
RESEARCH, INC.

CRAY X-MP™ AND CRAY-1®

COMPUTER SYSTEMS

APML ASSEMBLER

REFERENCE MANUAL

SM-0036

Copyright® 1980, 1961, 1986 by CRAY RESEARCH, INC. This
manual or parts thereof may not be reproduced in any form
without permission of CRAY RESEARCH, INC.

RECORD OF REVISION PUBLICATION NUMBER SM-0036

Each time this manual is revised and reprinted, all changes issued against the previous version are incorporated into the new version —'
and the new version is assigned an alphabetic level.

Every page changed bya reprintwith revision has the revision level in the lowerrighthand corner.Changesto part of a page are noted
bya change bar in the margin directly opposite the change.Achange bar in the margin opposite the page numberindicates that the
entire page is new. If the manual is rewritten, the revision level changes but the manual does not contain change bars.

Requests for copies of Cray Research, Inc. publications should be directed to the Distribution Center and comments about these
publications should be directed to:

CRAY RESEARCH, INC.

2520 Pilot Knob Road

Suite 310

Mendota Heights, Minnesota 55120

Revision Description

November 1980 - Original printing.

A June 1981 - Reprint with revision. This version obsoletes the
previous edition and brings the manual into agreement with the
1.10 release. Major changes include the addition of the TEXT,
ENDTEXT and MODULE pseudo instructions. The manual has also
been reorganized.

A-01 April 1982 - Change packet. Brings the manual into agreement
with version 1.11 of the APML assembler. Major changes
include the deletion of the MODULE pseudo instruction, the
addition of the WRP, NWRP, WMR, and NWMR options to the APML
control statement and the LIST pseudo instruction, and the
addition of two warning errors: Yl - EXTERNAL DECLARATION
ERROR and Y2 - MACRO REDEFINED. Miscellaneous technical and

editorial changes are also included.

A-02 March 1983 - Change packet. Brings the manual into agreement
with version 1.12 of the APML assembler. A major change
allows externals within absolute assembly. Changes also
include the addition of CPU time and release level and

assembly date to logfile messages; changing APML message
prefix from CA to AP; changing APML message for memory and I/O
use from octal to decimal; introduction of new predefined
micro and new CPU type on control card, new listed output
option where L takes precedence over E on control statement;
and miscellaneous technical and editorial changes.

SM-0036 ii

B March 1986 - Reprint with revision. This reprint brings the
manual into agreement with APML 2.0 running under COS 1.15 and
APML 2.1 running under UNICOS 1.0. Section 3 is deleted; see
the ICS hardware manuals for the information this section

covered. Section 3 now covers APML invocation and execution.

The information on channel interface functions has been moved

from appendix C to section 7. The information in appendix E
has been moved to appendix C. All previous versions are
obsolete.

B-01 October 1986 - This change packet brings the manual into
agreement with APML version 3.0 running under UNICOS 2.0. The
changes to the UNICOS command line are; -h and -i options
have been added for the processing of list pseudos, the -o
option has been added allowing for the specification of the
binary object file, and the -y option has been changed to -g.
The syntax of the -s option and the handling of intermediate
files were changed. Miscellaneous technical and editorial
changes are also included. All trademarks are now documented
in the record of revision.

CRAY, CRAY-1, and SSD are registered trademarks and APML, CFT, CFT77,
CFT2, COS, CRAY-2, CRAY X-MP, CSIM, ICS, SEGLDR, SID, SUPERLINK,

SUPERLINK/ISP, and UNICOS are trademarks of Cray Research, Inc. The
UNICOS system is derived from the AT&T UNIX system; UNIX is a
registered trademark of AT&T.

CDC is a registered trademark of Control Data Corporation.

SM-0036 iii B-01

PREFACE

The APML assembler allows you to express symbolically all hardware
functions of the Cray Research, Inc. (CRI) I/O Subsystem (ICS). This
detailed and precise level of programming is useful when tailoring
programs to the architecture of the IDS and writing programs requiring
code optimized to the hardware.

The pseudo instructions provided with APML's instruction set allow a
variety of options for generating macro instructions, controlling list
output, organizing programs, and so on.

The following CRI publications provide supplemental information on the
lOS:

SM-0007 lOS Table Descriptions Internal Reference Manual
HR-0030 I/O Subsystem Model B Hardware Reference Manual
SG-0051 I/O Subsystem (lOS) Operator's Guide For COS
HR-0081 I/O Subsystem Model C Hardware Reference Manual
SG-2005 I/O Subsystem (lOS) Operator's Guide For UNICOS

The following CRI publications may also interest you;

SR-0000 CAL Assembler Version 1 Reference Manual

SR-0011 COS Version 1 Reference Manual

SM-0044 Operational Aids Reference Manual
HR-0077 Disk Systems Hardware Reference Manual
SR-2003 CAL Assembler Version 2 Reference Manual

The lOS Software Internal Reference Manual, CRI publication SM-0046,
describes the system macro instructions available with APML.

SM-0036

CONTENTS

PREFACE V

1. INTRODUCTION 1-1

1.1 EXECUTION OF THE APML ASSEMBLER 1-2

1.2 CONVENTIONS 1-2

2. APML ASSEMBLER LANGUAGE 2-1

2.1 SOURCE LINE FORMAT 2-1

2.2 STATEMENT FORMAT 2-1

2.2.1 Comment statement 2-1

2.2.2 Symbolic APML instruction format 2-2
2.2.3 Pseudo instruction format 2-2

2.3 CODING CONVENTIONS 2-3

2.4 LINE EDITING 2-3

2.4.1 Concatenation 2-4

2.4.2 Micro substitution 2-4

2.5 NAMES 2-4

2.6 SYMBOLS 2-5

2.6.1 Symbol definition 2-5
2.6.2 Symbol attributes 2-5

2.7 SYMBOL REFERENCE 2-7

2.7.1 Qualified symbols 2-7
2.8 GLOBAL DEFINITIONS 2-8

2.9 SPECIAL ELEMENTS 2-8

2.10 DATA NOTATION 2-9

2.10.1 Numeric constants 2-9

2.10.2 Character constants 2-10

2.10.3 Data items 2-11

2.11 PREFIXED SYMBOLS AND CONSTANTS 2-13

2.11.1 Parcel address prefix - P 2-13
2.11.2 Word address prefix - W 2-13

2.12 EXPRESSIONS 2-14

2.12.1 Adding operators 2-14
2.12.2 Multiplying operators 2-14
2.12.3 Elements 2-15

2.12.4 Terms 2-15

2.12.5 Term attributes 2-15

2.13 EXPRESSION EVALUATION 2-17

2.14 EXPRESSION ATTRIBUTES 2-17

2.14.1 Relocatable, external, or absolute 2-18

2.14.2 Parcel address, word address, or value 2-18

2.15 TABLE METHOD OF EXPRESSION ATTRIBUTE EVALUATION 2-20

SM-0036 vii B-01

3. APML INVOCATION AND EXECUTION 3-1

3.1 COS APML CONTROL STATEMENT 3-1

3.2 UNICOS APML COMMAND LINE 3-4

3.3 SYSTEM TEXT 3-6

3.4 BINARY SYSTEM TEXT 3-6

4. SYMBOLIC APML INSTRUCTION SYNTAX 4-1

4.1 OPERAND NOTATION 4-1

4.2 OPERATORS 4-3

4.2.1 Replacement operator 4-3
4.2.2 Function operators 4-3
4.2.3 Relational operators 4-4
4.2.4 Conditional operator 4-4

4.3 PROGRAM STATEMENT INSTRUCTION FORMAT 4-4

4.3.1 Assignment clauses 4-5
4.3.1.1 Replacement assignment 4-5
4.3.1.2 Jump assignment 4-9
4.3.1.3 Set flag assignment 4-9
4.3.1.4 Special function 4-10
4.3.1.5 Channel function 4-10

4.3.2 Condition clauses 4-11

4.3.2.1 Test accumulator 4-11

4.3.2.2 Test register or memory 4-12
4.3.2.3 Test carry flag 4-13
4.3.2.4 Test channel status 4-13

4.3.3 Syntax graphs for APML program statements . . . 4-13
4.4 DATA GENERATION STATEMENT INSTRUCTION FORMAT 4-18

5. BASIC lOP HARDWARE INSTRUCTION SET 5-1

5.1 INSTRUCTION INDEX 5-1

5.2 CONTROL INSTRUCTIONS 5-3

5.2.1 PASS 5-3

5.2.2 EXIT 5-4

5.2.3 1=0 5-4

5.2.4 1 = 1 5-4

5.3 TRANSMIT TO ACCUMULATOR INSTRUCTIONS 5-5

5.3.1 A = d 5-5

5.3.2 A = ;c 5-5

5.3.3 A = dd 5-6

5.3.4 A = (dd) 5-6

5.3.5 A = B 5-6

5.3.6 A = (B) 5-6

5.4 LOGICAL PRODUCT WITH ACCUMULATOR INSTRUCTIONS 5-7

5.4.1 A = A & d 5-7

5.4.2 A = A & Ic 5-7

5.4.3 A = A&dd 5-7

SM-0036 viii B-01

5.4 LOGICAL PRODUCT WITH ACCUMULATOR INSTRUCTIONS (continued)
5.4.4 A = A & (dd) 5-8
5.4.5 A = A& B 5-8

5.4.6 A = A & (B) 5-8

5.5 ADD TO ACCUMULATOR INSTRUCTIONS 5-8

5.5.1 A = A + d 5-9
5.5.2 A = k + k 5-9
5.5.3 A = A + dd 5-9
5.5.4 A = A + (dd) 5-9
5.5.5 A = A + B 5-10

5.5.6 A = A + (B) 5-10
5.6 SUBTRACT FROM ACCUMULATOR INSTRUCTIONS 5-10

5.6.1 A = A- d 5-10
5.6.2 A = A - k 5-11
5.6.3 A = A-dd 5-11
5.6.4 A = A - (dd) 5-11
5.6.5 A = A- B 5-11

5.6.6 A = A - (B) 5-12
5.7 INCREMENT BY 1 INSTRUCTIONS 5-12

5.7.1 dd = dd + 1 5-12
5.7.2 (dd) = (dd) +1 5-12
5.7.3 B = B + 1 5-13

5.7.4 (B) = (B) + 1 5-13
5.8 DECREMENT BY 1 INSTRUCTIONS 5-13

5.8.1 dd = dd - 1 5-13
5.8.2 (dd) = (dd) - 1 5-14
5.8.3 B = B-1 5-14

5.8.4 (B) = (B) - 1 5-14
^ 5.9 ADD TO ACCUMULATOR AND REPLACE OPERAND INSTRUCTIONS . . 5-14

5.9.1 dd = A + dd 5-15
5.9.2 (dd) = A + (dd) 5-15
5.9.3 B=A + B 5-15
5.9.4 (B) = A + (B) 5-15

5.10 TRANSMIT FROM ACCUMULATOR INSTRUCTIONS 5-16
5.10.1 dd = A 5-16
5.10.2 (dd) = A 5_16
5.10.3 B = A 5-16
5.10.4 (B) = A 5-17

5.11 SHIFT INSTRUCTIONS 5-17

5.11.1 End off shifts 5-17
5.11.2 Circular shifts 5-18

5.12 SET CARRY FLAG INSTRUCTIONS 5_18
5.12.1 C = 1, iod = DN 5_18
5.12.2 C = 1 5-19
5.12.3 C = 1, iod = BZ 5-19
5.12.4 C = 0 5-19

5.12.5 C = 1, lOB = DN 5-19

5.12.6 C = 1, lOB = BZ 5-20
5.13 BRANCH INSTRUCTIONS 5-20
5.14 CHANNEL FUNCTION INSTRUCTIONS 5-21

SM-0036 ix B-01

6. PSEUDO INSTRUCTIONS 6-1

6.1 RULES FOR PSEUDO INSTRUCTIONS 6-1

6.2 TYPES OF PSEUDO INSTRUCTIONS 6-2

6.3 PROGRAM CONTROL PSEUDO INSTRUCTIONS 6-2

6.3.1 IDENT - Identify program module 6-2
6.3.2 END - End program module 6-3
6.3.3 ABS - Assemble absolute binary 6-3
6.3.4 COMMENT - Define Program Descriptor Table

comment 6-4

6.3.5 GLOBAL - Declare global symbols 6-4
6.4 CODE CONTROL PSEUDO INSTRUCTIONS 6-5

6.4.1 BASEREG - Declare base operand register 6-5
6.4.2 SCRATCH - Declare APML scratch register 6-6
6.4.3 NEWPAGE - Force a new instruction page 6-7

6.5 LOADER LINKAGE PSEUDO INSTRUCTIONS 6-8

6.5.1 ENTRY - Specify entry symbols 6-8
6.5.2 EXT - Specify external symbols 6-9
6.5.3 START - Specify program entry 6-9

6.6 MODE CONTROL PSEUDO INSTRUCTIONS 6-10

6.6.1 BASE - Declare base for numeric data 6-10

6.6.2 QUAL - Qualify symbols 6-12
6.7 BLOCK CONTROL PSEUDO INSTRUCTIONS 6-14

6.7.1 BLOCK - Local block assignment 6-16
6.7.2 ORG - Set *0 counter 6-17

6.7.3 BSS - Block save 6-17

6.7.4 LOC - Set * counter 6-18

6.7.5 BITW - Set *W counter 6-19

6.7.6 BITP - Set *P counter 6-20

6.8 ERROR CONTROL PSEUDO INSTRUCTIONS 6-21

6.8.1 ERROR - Unconditional error generation 6-21
6.8.2 ERRIF - Conditional error generation 6-21

6.9 LISTING CONTROL PSEUDO INSTRUCTIONS 6-23

6.9.1 LIST - List control 6-23

6.9.2 SPACE - List blank lines 6-26

6.9.3 EJECT - Begin new page 6-26
6.9.4 TITLE - Specify listing title 6-27
6.9.5 SUBTITLE - Specify listing subtitle 6-27
6.9.6 TEXT - Begin global text 6-27
6.9.7 ENDTEXT - Terminate global text 6-28

6.10 SYMBOL DEFINITION PSEUDO INSTRUCTIONS 6-29

6.10.1 EQUALS - Equate symbol 6-29
6.10.2 SET - Set symbol 6-30
6.10.3 CHANNEL - Channel symbol 6-31
6.10.4 MICSIZE - Set redefinable symbol to micro size . 6-32

6.11 DATA DEFINITION PSEUDO INSTRUCTIONS 6-33

6.11.1 CON - Generate constant 6-33

6.11.2 BSSZ - Generate zeroed block 6-34

6.11.3 DATA - Generate data words 6-35

6.11.4 PDATA - Generate data parcels 6-36
6.11.5 VWD - Variable word definition 6-36

SM-0036 B-01

r^.

6. PSEUDO INSTRUCTIONS (continued)

6.12 CONDITIONAL ASSEMBLY PSEUDO INSTRUCTIONS 6-37

6.12.1 IFA - Test expression attribute for assembly
condition 6-38

6.12.2 IFE - Test expressions for assembly condition . 6-39
6.12.3 IFC - Test character strings for assembly

condition 6-41

6.12.4 SKIP - Unconditionally skip statements 6-42
6.12.5 ENDIF - End conditional code sequence 6-43
6.12.6 ELSE - Toggle assembly condition 6-43

6.13 INSTRUCTION DEFINITION PSEUDO INSTRUCTIONS 6-45

6.13.1 Macro definition format 6-46

6.13.2 MACRO - Macro definition 6-48

6.13.3 LOCAL - Specify local symbols 6-49
6.13.4 ENDM - End macro definition 6-50

6.13.5 OPSYN - Synonymous operation 6-53
6.14 CODE DUPLICATION PSEUDO INSTRUCTIONS 6-54

6.14.1 DUP - Duplicate code 6-54
6.14.2 ECHO - Duplicate code with varying arguments . . 6-55
6.14.3 ENDDUP - End duplicated code 6-56
6.14.4 STOPDUP - Stop duplication 6-57
6.14.5 Examples of duplicated sequences 6-57

6.15 MICRO DEFINITION PSEUDO INSTRUCTIONS 6-59

6.15.1 Micro reference format 6-59

6.15.2 MICRO - Micro definition 6-60

6.15.3 OCTMIC and DECMIC - Octal and decimal micros . . 6-61
_ 6.15.4 Predefined micros 6-62

7. CHANNEL INTERFACE FUNCTIONS 7-1

7.1 INTERFACE CHARACTERISTICS 7-1

7.2 CHANNEL INTERFACE FUNCTION CODES 7-2

8. FORMAT OF ASSEMBLER LISTING 8-1

8.1 PAGE HEADERS 8-1

8.2 SOURCE STATEMENT LISTING 8-1

8.3 CROSS-REFERENCE LISTING 8-3

APPENDIX SECTION

A. CHARACTER SETS A-1

SM-0036 xi B-01

B. HARDWARE INSTRUCTION SUMMARY B-1

B.l APML OPERAND NOTATION B 1

B.2 INSTRUCTIONS B-3

C. MESSAGES C-1

D. ASSEMBLY ERRORS D-1

FIGURES

4-1 Assignment Syntax 4-14
4-2 Condition Syntax 4-16

TABLES

2-1 Absolute Assembly Element and Term Attribute Evaluation . , . 2-20
2-2 Relocatable Assembly Element and Term Attribute Evaluation . . 2-20
5-1 Instruction Index 5-1

7-1 Channel Functions and Descriptions 7-2
A-1 Character Sets A-1

B-1 Instruction Sximmary B-3
D-1 Fatal Errors D-1

D-2 Warning Errors D-5

INDEX

SM-0036 xii B-01

1. INTRODUCTION

The Cray Research, Inc. (CRI) I/O Processor (lOP) Language, APML, is a
powerful symbolic language that generates object code for the Cray I/O
Subsystem's (lOS's) lOPs. An lOS is composed of two through four I/O
Processors with Buffer Memory. APML operates on the lOS with either the
COS or UNICOS operating system running on the mainframe.

APML source statements consist of symbolic APML instructions and pseudo
instructions. The symbolic instructions allow you to express all Cray
lOP functions symbolically. Pseudo instructions allow you to control
the assembly process.

APML's features include:

• Free-field source statement format: source statement field size

is largely controlled by you.

• Control of local blocks: you can assign code or data segments to
specific areas.

• Multiple instruction generation: one or more lOP instructions
are generated for each symbolic APML instruction.

• Code optimization: the assembler tries to minimize generated
code by eliminating unnecessary instructions and by using
1-parcel instructions.

• Preloaded data: you can define data areas during assembly and
load them with the program.

• Data notation: you can designate data as integer or character
code notation.

• Word and parcel address arithmetic: you can specify addresses as
either word or parcel addresses.

• Binary control: you can specify object code as either absolute
or relocatable. Relocatable code is not supported by an
associated loader for lOP code.

• Listing control: you can control the contents of the assembler
listing.

• Micro coding: you can define a character string in a program and
substitute for each occurrence of its micro name in the program.

SM-0036 1-1

I

Macro coding: you can define code sequences in a program and they
will be substituted for each occurrence of the macro name in the

program using parameters supplied with the macro call.

1.1 EXECUTION OF THE APML ASSEMBLER

The APML assembler executes in the Central Processing Unit under the
control of the operating system of either a CRAY X-MP Computer System or
a CRAY-1 Computer System with an I/O Subsystem. It has no hardware
requirements beyond those required for the minimum system configuration.

The assembler is loaded into Central Memory and begins executing as a
result of an invocation statement. Parameters specify characteristics of
an assembler run such as the dataset containing source statements and
list output.

The source statements may comprise more than one APML program module.
The assembler assembles each program module as it is encountered on the
source dataset. The assembler makes two passes for each program module
to be assembled. During the first pass, the assembler reads each source
language statement instruction, expands sequences such as macro
instructions, generates the machine function codes, and assigns memory.
The assembler also breaks instruction sequences into groups of
instructions called pages during Pass 1. The assembler then optimizes
code within a page. For instance, all jumps within a page are optimized
to single-parcel jump instructions; jumps outside the page are 2-parcel
instructions. During the second pass, the assembler assigns block
origins, substitutes values for symbolic operands and addresses, and
generates the object code and an associated listing.

1.2 CONVENTIONS

This manual uses the following conventions:

Convention Description

Indicates variable information supplied by the operatorItalics

Boldface

dataset

Choice 1

Choice 2

SM-0036

Identifies UNICOS command verbs, directory names, or
file names

Refers both to COS datasets and UNICOS files

Stacked items indicate two or more literal options
when only one choice may be used

1-2 B-01

2. APML ASSEMBLER LANGUAGE

This section presents general rules and statement syntax for APML
programs.

2.1 SOURCE LINE FORMAT

An APML source statement consists of one to eight source lines. A source
line is a maximum of 90 characters. The entire line is recorded in the
list output dataset generated during an APML assembly. The assembler
interprets only the first 72 col\imns of a line. A maintenance utility
program uses remaining character positions for sequencing information.

A comma in column 1 indicates a continuation line. Columns 2 through 72
are then a continuation of the previous line. Up to seven continuation
lines are allowed for source statements. Statements generated by APML in
a MACRO or DUP expansion can have any number of continuation lines.

2.2 STATEMENT FORMAT

Statement format is essentially free-field. APML supports three types of
statements, a comment statement/ a symbolic APML instruction/ and a
pseudo instruction.

2.2.1 COMMENT STATEMENT

An asterisk as the first nonblank character indicates a comment
statement. The assembler lists comment statements/ but they have no
other effect.

SM-0036 2-1

2.2.2 SYMBOLIC APML INSTRUCTION FORMAT

Each symbolic APML instruction consists of a location field, an
assignment field, and a comment field as described in section 4, Symbolic
APML Instruction Syntax.

A symbolic APML instruction is a statement that generates I/O Processor
(lOP) instructions. Also included are certain instructions that generate
data without the use of pseudo instruction mnemonic names. Section 4,
Symbolic APML Instruction Syntax and section 5, Basic lOP Hardware
Instruction Set, describe symbolic APML instructions.

2.2.3 PSEUDO INSTRUCTION FORMAT

Each pseudo instruction consists of a location field, an assignment
field, a result field, an operand field, and a comment field. A mnemonic
name is in the result field. Each field's contents are as follows:

Field

Location

Assignment

Result

Operand

SM-0036

Contents Description

Begins in column 1 of a line and is terminated by a
blank. If column 1 is blank, the location field has

no entry. The contents of the location field consist
of a name or a symbol and depends upon the
requirements of the result field or assignment field.

Begins with the first nonblank character following the
location field. It cannot begin before column 2 or
after column 63. The assignment field has an entry if
there are any nonblank characters between the location
field and column 64. The assignment field is
terminated by the comment field or the end of the
statement.

Begins with the first nonblank character following the
location field. It cannot begin before column 2 or
after column 63. A blank terminates the result

field. The result field has an entry if there are any
nonblank characters between the location field and

column 64.

Begins with the first nonblank character following a
nonempty result field and is terminated by the comment
field or the end of the statement. The contents of

the result field determine whether an entry is
required in the operand field.

2-2

Field Contents Description

Comment Optional. Begins with a period. A period can appear
in certain APML symbols; however, in such cases it is
always preceded by a nonblank character. Therefore,
it is conventional and good practice to precede the
period at the beginning of the comment with a blank.
The comment field may be the only field supplied in a
statement.

Section 6, Pseudo Instructions, further describes pseudo instructions.

2.3 CODING CONVENTIONS

Although APML statements are essentially free-field, the conventions
suggested here provide for a more uniform and more readable listing.

Beginning
Column Field

1 Blank, asterisk, comma, or location field entry
left-justified

10 Result or assignment field entry, left-justified

20 Operand field entry, left-justified

35 Beginning of comment field

2.4 LINE EDITING

APML processes source statements sequentially from the source dataset. A
macro definition is not immediately interpreted but is saved and
interpreted each time it is called. Before interpreting a statement,
APML performs two operations referred to as editing. These operations
are concatenation and micro substitution.

SM-0036 2-3 B

2.4.1 CONCATENATION

APML examines each line for the underscore (concatenation) character and '
deletes it so that the two adjoining columns are linked before the
statement is interpreted.

2.4.2 MICRO SUBSTITUTION

The APML assembler searches for double quotation marks (")/ which serve
to delimit micro names. The first " indicates the beginning of a micro
name; the second " identifies the end of a micro name. Before a

statement is interpreted, APML replaces the micro name by the character
string comprising the micro.

2.5 NAMES

A name consists of from 1 to 8 characters. The first character of a name

must be alphabetic (A through Z), a dollar sign ($), a percent sign {%),
or an at sign (0). Characters other than the first may be decimal digits
(0 through 9).

Use names to identify the following types of information:

• Program modules
• Blocks

• Macro instructions

• Micro character strings
• Conditional sequences
• Duplicated sequences
• Symbol qualifiers

Unlike symbols, a name does not have a value or an attribute associated
with it and cannot be used in expressions.

Different types of names do not conflict with each other or with
symbols. For example, a micro can have the same name as a macro and a
program module can be named the same as a block.

SM-0036 2-4 B

2.6 SYMBOLS

...

A symbol is 1 to 8 characters that identifies a value and its associated
attributes. The first character of a symbol must be alphabetic (A
through Z), a dollar sign ($), a percent sign (%)/ or an at sign (@).
Characters other than the first may also be decimal digits (0 through 9).

2.6.1 SYMBOL DEFINITION

The process of associating a symbol with a value and attributes is known
as symbol definition. This can occur in a number of ways.

A symbol used in the location field of a symbolic APML instruction or
certain pseudo instructions is defined as an address having the current
value of the location counter and having attributes of parcel address,
word address, relocatable, or absolute.

A symbol used in the location field of a symbol defining pseudo
instruction is defined as having the value and attributes derived from an
expression in the operand field of instruction. The type of symbol
defining pseudo instruction used may cause the symbol to have an
attribute of redefinability. When a symbol is redefinable, a second
attempt to define it must be through use of a redefinable pseudo, which
causes the symbol to be assigned a new value and attributes.

A symbol defined in a program module other than the module being
currently assembled can be defined as having the attribute of external in
the current program module. The true value of an external symbol is not
known within the current program module.

2.6.2 SYMBOL ATTRIBUTES

Two or more attributes are assigned to a symbol when it is defined.
Possible attributes are as follows:

• Word address, parcel address, or value

Each symbol is assigned an attribute of word address, parcel
address, or value. A word is a 64-bit quantity; a parcel is a
16-bit quantity. A symbol is assigned a word address attribute
if it appears in the location field of a pseudo instruction such
as VWD, CON, BSS, or BSSZ which defines words or if it is equated
to an expression having a word-address attribute.

SM-0036 2-5

A symbol is assigned a parcel-address attribute if it appears in
the location field of a symbolic APML instruction or certain
pseudo instructions. ' ^

A symbol has a value attribute if it does not have a word-address
or parcel-address attribute. A 64-bit value is associated with
such a symbol.

• Relocatable, external, or absolute

Each symbol is assigned the attribute of relocatable, external, or
absolute.

A symbol is assigned an attribute of relocatable if it appears in
a relocatable assembly in the location field of a machine
instruction, BSS pseudo instruction, or data generation pseudo
instruction such as BSSZ, CON, and so on. A symbol is also
relocatable if it is equated to an expression that is relocatable.

A symbol is assigned the attribute of external if it is defined by
an EXT pseudo instruction. An external symbol defined in this
manner has a value attribute and a value of 0. A symbol is also
assigned the attribute of external if it is equated to an
expression that is external. Such a symbol assumes the value of
the expression and may have an attribute of parcel address, word
address, or value.

A symbol is assigned the attribute of absolute in a relocatable
assembly if it is neither relocatable nor external. In an
absolute assembly, symbols that would be relocatable in a
relocatable assembly are assigned the attribute of absolute. An
exception occurs when the absolute program module is divided into
local blocks through use of BLOCK pseudo instructions. In this
case, symbols defined in local blocks other than the initial
(nominal) block are assigned an attribute of relocatable during
Pass 1 and absolute during Pass 2. See subsection 6.7, Block
Control Pseudo Instructions, for more information on block control.

Redefinable

In addition to its other attributes, a symbol is assigned the
attribute of redefinable if it is defined by the pseudo
instructions SET or MICSIZE. A redefinable symbol may be defined
more than once in a program module and may have different values
and attributes at different times during as assembly. When such a
symbol is referenced, its most recent definition is used by the
assembler.

SM-0036 2-6

2.7 SYMBOL REFERENCE

The occurrence of a symbol in a field other than the location field
constitutes a reference to the symbol and causes the value and attributes
of the symbol to be used in place of the symbol.

A symbol may generally be referenced anywhere in the program. However,
certain symbol references require that the symbol be previously defined.
In such cases, APML generates an undefined error even though the symbol
is defined later in the program. A symbol occurring in any expression in
a pseudo instruction, except the data expression fields of CON, VWD, and
ERRIF, must refer to previously defined symbol.

A symbol used in the location field of a symbolic APML instruction is not
defined until an instruction page boundary occurs. APML does code
optimization within an instruction page, so instruction address symbols
are not defined until all instruction generation is fixed at the next
page boundary. See section 4, Symbolic APML Instruction Syntax, for
more details about page boundary conditions.

A symbol reference may contain a prefix, such as W. or P., which causes
the usual value and attributes associated with the symbol to be altered
according to the prefix. The prefix affects only the specific reference
with which it occurs. See subsection 2.11, Prefixed Symbols and
Constants, for details.

2.7.1 QUALIFIED SYMBOLS

You can render a symbol other than a global symbol unique to a code
sequence by specifying a symbol qualifier to be appended to all symbols
defined within the sequence. The option to qualify symbols is initiated
by one QUAL pseudo instruction and terminated by the next. If a symbol
defined in the sequence is referred to from within the sequence, it can
be referred to without qualification. If, however, the symbol is
referred to from outside of the code sequence in which it was defined, it
must be referred to in the form /qualifier/symbol, where qualifier is
a 1- to 8-character name and is defined through the use of a QUAL pseudo
instruction.

SM-0036 2-7

2.8 GLOBAL DEFINITIONS

Before the first IDENT pseudo instruction and between program modules
(that is, between the END pseudo that terminates one program module and
the IDENT that begins the next program module), APML recognizes sequences
of instructions that do not generate code but define symbols, macro
instructions, and micros.

Definitions occurring prior to an IDENT pseudo instruction are considered
global and can be referred to without redefinition from within any of the
program modules that occur subsequent to the definition. Redefinable
symbols and symbols of the form %%xxxxxx, where x is any nonblank
character, represent an exception; while they can occur in such
sequences, they are local to the program module that follows and are not
known to the assembler after the next END pseudo instruction is
encountered. Global symbols cannot be qualified.

2.9 SPECIAL ELEMENTS

The following designators can occur as elements of expressions and have
special meaning to the assembler.

Designator Description

* Denotes a value equal to the current location counter
with parcel-address attribute and absolute or
relocatable attribute depending on type of assembly

*0

*P

*W

SM-0036

Denotes a value equal to the current value of the
origin counter with parcel-address attribute and
absolute or relocatable attribute

Denotes a value equal to the current value of the
parcel-bit-position counter with absolute and value
attributes

Denotes a value equal to the current value of the
word-bit-position counter with absolute and value
attributes

2-8

CAUTION

The special elements *, *0 and *W when used as location
or origin address counters, should not be used except
in the expression field of CON, VWD, and ERRIF. When
used elsewhere, the value of these special elements is
required in Pass 1 but not defined until Pass 2. These
elements may be used, however, after an instruction
page boundary, such as when a new page is forced by a
NEWPAGE pseudo instruction and preceding any executable
APML symbolic instructions.

