
c::
, RESEARCH, INC.

CRAY® COMPUTER SYSTEMS

CRAY X-MP MULTITASKING
PROGRAMMER'S REFERENCE MANUAL

SR-0222

Copyright© 1984, 1985, 1986, 1987 by CRAY RESEARCH, INC.
This manual or parts thereof may not be reproduced in any form
without permission of CRAY RESEARCH, INC.

RECORD OF REVISION RESEARCH. INC. PUBLICATION NUMBER SR-0222

Each time this manual is revised and reprinted. all changes issued against tha previous version are incorporated into the new version
and the new version is assigned an alphabetic level.

Every page changed by a reprint with revision has the revision level in the lower righthand corner. Changes to part of a page are noted
by a change bar in the margin directly opposite the change. A change bar in the margin opposite the pa~e number indicates that the
entire page is new. If the manual is rewritten. the revision level changes but the manual does not contain change bars.

Requests for copies of Cray Research. Inc. publications should be directed to the Distribution Center and comments about these
publications should be directed to:

CRAY RESEARCH. INC.
1345 Northland Drive
Mendota Heights. Minnesota 55120

Revision Description

ii

A

B

C

o

February 1984 - Original printing.

January 1985 - This rewrite brings the publication into
agreement with the Cray operating system COS version 1.14.
All previous versions are obsolete.

March 1986 - This rewrite brings the publication into
agreement with the Cray operating system COS version 1.15. It
incorporates new material describing operation under the Cray
operating system UNICOS, release 1.0, and includes
microtasking, a new multitasking feature. All previous
versions are obsolete.

October 1986 - This rewrite brings the manual into agreement
with COS version 1.16 and UNICOS version 2.0. All trademarks
are now documented in the record of revision. This printing
obsoletes all previous versions.

July 1987 - This rewrite supports UNICOS version 3.0 and COS
version 1.16. The manual has been reorganized and
substantially rewritten for this release.

The UNICOS operating system is derived from the AT&T UNIX System V
operating system. UNICOS is also based in part on the Fourth Berkeley
Software Distribution under license from The Regents of the University
of California.

CRAY, CRAY-1, SSD, and UNICOS are registered trademarks and APML, CFT,
CFT77, CFT2, COS, CRAY-2, CRAY X-MP, CSIM, lOS, SEGLDR, SID, and
SUPERLINK are trademarks of Cray Research, Inc.

UNIX is a registered trademark of AT&T.

SR-0222 0

PREFACE

This manual is a guide for programmers and analysts who have an interest
in producing software that can be multitasked during execution on Cray
computer systems. It describes the multitasking features and associated
concepts provided with the Cray operating systems COS and UNICOS on
CRAY X-MP computer systems. The manual tells you how to use the features
and how to produce executable programs that generate correct results.

It is assumed that you are familiar with the contents of the COS
Version 1 Reference Manual, publication SR-OOll, or the UNICOS User
Commands Reference Manual, publication SR-2011. You are also expected to
be experienced in coding Cray Fortran, using either CFT or CFT?? The
Fortran (CFT) Reference Manual, publication SR-0009, and the CFT??
Reference Manual, publication SR-0018, describe these two versions of
Fortran.

For multitasking on a CRAY-2 computer system, see the CRAY-2 Multitasking
Programmer's Manual, publication SN-2026.

The following Cray Research, Inc. (CRI) pUblications also contain
information useful to programmers developing multitasking software on
Cray computer systems:

SR-OOOO
SR-0012
SG-0056
SR-0060
SR-0066
SR-Ol13
SR-0146
SR-2003
SR-2014
SG-2016
SR-2040

SR-0222 D

CAL Assembler Version 1 Reference Manual
Macros and Opdefs Reference Manual
Symbolic Interactive Debugger (SID) User's Guide
Pascal Reference Manual
Segment Loader (SEGLDR) Reference Manual
Programmer's Library Reference Manual
COS Performance Utilities Reference Manual
CAL Assembler Version 2 Reference Manual
UNICOS File Formats and Special Files Reference Manual
UNICOS Support Tools Guide
UNICOS Performance Utilities Reference Manual

iii

CONTENTS

PREF ACE • • . . • • . . • • • . • . . • • . . • • . . . •. iii

1.

2.

3.

INTRODUCTION . . •

1.1
1.2

1.3
1.4

MULTITASKING TRADE-OFFS
MULTITASKING OVERVIEW
1.2.1 COS
1.2.2 UNICOS ..
CONVENTIONS
READER COMMENTS

CONCEPTS

2.1
2.2
2.3
2.4
2.S
2.6
2.7
2.8
2.9
2.10
2.11
2.12
2.13

PARALLELISM
MULTIPROGRAMMING .
MULTIPROCESSING
TASK • . . . • .
MULTITASKING . •
SCOPE
CRITICAL REGION
REENTRANCY
LOAD BALANCING .
SYNCHRONIZATION
DEADLOCK
AMDAHL'S LAW AND THEORETICAL SPEEDUP
MEASURING TIME AND WORK

MULTITASKING BASICS

3.1
3.2

3.3
3.4
3.S

GAINS WITH MULTITASKING
COMPUTATIONAL AND STORAGE DEPENDENCE
3.2.1 Computational dependence ...

3.2.1.1 Data dependence
3.2.1.2 Control dependence.

3.2.2 Storage dependence . .
3.2.3 Generalizations . . .
SCOPE . . . ·
DETERMINISM . . . · SPEEDUP FROM MULTITASKING
3.S.1 Task granularity ·
3.S.2 Load balancing . ·

SR-0222 D

·
· . .
· . .

.

1-1

1-2
1-4
1-4
l-S
l-S
1-6

2-1

2-1
2-2
2-3
2-3
2-4
2-S
2-7
2-9
2-12
2-13
2-14
2-1S
2-18

3-1

3-1
3-1
3-2
3-2
3-8
3-10
3-12
3-12
3-14
3-16
3-16
3-21

v

3. MULTITASKING BASICS (continued)

4.

5.

vi

3.6

3.7

PREDICTING PERFORMANCE . • • • .
3.6.1 Factors affecting performance
3.6.2 Manual performance prediction
CHOOSING VECTORIZATION OVER MULTITASKING •

MICROTASKING . . · · · · · · · ·
4.1 MICROTASKING TERMS AND CONCEPTS · · 4.2 ANALYZING A PROGRAM FOR MICROTASKING · ·
4.3 MICROTASKING PREPROCESSOR DIRECTIVES ·

4.3.1 CMIC$ GETCPUS n · · · · · · · 4.3.2 CMIC$ RELCPUS · · · · 4.3.3 CMIC$ MICRO · · · · ·
4.3.4 CMIC$ PROCESS
4.3.5 CMIC$ ALSO PROCESS ·
4.3.6 CMIC$ END PROCESS · · · ·
4.3.7 CMIC$ DO GLOBAL
4.3.8 CMIC$ DO GLOBAL LONG VECTOR
4.3.9 CMIC$ DO GLOBAL BY expression · · 4.3.10 CMIC$ DO GLOBAL FOR expression · ·
4.3.11 CMIC$ STOP ALL PROCESS ·
4.3.12 CMIC$ GUARD n
4.3.13 CMIC$ END GUARD n · · 4.3.14 CMIC$ CONTINUE · ·

4.4 ACCESSING THE PREPROCESSOR · · · 4.4.1 Invoking PREMULT under COS · 4.4.2 Invoking PREMULT under UNICOS
4.4.3 Names reserved by PREMULT ·

4.5 RULES TO FOLLOW · · · · · · · · · · 4.6 PERFORMANCE OF MICROTASKED PROGRAMS
4.7 LONGER EXAMPLES · · · · · · · · · · · · ·
MACROTASKING · · · · · · · · · · · ·
5.1 PARALLELISM AND TASKS · · · · ·

5.1.1 Tasks . · · ·
5.1.2 Task states · · · · · · · ·
5.1.3 Task relationships · · · · · ·
5.1.4 Task control array · · · 5.1.5 TSKSTART · · · · ·
5.1.6 TSKWAIT
5.1.7 TSKVALUE · · · · ·
5.1.8 TSKLIST · · ·

· · · · ·
· · · ·

· · · · ·
·

· · ·
· ·

· · ·
· ·

· · · · · · · ·

· · · · · · ·
· ·

· · ·
· · ·

· · · · · · · ·
· ·

· · ·

· · ·
· ·

· · · ·
· · · · · · ·

· · ·
· · ·

·
·

·
·
·
·
·
·
·
·

·
·
·

·
·
·

·
·
·
·

·
·

·
·

·
·
·
·
·
·
·
·

·
·
·

·
·
·

·
·
·
·

· ·

3-26
3-26
3-26
3-29

4-1

4-2
4-7
4-8
4-8
4-8
4-9
4-9
4-9
4-10
4-10
4-11
4-11
4-12
4-13
4-13
4-14
4-14
4-15
4-16
4-18
4-19
4-19
4-28
4-28

5-1

5-2
5-3
5-3
5-3
5-3
5-5
5-6
5-7
5-8

SR-0222 D

5. MACROTASKING (continued)

5.2

5.3

5.4

5.5

5.6

SCOPES AND PROTECTION
5.2.1 Shared data . . .
5.2.2 TASK COMMON data
5.2.3 Private data
5.2.4 Locks .
5.2.5 LOCKASGN .
5.2.6 LOCKON
5.2.7 LOCKOFF
5.2.8 LOCKREL . . .
SYNCHRONIZATION
5.3.1 Events..

5.3.2

5.3.1.1 EVASGN
EVWAIT .
EVPOST
EVCLEAR
EVREL

BARASGN
BARSYNC
BARREL ..

·
· ·

· · . . · · ·
· ·

·
·

· · . . · ·

5.3.1.2
5.3.1.3
5.3.1.4
5.3.1.5
Barriers
5.3.2.1
5.3.2.2
5.3.2.3
5.3.2.4 Example of using barriers

·

.
·
·

.

TSKTUNE

·
·
·

·

TUNING
5.4.1
5.4.2 LDR and SEGLDR memory management tunings .
UNDERLYING ASSUMPTIONS
5.5.1 COS and UNICOS assumptions

· ·

· ·
·
· ·
· · .
· ·

5.5.2 Overlays and segments
5.5.3 Extending blank common
5.5.4 CFT77 and CFT optimization .•.•.
5.5.5 COS reprieve processing
5.5.6 COS IOAREA lock
5.5.7 Nonreentrant library routines
MULTITASKING EXAMPLE
5.6.1 General application
5.6.2 Initial task.
5.6.3 Output task
5.6.4
5.6.5
5.6.6
5.6.7
5.6.8

Processing tasks . .
COS JCL
Initial task code
Output task code .
Processing task code .

6. PROGRAM ANALYSIS AND CONVERSION

6.1
6.2
6.3

SR-0222 D

CONDITIONAL MULTITASKING . .
MOVING FROM STATIC TO STACK ENVIRONMENT
THREE STEPS TO ANALYZING AND CONVERTING CODE
FOR MULTITASKING

5-9
5-9
5-9
5-10
5-11
5-12
5-13
5-13
5-14
5-15
5-15
5-16
5-17
5-18
5-19
5-19
5-20
5-20
5-21
5-21
5-21
5-22
5-22
5-25
5-27
5-27
5-28
5-28
5-29
5-32
5-33
5-33
5-34
5-34
5-34
5-35
5-35
5-36
5-36
5-38
5-39

6-1

6-1
6-2

6-5

vii

7 •

8.

viii

6.3 THREE STEPS TO ANALYZING AND CONVERTING CODE
FOR MULTITASKING (continued)

6.4
6.5

6.3.1 Locating potential parallelism ..•.
6.3.2 Verifying and creating independence
6.3.3 Writing multitasked code.
MULTITASKING 1/0 • • • • • • •
MINIMIZING MEMORY CONTENTION . • . .

DEBUGGING

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9
7.10
7.11

7.12

FREQUENT ERRORS
PERFORMANCE ERRORS
COS TASKS VERSUS USER TASKS
CONDITIONAL MULTITASKING • . • • • .
ELIMINATING OPERATING SYSTEM MULTITASKING
FTREF - FORTRAN CROSS-REFERENCE
FLOWTRACE
Spy
INTERPRETING TRACEBACKS
DEADLOCK DETECTION •
DEBUG • •.
7.11.1 DEBUG invocation statement.
7.11.2 Multitasked Fortran program
7.11.3 DEBUG listing •••.
LIBRARY DEBUG ROUTINES

MULTITASKING HISTORY TRACE BUFFER

8.1
8.2

8.3

DEBUG DISPLAY
USER-LEVEL ROUTINES
8.2.1
8.2.2
8.2.3
8.2.4
8.2.5

BUFTUNE:
BUFPRINT:
BUFDUMP:
BUFUSER:
MTDUMP:
8.2.5.1
8.2.5.2
8.2.5.3

Select actions to be recorded
Formatted dump of trace .

Unformatted dump of trace
Add user entries to trace

Examine trace dataset . • .
COS format
UNICOS format
Tips on combining parameters for
COS and UNICOS . . • . .

EXAMPLES . . . • -.
8.3.1

8.3.2
8.3.3
8.3.4

FORMAT parameter •
8.3.1.1 Chronological display
8.3.1.2 Synchronization points
8.3.1.3 Logical CPU use
8.3.1.4 User task status.
8.3.1.S Summary display
EVENTS parameter •
TASKS parameter
ACTION parameter .

6-S
6-6
6-8
6-8
6-9

7-1

7-1
7-3
7-4
7-S
7-S
7-S
7-8
7-8
7-8
7-9
7-9
7-9
7-10
7-10
7-14

8-1

8-1
8-2
8-2
8-5
8-6
8-6
8-8
8-8
8-10

8-12
8-12
8-13
8-14
8-16
8-18
8-20
8-21
8-24
8-24
8-2S

SR-0222 D

9.

8.3 EXAMPLES (continued)
8.3.5 TASK parameter.
8.3.6

8.3.7
DATA parameter .

INFO keyword .

ADVANCED MACROTASKING IN FORTRAN .

9.1
9.2
9.3
9.4
9.5
9.6
9.7
9.8
9.9
9.10
9.11
9.12

PARALLELISM
SYNCHRONIZATION
COMMUNICATION
MONITOR
SHARED AND PRIVATE VARIABLES .
TASK COMMON
DOALL
COBEGIN
DOPIPE .
CRITICAL REGION
SUMMATION AND OTHER REDUCTION CONSTRUCTS .
FORK/ JOIN •

10. MACROTASKING IN CAL

10.1 PROCESSOR CLUSTERING .
10.1.1 Shared registers ..
10.1.2 Machine instructions.

11. MACROTASKING WITH PASCAL ..•

11.1
11.2
11.3

11.4

MULTITASKING PROCEDURES
TASK CONTROL STRUCTURE
STORAGE OF TASK CONTROL STRUCTURES AND LOCK AND
EVENT VARIABLES
ARGUMENTS PASSED TO A PROCEDURE HAVING A NEW TASK

11.5 PASSING PROCEDURAL AND FUNCTIONAL PARAMETERS
TO A TASK

11.6 USE OF NONLOCAL VARIABLES
11.7
11.8

INPUT AND OUTPUT IN MULTI TASKED PASCAL .
TASK COMMON IN PASCAL

11.9 DECLARATIONS FOR MULTITASKING DATA TYPES AND
PROCEDURES

APPENDIX SECTION

A. MULTITASKING ON A SINGLE-PROCESSOR CRAY X-MP
COMPUTER SYSTEM •

SR-0222 D

8-26
8-26
8-27

9-1

9-1
9-2
9-5
9-6
9-7
9-11
9-14
9-18
9-18
9-21
9-22
9-23

10-1

10-2
10-2
10-5

11-1

11-1
11-4

11-5
11-6

11-6
11-7
11-8
11-8

11-9

A-l

ix

B.

C.

D.

E.

F.

G.

MESSAGES • • . . . • . .

APPROXIMATE TIMINGS .

MULTITASKING STATUS FEATURES .

0.1
0.2
0.3

TSKTEST
LOCKTEST .
EVTEST . .

BIBLIOGRAPHY . • •

DESIGN DESCRIPTION . . .

F.1

F.2

F.3
F.4
F.S

LIBRARY SCHEDULER
F.1.1 Logical CPU
F.1.2 Queue management •.
KEY LIBRARY SUBROUTINES
F.2.1 TSKSTART.
F.2.2
F.2.3
F.2.4
F.2.S
F.2.6

TSKWAIT
LOCKON .
LOCKOFF
EVWAIT . .
EVPOST . .

F.2.7 EVCLEAR
STATE TRANSITIONS
TASK COMMON
MEMORY MANAGEMENT . . • .
F.S.1 Heap
F.S.2 Stacks ..
F.S.3 Activation blocks

NOTES ON MULTITASKING

G.1
G.2

USING COS MULTITASKING MACROS
BATCH USE OF MULTITASKING

FIGURES

2-1
2-2
3-1
3-2
3-3

Multiprogramming
Amdahl's Law Curve
Flow Dependence Permitting Vectorization or Multitasking •
Flow Dependence Prohibiting Vectorization or Multitasking
Changes in Scope Boundaries when Multitasking a Code
Segment . . . • • • . • . . • . • .

B-1

C-1

D-1

D-1
0-1
D-2

E-1

F-1

F-1
F-1
F-2
F-3
F-3
F-3
F-3
F-3
F-3
F-4
F-4
F-4
F-S
F-6
F-6
F-7
F-9

G-1

G-1
G-1

2-2
2-16
3-3
3-4

3-13

x SR-0222 D

FIGURES (continued)

3-4
3-5
3-6
3-7
3-8
3-9
5-1
5-2
9-1
10-1

10-2
F-1
F-2
F-3
F-4
F-5

Time Line for a Two-CPU Multitasking Example .
Speedup of a Multitasked Matrix Addition•.
An Unbalanced Multitasked Job
A Balanced Multitasked Job . • . •••.
Multitasked Code with N Iterations on P Processors
Trade-offs in Selecting a Chunking Factor (K)
Macrotasking with Dissimilar Subroutines .
Macrotasking with a Common Subroutine
Pipelining
Clusters and Processors for a Four-processor CRAY X-MP
Computer System . . • . . • . .
Shared Registers in a Cluster
Transitions of User Tasks
User Area in Memory
Task Stacks in Managed Memory
Activation Block Stack Frame
Division of Memory in the User Area

TABLES

2-1
3-1
5-1

Theoretical Speedup
Sample Tasks Containing Parallelism
Summary of Loader Options

GLOSSARY

INDEX

SR-0222 D

3-19
3-21
3-22
3-22
3-23
3-25
5-1
5-2
9-19

10-3
10-4

F-4
F-8
F-8
F-9
F-10

2-17
3-18
5-26

xi

NEW FEATURES

This sheet describes the new features in CRAY X-MP multitasking for
UNICOS 3.0.

The mtdump program, which lets you display a log of events that occur
during the execution of a multi tasked program and print them in any of
several formats, is now available under UNICOS as well as COS.

The barrier routines offer you another synchronization method for
macrotasking. For instance, a barrier can be set up in a subroutine that
is called by multiple tasks. Each task will stop when it reaches the
barrier until all tasks have arrived at the same point. This feature is
not available under COS 1.16.

In microtasking, new DO GLOBAL directives let you both vectorize and
microtask an innermost DO loop. The facility automatically divides
groups of 64 iterations each among the available processors. This
feature is not available under COS 1.16.

The microtasking CMIC$ MICRO directive is no longer required in
subroutines that have either a PROCESS directive or a DO GLOBAL
directive. This is not the case under COS 1.16; the CMIC$ MICRO
directive is still required.

The estimated timings for multitasking routines have changed somewhat.
Appendix C details the new timings.

1. INTRODUCTION

This manual describes multitasking on CRAY X-MP computer systems under
COS and UNICOS. Multitasking is a mode of operation, in a multiprocessor
computer, that provides for execution of two or more parts of a single
program in parallel. An efficiently multitasked program executes in less
wall-clock time, when multiple processors are available, than a program
that is not multitasked.

As you will learn, Cray Research offers several techniques for making use
of multiple processors. When choosing among these techniques, you must
make trade-offs between the overall performance improvement that can be
achieved and the level of effort that you are willing to put into
modifying the application.

In general, the easiest way to multitask a program is at the level of a
Fortran DO loop, but the performance gains are limited to the scope of
that loop. The most efficient use of multitasking is at a very high
level within the program, but this requires a detailed understanding of
both the structure and algorithm of the candidate program. Fortunately,
you can combine techniques, which allows you to experiment or choose the
combination that best suits your application and resources.

This manual includes the following:

• Concepts related to multitasking

• Descriptions of features

• Procedures and advice for programmers producing multitasked code
from existing code

This document assumes that the code to be multitasked is running on a
CRAY X-MP computer system with multiple processors, although multitasked
code can be run on single-CPU systems for purposes of program development
and debugging. Appendix A provides information for running multitasked
code on single-processor CRAY X-MP and CRAY-1 computer systems. For
multitasking on a CRAY-2 computer system, see the CRAY-2 Multitasking
Programmer's Manual.

SR-0222 D 1-1

1.1 MULTITASKING TRADE-OFFS

When multitasking a program, you surrender the overhead time incurred by
calls to the multitasking routines while gaining performance by applying
more than one processor to the program.

The theoretical gain that can be achieved from multitasking on a
dedicated system is the wall-clock time the program requires without
multitasking, divided by the number of processors. On a CRAY X-MP/4
computer system, with four processors, the greatest wall-clock speedup
due to multitasking is a factor of 4.

In practice, however, a speedup factor equal to the number of processors
is not quite attainable. In extreme cases, multitasking can actually
increase a program's execution time if the multitasking overhead
decreases performance more than parallel execution improves it. This is
a situation you will want to predict before investing too much time and
effort. There are some factors that limit the maximum improvement for a
program:

• Not all parts of a program can be divided into' parallel tasks\
Many algorithms do not have a parallel structure or have only a
portion that is parallel.

• The parts that can be multitasked may have dependencies on one
another that result, at run time, in one or more tasks having to
wait until others complete some operation. During this wait time,
the waiting tasks do not contribute to parallel execution, and the
CPUs may not be readily available to other jobs in a
multiprogramming environment.

• Use of the multitasking features incurs a certain amount of
overhead that increases the execution time but does not directly
increase the computation rate. The more these features are used,
the greater the overhead.

The initial implementation of multitasking at CRI, called macrotasking,
was directed toward long-running, large-memory programs running in a
dedicated environment. Macrotasked programs can be run in a batch
environment, but improvement in execution time can vary greatly from run
to run, depending on other activity in the system. Total system
throughput may decrease if the increased CPU time used by macrotasked
programs reduces the time available to other programs. (A batch job that
requires all of the memory available to a single user effectively
executes in a dedicated environment. In such a case, you should consider
multitasking to make use of all processors.)

Macrotasking can make programs difficult to test and debug. When two or
more parts of a program are executed simultaneously, timing errors can
arise. These errors may not be reproducible, and currently available
facilities to help analyze or prevent such timing errors are limited.

1-2 SR-0222 D

Converting a program for macrotasking requires more analysis than does
converting for vectorization. The CFT compiler and the CFT77 compiler
automatically perform vectorization, which can give performance
improvements over scalar code as good as, or better than, multitasking.
Modifications can increase the amount of code that can be vectorized, but
these tend to be small changes and, in the case of CFT, localized to
inner DO loops. The majority of the modifications to vectorized code are
safe; CPU time rarely increases, and answers remain correct.

Because macrotasking is a more recent and complex enhancement than
vectorization, there are fewer analysis aids to assist you in producing
macrotasked code. Further, modifications for macrotasking may involve
larger segments of code than do vectorization modifications, because
macrotasking is often applied on a subroutine basis rather than a DO-loop
basis. You must appreciate the overhead costs of macrotasking and be
willing to enforce the rules necessary for producing correct results to
benefit from the significant performance improvements of macrotasking.

Following the implementation of macrotasking, other approaches to
multitasking were investigated. One of the most successful of these is
microtasking, described in section 4. Microtasking allows some of the
following improvements over macrotasking:

• Tasks can be much smaller (generally a set of nested loops),
simplifying the programmer's job of conversion.

• Processors are used for periods when other jobs are not using
them. This has the potential to increase total system throughput
in a batch production environment by using otherwise idle CPU
cycles.

• Synchronization overhead is very low. When run on a single
processor, code modified for microtasking runs nearly as fast as
the original code.

Microtasking is invoked with processor directives in Fortran source
code. The preprocessor, PREMULT, outputs the necessary library calls.
Microtasking and macrotasking can be used in the same application, if
appropriate. Many of the concepts and approaches described in this
manual apply to both.

The third multitasking technique is that of automatic partitioning by the
Fortran compiler, CFT77. With this feature, the compiler automatically
recognizes language constructs that lend themselves to be multitasked.
In addition, the compiler accepts directives, similar to those processed
by PREMULT, to provide user-controlled multitasking. The first
implementation of this feature will be in CFT77 version 2.0.

Multitasking is valuable in certain applications, and you should consider
it as a possible performance enhancement, evaluating the ratio of costs
to benefits for each application.

SR-0222 D 1-3

1.2 MULTITASKING OVERVIEW

Multitasking, with each of the three techniques, occurs completely within
a user job. The operating system, COS or UNICOS, allows a program to
create separate tasks that are then scheduled onto separate processors.
Code in library subroutines or generated by PREMULT or CFT77 manage the
tasks created by the program and make the necessary operating system
calls.

The multitasking techniques described here are supported on both COS and
UNICOS, and the user interface is identical on the two systems. The
changes made on one system for multitasking can be carried over to
another system.

Both operating systems support the same library routines and preprocesser
directives for multitasking. However, because of timing differences
within the system, the efficiency of macrotasking may vary between the
two systems.

1.2.1 COS

COS provides for multitasking within job steps. Each control statement
in a job control language (JCL) file is a job step, although only a job
step that executes code compiled from a user program normally makes use
of multitasking. The job steps themselves are executed sequentially. A
program executing in a job step can create additional tasks, bringing
about multitasking. A multitasked job step is not complete until all
tasks within the job step are complete.

The following example shows the lifetimes of different tasks for a job
that builds and runs a program partitioned into three tasks. All but the
MTPROG job step use only one task; of course MTPROG probably requires the
most execution time. the MULTI control statement is required to access
tH'libraries necessary for multitasking.

Example:

Task 1 Task 2 Task 3

JOB, IN =TMULT ... X
ACCOUNT,AC= ... X

MULTI. X
CFT,ALLOC=STACK ... X

SEGLDR,CMD='ABS=MTPROG'. X
ACCESS,DN=DATA,PDN=DATA1, ... X

MTPROG. X X X

SAVE,DN=OUT,PDN=OUT1, ... X

1-4 SR-0222 D

No CRI software products or utilities have been internally multitasked.
Successive compilation steps, for example, do not execute in parallel.

A COS job that is multitasked can run on the same system with jobs that
are not multitasked. Although the wall-clock time and the order of

execution of tasks within the job may change, a properly multitasked job
should see no change in results.

1.2.2 UNICOS

UNICOS provides for multitasking within user programs. A user program
can create additional tasks within its own memory image, thus bringing
about multitasking. A multi tasked user program is not complete until all
tasks within the program are complete.

1.3 CONVENTIONS

Throughout this manual, a variety of typefaces, special characters, and
formats are used to indicate special terms and their use. They are as
follows:

Convention

Italic

Boxes

UPPERCASE

boldface

SR-0222 D

Description

Italic indicates the following:

• Within a syntax representation, italics represent
variable information to be supplied by you.

• In text, italics indicate either the first use of
a term being defined or that a word is being used
to represent itself rather than its meaning.

Boxes enclose syntax representations, usually
indicating a call to a library routine and often
including italicized variable names.

In text and in syntax representations, uppercase words
indicate Fortran keywords, such as COMMON and TASK
COMMON, or other words that appear in code, such as
MTPROG.

In text, boldface identifies UNICOS commands,
parameters, and files.

1-5

,,»,,>.~--------------------------------

An additional convention regards the synonymous use of the terms
dataset and file in this publication. The COS term dataset usually
means the same thing as the UNICOS term file, except a dataset can
contain more than one file.

1.5 READER COMMENTS

If you have any comments about the technical accuracy, content, or
organization of this manual, please tell us. You have several options
that you can use to notify us:

• Call our Technical Publications department directly at
(612) 681-5729 during normal business hours

• Send us UNICOS or UNIX electronic mail at this address:

ihnp4!cray!publications or sun! tundra! hall !publications

• Use the Reader Comment form at the back of this manual

• Write to us at the following address:

Cray Research, Inc.
Technical Publications Department
1345 Northland Drive
Mendota Heights, Minnesota 55120

We value your comments and assure a prompt response.

1-6 SR-0222 D

2. CONCEPTS

This section defines the concepts and terminology of multitasking as they
are applied by CRI.

These terms are far from standard within the industry. In fact, the
terminology differs somewhat between macrotasking and microtasking. The
concepts described here apply to both macrotasking and microtasking in
some degree, although macrotasking examples are used most often to
illustrate them. Terms specific to either microtasking or macrotasking
are treated in sections 4 and 5, respectively.

2.1 PARALLELISM

As used in this manual, parallel refers to the manner in which software
processes are executed on a computer. Jobs, job steps, programs, and
parts of programs are parallel if they are processed simultaneously (or
nearly so) rather than sequentially. Parallel processing is therefore
the simultaneous processing of two or more segments of code.

The types of software processes that are executed in parallel define the
levels of parallelism:

Level

1

2
3
4
5

Software Process

Independent jobs, each job having a CPU
Job steps: related parts of the same job
Routines and subroutines
Loops
Statements

The higher the level number, the smaller the size or granularity of
tasks.

Vector processing is parallel processing of loop iterations (level 4).
CFT77 and CFT schedule generated instructions in a manner that exploits
the independence and different speeds of the hardware functional units;
this leads to parallel execution of different statements (level 5).

SR-0222 D 2-1

2.2 MULTIPROGRAMMING

Multiprogramming is a property of the operating system that permits
overlapping and interleaving the execution of more than one program.
Many computer systems use multiprogramming to make the most efficient use
of a single CPU. In this mode, several processes are ready to run, and
if 1/0 delays one process, the system immediately schedules another
process to run on the CPU. In contrast, a system in dedicated mode has
only one process ready to run, and any delays leave the CPU idle. The
processor resource can consist of more than one CPU; each CPU could be
shared by several software processes.

Example:

COS and UNICOS are both multiprogramming operating systems. The
processor resource is one CPU, and the software processes are jobs. The
Job Scheduler manages sharing within the operating system by assigning
priorities to jobs and allocating CPU time, a slice at a time, to
different jobs. Figure 2-1 shows this type of mUltiprogramming.

Software Processes Processor Resources

S
IJob AI - - - - - > -

C

H

IJob BI - - - - - > - E

D - > - One
CPU

U
IJob ci - - - - - > -

L

E

R

IJob nl - - - - - > -

Figure 2-1. Multiprogramming

2-2 SR-0222 D

2.3 MULTIPROCESSING

Multiprocessing is a property of the hardware in which two or more CPUs

are available. The processors can all work simultaneously without
adversely affecting each other.

For example, four independent jobs can be run in parallel on a CRAY
X-MP/4 computer system under COS or UNICOS. A series of jobs running in
this mode is called a job stream, one stream on each processor. The
job is the scheduling unit of the system, and four processors are
scheduled in a multiprogramming mode. Truly independent jobs do not
affect each other, but two (or more) jobs using the same dataset can
interfere with each other and thus are not independent.

This example of independent uniprocessing exploits parallelism at level 1.
Independent uniprocessing enhances system throughput over single-processor
configurations, though individual jobs receive smaller turnaround time
for the same system workload.

Applying more than one processor to a single job implies that the job has
software processes (parts) that can be executed in parallel. Such a job
can be logically or functionally divided to allow two or more parts of
the work to execute simultaneously (that is, in parallel). An example of
this is a weather modeling job in which the northern hemisphere
calculation is one part and the southern hemisphere is another part.
Another example of a job that can be functionally divided is a program
having a sort operation on a database that can be run independently of a
formatting operation on previously processed data.

Distinct code segments need not be involved. The same code could run on
multiple processors simultaneously, with each processor acting on
different data.

2.4 TASK

A task is a unit of computation that can be scheduled, with instructions
that are processed in sequential order. It is a software process that
can consist of one or more subroutines. Under COS and UNICOS, a job is a
task that can spin off other tasks to run in parallel with it. That
is, it is a software process that can call other software processes (such
as subroutine tasks) that will be executed simultaneously with it.

To take advantage of a multiprocessing operating system, you must be able
to divide a job into two or more tasks, providing parts of the job that
can be separately scheduled and run in parallel on more than one
processor.

SR-0222 D 2-3

A task is a uniquely named process that can have code and data areas in
common with (or even identical to) other tasks from the same job. The
code executed by a task is a subroutine. The same work can be performed
by calling the subroutine or by starting a task to execute the
subroutine. The difference is that a subroutine call causes the work to
be performed immediately; while in the task, the system schedules and
performs the work independently and in parallel with other program tasks.

NOTE

The term task in CRI publications refers to several
types of software entities. Except as otherwise
indicated, any reference to task in this manual uses
the preceding definition, which corresponds to the
concept of library task in other CRI publications.

2.5 MULTITASKING

Multitasking is the structuring of a program into two or more tasks
that can execute concurrently. With macrotasking (see section 5,
Macrotasking), multitasking is supported only for subprograms (level 3
parallelism). With microtasking (see section 4, Microtasking),
multitasking is supported for subroutines, functions, loops, or possibly
statements or sets of statements.

In a multitasking environment, the tasks and data structure of a job must
be such that the tasks can run independently of each other, either
synchronously or asynchronously. There is no certainty that more than
one processor will be able to work on the tasks of a given job, that the
tasks will execute in any particular order, or that a particular task
will finish first. The availability of processors and the order of
execution and completion of tasks are functions of the scheduling
policies of the library and operating system; multitasking is
nondeterministic with respect to time.

Tasks must be made deterministic, however, with respect to results. The
key to a successful multitasked program is to precisely define and add
the necessary communication and synchronization mechanisms between
parallel tasks and to provide for the protection of shared data.

2-4 SR-0222 D

The following example is a simple case in which two tasks execute without
interruption on two processors (the solid lines indicate a CPU engaged
and executing code):

Task A

Task B

Time-->

In the next example, only one processor is available, and tasks C and D
must share it; this shows multitasking on a machine with one processor.

Task C

Task D

Time-->
Task D waits

Task C
waits

In the third example, two tasks share two processors. At different
points throughout execution two, one, or zero processors are assigned to
the job. Further, there is no indication of which physical processor is
assigned to which task; this assignment is transparent to the program.

Task E waits
Task E

Task F

Task F is interrupted
Time-->

2.6 SCOPE

The scope of a variable is the region of a program in which the
variable is defined and can be referenced. Outside of a variable's
scope, the variable is not defined, and references to the variable's name
either refer to another variable of the same name (as in Fortran) or are
treated as an error condition (as in Pascal or CAL) if not otherwise

declared. \ If' (...

Each task consists of executable instructions and a well-defined set of
data upon which the instructions act. The set of all variables that a
task can reference can be divided into two subsets: one being the
variables private to the task, and the second consisting of the
variables shared between the task and at least one other task. Private
variables are def~ned for one task and are accessible only by that task,
while shared variables are defined for and accessible by several tasks.

SR-0222 D 2-5

While the terms private and shared refer to the scope of data in
relation to tasks, the terms global and local refer to the scope of
data in terms of program units, such as subroutines. Gl.obal.,-,~ariable9 c. be accessed by multiple program uni ts. Local. var iables can be
aedessed only within a single program unit.

A variable used in multitasking has a scope in relation to both its task
and its program unit. Such a variable may be, for example, global to a
set of subroutines but private to a single task.

CFT77 and CFT, like many other Fortran compilers, guarantee the value of
local variables only for the lifetime of the subroutine containing them.
Global variables, which are named in COMMON blocks, are guaranteed for
the lifetime of the entire program. In a Fortran program that is not
multitasked, this distinction can often be ignored, because the local
variables are usually assigned to a fixed location in Central Memory to
improve performance. In a multitasked program, the location of variables
local to subroutines and private to tasks can change and the memory space
that they occupy can be reused. This makes the distinction between
variables private to tasks and variables shared between tasks important
to understand and respect.

In t.!l~.t;ubs~.t.o~ .. shared variables, you must include all variables used
for"c'omm'unication between tasks and variables on which more than one task"
W'o'rks (for example, a large array in COMMON for mul tiple tasks).

variables used in the internal functioning of a task (for example, loop
indices and variables controlling the flow of execution) must be included
f~n th'e~ subset of privately defined variables.

You should take special care when multitasking tasks that have identical
code (that is, the same subroutines are associated with different
tasks). Certain variables may need to be accessed by all the subroutines
within a task but be private to that task, even though another task has
identical code. The CRI Fortran extension, TASK COMMON, satisfies this
intermediate scope requirement (see subsection 9.6, Task Common). This
intermediate scope can create confusion, because the scope of a variable
is normally determined by the division of code into program units, but
when you divide code into tasks, data that is global among subroutines
should not necessarily be shared among tasks. A new level of scope has
been defined and along with it comes the necessity of making new
distinctions between variables.

2-6 SR<-0222 0

2.7 CRITICAL REGION

A critical region is a segment of code that accesses a shared
resource. This resource can be Central Memory, 1/0 files, subroutines,
or anything else that is shared by the tasks in a job. (Most examples of
critical regions in this manual relate usually to shared memory, though
the concepts and techniques apply equally well to any shared resource.)

For example, indeterminate results can arise when more than one task
simultaneously reads from and stores into shared memory locations.
Neither task can be sure that the data it is reading is as expected, nor
that the area of memory to which data is stored is ready to be
overwritten.

As an example, consider the following subroutines (each of which is a
task) running in parallel:

SUBROUTINE MTASKI
COMMON ICOMA/AAA
AAA = O.
(start task MTASK2)

AAA = AAA + 1.

(wait for completion of MTASK2)

END

SUBROUTINE MTASK2
COMMON ICOMA/AAA

AAA = AAA + 1.

END

Variable AAA is shared, because both task MTASKI and task MTASK2 could
change it simultaneously.

You must ensure that critical regions of code are monitored if the
program modules containing them are to run in parallel. A way that you
can accomplish this monitoring is to have each code segment set a lock
when it enters a critical region. In effect, the task sets up a flag to
indicate that the shared variables are being used. This system works
only if all other tasks that can run in parallel check the lock before
they enter a corresponding critical region. The monitoring operation
consists of the following steps:

1. Test to see whether the lock is set.

2. If the lock is set, wait until it is cleared and then go to
step 3. If the lock is clear, go immediately to step 3.

SR-0222 D 2-7

3. Set the lock and enter the critical region.

4. Clear the lock when exiting the critical region.

In most implementations of this feature, including the CRI
implementation, a task executing this operation waits in step 2 if the
lock is set, until another task leaves the critical region and clears the
lock.

A program in which all instances of a critical region are successfully
monitored is said to be implementing mutual exclusion within the critical
region. That is, if one task is in the region, all others are excluded.
This is called ~.glethreading.

Because a task unable to enter a critical region is forced to wait, it is
.:important to keep the length of critical regions (in execution time) to a

r,'ainimum. This goal must be balanced against the cost of the locking
operation. A job that has overly large critical regions can have
numerous tasks waiting for entry; but a job with too many, overly small
critical regions can incur a high overhead penalty. The following
examples demonstrate critical regions.

Example 1:

SUBROUTINE MTASK1
COMMON ICOMA/AAA

AAA = O.
(start task MTASK2)

C BEGIN CRITICAL REGION
AAA = AAA + 1.

C END CRITICAL REGION

(wait for completion of MTASK2)

END

SUBROUTINE MTASK2
COMMON ICOMA/AAA

C BEGIN CRITICAL REGION
AAA = AAA + 1.

C END CRITICAL REGION

2-8

RETURN
END

SR-0222 D

Example 2:

C

C

SUBROUTINE MTASKl
DIMENSION A(1000),B(1000)
COMMON/BLOCK/J,A,B,N
INTEGER JLOCAL

BEGIN CRITICAL REGION
JLOCAL = J + N
J = JLOCAL

END CRITICAL REGION

DO 10 I = O,N-l
A(I+JLOCAL) B(I+JLOCAL)

10 CONTINUE

C

C

END

SUBROUTINE MTASK2
DIMENSION A(1000),B(1000)
COMMON/BLOCK/J,A,B,N
INTEGER JLOCAL

BEGIN CRITICAL REGION
JLOCAL = J + N
J = JLOCAL

END CRITICAL REGION

DO 10 I = 0,N-1
A(I+JLOCAL) B(I+JLOCAL)

10 CONTINUE

END

In the previous example, references to J in MTASKl and MTASK2 are
critical regions and must be monitored to ensure that each loads a
different value of J.

2.8 REENTRANCY

Reentrancy, also called multithreading, is a property of a program
module that allows one copy of the module to be used by more than one
task in parallel. A mechanism re-creates the routine's local environment
each time the routine executes. That is, local variables and control
indicators are assigned independent storage locations each time the
routine is invoked.

SR-0222 D 2-9

Not all program modules in a multitasked program need be used in a
reentrant sequence. For example, a module that is executed only once
during the lifetime of the program is. a nonreentrant code segment. A
module that is in a critical region, so that no more than one task at a
time can execute it, is a serially reusable code segment.

Example:

Routine A is reentrant.

Task 0 Routine A

Task 1 Routine A

time ---)

Routine B is serially reusable.

Task 0 Routine B

Task 1 Routine B

time ---)

Serially reusable code is necessary if a task requires access to a
resource (typically memory) that is in COMMON with other tasks. Serial
execution is necessary to prevent two or more tasks from simultaneously
altering the same data item.

In some situations, simultaneous processing of one data item by two (or
more) tasks may not cause problems. For example, if both tasks are
merely referring to the item and not altering it, no inconsistencies
arise. Many times, multiple tasks redefine as well as reference common
data. In such a situation, you must ensure that only one task is using
and altering the data at anyone time. You must design each task to
ensure serial reusability of the code segment dealing with the COMMON
data.

To guarantee serial reusability of the code segment, use the locking
operation described in subsection 2.7, Critical Region. You can do this
in the following three ways:

• If the program is designed so that no attempt is ever made to
reenter the code segment, it needs no special treatment.

• If the entire subroutine is nonreentrant (as with Fortran code
compiled with ALLOC=STATIC; see section 5, Macrotasking), you must
treat all calls to the subroutine as critical regions and lock
them.

2-10 SR-0222 D

• If the entry sequence is reentrant (as with CFT77 or CFT code
compiled with ALLOC=STACK), any nonreentrant parts of the
subroutine can be locked within the subroutine.

Examples:

1. Subroutine SERIAL is totally nonreentrant (compiled with the STATIC
compilation option).

SUBROUTINE MTASK
(declarations, followed by code)

CALL LOCKON (LSERIAL)
CALL SERIAL
CALL LOCKOFF (LSERIAL)

(code)
RETURN
END

2. Subroutine SERIAL has a reentrant entry sequence (compiled with the
STACK compilation option).

SUBROUTINE SERIAL
(declarations, no code)

CALL LOCKON (LSERIAL)
(code)

CALL LOCKOFF (LSERIAL)
RETURN
END

Regardless of the reentrancy of a program module, any critical regions
within it must still be monitored and locked. For example, consider the
following two modules (both compiled with the STACK compilation option):

SUBROUTINE SERIAL
(declarations, no code)

CALL LOCKON (LSERIAL)
(code)

CALL LOCKON (LCRIT1)
(critical region)

CALL LOCKOFF (LCRIT1)
(code)

CALL LOCKOFF (LSERIAL)
RETURN
END

SR-0222 0 2-11

SUBROUTINE PARALLEL
(declarations)

CALL LOCKON (LCRIT1)
(critical region)

CALL LOCKOFF (LCRIT1)

RETURN
END

Even though SERIAL in the previous example is serially reusable, it must
separately protect the critical region with LCRIT1, because PARALLEL
might be executing simultaneously. LSERIAL can be used to protect both
the critical region and the subroutine SERIAL, but this may have the
disadvantage of increasing the critical region's size. (PARALLEL would
be locked out for the entire time SERIAL is executing, not just the time
SERIAL is inside the critical region.)

Appendix F, Design Description, describes the CRI implementation of
multitasking, which uses a stack mechanism.

2.9 LOAD BALANCING

Load balancing is a technique ensuring that each of the processors
involved in a job does approximately the same amount of work. All work
that can be done in parallel is divided evenly among processors. There
are two types of load balancing: static and dynamic. Because
microt~skingperforms dynamic load balancing automatically when processes
have small'granularity, load balancing is generally a concern in
~acrotasking applications.

Static load balancing is possible when you can determine ahead of time
the amount of work involved in each piece of a job. You then define
parallel tasks, each of which runs in a similar amount of time (see
subsection 3.5.2, Load Balancing).

A program whose pieces have unknown workloads needs dynamic load
balancing. Because it is impossible to predict the amount of time that a
given piece requires, you should construct tasks that continually look
for and execute the next piece of work (see subsection 3.5.2, Load
Balancing) .

If all the work involved in a job can be done in parallel on n
processors and the load is balanced among them, the wall-clock time for
the multitasked job can approach lIn of the wall-clock time for the job
run on one processor.

2-12 SR-0222 D

Example:

One task (serial code):

>--------------->---------->----------------->-------->
Piece 1 Piece 2 Piece 3 Piece 4

time ---)

Two tasks (partially balanced code):

>--------------->----------------->
Piece 1 Piece 3

>----------))-------->
Piece 2 Piece 4

time --->

Two tasks (better balanced code):

>--------------->-------->
Piece 1 Piece 4

>----------)----------------->
Piece 2 Piece 3

time --->

2.10 SYNCHRONIZATION

Synchronization, as used in multitasking, is the method of coordinating
the steps within tasks that can be run in parallel. Coordination ensures
that initial conditions for a task are met or that output from a task is
ready to be used.

A synchronization point is a point in time when a task receives the
go-ahead to proceed with its processing. That is, whatever the task is
awaiting has happened, and a signal has been sent to and received by the
waiting task.

The CRr macrotasking implementation provides four synchronization
mechanisms:

• Events, which provide a general way of signaling the occurrence of
some programmer-defined event. Tasks can wait for events, post
events (that others may be waiting for), or clear events (reset
them) .

SR-0222 D 2-13

---------,.----""".",,--~.

• Locks, if initialized to the locked state, can be used by a
signaling task by calling LOCKOFF and by a waiting task by calling
LOCKON.

• A task can wait for another task to complete execution. This
could be viewed as a higher-level function based on the event
mechanism (where the event is a task completion and is posted by
the system).

• Barriers, which keep tasks waiting at a specified point until all
tasks reach that point.

(Mlcrotasking has a synchronization feature similar to locks. This
feature uses the GUARD and ENDGUARD directives.)

Synchronizing tasks works only if all tasks perform their respective
parts of the required communication. One task must signal the important
occurrence; another task or tasks must wait for the signal, receive it,
and clear the signaling device. The following example shows two tasks
using events and critical regions:

Example:

Two tasks:

Task 0
Task 1

Symbol

w
P
(
)

!-----W --{ ---)-----P--~-!

!---------------P-{--)----W ---------!

Meaning

Wait for event occurrence
Post event occurrence
Request to enter critical region
Leave critical region

The periods each task loses to the synchronization and locking mismatches
increase the total run time of each task. The load-balancing technique
discussed previously should take such possible synchronization delays
into account.

2.11 DEADLOCK

Deadlock is a condition in which locks and synchronization mechanisms
have been misused to the extent that a task is waiting for an event that
can never happen.

2-14 SR-0222 D

As a simple case, consider the following incorrect code segment:

DO 10 I=l,N
CALL LOCKON(LOCK1)

10 CONTINUE
CALL LOCKOFF(LOCK1)

A task executing this code successfully locks LOCK1 in the first iteration
but waits forever in the second iteration. The call to LOCKOFF was
intended to be within the loop.

A more frequently encountered form of deadlock is when two tasks wait for
each other to complete some action. For example, consider two tasks each
using two locks that are set in a different order. In such a case, each
task might set one lock and wait for the other lock to be cleared. Such
a situation would not necessarily occur in every run, because it is tied
to the timing of the two tasks.

A deadlock need not initially involve all tasks in the job. Even if only
a subset of tasks deadlocks initially, the other tasks will either
complete or will wait themselves. Eventually, all active tasks in the
job are deadlocked.

Deadlock detection is recognlzlng a deadlock situation after the
deadlock occurs. Deadlock prevention requires conventions or rules to
ensure that a deadlock does not occur. For example, you can define a
rule specifying that any task needing more than one lock must set the
locks in alphabetical order. This prevents deadlock, although at the
possible cost of enlarging a critical region. Deadlock detection is a
function of the system software; you are generally responsible for
deadlock prevention.

2.12 AMDAHL'S LAW AND THEORETICAL SPEEDUP

Multitasking is an
of code segments.
behaves according
multitasked. The

optimization that changes the apparent execution time
The overall execution time of a multitasked program

to Amdahl's Law based on the percentage of time
following paragraphs define Amdahl's Law.

Let T1 be the execution time of a nonmultitasked program. If multitasking
is applied to a fraction (f) of the original execution time, the
theoretical execution time (assuming no overhead or delays) is the time
to do the sequential portion (Ts) plus the time required to perform the
multitasked part (Tm). These quantities are a function of the original
execution time, the number of processors (P) and f.

SR-0222 D 2-15

T1 = Original execution time
f = Fraction of T1 multitasked
Ts = (l-f)*T1 = Time of sequential part
Tm = (f/P)*T1 = Time of multitasked part
P = Number of processors

The theoretical speedup attainable with P processors, S(P,f), is a ratio
of the original execution time to the total exeqution time of the
multitasked program, or Amdahl's Law. Figure 2-2 shows this theoretical
speedup as a function of the fraction of the program getting multitasked.

S(P,f) = T1 = T1

Theoretical

4.0
3.8

3.4

3.0
2.8

2.4

Speedup 2.0
S(P,f) 1.8
For
P = 4 1.4

1.0

Ts + Tm T1 * ((l-f) + (f/P))

o .1 .2 .3 .4 .5 .6 .7 .8 .9 1.0
f (Fraction Multitasked)

Figure 2-2. Amdahl's Law Curve

Figure 2-2 shows the Amdahl's Law Curve, a plot of speedup versus f,
for a four-processor system.

Table 2-1 shows the theoretical speedup for different values of P and f.

2-16 SR-0222 D

Table 2-1. Theoretical Speedup

f P=l P=2 P=3 P=4 P=8 P=16 P=32 P=64 P=infinity

1.00 1.00 2.00 3.00 4.00 8.00 16.00 32.00 64.00 infinity
0.99 1.00 1.98 2.94 3.88 7.48 13.91 24.43 39.26 100.00
0.98 1.00 1.96 2.88 3.77 7.02 12.31 19.75 28.32 50.00
0.97 1.00 1.94 2.83 3.67 6.61 11.03 16.58 22.14 33.33
0.96 1.00 1.92 2.78 3.57 6.25 10.00 14.29 18.18 25.00
0.95 1.00 1.·90 2.73 3.48 5.93 9.14 12.55 15.42 20.00
0.94 1.00 1.89 2.68 3.39 5.63 8.42 11.19 13.39 16.67
0.93 1.00 1.87 2.63 3.31 5.37 7.80 10.09 11.83 14.28
0.92 1.00 1.85 2.59 3.23 5.13 7.27 9.19 10.60 12.50
0.91 1.00 1.83 2.54 3.15 4.91 6.81 8.44 9.59 11.11
0.90 1.00 1.82 2.50 3.08 4.71 6.40 7.80 8.77 10.00

0.75 1.00 1.60 2.00 2.28 2.91 3.37 3.66 3.82 4.00
0.50 1.00 1.33 1.50 1.60 1.78 1.88 1.94 1.97 2.00
0.25 1.00 1.14 1.20 1.23 1.28 1.31 1.32 1.33 1.33
0.10 1.00 1.0 1.07 1.08 1.09 1.10 1.11 1.11 1.11
0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Table 2-1 suggests the following points:

• The small entries in the lower part of table 2-1 show that
significant speedups are not possible unless significant portions
of a program are multitasked.t For example, if 50% of the time
in a code is multitasked on four processors, the best possible
speedup is 1.6. This demonstrates that multitasking over P
processors does not result in a speedup factor of P.

• The upper rows show that, for a fixed percentage of multitasked
execution time, the speedup does not increase as fast as the
number of processors. Indeed, the speedup converges to a finite
limit for P=infinity because of the fixed percentage of time not
multitasked. For a large number of processors, execution time is
dominated by nonmultitasked code. Speedup factors approaching the
number of processors are possible, but for a larger number of
processors, more of the code must be multitasked.

t With respect to Amdahl's Law, portion refers to execution time and
not to physical size. If, for example, a 10-line DO loop in a
100-line program is responsible for 90% of the CPU time accumulated by
that program, the portion that loop represents is 90%, not 10%.

SR-0222 D 2-17

Because multitasking itself adds serial overhead to a job, the actual
speedup is less than the theoretical speedup. Multitasking 50% of a job
on a four-processor machine probably produces an actual speedup of about
1.5 rather than the theoretical 1.6.

2.13 MEASURING TIME AND WORK

For a single CPU system used in a dedicated mode, work is often measured
with CPU charges in time units. For computational jobs, the CPU time and
the wall-clock time are frequently quite close, in which case no
distinction between time and work is necessary.

The ability of several CPUs to run simultaneously creates a distinction
between work and the time to complete the work. In a multitasked job,
several CPUs may perform more work in less real time than would an
equivalent program executed on a single processor. Routines are provided
to measure time and work. The following routines measure time:

.' "TlMEF measures wall-clock time in milliseconds •

• ' -SECOND measures work, calculating accumulated CPU charges for a
job in seconds.

The following example shows how you can use these routines:

2-18 SR-0222 D

Main
Task 1

I
I

TSTART = TIMEF()

I
CALL SECOND(Sl)

I
I

Task 2

------------------------)

T1 = TIMEF()

I
I
I
I
I
I
I
I

T2 = TIMEF()

I

T3 = TIMEF()

I
I
I
I
I
I
I
I

T4 = TIMEF()

I
(------------------------

CALL SECOND(S2)

I
TEND = TIMEF()

I
I

The difference (TEND-TSTART) measures the wall-clock time of the program
in milliseconds, while S2-S1 measures the work (in CPU seconds) done by
both tasks during this time. The differences (T2-T1 and T4-T3) each
measure the wall-clock time in their respective tasks. No routine is
currently available that measures work on a task basis.

For compute-bound jobs run on a dedicated two-processor system, (S2-S1)
should be slightly greater than (T2-T1) plus (T4-T3). (TEND-TSTART)
should be slightly greater than MAX(T2-Tl, T4-T3). If the tasks do large
amounts of 1/0 or if the processors are not dedicated but are rather
switched by the system between many jobs, there is no predictable
relationship between chargeable CPU seconds and wall-clock time.

SR-0222 D 2-19

3. MULTITASKING BASICS

Multitasking is a tool for improving the performance of programs. An
understanding of how and when the tool should be used and what can be
gained by using it is important. This understanding is based on concepts
that previously may not have concerned the programmer but are now of
fundamental importance.

3.1 GAINS WITH MULTITASKING

Multitasking does not reduce the number of CPU cycles necessary to
execute the program. In fact, multitasking introduces an overhead that
increases CPU time; therefore, the number of calls to the multitasking
library must be minimized. You should exploit parallelism at the highest
level possible to reduce the overhead.

