=R AY

RESEARCH, INC.

CRAY X-MP™ AND CRAY-1®
COMPUTER SYSTEMS

APML ASSEMBLER
REFERENCE MANUAL

SM-0036

Copyright® 1980, 1981, 1986 by CRAY RESEARCH, INC. This
manual or parts thereof may not be reproduced in any form
without permission of CRAY RESEARCH, INC.

G RANY

RECORD OF REVISION RESEARCH, INC. PUBLICATION NUMBER SM-0036

Each time this manual is revised and reprinted, all changes issued against the previous version are incorporated into the new version
and the new version is assigned an alphabetic level.

Every page changed by a reprint with revision has the revision level in the lower righthand corner. Changes to part of a page are noted
by a change bar in the margin directly opposite the change. A change bar in the margin opposite the page number indicates that the
entire page is new. If the manual is rewritten, the revision level changes but the manual does not contain change bars.

Requests for copies of Cray Research, Inc. publications should be directed to the Distribution Center and comments about these
publications should be directed to:

CRAY RESEARCH, INC.

2520 Pilot Knob Road

Suite 310

Mendota Heights, Minnesota 55120

Revision Description
November 1980 - Original printing.

A June 1981 - Reprint with revision. This version obsoletes the
previous edition and brings the manual into agreement with the
1.10 release. Major changes include the addition of the TEXT,
ENDTEXT and MODULE pseudo instructions. The manual has also
been reorganized.

A-01 April 1982 - Change packet. Brings the manual into agreement
with version 1.11 of the APML assembler. Major changes
include the deletion of the MODULE pseudo instruction, the
addition of the WRP, NWRP, WMR, and NWMR options to the APML
control statement and the LIST pseudo instruction, and the
addition of two warning errors: Y1 - EXTERNAL DECLARATION
ERROR and Y2 - MACRO REDEFINED. Miscellaneous technical and
editorial changes are also included.

A-02 March 1983 - Change packet. Brings the manual into agreement
with version 1.12 of the APML assembler. A major change
allows externals within absolute assembly. Changes also
include the addition of CPU time and release level and
assembly date to logfile messages; changing APML message
prefix from CA to AP; changing APML message for memory and I/0
use from octal to decimal; introduction of new predefined
micro and new CPU type on control card, new listed output
option where L takes precedence over E on control statement;
and miscellaneous technical and editorial changes.

SM-0036 ii B

B March 1986 - Reprint with revision. This reprint brings the
manual into agreement with APML 2.0 running under COS 1.15 and
APML 2.1 running under UNICOS 1.0. Section 3 is deleted; see
the IOS hardware manuals for the information this section
covered. Section 3 now covers APML invocation and execution.
The information on channel interface functions has been moved
from appendix C to section 7. The information in appendix E
has been moved to appendix C. All previous versions are
obsolete.

B-01 October 1986 - This change packet brings the manual into
agreement with APML version 3.0 running under UNICOS 2.0. The
changes to the UNICOS command line are: -h and -i options
have been added for the processing of list pseudos, the -o
option has been added allowing for the specification of the
binary object file, and the -y option has been changed to -g.
The syntax of the -s option and the handling of intermediate
files were changed. Miscellaneous technical and editorial
changes are also included. All trademarks are now documented
in the record of revision.

CRAY, CRAY-1, and SSD are registered trademarks and APML, CFT, CFT77,
CFT2, COS, CRAY-2, CRAY X-MP, CSIM, IOS, SEGLDR, SID, SUPERLINK,
SUPERLINK/ISP, and UNICOS are trademarks of Cray Research, Inc. The
UNICOS system is derived from the AT&T UNIX system; UNIX is a
registered trademark of ATS&T.

CDC is a registered trademark of Control Data Corporation.

SM-0036 iii B-01

PREFACE

The APML assembler allows you to express symbolically all hardware
functions of the Cray Research, Inc. (CRI) I/O Subsystem (IOS). This
detailed and precise level of programming is useful when tailoring
programs to the architecture of the IOS and writing programs requiring
code optimized to the hardware.

The pseudo instructions provided with APML's instruction set allow a
variety of options for generating macro instructions, controlling list
output, organizing programs, and so on.

The following CRI publications provide supplemental information on the
I10S:

SM-0007 IOS Table Descriptions Internal Reference Manual
HR-0030 I/0 Subsystem Model B Hardware Reference Manual
SG-0051 I/0 Subsystem (I0S) Operator's Guide For COS
HR-0081 I/0 Subsystem Model C Hardware Reference Manual
SG-2005 I/0 Subsystem (IOS) Operator's Guide For UNICOS

The following CRI publications may also interest you:

SR-0000 CAL Assembler Version 1 Reference Manual
SR-0011 COS Version 1 Reference Manual

SM-0044 Operational Aids Reference Manual
HR-0077 Disk Systems Hardware Reference Manual
SR-2003 CAL Assembler Version 2 Reference Manual

The IOS Software Internal Reference Manual, CRI publication SM-0046,
describes the system macro instructions available with APML.

SM-0036 v B

CONTENTS

PREFACE .

- - . . .

1. INTRODUCTION . . « « « « .«

1.1
1.2

EXECUTION OF THE APML ASSEMBLER

CONVENTIONS

2. APML ASSEMBLER LANGUAGE

2.1
2.2

.

[S I V]
S o

2.12

SM-0036

SOURCE LINE FORMAT
STATEMENT FORMAT
2.2.1 Comment statement

.

.

2.2.2 Symbolic APML instruction format .
format . . .

2.2.3 Pseudo instruction
CODING CONVENTIONS
LINE EDITING
2.4.1 Concatenation . .
2.4.2 Micro substitution
NAMES . . « « ¢ ¢ o o o o
SYMBOLS . ¢ ¢ & « & o o &
2.6.1 Symbol definition
2.6.2 Symbol attributes
SYMBOL REFERENCE
2.7.1 Qualified symbols
GLOBAL DEFINITIONS
SPECIAL ELEMENTS
DATA NOTATION
2.10.1 Numeric constants
2.10.2 Character constants
2.10.3 Data items

.

.

PREFIXED SYMBOLS AND CONSTANTS
2.11.1 Parcel address prefix - P. o ..
2.11.2 Word address prefix - W. .« e e e

EXPRESSIONS
2,12.1 Adding operators .

2.12.2 Multiplying operators

2.12.3 Elements
2.12.4 Terms . « « « o &
2.12.5 Term attributes .
EXPRESSION EVALUATION . .
EXPRESSION ATTRIBUTES . .

.

.

2.14.1 Relocatable, external,

2.14.2 Parcel address, word address, or value
TABLE METHOD OF EXPRESSION ATTRIBUTE EVALUATION

vii

.
. . e o . .

. . e o . .

.

.

. . o o . .

or absolute

| L L O DU A |
F R R OOOONNNno e b WwWW NN e

| T L B R |
o

NNNNVMNOMNNMNNNNNODNNENNOMOMONNONNNNN
OO [

-

W W W

2-14
2-14
2-14
2-15
2-15
2-15
2-17
2-17
2-18
2-18
2-20

3. APML INVOCATION AND EXECUTION . . . « & o« o o o o o o o

3.1 COS APML CONTROL STATEMENT . . « « « ¢ o o o o« o @
3.2 UNICOS APML COMMAND LINE . . . ¢ ¢ ¢ ¢ o o o o o« &
3.3 SYSTEM TEXT ¢ ¢ ¢ ¢ o ¢ o o« o o o o o o o
3.4 BINARY SYSTEM TEXT . . . ¢ ¢ & « o o o o o o o« o =«

4. SYMBOLIC APML INSTRUCTION SYNTAX . . « « ¢ ¢ o o o o o &

4,1 OPERAND NOTATION . . + . & « s o o o o o o o o o

4.2 OPERATORS . &+ ¢ & o o o « o o o o o o o o o o o

4.2.1 Replacement operator . . « . ¢« « « o « o &

.2 Function operators . . . « « ¢« o« & & « « .

2. Relational operators . . . « « « & « « o .

4.2.4 Conditional operator . . « « « « « o« « & &

4.3 PROGRAM STATEMENT INSTRUCTION FORMAT«

4.3.1 Assignment clauses . . . ¢ ¢ « o ¢ .+ o e

4.3.1.1 Replacement assignment . . ., . .

Jump assigament

Set flag assignment
Special function

Channel function

On clausSes .« ¢« ¢ ¢ ¢ e e e e e e

Test accumulator . . « . « « . &

Test register or memory

Test carry flag

Test channel status

4.3.3 Syntax graphs for APML program statements

4.4 DATA GENERATION STATEMENT INSTRUCTION FORMAT . . .

Lo
w N

.
.
.

»
w
.
N
Q& Db »
e Q o & o
w www
oo o o
NN NDN H R ==
T o o
B W NP RO WN

.

[- - Y

e e o

wwwws
-

5. BASIC IOP HARDWARE INSTRUCTION SET . « « « « o o o o o« &

5.1 INSTRUCTION INDEX . & &« & ¢ o o o o o s o o o o &
5.2 CONTROL INSTRUCTIONS . . . ¢ ¢ ¢ o & « o o o « o« &
5.2.1 PASS . . ¢ & v 4 0 e et e e e e e e e e
5.2.2 EXIT « & ¢« ¢ ¢ o ¢ o o o o o o o o o o o &
5.2.3 I =0 ¢ 0 ¢ v o v 4 o ¢ e o e v e e e
5.2.4

L]
[}

. 1 e o o

ACCUMULATOR INSTRUCTIONS

o
w
+
g
2]
=
=
-
H
(e

K o o v e o v e et e e e e e e e e

=dd . . s e e e e e e e e e e e e e
(dd) &« & v ¢ ¢ e v 4 e e e e e e e e
I - T T
= (B) & ¢ et e e e e e e e e
RODUCT WITH ACCUMULATOR INSTRUCTIONS . .

.
.

[@]
. [
W N OOV B WNP

AL

oo oon

BB b QW W W W W W

PRI OP PP
[}

SM-0036 viii

Lo R LR

R
R R B OOV R B R WWWR

mmwmmmmw&nmwmmmmwm
N NN NOOoOOOO WU ab Db WwwR

B-01

5.4 LOGICAL PRODUCT WITH ACCUMULATOR INSTRUCTIONS (continued)
5.4.4 A A& (dd) « & v v vt e e e e e e e e e e e
5.4.5 A=A &B . . ¢ v 0 i e e e e e e e e e e e
5 A=A & (B) o ¢ o v v o 4 o o o o 4 e 4 e u e

5.5 AD O ACCUMULATOR INSTRUCTIONS . . ¢ &« ¢ & &« o o o« o &

+ d ¢ e o s e 2 4 e e e e e s+ e o s e e e

>y >
" nowo
>y

.
.

Koo e i e e e e e e e e e e e e e e

dd L. o e e e e e e e e e

+

+

+(dd) . . 000 d e s s e e e e
+

+

|
= O O O WYL mwOow o

LIJ'I
(ST SN
(==l

.
.

.
U'IU'IUIU’!U'IU\UoD

. .
Oimithl-'l—JO\

-

.
.
]

oo, oonm
|

(B) .« . ¢« .« ¢« « . B
UBTRACT FROM ACCUMULATOR INSTRUCTIONS D
e T T T
. S 5-11
R L+ S 5-11
- (dd) .o s s s e e e e e e e e 5-11
=B . e e et e e e e e e e e e e e e 5-11
LS - 2 5-12
BY 1 INSTRUCTIONS . . . ¢ ¢ v & ¢ o o o o o & 5-12
1 =dd + 1 ...t s e e e e e e e e e e e e 5-12
2 (dd) =(dd) +1 . .. 00 e e e e e e e e e e 5-12
.3 B =B + 1 . . ¢ v v v v o v e v e v s e e e e 5-13
4 (B) = (B) +1 . ¢ v v ¢ o 4 o o o o o o o o o 5-13
EMENT BY 1 INSTRUCTIONS . . . & ¢ ¢« ¢ & &+ o o o o . 5-13
1 =dd -1 .. v e e e e e e e e e e e e e 5-13
2 (dd) = (dd) -1 . . . ¢ ¢ v v v v v v v e 5-14
.3 B =B -1 ¢ ¢ v ¢ ¢ ¢ o o o o o o s o 0 0 e o 5-14
4
T
1
2
3
4

o
|

. .

.
=
=
=
2z
H

>y >

. =z .
onoooooon-qsqunosoxoxoa\m

5.7

.

.

mmmmHmU\mmmmmmmmmmm

=]

5.8 E

U'IU\U'IU'I

(B) = (B) = 1 v & v v v v ¢ o o o o o o o o o 5-14

O ACCUMULATOR AND REPLACE OPERAND INSTRUCTIONS . . 5-14
dd = A +dd . . . 0 e e e e e e e e e e e e e 5-15
(dd) = A « (dd) . ¢ v ¢ v v v v e e e e e e e 5-15

B =2A+B . . ¢ ¢ i i it ot et e e e e e e e 5-15
(B) = A + (B) & ¢ 4 4 ¢ v o o o o o o o o o o 5-15
5.10 TRANSMIT FROM ACCUMULATOR INSTRUCTIONS . . . v & « « .« . 5-16
5.10.1 dd = A . . v i b e e e e e e e e e e e e e e e 5-16
5.20.2 (dd) = A & v i vt e e e e e s e e e e e e e e 5-16
5.1003 B = A i v 4 4 e s e e e e e e e e e e e e e e 5-16
5.10.4 (B) = A . v i v 4t v e e e e e e e e e e e e 5-17

5.11 SHIFT INSTRUCTIONS . e e e e e e s e e e e e e e e e s 5-17
5.11.1 End off ShlftS s e e e o s s o s e e s e o o o a 5-17
5.11.2 Circular shifts . . ¢ ¢ ¢ ¢ ¢ o ¢ o o o o o o 5-18

5.12 SET CARRY FLAG INSTRUCTIONS . . ¢ ¢ v ¢ o « o o o o o 5-18
5.12.1 =1, Iod = DN . . ¢ v v v v 4 e e e e e e e 5-18
5.12.2 N 5-19
5.12.3 1, iod BZ . ¢ ¢ e e e e e e e e e e 5-19
5.12.4 o .. e e e e e e s e s s e e e e e e e 5-19
5.12.5 1, IOB 2 5-19
5.12.6 =1, IOB BZ . ¢ v i e e e e e e e e e e e 5-20

5.13 BRANCH INSTRUCTIONS . . . e 6 s e s e 4 s e e e e e 5-20
5.14 CHANNEL FUNCTION INSTRUCTIONS s 6 o s e & s o s o o & o 5-21

>
=

5.9 D

9
9.
9
.9.

U'IU\U'!U"
.

oo nNnn
]

SM-0036 ix B-01

6. PSEUDO INSTRUCTIONS ¢ ¢ ¢ ¢ ¢ o o o o o o o o o o« »

[= I~)%
.
W N =

6.6

6.8

SM-0036

RULES FOR PSEUDO INSTRUCTIONS ¢ « ¢« o « o« o &
TYPES OF PSEUDO INSTRUCTIONS« ¢ & ¢ « o « o o &

PROGRAM
6.3.1

3
.3.

N O
B w N

6.3.5

CONTROL PSEUDO INSTRUCTIONS . . « ¢ ¢ o o o+ &
IDENT - Identify program module
END - End program module « ¢« + « o« « .
ABS - Assemble absolute binary
COMMENT - Define Program Descriptor Table

comment . . . 4 vt e 4 e e e e e e e e e e
GLOBAL - Declare global symbols

CODE CONTROL PSEUDO INSTRUCTIONS . . . « . « « « « & &

6.4.1
6.4.2
6.4.3

BASEREG - Declare base operand register . . .
SCRATCH - Declare APML scratch register . . .
NEWPAGE - Force a new instruction page

LOADER LINKAGE PSEUDO INSTRUCTIONS + ¢ « o o &

6.5.1
6.5.2
6.5.3

ENTRY - Specify entry symbols
EXT - Specify external symbols
START - Specify program entry

MODE CONTROL PSEUDO INSTRUCTIONS « &« « « + .+ &

6.6.1
6.6.2

BASE - Declare base for numeric data
QUAL - Qualify symbols « « .

BLOCK CONTROL PSEUDO INSTRUCTIONS

6.7.1

BLOCK - Local block assignment
ORG - Set *O counter . . « ¢« ¢ ¢« « ¢ o « « o &
BSS - Block Save . + « ¢« 4 4 ¢ o o o o o o o
LOC - Set * counter + ¢ ¢ ¢ ¢ o o« o« &
BITW - Set *W counter & ¢« ¢« ¢ « & o =«
BITP - Set *P counter . . « « + « o « « o o« =

ERROR CONTROL PSEUDO INSTRUCTIONS « « « o« « &

6.8.1
6.8.2
LISTING
6.9.1

ERROR - Unconditional error generation
ERRIF - Conditional error generation
CONTROL PSEUDO INSTRUCTIONS « « « « .
LIST - List control « « « ¢ « & &
SPACE - List blank lines « « &« « « & &
EJECT - Begin new page . . « « « « ¢ o « o + &
TITLE - Specify listing title
SUBTITLE - Specify listing subtitle
TEXT - Begin global text « .« . .
ENDTEXT - Terminate global text

SYMBOL DEFINITION PSEUDO INSTRUCTIONS

6.10.1
6.10.2
6.10.3
6.10.4

EQUALS - Equate symbol « « + ¢« « .
SET - Set symbol ¢ ¢ v & ¢ ¢« o o o o &
CHANNEL - Channel symbol « . . .
MICSIZE - Set redefinable symbol to micro size

DATA DEFINITION PSEUDO INSTRUCTIONS+ . . .

6.11.1
6.11.2
6.11.3
6.11.4
6.11.5

CON - Generate constant « « « « &« o &
BSSZ - Generate 2eroced block
DATA - Generate data words . . ¢« .« ¢ &« &« o « &
PDATA - Generate data parcels . . . « . .« . .
VWD - Variable word definition

(=]
U
[

Ao OO

U | | 1
W W ivNNN P

[3 W= R e e R e N« N o I o)N o i« o T o))
|
P P OO oo~ odu b b

oo o
Vo
L
No o

6-17
6-18
6-19
6-20
6-21
6-21
6-21
6-23
6-23
6-26
6-26
6-27
6-27
6-27
6-28
6-29
6-29
6-30
6-31
6-32
6-33
6-33
6-34
6-35
6-36
6-36

B-01

)

6. PSEUDO INSTRUCTIONS (continued)

6.12 CONDITIONAL ASSEMBLY PSEUDO INSTRUCTIONS
6.12.1 IFA - Test expression attribute for assembly
condition . . . ¢ . 0 o 4 e e e e e e e e e .
6.12.2 IFE - Test expressions for assembly condition
6.12.3 IFC - Test character strings for assembly

condition . ¢ ¢ ¢ 4 4 e e e s e e .

6.12.4 SKIP - Unconditionally skip statements

6.12.5 ENDIF - End conditional code sequence
6.12.6 ELSE - Toggle assembly condition . .

6.13 INSTRUCTION DEFINITION PSEUDO INSTRUCTIONS
6.13.1 Macro definition format
6.13.2 MACRO - Macro definition « « « .«
6.13.3 LOCAL - Specify local symbols
6.13.4 ENDM - End macro definition
6.13.5 OPSYN - Synonymous operation

6.14 CODE DUPLICATION PSEUDO INSTRUCTIONS o« o
6.14.1 DUP - Duplicate code « « ¢« .« « « .
6.14.2 ECHO - Duplicate code with varying arguments
6.14.3 ENDDUP - End duplicated code
6.14.4 STOPDUP - Stop duplication
6.14.5 Examples of duplicated sequences . . o« . e

6.15 MICRO DEFINITION PSEUDO INSTRUCTIONS+ « .+ &
6.15.1 Micro reference format

6.15.2 MICRO - Micro definition

6.15.3 OCTMIC and DECMIC - Octal and decimal micros

6.15.4 Predefined miCros . . « « « o o« o o

7. CHANNEL INTERFACE FUNCTIONS . « « « o« ¢ o o o & &«

7.1
7.2

INTERFACE CHARACTERISTICS « « «
CHANNEL INTERFACE FUNCTION CODES

8. FORMAT OF ASSEMBLER LISTING« « « ¢ &« o« « &

8.1
8.2
8.3

PAGE HEADERS .« « « ¢ o+ ¢ o o « o o o o o o
SOURCE STATEMENT LISTING . . « « ¢ ¢ « o & &
CROSS-REFERENCE LISTING . . ¢« « ¢ ¢ ¢ ¢ & o

APPENDIX SECTION

A. CHARACTER SETS . « « ¢ ¢ ¢ ¢ ¢ o o o o o o o s o @

SM-0036

xi

© © ™
1
W

HARDWARE INSTRUCTION SUMMARY . . . « & ¢ & ¢ ¢ o o« « o« o &

B.1 APML OPERAND NOTATION . . . ¢ « « « o o o o o o o &
B.2 INSTRUCTIONS . . . &« ¢ ¢ o o o o o o o o o o = o o @

MESSAGES . ¢ ¢ ¢ ¢ ¢ o « o o o o o o o o o o o o o o o o &

ASSEMBLY ERRORS . . « ¢« ¢ ¢ ¢ ¢ ¢« ¢ o o ¢ o o o o o o o &

FIGURES

Assignment Syntax . « ¢ ¢ ¢ . 4 4 4 6 e s e s e e e e 0
Condition Syntax ¢« ¢ ¢ v ¢ ¢ ¢ ¢ o ¢ ¢ o 4 o 0 s .

TABLES

TCOwm» 0NN
N PR RN

Absolute Assembly Element and Term Attribute Evaluation .
Relocatable Assembly Element and Term Attribute Evaluation
Instruction Index . . . ¢ ¢ ¢ & ¢ ¢ o o+ o o o o o o o o
Channel Functions and Descriptions
Character Sets . . ¢« ¢« « ¢ ¢ ¢ v v ¢« v v e e e e e e e e
Instruction Summary ¢ ¢ . . 4 4 e e e e v e e e .
Fatal Errors . « « ¢ o o ¢ o o o o o o o o o 2 o o o o o »
Warning Errors « « ¢ ¢ ¢« v o o o o o o o o o o o s s e s s

INDEX

SM-0036 xii

L B T A |
o o

DOoOwWPSunNN
N WkENRERNN

1. INTRODUCTION

The Cray Research, Inc. (CRI) I/0 Processor (IOP) Language, APML, is a
powerful symbolic language that generates object code for the Cray I/O
Subsystem's (IOS's) IOPs. An IOS is composed of two through four I/0
Processors with Buffer Memory. APML operates on the I0OS with either the
COS or UNICOS operating system running on the mainframe.

APML source statements consist of symbolic APML instructions and pseudo
instructions. The symbolic instructions allow you to express all Cray
I0P functions symbolically. Pseudo instructions allow you to control
the assembly process.

APML's features include:

¢ Free-field source statement format: source statement field size
is largely controlled by you.

® Control of local blocks: you can assign code or data segments to
specific areas.

e Multiple instruction generation: one or more IOP instructions
are generated for each symbolic APML instruction.

¢ Code optimization: the assembler tries to minimize generated
code by eliminating unnecessary instructions and by using
l-parcel instructions.

¢ Preloaded data: you can define data areas during assembly and
load them with the program.

e Data notation: you can designate data as integer or character
code notation.

® Word and parcel address arithmetic: you can specify addresses as
either word or parcel addresses.

e Binary control: you can specify object code as either absolute
or relocatable. Relocatable code is not supported by an

associated loader for IOP code.

® Listing control: you can control the contents of the assembler
listing.

¢ Micro coding: you can define a character string in a program and
substitute for each occurrence of its micro name in the program.

SM-0036 1-1 B

® Macro coding: you can define code sequences in a program and they
will be substituted for each occurrence of the macro name in the
program using parameters supplied with the macro call.

1.1 EXECUTION OF THE APML ASSEMBLER

The APML assembler executes in the Central Processing Unit under the
control of the operating system of either a CRAY X-MP Computer System or
a CRAY-1 Computer System with an I/0 Subsystem. It has no hardware
requirements beyond those required for the minimum system configuration.

The assembler is loaded into Central Memory and begins executing as a
result of an invocation statement. Parameters specify characteristics of
an assembler run such as the dataset containing source statements and
list output.

The source statements may comprise more than one APML program module.
The assembler assembles each program module as it is encountered on the
source dataset. The assembler makes two passes for each program module
to be assembled. During the first pass, the assembler reads each source
language statement instruction, expands sequences such as macro
instructions, generates the machine function codes, and assigns memory.
The assembler also breaks instruction sequences into groups of
instructions called pages during Pass 1. The assembler then optimizes
code within a page. For instance, all jumps within a page are optimized
to single-parcel jump instructions; jumps outside the page are 2-parcel
instructions. During the second pass, the assembler assigns block
origins, substitutes values for symbolic operands and addresses, and
generates the object code and an associated listing.

1.2 CONVENTIONS

This manual uses the following conventions:

Convention Description
Italics Indicates variable information supplied by the operator
Boldface Identifies UNICOS command verbs, directory names, or

file names

dataset Refers both to COS datasets and UNICOS files
Choice 1 Stacked items indicate two or more literal options
Choice 2 when only one choice may be used

SM-0036 1-2 B-01

2. APML ASSEMBLER LANGUAGE

This section presents general rules and statement syntax for APML
programs.

2.1 SOURCE LINE FORMAT

An APML source statement consists of one to eight source lines. A source
line is a maximum of 90 characters. The entire line is recorded in the
list output dataset generated during an APML assembly. The assembler
interprets only the first 72 columns of a line. A maintenance utility
program uses remaining character positions for sequencing information.

A comma in column 1 indicates a continuation line. Columns 2 through 72
are then a continuation of the previous line. Up to seven continuation
lines are allowed for source statements. Statements generated by APML in
a MACRO or DUP expansion can have any number of continuation lines.

2.2 STATEMENT FORMAT

Statement format is essentially free-field. APML supports three types of
statements: a comment statement, a symbolic APML instruction, and a
pseudo instruction.

2.2.1 COMMENT STATEMENT
An asterisk as the first nonblank character indicates a comment

statement. The assembler lists comment statements, but they have no
other effect.

SM-0036 2-1 B

2,2.2 SYMBOLIC APML INSTRUCTION FORMAT

Each symbolic APML instruction consists of a location field, an
assignment field, and a comment field as described in section 4, Symbolic
APML Instruction Syntax.

A symbolic APML instruction is a statement that generates I/O Processor
(IOP) instructions. Also included are certain instructions that generate
data without the use of pseudo instruction mnemonic names. Section 4,
Symbolic APML Instruction Syntax and section 5, Basic IOP Hardware
Instruction Set, describe symbolic APML instructions.

2.2.3 PSEUDO INSTRUCTION FORMAT
Each pseudo instruction consists of a location field, an assignment
field, a result field, an operand field, and a comment field. A mnemonic

name is in the result field. Each field's contents are as follows:

Field Contents Description

Location Begins in column 1 of a line and is terminated by a
blank. If column 1 is blank, the location field has
no entry. The contents of the location field consist
of a name or a symbol and depends upon the
requirements of the result field or assignment field.

Assignment Begins with the first nonblank character following the
location field. It cannot begin before column 2 or
after column 63. The assignment field has an entry if
there are any nonblank characters between the location
field and column 64. The assignment field is
terminated by the comment field or the end of the
statement.

Result Begins with the first nonblank character following the
location field. It cannot begin before column 2 or
after column 63. A blank terminates the result
field. The result field has an entry if there are any
nonblank characters between the location field and
column 64.

Operand Begins with the first nonblank character following a
nonempty result field and is terminated by the comment
field or the end of the statement. The contents of
the result field determine whether an entry is
required in the operand field.

SM-0036 2-2 B

Field Contents Description

Comment Optional. Begins with a period. A period can appear
in certain APML symbols; however, in such cases it is
always preceded by a nonblank character. Therefore,
it is conventional and good practice to precede the
period at the beginning of the comment with a blank.
The comment field may be the only field supplied in a
statement.

Section 6, Pseudo Instructions, further describes pseudo instructionms.

2.3 CODING CONVENTIONS

Although APML statements are essentially free-field, the conventions
suggested here provide for a more uniform and more readable listing.

Beginning
Column Field
1 Blank, asterisk, comma, or location field entry
left-justified
10 Result or assignment field entry, left-justified
20 Operand field entry, left-justified
35 Beginning of comment field

2.4 LINE EDITING

APML processes source statements sequentially from the source dataset. A
macro definition is not immediately interpreted but is saved and
interpreted each time it is called. Before interpreting a statement,
APML performs two operations referred to as editing. These operations
are concatenation and micro substitution.

SM-0036 2-3 B

2.4.1 CONCATENATION

APML examines each line for the underscore (concatenation) character and
deletes it so that the two adjoining columns are linked before the
statement is interpreted.

2.4.2 MICRO SUBSTITUTION

The APML assembler searches for double quotation marks ("), which serve
to delimit micro names. The first " indicates the beginning of a micro
name; the second " identifies the end of a micro name. Before a
statement is interpreted, APML replaces the micro name by the character
string comprising the micro.

2.5 NAMES

A name consists of from 1 to 8 characters. The first character of a name
must be alphabetic (A through Z), a dollar sign ($§), a percent sign (%),
or an at sign (@). Characters other than the first may be decimal digits
(0 through 9).

Use names to identify the following types of information:

Program modules

Blocks

Macro instructions
Micro character strings
Conditional sequences
Duplicated sequences
Symbol qualifiers

® & o &6 & 0 0

Unlike symbols, a name does not have a value or an attribute associated
with it and cannot be used in expressions.

Different types of names do not conflict with each other or with

symbols. For example, a micro can have the same name as a macro and a
program module can be named the same as a block.

SM-0036 2-4 B

)

2.6 SYMBOLS

A symbol is 1 to 8 characters that identifies a value and its associated
attributes. The first character of a symbol must be alphabetic (A
through 2Z), a dollar sign ($), a percent sign (%), or an at sign (@).
Characters other than the first may also be decimal digits (0 through 9).

2.6.1 SYMBOL DEFINITION

The process of associating a symbol with a value and attributes is known
as symbol definition. This can occur in a number of ways.

A symbol used in the location field of a symbolic APML instruction or
certain pseudo instructions is defined as an address having the current
value of the location counter and having attributes of parcel address,
word address, relocatable, or absolute.

A symbol used in the location field of a symbol defining pseudo
instruction is defined as having the value and attributes derived from an
expression in the operand field of instruction. The type of symbol
defining pseudo instruction used may cause the symbol to have an
attribute of redefinability. When a symbol is redefinable, a second
attempt to define it must be through use of a redefinable pseudo, which
causes the symbol to be assigned a new value and attributes.

A symbol defined in a program module other than the module being
currently assembled can be defined as having the attribute of external in
the current program module. The true value of an external symbol is not
known within the current program module.

2.6.2 SYMBOL ATTRIBUTES

Two or more attributes are assigned to a symbol when it is defined.
Possible attributes are as follows:

¢ Word address, parcel address, or value

Each symbol is assigned an attribute of word address, parcel
address, or value. A word is a 64-bit quantity; a parcel is a
16-bit quantity. A symbol is assigned a word address attribute
if it appears in the location field of a pseudo instruction such
as VWD, CON, BSS, or BSSZ which defines words or if it is equated
to an expression having a word-address attribute.

SM-0036 2-5 B

SM-0036

A symbol is assigned a parcel-address attribute if it appears in
the location field of a symbolic APML instruction or certain
pseudo instructions.

A symbol has a value attribute if it does not have a word-address
or parcel-address attribute. A 64-bit value is associated with
such a symbol.

Relocatable, external, or absolute

Each symbol is assigned the attribute of relocatable, external, or
absolute.

A symbol is assigned an attribute of relocatable if it appears in
a relocatable assembly in the location field of a machine
instruction, BSS pseudo instruction, or data generation pseudo
instruction such as BSSZ, CON, and so on. A symbol is also
relocatable if it is equated to an expression that is relocatable.

A symbol is assigned the attribute of external if it is defined by
an EXT pseudo instruction. An external symbol defined in this
manner has a value attribute and a value of 0. A symbol is also
assigned the attribute of external if it is equated to an
expression that is external. Such a symbol assumes the value of
the expression and may have an attribute of parcel address, word
address, or value.

A symbol is assigned the attribute of absolute in a relocatable
assembly if it is neither relocatable nor external. In an
absolute assembly, symbols that would be relocatable in a
relocatable assembly are assigned the attribute of absolute. An
exception occurs when the absolute program module is divided into
local blocks through use of BLOCK pseudo instructions. In this
case, symbols defined in local blocks other than the initial
(nominal) block are assigned an attribute of relocatable during
Pass 1 and absolute during Pass 2. See subsection 6.7, Block
Control Pseudo Instructions, for more information on block control.

