>, <, >, +, –, * or /

– special-register-separator

The optional special-register-separator is specified as #.

– register-ending

The optional register-ending is specified using one of the
following three syntax forms:

register1 [register-separator [register2 [suffix]]]
register [register-expression-separator [register-or-expression [suffix]]]
register1 [special-register-separator [register2 [suffix]]]

The register1 , register-separator, register2, suffix, register,
and register-expression-separator elements are described
previously under initial-register.

The optional register-or-expression can be a register or an
expression. If register is not specified, expression is
required. If expression is not specified, register is required.

Defined Sequences [6] Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual

Cray Research, Inc.164 SR–3108 9.1

expression has been redefined for the opdef prototype
statement, as expression-parameter. expression-parameter is
an identifier that must begin with the at symbol (@). The @
can be followed by 0 to 7 identifier characters.

special-register-separator is specified as #.

– expression-ending

expression-ending is specified as follows:

expression [expression_separator [register-or-expression [suffix]]]

expression is required and has been redefined for the opdef
prototype statement, as follows:

 expression-parameter

expression-parameter is an identifier that must begin with
the at symbol (@). The @ can be followed by 0 to 7 identifier
characters.

expression-separator can be one of the following:

) ,] , &, ! , \ , =, #<, or #>

The optional register-or-expression can be a register or an
expression. If register is not specified, expression is
required. If expression is not specified, register is required.

A mnemonic is a 1- to 8-character identifier that must begin
with a letter (A through Z or a through z), a decimal digit (0
through 9), or one of the following characters: $, %, &, ’,* , +,
–, . , / , : , =, ?, \ , ‘ , | , or ~. Optional characters 2 through 8
can be the at symbol (@) or any of the previously mentioned
characters.

Initial-expression specifies an initial-expression on the opdef
prototype statement, use one of the following syntax forms for
initial-expressions:

[prefixl [expression-prefix] expression [expression-separator [register-ending]]
[prefix] [expression-prefix] expression [expression-separator [expression-ending]]
expression [expression-separator [register-ending]]
expression [expression-separator [expression-ending]]

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual Defined Sequences [6]

Cray Research, Inc. 165SR–3108 9.1

The elements of the initial expression are described as follows:

– prefix

prefix is optional and can be either a right parenthesis (() or
a right bracket ([).

– expression-prefix

expression-prefix is optional and can be any of the following:

 < , >, #<, or #>

– expression

expression is required and has been redefined for the opdef
prototype statement, as follows:

 expression-parameter

expression-parameter is an identifier that must begin with
the at symbol (@). The @ can be followed from 0 to 7
identifier characters.

– expression-separator

expression-separator is optional and can be one of the
following:

) ,] , &, ! , \ , <, >, #<, or #>

– register-ending and expression-ending

register-ending and expression-ending are the same for
initial expressions as for initial registers.

• defsynop

Definition syntax for the operand field; can be zero, one, or two
subfields specifying a valid operand field syntax. If a subfield
exists in the result field, the first subfield in the operand field
must be a symbolic.

The definition syntax for the operand field of an opdef is the
same as the definition syntax for the result field of an opdef.
See the definition of defsynres, earlier in this subsection.

Defined Sequences [6] Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual

Cray Research, Inc.166 SR–3108 9.1

An opdef definition is called by an instruction that matches the
syntax of the result and operand fields as specified in the opdef
prototype statement.

The arguments on the opdef call are passed to the parameters on
the opdef prototype statement. The special syntax for registers
and expressions that was required on the opdef definition does
not extend to the opdef call.

The format of the opdef call is as follows:

locarg callsynres callsynop

The variables associated with the opdef call are described as
follows:

• locarg

locarg is an optional location field argument. It can consist of
any characters and is terminated by a space (embedded spaces
are illegal).

If a location field parameter is specified on the opdef
definition, a matching location field parameter can be specified
on the opdef call. locarg is substituted wherever the location
field parameter occurs in the definition. If no location field
parameter is specified in the definition, this field must be
empty.

• callsynres

callsynres specifies the result field syntax for the opdef call. It
can consist of one, two, or three subfields and must have the
same syntax as specified in the result field of the opdef
definition prototype statement.

The syntax of the result field call is the same as the syntax of
the result field definition with two exceptions. The special
syntax rules that are in effect for registers and expressions on
the opdef definition do not apply to the opdef call. The syntax
for registers and expressions used on the opdef call is the same
as the syntax for registers and expressions.

Opdef calls
6.3.2

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual Defined Sequences [6]

Cray Research, Inc. 167SR–3108 9.1

The subfields in the result field on the opdef call can be
specified with one of the following:

– Initial-register

– Mnemonic

– Initial-expression

For a description of the syntax for the result field of the opdef
call, see the syntax for the result field of the opdef definition.

• callsynop

callsynop specifies the operand field syntax for the opdef call.
It can consist of zero, one, two, or three subfields, and it must
have the same syntax as specified in the operand field of the
opdef definition prototype statement.

The syntax of the operand field call is the same as the syntax
of the operand field definition with two exceptions. The
special syntax rules that are in effect for registers and
expressions on the opdef definition do not apply to the opdef
call. The syntax for registers and expressions used on the
opdef call is the same as the syntax for registers and
expressions.

The subfields in the operand field on the opdef call can be
specified with one of the following:

– Initial-register

– Mnemonic

– Initial-expression

For a description of the syntax for the operand field of the
opdef call, see the syntax for the result field of the opdef
definition.

The following rules apply for opdef calls:

• The character strings callsynres and callsynop must be exactly
as specified in the opdef definition.

• An expression must appear whenever an expression in the
form @exp is indicated in the prototype statement. The actual
argument string is substituted in the definition sequence
wherever the corresponding formal parameter @exp occurs.

Defined Sequences [6] Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual

Cray Research, Inc.168 SR–3108 9.1

• The actual argument string consisting of a complex-register
mnemonic followed by a period (.) followed by a
register-parameter. A register-designator followed by a
register-parameter must appear wherever the
register-designator A. register-parameter, B. register-parameter,
SB. register-parameter, S. register-parameter,
T. register-parameter, ST. register-parameter,
SM.register-parameter, or V. register-parameter, respectively,
appeared in the prototype statement.

– If the register-parameter is of the form octal-integer, the
actual argument is the octal-integer part. The octal-integer
is restricted to 4 octal digits.

– If the register-parameter is of the form
. integer-constant or . symbol, the actual argument is an
integer-constant or a symbol.

The following opdef definition shows a scalar floating-point
divide sequence:

fdv opdef ; Scalar floating-point divide prototype
; statement.

L s.r1 s.r2/fs.r3
errif r1,eq,r2
errif r1,eq,r3

L s.r1 /hs.r3
s.r2 s.r2*fs.r1
s.r3 s.r3*is.r1
s.r1 s.r2*fs.r3

fdv endm

The following example illustrates the opdef call and expansion of
the preceding example:

a s4 s3/fs2 ; Divide s3 by s2, result to s4.
errif 4,eq,3
errif 4,eq,2

a s.4 /hs.2
s.3 s.3*fs.4
s.2 s.2*is.4
s.4 s.3*fs.2

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual Defined Sequences [6]

Cray Research, Inc. 169SR–3108 9.1

The following opdef definition, call, and expansion define a
conditional jump where a jump occurs if the A register values
are equal:

JEQ OPDEF
L JEQ A.A1,A.A2,@TAG ; Opdef prototype statement.
L A0 A_A1–A_A2
_* JAZ @TAG ; Expression is expected.
JEQ ENDM ; End of opdef definition.

LIST MAC ; Listing expansion.

The following example illustrates the opdef call and expansion of
the preceding example (The expansion starts on line 2.):

JEQ A3,A6,GO ; Opdef call.
A0 A3–A5

* JAZ GO ; Expression is expected.

The opdef in the following example illustrates how an opdef can
redefine an existing machine instruction:

EXAMPLE OPDEF
S.REG @EXP ; Opdef protype instruction.
A.REG @EXP ; New instruction.

EXAMPLE ENDM ; End of opdef definition.
LIST MAC ; Listing expansion.

The following example illustrates the opdef call and expansion of
the preceding example:

S1 2 ; Opdef call.
A.1 2 ; New instruction.

Defined Sequences [6] Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual

Cray Research, Inc.170 SR–3108 9.1

The following example demonstrates how the expansion of an
opdef is affected when the opdef call does not include a label that
was specified in the opdef definition:

regchg opdef
lbl s.reg1 s.reg2 ; Opdef prototype statement.
lbl = * ; Left–shift if lbl is left off.

s.reg2 s.reg1 ; Register s2 gets register s1.
regchg endm ; End of opdef definition.

list mac ; Listing expansion.

The following example illustrates the opdef call and expansion of
the preceding example:

s1 s2 ; Opdef call.
= * ; Left–shift if lbl is left off.

s.2 s.1 ; Register s2 gets register s1.

The location field parameter was omitted on the opdef call in the
previous example. The result and operand fields of the first line
of the expansion were shifted left three character positions
because a null argument was substituted for the 3-character
parameter, lbl.

If the old format is used, only one space appears between the
location field parameter and result field in the macro definition.
If a null argument is substituted for the location parameter, the
result field is shifted into the location field in column 2.
Therefore, at least two spaces should always appear between a
parameter in the location field and the first character in the
result field in a definition.

If the new format is used, the result field is never shifted into
the location field.

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual Defined Sequences [6]

Cray Research, Inc. 171SR–3108 9.1

The following example illustrates the case insensitivity of the
register and register-prefix:

CASE OPDEF
S1 #Pa2 ; Prototype statement.
.
.
.

CASE ENDM

The following example illustrates the opdef calls of the preceding
example:

S1 #pa2 ; Recognized by CASE.
S1 #Pa2 ; Recognized by CASE.
S1 #pA2 ; Recognized by CASE.
S1 #PA2 ; Recognized by CASE.
s1 #pa2 ; Recognized by CASE.
s1 #Pa2 ; Recognized by CASE.
s1 #pA2 ; Recognized by CASE.
s1 #PA2 ; Recognized by CASE.

The DUP pseudo instruction defines a sequence of code that is
assembled repetitively immediately following the definition. The
sequence of code is assembled the number of times specified on
the DUP pseudo instruction. The sequence of code to be repeated
consists of the statements following the DUP pseudo instruction
and any optional LOCAL pseudo instructions. Comment
statements are ignored. The sequence to be duplicated ends
when the statement count is exhausted or when an ENDDUP
pseudo instruction with a matching location field name is
encountered.

The DUP pseudo instruction only accepts one type of formal
parameter. That parameter must be specified with the LOCAL
pseudo instruction.

Duplication (DUP)
6.4

Defined Sequences [6] Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual

Cray Research, Inc.172 SR–3108 9.1

You can specify the DUP pseudo instruction anywhere within a
program segment. If the DUP pseudo instruction is found within
a definition, it is defined and is not recognized as a pseudo
instruction. If the DUP pseudo instruction is found within a
skipping sequence, it is skipped and is not recognized as a
pseudo instruction.

The format of the DUP pseudo instruction is as follows:

[dupname] DUP expression[, [count]]

The variables associated with the DUP pseudo instruction are
described as follows:

• dupname

dupname specifies an optional name for the dup sequence. It
is required if the count field is null or missing. If no count
field is present, dupname must match an ENDDUP name. The
sequence field in the DUP pseudo instruction itself represents
the nested dup level and appears in columns 89 and 90 on the
listing. For a description of sequence field nest level
numbering, see subsection 6.1, page 128.

The dupname variable must meet the requirements for names
as described in subsection 4.2, page 67.

• expression

expression is an absolute expression with a positive value that
specifies the number of times to repeat the code sequence. All
symbols, if any, must be defined previously. If the current base
is mixed, octal is used for the expression. If the value is 0, the
code is skipped. You can use a STOPDUP to override the given
expression.

The expression operand must meet the requirements for
expressions as described in subsection 4.7, page 94.

• count

count is an optional absolute expression with positive value
that specifies the number of statements to be duplicated. All
symbols (if any) must be defined previously. If the current
base is mixed, octal is used for the expression.

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual Defined Sequences [6]

Cray Research, Inc. 173SR–3108 9.1

LOCAL pseudo instructions and comment statements (* in
column 1) are ignored for the purpose of this count.
Statements are counted before expansion of nested macro or
opdef calls, and dup or echo sequences.

The count operand must meet the requirements for
expressions as described in subsection 4.7, page 94.

In the following example, the code sequence following the DUP
pseudo instruction will be repeated 3 times. There are 5
statements in the sequence.

DUP 3,5
LOCAL SYM1,SYM2 ; LOCAL pseudo instruction not counted.

*Asterisk comment; not counted
S1 1 ; First statement is definition.

*Asterisk comment; not counted
INCLUDE ALPHA ; INCLUDE pseudo instruction not

; counted.

The following is the file, ALPHA:

S2 3 ; Second statement in definition.
S4 4 ; Third statement in definition.

*Asterisk comment; not counted
S5 5 ; Fourth statement in definition.
S6 6 ; Fifth statement in definition.

In the following example, the two con pseudo instructions are
duplicated three times immediately following the definition:

list dup
example dup 3 ; Definition.

con 1
con 2

example enddup

Defined Sequences [6] Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual

Cray Research, Inc.174 SR–3108 9.1

The following example illustrates the expansion of the preceding
example:

con 1
con 2
con 1
con 2
con 1
con 2

The ECHO pseudo instruction defines a sequence of code that is
assembled zero or more times immediately following the
definition. On each repetition, the actual arguments are
substituted for the formal parameters until the longest
argument list is exhausted. Null strings are substituted for the
formal parameters after shorter argument lists are exhausted.
The echo sequence to be repeated consists of statements
following the ECHO pseudo instruction and any optional LOCAL
pseudo instructions. Comment statements are ignored. The
echo sequence ends with an ENDDUP that has a matching
location field name.

You can use the STOPDUP pseudo instruction to override the
repetition count determined by the number of arguments in the
longest argument list.

You can specify the ECHO pseudo instruction anywhere within a
program segment. If the ECHO pseudo instruction is found
within a definition, it is defined and is not recognized as a
pseudo instruction. If the ECHO pseudo instruction is found
within a skipping sequence, it is skipped and is not recognized as
a pseudo instruction.

The format of the ECHO pseudo instruction is as follows:

dupname ECHO [name=argument][, [name=argument]]

Duplicate with
varying argument
(ECHO)
6.5

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual Defined Sequences [6]

Cray Research, Inc. 175SR–3108 9.1

The variables associated with the ECHO pseudo instruction are
described as follows:

• dupname

dupname specifies the required name of the echo sequence. It
must match the location field name in the ENDDUP instruction
that terminates the echo sequence. dupname must meet the
requirements for names as described in subsection 4.2, page
67.

• name

name specifies the formal parameter name. It must be unique.
There can be none, one, or more formal parameters. name
must meet the requirements for names as described in
subsection 4.2, page 67.

• argument

argument specifies a list of actual arguments. The list can be
one argument or a parenthesized list of arguments.

A single argument is any ASCII character up to but not
including the element separator, a space, a tab (new format
only), or a semicolon (new format only). The first character
cannot be a left parenthesis.

A parenthesized list can be a list of one or more actual
arguments. Each actual argument can be one of the following:

– An ASCII character string can contain embedded
arguments. If, however, an ASCII string is intended, the
first character in the string cannot be a left parenthesis. A
legal ASCII string is 4(5). An illegal ASCII string is (5)4(5).

– A null argument; an empty ASCII character string.

– An embedded argument that contains a list of arguments
enclosed in matching parentheses. An embedded argument
can contain blanks or commas and matched pairs of
parentheses. The outermost parentheses are always
stripped from an embedded argument when an echo
definition is expanded.

An embedded argument must meet the requirements for
embedded arguments as described in subsection 4.7, page
94.

Defined Sequences [6] Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual

Cray Research, Inc.176 SR–3108 9.1

In the following example, the ECHO pseudo instruction is
expanded twice immediately following the definition:

LIST DUP
EXAMPLE ECHO PARAM1=(1,3),PARAM2=(2,4)

; Definition.
CON PARAM1

; Gets 1 and 3.
CON PARAM2

; Gets 2 and 4.
EXAMPLE ENDDUP

The following example illustrates the expansion of the preceding
example:

CON 1 ; Gets 1 and 3.
CON 2 ; Gets 2 and 4.
CON 3 ; Gets 1 and 3.
CON 3 ; Gets 1 and 3.
CON 4 ; Gets 2 and 4.

In the following example, the echo pseudo instruction is
expanded once immediately following the definition with two
null arguments.

list dup
example echo param1=,param2=()

; ECHO with two null parameters.
_*Parameter 1 is: ’param1’
_*Parameter 2 is: ’param2’
example enddup

The following illustrates the expansion of the preceding example:

*Parameter 1 is: ’’
*Parameter 2 is: ’’

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual Defined Sequences [6]

Cray Research, Inc. 177SR–3108 9.1

An ENDM pseudo instruction terminates the body of a macro or
opdef definition. If ENDM is used within a MACRO or OPDEF
definition with a different name, it has no effect.

You can specify the ENDM pseudo instruction only within a macro
or opdef definition. If the ENDM pseudo instruction is found
within a skipping sequence, it is skipped and is not recognized as
a pseudo instruction.

The format of the ENDM pseudo instruction is as follows:

func ENDM ignored

The func variable associated with the ENDM pseudo instruction
identifies the name of the macro or opdef definition sequence. It
must be a valid identifier or the equal sign. func must match the
functional that appears in the result field of the macro prototype
or the location field name in an OPDEF instruction.

If the ENDM pseudo instruction is encountered within a definition
but func does not match the name of an opdef or the functional of
a macro, the ENDM instruction is defined and does not terminate
the opdef or macro definition in which it is found. func must
meet the requirements for functionals.

The EXITM pseudo instruction immediately terminates the
innermost nested macro or opdef expansion, if any, caused by
either a macro or an opdef call. If files were included within this
expansion and/or one or more dup or echo expansions are in
progress within the innermost macro or opdef expansion they
are also terminated immediately. If such an expansion does not
exist, the EXITM pseudo instruction issues a caution level listing
message and does nothing.

You can specify the EXITM pseudo instruction anywhere within a
program segment. If the EXITM pseudo instruction is found
within a definition, it is defined and is not recognized as a
pseudo instruction. If the EXITM pseudo instruction is found
within a skipping sequence, it is skipped and is not recognized as
a pseudo instruction.

Ending a macro or
operation
definition (ENDM)
6.6

Premature exit
from a macro
expansion (EXITM)
6.7

Defined Sequences [6] Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual

Cray Research, Inc.178 SR–3108 9.1

The format of the EXITM pseudo instruction is as follows:

ignored EXITM ignored

In the following example of a macro call, the macro expansion is
terminated immediately by the EXITM pseudo instruction and
the second comment is not included as part of the expansion:

macro
alpha

_*First comment
exitm

_*Second comment
alpha endm

list mac

The following example illustrates the expansion of the preceding
example:

alpha ; Macro call
*First comment

exitm

The ENDDUP pseudo instruction ends the definition of the code
sequence to be repeated. An ENDDUP pseudo instruction
terminates a dup or echo definition with the same name. If
ENDDUP is used within a DUP or ECHO definition with a different
location field name, it has no effect. ENDDUP has no effect on a
dup definition terminated by a statement count; in this case,
ENDDUP is counted.

The ENDDUP pseudo instruction is restricted to definitions (DUP
or ECHO). If the ENDDUP pseudo instruction is found on a MACRO
or OPDEF definition, it is defined and is not recognized as a
pseudo instruction. If the ENDDUP pseudo instruction is found
within a skipping sequence, it is skipped and is not recognized as
a pseudo instruction.

Ending duplicated
code (ENDDUP)
6.8

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual Defined Sequences [6]

Cray Research, Inc. 179SR–3108 9.1

The format of the ENDDUP pseudo instruction is as follows:

dupname ENDDUP ignored

The dupname variable associated with the ENDDUP pseudo
instruction specifies the required name of a dup sequence.
dupname must meet the requirements for names as described in
subsection 4.2, page 67.

The NEXTDUP pseudo instruction stops the current iteration of a
duplication sequence indicated by a DUP or an ECHO pseudo
instruction. Assembly of the current repetition of the dup
sequence is terminated immediately and the next repetition, if
any, is begun.

Assembly of the current iteration of the innermost duplication
expansion with a matching location field name is terminated
immediately. If the location field name is not present, assembly
of the current iteration of the innermost duplication expansion is
terminated immediately.

If other dup, echo, macro, or opdef expansions were included
within the duplication expansion to be terminated, these
expansions are also terminated immediately. If a file also is
being included at expansion time within the duplication
expansion it is terminated immediately.

You can specify the NEXTDUP pseudo instruction anywhere
within a program segment. If the NEXTDUP pseudo instruction is
found within a definition, it is defined and is not recognized as a
pseudo instruction. If the NEXTDUP pseudo instruction is found
within a skipping sequence, it is skipped and is not recognized as
a pseudo.

Premature exit of
the current
iteration of
duplication
expansion
(NEXTDUP)
6.9

Defined Sequences [6] Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual

Cray Research, Inc.180 SR–3108 9.1

The format of the NEXTDUP pseudo instruction is as follows:

[dupname] NEXTDUP ignored

The optional dupname variable specifies the name of a dup
sequence. If the name is present but does not match any
existing duplication expansion, a caution-level listing message is
issued and the pseudo instruction does nothing. If the name is
not present and a duplication expansion does not currently exist,
a caution-level listing message is issued and the pseudo
instruction does nothing.

The STOPDUP pseudo instruction stops duplication of a code
sequence indicated by a DUP or ECHO pseudo instruction.
STOPDUP overrides the repetition count.

Assembly of the current dup sequence is terminated
immediately. STOPDUP terminates the innermost dup or echo
sequence with the same name as found in the location field. If
no location field name exists, STOPDUP will terminate the
innermost dup or echo sequence. STOPDUP does not affect the
definition of the code sequence that will be duplicated.

Assembly of the innermost duplication expansion with a
matching location field name is terminated immediately;
however, if the location field name is not present, assembly of
the innermost duplication expansion is terminated immediately.
If other dup, echo, macro, or opdef expansions were included
within the duplication expansion that will be terminated, these
expansions also are terminated immediately. If a file also is
being included at expansion time within the duplication
expansion that will be terminated, the inclusion of that file is
terminated immediately.

You can specify the STOPDUP pseudo instruction anywhere
within a program segment. If the STOPDUP pseudo instruction is
found within a definition, it is defined and is not recognized as a
pseudo instruction. If the STOPDUP pseudo instruction is found
within a skipping sequence, it is skipped and is not recognized as
a pseudo instruction.

Stopping
duplication
(STOPDUP)
6.10

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual Defined Sequences [6]

Cray Research, Inc. 181SR–3108 9.1

The format of the STOPDUP pseudo instruction is as follows:

[dupname] STOPDUP ignored

The dupname variable associated with the STOPDUP pseudo
instruction specifies the name of a dup sequence. If the name is
present but does not match any existing duplication expansion,
or, if the name is not present and a duplication expansion does
not currently exist, a caution-level listing message is issued and
the pseudo instruction does nothing. dupname must meet the
requirements for names as described in subsection 4.2, page 67.

The following example uses a DUP pseudo instruction to define
an array with values 0, 1, and 2:

S = W*
DUP 3,1
CON W.*–S

The following illustrates the expansion of the preceding example:

CON W.*–S
CON W.*–S
CON W.*–S

In the following example the ECHO and DUP pseudo instructions
define a nested duplication:

ECHO ECHO RI=(A,S),RJK=(B,T)
I SET 0
DUPI DUP 8
JK SET 0
DUPJK DUP 64

RI.I RJK.JK
JK SET JK+1
DUPJK ENDDUP
I SET I+1
DUPI ENDDUP
ECHO ENDDUP

Defined Sequences [6] Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual

Cray Research, Inc.182 SR–3108 9.1

Note: The following expansion is not generated by CAL, but
it is included to show the expansion of the previously nested
duplication expansion.

The following example illustrates the expansion of the preceding
example:

; In the first call of the echo, the A
; and B parameters are used.

A.0 B.0 ; DUPJK generates the A.O gets register
. . ; B.O through register A.0 gets register
. . ; B.64 instructions.
. .
A.0 B.64 ; DUPI increments the A register from
. . ; A.1 to A.7 for succeeding passes
. . ; through DUPJK.
. .
A.1 B.0 ; DUPJK generates register A. i gets
. . ; register B.0 through register A. i gets
. . ; register B.64 instructions.
. .
A.7 B.64 ; i is l to 7.
S.0 T.O ; In the second expansion of the echo
. . ; pseudo instruction the S and T
. . ; parameters are used.
. .
S.0 T.64 ; DUPJK and DUPI generate the same
. . ; series of register instructions for
. . ; the S and T registers that were
. . ; generated for the A and B registers.
S.8 T.64

In the following example the STOPDUP pseudo instruction
terminates duplication:

LIST DUP
T SET 0
A DUP 1000
T SET T+1

IFE T,EQ,3,1 ; Terminate duplication when T=3.
A STOPDUP

CON T
A ENDDUP

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual Defined Sequences [6]

Cray Research, Inc. 183SR–3108 9.1

The following example illustrates the expansion of the preceding
example:

T SET T+1
CON T

T SET T+1
CON T

T SET T+1
A STOPDUP

In the following example a STOPDUP pseudo instruction is used
to terminate a DUP immediately:

DNAME DUP 3
_* First comment

STOPDUP
_* Second comment
DNAME ENDDUP

The following example illustrates the expansion of the preceding
example:

* First comment
STOPDUP

The following example is similar to the previous example except
NEXTDUP replaces STOPDUP. The current iteration is terminated
immediately when the NEXTDUP pseudo instruction is
encountered.

DNAME DUP 3
_* First comment

NEXTDUP
_* Second comment
DNAME ENDDUP

Defined Sequences [6] Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual

Cray Research, Inc.184 SR–3108 9.1

The following example illustrates the expansion of the preceding
example:

* First comment
NEXTDUP

* First comment
NEXTDUP

* First comment
NEXTDUP

The LOCAL pseudo instruction specifies unique character string
replacements within a program segment that are defined only
within the macro, opdef, dup, or echo definition. These character
string replacements are known only in the macro, opdef, dup, or
echo at expansion time. The most common usage of the LOCAL
pseudo instruction is for defining symbols, but the LOCAL pseudo
instruction is not restricted to the definition of symbols. Local
pseudo instructions within a macro, opdef, dup, or echo header
are not part of the macro definition.

On each macro or opdef call and each repetition of a dup or echo
definition sequence, the assembler creates a unique 8-character
string (commonly used for the definition of symbols by the user)
for each local parameter and substitutes the created string for
the local parameter on each occurrence within the definition.
The unique character string created for local parameters has the
form %%nnnnnn; where n is a decimal digit.

Zero or more LOCAL pseudo instructions can appear in the
header of a macro, opdef, dup, or echo definition. The LOCAL
pseudo instructions must immediately follow the macro or opdef
prototype statement or DUP and ECHO pseudo instructions,
except for intervening comment statements.

You can specify the LOCAL pseudo instruction only within a
definition. If the LOCAL pseudo instruction is found within a
skipping sequence, it is skipped and is not recognized as a
pseudo instruction.

Specifying local
unique character
string
replacements
(LOCAL)
6.11

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual Defined Sequences [6]

Cray Research, Inc. 185SR–3108 9.1

The format of the LOCAL pseudo instruction is as follows:

ignored LOCAL [name][, [name]]

The name variable associated with the LOCAL pseudo instruction
specifies formal parameters that must be unique and will be
rendered local to the definition. name must meet the
requirements for names as described in subsection 4.2, page 67.