Subsection 2.12.3, Elements, describes expression elements. Section 6,
Pseudo Instructions, describes counters.

2.10 DATA NOTATION

Data is presented in the form of numeric or character constants and data
items. Numeric values and character strings are presented to the
assembler based on the following notation.

() Indicates optional information
[] Indicates required information

2.10.1 NUMERIC CONSTANTS

You can express a numeric constant in integer notation. An integer
constant has the following format:

(prefix) [integer] {binary scale)

SM-0036 2-9

prefix The niimeric base used for the integer, fraction, decimal
exponent, and binary scale. If no prefix is used, base
is determined by the default mode of the assembler or by
the BASE pseudo instruction, prefix can be one of the
following:

0* Octal (default)

D' Decimal

X' Hexadecimal

integer and/or fraction
A nonempty string of digits as required by prefix

binary scale
Indicates that the integer and/or fraction is to be
multiplied by a power of 2

An integer constant is evaluated as a 64-bit twos complement integer.

Example:

Location 1Result 1Operand Comment

1 110 120 35

NUMBER

1
1EQUALS

1
|0'50

ICON |D'300
jVWD 140/0,D'24/ADDR
|A = 0* 177752

ICON I1S63 .sign bit

2.10.2 CHARACTER CONSTANTS

Character constants are expressed using the following notation:

(prefix) ['character string'] (suffix)

prefix Character set used for stored constant:

A ASCII character set (default)

C Control Data Corporation (CDC)® Display Code
E EBCDIC character set

SM-0036 2-10 B-01

character string
A string of 0 or more characters from the ASCII character
set. Two consecutive apostrophes (excluding the delimiting
apostrophes) indicate a single apostrophe. See appendix A,
Character Sets.

suffix Indicates justification and fill of character string:

H Left-justified, blank-fill (default except in APML
symbolic data generation instructions and PDATA)

L Left-justified/ zero-fill
R Right-justified/ zero-fill
Z Left-justified, zero-fill, at least one trailing

binary zero character guaranteed (default on strings
used in APML symbolic instructions, data generation,
and PDATA)

Example:

1Location Result •Operand i Comment

11 10 120 135

1
1
1
1
1
1

CON

VWD

DD = 'AB'

1
1A•ABC'L
124/'OUT'

1
1
1

1
1
1 .(Default to H

1 fill)
1.(Default to Z

1 fill)

suffix

suffix

blank

blank

2.10.3 DATA ITEMS

You can use a data item in the operand field of the PDATA, DATA, CON,
and VWD pseudo instructions and in APML symbolic data generation
instructions. The length of the data field occupied by a data item is
determined by its type, size, and where it is used.

An integer data item has the following format:

{sign) {prefix) [integer] {binary scale)

If you use an integer data item in a PDATA pseudo instruction or APML
symbolic data generation instruction, it generates 1 parcel (16 bits);
in a DATA pseudo, it generates 1 word (64 bits).

A character string data item has the following format:

{prefix) ['character string'] {count) {suffix)

SM-0036 2-11

In the preceding notation, descriptions given for numeric and character
constants apply. The two added options, sign for numeric data items
and count for character string data items, have the following
significance:

sign Data item is to be stored ones or twos complemented or
uncomplemented; can only be used in a DATA or PDATA pseudo
instruction.

count

Example:

+ or omitted

#

Uncomplemented
Negated (twos complemented)
Ones complemented; allowed on integer
constants only.

The length of the field in number of characters into which
the data item is to be placed. If no count is supplied,
the length is the number of words or parcels needed to hold
the character string. If a count field is present, the
length is the character count times the character width, so
that the field length is not necessarily an integral number
of words or parcels. The character width is 8 bits for
ASCII or EBCDIC and 6 bits for CDC Display Code.

If an asterisk is in the count field, the actual number of
characters in the string is used as the count. A single
character is counted when„two apostrophes represent a
single apostrophe.

If the base is M (mixed), APML assumes that the count is
decimal. See section 6, Pseudo Instructions, for a
description of mixed base.

1Location|Result 1Operand Comment

11 110 1 20 35

1 1
1 1DATA

1
1•ERROR IN DSN'

1 1DATA |-D'1.5E2
1 1DATA 1+0*20
1 |VWD 140/0,24/0*200

SM-0036 2-12

2.11 PREFIXED SYMBOLS AND CONSTANTS

A symbol/ constant/ or special element may be prefixed by a P. or a W. to
cause the value to assume an attribute of parcel or word address/
respectively/ in the expression in which the reference appears.

A prefix does not permanently alter the attribute of a symbol; the effect
of a prefix is for the current reference only.

2.11.1 PARCEL ADDRESS PREFIX - P.

A symbol/ special element/ or constant may be prefixed by P. to specify
the attribute of parcel address. If a symbol isym) has the attribute
of word addresS/ the value of P.spin is the value of spin multiplied by
4. A P. prefix to a symbol with value attribute or to a constant does
not cause the value to be multiplied by 4/ but it can be used to assign
the parcel address attribute.

Example:

1Location|Result 1Operand 1Comment
11 110 120 135

1 1
1ADDR 1CON

1
1P.ADDR

1
1

.2 WORD ADDRESS PREFIX - W.

A symbol/ special element/ or constant may be prefixed by W. to specify
the attribute of word address. If a symbol (spm) has the attribute of
parcel address/ the value of W.spm is the value of spm divided by 4.
A W. prefix to a symbol with value-address attribute or to a constant
does not cause the value to be divided by 4/ but it can be used to assign
the word-address attribute to the symbol or constant.

Example:

1Location|Result 1Operand 1Comment

11 110 120 135

I I
IAO = W.ADDR
|A4 = W.BUFF+0'100

SM-0036 2-13

2.12 EXPRESSIONS

EKpressions are used in the operand field of many APML pseudo
instructions. An expression consists of one or more terms joined by
special characters referred to as adding operators. A blank or a comma
terminates an expression. A term, in turn, consists of one or more
elements joined by special characters referred to as multiplying
operators. Thus, an expression can be diagrammed as follows:

I add I TERMi | add | TERM2. . . I add | TERMq | comma |
I opi I I op2 I I opn I I or I
I (optional) I I I I I I blank |

Any term in an expression can be diagrammed as follows:

I ELEMENT]^ | mult | ELEMENT2 ... I mult | ELEMENTn,
I I OPI I I opn, I
I \ I I I

2.12.1 ADDING OPERATORS

An adding operator joins two terms or precedes the first term of an
expression. The two adding operators are as follows:

+ Addition

Subtraction

2.12.2 MULTIPLYING OPERATORS

A multiplying operator joins two elements. Multiplying operators are as
follows:

* Multiplication
/ Division

Multiplication and divisions are performed first, followed by addition
and subtractions.

SM-0036 2-14 B

2.12.3 ELEMENTS

An element is a symbol/ constant/ or special element. It may also be one
of these preceded by a # complement operator. An element preceded by #,
however/ must be absolute.

Examples:

SIGMA Symbol
* Special element
*W Special element
0*77S3 Numeric constant

A'ABC'R Character constant

The attributes of elements are assigned by the use of SET or EQUALS to
define the attributes or by implication when the element is used.

2.12.4 TERMS

A term is an element or two or more elements joined by multiplying
operators. Only one relocatable or external element may occur in a
term. The following rules apply:

• Two consecutive elements are illegal.

• The element to the right of a / must be an absolute element; that
iS/ a constant or an absolute symbol or, in an absolute assembly/
a special element as well.

• A term containing a / must have an attribute of absolute up to
the point at which the / is encountered (see subsection 2.12.5/
Term Attributes).

• Division by 0 produces an error.

• An external symbol/ if present/ must be the only element of the
term and if preceded by an adding operator/ that operator must be
+ .

• An element cannot be null; that iS/ two consecutive multiplying
operators or a multiplying operator not followed by an element is
illegal.

2.12.5 TERM ATTRIBUTES

Attributes assigned to a term depend on the elements and operators
comprising the term.

SM-0036 2-15

Every term is assigned an attribute of either external, absolute, or
relocatable. A term assumes the attribute of external if it consists of

a single external symbol. A term assumes the attribute of absolute if it
contains only absolute elements. A term assumes an attribute of
relocatable if it contains one relocatable element and no external

symbols.

Every term assumes an attribute of parcel address, word address, or
value. The term attribute may vary as each element in the term is
evaluated. The term's final attribute will be that in effect when the

final (rightmost) element of the term is evaluated. As APML encounters
each element in the left to right scan of a term, it assigns an attribute
to the term based on the operator, if any, preceding the element, the
attribute of any previous partial term, and the attribute of the element
currently being evaluated.

In the following rules, consider that P, W, and V denote an element being
incorporated into the term and having an attribute of parcel address,
word address, or value, respectively. Consider, also, that pterm,
wterm, and vterm denote the attribute of the partial term resulting
from all elements evaluated prior to the current element. The following
rules apply.

• Following evaluation of the element, a new partial term is
assigned a parcel-address attribute if the partial term,
operator, and new element are one of the following combinations:

P

pterm*V
pterm/V
vtenn*P

• Following evaluation of the element, a new partial term is
assigned a word-address attribute if the partial term, operator,
and new element are one of the following combinations:

W

wterm*V

wterm/v

vtenn*W

• Following evaluation of the element, a new partial term is
assigned a value-address attribute if the partial term, operator,
and new element are one of the following combinations:

V

vterin*v

pterm/P
wterm/w

vterm/V

SM-0036 2-16 B

In addition, any of the following combinations results in an
attribute of value being assigned but accompanied by a warning
error.

pterra*W
wterm*P

pterm/W
wterm/P

vterm/P

vterin/w

pterm*P
wterm*w

2.13 EXPRESSION EVALUATION

Expressions are evaluated from left to right. Each term is evaluated
from left to right, with APML performing 64-bit integer multiplication or
division as each multiplying operator is encountered. When a complete
term has been evaluated, it is added or sxibtracted from the sum of the
previous terms.

The assembler treats each element as 64-bit twos complement integer.
Character constants are left- or right-justified within a field width
equal to the destination field. Complemented elements are complemented
in the rightmost bits in a field width equal to the destination field.

A relocatable term has a 64-bit integer coefficient associated with it
equal to the value of the term obtained when a 1 is substituted for the
relocatable element. The value of a relocatable term is the value of the
relocatable element multiplied by the coefficient.

The coefficient of each relocatable term is added or subtracted to the
coefficient maintained for the corresponding relocatable block
represented in the expression.

2.14 EXPRESSION ATTRIBUTES

The assembler can assign the following attributes to an expression:

• Relocatable, external, or absolute

• Parcel address, word address, or value

SM-0036 2-17

2.14.1 RELOCATABLE, EXTERNAL, OR ABSOLUTE

An expression is relocatable if the coefficient is 0 for every block
represented in the expression, except for one block, which must have a
coefficient of +1 (positive relocation). An expression error occurs if a
coefficient does not equal 0 or.+l, or if more than one coefficient is
nonzero.

An expression is external if the expression contains one external term
and if the coefficients of all relocatable blocks are 0. An expression
error occurs if more than one external term is present.

An expression is absolute if no external terms are present and the
coefficients of all relocatable blocks are 0.

2.14.2 PARCEL ADDRESS, WORD ADDRESS, OR VALUE

An expression has a parcel-address attribute if at least one term has
parcel-address attributes and all other terms have a value- or
parcel-address attribute.

An expression has word-address attribute if at least one term has
word-address attribute and all other terms have value- or word-address

attribute.

All other expressions have value-address attribute. A warning error
occurs if an expression has terms with both word-address attribute and
parcel-address attribute.

An expression value is truncated to the field size of the expression
destination. A warning error occurs if the leftmost bits lost in
truncation are not one of the following;

All zeros

All ones with the leftmost remaining bits also 1 (that is, a negative
quantity)

A null (empty) expression is treated as an absolute value of 0.

If an error other than a warning error occurs in evaluating an
expression, the expression is treated as an absolute value of 0.

SM-0036 2-18

EKamples of expressions:

ALPHA

aw^BETA

GAMMA/4+DELTA*5

0'100+=0'100

Ma-NU*2+*

An expression consisting of a single term
Two terms; *W and BETA.

Two terms, each having two elements
Two terms; a constant and the address of a

literal.

Three terms, the first consisting only of MU, the
second consisting of NU*2, and the third
consisting only of the special element *

In the following examples, R and S are relocatable symbols in the same
block, X and Y are external, and A and B are absolute. The location

counter is currently in the block containing R and S.

The following expressions are relocatable:

*

W.*+B

R4-2

2**-R-S

X+R

R-t-S

R/16*16

2** cancels -R and -S

Error; external and relocatable.

Error; relocation coefficient of 2.

Error; division of relocatable element is illegal

The following expressions are external:

yi+2

Y-lOO

X+R*

X+2**-R-S

-X+2

X+Y

X/Z

R, -* cancels relocation

Relocatable terms 2**, -R, and -S cancel each other

Error; external cannot be negated.
Error; more than one external.

Error; division of an external element is illegal.

The following expressions are absolute:

A+B

•A'R-1

2AR-S-*

1/2*R

A*(R-S)

SM-0036

Relocation of terms all cancel

Equivalent to 0*R
Error; parentheses are not allowed.

2-19

2.15 TABLE METHOD OF EXPRESSION ATTRIBUTE EVALUATION

Tables 2-1 and 2-2 summarize evaluation of term attributes for absolute

and relocatable assembly, respectively.

If a symbol, special element, or constant has the attribute of the left
column and is added, subtracted, multiplied, or divided by a symbol,
special element, or constant with the attribute of the top horizontal
row, the resulting attribute is determined at the intersection by the
arithmetic operator position in the upper left corner of the table.

Table 2-1. Absolute Assembly Element and Term Attribute Evaluation

1 V 1 p W 2nd Term j

1 V

V|V

V|V
1 PIP
1 PjVe

WjW

WjVe

1 P

P|P

PIP
1 P|P
1 VejV

VejVe

VejVe

1 w

WjW

WjW

1 Ve1Ve

1 Ve1Ve

W|W
VejV

1 First
1 Term

V

P

w

e

= Value 1
= Parcel j
= Word 1

= Warning message j

Table 2-2. Relocatable Assembly Element and Term Attribute Evaluation

1 ±i^
1 *1/ V 1 P W 2nd Term j

yjv 1 P [E WjE

1 V VjV 1 Ee Ee EjEe
PIP 1 E Pa EejEe

1 P EjE 1 Ee E Ee 1Ee
WjW 1 Ee Ve EjWa

1 W EjE 1 Ee Ee EejE

1 First V = Value 1
1 Term P = Parcel j

W = Word 1
E = Error message j
e = Warning message j
a = Absolute 1

SM-0036 2-20

3. APML INVOCATION AND EXECUTION

Load and execute APML using either the COS APML control statement or the
UNICOS APML command line.

3.1 COS APML CONTROL STATEMENT

An APML control statement has the following format:

APML, CPU=type, l=idn, L=Idn, B=Mn, E=edn, ABORT, DEBUG, options,

LIST=naine, S=sdn, SYM=syin,T=I>5t,X=xdn.

Parameters are order-independent and none are required. Parameters are
processed in the order they appear. If parameter specification is
duplicated or contradictory, the last specification is used.

CPU=type Only lOP can be specified as type. The parameter is
optional, since the default is also lOP.

I=idn Name of dataset containing source statement input. The
default is $IN. APML reads source statements from dataset

idn until an end-of-file (EOF) is encountered.

Lsldn Name of dataset onto which list output is written. The
default is $OUT. APML writes one file of output. If L=0,
no listing is written.

B-bdn Name of dataset to receive binary load data. The default
is $BLD. APML writes binary load data to this dataset, one
record per program module. An EOF is not written. If B=:0,
no binary load data is written.

E=edn Name of dataset on which error listing is written. The
default is no error listing if the list output is on $OUT;
otherwise, the default is $OUT. APML writes source

statements containing errors to this dataset as one file.
Simply specifying E causes an error listing to be generated
on a dataset named $OUT. If the error dataset name edn

is the same as the listing dataset name, list output is
written.

SM-0036 3-1

ABORT Abort mode. If this parameter is present and any fatal
errors are encountered during assembly/ APML aborts the job
after assembling all program modules. If this parameter is
omitted or if fatal errors are not encountered, APML exits

normally and job processing continues with the next control
statement in the job deck.

DEBUG Debug mode. If this parameter is omitted and fatal errors
occur in a program, APML writes a binary record containing
only a Program Description Table (PDT) with the fatal error
flag set. The loader ignores a program module with this
flag set.

When the DEBUG parameter is present, APML writes a full
binary record with the fatal error flag clear, whether or
not fatal errors are encountered. The loader attempts to
load and execute the module.

options Listing control options. You can specify any of the
following listing control options to enable or disable a
listing feature. Brackets enclose the defaults. The
selection of an option on the APML control statement
overrides the enabling or disabling of the corresponding
feature on a LIST pseudo instruction. See section 6,
Pseudo Instructions, for the description of the LIST pseudo
and for more details about these options.

SM-0036

[ON] Enables source statement listing
OFF Disables source statement listing

[XRF] Enables cross-reference
NXRF Disables cross-reference

[XNS] Includes unreferenced local symbols in the
cross-reference

NXNS Does not include unreferenced local symbols in
the cross-reference

[DUP] Enables listing of duplicated statements
NDUP Disables listing of duplicated statement

MAC Enables listing of macro expansions
[NMAC] Disables listing of macro expansions

MIF Enables macro conditioning listing
[NMIF] Disables macro conditional listing

3-2

options [MIC] Enables listing of generated statements before
(continued) editing

NMIC Disables listing of generated statements before
editing

LIS Enables listing of LIST pseudo instructions
[NLIS] Disables listing of LIST pseudo instructions

[WEM] Enables warning errors
NWEM Disables warning errors

TXT Enables global text source listing
[NTXT] Disables global text source listing

[WMR] Enables warning error message for macro
redefinition

NWMR Disables warning error message for macro
redefinition

LIST=naine Name of LIST pseudo instructions to be processed. A LIST
pseudo instruction with a matching location field name is
not ignored. A LIST pseudo instruction with a nonblank
location field name that does not match a name specified
on the APML control statement is ignored, name can be a
single name or can be a list of names separated by colon
(for example, LIST=TASK1;TASK2:TASK7). If just LIST is
specified, all LIST pseudo instructions are processed,
regardless of the location field name.

S=sdn Name of dataset containing system text file. The default
is $APTEXT. If S=0 is specified, no system text is used,
sdn can be a single dataset name or can be a list of up
to 10 dataset names separated by a colon (for example,
S=$APTEXT:OURTXT;MYTXT). The system texts are processed
in order of appearance.

SYM=5ym Name of dataset where the optional symbol text is to be
written. The default is no symbol table generated by
APML. If just SYM is specified, the symbol text is
written to the same dataset as the binary load data.

T=bst Binary system text. Specifies dataset where all global
macros, symbols, and OPSYN assignments are written. The
default, equivalent to specifying T=0, is no binary system
text written. If T is specified alone, the binary dataset
is written to $BST.

SM-0036 3-3

X=xdn Binary symbol table records for the global cross-reference
generator SYSREF. Each record contains cross-reference

information for the global symbols in one particular
program unit. The default, equivalent to specifying X=0,
is to write no global cross-reference records. If X is
specified alone, the information is written to $XRF.

Example APML statement:

APML(I=$IN,E,ABORT)

This APML statement specifies that source statements are in $IN, errors
are written to $OUT, list output is suppressed, binary load data is
written to $BLD, the system text is in $APTEXT, and no binary system text
is written. The job aborts if fatal errors are encountered.

COS APML invocation example:

JOB,JN=APMLJOB,T=150.

ACCESS,DN=$PL,PDN=IOPPL.

UPDATE,F.

*.

APML,S=0,I=$CPL,T=$APTEXT,E
APML,I=$CPL,E.

APML,I=$CPL,E.

ADSTAPE.

DISPOSE,DN=$DS,DC=ST.

DISPOSE,DN=$OVL,DC=ST.

/eof

UPDATE directives

/eof

CREATE $CPL COMPILE DATASET CONTAINING 3

FILES.

ASSEMBLE BINARY SYSTEM TEXT, $APTEXT.

ASSEMBLE PROGRAMS ON SECOND FILE OF $CPL.
ASSEMBLE PROGRAMS ON THIRD FILE OF $CPL.
GENERATE DEADSTART TAPE BINARY DATASETS.

3.2 UNICOS APML COMMAND LINE

Under UNICOS, invoke APML using the following command line. All
parameters are optional.

Format:

apml [-t hsys] [-r xref] [-g sym] [-1 listing] [-m tmuords] [-L]

-h
[-S text^,£ex£2/texts/. • • £ex£„] [_£ nlist^ binary] name.s

SM-0036 3-4 B-01

-t bsys Names the output file to which APML writes the binary
system text. There is no default.

-r xref Names the output file to which APML writes the binary
cross-reference file. Default is no cross-reference file.

-g sym Names the output file to which APML writes the Symbol
Table. Default is no Symbol Table.

-1 listing Names the output file to which APML writes the assembler
listing. The default is no listing.

-m tittwords Specifies an integer number of memory words to be reserved
for the table manager work area. Default is 65476 words.

-L L requests that the amount of excess work area to be

reported and statistical logfile messages to be sent to
stderr. Statistics reported include the assembler's

name, assembly time, and so on. The amount of excess work
area is reported as 'UNUSED: nnnnn'.

It should not be necessary to increase the work area except
on very large assemblies, such as I/O Subsystem. The work
area is not expandable at run time, so if sufficient space
is not preallocated with the -m option for the assembly
to complete, APML aborts.

text^ Any number of system texts; must be separated by commas.

-h When specified, all list pseudos are processed regardless
of the location of the field name.

-i nlist Specifies processing of those list pseudos whose location
field names are specified by nlist. {nlist can be a
single name or a list of names separated by commas.)

-o binary Names the binary object file. The default is name.o if
name.s is the input.

name.s Specifies the file containing the assembler source code.

APML writes warning and error logfile messages (or diagnostic and
statistic messages if requested with -L) to stderr.

SM-0036 3-5 B-01

UNICOS APML invocation example:

apml -t aptext -m 150000 apt.s
apml -s aptext -m 150000 src.s
apml -s aptext -m 200000 src2.s
cat src.o src2.o > big.o
adstape < big.o

3.3 SYSTEM TEXT

System text allows for definition of global macros and commonly used
symbols. These macros and symbols are defined in a system text separate
from your source statement input. This is assembled before your source.
All global definitions contained in the system text are preserved for
reference in your programs.

System text symbols referenced by you are identified in the
cross-reference listing by the system text dataset name.

System text may contain any APML statements allowed in normal source
input. Typically, however, a system text would consist of macro and
symbol definitions followed by an IDENT and END pseudo. While assembling
system text, APML suppresses writing binary load data and list output,
except for statements containing errors.

IDENT and END pseudos are not required at the end of a system text, but ' '
their presence facilitates assembling the system text separately as a
program module for the purpose of obtaining a listing.

3.4 BINARY SYSTEM TEXT

A binary system text is a preassembled version of a source system text.
A binary system text is generated by the T option (COS) or the -t
option (UNICOS) on the APML invocation statement. When T or -t is

all global macros, symbols, and OPSYN assignments are written to the
specified dataset in an internal APML format.

SM-0036 3-6 B-01

NOTE

Use of binary system text generally reduces assembly
time.

This dataset can thereafter be used with the S option, as if the source
system text were being used. APML determines whether a system text is in
source or in binary format.

Under COS, when multiple system texts are used, binary and source
versions can be freely mixed. The effect is as if all of the source
versions were present.

Under UNICOS, use only binary format system text with the -s option.

COS examples:

1. APML,I=SOURCE1,S=0,T=BINARY1.

2. APML,I=SOURCE3,S=0,T=BINARY3.

3. APML,I=MYPROG,S=BINARY1:BINARY3.

UNICOS examples:

1. apml -t binaryl < soureel
2. apml -t binary3 < source3
3. apml -s binaryl binary3 < myprog

In examples 1 and 2, binary versions of source system texts SOURCEl and
SOURCE3 are created.

Under COS, if S=0 had not been specified, APML would have assembled
$APTEXT by default; the global macros and symbols in $APTEXT would have
been copied into the binary system texts being generated. Under UNICOS,
no default is provided.

In example 3, the binary texts generated by examples 1 and 2 are used.
The effect is as if the following statement had been written instead of
example 3:

COS:

APML,I=MYPROG,S=S0URCE1:SOURCE2:SOURCE3.

UNICOS:

cat sourcel source2 source3 myprog > bigsource
apml < bigsource

SM-0036 3-7

4. SYMBOLIC AFML INSTRUCTION SYNTAX

Symbolic APML instructions generate I/O processor (lOP) instruction
parcels or data parcels. Each symbolic APML instruction may generate one
or more lOP instructions or data parcels.

Those familiar with the lOP instruction set can use a subset of symbolic
APML instructions that generate single lOP instructions. You can also
use more complex symbolic APML instructions that generate multiple
hardware instructions to simplify your task.

In symbolic APML instruction notation, certain symbols are reserved to
represent lOP registers and memory. Special characters are used as
operators to represent arithmetic and logical operations, conditional
branch conditions, data movement, and other functions.

4.1 OPERAND NOTATION

The following reserved names represent the contents of lOP registers or
memory:

Name Description

A Accumulator

B Operand register, index register (B register)

(B) Contents of the operand register addressed by B

C Carry flag

E Exit stack pointer

(E) Exit stack entry addressed by E, the exit stack pointer

I Interrupt Enable flag

P Program address register

R Return jump program address

Rlsym Operand register whose index is the value of the symbol
sym, where sym is any symbol with positive absolute
value less than 512.

SM-0036 4-1

Name Description

dd Operand register whose index is the value of the symbol
dd/ where dd is a 2 character symbol with positive
absolute value less than 512

[dd] Value of symbol dd; that is, index of register
represented by register symbol dd.

(dd) Memory parcel addressed by contents of operand register dd

k An unsigned numeric constant, character constant, or a
symbol. In general, k may have a positive or negative
value with absolute value less than 16,384. In some cases,

the range of values for k is further restricted.

d An unsigned numeric constant, character constant, or a
symbol. In general, d may have a positive or negative
value with absolute value less than 512. In some cases,

the range of values for d is further restricted.

(k) Memory parcel addressed by the value of k

(dd+k) Memory parcel addressed by the sum of the contents of
operand register dd and constant k

NOTE

Instructions referencing the operand register dd
contain the register index in the d field, the lower
9 bits of the instruction parcel.

The following reserved names represent other operands used in symbolic
APML instructions:

Name Description

lOB I/O channel reference using the contents of the B register
as the channel designator

iod I/O channel reference, where the value of symbol iod is
the channel designator. Symbol iod must be defined by
the CHANNEL pseudo instruction. Conventionally, iod is a
3-character symbol.

BZ, DN lOP channel status. A channel busy flag, BZ, and done
flag, DN, may be tested with certain instructions.

SM-0036 4-2

Name Description

^ EXIT Name of subroutine return function, which generates an lOP
instruction which exits from a subroutine

WAIT Name of branch function which loops until a test condition
is satisfied

PASS Name of function which generates an lOP pass or
no-operation instruction

4.2 OPERATORS

The following characters are used in symbolic APML instructions as
operators with special significance in the instruction syntax.

4.2.1 REPLACEMENT OPERATOR

The replacement operator, =, indicates that the subject to left of the
equal sign is to be replaced by the value generated on the right side.

4.2.2 FUNCTION OPERATORS

The function operators are as follows:

Operator Description

•I- Addition

Subtraction

& Logical product

> Right shift, end off

< Left shift, end off

>> Right shift, circular

<< Left shift, circular

SM-0036 4-3

4.2.3 RELATIONAL OPERATORS

Relational operators are used in a conditioned clause. The subject to
the left of the operator is compared with the value generated on the
right side according to the relation implied by the operator:

Operator Description

= Equal

Not equal

> Greater than

< Less than

>= Greater than or equal

<= Less than or equal

4.2.4 CONDITIONAL OPERATOR

A comma (,) is the conditional operator. It introduces a conditioned
clause. The assignment clause to the left of the comma is executed only
if the conditional clause to the right is evaluated as true.

4.3 PROGRAM STATEMENT INSTRUCTION FORMAT

Symbolic APML instructions fall into two classes, program statements and
data generation statements. The program statements described in this
subsection generate one or more lOP hardware instructions. For more
information on data generation statements, see subsection 4.4, Data
Generation Statement Instruction Format.

Program statements have one of the following general formats:

ILocation IAss ignment

I I
Ilabel {assign
{label {assign, condition
{label I*

Comment

.comment

.comment

.comment

SM-0036 4-4 B

label Optional label, which must be a valid symbol. The label is
defined as the value of the location counter. Because APML

does code optimization within an instruction page, the
label is not defined until an instruction page boundary
occurs.

assign The assignment clause, represented ih this section by
assign, is required and is either a replacement, jump,
set flag, special function, or channel function.

condition The condition clause is optional and is separated from
the assignment clause by a comma. The assign clause is
executed only when the condition clause is true. The
condition clause represents a test of or comparison of
the contents of lOP registers and memory parcels. Any
assignment clause may be followed by any conditional clause.

comment The comment is introduced by a period. A period can
appear in certain APML operands appearing in the assign
or condition clause, however, in such cases it is always
immediately preceded by a nonblank character. Therefore,
it is conventional to precede the period with a blank at
the beginning of a comment.

* When an asterisk appears in the assignment field, no data
or instructions are generated. The statement serves to
define the optional label without also generating code.

4.3.1 ASSIGNMENT CLAUSES

This subsection describes the five types of assignment clauses.

4.3.1.1 Replacement assignment

A replacement clause enters the register or memory parcel designated by
the subject with the value expressed on the right side of the equals sign.

The right side of the assignment clause consists of operauids and binary
operators. Evaluation proceeds strictly from left to right. There is no
hierarchy of operators and no grouping of terms other than that implied
by their order.

SM-0036 4-5

I Location I Assiaiunent

I I
\label [subject = operandi
I I or
[label [subject = operand^ op^ operandi
I I or
[label [subject = operand^ op^ operandi*»»op^_ioperandj^

I Comment

.comment

.comment

.comment

subject The subject of an assignment clause may be any of the
following:

Register A, B, E, or (E)
Operand register dd or (B)
Memory parcel (dd) Add+k), or (k)

operandThe operands may be any of the following:

Register A, B, E, or (E)
Operand register dd or (B)
Memory parcel (dd) Add+k), or (k)
Constant k

Additional rules concerning operands in the assignment
clause are as follows:

• The accumulator. A, exit stack-pointer, E, and exit
stack entry, (E), may only appear as the first
operand, operand^^.

• After the shift operator (>, <, >>, <<), only the
index register B or constant k may appear.

OPi The operator may be any of the following characters
representing TOP operations:

Arithmetic

Logical
Shift

+ or -

&

>, <, >>, or <<

In general, the assignment clause generates lOP instructions to load the
accumulator with operand^. After that, the additional operations
indicated in the subsequent operators and operands are performed using
the accumulator and carry flag to hold intermediate results. The
resulting accumulator value is stored in the register or memory parcel
indicated by the subject.

SM-0036 4-6

If (dd+k) or (k) appear anywhere in the assignment/ scratch registers
are used to preload the memory address before loading the first operand.

CAUTION

The accumulator/ k, and carry flag/ C, should not, in
general/ be explicitly used. The APML assembler uses
these registers to execute the assignment and condition
clauses/ and they may be used by APML when not
immediately obvious to you.