Redefinable

In addition to its other attributes, a symbol is assigned the
attribute of redefinable if it is defined by the pseudo
instructions SET or MICSIZE. A redefinable symbol may be defined
more than once in a program module and may have different values
and attributes at different times during as assembly. When such a
symbol is referenced, its most recent definition is used by the
assembler.

2-6 B

2.7 SYMBOL REFERENCE

The occurrence of a symbol in a field other than the location field
constitutes a reference to the symbol and causes the value and attributes
of the symbol to be used in place of the symbol.

A symbol may generally be referenced anywhere in the program. However,
certain symbol references require that the symbol be previously defined.
In such cases, APML generates an undefined error even though the symbol
is defined later in the program. A symbol occurring in any expression in
a pseudo instruction, except the data expression fields of CON, VWD, and
ERRIF, must refer to previously defined symbol.

A symbol used in the location field of a symbolic APML instruction is not
defined until an instruction page boundary occurs. APML does code
optimization within an instruction page, so instruction address symbols
are not defined until all instruction generation is fixed at the next
page boundary. See section 4, Symbolic APML Instruction Syntax, for

more details about page boundary conditions.

A symbol reference may contain a prefix, such as W. or P., which causes
the usual value and attributes associated with the symbol to be altered
according to the prefix. The prefix affects only the specific reference
with which it occurs. See subsection 2.11, Prefized Symbols and
Constants, for details.

2.7.1 QUALIFIED SYMBOLS

You can render a symbol other than a global symbol unique to a code
sequence by specifying a symbol qualifier to be appended to all symbols
defined within the sequence. The option to qualify symbols is initiated
by one QUAL pseudo instruction and terminated by the next. If a symbol
defined in the sequence is referred to from within the sequence, it can
be referred to without qualification. If, however, the symbol is
referred to from outside of the code sequence in which it was defined, it
must be referred to in the form /qualifier/symbol, where qualifier is

a 1- to 8-character name and is defined through the use of a QUAL pseudo
instruction.

SM-0036 2-7 B

2.8 GLOBAL DEFINITIONS

Before the first IDENT pseudo instruction and between program modules
(that is, between the END pseudo that terminates one program module and
the IDENT that begins the next program module), APML recognizes sequences
of instructions that do not generate code but define symbols, macro
instructions, and micros.

Definitions occurring prior to an IDENT pseudo instruction are considered
global and can be referred to without redefinition from within any of the
program modules that occur subsequent to the definition. Redefinable
symbols and symbols of the form %%XXXXXX, where X is any nonblank
character, represent an exception; while they can occur in such
sequences, they are local to the program module that follows and are not
known to the assembler after the next END pseudo instruction is
encountered. Global symbols cannot be qualified.

2.9 SPECIAL ELEMENTS

The following designators can occur as elements of expressions and have
special meaning to the assembler.

Designator Description

* Denotes a value equal to the current location counter
with parcel-address attribute and absolute or
relocatable attribute depending on type of assembly

*0 - Denotes a value equal to the curreat value of the
origin counter with parcel-address attribute and
absolute or relocatable attribute

*p Denotes a value equal to the current value of the
parcel-bit-position counter with absolute and value
attributes

*W Denotes a value equal to the current value of the

word-bit-position counter with absolute and value
attributes

SM-0036 2-8 B

e Je de e e Je de Te e e Je de Je Je e o e Je Je Je o Ko Ko e e e Je Jo e e de e de de Ko e e de e Je e Ko e e de de e e Fe e e e de Je Ko

CAUTION

The special elements *, *0O and *W when used as location
or origin address counters, should not be used except
in the expression field of CON, VWD, and ERRIF. When
used elsewhere, the value of these special elements is
required in Pass 1 but not defined until Pass 2. These
elements may be used, however, after an instruction
page boundary, such as when a new page is forced by a
NEWPAGE pseudo instruction and preceding any executable
APML symbolic instructions.

% Je e J Je Jo Fe e e e e Ko Fe Je Fe Fe Je Je Ko o de K Jo e de Fe K Te Fe Ko S Je T de Jo Jo Yo e Jo K Jo Je e Je K de Je o Je K de e de Je K¢

Subsection 2.12.3, Elements, describes expression elements. Section 6,
Pseudo Instructions, describes counters.,

2.10 DATA NOTATION

Data is presented in the form of numeric or character constants and data
items. Numeric values and character strings are presented to the
assembler based on the following notation.

() Indicates optional information
[1] Indicates required information

2.10.1 NUMERIC CONSTANTS

You can express a numeric constant in integer notation. An integer
constant has the following format:

(prefix) [integer) (binary scale)

SM-0036 2-9 B

prefix The numeric base used for the integer, fraction, decimal
exponent, and binary scale. If no prefix is used, base
is determined by the default mode of the assembler or by
the BASE pseudo instruction. prefix can be one of the
following:

0O' Octal (default)
D' Decimal
X' Hexadecimal

integer and/or fraction
A nonempty string of digits as required by prefix

binary scale
Indicates that the integer and/or fraction is to be
multiplied by a power of 2

An integer constant is evaluated as a 64-bit twos complement integer.

Example:
|Location|Result |Operand | Comment
|11 {10 120 135
| | | I
NUMBER	EQUALS	0'S0
	CON	D'300
	VWD }40/0,D'24/ADDR	
	A = 0177752	
	CON 11S63	.sign bit

2.10.2 CHARACTER CONSTANTS
Character constants are expressed using the following notation:
(prefix) ['character string') (suffix)
prefix Character set used for stored constant:
A ASCII character set (default)

C Control Data Corporation (CDC)® Display Code
E EBCDIC character set

SM-0036 : 2-10 B-01

character string
A string of 0 or more characters from the ASCII character
set. Two consecutive apostrophes (excluding the delimiting
apostrophes) indicate a single apostrophe. See appendix A,
Character Sets.

suffix Indicates justification and fill of character string:

H Left-justified, blank-fill (default except in APML
symbolic data generation instructions and PDATA)

L Left-justified, zero-fill

R Right-justified, zero-fill

Z Left-justified, zero-fill, at least one trailing
binary zero character guaranteed (default on strings
used in APML symbolic instructions, data generation,

and PDATA)
Example:
| Location|Result | Operand | Comment
11 .10 120 135
| | | |
| | CON |A*ABC'L |
| | VWD |247°'0UT" | .(Default to H suffix - blank
| | I - | £il1)
| |DD = ‘*AB'| | . (Default to 2 suffix - blank
| I I | £i11)

2.10.3 DATA ITEMS
You can use a data item in the operand field of the PDATA, DATA, CON,
and VWD pseudo instructions and in APML symbolic data generation
instructions. The length of the data field occupied by a data item is
determined by its type, size, and where it is used.
An integer data item has the following format:

(sign) (prefix) (integer) (binary scale)
If you use an integer data item in a PDATA pseudo instruction or APML
symbolic data generation instruction, it generates 1 parcel (16 bits):
in a DATA pseudo, it generates 1 word (64 bits).

A character string data item has the following format:

(prefix) ['character string'] (count) (suffix)

SM-0036 2-11 B

In the preceding notation, descriptions given for numeric and character
constants apply. The two added options, sign for numeric data items
and count for character string data items, have the following
significance:

sign Data item is to be stored ones or twos complemented or
uncomplemented; can only be used in a DATA or PDATA pseudo

instruction.

+ or omitted Uncomplemented

- Negated (twos complemented) .

Ones complemented; allowed on integer
constants only.

count The length of the field in number of characters into which

the data item is to be placed. If no count is supplied,
the length is the number of words or parcels needed to hold
the character string. If a count field is present, the
length is the character count times the character width, so
that the field length is not necessarily an integral number
of words or parcels. The character width is 8 bits for
ASCII or EBCDIC and 6 bits for CDC Display Code.

If an asterisk is in the count field, the actual number of
characters in the string is used as the count. A single
character is counted when.two apostrophes represent a
single apostrophe.

If the base is M (mixed), APML assumes that the count is
decimal. See section 6, Pseudo Instructions, for a
description of mixed base.

Example:

|Location|Result |Operand |Comment
1 110 [20 135

| | | |

| | DATA | 'ERROR IN DSN' |

| | DATA |-D'1.5E2 |

I | DATA [+0°20 [

| | VWD 140/0,2470°200 |

SM-0036 2-12 B

2.11 PREFIXED SYMBOLS AND CONSTANTS

A symbol, constant, or special element may be prefixed by a P. or a W. to
cause the value to assume an attribute of parcel or word address,
respectively, in the expression in which the reference appears.

A prefix does not permanently alter the attribute of a symbol; the effect
of a prefix is for the current reference only.

2.11.1 PARCEL ADDRESS PREFIX - P.

A symbol, special element, or constant may be prefixed by P. to specify
the attribute of parcel address. If a symbol (sym) has the attribute
of word address, the value of P.sym is the value of sym multiplied by
4. A P. prefix to a symbol with value attribute or to a constant does
not cause the value to be multiplied by 4, but it can be used to assign
the parcel address attribute.

Example:
|Location|Result |Operand |Comment
A 110 120 135
I | | |
| ADDR | CON | P.ADDR |

2.11.2 WORD ADDRESS PREFIX - W.

A symbol, special element, or constant may be prefixed by W. to specify
the attribute of word address. If a symbol (sym) has the attribute of
parcel address, the value of W.sym is the value of sym divided by 4.

A W. prefix to a symbol with value-address attribute or to a constant
does not cause the value to be divided by 4, but it can be used to assign
the word-address attribute to the symbol or constant.

Example:
|Location|Result | Operand | Comment
[P __110 120 |35
| | | |
| |AO = W.ADDR I
| |A4 = W.BUFF+0'100 |

SM-0036 2-13 B

2.12 EXPRESSIONS

Expressions are used in the operand field of many APML pseudo
instructions. An expression consists of one or more terms joined by
special characters referred to as adding operators. A blank or a comma
terminates an expression. A term, in turn, consists of one or more
elements joined by special characters referred to as multiplying
operators. Thus, an expression can be diagrammed as follows:

add	TERM;	add	TERM3. . .	add	TERM,	comma
opP1		opa I	opgy		or	
(optional)			1		blank	

Any term in an expression can be diagrammed as follows:

ELEMENT;	mult	ELEMENT, . . .	mult	ELEMENT,
	opy		opy	
]			

2.12.1 ADDING OPERATORS

An adding operator joins two terms or precedes the first term of an
expression. The two adding operators are as follows:

+ Addition
- Subtraction

2.12.2 MULTIPLYING OPERATORS

A multiplying operator joins two elements. Multiplying operators are as
follows:

* Multiplication
/ Division

Multiplication and divisions are performed first, followed by addition
and subtractions.

SM-0036 2-14 B

2.12.3 ELEMENTS

An element is a symbol, constant, or special element. It may also be one
of these preceded by a # complement operator. An element preceded by #,
however, must be absolute.

Examples:
SIGMA Symbol
* Special element
*W Special element
0°'7783 Numeric constant
A'ABC'R Character constant

The attributes of elements are assigned by the use of SET or EQUALS to
define the attributes or by implication when the element is used.

2.12.4 TERMS

A term is an element or two or more elements joined by multiplying
operators. Only one relocatable or external element may occur in a
term. The following rules apply:

¢ Two consecutive elements are illegal.

¢ The element to the right of a / must be an absolute element; that
is, a constant or an absolute symbol or, in an absolute assembly,
a special element as well.

¢ A term containing a / must have an attribute of absolute up to
the point at which the / is encountered (see subsection 2.12.5,
Term Attributes).

¢ Division by 0 produces an error.

® An external symbol, if present, must be the only element of the
term and if preceded by an adding operator, that operator must be
+e.

¢ An element cannot be null; that is, two consecutive multiplying

operators or a multiplying operator not followed by an element is
illegal.

2.12.5 TERM ATTRIBUTES

Attributes assigned to a term depend on the elements and operators
comprising the term.

SM-0036 2-15 B

Every term is assigned an attribute of either extermal, absolute, or
relocatable. A term assumes the attribute of external if it consists of
a single external symbol. A term assumes the attribute of absolute if it
contains only absolute elements. A term assumes an attribute of
relocatable if it contains one relocatable element and no external
symbols.

Every term assumes an attribute of parcel address, word address, or
value. The term attribute may vary as each element in the term is
evaluated. The term's final attribute will be that in effect when the
final (rightmost) element of the term is evaluated. As APML encounters
each element in the left to right scan of a term, it assigns an attribute
to the term based on the operator, if any, preceding the element, the
attribute of any previous partial term, and the attribute of the element
currently being evaluated.

In the following rules, consider that P, W, and V denote an element being
incorporated into the term and having an attribute of parcel address,
word address, or value, respectively. Consider, also, that pterm,

wterm, and vterm denote the attribute of the partial term resulting

from all elements evaluated prior to the current element. The following
rules apply.

® Following evaluation of the element, a new partial term is
assigned a parcel-address attribute if the partial term,
operator, and new element are one of the following combinations:

P

pterm*v
pterm/v
vterm*p

¢ Following evaluation of the element, a new partial term is
assigned a word-address attribute if the partial term, operator,
and new element are one of the following combinations:

W

wterm*v
wterm/vV
viterm*w

¢ Following evaluation of the element, a new partial term is
assigned a value-address attribute if the partial term, operator,
and new element are one of the following combinations:

v

vterm*v
pterm/P
wterm/w
vterm/v

SM-0036 2-16 B

e In addition, any of the following combinations results in an
attribute of value being assigned but accompanied by a warning
error.

pterm*w
wterm*p
pterm/W
wterm/P
vterm/P
vterm/W
pterm*p
wterm*w

2,13 EXPRESSION EVALUATION

Expressions are evaluated from left to right. Each term is evaluated
from left to right, with APML performing 64-bit integer multiplication or
division as each multiplying operator is encountered. When a complete
term has been evaluated, it is added or subtracted from the sum of the
previous terms.

The assembler treats each element as 64-bit twos complement integer.
Character constants are left- or right-justified within a field width
equal to the destination field. Complemented elements are complemented
in the rightmost bits in a field width equal to the destination field.

A relocatable term has a 64-bit integer coefficient associated with it
equal to the value of the term obtained when a 1 is substituted for the
relocatable element. The value of a relocatable term is the value of the
relocatable element multiplied by the coefficient.

The coefficient of each relocatable term is added or subtracted to the

coefficient maintained for the corresponding relocatable block
represented in the expression.

2.14 EXPRESSION ATTRIBUTES

The assembler can assign the following attributes to an expression:

o Relocatable, external, or absolute
® Parcel address, word address, or value

SM-0036 2-17 B

2.14.1 RELOCATABLE, EXTERNAL, OR ABSOLUTE

An expression is relocatable if the coefficient is 0 for every block
represented in the expression, except for one block, which must have a
coefficient of +1 (positive relocation). An expression error occurs if a
coefficient does not equal 0 or.+1, or if more than one coefficient is
nonzero.

An expression is external if the expression contains one external term
and if the coefficients of all relocatable blocks are 0. An expression
error occurs if more than one external term is present.

An expression is absolute if no external terms are present and the
coefficients of all relocatable blocks are 0.

2,14.2 PARCEL ADDRESS, WORD ADDRESS, OR VALUE

An expression has a parcel-address attribute if at least one term has
parcel-address attributes and all other terms have a value- or
parcel-address attribute.

An expression has word-address attribute if at least one term has
word-address attribute and all other terms have value- or word-address
attribute.

All other expressions have value-address attribute. A warning error
occurs if an expression has terms with both word-address attribute and
parcel-address attribute.

An expression value is truncated to the field size of the expression
destination. A warning error occurs if the leftmost bits lost in
truncation are not one of the following:

All zeros

All ones with the leftmost remaining bits also 1 (that is, a negative

quantity)

A null (empty) expression is treated as an absolute value of 0.

If an error other than a warning error occurs in evaluating an
expression, the expression is treated as an absolute value of O.

SM-0036 2-18 B

Examples of expressions:

ALPHA An expression consisting of a single term

*W+BETA Two terms; *W and BETA.

GAMMA/4 +DELTAXS Two terms, each having two elements

0'100+=0"'100 Two terms; a constant and the address of a
literal.

MU-NU*2+%* Three terms, the first consisting only of MU, the

second consisting of NU*2, and the third
consisting only of the special element *

In the following examples, R and S are relocatable symbols in the same

block, X and Y are external, and A and B are absolute. The location
counter is currently in the block containing R and S.

The following expressions are relocatable:

*
W.*+B

R+2

2%%_R-S 2%* cancels -R and -S

X+R Error; external and relocatable.

R+S Error; relocation coefficient of 2.

R/16%16 Error; division of relocatable element is illegal.

The following expressions are external:

X+2

¥Y-100

X+R* R, -* cancels relocation

X+2%%_R-S Relocatable terms 2**%, R, and -S cancel each other
-X+2 Error; external cannot be negated.

X+Y Error; more than one external.

X/2 Error; division of an external element is illegal.

The following expressions are absolute:

A+B

'A'R-1

2kR-S-*% Relocation of terms all cancel
1/2%*R Equivalent to O*R

A*(R-S) Error; parentheses are not allowed.

SM-0036 2-19 B

2.15 TABLE METHOD OF EXPRESSION ATTRIBUTE EVALUATION

Tables 2-1 and 2-2 summarize evaluation of term attributes for absolute
and relocatable assembly, respectively.

If a symbol, special element, or constant has the attribute of the left
column and is added, subtracted, multiplied, or divided by a symbol,
special element, or constant with the attribute of the top horizontal
row, the resulting attribute is determined at the intersection by the
arithmetic operator position in the upper left corner of the table.

Table 2-1. Absolute Assembly Element and Term Attribute Evaluation

+]-	I				
*	/	v	P	w	2nd Term
]]			
	viv	Ble	ww		
v	viv	P	Ve	Wive	I
I	EBIP	_P	P	Vel	Ve
I P	PP	VelV	Vel	Ve	
	WW	VelVe	_WW	I	
W	WiW	VelVe	VelV 1		
First				V = Value	
Term]		P = Parcel		
				W = Word	
				e = Warning message	
		I]			

Table 2-2. Relocatable Assembly Element and Term Attribute Evaluation

I | | I | |
| *|/ | v] P | W | 2nd Term |
[l | | | |
| | | | | |
I | viv | _PIE | WE | I
| \'4 | viv | EelEe | E|Ee | |
] | P|P | E|Pa | Ee|Ee | |
| P l E|E | EelE | Ee|Ee | |
| | WlW | EelVe | _E|Wa | |
I W | E|E | Ee|lEe | Eel|lE | |
I I I I | I
| First | |] | V = Value |
| Term | | | | P = Parcel |
[| I [| W = Word [
| | | | | E = Error message |
| | | | | e = Warning message |
I I | | | a = Absolute |
I | l | | I

SM-0036 2-20 B

3. APML INVOCATION AND EXECUTION

Load and execute APML using either the COS APML control statement or the
UNICOS APML command line.

3.1 COS APML CONTROL STATEMENT

An APML control statement has the following format:

APML,CPU=type,I=idn,L=1dn,B=bdn, Ezedn, ABORT,DEBUG, options,

LIST=name,S=sdn, SYM=sym, T=bst, X=xdn.

Parameters are order-independent and none are required. Parameters are
processed in the order they appear. If parameter specification is
duplicated or contradictory, the last specification is used.

CPU=type Only IOP can be specified as type. The parameter is
optional, since the default is also IOP.

I=idn Name of dataset containing source statement input. The
default is $IN. APML reads source statements from dataset
idn until an end-of-file (EOF) is encountered.

L=1dn Name of dataset onto which list output is written. The
default is $OUT. APML writes one file of output. If L=0,
no listing is written.

B=bdn Name of dataset to receive binary load data. The default
is $BLD. APML writes binary load data to this dataset, one
record per program module. An EOF is not written. If B=0,
no binary load data is written.

Ezedn Name of dataset on which error listing is written. The
default is no error listing if the list output is on $OUT;
otherwise, the default is $OUT. APML writes source
statements containing errors to this dataset as one file.
Simply specifying E causes an error listing to be generated
on a dataset named $OUT. If the error dataset name edn
is the same as the listing dataset name, list output is
written.

SM-0036 3-1 B

ABORT

DEBUG

options

SM-0036

Abort mode. If this parameter is present and any fatal
errors are encountered during assembly, APML aborts the job
after assembling all program modules. If this parameter is
omitted or if fatal errors are not encountered, APML exits
normally and job processing continues with the next control
statement in the job deck.

Debug mode. If this parameter is omitted and fatal errors
occur in a program, APML writes a binary record containing
only a Program Description Table (PDT) with the fatal error
flag set. The loader ignores a program module with this
flag set.

When the DEBUG parameter is present, APML writes a full
binary record with the fatal error flag clear, whether or
not fatal errors are encountered. The loader attempts to
load and execute the module.

Listing control options. You can specify any of the
following listing control options to enable or disable a
listing feature. Brackets enclose the defaults. The
selection of an option on the APML control statement
overrides the enabling or disabling of the corresponding
feature on a LIST pseudo instruction. See section 6,
Pseudo Instructions, for the description of the LIST pseudo
and for more details about these options.

[ON] Enables source statement listing
OFF Disables source statement listing

[(XRF] Enables cross-reference
NXRF Disables cross-reference

[XNS] Includes unreferenced local symbols in the
cross-reference

NXNS Does not include unreferenced local symbols in
the cross-reference

[DUP] Enables listing of duplicated statements
NDUP Disables listing of duplicated statement

MAC Enables listing of macro expansions
[NMAC] Disables listing of macro expansions

MIF Enables macro conditioning listing
[NMIF] Disables macro conditional listing

~

options

[MIC] Enables listing of generated statements before

(continued) editing
NMIC Disables listing of generated statements before
editing
LIS Enables listing of LIST pseudo instructions

[NLIS] Disables listing of LIST pseudo instructions

[WEM] Enables warning errors
NWEM Disables warning errors

TXT Enables global text source listing
[NTXT] Disables global text source listing

[WMR] Enables warning error message for macro
redefinition

NWMR Disables warning error message for macro
redefinition

LIST=name Name of LIST pseudo instructions to be processed. A LIST

S=sdn

SYM:sym

T=bst

SM-0036

pseudo instruction with a matching location field name is
not ignored. A LIST pseudo instruction with a nonblank
location field name that does not match a name specified
on the APML control statement is ignored. name can be a
single name or can be a list of names separated by colon
(for example, LIST=TASK1:TASK2:TASK7). If just LIST is
specified, all LIST pseudo instructions are processed,
regardless of the location field name.

Name of dataset containing system text file. The default
is $APTEXT. If S=0 is specified, no system text is used.
sdn can be a single dataset name or can be a list of up
to 10 dataset names separated by a colon (for example,
S=$APTEXT:QURTXT:MYTXT). The system texts are processed
in order of appearance.

Name of dataset where the optional symbol text is to be
written. The default is no symbol table generated by
APML. If just SYM is specified, the symbol text is
written to the same dataset as the binary load data.

Binary system text. Specifies dataset where all global
macros, symbols, and OPSYN assignments are written. The
default, equivalent to specifying T=0, is no binary system
text written. If T is specified alone, the binary dataset
is written to $BST.

X=xdn Binary symbol table records for the global cross-reference
generator SYSREF. Each record contains cross-reference
information for the global symbols in one particular
program unit. The default, equivalent to specifying X=0,
is to write no global cross-reference records. If X is
specified alone, the information is written to $XRF.

Example APML statement:

APML(I=$IN,E,ABORT)
This APML statement specifies that source statements are in $IN, errors
are written to $OUT, list output is suppressed, binary load data is
written to $BLD, the system text is in $APTEXT, and no binary system text
is written. The job aborts if fatal errors are encountered.

COS APML invocation example:

JOB, JN=APMLJOB, T=150.
ACCESS,DN=$PL,PDN=IOPPL.

UPDATE, F. CREATE $CPL COMPILE DATASET CONTAINING 3 *
*, FILES.

APML,S=0,I=$CPL, T=$APTEXT,E. ASSEMBLE BINARY SYSTEM TEXT, $APTEXT.
APML, I=§CPL,E. ASSEMBLE PROGRAMS ON SECOND FILE OF $CPL.
APML, I=$CPL,E. ASSEMBLE PROGRAMS ON THIRD FILE OF $CPL.
ADSTAPE. GENERATE DEADSTART TAPE BINARY DATASETS.

DISPOSE,DN=8DS,DC=ST.
DISPOSE,DN=$0VL,DC=ST.
/eof

UPDATE directives
/eof

3.2 UNICOS APML COMMAND LINE

Under UNICOS, invoke APML using the following command line. All
parameters are optional.

Format:

| |
| apml [-t bsys] (-r xref] [-g sym] [-1 listing] [-m tmwords] [-L] |
I -h |
[[-s texty,text; texty,. . . textp] [_; niist) [-o binary] name.s |
| I

SM-0036 3-4 B-01

-t bsys

-r xref

-g Ssym

-1 listing
-m tmwords
~-L

-s text,
-h

-i nlist

-o binary
name.s

Names the output file to which APML writes the binary
system text. There is no default.

Names the output file to which APML writes the binary
cross-reference file. Default is no cross-reference file.

Names the output file to which APML writes the Symbol
Table. Default is no Symbol Table.

Names the output file to which APML writes the assembler
listing. The default is no listing.

Specifies an integer number of memory words to be reserved
for the table manager work area. Default is 65476 words.

L requests that the amount of excess work area to be
reported and statistical logfile messages to be sent to
stderr. Statistics reported include the assembler's

name, assembly time, and so on. The amount of excess work
area is reported as 'UNUSED: nnnnn'.

It should not be necessary to increase the work area except
on very large. assemblies, such as I/O Subsystem. The work
area is not expandable at run time, so if sufficient space
is not preallocated with the -m option for the assembly

to complete, APML aborts.

Any number of system texts; must be separated by commas.

When specified, all list pseudos are processed regardless
of the location of the field name.

Specifies processing of those list pseudos whose location
field names are specified by nlist. (nlist can be a
single name or a list of names separated by commas.)

Names the binary object file. The default is name.o if
name.s is the input.

Specifies the file containing the assembler source code.

APML writes warning and error logfile messages (or diagnostic and
statistic messages if requested with -L) to stderr.

SM-0036

UNICOS APML invocation example:

apml -t aptext -m 150000 apt.s
apml -s aptext -m 150000 src.s
apml -s aptext -m 200000 src2.s
cat src.o src2.0 > big.o
adstape < big.o

3.3 SYSTEM TEXT

System text allows for definition of global macros and commonly used
symbols. These macros and symbols are defined in a system text separate
from your source statement input. This is assembled before your source.
All global definitions contained in the system text are preserved for
reference in your programs.

System text symbols referenced by you are identified in the
cross-reference listing by the system text dataset name.

System text may contain any APML statements allowed in normal source
input. Typically, however, a system text would consist of macro and
symbol definitions followed by an IDENT and END pseudo. While assembling
system text, APML suppresses writing binary load data and list output,
except for statements containing errors.

IDENT and END pseudos are not required at the end of a system text, but

their presence facilitates assembling the system text separately as a
program module for the purpose of obtaining a listing.

3.4 BINARY SYSTEM TEXT

A binary system text is a preassembled version of a source system text.
A binary system text is generated by the T option (COS) or the -t
option (UNICOS) on the APML invocation statement. When T or -t is

all global macros, symbols, and OPSYN assignments are written to the
specified dataset in an internal APML format.

SM-0036 3-6 B-01

NOTE

Use of binary system text generally reduces assembly
time.

This dataset can thereafter be used with the S option, as if the source
system text were being used. APML determines whether a system text is in
source or in binary format.

Under COS, when multiple system texts are used, binary and source
versions can be freely mixed. The effect is as if all of the source
versions were present.

Under UNICOS, use only binary format system text with the -s option.

COS examples:

1. APML,I=SOURCE1l,S=0,T=BINARY1.
2. APML,I=SOURCE3,S=0,T=BINARY3.
3. APML,I=MYPROG,S=BINARY1:BINARY3.

UNICOS examples:

1. apml -t binaryl < sourcel
2, apml -t binary3 ¢ source3l
3. apml -s binaryl binary3 < myprog

In examples 1 and 2, binary versions of source system texts SOURCEl and
SOURCE3 are created.

Under COS, if S=0 had not been specified, APML would have assembled
$APTEXT by default; the global macros and symbols in $APTEXT would have
been copied into the binary system texts being generated. Under UNICOS,
no default is provided.

In example 3, the binary texts generated by examples 1 and 2 are used.
The effect is as if the following statement had been written instead of
example 3:

CoS:
APML, I=MYPROG, S=SOURCE1: SOURCE2 : SOURCE3.

UNICOS:

cat sourcel source2 source3 myprog > bigsource
apml < bigsource

SM-0036 3-7 B

4., SYMBOLIC APML INSTRUCTION SYNTAX

Symbolic APML instructions generate I/0 processor (IOP) instruction
parcels or data parcels. Each symbolic APML instruction may generate one
or more IOP instructions or data parcels.

Those familiar with the IOP instruction set can use a subset of symbolic
APML instructions that generate single IOP instructions. You can also
use more complex symbolic APML instructions that generate multiple
hardware instructions to simplify your task.

In symbolic APML instruction notation, certain symbols are reserved to
represent IOP registers and memory. Special characters are used as
operators to represent arithmetic and logical operations, conditional
branch conditions, data movement, and other functions.

4.1 OPERAND NOTATION

The following reserved names represent the contents of IOP registers or
memory:

Name Description
A Accumulator
B Operand register, index register (B register)
(B) Contents of the operand register addressed by B
C Carry flag
E Exit stack pointer
(E) Exit stack entry addressed by E, the exit stack pointer
I Interrupt Enable flag
P Program address register
R Return jump program address
R!sym Operand register whose index is the value of the symbol

sym, where sym is any symbol with positive absolute
value less than 512.

SM-0036 4-1 B

Name

dd

[dd}

(dd)

(k)

(dd+k)

Description

Operand register whose index is the value of the symbol
dd, where dd is a 2 character symbol with positive
absolute value less than 512

Value of symbol dd; that is, index of register
represented by register symbol dd.

Memory parcel addressed by contents of operand register dd

An unsigned numeric constant, character constant, or a
symbol. In general, k may have a positive or negative
value with absolute value less than 16,384. In some cases,
the range of values for k is further restricted.

An unsigned numeric constant, character constant, or a
symbol. In general, d may have a positive or negative
value with absolute value less than 512. 1In some cases,
the range of values for d is further restricted.

Memory parcel addressed by the value of k

Memory parcel addressed by the sum of the contents of
operand register dd and constant k

NOTE

Instructions referencing the operand register dd
contain the register index in the d field, the lower
9 bits of the instruction parcel.

The following reserved names represent other operands used in symbolic
APML instructions:

Name

I0B

iod

BZ, DN

SM-0036

Description

I/0 channel reference using the contents of the B register
as the channel designator

I1/0 channel reference, where the value of symbol iod is
the channel designator. Symbol iod must be defined by
the CHANNEL pseudo instruction. Conventionally, iod is a
3-character symbol.

IOP channel status. A channel busy flag, BZ, and done
flag, DN, may be tested with certain instructions.

Name Description

EXIT Name of subroutine return function, which generates an IOP
instruction which exits from a subroutine

WAIT Name of branch function which loops until a test condition
is satisfied

PASS Name of function which generates an IOP pass or
no-operation instruction

4.2 OPERATORS

The following characters are used in symbolic APML instructions as
operators with special significance in the instruction syntax.

4.2.1 REPLACEMENT OPERATOR

The replacement operator, =, indicates that the subject to left of the
equal sign is to be replaced by the value generated on the right side.

4.2.2 FUNCTION OPERATORS

The function operators are as follows:

Operator Description
+ Addition
- Subtraction
& Logical product
> Right shift, end off
< Left shift, end off
> Right shift, circular
<< Left shift, circular

SM-0036 4-3 ‘ B

4.2.3 RELATIONAL OPERATORS

Relational operators are used in a conditioned clause. The subject to
the left of the operator is compared with the value generated on the
right side according to the relation implied by the operator:

Operator Description
= Equal
Not egqual
> Greater than
< Less than
>= Greater than or equal
<= Less than or equal

4.2.4 CONDITIONAL OPERATOR
A comma (,) is the conditional operator. It introduces a conditioned

clause. The assignment clause to the left of the comma is executed only
if the conditional clause to the right is evaluated as true.

4.3 PROGRAM STATEMENT INSTRUCTION FORMAT

Symbolic APML instructions fall into two classes, program statements and
data generation statements. The program statements described in this
subsection generate one or more IOP hardware instructions. For more
information on data generation statements, see subsection 4.4, Data
Generation Statement Instruction Format.