The following example demonstrates that all formal parameters
must be unique:

MACRO
UNIQUE PARM2 ; PARM2 is defined within UNIQUE.
LOCAL PARM1,PARM2 ; ERROR: PARM2 previously defined as a
. . ; parameter in the macro prototype
. . ; statement.
. .
UNIQUE ENDM

The following example demonstrates how a unique character
string is generated for each parameter defined by the LOCAL
pseudo instruction:

macro
string
local param1,param2 ; Not part of the definition body.

param1 = 1
s1 param1 ; Register s1 gets the value defined by

; param1.
param2 = 2

s2 param2 ; Register s2 gets the value defined by
; param2.

string endm ; End of macro definition.
list mac ; Listing expansion.

Defined Sequences [6] Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual

Cray Research, Inc.186 SR–3108 9.1

The following example illustrates the call and expansion from
the preceding example:

string ; Macro call.
%%262144 = 1

s1 %%262144
; Register s1 gets the value defined by
; param1.

%%131072 = 2
s2 %%131072

; Register s2 gets the value defined by
; param2.

The call to the macro string generates unique strings for param1
(%%262144) and for param2 (%%131072).

The OPSYN pseudo instruction defines an operation that is
synonymous with another macro or pseudo instruction
operation. The functional name in the location field is defined as
being the same as the functional name in the operand field. You
can redefine any pseudo instruction or macro in this manner.

The functional name in the location field can be a currently
defined macro or pseudo instruction in which case, the current
definition is replaced and a message is issued informing you that
a redefinition has occurred.

An operation defined by OPSYN is global if the OPSYN pseudo
instruction occurs within the global part of an assembler
segment, and it is local if the OPSYN pseudo instruction appears
within an assembler module of a segment. You can reference
global operations in any program segment following the
definition. Every local operation is removed at the end of a
program module, making any previous global definition with the
same name available again.

If the OPSYN pseudo instruction occurs within a definition, it is
defined and is not recognized as a pseudo instruction. If the
OPSYN pseudo instruction is found within a skipping sequence, it
is skipped and is not recognized as a pseudo instruction.

Synonymous
operations (OPSYN)
6.12

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual Defined Sequences [6]

Cray Research, Inc. 187SR–3108 9.1

The format of the OPSYN pseudo instruction is as follows:

func1 OPSYN [func2]

The func1 variable associated with the OPSYN pseudo instruction
specifies a required functional name. It must be a valid
functional name. The name of a defined operation such as a
pseudo instruction or macro, or the equal sign. func1 must not
be blank and must meet the requirements for functional names.

The func2 variable specifies an optional functional name. It
must be the name of a defined operation or the equal sign. If
func2 is blank, func1 becomes a do-nothing pseudo instruction.

In the following example, the macro definition includes the
OPSYN pseudo instruction that redefines the IDENT pseudo
instruction:

IDENTT OPSYN IDENT
MLEVEL ERROR ; Eliminates the warning error that is

; issued because the IDENT pseudo
; instruction is redefined.

MACRO
IDENT NAME
LIST LIS,OFF,NXRF

NAME LIST LIS,ON,XRF
; Processed if LIST=NAME on CAL control
; statement.

IDENTT NAME
IDENT ENDM

The following example illustrates the OPSYN call and expansion
(The expansion starts on line 2.):

IDENT A
LIST LIS,OFF,NXRF

A LIST LIS,ON,XRF ; Processed if LIST=NAME on CAL control
; statement.

IDENTT A

Defined Sequences [6] Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual

Cray Research, Inc.188 SR–3108 9.1

In the following example, the first macro illustrates that a
functional can be redefined many times:

macro
first
s1 1
s2 2
s3 s1+2

first endm
second opsyn first

; second is the same as first.
third opsyn second

; third is the same as second.

The following example includes the Opdef calls and expansions
from the preceding example:

first ; Macro call.
s1 1
s2 2
s3 s1+s2
second
s1 1
s2 2
s3 s1+s2
third
s1 1
s2 2
s3 s1+s2

In the following example, the functional EQU is defined to
perform the same operation as =:

EQU OPSYN = ; EQU is defined to
; perform the
; operation that the
; = pseudo
; instruction
; performs.

Pseudo Instruction Descriptions [A]

189Cray Research, Inc.SR–3108 9.1

This appendix lists the pseudo instructions presented
throughout section 5, page 117, in alphabetical order for easy
reference. The pseudo instructions are listed at the left margin.
The paragraphs to the right of each pseudo instruction name
describe the pseudo instruction.

Note: You can specify pseudo instructions in uppercase or
lowercase, but not in mixed case.

Throughout this appendix, pseudo instructions with ignored
fields (location or operand) are defined as follows:

ignored pseudox

ignored The assembler ignores the location field of this
statement. If the field is not empty and all of
the characters in the field are skipped until a
blank character is encountered, a caution-level
message is issued. The first nonblank
character following the blank character is
assumed to be the beginning of the result field.

pseudox Pseudo instruction with a blank location field.

 pseudoy ignored

pseudoy Pseudo instruction with a blank operand field.

ignored The assembler ignores the location field of this
statement. If the field is not empty and all of
the characters in the field are skipped until a
blank character is encountered, a caution-level
message is issued. The first nonblank
character following the blank character is
assumed to be the beginning of the comment
field.

Pseudo Instruction Descriptions [A] Cray Assembly Language (CAL) for CRAY PVP Systems Reference Manual

190 Cray Research, Inc. SR–3108 9.1

The equate symbol (=) when used as a pseudo instruction defines
a symbol with the value and attributes determined by the
expression. The symbol is not redefinable.

You can specify the = pseudo instruction anywhere within a
program segment. If the = pseudo instruction is found within a
definition, it is defined and is not recognized as a pseudo
instruction. If the = pseudo instruction is found within a
skipping sequence, it is skipped and is not recognized as a
pseudo instruction.

The format of the = pseudo instruction is as follows:

[symbol] = expression[, [attribute]]

The symbol variable represents an optional unqualified symbol.
The symbol is implicitly qualified by the current qualifier. The
symbol must not be defined already. The location field can be
blank. symbol must satisfy the requirements for symbols as
described in subsection 4.3, page 69.

All symbols found within expression must have been previously
defined. The expression operand must meet the requirements for
an expression as described in subsection 4.7, page 94.

The attribute variable specifies a parcel (P), word (W), or value (V)
attribute. If present, it is used instead of the expression’s
attribute. If a parcel-address attribute is specified, an
expression with word-address attribute is multiplied by four; if
word-address attribute is specified, an expression with
parcel-address attribute is divided by four. You cannot specify a
relocatable expression as having value attribute.

In the following example, the symbol SYMB is assigned the value
of A*B+100/4 . The following illustrates the use of the = pseudo
instruction:

SYMB = A*B+100/4

=

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual Pseudo Instruction Descriptions [A]

191Cray Research, Inc.SR–3108 9.1

The ALIGN pseudo instruction ensures that the code following
the instruction is aligned on an instruction buffer boundary. An
offset is calculated to determine the next instruction buffer
boundary from the current location counter. The type of
machine for which CAL is targeting code (see the cpu= primary
option on the CAL invocation statement) determines the size of
the offset.

Machine type Octal offset (words/parcels)

CRAY C90 40/200

CRAY J90 40/200

CRAY T90 40/200

CRAY Y-MP 40/200

The calculated offset is added to the location and origin counters
within the currently enabled section. Code is not generated
within this offset. The offset is calculated relative to the
beginning of a section. When an ALIGN pseudo instruction is
encountered, the section relative to the current location counter
is aligned.

If the location counter is currently positioned at an instruction
buffer boundary, alignment is not performed. If the section that
is being aligned has a type of STACK or TASK COMMON or has a
location of local memory, a warning message is issued.

The ALIGN pseudo instruction is restricted to sections that have
a type of instruction, data, or both. If the ALIGN pseudo
instruction is found within a definition, it is defined and is not
recognized as a pseudo instruction. If the ALIGN pseudo
instruction is found within a skipping sequence, it is skipped
and is not recognized as a pseudo instruction.

The format of the ALIGN pseudo instruction is as follows:

[symbol] ALIGN ignored

The symbol variable is optional. It is assigned the parcel
address of the location counter after alignment. If the optional
symbol is specified in the location field, it is assigned the value
of the location counter and an attribute of parcel address after
alignment on the next instruction buffer boundary.

ALIGN

Pseudo Instruction Descriptions [A] Cray Assembly Language (CAL) for CRAY PVP Systems Reference Manual

192 Cray Research, Inc. SR–3108 9.1

symbol must meet the requirements for symbols as described in
subsection 4.3, page 69.

The octal value in the output listing immediately to the left of
the location field indicates the number of full parcels skipped.

The following example illustrates the use of the ALIGN pseudo
instruction:

L = *
J A

A ALIGN

The BASE pseudo instruction specifies the base of numeric data
as octal, decimal, or mixed when the base is not explicitly
specified by an O’ , D’ , or X’ prefix. The default is decimal.

You can specify the BASE pseudo instruction anywhere in a
program segment. However, if the BASE pseudo instruction is
located within a definition or skipping section, it is not
recognized as a pseudo instruction.

The format of the BASE pseudo instruction is as follows:

ignored BASE option/*

The option variable specifies the numeric base of numeric data.
It is a required single character specified as follows:

• O or o (Octal)

• D or d (Decimal)

• M or m (Mixed)

Numeric data is assumed to be octal, except for numeric data
used for the following (assumed to be decimal):

• Statement counts in DUP and conditional statements

• Line count in the SPACE pseudo instruction

• Bit position or count in the BITW, BITP, or VWD pseudo
instructions

BASE

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual Pseudo Instruction Descriptions [A]

193Cray Research, Inc.SR–3108 9.1

• Character counts as in CMICRO, MICRO, OCTMIC, and DECMIC
pseudo instructions

• Character count in data items (see subsection 4.4.2.3, page 84.

When the asterisk (*) is used with the BASE pseudo instruction,
the numeric base reverts to the base that was in effect prior to
the specification of the current prefix within the current
program segment. Each occurrence of a BASE pseudo instruction
other than BASE * can modify the current prefix. Each BASE *
releases the most current prefix and reactivates the prefix that
preceded the current prefix. If all BASE pseudos instructions
specified are released, a caution-level message is issued, and the
default mode (decimal) is used.

The following example illustrates the use of the BASE pseudo
instruction:

BASE 0 ; Change base from default to octal.
VWD 50/12 ; Field size and constant value both octal.
.
.
.
BASE D ; Change base from octal to decimal.
VWD 49/19 ; Field size and constant value both decimal.
.
.
.
BASE M ; Change from decimal to mixed base.
VWD 39/12 ; Field size decimal, constant value octal.
.
.
.
BASE * ; Resume decimal base.
BASE * ; Resume octal base.
BASE * ; Stack empty – resume decimal base (default)

Pseudo Instruction Descriptions [A] Cray Assembly Language (CAL) for CRAY PVP Systems Reference Manual

194 Cray Research, Inc. SR–3108 9.1

The BITP pseudo instruction sets the bit position to the value
specified relative to bit 0 of the current parcel. A value of 16
forces a parcel boundary. If the current bit position is in the
middle of a parcel and a value of 16 is specified, the bit position
is set to the beginning of the next parcel; otherwise, the bit
position is not changed. If the origin and location counters are
set lower than its current value, any code previously generated
in the overlapping portion of the word is ORed with any new
code.

The BITP pseudo instruction is restricted to sections that allow
instructions or instructions and data. If the BITP pseudo
instruction is found within a definition, it is defined and is not
recognized as a pseudo instruction. If the BITP pseudo
instruction is found within a skipping sequence, it is skipped
and is not recognized as a pseudo instruction.

The format of the BITP pseudo instruction is as follows:

ignored BITP [expression]

The expression variable is optional. If expression is not specified,
the default is the absolute value of 0. If expression is specified, it
must have an address attribute of value, a relative attribute of
absolute, and be a positive value in the range from 0 through 16
(decimal). All symbols within expression (if any) must be defined
previously. If the current base is mixed, decimal is used.

The expression operand must meet the requirements for an
expression as described in subsection 4.7, page 94.

The value generated in the code field of the listing is equal to the
value of the expression.

The following example illustrates the use of the BITW pseudo
instruction:

vwd d’16/0 ; Fill first 16 bits with 0.
vwd 6/o’12 ; Fill next 6 bits with 001100.
bitp 0 ; Reset the pointer to bit 0 of parcel B.
vwd 6/o’12 ; 001100 from previous word is ORed with

; 001010

BITP

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual Pseudo Instruction Descriptions [A]

195Cray Research, Inc.SR–3108 9.1

In the preceding example, O’14 and O’12 are ORed and the
result is 1110 :

Figure 28 through Figure 31 illustrate what happens when CAL
assembles the previous example. represents the current bit
position, and ^ indicates an uninitialized bit.

When CAL encounters the VWD d’16/0 instruction, the
following is stored in parcel A:

0000000000000000 ^^^^^^^^^^^^^^^^ ^^^^^^^^^^^^^^^^ ^^^^^^^^^^^^^^^^

Figure 28. BITP example – zoning parcel A

The following is stored in parcel b when VWD 6/0’14 is
assembled:

0000000000000000 001100^^^^^^^^^^ ^^^^^^^^^^^^^^^^ ^^^^^^^^^^^^^^^^

Figure 29. BITP example – parcel b set by VWD instruction

The pointer is reset to bit O of parcel B when the bitp 0
instruction is encountered, as follows:

0000000000000000 001100^^^^^^^^^^ ^^^^^^^^^^^^^^^^ ^^^^^^^^^^^^^^^^

Figure 30. BITP example – resetting the pointer

The next instruction, VWD 6/O’12 , causes 001010 (o’12) to be
ORed with the first 6 bits of parcel B (001100), producing
001110 , which is stored, as follows:

0000000000000000 001110^^^^^^^^^^ ^^^^^^^^^^^^^^^^ ^^^^^^^^^^^^^^^^

Figure 31. BITP example – result of a BITP followed by a VWD

Pseudo Instruction Descriptions [A] Cray Assembly Language (CAL) for CRAY PVP Systems Reference Manual

196 Cray Research, Inc. SR–3108 9.1

The BITW pseudo instruction resets the current bit position to
the value specified, relative to bit 0 of the current word. If the
current bit position is not bit 0, a value of 64 (decimal) forces the
following instruction to be assembled at the beginning of the
next word (force word boundary). If the current bit position is
bit 0, the BITW pseudo instruction with a value of 64 does not
force a word boundary, and the instruction following BITW is
assembled at bit 0 of the current word.

If the origin and location counters are set lower than the current
value, any code previously generated in the overlapping part of
the word is ORed with any new code.

The BITW pseudo instruction is restricted to sections that allow
data or instructions and data. If the BITW pseudo instruction is
found within a definition, it is defined and is not recognized as a
pseudo instruction. If the BITW pseudo instruction is found
within a skipping sequence, it is skipped and is not recognized as
a pseudo instruction.

The format of the BITW pseudo instruction is as follows:

ignored BITW [expression]

The expression variable is optional. If expression is not specified,
the default is the absolute value of 0. If expression is specified, it
must have an address attribute of value, a relative attribute of
absolute, and be a positive value in the range from 0 to 64
(decimal). All symbols within expression (if any) must have been
defined previously. If the current base is mixed, decimal is used.

The expression operand must meet the requirements for
expressions as described in subsection 4.7, page 94.

The value generated in the code field of the listing is equal to the
value of the expression.

The following example illustrates the use of the BITW pseudo
instruction:

BITW D’39

BITW

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual Pseudo Instruction Descriptions [A]

197Cray Research, Inc.SR–3108 9.1

The BLOCK pseudo instruction establishes or resumes use of a
local section of code within a program module. Each section has
its own location, origin, and bit position counters.

This pseudo instruction defines a mixed local section in which
both code and/or data can be stored. The section is assigned to
central or common memory. For more information, see the
description of the SECTION pseudo instruction on page 263 of
this appendix.

You must specify the BLOCK pseudo instruction from within a
program module. If the BLOCK pseudo instruction is found
within a definition, it is defined and is not recognized as a
pseudo instruction. If the BLOCK pseudo instruction is found
within a skipping sequence, it is skipped and is not recognized as
a pseudo instruction.

The format of the BLOCK pseudo instruction is as follows:

 BLOCK [lname]/*

The lname variable is optional and identifies the block. It
indicates which section is used for assembling code until the
occurrence of the next BLOCK or COMMON pseudo instruction.

This long name is restricted in length depending on the type of
loader table that is currently generating the assembler. If the
name is too long, the assembler issues an error message.

The lname operand must meet the requirements for long names
as described subsection 4.3.1, page 70.

The asterisk (*) indicates that the section in control reverts to
the section in effect before the current section was specified
within the current program module. Each occurrence of a BLOCK
pseudo instruction other than BLOCK * causes a section to be
allocated. Each BLOCK * releases the currently active section
and reactivates the section that preceded the current section. If
all specified sections were released when a BLOCK * is
encountered, CAL issues a caution-level message and uses the
main section.

BLOCK

Pseudo Instruction Descriptions [A] Cray Assembly Language (CAL) for CRAY PVP Systems Reference Manual

198 Cray Research, Inc. SR–3108 9.1

The following example illustrates the use of the BLOCK pseudo
instruction:

. ; Main section is in use.

.

.
BLOCK A ; Use section A
.
.
.
BLOCK ; Use main section
.
.
.
BLOCK * : Return to use of section A.

The BSS pseudo instruction reserves a block of memory in a
section. A forced word boundary occurs and the number of
words specified by the operand field expression is reserved. This
pseudo instruction does not generate data. To reserve the block
of memory, the location and origin counters are increased.

You must specify the BSS pseudo instruction from within a
program module. If the BSS pseudo instruction is found within a
definition, it is defined and is not recognized as a pseudo
instruction. If the BSS pseudo instruction is found within a
skipping sequence, it is skipped and is not recognized as a
pseudo instruction.

The format of the BSS pseudo instruction is as follows:

[symbol] BSS [expression]

The symbol variable is optional. It is assigned the word address
of the location counter after the force word boundary occurs.
symbol must meet the requirement for symbols as described in
subsection 4.3, page 69.

The expression variable is an optional absolute expression with a
word-address or value attribute and with all symbols, if any,
previously defined. The value of the expression must be positive.
A force word boundary occurs before the expression is evaluated.

BSS

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual Pseudo Instruction Descriptions [A]

199Cray Research, Inc.SR–3108 9.1

The expression operand must meet the requirements for an
expression as described in subsection 4.7, page 94.

The left margin of the listing shows the octal word count.

The following example illustrates the use of the BSS pseudo
instruction:

BSS 4
A CON ’NAME’

CON 1
CON 2
BSS 16+A–W.* ; Reserve more words so that the total

; starting at A is 16.

The BSSZ pseudo instruction generates a block of words that
contain 0’s. When BSSZ is specified, a forced word boundary
occurs, and the number of zeroed words specified by the operand
field expression is generated.

The BSSZ pseudo instruction is restricted to sections that have a
type of data or instructions and data. If the BSSZ pseudo
instruction is found within a definition, it is defined and is not
recognized as a pseudo instruction. If the BSSZ pseudo
instruction is found within a skipping sequence, it is skipped
and is not recognized as a pseudo instruction.

The format of the BSSZ pseudo instruction is as follows:

[symbol] BSSZ [expression]

The symbol variable represents an optional symbol. It is
assigned the word-address value of the location counter after the
force word boundary occurs. symbol must meet the
requirements for a symbol as described in subsection 4.3, page
69.

The expression variable represents an optional absolute
expression with an attribute of word address or value and with
all symbols previously defined. The expression value must be
positive and specifies the number of 64-bit words containing 0’s
that will be generated. A blank operand field results in no data
generation. The expression operand must meet the requirement
for an expression as described in subsection 4.7, page 94.

BSSZ

Pseudo Instruction Descriptions [A] Cray Assembly Language (CAL) for CRAY PVP Systems Reference Manual

200 Cray Research, Inc. SR–3108 9.1

The octal word count of a BSSZ is shown in the left margin of the
listing.

The CMICRO pseudo instruction assigns a name to a character
string. After the name is defined, it cannot be redefined. If the
CMICRO pseudo instruction is defined within the global
definitions part of a program segment, it can be referenced at
any time after its definition by any of the segments that follow.
If the CMICRO pseudo instruction is defined within a program
module, it can be referenced at any time after its definition
within the module. However, a constant micro defined within a
program module is discarded at the end of the module and
cannot be referenced by any segments that follow.

If the CMICRO pseudo instruction is found within a definition, it
is defined and is not recognized as a pseudo instruction. If the
CMICRO pseudo instruction is found within a skipping sequence,
it is skipped and is not recognized as a pseudo instruction.

The format of the CMICRO pseudo instruction is as follows:

name CMICRO [string[, [exp][, [exp][, [case]]]]]

The name variable is required and is assigned to the character
string in the operand field. It has nonredefinable attributes. If
name was previously defined and the string represented by the
previous definition is not the same string, an error message is
issued and definition occurs. If the strings match, no error
message is issued and no definition occurs. name must meet the
requirements for identifiers as described in subsection 4.2, page
67.

The string variable represents an optional character string that
can include previously defined micros. If string is not specified,
an empty string is used. A character string can be delimited by
any character other than a space. Two consecutive occurrences
of the delimiting character indicate a single such character (for
example, a micro consisting of the single character * can be
specified as ‘*’ or ****) .

CMICRO

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual Pseudo Instruction Descriptions [A]

201Cray Research, Inc.SR–3108 9.1

The exp variable represents optional expressions. The first
expression must be an absolute expression that indicates the
number of characters in the micro character string. All symbols,
if any, must be previously defined. If the current base is mixed,
decimal is used for the expression. The expressions must meet
the requirements for expressions as described in subsection 4.7,
page 94.

The micro character string is terminated by the value of the first
expression or the final apostrophe of the character string,
whichever occurs first. If the first expression has a 0 or negative
value, the string is considered empty. If the first expression is
not specified, the full value of the character string is used. In
this case, the string is terminated by the final apostrophe.

The second expression must be an absolute expression indicating
the micro string’s starting character. All symbols, if any, must be
defined previously. If the current base is mixed, decimal is used
for the expression.

The starting character of the micro string begins with the
character that is equal to the value of the second expression, or
with the first character in the character string if the second
expression is null or has a value of 1 or less.

The optional case variable denotes the way uppercase and
lowercase characters are interpreted when they are read from
string. Character conversion is restricted to the letter characters
(A–Z and a–z) specified in string. You can specify case in
uppercase, lowercase, or mixed case, and it must be one of the
following:

• MIXED or mixed

string is interpreted as you entered it and no case conversion
occurs. This is the default.

• UPPER or upper

All lowercase alphabetic characters in string are converted to
their uppercase equivalents.

• LOWER or lower

All uppercase alphabetic characters in string are converted to
their lowercase equivalents.

Pseudo Instruction Descriptions [A] Cray Assembly Language (CAL) for CRAY PVP Systems Reference Manual

202 Cray Research, Inc. SR–3108 9.1

The COMMENT pseudo instruction defines a character string of up
to 256 characters that will be entered as an informational
comment in the generated binary load module.

If the operand field is empty, the comment field is cleared and no
comment is generated. If a comment is specified more than once,
the most recent one is used. If the last comment differs from the
previous comment, a caution-level message is issued.

If a subprogram contains more than one COMMENT pseudo
instruction, the character string from the last COMMENT pseudo
instruction goes into the binary load module.

You must specify the COMMENT pseudo instruction from within a
program module. If the COMMENT pseudo instruction is found
within a definition, it is defined and is not recognized as a
pseudo instruction. If the COMMENT pseudo instruction is found
within a skipping sequence, it is skipped and is not recognized as
a pseudo instruction.

The format of the COMMENT pseudo instruction is as follows:

ignored COMMENT [del-char[string-of-ASCII]del-char]

The del-char variable designates the delimiter character. It
must be a single matching character on both ends of the ASCII
character string. A character string can be delimited by a
character other than an apostrophe. Any ASCII character other
than a space can be used. Two consecutive occurrences of the
delimiting character indicate that a single such character will be
included in the character string.

The string-of ASCII variable is an optional ASCII character
string of any length.

The following example illustrates the use of the COMMENT pseudo
instruction:

IDENT CAL
COMMENT ’COPYRIGHT CRAY RESEARCH, INC. 1992’
COMMENT –CRAY Y––MP computer system–
COMMENT @ABCDEF@@FEDCBA@
END

COMMENT

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual Pseudo Instruction Descriptions [A]

203Cray Research, Inc.SR–3108 9.1

The COMMON pseudo instruction establishes a common section or
resumes a previous section. Each section has its own location,
origin, and bit position counters.

This pseudo instruction defines a common section that can be
referenced by another program module. Instructions are not
allowed. The section is assigned to common memory. For more
information, see subsection 5.4, page 120.

Data cannot be defined in a COMMON section without a name (no
name in location field); only storage reservation can be defined
in an unnamed COMMON section. The location field that names a
common section cannot match the location field name of a
previously defined section with a type of COMMON, DYNAMIC,
ZEROCOM, or TASKCOM. If duplicate location field names are
specified, an error-level message is issued.

For a description of unnamed (blank) COMMON, see section 3,
page 33.

You must specify the COMMON pseudo instruction from within a
program module. If the COMMON pseudo instruction is found
within a definition, it is defined and is not recognized as a
pseudo instruction. If the COMMON pseudo instruction is found
within a skipping sequence, it is skipped and is not recognized as
a pseudo instruction.

The format of the COMMON pseudo instruction is as follows:

ignored COMMON [lname]/*

The lname variable specifies the optional long name of the
common section to be defined. lname must meet the
requirements for long names as described in subsection 4.3.1,
page 70.

The long name is restricted in length depending on the type of
loader table the assembler is currently generating. If the name
is too long, the assembler issues an error message.

Unlabeled common sections have specific restrictions. For a
detailed description of blank COMMON sections, see section 3, page
33.

COMMON

Pseudo Instruction Descriptions [A] Cray Assembly Language (CAL) for CRAY PVP Systems Reference Manual

204 Cray Research, Inc. SR–3108 9.1

The asterisk (*) specifies that the section in control reverts to the
section in effect before the current section was specified within
the current program module. Each occurrence of a COMMON
pseudo instruction other than COMMON * causes a section to be
allocated. Each COMMON * releases the currently active section
and reactivates the section that preceded the current section.

If all specified sections were released when a COMMON * is
encountered, CAL issues a caution-level message and uses the
main section.

The following example illustrates the use of the BLOCK pseudo
instruction:

. ; Main section ins use.

.

.
COMMON FIRST ; Labeled common section FIRST.
.
.
.
COMMON ; Blank common.
.
.
.
COMMON * ; Return to labeled common section FIRST.
.
.
.
COMMON * ; Return to the main section.

The CON pseudo instruction generates one or more full words of
binary data. This pseudo instruction always causes a forced
word boundary.

The CON pseudo instruction is restricted to sections that have a
type of data or instructions and data. If the CON pseudo
instruction is found within a definition, it is defined and is not
recognized as a pseudo instruction. If the CON pseudo
instruction is found within a skipping sequence, it is skipped
and is not recognized as a pseudo instruction.

CON

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual Pseudo Instruction Descriptions [A]

205Cray Research, Inc.SR–3108 9.1

The format of the CON pseudo instruction is as follows:

[symbol] CON [expression]{, [expression]}

The symbol variable is an optional symbol. It is assigned the
word address value of the location counter after the force word
boundary occurs. symbol must meet the requirements for a
symbol as described in subsection 4.3, page 69.

The expression variable is an expression whose value will be
inserted into one 64-bit word. If an expression is null, a single
zero word is generated. A force word boundary occurs before any
operand field expressions are evaluated. A double-precision,
floating-point constant is not allowed. expression must meet the
requirements for an expression as described in subsection 4.7,
page 94.