Example:

A=EE

(MNt5)=A

should be written

(MN-i-5)=EE

so that the accumulator is not destroyed when forming the value of MN-t-5
in the accumulator before storing the address in a scratch register.

SM-0036 4-7

Example:

Codeqenerated1Location1Result1Operand[Comment

11110120135

1
1

11
1IDENT1TRY

231|R01EQUALS|231
235|R6[EQUALS|235

11SCRATCH|R0,R6
7|R11EQUALS17

10|R21EQUALS110
11|R31EQUALS111
12|R41EQUALS112
13|R5

1*
1*

[EQUALS[13

11
11

1*
1*ALOST

11

11
INASSIGNMENT

0100071|A=7[
0200070120250242311[B=A+(Rl+25)
0322310540001

1*

11
11

1*ALOST

[1
INCONDITION

0100101|A=101
0200110130371020021|B=A,R3»37|
0540001

1*

11
1"11

1*PROGRAMMERATTEMPTINGTOUSE
1*PASANOPERAND|

0700001|P=P+21
0500001|A=B1
054000|CAT

i*

|B=A1

1"11

1*ASSEMBLERUSINGPASANOPERAND
07000211P=DOG1
0500001|A=B1
054000|DOG

1

|B=A1
11

1"

1*SAMPLE
1*

11

STATEMENTS[

1"

1*
11

SAMPLEASSIGNMENTSTATEMENTS

000334|LOC1334[
0200130620000040101[A=R5-i-(B)>10&B
051000111
014000/0000210242311[(L0C)=E+R3-(B0G)
014000/00004402423511i
150002022011033235111
034231111
0740121[P=R4[

SM-00364-8

4.3.1.2 Jump assignment

You can use two formats for the jump assignment: a jump using P and a
return jump using R for subroutine calls.

Replacement of P alters the current instruction sequence. Execution
continues at the address specified by the new value of P.

Replacement of R suspends execution of the current instruction sequence
and begins execution of a subroutine at the specified address. The E
register is incremented by 1. The address of the next sequential
instruction parcel is entered in the exit stack. If 163 is entered in
E, an lOP interrupt is generated.

I Location IAssignment I Comment

I I I
I label IP = address \.comment
1label IR = address \.comment

address The jump destination address may be any of the following
operands:

• Operand register dd

• Constant k (typically a program label)

The use of k as a jump address is restricted to
symbols. Numeric and character constants are not
allowed.

• Operand register + constant dd + k

The use of an operand register + constant, dd + k,
is not allowed if you defined a base register with a
BASEREG pseudo instruction. This example would be
ambiguous because, in this case, you have asked APML
to form all 2-parcel jumps with lOP jump instructions
of the form P = R! basereg + k, not P = dd + k.

4.3.1.3 Set flag assignment

You may set the carry flag or system interrupt enable flag to 0 or 1 with
a set flag assignment clause.

SM-0036 4-9

1

1 1
1label |C = 0

— —

1
1.comment

1label |C = 1 1.comment
1label |i = 0 1.comment
1label |l = 1 1.comment

4.3.1.4 special function

Certain names are reserved for special APML instructions.

1Location|Assianment 1Comment

1 1
1label 1PASS

1
1.comment

1label 1EXIT 1.comment
1label 1WAIT 1.comment

PASS Generates an lOP no-operation or a pass instruction

EXIT Generates a subroutine exit instruction. If the E register
contains a 0, the lOP interrupt is generated; otherwise,
the address stored in the program exit stock entry
indicated by the E register is entered in the P register.
The contents of the E register are decremented by 1.

WAIT Generates code to wait for the conditional clause to be

true. If no conditional clause is present, the program
loops forever at the current instruction parcel address.

4.3.1.5 Channel function

A channel function assignment clause generates an lOP channel function
instruction. The channel for which the instruction is to be performed is
indicated either by a channel mnemonic symbol, iod, or by the contents
of the B register.

I Location I Assianment

I I

Comment

I
I.comment
I.comment

I label
I label

iod

SM-0036

Iiodzk
I IOB:J;:

Channel mnemonic symbol defined by a CHANNEL pseudo
instruction. The value of the symbol iod is stored in
the low-order 9 bits of the lOP channel function

instruction.

4-10

k Channel function, a constant k with a positive absolute
value less than 208* The value of k is added to 1408
or 1608 to form the lOP instruction operation code for
the iod:k or lOBtk instruction, respectively.

lOB Indicates the contents of the B register is to be used as
the index of the channel to be functioned.

4.3.2 CONDITION CLAUSES

The condition clause is optional in an APML program statement. The
assignment clause is executed only when the condition clause represents a
true condition.

This subsection describes the four condition clauses.

4.3.2.1 Test accumulator

This clause compares the accumulator contents with the contents of a
register, memory parcel, or a constant.

IlocationI Assignment IComment

^ ' I '
\label {assign,A rel operand {.comment

rel A relational operator (=, #, >, <, >=, or <=)

operand The operand may be any of the following:

Register B
Operand register dd or (B)
Memory parcel (dd)
Constant k

In general, the code for a condition clause is generated before the
assignment clause. The indicated condition is then tested and a jump is
generated around the assignment clause if the condition is false.

In the test accumulator clause, the carry bit is cleared. The operand is
subtracted from the accumulator and a jump is generated around the
assignment clause if the relation is false.

SM-0036 4-11

4.3.2.2 Test register or memory

This clause compares the contents of a register or memory parcel with the
value expressed by the operands and operators on the right side of the
relation.

I Location I Ass ianment

I I
Ilabel Iassign, subj rel operandi, \,comment
I I or
\label \assign, subj rel operandi opi operand2 \.comment
I I or
\label \assign, subj rel operand^ opi operand2 ... operand^

subj The subject isubj) of the condition may be any of the
following:

Register B, E, or (E)
Operand register dd or (B)
Memory parcel idd), (dd+k), or (k)

rel A relational operator (=, #, <, >, <=, or >=)

operandThe operands may be any of the following:

Register A, B, E, or (E)
Operand register dd or (B)
Memory parcel idd),{dd+k), or (k)
Constant k

Additional rules concerning operands in the assignment
clause are as follows:

• The accumulator. A, exit stack-pointer, E, and exit
stack entry, (E), may only appear as the first
operand, operand^,

• After the shift operator (>, <, >>, or <<), only the
index register B or constant k may appear.

op^ The operator may be any of the following characters
representing lOP operations:

Arithmetic + or -

Logical &
Shift >, <, >>, or <<

The value represented on the right side of the relation is evaluated in
the same manner as the right side of a placement assignment clause.

SM-0036 4-12

Comment

4.3.2.3 Test carry flaa

This clause tests the value of the carry flag for a zero or one.

1̂ otpatjion | Assignment 1Comment

1 1
1label [assign,C=0

1
1.comment

1label [assign,Csi 1.comment

[label [assign,C%0 1.comment
1label 1assign,C#1 [.comment

4.3.2.4 Test channel status

This clause tests the state of the busy or done flag for a channel
indicated by a channel mnemonic iod or by the contents of the B
register.

ILocetionI Assignment I Comment

I I i
[label [assign, iod relstate [,comment
Ilabel Iassign, lOB relstate |.comment

iod Channel mnemonic symbol

relstate Channel flag state:

=BZ Channel busy flag set
=DN Channel done flag set
#BZ Channel busy flag clear (not busy)
#DN Channel done flag clear (not done)

4.3.3 SYNTAX GRAPHS FOR APML PROGRAM STATEMENTS

Figures 4-1 and 4-2 graphically represent the rules for forming APML
program statements.

SM-0036 4-13 B

Register

Operand Register

Memory

SM-0036

Replacement

Result

— I = l->

Constant

Operand Operator Operand

I_L. I—>

1 - I—>

|_S^|—>

1 > I—>

— < -—>

— I

—I << I—>

Repeat Additional Operators
and Operands

Figure 4-1. Assignment Syntax

4-14

Jump

Return Jump

Carry Flag

Interrupt Enable
Flag

Channel Mnemonic

Channel Index

in B Register

Result Operand

Jump

I P I

I R I
dd^k

Set Flag

I 0I C
I
II

I 1^1 >1

I 1

Special Function

I PASS I
I EXIT I >
I WAIT I

Channel Function

I iod I
I I j_j_| >1 k

I lOB I

Figure 4-1. Assignment Syntax (continued)

SM-0036 4-15

Register

Operand
Register

Memory

Constant

SM-0036

Test Register or Memory

Subject Relation Operand Operator Operand

— 1^1 >

— l"Z]l >

Add)

Add+k)

(dd+k)

Repeat Additional
I Operators and Operands

Figure 4-2. Condition Syntax

4-16

Accumulator

Carry Flag

Channel Mnemonic

Channel Index in

B Register

Subject Relation Operand

Test Accumulator

Test Carry Flag

I I
I .C I

_=_l ~ >1
1

B

Xi-
1

>1
1

dd

Xi-
1

>1
1

(B)

Xi-
1

>1
1

idd)

>= 1
1

k

l_<^l

1^1 >l_l I

Test Channel Status

I ,iod I 1^1 >1 B2 I

II II
I .lOB I 1^1 >1 DN i

Figure 4-2. Condition Syntax (continued)

SM-0036 4-17

4.4 DATA GENERATION STATEMENT INSTRUCTION FORMAT

Symbolic APML instruction fall into two classes/ program statements and
data generation statements. Data generation statements, described in
this subsection, generate 1 or more parcels of data. For more
information on program statements, see subsection 4.3, Program Statement
Instruction Format.

iLocationI Assignment I Comment

i I I
[label \datai,data2f» " *data^ [.comment

label Optional label, which must be a valid symbol. The label
is defined as the value of the location counter. If a

label is present, a new instruction page is forced by APML.

data^ Parcel data item, which can be any of the following:

• Numeric data item. APML generates a 16-bit parcel
containing the value. Example:

0*42

0'74

57

• A character data item. APML generates as many
parcels as needed to contain the string. If no
suffix is present, the string is left-justified,
zero-filled with at least 8 bits of trailing binary
zeros. Examples:

•THIS IS A MESSAGE'

'BLANK FILL THIS STRING* H

• A symbol, whose value is defined elsewhere. The
value of the symbol is generated in a single 16-bit
parcel.

• <k> reserves k parcels of storage; k may be a
numeric constant or a symbol with absolute value.

• <<k>> generates k parcels of zeros; k may be a
numeric constant or a symbol with absolute value.

O

SM-0036 4-18 B

5. BASIC TOP HARDWARE INSTRUCTION SET

This section describes the AMPL instructions that generate instructions
in the basic I/O Processor (lOP) hardware instruction set. For ease of
reference/ these hardware instructions are grouped with instructions of
similar function.

5.1 INSTRUCTION INDEX

Table 5-1 shows the APML instructions described in this section.
Designed for quick reference/ it gives the general function of a set of
instructions/ shows the lOP instructions/ the APML symbolic instruction/
and the subsection that gives detailed information on the instructions.

Table 5-1. Instruction Index

1 Instruction
1 Function and Subsection 1 lOP Instruction

APML j
Symbolic Instruction |

1 Control 1 000 PASS 1

1 (5.2) 1 001 EXIT 1

1 002 I = 0 1
1 003 I = 1 1

1 Transmit to Accumulator 1 010 A — d 1

1 (5.3) 1 014 A = k 1

1 020 A = dd 1

1 030 A = idd) 1
1 050 A = B 1

1 060 A = (B) 1

1 Logical Product with 1 Oil A = A & d 1

1 Accumulator 1 015 A A & k 1

1 (5.4) 1 021 A = A & dd 1

1 031 A = A & (dd) i
1 051 A = A & B 1

1 061 A A & (B) 1

SM-0036 5-1

Table 5-1. Instruction Index (continued)

1 Instruction
1 Function and Subsection lOP Instruction

APML i
Symbolic Instruction |

1 Add to Accumulator 012 k = k + d 1

1 (5.5) 016 k z: k + k 1

022 A = A + dd 1

032 A = A + (dd) 1

052 A = A -I- B 1
062 A = A + (B) 1

1 Subtract from Accumulator 013 A = A - d 1

1 (5.6) 017 A = A - ft 1
023 A = A - dd 1
033 A = A - (dd) 1

053 A = A - B 1
063 A = A -(B) 1

1 Increment by 1 026 dd = dd + 1 1

1 (5.7) 036 (dd) = (dd) + 1 1
056 B = B -1- 1 1
066 (B) = (B) + 1 1

1 Decrement by 1 027 dd = dd - 1 1

1 (5.8) 037 (dd) = (dd) - 1 1
057 B = B - 1 1
067 (B) = (B) - 1 1

1 Add to Accumulator and 025 dd = k * dd 1
1 Replace Operand 035 (dd) = A + (dd) 1

1 (5.9) 055 B = A -1- B 1
065 (B) = A + (B) 1

1 Transmit from Accumulator 024 dd = A 1

1 (5.10) 034 (dd) = A 1
054 B = A 1
064 (B) = A 1

1 Shift 004 A = A > d 1

1 (5.11) 005 A = A < d 1
044 A = A > B 1

045 A = A < B 1

006 A = A >> d 1
007 A = A << d 1

046 A = A >> B 1
047 A = A << B 1

SM-0036 5-2

Table 5-1. Instruction Index (continued)

1 Instruction
1 Function and Subsection 1 lOP Instruction

APML i
Symbolic Instruction |

1 Set Carry Flag 1 040 C _ 1, iod = DN j
1 (5.12) 1 041 C = 1, iod = BZ 1
1 1 042 C 1, lOB = DN 1

1 043 C = 1, lOB = BZ 1

1 Branch 1 070 - 137 P dd

1 (5.13) R = dd

P = k

R = k

P s dd ^ k 1
R = dd k 1

1 Channel 1 140 - 157 iod : k 1

1 (5.14) 1 160 - 177 lOB : k i

5.2 CONTROL INSTRUCTIONS

PASS, EXIT, 1=0, and 1=1 are the control instructions.

5.2.1 PASS

This instruction performs no operation,
null operations where desired.

lAPML

I
• PASS

SM-0036

I Description

I
INo operation

5-3

It fills program fields with

lOP Instruction

000000

5.2.2 EXIT

This instruction terminates execution of the current program sequence and
returns to the sequence that was suspended in calling this siibroutine.
The current P register value is discarded. The beginning address for the
reinitiated sequence is obtained from the program exit stack at the
location currently pointed by E. The value of E is then decremented by
1. If the value of E was previously 0, the decrementing is blocked and
the Exit Stack Boundary flag is set. The Exit Stack Boundary flag causes
an interrupt of the program sequence for restructuring the contents of
the program exit stack.

If the EXIT instruction follows a modification of the program exit stack
or of the E pointer/ at least 5 clock periods (CPs) must elapse between
the last modification and the EXIT instruction.

lAPML I Description HOP Instruction

I I I
IEXIT (Exit from subroutine |001000

5.2.3 1=0

This instruction clears the System Interrupt Enable flag.

The APML assembler generates two instruction parcels for this
instruction: 002000/000000. The 000 pass instruction is included
because of a hardware anomoly by which an instruction following the
002000 may sometimes be skipped.

IAPML I Description HOP Instruction

II I
|I = 0 (Disable instruction interrupts (002000/000000

5.2.4 1=1

This instruction sets the System Interrupt Enable flag. The setting of
the flag is delayed until after the execution of a nonbranching
instruction. This prevents an interrupt from occurring between this
instruction and the following one, which is probably a branch or exit
instruction. If the following instruction clears the system interrupt
enable flag, that instruction takes precedence over the preceding one.

SM-0036 5-4 B

The delay in setting the flag for this instruction allows the interrupt
program to reenable the interrupt mode and then enit to the interrupted
program.

lAPML

1 = 1

Description

I
(Enable system interrupts

HOP Instruction

003000

5.3 TRANSMIT TO ACCUMULATOR INSTRUCTIONS

These instructions enter a value in the accumulator. The carry flag is
cleared.

5.3.1 A = d

This instruction enters the d designator in the accumulator as a 9-bit
positive integer. The high-order bits are 0.

lAPML Description

lA = d (Transmit d to A

HOP Instruction

I
(010—d

5.3.2 A = k

This instruction enters the 16-bit k field in the accumulator.

IAPML

I
(A = ^

SM-0036

I Description

I
(Transmit ^ to A

5-5

I TOP Instruction

(014000/ k

5*3.3 A = dd

This instruction enters the contents of operand register d in the
accumulator.

lAPML

|A = dd

I Description

I
(Transmit operand register
Id to A

HOP Instruction

I
1020—d

5.3.4 A = (dd)

This instruction enters the contents of a memory location in the
accumulator. The memory address is obtained from operand register d.

IAPML

I
|A = (dd)

I Description lOP Instruction

(Transmit contents of memory (030—d
(addressed by register d to A (

5.3.5 A = B

This instruction enters the B register contents in the accumulator as a
9-bit positive integer. The high-order bits are 0.

lAPML I Description IlOP Instruction

A = B (Transmit B to A 050000

5.3.6 A = (B)

This instruction enters the contents of operand register B in the
accumulator and then clears the carry flag.

lAPML

I
(A = (B)

SM-0036

Description

I
(Transmit operand register
(B to A

5-6

(lOP Instruction

(060000

I

5.4 LOGICAL PRODPCT WITH ACajMOLATOR IMSTRnCTIOHS

These instruction £orm the bit-by-bit logical product o£ the previous
accumulator contents and a value obtained £rom the instruction £or k

£ieldS/ a register contents, or memory contents. The result is placed in
the accumulator and the carry £lag is cleared.

5.4.1 A = A & d

This instruction £orms the logical product o£ the previous accijunnulator
contents and the d designator.

lAPML I Description HOP Instruction

I i i
|A = A & d (Logical product o£ A and |011—d
I |d to A I

5.4.2 A = A & /:

This instruction £orms the logical product o£ the previous accumulator
contents and the 16-bit k £ield.

lAFML iPescription HOP instruction

I I I
|A = A & A (Logical product o£ A and (015000/ k
((^ to A (

5.4.3 k - k dd

This instruction £orms the logical product o£ the previous accumulator
contents and the contents o£ operand register d.

IAPML I Description HOP Instruction

I i I
(A = A & dd (Logical product o£ A and (021—d
((operand register d to A (

SM-0036 5-7

5.4.4 A = A & (dd)

This instruction forms the logical product of the previous accumulator
contents and the contents of a memory location. The memory address is
obtained from operand register d.

IAPML I Description HOP Instruction

I I I
|A = A & (dd) {Logical product of A and |031—d
I {contents of memory addressed {
{ {by register d, result to A {

5.4.5 A = A & B

This instruction forms the logical product of the previous accumulator
contents and the 9-bit B register contents.

IAPML I Description I TOP Instruction

I I I
{A = A & B {Logical product of A and B {051000

I {to A j

5.4.6 A = A & (B)

This instruction forms the logical product of the previous accumulator
contents and the contents of operand register B.

lAPML I Description HOP Instruction

I I I
{A = A & (B) {Logical product of A and {061000
{ {operand register B to A {

5.5 ADD TO ACCUMULATOR INSTRUCTIONS

These addition instructions add a value to the previous accumulator
contents. The carry flag is complemented if a carry is propagated from
the accumulator in the addition process.

SM-0036 5-8

5.5.1 A = A -I- d

This instruction adds the d designator to the previous accumulator
contents. The d designator is treated as a 9-bit positive integer.

lAPML I Description HOP Instruction

I i I
|A = A + d IAdd d to A |012—d

5.5.2 A = A + A

This instruction adds the 16-bit k field to the previous accumulator
contents.

lAPML I Description HOP Instruction

I I I
|A = A + IAdd A to A 1016000/ k

5.5.3 A = A + dd

This instruction adds the contents of operand register d to the
previous accumulator contents.

IAPML iPescriptlQn HOP Instruction

I I I
|A = A -f dd (Add operand register d to A |022—d

5.5.4 A = A -I- (dd)

This instruction adds the contents of a memory location to the contents
of the accumulator. The memory address is obtained from operand
register d.

IAPML IDescription | I.QP. Instruction

I I I
|A = A -I- (dd) IAdd contents of memory |032—d
I (addressed by register d to A |

SM-0036 5-9

5.5.5 A = A + B

This instruction adds the 9-bit B register contents to the previous
accumulator contents.

lAPML

A = A -I- B

I Description

IAdd B to A

HOP Instruction

I
1052000

5.5.6 A = A + (B)

This instruction adds the contents of operand register B to the previous
accumulator contents.

lAPML I Description HOP Instruction

I I I
|A = A + (B) IAdd operand register B to A 1062000

5.6 SUBTRACT FROM ACCUMULATOR INSTRUCTIONS

These instructions subtract a value from the previous accumulator
contents. The subtraction is performed by complementing the 16-bit value
to be subtracted, and adding the result to the previous accumulator
contents. 1 is then added to the result. The carry flag is complemented
if a carry is propagated from the accumulator during either addition
process.

5.6.1 A = A - d

This instruction subtracts the d designator from the previous
acciunulator contents. The d designator is treated as a 9-bit positive
integer.

IAPML

I
IA = A - d

SM-0036

I Description

I
ISubtract d from A

5-10

IlOP Instruction

I
|013--d

5.6.2 A = A -

This instruction subtracts the 16-bit A field from the previous
accumulator contents.

IAPML I Description HOP Instruction

I I I
|A = A - A ISubtract A from A 1017000/ A

5.6.3 A = A - dd

This instruction subtracts the contents of operand register d from the
previous acciunulator contents.

IAPML I Description HOP Instruction

I I I
|A = A - dd ISubtract operand register |023—d
I |d from A I

5.6.4 A = A - (dd)

This instruction subtracts the contents of a memory location from the
contents of the accumulator. The memory address is obtained from operand
register d.

IAPML I Description I TOP Instruction

I I I
|A = A - (dd) ISubtract contents of memory |033—d
I (addressed by register d |
I I from A/ result to A I

5.6.5 A = A - B

This instruction subtracts the 9-bit B register contents from the
previous accumulator contents.

IAPML I Description I TOP Instruction

i I I
|A = A - B ISubtract B from A (053000

SM-0036 5-11

5.6.6 A = A - (B)

This instruction subtracts the contents of operand register B from the
previous accumulator contents.

lAPML

|A = A - (B)

I Description

I
ISubtract operand register B
I from A

I TOP Instruction

063000

5.7 INCREMENT BY 1 INSTRUCTIONS

These instructions add 1 to the contents of a register or memory
location. The carry flag is cleared at the beginning of the operation
and a 1 is entered in the accumulator. The contents of the register or
memory location is then added to the accumulator. The carry flag is set
if a carry is propagated from the accumulator in the addition process.
The result is returned to the register or memory location.

5.7.1 dd = dd + 1

This instruction replaces the contents of operand register d with the
previous contents increased by 1.

lAPML

I
|dd = dd + 1

I

I Description HOP Instruction

ITransmit register d to A,
Iadd 1/ result to operand
(register d

5.7.2 (dd) = (dd) + 1

|026—d

This instruction increments the contents of a memory location by 1.
memory address is obtained from operand register d.

The

APML 1Description HOP Instruction

(dd) =
1

(dd) + 1|Transmit memory addressed by
(
(036—d

(register d to A, add 1, {
(result to same memory (
(location (

SM-0036 5-12

5.7.3 B = B + 1

This instruction replaces the contents of the B register with its
previous contents increased by 1.

I Description

• I
B = B 1 ITransmit B to A, add 1,

I result to B

HOP Instruction

I
1056000

I

5.7.4 (B) = (B) + 1

This instruction replaces the contents of operand register B with its
previous contents increased by 1.

APML I Description

|(B) = (B) 1 iTransmit operand register B
I I to A/ add 1, result to
I Ioperand register B

IQP Instruction

1066000

5.8 DECREMENT BY 1 INSTRUCTIONS

These instructions subtract 1 from the contents of a register or memory
location. The carry flag is cleared at the beginning of this operation.
A minus 1 value is entered in the accumulator. The contents of the

register or memory location are then added to the accumulator contents.
The carry flag is set if a carry is propagated from the accumulator in
the addition process. The result is then returned to the register or
memory location.

5.8.1 dd = dd - 1

This instruction replaces the contents of operand register d with the
previous contents decreased by 1.

I
|dd = dd - 1

SM-0036

I Description

I
{Transmit register d to A,
{subtract 1, result to operand
{register d

5-13

HOP Instruction

I
{027—d

5.8.2 (dd) = (dd) - 1

This instruction decrements the contents of a memory location by 1.
memory address is obtained from operand register d.

The

lAPML 1Description 1lOP Instruction

((dd) =
1

(dd) - 1(Transmit memory addressed by
(register d to A, subtract 1,
(result to same memory
(location

1
(037—d

1
1
1

5.8.3 B = B - 1

This instruction replaces the contents of the B register with its
previous contents decreased by 1.

lAPML I Description

|B = B - 1 (Transmit B to A, Subtract 1,
I I result to B

IlOP Instruction

1057000

5.8.4 (B) = (B) - 1

This instruction replaces the contents of operand register B with its
previous contents decreased by 1.

lAPML

(B) = (B) - 1

I Description

(Transmit operand register B
(to A, s\ibtract 1, result to
(operand register B

I TOP Instruction

I
(067000

I

5.9 ADD TO ACCUMULATOR AND REPLACE OPERAND INSTRUCTIONS

These instructions add the contents of a register (or memory) to the
accumulator and place the result in both the accumulator and the register
(or memory). The carry flag is complemented if a carry is propagated in
the addition process.

SM-0036 5-14

5.9.1 dd s A + dd

This instruction adds the contents of operand register d to the
previous accumulator contents and replaces the result in the operand
register d.

lAPML IDescription |lOP Instruction

I I I
|dd = A + dd IAdd operand register d to A, |025—d
I (result to operand register d |

5.9.2 (dd) = A + (dd)

This instruction replaces the contents of a memory location with its
previous content plus the current accumulator contents. The memory
address is obtained from operand register d.

IAPML IDescription HOP Instruction
I I I
|(dd) = A + (dd)|Add memory addressed by |035—d
I (register d to A, result to (
((same memory location (

5.9.3 B = A + B

This instruction adds the 9-bit contents of the B register to the
previous acciimulator contents.

IAPML IDescription I TOP Instruction

I I I
(B = A B (Add B to A, result to B (055000

5.9.4 (B) = A + (B)

This instruction adds the contents of operand register B to the previous
acciamulator contents.

lAPML I Description I TOP Instruction

((I
((B) = A + (B) (Add operand register B to A, (065000
((result to operand register B (

SM-0036 5-15

5.10 TRANSMIT FROM ACCUMULATOR INSTRUCTIONS

The following instructions transmit from the accumulator: dd = A,
(dd) = A, B = A, and (B) = A.

5.10.1 dd = A

This instruction stores the accumulator contents in operand register d.

lAPML

I
|dd = A

I Description

{Transmit A to register d

HOP Instruction

1024—d

5.10.2 (dd) = A

This instruction replaces the contents of a memory location with the
current accumulator contents. The memory address is obtained from
operand register d.

lAPML

I
I(dd) = A

I

I Description IlOP Instruction

{Transmit A to memory addressed {034—d
{by register d {

5.10.3 B = A

This instruction replaces the B register contents with the low-order
9 bits of the accumulator contents.

iAPML I Description HOP Instruction

{B = A {Transmit A to B 054000

SM-0036 5-16

5.10.4 (B) = A

This instruction stores the accumulator contents in operand register B

'APML

1(B) = A

I Description

I
(Transmit A to operand
I register B

HOP Instruction

1064000

5.11 SHIFT INSTRUCTIONS

The shift instructions shift accumulator contents and associated carry
flag to the right or left. The carry flag may be regarded as a 17th bit
to the left of the accumulator contents for these operations. The shift
count is obtained from the low-order 5 bits of the d field or the
low-order 5 bits of the B register contents.

5.11.1 END OFF SHIFTS

In the end off shifts, bits shifted off are discarded and 0 bits are
entered at the opposite end. The accumulator and carry flag are cleared
if the shift count is greater than 16.

lAPML 1Description (lOP Instruction

1
(A = A

1

> d
1
(Right shift C and A by d
(places, end off

1
(004—d

1

lAPML 1Description (lOP Instruction

>

II

>

< d
1
(Left shift C and A by d
(places, end off

1
(005—d

1

lAPML (Description HOP Instruction

<

ti

<

> B

1
(Right shift C and A by B
(places, end off

1
(044000

1

lAPML (Description (lOP Instruction

|A = A < B (Left shift C and A by B
I (places, end off

SM-0036 5-17

I
(045000

I

5.11.2 CIRCULAR SHIFTS

In the circular shifts, bits shifted off are entered at the opposite end,

Iapml I Description

I I
|A = A >> d IRight shift C and A by d
I Iplaces, circular

iapml

I I
|A = A << d ILeft shift C and A by d
I Iplaces, circular

iapml

I I
|A = A >> B IRight shift C and A by B
I (places, circular

iapml

I I
(A = A << B (Left shift C and A by B
i (places, circular

I Description

{Description

I Description

5.12 SET CARRY FLAG INSTRUCTIONS

The following instructions set the carry flag.

IlOP Instruction

I
1006—d

I

HOP Instruction

I
1007—d

IlOP Instruction

046000

HOP Instruction

047000

5.12.1 C = 1, iod = DN

This instruction forces the carry flag to the same state as the channel
d done flag.

(APML (Description

I (
(C = 1, iod = DN(Set carry equal to channel
((d done

SM-0036 5-18

HOP Instruction

040—d

5.12.2 C = 1

Channel 000 is always done. You can set the carry flag by setting
d = 000 in this instruction.

lAPML I Description HOP Instruction

I I I
|C = 1 ISet carry flag 1040000

5.12.3 C = 1, iod = BZ

This instruction forces the carry flag to the same state as the channel
d busy flag.

IAPML I Description HOP Instruction

i I I
|C = 1, iod = BZ|Set carry equal to channel {041—d
I |d busy I

5.12.4 C = 0

Channel 000 is never busy. You can force the carry flag clear by setting
d to 000 in this instruction.

IAPML I Description HOP Instruction

I I I
|C = 0 IClear carry flag |041000

5.12.5 C = 1, lOB = DN

This instruction forces the carry flag to the same state as the done flag
of the channel specified by the B register contents.

lAPML I Description HOP Instruction

I I I
|C = 1, lOB = DN|Set carry equal to channel |042000
I IB done |

SH-0036 5-19

5.12.6 C = 1/ lOB = BZ

This instruction forces the carry flag to the same state as the busy flag
of the channel specified by the B register contents.

lAPML IDescription I TOP Instruction

I I I
|C = 1, lOB = BZ|Set carry equal to channel (043000
I |B busy I

5.13 BRANCH INSTRUCTIONS

The branch instructions in the lOP use instruction codes O7O3 through
137g, comprising 40 different instructions. This large number of
branch instructions comes from having a unique instruction code for every
combination of the following three variables. For the full set of
hardware instructions and their instruction codes, see appendix B,
Hardware Instruction Summary.

1. Branch type;

P=x Jump
R=x Return jump

. .

2. Branch condition:

Unconditional branch

,C=0 Branch if carry flag is clear
,C=1 Branch if carry flag is set
,A=0 Branch if accumulator is zero

,A#0 Branch if accumulator is nonzero

3. Branch mode:

P=P+dt Branch to a new program address formed by adding
the d designator to the current instruction
address

P=P-df Branch to a new program address formed by
subtracting the d designator from the current
instruction address

t This APML format is for illustrative purposes only. The assembler
does not support this format as a symbolic APML instruction, although
the hardware instruction is generated automatically by APML whenever a
branch is to a label within the same instruction page.