Multitasking reduces the elapsed (turnaround) time of a single program
executed in a monoprogramming (dedicated) environment. This major
benefit of multitasking results from all processors being available to
simultaneously consume the CPU time needed for the program. Production
work profits from multitasking in this mode.

In a multiprogramming (batch) environment, the tasks of a multitasked job
compete with other jobs in the system for the processor resources. The
speedup of the multi tasked job depends on how successful the job is in
this competition. Job priority can favor multitasked jobs over other
jobs for improved performance, and experimental and developmental work
can profit from multitasking in this mode. Microtasked jobs, with their
low overhead and use of otherwise idle processors, can improve throughput
in a batch environment and enhance overall throughput of the system (see
section 4, Microtasking).

3.2 COMPUTATIONAL AND STORAGE DEPENDENCE

The ability to execute tasks in parallel requires that each task be
independent of other tasks. This independence comes in several forms, and
tasks must be independent in all forms before they can be multitasked.

SR-0222 D 3-1

----------_ .• _------_._--_ ... --.. _._ ------_. -------------------------------

Multitasking, as supported by eRI, operates on the subroutine level, but
you can often find sections of unconverted code at the loop level that
can be broken into separate tasks. Such code, if determined to be
independent, can be broken apart into separate subroutines to take
advantage of multitasking. This subsection describes multitasking
independent iterations of loops.

3.2.1 COMPUTATIONAL DEPENDENCE

Computational dependence is composed of data dependence and control
dependence. These forms of dependence can be analyzed by looking at
dependence graphs, which depict relationships between statements in a
program. They are useful in understanding the constraints a program must
impose to preserve orderly (deterministic) and correct results.
Analyzing dependence graphs shows when the opportunity for vectorization
and multitasking exists.

Dependence graphs are composed of nodes representing the statements in a
program and directed arcs connecting nodes representing the ordering
constraints. These graphs are concerned with assignment statements,
assignments within loops, and 1/0 statements. The various types of
dependencies between statements are described in the following
subsections.

3~~:;1'.1 Data dependence

Data dependence is an ordering relationship between statements that use
or produce the same data. The ordering must be preserved to generate
correct results. Analysis of data dependence determines whether the
statements can be vectorized or executed in parallel without violating
this ordering. The types of data dependence are as follows:

'~~,'Flow dependence
.-~;, ;Antidependence
~~~/Out.put dependence 
•. Unknown dependence 
..1/0 dependence 

3.2.1.1.1 Flow dependence - St;atement s2 is flow dependent on 
sj:;atement s1 if an execution path exists from s1 to s2 and if the 
... e variable (scalar or array element) is assigned in statement s1 and 
used in statement s2. A directed arc connects node s1 to a 
flow-de~endent node s2 in a dependence graph. 

3-2 SR-0222 D 



Example: 

Dependence Graph 

DO 10 I = 1,N sl 
1 A(I) = B(I) + 5. 
2 C(l) = A(l) * 3. 

10 CONTINUE s2 

In the preceding example, statement s2 is flow dependent on statement 
sl. The order of these two statements (computations) must be preserved 
so that the value of A(I) is produced before it is used. Vectorization 
or parallel execution of this loop does not violate this ordering. 

Because Fortran DO loops are just a shorthand notation for repeating 
similar statements, the original dependence graph is really a compact 
form of many similar dependence graphs, one for each iteration of the 
loop. The work tableau in figure 3-1 shows this concept: 

Iterations 
1=1 1=2 1=3 I=N 

sl sl sl sl 
Statements 

1 
s2 s2 s2 s2 

Figure 3-1. Flow Dependence Permitting Vectorization 
or Multitasking 

Figure 3-1 contains no dependence arcs leading from one iteration to 
another. The loop has independent iterations, a property that enables 
any implementation of the program to execute the iterations in any order 
and still obtain the same correct answers. In particular, this property 
enables a multitasked implementation of the program to execute the 
iterations of the loop simultaneously on multiple processors. 

Example: 

Code Dependence Graph 

DO 10 I = 1, N sl 
1 A(I+1) = B(I) + 5. 
2 B(l+l) = C(l) * 3. 

10 CONTINUE s2 

SR-0222 D 3-3 

------------------------_._--------------------------------



~ 
In the preceding example, the dependence graph to the~ of the Fortran 
code shows that statement s1 is flow-dependent on statement s2 across 
iterations of the loop. The value of B(I+1} must be computed in each 
iteration before it is used in the next iteration; therefore, the loop 
cannot be vectorized or multi tasked unless it is optimized by reordering 
its statements. 

The work tableau for this loop (figure 3-2) shows why the loop does not 
have independent iterations. 

Iterations 
I=l I=2 I=3 I=N 

s1 s1 s1 s1 
Statements / / / / 

/ / / / 

s2 s2 s2 s2 

Figure 3-2. Flow Dependence Prohibiting Vectorization 
or Multitasking 

The dependence arcs between iterations prevents the independent execution 
of the iterations of the loop, because the arcs show that this particular 
order of execution of the statements must be preserved. 

3.2.1.1.2 Antidependence - Statement s2 is antidependent on statement 
sl if an execution path exists from statement sl to statement s2 
and if the same variable (scalar or array element) is used by s.tatement 
sl and assigned by statement s2. A directed arc connects node s1 
to node s2 in the dependence graph. 

Example: 

Code Dependence Graph 

DO 10 I = 1, N s1 
1 A(I} = B(I} 1 2 B(I} = C(I} + 2. 

10 CONTINUE s2 

In the preceding example, statement s2 is antidependent on statement 
s1. The order of these two statements (computations) must be preserved 
so that the value of B(I} is used before it is redefined. Vectorization 
~~alleT ft4J.Cuti'b11 doesnot.ii~'l·a1te:'thi'sordffring (as shown earlier in 
figure 3-1). 

3-4 SR-0222 D 



Example: 

Code 

DO 10 I = 1, N 
1 A(I) = 2. 
2 B(I) = A(I+1) + 1. 

10 CONTINUE 

Dependence Graph 

s1 

r 
s2 

In the preceding example, statement s1 is antidependent on statement 
s2 across the iterations of the lOop. The loop cannot be vectorized or 
multitasked unless the statements are reordered (as figure 3-2 shows). 

3.2.1.1.3 Output dependence - Statement s2 is output-dependent on 
statement s1 if an execution path exists from statement s1 to 
statement s2 and if the same variable (scalar or array element) is 
assigned in both statements. A directed arc connects statement s1 to 
statement s2 in the dependence graph. 

Example: 

Code Dependence Graph 

DO 10 I = 1, N s1 
1 B(I) = C(I) 
2 B(I) = 0(1) * w 1 

10 CONTINUE s2 

In the preceding example, statement s2 is output dependent on statement 
s1. The order of these two statements (computations) must be preserved 
so that after the loop has completed, B(I) has the value assigned in 
statement s2 rather than statement s1. Vectorization or parallel 
execution of this loop does not violate this ordering. 

3.2.1.1.4 Unknown dependence - Sometimes the dependence relationship 
between statements cannot be determined. This can happen in cases such 
as the following: 

• A subscript is subscripted (indirect addressing). 

• The subscript does not contain the loop index variable. 

• A variable appears more than once with subscripts having different 
coefficients of the loop variable. 

• The subscript is nonlinear in the loop index variable. 

When one of these cases occurs, you must assume that a dependence exists, 
which frequently means you cannot vectorize or multi task the section of 
code. 

SR-0222 D 3-5 



3.2.1.1.5 I/O dependence - ~ READ statement can be considered equivalent 
ttJ."811 .assignment statement in which. the var iable being read is on the 
l'Wt:"hand side. Likewise, a WRITE statement can be considered equivalent 
to an assignment statement in which the variable being written is on the 
right-hand side. By thinking of READ and WRITE statements in this way, 
I/O statements can have data dependencies with assignment statements in 
the same way that assignment statements depend on one another. 

Example: 

Code Dependence Graph 

DO 10 I = 1, N 
1 READ *,A(I) 
2 B(I) = A(I) 
3 A(I) = C(I) 
4 WRITE *,A(I) I I 

10 CONTINUE s1 --) s2 --) s3 --) s4 

In the preceding example, the following dependencies are present: 

• s2 is flow dependent on s1. 
• s3 is antidependent on s2. 
• s4 is flow dependent on s3. 
• s3 is output dependent on s1. 
• s4 is flow dependent on s1. 

Additionally, I/O statements can exhibit a different kind of dependence 
(I/O dependence) on other I/O statements. This dependence occurs not 
because the same variable is involved, but because the same file is 
involved. 

I/O statement s2 is I/O dependent on I/O statement s1 if an execution 
path exists from s1 to s2 and if the file referenced in the two I/O 
statements is the same. A directed arc connects node s1 to s2 in the 
dependence graph. In the preceding example, additional arcs would lead 
from s1 to s1 and from s4 to s4 because different iterations 
access the same files. 

Example: 

Code 

DO 10 I = 1, N 
1 READ(3), A(I) 

REWIND(3) 
2 WRITE(3), B(I) 

REWIND(3) 
10 CONTINUE 

3-6 

Dependence Graph 

1 
s1 (-- s2 

SR-0222 D 



In the preceding example, statements sl and s2 are 1/0 dependent on 
each other because they both access file 3. Vectorizing 1/0 is not 
considered in this example, and it cannot be modified to execute in 
parallel. 

Attempting to make liD parallel at the loop level can require a 
significant change to the mechanisms for 1/0 to preserve the orderliness 
of the file and correct results. For example, sequential write can be 
changed to random access, either explicitly through the 1/0 call or by 
storing the records into reserved slots in a memory buffer, which is then 
written when all iterations have completed. 

Examples: 

The following loops have data-independent iterations (no dependence arcs 
would exist between iterations in the work tableau, if you were to draw 
one) : 

DO 10.1 = 1, N 
A(I) B(I) + C(I) 
0(1) = A(I) + E(I) 
B(I) F(I) 
B(I) = B(I) + G(I) 

10 CONTINUE 

DO 30 J = 1, N 
DO 20 I = 1, N 

A(I,J) = B(I,J) + C(I,J) 
20 CONTINUE 
30 CONTINUE 

(The 30 loop and the 20 loop in the preceding example have 
data-independent iterations.) 

DO 40 I = 1, N 
A(I) = SSUM(N,B(1,I),1) 

40 CONTINUE 

DO 60 J = 1, N 
S(J) = FLOAT(J) 
DO 50 I = 1, J 

A(I,J) = FUNCT(S(J),I) 
50 CONTINUE 
60 CONTINUE 

FUNCTION FUNCT(S,I) 
FUNCT = S + FLOAT(I) 
RETURN 
END 

SR-0222 0 3-7 



You cannot determine the data independence of the iterations of either 
loop in the preceding example without analyzing the FUNCT subprogram. 
The iterations of both loops are independent because the subroutine does 
not redefine its input (no side effects). 

The following loops have data-dependent iterations (dependence arcs would 
be present between iterations in a work tableau): 

S = 0.0 
DO 10 I 1, N 

S = S + A(I) 
10 CONTINUE 

DO 20 I = 1, N 
X(I) = A(I)*X(I-1) + B(I) 

20 CONTINUE 

DO 40 J = 1, N 
A(J) = 0.0 
DO 30 I = 1, N 

A(J) = A(J)*C(I) + B(I,J) 
30 CONTINUE 
40 CONTINUE 

(While the 30 loop has data-dependent iterations, the 40 loop has 
data-independent iterations.) 

DO 60 J = 1, N 
S(J) = FLOAT(J) 
DO 50 I = 1, J 

A(I,J) = FUNCT(S(J),I) 
50 CONTINUE 
60 CONTINUE 

FUNCTION FUNCT(S,I) 
S = SQRT(S) 
FUNCT = S + FLOAT(I) 
RETURN 
END 

The 60 loop has data-independent iterations, but the 50 loop does not. 

3.2.1.2 Control dependence 

Control dependence refers to the situation in which the order of 
execution of statements cannot be determined before run time. Such is 
the case when conditional statements (for example, IF) appear in a 
program. Conditional statements conditionally introduce or conditionally 
eliminate data dependence among statements. 

3-8 SR-0222 D 



Because computational independence must be guaranteed when you attempt 
multitasking, a cautious approach is necessary. You must assume that any 
conditional statement mayor may not cause the execution of its object 
statement. Analyze all possible execution paths through the code to be 
multitasked, ensuring that no data dependencies are eliminated. 

If an IF statement tests a value computed earlier in the same iteration, 
the testing does not introduce a data dependence among iterations. On 
the other hand, if an IF statement tests a value computed in another 
iteration, the iterations are dependent and cannot be done in parallel. 

If the object statement of an IF statement assigns a variable used later 
in the same iteration, the assignment does not introduce data dependence 
among iterations. If, however, the object statement of an IF statement 
assigns a variable used in another iteration, the iterations are dependent 
and cannot be executed in parallel. 

Examples: 

The following loops have control-independent iterations: 

DO 10 I = 1, N 
A(I) = B(I) 
IF( A(I).LT.O.O ) A(I) = 0.0 

10 CONTINUE 

DO 20 I = 1, N 
IF( I.LT.10 ) GO TO 15 
IF( I.GT.20 ) GO TO 16 

15 A( I) = B(I) 
GO TO 20 

16 A(I) = C(I) 
20 CONTINUE 

DO 30 J = 1, N 
IF( A(J).EQ.B(J) GO TO 26 
DO 25 I = 1, J 

IF( C(I).EQ.A(J) ) GO TO 25 
D(I,J) = A(J) 

25 CONTINUE 
26 CONTINUE 
30 CONTINUE 

SR-0222 0 3-9 



The following loops have control-dependent iterations: 

DO 40 I = 1, N 
IF( A(I-1).EQ.0.0 ) A(I) = 1.0 

40 CONTINUE 

K = J 
DO 50 I = 1, N 

A(I) = 1.0 
IF( B(I).EQ.O.O ) A(K) = 0.0 
K = K + 1 

50 CONTINUE 

DO 70 J = 1, N 
DO 60 I = 1, N 

S(J) = AMAX(S(J),X(I» 
60 CONTINUE 
70 CONTINUE 

In the last example, while the 60 loop has control-dependent iterations, 
the 70 loop has control-independent iterations. 

3.2.2 STORAGE DEPENDENCE 

While computational dependence is concerned with the independence of the 
work to be done, ~torage dependence is concerned with the independence 
of workspace. Each parallel computational task has access to variables, 
and the fetching and storing of all variables in one task must not 
interfere with that in another task. Each task must work on independent 
storage locations or use special access mechanisms (for example, locks) 
to guarantee the safe modification of shared variables. 

Storage dependence is a data dependence between the iterations of a loop 
caused by the extent of a left-hand side variable being less than the 
index range of the loop considered for multitasking. The same storage 
location is reused and redefined in each iteration, causing a cycle in 
the dependence graph for the loop and introducing dependence arcs between 
iterations in the work tableau. 

Modifying the program to provide each iteration (or the partition of 
iterations belonging to each task) with a separated storage location 
corresponding to the original variable can frequently eliminate data 
dependencies between loop iterations. 

Storage dependence is easily overlooked and often difficult to identify 
~s a multitasked program bug. 

3-10 SR-0222 0 



Examples: 

The following loops have storage-independent iterations: 

DO 10 I = 1, N 
A(I) = B(I) + C(I) 

10 CONTINUE 

DO 20 I = 1, N 
IF( A(I).EQ.O.O GO TO 20 
B(I) = C(I)/A(I) 

20 CONTINUE 

DO 30 J = 1, N 
DO 29 I = 1, N 

A(I,J) = 0.0 
DO 28 K = 1, N 

A(I,J) = A(I,J) + B(I,K)*C(K,J) 
28 CONTINUE 
29 CONTINUE 
30 CONTINUE 

In the last example, the 30 and 29 loops have storage-independent 
iterations, but the 28 loop does not. The variable A(I,J) has an extent 
that is 1 over the range of K. 

The following loops have storage-dependent iterations: 

S = 0.0 
DO 40 I 1, N 

S = S + A(I) 
40 CONTINUE 

DO 70 K = 1, N 
DO 50 J = 1, N 

A(J) = B(J,K) + C(J,K) 
50 CONTINUE 

DO 60 I = 1, N 
D(I,K) = A(I) + 1.0 

60 CONTINUE 
70 CONTINUE 

In this example, the 50 and 60 loops have storage-independent iterations, 
but the 70 loop does not. The variable A(J) has an extent that is lover 
the range of K. 

SR-0222 0 3-11 



3.2.3 GENERALIZATIONS 

Applying the concepts of statement-level dependence at a higher level, 
such as the code segment, subroutine, process, or task level, is 
frequently useful. You can infer the dependence of two higher-level 
objects from knowing which statements of one object depend upon the 
statements of the other object, and how. 

The goal of analyzing the dependencies in a code is to identify the 
variables and program constructs that need modification before you can 
multitask the code. Section 9, Advanced Macrotasking in Fortran, 
contains more discussion on analysis, and section 6, Program Analysis and 
Conversion, describes conversion techniques. 

3.3 SCOPE 

The scope of a variable is the region of the program in which the variable 
is defined and can be referenced. The traditional regions in which a 
variable has scope include statement, program unit, and executable 
program. Outside of a variable's scope, the variable is not defined and 
references to the variable's name either refer to a different variable 
and distinct memory location or result in undefined variable errors. 

The boundaries of a variable's scope are easy to recognize. They may be 
the beginning and end of a statement, the first and last line in a 
program unit, or a collection of program units sharing the variable using 
a COMMON block or argument list mechanism. 

When a program is partitioned into pieces to be executed by several CPUs, 
a set of independent iterations of a loop is formed into a subroutine 
task. The effect of this partitioning is to introduce subroutine scope 
boundaries in the program where DO and CONTINUE statements occur. The 
program can be partitioned at any DO-loop level, provided that the loop 
has independent iterations. 

A basic step in the process of converting a code for multitasking is to 
understand the scope of the variables in the original program and what 
the new scope of variables should be in the multitasked code. It is 
necessary to analyze the ramifications of introducing a new scope 
boundary and to provide for the sharing or privacy of variables according 
to their multitasking use (see subsection 9.5, Shared and Private 
Variables). Figure 3-3 shows the alteration of scope boundaries in 
dividing a piece of work for multitasking. 

3-12 SR-0222 D 



Original Code Multitasked Code 

1 

INPUTS INPUTS INPUTS 

I I I I I I I I I 
DO 1 I=l,N DO 1 I=1,N,2 DO 1 I=2,N,2 

work A. ----) work B work C 
CONTINUE 1 CONTINUE 1 CONTINUE 

I I I I I I I I 
OUTPUTS OUTPUTS OUTPUTS 

Figure 3-3. Changes in Scope Boundaries when 
Multitasking a Code Segment 

Figure 3-3 shows work A considered for multitasking by dividing it into 
parts Band C, each of which is executed by independent tasks. The 
variables in work A have relationships (scope and dependencies) with the 
inputs and outputs to work A. You must accommodate these relationships 
in the multitasked code. For example, the inputs to A. may need to be 
available to the task that executes work C, and the outputs of work C may 
need to be available to the code that follows work A. In addition, the 
tasks that execute work Band C may need individual local (private) copies 
of single variables that appear in work A.. 

in the original program can be categorized according to 
The scope is defined with respect to the loop to be 

The variables 
their scope. 
multitasked. 
all variables 
references to 

Your scope analysis of the original program must consider 
referenced in the loop and must consider the possible 
these variables made outside the loop. 

The following are scope categories for variables in programs that have 
not been multitasked: 

• Variables local to the loop 

• Variables whose scope extends beyond the loop 

SR-0222 0 

But are local to the subroutine containing the loop 
And extends beyond the subroutine by argument list 
And extends beyond the subroutine by COMMON block 

3-13 



The following example shows variables having these different scopes: 

SUBROUTINE SUB ( A ) 
DIMENSION A(100) 
COMMON / B / B(100) 
C = O. 
DO 10 I = 1, 100 

D = A(I) + 1. 
A(I) = B(3) - D 
C = C + B(3)*D 

10 CONTINUE 
PRINT, C 
RETURN 
END 

In the preceding example, variable D is local to the loop, not being used 
outside the loop or cumulatively altered over the iterations of the 
loop. Variable C is global to the loop, being referenced outside the 
loop and being cumulatively changed over successive iterations, though it 
is local to the subroutine SUB. The scope of A extends beyond the loop 
by an argument list, and the scope of B extends beyond the subroutine by 
a COMMON block mechanism. 

3.4 DETERMINISM 

The execution order for statements in programs that run on only one CPU 
is well defined. Repetitive runs produce identical results because the 
same instructions are executed in the same order each time. Data and 
control dependencies are satisfied simply by the location of statements 
in the program; the order of execution is determined by the order of 
statements within the program. 

Multitasking introduces a new dimension to the order of execution. While 
the sequence of execution in each task remains well defined, the relative 
order of task execution has no default order. In fact, the order of 
execution may change from run to run, and you must control the ordering 
to satisfy dependencies. Failure to manage the temporal ordering of 
tasks is a subtle error that can be difficult to identify. 

3-14 SR-0222 D 



Consider the following program segment: 

DO 10 I = 1, N 
A(I) = AINIT(I) 

10 CONTINUE 
DO 30 J = 1, N 

DO 20 I = 1, N 
B(I,J) = A(I)*C(J) 

20 CONTINUE 
30 CONTINUE 

This segment is incorrectly converted to the following: 

CALL TSKSTART( IDTASK, T, N, A, AINIT, B, C } 
DO 10 I = 1, N/2 

A(I) = AINIT(I) 
10 CONTINUE 

DO 30 J = 1, N/2 
DO 20 I = 1, N 

B(I,J) = A(I}*C(J} 
20 CONTINUE 
30 CONTINUE 

CALL TSKWAIT( IDTASK 

SUBROUTINE T ( N, A, AINIT, B, C ) 
DO 10 I = N/2+1, N 

A(I} = AINIT(I} 
10 CONTINUE 

DO 30 J = N/2+1, N 
DO 20 I = 1, N 

B(I,J) = A(I}*C(J} 
20 CONTINUE 
30 CONTINUE 

RETURN 
END 

The resulting code may not produce the right answers, because both 10 
loops may not finish before either 20 loop begins. Synchronization is 
required between the 10 and 30 loops in both tasks to ensure compliance 
with the data dependencies of A. The following is a correct program: 

SR-0222 D 3-15 



COMMON I EVENTS I IDONE1, IDONE2 
CALL EVASGN(IDONE1) 
CALL EVASGN(IDONE2) 
CALL TSKSTART( IDTASK, T, N, A, AINIT, B, C ) 
DO 10 I = 1, N/2 

A(I) = AINIT(I) 
10 CONTINUE 

CALL EVPOST( IDONE1 ) 
CALL EVWAIT( IDONE2 ) 
CALL EVCLEAR( IDONE2 ) 
DO 30 J = 1, N/2 

DO 20 I = 1, N 
B(I,J) = A(I)*C(J) 

20 CONTINUE 
30 CONTINUE 

CALL TSKWAIT( IDTASK 

SUBROUTINE T ( N, A, AINIT, B, C 
COMMON I EVENTS I IDONE1, IDONE2 
DO 10 I = N/2+1, N 

A(I) = AINIT(I) 
10 CONTINUE 

CALL EVWAIT( IDONE1 
CALL EVCLEAR( IDONE1 ) 
CALL EVPOST( IDONE2 ) 
DO 30 J = N/2+1, N 

DO 20 I = 1, N 
B(I,J) = A(I)*C(J) 

20 CONTINUE 
30 CONTINUE 

RETURN 
END 

3.5 SPEEDUP FROM MULTITASKING 

Multitasking produces the best speedup when applied to balanced tasks of 
sufficient size. Speedup occurs only when multiple processors have 
something to do and when the time saved in executing independent tasks in 
parallel outweighs the overhead penalty. 

3.5.1 TASK GRANULARITY 

The initiation, management, and interaction of tasks is accomplished by 
added code that increases the CPU time of the program and limits the 
granularity of parallelism that can be profitably exploited. 

3-16 SR-0222 D 



When converting a program for multitasking, look at the size of the task 
to see whether multitasking will produce a speedup. The following 
program can represent potential extremes in multitasking: 

Original code: 

PROGRAM MAIN 
CALL A 
CALL B 
STOP 
END 

Multitasked code: 

CPU-o 

PROGRAM MAIN 

Subroutines A and B perform 
independent operations 
on independent data. 

CPU-1 

CALL TSKSTART(TID,A) --) SUBROUTINE A 
CALL B 
CALL TSKWAIT(TID) (----- RETURN 
STOP 
END 

This program can benefit from multitasking, depending on the size (in 
execution time) of subroutines A and B, the difference in size between A 
and B, and the multitasking overhead. Table 3-1 shows tasks of varying 
granularity. It specifies the task time in both seconds and clock 
periods (CPs). Parallelism exists in each of the tasks shown, with 
increasing granularity of parallelism toward the top. The size of these 
examples is a function of the number of operations, N. For certain 
values of N, some of these examples may profit from multitasking, while 
others are too small to consider. Consider the following matrix addition 
example: 

Original code: 

DO 1 J = 1, N 
DO 1 I = 1, N 

A(I,J) = B(I,J) + C(I,J) 
1 CONTINUE 

SR-0222 D 3-17 



Multitasked code (static load balancing): 

Jl--> 

B--> 

CPU-o 

COMMON /GLOBAL/ A,B,C 

L = N/2 
LPl= L + 1 

CALL TSKSTART(IDT,T,LPl,N) --> 

CPU-l 

C--> <--F 

DO 1 J = 1, L 
DO 1 I = 1, N 

A(I,J)=B(I,J)+C(I,J) 

SUBROUTINE T(LPl,N) <--G 
COMMON/GLOBAL/A,B,C 
DO 1 J = LP1, N 

DO 1 I = 1, N 
A(I,J)=B(I,J)+C(I,J) 

1 CONTINUE 1 CONTINUE 
RETURN 
END 

<--H 

D--> 
CALL TSKWAIT(IDT) <-----------

E--> 

Table 3-1. Sample Tasks Containing Parallelism 

Task Time 
Number of Representative 

Seconds CPs Operations Task 

10**(-2) 10**6 N4 DO 4 I = 1, N 
4 CALL MATMUL(N,A,B,C) 

10**(-3) 10**5 N3 DO 3 I = 1, N 
DO 3 J = 1, N 
A(I,J) = o. 
DO 3 K = 1, N 

3 A(I,J) = A(I,J) + B(I,K)*C(K,J) 

10**(-4) 10**4 N2 DO 2 J = 1, N 
DO 2 I = 1, N 

2 A(I,J) = B(I,J) + C(I,J) 

10**(-5) 10**3 N DO 1 I = 1, N 
1 V( I) = U( I) + WeI) 

10**(-6) 10**2 1 S = Xl + X2 + X3 + X4 

3-18 SR-0222 0 



Significant events in the execution of the multitasked code are as 
follows (the event labels are from the preceding example): 

Event Label 

A 
B 
C 

Event 

The experiment begins. CPU-O executes setup code. 
CPu-o calls TSKSTART. 
CPU-O resumes its own processing. 

D 
E 

CPU-O's half of work complete; CPU-O calls TSKWAIT. 
The experiment ends, synchronization occurs, and CPU-O 
continues. 

F 
G 
H 

CPU-l becomes aware of the new task. 
CPU-l begins processing its half of the work. 
CPU-l completes the work; the task dies. 

Figure 3-4 shows these events on a time line. 

CPU-l: 

CPU-O: 

Events: 

+---+-----/ /---------+ 

+--+---+---------/ /------+-----+ 
--) time ----------------------------------------------

A B C 
F G 

D E 
H 

Figure 3-4. Time Line for a Two-CPU Multitasking Example 

The following assumptions and observations can be made on the basis of 
this time line: 

• The execution time for one CPU would be 2 * (D-C) = x. 

• The execution time for two CPUs is E - A. 

• The time at event C is equal to the time at event F. 

• The multitasking overhead is (C-A) + (E-D) for CPU-O and (G-F) for 
CPU-l. 

• The speedup factor for multitasking is as follows: 

Speedup 

SR-0222 D 

2 * (D-C) 
(E-D)+(D-C)+(C-A) 

Time(one CPU) 
Time(two CPUs) 

3-19 



• The following are estimates for the execution times of various 
program segments (the segment boundaries are indicated by the 
event labels from the previous example of static load balancing): 

(B-A) 
(C-B) 
(D-C) 
(G-F) 
(H-D) 
(H-G) 
(E-H) 

C 

50 CP 
4000 CP 
Independent variable X/2 = 1/2 of one-CPU execution time 
100 CP 
(G-F) 
(D-C) 
1000 CP 
F 

• For this multitasking model, the overhead is simply the sum of the 
individual overheads for CPU-O, because the overhead to CPU-1 
eventually causes CPU-O to wait. The expected speedup is a 
function of the size of the original task. 

x 
Sp = Speedup = X/2 + 5150 Units(X) = CP 

Figure 3-5 plots the speedup function for matrix addition to show when 
the multitasked code will be slower than the original code, the same 
speed, and faster. 

The original task execution time is related to the order of the matrix 
sum, N, and the computation's mode: scalar or vector. The important 
measurement of task size should be made in terms of execution time, not 
floating-point operations, because the number of operations that can be 
executed in a given amount of time depends greatly on the degree of 
vectorization. 

The following calculations determine the task granularity for matrix 
addition: 

Speedup = 1.0 (--) Task size = 10300 CP = O(10**(-4)Sec) 
N = 50 (vector) , N = 15 (scalar) 

Speedup 1.8 (--) Task size = 92700 CP = O(10**(-3)Sec) 
N = 200 (vector), N = 50 (scalar) 

3-20 SR-0222 D 



s 

1.8 +---------+---------+-----*************** 
******** 

***** 
1.5 *** 

*** 
** 

P 1.3 * 
e ** Use of Multitasking 

* e 
d 1.0 --*------------------------------------
u * 

* p Misuse of Multitasking 
0.72 * 

1* 
I 

0.45 * 
* 

0.18 *---------+---------+---------+---------
0.10E+04 
0.10E-04 

O.25E+05 
O.25E-03 

O.50E+05 
O.SOE-03 

0.75E+05 
O.75E-03 

Original task execution time 

0.10E+06 CP 
O.10E-02 Sec 

Figure 3-5. Speedup of a Multitasked Matrix Addition 

For simple multitasking models, the following formula gives the size of 
the original task required to obtain a desired speedup. The formula does 
not address portions of the program that are not multitasked and should 
not be applied to the program as a whole. 

x = 
Sp * ncpu * overhead 

( ncpu - Sp ) 

To gain a speedup of Sp on ncpu processors, with a multitasking overhead 
of overhead CPs, the original task must have an execution time of at least 
X CPs. 

3.5.2 LOAD BALANCING 

To make the best use of processor resources and gain the most speedup, 
you must partition the work into equal parts to be run parallel. A 
comparison of figures 3-6 and 3-7 shows why this is important. 

SR-0222 D 3-21 



cPU-o 
I 
-----------------) 

1(-1/3 Work 
I 
I 

CPU-1 

Not Productive-> Wait 2/3 Work-> 

-(------------------

Multiprocessing 

Uniprocessing 

Figure 3-6. An Unbalanced Multitasked Job 

cPU-o CPU-1 

I 
----------------> -

I 
I 
1 

I 
(--- 1/2 Work --->1 

I 
I 
I 
I 

(-----------------

Multiprocessing 

Figure 3-7. A Balanced Multitasked Job 

Multitasking is most often applied to parallel work in the independent 
iterations of DO loops. If the loop has N iterations, N is called the 
extent of the parallelism of the loop. Load balancing is the technique 
of mapping N onto P processors or tasks so that each task has the same 
amount of work to do (see figure 3-8). 

3-22 SR-0222 D 



DO 
Loop 

1 

1-------------------
I I I I 
1 2 3 Parallel N 
I I I I 
1-------------------
I 

1 

1-----------------------------
1 1 I I 

Main Taskl Task2 Parallel Task{P-l) 
1 1 1 1 

1-----------------------------
1 

Figure 3-8. Multitasked Code with N Iterations on P Processors 

In load balancing, two major cases must be considered: static and dynamic 
partitioning. Use static partitioning when the times for each of the loop 
iterations are approximately equal. This technique assigns a fixed subset 
of iterations to each task. The iterations a task is to perform can be 
computed from the task or processor number. One strategy assigns a subset 
of contiguous iterations to each processor. The nth processor computes 
iterations {n*N)/P+l to {{n+l)*N)/P. 

Example of contiguous static partitioning with P 4: 

Processor Assigned Iterations 

PO I 1, N/4 
Pl I N/4+l, 2*N/4 
P2 I 2*N/4+1, 3*N/4 
P3 I = 3*N/4+1, N 

Take care in computing loop bounds to ensure that no iterations are 
missed or duplicated. 

Another static strategy assigns the iterations in an interleaved fashion. 
The nth processor computes every Pth iteration from n+l to N. 

SR-0222 0 3-23 



Example of interleaved static partitioning with P = 4: 

Processor Assigned Iterations 

PO I 1, N, P 
P1 I 2, N, P 
P2 I 3, N, P 
P3 I = 4, N, P 

If the times for iterations of the loop vary significantly, dynamically 
partitioning the work tends to balance the load on each processor. This 
technique maintains a shared counter, which indicates the next 
unprocessed iteration. Each processor accesses and updates the counter 
to commit itself to one or more iterations. The processors that commit 
to short iterations return more often to find more work, while processors 
committed to long iterations look for new work less frequently. This 
technique incurs an overhead to protect the counter during the update 
process. If the average granularity of the iterations is large compared 
to this overhead, the iterations may be distributed one at a time. Let 
the shared counter be I, set initially to 1; then each processor can 
execute the code in the following example: 

Example of dynamic partitioning for large-granularity iterations: 

10 CONTINUE 
CALL LOCKON ( LOCKI ) 

L = I 
I = L + 1 
CALL LOCKOFF ( LOCKI ) 

IF ( L.GT.N ) GO TO 20 
C compute iteration L 

GO TO 10 
20 CONTINUE 

If the average granularity of the iterations is small compared to the 
overhead of protecting the iteration counter, the iterations can be 
distributed to processors in chunks. Each chunk contains K iterations. 
The code is similar to the previous code. 

Example of dynamic partitioning for small-granularity iterations: 

10 CONTINUE 
CALL LOCKON ( LOCKI ) 
L = I 
I = L + K 
CALL LOCKOFF ( LOCKI ) 
IF ( L.GT.N ) GO TO 20 

C compute iterations L through min{L+K-1,N) 
GO TO 10 

20 CONTINUE 

3-24 SR-0222 D 



Take care when programming such an infinite loop. Choose the value of K 
for its effects on overhead and load balancing; too small a value of K 
does not allow the lock overhead cost to be recovered over enough 
iterations, and too large a value of K does not produce enough chunks to 
allow load balancing to occur. Figure 3-9 shows these trade-offs. 

To reduce the relative overhead, K should be at least Kmin. 

~in = smallest K such that (lock overhead) 
K*(average iteration time) 

To facilitate load balancing, K should be less than Kmax. 

K. = largest K such that N ) 10*P 
max K 

Choose the value of K in the range (Kmin' Kmax ). 

Wall
clock 
Time 

* 
* 
* 

* 
* 

Too 
Much 
Overhead 

* 
* 

* 
* 

* 
*** 

No 
Load 

Balancing 

---------------------~ K 
Kopt 

< .01 

Figure 3-9. Trade-offs in Selecting a Chunking Factor (K) 

Example of dynamic partitioning with microtasking: 

CMIC$ DO GLOBAL BY K 
DO 20 L = I, N 

C Compute an iteration 
20 CONTINUE 

SR-0222 D 3-25 



3.6 PREDICTING PERFORMANCE 

Predicting the performance of multitasked code lets you see the benefits 
of multitasking before you begin converting. 

3.6.1 FACTORS AFFECTING PERFORMANCE 

Several factors influence the performance of multitasked code as compared 
to that of the original program. Some of these factors are ... nges 
required for multitasking to occur, including reentrant code generation 
to produce stack-based references for local variables. 

All tasks contend for access to shared Central Memory for their code and 
variables. 

While the preceding factors are largely out of your control, IOU can 
i-nfluence the following faetors, which frequently have a greater impact 
on performance: 

_i::~~ ..... -Level (granularity) of parallelism exploited 
." Frequency of calls to the multitasking library 

<;Jl.'!>.i.~>:Partitioning and distributing work among processors 
'<.?,,I\;~I::r'-'t ..... .rt- '<'.'~~- ".- :-, \:",,1"' -" -.:- ;k~~ ;,,"'1< ~" '," > 

.' Programming style in the choice of multitasking mechanisms 

Of all the factors listed, the most important are granularity of task and 
balanced workload distribution. 

3.6.2 MANUAL PERFORMANCE PREDICTION 

This subsection analyzes a simple program to predict its performance if 
it is converted for multitasking. The original code has the following 
structure: 

PROGRAM MAIN 

DO 100 I = 1, 50 

DO 10 J = 1, 2 
CALL SUB(J) 

10 CONTINUE 

100 CONTINUE 

3-26 

STOP 
END 

SR-0222 D 



Analyzing the program indicates that the 100 loop has dependent 
iterations and cannot be executed in parallel. The 10 loop has 
independent iterations and multitasking can be attempted at this level. 
Execution on one CPU shows that 96% of the execution time is spent in 
subroutine SUB with an average time of 0.2 seconds per call. The total 
run time is 20.83 seconds. 

First, compute the theoretical speedup, assuming no multitasking overhead 
or other performance degradation. 

Execution time (one CPU) Time(Seq) + Time(Mt) 
(4% + 96%) * 20.83 seconds 
100% * 20.83 seconds 
20.83 seconds 

Execution time (two CPU) Time(Seq) + (1/2) * Time(Mt) 
(4% + 48%) * 20.83 seconds 
52% * 20.83 seconds 

= 10.83 seconds 

The maximum attainable speedup is calculated as follows: 

Time (one CPU) 
Speedup = Time (two CPUs) 

20.83 
10.83 1.92 

This is a measure of the parallelism exploited in the program. 

Next, conceptually convert the program to the following multitasking 
structure (not considering details of scope and storage independence): 

PROGRAM MAIN 
COMMON/MT/ISTART,IDONE,JOB 
CALL TSKSTART(IDTASK,T) ----) 
JOB = 1 
DO 100 I = 1, 50 1 

CALL EVPOST(ISTART) ---) 
CALL SUB(l) 
CALL EVWAIT(IDONE) 
CALL EVCLEAR(IDONE) (---

100 CONTINUE 

SUBROUTINE T 
COMMON/MT/ISTART,IDONE,JOB 
CALL EVWAIT(ISTART) 
CALL EVCLEAR(ISTART) 
IF( JOB.NE.1 ) GO TO 2 
CALL SUB(2) 
CALL EVPOST(IDONE) 
GO TO 1 

JOB = 2 2 RETURN 
CALL EVPOST(ISTART) (------ END 
CALL TSKWAIT(IDTASK) 
STOP 
END 

You can now project a realistic two-CPU execution time from the intrinsic 
costs of the calls to the multitasking library and by estimating other 
relevant quantities. 

SR-0222 D 3-27 



Execution time (two CPUs) = Time(Seq) + (1/2) * Time(Mt) + Overhead 

where 

Overhead = Time(TSKSTART) + 

Time(TSKWAIT) + 

51*Time(EVPOST) + 

50*Time(EVCLEAR) + 

50*Time(EVWAIT) + 
Workload imbalance delay + 

Memory contention delay 

compute the overhead in terms of the main task. Overheads in task T 
either are masked by delays in MAIN or cause delays in T that are 
accounted for in the workload imbalance or memory contention delays in 
MAIN. Execution times for the calls to the multitasking library are 
available in appendix C, Approximate Timings. 

Approximate the delays caused by workload imbalance and memory contention. 
This example assumes no workload imbalance and estimates the memory 
contention at 2%. This percentage is applied to all the time spent in 
SUB when it is called from MAIN, the time when both tasks are accessing 
Central Memory. With these estimates, you can compute the overhead. 

Overhead = 1500000 CP + 
1500 CP + 

51*( 1500 CP ) + 
50*( 200 CP ) + 
50*( 1500 CP ) + 

0 + 
(0.02)*50*( 0.2 seconds) 

This calculation gives an overhead of 0.216 seconds, which you can use in 
projecting a realistic two-CPU execution time. 

Execution time(two CPUs) = Time(Seq) + (1/2) * Time(Mt) + Overhead 
= (0.83 + 10.0 + 0.216) seconds 

11.046 seconds 

You can use this estimate of execution time to compute a realistic 
speed-up projection. 

Speedup = 
Time(one CPU) 
Time(two CPUs) = 

20.83 
11.046 1.88 

Finally, from this projected speedup, you can determine whether 
multitasking is worthwhile, weighing the gain against the required 
conversion effort. 

The actual speedup recorded for this example was 1.88. 

3-28 SR-0222 D 



3.7 CHOOSING VECTORIZATION OVER MULTITASKING 

Multitasking offers a speedup, Sp < ncpu, over conventional processing, 
enhancing either scalar or vector performance. Because vector processing 
offers a greater speedup potential over scalar processing than does 
multitasking, multitasking should not be employed at the expense of 
vectorization. In the case of a short vector length, scalar processing 
outperforms vector processing. Similarly, in the case of a small task 
size, vector processing (or even scalar processing) may outperform 
multitasking. 

Consider the following simple loop: 

DO 10 I = 1, N 
A(I) = B(I) + S*C(I) 

10 CONTINUE 

Depending on the value of N, the best performance may come from executing 
this loop in scalar mode, vector mode, or multitasked vector mode. If N 
is very small, scalar processing may be best, while if N is large, 
multitasking is appropriate. The speedup depends on the overhead of the 
particular multitasking mechanism used (see section 4, Microtasking). 

SR-0222 D 3-29 





4. MICROTASKING 

Microtasking permits multiple processors to work on a Fortran program at 
the DO-loop level. This section shows the experienced Fortran programmer 
how to analyze a code to determine what may be microtasked, how to insert 
the required directives, how to avoid typical beginners' errors, and how 
to measure improvements in performance. 

Cray Fortran d$ers are already accustomed to speeding up their programs 
by using vector hardware to perform operations on inner DO loops that 
have no data dependencies. In fact, most such vectorization is done 
automatically by the CFT and CFT77 compilers. The compiler also points 
to data dependencies that inhibit vectorization. The programmer can 
revise the code or issue compiler directives (of the form CDIR$ ... ) to 
further enhance performance. 

Oftce such optimizing is complete, a single processor can work no faster, 
but more than one processor could operate on separate parts of the data 
simultaneously to achieve results faster. This is what microtasking 
accomplishes. The name mi"crotasking was chosen because multiple 
processing is efficient even at a DO-loop level where the task size, or 
granularity, may be small. 

In addition to working efficiently on parts of programs where the 
granularity is small, microtasking works well when the number of 
processors available for the job is unkno~""'i:'Or may vary during the 
p.rogram's execution. Microtasking overhead is generally much smaller 
than macrotasking overhead. The overhead of synchronization is small 
enough that when only one processor is available, microtasking adds only 
a small increase in execution time over the version without 
microtasking. Additionally, in a batch environment where processors may 
become available from time to time for very short periods, the 
microtasked job can dynamically adjust to the number of available 
processors. 

This means that microtasked jobs do not require a dedicated system, 
though, as with most programs, they perform best in a dedicated 
environment with no competing jobs. The most efficient use of a 
multiprocessor system in a batch environment is to assign each processor 
to a separate job. This cannot always be done. 

SR-0222 D 4-1 



When fewer jobs fit in memory than the total number of processors, one or 
more processors are forced to be idle; with microtasking, these idle 
processors can be assigned to work on different portions of one job. For 
example, an 8-million-word, four-processor Cray computer system has three 
2~-million-word jobs and no other jobs small enough to use the remaining 
memory. One of those jobs, if microtasked, can use the extra processor 
until a job comes in that is small enough to use the remaining memory. 
When such a small job does enter the system, the microtasked job and the 
new small job will share the CPU. This will more efficiently use 
processors and will improve the system's overall performance. 

~i'!Wmall granularity permitted by microtasking also simplifies the 
~oqrammer's job; less analysis is required to find data dependencies 
than is necessary when multitasking larger pieces of code. This is not 
to say that microtasking cannot be done at a very high level if the scope 
of data permits it; it simply is not required for efficient operation. 

Also, the programmer need not rewrite substantial portions of the code. 
A preprocessor, ~MULT, converts the user's Fortran by interpreting a 
small number of directives and then rewriting the program to make 
microtasking library calls. The original code is still standard Fortran, 
because the directives are treated as comment lines. The resulting code 
is a mixture of Fortran and CAL, incorporating calls to library routines 
specific to CRI. 

Microtasking and the macrotasking routines (see section 5, Macrotasking) 
complement each otlfiJ,r. Macrotasking routines work better for systems in 
which the parallel work is disjointed and each processor can work 
independently on its own piece of work without much synchronization with 
other processors. Microtasking works better when the task size is small, 
when parallel tasks are tightly coupled, and when dedicated time is not 
~ailable. You can use both microtasking and macrotasking in the same 
~r,ogram. 

4.1 MICROTASKING TERMS AND CONCEPTS 

From the user's point of view, a microtasked job has sections containing 
data that can be operated on in parallel without adversely affecting 
other data. The objective of microtasking is to let the computer process 
those sections in parallel. The major consideration that limits 
parallelism within a program is the scope of data items. Your first job, 
then, is to understand the data in the program. It is also important to 
forget preconceptions you may have about needing to keep track of 
processors and what each is doing at any time. Concentrate instead on 
the data: where it is accessed and what is done with it. For this 
reason knowing where to use microtasking is a data probl~, not a coding 
~roblem~ A matrix multiplication program example follows: 

4-2 SR-0222 D 



c 

C 

SUBROUTINE MXM(A,B,C,L,M,N} 
DIMENSION A(L,M),B(M,N),C(L,N) 

DO 100 K = 1,N 
J = 1 
DO 200 I 

C(I,K) = 
200 CONTINUE 

1,L 
A(I,J}*B(J,K) 

DO 100 J = 2,M 
DO 100 I 1,L 

C(I,K) = C(I,K) + A(I,J) * B(J,K) 
100 CONTINUE 

RETURN 
END 

Two matrices are passed into the subroutine and a result matrix is passed 
out. Only the result matrix changes as a result of calling the 
subroutine. The matrices passed in and out of the subroutine are called 
global data. You must understand how changes are made to global data 
before microtasking a subroutine, because those changes determine the 
microtasking structure you will need to impose on the code. Identifying 
global data is explained in detail later in this section. 

Inside the subroutine, every element of the result matrix is computed as 
the dot product of the relevant row and column of the input matrices. 
Every result is independent of every other result. On a vector 
processor, it is efficient to group operations to take advantage of the 
vector hardware, but it does not matter whether, for example, column 8 is 
done before or after column 676. On a multiprocessing machine, each 
processor can work on one column at a time without regard to the number 
of processors doing the work or the number of columns each works on. 

In fact, this willingness to let activity in a subroutine be this 
disordered led to calling a microtasked subroutine a fray. One column 
is the smallest portion of data you want worked on at one time, and that 
piece of work is called a process. Work on a column can be done at the 
same time as work on the other columns, and these multiple processes are 
grouped into a control structure to ensure that all are completed. A 
microtasked version of the subroutine for matrix multiplication follows: 

SR-0222 D 4-3 

.-~-----------------.---------



C 

SUBROUTINE MXM(A,B,C,L,M,N) 
DIMENSION A(L,M),B(M,N),C(L,N) 

CMIC$ DO GLOBAL 

C 

DO 100 K = 1,N 
J = 1 

DO 200 I = 1,L 
C(I,K) = A(I,J)*B(J,K) 

200 CONTINUE 

DO 300 J = 2,M 
DO 300 I 1,L 

C(I,K) = C(I,K) + A(I,J) * B(J,K) 
300 CONTINUE 
100 CONTINUE 

RETURN 
END 

The directives are explained later, but the example shows that the work 
on anyone column is independent of the work on any other column and may 
therefore proceed in parallel with the work on other columns. All 
changes to global data are made inside the area marked off by the CMIC$ 
DO GLOBAL directive, which ends with the end of the DO loop. This is the 
control structure. The separate iterations of the outermost DO loop are 
the processes. 

A second example, microtasking a Fast Fourier Transform (FFT), shows how 
to structure a subroutine in which items in the result array depend on 
values of other items in the result array. This example shows how to 
give each processor that works in the subroutine its own unique array as 
a scratch work space. 

SUBROUTINE FFT2D(A,N,M) 
DIMENSION A(N,M),WORK(2048) 
CALL FFTINIT(N,WORK) 
DO 100 I=l,M 

CALL FFTCOL(A(l,I),N,WORK) 
100 CONTINUE 

CALL FFTINIT(M,WORK) 
DO 200 I=l,N 

CALL FFTROW(A(I,l),M,WORK) 
200 CONTINUE 

RETURN 
END 

This two-dimensional FFT requires two control structures. First, each 
column of length N constitutes a process that can be calculated 
independently. However, all columns must be processed before any row can 
be started. Thus, each row of length M is also a process, but the row 
calculations taken together constitute a separate control structure 
because they cannot be performed in parallel with the column calculations. 

4-4 SR-0222 0 



The work of FFTINIT must, in each case, be done by each processor that 
does work in the subroutine, because the WORK array contains both 
constants needed for the calculations and scratch space used for each 
iteration of the DO loops. The array WORK is local data, which means 
that each processor has its own copy of WORK, and the final results of 
WORK are not used in the results of the calling program. It is 
conventional to mix the constants and scratch space in this way in FFTs. 
Each processor must have its own scratch space; otherwise, it may 
overwrite space being used by another processor. The constants take very 
little time to set up compared to the overall time spent in the 
subroutine. In fact, to set them up once for all processors and then 
keep track of them during the multiple processing requires extra work if 
the conventional storage scheme is maintained. Thus, it is more 
effective to have each processor set up its own copy of the same 
constants. 

The array A and dimensions M and N are global data. The results that are 
stored into A are used in the results of the calling program. You must 
ensure that within a control structure no element of A is updated by more 
than one processor. Processing the rows and columns separately does 
this. M and N represent global constants and are presumably not updated 
at all; you must ensure that this is the case, or an error can result. 
The value I is local, and a different value is passed to each processor 
that takes a column or a row of work to do. 

Any available processor arrives at a control structure and takes a piece 
of work. The processor must complete the piece of work it has taken, but 
it is not thereby committed to accepting any more work. When the second 
DO loop is completed, a single processor returns to the calling routine. 
Note especially that it is permissible, even likely, that a processor 
that has not done any work in the first control structure will arrive in 
time to accept work in the second. It simply bypasses the first control 
structure and enters the second. 

In the FFT example, you need not be concerned with the size of the 
problem or the number of processors available to work on the job. 
should be concerned exclusively with where local data is modified 
where global data is modified. This distinction determines what 
constitutes a process and what constitutes a control structure. 

You 
and 

The previous example is typical of most microtasking in that most of the 
work of a microtasked routine occurs within control structures. The 
average program run on Cray computer systems exists primarily to modify 
data in large arrays, those that would be operated on in control 
structures. Other activities of the program occupy a very small portion 
of the ~omputational time and usually perform setup operations for the 
work on global data. This setup work is usually done between control 
structures. A microtasked version of the FFT subroutine follows: 

SR-0222 D 4-5 



SUBROUTINE FFT2D(A,N,M) 
DIMENSION A(N,M),WORK(2048) 
CALL FFTINIT(N,WORK) 

CMIC$ DO GLOBAL 
DO 100 I:l,M 

CALL FFTCOL(A(l,I),N,WORK) 
100 CONTINUE 

CALL FFTINIT(M,WORK) 
CMIC$ DO GLOBAL 

DO 200 I:l,N 
CALL FFTROW(A(I,l),M,WORK) 

200 CONTINUE 
RETURN 
END 

You have seen how two fairly simple subprograms can be microtasked. Real 
programs may be this simple, though in all likelihood they are not. 
Consequently, having a solid understanding of the concepts of 
mi-erotasking is essential to keeping your~lng fairly trouble free. 
Flirst, you must understand how your data is sHred. 

;,:'¥ariables may be global or local; this is often referred to as the 
s.eope of the data. Global data items in ~tran are those variables 
that appear in CRIiI«)N blocks "AVE statements ,~A statements, or ina 
subroutine's argument list. All other data items are local variables, 
and they are visible only within a particular subroutine. All local 
variables are stored on a separate stack for each processor that executes 
that subroutine. Data with global scope is known by the same address to 
each processor that enters the subroutine. The, result of an operation 
performed on a global data item by one processor is known to all 
processors. Local data items exist in the stack for each processor that 
enters a microtasked subroutine. Thus, the result of an operation on 
local data is known only to the processor that performed it, because such 
results are not transmitted to other processors. Sometimes a subroutine 
has data defined as global data and it is not used in the results of the 
calling program, in which case it must be converted to local data. 

Within a microtasked subroutine, the objective is to permit parallel 
processing of global data by imposing structure on the parts of the 
r~utine that modify it. This is done by allowing processors to enter the 
subroutine and proceed through it as they will. The fray itself starts 
and ends at a subroutine boundary so that the number of processors is 
indeterminate from the beginning of the subroutine until the RETURN 
statement. The fray can be entered by any number of processors that 
become available while it is being processed. The flow of control of 
these processors is restricted only by the control structures you 
define. To enforce order, define control structures within the body of 
the fray. You cannot control or know in advance how many processors will 
operate in any control structure. 

4-6 SR-0222 D 



A control structure bounds all the work that can proceed at one time, 
thereby defining the limits of parallelism. Because only one control 
structure can be active at a time, two items of work that depend on each 
other must reside in separate contro~'~tructures. Within a control 
structure, the order of execution of the separate items of work 
(processes) is indeterminate. For example, a DO loop that modifies the 
rows of a two-dimensional array precedes a DO loop that modifies the 
columns and uses information already in the array to do so. The array is 
global data and must be modified inside a control structure. The second 
DO loop depends on the results of the first one, so the two loops must be 
in separate control structures. Within each DO loop, however, the order 
in which the rows or the columns are modified is immaterial. 

All changes to global data must be made within control structures; 
otherwise, errors can result. If input or output must be done in a 
microtasked subroutine, it, too, must be done inside 'a control structure. 

The area defined by a control structure contains processes that are 
independent of one another and can be executed in parallel. A process is 
the smallest unit of work that can be assigned to a processor. For 
example, if each iteration of a DO loop is independent of all other 
iterations, each iteration can be a process. Likewise, if two 
subroutines can be executed concurrently, each subroutine call can be a 
process and the two can be executed in parallel. Each process can run 
independently of all other processes within a control structure. Two 
processes that depend on each other in any way must reside in separate 
control structures. 

4.2 ANALYZING A PROGRAM FOR MICROTASKING 

For microtasking, you can use some of the same tools you use for 
vectorizing and add some new ones. The potential payoff of vectorizing 
is much greater than that of microtasking, which at most can speed up a 
program by a factor of nearly the number of processors. 

Vectorize first, then microtask. In general, this means you should 
vectorize the innermost loops in a nested set of loops and microtask 
outer loops to make the best use of vectorization on multiple CPUs. 
Inner loops that are vectorizable can be both microtasked and vectorized 
using the long vector DO GLOBAL directives (LONG VECTOR, BY expression, 
and FOR expression), which effectively split the inner loop into one 
outer and one inner loop. Do not use a regular DO GLOBAL structure for 
an inner, vectorizable loop. 

There are a number of tools to help you get ready to microtask. Spy and 
FLOWTRACE help determine what portions of the program are most worth 
working on, and FTREF helps determine the scope of data. 

SR-0222 D 4-7 



FLOWTRACE summarizes both the number of calls to subroutines and the 
portion of a program's time spent in those routines, and it provides a 
calling tree for the program. Spy samples while the program is executing 
and reports on the number of times it found the program working in 
certain label groupings. FLOWTRACE identifies subroutines in which the 
program spends its time; Spy, because it samples between statement 
labels, identifies frequently executed portions of those subroutines. 
(You cannot run FLOWTRACE on a multitasked program. Compile programs 
without PREMULT, comment out multitasking library calls, and change 
TSKSTARTS into calls to FLOWTRACE that examine the multi tasked program in 
single-task mode.) FTREF provides a static calling tree and a 
cross-reference map. It shows in detail the use of both local variables 
and variables in COMMON blocks, helping you to see the scope of data. 

:'~j:TREF, SPY, and FLOWTRACE are standard CRI products. For COS, they are 
described in the COS Performance Utilities Reference Manual. Flowtrace, 
ftref, and prof are implemented under UNICOS and are described in the 
UNICOS Performance Utilities Reference Manual. 

4.3 MICROTASKING PREPROCESSOR DIRECTIVES 

Inserting preprocessor directives is relatively simple, once you have 
done the data scoping. Other directives surround processes or provide 
locking mechanisms for synchronization. The appearance of a PROCESS, DO 
GLOBAL, or MICRO microtasking directive in a subroutine signals that a 
subroutine is to be microtasked. 

4.3.1 CMIC$ GETCPUS n 

This directive must appear in the main program before any microtasked 
work is done. It specifies the maximum number of processors permitted to 
work on a microtasked program, with n an integer constant or variable 
number of processors. The default value for n is the maximum number of 
physical CPUs available for your program. 

4.3.2 CMIC$ RELCPUS 

This directive specifies that the processors acquired for microtasking 
should be released back to the system. It is the reverse of the GETCPUS 
directive. This directive should be used when no microtasking is to be 
done for a long period of time or when the program is preparing to 
terminate. 

4-8 SR-0222 D 



This directive is optional; if it is not used, all processors acquired by 
the GETCPUS directive are held until the program terminates. When a 
STOP, END, or CALL EXIT statement is encountered, the microtasking slave 
processors are automatically released before the job step is terminated. 

4.3.3CMIC$ MICRO 

This directive designates a subroutine to be microtasked and appears just 
before the SUBROUTINE statement. A subroutine introduced in this way 
becomes a microtasked subroutine, or fray. Executing a RETURN or END 
statement signals the end of multiprocessing work. Upon exit, only one 
processor returns to the calling routine. A function may not be 
microtasked, though it may, of course, be rewritten as a subroutine and 
then microtasked. 

This directive is not required if the subroutine has either a PROCESS or 
a DO GLOBAL directive.t 

Example: 

CMIC$ MICRO 
SUBROUTINE TASKER 

4.3.4 CMIC$ PROCESS 

Thi~ directive marks the beginning of a control structure and signals 
that the code following it is a single process. 

4.3.5 CMIC$ ALSO PROCESS 

This directive marks the beginning of a process other than the first 
process inside a control structure and the end of the previous process. 
Fortran limitations restrict the number of ALSO PROCESS directives to 
about 100 per control structure. A PROCESS directive followed by any 
number of ALSO PROCESS directives implements a classic fork-and-join 
multitasking structure. 

t Deferred COS implementation 

SR-0222 D 4-9 



4.3.6 :OMIC$ END PROCESS 

This directive marks the end of a process and the end of a control 
structure. PROCESS and END PROCESS directives can also be used to ensure 
single-processor execution of a portion of code. The single-threaded 
section goes in a control structure with just one process (that is, the 
section contains no ALSO PROCESS directive). 

Example: 

CMIC$ PROCESS 
DO 10 1= 1, 1000 

A(I) = X(I) * Y(I) 
10 CONTINUE 

CMIC$ ALSO PROCESS 
DO 20 1= 1, 1000 

B(1) = X(1) * 2(1) 
20 CONTINUE 

CMIC$ END PROCESS 

4.3.7 ~C$ DO GLOBAL 

This directive marks the beginning of a control structure in which the 
iterations of a DO loop comprise all of the processes. The control 
structure is, therefore, a special case of the CMIC$ PROCESS ... CMIC$ END 
PROCESS control structure (one in which each process is identical, except 
for the loop index). DO GLOBAL is probably the most commonly used 
control structure. 

The statement following the CM1C$ DO GLOBAL directive is a DO statement. 
The end of the control structure is marked by the statement containing 
the label referred to in the DO statement; the DO GLOBAL control 
structure requires no preprocessor directive to close it. 

DO GLOBAL directives may be used to create control structures within a DO 
loop, but the path through such control structures cannot be altered 
inside the microtasked subroutine. The DO loop being microtasked may not 
share its terminal statement at the end of the loop (such as CONTINUE) 
with any other loop. A DO GLOBAL statement may be nested within a DO 
loop, but only one DO GLOBAL can be executing at a time. 

Loops using DO GLOBAL must have integers as initial, final, and step 
values. 

4-10 SR-0222 D 



Three variants of the DO GLOBAL directive are supplied to help you better 
balance microtasking and vectorization. These variants are described in 
the next three subsections. 

Example: 

CMIC$ DO GLOBAL 
DO 20 J= 1, 1000 

DO 10 1= 1, 1000 
A(I,J)= X(I,J) * Y(I,J) 

10 CONTINUE 
20 CONTINUE 

4.3.8 CMIC$ DO GLOBAL LONG VECTORt 

This directive marks the beginning of a control structure that permits 
both vectorization and microtasking on an innermost DO loop. This 
structure divides a loop into processes of 64 iterations each, 
microtasking the groups and vectorizing the iterations. (One remainder 
group will have 64 or fewer iterations.) 

This directive cannot provide a speedup if there are fewer than 64 
iterations in the loop; the loop should be longer than 64 iterations, and 
it should be vectorizable. Two associated directives (DO GLOBAL BY and 
DO GLOBAL FOR) let you change the iteration group size, also known as the 
chunking factor. See subsection 3.5.2, Load Balancing, for a 
discussion of trade-offs associated with large and small chunking factors 
with regard to dynamic load balancing. 

Example: 

CMIC$ DO GLOBAL LONG VECTOR 