Program statements have one of the following general formats:

|Location|Assignment |Comment
I | |

| label |assign | .comment
| label |assign, condition | . comment
| label | * | .comment

SM-0036 4-4 B

label

assign

condition

comment

Optional label, which must be a valid symbol. The label is
defined as the value of the location counter. Because APML
does code optimization within an instruction page, the
label is not defined until an instruction page boundary
occurs.

The assignment clause, represented in this section by
assign, is required and is either a replacement, jump,
set flag, special function, or channel function.

The condition clause is optional and is seperated from

the assignment clause by a comma. The assign clause is
executed only when the condition clause is true. The
condition clause represents a test of or comparison of

the contents of IOP registers and memory parcels. Any
assignment clause may be followed by any conditional clause.

The comment is introduced by a period. A period can
appear in certain APML operands appearing in the assign
or condition clause, however, in such cases it is always
immediately preceded by a nonblank character. Therefore,
it is conventional to precede the period with a blank at
the beginning of a comment.

When an asterisk appears in the assignment field, no data
or instructions are generated. The statement serves to
define the optional label without also generating code.

4.3.1 ASSIGNMENT CLAUSES

This subsection describes the five types of assignment clauses.

4,.3.1.1 Replacement assignment

A replacement

clause enters the register or memory parcel designated by

the subject with the value expressed on the right side of the equals sign.

The right side of the assignment clause consists of operands and binary
operators. Evaluation proceeds strictly from left to right. There is no
hierarchy of operators and no grouping of terms other than that implied
by their order.

SM-0036

|Location|Assignment LComment. .
:label :subject = operand, :.comment
:label :subject = opZiandl op; operand, :.comment
:label :subject = op:;andl opy operand,...op,_joperand, :.comment

subject The subject of an assignment clause may be any of the

following:
Register A, B, E, or (E)
Operand register dd or (B)
Memory parcel (dd), (dd+k), or (k)

operand; The operands may be any of the following:

Register A, B, E, or (E)
Operand register dd or (B)

Memory parcel (dd), (dd+k), or (k)
Constant k

Additional rules concerning operands in the assignment
clause are as follows:

® The accumulator, A, exit stack-pointer, E, and exit
stack entry, (E), may only appear as the first
operand, operand;.

¢ After the shift operator (>, <, >>, <<), only the
index register B or constant k may appear.

op; The operator may be any of the following characters
representing IOP operations:

Arithmetic + or -
Logical &
Shift >, <, >»», Or <<

In general, the assignment clause generates IOP instructions to load the
accumulator with operand,. After that, the additional operations
indicated in the subsequent operators and operands are performed using
the accumulator and carry flag to hold intermediate results. The
resulting accumulator value is stored in the register or memory parcel
indicated by the subject.

SM-0036 4-6 B

If (dd+k) or (k) appear anywhere in the assignment, scratch registers
are used to preload the memory address before loading the first operand.

e e de de e Ju e e o s do d e e o o do Je o Je Jo e So o o o Je Jo Je de Je de de e de Je de e de de Je Je de de de de de e e e de de K he Ko

CAUTION
The accumulator, A, and carry flag, C, should not, in
general, be explicitly used. The APML assembler uses
these registers to execute the assignment and condition
clauses, and they may be used by APML when not
immediately obvious to you.

Yo e Je e Jo e e e e de T I Je de Jo Je o Ko Fo Fo Je do J Je Jo Fo Yo e Ju Fe Je Jo Jo Ko e Je J de Je Je o Ko Ko Je JoFe Yo do de e Yo de K ke de

Example:

A=EE
(MN+5)=A

should be written
(MN+5)=EE

so that the accumulator is not destroyed when forming the value of MN+5
in the accumulator before storing the address in a scratch register.

SM-0036 4-7 B

g 8-v 9€00-NS
</
| | pa=d| I ZtovLol|
| | ! | TEZHEO]
| | I | G6£z€€0 110220 2Z000OSTI
| | I | <S€2%20 ¥$0000/ 000%TO|
| (9049)-£3+3=(207) | | T€ZbZ0 TZ0000/ 000%TOI
| | I I 0001501
| g30T<(g)+53=v| | O0TOo¥00 000290 €£€10020]
| | veel 2011 ¥€£€000]|
| SINIWILVIS INIWNOISSY FTdWYS x|
! I x		
	SINARAIVLS JTdWYS #	
I	x	
I v=4	o0al	000%S0
I I a=v		0000501
I	90a=4	
QNV33dO NV SV d 9NISN JATIWISSY x	I	
		x
	v=g	Ivd
	g=v	
	Z+d=4d	
	QNV¥3dOo NY SY d x	
o’ I 4SN OL ONILAWALIV YAWAVEOONd «	I	
	I *	I
	I I 000%50	
lLegca =4l	20020T LEOETO TT0020]	
	otT=v	
NOILIANOD NI ISOT ¥ x	[
	I x	
	I	000¥S0 T£ZZEOl
] (sz+18)+v=4		Te€2vzOo <Szoz10 LOOOZOI
	L=¥	
INTWNOISSY NI ISOT V¥ x		
I I		
I		x
I [x	
I €1l s1vndal sy €T		
I ztl s1vndal	va	21
I 1Tl s1vndal eyql 1T		
otl s1vnoal zyg	0T !	
I Ll sendal T3l L		
I 9¥‘0d	HOLV¥OSI	
sezl swndal 9y	GET	
I Tezl s1vnda	oul T€2	
I XaL	IN3qIl	
GEI 0¢l 0TI T I
\‘-—/ JUBWO)) | puexadQ| 3Tnsayg| uorjedorq]| pe3exauab apo)|

4.3.1.2 Jump assignment

You can use two formats for the jump assignment: a jump using P and a
return jump using R for subroutine calls.

Replacement of P alters the current instruction sequence. Execution
continues at the address specified by the new value of P.

Replacement of R suspends execution of the current instruction sequence
and begins execution of a subroutine at the specified address. The E
register 'is incremented by 1. The address of the next sequential
instruction parcel is entered in the exit stack. If 16g is entered in
E, an IOP interrupt is generated.

|Location|Assignment |Comment.

| | |

| 1abel |P = address | . comment
| Label IR = address | . comment ..

address The jump destination address may be any of the following
operands:

e Operand register dd
e Constant k (typically a program label)

The use of k as a jump address is restricted to
symbols. Numeric and character constants are not
allowed.

e Operand register + constant dd + k

The use of an operand register + constant, dd + k,

is not allowed if you defined a base register with a
BASEREG pseudo instruction. This example would be
ambiguous because, in this case, you have asked APML
to form all 2-parcel jumps with IOP jump instructions
of the form P = R! basereg + k, not P = dd + k.

4.3.1.3 Set flag assignment

You may set the carry flag or system interrupt enable flag to 0 or 1 with
a set flag assignment clause.

SM-0036 4-9 B

|Location]Assignment

|
| label

| label
| label
| label

i |Comment
I I
|IC =0 | . comment
IC = 1 | . comment
IT =0 | . comment
IT =1 | . comment

4.3.1.4 Special function

Certain names are reserved for special APML instructions.

|Location|Assignment |Comment

| I |

| label | PASS | . comment

| 1abel | EXIT | . comment

| label |WAIT | . comment

PASS Generates an IOP no-operation or a pass instruction

EXIT Generates a subroutine exit instruction. If the E register
contains a 0, the IOP interrupt is generated; otherwise,
the address stored in the program exit stock entry
indicated by the E register is entered in the P register.
The contents of the E register are decremented by 1.

WAIT Generates code to wait for the conditional clause to be

true. If no conditional clause is present, the program
loops forever at the current instruction parcel address.

4.3.1.5 Channel function

A channel function assignment clause generates an IOP channel function

instruction.

The channel for which the instruction is to be performed is

indicated either by a channel mnemonic symbol, iod, or by the contents
of the B register.

|Location|Assignment |Comment

| I I

| label |iod: k | . comment

| label |IOB:k | . comment

iod Channel mnemonic symbol defined by a CHANNEL pseudo

SM-0036

instruction. The value of the symbol iod is stored in
the low-order 9 bits of the IOP channel function
instruction.

k Channel function, a constant k with a positive absolute
value less than 20g. The value of k is added to 140g
or 160g to form the IOP instruction operation code for
the iod:k or I0B:k instruction, respectively.

IOB Indicates the contents of the B register is to be used as
the index of the channel to be functioned.

4.3.2 CONDITION CLAUSES

The condition clause is optional in an APML program statement. The
assignment clause is executed only when the condition clause represents a
true condition.

This subsection describes the four condition clauses.

4.3.2.1 Test accumulator

This clause compares the accumulator contents with the contents of a
register, memory parcel, or a constant.

1L jonl|Assi ! c :
| I |

| label |assign,A rel operand | .comment

rel A relational operator (=, #, >, <, >=, or «=)

operand The operand may be any of the following:

Register B
Operand register dd or (B)
Memory parcel (dd)
Constant k

In general, the code for a condition clause is generated before the
assignment clause. The indicated condition is then tested and a jump is
generated around the assignment clause if the condition is false.

In the test accumulator clause, the carry bit is cleared. The operand is

subtracted from the accumulator and a jump is generated around the
assignment clause if the relation is false.

SM-0036 4-11 B

4.3.2.2 Test register or memory

This clause compares the contents of a register or memory parcel with the

value expressed by the operands and operators on the right side of the

relation.
|Location|Assignment |Comment
| | |
|1abel lassign, subj rel operand,, | . comment
I | or I
|label |assign, subj rel operand, op, operand, |.comment
| I or
| Iabel |assign, subj rel operand, opy operand, ... op,_; operand,
subj The subject (subj) of the condition may be any of the
following:
Register B, E, or (E)
Operand register dd or (B)
Memory parcel (dd), (dd+k), or (k)
rel A relational operator (=, #, <, >, <=, or »>=z)
operand; The operands may be any of the following:
Register A, B, E, or (E)
Operand register dd or (B)
Memory parcel (dd),(dd+k), or (k)
Constant k
Additional rules concerning operands in the assignment
clause are as follows:
¢ The accumulator, A, exit stack-pointer, E, and exit
stack entry, (E), may only appear as the first
operand, operand;.
¢ After the shift operator (>, <, >>, or <<), only the
index register B or constant k may appear.
op; The operator may be any of the following characters

representing IOP operations:

Arithmetic + or -
Logical &

Shift >, ¢, >>, Oor <<

The value represented on the right side

the same manner as the right

SM-0036

of the relation is evaluated in

side of a placement assignment clause.

/-\

4.3.2.3 Test carry flag

This clause tests the value of the carry flag for a zero or ome.

|LocationlAssignment _|Comment.
I | |

| label |assign,C=0 | . comment
| label |assign,C=1 | . comment
| label |assign,C#0 | . comment
| label |assign,C#1l | . comment

4,3.2.4 Test channel status

This clause tests the state of the busy or done flag for a channel
indicated by a channel mnemonic iod or by the contents of the B
register.

|Location|Assignment | Comment
| | |
| label |assign, iod relstate | . comment
| label |assign, IOB relstate | . comment
iod Channel mnemonic symbol

relstate Channel flag state:

=BZ Channel busy flag set
=DN Channel done flag set
#BZ Channel busy flag clear (not busy)
#DN Channel done flag clear (not done)

4.3.3 SYNTAX GRAPHS FOR APML PROGRAM STATEMENTS

Figures 4-1 and 4-2 graphically represent the rules for forming APML
program statements.

SM-0036 4-13

Replacement

Result Operand Operator Operand
Register | A | | A |-—=1_+_[|--->] B
I | | | - |
| B | | B |-==l_=_l--->| dd
I | | | - |
| E | | E [-——1_& |--->| (B)
| | - | | |
| (E) |---|l_=_I-->| (E) | | (dd)
| | | | |
| | | dd | | (dd+k)
Operand Register | dd | | | |
| | I (B) | | (k)
| (B) | | | |
| | | (dd) | | k
| | | |
Memory | (dd) | | (dd+k) | _
I I l f-——-1_>_|--->] B
| (ddek) | IEC R I
| | ! |-==1_c_I--->|
I__(k) | | | |k
| [-—-1_2>> |-->1
I | |
| [==-1_<< |-=>|
Constant | k |

Repeat Additional Operators
and Operands

Figure 4-1. Assignment Syntax

SM-0036 4-14 B

Jump

Return Jump

Carry Flag

SM-0036

Interrupt Enable
Flag

Channel Mnemonic

Channel Index
in B Register

Figure 4-1.

Result Operand

Jump

Set Flag

Special Function

| PASS |
(T2 & >
| _WAIT |

Channel Function

Assignment Syntax (continued)

Register

Operand
Register

Memory

Constant

SM-0036

Test Register or Memory

Subject Relation Operand Operator
,B [---1_=_|--->| A [---1_*_1--=>]

I | | |
,E | | B | |

I - | i - |
. (E) [---1_#% |--->| E [---1_=_1--—>1

I | | |

I | (E) I |

I | I - |
.dd |--=-1_> |--=>]| dd === _& |--=>]

I [I |
-(B) | | (B) I I

| I I

[-=-l_< |-==>| (dd) |---|_>_|--=>]

I | | - |
(dd) | | (dd+k) |---]_< |--->|

I | I I
H(ddek) |---| 2= |-->] (k) [-==1_22> [|-->]

[| | [
(k) | /1 _k [-—-1_<<_|-->]

| / t

| / I

| | <= |] Repeat Additional

4 | Operators and Operands

| 7 kLT ——— >——
.k W4

I

Figure 4-2. Condition Syntax
4-16

Operand
B
dd
(BB)
(dd)
(dd+k)

(k)
k

Subject Relation Operand

Test Accumulator

Accumulator | | === | = |----- >| B
I A | - I
| |----- | |----- >| dd
| I |
| |=---- | > |----- >| (B)
| I |
| | --=-- | < 1----- >| (dd)
| | |
l | ————— I >= '——--)| k
| | |
| I <= 1|
Test Carry Flag
! | ----- | = |----- I 0
Carry Flag I .C | |
| |----- |4 |----- >|_1
Test Channel Status
Channel Mnemonic | ,iod |----- | = j-==-- >| B2
| | - I
Channel Index in { ,IOB |----- | _ & |-—--- >| _DN
B Register

Figure 4-2. Condition Syntax (continued)

SM-0036 4-17

4.4 DATA GENERATION STATEMENT INSTRUCTION FORMAT

Symbolic APML instruction fall into two classes, program statements and
data generation statements. Data generation statements, described in
this subsection, generate 1 or more parcels of data. For more
information on program statements, see subsection 4.3, Program Statement
Instruction Format.

|Location|Assignment | Comment

| | I

|label |data,,dataj,...,data, |.comment

label Optional label, which must be a valid symbol. The label

is defined as the value of the location counter. If a
label is present, a new instruction page is forced by APML.

data; Parcel data item, which can be any of the following:

¢ Numeric data item. APML generates a 16-bit parcel
containing the value. Example:

0'42
0'74
57

® A character data item. APML generates as many
parcels as needed to contain the string. If no
suffix is present, the string is left-justified,
zero-filled with at least 8 bits of trailing binary
zeros. Examples:

*THIS IS A MESSAGE'
‘BLANK FILL THIS STRING' H

¢ A symbol, whose value is defined elsewhere. The
value of the symbol is generated in a single 16-bit

parcel.

® <k> reserves k parcels of storage; k may be a
numeric constant or a symbol with absolute value.

® <«ck>> generates k parcels of zeros; k may be a
numeric constant or a symbol with absolute value.

SM-0036 4-18 B

S. BASIC IOP HARDWARE INSTRUCTION SET

This section describes the AMPL instructions that generate instructions
in the basic I/O Processor (IOP) hardware instruction set. For ease of
reference, these hardware instructions are grouped with instructions of
similar function.

5.1 INSTRUCTION INDEX

Table 5-1 shows the APML instructions described in this section.

Designed for quick reference, it gives the gemeral function of a set of
instructions, shows the IOP instructions, the APML symbolic instruction,
and the subsection that gives detailed information on the instructionms.

Table 5-1. Instruction Index

APML
Symbolic Instruction

Instruction

Function and Subsection I0OP Instruction

I		
I		
Control	000	PASS
(5.2)	001	EXIT I
	002 l I =0	
	003	I =1 I
Transmit to Accumulator	010	A=4d
(5.3)	014	A=k
	020	A =dd
	030	A = (dd)
	050	A =B
	060	A = (B)
[[
Logical Product with	011	A=A G&d
Accumulator	015	A=A &Kk
(5.4)	021	A=A &dd
	031	A=A & (dd)
	051	A=A &B
	061	A=A & (B)
i		

SM-0036 5-1 B

Table 5-1. Instruction Index (continued)

APML
Symbolic Instruction

Instruction

Function and Subsection IOP Instruction

| | |

| | |

| | |

| | |

| | |

| Add to Accumulator | 012 | A=A +d

] (5.5) | 016 | A=A+k

|] 022 | A=A+ dd

| | 032 | A=A + (dd)
| | 052] A=A +B

|] 062 -|A=A+(B)
| | |

| Subtract from Accumulator | 013 | A=A -d

| (5.6) | 017 | A =24 -k

| | 023 |A=A—dd

| | 033 | A=A - (dd)
| | 053 | A=A -B

|] 063 | A = A -(B)

| | |

| Increment by 1 | 026 | dd = dd + 1

| (5.7) | 036 | (dd) = (dd) + 1
| | 056 | B=B +1

I | 066 | (B) = (B) + 1
| | |

| Decrement by 1 | 027 | dd = dd - 1

| (5.8) | 037 | (dd) = (dd) - 1
| | 057 | B=B -1

[| 067 | (B) = (B) -1
[[|

| Add to Accumulator and I 025 | dd = A + dd

| Replace Operand | 035 | (dd) = A + (dd)
| (5.9) | 055 | B=A + B

| | 065 | (B) = A + (B)
| | |

| Transmit from Accumulator | 024 | dd = A

| (5.10) | 034 | (dd) = A

| | 054 | B =A

| | 064 | (B) = A

[| |

| Shift | 004 | A=24a>d

| (5.11) | 005 | A =24 c¢d

| | 044 | A=2a>8B

| | 045 | A =24 ¢<B

| | 006 | A =2A> d

| | 007 | A=A <cd

| | 046 | A=A> B

| | 047 | A =A< B

| | |

SM-0036 5-2

Table 5-1. Instruction Index (continued)

APML
Symbolic Imstruction

Instruction

Function and Subsection IOP Instruction

]	
Set Carry Flag	040	¢ =1, iod = DN
(5.12)	041	C =1, iod = B2
:	042	¢ =1, I0B = DN
	043] C =1, IOB = BZ
Branch	070 - 137	P = dd
(5.13)		R = dd
		P=k
		R=£k I
		P=dd + k
		R=dd + k
		I
Channel	140 - 157	iod : k
(5.14)	160 - 177	I0B : k
I]] |

5.2 CONTROL INSTRUCTIONS

PASS, EXIT, I=0, and I=1 are the control instructionms.

5.2.1 PASS

This instruction performs no operation. It fills program fields with
null operations where desired.

| APML |Description |[IOP Instruction
I | |
| PASS |No operation | 000000

SM-0036 5-3 B

5.2.2 EXIT

This instruction terminates execution of the current program sequence and
returns to the sequence that was suspended in calling this subroutine.
The current P register value is discarded. The beginning address for the
reinitiated sequence is obtained from the program exit stack at the
location currently pointed by E. The value of E is then decremented by
1. If the value of E was previously 0, the decrementing is blocked and
the Exit Stack Boundary flag is set. The Exit Stack Boundary flag causes
an interrupt of the program sequence for restructuring the contents of
the program exit stack.

If the EXIT instruction follows a modification of the program exit stack
or of the E pointer, at least 5 clock periods (CPs) must elapse between
the last modification and the EXIT instruction.

| ABML,_ |Description LIOP Instruction

| | I
|EXIT |Exit from subroutine | 001000

This instruction clears the System Interrupt Enable flag.

The APML assembler generates two instruction parcels for this
instruction: 002000/000000. The 000 pass instruction is included
because of a hardware anomoly by which an instruction following the
002000 may sometimes be skipped.

| APML |Description | IOP Instruction

| I !
IIT =0 |IDisable instruction interrupts |002000/000000

5.2.4 I =1

This instruction sets the System Interrupt Enable flag. The setting of
the flag is delayed until after the ezxecution of a nonbranching
instruction. This prevents an interrupt from occurring between this
instruction and the following one, which is probably a branch or exit
instruction. If the following instruction clears ' the system interrupt
enable flag, that instruction takes precedence over the preceding one.

SM-0036 5-4 B

The delay in setting the flag for this instruction allows the interrupt
program to reenable the interrupt mode and then exit to the interrupted
program.

| APML | Description |IOP Instruction
I | |
II =1 |Enable system interrupts 1003000

5.3 TRANSMIT TO ACCUMULATOR INSTRUCTIONS

These instructions enter a value in the accumulator. The carry flag is
cleared.

5.3.1 A=4d

This instruction enters the d designator in the accumulator as a 9-bit
positive integer. The high-order bits are 0.

| APML | Description JIOP Instruction
| | [
A =d |Transmit d to A |010--d

5.3.2 A=k

This instruction enters the 16-bit k field in the accumulator.

| APML |Description LIOP Instruction
| | I
IA = k |Transmit k to A |014000/ --——- k

SM-0036 5-5 B

50303 A = dd

This instruction enters the contents of operand register d in the
accumulator.

| APML |Description |IOP Instruction
| | |

|A = dd |Transmit operand register |]020--d

| |Id to A |

5.3.4 A = (dd)

This instruction enters the contents of a memory location in the
accumulator. The memory address is obtained from operand register d.

I

I I |

|A = (dd) |Transmit contents of memory |030--d
| |addressed by register d to A |

APMIL, |Description |IOP Instruction
A

503-5 A=B

This instruction enters the B register contents in the accumulator as a
9-bit positive integer. The high-order bits are 0.

| APML |Description |IOP Instruction
| | |
|A = B |Transmit B to A 1050000

5.306 A = (B)

This instruction enters the contents of operand register B in the
accumulator and then clears the carry flag.

| APML |Description IOP I ion
I I |

|A = (B) |Transmit operand register | 060000

I |B to A I

SM-0036 5-6 B

5.4 LOGICAL PRODUCT WITH ACCUMULATOR INSTRUCTIONS

These instruction form the bit-by-bit logical product of the previous
accumulator contents and a value obtained from the instruction for k
fields, a register conteants, or memory contents. The result is placed in
the accumulator and the carry flag is cleared.

5.4.1 A =AG&d

This instruction forms the logical product of the previous accumulator
contents and the d designator.

| APML |Description |IOP Instruction
| | |

A =A&d |Logical product of A and |jo11--d

| |d to A |

5.4.2 A =AG& Kk

This instruction forms the logical product of the previous accumulator
contents and the 16-bit k field.

| APML _|Description |IOP Instruction
I | !

|JA = A &Kk |Logical product of A and |015000/ ~~---~ k

} lk to A |

5.4.3 A = A & dd

This instruction forms the logical product of the previous accumulator
contents and the contents of operand register d.

| APML, _|Description JIOP Instruction
| I I
]A = A & dd |Logical product of A and |021--d

| |operand register d to A |

SM-0036 5-7 B

5.4.4 A = A & (dd)

This instruction forms the logical product of the previous accumulator
contents and the contents of a memory location. The memory address is
obtained from operand register d.

| ABML |Description JIOP Instructiom
I | |

|A = A & (dd) |Logical product of A and |]031--d

| |contents of memory addressed |

| |by register d, result to A |

5.4.5 A =A&B

This instruction forms the logical product of the previous accumulator
contents and the 9-bit B register contents.

| ABML |Description |IOP Instruction
| I |

|]A =A&B |Logical product of A and B 1051000

| [to A |

5.4.6 A = A & (B)

This instruction forms the logical product of the previous accumulator
contents and the contents of operand register B.

| APML, |Description |IOP Instruction
| | I

|A = A & (B) |Logical product of A and 1061000

| |operand register B to A |

5.5 ADD TO ACCUMULATOR INSTRUCTIONS

These addition instructions add a value to the previous accumulator
contents. The carry flag is complemented if a carry is propagated from
the accumulator in the addition process.

SM-0036 5-8 B

5.5.1 A =24 +d

This instruction adds the d designator to the previous accumulator
contents. The d designator is treated as a 9-bit positive integer.

| ABML, |Description LIOP Instruction
| | |
|IA=A+d |Add d to A {012~--d

5.5.2 A =24 + k

This instruction adds the 16-bit k field to the previous accumulator
contents.

| ABML |Description | IOP Instruction
I I I
IA=2A+k |Add k to A 1016000/ -—--- k

5.5.3 A = A + dd

This instruction adds the contents of operand register d to the
previous accumulator contents.

| APML IDescription |IOP Instruction
| | [
|A = A + dd |Add operand register d to A |022--d

5.5.4 A = A + (dd)

This instruction adds the contents of a memory location to the contents
of the accumulator. The memory address is obtained from operand
register d.

| APML [Description LIOP Instruction _
| | |

IA = A + (dd) |Add contents of memory |032--d

i |addressed by register d to A |

SM-0036 5-9 B

5.5.5 A=A + B

This instruction adds the 9-bit B register contents to the previous
accumulator contents.

| APML |Description JIOP Instruction
| | I
|A =A +B [Add B to A 1052000

5.5.6 A = A + (B)

This instruction adds the contents of operand register B to the previous
accumulator contents.

|APML |Description |]IOP Instruction
| I I
|IA = A + (B) {Add operand register B to A 1062000

5.6 SUBTRACT FROM ACCUMULATOR INSTRUCTIONS

These instructions subtract a value from the previous accumulator
contents. The subtraction is performed by complementing the 16-bit wvalue
to be subtracted, and adding the result to the previous accumulator
contents. 1 is then added to the result. The carry flag is complemented
if a carry is propagated from the accumulator during either addition
process.

5.6.1 A =4 -d

This instruction subtracts the d designator from the previous
accumulator contents. The d designator is treated as a 9-bit positive
integer.

| APML, |[Description |IOP Instruction
| I |
IA = A -d | Subtract d from A |013--d

SM-0036 5-10 B

506.2 A=A—k

This instruction subtracts the 16-bit k field from the previous
accumulator contents.

|
|A =A -k |Subtract k from A : 1017000/ -——-- k

IAPML__________ |Description : |IOP Instruction
I |

5.6.3 A=A -dd

This instruction subtracts the contents of operand register d from the
previous accumulator contents.

| ARML, |Description LIOP Ipstruction
| | |

|A = A -dd | Subtract operand register |023--d

I |d from A I

50604 A = A - (dd)

This instruction subtracts the contents of a memory location from the
contents of the accumulator. The memory address is obtained from operand
register d.

| ABML [Description LIOP Instruction
I I I

|1A = A - (dd) |Subtract contents of memory |033--d

] | addressed by register d |

] |from A, result to A |

5.6.5 A=A - B

This instruction subtracts the 9-bit B register contents from the
previous accumulator contents.

| APML, |Description JIOP Instruction
| | |
|IA=2a-8B |Subtract B from A 1053000

SM-0036 5-11 B

5.6.6 A = A - (B)

This instruction subtracts the contents of operand register B from the
previous accumulator contents.

| APML, |[Description |IOP Instruction
| I |

|A = A - (B) | Subtract operand register B |063000

| | from A |

5.7 INCREMENT BY 1 INSTRUCTIONS

These instructions add 1 to the contents of a register or memory
location. The carry flag is cleared at the beginning of the operation
and a 1 is entered in the accumulator. The contents of the register or
memory location is then added to the accumulator. The carry flag is set
if a carry is propagated from the accumulator in the addition process.
The result is returned to the register or memory location.

5.7.1 dd =dd + 1

This instruction replaces the contents of operand register d with the
previous contents increased by 1.

| ABML |Description |IOP Instruction
I I |
J]@d = dd + 1 |Transmit register d to A, |]026--d

| |add 1, result to operand |
I |register d [

5.7.2 (dd) = (dd) + 1

This instruction increments the contents of a memory location by 1. The
memory address is obtained from operand register d.

| APML,_ |Description L IOP Instruction
I I |
1(dd) = (dd) + 1|Transmit memory addressed by |036--d

| |lregister d to A, add 1, |
| |result to same memory |
I |location |

SM-0036 5-12 B

50703 B=B+1

This instruction replaces the contents of the B register with its
previous conteants increased by 1.

| ABML, |Description LIOP Instruction
| . |

[IB=B +1 |Transmit B to A, add 1, 1056000

[|result to B |

5.7.4 (B) = (B) + 1

This instruction replaces the contents of operand register B with its
previous contents increased by 1.

| APML. |Description |IOP Instruction
| | |

|(B) = (B) + 1 |Transmit operand register B | 066000

| |to A, add 1, result to |

| |operand register B |

5.8 DECREMENT BY 1 INSTRUCTIONS

These instructions subtract 1 from the contents of a register or memory
location. The carry flag is cleared at the beginning of this operation.
A minus 1 value is entered in the accumulator. The contents of the
register or memory location are then added to the accumulator contents.
The carry flag is set if a carry is propagated from the accumulator in
the addition process. The result is then returned to the register or
memory location.

This instruction replaces the contents of operand register d with the
previous contents decreased by 1.

| APML, |Description |IOP Instruction
I I |

|dd = dd - 1 |Transmit register d to A, |027--d

| | subtract 1, result to operand |

| |register d |

SM-0036 5-13 B

5.8.2 (dd) = (dd)

-1

‘This instruction decrements the contents of a memory location by 1. The
memory address is obtained from operand register d.

| APML

|Description JIOP Instruction

|(dd) = (dd) - 1|Transmit memory addressed by j037--d

5.8.3 B =B -1

|register d to A, subtract 1,]
|result to same memory |
|location |

This instruction replaces the contents of the B register with its
pPrevious contents decreased by 1.

| APML,_

|Description |IOP Instruction

I
IB=B -1

5.8.4 (B) = (B) -

| I
|Transmit B to A, Subtract 1, 1057000
|result to B |

1

This instruction replaces the contents of operand register B with its
previous contents decreased by 1.

| ARML,

|Description |IOP Instruction

I
|(B) = (B) -1
I
|

| I
|Transmit operand register B]067000
Jto A, subtract 1, result to |
|operand register B |

5.9 ADD TO ACCUMULATOR AND REPLACE OPERAND INSTRUCTIONS

These instructions add the contents of a register (or memory) to the
accumulator and place the result in both the accumulator and the register
(or memory). The carry flag is complemented if a carry is propagated in
the addition process.

SM-0036

5.9.1 dd = A + dd

This instruction adds the contents of operand register d to the
previous accumulator contents and replaces the result in the operand
register d.

| ARML, |Description LIOP Instruction
| ! I

|dd = A + dd |Add operand register d to A, |]025--d

| |result to operand register d |

5.9.2 (dd) = A + (dd)

This instruction replaces the contents of a memory location with its
previous content plus the current accumulator contents. The memory
address is obtained from operand register d.

| ABML [Description LIOP Instruction
| | |

|(dd) = A + (dd)|Add memory addressed by |035--d

| |register d to A, result to |

| | same memory location |

5.9.3 B=A+B

this instruction adds the 9-bit contents of the B register to the
previous accumulator contents.

| ABML |Description |IOP Instruction
| | |
|IB=A+B |Add B to A, result to B | 055000

5.9.4 (B) = A + (B)

This instruction adds the contents of operand register B to the previous
accumulator contents.

| APML, [Description |IOP Instruction
| I |

I(B) = A + (B) |Add operand register B to A, |]065000

| | result to operand register B |

SM-0036 5-15 B

5.10 TRANSMIT FROM ACCUMULATOR INSTRUCTIONS

The following instructions transmit from the accumulator: dd = A,
(dd) = A, B = A, and (B) = A.

5.10.1 dd = A

This instruction stores the accumulator contents in operand register d.

| ABML, : |Description |IOP Instruction
| I |
|ldd = A |Transmit A to register d |024--d

5.10.2 (dd) = a

This instruction replaces the contents of a memory location with the
current accumulator contents. The memory address is obtained from
operand register d.

| APML, [Description JIOP Instruction
| | |

| (dd) |Transmit A to memory addressed |[034--d

| Iby register d |

]
>

5.10.3 B = A

This instruction replaces the B register contents with the low-order
9 bits of the accumulator contents.

| APML |Description [IOP Instruction
| | |
IB = A |Transmit A to B]054000

SM-0036 5-16 B

5.10.4 (B) = A

This instruction stores the accumulator contents in operand register B.

|

|(B) = A |Transmit A to operand | 064000
| |register B |

5.11 SHIFT INSTRUCTIONS

The shift instructions shift accumulator contents and associated carry

flag to the right or left.
to the left of the accumulator contents for these operations.

The carry flag may be regarded as a 17th bit

The shift

count is obtained from the low-order 5 bits of the d field or the
low-order 5 bits of the B register contents.