SM-0036 5-20 B

P=(id Branch to the address in operand register dd

P-dd+k ' Branch to the address formed by adding the k
field to the contents of operand register dd

The execution of a branch instruction does not alter the accumulator

contents and carry flag.

For instructions with destination dd or dd+k, the Program Fetch
Request flag is set if the contents of operand register dd contain a 0.

5.14 CHANNEL FUNCTION INSTRUCTIONS

The channel function instructions issue a function to the channel

specified. In the lOB:)!: instruction, the B register contents specifiy
the channel. In the iod:k instruction, the channel mnemonic iod
specifies the channel, where the value of the iod symbol is inserted by
APML in the 9-bit d field of the instruction. The function code k
must be a positive value less than 203/ and is added to 1400 or I6O3
to form the lOP instruction code for iod:k or IOB;fc, respectively.

The channel function instruction may provide accumulator data to the
channel interface or may return channel interface data to the
accumulator. For additional information about specific channel
functions, see section 4, Symbolic APML Instruction Syntax, and appendix
C, Messages.

The channel function instructions are as follows:

iod:k Channel d function k 140—d through 157—d
IOB:)c Channel B function k 160000 through 177000

SM-0036 5-21

6. PSEUDO INSTRUCTIONS

APML includes a set of instructions known as pseudo instructions to
direct the assembler in its task of interpreting the source statements
and generating an object program.

Some pseudo instructions such as IDENT and END are required by the
assembler; others are optional. If certain of these optional
instructions are not used, the assembler uses a default setting.

6.1 RULES FOR PSEUDO INSTRUCTIONS

Each program module begins with an IDENT instruction and ends with an END
instruction. Symbol, micro, and macro definitions occurring within the
program module are cleared before assembling the next program module.

You may define a symbol, micro, or macro prior to the first IDENT pseudo
instruction or between an END and a subsequent IDENT pseudo instruction.
Such a definition is considered global and may be referenced in any
subsequent program module. For more information on global definitions,
see subsection 2.8, Global Definitions.

Symbolic machine instructions and the pseudo instructions that follow
must appear within a program module. They are allowed outside of an
IDENT to END sequence only within macro definitions.

ABS EXT

BASEREG GLOBAL

BITP LOC

BITW MICSIZE

BLOCK NEWPAGE

BSS ORG

BSSZ PDATA

COMMENT QUAL

CON SCRATCH

DATA START

ENDTEXT TEXT

ENTRY VWD

In an absolute program module, the ABS pseudo instruction must appear
before any symbolic machine instruction or before any of the preceding
pseudo instructions. All other pseudo instructions and macro definitions
may appear anywhere.

SM-0036 6-1

6.2 TYPES OF PSEUDO INSTRUCTIONS

Pseudo instructions are classified according to their applications as
follows:

Class

Program control

Code control

Loader linkage

Mode control

Block control

Error control

Listing control

Symbol definition

Data definition

Conditional assembly

Pseudo Instructions in Class

IDENT, END, ABS, COMMENT, GLOBAL

BASEREG, SCRATCH, NEWPAGE

ENTRY, EXT, START

BASE, QUAL

BLOCK, ORG, BSS, LOC, BITW, BITP

ERROR, ERRIF

LIST, SPACE, EJECT, TITLE, SUBTITLE, TEXT,

ENDTEXT

EQUALS, SET, CHANNEL, MICSIZE

CON, BSSZ, DATA, PDATA, VWD

IFA, IFE, IFC, SKIP, ENDIF, ELSE

Instruction definition MACRO, LOCAL, ENDM, OPSYN

Code duplication

Micro definition

DUP, ECHO, ENDDUP, STOPDUP

MICRO, OCTMIC, DECMIC

6.3 PROGRAM CONTROL PSEUDO INSTRUCTIONS

The pseudo instructions described in this subsection define the limits of
a program module and define the type of assembly to be performed.

6.3.1 IDENT - IDENTIFY PROGRAM MODULE

The IDENT pseudo instruction identifies a program module and marks its
beginning. The name of the module appears in the heading of the listing
produced by APML and in the Program Descriptor Table (PDT) of the binary
load module.

SM-0036 6-2

Format:

I Location I Result I Operand

I I I
I ignored |IDENT |name

name Name of the program module; a name must meet the
requirements for names given in section 2, APML Assembler
Language.

Example:

•Location •Result •Operand • Comment

•1 m 120 -l.
III I
I IIDENT IKOJE I

6.3.2 END - END PROGRAM MODULE

The END pseudo instruction is the final statement of a program module.
It causes the assembler to take the following actions:

• Reset the numeric base for assembly to octal

• Clear the base^ list, qualification, base register, and block
stacks

• Terminate any skipping, macro definitions, or repeated code

• Reset the list control options to those determined by the APML
control statement

Format:

I Location I Result IOperand

I I I
I ignored jEND j ignored

6.3.3 ABS - ASSEMBLE ABSOLUTE BINARY

The ABS pseudo instruction designates that a program module will be
assembled as an absolute rather than a relocatable load module. Since

there is no loader for processing relocatable APML code, you should
always include this pseudo instruction.

SM-0036 6-3

Format:

^
iLOCatiOP I Result IOperand ^

III
I ignored \ABS |ignored

6.3.4 COMMENT - DEFINE PROGRAM DESCRIPTOR TABLE COMMENT

The COMMENT pseudo instruction defines a character string to be entered
as an informational comment in the PDT of the binary load data. The
character string is entered as 0 to 10 words of left-justified,
blank-filled ASCII data, starting in the 12th header word of the PDT.

If a stibprogram contains more than one COMMENT pseudo, the character
string from the last COMMENT pseudo is inserted in the PDT.

Format;

I Location I Result Ioperand

{ignored (COMMENT {'character string'

'character string'
ASCII character string of 0 to 80 characters

Example:

(Location (Result (Operand (Comment

11 110 120 135

1
1
1

1
(IDENT
(COMMENT

1 1
(APML (
(•COPYRIGHT CRAY RESEARCH, INC. 1980'

6.3.5 GLOBAL - DECLARE GLOBAL SYMBOLS

The GLOBAL pseudo instruction declares a symbol to be a global symbol. A
symbol declared in this manner is maintained across program modules as if
it were a symbol defined in a system text.

Format:

I Location I Result I Operand

I I I
{ignored (GLOBAL {symboli, symbol2t-"* symbol^

SM-0036 6-4 B

symbolThe name of a symbol. You must define the symbol
elsewhere in the program module.

6.4 CODE CONTROL PSEUDO INSTRUCTIONS

The pseudo instructions described in this subsection provide control of
the I/O Processor (10?) code generated by APML.

6.4.1 BASERE6 - DECLARE BASE OPERAND REGISTER

The BASEREG pseudo instruction declares the operand register to be used
by APML in 2-parcel jump instructions. All lOP jump instructions are
either 1- or 2-parcel instructions. One-parcel instructions allow
jumping 511 parcels forward or backward from the current address.
Two-parcel jump instructions contain an operand register index and a
16-bit address. The jump destination is the sum of the 16-bit address
and the contents of the indicated operand register.

You may either explicitly name the operand register in each 2-parcel jump
instruction or may specify a base register and allow APML to implicitly
use the declared register whenever a 2-parcel instruction is required.

Format:

I Location I Result I Operand

jignored \BASEREG |symbol,bias

symbol A symbol representing the base register. You must ensure
that the declared register contains the proper base address.

bias An expression whose value is a bias against the address
contained in the base register (default is 0). This
parameter is normally omitted. It is needed only when
using the program fetch feature of the lOP to prevent
interrupts when a base register would otherwise contain a
valid zero address.

If the operand field is blank, a previously declared base
register is no longer valid. Two-parcel juutips which do not
explicitly name an operand register produce a warning and
operand register 0 is used.

SM-0036 6-5

bias If the operand field is an asterisk, the previous base
(continued) register and bias are popped from the stack. Each

occurrence of a BASEREG pseudo instruction other than
BASEREG * causes an entry in the stack. Each BASEREG *
removes an entry from the stack. If the stack is empty,
base register is declared.

Example:

no

ICode generated 1Location 1Result 1Operand 1Comment

11 110 120 1 35

1
1

1
1IDENT

1
1BASEREG

1
1

1 1 |R1 1EQUALS 11 1
1 1BASEREG |R1 1

1075001 / 001744 1 1P=NEXT 1 1

1 1<1742> 1 1.Reserve

1 1 1 1 1742

1 1 1 1 parcels
INEXT

1

|A=B

1

1
1
1

1
1
1

1

1
1 |END

1

1
1

i

1
1

2 SCRATCH - DECLARE APML SCRATCH REGISTER

When generating lOP machine instructions from APML statements, APML
sometimes uses scratch operand registers to hold memory addresses or
intermediate values.

The SCRATCH pseudo instruction declares operand registers that APML uses
for this purpose.

Format:

I Location I Result I Operand

I I I
I ignored \SCRATCH | r , r2,... r.

SM-0036

A symbol used as a register name. You may declare from
zero to five register symbols. The symbol may be external,
relocatable, or absolute with a positive value less than
512.

6-6

Each occurrence of the SCRATCH pseudo instruction declares a new set of
scratch registers. If APML needs more scratch registers than are
declared, an error is generated.

You can determine scratch register usage by APML from a cross-reference
listing generated by APML for each line in which a scratch register is
used.

Example:

•Code qenerated 1Location • Result •Operand •Comment

11 110 120 135

1 1
1 6

i 4

1
1
•SHARK

• DO

1
• DA

IIDENT
1EQUALS
(SET
1SCRATCH
1EQUALS

1
• SCRATCH

|1
|6
•SHARK,DO,DA

|4

1
1
1
1
1
1

LOC <1> I
(LOC)=(1057)014000 /OOOOOO 024001

014000 /001057 024006

030006 034001

END

6.4.3 NEWPAGE - FORCE A NEW INSTRUCTION PAGE

The NEWPAGE pseudo instruction causes APML to force an instruction page
boundary. All labels appearing on previous APML instructions are
defined. Jumps across a page boundary must be 2-parcel jumps.
Optimization of the previous block of code occurs.

This instruction forces definition of labels and allows you to control to
some extent where page boundaries occur so that the assembler can improve
code optimization.

Format:

I Location I Result IOperand

I I I
•ignored jNEWPAGE j

SM-0036 6-7

Example:

i Code generated |Location Result 1Operand 1Comment
1 11 10 120 135

1 1
1 1 IDENT

1
1NEWPAGE

1
1

1 1 |R1 EQUALS |1 1
1 1 BASEREG |R1 1
1075001 /000002 | PsNEXT 1 1
1 1 NEWPAGE 1 1
1 INEXT

1 1
1 1

A=B

•

1
1

1
1

1 1
1 1

•

END

1

1
1

1

1
1

LOADER LINKAGE PSEUDO INSTRUCTIONS

The pseudo instructions ENTRY and EXT provide for loading multiple object
program modules and linking them into a single executable program.

6.5.1 ENTRY - SPECIFY ENTRY SYMBOLS

The ENTRY pseudo instruction specifies symbolic addresses or values that
may be referred to by other program modules linked by the loader. Each
entry symbol must be a relocatable or absolute symbol defined within the
program module.

Format:

I Location I Result I Operand

Iignored | ENTRY | sgmbol-i,symibol2/... /symbol^

symbolA valid symbol

Example:

Location [Result [Operand

\L

SM-0036

10 2Q_

I I
I ENTRY IEPTNME

I Comment

25-

6-8

6.5.2 EXT - SPECIFY EXTERNAL SYMBOLS

The EXT pseudo instruction specifies linkage to symbols defined as entry
symbols in other program modules. They may be referred to from within
the program module but must not be defined within the program module.
Symbols specified on the EXT instruction have absolute and value
attributes with a value of 0.

Format:

I Location I Result I Operand

I I
I ignored |EXT

I
Isgjo^ / sgm^ /... #sgiHj^

sgntj^ An unqualified symbol

Example:

Location I Result IOperand

L

VALUE

IDENT

ENTRY

EQUALS

END

IDENT

EXT

CON

20.

VALUE

-2

B

VALUE

VALUE

Comment

.The 64-bit external value -2 to

.be stored here by a loader

6.5.3 START - SPECIFY PROGRAM ENTRY

The START pseudo instruction specifies the main program entry. In a
relocatable program, this entry is the symbolic address where execution
begins following the loading of the program. The named symbol may
optionally be an entry symbol specified in an ENTRY pseudo instruction.

You can name only one main program entry in a program module.

SM-0036 6-9

Format:

I Location I Result I Operand

I . • >
Iignored |START |symbol

symbol An entry symbol

6.6 MODE CONTROL PSEUDO INSTRUCTIONS

Mode control pseudo instructions define the characteristics of an
assembly. The BASE pseudo determines whether notation for numeric data
is assiimed to be octal or decimal. The QUAL pseudo instruction permits
symbols to be defined as qualified or unqualified.

6.6.1 BASE - DECLARE BASE FOR NUMERIC DATA

The BASE pseudo instruction allows specification of the base of numeric
data as being octal, decimal, or mixed when the base is not explicitly
specified by an O' or D' prefix. The default is octal.

Format:

I Location I Result I Operand

I I I
I ignored |BASE |base

base Required single character/ as follows:

0 Octal; all numeric data is assumed to be octal.

D Decimal; all numeric data is assumed to be decimal.

M Mised; numeric data is assumed to be octal except for
numeric data used for the following, which is assumed
to be decimal:

• Statement counts in DUP and conditional

statements

• Line count in SPACE

• Bit position or count in BITW, BITP, or VWD

• Character counts as in MICRO, OCTMIC, DECMIC, and

data items

SM-0036 6-10 B

Example:

Reverts to use of the previous base in the stack.
Each occurrence of a BASE pseudo instruction other
than BASE* * causes an entry in the stack. Each BASE *
removes an entry from the stack and causes the base in
use prior to the current base to be resumed. If the
stack is empty when BASE * is encountered, the APML
default mode (octal) is used.

•Location 1Result 1Operand 1Comment

11 110 120 135

IBASE
1
P

1
1.Change base from default (octal)

1 1.to decimal
jvWD 140/10 1.Field size and constant value

1 •
1
1 •
1

1.both decimal

1
1

1 •

1 •

IBASE

1 •

1 •

|M

1

1
1.Change from decimal to mixed

1 1.base
|VWD 140/12 1.Field size decimal; constant

1 •

1
1 •

1

1.value octal

1
1

1 •

1 •

IBASE

1 •

1 •

|0

1

1
1.Change base from mixed to octal

jvWD 150/12 1.Field size and constant value

1 •

1
1 •

1

1.both octal

1
1

1 •

1 •

IBASE

1 •

1 •

1*

1

1
1.Resume mixed base

IBASE 1* 1 .Resiune decimal base
IBASE 1* 1.Stack empty; resume octal base

Example:

ICode generated

l_

010012

010012

1010014

I
1010012

SM-0036

Location

6-11

Result iOperand

IDENT

A=12

BASE

A=12

BASE

A=12

BASE

A=12

END

20-

BASE

Comment

15_

.BASE 0

.BASE O

.BASE D

.BASE O

6.6.2 QUAL - QUALIFY SYMBOLS

A QUAL pseudo instruction begins or ends a code sequence in which all
symbols defined are either qualified by a qualifier specified by the QUAL
or are unqualified. Until the first use of a QUAL pseudo instruction/
symbols are defined as unqualified. Global symbols cannot be qualified.
Thus, QUAL pseudo instructions must not occur before IDENT.

A qualifier applies to symbols only and does not affect names used for
blocks, conditional sequences, duplicated sequences, macros, micros,
externals, and formal parameters.

Format:

I Location I Result I Operand

I I I
I ignored IQUAL \qualification

qualification
Indicates whether symbols are to be qualified or
unqualified; if qualified, indicates the qualifier to be
used. The field may contain a qualifier, * , or no entry.

qualifier The presence of a 1- to 8-character
qualifier, where a qualifier is a valid
name, causes all symbols defined until the
next QUAL pseudo instruction to be qualified.
Being qualified means that such a symbol can
be referenced with or without the qualifier
within any sequence in which the qualifier is
in effect; however, if the symbol is
referenced while some other qualifier is in
effect, the reference must be in the form:

/qualifier/symbol
When a symbol is referenced without a
qualifier, APML first attempts to find
it qualified by the qualifier in
effect. If the qualified symbol is not
defined, APML attempts to find it in the
list of unqualified symbols. The symbol
is undefined if both of these searches

fail.

SM-0036 6-12 B

Example:

An*resumesuseo£thequalifierineffect
previoustothecurrentqualification.Each
occurrenceofaQUALotherthanaQUAL*

causesanentryinaqualificationstack.
EachQUAL*removesanentryfromthestack
andcausesthequalificationineffecttobe
resumed.IfthestackisemptywhenQUAL*is
encountered/symbolsaredefinedunqualified.

noentryIftheoperandfieldoftheQUALisempty,
symbolsaredefinedasunqualifieduntilthe
nextoccurrenceofaQUALpseudoinstruction.
Youcanreferenceanunqualifiedsymbol
withoutqualificationfromanyplaceinthe
programmodule,orinthecaseofglobal
symbols,fromanyprogrammoduleassembled
afterthesymboldefinition.

Location1Result1Operand1Comment

1110120135

1•

1«

1
1
1

1
|.Systemdefaultisunqualified
1

ABC

1•

1EQUALS
1
|1

1
1.ABCisdefinedunqualified

IQUAL1JVR1.SymbolswillbequalifiedbyJVR
ABC1EQUALS|21

|P=XYZ11
XYZ|A=23

1•

1
1
1

1
1

1•

1•

IQUAL

1

1
|DCK

1

1
1.SymbolswillbequalifiedbyDCK

ABC1EQUALS|31
jP=/JVR/XYZ
1•1

11

1
1

1•

1•

IQUAL
1•

1

1
1*
1
1

1

1
1.ResumeuseofJVR

1
1 1•

1•

IQUAL

1

1
1

1

1
|.Symbolswillbeunqualified

AjlFAiDEF,ABC1.TestforABCdefined
BjlFA|DEF,/JVR/ABC1.Testfor/JVR/ABCdefined
C1IFA|DEF,/DCK/ABC1.Testfor/DCK/ABCdefined

SM-00366-13

6.7 BLOCK CONTROL PSEUDO INSTRUCTIONS

You can divide a program, whether assembled into absolute binary or
relocatable binary, into sections called blocks. As assembly of a
program proceeds, you explicitly or implicitly assign code to specific
blocks or reserve areas of a block. The assembler assigns locations in a
block consecutively as it encounters instructions or data destined for
the block.

By dividing a program into blocks, you can conveniently separate
executable sequences of code from nonexecutable data. When no BLOCK
pseudo instructions are used, all assignment of code is implicitly
designated in the nominal block. Use the nominal block for all code not
explicitly contained in a named block.

When a BLOCK pseudo instruction is used, all code generated or memory
reserved from the occurrence of one BLOCK instruction up to the
occurrence of the next BLOCK instruction is assigned to the designated
block. Until the first BLOCK instruction, the nominal block is used.

Blocks defined by BLOCK instructions are referred to as local blocks
because at program end, all of the blocks are concatenated with the
nominal block to form the program block. That is, blocks exist local to
the assembly and are invisible to a relocatable loader.

The nominal block is always the first block in the program block. All
other local blocks are appended in the order that the blocks are first
referenced in a BLOCK instruction.

APML maintains a pushdown stack of block names. It makes an entry in the
stack each time a BLOCK pseudo instruction names a block to be used and
deletes an entry from the stack each time a BLOCK pseudo contains * to
indicate resumption of the block previously in use. The block in use is
always the top entry in the stack. If the program contains more BLOCK *
instructions than there are entries in the stack, the assembler uses the

nominal block.

For each block used in a program, APML maintains an origin counter, a
location counter, and a bit position counter. When a block is first
established or its use is resumed, APML uses the counters for that

block. During pass 1 of the assembler, the origin and location counters
for a block are initially 0. During pass 2, as the assembler constructs
the program, it assigns an initial value to each local block origin
counter and location counter. Thus, expressions containing relocatable
symbols are evaluated differently in pass 2 than in pass 1.

The origin counter controls the relative location of the next word to be
assembled or reserved in the block. It is possible to reserve blank
memory areas simply by using either the ORG or BSS pseudo instructions to
advance the origin counter. When the special element *0 is used in an
expression, the assembler replaces it with the current parcel-address
value of the origin counter for the block in use. You may use W.*0 to
obtain the word-address value of the origin counter.

SM-0036 6-14

The location counter is normally the same value as the origin counter and
^40^ is used by the assembler for defining symbolic addresses within a block.

The counter is incremented whenever the origin counter is incremented.
The LOC pseudo instruction adjusts the location counter so that it
differs in value from the origin counter or so that it refers to the
address relative to a block other than the one currently in use. When
the special element * is used in an expression, the assembler replaces it
by the current parcel address value of the location counter for the block
in use. You may use W.* to obtain the word address value of the location
counter.

As instructions and data are assembled and placed into a word, APML
maintains a pointer indicating the next available bit within the word
currently being assembled. This pointer is known as the
word-bit-position counter. It is 0 when a new word is begun and is
incremented by 1 for each completed bit in the word. Its maximum value
is 63 for the rightmost bit in the word. When a word is completed, the
origin and location counters are incremented by 1 and the word bit
position counter is reset to 0 for the next word.

When you use the special element *W in an expression, the assembler
replaces it with the current value of the word-bit-position counter. The
normal advancement of the word-bit-position counter is in increments of
16, 32, and 64 as 1- and 2-parcel instructions or words are generated.
You can alter this normal advancement, however, through use of the BITW,
BITP, and VWD pseudo instructions.

The assembler completes a partial word and sets the word-bit-position and
parcel-bit-position counters to 0 if either of the following conditions
is true:

♦ The current instruction is an ORG, LOC, BSS, BSSZ, or CON pseudo
instruction

• The current instruction is a DATA or VWD pseudo instruction and
the instruction has an entry in the location field

Unused bits in a partial word are filled with binary zeros.

In addition to the word-bit-position counter, APML maintains a counter
that points to the next bit to be assembled in the current parcel. This
pointer is known as the parcel-bit-position counter. It is 0 when a new
parcel is begun and advances by 1 for each completed bit in the parcel.
Its maximum value is 15 for the rightmost bit in a parcel. When a parcel
is completed, the parcel bit position counter is reset to 0.

When you use the special element *P in an expression, APML replaces it
with the current value of the parcel-bit-position counter.

SM-0036 6-15

The parcel-bit-position counter is set to 0 following assembly of most
instructions. The pseudo instructions BITW, BITP/ DATA, and VWD may
cause the counter to be nonzero.

The assembler completes a partially filled parcel and sets the
parcel-bit-position counter to 0 if the current instruction is a symbolic
APML instruction.

6.7.1 BLOCK - LOCAL BLOCK ASSIGNMENT

A BLOCK pseudo instruction establishes or resumes use of a block of code
within a program module (a local block). Each block has its own
location, origin, and bit-position counters.

Format:

I Location I Result I Operand

I I i
I ignored \BLOCK (name

name Name of the block to be used for assembling code until the
occurrence of the next BLOCK pseudo instruction

bname Name of local block

* Return to previous block

blank Resume use of nominal block

Example:

Location 1Result Operand Comment

m. 20- 23.

.Nominal block in use

BLOCK .Use block A

BLOCK .Use nominal block

BLOCK Return to use of block A

SM-0036 6-16

6.7.2 ORG - SET *0 COUNTER

The ORG pseudo instruction resets the location and origin counters to the
value specified. The expression must have a value- or word-address
attribute. If the expression has a value attribute# it is assumed to be
a word address.

The first occurrence of the ORG instruction in an absolute assembly
indicates the address at which binary output begins. Subsequent ORG
instructions cannot specify a value lower than the first ORG value. If
ORG is omitted# an origin of 0 is assumed.

Format:

I Location I Result I Operand

Iignored |ORG
I
lexp

exp New origin word address# a relocatable expression with
positive relocation within block currently in use. In an
absolute assembly# exp must be absolute if in the nominal
block. If the expression is blank# the word address of the
next available word in the block is used. All symbols used
in the expression must be previously defined. A force to
word boundary occurs before the expression is evaluated.

Example:

1Location 1Result 1Operand 1Comment

11 110 120 135

1
|ORG

1
1

1
|0*200/4

1
1

1
1.Absolute assembly
j.Set origin to the word address
(.equivalent to parcel 200g.

6.7.3 BSS - BLOCK SAVE

The BSS pseudo instruction reserves a block of memory in a program. A
force to word boundary occurs and then the nijunber of words specified by
the operand field expression is reserved. This pseudo instruction does
not generate data. The block of memory is reserved by increasing the
location and origin counters.

SM-0036 6-17

Format:

I Location I Result I Operand

I I
symbol |BSS

I
lexp

symbol Optional symbol assigned the word address of the location
counter after the force to word boundary occurs

exp An absolute expression with word-address or value-address

attribute and with all symbols previously defined. The
expression value must be positive. A force to word
boundary occurs before the expression is evaluated.

The left margin of the listing shows the octal word count.

Example:

Location 1Result 1Operand 1Comment

1 110 120 135

1
|BSS

1

1
|4

1
1

1
1
1

A

1 •

ICON
ICON
ICON
|BSS

1

I
1'NAME*
II
12
IA+16-W.*

1

1
1
1
1
1.Reserve 13 more words

Example:

Code generated 1Location 1Result 1Operand 1Comment

11 110 120 135

1
1

1
11DENT

1
IBSSBSSZ

1
1

050000 1 |A=B 1 1
12 |NON |BSS |12 1

4 IZERO IBSSZ |4 1
IHERE 1* 1 1
1 |END

6.7.4 LOC - SET * COUNTER

The LOC pseudo instruction resets the location counter to the first
parcel of the word address specified. The location counter assigns
address values to location field symbols. Changing the location counter

SM-0036 6-18

allows code to be assembled and loaded at one location, controlled by the
origin counter, then moved and executed at another address, controlled by
the location counter.

Format:

I Location I Result 1Operand

I I
I ignored \LOC exp

exp

Example:

Location

New location counter word address, a relocatable expression
with positive relocation, not necessarily within the block
currently in use. The expression may also be absolute.
All symbols used in the expression must be previously
defined. A force word boundary occurs before the
expression is evaluated.

Result I Operand Comment

10 20. 23.

I I
In this example, the code is generated and loaded at parcel
10000, and moved by your parcel to 200 before execution
ABS I I
ORG 110000/4 I
LOC 1200/4 I
A1 = 0 I I

P = A

6.7.5 BITW - SET *W COUNTER

The BITW pseudo instruction sets the current bit position relative to the
current word to the value specified. A value of 64 indicates the
following instruction is to be assembled at the beginning of the next
word (force word boundary). If the counter is set lower than its current
value, any code previously generated in the overlapping portion of the
word is ORed with any new code.

SM-0036 6-19

Format:

I Location I Result I Operand

I I I
Iignored \BITW |exp

exp An expression with absolute value attribute with positive
value less than or equal to 64. When the base is M
(mixed)/ APML assumes that exp is decimal.

Example:

1Location 1Result 1Operand 1Comment
11 110 1 20 135

1
1

1
IBITW

1
|D'39

1
1

6.7.6 BITP - SET *P COUNTER

The BITP pseudo instruction sets the bit position relative to the current
parcel to the value specified. A value of 16 forces a parcel boundary.
If the current position is in the middle of a parcel, the bit position is
set to the beginning of the next parcel; otherwise, the bit position is
not changed. If the counter is set lower than its current value, any
code previously generated in the overlapping portion of the word is ORed
with any new code.

Format:

[Location I Result I Operand

I

exp

I
ignored |BITP

I
I exp

An expression with absolute value attribute with positive
value less than or equal to 16. When the base is M
(mixed), APML assumes that exp is decimal.

Example:

1Location |Result 1Operand 1Comment

11 110 120 1 35

1 i
1 1BITP

1
|D' 14

1
1

SM-0036 6-20

6.8 ERROR CONTROL PSEUDO INSTRUCTIONS

Two pseudo instructions, ERROR and ERRIF, allow you to generate an
assembly error condition.

6.8.1 ERROR - UNCONDITIONAL ERROR GENERATION

The ERROR pseudo instruction unconditionally sets an assembly error flag.

Format:

I Location I Result I Operand

I I I
Ierror |ERROR |ignored

error A valid error flag character as defined in appendix D,
Assembly Errors. P is used if this field is null.

Example:

1Location 1Result 1Operand 1Comment

11 110 120 135

|IFE
1ERROR
1 •

1 •

1 •

1
|ABC,LT,DEF,1

1
1
1
1

1

1
1
1
1

6.8.2 ERRIF - CONDITIONAL ERROR GENERATION

The ERRIF pseudo instruction conditionally sets an assembly error flag.

Format:

I Location I Result I Operand

I I I
Ierror |ERRIF |expi,op,exp2

error A valid error flag character as defined in appendix D,
Assembly Errors. P is used if this field is null.

SM-0036 6-21

expi, exp2
Expressions to be compared. Any symbols must have been
defined previously. These expressions are evaluated in ^
pass 2, whereas expressions in other conditional pseudo
instructions are evaluated in pass 1. In pass 2, address
expressions in local blocks have been relocated relative to
the beginning of the program block rather than relative to
the local block.

op Specifies a relation to be satisfied by exp]^ and
exp2 that causes generation of an error. For LT, LE,
GT, and GE, only the values of the expressions are
examined. The word-address/ parcel-address, or value
attributes and the relocatable, external, or absolute

attributes are not compared.

LT Less than; the value of exp^ must be less than
the value of exp2.

LE Less than or equal to; the value of expi must be
less than or equal to the value of exp2.

GT Greater than; the value of exp^ must be greater
than the value of exp2.

GE Greater than or equal to; the value of exp^ must
be greater than or equal to the value of exp2*

EQ Equal; the value of exp^ must be equal to the
value of exp2. The expressions must either both
be absolute, or both be external relative to the same

external symbol, or both be relocatable in the same
block. The word-address, parcel-address, or value
attributes must be the same.

NE Not equal; the two expressions, exp^ and
exp2» do not satisfy the conditions required for
EQ previously described.

Example:

1Location 1Result {Operand 1Comment

11 110 120 135

1
IP

1
jERRIF

1
1ABC,LT,DEF

1
1

SM-0036 6-22 B

6.9 LISTING CONTROL PSEUDO INSTRUCTIONS

The pseudo instructions described in this subsection allow you to control
the contents and format of the listing produced by the assembler. These
pseudo instructions are not ordinarily listed.

6.9.1 LIST - LIST CONTROL

The LIST pseudo instruction controls the listing. An END pseudo
instruction causes options to be reset to the default values.

Format:

ILocation IResult [Operand

I
I name

I
ILIST |optionj^,option2/..option^

name Optional list name. If a name is present, the instruction
is ignored unless a matching name is specified on a LIST
parameter on the APML control statement. For example, if
LISTsname appears on the APML control statement, LIST
pseudos with a matching name are not ignored. If only LIST
is specified on the APML statement, all LIST pseudo
instructions are processed regardless of the location field
name. LIST pseudos with a blank location field are always
processed regardless of the control statement LIST
parameters.

If L=0 is specified on the APML control statement, listing
output is not generated. In this case, LIST pseudos and
list options specified on the APML control statement have
no effect.