The following example illustrates the use of the CON pseudo
instruction:

A CON O’7777017
CON A ; Generates the

; address of A.

The DATA pseudo instruction generates zero or more bits of code
for each data item parameter found in the operand field. If a
label exists in the location field, a forced word boundary occurs
and the symbol is assigned an address attribute and the value of
the current location counter.

If a label is not included in the location field, a forced word
boundary does not occur.

The DATA pseudo instruction is restricted to sections that have a
type of data, constants, or instructions and data. If the DATA
pseudo instruction is found within a definition, it is defined and
is not recognized as a pseudo instruction. If the DATA pseudo
instruction is found within a skipping sequence, it is skipped
and is not recognized as a pseudo instruction.

DATA

Pseudo Instruction Descriptions [A] Cray Assembly Language (CAL) for CRAY PVP Systems Reference Manual

206 Cray Research, Inc. SR–3108 9.1

The length of the field generated for each data item depends on
the type of constant involved. Data items produce zero or more
bits of absolute value binary code, as follows:

Data item Description

Floating One or two binary words, depending on
whether the data item is a single- or
double-precision data item

Integer One binary word

Character Zero or more bits of binary code depending
on the following:

– Character set specified

– Number of characters in the string

– Character count (optional)

– Character suffix (optional)

A word boundary is not forced between data items.

The format of the DATA pseudo instruction is as follows:

[symbol] DATA [data_item][, [data_item]]

The symbol variable represents an optional symbol that is
assigned the word address of the location counter after a force
word boundary. If no symbol is present, a force word boundary
does not occur. symbol must meet the requirements for a symbol
as described in subsection 4.3, page 69.

The data_item variable represents numeric or character data.
data_item must meet the requirements for a data item as
described in subsection 4.4, page 76.

The DATA pseudo instruction works with the actual number of
bits given in the data item.

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual Pseudo Instruction Descriptions [A]

207Cray Research, Inc.SR–3108 9.1

In the following example, unlabeled data items are stored in the
next available bit position (see Figure 32):

IDENT EXDAT
DATA ’abcd’* ; Unlabeled data item 1.
DATA ’efgh’ ; Unlabeled data item 2.
END

Unlabeled data item number 1 Unlabeled data item number 2

01100001 01100010 01100100 01100100 01100101 01100110 01100111 10101000

Figure 32. Storage of unlabeled data items

In the following example, labeled data items cause a forced word
boundary (see Figure 33, page 208):

IDENT EXDAT
DATA ’abcd’* ; Unlabeled data item 1.

ALPHA DATA ’efgh’* ; Labeled data item 1.
BETA DATA ’ijkl’* ; Labeled data item 2.

DATA ’mnop’ ; Unlabeled data item 2.

Pseudo Instruction Descriptions [A] Cray Assembly Language (CAL) for CRAY PVP Systems Reference Manual

208 Cray Research, Inc. SR–3108 9.1

Unlabeled data item number 1

01100001 01100010 01100100 01100100 00000000 00000000 00000000 00000000

Labeled data item number 1

01100101 01100110 01100111 01101000 00000000 00000000 00000000 00000000

Labeled data item number 2

01101001 01101010 01101011 01101100 01101101 01101110 011001111 01110000

Unlabeled data item number 2

Figure 33. Storage of labeled and unlabeled data items

In the following example, if no forced word boundary occurs,
data is stored bit by bit in consecutive words (see Figure 34).
The following data-item is defined with the CDC character set (6
bits per character).

IDENT EXDAT
DATA C’ABCDEFGHIJK’* ; Unlabeled data item 1.

Unlabeled data item number 1 First four bits of K

0 00000100 00100000 11000100 00010100 01100001 11001000 00100100 10100010

Unlabeled data item number 1Last 2 bits of K

1 11000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

Figure 34. Storage of CDC character data item

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual Pseudo Instruction Descriptions [A]

209Cray Research, Inc.SR–3108 9.1

The following example shows the code generated by each source
statement:

IDENT EXAMPLE
DATA 0’5252,A’ABC’R ; 0000000000000000005252

; 0000000000000020241103
DATA ’ABCD’ ; 0405022064204010020040
DATA ’EFGH’ ; 0425062164404010020040
DATA ’ABCD’* ; 040502206420
DATA ’EFGH’* ; 10521443510
DATA ’ABCD’12R ; 0000000000000000000000

; 040502206420
DATA ’EFGHIJ’* ; 10521443510

; 044512
LL2 DATA ’ABCD’ ; 0405022064204010020040

DATA 100 ; 0000000000000000000144
DATA 1.25E–9 ; 0377435274616704302142

DATA ’THIS IS A MESSAGE’*L
; 0521102225144022251440
; O4044O232425232464O5O7
; 0424

VWD 8/0 ; 000
END

The DBSM pseudo instruction generates a named label entry in
the debug symbol tables with the type specified.

The format of the DBSM pseudo instruction is as follows:

[ignored] DBSM TYPE=symbol

TYPE is specified as either ATP or BOE (after the prologue or
beginning of epilogue). symbol is user defined and marks these
two points in the code. The symbol can appear anywhere in the
code, but the address that is entered into the debug symbol table
is the address of where the pseudo instruction appears in the
code. This pseudo instruction is ignored unless you specify the
debug option on the command line.

DBSM

Pseudo Instruction Descriptions [A] Cray Assembly Language (CAL) for CRAY PVP Systems Reference Manual

210 Cray Research, Inc. SR–3108 9.1

The following example illustrates the use of the DBSM pseudo
instruction:

IDENT TEST
ENTRY FRED

FRED = *
BSSZ 16 ; Fake prolog.
S4 S4

CHK = *
DBSM ATP=FRED ; Should be the same as CHK address.
A1 S1
A1 S1
A1 S1
DBSM BOE=FRED ; Address should be the same as the next

; instruction
S1 5
J B00

From the debugger, you can do a stop in FRED to generate a
breakpoint at CHK. A call to this routine from a program
executing in the debugger stops the execution.

The DECMIC pseudo instruction converts the positive or negative
value of an expression into a positive or negative decimal
character string that is assigned a redefinable micro name. The
final length of the micro string is inserted into the code field of
the listing.

You can specify DECMIC with zero, one, or two expressions.
DECMIC converts the value of the first expression into a
character string with a character length indicated by the second
expression. If the second expression is not specified, the
minimum number of characters needed to represent the decimal
value of the first expression is used.

If the second expression is specified, the string is equal to the
length specified by the second expression. If the number of
characters in the micro string is less than the value of the second
expression, and the value of the first expression is positive, the
character value is right-justified with the specified fill characters
(zeros or blanks) preceding the value.

DECMIC

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual Pseudo Instruction Descriptions [A]

211Cray Research, Inc.SR–3108 9.1

If the number of characters in the string is less than the value of
the second expression, and the value of the first expression is
negative, a minus sign precedes the value. If zero fill is
indicated, zeros are used as fill between the minus sign and the
value. If blank fill is indicated, blanks are used as fill before the
minus sign.

If the number of characters in the string is greater than the
value of the second expression, the characters at the beginning
of the string are truncated and a warning message is issued.

You can specify the DECMIC pseudo instruction anywhere within
a program segment. If the DECMIC pseudo instruction is found
within a definition, it is defined and is not recognized as a
pseudo instruction. If the DECMIC pseudo instruction is found
within a skipping sequence, it is skipped and is not recognized as
a pseudo instruction.

The format of the DECMIC pseudo instruction is as follows:

name DECMIC [expression1][, [expression2[, [option]]]]

name is assigned to the character string that represents the
decimal value of expression1 and has redefinable attributes.
name must meet the requirements for identifiers as described in
subsection 4.2, page 67.

expression1 is optional and represents the micro string equal to
the value of the expression. If specified, expression1 must have
an address attribute of value and a relative attribute of absolute
with all symbols, if any, previously defined. If the first
expression is not specified, the absolute value of 0 is used. If the
current base is mixed, a default of octal is used. If the first
expression is not specified, the absolute value of 0 is used when
creating the micro string. The expression1 operand must meet
the requirements for expressions as described in subsection 4.7,
page 94.

expression2 is optional and provides a positive character count
less than or equal to decimal 20. If this parameter is present,
the necessary leading zeros or blanks (depending on option) are
supplied to provide the requested number of characters. If
specified, expression2 must have an address attribute of value

Pseudo Instruction Descriptions [A] Cray Assembly Language (CAL) for CRAY PVP Systems Reference Manual

212 Cray Research, Inc. SR–3108 9.1

and a relative attribute of absolute with all symbols, if any,
previously defined. If the current base is mixed, a default of
decimal is used. expression2 must meet the requirements for
expressions as described in subsection 4.7, page 94.

If expression2 is not specified, the micro string is represented in
the minimum number of characters needed to represent the
decimal value of the first expression.

option represents the type of fill characters (ZERO for zeros or
BLANK for spaces) to be used if the second expression is present
and fill is needed. The default is ZERO. You can enter option in
mixed case.

The following example illustrates the use of the DECMIC and
MICSIZE pseudo instructions:

MIC MICRO ‘ABCD’
V MICSIZE MIC ; The value of V is the number of

; characters in the micro string
; represented by MIC.

DECT DECMIC V,2 ; DECT is a micro name.
_*There are ”DECT” characters in MIC.
* There are 19 characters in MIC .�

� Generated by CAL

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual Pseudo Instruction Descriptions [A]

213Cray Research, Inc.SR–3108 9.1

The following example demonstrates the ZERO and BLANK
options with positive and negative strings:

BASE D ; The base is decimal
ONE DECMIC 1,2
_* ”ONE” ; Returns 1 in 2 digits.
* 01 ; Returns 1 in 2 digits.
TWO DECMIC 5*8+60+900,3 ; Decimal 1000.
_* ”TWO” ; Returns 1000 as 3 digits (000).
* 000 ; Returns 1000 as 3 digits (000).
THREE DECMIC –256000,l0,ZERO ; Decimal string with zero fill.
_* ”THREE” ; Minus sign, zero fill, value.
* –000256000 ; Minus sign, zero fill, value.
FOUR DECMIC —256000,l0,BLANK; Decimal string with blank fill.
_* ”FOUR” ; Blank fill, minus sign, value.
* ^^^–256000 ; Blank fill, minus sign, value.
FIVE DECMIC 256000,10,ZERO
_* ”FIVE” ; Zero fill on the left.
* 0000256000 ; Zero fill on the left.
SIX DECMIC 256000,10,BLANK
_* ”SIX” ; Blank fill (^) on the left.
* ^^^^256000 ; Blank fill (^) on the left.

END
SEVEN DECMIC 256000,5
_* ”SEVEN” ; Truncation warning issued.
* 56000 ; Truncation warning issued.
EIGHT DECMIC 777777777,3
_* ”EIGHT” ; Truncation warning issued.
* 777 ; Truncation warning issued.

The DMSG pseudo instruction issues a comment level diagnostic
message that contains the string found in the operand field, if a
string exists. If the string consists of more than 80 characters, a
warning message is issued and the string is truncated.

Comment level diagnostic messages might not be issued by
default on the operating system in which CAL is executing. For
more information, see section 2, page 11.

The assembler recognizes up to 80 characters within the string,
but the string may be truncated further when the diagnostic
message is issued (depending on the operating system in which
the assembler is executing).

DMSG

Pseudo Instruction Descriptions [A] Cray Assembly Language (CAL) for CRAY PVP Systems Reference Manual

214 Cray Research, Inc. SR–3108 9.1

You can specify the DMSG pseudo instruction anywhere within a
program segment. If the DMSG pseudo instruction is found
within a definition, it is defined and is not recognized as a
pseudo instruction. If the DMSG pseudo instruction is found
within a skipping sequence, it is skipped and is not recognized as
a pseudo instruction.

The format of the DMSG pseudo instruction is as follows:

ignored DMSG [del-char[string-of-ASCII]del-char]

The del-char variable represents the delimiting character. It
must be a single matching character on both ends of the ASCII
character string. Apostrophes and spaces are not legal
delimiters; all other ASCII characters are allowed. Two
consecutive occurrences of the delimiting character indicate a
single such character will be included in the character string.

The string-of ASCII variable represents the ASCII character
string that will be printed to the diagnostic file. A maximum of
80 characters is allowed.

Note: Using the DMSG pseudo instruction for assembly
timings can be deceiving. For example, if the DMSG pseudo
instruction is inserted near the beginning of an assembler
segment, more time could elapse (from the time that CAL
begins assembling the segment to the time the message is
issued) than you might have expected.

The DUP pseudo instruction introduces a sequence of code that is
assembled repetitively a specified number of times The
duplicated code immediately follows the DUP pseudo instruction.

The DUP pseudo instruction is described in detail in subsection
6.4, page 171.

The ECHO pseudo instruction defines a sequence of code that is
assembled zero or more times immediately following the
definition.

The ECHO pseudo instruction is described in detail in subsection
6.5, page 174.

DUP

ECHO

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual Pseudo Instruction Descriptions [A]

215Cray Research, Inc.SR–3108 9.1

The EDIT pseudo instruction toggles the editing function on and
off within a program segment. Appending (^ in the new format)
and continuation (, in the old format) are not affected by the
EDIT pseudo instruction. The current editing status is reset at
the beginning of each segment to the editing option specified on
the CAL invocation statement. For a description of statement
editing, see subsection 3.3, page 41.

You can specify the EDIT pseudo instruction anywhere within a
program segment. If the EDIT pseudo instruction is found
within a definition, it is defined and is not recognized as a
pseudo instruction. If the EDIT pseudo instruction is found
within a skipping sequence, it is skipped and is not recognized as
a pseudo instruction.

The format of the EDIT pseudo instruction is as follows:

ignored EDIT * /option

The option variable turns editing on and off. option can be
specified in uppercase, lowercase, or mixed case, and it can be
one of the following:

• ON (enable editing)

• OFF (disable editing)

• No entry (reverts to the format specified on the CAL
invocation statement)

An asterisk (*) resumes use of the edit option in effect before the
most recent edit option within the current program segment.
Each occurrence of an EDIT other than an EDIT * initiates a
new edit option. Each EDIT * removes the current edit option
and reactivates the edit option that preceded the current edit
option. If the EDIT * statement is encountered and all specified
edit options were released, a caution-level message is issued and
the default is used.

EDIT

Pseudo Instruction Descriptions [A] Cray Assembly Language (CAL) for CRAY PVP Systems Reference Manual

216 Cray Research, Inc. SR–3108 9.1

The EJECT pseudo instruction causes the beginning of a new
page in the output listing. EJECT is a list control pseudo
instruction and by default, is not listed. To include the EJECT
pseudo instruction on the listing, specify the LIS option on the
LIST pseudo instruction.

You can specify the EJECT pseudo instruction anywhere within a
program segment. If the EJECT pseudo instruction is found
within a definition, it is defined and is not recognized as a
pseudo instruction. If the EJECT pseudo instruction is found
within a skipping sequence, it is skipped and is not recognized as
a pseudo instruction.

The format of the EJECT pseudo instruction is as follows:

ignored EJECT ignored

The ELSE pseudo instruction terminates skipping initiated by
the IFA , IFC , IFE , ELSE, or SKIP pseudo instructions with the
same location field name. If statements are currently being
skipped under control of a statement count, ELSE has no effect.

You can specify the ELSE pseudo instruction anywhere within a
program segment. If the assembler is not currently skipping
statements, ELSE initiates skipping. Skipping is terminated by
an ELSE pseudo instruction with a matching location field name.
If the ELSE pseudo instruction is found within a definition, it is
defined and is not recognized as a pseudo instruction.

The format of the ELSE pseudo instruction is as follows:

name ELSE ignored

The name variable specifies a required name for a conditional
sequence of code. name must meet the requirements for
identifiers as described in subsection 4.2, page 67.

EJECT

ELSE

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual Pseudo Instruction Descriptions [A]

217Cray Research, Inc.SR–3108 9.1

The following example illustrates the use of the ELSE pseudo
instruction:

SYM = 1
L MICRO ’LESS THAN’
DEF = 1000
BUF = 100

IFA #DEF,A,1
A = 10
BTEST IFA EXT,SYM
WARNING ERROR ; Generate warning message is SYM is

; absolute.
BTEST ELSE

A1 SYM ; Assemble if SYM is not absolute.
BTEST ENDIF

Assemble BSSZ instruction if W. is less than BUF, otherwise
*assemble ORG

IFE W.*,LT,BUF,2
BSSZ BUF–W.*

; Generate words of zero to address BUF.
SKIP 1 ; Skip next statement.
ORG BUF
IFC ’ “L” ’,EQ,,2

ERROR ERROR ; Error message if micro string defined
; by L is empty.

X IFC ‘ABCD’,GT,‘ABC’
; If ABCD is greater than ABC,

S1 DEF ; Statement is included.
S2 BUF ; Statement is included.

X ENDIF
Y IFC ’ ’,GT,,2

; If single space is greater than null
; string,

S3 DEF ; Statement is included.
S4 BUF ; Statement is included.

Z IFC ’’’’,EQ,*’*,2
; If single apostrophe equals single
; apostrophe.

S5 5 ; Statement is included.
S6 6 ; Statement is included.

Z ENDIF

Pseudo Instruction Descriptions [A] Cray Assembly Language (CAL) for CRAY PVP Systems Reference Manual

218 Cray Research, Inc. SR–3108 9.1

The END pseudo instruction terminates a program segment
(module initiated with an IDENT pseudo instruction) under the
following conditions:

• If the assembler is not in definition mode

• If the assembler is not in skipping mode

• If the END pseudo instruction does not occur within an
expansion

The format of the END pseudo instruction is as follows:

ignored END ignored

If the END pseudo instruction is found within a definition, a skip
sequence, or an expansion, a message is issued indicating that
the pseudo instruction is not allowed within these modes and the
statement is treated as follows:

• Defined if in definition mode

• Skipped if in skipping mode

• Do-nothing instruction if in an expansion

You can specify the END pseudo instruction only from within a
program module. If the END pseudo instruction is valid and
terminates a program module, it causes the assembler to take
the following actions:

• Generates a cross-reference for symbols if the cross-reference
list option is enabled and the listing is enabled

• Clears and resets the format option

• Clears and resets the edit option

• Clears and resets the message level

• Clears and resets all list control options

• Clears and resets the default numeric base

• Discards all qualified, redefinable, nonglobal, and %% symbols

• Discards all qualifiers

• Discards all redefinable and nonglobal micros

END

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual Pseudo Instruction Descriptions [A]

219Cray Research, Inc.SR–3108 9.1

• Discards all local macros, opdefs, and local pseudos
instructions (defined with an OPSYN pseudo instruction)

• Discards all sections

The ENDDUP pseudo instruction ends the definition of the code
sequence to be repeated. An ENDDUP pseudo instruction
terminates a dup or echo definition with the same name.

The ENDDUP pseudo instruction is described in detail in
subsection 6.8, page 178.

The ENDIF pseudo instruction terminates skipping initiated by
an IFA , IFE , IFC , ELSE, or SKIP pseudo instruction with the
same location field name; otherwise, ENDIF acts as a do-nothing
pseudo instruction. ENDIF does not affect skipping, which is
controlled by a statement count.

You can specify the ENDIF pseudo instruction anywhere within a
program segment. Skipping is terminated by an ENDIF pseudo
instruction with a matching location field name. If the ENDIF
pseudo instruction is found within a definition, it is defined and
is not recognized as a pseudo instruction.

The format of the ENDIF pseudo instruction is as follows:

name ENDIF ignored

The name variable specifies a required name for a conditional
sequence of code. name must meet the requirements for
identifiers as described in subsection 4.2, page 67.

Note: If an END pseudo instruction is encountered in a
skipping sequence, an error message is issued and skipping is
continued. You should not use the END pseudo instruction
within a skipping sequence.

An ENDM pseudo instruction terminates the body of a macro or
opdef definition.

The ENDM pseudo instruction is described in detail in subsection
6.6, page 177.

ENDDUP

ENDIF

ENDM

Pseudo Instruction Descriptions [A] Cray Assembly Language (CAL) for CRAY PVP Systems Reference Manual

220 Cray Research, Inc. SR–3108 9.1

The ENDTEXT pseudo instruction terminates text source initiated
by a TEXT instruction. An IDENT or END pseudo instruction also
terminates text source.

The ENDTEXT is a list control pseudo instruction and by default,
is not listed unless the TXT option is enabled. If the LIS option
is enabled, the ENDTEXT instruction is listed regardless of other
listing options.

You can specify the ENDTEXT pseudo instruction anywhere
within a program segment. If the ENDTEXT pseudo instruction is
found within a definition, it is defined and is not recognized as a
pseudo instruction. If the ENDTEXT pseudo instruction is found
within a skipping sequence, it is skipped and is not recognized as
a pseudo instruction.

The format of the ENDTEXT pseudo instruction is as follows:

ignored ENDTEXT ignored

The following example illustrates the use of the ENDTEXT pseudo
instruction (with the TXT option off).

The following represents the source listing:

IDENT TEXT
A = 2
TXTNAME TEXT ’An example.’
B = 3
C = 4

ENDTEXT
A1 A
A2 B
END

ENDTEXT

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual Pseudo Instruction Descriptions [A]

221Cray Research, Inc.SR–3108 9.1

The following represents the output listing:

IDENT TEXT
A = 2
TXTNAME TEXT ’An example.’

A1 A
A2 B
END

The ENTRY pseudo instruction specifies symbolic addresses or
values that can be referred to by other program modules linked
by the loader. Each entry symbol must be an absolute,
immobile, or relocatable symbol defined within the program
module.

The ENTRY pseudo instruction is restricted to sections that allow
instructions or data or both. If the ENTRY pseudo instruction is
found within a definition or skipping sequence, it is defined and
not recognized as a pseudo instruction.

The format of the ENTRY pseudo instruction is as follows:

ignored ENTRY [symbol], [symbol]

The symbol variable specifies the name of zero, one, or more
symbols. Each of the names must be defined as an unqualified
symbol within the same program module. The corresponding
symbol must not be redefinable, external, or relocatable relative
to either a stack or a task common section.

The length of the symbol is restricted depending on the type of
loader table that the assembler is currently generating. If the
symbol is too long, the assembler will issue an error message.

The symbol operand must meet the requirements for symbols as
described in subsection 4.3, page 69.

ENTRY

Pseudo Instruction Descriptions [A] Cray Assembly Language (CAL) for CRAY PVP Systems Reference Manual

222 Cray Research, Inc. SR–3108 9.1

The following example illustrates the use of the ENTRY pseudo
instruction:

ENTRY EPTNME,TREG
.
.
.

EPTNME = *
TREG = O’17

The ERRIF pseudo instruction conditionally issues a listing
message. If the condition is satisfied (true), the appropriate
user-defined message is issued. If the level is not specified, the
ERRIF pseudo instruction issues an error-level message. If the
condition is not satisfied (false), no message is issued. If any
errors are encountered while evaluating the operand field, the
resulting condition is handled as if true and the appropriate
user-defined message is issued.

You can specify the ERRIF pseudo instruction anywhere within a
program segment. If the ERRIF pseudo instruction is found
within a definition, it is defined and is not recognized as a
pseudo instruction. If the ERRIF pseudo instruction is found
within a skipping sequence, it is skipped and is not recognized as
a pseudo instruction.

The format of the ERRIF pseudo instruction is as follows:

[option] ERRIF [expression], condition, [expression]

The option variable used in the ERRIF pseudo instruction is the
same as in the ERROR pseudo instruction. See the ERROR pseudo
instruction for information.

Zero, one, or two expressions to be compared by condition. If one
or both of the expressions are missing, a value of absolute 0 is
substituted for every expression that is not specified. Symbols
found in either of the expressions can be defined later in a
segment.

The expression operand must meet the requirements for
expressions as described in subsection 4.7, page 94.

ERRIF

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual Pseudo Instruction Descriptions [A]

223Cray Research, Inc.SR–3108 9.1

The condition variable specifies the relationship between two
expressions that causes the generation of an error. For LT, LE,
GT, and GE, only the values of the expressions are examined. You
can enter condition in uppercase, lowercase, or mixed case, and
it can be one of the following:

• LT (less than)

The value of the first expression must be less than the value of
the second expression.

• LE (less than or equal)

The value of the first expression must be less than or equal to
the value of the second expression.

• GT (greater than)

The value of the first expression must be greater than the
value of the second expression.

• GE (greater than or equal)

The value of the first expression must be greater than or equal
to the value of the second expression.

• EQ (equal)

The value of the first expression must be equal to the value of
the second expression. Both expressions must be one of the
following:

– Absolute

– Immobile relative to the same section

– Relocatable in the program section or the same common
section

– External relative to the same external symbol.

The word-address, parcel-address, or value attributes must be
the same.

Pseudo Instruction Descriptions [A] Cray Assembly Language (CAL) for CRAY PVP Systems Reference Manual

224 Cray Research, Inc. SR–3108 9.1

• NE (not equal)

The first expression must not equal the second expression.
Both expressions cannot be absolute, or external relative to
the same external symbol, or relocatable in the program
section or the same common section. The word-address,
parcel-address, or value attributes are not the same.

The ERRIF pseudo instruction does not compare the address and
relative attributes. A CAUTION level message is issued.

The following example illustrates the use of the ERRIF pseudo
instruction:

P ERRIF ABC,LT,DEF

The ERROR pseudo instruction unconditionally issues a listing
message. If the level is not specified, the ERROR pseudo
instruction issues an error level message. If the condition is not
satisfied (FALSE), no message is issued.

You can specify the ERROR pseudo instruction anywhere within a
program segment. If the ERROR pseudo instruction is found
within a definition, it is defined and is not recognized as a
pseudo instruction. If the ERROR pseudo instruction is found
within a skipping sequence, it is skipped and is not recognized as
a pseudo instruction.

The format of the ERROR pseudo instruction is as follows:

[option] ERROR ignored

The option variable specifies the error level. It can be entered in
upper, lower, or mixed case. The following error levels are
mapped directly into a user-defined message of the
corresponding level:

COMMENT, NOTE, CAUTION, WARNING, or ERROR

The following levels are mapped into an error-level message:

C, D, E, F, I , L, N, O, P, R, S, T, U, V, or X

ERROR

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual Pseudo Instruction Descriptions [A]

225Cray Research, Inc.SR–3108 9.1

The following levels are mapped into warning-level messages:

W, W1, W2, W3, W4, W5, W6, W7, W8, W9, Y1, or Y2

Messages C through Y2 provide compatibility with Cray
Assembly Language, version 1 (CAL1).

CAL can produce five similar messages with differing levels
(error, warning, caution, note, or comment). The ERROR pseudo
instruction can be used to check for valid input and to assign an
appropriate message.

In the following example, a user-defined error level message is
specified:

ERROR ERROR ; ***ERROR*** Input is not valid

The EXITM pseudo instruction immediately terminates the
innermost nested macro or opdef expansion, if any, caused by
either a macro or an opdef call.

The EXITM pseudo instruction is described in detail in subsection
6.7, page 177.

The EXT pseudo instruction specifies linkage to symbols that are
defined as entry symbols in other program modules. They can be
referred to from within the program module, but must not be
defined as unqualified symbols elsewhere within the program
module. Symbols specified in the EXT instruction are defined as
unqualified symbols that have relative attributes of external and
specified address.

You can specify the EXT pseudo instruction anywhere within a
program module. If the EXT pseudo instruction is found within a
definition or skipping sequence, it is defined and not recognized
as a pseudo instruction.