DO 100 K = 1, 4096 

A(K) = B(K) * C(K) 
100 CONTINUE 

This example divides the original loop into an inner and outer loop, each 
of 64 iterations. 

4.3.9 CMIC$ DO GLOBAL BY expressiont 

This directive is the same as the DO GLOBAL LONG VECTOR directive except 
that the iterations are divided into groups of size expression. 

t Deferred COS implementation 

SR-0222 0 4-11 



It divides a DO loop into an inner loop, with expression iterations, 
and an outer loop. The number of iterations in the outer loop is 
approximately the number of iterations in the original DO loop divided by 
expression. The inner loop is then vectorized and the outer loop 
microtasked. Setting expression to a mUltiple of 64 maximizes the 
vectorization performance. 

You must ensure that the Fortran expression evaluates to an integer 
greater than zero. The expression is evaluated at run time and may 
change each time the DO loop is executed, but it cannot change between 
iterations of the same execution. 

Example: 

CMIC$ DO GLOBAL BY 1024 
DO 100 K = 1, 4096 

A(K) = B(K) * C(K) 
100 CONTINUE 

In this example, the 4096 iterations of the DO loop are divided into four 
pieces of 1024 each. 

This directive is the same as the DO GLOBAL LONG VECTOR directive, except 
that the iterations are divided into expression groups. 

It divides a DO loop into an outer loop, with expression iterations, 
and an inner loop. The number of iterations in the inner loop is 
approximately the number of iterations in the original DO loop divided by 
expression. The inner loop is then vectorized and the outer loop 
microtasked. 

Example: 

CMIC$ DO GLOBAL FOR 4 
DO 100 K = 1, 4096 

A(K) = B(K) * C(K) 
100 CONTINUE 

This example specifies the number of iterations for the generated outer 
loop to be 4. The number of iterations for the inner loop is. then 1024. 
The effect is same as the example for the DO GLOBAL BY directive in the 
previous subsection. The only difference is whether you want to specify 
the chunk size or the number of chunks. 

t Deferred COS implementation 

4-12 SR-0222 0 



4.3.11 CMIC$ STOP ALL PROCESS 

This directive provides a way to exit from both PROCESS and DO GLOBAL 
control structures without performing all of the processes or 
iterations. This directive forces all processors to complete work in a 
process if they are in one, then accept no more work, closing the control 
structure. 

Processors resume work at the first statement after the end of the 
control structure. This will be either the statement after CMIC$ END 
PROCESS or the statement after the CONTINUE statement that ends the DO 
GLOBAL DO loop. For example, you may wish to end processing in a DO loop 
when a certain solution is found. If the solution is never found, the 
loop is executed some maximum number of iterations. STOP ALL PROCESS 
provides this graceful exit. Typically, the program will appear as in 
the following example. 

Example: 

CMIC$ DO GLOBAL 
DO 1 I = 1,10000 

IF end-condition THEN 
CMIC$ STOP ALL PROCESS 

GO TO 2 
ENDIF 

1 CONTINUE 
2 CONTINUE 

The previous section of code is portable. You must ensure that there is 
no work done between the statement that ends the DO loop and the 
statement at which processing resumes. You must also ensure that the 
statement number to which the single-processor version jumps and the one 
to which the microtasked version jumps (as a result of the STOP ALL 
PROCESS directive) are the same. The preprocessor does not catch errors 
you might make in using the STOP ALL PROCESS directive. 

4.3.12 CMIC$ GUARD n 

This directive marks the beginning of a critical region to be protected 
from concurrent execution. The GUARD directive is similar in purpose to 
the macrotasking LOCK routines. It occurs within a control structure or 
within a routine called from inside a control structure. The guarded 
portion of the program is not itself a control structure, however. 

SR-0222 0 4-13 



Only sections of code guarded by the same n are prevented from 
executing simultaneously. The n is an integer from 0 through 63, and, 
if n is greater than 63, its remainder when divided by 64 is used. 
Thus, GUARD 0 is equivalent to GUARD 64. GUARD with no n supplied 
constitutes an especially rapid guard, in which case no other guarded 
code can be executed simultaneously. 

The GUARD must be used with care inside subroutines called by microtasked 
routines, because in such a situation, the preprocessor cannot determine 
whether one GUARD is nested inside another. You must ensure that this 
does not happen, because it leads to a dllBlock. The preprocessor issues 
a warning message to alert you to this potential error when it encounters 
a GUARD directive inside a subroutine that is not microtasked. 

4~3.13 CMIC$ END GUARD n 

This directive marks the end of a critical region that is protected from 
concurrent execution. 

CMIC$ DO GLOBAL 
DO 10 1= 1, N 

DO 20 1= 1, M 
LOCALSUM= LOCALSUM + A(I,J) 

20 CONTINUE 
CMIC$ GUARD 

GLOBLSUM= GLOBLSUM + LOCAL SUM 
CMIC$ END GUARD 
10 CONTINUE 

4'.3.14 CMIC$ CONTINUE 

This directive causes microtasking to continue within another 
subroutine. It appears within a microtasked subroutine but outside any 
control structure in the subroutine. It appears just before a call to 
another microtasked subroutine, and it directs that microtasking will 
continue in the called subroutine. The effect is as if the code in the 
called routine were brought into the calling routine. 

This allows microtasking without substantially restructuring the original 
program. The CONTINUE directive cannot appear within a control 
structure, nor does it delineate a control structure. 

In the following example, two DO loops are microtasked: one in 
subroutine SUB1 and one in subroutine SUB2. 

4-14 SR-0222 0 



Example: 

SUBROUTINE SUB1 
CMIC$ DO GLOBAL 

DO 15 I = 1, 100 
DO 10 J = 1, 100 

DO 10 K = 1, 100 
(Many computations) 

10 CONTINUE 
15 CONTINUE 

CMIC$ CONTINUE 
CALL SUB2 
RETURN 
END 

CMIC$ MICRO 
SUBROUTINE 

CMIC$ DO GLOBAL 
DO 25 I = 

DO 20 J 

DO 20 

SUB2 

1, 100 
1, 100 

K = 1, 100 
(Many computations) 

20 CONTINUE 
25 CONTINUE 

RETURN 
END 

The effect is the same as if the DO 25 loop directive had appeared in 
place of the original call to SUB2. The CONTINUE directive may appear at 
more than one level. For example, SUB2 could have a call to SUB3, 
another microtasked routine, and that call could be preceded by a 
CONTINUE directive. 

Subroutine calls from within microtasked routines need not necessarily be 
preceded by a CONTINUE directive. Within a control structure, calls to 
subroutines may not be preceded by a CONTINUE directive. Also, the 
subroutine called after a CONTINUE directive must be a microtasked 
routine; that is, it must contain a PROCESS, DO GLOBAL, or MICRO 
directive. 

4.4 ACCESSING THE PREPROCESSOR 

PREMULT is the microtasking preprocessor that interprets the 
preprocessing directives described in the previous subsection and 
rewrites your program. The PREMULT preprocessor is available under COS 
and UNICOS. 

SR-0222 D 4-15 



As with macrotasking, you must also include the MULTI statement under COS 
or the multi command under UNICOS to access the multitasking libraries. 

4.4.1 INVOKING PREMULT UNDER COS 

The following format describes the PREMULT control statement under COS: 

PREMULT,I=idn,M=mdn,S=sdn,C=cdn,LONGNAM,CFT77,CALV2. 

Parameter 

idn 

mdn 

sdn 

cdn 

LONGNAM 

4-16 

Default 

$IN 

$MULTF 

mdn 

$MULTC 

Not 
selected 

Keyword 
Alone 

$IN 

$MULTF 

$MULTF 

$MULTC 

Selected 

Description 

Input dataset to PREMULT 

Output from PREMULT. This is the 
Fortran code that contains inserted 
microtasking primitives. 

Output from PREMULT. Fortran with no 
microtasking primitives. Microtasked 
subroutines also exist in a 
nonmicrotasked version, so they may 
be called from a microtasked routine. 

Output from PREMULT. CAL master 
routine for each microtasked 
subroutine. 

By default, the preprocessor creates 
two subroutines from each one you 
microtask and appends to their names 
as much of MULT and SNGL as it can 
without making their names longer 
than 8 characters. Thus, JOE becomes 
JOEMULT and JOESNGL, and LONGJOE 
becomes LONGJOEM and LONGJOES. 
PREMULT aborts if it finds an 
8-character subroutine name in a 
program. Selecting LONGNAM tells 
PREMULT to replace the last character 
of an 8-character subroutine name 
with S or M. You must ensure that 
subroutine names thus created are 
unique. PREMULT aborts if the 
original 8-character routine name 
ends in S or M. 

SR-0222 D 



Parameter 

CFT77 

CALV2 

Default 

Not 
selected 

Not 
selected 

Keyword 
Alone 

Selected 

Selected 

Description 

By default, the preprocessor generates 
code that is acceptable to the CFT 
compiler and that contains CDIR$ 
BLOCK directives. Selecting CFT77 
tells PREMULT to generate code 
acceptable to the CFT77 compiler, 
containing CDIR$ SUPPRESS directives. 

By default, the preprocessor generates 
code that is acceptable to the CAL 
Version 1 assembler and that uses a 
nonstandard method of defining and 
referencing a TASK COMMON block. 
Selecting CALV2 tells PREMULT to 
generate code that is acceptable to 
the CAL Version 2 assembler and that 
defines and references the TASK 
COMMON block by using the new SECTION 
pseudo-oPe 

The output datasets are rewound if their names are not $OUT. The input 
dataset is rewound if its name is not $IN. If an output dataset is $OUT, 
a space is inserted in column 1 of the output. The source is checked for 
improper nesting of directives. If errors are found in the source, the 
offending routines are sent to $OUT and the job is aborted. The option 
to separate the M and S output datasets lets you force the microtasked 
routines to a different compile unit; you can, for example, suppress the 
listing of the routines that contain the microtasking primitives. 

Example: 

MULTI. 
PREMULT. 
* PREMULT CREATES $MULTF (FORTRAN) AND $MULTC (CAL). 
CFT,I=$MULTF,ALLOC=STACK. 
CAL,I=$MULTC. 
SEGLDR,GO,CMD='STACK= 
IEOF 

;HEAP= 

Fortran program with CMIC$ microtasking directives. 

Note the presence of the MULTI statement to access the multitasking 
libraries and that the compiler control statement, CFT in this case, 
requires the ALLOC=STACK parameter. In addition, the CAL assembly step 
requires the stack version of $SYSTXT, which may not be the default at 
your site. Check with the system administrator or a CRI site analyst. 

SR-0222 D 4-17 



4.4.2 INVOKING PREMULT UNDER UNICOS 

T~e syntax for invoking PREMULT from a UNICOS command line is as 
follows. Blanks between the option (such as -s) and its argument are 
optional. Options can be specified in any order. 

premult [-m mdn] [-s sdn] [-1] [-c cdn] [-F] file.f 

Parameter 

-m mdn 

-s sdn 

-1 

-c cdn 

-F 

file.f 

4-18 

Default 

multf.f 

mdn 

Not 
selected 

multc.s 

Not 
selected 

None 

Description 

Output from PREMULT. This is the Fortran code 
that contains inserted microtasking primitives. 

Output from PREMULT. This is the Fortran code 
with no microtasking primitives. Microtasked 
subroutines also exist in a nonmicrotasked 
version, so they may be called from a 
microtasked routine. 

By default, the preprocessor creates two 
subroutines from each one you microtask and 
appends to their names as much of MULT and SNGL 
as it can without making their names longer than 
8 characters. Thus, JOE becomes JOEMULT and 
JOESNGL, and LONGJOE becomes LONGJOEM and 
LONGJOES. PREMULT aborts if it finds an 
8-character subroutine name in a program. 
Selecting -1 tells PREMULT to replace the last 
character of an 8-character subroutine name with 
S or M. You must ensure that subroutine names 
thus created are unique. PREMULT aborts if the 
original 8-character routine name ends in S or 
M. 

Output from PREMULT. CAL master routine for 
each microtasked subroutine. 

If present, this parameter indicates that CFT77 
is the Fortran compiler. If this parameter is 
not selected, eFT is assumed. 

Input file to PREMULT 

SR-0222 D 



The following example shows the sequence of UNICOS commands needed to run 
a microtasked CFT job named prog.f: 

premult prog.f 
cft -a stack multf.f 
as multc.s 
segldr -0 prog multf.o multc.o segdir 

The premult command creates two output files: multf.f, which 
contains Fortran code, and multc.s, which contains CAL code. The CAL 
assembly step (as command) requires the stack version of asdef, which 
may not be the default at your site. The file segdir contains six LIB 
directives that specify the directory containing the multitasking 
versions of the libraries. Check with the system administrator or a CRI 
site analyst for the locations of the multitasking libraries and stack 
asdef at your site. 

4.4.3 NAMES RESERVED BY PREMULT 

PREMULT must rewrite your Fortran program. To do so, it needs its own 
variables and a COMMON block. The following variable names are reserved 
for the use of PREMULT; you cannot use them in your program: 

VGDUMMY 
vGRON1 

/LPST 
RELCPUS 

GETCPUS 
vLPCHUNK 
vLPSTl 

4.5 RULES TO FOLLOW 

V'GROFF 
....r.PCON 
vLPST64 

yGROFF1 
vLPEXIT 

LPSTOP 

This subsection defines the rules for microtasking. 

K;RON 
vLPGDUMMY 
vLPTSKCT 

• Do not make any assumptions about the number of processors that 
will work on your program. A microtasked program must be designed 
to run correctly no matter how many processors are attached to it 
at run time. Test your microtasked program with one CPU and with 
more than one CPU. Compare results to ensure that they make sense 
and are consistent, and compare times across the runs to ensure 
that the number of processors is affecting execution time as 
anticipated. 

SR-0222 D 4-19 



( 

4-20 

• Do not modify shared data outside control-structures. This is the 
most important rule of microtasking. Use whatever tools you need 
to identify shared data, then make sure that every statement that 
modifies a shared variable is in a control structure. You may 
find example programs that do change shared data outside control 
structures and seem to work. This is merely good fortune, 
however, and the next run may produce different answers. Do I/O 
only inside control structures. Performing I/O is like modifying 
shared data (the I/O files and their pointers). An example of a 
subroutine that gives unexpected results follows: 

• 

SUBROUTINE TEST(parameters) 
C THIS SUBROUTINE TRIES TO KEEP TRACK OF WHICH ITERA-
C TIONS OF A DO LOOP WERE ASSIGNED TO WHICH PROCESSOR 

DIMENSION IV(256) 
IS = a 

CMIC$ DO GLOBAL 
DO 100 I= 1,256 

IS = IS + 1 
IV(IS) = I 

Real work of DO loop 

100 CONTINUE 
PRINT *, (IV(I),I=l,IS) 
RETURN 
END 

In this subroutine, the system call for I/O pulls processors out 
in an unpredictable way. If the first processor that comes in is 
pulled out for an extended period by this system call, the other 
processors can repeatedly return to this statement and write a 
line. Extra, unexpected output can be generated, though it will 
not necessarily always happen, leading to inconsistent runs. 

A',value given to a variable inside a control structure is not 
viable otitside the control structure. In standard Fortran, the 
variable IS of the previous example always has the value 256 after 
DO loop 100. In microtasking, this value can vary from a to 256 
for any particular processor. In fact, if the local value IS were 
summed for all processors, the total would be 256 after 
microtasking had issued DO loop 100 GLOBALLY. 

SR-0222 0 



• Do not nest control structures. A control structure defines the 
bounds of work that can be performed in parallel. Because the 
area of parallelism has already been defined by the outer control 
structure, an inner or nested control structure is already being 
performed in parallel and need not be defined as an area of 
parallel execution. Also, since the hardware shared registers are 
used to control the flow of processors through microtasked code 
and there is only one set of registers, any attempt to use these 
registers in a nested control structure would corrupt the values 
being maintained by the outer control structure. You may, 
however, use control structures inside a loop, an example of which 
follows: 

SUBROUTINE JOE 
DO 1 I = 1,N 

CMIC$ DO GLOBAL 
DO 2 K = 1,M 

2 CONTINUE 
1 CONTINUE 

RETURN 
END 

The previous example is logically equivalent in microtasking to the 
following: 

SUBROUTINE JOE 
1=1 

CMIC$ DO GLOBAL 
DO 2 K = 1,M 

2 CONTINUE 
I = 2 

CMIC$ DO GLOBAL 
DO 3 K = 1,M 

3 CONTINUE 
I = 3 
etc. 
RETURN 
END 

The outer DO loop in the previous example cannot share a CONTINUE 
statement with the inner one. Set up separate CONTINUE statements 
for such outer DO loops. 

• Each iteration of a microtasked DO loop (DO GLOBAL) must be 
genuinely independent, including the index variables. This 
requirement can occasionally force you to restructure the 
program. A matrix multiplication follows: 

SR-0222 D 4-21 



4-22 

C 
C 
C 
C 

C 
C 
C 

C 
C 

C 

$ 
$ 

SUBROUTINE MXM(A,B,C,L,M,N) 
DIMENSION A(L,M), B(M,N), C(L,N) 

4-WAY UNROLLED MATRIX MULTIPLY ROUTINE FOR VECTOR 
COMPUTERS. M MUST BE A MULTIPLE OF FOUR. 
CONTIGUOUS DATA ASSUMED. 

J=1,4 PASS 

DO 100 K 1,N 
DO 100 I 

C(I,K) 
1,L 
«(A(I,l) * B(l,K) 
+ A(I,2) * B(2,K» + A(I,3) * B(3,K» 
+ A(I,4) * B(4,K» 

100 CONTINUE 

$ 
$ 

DO REMAINING J'S 

DO 110 J=5,M,4 
DO 110 K=l,N 

DO 110 I=l,L 
C(I,K) C(I,K) + «(A(I,J) * B(J,K) 

+ A(I,J+1) * B(J+1,K» + A(I,J+2) * B(J+2,K» 
+ A(I,J+3) * B(J+3,K» 

110 CONTINUE 

RETURN . ..4 .- , ~ - t?Jl? 
END /) ,.l(:< 4'.~'''~1 

,,,.jZ):.--:/ (, , ,. 
The inner loop of the triple loo~ctorizes because the 
iterations are independent of I. The nesting order of the outer 
two loops does not matter for the single-threaded version. 
However, the outer loop has dependencies if it iterates on J, 
because each iteration modifies all elements of C. If, however, 
the nested loop is restructured so that the outer loop iterates on 
K, each processor that takes an iteration gets a distinct row of C 
to modify. Proper microtasking requires only the following minor 
modifications: 

SR-0222 D 



C 

C 
C 

C 
C 
C 

C 

SUBROUTINE MXM(A,B,C,L,M,N) 
DIMENSION A(L,M), B{M,N), C{L,N) 

4-WAY UNROLLED MATRIX MULTIPLY ROUTINE FOR VECTOR 
COMPUTERS. M MUST BE A MULTIPLE OF FOUR. 
CONTIGUOUS DATA ASSUMED. 

J=1,4 PASS 

CMIC$ DO GLOBAL 

C 
C 

C 

DO 100 K = 1,N 
DO 100 I 1,L 

C(I,K) «(A(I,l) * B(l,K) 
$ + A(I,2) * B(2,K» + A(I,3) * B(3,K» 
$ + A(I,4) * B(4,K» 

100 CONTINUE 

DO REMAINING JIS 

CMIC$ DO GLOBAL 

C 

$ 
$ 

DO 110 K=l,N 
DO 110 J=5,M,4 

DO 110 I=l,L 
C(I,K) = C(I,K) + «(A(I,J) * B(J,K) 

+ A(I,J+1) * B(J+1,K» + A(I,J+2) * B(J+2,K» 
+ A(I,J+3) * B(J+3,K» 

110 CONTINUE 

RETURN 
END 

Dependencies do not appear only in result data; local loop indices may 
also contain dependencies, as in the following incorrect example: 

SR-0222 D 

C 

SUBROUTINE EX(A,B,N,M) 
DIMENSION A(*), B(*) 

K = 0 
CMIC$ DO GLOBAL 

DO 1 I = 1,N 
DO 2 J = 1,M 

A(J+K) = A(J+K) * B(J+K) * S 
2 CONTINUE 

K = K + M 
1 CONTINUE 

RETURN 
END 

4-23 



4-24 

t'fl~1the prEftii'O'US,: inco):'rect example, thevalu.e for K, when 1:::2, 
:awpe:nO&:,on ,K ;b.i~,calculatedfo,r I=l; therefore, K is a dependent 
~iar'iable as it is prograinmed here. 

Correct the problem by changing K to be a function of I: 

C 

SUBROUTINE EX(A,B,N,M) 
DIMENSION A(*), B(*) 

CMIC$ DO GLOBAL 
DO 1 I = 1,N 

K == (1-1) * M 
DO 2 J = 1,M 

A(J+K) = A(J+K) * B(J+K) * S 
2 CONTINUE 
1 CONTINUE 
RETURN 
END 

To avoid confusion and excessive index calculations, the program 
can also be rewritten and improved as follows: 

C 

SUBROUTINE EX(A,B,N,M) 
DIMENSION A(M,N),B(M,NJ 

CMIC$ DO GLOBAL 
DO 1 I = 1,N 

DO 2 J = 1,M 
A(J,I) = A(J~I) * B(J,IA * S 

2 CONTINUE 
1 CONTINUE 

RETURN 
END 

• ,;fiie'paththrough a microtasked subroutine's control structures 
'Gan.not be determined by global variables that are modified within 
the subroutine. That is, all control structures in a microtasked 
subroutine must be accessible to all processors that enter the 
subroutine. Late processors must be able to check each control 
structure that has been entered by any processor to see if work in 
it has been completed. The following example violates this rule: 

SR-0222 D 



C 

SUBROUTINE ALLSUM(A,B,N) 
DIMENSION A(N,N),B(N,N) 
LOGICAL INIT 
DATA INIT I.FALSE.I 

IF (.NOT. INIT) THEN 
CMIC$ PROCESS 

DO 2 J = 1,N 
DO 1 I = 1,N 

A(I,J) = 0.0 
1 CONTINUE 
2 CONTINUE 

INIT = .TRUE. 
CMIC$ END PROCESS 

END IF 
C 
CMIC$ DO GLOBAL 

DO 4 J = 1,N 
DO 3 J = 1,N 

A(I,J) = A(I,J) + B(I,J) 
3 CONTINUE 
4 CONTINUE 

RETURN 
END 

On the subroutine call in which INIT is changed by the first 
processor entering, late processors can arrive after INIT is 
true. If they do, they do not have access to the PROCESS control 
structure to see whether the work in it has been completed. The 
following subroutine shows one way of reprogramming correctly: 

SUBROUTINE ALLSUM(A,B,N) 
DIMENSION A(N,N),B(N,N) 
LOGICAL INIT 

~ DATA INIT I.FALSE.I /' 

C 
ir 

CMIC$ PROCESS 
IF ( .NOT. INIT) THEN 

DO 2 J = 1,N 
DO 1 I = 1,N 

A(I,J) = 0.0 
1 CONTINUE 
2 CONTINUE 

INIT = .TRUE. 
END IF 

CMIC$ END PROCESS 
C 

SR-0222 0 4-25 



4-26 

CMIC$ DO GLOBAL 
DO 4 J = 1,N 

DO 3 J = 1,N 
A(I,J) = A(I,J) + B(I,J) 

3 CONTINUE 
4 CONTINUE 

RETURN 
END 

Moving the PROCESS and END PROCESS out to bracket the IF statement 
causes single threading through the section of code that does the 
initializing. The first processor to arrive gets the initializing 
work, and all other processors arrive at the control structure to 
check for work but are prevented from entering because of the 
single threading. On subsequent calls to the subroutine, INIT is 
true. In that case, the first processor in gets into the 
single-threaded section as before, but it drops through 
immediately because the IF test fails. The second and later 
processors do not get in, as before. 

The following example is an even better way to do the same work; 
the value of INIT is set and reset in the calling routine: 

C 

SUBROUTINE ALLSUM(A,B,N,INIT) 
DIMENSION A(N,N),B(N,N) 
LOGICAL INIT 

IF (.NOT. INIT) THEN 
CMIC$ DO GLOBAL 

C 

DO 2 J = 1,N 
DO 1 I = 1,N 

A(I,J) = 0.0 
1 CONTINUE 
2 CONTINUE 

END IF 

CMIC$ DO GLOBAL 
DO 4 J = 1,N 

DO 3 J = 1,N 
A(I,J) = A(I,J) + B(I,J) 

3 CONTINUE 
4 CONTINUE 

RETURN 
END 

• Use GUARD only inside control struct,;:u.res. GUARD prevents multiple 
processors from updating shared data, such as a global counter, 
simultaneously. Because GUARD directives protect the updating of 
shared data and because shared data should only be modified in 
control structures, the GUARD directive is useful only within 
control structures. 

SR-0222 0 



GUARD may be used in subroutines called from within a control 
structure. You are responsible for using it correctly in this 
case, because the preprocessor cannot check your usage. PREMULT 

generates a warning message to alert you of your responsibility. 

• Verify that your program works and that it is being microtasked. 
You can test a microtasked program for correctness on just one 
CPU, but doing that does not demonstrate all potential problems 
that converting to microtasking can introduce. For thorough 
testing, run the original program on one CPU, then run the 
microtasked program on one CPU, then run the microtasked version 
on multiple CPUs, both batch and dedicated. Look at the 
wall-clock and CPU times for all three versions to see whether 
they are appropriate, given the percentage of the job that has 
been microtasked. Accounting of CPU use during microtasking is 
poor, if not invalid, for systems before COS release 1.16. 
Consequently, on systems predating COS release 1.16, use PERFMON 
(as explained in the next subsection) to obtain accurate CPU 
timing. Use a dedicated system to obtain optimal wall-clock 
timings. 

observing mistakes that people make These rules have been derived from 
when they first try microtasking. 
be able to microtask successfully. 
the rules follows: 

If you follow these rules, you should 
For reference, a brief restatement of 

• Make no assumptions about how many processors you will get. 

• Modify shared data only inside control structures. 

• Local variables set inside control structures are not viable 
outside them. 

• Do not nest control structures. 

• DO GLOBAL structures inside a larger DO loop must not share a 
CONTINUE statement with the larger DO loop. 

• Iterations of microtasked DO loops must be genuinely independent. 

• Global variables modified within control structures cannot 
determine the path through the subroutine. 

• Use GUARD only inside control structures. 

• Verify a microtasked program for correctness and performance. 

SR-0222 0 4-27 



4.6 PERFORMANCE OF MICROTASKED PROGRAMS 

The aim of microtasking is to improve the wall-clock execution time of a 
program by close to N, where N is the number of processors called in 
CMIC$ GETCPUS. The low overhead of microtasking makes this more 
attainable than it is with macrotasking. The total CPU time for all 
processors of the parallel code should not be much higher than that of 
the single-processor version. In fact, the microtasked program, running 
on one CPU, should never be more than 5% slower than the single-processor 
version of the program. 

There are a number of ways to measure program performance. On a 
dedicated system, straightforward comparison of original and microtasked 
wall-clock times will show the overall speedup due to microtasking. The 
job's log file gives statistics for each CPU, and the hardware 
performance monitor of the CRAY X-MP computer system can provide a more 
complete breakdown. The PERFMON utility, which is available only under 
COS, lets you collect information about your program from the hardware 
performance monitor. It can show you how microtasking affects things 
other than wall-clock and CPU time, such as memory contention. 

Until COS version 1.16, PERFMON provides the only way to get accurate 
statistics on CPU use. PERFMON,ON=l. gives the time waiting on a 
semaphore for each processor. This is the time that the processor is not 
actually being used. Subtracting this waiting-on-a-semaphore time from 
the CPU time on all processors should make the CPU time consistent from 
run to run. This provides a workaround for the accounting problem 
mentioned for systems running versions of COS prior to 1.16. PERFMON is 
probably the best tool to use for this because it gives a lot of 
information without requiring additional programming. 

The multitasking history trace buffers contain information that you may 
analyze to determine the performance of your job. 

4.7 LONGER EXAMPLES 

This subsection contains examples longer than the ones used in the text 
for illustration. In example 1, the subroutine NON BON is a 
time-consuming subprogram from a large molecular modeling system. It 
illustrates a number of the rules stated previously. The original 
subroutine is given first. 

4-28 SR-0222 D 



Example 1: 

c 
C 

C 
C 
C 
C 
C 

C 

C 

C 

SUBROUTINE NONBON(NATOM,NPAIR,IAR1,IAR2,IAC,ICO,X,F,CN1, 
+ CN2,ASOL,BSOL,HBCUT,CG,XCHRG,ENB,EHB,EEL, 
+ DIELD,NTYPES,NDRV) 

GEORGE SEIBEL 
DEPT OF PHARM CHEM 
UCSF 
SAN FRANCISCO, CA 94143 

LOGICAL DIELD 

DIMENSION IAR1(*},IAR2(*},IAC(*},ICO(NTYPES,*},CG(*} 
DIMENSION XCHRG(*},CN1(*},CN2(*},ASOL(*},BSOL(*},HBCUT(*} 

DIMENSION X(3,*},F(3,*) 

C -- SCRATCH ARRAYS --
C 

C 
C 
C 

C 

c 

DIMENSION IC(2500},XIJ(2500},YIJ(2500),ZIJ(2500), 
+ R2(2500),R6(2500),R10(2500),R12(2500), 
+ G(2500),DF(2500),DF1(2500),DF2(2500},HF1(2500), 
+ HF2(2500},VFl(2500),VF2(2500},FX(2500},FY(2500}, 
+ FZ(2500),FXTEMP(2500),FYTEMP(2500),FZTEMP(2500) 

POINTER ARRAYS 

INTEGER P(2500) 

ENB O.OE+OO 
EEL O.OE+OO 
EHB = O.OE+OO 
LPACK = 1 

C LOOP OVER ALL ATOMS I IN THE SYSTEM 
C 

C 

C 

C 

DO 1000 I = 1, NATOM - 1 

NVDW = IARl(I) 
NHB = IARl(I+NATOM) 
NPR = NVDW + NHB 
NPACK = 1 

IF (NPR.EQ.O) GO TO 800 

MUST BE SET IN CASE WE JUMP OUT OF LOOP 

C LOAD ATOM POINTER ARRAY P() FROM PACKED PAIRLIST 
C 

SR-0222 D 4-29 



NPACK = NPR / 4 + 1 
CALL UNPACK(IAR2(LPACK),16,P,4*NPACK) 

C 
IF (DIELD) THEN 

C 

C DISTANCE DEPENDENT DIELECTRIC --
C 

DO 300 J = 1, NPR 
IC(J) = ICO(IAC(I),IAC(P(J») 
XIJ(J) X(l,I) - X(l,P(J» 
YIJ(J) = X(2,I) - X(2,P(J» 
ZIJ(J) = X(3,I) - X(3,P(J» 
R2(J) = 1.0EO / (XIJ(J)**2 + YIJ(J)**2 + ZIJ(J)**2) 
G(J) = CG(I) * CG(P(J» * R2(J) 
DF2(J) = -(G(J) + G(J» 

300 CONTINUE 
C 

ELSE 
C 
C CONSTANT DIELECTRIC 
C 

C 

C 

C 

DO 250 J = 1, NPR 
IC(J) = ICO(IAC(I),IAC(P(J») 
XIJ(J) = X(l,I) X(l,P(J» 
YIJ(J) = X(2,I) - X(2,P(J» 
ZIJ(J) = X(3,I) - X(3,P(J» 
R2(J) = 1.0EO / (XIJ(J)**2 + YIJ(J)**2 + ZIJ(J)**2) 
G(J) = CG(I) * CG(P(J» * SQRT(R2(J» 
DF2(J) = -G(J) 

250 CONTINUE 

ENDIF 

EEL = EEL + SSUM(NPR,G,l) 

C VDW 6 - 12 POTENTIAL 
C 

IF (NVDW .GT. 0) THEN 
DO 350 J = 1, NVDW 

R6(J) = R2(J)**3 
R12(J) R6(J) * R6(J) 
VF1(J) = CN1(IC(J» * R12(J) 
VF2(J) CN2(IC(J» * R6(J) 
DF1(J) -12.0EO * VF1(J) + 6.0EO * VF2(J) 
DF(J) = (DF1(J) + DF2(J» * R2(J) 

350 CONTINUE 
C 

ENB = ENB + SSUM(NVDW,VF1,l) - SSUM(NVDW,VF2,1) 
C 

ENDIF 

4-30 SR-0222 D 



C 
C HBOND PAIRS 10 - 12 POTENTIAL --
C 

IF (NHB .GT. 0) THEN 
C 

C 

C 

C 

DO 450 J = NVDW + 1, NPR 
IC(J) = IABS(IC(J» 
R10(J) = R2(J)**5 

HF1(J) ASOL(IC(J» * R10(J) * R2(J) 
HF2(J) = BSOL(IC(J» * R10(J) 
DF1(J) -12.0EO * HF1(J) + 10.0EO * HF2(J) 
DF(J) = (DF1(J) + DF2(J» * R2(J) 

450 CONTINUE 

EHB = EHB + SSUM(NHB,HF1(NVDW+1),1) - SSUM(NHB,HF2(NVDW+1),1) 

ENDIF 

C UPDATE THE FORCE ARRAY 
C 

IF (NDRV.LE.O) GO TO 1000 

DO 500 J 
FX(J) 
FY(J) 
FZ(J) 

1, NPR 
XIJ(J) * DF(J) 
YIJ(J) * DF(J) 
ZIJ(J) * DF(J) 

C TEMPORARIES USED HERE TO ACCOMPLISH VECTORIZING 
FXTEMP(J) F(l,P(J» + FX(J) 
FYTEMP(J) F(2,P(J» + FY(J) 
FZTEMP(J) F(3,P(J» + FZ(J) 

500 CONTINUE 

DO 700 J = 1, NPR 
F(l,P(J» FXTEMP(J) 
F(2,P(J» FYTEMP(J) 
F(3,P(J» FZTEMP(J) 

700 CONTINUE 

DUMX = SSUM(NPR,FX,l) 
DUMY SSUM(NPR,FY,l) 
DUMZ SSUM(NPR,FZ,l) 

F(l,I) 
F(2,I) = 
F(3,I) 

800 CONTINUE 

F(l,I) 
F(2,I) 
F(3,I) 

DUMX 
DUMY 
DUMZ 

LPACK = LPACK + NPACK 
1000 CONTINUE 

RETURN 
END 

SR-0222 D 4-31 



CMIC$ GETCPUS must be added in the main program, and the subroutine is 
rewritten as follows. The changes to the program are highlighted with 
boldface type. 

CMIC$ MICRO 
SUBROUTINE NONBON(NATOM,NPAIR,IAR1,IAR2,IAC,ICO,X,F,CN1, 

+ CN2,ASOL,BSOL,HBCUT,CG,XCHRG,ENB,EHB,EEL, 
+ DIELD,NTYPES,NDRV) 

C 
C GEORGE SEIBEL 
C DEPT OF PHARM CHEM 
C UCSF 
C SAN FRANCISCO, CA 94143 
C 
C 

C 
LOGICAL DIELD 

C -- ADD PARAMETER FOR DIMENSIONING LPACK 
C 

C 
C 

C 

C 

PARAMETER (MAXATOMS=32000) 

DIMENSION IAR1(*),IAR2(*),IAC(*),ICO(NTYPES,*),CG(*) 
DIMENSION XCHRG(*),CN1(*),CN2(*),ASOL(*),BSOL(*),HBCUT(*) 

DIMENSION X(3,*),F(3,*) 

C -- SCRATCH ARRAYS --
C 

C 
C 
C 

C 

DIMENSION IC(2500),XIJ(2500),YIJ(2500),ZIJ(2500), 
+ R2(2500),R6(2500),R10(2500),R12(2500), 
+ G(2500),DF(2500),DF1(2500),DF2(2500),HF1(2500), 
+ HF2(2500),VF1(2500),VF2(2500),FX(2500),FY(2500), 
+ FZ(2500),FXTEMP(2500),FYTEMP(2500),FZTEMP(2500) 

SCRATCH ARRAY FOR MICROTASKING 

DIMENSION LPACK(MAXATOMS) 

C -- POINTER ARRAYS 
C 

INTEGER P(2500) 
C 
C ONLY ONE PROCESS TO EXECUTE INITIALIZATION 
C OF THESE GLOBAL VARIABLES 
C 
CMIC$ PROCESS 

ENB O.OE+OO 
EEL = O.OE+OO 
EHB = O.OE+OO 

CMIC$ END PROCESS 

4-32 SR-0222 D 



C 
C INITIALIZE LOOP CONTROL FOR MICROTASKING 
C LPACK IS CHANGED TO AN ARRAY AND CALCULATED 
C IN ADVANCE FOR ALL I BECAUSE OF LOOP 
C DEPENDENCIES. 
C 

C 

LPACK(l) = 1 
DO 50 I = 1, NATOM-1 
LPACK(I+1) 

50 CONTINUE 
LPACK(I) + «IAR1(I) + IAR1(I + NATOM»/4 + 1) 

C LOOP OVER ALL ATOMS I IN THE SYSTEM 
C 
CMIC$ DO GLOBAL 

DO 1000 I = 1, NATOM - 1 
C 
C INITIALIZE LOCAL VARIABLES FOR MICROTASKING 
C 

C 

C 

EELLOC 0.0 
ENBLOC 0.0 
EHBLOC = 0.0 

NVDW = IAR1(I) 
NHB IAR1(I+NATOM) 
NPR = NVDW + NHB 

C -- THIS IS NOW TAKEN CARE OF ABOVE 
C NPACK = 1 MUST BE SET IN CASE WE JUMP OUT OF LOOP 
C 

IF (NPR.EQ.O) GO TO 800 
C 
C LOAD ATOM POINTER ARRAY P() FROM PACKED PAIRLIST 
C 

C 

C 
C 

C 

C 

NPACK = NPR / 4 + 1 
CALL UNPACK(IAR2(LPACK(I»,16,P,4*NPACK) 

IF (DIELD) THEN 

DISTANCE DEPENDENT DIELECTRIC --

DO 300 J = 1, NPR 
IC(J) = ICO(IAC(I},IAC(P(J}}} 
XIJ(J} X(l,I) X(l,P(J» 
YIJ(J} = X(2,I} - X(2,P(J)} 
ZIJ(J) = X(3,I) - X(3,P(J}) 
R2(J} = 1.0EO / (XIJ(J)**2 + YIJ(J)**2 + ZIJ(J}**2) 
G(J} = CG(I) * CG(P(J)} * R2(J) 
DF2(J) = -(G(J) + G(J» 

300 CONTINUE 

SR-0222 D 4-33 

._----_ •. - ._------_._---------------------------------------



ELSE 
C 
C CONSTANT DIELECTRIC 
C 

DO 250 J = 1, NPR 
IC(J) = ICO(IAC(I),IAC(P(J») 
XIJ(J) = X(l,I) X(l,P(J» 
YIJ(J) = X(2,I) - X(2,P(J» 
ZIJ(J) = X(3,I) - X(3,P(J» 
R2(J) = 1.0EO / (XIJ(J)**2 + YIJ(J)**2 + ZIJ(J)**2) 
G(J) = CG(I) * CG(P(J» * SQRT(R2(J» 
DF2(J) = -G(J) 

250 CONTINUE 
C 

ENDIF 
C 
C EEL = EEL + SSUM{NPR,G,l) 
C -- MAKE LOCAL EEL FOR EACH PROCESSOR; ACCUMULATE LATER --
C 

EELLOC = SSUM(NPR,G,l) 
C 

C VDW 6 - 12 POTENTIAL 
C 

IF (NVDW .GT. 0) THEN 
DO 350 J = 1, NVDW 

R6(J) = R2(J)**3 
R12(J) = R6(J) * R6(J) 
VF1(J) CN1(IC(J» * R12(J) 
VF2(J) = CN2(IC(J» * R6(J) 
DF1(J) -12.0EO * VF1(J) + 6.0EO 
DF(J) = (DF 1 (J) + DF2(J» * R2(J) 

350 CONTINUE 
C 

* VF2(J) 

C ENB = ENB + SSUM{NVDW,VFl,l) - SSUM{NVDW,VF2,1) 
C -- MAKE LOCAL ENB FOR EACH PROCESSOR; ACCUMULATE LATER 
C 

ENBLOC = SSUM(NVDW,VFl,l) - SSUM(NVDW,VF2,1) 
C 

ENDIF 
C 
C HBOND PAIRS 10 - 12 POTENTIAL --
C 

IF (NHB .GT. 0) THEN 
C 

4-34 SR-0222 D 



450 
C 

DO 450 J = NVDW + 1, NPR 
IC(J) = IABS(IC(J» 
R10(J) R2(J)**5 
HF1(J) ASOL(IC(J» * RIO(J) * R2(J) 
HF2(J) BSOL(IC(J» * RIO(J) 
DF1(J) = -l2.0EO * HFl(J) + lO.OEO * HF2(J) 
DF(J) = (DF1(J) + DF2(J» * R2(J) 

CONTINUE 

C 

C 
EHB = EHB + SSUM(NHB,HFl(NVDW+l),l) - SSUM(NHB,HF2(NVDW+l),l) 

MAKE LOCAL EHB FOR EACH PROCESSOR; ACCUMULATE LATER --
C 

C 

C 
C 
C 
C 
C 

C 
C 
C 
C 
CMIC$ 

EHBLOC = SSUM(NHB,HFl(NVDW+l),l) - SSUM(NHB,HF2(NVDW+l),l) 

ENDIF 

UPDATE THE FORCE ARRAY --

IF (NDRV.LE.O) THEN 

UPDATE EEL, ENB, EHB BEFORE EXITING. GUARD IS REQUIRED 
TO PREVENT OTHER PROCESSORS FROM UPDATING AT SAME TIME 

GUARD 
EEL EEL + EELLOC 
ENB ENB + ENBLOC 
EHB EHB + EHBLOC 

CMIC$ END GUARD 
GO TO 1000 

C 
ELSE 

C 
C IF FORCE ARRAY MUST BE UPDATED, PLACE CODE TO BE GUARDED 
C TOGETHER TO MINIMIZE TURNING GUARDS ON AND OFF. 

DO 500 J = 1, NPR 
FX(J) XIJ(J) * DF(J) 
FY(J) = YIJ(J) * DF(J) 
FZ(J) = ZIJ(J) * DF(J) 

500 CONTINUE 
C THIS SECTION MOVED UP FROM BELOW 

DUMX SSUM(NPR,FX,l) 
DUMY SSUM(NPR,FY,l) 
DUMZ SSUM(NPR,FZ,l) 

C 
CMIC$ GUARD 
C 

EEL EEL + EELLOC 
ENB ENB + ENBLOC 
EHB = EHB + EHBLOC 

SR-0222 D 4-35 



C 

DO 600 J = 1, NPR 
C TEMPORARIES USED HERE TO ACCOMPLISH VECTORIZING 

FXTEMP{J) = F{l,P(J» + FX{J) 
FYTEMP{J) F(2,P(J» + FY(J) 
FZTEMP(J) = F(3,P(J» + FZ(J) 

600 CONTINUE 

700 

CMIC$ 
C 

800 

C 

C 
1000 

DO 700 J = 1, NPR 
F(l,P(J» FXTEMP(J) 
F{2,P{J» = FYTEMP{J) 
F(3,P{J» = FZTEMP{J) 

CONTINUE 

F(l,I) F(l,I) DUMX 
F{2,I) F(2,I) DUMY 
F(3,I) F{3,I) DUMZ 

END GUARD 

ENDIF 
CONTINUE 

-- NO LONGER NEEDED 
LPACK = LPACK + NPACK 

CONTINUE 
RETURN 
END 

Example 2 is part of a fluid dynamics program in which five subroutines 
are microtasked. The example contains the version of the program before 
microtasking on the left and the version after microtasking on the right. 

Example 2: 

Before Microtasking After Microtasking 

C MAIN PROGRAM C MAIN PROGRAM 
CMIC$ GETCPUS 

DO 10 N=l, NEND DO 10 N=l, NEND 
CALL EULER CALL EULER 

10 CONTINUE 10 CONTINUE 
STOP STOP 
END END 

4-36 SR-0222 D 



Before Microtasking After Microtasking 

CMIC$ MICRO 
SUBROUTINE EULER SUBROUTINE EULER 

CMIC$ DO GLOBAL 
DO 10 K=l, KL DO 10 K=l, KL 

DO 10 J=l, JL DO 10 J=l, JL 
DO 10 1=1, IL DO 10 1=1, IL 

C Many computations C Many computations 
10 CONTINUE 10 CONTINUE 

CMIC$ CONTINUE 
CALL FILTER CALL FILTER 

CMIC$ CONTINUE 
CALL TSL CALL TSL 

CMIC$ PROCESS 
CALL BC CALL BC 

CMIC$ END PROCESS 
RETURN RETURN 
END END 

CMIC$ MICRO 
SUBROUTINE FILTER SUBROUTINE FILTER 

CMIC$ DO GLOBAL 
DO 10 K=l, KL DO 10 K=l, KL 

DO 10 J=l, JL DO 10 J=l, JL 
DO 10 1=1, IL DO 10 1=1, IL 

C Many computations C Many computations 
10 CONTINUE 10 CONTINUE 

RETURN RETURN 

Before Microtasking After Microtasking 

CMIC$ MICRO 
SUBROUTINE TSL SUBROUTINE TSL 

CMIC$ CONTINUE 
CALL TSL1 CALL TSL1 

CMIC$ CONTINUE 
CALL EMUTURB CALL EMUTURB 

CMIC$ DO GLOBAL 
DO 10 K=l, KL DO 10 K=l, KL 

DO 10 J=l, JL DO 10 J=l, JL 
DO 10 1=1, IL DO 10 1=1, IL 

C Many computations C Many computations 
10 CONTINUE 10 CONTINUE 

RETURN RETURN 
END END 

SR-0222 D 4-37 



Before Microtasking After Microtasking 

CMIC$ MICRO 
SUBROUTINE TSLl SUBROUTINE TSLl 

CMIC$ DO GLOBAL 
DO 10 K=1, KL DO 10 K=1, KL 

DO 10 J=1, JL DO 10 J=1, JL 
DO 10 I=1, IL DO 10 I=1, IL 

C Many computations C Many computations 
10 CONTINUE 10 CONTINUE 

RETURN RETURN 
END END 

CMIC$ MICRO 
SUBROUTINE EMUTURB SUBROUTINE EMUTURB 

CMIC$ DO GLOBAL 
DO 10 K=1, KL DO 10 K=1, KL 

DO 10 J=1, JL DO 10 J=1, JL 
DO 10 1=1, IL DO 10 I=1, IL 

C Many computations C Many computations 
10 CONTINUE 10 CONTINUE 

RETURN RETURN 
END END 

4-38 SR-0222 0 



5. MACROTASKING 

Macrotasking applies multiple processors to a Fortran job at the 
subroutine level. Whereas microtasking is often appropriate with jobs 
that require relatively little CPU time or that have small granularity, 
macrotasking was designed for long-running jobs of larger granularity, 
normally in a dedicated environment. Macrotasking is less useful on 
small jobs because it has a higher overhead than microtasking. 

With macrotasking, you explicitly partition your job into tasks, each of 
which is eligible to run on a CPU. Typically, these tasks may take the 
form of different subroutines that are able to execute concurrently, or 
they may involve separate invocations of the same subroutine. 

Figure 5-1 represents a program that has two sets of subroutines that can 
execute at the same time. 

Task 1 Task 2 

PROGRAM MULTI 

- - ~ - - ~ - - ~ - - ~ - - ~ -

SUBROUTINE SUB1 (X) SUBROUTINE SUB3 (XX) 

! ! 
SUBROUTINE SUB2 (Y) SUBROUTINE SUB4 (YY) 

! - - ~ - - ~ - - ~ - - ~ - - ~ -

END 

Figure 5-1. Macrotasking with Dissimilar Subroutines 

SR-0222 D 5-1 



This example is easily multitasked if the subroutines in task 2 use 
different data than those in task 1 or if the sequence in which that data 
is accessed is not important. If the order in which they access common 
data is important, however, safeguards are required. See subsection 
5.2.4, Locks, where such safeguards are described. 

Figure 5-2 shows subroutines running as separate tasks that both call a 
third subroutine, named COMSUB here. 

Task 1 Task 2 

PROGRAM MULTI 

- - ~ - - ~ - - ~ - - ~ - - ~ -

l l 

SUBROUTINE SUB1 (X) SUBROUTINE SUB2 (Y) 

CALL COMSUB (XX) CALL COMSUB (YY) 

l - - ~ - - ~ - - ~ - - ~ - - ~ -

END 

Figure 5-2. Macrotasking with a Common Subroutine 

There is an excellent chance that bad data could result in this example 
if the two executions of COMSUB overlap. Methods of protecting the data 
are available, however. 

5.1 PARALLELISM AND TASKS 

The basic macrotasking routines deal with tasks. This subsection deals 
with tasks and their relationships. Subsequent subsections discuss the 
macrotasking routines that handle locks, events, and barriers. 

5-2 SR-0222 D 



5.1.1 TASKS 

A task consists of code and data that can be scheduled for execution on a 
CPU. A Fortran program can have any number of tasks, all of which are 
assigned the same priority and memory characteristics as the job itself. 

A task is defined as starting execution at a Fortran entry point 
(typically a subroutine), and it can call other subroutines during its 
execution. A task completes when it executes a RETURN statement in the 
subroutine in which it began execution, when it executes a STOP statement 
or equivalent operation, or when its execution is aborted because of an 
error condition. When it ends by a RETURN, STOP, END, or CALL EXIT, only 
that task ends. When it terminates for an error condition or CALL ABORT, 
all other tasks are stopped as soon as possible. 

Any program executed under COS or UNICOS has an initial root task created 
by the system. This task suffices for nonmultitasked programs and 
products, and these codes do not require modification to run on a system 
supporting multitasking. Multitasking within a program begins as soon as 
the program explicitly creates another task through a call to TSKSTART. 

5.1.2 TASK STATES 

The library routines described in this section view tasks as being in one 
of two states: existing or not existing. A task exists from the time it 
is created until the time it completes execution. Among nonexistent 
tasks, no distinction is made between a task that has never existed and a 
task that has completed execution. 

5.1.3 TASK RELATIONSHIPS 

No default relationships exist between tasks. You make and enforce 
decisions to use specific intertask relationships (such as co-routines or 
a parent-child relationship). 

5.1.4 TASK CONTROL ARRAY 

An integer-defined task control array, which must be built by the user 
program, represents each user-created task. The array can be either 2 or 
3 words in length. The array structure is as follows: 

SR-0222 D 5-3 



0 8 

I 
1 I 

I 
2 I 

I 
3 I 

Field Word 

LENGTH 1 

TASK ID 2 

TASK VALUE 3 

Example: 

PROGRAM MULTI 
INTEGER TASKARY (3) 

c 

16 24 32 40 48 56 63 

LENGTH 

TASK ID 

TASK VALUE 

Bits DescriEtion 

0-63 Length of the array in words. Set 
the length to a value of 2 or 3, 
depending on the optional use of the 
TASK VALUE field. Set the LENGTH 
field before creating the task. 

0-63 

0-63 

Task identifier assigned by the 
multitasking library when a task is 
created. This identifier is unique 
among active tasks within the job 
step. The multitasking library uses 
this field for task identification, 
but it is of limited use to user 
programs and should never be changed. 

Optional value that you can set to 
any value before creating the task. 
If you use TASK VALUE, set LENGTH to 
3. The task value can be used for 
any purpose. Suggested values 
include a task name or identifier 
that you generate or a pointer to a 
task local storage area. During 
execution, a task can retrieve this 
value with the TSKVALUE subroutine. 

C SET TASKARY PARAMETERS 
TASKARY(1)=3 
TASKARY(3)='TASK l'H 

END 

I 
I 
I 
I 
I 
I 

5-4 SR-0222 D 



5.1.5 TSKSTART 

TSKSTART initiates a task. You invoke TSKSTART by using the following 

format: 

CALL TSKSTART (taskarray,name[,list]) 

taskarray Task control array used for this task. 
and word 3, if used, must also be set. 
is set to a unique task identifier that 
not change. 

Word 1 must be set 
On return, word 2 
the program must 

name 

list 

SR-0222 D 

External entry point at which task execution begins. This 
name must be declared EXTERNAL in the program or subroutine 
making the call to TSKSTART. CFT77 and CFT do not allow a 
subroutine to use its own name in this parameter. 

Optional list of arguments passed to the new task. This 
list can be of any length. In general, do not use this 
list of arguments (see caution following). 

************************************************** 

CAUTION 

Arguments passed in list are passed by address 
to the newly started task. As a result, the 
arguments become shared data whose subsequent use 
by different tasks must be synchronized. 

Do not pass expressions as arguments in list. 
The compiler stores the computed expression on 
the stack at run time and can reuse the storage 
any time after TSKSTART returns to the calling 
task (even though the started task may not have 
executed) . 

Similarly, you should not pass local variables as 
arguments in list if the subroutine that calls 
TSKSTART does not also call TSKWAIT for the same 
task. Local variables are stored on the stack. 
A subroutine's stack space is reused after a 
return, so the arguments' storage space may have 
been reused by the time the arguments are 
accessed by the new task. 

************************************************** 

5-5 



CFT analyzes the arguments to TSKSTART and issues warning messages for 
invalid or potentially dangerous arguments such as the following: 

• An argument in list is assigned to a register. 

• An argument in list is a local stack variable. 

• An argument in list is an expression. 

• name is not declared to be external. 

• taskarray is not an integer array. 

A call to TSKSTART is identical to CALL name [(list)], except that 
name is executed as a task instead of a subroutine. 

Example: 

C 

PROGRAM MULTI 
INTEGER TASK1ARY(3),TASK2ARY(3) 
EXTERNAL PLLEL 
REAL DATA(40000) 

C LOAD DATA ARRAY FROM SOME OUTSIDE SOURCE 

C CREATE TASK TO EXECUTE FIRST HALF OF THE DATA 
TASK1ARY(l)=3 
TASK1ARY(3)='TASK l'H 

C 
CALL TSKSTART (TASK1ARY,PLLEL,DATA(l),20000) 

C 
C CREATE TASK TO EXECUTE SECOND HALF OF THE DATA 

TASK2ARY(1)=3 
TASK2ARY(3)='TASK 2'H 

C 
CALL TSKSTART (TASK2ARY,PLLEL,DATA(20001),20000) 

END 

5.1.6 TSKWAIT 

TSKWAIT waits for the indicated task to complete execution. 

Format: 

CALL TSKWAIT (taskarray) 

taskarray Task control array 

5-6 SR-0222 D 



Example: 

C 

PROGRAM MULTI 
INTEGER TASK1ARY(3),TASK2ARY(3) 
EXTERNAL PLLEL 
REAL DATA(40000) 

C LOAD DATA ARRAY FROM SOME OUTSIDE SOURCE 

C CREATE TASK TO EXECUTE FIRST HALF OF THE DATA 

C 

C 

C 

C 

C 

C 

C 

C 

TASK1ARY(1)=3 
TASK1ARY(3)='TASK l'H 

CALL TSKSTART (TASK1ARY,PLLEL,DATA(l),20000) 

CREATE TASK TO EXECUTE SECOND HALF OF THE DATA 
TASK2ARY(l)=3 
TASK2ARY(3)='TASK 2'H 

CALL TSKSTART (TASK2ARY,PLLEL,DATA(20001),20000) 

NOW WAIT FOR BOTH TO FINISH 
CALL TSKWAIT (TASK1ARY) 
CALL TSKWAIT (TASK2ARY) 

AND PERFORM SOME POST-EXECUTION CLEANUP 

END 

In this example, TSKSTART is called once for each of the two tasks. 
Alternatively, the second TSKSTART could be replaced by a call to PLLEL 
and the TSKWAIT removed. This alternative approach reduces the overhead 
of the additional task, but it can make understanding the program 
structure more difficult. The two approaches produce the same results. 

5.1.7 TSKVALUE 

TSKVALUE retrieves the user identifier (if any) specified in the task 
control array used to create the executing task. 

Format: 

CALL TSKVALUE (return) 

SR-0222 D 5-7 



return Value held in word 3 of the task control array. A 0 is 
returned if the array length was less than 3 or if the task 
is the initial, root task (described in subsection 5.1.1, 
Tasks). 

Example: 

C 

SUBROUTINE PLLEL (DATA, SIZE) 
INTEGER SIZE 
REAL DATA(SIZE) 

C DETERMINE WHICH OUTPUT FILE TO USE 
CALL TSKVALUE(IVALUE) 
IF (IVALUE .EQ. 'TASK l'H) THEN 

IUNITNO = 3 
ELSEIF (IVALUE .EQ. 'TASK 2'H) THEN 

IUNITNO = 4 
ELSE 

CALL ABORT Error condition; do not continue. 
ENDIF 

END 

In this example, the TSKVALUE call identifies which task is presently 
executing subroutine PLLEL. 

5.1.S TSKLIST 

TSKLIST lists the status of each existing task, indicating whether the 
task is running, ready to run, or waiting. If the task is waiting, 
TSKLIST reports the address of the lock or event or the identifier of the 
task waited upon. 

Format: 

CALL TSKLIST (dn) 

dn 

5-S 

Optional name or unit number of the dataset receiving the 
task status list; the COS default is $OUT, and the UNICOS 
default is the standard output file, stdout. 

SR-0222 D 



5.2 SCOPES AND PROTECTION 

This subsection discusses CFT?? and CFT implementations of COMMON and 
TASK COMMON, private data, and locks. 

5.2.1 SHARED DATA 

Multitasked programs written in Fortran should keep shared data in COMMON 
blocks. Space for such data is statically allocated at load time, and 
the variable contents are available for the life of the program. When a 
subroutine is called, any COMMON variables maintained in registers are 
stored into memory before the call. (Local data can remain in registers.) 

******************************************************* 

CAUTION 

You should not pass COMMON variables as parameters 
between subroutines in a multitasking system. These 
variables, even if they are located in COMMON blocks in 
a calling subroutine, are not treated as COMMON 
variables in the called subroutine, and the compiler 
may perform optimizations that lead to unexpected 
problems. 

******************************************************* 

5.2.2 TASK COMMON DATA 

Data that is global between subroutines, but private to a task, should be 
kept in TASK COMMON blocks. TASK COMMON is a Cray Fortran language 
extension that operates to ensure that, when a program unit with TASK 
COMMON blocks is compiled, each task has its own copy of each TASK COMMON 
block used in the task. These blocks are set up when the task begins and 
are released when the task completes. Be sure to specify stack storage 
when using TASK COMMON (see subsection 5.2.3, Private Data); with static 
allocation, TASK COMMON blocks are treated the same as regular COMMON 
blocks. The format for a TASK COMMON declaration in Fortran is as 
follows: 

TASK COMMON Icbnamel nlist 

cbname Task common block name. TASK COMMON must be named. 

SR-0222 D 5-9 



nlist List of variable names, array names, and array declarators, 
separated by commas. 

Variables in TASK CO~10N blocks cannot be used in SAVE or DATA statements 
or with NAMELIST 1/0. Except for these restrictions, these variables can 
be used in the same way as any other variables declared in COMMON. 

5.2.3 PRIVATE DATA 

Multitasked programs written in Fortran should keep private data in a 
stack. You can accomplish this by compiling these programs with the 
following parameter on the CFT or CFT77 control statement: 

CFT,ALLOC=STACK, .. . 
CFT77,ALLOC=STACK, .. . 

or the corresponding UNICOS command line: 

cft -a stack .. . 
cft77 -a stack .. . 

When compiling in this mode, the compiler allocates and accesses private 
variables from a stack frame specific to the subroutine invocation. In 
this manner, private variables are truly private to the task executing 
the subroutine; they do not conflict with any other task executing the 
subroutine. (Not all private variables will necessarily reside on the 
stack; the compiler may choose to use registers during the subroutine and 
never store the variable in memory. This is especially true for CFT77.) 

******************************************************* 

CAUTION 

Using SAVE or DATA statements causes the referenced 
variables to be assigned to static memory locations, 
regardless of the setting of the ALLOC parameter. 
CFT77 and CFT generate a warning message for each 
variable in a DATA statement that is not also in a SAVE 
statement if stack allocation is in effect. 

******************************************************* 

Ensure that CRI and user libraries used in multitasking mode have been 
compiled or assembled to use a stack. The CRI site analyst handles the 
CRI libraries, but you are responsible for correctly compiling or 
assembling your own libraries. 

5-10 SR-0222 D 



Stack mode introduces some additional overhead to subroutine linkages. 
This overhead results from the need to allocate the stack space at run 
time. The stack management routines may be required to make expensive 
system requests to obtain more space. LDR and SEGLDR support several 
parameters that can reduce the possibility and number of such calls at 
the expense of obtaining memory space before it is needed. (See 
subsection 5.4, Tuning, for more information.) 

Not all code needs to have its private variables allocated on a stack. 
For example, subroutines that are nonreentrant or serially reusable can 
be compiled with the STATIC option. 

Code with statically allocated private variables can be combined with 
stack-allocated private variables in a user program, but you should do 
this carefully. If two tasks use a subroutine with statically allocated 
private variables at the same time, unpredictable results and 
intermittent errors can occur. You should completely compile and test a 
program with stack-allocated private variables before making the effort 
to introduce modules recompiled with statically allocated private 
variables. 

5.2.4 LOCKS 

Locks are the macrotasking facility for monitoring critical regions of 
code. The operation of locks follows the general description provided in 
section 2, Concepts. 

Integer variables representing locks are called lock variables. Lock 
variables should be kept in COMMON blocks to ensure their residency in 
Central Memory across subroutine calls. Henceforth, the terms lock and 
lock variable are used interchangeably. 

Example: 

PROGRAM MULTI 
INTEGER LKINPUT,LKOUTPUT,LKCALL 
REAL INDATA(20000),OUTDATA(20000) 
COMMON 
COMMON 
COMMON 

END 

ICBINPUTI LKINPUT,INDATA 
ICBOUTPUTI LKOUTPUT,OUTDATA 
IMISCI LKCALL 

In this example, two locks were placed in the same COl~ON blocks as the 
data to which they correspond. This is not necessary, but it makes the 
program more understandable. 

SR-0222 D 5-11 



5.2.5 LOCKASGN 

LOCKASGN identifies an integer variable that the program intends to use 
as a lock. You must call the LOCKASGN subroutine for each lock variable 
before the lock variable is used with any of the other lock subroutines. 
A lock is given an initial state of cleared or off. 

The optional second argument is for use by library subroutines that 
require a lock variable internally. The argument ensures that a lock 
variable is assigned only the first time LOCKASGN is called for that 
lock. Hence, if multiple tasks call the subroutine, the different 
invocations do not reassign the same lock. 

Format: 

CALL LOCKASGN (name[,value]) 

name 

value 

Integer variable to be used as a lock. The library stores 
an identifier into this variable. You must not modify a 
lock variable after the call to LOCKASGN until that 
variable is released by a call to LOCKREL. 

The initial integer value of the lock variable. LOCKASGN 
stores an identifier into a variable only if the variable 
still contains the value. If you do not specify value, 
an identifier is unconditionally stored into the variable. 

Example: 

5-12 

PROGRAM MULTI 
INTEGER LKINPUT,LKOUTPUT,LKCALL,ITID(2) 
REAL INDATA(20000),OUTDATA(20000) 
COMMON 
COMMON 

ICBINPUTI LKINPUT,INDATA 
ICBOUTPUTI LKOUTPUT,OUTDATA 

COMMON IMISCI 
EXTERNAL SUBl 

LKCALL 

CALL LOCKASGN (LKINPUT) 
CALL LOCKASGN (LKOUTPUT) 
CALL LOCKASGN (LKCALL) 
ITID(l) = 2 
CALL TSKSTART(ITID,SUB1) 
CALL SUB1 

END 

SR-0222 D 



SUBROUTINE SUB1 
COMMON ILOCK11 LOCK1 
DATA LOCK1 1-11 

CALL LOCKASGN (LOCK1,-1) 

END 

******************************************************* 

CAUTION 

If a lock variable is not assigned before use in any of 
the other lock subroutines, the results are 
unpredictable. One common symptom is an abort with an 
ERROR EXIT and a P address of zero. 

******************************************************* 

5.2.6 LOCKON 

LOCKON sets a lock and returns control to the calling task. If the lock 
is already set, the task is suspended until the lock is cleared by 
another task. In either case, the task sets the lock when it next 
resumes execution of user code. This means that placing LOCKON before a 
critical region ensures that the code in that region is executed only 
when the task has unique access to the lock. 

Format: 

CALL LOCKON (name) 

name Integer variable used as a lock 

5.2.7 LOCKOFF 

LOCKOFF clears a lock and returns control to the calling task. The act 
of clearing the lock may allow another task to resume execution, but this 
is transparent to the task calling LOCKOFF. 

SR-0222 D 5-13 



Format: 

CALL LOCKOFF (name) 

name Integer variable used as a lock 

Example: 

C 

C 

PROGRAM MULTI 
INTEGER LKOUTPUT 
REAL OUTDATA(20000) 
COMMON ICBOUTPUTI LKOUTPUT,OUTDATA 

CALL LOCKASGN (LKOUTPUT) 

CALL LOCKON (LKOUTPUT) 
DO 100 1=1,20000 

OUTDATA(I)=MAX(OUTDATA(I),O.O) 
100 CONTINUE 

CALL LOCKOFF (LKOUTPUT) 

END 

5.2.8 LOCKREL 

LOCKREL releases the identifier assigned to the lock. If a task is 
waiting for the lock, or if the lock is set, an error results. This 
subroutine is useful primarily for detecting errors that arise when a 
task waits on a lock that is never cleared. The lock variable can be 
reused following another call to LOCKASGN. 

Format: 

CALL LOCKREL (name) 

name Integer variable used as a lock 

5-14 SR-0222 D 



Example: 

C 

C 

C 

PROGRAM MULTI 
INTEGER LKOUTPUT 
REAL 
COMMON 

INOATA(20000),OUTOATA(20000) 
ICBOUTPUTI LKOUTPUT,OUTDATA 

CALL LOCKASGN (LKOUTPUT) 

CALL LOCKON (LKOUTPUT) 
DO 100 1=1,20000 

OUTDATA(I)=MAX(OUTOATA(I),O.O) 
100 CONTINUE 

CALL LOCKOFF (LKOUTPUT) 

CALL LOCKREL (LKOUTPUT) 

END 

5.3 SYNCHRONIZATION 

Two types of synchronization mechanisms are available with macrotasking: 
events and barriers. An event is an explicit signaling device. Barriers 
support a more implicit join construct for tasks. 

5.3.1 EVENTS 

This subsection discusses the subroutines that support events. Events 
allow signaling between tasks and have two states: cleared and posted. 
If an event is posted, one task is telling another that a certain action 
has been accomplished or a certain point in the program has been 
reached. If the action has not been accomplished or the point reached, 
the event remains in the cleared state. 

An integer variable represents an event. Keep event variables in COMMON 
blocks to ensure their residency in memory across subroutine calls. 
Henceforth, the terms event and event variable are used 
interchangeably. The following example shows sample declarations: 

SR-0222 0 5-15 



Example: 

PROGRAM MULTI 
INTEGER EVSTART,EVDONE 
COMMON IEVENTSI EVSTART,EVDONE 

END 

5.3.1.1 EVASGN 

EVASGN identifies an integer variable that the program intends to use as 
an event. You must call this subroutine for an event variable before 
that variable is used with any of the other event subroutines. The 
initial state of the event is cleared. A data statement can initialize 
the event to the value in the optional argument so that the event can be 
assigned in a task. The first call assigns the event; further calls are 
ignored. 

The optional second argument is for use by library subroutines that 
require an event variable internally. The argument ensures that an event 
variable is assigned only the first time EVASGN is called for that 
event. Hence, if multiple tasks call the subroutine, the different 
invocations will not reassign the same event. 

Format: 

CALL EVASGN (name[,value]) 

name 

value 

5-16 

Integer variable to be used as an event. The library 
stores an identifier into this variable. Do not modify 
the variable after the call to EVASGN unless a call to 
EVREL first releases the variable. 

The initial integer value of the event variable. EVASGN 
stores an identifier into a variable only if that 
variable still contains the value. If you do not 
specify value, an identifier is unconditionally stored 
into the variable. 

SR-0222 0 



Example: 

C 

PROGRAM MULTI 
INTEGER EVSTART,EVDONE 
COMMON IEVENTSI EVSTART,EVDONE 

CALL EVASGN (EVSTART) 
CALL EVASGN (EVDONE) 

END 

SUBROUTINE SUB1 
INTEGER EVENT1 
COMMON IEVENT11 EVENT1 
DATA EVENT1 1-11 

CALL EVASGN (EVENT1,-1) 

END 

******************************************************* 

CAUTION 

If an event variable is not assigned before it is used 
in any of the other event subroutines, the results are 
unpredictable. One common symptom is an abort with an 
ERROR EXIT and a P address of zero. 

******************************************************* 

5.3.1.2 EVWAIT 

EVWAIT waits until the specified event is posted. If the event is 
already posted, the task resumes execution without waiting. EVWAIT does 
not change the state of the event. 

Format: 

CALL EVWAIT (name) 

name Integer variable used as an event 

SR-0222 D 5-17 

---,--~,~,~,--,-" ------------------------------------



Example: 

SUBROUTINE MULTI2 
INTEGER EVSTART,EVDONE 
COMMON IEVENTSI EVSTART,EVDONE 

CALL EVWAIT (EVSTART) 

END 

In this example, EVWAIT tests the event EVSTART to see whether it is 
posted. If it is posted, execution continues; if it is not, execution 
halts until some other task posts the event. 

5.3.1.3 EVPOST 

EVPOST posts an event and returns control to the calling task. Posting 
an event allows all other tasks waiting on that event to resume 
execution, but this condition is transparent to the task calling EVPOST. 
Posting an already posted event has no effect (posts are not queued). 

Format: 

CALL EVPOST (name) 

name Integer variable used as an event 

Example: 

5-18 

PROGRAM MULTI 
INTEGER EVSTART,EVDONE 
COMMON IEVENTSI EVSTART,EVDONE 

CALL EVASGN (EVSTART) 
CALL EVASGN (EVDONE) 

CALL EVPOST (EVSTART) 
END 

SR-0222 D 



5.3.1.4 EVCLEAR 

EVCLEAR clears an event and returns control to the calling task. Tasks 
subsequently performing EVWAIT calls on that event must wait. If the 
event is not cleared, the posted condition remains. When a single event 