You may specify all of the following option names as APML
control statement parameters. The selection of an option
on the APML control statement overrides the enabling or
disabling of the corresponding feature by a LIST pseudo.

optioni An option name specifying that a particular listing
feature be enabled or disabled* You may specify zero, one,
or more options. Defaults are enclosed in brackets. If no
options are specified, OFF is assumed. The options are as
follows:

* Returns to previous LIST pseudo

[ON] Enables source statement listing. Source
statements and code generated are listed.

SM-0036 6-23

optionI OFF
(continued)

Disables source statement listing. Only
statements with errors are listed while this

option is selected. If LIS option is enabled,
listing control pseudo instructions are also
listed. Default when operand field is blank.

Enables cross-reference. Symbol references are
accumulated and a cross-reference listing is
produced.

Disables cross-reference. Symbol references are
not accumulated. If this option is selected when
the END pseudo is encountered, no cross-reference
is produced. This does not affect the $XRF
written by APML.

Includes unreferenced local symbols in the
cross-reference. Local symbols that were not
referenced in the listing output are included in
the cross-reference listing.

SM-0036

[XRF]

NXRF

[XNS]

NXNS Excludes unreferenced local symbols in the
cross-reference. If this option is selected when
the END pseudo is encountered, local symbols that
were not referenced in the listing output are not
included in the cross-reference.

[DUP] Enables listing of duplicated statements.
Statements generated by DUP and ECHO expansions
are listed. Conditional statements and skipped
statements generated by DUP and ECHO are not
listed unless the macro conditional list feature

(MIF) is enabled.

NDUP Disables listing of duplicated statements.
Statements generated by DUP and ECHO are not
listed.

MAC Enables listing of macro expansions. Statements
generated by macro calls are listed. Conditional
statements and skipped statements generated by
macro calls are not listed unless the macro

conditional list feature is enabled (MIF).

[NMAC] Disables listing of macro expansions. Statements
generated by macro calls are not listed.

6-24

optioni
(continued)

SM-0036

MIF Enables macro conditional listing. Conditional
statements and skipped statements generated by a
macro call, or by a DUP or ECHO pseudo
instruction, are listed. The listing of macro
expansions or the listing of duplicated
statements must also be enabled. This option
does not affect listing of conditional statements
and skipped statements in source code (not macro
expansions).

[NMIF] Disables macro conditional listing. Conditional
statements and skipped statements are not listed.

[MIC] Enables listing of generated statements before
editing. Statements generated by a macro call or
by a DUP or ECHO pseudo instruction, and
containing a micro reference or concatenation
character are listed before and after editing.
The listing of macro expansions or the listing of
duplicated statements must also be enabled.
Statements in source code (not macro expansions)
containing a micro reference or a concatenation
character are listed before editing regardless of
this option.

NMIC Disables listing of generated statements before
editing. Statements generated by a macro call,
or by a DUP or ECHO pseudo instruction, are not
listed before editing.

LIS Enables listing of listing control pseudo
instructions, including LIST, SPACE, EJECT,
TITLE, and SUBTITLE. These statements are listed

regardless of whether the source statement
listing is enabled.

[NLIS] Disables listing of listing control pseudo
instructions

[WEM] Enables warning errors. Each statement
containing a warning error is written to the
source listing and the error listing. A logfile
message is issued giving the number of warning
errors.

NWEM Disables warning errors; warning errors are
ignored.

6-25

TXT Enables global text source listing. Each
statement following a TEXT pseudo instruction is
listed through the ENDTEXT instruction if the
listing is otherwise enabled.

[NTXT] Disables global text source listing. Statements
following a TEXT pseudo instruction through the
following ENDTEXT instruction are not listed.

[WMR] Enables warning error message for macro
redefinition. If the name of a macro is the same

as a currently defined pseudo instruction or
macro/ a warning message is issued.

NWMR Disables warning error message for macro
redefinition

6.9.2 SPACE - LIST BLANK LINES

The SPACE pseudo instruction inserts blank lines in the output listing.

Format:

I Location I Result I Operand

I I I
I ignored \SPACE |count

count An absolute expression specifying the number of blank lines
to insert in the listing. When the base is M (mixed), APML
assumes that count is decimal.

6.9.3 EJECT - BEGIN NEW PAGE

The EJECT pseudo instruction causes a page eject on the output listing.

Format:

I Location I Result I Operand

I I I
I ignored \eject |ignored

SM-0036 6-26

6.9.4 TITLE - SPECIFY LISTING TITLE

The TITLE pseudo instruction specifies the main title that appears on
each page of the listing.

Format:

[Location I Result I Operand

I ignored |TITLE \'character string'

'character string'
A character string to be printed as the main title on
subsequent pages of the listing. A maximum of 64
characters is allowed.

6.9.5 SUBTITLE - SPECIFY LISTING SUBTITLE

The SUBTITLE pseudo instruction specifies the subtitle that appears on
each page of the listing.

Format:

[Location [Result I Operand

i I I
\ignored (SUBTITLE |'character string'

'character string'
A character string to be printed as the stObtitle on
subsequent pages of the listing. The instruction also
causes a page eject. A maximum of 64 characters is allowed.

6.9.6 TEXT - BEGIN GLOBAL TEXT

The TEXT pseudo instruction declares the beginning of global text
source. Source lines following the TEXT pseudo instruction up through
the next ENDTEXT pseudo instruction are treated as global text source
statements. These statements are listed only when the TXT listing option
is enabled. A symbol defined in global text source is treated as a
system text symbol for cross-reference purposes. That is, such a symbol
is not listed in the cross-reference unless there is a reference to the

symbol from a listed statement. The /block/ or system text name
column of the cross-reference listing contains the text name.

SM-0036 6-27

Symbols defined in source text are global if the text appears prior to an
IDENT pseudo instruction. Symbols in source text are local to a program
module if the text appears between IDENT and END pseudo instructions.

The TEXT pseudo instruction is listed if the listing is ON or if the LIS
listing option is enabled (regardless of other listing options).

The TEXT and ENDTEXT pseudo instructions have no effect within system
text.

Format:

I Location I Result I Operand

I I I
Iname |TEXT \ *character string'

name Optional name of global text. This name is used as the
name of the global text source following the TEXT pseudo
instruction until the next ENDTEXT pseudo instruction.
This name is associated with any symbols defined in the
global text, and it is listed in the name column of the
cross-reference listing.

'character string'
An optional character string to be printed as the subtitle
of subsequent pages of the listing. This operand and the
TXT option causes a page eject. A maximum of 64 characters
is allowed. If the operand field is blank, the original
subtitle is not affected and no page eject is performed.
If the operand field is nonblank, the preceding subtitle is
lost and replaced by the character string in the operand
field.

6.9.7 ENDTEXT - TERMINATE GLOBAL TEXT

The ENDTEXT pseudo instruction terminates global text source initiated by
a TEXT instruction. An IDENT or END pseudo instruction also terminates
global text source. The ENDTEXT instruction is not listed unless the TXT
option is enabled. If the LIS option is enabled, the ENDTEXT instruction
is listed no matter what other listing options are enabled.

Format:

I Location I Result I Operand

I I I
I ignored |ENDTEXT |

SM-0036 6-28

Example (with TXT option off):

Source:

•Location 1Result •operand • Comment

11 110 • 20 135

1IDENT
1
• TEXT

1
1

jcAT 1EQUALS • 17 1
ITXTNAME ITEXT •'An example.' 1
|D06 1EQUALS |231 1
|HAT 1EQUALS \2 1

1ENDTEXT 1 1
1A=:CAT 1 1
1A=DOG 1 1
{END 1 1

Output:

Code generated • Location • Result •Operand |Comment
• 1 • 10 •20 135

1
1 1IDENT

1 1
•TEXT 1

17 • CAT • EQUALS |17 1
ITXTNAME •TEXT •'An example.' |

0 010017 1 1A=CAT 1 1
1 010231 1 1A=DOG 1 1

1
1
1

(END 1 1
1 1
1 1

17 CAT

•

1
1

• 1

1 1
1: 2 D 1: 4 •

231 DOG • TXTNAME 1: 5 1

6.10 SYMBOL DEFINITION PSEUDO INSTRUCTIONS

The pseudo instructions EQUALS/ SET/ CHANNEL/ and MICSIZE define symbols
used in the program.

Section 2, APML Assembly Language/ gives requirements for symbols.

6.10.1 EQUALS - EQUATE SYMBOL

The EQUALS pseudo instruction defines a symbol with the value and
attributes determined by the expression. The symbol is not redefinable.

SM-0036 6-29

Format:

I Location I Result I Operand

\symbol |EQUALS \exp,attribute

symbol An unqualified symbol. The symbol is implicitly qualified
by the current qualifier. The symbol must not be defined
already. If the location field is blank, no symbol is
defined.

exp Any expression

attribute P, W, or V indicating parcel, word, or value attribute
(optional). Attribute, if present, is used instead of the
expression's attribute. An expression with word-address
attribute is multiplied by 4 if a parcel-address attribute
is specified; an expression with parcel-address attribute
is divided by 4 if word-address attribute is specified. A
relocatable expression cannot be specified as having value
attribute.

Example:

Location 1Result 1Operand 1Comment

1 110 120 135

SYMB

1
1EQUALS

1
|A*B+100/4

1
1

2 SET - SET SYMBOL

The SET pseudo instruction resembles the EQUALS pseudo instruction;
however, a symbol defined by SET is redefinable.

Format:

I Location I Result I Operand

Isymbol \SET Iexp,attribute

symbol An unqualified symbol. The symbol is implicitly qualified
by the current qualifier. The symbol must not be defined
already. If the location field is blank, no symbol is
defined.

SM-0036 6-30

exp Any expression

attribute P, W, or V indicating parcel/ word/ or value attribute
(optional). Attribute/ if present/ is used instead of the
expression's attribute. An expression with word-address
attribute is multiplied by 4 if a parcel-address attribute
is specified; an expression with parcel-address attribute
is divided by 4 if word-address attribute is specified. A
relocatable expression cannot be specified as having value
attribute.

Example:

ICode generated 1Location 1Result 1Operand 1Comment

1 11 110 120 135

1
i 100

1
jSIZE

1
1EQUALS

1
jO'lOO

1
1

1 22 jPARAM jSET |D'18 1
1 10 (WORD jSET |*W 1
1 40 1PARCEL jSET |*P 1
1 jSIZE 1EQUALS jSIZE-i-l 1.(Illegal)

1 24 jPARAM jSET lPARAM-i-2 1.(Legal)

pie:

ICode generated 1Location 1Result 1Operand 1Comment

11 110 120 135

1
1 1IDENT

1
1EQUSET

1
1

i 2 |R1 1EQUALS 12 1
1 1BASEREG |R1 1

1 1024 1GEORGE 1EQUALS 11024 1
1 17 jCAT jSET 117/P 1
1075002 /000017 1 1P=CAT 1 1
1 1031 {CAT {SET 1GEORGE-f5 1

1 jEND 1 1

6.10.3 CHANNEL - CHANNEL SYMBOL

The CHANNEL pseudo instruction defines a symbol which is recognized in
APML symbolic instructions as being a channel mnemonic. By convention/
symbols defined as channel mnemonics are 3 characters.

A symbol defined by the CHANNEL pseudo instruction has value attribute
and a value which is taken to be the hardware channel number. A channel

symbol must be defined before it is used in a symbolic APML instruction.

SM-0036 6-31

Format:

ILocation IResult iQperanc^
I I I
Isymbol |CHANNEL Iexpression

symbol A l- to 8-character symbol name; by convention, 3
characters.

expression

An expression with a positive value less than 512

Example:

ICode generated 1Location 1Result 1Operand 1Comment

11 110 120 135

1 5
1140005
1140005

1
1
|BUF

1
1
1

1
IIDENT
1CHANNEL
|BUF:0
|MOS:0
|END

1
1CHANNEL

|5

1
1
1

1
1
1
1
1
1

NOTE

If an instruction is used that references the exit

stack, register E, or the contents of an exit stack
entry, designated (E), APML requires that the channel
symbol PXS be defined. PXS is normally defined in a
system text such as $APTEXT. APML does not assume
names for other channels and does not require
definition of any other channel symbols.

6.10.4 MICSIZE - SET REDEFINABLE SYMBOL TO MICRO SIZE

The MICSIZE pseudo instruction defines the symbol in the location field
as an absolute symbol with a value equal to the number of characters in
the micro string whose name is in the operand field. Another SET or
MICSIZE instruction with the same symbol redefines the symbol to the new
value.

SM-0036 6-32

Format:

I Location I Result I Operand

I I I
Isymbol \MICSIZE |name

symbol An unqualified symbol; the symbol is implicitly qualified
by the current qualifier. The location field can be blank.

name The name of a micro strinq that is previously defined

6.11 DATA DEFINITION PSEUDO INSTRUCTIONS

The pseudo instructions followinq qenerate object binary. The only other
instructions that are translated into object binary are the symbolic APML
instructions.

Pseudo

Instruction

CON

BSSZ

DATA

PDATA

VWD

Description

Places an expression value into one or more words

Generates one or more words containing zeros

Generates one or more words of numeric or character

data

Generates one or more parcels of numeric or character
data

Generates a variable-width field of word-oriented data

6.11.1 CON - GENERATE CONSTANT

The CON pseudo instruction generates one or more full words of binary
data. This pseudo always forces a word boundary.

Format:

I Location iResult I Operand

I I I
Isymbol |CON Iexpi,exp2/.../expn

SM-0036 6-33

symbol Optional symbol assigned the word address value of the
location counter after the force to word boundary occurs

expj^ An expression whose value is to be inserted into a single
64-bit word. If an expression is blank, a single zero word
is generated. A word boundary is forced before any operand
field expressions are evaluated. A double-precision
floating-point constant is not allowed.

Example:

ICode generated 1Location 1Result 1Operand

1 11 110 120

1
10000000000000007777017
104044010020040i0020040

1
|A

1

1
ICON
ICON

1
|O'7777017

|A

6.11.2 BSSZ - GENERATE ZEROED BLOCK

The BSSZ pseudo instruction causes a block of words containing zeros to
be generated. A force to word boundary occurs, and then the number of
zero words specified by the operand field expression is generated.

Format:

I Location I Result I Operand

I I
Isymbol \BSSZ

I
lexp

symbol Optional symbol assigned the word address value of the
location counter after the force to word boundary occurs

exp An absolute expression with word address or value attribute
whose value specifies the number of 64-bit words containing
zeros to be generated. A blank operand field results in no
data generation. The expression value must be positive,
and all symbols must be previously defined.

The left margin of the listing shows the octal word count.

Example:

ICode generated 1Location I Result 1Operand

1 11 110 120

1
1 144

1 1
1 1BSSZ

1
iD'lOO

SM-0036 6-34 B

6.11.3 DATA - GENERATE DATA WORDS

The DATA pseudo instruction generates data from the items listed. The
length of the field generated for each data item depends on the type of
constant involved. A word boundary is not forced between data items.

Format:

I Location I Result I Operand

I I
Isymbol

symbol

data^

Example:

iDATA \datai,data2»...,data^

Optional symbol assigned to the address value of the
location counter after a force to word boundary. If no
symbol is present/ a force to word boundary does not occur.

A numeric or character data item

iCode generated 1Location 1Result 1Operand

11 110 120

10000000000000000005252
1
1

1
IDATA

1
10*5252,A'ABC'R

10000000000000020241103 1 1 1
10405022064204010020040 1 jDATA 1 *ABCD'

10425062164404010020040 1 {DATA 1•EFGH•
1040502206420 1 IDATA 1•ABCD•*

1 10521443510 1 IDATA 1'EFGH•*

10000000000000000000000 1 IDATA 1'ABCD'12R

1040502206420 1 1 1
1 10521443510 1 IDATA 1•EFGHIJ'*

1044512 1 1 1
10405022064204010020040 |LL2

1

IDATA
1 •

1•ABCD•

1

10000000000000000000144
1
1
1

1 •

IDATA
1
|100

1

10521102225144022251440
1
1

1 •

IDATA
1
1

10404402324252324640507 1 1 1
10424 1 1 1'THIS IS A MESSAGE'*L

1 000 1 |VWD |8/0

SM-0036 6-35

6.11.4 PDATA - GENERATE DATA PARCELS

The PDATA pseudo instruction is equivalent to the data generation
statements described in section 5, Basic lOP Hardware Instruction Set,
for symbolic APML instructions. When using the PDATA pseudo instruction,
the data items are listed in the operand field, whereas in symbolic APML
data generation statements the data items are listed in the assignment
field with no mnemonic operation name. By using PDATA, some data items
can be used which otherwise would not be allowed. For instance, you
cannot use symbolic names A, EXIT, PASS, B, and E in a symbolic APML data
definition because of conflicts with special names and registers in APML
instruction syntax.

Format:

I Location I Result I Operand

I I I
Isymbol \PDATA | i66102, ..., item^

symbol Optional symbol; if present, APML forces an instruction
page boundary.

item^ A symbol, numeric constant, character data item, or item of
the form <k> or <<k>>, where k is a symbol or numeric
constant. See section 5, Basic lOP Hardware Instruction

Set, for a more detailed description.

Example:

iCode generated 1Location iResult 1Operand

11 110 1 20

1
1

1
IIDENT

1
1PDATA

|R1 1EQUALS |2
|A 1EQUALS 1217

1000217 000002 000007 |DOG 1PDATA |A,R1,7

1 1PDATA 1'DATA ITEM*

1 1PDATA 1<10>

1 |END 1

6.11.5 VWD - VARIABLE WORD DEFINITION

The VWD pseudo instruction allows data to be generated in fields from 0
to 64 bits wide. Fields may cross word boundaries. Data begins at the
current bit position unless a symbol is used; in which case, a force word
boundary occurs and the data begins at the new current bit position.

SM-0036 6-36

Format:

I Location I Result IOperand

I I I
Isymbol \VWD ni/expi,n2/exp2. nm/e*Pm

symbol Optional symbol; if present, a force to word boundary
occurs.

expi

Field width, specifying the number of bits in the field. A
numeric constant or symbol, with absolute and value
attributes. The value of must be positive and less
than or equal to 64. When the base is M (mixed), APML
assiames that is decimal.

An expression whose value is to be inserted in the field

Example:

In the following example, the value of SIGN is 1, the value of FC is 0,
the value of ADD is 653 (octal), and the value of DSN is $IN in ASCII

code.

Code generated 1Location 1Result 1Operand

11 110 120

1
1

1
IBASE

1
|M

|PDT |BSS 10
1000000000000023440515 1 |VWD 1l/SIGN,3/0,60/A'"NAM"'R
10000000653 1 |VWD 11/1,6/FC,24/ADD

37 IREMDR 1EQUALS |64-*W
00011044516 1 |VWD 1REMDR/DSN

6.12 CONDITIONAL ASSEMBLY PSEUDO INSTRUCTIONS

The instructions described in this subsection permit optional assembly or
skipping of source code. The conditional pseudo instructions IFA, IFC,
or IFE determine whether a sequence of instructions following the test is
to be skipped or assembled. The end of the conditional sequence is
determined by a count of instructions provided on the test instruction or
by an ENDIF pseudo instruction with a matching location field name.

The ELSE pseudo instruction provides a means of reversing the effect of a
previous IFA, IFE, IFC, SKIP, or ELSE instruction. The SKIP pseudo
instruction unconditionally skips following statements.

SM-0036 6-37

When skipping under control of a statement county comment statements
(asterisk in column 1) and continuation lines (comma in column 1) are not
included in the statement count.

6.12.1 IFA - TEST EXPRESSION ATTRIBUTE FOR ASSEMBLY CONDITION

The IFA pseudo instruction tests an attribute of an expression. If the
expression has the specified attribute, assembly continues with the next
statement. If the attribute test is failed, subsequent statements are
skipped. If a location field name is present, skipping stops when an
ENDIF or ELSE pseudo instruction with the same name is encountered.
Otherwise, skipping stops when the statement count is exhausted.

If an assembly error is detected, assembly continues with the next
instruction.

Formats:

iLocation IReswlt IOperand

i I
\ifname (IFA

I UFA

\attribute,exp
Iattribute,exp,count

ifname Optional name of conditional sequence of code

attribute A mnemonic signifying an attribute of exp. An
expression has one and only one of the attributes PA, WA,
or VAL and has one and only one of the attributes EXT, REL,
or ABS.

SM-0036

An attribute may also be any of the following letters
preceded by a complement sign (#) indicating that the
second subfield does not satisfy the corresponding
condition.

Mnemonic Significance

PA The expression exp has parcel-address
attribute.

WA

VAL

EXT

REL

The expression exp has word-address
attribute.

The expression exp has value attribute.

The expression exp has external attribute,

The expression exp has relocatable
attribute.

6-38

r\

attribute Mnemonic Significance

(continued)
' ^ ABS The expression exp has absolute attribute.

DEF All symbols in the expression exp have
been previously defined.

SET The symbol in the second subfield is a
redefinable symbol.

MIC The name in the second subfield is a micro

name.

exp The second subfield must either be a valid expression,
symbol, name, or character string depending on the
attribute mnemonic.

For PA, WA, VAL, EXT, REL, ABS, and COM, the second

subfield must be a valid expression with all symbols
previously defined.

For DEF, the second subfield must be a valid expression.

For SET, the second subfield must be a valid defined symbol.

For MIC, the second subfield must be a valid name.

Expressions are evaluated in pass 1. Expressions that are
relocatable addresses in local blocks have values relative

to the beginning of the local block rather than the program
block. Address expressions in a local block other than the
nominal block on an absolute assembly are considered
relocatable in pass 1.

count Statement count; must be an absolute expression with
positive value. When the base is M (mixed), APML assumes
that count is decimal. A count parameter is reguired if
ifname is missing, otherwise, it is ignored. A missing
or null subfield gives a zero count.

6.12.2 IFE - TEST EXPRESSIONS FOR ASSEMBLY CONDITION

The IFE pseudo instruction tests a pair of expressions for a condition
under which code is to be assembled if the relation specified by the
operation (op) is satisfied. That is, if the relationship is true,
assembly resumes with the next statement. If the relationship is not
satisfied (is false), subsequent statements are skipped. If a location
field name is present, skipping stops when an ENDIF or ELSE pseudo
instruction with the same name is encountered; otherwise, skipping stops
when the statement count is exhausted.

SM-0036 6-39 B

If an assembly error is detected, assembly continues with the next
statement. _

Format:

I Location I Result I Operand

I I I
Iifname iIEE |exp^,op,exp2
I jlFE |expi,op,exp2,count

ifname Optional name of a conditional sequence of code

expi,exp2
Expressions to be compared. All symbols in the expression
must be previously defined.

Expressions are evaluated in pass 1. Expressions that are
relocatable addresses in local blocks have values relative
to the beginning of the local blocks rather than the
program block. Address expressions in a local block other
than the nominal block in an absolute assembly are
considered relocatable in pass 1.

op Specifies relation to be satisfied by exp^ and exp2.
It must be one of the following:

LT Less than; the value of exp^ must be less than
the value of exp2.

LE Less than or equal to; the value of expj^ must be
less than or equal to exp2»

GT Greater than; the value of exp^ must be greater
than the value of exp2*

GE Greater than or equal to; the value of 6Xp^ must
be greater than or equal to exp2.

EQ Equal; the value of exp^ must be equal to
thevalue of exp2* The expressions must either
both be absolute, or both be external relative to the
same external symbol, or both be relocatable in the
same block. The word-address, parcel-address, or
value attributes must be the same.

NE Not equal; the expressions expj^ and exp2 do
not satisfy the conditions required for EQ described
previously.

SM-0036 6-40 B

count Statement count; must be an absolute expression with
positive value* When the base is M (mixed)/ APML assumes
that count is decimal. A count parameter is required if
ifname is missing, otherwise, it is ignored. A missing
or null count subfield gives a zero count.

6.12.3 IFC - TEST CHARACTER STRINGS FOR ASSEMBLY CONDITION

The IFC pseudo instruction tests a pair of character strings for a
condition under which code is to be assembled if the relation specified
by the operation (op) is satisfied. That is, if the relationship is
not satisfied (is false), subsequent statements are skipped. If a
location field name is present, skipping stops when an ENDIF or ELSE
pseudo instruction with the same name is encountered; otherwise, skipping
stops when the statement count is exhausted.

If an assembly error is detected, assembly continues with the next
statement.

Format:

I Location I Result I Operand

I
Iifname

I
I IFC
I IFC

I
I•charI',op,'char2'
I ' charI \op,' char2', count

ifname Optional name of a conditional sequence of code

•chari',•char2 '
Character strings to be compared. The first and third
subfields may be null (empty) indicating a null character
string.

The ASCII character code value of each character in

char-i is compared with the value of each character in
char2f beginning at the left and continuing until an
inequality is found or until the longer string is
exhausted. A zero value is required for missing characters
in the shorter string.

See appendix A, Character Sets, for the ASCII character
code values.

Micros and formal parameters may be contained in the
character strings.

SM-0036 6-41

A character string may be delimited by a character other
than an apostrophe. You can use any ASCII character other
than a comma or space. Two consecutive occurrences of the f \
delimiting character indicates a single such character.
For example/

AIF IFC = 0'100=,EQ,*ABCD***

compares the character strings O'lOO and ABCD*.

op Relation to be satisfied by char^ and char2- It
must be one of the following:

LT Less them

LE Less than or equal to

GT Greater than

GE Greater than or equal to

EQ Equal to

NE Not equal to

count Statement count; must be an absolute expression with
positive value. A missing or null count subfield gives a
zero count. If the base is M (mixed), APML assumes that

count IS decimal. A count parameter is required if
ifname is missing; otherwise, it is ignored.

6.12.4 SKIP - UNCONDITIONALLY SKIP STATEMENTS

The SKIP pseudo instruction unconditionally skips subsequent statements.
If a location field name is present, skipping stops when an ENDIF or ELSE
with the same name is encountered. Otherwise, skipping stops when the
statement count is exhausted.

Format:

I Location I Result I Operand

I I I
Iifname \SKIP |count

SM-003e 6-42 B

ifname Optional name of conditional sequence of code

count Statement count; must be an absolute expression with
positive value. If the base is M (mixed), APML assumes
that count is decimal. A count parameter is required if
Ifname is missing; otherwise, it is ignored. A missing
or null count subfield gives a zero count.

6.12.5 ENDIF - END CONDITIONAL CODE SEQUENCE

The ENDIF pseudo instruction terminates skipping initiated by a IFA, IFE,
IFC, ELSE, or SKIP pseudo instruction with the same location field name.
Otherwise, ENDIF acts as a do-nothing pseudo instruction. ENDIF has no
effect on skipping which is controlled by a statement count.

Format:

I Location I Result I Operand

I I
\ifname |ENDIF

ifname Required name of conditional code sequence

NOTE

An END statement encountered while skipping is
recognized and terminates skipping.

6.12.6 ELSE - TOGGLE ASSEMBLY CONDITION

The ELSE pseudo instruction terminates skipping initiated by an IFA, IFC,
IFE, ELSE, or SKIP pseudo instruction with the same location field name.
If statements are currently being skipped under control of a statement
count, ELSE has no effect.

If the assembler is not currently skipping statements, ELSE initiates
skipping. Skipping is terminated by an ENDIF or ELSE pseudo instruction
with a matching location field name.

SM-0036 6-43

Format:

ILQcation 1Result 'Operand

I ifname |else |

ifname Required name of conditional sequence of code

Conditional assembly examples:

i Location 1Result 1Operand Comment

11 110 120 35

1
|IFA |#DEF,A,1

|A 1EQUALS
1 ♦

1

|10 .Define A if not already defined

1BTEST

1 •

1 •

1IFA 1ABS,SYM
|x 1ERROR .Generate X error if SYM absolute

1BTEST • ELSE
ICON jsYM .Assemble if SYM not absolute

1BTEST lENDIF
1 •
1

1*

1 •

1 •

1Assemble

1 1

1 1
BSSZ instruction if W.* is less than BUF,

1* 1otherwise assemble ORG

1IFE |W.*,LT,BUF,2
IBSSZ IBUF-W.* .Generate words of zero to

1* 1 .address BUF

jSKIP jl .Skip next statement
joRG

1

|BUF

1 «

1 •

jlFC 1 •••L*" ,EQ, ,1
1ERROR .Error if micro string defined

1* 1
1 •

1

.by L is empty

ix

1 •

1 •

|IFC

1

1'ABCD',GT,'ABC .ABCD is greater than ABC

|Y 1IFC 1* '/GT, .Single space is greater than

1* 1 .null string

|Z 1IFC 1••••,EQ,*** .Single apostrophe equals single

1* 1 .apostrophe

SM-0036 6-44

6.13 INSTRUCTION DEFINITION PSEUDO INSTRUCTIONS

The APML assembler allows you to identify a sequence of instructions to
be saved for assembly at a later point in the source program. When the
sequence is defined, APML stores it in a list of definitions but does not
assemble the sequence. Each time the defined sequence is referenced, the
sequence is placed in the source program and is assembled. Defined
sequences are of three types: macro, dup, and echo.

A macro definition identifies a sequence of instructions. This
instruction sequence is referenced at a later point in the source program
by a single instruction, the macro call. Each time the macro call
occurs, the definition sequence is placed in the source program. For a
macro call, the name in the result field matches the name associated with

the macro. Thus, a macro call resembles a pseudo instruction.

A dup or echo definition identifies a sequence of instructions which is
assembled repeatedly, immediately following the definition. The number
of times the sequence is assembled depends on the parameters on the DUP
or ECHO pseudo.

A macro is defined as global if it occurs before the IDENT that begins
the program module. Macro definitions are local if they occur within an
IDENT, END sequence. Every local definition is removed from the
assembler tables at the end of a program module. A global definition may
be referenced in any program module following the definition.

The body of the definition begins with the first instruction following
the header. The body consists of a series of APML instructions other
than END and can include other definitions and calls. However, a

definition used within another definition is not recognized until the
definition in which it is contained is called. Therefore, an inner

definition cannot be called before the outer definition is called for the

first time.

A comment statement identified by an asterisk in the first nonblank
column is ignored in the definition header or definition body. Such
comments are not saved as a part of the definition sequence. Comment
fields on other statements in the body of a definition are saved.

The body of the definition is saved before editing for micros,
concatenation marks, and lowercase comments. Editing occurs when the
definition is assembled each time it is called. An inner nested

definition is not edited until it is called. ENDDUP, ENDM, END, and

LOCAL pseudo instructions and prototype statements cannot contain any
micros or concatenation characters. These statements are not edited when

they occur in a definition.

The end of a macro definition is signaled by an ENDM pseudo instruction
with the proper name in the location field. The end of a dup or echo
definition is signaled by a statement count or by an ENDDUP with the
proper name in the location field.

SM-0036 6-45

Each time a definition sequence of code is referenced (called), an entry
is made in a pushdown stack called the assembly source stack. The most
recent entry indicates the current source of statements to be assembled.
When a definition is called within a definition sequence being assembled,
another entry is made in the stack, and assembly continues with the new
definition sequence belonging to the inner, or nested, call. When the
end of a definition sequence is reached, the most recent stack entry is
removed and assembly continues with the previous stack entry. When the
stack becomes empty, assembly continues with statements from the source
file.

An inner nested call may be recursive; that is, it may reference the same
definition referenced by an outer call. The depth of nested calls
permitted by APML is limited only by the amount of memory available.

An inner definition must be entirely contained within the nent outer
definition.

Skipping of statements due to conditional assembly must not extend beyond
the end of a definition sequence being assembled. An error is generated
and skipping is terminated if this condition occurs.

The sequence field in the right margin of the listing shows the
definition name and nesting depth for definition sequences being
assembled.