5.11.1 END OFF SHIFTS

In the end off shifts, bits shifted off are discarded and 0 bits are

entered at the opposite end.

if the shift count is greater than 16.

The accumulator and carry flag are cleared

|ABML._ |Description LIOE Instruction
| | I

|IA = A > |Right shift C and A by d |004--d

| |places, end off |

| APML, |Description LIOP Instruction
| | |

1A = A < |Left shift C and A by d |005--d

| |places, end off |

| AEML, |Description JIOP Instruction
| | |

1A = A > |Right shift C and A by B | 044000

| |places, end off |

| ARME, |Description LIOP Instruction
| | |

|A = A < |Left shift C and A by B | 045000

| iplaces, end off I

SM-0036 5-17 B

5.11.2 CIRCULAR SHIFTS

In the circular shifts, bits shifted off are entered at the opposite end.

|APML _ |Description |IOP Instruction
I | |

IA =2 > d |Right shift C and A by d |006--d

| |places, circular |

| APML, |Description |IOP Instruction
| | |

|A = A << |ILeft shift C and A by d 1007--d

I Iplaces, circular I

|APML__ |Description JIOP Instruction
I | I

1A = A > |IRight shift C and A by B 1046000

| Iplaces, circular |

| APML |Description |IOP Instruction

I | I

|A = A << |Left shift C and A by B [047000

Iplaces, circular

5.12 SET CARRY FLAG INSTRUCTIONS

The following instructions set the carry flag.

5.12.1 C =1, iod = DN

This instruction forces the carry flag to the same state as the channel
d done flag.

| APML, |Description |IIOP Instruction
I | I

]JC = 1, iod = DN|Set carry equal to channel 1040--d

| |d done |

SM-0036 5-18 B

5.12.2 C =1

Channel 000 is always done. You can set the carry flag by setting
d = 000 in this instruction.

| APML —|Description LIOP Instruction
| | I
IC =1 |Set carry flag | 040000

5.12.3 C = 1, iod = BZ

This instruction forces the carry flag to the same state as the channel
d busy flag.

| APML [Description LIOP Instruction
I | |

|C = 1, iod = BZ|Set carry equal to channel |041--d

| |d busy |

5.12.4 C =0

Channel 000 is never busy. You can force the carry flag clear by setting
d to 000 in this instruction.

| ABML, |Description |IOP Instruction
| | |
IC =0 |Clear carry flag | 041000

5.12.5 C =1, IOB = DN

This instruction forces the carry flag to the same state as the done flag
of the channel specified by the B register contents.

APML [Description LIOP Instruction

IC =1, IOB = DN|Set carry equal to channel | 042000

| |B done |

SM-0036 5-19 B

5.12.6 C =1, I0OB = B2

This instruction forces the carry flag to the same state as the busy flag
of the channel specified by the B register contents.

| APML [Description |IOP Instruction
I I |

IC = 1, 'IOB = BZ|Set carry equal to channel |1 043000

| |B busy |

5.13 BRANCH INSTRUCTIONS

The branch instructions in the IOP use instruction codes 070g through
137g, comprising 40 different instructions. This large number of

branch instructions comes from having a unique instruction code for every
combination of the following three variables. For the full set of
hardware instructions and their instruction codes, see appendix B,
Hardware Instruction Summary.

1. Branch type:

Jump
Return jump

2. Branch condition:

- Unconditional branch

---,C=0 Branch if carry flag is clear
---,C=1 Branch if carry flag is set
---,A=0 Branch if accumulator is zero
---,A#0 Branch if accumulator is nonzero

3. Branch mode:

P=P+d¥ Branch to a new program address formed by adding
the d designator to the current instruction
address

p=p-dt Branch to a new program address formed by

subtracting the d designator from the current
instruction address

+ This APML format is for illustrative purposes only. The assembler
does not support this format as a symbolic APML instruction, although
the hardware instruction is generated automatically by APML whenever a
branch is to a label within the same instruction page.

SM-0036 5-20 B

P=dd Branch to the address in operand register dd

P=dd+k - Branch to the address formed by adding the k
field to the contents of operand register dd

The execution of a branch instruction does not alter the accumulator
contents and carry flag.

For instructions with destination dd or dd+k, the Program Fetch
Request flag is set if the contents of operand register dd contain a 0.

5.14 CHANNEL FUNCTION INSTRUCTIONS

The channel function instructions issue a function to the channel
specified. In the IOB:k instruction, the B register contents specifiy
the channel. In the iod:k instruction, the channel mnemonic iod
specifies the channel, where the value of the iod symbol is inserted by
APML in the 9-bit d field of the instruction. The function code k
must be a positive value less than 20g, and is added to 140g or 160g

to form the IOP instruction code for iod:k or IOB:k, respectively.

The channel function instruction may provide accumulator data to the
channel interface or may return channel interface data to the
accumulator. For additional information about specific channel
functions, see section 4, Symbolic APML Instruction Syntax, and appendix

C, Messages.
The channel function instructions are as follows:

iod:k Channel d function k 140--d through 157--d
I0B:k Channel B function k 160000 through 177000

SM-0036 5-21 B

6. PSEUDO INSTRUCTIONS

APML includes a set of instructions known as pseudo instructions to
direct the assembler in its task of interpreting the source statements
and generating an object program.

Some pseudo instructions such as IDENT and END are required by the

assembler; others are optional. If certain of these optional
instructions are not used, the assembler uses a default setting.

6.1 RULES FOR PSEUDO INSTRUCTIONS

Each program module begins with an IDENT instruction and ends with an END
instruction. Symbol, micro, and macro definitions occurring within the
program module are cleared before assembling the next program module.

You may define a symbol, micro, or macro prior to the first IDENT pseudo
instruction or between an END and a subsequent IDENT pseudo instruction.
Such a definition is considered global and may be referenced in any
subsequent program module. For more information on global definitions,
see subsection 2.8, Global Definitions.

Symbolic machine instructions and the pseudo instructions that follow
must appear within a program module. They are allowed outside of an
IDENT to END sequence only within macro definitions.

ABS EXT
BASEREG GLOBAL
BITP LoC
BITW MICSIZE
BLOCK NEWPAGE
BSS ORG
BSSZ PDATA
COMMENT QUAL
CON SCRATCH
DATA START
ENDTEXT TEXT
ENTRY VWD

In an absolute program module, the ABS pseudo instruction must appear
before any symbolic machine instruction or before any of the preceding
pseudo instructions. All other pseudo instructions and macro definitions
may appear .anywhere.

SM-0036 6-1 B

6.2 TYPES OF PSEUDO INSTRUCTIONS

Pseudo instructions are classified according to their applications as

follows:
Class
Program control
Code control
Loader linkage
Mode control
Block control
Error control

Listing control

Symbol definition

Data definition
Conditional assembly
Instruction definition
Code duplication

Micro definition

Pseudo Instructions in Class

IDENT, END, ABS, COMMENT, GLOBAL
BASEREG, SCRATCH, NEWPAGE

ENTRY, EXT, START

BASE, QUAL

BLOCK, ORG, BSS, LOC, BITW, BITP

ERROR, ERRIF

LIST, SPACE, EJECT, TITLE, SUBTITLE, TEXT,

ENDTEXT

EQUALS, SET, CHANNEL, MICSIZE
CON, BSSZ, DATA, PDATA, VWD
IFA, IFE, IFC, SKIP, ENDIF, ELSE
MACRO, LOCAL, ENDM, OPSYN

DUP, ECHO, ENDDUP, STOPDUP

MICRO, OCTMIC, DECMIC

6.3 PROGRAM CONTROL PSEUDO INSTRUCTIONS

The pseudo instructions described in this subsection define the limits of

a program module and define the type of assembly to be performed.

6.3.1

The IDENT pseudo instruction identifies a program module and marks its
The name of the module appears in the heading of the listing
produced by APML and in the Program Descriptor Table (PDT) of the binary

beginning.

load module.

SM-0036

IDENT - IDENTIFY PROGRAM MODULE

Format:

| ignored |IDENT | name

name Name of the program module; a name must meet the
requirements for names given in section 2, APML Assembler
Language.

Example:

|Location |Result | Operand | Comment

11 110 |20 |

| | I |

| | IDENT | KOJE |

6.3.2 END - END PROGRAM MODULE

The END pseudo instruction is the final statement of a program module.
It causes the assembler to take the following actions:

¢ Reset the numeric base for assembly to octal

® Clear the base, list, qualification, base register, and block
stacks

® Terminate any skipping, macro definitions, or repeated code

® Reset the list control options to those determined by the APML
control statement

Format:
|Location |Result |Operand
| | |
| ignored |END | ignored

6.3.3 ABS - ASSEMBLE ABSOLUTE BINARY

The ABS pseudo instruction designates that a program module will be
assembled as an absolute rather than a relocatable load module. Since
there is no loader for processing relocatable APML code, you should
always include this pseudo instruction.

SM-0036 . 6-3 B

Format:

I -
I | |
| ignored |ABS | ignored

6.3.4 COMMENT - DEFINE PROGRAM DESCRIPTOR TABLE COMMENT

The COMMENT pseudo instruction defines a character string to be entered
as an informational comment in the PDT of the binary load data. The
character string is entered as 0 to 10 words of left-justified,
blank-filled ASCII data, starting in the 12th header word of the PDT.

If a subprogram contains more than one COMMENT pseudo, the character
string from the last COMMENT pseudo is inserted in the PDT.

Format:

ILocation |Result |Operand
| | |
|ignored |COMMENT |‘character string'

‘character string’
ASCII character string of 0 to 80 characters

Example:
|Location |Result |Operand | Comment
11 110 120 135

I | | |
I | IDENT | APML [

| | COMMENT | ‘'COPYRIGHT CRAY RESEARCH, INC. 1980°'

6.3.5 GLOBAL - DECLARE GLOBAL SYMBOLS
The GLOBAL pseudo instruction declares a symbol to be a global symbol. A

symbol declared in this manner is maintained across program modules as if
it were a symbol defined in a system text.

Format:

|
| | I
| ignored |GLOBAL |symboly, symbol,,..., symbol,

SM-0036 6-4 B

symbol; The name of a symbol. You must define the symbol
elsewhere in the program module.

6.4 CODE CONTROL PSEUDO INSTRUCTIONS

The pseudo instructions described in this subsection provide control of
the I/0 Processor (IOP) code generated by APML.

6.4.1 BASEREG - DECLARE BASE OPERAND REGISTER

The BASEREG pseudo instruction declares the operand register to be used
by APML in 2-parcel jump instructions. All IOP jump instructions are
either 1- or 2-parcel instructions. One-parcel instructions allow
jumping 511 parcels forward or backward from the current address.
Two-parcel jump instructions contain an operand register index and a
16-bit address. The jump destination is the sum of the 16-bit address
and the contents of the indicated operand register.

You may either explicitly name the operand register in each 2-parcel jump

instruction or may specify a base register and allow APML to implicitly
use the declared register whenever a 2-parcel instruction is required.

Format:

| :
| | I
| ignored |BASEREG |symbol,bias

symbol A symbol representing the base register. You must ensure
that the declared register contains the proper base address.

bias An expression whose value is a bias against the address
contained in the base register (default is 0). This
parameter is normally omitted. It is needed only when
using the program fetch feature of the IOP to prevent
interrupts when a base register would otherwise contain a
valid zero address.

If the operand field is blank, a previously declared base
register is no longer valid. Two-parcel jumps which do not
explicitly name an operand register produce a warning and
operand register 0 is used.

SM-0036 6-5 B

bias
(continued)

If the operand field is an asterisk, the previous base
register and bias are popped from the stack. Each
occurrence of a BASEREG pseudo instruction other than
BASEREG * causes an entry in the stack. Each BASEREG *
removes an entry from the stack. If the stack is empty, no
base register is declared.

Example:
|Code generated |Location |Result | Operand | Comment
| .1 110 1.20 |35
		IDENT	BASEREG
1	R1	EQUALS	1
		BASEREG	R1
075001 /7 001744		P=NEXT	
i [<1742>		.Reserve	
]]	parcels
]	NEXT	A=B	
		- I	
I	l.		
		-	
		END I	

6.4.2 SCRATCH - DECLARE APML SCRATCH REGISTER

When generating IOP machine instructions from APML statements, APML
sometimes uses scratch operand registers to hold memory addresses or
intermediate values.

The SCRATCH pseudo instruction declares operand registers that APML uses
for this purpose.

Format:
|Location |Result _ |Operand
| | |
| ignored |SCRATCH |ry,r3.,...ry
ry A symbol used as a register name. You may declare from
zero to five register symbols. The symbol may be external,
relocatable, or absolute with a positive value less than
512.
SM-0036 6-6 B

Each occurrence of the SCRATCH pseudo instruction declares a new set of
scratch registers. If APML needs more scratch registers than are
declared, an error is generated.

You can determine scratch register usage by APML from a cross-reference
listing generated by APML for each line in which a scratch register is
used.

Example:

|Code generated |Location |Result |Operand | Comment
| 11 110 120 _135
I | | | |

| | | IDENT | SCRATCH |

| 1 | SHARK | EQUALS |1 |

| 6 | DO | SET |6 |

| | |SCRATCH |SHARK,DO,DA |

| 4 | DA |EQUALS |4 |

| |Loc [<1> I I
]014000 /000000 024001 | | (LOC)=(1057) |
|014000 /001057 024006 | | | |
[|030006 034001 i | | |

| | |END I |

6.4.3 NEWPAGE - FORCE A NEW INSTRUCTION PAGE

The NEWPAGE pseudo instruction causes APML to force an instruction page
boundary. All labels appearing on previous APML instructions are
defined. Jumps across a page boundary must be 2-parcel jumps.
Optimization of the previous block of code occurs.

This instruction forces definition of labels and allows you to control to

some extent where page boundaries occur so that the assembler can improve
code optimization.

Format:
|Location |Result |Operand
| {

|ignored |NEWPAGE |

SM-0036 6-7 B

Example:

|Code generated |Location |Result |Opérand | Comment
L1 110 120 135
| | I |
| | IDENT | NEWPAGE |
1 | R1 | EQUALS |1 |
| | BASEREG |R1 |
075001 /000002 | | P=NEXT | |
| |NEWPAGE | |
| NEXT |A=B | |
I l. I I
I l. [|
| l. | I
| | END | I

6.5 LOADER LINKAGE PSEUDO INSTRUCTIONS

The pseudo instructions ENTRY and EXT provide for loading multiple object

program modules and linking them into a single executable program.

6.5.1 ENTRY - SPECIFY ENTRY SYMBOLS

The ENTRY pseudo instruction specifies symbolic addresses or values that
may be referred to by other program modules linked by the loader. Each
entry symbol must be a relocatable or absolute symbol defined within the

program module.

Format:

|Location |Result |Operand
| | |

|ignored |ENTRY

| symbol,,symbol,,...,symbol,

symbol; A valid symbol
Example:
|Location |Result |Operand | Comment
1 110 120 135
I I I I
| | ENTRY | EPTNME |
SM-0036 6-8

a

6.5.2 EXT - SPECIFY EXTERNAL SYMBOLS

The EXT pseudo instruction specifies linkage to symbols defined as entry
symbols in other program modules. They may be referred to from within
the program module but must not be defined within the program module.
Symbols specified on the EXT instruction have absolute and value
attributes with a value of 0.

Format:
|Location |Result _|Operand
| | |
| ignored |EXT | symy,symp, ..., Symy,
sym; An unqualified symbol
Example:
jLocation |Result |Operand | Comment
4 [10 120 135
| | | |
| | IDENT |A |
I l. I |
I I. | I
| I. I |
	ENTRY	VALUE
VALUE	EQUALS	-2
l.		
I l.		
	END	I
	IDENT	B
	EXT	VALUE
	CON	VALUE

| | .be stored here by a loader
6.5.3 START - SPECIFY PROGRAM ENTRY

The START pseudo instruction specifies the main program entry. In a
relocatable program, this entry is the symbolic address where execution
begins following the loading of the program. The named symbol may

optionally be an entry symbol specified in an ENTRY pseudo instruction.

You can name only one main program entry in a program module.

SM-0036 ' 6-9 B

Format:

| i n
| | |
| ignored |START | symbol

symbol An entry symbol

6.6 MODE CONTROL PSEUDO INSTRUCTIONS

Mode control pseudo instructions define the characteristics of an
assembly. The BASE pseudo determines whether notation for numeric data
is assumed to be octal or decimal. The QUAL pseudo instruction permits
symbols to be defined as qualified or unqualified.

6.6.1 BASE - DECLARE BASE FOR NUMERIC DATA

The BASE pseudo instruction allows specification of the base of numeric
data as being octal, decimal, or mixed when the base is not explicitly
specified by an O' or D' prefix. The default is octal.

Format:
I i r
| | |
|ignored |BASE | base
base Required single character, as follows:

O Octal; all numeric data is assumed to be octal.

D Decimal; all numeric data is assumed to be decimal.

M Mixzed; numeric data is assumed to be octal except for
numeric data used for the following, which is assumed

to be decimal:

® Statement counts in DUP and conditional
statements

® Line count in SPACE
® Bit position or count in BITW, BITP, or VWD
® (Character counts as in MICRO, OCTMIC, DECMIC, and

data items

SM-0036 6-10 B

* Reverts to use of the previous base in the stack.
Each occurrence of a BASE pseudo instruction other
than BASE % causes an entry in the stack. Each BASE *
removes an entry from the stack and causes the base in
use prior to the current base to be resumed. If the
stack is empty when BASE #* is encountered, the APML
default mode (octal) is used.

Example:

|Location |Result | Operand | Comment

11] 10 120 135

I ! | I

| | BASE |D | .Change base from default (octal)

| | | | .to decimal

| | VWD |40/710 | .Field size and constant value

| | | | .both decimal

I l. l . |

| |- . |

I l. l. |

| | BASE M | .Change from decimal to mixed

| | | | .base

| | VWD |40/12 | .Field size decimal; constant

| | | | .value octal

| l - l. I

I l. I. I

| - I. |

| | BASE [¢] | .Change base from mixed to octal

| | VWD |50/712 | .Field size and constant value

| | | | .both octal

[l. I |

I l. l. |

I l. I I

| | BASE | * | .Resume mixed base

| | BASE | % | .Resume decimal base

| | BASE | * | .Stack empty: resume octal base
Example:

|Code generated |Location |Result | Operand | Comment

| 11 |10 |20 135

I I I | |

| | | IDENT | BASE |

1010012 | ja=12 | | .BASE O

| | | BASE d |

1010012 | |A=12 | | .BASE O

| | | BASE |D |

|010014 | |a=12 | | .BASE D

I I | BASE I* I

010012 I |a=12 | | .BASE O

I I | END I I
SM-0036 6-11 B

6.6.2 QUAL - QUALIFY SYMBOLS

A QUAL pseudo instruction begins or ends a code sequence in which all
symbols defined are either qualified by a qualifier specified by the QUAL
or are unqualified. Until the first use of a QUAL pseudo instruction,
symbols are defined as unqualified. Global symbols cannot be qualified.
Thus, QUAL pseudo instructions must not occur before IDENT.

A qualifier applies to symbols only and does not affect names used for
blocks, conditional sequences, duplicated sequences, macros, micros,
externals, and formal parameters.

Format:
|Location |Result __|Operand
| | |
| ignored |QUAL |qualification
qualification

Indicates whether symbols are to be qualified or
unqualified; if qualified, indicates the qualifier to be
used. The field may contain a qualifier, * , or no entry.

qualifier The presence of a 1- to 8-character
qualifier, where a qualifier is a valid
name, causes all symbols defined until the
next QUAL pseudo instruction to be qualified.
Being qualified means that such a symbol can
be referenced with or without the qualifier
within any sequence in which the qualifier is
in effect; however, if the symbol is
referenced while some other qualifier is in
effect, the reference must be in the form:

/qualifier/symbol
When a symbol is referenced without a
qualifier, APML first attempts to find
it qualified by the qualifier in
effect. If the qualified symbol is not
defined, APML attempts to find it in the
list of unqualified symbols. The symbol
is undefined if both of these searches
fail.

SM-0036 6-12 B

PauTIapP DgVY/Dd/ 103 3IsaL°| DEv/dDd/’addl
pouT3Iep JEV/YAL/ 303 2ASaL'| DJgv/dArL/’aad|
psurjep Dgy 103 3sar°| oav‘ aaal
paryrrenbun aq 1rTA sToquis-”| |

SAP 3O @sn aumsay®

|
I
|
x|
I
I

ZXX/73A0/ = 4|

9£00-KS

vdarl ol
varl g
varI| \4|
nd| |
ol
|
*|
vno|

‘parjrienbun psurjop 9xe stoquis ‘paxajunodous

ST & YN0 uaym A3dwe ST Yoe3ls 8yl JI °poumsax

9q 03 309330 ur mworjedryrrenb eyjy sasneo pue
jyoe3s ay3z woay Lijus ue Sasowax x IVND yoedm
*joe3s uworjedsryrTenb e ur Lz3ue uwe sasneod

» TYND © ueyl Isylzo IYnd e JO 8OoUaIINDO0
yoeqd cuworjeorjrrenb juwazano ayjz o3 snotasad
309339 ut x913TTenb ByY3z JOo asn saumsaa yx UY

el sTvnbal ogv
A0a Aq peryrrenb aq T1IM stoquis:e %oal Tvnd|

I *| I

I °| I

| *| I

| €z = vl 2xx|

| 2xx = 4| I

zl s1vnda| oav|

¥Ar Aq patyTrenb aq T1TM SToquig: | aar| ™nd| |

parjyrrenbun paurjep st Jgv’| Tl sTvndal o8v|

I I °| I

I | *| I

par3rrenbun st jTnejyap waijsig- | | |]

| I | |

SE| 021] I

JUBULO) | pueaadp| JIInsSay| uoryeooq|

sotdurexry
‘uoT3TUTIOP ToqUAs ayjy ia3je
poTquasse arnpow uwexboad Aue woa3y ‘stoquis
Teqotb jo aseo ayjz ur 10 ‘arnpouw uweaboad
9yl utr ooeyd Aue woxzy uorjzedTITTENnD InoyzTAa
Toquis parjrrenbun ue aouwaasazax ued nox
*uoT3onI3sur opnasd ynd e JO IOUSIINDOO IXBU
9y3 Traun peryrrenbun se pasurjep eae stoquis
‘Kydws st IvnDd 9yl 3Jo pT1aT3 pueaado a8yl 3II K13ua ou

6.7 BLOCK CONTROL PSEUDO INSTRUCTIONS

You can divide a program, whether assembled into absolute binary or
relocatable binary, into sections called blocks. As assembly of a
program proceeds, you explicitly or implicitly assign code to specific
blocks or reserve areas of a block. The assembler assigns locations in a
block consecutively as it encounters instructions or data destined for
the block.

By dividing a program into blocks, you can conveniently separate
executable sequences of code from nonexecutable data. When no BLOCK
pseudo instructions are used, all assignment of code is implicitly
designated in the nominal block. Use the nominal block for all code not
explicitly contained in a named block.

When a BLOCK pseudo instruction is used, all code generated or memory
reserved from the occurrence of one BLOCK instruction up to the
occurrence of the next BLOCK instruction is assigned to the designated
block. Until the first BLOCK instruction, the nominal block is used.
Blocks defined by BLOCK instructions are referred to as local blocks
because at program end, all of the blocks are concatenated with the
nominal block to form the program block. That is, blocks exist local to
the assembly and are invisible to a relocatable loader.

The nominal block is always the first block in the program block. All
other local blocks are appended in the order that the blocks are first
referenced in a BLOCK instruction.

APML maintains a pushdown stack of block names. It makes an entry in the
stack each time a BLOCK pseudo instruction names a block to be used and
deletes an entry from the stack each time a BLOCK pseudo contains * to
indicate resumption of the block previously in use. The block in use is
always the top entry in the stack. If the program contains more BLOCK *
instructions than there are entries in the stack, the assembler uses the
nominal block.

For each block used in a program, APML maintains an origin counter, a
location counter, and a bit position counter. When a block is first
established or its use is resumed, APML uses the counters for that
block. During pass 1 of the assembler, the origin and location counters
for a block are initially 0. During pass 2, as the assembler constructs
the program, it assigns an initial value to each local block origin
counter and location counter. Thus, expressions containing relocatable
symbols are evaluated differently in pass 2 than in pass 1.

The origin counter controls the relative location of the next word to be
assembled or reserved in the block. It is possible to reserve blank
memory areas simply by using either the ORG or BSS pseudo instructions to
advance the origin counter. When the special element *O is used in an
expression, the assembler replaces it with the current parcel-address
value of the origin counter for the block in use. You may use W.*O to
obtain the word-address value of the origin counter.

SM-0036 6-14 B

The location counter is normally the same value as the origin counter and
is used by the assembler for defining symbolic addresses within a block.
The counter is incremented whenever the origin counter is incremented.
The LOC pseudo instruction adjusts the location counter so that it
differs in value from the origin counter or so that it refers to the
address relative to a block other than the one currently in use. When
the special element * is used in an expression, the assembler replaces it
by the current parcel address value of the location counter for the block
in use. You may use W.* to obtain the word address value of the location
counter.

As instructions and data are assembled and placed into a word, APML
maintains a pointer indicating the next available bit within the worad
currently being assembled. This pointer is known as the
word-bit-position counter. It is 0 when a new word is begun and is
incremented by 1 for each completed bit in the word. Its mazimum value
is 63 for the rightmost bit in the word. When a word is completed, the
origin and location counters are incremented by 1 and the word bit
position counter is reset to 0 for the next word.

When you use the special element *W in an expression, the assembler
replaces it with the current value of the word-bit-position counter. The
normal advancement of the word-bit-position counter is in increments of
16, 32, and 64 as 1- and 2-parcel instructions or words are generated.
You can alter this normal advancement, however, through use of the BITW,
BITP, and VWD pseudo instructions.

The assembler completes a partial word and sets the word-bit-position and
parcel-bit-position counters to 0 if either of the following conditions
is true:

¢ The current instruction is an ORG, LOC, BSS, BSSZ, or CON pseudo
instruction

¢ The current instruction is a DATA or VWD pseudo instruction and
the instruction has an entry in the location field

Unused bits in a partial word are filled with binary zeros.

In addition to the word-bit-position counter, APML maintains a counter
that points to the next bit to be assembled in the current parcel. This
pointer is known as the parcel-bit-position counter. It is 0 when a new
parcel is begun and advances by 1 for each completed bit in the parcel.
Its maximum value is 15 for the rightmost bit in a parcel. When a parcel
is completed, the parcel bit position counter is reset to 0.

When you use the special element *P in an expression, APML replaces it
with the current value of the parcel-bit-position counter.

SM-0036 6-15 B

The parcel-bit-position counter is set to 0 following assembly of most
instructions. The pseudo instructions BITW, BITP, DATA, and VWD may
cause the counter to be nonzero.

The assembler completes a partially filled parcel and sets the
parcel-bit-position counter to 0 if the current instruction is a symbolic
APML instruction.

6.7.1 BLOCK - LOCAL BLOCK ASSIGNMENT

A BLOCK pseudo instruction establishes or resumes use of a block of code
within a program module (a local block). Each block has its own
location, origin, and bit-position counters.

Format:
|Location |Result |Operand
I [!
|ignored |BLOCK | name
name Name of the block to be used for assembling code until the
occurrence of the next BLOCK pseudo instruction
bname Name of local block
% Return to previous block
blank Resume use of nominal block
Example:
|Location |Result |Operand | Comment
11 |10 120 135

| .Nominal block in use

[|

| | I

| | I

| | BLOCK |A | .Use block A

I l. | |

| l. | |

| l. | I

| | BLOCK | | .Use nominal block
| l. | I

| l. | |

| l. | |

| | BLOCK | % | .Return to use of block A

SM-0036 6-16 B

6.7.2 ORG - SET *0 COUNTER

The ORG pseudo instruction resets the location and origin counters to the
value specified. The expression must have a value- or word-address
attribute. If the expression has a value attribute, it is assumed to be
a word address.

The first occurrence of the ORG instruction in an absolute assembly
indicates the address at which binary output begins. Subsequent ORG
instructions cannot specify a value lower than the first ORG value. If
ORG is omitted, an origin of 0 is assumed.

Format:
|Lecation |Result |Operand
| | I
| ignored |ORG | exp
exp New origin word address, a relocatable expression with
positive relocation within block currently in use. In an
absolute assembly, exp must be absolute if in the nominal
block. If the expression is blank, the word address of the
next available word in the block is used. All symbols used
in the expression must be previously defined. A force to
word boundary occurs before the expression is evaluated.
Example:
|Location |Result |Operand | Comment
4 [10 |20 |35

| | | |
| ORG |0'200/4 | .Absolute assembly

I
{ | | | .Set origin to the word address
| | | | .equivalent to parcel 200g.

6.7.3 BSS - BLOCK SAVE

The BSS pseudo instruction reserves a block of memory in a program. A
force to word boundary occurs and then the number of words specified by
the operand field expression is reserved. This pseudo instruction does
not generate data. The block of memory is reserved by increasing the
location and origin counters.

SM-0036 6-17 B

Format:

i
|
| symbol

symbol

exp

|
| BSS

| exp

Optional symbol assigned the word address of the location
counter after the force to word boundary occurs

An absolute expression with word-address or value-address

attribute and with all symbols previously defined.
expression value must be positive.

The

A force to word

boundary occurs before the expression is evaluated.

The left margin of the listing shows the octal word count.

Example:
|Location |Result |Operand | Comment
1L 110 |20 |35
| I I |
| | BSS |4 I
| I I |
| [| |
I l. I |
|A | CON | 'NAME'® |
I | CON 1 |
| | CON 2 I
| | BSS {A+16-W, * | .Reserve 13 more words
Example:
|Code generated |Location |Result | Operand | Comment
| 11 [10 120 |35
I | I | |
| | | IDENT | BSSBSS2 |
]050000 | |A=B | |
| 12 | NON | BSS |12 |
[4 | ZERO |BSSZ |4 |
| | HERE | * | |
| | | END

6.7.4 LOC - SET * COUNTER

The LOC pseudo instruction resets the location counter to the first
parcel of the word address specified. The location counter assigns
address values to location field symbols. Changing the location counter

SM-0036

allows code to be assembled and loaded at ome location, controlled by the
origin counter, then moved and executed at another address, controlled by

the location counter.

Format:

| T

| | |

| ignored |LOC | exp

exp New location counter word address, a relocatable expression
with positive relocation, not necessarily within the block
currently in use. The expression may also be absolute.
All symbols used in the exzpression must be previously
defined. A force word boundary occurs before the
expression is evaluated.

Example:

| Location |[Result | Operand | Comment

11 110 120 |38

I | I I

| * |In this example, the code is generated and loaded at parcel

| * 110000, and moved by your parcel to 200 before exzecution

I | ABS | I

| |ORG |10000/4 |

| |LOC 120074 |

|a 1Al = 0 | |

I I I |

I [| I

I I | |

| IP =4 | I

6.7.5 BITW - SET *W COUNTER

The BITW pseudo instruction sets the current bit position relative to the
current word to the value specified. A value of 64 indicates the
following instruction is to be assembled at the beginning of the next
word (force word boundary). If the counter is set lower than its current
value, any code previously generated in the overlapping portion of the
word is ORed with any new code.

SM-0036 ' 6-19 B

Format:

I T
| | |
| ignored |BITW | exp

exp An expression with absolute value attribute with positive
value less than or equal to 64. When the base is M
(mixed), APML assumes that exp is decimal.

Example:
|Location |Result | Operand | Comment
11 110 120 L35

I | | |
| | BITW |D'39 I

6.7.6 BITP - SET *P COUNTER

The BITP pseudo instruction sets the bit position relative to the current
parcel to the value specified. A value of 16 forces a parcel boundary.
If the current position is in the middle of a parcel, the bit position is
set to the beginning of the next parcel; otherwise, the bit position is
not changed. If the counter is set lower than its current value, any
code previously generated in the overlapping portion of the word is ORed
with any new code.

Format:
|Location |Result |Operand
l | I
|ignored |BITP | exp
exp An expression with absolute value attribute with positive
value less than or equal to 16. When the base is M
(mixed), APML assumes that exp is decimal.
Example:
|Location |Result | Operand | Comment
P |10 120 |35

| | I I
| | BITP |ID*14 [

SM-0036 6-20 B

6.8 ERROR CONTROL PSEUDO INSTRUCTIONS

Two pseudo instructions, ERROR and ERRIF, allow you to generate an
assembly error condition.

6.8.1 ERROR - UNCONDITIONAL ERROR GENERATION

The ERROR pseudo instruction unconditionally sets an assembly error flag.