The format of the EXT pseudo instruction is as follows:

ignored EXT [symbol: [attribute]], [symbol: [attribute]]

EXITM

EXT

Pseudo Instruction Descriptions [A] Cray Assembly Language (CAL) for CRAY PVP Systems Reference Manual

226 Cray Research, Inc. SR–3108 9.1

The variables associated with the EXT pseudo instruction are
described as follows:

• symbol

The symbol variable specifies the name of zero, one, or more
external symbols. Each of the names must be an unqualified
symbol that has a relative attribute of external and the
corresponding address attribute.

The length of the symbol is restricted depending on the type of
loader table that the assembler is currently generating. If the
symbol is too long, the assembler will issue an error message.

The symbol operand must meet the requirements for symbols
as described in subsection 4.3, page 69.

• attribute

The attribute variable specifies either the attribute
address-attribute or linkage-attribute as follows:

– The address-attribute type is the address attribute that will
be assigned to the external symbol; it can be one of the
following:

V or v Value (default)

P or p Parcel

W or w Word

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual Pseudo Instruction Descriptions [A]

227Cray Research, Inc.SR–3108 9.1

– The linkage-attribute type is the linkage attribute that will
be assigned to the external symbol. Linkage attributes can
be specified in uppercase, lowercase, or mixed case, and
they can be one of the following:

HARD (default)

SOFT

If the linkage-attribute is not specified on the EXT pseudo
instruction, the default is HARD. All hard external
references are resolved at load time.

A soft reference for a particular external name is resolved at
load time only when at least one other module has
referenced that same external name as a hard reference.

You conditionally reference a soft external name at
execution time. If a soft external name was not included at
load time and is referenced at execution time, an
appropriate message is issued.

If the operating system for which the assembler is
generating code does not support soft externals, a
caution-level message is issued and soft externals are
treated as hard externals.

Note: Typically, a soft external is used for references to large
software packages (such as graphics packages) that may not
be required in a particular load. When such code is required,
load time is shorter and the absolute module is smaller in
size. For most uses, however, hard externals are
recommended.

Pseudo Instruction Descriptions [A] Cray Assembly Language (CAL) for CRAY PVP Systems Reference Manual

228 Cray Research, Inc. SR–3108 9.1

The following example illustrates the use of the EXT pseudo
instruction:

IDENT A
.
.
.
ENTRY VALUE

VALUE = 2.0
.
.
.
END
IDENT B
EXT VALUE
CON VALUE ; The 64–bit external. External value 2.0 is

; stored here by the loader.
END

CAL supports both the CAL, version 1 (CAL1) statement format
and a new statement format. The FORMAT pseudo instruction
lets you switch between statement formats within a program
segment. The current statement format is reset at the beginning
of each section to the format option specified on the CAL
invocation statement. For a description of the recommended
formatting conventions for the new format, see section 3, page
33.

You can specify the FORMAT pseudo instruction anywhere within
a program segment. If the FORMAT pseudo instruction is found
within a definition, it is defined and is not recognized as a
pseudo instruction. If the FORMAT pseudo instruction is found
within a skipping sequence, it is skipped and is not recognized as
a pseudo instruction.

The format of the FORMAT pseudo instruction is as follows:

ignored FORMAT * /option

FORMAT

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual Pseudo Instruction Descriptions [A]

229Cray Research, Inc.SR–3108 9.1

The option variable specifies old or new format. option can be
specified in uppercase, lowercase, or mixed case, and it can be
one of the following:

• OLD (old format)

• NEW (new format)

• No entry (reverts to the EDIT option specified on the CAL
invocation statement)

An asterisk (*) resumes use of the format option in effect before
the most recent format option within the current program
segment. Each occurrence of a FORMAT other than a FORMAT *
initiates a new format option. Each FORMAT * removes the
current format option and reactivates the format that preceded
the current format. If the FORMAT * statement is encountered
and all specified format options were released, a caution-level
message is issued and the default is used.

The IDENT pseudo instruction identifies a program module and
marks its beginning. The module name appears in the heading
of the listing produced by CAL (if the title pseudo instruction has
not been used) and in the generated binary load module.

You must specify the IDENT pseudo instruction in the global part
of a CAL program. If the IDENT pseudo instruction is found
within a definition, it is defined and is not recognized as a
pseudo instruction. If the IDENT pseudo instruction is found
within a skipping sequence, it is skipped and is not recognized as
a pseudo instruction.

The format of the IDENT pseudo instruction is as follows:

ignored IDENT lname

The lname variable is the long name of the program module.
lname must meet the requirements for long names as described
in subsection 4.2, page 67.

The length of the long name is restricted depending on the type
of loader table the assembler is currently generating. If the
name is too long, the assembler issues an error message.

IDENT

Pseudo Instruction Descriptions [A] Cray Assembly Language (CAL) for CRAY PVP Systems Reference Manual

230 Cray Research, Inc. SR–3108 9.1

The following example illustrates the use of the IDENT psuedo
instruction:

IDENT EXAMPLE ; Beginning of the EXAMPLE program module
.
. ; Other code goes here
.
END ; End of the EXAMPLE program module

The IFA pseudo instruction tests an attribute of an expression.
If the expression has the specified attribute, assembly continues
with the next statement. If the result of the attribute test is
false, subsequent statements are skipped. If a location field
name is present, skipping stops when an ENDIF or ELSE pseudo
instruction with the same name is encountered; otherwise,
skipping stops when the statement count is exhausted.

If any errors are encountered while evaluating the
attribute-condition, the resulting condition is handled as if true
and the appropriate listing message is issued.

You can specify the IFA pseudo instruction anywhere within a
program segment. If the IFA pseudo instruction is found within
a definition, it is defined and is not recognized as a pseudo
instruction. If the IFA pseudo instruction is found within a
skipping sequence, it is skipped and is not recognized as a
pseudo instruction.

The format of the IFA pseudo instruction is as follows:

[name] IFA [#]exp-attribute, expression[, [count]]
[name] IFA [#]redef-attribute, symbol[, [count]]
[name] IFA [#]reg-attribute, reg-arg_value[, [count]]
[name] IFA [#]micro-attribute, mname[, [count]]

The name variable specifies an optional name of a conditional
sequence of code. A conditional sequence of code that is
controlled by a name is ended by an ENDIF pseudo instruction
with a matching name. To reverse the condition of a conditional
sequence of code controlled by a name, use an ELSE pseudo
instruction with a matching name. If both name and count are
present, name takes precedence. name must meet the
requirements for names as described in subsection 4.2, page 67.

IFA

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual Pseudo Instruction Descriptions [A]

231Cray Research, Inc.SR–3108 9.1

The pound sign (#) is optional and negates the condition. If
errors occur in the attribute condition, the condition is evaluated
as if it were true. Although # does not change the condition, it
does specify the if not condition.

The exp-attribute variable is a mnemonic that signifies an
attribute of expression. expression must meet the requirement
for an expression as described in subsection 4.7, page 94.

An expression has only one address attribute (VAL, PA, or WA)
and relative attribute (ABS, IMM, REL, or EXT). An attribute also
can be any of the following mnemonics preceded by a
complement sign (#), indicating that the second subfield does not
satisfy the corresponding condition. You can specify all of the
following mnemonics in mixed case:

Mnemonic Attribute

VAL Value; requires all symbols within the
expression to be defined previously.

PA Parcel address; requires all symbols, if any,
within the expression to be defined previously.

WA Word address; requires all symbols, if any,
within the expression to be defined previously.

ABS Absolute; requires all symbols, if any, within
the expression to be defined previously.

IMM Immobile; requires all symbols, if any, within
the expression to be defined previously.

REL Relocatable; requires all symbols, if any, within
the expression to be defined previously.

EXT External; requires all symbols, if any, within
the expression to be defined previously.

CODE Immobile or relocatable; relative to a code
section. CODE requires all symbols, if any,
within the expression to be defined previously.

DATA Immobile or relocatable; relative to a data
section. DATA requires all symbols, if any,
within the expression to be defined previously.

Pseudo Instruction Descriptions [A] Cray Assembly Language (CAL) for CRAY PVP Systems Reference Manual

232 Cray Research, Inc. SR–3108 9.1

Mnemonic Attribute

ZERODATA Immobile or relocatable; relative to a zero data
section. ZERODATA requires all symbols, if any,
within the expression to be defined previously.

CONST Immobile or relocatable; relative to a constant
section. CONST requires all symbols, if any,
within the expression to be defined previously.

MIXED Immobile or relocatable; relative to a common
section. MIXED requires all symbols, if any,
within the expression to be defined previously.

COM Immobile or relocatable; relative to a common
section. COM requires all symbols, if any,
within the expression to be defined previously.

COMMON Immobile or relocatable; relative to a common
section. COMMON requires all symbols, if any,
within the expression to be defined previously.

TASKCOM Immobile or relocatable; relative to a task
common section. TASKCOM requires all
symbols, if any, within the expression to be
defined previously.

ZEROCOM Immobile or relocatable; relative to a zero
common section. ZEROCOM requires all
symbols, if any, within the expression to be
defined previously.

DYNAMIC Immobile or relocatable; relative to a dynamic
section. DYNAMIC requires all symbols, if any,
within the expression to be defined previously.

STACK Immobile or relocatable; relative to a stack
section. STACK requires all symbols, if any,
within the expression to be defined previously.

CM Immobile or relocatable; relative to a section
that is placed into common memory. CM
requires all symbols, if any, within the
expression to be defined previously.

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual Pseudo Instruction Descriptions [A]

233Cray Research, Inc.SR–3108 9.1

Mnemonic Attribute

EM Immobile or relocatable; relative to a section
that is placed into extended memory. EM
requires all symbols, if any, within the
expression to be defined previously. If EM is
specified, the condition always fails.

LM Immobile or relocatable; relative to a section
that is placed into local memory. LM requires
all symbols, if any, within the expression to be
defined previously. If LM is specified for a Cray
Research system, the condition always fails.

DEF True if all symbols in the expression were
defined previously; otherwise, the condition is
false.

The redef-attribute variable specifies a redefinable attribute.
The condition is true if the symbol following redef-attribute is
redefinable; otherwise, the condition is false. Redefinable
attribute is defined as follows:

Mnemonic Attribute

SET The symbol in the second subfield is a
redefinable symbol. symbol must meet the
requirements for a symbol as described in
subsection 4.3, page 69.

The reg-attribute variable specifies a register attribute.
reg-arg-value is any ASCII character up to but not including a
legal terminator (blank character or semicolon; new format) and
element separator character (,). If you specify REG, the
condition is true if the following string is a valid
complex-register; otherwise, the condition is false.
Register-attribute is defined as follows:

Mnemonic Attribute

REG The second subfield contains a valid A, B, S, T,
or in register designator.

Pseudo Instruction Descriptions [A] Cray Assembly Language (CAL) for CRAY PVP Systems Reference Manual

234 Cray Research, Inc. SR–3108 9.1

The micro-attribute variable specifies an attribute of the micro
specified by mname. mname must meet the requirements for
identifiers as described in subsection 4.2, page 67. If you specify
MIC, the condition is true if the following identifier is an existing
micro name; otherwise, the condition is false. micro-attribute is
defined as follows:

Mnemonic Attribute

MIC The name in the second subfield is a micro
name.

MICRO The name in the second subfield is a micro
name and the corresponding micro can be
redefined.

CMICRO The name in the second subfield is a micro
name and the corresponding micro is constant.

The count variable specifies the statement count. It must be an
absolute expression with positive value. All symbols in the
expression, if any, must be previously defined. A missing or null
count subfield gives a zero count. count is used only when the
location field is not specified. If name is not present and count is
present in the operand field, skipping stops when count is
exhausted. If neither name nor count is present, no skipping
occurs.

The following example illustrates the use of the IFA pseudo
instruction:

SYM1 SET 1
SYM2 = 2

IFA SET,SYM1,2 ; If the condition is true,
S1 SYM1 ; include this statement
S2 SYM2 ; include this statement

SYM2 = 1
IFA SET,SYM2,1 ; If the condition is false,
S3 SYM2 ; skip this statement.

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual Pseudo Instruction Descriptions [A]

235Cray Research, Inc.SR–3108 9.1

The IFC pseudo instruction tests a pair of character strings for a
condition under which code will be assembled if the relation
specified by condition is satisfied (true). If the relationship is
not satisfied (false), subsequent statements are skipped. If a
location field name is present, skipping stops when an ENDIF or
ELSE pseudo instruction with the same name is encountered;
otherwise, skipping stops when the statement count is
exhausted.

If any errors are encountered during evaluation of the string
condition, the resulting condition is handled as if true and an
appropriate listing message is issued.

You can specify the IFC pseudo instruction anywhere within a
program segment. If the IFC pseudo instruction is found within
a definition, it is defined and is not recognized as a pseudo
instruction. If the IFC pseudo instruction is found within a
skipping sequence, it is skipped and is not recognized as a
pseudo instruction.

The format of the IFC pseudo instruction is as follows:

[name] IFC [string], condition, [string] [, [count]]

The name variable specifies an optional name of a conditional
sequence of code. A conditional sequence of code that is
controlled by a name is ended by an ENDIF pseudo instruction
with a matching name. To reverse the condition of a conditional
sequence of code controlled by a name, use an ELSE pseudo
instruction with a matching name. If both name and count are
present, name takes precedence. name must meet the
requirements for names as described in subsection 4.2, page 67.

The string variable specifies the character string that will be
compared. The first and third subfields can be null (empty)
indicating a null character string. The ASCII character code
value of each character in the first string is compared with the
value of each character in the second string. The comparison is
from left to right and continues until an inequality is found or
until the longer string is exhausted. A value of 0 is substituted
for missing characters in the shorter string. Micros and formal
parameters can be contained in the character strings.

IFC

Pseudo Instruction Descriptions [A] Cray Assembly Language (CAL) for CRAY PVP Systems Reference Manual

236 Cray Research, Inc. SR–3108 9.1

The string operand is an optional ASCII character string that
must be specified with one matching character on both ends. A
character string can be delimited by any ASCII character other
than a comma or space. Two consecutive occurrences of the
delimiting character indicate a single such character will be
included in the character string.

The following example compares the character strings O’100
and ABCD*:

AIF IFC =O’l00=,EQ,*ABCD***

The condition variable specifies the relation that will be satisfied
by the two strings. You can enter condition in mixed case, and it
must be one of the following:

• LT (less than)

The value of the first string must be less than the value of the
second string.

• LE (less than or equal)

The value of the first string must be less than or equal to the
value of the second string.

• GT (greater than)

The value of the first string must be greater than the value of
the second string.

• GE (greater than or equal)

The value of the first string must be greater than or equal to
the value of the second string.

• EQ (equal)

The value of the first string must be equal to the value of the
second string.

• NE (not equal)

The value of the first string must not equal the value of the
second string.

The count variable specifies the statement count. It must be an
absolute expression with positive value. All symbols in the
expression, if any, must be previously defined. A missing or null
count subfield gives a zero count. The count operand is used

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual Pseudo Instruction Descriptions [A]

237Cray Research, Inc.SR–3108 9.1

only when the location field is not specified. If name is not
present and count is present in the operand field, skipping stops
when count is exhausted. If neither name nor count is present,
no skipping occurs.

The following examples illustrates the use of the IFC pseudo
instruction. The first string is delimited by the at sign (@), and
the second string is delimited by the percent sign (%). The first
string is equal to the second string.

IDENT TEST
EX1 IFC @ABC@@D@,EQ,%ABC@D%

; The condition is true.
; Skipping does not occur.

S1 1 ; Statement is included.
S2 2 ; Statement is included.

EX1 ELSE ; Statements within the ELSE sequence
; are included only if the condition
; fails.

S3 3 ; Statement is skipped.
EX1 ENDIF ; End of skip sequence.

END

In the next example, the first string is not equal to the second
string, the two statements following the IFC are skipped.

IDENT TEST
EX1 IFC @ABBCD@,EQ,@ABCD@ ; The condition is false.

; Skipping occurs.
S1 1 ; Statement is skipped.
S2 2 ; Statement is skipped.

EX1 ENDIF ; End of skip sequence
S3 3 ; This statement is included regardless

; of whether the condition is true or
; false.

END

Pseudo Instruction Descriptions [A] Cray Assembly Language (CAL) for CRAY PVP Systems Reference Manual

238 Cray Research, Inc. SR–3108 9.1

The IFE pseudo instruction tests a pair of expressions for a
condition. If the relation (condition) specified by the operation is
satisfied, code is assembled. If condition is true, assembly
resumes with the next statement; if condition is false,
subsequent statements are skipped. If a location field name is
present, skipping stops when an ENDIF or ELSE pseudo
instruction with the same name is encountered; otherwise,
skipping stops when the statement count is exhausted.

If any errors are encountered during the evaluation of the
expression-condition, the resulting condition is handled as if true
and an appropriate listing message is issued.

If an assembly error is detected, assembly continues with the
next statement.

You can specify the IFE pseudo instruction anywhere within a
program segment. If the IFE pseudo instruction is found within
a definition, it is defined and is not recognized as a pseudo
instruction. If the IFE pseudo instruction is found within a
skipping sequence, it is skipped and is not recognized as a
pseudo instruction.

The format of the IFE pseudo instruction is as follows:

[name] IFE [expression], condition, [expression] [, [count]]

The name variable specifies an optional name of a conditional
sequence of code. A conditional sequence of code that is
controlled by a name is ended by an ENDIF pseudo instruction
with a matching name. To reverse the condition of a conditional
sequence of code controlled by a name, use an ELSE pseudo
instruction with a matching name. If both name and count are
present, name takes precedence. name must meet the
requirements for names as described in subsection 4.2, page 67.

The expression variables specify the expressions to be compared.
All symbols in the expression must be defined previously. If an
expression is not specified, the absolute value of 0 is used.
expressions must meet the requirements for expressions as
described in subsection 4.7, page 94.

IFE

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual Pseudo Instruction Descriptions [A]

239Cray Research, Inc.SR–3108 9.1

The condition variable specifies the relation to be satisfied by the
two strings. You can enter condition in mixed case, and it must
be one of the following:

• LT (less than)

The value of the first expression must be less than the value of
the second expression. The attributes are not checked.

• LE (less than or equal)

The value of the first expression must be less than or equal to
the value of the second expression. The attributes are not
checked.

• GT (greater than)

The value of the first expression must be greater than the
value of the second expression. The attributes are not
checked.

• GE (greater than or equal)

The value of the first expression must be greater than or equal
to the value of the second expression. The attributes are not
checked.

• EQ (equal)

The value of the first expression must be equal to the value of
the second expression. Both expressions must be one of the
following:

– Attributes must be the same

– Immobile relative to the same section

– Relocatable relative to the same section

– External relative to the same external symbol.

– The word-address, parcel-address, or value

• NE (not equal)

The first expression and the second expression do not satisfy
the conditions required for EQ described above.

The count variable specifies the statement count. It must be an
absolute expression with a positive value. All symbols in the
expression, if any, must be previously defined. A missing or null
count subfield gives a zero count. count is used only when the

Pseudo Instruction Descriptions [A] Cray Assembly Language (CAL) for CRAY PVP Systems Reference Manual

240 Cray Research, Inc. SR–3108 9.1

location field is not specified. If name is not present and count is
present in the operand field, skipping stops when count is
exhausted. If neither name nor count is present, no skipping
occurs.

The following example illustrates the use of the IFE pseudo
instruction:

IDENT TEST
SYM1 = 0
SYM2 = *
SYM3 SET 1000
SYM4 SET 500
NOTEQ IFE SYM1,EQ,SYM2 ; Condition fails, values are the same,

; but the attributes are different.
S1 SYM1 ; The ELSE sequence is assembled.
S2 SYM2

NOTEQ ELSE
S1 SYM3 ; Statement is included.
S2 SYM4 ; Statement is included.

NOTEQ ENDIF ; End of conditional sequence.
END

The IFM pseudo instruction tests characteristics of the current
target machine. If the result of the machine condition is true,
assembly continues with the next statement. If the result of the
machine condition is false, subsequent statements are skipped.
If a location field name is present, skipping stops when an
ENDIF or ELSE pseudo instruction with the same name is
encountered; otherwise, skipping stops when the statement
count is exhausted.

If any errors are encountered during the evaluation of the string
condition, the resulting condition is handled as if true and an
appropriate listing message is issued.

You can specify the IFM pseudo instruction anywhere within a
program segment. If the IFM pseudo instruction is found within
a definition, it is defined and is not recognized as a pseudo
instruction. If the IFM pseudo instruction is found within a
skipping sequence, it is skipped and is not recognized as a
pseudo instruction.

IFM

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual Pseudo Instruction Descriptions [A]

241Cray Research, Inc.SR–3108 9.1

The format of the IFM pseudo instruction is as follows:

[name] IFM [#]logical-name[, [count]]
[name] IFM numeric-name, condition, [expression] [, [count]]

The name variable specifies an optional name of a conditional
sequence of code. A conditional sequence of code that is
controlled by a name is ended by an ENDIF pseudo instruction
with a matching name. To reverse the condition of a conditional
sequence of code controlled by a name, use an ELSE pseudo
instruction with a matching name. If both name and count are
present, name takes precedence. name must meet the
requirements for names as described in subsection 4.2, page 67.

The logical-name variable specifies the mnemonic that signifies
a logical condition of the machine for which CAL is currently
targeting code. If the logical name is preceded by a pound sign
(#), its resultant condition is complemented. For a detailed list
of the mnemonics, see the logical traits of the CPU option for the
appropriate operating system in section 2, page 11.

The numeric-name variable specifies the mnemonic that signifies
a numeric condition of the machine for which CAL is currently
targeting code. For a detailed list of the mnemonics, see the
numeric traits of the CPU option for the appropriate operating
system in section 2, page 11. You can specify these mnemonics
in mixed case.

The condition variable specifies the relation to be satisfied
between the numeric name and the expression, if any. You can
enter condition in mixed case, and it must be one of the
following:

• LT (less than)

The value of the numeric name must be less than the value of
the expression.

• LE (less than or equal)

The value of the numeric name must be less than or equal to
the value of the expression.

• GT (greater than)

The value of the numeric name must be greater than the value
of the expression.

Pseudo Instruction Descriptions [A] Cray Assembly Language (CAL) for CRAY PVP Systems Reference Manual

242 Cray Research, Inc. SR–3108 9.1

• GE (greater than or equal)

The value of the numeric name must be greater than or equal
to the value of the expression.

• EQ (equal)

The value of the numeric name must be equal to the value of
the expression.

• NE (not equal)

The value of the numeric name must not equal the value of the
expression.

The expression variable specifies the expression to be compared
to the numeric name. All symbols in the expression must be
defined previously and must have an address attribute of value
and a relative attribute of absolute. If the current base is mixed,
a default of decimal is used. If an expression is not specified, the
absolute value of 0 is used. expression must meet the
requirements for expressions as described in subsection 4.7, page
94.

The count variable specifies the statement count. It must be an
absolute expression with a positive value. All symbols in the
expression, if any, must be previously defined. A missing or null
count subfield gives a zero count. count is used only when the
location field is not specified. If name is not present and count is
present in the operand field, skipping stops when count is
exhausted. If neither name nor count is present, no skipping
occurs.

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual Pseudo Instruction Descriptions [A]

243Cray Research, Inc.SR–3108 9.1

The following example illustrates the use of the IFM pseudo
instruction:

ident test
ex1 ifm vpop ; Assuming the condition is true,

. ; skipping does occur within the IFM

. ; part.

.
ex1 ifm numcpus,eq,4 ; Assuming the condition is false,

. ; skipping occurs.

.

.
ex2 else ; Toggles the condition so that the else

. ; part is not skipped.

.

.
ex2 endif

end

The INCLUDE psuedo instruction inserts a file at the current
source position. The INCLUDE pseudo instruction always
prepares the file for reading by opening it and positioning the
pointer at the beginning.

You can use this pseudo instruction to include the same file more
than once within a particular file.

You can also nest INCLUDE instructions. Because you cannot use
INCLUDE recursively, you should review nested INCLUDE
instructions for recursive calls to a file that you have already
opened.

You can specify the INCLUDE pseudo instruction anywhere
within a program segment. If the INCLUDE pseudo instruction
occurs within a definition, it is recognized as a pseudo
instruction and the specified file is included in the definition. If
the INCLUDE pseudo instruction occurs within a skipping
sequence, it is recognized as a pseudo instruction and the
specified file is included in the skipping sequence. The INCLUDE
pseudo instruction statement itself is not inserted into a defined
sequence of code.

INCLUDE

Pseudo Instruction Descriptions [A] Cray Assembly Language (CAL) for CRAY PVP Systems Reference Manual

244 Cray Research, Inc. SR–3108 9.1

Note: The INCLUDE pseudo instruction can be forced into a
definition or skipped sequence of code. When editing is
enabled, INCLUDE is expanded during execution and the file
is read in at that point. This method is not recommended
because formal parameters are not substituted correctly into
statements when the INCLUDE macro is expanded during
execution.

If using this method, insert an underscore (_) anywhere
within the pseudo instruction, as follows: IN_CLUDE.

If editing is disabled during execution, INCLUDE is not
expanded.

The format of the INCLUDE pseudo instruction is as follows:

ignored INCLUDE filename

The filename variable is an ASCII character string that
identifies the file to be included. The ASCII character string
must be a valid file name depending on the operating system
under which CAL is executing. If the ASCII character string is
not a valid file name or CAL cannot open the file, a listing
message is issued.

filename must be specified with one matching character on each
end. Any ASCII character other than a comma or space can be
used. Two consecutive occurrences of the delimiting character
indicate a single such character will be included in the character
string.

In the following examples, the module named INCTEST contains
an INCLUDE pseudo instruction. The file to be included is named
DOG and the CAT file is included within the DOG file.

The INCTEST module is as follows:

IDENT INCTEST
INCLUDE *DOG* ; Call file DOG with INCLUDE.
END

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual Pseudo Instruction Descriptions [A]

245Cray Research, Inc.SR–3108 9.1

The file DOG contains the following:

S1 1 ; Register S1 gets 1.
INCLUDE ’CAT’ ; Call file CAT with INCLUDE.
S2 2 ; Register S2 gets 2.

The file CAT contains the following:

S3 3 ; Register S3 gets 3.

The expansion of the INCTEST module is as follows:

IDENT INCTEST
INCLUDE *DOG* ; Call file DOG with INCLUDE.
S1 1 ; Register S1 gets 1.
INCLUDE ’CAT’ ; Call file CAT with INCLUDE.
S3 3 ; Register S3 gets 3.
S2 2 ; Register S2 gets 2.
END

The following example demonstrates that it is illegal to include a
file recursively within nested INCLUDE instructions.

The INCTEST module is as follows:

IDENT INCTEST
INCLUDE *DOG* ; Call file DOG with INCLUDE.
END

The file DOG contains the following:

S1 1 ; Register S1 gets 1.
INCLUDE ’CAT’ ; Call file CAT with INCLUDE.
S2 2 ; Register S2 gets 2.

Pseudo Instruction Descriptions [A] Cray Assembly Language (CAL) for CRAY PVP Systems Reference Manual

246 Cray Research, Inc. SR–3108 9.1

The file CAT includes the following:

S3 3 ; Register S3 gets 3.
INCLUDE –DOG– ; Illegal. If file B was included by

; file A, it cannot include file A.

The following example demonstrates that it is legal to include a
file more than once if it is not currently being included.

The INCTEST module is as follows:

IDENT INCTEST
INCLUDE *DOG* ; Call file DOG with INCLUDE.
INCLUDE *DOG* ; Call file DOG with INCLUDE.
END

The file DOG contains the following:

S1 1 ; Register S1 gets 1.
S2 2 ; Register S2 gets 2.