Formal parameters are defined in the definition header. Formal
parameters recognized are: positional, keyword, and local. Formal
parameters are recognized in the definition body whenever they are
delimited by a space, comma, beginning or end of a statement, or any of
the following characters:

There may be from 0 to 511 formal parameters. Positional, keyword, and
local parameters must all have unique names within a given definition.

You should not use END, ENDM, ENDDUP, or LOCAL as formal parameter
names. When the definition is referenced, substitution of actual

arguments will occur in any pseudo instruction with these names contained
in any inner definition.

6.13.1 MACRO DEFINITION FORMAT

A macro definition may be called by an instruction of the following
format:

I Location I Result I Operand

I I I
|Ioc Iname | ai,a2^... ^aj ,fi=bi,f2=i)2'• ••'^k=^k

SM-0036 6-46

2oc Location field argument; must be a valid name. If a
location field parameter is specified on the macro
definition, this symbol is optional. It is substituted
wherever the location field parameter occurs in the
definition.

If no location field parameter is specified in the
definition, this field must be empty.

name Macro name; must match the name specified in the macro
definition.

Actual argument string corresponding to positional
parameters in the definition prototype statement

The first argument Si is substituted for the first
positional parameter in the prototype operand field,
the second argument ^2 substituted for the second
positional parameter P2* and so on. If the number of
operand subfields is less than the number of positional
parameters, null argument strings are used for the missing
arguments.

Two consecutive commas indicate a null (empty) argument
string.

f£ A keyword parameter. Each keyword parameter must
match a keyword parameter in the macro definition. The
keyword parameters may be listed in any order; they do not
need to match the order given in the macro definition. The
default arguments specified in the macro definition are
used as the actual argument for missing keyword parameters.

Keyword parameters are not recognized until after n
subfields (n commas), where n is the number of
positional parameters in the operand field of the macro
definition.

Actual argument string for keyword parameter A
space or comma following the equal sign indicates a null
(empty) argument string.

An actual argument string may consist of any ASCII characters except
comma or blank. A comma separates subfields and a blank terminates the
operand field.

If the first character of the actual argument is a left parenthesis, the
string must be terminated by a matching right parenthesis. Such an
argument is called an embedded argument and consists of all characters
between the enclosing parentheses. An embedded string may contain commas
and blanks and may also contain pairs of matching left and right
parentheses.

SM-0036 6-47 B

The actual argument string for each positional and keyword parameter is
substituted in the definition sequence wherever the formal parameter
occurs. Embedded argument strings are substituted without the enclosing
parentheses.

6.13.2 MACRO - MACRO DEFINITION

The MACRO pseudo instruction is the first statement of a macro
definition. The macro header consists of the MACRO pseudo instruction, a
prototype statement, and optional LOCAL pseudo instructions.

Format:

Location I Result Operand

ignored

Ifp

name

MACRO

name

LOCAL

ENDM

Pl'P2'•••'Pn'®l=^l'®2=^2

symi,... ,5yDij.

HEADER:

Prototype
statement

Optional
local

pseudo
instructions

Definition

body

Definition

end

Prototype statement parameters:

Ifp

name

Pi

Optional location field parameter. It must be a valid
name. If present, it is a positional parameter.

Name of the macro; must be valid name. If the name is the

same as a currently defined pseudo instruction or macro,
this definition redefines the operation associated with the
name and a warning message is issued (see appendix C,
Messages, and appendix D, Assembly Errors).t

Positional parameter; must be a valid name,
none, one, or more positional parameters.

There may be

Warning error depends on the WMR and NWMR features of the APML control
statement or the LIST pseudo instruction.

SM-0036 6-48

Keyword parameter; must be a valid name. There may be
none/ one, or more keyword parameters.

d£ Default argument for keyword parameter An argument
string may consist of any string of ASCII characters except
comma or blank.

If the first character of the default argument is a
left parenthesis, the string must be terminated by a
matching right parenthesis. Such an argument is called an
embedded argument and consists of all characters between
the enclosing parentheses. An embedded string may contain
commas and blanks and may also contain pairs of matching
left and right parentheses.

A space or comma following the equal sign specifies a null
(empty) character string as the default argument.

The default argument for a positional parameter is an empty string.

An inner macro definition must be entirely contained within the outer
definition.

6.13.3 LOCAL - SPECIFY LOCAL SYMBOLS

The LOCAL pseudo instruction specifies symbols which are defined only
within the macro definition. The LOCAL pseudo instruction also defines
any of the named symbols used within an inner definition or call that are
not defined as local to that inner usage.

On each macro call and each repetition of a dup or echo definition
sequence, the assembler creates a unique symbol for each local parameter
and substitutes the created symbol for the local parameter on each
occurrence within the definition. The symbol created for local
parameters has the form %%n7innnn, where n is an octal digit.

A symbol not defined as local in a definition may be referenced outside
an assembly of the definition sequence.

One or more LOCAL pseudo instructions may appear in a macro, dup, or echo
definition. The LOCAL pseudo instructions must follow the macro
prototype statement or DUP or ECHO pseudo instructions, except for
intervening comment statements.

Format:

I Location I Result I Operand

Iignored \ LOCAL | symi, sym2,..., sym^^

SM-0036 6-49

sym^ Symbols that are to be rendered local to the definition

6.13.4 ENDM - END MACRO DEFINITION

An ENDM pseudo instruction terminates the body of a macro definition.

Format:

I Location I Result I Operand

name ENDM

name Name of a macro definition sequence. The name must match
the name appearing in the result field of the macro
prototype.

Example 1. Macro with positional parameters:

Macro definition:

Location i Result i Operand |Comment

1 110 120 135

1
1MACRO

1 1
1 1

SYMBOL •NEXT 1VALUE 1
jlFC |#VALUE#,NE,,1 1

$NEXT jsET 1VALUE 1
IIFC |#SYMBOL#,NE,,1|

SYMBOL 1EQUALS 1$NEXT 1
$NEXT (SET 1SNEXT+l 1
NEXT lENDM 1 1

Macro calls:

Location 1Result {Operand i Comment

1 110 120 135

ABC

1
INEXT

1

1
|3

1
1

1
1
1

ABCD •NEXT

1

1
1

1

1
1

SM-0036 6-50

Macro expansion:

ICode generated 1Location 1Result 1Operand

11 110 120

1
1 1IFC

1
|#3#/NE//1

1 3 |$NEXT |SET |3

1 1IFC |#ABC#/NE,,1

1 3 |ABC 1EQUALS |$NEXT
1 4 1$NEXT

1

|SET 1$NEXT-i-l

1
1

1

1
1 |IFC

1

1
|##/NE//1

i(skipped) |$NEXT |SET 1
1 |IFC |#ABCD#/NE,,1

1 4 lABCD 1EQUALS |$NEXT

1 5 |$NEXT |SET 1$NEXT-i-l

The operand field parameter was omitted on the second macro call/ so a
null character string was substituted for each occurrence of the
parameter value.

Example 2. Macro with positional and keyword parameters

Macro definition:

Location

TABN

TABLE

Result [Operand Comment

ISl 2SL 35

I I
MACRO I I
TABLE |TABN/VAL1=#0/VAL2=,VAL3=0
BLOCK ITABLES |
CON I'TABN•L |
CON IVALl I
CON |VAL2 I
CON IVAL3 I
BLOCK I *
ENDM I

I.Resume use of previous block

Macro call:

Location [Result |Operand Comment

li=

SM-0036

10

I
ITABLE

20 -15-

ITABA/VAL3 =4,VAL2 =A

6-51

Macroexpansion:

Location1Result1Operand1Comment

1110120135

I
ITABA

I

I
ITABLE

BLOCK

CON

CON

CON

CON

BLOCK

ENDM

I
ITABLES
I•TABA•L
|#0

|A
|4

I*.Resumeuseofpreviousblock

Example3.Macrowithpositionalandkeywordparameters

Macrodefinition:

LocationiResult1Operand1Comment

I110120135

1
1MACRO

1
1

1
1

BAG(IDLE|C0UNT,CAT=61.Prototype
1LOCALixxxxxxxx1

BAG1A=COUNT11.Definition
xxxxxxxx|A=:A-111.Definition

1P=XXXXXXXX,A#01.Definition
1B=CAT11.Definition

IDLElENDM11

Macrocall:

Codegenerated1LocationiResult1Operand
11110120

1
1jlDENT

1
ICALL

7|NUM|SET|7

1{IDLE|NUM,CAT=24

SM-00366-52

Macro expansion:

Code generated 1Location 1Result •Operand

• 1 110 120

010007

1
1

1
|A=NUM

1
1

013001 |%%000000 |A=A-1 1
107001 1 |P=%%000000,A#0
010024 054000 1 |B=24 1

1SHRIMP 1IDLE |NUM
010007 1SHRIMP

1

|A=NUM
1

1
1

013001

1 /

|%%000001
1

|A=A-1
1

1
107001 1 |P=%%000001,A#0
010006 054000 1 |END 1

6.13.5 OPSYN - SXNONVMOUS OPERATION

The OPSYN pseudo instruction defines or redefines a name in the location
field as being the same as the named operation in the operand field. A
previous definition with a name matching the location field name is no
longer available. Any pseudo instruction or macro may be redefined in
this manner.

An operation defined by OPSYN is global if the OPSYN pseudo occurs before
the IDENT pseudo that begins a program module/ and it is local if the
OPSYN pseudo appears with an IDENT, END seguence. Global operations may
be referenced in any program module following the definition. Every
local operation is removed at the end of a program module, making any
previous global definition with the same name available again.

Format;

I Location I Result I Operand

I I I
Inamei \OPSYN |name2

namei A valid name or the name of a defined operation such as a
pseudo instruction or macro, namei must not be blank.

name2 The name of a defined operation. If name2 is blank,
name]^ becomes a do-nothing pseudo instruction.

SM-0036 6-53

Example:

In the following example^ OPSYN redefines the pseudo instruction IDENT
with a macro definition.

OPSYN definition:

1Location 1Result {Operand {Comment

11 110 {20 135

1
1IDENTT

1
1OPSYN

1
{IDENT

1
1

1 {MACRO 1 1
1 {IDENT {NAME 1
1 {LIST {OFF/NXRF 1
INAME {LIST {ON/XRF {.Processed if LIST=NAM]
1 1 { {.on APML statement

1 {IDENTT {NAME 1
1IDENT {ENDM 1 1

OPSYN call and expansion:

{Location {Result {Operand {Comment

11 {10 120 {35

1
1

1
{IDENT

1
|A

1
1

1 {LIST {OFF/NXRF 1
|A {LIST {ON/XRF 1

IDENTT |A

6.14 CODE DUPLICATION PSEUDO INSTRUCTIONS

APML provides a set of four instructions (DUP, ECHO/ ENDDUP, and
STOPDUP), which allow multiple assemblies of sequences of source
statements.

6.14.1 DUP - DUPLICATE CODE

The DUP pseudo instruction introduces the definition of a sequence of
code which is assembled repetitively immediately following the
definition. The dup sequence is assembled the number of times specified
on the DUP instruction. The DUP sequence to be repeated consists of
statements following the DUP instruction and any optional LOCAL pseudo
instructions. Comment statements are ignored; the dup sequence ends when
the statement count is exhausted or when a ENDDUP with a matching
location field name is encountered.

SM-0036 6-54

A nested inner DUP definition must be entirely contained in the outer
definition.

You may use STOPDUP to override the repetition count.

Format:

I Location I Result

I I
Idupname i DUP

I I or
I I DUP

IQperand.

i times

I
I times.count

dupname Name of the DUP sequence, required if the count field is
null or missing. Use dupname to match an ENDDUP name if
no count field is present. Also use dupname in the
sequence field of the listing for the DUP expansion.

times An absolute expression with positive value, specifying
number of times to repeat the code sequence. If the value
is 0, the code is skipped.

count Optional absolute expression with positive value,
specifying the number of statements to be duplicated.
LOCAL pseudo instructions and comment statements (* in
first nonblank column) are ignored for the purpose of this
count. Statements are counted before expansion of nested
macro calls or DUP or ECHO sequences.

6.14.2 ECHO - DUPLICATE CODE WITH VARYING ARGUMENTS

The ECHO pseudo instruction introduces the definition of a sequence of
code that is assembled repetitively immediately following the
definition. On each repetition, the actual arguments are substituted for
the formal parameters until the longest argument list is exhausted. The
echo sequence to be repeated consists of statements following the ECHO
pseudo instruction and any optional LOCAL pseudo instructions. Comment
statements are ignored. The echo sequence ends when an ENDDUP with a
matching location field name is encountered.

A nested inner echo definition must be entirely contained in the outer
definition.

STOPDUP overrides the repetition count determined by the number of
arguments in the longest argument list.

SM-0036 6-55

Format:

I Location I Result IOperand

Idupname |ECHO Iei=listi,e2=list2^... ,ej^=list^

dupname Name of the echo sequence; must not be empty. This name
must match the location field name in the ENDDUP pseudo
instruction that terminates the echo sequence.

Formal parameter name. There may be none, one, or more
parameters.

list^ List of actual arguments. The list can be a single
argument or a parenthesized list of arguments

(aii,ai2/...#aim)/ where each a^j is an actual argument
to be substituted for in the echo sequence. Each
actual argument a^j may be an ASCII character string
not containing blanks or commas or may itself be an
embedded argument containing a list of arguments aj^j
enclosed in matching parentheses. An embedded argument may
contain blanks or commas and matched pairs of parentheses.

The argument a^j^ substituted for in the echo
sequence on the first repetition; a^2 substituted
for on the second repetition.

A comma immediately followed by another comma or closing
right parenthesis specifies a null (empty) character string
as the argument.

6.14.3 ENDDUP - END DUPLICATED CODE

The ENDDUP pseudo instruction ends the definition of the code sequence to
be repeated. An ENDDUP terminates a DUP or ECHO sequence with the same
name. ENDDUP has no effect on DUP or ECHO sequences terminated by a
statement count.

Format:

I Location I Result I Operand

Idupname j ENDDUP |

dupname Name of a DUP sequence

SM-0036 6-56

6.14.4 STOPDUP - STOP DUPLICATION

The STOPDUP pseudo instruction stops duplication of a code sequence
indicated by a DUP or ECHO pseudo instruction. It overrides the
repetition count. Assembly of the current repetition of the DUP sequence
is terminated immediately. STOPDUP terminates the innermost DUP or ECHO
sequence with the same name. STOPDUP does not affect the definition of
the code sequence to be duplicated.

Format:

I Location I Result I Operand

I I I
Idupname \STOPDUP |

dupname Name of a DUP sequence

6.14.5 EXAMPLES OF DUPLICATED SEQUENCES

Example 1. Use DUP to define an array with values 0, 1, 2, and 3

DUP definition:

[Location |Result [Operand

11=
I
IS

ML

[EQUALS
IDUP
[CON

DUP expansion:

20

I
[W.*

[3,1
|W.*-S

Code generated Location

0000000000000000000000

0000000000000000000001

0000000000000000000002

0000000000000000000003

SM-0036 6-57

Comment

15_

Result

ML

CON

CON

CON

CON

Operand

20

w.*-s

w.*-s

w.*-s

w.*-s

Comment

35

.(W.*-S=0)

.(W.*-S=l)

.(W.*-S=2)

.(W.*-S=3)

Example 2. Nested duplication

ECHO definition:

1Location 1Result 1Operand j Comment

11 110 120 135

1
IX

1
{ECHO

1 1
|CHN=(PFR,PXS,LME)

|Y {ECHO |FCN=(0,7) 1
1 |CHN:FCN 1 1
|Y 1ENDDUP 1 1
IX 1ENDDUP 1 1

ECHO and DUP expansion:

1Location 1Result 1Operand 1Comment

11 110 120 135

I
|PFR:0
|PFR:7
|PXS:0
|PXS:7
|LME:0
|LME:7

Example 3. Use STOPDUP to terminate duplication

STOPDUP definition:

1Location {Result 1Operand 1Comment

11 110 120 135

1
IT

1
|SET

1
jo

1
1

|A |DUP 11000 1
IT jsET |T+1 1
1 jlFE |T,EQ,3,1 1.Terminate duplication
|A 1STOPDUP 1 1
1 ICON |T 1
|A 1ENDDUP 1 1

SM-0036 6-58

STOPDUPexpansion:

ILocation

\L

IT

I
IT

I
IT
lA

ResultIOperand

SET

CON

SET

CON

SET

STOPDUP

=U2.

|T+1
IT
|T+1
IT
|T+1

I

Comment

ZS_

6.15MICRODEFINITIONPSEUDOINSTRUCTIONS

Microsallowyoutoassignanametoacharacterstringandsubsequently
refertothecharacterstringthroughuseofitsname.Areferencetoa
microresultsinthecharacterstringbeingsiibstitutedforthename
beforeassemblyofthesourcestatementcontainingthereference.

6.15.1MICROREFERENCEFORMAT

Refertoamicrobyusingthemicronameenclosedbyquotemarksanywhere
inasourcestatementotherthanacommentline.Ifcolumn72ofaline

isexceededasaresultofamicrosubstitution/theassemblercreates

additionalcontinuationlines.Noreplacementoccursifthemicroname
isunknownorifoneofthemicromarkshasbeenomitted.

Example:

AmicronamedPFXisdefinedasID.AreferencetoPFXisinthe

locationfieldofaline:

ILocationIResultIOperand

11=JSL

II
I"PFX"TAG|B=DD

211

Comment

25-

However/beforethelineisinterpreted/APMLsubstitutesthedefinition
forPFXproducingthefollowingline:

SM-00366-59

1Location 1Result (Operand (Comment

11 110 120 135

1
jlDTAG B

1
= DD

(
(

1
1

6.15.2 MICRO - MICRO DEFINITION

The MICRO pseudo instruction assigns a name to a character string,

Format:

I Location I Result

I I
i name |MICRO

I I or
\name |MICRO

I I or
•name (MICRO

Operand

•character string',exp^,e*P2

'character string',exp^

'character string'

name Micro name. If name is previously defined, the previous
micro definition is lost.

'character string'
A character string optionally including previously defined
micros.

To specify a single apostrophe in a character string, use
two adjacent apostrophes. These are counted as a single
character in the string.

A character string may be delimited by a character other
than an apostrophe; use any ASCII character other than a
comma or space. Two consecutive occurrences of the
delimiting character indicates a single such character.
For example, a micro consisting of the single character *
could be specified as or ****.

exp^ Absolute expression indicating number of characters in the
micro character string

The micro character string is terminated either by the
character count or the final apostrophe of the character
string, whichever occurs first. The string is considered
empty if exp^ has a 0 or negative value, exp^ is
considered very large if it is null. In this case, the
string is terminated by the final apostrophe.

SM-0036 6-60

exp2 Absolute expression indicating starting character. The
micro character string is considered to begin with the
first character of the character string if exp2 is
null, exp2 has the value of 0 or 1, or exp2 is
negative.

Example:

Location 1Result •Operand • Comment

1 110 120 135

MIC

1
1MICRO

1
•'THIS IS A

1
MICRO STRING'

MICl 1MICRO 1**** •.Micro string is 1 asterisk
MIC2 1MICRO 1 '"MIC" ,1 •.Micro consisting of 1st

1 1 (.character of the micro string

1 1 (.represented by MIC

MIC2 1MICRO •'THIS IS A MICRO STRING* ,1

MIC4 •MICRO •'"MIC"*,2, I (.Micro consisting of 2nd and

1 1 (.3rd characters of micro string

1 1 (.represented by MIC

MIC4 (MICRO •'THIS IS A MICRO STRING' ,2,2

MIC5 •MICRO 1 (.Blank operand field defines

1 1 (.an empty string

6.15.3 OCTMIC AND DECMIC - OCTAL AND DECIMAL MICROS

OCTMIC and DECMIC convert the value of the expression into a character
string that is assigned a micro name.

Formats:

ILocation IResult [Operand

I
Iname
\name

IOCTMIC
IDECMIC

\exp,count
\exp,count

name Micro name

exp An absolute expression to be converted to up to 8
characters representing the octal (or decimal) value

count An expression providing an optional character count less
than or equal to 8. If this parameter is present, leading
zeros are supplied to provide the requested number of
characters.

SM-0036 6-61

Enample of MICSIZE and DECMIC:

Location Result

2SL

26 MICSIZE

VOCT DECMIC

Operand

ZQ.

MIC

V,2

Comment

15.

.The value of V is the number

.of characters in the micro

.string represented by MIC

.VOCT is a micro name

.There are VOCT characters

.in MIC

.There are 26 characters in

.MIC

Example of OCTMIC:

[Location [Result IOperand [Comment

II-

[IP
[VAL
[MSG

I

10. 20- 15.

I I
EQUALS [0*20 [
OCTMIC I IP I
DATA I'THE VALUE OF IP IS VAL'
DATA ['THE VALUE OF IP IS 20*

6.15.4 PREDEFINED MICROS

In addition to the preceding micros/ the APML assembler provides the
following predefined micros.

Micro Description

$DATE Current date yy/mm/dd

$JDATE Julian date yy/dd

$TIME Time of day hh:mm:ss

$MIC Micro character (quote/ ASCII 042)

$CNC Concatenation character (underline, ASCII 137)

$QUAL Name of qualifier that is currently in effect (the null
string if none)

$CPU Target machine ('lOP *)

SM-0036 6-62

Example: Use of predefined micro $DATE

1Location (Result 1Operand 1Comment
11 110 120 135

1
1
1

1
(DATA
(DATA

1
1'THE DATE
1'THE DATE

1
IS "$DATE'"

IS 06/16/81'

SM-0036 6-63

7. CHANNEL INTERFACE FUNCTIONS

Channel interfaces buffer data, generate control signals for peripheral
devices, and multiplex several devices into the same I/O Processor (lOP)
channel. This section gives the channel interface functions for Cray
I/O Subsystem (lOS) Models B and C.

For more detail on any of these channel interfaces, see the following
CRI manuals:

HR-0030 I/O Subsystem Model B Hardware Reference Manual
HR-0081 I/O Subsystem Model C Hardware Reference Manual
HR-0077 Disk Systems Hardware Reference Manual

7.1 INTERFACE CHARACTERISTICS

Each lOP provides for I/O channels. These channels are addressed by the
d designator in the program instruction or by the B register
contents. Data can be transferred from the lOP accumulator to a channel
interface register or from a channel interface register to the
accumulator. You can use the Direct Memory Access (DMA) ports for block
transfers of data into or out of Local Memory. Data transfers and
channel interface actions are a function of each interface logic control,

Each interface can interpret up to 16 function signals from the lOP
program. These functions are generated by instructions 140 through
177. Interpretation of each function is specifically designated by each
interface. However, three functions common among the interfaces (except
the peripheral expander) are as follows:.

Function Description

iod : 0 or lOB : 0 Clears the Channel Busy and Done flags and
place the channel in an idle status

iod : 6 or lOB : 6 Clears the Channel Interrupt flag for the
associated channel, blocking any further
interrupt requests from that channel

iod : 7 or lOB : 7 Sets the Channel Interrupt Enable flag for
the associated channel and enable the

interrupt requests from that channel

SM-0036 7-1

Each channel interface provides for a Busy flag, normally set during the
active period of the channel and cleared during an idle period. The
setting and clearing of this flag depends on the channel interface
interpretation of the 16 function codes. The Channel Busy flag can be
sensed by the lOP program through execution of instructions 041 and 043.

Each channel interface provides for a Done flag, normally used to signal
the lOP program when some step of the channel activity has reached a
point requiring program action. Setting and clearing of the flag is
normally a function of the interface hardware, but the program can set or
clear the flag for special purposes. The program senses the state of
this flag through instructions 040 and 042, An interrupt is normally
generated by the interface hardware when the Channel Done flag and the
Channel Interrupt Enable flag are set. The system must have interrupts
enabled to be interrupted. When not enabled, however, it can still sense
the interrupt waiting through lOR : 10.

7.2 CHANNEL INTERFACE FUNCTION CODES

Table 7-1 lists all the currently supported peripheral devices and
briefly explains each function code interpretation that is implemented.
The APML mnemonic identifies the function. Only the first mnemonic of
each type is given. The interface functions for disk storage unit
channels are not described below; they are described in the Disk Systems
Hardware Reference Manual, CRI publication HR-0077.

Table 7-1. Channel Functions and Descriptions

1 Channel | Function 1 Description |

1 0 i lOR 10 1 Read interrupt channel number |
1 I/O Request |

1 1 1 PFR 0 1 Clear Program Fetch Request flag |
1 Program | PFR 6 1 Clear Channel Interrupt Enable flag |
1 Fetch 1 PFR 7 1 Set Channel Interrupt Enable flag |
1 Request | PFR 10 1 Read operand register number |

SM-0036 7-2

Table 7-1. Channel Functions and Descriptions (continued)

Channel Function Description

2 PXS 0 Clear Exit Stack Boundary flag
Program PXS 6 Clear Channel Interrupt Enable flag

Exit Stack PXS 7 Set Channel Interrupt Enable flag
PXS 10 Read exit stack pointer, E
PXS 11 Read exit stack address, (E)

PXS 13t Read history log
PXS 14 Enter exit stack pointer, E
PXS 15 Enter exit stack address, (E)

PXS let Enter diagnostic mode (available in
diagnostic mode only)

3 LME 0 Clear Local Memory Parity Error flag
Local LME 6 Clear Channel Interrupt Enable flag
Memory LME 7 Set Channel Interrupt Enable flag
Error LME lott Read error information

4 RTC 0 Clear Channel Done flag

Real-time RTC 6 Clear Channel Interrupt Enable flag
Clock RTC 7 Set Channel Interrupt Enable flag

RTC 10 Read real-time clock

5 MOS 0 Clear Channel Busy and Done flags

Buffer MOS 1 Enter Local Memory address for next transfer
Memory MOS 2 Enter upper bits of Buffer Memory address

MOS 3 Enter lower bits of Buffer Memory address

MOS 4 Read Buffer Memory/enter block length
MOS 5 Write Buffer Memory/enter block length
MOS 6 Clear the Channel Interrupt Enable flag

MOS 7 Set the Channel Enable Interrupt flag
MOS lot Read bypass modes if accumulator bit 2^=1;

read error bits if accumulator bit 2®=1.
MOS 14 Set control register flags
MOS ist Set second control register flags
MOS let Set bypass modes

6, 10, 12 AIA 0 Clear Channel Done flag

lOP AIA e Clear Channel Interrupt Enable flag
Input AIA 7 Set Channel Interrupt Enable flag

(AIA, AIB, AIA 10 Read input to accumulator and resume
AIC) channel

f Model C only

"H* Model B only

SM-0036 7-3

Table 7-1. Channel Functions and Descriptions (continued)

Channel | Function 1 Description

1, 11, 13 1 AGA 0 1 Clear Channel Busy and Done flags
lOP 1 AGA 1 1 Enter control bits from accumulator

Output 1 AGA 6 1 Clear Channel Interrupt Enable flag
(AGA, AOB, 1 AGA 7 1 Set Channel Interrupt Enable flag

AGO 1 AGA 14 1 Set Channel Busy flag and output accumulator
1 data

14 1 HIA 0 1 Clear Channel Busy and Done flags
Input from | HIA 1 1 Enter Local Memory address

Central | HIA 2 1 Enter high-order bits of Central Memory or
Memory or | 1 SSD address; see specific hardware manual
Solid State | 1 for the actual number of bits to enter.

Disk (SSD) 1 HIA 3 1 Enter low-order 9 bits of Central Memory or
(HIA) 1 1 SSD address

(100 Mbyte | HIA 4 j Enter block length; start transfer to Local
channel) | 1 Memory if Buffer Memory channel not in

1 bypass mode.
HIA 6 1 Clear Channel Interrupt Enable flag
HIA

HIA

7

lot
Set Channel Interrupt Enable flag
Read syndrome code or error code
(available in diagnostic mode only)
Enter diagnostic mode (available in
diagnostic mode only)

Clear Channel Busy and Done flags
Enter Local Memory address
Enter high-order bits of Central Memory or
or SSD address; see specific hardware manual
for the actual number of bits to enter.

Enter low-order 9 bits of Central Memory or
SSD address

Enter block length for transfer; start
transfer from Local Memory unless Buffer
Memory channel is in bypass mode.
Clear Channel Interrupt Enable flag
Set Channel Interrupt Enable flag
Read error code (available in diagnostic
mode only)
Enter diagnostic mode (available in
diagnostic mode only)

15

Output to
Central

Memory or
SSD

(HOA)

(100 Mbyte
Channel)

f Model C only

SM-0036

HIA : 14

HOA

HOA

HOA

HOA

HOA

HOA

HOA

HOA

HOA

6

7

lot

14

7-4

Table 7-1. Channel Functions and Descriptions (continued)

Channel

50

Mainframe

Input
(LIA)

51

Mainframe

Output
(LOA)

Function

LIA

LIA

LIA

LIA

LIA

LIA

LIA

LIA

LIA

LOA

LOA

LOA

LOA

LOA

LOA

LOA

LOA

LOA

ot
it

2t
3t
4t
6t
vt
lot
lit

ot
it

2t
3t
4t
et
7t
lot
lit

1 Console TIA 0

i Keyboard TIA 3t
1 (TIA - TID) TIA 6

1(Accumulator TIA 7

1 Channel) TIA 10

1 Console TOA 0

1 Display TOA 6

1 (TOA - TOD) TOA 7

1(Accumulator TOA 14

1 Channel)

f Model C only

SM-0036

Description

Clear Channel Busy and Done flags
Enter Local Memory address/ start transfer
to Local Memory
Enter parcel count for transfer
Clear Channel Parity Error flags
Clear Ready Waiting flag
Clear Channel Interrupt Enable flag
Set Channel Interrupt Enable flag
Read present Local Memory address
Read status (ready waiting, parity error)

Clear Channel Busy and Done flags
Enter Local Memory address, start transfer
from Local Memory
Enter parcel count for transfer

Clear Error flag

Set/clear external control signals
Clear Channel Interrupt Enable flag
Set Channel Interrupt Enable flag
Read present Local Memory address
Read processor number (0 through 3); read
Error flag.