post is required (a simple signal), call EVCLEAR immediately after EVWAIT 
to indicate that the posting of the event has been detected. 

Format: 

CALL EVCLEAR (name) 

name Integer variable used as an event 

Example: 

SUBROUTINE MULTI2 
INTEGER EVSTART,EVDONE 
COMMON IEVENTSI EVSTART,EVDONE 

CALL EVWAIT (EVSTART) 
CALL EVCLEAR (EVSTART) 

END 

5.3.1.5 EVREL 

EVREL releases the identifier assigned to an event. If a task is waiting 
for the event, an error results. This subroutine is useful primarily in 
detecting erroneous uses of an event outside the region the program has 
planned for it. The event variable can be reused following another call 
to EVASGN. 

Format: 

CALL EVREL (name) 

name Integer variable used as an event 

SR-0222 D 5-19 



Example: 

PROGRAM MULTI 
INTEGER EVSTART,EVDONE 
COMMON IEVENTSI EVSTART,EVDONE 

CALL EVASGN (EVSTART) 
CALL EVASGN (EVDONE) 

CALL EVPOST (EVSTART) 

C EVSTART WILL NOT BE USED FROM NOW ON 
CALL EVREL (EVSTART) 

END 

5.3.2 BARRIERSt 

A barrier is a synchronization point in an application beyond which no 
task will proceed until a specified, predetermined number of tasks have 
reached the barrier. Three routines, BARASGN, BARSYNC, and BARREL, 
perform barrier synchronization. 

5.3.2.1 BARASGN 

BARASGN identifies an integer variable for the program to use as a 
barrier. You must call this subroutine for a barrier variable before 
that variable is used with any of the other barrier subroutines. 

The initial state of the barrier is closed. A barrier remains closed 
until its count is met; that is, the BAR SYNC routine has been called with 
this variable by the appropriate number of tasks. At this point, all 
waiting tasks are allowed to execute and the barrier is once again closed. 

Format: 

CALL BARASGN (name, value) 

name Integer variable to be used as a barrier. The library 
stores an identifier into this variable. Do not modify the 
variable after the call to BARASGN unless a call to BARREL 
first releases the variable. 

t Deferred COS implementation 

5-20 SR-0222 D 



value The integer number of tasks, between 1 and 31 inclusive, 
that must call BARSYNC with name before the barrier is 
opened and the waiting tasks are allowed to proceed. 

5.3.2.2 BARSYNC 

BARSYNC registers the arrival of a task at a barrier. This causes the 
barrier's count to be decremented by 1. If the new count is greater than 
0, the task waits. If the new count is 0, the task is permitted to 
proceed through the barrier, all tasks waiting at the barrier are 
permitted to resume execution, and the barrier is closed, with the count 
reset to the initial value set with the BARASGN call. 

Format: 

CALL BARSYNC (name) 

name Integer variable used as a barrier 

5.3.2.3 BARREL 

BARREL releases the identifier assigned to a barrier. If a task is 
waiting for passage through the barrier, an error results. This 
subroutine is useful primarily in detecting erroneous uses of a barrier 
outside the region the program has planned for it. The barrier variable 
can be reused following another call to BARASGN. 

Format: 

CALL BARREL (name) 

name Integer variable used as a barrier 

5.3.2.4 Example of using barriers 

The following example shows a simple use of the barrier synchronization 
mechanism. The barrier variable, LOOPBAR, is assigned a count of 8 and 
eight tasks are started. The tasks wait at the synchronization point 
until all eight reach the beginning of the 200 loop for each iteration of 
that loop. 

SR-0222 D 5-21 



C 

C 

C 

C 

C 

C 

PROGRAM MULTI 
COMMON I SYNCCOMI LOOPBAR 
INTEGER LOOPBAR 
INTEGER I, TASKINFO(2,8) 
EXTERNAL BAR SUB 

CALL BARASGN(LOOPBAR, 8) 

DO 100 I = 1, 8 
TASKINFOR(l,I) = 2 
CALL TSKSTART(TASKINFO(l,I), BARSUB) 

100 CONTINUE 
DO 110 I = 8, 1, -1 

CALL TSKWAIT(TASKINFO(l,I» 
110 CONTINUE 

CALL BARREL(LOOPBAR) 

END 

SUBROUTINE BAR SUB 
COMMON I SYNCCOMI LOOPBAR 
INTEGER LOOPBAR 
INTEGER I, J 

DO 300 I = 1, 100 
CALL BARSYNC(LOOPBAR) 
DO 200 J = 1, 500 

200 CONTINUE 
300 CONTINUE 

RETURN 
END 

5.4 TUNING 

The multitasking system software design lets you perform tuning without 
the need to rebuild libraries or other system software. A library 
routine, TSKTUNE, performs the tuning. 

5.4.1 TSKTUNE 

TSKTUNE modifies tuning parameters within the library scheduler, which 
manages and schedules tasks within programs. (The design of multitasking 
software is described in appendix F.) Each parameter has a default 
setting within the library and can be modified at any time to another 
valid setting. 

5-22 SR-0222 0 



For the most predictable results, you should call TSKTUNE during 
application initialization or when there is only one task active. 

This routine should not be used for multitasking on a CRAY-l computer 
system. The parameters are not relevant in a single-CPU environment. 

The effects of this routine may not be measurable in a batch environment 
because of variable conditions between and during runs. 

Format: 

CALL TSKTUNE (keyword1, value1' keyword2, value2' ... ) 

keywordi An ASCII character string, as follows: 

SR-0222 D 

'DBACTIVE' Deadband for activation of logical CPUs. 
(Logical CPUs are described in appendix 
F.1.1.) This is the number of additional user 
tasks that can be readied for execution before 
an additional logical CPU is activated or 
acquired. This allows a queue of tasks to be 
built before another CPU is acquired to 
process these tasks. For example, if DBACTIVE 
is set to 2, the scheduler will activate a 
suspended logical CPU if more than two tasks 
are ready to execute. The value of DBACTIVE 
may range from 0 to the largest integer value 
(the number of logical CPUs is equal to the 
number of user tasks limited by MAXCPU). The 
initial value is O. 

'DBRELEAS' Deadband for release of logical CPUs. If more 
logical CPUs are allocated to the job than 
there are tasks, the deadband reflects the 
maximum number retained. Any in excess of 
this number are released to the system, 
requiring an exchange to the operating 
system. The initial value is set to 1 less 
than the number of physical CPUs available on 
the system or to 1, whichever is greater. 
(For example, DBRELEAS is set to 3 for a 
four-processor CRAY X-MP computer system and 
to 1 for a single-processor CRAY X-MP computer 
system.) Setting DBRELEAS to less than this 
value may cause an excessive number of CPUs to 
be deleted and acquired and a correspondingly 
long list of CPUs in the log file. The value 

5-23 



5-24 

'DBRELEAS' of DBRELEAS can range from a (representing 
(continued) immediate return) to the value of MAXCPU. 

'HOLDTIME' Number of clock periods (CPs) to hold a 
logical CPU while waiting for tasks to become 
ready and before releasing the CPU to the 
operating system. This parameter lets a user 
hold additional logical CPUs in a job when 
executing a nonmultitasked section of code and 
have these CPUs quickly available when the 
program reenters multitasking mode. The value 
of HOLDTIME may range from a (return logical 
CPUs immediately to the operating system) to 
the largest integer value. The initial value 
is 100,000 CPs. This parameter is ignored 
when microtasking is running. 

'MAXCPU' Maximum number of logical CPUs allowed for the 
job. The initial value is set to the number 
of physical CPUs available on the system. 
(For example, MAXCPU is set to 2 for a dual
processor CRAY X-MP computer system.) The 
value of MAXCPU can range from 1 to the value 
of an installation parameter that can vary 
from site to site; the parameter limits the 
number of tasks in the system. Under COS, 
this is the parameter I@MAXNUT. Under UNICOS, 
the parameter is MAXUP, and its value is a 
site-specific constant minus the number of 
other processes the user has running at the 
current time. (Thus, users are limited to a 
finite number of simultaneous processes.) 

'SAMPLE' Number of CPs between checks of the ready 
queue. This parameter is used with the 
HOLDTIME parameter. SAMPLE adjusts the 
frequency of sampling the ready queue 
(containing tasks ready to execute) when a 
logical CPU is waiting for a task to become 
ready. If the ready queue is sampled too 
often, excessive memory contention may 
result. The value of SAMPLE may range from a 
(sample the ready queue as often as possible) 
to the largest integer value (the ready queue 
is effectively never sampled and ready tasks 
are never executed by the waiting processor). 
The initial value is 500 CPs. This parameter 
is ignored when microtasking is running. 

An integer 

SR-0222 0 



Specify the parameters in keyword-value pairs, though they need not be in 
any particular order. 

NOTE 

TSKTUNE does not check to ensure that a value passed to 
it is within its specified range. 

In general, the settings in a dedicated environment should be different 
from those in a batch environment. In a dedicated environment, the 
deadbands and the loop counts can be high, but generally the cost of 
these wasted CPU cycles is less than the cost of constantly returning to 
the operating system to change the number of tasks. In a batch 
environment, the deadbands and loop count should be low (the default 
settings) because the wasted CPU time could degrade total system 
throughput. In either case, the operating system accounting charges the 
job for any time spent idling in an unused CPU. 

In a dedicated environment, set the value of MAXCPU to equal either the 
number of physical CPUs or the number of physical CPUs plus 1. The 
latter can improve performance in a design with one task performing 1/0 

and the remaining tasks performing computations. In a batch environment, 
keep the value low, though it is of less consequence. Generally, set the 
value of OBRELEAS to equal the value of MAXCPU minus 1, so that unused 
logical CPUs are not returned to the system too quickly. 

Examples: 

CALL TSKTUNE ('DBACTIVE' ,1, 'HOLDTIME' ,0) 
CALL TSKTUNE ('MAXCPU',l) 

The first example keeps one more user task than there are logical CPUs 
and cuts back to one logical CPU as quickly as possible. The second 
limits the job to a single logical CPU. 

5.4.2 LDR AND SEGLDR MEMORY MANAGEMENT TUNINGS+ 

The loader statements LDR and SEGLDR include parameters and directives 
dealing with memory stacks and heaps. These parameters are described in 
the COS Version 1 Reference Manual for LOR and in the Segment Loader 
(SEGLDR) Reference Manual for SEGLDR. Table 5-1 summarizes the options. 

t LOR is available only under COS. 

SR-0222 0 5-25 



Table 5-1. Summary of Loader Options 

LDR SEGLDR 
Function Parameter Directive 

Define initial stack size STK STACK 
and increment 

Define initial heap size MM HEAP 
and increment 

Define minimum size of a MMEPS HEAP 
free heap block 

If you do not specify values for the heap initial size and increment at 
load time, default values are used. If the STACK option is not specified 
at compile time, default values are used for the stack. If you use 
multitasking with CAL programs that do not include reentrant Fortran 
code, you must specify at load time that a stack is needed. 

The following examples show settings that should provide enough space for 
a multitasked program with a few tasks and a moderate depth of subroutine 
use. The examples include increments in case of stack overflow. Optimal 
initial settings, however, depend upon the specific job and application. 

LDR parameters: 

LDR,MM=15000:5000,STK=5000:1000, ... 

SEGLDR directives: 

HEAP=15000+5000 
STACK=5000+1000 

While developing and debugging multitasked code, determine,' if possible, 
optimal settings for the initial and increment settings. If space is not 
a concern, slight performance improvements can be gained by determining 
the maximum required space for the stack and heap. Doing so may not be 
easy because requirements can change from run to run if the execution 
sequences of the tasks change. 

5-26 SR-0222 D 



DEBUG gives both heap and stack statistics if a DUMPJOB statement is 
executed immediately after the multitasked program.t (See section 7, 
Debugging, for sample output from DEBUG.) The values written by DEBUG 
are useful only if the initial stack and heap sizes are smaller than what 
is required; this is the case because the DEBUG values reflect the actual 
sizes, which may be more than what was needed. In addition, the library 
subprograms IHPSTATt and HPDUMPt can be called from a user program to 
obtain current heap statistics. 

If you set the parameters to meet maximum storage requirements, 
allocation of memory space occurs at load time rather than at run time. 
Some slack can be built into the initial request, or the increment 
setting can be set to catch cases requiring additional space. If the 
increment is set to zero, an attempted expansion or overflow aborts the 
job. 

The size of the minimum heap block is not likely to have a noticeable 
effect on performance. It prevents over-fragmentation of the heap 
manager's free space queue, which could lengthen search times for new 
blocks. This would be a problem only if a large amount of dynamic and 
varying use is made of the heap manager. 

NOTE 

The use of multitasking with either LDR overlays or 
SEGLDR segments is not specifically supported. (See 
subsection 5.5.2, Overlays and Segments.) The 
parameters described here apply to normal loads with 
LDR or nonsegmented loads with SEGLDR. 

5.5 UNDERLYING ASSUMPTIONS 

This subsection covers various assumptions and warnings about the user 
program and the environment in which it is used. 

5.5.1 COS AND UNICOS ASSUMPTIONS 

The macrotasking implementation is available with COS and UNICOS. The 
following paragraphs describe some assumptions that apply to one or both 
operating systems. You may have to consult with your system 
administrator or a CRI site analyst on one or more of these concerns. 

t Deferred UNICOS implementation 

SR-0222 D 5-27 

._------------"---------- --«" .... -.. ---------~----------------------------



The libraries used with multitasked programs must have been created with 
the multitasking assembly option through the use of the multitasking 
version of the system text dataset ($SYSTXT for CAL Version 1, $SYSDEF 
for CAL Version 2 under COS, and asdef for CAL Version 2 under 
UNICOS). The multitasking assembly option generates the libraries with 
the following features: 

• Stack option of the calling sequence 
• Nonreentrant IIO subroutines in $IOLIB protected with locks 
• Multitasking library subroutines enabled for multiple tasks 

The default libraries at most sites are built with the static option of 
the calling sequence and should not be used with multitasked programs. 

On a CRAY X-MP computer system, COS should be configured to allow 
multiple tasks for a job. For a CRAY-l computer system, COS should limit 
a job to a single task. 

UNICOS on a CRAY X-MP computer system allows the same number of tasks in 
a program as the number of simultaneous processes it allows in a 
process-group. On a CRAY-1 computer system, UNICOS disallows the 
creation of any additional tasks. 

5.5.2 OVERLAYS AND SEGMENTS 

The multitasking features provide no explicit support for LDR overlays or 
for SEGLDR segments. Nothing prevents you from using them together, but 
the serial nature of loading segments and overlays conflicts with the 
parallel nature of multitasking. You must take care if attempting a 
combination of multitasking and overlays or segments. 

You can use multitasking with segmented loads if the set of segments in 
memory is not changed during the course of the multitasked stage of the 
job. Keeping the subroutines used for multitasking completely within the 
root or some segment is the safest way to ensure that memory does not 
change. SEGLDR currently cannot verify or enforce this. Overlays can be 
used under the same limitations. 

5.5.3 EXTENDING BLANK COMMON 

Some Fortran programs use a nonstandard technique known as extending 
blank COMMON to provide dynamic memory management within user space. The 
use of stacks, though, sometimes requires expansion of memory in user 
space (see subsection 5.4.2, LDR and SEGLDR Memory Management Tunings). 
Only one of these two memory extension mechanisms can be in control of a 
job. 

5-28 SR-0222 D 



If it is necessary to extend blank COMMON, set the stack area to a fixed 
size (increment of O) and place it below blank COMMON. Attempts to 
expand the stack then cause a job to abort. 

If blank COMMON does not need to be expanded, the stack can be placed 
above it and allowed to expand. Attempts to then expand blank COMMON 
cause unpredictable results. LDR and SEGLDR parameters let you specify 
the proper configuration. 

As an alternative to extending blank COMMON, consider using user-callable 
heap allocation routines (such as HPALLOC and HPDEALLC). The stack 
management routines use these heap allocation routines, allowing both 
stacks and user code to share the same memory area. The Programmer's 
Library Reference Manual describes these subroutines. 

5.5.4 CFT?? AND CFT OPTIMIZATION 

The CFT77 and CFT compilers generate heavily optimized code. These 
optimizations are usually transparent in a program run in nonmultitasked 
mode, but in a multitasked application they can cause problems. The 
following describes three such optimizations. 

When writing programs, programmers have a mental model of the way in 
which they expect the code to be executed. All models are 
simplifications, and with a nonmultitasked application, the 
simplifications in the model do not cause problems. When the model is 
multitasked, however, the deficiencies begin to appear. The following 
problems relate to these simplifications: 

Problem: 

Solutions: 

SR-0222 D 

Reluctance to store variables to memory. When writing 
Fortran code, most programmers mentally use a model in 
which variables are stored to or loaded from memory at each 
reference. But because memory loads and stores are 
expensive, compilers try to keep variables in registers (A, 
B, S, T, or V) for as long as possible. CFT?? goes a step 
further; it may determine that it is unnecessary to ever 
store a variable to memory. This could be a problem if 
another task is trying to use the same variable; the 
optimizations could result in the other task using an old 
value. 

Use variables in COMMON for shared data and protect them 
with locks. Both CFT and CFT?? store such variables to 
memory on a subroutine call. Use the SAVE statement for 
local variables that may be shared with argument lists. 

5-29 



Problem: 

Solutions: 

Problem: 

Solutions: 

Reordering statements. Another programming model assumes 
that statements are executed precisely in the order 
listed. But compilers are free to reorder statements and 
parts of statements as long as the data dependencies 
between statements are not changed. If two successive 
statements appear to be unrelated, the compiler may reorder 
them. With multitasking, some statements (such as CALL 
TSKSTART) have significant side effects, of which the 
compiler may not be aware. 

The solutions are similar to those for the previous 
problem. The compiler sees locks in the same way it sees 
any other subroutine, so you must make sure locked data is 
kept between a LOCKON-LOCKOFF pair. Putting it in COMMON 
is one way to ensure this. 

Temporary storage. Another programming model sees 
expressions (such as N*M) and simple variables (such as N) 
as being interchangeable. This model ignores the fact that 
to pass an expression as an argument, the compiler must 
compute the value, obtain temporary storage space, and 
store the computed value. This space is obtained from the 
stack, and the compiler can reuse the space when it appears 
to be no longer needed. This is a problem when the address 
of this space is passed to another task, but the space is 
reused before the new task receives it. 

Compute expressions explicitly, and assign the result to a 
variable. Then pass that variable to the other task. 

The following code segment reflects some of these problems. Assume that 
the code that called MYSUB had LOCKI and I safely stored in COMMON but 
decided to pass them as arguments to MYSUB because of the software 
design. Assume further that actual code is being executed within the DO 
loop, but none of the code uses I except the following: 

5-30 SR-0222 D 

--, -- -------- ~~~~~-- --------~--- --



SUBROUTINE MYSUB (LOCKI,I) 
EXTERNAL NEWSUB 
INTEGER ITCA(2) 

C 
ITCA(1)=2 

C 
DO 10 11=1,10 

CALL LOCKON (LOCK1) 
1=1+1 

CALL LOCKOFF (LOCK1) 
C 

10 CONTINUE 
C 

CALL TSKSTART (ITCA,NEWSUB,3*I) 
CALL OTHERSUB (4*1) 

C 
END 

With CFT, the generated code executes as follows. (The code generated by 
CFT77 is similar.) 

C 

C 

C 

C 

C 

SUBROUTINE MYSUB (LOCKI,I) 
EXTERNAL NEWSUB 
INTEGER ITCA(2) (allocated on stack) 

ITCA(1)=2 

(reg TOO = 1) 
DO 10 11=1,10 

CALL LOCKON (LOCKI) 
(reg TOO = reg TOO+1) 
CALL LOCKOFF (LOCKI) 

10 CONTINUE 
(I = reg TOO) 

(compute 3*1 and put on stack) 
CALL TSKSTART (ITCA,NEWSUB,3*I) 

(compute 4*1 and put on stack on top of 3*1) 
CALL OTHERSUB (4*1) 

END 
(and possibly complete task execution) 

SR-0222 D 5-31 



What problems have resulted here? 

• The LOCKON-LOCKOFF pair have not protected the store to memory of 
I. They have just protected the update of register TOO (local to 
each task). The store to I occurs after the LOCKOFF and is not 
protected. This can be fixed by putting I in a COMMON declaration 
in MYSUB rather than having it as an argument. 

• The expression 3*1, passed to TSKSTART, is quickly replaced by 
4*1; this will probably happen before the new task is created and 
reads the value. This can be fixed by assigning 3*1 to a new 
variable in a COMMON block and passing that variable to TSKSTART. 

The preceding code looked good and would work correctly in a 
single-tasked environment, but it could fail in a multitasked 
environment. By being aware of compiler optimizations, you can avoid 
these problems. 

5.5.5 COS REPRIEVE PROCESSING 

Multitasked programs can use COS reprieve processing, but you must be 
careful to consider the two types of reprieve conditions: user caused 
and environmental. 

For a user-caused condition (such as an operand range error or a 
floating-point error), each task that can cause the error must issue a 
SETRPV request for the condition or conditions of interest. When a 
condition occurs, the reprieve code receives control from the task that 
caused the error, and any other tasks are suspended. 

For an environmental condition (such as interactive attention), each task 
that can be executing when the condition arises must issue a SETRPV 
request for the conditions of interest. When a condition occurs, the 
reprieve code receives control from one of the running tasks; any other 
tasks are suspended. If one task omits the SETRPV and happens to be 
executing when the condition occurs, the error condition is not reprieved 
and the job aborts. 

In the case of either a user-caused or an environmental error, the 
reprieve code should execute either a CONTRPV or an ENDRPV request upon 
completion of reprieve processing. If CONTRPV is executed, all tasks are 
resumed, if possible; if ENDRPV is executed, termination of the job step 
completes. 

Reprieve processing currently works correctly only for a program that has 
the same number of tasks as logical CPUs, because reprieves are enabled 
for logical CPUs rather than for tasks. 

5-32 SR-0222 D 



Each task must have its own Exchange Package save area to be used during 
a reprieve. This area must not reside on a stack for a task that can be 
completed before the address is used. Put it in COMMON, or use the SAVE 
statement. 

5.5.6 COS IOAREA LOCK 

The COS IOAREA control statement and macro do not work with a multitasked 
job. Their purpose is to prevent the user from accessing the portion of 
the user field following the high limit of memory address (HLM) where the 
Dataset Parameter Area (DSP) and I/O buffers normally reside. In a 
multi tasked job, the DSPs and buffers are allocated from the heap, before 
HLM, and are thus not protected by the IOAREA lock. 

5.5.7 NONREENTRANT LIBRARY ROUTINES 

Most of the routines in the run-time libraries either are reentrant or 
have internal locks to ensure that they are single threaded. Some 
library routines, however, must be locked at the user level if they are 
used by more than one task. 

Random access dataset I/O routines (READMS/WRITMS, READDR/WRITDR, and 
GETWA/PUTWA) are not internally locked. You must lock each call to these 
routines if they are called from more than one task. 

The sort/merge routinest are not reentrant and are not locked. An 
entire series of calls to the sort/merge routines must be locked, from 
SAMSORT or SAMMERGE to SAMGO. Each routine in the group uses data built 
up in previous calls, so locking each individual call is not sufficient. 

The COS table manager routines extend blank COMMON. Table manager 
routines are reentrant, but references to the COMMON block arrays used to 
store the lengths and locations of tables are not locked. If the table 
manager is used with a multi tasked program, calls to the table manager 
should be locked and the heap must be placed before blank COMMON. After 
doing so, attempts to expand stacks will abort the job. The UNICOS table 
manager routines use the heap manager, which permits their use in a 
multitasked program. 

Debugging routines DUMPt, PDUMPt, and CRAYDUMPt are all reentrant, but you 
should put locks around calls to these routines if they use the same 
datasets in different tasks so that the outputs from the tasks are not 
interspersed. 

t Deferred UNICOS implementation 

SR-0222 D 5-33 



Routines TRBK, SNAPt, and DUMPJOBt are not locked and are not 
reentrant. If one of these routines is called from more than one task, 
locks should be placed around the calls. 

You should lock calls to TIMEF. 

5.6 MULTITASKING EXAMPLE 

This subsection describes the overall design of a program that uses the 
multitasking features previously described. The next subsection expands 
this example. 

5.6.1 GENERAL APPLICATION 

The example program starts by reading data a unit at a time from an input 
dataset. Each unit could represent, for example, data recorded at a 
certain time, and the input dataset could be a sequence of such 
readings. Each unit of data is processed, and a corresponding output 
unit is written. The program repeats these operations until the input 
dataset is completely read. 

5.6.2 INITIAL TASK 

The main program, or initial task, performs the following operations: 

1. Initializes control variables 

2. Starts a task to write the output unit 

3. Enters main loop and performs the following: 

a. Reads a unit of data (if end-of-data is reached, it leaves 
the loop) 

b. Performs preprocessing that cannot be multitasked 

c. Starts four tasks, each of which processes 25% of the data 
and uses the same code for execution 

d. Waits for the tasks to complete 

t Deferred UNICOS implementation 

5-34 SR-0222 D 



e. Performs postprocessing that cannot be multi tasked 

f. Waits for the output task to write the previous unit of 
data (or, in the case of the first time through the loop, 
to initialize itself) 

g. Signals the output task to write the next unit of data 

4. Performs the next iteration of the loop 

5. Waits for the output task to write the last unit of data 

6. Signals the output task that all data has been supplied 

5.6.3 OUTPUT TASK 

The output task allows output of one set of data to occur in parallel 
with processing of the next set of data. The only synchronization 
necessary is to ensure that one set is written before the next set is 
supplied. 

The output task performs the following operations: 

1. Initializes control variables and opens the dataset 

a. Begins main loop 

b. Signals ready condition 

c. Waits for the initial task to supply data (if the signal 
indicates that all data has been supplied, it leaves the 
loop) 

d. Outputs data 

2. Performs the next iteration of the loop 

5.6.4 PROCESSING TASKS 

The processing tasks are four copies of the same module, each processing 
25% of the data. Four tasks, created by the initial task to process a 
different quarter of the data, share this single set of instructions. 

SR-0222 D 5-35 



The shared module has the following operations: 

1. Initializes control variables 

2. Processes data 

5.6.5 COS JCL 

The following is JCL that could be used to run the example as a COS job: 

JOB,JN=MTEXAMP, ... 
ACCOUNT, ... 
MULTI. Access multitasking/stack libraries 
CFT77,ALLOC=STACK. Code in $IN 
SEGLDR,CMD='HEAP=15000+5000;STACK=5000+1000',GO. 

Allow stack and heap to grow as 
needed 

5.6.6 INITIAL TASK CODE 

The code for the main task is as follows: 

PROGRAM EXAMPLE 
C 

EXTERNAL OUTPUT, PROCESS 
C 

INTEGER OUTTCA(2),PR1TCA(2),PR2TCA(2) 
C 
C Force arrays and variables to static storage 
C 

C 

C 

C 
C 
C 
C 
C 

5-36 

COMMON ITCAS/OUTTCA,PR1TCA,PR2TCA,START1, START2 

INTEGER DATAOUT,OUTDONE 
COMMON IEVENTS/DATAOUT,OUTDONE 
INTEGER DATALOC 
COMMON IOUTDATA/DATALOC 

INTEGER START1, START2 
REAL DATAFILE (100000) 
COMMON IDATASET/DATAFILE,START1,START2 
DATA START1,START2/1,500011 

(Open input dataset) 

(Initialize control variables) 

SR-0222 D 



c 

CALL EVASGN (DATAOUT) 
CALL EVASGN (OUTDONE) 

C (Initialize a task control array) 
C 

C 
C 
C 

C 
C 
C 

100 
C 

OUTTCA(1)=2 
PR1TCA(l)=2 
PR2TCA(1)=2 

Start a task to write the output unit 

CALL TSKSTART (OUTTCA,OUTPUT) 

Enter main loop 

CONTINUE 

C Read unit of data (if end of data is reached, leave the loop) 
C 

C 
C 
C 
C 
C 
C 

C 
C 
C 

C 
C 
C 
C 
C 

C 
C 
C 

C 
C 
C 

C 

(read from input dataset to DATAFILE, END=1000) 

Perform preprocessing that cannot be multitasked 

Start two tasks, each processing 50% of the data 

CALL TSKSTART (PR1TCA,PROCESS,START1) 
CALL TSKSTART (PR2TCA,PROCESS,START2) 

Wait for the tasks to complete 

CALL TSKWAIT (PR1TCA) 
CALL TSKWAIT (PR2TCA) 

Perform postprocessing that cannot be multitasked 

Wait for the output task to finish previous 1/0 

CALL EVWAIT (OUTDONE) 
CALL EVCLEAR (OUTDONE) 

Signal the output task to write the next unit of data 

DATALOC = ... 
CALL EVPOST (DATAOUT) 

Perform next iteration of the loop 

GOTO 100 

1000 CONTINUE 

SR-0222 D 5-37 



C 
C 
C 

Wait for the output task to write previous unit of data 

CALL EVWAIT (OUTDONE) 
C 
C 
C 

Signal the output task that all data has been supplied 

C 

DATALOC = - 99999 
CALL EVPOST (DATAOUT) 

END 

5.6.7 OUTPUT TASK CODE 

The following task performs the output operations: 

C 

C 

C 
C 
C 
C 
C 

SUBROUTINE OUTPUT 

INTEGER DATAOUT,OUTDONE 
COMMON IEVENTS/DATAOUT,OUTDONE 

INTEGER DATALOC 
COMMON IOUTDATA/DATALOC 

Initialize control variables, open the dataset 

Begin main loop 

100 CONTINUE 
C 
C Signal ready condition 
C 

C 
C 
C 

C 
C 
C 
C 
C 

C 
1000 
C 

C 

5-38 

CALL EVPOST (OUTDONE) 

Wait for the initial task to supply data 

CALL EVWAIT (DATAOUT) 
IF (DATALOC .LT. 0) GOTO 1000 
CALL EVCLEAR (DATAOUT) 

Output data (based on DATALOC) 

Perform next iteration of loop 

GOTO 100 

CONTINUE 

RETURN 
END 

SR-0222 D 



5.6.8 PROCESSING TASK CODE 

The following task performs the actual data processing: 

C 

C 
C 
C 
C 
C 

SUBROUTINE PROCESS (IPTR) 

REAL DATAFILE (100000) 
COMMON IDATASET/DATAFILE 

RETURN 
END 

Initialize control variables 

Process data (based on IPTR) 

SR-0222 D 5-39 





6. PROGRAM ANALYSIS AND CONVERSION 

The job of analyzing and converting programs to be multitasked requires 
an understanding of the parallelism concepts presented in previous 
sections and a knowledge of the function and correct use of the 
multitasking library utilities. This section describes a procedure for 
finding parallelism in programs, analyzing the independence requirements, 
and finally writing the multi tasked code. 

The original program is assumed to be debugged and working correctly. 

6.1 CONDITIONAL MULTITASKING 

A powerful debugging technique that you should consider when analyzing a 
program is simply to set up the modified program so that the multitasking 
can easily be turned on or off. This technique is mentioned here because 
it is best implemented from the start rather than after you find errors. 
If unexpected results are produced, rerun the same code without 
multitasking to help identify whether or not the problem is related to 
multitasking. The alternative is to try to maintain the nonmultitasked 
(original) program, but this is often difficult. 

You might consider the following when implementing conditional 
multitasking with macrotasking: 

• Define a COMMON logical variable that is set with input or with a 
data statement. This variable controls multitasking, and calls to 
the multitasking library subroutines should be made only if this 
variable has a value of TRUE. 

• Set up a mechanism to base the partitioning of the data on the use 
of multitasking. If multitasking is turned off, for example, a 
task must process all of the data, not just a fraction of it. The 
program design dictates how this is best done. 

One of the advantages of microtasking is that you can accomplish this 
technique easily by bypassing PREMULT and going directly to the compile 
step. This approach does not require anything special within the source 
code. 

SR-0222 D 6-1 

------------- --------.-----------------------------------------------------



6.2 MOVING FROM STATIC TO STACK ENVIRONMENT 

The first step in converting a program for multitasking is to verify the 
correct execution of the program in a stack environment. Codes that ran 
in a static environment may not execute properly in a stack environment 
because of changes in handling local variables. 

In a static environment, the local variables in a program unit occupy 
fixed memory locations for the life of the program. This allocation 
allows these variables to be initialized at load time and permits their 
values to persist from one call of a subroutine to the next. While the 
ANSI Fortran standard calls for local variables to become undefined upon 
exiting the routine, many compilers (including all versions of CFT, if 
the BTREG option is not selected) allow this value retention across 
calls. Programs that rely on this feature are nonstandard. 

In a stack environment, the local variables of a program unit occupy 
memory locations on a stack. The location of the stack space for a 
program unit depends on when the routine was called during execution. 
The dynamic nature of the stack mechanism precludes the handling of local 
variables in the same way as in the static environment. Local variables 
cannot be initialized at load time because their location is not known 
until run time. Values cannot be carried from one call to the next, 
because the stack space for each call may reside in a different memory 
location. 

The following list describes some guidelines and situations you must be 
aware of when moving a program from a static to a stack environment. 

6-2 

• Local variables in a subroutine are not predefined, or they retain 
their values across repetitive calls. 

Example: 

SUBROUTINE WORK ( B 
INTEGER INIT 
IF( INIT.NE.O ) GO TO 10 
A = 0.0 

10 CONTINUE 
INIT = 1 
B = A 
RETURN 
END 

SR-0222 D 



The value of INIT is not initialized to any particular value and 
may not be zero on the first call to WORK. The value of INIT is 
not retained from one call to the next. Likewise, the value of A 
is not retained, and B may be assigned an arbitrary value on 
subsequent calls to WORK. Using the PRESET=INDEF directive with 
SEGLDR or the SET=INDEF option with LDR helps to identify static 
variables that were assumed to be initially defined as zero. The 
CFT INDEF option performs a similar function for stack variables. 
The CFT77 INDEF option performs a similar function for all local 
variables, static and stack. 

• Local variables in DATA statements are allocated static storage 
locations. Using DATA statements to initialize local variables 
causes the compiler to change the allocation of these variables 
from stack to static, allowing initialization to be done at load 
time. 

Example: 

SUBROUTINE X ( B ) 
LOGICAL FIRST 
DATA FIRST / .TRUE. / 
IF ( FIRST ) THEN 
FIRST = .FALSE. 
B = 1.0 
END IF 
B = 0.0 
RETURN 
END 

The variable FIRST is statically allocated in a stack compilation. 
This could cause a problem if several tasks test FIRST before any 
task changes it to FALSE. 

• Library and Cray Assembly Language (CAL) routines called from 
separate tasks must be reentrant. Most scientific library 
software is reentrant or protected by system semaphores; a notable 
exception is RANF(). 

Example: 

SR-0222 D 

SUBROUTINE TASK( A ) 
DIMENSION A(100) 
DO 10 I = 1, 100 

A ( I) = RANF ( ) 
10 CONTINUE 

RETURN 
END 

6-3 



6-4 

It cannot be guaranteed that each task will get a distinct set of 
random number values. 

• You must be attentive to passing local variables as arguments. 

Example: 

PROGRAM MAIN 
DO 10 I = 1, NCPUS-1 

CALL TSKSTART( ID(l,I), TASK, I, 3*I ) 
CALL SUB( 4*I ) 

10 CONTINUE 
STOP 
END 

The main program may change the value of local variable I before 
the tasks are able to read their arguments. The expression 3*I is 
evaluated into a temporary location whose address is passed to the 
tasks. This location may be reused in the evaluation of 4*I 
before the tasks are able to read their arguments. Passing 
arguments to TSKSTART has been responsible for a majority of 
previously encountered macrotasking bugs and should be avoided 
whenever possible. 

• Avoid conflicts with compiler memory optimizations. CFT and CFT77 
assume that variables not in COMMON blocks are unrelated to 
subroutines that do not contain the variable as an argument. Such 
variables need not be stored to memory before the call nor loaded 
from memory after the call, but rather they may be retained in a 
register. 

Example: 

SUBROUTINE TASK( I ) 
COMMON /LOCKS/LOCKI 
CALL LOCKON( LOCKI ) 
I = I + 2 
CALL LOCKOFF( LOCKI ) 
RETURN 
END 

Because the variable I is not in a COMMON block and not in the 
argument list of either LOCKON or LOCKOFF, the compiler feels free 
to maintain the value of I in a register and to schedule the 
loading and storing of I in memory independently of the calls to 
LOCKON and LOCKOFF. The code for references to I may look as 
follows: 

SR-0222 D 



regO = I 
CALL LOCKON( LOCKI ) 
regO = regO + 2 
CALL LOCKOFF( LOCKI ) 
I = regO 

load I from memory 

increment I in register 

store I to memory 

Because the assignment to I is outside the locked area, the result 
of this code is that the lock does not protect access to the 
variable I. It is recommended that shared variables be kept in 
COMMON blocks. 

6.3 THREE STEPS TO ANALYZING AND CONVERTING CODE FOR MULTITASKING 

The following three subsections describe the three steps in the CRI 
approach to converting serial code to multitasked code. This approach is 
oriented toward the macrotasking feature. For suggestions about 
microtasking, see section 4. 

The first step is analyzing and understanding the program flow to 
determine what portions of the code can be multitasked. Analyzing the 
program for data dependencies is the next step, and the final step is to 
write the code that converts the serial program to a multi tasked program. 

6.3.1 LOCATING POTENTIAL PARALLELISM 

The goal of the first step is to understand the program flow in order to 
locate portions of the program that have the potential to be 
multitasked. The potential exists if loops (potential DOALLs) exist, and 
if the granularity of work is sufficient to consider multitasking. 

The following stages constitute this step: 

1 

2 

SR-0222 D 

Process Required 

Identify the time-consuming program routines. You can make 
the greatest program performance improvement only if you 
multitask most of the work. Use the FLOWTRACE option or 
the Spy utility, and execute the resulting program on one 
CPU to determine which routines take the most execution 
time. 

Form a static calling tree to better understand the call 
relationships among the subroutines. Use the TREE=FULL 
option with the FTREF utility (see section 7, Debugging) to 
obtain a static calling tree listing. 

6-5 



3 

4 

5 

6 

Process Required 

Form a dynamic calling tree (using the output of FLOWTRACE 
or SPY) for those parts of the static calling tree 
containing the time-consuming subroutines. A dynamic 
calling tree shows the looping structures contained in and 
containing the time-consuming subroutines. CFT and CFT77 
produce tables describing statement labels that can aid in 
the location of DO and IF loops. 

Identify loops with sufficient work granularity to be 
considered for multitasking. The FLOWTRACE or Spy output 
is an aid to estimating the work size for loops containing 
calls to subroutines, and it may also help in estimating 
work granularity of loops within subroutines if you know 
the loop bounds. The minimum granularity that may be 
accepted depends on whether macrotasking or microtasking is 
used. (Microtasking is usually the better choice with 
small granularity.) 

Eliminate loops with obvious data or control dependencies 
that prohibit them from being multitasked. The outer 
time-step loop is an example in which results computed on 
one iteration are inputs for the next iteration. 

Choose the outermost loop of each nested set of loops that 
you are now considering for multitasking, and proceed to 
subsection 6.3.2, Verifying and Creating Independence. 
(The nested set of loops is one you have identified for 
further analysis; it may include calls to subroutines 
containing lower-level loop nests.) 

6.3.2 VERIFYING AND CREATING INDEPENDENCE 

The goal of the second step is to understand the use of variables 
referenced in each of the nested sets of loops identified in step 1. The 
purpose is to verify that computational, storage, and temporal 
independence are present or that the program can be modified to create 
the independence required for multitasking. 

The stages in understanding the use of variables are as follows: 

1 

6-6 

Process Required 

with the multitasking model in mind, identify the new scope 
boundary for the loop being considered for multitasking. 

SR-0222 D 



2 

3 

4 

5 

6 

7 

SR-0222 D 

Process Required 

Record all variables referenced within the new scope 
boundary. Use the CB=FULL option with the FTREF utility to 
analyze the use of COMMON block variables. 

Determine the computational independence of each variable 
by assessing its data independence for all control paths 
through the iterations. Ask the questions, "Is the 
variable produced by another iteration?" and, "Is the 
variable used by another iteration?" The answers to both 
must be "no," either now or after stage 5. 

Evaluate each variable for storage independence according 
to its multitasked use. Will the variable be shared (one 
copy) or private (one copy for each task)? Compare the 
scope of each variable with the new scope boundary 
introduced by multitasking. Take care to follow the spread 
of scope through COMMON and argument lists, and watch out 
for equivalences. 

Modify the old code with the new scope required for 
multitasking. Place shared variables in COMMON blocks if 
they are shared among tasks or in TASK COMMON blocks if 
they are local to a task. Remove private variables from 
COMMON blocks, being attentive to the ramifications these 
changes have on other parts of the code. Do the changes 
made for storage independence now create the computational 
independence required in stage 3? If not, return to stage 
3 and repeat; otherwise, continue to stage 6. 

Maintain determinism and temporal independence, recognizing 
the possible need to synchronize the tasks at the start and 
end of inner loops. Also note which variables require 
monitoring. 

Perform the preceding stages for each set of nested loops. 
If you find a dependence that cannot be removed, return to 
stage 1 in subsection 6.3.1, Locating Potential 
Parallelism, choose the DO loop at the next-lower level, 
and repeat the stages of this subsection. If independence 
is guaranteed, proceed to subsection 6.3.3, Writing 
Multitasked Code. 

6-7 

...... ~ ......... __ ...... _~ ____ • __ O< ••• _ ... _. ___________ • ______________________________________ _ 



6.3.3 WRITING MULTI TASKED CODE 

You have made most of the decisions concerning writing the multitasked 
code during the previous analysis steps, reorganizing the storage of 
variables according to their multitasked use. You can use the DOALL 
model (described in section 9, Advanced Macrotasking in Fortran) on each 
set of nested loops to form a task, or you can combine several sets into 
one larger task. Choose either static or dynamic partitioning of 
iterations and insert mechanisms for synchronization where necessary. 
Choose locks for, or guard, each critical region of code to be protected. 

The macrotasking examples presented in this manual and the previously 
outlined procedure employed a particular programming style. Work was 
statically partitioned into p components when converting programs for 
multitasking on p processors. Each component was intended to be 
executed simultaneously by a separate processor, and synchronization 
followed each partitioned segment of work. 

The microtasking examples presented employ a dynamic partitioning 
scheme. Work is organized so that tasks execute the next piece of work 
to be done and there is no reliance on any particular number of 
processors. 

These associations (macrotaskinglstatic and microtasking/dynamic) seem to 
be natural ones, but it is also possible to do dynamic partitioning with 
macrotasking or static partitioning with microtasking. You should use 
the partitioning technique and feature most appropriate to your 
application and with which you are most comfortable. 

A final inspection of the code should check to see that the multitasking 
mechanisms employed have been properly initialized, that event, lock, or 
barrier names or guard numbers are shared among the tasks that use them, 
and that all tasks will have completed at the job's end. Verify that the 
program's results will not be affected by actually having fewer tasks 
available than you might want. 

6.4 MULTITASKING 1/0 

The major concern throughout this manual is to multitask computations. 
For some applications, attention to 1/0 is at least as important as the 
speedup of computation. 

It is possible to multitask 1/0 on a limited basis. Different tasks can 
perform 1/0 on different files. 1/0 on the same file by different tasks 
is limited by the nondeterministic nature of task execution. Parts of 
the liD support library are critical regions that are protected from 
simultaneous access and thus limit the parallelism that you can exploit. 

6-8 SR-0222 D 



6.5 MINIMIZING MEMORY CONTENTION 

One factor influencing performance in a shared memory architecture is 
memory contention. Memory references made with the three computational 
ports of each processor may result in resource conflicts. These 
conflicts are resolved by having some references wait until the required 
resource becomes available. This waiting can cause a computation on a 
single CPU to take longer in a system with all processors busy than it 
would in an otherwise quiet environment. 

The user has control over the intensity of memory references as reflected 
in the programming style. The intensity of vector memory references can 
be measured in units of memory references per floating-point operation 
(memrefs/flop). The layout of the memory references across the 
interleaved memory banks is also important. 

Programming styles that reduce the memory contention increase performance 
both in uniprocessing and multitasking environments. The following is a 
list of program optimizations that reduce memory contention. As with any 
optimizations, the following are of value only until the compiler can do 
better in CAL than the user can in Fortran. 

1. VERTICAL INNER-LOOP UNROLLING 

C 

DO 10 J = 1, M 
DO 10 I = 1, 2*N 

10 A(I,J) = A(I,J) + B(I,J) 

DO 11 J = 1, M 

DO 11 I = 1, 2*N, 2 

MAXIMIZE CHIME OVERLAP 
NO REGISTER RESERVATION 

A(I ,J) A(I ,J) + B(I ,J) 
11 A(I+1,J) = A(I+1,J) + B(I+1,J) 

2. HORIZONTAL INNER-LOOP UNROLLING 

DO 20 J = 1, M 
DO 20 I = 1, 3 

20 A(J) = A(J) + B(I,J) 

3 MEMREFS I 1 FLOP 

DO 21 J = 1, M 5 MEMREFS I 3 FLOPS 
21 A(J) = A(J) + B(1,J) + B(2,J) + B(3,J) 

SR-0222 D 6-9 



3. VERTICAL OUTER-LOOP UNROLLING 

DO 30 J = 1, 3 4 MEMREFS / 2 FLOPS 
DO 30 I = 1, N 

30 A(I,J) = (A(I,J) + B(I,J» / C(I) 

DO 31 I = 1, N 10 MEMREFS / 6 FLOPS 
A(I,l) = (A(I,l) + B(I,l» / C(I) 
A(I,2) (A(I,2) + B(I,2» / C(I) 

31 A(I,3) (A(I,3) + B(I,3» / e(I) 

4. HORIZONTAL OUTER-LOOP UNROLLING 

DO 40 J = 1, 4*M+1 3 MEMREFS / 2 FLOPS 
DO 40 I = 1, N 

40 Y(I) = Y(I) + X(J) * M(I,J) 

DO 41 J = 1, 4*M+1, 4 
DO 41 I = 1, N 

41 Y(I) = Y(I) + X(J 
$ + X(J+1) 
$ + X(J+2) 
$ + X(J+3) 

5. DIMENSIONING OF ARRAYS 

DIMENSION X(64,100) 
DO 50 I = 1, 64 

DO 50 J = 1, 100 
50 X(I,J) = X(I,J) + 1.0 

DIMENSION X(65,100) 
DO 51 I = 1, 64 

DO 51 J = 1, 100 
51 X(I,J) = X(I,J) + 1.0 

6. LOOP INTERCHANGE 

DIMENSION X(64,64) 
DO 60 I = 1, 64 

DO 60 J = 1, 64 
60 X(I,J) = X(I,J) + 1.0 

DIMENSION X(64,64) 
DO 61 J = 1, 64 

DO 61 I = 1, 64 
61 X(I,J) = X(I,J) + 1.0 

6-10 

6 MEMREFS / 8 FLOPS 

* M(I,J 
* M(I,J+1) 
* M(I,J+2) 
* M(I,J+3) 

X(I,*) IN 1 BANK 

X(I,*) IN 64 BANKS 

X(I,*) IN 1 BANK 

X(*,J) IN 64 BANKS 

SR-0222 D 



7. PADDING BETWEEN COMMON BLOCK ARRAYS 

COMMON / Z / X(2,lOOO), Y(2,lOOO) 

DO 70 I = 1, 2 X(I,*) IN BANKS 0,2,4,6,8, ... 
Y(I,*) IN BANKS 0,2,4,6,8, ... 

DO 70 J = 1, 1000 
70 X(I,J) = Y(I,J) + 1.0 

COMMON / Z / 
DO 71 I 1, 2 

X(2,1000), DUMMY, Y(2,1000) 

DO 71 J = 1, 1000 
71 X{I,J) = Y(I,J) + 1.0 

SR-0222 0 

X(I,*) IN BANKS 0,2,4,6,8, ... 
Y{I,*} IN BANKS 1,3,5,7,9, •.. 

6-11 





7. DEBUGGING 

This section provides information on techniques and tools that can help 
you to debug your multitasked program. 

Like any other computer program, a multitasked application may fail for 
any of a number of reasons. Multitasking introduces two further 
complexities: 

• A new set of potential problem areas in timings and synchronization 
• Increased difficulty in analyzing and resolving any type of problem 

The following list includes a few of the reasons a multitasked program 
could fail: 

• Deadlock between tasks 

• Errors in arithmetic, coding, or algorithm unrelated to 
multitasking 

• Failure to protect critical regions 

• Failure to provide for local variables 

• Failure to consider the differences between stack and static local 
variables 

• Lack of synchronization between tasks 

• Violations of data dependence relationships 

7.1 FREQUENT ERRORS 

Use the following checklist to help avoid common errors when converting 
code to be multitasked. For microtasking, also review the rules 
described in subsection 4.5, Rules to Follow. 

1. Properly declare and initialize macrotasking mechanisms by doing 
the following: 

• Set the task identifier array to a size of 2 or 3, and 
declare it as an integer type. 

• Initialize the first element of the task identifier array. 

SR-0222 D 7-1 

-.--.... ~--.~------.-----------------------------------------------



• Declare subroutine tasks to be EXTERNAL. 

• Ensure that the argument list passed to TSKSTART does not 
contain expressions or local variables whose locations can 
be reused before they are accessed by the new task. 

• Ensure that all task control arrays are accessible to the 
tasks that use them. 

• Ensure that all event, lock, and barrier variables have been 
assigned before use and are accessible to tasks that use 
them. 

• Ensure that any necessary initialization of events is done. 

• Ensure that any necessary initialization of locks is done. 

2. Use macrotasking mechanisms correctly, checking the following 
items: 

• Ensure that every TSKSTART has a corresponding TSKWAIT. 

• Ensure that every EVPOST has a corresponding EVWAIT and 
EVCLEAR. 

• Ensure that every LOCKON has a corresponding LOCKOFF. 

• Ensure that all tasks do appropriate BARSYNC calls. 

3. Guarantee the independence of tasks and their data by doing the 
following: 

• Ensure that tasks do not rely on quantities computed in 
other tasks, except between synchronization points. 

• Ensure that tasks compute variables stored in separate 
storage locations, except for monitored variables. 

• Use sychronization points when the order of execution of 
tasks is important; otherwise, ensure that the execution 
order of tasks is immaterial. 

4. Handle Fortran local variables properly. 

• Ensure that subroutines do not expect the value of a local 
variable to be preserved between calls. 

• Ensure that subroutines do not expect a local variable to 
begin with a particular value (especially zero). 

7-2 SR-0222 D 



• Ensure that local variables are not used as arguments in 
TSKSTART calls, because the lifetime of the task being 
started might exceed the lifetime of the local variable. 

• Ensure that expressions are not used as arguments in 
TSKSTART calls, because their storage may be reused by the 
compiled code before the task being started can access the 
values in the expression. 

• Heed warnings about static allocation of variables in DATA 
statements, and make code changes if the variables need to 
be allocated on the stack. 

5. Ensure that all of the software is reentrant or locked. 

• Specify ALLOC=STACK in the CFT or CFT77 control statement. 

• Use the multitasked version of the default system text 
($SYSTXT in COS, asdef in UNICOS) when CAL code is 
assembled. 

• Access the multi tasked versions of all necessary run-time 
libraries at load time. The COS libraries are $ARLIB, 
$FTLIB, $IOLIB, $SCILIB, $SYSLIB, and $UTLIB. The UNICOS 
libraries are libm, libf, libio, libsci, and libu. 

7.2 PERFORMANCE ERRORS 

The performance speedup of a multi tasked program may sometimes be less 
than expected. Several causes are possible, including the following: 

1. Only a small fraction of the single-processor execution time was 
multitasked. Although the program was running on a system with 
multiple processors, the program did not make significant use of 
these resources. Multitasking is an optimization that produces 
performance speedup only to the code to which it is applied. See 
subsection 2.12, Amdahl's Law and Theoretical Speedup. ACTION: 
Convert more of the program to be multitasked. 

2. The multitasking overhead was too large for the granularity of 
parallelism exploited. The added code for multitasking and 
synchronization delays slowed the program down more than the 
parallel execution speeded it up. 
ACTION: Increase the granularity by multitasking outermost 
loops, use microtasking for this code, or use multitasked CAL 
code to decrease the overhead. 

SR-0222 D 7-3 



3. Multitasking was employed at the expense of vectorization. 
Partitioning an inner vectorizable loop into tasks for 
multitasking may shorten the original vector length. The speedup 
from multitasking was less than the slowdown caused by reduced 
vector length. 
ACTION: Multitask outer loops and vectorize inner loops, or see 
the variants for microtasking's DO GLOBAL directive (described in 
subsection 4.3.7). 

4. The workload for all processors was not balanced. The 
distribution of work among the processors was not shared equally, 
causing some processors to wait unproductively for others to 
finish. 
ACTION: Use dynamic work balancing (see section 3, Multitasking 
Basics). 

5. The library routine TSKTUNE was used incorrectly. Setting 
'MAXCPU' to a value less than the number of physical processors 
limits the resources available to the program. Setting 
'DBRELEAS' to a value less than the number of physical processors 
minus 1 may cause excessive overhead in allocating and 
deallocating processors to the program. A small value of 
'HOLDTIME' has a similar effect. A large value of 'SAMPLE' 
prevents the the multitasking library from taking immediate 
action when a task becomes ready. 
ACTION: Choose the appropriate values for the TSKTUNE arguments, 
or use the default values. 

7.3 COS TASKS VERSUS USER TASKS 

When looking at job output from a multitasked job, do not be confused by 
COS uses of the term task. Appendix F, Design Description, introduces 
the concept of the logical CPU. The references in COS-related output to 
task refer to a logical CPU and not to the task or tasks created by the 
user. The number of COS tasks may be equal to the number of user tasks, 
but the user tasks may have been assigned over time to one, several, or 
all of the COS tasks. 

Output such as the following may lead to this confusion: 

• CHARGES. If multiple COS tasks are created during the lifetime of 
a user job, CHARGES generates time executing in CPU, time waiting 
for CPU, and time waiting for IIO values for each task and for the 
total job. 

• DUMP. If multiple COS tasks are active when a DUMPJOB is 
executed, the DUMP output shows an Exchange Package for each task, 
starting with the task in execution when the DUMPJOB was executed. 

7-4 SR-0222 D 



• DEBUG. If multiple COS tasks are active when a DUMPJOB executes, 
DEBUG traces back through each library task that was executing, 
starting with the task in execution when the DUMPJOB executed. 
Library tasks not assigned to COS tasks at the time DUMPJOB 
executes are not reported by default, but they are reported when 
the TASKS option is used (see the subsection on DEBUG later in 
this section). 

7.4 CONDITIONAL MULTITASKING 

Section 6, Program Analysis and Conversion, describes a technique that 
allows a multitasked program to be easily run in a nonmultitasked mode. 
You can isolate some types of multitasking errors this way. With 
microtasking, specify 1 on the CMIC$ GETCPUS directive to run in 
nonmultitasked mode. 

7.5 ELIMINATING OPERATING SYSTEM MULTITASKING 

A multitasked program can be run in a single-tasked mode. You accomplish 
this by using the multitasking tuning call TSKTUNE (see appendix F, 
Design Description) to set the maximum number of logical CPUs to one. 
The library scheduler continues to execute and processes multiple tasks, 
but only one task is known to the operating system. 

In effect, this leads to tasks being executed largely in sequential 
order, with task switches only occurring when the executing task becomes 
blocked. The sequence of task execution is reproducible from run to 
run. This procedure can help with the following types of problems: 

• Problems not related to multitasking. The problem should still 
occur but with less complexity surrounding the issue. 

• Synchronization problems caused when two tasks simultaneously 
enter critical regions. Eliminating COS multitasking partially 
remedies this problem. 

7.6 F~REF - FORTRAN CROSS-REFERENCE 

FTREF is a general Fortran analysis tool described in the COS Performance 
Utilities Reference Manual and in the UNICOS Performance Utilities 
Reference Manual. It processes the listing from a CFT77 or CFT program 
and produces the following outputs: 

SR-0222 D 7-5 



• For each COMMON block, the name of each module that uses it. 

• For each COMMON block, a detailed cross-reference, by variable, of 
the module and the lines that reference it. 

• For each module, information on its entry points, which modules it 
calls, which modules call it, and COMMON blocks it uses. 

• A static calling tree, displaying module calls in a graphic manner 
through the use of indentation. The tree can be started at any 
point, allowing for the display of specific subtrees. The tree 
can be stopped at any routine; also, a tree or subtree of a 
specific depth can be requested. 

• Information on uses of the major macrotasking routines. For 
locks, events, and barriers,t these are ordered by the name of 
the lock or event variable. For task calls, these are presented 
in source order. 

• Information about whether COMMON variables are locked when they 
are referenced or redefined. 

• Information about whether nonreentrant subroutine calls are locked. 

FTREF is of particular value for multitasking analysis because it can 
collect and consolidate information on global variables and their use by 
the subroutines within a Fortran application. 

The CHKBLK and CHKMOD directives are also useful during the conversion 
process. CHKBLK detects whether COMMON variables are protected when 
referenced or redefined. CHKMOD detects whether calls to nonreentrant 
routines are locked. 

The following example shows some of the listing options specific to 
multitasking. The first three listings result from the MULTI control 
statement parameter and show calls to the major multitasking routines. 