The expansion of the INCTEST module is as follows:

IDENT INCTEST
INCLUDE *DOG* ; Call file DOG with INCLUDE.
S1 1 ; Register S1 gets 1.
S2 2 ; Register S2 gets 2.
INCLUDE *DOG* ; Call file DOG with INCLUDE.
S1 1 ; Register S1 gets 1.
S2 2 ; Register S2 gets 2.
END

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual Pseudo Instruction Descriptions [A]

247Cray Research, Inc.SR–3108 9.1

The LIST pseudo instruction controls the listing. LIST is a list
control pseudo instruction and by default, is not listed. To
include the LIST pseudo instruction on the listing, specify the
LIS option on this instruction. An END pseudo instruction resets
options to the default values.

You can specify the LIST pseudo instruction anywhere within a
program segment. If the LIST pseudo instruction is found
within a definition, it is defined and is not recognized as a
pseudo instruction. If the LIST pseudo instruction is found
within a skipping sequence, it is skipped and is not recognized as
a pseudo instruction.

The format of the LIST pseudo instruction is as follows:

[name] LIST [option]{, [option]}/*

The name variable specifies the optional list name. name must
meet the requirements for identifiers as described in subsection
4.2, page 67.

If name is present, the instruction is ignored unless a matching
name is specified on the list parameter on the CAL invocation
statement. LIST pseudos instructions with a matching name
are not ignored. LIST pseudos instructions with a blank location
field are always processed.

The option variable specifies that a particular listing feature be
enabled or disabled. All option names can be specified in some
form as CAL invocation statement parameters. The selection of
an option on the CAL invocation statement overrides the
enabling or disabling of the corresponding feature by a LIST
pseudo instruction. If you use the no-list option on the CAL
invocation statement, all LIST pseudo instructions in the
program are ignored.

There can be zero, one, or more options specified or an * . If no
options are specified, OFF is assumed. The allowed options are
described as follows:

• ON (enables source statement listing)

Source statements and code generated are listed (default).

LIST

Pseudo Instruction Descriptions [A] Cray Assembly Language (CAL) for CRAY PVP Systems Reference Manual

248 Cray Research, Inc. SR–3108 9.1

• OFF (disables source statement listing)

While this option is selected, only statements with errors are
listed. If the LIS option is enabled, listing control pseudo
instructions are also listed.

• ED (enables listing of edited statements)

Edited statements are included in the listing file (default).

• NED (disables listing of edited statements)

Edited statements are not included in the listing file.

• XRF (enables cross-reference)

Symbol references are accumulated and a cross-reference
listing is produced (default).

• NXRF (disables cross-reference)

Symbol references are not accumulated. If this option is
selected when the END pseudo instruction is encountered, no
cross-reference is produced.

• XNS (includes nonreferenced local symbols in the reference)

Local symbols that were not referenced in the listing output
are included in the cross-reference listing (default).

• NXNS (excludes nonreferenced local symbols from the
cross-reference)

If this option is selected when the END pseudo instruction is
encountered, local symbols that were not referenced in the
listing output are not included in the cross-reference.

• LIS (enables listing of the listing pseudo instructions)

The LIST , SPACE, EJECT, TITLE , SUBTITLE, TEXT, and
ENDTEXT psuedo instructions are included in the listing.

• NLIS (disables listing of the listing pseudo instructions)

The LIST , SPACE, EJECT, TITLE , SUBTITLE, TEXT, and
ENDTEXT psuedo instructions are not included in the listing
(default).

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual Pseudo Instruction Descriptions [A]

249Cray Research, Inc.SR–3108 9.1

• TXT (enables global text source listing)

Each statement following a TEXT pseudo instruction is listed
through the ENDTEXT instruction if the listing is otherwise
enabled.

• NTXT (disables global text source listing)

Statements that follow a TEXT pseudo instruction through the
following ENDTEXT instruction are not listed (default).

• MAC (enables listing of macro and opdef expansions)

Statements generated by macro and opdef calls are listed.
Conditional statements and skipped statements generated by
macro and opdef calls are not listed unless the macro
conditional list feature is enabled (MIF).

• NMAC (disables listing of macro and opdef expansions)

Statements generated by macro and opdef calls are not listed
(default).

• MBO (enables listing of generated statements before editing)

Only statements that produce generated code are listed. The
listing of macro expansions (MAC) or the listing of duplicated
statements (DUP) must also be enabled.

• NMBO (disables listing of statements that produce generated
code)

Statements generated by a macro or opdef call (MAC), or by a
DUP or ECHO (DUP) pseudo instruction, are not listed before
editing (default).

Note: Source statements containing a micro reference (see
MIC and NMIC options) or a concatenation character are listed
before editing regardless of whether this option is enabled or
disabled.

• MIC (enables listing of generated statements before editing)

Statements that are generated by a macro or opdef call, or by a
DUP or ECHO pseudo instruction, and that contain a micro
reference or concatenation character are listed before and after
editing. The listing of macro expansions or the listing of
duplicated statements must also be enabled.

Pseudo Instruction Descriptions [A] Cray Assembly Language (CAL) for CRAY PVP Systems Reference Manual

250 Cray Research, Inc. SR–3108 9.1

• NMIC (disables listing of generated statements before editing)

Statements generated by a macro or opdef call, or by a DUP or
ECHO pseudo instruction, are not listed before editing (default).

Note: Conditional statements (see NIF and NMIF options)
and skipped statements in source code are listed regardless of
whether this option is enabled or disabled.

• MIF (enables macro conditional listing)

Conditional statements and skipped statements generated by
a macro or opdef call, or by a DUP or ECHO pseudo instruction,
are listed. The listing of macro expansions or the listing of
duplicated statements must also be enabled.

• NMIF (disables macro conditional listing)

Conditional statements and skipped statements generated by
a macro or opdef call, or by a DUP or ECHO pseudo instruction,
are not listed (default).

• DUP (enables listing of duplicated statements)

Statements generated by DUP and ECHO expansions are listed.
Conditional statements and skipped statements generated by
DUP and ECHO are not listed unless the macro conditional list
feature is enabled (MIF).

• NDUP (disables listing of duplicated statements)

Statements generated by DUP and ECHO are not listed
(default).

The asterisk (*) reactivates the LIST pseudo instruction in effect
before the current LIST pseudo instruction was specified within
the current program segment. Each occurrence of a LIST pseudo
instruction other than LIST initiates a new listing control. Each
LIST releases the current listing control and reactivates the
listing control that preceded the current list control. If all
specified listing controls were released when a LIST * is
encountered, CAL issues a caution-level message and uses the
defaults for listing control.

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual Pseudo Instruction Descriptions [A]

251Cray Research, Inc.SR–3108 9.1

The LOC pseudo instruction sets the location counter to the first
parcel of the word address specified. The location counter is
used for assigning address values to location field symbols.
Changing the location counter allows code to be assembled and
loaded at one location, controlled by the origin counter, then
moved and executed at another address controlled by the
location counter. The LOC pseudo instruction forces a word
boundary within the current section before the location counter
is modified.

The LOC pseudo instruction is restricted to sections that allow
instructions or data, or both. If the LOC pseudo instruction is
found within a definition, it is defined and is not recognized as a
pseudo instruction. If the LOC pseudo instruction is found
within a skipping sequence, it is skipped and is not recognized as
a pseudo instruction.

The format of the LOC pseudo instruction is as follows:

ignored LOC [expression]

The expression variable is optional and represents the new value
of the location counter. If the expression does not exist, the
counter is reset to the absolute value of 0. If the expression does
exist, all symbols (if any) must be defined previously. If the
current base is mixed, octal is used as the base.

The expression operand cannot have an address attribute of
parcel, a relative attribute of external, or a negative value. A
force word boundary occurs before the expression is evaluated.
The expression operand must meet the requirements for an
expression as described in subsection 4.7, page 94.

The following example illustrates the use of the LOC pseudo
instruction:

ORG Q.*+1000
LOC 200

LBL A1 0
.
.
.
J LBL

LOC

Pseudo Instruction Descriptions [A] Cray Assembly Language (CAL) for CRAY PVP Systems Reference Manual

252 Cray Research, Inc. SR–3108 9.1

Note: In the preceding example, the code is generated and
loaded at location W.*+10000 and the user must move it to
absolute location 200 before execution.

The LOCAL pseudo instruction specifies unique character string
replacements within a program segment that are defined only
within the macro, opdef, dup, or echo definition. These character
string replacements are known only in the macro, opdef, dup, or
echo at expansion time. The most common usage of the LOCAL
pseudo instruction is for defining symbols, but it is not restricted
to the definition of symbols.

The LOCAL pseudo instruction is described in detail in subsection
6.11, page 184.

The MACRO pseudo instruction marks the beginning of a
sequence of source program instructions saved by the assembler
for inclusion in a program when called for by the macro name.

Macros are described in detail in subsection 6.2, page 134.

The MICRO pseudo instruction assigns a name to a character
string. The assigned name can be redefined. You can reference
and redefine a redefinable micro after its initial definition within
a program segment. A micro defined with the MICRO pseudo
instruction is discarded at the end of a module and cannot be
referenced by any of the segments that follow.

You can specify the MICRO pseudo instruction anywhere within a
program segment. If the MICRO pseudo instruction is found
within a definition, it is defined and is not recognized as a
pseudo instruction. If the MICRO pseudo instruction is found
within a skipping sequence, it is skipped and is not recognized as
a pseudo instruction.

The format of the MICRO pseudo instruction is as follows:

name MICRO [string[, [exp][, [exp][, [case]]]]]

The name variable is required and is assigned to the character
string in the operand field. It has redefinable attributes. If
name was previously defined, the previous micro definition is
lost. name must meet the requirements for identifiers as
described in subsection 4.2, page 67.

LOCAL

MACRO

MICRO

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual Pseudo Instruction Descriptions [A]

253Cray Research, Inc.SR–3108 9.1

The string variable represents an optional character string that
can include previously defined micros. If string is not specified,
an empty string is used. A character string can be delimited by
any character other than a space. Two consecutive occurrences
of the delimiting character indicate a single such character (for
example, a micro consisting of the single character * can be
specified as ‘*’ or ****) .

The exp variable represents optional expressions. The first
expression must be an absolute expression that indicates the
number of characters in the micro character string. All symbols,
if any, must be previously defined. If the current base is mixed,
decimal is used for the expression. The expressions must meet
the requirements for expressions as described in subsection 4.7,
page 94.

The micro character string is terminated by the value of the first
expression or the final apostrophe of the character string,
whichever occurs first. If the first expression has a 0 or negative
value, the string is considered empty. If the first expression is
not specified, the full value of the character string is used. In
this case, the string is terminated by the final apostrophe.

The second expression must be an absolute expression that
indicates the micro string’s starting character. All symbols, if
any, must be defined previously. If the current base is mixed,
decimal is used for the expression.

The starting character of the micro string begins with the
character that is equal to the value of the second expression, or
with the first character in the character string if the second
expression is null or has a value of 1 or less.

The optional case variable denotes the way uppercase and
lowercase characters are interpreted when they are read from
string. Character conversion is restricted to the letter characters
(A–Z and a–z) specified in string. You can specify case in
uppercase, lowercase, or mixed case, and it must be one of the
following:

• MIXED or mixed

string is interpreted as entered and no case conversion occurs.
This is the default.

Pseudo Instruction Descriptions [A] Cray Assembly Language (CAL) for CRAY PVP Systems Reference Manual

254 Cray Research, Inc. SR–3108 9.1

• UPPER or upper

All lowercase alphabetic characters in string are converted to
their uppercase equivalents.

• LOWER or lower

All uppercase alphabetic characters in string are converted to
their lowercase equivalents.

The following example illustrates the use of the MICRO pseudo
instruction:

MIC MICRO ’THIS IS A MICRO STRING’
MIC2 MICRO ’”MIC”’,1
MIC2� MICRO ’THIS IS A MICRO STRING’,1
MIC3 MICRO ’”MIC2”’
MIC3� MICRO ’T’
MIC4 MICRO ’”MIC”’,10 ; CALL TO MICRO MIC2.
MIC4� MICRO ’THIS IS A MICRO STRING’,10
MIC5 MICRO ’”MIC4”’
MIC5� MICRO ’THIS IS A ’
MIC6 MICRO ’”MIC” ‘,5,11
MIC6� MICRO ’THIS IS A MICRO STRING’,5,11
MIC7 MICRO ’”MIC6”’
MIC7� MICRO ’MICRO’
MIC8 MICRO ’”MIC”’,11,5
MIC8� MICRO ’THIS IS A MICRO STRING’,11,5
MIC9 MICRO ’”MIC8”’
MIC9� MICRO ’ IS A MICRO’

The MICSIZE pseudo instruction defines the symbol in the
location field as a symbol with an address attribute of value, a
relative attribute of absolute, and a value equal to the number of
characters in the micro string whose name is in the operand
field. Another SET or MICSIZE instruction with the same
symbol redefines the symbol to a new value.

� CAL has edited these lines

MICSIZE

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual Pseudo Instruction Descriptions [A]

255Cray Research, Inc.SR–3108 9.1

You can specify the MICSIZE pseudo instruction anywhere
within a program segment. If the MICSIZE pseudo instruction is
found within a definition, it is defined and is not recognized as a
pseudo instruction. If the MICSIZE pseudo instruction is found
within a skipping sequence, it is skipped and is not recognized as
a pseudo instruction.

The format of the MICSIZE pseudo instruction is as follows:

[symbol] MICSIZE name

The symbol variable specifies an optional unqualified symbol.
symbol is implicitly qualified by the current qualifier. The
location field can be blank. symbol must meet the requirement
for a symbol as described in subsection 4.3, page 69.

The name variable represents the name of a micro string that
has been previously defined. name must meet the requirements
for identifiers as described in subsection 4.2, page 67.

The MLEVEL pseudo instruction changes the level of messages
received in your source listing. If the ML option on the CAL
invocation statement differs from the option on the MLEVEL
pseudo instruction, the invocation statement overrides the
pseudo instruction.

If the option accompanying the MLEVEL pseudo instruction is not
valid, a diagnostic message is generated and MLEVEL is set to the
default value.

You can specify the MLEVEL pseudo instruction anywhere within
a program segment. If the MLEVEL pseudo instruction is found
within a definition, it is defined and is not recognized as a
pseudo instruction. If the MLEVEL pseudo instruction is found
within a skipping sequence, it is skipped and is not recognized as
a pseudo instruction.

MLEVEL

Pseudo Instruction Descriptions [A] Cray Assembly Language (CAL) for CRAY PVP Systems Reference Manual

256 Cray Research, Inc. SR–3108 9.1

The format of the MLEVEL pseudo instruction is as follows:

ignored MLEVEL [option]/*

The option variable specifies an optional message level. It can
be entered in uppercase, lowercase, or mixed case, it must be one
of the following levels (the default is WARNING):

• ERROR (enables error-level messages only)

• WARNING (enables warning- and error-level messages)

• CAUTION (enables caution-, warning-, and error-level
messages)

• NOTE (enables note-, caution-, warning-, and error-level
messages)

• COMMENT (enables comment-, note-, caution-, warning-, and
error-level messages)

• No entry (reset to default message level)

The asterisk (*) reactivates the message level in effect before the
current message level was specified within the current program
segment. Each occurrence of an MLEVEL pseudo instruction
other than MLEVEL * initiates a new message level. Each
MLEVEL * releases the current message level and reactivates the
message level that preceded the current message level. If all
specified message levels have been released when an MLEVEL *
is encountered, CAL issues a caution-level message to alert you
to the situation and then reverts to the default level, warning.

The NEXTDUP pseudo instruction stops the current iteration of a
duplication sequence indicated by a DUP or an ECHO pseudo
instruction. Assembly of the current repetition of the dup
sequence is terminated immediately and the next repetition, if
any, is begun.

The NEXTDUP pseudo instruction is described in detail in
subsection 6.9, page 179.

NEXTDUP

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual Pseudo Instruction Descriptions [A]

257Cray Research, Inc.SR–3108 9.1

The OCTMIC pseudo instruction converts the value of an
expression to a character string that is assigned a redefinable
micro name. The character string that the pseudo instruction
generates is represented as an octal number. The final length of
the micro string is inserted into the code field of the listing.

You can specify OCTMIC with zero, one, or two expressions. The
value of the first expression is converted to a micro string with a
character length equal to the second expression. If the second
expression is not specified, the minimum number of characters
needed to represent the octal value of the first expression is
used.

If the second expression is specified, the string is equal to the
length specified by the second expression. If the number of
characters in the micro string is less than the value of the second
expression, the character value is right justified with the
specified fill characters (zeros or blanks) preceding the value. If
the number of characters in the string is greater than the value
of the second expression, the beginning characters of the string
are truncated and a warning message is issued.

You can specify the OCTMIC pseudo instruction anywhere within
a program segment. If the OCTMIC pseudo instruction is found
within a definition, it is defined and is not recognized as a
pseudo instruction. If the OCTMIC pseudo instruction is found
within a skipping sequence, it is skipped and is not recognized as
a pseudo instruction.

The format of the OCTMIC pseudo instruction is as follows:

name OCTMIC [expression1] [“,” [expression2[“,” [option]]]]

The name variable is required and specifies the name of the
micro. name must meet the requirements for identifiers as
described in subsection 4.2, page 67.

The expression1 variable is an optional expression and is equal to
name. If specified, expression1 must have an address attribute of
value and a relative attribute of absolute. All symbols used
must be previously defined. If the current base is mixed, a
default of octal is used. If the first expression is not specified,
the absolute value of 0 is used in creating the micro string. The
expression1 operand must meet the requirements for expressions
as described in subsection 4.7, page 94.

OCTMIC

Pseudo Instruction Descriptions [A] Cray Assembly Language (CAL) for CRAY PVP Systems Reference Manual

258 Cray Research, Inc. SR–3108 9.1

expression2 provides a positive character count less than or equal
to decimal 22. If this parameter is present, leading zeros or
blanks (depending on option) are supplied, if necessary, to
provide the requested number of characters. If specified,
expression2 must have an address attribute of value and a
relative attribute of absolute with all symbols, if any, previously
defined. If the current base is mixed, a default of decimal is
used. If expression2 is not specified, the micro string is
represented in the minimum number of characters needed to
represent the octal value of the first expression. The expression2
operand must meet the requirements for expressions as
described in subsection 4.7, page 94.

option represents the type of fill characters (ZERO for zeros or
BLANK for spaces) that will be used if the second expression is
present and fill is needed. The default is ZERO. You can enter
option in mixed case.

The following example illustrates the use of the OCTMIC pseudo
instruction:

IDENT EXOCT
BASE 0 ; The base is octal.

ONE OCTMIC 1,2
_* “ONE” ; Returns 1 in 2 digits.
* 01 ; Returns 1 in 2 digits.
TWO OCTMIC 5*7+60+700,3
_* “TWO” ; Returns 1023 in 3 digits.
*
* 023 ; Returns 1023 in 3 digits.
*
THREE OCTMIC 256000,10,ZERO
_* “THREE” ; Zero fill on the left.
* 00256000 ; Zero fill on the left.
FOUR OCTMIC 256000,l0,BLANK
_* “FOUR” ; Blank fill (^) on the left.
*
* ^^256000 ; Blank fill (^) on the left.
*

END

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual Pseudo Instruction Descriptions [A]

259Cray Research, Inc.SR–3108 9.1

The OPDEF pseudo instruction marks the beginning of an
operation definition (opdef). The opdef identifies a sequence of
statements to be called later in the source program by an opdef
call. Each time the opdef call occurs, the definition sequence is
placed into the source program.

The OPDEF pseudo instruction is described in detail in subsection
6.3, page 154.

The OPSYN pseudo instruction defines an operation that is
synonymous with another macro or pseudo instruction
operation.

The OPSYN pseudo instruction is described in detail in subsection
6.12, page 186.

The ORG pseudo instruction resets the location and origin
counters to the value specified. ORG resets the location and
origin counters to the same value relative to the same section.

The ORG pseudo instruction forces a word boundary within the
current section and also within the new section specified by the
expression. These forced word boundaries occur before the
counter is reset. ORG can change the current working section
without modifying the section stack.

The ORG pseudo instruction is restricted to sections that allow
instructions or data, or instructions and data. If the ORG pseudo
instruction is found within a definition, it is defined and not
recognized as a pseudo instruction. If the ORG pseudo
instruction is found within a skipping sequence, it is skipped
and not recognized as a pseudo instruction.

The format of the ORG pseudo instruction is as follows:

ignored ORG [expression]

The expression variable is an optional immobile or relocatable
expression with positive relocation within the section currently
in use. If the expression is blank, the word address of the next
available word in the section is used. A force word boundary
occurs before the expression is evaluated.

OPDEF

OPSYN

ORG

Pseudo Instruction Descriptions [A] Cray Assembly Language (CAL) for CRAY PVP Systems Reference Manual

260 Cray Research, Inc. SR–3108 9.1

The expression must have a value or word-address attribute. If
the expression has a value attribute, it is assumed to be a word
address. If the expression exists, all symbols (if any) must be
defined previously. If the current base is mixed, octal is used as
the base.

The expression cannot have an address attribute of parcel, a
relative attribute of absolute or external, or a negative value.
The expression operand must meet the requirements for an
expression as described in subsection 4.7, page 94.

The following example illustrates the use of the ORG pseudo
instruction:

ORG W.*+0’200

A QUAL pseudo instruction begins or ends a code sequence in
which all symbols defined are qualified by a qualifier specified
by the QUAL pseudo instruction or are unqualified. Until the
first use of a QUAL pseudo instruction, symbols are defined as
unqualified for each program segment. Global symbols cannot
be qualified. The QUAL pseudo instruction must not occur before
an IDENT pseudo instruction.

A qualifier applies only to symbols. Names used for sections,
conditional sequences, duplicated sequences, macros, micros,
externals, formal parameters, and so on, are not affected.

You must specify the QUAL pseudo instruction from within a
program module. If the QUAL pseudo instruction is found within
a definition or skipping sequence, it is defined and is not
recognized as a pseudo instruction.

At the end of each program segment, all qualified symbols are
discarded.

The format of the QUAL pseudo instruction is as follows:

ignored QUAL */[name]

The name variable is optional and indicates whether symbols
will be qualified or unqualified and, if qualified, indicates the
qualifier to be used. The name operand must meet the
requirements for names as described subsection 4.3.1, page 70.

QUAL

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual Pseudo Instruction Descriptions [A]

261Cray Research, Inc.SR–3108 9.1

The name operand causes all symbols defined until the next
QUAL pseudo instruction to be qualified. A qualified symbol can
be referenced with or without the qualifier that is currently
active. If the symbol is referenced while some other qualifier is
active, the reference must be in the following form:

/qualifier/symbol

When a symbol is referenced without a qualifier, CAL tries to
find it in the currently active qualifier. If the qualified symbol is
not defined within the current qualifier, CAL tries to find it in
the list of unqualified symbols. If both of these searches fail, the
symbol is undefined.

An unqualified symbol can be referenced explicitly using the
following form:

//symbol

If the operand field of the QUAL is empty, symbols are
unqualified until the next occurrence of a QUAL pseudo
instruction. An unqualified symbol can be referenced without
qualification from any place in the program module, or in the
case of global symbols, from any program segment assembled
after the symbol definition.

An asterisk (*) resumes use of the qualifier in effect before the
most recent qualification within the current program segment.
Each occurrence of a QUAL other than a QUAL * causes the
initiation of a new qualifier. Each QUAL * removes the current
qualifier and activates the most recent prior qualification. If the
QUAL * statement is encountered and all specified qualifiers are
released, a caution-level message is issued and succeeding
symbols are defined as being unqualified.

Pseudo Instruction Descriptions [A] Cray Assembly Language (CAL) for CRAY PVP Systems Reference Manual

262 Cray Research, Inc. SR–3108 9.1

The following example illustrates the use of the QUAL pseudo
instruction:

* Assembler default for symbols is unqualified.
ABC = 1 ; ABC is unqualified.

QUAL QNAME1 ; Symbol qualifier QNAME1
ABC = 2 ; ABC is qualified by QNAME1.

J XYZ
XYZ S1 A2 ; XYZ is qualified by QNAME1.

.

.

.
QUAL QNAME2 ; Symbol qualifier QNAME2.

ABC = 3
J /QNAME1/XYZ
.
.
.
QUAL * ; Resume the use of symbols qualified with

; qualifier QNAME1.
.
.
.
QUAL * ; Resume the use of unqualified symbols
.
.
.

A IFA DEF,ABC ; TEst whether ABC is defined.
B IFA DEF,/QNAME1/ABC; Test if ABC is defined within qualifier

; QNAME1
C IFA DEF,/QNAME2/ABC; Test if /QNAME2/ABC is defined within

; qualifier QNAME2.
.
.
.

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual Pseudo Instruction Descriptions [A]

263Cray Research, Inc.SR–3108 9.1

The SECTION pseudo instruction establishes or resumes a
section of code. The section can be common or local, depending
on the options found in the operand field. Each section has its
own location, origin, and bit-position counters.

You must specify the SECTION pseudo instruction from within a
program module. If the SECTION pseudo instruction is found
within a definition, it is defined and is not recognized as a
pseudo instruction. If the SECTION pseudo instruction is found
within a skipping sequence, it is skipped and is not recognized as
a pseudo instruction.

The format of the SECTION pseudo instruction is as follows:

[lname] SECTION [type][“,” [location]][“,” [ENTRY]]
[lname] SECTION [location][“,” [type]][“,” [ENTRY]]
[lname] SECTION [type][“,” [ENTRY]][“,” [location]]
[lname] SECTION [location][“,” [ENTRY]][“,” [type]]
[lname] SECTION [ENTRY][“,” [location]][“,” [type]]
[lname] SECTION [ENTRY][“,” [type]][“,” [location]]
ignored SECTION *

The variables associated with the SECTION pseudo instruction
are described as follows:

• lname

The lname variable is optional and names the section. lname
must meet the requirements for long names as described in
subsection 4.3.1, page 70.

The length of the long name is restricted depending on the
type of loader table that the assembler is currently generating.
If the name is too long, the assembler issues an error message.

SECTION

Pseudo Instruction Descriptions [A] Cray Assembly Language (CAL) for CRAY PVP Systems Reference Manual

264 Cray Research, Inc. SR–3108 9.1

• type

The type variable specifies the type of section. It can be
specified in uppercase, lowercase, or mixed case. type can be
one of the following (for a description of local sections, see
subsection 3.6.1, page 54):

– MIXED

Defines a section that permits both instructions and data.
MIXED is the default type for the main section initiated by
the IDENT pseudo instruction. If type is not specified,
MIXED is the default. The loader treats a MIXED section as a
local section.

– CODE

Restricts a section to instructions only; data is not
permitted. The loader treats a CODE section as a local
section.

– DATA

Restricts a section to data only (CON, DATA, BSSZ, and so
on); instructions are not permitted. The loader treats the
DATA section as a local section.

– ZERODATA

Neither instructions nor data are allowed within this
section. The loader treats a ZERODATA section as a local
section. At load time, all space within a ZERODATA section
is set to 0.

– CONST

Restricts a section to constants only (CON, DATA, BSSZ, and
so on); instructions are not permitted. The loader treats the
CONST section as a local section.

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual Pseudo Instruction Descriptions [A]

265Cray Research, Inc.SR–3108 9.1

– STACK

Sets up a stack frame (designated memory area). Neither
data nor instructions are allowed. All symbols that are
defined using the location or origin counter and are relative
to a section that has a type of STACK are assigned a relative
attribute of immobile.

These symbols may be used as offsets into the STACK section
itself. These sections are treated like other section types
except relocation does not occur after assembly. Because
relocation does not occur, sections with a type of stack are
not passed to the loader.

Sections with a type of STACK conveniently indicate that
symbols are relative to an execution-time stack frame and
that their values correspond to an absolute location within
the stack frame relative to the base of the stack frame.
Symbols with stack attributes are indicated as such in the
debug tables that CAL produces.