Clear Channel Done flag

Set baud rate, both input and output pair
Clear Channel Interrupt Enable flag
Set Channel Interrupt Enable flag
Read data into accumulator and clear Done

flag

Clear Channel Busy and Done flags
Clear Channel Interrupt Enable flag
Set Channel Interrupt Enable flag
Send accumulator data to display

7-5

Table 7-1. Channel Functions and Descriptions (continued)

1 1
1 Channel |

1 i

Function 1 Description

1 1
1 Peripheral | EXB 0 1 Idle the channel
i Expander | EXB 1 1 Request A Input register contents (DIA) j
1 (EXB) 1 EXB 2 1 Request B Input register contents (DIB) j
1(Accumulator | EXB 3 1 Request C Input register contents (DIC) j
1 Channel) | EXB 4 1 Read Busy/Done flag, interrupt number j

1 1 EXB 5 1 Load device address

1 1 EXB 6 1 Send interface mask (MSKO)

1 1 EXB 7 1 Set interrupt mode
1 1 EXB 10 1 Read data bus status

1 1 EXB 11 1 Read status 1

1 1 EXB 13 1 Read status 2

1 1 EXB 14 1 Send data to A Output register (DOA) 1

1 1 EXB 15 1 Send data to B Output register (DOB) 1

1 1 EXB 16 1 Send data to C Output register (DOC) 1

i 1
1 1

EXB 17 1 Send control

1 1

1 Front-end | CIA 0 1 Clear channel
1 Inputt 1 CIA 1 1 Enter Local Memory address, start input j
1 (CIA - CID) 1 CIA 2 1 Enter parcel count
•(DMA Channel)! CIA 3 1 Clear Channel Parity Error flags j

1 1 CIA 4 1 Clear Data Waiting flag

1 1 CIA 6 1 Clear Interrupt Enable flag

1 1 CIA 7 1 Set Interrupt Enable flag
1 1 CIA 10 1 Read Local Memory address

1 1
1 1

CIA 11 1 Read status (ready waiting, parity errors) j

1 1

1 Front-end j COA 0 1 Clear channel
1 Outputt 1 COA 1 1 Enter Local Memory address
1 (COA - COD) 1 COA 2 1 Enter parcel count
1(DMA Channel)1 COA 3 1 Clear Error flag

1 1 COA 4 1 Set/clear external control signals j
1 1 COA 6 1 Clear Interrupt Enable flag

1 1 COA 7 1 Set Interrupt Enable flag
1 1 COA 10 1 Read Local Memory address

1 1

1 1

COA 11 1 Read status (error) (4-bit channel data)M j

t These functions apply only to the MIOP
ft Model B only

SM-0036 7-6

Table 7-1. Channel Functions and Descriptions (continued)

1 1
1 Channel |

1 1

Function 1 Description j

1 1
1 Block 1 BMA 0 1 Clear channel control j
1 Multiplexer | BMA 1 1 Send reset functions j
1 Channel | BMA 2 1 Send conunands to control units j
1 (BMA - BMP) 1 BMA 3 1 Read reguest-in address j
1(DMA Channel)! BMA 4 1 Clear Channel Done flag; set Channel Busy j
1 1 1 flag for asynchronous I/O. j

1 1 BMA 5 1 Delay counter diagnostic j

1 1 BMA 6 1 Clear Channel Interrupt Enable flag j

1 1 BMA 7 1 Set Channel Interrupt Enable flag j

1 1 BMA 10 1 Read Local Memory address j
1 1 BMA 11 1 Read byte count j

1 1 BMA 12 1 Read status j

1 1 BMA 13 1 Read input tags j

1 1 BMA 14 1 Enter Local Memory address j

1 1 BMA 15 1 Enter byte count |

1 1 BMA 16 1 Enter device address |

1 1
1 1

BMA 17 1 Enter output tags |

1 1

1 Error j ERA 0 1 Idle channel j
j Logging j ERA 6 1 Clear Interrupt Enable flag j
1 Channel for j ERA 7 1 Set Interrupt Enable flag j
1 Serial No. j ERA 10 1 Read error status j
1 20 and j ERA 11 1 Read error information (first parameter) j
1 Belowt 1 ERA 12 1 Read error information (second parameter) j
1 (ERA) 1 ERA 13 1 Read error information (third parameter) j
1(Acciunulator j
1 Channel) j

1 1
t Model B only

SM-0036 7-7

8. FORMAT OF ASSEMBLER LISTING

The APML assembler generates list output as determined by list pseudo
instructions and by options on the APML control statement.

8.1 PAGE HEADERS

Every page of list output produced by the APML assembler contains two
132-character header lines. The first line contains the title, version

of APML, time and date of assembly, and a global page number over all
programs assembled by the current assembly. The title is taken from a
TITLE pseudo instruction if there is one or from the operand field of the
IDENT pseudo instruction. The second line contains the subtitle
specified by a SUBTITLE pseudo if there is one, a local block name if
other than the nominal block, a symbol qualifier if there is one in
effect, and a local page number which is reset for each new program
unit. The local page number is used in the cross-reference listings
generated by APML and SYSREF.

1 66 76 96 105 115
I title jcpu type IAPML version Idafce I time IPage nnni
\subtitle lunu^ed iBlock; bname [Qualifier; quainamel(nn) I

8.2 SOURCE STATEMENT LISTING

The listing for source statements comprising an APML program is organized
into five columns of information, as follows.

Title line |
Subtitle line _|

error | location \ octal code\ source line |5'equence|
code Iaddress i | | |

error code

The leftmost column contains up to 7 characters indicating
errors detected for the current statement. If too many
errors occurred to fit in seven columns, the seventh

character is a + indicating that not all errors are shown.
Appendix C, Messages, describes error codes.

SM-0036 8-1

location address

The second column gives the parcel or word address where
the current statement is assembled. If the statement is a

symbolic APML instruction or PDATA/ the address is listed
as a parcel address. For word-oriented pseudo
instructions, the address is listed as a word address with
a W appended.

octal code

The third column of information contains the octal

equivalent of the instruction or value.

For symbolic APML instructions, this column contains up to
3 parcels of I/O Processor instructions in octal digits.
For 2-parcel instructions, the second parcel is preceded by
a / character. If more than 3 parcels of instruction are
generated by a statement, the instructions are listed on
subsequent lines with a blank source and sequence field.

If the value represents an address, the octal code has a
suffix as follows:

+ Positive relocation in program block

Negative relocation in program block

X External symbol

For a symbol defined through SET, MICSIZE, CHANNEL, or
EQUALS, the coliunn contains the octal value of the symbol.

For a BSS or BSSZ instruction, the column contains the

octal value of the number of words reserved.

For a MICRO, OCTMIC, or DECMIC instruction, the column

contains the number of characters in the micro string.

source line

The fourth column presents columns 1 through 72 of each
source line.

sequence The rightmost column either contains the sequence number
for the source line as taken from columns 73 through 90 of
the source line image or contains an identifier if the line
is an expansion of a macro.

SM-0036 8-2

8.3 CROSS-REFERENCE LISTING

The assembler generates a cross-reference table with the format as
follows. Symbols are listed alphabetically and grouped by qualifier.
Each qualified group of symbols is headed by the message SYMBOL QUALIFIER
IS qualname.

Global symbols which are not referenced are not listed in the
cross-reference. Symbols of the form %%xxxxxx, where x is any ASCII
character, are not listed in the cross-reference.

I
Ivalue

Title line

Subtitle line

Isymbol \ name {symbol references

value Octal value of symbol

symbol A symbol with word-address attribute W appended. A
relocatable symbol has a plus (-i-) suffix if it has positive
relocation relative to the program block and a minus (-)
suffix if negative relocation relative to the program
block. An external symbol has an X suffix. An undefined
symbol has a U suffix.

name A global symbol defined by the user is indicated by
GLOBAL. A global symbol defined in a system text is
indicated by the system text dataset name. A symbol
defined in global text between TEXT and ENDTEXT pseudo
instructions is indicated by the associated text name.

symbol references
This column lists one or more references to the symbol in
the following format:

SM-0036

page : line x

page Local decimal number of page containing
reference. The local page number appears in
parentheses at the right end of the second title
line, also called the subtitle line.

line Decimal number of line containing reference

X Type of reference, as follows:

blank Symbol value is used at this point.

8-3

symbol references B Symbol used as a base register in an
(continued) APML symbolic jump instruction which

required a 2-parcel machine branch '^
instruction

D Symbol defined at this reference; that

is, it appears in the location field of
an instruction or is defined by a SET,
EQUALS, or EXT pseudo instruction.

E Declares the symbol as an entry name

F Symbol used in an expression in a
conditioned pseudo instruction such as
IFE, IFA, or ERRIF

SH-0036 8-4

APPENDIX SECTION

A. CHABACTER SETS

Table A-1 lists the character sets.

Table A-1. Character Sets

1
1

1
1

1 1
1 ASCII 1

1 1
1 CDC Display |

1 CHAR

1

1 ASCII

1

1 Card Code |
1 1

EBCDIC 1 Code 1

1 •

1
1 NUL

1
1 000

1 1
1 12-0-9-8-1 1 00

1 1
1 None 1

1 SOH 1 001 1 12-9-1 1 01 1 None 1

1 STX i 002 1 12-9-2 1 02 1 None 1

1 ETX 1 003 1 12-9-3 1 03 1 None 1
1 EOT i 004 1 9-7 1 37 1 None 1
1 ENQ 1 005 1 0-9-8-5 1 2D 1 None i

1 ACK 1 006 1 0-9-8-6 1 2E 1 None 1
1 BEL 1 007 1 0-9-8-7 1 2F 1 None 1

1 BS 1 010 1 11-9-6 1 16 1 None 1
1 HT 1 Oil 1 12-9-5 1 05 1 None 1
1 LF 1 012 1 0-9-5 1 25 1 None 1

1 VT 1 013 1 12-9-8-3 1 OB 1 None 1
1 FF 1 014 1 12-9-8-4 1 OC 1 None 1

1 CR 1 015 1 12-9-8-5 1 OD 1 None 1

1 SO i 016 1 12-9-8-6 I OE 1 None 1

1 SI 1 017 1 12-9-8-7 1 OF 1 None 1

1 DLE 1 020 1 12-11-9-8-1 1 10 1 None 1

1 DCl 1 021 1 11-9-1 1 11 1 None 1

1 DC2 1 022 1 11-9-2 1 12 1 None 1
1 DC3 i 023 1 11-9-3 1 13 1 None 1
1 DC4 1 024 1 4-8-9 1 3C 1 None 1
1 NAK 1 025 1 9-8-5 1 3D 1 None 1

1 SYN 1 026 1 9-2 1 32 1 None 1
1 ETB 1 027 1 0-9-6 1 26 1 None 1

1 CAN 1 030 1 11-9-8 1 18 1 None 1
1 EM 1 031 1 11-9-8-1 1 19 1 None 1

1 SUB 1 032 1 9-8-7 1 3F 1 None 1
1 ESC 1 033 1 0-9-7 1 27 1 None 1

1 FS 1 034 1 ii_9_8-4 1 IC 1 None 1

1 GS i 035 1 11-9-8-5 1 ID 1 None 1
1 RS 1 036 1 11-9-8-6 1 IE 1 None 1
i US 1 037 1 ii_9_8-7 1 IF 1 None 1
i Space 1 040 1 None 1 40 1 55 1
1 !

1

1 041

1

1 12-8-7 1

I 1

5A 1 66 1
1 1

SM-0036 A-1 B

Table A-1. Character Sets (continued)

1 1
1 1

1 1
1 ASCII 1 CDC Display |

1 CHAR 1

1 >

ASCII 1 Card Code |
1 1

EBCDIC Code 1

1 1
1 ** 1 042

1 1
1 8-7 1 7r 64 1

1 # 1 043 1 8-3 1 7B 60 1
1 $ 1 044 1 11-8-3 1 5B 53 1
1 ^ 1 045 1 0-8-4 1 6C 63 1
1 & 1 046 1 12 1 50 67 1
1 * 1 047 1 8-5 1 7D 70 1
1 (1 050 1 12-8-5 1 4D 51 1
1) 1 051 1 11-8-5 1 5D 52 1
1 * 1 052 1 11-8-4 1 5C 47 1
1 1 053 1 12-8-6 1 4E 45 1
1 ^ 1 054 1 0-8-3 1 6B 56 1
1 - 1 055 i 11 1 60 46 1
1 # 1 056 1 12-8-3 1 4B 57 1
1 / 1 057 1 0-1 1 61 50 1
1 0 1 060 1 0 1 FO 33 1
1 1 1 061 1 1 1 F1 34 1
1 2 1 062 1 2 1 F2 35 1
i 3 1 063 i 3 1 F3 36 1
1 4 1 064 1 4 1 F4 37 1
1 5 1 065 1 8 1 F5 40 1
1 6 1 066 1 8 1 F6 41 1
1 7 1 067 i 7 1 F7 42 1
1 8 1 070 1 8 1 F8 43 1
1 9 1 071 1 9 1 F9 44 1
1 * 1 072 1 8-2 1 7A 00 1
1 /* 1 073 1 11-8-6 1 5E 77 1
1 < 1 074 1 12-8-4 1 4C 72 1
1 = 1 075 1 8-6 1 7E 54 1
1 > 1 076 1 0-8-6 1 6E 73 1
1 ? 1 077 1 0-8-7 1 6F 71 1
1 @ 1 100 1 8-4 1 7C 74 1
1 A 1 101 1 12-1 1 C1 01 1
i B 1 102 1 12-2 1 C2 02 1
1 c 1 103 1 12-3 1 C3 03 1
1 B 1 104 1 12-4 1 C4 04 1
1 B 1 105 1 12-5 1 C5 05 1
1 F 1 106 1 12-6 1 C6 06 1
1 G 1 107 1 12-7 1 C7 07 1
i H 1 110 1 12-8 1 C8 10 1
1 I 1 111 1 12-9 1 C9 11 1
1 J i 112 1 11-1 1 D1 12 1
1 K 1 113 1 11-2 1 D2 13 1
1 B 1
1 1

114 1 11-3 1
1 1

D3 14 1

SM-0036 A-2 B

TableA-1.CharacterSets(continued)

11
11

11
1ASCII1COCDisplay|

1CHAR1ASCII1CardCode|

11

EBCDICCode1

11
1M1115

11
111-4104151

1Ni116111-5105161

101117111-6106171

1P1120111-7107201

iQ1121111-8108211

1R1122111-9109221

1S112310-21E223j
1T112410-31E3241

1ui12510-4iE4251

1V112610-51E526i

1w112710-61E6271

1X113010-71E7301

1Y113110-81E8311

1Z113210-91E9321

1[1133112-8-21AO611

1\113410-8-21EO751

1]1135111-8-2130621
136111-8-715F761
13710-8-5160651

1^114018-1179None1

11141112-0-1181None1

1b1142112-0-2182None1

1C1143112-0-3183None1

1^1144112-0-4184None1

1e1145112-0-5185None1

1f1146112-0-6186None1

191147112-0-7187None1

i^i150112-0-8188None1

1i1151112-0-9189None1

1j1152112-11-1191None1

1k1153112-11-2192None1

111154112-11-3193None1

11155112-11-4194None1

1Qi156112-11-5195None1

1o1157112-11-6196None1

1P1160112-11-7197None1

191161112-11-8198None1

1^1162112-11-9199None1

1s1163111-0-21A2None1

1t1164111-0-31A3None1

1u1165111-0-41A4None1

1V1
11

166111-0-51

11

A5None1

SM-0036A-3

Table A~l. Character Sets (continued)

1 1
1 1

1
1 ASCII

1 1
1 CDC Display |

1 CHAR 1

1 1

ASCII 1 Card Code

1

EBCDIC 1 Code 1
1 1

1 1
1 V 1 167

1
1 11-0-6 A6

1 1
1 None 1

1 ^ 1 170 1 11-0-7 A7 1 None 1

1 y 1 171 1 11-0-8 AS 1 None 1

1 2 1 172 1 11-0-9 A9 1 None 1
1 { 1 173 1 12-0 CO 1 None 1
1 1 1 174 1 12-11 6A 1 None 1

1 } 1 175 1 11-0 DO 1 None 1
176 1 11-0-1 A1 1 None 1

1 DEL 1

1 1

177 1 12-9-7

1

07 1 None 1

1 1

SM-0036 A-4

B. HARDWARE INSTRUCTION SUMMARY

This appendix briefly describes APML operand notation and instructions.

B.l APML OPERAND NOTATION

The following reserved names represent the contents of I/O Processor
(TOP) registers or memory:

Name

A

B

(B)

C

E

(E)

I

P

R

Rl sym

dd

[dd]

(dd)

SM-0036

Description

Accumulator

Operand register, index register (B register)

Contents of the operand register addressed by B

Carry flag

Exit stack pointer

Exit stack entry addressed by E, the exit stack pointer

Interrupt Enable flag

Program address register

Return jump program address

Operand register whose index is the value of the symbol
sxpa, where sym is any symbol with positive absolute
value less than 512

Operand register whose index is the value of the symbol
dd, where dd is a 2-character symbol with positive
absolute value less than 512

Value of symbol dd; that is, index of register
represented by register symbol dd.

Memory parcel addressed by contents of operand register dd

B-1

Name Description

An unsigned numeric constant/ character constant/ or a
symbol. In general/ k may have a positive or negative
value with absolute value less than 16/384. In some cases/
the range of values for k is further restricted.

An unsigned numeric constant/ character constant/ or a
symbol. In general/ d may have a positive or negative
value with absolute value less than 512. In some cases/
the range of values for d is further restricted.

Memory parcel addressed by the value of kik)

idd + k) Memory parcel addressed by the sum of the contents of
operand register dd and constant k

NOTE

Instructions referencing the operand register dd
contain the register index in the d field/ the lower
9 bits of the instruction parcel.

The following reserved names represent other operands used in symbolic
APML instructions:

Name

lOB

iod

BZ/ DN

EXIT

WAIT

Description

I/O channel reference using the contents of the B register
as the channel designator

I/O channel reference/ where the value of symbol iod is
the channel designator. Symbol iod must be defined by
the CHANNEL pseudo instruction. Conventionally iod is a
3-character symbol.

lOP channel status. A channel busy flag/ BZ, and done
flag/ DN/ may be tested with certain instructions.

Name of subroutine return function/ which generates an lOP
instruction which exits from a subroutine

Name of branch function which loops until a test condition
is satisfied

PASS Name of function which generates an lOP pasS/ or
no-operation instruction

SM-0036 B-2

B.2 INSTRUCTIONS

Table B-1 shows lOP and APML instructions and gives an explanation of
their functions.

Table B-1. Instruction Summary

lOP

1

1
1

APML

1 1
1 Description |

1 1

000

1
1 PASS

1 1
1 No operation |

001 1 EXIT 1 Exit from subroutine |
002 j I = 0 1 Disable system interrupts |
003 1 I = 1

1

1 Enable system interrupts |
1 1

004

1

1 A = A > d
1 1

1 Right shift C and A by d places/ end off |
005 1 A = A < d 1 Left shift C and A by d places, end off |
006 1 A = A > > d 1 Right shift C and A by d places, circular]
007 1 A = A

1

< < d 1 Left shift C and A by d places, circular |
1 1

010

1

1 A = d
1 1

1 Transmit d to A |
Oil 1 A =: A & d 1 Logical product of A and d to A j
012 1 A = A + d 1 Add d to A 1
013 1 A = A - d 1 Subtract d from A |

1 1

014

1

1 A = ^
1 1

1 Transmit k to k \
015 1 A = A & k 1 Logical product of A and k to k \
016 1 A = A + k 1 Add k to k 1
017 1 A = A

1

- k 1 Subtract k from A |
1 1

020

1

1 A = dd
1 1
1 Transmit operand register d to A |

021 1 A = A & dd 1 Logical product of A and operand register]

1] d to A]
022 1 A = A + dd 1 Add operand register d to A]
023 1 A = A

1

- dd 1 Subtract operand register d from A]
1 1

024

1

1 dd = A
1 1

] Transmit A to operand register d]
025 1 dd = A + dd] Add operand register d to A, result to]

1] operand register d]
026 1 dd = dd + 1] Transmit d to A, add 1, result to]

1] operand register d]
027 1 dd = dd - 1] Transmit d to A, subtract 1, result to]

1

1

] operand register d]

1 1

SM-0036 B-3 B-01

Table B-1. Instruction Summary (continued)

1 lOP
1
1
1

APML

1 1
1 Description |

1 1

1 030
1
1 A

_ idd)
1 1
1 Transmit contents of memory addressed by |

1 1 register d to A |
1 031 1 A = A & (dd) 1 Logical product of A and contents of |

1 1 memory addressed by register d, result |

1 1 to A 1
1 032 1 A = A + idd) 1 Add contents of memory addressed by |

1 1 register d to A, result to A |
1 033 1 A = A - idd) 1 Subtract contents of memory addressed by |

1
1

1 by register d to A, result to A |
1 1

1 034 1 idd) = A

1 1

1 Transmit A to memory addressed by |

1 1 register d |
1 035 1 (dd) = A + (dd) 1 Add memory addressed by register d to |

1 1 A, result to same memory location |
1 036 1 idd) = idd) + 1 1 Transmit memory addressed by register d |

1 1 to A, add 1, result to same memory |

1 1 location |
1 037 1 idd) = idd) - 1 1 Transmit memory addressed by register d |

1 1 to A, subtract 1, result to same memory |
1
1

1 location |
1 1

1 040
1

1 C = 1, iod = DN

1 1
1 Set carry equal to channel d done |

1 041 1 C = 1, iod = BZ 1 Set carry equal to channel d busy |
1 042 1 C = 1, JOB = DN 1 Set carry equal to channel B done |
1 043 1 c

1

= 1, lOB = BZ 1 Set carry equal to channel B busy |
1 1

1 044
1

1 A = A > B

1 1

1 Right shift C and A by B places, end off |
1 045 1 A = A < B 1 Left shift C and A by B places, end off |
1 046 1 A = A >> B 1 Right shift C and A by B places, circular|
1 047 1 A

1
= A << B 1 Left shift C and A by B places, circular |

1 1

1 050
1

1 A B

1 1

1 Transmit B to A |
1 051 1 A = A & B 1 Logical product of A and B to A |
1 052 1 A = A B 1 Add B to A 1
1 053 1 A

1

= A - B 1 Subtract B from A |
1 1

1 054
1

i B = A

1 1
1 Transmit A to B |

1 055 1 B = A ->• B 1 Add B to A, result to B |
1 056 1 B = B + 1 1 Transmit B to A, add 1, result to B |
1 057 1 B

1

— B-1 1 Transmit B to A, subtract 1, result to B |

1 1

SM-0036 B-4

Table B-1. Instruction Summary (continued)

lOP APML

060 1 A = (B)

061 1 A = A & (B)

062

1

1 A = A + (B)

063 1 A =
1

A - (B)

064 1 (B) — A

065 1 (B) = A (

066

1

1 (B)
1

=
(B) +

067

1

1 (B) - (B) -

070 1 P - p + dt
071 1 P P - dt
072 1 P - p + dt
073 1 P =

P - dt

074

1

1 P dd

075 1 P - dd + k

076 1 P
1

- dd

077

1

1 P
_ dd * k

100 1 P P + d, C — ot
101 1 P = P + d, C # ot
102 1 P — P + d, A = ot
103 1 P = P + d, A # ot

104

1

1 P
_ P d, C _ ot

105 1 P P - d, C ot
106 1 P = P - d, A = ot
107 1 P = P - d, A # ot

110

1

1 P — P + d, C - ot
ill 1 P — P + d, C # ot
112 1 P = P + d, A = ot
113 1 P P + d, A # ot

Description

Transmit operand register B to A
Logical product of A and operand register
B to A

Add operand register B to A
Subtract operand register B from A

Transmit A to operand register B
Add operand register B to A, result to
operand register B
Transmit operand register to A, add 1,
result to operand register B
Transmit operand register to A, subtract
1, result to operand register B

Jump to P + d
Jump to P - d
Return jump to P + d
Return jump to P - d

Jump to address in operand register d
Jump to sum of k and operand register d
Return jump to address in operand
register d
Return jump to address sum of k and
operand register d

Jump to P + d if carry = 0
Jump to P + d if carry ^ 0
Jump to P + d if A = 0
Jump to P + d if A / 0

Jiunp to P

Jump to P

Jump to P

Jiimp to P

d if carry = 0
d if carry d 0
d if A = 0

d if A 0

Return jump to P + d if carry = 0
Return jump to P + d if carry ^ 0
Return jump to P + d if A = 0
Return jump to P + d if A ^ 0

These APML instruction formats are for illustrative purposes; they
are not supported by APML even though the hardware instructions are
generated by APML.

SM-0036 B-5 B-01

Table B-1. Instruction Suirunary (continued)

lOP

1
1
1

APML Description

114

1
1 R P - d, C = Ot Return jump to P - d if carry = 0

115 1 G = P - d, C # ot Return jump to P - d if carry ^ 0
116 1 G = P - d, A = Ot Return jump to P - d if A = 0

117 1 G
1

= P - d, A # ot Return jump to P - d if A It 0

120

1

1 P = dd, C = 0 Jump to address in operand register d if

1 carry = 0
121 1 P = dd, C # 0 Jiimp to address in operand register d if

1 carry ^ 0
122 1 P = dd, A = 0 Jump to address in operand register d if

1 A = 0

123 1 P = dd/ A # 0 Jump to address in operand register d if

1
1

A >4 0

124

1

1 P — dd + k, C = 0 Jump to address in operand register d + k

1 if carry = 0
125 1 P = dd + /c, C # 0 Jump to address in operand register d + k

1 if carry £ 0
126 1 P = dd + k, A = 0 Jump to address in operand register d + k

1 if A = 0

127 1 P = dd + k, A # 0 Jump to address in operand register d + k

1 if A it 0

130

1

1 G = dd, C = 0 Return jump to address in operand

1 register d if carry = 0
131 1 G = dd, C # 0 Return jump to address in operand

1 register d if carry it 0
132 1 G = dd, A = 0 Return jump to address in operand

1 register d if A = 0
133 1 G = dd, A # 0 Return jump to address in operand

1
1

register d if A ^ 0

134

1

1 G s dd + k, C = 0 Return jump to address in operand

1 register d + /c if carry = 0

135 1 G = dd + k, C # 0 Return jump to address in operand

1 register d + k if carry ^ 0

136 1 G = dd + k, A = 0 Return jump to address in operand

1 register d + k if k = 0
137 1 G = dd + k, A # 0 Return jump to address in operand

1

1

register d + k if k ^ 0

f These APML instruction formats are for illustrative purposes; they
are not supported by APML even though the hardware instructions are
generated by APML.

SM-0036 B-6

C. MESSAGES

APML supports four classes of messages: abort, fatal, warning, and
informative. Under COS, all messages are written to the logfile. Under
UNICOS, abort, fatal, and warning messages are written to stderr; APML
generates informative messages only if you request them with the -L
parameter.

A description of each class follows:

Mesage

Class

Abort

Fatal

Description

APML aborts

For UNICOS, APML aborts. For COS, the effect of ABORT

and DEBUG options is as follows:

ABORT

Option

Off

Off

On

On

DEBUG

Option

Off

On

Off

On

Result

Permanent Dataset Table (PDT) fatal

error flag set

PDT fatal error flag clear

APML aborts

APML aborts

Warning Possible error detected, no action taken

Informative Informative message

This section lists messages issued by APML according to numeric sequence
by the message identifier number.

APOOO - [APML] INTERNAL 'APML' ERROR DETECTED AT P = paddress

CLASS: Under COS, Abort; under UNICOS, Informative.

CAUSE: APML detects an internal error at parcel address paddress
and is unable to proceed.

ACTION: Refer the problem to a Cray Research analyst.

SM-0036 C-1

APOOl - [APML] APML VERSION x.xx (aaa/dd/yy) - lOP

CLASS: Informative

CAUSE: At the beginning of each assembly/ APML issues an
informative message indicating the version number x.xX/
the date mm/dd/yy in which APML was assembled/ and
the type of machine that will execute APML source code, lOP,

ACTION: Not applicable

AP002 - [APML] ASSEMBLY TIME: nnnnn,nnnn CPU SECONDS

CLASS: Informative

CAUSE: All programs in the current file of the source dataset are
assembled, nnnnn.nnnn is the assembly time in
floating-point CPU seconds.

ACTION: Not applicable

AP003 - [APML] MEMORY WORDS: imords + I/O BUFFERS: iobuffers

CLASS: Informative

CAUSE: All programs in the current file of the source dataset are
assembled, mwords is the decimal ntunber of memory words
required in the user portion of the job field, iobuffers
is the decimal number of words needed for the I/O table and
buffer area of this job field.

ACTION: Not applicable

AP004 - [APML] ASSEMBLY ERRORS

CLASS: Abort

CAUSE: If you set the ABORT flag on the APML control statement and
fatal errors are encountered during assembly/ APML issues
this message followed by an abort.

ACTION: Either remove the ABORT flag from the APML control
statement or correct all fatal errors found by APML.

SM-0036 C-2

APOlO - [APML] 1 WARNING ERROR« PROGRAM MODULE pname
or

APOlO - [APML] n WARNING ERRORS, PROGRAM MODULE pname

CLASS: Warning

CAUSE: APML issues this message for all source lines in which
warning errors are detected, from the previous program
module (if any) through program module pname, pname is
equivalent to the name used on a particular IDENT pseudo
statement.

ACTION: Correct all warning errors. See appendix D, Assembly
Errors, for a list of warning errors.

APOll - [APML] 1 FATAL ERROR, PROGRAM MODULE pname
or

APOll - [APML] n FATAL ERRORS, PROGRAM MODULE pname

CLASS: Fatal

CAUSE: APML issues this message for all source lines in which
fatal errors are detected, from the previous program module
(if any) through program module pname. pname will be
equivalent to the name used on a particular IDENT pseudo
statement.

ACTION: Correct all fatal errors. See appendix D, Assembly Errors,
for a list of fatal errors.

AP012 = [APML] MISSING IDENT STATEMENT

CLASS: Warning

CAUSE: An END pseudo on the source dataset occurred before an
IDENT pseudo instruction.

ACTION: Check the source dataset for matching IDENT and END pseudo
instructions.

SM-0036 C-3

AP013 - [APML] MISSING END STATEMENT, PROGRAM MODULE pname

CLASS: Warning

CAUSE:

ACTION!

On the source dataset, an end-of-file (EOF) occurred before
an END pseudo instruction corresponding to the IDENT pseudo
in program module pname. pname is equivalent to the
name used on that IDENT pseudo statement.

Check the source dataset for matching IDENT and END pseudo
instructions.

AP014 - [APML] EMPTY SOURCE FILE, DN = dname

CLASS: Warning

CAUSE: An EOF or end-of-data (EOD) was encountered on the source
dataset before any source statements.

ACTION: Check the job control statements and the source dataset for
a problem that causes a null file.

AP015 - [APML] 1 LINE EXCEEDS 90 CHARACTERS, DN = dname
or

AP015 - [APML] n LINES EXCEED 90 CHARACTERS, DN = dname

CLASS: Warning

CAUSE: The given number of records in the named dataset contain
more than 90 characters. The most typical cause is UPDATE
sequence numbers that extend past column 90. (APML
truncates the long records to 90 characters). This message
is also issued when a binary dataset is erroneously read.

ACTION: If the records exceed 90 characters, break up the long
records with continuation lines.

AP016 - [APML] OPEN ERROR, DN = dname

CLASS: Abort

CAUSE: The dataset dname was not found in your local environment
or in the system directory.

ACTION: Access or create the dataset dnaoie.

SM-0036 C-4

AP017 - [APML] INVALID CPU TYPE SPECIFIED: cpu

CLASS: Warning

CAUSE: The CPUstype parameter on the APML control statement is
invalid (was specified as something other than lOP).

ACTION: Correct the CPU type on the APML job control statement.

AP030 - [APML] BAD BINARY TEXT, DN = dname, (ERROR CODE = CC)

CLASS: Fatal

CAUSE: An error was discovered in the binary system text dname.
The error codes and their meanings are as follows:

Error Code Meaning

PI Prologue field BSTTT ;41

P2 Prologue field BSTWC less than LE@BSTPR

P3 End-of-record (EOR) encountered while

prologue was being read

P4 EOF, EOD, or null record encountered while

prologue was being read

HI EOF, EOD, or null record encountered while

subtable header was being read

H2 Header field BSTTT 41

H3 Header field BSTWC <1

H4 Header field BSTID not recognized

Ml EOR encountered while TMDF was being read

M2 EOF, EOD, or null record encountered while

TMDF was being read

M3 Length of TMDF entry <0

M4 Length of TMDF entry =0

M5 Global word count exceeded during TMDF
processing

SM-0036 C-5

CAUSE: Error Code

(continued)
SI

52

53

El

E2

Meaning

EOR encountered while TSYM entry was being
read

EOR/ EOD/ or null record encountered while

TSYM entry was being read

Global word count exceeded during TSYM
processing

Epilogue field BSTWC /I

Global word count not equal to sum of
subtable word counts

ACTION: Generate a new binary system text from the original source
system text and rerun the job with the new binary system
text/ rerun the job with the source system text in place of
the binary system text/ or show listing and DSDUMP output
of offending binary system text to a Cray Research systems
analyst.