The fourth listing is output by the CHKBLK directive, which has 
referenced BLK3, BLK4, and BLKS. The listing indicates which references 
appear to be locked and which are unlocked. Some potential error 
conditions are flagged by special characters, as noted in the following 
example. The final listing is output by the CHKMOD directive, which 
references a routine called NONREENT. FTREF lists all calls to the 
routine and also includes information about whether the calls are locked. 

t Barrier support in FTREF is deferred. 

7-6 SR-0222 D 



TSKSTART 

MODULE STMT. * EXTERNAL 

MAINPRG 
MAINPRG 
MAINPRG 

LOCK 
VARIABLE 

LKI 

LK2 

8 
9 

10 

LOCKASGN 

SUB 1 
SUBI 
SUB 1 

MODULE STMT. * 
MAINPRG 13 

EVASGN 

SUMMARY OF TASK ROUTINE USAGE 

TSKlIAIT TSKTUNE 
MODULE STMT •• MODULE STMT •• 

MAINPRG 

LOCKON 
MODULE STMT •• 

MAINPRG 
MAINPRG 
SUBROUT 

SUBROUT 

17 
31 
10 

16 

29 MAINPRG 

SUMMARY OF LOCK USAGE 

LOCKOFF 
MODULE STMT. II 

MAINPRG 
SUBROUT 

SUBROUT 

22 
14 

20 

SUMMARY OF EVENT USAGE 

BVPOST I!VWAIT 

14 

LOCKREL 
MODULE STMT •• 

none 

none 

EVCLBAR EVENT 
VARIABLE MODULE STMT .11 MODULE STMT •• MODULE STMT.' MODULE STMT •• 

EVI MAINPRG 11 MAINPRG 15 MAINPRG 18 
MAINPRG 23 MAINPRG 25 
SUBROUT 6 SUBROUT 13 

EV2 MAINPRG 12 SUBROUT 15 SUBROUT 22 

EV3 ASUB2 SUBROUT 23 SUBROUT 25 
ASUB2 5 

EV4 none none SUBROUT 19 

III * ••••••••• * .111:"'.* * ••••• * **'IIlI* ••••••• _ •• _. 

LOCKED VARIABLES CROSG REFERENCE 

•••• "" ••••••••••••••• _ •• * ••• *'111 ••• * ••• 111:*111: * 

BLOCK NAME 

BLK3 

ADDRESS NAME MODULE 

o DATA4A MAINPRG 

o DATA4A SUBROUT 

1 DATA4B MAINPRG 

BLK4 

LOCKED 
UNLOCKED 

LOCKED 
UNLOCKED 

LOCKED 
UNLOCKED 

ADDRESS NAME MODULE 

1 DATA5B MAINPRG LOCKED 

BLK5 

ADDRESS NAME MODULE 

* ••• No references .*'111111: 

Note store but not locked 
$ LOCKON never LOCKOFF 
P used as a parameter 

SOURCE PROORAM REFERENCE 

32$ 
26* 
17 
21* 

32$ 
26 

19 

SOURCE PROORAM REFERENCE 

20 

SOURCE PROORAM REFERENCE 

* ••••• * ••••• 1Ir ••••••••• _. *_ 111*.111: ••• * •••••• 

LOCKED EXTERNALS CROSS REFERENCE 

• * •• *. * 111: •• ****1It1ll:** *.111: ••• *._ •...• ".1Ir*1It _ •• 

NONREENT CALLED BY SOURCE PROORAM REFERENCB 

SR-0222 D 

MAINPRG LOCKED 21 
SUBROUT LOCKED 11 

UNLOCKED 

Note store but not locked 
LOCKON never LOCKOFF 

P used as a parameter 

MAINPRG 16 
MAINPRG 24 
SUBROUT 8 

none 

SUBROUT 24 
ASUB2 4 

BLOCKS LOCKBD 

BLK3 BLK4 BLK5 

BLK4 

BVRBL 
MODULB STMT •• 

MAINPRG 30 

none 

1667 

7 -7 



7.7 FLOWTRACE 

The FLOWTRACE package, described in the COS Performance Utilities 
Reference Manual is useful when analyzing programs for multitasking (see 
section 6, Program Analysis and Conversion). 

COS 1.17 is the first operating system to support multitasking flowtrace, 
in which times are accumulated for each subprogram within each task. If 
a subprogram MSUB is called by n distinct tasks, it has n distinct 
entries in the final report. At present, UNICOS does not support 
multitasking flowtrace. 

7.8 Spyt 

The SPY utility provides functionality similar to that of FLOWTRACE. On 
a nonmultitasked program, Spy provides information on heavily used 
subroutines (including library routines) and on code sections within 
subroutines. 

Spy can also be used with a multitasked program. The usage results apply 
to the program as a whole and not on a task-by-task basis. For example, 
if one routine accounts for 50% of the program's execution time before 
multitasking, Spy shows 50% for the same routine in the multitasked 
version. 

7.9 INTERPRETING TRACEBACKS 

If a multitasked job aborts, the traceback reflects the last entry into 
the multitasking package. The following example demonstrates such a 
traceback: 

AR004 - BAD SCALAR ARGUMENT TO ARLIB MATH ROUTINE 
TB001 - BEGINNING OF TRACEBACK 

- $TRBK WAS CALLED BY ARERp% AT 24771b 
- ARERp°'b WAS CALLED BY SQRTo,.o AT 25425d 
- SQRTo,.o WAS CALLED BY MTASK2 AT 455d 
- MTASK2 WAS CALLED BY TSKSTART AT 24215d 
- TSKSTART WAS CALLED BY MTASK1 AT 313b 

TB002 - END OF TRACEBACK 

If a stack overflow occurs on entry to a routine, $STKUFEX appears in the 
traceback before the call of the routine. 

t Deferred UNICOS implementation 

7-8 SR-0222 D 



7.10 DEADLOCK DETECTION 

The library scheduler detects software deadlock. If one or more tasks 
exist but all are queued for events, locks, or tasks, the library 
scheduler recognizes the condition and aborts. The library scheduler 
writes an error message to the log file and also writes a message and 
report of the status of each existing task to the standard output file. 
The library scheduler does not recognize whether a subset of all tasks is 
deadlocked, so the messages may not be generated until long after the 
deadlock situation arises. 

7.11 DEBUG 

DEBUG is a symbolic dump utility described in the Symbolic Debugging 
Package Reference Manual. DEBUG traces back through all tasks that were 
executing when the dump dataset was written or, if the TASKS option is 
used, through all existing tasks. A summary of the status of each 
existing task is written at the beginning of the DEBUG output. 

DEBUG also reports heap and stack statisticst that can be used to tune 
initial sizes and increments of the heap and stack. These statistics are 
only useful, however, when the sizes used are smaller than the optimum 
values, because they reflect the actual sizes of the heap and stack 
rather the amount of much memory needed. 

7.11.1 DEBUG INVOCATION STATEMENT 

JOB,JN=DBG,T=15. 
ACCOUNT,AC= ,US= 
multi. 
cft,debug,alloc=stack. 
segldr. 
copyd,i=$debug,o=syms. 
rewind,dn=syms. 
$abd. 
EXIT. 
DUMPJOB. 
DEBUG,blocks,s=syms. 
IEOF 

,UPW= 

t Deferred UNICOS implementation 

SR-0222 D 7-9 



7.11.2 MULTITASKED FORTRAN PROGRAM 

program test 
common /blk/ itsk(3,4},array(16},imem(4},ilock 
data array/1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1/ 
external prt 
call tsktune( 'MAXCPU',4} 
call lockasgn(ilock} 
do 10 i = 1,4 
itsk(1,i} = 3 
itsk(3,i} = i 
imem(i} = i 
call tskstart(itsk(1,i},prt,imem(i}} 
call lockon(ilock} 

10 continue 
call tskwait(itsk(1,1}} 
call tskwait(itsk(1,2}} 
call tskwait(itsk(1,3}} 
call tskwait(itsk(1,4}} 
isum = imem(1)+imem(2)+imem(3}+imem(4) 
print *, isum 
end 
subroutine prt(id} 
common /blk/ itsk(3,4},array(16},imem(4},ilock 
isum = 0 
if (id.eq.2) call abort 
do 12 i = 1,4 
isum = isum + array«id-1}*4+i) 

12 continue 
imem(id) = isum 
return 
end 

7.11.3 DEBUG LISTING 

PAGE 1 DEBUG 2.2 
******* START OF SYMBOLIC DUMP ******* 

STATUS OF EXISTING TASKS 

Internal 
task id User defined task value Task status 

3 0000000000000000000002 running on logical cpu 2 

1 0000000000000000000000 waiting for lock 00000053502 
ILOCK in BLK 

7-10 

~ Tasks 
waiting 

o 

o 

SR-0222 D 



TASK STATISTICS 

Existing tasks 
Total tasks 
Most tasks at once 
Logical CPUs acquired 
Logical CPUs active 

STACK STATISTICS 

Total stacks 
Stacks with overflow 
Avg. no of overflows 
Greatest stack size 
Smallest stack size 
Average stack size 
Initial stack size 

HEAP STATISTICS 

Current Heap Length 
Words allocated 
High water mark 
Low water mark 
Allocated blocks 
Total Allocations 
Heap Expansions 
Heap Contractions 
Initial heap size 
Heap increment size 

2 

3 
3 

2 
1 

3 
0 

0.00 
2048 
2048 
2048 
2048 

6766 
4492 
6766 
2272 

2 
3 
2 
0 

2272 
2048 

(10) 000000004000 ( 8 ) words 
(10) 000000004000 ( 8 ) words 
(10) 000000004000 ( 8 ) words 
(10) 000000004000 ( 8 ) words 

(10) 000000015156 ( 8 ) words 
(10) 000000010614 ( 8 ) 
(10) 000000015156 ( 8 ) words 
(10) 000000004340 ( 8 ) words 

(10) 000000004340 ( 8 ) words 
(10) 000000004000 ( 8 ) words 

MULTITASKING HISTORY TRACE BUFFER 

SR-0222 D 

Time Task Action 

588405 
488142 
487819 
487290 
487029 
486453 
485915 
485088 
481460 
480550 
477865 
477317 
476832 

9151 
8891 

1 
1 
3 
1 
1 
3 

2 
2 
1 
1 

1 

suspend logical cpu 
spin-wait logical cpu 
detach from logical cpu 
begin wait to set lock 
attach to logical cpu 
attach to logical cpu 
detach from logical cpu 
start task 
complete task 
attach to logical cpu 
set lock, no wait 
attach to logical cpu 
acquire logical cpu 
request logical cpu 
detach from logical cpu 

Action-dependent data 

1 
1 
1 

ILOCK 
2 
1 
2 

in BLK 

0000000000000000000002 
0000000000000000000001 

1 
ILOCK 

2 
2 

o 

in BLK 

7-11 



Time Task Action Action-dependent data 

8045 
1042 

o 

2 
1 
1 

start task 
assign lock 
start task 

0000000000000000000001 
ILOCK in BLK 
0000000000000000000000 

Key to Trace Buffer Display : 

TIME is the difference between the real time clock, 
and the program starting time. 

TASK is the unique internal task number assigned by 
the TSKSTART routine. 

If ACTION involves: 

start task 
complete task 
TSKWAIT 
lock 
event 
logical CPU 

Then ACTION DEPENDENT DATA is: 

user-defined task value 
user-defined task value 
internal ID of awaited task 
lock address 
event address 
logical CPU number 

STATUS OF JOB DATASETS 

Dataset Alias Last Dataset 
Name Names Status Operation Type 

------- ------ --------- -------
$DEBUG Open for i/o - At EOF Read COS Blocked 
$ABD Open for input - At EOR Read COS Blocked 
SYMS Open for i/o Read COS Blocked 
$SCILIB Open for i/o - At EOF Read COS Blocked 
$PSCLIB Open for i/o - At EOF Read COS Blocked 
$IN Open for i/o - At EOF Read COS Blocked 

FT05 
$OUT Open for i/o - At EOF Write COS Blocked 

FT06 

DISPLAYING TASK 3 

Sequential 
Sequential 
Sequential 
Sequential 
Sequential 
Sequential 

Sequential 

The Symbolic Debug Routine was entered when your program stopped in routine 
ABORT with P address 000000011170a 

No symbol table was found for this routine 

Routine ABORT was called by PRT at address 000000000350a,line number 4 

7 -12 SR-0222 D 



Displaying variables for Routine PRT 

D ID 2 2b 
I SUM 0 Ob 
I 0 Ob 

Displaying variables for Block BLK 

ILOCK -9223275417270462496 1000002576000000053740 

ITSK Array ( 3,4 ) of Integer 
Value i = 1 to 3 ( i, 1, 0, 0, 0, 0, 
i= 1 3 2 1 
Value i = 1 to 3 ( i, 2, 0, 0, 0, 0, 
i= 1 3 3 2 
Value i 1 to 3 ( i, 3, 0, 0, 0, 0, 
i= 1 0 0 0 
Value i = 1 to 3 ( i, 4, 0, 0, 0, 0, 
i= 1 0 0 0 

ARRAY Array ( 16 ) of Real 
Value i 1 to 16 ( i, 0, 0, 0, 0, 0, 
i= 1 1.00000000000 1.00000000000 1.00000000000 
i= 4 1.00000000000 1.00000000000 1.00000000000 
i= 7 1.00000000000 1.00000000000 1.00000000000 
i= 10 1.00000000000 1.00000000000 1.00000000000 
i= 13 1.00000000000 1.00000000000 1.00000000000 
i= 16 1.00000000000 

IMEM Array 4 ) of Integer 
Value i 1 to 4 ( i, 0, 0, 0, 0, 0, 
i= 1 4 2 
i= 4 0 

Routine PRT was called by TSKSTART at address 000000031616c,line number 11 

No symbol table was found for this routine 

Routine TSKSTART was called by TEST at address 000000032047d,line number 11 

Displaying variables for Routine TEST 

I 
I SUM 

2 
o 

***** END OF SYMBOLIC DUMP ***** 

SR-0222 D 

2b 
Ob 

7-13 

0) 

0) 

0) 

0) 

0) 

0) 
0 



7.12 LIBRARY DEBUG ROUTINES 

Routines DUMP, PDUMP, and CRAYDUMP are all reentrant, but you should put 
locks around calls to these routines if they use the same datasets in 
different tasks so that the output from different tasks is not 
interspersed. 

Routines TRBK, SNAP, and DUMPJOB are not locked and are not reentrant. 
If one of these routines is called from more than one task, locks should 
be placed around the calls. 

7-14 SR-0222 D 



8. MULTITASKING HISTORY TRACE BUFFER 

The multitasking history trace buffer is a circular buffer in user memory 
that maintains a log of the actions taken by the multitasking library 
routines. Access to this buffer is through calls to library routines or 
through DEBUG after the program terminates. This buffer, each time it is 
full, may be dumped to a dataset specified in a call to subroutine 
BUFTUNE. The MTDUMP program can examine this unformatted dump of the 
buffer and display all of it in any of several possible formats, or it 
can search the dataset for specific entries. The buffer is large enough 
to record 1000 actions. 

8.1 DEBUG DISPLAY 

After a job completes execution, either normally or through an abort, 
DEBUG writes a formatted display of the contents of the multitasking 
history trace buffer left in memory. The MTBUF control statement 
parameter can specify the number of entries to display, beginning with 
the most recent and working backward. By default, as many entries as 
will fit on a single page of the DEBUG listing are displayed. Using 
MTBUF without a value lists all entries in the buffer. When MTBUF is 
used with a value, the number of entries printed will be equal to or less 
than the value, depending on the number of entries in the buffer. 

Example of the Job Control Language (JCL) that uses DEBUG: 

* 
MULTI. 
CFT,L=O,ALLOC=STACK. 
SEGLDR. 
$ABD. 
DUMPJOB. 
* Print last 15 entries from the multitasking history trace buffer. 
DEBUG,TRACE=0,MTBUF=15. 
EXIT. 
DUMPJOB. 
* If the job aborts, then print all entries in the buffer. 
DEBUG,TRACE=O,MTBUF. 

SR-0222 D 8-1 



8.2 USER-LEVEL ROUTINES 

The user-level routines for the multitasking history trace buffer can be 
called from a user program to control what is recorded in the buffer and 
to dump the contents of the buffer to a dataset. 

8.2.1 BUFTUNE: SELECT ACTIONS TO BE RECORDED 

BUFTUNE modifies the parameters that control which multitasking actions 
are recorded in the multitasking history trace buffer. You can call it 
any number of times. If it is not called, or before it is called for the 
first time, default parameter values are used. 

Before BUFTUNE is called, all actions involving tasks, locks, events, 
logical CPUs, and users are recorded except for actions involving the 
Fortran 1/0 lock, which are ignored. A call to BUFTUNE specifying the 
TASKS, LOCKS, EVENTS, CPUS, or USERS keyword affects only the actions 
associated with that keyword. The ACTIONS option overrides what has been 
requested through TASKS, LOCKS, EVENTS, CPUS, and USERS. 

Call from Fortran: 

CALL BUFTUNE(keyword,value[,string]) 

keyword 

value 

string 

ASCII string, left-justified and blank-filled 

Either an integer or an ASCII string (left-justified and 
blank-filled), depending on the keyword 

A 24-character string (left-justified and blank-filled) 
used only with the keyword INFO 

The valid keywords and their associated functions and meanings are as 
follows: 

Keyword 

DN 

8-2 

Meaning 

The value of the DN keyword is the dataset specified to 
receive a dump of the multitasking history trace buffer. 
DN itself directs this dump of the buffer to the 
dataset. If you call BUFTUNE without the DN parameter, 
the multitasking history trace buffer is not dumped to 
any dataset. 

SR-0222 D 



Keyword 

FLUSH 

ACTIONS 

SR-0222 D 

Meaning 

Integer specifying the minimum number of unused entries 
allowed in the multitasking history trace buffer. When 
the number of unused entries falls below this level, the 
buffer is automatically flushed; that is, it is written 
to the dataset specified with the DN option. If DN is 
specified, the default FLUSH value is 40. 

Value is a 128-element integer array with a flag for each 
action that can be recorded in the multitasking history 
tra~e buffer. If the array element corresponding to a 
particular action is nonzero, that action is recorded; if 
the array element is zero, the action is ignored. The 
array indices (action codes) corresponding to each action 
are as follows: 

Action Code 

1 
2 
3 
4 
5 
6 

7 
8 
9 

10 
11 
12 
13 

14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24, 25 

Action 

Start a task 
Complete a task 
Call to TSKWAIT, no wait 
Begin wait for task 
Run after waiting for task 
Test task 

Assign lock 
Release lock 
Set lock 
Begin wait to set lock 
Run after waiting for lock 
Clear lock 
Test lock 

Assign event 
Release event 
Post event 
Clear event 
Call EVWAIT, no wait 
Begin wait for event 
Run after wait for event 
Test event 
Attach to logical CPU 
Detach from logical CPU 
Request a logical CPU 

8-3 



Keyword Meaning 

ACTIONS 
(continued) 

Action Code Action 

INFO 

TASKS 

LOCKS 

26 Acquire a logical CPU 
27, 28 Delete a logical CPU 
29, 30 Suspend a logical CPU 
31, 32 Activate a logical CPU 
33 Begin spin-wait for a logical CPU 
34 Assign barrier 
35 Release barrier 
36 Call BARSYNC, no wait 
37 Begin wait at barrier 
38 Run after wait for barriert 
39 - 64 (Reserved for future use) 
65 - 128 (Reserved for user access; see BUFUSER 

subroutine.) 

The value for this parameter is the integer user action 
code (65 through 128). 

If 

string This is an extra parameter available with the 
INFO keyword. The string for this parameter is a 
24-character information string, unique to each 
action, entered by the user and printed for each 
user action code that is dumped. 

BUFUSER lets you add entries to the multitasking 
history trace buffer. When the multitasking 
history trace buffer is dumped using DEBUG, 
BUFPRINT, or MTDUMP, this 24-character 
information string is dumped along with each 
action. This information must be available early 
in the program so that the strings can be written 
to the dump dataset for processing by MTDUMP. 
The INFO keyword does not turn these actions on 
to be recorded. They are normally on by default, 
but if previously turned off by the user, they 
may be reactivated with the ACTIONS or USERS 
keyword in a BUFTUNE call. 

value='ON'H, the actions with numbers 1 through 6 are 
recorded; if value='OFF'H, those actions are ignored. 
The default is 'ON'H. 

If value='ON'H, the actions with numbers 7 through 13 are 
recorded; if value='OFF'H, those actions are ignored. 
The default is 'ON'H. 

t Deferred implementation 

8-4 SR-0222 D 



Keyword 

EVENTS 

CPUS 

USERS 

FIOLK 

Meaning 

If value='ON'H, the actions with numbers 14 through 21 
are recorded; if value='OFF'H, those actions are 
ignored. The default is 'ON'H. 

If value='ON'H, the actions with numbers 22 through 33 
are recorded; if value='OFF'H, those actions are 
ignored. The default is 'ON'H. 

If value='ON'H, the actions with numbers 65 through 128 
are recorded; if value='OFF'H, those actions are 
ignored. The default is 'ON'H. 

If value='ON'H, actions affecting the Fortran 1/0 lock 
are recorded; if value='OFF'H, they are ignored. This 
lock is used by library routines that handle Fortran reads 
and writes. The default is 'OFF'H. 

The following BUFTUNE examples dump actions 1 through 6 to the dataset 
DMPFILE, which is the same as the function that TASKS performs. 

* Turn on task actions, turn everything else off 
INTEGER ACTION(128) 
DATA ACTION/6*1,122*OI 
CALL BUFTUNE( 'DN'H, 'DMPFILE'H) 
CALL BUFTUNE( 'ACTIONS'H,ACTION) 

or 

* Turn on task actions, turn everything else off 
CALL BUFTUNE( 'DN'H, 'DMPFILE'H) 
CALL BUFTUNE( 'TASKS'H, 'ON'H) 
CALL BUFTUNE( 'LOCKS'H, 'OFF'H) 
CALL BUFTUNE('EVENTS'H, 'OFF'H) 
CALL BUFTUNE( 'CPUS'H, 'OFF'H) 

8.2.2 BUFPRINT: FORMATTED DUMP OF TRACE 

BUFPRINT writes a formatted dump of the contents of the multitasking 
history trace buffer to a specified dataset. Actions are reported in 
chronological order. 

Call from Fortran: 

CALL BUFPRINT(empty[,dn]) 

SR-0222 D 

,,~---.- ... -----.. ---------------

8-5 



empty 

dn 

Set this integer flag to zero if you want the contents of 
the buffer to be left unchanged or nonzero if the buffer is 
to be emptied (zeroed out) after its contents are printed 

Name of the dataset to which a formatted dump of the 
contents of the multitasking history trace buffer is to be 
written. If none is specified, $OUT is used. 

The following example of BUFPRINT zeroes out the buffer after its 
contents are written to $OUT: 

IEMPTY = 1 
CALL BUFPRINT(IEMPTY) 

8.2.3 BUFDUMP: UNFORMATTED DUMP OF TRACE 

BUFDUMP writes an unformatted dump of the multitasking history ~race 
buffer to a specified dataset. MTDUMP can later use this dataset to 
provide formatted output of the dataset's contents or to let you examine 
the dataset. BUFDUMP adds a special entry if the buffer has overflowed, 
losing some entries. 

Call from Fortran: 

CALL BUFDUMP(empty,dn) 

empty 

dn 

Set this integer flag to zero if you want the contents of 
the buffer to be left unchanged or to nonzero if the buffer 
is to be emptied (zeroed out) after its contents are 
printed 

Name of the dataset to which an unformatted dump of the 
contents of the multitasking history trace buffer is 
written. To use the default dataset passed to BUFTUNE, a 
zero must be entered, but if no dataset is specified 
through BUFTUNE, the BUFDUMP call is ignored. 

8.2.4 BUFUSER: ADD USER ENTRIES TO TRACE 

BUFUSER lets you add entries to the multitasking history trace buffer. 

8-6 SR-0222 D 



Call from Fortran: 

CALL BUFUSER(action,data) 

action 

data 

SR-0222 D 

A numerical code that determines the action to be recorded 
in the buffer. The action codes 65 through 128 are 
reserved for this. The codes and their associated actions 
follow: 

1 - 64 

65 - 128 

>128 

You cannot add entries with these action 
codes; the program is aborted. 

This action code is compared to the action 
codes specified in BUFTUNE, either 
explicitly by the user or turned on by 
default, and if the action code appears in 
the BUFTUNE call, or is on by default, the 
corresponding entry is added to the 
multitasking history trace buffer. If the 
action code does not appear in the BUFTUNE 
call, this action/entry is ignored. 

If a string is provided (see BUFTUNE), it 
is dumped into the action field of the 
output for this entry. If no string is 
provided, the (decimal) action code is 
dumped into the action field. In either 
case, the data is written in octal (and 
ASCII, if it is a legal character) to the 
action-dependent data field of the output. 

The action code and data are added 
unconditionally (regardless of any BUFTUNE 
parameters) to the action code and 
action-dependent data fields of the 
output. They are both dumped in octal 
form (and in ASCII if it is a legal 
character). 

The only restriction on this value is that it be a single 
machine word. If it is a string, it must be 
left-justified, blank-filled, and less than 9 characters 
in length. It is dumped to the output in octal (and 
ASCII, if it is a legal character). 

8-7 



8.2.5 MTDUMP: EXAMINE TRACE DATASET 

MTDUMP is a tool that examines an unformatted dump of the multitasking 
history trace buffer, which has been written to a dataset specified by a 
call to BUFTUNE with the DN keyword. MTDUMP lets you display the 
multitasking events in any of several useful formats. 

The multitasking history trace buffer is dumped by calling BUFDUMP at any 
point in execution, or, if BUFDUMP is never called, the dump occurs 
automatically upon completion of the program. This automatic dump occurs 
only if BUFTUNE has been previously called with the DN keyword specifying 
a dataset to which to dump. If a dataset has not been specified, no dump 
is made and the only means of accessing the multitasking history trace 
buffer is through the DEBUG routine. 

If BUFDUMP is not called during execution and the program aborts rather 
than running to completion, the dump of the multitasking history trace 
buffer does not occur and DEBUG has to be used to dump it (see subsection 
8.1, DEBUG Display). 

8.2.5.1 COS format 

The MTDUMP control statement under COS is as follows. In the following 
format, braces indicate optional parameters that may have one or more 
occurrences. 

Format: 

8-8 

MTDUMP,DN=dn,L=ldn,FORMAT=f{:f},INTERVAL=int,TASK=t{:t}, 

DATA=d{:d},ACTION=a{:a},TASKS,LOCKS,EVENTS,CPUS,USERS. 

DN=dn 

L=ldn 

Dataset name; name of the dataset containing the 
unformatted dump of the multitasking history trace buffer. 
This parameter is required. 

Listing dataset name; name of the dataset to which the 
output listing is to be written. Default is $OUT. 

FORMAT=f{:f} 
One to five formats in which the multitasking history trace 
buffer is to be displayed. The options are as follows: 

TOTALS Summary of data found in multitasking history 
trace buffer 

SR-0222 D 



CHRON 

SYNC 

CPU 

STATUS 

Chronological display 

Display of synchronization points, with a 
separate column for each of up to 16 user 
tasks 

Display of logical CPU use, with a separate 
column for each of up to 16 logical CPUs 

Display of the status of up to 16 user tasks 
in uniform time intervals 

If MTDUMP is specified with no formatting options, TOTALS 
is the default. 

INTERVAL=int 
The number of clock periods in each time interval 
STATUS format display; the default is 1,000,000. 
parameter has no effect on other format displays. 

in the 
This 

The following parameters let you list selected groups of buffer entries. 
The default is that all actions relevant to a given display format are 
reported or accounted for. 

TASK=t{:t} 

DATA=d{:d} 

List of internal task identifier numbers for which buffer 
entries should be listed, with a maximum of 10 task 
identifiers allowed. The default is all tasks. Use this 
parameter only with CHRON formats. 

List of action-dependent data values to be searched for, 
with a maximum of 10 data values allowed. The default is 
to list entries for all data values. Use this parameter 
only with CHRON formats. 

ACTION=a{:a} 

TASKS 

SR-0222 D 

List of action codes of buffer entries to be listed, with a 
maximum of 40 actions allowed. The default is to list 
entries for all action codes unless one or more of the 
ACTION, TASKS, LOCKS, EVENTS, CPUS, and USERS parameters 
have been used. See subsection 8.2.1, BUFTUNE: Select 
Actions to be Recorded, for the action codes. Use this 
parameter only with CHRON formats. 

Actions involving tasks are listed; these include task 
starts, completions, waits, and tests. Use this parameter 
only with CHRON formats. 

8-9 



LOCKS 

EVENTS 

CPUS 

Actions involving locks are listed. Use this parameter 
only with CHRON formats. 

Actions involving events are listed. Use this parameter 
only with CHRON formats. 

Actions involving logical CPUs are listed. Use this 
parameter only with CHRON formats. 

USERS Actions involving user codes (65 through 128) are listed. 
Use this parameter only with CHRON and SYNC formats. 

8.2.5.2 UNICOS format 

The UNICOS mtdump command line is in the following format. You can 
specify the options in any order, and the blank spaces between the 
options (such as -f) and the arguments are optional. The only required 
operand is file. All output goes to stdout (standard output). 

8-10 

mtdump [-f form] [-i intr] [-t tsks] [-d data] 
[-a act] [-T] [-L] [-E] [-C] [-U] file 

-f form One to five formats, separated by commas (with no blank 
spaces) and listed in any order, in which the multitasking 
history trace buffer is to be displayed. The format 
options are as follows: 

totals 

chron 

sync 

cpu 

status 

Summary of data found in multitasking history 
trace buffer 

Chronological display 

Display of synchronization points, with a 
separate column for each of up to 16 user 
tasks 

Display of logical CPU use, with a separate 
column for each of up to 16 logical CPUs 

Display of the status of up to 16 user tasks 
in uniform time intervals 

If mtdump is specified with no formatting options, totals 
is the default. 

SR-0222 D 



-i intr The number of clock periods in each time interval in the 
status format display; the default is 1,000,000. This 
option has no effect on other format displays. 

The following options let you list selected groups of buffer entries. 
The default is that all actions relevant to a given display format are 
reported or accounted for. 

-t tsks 

-d data 

-a act 

-T 

-L 

-E 

-c 

-U 

file 

SR-0222 0 

List of internal task identifier numbers, separated by 
commas, for which buffer entries should be listed, with a 
maximum of 10 task identifiers allowed. The default is all 
tasks. Use this parameter only with chron formats. 

List of action-dependent data values to be searched for, 
separated by commas, with a maximum of 10 data values 
allowed. The default is to list entries for all data 
values. Use this parameter only with chron formats. 

List of action codes of buffer entries to be listed, 
separated by commas, with a maximum of 40 actions allowed. 
The default is to list entries for all action codes unless 
one or more of the action, tasks, locks, events, cpus, and 
users parameters have been used. See subsection 8.2.1, 
BUFTUNE: Select Actions to be Recorded, for the action 
codes. Use this parameter only with chron formats. 

If specified, actions involving tasks are listed; these 
include task starts, completions, waits, and tests. Use 
this parameter only with chron formats. 

If specified, actions involving locks are listed. Use this 
parameter only with chron formats. 

If specified, actions involving events are listed. Use 
this parameter only with chron formats. 

If specified, actions involving logical CPUs are listed. 
Use this parameter only with chron formats. 

If specified, actions involving user codes (65 through 128) 
are listed. Use this parameter only with chron and sync 
formats. 

Name of the file containing the unformatted dump of the 
multitasking history trace buffer. This parameter is 
required. 

8-11 



8.2.5.3 Tips on combining parameters for COS and UNICOS 

The MTDUMP program currently provides five different display formats: 
CHRON, SYNC, TOTALS, CPU, and STATUS. It also provides eight 
action-selection parameters: TASK=, DATA=, ACTION=, TASKS, LOCKS, 
EVENTS, CPUS, and USERS. 

The following points represent how these formats and action-selection 
parameters interact with each other: 

• The five formats do not interact with the eight action-selection 
parameters. If you selected the CPU format and the TASKS 
parameter, for example, you would get two separate reports. The 
TASKS information would be represented in the CHRON format. 

• If you choose multiple action-selection parameters, the 
information would be combined into one report in the CHRON format. 

• The DATA= and TASK= parameters act as screens on top of the action 
selectors. Mixing these two is not recommended, and mixing them 
with the action-selection parameters requires caution. If you do 
mix them with action-selection parameters, EVENT(I) is output only 
if all of the following are true: 

ACTION(I) is selected by any of the six action-selection 
parameters, or no action-selection parameter is chosen. 

TAKS(I) is explicitly listed in the task list with the TASK 
parameter, or the TASK parameter is not chosen. 

DATA(I) is listed with the DATA parameter or the DATA 
parameter, is not chosen. 

8.3 EXAMPLES 

This subsection contains examples of different output formats for the 
multitasking history trace buffer. A key to the terms used in each 
example follows the display. This example shows the different ways that 
MTDUMP can either dump the contents of the buffer dump dataset or allow 
selected groups of buffer entries to be listed. 

8-12 SR-0222 D 



The COS JCL for these examples (MTDUMP,DN=dumpdn,TASK=2:3:5.) is as 
follows: 

MULTI. 
CFT,ALLOC=STACK,L=O. 
SEGLDR. 
$ABD. 
DUMPJOB. 

* 
MTDUMP,DN=DMPFILE, FORMAT=CHRON: SYNC: CPU: STATUS:TOTALS, INTERVAL=2000000. 
MTDUMP,DN=DMPFILE, FORMAT=CHRON, EVENTS. 
MTDUMP,DN=DMPFILE,FORMAT=CHRON,TASKS. 
MTDUMP,DN=DMPFILE,FORMAT=CHRON,ACTION=1:2:4:5. 
MTDUMP,DN=DMPFILE,FORMAT=CHRON,TASK=4:5:6. 
MTDUMP,DN=DMPFILE,FORMAT=CHRON,DATA=47741:3. 

* 
IEOF 

PROGRAM TEST 

* Dump the buffer to a dataset when it is full. 
CALL BUFTUNE( 'DN'H, 'DMPFILE'H) 

STOP 
END 

The UNICOS equivalent for the COS JCL above is as follows: 

eft -a stack test.f 
segldr -0 test test.o segdir 
test 
od test 
mtdump -f chron,sync,cpu,status,totals -i 2000000 DMPFILE 
mtdump -E DMPFILE -f chron 
mtdump -T -f chron 
mtdump -a 1,2,3,4,5 -f chron 
mtdump -t 4,5,6 -f chron 
mtdump -d 47741,3 -f chron 

8.3.1 FORMAT PARAMETER 

The following COS JCL statement or UNICOS command line results in the 
outputs shown in the following seven pages of examples. 

MTDUMP, DN=dumpdn, FORMAT=CHRON:SYNC:CPU:STATUS, INTERVAL=2000000. 
mtdump -f chron,sync,cpu,status -i 2000000 dumpfile 

Each example shows the output that results from one of the values of the 
FORMAT parameter. 

SR-0222 D 8-13 



8.3.1.1 Chronological display 

FORMAT=CHRON in the COS JCL statement or -f chron in the UNICOS command 
line yields a chronological display of tasks and actions. 

8-14 

Time Task Action 

o 
1534 
1944 
4760 
5518 
5771 

756593 
757094 
757625 
758162 
758712 
759218 
759977 
760539 
761091 
762797 
763208 
763565 
765130 
765534 
765964 
766341 
768118 
768492 
768978 
771918 
772744 
773268 
776257 
777055 
777348 

1180970 
1184072 
1184873 
1185166 
1932758 
1935343 
1935797 
1935956 
1936699 
1937225 
1937872 
1938257 
1938609 

1 
1 
1 
2 
1 

1 
1 
1 
2 

2 
2 
2 
2 
2 
2 
2 

1 
1 
1 
1 
1 
1 
1 
3 
1 
1 
4 
1 

1 
5 
1 

1 

6 
3 
1 
1 
3 
3 

3 

start task 
assign lock 
assign event 
start task 
detach from logical CPU 
request logical CPU 
acquire logical CPU 
attach to logical CPU 
begin wait for event 
detach from logical CPU 
attach to logical CPU 
post event 
detach from logical CPU 
attach to logical CPU 
clear event 
set lock, no wait 
clear lock 
complete task 
attach to logical CPU 
run after wait for event 
post event 
clear event 
set lock, no wait 
clear lock 
TSKWAIT, no wait 
start task 
detach from logical CPU 
attach to logical CPU 
start task 
detach from logical CPU 
request logical CPU 
attach to logical CPU 
start task 
detach from logical CPU 
request logical CPU 
attach to logical CPU 
acquire logical CPU 
start task 
attach to logical CPU 
detach from logical CPU 
attach to logical CPU 
set lock, no wait 
clear lock 
complete task 

Action-dependent data 

0000000000000000000000 
00054413 
00054414 

0000000000000000000002 
o 

2 
2 

00054414 
2 
2 

00054414 
2 
2 

00054414 
00054413 
00054413 

0000000000000000000002 
2 

00054414 
00054414 
00054414 
00054413 
00054413 

2 
0000000000000000000003 

2 
2 

0000000000000000000004 
2 

1 
0000000000000000000005 

1 

1 
3 

0000000000000000000006 
3 

1 
1 

00054413 
00054413 

0000000000000000000003 

SR-0222 0 



Time Task Action Action-dependent data 
------ ---------------------

1940215 7 start task 0000000000000000000007 
1940973 1 detach from logical CPU 1 
1941477 1 attach to logical CPU 3 
1942046 4 attach to logical CPU 1 
1943918 4 set lock, no wait 00054413 
1944333 4 clear lock 00054413 
1944539 8 start task 0000000000000000000010 
1944693 4 complete task 0000000000000000000004 
1945406 1 detach from logical CPU 3 
1946282 1 attach to logical CPU 3 
1946966 5 attach to logical CPU 1 
1948847 5 set lock, no wait 00054413 
1949270 5 clear lock 00054413 
1949496 9 start task 0000000000000000000011 
1949652 5 complete task 0000000000000000000005 
1950431 1 detach from logical CPU 3 
1951363 1 attach to logical CPU 3 
1952095 6 attach to logical CPU 1 
1953420 1 set lock, no wait 00054413 
1953798 1 clear lock 00054413 
1954088 6 set lock, no wait 00054413 
1954354 1 begin wait for task 9 
1954909 1 detach from logical CPU 3 
1955100 6 clear lock 00054413 
1955655 7 attach to logical CPU 3 
1957531 7 set lock, no wait 00054413 
1957908 7 clear lock 00054413 
1958267 7 complete task 0000000000000000000007 
1959872 8 attach to logical CPU 3 
1961732 8 set lock, no wait 00054413 
1962100 8 clear lock 00054413 
1962445 8 complete task 0000000000000000000010 
1964010 9 attach to logical CPU 3 
1965905 9 set lock, no wait 00054413 
1966276 9 clear lock 00054413 
1966623 9 complete task 0000000000000000000011 
1968225 1 attach to logical CPU 3 
1968589 1 run after wait for task 9 
1969049 1 TSKWAIT, no wait 8 
1969506 1 TSKWAIT, no wait 7 
1969883 1 begin wait for task 6 
2371705 acquire logical CPU 4 

60212892 1 detach from logical CPU 3 
60213188 spin-wait logical CPU 3 
60313488 suspend logical CPU 3 
60355394 spin-wait logical CPU 4 
60455675 suspend logical CPU 4 
60498138 spin-wait logical CPU 2 
60598434 suspend logical CPU 2 

SR-0222 0 8-15 

.. ,_., ...... "-,-,, .... _,----------------------,----------------------------



Time Task Action Action-dependent data 
------ ---------------------

60645145 6 complete task 0000000000000000000006 
60646811 1 attach to logical CPU 1 
60647184 1 run after wait for task 6 
60647607 1 TSKWAIT, no wait 5 
60647992 1 TSKWAIT, no wait 4 
60648397 1 TSKWAIT, no wait 3 
60684734 1 complete task 0000000000000000000000 

Key to information ------------------

The time is from the real time clock, minus the 
starting time. 

The task number given is the unique internal task 
identifier assigned by TSKSTART. 

If action involves: then action-dependent data is: 

user-defined task value 
user-defined task value 

start task 
complete task 
TSKWAIT 
lock 

internal task ID of waited-upon task 
lock address 

event event address 
logical CPU logical CPU number 

8.3.1.2 Synchronization points 

FORMAT=SYNC in the COS JCL statement or -f sync in the UNICOS command 
line yields a display of synchronization points, with a separate column 
for up to 16 user tasks. 

Time 

o 
4760 

757094 
757625 
758712 
759218 
760539 
761091 
762797 
763208 
763565 

8-16 

(-------- Internal Task Identifier -------) 
1 2 3 4 5 6 7 8 9 16 

$ 0000000000000000000000 
* $ 0000000000000000000002 
* 

e. event at 00054414 
* 

p* event at 00054414 
* 

C* event at 00054414 
(* lock at 00054413 
)* lock at 00054413 

$ 0000000000000000000002 

SR-0222 D 



(-------- Internal Task Identifier -------) 

Time 1 2 3 4 5 6 7 8 9 16 

765130 * 
765534 * event at 00054414 
765964 p* event at 00054414 
766341 C* event at 00054414 
768118 (* lock at 00054413 
768492 )* lock at 00054413 
768978 t* task 2 
771918 * $ 0000000000000000000003 
773268 * 
776257 * $ 0000000000000000000004 

1180970 * 
1184072 * $ 0000000000000000000005 
1932758 * 
1935797 * $ 0000000000000000000006 
1935956 * * 
1937225 * * 
1937872 * (* lock at 00054413 
1938257 * )* lock at 00054413 
1938609 * $ 0000000000000000000003 
1940215 * $ 0000000000000000000007 
1941477 * 
1942046 * * 
1943918 * (* lock at 00054413 
1944333 * ) * lock at 00054413 
1944539 * * $ 0000000000000000000010 
1944693 * $ 0000000000000000000004 
1946282 * 
1946966 * * 
1948847 * ( * lock at 00054413 
1949270 * )* lock at 00054413 
1949496 * * $ 0000000000000000000011 
1949652 * $ 0000000000000000000005 
1951363 * 
1952095 * * 
1953420 (* * lock at 00054413 
1953798 )* * lock at 00054413 
1954088 * (* lock at 00054413 
1954354 t. * task 9 
1955100 )* lock at 00054413 
1955655 * * 
1957531 * (* lock at 00054413 
1957908 * )* lock at 00054413 
1958267 * $ 0000000000000000000007 
1959872 * * 
1961732 * (* lock at 00054413 
1962100 * )* lock at 00054413 
1962445 * $ 0000000000000000000010 
1964010 * * 

SR-0222 D 8-17 



(-------- Internal Task Identifier 
Time 1 2 3 4 5 6 7 

1965905 '* 
1966276 '* 
1966623 '* 
1968225 '* '* 
1968589 '* '* 
1969049 t'* '* 
1969506 t'* '* 
1969883 t. '* 

60645145 $ 
60646811 * 
60647184 '* 
60647607 t'* 
60647992 t'* 
60648397 t'* 
60684734 $ 

Key to symbols used ------------------
$ begin task/complete task 
'* running 

('* set lock 
)'* clear lock 
t'* TSKWAIT, no wait 
e'* EVWAIT, no wait 
P'* post event 
c* clear event 

ready; waiting for CPU 
waiting for lock, event, 

1. begin wait for lock 
e. begin wait for event 
t. begin wait for task 

8.3.1.3 Logical CPU use 

or task 

8 9 

('* 
)'* 

$ 

-------) 
16 

lock at 00054413 
lock at 00054413 
0000000000000000000011 

task 9 
task 8 
task 7 
task 6 
0000000000000000000006 

task 6 
task 5 
task 4 
task 3 
0000000000000000000000 

FORMAT=CPU in the COS JCL statement or -f cpu in the UNICOS command 
line outputs a table of logical CPU use, with a separate column for each 
of up to 16 logical CPUs. 

Logical CPU Number 
Time 1 2 3 4 16 

5518 
756593 
757094 1 
758162 
758712 2 
759977 

8-18 SR-0222 D 



Logical CPU Number 
Time 1 2 3 4 16 

760539 2 
765130 1 
772744 
773268 1 
777055 

1180970 1 
1184873 
1932758 1 
1935343 1 
1935956 1 3 
1936699 3 
1937225 1 3 
1940973 3 
1941477 1 
1942046 4 1 
1945406 4 
1946282 4 1 
1946966 5 1 
1950431 5 
1951363 5 1 
1952095 6 1 
1954909 6 
1955655 6 7 
1959872 6 8 
1964010 6 9 
1968225 6 1 
2371705 6 1 

60212892 6 
60213188 6 
60313488 6 
60355394 6 
60455675 6 
60498138 6 
60598434 6 
60646811 1 

Key to symbols used 
-------------------

n executing task n 
active 
inactive 
in hold loop 

SR-0222 D 8-19 

.,---~--.'" ... --~-- .. -----------------------------------------------



8.3.1.4 User task status 

FORMAT=STATUS, INTERVAL=2000000, in the COS JCL statement or -f status 
-i 2000000 in the UNICOS command line yields the status of up to 16 user 
tasks in uniform time intervals. Here, the interval equals 2,000,000 
clock periods (default is 1,000,000). 

(----------- Internal Task Identifier ------------> 
Time 1 2 3 4 567 8 9 16 

0 * 
1000000 * * * * * * * 
2000000 * 
3000000 * 
4000000 * 
5000000 * 
6000000 * 
7000000 'Ie 

8000000 'Ie 

9000000 * 
10000000 * 
11000000 * 
12000000 * 
13000000 * 
14000000 'Ie 

15000000 * 
16000000 * 
17000000 * 
18000000 * 
19000000 * 
20000000 * 
21000000 * 
22000000 * 
23000000 'Ie 

24000000 * 
25000000 'Ie 

26000000 * 
27000000 * 
28000000 'Ie 

29000000 'Ie 

30000000 'Ie 

31000000 * 
32000000 * 
33000000 * 
34000000 * 
35000000 'Ie 

36000000 * 
37000000 * 
38000000 * 
39000000 * 

8-20 SR-0222 D 



(----------- Internal Task Identifier ------------) 
Time 1 2 3 4 5 6 7· 8 9 16 

40000000 Ie 

41000000 * 
42000000 Ie 

43000000 Ie 

44000000 Ie 

45000000 * 
46000000 * 
47000000 Ie 

48000000 * 
49000000 Ie 

50000000 * 
51000000 Ie 

52000000 Ie 

53000000 * 
54000000 * 
55000000 * 
56000000 * 
57000000 * 
58000000 * 
59000000 * 
60000000 Ie * 

Key to symbols used 

* running 
ready; waiting for CPU 
waiting for lock, event, or task 

In this example, seven tasks are shown running during time 1000000. Only 
four, of course, could be running at anyone time with just four 
processors. The output suggests that there was a changeover in the tasks 
executing during that interval. Tasks 3 and 4 and probably one or two 
other tasks were running when the interval began, and task 6 and two or 
three other tasks were running when it ended. 

8.3.1.5 Summary display 

FORMAT=TOTALS in the COS JCL statement or -f totals in the UNICOS 
command line outputs the following summary statistics: 

Task activities 

SR-0222 D 

9 TSKSTARTs 
9 task completions 
8 TSKWAITs 

6 did not wait 
2 required a wait 

8-21 



Lock variables 
1 locks encountered 
1 LOCKASGNs 
o LOCKRELs 

10 LOCKONs 
10 did not wait 
o required a wait 

10 LOCKOFFs 

Event variables 
1 events encountered 
1 EVASGNs 
0 EVRELs 
1 EVWAITs 

0 did not wait 
1 required a wait 

2 EVPOSTs 
2 EVCLEARs 

(100.0%) 
( 0.0%) 

( 0.0%) 
(100.0%) 

Library scheduler: logical CPU connections 
20 attaches 
12 detaches 

3 CPUs acquired 
3 spin-waits 

Library scheduler: system requests 
3 requests 
o deletes 
3 suspends 
o activates 

No user defined actions found 

Detailed task wait statistics 

8-22 

TSKWAITs for user task: 00000000002 
Total TSKWAITS: 1 

no wait required: 
wait required: 

1 
o 

TSKWAITs for user task: 00000000003 
Total TSKWAITS: 1 

no wait required: 
wait required: 

1 
o 

TSKWAITs for user task: 00000000004 
Total TSKWAITS: 1 

no wait required: 
wait required: 

1 
o 

SR-0222 D 



TSKWAITs for user task: 00000000005 
Total TSKWAITS: 1 

no wait required: 
wait required: 

1 
o 

TSKWAITs for user task: 00000000006 
Total TSKWAITS: 1 

o 
1 

no wait required: 
wait required: 

avg. wait time: 58677301 clocks 

TSKWAITs for user task: 00000000007 
Total TSKWAITS: 1 

no wait required: 
wait required: 

1 
o 

TSKWAITs for user task: 00000000010 
Total TSKWAITS: 1 

no wait required: 
wait required: 

. 1 

o 

TSKWAITs for user task: 00000000011 
Total TSKWAITS: 1 

no wait required: 
wait required: 

avg. wait time: 

Detailed lock statistics 

Lock variable at address: 
LOCKASGNs: 

LOCKRELs: 
LOCKONs: 

no wait required: 
wait required: 

LOCKOFFs: 

Detailed event statistics 

o 
1 

00000054413 
1 
0 

10 
10 

0 
10 

14235 clocks 

(100.0q.o) 
( O.OClo) 

Event variable at address: 00000054414 
EVASGNs: 1 

EVRELs: 0 
EVPOSTs: 2 
EVWAITs: 1 

no wait required: 0 ( 0.0%) 
wait required: 1 (100.0%) 

avg. wait time: 7909 clocks 
EVCLEARs: 2 

SR-0222 D 8-23 



8.3.2 EVENTS PARAMETER 

This COS JCL statement or UNICOS command line yields an output of only the 
actions that involve events. 

MTDUMP,DN=dumpdn,EVENTS. 
mtdump -E dumpfile 

Time Task Action 
------

1621 1 assign event 
359183 1 begin wait for 
360640 2 post event 
362522 2 clear event 
362680 1 run after wait 
363092 1 post event 
363438 1 clear event 

8.3.3 TASKS PARAMETER 

Action-dependent data 
---------------------

00047741 
event 00047741 

00047741 
00047741 

for event 00047741 
00047741 
00047741 

This COS JCL statement or UNICOS command line yields an output of only the 
actions that involve tasks; these include task start and completion, task 
waits, and task test. 

MTDUMP,DN=dumpdn,TASKS. 
mtdump -T dumpfile 

Time Task Action 
------

0 1 start task 
4363 2 start task 

1535837 2 complete task 
1553992 1 TSKWAIT, no wait 
1556783 3 start task 
1560909 4 start task 
1951310 5 start task 
2378672 6 start task 
2382796 7 start task 
2386879 8 start task 
2390960 9 start task 

16355452 4 complete task 
16411316 1 begin wait for task 
16415279 5 complete task 
16526420 3 complete task 
30435080 6 complete task 
30437023 1 run after wait for 
30437556 1 TSKWAIT, no wait 
30438065 1 TSKWAIT, no wait 
30438574 1 TSKWAIT, no wait 

8-24 

Action-dependent data 
---------------------
0000000000000000000000 
0000000000000000000002 
0000000000000000000002 

2 
0000000000000000000003 
0000000000000000000004 
0000000000000000000005 
0000000000000000000006 
0000000000000000000007 
0000000000000000000010 
0000000000000000000011 
0000000000000000000004 

3 
0000000000000000000005 
0000000000000000000003 
0000000000000000000006 

task 3 
4 
5 
6 

SR-0222 D 



Time Task Action Action-dependent data 
------ ---------------------

30439033 1 begin wait for task 7 

30488255 7 complete task 0000000000000000000007 
30489225 1 run after wait for task 7 
30489677 1 begin wait for task 8 
30491617 8 complete task 0000000000000000000010 
30492593 1 run after wait for task 8 
30493011 1 begin wait for task 9 
30771250 9 complete task 0000000000000000000011 
30773152 1 run after wait for task 9 
34066223 1 complete task 0000000000000000000000 

8.3.4 ACTION PARAMETER 

This COS JCL statement or UNICOS command line lets you select the 
specific actions to be listed, using the numeric codes for the actions 
listed in subsection 8.2.1, BUFTUNE: Select Actions to be Recorded. The 
default is to list entries for all of the action codes; only the use of 
one or more of the ACTION, TASKS, LOCKS, EVENTS, CPUS, or USERS 
parameters overrides this. The four actions chosen in this example are 
as follows: 

Action = 1 Start task 
2 Complete task 
4 Begin wait for task 
5 Run after wait for task 

MTDUMP,DN=dumpdn,ACTION=1:2:4:5. 
mtdump -a 1,2,4,5 dumpfile 

Time Task Action 
------

0 1 start task 
4363 2 start task 

1535837 2 complete task 
1556783 3 start task 
1560909 4 start task 
1951310 5 start task 
2378672 6 start task 
2382796 7 start task 
2386879 8 start task 
2390960 9 start task 

16355452 4 complete task 
16411316 1 begin wait for task 
16415279 5 complete task 
16526420 3 complete task 
30435080 6 complete task 
30437023 1 run after wait for task 

SR-0222 D 

Action-dependent data 
---------------------

0000000000000000000000 
0000000000000000000002 
0000000000000000000002 
0000000000000000000003 
0000000000000000000004 
0000000000000000000005 
0000000000000000000006 
0000000000000000000007 
0000000000000000000010 
0000000000000000000011 
0000000000000000000004 

3 
0000000000000000000005 
0000000000000000000003 
0000000000000000000006 

3 

8-25 



Time Task Action Action-dependent data 
------ ---------------------

30439033 1 begin wait for task 7 

30488255 7 complete task 0000000000000000000007 
30489225 1 run after wait for task 7 
30489677 1 begin wait for task 8 
30491617 8 complete task 0000000000000000000010 
30492593 1 run after wait for task 8 
30493011 1 begin wait for task 9 
30771250 9 complete task 0000000000000000000011 
30773152 1 run after wait for task 9 
34066223 1 complete task 0000000000000000000000 

8.3.5 TASK PARAMETER 

This COS JCL statement or UNICOS command line produces a listing of 
internal task identifier numbers of the tasks recorded in the multitasking 
history trace buffer that you want to see. The default is all tasks. 

MTDUMP,DN=dumpdn,TASK=4:5:6. 
mtdump -t 4,5,6 dumpfile 

Time Task Action Action-dependent data 
------ ---------------------

1560909 4 start task 0000000000000000000004 
1950719 4 attach to logical CPU 3 
1951310 5 start task 0000000000000000000005 
2378672 6 start task 0000000000000000000006 
2380419 5 attach to logical CPU 1 

16354735 4 set lock, no wait 00047740 
16355097 4 clear lock 00047740 
16355452 4 complete task 0000000000000000000004 
16357208 6 attach to logical CPU 3 
16414562 5 set lock, no wait 00047740 
16414924 5 clear lock 00047740 
16415279 5 complete task 0000000000000000000005 
30434358 6 set lock, no wait 00047740 
30434723 6 clear lock 00047740 
30435080 6 complete task 0000000000000000000006 

8.3.6 DATA PARAMETER 

This COS JCL statement or UNICOS command line lets you specify 
action-dependent data values to be searched for in the multitasking 
history trace buffer. The default is to list entries for all data values. 

8-26 SR-0222 D 



MTDUMP,DN=dumpdn,DATA=47741:3. 
mtdump -d 47741,3 dumpfile 

Time Task Action 
------

1621 1 assign event 
359183 1 begin wait for event 
360640 2 post event 
362522 2 clear event 
362680 1 run after wait for event 
363092 1 post event 
363438 1 clear event 

1556783 3 start task 
1950257 acquire logical CPU 
1950719 4 attach to logical CPU 

16357208 6 attach to logical CPU 
16411316 1 begin wait for task 
16526420 3 complete task 
30436717 1 attach to logical CPU 
30437023 1 run after wait for task 
30439544 1 detach from logical CPU 
30439812 spin-wait logical CPU 
30488914 1 attach to logical CPU 
30490189 1 detach from logical CPU 
30490689 spin-wait logical CPU 
30492286 1 attach to logical CPU 
30493563 1 detach from logical CPU 
30494066 spin-wait logical CPU 
30594344 suspend logical CPU 

8.3.7 INFO KEYWORD 

Action-dependent data 

00047741 
00047741 
00047741 
00047741 
00047741 
00047741 
00047741 

0000000000000000000003 
3 

3 
3 
3 

0000000000000000000003 
3 
3 
3 

3 
3 

3 

3 
3 
3 
3 
3 

The following example shows two outputs, the first resulting from using 
BUFTUNE with the INFO keyword and calling BUFPRINT within the user 
program, and the second resulting from the JCL statement MTDUMP, the user 
having previously called BUFUSER to add entries to the multitasking 
history trace buffer. In this example, MTDUMP outputs the task calls and 
user calls. 

The first output is dumped by calling BUFPRINT within the user program. 
The call to BUFTUNE with the DN keyword specifies the dataset to which the 
multitasking history trace buffer is to be dumped. The INFO keyword in 
the BUFTUNE call lets you associate descriptive (mnemonic) strings with 
the actions that you want recorded. 

The second output is from the MTDUMP statement using the input buffer from 
the first output example. The MTDUMP JCL statement dumps the multitasking 
history trace buffer entries that were selected with the TASKS and USERS 
parameters. 

SR-0222 D 8-27 



8-28 

MULTI. 
CFT,ALLOC:::STACK. 
SEGLDR. 
$ABD. 
DUMPJOB. 
MTDUMP,DN:::dumpdn,TASKS,USERS. 
IEOF 

PROGRAM TEST 
CHARACTER*24 STRING 
INTEGER ISTRING(3) 
DATA ISTRINGI'THIS IS STRING NO. 66'H/ 

CALL BUFTUNE('DN'H, 'dumpdn'H) 
STRING::: 'THIS IS STRING NO. 65' 
CALL BUFTUNE('INFO'H,65,STRING) 
CALL BUFTUNE('INFO'H,66,ISTRING) 
CALL BUFTUNE('INFO'H,67, 'THIS IS STRING NO. 67'H) 
CALL BUFTUNE( 'INFO'H,68, 'THIS IS STRING NO. 68'H) 
CALL BUFTUNE( 'INFO'H,69, 'THIS IS STRING NO. 69'H) 
CALL BUFTUNE( 'INFO'H,128, 'THIS IS STRING NO.128'H) 

IEMPTY ::: 0 
CALL BUFPRINT(IEMPTY) 

END 

SUBROUTINE SUB2 
C task 

CALL TSKVALUE(ITASK) 
CALL BUFUSER(65,ITASK) 
CALL BUFUSER(66, 'DATA 66'H) 
CALL BUFUSER(67, 'DATA 67'H) 
CALL BUFUSER(68, 'DATA 68'H) 
CALL BUFUSER(69, 'DATA 69'H) 
CALL BUFUSER(69,777B) 
CALL BUFUSER(70, 'DATA 70'H) 
CALL BUFUSER(71, 'DATA 71'H) 
CALL BUFUSER(128, 'DATA 128'H) 
CALL BUFUSER(129, 'DATA 129'H) 
CALL BUFUSER(130,130B) 

END 

SR-0222 D 



MULTITASKING HISTORY TRACE BUFFER BUFPRINT 

Time Task Action Action-dependent data 

------ ---------------------
0 1 start task 0000000000000000000000 

4688 1 assign lock 00053240 
5040 1 assign event 00053241 
7948 2 start task 0000000000000000000002 
8789 1 detach from logical CPU 0 
9029 request logical CPU 

775900 acquire logical CPU 2 
776375 1 attach to logical CPU 2 
776895 1 begin wait for event 00053241 
777418 1 detach from logical CPU 2 
777904 2 attach to logical CPU 1 
778177 spin-wait logical CPU 2 
778384 2 post event 00053241 
779148 2 detach from logical CPU 1 
779663 2 attach to logical CPU 2 
780214 1 attach to logical CPU 1 
780394 2 clear event 00053241 
780578 1 run after wait for event 00053241 
781037 1 post event 00053241 
781418 1 clear event 00053241 

3044299 1 set lock, no wait 00053240 
3044731 1 clear lock 00053240 
3045246 1 begin wait for task 2 
3045846 1 detach from logical CPU 1 
3046154 spin-wait logical CPU 1 
3146412 suspend logical CPU 1 

132777326 2 set lock, no wait 00053240 
132777729 2 clear lock 00053240 
132778079 2 complete task 0000000000000000000002 
132779742 1 attach to logical CPU 2 
132780064 1 run after wait for task 2 
132782953 3 start task 0000000000000000000003 
132783768 1 detach from logical CPU 2 
132784123 activate logical CPU 1 
133076653 1 attach to logical CPU 1 
133079629 4 start task 0000000000000000000004 
133080442 1 detach from logical CPU 1 
133080682 request logical CPU 
133918469 acquire logical CPU 3 
133918932 1 attach to logical CPU 3 
133920086 3 attach to logical CPU 2 
133920627 3 THIS IS STRING NO. 65 0000000000000000000003 
133920925 3 THIS IS STRING NO. 66 0421012504044015433040 DATA 66 
133921200 3 THIS IS STRING NO. 67 0421012504044015433440 DATA 67 
133921341 4 attach to logical CPU 1 
133921479 3 THIS IS STRING NO. 68 0421012504044015434040 DATA 68 
133921754 3 THIS IS STRING NO. 69 0421012504044015434440 DATA 69 

SR-0222 D 8-29 



MULTITASKING HISTORY TRACE BUFFER BUFPRINT 

Time Task Action Action-dependent data 
------ ---------------------

133921885 4 THIS IS STRING NO. 65 0000000000000000000004 
133922024 3 THIS IS STRING NO. 69 0000000000000000000777 
133922187 5 start task 0000000000000000000005 
133922309 3 70 0421012504044015630040 DATA 70 
133922415 4 THIS IS STRING NO. 66 0421012504044015433040 DATA 66 
133922594 3 71 0421012504044015630440 DATA 71 
133922689 4 THIS IS STRING NO. 67 0421012504044015433440 DATA 67 
133922851 3 THIS IS STRING NO.128 0421012504044014231070 DATA 128 
133922970 4 THIS IS STRING NO. 68 0421012504044015434040 DATA 68 
133923113 1 detach from logical CPU 3 
133923221 3 0000000000000000000201 0421012504044014231071 DATA 129 
133923359 request logical CPU 
133923447 4 THIS IS STRING NO. 69 0421012504044015434440 DATA 69 
133923542 3 0000000000000000000202 0000000000000000000130 
133923707 4 THIS IS STRING NO. 69 0000000000000000000777 
133923964 4 70 0421012504044015630040 DATA 70 
133924228 4 71 0421012504044015630440 DATA 71 
133924491 4 THIS IS STRING NO.128 0421012504044014231070 DATA 128 
133924735 4 0000000000000000000201 0421012504044014231071 DATA 129 
133924972 4 0000000000000000000202 0000000000000000000130 
248569711 acquire logical CPU 4 
248570171 1 attach to logical CPU 4 
248571265 5 attach to logical CPU 3 
248571796 5 THIS IS STRING NO. 65 0000000000000000000005 

455841660 suspend logical CPU 4 
467556467 9 set lock, no wait 00053240 
467556864 9 clear lock 00053240 
467557229 9 complete task 0000000000000000000011 
467558554 spin-wait logical CPU 3 
467658846 suspend logical CPU 3 
471358042 6 set lock, no wait 00053240 
471358451 6 clear lock 00053240 
471358798 6 complete task 0000000000000000000006 
471360523 1 attach to logical CPU 2 
471360844 1 run after wait for task 6 
471361261 1 begin wait for task 7 
471361800 1 detach from logical CPU 2 
471362092 spin-wait logical CPU 2 
471462336 suspend logical CPU 2 
477017939 7 set lock, no wait 00053240 
477018349 7 clear lock 00053240 
477018704 7 complete task 0000000000000000000007 
477020408 1 attach to logical CPU 1 
477020731 1 run after wait for task 7 

8-30 SR-0222 D 



MULTITASKING HISTORY TRACE BUFFER 

Time Task Action 
------

477021187 1 TSKWAIT, no wait 
477021653 1 TSKWAIT, no wait 
477022205 1 assign lock 
477022611 1 set lock, no wait 

MULTITASKING HISTORY TRACE BUFFER 

Time Task Action 
------

0 1 start task 
7948 2 start task 

3045246 1 begin wait for task 
132778079 2 complete task 
132780064 1 run after wait for task 
132782953 3 start task 
133079629 4 start task 
133920627 3 THIS IS STRING NO. 65 
133920925 3 THIS IS STRING NO. 66 
133921200 3 THIS IS STRING NO. 67 
133921479 3 THIS IS STRING NO. 68 
133921754 3 THIS IS STRING NO. 69 
133921885 4 THIS IS STRING NO. 65 

255246551 7 THIS IS STRING NO. 66 
255246808 7 THIS IS STRING NO. 67 
255247081 7 THIS IS STRING NO. 68 
255247338 7 THIS IS STRING NO. 69 
255247595 7 THIS IS STRING NO. 69 
255247852 7 70 
255248109 7 71 
255248366 7 THIS IS STRING NO.128 
439079590 1 TSKWAIT, no wait 
439080320 1 TSKWAIT, no wait 
439080957 1 begin wait for task 
439082622 8 THIS IS STRING NO. 65 
439082903 8 THIS IS STRING NO. 66 
439083172 8 THIS IS STRING NO. 67 
439083442 8 THIS IS STRING NO. 68 
439083706 8 THIS IS STRING NO. 69 
439084009 8 THIS IS STRING NO. 69 
439084283 8 70 
439084540 8 71 
439084797 8 THIS IS STRING NO.128 

SR-0222 D 

Action-dependent data 

8 

9 
00003560 
00003560 

Action-dependent data 
---------------------

0000000000000000000000 
0000000000000000000002 

2 
0000000000000000000002 

2 
0000000000000000000003 
0000000000000000000004 
0000000000000000000003 
0421012504044015433040 
0421012504044015433440 
0421012504044015434040 
0421012504044015434440 
0000000000000000000004 

0421012504044015433040 
0421012504044015433440 
0421012504044015434040 
0421012504044015434440 
0000000000000000000777 
0421012504044015630040 
0421012504044015630440 
0421012504044014231070 

3 
4 
5 

0000000000000000000010 
0421012504044015433040 
0421012504044015433440 
0421012504044015434040 
0421012504044015434440 
0000000000000000000777 
0421012504044015630040 
0421012504044015630440 
0421012504044014231070 

BUFPRINT 

MTDUMP 

DATA 66 
DATA 67 
DATA 68 
DATA 69 

DATA 66 
DATA 67 
DATA 68 
DATA 69 

DATA 70 
DATA 71 
DATA 128 

DATA 66 
DATA 67 
DATA 68 
DATA 69 

DATA 70 
DATA 71 
DATA 128 

8-31 



MULTITASKING HISTORY TRACE BUFFER MTDUMP 

Time Task Action Action-dependent data 
------ ---------------------

453550985 5 complete task 0000000000000000000005 
453553406 9 THIS IS STRING NO. 65 0000000000000000000011 
453553680 9 THIS IS STRING NO. 66 0421012504044015433040 DATA 66 
453553938 9 THIS IS STRING NO. 67 0421012504044015433440 DATA 67 
453554216 9 THIS IS STRING NO. 68 0421012504044015434040 DATA 68 
453554490 9 THIS IS STRING NO. 69 0421012504044015434440 DATA 69 
453554753 9 THIS IS STRING NO. 69 0000000000000000000777 
453555010 9 70 0421012504044015630040 DATA 70 
453555267 9 71 0421012504044015630440 DATA 71 
453555527 9 THIS IS STRING NO.128 0421012504044014231070 DATA 128 
455738083 8 complete task 0000000000000000000010 
455740025 1 run after wait for task 5 
455740552 1 begin wait for task 6 
467557229 9 complete task 0000000000000000000011 
471358798 6 complete task 0000000000000000000006 
471360844 1 run after wait for task 6 
471361261 1 begin wait for task 7 
477018704 7 complete task 0000000000000000000007 
477020731 1 run after wait for task 7 
477021187 1 TSKWAIT, no wait 8 
477021653 1 TSKWAIT, no wait 9 
483466811 1 complete task 0000000000000000000000 

8-32 SR-0222 D 



9. ADVANCED MACROTASKING IN FORTRAN 

Several high-level concepts have emerged from the research on parallel 
processing. This section describes high-level parallelism concepts, both 
those that have been implemented directly through the macrotasking 
library routines and extensions to Fortran and those that can be 
implemented indirectly, using the macrotasking library routines. 

9.1 PARALLELISM 

Multitasking exploits parallelism in programs. Parallelism occurs when 
certain independence and order requirements are satisfied. The degree of 
parallelism is based on the adherence of program constructs to these 
requirements. The following levels of parallelism are discernable: 

Level Name 

Full Concurrent 