Note: Accessing data from a stack section is not as
straightforward as accessing data directly from memory. For
more information about stacks, see the UNICOS Macros and
Opdefs Reference Manual, publication SR–2403.

– COMMON

Defines a common section that can be referenced by another
program module. Instructions are not allowed.

Data cannot be defined in a COMMON section without a name
(no name in location field); only storage reservation can be
defined in an unnamed COMMON section. The location field
that names a COMMON section cannot match the location field
name of a previously defined section with a type of COMMON,
DYNAMIC, ZEROCOM, or TASKCOM. If duplicate location field
names are specified, an error level message is issued.

For a description of unnamed (blank) COMMON, see
subsection 3.6.2, page 55.

Pseudo Instruction Descriptions [A] Cray Assembly Language (CAL) for CRAY PVP Systems Reference Manual

266 Cray Research, Inc. SR–3108 9.1

– DYNAMIC

Allocates an expandable common section at load time.
DYNAMIC is a common section. Neither instructions nor
data are permitted within a DYNAMIC section; only storage
reservation can be defined in an unnamed DYNAMIC section.
The location field that names a DYNAMIC section cannot
match the location field name of a previously defined section
with a type of COMMON, DYNAMIC, ZEROCOM, or TASKCOM. If
duplicate location field names are specified, an error-level
message is issued.

For a description of blank DYNAMIC, see subsection 3.6.2,
page 55.

– ZEROCOM

Defines a common section that can be referenced by another
program module. Neither instructions nor data are
permitted within a ZEROCOM section; only storage
reservation can be defined.

At load time, all uninitialized space within a ZEROCOM
section is set to 0. If a COMMON section with the same name
contains the initialized text that was referenced by another
module that will be loaded, portions of a ZEROCOM section
can be explicitly initialized to values other than 0.

ZEROCOM must always be named. The location field that
names a ZEROCOM section cannot match the location field
name of a previously defined section with a type of COMMON,
DYNAMIC, ZEROCOM, or TASKCOM. If duplicate location field
names are specified, an error level message is issued.

– TASKCOM

Defines a task common section. Neither instructions nor
data are allowed at assembly time. At execution time,
TASKCOM is set up and can be referenced by all subroutines
that are local to a task. Data also can be inserted at
execution time into a TASKCOM section by any subroutine
that is executed within a single task.

When a section is defined with a type of TASKCOM, CAL
creates a symbol that is assigned the name in the location
field of the SECTION pseudo instruction that defines the
section. This symbol is not redefinable, has a value of 0, an
address attribute of word, and a relative attribute that is

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual Pseudo Instruction Descriptions [A]

267Cray Research, Inc.SR–3108 9.1

relocatable relative to the section. The loader relocates this
symbol, and it is used as an offset into an execution time
task common table. The word at which it points within this
table contains the address of the base of the task common
section in memory.

All symbols defined using the location or origin counter
within a task common section are assigned a relative
attribute of immobile. These symbols are treated like other
symbols, but relocation does not occur after assembly.
These symbols can be used as offsets into the task common
section itself.

Sections with a type of TASKCOM indicate that their symbols
are relative to an execution-time task common section, and
their values correspond to an absolute location within the
task common section relative to the beginning of the task
common section. These values are indicated as such in the
debug tables that CAL produces. For a description of local
sections, see subsection 3.6.1, page 54.

TASKCOM must always be named. The location field that
names a TASKCOM section cannot match the location field
name of a previously defined section with a type of COMMON,
DYNAMIC, ZEROCOM, or TASKCOM. If duplicate location field
names are specified, an error level message is issued.

Note: Accessing data from a task common section is not as
straightforward as accessing data directly from memory. For
more information about task common, see the CF90 Fortran
Language Reference Manual, publication SR–3902.

• location

The kind of memory to which the section is assigned can be
uppercase, lowercase, or mixed case, and it must be:

CM Central or common memory (default).

• ENTRY

Sets a bit in the Program Descriptor table to direct segldr to
create an entry point at the same address as the first word of
the section.

Pseudo Instruction Descriptions [A] Cray Assembly Language (CAL) for CRAY PVP Systems Reference Manual

268 Cray Research, Inc. SR–3108 9.1

• *

The name, type, and location of the section in control reverts to
the name, type, and location of the section in effect before the
current section was specified within the current program
module. Each occurrence of a SECTION pseudo instruction
other than SECTION * causes a section with the name, type,
and location specified to be allocated. Each SECTION *
releases the currently active section and reactivates the
section that preceded the current section. If all specified
sections were released when a SECTION * is encountered,
CAL issues a caution-level message and uses the main section.

When type and/or location are not specified, MIXED and
common memory are used by default.

If type and/or location are not specified, the defaults are MIXED
for type and CM for location. Because a module within a program
segment is initialized without a name, these defaults, when
acting together, force this initial section entry to become the
current working section.

If the section name and attributes are previously defined, the
SECTION pseudo instruction makes the previously defined
section entry the current working section. If the section name
and attributes are not defined, the SECTION pseudo instruction
tries to create a new section with the name and attributes. The
following restrictions apply when a new section is created:

• A section of the type TASKCOM, COMMON, ZEROCOM, and a
section with a specified entry must always have a location
field name.

• If a section with a type of COMMON, DYNAMIC, ZEROCOM, or
TASKCOM is being created for the first time, it must never have
a name that matches a section that was created previously
with a type of COMMON, DYNAMIC, ZEROCOM, or TASKCOM.

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual Pseudo Instruction Descriptions [A]

269Cray Research, Inc.SR–3108 9.1

The following example illustrates the use of the SECTION pseudo
instruction:

ident exsect ; The Main section has by default a type of
. ; mixed and a location of common memory.
.
.
con 1 ; Data and instructions are permitted in
S1 1 ; the Main section.
.
.
.

dsect sectiondata ; This section is defined with a name of
. ; dsect, a type of data, and location of
. ; common memory.
.
con 3 ; Data is permitted in dsect.
bszz 2 ; Data is permitted in dsect.
.
.
.
S2 S3 ; CAL generates an error-level message
. ; because instructions are illegal in a
. ; section with a type of data.
.

csect sectioncommon ; This section is defined with a name of
. ; csect, a type of common, and by default a
. ; location of common memory.
.
data ’12345678’ ; Data is permitted in a named common

; section.
S2 A1 ; CAL generates an error-level message,
. ; because instructions are not permitted in
. ; a common section.
.
section ; This section is unnamed and is assigned

; by default a type of mixed and a location
; of common memory. When a section is
; specified without a name, a type, and a
; location, the main section becomes the
; current section.

section* ; The current section reverts to the
; previous section in the stack buffer
; csect.
 (continued)

Pseudo Instruction Descriptions [A] Cray Assembly Language (CAL) for CRAY PVP Systems Reference Manual

270 Cray Research, Inc. SR–3108 9.1

section* ; The current section reverts to the
; previous section in the stack buffer
; dsect.

con 2 ; A memory location with a value of 2 is
. ; inserted into dsect.
.
.
section* ; The current section reverts to the main
. ; section.
.
.

dsect sectioncode ; CAL considers this section specification
; unique and different from the previously
; defined section named dsect. Sections
; with types of mixed, code, data, and
; stack are treated as local sections that
; are specified with the same name

. ; therefore, are, considered unique if they

. ; are specified with different types.

.
s1 s2 ; Instructions are permitted in dsect.

csect sectioncommon,cm ; The current section reverts to the
; section defined previously as csect.
; When a section is specified with the
; name, type, and location of a previously

. ; defined section, the previously defined

. ; section becomes the current section.

.
section* ; The current section reverts to the main
. ; section
.
.
con 2 ; CAL generates an error–level message
. ; because data is not permitted in a
. ; section with a type of code.
.
section* ; This current section reverts to the main
. ; section.
.
.

 (continued)

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual Pseudo Instruction Descriptions [A]

271Cray Research, Inc.SR–3108 9.1

csect sectiondynamic ; CAL generates an error–level message,
; because the loader does not treat
; sections with types of common, dynamic,
; and taskcom as local sections Specifying
; a section with a previously defined name
; is illegal when the accompanying type
; does not define a local section.

end

The SET pseudo instruction resembles the = pseudo instruction;
however, a symbol defined by SET is redefinable.

You can specify the SET pseudo instruction anywhere within a
program segment. If the SET pseudo instruction is found within
a definition, it is defined and is not recognized as a pseudo
instruction. If the SET pseudo instruction is found within a
skipping sequence, it is skipped and is not recognized as a
pseudo instruction.

The format of the SET pseudo instruction is as follows:

[symbol] SET expression[, [attribute]]

The symbol variable specifies an optional unqualified symbol.
The symbol is implicitly qualified by the current qualifier. A
symbol defined with the SET pseudo instruction can be redefined
with another SET pseudo instruction, but the symbol must not be
defined prior to the first SET pseudo instruction. The location
field can be blank. symbol must meet the requirements for
symbols as described in subsection 4.3, page 69.

All symbols found within expression must have been previously
defined. The expression operand must meet the requirements for
an expression as described in subsection 4.7, page 94.

The attribute variable specifies a parcel (P), word (W), or value (V)
attribute. Attribute, if present, is used rather than the
expression’s attribute. If a parcel-address attribute is specified,
an expression with word-address attribute is multiplied by four;
if word-address attribute is specified, an expression with
parcel-address attribute is divided by four. An immobile or
relocatable expression cannot be specified as having a value
attribute.

SET

Pseudo Instruction Descriptions [A] Cray Assembly Language (CAL) for CRAY PVP Systems Reference Manual

272 Cray Research, Inc. SR–3108 9.1

The following example illustrates the use of the SET pseudo
instruction:

SIZE = o’100
PARAM SET D’18
WORD SET *W
PARCEL SET *P
SIZE = SIZE+1 ; Illegal
PARAM SET PARAM+2 ; Legal

The SKIP pseudo instruction unconditionally skips subsequent
statements. If a location field name is present, skipping stops
when an ENDIF or ELSE with the same name is encountered;
otherwise, skipping stops when the statement count is
exhausted.

You can specify the SKIP pseudo instruction anywhere within a
program segment. If the SKIP pseudo instruction is found
within a definition, it is defined and is not recognized as a
pseudo instruction. If the SKIP pseudo instruction is found
within a skipping sequence, it is skipped and is not recognized as
a pseudo instruction.

The format of the SKIP pseudo instruction is as follows:

[name] SKIP [count]

The name variable specifies an optional name for a conditional
sequence of code. If both name and count are present, name
takes precedence. name must meet the requirements for
identifiers as described in subsection 4.2, page 67.

The count variable specifies a statement count. It must be an
absolute expression with a positive value. All symbols in the
expression, if any, must be previously defined. A missing or null
count subfield gives a zero count. count is used only when the
location field is not specified. If name is not present and count is
present in the operand field, skipping stops when count is
exhausted. If neither name nor count is present, no skipping
occurs.

SKIP

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual Pseudo Instruction Descriptions [A]

273Cray Research, Inc.SR–3108 9.1

The following example illustrates the use of the SKIP pseudo
instruction:

SKIP ; No skipping occurs.
SNAME1 SKIP ; Statements are skipped if an ENDIF or

. ; ELSE with a matching location field

. ; label is found.

.
SNAME1 ENDIF

.

.

.
SNAME2 SKIP 10 ; Statements are skipped until an ENDIF

; or ELSE with a matching location field
. ; label is found.
.

SNAME2 ENDIF
.
.
.
SKIP 4 ; Four statements are skipped.

The SPACE pseudo instruction inserts the number of blank lines
specified into the output listing. SPACE is a list control pseudo
instruction and by default, is not listed. To include the SPACE
pseudo instruction on the listing, specify the LIS option on the
LIST pseudo instruction.

You can specify the SPACE pseudo instruction anywhere within a
program segment. If the SPACE pseudo instruction is found
within a definition, it is defined and is not recognized as a
pseudo instruction. If the SPACE pseudo instruction is found
within a skipping sequence, it is skipped and is not recognized as
a pseudo instruction.

The format of the SPACE pseudo instruction is as follows:

ignored SPACE [expression]

The expression variable specifies an optional absolute expression
that specifies the number of blank lines to insert in the listing.
expression must have an address attribute of value, a relative
attribute of absolute, and a value of 0 or greater.

SPACE

Pseudo Instruction Descriptions [A] Cray Assembly Language (CAL) for CRAY PVP Systems Reference Manual

274 Cray Research, Inc. SR–3108 9.1

If expression is not specified, the absolute value of 1 is used and
one blank line is inserted into the output listing. If the current
base is mixed, a default of decimal is used for the expression.

The expression operand must meet the requirement for an
expression as described in subsection 4.7, page 94.

The STACK pseudo instruction increases the size of the stack.
Increments made by the STACK pseudo instruction are
cumulative. Each time the STACK pseudo instruction is used
within a module, the current stack size is incremented by the
number of words specified by the expression in the operand field
of the STACK pseudo instruction.

The STACK pseudo instruction is used in conjunction with
sections that have a type of STACK. If either a STACK section or
the STACK pseudo instruction is specified within a module, the
loader tables that the assembler produces indicate that the
module uses one or more stacks. The stack size indicated in the
loader tables is the combined sizes of all STACK sections, if any,
added to the total value of all STACK pseudo instructions, if any,
specified within a module.

You must specify the STACK pseudo instruction from within a
program module. If the STACK pseudo instruction is found
within a definition, it is defined and is not recognized as a
pseudo instruction. If the STACK pseudo instruction is found
within a skipping sequence, it is skipped and not recognized as a
pseudo instruction.

The format of the STACK pseudo instruction is as follows:

ignored STACK [expression]

The expression variable is optional. If specified, it must have an
address attribute of word or value, a relative attribute of
absolute, a positive value, and all symbols within it (if any) must
be defined previously.

If STACK is specified without expression, the stack is not
incremented. The expression operand must meet the
requirements for an expression as described in subsection 4.7,
page 94.

STACK

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual Pseudo Instruction Descriptions [A]

275Cray Research, Inc.SR–3108 9.1

The START pseudo instruction specifies the main program entry.
The program uses the START pseudo instruction to specify the
symbolic address at which execution begins following the loading
of the program. The named symbol can optionally be an entry
symbol specified in an ENTRY pseudo instruction.

You must specify the START pseudo instruction from within a
program module. If the START pseudo instruction is found
within a definition or skipping sequence, it is defined and is not
recognized as a pseudo instruction.

The format of the START pseudo instruction is as follows:

ignored START symbol

The symbol variable must be the name of a symbol that is
defined as an unqualified symbol within the same program
module. symbol must not be redefinable, must have a relative
attribute of relocatable, and cannot be relocatable relative to any
section other than a section that allows instructions or a section
that allows instructions and data. The START pseudo instruction
cannot be specified in a section with a type of data only.

The length of the symbol is restricted depending on the type of
loader table that the assembler is currently generating. If the
symbol is too long, an error message results.

The symbol operand must meet the requirements for symbols as
described subsection 4.3, page 69.

The following example illustrates the use of the START pseudo
instruction:

IDENT EXAMPLE
START HERE

HERE = *
.
.
.
END

START

Pseudo Instruction Descriptions [A] Cray Assembly Language (CAL) for CRAY PVP Systems Reference Manual

276 Cray Research, Inc. SR–3108 9.1

The STOPDUP pseudo instruction stops duplication of a code
sequence indicated by a DUP or ECHO pseudo instruction.

The STOPDUP pseudo instruction is described in detail in
subsection 6.10, page 180.

The SUBTITLE pseudo instruction specifies the subtitle that will
be printed on the listing. The instruction also causes a page
eject. SUBTITLE is a list control pseudo instruction and is, by
default, not listed. To include the SUBTITLE pseudo instruction
on the listing, specify the LIS option on the LIST pseudo
instruction.

You can specify the SUBTITLE pseudo instruction anywhere
within a program segment. If the SUBTITLE pseudo instruction
is found within a definition, it is defined and is not recognized as
a pseudo instruction. If the SUBTITLE pseudo instruction is
found within a skipping sequence, it is skipped and is not
recognized as a pseudo instruction.

The format of the SUBTITLE pseudo instruction is as follows:

ignored SUBTITLE [del-char[string-of-ASCII]del-char]

The del-char variable is the delimiting character. It must be a
single matching character on both ends of the ASCII character
string. Apostrophes and spaces are not legal delimiters; all
other ASCII characters are allowed. Two consecutive
occurrences of the delimiting character indicate a single such
character will be included in the character string.

The string-of-ASCII variable is an ASCII character string that
will be printed as the subtitle on subsequent pages of the listing.
This string replaces any previous string found within the
subtitle field.

Source lines that follow the TEXT pseudo instruction through the
next ENDTEXT pseudo instruction are treated as text source
statements. These statements are listed only when the TXT
listing option is enabled. A symbol defined in text source is
treated as a text symbol for cross-reference purposes; that is,
such a symbol is not listed in the cross-reference unless a
reference to the symbol from a listed statement exists. The text
name part of the cross-reference listing contains the text name.

STOPDUP

SUBTITLE

TEXT

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual Pseudo Instruction Descriptions [A]

277Cray Research, Inc.SR–3108 9.1

If the text appears in the global part of a program segment,
Symbols defined in text source are global. If the text appears
within a program module, symbols in text source are local.

TEXT is a list control pseudo instruction and is, by default, not
listed. The TEXT pseudo instruction is listed if the listing is on
or if the LIS listing option is enabled regardless of other listing
options.

The TEXT and ENDTEXT pseudo instructions have no effect on a
binary definition file.

You can specify the TEXT pseudo instruction anywhere within a
program segment. If the TEXT pseudo instruction is found
within a definition, it is defined and is not recognized as a
pseudo instruction. If the TEXT pseudo instruction is found
within a skipping sequence, it is skipped and is not recognized as
a pseudo instruction.

The format of the TEXT pseudo instruction is as follows:

[name] TEXT [del-char[string-of-ASCII]del-char]

The name variable is optional. It is used as the name of the
following source until the next ENDTEXT pseudo instruction. The
name found in the location field is the text name for all defined
symbols in the section, and it is listed in the text name part of
the cross-reference listing.

The name location must meet the requirements for names as
described in subsection 4.2, page 67.

The del-char variable is the delimiting character. It must be a
single matching character on both ends of the ASCII character
string. Apostrophes and spaces are not legal delimiters; all
other ASCII characters are allowed. Two consecutive
occurrences of the delimiting character indicate a single such
character will be included in the character string.

The string-of-ASCII variable is an ASCII character string that
will be printed as the subtitle on subsequent pages of the listing.
A maximum of 72 characters is allowed. This string replaces
any previous string found within the subtitle field.

Pseudo Instruction Descriptions [A] Cray Assembly Language (CAL) for CRAY PVP Systems Reference Manual

278 Cray Research, Inc. SR–3108 9.1

The TITLE pseudo instruction specifies the main title that will
be printed on the listing. TITLE is a list control pseudo
instruction and is, by default, not listed. To include the TITLE
pseudo instruction on the listing, specify the LIS option on the
LIST pseudo instruction.

You can specify the TITLE pseudo instruction anywhere within a
program segment. If the TITLE pseudo instruction is found
within a definition, it is defined and is not recognized as a
pseudo instruction. If the TITLE pseudo instruction is found
within a skipping sequence, it is skipped and is not recognized as
a pseudo instruction.

The format of the TITLE pseudo instruction is as follows:

ignored TITLE [del-char[string-of-ASCII]del-char]

The del-char variable is the delimiting character. It must be a
single matching character on both ends of the ASCII character
string. Apostrophes and spaces are not legal delimiters; all
other ASCII characters are allowed. Two consecutive
occurrences of the delimiting character indicate a single such
character will be included in the character string.

The string-of ASCII variable is an ASCII character string that
will be printed to the diagnostic file. A maximum of 72
characters is allowed.

The VWD pseudo instruction allows data to be generated in fields
that are from 0 to 64 bits wide. Fields can cross word
boundaries. Data begins at the current bit position unless a
symbol is used in the location field. If a symbol is present within
the location field, a forced word boundary occurs, and the data
begins at the new current bit position.

Code for each subfield is packed tightly with no unused bits
inserted.

The VWD pseudo instruction is restricted to sections that have a
type of instructions, data, or both. If the VWD pseudo instruction
is found within a definition, it is defined and is not recognized as
a pseudo instruction. If the VWD pseudo instruction is found
within a skipping sequence, it is skipped and is not recognized as
a pseudo instruction.

TITLE

VWD

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual Pseudo Instruction Descriptions [A]

279Cray Research, Inc.SR–3108 9.1

The format of the VWD pseudo instruction is as follows:

[symbol] VWD [count/ [expression]][, [count/ [expression]]]

The symbol variable represents an optional symbol. If symbol is
present, a force word boundary occurs. The symbol is defined
with the value of the location counter after the force word
boundary and has an address attribute of word. symbol must
meet the requirements for symbols as described in subsection
4.3, page 69.

The count variable specifies the number of bits in the field. It
can be a numeric constant or symbol with absolute and value
attributes. count must be positive and less than or equal to 64.
If a symbol is specified for count, it must have been previously
defined. If one or more count entries are not valid, no code is
generated for the entire set of subfields in the operand field;
however, each subfield is still evaluated.

The expression variable represents the expression whose value
will be inserted in the field. If expression is missing, the
absolute value of 0 is used. If count is not equal to 0, the count is
the number of bits reserved to store the following expression, if
any. expression must meet the requirement for expressions as
described in subsection 4.7, page 94.

The following example illustrates the use of the VWD pseudo
instruction:

BASE M
PDT BSS 0

VWD 1/SIGN,3/0,60A’“NAM”’R
; 1000000000000023440515
; 10000000653

REMDR = 64–*W ; 41
VWD REMDR/DSN ; 00011044516

In the preceding example, the value of SIGN is 1, the value of FC
is 0, the value of ADD is 653 (octal), and the value of DSN is $IN
in ASCII code.

User Messages [B]

281Cray Research, Inc. – DRAFTSR–3108 8.3

Text to be supplied later

Character Set [C]

353Cray Research, Inc.SR–3108 9.1

Table 4 lists the character sets supported by CAL.

Table 4. Character set

Character
ASCII code
(octal/hex)

EBCDIC
code (hex)

CDC code
(octal)

NUL 000/00 00 None

SOH 001/01 01 None

STX 002/02 02 None

ETX 003/03 03 None

EOT 004/04 37 None

ENQ 005/05 2D None

ACK 006/06 2E None

BEL 007/07 2F None

BS 010/08 16 None

HT 011/09 05 None

LF 012/0A 25 None

VT 013/0B 0B None

FF 014/0C 0C None

CR 015/0D 0D None

SO 016/0E 0E None

SI 017/0F 0F None

DLE 020/10 10 None

DC1 021/11 11 None

DC2 022/12 12 None

DC3 023/13 13 None

DC4 024/14 14 None

NAK 025/15 3D None

Character Set [C] Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual

354 Cray Research, Inc. SR–3108 9.1

Table 4. Character set
(continued)

Character
CDC code
(octal)

EBCDIC
code (hex)

ASCII code
(octal/hex)

SYN 026/16 32 None

ETB 027/17 26 None

CAN 030/18 18 None

EM 031/19 19 None

SUB 032/1A 3F None

ESC 033/1B 27 None

FS 034/1C 1C None

GS 035/1D 1D None

RS 036/1E 1E None

US 037/1F 1F None

Space 040/20 40 55

! 041/21 5A 66

” 042/22 7F 64

043/23 7B 60

$ 044/24 5B 53

% 045/25 6C 63

& 046/26 50 67

’ 047/27 7D 70

(050/28 4D 51

) 051/29 5D 52

* 052/2A 5C 47

+ 053/2B 4E 45

, 054/2C 6B 56

– 055/2D 60 46

. 056/2E 4B 57

/ 057/2F 61 50

0 060/30 F0 33

1 061/31 F1 34

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual Character Set [C]

355Cray Research, Inc.SR–3108 9.1

Table 4. Character set
(continued)

Character
CDC code
(octal)

EBCDIC
code (hex)

ASCII code
(octal/hex)

2 062/32 F2 35

3 063/33 F3 36

4 064/34 F4 37

5 065/35 F5 40

6 066/36 F6 41

7 067/37 F7 42

8 070/38 F8 43

9 071/39 F9 44

: 072/3A 7A 00

; 073/3D 5E 77

< 074/3C 4C 72

= 075/3D 7E 54

> 076/3E 6E 73

? 077/3F 6F 71

@ 100/40 7C 74

A 101/41 C1 01

B 102/42 C2 02

C 103/43 C3 03

D 104/44 C4 04

E 105/45 C5 05

F 106/46 C6 06

G 107/47 C7 07

H 110/48 C8 10

I 111/49 C9 11

J 112/4A D1 12

K 113/4B D2 13

L 114/4C D3 14

M 115/4D D4 15

Character Set [C] Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual

356 Cray Research, Inc. SR–3108 9.1

Table 4. Character set
(continued)

Character
CDC code
(octal)

EBCDIC
code (hex)

ASCII code
(octal/hex)

N 116/4E D5 16

O 117/4F D6 17

P 120/50 D7 20

Q 121/51 D8 21

R 122/52 D9 22

S 123/53 E2 23

T 124/54 E3 24

U 125/55 E4 25

V 126/56 E5 26

W 127/57 E6 27

X 130/58 E7 30

Y 131/59 E8 31

Z 132/5A E9 32

[133/5B AD 61

\ 134/5C E0 75

] 135/5D BD 62

^ 136/5E 5F 76

_ 137/5F 6D 65

’ 140/69 79 None

a 141/61 81 None

b 142/62 82 None

c 143/63 83 None

d 144/64 84 None

e 145/65 85 None

f 146/66 86 None

g 147/67 87 None

h 150/68 88 None

i 151/69 89 None

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual Character Set [C]

357Cray Research, Inc.SR–3108 9.1

Table 4. Character set
(continued)

Character
CDC code
(octal)

EBCDIC
code (hex)

ASCII code
(octal/hex)

j 152/6A 91 None

k 153/6B 92 None

l 154/6C 93 None

m 155/6D 94 None

n 156/6E 95 None

o 157/6F 96 None

p 160/70 97 None

q 161/71 98 None

r 162/72 99 None

s 163/73 A2 None

t 164/74 A3 None

u 165/75 A4 None

v 166/76 A5 None

w 167/77 A6 None

x 170/78 A7 None

y 171/79 A8 None

z 172/7A A9 None

{ 173/7B C0 None

} 174/7C 6A None

| 175/7D D0 None

~ 176/7E A1 None

DEL 177/7F 07 None

Symbolic Instruction Summary [D]

359Cray Research, Inc.SR–3108 9.1

This appendix provides tables of symbolic machine instructions
for Cray PVP systems. See appendix E, page 369, for specific
machine applications.