Format:
|Location |Result _|Operand
| I |
|error | ERROR | ignored
error A valid error flag character as defined in appendix D,
Assembly Errors. P is used if this field is null.
Example:
|Location |Result | Operand | Comment
11] 10 |20 |35
| I | |
| IFE |ABC, LT, DEF, 1
| ERROR]

I |
I |
! l . I |
I I I I
I l I I

6.8.2 ERRIF - CONDITIONAL ERROR GENERATION

The ERRIF pseudo instruction conditionally sets an assembly error flag.

Format:
|Location |Result |Operand
| | |
|error | ERRIF | exp;,0p, expy
error A valid error flag character as defined in appendix D,

Assembly Errors. P is used if this field is null.

SM-0036 . 6-21 B

expy, expp

Ezxpressions to be compared. Any symbols must have been
defined previously. These expressions are evaluated in
pass 2, whereas expressions in other conditional pseudo
instructions are evaluated in pass 1. In pass 2, address
expressions in local blocks have been relocated relative to
the beginning of the program block rather than relative to
the local block.

op Specifies a relation to be satisfied by exp; and
exp, that causes generation of an error. For LT, LE,
GT, and GE, only the values of the expressions are
examined. The word-address, parcel-address, or value
attributes and the relocatable, external, or absolute
attributes are not compared.
LT Less than; the value of exp; must be less than
the value of exp,.
LE Less than or equal to:; the value of exp; must be
less than or equal to the value of exp,.
GT Greater than; the value of exp; must be greater
than the value of exp,.
GE Greater than or equal to; the value of exp; must
be greater than or equal to the value of exp,.
EQ Equal; the value of exp; must be equal to the
value of exp,. The expressions must either both
be absolute, or both be external relative to the same
external symbol, or both be relocatable in the same
block. The word-address, parcel-address, or value
attributes must be the same.
NE Not equal; the two expressions, exp; and
exp,, do not satisfy the conditions required for
EQ previously described.
Example:
|Location |Result | Operand | Comment
(P 110 120 135
| | I l
|P | ERRIF | ABC, LT, DEF |
SM-0036 6-22 B

6.9 LISTING CONTROL PSEUDO INSTRUCTIONS

The pseudo instructions described in this subsection allow you to control
the contents and format of the listing produced by the assembler. These
pseudo instructions are not ordinarily listed.

6.9.1 LIST - LIST CONTROL

The LIST pseudo instruction controls the listing. An END pseudo
instruction causes options to be reset to the default values.

Format:

|Location [Result _ lOperand

| name

name

option;

SM-0036

| |
|LIST loptiony,option,,...,option,

Optional list name. If a name is present, the instruction
is ignored unless a matching name is specified on a LIST
parameter on the APML control statement. For example, if
LIST=name appears on the APML control statement, LIST
pseudos with a matching name are not ignored. If only LIST
is specified on the APML statement, all LIST pseudo
instructions are processed regardless of the location field
name. LIST pseudos with a blank location field are always
processed regardless of the control statement LIST
parameters.

If L=0 is specified on the APML control statement, listing
output is not generated. In this case, LIST pseudos and
list options specified on the APML control statement have
no effect.

You may specify all of the following option names as APML
control statement parameters. The selection of an option
on the APML control statement overrides the enabling or
disabling of the corresponding feature by a LIST pseudo.

An option name specifying that a particular listing

feature be enabled or disabled. You may specify zero, one,
or more options. Defaults are enclosed in brackets. If no
options are specified, OFF is assumed. The options are as

follows:

%* Returns to previous LIST pseudo

[ON] Enables source statement listing. Source
statements and code generated are listed.

6-23 B

option;
(continued)

SM-0036

OFF

[XRF]

NXRF

(XNs]

NXNS

(DUP]

NDUP

[NMAC]

Disables source statement listing. Only
statements with errors are listed while this
option is selected. If LIS option is enabled,
listing control pseudo instructions are also
listed. Default when operand field is blank.

Enables cross-reference. Symbol references are
accumulated and a cross-reference listing is
produced.

Disables cross-reference. Symbol references are
not accumulated. If this option is selected when
the END pseudo is encountered, no cross-reference
is produced. This does not affect the $XRF
written by APML.

Includes unreferenced local symbols in the
cross-reference. Local symbols that were not
referenced in the listing output are included in
the cross-reference listing.

Excludes unreferenced local symbols in the
cross-reference. If this option is selected when
the END pseudo is encountered, local symbols that
were not referenced in the listing output are not
included in the cross-reference.

Enables listing of duplicated statements.
Statements generated by DUP and ECHO expansions
are listed. Conditional statements and skipped
statements generated by DUP and ECHO are not
listed unless the macro conditional list feature
(MIF) is enabled.

Disables listing of duplicated statements.
Statements generated by DUP and ECHO are not
listed.

Enables listing of macro expansions. Statements
generated by macro calls are listed. Conditional
statements and skipped statements generated by
macro calls are not listed unless the macro
conditional list feature is enabled (MIF).

Disables listing of macro expansions. Statements
generated by macro calls are not listed.

6-24 B

optionj
(continued)

SM-0036

MIF

[WMIF]

[MIC]

NMIC

LIS

[NLIS]

(WEM]

NWEM

Enables macro conditional listing. Conditional
statements and skipped statements generated by a
macro call, or by a DUP or ECHO pseudo
instruction, are listed. The listing of macro
expansions or the listing of duplicated
statements must also be enabled. This option
does not affect listing of conditional statements
and skipped statements in source code (not macro
expansions).

Disables macro conditional listing. Conditional
statements and skipped statements are not listed.

Enables listing of generated statements before
editing. Statements generated by a macro call or
by a DUP or ECHO pseudo instruction, and
containing a micro reference or concatenation
character are listed before and after editing.
The listing of macro expansions or the listing of
duplicated statements must also be enabled.
Statements in source code (not macro expansions)
containing a micro reference or a concatenation
character are listed before editing regardless of
this option.

Disables listing of generated statements before
editing. Statements generated by a macro call,
or by a DUP or ECHO pseudo instruction, are not
listed before editing.

Enables listing of listing control pseudo
instructions, including LIST, SPACE, EJECT,
TITLE, and SUBTITLE. These statements are listed
regardless of whether the source statement
listing is enabled.

Disables listing of listing control pseudo
instructions

Enables warning errors. Each statement
containing a warning error is written to the
source listing and the error listing. A logfile
message is issued giving the number of warning
errors.

Disables warning errors; warning errors are
ignored.

6-25 B

[NTXT]

(WMR]

Enables global text source listing. Each
statement following a TEXT pseudo instruction is
listed through the ENDTEXT instruction if the
listing is otherwise enabled.

Disables global text source listing. Statements
following a TEXT pseudo instruction through the
following ENDTEXT instruction are not listed.

Enables warning error message for macro
redefinition. If the name of a macro is the same
as a currently defined pseudo instruction or
macro, a warning message is issued.

Disables warning error message for macro
redefinition

6.9.2 SPACE - LIST BLANK LINES

The SPACE pseudo instruction inserts blank lines in the output listing.

Format:
|Location |Result |Operand
| I
| ignored |SPACE | count
count An absolute expression specifying the number of blank lines

to insert in the listing. When the base is M (mixed), APML
assumes that count is decimal.

6.9.3 EJECT - BEGIN NEW PAGE

The EJECT pseudo instruction causes a page eject on the output listing.

Format:
|Location |Result |Operand
| |
| ignored |EJECT | ignored

SM-0036

6-26 B

6.9.4 TITLE - SPECIFY LISTING TITLE

The TITLE pseudo instruction specifies the main title that appears on
each page of the listing.

Format:
|Location [Result |Operand
| |
|ignored |TITLE | 'character string'

‘character string'
A character string to be printed as the main title on
subsequent pages of the listing. A maximum of 64
characters is allowed.

6.9.5 SUBTITLE - SPECIFY LISTING SUBTITLE

The SUBTITLE pseudo instruction specifies the subtitle that appears on
each page of the listing.

Format:

|Location |Result |Operand
| | I
|ignored |SUBTITLE |'character string'

‘character string'
A character string to be printed as the subtitle on
subsequent pages of the listing. The instruction also
causes a page eject. A maximum of 64 characters is allowed.

6.9.6 TEXT - BEGIN GLOBAL TEXT

The TEXT pseudo instruction declares the beginning of global text

source. Source lines following the TEXT pseudo instruction up through
the next ENDTEXT pseudo instruction are treated as global text source
statements. These statements are listed only when the TXT listing option
is enabled. A symbol defined in global text source is treated as a
system text symbol for cross-reference purposes. That is, such a symbol
is not listed in the cross-reference unless there is a reference to the
symbol from a listed statement. The /block/ or system text name

column of the cross-reference listing contains the text name.

SM-0036 6-27 B

Symbols defined in source text are global if the text appears prior to an
IDENT pseudo instruction. Symbols in source text are local to a program
module if the text appears between IDENT and END pseudo instructions.

The TEXT pseudo instruction is listed if the listing is ON or if the LIS
listing option is enabled (regardless of other listing optioms).

The TEXT and ENDTEXT pseudo instructions have no effect within system
text.

Format:
|Location |Result |Operand
| | |
| name | TEXT | ‘character string'
name Optional name of global text. This name is used as the

name of the global text source following the TEXT pseudo
instruction until the next ENDTEXT pseudo instruction.
This name is associated with any symbols defined in the
global text, and it is listed in the name column of the
cross-reference listing.

*character string'
An optional character string to be printed as the subtitle
of subsequent pages of the listing. This operand and the
TXT option causes a page eject. A maximum of 64 characters
is allowed. If the operand field is blank, the original
subtitle is not affected and no page eject is performed.
If the operand field is nonblank, the preceding subtitle is
lost and replaced by the character string in the operand
field.

6.9.7 ENDTEXT - TERMINATE GLOBAL TEXT

The ENDTEXT pseudo instruction terminates global text source initiated by
a TEXT instruction. An IDENT or END pseudo instruction also terminates
global text source. The ENDTEXT instruction is not listed unless the TXT
option is enabled. If the LIS option is enabled, the ENDTEXT instruction
is listed no matter what other listing options are enabled.

Format:

|Location |Result |Operand
| [|
| ignored |ENDTEXT |

SM-0036 6-28 B

Example (with TXT option off):

Source:

|Location |Result |Operand | Comment

11 110 120 |35,

| | | I

[| IDENT | TEXT [

| CAT |EQUALS |17 |

| TXTNAME | TEXT | 'An example.' |

| DOG |EQUALS |231 |

|HAT |EQUALS |2 |

| | ENDTEXT | |

| | A=CAT | |

I | A=DOG I |

| | END | |

Output:

|Code generated |Location |Result | Operand |Comment
[|1 |10 120 135
| I I | |
| [| IDENT | TEXT I
| 17 | CAT |EQUALS |17 I
| | TXTNAME | TEXT | 'An example.' |
|0 010017 | | A=CAT] |
[1 010231 | | A=DOG | |
| | | END | |
| I | I I
I | I I |
| I I I |
| 17 CAT | | 1: 2 D 1: 4 |
] 231 DOG | TXTNAME 1: § |

6.10 SYMBOL DEFINITION PSEUDO INSTRUCTIONS

The pseudo instructions EQUALS, SET, CHANNEL, and MICSIZE define symbols
used in the program.

Section 2, APML Assembly Language, gives requirements for symbols.

6.10.1 EQUALS - EQUATE SYMBOL

The EQUALS pseudo instruction defines a symbol with the value and
attributes determined by the expression. The symbol is not redefinable.

SM-0036 6-29 B

Format:

|Location |Result _ |Operand

I I I

| symbol | EQUALS |exp.,attribute

symbol An unqualified symbol. The symbol is implicitly qualified
by the curreant qualifier. The symbol must not be defined
already. If the location field is blank, no symbol is
defined.

exp Any expression

attribute P, W, or V indicating parcel, word, or value attribute
(optional). Attribute, if present, is used instead of the
expression's attribute. An expression with word-address
attribute is multiplied by 4 if a parcel-address attribute
is specified; an expression with parcel-address attribute
is divided by 4 if word-address attribute is specified. A
relocatable expression cannot be specified as having value
attribute. :

Example:

|Location |Result | Operand | Comment

11 110 [20 |35

| I | |

| SYMB | EQUALS |A*B+100/4 |

6.10.2 SET - SET SYMBOL

The SET pseudo instruction resembles the EQUALS pseudo instruction;
however, a symbol defined by SET is redefinable.

Format:
|Location |Result |Operand
I | I
| symbol | SET |exp,attribute
symbol An unqualified symbol. The symbol is implicitly qualified
by the current qualifier. The symbol must not be defined
already. If the location field is blank, no symbol is
defined.
SM-0036 6-30 B

exp Any expression

attribute P, W, or V indicating parcel, word, or value attribute

(optional).
expression's attribute.

Attribute, if present, is used instead of the
An expression with word-address

attribute is multiplied by 4 if a parcel-address attribute
is specified; an expression with parcel-address attribute

is divided by 4 if word-address attribute is specified. A
relocatable expression cannot be specified as having value

attribute.

Example:

|Code generated | Location |Result | Operand | Comment

| |1 |10 120 135

| | | I |

} 100 | SIZE | EQUALS |0°100 |

| 22 | PARAM |SET |D'18 |

| 10 | WORD | SET | *W |

| 40 | PARCEL | SET | *P]

| |SIZE | EQUALS |SIZE+1 |.(Illegal)

[24 | PARAM | SET | PARAM+2 | . (Legal)
Example:

|Code generated |Location |Result | Operand | Comment

| L1 110 120 |35

I I | | |

| | | IDENT | EQUSET |

| 2 |R1 | EQUALS |2 |

| | |BASEREG |R1 |

| 1024 | GEORGE | EQUALS]1024 |

| 17 | CAT | SET |17,P |

|]075002 /000017] | P=CAT | |

| 1031 | CAT | SET | GEORGE +5 |

| | | END I |

6.10.3 CHANNEL - CHANNEL SYMBOL

The CHANNEL pseudo instruction defines a symbol which is recognized in

APML symbolic instructions as being a channel mnemonic.

symbols defined as channel mnemonics are 3 characters.

By convention,

A symbol defined by the CHANNEL pseudo instruction has value attribute

and a value which is taken to be the hardware channel number.

A channel

symbol must be defined before it is used in a symbolic APML instruction.

SM-0036

Format:

|Location |Result |Operand

| symbol | CHANNEL

symbol A 1- to 8-character symbol name; by convention, 3

| expression

characters.

expression

An expression with a positive value less than 512

Example:

|Code generated | Location |Result |Operand | Comment
| 11 110 120 135

| | | | |

| | | IDENT | CHANNEL |

| 5 | BUF |CHANNEL |5 |

| 140005 | |BUF:0 | |
1140005] |IMOS:0 | |

| ! | END | |

NOTE

If an instruction is used that references the exit
stack, register E, or the contents of an exit stack
entry, designated (E), APML requires that the channel

symbol PXS be defined.
system text such as $APTEXT.
names for other channels and does not require

definition of any other channel symbols.

PXS is normally defined in a
APML does not assume

6.10.4 MICSIZE - SET REDEFINABLE SYMBOL TO MICRO SIZE

The MICSIZE pseudo instruction defines the symbol in the location field
as an absolute symbol with a value equal to the number of characters in

the micro string whose name is in the operand field.

Another SET or

MICSIZE instruction with the same symbol redefines the symbol to the new

value.

SM-0036

Format:
|Location [Result __ |Operand
I | |

| symbol |MICSIZE |name

symbol An unqualified symbol; the symbol is implicitly qualified
by the current qualifier. The location field can be blank.

name The name of a micro string that is previously defined

6.11 DATA DEFINITION PSEUDO INSTRUCTIONS

The pseudo instructions following generate object binary. The only other
instructions that are translated into object binary are the symbolic APML
instructions.

Pseudo
Instruction Description

CON Places an expression value into one or more words

BSSZ Generates one or more words containing zeros

DATA Generates one or more words of numeric or character
data

PDATA Generates one or more parcels of numeric or character
data

VWD Generates a variable-width field of word-oriented data

6.11.1 CON - GENERATE CONSTANT

The CON pseudo instruction generates one or more full words of binary
data. This pseudo always forces a word boundary.

Format:

|
| | |
| symbol | CON |expy,expy.,....,eXp,

SM-0036 6-33 B

symbol

Optional symbol assigned the word address value of the
location counter after the force to word boundary occurs

exp; An expression whose value is to be inserted into a single
64-bit word. If an expression is blank, a single zero word
is generated. A word boundary is forced before any operand
field expressions are evaluated. A double-precision
floating-point constant is not allowed.

Example:

|Code generated |Location |Result |Operand

I L1 [10 120

| | | I

|0000000000000007777017 |A | CON |0'7777017

10404401002004010020040 | | CON |A

6.11.2 BSSZ - GENERATE ZEROED BLOCK

The BSSZ pseudo instruction causes a block of words containing zeros to

be generated.

A force to word boundary occurs, and then the number of

zero words specified by the operand field expression is generated.

Format:
|Location [Result |Operand
| I [
| symbol | BSS2 | exp
symbol Optional symbol assigned the word address value of the
location counter after the force to word boundary occurs
exp An absolute expression with word address or value attribute

whose value specifies the number of 64-bit words containing
zeros to be generated. A blank operand field results in no
data generation. The expression value must be positive,
and all symbols must be previously defined.

The left margin of the listing shows the octal word count.

Example:
|Code generated jLocation |Result | Operand
| 11 110 120
| | | |
| 144 | |BSSZ |D'100
SM-0036 6-34 B

6.11.3 DATA - GENERATE DATA WORDS

The DATA pseudo instruction generates data from the items listed. The
length of the field generated for each data item depends on the type of
constant involved. A word boundary is not forced between data items.

Format:
|Location |Result |Operand
| | |
| symbol |DATA |dataq.datay,...,data,

symbol Optional symbol assigned to the address value of the
location counter after a force to word boundary. If no
symbol is present, a force to word boundary does not occur.

|0404402324252324640507
|0424
| 000

I
| | "THIS IS A MESSAGE'*L

| VWD |8/70

dataj A numeric or character data item
Example:

|Code generated |Location |Result | Operand
I 11 |10 120
| I I I
|0000000000000000005252 | | DATA |O0*'5252,A'ABC'R
|0000000000000020241103 | | |
|0405022064204010020040 | |DATA | *ABCD'
]0425062164404010020040 | |DATA | 'EFGH'
1040502206420 | | DATA | *ABCD' *
| 10521443510 | |DATA | ‘EFGH"' *
|0000000000000000000000 | | DATA | *ABCD* 12R
1040502206420 | | |
| 10521443510 | | DATA | 'EFGHIJ'*
|044512 | [[
|0405022064204010020040 |LL2 | DATA | *ABCD'
I | l- I
| I I |
|0000000000000000000144 | |DATA 1100
I | I !
| | l- I
|0521102225144022251440 | | DATA I

I |

|

|

SM-0036 6-35 B

6.11.4 PDATA - GENERATE DATA PARCELS

The PDATA pseudo instruction is equivalent to the data generation
statements described in section 5, Basic IOP Hardware Instruction Set,
for symbolic APML instructions. When using the PDATA pseudo instruction,
the data items are listed in the operand field, whereas in symbolic APML
data generation statements the data items are listed in the assignment
field with no mnemonic operation name. By using PDATA, some data items
can be used which otherwise would not be allowed. For instance, you
cannot use symbolic names A, EXIT, PASS, B, and E in a symbolic APML data
definition because of conflicts with special names and registers in APML
instruction syntax.

Format:

|
I I I
|symbol |PDATA |itemy, item;y, ..., item,

symbol Optional symbol; if present, APML forces an instruction
page boundary.

item; A symbol, numeric constant, character data item, or item of
the form <k> or <<k>>, where k is a symbol or numeric
constant. See section 5, Basic IOP Hardware Imnstruction
Set, for a more detailed description.

Example:
|Code generated |Location |Result |Operand
| BN 110 120
| I I |
I | | IDENT | PDATA
| |R1 | EQUALS |2
[|A |EQUALS | 217
000217 000002 000007 | DOG | PDATA |A,R1,7
[I | PDATA | 'DATA ITEM'
| I | PDATA | <10>
| | | END |

6.11.5 VWD - VARIABLE WORD DEFINITION

The VWD pseudo instruction allows data to be generated in fields from O
to 64 bits wide. Fields may cross word boundaries. Data begins at the
current bit position unless a symbol is used; in which case, a force word
boundary occurs and the data begins at the new current bit position.

SM-0036 6-36 B

Format:

|Location |Result |Operand

| | |

| symbo1l | VWD Iny/expy.ny/€Xpy, « .., Ny/XPy

symbol Optional symbol; if present, a force to word boundary
occurs.

n; Field width, specifying the number of bits in the field. A

numeric constant or symbol, with absolute and value
attributes. The value of n; must be positive and less
than or equal to 64. When the base is M (mixed), APML
assumes that n; is decimal.

exp; An expression whose value is to be inserted in the field

Example:

In the following example, the value of SIGN is 1, the value of FC is O,
the value of ADD is 653 (octal), and the value of DSN is $IN in ASCII
code.

|Code generated | Location |Result | Operand

| |1 110 120

| | I |

| | | BASE IM

| | PDT | BSS Jo)
|1000000000000023440515 | | VWD |1/SIGN,370,60/A' "NAM" 'R
| 10000000653 | | VWD |171,6/FC,24/ADD

| 37 |REMDR |EQUALS | 64-*W

| 00011044516 | | VWD | REMDR/DSN

6.12 CONDITIONAL ASSEMBLY PSEUDO INSTRUCTIONS

The instructions described in this subsection permit optional assembly or
skipping of source code. The conditional pseudo instructions IFA, IFC,
or IFE determine whether a sequence of instructions following the test is
to be skipped or assembled. The end of the conditional sequence is
determined by a count of instructions provided on the test instruction or
by an ENDIF pseudo instruction with a matching location field name.

The ELSE pseudo instruction provides a means of reversing the effect of a

previous IFA, IFE, IFC, SKIP, or ELSE instruction. The SKIP pseudo
instruction unconditionally skips following statements.

SM-0036 6-37 B

When skipping under control of a statement count, comment statements
(asterisk in column 1) and continuation lines (comma in column 1) are not
included in the statement count.

6.12.1 IFA - TEST EXPRESSION ATTRIBUTE FOR ASSEMBLY CONDITION

The IFA pseudo instruction tests an attribute of an expression. If the
expression has the specified attribute, assembly continues with the next
statement. If the attribute test is failed, subsequent statements are
skipped. If a location field name is present, skipping stops when an
ENDIF or ELSE pseudo instruction with the same name is encountered.
Otherwise, skipping stops when the statement count is exhausted.

If an assembly error is detected, assembly continues with the next
instruction.

Formats:
ILocation |Result |Operand
| | I
| ifname | IFA |attribute, exp
| |IFA |attribute, exp, count
ifname Optional name of conditional sequence of code

attribute A mnemonic signifying an attribute of exp. An
expression has one and only one of the attributes PA, WA,
or VAL and has one and only one of the attributes EXT, REL,
or ABS.

An attribute may also be any of the following letters
preceded by a complement sign (#) indicating that the
second subfield does not satisfy the corresponding

condition.
Mnemonic Significance

PA The expression exp has parcel-address
attribute.

WA The expression exp has word-address
attribute.

VAL The expression exp has value attribute.

EXT The expression exp has external attribute.

REL The expression exp has relocatable
attribute.

SM-0036 6-38 B

-~

attribute Mnemonic Significance

{continued)
ABS The expression exp has absolute attribute.
DEF All symbols in the expression exp have
been previously defined.
SET The symbol in the second subfield is a
redefinable symbol.
MIC The name in the second subfield is a micro
name.
exp The second subfield must either be a valid expression,

symbol, name, or character string depending on the
attribute mnemonic.

For PA, WA, VAL, EXT, REL, ABS, and COM, the second
subfield must be a valid expression with all symbols
previously defined.

For DEF, the second subfield must be a valid expression.
For SET, the second subfield must be a valid defined symbol.
For MIC, the second subfield must be a valid name.

Expressions are evaluated in pass 1. Expressions that are
relocatable addresses in local blocks have values relative
to the beginning of the local block rather than the program
block. Address expressions in a local block other than the
nominal block on an absolute assembly are considered
relocatable in pass 1.

count Statement count; must be an absolute expression with
positive value. When the base is M (mixed), APML assumes
that count is decimal. A count parameter is required if
ifname is missing, otherwise, it is ignored. A missing
or null subfield gives a zero count.

6.12.2 IFE - TEST EXPRESSIONS FOR ASSEMBLY CONDITION

The IFE pseudo instruction tests a pair of expressions for a condition
under which code is to be assembled if the relation specified by the
operation (op) is satisfied. That is, if the relationship is true,
assembly resumes with the next statement. If the relationship is not
satisfied (is false), subsequent statements are skipped. If a location
field name is present, skipping stops when an ENDIF or ELSE pseudo
instruction with the same name is encountered; otherwise, skipping stops
when the statement count is exhausted.

SM-0036 6-39 B

If an assembly error is detected, assembly continues with the next

statement.
Format:
|Location |Result _|Operand
| | |
| if name | IFE | expq,0p.,exp;
| | IFE | expy .0p, exp,, count
ifname Optional name of a conditional sequence of code

exp, . exp;

Expressions to be compared. All symbols in the expression
must be previously defined.

Expressions are evaluated in pass 1. Expressions that are
relocatable addresses in local blocks have values relative
to the beginning of the local blocks rather than the
program block. Address expressions in a local block other
than the nominal block in an absolute assembly are
considered relocatable in pass 1.

op Specifies relation to be satisfied by exp; and exp,.
It must be one of the following:

LT

LE

GT

GE

EQ

NE

SM-0036

Less than; the value of exp; must be less than
the value of exp,.

Less than or equal to; the value of exp; must be
less than or equal to exp;.

Greater than; the value of exp; must be greater
than the value of exp;.

Greater than or equal to; the value of exp; must
be greater than or equal to exp;.

Equal; the value of exp; must be equal to

thevalue of exp,. The expressions must either

both be absolute, or both be external relative to the
same external symbol, or both be relocatable in the
same block. The word-address, parcel-address, or
value attributes must be the same.

Not equal; the expressions exp; and exp; do

not satisfy the conditions required for EQ described
previously.

6-40 B

count Statement count; must be an absolute expression with
positive value. When the base is M (mixed), APML assumes
that count is decimal. A count parameter is required if
ifname is missing, otherwise, it is ignored. A missing
or null count subfield gives a zero count.

6.12.3 IFC - TEST CHARACTER STRINGS FOR ASSEMBLY CONDITION

The IFC pseudo instruction tests a pair of character strings for a
condition under which code is to be assembled if the relation specified
by the operation (op) is satisfied. That is, if the relationship is

not satisfied (is false), subsequent statements are skipped. If a
location field name is present, skipping stops when an ENDIF or ELSE
pseudo instruction with the same name is encountered; otherwise, skipping
stops when the statement count is exhausted.

If an assembly error is detected, assembly continues with the next
statement.

Format:
|Location |Result |Operand
I I |
| ifname |IFC | ‘chary’,op, 'chary’
| | IFC | ‘chary',op, 'chary*, count
ifname Optional name of a conditional sequence of code

‘char,','chary’
Character strings to be compared. The first and third
subfields may be null (empty) indicating a null character
string.

The ASCII character code value of each character in

chary is compared with the value of each character in
char,, beginning at the left and continuing until an
inequality is found or until the longer string is
exhausted. A zero value is required for missing characters
in the shorter string.

See appendix A, Character Sets, for the ASCII character
code values.

Micros and formal parameters may be contained in the
character strings.

SM-0036 6-41 B

A character string may be delimited by a character other
than an apostrophe. You can use any ASCII character other
than a comma or space. Two comsecutive occurrences of the
delimiting character indicates a single such character.
For example,

AIF IFC = 0'100=,EQ, *ABCD**%
compares the character strings 0'100 and ABCD*.

op Relation to be satisfied by char; and char,. It
must be one of the following:

LT Less than

LE Less than or equal to

GT Greater than

GE Greater than or equal to

EQ Equal to

NE Not equal to

count Statement count; must be an absolute expression with

positive value. A missing or null count subfield gives a
zero count. If the base is M (mixed), APML assumes that

count is decimal. A count parameter is required if
ifname is missing; otherwise, it is ignored.

6.12.4 SKIP - UNCONDITIONALLY SKIP STATEMENTS

The SKIP pseudo instruction unconditionally skips subsequent statements.
If a location field name is present, skipping stops when an ENDIF or ELSE
with the same name is encountered. Otherwise, skipping stops when the
statement count is exhausted.

Format:
|Location [Result |Operand
| | |
| ifname | SKIP | count

SM-0036 6-42 B

ifname Optional name of conditional sequence of code

count Statement count; must be an absolute ezpression with
positive value. If the base is M (mixed), APML assumes
that count is decimal. A count parameter is required if
ifname is missing; otherwise, it is ignored. A missing
or null count subfield gives a zero count.

6.12.5 ENDIF - END CONDITIONAL CODE SEQUENCE

The ENDIF pseudo instruction terminates skipping initiated by a IFA, IFE,
IFC, ELSE, or SKIP pseudo instruction with the same location field name.
Otherwise, ENDIF acts as a do-nothing pseudo instruction. ENDIF has no
effect on skipping which is controlled by a statement count.

Format:

|Location |Result |Operand
| | |
| if name | ENDIF |

ifname Required name of conditional code sequence

NOTE

An END statement encountered while skipping is
recognized and terminates skipping.

6.12.6 ELSE - TOGGLE ASSEMBLY CONDITION

The ELSE pseudo instruction terminates skipping initiated by an IFA, IFC,
IFE, ELSE, or SKIP pseudo instruction with the same location field name.
If statements are currently being skipped under control of a statement
count, ELSE has no effect.

If the assembler is not currently skipping statements, ELSE initiates

skipping. Skipping is terminated by an ENDIF or ELSE pseudo instruction
with a matching location field name.

SM-0036 6-43 B

Format:

Ikocation |Result |Operand
| | I
| ifname | ELSE |

ifname Required name of conditional sequence of code

Conditional assembly examples:

jLocation |Result | Operand | Comment

|1 110 .20 _135

! I | |

| | IFA | 4DEF,A,1

A | EQUALS {10 .Define A if not already defined

I l. I
! I I
| |- |

I
|
|
|
I
|
|X | ERROR | | .Generate X error if SYM absolute
|
|
|
I
|

|BTEST | IFA | ABS, SYM

| BTEST | ELSE |

| | CON | SYM .Assemble if SYM not absolute
| BTEST | ENDIF I

I l. |

| l. |

| I | |

| * |Assemble BSSZ instruction if W.* is less than BUF,
| % jotherwise assemble ORG |

| | IFE |W.%*,LT,BUF,2 |

| | BSSZ | BUF-W. * | .Generate words of zero to
| * | | | .address BUF

| | SKIP i1 | .Skip next statement

| | ORG | BUF |

| I | |

| I I I

| l. |

l lIFC '"L".,EQ, ’1 I .

| | ERROR | .Error if micro string defined
| * | |.by L is empty

[. |

| . |

| . |

X IFC

|

I

|

I

I

I

|

|

|

| 'ABCD',GT, ‘ABC' .ABCD is greater than ABC
I

I

I I
I

I

I

I

B4 IFC ' *,GT, | .Single space is greater than

| * | .null string

|12 IFC U LEQ, R R | .Single apostrophe equals single
| * | .apostrophe

SM-0036 6-44 B

6.13 INSTRUCTION DEFINITION PSEUDO INSTRUCTIONS

The APML assembler allows you to identify a sequence of instructions to
be saved for assembly at a later point in the source program. When the
sequence is defined, APML stores it in a list of definitions but does not
assemble the sequence. Each time the defined sequence is referenced, the
sequence is placed in the source program and is assembled. Defined
sequences are of three types: macro, dup, and echo.

A macro definition identifies a sequence of instructions. This
instruction sequence is referenced at a later point in the source program
by a single instruction, the macro call. Each time the macro call
occurs, the definition sequence is placed in the source program. For a
macro call, the name in the result field matches the name associated with
the macro. Thus, a macro call resembles a pseudo instruction.

A dup or echo definition identifies a sequence of instructions which is
assembled repeatedly, immediately following the definition. The number
of times the sequence is assembled depends on the parameters on the DUP
or ECHO pseudo.

A macro is defined as global if it occurs before the IDENT that begins
the program module. Macro definitions are local if they occur within an
IDENT, END sequence. Every local definition is removed from the
assembler tables at the end of a program module. A global definition may
be referenced in any program module following the definition.

The body of the definition begins with the first instruction following
the header. The body consists of a series of APML instructions other
than END and can include other definitions and calls. However, a
definition used within another definition is not recognized until the
definition in which it is contained is called. Therefore, an inner
definition cannot be called before the outer definition is called for the
first time.