AP031 - [APML] symbol doubly-defined in binary text dname

CLASS: Fatal

CAUSE: The named symbol is defined in the named binary system
text but is defined differently in a previous system text.

ACTION: Remove one of the offending definitions from the source
system texts/ generate a new binary system text/ and
resubmit job.

AP032 - [APML] MACRO Opsyn NOT FOUND/ BINARY TEXT dname

CLASS: Fatal

CAUSE: The named binary system text contains an OPSYN directive of
the form name OPSYN opsyn, but no macro or pseudo-op with
the name opsyn is known to the assembler.

ACTION: Correct the spelling of opsyn/ remove the OPSYN from the
named system text, or define the offending macro in a
previous system text or before the OPSYN directive in the
named system text.

SM-0036 C-6

AP033 - [APML] MACRO mname REDEFINED IN BINARY TEXT dname

CLASS: Warning

CAUSE: A definition for the named macro appears in the named
dataset, but the macro is previously defined.

ACTION: If the redefinition is intentional, the new definition will

be used; otherwise, remove the unwanted macro definition.

CA9g9 - NAME name TOO LONG

CLASS: Fatal

CAUSE: One of your file names is longer than 7 characters.

ACTION: Use a shorter name for that file.

SM-0036 C-7

0. ASSEMBLY ERRORS

Two types of errors, fatal errors and warning errors, can occur during an
assembly. Fatal errors cause APML to abort the job unless a DEBUG
parameter is present on the APML control statement. See table D-1 for an
explanation of fatal error types. Warning errors have no effect on the
assembly process. Table D-2 defines warning errors. An error code
consists of a single alpha character, or an alpha character and a digit.

Error

Type

;5M-0036

Table D-1. Fatal Errors

Definition

NAME, SYMBOL, CONSTANT, OR DATA ITEM ERROR

Indicates a variety of possible errors. For example:

Illegal character, too many characters, or illegal
separator in a name, symbol, constant, or data item
Count field in character constant exceeds 800

Missing right apostrophe in a character string
Parentheses in an embedded parameter not matched properly
Embedded argument not followed by blank or comma

DOUBLE DEFINED SYMBOL OR DUPLICATE PARAMETER NAME

• Symbol previously defined; the first definition holds.
No error is given if the second definition results in the
same value and attributes.

• A formal parameter in a definition has the same name as a
previously defined parameter. The parameter is ignored.

DEFINITION OR CONDITIONAL SEQUENCE ILLEGALLY NESTED

TOO MANY ENTRIES

Number of block exceeds 1024

Niunber of external names exceeds 4095

Number of entry names exceeds 5461
Location or origin counter word address exceeds 4,194,303

D-1

Error

Type

N

On

SM-0036

Table D-1. Fatal Errors (continued)

Definition

INSTRUCTION PLACEMENT ERROR

The instruction is treated as a null (blank) pseudo
instruction.

• ABS not allowed after a symbolic machine instruction or
restricted pseudo instruction

• IDENT not allowed after IDENT without an intervening END
• Symbolic APML instruction, or restricted pseudo

instruction, appears outside an IDENT, END sequence
• END pseudo instruction within a macro expansion

LOCATION FIELD ERROR

Indicates an invalid name in the location field of a pseudo
instruction, macro call, or prototype statement

RELOCATABLE FIELD ERROR

Indicates an error in a relocatable field. For example, more
than one main program entry is named in a program module.

OPERAND FIELD ERROR

Indicates an error in the operand field of a pseudo instruction

Errors 01 through 09 refer to operand or operator errors in a
symbolic APML statement.

01 Illegal operand following shift operator
02 Channel function separator must be a colon (:).
03 Channel function must be a constant.

04 One of the following:
• Relational operator must follow the subject of a

conditional clause

• Operand not allowed as subject of conditional clause
• An s or # must follow lOB of channel mnemonic in a

test for channel busy or done. An = or # must
follow C in a test of the carry flag.

05 Unused

D-2

Error

Type

Sn

SM-0036

Table D-1. Fatal Errors (continued)

Definition

06 Illegal operand follows the subject in a conditional
clause.

07 Illegal operator or separator following an operand
08 More than 18 operands appear in an APML statement.
09 One of the following:

• 0 or 1 must follow C = or I =

• BZ or DN must follow = or # in a conditional clause

involving lOB or a channel mnemonic

PROGRAMMER ERROR

Error generated by ERROR or ERRIF pseudo instruction

RESULT FIELD ERROR

Indicates a syntax error in result field of a symbolic APML
instruction

SYNTAX ERROR

Indicates a syntax error in an undefined pseudo instruction

Errors SI through S9 indicate syntax errors in symbolic APML
instructions

51

52

53

54

55

56

57

S8

S9

Unrecognized operand
One of the following:

• Illegal operator or operand following (dd or (B or
(E

• Illegal operand following (
Unused

Missing] following [symbol
Operator must be = following subject
Illegal stibject of assignment clause
One of the following:

• Illegal operand following P = or R =
• Illegal operand in assignment clause

Illegal operator when + or - or & or shift operator is
required
Illegal operand following or - or &

D-3

Error

Type

U

SM-0036

Table D-1. Fatal Errors (continued)

Definition

TYPE ERROR

Word address, parcel address, or value type not as required
for an expression or constant

UNDEFINED SYMBOL OR OPERATION

Reference to a symbol that is not defined

REGISTER EXPRESSION OR FIELD WIDTH ERROR

Indicates inconsistency between an expression attribute and
field width defined. For example:

• Relocatable attribute not allowed for field width

• External attribute not allowed for field width

• Word-address or parcel-address attribute not allowed for
field width

• Field width symbol or constant (in VWD) not terminated by
slash (/)

EXPRESSION ERROR

Expression contains illegal attribute, separator value, and so
on, for application. For example:

Expression element not terminated by space, comma, or
expression operator
Complement (#) of external or relocatable element not
allowed

Negative expression value in ESS, BSSZ, 0R6, or LOG
pseudo instruction
Expression in ORG not relative to current block
Expression is relocatable or external when relocatable or
external attribute is not allowed

More than one element in a term is external or

relocatable, or external element is not the only element
in a term

More than one external element in an expression, or minus
sign precedes an external element

D-4

Error

Type

Error

Type

W

W1

W2

W3

W4

SM-0036

Table D-1. Fatal Errors (continued)

Definition

• Expression is relocatable relative to more than one block
after cancellation of relocatable terms with opposite
signs

• Expression is negative relocatable
• Expression is both external and relocatable

Table D-2. Warning Errors

Definition

PROGRAMMER WARNING ERROR

Error may be generated by ERROR or ERRIF pseudo instruction

LOCATION FIELD SYMBOL IGNORED

Location symbol not used in a pseudo instruction and is
ignored

BAD LOCATION SYMBOL

Illegal character or too many characters

EXPRESSION ELEMENT TYPE ERROR

Value, parcel-address, or word-address attribute not allowed
for an element in an expression

POSSIBLE SYMBOLIC APML INSTRUCTION ERROR

D-5

Error

Type

W5

W6

W7

W8

W9

Y2

Table D-2. Warning Errors (continued)

Definition

TRUNCATION ERROR

• Expression value exceeds field size/ result truncated
• Division by 0 (zero result)
• External expression in zero width field

LOCATION FIELD SYMBOL NOT DEFINED

• Illegal character or too many characters
• The expression defining the symbol contains an undefined

symbol
• The micro name on a MICSIZE instruction is not previously

defined

MICRO SUBSTITUTION ERROR

A quote mark encountered in APML source was not followed by a
previously defined micro name or was not terminated by a
second quote mark.

ADDRESS COUNTER BOUNDARY ERROR

• * (or *0) used in an expression when the location (or
origin) counter is not a parcel boundary.

• W.* (or W. *0) used in an expression when the location
(or origin) counter is not a word boundary.

BASE REGISTER DECLARATION REQUIRED

This error appears/ if a base register is not currently
declared/ on any branch instruction whose destination is
outside the current page.

MACRO REDEFINED

A macro name encountered in the APML source was redefined. 1*

t Warning error depends on the WMR and NWMR features of the APML control
statement or the LIST pseudo instruction.

SM-0036 D-6

INDEX

INDEX

Aborting the APML COS job, 3-2
ABS pseudo instruction, 6-3
Absolute

assembly element and term attribute
evaluation, 2-20

attribute for a symbol, 2-6
expression attribute, 2-18
expressions, examples, 2-19

Accumulator

entering a value, 5-5
reserved name, B-1

shift, 5-17

Add to accumulator and replace operand
instructions, 5-2, 5-14, 5-15

Add to accumulator instructions, 5-2, 5-8

through 5-10
Adding operators, 2-14
AIA functions, 7-3

AOA functions, 7-4

APML assembler language
coding conventions, 2-3
cross-reference listing, 8-3
data notation

character constants, 2-10

data items, 2-11

numeric constants, 2-9

overview, 2-9

examples, 3-7
execution, 1-2

expression attributes
overview, 2-17

parcel address, word address, or
value, 2-18

relocatable, external, or absolute,

2-18

expression evaluation, 2-17
expressions

adding operators, 2-14
elements, 2-15

multiplying operators,
overview, 2-14

term attributes, 2-15

terms, 2-15

global definitions,
instruction summary,
JCL example

COS, 3-4

UNICOS, 3-6

line editing
concatenation, 2-4

micro substitution, 2-4

overview, 2-3

2-14

2-8

B-3 through B-7

APML assembler language (continued)
list output, 8-1
names, 2-4

operand notation, B-1
page headers, 8-1
prefixed symbols and constants

overview, 2-13

parcel address prefix - P., 2-13
word address prefix - W., 2-13

qualified symbols, 2-7
source line format, 2-1

source statement listing, 8-1
special elements, 2-8
statement format

comment statement, 2-1

overview, 2-1

pseudo instruction format, 2-2
symbolic APML instruction format, 2-2

symbol reference, 2-7
symbols

overview, 2-5

symbol attributes, 2-5
symbol definition, 2-5

table method of evaluation attribute

evaluation, 2-20

$APTEXT, default system text file, COS, 3-3
ASCII

character set, A-1

representation of characters, 2-10
Assembler listing format, 8-1
Assembly errors, D-1
Assignment clauses

channel function, 4-10

jump assignment, 4-9
overview, 4-5

replacement assignment, 4-5
set flag assignment, 4-9
special function, 4-10

Assignment field, description, 2-2
Assignment syntax, 4-14
Asterisk

as a special element, 2-8
introducing comment, 2-1

Attributes, symbol, 2-5

BASE pseudo instruction, 6-10
Base register, 6-5
BASEREG pseudo instruction, 6-5
Basic lOP hardware instructions, section 5
Binary object file, 3-5
Binary symbol table, 3-4

SM-0036 Index-1 B-01

Binary system text
COS, 3-3

overview, 3-6

BITP pseudo instruction, 6-20
BITW pseudo instruction, 6-19
$BLD, default COS binary output dataset

from APML, 3-1

Block control pseudo instructions
BITW - set *W counter, 6-19

BITP - set *P counter, 6-20

BLOCK - local block assignment, 6-16
BSS - block save, 6-17

LOC - set * counter, 6-18

ORG - set *0 counter, 6-17

overview, 6-14

Block Multiplexer (BMA) functions, 7-7
BLOCK pseudo instruction, 6-16
Blocks, definition, 6-14

BMA functions, 7-7

Branch instructions, 5-20

BSS pseudo instruction, 6-17
$BST, default binary system text, COS, 3-3
BSSZ pseudo instruction, 6-34
Buffer memory (MOS) functions, 7-3
Busy flag

overview, 7-2

test, 4-13

BZ, reserved name, B-2

Carry flag, reserved name, B-1
CDC Display code character set, A-1
Central memory input (HIA) functions, 7-4
Central memory output (HOA) functions, 7-4
Channel

functions and descriptions (table), 7-2
interface function codes, 7-2

Channel Busy flag, 7-2
Channel Done flag, 7-2
Channel function

assignment clause, 4-10
instructions, 5-21

Channel Interrupt Enable flag, 7-2
CHANNEL pseudo instruction, 6-31
Character

constants, data notation, 2-10

string, justification, 2-11
Character sets, A-1

CIA functions, 7-6

Circular shifts, 5-18

Clauses, see Assignment clauses or
Condition clauses

$CNC micro, 6-62

COA functions, 7-6

Code control pseudo instructions
BASEREG - declare base operand

register, 6-5
NEWPAGE - force a new instruction page,

6-7

overview, 6-5

SCRATCH - declare APML scratch

register, 6-6

Code duplication pseudo instructions
DUP - duplicate code, 6-54
ECHO - duplicate code with varying

arguments, 6-55
ENDDUP - end duplicated code, 6-56
Examples of duplicated sequences, 6-57
overview, 6-54

STOPDUP - stop duplication, 6-57
Coding conventions, 2-3
Command line, see Invocation and execution

Comment field, description, 2-2
COMMENT pseudo instruction, 6-4
Comment statement format, 2-1

Comments, designating, 6-45
Compare

accumulator, 4-11

register or memory parcel, 4-12
CON pseudo instruction, 6-33
Concatenation, 2-4

Condition clauses

overview, 4-11

test accumulator, 4-11

test carry flag, 4-13
test channel status, 4-13

test register or memory, 4-12
Condition syntax, 4-16
Conditional assembly pseudo instructions

ELSE - toggle assembly condition, 6-43
ENDIF - end conditional code sequence,

6-43

IFA - test expression attribute for
assembly condition, 6-38

IFC - test character strings for
assembly condition, 6-41

IFE - test expressions for assembly
condition, 6-39

overview, 6-37

SKIP - unconditionally skip statements,
6-42

Conditional

branch instructions, 5-20

operator, 4-4

Console

display (TOA - TOD) functions, 7-5
keyboard (TIA - TID) functions, 7-5

Control instructions

EXIT, 5-1, 5-4

1=0, 5-1, 5-4

1=1, 5-1, 5-4

overview, 5-3

PASS, 5-1, 5-3

Control statement, see Invocation and

execution

Conventions used in this manual, 1-2

COS

APML control statement, 3-1

APML JCL example, 3-4
handling of messages, C-1

Cray I/O Subsystem (lOS) Model B, 7-1
Cray I/O Subsystem (lOS) Model C, 7-1
Cross-reference

information, 3-2

listing, 8-3

SM-0036 Index-2 B-01

Data definition pseudo instructions
BSSZ - generate zeroed block, 6-34
CON - generate constant, 6-33
DATA - generate data words, 6-35
overview, 6-33

PDATA - generate data parcels, 6-36
VWD - variable word definition, 6-36

Data generation statement instruction
format, 4-18

Data items, data notation, 2-11

Data notation

character constants, 2-10

data items, 2-11

numeric constants, 2-9

overview, 2-9

DATA pseudo instruction, 6-35
SDATE micro, 6-62

DEBUG parameter, and errors, D-1
Debugging information, 3-2
Decimal representation of numbers, 2-10
DECMIC pseudo instruction, 6-61
Decrement by 1 instructions, 5-2, 5-13, 5-14
Direct Memory Access (DMA) ports, 7-1
Display code representation of characters,

2-10

DMA ports, 7-1
DN, reserved name, B-2

Done flag
overview, 7-2

test, 4-13

DUP pseudo instruction, 6-54

EBCDIC

character set, A-1

representation of characters, 2-10
ECHO pseudo instruction, 6-55
EJECT pseudo instruction, 6-26
Elements, 2-15

ELSE pseudo instruction, 6-43
End off shifts, 5-17

END pseudo instruction, 6-3
ENDDUP pseudo instruction, 6-56
ENDIF pseudo instruction, 6-43
ENDM pseudo instruction, 6-50
ENDTEXT pseudo instruction, 6-28
ENTRY pseudo instruction, 6-8
EQUALS pseudo instruction, 6-29
ERA functions, 7-7

ERRIF pseudo instruction, 6-21
Error code, contents of, D-1

Error control pseudo instructions
ERRIF - conditional error generation,

6-21

ERROR - unconditional error generation,
6-21

overview, 6-21

Error Logging (ERA) functions, 7-7
Error message classes and explainations, C-1
ERROR pseudo instruction, 6-21
Errors, types and effects of, D-1
Evaluation

absolute assembly element and term
attribute, 2-20

Evaluation (continued)
of terms, 2-16

relocatable assembly element and term
attribute, 2-20

Example JCL for APML, COS, 3-4
Examples, 3-7
EXB functions, 7-6

Execution of the APML assembler, 1-2
Execution, see Invocation and execution

EXIT

instruction, 4-10

instruction summary, B-3
reserved name, B-2

Exit Stack

Boundary flag, 5-4
pointer, reserved name, B-1
stack, 6-32

EXIT, 5-1, 5-4

Expression attributes
overview, 2-17

parcel address, word address, or value,

2-18

relocatable, external, or absolute, 2-18
Expression evaluation, 2-17
Expressions

adding operators, 2-14
elements, 2-15

examples, 2-19
multiplying operators, 2-14
overview, 2-14

terms, 2-15

term attributes, 2-15

EXT pseudo instruction, 6-9
External attribute for a symbol, 2-6
External expression

attribute, 2-18

examples, 2-19

Fatal errors

effects on assembly, D-1
table, D-1

Features of APML, 1-1

Fields of a pseudo instruction, 2-2
First pass, overview, 1-2
Format of assembler listing, 8-1
Front-end

input (CIA) functions, 7-6
output (COA - COD) functions, 7-6

Function

codes, 7-2

operators, 4-3

Global definitions, 2-8

GLOBAL pseudo instruction, 6-4
Global text source, 6-27

Hardware instruction summary, B-1
Hexadecimal representation of numbers, 2-10
HIA functions, 7-4

HOA functions, 7-4

SM-0036 Index-3 B-01

1=0, 5-1, 5-4, B-3
1=1, 5-1, 5-4, B-3

I/O channels, 7-1

I/O Request function, 7-2
IDENT pseudo instruction, 6-2
IFA pseudo instruction, 6-38
IFC pseudo instruction, 6-41
IFE pseudo instruction, 6-39
$IN, default COS input dataset to APML, 3-1
Increment by 1 instructions, 5-2, 5-12, 5-13
Instruction definition pseudo instructions

ENDM - end macro definition, 6-50

LOCAL - specify local symbols, 6-49
Macro definition format, 6-46

MACRO - macro definition, 6-48

OPSYN - synonymous operation, 6-53
overview, 6-45

Instruction

index (table), 5-1

summaries, B-3 through B-7
Instructions, see Pseudo instructions or

Basic lOP hardware instruction set

Integer data item format, 2-11
Interface

characteristics, 7-1

function cedes, 7-2

Interrupt Enable flag, reserved name, B-1
Invocation and execution

binary system text, 3-6
COS APML control statement, 3-1

overview, 3-1

system text, 3-6
UNICOS APML command line, 3-4

lOB ; 0 - 17, instruction summary, B-7
lOB, as reserved name, B-2

iod ; 0 - 17, instruction summary, B-7
I OP

Input (AIA, AIB, AIC) functions, 7-3
instruction summary, B-3 through B-7
Output (AOA, AOB, AOA) functions, 7-4

lOR function, 7-2

JCL example
UNICOS, 3-6

COS, 3-4

SJDATE micro, 6-62

Jump
assignment, assignment clause, 4-9
destination address, possibilities, 4-9

Justification of character string, 2-11

-L parameter and error messages, C-1
Label, definition, 4-5
Length of field for a data item, 2-12
Length of source line, 2-1
LIA functions, 7-5

Line editing
concatenation, 2-4

micro substitution, 2-4

overview, 2-3

List output, APML, 8-1
List pseudo processing, 3-5

LIST pseudo instruction, 6-23
Listing control options, 3-2
Listing control pseudo instructions

EJECT - begin new page, 6-26
ENDTEXT - terminate global text, 6-28
LIST - list control, 6-23

overview, 6-23

SPACE - list blank lines, 6-26

SUBTITLE - specify listing subtitle,
6-27

TEXT - begin global text, 6-27
TITLE - specify listing title, 6-27

LME functions, 7-3

LOA functions, 7-5

Loader linkage pseudo instructions
ENTRY - specify entry symbols, 6-8
EXT - specify external symbols, 6-9
overview, 6-8

START - specify program entry, 6-9
LOC pseudo instruction, 6-18
Local

block, 6-14

Memory Error (LME) functions, 7-3
memory transfers, 7-1

LOCAL pseudo instruction, 6-49
Location counter

overview, 6-15

setting, 6-17, 6-18
Location field, description, 2-2
Logical product with accumulator

instructions, 5-1, 5-7, 5-8

Macro definition format, 6-46

MACRO pseudo instruction, 6-48
Main program entry, 6-9
Mainframe

input (LIA) functions, 7-5
output (LOA) functions, 7-5

Memory parcel, compare, 4-12
Messages, classes and explanation, C-1
$MIC micro, 6-62

Micro definition pseudo instructions
DBCMIC - decimal micro, 6-61

MICRO - micro definition, 6-60

Micro reference format, 6-59

OCTMIC - octal micro, 6-61

overview, 6-59

predefined micros, 6-62
Micro

names, delimiting, 2-4
reference format, 6-59

substitution, 2-4

MICRO pseudo instruction, 6-60
MICSIZE pseudo instruction, 6-32
Mode control pseudo instructions

BASE - declare base for nruneric data,

6-10

overview, 6-10

QUAL - qualify symbols, 6-12
Mode of branch, 5-20

MOS functions, 7-3

Multiplying operators, 2-14

SM-0036 Index-4 B-01

Names

registers, 4-1
reserved, B-1, B-2

Nesting, 6-46, 6-55, 6-58
NEWPAGE pseudo instruction, 6-7
Nominal block, definition, 6-14

Numeric constants, data notation, 2-9

Octal representation of numbers, 2-10
OCTMIC pseudo instruction, 6-61
Operand

field, description, 2-2
notation, 4-1, B-1

register B, reserved name, B-1
Operators

adding, 2-14
conditional operator, 4-4
function operators, 4-3
multiplying, 2-14
overview, 4-3

relational operators, 4-4
replacement operator, 4-3

OPSYN pseudo instruction, 6-53
ORG pseudo instruction, 6-17
Origin counter

overview, 6-15

setting, 6-17
$OUT, default COS list output dataset from

APML, 3-1

Output, APML, 8-1

P. parcel address prefix, 2-13
Page headers, 8-1
Parcel address

attribute for a symbol, 2-5
expression attribute, 2-18
prefix - P., 2-13

Parcel-bit-position counter, 6-15
PASS

instruction, 4-10, 5-3, 5-1

instruction summary, B-3
reserved name, B-2

Pass, first and second, overview, 1-2
PDATA pseudo instruction, 6-36
PDT, 3-2

Peripheral Expander (EXB) functions, 7-6
PFR functions, 7-2

Predefined micros, 6-62

Prefixed symbols and constants
parcel address prefix - P., 2-13
word address prefix - W., 2-13

Program address register, reserved name, B-1
Program control pseudo instructions

ABS - assemble absolute binary, 6-3
COMMENT - define Program Descriptor

Table comment, 6-4

END - end program module, 6-3
GLOBAL - declare global symbols, 6-4
IDENT - identify program module, 6-2
overview, 6-2

Program Description Table (PDT), 3-2
Program Descriptor Table (PDT), 6-2

Program Exit Stack (PXS) functions, 7-3
Program Fetch Request (PFR) functions, 7-2
Program Fetch Request flag, 5-21
Program sequence, termination, 5-4
Program statement instruction format

assignment clauses
channel function, 4-10

jump assignment, 4-9
overview, 4-5

replacement assignment, 4-5
set flag assignment, 4-9
special function, 4-10

condition clauses

overview, 4-11

test accumulator, 4-11

test carry flag, 4-13
test channel status, 4-13

test register or memory, 4-12
overview, 4-4

syntax graphs for APML program
statements, 4-13

Pseudo instructions,

ABS, 6-3

BASE, 6-10

BASEREG, 6-5

BITP, 6-20

BITW, 6-19

BLOCK, 6-16

BSS, 6-17

BSSZ, 6-34

CHANNEL, 6-31

COMMENT, 6-4

CON, 6-33

DATA, 6-35

DECMIC, 6-61

DUP, 6-54

ECHO, 6-55

EJECT, 6-26

ELSE, 6-43

END, 6-3

ENDDUP, 6-56

ENDIF, 6-43

ENDM, 6-50

ENDTEXT, 6-28

ENTRY, 6-8

EQUALS, 6-29

ERRIF, 6-21

ERROR, 6-21

EXT, 6-9

fields, 2-2

format, 2-2

GLOBAL, 6-4

IDENT, 6-2

IFA, 6-38

IFC, 6-41

IFE, 6-39

LIST, 6-23

LOC, 6-18

LOCAL, 6-49

MACRO, 6-48

MICRO, 6-60

MICSIZE, 6-32

NEWPAGE, 6-7

OCTMIC, 6-61

SM-0036 Index-5 B-01

Pseudo instructions (continued)
OPSYN, 6-53

ORG, 6-17

PDATA, 6-36

QUAL, 6-12
rules, 6-1

SCRATCH, 6-6

SET, 6-30

SKIP, 6-42

SPACE, 6-26

START, 6-9

STOPDUP, 6-57

SUBTITLE, 6-27

TEXT, 6-27

TITLE, 6-27

types, 6-2
VWD, 6-36

PXS functions, 7-3

$QUAL micro, 6-62

QUAL pseudo instruction, 6-12
Qualified symbols

overview, 2-7

referencing, 2-7
Quotation marks, delimiting micro names, 2-4

Real-time Clock (RTC) functions, 7-3

Redefinable attribute for a symbol, 2-6
Register names, 4-1
Register, compare, 4-12
Relational operators, 4-4
Relocatable assembly element and term

attribute evaluation, 2-20

Relocatable attribute for a symbol, 2-6
Relocatable expression

attribute, 2-18

examples, 2-19
Replacement

assignment, assignment clause, 4-5
operator, 4-3

Reserved names, B-1, B-2

Result field, description, 2-2
Return jump program address, reserved name,

B-1

RTC functions, 7-3

Rules

for terms, 2-15

operands in assignment clause, 4-6

SCRATCH pseudo instruction, 6-6
Second pass, overview, 1-2
Set carry flag instructions, 5-3, 5-18
through 5-20
Set flag assignment clause, 4-9
SET pseudo instruction, 6-30
Shift instructions

circular shifts, 5-18

end off shifts, 5-17

overview, 5-17

Sign for a data item, 2-12
SKIP pseudo instruction, 6-42

Source line

format, 2-1

length of 2-1
Source statement listing, APML, 8-1
SPACE pseudo instruction, 6-26
Special

elements, 2-8

function assignment clause, 4-10
SSD

input (HIA) functions, 7-4
output (HOA) functions, 7-4

START pseudo instruction, 6-9
Statement format

comment statement, 2-1

overview, 2-1

pseudo instruction format, 2-2
symbolic APML instruction format, 2-2

Stderr

error output, C-1

UNICOS, 3-5

STOPDUP pseudo instruction, 6-57
String

characters, 2-11

data item format, 2-11

SUBTITLE pseudo instruction, 6-27
Subtract from accumulator instructions,

5-2, 5-10 through 5-12

Symbol
attributes, 2-5

definition, 2-5

reference, 2-7

text dataset, COS, 3-3

Symbol definition pseudo instructions
CHANNEL - channel symbol, 6-31
EQUALS - equate symbol, 6-29
MICSIZE - set redefinable symbol to

micro size, 6-32

overview, 6-29

SET - set symbol, 6-30
Symbolic APML instruction format, 2-2
Symbolic APML instruction syntax

data generation statement instruction
format, 4-18

operand notation, 4-1
operators, 4-3
overview, 4-1

program statement instruction format
assignment clauses, 4-5
condition clauses, 4-11

overview, 4-4

syntax graphs for APML program
statements, 4-13

Syntax
assignment, 4-14
condition, 4-16

SYSREF, 8-1

System Interrupt Enable flag, clearing and
setting, 5-4

System text
overview, 3-6

file dataset, COS, 3-3

SM-0036 Index-6 B-01

Table method of evaluation, attribute
evaluation, 2-20

Term

attributes, 2-15

definition, 2-14

Terminate execution of program sequence, 5-4
Test accumulator condition clause, 4-11
Test carry flag condition clause, 4-13
Test channel status condition clause, 4-13
Test register or memory condition clause,

4-12

TEXT pseudo instruction, 6-27
TIA functions, 7-5

$TIME micro, 6-62
TITLE pseudo instruction, 6-27
TOA functions, 7-5

Transmit from accumulator instructions,
5-2, 5-16, 5-17
Transmit to accumulator instructions, 5-1,
5-5, 5-6

Truncation of expression value, 2-18

Underscore (concatenation) character, 2-4
UNICOS APML

command line, 3-4

handling of messages, C-1
JCL example, 3-6

Value

attribute for a symbol, 2-5
expression attribute, 2-18

VWD pseudo instruction, 6-36

W. word address prefix, 2-13
WAIT

instruction, 4-10

reserved name, B-2

Warning errors
effects on assembly, D-1
table, D-5

Word address

attribute for a symbol, 2-5
expression attribute, 2-18
prefix - W., 2-13

Word-bit-position counter, 6-15

$XRF, default binary symbol table for
SYSREF, 3-4

SM-0036 Index-7 B-01

READER COMMENT FORM

APML Assembler Reference Manual SM-0036 B-01

Your comments help us to improve the quality and usefulness of our publications. Please use the space provided
below to share with us your comments. When possible, please give specific page and paragraph references.

NAME.

JOB TITLE

FIRM

ADDRESS

CITY STATE ZIP_

DATE

RESEARCH, INC.

FOLD

FOLD

BUSINESS REPLY CARD
FIRSTcuss PERMIT NO 6184 ST PAUL.MN

POSTAGEWill BE PAIO BY AOORESSEE

RESEARCH, INC.

Attention: PUBLICATIONS
1345 Northland Drive
Mendota Heights, MN 55120

STAPLE

NO POSTAGE

NECESSARY

IF MAILED

IN THE

UNITED STATES

•j

READER COMMENT FORM

APML Assembler Reference Manual SM-0036 B-01

Your comments help us to improve the qualityand usefulness of our publications. Please use the space provided
below to share with us your comments. When possible, please give specific page and paragraph references.

NAME.

JOB TITLE

FIRM

ADDRESS

CITY

DATE

RESEARCH, INC.

STATE. ZIP.

FOLD

FOLD

BUSINESS REPLY CARD
FIRST CLASS PERMIT NO 6184 ST PAUL. MN

POSTAGE WILLBE PAID BY ADDRESSEE

RESEARCH, IIMC.

Attention: PUBLICATIONS
1345 Northland Drive
Mendota Heights, MN 55120

STAPLE

NO POSTAGE

NECESSARY

IF MAILED

IN THE

UNITED STATES

•j

PUBLICATION CHANGE NOTICE
RESEARCH, INC.

September 1986

TITLE: APML Assembler Reference Manual

PUBLICATION NO. SM-0036 REV. B CHANGE PACKET NO. B-01

This change packet brings the manual into agreement with the APML version
3.0 running under UNICOS 2.0. Please make the following changes to your
manual:

Replace:
Title page through xii
1-1 and 1-2

2-9 and 2-10

3-3 through 3-6

B-3 through B-6
Index