Table 5. Register entry instructions

 CAL syntax Opcode CAL syntax Opcode

Ah exp 01h Ai exp 020

Ai Ai: exp 020 Ai exp:A i 020

Ai #exp 021 Ai –exp 021

Ai PAj 026 Ai QAj 026

Ai –1 031 S i exp 040

Si Si: exp 040 Si exp:S i 040

Si –exp 041 Si #exp 041

Ai <exp 042 Si #>exp 042

Si <exp 042 Ai >exp 043

Si >exp 043 Si #<exp 043

Si SB 051 Si #SB 047

Si 0 043 S i 1 042

Si –1 042 S i 1. 071

Si 4. 071 S i 2. 071

Si 0.4 071 S i 0.6 071

SMjk 1,TS 003 SM,A k 1,TS 003

SMjk 0 003 SM,Ak 0 003

SMjk 1 003 SM,Ak 1 003

Vi,A k 0 077 Vi 0 145

VL 1 002 VM 0 003

VM0 0 003 VM1 0 003

Symbolic Instruction Summary [D] Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual

360 Cray Research, Inc. SR–3108 9.1

Table 6. Interregister transfers

 CAL syntax Opcode CAL syntax Opcode

Ai Ak 030 Ai –Ak 031

Ai CI 033 A i CA,Aj 033

Ai CE,Aj 033 Ai Bjk 024

Ai EA, j 023 Ai EA,A j 023

EA, j Ai 027 EA,A j Ai 027

Bjk Ai 025 Ai VL 023

VL Ak 002 Ai SB,A j,+1 026

Ai SB,+1 026 A i SB,A j 026

Ai SBj 026 SB,A j Ai 027

SBj Ai 027 Ai Sj 023

Si Ak 071 Si +Ak 071

Si Sk 051 Si –Sk 061

Si #Sk 047 Si +FAk 071

Si +FSk 062 Si –FSk 063

Si Tjk 074 T jk Si 075

Si STj 072 Si ST,A j 072

STj Si 073 ST,A j Si 073

Si SM 072 SM Si 073

Si SRj 073 SRj Si 073

Si RT 072 Si VM 073

Si VM0 073 VM Sj 003

VM0 Aj 003 VM1 Aj 003

VM0 Sj 003 Si VM1 073

Ai VM0 073 Ai VM1 073

SETRM Si 073

VM1 Sj 003 Si Vj,A k 076

Vi CI ,Sj&VM 070 Vi 0 145

Vi –FVk 172

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual Symbolic Instruction Summary [D]

361Cray Research, Inc.SR–3108 9.1

Table 7. Memory transfers

 CAL syntax Opcode CAL syntax Opcode

DBM 002 EBM 002

CMR 002 CPA 002

CPR 002 CPW 002

DRI 002 ERI 002

ESC 002 DSC 002

,A0 B jk,A i 035 Bjk,A i ,A0 034

,A0 T jk,A i 037 T jk,A i ,A0 036

0,A0 B jk,A i 035 Bjk,A i 0,A0 034

0,A0 T jk,A i 037 T jk,A i 0,A0 036

Ai exp,A h,BC 10 h Ai exp,A h 10h

exp,Ah Ai 11h Si exp, Ah,BC 12 h

exp,Ah Si 13h Si exp, Ah 12h

exp,0 A i 110 Ai exp,0 100

exp,0 S i 130 Si exp,0 120

exp, A i 110 Ai exp, 100

exp, S i 130 Si exp, 120

,A h Ai 11h Ai ,A h 10h

,A h Si 13h Si ,A h 12h

,A0,A k Vj 177 Vi ,A0,A k 176

,A0,1 V j 177 Vi ,A0,1 176

,A0,V k Vj 177 Vi ,A0,V k 176

Vi,Vj ,A0:A k,Vk 176

Symbolic Instruction Summary [D] Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual

362 Cray Research, Inc. SR–3108 9.1

Table 8. Program jumps and exits

 CAL syntax Opcode CAL syntax Opcode

J exp 006 J Bjk 005

IJ exp 006 IR exp 006

R exp 007 JINV Bjk 005

JAZ exp 010 JAN exp 011

JAP exp 012 JAM exp 013

JSZ exp 014 JSN exp 015

JSP exp 016 JSM exp 017

JTSjk exp 006 JTS ,Ak exp 006

EX 004 ERR 000

Table 9. Bit count instructions

 CAL syntax Opcode CAL syntax Opcode

Ai PAj 026 Ai QAj 026

Ai PSj 026 Ai QSj 026

Ai ZSj 027 Ai ZAj 027

Vi PVj 174 Vi QVj 174

Vi ZVj 175

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual Symbolic Instruction Summary [D]

363Cray Research, Inc.SR–3108 9.1

Table 10. Shift instructions

 CAL syntax Opcode CAL syntax Opcode

S0 Si<exp 052 A0 Ai<exp 052

A0 Ai>exp 053 S0 Si>exp 053

Si Si<exp 054 Ai Ai<exp 054

Ai Ai>exp 055 Si Si>exp 055

Si Si,S j<Ak 056 Si Si<Ak 056

Si Si,S j<1 056 A i Ai,A j<Ak 056

Si Sj,S i>Ak 057 Si Sj,S i>1 057

Ai Ai,A j>Ak 057 Si Si>Ak 057

Vi Vj<Ak 150 Vi Vj<V0 150

Vi Vj<1 150 Vi Vj>Ak 151

Vi Vj>1 151 Vi Vj>V0 151

Vi Vj,A k 152 Vi Vj,V j<1 152

Vi Vj,V j<Ak 152 Vi Vj,V j>1 153

Vi Vj,V j>Ak 153 Vj,[VM] Vi 153

Vi Vj,[VM] 153

Table 11. Integer arithmetic operations

 CAL syntax Opcode CAL syntax Opcode

Ai Aj+Ak 030 Ai Aj+1 030

Ai Aj–Ak 031 Ai Aj–1 031

Ai Aj*Ak 032

Si Sj+Sk 060 Si Sj–Sk 060

Vi Sj+Vk 154 Vi Vj+Vk 155

Vi Sj–Vk 156 Vi Vj–Vk 157

Vi Vj*LVk 165 Vi Vj*UVk 165

Vi Sj*LVk 165 Vi Sj*UVk 165

Vi Sj*Vk 166 Vi FLT,V j 167

Symbolic Instruction Summary [D] Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual

364 Cray Research, Inc. SR–3108 9.1

Table 12. Floating-point operations

 CAL syntax Opcode CAL syntax Opcode

EFI 002 DFI 002

CFP 002

Si Sj+FSk 062 Si +FSk 062

Si Sj–FSk 063 Si –FSk 063

Si Sj*FSk 064 Si Sj*HSk 065

Si Sk/FS j 065 Si Sj*LSk 066

Si Sj*USk 066 Si Sj*IS k 067

Si Sj*RSk 066 Si FLT,S j 070

/HSj 070 Si SQRT,Sj 070

Si INT,S j 070 Si RINT,S j 070

Vi Sj*FVk 160 Vi Sj*HVk 162

Vi Vj*FVk 161 Vi Vj*HVk 163

Vi Vk/FSj 162 Vi Vk/FVj 162

Si Sj,EQ,S k 164 Si Sj,NE,S k 164

Si Sj,GT,S k 164 Si Sj,LE,S k 164

Si Sj,LT,S k 164 Si Sj,GE,S k 164

Si Sj,UN,S k 164 VM Sj,EQ,V k 164

VM Sj,NE,V k 164 VM Sj,GT,V k 164

VM Sj,LE,V k 164 VM Sj,LT,V k 164

VM Sj,GE,V k 164 VM Sj,UN,V k 164

VM Vj,EQ,V k 164 VM Vj,NE,V k 164

VM Vj,GT,V k 164 VM Vj,LE,V k 164

VM Vj,LT,V k 164 VM Vj,GE,V k 164

VM Vj,UN,V k 164

Vi Sj*RVk 164 Vi Sj*IV k 166

Vi Vj*RVk 165 Vi Vj*IV k 167

Vi INT,V j 167 Vi RINT,V j 167

Vi Sj+FVk 170 Vi +FVk 170

Vi Sj–FVk 172 Vi –FVk 172

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual Symbolic Instruction Summary [D]

365Cray Research, Inc.SR–3108 9.1

Table 12. Floating-point operations

 CAL syntax OpcodeCAL syntaxOpcode

Vi Vj+FVk 171 Vi Vj–FVk 173

Vi SQRT,Vj 174

Vi ./HVj 174

Table 13. Logical operations

 CAL syntax Opcode CAL syntax Opcode

Ai Aj&Ak 044 Si SB&Sj 044

Si Sj&Sk 044 Si Sj&SB 044

Ai #Ak&Aj 045 Si #Sk&Sj 045

Si #SB&Sj 045 Ai Aj\A k 046

Si Sj\S k 046 Si Sj\SB 046

Si SB\S j 046 Si #Sj\S k 047

Ai #Aj\A k 047 Si #SB\S j 047

Si #Sj\SB 047 A i Aj!Ai&Ak 050

Si Sj!Si&Sk 050 Si Sj!Si&SB 050

Ai Aj!A k 051 Si Sj!S k 051

Si Sj!SB 051 S i SB!S j 051

Vi Sj&Vk 140 Vi Sj!V k 142

Vi Sj\V k 144 Vi Sj!V k&VM 146

Vi Vj&Vk 141 Vi Vj!V k 143

Vi Vj\V k 145 Vi Vj!V k&VM 147

Vi #VM&Vk 146

VM Vj,Z 175 VM Vj,N 175

VM Vj,P 175 VM Vj,M 175

Vi,VM Vj,Z 175 V i,VM Vj,N 175

Vi,VM Vj,P 175 Vi,VM Vj,M 175

Symbolic Instruction Summary [D] Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual

366 Cray Research, Inc. SR–3108 9.1

Table 14. Bit matrix multiply instructions

 CAL syntax Opcode CAL syntax Opcode

CBL 002 Si Sj*BT 070

BMM UVj 174 BMM Vj 174

Vi Vj*BT 174

Table 15. Pass and breakpoint instructions

 CAL syntax Opcode CAL syntax Opcode

PASS 001 EBP 002

DBP 002

Table 16. Monitor operations

 CAL syntax Opcode CAL syntax Opcode

CA,Aj Ak 001 CL,A j Ak 001

CI,A j 001 MC,Aj 001

DI,A j 001 EI,A j 001

Aj XA 001

XA Aj 001 CLN Aj 001

BP, k Aj 001 SIPI Aj 001

SIPI 001 CIPI 001

CCI 001 ECI 001

DCI 001 EMI 001

DMI 001 ESI 001

RT Sj 001 PCI Sj 001

IVC 001 BCD 001

IVCP Aj 001 IVCL Aj 001

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual Symbolic Instruction Summary [D]

367Cray Research, Inc.SR–3108 9.1

Table 16. Monitor operations

 CAL syntax OpcodeCAL syntaxOpcode

RNM 003 RUM 003

RZM 003 RDM 003

Instructions [E]

369Cray Research, Inc.SR–3108 9.1

This appendix lists symbolic machine instructions for Cray PVP
systems. The notes for Table 17 through Table 23 are as follows:

Notes Meaning

C Instruction is valid on CRAY C90 systems.

D Difference in operation between CRAY T90 mode and
CRAY C90 mode.

E Generation depends on the value of exp.

F Functionality of instruction is different on CRAY T90
systems with IEEE floating-point hardware.

I Instruction is only valid on CRAY T90 systems with
IEEE floating-point hardware.

J Instruction is valid on CRAY J90 systems.

M Privileged to monitor mode.

N New instruction.

R Revised instruction for IEEE floating-point format.

T Instruction is valid on CRAY T90 systems.

X Valid only on CRAY Y-MP systems running in X-mode
(X-mode not available on CRAY C90 systems).

Y Instruction is valid on CRAY Y-MP systems running in
Y-mode.

Instructions [E] Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual

370 Cray Research, Inc. SR–3108 9.1

The instructions listed in Table 17 are available on Cray PVP
systems as specified in the notes column. If the notes column is
empty, the instruction is valid on all Cray PVP systems.

Table 17. Common symbolic machine instructions

Opcode Notes CAL Unit Function

000000 ERR – Error exit.

0010 jk M CA,Aj Ak – Sets Current Address (CA) register
for channel indicated by (Aj) to the
value specified in (Ak), activates
channel.

001000 PASS – Pass instruction.

0011 jk M CL,A j Ak _ Sets Channel Limit (CL) register
for channel specified by (Aj) to
address specified by (Ak).

0012 j0 M CI,A j _ Clears interrupt flag and error flag
for channel specified by (Aj).

0012 j1 M MC,Aj _ Clears interrupt and error flags for
channel indicated by (Aj). If (Aj)
represents an output channel, sets
device master clear. If (Aj)
represents an input channel, clears
device ready-held.

0013 j0 M XA A j _ Enters XA register with (Aj).

0014 j0 M RT S j – Loads RTC register with (Sj).

0014 j1 M SIPI A j – Sets interprocessor interrupt
request to CPU (Aj); 0≤ (Aj)≤ 7 on
CRAY Y-MP systems.

001401 M SIPI – Sets interprocessor interrupt
request of CPU 0.

001402 M CIPI – Clears interprocessor interrupt.

Common
instructions
F.13

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual Instructions [E]

371Cray Research, Inc.SR–3108 9.1

Table 17. Common symbolic machine instructions
(continued)

Opcode FunctionUnitCALNotes

0014 j3 M CLN Aj – Loads Cluster Number (CLN)
register with (Aj); 0< (Aj) < 910 on
CRAY Y-MP systems, 0< (Aj) < 1710
on CRAY C90 systems.

0014 j4 M PCI Sj – Loads Interrupt Interval (II)
register with (Sj).

001405 M CCI – Clears clock interrupt.

001406 M ECI – Enables programmable clock
interrupt.

001407 M DCI – Disables programmable clock
interrupt.

001500 M,C,J,
Y

– Clears all performance monitor
counters.

00200 k VL Ak – Transmits (Ak) to VL (maximum VL
= 128 in C90-mode, 64 in Y-mode).

002000 VL 1 – Enters 1 into VL.

002100 EFI – Enables interrupt on floating-point
error.

002200 DFI – Disables interrupt on floating-point
error.

002300 ERI – Enables interrupt on operand
range error.

002400 DRI – Disables interrupt on operand
range error.

002500 DBM – Disables bidirectional memory
transfers.

002600 EBM – Enables bidirectional memory
transfers.

002700 CMR – Completes memory references.

Instructions [E] Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual

372 Cray Research, Inc. SR–3108 9.1

Table 17. Common symbolic machine instructions
(continued)

Opcode FunctionUnitCALNotes

0030 j0 VM Si – Transmits (Sj) to VM register.

003000 VM 0 – Clears VM register.

0034 jk SMjk 1,TS – Tests and sets semaphore jk,
0≤jk≤378. (Bit 22 of j=0.)

0036 jk SMjk 0 – Clears semaphore jk, 0≤jk≤378. (bit
22 of j=0.)

0037 jk SMjk 1 – Sets semaphore jk, 0≤jk≤378. (Bit 22

of j=0.)

004000 EX – Normal exit.

0050 jk J Bjk – Jumps to (Bjk).

006 ijkm J exp – Jumps to exp.

007 ijkm C,J,Y R exp – Return jump to exp; set B00 to
(P)+2.

010 ijkm C,J,Y JAZ exp – Jumps to exp if (A0)=0.

011 ijkm C,J,Y JAN exp – Jumps to exp if (A0)≠0.

012 ijkm C,J,Y JAP exp – Jumps to exp if (A0) positive;
includes (A0)=0.

013 ijkm C,J,Y JAM exp – Jumps to exp if (A0) negative.

014 ijkm C,J,Y JSZ exp – Jumps to exp if (S0)=0.

015 ijkm C,J,Y JSN exp – Jumps to exp if (S0)≠0.

016 ijkm C,J,Y JSP exp – Jumps to exp if (S0) positive;
includes (S0)=0.

017 ijkm C,J,Y JSM exp – Jumps to exp if (S0) negative.

020 i00nm E Ai exp – Transmits exp to Ai.

021 i00nm Ai exp – Transmits ones complement of exp
to Ai.

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual Instructions [E]

373Cray Research, Inc.SR–3108 9.1

Table 17. Common symbolic machine instructions
(continued)

Opcode FunctionUnitCALNotes

022 ijk E Ai exp – Transmits exp to Ai.

023 ij0 Ai Sj – Transmits (Sj) to Ai.

023 i01 Ai VL – Transmits (VL) to Ai.

024 ijk Ai Bjk – Transmits (Bjk) to Ai.

025 ijk Bjk Ai – Transmits (Ai) to Bjk.

026 ij0 Ai PSj Pop/LZ Population count of (Sj) to Ai.

026 ij1 Ai QSj Pop/LZ Population count parity of (Sj) to
Ai.

026 ij7 Ai SBj – Transmits (SBj) to Ai.

027 ij0 Ai ZSj Pop/LZ Leading zero count of (Sj) to Ai.

027 ij7 SBj Ai – Transmits (Ai) to SBj.

030 ijk Ai Aj+Ak A Int
Add

Integer sum of (Aj) and (Ak) to Ai.

030 ij0 Ai Aj+1 A Int
Add

Integer sum of (Aj) and 1 to Ai.

030 i0k Ai Ak A Int
Add

Transmits (Ak) to Ai.

031 ijk Ai Aj–Ak A Int add Integer difference of (Aj) less (Ak) to
Ai.

031 ij0 Ai Aj–1 A Int
Add

Integer difference of (Aj) less 1 to
Ai.

031 i00 Ai –1 A Int
Add

Enters –1 into Ai.

031 i0k Ai –Ak A Int
Add

Transmits the negative of (Ak) to
Ai.

032 ijk Ai Aj*A k A Int
Mult

Integer product of (Aj) and (Ak) to
Ai.

Instructions [E] Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual

374 Cray Research, Inc. SR–3108 9.1

Table 17. Common symbolic machine instructions
(continued)

Opcode FunctionUnitCALNotes

033 i00 Ai CI – Channel number of highest priority
interrupt request to Ai.

033 ij0 Ai CA,Aj – Address of channel (Aj) to Ai (j≠0).

033 ij1 Ai CE,Aj – Error flag of channel (Aj) to Ai (j≠0,
k=1); if C90 mode, include Done
flag.

034 ijk Bjk,A i ,A0 Memory Loads (Ai) words from memory
starting at address (A0) to B
registers starting at register jk.

034 ijk Bjk,A i 0,A0 Memory Loads (Ai) words from memory
starting at address (A0) to B
registers starting at register jk.

035 ijk ,A0 B jk,A i Memory Stores (Ai) words from B registers
starting at register jk to memory
starting at address (A0).

035 ijk 0,A0 B jk,A i Memory Stores (Ai) words from B registers
starting at register jk to memory
starting at address (A0).

036 ijk Tjk,A i ,A0 Memory Loads (Ai) words from memory
starting at address (A0) to T
registers starting at register jk.

036 ijk Tjk,A i 0,A0 Memory Loads (Ai) words from memory
starting at address (A0) to T
registers starting at register jk.

037 ijk ,A0 T jk,A i Memory Stores (Ai) words from T registers
starting at register jk to memory
starting at address (A0).

037 ijk 0,A0 T jk,A i Memory Stores (Ai) words from T registers
starting at register jk to memory
starting at address (A0).

040 i00nm Si exp – Enters exp into Si.

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual Instructions [E]

375Cray Research, Inc.SR–3108 9.1

Table 17. Common symbolic machine instructions
(continued)

Opcode FunctionUnitCALNotes

041 i00nm Si #exp – Enter ones complement of exp into
Si.

041 i00nm Si –exp – Enters twos complement of exp into
Si.

042 ijk Si <exp Logical Forms ones mask in Si exp bits
from the right; jk field gets 64 –
exp.

042 ijk Si #>exp Logical Forms zeros mask in Si exp bits
from the left; jk field gets exp.

042 i77 Si 1 Logical Enters 1 into Si.

042 i00 Si –1 Logical Enters –1 into Si.

043 i00 Si 0 Logical Clears Si.

043 ijk Si >exp Logical Forms ones mask in Si, exp bits
from the left; jk field gets exp.

043 ijk Si #<exp Logical Forms zeros mask in Si, exp bits
from the right; jk field gets 64 –
exp.

044 ijk Si Sj&Sk Logical Logical product of (Sj) and (Sk) to
Si.

044 ij0 Si Sj&SB Logical Sign bit of (Sj) to Si; j≠0.

044 ij0 Si SB&Sj Logical Sign bit of (Sj) to Si; j≠0.

045 ijk Si #Sk&Sj Logical Logical product of (Sj) and ones
complement of (Sk) to Si.

045 ij0 Si #SB&Sj Logical (Sj) with sign bit cleared to Si.

046 ijk Si Sj\S k Logical Logical difference of (Sj) and (Sk) to
Si.

046 ij0 Si Sj\SB Logical Enters (Sj) into Si with sign bit
toggled; j≠0.

Instructions [E] Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual

376 Cray Research, Inc. SR–3108 9.1

Table 17. Common symbolic machine instructions
(continued)

Opcode FunctionUnitCALNotes

046 ij0 Si SB\S j Logical Enters (Sj) into Si with sign bit
toggled; j≠0.

047 ijk Si #Sj\S k Logical Logical equivalence of (Sj) and (Sk)
to Si.

047 ij0 Si #Sj\SB Logical Logical equivalence of (Sj) and sign
bit to Si; j≠0.

047 ij0 Si #SB\S j Logical Logical equivalence of sign bit and
(Sj) to Si; j≠0.

047 i0k Si #Sk Logical Transmits ones complement of (Sk)
to Si.

047 i00 Si #SB Logical Enters ones complement of sign bit
into Si.

050 ijk Si Sj!S i&Sk Logical Scalar merge of (Si) and (Sj) to Si.

050 ij0 Si Sj!S i&SB Logical Scalar merge of (Si) and sign bit of
(Sj) to Si.

051 ijk Si Sj!S k Logical Logical sum of (Sj) and (Sk) to Si.

051 ij0 Si Sj!SB Logical Logical sum of (Sj) and sign bit to
Si; j≠0.

051 ij0 Si SB!S j Logical Logical sum of sign bit and (Sj) to
Si; j≠0.

051 i0k Si Sk Logical Transmits (Sk) to Si.

051 i00 Si SB Logical Enters sign bit into Si.

052 ijk S0 Si<exp Shift Shifts (Si) left exp places to S0.

053 ijk S0 Si>exp Shift Shifts (Si) right exp places to S0.

054 ijk Si Si<exp Shift Shifts (Si) left exp places to Si.

055 ijk Si Si>exp Shift Shifts (Si) right exp places to Si.

056 ijk Si Si,S j<Ak Shift Shifts (Si) and (Sj) left (Ak) places
to Si.

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual Instructions [E]

377Cray Research, Inc.SR–3108 9.1

Table 17. Common symbolic machine instructions
(continued)

Opcode FunctionUnitCALNotes

056 ij0 Si Si,S j<1 Shift Shifts (Si) and (Sj) left one place to
Si.

056 i0k Si Si<Ak Shift Shifts (Si) left (Ak) places to Si.

057 ijk Si Sj,S i>Ak Shift Shifts (Sj) and (Si) right (Ak) places
to Si.

057 ij0 Si Sj,S i>1 Shift Shifts (Sj) and (Si) right one place
to Si.

057 i0k Si Si>Ak Shift Shifts (Si) right (Ak) places to Si.

060 ijk Si Sj+Sk Int Add Integer sum of (Sj) and (Sk) to Si.

060 ij0 C,Y Si Sj+S0 Int Add Integer sum of (Sj) and the sign bit
to Si.

061 ijk Si Sj–Sk Int Add Integer difference of (Sj) less (Sk) to
Si.

061 ij0 C,Y Si Sj–S0 Int Add Integer difference of (Sj) less the
sign bit to Si.

061 i0k Si –Sk Int Add Transmits negative of (Sk) to Si.

062 ijk Si Sj+FSk Fp Add Floating-point sum of (Sj) and (Sk)
to Si.

062 i0k Si +FSk Fp Add Normalizes (Sk) to Si.

063 ijk Si Sj–FSk Fp Add Floating-point difference of (Sj) less
(Sk) to Si.

063 i0k Si –FSk Fp Add Transmits the negative of (Sk) as a
normalized floating-point value to
Si.

064 ijk Si Sj*FSk Fp Mult Floating-point product of (Sj) and
(Sk) to Si.

065 ijk Si Sj*HSk Fp Mult Half-precision, rounded,
floating-point product of (Si) and
(Sk) to Si.

Instructions [E] Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual

378 Cray Research, Inc. SR–3108 9.1

Table 17. Common symbolic machine instructions
(continued)

Opcode FunctionUnitCALNotes

066 ijk Si Sj*RSk Fp Mult Rounded, floating-point product of
(Sj) and (Sk) to Si.

067 ijk Si Sj*IS k Fp Mult 2 minus floating-point product of
(Sj) and (Sk) to Si.

070 ij0 Si /HS j Fp Rcpl Floating-point reciprocal
approximation of (Sj) to Si.

071 i0k Si Ak – Transmits (Ak) to Si with no sign
extension.

071 i1k Si +Ak – Transmits (Ak) to Si with sign
extension.

071 i2k Si +FAk – Transmits (Ak) to Si as an
unnormalized floating-point value.

071 i30 Si 0.6 – Transmits 0.75*(248) to Si as a
normalized floating-point constant.

071 i40 Si 0.4 – Transmits 0.5 to Si as a normalized
floating-point constant.

071 i50 Si 1. – Transmits 1.0 to Si as a normalized
floating-point constant.

071 i60 Si 2. – Transmits 2.0 to Si as a normalized
floating-point constant.

071 i70 Si 4. – Transmits 4.0 to Si as a normalized
floating-point constant.

072 i00 Si RT – Transmits (RTC) to Si.

072 i02 Si SM – Transmits semaphores to Si.

072 ij3 Si STj – Transmits (STj) register to Si.

073 i00 Si VM – Transmits (VM) to Si.

073 i02 SM Si – Loads semaphores from Si.

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual Instructions [E]

379Cray Research, Inc.SR–3108 9.1

Table 17. Common symbolic machine instructions
(continued)

Opcode FunctionUnitCALNotes

073 i01 Si SR0 – Transmits (SR0) to Si. This is the
only form of the SRj syntax valid on
CRAY Y-MP systems.

073 i05 SR0 Si – Transmits (Si) bits 248 through 252

to SR0.

073 i21 M,C,Y Si SR2 – Reads PM counters 00 through 17
and increment pointer. If in
Y-mode, increments performance
counter.

073 i31 M,C,Y Si SR3 – Reads PM counters 20 through 37
and increment pointer. If in
Y-mode, clears all maintenance
modes.

074 ijk Si Tjk – Transmits (Tjk) to Si.

075 ijk Tjk Si – Transmits (Si) to Tjk.

076 ijk Si Vj,A k – Transmits (Vj, element (Ak)) to Si.

077 ijk Vi,A k Sj – Transmits (Sj) to Vi element (Ak).

077 i0k Vi,A k 0 – Clears element (Ak) of register Vi.

100 i 00nm Ai exp,0 Memory Loads from (exp) to Ai.

100 i00nm Ai exp, Memory Loads from (exp) to Ai.

10hi0000 A i ,A h Memory Loads from (Ah) to Ai.

11hi00nm exp,A h Ai Memory Stores (Ai) to (Ah)+exp; Ah≠0.

110 i00nm exp,0 A i Memory Stores (Ai) to exp.

110 i00nm exp, A i Memory Stores (Ai) to exp.

11hi0000 ,A h Ai Memory Stores (Ai) to (Ah).

12hi00nm Si exp,A h Memory Loads from ((Ah)+exp) to Si; Ah≠0.

120 i00nm Si exp,0 Memory Loads from (exp) to Si.

Instructions [E] Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual

380 Cray Research, Inc. SR–3108 9.1

Table 17. Common symbolic machine instructions
(continued)

Opcode FunctionUnitCALNotes

120 i00nm Si exp, Memory Loads from (exp) to Si.

12hi0000 S i ,A h Memory Loads from (Ah) to Si.

13hi00nm exp,A h Si Memory Stores (Si) to (Ah)+exp; Ah≠0.

130 i00nm exp,0 Si Memory Stores (Si) to exp.

130 i00nm exp, Si Memory Stores (Si) to exp.

13hi0000 ,A h Si Memory Stores (Si) to (Ah).

140 ijk Vi Sj&Vk Logical Logical products of (Sj) and (Vk) to
Vi.

141 ijk Vi Vj&Vk Logical Logical products of (Vj) and (Vk) to
Vi.

142 ijk Vi Sj!V k Logical Logical sums of (Sj) and (Vk) to Vi.