A comment statement identified by an asterisk in the first nonblank
column is ignored in the definition header or definition body. Such
comments are not saved as a part of the definition sequence. Comment
fields on other statements in the body of a definition are saved.

The body of the definition is saved before editing for micros,
concatenation marks, and lowercase comments. Editing occurs when the
definition is assembled each time it is called. An inner nested
definition is not edited until it is called. ENDDUP, ENDM, END, and
LOCAL pseudo instructions and prototype statements cannot contain any
micros or concatenation characters. These statements are not edited when
they occur in a definition.

The end of a macro definition is signaled by an ENDM pseudo instruction
with the proper name in the location field. The end of a dup or echo
definition is signaled by a statement count or by an ENDDUP with the
proper name in the location field.

SM-0036 6-45 B

Each time a definition sequence of code is raferenced (called), an entry
is made in a pushdown stack called the assembly source stack. The most
recent entry indicates the current source of statements to be assembled.
When a definition is called within a definition sequence being assembled,
another entry is made in the stack, and assembly continues with the new
definition sequence belonging to the inner, or nested, call. When the
end of a definition sequence is reached, the most recent stack entry is
removed and assembly continues with the previous stack entry. When the
stack becomes empty, assembly continues with statements from the source
file.

An inner nested call may be recursive; that is, it may reference the same
definition referenced by an outer call. The depth of nested calls
permitted by APML is limited only by the amount of memory available.

An inner definition must be entirely contained within the next outer
definition.

Skipping of statements due to conditional assembly must not extend beyond
the end of a definition sequence being assembled. An error is generated
and skipping is terminated if this condition occurs.

The sequence field in the right margin of the listing shows the
definition name and nesting depth for definition sequences being
assembled.

Formal parameters are defined in the definition header. Formal
parameters recognized are: positional, keyword, and local. Formal
parameters are recognized in the definition body whenever they are
delimited by a space, comma, beginning or end of a statement, or any of
the following characters:

PR E ()R- = |

There may be from 0 to 511 formal parameters. Positional, keyword, and
local parameters must all have unique names within a given definition.

You should not use END, ENDM, ENDDUP, or LOCAL as formal parameter

names., When the definition is referenced, substitution of actual
arguments will occur in any pseudo instruction with these names contained
in any inner definition.

6.13.1 MACRO DEFINITION FORMAT

A macro definition may be called by an instruction of the following
format:

|Location |Result _ |Operand
| | |
|1loc | name |a1,a2,...,aj,f1=b1,f2=b2,...,fk=bk

SM-0036 6-46 B

loc Location field argument; must be a valid name. If a
location field parameter is specified on the macro
definition, this symbol is optional. It is substituted
wherever the location field parameter occurs in the
definition.

If no location field parameter is specified in the
definition, this field must be empty.

name Macro name; must match the name specified in the macro
definition.
aj Actual argument string corresponding to positional

parameters in the definition prototype statement

The first argument &; is substituted for the first
positional parameter p; in the prototype operand field,
the second argument @, is substituted for the second
positional parameter p;, and so on. If the number of
operand subfields is less than the number of positional
parameters, null argument strings are used for the missing
arguments.

Two consecutive commas indicate a null (empty) argument
string.

A keyword parameter. Each keyword parameter f; must
match a keyword parameter in the macro definition. The
keyword parameters may be listed in any order; they do not
need to match the order given in the macro definition. The
default arguments specified in the macro definition are
used as the actual argument for missing keyword parameters.

Keyword parameters are not recognized until after n
subfields (n commas), where n is the number of
positional parameters in the operand field of the macro
definition.

b; Actual argument string for keyword parameter f;. A
space or comma following the equal sign indicates a null
(empty) argument string.

An actual argument string may consist of any ASCII characters except
comma or blank. A comma separates subfields and a blank terminates the
operand field.

If the first character of the actual argument is a left parenthesis, the
string must be terminated by a matching right parenthesis. Such an
argument is called an embedded argument and consists of all characters
between the enclosing parentheses. An embedded string may contain commas
and blanks and may also contain pairs of matching left and right
parentheses.

SM-0036 6-47 B

The actual argument string for each positioral and keyword parameter is
substituted in the definition sequence wherever the formal parameter
occurs. Embedded argument strings are substituted without the enclosing
parentheses.

6.13.2 MACRO - MACRO DEFINITION
The MACRO pseudo instruction is the first statement of a macro

definition. The macro header consists of the MACRO pseudo instruction, a
prototype statement, and optional LOCAL pseudo instructions.

Format:

| I
| ignored |MACRO

HEADER:

I

|

|
|1fp | name |P1,P2/+++,Py-€1=dy,€3=d3,...,ey=d, Prototype
| I | statement
| | LOCAL Isymy, ..., sym, Optional
| | i local
| | | pseudo
| | | instructions
I I |
| |. | Definition
| l. | body
I l. |
| name | ENDM | Definition
I I | end

Prototype statement parameters:

1fp Optional location field parameter. It must be a valid

name. If present, it is a positional parameter.

name Name of the macro; must be valid name. If the name is the
same as a currently defined pseudo instruction or macro,
this definition redefines the operation associated with the
name and a warning message is issued (see a$pendix c,
Messages, and appendix D, Assembly Errors).

P; Positional parameter; must be a valid name. There may be
none, one, or more positional parameters.
4 Warning error depends on the WMR and NWMR features of the APML control
g P

statement or the LIST pseudo instruction.

SM-0036 6-48 B

e; Keyword parameter; must be a valid name. There may be
none, one, or more keyword parameters.

d; Default argument for keyword parameter €;. An argument
string may consist of any string of ASCII characters except
comma or blank.

If the first character of the default argument d; is a
left parenthesis, the string must be terminated by a
matching right parenthesis. Such an argument is called an
embedded argument and consists of all characters between
the enclosing parentheses. An embedded string may contain
commas and blanks and may also contain pairs of matching
left and right parentheses.

A space or comma following the equal sign specifies a null
(empty) character string as the default argument.

The default argument for a positional parameter is an empty string.

An inner macro definition must be entirely contained within the outer
definition.

6.13.3 LOCAL - SPECIFY LOCAL SYMBOLS

The LOCAL pseudo instruction specifies symbols which are defined only
within the macro definition. The LOCAL pseudo instruction also defines
any of the named symbols used within an inner definition or call that are
not defined as local to that inner usage.

On each macro call and each repetition of a dup or echo definition
sequence, the assembler creates a unique symbol for each local parameter
and substitutes the created symbol for the local parameter on each
occurrence within the definition. The symbol created for local
parameters has the form %%nnnnnn, where n is an octal digit.

A symbol not defined as local in a definition may be referenced outside
an assembly of the definition sequence.

One or more LOCAL pseudo instructions may appear in a macro, dup, or echo
definition. The LOCAL pseudo instructions must follow the macro
prototype statement or DUP or ECHO pseudo instructions, except for
intervening comment statements.

Format:
|Location |Result |Operand
! ! |
| ignored |LOCAL |symq,symy,...,sym,

SM-0036 6-49 B

sym; Symbols that are to be rendered local to the definition

6.13.4 ENDM - END MACRO DEFINITION
An ENDM pseudo instruction terminates the body of a macro definition.
Format:
|Location |Result |Operand
| | |
| name | ENDM |
name Name of a macro definition sequence. The name must match
the name appearing in the result field of the macro
prototype.
Example 1. Macro with positional parameters:
Macro definition:
|Location [Result | Operand | Comment
Il |10 |20 135 N
I | I |
	MACRO	
SYMBOL	NEXT	VALUE
	IFC	#VALUE#,NE, , 1
SNEXT	SET	VALUE
	IFC	#SYMBOL#,NE, , 1
SYMBOL	EQUALS	$NEXT
SNEXT	SET	SNEXT+1 [
NEXT	ENDM [I	

Macro calls:

|Location |Result |Operand | Comment
P |10 120 135

I I | |

| ABC | NEXT |3 |

| l. | |

| l. | I

I . I I

| ABCD | NEXT | |

SM-0036 6-50 B

Macro expansion:

|Code generated |Location |Result |Operand

| 11 110 120

| | | |

| | | IFC | #34,NE,, 1

| 3 | SNEXT | SET I3

| | | IFC | #ABC#,NE, , 1
| 3 | ABC | EQUALS | SNEXT

| 4 | SNEXT | SET | SNEXT+1

I I [+ I

| | I. |

| I [. I

l | [IFC | #%,NE,,1

| (skipped) | SNEXT | SET |

I I | IFC | 8ABCD#,NE, , 1
| 4 | ABCD | EQUALS | SNEXT

| 5 | SNEXT | SET | SNEXT+1

The operand field parameter was omitted on the second macro call, so a
null character string was substituted for each occurrence of the
parameter value.

Example 2. Macro with positional and keyword parameters

Macro definition:

|Location |Result | Operand | Comment

|1] 10 [20 |35

| I I |

| |MACRO | |

| | TABLE | TABN, VAL1=#0, VAL2=, VAL3=0

| | BLOCK | TABLES |

| TABN | CON | 'TABN'L I

| | CON |VAL1 |

| | CON | VAL2 - |

[| CON |VAL3 |

| | BLOCK | * | .Resume use of previous block
!

| TABLE | ENDM |

Macro call:

|Location |Result | Operand | Comment
11 110 120 135

I l | I

| ITABLE | TABA,VAL3=4,VAL2=A

SM-0036 6-51 B

25-9 9E00-KWS
$2=IVD‘NON| a1arl I |
Ll Las| WON | L I
11| IN3AI| I I
| I I |
0¢1 Ot 1 T1 I
pueaadp] 3[nsay| uotrjedoq]| pa3exauab apo)|
t1TeO oxdel
| I Wang | a1daz |
uoT3TUTISQ" | | Ivo=4| |
uoT3ITUTISQ" | 0#V * XooXXXK=d | |
uoT3lTUTIAA" | | T-v=v| xooooxxx|
uoT3TUTIAA" | | 1NnOO=¥| ovea|
I XXOOOOKX | 1¢201| i
adX30301qg° | 9=I¥D‘INNOD| F1a1| ovd|
I | O4OVYR| |
| | | I
St 0¢| OTl Tl
Jusuo) | pueaadp | I[nsay| uorjzedoq|

{UOTITUTISP OadeR

sxajswesed piomiay pue reuwoTirsod yjtm oadew ‘¢ arduexy
| I WaN3 | a76vL |
¥0017q snotraaid jo asn aumsay- | *| AD014g | |
vl NOD	
vl NOO	
01 NOD	
71.vavL,	NOD
saavil ¥0014	I
I I I	
~GE | 0Z1 011 1|
Juauuo) | pueixadp| IINS8Y| uotrjedorq|

tuorsuedxa oaoeyn

Macro expansion:

|Code generated |Location |Result | Operand
| 11 |10 |20

I [| |
|010007 | | A=NUM |
|013001 |%%000000 |A=A-1 |
[107001 [| P=%%000000, A#0
|010024 054000 | |B=24 |

| | SHRIMP | IDLE | NUM
|]010007 | SHRIMP | A=NUM |

| |, | I
]013001 |%%000001 |[A=A-1 |
]107001 | |P=%%000001, A#0
|010006 054000 | | END |

6.13.5 OPSYN - SYNONYMOUS OPERATION

The OPSYN pseudo instruction defines or redefines a name in the location
field as being the same as the named operation in the operand field. A
previous definition with a name matching the location field name is no
longer available. Any pseudo instruction or macro may be redefined in
this manner.

An operation defined by OPSYN is global if the OPSYN pseudo occurs before
the IDENT pseudo that begins a program module, and it is local if the
OPSYN pseudo appears with an IDENT, END sequence. Global operations may
be referenced in any program module following the definition. Every
local operation is removed at the end of a program module, making any
previous global definition with the same name available again.

Format:
|Location |Result _ |Operand
| I I
| nameq | OPSYN | name,
name, A valid name or the name of a defined operation such as a
pseudo instruction or macro. name; must not be blank.
namej The name of a defined operation. If name,; is blank,

name, becomes a do-nothing pseudo instruction.

SM-0036 6-53 B

Example:

In the following example, OPSYN redefines the pseudo instruction IDENT
with a macro definition.

OPSYN definition:

| | | .on APML statement
| |IDENTT |NAME

| IDENT | ENDM [

|Location |Result |Operand | Comment
! 110 20 |35 _
IDENTT	OPSYN	IDENT
	MACRO	
	IDENT	NAME
	LIST	OFF , NXRF
NAME JLIST	ON,XRF	Processed if LIST=NAME
I
I
I

OPSYN call and expansion:

|Location |Result | Operand | Comment
11 110 |20 L35

I | | |

| | IDENT |A |

| |LIST | OFF , NXRF |

|A |LIST | ON, XRF |

| |IDENTT |A |

6.14 CODE DUPLICATION PSEUDO INSTRUCTIONS

APML provides a set of four instructions (DUP, ECHO, ENDDUP, and
STOPDUP), which allow multiple assemblies of sequences of source
statements.

6.14.1 DUP - DUPLICATE CODE

The DUP pseudo instruction introduces the definition of a sequence of
code which is assembled repetitively immediately following the
definition. The dup sequence is assembled the number of times specified
on the DUP instruction. The DUP sequence to be repeated consists of
statements following the DUP instruction and any optional LOCAL pseudo
instructions. Comment statements are ignored: the dup sequence ends when
the statement count is exhausted or when a ENDDUP with a matching
location field name is encountered.

SM-0036 6-54 B

A nested inner DUP definition must be entirely contained in the outer
definition.

You may use STOPDUP to override the repetition count.

Format:
I
I I |
|dupname |DUP | times
I | or I
| | DUP | times, count

dupname Name of the DUP sequence, required if the count field is
null or missing. Use dupname to match an ENDDUP name if
no count field is present. Also use dupname in the
sequence field of the listing for the DUP expansion.

times An absolute expression with positive value, specifying
number of times to repeat the code sequence. If the value
is 0, the code is skipped.

count Optional absolute expression with positive value,
specifying the number of statements to be duplicated.
LOCAL pseudo instructions and comment statements (* in
first nonblank column) are ignored for the purpose of this
count. Statements are counted before expansion of nested
macro calls or DUP or ECHO sequences.

6.14.2 ECHO - DUPLICATE CODE WITH VARYING ARGUMENTS

The ECHO pseudo instruction introduces the definition of a sequence of
code that is assembled repetitively immediately following the

definition. On each repetition, the actual arguments are substituted for
the formal parameters until the longest argument list is exhausted. The
echo sequence to be repeated consists of statements following the ECHO
pseudo instruction and any optional LOCAL pseudo instructions. Comment
statements are ignored. The echo sequence ends when an ENDDUP with a
matching location field name is encountered.

A nested inner echo definition must be entirely contained in the outer
definition.

STOPDUP overrides the repetition count determined by the number of
arguments in the longest argument list.

SM-0036 6-55 B

Format:

|Location |Result _ |Operand
I I I
|dupname |ECHO ley=1istq,ey=listy,....ep=1list,

dupname Name of the echo sequence; must not be empty. This name
must match the location field name in the ENDDUP pseudo
instruction that terminates the echo sequence.

e; Formal parameter name. There may be none, one, or more
e; parameters.

listy List of actual arguments. The list can be.a single
argument a;; or a parenthesized list of arguments
(831.8§2+++.,8jp), where each aj; is an actual argument
to be substituted for e; in the echo sequence. Each
actual argument ajy may be an ASCII character string
not containing blanks or commas or may itself be an
embedded argument containing a list of arguments ajj
enclosed in matching parentheses. An embedded argument may
contain blanks or commas and matched pairs of parentheses.

The argument a;; is substituted for e; in the echo
sequence on the first repetition; aj; is substituted
for e; on the second repetition.

A comma immediately followed by another comma or closing
right parenthesis specifies a null (empty) character string
as the argument.

6.14.3 ENDDUP - END DUPLICATED CODE

The ENDDUP pseudo instruction ends the definition of the code sequence to
be repeated. An ENDDUP terminates a DUP or ECHO sequence with the same
name. ENDDUP has no effect on DUP or ECHO sequences terminated by a
statement count.

Format:

|Location |Result |Operand
| | |
|dupname |ENDDUP |

dupname Name of a DUP sequence

SM-0036 6-56 B

6.14.4 STOPDUP - STOP DUPLICATION

The STOPDUP pseudo instruction stops duplication of a code sequence
indicated by a DUP or ECHO pseudo instruction. It overrides the
repetition count. Assembly of the current repetition of the DUP sequence

is terminated immediately.
sequence with the same name.
the code sequence to be duplicated.

Format:

STOPDUP terminates the innermost DUP or ECHO
STOPDUP does not affect the definition of

|Location |Result |Operand
I | |

|dupname | STOPDUP

dupname Name of a DUP sequence

6.14.5 EXAMPLES OF DUPLICATED SEQUENCES

Example 1. Use DUP to define an array with values 0, 1, 2, and 3.

DUP definition:

|Location |Result |Operand | Comment

11 110 |20 135

I I I I

IS |EQUALS |W.* [

| | DUP 13,1 [

I | CON |W.*-S [

DUP expansion:

|Code generated |Location |Result |Operand | Comment

| 11 |10 120 135

I I | | |

}0000000000000000000000 | | CON |W.*-S]+ (W.*-S=0)

| | I | |

{0000000000000000000001 | | CON |W.*-S | . (W.%*-S=1)

| | I I |

{0000000000000000000002 | | CON |W.*-S . (W.%*-S=2)

| I | | |

{0000000000000000000003 | | CON |W.*-8S | . (W.%*-S=3)
SM-0036 6-57 B

Example 2. Nested duplication

ECHO definition:

|Location |Result | Operand | Comment
1L 110 120 [35

| | | I

IX . | ECHO | CHN=(PFR, PXS,LME)

Y | ECHO |FCN=(0,7) |

| JCHN:FCN | |

|Y { ENDDUP | |

IX |ENDDUP | [

ECHO and DUP expansion:

|Location |Result | Operand | Comment
1A 110 120 |35

| | | |

| | PFR:0 |
| |PFR:7 |
| | PXS:0 I
| |
| |
I |

|PXS:7
|LME: 0
|LME: 7

Example 3. Use STOPDUP to terminate duplication

STOPDUP definition:

|Location |Result | Operand | Comment

(B 110 120 |35

| | | |

|T | SET |0]

|A | DUP (1000 [

|T | SET |T+1 |

| | IFE |T,EQ,3,1 | .Terminate duplication when T=3
(A | STOPDUP | [

| | CON T |

|A |ENDDUP | [

SM-0036 6-58 B

g 6S5-9 9€00~-WS

tauTT butrmoiro3z ay3z buronpoad xid 103
UOTITUTISP OY3 Sa3In3xTISqns TWAVY ‘Pa3axdiadjuTr ST SuIl 9yl 910389 ‘I9AS8MOH

| | aa = 9| 9v¥L.Xdd.|
| | | |

St 0Zl 0Tl Tl
UoWWo)) | pueaadQ| 3[nsey| uorzeoo|

$3UIT ® JO PISTJF UOTIED0T
8yl uTr ST XJid 03 9oUdI83I81 Y ‘(I Se POuUTIIP ST XJd poureu oIdTW Y

so7dwrexy

*pPa33TWO Udadq Sey SyJew OIDTW 8Y3 JO dUO JT I0 umouyun ST

aureu OIDTW 8Y3 JT SInddo juswaderdax ON *SOUTIT UOTIBNUTIUOD TRUOTITPPE
S93ea10 IBTqWaSSe 3yl ‘UOTINITISANS OIOTW © JO JITNSSI © Se POPIadVEd ST
SUTT ® 3JO 2L UUMTOD JI °SUT[JUSAWWOD © Ueyl I9Y30 Juawale3ls 22In0s e ur
axsymiue syaew ajonb Lq pesorous asuweu oxoTw ay3z bursn Aq oxoTw © 03 13393Y

IVYWIOd JONFAYIITY OJOIW T°ST'9

*aouaiagox oyl Dburturejuod juswalels 8oInos syl jo Arquesse 8103s8q

aweu aYy3 103 pajinirasqns Huraq DBurazs adjdeaeyYd SYJ3 UT SITNSSI 0Id0TW

® 03 20U9IBISI Y ‘*Bweu S3T Jo asn ybnoayl Hurals isjdeaeyd ay3l 03 1838
A1ausnbasqns pue burajs as9joezeyd e 03 aureu e ubrsse 03 nok MoTTe SOIDTR

SNOILONYLSNI OdN¥Sd NOILINIAAQ OJOIW ST°'9

| | anadoisl| vl

| T+L| 13s| hA|

| Ll NOD | |

| T+Ll 13s| xl

| Ll NOD | |

| T+1l 13s| Ll

| | | |

SCl 0¢1 Ot1 Tl
Juawuo) | puexado] jInsey| uor3edoq]|

suorsuedza JnAdols

|Location |Result | Operand | Comment
11 .10 120 |35

| | | |
|[IDTAG B = DD | |

6.15.2 MICRO - MICRO DEFINITION

The MICRO pseudo instruction assigns a name to a character string.

Format:
|Location |Result |Operand
| I |
| name |MICRO | ‘character string',exp,,exp;
| | or |
| name |MICRO | ‘character string',exp,
| | or |
| name | MICRO | ‘character string'
name Micro name. If name is previously defined, the previous

micro definition is lost.

‘character string'
A character string optionally including previously defined
micros.

To specify a single apostrophe in a character string, use
two adjacent apostrophes. These are counted as a single
character in the string.

A character string may be delimited by a character other
than an apostrophe; use any ASCII character other than a
comma or space. Two consecutive occurrences of the
delimiting character indicates a single such character.
For example, a micro consisting of the single character *
could be specified as ‘%' or #*¥k%,

exp, Absolute expression indicating number of characters in the
micro character string

The micro character string is terminated either by the
character count or the final apostrophe of the character
string, whichever occurs first. The string is considered
empty if exp; has a 0 or negative value. expj; is
considered very large if it is null. In this case, the
string is terminated by the final apostrophe.

SM-0036 6-60 B

| .an empty string

expy Absolute expression indicating starting character. The
micro character string is considered to begin with the
first character of the character string if exp, is
null, exp, has the value of 0 or 1, or exp; is
negative.

Example:

|Location |Result |Operand | Comment

11 110 |20 L35

| ! | I

|MIC |MICRO | *'THIS IS A MICRO STRING'

IMIC1 | MICRO | Rekeden | Micro string is 1 asterisk

|MIC2 |MICRO ' MIC"',1 | Micro consisting of 1lst

| | | | .character of the micro string

| | | | .represented by MIC

|MIC2 | MICRO | *THIS IS A MICRO STRING' ,1

|MIC4 |MICRO | **MIC"',2,2 | .Micro consisting of 2nd and

| | |] .3rd characters of micro string

| | | | .represented by MIC

|MIC4 |MICRO | *THIS IS A MICRO STRING' ,2,2

|MICS |MICRO | | .Blank operand field defines

I

6.15.3 OCTMIC AND DECMIC - OCTAL AND DECIMAL MICROS

OCTMIC and DECMIC convert the value of the expression into a character
string that is assigned a micro name.

Formats:
|
I | !
| name | OCTMIC | exp, count
| name | DECMIC | exp, count
name Micro name
exp An absolute expression to be converted to up to 8
characters representing the octal (or decimal) value
count An expression providing an optional 'character count less

SM-0036

than or equal to 8. If this parameter is preseat, leading
zeros are supplied to provide the requested number of
characters.

Example of MICSIZE and DECMIC:

|Location |Result |Operand | Comment
|1 |10 120 |35
I | I I
26 |V IMICSIZE |MIC | .The value of V is the number

| | | | .of characters in the micro
| | | .string represented by MIC

|
2 |vOoCT | DECMIC |v,2 | VOCT is a micro name
| | | | .There are VOCT characters
| | | | .in MIC
| | | | .There are 26 characters in
I | I | .MIC
Example of OCTMIC:
|Location |Result | Operand | Comment
|4 |10 |20 135
I | | |
| IP |EQUALS |0'20 I
| VAL |OCTMIC |IP I
|MSG | DATA | 'THE VALUE OF IP IS VAL’
| | DATA | *THE VALUE OF IP IS 20°

6.15.4 PREDEFINED MICROS

In addition to the preceding micros, the APML assembler provides the
following predefined micros.

Micro Description
$DATE Current date yy/mm/dd

$JDATE Julian date yy/dd

$TIME Time of day hh:mm:ss

$MIC Micro character (quote, ASCII 042)

$CNC Concatenation character (underline, ASCII 137)

$QUAL Name of qualifier that is currently in effect (the null

string if none)

$CPU Target machine ('IOP')

SM-0036 6-62

Example: Use of predefined micro $DATE

|Location |Result | Operand | Comment
|1 |10 120 135

| | | !

[| DATA | 'THE DATE IS "$DATE"'

| | DATA | *THE DATE IS 06/16/81"

SM-0036 6-63

7. CHANNEL INTERFACE FUNCTIONS

Channel interfaces buffer data, generate control signals for peripheral
devices, and multiplex several devices into the same I/0 Processor (I0P)
channel. This section gives the channel interface functions for Cray
1/0 Subsystem (IOS) Models B and C.

For more detail on any of these channel interfaces, see the following
CRI manuals:

HR-0030 1/0 Subsystem Model B Hardware Reference Manual

HR-0081 I1/0 Subsystem Model C Hardware Reference Manual
HR-0077 Disk Systems Hardware Reference Manual

7.1 INTERFACE CHARACTERISTICS

Each IOP provides for I/0 channels. These channels are addressed by the
d designator in the program instruction or by the B register

contents. Data can be transferred from the IOP accumulator to a channel
interface register or from a channel interface register to the
accumulator. You can use the Direct Memory Access (DMA) ports for block
transfers of data into or out of Local Memory. Data transfers and
channel interface actions are a function of each interface logic control.

Each interface can interpret up to 16 function signals from the IOP
program. These functions are generated by instructions 140 through

177. Interpretation of each function is specifically designated by each
interface. However, three functions common among the interfaces (except
the peripheral expander) are as follows:.

Function Description
iod : 0 or IOB : O Clears the Channel Busy and Done flags and

place the channel in an idle status

13

iod : 6 or IOB : 6 Clears the Channel Interrupt flag for the
associated channel, blocking any further
interrupt requests from that channel

iod : 7 or IOB : 7 Sets the Channel Interrupt Enable flag for

the associated channel and enable the
interrupt requests from that channel

SM-0036 7-1 B

Each channel interface provides for a Busy flag, normally set during the
active period of the channel and cleared during an idle period. The
setting and clearing of this flag depends on the channel interface
interpretation of the 16 function codes. The Channel Busy flag can be
sensed by the IOP program through execution of instructions 041 and 043.

Each channel interface provides for a Done flag, normally used to signal
the IOP program when some step of the channel activity has reached a
point requiring program action. Setting and clearing of the flag is
normally a function of the interface hardware, but the program can set or
clear the flag for special purposes. The program senses the state of
this flag through instructions 040 and 042. An interrupt is normally
generated by the interface hardware when the Channel Done flag and the
Channel Interrupt Enable flag are set. The system must have interrupts
enabled to be interrupted. When not enabled, however, it can still sense
the interrupt waiting through IOR : 10.

7.2 CHANNEL INTERFACE FUNCTION CODES

Table 7-1 lists all the currently supported peripheral devices and
briefly explains each function code interpretation that is implemented.
The APML mnemonic identifies the function. Only the first mnemonic of
each type is given. The interface functions for disk storage unit
channels are not described below; they are described in the Disk Systems
Hardware Reference Manual, CRI publication HR-0077.

Table 7-1. Channel Functions and Descriptions

I | I

| Channel | Function | Description

|]]

| I I

| 0] IOR : 10 | Read interrupt channel number

| I/0 Request | |

I [|

| 1 | PFR : O | Clear Program Fetch Request flag

| Program | PFR : 6 | Clear Channel Interrupt Enable flag
| Fetch | PFR : 7 | Set Channel Interrupt Enable flag

| Request | PFR : 10 | Read operand register number

I | |

SM-0036 7-2 B

Table 7-1. Channel Functions and Descriptioans (continued)

I		
Channel	Function	Description
]		
I I	I	
2	PXS : 0	Clear Exit Stack Boundary flag
Program	PXS : 6	Clear Channel Interrupt Enable flag i
Exit Stack	PXS : 7	Set Channel Interrupt Enable flag
]	PXS : 10	Read exit stack pointer, E
	PXS : 11	Read exit stack address, (E)]
	PxS : 13t	Read history log I
	PXS : 14	Enter exit stack pointer, E
]	PXS : 15	Enter exit stack address, (E)
	PXS : 167	Enter diagnostic mode (available in
		diagnostic mode only)
I	I I	
3	LME : O	Clear Local Memory Parity Error flag
Local	LME : 6	Clear Channel Interrupt Enable flag
Memory] LME : 7	Set Channel Interrupt Enable flag
] Error	LME :10FF	Read error information
4	RTC : O	Clear Channel Done flag i
Real-time	RTC : 6	Clear Channel Interrupt Enable flag
Clock	RTIC : 7	Set Channel Interrupt Enable flag
	RIC : 10	Read real-time clock
5	MOS : O	Clear Channel Busy and Done flags
Buffer	MOS : 1	Enter Local Memory address for next transfer
Memory	MOS : 2	Enter upper bits of Buffer Memory address]
	MOS : 3	Enter lower bits of Buffer Memory address
]	MOS : 4	Read Buffer Memory/enter block length]
	MOS : 5	Write Buffer Memory/enter block length
	MOS : 6	Clear the Channel Interrupt Enable flag
	MOS : 7	Set the Channel Enable Interrupt flag
	MOS : 10t	Read bypass modes if accumulator bit 2l-1;
		read error bits if accumulator bit 20-1,
	MOS : 14	Set control register flags
	MOS : 15t	Set second control register flags
	MOS : 16F	Set bypass modes
I I		
6, 10, 12	AIA : O	Clear Channel Done flag
IOP	AIA : 6	Clear Channel Interrupt Enable flag
Input	AIA : 7	Set Channel Interrupt Enable flag
(AIA, AIB,	AIA : 10	Read input to accumulator and resume
AIC)		channel
	I	

|
+ Model C only
++ Model B only

SM-0036 7-3 B

Table 7-1. Channel Functions and Descriptions (continued)

diagnostic mode only)

| | | |
| Channel | Function | Description |
|]] |
| | I I
| 7, 11, 13 | AOA : 0 | Clear Channel Busy and Done flags |
] I0P | AOA : 1 | Enter control bits from accumulator |
Output	AOA : 6	Clear Channel Interrupt Enable flag
(AOA, AOB,	AOA : 7	Set Channel Interrupt Enable flag
ACC)	AOA : 14	Set Channel Busy flag and output accumulator
I I	data	
I I		
14] HIA : 0	Clear Channel Busy and Done flags
Input from	HIA : 1	Enter Local Memory address
Central	HIA : 2	Enter high-order bits of Central Memory or
Memory or		88D address; see specific hardware manual
Solid State		for the actual number of bits to enter.
Disk (SSD)	HIA : 3	Enter low-order 9 bits of Central Memory or
(HIA)		SSD address I
(100 Mbyte	HIA : 4	Enter block length; start transfer to Local
channel)		Memory if Buffer Memory channel not in
		bypass mode.]
	HIA : 6	Clear Channel Interrupt Enable flag
	HIA : 7	Set Channel Interrupt Enable flag
	HIA : 10t	Read syndrome code or error code
		(available in diagnostic mode only)
	HIA : 14	Enter diagnostic mode (available in
		diagnostic mode only)]
I I I		
15	HOA : O	Clear Channel Busy and Done flags
Output to	HOA : 1	Enter Local Memory address
Central	HOA : 2	Enter high-order bits of Central Memory or
Memory or		or SSD address; see specific hardware manual
SSD		for the actual number of bits to enter.
(HOA)] HOA : 3	Enter low-order 9 bits of Central Memory or
(100 Mbyte		SSD address
Channel)	HOA : 5	Enter block length for transfer; start
		transfer from Local Memory unless Buffer
		Memory channel is in bypass mode. i
	HOA : 6	Clear Channel Interrupt Enable flag
	HOA : 7	Set Channel Interrupt Enable flag
	HOA : 1ot	Read error code (available in diagnostic
		mode only)
	HOA : 14	Enter diagnostic mode (available in
I | | |
1