Partial Exclusive 

None Sequential 

Characteristics 

Complete independence and order independence 

Special dependence relationship and order 
independence 

Dependence and order dependence 

Concurrent parallelism and exclusive parallelism are candidates for 
multitasking. No multitasking speedup is possible without parallelism. 

The TSKSTART and TSKWAIT library routines initiate and complete concurrent 
parallelism. The initiation and completion of a task can be used as 
synchronization points. 

The management of concurrent parallelism uses the EVPOST and EVWAIT 
library routines, which synchronize work between tasks and can be used in 
communicating data among tasks. 

Exclusive parallelism is managed with the LOCKON and LOCKOFF library 
routines, which monitor special program segments that can be executed in 
any order, but not simultaneously. Exclusive parallelism is profitably 
exploited only within the environment of concurrent parallelism. 

Subsequent subsections expand on these ideas. 

SR-0222 D 9-1 

--.-.----~.-------------------------------.------------------------



9.2 SYNCHRONIZATION 

Synchronization is the process of bringing two or more tasks to a known 
and coordinated stage in their execution. The location in each task 
where this happens is called a synchronization point. Synchronization is 
required to ensure that dependencies are satisfied, which frequently 
means ensuring that variables in one task are computed before they are 
used in another task. 

Synchronization is a cooperative process among tasks. Certain variables, 
such as event variables, must be accessible to all tasks, and each task 
must execute proper, coordinated multitasking calls. 

The initiation and completion of a task are synchronization points, as 
the following example shows: 

Task 0 

Initialize a, b 

SYNCH POINT -) CALL TSKSTART ----) 

I 
I 

1/2 work (a) 

I 
I 

CALL TSKWAIT 
SYNCH POINT -) (---------------

Results computed 
in (b) needed here 

Task 1 

1/2 work (b) 

I 
I 

Management of concurrent parallelism uses events for synchronization. 
Tasks agree on which events signal the beginning and end of requested 
work. 

In the following example, task 0 uses event EV1 to synchronize these two 
tasks by signaling task 1 that any initialization for work (b) is 
complete. Task 1 uses event EV1 to synchronize these two tasks by 
waiting for it to be posted before beginning work (b). In a similar 
fashion, both tasks use event EV2 to synchronize the completion of work 
(a) and (b) before the start of work (c). 

9-2 SR-0222 D 



Task 0 Task 1 
I 
I 

CALL TSKSTART ----) 
I CALL EVWAIT(EV1) 

SYNCH POINT -) CALL EVPOST(EV1) 

I 
-) -

CALL EVCLEAR(EV1) 

I I 
1/2 work (a) 112 work (b) 

I I 
CALL EVWAIT(EV2) CALL EVPOST(EV2) 

SYNCH POINT -) (-----------------
CALL EVCLEAR(EV2) CALL EVWAIT(EV1) 

I 
sequential work (c) 

I 
SYNCH POINT -) CALL EVPOST(EV1) -) 

I CALL EVCLEAR(EV1) 

I I 
1/2 work (d) 1/2 work (e) 

I I 
CALL EVWAIT(EV2) CALL EVPOST(EV2) 

SYNCH POINT -) (-----------------
CALL EVCLEAR(EV2) CALL EVWAIT(EV1) 

I 
I 

An alternative method uses locks for synchronization. This technique 
requires that the locks be initialized to the locked state. Each 
synchronizing task needs only one call to the multitasking library. 

Task 0 Task 1 

CALL LOCKON(L1) 
CALL LOCKON(L2) 

I 
CALL TSKSTART ---) -

I I 
SYNCH POINT -) CALL LOCKOFF(L1) -) CALL LOCKON(Ll) 

I I 
I I 
1/2 work (a) 1/2 work (b) 

I I 
I I 

CALL LOCKON(L2) CALL LOCKOFF(L2) 
SYNCH POINT -) (---------------

I 

SR-0222 0 9-3 



Task 0 Task 1 

sequential work (c) 

I 
SYNCH POINT -) CALL LOCKOFF(L1) -) CALL LOCKON( L1) 

I I 
I I 

1/2 work (d) 1/2 work (e) 

I I 
I I 

CALL LOCKON(L2) CALL LOCKOFF(L2) 
SYNCH POINT -) <---------------

I 
I 

Barriers can also be used to implement synchronization, as follows: 

SYNCH POINT -) 

SYNCH POINT -) 

SYNCH POINT -) 

SYNCH POINT -) 

Task 0 

CALL BARASGN(B1,2) 
CALL TSKSTART ----) 
CALL BARSYNC(B1) 

I 
I 

Task 1 

CALL BARSYNC(B1) 

I 
I 

1/2 work (a) 1/2 work (b) 

I I 
I I 

CALL BARSYNC(B1)<--)CALL BARSYNC(B1) 

I 
I 

Sequential work (c) 

I 
I 

CALL BARSYNC(B1) <--)CALL BARSYNC(B1) 

I I 
I I 

1/2 work (d) 

I 
I 

1/2 work (e) 

I 
I 

CALL BARSYNC(B1)<--)CALL BARSYNC(B1) 

I 
I 

Barriers are also convenient for synchronizing larger numbers of tasks. 

9-4 SR-0222 D 



9.3 COMMUNICATION 

Occasionally one task must communicate a variable value to other tasks 
while all are executing. To ensure that the value is computed in one 
task before it is used in another, the communication must occur at a 
synchronization point. The communicating tasks must agree on the 
location of the shared value. One task computes the value before the 
synchronization point, and the other tasks reference the value only after 
the synchronization point. 

In the following program, the main task uses the shared variable JOB to 
indicate the computations to be executed by the subordinate task, T. 
Task T stops when JOB equals 3. 

PROGRAM MAIN 
COMMON/MT/ISTART,IDONE,JOB,A(1000),B(1000),C(1000) 

call EVASGN, etc. 
CALL TSKSTART(IDTASK,T) 
JOB = 1 
CALL EVPOST(ISTART) 
DO 10 I = 1, 500 

B(I) = A(I) + 1.0 
10 CONTINUE 

CALL EVWAIT(IDONE) 
CALL EVCLEAR(IDONE) 
JOB = 2 
CALL EVPOST(ISTART) 
DO 20 I = 501, 1000 

C(I) = B(I) + 2.0 
20 CONTINUE 

CALL EVWAIT(IDONE) 
CALL EVCLEAR(IDONE) 
JOB = 3 
CALL EVPOST(ISTART) 
CALL TSKWAIT(IDTASK) 
STOP 
END 

SUBROUTINE T 
COMMON/MT/ISTART,IDONE,JOB,A(1000),B(1000),C(1000) 

1 CALL EVWAIT(ISTART) 
CALL EVCLEAR(ISTART) 
IF( JOB.EQ.2 ) GO TO 19 
IF( JOB.GT.2 ) GO TO 99 
DO 10 I = 501, 1000 

B(I) = A(I) + 1.0 
10 CONTINUE 

CALL EVPOST(IDONE) 
GO TO 1 

19 CONTINUE 

SR-0222 D 9-5 



DO 20 I = 1, 500 
C(I) = B(I) + 2.0 

20 CONTINUE 
CALL EVPOST(IOONE) 
GO TO 1 

99 CONTINUE 
RETURN 
END 

The integrity of the variable JOB is ensured because the programmer has 
defined and followed a rule allowing the main task to reference JOB only 
after IOONE is posted and before ISTART is posted, and allowing task T to 
reference JOB only after ISTART is posted and before IOONE is posted. 

9.4 MONITOR 

Certain program constructs have data and storage dependencies that at 
first appear to prevent parallel processing. These constructs involve 
updating a variable using an operation that is both commutative and 
associative, such as addition or multiplication. This is the case of 
exclusive parallelism, and it can be executed in parallel if you know any 
update of a variable will never interfere with any other update of that 
same variable. You can be certain that this is the case if you monitor 
the updates to ensure that only one update is ever executing at a given 
time. 

DO 20 I = 1, N 
DO 10 J = 1, N 

A(I,J) = B(I)*C(J) 
10 CONTINUE 

S = S + SIN(A(I,l» 
20 CONTINUE 

In the previous example, the iterations of the 20 loop are data- and 
storage-dependent because of the variable S. The dependence causes a 
problem if the updates to S are attempted in different tasks. Within a 
given task, fetching S may not obtain the correct value if the other task 
is currently in the update process. Simultaneous updates may overwrite 
and lose a needed value. 

This problem can be circumvented and the iterations of the 20 loop 
executed in parallel if the updates are never simultaneous. Two 
solutions are possible: 

• Use the LOCK facilities to form a critical region around the 
problem code. Subsection 9.10, Critical Region, describes this 
alternative in detail. 

9-6 SR-0222 0 



• Recognize that only the last value, rather than intermediate 
values, of S is required. Refer to subsection 9.11, Summation and 
Other Reduction Constructs. 

9.5 SHARED AND PRIVATE VARIABLES 

To ensure independence, you must analyze the use of variables in the code 
you intend to multitask. Based on the analysis results, you can 
deliberately allocate the variables according to their use. 

The allocation of variables in the original program may conflict with 
their multitasked use. The modifications that you make for multitasking 
can affect portions of the program that are not being multitasked. The 
allocation of variables for use in multitasking is one of the most 
important steps in conversion, and it is too easily overlooked. Failure 
to address this aspect of multitasking gives rise to subtle data 
dependency violations that are difficult to identify during debugging. 

You can categorize variables used in a multitasked segment of code 
according to the way they are used by the tasks that have access to 
them. In a correctly multi tasked code segment, you can categorize 
variables as one of the following types: 

1 

2 

3 

4 

Category 

Shared, read-only access 

Shared, partitioned access 

Shared, protected access 

Private, with no restrictions on use but always defined 
before use 

The first three variable types are accessible to all tasks, while the 
fourth is accessible to only one task. 

The multitasked use of a variable is a characterization of the variable's 
accessibility by tasks. A variable's uniprocessing use is determined by 
the following: 

• Its appearance on the left or right side of assignment statements 
• Whether the variable is subscripted by the loop variable 
• The variable's scope with respect to the loop 

SR-0222 D 9-7 



Variables within a multi tasked loop can be characterized by their use 
within the loop as follows (the variable I is the loop index): 

Type 1: Appears only on the right-hand side 
Mayor may not be subscripted by I 
Read-only references 

DO 1 I = 1, N 

1 CONTINUE 

= A(I) 
= S 

Type 2: Appears on both left- and right-hand sides 
Subscripted by I 
Each iteration operates on independent elements 

DO 2 I = 1, N 
A( I) 

A( I) = 
A(I) = A(I) 

2 CONTINUE 

Type 3: Appears on the right- and left-hand side in one statement 
Is not subscripted by I 
Accumulation operation 

DO 3 I = 1, N 
S S + 

3 CONTINUE 

Type 4: Appears on the left-hand side, then on the right-hand side 
Is not subscripted by I 
Reused temporary variable 

DO 4 I = 1, N 
S 

S 
4 CONTINUE 

Other uses of variables in loops inhibit mUltitasking. 

The uniprocessing scope of variables with respect to the loop to be 
multitasked is also important. See subsection 2.6, Scope. 

You must look at the original code and analyze the ramifications of 
introducing a new scope boundary in order to categorize the variables in 
the program and identify the allocation required for multitasking. 

9-8 SR-0222 0 



Consider the following original code: 

B = ••• 

c = ••• 
DO 10 I 1, 1000 

A = B + FLOAT(I) 
C = C + 1. 
D(I) = A*2. 

10 CONTINUE 

= C 
••• = D(K) 

The analysis showing that the iterations of the 10 loop can be done in 
parallel relies on the analysis of the multitasking use of the variables 
referenced in the loop. An attempt to multitask this loop introduces a 
new scope boundary at DO 10 and CONTINUE. Identify and compare the scope 
of the variables referenced in the loop with this new scope region. If 
the scope of a variable is contained within the introduced scope 
boundaries, that variable is private to each task. Private variables are 
always defined (assigned) before being used within the new scope 
boundaries. The variable A in the preceding example is a private 
variable. 

If the scope of a variable extends outside the new scope boundaries, the 
variable is shared by all tasks. Program modifications are needed to 
maintain the variable's scope over the new multitasked code. Usually 
these modifications involve putting the variable into COMMON statements 
or putting the variable into the argument list of the TSKSTART 
statement. Avoid the latter method whenever possible, however, because 
passing arguments through TSKSTART causes many of the bugs in multitasked 
programs. The variables B, C, and D in the preceding example are shared 
variables. Variable B is a shared variable that has only fetch 
references, variable C is a shared variable that must be monitored to 
avoid simultaneous updates, and variable D is a COMMON variable whose 
elements are independently assigned. 

You can convert the previous original code for multitasking as follows: 

MULTITASKED CODE 
COMMON / MT / LOCKC, B, C, D(1000) 
B = ••• 
C = ••• 
CALL TSKSTART( IDTASK, TASK ) 
DO 10 I = 1, 500 

A = B*FLOAT(I) 
CALL LOCKON( LOCKC 
C = C + 1. 
CALL LOCKOFF( LOCKC ) 
D(I) = A*2. 

10 CONTINUE 

SR-0222 D 9-9 



CALL TSKWAIT( IDTASK ) 

= C 
••• = D(K) 

SUBROUTINE TASK 
COMMON / MT / LOCKC, B, C, 0(1000) 
DO 10 I = 501, 1000 

A = B*FLOAT(I) 
CALL LOCKON( LOCKC 
C = C + 1. 
CALL LOCKOFF( LOCKC ) 
D(I) = A*2. 

10 CONTINUE 
RETURN 
END 

Two variables are now named A, one in MAIN and one in TASK. Storage 
location B is only fetched in both tasks and needs only to be made 
accessible to all tasks. Storage location C is both fetched and assigned 
and needs to be monitored as well as made accessible to all tasks. 
Different storage locations of array D are assigned by each task, but the 
whole array is accessible to all tasks. 

The modifications for multitasking (putting variables into COMMON blocks) 
may interfere with the storage assignment of variables in the original 
program. In the preceding example, variable A may have been originally 
contained in a COMMON block. Its uniprocessing use accommodated its 
accessibility (or reusability) by several program units. Its 
multitasking use requires that it be private. 

Likewise, variables B, C, and D may have been contained in COMMON blocks 
along with other variables not involved in multitasking. Also, the 
placement of these variables into COMMON blocks may interfere with the 
use of the variables or with other variables having the same name in 
other parts of the program. You must understand completely, over the 
whole program, the use of all variables involved in multitasking (and 
other variables with the same names). You must pay special attention to 
variables that are Fortran equivalenced to other variables. 

The following rules aid in determining the categories of the variables 
appearing within a loop considered for multitasking. The loop control 
variable is assumed to be I. 

1. Variable is subscripted by I - SHARED. 

9-10 SR-0222 D 



2. Variable is not subscripted by I. 

a. Variable appears only on the left-hand side; PRIVATE. 
Watch out for a live variable after loop. 

b. Variable appears only on the right-hand side; 
SHARED. 

c. Variable appears on both left- and right-hand sides 

1) Variable always defined before used; PRIVATE. 
2) Variable not defined before used; ERROR or SHARED 

(and monitored). 

The characteristics of private and shared variables are important when 
identifying the multitasked use of variables: 

• Variables private to tasks: 

Multiple copies (one per task) 
Temporary existence (dies when task dies) 
Cannot be referenced by other tasks 
Always defined before used within task 
Usually scalars or small workspace arrays 

• Variables shared by tasks: 

One copy (independent of number of tasks) 
Permanent existence (dies when job dies) 
Can be referenced by all tasks (common) 
Are fetch only, independently used, or monitored 
Usually larger arrays, lock or event variables, constants 

9.6 TASK COMMON 

Standard Fortran provides COMMON blocks for sharing variables among 
program units. Common blocks are also used to minimize the length of 
argument lists in CALL statements. 

Variables appearing in COMMON blocks occupy static storage locations for 
the life of the program. The fact that variables in COMMON blocks are 
accessible to all tasks and all program units can cause a conflict. A 
task might require that the different program units composing it all have 
access to a certain variable, therefore needing that variable in COMMON 
storage. The same task may also require, however, that no other tasks 
have access to the variable, necessitating that the variable be in 
private storage. Further, several different tasks can execute some of 
the same program units, requiring that you consider not only which 
program unit may access a variable but also which task a program unit is 
in when it accesses a variable. 

SR-0222 D 9-11 



TASK COMMON is a Cray Fortran language extension that provides a way for 
tasks to obtain storage that is private to the task but that can be used 
by all subroutines called within the task. The syntax for a TASK COMMON 
declaration is as follows: 

TASK COMMON Icbnamelnlist 

TASK COMMON must be named, and the items cannot be saved or preset with 
DATA or NAMELIST 1/0, but otherwise the syntax and usage are identical to 
those of regular COMMON. 

When compiled with static storage allocation (the default) or the CFT77 
STATIC option, TASK COMMON is treated in the same way as regular COMMON. 
When compiled with the STACK option, TASK COMMON blocks are set up on the 
stack when a task is started and go away when a task completes. 

The following program illustrates a problem for which TASK COMMON 
provides a solution: 

COMMON I ARGS I A(100), B(100) 
COMMON I RESULT I C(100) 
DO 20 I = 1, 100 

DO 10 J = 1, 100 
A(J) = I+J 
B(J) = I*J 

10 CONTINUE 
CALL SUB(I) 

20 CONTINUE 
STOP 
END 
SUBROUTINE SUB(I) 
COMMON I ARGS I A(100), B(100) 
COMMON I RESULT I C(100) 
C(I) = SDOT(100,A,1,B,1) 
RETURN 
END 

Without using TASK COMMON, this program can be converted for multitasking 
by duplicating code and using a variable, IOFFSET, to share the 
statically allocated COMMON block. This process must be followed for 
each task that is used, as in the following example: 

9-12 

COMMON I ARGS I A(200), B(200) 
COMMON I RESULT I C(100) 
CALL TSKSTART( IDTASK, TASK ) 
IOFFSET = 0 

SR-0222 D 



DO 20 I = 1, 50 
DO 10 J = 1, 100 

A(J+IOFFSET) I+J 
B(J+IOFFSET) = I*J 

10 CONTINUE 
CALL SUB(I,IOFFSET) 

20 CONTINUE 
CALL TSKWAIT( IDTASK ) 
STOP 
END 
SUBROUTINE TASK 
COMMON / ARGS / A(200), B(200) 
COMMON / RESULT / C(100) 
IOFFSET 100 
DO 20 I = 51, 100 

DO 10 J = 1, 100 
A(J+IOFFSET) = I+J 
B(J+IOFFSET} = I*J 

10 CONTINUE 
CALL SUB(I,IOFFSET) 

20 CONTINUE 
RETURN 
END 
SUBROUTINE SUB(I,IOFFSET) 
COMMON / ARGS / A(200), B(200) 
COMMON / RESULT / C(100) 
C(I) = SDOT(100,A(1+IOFFSET),1,B(1+IOFFSET),1) 
RETURN 
END 

Alternatively, A and B can be made private variables in MAIN and TASK, 
and passed as arguments to SUB. 

CFT?? and CFT contain a language extension that explicitly provides for a 
TASK COMMON capability. This extension permits a simple program 
modification to produce the desired results, as in the following example: 

TASK COMMON / ARGS / A(100), B(100) 
COMMON / RESULT / C(100) 
CALL TSKSTART( IDTASK, TASK ) 
DO 20 I = 1, 50 

DO 10 J = 1, 100 
A(J) = I+J 
B(J) = I*J 

10 CONTINUE 
CALL SUB(I) 

20 CONTINUE 
CALL TSKWAIT( IDTASK ) 
STOP 
END 

SR-0222 D 9-13 

-.. -"' ..•.. -~ .• ---•.. --------.---------------------------------------



SUBROUTINE TASK 
TASK COMMON I ARGS I A(100), B(100) 
COMMON I RESULT I C(100) 
DO 20 I = 51, 100 

DO 10 J = 1, 100 
A( J) = I +J 

B(J) = I*J 
10 CONTINUE 

CALL SUB(I) 
20 CONTINUE 

RETURN 
END 
SUBROUTINE SUB(I) 
TASK COMMON I ARGS I A(100), B(100) 
COMMON I RESULT I C(100) 
C(I) = SDOT(100,A,1,B,1) 
RETURN 
END 

Using TASK COMMON to provide a separate workspace for each task requires 
only that the COMMON IARGSI statement be replaced with TASK COMMON 
IARGS/. Other program modifications may not be necessary. In the 
preceding example, two COMMON blocks have the name ARGS. One is 
accessible by the main task (main and SUB), while the second is 
accessible by the started task (TASK and SUB). References in subroutine 
SUB to A and B apply to the TASK COMMON block associated with the task to 
which SUB belongs. 

9.7 DOALL 

A DOALL is a loop with independent iterations. A partition of the 
iterations of a DO loop divides the iterations into groups. These groups 
can be executed in parallel by multiple tasks. 

The partitioning of iterations is called static if the iterations 
belonging to each group are known before execution time. The 
partitioning of iterations is called dynamic if either the number of 
iterations belonging to a group or the assignment of iterations to groups 
is unknown until execution time. 

For vectorization, most of the work is found in loops, which is where 
parallelism is exploited. This is also true of multitasking, but on a 
larger scale. A frequent application of multitasking is the simultaneous 
execution of independent iterations of loops that have been broken apart 
into separate subprograms. The techniques to multitask loops are of 
fundamental importance. 

9-14 SR-0222 D 



The first case considered is a loop in which each iteration has equal 
computational requirements. A choice exists as to how these independent 
iterations should be grouped for execution as distinct tasks. At one 

extreme, each iteration can be computed by a separate task. At the other 
extreme, the iterations can be grouped into a number of tasks equal to 

the number of processors. Having fewer groups (tasks) than processors 
prevents full use of the processor resources. In the middle, a balance 
of the number of groups and the number of iterations per group can 
enhance both vectorization and multitasking speedups in some cases. 

For workloads with equal iterations and a given number of processors (for 
example, two), statically dividing the iterations into two groups is 
natural. Each group may comprise the even- or odd-numbered iterations or 
the first and second half. The even-odd partition may increase bank 
conflicts. Consider the following matrix addition example: 

DO 20 J = 1, N 
DO 10 I = 1, N 

A(I,J) = B(I,J) + C(I,J) 
10 CONTINUE 
20 CONTINUE 

The 20 loop is multitasked by partitioning the range of J into first half 
and second half. This corresponds to partitioning the matrix addition 
problem into two parts: the left half of A and the right half of A. For 
a sufficiently large N, the right-half computation may be formed into a 
separate task, as follows: 

Task 0 

COMMON I MT I A,B,C,N 
L = N/2 
LP1 = L + 1 
CALL TSKSTART(IDT,T,LP1,N) 

CALL T(1,L) 

CALL TSKWAIT(IDT) 

Task 1 

10 

SUBROUTINE T(IS,IE) 
COMMON I MT I A,B,C,N 
DO 20 J = IS, IE 

DO 10 I = 1, N 
A(I,J) = B(I,J)+C(I,J) 

CONTINUE 
20 CONTINUE 

RETURN 
END 

The same subroutine T is part of both tasks in the preceding example. 
Its arguments determine which half of the computation is to be performed. 

SR-0222 0 9-15 



The overhead of task generation (for example, stack allocation of local 
variables) usually makes EVENTs better mechanisms for managing loop 
parallelism. This is especially true when several loops can be 
multitasked, as the following example shows: 

PROGRAM MAIN 
COMMON/MT/ISTART,IDONE,JOB,A(1000),B(1000),C(1000) 
CALL TSKSTART(IDTASK,T) 
JOB = 1 
CALL EVPOST(ISTART) 
DO 10 I = 1, 500 

B(I) = A(I) + 1.0 
10 CONTINUE 

CALL EVWAIT(IDONE) 
CALL EVCLEAR(IDONE) 
JOB = 2 
CALL EVPOST(ISTART) 
DO 20 I = 501, 1000 

C(I) = B(I) + 2.0 
20 CONTINUE 

CALL EVWAIT(IDONE) 
CALL EVCLEAR(IDONE) 
JOB = 3 
CALL EVPOST(ISTART) 
CALL TSKWAIT(IDTASK) 
STOP 
END 

SUBROUTINE T 
COMMON/MT/ISTART,IDONE,JOB,A(1000),B(1000),C(1000) 

1 CALL EVWAIT(ISTART) 
CALL EVCLEAR(ISTART) 
IF( JOB.EQ.2 ) GO TO 19 
IF( JOB.GT.2 ) GO TO 99 
DO 10 I = 501, 1000 

B(I) = A(I) + 1.0 
10 CONTINUE 

CALL EVPOST(IDONE) 
GO TO 1 

19 CONTINUE 
DO 20 I = 1, 500 

C(I) = B(I) + 2.0 
20 CONTINUE 

CALL EVPOST(IDONE) 
GO TO 1 

99 CONTINUE 
RETURN 
END 

9-16 SR-0222 0 



In the preceding example, the event ISTART signals the waiting task T to 
begin work specified by the flag JOB. The event IDONE signals the main 
task that work has been completed. Task T is programmed as an infinite 
loop always going back to statement 1 to look for more work to do. A 
flag value of 3 terminates task T. 

When the workload of each iteration varies, a different technique may be 
appropriate. A static partition of the iterations may result in unequal 
execution times for each task, causing some tasks to wait unnecessarily 
for other tasks to complete. One solution is to have the iterations 
schedule themselves as follows: 

Task 0 

COMMONI MT IA(100,100),J,JLOCK,N 
J = 0 
CALL TSKSTART(IDT,T) 

CALL T 

CALL TSKWAIT(IDT) 

Task 1 

SUBROUTINE T 
COMMONI MT IA(100,100),J,JLOCK,N 

1 CALL LOCKON( JLOCK ) 
JLOCAL = J + 1 
J = JLOCAL 
CALL LOCKOFF( JLOCK 
IF( JLOCAL.GT.N ) GO TO 99 
IF( A(1,JLOCAL).EQ.0.0 ) GO TO 20 
DO 10 I = 1, N 

A(I,JLOCAL) = 

A(I,JLOCAL)/A(1,JLOCAL) 
10 CONTINUE 
20 GO TO 1 
99 RETURN 

END 

Subroutine T is a part of both tasks in the previous example. Each task 
accesses and updates a shared variable J, which is the outer loop 
variable. This access is under the protection of a lock to ensure 
exclusive updates. Each task copies the next value of J to a private 
location, JLOCAL, and commits itself to that iteration. When an 
iteration completes, each task goes back to look for unprocessed 
iterations until all are performed. 

Which task computes a given iteration is unknown at the start. Using 
this technique, the workload tends to be balanced among the tasks. The 
task that commits to shorter iterations does more of them. The 
difference in completion time between the two tasks is, at most, one 
iteration time. 

The dynamic partitioning technique incurs an overhead for each iteration, 
raising the question of whether the overhead compensates for the workload 
imbalance. An alternative is to dynamically schedule fixed size groups 
of iterations. A task then commits to a range of the values of J. This 
reduces the overhead, but it also reduces the capability for load 
balancing. 

SR-0222 D 9-17 



9.8 COBEGIN 

A COBEGIN is a sequence of independent program segments, which may be 
loops or CALL statements. Because the segments are independent, 
profitable multitasking is possible if the segments are of similar size. 

Example: 

CALL FFT( IN1, OUT1, TEMP1, N 
CALL FFT( IN2, OUT2, TEMP2, N 

The independence of input, output, and workspace allows these Fast 
Fourier Transforms (FFTs) to be done in separate tasks. Multitasking 
speeds up the computation in this case, while vectorization across the 
FFTs does not help. 

COBEGIN can be viewed as a generalization of DOALL with independent 
segments instead of independent iterations. The relationship is made 
clearer by transforming the segments into a loop. 

DO 10 I = 1, 2 
IF(I.EQ.1) CALL FFT( IN1, OUT1, TEMP1, N 
IF(I.EQ.2) CALL FFT( IN2, OUT2, TEMP2, N 

10 CONTINUE 

This example is easily converted for multitasking. 

CALL TSKSTART( IDFFT, FFT, IN1, OUT1, TEMP1, N ) 
CALL FFT( IN2, OUT2, TEMP2, N ) 
CALL TSKWAIT( IDFFT ) 

9.9 DOPIPE 

A DOP1PE is a software pipeline of program segments within a loop. 
Dependencies among the segments prevent the loop from having independent 
iterations. Nevertheless, the iterations of the loop can be executed in 
parallel if the dependencies are satisfied. 

Example: 

DO 10 I = 2, N 
A(I) = A(I-1) + B(I) (--- Statement 1 
D(1) = A(1) + C(1) (--- Statement 2 

10 CONTINUE 

9-18 SR-0222 D 



In this example, dependencies involving the variable A prohibit 
performing the loop iterations independently. After the value is 
assigned to A in one iteration, however, the next iteration can begin. 
Figure 9-1 shows how the iterations are pipelined to satisfy the 
dependence requirement and to allow simultaneous execution of the 
iterations. 

Time 

Task 0 

Task 0 

STMT 1 (1=2) 
STMT 2 (1=2) 
STMT 1 (1=4) 
STMT 2 (1=4) 

Task 1 

WAIT 
STMT 1 (1=3) 
STMT 2 (1=3) 
STMT 1 (1=5) 
STMT 2 (1=5) 

Task 1 

COMMON/MT/A,B,C,D,N,EV1,EV2 
CALL TSKSTART(IDT,T) 

SUBROUTINE T 
COMMON/MT/A,B,C,D,N,EV1,EV2 
DO 10 I = 3, N, 2 DO 10 I = 2, N-2, 2 

A(I)=A(1-1)+B(I) 
CALL EVWAIT(EV2) 
CALL EVCLEAR(EV2) 
CALL EVPOST(EV1) 
D(I)=A(I)+C(I) 
CALL EVWA1T(EV2) 
CALL EVCLEAR(EV2) 
CALL EVPOST(EV1) 

10 CONTINUE 
A(N) = A(N-1) + B(N) 
D(N) = A(N) + C(N) 
CALL TSKWAIT(1DT) 

CALL EVPOST(EV2) 
CALL EVWAIT(EV1) 
CALL EVCLEAR(EV1) 
A(I) = A(I-1)+B(I) 
CALL EVPOST(EV2) 
CALL EVWA1T(EV1) 
CALL EVCLEAR(EV1) 
D(I) A(I)+C(I) 

10 CONTINUE 
RETURN 
END 

Figure 9-1. Pipelining 

Use a dynamic pipeline to allow independent iterations, and use locks to 
monitor the commitment of tasks to iterations. 

The following example gives an alternative, dynamic implementation: 

Original code: 

DO 10 I=1,N 
A(I) = A(I-1) + B(I) 

10 D(I) = A(I) + C(I) 

SR-0222 D 9-19 



Task 0 

COMMONI MT IA,B,C,0,N,I,L1 
1=1 
CALL TSKSTART(IOT,T) 

CALL T 

CALL TSKWAIT(IOT) 

Task 1 

SUBROUTINE T 
COMMONI MT IA,B,C,0,N,I,L1 

10 CALL LOCKON(L1) 
IL = 1+1 
I = IL 
IF( IL.GT.N ) GO TO 20 
A(IL) = A(IL-1) + B(IL) 
CALL LOCKOFF (L1) 
O(IL) = A(IL) + C(IL) 
GO TO 10 

20 CALL LOCKOFF(L1) 
RETURN 
END 

The following example contains two (or more) piping segments. This 
implementation approach is independent of the number of segments or the 
number of processors. 

Original code: 

DO 10 I=1,N 
A(1) A(1-1) + B(1) 

10 0(1) = 0(1-1) + A(I) 

9-20 

Task 0 

COMMONI MT IA,B,C,0,N,I,L1,L2 
1=1 
CALL TSKSTART(IOT,T) 

CALL T 

CALL TSKWAIT(IOT) 

Task 1 

SUBROUTINE T 
COMMONI MT IA,B,C,0,N,I,L1,L2 

10 CALL LOCKON(L1) 
1L = 1+1 
I = IL 
IF( IL.GT.N ) GO TO 20 
A(IL) = A(IL-1) + B(IL) 
CALL LOCKON (L2) 
CALL LOCKOFF (L1) 
0(1) = 0(1-1) + A(I) 
CALL LOCKOFF(L2) 
GO TO 10 

20 CALL LOCKOFF(L1) 
RETURN 
END 

SR-0222 0 



For this technique to be worth the price of the overhead, the program 
segments in the pipeline must be of sufficient size. Additionally, each 
segment must be of similar size so that the workload for each task is 
balanced at every stage. 

9.10 CRITICAL REGION 

A critical region is a program segment that can be executed by only one 
task at a given time. The lock facilities ensure that this happens. 
Locks are not associated directly with any computational variable or its 
storage location; they are rather associated with code that references 
the variable. 

A critical region is formed by turning the lock on before entering the 
program segment and off after leaving. A critical region may be one 
physical program segment or corresponding program segments in different 
tasks. A task attempting to enter a critical region that is occupied by 
another task must wait until the other task exits the region, as shown in 
the following example: 

Task 0 

CALL LOCKON(LOCK1) 

I 
critical region 1 

I 
CALL LOCKOFF(LOCK1) 

I 
I 
I 
I 
I 
I 

CALL LOCKON(LOCK2) 

wait 

critical region 2 

CALL LOCKOFF(LOCK2) 

I 
I 

SR-0222 D 

Task 1 

CALL LOCKON(LOCK1) 

wait 

critical region 1 
I 

CALL LOCKOFF(LOCK1) 
I 
I 

CALL LOCKON(LOCK2) 

I 
critical region 2 

I 
CALL LOCKOFF(LOCK2) 

I 
I 
I 
I 
I 
I 

9-21 



The following example shows the use of locks to manage exclusive 
parallelism in the environment of concurrent parallelism. Consider the 
original code segment: 

S = 0.0 
DO 20 I = 1, N 

DO 10 J = 1, N 
A(I,J) = B(I)*C(J) 

10 CONTINUE 
S = S + SIN(A(I,l» 

20 CONTINUE 

The iterations of the 20 loop can be executed in parallel if the updates 
to S are never performed simultaneously. One lock protects the access of 
all tasks to this update statement. The multitasked code is as follows: 

Task 0 

COMMON/MT/A,B,C,N,S,LOCKS 
CALL LOCKASGN( LOCKS ) 
S = 0.0 
CALL TSKSTART( lOT, T ) 
DO 20 I = 1, N/2 

DO 10 J = 1, N 
A(I,J) = B(I)*C(J) 

10 CONTINUE 
CALL LOCKON( LOCKS ) 
S = S + SIN(A(I,l» 
CALL LOCKOFF( LOCKS 

20 CONTINUE 
CALL TSKWAIT( IDT ) 

Task 1 

SUBROUTINE T 
COMMON/MT/A,B,C,N,S,LOCKS 
DO 20 I = N/2+1, N 

DO 10 J = 1, N 
A(I,J) = B(I)*C(J) 

10 CONTINUE 
CALL LOCKON( LOCKS ) 
S = S + SIN(A(I,l» 
CALL LOCKOFF( LOCKS ) 

20 CONTINUE 
RETURN 
END 

The following subsection offers another approach to the multitasking of 
summation. 

9.11 SUMMATION AND OTHER REDUCTION CONSTRUCTS 

Occasionally, exclusive parallelism constructs are found within the 
context of otherwise completely independent code. Such constructs include 
summation, product, minimum, maximum, and search. One alternative for 
executing these constructs in parallel along with the rest of the code is 
presented in subsection 9.10, Critical Region. That technique uses locks 
to maintain the exclusive independence of the construct while exploiting 
a higher level of parallelism. 

9-22 SR-0222 D 



The technique presented here exploits parallelism in the constructs 
themselves. This technique is useful when parallelism is not present at 
a higher level or when these constructs form a significant portion of the 
work to be done. 

Each task forms a partial result such as a partial sum or a local maximum, 
and the partial results are collected to form a total result by the main 
task after all tasks have synchronized. This approach does not require 
locks, because each task has independent storage locations in which to 
compute its partial result. The main task needs access, however, to all 
partial results. The following code shows the example of the previous 
subsection using this technique. 

Task 0 

COMMON/MT/A,B,C,N,SI 
SO = O. 
SI = o. 
CALL TSKSTART( IDT, T ) 
DO 20 I = 1, N/2 

DO 10 J = 1, N 
A(I,J) = B(I)*C(J) 

10 CONTINUE 
SO = SO + SIN(A(I,l» 

20 CONTINUE 
CALL TSKWAIT( IDT ) 
S = SO + Sl 

Task 1 

SUBROUTINE T 
COMMON/MT/A,B,C,N,Sl 
DO 20 I = N/2+1, N 

DO 10 J = 1, N 
A(I,J) = B(I)*C(J) 

10 CONTINUE 
Sl = Sl + SIN(A(I,l» 

20 CONTINUE 
RETURN 
END 

In the preceding code, task 0 computes its partial sum in SO, while task 1 
computes its partial sum in SI. After task 1 completes, task 0 computes 
the total sum, S, from SO and Sl. 

9.12 FORK/JOIN 

You can implement FORK/JOIN in a Fortran program without moving code into 
a separate subroutine by setting up alternative entry points that 
TSKSTART calls indirectly. You must use a dummy subroutine because the 
compiler does not allow a subroutine to pass itself as an argument. 

You must decide whether each variable is local or global, but this 
analysis aids in the understanding of the algorithm. Because the 
compiler must know how to handle each variable, each variable in the 
COMMON code is treated the same for each entry point. This means that 
all arguments to the subroutine must also be passed on to the alternative 
entry point so they are available to the COMMON code, and arguments that 
are passed only to the alternative entry point cannot be used by code 
entered directly through the main entry point. 

SR-0222 D 9-23 



A master/slave relationship must exist between the main task and the 
tasks that use the alternative entry point so that all of the 
subroutine's work is completed before it returns. The master task must 
always wait for all slave tasks to complete before returning. 

The following examples show three ways to convert a simple matrix 
multiply routine (MXM is the routine from which the others are derived): 

C 

C 

SUBROUTINE MXM(A,L,B,M,C,N) 
REAL A(L,M),B(M,N),C(L,N) 

DO 40 I = 1,L 
DO 10 J = 1,N 

C(I,J) = 0 
10 CONTINUE 

DO 30 K = 1,M 
DO 20 J = 1,N 

C(I,J) = C(I,J) + A(I,K)*B(K,J) 
20 CONTINUE 
30 CONTINUE 
40 CONTINUE 

RETURN 
END 

MULTMXM splits the matrix into two equal parts. TRANS is a simple way to 
avoid a recursive call. 

C 

C 
C 
C 

C 
C 
C 

C 

SUBROUTINE MULTMXM(A,L,B,M,C,N) 
INTEGER TID(3) 
EXTERNAL TRANS 
REAL A(L,M),B(M,N),C(L,N) 

TID(l) = 2 
CALL TSKSTART(TID,TRANS,A,L,B,M,C,N) 

split into 2 equal tasks 

Set up parameters for the master task. 

JL = L/2+1 
LL = L 
LCHILD = 0 
GOTO 1 

Set up parameters for the slave task. 

ENTRY MULTMXM1(A,L,B,M,C,N) 
JL = 1 
LL = L/2 
LCHILD = 1 

C Common code for both tasks. 

9-24 SR-0222 D 



C 

C 
1 CONTINUE 

DO 40 I = JL,LL 
DO 10 J = 1,N 

C(I,J) = 0 
10 CONTINUE 

DO 30 K = 1,M 
DO 20 J = 1,N 

C(I,J) = C(I,J) + A(I,K)*B(K,J) 
20 CONTINUE 
30 CONTINUE 
40 CONTINUE 

C 
C The master task must wait for the slave to complete before 
C returning. 
C 

IF (LCHILD .EQ. 0) CALL TSKWAIT(TID) 
RETURN 
END 

SUBROUTINE TRANS(A,L,B,M,C,N) 
CALL MULTMXM1(A,L,B,M,C,N) 
RETURN 
END 

simple way to avoid a 
recursive call 

SELSYNDO uses a self-synchronizing DO-loop technique. 

C 

C 

SUBROUTINE SELSYNDO(A,L,B,M,C,N) 
INTEGER TID(3) 
EXTERNAL TRANS1 
REAL A(L,M),B(M,N),C(L,N) 
DATA LOCKI,IGLOBAL 1-1,01 

CALL LOCKASGN(LOCKI,-l) 
IGLOBAL = 0 
TID(l) = 2 
CALL TSKSTART(TID,TRANS1,A,L,B,M,C,N) 

C Set the flag for the master task 
C 

C 

LCHILD 0 
GOTO 1 

C Set up the slave task 
C 

C 
C 
C 

ENTRY SELSYND1(A,L,B,M,C,N) 
LCHILD = 1 

Common code shared by both tasks 

SR-0222 D 

! self-synchronizing DOs 

9-25 



C 
1 CONTINUE 

99 CONTINUE 
CALL LOCKON (LOCKI) 

IGLOBAL = IGLOBAL + 1 
I = IGLOBAL 

CALL LOCKOFF(LOCKI) 
IF ( I .GT. L) GOTO 1000 
DO 10 J = 1,N 

C(I,J) = 0 
10 CONTINUE 

DO 30 K = 1,M 
DO 20 J = 1,N 

C(I,J) = C(I,J) + A(I,K)*B(K,J) 
20 CONTINUE 
30 CONTINUE 

GOTO 99 
1000 CONTINUE 
C 
C The master waits for the slave to complete before returning 
C 

IF (LCHILD .EQ. 0) CALL TSKWAIT(TID) 
RETURN 
END 

SUBROUTINE TRANS1(A,L,B,M,C,N) 
CALL SELSYND1(A,L,B,M,C,N) 
END 

SELSYNDN also uses the self-synchronizing DO-loop technique but is 
generalized for NPROC tasks. 

C 

C 

SUBROUTINE SELSYNDN(A,L,B,M,C,N) 
PARAMETER (NPROC = 4) 
INTEGER TID(3,NPROC-1) 
EXTERNAL TRANS2 
REAL A(L,M),B(M,N),C(L,N) 
DATA LOCKI,IGLOBAL 1-1,01 

CALL LOCKASGN(LOCKI,-l) 
IGLOBAL = 0 

DO 2 I = 1,NPROC-1 
TID ( 1, I) = 3 
TID ( 3 , I) = I 

self-synchronizing DOs 

CALL TSKSTART(TID(l,I),TRANS2,A,L,B,M,C,N) 
2 CONTINUE 

C 
C Set up the flag for the master task 
C 

LCHILD = 0 

9-26 SR-0222 D 



GOTO 1 
C 
C Set up the flags for the slave tasks 
C 

C 

ENTRY SELSYND2(A,L,B,M,C,N) 
CALL TSKVALUE(LCHILD) 

C Common code for all tasks. 
C 

C 

C 

1 CONTINUE 

99 CONTINUE 
CALL LOCKON (LOCKI) 

IGLOBAL = IGLOBAL + 1 
I = IGLOBAL 

CALL LOCKOFF(LOCKI) 
IF ( I .GT. L) GOTO 1000 

DO 10 J = 1,N 
C(I,J) = 0 

10 CONTINUE 
DO 30 K = 1,M 

DO 20 J = 1,N 
C(I,J) = C(I,J) + A(I,K)*B(K,J) 

20 CONTINUE 
30 CONTINUE 

GOTO 99 
1000 CONTINUE 
C 
C The slave tasks return when their work is done: the master 
C task must wait until all slave tasks have completed. 
C 

IF (LCHILD .NE. 0) RETURN 
DO 1001 I = 1,NPROC-1 

CALL TSKWAIT(TID(l,I» 
1001 CONTINUE 

RETURN 
END 

SUBROUTINE TRANS2(A,L,B,M,C,N) 
CALL SELSYND2(A,L,B,M,C,N) 
RETURN 
END 

SR-0222 D 9-27 

.--~.-.--------------------------------------------------------------





10. MACROTASKING IN CAL 

Multitasked programs may include user software written in languages other 
than Fortran. This section addresses some of the areas of special 
concern, focusing on CAL. Section 11, Multitasking with Pascal, covers 
Pascal multitasking in detail. 

You can generally modify software written in CAL to work in a multitasked 
program, but you must be careful when doing so. 

First, the subroutine should use the calling sequence first introduced 
with the COS 1.12 release. Using ENTER, EXIT, and associated macros is 
recommended. If the CAL subroutine is to be reentrant, it must use the 
stack calling sequence and should access local variables using the LOAD 
and STORE macros. CAL Version 2 supports a STACK SECTION option in which 
names can be assigned stack attributes. The size of such sections is 
passed to SEGLDR, and the assembler checks for improper use of these 
names in expressions. (The Macros and Opdefs Reference Manual describes 
these macros.) A subroutine coded with ENTER, EXIT, LOAD, STORE, and 
associated macros produces stack-based code if assembled with a version 
of the system text that has the stack flag set. 

Second, you should ensure that global variables are stored in memory 
before subroutine calls that may lead to a task switch. COMMON blocks 
can be defined within CAL code for consistency with CFT77 or CFT code. 
CAL Version 2 supports a TASK COMMON SECTION option. 

Third, you must be careful if I/O is included. The COS IIO tables (LFTs 
and DSPs), the datasets, and the I/O buffers may require treatment as 
shared variables requiring protection. 

Finally, call the multitasking library subroutines as described in the 
Programmer's Library Reference Manual. Register preservation assumptions 
are the same as with any library call. 

For examples of CAL subroutines that have been modified to work in a 
multitasking environment, you could look at subroutines in the various 
CRI default libraries. 

SR-0222 D 10-1 



10.1 PROCESSOR CLUSTERING 

At the hardware level, multitasking involves grouping processors with a 
mechanism called clustering. Clustering allows several processors to 
communicate efficiently with one another and to coordinate and control 
their combined activity in executing a single multi tasked job. The 
two-processor CRAY X-MP computer system has three clusters of shared 
registers, while the four-processor CRAY X-MP computer system has five 
clusters. 

A processor is assigned to a cluster according to the Exchange Package 
that is active in the processor. The Exchange Package contains a field 
called cluster number (CLN) to which the operating system assigns a 
value. If each of several processors contains an Exchange Package with 
the same cluster number value, these processors are clustered together. 
Figure 10-1 shows the configuration for a four-processor CRAY X-MP 
computer system. 

Any combination of processors can be clustered together. In a system 
with no multitasked jobs, each processor is assigned a different cluster, 
and independent jobs do not share a cluster. For a multitasked job, all 
the Exchange Packages of a job are assigned the same cluster number. 
Tasks executing on different processors cause the processors to be 
clustered together, which lets the tasks share the registers in the 
cluster. 

10.1.1 SHARED REGISTERS 

Processors clustered together may access a shared register set. Each 
cluster is identical and contains three groups of registers. Eight 
24-bit shared address (SB) resisters, eight 64-bit shared scalar (ST) 
registers, and thirty-two I-bit semaphore (SM) registers make up each 
cluster. The shared registers can be used to pass address and scalar 
information from one processor to another or for control among 
processors. Figure 10-2 shows shared registers in a cluster. 

10-2 SR-0222 D 



1==< 
Cluster 1==< 

1 1==< 
1==< 

1==< 
Cluster 1==< 

2 1 ==< 
1==< 

1==< 
Cluster 1==< 

3 1 ==< 
1==< 

1==< 
Cluster 1==< 

4 1==< 
1==< 

1==< 
Cluster 1==< 

5 1==< 
1==< 

I 1 CPU 0 
<==1 Ex. 1 ___ _ 

1 Pkg·1 
1 1 Code/Data 1 

1 1 CPU 1 
<==1 Ex. 1 ___ _ 

1 Pkg.1 
1 1 Code/Data 1 

1 1 CPU 2 
<==1 Ex. 1 ___ _ 

1 Pkg.1 
1 1 Code/Data 1 

1 CPU 3 
<==1 Ex. 1 ___ _ 

1 Pkg.1 
1 1 Code/Data 1 

Figure 10-1. Clusters and Processors for a Four-processor 
CRAY X-MP Computer System 

SR-0222 D 10-3 



10-4 

-------------------------< 

========================== 

sao sal sa2 
1 1 1 

sa7 
1 

========================== 

1--< 
1--< 
1--< 

1--> 
1--> 
1--> 

-------------------------> 

-------------------------< 

========================== 

STO ST1 ST2 

1 1 1 

ST7 

1 

========================== 

1--< 
1--< 
1--< 

1--> 
1--> 
1--> 

-------------------------> 

-------------------------< 

========================== 

SMOO SM01 SM02 

1 1 1 

. . . SM37 

1 

========================== 

1--< 
1--< 
1--< 

1--> 
1--> 
1--> 

-------------------------> 

(Ai) CPU 
(Ai) CPU 
(Ai) CPU 
(Ai) CPU 

Ai CPU 
Ai CPU 
Ai CPU 
Ai CPU 

(Si) CPU 
(Si) CPU 
(Si) CPU 
(Si) CPU 

Si CPU 
Si CPU 
Si CPU 
Si CPU 

(Si) CPU 
(Si) CPU 
(Si) CPU 
(Si) CPU 

Si CPU 
Si CPU 
Si CPU 
Si CPU 

Figure 10-2. Shared Registers in a Cluster 

NOTE 

0 
1 
2 
3 

0 
1 
2 
3 

0 
1 
2 
3 

0 
1 
2 
3 

0 
1 
2 
3 

0 
1 
2 
3 

CAL subroutines used in a multitasking system must not 
use hardware semaphore registers 0 through 16; these 
registers are reserved for system use. Direct use of 
cluster registers and shared a and T registers should 
be done with care, because system software and CFT77 or 
CFT-generated code may use these currently or in the 
future. 

SR-0222 D 



10.1.2 MACHINE INSTRUCTIONS 

The machine instructions that access the shared registers in a cluster 
are listed below. These instructions access the cluster to which the 
processor is assigned. You should consult the appropriate hardware 
mainframe reference manual for timing, reservation, and conflict 
resolution information. 

Monitor mode: 

0014j3 CLN j 

User mode: 

026ij7 Ai SBj 
027ij7 SBj Ai 

072ij3 Si STj 
073ij3 STj Si 

072i02 Si SM 
073i02 SM Si 
0034jk SMjk 1,TS 
0036jk SMjk 0 
0037jk SMjk 1 

SR-0222 D 

Enter j into CLN field 
of Exchange Package 

Transmit (SBj) to Ai 
Transmit (Ai) to SBj 

Transmit (STj) to Si 
Transmit (Si) to STj 

Transmit (SM) to Si 
Transmit (Si) to SM 
Test and set SMjk 
Clear SMjk 
Set SMjk 

10-5 





11. MACROTASKING WITH PASCAL 

Macrotasking can be accomplished within a Cray Pascal program in much the 
same way as within a Fortran program. Microtasking, however, is not 
possible with Pascal. 

Only Pascal programs compiled with Pascal version 3.0 or later can be 
used with the multitasking library routines. Earlier versions of the 
Pascal compiler used a different stack management system that did not 
include tables used by the multitasking routines. 

Pascal code used in a multi tasked program must be compiled with the 
reentrant (Z+) option, which is turned on by default. The multitasking 
versions of all libraries with routines that will be used must be local 
to the job when the program is loaded, just as with multitasked Fortran 
programs. You can specify heap and stack initial sizes and increments at 
load time. 

The multitasking library routines are accessed from Pascal in the same 
way that they are accessed from Fortran code. All of the routines must 
be declared as external procedures before they are used, and the $PSCLIB 
procedure P$TASK should be used in place of TSKSTART. 

11.1 MULTITASKING PROCEDURES 

P$TASK initiates a task because TSKSTART cannot be called directly from 
Pascal code due to the way in which procedure parameters are passed. If 
more than one procedure is used for starting new tasks, there must be a 
different version of the procedure declaration of P$TASK for each 
starting procedure, unless their argument list declarations are identical. 

P$TASK and the multitasking library routines are not predefined Pascal 
procedures, so they must be declared in any Pascal modules that use 
them. Suggested declarations for these routines are given in subsection 
11.9, Declarations for Multitasking Data Types and Procedures. 
Declarations equivalent to the following are needed to declare P$TASK: 

SR-0222 0 11-1 



TYPE 
TASKVALTYPE = one-word-data-type; 
TASKCONTROL = RECORD 

TCSIZE: INTEGER; 
TASKID: INTEGER; 
TASKVAL: TASKVALTYPE; 

END; 
PROCEDURE taskproc [(list)]; 
... (body of procedure) 
PROCEDURE TSKSTART (VAR TCS: TASKCONTROL; 

PROCEDURE TASKPROC [(list); 
list]); 

IMPORTED (P$TASK); 

TSKSTART(taskrecord,taskproc[,argumentlist]); 

taskrecord 

taskproc 

argumentlist 

Task control structure used for this task. Word 1 
must be set; word 3, if used, must also be set. On 
return, word 2 is set to a unique task identifier that 
must not be changed later in the program because the 
multitasking library routines use this word. (See 
subsection 11.2, Task Control Structure.) 

Procedure in which task execution begins. This 
procedure must be declared before it is used as an 
argument to P$TASK. It can be used as an argument 
only in procedures from which it could be called 
directly. 

List of arguments being passed to the procedure in 
which the new task begins execution. The types of 
items in this list must match the declared types of 
parameters in the procedure declaration for taskproc. 
All arguments passed to the new task must be passed as 
VAR parameters. 

The following example shows two declarations for P$TASK. The two 
different declarations are necessary because the procedures in which new 
tasks begin have different argument lists. 

11-2 SR-0222 D 



Example: 

PROGRAM multi; 
CaNST 

taskcount = 4; 
TYPE 

taskvaltype = ALFA; 
taskcontrol = RECORD 

tcsize: INTEGER; 
taskid: INTEGER; 
taskval: taskvaltype; 

END; 
datalist = ARRAY [1 .. 1000] OF REAL; 

VAR 
temp1, temp2 : integer; 
tcs: ARRAY [1 .. taskcount) OF taskcontrol; 
m: ARRAY [1 .. taskcount) OF datalist; 
tcs2: taskcontrol; 

PROCEDURE tskstart1(VAR tcs: taskcontrol; 
PROCEDURE taskproc (VAR x: datalist); 
VAR x: datalist); IMPORTED (P$TASK); 

PROCEDURE tskstart2(VAR tcs: taskcontrol; 
PROCEDURE taskproc (VAR i,j: integer); 
VAR i,j: integer); IMPORTED (P$TASK); 

PROCEDURE tskwait (VAR tcs: taskcontrol); EXTERNAL; 

PROCEDURE exttask (VAR i,j: integer); EXTERNAL; 

PROCEDURE task (VAR x: datalist); 
(* declarations and body for procedure task *) 

BEGIN 

(* Load data from some outside source *) 

(* Create tasks to each work on a portion of the data *) 

FOR i := 1 TO taskcount DO 
BEGIN 

WITH tcs[i] DO 
BEGIN 

tcsize := 3; 
taskname := 'TASK '; 
taskname [6) : = chr (ord( '0' ) +i) ; 

END; 
tskstart1(tcs[i),task,m[i); 

END; 

SR-0222 D 11-3 



(* Start an additional task in an external procedure *) 

tcs2.tcsize := 3; 
tcs2.taskname := 'EXT TASK'; 
temp1 := 500; 
temp2 := 1000; 
tskstart2(tcs2,exttask,temp1,temp2); 

(* Wait for all tasks to finish *) 

FOR i := 1 TO taskcount DO 
tskwait(tcs[i]); 

tskwait(tcs2); 

(* Perform some post-execution cleanup *) 

END. 

Functions LOCKTEST, EVTEST, and TSKTEST normally return Fortran logical 
results. You should declare them to return integer results (nonzero for 
true and zero for false) or replace them with local procedures that 
substitute Pascal Boolean results for Fortran logical results. 

Unlike Fortran code, TSKTUNE in Pascal is declared with a fixed number of 
parameters and can be called only with that number of inputs. It is 
therefore suggested that TSKTUNE be declared with one keyword/value pair 
of parameters and simply called multiple times for multiple inputs (see 
the examples provided in subsection 11.9, Declarations for Multitasking 
Data Types and Procedures). 

11.2 TASK CONTROL STRUCTURE 

Each user-created task is represented by a task control structure, 
constructed by the user program. At a minimum, the structure must 
consist of 2 Cray words. A third word can be included. This structure 
can be either an integer array of 2 or 3 words or a record in which at 
least the first word is an integer. The structure of this array or 
record is as follows: 

11-4 SR-0222 D 



o 8 16 24 32 40 48 56 63 

+----------------------------------------------------------------+ 
I LENGTH I 
1----------------------------------------------------------------1 
I TASK ID I 
1----------------------------------------------------------------1 
I TASK VALUE I 
+----------------------------------------------------------------+ 

Field 

LENGTH 

TASK ID 

Description 

Length of the structure in Cray words. The length must be 
set to a value of 2 or 3, depending on the optional 
presence of the task value field. You set the length field 
before creating the task. 

A task identifier assigned by the multitasking library when 
a task is created. This identifier is unique among active 
tasks within the job step. The multitasking library uses 
this field for task identification, but the task identifier 
is of limited use to user programs. 

TASK VALUE (optional field) 
Field that you can set to any value that fits in a Cray 
word before creating the task. If TASK VALUE is used, 
LENGTH must be set to a value of 3. The task value can be 
used for any purpose. Suggested values include a 
programmer-generated task name or identifier or a pointer 
to a task local storage area. During execution, a task can 
retrieve this value with the TSKVALUE procedure. 

11.3 STORAGE OF TASK CONTROL STRUCTURES AND LOCK AND EVENT VARIABLES 

Task control structures, lock variables, and event variables must be 
accessible to all procedures that use them. The actual storage location 
of a lock or event variable is manipulated by the multitasking library 
routines; therefore, all of these variables should be in static storage 
areas unless the stack frame for the procedure in which they are declared 
is guaranteed to exist for the entire time when the variables can be 
referenced. Variables declared in the main program or in the outermost 
level of a module are in static storage areas, as are variables declared 
in the STATIC declaration section of a nested procedure. Task control 
structures, lock variables, and event variables must be passed as VAR 
parameters. 

SR-0222 D 11-5 

,-------------------------------,------,-----------------------------------------------------



11.4 ARGUMENTS PASSED TO A PROCEDURE HAVING A NEW TASK 

Arguments passed to a procedure in which a new task begins must be passed 
as VAR parameters. If they are passed by value, the temporary storage in 
which their values reside can be reused any time after P$TASK returns to 
the calling task, even though the started task may not have executed. 

VAR parameters to the new task are passed by address, becoming shared 
data whose subsequent use by different tasks must be synchronized. 

As in Fortran programs that use multitasking, it is important to protect 
the use of shared variables by establishing lock variables for particular 
shared variables. These locks are then set and released around critical 
regions of code that use the shared variables. 

11.5 PASSING PROCEDURAL AND FUNCTIONAL PARAMETERS TO A TASK 

The Pascal compiler uses temporary storage areas for descriptors for 
procedural and functional parameters. If you pass procedures or functions 
to a new task, you must ensure that the parent task that called task 
start is suspended until the new task begins executing and copies the 
descriptors into its own storage locations. If you do not guarantee this 
situation, the parent task can reuse its temporary storage, overwriting 
the descriptors that the new task needs. To prevent this overwriting, 
call EVWAIT immediately after the call to P$TASK and call EVPOST within 
the procedure in which the new task begins. 

Example: 

VAR task_started: INTEGER; 

PROCEDURE task (procedure passed_proc); 
BEGIN 

evpost (task started); 

passed_proc; 
END; 

11-6 

BEGIN 

evasgn (task started); 
tskstart (tca, task, passed); 
evwait (task started); 

END; 

SR-0222 D 



11.6 USE OF NONLOCAL VARIABLES 

A Pascal procedure C, nested within procedures B and A, can reference the 
variables declared in those two procedures. In a multitasked Pascal 
program, nonlocal variables can be referenced from different tasks. If B 
has variables that are referenced by C in a separate task, B must not 
return from its call until its variables are no longer needed by C in its 
task. You can ensure that B does not return by calling TSKWAIT from B, 
which called TSKSTART on C. Calling TSKWAIT is necessary because the 
variables declared in B are stored in a stack frame that is released when 
the call of B is completed. The following example shows this technique: 

Example: 

PROCEDURE A; 
VAR x : REAL; 

PROCEDURE B; 

(* variable to be used in a separate task *) 

VAR tca : taskcontrol; 

PROCEDURE C; (* procedure to be executed as a separate task *) 
VAR Y 
BEGIN 

REAL; 
(* procedure C *) 

y := x; (* use of a nonlocal variable (x) from another task *) 

END; 
BEGIN 

(* procedure C *) 
(* procedure B *) 

tskstart (tca, C); 

END; 
BEGIN 

x .-

B; 

END; 

(* procedure B *) 
(* procedure A *) 

4.5; 

(* procedure A *) 

In the previous example, there is no call to TSKWAIT for the task that 
executes procedure C. Procedure A could there~ore release its stack 
space and return from its call before the new task (involving procedure 
C) even began execution. This would result in an invalid or undefined 
value for variable x in procedure C. To prevent this, TSKWAIT should be 
called from procedure B or the declaration of tea should be moved to 
procedure A and TSKWAIT then called from procedure A. 

SR-0222 D 11-7 



Variables declared in the main program or at the module level and 
referenced by nested procedures in separate tasks should not be assigned 
to B or T registers. If program- or module-level variables are used in 
separate tasks, add O=BREG=O:TREG=O to the Pascal control statement. If 
any nonlocal variables are used in separate tasks, add O=BREG-:TREG- to 
the Pascal control statement. 

11.7 INPUT AND OUTPUT IN MULTI TASKED PASCAL 

File buffer variables should be treated as shared data when file variables 
are used by more than one task. 

Only one task at a time should attempt to read from a particular Pascal 
input file. Sections of code that use the standard Pascal input routines 
(RESET, GET, READ, and READLN) or that reference the file's buffer 
variable directly should be locked if the file could be read from more 
than one task at a time. 

There are two methods of protecting an output dataset that will be used 
by more than one task at a time. The first method is to lock all 
sections of code that use the standard Pascal output routines (REWRITE, 
PUT, WRITE, and WRITELN) or change the file's buffer variable. The 
second method is to provide a local file variable for each task that will 
write to the dataset, and to connect each local file variable to the 
external dataset. Use the $PSCLIB procedure P$LSTREW should be used in 
place of REWRITE to avoid rewinding the dataset for each task. 

The second method protects output to individual records, but it allows 
records from more than one task to be interspersed. If any task writes 
messages of more than one record that should be kept together, you should 
use the first method of protecting output files. 

11.8 TASK COMMON IN PASCAL 

Cray Fortran TASK COMMON blocks can be used in Pascal code as TASKVAR 
variables. These variables are treated the same as regular common blocks 
when o=z- is used on the Pascal control statement and are the same as 
TASK COMMON when O=Z+ (the default) is used. 

11-8 SR-0222 D 



11.9 DECLARATIONS FOR MULTITASKING DATA TYPES AND PROCEDURES 

You must declare all multitasking library routines before they can be 

used in a Pascal procedure. The following suggested declarations can be 
used to declare these procedures: 

TYPE 
lock = INTEGER; 
event = INTEGER; 
taskvaltype ALFA;(* or anything else that will fit in one word *) 
taskcontrol = RECORD 

tcsize: INTEGER; 
taskid: INTEGER; 
tskval: taskvaltype; (* this one is optional *) 

END; 

PROCEDURE tskwait (tcs: taskcontrol); EXTERNAL; 

PROCEDURE tskvalue (VAR tskval: taskvaltype); EXTERNAL; 

FUNCTION tsktest (tcs: taskcontrol): INTEGER; EXTERNAL; 
or 

FUNCTION tsktest (tcs: taskcontrol): BOOLEAN; 
FUNCTION fortran tsktest (tcs: taskcontrol): INTEGER; 

IMPORTED (TSKTEST); 
BEGIN 

tsktest .- fortran tsktest(tcs) <> 0; 
END: 

PROCEDURE tsktune (keyword: ALFA: val: INTEGER): EXTERNAL; 

PROCEDURE tsklist; EXTERNAL; 

PROCEDURE lockasgn (VAR name: lock); EXTERNAL; 
or 

PROCEDURE lockasgn (VAR name: lock; initval: INTEGER); EXTERNAL; 

PROCEDURE lockon (VAR name: lock); EXTERNAL; 

PROCEDURE lockoff (VAR name: lock): EXTERNAL; 

PROCEDURE lockrel (VAR name: lock); EXTERNAL; 

FUNCTION locktest (name: lock): INTEGER; EXTERNAL; 
or 

FUNCTION locktest (name: lock): BOOLEAN; 
FUNCTION fortran locktest (name: lock): INTEGER; 

IMPORTED (LOCKTEST); 
BEGIN 

locktest .- fortran_locktest(name) <> 0; 
END: 

SR-0222 D 11-9 



PROCEDURE evasgn (VAR name: event); EXTERNAL; 
or 

PROCEDURE evasgn (VAR name: event; initval: INTEGER); 

PROCEDURE evwait (VAR name: event); EXTERNAL; 

PROCEDURE evpost (VAR name: event) ; EXTERNAL; 

PROCEDURE evclear (VAR name: event); EXTERNAL; 

PROCEDURE evrel (VAR name: event); EXTERNAL; 

FUNCTION evtest (name: event) : INTEGER; EXTERNAL; 
or 

FUNCTION evtest (name: event): BOOLEAN; 
FUNCTION fortran evtest (name: lock): INTEGER; 

IMPORTED (EVTEST); 

11-10 

BEGIN 
evtest 0- fortran_evtest(name) <> 0; 

END; 

EXTERNAL; 

SR-0222 D 



APPENDIX SECTION 





A. MULTITASKING ON A SINGLE-PROCESSOR CRAY X-MP COMPUTER SYSTEM 

Any multitasked program that runs correctly on a single-processor 
CRAY X-MP computer system will run correctly on a multiple-processor 
CRAY X-MP computer system, and vice versa. All CRAY X-MP computer 
systems have hardware semaphores and operating system support for 
multiple logical CPUs. 

A program whose source has been modified for multitasking should be 
recompiled and the absolute module rebuilt if transferred between machine 
types. Binaries, especially absolute binaries, are not transportable. 

Multitasked codes that run correctly on a CRAY-l computer system execute 
correctly on a CRAY X-MP computer system, but the converse is not always 
true. For example, a program could be set up in which the 
synchronization between two tasks is by way of COMMON variables in 
memory, and one task loops until a second task has updated the 
variables. Although this is not a recommended design, it could execute 