142 i0k Vi Vk Logical Transmits (Vk) to Vi.

143 ijk Vi Vj!V k Logical Logical sums of (Vj) and (Vk) to Vi.

144 ijk Vi Sj\V k Logical Logical differences of (Sj) and (Vk)
to Vi.

145 ijk Vi Vj\V k Logical Logical differences of (Vj) and (Vk)
to Vi.

145 iii Vi 0 Logical Clears Vi.

146 ijk Vi Sj!V k&VM Logical Vector merge of (Sj) and (Vk) to Vi.

146 i0k Vi #VM&Vk Logical Vector merge of (Vk) and zero to Vi.

147 ijk Vi Vj!V k&VM Logical Vector merge of (Vj) and (Vk) to Vi.

150 ijk Vi Vj<Ak Shift Shifts (Vj) left (Ak) places to Vi.

150 ij0 Vi Vj<1 Shift Shifts (Vj) left one place to Vi.

151 ijk Vi Vj>Ak Shift Shifts (Vj) right (Ak) places to Vi.

151 ij0 Vi Vj>1 Shift Shifts (Vj) right one place to Vi.

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual Instructions [E]

381Cray Research, Inc.SR–3108 9.1

Table 17. Common symbolic machine instructions
(continued)

Opcode FunctionUnitCALNotes

152 ijk Vi Vj,V j<Ak Shift Double-shifts (Vj) left (Ak) places to
Vi.

152 ij0 Vi Vj,V j<1 Shift Double-shifts (Vj) left one place to
Vi.

153 ijk Vi Vj,V j>Ak Shift Double-shifts (Vj) right (Ak) places
to Vi.

153 ij0 Vi Vj,V j>1 Shift Double-shifts (Vj) right one place to
Vi.

154 ijk Vi Sj+Vk Int Add Integer sums of (Sj) and (Vk) to Vi.

155 ijk Vi Vj+Vk Int Add Integer sums of (Vj) and (Vk) to Vi.

156 ijk Vi Sj–Vk Int Add Integer differences of (Sj) and (Vk)
to Vi.

156 i0k Vi –Vk Int Add Transmits twos complement of (Vk)
to Vi

157 ijk Vi Vj–Vk Int Add Integer differences of (Vj) less (Vk)
to Vi.

160 ijk Vi Sj*FVk Fp Mult Floating-point products of (Sj) and
(Vk) to Vi.

161 ijk Vi Vj*FVk Fp Mult Floating-point products of (Vj) and
(Vk) to Vi.

162 ijk Vi Sj*HVk Fp Mult Half-precision, rounded,
floating-point products of (Sj) and
(Vk) to Vi.

163 ijk Vi Vj*HVk Fp Mult Half-precision, rounded,
floating-point products of (Vj) and
(Vk) to Vi.

164 ijk Vi Sj*RVk Fp Mult Rounded floating-point products of
(Sj) and (Vk) to Vi.

165 ijk Vi Vj*RVk Fp Mult Rounded floating-point products of
(Vj) and (Vk) to Vi.

Instructions [E] Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual

382 Cray Research, Inc. SR–3108 9.1

Table 17. Common symbolic machine instructions
(continued)

Opcode FunctionUnitCALNotes

166 ijk Vi Sj*V k Fp Mult 32-bit integer product of (Sj) and
(Vk) to Vi.

167 ijk Vi Vj*IV k Fp Mult Two minus floating-point products
of (Vj) and (Vk) to Vi.

170 ijk Vi Sj+FVk Fp Add Floating-point sums of (Sj) and (Vk)
to Vi.

170 i0k Vi +FVk Fp Add Normalizes (Vk) to Vi.

171 ijk Vi Vj+FVk Fp Add Floating-point sums of (Vj) and (Vk)
to Vi.

172 ijk Vi Sj–FVk Fp Add Floating-point differences of (Sj)
less (Vk) to Vi.

172 i0k Vi –FVk Fp Add Transmits normalized negative of
(Vk) to Vi.

173 ijk Vi Vj–FVk Fp Add Floating-point differences of (Vj)
less (Vk) to Vi.

174 ij0 Vi /HV j Fp Rcpl Floating-point reciprocal
approximations of (Vj) to Vi.

174 ij1 Vi PVj V Pop Population count of (Vj) to Vi.

174 ij2 Vi QVj V Pop Population count parities of (Vj) to
Vi.

1750 j0 VM Vj,Z V Logical Sets VM bits for zero elements of Vj.

1750 j1 VM Vj,N V Logical Sets VM bits for nonzero elements of
Vj.

1750 j2 VM Vj,P V Logical Sets VM bits for positive elements of
Vj.

1750 j3 VM Vj,M V Logical Sets VM bits for negative elements
of Vj.

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual Instructions [E]

383Cray Research, Inc.SR–3108 9.1

Table 17. Common symbolic machine instructions

Opcode FunctionUnitCALNotes

175 ij4 Vi,VM Vj,Z V Logical Sets VM bits for zero elements of Vj,
and register Vi to the compressed
indices of Vj for zero elements of Vj.

175 ij5 Vi,VM Vj,N V Logical Sets VM bits for nonzero elements of
Vj, and register Vi to the
compressed indices of Vj for
nonzero elements of Vj.

175 ij6 Vi,VM Vj,P V Logical Sets VM bits for positive elements of
Vj, and register Vi to the
compressed indices of Vj for positive
elements of Vj.

175 ij7 Vi,VM Vj,M V Logical Sets VM bits for negative elements
of Vj, and register Vi to the
compressed indices of Vj for
negative elements of Vj.

176 i0k Vi ,A0,A k Memory Loads (VL) words from memory
starting at (A0) incrementing by
(Ak) and load into Vi.

176 i00 Vi ,A0,1 Memory Loads (VL) words from consecutive
memory addresses starting with
(A0) and load into Vi.

176 i1k Vi ,A0,V k Memory Reads (VL) words to Vi from (A0) +
(Vk)

1770 jk ,A0,A k Vj Memory Stores (VL) words from (Vj) to
memory starting at (A0)
incrementing by (Ak).

1770 j0 ,A0,1 V j Memory Stores (Vj) to memory in
consecutive addresses starting with
(A0).

1771 jk ,A0,V k Vj Memory Stores (VL) words from Vj to (A0) +
(Vk).

Instructions [E] Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual

384 Cray Research, Inc. SR–3108 9.1

The instructions listed in Table 18 are available on all
CRAY J90 and CRAY Y-MP systems.

Table 18. CRAY J90 and CRAY Y-MP symbolic machine instructions

Opcode Notes CAL Unit Function

0015 j0 M – Selects performance monitor.

001501 M – Disables Port A error correction.

001511 M – Disables Port B error correction.

001521 M – Disables Port D error correction.

001531 M – Enables T register data to be
routed through Port D error
correction, rather than Port B.

001541 M – Enables replacement of check byte
with data on Ports C and D writes,
and replacement of data with check
bytes on Ports A, B, and D reads.

001551 M – Enables replacement of check byte
with Vk data on Port C during
execution of 1771 jk.

01hijkm X,E Ah exp – Transmits exp to Ah (bit 22 of i=1).

020 ijkm X,E Ai exp – Transmits exp to Ai.

021 ijkm X Ai #exp – Transmits ones complement of exp
to Ai.

021 ijkm X Ai –exp – Transmits twos complement of exp
to Ai.

040 ijkm X Si exp – Enters exp into Si.

041 ijkm X Si #exp – Enters ones complement of exp into
Si.

041 ijkm X Si –exp – Enters twos complement of exp into
Si.

CRAY J90 and
CRAY Y-MP
specific
instructions
F.14

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual Instructions [E]

385Cray Research, Inc.SR–3108 9.1

Table 18. CRAY J90 and CRAY Y-MP symbolic machine instructions
(continued)

Opcode FunctionUnitCALNotes

10hijkm X Ai exp,A h Memory Loads from ((Ah)+exp) to Ai; Ah≠0.

100 ijkm X Ai exp,0 Memory Loads from (exp) to Ai.

100 ijkm X Ai exp, Memory Loads from (exp) to Ai.

10hi000 X Ai ,A h Memory Loads from (Ah) to Ai.

10hi00nm Y Ai exp,Ah Memory Loads Ai from ((Ah)+exp)

11hijkm X exp,A h Ai Memory Stores (Ai) to (Ah)+exp; Ah≠0.

110 ijkm X exp,0 A i Memory Stores (Ai) to exp.

110 ijkm X exp, A i Memory Stores (Ai) to exp.

11hi000 X ,A h Ai Memory Stores (Ai) to (Ah).

12hijkm X Si exp,A h Memory Loads from ((Ah)+exp) to Si; Ah≠0.

120 ijkm X Si exp,0 Memory Loads from (exp) to Si.

120 ijkm X Si exp, Memory Loads from (exp) to Si.

12hi000 X Si ,A h Memory Loads from (Ah) to Si.

13hijkm X exp,A h Si Memory Stores (Si) to (Ah)+exp; Ah≠0.

130 ijkm X exp,0 Si Memory Stores (Si) to exp.

130 ijkm X exp, Si Memory Stores (Si) to exp.

13hi000 X ,A h Si Memory Stores (Si) to (Ah).

166 ijk X Vi Sj*IV k Fp Mult Two minus floating-point products
of (Sj) and (Vk) to Vi.

Instructions [E] Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual

386 Cray Research, Inc. SR–3108 9.1

The instructions listed in Table 19 are specific to CRAY C90
systems and CRAY T90 systems running in C90 mode.

Table 19. CRAY C90 symbolic machine instructions

Opcode Notes CAL Unit Function

0012 j2 M DI,A j _ Disables channel (Aj)
interrupts.

0012 j3 M EI,A j _ Enables channel (Aj)
interrupts.

001302 M EMI _ Enables monitor mode
interrupt modes.

001303 M DMI _ Disables monitor mode
interrupt modes.

001600 M ESI – Enables system I/O interrupts.

0017 jk M BP, k Aj – Transmits (Aj) to breakpoint
address k. k=0 sets
lower-address limit; k=1 sets
upper-address limit.

002301 EBP – Enables interrupt on
breakpoint.

002401 DBP – Disables interrupt on
breakpoint.

002704 CPA – Complete port reads and
writes.

002705 CPR – Completes port reads.

002706 CPW – Completes port writes.

0030 j0 VM0 Sj – Transmits (Sj) to VM register.

003000 VM0 0 – Clears VM register.

0030 j1 VM1 Sj – Transmits (Sj) to VM upper
register.

003001 VM1 0 – Clears VM1 register.

CRAY C90 specific
instructions
F.15

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual Instructions [E]

387Cray Research, Inc.SR–3108 9.1

Table 19. CRAY C90 symbolic machine instructions
(continued)

Opcode FunctionUnitCALNotes

0034 jk SM,Ak 1,TS – Test and set semaphore (Ak)
(Bit 22 of j=1.)

0036 jk SM,Ak 0 – Clears semaphore (Ak). (Bit 22

of j=1.)

0037 jk SM,Ak 1 – Sets semaphore (Ak). (Bit 22 of
j=1.)

00400 k EXk – Exit k.

0051 jk JINV B jk – Jumps to (Bjk) (maintenance
only, invalidate instruction
buffers).

006000 nm J exp – Jumps to exp.

0064 jknm JTSjk exp – Jumps to exp if SMjk=1; else,
set SMjk = 1 (bit 22 of j=0).

0064 jknm JTS,A k exp – Jump to exp if SM,Ak=1; else set
SM,Ak = 1 (bit 22 of j=1).

026 ij2 D Ai PAj Pop/LZ Population count of (Aj) to Ai.

026 ij3 D Ai QAj Pop/LZ Population count parity of (Aj)
to Ai.

026 ij4 Ai SB,A j,+1 – Transmits (SB) designated by
(Aj) to Ai, increment by 1.

026 ij5 Ai SBj,+1 – Transmits (SBj) to Ai;
increment by 1.

026 ij6 Ai SB,A j – Transmits (SB) designated by
(Aj) to Ai.

027 ij6 SB,A j Ai – Transmits (A i) to SB
designated by (Aj).

040 i20nm Si Si:exp – Transmits exp into Si bits
20-231 bits 232–263 are
unchanged.

Instructions [E] Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual

388 Cray Research, Inc. SR–3108 9.1

Table 19. CRAY C90 symbolic machine instructions

Opcode FunctionUnitCALNotes

040 i40nm Si exp:Si – Transmits exp into Si bits
232-263 bits 20–231 are
unchanged.

072 ij6 Si ST,A j – Transmits (ST) designated by
(Aj) to Si.

073 i00 Si VM0 – Transmits (VM) to Si.

073 i10 Si VM1 – Transmits (VM1) to Si.

073 ij1 M Si SRj – Transmits (SRj) to Si.

073 ij6 ST,A j Si – Transmits (Si) to ST designated
by (Aj).

073 ij5 SRj Si – Transmits (Si) to SRj.

073 i25 M SR2 Si – Issues PM maintenance
advance.

073 i75 M SR7 Si – Transmits (Si) to maintenance
mode register.

10hi20nm D Ai exp,Ah,BC Memory Loads Ai from ((Ah)+exp)
bypassing data cache and
invalidating cache line

005400 150 ij0 Vi Vj<V0 Shift Shifts (Vj) left (V0) places to Vi.

005400 151 ij0 Vi Vj>V0 Shift Shifts (Vj) right (V0) places to
Vi.

005400 152 ijk Vi Vj,A k Shift Transfers (Vj) starting at
element (Ak) to (Vi) starting at
element 0.

174 ij3 Vi ZVj V Pop Leading zero count of (Vj) to Vi.

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual Instructions [E]

389Cray Research, Inc.SR–3108 9.1

The instructions listed in Table 20 are specific to CRAY J90
systems. All of the instructions listed in this table are new
instructions.

Table 20. CRAY J90 symbolic machine instructions

Opcode Notes CAL Unit Function

0015 j0 M N/A _ Selects performance monitor.

001501 M N/A – Disables port A error
correction.

001511 M N/A – Disables port B error
correction.

001521 M N/A – Disables port D I/O error
correction.

001541 M N/A – Enables replacement of
checkbyte with data on ports
for writes and the replacement
of data with checkbytes on
ports for reads.

001551 M N/A – Replaces checkbits with Vk
data bits on the path to the VA
ASIC during execution of
instruction 1771 jk.

0016 j1 IVC – Send invalidate cache request
to CPU (Aj).

CRAY J90 specific
instructions
F.16

Instructions [E] Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual

390 Cray Research, Inc. SR–3108 9.1

The instructions listed in Table 21 are specific to CRAY T90
systems. The instructions listed in Table 19, page 386, are
available on CRAY T90 systems running in C90 mode.

Table 21. CRAY T90 symbolic machine instructions

Opcode Notes CAL Unit Function

0013 j1 M Aj XA _ Enters Aj register with (XA).

001640 M BCD – Broadcasts cluster detach.

0016 j1 M,N IVCP Aj – Invalidate cache in CPU (Aj).

0016 j2 M,N IVCL A j – Invalidate cache in CPUs in
cluster (Aj).

002101 N,I EFI INV – Enables floating-point invalid
interrupts.

002102 N,I EFI DIV – Enables floating-point divide
by zero interrupts.

002103 N,I EFI OVF – Enables floating-point
overflow interrupts.

002104 N,I EFI UNF – Enables floating-point
underflow interrupts.

002105 N,I EFI INX – Enables floating-point inexact
interrupts.

002106 N,I EFI INP – Enables floating-point
exceptional input interrupts.

002201 N,I DFI INV – Disables floating-point invalid
interrupts.

002202 N,I DFI DIV – Disables floating-point divide
by zero interrupts.

002203 N,I DFI OVF – Disables floating-point
overflow interrupts.

002204 N,I DFI UNF – Disables floating-point
underflow interrupts.

CRAY T90 specific
instructions
F.17

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual Instructions [E]

391Cray Research, Inc.SR–3108 9.1

Table 21. CRAY T90 symbolic machine instructions
(continued)

Opcode FunctionUnitCALNotes

002205 N,I DFI INX – Disables floating-point inexact
interrupts.

002206 N,I DFI INP – Disables floating-point
exceptional input interrupts.

002501 ESC – Enables scalar cache (sets
SCE to 1).

002601 DSC – Disables and invalidates
scalar cache (clears SCE to 0).

002707 N,I CFP – Completes all floating-point
operations.

0030 j2 VM0 Aj – Transmits (Aj) to VM register.

0030 j3 VM1 Aj – Transmits (Aj) to VM upper
register.

003004 N,I RNM – Sets round to nearest mode.

003005 N,I RUM – Sets round up mode.

003006 N,I RZM – Sets round to zero mode.

003007 N,I RDM – Sets round down mode.

006100 nm IJ exp – Jumps to address in exp.

007100 nm IR exp – Return jump to address in exp;
set BOO to (P)+3.

020 i20nm Ai Ai:exp – Transmits exp to low-order 32
bits of Ai.

020 i40nm Ai exp:Ai – Transmits exp to high-order 32
bits of Ai.

023 ij 6 M Ai EA, j – Transmits exit address j to Ai.

023 ij7 M Ai EA,A j – Transmits exit address (Aj) to
Ai.

026 ij2 D Ai PAj Pop/LZ Population count of (Aj) to Ai.

Instructions [E] Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual

392 Cray Research, Inc. SR–3108 9.1

Table 21. CRAY T90 symbolic machine instructions
(continued)

Opcode FunctionUnitCALNotes

026 ij3 D Ai QAj Pop/LZ Population count parity of (Aj)
to Ai.

027 ij1 Ai ZAj Pop/LZ Leading zero count of (Aj) to
Ai.

027 ij2 M EAj Ai – Transmits (Aj) to exit address
j.

027 ij3 M EA,A j

Ai – Transmits (Ai) to exit address
(Aj).

005400 042 ijk Ai <exp Logical Forms ones mask in Ai exp bits
from the right; jk field gets 64
– exp.

005400 043 ijk Ai >exp Logical Forms ones mask in Ai, exp
bits from the left; jk field gets
exp.

005400 044 ijk Ai Aj&Ak Logical Logical product of (Aj) and (Ak)
to Ai.

005400 045 ijk Ai #Ak&Aj Logical Logical product of (Aj) and (Ak)
to Ai.

005400 046 ijk Ai Aj\A k Logical Logical difference of (Aj) and
(Ak) to Ai.

005400 047 ijk Ai #Aj\A k Logical Logical equivalence of (Aj) and
(Ak) to Ai.

005400 050 ijk Ai Aj!A i&Ak Logical Merge Ai and Aj to Ai by using
(Ak) as mask.

005400 051 ijk Ai Aj!A k Logical Logical sum of (Aj) and (Ak) to
Ai.

005400 052 ijk A0 Ai<exp Shift Shifts (Ai) left exp places to A0.

005400 053 ijk A0 Ai>exp Shift Shifts (Ai) right exp places to
A0.

005400 054 ijk Ai Ai<exp Shift Shifts (Ai) left exp places to Ai.

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual Instructions [E]

393Cray Research, Inc.SR–3108 9.1

Table 21. CRAY T90 symbolic machine instructions
(continued)

Opcode FunctionUnitCALNotes

005400 055 ijk Ai Ai>exp Shift Shifts (Ai) right exp places to
Ai.

005400 056 ijk Ai Ai,A j<Ak Shift Shifts (Ai) and (Aj) left (Ak)
places to Ai.

005400 057 ijk Ai Aj,A i>Ak Shift Shifts (Aj) and (Ai) right (Ak)
places to Ai.

062 ijk R Si Sj+FSk – Floating-point Sj plus Sk to Si.

063 ijk R Si Sj–FSk – Floating-point Sj minus Sk to
Si.

064 ijk R Si Sj*FSk – Floating-point Sj times Sk to
Si.

065 ijk F Si Sj/FS j – Floating-point Sk divided by Sj
to Si.

066 ijk F Si Sj*LS k – Integer Sj times Sk to Si,
returning lower.

005400 066 ijk N,I Si Sj*USk – Integer Sj times Sk to Si,
returning upper.

070 ij0 F Si SQRT,Sj – Floating-point square root of
Sj to Si.

070 ij1 Vi CI,S j&VM – Transmit compressed index of
(Sj) controlled by (VM) to Vi

070 ij2 N,I Si INT,S j – Floating-point Sj to integer Si.

070 ij3 N,I Si RINT,S j – Floating-point Sj to rounded
integer Si.

070 ij4 N,I Si FLT,S j – Integer Sj to floating-point Si.

073 ij3 STj Si – Transmits (Si) to STj.

005400 073 i05 N,I SETRM Si – Set rounding mode from Si.

073 i20 Ai VM0 – Transmits (VM0) to Ai.

Instructions [E] Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual

394 Cray Research, Inc. SR–3108 9.1

Table 21. CRAY T90 symbolic machine instructions
(continued)

Opcode FunctionUnitCALNotes

073 i30 Ai VM1 – Transmits (VM1) to Ai.

10hi20nm D Ai exp,Ah,BC Memory Loads Ai from ((Ah)+exp)
bypassing data cache and
invalidating cache line

10hi40pnm Ai exp,Ah Memory Loads Ai from ((Ah)+exp)

10hi60pnm Ai exp,Ah,BC Memory Loads Ai from ((Ah)+exp)
bypassing data cache and
invalidating cache line

11hi40pnm exp,Ah Ai Memory Stores (Ai) to ((Ah)+exp)

12hi20nm Si exp,Ah,BC Memory Loads Si from ((Ah)+exp)
bypassing data cache and
invalidating cache line

12hi40pnm Si exp,Ah Memory Loads Si from ((Ah)+exp)

12hi60pnm Si exp,Ah,BC Memory Loads Si from ((Ah)+exp)
bypassing data cache and
invalidating cache line

13hi40pnm exp,Ah Si Memory Stores (Si) to ((Ah)+exp)

005400 153 ij0 Vi Vj,[VM] – Compress Vj by (VM) to Vi.

005400 153 ij1 Vj,[VM] V i – Expand Vj by [VM] to Vi.

160 ijk R Vi Sj*FVk – Floating-point Sj times Vk to
Vi.

161 ijk R Vi Vj*FVk – Floating-point Vj times Vk to
Vi.

162 ijk F Vi Vk/FS j – Floating-point Vk divided by Sj
to Vi.

163 ijk F Vi Vk/FV j – Floating-point Vk divided by Vj
to Vi.

005501 164 ijk N,I Si Sj,EQ,S k – Floating-point compare equal.

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual Instructions [E]

395Cray Research, Inc.SR–3108 9.1

Table 21. CRAY T90 symbolic machine instructions
(continued)

Opcode FunctionUnitCALNotes

005502 164 ijk N,I Si Sj,NE,S k – Floating-point compare not
equal.

005503 164 ijk N,I Si Sj,GT,S k – Floating-point compare
greater than.

005504 164 ijk N,I Si Sj,LE,S k – Floating-point compare less
than or equal.

005505 164 ijk N,I Si Sj,LT,S k – Floating-point compare less
than.

005506 164 ijk N,I Si Sj,GE,S k – Floating-point compare
greater than or equal.

005507 164 ijk N,I Si Sj,UN,S k – Floating-point compare
unordered.

005521 1640 jk N,I VM Sj,EQ,V k – Floating-point compare equal.

005522 1640 jk N,I VM Sj,NE,V k – Floating-point compare not
equal.

005523 1640 jk N,I VM Sj,GT,V k – Floating-point compare
greater than.

005524 1640 jk N,I VM Sj,LE,V k – Floating-point compare less
than or equal.

005525 1640 jk N,I VM Sj,LT,V k – Floating-point compare less
than.

005526 1640 jk N,I VM Sj,GE,V k – Floating-point compare
greater than or equal.

005527 1640 jk N,I VM Sj,UN,V k – Floating-point compare
unordered.

005541 1640 jk N,I VM Vj,EQ,V k – Floating-point compare equal.

005542 1640 jk N,I VM Vj,NE,V k – Floating-point compare not
equal.

005543 1640 jk N,I VM Vj,GT,V k – Floating-point compare
greater than.

Instructions [E] Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual

396 Cray Research, Inc. SR–3108 9.1

Table 21. CRAY T90 symbolic machine instructions
(continued)

Opcode FunctionUnitCALNotes

005544 1640 jk N,I VM Vj,LE,V k – Floating-point compare less
than or equal.

005545 1640 jk N,I VM Vj,LT,V k – Floating-point compare less
than.

005546 1640 jk N,I VM Vj,GE,V k – Floating-point compare
greater than or equal.

005547 1640 jk N,I VM Vj,UN,V k – Floating-point compare
unordered.

165 ijk F Vi Vj*LV k – Integer Vj times Vk to Vi
returning lower.

005400 165 ijk N,I Vi Vj*UVk – Integer Vj times Vk to Vi
returning upper.

166 ijk F Vi Sj*LV k – Integer Sj times Vk to Vi
returning lower.

005400 166 ijk N,I Vi Sj*UVk – Integer Sj times Vk to Vi
returning upper.

167 ij0 F Vi INT,V j – Floating-point Vj to integer Vi.

167 ij1 F Vi RINT,V j – Floating-point Vj to rounded
integer Vi.

167 ij2 F Vi FLT,V j – Integer Vj to floating-point Vi.

170 ijk R Vi Sj+FVk – Floating-point Sj plus Vk to Vi.

171 ijk R Vi Vj+FVk – Floating-point Vj plus Vk to Vi.

172 ijk R Vi Sj–FVk – Floating-point Sj minus Vk to
Vi.

173 ijk R Vi Vj–FVk – Floating-point Vj minus Vk to
Vi.

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual Instructions [E]

397Cray Research, Inc.SR–3108 9.1

Table 21. CRAY T90 symbolic machine instructions

Opcode FunctionUnitCALNotes

174 ij0 F Vi SQRT,Vj – Floating-point square root of
Vj to Vi.

005400 176 ijk Vi :Vj ,A0:A k,V k Memory Loads Vi from memory using
addresses (A0) + (Vk) and load
Vj from memory using
addresses (Ak) + (Vk).

The instructions listed in Table 22 are available only on systems
that support the bit matrix multiply (BMM) function.

Table 22. Bit matrix multiply symbolic machine instructions

Opcode Notes CAL Unit Function

002210 CBL – Clears the B matrix loaded bit in
the exchange package and the
status register.

070 ij6 N Si Sj*BT BMM Load single bit matrix element Sj
into the BMM functional unit.
Generate results of Sj*BT and store
the results in Si. Sj must be
left-justified and zero-filled.

1740j5 N BMM UVj – Transmits Vj elements 64 through
127 to B matrix.

Bit Matrix
multiply
instructions
F.18

Instructions [E] Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual

398 Cray Research, Inc. SR–3108 9.1

Table 22. Bit matrix multiply symbolic machine instructions

Opcode FunctionUnitCALNotes

174 ij4 BMM Vj BMM Load elements 0 through VL of Vj
into the BMM functional unit as Bt.
Matrix B must be stored in Vj.

174 ij6 Vi Vj*BT BMM Logical bit matrix multiply of Vj
and elements 0 through VL of
matrix Bt to Vi. Matrix A must be
left-justified and zero-filled in Vj;
result matrix C is stored in Vi
left-justified to bit 63.

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual Instructions [E]

399Cray Research, Inc.SR–3108 9.1

Table 23 shows special register values and logical operators.

Table 23. Special register values and logical operators

Register Value Logical operators

Ah, h=0 0 0101

Ai, i=0 (A0) 1100

Aj, j=0 0 (&, AND, Product) 0100

Ak, k=0 1

Si, i=0 (S0) 0101

Sj, j=0 0 1100

Sk, k=0 263 (!, OR, Sum) 1101

0101

1100

(\, XOR, Difference) 1001

Special register
values and logical
operators
F.19