+ Model C only

SM-0036 7-4 B

Table 7-1. Channel Functions and Descriptions (continued)
I I I
| Channel | Function | Description
| | |
I I I
| 50 | LIA : ot | Clear Channel Busy and Done flags
| Mainframe | LIA : 1t | Enter Local Memory address, start transfer
| Input | | to Local Memory
| (LIA) | LIA : 2t | Enter parcel count for transfer
| | LIA : 3t | Clear Channel Parity Error flags
[| LIA : 4% | Clear Ready Waiting flag
i | LIA : 6t | Clear Channel Interrupt Enable flag
| | LIA : 7t | Set Channel Interrupt Enable flag
| | LIA : 10t | Read present Local Memory address
| | LIA : 11t | Read status (ready waiting, parity error)
| | I
| 51 | LOA : ot | Clear Channel Busy and Done flags
| Mainframe | LOA : 1t | Enter Local Memory address, start transfer
| Output | | from Local Memory
| (LOA) | LOA : 2t | Enter parcel count for transfer
] | LOA : 3t | Clear Error flag
| | LOA : at | Set/clear external control signals
| | LOA : 6t | Clear Channel Interrupt Enable flag
| | LOA : 7t | Set Channel Interrupt Enable flag
| | LOA : 10t | Read present Local Memory address
] | LOA : 11 | Read processor number (0 through 3); read
| | | Error flag.
| I !
| Console | TIA : O | Clear Channel Done flag
| Keyboard | TIA : 3t | Set baud rate, both input and output pair
| (TIA - TID) | TIA : 6 | Clear Channel Interrupt Enable flag
| (Accumulator | TIA : 7 | Set Channel Interrupt Enable flag
| Channel) | TIA : 10 | Read data into accumulator and clear Done
| I | flag
I ! I
| Console | TOA : O | Clear Channel Busy and Done flags
| Display | TOA : 6 | Clear Channel Interrupt Enable flag
| (TOA - TOD) | TOA : 7 | Set Channel Interrupt Enable flag
| (Accumulator | TOA : 14 | Send accumulator data to display
| Channel) | |
I | |

¥ Model C only

B sM-0036

Table 7-1

. Channel Functions and Descriptions (continued)

I I |

| Channel | Function | Description

| |]

| | I

| Peripheral | EXB : 0 | Idle the channel

| Expander | EXB : 1 | Request A Input register contents (DIA)
| (EXB) | EXB : 2 | Request B Input register contents (DIB)
| (Accumulator | EXB : 3 | Request C Input register contents (DIC)
| Channel) | EXB : 4 | Read Busy/Done flag, interrupt number

] | EXB : 5 | Load device address

| | EXB : 6 | Send interface mask (MSKO)

| | EXB : 7 | Set interrupt mode

| | EXB : 10 | Read data bus status

| | EXB : 11 | Read status 1

| | EXB : 13 | Read status 2

| | EXB : 14 | Send data to A Output register (DOA)

| | EXB : 15 | Send data to B Output register (DOB)

| | EXB : 16 | Send data to C Output register (DOC)

| | EXB : 17 | Send control

| I I

| Front-end | CIA : O | Clear channel

| Input* | CIA : 1 | Enter Local Memory address, start input
| (CIA - CID) | CIA : 2 | Enter parcel count

| (DMA Channel)| CIA : 3 | Clear Channel Parity Error flags

] | CIA : 4 | Clear Data Waiting flag

| |] CIA : 6 |] Clear Interrupt Enable flag

| | CIA : 7 | Set Interrupt Enable flag

| | CIA : 10 | Read Local Memory address

| | CIA : 11 | Read status (ready waiting, parity errors)
| | |

| Front-emd | COA : O | Clear channel

| Output* | COA : 1 | Enter Local Memory address

| (COA - COD) | COA : 2 | Enter parcel count

| (DMA Channel)| COA : 3 | Clear Error flag

| | COA : 4 | Set/clear external control signals

| | COA : 6 | Clear Interrupt Enable flag

| | CoA : 7 | Set Interrupt Enable flag

| | COA : 10 | Read Local Memory address

| | COA : 11 | Read status (error) (4-bit channel data)*f
| [

+ These functi
++ Model B only

SM-0036

ons

apply only to the MIOP

7-6 B

Table 7-1. Channel Functions and Descriptions (continued)
| | |
| Channel | Function | Description
|] L
I | I
| Block | BMA : O | Clear channel control
| Multiplexer | BMA : 1 | Send reset functions
| Channel | BMA : 2 | Send commands to control units
| (BMA - BMP) | BMA : 3 | Read request-in address
| (DMA Channel)| BMA : 4 | Clear Channel Done flag; set Channel Busy
| | | flag for asynchronous I/O.
| |] BMA : 5 | Delay counter diagnostic
| | BMA : 6 | Clear Channel Interrupt Enable flag
| | BMA : 7 | Set Channel Interrupt Enable flag
| | BMA : 10 | Read Local Memory address
| | BMA : 11 | Read byte count
| | BMA : 12 | Read status
| | BMA : 13 | Read input tags
| | BMA : 14 | Enter Local Memory address
| | BMA : 15 | Enter byte count
| | BMA : 16 | Enter device address
| | BMA : 17 | Enter output tags
I I I
| Error | ERA : O | Idle channel
| Logging | ERA : 6 | Clear Interrupt Enable flag
| Channel for | ERA : 7 | Set Interrupt Enable flag
| Serial No. | ERA : 10 | Read error status
| 20 and | ERA : 11 | Read error information (first parameter)
| Below' | ERA : 12 | Read error information (second parameter)
| (ERA) | ERA : 13 | Read error information (third parameter)
| (Accumulator | |
| Channel) |]
| I |

1

+ Model B only

SM-0036

8. FORMAT OF ASSEMBLER LISTING

The APML assembler generates list output as determined by list pseudo
instructions and by options on the APML control statement.

8.1 PAGE HEADERS

Every page of list output produced by the APML assembler contains two
132-character header lines. The first line contains the title, version
of APML, time and date of assembly, and a global page number over all
programs assembled by the current assembly. The title is taken from a
TITLE pseudo instruction if there is one or from the operand field of the
IDENT pseudo instruction. The second line contains the subtitle
specified by a SUBTITLE pseudo if there is one, a local block name if
other than the nominal block, a symbol qualifier if there is one in
effect, and a local page number which is reset for each new program
unit. The local page number is used in the cross-reference listings
generated by APML and SYSREF.

1 66 76 96 105 115
|title |cpu type|APML version |date | time | Page nnn|
|subtitle |unused |Block: bname |Qualifier: gqualname|(nn) |

8.2 SOURCE STATEMENT LISTING

The listing for source statements comprising an APML program is organized
into five columns of information, as follows.

Title line |
‘Subtitle line |
error | location | octal code] source line | sequence|
code |address | | |]

error code
The leftmost column contains up to 7 characters indicating
errors detected for the current statement. If too many
errors occurred to fit in seven columns, the seventh
character is a + indicating that not all errors are shown.
Appendix C, Messages, describes error codes.

SM-0036 8-1 B

location address

The second column gives the parcel or word address where
the current statement is assembled. If the statement is a
symbolic APML instruction or PDATA, the address is listed
as a parcel address. For word-oriented pseudo
instructions, the address is listed as a word address with
a W appended.

octal code

The third column of information contains the octal
equivalent of the instruction or value.

For symbolic APML instructions, this column contains up to
3 parcels of I/0 Processor instructions in octal digits.

For 2-parcel instructions, the second parcel is preceded by

a / character. If more than 3 parcels of instruction are
generated by a statement, the instructions are listed on
subsequent lines with a blank source and sequence field.

If the value represents an address, the octal code has a
suffix as follows:

+ Positive relocation in program block
- Negative relocation in program block
X External symbol

For a symbol defined through SET, MICSIZE, CHANNEL, or
EQUALS, the column contains the octal value of the symbol.

For a BSS or BSSZ instruction, the column contains the
octal value of the number of words reserved.

For a MICRO, OCTMIC, or DECMIC instruction, the column
contains the number of characters in the micro string.

source line

sequence

SM-0036

The fourth column presents columns 1 through 72 of each
source line.

The rightmost column either contains the sequence number
for the source line as taken from columns 73 through 90 of

the source line image or contains an identifier if the line

is an expansion of a macro.

/A\

8.3 CROSS-REFERENCE LISTING

The assembler generates a cross-reference table with the format as
follows. Symbols are listed alphabetically and grouped by qualifier.
Each qualified group of symbols is headed by the message SYMBOL QUALIFIER
IS qualname.

Global symbols which are not referenced are not listed in the
cross-reference. Symbols of the form %%XXXXXX, where X is any ASCII
character, are not listed in the cross-reference.

[Title line (

| Subtitle line | |

| | | | I

| value | symbol | name | symbol references |
value Octal value of symbol

symbol A symbol with word-address attribute W appended. A
relocatable symbol has a plus (+) suffix if it has positive
relocation relative to the program block and a minus (-)
suffix if negative relocation relative to the program
block. An external symbol has an X suffix. An undefined
symbol has a U suffix.

name A global symbol defined by the user is indicated by
GLOBAL. A global symbol defined in a system text is
indicated by the system text dataset name. A symbol
defined in global text between TEXT and ENDTEXT pseudo
instructions is indicated by the associated text name.

symbol references
This column lists one or more references to the symbol in
the following format:
page : line x
page Local decimal number of page containing
reference. The local page number appears in
parentheses at the right end of the second title
line, also called the subtitle line.
line Decimal number of line containing reference

b Type of reference, as follows:

blank Symbol value is used at this point.

SM-0036 ' 8-3 B

symbol references
(continued)

SM-0036

Symbol used as a base register in an
APML, symbolic jump instruction which
required a 2-parcel machine branch
instruction

Symbol defined at this reference; that

is, it appears in the location field of
an instruction or is defined by a SET,

EQUALS, or EXT pseudo instruction.

Declares the symbol as an entry name
Symbol used in an expression in a

conditioned pseudo instruction such as
IFE, IFA, or ERRIF

APPENDIX SECTION

A. CHARACTER SETS

Table A-1 lists the character sets.

Table A-1. Character Sets
| I | I |
| | | ASCII | | CDC Display
| CHAR | ASCII | Card Code | EBCDIC | Code
|] |] 1
| I | I I
| NUL | 000 | 12-0-9-8-1] 00 | None
| SOH | 001 | 12-9-1 | 01 | None
| STX | 002 | 12-9-2 | 02 | None
| EIX | 003 | 12-9-3] 03 | None
| EOT | 004 | 9-7 | 37 | None
| ENQ | 005 | 0-9-8-5 | 2D | None
| ACK | 006 | 0-9-8-6 | 2E | None
| BEL | 007 i 0-9-8-7 | 2F | None
| BS | 010 | 11-9-6 | 16 | None
| HT | 011 | 12-9-5 | 05 | None
| LF | 012 | 0-9-5 | 25 | None
| VT | 013 | 12-9-8-3 | 0B | None
| FF | 014 | 12-9-8-4 | oc | None
] CR | 015 | 12-9-8-5 | 0D | None
| SO | 016 | 12-9-8-6 (OE | None
| sI | 017 | 12-9-8-7 | OF | None
| DLE | 020 | 12-11-9-8-1 | 10 | None
| DC1 I 021 | 11-9-1 I 11 I None
| DC2 | 022 | 11-9-2 | 12 | None
| DC3 I 023 | 11-9-3 | 13 | None
| DC4 | 024 | 4-8-9 | 3C | None
| NAK i 025 | 9-8-5 | 3D | None
| SYN | 026 | 9-2 | 32 | None
| ETB | 027 | 0-9-6 | 26 | None
| caN | 030 | 11-9-8 | 18 i None
| EM I 031 | 11-9-8-1 | 19 I None
| SUB | 032 | 9-8-7 | 3F | None
| ESC | 033 | 0-9-7 | 27 | None
| FS | 034 | 11-9-8-4 [1c | None
| GS | 035 | 11-9-8-5 | 1ip | None
| RS I 036 | 11-9-8-6 | 1E | None
| Us | 037 | 11-9-8-7 | iF | None
| Space | 040 | None | 40 | 55
| ! | 041 | 12-8-7 | SA | 66
| | |]]
SM-0036 A-1 B

Table A-1. Character Sets (continued)

| [| | |

I I | ASCII I | €DC Display
| CHAR | ASCII | Card Code | EBCDIC | Code
|] | | |

I | | | |

| " | 042 | 8-7 | 7F | 64
| # | 043 | 8-3 | 7B I 60
| § I 044 | 11-8-3 [5B I 53
| % I 045 | 0-8-4 I 6C | 63
| & | 046 | 12 I 50 | 67
| | 047 | 8-5 I D | 70
|« | 050 | 12-8-5 I 4D | 51
|) | 051 | 11-8-5 | 5D | 52
| * | 052 | 11-8-4 | 5C | 47
|+ | 053 | 12-8-6 | 4E | 45
I | 054 | 0-8-3 | 6B [56
| - | 055 | 11 | 60 | 46
| . | 056 | 12-8-3 I 4B | 57
| 7 I 057 | o0-1 I 61 | 50
| o | 060 | o | FO | 33
| 1 | 061 | 1 I F1 | 34
| 2 | 062 | 2 I F2 | 35
| 3 | 063 | 3 I F3 | 36
| 4 | 064 | 4 I F4 | 37
| s | 065 | s | F5 [40
| 6 | 066 | 6 | F6 | 41
| 7 | 067 |7 | F7 | 42
| 8 I 070 | 8 | F8 | 43
| 9 I 071 | 9 I F9 | 44
| s | 072 | 8-2 | 7A I 00
| | 073 | 11-8-6 | 5E | 77
| < | 074 | 12-8-4 | ac | 72
| = | 075 | 8-6 I 7E | 54
| > | 076 | 0-8-6 | 6E [73
| 2 | 077 | 0-8-7 I 6F | 71
| e | 100 | 8-4 | 7C [74
| A | 101 | 12-1 | c1 | 01
| B | 102 | 12-2 | c2 | 02
| ¢ I 103 | 12-3 I c3 I 03
| D | 104 | 12-4 | Cc4 I 04
| E | 105 | 12-5 | cs | 05
| F | 106 | 12-6 | Ccé | 06
| G | 107 | 12-7 I c7 | 07
| H | 110 | 12-8 | cs | 10
| I | 111 | 12-9 | c9 | 11
| g | 112 | 11-1 I D1 | 12
| K | 113 | 11-2 | D2 | 13
| L | 114 | 11-3 | D3 | 14
| | l L 1

SM-0036 A-2

— . ——— ——— ———— S — — — — — — — — — — — — — — — — t— — —— — — — — — ST S ——— — — — — — — — —— o—

g £-¥ 9€£00-RKS
I | I |
auoN | SY | 5-0-1T | 99T | A
suoN | A4 | ¥-0-T1 | 9T | n
duoN | (3 4 | €-0-TT | 9T | 3
SuoN | A4 | Z-0-T1 | €91 | s
QuoN | 66 | 6-11-21 I Z91 | I
SUON I 86 | 8-T1-2T | 191 I b
SuoN | L6 | L-11-21 | 091 | d
auoN | 96] 9-11-2T I LST | o
auoN | S6 I S-T1-2T I 96T | u
SUON | ¥6 I v-11-21 | GST | w
8uoN | £6 | £-11-2T | pST I T
8uON | Z6 | z-T1-21 | £ST I |
suoN I 16 I T-11-21 | ST 1 c
SuUON | 68 | 6-0-21 | 16T | T
suoN | 88 | 8-0-2T | 0ST | q
8uoN ! L8 | L-0-21 | LYT | b
auoN | 98 | 9-0-2T | 9vT | 3
auoN | S8 | §-0-21 | SHT | ®
3uoN | 4] | ¥-0-21 | 144t | P
SuoN I €8 | g-0-21 | £%T | °
8uoN I Z8 | z-0-2T1 I vt I q
auoN I 18 | 1-0-2T I 152 | e
SuoN | 6L | -8 | 0%1 ! >
59 | as | 6-8-0 | LET |
9L | as | L-g8-11 | 9€T I .
29 | ag | Z-8-1T1 | GET I [
SL | oa I z-8-0 | PET | \
19 | av I Z-8-21 | £€T |]
43 | 64 | 6-0 | Z€1 | z
145 | 84 | g-0 | I€T | X
o€ | L3 | t-0 | 0€T | X
Lz | 93 i 9-0 | L1 | M
92 | s3 | s-0 | 921 | A
(¥4 | va | -0 | T4 | n
1 24 | €d | £€-0 | ver | I
€2 | za | 2-0 | €21 | S
ze | 6d | 6-TT | 21 | |
T2 | 8a | 8-TT | TZ1 | o]
0z | La | L-TT | 021 | d
LT | 9a | 9-1T | LIt | 0
9T | sa | S-1T | 9TT | N
ST | va | 1T | STT [W
| | | |
I | I]
apo) | J1a083 | 8po) pie) | I1IDSY | 9vHD
Ketdsta 2ao | | I1IDSY I |
| [I |
(panuTtjuodo) S398 Ix3joevaey) °I-Y STqel

Table A-1. Character Sets (continued)
| I | | |
| | | ASCII | | CDC Display
| CHAR | ASCII | Card Code | EBCDIC | Code
| | |] |
| | I | |
| w | 167 | 11-0-6 | A6 | None
| = | 170 | 11-0-7 | A7 | None
| vy | 171 | 11-0-8 | A8 | None
| =2 | 172 | 11-0-9 | A9 | None
I { | 173 | 12-0 | co | None
| | | 174 | 12-11 | 6A | None
|} | 175 | 11-0 | DO i None
| =~ | 176 | 11-0-1 | Al | None
| DEL | 177 | 12-9-7 | 07 | None
| | | | |
SM-0036 A-4

B. HARDWARE INSTRUCTION SUMMARY

This appendix briefly describes APML operand notation and instructions.

B.1 APML OPERAND NOTATION

The following reserved names represent the contents of I/0 Processor
(IOP) registers or memory:

Name

R!sym

dd

(dd]

(dd)

SM-0036

Description

Accumulator

Operand register, index register (B register)

Contents of the operand register addressed by B

Carry flag

Exit stack pointer

Exit stack entry addressed by E, the exit stack pointer
Interrupt Enable flag

Program address register

Return jump program address

Operand register whose index is the value of the symbol
Ssym, where sym is any symbol with positive absolute
value less than 512

Operand register whose index is the value of the symbol
dd, where dd is a 2-character symbol with positive

absolute value less than 512

Value of symbol dd; that is, index of register
represented by register symbol dd.

Memory parcel addressed by contents of operand register dd

Name

(k)

(dd + k)

Description

An unsigned numeric constant, character comstant, or a
symbol. 1In general, k may have a positive or negative
value with absolute value less than 16,384. In some cases,
the range of values for k is further restricted.

An unsigned numeric constant, character constant, or a
symbol. 1In general, d may have a positive or negative
value with absolute value less than 512. In some cases,
the range of values for d is further restricted.

Memory parcel addressed by the value of k

Memory parcel addressed by the sum of the contents of
operand register dd and constant k

NOTE

Instructions referencing the operand register dd
contain the register index in the d field, the lower
9 bits of the instruction parcel.

The following reserved names represent other operands used in symbolic
APML instructions:

Name

I10B

iod

BZ, DN

EXIT

WAIT

PASS

SM-0036

Description

I/0 channel reference using the contents of the B register
as the channel designator

I/0 channel reference, where the value of symbol iod is
the channel designator. Symbol iod must be defined by
the CHANNEL pseudo instruction. Conventionally iod is a
3-character symbol.

IOP channel status. A channel busy flag, BZ, and done
flag, DN, may be tested with certain instructions.

Name of subroutine return function, which generates an IOP
instruction which exits from a subroutine

Name of branch function which loops until a test condition
is satisfied

Name of function which generates an IOP pass, or
no-operation instruction

B.2 INSTRUCTIONS

Table B-1 shows IOP and APML instructions and gives an explanation of
their functions.

Table B-1. Instruction Summary

operand register d

| | | |
| I10P | APML | Description |
I L l |
| I I I
000	PASS	No operation
001 { EXIT	Exit from subroutine	
002 } I =0	Disable system interrupts	
003	I =1	Enable system interrupts
004	A=2a>d	Right shift C and A by d places, end off
005	A=2a <¢d	Left shift C and A by d places, end off
006	A =24 > d	Right shift C and A by d places, circular
(007	A =A< d	Left shift C and A by d places, circular
! I	I	
010	A =d	Transmit d to A
011	A=2A6&d	Logical product of A and d to A]
012	A=A +d	Add d to A
[013	A=24a-d	Subtract d from A
	I	
014	A =k	Transmit k to A
015	A=2AA6&Kk	Logical product of A and k to A
016	A A+ k	Add k to A
017	A =2 -k	Subtract k from A
	I	
020	A =dd	Transmit operand register d to A
021	A = A & dd	Logical product of A and operand register
] d to A	
022	A=A + dd	Add operand register d to A
023	A = A - dd	Subtract operand register d from A
	I i	
024	dd = A	Transmit A to operand register d
025	dd = A + dd	Add operand register d to A, result to
		operand register d]
026	dd = dd + 1	Transmit d to A, add 1, result to
		operand register d
027] dd =dd - 1	Transmit d to A, subtract 1, result to	

SM-0036 B-3 B-01

Table B-1. Instruction Summary (continued)
I I | |
| 10P | APML | Description |
| L] |
| I | I
030	A = (dd)	Transmit contents of memory addressed by
		register d to A
031	A=A & (dd)	Logical product of A and contents of
		memory addressed by register d, result
I		to A I
032	A=A + (dd)	Add contents of memory addressed by
		register d to A, result to A
033	A=A - (dd)	Subtract contents of memory addressed by
		by register d to A, result to A
I		
034	(dd) = A	Transmit A to memory addressed by
		register d
] 035	(dd) = A + (dd)	Add memory addressed by register d to
		A, result to same memory location
036	(dd) = (dd) + 1	Transmit memory addressed by register d
		to A, add 1, result to same memory
		location
037	(dd) = (dd) 1	Transmit memory addressed by register d
		to A, subtract 1, result to same memory
		location
I I		
040	C =1, iod = DN	Set carry equal to channel d done]
041	C =1, iod = BZ	Set carry equal to channel d busy
042] C =1, 1I0B = DN	Set carry equal to channel B done
043	C =1, I0B = B2	Set carry equal to channel B busy
I	I	
044	A=A > B	Right shift C and A by B places, end off
045	A=A <8B	Left shift C and A by B places, end off
046	A=z2a)>»B	Right shift C and A by B places, circular
047	A=A << B	Left shift C and A by B places, circular
050	A =B	Transmit B to A
051	A=A &B	Logical product of A and B to A
052	A=A + B	Add@ B to A
053	A=A -B	Subtract B from A
	I	
054	B=A	Transmit A to B
055	B=A + B	Add B to A, result to B
056	B=B +1	Transmit B to A, add 1, result to B
057	B=B -1	Transmit B to A, subtract 1, result to B
l l		
SM-0036 B-4 B

Table B-1. Instruction Summary (continued)
| | | |
| I0P | APML | Description |
I | | |
060	A = (B)	Transmit operand register B to A
061] A = A & (B)	Logical product of A and operand register
		B to A
062	A=A + (B)	Add operand register B to A
063	A=A - (B)	Subtract operand register B from A]
I	I	
064	(B) = A	Transmit A to operand register B
065	(B) = A + (B)	Add operand register B to A, result to
		operand register B
066	(B) = (B) + 1	Transmit operand register to A, add 1,
		result to operand register B i
067	(B) = (B) -1	Transmit operand register to A, subtract
		1, result to operand register B
I I I		
o070	P =p +df	Jump to P + d
o712	Pp=p-df	Jump to P - d
072	R=pP +«df	Return jump to P + d I
073	R=p -df	Return jump to P - d
	I	
074	P =dd	Jump to address in operand register d
075	P=dd + k	Jump to sum of Xk and operand register d
076	R = dd	Return jump to address in operand]
		register d
i 077	R=dd + k	Return jump to address sum of k and
		operand register d
! I		
100	P=P+d C=0F	Jump to P + d if carry = 0
101	P=P +d, C # ot	Jump to P + d if carry £ 0
102	P=P+d A=0"	Jump toP +dif A =0
103	P=P+d, A#0F	Jump toP +difazo0
	I	
104	P=P-d, C=0F	Jump to P - d if carry = 0
105	P=P-d, C#o0F	Jump to P - d if carry # 0
106	P=P-d A=0"	Jump toP -difa=0
107	P=P-d A# 0t	Jump toP -d if A £ 0
I I		
] 110] R=P +d, C = ot	Return jump to P + d if carry = 0	
111	R=P +d, C # ot	Return jump to P + d if carry £ 0
112	R=P+d, A =0	Return jump to P + d if A = 0
113	R =P +d, A # 0OF	Return jump to P + d if A £ 0
	1 I	

+ These APML instruction

generated by APML.

SM-0036

formats are
are not supported by APML even though the hardware instructions are

for illustrative purposes; they

B-01

1

register d + kK if A £ 0

Table B-1. Instruction Summary (continued)
I | I |
| IOP | APML | Description |
| | | I
I I | |
114	R=P -d, C = 0%	Return jump to P - d if carry = 0
115	R=P -d, C # 07	Return jump to P - d if carry # 0
116	R=P -d, A = ot	Return jump to P - d if A = O
117	R=P -d, A # 0F	Return jump to P - d if A £ 0
I I		
120	P=dd, C =	Jump to address in operand register if
		carry = 0
121	P=dd, C &	Jump to address in operand register if
		carry £ 0
122	P=dd, A =	Jump to address in operand register if
I		A=0
123	P =dd, A #	Jump to address in operand register if
I	A £0	
I I		
124	P =dd + k., 0	Jump to address in operand register + k
		if carry = 0
125	P =dd + k, 0	Jump to address in operand register + ki
		if carry 2 0
126	P =dd + k, 0	Jump to address in operand register + k
		if A = 0
127	P =dd + k. 0	Jump to address in operand register + k
		if A £ 0
I		
130	R=dd, C =	Return jump to address in operand
		register d if carry = 0
[131	R=dd, C #	Return jump to address in operand
		register d if carry # 0
132	R=dd, A = { Return jump to address in operand	
		register d if A = 0
133	R=dd, a &	Return jump to address in operand
		register d if A £ 0
I	I	
134	R =dd + k., 0	Return jump to address in operand
		register d + k if carry = 0
135	R =dd + k, 0	Return jump to address in operand
		register d + k if carry £ 0
136	R =dd + k, 0	Return jump to address in operand
		register d + kK if A = 0
137	R =dd + k, 0	Return jump to address in operand
I		

+ These APML instruction formats are for illustrative purposes; they

are not supported by APML even though the hardware instructions are
generated by APML.

SM-0036

C. MESSAGES

APML supports four classes of messages: abort, fatal, warning, and
informative. Under COS, all messages are written to the logfile. Under
UNICOS, abort, fatal, and warning messages are written to stderr; APML
generates informative messages only if you request them with the -L
parameter.

A description of each class follows:

Mesage
Class Description
Abort APML aborts
| Fatal For UNICOS, APML aborts. For COS, the effect of ABORT
and DEBUG options is as follows:
ABORT DEBUG
Option Option Result
Off Off Permanent Dataset Table (PDT) fatal
error flag set
Off On PDT fatal error flag clear
On Off APML aborts
On On APML aborts
Warning Possible error detected, no action taken
Informative Informative message

This section lists messages issued by APML according to numeric sequence
by the message identifier number.

APOOO - [APML] INTERNAL 'APML' ERROR DETECTED AT P = paddress
| CLASS: Under COS, Abort; under UNICOS, Informative.

CAUSE: APML detects an internal error at parcel address paddress
and is unable to proceed.

ACTION: Refer the problem to a Cray Research analyst.

SM-0036 Cc-1 B

APOO1 - ([APML] APML VERSION x.xx (mm/dd/yy) - IOP
CLASS: Informative
CAUSE: At the beginning of each assembly, APML issues an
informative message indicating the version number x.XxXx,
the date mm/dd/yy in which APML was assembled, and
the type of machine that will execute APML source code, IOP.

ACTION: Not applicable

AP002 - [APML] ASSEMBLY TIME: nnnnn.nnnn CPU SECONDS
CLASS: Informative
CAUSE: All programs in the current file of the source dataset are
assembled. nnnnn.nnnn is the assembly time in

floating-point CPU seconds.

ACTION: Not applicable

APQO3 - [APML] MEMORY WORDS: mwords + I/0 BUFFERS: iobuffers
CLASS: Informative
CAUSE: All programs in the current file of the source dataset are
assembled. mwords is the decimal number of memory words
required in the user portion of the job field. iobuffers
is the decimal number of words needed for the I/O table and
buffer area of this job field.

ACTION: Not applicable

AP004 - [APML] ASSEMBLY ERRORS
CLASS: Abort
CAUSE: If you set the ABORT flag on the APML control statement and
fatal errors are encountered during assembly, APML issues

this message followed by an abort.

ACTION: Either remove the ABORT flag from the APML control
statement or correct all fatal errors found by APML.

SM-0036 C-2 B

AP010 - [APML] 1 WARNING ERROR, PROGRAM MODULE pname
or
AP010 - [APML] n WARNING ERRORS, PROGRAM MODULE pname

CLASS: Warning

CAUSE: APML issues this message for all source lines in which
warning errors are detected, from the previous program
module (if any) through program module pname. pname is
equivalent to the name used on a particular IDENT pseudo
statement.

ACTION: Correct all warning errors. See appendix D, Assembly

Errors, for a list of warning errors.

APO11 - [APML] 1 FATAL ERROR, PROGRAM MODULE pname
or
APO11 - [APML] n FATAL ERRORS, PROGRAM MODULE pname

CLASS: Fatal

CAUSE: APML issues this message for all source lines in which
fatal errors are detected, from the previous program module
(if any) through program module pname. pname will be
equivalent to the name used on a particular IDENT pseudo
statement.

ACTION: Correct all fatal errors. See appendix D, Assembly Errors,
for a list of fatal errors.

AP012 = [APML] MISSING IDENT STATEMENT
CLASS: Warning

CAUSE: An END pseudo on the source dataset occurred before an
IDENT pseudo instruction,

ACTION: Check the source dataset for matching IDENT and END pseudo
instructions.

SM-0036 C-3 B

APO13 - [APML] MISSING END STATEMENT, PROGRAM MODULE pname

CLASS: Warning

CAUSE: On the source dataset, an end-of-file (EOF) occurred before
an END pseudo instruction corresponding to the IDENT pseudo
in program module pname. pname is equivalent to the
name used on that IDENT pseudo statement.

ACTION: Check the source dataset for matching IDENT and END pseudo
instructions.
AP014 - [APML] EMPTY SOURCE FILE, DN = dname

CLASS: Warning

CAUSE: An EOF or end-of-data (EOD) was encountered on the source
dataset before any source statements.

ACTION: Check the job control statements and the source dataset for
a problem that causes a null file.

AP015 - [APML] 1 LINE EXCEEDS 90 CHARACTERS, DN
or

AP015 - [APML] n LINES EXCEED 90 CHARACTERS, DN = dname

dname

CLASS: Warning

CAUSE: The given number of records in the named dataset contain
more than 90 characters. The most typical cause is UPDATE
sequence numbers that extend past column 90. (APML
truncates the long records to 90 characters). This message
is also issued when a binary dataset is erroneously read.

ACTION: If the records exceed 90 characters, break up the long
records with continuation lines.

AP016 - [APML] OPEN ERROR, DN = dname

CLASS: Abort

CAUSE: The dataset dname was not found in your local environment
or in the system directory.

ACTION: Access or create the dataset dname.

SM-0036 C-4 B

APO17 - [APML] INVALID CPU TYPE SPECIFIED: cpu
CLASS: Warning

CAUSE: The CPU=type parameter on the APML control statement is
invalid (was specified as something other than IOP).

ACTION: Correct the CPU type on the APML job control statement.

AP030 - [APML] BAD BINARY TEXT, DN = dname, (ERROR CODE = cc¢)
CLASS: Fatal

CAUSE: An error was discovered in the binary system text dname.
The error codes and their meanings are as follows:

Error Code Meaning
P1 Prologue field BSTTT £1
P2 Prologue field BSTWC less than LE@BSTPR
P3 End-of-record (EOR) encountered while

prologue was being read

P4 EOF, EOD, or null record encountered while
prologue was being read

H1 EOF, EOD, or null record encountered while
subtable header was being read

H2 Header field BSTTT #1

H3 Header field BSTWC <1

H4 Header field BSTID not recognized

M1 EOR encountered while TMDF was being read
M2 EOF, EOD, or null record encountered while

. TMDF was being read

M3 Length of TMDF entry <0

M4 Length of TMDF entry =0

M5 Global word count exceeded during TMDF
processing

SM-0036 C-5 B

CAUSE: Error Code Meaning
(continued)
S1 EOR encountered while TSYM entry was being
read
s2 EOR, EOD, or null record encountered while
TSYM entry was being read
s3 Global word count exceeded during TSYM
processing
El Epilogue field BSTWC #£1
E2 Global word count not equal to sum of
subtable word counts
ACTION: Generate a new binary system text from the original source

system text and rerun the job with the new binary system
text, rerun the job with the source system text in place of
the binary system text, or show listing and DSDUMP output
of offending binary system text to a Cray Research systems
analyst.