correctly on a CRAY X-MP computer system (if the machine is dedicated and 
the update period is long) because the operating system time slices the 
logical CPUs assigned to the user job. Over time, both tasks will 
execute. 

Under the simulation mode, an opportunity may never arise for the library 
scheduler to swap control between the two tasks, because no explicit 
synchronization is performed. Hence, one task or the other could retain 
control, either looping or updating until the job's time limit is 
exceeded. 

The COS system calls that create and delete tasks are available for 
CRAY-l computer systems, but the lack of an intertask synchronization 
mechanism (as provided by CRAY X-MP computer system hardware) makes these 
generally useless. 

SR-0222 D A-l 

--""~'~~-'-"'-"~~""'''-~~-~-'------'' ._----------------------------------------------





B. MESSAGES 

The following messages may be encountered during the development and 
testing of a multitasked application. For information on other messages, 
see the COS Message Manual, publication SR-0039. 

AB199 - MAXIMUM USER TASKS PER JOB EXCEEDED 
The user has created more than I@MAXNUT (a COS installation parameter) 
active logical CPUs. This occurs only if TSKTUNE was called with MAXCPU 
set above I@MAXNUT. 

MTOOl - FILE filename IS EMPTY 
The file named on MTDUMP, DN = filename is empty. Use a file 
containing the unformatted contents of the multitasking history trace 
buffer. 

MT002 - UNRECOGNIZED FORMAT ON MTDUMP 
The parameter FORMAT = $ on MTDUMP accepts TOTALS, eHRON, SYNC, CPU, or 
STATUS as valid parameters; others are unrecognized. Use one of the 
correct formats. 

UT013 - FATAL STACK OVERFLOW 
Insufficient space is available for expansion of the stack. Insufficient 
space was allocated for the stack, and the increment is zero on the LDR 
STK or the SEGLDR STACK directive is zero. 

UT015 - EVREL CALLED WITH TASKS WAITING FOR EVENT 
An event variable was released with EVREL, but some task was waiting for 
it. 

UT016 - LOCKREL CALLED WITH LOCK SET 
A lock variable was released with LOCKREL but was currently in use by 
some task. 

UT017 - INVALID LOCK IDENTIFIER 
LOCKREL was called, but the specified lock variable appears to be 
invalid. Check to ensure that the lock variable was assigned and that it 
was not accidentally overwritten. 

UT019 - HEAP IS FULL, CAN'T SATISFY REQUEST 
Insufficient space is available for expansion of the heap. Either 
insufficient memory space remains in the job's field length or the 
increment on the LDR MM or SEGLDR HEAP directive is zero. 

SR-0222 D B-1 



UT024 - DEADLOCK - ALL USER TASKS WAITING FOR LOCKS, EVENTS, OR TASKS 
The library detected a situation in which all active tasks are suspended 
for events, locks, or other tasks. 

UT025 - UNRECOGNIZED SCHEDULER PARAMETER NAME 
An ASCII string passed as a TSKTUNE parameter was not recognized. 

B-2 SR-0222 D 



c. APPROXIMATE TIMINGS 

This appendix contains approximate timings for the multitasking library 
subroutines. These timings are subject to change and are provided only 
for planning purposes. The timings are grouped by the subroutine 
groupings used in section 5, Macrotasking. 

Parallelism subroutines: 

Subroutine and Beginning Conditions 

TSKSTART (first call in program) 
(later call, if logical cputt needed) 
(later call, if logical CPU not needed) 

TSKWAIT (task completed execution) 
(task exists) 

TSKVALUE 

Protection subroutines: 

Subroutine and Beginning Conditions 

LOCKASGN 
LOCKON (lock free) 

(lock locked) 
LOCKOFF (no tasks waiting) 

(tasks waiting) 
LOCKREL 

Clock Periods 

1,500,000+ 
40,000 

2,500 

400+ttt 
2, 500+ ~f 

150 

Clock Periods 

400 
400 

1, 500+ ~f~f 
400 

1,800 
400 

t The value of 1,500,000 for TSKSTART is a worst case and may occur 
when a memory expansion must obtain stack space. Parameters on the 
SEGLDR control statement can bring about this memory allocation at 
load time rather than at run time (see section 5, Macrotasking). 
Experience has shown that for most multitasking applications, the 
initial one or two TSKSTART calls are subject to the larger times 
shown above, while all subsequent calls take only about 2500 clock 
periods. Section 5 describes the events that could lead to longer 
times, but these are typically uncommon. 

tt Logical CPUs are discussed in subsection F.1.1. 
ttt Plus approximately 25 clock periods for each existing task 
~f Plus time spent waiting for task to complete execution 
~f~f Plus time spent wai ting for lock to be unlocked 

SR-0222 D C-1 



Synchronization subroutines: 

Subroutine and Beginning Conditions 

EVASGN 

EVWAIT (event posted) 
(event clear) 

EVPOST (no tasks waiting) 
(tasks waiting) 

EVCLEAR 

EVREL 

t Plus time spent waiting for event to be posted 

Clock Periods 

400 

300 
1,800+t 

400 
1,900 

300 

400 

C-2 SR-0222 D 



D. MULTITASKING STATUS FEATURES 

Three function subprograms (one each for tasks, locks, and events) can be 
used to obtain the status of an entity. The following descriptions are 
not described in section 5, Macrotasking, because the subprograms are of 
limited use and carry a high risk. The risk is that a task using one of 
these subroutines may unintentionally enter a busy wait or a spin lock 
condition, locking all other tasks out of execution. For this reason, 
using these features in general code is discouraged. 

0.1 TSKTEST 

TSKTEST returns a value indicating whether or not the indicated task 
exists. TSKTEST must be declared LOGICAL in the calling module. 

Format: 

return=TSKTEST (taskarray) 

return A logical .TRUE. if the indicated task exists; a logical 
.FALSE. if the task was never created or has completed 
execution. 

taskarray Task control array 

D.2 LOCKTEST 

LOCKTEST tests to see whether a lock is in the locked state. LOCKTEST 
acts the same as LOCKON, except that the task never waits. A task using 
LOCKTEST must always look at the return value before continuing. 
LOCKTEST must be declared LOGICAL in the calling module. 

SR-0222 D 0-1 



Format: 

return=LOCKTEST (name) 

return 

name 

0.3 EVTEST 

A logical .TRUE. if the lock was originally in the locked 
state; a logical .FALSE. if the lock was originally in the 
unlocked state. The lock variable's state is always set to 
locked upon return. 

Name of an integer variable used as a lock 

EVTEST tests whether an event is posted. It must be declared LOGICAL in 
the calling module. 

Format: 

return=EVTEST (name) 

return 

name 

0-2 

A logical .TRUE. if the event is posted; a logical .FALSE. 
if the event has never been posted or is cleared. The 
event variable's state is unaffected by a call to EVTEST. 

Name of an integer variable used as an event 

SR-0222 0 



E. BIBLIOGRAPHY 

The following references contain additional information on multitasking 
and its applications: 

Andrews, G. and F. Schneider. "Concepts and Notations for Concurrent 
Programming." ACM Computing Surveys, vol. 15, no. 1 (March 1983): 
3-43. 

Baer, J. L. "A Survey of Some Theoretical Aspects of Multiprocessing." 
ACM Computing Surveys, vol. 5, no. 1 (March 1973): 31-80. 

Ben-Ari, M. Principles of Concurrent Programming. London: 
Prentice-Hall International, 1982. 

Bernstein, A. J. "Analysis of Programs for Parallel Processing." IEEE 
Trans. Elec. Comp., vol. 15 (October 1966): 746-757. 

Brinch Hansen, P. "Concurrent Programming Concepts." ACM Computing 
Surveys, vol. 5, no. 4 (December 1973): 223-245. 

Bucher, I. Y. "The Computational Speed of Supercomputers." Proceedings 
of ACMISIGMETRICS Conference on Measurement and Modeling of Computer 
Systems (August 1983): 151-165. 

Calahan, D. A. "Influence of Task Granularity on Vector Multiprocessor 
Performance." Proceedings of the 1984 International Conference on 
Parallel Processing. Ed. by Keller. IEEE Computer Society Press 
(August 1984): 278-284. 

Chen, S. C., J. J. Dongarra, and C. C. Hsiung. "Multiprocessing Linear 
Algebra Algorithms on the CRAY X-MP-2: Experiences with Small 
Granularity." Journal of Parallel and Distributed Computing, vol. 1, 
no. 1 (Augus t 1984): 22 - 31. 

Cohen, T. "Structured Flowcharts for Multiprocessing." Computer 
Languages, vol. 13, no. 4 (1978): 209-226. 

Dijkstra, E. W. 
Languages. 
43-112. 

"Co-operating Sequential Processes." Programming 
Ed. by E. Gunuys. New York: Academic Press (1968): 

Engel, T. M. and R. E. Wellck. "Multitasking of Atmospheric Forecast 
Models." Technical Report No. WSG-005. Boulder, CO: Cray Research, 
Inc., December 1983. 

SR-0222 D E-1 



Enslow, P. H. "Multiprocessor Organization." ACM Computing Surveys, 
vol. 9, no. 1 (March 1977): 103-129. 

______________ , ed. Multiprocessors and Parallel Processing. New York: 
Wiley-Interscience, 1974. 

Hansen, P. B. The Architecture of Concurrent Programs. Englewood 
Cliffs, NJ: Prentice-Hall, 1977. 

Heller, D. "A Survey of Parallel Algorithms in Numerical Linear Algebra." 
SIAM Review, vol. 20 (1978): 740-777. 

Hockney, R. W. and C. R. Jesshope. Parallel Computers: Architecture, 
Programming and Algorithms. Bristol, England: Adam Hilger Ltd., 
1981. 

Hsiung, C. C. and V. Butscher. "A New Numerical Seismic 3-D Migration 
Model for Vector Multiprocessors." Parallel Computing, vol. 1, 
no. 2 (1984). 

Hwang, K. and F. A. Briggs. Computer Architecture and Parallel 
McGraw-Hill, 1984. Processing. New York: 

Hwang, K. and R. H. Kuhn, eds. Tutorial on Supercomputers Design and 
Applications. IEEE Computer Society Press, 1984. 

Kneis, W. "Industrial Real-Time Fortran Standard." SIGPLAN Notices 
(July 1981): 45-60. 

Kuck, D. J. "Parallel Processing of Ordinary Programs." Advances in 
Computers, vol. 15. Ed. by Rubinoff and Yovits. New York: 
Academic Press (1976): 119-179. 

"A Survey of Parallel Machine Organization and Programming." 
ACM Computing Surveys, vol. 9, no. 1 (March 1977): 29-59. 

The Structure of Computers and Computations, vol. 1. New 
York: John Wiley and Sons, 1978. 

High Speed Computer and Algorithm Organization. Ed. by 
D. H. Lawrie and A. H. Sameh. New York: Academic Press, 1977. 

Kuhn, R. H. Tutorial on Parallel Processing. Ed. by D. A. Padua. Los 
Angeles: IEEE Computer Society Press, order number 367, 1981. 

Larson, J. L. "Multitasking on the CRAY X-MP-2 Multiprocessor." IEEE 
Computer, vol. 17, no. 7 (July 1984): 62-69. 

Miranker, W. L. "A Survey of Parallelism in Numerical Analysis." SIAM 
Review, vol. 13 (1971): 524-547. 

E-2 SR-0222 D 



Padua, D. A., D. J. Kuck, and D. H. Lawrie. "High-Speed Multiprocessors 
and Compilation Techniques." IEEE Trans. on Comp., vol. 29 
(September 1980): 763-776. 

Poole, W. G., Jr. and R. G. Voigt. "Numerical Algorithms for Parallel and 
Vector Computers: An Annotated Bibliography." Computing Reviews, 
vol. 15 (1974): 379-388. 

Rodrique, G., ed. Parallel Computations. New York: Academic Press, 
1982. 

Sameh, A. H. "Numerical Parallel Algorithms--A Survey." High-Speed 
Computers and Algorithm Organization. Ed. by Kuck, et ale Academic 
Press, 1977: 207-228. 

SR-0222 D E-3 





F. DESIGN DESCRIPTION 

This section presents an overview of the design of the multitasking 
library subroutines and provides detail about the library subroutines. 

F.! LIBRARY SCHEDULER 

The multitasking library is the primary manager and scheduler of tasks 
within a program. This approach offers advantages in the following areas: 

• Performance; you can perform multiple operations at the library 
level without calls to the operating system. 

• Tunability; you can tune the library for individual user programs, 
tuning it differently for different programs running 
simultaneously. 

• Flexibility; making library changes is easier than making the same 
changes to the operating system. 

• Ease of use; you are not required to maintain queues or task 
information, or to program in CAL in order to use the hardware 
multitasking features. 

F.!.! LOGICAL CPU 

The logical CPU is the key concept of the operating system interface to 
the library scheduler. (The logical CPU is referred to in COS 
documentation as a user task and in UNICOS as a process.) A logical 
CPU is the entity that the operating system schedules for execution on 
physical CPUs, and it is identified as an entry in the COS Task Execution 
Table (TXT), or the UNICOS Process Table. 

Initially, a job is assigned one logical CPU, but the library scheduler 
can request additional logical CPUs for a particular job, thereby 
bringing about multitasking. The number of logical CPUs need not, 
however, equal the number of tasks active in the user job. The maximum 
number of logical CPUs is a major tuning component of the library 
scheduler (see subsection 5.4, Tuning). 

SR-0222 D F-l 



The job of the library scheduler, therefore, is to connect user tasks to 
logical CPUs in the most efficient manner. If a task must wait for a 
lock or an event, that task is disconnected from its logical CPU so that 
the logical CPU is freed for use by another task in the job or possibly 
for return to the system. 

In many multitasking applications, the concept of the logical CPU may 
seem redundant or unnecessary. For example, if only two tasks are active 
on a CRAY X-MP computer system, the library scheduler would likely 
allocate and use two logical CPUs. The concept becomes important when 
there are more defined tasks than physical CPUs. Generally, the number 
of logical CPUs should not be greater than the number of physical CPUs to 
allow task scheduling to occur at the higher (and faster) level. 

F.l.2 QUEUE MANAGEMENT 

The library scheduler manages several queues of tasks. Tasks are moved 
between queues as their states change through the use of the multitasking 
facilities. 

The queues are generally handled in first-in, first-out (FIFO) order. 
However, when a task calls any of the multitasking subroutines, it is 
placed in the front of the Waiting for Logical CPU queue. If a task is 
moved from one queue to another, it is placed at the end of the new 
queue. The following discussion describes only two queues: the Waiting 
for Logical CPU queue and the Suspended queue. (Multiple suspended 
queues are actually implemented.) 

A number of the library subroutines exit through the library scheduler. 
The scheduler selects the first task in the Waiting for Logical CPU 
queue. If the task selected is the one that made the library call, that 
task is already connected to a logical CPU! The scheduler simply 
returns, and execution resumes in the user program. If a task other than 
the one that made the call is selected, registers for the task are loaded 
and execution resumes in the new task. 

F-2 

NOTE 

Band T registers are explicitly loaded by the library 
scheduler; A, S, and V registers are loaded as needed 
within the user code. Because the multitasking 
features are implemented as library subroutines, 
programmers cannot assume that the contents of A, S, 
and V registers are preserved across the call or that 
the generated code or the CAL code performs its own 
reloading as required. 

SR-0222 D 



F.2 KEY LIBRARY SUBROUTINES 

The following subsections describe the key library subroutines in detail. 

F.2.1 TSKSTART 

TSKSTART builds a stack for the task, copying initial information from the 
task control array into a Task Information Block at the base of the stack. 
The task is then placed in the Waiting for Logical CPU queue, and control 
passes to the library scheduler. 

F.2.2 TSKWAIT 

TSKWAIT checks the status of the specified task, returning control to the 
calling task if the specified task has completed execution. If the 
specified task is active, the calling task is placed in a Suspended queue, 
the identifier of the task for which it is waiting is saved, and control 
passes to the library scheduler. 

F.2.3 LOCKON 

LOCKON checks the status of the lock variable. If the lock variable is 
unlocked, the subroutine locks it and returns control. If the lock 
variable is locked, the calling task is placed in a Suspended queue, the 
identifier of the lock for which the task is waiting is saved, and control 
passes to the library scheduler. 

F.2.4 LOCKOFF 

LOCKOFF changes the status of the lock variable to unlocked. LOCKOFF 
then removes the first task waiting for that lock from a Suspended queue 
and puts it in the Waiting for Logical CPU queue. Control passes to the 
library scheduler. 

F.2.5 EVWAIT 

EVWAIT checks the status of the event. If the status is posted, control 
returns to the calling task without further action. If the status is 
cleared, the task is put in a Suspended queue, the identifier of the 
event for which it is waiting is saved, and control passes to the library 
scheduler. 

SR-0222 D F-3 



F.2.6 EVPOST 

EVPOST changes the status of the event variable to posted. EVPOST then 
removes all tasks waiting for that event from a Suspended queue and puts 
them in the Waiting for Logical CPU queue. Control passes to the library 
scheduler. 

F.2.7 EVCLEAR 

EVCLEAR changes the status of the event variable to cleared, and control 
returns to the calling task. 

F.3 STATE TRANSITIONS 

The multitasking routines and library scheduler, previously described, 
cause user tasks to move from state to state over the course of a job. 
Figure F-1 shows these transitions. 

Suspended 
for (5) 

LOCK 

Connected 
to Physical (1) 
CPU 

Connected to Logical 
CPU, Waiting for (2) 
Physical CPU 

Waiting 
for Logical 
CPU 

Suspended 

( 3 ) 

for (6) 
EVENT 

Non
existent 

Suspended 
on (7) 

TSKWAIT 

Figure F-1. Transitions of User Tasks 

(4) 

F-4 SR-0222 D 



The descriptions of transitions between states in figure F-1 are as 
follows: 

Transition 

(1)-->(2) 

(2)-->(1) 

(2)-->(3) 

(3)-->(2) 

(3)-->(4) 

(4)-->(3) 

(3)-->(5) 

(5)-->(3) 

(3)-->(6) 

(6)-->(3) 

(3)-->(7) 

(7)-->(3) 

F.4 TASK COMMON 

Description 

Because of an interrupt, the task is removed from a 
physical cpu. 

The operating system selects the task for execution on 
a physical CPU. 

A multitasked routine is called. (This transition may 
be transitory and may be immediately followed by the 
opposite transition.) 

The library scheduler assigns the task to a logical 
CPU, using the internal FIFO queue. 

The task completes execution. 

The task is created through a call to TSKSTART. 

The task executes LOCKON for a lock that is already on. 

Some other task executed LOCKOFF, and this task is 
selected to receive the lock. 

The task executes EVWAIT for an event that is not 
posted. 

Another task posts the event for which this task is 
waiting. 

The task executes TSKWAIT for an existing task. 

The task being waited for completes execution. 

When you use static allocation, TASK COMMON is treated the same as 
COMMON. When you use stack allocation, SEGLDR and LDR set up a table 
with the externally accessible name of $TASKCOM, containing the following 
information: 

• The number of TASK COMMON blocks 

• The sum of their lengths 

SR-0222 D F-5 



• For each TASK COMMON block, its ASCII name, its length, and its 
address 

The loaders consider the address of a TASK COMMON block to be the offset 
into $TASKCOM of the address/offset field. 

TSKSTART performs the following actions at run time to set up TASK COMMON 
blocks: 

• Copies the table from the externally accessible prototype into the 
stack for the new task 

• Allocates memory space for the TASK COMMON blocks and places the 
address for each block into the table 

• Places the address of word 0 of the table into a field at the top 
of the stack 

This implementation allocates space for all TASK COMMON blocks to each 
task, regardless of whether or not it uses them. 

F.S MEMORY MANAGEMENT 

The following levels of memory management exist within a multitasked 
program: 

• Heap storage 
• Stacks 
• Activation blocks 

F.S.l HEAP 

The heap is an area of memory within the user field length managed by 
user-callable library routines that provides dynamic storage allocation 
for a single job. Initial heap space is allocated at load time; the heap 
manager library routines request additional memory from the operating 
system when they are unable to satisfy requests using the free space 
already on the heap. 

The heap generally follows blank COMMON. It can be placed after the user 
code and data and before blank COMMON if the program does its own memory 
management. The heap is not allowed to expand when it precedes blank 
COMMON. 

F-6 SR-0222 D 



The initial size, increment size, and location (before or after blank 
COMMON) of the heap are specified at load time, as described in 
subsection 5.4.2, LDR and SEGLDR Memory Management Tunings. 

F.5.2 STACKS 

A stack is a linear list data structure for which all accesses are made 
from one end. Additions to the list are made by pushing down an item 
onto the top of the stack, and deletions involve popping up an item 
from the top of the stack. The last item entered on the stack is the 
first item out. 

Stacks provide the reentrant property needed for tasks and subroutines in 
a multitasking environment. Reentrant Fortran and CAL routines use stack 
space managed by the stack manager library routines. Stacks are 
allocated from the heap. Each task has its own stack with one or more 
stack segments. The initial stack segment for a task is set up when the 
task is initialized and includes a task information block used by the 
multitasking library routines, a table with TASK COMMON block names and 
addresses, and the TASK COMMON blocks themselves. Each active subroutine 
in the task has an activation block in the stack. 

Additional stack segments are added when a stack overflows. Each stack 
segment is linked to the previous segment and to the stack header at the 
base of the task's initial stack segment. 

The stack mechanism provides for reentrancy by giving each task an 
independent local workspace in TASK COMMON blocks that can be shared by 
all subroutines in a task. Additionally, a single subroutine can be used 
by more than one task, because the necessary independence required for 
reentrancy is provided by a separate activation block for each occurrence 
of the subroutine. 

The initial size and increment size of the stack are specified at load 
time, as described subsection 5.4.2, LDR and SEGLDR Memory Management 
Tunings. 

A portion of the user's area in memory is allocated for stack space and 
is called managed memory. The default location for managed memory is 
following the blank COMMON area, as indicated in figure F-2. 

Within the managed memory area are the stacks associated with tasks in 
the job. Each task has its own stack, and items in stacks are called 
stack frames. At the base of each stack is a task information block 
containing data such as the task rD, task value, and other information 
used by the multitasking library. The next frame contains any defined 
TASK COMMON blocks. 

SR-0222 D F-7 



When a task calls a subroutine, a new frame (called an. activation 
block) is pushed onto the stack. If this subroutine calls another 
subroutine, a new activation block is added on top of the previous one 
(see figure F-3). The number of activation blocks on the stack reflects 
the current depth level of subroutine calls. When a subroutine returns, 
its activation block is popped off the stack. 

User Code 

Named COMMON 

Blank COMMON 

Managed Memory 

Figure F-2. User Area in Memory 

Task Information Block 

TASK COMMON Blocks 

Activation Block 1 TASKSTACK 

Activation Block 2 1 

Activation Block 3 

Task Information Block 

TASK COMMON 

Activation Block 1 TASKSTACK 

Activation Block 2 2 

Activation Block 3 

Figure F-3. Task Stacks in Managed Memory 

F-8 SR-0222 D 



F.S.3 ACTIVATION BLOCKS 

Each active subroutine in a task has an activation block on the stack. 
This activation block contains local variables, save areas for Band T 
registers, and temporary storage. An activation block is pushed onto the 
stack in the subroutine entry processing and is popped off in the exit 
processing. The number of activation blocks On the stack reflects the 
current depth level of subroutine calls in the task. Figure F-4 
illustrates an activation block. 

B Register Save Area 

T Register Save Area 

Local Variables 

Temporary Variables 

Argument Addresses 

Figure F-4. Activation Block Stack Frame 

Register B02 is the current base pointer, pointing to the base of the 
activation block for the subroutine that is executing. Register B66 is 
the current top pointer, pointing to the first word past the current 
activation block. Fortran code uses B03 to point to the beginning of the 
local variables for the subroutine that is executing. 

During the entry sequence, stack pointers in registers B02 (the current 
base pointer) and B66 (the current top pointer) are updated to delimit 
the activation block for the routine just entered. An overflow occurs 
when the stack does not contain enough memory for the new routine, 
causing B66 to be greater than B67 (the absolute top pointer). The stack 
overflow library routine is then called to extend the stack segment or 
add a new stack segment. 

During the exit sequence, the stack pointers for the calling routine are 
restored. When a routine that caused an overflow returns, the stack 
underflow library routine is called to release the additional stack 
segment. The stack space for a subroutine is reused after the subroutine 
returns. 

Figure F-S shows the division of memory in the user area. (The} symbols 
indicate areas that are expanded in other parts of the figure.) 

SR-0222 D F-9 



0 

200 

MMBA 

HLM 

FL 

User Field 
+------------+ ..... ..... MMBA 

JCB 
------------

User 
Code/ 
Data 

------------ f 

Blank COMMON f 

------------

Heap } ........ f 

------------
------------

LFTs 
------------

DSPs 
------------

I/O 
Buffers 1 .... 

+------------+ 
1 .................... .... 

1 Last Stack 
Segment 

1 .... 

1 
1 
1 
1 
1 
1 
1 

1 
1 

HLM 

........ +------------+ 
Activation 

Block 3 

Activation 
Block 4 

B02 ------------

Activation 
Block 5 } 

B66 ------------

Unused 

B67 ------------
Pad Area 

Stack Link 
+------------+ 

.... 

Heap 
+------------+ ..... ..... ..... ..... 

Heap Header 
------------

Unused 
Space f 

------------ f 

Heap Header f 

------------ f 

Stack f 

{ Segment 2 f 

------------
Heap Header 
------------

User 
Requested 

Space f 

------------ f 

Heap Header f 

------------
Initial 
Stack 

Segment } .......... f 

+------------+ 

Last Activation 
Block 

...... B02 +------------+ 
Entry Pt Add 

f 

f 
f 

f 

f 

B Register 
Save Area 

T Register 
Save Area 

B03 ------------
(eFT 

only) Local 
Variables 

Temporaries 

Argument 
Addresses 

B66 +------------+ 

Initial Stack 
Segment 

.....+------------+ 
Stack Header 
------------

Task 
Information 

Block 
------------
TASK COMMON 

Table 
------------
TASK COMMON 

Blocks 
------------
Activation 

Block 1 
------------
Activation 

Block 2 
------------

Pad Area 
------------

Stack Link 
+------------+ 

Figure F-5. Division of Memory in the User Area 

F-IO SR-0222 D 



G. NOTES ON MULTITASKING 

This appendix contains miscellaneous notes on multitasking. 

G.1 USING COS MULTITASKING MACROS 

The Macros and Opdefs Reference Manual describes several macros that 
directly create and delete logical CPUs from user code. The library 
scheduler uses these macros and programmers can also use the macros, but 
they will be unable to synchronize between tasks created in this manner 
and any tasks created using the library routines described in this 
manual. In general, macros and library calls should be viewed as 
mutually exclusive. 

G.2 BATCH USE OF MULTITASKING 

As mentioned in section 1, Introduction, multitasking is aimed at the 
dedicated environment, though jobs can be run in a batch environment and 
batch processing can be useful for program development and debugging. 
Some suggestions for more effective batch use follow: 

• Subsection 5.4, Tuning, includes a discussion of the tuning 
subroutine, TSKTUNE. One of the parameters to this routine 
defines the maximum number of CPUs that will execute in an idle 
loop if otherwise unneeded. If a program tends to keep CPUs 
unused for long periods of time, you should consider setting the 
parameter to zero in a production batch environment. Otherwise, 
the CPU will execute the idle loop and be unavailable to other 
jobs in the system. 

• Performance in a batch environment is highly variable. If 
performance testing during batch is considered important, a site 
could establish a job class for multitasking that assigns a higher 
priority to such jobs. However, tasks in such jobs are still 
scheduled individually, depending upon their priority and those of 
other jobs present in the system. Sites should not introduce such 
a job class without carefully considering the impact on system 
throughput. 

SR-0222 D G-1 



G-2 

• Using microtasking in a batch environment is strongly encouraged. 
A microtasked application will use more than one CPU only if those 
CPUs would otherwise be idle. If no extra CPUs are ever available, 
the application should only minimally increase its execution time. 
Using microtasking, especially in situations when CPUs are 
frequently idle, improves both job and system throughput. 

SR-0222 D 



GLOSSARY 





GLOSSARY 

A 

Activation block - An area of local storage that each active subroutine 
has on the stack. This area contains local variables, save areas for B 
and T registers, and temporary storage. 

Assign - Identifies a variable that the program intends to use as a lock 
or event. Locks and events must be assigned before they can be used. 

C 

Clear - (1) An event state indicating that no signal is outstanding. 
(2) An operation causing the event state to change to clear. 

Clustering - Grouping processors at the hardware level in multitasking 
for efficient communication 

COBEGIN - A sequence of independent program segments 

COMMON - Accessible to multiple parts of a program. COMMON is a type of 
scope declaration in Fortran. 

Computational dependence - A form of dependence resulting from either 
control dependence, data dependence, or both 

Control dependence - A form of dependence that occurs when the order of 
execution depends upon preceding segments of code 

Control structure - In microtasking, a mechanism for bounding a portion 
of work that must be completed before processors are allowed to proceed 

Critical region - A segment of sequential code that accesses a shared 
resource 

D 

Data dependence - A form of dependence that occurs when the data resulting 
from one segment of code depends upon the data resulting from preceding 
segments of code 

SR-0222 D Glossary-l 



Deadlock - A condition in which locks and synchronization mechanisms have 
been misused to the extent that a task is waiting for something to happen 
that will never happen 

Deadlock detection - Recognizing a deadlock situation after the deadlock 
has occurred 

Deadlock prevention - The use of procedures or rules to ensure that 
deadlock does not occur 

Deadly embrace - A form of deadlock 

Dependence graph - A pictorial representation of the relationship~ between 
segments of code in a program 

DOALL - A loop with independent iterations 

DOPIPE - A software pipeline of program segments within a loop. Data 
dependencies prevent the loop from having independent iterations. 

E 

Event - (l) A facility that allows signaling between tasks. Events have 
two states: cleared and posted. {2} A variable used to represent an 
event. 

Event variable - An integer variable representing an event. This term is 
synonymous with event. 

F 

Fray - In microtasking, a section of code where multiple processors are 
allowed to execute. This term is intended to be descriptive of the 
chaotic flow of processors through a multitasked code section. 

G 

Granularity - The relative size of tasks executed in parallel: If the 
tasks into which a program is broken consist of large amounts of code, 
the multitasked program is said to have a large granularity. 

H 

Heap - Memory space between the job and the lID buffers in user space 

Glossary-2 SR-0222 D 



L 

Library scheduler - A library subroutine that assumes primary 
responsibility for managing and scheduling the tasks within a program 

Library task - A task created by a user job using the library calls 
described in this manual. A library task is referred to simply as a task 
in this manual. 

Load balancing - A process used to ensure that the amount of work done by 
each of the processors involved in a job is approximately equal 

Local - Accessible only to a particular part of a program (usually a 
single module). Local is a type of scope. 

Lock - (1) A facility that monitors critical regions of code. Locks have 
two states: locked and unlocked. (2) A variable used to represent a 
lock. 

Lock variable An integer variable representing a lock. This term is 
synonymous with lock. 

Logical CPU - An entity scheduled by COS for execution on physical CPUs: 
a user task. 

M 

Macrotasking - An implementation of multitasking that allows parallel 
execution of code at the subroutine level on multiple processors. 

Managed memory - A portion of the user's area in memory that is allocated 
for stack space and has a default location following the blank COMMON 
area. 

Microtasking - An implementation of multitasking that allows parallel 
execution of very small segments of code, such as individual iterations 
of DO loops, on multiple processors. 

Monitor - Controlling access to critical regions 

Multiprocessing - A property of the hardware in which two or more CPUs 
are available 

Multiprogramming - A property of the operating system that permits 
overlapping and interleaving the execution of more than one program 

Multitasking - The structuring of a program into two or more tasks that 
can execute concurrently on two or more processors 

Multithreading - See reentrancy. 

SR-0222 D Glossary-3 



Mutual exclusion - A property of a critical region in which no more than 
one task can execute it at a time 

N 

Nondeterministic - Not able to determine from the start. Multitasking is 
nondeterministic with respect to time; the order of execution of parallel 
tasks cannot be determined from run to run. 

Nonreentrancy - A property of a program module that allows it to be used 
only once. Such a module is called nonreentrant. 

P 

Parallelism - The simultaneous processing of jobs, parts of jobs, 
programs, or parts of programs. The order of execution for code segments 
that execute in parallel typically cannot be determined ahead of time. 

Parallel processing - The simultaneous processing of two or more segments 
of code 

Post - An operation causing the event state to change to posted 

Posted - An event state indicating that a signal is outstanding 

Private - Local to a task: existing only within the task's scope 
boundaries. Private is a type of scope. 

Process - In microtasking, a portion of work that will be completed by 
only one processor 

R 

Reentrancy - A property of a program module that allows one copy of it to 
be used by more than one job or task in parallel. Such a module is called 
reentrant. 

Release - Indicating that a variable is no longer intended for use as a 
lock or event 

S 

Scope - The region of a program in which a variable is defined and can be 
referenced. See local, common, and shared. 

Scope boundaries - The beginning and end of the region of a program that 
is the scope of a variable 

Glossary-4 SR-0222 D 



Serial reusability - A property of a program module that allows it to be 
used multiple times but by no more than one task at a time 

Shared - Accessible by multiple parts of a program. Shared is a type of 
scope. 

Single threading - Limiting the executing of a region of code to a single 
task 

Spin off - The process by which a task calls subroutines that are then 
made into independent tasks and run in parallel with the original 

Stack - A data structure providing a dynamic, sequential data list having 
special provisions for access from one end or the other. A last-in, 
first-out (push down, pop up) stack is accessed from just one end. 

Stackframe - An element of a stack. A stackframe is allocated when a 
reentrant subroutine is entered and deallocated on exit. 

Starvation - A characteristic of a multitasking program in which one or 
more tasks get no (or virtually no) execution time on a physical CPU 

Storage dependence - A form of dependence that occurs when tasks share 
variables 

Synchronization - The process of coordinating the steps within processes 
that can be run in parallel 

Synchronization point - A point in time at which a task has received the 
go-ahead to proceed with its processing 

System task - One of the modules that constitute the Cray operating 
system COS; for example, Disk Queue Manager (DQM) or Station Call 
Processor (SCP). 

T 

Task - A software process. A task is a unit of computation that can be 
scheduled and whose instructions must be processed in sequential order; 
a subprogram. 

TASK COMMON - Data that must be common to all subroutines that are 
executed by a single task but should be local to that task 

Task control array - A data structure used to represent a user-created 
task 

Task granularity - The approximate execution time of a task, usually 
given as an order of magnitude 

SR-0222 D Glossary-5 



Task information block - An area in the base of the task's stack that 
contains internal information about the task 

Task value - An optional word within a task control array that may be set 
to any value by the user before creating the task 

U 

User task - An entity scheduled for execution by COS. A user task is 
referred to as a logical CPU in this manual. 

Glossary-6 SR-0222 D 



INDEX 





INDEX 

Accessing 
a shared resource, 2-7 
microtasking preprocessor, 4-15 

Actions, multitasking, to record, 8-3 
Activation block 

definition, Glossary-l 
description, F-9 

Adding user entries to history trace, 8-6 
Advanced multitasking in Fortran, 9-1 
Advantages, macrotasking vs. microtasking, 

1-2, 1-3 
ALSO PROCESS directive, 4-9 
Amdahl's Law, description, 2-15 
Analysis, program, 4-7, 6-1 
Antidependence, 3-4 
Arguments, passing 

local variables as, 6-4 
to a task, 5-5 

new task, Pascal, 11-6 
Arrays 

COMMON block, padding between, 6-11 
efficient dimensioning, 6-10 

Assign, definition, Glossary-1 
Assigning 

a barrier variable, 5-20 
an event variable, 5-16 
lock variable, 5-12 

Assumptions, macrotasking, 5-27 

Balancing, load, 2-12 
BARASGN routine, 5-20 
BARREL routine, 5-21 
Barriers 

description, 5-20 
examples of use, 5-21 
using for synchronization, 9-4 

BAR SYNC routine, 5-21 
Basics of multitasking, 3-1 
Batch use of multitasking, G-1 
Bibliography, E-1 
Blank COMMON, extending, 5-28 
Blocks, TASK COMMON, 5-9 
Boundaries of scope, changed by 

multitasking, 3-13 
BUFDUMP routine, 8-6 
Buffer, multitasking history trace, 8-1 
BUFPRINT routine, 8-5 
BUFTUNE routine, 8-2 
BUFUSER routine, 8-6 

SR-0222 D 

<-<"-~--<----<-<---<"---------

CAL, macrotasking in, 10-1 
Calculating speedup, 3-20 
Categories of scope, multitasking, 3-13 
CFT and CFT77 optimization, 5-29 
CFT77 microtasking 

COS PREMULT parameter, 4-17 
UNICOS PREMULT parameter, 4-18 

CHARGES, times COS tasks, 7-4 
Checklist to avoid errors, 7-1 
Chime overlap, example, 6-9 
Choosing vectorization over multitasking, 

3-29 
Chunking factor 

definition, 4-11 
trade-offs in selecting, 3-25 

Clear, definition, Glossary-1 
Clearing 

a lock, 5-13 
an event, 5-19 

Clustering 
definition, Glossary-1 
processor, CAL, 10-2 

CMIC$ 
ALSO PROCESS directive, 4-9 
CONTINUE directive, 4-14 
DO GLOBAL BY directive, 4-11 
DO GLOBAL directive, 4-10 
DO GLOBAL FOR directive, 4-12 
DO GLOBAL LONG VECTOR directive, 4-11 
END GUARD directive, 4-14 
END PROCESS directive, 4-10 
GETCPUS directive, 4-8 
GUARD directive, 4-13 
MICRO directive, 4-9 
PROCESS directive, 4-9 
RELCPUS directive, 4-8 
STOP ALL PROCESS directive, 4-13 

COBEGIN 
definition, Glossary-l 
structure, 9-18 

Code, writing multitasked, 6-8 
Combining parameters to MTDUMP, 8-12 
Command line, MTDUMP, UNICOS, 8-10 
Commands to microtask under UNICOS, 4-19 
Comments on manual, making, 1-6 
COMMON 

blank, extending, 5-28 
block arrays, padding between, 6-11 
blocks in CAL, 10-1 I 
definition, Glossary-1 
TASK, 9-11 

Index-l 



Communication between tasks, 9-5 
Compiler memory optimizations, 6-4 
Computational dependence, 3-2 

definition, Glossary-1 
Concepts 

multitasking, 2-1 
microtasking, 4-2 

Conditional 
multitasking, 6-1 
statements and dependence, 3-8 

Contention, minimizing memory, 6-9 
CONTINUE directive, 4-14 
Control 

array, task, 5-3 
dependence, 3-8 

definition, Glossary-1 
statement, MTDUMP, 8-8 
structure 

definition, 4-3, Glossary-1 
mark beginning for microtasking, 4-9 
task, Pascal, 11-4 

CONTRPV request, 5-32 
Conventions used in manual, 1-5 
Conversion to multitasking, 6-1 
Coordinating steps within tasks, 2-13 
COS 

CPU 

assumptions, macrotasking, 5-27 
format, MTDUMP, 8-8 
invoking PREMULT under, 4-16 
IOAREA lock, 5-33 
JCL for multitasking job, 5-36 
multitasking, 1-4 
reprieve processing, 5-32 
tasks versus user tasks, 7-4 

seconds, measuring, 2-19 
logical, use, 

COS, 8-9 
sample output of trace, 8-18 
UNICOS 8-11 

number active, 5-23 
Creating independence, 6-6 
Critical region, 9-21 

definition, 2-7, Glossary-1 
mark beginning for microtasking, 4-13 
monitoring in macrotasking, 5-11 
within reentrant module, 2-11 

Cross-reference, FTREF, Fortran, 7-5 
Curve, Amdahl's Law, 2-16 

Data 
dependence, 3-2 

definition, Glossary-1 
protection, macrotasking, 5-9 
scope, with microtasking, 4-2 
types, multitasking, declaring in 

Pascal, 11-9 
DATA statement 

causes static storage, 6-3 
for static assignment, 5-10 

Dataset, use of term in manual, 1-6 

Index-2 

Deadlock 
definition, 2-14, Glossary-2 
detection, 7-9 

definition, Glossary-2 
prevention, definition, Glossary-2 

Deadly embrace, definition, Glossary-2 
DEBUG 

display, 8-1 
heap and stack statistics, 5-27 
utility, 7-9 

Debugging, 7-1 
routines needing locks, 5-33, 7-14 

Declarations, Pascal, 11-9 
Dependence 

computational and storage, 3-1 
graph, definition, Glossary-2 

Design description, F-1 
Detecting deadlock, 2-15, 7-9 
Determinism, 3-14 
Differences between macrotasking and 

microtasking, 1-2, 1-3 
Dimensioning arrays, 6-10 
Directives, microtasking, 4-8 
Dividing work among processors, 2-12 
DO GLOBAL directive, 4-10 

BY directive, 4-11 
FOR directive, 4-12 
LONG VECTOR directive, 4-11 

DO loop 
level multitasking, 4-1 
mark beginning for microtasking, 4-10 

DOALL 
loop, 9-14 
definition, Glossary-2 

DOPIPE 
structure, 9-18 
definition, Glossary-2 

Dump of history trace, 8-5 
Dynamic 

load balancing, brief summary, 2-12 
partitioning, microtasking, 3-25 

Eliminating operating system multitasking, 
7-5 

END 
GUARD directive, 4-14 
PROCESS directive, 4-10 

ENDRPV request, 5-32 
Entry point for task, specifying, 5-5 
Errors 

frequent, 7-1 
performance, 7-3 

EVASGN 
routine, 5-16 
timing, C-2 

EVCLEAR 
processing, F-4 
routine, 5-19 
timing, C-2 

Event 
definition, Glossary-2 
displaying 

COS, 8-10 
UNICOS 8-11 

SR-0222 0 



Events (continued) 
for managing loop parallelism, 9-16 
macrotasking, 5-15 
tracing, sample output, 8-24 
using for synchronization, 9-2 
variable, definition, Glossary-2 

storage in Pascal, 11-5 
EVPOST 

processing, F-4 
routine, 5-18 
timing, C-2 

EVREL 
routine, 5-19 
timing, C-2 

EVTEST routine, D-2 
EVWAIT 

processing, F-3 
VWAIT routine, 5-17 
timing, C-2 

Examining unformatted dump of trace, 8-8 
Example 

DEBUG output, 7-10 
FTREF output, 7-7 
macrotasking, 5-34 
microtasking, longer, 4-28 
MTDUMP, 8-13 
multitasking in Pascal, 11-3 
pipelining, 9-19 
using barriers, 5-21 

Execution order, determining, 3-14 
Exit microtasking control structure, 4-13 
Extending blank COMMON, 5-28 

Factors 
affecting performance, 3-26 
limiting speedup, 1-2 

Fast Fourier Transform microtasked, 4-4 
Features, multitasking status, D-l 
FFT microtasking example, 4-4 
File, use of term in manual, 1-6 
Flow dependence, 3-2 
FLOWTRACE, 7-8 

with microtasking, 4-7 
FORK/JOIN construct, 9-23 
Formatted dump of history trace, 8-5 
Formula for calculating speedup, 3-20 
Fortran 

cross-reference, FTREF, 7-5 
multitasking, advanced, 9-1 

Fray, definition, 4-3, Glossary-2 
Frequent errors, 7-1 
FTREF 

Fortran cross-reference, 7-5 
with microtasking, 4-7 

Function parameter, passing to Pascal task, 
11-6 

Gains with multitasking, 3-1 
Generalizations about dependence, 3-12 
GETCPUS directive, 4-8 
Global 

data with microtasking, 4-6 
variables, definition, 2-6 

SR-0222 D 

Granularity 
definition, 2-1, Glossary-2 
large 

for macrotasking, 5-1 
in DO loop, example, 3-24 

of tasks, 3 -16 
small 

in DO loop, example, 3-24 
with microtasking, 4-2 

GUARD 
directive, 4-13 
within control structures only, 4-26 

Guidelines 
for tuning macrotasking, 5-25 
moving to stack, 6-2 

Heap 
allocation routines, 5-29 
definition, Glossary-2 

and design, F-6 
setting initial size, 5-26 
statistics from DEBUG, 5-27, 7-9 

History trace buffer, multitasking, 8-1 
HPALLOC and HPDEALLC routines, 5-29 

I/O 
dependence, 3-6 
in multitasked Pascal, 11-8 
multitasking, 6-8 
tables with CAL macrotasking, 10-1 

IF statements and dependence, 3-8 
Independence 

verifying and creating, 6-6 
Independent iterations of DO loop, 3-3, 4-21 
INFO keyword to MTDUMP, example of use, 8-27 
Initiating a task, 5-5 
Innermost DO loop, mark for microtasking 

and vectorization, 4-11 
Input in multi tasked Pascal, 11-8 
Instructions ta access shared registers, 

10-5 
Interpreting tracebacks, 7-8 
Introduction to multitasking, 1-1 
Invoking 

DEBUG, 7-9 
PREMULT 

under COS, 4-16 
under UNICOS, 4-18 

IOAREA lock, COS, 5-33 

JCL 
COS, for multitasking job, 5-36 
for microtasking, example, 4-17 
using DEBUG, 8-1 

Job 
JCL for microtasking, 4-17 
step, definition, 1-4 
stream, definition, 2-3 

JOIN construct, 9-23 

Index-3 



LOR memory management tunings, 5-25 
Levels of parallelism, 2-1 
Libraries 

debugging routines needing locks, 7-14 
routines 

multitasking, with CAL, 10-1 
nonreentrant, 5-33 

scheduler 
definition, Glossary-3 
description, F-1 

subroutines, key, F-3 
task, definition, Glossary-3 
with stack option, 5-28 

Limitations to speedup, 1-2 
Listing 

DEBUG, 7-10 
MTDUMP, 8-14 

Load balancing, 2-12 
definition, Glossary-3 
description, 3-21 

Loader memory management tunings, 5-25 
Local 

data with microtasking, 4-6 
definition, Glossary-3 
variables 

definition, 2-6 
use with stack, 6-2 

Locating potential parallelism, 6-5 
Lock 

COS IOAREA, 5-33 
definition, Glossary-3 
description, 5-11 
displaying 

COS, 8-10 
UNICOS 8-11 

using for synchronization, 9-3 
variable 

assigning, 5-12 
definition, Glossary-3 
storage in Pascal, 11-5 

LOCKASGN 
routine, 5-12 
timing, C-1 

LOCKOFF 
processing, F-3 
routine, 5-13 
timing, C-1 

LOCKON 
routine, 5-13 
processing, F-3 
timing, C-1 

LOCKREL 
routine, 5-14 
timing, C-1 

LOCKTEST routine, 0-1 
Logical CPU 

definition, Glossary-3 
description, F-1 
number active, 5-23 
use 

sample output of trace, 8-18 
tracing, COS, 8-9 
tracing, UNICOS, 8-11 

Loop unrolling, example, 6-9 

Index-4 

Machine instructions to access shared 
registers, 10-5 

Macros for CAL macrotasking, 10-1 
Macrotasking 

checklist to avoid errors, 7-1 
definition, Glossary-3 
description, 5-1 
in CAL, 10-1 
pros and cons, 1-2 
with Pascal, 11-1 

Managed memory, definition, Glossary-3 
Management of queues, F-2 
Manual performance prediction, 3-26 
Manuals that may be helpful, iii 
Mark 

beginning on control structure for 
microtasking, 4-9 

end of microtasking process, 4-10 
Measuring 

microtasking performance, 4-28 
time and work, 2-18 

Mechanisms for synchronization 
macrotasking, 2-14 
microtasking, 2-14 

Memory 
contention, minimizing, 6-9 
division of in user area, F-10 
management 

tunings, 5-25 
design, F-6 

optimizations, compiler, 6-4 
storing variables to, 5-29 

Messages, B-1 
MICRO directive, 4-9 
Microtasking 

definition, Glossary-3 
description, 4-1 
JCL for, 4-17 
not with Pascal, 11-1 
preprocessor, accessing, 4-15 
pros and cons, 1-3 
rules in brief, 4-27 
sample commands under UNICOS, 4-19 

Minimizing memory contention, 6-9 
Modify tuning parameters, 5-22 
Monitor, definition, Glossary-3 
Monitoring 

critical regions, 2-7 
variable updates, 9-6 

Moving from static to stack, 6-2 
MTDUMP program, 8-8 
$MULTC, COS CAL output from PREMULT, 4-16 
Multc.s, UNICOS CAL output form PREMULT, 

4-18 
$MULTF, COS Fortran output from PREMULT, 

4-16 
Multf.f, UNICOS Fortran output from 

PREMULT, 4-18 
MULTI control statement 

example, 1-4 
with microtasking, 4-17 

Multiprocessing, definition, 2-3, Glossary-3 
Multiprogramming, definition, 2-2, 

Glossary-3 

SR-0222 D 



Multitasking 
basics, 3-1 
choosing vectorization over, 3-29 
conditional, 6-1 
definition, 2-4, Glossary-3 
eliminating operating system, 7-5 
history trace buffer, 5-1 
in Fortran, advanced, 9-1 
library routines, with CAL, 10-1 
notes, G-! 
on a single processor, A-I 
overview, 1-4 
procedures, Pascal, 11-1 
status features, D-l 

Multithreading, definition, 2-9, Glossary-3 
Mutual exclusion, definition, Glossary-4 

Names reserved by PREMULT, 4-19 
Nesting control structures when 

microtasking, 4-21 
Nondeterministic, definition, Glossary-4 
Nonlocal variables, Pascal, 11-7 
Nonreentrancy, definition, Glossary-4 
Nonreentrant library routines, 5-33 
Notes on multitasking, G-l 

Operating system multitasking, eliminating, 
7-5 

Optimization, CFT and CFT77, 5-29 
Optimizations, compiler memory, 6-4 
Order of execution, determining, 3-14 
Output 

dependence, 3=5 
from MTDUMP, 8-14 
in multitasked Pascal, 11-8 

Overhead 
calculating, 3-28 
stack mode, 5-11 
with microtasking, 4-1 

Overlap, chime, example, 6-9 
Overlays, 5-28 
Overview, multitasking, 1-4 

Parallel processing, definition, Glossary-4 
Parallelism, 9-1 

and tasks, 5-2 
definition, 2-1, Glossary-4 
locating potetial, 6-5 
sample tasks containing, 3-18 

Parameters 
modify tuning, 5-22 
to MTDUMP, combining, 8-12 

Partitioning 
dynamic, example, 3-24 
interleaved static, 3-24 

Pascal, macrotasking with, 11-1 
Passing parameters to a task, Pascal, 11-6 
PERFMON with microtasking jobs, 4-28 
Performance 

errors, 7-3 
of microtasked programs, 4-28 
predicting, 3-26 

SR-0222 D 

Pipelining, example, 9-19 
Post, definition, Glossary-4 
Posted, definition, Glossary-4 
Posting an event, 5-18 
Predicting performance, 3-26 
PREMULT 

description, 4-15 
microtasking preprocessor, 4-2 

Preprocessor 
directives, microtasking, 4-8 
microtasking, accessing, 4-15 

Private 
data, macrotasking, 5-10 
definition, Glossary-4 
scope, definition, 2-5 
varia~les, 9-7 

Procedure 
parameter, passing to Pascal task, 11-6 
multitasking 

declaring in Pascal, 11-9 
Pascal, 11-1 

PROCESS directive, 4-9 
Process, definition, 4-3, Glossary-4 
Processor clustering, CAL, 10-2 
Processors 

do not assume number when microtasking, 
4-19 

get for microtasking, 4-8 
release from microtasking, 4-8 

Program 
analysis and conversion, 6-1 
analyzing for microtasking, 4-7 

Protecting data, macrotasking, 5-9 
P$TASK, Pascal equivalent of TSKSTART, 11-1 

Queue management, F-1 

Random access lID, not locked, 5-33 
RANF, not reentrant, 6-3 
READ statement and data dependence, 3-6 
Reader comments, 1-6 
Ready queue, how often sample, 5-24 
Recording multitasking actions, 8-2 
Reduction constructs, 9-22 
Reentrancy, definition, 2-9, Glossary-4 
Region, critical, 9-21 
Registers 

semaphore, with CAL, 10-4 
shared, CAL, 10-2 

Relationships between tasks, 5-3 
RELCPUS directive, 4-8 
Release 

a lock, 5-14 
barrier variable, 5-21 
definition, Glossary-4 
event variable, 5-19 
processors, microtasking, 4-8 

Reordering statements by compiler, 5-30 
Reprieve processing, COS, 5-32 
Reserved names, PREMULT, 4-19 
Resource sharing with microtasking, 4-2 

Index-5 



Routines 
debugging, needing locks, 7-14 
for history trace buffer, 8-2 
multitasking, with CAL, 10-1 
nonreentrant, 5-33 

Rules for 
microtasking, 4-19 
microtasking, in brief, 4-27 

Sample tasks containing parallelism, 3-18 
SAVE statement for static assignment, 5-10 
Scope 

boundaries, definition, Glossary-4 
definition, 2-5, Glossary-4 
macrotasking, 5-9 
of data with microtasking, 4-2 
of variables, 9-8 

description, 3-12 
SECOND routine, 2-18 
SEGLDR memory management tunings, 5-25 
Segments, 5-28 
Selecting multitasking actions to record, 

8-2 
Semaphore registers with CAL, 10-4 
Serial reusability, definition, Glossary-5 
Serially reusable code, definition, 2-10 
SETRPV request, 5-32 
Setting a lock, 5-13 
Shared 

data 
macrotasking, 5-9 
modify within structure when 

microtasking, 4-20 
definition, Glossary-5 
registers, CAL, 10-2 
resource, accessing, 2-7 
scope, definition, 2-5 
variables, 9-7 

Single-task mode, 7-5 
Single threading, definition, 2-8, 

Glossary-5 
Sort/merge routines, not locked, 5-33 
Speedup 

calculating, 3-20 
factors that limit, 1-2 
from multitasking, factors, 3-16 
predicting, 3-26 
reasons for lack of, 7-3 
theoretical, 2-15 

Spin off, definition, 2-3, Glossary-5 
Spy, 7-8 

with microtasking, 4-7 
Stack 

definition, Glossary-5 
and design, F-7 

frame 
definition, Glossary-5 
of an activation block, F-9 

from static, moving, 6-2 
option for libraries, 5-28 
overflow, indication of, 7-8 
statistics from DEBUG, 5-27, 7-9 
task, in managed memory, F-8 
use for private data, 5-10 

Index-6 

Starting a task, 5-5 
Starvation, definition, Glossary-S 
State 

transitions, F-4 
of tasks, 5-3 

Static 
assignment, when necessary, 5-10 
load balancing, brief summary, 2-12 
to stack, moving, 6-2 

Statistics, heap and stack from DEBUG, 7-9 
Status 

features, D-1 
of tasks, 5-8 

displaying, COS, 8-9 
displaying, UNICOS, 8-10 
sample output of trace, 8-20 

Steps to converting to multitasking, 6-5 
$STKUFEX in traceback, 7-8 
STOP ALL PROCESS directive, 4-13 
Storage dependence, 3-10 

definition, Glossary-5 
Storage of multitasking data, Pascal, 11-5 
Subprogram multitasking, 2-4 
Subroutine 

designate for microtasking, 4-9 
key library, F-3 
macrotasking, 5-1 

Summation, 9-22 
Synchronization, 9-2 

definition, 2-13, Glossary-5 
macrotasking, 5-15 
points 

display 
COS, 8-9 
UNICOS, 8-10 

sample output of trace, 8-16 
Synchronize tasks with barriers, 5-21 
System task, definition, Glossary-5 

Table manager routines, need locks, 5-33 
$TASKCOM, name of TASK COMMON, F-5 
TASK COMMON, 9-11 

and data scope, 2-6 
data, macrotasking, 5-9 
definition, Glossary-5 
internal design, F-5 
SECTION option, CAL2, 10-1 
Pascal, 11-8 

Tasks 
and parallelism, 5-2 
communicating with each other, 9-5 
containing parallelism, sample, 3-18 
control array, 5-3 

definition, Glossary-5 
control structure, Pascal, 11-4 
COS versus user, 7-4 
definition, 2-3, Glossary-5 

using macrotasking, 5-3 
dumping trace of 

COS, 8-9 
UNICOS, 8-11 

granularity, 3-16 
definition, Glossary-5 

SR-0222 D 



Tasks (continued) 
information block, definition, 

Glossary-6 
stacks in managed memory, F-8 
status, user, sample output of trace, 

8-20 
tracing, sample output, 8-24, 8-26 
user, transitions, F-4 
value, definition, Glossary-6 

Temporary storage, problems of, 5-31 
Terms 

multitasking, 2-1 
microtasking, 4-2 

Theoretical speedup, 2-15 
calculating, 3-27 

Time, measuring, 2-18 
TIMEF routine, 2-18 

needs lock, 5-34 
Timings, C-1 
Tips on combining parameters to MTDUMP, 8-12 
Tools to help microtask, 4-7 
Trace, multitasking history trace, 8-1 
Tracebacks, interpreting, 7-8 
Trade-offs 

in selecting chunking factor, 3-25 
multitasking, 1-2 

Transitions, state, F-4 
TSKLIST routine, 5-8 
TSKSTART routine 

description, 5-5 
processing, F-3 
timing, C-1 

TSKTEST routine, D-1 
TSKTUNE routine, 5-22 
TSKVALUE routine, 5-7 

timing, C-1 
TSKWAIT routine, 5-6 

processing, F-3 
timing, C-1 

Tuning, macrotasking, 5-22 
Types, multitasking, declaring in Pascal, 

11-9 

Unformatted dump of history trace, 8-6 
UNICOS 

assumptions, macrotasking, 5-27 
commands to microtask, 4-19 
format, MTDUMP, 8-10 
invoking PREMULT under, 4-18 
multitasking, 1-5 

Unknown dependence, 3-5 
Unrolling inner loop, example, 6-9 
User 

area in memory, F-8 
entries, adding to history trace, 8-6 
identifier, retrieve, 5-7 
task 

definition, Glossary-6 
status, sample output of trace, 8-20 
transitions, F-4 

Using nonlocal variables, Pascal, 11-7 

SR-0222 D 

Variable 
barrier, assigning, 5-20 
event, definition, 5-15 
lock, 5-11 

and event storage in Pascal, 11-5 
nonlocal, Pascal, 11-7 
scope 

definition, 2-5 
description, 3-12 

shared and private, 9-7 
storing to memory, 5-29 
updates, monitoring, 9-6 

Vectorization 
choosing over multitasking, 3-29 
with microtasking, 4-7 

Verifying independence, 6-6 

Wait for task to finish, 5-6 
Waiting for an event, 5-17 
Wall-clock time 

measuring, 2-19 
with microtasking, 4-28 

Work, measuring, 2-18 
WRITE statement and data dependence, 3-6 
Writing multitasked code, 6-8 

Index-7 





READER'S COMMENT FORM 

CRAY X-MP Multitasking Programmer's Manual SR-0222 D 

Your reactions to this manual will help us provide you with better documentation. Please take a moment to 
check the spaces below, and use the blank space for additional comments. 

1) Your experience with computers: __ 0-1 year __ 1-5 years __ 5+ years 
2) Your experience with Cray computer systems: __ 0-1 year __ 1-5 years __ 5+ years 
3) Your occupation: __ computer programmer __ non-computer professional 

__ other (please specify): ___________ _ 
4) How you used this manual: __ in a class __ as a tutorial or introduction __ as a reference guide 

__ for troubleshooting 

Using a scale from 1 (poor) to 10 (excellent), please rate this manual on the following criteria: 

5) Accuracy __ 8) Physical qualities (binding, printing) __ 
6) Completeness __ 9) Readability __ 
7) Organization __ 10) Amount and quality of examples __ 

Please use the space below, and an additional sheet if necessary, for your other comments about this 
manual. If you have discovered any inaccuracies or omissions, please give us the page number on which 
the problem occurred. We promise a quick reply to your comments and questions. 

Name __________ _ Address -------------
Title __________ _ City ______________ _ 
Company ____________ _ State/ Country ______ __ 
Telephone _____________ __ Zip Code _______ _ 
Today's Date ________ _ 



FOLD 

-----------------------------------------------~ 

111111 

BUSINESS REPLY CARD 
FIRST CLASS PERMIT NO 6184 ST PAUl. MN 

POSTAGE WILL BE PAlO BY AOORESSEE 

RESEARCH. INC. 

Attention: PUBLICATIONS 
1345 Northland Drive 
Mendota Heights, M N 55120 

NO POSTAGE 
NECESSARY 
IF MAILED 

IN THE 
UNITED STATES 

-----------------------------------------------~ 
FOLD 

STAPLE 

("') 
C 
-I 
l> 
5 
z 
G) 

-I 
:t 
Ui 
r 
Z 
m 



READER'S COMMENT FORM 

CRAY X-MP Multitasking Programmer's Manual SR-0222 D 

Your reactions to this manual will help us provide you with better documentation. Please take a moment to 
check the spaces below, and use the blank space for additional comments. 

1) Your experience with computers: ___ 0-1 year ___ 1-5 years ___ 5+ years 
2) Your experience with Cray computer systems: ___ 0-1 year ___ 1-5 years ___ 5+ years 
3) Your occupation: ___ computer programmer ___ non-computer professional 

___ other (please specify): ___________ _ 
4) How you used this manual: ___ in a class __ as a tutorial or introduction __ as a reference guide 

__ for troubleshooting 

Using a scale from 1 (poor) to 10 (excellent), please rate this manual on the following criteria: 

5) Accuracy __ 8) Physical qualities (binding, printing) __ _ 
6) Completeness __ _ 9) Readability __ _ 
7) Organization __ _ 10) Amount and quality of examples __ 

Please use the space below, and an additional sheet if necessary, for your other comments about this 
manual. If you have discovered any inaccuracies or omissions, please give us the page number on which 
the problem occurred. We promise a quick reply to your comments and questions. 

Name __________ _ Address __________ _ 
Title __________ _ City ___________ _ 
Company ______________ _ Statel Country ______ _ 
Telephone _______ _ Zip Code _________ _ 
Today's Date ______ _ 



FOLD 

-----------------------------------------------~ 

III " I 
BUSINESS REPLY CARD 
FIRST CLASS PERMIT NO 6184 ST PAUL, MN 

POSTAGE WILL BE PAID BY ADDRESSEE 

RESEARCH, INC. 

Attention: PUBLICATIONS 
1345 Northland Drive 
Mendota Heights, M N 55120 

NO POSTAGE 
NECESSARY 
IF MAILED 

IN THE 
UNITED STATES 

-----------------------------------------------~ 
FOLD 

STAPLE 

(") 
C 
-4 
» 
r o 
Z 
G') 

-4 
:I: 
en 
r 
Z 
m 