AP031 - [APML] symbol DOUBLY-DEFINED IN BINARY TEXT dname

CLASS:

CAUSE:

ACTION:

Fatal

The named symbol is defined in the named binary system
text but is defined differently in a previous system text.

Remove one of the offending definitions from the source
system texts, generate a new binary system text, and
resubmit job.

AP032 - [APML]) MACRO opsyn NOT FOUND, BINARY TEXT dname

CLASS:

CAUSE:

ACTION:

SM-0036

Fatal

The named binary system text contains an OPSYN directive of
the form name OPSYN opsyn, but no macro or pseudo-op with
the name opsyn is known to the assembler.

Correct the spelling of opsyn, remove the OPSYN from the
named system text, or define the offending macro in a
previous system text or before the OPSYN directive in the
named system text.

AP033 - [APML] MACRO mname REDEFINED IN BINARY TEXT dname
CLASS: Warning

CAUSE: A definition for the named macro appears in the named
dataset, but the macro is previously defined.

ACTION: If the redefinition is intentional, the new definition will
be used; otherwise, remove the unwanted macro definition.
CA999 - NAME name TOO LONG
CLASS: Fatal
CAUSE: One of your file names is longer than 7 characters.

ACTION: Use a shorter name for that file.

SM-0036 c-7 B

D. ASSEMBLY ERRORS

Two types of errors, fatal errors and warning errors, can occur during an
assembly. Fatal errors cause APML to abort the job unless a DEBUG
parameter is present on the APML control statement. See table D-1 for an
explanation of fatal error types. Warning errors have no effect on the
assembly process. Table D-2 defines warning errors. An error code
consists of a single alpha character, or an alpha character and a digit.

Table D-1. Fatal Errors

Number of block exceeds 1024

Number of external names exceeds 4095

Number of entry names exceeds 5461

Location or origin counter word address exceeds 4,194,303

o & 0o o

| |

| Error |

| Type | Definition

|]

| |

| C | NAME, SYMBOL, CONSTANT, OR DATA ITEM ERROR

| |

| | Indicates a variety of possible errors. For example:

I |

| | e Illegal character, too many characters, or illegal

| | separator in a name, symbol, constant, or data item

| | ® Count field in character constant exceeds 800

| | ® Missing right apostrophe in a character string

| | ® Parentheses in an embedded parameter not matched properly
| | ¢ Embedded argument not followed by blank or comma

I |

I |

| D | DOUBLE DEFINED SYMBOL OR DUPLICATE PARAMETER NAME

| |

| | e Symbol previously defined; the first definition holds.

| | No error is given if the second definition results in the
| | same value and attributes.

| | e A formal parameter in a definition has the same name as a
| | previously defined parameter. The parameter is ignored.
i |

| |

| E | DEFINITION OR CONDITIONAL SEQUENCE ILLEGALLY NESTED

| |

| |

| F | TOO MANY ENTRIES

l |

! |

{ |

! |

| |

I |

3M-0036 D-1 B

Table D-1. Fatal Errors {(continued)

Error

Type

Definition

INSTRUCTION PLACEMENT ERROR

The instruction is treated as a null (blank) pseudo
instruction.

e ABS not allowed after a symbolic machine instruction or
restricted pseudo instruction

e IDENT not allowed after IDENT without an intervening END

e Symbolic APML instruction, or restricted pseudo
instruction, appears outside an IDENT, END sequence

e END pseudo instruction within a macro expansion

LOCATION FIELD ERROR

Indicates an invalid name in the location field of a pseudo
instruction, macro call, or prototype statement

RELOCATABLE FIELD ERROR

Indicates an error in a relocatable field. For example, more
than one main program entry is named in a program module.

On OPERAND FIELD ERROR

Indicates an error in the operand field of a pseudo instruction

Errors O1 through 09 refer to operand or operator errors inm a
symbolic APML statement.

01 1Illegal operand following shift operator
02 Channel function separator must be a colon (:).
03 Channel function must be a constant.
04 One of the following:
e Relational operator must follow the subject of a
conditional clause
e Operand not allowed as subject of conditional clause
¢ An = or # must follow IOB of channel mnemonic in a
test for channel busy or done. An = or # must
follow C in a test of the carry flag.
05 Unused

SM-0036 D-2 B

Table D-1. Fatal Errors (continued)

Error
Type Definition
06 Illegal operand follows the subject in a conditional
clause.
07 Illegal operator or separator following an operand
08 More than 18 operands appear in an APML statement.
09 One of the following:
® 0 or 1 must follow C = or I =
e BZ or DN must follow = or # in a conditional clause
involving IOB or a channel mnemonic
)4 PROGRAMMER ERROR
Error generated by ERROR or ERRIF pseudo instruction
R RESULT FIELD ERROR
Indicates a syntax error in result field of a symbolic APML
instruction
Sn SYNTAX ERROR

Indicates a syntax error in an undefined pseudo instruction

Errors S1 through S9 indicate syntax errors in symbolic APML
instructions

S1 Unrecognized operand
S2 Ome of the following:
e 1Illegal operator or operand following (dd or (B or

(E
e Illegal operand following (
§3 Unused

S4 Missing] following [symbol
S5 Operator must be = following subject
S6 Illegal subject of assignment clause
87 One of the following:
e Illegal operand following P = or R =
® 1Illegal operand in assignment clause
S8 1Illegal operator when + or - or & or shift operator is
required
S9 1Illegal operand following + or - or &

— . - — — — — — — —— — t— — — —— —— — —— —— —— —— — — — —— — — — — — — — — — — — — — — — a——— —— o— — — —
e ——————— ——— — — — — — — — — ——— — —— — — — — — — — — — — —— ———— — —— v — — — — —— — —— a—

SM-0036 D-3 B

Table D-1. Fatal Errors {continued)

Error
Type Definition
T TYPE ERROR
Word address, parcel address, or value type not as required
for an expression or constant
i) UNDEFINED SYMBOL OR OPERATION
Reference to a symbol that is not defined
\' REGISTER EXPRESSION OR FIELD WIDTH ERROR
Indicates inconsistency between an expression attribute and
field width defined. For example:
® Relocatable attribute not allowed for field width
e External attribute not allowed for field width
¢ Word-address or parcel-address attribute not allowed for
field width
¢ Field width symbol or constant (in VWD) not terminated by
slash (/)
X EXPRESSION ERROR

Expression contains illegal attribute, separator value, and so
on, for application. For example:

¢ Expression element not terminated by space, comma, or
expression operator

¢ Complement (#) of external or relocatable element not
allowed

® Negative expression value in BSS, BSSZ, ORG, or LOC
pseudo instruction

¢ Expression in ORG not relative to current block

¢ Expression is relocatable or external when relocatable or
external attribute is not allowed

® More than one element in a term is external or
relocatable, or external element is not the only element
in a term

e More than one external element in an expression, or minus
sign precedes an external element

SM-0036 D-4 B

Table D-1. Fatal Errors (continued)

|
| Error |
| Type | Definition
| |
| |
] | e Expression is relocatable relative to more than one block
| | after cancellation of relocatable terms with opposite
] | signs
) | e Expression is negative relocatable
| | e Expression is both external and relocatable
| |

Table D-2. Warning Errors

| I
| Error |
| Type | Definition
|]
| |
| W | PROGRAMMER WARNING ERROR
| I
| | Error may be generated by ERROR or ERRIF pseudo instruction
| |
I |
j W1l | LOCATION FIELD SYMBOL IGNORED
I |
| | Location symbol not used in a pseudo instruction and is
| | ignored
| |
| [
| W2 | BAD LOCATION SYMBOL
| |
| | Illegal character or too many characters
| |
| |
| W3 | EXPRESSION ELEMENT TYPE ERROR
| |
| | Value, parcel-address, or word-address attribute not allowed
| | for an element in an expression
| |
| I
| W4 | POSSIBLE SYMBOLIC APML INSTRUCTION ERROR
| |

SM-0036

| Error

Table D-2. Warning Errors (continued)

Definition

TRUNCATION ERROR

¢ Expression value exceeds field size, result truncated
¢ Division by 0 (zero result)
¢ External expression in zero width field

LOCATION FIELD SYMBOL NOT DEFINED

¢ Illegal character or too many characters

¢ The expression defining the symbol contains an undefined
symbol

¢ The micro name on a MICSIZE instruction is not previously
defined

W7 MICRO SUBSTITUTION ERROR
A quote mark encountered in APML source was not followed by a
previously defined micro name or was not terminated by a

w8 ADDRESS COUNTER BOUNDARY ERROR
®¢ * (or *0) used in an expression when the location (or
origin) counter is not a parcel boundary.
¢ W.* (or W. *0) used in an expression when the location
(or origin) counter is not a word boundary.

w9 BASE REGISTER DECLARATION REQUIRED

This error appears, if a base register is not currently
declared, on any branch instruction whose destination is
outside the current page.

Y2

|
I
I
]
I
|
|
|
|
I
I
!
I
I
|
|
|
|
I
I
|
[
|
|
[
[
I
I
I
I
|
I
|
I
I
I
I
I
|
|
|
|
I
| MACRO REDEFINED
I

|

A macro name encountered in the APML source was redefined.f

1

I
|
|
I
|
|
|
|
I
|
|
|
|
I
I
I
|
|
I
|
|
I
|
I
I
second quote mark. |
I
|
|
|
I
|
I
I
|
[
I
I
|
|
I
|
|
I
I
|
|
1l

Warning error depends on the WMR and NWMR features of the APML contro
statement or the LIST pseudo instruction.

SM-0036 D-6 B

INDEX

INDEX

Aborting the APML COS job, 3-2
ABS pseudo instruction, 6-3

Absolute
assembly element and term attribute
evaluation, 2-20

attribute for a symbol, 2-6
expression attribute, 2-18
expressions, examples, 2-19
Accumulator
entering a value, 5-5
reserved name, B-1
shift, 5-17
Add to accumulator and replace operand
instructions, 5-2, 5-14, 5-15
Add to accumulator instructions,
through 5-10
Adding operators, 2-14
AIA functions, 7-3
AOA functions, 7-4
APML assembler language
coding conventions, 2-3
cross-reference listing, 8-3
data notation
character constants,
data items, 2-11
numeric constants,
overview, 2-9
examples, 3-7
execution, 1-2
expression attributes
overview, 2-17
parcel address, word address, or
value, 2-18
relocatable,
2-18
expression evaluation, 2-17
expressions
adding operators., 2-14
elements, 2-15
multiplying operators, 2-14
overview, 2-14
term attributes,
terms, 2-15
global definitions, 2-8
instruction summary, B-3 through B-7
JCL example
cos, 3-4
UNICOS, 3-6
line editing
concatenation, 2-4
micro substitution,
overview, 2-3

5-2, 5-8

2-10

2-9

external, or absolute,

2-15

2-4

SM-0036

Index-1

APML assembler language (continued)
list output, 8-1
names, 2-4
operand notation, B-1
page headers, 8-1
prefixed symbols and constants
overview, 2-13

parcel address prefix - P,, 2-13
word address prefix - W., 2-13

qualified symbols, 2-7

source line format, 2-1

source statement listing, 8-1

special elements, 2-8

statement format
comment statement,
overview, 2-1

2-1

pseudo instruction format, 2-2

symbolic APML instruction format, 2-2

symbol reference, 2-7
symbols
overview, 2-5
symbol attributes, 2-5
symbol definition, 2-5

table method of evaluation attribute

evaluation, 2-20

SAPTEXT, default system text file, COS, 3-3

ASCII
character set, A-1
representation of characters, 2
Assembler listing format, 8-1
Assembly errors, D-1
Assignment clauses -
channel function, 4-10
jump assignment, 4-9
overview, 4-5
replacement assignment, 4-§
set flag assignment, 4-9
special function, 4-10
Assignment field, description, 2-2
Assignment syntax, 4-14
Asterisk
as a special element, 2-8
introducing comment, 2-1
Attributes, symbol, 2-5

BASE pseudo instruction, 6-10
Base register, 6-5
BASEREG pseudo instruction, 6-5

-10

Basic IOP hardware instructions, section 5

Binary object file, 3-5
Binary symbol table, 3-4

Binary system text
cos, 3-3
overview, 3-6
BITP pseudo instruction, 6-20
BITW pseudo instruction, 6-19
$BLD, default COS binary output dataset
from APML, 3-1
Block control pseudo instructions
BITW - set *W counter, 6-19
BITP - set *P counter, 6-20
BLOCK - local block assignment, 6-16
BSS - block save, 6-17
LOC - set * counter, 6-18
ORG - set *O counter, 6-17
overview, 6-14
Block Multiplexer (BMA) functions, 7-7
BLOCK pseudo instruction, 6-16
Blocks, definition, 6-14
BMA functions, 7-7
Branch instructions, 5-20
BSS pseudo instruction, 6-17
$BST, default binary system text, COS, 3-3
BSSZ pseudo instruction, 6-34
Buffer memory (MOS) functions, 7-3
Busy flag
overview, 7-2
test, 4-13
BZ, reserved name, B-2

Carry flag, reserved name, B-1
CDC Display code character set, A-1
Central memory input (HIA) functions, 7-4
Central memory output (BOA) functions, 7-4
Channel
functions and descriptions (table), 7-2
interface function codes, 7-2
Channel Busy flag, 7-2
Channel Done flag, 7-2
Channel function
assignment clause, 4-10
instructions, 5-21
Channel Interrupt Enable flag, 7-2
CHANNEL pseudo instruction, 6-31
Character
constants, data notation, 2-10
string, justification, 2-11
Character sets, A-1
CIA functions, 7-6
Circular shifts, 5-18
Clauses, see Assignment clauses or
Condition clauses
$CNC micro, 6-62
COA functions, 7-6
Code control pseudo instructions
BASEREG - declare base operand
register, 6-5
NEWPAGE - force a new instruction page,
6-7
overview, 6-5
SCRATCH - declare APML scratch
register, 6-6

SM-0036 Index-2

Code duplication pseudo instructions
DUP - duplicate code, 6-54
ECHO - duplicate code with varying
arguments, 6-55
ENDDUP - end duplicated code, 6-56
Examples of duplicated sequences, 6-57
overview, 6-54
STOPDUP - stop duplication, 6-57
Coding conventions, 2-3
Command line, see Invocation and execution
Comment field, description, 2-2
COMMENT pseudo instruction, 6-4
Comment statement format, 2-1
Comments, designating, 6-45
Compare
accumulator, 4-11
register or memory parcel, 4-12
CON pseudo instruction, 6-33
Concatenation, 2-4
Condition clauses
overview, 4-11
test accumulator, 4-11
test carry flag, 4-13
test channel status, 4-13
test register or memory, 4-12
Condition syntax, 4-16
Conditional assembly pseudo instructions
ELSE - toggle assembly condition, 6-43
ENDIF - end conditional code sequence,
6-43
IFA - test expression attribute for
assembly condition, 6-38
IFC - test character strings for
assembly condition, 6-41
IFE - test expressions for assembly
condition, 6-39
overview, 6-37
SKIP - unconditionally skip statements,
6-42
Conditional
branch instructions, 5-20
operator, 4-4
Console
display (TOA - TOD) functions, 7-5
keyboard (TIA - TID) functions, 7-5
Control instructions
EXIT, 5-1, 5-4
I =0, 5-1, 5-4
I =1, 5-1, 5-4
overview, 5-3
PASS, 5-1, 5-3
Control statement, see Invocation and
execution
Conventions used in this manual, 1-2
cos
APML control statement, 3-1
APML JCL example, 3-4
handling of messages, C-1
Cray I/0 Subsystem (IOS) Model B, 7-1
Cray I/0 Subsystem (IOS) Model C, 7-1
Cross-reference
information, 3-2
listing, 8-3

Data definition pseudo instructions
BSSZ - generate zeroed block, 6-34
CON - generate constant, 6-33
DATA - generate data words, 6-35
overview, 6-33
PDATA - generate data parcels, 6-36
VWD - variable word definition, 6-36
Data generation statement instruction
format, 4-18
Data items, data notation, 2-11
Data notation
character constants, 2-10
data items, 2-11
numeric constants, 2-9
overview, 2-9
DATA pseudo instruction, 6-35
$DATE micro, 6-62
DEBUG parameter, and errors, D-1
Debugging information, 3-2
Decimal representation of numbers, 2-10
DECMIC pseudo instruction, 6-61
Decrement by 1 instructions, 5-2, 5-13, 5-14
Direct Memory Access (DMA) ports, 7-1
Display code representation of characters,
2-10
DMA ports, 7-1
DN, reserved name, B-2
Done flag
overview, 7-2
test, 4-13
DUP pseudo instruction, 6-54

EBCDIC
character set, A-l
representation of characters, 2-10
ECHO pseudo instruction, 6-55
EJECT pseudo instruction, 6-26
Elements, 2-15
ELSE pseudo instruction, 6-43
End off shifts, 5-17
END pseudo instruction, 6-3
ENDDUP pseudo instruction, 6-56
ENDIF pseudo instruction, 6-43
ENDM pseudo instruction, 6-50
ENDTEXT pseudo instruction, 6-28
ENTRY pseudo instruction, 6-8
EQUALS pseudo instruction, 6-29
ERA functions, 7-7
ERRIF pseudo instruction, 6-21
Error code, contents of, D-1
Error control pseudo instructions
ERRIF - conditional error generation,
6-21
ERROR - unconditional error generation,
6-21
overview, 6-21
Error Logging (ERA) functions, 7-7
Error message classes and explainations, C-1
ERROR pseudo instruction, 6-21
Errors, types and effects of, D-1
Evaluation
absolute assembly element and term
attribute, 2-20

SM-0036

Index-3

Evaluation (continued)
of terms, 2-16
relocatable assembly element and term
attribute, 2-20
Example JCL for APML, COS, 3-4
Examples, 3-7
EXB functions, 7-6
Execution of the APML assembler, 1-2
Execution, see Invocation and execution
EXIT
instruction, 4-10
instruction summary, B-3
reserved name, B-2
Exit Stack
Boundary flag, 5-4
pointer, reserved name, B-1
stack, 6-32
EXIT, S5-1, 5-4
Expression attributes
overview, 2-17
parcel address, word address, or value,
2-18
relocatable, external, or absolute, 2-18
Expression evaluation, 2-17
Expressions
adding operators, 2-14
elements, 2-15
examples, 2-19
multiplying operators, 2-14
overview, 2-14
terms, 2-15
term attributes, 2-15
EXT pseudo instruction, 6-9
External attribute for a symbol, 2-6
External expression
attribute, 2-18
examples, 2-19

Fatal errors
effects on assembly, D-1
table, D-1
Features of APML, 1l-1
Fields of a pseudo instruction, 2-2
First pass, overview, 1-2
Format of assembler listing, 8-1
Front-end
input (CIA) functiomns, 7-6
output (COA - COD) functions, 7-6
Function
codes, 7-2
operators, 4-3

Global definitions, 2-8
GLOBAL pseudo instruction, 6-4
Global text source, 6-27

Hardware instruction summary, B-1
Hexadecimal representation of numbers, 2-10
HIA functioms, 7-4

HOA functions, 7-4

B-01

I 0, 5-1, S-4, B-3
I =1, 5-1, 5-4, B-3
1/0 channels, 7-1
I/0 Request function, 7-2
IDENT pseudo instruction, 6-2
IFA pseudo instruction, 6-38
IFC pseudo instruction, 6-41
IFE pseudo instruction, 6-39
$IN, default COS input dataset to APML, 3-1
Increment by 1 instructions, 5-2, 5-12, 5-13
Instruction definition pseudo instructions
ENDM - end macro definition, 6-50
LOCAL - specify local symbols, 6-49
Macro definition format, 6-46
MACRO - macro definition, 6-48
OPSYN - synonymous operation, 6-53
overview, 6-45
Instruction
index (table), 5-1
summaries, B-3 through B-7
Instructions, see Pseudo instructions or
Basic IOP hardware instruction set
Integer data item format, 2-11
Interface
characteristics, 7-1
function ccdes, 7-2
Interrupt Enable flag, reserved name, B-1
Invocation and execution
binary system text, 3-6
COS APML control statement, 3-1
overview, 3-1
system text, 3-6
UNICOS APML command line, 3-4
I0B : 0 - 17, instruction summary, B-7
IOB, as reserved name, B-2
iod : 0 - 17, instruction summary, B-7
I0P
Input (AIA, AIB, AIC) functions, 7-3
instruction summary, B-3 through B-7
Output (AOA, AOB, AOA) functions, 7-4
IOR function, 7-2

JCL example
UNICOS, 3-6
cos, 3-4
$JDATE micro, 6-62
Jump
assignment, assignment clause, 4-9
destination address, possibilities, 4-9
Justification of character string, 2-11

-L parameter and error messages, C-1
Label, definition, 4-5
Length of field for a data item, 2-12
Length of source line, 2-1
LIA functions, 7-5
Line editing
concatenation, 2-4
micro substitution, 2-4
overview, 2-3
List output, APML, 8-1
List pseudo processing, 3-5

SM-0036

Index-4

LIST pseudo instruction, 6-23
Listing control options, 3-2
Listing control pseudo instructions
EJECT - begin new page, 6-26
ENDTEXT - terminate global text, 6-28
LIST - list control, 6-23
overview, 6-23
SPACE - list blank lines, 6-26
SUBTITLE - specify listing subtitle,
6-27
TEXT - begin global text, 6-27
TITLE - specify listing title, 6-27
LME functions, 7-3
LOA functions, 7-5
Loader linkage pseudo instructions
ENTRY - specify entry symbols, 6-8
EXT - specify external symbols, 6-9
overview, 6-8
START - specify program entry, 6-9
LOC pseudo instruction, 6-18
Local
block, 6-14
Memory Error (LME) functiomns, 7-3
memory transfers, 7-1
LOCAL pseudo instruction, 6-49
Location counter
overview, 6-15
setting, 6-17, 6-18
Location field, description, 2-2
Logical product with accumulator
instructions, 5-1, 5-7, 5-8

Macro definition format, 6-46
MACRO pseudo instruction, 6-48
Main program entry, 6-9
Mainframe
input (LIA) functiomns, 7-5
output (LOA) functions, 7-5
Memory parcel, compare, 4-12
Messages, classes and explanation, C-1
$MIC micro, 6-62
Micro definition pseudo instructions
DECMIC - decimal micro, 6-61
MICRO - micro definition, 6-60
Micro reference format, 6-59
OCTMIC - octal micro, 6-61
overview, 6-59
predefined micros, 6-62
Micro
names, delimiting, 2-4
reference format, 6-59
substitution, 2-4
MICRO pseudo instruction, 6-60
MICSIZE pseudo instruction, 6-32
Mode control pseudo instructions
BASE - declare base for numeric data,
6-10
overview, 6-10
QUAL - qualify symbols, 6-12
Mode of branch, 5-20
MOS functions, 7-3
Multiplying operators, 2-14

Names Program Exit Stack (PXS) functions, 7-3

registers, 4-1 Program Fetch Request (PFR) functions, 7-2
reserved, B-1, B-2 Program Fetch Request flag, 5-21
Nesting, 6-46, 6-55, 6-58 Program sequence, termination, 5-4
NEWPAGE pseudo instruction, 6-7 Program statement instruction format
Nominal block, definition, 6-14 assignment clauses
Numeric constants, data notation, 2-9 channel function, 4-10

jump assignment, 4-9
overview, 4-5

Octal representation of numbers, 2-10 replacement assignment, 4-5
OCTMIC pseudo instruction, 6-61 set flag assignment, 4-9
Operand special function, 4-10
field, description, 2-2 condition clauses
notation, 4-1, B-1 overview, 4-11
register B, reserved name, B-1 test accumulator, 4-11
Operators test carry flag, 4-13
adding, 2-14 test channel status, 4-13
conditional operator, 4-4 test register or memory, 4-12
function operators, 4-3 overview, 4-4
multiplying, 2-14 syntax graphs for APML program
overview, 4-3 statements, 4-13
relational operators, 4-4 Pseudo instructions,
replacement operator, 4-3 ABS, 6-3
OPSYN pseudo instruction, 6-53 BASE, 6-10
ORG pseudo instruction, 6-17 BASEREG, 6-5
Origin counter BITP, 6-20
overview, 6-15 BITW, 6-19
setting, 6-17 BLOCK, 6-16
$OUT, default COS list output dataset from BSS, 6-17
APML, 3-1 BSSZ, 6-34
Output, APML, 8-1 CHANNEL, 6-31
COMMENT, 6-4
CON, 6-33
P. parcel address prefix, 2-13 DATA, 6-35
Page headers, 8-1 DECMIC, 6-61
Parcel address DUP, 6-54
attribute for a symbol, 2-5 ECHO, 6-55
expression attribute, 2-18 EJECT, 6-26
prefix - P., 2-13 ELSE, 6-43
Parcel-bit-position counter, 6-15 END, 6-3
PASS ENDDUP, 6-56
instruction, 4-10, 5-3, 5-1 ENDIF, 6-43
instruction summary, B-3 ENDM, 6-50
reserved name, B-2 ENDTEXT, 6-28
Pass, first and second, overview, 1-2 ENTRY, 6-8
PDATA pseudo instruction, 6-36 EQUALS, 6-29
PDT, 3-2 ERRIF, 6-21
Peripheral Expander (EXB) functiomns, 7-6 ERROR, 6-21
PFR functions, 7-2 EXT, 6-9
Predefined micros, 6-62 fields, 2-2
Prefixed symbols and constants format, 2-2
parcel address prefix - P., 2-13 GLOBAL, 6-4
word address prefix - W., 2-13 IDENT, 6-2
Program address register, reserved name, B-1 IFA, 6-38
Program control pseudo instructions IFC, 6-41
ABS - assemble absolute binary, 6-3 IFE, 6-39
COMMENT - define Program Descriptor LIST, 6-23
Table comment, 6-4 LOC, 6-18
END - end program module, 6-3 LOCAL, 6-49
GLOBAL - declare global symbols, 6-4 MACRO, 6-48
IDENT - identify program module, 6-2 MICRO, 6-60
overview, 6-2 MICSIZE, 6-32
Program Description Table (PDT), 3-2 NEWPAGE, 6-7
Program Descriptor Table (PDT), 6-2 OCTMIC, 6-61

SM-0036 Index-5 B-01

Pseudo instructions (continued)
OPSYN, 6-53
ORG, 6-17
PDATA, 6-36
QUAL, 6-12
rules, 6-1
SCRATCH, 6-6
SET, 6-30
SKIP, 6-42
SPACE, 6-26
START, 6-9
STOPDUP, 6-57
SUBTITLE, 6-27
TEXT, 6-27
TITLE, 6-27
types, 6-2
VWD, 6-36

PXS functions, 7-3

$QUAL micro, 6-62
QUAL pseudo instruction, 6-12
Qualified symbols
overview, 2-7
referencing, 2-7

Quotation marks, delimiting micro names, 2-4

Real-time Clock (RTC) functions, 7-3
Redefinable attribute for a symbol, 2-6
Register names, 4-1
Register, compare, 4-12
Relational operators, 4-4
Relocatable assembly element and term
attribute evaluation, 2-20
Relocatable attribute for a symbol, 2-6
Relocatable expression
attribute, 2-18
examples, 2-19
Replacement
assignment, assignment clause, 4-5
operator, 4-3
Reserved names, B-1, B-2
Result field, description, 2-2
Return jump program address, reserved name,
B-1
RTC functions, 7-3
Rules
for terms, 2-15
operands in assignment clause, 4-6

SCRATCH pseudo instruction, 6-6
Second pass, overview, 1-2
Set carry flag instructions, 5-3, 5-18
through 5-20
Set flag assignment clause, 4-9
SET pseudo instruction, 6-30
Shift instructions
circular shifts, 5-18
end off shifts, 5-17
overview, 5-17
Sign for a data item, 2-12
SKIP pseudo instruction, 6-42

SM-0036

Source line
format, 2-1
length of 2-1
Source statement listing, APML, 8-1
SPACE pseudo instruction, 6-26
Special
elements, 2-8
function assignment clause, 4-10
SSD
input (HIA) functions, 7-4
output (HOA) functions, 7-4
START pseudo instruction, 6-9
Statement format
comment statement, 2-1
overview, 2-1
pseudo instruction format, 2-2
symbolic APML instruction format, 2-2
Stderr
error output, C-1
UNICOS, 3-5
STOPDUP pseudo instruction, 6-57
String
characters, 2-11
data item format, 2-11
SUBTITLE pseudo instruction, 6-27
Subtract from accumulator instructions,
5-2, 5-10 through 5-12
Symbol
attributes, 2-5
definition, 2-5
reference, 2-7
text dataset, COS, 3-3
Symbol definition pseudo instructions
CHANNEL - channel symbol, 6-31
EQUALS - equate symbol, 6-29
MICSIZE - set redefinable symbol to
micro size, 6-32
overview, 6-29
SET - set symbol, 6-30
Symbolic APML instruction format, 2-2
Symbolic APML instruction syntax
data generation statement instruction
format, 4-18
operand notation, 4-1
operators, 4-3
overview, 4-1
program statement instruction format
assignment clauses, 4-5
condition clauses, 4-11
overview, 4-4
syntax graphs for APML program
statements, 4-13
Syntax
assignment, 4-14
condition, 4-16
SYSREF, 8-1
System Interrupt Enable flag, clearing and
setting, 5-4
System text
overview, 3-6
file dataset, COS, 3-3

Table method of evaluation, attribute

evaluation, 2-20
Term

attributes, 2-15
definition, 2-14

Terminate execution of program sequence, 5-4
Test accumulator condition clause, 4-11
Test carry flag condition clause, 4-13
Test channel status condition clause, 4-13
Test register or memory condition clause,

4-12
TEXT pseudo instruction, 6-27
TIA functions, 7-5
$TIME micro, 6-62
TITLE pseudo instruction, 6-27
TOA functions, 7-5
Transmit from accumulator instructions,
5-2, 5-16, 5-17
Transmit to accumulator instructions, 5-1,
5-5, 5-6
Truncation of expression value, 2-18

Underscore {concatenation) character, 2-4
UNICOS APML

command line, 3-4

handling of messages, C-1

JCL example, 3-6

Value
attribute for a symbol, 2-5
expression attribute, 2-18
VWD pseudo instruction, 6-36

W. word address prefix, 2-13
WAIT
instruction, 4-10
reserved name, B-2
Warning errors
effects on assembly, D-1
table, D-5
Word address
attribute for a symbol, 2-5
expression attribute, 2-18
prefix - W., 2-13
Word-bit-position counter, 6-15

$XRF, default binary symbol table for
SYSREF, 3-4

SM-0036 Index-7

READER COMMENT FORM

APMI, Assembler Reference Manual SM-0036 B-01

Your comments help us to improve the quality and usefuiness of our publications. Please use the space provided
below to share with us your comments. When possible, please give specific page and paragraph references.

NAME

JOB TITLE
FIRM ==A '

ADDRESS
cITy STATE ZIP.

DATE

3N SIHL ONOTV 1ND

FOLD
I " II NO POSTAGE
NECESSARY
IF MAILED
IN THE |
UNITED STATES [
] I
————
L]
BUSINESS REPLY CARD —
FIRST CLASS PERMIT NO 6184 ST PAUL MN e —— l
POSTAGE WILL BE PAID BY ADDRESSEE = {
R
R ANY ——
L]
e
.]
Attention: PUBLICATIONS ——
1345 Northland Drive
Mendota Heights, MN 55120
|
—_ _ S
FOLD

STAPLE

READER COMMENT FORM

APML Assembler Reference Manual SM-0036 B-01

Your comments help us to improve the quality and usefulness of our publications. Please use the space provided
below to share with us your comments. When possible, please give specific page and paragraph references.

NAME

JOB TITLE
FRM R ANY

ADDRESS
Ity STATE ZIP.
DATE

FOLD

BUSINESS REPLY CARD

FIRST CLASS PERMIT NO 6184 ST PAUL. MN

POSTAGE WILL BE PAID BY ADDRESSEE

R AY

Attention: PUBLICATIONS
1345 Northland Drive
Mendota Heights, MN 55120

FOLD

STAPLE

NO POSTAGE
NECESSARY
IF MAILED
IN THE
UNITED STATES

3INIM SIHL ONOTV LN

)

PUBLICATION CHANGE NOTICE (d — P - '

September 1986
GEE: APML Assembler Reference Manual

PUBLICATION NO. SM-0036 REV. B CHANGE PACKET NO. B-01

This change packet brings the manual into agreement with the APML version
3.0 running under UNICOS 2.0. Please make the following changes to your
manual:

Replace:
Title page through xii
1-1 and 1-2
2-9 and 2-10
3-3 through 3-6
B-3 through B-6
Index

